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Une région intrinsèquement désordonnée dans OSBP contrôle la 

géométrie et la dynamique du site de contact membranaire 

 

Résumé 

 La protéine OSBP est un transporteur de lipides qui régule la distribution 

cellulaire du cholestérol. OSBP comprend un domaine PH, deux séquences « coiled 

coil », un motif FFAT (deux phénylalanines dans un environement acide), et un domaine 

de liaison de lipides (ORD) à son extrémité C-terminale. Le domaine PH interagit avec le 

PI(4)P et la petite protéine G Arf1-GTP au niveau du Golgi, alors que le motif FFAT 

interagit avec la protéine VAP-A, résidente du réticulum endoplasmique (RE). En liant 

simultanément tous ces déterminants, OSBP stabilise des sites de contact membranaire 

entre RE et Golgi, permettant ainsi un contre-échange cholestérol / PI(4)P par l'ORD. 

 OSBP contient également une longue séquence N-terminale d’environ 80 aa, 

intrinsèquement désordonnée, composée principalement de glycine, proline et 

d'alanine. Nous démontrons que la présence de ce N-terminus désordonné augmente le 

rayon de Stoke de OSBP tronquée du domaine ORD, et limite sa densité d’association sur 

la membrane portant le PI(4)P. La protéine dépourvue du N terminus favorise 

l'agrégation symétrique des liposomes PI(4)P (mimant la membrane du Golgi) par les 

deux domaines PH du dimère OSBP, alors que la présence de la séquence désordonnée 

empêche cette association symétrique. De même, nous observons que la distribution 

d’OSBP sur la membrane de vésicules unilamellaires géantes (GUV) varie selon la 

présence ou l'absence du N-terminus. En présence de la séquence désordonnée, la 

protéine est répartie de manière homogène sur toute la surface du GUV, alors que la 

protéine sans N-terminal a tendance à s'accumuler à l'interface entre deux GUV de type 

Golgi. Cette accumulation locale ralentit fortement la mobilité de la protéine à 

l’interface. Un effet similaire du N-terminal sur la dynamique des protéines est observé 

lorsque l’association de membranes de type ER et Golgi est assuré par des protéines 

monomériques (dépourvue du coiled coil) en présence de Vap-A. 

 Les résultats de nos expériences in vitro ont été confirmés en cellules vivantes, où 

la séquence intrinsèquement désordonnée contrôle le recrutement d’OSBP sur les 

membranes Golgiennes, sa mobilité et sa dynamique d’activité au cours des cycles de 

transfert de lipides. La plupart des protéines de la famille d’OSBP contiennent des 

séquences N-terminales de faible complexité, suggérant un mécanisme général de 

régulation. 

 

 

Mots clés : protéine intrinsèquement désordonnée, protéine de transfert de lipides, 

OSBP, diffusion membranaire, site du contact membranaire, tethering de membranes 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



An intrinsically disordered region of OSBP controls membrane 

contact site geometry and dynamics 

 

Abstract 

 Oxysterol binding protein (OSBP) is a lipid transfer protein that regulates 

cholesterol distribution in cell membranes. OSBP consists of a pleckstrin homology (PH) 

domain, two coiled-coils, a “two phenylalanines in acidic tract” (FFAT) motif and a C-

terminal lipid binding OSBP-Related Domain (ORD). The PH domain recognizes PI(4)P 

and small G protein Arf1-GTP at the Golgi, whereas the FFAT motif interacts with the 

ER-resident protein VAP-A. By binding all these determinants simultaneously, OSBP 

creates membrane contact sites between ER and Golgi, allowing the counter-transport 

of cholesterol and PI(4)P by the ORD. 

 OSBP also contains an intrinsically disordered ~80 aa long N-terminal sequence, 

composed mostly of glycine, proline and alanine. We demonstrate that the presence of 

disordered N-terminus increases the Stoke’s radius of OSBP truncated proteins and 

limits their density and saturation level on PI(4)P-containing membrane. The N-

terminus also prevents the two PH domains of OSBP dimer to symmetrically tether two 

PI(4)P-containing (Golgi-like) liposomes, whereas protein lacking the disordered 

sequence promotes symmetrical liposome aggregation. Similarly, we observe a 

difference in OSBP membrane distribution on tethered giant unilamellar vesicles 

(GUVs), based on the presence/absence of N-terminus. Protein with disordered 

sequence is homogeneously distributed all over the GUV surface, whereas protein 

without N-terminus tends to accumulate at the interface between two PI(4)P-containing 

GUVs. This protein accumulation leads to local overcrowding, which is reflected by slow 

in-plane diffusion. The effect of N-terminus is also manifested in monomeric OSBP-

derived proteins that tether ER-like and Golgi-like membranes in the presence of VAP-A.  

Findings from our in vitro experiments are confirmed in living cells, where N-

terminus controls the recruitment of OSBP on Golgi membranes, its motility and the on-

and-off dynamics during lipid transfer cycles. Most OSBP-related proteins contain low 

complexity N-terminal sequences, suggesting a general effect.  

 

 

Keywords : intrinsically disordered protein, lipid transfer protein, OSBP, membrane 

diffusion, membrane contact site, membrane tethering   
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INTRODUCTION 
 

PART 1: INTRINSICALLY DISORDERED REGIONS 
 

A. DISCOVERY OF INTRINSICALLY DISORDERED PROTEINS 

After the discovery of X-rays in 1895 by Wilhelm Röntgen, they were used as a 

tool to study structure of materials in technology and to visualise tissues under clinical 

conditions in medicine. X-ray crystallography of biological molecules took off with 

Dorothy Hodgkin during her PhD in Bernal lab in 1934, where the first X-ray 

photographs of hydrated protein crystals were taken. Of note, D. Hodgkin also solved 

the structure of cholesterol (1937) and other biochemical substances, for which she was 

awarded a Nobel Prize in 1964. During late 1950s, the atomic structure of proteins by X-

ray crystallography began to be solved by Sir John Cowdery Kendrew (who crystallized 

myoglobin in 1959) and by Max Perutz (who solved the structure of haemoglobin in the 

same year) - for which they shared a Nobel Prize in 1962. Over the oncoming decades, 

evidence accumulated that a well-defined 3D structure is a prerequisite for protein 

function, and authors exquisitely relied on the structure-function paradigm in biology 

and biochemistry textbooks for many years. However, some deviations from this 

paradigm were apparent since the very beginning – in X-ray datasets, many protein 

regions could not be assigned a fixed, unique position relative to the crystal lattice, 

indicating that these regions occupy multiple positions, which average out in the 

electron density maps. Similarly, nuclear magnetic resonance (NMR) spectroscopy 

demonstrated the presence of large flexible amino acid sequences in solved structural 

ensembles. Therefore, while there was no doubt that protein structure and function are 

closely linked, there was also a growing awareness that not all biologically functional 

proteins fold spontaneously into stable structures (Boesch et al., 1978; Daniels et al., 

1978), and that missing regions of electron density of several proteins likely carried out 

important functions (Gast et al., 1995; Huber and Bennett, 1983). Only around the turn 

of the millennium, several authors raised that many protein regions are intrinsically 
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unstructured (later called “disordered”) under native conditions (Tompa, 2002; Wright 

and Dyson, 1999).  

Currently, Protein Data Bank (PDB) contains more than 130000 protein 

structures solved by X-ray crystallography and more than 12000 protein structures 

solved by NMR. Thousands of them have been shown to contain disordered regions, and 

the extent of intrinsic disorder varies from protein to protein. In this thesis, the term 

intrinsically disordered protein (IDP) refers both to proteins that are completely 

intrinsically disordered and to those that mostly consist of disordered residues, with 

few ordered regions. The term intrinsically disordered protein region (IDPR) refers to a 

sequence of disorder within a folded protein.        

The identification of many IDPs/IDPRs enabled the development of sophisticated 

bioinformatic algorithms for predicting disorder from amino acid sequence. In 1997, the 

first Predictor Of Natural Disordered Regions (PONDR) was developed which further 

advanced the field (Romero et al., 1997). Since 1997, more than 70 different structure 

predictors have been developed based on different principles (He et al., 2009; Li et al., 

2015). They have shown that a significant fraction of every proteome is occupied by 

proteins that do not form a unique 3D structure - around 10 - 35% of prokaryotic and 

15 - 45% of eukaryotic proteins contain disordered regions of at least 30 residues in 

length (Tompa, 2012).  

 

B. CHARACTERISTICS AND FUNCTIONS OF INTRINSICALLY DISORDERED PROTEINS 

AND PROTEIN REGIONS 

Structural and functional properties of proteins are encoded by the alphabet of 

20 naturally occurring amino acids. One of the characteristics of IDPs and IDPRs is the 

presence of low sequence complexity and a bias in the amino acid composition. 

Disordered sequences tend to display relatively low proportion of bulky hydrophobic 

(Val, Leu, Ile) and aromatic residues (Phe, Trp and Tyr), which usually form the 

hydrophobic core of a globular protein, and a high proportion of charged and polar 

residues (Glu, Ser, Gln, Lys, Gly and Ala). The highest level of abundance and 

conservation in IDPs/IDPRs is exhibited by a hydrophobic, yet structure breaking 
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proline (Pro). Proline is unique in that it is the only imino acid – the backbone nitrogen 

is bound to two alkyl carbons, it lacks the usual proton and creates a distinctive cyclic 

structure which renders the backbone conformation more rigid than in any other amino 

acid. Also, proline does not contain backbone amide hydrogen atoms at physiological 

pH, and is therefore not able to form stabilizing hydrogen bonds in -helices or -

sheets. Hence, IDPs contain, on average 1.8-times more prolines than folded proteins 

(Theillet et al., 2013). The second most disorder-promoting residue is glutamic acid 

(Glu), due to the presence of the carboxylic functional group. Glutamic acid has a large 

polar surface (121 Å2 vs 69 Å2 of nonpolar surface) and the estimated hydrophobic 

effect associated with the burial of this residue is 1.74 kcal/mol. Therefore, glutamic 

acid is 1.49-times more enriched in disordered regions, and 93% of glutamic acid 

residues in folded proteins are located on the surface so that they have access to the 

solvent (Karplus, 1997; Uversky, 2013). Of note, the third most disorder-promoting 

residue is serine due to the presence of its hydroxyl group and large polar surface (56 

Å2 vs 59 Å2 of nonpolar surface) (Uversky, 2015; see Figure 1).  

 

Figure 1: Amino acid determinants define structural and functional differences 

between ordered and intrinsically disordered proteins 

Residue-specific compositional profile between typical IDPs from the DisProt database 

and a set of completely ordered proteins is shown. The compositional profile was 

evaluated as (CDisProt – CPDB)/CPDB, where CDisProt is the content of a given amino acid in a 

DisProt database, and CPDB is the corresponding content in the data set of fully ordered 

proteins. Positive bars correspond to residues abundant in IDPs, whereas negative bars 

correspond to residues depleted in IDPs. Histogram from Uversky, 2015. 
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Computational analyses of sequences and atomistic simulations have revealed 

that amino acid composition affects the conformational states of IDPRs and can 

determine whether they adopt totally extended or rather compact conformation (Das et 

al., 2015; Mao et al., 2010). At least 75% of known IDPs are polyampholytes, e.g. they 

contain both cationic and anionic residues, and the fraction of charged residues 

discriminates between weak and strong polyampholytes. Especially in strong 

polyampholytes the charge patterning is an important factor - linear sequence 

distribution of oppositely charged residues influences the extended/collapsed 

conformation of IDPs, as illustrated in Figure 2 (Das and Pappu, 2013).  

 

 

Figure 2: Conformations of IDPs are influenced by linear sequence distribution of 

oppositely charged residues 

The conformational preferences of strong polyampholytic proteins are determined by a 

combination of fraction of charged residues and the linear sequence distribution of 

oppositely charged residues. The conformational properties of sequences with balanced 

distribution of positive and negative residues are, on average, similar to self-avoiding 

random coils, whereas sequences with high charge asymmetry sample hairpin-like 

(collapsed) conformations.  

 

Distribution of disorder within proteins is not homogeneous – protein tails are 

usually more likely to be disordered than centrally placed residues (Uversky, 2013b). Of 

note, many IDPs can fold into a defined 3D structure upon binding to their cognate 

partners (Demarest et al., 2002; Dyson and Wright, 2005).  Under these circumstances, 
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either whole disordered sequence folds into a domain, or part of it remains highly 

dynamic in the complex, leading to formation of fuzzy complexes (Fuxreiter, 2012; 

Sharma et al., 2015; Tompa and Fuxreiter, 2008). Folding and binding of IDPRs in fuzzy 

complexes facilitates the interaction with their partners via transient interactions with 

low affinity but relatively high specificity (Babu, 2016). 

In the following chapters, selected functions of intrinsically disordered proteins 

will be illustrated to highlight their functional versatility. 

 

1. IDPS AS MEDIATORS OF PROTEIN-PROTEIN INTERACTIONS 

IDPs and IDPRs are involved in numerous biological processes, where their 

function results from the conformational plasticity associated with lack of stable 3D 

structure. Considering that up to 45% of eukaryotic proteins contain large IDPRs, it is 

not surprising that these proteins hold key positions in the protein-protein interaction 

networks. Intrinsic disorder is a common feature of hub proteins that are able to 

interact with unusually large number of interaction partners (Dosztányi et al., 2006; 

reviewed in Gsponer and Madan Babu, 2009). Interactome networks around hub 

proteins are generally resistant to removal of any part of the network but are extremely 

sensitive to removal of the hub. A good demonstrative example is p53, a well-known 

hub protein with two large disordered regions at the N-terminus (transactivation 

domains and proline rich region) and C-terminus (oligomerization and regulatory 

domains). The STRING database-derived interactome of p53 includes 302 nodes and 

1884 edges, underlining the extreme binding promiscuity of p53 (Tompa et al., 2016; 

Uversky, 2016). As a result, altered expression or mutations in p53 have been 

associated with severe pathological conditions such as cancer (Avantaggiati et al., 1997; 

Levine et al., 1991). 

Disordered regions frequently expose short linear motifs (3-10 amino acids long) 

that mediate protein-protein interactions, usually characterized by fast association and 

dissociation rates. Short motifs permit interaction of the same protein in a functionally 

promiscuous manner or assembly of multiple proteins by serving as a scaffold. An 

excellent example from the membrane traffic field is the AP2 adaptor protein. AP2 
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contains a trunk domain that binds to cargo and lipids, and two appendage domains, 

positioned on flexible linkers. The appendage domains form the protein interaction 

surface for accessory proteins, when concentrated in emerging coated pits. The adaptor 

protein complexes do not self-polymerize, so their concentration and stabilization in the 

pits occurs via binding partners. Appendage domains can bind many different binding 

partners, which in turn can interact with each other and indirectly with clathrin 

(Praefcke et al., 2004).  

Similarly, disordered regions can also harbour short structured binding motifs, 

as it is the case in the clathrin binding domain of adaptor protein AP180. The domain is 

predominantly unstructured but contains 12 short structured clathrin binding 

elements. The observations of Zhuo et al. (2010) show that weak binding by multiple 

clathrin binding elements regularly dispersed throughout a largely unstructured 

domain allows efficient recruitment of clathrin to endocytic sites and dynamic assembly 

of the clathrin lattice (Figure 3). In the final coated vesicle, most appendage binding 

partners are absent, indicating that the function of the unstructured domains of adaptor 

proteins as an interaction hub is temporal, transitory, and provides directionality to 

vesicle assembly (Schmid and McMahon, 2007).  
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Figure 3: Domain structure of AP180 and early events in clathrin-mediated 

endocytosis 

(A) AP180 is a clathrin assembly protein with a structured N-terminal ANTH domain 

that interacts with membrane phospholipids, namely PI(4,5)P2  (PDB ID: 1HX8, Ford et 

al.,  2001; Mao et al., 2001). AP180 contains an unstructured clathrin binding domain 

with putative clathrin binding motifs DLF or DLL (shown in red) (B) Early events in 

clathrin-mediated endocytosis depend on IDPRs. After binding to the membrane, the 

long flexible domains of AP180 bind several sites on AP2 and clathrin. In combination 

with the self-assembly of clathrin triskelions, this would result in highly cooperative 

assembly mechanism (Kalthoff et al., 2002; Dafforn and Smith, 2004). The process of 

clathrin recruitment by the IDPRs of AP2/AP180 is described by some authors as 

“protein fishing” (Evans, 2002).  
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2. PROTEIN TRAFFICKING AND SUBCELLULAR LOCALIZATION ARE REGULATED BY 

INTRINSIC DISORDER 

Many proteins are shuttled through several membrane compartments during 

biogenesis and later in their degradation via the lysosomal or ubiquitin-dependent 

proteasomal pathway. The signals regulating transport are often located in IDPRs in the 

form of short linear motifs. Their interactions can be modulated by flanking residues 

outside the motif and via posttranslational modifications, primarily phosphorylation 

(described in the paragraph below). Some well characterized sorting signals targeting 

proteins to different compartments of the endocytic and post-Golgi secretory pathways 

include the cytosolic dilysine KKXX or dileucine-based motifs (D/E)XXXL(L/I), luminal 

KDEL motifs for ER retention/retrieval and tyrosine based sorting signals such as YXX∅, 

where ∅ is a bulky hydrophobic residue (Bonifacino and Dell’Angelica, 1999; Kozik et 

al., 2010). A recent peptide-based proteomic screen of Meyer et al. reports that 

mutations in disordered cytosolic regions of three transmembrane proteins (GLUT1, 

ITPR1 and CACNA1H) can create dileucine motifs, leading to increased clathrin 

recruitment and mistrafficking of proteins (Meyer et al., 2018). 

 

3. IDPRS HARBOUR POSTTRANSLATIONAL MODIFICATIONS 

Conformational flexibility of IDPs greatly increases the accessibility of a 

modifying enzyme to the modification sites. Consequently, IDPRs are frequent target of 

diverse posttranslational modifications, which expand their functional scope. 

Posttranslational modifications on regulatory IDPRs can affect protein interaction with 

binding partners or its conformation, as in the case of cystic fibrosis transmembrane 

conductance regulator (CFTR). CFTR is a dimeric chloride channel that opens upon 

phosphorylation on nine PKA phosphorylation sites localized in a regulatory loop. 

Multiple phosphorylation excludes the regulatory IDPRs from the dimer interface, 

which facilitates gating of the channel (Bozoky et al., 2013). 

Posttranslational modifications can also lead to a complete switch between 

disordered and folded states. For instance, multisite phosphorylation induces folding of 
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intrinsically disordered factor 4E-BP2, which is involved in regulation of mRNA 

translation (Bah et al., 2015).  

 

4. DISORDER-TO-ORDER TRANSITION IN AMPHIPATHIC HELICES  
 

Many studies have suggested that when binding to a partner, IDPs and IDPRs 

may undergo disorder-to-order transitions, i.e. folding upon binding. This means that 

instead of an ensemble of conformations, IDPs adopt a stable, well-defined structure. 

Final conformations of IDPs bound to partner can differ depending on partner protein. 

For example, the disordered C-terminal domain of p53 can fold and bind as a strand 

(Avalos et al., 2002), a helix (Rustandi et al., 2000) or a coil (Lowe et al., 2002) when 

interacting with Sir2, S100B() and cyclin A, respectively. In other cases, an IDP can 

form the same structure regardless of the binding partner, as when disordered BH3-

only proteins bind to BCL-2 family proteins form a single helix (Crabtree et al., 2018). 

 An interesting case occurs when the interaction partner of IDPs/IDPRs is not 

another protein but rather a polar-apolar interface – as it is the case of amphipathic 

helices.  Many amphipathic helices are unfolded in ionic buffer (although they can be 

found in stably folded proteins), contain charged (polar) residues and display 

segregation of hydrophobic and polar residues between two opposite faces of the -

helix (Giménez-Andrés et al., 2018). Mechanistic studies on amphipathic peptides 

suggest that membrane binding occurs in three steps: First, unfolded sequence is 

attracted to negatively charged membranes via long-range electrostatic interactions. 

Second, hydrophobic residues are inserted between the lipid acyl chains due to the 

hydrophobic effect. Last, a disorder-to-order transition occurs to reduce the energy 

penalty of having exposed peptide bonds in a hydrophobic environment. The last step 

accounts for 50-60% of the free energy of binding (Figure 4A, Seelig, 2004). As 

example, perilipin 4 is a giant amphipathic helix that is unfolded in solution but adopts a 

helical structure on the surface of lipid droplets where it can serve as a coat replacing 

the phospholipid monolayer (Čopič et al., 2018). 
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A special group of amphipathic helices are the ALPS motifs (Amphipathic Lipid 

Packing Sensor). What distinguishes ALPS motifs from classical amphipathic helices is 

the absence of charged residues in their polar face and their lack of structure in 

solutions. In ALPS the polar face is usually not cooperating with the hydrophobic face in 

breaking cohesive forces between lipids and inserting helix into the membrane (Drin 

and Antonny, 2010). Therefore, ALPS motifs rely on imperfections in the geometrical 

arrangement of membrane lipids, i.e. lipid packing defects, which expose hydrophobic 

chains of lipids and are frequent in curved membranes (Bigay and Antonny, 2012). 

ALPS motifs have been shown to respond very strongly to changes in membrane 

curvature, especially in the range of R = 30-100nm. They are present in a variety of 

membrane interacting proteins, such as ArfGAP1 or golgin GMAP-210 (Figure 4B, 

(Bigay et al., 2005; Magdeleine et al., 2016; Uversky and Eliezer, 2009).     

 

Figure 4: Amphipathic helix insertion into a membrane vs ALPS motif recognition 

of curved membranes 

(A) Amphipathic helix inserts into membrane in three steps (B) Left – sequence 

composition of ArfGAP1 ALPS motif; Right – ArfGAP1 does not interact with flat 

membranes but recognizes lipid packing defects in curved membranes. Illustration A 

modified from Seelig, 2004; Illustration B from Bigay et al., 2005.  



27 
 

5. IDPRS IN MEMBRANELESS ORGANELLES AND LIQUID-LIQUID PHASE SEPARATION 

Many cell types contain various organelles that can maintain structural integrity 

without being enclosed in a membrane. These organelles typically range in size from 

tens of nm to tens of m, they display liquid-like properties (e.g. ability to flow under 

restrained conditions and to fuse) and they consist of components cycling rapidly 

between the organelle and surrounding environment. Membraneless organelles include 

Cajal bodies, nucleoli, nuclear speckles, processing bodies (P bodies) and germ like 

granules. They consist of both RNA and proteins (therefore are also referred to as 

ribonucleoprotein (RNP) bodies or granules) and they mostly specialize in various 

aspects of gene regulation and mRNA metabolism. Study of Darling et al., 2018 revealed 

that low complexity sequences and intrinsic disorder are overrepresented within 

proteins in these organelles – for example, the 200 amino acid long N-terminal 

arginine/glycine-rich domain of RNA helicase LAF-1 is both necessary and sufficient for 

the liquid-liquid phase separation and formation of P granule-like particles in vitro 

(Elbaum-Garfinkle et al., 2015). NMR analysis of proteins within liquid droplets did not 

provide evidence of folding upon binding, suggesting that the low complexity regions 

preserve their conformational flexibility within the liquid phase, likely contributing to 

the dynamic, liquid-like properties of RNP bodies (Li et al., 2012; Nott et al., 2015). 

The regulatory effect of liquid phase separation has also been demonstrated on 

clusters of synaptic vesicles. These clusters form a reservoir from which vesicles are 

exocytosed during neuronal activity. Several scaffolding proteins could participate in 

capturing and assembling vesicles into clusters but a special importance of synapsin has 

been recently highlighted (Milovanovic and De Camilli, 2017). Synapsin contains a C-

terminal IDPR with multiple SH3 domain binding motifs and can phase-separate to form 

a distinct liquid phase in aqueous environment. Importantly, the synapsin phase rapidly 

disassembles upon phosphorylation by calcium/calmodulin-dependent kinase II 

(CaMKII). This mimics the dispersion of synapsin at presynaptic buttons upon neuronal 

stimulation and it suggests that liquid-liquid phase separation may apply to the 

clustering of synaptic vesicles (Figure 5). Moreover, clusters of other membranous 

organelles may self-organize according to similar principles without the need for a 

surrounding membrane or protein-based structure to confine them (Milovanovic et al., 

2018). 



28 
 

 

Figure 5: Synapsin liquid-liquid phase separation promotes clustering of synaptic 

vesicles 

Upon synapsin phosphorylation by CaMKII, the clusters dissolve, leading to the release 

of synaptic vesicles to the membrane for fusion. Illustration from Boczek and Alberti, 

2018.   

 

6. REGULATION OF FUNCTION OF MEMBRANE EMBEDDED DOMAINS BY IDPRS 

While not essential to the basic function of transmembrane proteins, the IDPRs 

modulate their activity, allowing them to react to changes in intracellular environment, 

as frequently observed in ion channels and transporters. For example, voltage-gated ion 

channels use a desensitizing mechanism called ball-and-chain inactivation, initially 

proposed for voltage-gated sodium channels (Figure 6) and later verified in voltage-

gated potassium channel Shaker B. Shaker B consists of transmembrane channel 

subunit and intrinsically disordered plug subunit (Hoshi et al., 1990). The Shaker 

channel opens when membrane potential drops, allowing outflow of potassium ions. 

Potassium outflow re-establishes the membrane potential, thus enabling recovery from 

the action potential. The rapid inactivation of Shaker channel is critical, due to 

millisecond duration of action potentials, and it is determined by how quickly the plug 

subunit blocks the channel pore. The plug (“ball”), made of 11 hydrophobic and 8 

hydrophilic residues, is tethered to the channel via a 60 amino acid long, flexible linker 
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(“chain”) that provides the dynamic properties necessary for fast channel pore blocking, 

thus acting as an entropic clock (Zhou et al., 2001). 

 

Figure 6: “Ball and chain” model of inactivation of voltage-gated ion channels 

The rapid inactivation step enables channel recovery after action potential, and it is 

facilitated by an intrinsically disordered plug domain. llustration from Hinard et al., 

2016. 
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PART 2: LIPIDS, MEMBRANES AND MEMBRANE PROTEINS 
 

 

Lipids are organic molecules insoluble in water due to their long non-polar 

hydrocarbon chain. In aqueous environment, some lipids form aggregates, like for 

instance oil drops in water. In addition to the non-polar chain (“tail”), some lipid 

molecules also contain a polar moiety (“head”) that, unlike the tail part, can be hydrated. 

This particular feature is called amphipathicity (or amphiphilicity, respectively) and it 

has an intriguing effect: amphipathic molecules in aqueous environment do not form 

drops, but rather organize themselves into micelles or vesicles (Figure 7). 

 

Figure 7: Self-organization of lipids into micelles, liposomes and lipid bilayers in 

aqueous environment 

In micelles, tails of lipids interact with each other, forming spheres of a diameter ~2x 

the length of one lipid molecule. In liposomes, the internal and external environments 

are separated from each other by a lipid bilayer i.e. two sheets of lipids. Biological 

membranes are mostly formed as phospholipid bilayers. It is noteworthy that in apolar 

environment amphipathic lipids can organize into inverted micelles or bilayers with 

inverted geometry (= lipid tail facing the apolar solvent). Figure ©2011 the M. P. 

Mingeot-Leclerq lab (Université Catholique de Louvain). 
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Lipid bilayers together with transmembrane and membrane-associated proteins 

form biological membranes essential for life. Cell membranes represent not only the 

boundaries between subcellular compartments, they also harbour many essential 

functions - they protect unique cellular contents from dilution and uncontrolled mixing, 

they prevent oxidation and maintain electrochemical gradients. In addition, they 

mediate communication with the environment (allowing signal transduction systems to 

greatly amplify an incoming stimulus), they facilitate transport of molecules and 

perform certain metabolic functions.  

The consensual model to depict the structure and functions of biological 

membranes is called the “fluid mosaic” model and it was formulated by Singer and 

Nicholson in the early 1970s. In this model, the lipid components are organized as a 

bilayer in which hydrophobic tails face each other in the core of the structure, whereas 

the hydrophilic heads interact with the surrounding aqueous environment. Of note, a 

small fraction of lipids may also specifically interact with membrane proteins. The 

integral membrane proteins are a heterogeneous ensemble of amphipathic structures 

and also follow the same constraints – the highly polar groups protrude from the 

membrane into the aqueous phase, and the nonpolar groups are largely buried in the 

hydrophobic interior of the membrane bilayer. The fluid mosaic structure is therefore 

formally analogous to a 2D solution of transmembrane or membrane-associated 

proteins in the viscous phospholipid bilayer solvent (Harayama and Riezman, 2018; 

Singer and Nicolson, 1972).  The “mosaic” term in this model refers to the mixture of 

different lipids and different membrane proteins, and the components are also “fluid” 

because they can move laterally, allowing diffusion of components in the plane of the 

lipid bilayer i.e. lateral diffusion (Figure 8).  
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Figure 8: The fluid mosaic model for lipid membrane structure 

Both proteins and lipids can move laterally in the plane of the bilayer, but movement of 

either from one face of the bilayer to the other is restricted (figure from Lehninger 

Principles of Biochemistry by D. Nelson and M. Cox).    

 

A. COMPOSITION OF CELLULAR MEMBRANES – MEMBRANE LIPIDS 
 

Biological membranes are extremely complex, particularly due to the fact that 

they are built by numerous lipid species. Of note, the three kingdoms of life (Archea, 

Bacteria and Eukaryotes) have different lipidomes, i. e. their membranes are formed by 

different lipid species. As this work focuses on proteins in mammalian membranes, only 

the lipid species of Eukaryotes will be more closely described. However, we have to 

keep in mind that during evolution, the ancestors of eukaryotic cells absorbed 

protobacteria that later became their cellular organelles, namely mitochondria, 

peroxisomes and, in plants, plastids. These organelles have a lipidome that is very 

different from the lipidome of the surrounding cell, and to preserve this difference, 

organelles synthesise their own, organelle-specific lipids such as cardiolipin and 
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phosphatidylglycerol in mitochondria. The eukaryotic membranes consist primarily of 

three classes of lipids: glycerophospholipids, sphingolipids and sterols (Figure 9).  

 

 

Figure 9: Schematic representation of structural lipid diversity 

(A, B) Boxed parts of the GPLs and sphingolipids represent building blocks that confer 

diversity, for example via addition of different head group substituent or via different 

fatty acid linkage (C) The major mammalian sterol, cholesterol, and its yeast analog, 

ergosterol. llustration modified from Harayama and Riezman, 2018.   
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1. GLYCEROPHOSPHOLIPIDS 
 

Glycerophospholipids (GPLs, usually referred to as phospholipids) are the most 

common components of cellular lipid bilayers. They are derived from diacylglycerol 

(DAG), that is formed by two acyl chains linked by an ester bond to a glycerol 

“backbone” at the sn-1 and sn-2 positions. Glycerol moiety is further modified by adding 

different “head groups” to build individual phospholipids (Figure 10). Head groups can 

differ in charge and volume - the simplest phospholipid is phosphatidic acid (PA), in 

which the DAG moiety is phosphorylated on its sn-3 hydroxyl group (having thus one 

negative charge under physiological conditions). Esterification of the sn-3 phosphate 

with different moieties gives the remaining GPLs: phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). 

PC and PE (polar heads formed of choline and ethanolamine, respectively) are the most 

abundant species. Both PC and PE are zwitterionic with zero net charge (as the negative 

phosphate group balances the positive charge of choline/ethanolamine). In PS, the 

headgroup is formed by zwitterionic L-serine and in PI by neutral myo-inositol (thus 

both PS and PI have negative net charge). Phosphorylation of PI on one (or more) 

hydroxyl groups on the inositol ring gives rise to phosphoinositides (PIPs) that are 

scarce and do not serve as major building blocks of membranes. However, they perform 

key functions in lipid signaling, as well as organelle identification (van Meer et al., 2008, 

also see the “Phosphatidylinositides in organelle identity” paragraph in Part3 of 

Introduction). The acyl chains in GPLs are described by the number of carbons (16 – 22 

in most abundant GPLs) and by the number of double bonds they contain. They can thus 

be fully saturated (no double bond), mono- (one double bond) or polyunsaturated (two 

– four double bonds; Schneiter et al., 1999). Adding a concrete example to this 

description, an 18 carbons-long acyl chain with a single double bond is noted as C18:1. 
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Figure 10: The most abundant phospholipid classes 

Different head group substituents are illustrated. (PA) Phosphatidic acid, (PE) 

phosphatidylethanolamine, (PS) phosphatidylserine, (PC) phosphatidylcholine and (PI) 

phosphatidylinositol.   

 

2. SPHINGOLIPIDS 

 

Sphingolipids have a backbone derived from serine and palmitic acid, forming 

the sphingosine backbone. Sphingosine backbone is therefore simultaneously the 

backbone and hydrophobic tail, as shown in Figure 8 B). Sphingosines can be N-

acetylated with a very long chain fatty acyl (24 or 26 carbons), forming ceramide. 

Ceramide can be phosphorylated on its 1-OH group, and additional moieties can be 

added to form complex sphingolipids such as sphingomyelins (SMs) and 

glycosphingolipids (cerebrosides, gangliosides and globosides). Sphingolipids usually 

display long saturated acyl chains (C24:0 or C26:0) and they have an important role in 

biological membranes, mainly due to their affinity for sterols (Schneiter et al., 1999). 

 

3. STEROLS 

 

Sterols are essential building blocks of eukaryotic membranes, although, in 

contrast to phospholipids and sphingolipids, they display quite unconventional features. 

Their polar headgroup is tiny and neutral (such as 3-OH group in cholesterol), and they 
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do not contain long flexible acyl chains. Instead, they are formed by a planar four ringed 

structure (steroid backbone), comprised of 30 carbons, and a short hydrocarbon tail. 

The orientation of cholesterol (and its yeast variant ergosterol) in membrane is 

governed by interactions between its 3-OH headgroup and neighbouring phospholipid 

headgroups and by interactions of the hydrocarbon ring with hydrophobic acyl chains 

of membrane lipids. Sterols play key role in maintaining both membrane structural 

integrity and fluidity – model membranes without sterol undergo a transition from fully 

rigid, gel phase (“solid ordered”) at low temperatures to a very fluid state at high 

temperatures (“liquid disordered”).  In the presence of sterols, the high order at low 

temperatures is slightly reduced and the low order at high temperatures is markedly 

increased (Figure 11). This ordering-disordering action of sterols promotes a “liquid 

ordered” phase, which defines a delicate balance between a loose membrane too fluid 

and akin to great permeability and a rigid membrane forbidding any transfer across the 

bilayer (Dufourc, 2008). 

 

 

Figure 11: Sterols as regulators of membrane dynamics 

Presence of sterols in membrane promotes the formation of liquid-ordered phase. 

Sterol structures from mammals, fungi and plants are illustrated. Modified from 

Dufourc, 2008.  
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4. FUNCTIONS OF LIPIDS BEYOND MEMBRANE BUILDING 
 

Although fatty acid-based lipids and sterols are the building units of cell 

membranes, it is nonetheless noteworthy that they fulfill some additional functions. For 

instance, fatty acids can also serve as storage for lipids in the form of triacylglycerols in 

lipid droplets or as energy source. They can also act as signaling molecules or 

precursors for biosynthesis of signaling molecules, such as eicosanoids (prostaglandins, 

thromboxanes, leukotrienes etc). Steroid molecules play major roles unrelated to 

membrane assembly: sterol metabolites include bile acids, steroid hormones, and 

vitamin D. Oxygenated derivatives of cholesterol (oxysterols) influence a variety of 

biological processes, as detailed in the following chapter.    

 

5. OXYSTEROLS 
 

Naturally, oxysterols are present in mammalian cells in very low concentrations 

as they serve as regulators of numerous signaling pathways. They regulate cholesterol 

synthesis by preventing the transcriptional activity of sterol regulatory element binding 

protein (SREBP), and activating the transcription of liver X receptor (LXR) target genes 

(Luu et al., 2016; Radhakrishnan et al., 2007; Figure 12). On the posttranscriptional 

level, oxysterols accelerate the degradation of rate-limiting enzymes in cholesterol 

synthesis, such as HMG-CoA reductase (DeBose-Boyd, 2008).  Oxysterols are also 

implicated in Hedgehog signaling pathway, as 25-hydroxycholesterol (25-OH) and 7-

ketocholesterol have been found to directly act on Hedgehog receptor Smoothened and 

to activate Hedgehog target gene transcription (Nachtergaele et al., 2012). In addition, 

oxysterols affect immune system, for example as endogenous ligands of receptor EBI2, 

which is essential in B cell function. Oxysterols are implicated in many pathological 

conditions, notably neurodegenerative diseases (Alzheimer’s, Huntington’s and 

Parkinson’s disease), atherosclerosis, Niemann-Pick type C disease and cancers 

(reviewed in Luu et al., 2016).   
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Figure 12: Regulation of cholesterol homeostasis by SREBPs, LXRs and oxysterols. 

Under conditions of low cholesterol, SREBP precursors are transported by SCAP to the 

Golgi where they are proteolyzed. Subsequently, active SREBPs migrate to the nucleus 

and activate transcription of target genes encoding enzymes required for synthesis and 

uptake of cholesterol, such as HMG-CoA reductase (Hmgcr) and the LDL receptor (Ldlr). 

Under these circumstances, LXRs repress genes that encode proteins mediating 

cholesterol efflux (Abca1, Abcg1) and degradation of the LDL receptor (Idol), resulting in 

an increase in cellular cholesterol content. Under conditions of high cholesterol 

concentration, cholesterol and its byproducts, oxysterols, sequester SREBP-SCAP-Insig 

complexes in the ER. At the same time, oxysterols directly bind to and activate LXRs, 

which induce transcription of ABCA1, ABCG1 and Idol, leading to a decrease in cellular 

cholesterol content. RXR – retinoid X receptor, SCAP – SREBP cleavage-activating 

protein, INSIG – insulin-induced gene. Figure modified from Spann and Glass, 2013. 
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B. THE DIVERSE YET UNIQUE COMPOSITIONS OF ORGANELLE MEMBRANES 
 

Membrane-bound organelles in eukaryotic cells have characteristic 

morphologies. Some organelles are mostly spherical (lysosomes and peroxisomes) but 

others are much more complex. For example, the ER forms a continuous network of 

interconnected tubules and sheets, extending throughout the cell. Mitochondria form a 

tubular network, and Golgi apparatus is shaped as a stack of flattened cisternae with 

dilated rims. The differences in organelle shapes are based on different lipid 

composition and on the interaction of lipid membranes with shape-forming proteins 

(McMahon and Gallop, 2005). Brief characteristics of lipid composition of several 

organelles will be discussed below, with emphasis on the ER and Golgi as central 

organelles in lipid synthesis and transport. Special paragraph will be dedicated to 

description of phosphoinositides as markers of organelle identity. 

 

1. THE ENDOPLASMIC RETICULUM – MAIN ORGANELLE FOR LIPID SYNTHESIS 
 

The ER is the largest organelle (accounting for more than 50% or total cell 

membrane in some cell types), and ER-localized enzymes synthesize the vast majority of 

structural phospholipids, cholesterol and ceramide. From the ER, newly synthesized 

lipids are transported to other organelles. ER membranes contain high levels of PC and 

PE and low levels of cholesterol and sphingolipids, which is synonymous with liquid 

disordered phase and looser membrane packing (Bigay and Antonny, 2012; Harayama 

and Riezman, 2018). This is consistent with the function of ER in insertion and 

transport of newly synthesised lipids and proteins. 

Lipid-synthesizing enzymes are mostly transmembrane proteins and several 

studies report their enrichment in fractions of ER membrane that interact with other 

organelles (Jain and Holthuis, 2017). For example, the PS-synthesising enzymes are 

particularly abundant in mitochondria-associated membranes of mammalian cells 

(Kannan et al., 2017; Rusiñol et al., 1994; Stone and Vance, 2000), suggesting that lipid 

synthesis may be subcompartmentalized (Figure 13). 
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Figure 13: Lipid synthesis and steady-state composition of cell membranes 

The lipid composition of cellular membranes varies throughout the cell. The lipid 

compositional data are expressed as a percentage of total phospholipid (PL) in 

mammals (blue) and yeast (light blue). In small panels, the molar ratio of cholesterol 

(CHOL) in mammals or ergosterol (ERG) in yeast to phospholipid is indicated. On the 

cell drawing, major phospholipids are shown in blue and lipids involved in signalling 

and organelle recognition are shown in red. Illustration from van Meer et al., 2008.   
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2. THE GOLGI APPARATUS – A CENTRAL STATION FOR SORTING AND TRANSPORT OF 

BIOMOLECULES 
 

The organization of Golgi as stack of flat cisternae reflects the logic for its 

biochemical activities - its function is at the interface of lipid metabolism and membrane 

trafficking, and it exhibits remarkable dynamics and capacity for self-organisation. 

Significant levels of lipid synthesis and modification occur in the Golgi. For example, 

ceramide synthesised in the ER is transported to the Golgi, where it is converted to 

sphingomyelin, glucosyl- and lactosylceramide and more complex glycosphingolipids, 

designated for export mainly to the plasma membrane (Futerman and Riezman, 2005). 

Similarly, the Golgi-specific PA phosphatase can play a role in controling the levels of 

DAG, which in turn facilitates membrane deformations due to its extreme inverted cone 

shape. These deformations have been shown to regulate vesicle budding at multiple 

steps in the vesicular trafficking pathways (Kearns et al., 1997; Litvak et al., 2005), and 

in some cases DAG directly regulates the activity of protein components of the 

trafficking machinery (Asp et al., 2009; Baron and Malhotra, 2002). In addition, the two 

leaflets of (post-) Golgi membrane bilayers have different lipid compositions. This is 

called bilayer asymmetry (see following chapter for more details). The sphingolipids 

(except glucosylceramide) are synthesized on the luminal surface of the Golgi, whereas 

the phospholipid PS and PE are actively concentrated in the cytosolic leaflet (Bretscher, 

1973; D’Angelo et al., 2007; Simons and Van Meer, 1988).  

It is important to mention that in addition to structural lipids, phosphoinositides 

are an important signaling component of all post-Golgi membranes - and as such, they 

will be discussed in a separate subchapter 5.  

 

3. THE PLASMA MEMBRANE AS PROTECTIVE BARRIER   
 

The plasma membrane (PM) is enriched in cholesterol and sphingolipids, which 

are tightly packed to resist mechanical stress, creating a protective barrier. Although he 

PM does not autonomously synthesize structural lipids, it can metabolize 

sphingomyelin at rates high enough to (re)synthetize it again from ceramide by PM-

resident sphingomyelin synthase SMS2 (Tafesse et al., 2007).  
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A key feature of plasma membrane (but also other biological membranes) is that 

it is compositionally asymmetric (van Meer et al., 2008). In case of PM, the majority of 

(anionic) aminophospholipids reside in the inner leaflet, with sphingomyelin and 

choline phospholipids primarily in the outer leaflet (Nickels et al., 2015). The 

distribution of cholesterol is debated – some authors suggest cholesterol enrichment in 

the outer leaflet (S.-L. Liu et al., 2017) whereas others suggest higher concentration in 

the inner leaflet (Courtney et al., 2018; Gibson Wood et al., 2011; Mondal et al., 2009). 

The bilayer asymmetry is tied to numerous biological functions – for example, 

phosphatidylserine (PS) is exclusively located at the cytoplasmic side, as exposure of PS 

on cell surface is a general feature of apoptosis, and it triggers specific recognition and 

removal by phagocytes (Fadok et al., 1992; Martin, 1995). Bilayer asymmetry results 

from ATP-dependent translocation of PS and PE between bilayer leaflets. This 

underlines its importance, as cells invest considerable amount of energy to generate 

and maintain asymmetric phospholipid distribution. Transbilayer lipid transfer is 

mediated by P4-ATPases (“flippases”), which belong to the superfamily of P-type ATP 

pumps whose members usually transport ions rather than lipids. A study of Lenoir et al., 

2009 revealed that a specific interaction between P4-ATPases and cell division cycle 

(Cdc50) proteins might underlie their distinct transport specificity.  

Of note, the negative charge of PS in the inner leaflet of PM (where it represents 

10-20% of all surface lipids) plays an important part in recruiting proteins with 

polybasic (polycationic) PM-targeting motifs via electrostatic interactions (Vance and 

Steenbergen, 2005; Yeung et al., 2008).         

 

4. LIPIDS IN THE ENDOCYTIC COMPARTMENTS 
 

Early endosomes have lipid composition similar to plasma membranes but 

during maturation to late endosomes, the concentration of sterols and PS decreases, 

while there is a dramatic increase in bis(monoacylglycero)phosphate (BMP). BMP is a 

negatively charged GPL with acyl chains in an unusual sn-1; sn-1’ configuration. It 

functions in multivesicular body generation, fusion processes and sphingolipid 

hydrolysis (Matsuo, 2004; van Meer et al., 2008). 
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5. PHOSPHOINOSITIDES AS HALLMARKS OF ORGANELLE IDENTITY 
 

Phosphoinositides (PIs) regulate a wide variety of cellular functions by 

interacting with proteins that either reside in the membrane, such as ion channels and 

transporters, or with proteins that get reversibly recruited to the membrane, such as 

clathrin or lipid transfer proteins. PIs are present in minor pools in subcellular 

compartments (Figure 14), where they act, together with small G-proteins, as specific 

organellar signposts to facilitate their recognition (Balla, 2013). For example, PI(4)P 

marks mainly the trans-Golgi, although functionally distinct pools have also been 

detected in the PM and endosomal fractions. Golgi-localized PI(4)P is commonly 

recognized by three groups of effectors: clathrin adaptors, such as AP-1, AP-3 and GGA 

(Wang et al., 2007, 2003); lipid binding proteins, such as ORP/Osh proteins (Levine and 

Munro, 2001, 1998), the ceramide transfer protein CERT (Hanada et al., 2003) and the 

glucosylceramide transfer protein FAPP2 (Godi et al., 2004). For more details please see 

chapter “Lipid transfer proteins at membrane contact sites”. A third kind of PI(4)P 

effector is the GOLPH3 protein that has been demonstrated to control Golgi morphology 

by connecting Golgi membranes with the actin cytoskeleton through its binding to 

unconventional myosin, MYO18A (Dippold et al., 2009). In this case, the link between 

Golgi morphology and actin cytoskeleton was unexpected, given the well-documented 

importance of the microtubular rather than the actin network in the maintenance of 

Golgi structure (Balla, 2013).   

Plasma membrane contains the bulk of PI(4,5)P2 and PI(3,4,5)P3. Upon 

phospholipase C activation by G protein-coupled receptors, PI(4,5)P2 is the precursor of 

IP3 and DAG and hence it has a pivotal role for early signaling from cell surface 

receptors (Berridge and Irvine, 1984). PI(4,5)P2 itself is essential for proper activity of 

numerous ion channels and transporters (Suh et al., 2010; Wu et al., 2002; Xie et al., 

2011). Furthermore, rapid depletion of PM pools of PI(4,5)P2 in intact cells results in 

dramatic loss of clathrin puncta, demonstrating that clathrin-mediated endocytosis 

requires PI(4,5)P2 (Zoncu et al., 2007).   

PI(3)P and PI(3,5)P2 localize mainly to early and late endosomal membranes, 

respectively, where they act as key lipid regulators of endocytic trafficking. PI(3)P is 

recognized by a cysteine-finger FYVE domain present in numerous proteins, including 
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the Fab1 and Vac1 in yeast and EEA1 in mammals (Stenmark et al., 1996) as well as by 

the phox-homology (PX) domains found in sorting nexins (Xu et al., 2001). It has been 

firmly established that PI(3)P, together with Rab5 proteins, controls fusion between 

early endosomes (Simonsen et al., 1998). PI(3,5)P2 is synthesised from PI(3)P at the late 

endosomal/lysosomal system and it is targeted by certain members of the epsin family 

containing an epsin NH2-terminal homology (ENTH) domain (Chidambaram et al., 

2004; Mayinger, 2012).    

 

Figure 14: Phosphoinositide distribution in cellular organelles 

Post-Golgi organelles contain distinct phosphoinositides to hallmark their identity. 

Illustration ©2018 The Y. Mao Lab (Cornell university).    

 

 

C. COMPOSITION OF CELLULAR MEMBRANES – MEMBRANE PROTEINS 
 

Membrane proteins represent a large and diverse group of proteins associated with 

cellular membranes and carrying out a wide range of functions. Cellular metabolism and 

communication heavily rely on membrane proteins – more than 30% of all proteins 

interact with membranes at some stage of their functional activity (Almén et al., 2009). 

Membrane proteins include integral and peripheral proteins. Integral (transmembrane) 

proteins are permanently inserted into the membrane and span across the bilayer with 

one or several hydrophobic domains. Peripheral membrane proteins interact 
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transiently with membrane surface, either via an (amphipathic) -helix parallel to the 

membrane; via a covalently attached lipid (some examples include the GPI-anchored 

proteins or palmitoylated PI4KII; Lu et al., 2012; Zurzolo and Simons, 2016); via 

interaction with particular membrane lipids (such as PH domains, which recognize 

phosphoinositides); via a hydrophobic loop or via electrostatic interactions (Figure 15). 

The dynamics of membrane lipids and proteins is an important determinant of 

intermolecular interactions, downstream signal transduction and local membrane 

mechanics. The mode of membrane protein mobility can range from random diffusion 

to immobility and from confined or restricted motion to actively directed motion. In the 

following chapter, I will more closely focus on diffusion of membrane proteins.  

 

 

Figure 15: Integral and peripheral proteins 

(A,B) Integral proteins can span across lipid bilayer with single (A) or multiple (B) 

transmembrane domains/helices (C) -barrel structure of a transmembrane protein – 

typical for ion channels and porins in the outer membrane of bacteria, mitochondria and 

plastids (Höhr et al., 2015). Peripheral proteins can interact with membrane in various 

ways: (D) via an -helix, (E) with one or several loops inserted into the bilayer (F) 

proteins can be covalently linked to a lipid or they can transiently bind a lipid (G). (H) 

some proteins are recruited to membranes via electrostatic interactions. 
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D. PRINCIPLES OF PROTEIN DIFFUSION IN SOLUTION AND IN MEMBRANE 
 

1. DIFFUSION CHARACTERISTICS OF SOLUBLE PROTEINS 
 

In the microscopic world, anything that is immersed in a fluid environment will 

move in an undirected way. In 1820s, this was discovered by R. Brown while looking 

through a microscope at suspension of pollen grains in water. The observed random 

motion of the particles is referred to as Brownian motion or diffusion, and it has been 

described as a consequence of thermal fluctuations in a paper published in 1905 by A. 

Einstein (making it one of his first big contributions to science). Thermal fluctuations 

result in thermal force that makes the solvent molecules move around randomly and 

collide with the particles, causing their displacement. Particles of smaller size (mass), 

such as insulin (5kDa) have larger displacement, and therefore large diffusion 

coefficient D, whereas larger particles, such as immunoglobulin IgG2A (~150 kDa), are 

more difficult to displace, resulting in smaller diffusion rate (Figure 16). As a result, the 

diffusion of a soluble protein strongly depends on its Stoke’s radius and hydrodynamic 

interactions (Roosen-Runge et al., 2011). 
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Figure 16: Principle of protein diffusion in aqueous solution 

Large particles absorb the water molecules collisions, whereas small particles are 

moved by those collisions. Proteins are shown on the same scale (modified from 

book.bionumbers.org; courtesy of D. Goodsell), in parentheses are the PDB structure 

IDs. 

 

 

Diffusion of proteins in dilute solutions (total protein concentration is less than 

10 mg/ml) is described by the Stokes-Einstein Law 

 

                                                                                    

where Dt is translational diffusion coefficient, kB is the Boltzmann constant, T is 

temperature, is the solution viscosity, and r is the radius of protein being studied. 

However, the cytosolic environment is rich in macromolecules, which occupy up to 30% 

of cellular volume and reach concentrations of 100 to 400 mg/ml (Luby-Phelps, 2013). 

Macromolecular crowding is expected to cause deviations from the Einstein-Stokes Law, 

as in a crowded fluid, each molecule is excluded from much of the total volume by the 

presence of other biomolecules (Konopka et al., 2006; Muramatsu and Minton, 1988). 
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In this context, diffusive behaviour of IDPs has attracted some attention. Using 

NMR spectroscopy, Wang et al., compared the translational diffusion of a larger IDP 

(Parkinson’s disease related protein -synuclein, 14 kDa) with a smaller globular 

protein chymotrypsin inhibitor 2 (CI2, 7.4 kDa). In simple solvent, CI2 diffuses  

approximately 2x faster than -synuclein, which is consistent with the Stokes-Einstein 

relation, and it can be explained by three reasons: first, CI2 has a smaller molecular 

weight; second, CI2 is folded and compact, making its hydrodynamic radius smaller than 

that of -synuclein. Lastly, when the radius of a protein is comparable to or greater than 

the radius of the co-solute (e.g., glycerol) a larger protein will diffuse more slowly, 

although the addition of glycerol slows down the diffusion of both proteins (Wang et al., 

2010). However, in solutions crowded with “crowder” macromolecules such as PVP or 

BSA, a larger, disordered protein diffuses faster than a smaller, globular protein, 

demonstrating that macromolecular crowding affects the diffusion of globular and 

disordered proteins differently, as indicated in Figure 17 (Wang et al., 2012).  

 

Figure 17: Diffusion of disordered and globular proteins differs in dilute and 

crowded environment 

Histogram showing the translational diffusion coefficient of CI2 and -synuclein in 

dilute solution, 300 mg/ml solution of glycerol and 300 mg/ml solution of crowding 

agents such as polyvinylpyrrolidone (PVP), Ficoll 70, lysosyme and bovine serum 

albumin (BSA) at 25°C.  Figure is adapted from Wang et al., 2012. 
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2. LATERAL DIFFUSION OF MEMBRANE PROTEINS 
 

Biological membranes are extremely complex fluids, crowded with proteins with 

typical protein to lipid molar ratios being around 1:50 – 1:100 (Jeon et al., 2016; Metzler 

et al., 2016). The theoretical investigation of protein diffusion within membranes 

continues since 1970s, when P. G. Saffman and M. Delbrück investigated the 

hydrodynamic forces acting on a particle suspended in membrane, when the membrane 

is described as a 2D fluid sheet of viscosity m embedded within a less viscous fluid of 

viscosity (Saffman and Delbrück, 1975). In this model the lateral Brownian diffusion of 

proteins in lipid membranes depends on the viscosity of the membrane and of the 

surrounding solvent. Regarding the influence of protein size, the Saffman-Delbrück (SD) 

model predicts a weak, logarithmic dependence of the diffusion coefficient D0 on the 

protein radius, 

 

where mh are membrane parameters (m – membrane viscosity, h – membrane 

thickness), Lsd is Saffman-Delbrück length, calculated as a ratio between membrane 

parameters and viscosity of surrounding fluid,  

 

 
 
and γ ≈ 0.577 is the Euler-Mascheroni constant.  

However, a study of Gambin et al. (2006) on diffusion of various peptides and 

transmembrane proteins incorporated into giant unilamellar vesicles or in model 

bilayers of tunable thickness sparked a controversy in the field. They found that the D0 

is strongly linked to the protein dimensions, with a Stokes-like expression for D, (D ∝ 

1/R). Soon after, several authors argued that the SD model may fail for some proteins 

because they can locally deform the membrane which leads to new hydrodynamic 

stresses on the protein-membrane complex and to suppression of its mobility (Naji et 

al., 2007). This idea has been subsequently debated by researchers who argued that 

although local membrane deformation can change the effective membrane viscosity, the 
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effect on protein mobility is only weak (<30%), and it does not change the scaling of the 

diffusion coefficient Dt (Guigas and Weiss, 2008). Fluorescence Correlation 

Spectroscopy (FCS) of Ramadurai et al. (2009) with integral membrane proteins 

reconstituted in GUVs showed protein diffusion in membranes to comply with the SD 

model, and similar results were obtained by Weiß et al. (2013) using 2-Focus FCS. One 

possible explanation of controversy in this field could be that the SD model originally 

predicts lateral diffusion in protein-poor membranes, whereas native cell membranes 

are crowded with proteins – according to estimations, membrane area fraction occupied 

by proteins ranges from 15 – 35% (Dupuy and Engelman, 2008), implying that diffusing 

objects may be hindered in their mobility by constant colliding with one another. 

Consistently, number of studies on simple membrane systems, both experimental (Dix 

and Verkman, 2008; Peters and Cherry, 1982; Ramadurai et al., 2009) and 

computational (Domański et al., 2012; Goose and Sansom, 2013; Javanainen et al., 2013; 

McGuffee and Elcock, 2010) have indicated that crowding induces anomalous (slower) 

diffusion in lipid membranes.  

In conclusion, in the protein-poor context, diffusion of proteins is fairly well 

understood, with experimental and computational studies providing compelling 

evidence that for a membrane protein of lateral radius (R), Dt scales logarithmically as 

Dt ∝ ln(1/R), agreeing with Saffman-Delbrück model. However, in the crowded case, 

deviations from the model have been repeatedly observed, with a crossover from the Dt 

∝ ln(1/R) behavior to the Stokes-like Dt ∝ 1/R relation (Figure 18). Hence, in the 

crowded case, there could be an order of magnitude difference between the diffusion 

coefficients of the smallest proteins and large protein complexes, and the dynamics in 

the crowded setting could be radically different from protein-poor conditions 

(Javanainen et al., 2018). 
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Figure 18: Crowding affects the lateral diffusion of integral membrane proteins 

In protein-poor membranes, relation between diffusion and protein size follows the 

Saffman-Delbrück equation (blue curve) with diffusion coefficient weakly depending on 

protein radius. In contrast, diffusion in crowded membranes might follow the Stoke’s-

Einstein law, and protein radius becomes a more significant factor (green curve). 

 

 

Vast majority of studies focused on the diffusion of folded transmembrane 

proteins (such as receptors). However, a lot of questions remain open regarding the 

diffusion properties of membrane-associated proteins that are not integral part of 

biological membranes, but interact with them transiently. Similarly, very little is known 

about the membrane diffusion of large intrinsically disordered proteins or proteins with 

considerable proportions of intrinsic disorder. And lastly, protein diffusion in cell 

membranes is further complicated by numerous barriers, such as mesh of cytoskeleton 

components or components of extracellular matrix, poorly mobile intramembraneous 

clusters of proteins and lipids, membrane curvature or hydrophobic mismatch between 

short-tailed and long-tailed lipids (Trimble and Grinstein, 2015). Taken together, there 

is still much to learn about the complex features of protein diffusion on a membrane 

and within membrane contact sites. 
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PART 3: LIPID TRANSPORT, MEMBRANE CONTACT SITES AND 

OSBP-RELATED PROTEINS 
 

 

A. INTRACELLULAR LIPID TRANSPORT  
 

Lipids as membrane building units lack intrinsic motifs or trafficking signals that 

could specify their intracellular location. However, as detailed above, each organelle 

maintains its characteristic lipid composition, evident even at the level of individual 

leaflets of the bilayer. This astonishing lipid compartmentalization evokes a question: 

How can specific lipids be delivered to a certain organelle?   

Our current understaning of intracellular lipid transport is based on the evidence 

of efficient and well-controlled lipid fluxes within the cell, and these fluxes are known to 

occur via four major mechanisms, illustrated in Figure 19:  

 Lateral diffusion of lipids along membrane bilayers and possibly between 

very closely apposed membrane leaflets 

 Lipid flip-flop from one leaflet of a bilayer to the other one catalyzed by 

specific integral membrane proteins  

 Lipid transport in the form of transport vesicles/tubular carriers in 

membrane trafficking 

 Lipid transport by specialized lipid binding/transfer proteins (LTPs) 
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Figure 19: The mechanisms of intracellular lipid transport 

(A) lipid diffusion laterally within a leaflet (B) Flip-flop of a lipid between the two 

leaflets of a bilayer (C) vesicular lipid transport (D) transport mediated by lipid 

binding/transfer proteins. 

 

Diffusion of lipids within membrane is a passive process closely related to the 

membrane structure – since cellular membranes are substantially complex systems, 

lipid diffusion is influenced by the presence of lipid clusters (micro- and nanodomains 

or rafts), proteins and interactions with cytoskeleton (Dietrich et al., 2002; Trimble and 

Grinstein, 2015). Free diffusion of lipids between membranes is a very slow process, 

and it can be neglected for lipid homeostasis.  

Movement of lipids from one leaflet to the other is mediated by proteins called 

P4-ATPases or “flippases” (Jensen et al., 2017; Lopez-Marques et al., 2014). Flippases 

contribute to the transbilayer asymmetry, a feature important for multiple cellular 

processes, as detailed before (Part2, chapter B.3). Lipid transport in the opposite 

direction is catalyzed by some members of the ABC transporter family. These proteins 

are called also “floppases”, and both flippases and floppases require energy in the form 

of ATP for their function (Hankins et al., 2015). In contrast, other proteins, called 

scramblases, are ATP-independent and act to randomize lipid distribution by 

bidirectionally translocating lipids without ligand specificity (Sahu et al., 2007).  
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1. LIPID TRANSPORT BY VESICULAR TRAFFICKING 
 

1.1 THE SECRETORY PATHWAY  
 

Eukaryotic cells transport material from the “synthesis-and-modification” 

locations (ER and Golgi) to the “release” location (PM) via secretory pathway. Proteins 

are synthesised on ribosomes of the rough ER, and they enter or cross the ER 

membrane cotranslationally - during their synthesis. Soluble proteins are localized in 

the luminal part of ER whereas transmembrane proteins are inserted into the ER 

membrane. Subsequently, both are incorporated into either the lumen or membrane of 

budding vesicles formed by the COPII coat protein machinery. The vesicles fuse with the 

ER-Golgi Intermediate Compartment (ERGIC) and cargo destined for anterograde 

transport is targeted towards the cis-Golgi for post-translational modification. From 

both ERGIC and cis-Golgi, certain proteins (mainly those containing an ER-retention 

motif) are retrieved to the ER via a different set of retrograde transport vesicles, coated 

by COPI. The rest of material advances through the medial- towards the trans-Golgi. 

Currently, there are two models describing the cargo transport through the Golgi: first 

model assumes anterograde transport of vesicles through static Golgi cisternae (Dunlop 

et al., 2017; Dunphy and Rothman, 1985). In the second model, called cisternal 

progression (or cisternal maturation), a new cis-Golgi stack with its cargo physically 

moves from the cis position towards the trans position, successively becoming first a 

medial- and then a trans-Golgi cisterna. As this happens, Golgi-resident enzymes and 

other proteins are constantly being retrieved from later to earlier Golgi cisternae by 

small retrograde transport vesicles (Losev et al., 2006; Morré and Ovtracht, 1977). 

Ultimately, cargo reaches the TGN from where it can be sorted to different loci in the 

cell. Material destined to endosomes and lysosomes is transported in clathrin-coated 

vesicles, whereas material for PM is sorted into uncoated secretory vesicles that fuse 

with the PM. Clathrin-mediated endocytosis from TGN and PM allows retrieval of 

missorted proteins and uptake of exogenous molecules into the cell, respectively. 

Endocytic vesicles from PM are first targeted to tubulo-vesicular early endosomes, 

located in the periphery of the cell. Here, some endocytosed cargo such as surface 

receptors, recycle back to the cell surface via recycling endosomes. Other cargo 

proceeds to late endosomes. Late endosomes are mainly spherical and contain smaller 
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vesicles that bud from the perimeter membrane into the endosome lumen. This leads to 

their multivesicular appearance, and so they are also called multivesicular bodies. From 

late endosomes, endocytosed material is either delivered to TGN for further processing 

and sorting, or to lysosomes for degradation (Bonifacino and Glick, 2004; G. Liu et al., 

2017), as illustrated in Figure 20.     

 

 

 

Figure 20: The secretory pathway 

Transport is mediated by budding and fusion of transport carriers (vesicles or tubules), 

by fusion of organelles or by their maturation. Budding of some transport carriers is 

mediated by coat proteins (indicated by colors) and merging of a vesicle with other 

vesicles or cell membrane is mediated by specialized proteins, such as SNAREs. 

Illustration from (Sato et al., 2014).  

 

 

 



59 
 

1.2 CHALLENGES OF LIPID SORTING  
 

Vesicular trafficking exchanges large amount of membrane material between 

organelles and is thus essential for bulk lipid transport. At the same time, organelles 

maintain their lipid-based identity, as lipid composition changes progressively 

throughout the secretory pathway. Therefore, several authors attempted to elucidate 

lipid selectivity in vesicular trafficking by following if vesicles are enriched in or 

depleted of lipids that are more or less abundant in the target membrane (Deng et al., 

2016; Moreau et al., 1993; Sorre et al., 2009). One model in the field is that lipid 

clustering of sterols and sphingolipids into microdomains contributes to sorting 

processes at TGN. One of the first studies of sphingomyelin sorting in polarized 

epithelial cells incubated with fluorescently labelled short-chain ceramide has shown 

that fluorescent lipids accumulated to a higher level in the apical membrane domain, 

suggesting that sphingolipids are enriched in apically targeted secretory vesicles (van 

Meer et al., 1987). Consistently, a more recent study on lipids in yeast using 

immunoprecipitation of transport vesicles via Myc-tagged FusMidp protein in 

combination with quantitative lipidomics has demonstrated that FusMidp-vesicles 

comprised more ergosterol and sphingolipids, compared to TGN/endosomes extract. 

Furthermore, lipid analysis also documented differences in other lipid classes – PA was 

elevated in FusMidp-vesicles, whereas PS, PE and PC were depleted (Klemm et al., 

2009).  

However, what is missing are the factors responsible for microdomain clustering 

in TGN and in budding vesicles – inspite of the fact that several luminal or cytosolic 

proteins have been postulated as candidates for microdomain coalescence (Proszynski 

et al., 2005). It is also noteworthy that there are organelles that are not connected to the 

endomembrane system, such as peroxisomes, mitochondria and plastids (in plants). 

Their lipid homeostasis thus cannot be explained by vesicular lipid trafficking. And 

ultimately, lipid transfer between subcellular compartments still occurs in conditions 

where vesicular trafficking is blocked, suggesting that non-vesicular lipid transfer is 

required for maintaining lipid homeostasis (Lev, 2010).    
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B. LIPID TRANSPORT AT MEMBRANE CONTACT SITES 
 

1. BRIEF HISTORY OF MEMBRANE CONTACT SITES 
 

Membrane contact sites (MCS) have been noted since cells first began to be 

visualized. In 1959, Copeland and Dalton observed cells of the pseudobranch gland of a 

teleost and noted “a highly specialized tubular form of endoplasmic reticulum in 

association with the mitochondria and apparently in turn, with the vascular border of 

the cell” (Copeland and Dalton, 1959; EM image shown in Figure 21).  

 

Figure 21: MCS between mitochondria and ER in a pseudobranch gland cell 

Note the association of tubular form of ER with mitochondria (red arrows). Electron 

micrograph from Copeland and Dalton, 1959. 

 

MCS are regions of close appositions (10 – 30nm) between two organelles. Since 

the endoplasmic reticulum (ER) is the most extensive cellular membrane network, it is 

not surprising that MCS mostly form between the ER and a second organelle, such as the 

plasma membrane (PM), mitochondria, Golgi, lysosomes, endosomes and lipid droplets. 

Of note, MCS between mitochondria and other organelles also began to be studied. True 

MCS are characterized by four features: they are created by membranes of two 

organelles tethered to each other with intermembrane distance of 30nm or less; the 

membranes do not fuse; MCS are enriched in specific proteins and/or lipids and the 
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formation of MCS affects the function or composition of at least one of the two 

organelles participating in the contact (Prinz, 2014). 

MCS were first functionally characterized due to their critical roles in the 

intracellular exchange of lipids and calcium, since the ER is both the main site of lipid 

synthesis and the main store of intracellular Ca2+. However, MCS display a wide variety 

of functions including regulation of organelle dynamics and trafficking, immune 

response and apoptosis. MCS are established and maintained by a protein or protein 

complexes that simultaneously bind the two aposed membranes - such proteins are 

called tethers, and in most cases, there are several tethers colocalizing at the same MCS 

(Prinz, 2014). The clarification of whether a protein is a genuine tether, necessary to 

establish and maintain a MCS, or whether it just functions at MCS but is not necessary 

for sustaining a contact, is a challenging issue to the field. For instance, the studies of 

Manford et al. (2012) and Stefan et al. (2011) on the junction of ER and PM in 

Saccharomyces cerevisiae have demonstrated that there are at least six ER resident 

transmembrane proteins that need to be eliminated in order to dramatically reduce the 

contacts between ER and PM. These proteins include calcium and lipid binding domain 

proteins 1–3 (Tcb 1-3), increased sodium tolerance protein 2 (Ist2) and two 

suppressors of Ca2+ sensitivity proteins (Scs2 and Scs22, homologues of mammalian 

VAPs). Tcb 1-3 and Ist2 contain cytosolic domains that interact with the plasma 

membrane lipids (Fischer et al., 2009; Toulmay and Prinz, 2012), whereas Scs2 and 

Scs22 bind proteins containing “two phenylalanines in an acidic tract” (FFAT) motifs 

(Loewen et al., 2003).  

Many MCS tethering complexes have additional functions. For example, 

mitofusin-2 (Mfn2) is a dynamin-like protein that mediates mitochondrial fusion. 

Although it is largely localized to the outer mitochondrial membrane, a small fraction is 

also present on the ER membranes, and it has been proposed that the interaction 

between Mfn2 in the mitochondria and Mfn2 in the ER tethers these organelles (de 

Brito and Scorrano, 2008).  

In the following chapters I will briefly depict the key functions of MCS in Ca2+ 

homeostasis and signaling as well as in organelle division. Thereafter, more attention 

will be given to lipid transfer occurring at MCS and especially the role of LTPs. 
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2. MCS IN CA2+ HOMEOSTASIS AND SIGNALING 
 

ER-PM and ER-mitochondria MCS also harbour key functions in intracellular Ca2+ 

homeostasis and signalling in mammalian cells, as evidenced on the example of skeletal 

and cardiac muscle cells. PM of these cells forms deep invaginations, called T 

(transverse)-tubules, which form extensive contacts with the ER (called sarcoplasmic 

reticulum in muscle cells, SR). These contacts are maintained by tethers called 

junctophilins. Junctophilins are SR-transmembrane proteins containing a large cytosolic 

domain that interacts with the PM. Expression of junctophilins in cells lacking them 

induces ER-PM contacts (Takeshima et al., 2000) and junctophilin-deficient muscle cells 

display abnormal SR-PM MCS. These defects correlate with defects in Ca2+ signaling 

(Hirata et al., 2006) because SR-PM contacts enable direct interaction between channels 

in the PM, called dihydropyridine receptors (DHPRs), and channels in SR, called 

ryanodine receptors (RyRs), which allows coordinated opening of both channels in 

response to muscle excitation (Fabiato, 1983; Nakada et al., 2018; Rebbeck et al., 2011).      

ER-PM contacts also play a role in regulating Ca2+ levels in non-excitable cells in 

a process known as store-operated Ca2+ entry (SOCE). Ca2+ ions enter the cell via 

channel called Orai1, and the sensor of Ca2+ concentration in the ER is an integral 

membrane protein stromal interaction molecule-1 (STIM1). When Ca2+ concentration in 

the ER is low, STIM1 oligomerizes (Figure 22). Oligomerization exposes a polybasic 

segment in its intrinsically disordered C-terminus, which interacts with P(4,5)P2 in the 

PM (Zhou et al., 2013). STIM1 can also bind and activate Orai1 (Kawasaki et al., 2009) 

and more recently, this interaction has been discovered to be modulated by cholesterol 

in the PM (Pacheco et al., 2016). Activated STIM1 forms number of puncta, which are 

regions where the ER and PM are closely apposed. The PM and ER MCS allows Ca2+ to 

move from extracellular environment directly into the lumen of the ER without 

significant elevation of cytosolic Ca2+ levels (Jousset et al., 2007). Of note, these MCS 

frequently accommodate the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) pump, 

which may interact directly with STIM1, thus more effectively channeling the Ca2+ ions 

into the ER lumen (Manjarrés et al., 2011). 
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Figure 22: Activation of STIM1 and recruitment of ORAI1 to ER-PM contact sites 

Blue asterisk “K” on STIM1 - polybasic aa segment; PM lipid shown in pink is PI(4,5)P2, 

CC1 – predicted coiled coil. Illustration modified from Zhou et al., 2013. 

 

Similarly, Ca2+ influx into mitochondria is regulated by Ca2+ channels interacting 

with each other at ER-mitochondria MCS. The channel in the ER is called the inositol 

triphosphate receptor (IP3R), while the channel in the outer mitochondrial membrane 

is the voltage-dependent anion channel (VDAC). These proteins, together with the 

cytosolic chaperone Grp75, form a complex connecting ER and mitochondria and 

enabling Ca2+ flux between these organelles (Szabadkai et al., 2006).  
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3. MCS AND ORGANELLE DIVISION AND INHERITANCE 
 

In 2011, a study of Friedman et al. identified a new function of MCS between the 

ER and mitochondria: the ER encircles mitochondria at sites where mitochondrial 

scission will occur (Friedman et al., 2011). Sites of close contacts between ER and 

mitochondria promote the multimerization of Dnm1/Drp1 in the outer mitochondrial 

membrane by a yet unknown mechanism. According to the current hypothesis, the ER 

circle may constrict the mitochondria to a diameter that allows the assembly of 

Dnm1/Drp1. The force necessary for constriction may come from actin polymerisation, 

mediated by protein called inverted formin-2 (Korobova et al., 2013). An alternative 

hypothesis is that an unknown factor could constrict mitochondria from the inner 

mitochondrial membrane (Figure 23).   

 

 

Figure 23: Molecular model for mitochondrial fission at mitochondria-ER MCS 

In yeast, the ER-mitochondria encounter structure (ERMES) and the conserved Miro 

GTPase Gem1 are linked to ER-associated mitochondrial division site, together with a 

subset of nucleoids that are actively replicating and segregate before mitochondria 

fissions. Unknown mitochondrial factor and/or cytoskeletal components may also 

participate in membrane constriction before Dnm1/Drp1 recruitment. Nucleoid 
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placement at sites of division could be mediated by the MitOS scaffold complex. 

Illustration from Friedman and Nunnari, 2014. 

 

Of note, similar mechanism of ER-mediated organelle division has been 

discovered recently in endosomes. When endosomes undergo fission for cargo sorting, 

actin regulator Coronin 1C at endosome buds recruits an ER-resident protein called 

transmembrane and coiled-coil domain family 1 (TMCC1) to regulate ER-associated 

endosome fission (Hoyer et al., 2018). 

 

4. LIPID TRANSFER PROTEINS AT MEMBRANE CONTACT SITES 
 

Lipid transfer proteins (LTPs) are defined as proteins capable of transferring 

lipids between different membranes. The discovery of LTPs was a result of studies that 

investigated how the lipid components of plasma lipoproteins are transferred into the 

membranes of liver cells in the late 1960s. It soon became apparent that liver cells 

contain a cytosolic factor that is able to transfer phosphatidylcholine (PC) from one 

membrane to another (Wirtz and Zilversmit, 1968, 1969), and these studies are 

considered as first notions of the existence of non-vesicular membrane traffic. Karel 

Wirtz and Donald Zilversmit discovered that radioactively labelled phospholipids are 

exchanged between mitochondria and microsomes isolated by centrifugation from rat 

liver homogenates. Based on the findings that the unknown lipid transfer factor was 

nondialyzable, inactivated by high temperatures and sensitive to trypsin, the factor was 

assumed to be a protein. Similar observations followed from other laboratories, and 

efforts to purify the lipid transfer protein gradually uncovered a variety of proteins that 

could accelerate the transfer of different phospholipid classes, as well as transfer of less 

polar lipids (Bloj and Zilversmit, 1977; Noland et al., 1980).   

After the discovery of LTPs, it took many years until their role in lipid exchange 

at MCS has been fully appreciated. A milestone was the description of a region of ER as a 

membrane fraction associated with the mitochondria (termed “mitochondria-associated 

membrane, MAM”) and being associated with phospholipid synthesis (Vance, 1990). 
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However, definitive evidence to show that MCS are involved in the interorganelle 

transport of lipids was not obtained for a long time.  

In the early 2000s, a protein that mediates the inter-organelle transport of 

ceramide was identified after a functional rescue cloning method (Hanada et al., 2003). 

The discovery of ceramide transfer protein (CERT) has shown that CERT has functional 

and structural characteristics not only to catalyze the lipid transfer, but also to act at 

ER-Golgi MCS. This provided an entity-based model in which LTPs mediate the inter-

organelle transport of lipids at organelle MCS in a nonvesicular manner (Kawano et al., 

2006). In the past decade, various LTP superfamilies with distinct lipid binding domains 

have been described (Figure 24, reviewed in Chiapparino et al., 2016; Hanada, K, 2018; 

Lev, 2010). These include for example the STARkin (which involves StART, PITP, PRELI 

and LAM families), TULIP, SEC14 (CRAL/TRIO), NPC1 and NPC2, which shall be 

mentioned here but will not be discussed in detail. Instead, major attention will be given 

to OSBP and its related proteins, ORPs. 

 

Figure 24: Domain organization of selected LTPs 

Domain organization of representatives of major classes of mammalian LTPs. 

Membrane tethering domains are shown in blue, lipid transfer domains are shown in 

green. PITP - phosphatidylinositol transfer protein domain, DDHD - ~180 aa long 

domain in Nir/rdgB proteins containing four conserved residues (DDHD), LNS2 – 

Lipin/Ned1/Smp2 domain, PCTP – phosphatidylcholine transfer protein, START – StAR-

related lipid transfer, NSLTP – non-specific lipid transfer protein, SCP2 – sterol carrier 

protein 2 domain, FAPP2 – four-phosphate adaptor protein 2, GLTP – glycolipid transfer 

protein domain, STAR – steroidogenic acute regulatory protein. Figure from Lev, 2010. 
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C. OXYSTEROL BINDING PROTEIN AND OSBP-RELATED PROTEINS 
 

OSBP was identified in 1980s in experiments performed to elucidate 

mechanisms of sterol synthesis regulation in cultured cells. Kandutsch and Chen (1978) 

found that oxygenated sterols - oxysterols - are much more (~10 000-fold) active than 

cholesterol itself in suppressing cholesterol synthesis. The effect is manifested by 

decreasing the activity of HMG-CoA (3-Hydroxy-3-methylglutaryl-CoA) reductase, a key 

enzyme in sterol biosynthesis. The decrease in activity was explained by suppression of 

gene transcription in cultured cells. In particular, 25-OH has been found to be one of the 

most potent suppressors, and has been used since as general tool to identify sterol-

sensitive genes and proteins. Soon after, Kandutch and Thompson found a cytosolic 

protein whose affinitity for different oxysterols correlated with their ability to suppress 

HMG-CoA reductase in fibroblasts (Kandutsch and Thompson, 1980). Upon addition of 

25-OH, the protein redistributed within the cell and became associated with the Golgi 

apparatus. Kandutsch and Shown described the sterol-binding properties of this 

unknown protein and due to its high affinity for oxysterols, they named it Oxysterol 

binding protein (Kandutsch and Shown, 1981). Its discoverers initially suggested a role 

for this protein in intracellular sensing of oxysterols and regulating expression of sterol-

sensitive genes (Brown and Goldstein, 1997; Kandutsch and Shown, 1981; Lagace et al., 

1997; Ridgway, 1992; Taylor and Kandutsch, 1985). Interestingly, the hypothesis that 

OSBP was involved in sterol-mediated gene regulation was discarded when 25-OH-

induced inhibition of HMG-CoA reductase was found to be independent of OSBP 

(Nishimura et al., 2005). 

After the purification of OSBP and identification of OSBP gene by the Brown and 

Goldstein group (Dawson et al., 1989a, 1989b; Levanon et al., 1990), DNA sequencing- 

and expressed sequence tags-based screenings revealed that there are several 

homologs of OSBP in yeast and mammals (Jiang et al., 1994; Laitinen et al., 1999). The 

novel open reading frames were named OSBP-related proteins (ORPs) and subsequent 

findings demonstrated that the ORP family is conserved among eukaryotes (Anniss et 

al., 2002; Lehto et al., 2001; Zhou et al., 2014).  
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Human genome contains 12 ORP genes, compared to 7 genes encoding the 

homologous Osh proteins in yeast. Human ORP genes give rise to 16 proteins due to 

alternative promoter and splice-site usage (Figure 25). The resulting “short” ORP 

variants differ from their “long” counterparts in unique expression pattern and 

functional properties (Ngo et al., 2010; Olkkonen and Levine, 2004).   

 

 

Figure 25: Structural organization of the human ORP and yeast Osh family 

Domain structure of the major variants is shown. The dark blue area represents the 

highly conserved EQVSHHPP motif. Variants containing the PH domain are denoted as 

long (L) and variants without PH domain as short (S). In the case of ORP3, ORP3 (1) 

represents the full length variant while ORP3 (2) contains a C-terminal sequence 

unrelated to ORD (Collier et al., 2003). Illustration from Olkkonen and Levine, 2004.   

 

The hallmark of all ORPs is a well conserved, ~350 aa long lipid transfer domain 

called OSBP-related domain (ORD), located in the C-terminal half of the proteins. First 

evidences for the role of ORD in lipid transport come from studies of yeast Osh proteins. 

Deletion of all seven OSH genes was shown to be lethal, and expression of any single Osh 

protein was sufficient to maintain viability, demonstrating the functional redundancy 
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and co-operativity of Osh proteins (Beh et al., 2001). Conditional OSH1-OSH7 mutants 

displayed severe defects in intracellular sterol distribution and endocytosis (Beh and 

Rine, 2004). Crystal structure of Osh4 with sterol inside the hydrophobic pocket of the 

ORD has been determined by Im et al. (2005), and detailed studies of in vitro sterol 

transfer activity of Osh proteins provided additional evidence of their functional role in 

lipid binding. Osh4 has been shown to extract sterols from membranes, which was 

markedly enhanced by addition of PI(4,5)P2 or PS in the donor vesicles (Raychaudhuri 

et al., 2006). Later on, the structure of Osh4 with PI(4)P inside the ORD ligand cavity has 

been resolved, and it has been suggested that sterols and PI(4)P could be transported 

along opposite routes: sterol from the ER to late compartments (PM) and PI(4)P 

backwards (de Saint-Jean et al., 2011). The authors envisioned that - when coupled to 

PI(4)P metabolism - this model (Figure 26) could also explain how an increasing 

gradient of sterol from the ER to the PM is generated (Ikonen, 2008; Maxfield and van 

Meer, 2010). The subsequent study of Moser von Filseck et al. (2015) clearly 

demonstrated that Osh4 can transport sterol against its concentration gradient by 

dissipating the energy of a PI(4)P gradient, concluding that Osh4 is far more efficient 

when it acts as a lipid exchanger rather than a mere transporter. PI(4)P gradients are 

maintained over time as PI(4)P is continually synthesized on late membranes and 

hydrolyzed by Sac1 in the ER (Faulhammer et al., 2007; Foti et al., 2001). To date, all 

members of ORP/Osh protein families have been suggested to bind PI(4)P (Tong et al., 

2013), and some ORP/Osh have been shown to recognize a second lipid that is not 

sterol (Maeda et al., 2013; Moser von Filseck et al., 2015).    
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Figure 26: Sterol/PI(4)P exchange by Osh4 

ATP-dependent phosphorylation of PI into PI(4)P by Pik1 and hydrolysis of PI(4)P by 

Sac1 fuel multiple sterol/PI(4)P exchange cycles, give directionality to the lipid 

exchange and thereby create and maintain sterol gradient. Illustration from Moser von 

Filseck et al., 2015.  

 

Another conserved sequence feature of ORP/Osh proteins is a plekstrin 

homology (PH) domain in the N-terminal half of the protein. Most PH domains 

recognize and target individual phosphoinositides with rather low affinity. 

Nevertheless, high membrane binding specificity results from cooperativity with 

additional, mainly anionic lipids (Harlan et al., 1994; Lemmon and Ferguson, 2001; 

Vonkova et al., 2015). PH domains facilitate protein localisation to PIP-enriched 

membranes of organelles such as the Golgi (Levine and Munro, 2002, 1998) or plasma 

membrane (Lehto et al., 2005). With the exception of ORP2 in human and Osh4 – 7 in 

yeast, the PH domain is found in all ORP/Osh. OSBP and many other ORP/Osh also 

feature a linear FFAT motif with the consensus sequence EFFDAxE (Figure 27). FFAT 

(“two phenylalanines in an acidic tract”) motif has been demonstrated to bind to 

vesicle-associated membrane protein (VAMP)-associated protein A (VAP-A) located at 

the ER (Furuita et al., 2010; Kaiser et al., 2005; Wyles and Ridgway, 2004). Some ORPs 
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which lack the FFAT motif are localized to the ER via their C-terminal transmembrane 

domain (Du et al., 2011; Yan et al., 2008).  

 

 

Figure 27: FFAT motif recognition by VAP-A 

(A) FFAT motif (red) is recognized by Major Sperm Protein (MSP) domain of VAP-A. 

Regions of high coiled-coil probability between the MSP and transmembrane domains 

of VAP-A (light green) as well as between PH domains and ORDs of most ORPs suggest a 

dimeric 2:2 organization (figure modified from Antonny et al., 2018) (B) Electrostatic 

surfaces of MSP domain (left) and FFAT motif of OSBP (right) coloured by electrostatic 

potential (red = negative/acidic, blue = positive/basic) (C) Details of the interaction. 

Residues of OSBP are written in italics. OSBP FFAT motif is shown as stick model, VAP-A 

MSP residues are colored according to their charge – red = acidic, blue = basic, yellow = 

hydrophobic. Models from Furuita et al., 2010. 

 

Based on similarity in amino acid sequence and gene structure, the ORPs were 

divided into 6 distinct subfamilies (see Figure 25). In the subsequent chapters, I will 

briefly discuss the specific structure/function features of each ORP subfamily.   
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1. STRUCTURE AND FUNCTION OF OSBP AND OSBP-RELATED PROTEINS 
 

1.1 Subfamily I – OSBP, ORP4 L and ORP4 S 

OSBP is ubiquitously expressed (although the levels of expression may vary 

between different tissues/cell types) and its structural elements correspond to its 

function in membrane tethering and selective lipid exchange. OSBP contains a PH 

domain that has been shown to recognize a small G-protein Arf1-GTP and 

phosphoinositide PI(4)P at the trans-Golgi membrane (Godi et al., 2004; Levine and 

Munro, 2002, 1998), illustrated in Figure 28.  

 

 

Figure 28: Recognition of Arf1-GTP and PI(4)P by PH domains of LTPs 

(A) Model of interaction of PH domain of FAPP1 (blue) with Arf1 (green) and PI(4)P 

(binding site indicated by red asterisk) at a small bicelle surface (Liu et al., 2014) (B) PH 

domain of OSBP modeled according to the crystal structure of FAPP1 PH domain. Yellow 

residues indicate hydrophobic residues likely inserted into membrane, i.e. hydrophobic 

wedge. PI(4)P binding site is located within a cluster of basic residues. Note the 

positions of the N-terminal and C-terminal ends. Upstream of the N-terminal end is 

located the disordered region (not shown).     

 

PH domain is followed by two coiled-coils that mediate formation of OSBP 

dimers as well as heterodimerization with its close homolog, OSBP2/ORP4 (Ridgway, 

1992; Wyles et al., 2007). OSBP also contains a canonical linear FFAT motif that 
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mediates its binding with ER-resident transmembrane proteins VAP-A and VAP-B 

(Loewen et al., 2003; Loewen and Levine, 2005, Figure 27). The C-terminal half of the 

protein comprises the lipid transfer domain – ORD, which has a hydrophobic pocket 

that can accommodate two very distinct lipids: cholesterol and PI(4)P, as shown in 

Figure 29 (de Saint-Jean et al., 2011; Mesmin et al., 2013). Structural studies show that 

residues recognizing PI(4)P are conserved among the ORPs/Oshs, suggesting a common 

mechanism by which PI(4)P would be specifically exchanged for another lipid (Tong et 

al., 2016). 

 

 

Figure 29: Model of the ORD domain of OSBP 

Models were created according to the structure of Osh3p, with an ergosterol structure 

position estimated from Osh4p-based model alignment (left), and with PI(4)P molecule 

crystallized in the hydrophobic pocket of Osh3p ORD(right). Note the different 

orientations of sterol and PI(4)P – the polar hydroxyl group of sterol is deep inside the 

pocket whereas the polar part of PI(4)P is facing the surface. Lid region (pink) covers 

the hydrophobic pocket and might be stabilized by an ionic bridge in its proximity. 

Courtesy of J. Bigay.  

 

The architecture of OSBP enabling simultaneous interactions of PH domain with 

PI(4)P/Arf1-GTP at the trans-Golgi and of FFAT motif with VAP-A at the ER, allows 
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OSBP to both tether organelles and transport lipids between them. These two activities 

are part of a four-step cycle described by Mesmin et al. in 2013. First, TGN and ER are 

tethered by PH domain and FFAT motif. Bringing both membranes into close apposition 

enables sterol transfer from the ER to the Golgi by the ORD. In the opposite direction, a 

counter-transfer of PI(4)P by the ORD follows. Upon its release into the ER membrane, 

PI(4)P is hydrolyzed by the ER-localized phosphatase Sac1. The energy provided by 

hydrolyzis of PI(4)P drives sterol transfer, ensures its directionality and allows negative 

feedback when PI(4)P pools become limiting (Figure 30, Mesmin et al.,  2013). A 

follow-up study has shown that OSBP is a major regulator of PI(4)P turnover, 

cholesterol distribution and lipid order in living cells. Inhibition of OSBP by a strong 

inhibitor, OSW-1, causes accumulation of sterols at ER/lipid droplets at the expense of 

TGN, thereby reducing the gradient of lipid order along the secretory pathway. OSBP 

activity is fueled by about half of the total cellular pool of PI(4)P (Antonny et al., 2018; 

Mesmin et al., 2017).    

 

Figure 30: A four-step cycle driven by PI(4)P hydrolyzis directs sterol/PI(4)P 

exchange by the ER-Golgi tether OSBP 

TGN and ER are tethered by PH domain and FFAT motif; this enables sterol transfer by 

the ORD followed by counter-transfer of PI(4)P by the ORD. Finally, PI(4)P is 

hydrolyzed in cis by the transmembrane phosphatase Sac1 residing in the ER. Figure 

from Mesmin et al., 2013. 



75 
 

OSBP has also been shown to influence the activity of other LTPs – for example, 

upon 25-OH treatment, OSBP recruits CERT to the Golgi to enhance flux of ceramides for 

sphingomyelin synthesis, and concomitant generation of diacylglycerol (DAG) through 

which the Golgi secretory function is also affected (Perry and Ridgway, 2006). OSBP and 

CERT cooperate with another LTP, the PI/PC transfer protein Nir2, which also acts to 

regulate Golgi DAG levels via inhibition of the PC synthesis and stimulation of PI(4)P 

synthesis (Litvak et al., 2005; Peretti et al., 2008).   

Evidence suggests that in addition to its lipid transfer activity and orchestration 

of other LTPs activity, OSBP could also regulate different signaling pathways in lipid 

metabolism-dependent manner. For example, Wang et al. observed that upon 

cholesterol binding, OSBP acts as a scaffolding protein for the phosphatases HePTP and 

PP2A. OSBP, HePTP and PP2A proteins form a high molecular weight complex, in which 

HePTP and PP2A are spatially organized so that they can cooperate to dephosphorylate 

the extracellular signal-regulated kinase, pERK. The pERK1/2 phosphatase activity 

conferred through OSBP is positively regulated by cholesterol and negatively by 

oxysterols, which gives implication that LTPs may have lipid-specific scaffolding 

functions that regulate key signaling pathways (Wang, 2005). Other study reports that 

OSBP also affects the JAK-STAT3 signaling by scaffolding the assembly of JAK2/STAT3 

module in a sterol-dependent manner (Romeo and Kazlauskas, 2008). It is noteworthy 

that both pERK1/2 dephosphorylation and JAK2/STAT3 assembly lead to the activation 

of genes regulating cell survival and proliferation. Consistently, OSBP has been 

identified as a strong target of natural compounds that potently and in some cases 

selectively inhibit the growth of cultured human cancer cell lines. Because of their 

affinity for OSBP and ORP4L, these compounds have been named ORPphilins, including, 

for example, OSW1 (Burgett et al., 2011). Of note, some viruses hijack the OSBP lipid 

transfer machinery to supply cholesterol to viral replication organelles (Ishikawa-

Sasaki et al., 2018; Meutiawati et al., 2018; Strating et al., 2015).   

OSBP2/ORP4 is a close homolog of OSBP, sharing >60% amino acid identity and 

differing mainly in the N-terminal region upstream of PH domain. ORP4 has two 

isoforms, ORP4L and ORP4S. Both bind 25-OH with high affinity and both can extract 

and transfer cholesterol between liposomes (Charman et al., 2014). The PH domain of 

ORP4L can also bind PI(4)P in the Golgi but contrary to OSBP, ORP4L does not localize 
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to the Golgi apparatus in response to sterol treatment nor does it affect sphingolipid 

regulation (Wang et al., 2002). ORP4 tissue expression is restricted to testis, brain and 

heart, suggesting a rather specialized function (Udagawa et al., 2014). Notably, ORP4-

deficient mice display male infertility due to severe defects in sperm development and 

morphology (Udagawa et al., 2014). The ORD domain of ORP4 has been demonstrated 

to interact with vimentin filaments in vitro and, when overexpressed in cells, interacts 

with and collapses the vimentin network (Wang et al., 2002; Wyles et al., 2007). The 

functional relevance of ORP4 association with vimentin is unknown, yet ORP4 is 

required for proliferation and survival of cultured cells (Charman et al., 2014). 

Consistently, increased levels of ORP4 are detectable in blood leukocytes of patients 

with chronic myeloid leukemia, suggesting that it may have some implications in 

cancers (Fournier et al., 1999; Li et al., 2016).  

 

1.2 Subfamily II – ORP1L, ORP1S and ORP2 
 

The OSBPL1 gene of subfamily II gives rise to two protein variants, ORP1L and 

ORP1S with distinct tissue expression patterns: ORP1L is abundant in brain, lung and 

macrophage, whereas ORP1S is found in skeletal muscle and heart (Johansson et al., 

2003). The PH domain of ORP1L binds phosphoinositides, and ORP1L N-terminus 

contains three ankyrin repeats, which mediate its association with GTPase Rab7 on late 

endocytic compartments. Rab7 interacts with its effector RILP (Rab7-Interacting 

Lysosomal Protein) which recruits dynein/dynactin microtubule motors and facilitates 

intracellular motility and distribution of LE compartments (Johansson et al., 2007, 

2005), as illustrated in Figure 31. Under low cholesterol conditions, ORP1 induces the 

formation of ER/LE contact sites via its interactions with VAPs and Rab7, respectively, 

restricting LE motility and preventing LE clustering (Rocha et al., 2009; Vihervaara et 

al., 2011).  
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Figure 31: ORP1L senses cholesterol levels in late endosomal compartments and 

regulates the recruitment of motor protein complexes 

Rab7 recruits RILP to late endosomes, where RILP binds the p150Glued subunit of the 

dynein/dynactin motor. The ORD of ORP1L senses cholesterol, and at low cholesterol 

levels it adopts a conformation in which the FFAT motif is exposed and ORP1L is 

recruited to the ER via VAP. Binding with VAP removes p150Glued domain from RILP, 

thus preventing LE transport and LE clustering. Illustration from Rocha et al. 2009.  

 

ORP1S was reported to translocate into the nucleus upon oxysterol ligand 

stimulation, and suggested to regulate APOE expression via liver X receptor pathway 

(Lee et al., 2012). 

ORP2 only exists in a short variant and is expressed ubiquitously. Its first 

functional characterisation revealed its involvement in cellular cholesterol efflux 

(Laitinen et al., 2002). ORP2 localizes at the surface of lipid droplets, and as it possesses 

a FFAT motif and interacts with VAPs, it was suggested to be a regulator of neutral lipid 

metabolism (Hynynen et al., 2009; Olkkonen and Li, 2013). More recently, ORP2 has 

been discovered to regulate hepatocellular energy metabolism as well as actin 

cytoskeletal functions (Kentala et al., 2018a, 2018b).   
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1.3 Subfamily III – ORP3, ORP6 and ORP7 
 

ORP3 and ORP7, unlike many other ORPs, have not been studied in the context of 

lipid metabolism. ORP3 is mainly expressed in kidney, testicular epithelia and immune 

cells; ORP6 in the central nervous system and ORP7 is most abundant in the epithelia of 

the gastrointestinal tract (Lehto et al., 2004). ORP3 and ORP7 were found to interact 

with small GTPase R-Ras, which controls cell adhesion and migration (Goldfinger et al., 

2007; Lehto et al., 2008; Weber-Boyvat et al., 2015). ORP7 also interacts with a small 

ubiquitin-like protein GATE-16/Gabarapl2, which is a chaperone for the Golgi 

trafficking regulator GS28, and this interaction results in destabilisation of SNARE 

protein (Zhong et al., 2011).  

ORP6 is upregulated in LDL-loaded macrophages, as well as in the livers of both 

mice and non-human primates that were fed a cholesterol-rich diet (Lehto et al., 2001; 

Ouimet et al., 2016). Consistently, ORP6 gene has been shown to be tightly regulated by 

the LXR transcription factors and SREBP2-related post-transcriptional repression 

mediated by miRNA (Ouimet et al., 2016). Gain- and loss-of-function experiments in the 

same study demonstrated that ORP6 contributes to cellular cholesterol efflux to apoA1 

and HDL.  ORP6 has also been studied in cultured mouse neurons, where it co-localized 

with ORP3 at ER-PM contact sites. Knockdown of ORP6 resulted in increased 

localisation of a PI(4)P marker at the PM, implicating that ORP6 might be involved at 

PI(4)P turnover at ER-PM contact sites (Mochizuki et al., 2018).  

 

1.4 Subfamily IV – ORP5 and ORP8 
 

ORP5 and ORP8 share 80% aa sequence identity. ORP5 is ubiquitously 

expressed, while highest levels of ORP8 were reported in immune cells, spleen, kidney 

and brain (Yan et al., 2008). ORP5 and ORP8 lack the FFAT motif, but instead they are 

anchored to ER membranes via a C-terminal transmembrane domain. Both are targeted 

to the PM via interaction of their PH domain with PI(4)P and/or PI(4,5)P2. The function 

of ORP5 as PS transporter was suggested in an interactome study of Maeda et al. (2013), 

and later both ORP5 and ORP8 have been confirmed to countertransport PI(4)P/PS 

between the ER and the PM in similar mechanism by which OSBP exchanges 
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PI(4)P/cholesterol at ER-Golgi MCS or by which Osh6/Osh7 exchange PI(4)P/PS at ER-

PM contact sites in yeast (Chung et al., 2015; Mesmin et al., 2013; Moser von Filseck et 

al., 2015). Other studies also noted the localisation of ORP5 and ORP8 to ER-

mitochondria contacts (Galmes et al., 2016; Pulli et al., 2018). As mitochondrial 

membranes do not contain PIs, interaction of ORP5/ORP8 with outer mitochondrial 

membrane could occur through protein PTPIP51, known to promote ER-mitochondria 

junctions via VAP-B interaction (Galmes et al., 2016; Stoica et al., 2014). 

It is noteworthy that recent study of Ghai et al., has shown that the PH domains 

of ORP5 and ORP8 can also recognize di- and tri-phosphorylated PIs. In addition, the 

ORD of ORP8 was able to transport PI(4,5)P2 between liposomes and a gradient of 

PI(4,5)P2 enhanced PS transport, demonstrating that PIs other than PI(4)P can also 

serve as co-exchangers for the transport by ORPs (Ghai et al., 2017). 

Additional function of ORP5 in mTORC1 signaling and stimulation of cell growth 

has been reported recently (Du et al., 2018), whereas an implication of ORP8 in 

inhibiting cancer cell proliferation has been suggested (Guo et al., 2017; Zhong et al., 

2015).    

 

1.5 Subfamily V – ORP9L and ORP9S 
 

ORP9 is expressed in long and short variants, and ORP9L has been shown to 

transfer cholesterol between membranes in vitro. In cells, it localizes at the ER/Golgi 

interface, and therefore its function is assumed to involve sterol transfer (Wyles and 

Ridgway, 2004). ORP9L depletion causes Golgi fragmentation, defects in vesicular 

transport and accumulation of cholesterol in endosomes/lysosomes, suggesting 

additional role in maintaining integrity of the early secretory pathway (Ngo and 

Ridgway, 2009). 
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1.6 Subfamily VI – ORP10 and ORP11 

ORP10 and ORP11 are unique among the ORPs in that they do not have 

established ER targeting determinants, although both can dimerize with ORP9, which 

contains the FFAT motif (Nissilä et al., 2012; Zhou et al., 2010). Both proteins have been 

associated with cardiometabolic diseases (Koriyama et al., 2010; Perttilä et al., 2009). 

ORP10 has shown affinity for microtubules and partially with Golgi membranes via the 

affinity of its PH domain for PI(4)P, suggesting that it could play a role in dynamics of 

carriers in the secretory pathway or juxtapose Golgi elements with microtubules 

(Nissilä et al., 2012). Consistently, ORP10 was reported to interact with Diaphanous 1, 

which is a regulator of microfilament and microtubule function (Li et al., 2013). 

ORP11 is highly expressed in brain, gonads and adipose tissues (Zhou et al., 

2012). Depending on ORP9, ORP11 localizes at the trans-Golgi and endosomes. Its 

overexpression induced the formation of lamellar lipid bodies associated with vacuolar 

elements or with the Golgi, indicating its involvement in lipid trafficking on the 

endosome-Golgi axis (Zhou et al., 2010).  
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WORKING HYPOTHESIS 

The ORP family of lipid transfer proteins has been extensively studied in the 

past. We know that ORPs share a similar domain organization. The most studied of 

ORPs is OSBP, a founding (first identified) member of the ORP family. From the first 

notions that OSBP may be implicated in sterol metabolism in 1980s – 1990s (Kandutsch 

and Thompson, 1980; Taylor et al., 1984), researchers have gradually elucidated its 

function in binding sterols in the lipid transfer OSBP-related domain (Im et al., 2005; 

Ridgway, 1992) which has been shown to accommodate not only sterols but also 

structurally very distinct lipid, PI(4)P (de Saint-Jean et al., 2011). The dimeric structure 

of OSBP has been reported (Ridgway, 1992), and its PH and FFAT domains have been 

shown to interact with ER and Golgi membranes (Kaiser et al., 2005; Levine and Munro, 

2002, 1998). Later it has been suggested by our group that OSBP may serve as a bridge 

at the ER-Golgi MCS, counter-transporting lipids by using the chemical gradient of 

PI(4)P to generate sterol gradient along the secretory pathway (Mesmin et al., 2013). 

Recently, we have found that OSBP is responsible for continuous exchange of 

approximately half of trans-Golgi PI(4)P pools for cholesterol from the ER, thus being a 

major regulator of sterol homeostasis and membrane order in cells (Mesmin et al., 

2017). It is noteworthy that analogous function in lipid exchange has been 

simultaneously discovered in other ORPs, confirming the role of PI(4)P as “currency” for 

vectorial transfer of other lipids such as phosphatidylserine (Maeda et al., 2013; Tong et 

al., 2013; Antonny et al., 2018). However, until now very little is known about the 

details of lipid exchange dynamics and topological organization of ORPs (and similarly 

structured LTPs) within MCS in general.  

Vast majority of studies on OSBP has focused on its folded domains. 

Nevertheless, a big questionmark was the presence of considerably long (50 to 140 aa), 

variable sequences upstream of PH domains in most ORPs. Particularly in the N-

terminal part of OSBP, we noticed a large proportion of glycine, proline and alanine, 

hinting us to intrinsic disorder. Intrinsically disordered regions are known to display 

enhanced conformational flexibility. They play unique roles in protein-protein as well as 

protein-membrane interactions (Babu, 2016; Tompa, 2012). IDPRs also change physico-

chemical parameters of proteins, for example inducing phase separation or influencing 
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protein volume and thereby its diffusion behavior (Lippincott-Schwartz et al., 2001; 

Wang et al., 2012).  

OSBP’s natural behavior is cycling between soluble form in cytosol and recruited 

form transporting lipids at ER-Golgi MCS. MCS are highly specialized zones of material 

(proteins, lipids, ions, metabolites etc) exchange between organelles. The organisation 

of MCS creates regions of confined environment (~20 – 30 nm thick) which are co-

occupied by many other proteins involved in material transport, signaling or organelle 

dynamics. Given the high protein density within a narrow space, the regulation of 

protein dynamics as well as the dynamics of MCS as a whole became a very captivating 

research issue.  

Therefore, we decided to investigate the role of unfolded N-terminal tail in 

regulating membrane binding and tethering properties of OSBP (and of its very close 

homolog with a distinct N-terminus, ORP4). We aimed to discover how intrinsic 

disorder affects recruitment of OSBP to simple flat membranes, as well as how it 

regulates protein tethering and dynamics within MCS (both artificial ER-Golgi MCS on 

giant vesicles and natural MCS in in living cells). At the same time, we were appealed by 

the possibility that N-terminal regions may play a role in lipid transfer properties of 

ORPs, either directly by regulating lipid exchange activity of the ORD, or indirectly via 

regulating protein mobility.  

 As a result, this study links the distinct fields briefly introduced before 

(intrinsically disordered proteins, lateral diffusion of membrane proteins, MCS and 

OSBP/ORPs). Using a variety of tools in biochemistry and cell biology, we introduce an 

innovative view on intrinsically disordered N-terminal sequences upstream of PH 

domains in ORPs (and possibly other LTPs with similar domain structure) as regulators 

of protein lateral motility and MCS dynamics. Moreover, we provide an interesting 

implication of N-terminus of OSBP in regulating MCS geometry by favouring ER-Golgi 

tethering and preventing aberrant Golgi-Golgi contacts.    
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MATERIALS AND METHODS 

 

Bioinformatic analysis 
 

We assessed the order/disorder score of different ORPs with Predictor of Natural 

Disordered Regions (PONDR®) web server (http://www.pondr.com/) (Romero et al., 

1997) using VL3-BA and VSL2 predictors. Percentual amino acid composition of 

selected domains was determined using Expasy/protparam web server 

(https://web.expasy.org/protparam/) (Gasteiger et al., 2005) and plotted as pie charts 

to highlight similarities and divergences between domains (N-terminus, PH domain, 

ORD). Limits of selected domains were as follows: 

 

Notably, our ORP4 sequence (gift from N. Ridgway) started at M39 (as referred to 

UNIPROT Q969R2:ORP4-OSBP2 sequence). Therefore, in this study M1 corresponds to 

M39 of the UNIPROT reference sequence.  

For phylogenetic analysis, protein sequences of higher eukaryotes most similar to 

human OSBP were obtained from the UniProt database. The phylogenetic tree was 

created using the Phylogeny.fr server (http://www.phylogeny.fr/) (Dereeper and 

Guignon et al., 2008). The sequences of each OSBP domain were then aligned and 

compared to that of the corresponding human domain using Clustal Omega (Sievers et 

al., 2011). A percent identity matrix was calculated for each domain. For the N-ter, 

http://www.pondr.com/
https://web.expasy.org/protparam/
http://www.phylogeny.fr/
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sequences shorter than 20 amino acids were not included in the identity analysis. The 

prediction of coiled-coils was done using the NPS@ web server (Combet et al., 2000). 

Only sequences located between the PH domain and the FFAT motif were evaluated.  

 

Construction, expression and purification of proteins 
 

1. OSBP and N-OSBP 

 

In order to obtain catalytically active protein for our in vitro assays, we purified full-

length (1-807) human OSBP and N-OSBP (88-807) from baculovirus-infected Sf9 cells. 

The construct of full-length (1-807) human OSBP in pENTD/R was previously described 

(Mesmin et al., 2013). For the expression and purification of N-OSBP, we modified the 

pFastBacTMHTA vector from Invitrogen by successive mutations to allow the insertion of 

a PCR amplified sequence upstream of the 6His-tag. These modifications include: 1) 

transformation of the original BamHI site into 2 stop codons and insertion of a new 

BamHI site upstream of the His tag. The insert [OSBP N (88-807) + thrombin site] DNA 

sequence was PCR amplified using the pENTR/D-(OSBP-FL-thrombin site) as matrix 

and cloned into the BamHI-digested pFastBacTMHTA modified vector using the 

GeneArtTM Seamless Cloning and Assembly Kit (Invitrogen). Recombinant vectors were 

then transformed into DH10Bac E.coli strain. Recombinant bacmids were selected as 

described in Bac to BacR Expression System user manual (Invitrogen) and used to 

produce recombinant baculovirus.  

Full-length OSBP and N-OSBP with a C-terminal 6His-tag were purified from 

baculovirus-infected Sf9 cells. Cell pellets were resuspended in lysis buffer (20 mM Tris 

pH 7.5, 300 mM NaCl, 20 mM imidazole, EDTA-free protease inhibitors and 

phosphatases inhibitors) and lysed with Dounce homogenizer. After ultracentrifugation, 

OSBP or ∆N-OSBP from the supernatant was adsorbed on an HisPurTM Cobalt Resin 

(Thermo Scientific), submitted to 3 washes with lysis buffer supplemented with 800, 

550, and 300 mM NaCl, respectively, and then eluted with 250 mM imidazole-containing 

buffer. OSBP fractions were pooled, concentrated on Amicon Ultra centrifugal filter (cut-

off 30 kDa) and submitted to thrombin cleavage for 1 hr at 25°C to eliminate the His-tag. 
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Thrombin-cleaved proteins were purified on a Sephacryl S300 HK16/70 column (GE 

Healthcare) using an AKTÄ chromatography system (GE Healthcare). All steps were 

performed at 4°C. The purified protein fractions were pooled, concentrated, 

supplemented with 10 % glycerol, flash-frozen in liquid nitrogen and stored at -80°C.  

 

2. N-PH-FFAT and PH-FFAT of OSBP and ORP4 
 

N-PH-FFAT and PH-FFAT fragments of both OSBP and ORP4 were expressed in E. 

coli strain BL21 (DE3). The corresponding expression plasmids were prepared using 

pET.His6.StrepII.TEV.LIC (2HR-T, Addgene plasmid # 29718) and pET.His10.TEV.LIC 

(2B-T-10, Addgene plasmid # 78173) cloning vectors (gift from Scott Gradia). 

OSBP N-PH-FFAT (1-408) and OSBP PH-FFAT (76-408) fragments were first 

inserted into pET.His6.StrepII.TEV.LIC vector, and then expressed as N-terminal 6His-

tag- StrepII-TEV site constructs.  

ORP4 N-PH-FFAT (1-475) and PH-FFAT (128-475) fragments were PCR amplified 

and inserted into the SspI-digested host plasmid pET16b.His10.TEV.LIC using 

GeneArtTM Seamless Cloning and Assembly Enzyme Mix.  Expression plasmids were 

transformed into E.coli and induced with 1 mM IPTG at 20°C overnight. Then, bacteria 

were lysed with a French Press (SLM AMINCO) and lysates were incubated for 30 min 

on ice with DNAse and MgCl2 (5mM) before ultracentrifugation (125 000 g). His-tagged 

proteins were purified using HisPur™ Cobalt Resin (Thermo Scientific). Protein 

fractions were pooled and submitted to TEV protease cleavage at 4°C overnight. 

Digested proteins were purified on a SourceQ HR 10/10 column (GE Healthcare) with a 

0-1M NaCl gradient in 25mM Tris pH7.5 followed by a Sephacryl S200 HK16/70 column 

(GE Healthcare) equilibrated in 25mM Tris pH7.5, 120 mM NaCl, 2mM DTT. Purified 

proteins were pooled, concentrated, supplemented with 10% glycerol, flash-frozen in 

liquid nitrogen and stored at -80°C. 
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3. N-PH-CC-FFAT and PH-CC-FFAT of OSBP  

 

N-PH-∆CC-FFAT and PH-∆CC-FFAT constructs were prepared from pGEX4.T1 (GE 

Healthcare) plasmids encoding the OSBP (1-408) or (76-408) sequence. A NaeI 

restriction site was introduced by site directed mutagenesis to remove the coiled coils 

(207-329) region by digestion / ligation taking advantage of another NaeI site. Proteins 

were expressed as N-terminally tagged GST-thrombin-site constructs in E. coli BL21 

(DE3). Purification was performed using Glutathione Sepharose beads (GE Healthcare). 

GST was removed by thrombin cleavage. The subsequent purification steps were the 

same as that used for N-PH-FFAT / PH-FFAT. All new construct sequences were verified 

by sequencing. 

 

4. Other proteins 
 

The preparation of Arf1, NBD-PHFAPP1 and VAP-A have been described previously 

(Franco et al., 1995; Mesmin et al., 2013).  

 

Analytical gel filtration 
 

Purified proteins (100 µl, 5 µM) were applied on a Superose 12TMcolumn (GE 

Healthcare) and eluted at a flow rate of 0.5 ml/min in 25 mM Tris pH 7.5, 120 mM NaCl 

and 1mM DTT. The column was calibrated using the following standards (MW/Stoke’s 

radius): Apoferritin (443 kDa/6.1 nm), Alcohol dehydrogenase (150 kDa/4.6 nm), 

Bovine serum albumin (67 kDa/3.5 nm), Carbonic anhydrase (25 kDa/2.1 nm) and 

Cytochrome C (12.4 kDa/ 1.7 nm). The elution volume and Stoke’s radius of the 

standards were used to establish a first calibration curve, from which the Stoke’s radius 

of the OSBP and ORP4-derived constructs were determined. Thereafter, we plotted the 

Stoke’s radius as a function of MW for both protein standards and for OSBP and ORP4 

constructs. 
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Liposome preparation 
 

To measure transport of lipids between lipid membranes or to assess tethering 

capacities of described proteins/fragments, we used liposomes prepared from lipid 

films by suspension in buffer and extrusion throught a porous filter. Most lipids were 

purchased from Avanti Polar Lipids, except fluorescently labeled lipids and sterols 

(Texas Red-DOPE and Oregon Green-DOPE were from Thermo Fischer Scientific, 

Atto390-DOPE was from ATTO-TEC; cholesterol and DHE were from Sigma Aldrich). 

Lipids solubilized in chloroform or in chloroform:methanol (2:1, in mixtures containing 

PI(4)P) were mixed at the desired molar ratio and the solvent was removed in a rotary 

evaporator. For most assays, the lipid films were hydrated in 50 mM HEPES pH 7.2 and 

120 mM potassium acetate (HK buffer, which was filtered and degassed before use to 

eliminate bubbles or large particles that could interfere with our DLS measurements). 

In the case of sedimentation assay, lipid films were hydrated in degassed 50 mM HEPES 

pH 7.2, sucrose 210 mM buffer. After hydration, we obtained a suspension of large 

multilamellar liposomes (lipid concentration: 2-5 mM) which underwent four 

freeze/thaw cycles in liquid nitrogen and a 40°C water bath, respectively. Multilamellar 

liposome stocks were stored at -20°C until extruded. Extrusion was performed through 

0.1 µm pore size polycarbonate filters using hand extruder (Avanti Polar Lipids). 

Extruded liposomes were used within 1-2 days. 

 

Liposome sedimentation assay 
 

For sedimentation assays comparing the binding properties of N-PH-∆CC-FFAT and 

PH-∆CC-FFAT, we used sucrose-loaded Golgi-like liposomes containing egg PC / liver PE 

/ brain PS / cholesterol / Rhodamine-PE (61/17/5/10/2 mol%) and increasing amount 

of brain PI(4)P (0, 1, 2, 5, 8 or 15 mol%) at the expense of liver PI (15, 14, 13, 10, 7 or 0 

mol%). Proteins (3 µM) and liposomes (up to 20 µM PI(4)P) were incubated in 50 mM 

Hepes (pH 7.2), 120 mM potassium acetate and 1 mM MgCl2 (HKM buffer) at room 

temperature for 30 min in a total volume of 50 µL. The samples were centrifuged at 240 

000g in a TLA 120.1 (Beckman) rotor for 1 h. The pellets were resuspended in 50µl 

HKM buffer before analysis on 13% SDS-PAGE by Sypro Orange staining. 
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Liposome aggregation measurement by dynamic light scattering (DLS) 
 

Liposome aggregation induced by OSBP or ORP4 fragments was followed in real 

time by dynamic light scattering (DLS) using a DynaPro instrument (Protein Solutions). 

Golgi-like liposomes (15 µM) containing 0 - 4% PI(4)P and ER-like liposomes containing 

2% DGS-NTA-Ni (15 µM) were mixed in HK buffer supplemented with 1 mM MgCl2 and 

1 mM DTT (HKMD buffer) and with VAP-A-His or VAP-A(KM-DD)-His (600 nM) as 

indicated. 10 DLS autocorrelation curves (= 10 x 10 seconds) were acquired as 

“baseline” to determine the initial size distribution of liposome suspension. After, 600 

nM OSBP or ORP4 fragment was injected and liposome aggregation was followed by 

acquiring one autocorrelation curve every 10 s. The temperature was set at 30°C. Data 

were analyzed using the Dynamics v6.1 software (Protein Solutions). 

 

In vitro PI(4)P and DHE transfer assays 

 

We performed the PI(4)P-transfer assays as described previously using purified 

recombinant proteins and extruded liposomes mimicking ER and Golgi membranes 

(Mesmin et al., 2013; 2017). In the PI(4)P transfer assay, the lipid composition of ER-

like and Golgi-like liposomes was egg PC / brain PS / DGS-NTA-Ni / cholesterol 

(93/5/2/0-15 mol%) and egg PC / liver PE / brain PS / liver PI / brain PI(4)P / 

Rhodamine-PE (64/17/5/12-10/0-2/2 mol%), respectively. Measurements were 

carried out in a Jasco FP-8300 spectrofluorimeter using a cylindrical quartz cuvette 

(600 µl) equilibrated at 37°C and equipped with a magnetic bar for continuous stirring. 

PI(4)P transfer from Golgi-like liposomes (2% PI(4)P and 2% Rhodamine-PE) to ER-like 

liposomes (0 or 15 % cholesterol) was detected via a fluorescent PI(4)P probe: PH 

domain of FAPP1 protein labeled with the fluorophore NBD (NBD-PHFAPP1). When 

bound to PI(4)P on the Golgi-like liposomes, the NBD fluorescence is quenched by 

rhodamine. After transfer of PI(4)P to ER-like liposomes, NBD-PHFAPP1 relocates away 

from rhodamine which results in signal unquenching. In the assay, the cuvette initially 

contained NBD-PHFAPP1 (300 nM) and VAP-A-His (3 µM) in HKM buffer. Golgi-like 

liposomes (300 µM lipid), ER-like liposomes (300 µM lipid) and OSBP (0.1 µM) were 
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then sequentially added at indicated times. NBD-PHFAPP1 probe fluorescence was 

detected at 530 nm (excitation wavelength 460 nm).  

In the DHE transfer assay, the lipid composition of ER-like and Golgi-like liposomes 

was egg PC / brain PS / DGS-NTA-Ni / DHE (93/5/2/18 mol%) and egg PC / liver PE / 

brain PS / liver PI / Dansyl-PE (63.5/19/5/10/2.5 mol%), respectively. We measured 

the dehydroergosterol (DHE) transfer from ER-like liposomes (containing 18% DHE) to 

Golgi-like liposomes containing Dansyl-PE by the Förster resonance energy transfer 

(FRET) signal resulting from the excitation of Dansyl group by the emitted fluorescence 

of DHE. FRET signal was measured at 525 nm with excitation at 310 nm.  

 

Cryo-electron microscopy experiments 
 

Chloroform-solubilized lipid mixture composed of egg PC / brain PS / brain PI(4)P 

(85/15/5 mol%, respectively) was dried under a nitrogen flux for 5 min and further 

dried under vacuum for 60 min. Lipid film was rehydrated in HK buffer and liposomes 

were formed by vortexing for 2 min. Liposomes (30 M) were mixed with 600 nM N-

PH-FFAT or PH-FFAT and incubated for 5 min. Subsequently, a 5 l drop of the solution 

was deposited on a glow discharged lacey carbon electron microscopy grid (Ted Pella, 

USA). Blotting was carried out on the opposite side from the liquid drop and plunge 

frozen in liquid ethane (EMGP, Leica, Germany). Samples were imaged using a Tecnai G2 

(Thermofisher, USA) microscope operated at 200 kV and equipped with a 4k x 4k CMOS 

camera (F416, TVIPS). Image acquisition was performed under low dose conditions of 

10 e-/Å2 at a magnification of 50 000 or 29 500 with a pixel size of 2.13 Å or 3 Å, 

respectively. Cryo-EM was performed in collaboration with the group of Daniel Lévy at 

the Institut Curie, Paris.  

 

GUV preparation 

 

Giant unilamellar vesicles were generated by electro-formation. Lipid mixtures of 

selected composition (total lipid concentration 0.5 mg/ml) in chloroform or in (2:1) 

chloroform:methanol mixture were deposited on indium tin oxide coated glass slides 
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and dried at room temperature for 45 min to remove all solvents. Lipids were then 

hydrated in 250 mM sucrose osmotically equilibrated with HKM buffer. GUVs were 

electroformed in Vesicle Prep Pro instrument (Nanion Technologies) by applying an 

alternating current electric field (3 V and 5 Hz), at 37 °C for 60 min. After 

electroformation, GUVs were washed 1x with HKM buffer to remove residual sucrose 

from the suspension.  GUVs were stored in HKM at room temperature and were used 

within the same day.  

 

Cell culture 
 

HeLa cells were cultured in DMEM medium with GlutaMAX (Gibco) supplemented 

with 10% fetal calf serum, 1% antibiotics (Zell Shield, Minerva Biolabs) and were 

incubated at 37°C in a 5% CO2 humidified atmosphere. For hTERT-RPE1 cells (ATCC 

Cat# CRL-4000, RRID: CVCL_4388); hereafter RPE1 cells), DMEM was replaced by 

DMEM/F12 (Gibco). RPE1 cells stably expressing EGFP-PHOSBP were selected using 

G418 (Sigma). Surviving colonies were isolated using cloning cylinders (Bel-Art), 

expanded and further sorted by FACS (FACSAria III, BD Biosciences). RPE1 cells stably 

expressing EGFP-PHOSBP, were cultured in medium supplemented with G418 

(500 µg/ml). For microscopy, cells were seeded at suitable density to reach 50-90% 

confluence on the day of imaging. Insect SF9 cells were cultured at 27°C in SF-900 II 

media supplemented with 1,5% FCS in absence of antibiotic. For protein expression, 

SF9 cells were infected at 106 cells/ml and at multiplicity of infection ratio of 0.1 in 0.5l 

CELLSPIN Spinner. After 72h, cells were collected by centrifugation at 300xg for 15 mn, 

washed in PBS and stored at -20°C. 

 

OSBP silencing and live cell imaging 
 

To silence endogenous OSBP and simultaneously overexpress siRNA-resistant OSBP, 

RPE-1 cells stably expressing GFP-PHOSBP were electroporated using Amaxa 

NucleofectorTM Solution (Lonza). Nucleofection mix contained 90 pmol siRNA (ON-

TARGETplus Human OSBP siRNA; GE Healthcare; target sequence: 
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GCAAUGACUUGAUAGCUAA), 0.5 g siRNA-resistant OSBP plasmid and 0.5 g Golgi 

marker BFP-GalT plasmid. After nucleofection, cells were plated on 6-well plate or on µ-

Dish35mm (Ibidi). After 18-24 hours, cells were used for live cell imaging in time-lapse 

microscopy.  

Time-lapse widefield microscopy was performed using an Olympus IX83 

inverted microscope equipped with a Z-drift compensator, a scanning stage SCAN IM 

(Märzhäuser) and an iXon3 camera (Andor). Cells plated in µ-Dish35mm (Ibidi) were put 

into a stage chamber set at 37°C (Okolab). BFP, EGFP and mCherry signals were 

detected using Chroma fluorescence filter sets (ref. 49000, 39002, 39010). 

Multidimensional acquisition and analysis was performed with MetaMorph software 

(Molecular Devices).  

 

Confocal microscopy, FRAP assays 
 

Confocal microscopy with fixed cells was performed with a LSM780 microscope run 

by ZEN software using a Plan-Apochromat 63X/1.4 Oil objective (Carl Zeiss). Confocal 

microscopy of liposomes or GUVs was performed using the same microscope.  

Fluorescence recovery after photobleaching recordings were performed with a Zeiss 

LSM780 microscope or with a Nicon Eclipse Ti microscope equipped with an UltraVIEW 

VoX spinning disc imaging system (PerkinElmer) operated by Volocity software, and 

using a CFI Plan Apo 100X/1.4 Oil objective (Nikon). Cells were placed in phenol red-

free medium supplemented with HEPES (Gibco) and FRAP assays were carried out at 

37°C. Photobleaching was performed on circular areas of 3 µm diameter within 

perinuclear regions positive for BFP-GalT signal. FRAP assays with GUVs were 

performed using the same mircoscope. GUVs were gently suspended in buffer 

containing 50mM HEPES, 120mM potassium acetate and 1mM MgCl2 (HKM buffer) with 

fluorescent proteins. Photobleaching was performed on circular areas of 2 µm diameter 

in the middle of GUV-GUV contacts.  
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Electron microscopy 
 

For transmission electron microscopy, RPE1 cells were transfected with mCherry-

tagged N-PH-FFAT or PH-FFAT wt constructs or their respective FF/AA mutants using 

the Amaxa® NucleofectorTM technology (Lonza) to obtain high efficiency of transfection. 

Cells were fixed in 1.6% glutaraldehyde in 0.1 M phosphate buffer, rinsed in 0.1 M 

cacodylate buffer and postfixed for 1 hr in 1% osmium tetroxide and 1% potassium 

ferrocyanide in 0.1 M cacodylate buffer to enhance membrane staining. The cells were 

then rinsed in distilled water, dehydrated in alcohols and embedded in epoxy resin. 

Contrasted ultrathin sections (70 nm) were analyzed under a JEOL 1400 transmission 

electron microscope mounted with a Morada Olympus CCD camera. Electron 

microscopy was performed by Sandra Lacas-Gervais from the Centre Commun de 

Microscopie Appliquée (CCMA) at the University of Nice-Sophia Antipolis.   

 

Image analysis 
 

To determine the Golgi/cytosol ratio of mCherry-tagged protein construct in 

living/fixed cells we used the ImageJ 1.50b software. Two circular regions of the same 

area (20 pixels) were applied in the Golgi (identified by the BFP-GalT marker) and in 

the cytosol. The average mCherry fluorescence was determined for each region and the 

ratio was then calculated. Alternatively, mean Golgi/total cell ratios were also 

determined by applying masks to calculate mean fluorescence intensity in total cell and 

mean fluorescence intensity on Golgi.  

Kymographs were generated using the Metamorph software (Molecular Devices) 

from a line drawn on the image stack and projected across time of the complete time 

series. The lines were 72 pixels long (ca. 20 µm) with a width set to 10 pixels (ca. 3 µm), 

from which pixel values were averaged. Scan lines quantification on GUVs were 

generated using Image J software. 
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RESULTS 

 

1. OSBP  AND  RELATED  PROTEINS  CONTAIN  PREDICTED  INTRINSICALLY 

DISORDERED  SEQUENCES  UPSTREAM  OF  THEIR  PH  DOMAINS  
 

Most members of mammalian ORP family share similar domain organisation, as 

illustrated before (Introduction, Figure 24). The N-terminal half (from PH domain to 

FFAT motif) has been shown to mediate membrane tethering, whereas the C-terminal 

half (ORD) is responsible for lipid transfer activity (Mesmin et al., 2013). Most ORPs, 

namely OSBP, ORP3 - ORP8, ORP10 and ORP11, contain a 50 to 140 aa long sequence 

upstream of their PH domain. First, we noticed the low complexity of N-terminus in the 

case of OSBP. To find out if similar low complexity sequences exist in other ORPs, we 

compared the amino acid compositions of their N-termini using their respective PH 

domains and ORDs as references (because of their high degree of conservation). We 

observed that the aa contents of PH and ORD domains are well balanced between 20 

common amino acids, which is a general characteristic of folded, globular domains. In 

contrast, N-termini display a strong compositional bias towards few amino acids and a 

considerable variability between each other, as shown on pie charts below (Figure 32). 

 

 

Figure 32: Amino acid distribution in N-termini, PH and ORD domains of ORPs 

Note the composition bias towards Pro, Gly, Ala and Ser in the N-terminal sequences. 

Following ORP sequences were used (Uniprot access numbers): OSBP1 (P22059), 

OSBP2/ORP4 (Q969R2), ORP1 (Q9BXW6), ORP3 (Q9H4L5), ORP6 (Q9BZF3), ORP7 
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(Q9BZF2), ORP5 (Q9H0X9), ORP8L (Q9BZF1), ORP10 (Q9BXB5), ORP11 (Q9BXB4). 

ORP2 was not involved in the analysis, as it only consists of the ORD domain, and ORP9 

(Q96SU4) does not possess any N-terminal disordered sequence. Notably, our ORP4 

sequence (gift from N. Ridgway) started at M39 (as referred to UNIPROT Q969R2:ORP4-

OSBP2 sequence), therefore, in all this study M1 corresponds to M39 of the UNIPROT 

reference sequence. Exact amino acid range of all domains is indicated in Materials & 

Methods. 

 

Compared to folded PH and ORD domains, most N-terminal tails are enriched in 

residues such as Pro, Gly, Ala and Ser (black, grey and pink) whereas other, mainly large 

hydrophobic amino acids such as Phe, Trp, Ile and Leu (yellow and green), are 

underrepresented. Scarcity of hydrophobic residues and higher content of proline, the 

strongest disorder-promoting residue, and serine, which is after proline and glutamic 

acid the third most disorder-promoting residue, are hallmarks of protein regions not 

prone to fold (Theillet et al., 2013; Uversky et al., 2015). Therefore, we assessed the 

order/disorder distribution along the ORP sequences using Predictor of Naturally 

Disordered Regions (PONDR®) (Figure 33). PONDR® offers several algorithms, from 

which we selected VL3 and VSL2. They were both trained against a set of disordered 

and ordered protein sequences verified from crystallographic data, therefore PONDR® 

has a low error rate, especially when it predicts a long disordered region (Linding et al., 

2003). The attributes used by these algorithms include amino acid frequencies, 

sequence complexity, ratio of net charge/hydrophobicity and averaged flexibility. 
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Figure 33: Disorder/order prediction of ORP family 

Scores obtained with PONDR® web server using full sequences of ORPs. Regions 

corresponding to PH domains, ORDs and ankyrin repeats (in ORP1) are highlighted in 

yellow, green and pink, respectively.   

 

 The N-termini of OSBP, ORP3 - ORP8, ORP10 and ORP11 have a high disorder 

score (>0.8), contrasting to the low disorder scores of PH domain (yellow) and ORD 

(green). The low disorder score of ORP1 correlates with the presence of three ankyrin 

repeats (pink), which interact with small GTPase Rab7 on late endosomes (Johansson et 

al., 2005). Interestingly, PONDR® found other regions of high disorder located between 

PHs and ORDs. We identified these positions as linear FFAT motifs and predicted coiled-

coils. In this case, the high disorder score can be explained by the fact that composition 

bias is frequently found in coiled-coils, as well as in non-globular, yet ordered proteins, 

such as collagen (Nassa et al., 2012). PONDR® predicts intrinsic disorder from amino 
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acid frequency and sequence complexity and therefore it is not able to discriminate 

between loops with low complexity and coiled-coils. 

Upon prediction of disordered N-termini in most ORPs, we were interested in 

elucidating the evolution of N-terminus of OSBP (as a representative ORP) compared to 

the conservation of other protein components (PH domain, coiled-coils and ORD). 

Phylogenetic analysis performed by web software phylogeny.fr (Dereeper et al., 2008) 

on selected OSBP sequences from different species revealed that N-terminus is rather a 

recent feature, emerging with late chordates, Amniota (branch including turtles, lizards, 

snakes, crocodiles, birds, marsupials and placentals), and being well conserved among 

placentals (mammals; Figure 34). Interestingly, we noticed its co-appearance with 

coiled-coil 1 (corresponding to aa 200 – 225 in human OSBP), indicating possible 

relationship between dimerisation and presence of N-terminal disorder. 
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Figure 34: Phylogenetic tree of OSBP in higher eukaryotes 

Bar plots show amino acid identity of the N-terminus, PH and ORD domains in selected 

species with the N-terminus, PH and ORD of human OSBP. N-terminal sequences shorter 

than 20 amino acids are not included in the analysis (blank rows). Column showing the 

probability of coiled-coil formation between PH and FFAT motif was created by 

scanning the corresponding sequences in the coiled coil prediction NPS@ software 

(Combet et al., 2000): (++) at least two scanning windows (14 – 21- 28 aa) give a region 

with coiled-coil probability score >0.5; (+) only one scanning window gives a coiled-coil 

probability >0.5; (0) no scanning window gives a probability >0.5.  

 

 Taken together, amino acid composition and disorder scores predicted by 

PONDR® suggest that most ORPs contain long intrinsically disordered N-terminal 

sequences. Based on phylogenetic tree of OSBP, these sequences are a recent feature, 
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possibly co-evolving with coiled-coil 1. In further experiments, we decided to study the 

function of these domains on two very close ORP homologs, OSBP and OSBP2 (ORP4). 

This choice was motivated by two reasons. First, OSBP and ORP4 are very similar 

(>60% amino acid identity in total length of the protein; 75% identity in the PH and 

68% in the ORD domains), but they differ remarkably in their N-termini (~28 % 

identity, see below Figure 35). Second, numerous in vitro and cell culture assays have 

been developed for OSBP in the lab previously (Mesmin et al., 2013; 2017) which 

greatly facilitated our analysis.  

 

 

Figure 35: Domain organization and amino acid composition of N-termini of OSBP 

and ORP4 

OSBP contains approximately 90 aa long region rich in Gly (dark grey), Ala (light grey) 

and Pro (black) whereas ORP4 has a ~140 aa long N-terminus containing Pro (black), 

Ser (pink) and a variety of charged residues (red and blue). 
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2. N-TERMINAL  REGIONS  OF  OSBP  AND  ORP4  STRONGLY  INCREASE  THEIR 

HYDRODYNAMIC  RADII 
 

Disordered regions occupy a larger volume than structured sequences of the 

same aa length, as evidenced by the increase in hydrodynamic radii (Rh) of folded 

proteins during denaturation (Borzova et al., 2016; Dutta and Bhattacharyya, 2001; 

Wilkins et al., 1999). To estimate the contributions of N-termini to protein size, we 

performed analytical gel filtration chromatography. Initially, we calibrated the Superose 

12TM column with well-folded protein standards so we could determine the elution 

volume/Stoke’s radius reference line for globular proteins (protein standards 

Apoferritin, Alcohol dehydrogenase, BSA, Carbonic anhydrase and Cytochrome C).  

Subsequently, we determined the elution volumes of several protein constructs derived 

from OSBP and ORP4 (Figure 36 A, B). These include the full length proteins (OSBP FL 

vs N), truncated dimeric proteins lacking the ORD (N-PH-FFAT vs PH-FFAT) and 

monomeric constructs lacking the coiled-coils between PH domain and FFAT motif (N-

PH-CC-FFAT vs PH-CC-FFAT). Comparing the elution volumes of individual construct 

with the reference line, we extrapolated the Stoke’s radius of OSBP and ORP4 constructs 

and plotted it as function of molecular weight in the graph shown in Figure 36 C, D.   

In all cases, the N-terminus had a large impact on overall protein size, increasing 

the Stoke’s radius by ~0.5 – 1 nm for OSBP (OSBP FL vs N, N-PH-FFAT vs PH-FFAT and 

N-PH-ΔCC-FFAT vs PH-ΔCC-FFAT). For ORP4, which has a longer N-ter sequence, the 

increase was by ~1.3 nm (ORP4 N-PH-FFAT vs ORP4 PH-FFAT). Compared to the 

calibration curve obtained with protein standards (Figure 36 C, black line), the increase 

in size upon addition of N-terminus is approximately two-fold steeper (dashed line), 

which is consistent with the bulky nature of IDPs/IDPRs. In conclusion, our 

hydrodynamic analysis suggests that the N-termini of both OSBP and ORP4 are indeed 

intrinsically disordered. 
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Figure 36: Disordered N-termini increase the hydrodynamic radii of OSBP- and 

ORP4-derived constructs 

(A) Schematic representation of OSBP- and ORP4-related constructs used throughout 

this study (B) SDS PAGE analysis of purified OSBP- and ORP4 constructs. Staining 

performed with Sypro Orange. Please note the presence of contaminants with lower 

molecular weight in N-PH-FFAT of OSBP (C) Stoke’s radius vs molecular weight 

comparison of OSBP and ORP4 constructs (colored symbols) with globular protein 

standards (black circles) as determined by gel filtration. The N-terminus increases the 

Stoke’s radius by a factor two-fold larger than what is expected for a folded domain (D) 

Elution profiles of short (without the ORD) OSBP and ORP4 constructs. 
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3. THE  N-TERMINUS  LIMITS  MEMBRANE  RECRUITMENT  OF  PH  DOMAIN  VIA  A 

CROWDING  EFFECT 
 

Given the position of the disordered region upstream of the PH domain and its 

effect on the Rh of OSBP- and ORP4-derived proteins, we hypothesized that N-terminus 

could have a simple steric effect, controling the density of OSBP on PI(4)P-containing 

membranes by limiting the surface concentration of PH domains. To test this, we 

labeled the simplest monomeric OSBP constructs (N-PH-ΔCC-FFAT and PH-ΔCC-FFAT) 

with a fluorophore Alexa488 and we tested their binding to giant unilamellar vesicles 

(GUVs) of Golgi-like lipid composition (64.9 mol% egg PC, 20 mol% liver PE, 6 mol% 

liver PI, 5 mol% brain PS, 4 mol% brain PI(4)P and 0.1% Atto390-DOPE for 

visualisation). The GUVs were incubated with increasing concentrations of N-PH-ΔCC-

FFAT and PH-ΔCC-FFAT, ranging from 50 to 600 nM (Figure 37). N-PH-ΔCC-FFAT 

always displayed lower recruitment on GUVs compared to equimolar PH-ΔCC-FFAT and 

saturated the membrane at lower protein concentration, as indicated by the smaller 

increase in signal intensity with concentration and a stagnation of fluorescence signal 

above 400 nM. Therefore, we concluded that N-terminus limits the surface occupancy of 

OSBP on PI(4)P-containing membrane.  

 

 

Figure 37: N-terminus limits OSBP density on PI(4)P-containing membranes 

(A) For illustration, images of 400 nM N-PH-CC-FFAT (top) and 400 nM PH-CC-FFAT 

(bottom) on Golgi-like GUVs are shown. Scale bar = 5 m (B) Quantification of 

fluorescence signal (=bound protein, A.U.) from one representative experiment similar 
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to the one shown in (A). Experiments were repeated two times with consistent results. 

Each point corresponds to one GUV. 

 

To further examine the effect of N-terminus on protein density, we performed a 

complementary assay using sedimentation of Golgi-like liposomes with bound proteins. 

In this case, the concentration of N-PH-ΔCC-FFAT and PH-ΔCC-FFAT was equal in all 

conditions (3 M), as was the total concentration of PI(4)P (20 M). What we 

manipulated was the surface density of PI(4)P in liposomes, as indicated in Figure 38. 

PI(4)P density increased from 1, 2, 5, 8 to 15 mol%, while the liposome concentration 

reciprocally decreased from 2, 1, 0.4, 0.25 to 0.13 mM. After incubating liposome 

populations with our proteins for 30 min and subsequent centrifugation, we quantified 

the amount of bound protein. N-PH-ΔCC-FFAT and PH-ΔCC-FFAT were equally recruited 

on liposomes without PI(4)P (background binding) or with lowest PI(4)P density (1 

mol%), showing that the intrinsic disorder likely did not affect the affinity of PH domain 

for PI(4)P. However, with an increase in PI(4)P density, N-PH-ΔCC-FFAT binding 

decreased more than that of PH-ΔCC-FFAT. In summary, our assays with fluorescently 

labeled proteins on GUVs and with proteins bound to sedimented liposomes both 

support the hypothesis that N-terminus limits the membrane density of OSBP on 

membranes via a crowding effect. 
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Figure 38: N-terminus limits OSBP density on PI(4)P-containing membranes via a 

crowding effect 

(A) Schematic representation of the liposome sedimentation assay. Total PI(4)P 

concentration was held constant (20 M) but across conditions, PI(4)P surface density 

gradually increased and, inversely, liposome concentration decreased (B) Result of the 

liposome sedimentation assay from 5 independent experiments. After 30 min of 

incubation, liposomes were centrifuged and bound proteins were quantified on SDS-

PAGE by Sypro Orange staining. At low concentrations of PI(4)P (1 mol%), PH-FFAT and 

N-PH-FFAT displayed similar binding. With increasing PI(4)P density, N-PH-FFAT 

recruitment was significantly reduced compared to that of PH-FFAT. 
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4. MCS  TETHERING  GEOMETRY  IS  REGULATED  BY  N-TERMINUS  IN  VITRO 
 

In cells, OSBP is able to interact with both the ER and the Golgi via its FFAT motif 

and PH domain, respectively (Levine and Munro, 1998; Loewen et al., 2003). To 

determine whether the presence of intrinsic disorder around PH domain affects OSBP 

and ORP4 tethering activities, we reconstituted MCS in vitro with two liposome 

populations and purified proteins. Liposomes were prepared with lipid compositions 

corresponding to that of the ER (93 mol% egg PC, 5 mol% brain PS, 2% DGS-NTA-Ni) 

and Golgi (65 mol% egg PC, 20 mol% liver PE, 6 mol% liver PI, 5 mol% brain PS, 4 mol% 

brain PI(4)P). The presence of DGS-NTA-Ni on ER-like liposomes allowed the attachment 

of His-tagged VAP-A (aa 8 - 212). In a typical experiment, we mixed the two liposome 

populations with or without 600nM VAP-A (600 nM), added tethering protein (600 nM) 

and followed liposome aggregation over time by dynamic light scattering (DLS, Figure 

39). 

When all tethering determinants were present in the DLS cuvette (Golgi + ER + 

VAP-A + N-PH-FFFAT or PH-FFAT), there was no difference in the tethering acivity 

between tethering proteins. Nevertheless, when we removed VAP-A or when we 

replaced it with a mutant unable to interact with FFAT motif (VAP-A KM/DD) we 

observed a striking difference between the two constructs: PH-FFAT was able to tether 

liposomes independently of VAP-A, whereas N-PH-FFAT was not.  
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Figure 39: Tethering independent of VAP-A is observed in construct lacking N-

terminal sequence 

(A) Schematic representation of the liposome tethering assay in standard conditions. 

The DLS samples contained 15M of ER-like liposomes (2% DGS-NTa-Ni), 15 M of 

Golgi-like liposomes (4% PI(4)P) and either 600nM wt VAP-A, 600nM mutant VAP-A 

(KM/DD) or no VAP-A (B) At t = 100 s, 600nM tethering protein was added and 

liposome aggregation was followed over time. N-PH-FFAT only tethered liposomes in 

the presence of wt VAP-A, whereas PH-FFAT could promote aggregation independently 

of VAP-A. 

 

We imagined that, in the absence of VAP-A, ER-like liposomes cannot be included 

in the aggregates created by PH-FFAT. Therefore, it is most likely that only Golgi-like 

liposomes are tethered in a homotypic (Golgi-like with Golgi-like) manner. To confirm 

our hypothesis we labeled the Golgi-like liposomes with Texas Red-DOPE and the ER-
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like liposomes with Oregon Green-DOPE (Ho and Stroupe, 2015). Fluorescently labeled 

liposomes enabled us to visualise aggregates by confocal microscopy, so we could easily 

distinguish homotypic (Golgi-Golgi) vs heterotypic (Golgi-ER) tethering after each DLS 

measurement, as illustrated in Figure 40.  

We observed that with VAP-A, both N-PH-FFAT and PH-FFAT of OSBP and ORP4 

promoted heterotypic (Golgi-like with ER-like) liposome tethering (evidenced by yellow 

aggregates). Without VAP-A, both N-PH-FFATs did not tether any liposome population, 

whereas PH-FFATs selectively aggregated only Golgi liposomes. 



113 
 

 

Figure 40: Membrane tethering geometry is regulated by the disordered N-

terminus 

(A) Schematic representation of the DLS assay coupled with confocal microscopy in the 

absence of VAP-A. (B, C) N-PH-FFAT of both OSBP and ORP4 only tethered in the ER-

Golgi manner in the presence of VAP-A, whereas PH-FFAT of both OSBP and ORP4 

aggregated Golgi-Golgi liposomes independently of VAP-A. Note the lower tethering 

activity of ORP4-derived constructs. 
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To verify and elucidate the mechanism of homotypic tethering in more detail, we 

performed additional experiments, this time with fluorescent Golgi-like liposomes only. 

We tested the PH-FFAT-mediated tethering in conditions when both red and green 

liposomes contained PI(4)P, when only red or only green liposomes contained PI(4)P 

and when none contained PI(4)P. We observed that Golgi-Golgi tethering depends on 

PI(4)P, as we only saw aggregation of PI(4)P-containing liposomes (Figure 41 A).  

In the next step, based on our phylogenetic analysis, we assessed the role of 

protein dimerization. We repeated the experiment setup with fluorescent Golgi-like 

liposomes with/without PI(4)P but this time we replaced the dimeric PH-FFAT by an 

equivalent construct lacking the coiled-coil, PH-CC-FFAT. As we did not observe any 

aggregation in this case, we concluded that both the presence of PI(4)P as well as the 

ability to dimerize play essential roles in the ability of PH-FFAT to promote homotypic 

tethering (Figure 41 B). 
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Figure 41: PH-FFAT mediated tethering depends on PI(4)P and on the ability of 

PH-FFAT to dimerize 

(A) Golgi-like liposomes with 4% or 0% PI(4)P were labeled with different fluorescent 

lipids. Aggregates contained only liposomes containing PI(4)P. (B) Same as in (A) with 

monomeric construct PH-CC-FFAT. No tethering was observed regardless of 

presence/absence of PI(4)P. Scale bar = 20 m. 

 

We also assessed the heterotypic, ER-Golgi tethering ability of monomeric 

constructs with/without VAP-A. We noticed that both constructs can only promote VAP-

dependent tethering in the ER-Golgi orientation (Figure 42). This finding was very 

useful as we took advantage of it in a GUV experiment, as described a few chapters later.  
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Figure 42: Monomeric constructs can only mediate ER-Golgi aggregation in the 

presence of VAP-A 

(A) Schematic representation of the assay. Same condition as in Figure 39 (B) DLS 

measurement results – monomeric (CC) constructs are only capable of heterotypic tethering 

in the presence of VAP-A. 

 

Lastly, we investigated whether homotypic tethering by PH-FFAT can also be 

mediated via the interaction of PH domain with its second interaction partner, Arf1-GTP 

(Levine and Munro, 2002). We prepared Golgi-like liposomes without PI(4)P and loaded 

them with Arf1-GTP according to a protocol described previously (Franco et al., 1995). 

We detected weak liposome aggregation by PH-FFAT but not by N-PH-FFAT (Figure 

43), suggesting that the N-terminal tail also prevents homotypic tethering mediated by 

interaction of PH domains with Arf1-GTP. Additionally, we demonstrated that the Arf1-

GTP/PH domain interaction alone is able to promote homotypic membrane tethering.  
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Figure 43: Homotypic tethering mediated by PH-Arf1GTP interaction in PH-FFAT 

(A) Schematic representation of homotypic tethering mediated by PH-FFAT via 

interaction with Arf1-GTP (B) DLS measurement on Golgi liposomes without PI(4)P, 

loaded (or not) with Arf1-GTP and mixed with N-PH-FFAT (green) or PH-FFAT (blue). 

 

DLS measurements and confocal microscopy results confirmed our hypothesis 

that the two PH domains of PH-FFAT dimer can simultaneously bind two PI(4)P- or 

Arf1-GTP-containing membranes, thereby causing homotypic tethering. When the PH 

domains are flanked by disordered bulky N-terminus, homotypic membrane tethering is 

prevented, whereas heterotypic tethering is not affected. 
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5. OSBP  N-TERMINUS  REGULATES  PROTEIN  DISTRIBUTION  AND  DIFFUSION  AT 

HOMOTYPIC  GUV-GUV  MEMBRANE  INTERFACES 
 

Although DLS provided us with valuable information about how membrane 

tethering properties of OSBP and ORP4 are impacted by their N-termini, at the same 

time new questions arose: Does N-terminal sequence manifest the same impact on 

tethering geometry when large, flat PI(4)P-containing surfaces are used instead of 

small, curved liposomes? Is the crowding effect observed on GUVs and in liposome 

sedimetation assay also apparent when proteins accumulate within an artificial 

membrane contact site? 

To facilitate our inquiry, we took advantage of several GUV-based assays carried 

out under the two main conditions identified in DLS, i. e. in homotypic and heterotypic 

tethering. All experiments consisted in adding electroformed GUVs of defined lipid 

composition (Golgi-like vs ER-like) to solutions of fluorescent proteins. Of note, the 

GUVs assays, although providing unique information about protein distribution and 

dynamics in a large membrane interface, are less quantitative in terms of tethering 

activity than DLS, as it is difficult to master the GUV concentration and therefore the 

protein/lipid ratio.  

In the first set of experiments, we incubated Golgi-like GUVs (containing 2 to 4% 

PI(4)P and visualized by Atto390-DOPE) with either N-PH-FFAT or PH-FFAT, labeled 

with Alexa568 or Alexa488. PH-FFAT promoted the formation of GUV-GUV contacts, 

manifested by mutual deformation of tethered GUVs and creation of large membrane 

alignment at the interface (Figure 44 B). Surprisingly, we also observed GUV-GUV 

tethering with N-PH-FFAT, which initially seemed very contradictory to the outcomes of 

DLS assays. However, after a closer examination, we realized that our N-PH-FFAT 

protein stock was not perfectly pure. On SDS-PAGE, we visualized 2 contaminants with a 

lower molecular weight than the major band. A Western blot with antibody recognizing 

an epitope just at the very end of FFAT motif showed that all 3 bands have the C-

terminal epitop, indicating that N-PH-FFAT was contaminated at a level of about 16% 

by fragments with a truncated N-terminus (Figure 44 D, Figure 36 B). This could 

explain the tendency of N-PH-FFAT to form GUV-GUV contacts. Yet despite this 

contamination, we could see a clear difference between N-PH-FFAT and PH-FFAT: 



119 
 

whereas PH-FFAT was mainly accumulated at the GUV-GUV interface, N-PH-FFAT 

decorated all membrane surfaces with only slight enrichment at the interface (which 

could still be rather due to the contaminating short fragments, Figure 44 C). The 

distinct protein distribution indicated that disordered N-terminal sequence favors a 

balanced, wide-spread protein occupancy on membranes, whereas shorter and smaller 

construct tends to overaccumulate at GUV-GUV contact site. 

 

Figure 44: The N-terminus controls OSBP membrane distribution 

(A) Schematic representation of GUV-based assay. GUVs of Golgi-like composition (2% 

PI(4)P, labeled with Atto390-DOPE) were added into solution of 100 nM tethering 

protein labeled with fluorescent dyes (Alexa568 and Alexa488) (B) N-PH-FFAT 

distributes over all membrane surfaces, whereas PH-FFAT accumulates at the GUV-GUV 
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interface. On the right side, linescans corresponding to dashed lines are shown (C) N-

terminus has a large impact on protein enrichment at membrane interface. Enrichment 

index was calculated from experiments with Alexa568-labeled proteins as a ratio 

between fluorescence signal intensity at the interface and a sum of fluorescence 

intensities on the outer surfaces of tethered GUVs (according to Schmid et al., 2016). 

Experiments with proteins labeled with Alexa488 gave accordant results (D) N-PH-

FFAT stock contamination by shorter fragments. Arrows indicate the positions of N-PH-

FFAT and PH-FFAT. Western blot with antibody against FFAT motif (left) and direct 

fluorescence visualization of labeled proteins (right).  

 

The overaccumulation of PH-FFAT indicated possible protein crowding at 

membrane interface. To test this, we compared the fluorescence recovery after 

photobleaching (FRAP) rates of labeled OSBP-derived constructs on tethered GUVs 

(Figure 45 A). The circular bleaching area was located either at the surface of tethered 

GUVs or in the middle of the GUV-GUV contact. When bleaching the free, outer surface, 

we observed an instantaneous fluorescence recovery for both constructs (Figure 45 D). 

In contrast, at the interface we recorded much slower recovery, and we could also 

recognize a remarkable difference between tethering proteins. Recovery of N-PH-FFAT 

was much quicker compared to that of PH-FFAT (recovery time of ~ 1 s and >>100 s, 

respectively), implying that the disordered region significantly accelerated the protein 

diffusion on artificial homotypic membrane contact sites, possibly due to the reduced 

crowding of N-PH-FFAT.  

Given the clear difference in distribution and fluorescence recovery between the 

two OSBP-derived constructs, we wondered if the effect of N-terminus would also be 

evident when both proteins occupy the same interface. Previous studies with 

fluorescent binding and nonbinding model proteins at GUV-GUV interface reported that 

small proteins which are able to bind each other in trans can establish a membrane 

contact site and exclude larger, non-binding proteins (Schmid et al., 2016). This 

exclusion is size-dependent, but also influenced by protein crowding. Therefore, we 

tried to analyze membrane distribution of N-PH-FFAT (labeled with Alexa568) and PH-

FFAT (labeled with Alexa488) in equimolar concentrations on the same GUV-GUV 

contacts. We noted a clear segregation between the two proteins: PH-FFAT accumulated 

at membrane interface, whereas N-PH-FFAT was rather excluded and localized on the 
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free GUV surface (Figure 45 B). This experiment provided evidence that the presence of 

N-terminus upstream of the PH domain is an effective way of regulating protein 

crowding or exclusion at artificial MCS.   

To investigate the influence of N-terminus on crowding and size-dependent 

exclusion in non-equimolar conditions, we compared the ability of N-PH-FFAT and PH-

FFAT to invade a membrane interface that was already occupied by the other protein. 

First, we mixed GUVs with either N-PH-FFAT or PH-FFAT labeled with one dye, and 30 

minutes later we added an excess of the counterpart protein (PH-FFAT or N-PH-FFAT, 

respectively), labeled with a different dye. After another 30 min incubation period, the 

GUVs were visualised. Whereas N-PH-FFAT could not invade PH-FFAT-occupied 

contacts, PH-FFAT was able to invade and eventually replace N-PH-FFAT (Figure 45 C). 

This finding further emphasizes the impact of intrinsic disorder near the PH domain on 

localisation preference of OSBP constructs at GUV-GUV contact sites. 
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Figure 45: N-terminus regulates diffusion rate of OSBP on artificial membranes 

(A) FRAP measurements of N-PH-FFAT (green trace) and PH-FFAT (blue trace). 

Photobleaching was performed on a circular area (2m diameter) on the interface 

between tethered GUVs. FRAP on proteins labeled with Alexa488 and Alexa568 gave 

consistent results. Means ± SD of one representative experiment is shown. At least two 

independent experiments in each color were performed. n = number of recordings per 

condition (B) Segregation of N-PH-FFAT (Alexa488) and PH-FFAT (Alexa568) over 

time. Proteins were mixed in equimolar concentrations (50 nM) and incubated with 

Golgi-like GUVs (2% PI(4)P, Atto390-DOPE) for approximately 4 hours. Experiment was 

also performed with inverse color combination with similar results. (C) Golgi-like GUVs 

were mixed with 50 nM of N-PH-FFAT or PH-FFAT (Alexa488) and incubated for 30 

min. Then, 100 nM of PH-FFAT or N-PH-FFAT (Alexa568) were added, respectively, and 

incubated for another 30 min. Scale bar = 5 m (D) Control FRAP measurements on the 

outer surface of tethered GUVs. Two measurements are shown in each condition.  
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6. CRYO-EM  VISUALISATION  OF  HOMOTYPIC  TETHERING 
 

To obtain a more detailed view of homotypic membrane tethering, we visualized 

by cryo-EM liposomes (2% PI(4)P) incubated with N-PH-FFAT or PH-FFAT of OSBP. In 

both cases, dotted electron densities were apparent on the outer leaflets, indicating the 

presence of membrane-bound proteins (Figure 46, top right inset). However, liposomes 

incubated with N-PH-FFAT were not deformed and did not form any contacts, whereas 

in PH-FFAT condition, large regions of membrane aposition between two liposomes 

were observed. These contact sites displayed a parallel structure, with well-defined 

intermembrane distance of 15 ± 1 nm. Electron-dense signal was detected at the center 

of the membrane interface, spanning the entire length of the interface, suggesting that 

PH-FFAT adopts symmetrical conformation to mediate homotypic membrane tethering 

(red arrow).   

 

 

Figure 46: Liposomes visualised by cryo-EM 

In N-PH-FFAT incubation, no membrane contacts are present. Instead, we can clearly 

identify dotted electron densities on the outer leaflet of membrane (inset). In PH-FFAT 

incubation, liposomes form large parallel regions of membrane juxtaposition, with 

electron densities present in the middle (red arrow), suggesting tethering mediated by 

symmetrically arranged PH-FFAT constructs. Scale bars: left - 500 nm, middle - 100 nm.  
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7. REGULATION  OF  PROTEIN  DIFFUSION  BY  THE  DISORDERED  REGION  AT  

HETEROTYPIC  MEMBRANE INTERFACES   
 

Previous experiments elucidate the behavior of OSBP-derived constructs with or 

without N-terminus in the context of Golgi-Golgi tethering. However, the physiological 

function of OSBP is to bridge Golgi and ER membranes (Mesmin et al., 2013). Therefore, 

we investigated conditions of heterotypic tethering by mixing OSBP constructs with two 

populations of GUVs: ER-like (containing 2-3% DGS-NTA-Ni) and Golgi-like (containing 

2-4% PI(4)P). We distinguished the two populations by confocal microscopy, as Golgi-

like GUVs were labeled with Atto390-DOPE, whereas ER-like GUVs were not labeled, 

and thus only “visible” when interacting with Golgi-like GUVs or when decorated by a 

fluorescent protein (VAP-A, labeled with A488). Initially, we performed the assay with 

dimeric N-PH-FFAT and PH-FFAT. We noticed that these constructs created complex 

assemblies with VAP-A and both populations of GUVs underwent both homotypic and 

heterotypic tethering. This made the analysis impossible. In order to simplify the 

system, we took advantage of the monomeric N-PH-CC-FFAT and PH-CC-FFAT 

constructs labeled with Alexa568. From DLS we know that OSBP monomers are only 

able to tether in the ER-Golgi manner. Furthermore, their monomeric nature necessarily 

decreased the number of putative interactions which should favour protein recycling 

and therefore facilitate our FRAP analysis (Figure 47 A).  

Confocal microscopy of heterotypic N-PH-CC-FFAT/VAP-A and PH-CC-

FFAT/VAP-A complexes on GUVs revealed a modest, not very obvious disorder-

dependent differences in membrane distribution – in both cases, we rather observed a 

massive enrichment of VAP-A and N-PH-CC-FFAT or PH-CC-FFAT at the ER-Golgi 

GUV-GUV interface (Figure 47 B - E). However, FRAP analysis showed that N-PH-CC-

FFAT recovery happened quickly (within seconds) whereas PH-CC-FFAT signal 

recovered very slowly (Figure 47 F, G). In a complementary FRAP experiment, in which 

we followed the fluorescence of VAP-A, we observed the same difference in signal 

recoveries, suggesting that mobility of VAP-A was imposed by the corresponding OSBP-

derived construct. Therefore, N-terminus controls OSBP density and mobility in 

heterotypic conditions when engaged in a dual interaction with VAP-A on one 

membrane and with PI(4)P on the other.    
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Figure 47: Effect of N-terminal sequence on protein difusion within heterotypic 

membrane interface 
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(A) Schematic representation of the assay. ER-like GUVs (2% DGS-NTa-Ni, no color) and 

Golgi-like GUVs (2% PI4P, Atto390-DOPE) were incubated with mixtures of 50 nM VAP-

A (Alexa488) and 50 nM N-PH-CC-FFAT or PH-CC-FFAT (Alexa568), respectively (B -

E) Visualisation of heterotypic ER-Golgi membrane interfaces and enrichment index 

quantification. Both proteins and associated VAP-A greatly accumulate at membrane 

interface. N-ter-dependent differences in enrichment index are modest. Enrichment of 

OSBP constructs (C) positively correlates with the enrichment of their associated VAP-A 

(E). Scale bar = 5 m (F) A representative FRAP experiment with bleaching of Alexa568, 

showing the N-PH-CC-FFAT/VAP-A (light green trace) vs PH-CC-FFAT/VAP-A (light 

blue trace) signal recovery (G) A complementary FRAP on Alexa488 (=VAP-A). N-PH-

CC-FFAT/VAP-A trace in dark green, PH-CC-FFAT/VAP-A trace in dark blue. n = 

number of measurements per condition. In both (F) and (G), one representative 

experiment from two independent experiments is shown.  
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8. LIPID  TRANSFER  ACTIVITY  OF  OSBP  IS  NOT  INFLUENCED  BY  THE  N-TER 
 

To address the role of N-terminus on OSBP lipid transfer, we performed 

liposome-based lipid transfer assays with catalytically active proteins containing the 

lipid binding ORD domain. We followed the transfer of naturally fluorescent analog of 

cholesterol, the dehydroergosterol (DHE), from ER-like to Golgi-like liposomes. 

Conversely, we also followed the translocation of PI(4)P from Golgi-like liposomes (4 

mol% PI(4)P) to ER-like liposomes by monitoring the increase in fluorescence of a 

dequenched PI(4)P probe (NBD-labeled PHFAPP1). OSBP was used in catalytic amount 

compared to PI(4)P (1 OSBP for ~30 accessible PI(4)P molecules) but in large excess 

over the liposomes (~60 OSBP molecules for one liposome). Thus, the equilibration of 

PI(4)P between the donor and acceptor liposomes required OSBP to undergo multiple 

rounds of lipid exchange on the same liposomes, without the need for OSBP to 

translocate between different liposomes. As shown in Figure 48 A and B, OSBP FL and 

N-OSBP were very similar in their DHE transfer activity. This similarity also applied in 

the PI(4)P transfer assay (Figure 48 C and D), either with or without cholesterol 

present in the ER liposomes. Cholesterol considerably accelerated the rate of PI(4)P 

transfer due to coupling between forward cholesterol transfer and backward PI(4)P 

transfer (Mesmin et al., 2017; Moser von Filseck et al., 2015b). We concluded that the N-

terminal region is not directly involved in the mechanism of sterol/PI(4)P exchange by 

OSBP.   
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Figure 48: N-terminus does not affect the lipid transfer activity of OSBP 

(A) Schematic representation of the DHE transfer assay. Donor liposomes (65 M) 

contain 10% of DHE (a naturally fluorescent cholesterol analog), acceptor liposomes 

contain 2.5% Dansyl-PE. Upon DHE transfer, a FRET occurs between DHE and Dansyl 

group, and the Dansyl fluorescence can be detected at 510 nm (B) Time course of DHE 

transfer from donor (ER-like) to Acceptor (Golgi-like) liposomes by 100 nM OSBP (red) 

or N-OSBP (orange trace) (C) Scheme of PI(4)P transfer assay. PI(4)P on donor (Golgi-

like) liposomes (6 mol%) is recognized by NBD-labelled PHOSBP. Rhodamine-PE on the 

same liposomes quenches NBD fluorescence. Upon PI(4)P translocation, NBD-PHOSBP 

relocates to acceptor (ER-like) liposomes and its fluorescence can be detected at 536 

nm (D) Time course of PI(4)P transfer by 100 nM OSBP (red) or N-OSBP (orange). The 

assay was performed either in absence or in presence of cholesterol (15 mol%) in the 

ER-like (acceptor) liposomes. Transfer assay was repeated also with liposomes 

containing 1 or 2 mol% PI(4)P (donor) and 5 mol% cholesterol (acceptor) with similar 

results. 
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9. N-TERMINUS  REGULATES  GOLGI  LOCALISATION  OF  OSBP  IN  LIVING  CELLS 
 

After assessing in vitro effect of N-terminus on protein localisation on 

membranes, we also decided to look into the role of N-terminus in living HeLa and RPE1 

cells. First, we investigated the subcellular localization of four C-terminally mCherry-

tagged constructs: OSBP, N-OSBP, N-PH-FFAT and PH-FFAT (Figure 49 A). In both cell 

types, OSBP localized mainly to the Golgi complex (as evidenced by the colocalisation 

with the Golgi marker BFP-GalT). Weak mCherry fluorescence was also observed at 

structures decorated by EGFP-Rab7, which likely correspond to late endosomes (Figure 

49 B). This observation fits with previous study of Dong et al. (2016), which has shown 

that OSBP can bind PI(4)P in the endosomal membranes. However, a large fraction of 

OSBP was also found in cytosol. Compared to full length OSBP, N-OSBP displayed a 2-

fold higher Golgi/cytosol ratio. On the contrary, both N-PH-FFAT and PH-FFAT were 

highly localized to the Golgi, with tiny cytosolic fractions. This high Golgi recruitment of 

catalytically inactive constructs lacking the ORD is due to the absence of a negative 

feedback effect faciliated by the ORD – by relocating PI(4)P away from Golgi membrane, 

ORD removes a “recruiting” lipid that is recognized by the PH domain, which leads to 

destabilization of the interaction of OSBP with membranes (Mesmin et al., 2013).  
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Figure 49: Subcellular distribution of OSBP-derived constructs expressed in HeLa 

cells 

(A) C-terminal mCherry-tagged proteins were co-transfected in cultured cells together 
with the Golgi marker BFP-GalT. Subcellular distribution of OSBP constructs was 
measured as the ratio between mean fluorescence intensity at the Golgi and mean total 
cell fluorescence intensity (B) full length OSBP colocalisation with Golgi marker BFP-
GalT and a weak but recognizable colocalisation with endosomal marker EGFP-Rab7.  

 

 

Similar experiments were performed with corresponding four ORP4-derived 

proteins (Figure 50). In agreement with previous report (Wang et al., 2002), ORP4 

constructs containing the ORD co-localized with intermediate filaments, as shown by 

the vimentin staining in cells. These constructs only modestly stained the Golgi, which 

did not enable us to do a proper Golgi/cytosol analysis and suggested that the main 



131 
 

functional role of full length ORP4 in HeLa or RPE1 cells may not necessarily consist in 

lipid transfer at ER-Golgi MCS. Therefore, we focused on ORP4 N-PH-FFAT and PH-

FFAT, which only partitioned between the cytosol and the Golgi - N-PH-FFAT displayed 

both cytosolic and Golgi signal, whereas PH-FFAT highly localized to the Golgi. However, 

the Golgi/cytosol ratios were lower than that of corresponding OSBP-derived proteins, 

in consistence with the lower recruitment to the Golgi (which was also seen by lower 

tethering activity in DLS), suggesting a minor (if any) role of ORP4 in lipid transfer at 

the ER-Golgi MCS. Nevertheless, we could still conclude that N-terminus regulates the 

Golgi membrane partitioning of OSBP and truncated ORP4 proteins in cultured cells. 
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Figure 50: Subcellular distribution of ORP4 constructs expressed in HeLa cells 

(A-C) C-terminal mCherry-tagged ORP4 constructs were co-transfected with GalT-BFP. 

As reported previously, ORP4 FL and N co-localized with vimentin filaments and did 

not show major Golgi recruitment. Note the collapse of vimentin filaments when 

overexpressing ORP4 N. 
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To examine whether the dynamics of OSBP and ORP4 at the Golgi was also 

affected, we performed FRAP experiments by bleaching small circular areas at the Golgi. 

As shown for a representative experiment on Figure 51, the fluorescence recovery rate 

inversely correlated with the Golgi partitioning of proteins: full length > N-OSBP > N-

PH-FFAT > PH-FFAT. In addition, the recovery kinetics of OSBP-derived constructs were 

systematically slower that those of related ORP4 constructs, consistent with the higher 

Golgi recruitment of OSBP vs ORP4. Importantly, all constructs with N-terminus 

manifested faster (~3-5-fold) fluorescence recovery compared to corresponding N-

constructs. This indicates that the N-termini facilitate protein lateral motility at the 

membrane surface and/or exchange with the cytosolic pool.  

 

 

Figure 51: Fluorescence recovery of OSBP and ORP4 constructs at the Golgi  

Both OSBP- and ORP4-derived proteins that contain N-terminal disordered sequence 

display higher FRAP recovery rate. Photobleaching was performed on a circular area 

(3m diameter) at the Golgi apparatus.  
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In our further investigations, we also aimed to elucidate the possibility of 

homotypic tethering in living cells. At first, we transfected RPE1 cells with mCherry-

tagged N-PH-FFAT and PH-FFAT and looked at the morphology of Golgi apparatus by 

electron microscopy. We did not observe any unusual features (data not shown). 

However, we realized that in cells, an important role in regulating the MCS geometry is 

likely played by VAP-A, which is embedded in the ER membranes in large quantities 

(Kulak et al., 2014). Therefore, we decided to take advantage of short OSBP constructs 

with disabled FFAT motif (FF/AA substitution) to prevent interaction with VAP-A. 

Under these circumstances, in some RPE1 cells transfected with PH-FFAT (FF/AA) we 

could clearly observe anomalies in the TGN, especially in the form of “swollen” cisternae 

with large alignments of membranes (Figure 52, red arrows). However, we could not 

exclude possible involvement of ER or other membranes in these alignments and we 

observed similar (although not so frequent and no so severe) anomalies also in N-PH-

FFAT (FF/AA) overexpressing cells. Therefore, the question whether Golgi-Golgi 

tethering occurs in living cells cannot be answered doubtlessly for now.   
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Figure 52: Electron microscopy of (N-)PH-FFAT (FF/AA) expressing cells 

Top row: Electron micrograph of mock-transfected cell. Middle row: RPE1 cell 

overexpressing N-PH-FFAT (FF/AA), displaying a regular Golgi morphology, similar to 

non-transfected cells and representing the majority of cells transfected by N-PH-FFAT 

(FF/AA). Bottom row: Cell overexpressing PH-FFAT (FF/AA). Note the swollen Golgi 

stacks in the TGN area and the excessive membrane alignments (red arrows), whereas 

the cis- and medial- Golgi seem to stay unaffected. Scale bar on the left: 1 m, right: 200 

nm. 
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10. N-TERMINUS  OF  OSBP  HAS  NO  EFFECT  ON  ITS  LIPID  TRANSFER  

ACTIVITY  IN  CELLS 
 

Although in vitro lipid transfer assays produced negative results, we attempted 

to investigate whether N-terminus could affect lipid transport by OSBP in cultured cells. 

We visualized PI(4)P by a probe that mainly marks the Golgi pool of PI(4)P/Arf1 (GFP-

PHOSBP, Figure 53 A).  To avoid possible artifacts due to the presence of mCherry-tag at 

the ORD, we compared PI(4)P signals in cells expressing C-terminally- and N-

terminally-tagged full-length OSBP. This control experiment showed that oppositely 

tagged proteins manifest similar lipid transfer activity (Figure 53 B). Subsequently, we 

could perform a series of steady-state experiments where we analyzed the 

consequences of overexpressing C-terminally-tagged OSBP or N-OSBP during long 

(24h) and short (7h) expression period (Figure 53 C). Both constructs strongly 

diminished PI(4)P levels at the Golgi, without any major difference between FL or N-ter-

truncated OSBP, which confirmed our assumption based on in vitro data: N-terminus is 

most likely not affecting the lipid transfer activity of the ORD domain.   
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Figure 53: Lipid transfer activity of OSBP is not affected by the N-terminus in cells 

(A) GFP-PHOSBP probe in mock-transfected cells (Ctrl) and cells expressing C-terminally 

mCherry-tagged FL OSBP vs N-OSBP (B) Position of the mCherry-tag does not affect 

lipid transfer activity of full-length OSBP (C) FL OSBP and N-OSBP display similar lipid 

transfer activity in living cells. In all experiments, cells were co-transfected with Golgi 

marker BFP-GalT. Live cell imaging was performed 7 or 24 hours post-transfection and 

GFP-PHOSBP Golgi/cytosol signal ratio was measured as described in Materials and 

Methods. 
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11. N-TERMINUS  FACILITATES  OSBP  RECYCLING  UPON  CONDITIONS  OF 

RESTRICTED  PI4P  SYNTHESIS 
 

From the FRAP experiments with different OSBP- and ORP4-derived constructs 

that were described in previous parts of this work, we concluded that N-terminus is a 

major regulator of protein mobility on Golgi membranes. To further assess its role in 

OSBP dynamics, we took advantage of a live-cell assay developed recently in the lab 

(Mesmin et al., 2017). When RPE1 cells stably overexpressing PI(4)P/Arf1 probe 

(PHOSBP) are treated with PI4KIII inhibitor (PIK93), PI(4)P probe displays oscillations 

(“travelling waves”) across the TGN. These waves probably reflect the dynamics of 

OSBP-mediated contact sites after restricting the synthesis of local pools of PI(4)P by 

PI4KIII. As PI(4)P becomes limited, MCS move towards PI(4)P-rich regions that are 

likely generated by remote PI4-kinases, not colocalizing with OSBP. These waves 

display a remarkable regularity, due to which they are well-suited for precise dynamics 

measurement (Mesmin et al., 2017).  

In our assay, we silenced endogenous OSBP using specific siRNA. After OSBP 

silencing, PIK93 no longer induced travelling waves of PHOSBP indicating that OSBP is 

largely involved in PI(4)P turnover at the Golgi (Figure 54 A-C). In the following rescue 

experiments, we overexpressed either siRNA-resistant OSBP or N-OSBP (OSBP-res-

mCherry and N-OSBP-res-mCherry, respectively). N-OSBP-res-mCherry was more 

associated with the TGN than OSBP-res-mCherry, as evidenced by the stronger 

fluorescence (Figure 54 D vs E). Upon PIK93 treatment, OSBP-res-mCherry restored 

the appearance of PHOSBP waves (green signal) with amplitude and period similar to 

endogenous OSBP. In addition, we also observed that OSBP-res-mCherry itself was 

oscillating across the Golgi (red signal), in phase with waves of PHOSBP. In contrast, N-

OSBP-res-mCherry did not rescue the siRNA phenotype – upon PIK93 addition, we 

observed a sharp decrease of PHOSBP signal at the TGN (suggesting that N-OSBP-res-

mCherry was able to consume PI(4)P) but the decrease was followed by waves of much 

smaller amplitude than that observed with full length OSBP (Figure 54 F, G).  This 

experiment clearly demonstrated that although the N-terminus does not affect the lipid 

transfer activity of OSBP per se, it has a strong effect on OSBP dynamics during lipid 

transfer cycles at the TGN.     
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Figure 54: N-terminus regulates OSBP dynamics during lipid transfer cycles in 

living cells 

(A, B) RPE1 cells stably expressing GFP-PHOSBP probe were treated with control siRNA 

(siNT) or siRNA agains OSBP (siOSBP). When indicated, 500 nM of PIK93 was added 

into the cell medium. Top: snapshots of cells taken at t = 0 using an inverted grayscale 

lookup table (fluorescence in black). Scale bar = 20 m. Bottom: kymograph taken from 

a rectangular TGN region (“K”, ~ 20 x 3 m). Silencing of endogenous OSBP abolishes 

GFP-PHOSBP oscillations (C) Temporal analysis of siNT- and siOSBP-treated cells. Graph 

shows normalized mean fluorescence intensity measured on a circular area (“T”, 

diameter 8 m) from images A and B over time. (D, E) RPE1 cells stably expressing GFP-

PHOSBP and treated with siOSBP were transfected with siRNA-resistant OSBP constructs 

(OSBP-res-mCherry or N-OSBP-res-mCherry) for 24 hours before imaging. In time-

lapse videos, both GFP and mCherry signals were monitored, as shown in kymographs 

(F) Temporal analysis shows the rescue of GFP-PHOSBP waves by full length of OSBP, in 

contrast to N-OSBP which does not rescue the wt phenotype (G) Quantification of 

mean GFP-PHOSBP oscillation amplitude and period from recordings similar to that 

shown in (C) and (F) 
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DISCUSSION 
 

Membrane contact sites are closely apposed domains that facilitate exchange of 

considerable amount of material (such as ions, metabolites and lipids) as well as 

information between two distinct organelles. Therefore, MCS can be viewed as 

platforms harboring specialized membrane-associated proteins (ion channels, 

transporters, enzymes, receptors, adaptors etc.), playing a crucial role in regulation of 

numerous cellular processes. Intermembrane distances at MCS usually vary between 10 

and 30 nm (West et al., 2011), implying that individual protein components must 

operate within a narrow space densely occupied by other proteins. This confinement 

effect could substantially complicate the dynamics and function of MCS.   

A major group of MCS-localized proteins are lipid transfer proteins (LTPs) which 

act as mediators of nonvesicular lipid transfer. LTPs include several protein families. 

Among them, the OSBP-related proteins (ORPs) are major regulators of cellular lipid 

distribution and homeostasis (Mesmin et al., 2013; 2017). This PhD study identified a 

key role for the N-terminal tail of OSBP in regulating protein density and diffusion 

within MCS as well as in maintaining proper OSBP dynamics during lipid transfer cycles 

without directly affecting the lipid transfer activity of the ORD. In addition, N-terminus 

restricts the OSBP tethering geometry in vitro by favoring the ER-Golgi (heterotypic) 

orientation and countering the aberrant Golgi-Golgi (homotypic) tethering. Based on 

our observations we propose a model in which N-terminus acts as a regulator of MCS 

geometry and dynamics (Figure 55).  
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Figure 55: N-terminus of OSBP regulates membrane tethering geometry and MCS 

dynamics 

Intrinsically disordered N-terminus acts as an entropic “shield” preventing two PH 

domains of dimeric OSBP to simultaneously bridge two PI(4)P/Arf1-GTP containing 

membranes. N-terminal tail also limits membrane protein density within MCS, thus 

facilitating protein mobility and proper MCS dynamics during lipid transfer cycles by 

OSBP.  

 

Long (50 to 140 aa) intrinsically disordered regions display remarkable 

flexibility and ability to shift within a large variety of possible conformations over time, 

occupying approximately two-fold larger volume (Rh) compared to folded domains of 

the same residue count. We suggest that such disordered tail around a membrane-

bound PH domain could create an entropic “shield” and likely regulate several 

important properties of ORPs. In this study, we used lipid vesicles of defined size and 

lipid composition to demonstrate that N-terminus reduces (and eventually limits) the 

amount of protein able to bind to PI(4)P-rich membrane via protein crowding.  

Protein crowding is an important factor influencing lateral diffusion of integral 

membrane proteins (Zhou, 2009). In contrast to free diffusion in solution (3D), the 

reduction in dimensionality to 2D on a membrane means a similar level of crowding is 
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achieved with far fewer proteins. This has an important consequence: cells must 

carefully regulate the amount of proteins that can be recruited to biological membranes 

in order to ensure proper dynamics of membrane-associated reactions and signaling 

events. Therefore, the presence of a bulky tail in most abundant proteins might protect 

a balanced protein density on membrane and also compensate for the lack of disorder 

in less abundant proteins that co-localize to the same membrane/MCS (Figure 56).  

 

 

Figure 56: Protein copy number of selected LTPs in HeLa cells 

Quantification of protein copy number in HeLa cells is from Kulak et al. (2014) and was 

performed by mass spectrometry-based proteomics in single, enclosed cell lysate volume to 

eliminate contamination or loss of proteins. Selected LTPs are shown. Green bars correspond to 

proteins that contain N-terminus, orange bars are proteins without N-terminus. Blue bar 

illustrates the abundance of VAP-A.  

 

 

As N-terminus affects the protein density on membrane via protein crowding, it 

necessarily impacts lateral diffusion. The extent of this impact can be measured by 

FRAP with fluorescently labeled proteins on GUVs with known lipid composition, using 

proteins without lipid transfer activity, namely dimeric N-PH-FFAT and PH-FFAT (in 

homotypic MCS) or monomeric derivatives N-PH-CC-FFAT and PH-CC-FFAT 
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(interacting with VAP-A in heterotypic MCS). Our study showed that the presence of N-

terminal tail greatly accelerates the fluorescence recovery both in homotypic and 

heterotypic condition. Fitting the recovery curves of N-PH-FFAT and N-PH-CC-FFAT 

suggests apparent diffusion coefficients in the range of 0.15 m2/s, whereas no or very 

slow recovery was observed with constructs lacking the N-terminus. Moreover, N-

terminal tail of monomeric OSBP construct imposed the mobility also on the interaction 

partner, VAP-A, indicating a general effect on the dynamics of MCS.  

This effect is striking both by its trend and by its magnitude. In general, 

increasing protein size (volume) leads to a decrease in mobility, in both dilute and 

crowded environments. In soluble phase this is mainly due to higher friction between 

the solvent-accessible surface area of a protein and solvent molecules, and in case of 

integral membrane proteins due to higher friction between the surface of 

transmembrane segment and surrounding lipid bilayer. The effect of protein size tends 

to be modest, as volume increases as the cube of linear dimension, whereas surface 

increases as the square. Therefore, for spherical proteins moving in 3D, doubling the 

molecular weight leads only to a 1.25-fold reduction in diffusion coefficient (Lippincott-

Schwartz et al., 2001). In membrane proteins diffusing in 2D, the effect is even smaller: 

large proteins with five to seven transmembrane helices are ~1.5-fold slower than a 

protein with single membrane-spanning helix (Ramadurai et al., 2009). These 

comparisons underline the surprising effect of OSBP N-terminus: although it occupies 

large volume around PH domains, instead of slowing down diffusion, it leads to an 

increase in apparent mobility by almost an order of magnitude. Possible explanation of 

this phenomenon consists in the very nature of N-terminal tail, in its intrinsic disorder. 

In dilute solutions, an unfolded model protein diffuses slower than a folded 

protein of similar molecular weight due to its expanded surface area which leads to 

higher amount of collisions with solvent molecules. However, in solutions crowded with 

other proteins or crowding agents, a disordered protein diffuses faster due to its 

flexibility and ability to shift between different shapes (Wang et al., 2017, 2012, 2010). 

This may explain the higher apparent mobility of proteins decorated by regions of 

intrinsic disorder in vitro. We monitored a similar behavior also in living cells 

expressing dimeric proteins with and without the ORD. We report that both short and 

long proteins lacking the N-terminus display a higher Golgi localization and slower 
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fluorescence recovery, suggesting that even in the context of MCS in living cells, N-

terminus impacts membrane recruitment of OSBP. However, in these experiments, the 

complex arrangement of Golgi membranes makes a more detailed interpretation of 

FRAP recovery curves difficult (Lippincott-Schwartz et al., 2001), mainly because the 

signal recovery could occur not only by lateral diffusion within ER-TGN contacts but as 

well by exchange with cytosolic pool of soluble protein. In addition, OSBP constructs 

carrying a functional ORD have lipid transfer activity, which establishes a negative 

feedback loop by consuming PI(4)P, thus weakening its own association with the TGN 

(Mesmin et al., 2013; 2017).  

It has been described that PH domain of OSBP can bind PI(4)P with very high 

affinity (Levine and Munro, 2002). As OSBP is proposed to counter-exchange lipids in 

homodimeric conformation, the presence of two unshielded PH domains grants an 

opportunity to bridge PI(4)P containing membranes in a homotypic Golgi-Golgi manner. 

Such tethering geometry would not favor a directional lipid transfer, as it could cause 

unproductive relocating of PI(4)P molecules between the membranes of TGN and 

thereby disturb the cellular lipid distribution. In the context of possibly dangerous 

homotypic tethering, protein dimerization must be detailed. There are two predicted 

coiled-coils between the PH domain and FFAT motif of OSBP, and they are most likely 

dispensable for both membrane tethering and lipid transfer activity. For example, Osh3 

protein displays similar domain architecture like OSBP (PH domain – FFAT – ORD) but 

it lacks the coiled-coils. Instead, the sequence between PH domain and FFAT is a 37 nm-

long loop (Tong et al., 2013). In OSBP phylogeny, N-terminus and coiled-coils (especially 

CC1) are both recent features, compared to highly conserved PH and ORD. In contrast to 

flexible loops, coiled-coils adopt a more solid, rod-like structure that could allow the 

precise setting of intermembrane distance at MCS. As coiled-coils and N-terminal 

disordered regions seem to co-evolve, we hypothesize that OSBP in higher organisms is 

adapted to fine-tune intermembrane distance without the risk of creating aberrant 

symmetrical MCS tethering. 

After the creation of MCS by tethers of certain length, other membrane-

interacting molecules can enter the forming MCS, as long as their length does not exceed 

the intermembrane distance (Schmid et al., 2016). In the initial steps, this helps the 

forming of a functional MCS but over time the increasing amount of proteins 
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accumulating at the same interface could impair protein mobility and function. In this 

context, N-terminal disordered sequence of OSBP could also act as a general entropic 

barrier, regulating protein spacing within the confined environment of MCS. This 

regulation would not necessarily follow only the “spatial needs” of OSBP but also of 

other neighboring proteins inhabiting the same contact site. Indeed, it has been shown 

that OSBP is involved in the regulation of ceramide transport by CERT (Perry and 

Ridgway, 2006). Simultaneously, PI(4)P production necessary for the Golgi targeting of 

OSBP and CERT depends on the PI/PC transfer activity of Nir2 (Peretti et al., 2008), 

which partly occupies the same ER-TGN contacts as OSBP and CERT (Figure 57).  

 

     

Figure 57: Spatial and functional cooperation of LTPs at ER-Golgi contact site 

Several LTPs co-occupy the same MCS. OSBP bridges ER and trans-Golgi and delivers 

sterol into the Golgi membranes, activating PI4KII(Lu et al., 2012). The production of 

PI(4)P by PI4KII facilitates the recruitment of CERT at the same MCS (Banerji et al., 

2010). Nir2 supplies Golgi apparatus with PI and promotes the formation of PI(4)P by 

PI4-kinases II and III. Anterograde transport of PI by Nir2 and retrograde transport 

of PI(4)P by OSBP and CERT provide energy and directionality for cholesterol and 

ceramide transfer and control the life-time of MCS through PI(4)P degradation by Sac1 

in the ER. To prevent protein overcrowding as well as to keep proper MCS dynamics, 

LTPs may rely on their intrinsically disordered regions. Illustration from Drin, 2014.   

 

 

Given the importance of N-terminus in membrane tethering and protein 

dynamics, as well as its prevalence in ORPs, an important question arises: is the 

presence of disordered terminal region a general feature of MCS-associated LTPs? 

Indeed, many LTPs contain low complexity terminal regions. The domain organization 
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of highly conserved Nir/RdgB protein family displays similar, although inverted 

features like that of ORPs (N-terminal PI/PC-transfer domain, central FFAT motif and C-

terminal Lipin/Nde1/Smp2 (LNS2) domain). Human Nir1-3 have been shown to 

interact with ER-resident VAP-B (Amarilio et al., 2005). Under steady-state conditions, 

Nir2 localizes to the Golgi, whereas upon stimulation of PLC-coupled receptors, Nir2 

relocates to the PM where its LNS2 domain recognizes phosphatidic acid. Consequently, 

PI-transfer activity of Nir2 could couple PLC to PI signaling and possibly coordinate 

both local lipid metabolism as well as PA- and PI-mediated signaling pathways at the 

ER-PM contact sites (Herdman and Moss, 2016; Kim et al., 2013, 2016). Downstream 

the PA-interacting LNS2 domain, Nir proteins contain ~80 - 130 aa long disordered 

regions that could fulfill analogous functions in regulating protein mobility like that of 

OSBP (see Figures 57 and 58). 

 

 

Figure 58: PI/PA exchange activity of Nir2 at ER-PM contact sites 

By transporting PA to the ER and PI to the plasma membrane, Nir2 could link PA- and 

PI- mediated signaling pathways. Upon PLC activation, PI(4,5)P2 is cleaved to DAG and 

IP3. IP3 signaling leads to release of Ca2+ from the ER, whereas DAG is converted to PA. 

PA is transported by Nir2/3 proteins to ER membrane, where it is converted to PI and 

transported back to PM via Nir2/3. PI is subsequently converted to PI(4)P and 

PI(4,5)P2. Illustration modified from Krauβ and Haucke, 2016. 
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Another example is the LAM family of sterol transporters which consists of 

transmembrane proteins anchored to ER. LAMs contain a PH-like domain that interacts 

with other membranes such as PM, outer mitochondrial membrane or vacuolar 

membrane at nuclear-vacuolar junction in yeast. Lipid transfer activity is facilitated by 

one or two lipid binding StART-like domains. Most LAMs (GRAMD1 a-c in humans and 

Lam2p, Lam4p, Lam5p, Lam6p in yeast; Gatta et al., 2015; Tong et al., 2018) are 

decorated with long disordered regions upstream of their PH-like domains (Figure 59).  

 

 

Figure 59: LAM family of LTPs 

(A) Schematic representation of LAM family members in human and in yeast. PHg = 

domains from the plekstrin homology superfamily, T = transmembrane domain (weakly 

predicted in Lam4p*). Illustration from Gatta et al., 2015 (B) Model of LAM function at 

MCS. LAMs are ER-anchored proteins with two sterol transporting StART-like domains 

(SD1, SD2), connected by flexible linkers. Several LAM homologs contain polybasic 
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regions at the end of their second StART-like domain, which might assist in membrane 

binding of the domain during sterol uptake or release. The binding partner(s) of PH-like 

domain of Lam2p and Lam4p at the PM are unknown. At the N-terminus, most LAMs 

contain long regions of predicted disorder. Figure modified from Tong et al., 2018.  

 

 

On the contrary, certain MCS-localized LTPs seem to perform their function 

without the necessity of N-terminal tail. These LTPs include sphingolipid transfer 

proteins CERT and FAPP2. Both display architecture similar to ORPs (PH domain, FFAT 

motif, lipid transfer StART or GLTP domain, respectively). Whereas in FAPP2, the PH 

domain and FFAT motifs are not linked by coiled-coils but rather by flexible loop (thus 

suggesting that FAPP2 might operate as monomer), CERT has a predicted coiled-coil 

region. However, both proteins colocalise with OSBP and Nir2 at ER-TGN contact sites. 

Therefore, CERT and FAPP2 might simply benefit from the “entropic shields” of their 

neighbours.      

A particular case is ORP9. This ORP is highly abundant in HeLa cells and has been 

reported to target ER and Golgi membranes via its FFAT motif and PH domain (Kulak et 

al., 2014; Liu and Ridgway, 2014; Ngo and Ridgway, 2009; Wyles and Ridgway, 2004). 

ORP9 can form heterodimers with its close relatives, ORP10 and ORP11, which lack the 

FFAT motif (Nissilä et al., 2012; Zhou et al., 2010). These observations suggest a role of 

ORP9 in mediating ER-tethering of ORP10 and ORP11.  It is noteworthy that ORP10 and 

ORP11 are also abundant and both contain long disordered tails, indicating that 

heterodimeric complexes may indeed be a reciprocal solution for involved proteins to 

obtain ER-targeting signal (FFAT motif) and keep proper membrane dynamics 

(disordered N-terminus). Alternatively, the properties of coiled-coils of ORP9 alone may 

intervene with possible homotypic tethering. Experiments to elucidate the structure 

and membrane tethering abilities of this peculiar ORP are currently ongoing in our 

team.   

As presented in this study, disordered tails vary considerably between individual 

LTPs, which may reflect either a weaker degree of sequence conservation (typical for 

IDPRs) or additional functions of disordered domains. Charge patterns, hydropobicity, 

amino acid length etc. play an important role in biophysics of IDPRs. Naturally, 
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variations in these parameters may lead to differences in dynamics (such as diffusion) 

and protein-protein or protein-membrane interactions by disordered regions.  

Regarding protein diffusion and intrinsic disorder, it has been reported that with 

increasing concentration and size of crowding agents (such as proteins) in solution, 

intrinsic disorder plays more and more important role in enhancing protein diffusion 

(Wang et al., 2017). In the context of LTPs, such observation necessarily gives us a hint 

to an important issue: diffusion behavior of proteins in a confined environment co-

occupied by a large amount of neighbouring proteins with distinct properties also 

depends on the properties of these “neighbours”. This means that diffusion behavior of 

membrane-interacting domains decorated by intrinsic disorder in crowded 

environments is rather nontrivial and deserves comprehensive theory- and experiment-

based understanding, which, however, is still lacking. 

Regarding additional functions in protein-protein or protein-membrane 

interactions of disordered regions in LTPs, we know that IDPs/IDPRs are commonly 

attributed to functional areas relying on their ability to interact with multiple partners 

via high-specificity/low-affinity interactions (Uversky et al., 2018). It is therefore 

tempting to hypothesize that the N-termini of ORPs could be also involved in mentioned 

interactions. For example, Ghai et al. (2017) performed isothermal calorimetry 

experiments with PH domains of ORP5 and ORP8. They reported no binding to 

monophosphorylated PIPs and rather modest binding to dually phosphorylated PIPs. 

When the PH domain of ORP8 was crystallized, its 3D structure revealed an atypical 

binding site for PIPs away from the canonical binding site, explaining the weak affinity 

for PIPs. Subsequently, systematic truncation of the N-termini of ORP5 and ORP8 

revealed their crucial role in proper PM targeting and it has been postulated that their 

polybasic regions may serve as coincindence detectors, complementing the weak PIPs 

binding by certain PH domains with electrostatic interactions on the surface of 

negatively charged PM (Ghai et al., 2017; Lee and Fairn, 2018). This principle might be 

similar to the lipid cooperativity that has been observed e.g. for PH domains with weak 

affinity for single phosphoinositide species. These PH domains coincidentally recognize 

the presence of other, auxiliary lipids, such as distinct phosphoinositide species, 

ceramides or phosphatidylserine to recruit peripheral proteins to specific subcellular 

membranes (Macia et al., 2000; Vonkova et al., 2015). 
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Similarly, membrane-attached disordered regions could participate in protein-

protein interactions and facilitate the formation of multiprotein complexes, as shown 

for the clathrin adaptor proteins AP180 and AP2 (Kalthoff et al., 2002; Owen et al., 

1999). In extreme cases, protein-protein interactions mediated by IDPs/IDPRs may 

even lead to formation of aggregates, as in the case of -synuclein-related pathologies 

(Uversky and Eliezer, 2009). Nevertheless, an opposite aspect must also be kept in mind 

– N-termini may equally serve to prevent undesirable or excessive interactions. For 

example, presence of highly flexible regions has been shown to reduce tendency of 

ordered proteins to aggregate, most likely as a result of conformational entropy (De 

Simone et al., 2012). 

Therefore, we can assume that unfolded terminal regions of LTPs may perform 

additional functions which may well correspond with their diversity. Even in this PhD 

work, we may have identified an additional role for the N-terminus of ORP4 as we 

noticed that overexpression of N-ORP4 in HeLa cells leads to collapsed vimentin 

network (Figure 50 C). Nevertheless, the fact that two different N-termini (OSBP and 

ORP4) display similar effects on membrane tethering properties in vitro and protein 

mobility in living cells suggests that the control of MCS geometry and protein density on 

membranes constitutes a plausible unifying function. Taken together, our study brings a 

novel view on disordered N-terminal regions of OSBP and related proteins as important 

regulators of protein orientation and dynamics on membrane.   
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CONCLUSION AND PERSPECTIVES 

 

Most proteins from the mammalian ORP family contain an intrinsically 

disordered sequence upstream of their PH domains. Moreover, several other LTPs with 

similar domain architecture also possess a disordered N-terminus. In ORPs, N-termini 

differ in length (between 50 and 140 residues) and amino acid composition – some are 

nonpolar (OSBP, ORP10, ORP11) whereas others contain charged residues (ORP4, 

ORP5, ORP8). One common denominator seems to be the mere presence of intrinsic 

disorder. Until now, very little attention has been given to the unfolded tail regions of 

ORPs, and there was no explanation at all for the rather general necessity of intrinsic 

disorder around the membrane binding domains of several (mostly) dimeric and highly 

abundant LTPs.  

This thesis work provides solid evidence for the role of unstructured N-terminus 

in regulating OSBP tethering geometry and dynamics at OSBP-mediated contact sites 

both in vitro and in living cells. We show that N-terminal sequence occupies a large 

volume, thus limiting protein recruitment to PI(4)P-rich membranes. In addition, when 

two PH domains of dimeric OSBP are not flanked by the N-terminal entropic “shield” 

they tend to bridge PI(4)P-rich membranes in an aberrant Golgi-Golgi 

(homotypic/symmetrical) manner. Homotypic tethering depends on the presence of 

PI(4)P or Arf1-GTP in membrane and on the ability of OSBP-derived constructs to 

dimerize. This indicates that disordered tail plays a crucial role in regulating membrane 

tethering geometry of OSBP. Due to its effect on volume extension around the PH 

domain, N-terminus is an effective regulator of protein density and lateral mobility 

within the confined environment of MCS, as demonstrated in our in vitro and in cellulo 

FRAP assays. Although the change in protein spacing did not initially seem to affect lipid 

transfer activity, we found that OSBP turnover during assembly/disassembly cycles of 

MCS in conditions with restricted PI(4)P synthesis is impaired. Thus, we also revealed a 

function of intrinsic disorder in regulating OSBP dynamics during lipid transfer cycles in 

living cells.  

In addition, our research on N-terminus of OSBP is supported by findings from 

assays with ORP4, a close homolog of OSBP with remarkably different N-terminus. 



156 
 

Truncated ORP4 constructs lacking the disordered region are, similarly to related OSBP 

constructs, capable of homotypic tethering. Consistently, in FRAP assays we observed a 

slower protein recovery. Taken together, we found a unifying role for two very distinct 

N-termini. This role could possibly extend to disordered tails in many other ORPs and 

even non-related but similarly organized LTPs (such as Nir proteins or LAMs). 

However, there are still many questions that remain open. An important issue to 

test is, for example, the compatibility between different N-termini within the same MCS. 

Are N-termini with similar properties preferably distributed in the same environment? 

Can change in the length of disordered sequence or in its amino acid composition 

influence the preference of LTPs for certain microenvironments? Can N-terminal tails 

be interchanged between distinct ORPs without affecting their function? For now, we do 

not know, but these questions certainly deserve further investigation. 

As a final remark, understanding MCS complexity and dynamics in the context of 

membrane tethering proteins containing large regions of intrinsic disorder is an 

important topic, which can yield insight into several fields of membrane biology. Our 

present work represents an instructive framework to study this issue on the example of 

OSBP and its related proteins at ER-TGN contact sites. The next step forward could be a 

closer examination of other LTPs or tethering proteins along the lines presented in this 

thesis.  
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Abstract  

Lipid transfer proteins (LTPs) acting at membrane contact sites (MCS) between the ER 

and other organelles contain domains involved in heterotypic (e.g. ER to Golgi) membrane 

tethering as well as domains involved in lipid transfer. Here, we show that a long ≈ 90 aa 

intrinsically unfolded sequence at the N-terminus of oxysterol binding protein (OSBP) controls 

OSBP orientation and dynamics at MCS. This Gly-Pro-Ala-rich sequence, whose hydrodynamic 

radius is twice as that of folded domains, prevents the two PH domains of the OSBP dimer to 

homotypically tether two Golgi-like membranes and considerably facilitates OSBP in-plane 

diffusion and recycling at MCS. Although quite distant in sequence, the N-terminus of OSBP-

related protein-4 (ORP4) has similar effects. We propose that N-terminal sequences of low 

complexity in ORPs form an entropic barrier that restrains protein orientation, limits protein 

density and facilitates protein mobility in the narrow and crowded MCS environment.  

 

Keywords: Intrinsically disordered protein (IDP); low complexity sequence; Membrane Contact 

Site (MCS); OSBP-related protein (ORP), Lipid transfer protein (LTP).  
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Introduction  1 

Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a 2 

conserved family of lipid transfer proteins (LTPs) that transport key lipids such as cholesterol 3 

or phosphatidylserine between cellular membranes (Kim et al., 2013; Olkkonen and Li, 2013; 4 

Pietrangelo and Ridgway, 2018). LTPs contribute to the establishment of lipid gradients 5 

between organelles and counterbalance the homogenization in lipid composition that 6 

accompanies vesicular traffic or lipid signaling reactions (Kim et al., 2015; Saheki et al., 2016; 7 

Yadav et al., 2015). ORPs share an OSBP-related domain (ORD), which is responsible for the 8 

lipid transfer activity (Im et al., 2005) and functions in a directional manner by counter 9 

exchanging a specific lipid for the phosphoinositide PI(4)P (Chung et al., 2015; de Saint-Jean et 10 

al., 2011; Mesmin et al., 2013; Moser von Filseck et al., 2015a). Thus, OSBP transports 11 

cholesterol from the endoplasmic reticulum (ER) to the trans Golgi network (TGN) owing to 12 

back transfer of PI(4)P , which is synthesized in the TGN and hydrolyzed at the ER (Mesmin et 13 

al., 2013; 2017; Zewe et al., 2018). 14 

In addition to the ORD, many ORPs carry targeting determinants for the ER and other 15 

organelles. These determinants allow ORPs to tether two membranes (e.g. ER and PM or ER and 16 

TGN), hence restricting the lipid exchange to membrane contact sites (MCSs), which are regions 17 

of close apposition between organelles (intermembrane distance ≈ 10-50 nm)(Levine, 2004; 18 

Mesmin et al., 2013). OSBP contains a N-terminal pleckstrin homology (PH) domain, which 19 

interacts with the TGN or endosomal phosphoinositide PI(4)P and a central FFAT (two 20 

phenylalanines in an acidic tract) motif, which interacts with the general ER receptor VAP-A/B 21 

(Furuita et al., 2010; Kaiser et al., 2005; Levine and Loewen, 2006; Levine and Munro, 2002; 22 

Loewen et al., 2003). Cellular observations as well as in vitro reconstitution experiments suggest 23 

that the tripartite PH-FFAT-ORD architecture of OSBP allows this protein to function as a ferry-24 

bridge, bridging the TGN and the ER through its PH domain and FFAT motif, respectively, and 25 
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ferrying cholesterol between the ER and TGN through its ORD (Antonny et al., 2018; Mesmin et 26 

al., 2013).  27 

Although the tripartite PH-FFAT-ORD architecture of OSBP explains its membrane 28 

tethering and lipid transfer activities, many mechanistic questions remain. The very nature of 29 

MCSs where two parallel membranes sandwich a thin layer of cytosol should create unique 30 

constraints. For example, it is not known whether the linker regions connecting the PH domain, 31 

FFAT motif, and ORD are long enough to allow simultaneous membrane tethering and ORD 32 

movement between membranes (Antonny et al., 2018; Dittman and Menon, 2017). The 33 

compatibility between the movements of folded domains and the linker length is a general issue 34 

in MCS, also applying to proteins such as the PI phosphatase Sac1, which hydrolyzes PI(4)P 35 

(Stefan et al., 2011; Zewe et al., 2018), and the extended synaptotagmins (Schauder et al., 2014). 36 

A second question is the degree of cooperativity between proteins at MCS. The establishment of 37 

MCS by some ‘pioneered’ tethers should indirectly favor the subsequent recruitment of other 38 

tethers of the same length. However, having too many proteins in MCS might create some steric 39 

hindrance. A recent study using artificial tethers made of fluorescent proteins held by 40 

elementary blocks of defined height has started uncovering the complex behavior of proteins at 41 

MCS, revealing the possibility of an exclusion mechanism based on the incompatibility between 42 

proteins of different lengths or via crowding effects (Schmid et al., 2016). 43 

In this study, we focus on an overlooked feature of ORPs: the presence of a long N-44 

terminal region (hereafter abbreviated as N-ter) of low amino-acid complexity upstream of the 45 

PH domain. Using OSBP and ORP4 as models, we show that the N-ter has two functions. First, it 46 

imposes the geometry of membrane tethering, favoring heterotypic membrane tethering 47 

between a VAP-containing membrane and a PI(4)P-containing membrane at the expense of the 48 

homotypic configuration where two PI(4)P-rich membranes are held by the two PH domains of 49 

OSBP or ORP4, which are dimers. Second, the N-ter prevents OSBP from being too concentrated 50 

at MCS, thereby facilitating protein diffusion within MCS and protein recycling between MCS. 51 
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Our work uncovers a new function of intrinsically unfolded regions in the functioning of multi-52 

domain proteins.  53 

Results 54 

Bioinformatic analysis of the N-terminal region of OSBP and related proteins 55 

The mammalian ORP family includes 12 members, many of which display a similar 56 

domain organization (Figure 1A, S1A). The N-terminal half (including PH domain and FFAT 57 

motif) is involved in membrane tethering while the C-terminal half (ORD) transfers lipids 58 

(Mesmin et al., 2013). For ORP5 and ORP8, which lack FFAT motif, ER tethering depends on a C-59 

ter transmembrane segment (Yan et al., 2008; Du et al., 2011). Intriguingly, most ORPs (OSBP, 60 

ORP3 - ORP8, ORP10 and ORP11) contain a long sequence upstream of their PH domain 61 

(Figures 1A, S1 and S2). The exceptions are ORP2, which only consists of the FFAT motif and 62 

ORD, and ORP9, which does not contain a sequence upstream of its PH domain. Phylogenetic 63 

analysis indicates that the N-ter of OSBP as well as the coiled-coils between the PH domain and 64 

FFAT motif appeared later and showed less sequence conservation than the PH domain and 65 

ORD (Figure S2B). 66 

We assessed the order/disorder distribution along the ORP sequences using Predictor of 67 

Naturally Disordered Regions (PONDR®) (Figure S1A). We employed two algorithms, VL3 and 68 

VSL2, trained on a set of hundreds of disordered and ordered protein regions. Both predictors 69 

are based on attributes including amino acid frequencies, sequence complexity and averaged 70 

flexibility. The N-ter of OSBP, ORP3–8, ORP10 and ORP11 have a high disorder score (> 0.8), in 71 

contrast to the low disorder score of the PH domain and ORD. The low disorder score of the N-72 

ter of ORP1 correlates with the presence of three ankyrin repeats that bind the small GTPase 73 

Rab7 on late endosomes (Johansson et al., 2003). The second region of high disorder was found 74 

in the linker between the PH domain and ORD. Thus, most ORPs contain long 60-140 aa N-75 

terminal sequences that are predicted to be disordered.   76 
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We compared the aa composition of the N-ter of human ORPs using the PH domain and 77 

ORD as references for well-folded domains (Figures 1A and S1B; exact aa range of each region 78 

is shown in Figure S2A). Pie charts show that the aa composition of the PH domain and ORD is 79 

well distributed between the 20 aa, as generally observed for folded domains, whereas the N-80 

terminal sequences display contrasting features (Figure S1B). Some N-ter are very rich in 81 

proline (black), the strongest disorder-promoting residue (Theillet et al., 2013). Others are 82 

enriched in glycine (dark grey), alanine (light grey) and/or in charged residues (red: negative; 83 

blue: positive). Common features for all N-ter are the paucity of large hydrophobic residues 84 

(Phe, Trp, Ile and Leu; yellow and green) and the abundance of serine (shown in light pink), 85 

which is after proline and glutamic acid the third most disorder-promoting residue (Theillet et 86 

al., 2013) (Figure S1B). Because sequences enriched in proline and in polar and charged 87 

residues at the expense of hydrophobic amino acids are not prone to fold, we hypothesized that 88 

most N-terminal sequences in ORPs are intrinsically disordered.  89 

The N-terminal regions of OSBP/ORP4 strongly increase their hydrodynamic radii 90 

 In the following, we focused on the N-ter of OSBP and ORP4. This choice was motivated 91 

by two reasons. First, numerous in vitro and cellular assays have been developed for OSBP, 92 

thereby facilitating the analysis (Mesmin et al., 2013). Second, ORP4 is the closest OSBP 93 

orthologue, but its N-ter is quite different (Figure 1A and S1B). The N-ter of OSBP is almost 94 

entirely composed of Gly, Pro and Ala residues (GPA), which account for 75% of the sequence, 95 

whereas ORP4 N-ter is significantly longer and also rich in Ser and Glu. The comparison 96 

between ORP4 and OSBP could help defining the general vs peculiar properties of their N-ter. 97 

Unstructured sequences occupy a larger volume than structured sequences of the same 98 

amino acid length. To estimate the contribution of N-ter to protein size, we performed gel 99 

filtration chromatography on purified constructs. The analysis was performed on the full-length 100 

protein (OSBP vs ∆N-OSBP) as well as on shorter constructs (Figure 1B-D). N-PH-FFAT and PH-101 
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FFAT correspond to the first half of OSBP and can be used to recapitulate its tethering activity, 102 

independently of lipid transfer (Mesmin et al., 2013). N-PH-CC-FFAT and PH-CC-FFAT lack 103 

the predicted coiled-coil regions between the PH domain and FFAT motif and behave as 104 

monomers rather than as dimers in the gel-filtration column. In all cases, we observed that N-105 

ter had a large impact on protein size, increasing the Stoke’s radius by ~0.5 to 1 nm for OSBP 106 

constructs (OSBP vs N-OSBP, N-PH-FFAT vs PH-FFAT; N-PH-CC-FFAT vs PH-CC-FFAT) and 107 

by ~1.3 nm for ORP4 constructs (N-PH-FFAT vs PH-FFAT) (Figure 1D). This increase was about 108 

2-fold higher than what was expected from the slope of the calibration curve, which was 109 

established with folded globular standards. Because denaturation increases the hydrodynamic 110 

radius of well-folded proteins by ca. two-fold (Dutta and Bhattacharyya, 2001), this 111 

hydrodynamic analysis suggests that the N-ter of both OSBP and ORP4 are intrinsically 112 

unfolded.   113 

The N-ter accelerates OSBP cellular dynamics  114 

To assess the role of N-ter on OSBP subcellular localization, we transfected RPE1 and 115 

HeLa cells with the following C-terminally mCherry-tagged constructs: OSBP, ∆N-OSBP, N-PH-116 

FFAT  and PH-FFAT  (Figure 1B). In both cell types, full-length OSBP localized mainly to the 117 

Golgi complex (as evidenced by co-localization with the marker BFP-GalT, Figures 2A and S3A) 118 

and, to a lesser extent, to late endosomes (colocalized with marker EGFP-Rab7, Figure S3A). 119 

However, a large fraction of OSBP was also found in the cytosol. Compared to OSBP, N-OSBP 120 

displayed a 2-fold higher Golgi partitioning ratio, whereas both N-PH-FFAT and PH-FFAT 121 

localized almost completely to the Golgi complex with a very minor cytosolic fraction (Figure 122 

2A). The large decrease in the apparent Golgi partitioning of the constructs containing the ORD 123 

(OSBP and N-OSBP) as compared to the constructs lacking the ORD (N-PH-FFAT and PH-FFAT) 124 

is due to a negative feedback effect of the ORD, which by transferring PI(4)P destabilizes the 125 

interaction of OSBP with membranes (Mesmin et al., 2013). 126 
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We performed similar experiments with ORP4 N-PH-FFAT and ORP4 PH-FFAT (Figure 127 

2B). In agreement with a previous report (Wang et al., 2002), ORP4 constructs containing the 128 

ORD (ORP4 and N-ORP4) co-localized with intermediate filaments (Fig. S3B and C) and only 129 

modestly stained the Golgi making their analysis complicated. We thus focused on ORP4 N-PH-130 

FFAT and ORP4 PH-FFAT, which only partitioned between the cytosol and the Golgi. ORP4 PH-131 

FFAT showed significantly higher Golgi partitioning than ORP4 N-PH-FFAT (Figure 2B). Thus, 132 

the N-ter of OSBP and ORP4 reduce the Golgi membrane partitioning of these proteins.  133 

We assessed the dynamics of the OSBP and ORP4 constructs at the Golgi by fluorescence 134 

recovery after photobleaching (FRAP) experiments. As shown in Figure 2C, the rate of 135 

fluorescence recovery inversely correlated with the Golgi partitioning of the constructs: full-136 

length (FL) >N > N-PH-FFAT > PH-FFAT. In addition, the recovery kinetics of the OSBP 137 

constructs were systematically slower than that of the corresponding ORP4 constructs, in good 138 

agreement with the higher Golgi partitioning of OSBP vs ORP4 (Figure 2A and B). Importantly, 139 

all N-ter-harboring constructs manifested much faster (≈ 3-5-fold) fluorescence recovery than 140 

the corresponding ∆N-constructs, suggesting that the N-ter facilitates protein lateral motility at 141 

the membrane surface and/or exchange with the cytosolic pool (Figure 2C). 142 

N-ter facilitates OSBP recycling under conditions of restricted PI(4)P synthesis  143 

To further assess the role of N-ter in OSBP dynamics, we performed experiments in 144 

which we artificially forced OSBP to move within the TGN (Mesmin et al., 2017). For this, we 145 

inhibited the Golgi-associated kinase PI4KIII, which co-localizes with OSBP and locally 146 

provides PI(4)P to the OSBP cycle. When PI4KIII is inhibited by the specific inhibitor PIK93, 147 

OSBP exhibits travelling waves, which probably corresponds to movements of OSBP contact 148 

sites towards PI(4)P-rich regions produced by remote PI4-kinases (Mesmin et al., 2017). These 149 

waves are very regular, making them adapted to precise dynamics measurements. The 150 

experiments were performed in cells stably expressing GFP-PHOSBP, which acts as a PI(4)P/Arf1 151 
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reporter at the Golgi. After silencing endogenous OSBP using specific siRNA, PIK93 no longer 152 

induced travelling waves of PHOSBP indicating that OSBP is largely responsible for PI(4)P 153 

turnover at the Golgi (Figure 3A-C).  154 

We performed rescue experiments by expressing siRNA-resistant forms of either full-155 

length OSBP or ∆N-OSBP (OSBP-res-mCherry and ∆N-OSBP-res-mCherry, respectively). ∆N-156 

OSBP-res-mCherry was more stably associated with the TGN than OSBP-res-mCherry (Figure 157 

3D-E) in agreement with the steady state localization experiments (Figure 2A-B). Upon PIK93 158 

addition, OSBP-res-mCherry restored the formation of large PHOSBP travelling waves (green 159 

signal) and showed itself (red signal) travelling waves in phase with that of PHOSBP (Figure 3F).  160 

In contrast, ∆N-OSBP-res-mCherry did not rescue the siRNA phenotype. Upon PIK93 addition, 161 

we observed a sharp decrease in GFP-PHOSBP at the TGN suggesting that ∆N-OSBP consumed 162 

PI(4)P (compare the black trace in Figure 3C to the green trace in Figure 3F lower panel). 163 

However, this decrease was followed by waves of much smaller amplitude than that observed 164 

with full-length OSBP (Figure 3F-G).  165 

Altogether, the experiments presented in Figures 2 and 3 suggest that OSBP N-ter 166 

facilitates protein turnover within or between cellular membranes without affecting its PI(4)P 167 

transfer activity.  168 

The N-ter of OSBP has no effect on its lipid transfer activity 169 

The fact that the N-ter is not involved in PI(4)P transfer was confirmed by steady-state 170 

experiments where we analyzed the consequence of overexpressing OSBP or ∆N-OSBP on the 171 

Golgi/cytosol ratio of GFP-PHOSBP. Both forms strongly diminished the level of the PI(4)P probe 172 

at the Golgi (Figure S4A-B). 173 

To directly address the influence of the N-ter of OSBP on lipid transfer, we performed 174 

liposome-based reconstitution experiments. We followed the transfer of the naturally 175 
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fluorescent analog of cholesterol (DHE) from ER-like to Golgi-like liposomes (Figure S4C). 176 

Conversely, we followed the relocation of PI(4)P from Golgi-like liposomes (4mol% PI(4)P) to 177 

ER-like liposomes by monitoring the quenching of a PI(4)P probe (Figure S4D). OSBP was used 178 

in catalytic amount compared to PI(4)P (1 OSBP for 30 accessible PI(4)P molecules) but in large 179 

excess over the liposomes (≈ 60 OSBP molecules for one liposome). Therefore, equilibration of 180 

PI(4)P between the donor and acceptor liposomes required OSBP to undergo multiple rounds of 181 

lipid exchange on the same liposomes; without the need for OSBP to translocate between 182 

different liposomes. As shown in Figure S4C-D, OSBP and N-OSBP were indistinguishable in 183 

their sterol and PI(4)P exchange activity. This similarity also applied when cholesterol and 184 

PI(4)P were initially present in the ER and Golgi liposomes, respectively (Figure S4D), a 185 

condition that considerably accelerated the rate of PI(4)P transfer due to coupling between 186 

forward cholesterol transfer and backward PI(4)P transfer (Mesmin et al., 2017; Moser von 187 

Filseck et al., 2015b). We concluded that the N-ter is not involved in the mechanism of 188 

sterol/PI(4)P exchange by OSBP.  189 

The N-ter limits the membrane recruitment of the PH domain by a crowding effect 190 

The above analysis suggests that the N-ter of OSBP is an inert appendage that does not 191 

interfere with the molecular mechanism of lipid transfer but controls OSBP dynamics on 192 

membranes. Given its low complexity sequence, its position in the protein and its effect on the 193 

hydrodynamic volume of the protein, we hypothesized that the N-ter could have a simple steric 194 

effect, controlling OSBP density on membranes by limiting the surface concentration of the 195 

downstream PH domain. To test this hypothesis, we compared the membrane-binding 196 

properties of N-PH-CC-FFAT and PH-CC-FFAT. We labeled N-PH-CC-FFAT and PH-CC-197 

FFAT with the fluorophore Alexa488 and tested their binding to giant unilamellar vesicles 198 

(GUVs) of Golgi-like lipid composition containing 0.1% Atto390-DOPE and 4% PI(4)P. We 199 

incubated these GUVs with increasing concentrations of N-PH-CC-FFAT or PH-CC-FFAT 200 

(Figure 4A-B). N-PH-CC-FFAT displayed lower recruitment on GUVs and saturated the 201 
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membrane at lower protein concentration, as indicated by the smaller increase in signal 202 

intensity with concentration, and stagnation of fluorescence signal above 400nM. On the 203 

contrary, PH-CC-FFAT displayed a higher density on GUVs, and continued binding to GUVs at 204 

higher concentrations (Figure 4B). This observation suggested that the N-ter limits the surface 205 

density of OSBP on PI(4)P-containing membrane.  206 

To further analyze this density effect, we performed liposome-based sedimentation 207 

assays. We increased the surface density of PI(4)P in liposomes from 1, 2, 5, 8, to 15 mol% while 208 

reciprocally decreasing the liposome concentration from 2, 1, 0.4, 0.25, to 0.13 mM, thereby 209 

keeping the total PI(4)P concentration constant (20 µM) (Figure 4C-D). After centrifugation and 210 

quantification of bound protein, we observed that N-PH-CC-FFAT and PH-CC-FFAT were 211 

equally recruited on liposomes with the lowest PI(4)P density (1 mol%). In the absence of 212 

PI(4)P, background binding was observed. Thus, the affinity of the PH domain for PI(4)P did not 213 

seem to be directly affected by N-ter. However, as the density of PI(4)P increased, N-PH-CC-214 

FFAT showed a stronger reduction in binding as compared to PH-CC-FFAT. These observations 215 

suggest that the N-ter limits the membrane density of the adjacent PH domain by a crowding 216 

effect.   217 

OSBP N-ter controls the geometry of membrane tethering  218 

OSBP interacts not only, via its PH domain, with PI(4)P on Golgi membrane but also, via 219 

its FFAT motif, with the ER-resident protein VAP-A (Levine and Munro, 1998; Loewen et al., 220 

2003). This dual interaction allows OSBP to act as a membrane tether. To determine whether 221 

the N-ter influences OSBP and ORP4 tethering activities, we reconstituted membrane tethering 222 

using purified components (Mesmin et al., 2013). We prepared two liposome populations with a 223 

composition corresponding to that of the ER with 2% DGS-NTA-Ni and of the Golgi with 4% 224 

PI(4)P. The presence of DGS-NTA-Ni allowed recruitment of a histidine-tagged form of VAP-A 225 

onto the ER liposomes. Then, we mixed the two liposome populations, added purified N-PH-226 
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FFAT or PH-FFAT and followed liposome aggregation in real time by dynamic light scattering 227 

(DLS).  228 

In presence of all tethering determinants (Golgi + ER + VAP), we observed no difference 229 

in the tethering activity of N-PH-FFAT and PH-FFAT from both OSBP and ORP4 (Figure 5A and 230 

S5A). Surprisingly, when we removed VAP-A (Figures 5B and S5B) or when we replaced VAP-231 

A with a mutant (VAP-A KM/DD) unable to interact with the FFAT motif (Figure S5C) we 232 

observed a striking difference between the two constructs: PH-FFAT caused liposome 233 

aggregation, whereas N-PH-FFAT did not.  234 

We suspected that, in the absence of VAP-A, the ER-like liposomes might not be included 235 

in the aggregates promoted by PH-FFAT, which would instead promote homotypic tethering of 236 

Golgi liposomes. To distinguish homotypic (Golgi-Golgi) vs heterotypic (ER-Golgi) tethering, we 237 

labeled the Golgi-like liposomes with Texas Red-DOPE and the ER-like liposomes with Oregon 238 

Green-DOPE (Ho and Stroupe, 2015). As such, we could complement the DLS measurements 239 

with the visualization of liposome aggregates by confocal microscopy. When VAP-A was present, 240 

both N-PH-FFAT and PH-FFAT of OSBP or ORP4 promoted the tethering of ER with Golgi 241 

liposomes as the aggregates displayed the color of the two lipid probes (Figure 5A and S5A). 242 

When VAP-A was absent, N-PH-FFATs did not aggregate any liposome population, whereas PH-243 

FFAT selectively promoted the tethering of the Golgi liposomes (Figure 5B and S5B). Indeed, 244 

under these conditions, we only observed red aggregates, revealing that N-ter-lacking 245 

constructs gained an unusual capacity in tethering liposomes in a Golgi-Golgi manner.  246 

To investigate how PH-FFAT promotes the homotypic tethering of Golgi liposomes, we 247 

performed additional experiments. First, we replaced PH-FFAT or N-PH-FFAT by equivalent 248 

constructs lacking the coiled-coil region (i.e. PH-[∆CC]-FFAT or N-PH-[∆CC]-FFAT) (Figure 5C-249 

D). Second, we removed PI(4)P from the Golgi liposomes (Figure S6A-B). In both cases, we 250 

observed no Golgi-Golgi homotypic tethering (Figure 5D and S6A), although PH-∆CC-FFAT and 251 
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N-PH-∆CC-FFAT kept the ability to tether ER liposomes to Golgi liposomes (Figure 5C). These 252 

observations demonstrate that the two PH domains of the PH-FFAT construct from OSBP, which 253 

forms homodimers, can simultaneously bind two PI(4)P-containing membranes, thereby 254 

causing homotypic tethering. When the PH domains are flanked by the N-ter, homotypic 255 

membrane tethering is prevented, whereas heterotypic membrane tethering is not affected. 256 

CryoEM analysis of homotypic tethering by PH-FFAT 257 

 We visualized by cryoEM the homotypic membrane contacts induced by the PH-FFAT 258 

region of OSBP on PI(4)P-containing liposomes. In incubations with PH-FFAT but not with N-259 

PH-FFAT, we observed large regions of juxtaposition between the liposomes (Figures 5E and 260 

S6C).  In both cases, proteins as seen by dotted electron densities were present bound to the 261 

external lipid leaflet of the membrane (see inserts in Figure 5E).  The contact sites induced by 262 

PH-FFAT had a well-defined intermembrane distance (15 ± 1 nm) and showed a thin band of 263 

protein electron density right in the middle of the two juxtaposed membranes, suggesting that 264 

PH-FFAT adopts a symmetric conformation to tether the two liposomes.   265 

OSBP N-ter regulates protein enrichment and diffusion at homotypic membrane interfaces 266 

Next, we investigated the influence of the N-ter on the distribution and mobility of OSBP 267 

constructs at membrane-membrane interfaces made by GUVs under the two main tethering 268 

conditions identified in this study, i.e. homotypic Golgi-Golgi and heterotypic ER-Golgi tethering. 269 

In all cases, the experiments consisted in adding GUVs of defined features (Golgi-like and/or ER-270 

like) to solutions of fluorescent proteins (e.g. VAP-A, PH-FFAT, N-PH-FFAT, PH-∆CC-FFAT, N-271 

PH-∆CC-FFAT). Two to three fluorescent dyes were used to visualize the GUVs and proteins by 272 

confocal microscopy and to analyze protein dynamics by FRAP experiments (Figure 6). Note 273 

that these assays were complementary to the bulk assays using LUVs and dynamic light 274 

scattering. The GUV assay provided unique information on the distribution and dynamics of the 275 

proteins at the membrane surface but was less quantitative in term of tethering activity than 276 
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bulk assays as it is difficult to master the GUV concentration and therefore the protein/lipid 277 

ratio.  278 

We first incubated Golgi-like GUVs (labelled with the blue probe Atto 390 and containing 279 

2 mol% PI(4)P) with either N-PH-FFAT or PH-FFAT (labeled with Alexa 488 or Alexa568 280 

probes) (Figure 6A). With PH-FFAT, we observed large GUV-GUV contacts, as manifested by the 281 

mutual deformation of the tethered GUVs at the interfacial region. Surprisingly, we also 282 

observed GUV-GUV contacts in the presence of N-PH-FFAT, which seemed at odds with the 283 

results of the DLS experiments (Figure 6A). However, there was an obvious difference between 284 

N-PH-FFAT and PH-FFAT. Whereas PH-FFAT was greatly enriched at the GUV-GUV contact, N-285 

PH-FFAT decorated all membrane surface and showed only a slight enrichment at the interface 286 

(Figure 6A). We also noticed that N-PH-FFAT was not perfectly pure. On SDS-PAGE, the protein 287 

exhibited some contaminants with a lower molecular weight than the major band (Figures 1C 288 

and S7A). An antibody against the C-terminal FFAT motif showed that all bands contained the 289 

C-terminus indicating that N-PH-FFAT was contaminated at a level of about 16% by fragments 290 

with a truncated N-ter, which could explain the tendency of the protein preparation to promote 291 

homotypic tethering in the GUV assay. In spite of this contamination, the comparison between 292 

N-PH-FFAT and PH-FFAT indicated that the presence of the N-ter favored a balanced protein 293 

distribution over all membrane surfaces, whereas the N-ter-lacking construct tended to 294 

accumulate at membrane interfaces (Figure 6A).  295 

We compared the membrane diffusion rates of OSBP-derived constructs by FRAP on 296 

tethered GUVs (Figure 6B). The bleaching area was located either on the free GUV surface or in 297 

the center of the GUV-GUV contact site. For both constructs, the recovery on the free GUV 298 

surface was instantaneous (k > 1 s-1; Fig. S4B) (Figure S7B). In contrast, we could resolve 299 

protein recovery at the GUV-GUV interface and observed that recovery of N-PH-FFAT was much 300 

quicker than that of PH-FFAT (recovery time of ≈ 1 s and >> 100 s, respectively, Figure 6B). 301 



 15 

Thus, the N-ter has a large impact on protein density and diffusion rate of the protein at the 302 

GUV-GUV interface. 303 

In studies with fluorescent binding and nonbinding model proteins at the interface 304 

between GUVs, it has been reported that, small proteins that are able to transversally bind each 305 

other and establish a contact site can exclude larger non-binding proteins (Schmid et al., 2016). 306 

This exclusion is size-dependent and also influenced by protein crowding. Given the clear 307 

difference in membrane distribution and diffusion rate between PH-FFAT and N-PH-FFAT, we 308 

wondered if the effect of N-ter would also be evident under conditions where both proteins co-309 

localize on the same GUV-GUV contact. We thus added GUVs to a 1:1 protein mixture of N-PH-310 

FFAT and PH-FFAT, which could be distinguished from each other by different fluorescent dyes. 311 

After several hours of incubation, we observed a clear segregation between the two proteins: 312 

PH-FFAT concentrated in the GUV-GUV contact sites, whereas N-PH-FFAT predominantly 313 

localized on the free GUV surface (Figure 6C). Thus, the presence of the N-ter upstream of the 314 

PH domain is an effective way of regulating protein crowding/exclusion at membrane 315 

interfaces.  316 

To confirm the effect of the N-ter on protein exclusion, we compared the ability of N-PH-317 

FFAT or PH-FFAT to invade a membrane interface that was already occupied by the other 318 

protein. We first pre-incubated GUVs with either N-PH-FFAT or PH-FFAT labelled with one color 319 

and then added an excess of the other protein (PH-FFAT or N-PH-FFAT, respectively) labeled 320 

with a different fluorophore. Whereas N-PH-FFAT did not invade PH-FFAT-tethered membrane 321 

interfaces, PH-FFAT was able to invade and even replace N-PH-FFAT after a certain time 322 

(Figure S7C). This observation further underlines the impact of the N-ter on protein 323 

distribution and density at membrane interfaces. 324 

OSBP N-ter regulates protein diffusion at heterotypic membrane interfaces 325 
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Last, we moved to conditions of heterotypic tethering by mixing the OSBP constructs 326 

with two populations of GUVs: ER-like GUVs containing 3% DOGS-NiNTA to promote the 327 

binding of histidine tagged VAP-A and Golgi-like GUVs containing 2% PI(4)P (Figure 6D). The 328 

former contained no probe and thus were visible only when a fluorescent protein was bound to 329 

them, whereas the latter were labelled with a blue lipid probe. In pilot experiments, we noticed 330 

that incubations with N-PH-FFAT of PH-FFAT constructs gave complex assemblies where the 331 

GUVs underwent both homotypic and heterotypic contacts, making the analysis complicated. To 332 

simplify the system and focus only on the role of the N-ter, we compared N-PH-∆CC-FFAT and 333 

PH-∆CC-FFAT. The lack of the coiled-coil domain made these constructs monomeric and thus 334 

only able to drive heterotypic tethering (see Figures 1D and 5C-D). Furthermore, their 335 

monomeric nature necessarily decreased the number of putative interactions with the GUVs, 336 

which should favor protein recycling and therefore FRAP analysis. Figure 6D presents confocal 337 

microscopy pictures of heterotypic ER-Golgi GUV-GUV contacts promoted by N-PH-∆CC-FFAT or 338 

PH-∆CC-FFAT. The heterotypic nature of these GUV-GUV contacts was manifested by the blue 339 

fluorescence distribution, which was present only on the Golgi-like GUVs. In all cases, we 340 

noticed a dramatic enrichment of both VAP-A and N-PH-∆CC-FFAT or PH-∆CC-FFAT at the ER-341 

like Golgi-like GUV interface. However, FRAP analysis showed that N-PH-FFAT recovered within 342 

seconds in the GUV-GUV contact region, whereas PH-FFAT showed very slow recovery (Figure 343 

6E). This striking difference in recovery rate was also observed for VAP-A in the GUV-GUV 344 

contact zone (Figure 6F). Thus, the N-ter also controls OSBP density and mobility under 345 

heterotypic tethering conditions, i.e. when the protein is engaged in a dual interaction with VAP-346 

A on one membrane and PI(4)P on the other membranes. 347 

 348 
  349 
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Discussion  350 

The geometry of MCS creates a confined (≈ 20 nm-thick) environment, which could 351 

impede protein dynamics. However, the function of MCS as privileged zones for material 352 

exchange between organelles suggests that proteins in MCS should keep some mobility. This is 353 

especially true for LTPs, which are responsible for massive lipid flows in the cell (Hanada et al., 354 

2003; Mesmin et al., 2017). Our work reveals a key role for the long N-terminal tail of OSBP in 355 

its dynamics at MCS. The N-ter has no direct effect on the lipid transfer mechanism per se, but 356 

considerably accelerates OSBP mobility within the narrow MCS environment. In addition, the N-357 

ter restricts the orientation of OSBP by favoring heterotypic over homotypic membrane 358 

tethering. These two observations suggest a model in which the N-ter acts as an entropic barrier 359 

to prevent OSBP mis-orientation and crowding at MCS (Figure 7). 360 

As determined by FRAP experiments, the N-ter accelerates the apparent mobility of 361 

OSBP or of its PH-FFAT membrane tethering region by 3 to 10-fold, both in cells and in 362 

reconstituted lipid membrane-based systems. This effect is striking both by its trend and by its 363 

amplitude. Increasing the size of a protein generally decreases its mobility due to higher friction 364 

with the milieu; the cytoplasm in the case of a soluble protein, the surrounding lipid bilayer in 365 

the case of a transmembrane protein (Lippincott-Schwartz et al., 2001). However, the effect of 366 

protein size is generally modest: for spherical proteins, doubling the molecular weight 367 

decreases the diffusion coefficient by 1.25-fold given the cubic relationship between MW and 368 

radius (Lippincott-Schwartz et al., 2001). For transmembrane proteins, reconstitution 369 

experiments in model liposomes indicate that the diffusion of large multipass membrane 370 

proteins is only 1.5 slower than that of a single transmembrane helix (Ramadurai et al., 2009). 371 

These comparisons underline the remarkable effect of OSBP N-ter: it constitutes only one tenth 372 

(80 aa) of OSBP sequence (807 aa) and yet it increases the apparent mobility of OSBP/ORP4 and 373 

derived constructs in MCS by almost an order of magnitude (Figures 2C, 6B and 6E). 374 
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The complex arrangements of membranes at the Golgi makes the interpretation of FRAP 375 

recovery curves in this region difficult (Lippincott-Schwartz et al., 2001). OSBP recovery could 376 

occur by lateral diffusion within MCS as well as by exchange with the cytosol pool. Furthermore, 377 

the lipid transfer activity of OSBP creates a negative feedback loop whereby PI(4)P transfer 378 

weakens in turn OSBP membrane association (Mesmin et al., 2013). In contrast, the large and 379 

simple geometry of reconstituted GUV-GUV contacts promoted by tethering constructs that 380 

have no lipid exchange activity ((N)-PH-FFAT and (N)-PH-∆CC-FFAT) facilitates the analysis. 381 

Akin to what happens in cell-cell contacts (Bell, 1978; Wu et al., 2008), fluorescence recovery in 382 

a central spot within a MCS probably occurs via a mixture of diffusive motions and 383 

association/dissociation events. Fitting the recovery curves for N-PH-∆CC-FFAT suggests an 384 

apparent diffusion coefficient in the range of 0.15 µm2 s-1, whereas no significant recovery was 385 

observed when the construct lacked the N-ter. In addition, OSBP N-ter imposes the mobility of 386 

VAP-A, suggesting a general effect on MCS dynamics.  387 

When a tether molecule starts bridging two membranes, other similar molecules get 388 

enriched in the forming MCS as their size matches the intermembrane distance (Schmid et al., 389 

2016). Although this cooperativity is advantageous for MCS formation, it could lead to an excess 390 

of molecules in the MCS, which would in turn prevent their motion. Indeed, protein diffusion 391 

under crowding conditions is no longer dominated by friction with the solvent but by protein-392 

protein collisions (Frick et al., 2007; Ramadurai et al., 2009). Akin to what has been described in 393 

neurofilaments (Brown and Hoh, 1997), our experiments suggest that OSBP N-ter acts as an 394 

entropic barrier whose thermal motion might set the limit for OSBP density at the membrane 395 

surface, thereby preventing OSBP immobilization by crowding. Indeed, protein disorder has a 396 

striking effect on the diffusion of model proteins (Wang et al., 2012). In the dilute regime, an 397 

intrinsically unfolded protein diffuses slower than a folded protein of similar MW because the 398 

former experiences higher friction with the solvent than the latter. Under high crowding regime, 399 

the unfolded protein diffuses faster owing to higher intrinsic flexibility.  400 
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The second effect of the N-ter is to prevent the two PH domains of OSBP from bridging 401 

two PI(4)P-containing membranes. This tethering geometry should be avoided as it diverts 402 

OSBP from productive ER to Golgi sterol transfer. The N-ter could also prevent the binding of 403 

OSBP to PI(4)P present in the ER before SAC1 hydrolysis. However, the possibility of homotypic 404 

tethering pauses the question of the utility of OSBP dimerization. The coiled-coils between the 405 

PH domain and the FFAT motif are probably dispensable for membrane tethering and lipid 406 

transfer. For example, Osh3 displays the same triad organization as OSBP (PH domain - FFAT 407 

motif – ORD), but the linker between the PH domain and the FFAT domain is predicted to form a 408 

37 nm-long monomeric unstructured region (Tong et al., 2013). Similarly, phylogenetic analysis 409 

of OSBP indicates that the N-ter and coiled-coil regions are recent features as compared to the 410 

PH domain and ORD (Figure S2B). Because the advantage of coiled-coils vs flexible tethers is to 411 

precisely set the intermembrane distance, we suggest that the appearance of the N-ter and 412 

coiled-coils has allowed OSBP to finely adapt to the complex membrane organization of the 413 

Golgi apparatus in higher organisms.       414 

Many LTPs acting at MCS contain a low complexity N-ter region upstream their PH 415 

domain. These include not only ORP proteins but also members of the Lam family of sterol 416 

transporters (Ysp3p, Lam4P, Lam5p, Lam6p in yeast, GRAMD1A-C in human) (Gatta et al., 417 

2015). These sequences are different, which might reflect either additional functions or the 418 

weak evolutionary pressure for sequence conservation in intrinsically disordered regions. 419 

Nevertheless, the fact that two different N-ter (in OSBP and in ORP4) have similar effects on 420 

protein mobility in a cellular context suggest than the mere control of protein orientation and 421 

density is a plausible unifying role.    422 
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Figures legends  552 

Figure 1. Low complexity N-terminal sequences increase the hydrodynamic radius of 553 

OSBP and ORP4  554 

(A) Scheme of the various domains and interactions of OSBP/ORP4 and sequence of the N 555 

terminal region.  556 

(B) Constructs used in this study.  557 

(C) SDS-PAGE analysis of the purified constructs. Staining: Sypro Orange. 558 

(D) Stoke radius vs MW of OSBP/ORP4 constructs (colored symbols) and folded standards 559 

(black circles) as determined by gel-filtration. The N-ter increases the Stoke radius by a 560 

factor twice as much as that expected for a well-folded domain. 561 

Figure 2 OSBP/ORP4 N-ter influence protein subcellular localization and dynamics 562 

(A and B) Localization of OSBP-mCherry or ORP4-mCherry constructs overexpressed in 563 

HeLa cells. Left: representative confocal images. Bar = 20 µm. Right: ratio between mean 564 

Golgi signal and mean total cell signal. All localization experiments were also performed 565 

on RPE1 cells with similar results. Each point corresponds to one cell. At least two 566 

experiments were done on each cell type. 567 

(C) FRAP recovery curves of OSBP-mCherry (left) and ORP4-mCherry (right) constructs in 568 

HeLa cells after bleaching a circular area (3 µm diameter) at the Golgi. At least 5 569 

measurements of each construct from one representative experiment among three 570 

independent experiments are shown.  571 

Figure 3. OSBP N-ter facilitates protein turnover under conditions of remote PI(4)P 572 

synthesis 573 

(A-B) RPE1 cells stably expressing the PI(4)P probe GFP-PHOSBP were treated with control 574 

siRNA (siNT, A) or with siRNA against OSBP (siOSBP, B). After 24 hours, widefield time-575 

lapse imaging was performed. When indicated, PIK93 (500 nM) was added into the cell 576 

medium. Top: snapshots of cells taken at t=0 using an inverted grayscale lookup table 577 

(fluorescence in black). Scale bar = 20 µm. Bottom: kymographs taken from a 578 

rectangular TGN region (“K”, ≈ 20 x 3 µm).  579 

(C) Temporal analysis showing normalized mean fluorescence intensity of GFP-PHOSBP from 580 

a circular TGN region (see “T“ on cell images in A-B; diameter 8 µm) over time. Silencing 581 

of endogenous OSBP abolishes GFP-PHOSBP oscillations (black line), in contrast to control 582 

siNT-treated cells (green line).  583 
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(D-E) RPE1 cells stably expressing GFP-PHOSBP and treated with siOSBP were transfected 584 

with siRNA-resistant OSBP (OSBP-res-mCherry) or ∆N-OSBP (∆N-OSBP-res-mCherry) 585 

for 24 h before imaging. The signal from both GFP-PHOSBP and the mCherry construct 586 

was monitored by time-lapse microscopy. 587 

(F) Temporal analysis. OSBP-res-mCherry rescued GFP-PHOSBP oscillations, whereas ∆N-588 

OSBP-res-mCherry did not.  589 

(G) Quantification of GFP-PHOSBP oscillations at TGN from recordings similar to that shown 590 

in (C) and (F). 591 

Figure 4. OSBP/ORP4 N-ter limits protein density on PI(4)P-containing membranes 592 

(A) Visualization of N-PH-∆CC-FFAT or PH-∆CC-FFAT (400 nM) on Golgi-like GUVs (2% 593 

PI(4)P). Bar = 5 µm. 594 

(B) Quantification of protein recruitment from an experiment similar to that shown in (A). 595 

Each point corresponds to one GUV.  596 

(C) Principle of the liposome sedimentation assay. To assess the effect of PI(4)P membrane 597 

density on N-PH-∆CC-FFAT and PH-∆CC-FFAT recruitment, PI(4)P concentration was 598 

held constant (20 µM) but PI(4)P was present at increasing surface concentration while 599 

the liposome concentration was decreased. 600 

(D) Result of the liposome sedimentation assay from 5 independent experiments. PH-FFAT 601 

and N-PH-FFAT showed similar PI(4)P-dependent binding to liposomes at low PI(4)P 602 

density. When the surface density of PI(4)P increased, N-PH-FFAT dissociated from the 603 

liposomes more significantly than PH-FFAT suggesting exclusion by crowding.  604 

Figure 5. Control of liposome tethering geometry by OSBP N-ter  605 

(A-B) The samples initially contained 15 µM of ER-like liposomes (2% DGS-NTA-Ni) labelled 606 

with Oregon Green-DHPE, 15 µM of Golgi like liposomes (2% PI(4)P) labelled with Texas 607 

Red-DHPE, and either 300 nM VAP-A (which binds to ER-like liposomes, A) or no VAP-A 608 

(B). At t = 100 s, 600 nM of the indicated tethering construct (green: N-PH-FFAT, blue 609 

PH-FFAT) was added and liposome aggregation was followed over time by DLS. After 610 

kinetics completion, the DLS samples were visualized by confocal microscopy to 611 

determine the nature of the liposome aggregates. Bar =20 µm.  612 

(C-D) Same as in (A-B) with N-PH-∆CC-FFAT or PH-∆CC-FFAT.  613 

(E) Cryo EM analysis of Golgi-like liposomes (5% PI(4)P) after incubation with N-PH-FFAT or 614 

PH-FFAT. In both cases, liposomes were decorated with proteins (inset). With N-PH-615 

FFAT, no liposome-liposome contact formed. With PH-FFAT, liposome-liposome 616 

contacts, often associated with membrane remodeling, formed with an interdistance of 617 
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15 ± 1 nm and a characteristic central dense layer of protein between them (white arrow 618 

head). Bar = 100 nm. Larger EM fields are shown in Figure S6C. 619 

Figure 6. The N-ter controls OSBP distribution and lateral motility under homotypic and 620 

heterotypic tethering conditions 621 

(A-C) Analysis of homotypic tethering 622 

(A) GUVs containing 2% PI(4)P and labeled with Atto390-DOPE were incubated with 100 623 

nM N-PH-FFAT or PH-FFAT (labelled with Alexa488 or Alexa568) as schematized. 624 

Enrichment index was calculated from line scans across the GUV-GUV interface and free 625 

GUV surface (see star methods and(Schmid et al., 2016)). Each point corresponds to one 626 

GUV-GUV interface. Bar = 5 µm. 627 

(B) FRAP measurements of N-PH-FFAT (green trace) and PH-FFAT (blue trace). 628 

Photobleaching was performed on a circular area (diameter 2 µm) on the interface 629 

between tethered GUVs (see A). Measurements performed with proteins labelled with 630 

Alexa488 or Alexa568 gave similar results. Means ± SD of one representative 631 

experiment is shown (n: numbers of recordings per condition). 632 

(C) 50 nM N-PH-FFAT labeled with Alexa488 (green) and 50 nM PH-FFAT labeled with 633 

Alexa568 (red) were incubated with Golgi-like GUVs (2% PI(4)P, Atto390-DOPE). After 634 

four hours, the suspension was visualized by confocal microscopy. Experiment was also 635 

performed with inverse color combination with similar results. Bar = 5 µm. 636 

(D-F) Analysis of heterotypic tethering 637 

(D) 50 nM N-PH-∆CC-FFAT or PH-∆CC-FFAT labeled with Alexa568 (red) was mixed with 638 

50 nM VAP-A-His labeled with Alexa488 (green). Golgi-like GUVs (2% PI(4)P, Atto390-639 

DOPE) and ER-like GUVs (2% DGS-NTA-Ni, no color) were added and the sample was 640 

very gently mixed. After 30 min, tethered GUVs were observed by confocal microscopy. 641 

Bar = 5 µm. 642 

(E) FRAP measurements at 568 nm of N-PH-∆CC-FFAT or PH-∆CC-FFAT from GUV-GUV 643 

contacts similar to that shown in (D). Photobleaching was performed on a circular area 644 

(diameter 2 µm) in the middle of the GUV interface. Means ± SD of one representative 645 

experiment is shown (n = number of recordings per condition). 646 

(F) Same as in (E) but FRAP was conducted on VAP-A-His labelled with Alexa-488. 647 

Figure 7. Model for N-ter mediated regulation of OSBP tethering geometry and dynamics 648 

at MCS 649 

By being intrinsically disordered, the N-ter of OSBP acts as an entropic barrier. It 650 

prevents the two PH domains from simultaneously bridging two PI(4)P-containing 651 
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membranes. It limits protein density under heterotypic tethering conditions, thereby 652 

facilitating OSBP in plane diffusion.  653 
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STAR methods  654 

KEY RESOURCES TABLE 655 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Rabbit polyclonal anti OSBP Atlas Antibodies Cat# HPA039227, 
RRID:AB_2676401 

Mouse monoclonal anti V9 Vimentin  Sigma-Aldrich Cat# V6389, 
RRID:AB_609914 

Secondary Alexa Fluor-conjugated Thermo Fisher Scientific Cat# A32723, 
RRID:AB_2633275 

secondary HRP-conjugated Jackson ImmunoResearch 
Labs 

Cat# 111-035-047, 
RRID:AB_2337940 

Bacterial and Virus Strains  

Escherichia coli BL21(DE3) IPMC ressources N/A 
Escherichia coli DH10 Bac Thermo Fisher Scientific Cat# 10361012 
Escherichia coli Bl21(DE3)pRIL-TEV Kapust et al., 2001 N/A 
Biological Samples   

   
   

Chemicals, Peptides, and Recombinant Proteins 

Egg PC Avanti Polar Lipids Cat# 840051C 

Brain PS Avanti Polar Lipids Cat# 840032C 

Brain PI(4)P Avanti Polar Lipids Cat# 840045X 

Liver PE Avanti Polar Lipids Cat# 840026C 

Liver PI Avanti Polar Lipids Cat# 840042C 

Dansyl-PE Avanti Polar Lipids Cat# 810330C 

Rhodamine-PE Avanti Polar Lipids Cat# 810158C 

DGS-NTA(Ni) Avanti Polar Lipids Cat# 790404P 

Cholesterol Sigma-Aldrich Cat# C8667 

dehydroergosterol (DHE) Sigma-Aldrich Cat# 81025P 

Methyl-β-cyclodextrin (MCD) Sigma-Aldrich Cat# C4555 

G418 Sigma-Aldrich Cat# G8168 

PIK93 Sigma-Aldrich Cat# SML0546 

Texas Red-DHPE Invitrogen Cat# T1395MP 
Oregon Green-DHPE Invitrogen Cat#  O12650  
Atto390-DHPE Atto-TEC Cat# AD 390-161 

HisPurTM Cobalt Resin  Thermo Scientific Cat# 89964 
Lipofectamine 2000 reagent  Invitrogen Cat# 11668-019 
Amaxa Cell Line Nucleofector Kit V Lonza Cat# VCA-1003 
Amaxa Cell Line Nucleofector Kit R Lonza Cat# VCA-1001 
Complete-EDTA-free protease inhibitor Roche Cat# 05056489001 

Critical Commercial Assays 

GeneArtTM Seamless Cloning and Assembly 
Enzyme Mix 

Invitrogen Cat# A14606 
 

Deposited Data 

   

Experimental Models: Cell Lines 
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hTERT-RPE1 ATCC RRID:CVCL_4388 
HeLa Gift from Thierry Coppola N/A 
SF9 From lab N/A 
   

Experimental Models: Organisms/Strains 

   

Oligonucleotides 

ON-TARGETplus Human OSBP (5007) siRNA 
Target sequence : GCAAUGACUUGAUAGCUAA 

Dharmacon (GE 
Healthcare) 

Cat# J-009747-06-
0020 

ON-TARGETplus Non-targeting siRNA 
Target sequence : UGGUUUACAUGUUGUGUGA 

Dharmacon (GE 
Healthcare) 

Cat# D-001810-02-05 

siRNA-resistant OSBP-For : CTT GAG CAC GTG 
CAA TGA TCT TAT AGC TAA GCA TGG C 

This study N/A 

siRNA-resistant OSBP-Rev : GCC ATG CTT AGC 
TAT AAG ATC ATT GCA CGT GCT CAA G 

This study N/A 

pFastBac-HTA-mod1-For: CTG TAT TTT CAG GGC 
GCC TAA TAG CCG GAA TTC AAA GGC CTA 

This study N/A 

pFastBac-HTA-mod2-For : TCT CGG TCC GAA 
TAC CAT CAC CAT CAC CAT C 

This study N/A 

   

Recombinant DNA 

pmCherry-N1-OSBP PH-FFAT (76-408) Mesmin et al., 2013 N/A 
pmCherry-N1-OSBP FL (1-807) This study N/A 
pmCherry-N1- -807) This study N/A 
pmCherry-N1-OSBP N-PH-FFAT (1-408) This study N/A 
pmCherry-N1-ORP4 FL (1-878) This study N/A 
pmCherry-N1- -878) This study N/A 
pmCherry-N1-ORP4 N-PH-FFAT (1-474) This study N/A 
pmCherry-N1-ORP4 PH-FFAT (144-474) This study N/A 
pmCherry-N1-res-OSBP FL (1-807) This study N/A 
pmCherry-N1- res- -807) This study N/A 
pENTD/R-OSBP FL (1-807)-SThr-6His Mesmin et al., 2013 N/A 
pFast-Bac-6His Cter (intermediate plasmide) This study N/A 

pFB- OSBP N (88-807)-SThr-6His This study N/A 

pET.His6.StrepII.TEV.LIC (2HR-T) gift from Scott Gradia Addgene # 29718 
pET.His10.TEV.LIC  (2B-T-10)  gift from Scott Gradia Addgene # 78173 
pET16b. StrepII.TEV.OSBP N-PH-FFAT (1-408) This study N/A 
pET16b. StrepII.TEV.OSBP PH-FFAT (76-408) This study N/A 
pET16b.His10.TEV.LIC (intermediate plasmide) This study N/A 
pET16b.His10.TEV. ORP4 N-PH-FFAT (1-475) This study N/A 
pET16b.His10.TEV. ORP4 PH-FFAT (128-475) This study N/A 
pGEX-4T3-PHFAPP1 (C37S/C94S/T13C/T100S) Mesmin et al., 2013 N/A 
pET-21b-VAP-A Mesmin et al., 2013 N/A 
pET-21b-VAP-A (K94D/M96D) Mesmin et al., 2013 N/A 
pEGFP-C1-PHOSBP Mesmin et al., 2013 N/A 
pTagBFP-N-β-1,4-Galactosyltransferase-1 (1-82) Mesmin et al., 2017 N/A 
pEGFP-Rab7 Gift from Sylvain 

Feliciangeli 
N/A 

   

Software and Algorithms 
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Predictor of Natural Disordered Regions 
(PONDR®) 

Molecular Kinetics, Inc. http://www.pondr.co
m/ 

ProtParam ExPASy Bioinformatics 
Resource Portal, SIB 

https://web.expasy.or
g/protparam/ 

Phylogeny.fr Sebastien Santini - 
CNRS/AMU IGS UMR7256 

http://www.phylogen
y.fr/  

Clustal Omega Sievers et al., 2011 https://www.ebi.ac.uk
/Tools/msa/clustalo/ 

COILS version 2.2 web server Lupas et al., 1991 https://embnet.vital-
it.ch/software/COILS_f
orm.html 

ImageJ 1.51w NIH, USA  
Zen 2011 Carl Zeiss SAS  
MetaMorph Version 7.8.9.0 Molecular Devices LLC  
Dynamics v6.1  Protein Solutions  
SigmaPlot 14 Systat Software Inc.  
Canvas X ACD System  

Other 

   
   

 656 

 657 

  658 

http://www.pondr.com/
http://www.pondr.com/
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
http://www.phylogeny.fr/
http://www.phylogeny.fr/


 31 

Reagents 659 

Rabbit polyclonal antibody against OSBP (Atlas Antibodies Cat# HPA039227, 660 

RRID:AB_2676401)) and mouse monoclonal V9 Vimentin antibody (Sigma-Aldrich Cat# V6389, 661 

RRID:AB_609914 ) were from Sigma-Aldrich. Secondary Alexa Fluor-conjugated antibody 662 

(Thermo Fisher Scientific Cat# A32723, RRID:AB_2633275) were from Invitrogen and 663 

secondary HRP-conjugated antibody were from Jackson ImmunoResearch (Jackson 664 

ImmunoResearch Labs Cat# 111-035-047, RRID:AB_2337940). 665 

Egg PC, brain PS, brain PI(4)P, liver PI, liver PE, dansyl-PE (1,2-dioleoyl-sn-glycero-3-666 

phosphoethanolamine-N-(5-dimethylamino-1-naphthalenesulfonyl)), rhodamine-PE [1,2-667 

dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)], and DGS-668 

NTA(Ni) [1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl) iminodiacetic acid) 669 

succinyl] (nickel salt)] were from Avanti Polar Lipids.  670 

Cholesterol, dehydroergosterol (DHE), Methyl-β-cyclodextrin (MCD) and G418 were from 671 

Sigma-Aldrich.  672 

Texas Red-DHPE, Oregon Green-DHPE and Atto390-DHPE were from Invitrogen.  673 

 674 

Bioinformatic analysis 675 

We used the following sequences of human ORPs (Uniprot access number): OSBP1 (P22059), 676 

OSBP2/ORP4 (Q969R2), ORP5 (Q9H0X9), ORP8L (Q9BZF1), ORP10 (Q9BXB5), ORP11 677 

(Q9BXB4), ORP6 (Q9BZF3), ORP7 (Q9BZF2), ORP1 (Q9BXW6), ORP3 (Q9H4L5), ORP9 678 

(Q96SU4). Notably, our ORP4 sequence (gift from N. Ridgway) started at M39 (as referred to 679 

UNIPROT Q969R2:ORP4-OSBP2 sequence), therefore, in all this study M1 corresponds to M39 680 

of the UNIPROT reference sequence. Order/disorder composition of different ORPs was 681 

determined with “Predictor of Natural Disordered Regions (PONDR®)” web server 682 

(http://www.pondr.com/) using VL3-BA and VSL2 predictors. Amino acids % composition of 683 

selected domains was determined using Expasy/protparam web server 684 

(https://web.expasy.org/protparam/) and plotted as pie charts to highlight similarities and 685 

divergences between domains (N-terminus, PH domain, ORD). Limits of selected domains are 686 

details in Figure S2A. 687 

For phylogenetic analysis, protein sequences of higher eukaryotes most similar to human OSBP 688 

were obtained from the UniProt database. The phylogenetic tree was created using the 689 

Phylogeny.fr server (Dereeper and Guignon et al., 2008). The sequences of each OSBP domain 690 

were then aligned and compared to that of the corresponding human domain using Clustal 691 

Omega (Sievers et al., 2011). A percent identity matrix was calculated for each domain. For the 692 

N-ter, sequences shorter than 20 amino acids were not included in the identity analysis. The 693 

http://www.pondr.com/
https://web.expasy.org/protparam/
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prediction of coiled-coils was done using the COILS 2.2 web server (Lupas et al., 1991). Only 694 

sequences located between the PH domain and the FFAT motif were evaluated..  695 

 696 

Plasmids and cell transfection 697 

Plasmid for OSBP PH-FFAT (residues 76-408) has been previously described (Mesmin et al., 698 

2013). 699 

Human OSBP sequences [full-length (residues 1-807), N (residues 86-807), N-PH-FFAT 700 

(residues 1-408) and human ORP4 sequences [FL (residues 1-878), N (residues 144-878), N-701 

PH-FFAT (residues 1-474), PH-FFAT (residues 144-474)] were cloned into the BamHI site of 702 

pmCherry-N1 vector using the GeneArtTM Seamless Cloning and Assembly Kit (Invitrogen).  703 

The siRNA-resistant OSBP constructs (full-length and N) were prepared by PCR using the 704 

corresponding pmCherry-N1 plasmids as template with primers F: CTT GAG CAC GTG CAA TGA 705 

TCT TAT AGC TAA GCA TGG C and R: GCC ATG CTT AGC TAT AAG ATC ATT GCA CGT GCT CAA G. 706 

For protein expression, cells were transfected with Lipofectamine 2000 reagent (Invitrogen) or 707 

by electroporation with Nucleofector Solution (Lonza) using the Amaxa Nucleofector device 708 

(Lonza), for 18-24 hrs.  709 

 710 

Construction, expression and purification of OSBP and ∆N-OSBP 711 

Full-length (1-807) human OSBP and N-OSBP (88-807) were purified from baculovirus-712 

infected Sf9 cells. The construct of full-length (1-807) human OSBP in pENTD/R was previously 713 

described (Mesmin et al., 2013). ForN-OSBP, the pFastBacTMHTA vector (Invitrogen) was 714 

modified by successive mutations to allow the insertion of a PCR amplified sequence upstream 715 

and in frame with the 6His tag. These modifications were: 1) transformation of the original 716 

BamHI site into 2 stop codons (F oligo sequence: CTG TAT TTT CAG GGC GCC TAA TAG CCG GAA 717 

TTC AAA GGC CTA); 2) insertion of a new BamHI site upstream of the His tag (F oligo sequence: 718 

TCT CGG TCC GAA TAC CAT CAC CAT CAC CAT C). [OSBP N (88-807) + thrombin site] DNA 719 

sequence was PCR amplified using the pENTR/D-(OSBP-FL-thrombin site) as matrix and cloned 720 

into the BamHI-digested pFastBac HTA modified vector using the GeneArtTM Seamless Cloning 721 

and Assembly Kit (Invitrogen). Recombinant vectors were then transformed into DH10 Bac 722 

E.coli. Recombinant bacmides were selected as described in Bac to BacR Expression System user 723 

manual (Invitrogen) and used to produce recombinant Baculovirus.  724 

Full-length OSBP and N-OSBP with a C-terminal 6His tag were purified from baculovirus-725 

infected Sf9 cells as described (Mesmin et al., 2013). Cell pellets were resuspended in lysis 726 

buffer (20 mM Tris pH 7.5, 300 mM NaCl, 20 mM imidazole, EDTA-free protease inhibitors and 727 

phosphatases inhibitors) and lysed with Dounce homogenizer. After ultracentrifugation 728 

(125 000 g), OSBP or ∆N-OSBP from the supernatant was adsorbed on an HisPurTM Cobalt Resin 729 
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(Thermo Scientific), submitted to 3 washes with lysis buffer supplemented with 800, 550, and 730 

300 mM NaCl, respectively, and then eluted with 250 mM imidazole-containing buffer. OSBP 731 

fractions were pooled, concentrated on Amicon Ultra (cut-off 30 kDa), and submitted to 732 

thrombin cleavage for 1 hr at 25°C to eliminate the His tag, then purified on a Sephacryl S300 733 

HK16/70 column (GE Healthcare) using an AKTÄ chromatography system (GE Healthcare). All 734 

steps were performed at 4°C. The purified protein fractions were pooled, concentrated,  735 

supplemented with 10 % glycerol, flash-frozen in liquid nitrogen and stored at -80°C.  736 

 737 

Construction, expression and purification of OSBP and ORP4 fragments 738 

N-PH-FFAT and PH-FFAT fragments of OSBP and ORP4 were expressed in E. Coli BL21 (DE3). 739 

The corresponding constructs were prepared using pET.His6.StrepII.TEV.LIC (2HR-T, Addgene 740 

plasmid # 29718) and pET.His10.TEV.LIC (2B-T-10, Addgene plasmid # 78173) cloning vectors 741 

(gift from Scott Gradia). 742 

 743 

OSBP N-PH-FFAT (1-408) and OSBP PH-FFAT (76-408) fragments were first inserted into 744 

pET.His6.StrepII.TEV.LIC  vector, subcloned into pET16b, and then expressed as N-terminal 6His 745 

tag- StrepII-TEV site constructs.  746 

ORP4 DNA sequences [ORP4(1-475)=N-PH-FFAT, ORP4(128-475)=PH-FFAT] were PCR 747 

amplified using the pmCherry-ORP4 FL as matrix. The host plasmid pET16b.His10.TEV.LIC was 748 

prepared from the pET16b.His6.StrepII.TEV.LIC OSBP(76-408) by replacing the fragment 749 

His6.StrepII.TEV.LIC OSBP(76-408) by a His10.TEV.LIC fragment. In addition, the SspI site of 750 

pET16b was mutated (AATATT into AATAGC). Last, the ORP4 N-PH-FFAT or PH-FFAT PCR 751 

fragments were inserted into the SspI digested pET16b.His10.TEV.LIC vector using GeneArtTM 752 

Seamless Cloning and Assembly Enzyme Mix (Invitrogen).  After protein expression, bacteria 753 

were lysed with a French Press (SLM AMINCO) and incubated for 30 min on ice with DNAse and 754 

MgCl2 (5mM) before ultracentrifugation (125 000 g). His tagged proteins were purified using 755 

HisPur™ Cobalt Resin (Thermo Scientific). Protein fractions were pooled and submitted to TEV 756 

protease cleavage overnight at 4°C. Digested proteins were purified on a SourceQ HR 10/10 757 

column (GE Healthcare) with a 0-1M NaCl gradient in 25mM Tris pH7.5 followed by a Sephacryl 758 

S200 HK16/70 column (GE Healthcare) equilibrated in 25mM Tris pH7.5, 120 mM NaCl, 2mM 759 

DTT. Purified proteins were pooled, concentrated, supplemented with 10% glycerol, flash-760 

frozen in liquid nitrogen and stored at -80°C. 761 

N-PH-∆CC-FFAT and PH-∆CC-FFAT constructs were prepared from pGEX4.T1 (GE Healthcare) 762 

plasmids expressing the OSBP (1-408) or (76-408) sequence. A NaeI restriction was introduced 763 

by site directed mutagenesis to remove the coiled-coil (207-329) region by digestion / ligation 764 

taking advantage of another NaeI site. Proteins were expressed as N-terminal (GST-thrombin-765 
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site) constructs in E. coli BL21(DE3). Purification was preformed using Glutathione Sepharose 766 

beads (GE Healthcare). GST was removed by thrombin clivage. The subsequent purification 767 

steps were the same as that used for N-PH-FFAT / PH-FFAT.   768 

All new construct sequences were confirmed by sequencing. 769 

 770 

Other protein constructs 771 

The preparation of NBD-PHFAPP1 and VAP-A have been described previously (Mesmin et al., 772 

2013). The TEV protease plasmid (gift from D. Waugh) (Kapust et al., 2001) was used to 773 

expressed the protein in Bl21(DE3)pRIL E.coli which was purified as described (Tropea et al., 774 

2009).  775 

 776 

Cell culture 777 

HeLa cells were cultured in DMEM medium with glutaMAX (Gibco) supplemented with 10% 778 

fetal calf serum, 1% antibiotics (Zell Shield, Minerva Biolabs) and were incubated at 37°C in a 779 

5% CO2 humidified atmosphere. For hTERT-RPE1 cells (ATCC Cat# CRL-4000, 780 

RRID:CVCL_4388); hereafter RPE1 cells), DMEM was replaced by DMEM/F12 (Gibco). RPE1 781 

cells stably expressing EGFP-PHOSBP were selected using G418 (Sigma). Surviving colonies were 782 

isolated using cloning cylinders (Bel-Art), expanded and further sorted by FACS (FACSAria III, 783 

BD Biosciences). RPE1 cells stably expressing EGFP-PHOSBP, EGFP-P4MSidM were cultured in 784 

medium supplemented with G418 (500 µg/ml). For microscopy, cells were seeded at suitable 785 

density to reach 50-90% confluence on the day of imaging. SF9 cells were cultured at 27°C in SF-786 

900 II media supplemented with 1,5% FCS in absence of antibiotic. For protein expression SF9 787 

cells were infected at 106 cells/ml and an MOI of 0.1 in 0.5 l CELLSPIN Spinner. After 72h, cells 788 

were collected by centrifugation at 300xg for 15 mn, washed in PBS and stored at -20°C. 789 

 790 

RNA interference 791 

For endogenous OSBP silencing and simultaneous expression of siRNA resistant OSBP, RPE-1 792 

cells stably expressing GFP-PHOSBP were electroporated with 90 pmol siRNA and 1 g siRNA-793 

resistant OSBP plasmid using RNAiMAX (Invitrogen) and plated on 6-well plate or on µ-Dish35mm 794 

(Ibidi). ON-TARGETplus Human OSBP siRNA was from Dharmacon (GE Healthcare, target 795 

sequence: GCAAUGACUUGAUAGCUAA). After 18-24 hrs cells were used for live-cell imaging or 796 

western blotting. 797 

 798 

Liposome preparation 799 

Lipids in chloroform or in chloroform:methanol (2:1) in the case of mixtures containing PI(4)P) 800 

were mixed at the desired molar ratio and the solvent was removed in a rotary evaporator. For 801 
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most assays, the lipid films were hydrated in 50 mM HEPES pH 7.2 and 120 mM potassium 802 

acetate (HK buffer, which was degassed before use) to give a suspension of large multilamellar 803 

liposomes (lipid concentration: 2-5 mM). In the case of sedimentation assay, the lipid films were 804 

hydrated (lipid concentration: 2mM) in 50 mM HEPES pH 7.2, sucrose 210 mM. The suspensions 805 

were then frozen in liquid nitrogen and thawed in a water bath (40°C) four times. Liposomes 806 

were extruded through 0.1 µm pore size polycarbonate filters using hand extruder (Avanti Polar 807 

Lipids) and were used within 1-2 days. 808 

 809 

GUV Preparation 810 

Giant unilamellar vesicles were generated by electro-formation. Lipids mixtures of the chosen 811 

composition (0.5 mg/ml) in chloroform or in 2:1 chloroform:methanol in the case of mixtures 812 

containing PI(4)P were deposited on indium tin oxide coated glass slides and dried at RT for 45 813 

min to remove all solvents. Lipids were then hydrated in 250 mM sucrose osmotically 814 

equilibrated with buffers. GUVs were electroformed using Vesicle Prep Pro (Nanion 815 

Technologies) by applying an AC electric field (3 V and 5 Hz), at 37 °C for 60 min.  816 

 817 

Liposomes aggregation measurements 818 

Liposome aggregation induced by OSBP or ORP4 fragments was followed in real time by 819 

dynamic light scattering (DLS) using a DynaPro instrument (Protein Solutions) as described 820 

(Mesmin et al., 2013). Golgi-like liposomes (15 µM) containing 0 - 4% PI(4)P and ER-like 821 

liposomes containing 2% DGS-NTA(Ni) (15 µM) were mixed in HK buffer supplemented with 1 822 

mM MgCl2 and 1 mMDTT (HKMD buffer) and with VAP-A-His or VAP-A(KM-DD)-His (300 - 600 823 

nM) as indicated. 10 DLS autocorrelation curves (= 10 x 10 seconds) were acquired to 824 

determine the initial size distribution of liposome suspension. Thereafter, 300 - 600 nM OSBP or 825 

ORP4 fragment was injected and liposome aggregation was followed in real time by acquiring 826 

one autocorrelation curve every 10 s. The temperature was set at 30°C. Data were analyzed 827 

using the Dynamics v6.1 software (Protein Solutions). 828 

 829 

Microscopy, FRAP assays 830 

Confocal microscopy of fixed cells was performed with a Zeiss LSM780 microscope run by ZEN 831 

software using a Plan-Apochromat 63X/1.4 Oil objective (Carl Zeiss). Confocal microscopy of 832 

liposomes or GUVs was performed using the same microscope. The liposome or GUV suspension 833 

in HKM buffer (50mM HEPES, 120mM potassium acetate and 1mM MgCl2) was placed in 8-well 834 

Dish (Ibidi) coated by casein (Sigma Aldrich); imaging was performed at room temperature. 835 

Fluorescence recovery after photobleaching recordings were performed with a Zeiss LSM780 836 

microscope or with a Nicon Eclipse Ti microscope equipped with an UltraVIEW VoX spinning 837 
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disc imaging system (PerkinElmer) operated by Volocity software, and using a CFI Plan Apo 838 

100X/1.4 Oil objective (Nikon). Cells were placed in phenol red-free medium supplemented 839 

with HEPES (Gibco) and FRAP assays were carried out at 37°C. Photobleaching was performed 840 

on circular areas of 3 µm within perinuclear regions positive for BFP-GalT signal. FRAP assays 841 

with liposomes/GUVs were performed in HKM buffer at room temperature. Photobleaching was 842 

-GUV interface.  843 

Time-lapse widefield microscopy was performed using an Olympus IX83 inverted microscope 844 

equipped with a Z-drift compensator, a scanning stage SCAN IM (Märzhäuser) and an iXon3 845 

camera (Andor). Cells plated in -Dish35mm (Ibidi) were put into a stage chamber set at 37°C 846 

(Okolab). Tag BFP, EGFP and mCherry signal were detected using Chroma fluorescence filter 847 

sets (ref. 49000, 39002, 39010). Multidimensional acquisition and analysis was performed with 848 

MetaMorph software (Molecular Devices).  849 

 850 

Image analysis 851 

For TGN/cytosol ratio, two ROIs of the same area were applied in the TGN and in the cytosol. 852 

The average fluorescence was determined for each ROI and the ratio was then calculated. 853 

Kymographs were generated using the Metamorph software (Molecular Devices) from a line 854 

drawn on the image stack and projected across time of the complete time series. The lines were 855 

72 pixels long (ca. 20 µm) with a width set to 10 pixels (ca. 3 µm), from which pixel values were 856 

averaged. Scan lines quantification on GUVs were generated using Image J software. 857 

 858 

Analytical gel filtration 859 

Purified proteins (100 µl, 5 µM) were applied on a Superose 12TMcolumn (GE Healthcare) and 860 

eluted at a flow rate of 0.5 ml.min-1 in 25 mM Tris pH 7.5, 120 mM NaCl and 1mM DTT. The 861 

column was calibrated using the following standards (MW/Stokes radius): Apoferritin (443 862 

kDa/6.1 nm), Alcohol dehydrogenase (150 kDa/4.6 nm), Bovine serum albumin (67 kDa/3.5 863 

nm), Carbonic anhydrase (25 kDa/2.1 nm) and Cytochrome C (12.4 kDa/ 1.7 nm). The elution 864 

volume and Stoke’s radius of the standards were used to establish a first calibration curve, from 865 

which the Stoke’s radius of the OSBP/ORP4 constructs were determined. Thereafter, we plotted 866 

the Stoke’s radius as a function of MW for both protein standards and for OSBP/ORP4 867 

constructs. 868 

 869 

In vitro PI(4)P-transfer assays 870 

PI(4)P-transfer assays were performed as described previously using purified recombinant 871 

proteins and extruded liposomes mimicking ER and Golgi membranes (Mesmin et al., 2013; 872 

2017). The default lipid composition of the ER and Golgi liposomes was egg PC/brain PS/DGS-873 
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NTA(Ni)/cholesterol (93/5/2/0-15 mol%) and egg PC/liver PE/brain PS/liver PI/brain PI(4)P/ 874 

rhodamine-PE  (64/17/5/12-8/0-4/2mol%), respectively. Measurements were carried out in a 875 

Jasco FP-8300 spectrofluorimeter using a cylindrical quartz cuvette (600 µl) equilibrated at 876 

37°C and equipped with a magnetic bar for continuous stirring. The cuvette initially contained 877 

NBD-PHFAPP1 (300 nM) and VAP-A-His (3 µM) in HKM buffer. NBD emission was measured at 878 

510 nm (excitation 460 nm). Golgi liposomes (300 µM lipid supplemented with 4% PI(4)P and 879 

2% rhodamine-PE), ER liposomes (300 µM lipid, ± 15% cholesterol) and OSBP (0.1 µM) were 880 

then sequentially added at the indicated times.  881 

 882 

Sedimentation assay 883 

For sedimentation assays comparing the binding properties of N-PH-∆CC-FFAT and PH-∆CC-884 

FFAT, we used sucrose-loaded Golgi-like liposomes containing (mol%) egg PC (61), liver PE 885 

(17), brain PS (5), cholesterol (10), Rhodamine-PE (2) and increasing amount of brain PI(4)P (0, 886 

1, 2, 5, 8 or 15 mol%) at the expense of liver PI (15, 14, 13, 10, 7 or 0 mol%). Proteins (3 µM) 887 

and liposomes (up to 20 µM PI(4)P) were incubated in 50 mM Hepes (pH 7.2), 120 mM 888 

potassium acetate, and 1 mM MgCl2 (HKM buffer) at room temperature for 30 min in a total 889 

volume of 50 µL. The samples were centrifuged at 240 000g in a TLA 120.1 (Beckman) rotor for 890 

1 h. The pellets resuspended in 50µl HKM buffer before analysis on 13% SDS-PAGE by Sypro 891 

orange staining. 892 

 893 

Cryo-EM experiments 894 

Lipid mixture in CHCl3 composed of Egg PC/brain PS/brain PI(4)P (85/15/5 molar ratio) were 895 

dried under a nitrogen flux for 5 minutes and further dried under vacuum for 60 minutes. Lipid 896 

film was rehydrated at 1 mM in 50 mM Hepes pH 7, 120 mM K-acetate and liposomes were 897 

formed by 2 minutes vortex. Liposomes were diluted at 30 M with 600 nM N-PH-FFAT or PH-898 

FFAT. After 5 minutes incubation, a 5 µL drop of the solution was deposited on a glow 899 

discharged lacey carbon electron microscopy grid (Ted Pella, USA). Blotting was carried out on 900 

the opposite side from the liquid drop and plunge frozen in liquid ethane (EMGP, Leica, 901 

Germany). Samples were imaged using a Tecnai G2 (Thermofisher, USA) microscope operated at 902 

200 kV and equipped with a 4k x 4k CMOS camera (F416, TVIPS). Image acquisition was 903 

performed under low dose conditions of 10 e-/Å2 at a magnification of 50,000 or 29,500 with a 904 

pixel size of 2.13 Å and 3. Å, respectively. 905 
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Supplementary Figures legends  932 

Figure S1. Intrinsically disordered regions in ORPs. Related to Figure 1 933 

(A) Disorder prediction in ORPs. Scores were obtained using PONDR® web server 934 

(algorithms: VL3, grey; VSL2, blue) of the indicated ORPs, which were ordered according 935 

to subfamilies (Lehto et al., 2001). Regions corresponding to PH domain, ORD and 936 

ankyrin repeats are highlighted in yellow, green and pink, respectively.  937 

(B)  Amino acid composition of ORP N-ter (upper row), PH domain (middle row) and ORD 938 

(bottom row). For the aa range of each domain see Figure S2A 939 

 940 

Figure S2. Intrinsically disordered regions in ORPs. Related to Figure 1 941 

(A) Amino-acid range of the various domains and regions of ORPs.  942 

(B) Phylogenetic tree of OSBP in higher eukaryotes. The bar plots show aa identity in the N-943 

ter region and in the PH and ORD domains (see STAR method). N-terminal sequences 944 

shorter than 20 amino acids were excluded from the identity analysis (blank rows). The 945 

column showing the probability of coiled-coil formation between the PH domain and 946 

FFAT motif was built by scanning the corresponding sequences using three windows in 947 

the COILS software: (++): all scanning windows give a region with a coiled-coil 948 

probability score > 0.5; (+) one or two scanning window gives a coiled-coil probability 949 

score > 0.5. (0) all scanning windows give a coiled-coil probability score < 0.5.  950 

 951 

Figure S3. OSBP colocalizes with endosome marker and ORP4 constructs containing the 952 

ORD interact with vimentin filaments. Related to Figure 2 953 

(A) Overexpressed OSBP-mCherry colocalizes with TGN marker BFP-GalT and endosome 954 

marker GFP-Rab7 in RPE1 cells. Bar = 20 µm. 955 

(B) Overexpressed ORP4 FL-mCherry colocalizes with TGN marker BFP-GalT and vimentin 956 

filaments (visualized with anti-vimentin antibody).  957 

(C) ∆N-ORP4-mCherry overexpression causes reorganization of vimentin filaments with 958 

“bundles” of intermediate filaments appearing in perinuclear region and colocalizing 959 

with ∆N-ORP4-mCherry. 960 

 961 

Figure S4. N-ter deletion does not affect lipid transfer by OSBP. Related to Figure 3 962 

(A) Representative fluorescence images of RPE1 cells co-transfected with the PI(4)P probe 963 

GFP-PHOSBP and OSBP-mCherry (red) or ∆N-OSBP-mCherry (orange), respectively. Bar = 964 

5 µm. 965 
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(B) Quantification of experiments similar to (A). The two OSBP constructs cause a similar 966 

reduction in GFP-PHOSBP at the Golgi. Each point corresponds to one cell. Data shown are 967 

representative from two independent experiments. 968 

(C) Time course of DHE transfer from ER-like to Golgi-like liposomes by 100 nM OSBP or 969 

∆N-OSBP.  970 

(D) Transfer of PI(4)P from Golgi-like liposomes to ER-like liposomes by 100 nM OSBP or 971 

∆N-OSBP. The experiment was performed either in the absence or in the presence of 972 

cholesterol (15 mol%) in the ER-like liposomes.  973 

 974 

Figure S5. Homotypic liposome tethering by OSBP/ORP4 constructs and dependence on 975 

VAP-A interaction. Related to figure 5.  976 

(A-B) Same analysis as in Figure 5A-B with N-PH-FFAT or PH-FFAT constructs from ORP4.  977 

(C) Same analysis as in Figure 5A with a VAP mutant (KM-DD) unable to interact with the 978 

FFAT motif of OSBP.  979 

 980 

Figure S6. Homotypic liposome tethering by PH-FFAT is dependent on PI(4)P and on 981 

the ability of PH-FFAT to dimerize. Related to Figure 5. 982 

(A-B) Homotypic tethering mediated by PH-FFAT requires PI(4)P and protein dimerization. 983 

The sample contained 15 µM Golgi like liposomes (0% or 2% PI(4)P, as indicated) 984 

labelled with Oregon Green-DHPE and 15 µM of Golgi like liposomes (0% or 2% PI(4)P, 985 

as indicated) labelled with Texas Red-DHPE. At t=100 s, 300 nM PH-FFAT (A) or PH-986 

∆CC-FFAT (B) was added. Bar = 20 µm. 987 

(C) Large Cryo EM fields at low magnification of Golgi-like liposomes (5% PI(4)P) after 988 

incubation with N-PH-FFAT or PH-FFAT. Bar = 500nm. 989 

 990 

Figure S7. OSBP N-ter controls protein distribution and lateral motility on GUVs. 991 

Related to Figure 6.  992 

(A) N-PH-FFAT (labeled with Alexa488) contains shorter constructs, resembling PH-FFAT. 993 

The protein was analyzed by western blot using antibody against FFAT motif (left) or 994 

directly visualized by Alexa488 fluorescence (right). 995 

(B) FRAP measurements performed on the free surface of tethered GUVs. Measurements 996 

were performed on proteins labelled with Alexa488 or Alexa568, with similar results. 997 

Two measurements per condition from one experiment are shown. 998 
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(C) Golgi-like GUVs (2% PI(4)P, labeled with Atto390-DOPE) were preincubated with 50nM 999 

of N-PH-FFAT (Alexa488, green) or PH-FFAT (Alexa488, green). After 30 min, an excess 1000 

of PH-FFAT (Alexa568, red) and N-PH-FFAT (Alexa568, red) was added, respectively. 1001 

Confocal microscopy was performed after additional 30 min of incubation. Bar = 5 µm.    1002 
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