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ABSTRACT 
 

 
The last decades have been marked by the discovery of pervasive transcription. Indeed, many 
studies have shown that transcription by RNA polymerase II is not restricted to annotated 
regions but is widespread in eukaryotic genomes, leading to the production of a plethora of 
non-coding RNAs. Precise delimitation of transcriptional units appears to be essential to 
ensure robust fidelity of gene expression and to maintain the integrity of DNA-associated 
events by preventing the occurrence of conflicts with transcription. In this respect, accurate 
transcription initiation and termination represent crucial mechanisms to partition the genome 
and define the correct processing of RNA molecules. Here, we show that yeast general 
regulatory factors (GRFs), a class of highly expressed transcription regulators, control 
pervasive transcription at the level of initiation and termination and are also involved in the 
fidelity of initiation of mRNA-coding genes. We demonstrate that GRFs bound at promoter 
regions can elicit transcription termination by physically impeding the progression of 
polymerases mainly deriving from readthrough transcription at upstream canonical termination 
sites. We provide evidence that this termination pathway named roadblock is widespread 
throughout the yeast genome and protects promoter regions from transcriptional interference. 
Furthermore, we establish that the presence of general regulatory factors limits pervasive 
transcription at the level of initiation, notably by occluding spurious transcription start sites 
present in the vicinity of their binding sites. We also unveil the importance of these factors in 
promoting correct transcription start site selection at mRNA-coding genes thus favouring the 
synthesis of transcripts with an appropriate coding potential. Finally, we determine that the role 
of GRFs in controlling proper initiation is intimately linked to their ability to correctly position 
nucleosomes in promoters, a role that occurs independently from but in cooperation with 
chromatin remodelers. 
 

RESUME 
 

 
Ces dernières décennies ont été marquées par la découverte de la transcription dite 
« cachée » ou « pervasive ». Il a été en effet montré que la majeure partie du génome des 
eucaryotes est transcrite, donnant naissance à la formation de nombreux ARNs non-codants. 
La délimitation des unités de transcription apparait essentielle dans le contrôle de l’expression 
des gènes mais également dans le maintien de l’intégrité des processus associés à l’ADN en 
limitant notamment l’apparition de conflits avec la transcription. Dans ce contexte, l’initiation et 
la terminaison de la transcription représentent des étapes clés dans le partitionnement du 
génome et le métabolisme des ARNs. Nous avons montré que certains facteurs de 
transcription, appelés GRFs (General Regulatory Factors) chez la levure S. cerevisiae, jouent 
un rôle important dans le contrôle de la transcription pervasive à la fois au niveau de l’initiation 
mais également de la terminaison de la transcription et sont également requis pour assurer la 
fidélité de la transcription des gènes codant les ARN messagers. Nous avons prouvé que les 
GRFs liés au niveau des régions promotrices sont capables d’induire la terminaison de la 
transcription en bloquant physiquement la progression d’ARN polymérases issues de la 
translecture des terminateurs situés en amont. D’après nos études, cette voie de terminaison 
appelée « roadblock » est très répandue à l’échelle du génome et joue un rôle important dans 
la protection des promoteurs contre l’interférence transcriptionnelle. Nous avons également 
découvert que les GRFs limitent la transcription pervasive en obstruant les sites d’initiations 
ectopiques situés à proximité de leur site de fixation sur l’ADN. Ces facteurs sont aussi 
impliqués dans le contrôle de l’expression des gènes codants en favorisant l’utilisation de sites 
d’initiations les plus appropriés, c’est-à-dire, permettant la synthèse d’ARNs ayant un fort 
potentiel codant. Le rôle des GRFs dans le contrôle de l’initiation apparait intimement lié à leur 
capacité à correctement positionner les nucléosomes au niveau des promoteurs en 
collaboration avec les facteurs de remodelage de la chromatine. 
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I - Mechanism of Class II Genes 
Transcription in Eukaryotes 
 

Transcription is a fundamental process present in all living organisms. It allows the transfer of 

the genetic information carried on the deoxy-ribonucleic acid (DNA) to the ribonucleic acid 

(RNA). Synthesis of RNA molecules is carried out by enzymatic complexes named RNA 

Polymerases (RNAP). Although RNAPs are found in all three-domain of life (i.e. bacteria, 

eukaryotes and archaea), their composition and number vary across evolution. While a single 

RNAP is found in bacteria and archaea, eukaryotic cells contain three main RNAPs: RNAPI, 

responsible for the transcription of Ribosomal RNAs (rRNA), RNAPII, dedicated to the 

transcription of protein-coding genes and a few classes of Non-Coding RNAs (ncRNA) and 

RNAPIII that mainly synthesizes Transfer RNAs (tRNA) and the 5S rRNA molecule. In plants, 

specialized forms of RNAPII (RNAPIV and V) have been described. These polymerases play 

a major role in RNA-directed DNA methylation and the production of small interfering 

transcripts (McKinlay et al., 2018). 

 

Every transcription cycle event can be divided into three main steps: transcription initiation, 

elongation and termination. The first chapter of this manuscript aims at describing the 

mechanisms of RNAPII-dependent transcription events and their layers of regulation. A 

particular focus will be devoted to transcription occurring in the yeast Saccharomyces 

cerevisiae, the model organism used in the host laboratory. When necessary, parallels will be 

made with transcription occurring in bacteria, metazoan or other higher eukaryotes. 
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1. Transcription Initiation 

  

1.1 Core promoter elements 

 

Transcription of RNAPII-dependent genes (class II genes) initiates with the assembly of 

General Transcription Factors (GTF) and RNAPII on a DNA region referred to as the core 

promoter, which together, define the Pre-Initiation Complex (PIC).  

 

Core promoters are organised into modular DNA elements that usually extend between -40 to 

+40 Base Pairs (bp) from the Transcription Start Site (TSS) (Figure 1). Although many 

sequence motifs have been characterized, core promoters do not contain universal sequence 

elements but rather vary in structure and function. Metazoan core promoters are composed of 

the Initiator (Inr), the TATA box, the TFIIB Recognition Element (BRE) motif, the Downstream 

Promoter Element (DPE) and Motif Ten Element (MTE) (Juven-Gershon and Kadonaga, 

2010). However, these elements are generally scarce in Saccharomyces cerevisiae. 

 

 
 

Figure 1. The core promoter elements. -40 and +40 represent the distance in base pair from the 
transcription start site (black arrow). Inr, BRE, MTE and DPE correspond to the initiator, recognition 
element, motif ten element and downstream promoter element respectively. Inspired from Juven-
Gershon and Kadonaga, 2010.  

 

The TATA box is the first core promoter element that was discovered and is the most 

conserved from yeast to metazoan. The consensus sequence (TATAWAWR, with W = A/T 

and R = A/G) serves as a docking site for the TATA-Binding Protein (TBP, a component of the 

general transcription factor TFIID, see below) (Dikstein, 2011). The TATA box has long been 

thought to be present at every promoter of genes. In reality, in mammals, the TATA box is 

present in only 10 to 15% of genes and is located from -35 to -25 bp from the TSS. In S. 

cerevisiae, this element is present at ~20% of all genes and is located farther from the TSS 

compared to most eukaryotes (-120 to -40 bp upstream from the TSS) (Basehoar et al., 2004; 

Yang et al., 2007). Interestingly however, Rhee and Pugh reported that most TATA-less 

promoters actually contain deviant TATA-box consensus that vary from the canonical 

sequence at one or two positions (Rhee and Pugh, 2012). Presence of these mismatches is 
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not neutral and has consequences on the organisation and assembly of the PIC (discussed 

later).  

 

The initiator is a metazoan conserved element that encompasses the TSS. In yeast, Inr-like 

sequences have been shown to be present at 40% of all core promoters including both TATA 

and TATA-like associated regions (Yang et al., 2007).  

 

The BRE, MTE and DPE sequences are only found in metazoan. These sequences are all 

bound by GTFs and together, influence the level of basal transcription and the assembly of the 

PIC (Juven-Gershon and Kadonaga, 2010).  

 

1.2 PIC assembly on DNA 

 

Formation of the PIC on DNA is the result of the sequential assembly of basal transcription 

factors together with the RNAPII (Figure 2). For thirty years, many efforts have been devoted 

to understanding the successive steps that lead to the loading of RNAPII on the template DNA 

and to solving the crystal structure of components of the PIC. While no universal DNA element 

controlling gene transcription can be defined in gene promoters, the RNAPII and initiation 

factors are rather strongly conserved in evolution.  

 

General transcription factors are divided into 5 main complexes: TFIIB, TFIID, TFIIE, TFIIF and 

TFIIH. TFIID is the first complex loaded on the DNA. Its recruitment occurs via the recognition 

of the TATA box by TBP. TFIID comprises 14 other subunits named TAFs (1 to 14) for TBP-

Associated Factors. The binding of TFIID is subsequently stabilized by the recruitment of TFIIA 

and TFIIB, two smaller complexes composed of 2 and 1 subunits respectively. In addition to 

its role in stabilization of the PIC, TFIIB is also involved in TSS selection (see I.2.1) and favours 

the recruitment of the RNA polymerase. Recruitment of TFIIF (2 to 3 subunits) together with 

the RNAPII (12 subunits) then leads to the formation of a stable complex called “core initiation 

complex”. The interaction of TFIIE with the core initiation complex enables the recruitment of 

TFIIH and favours the melting of the DNA double helix. TFIIH, composed of 10 subunits 

contains an ATPase, a helicase and a kinase activity. The helicase activity is necessary for 

promoter opening and transcription start while the kinase activity carried by Kin28 (Cdk7 in 

human) is responsible for the phosphorylation of the serine 5 and 7 of the Carboxy-Terminal 

Domain (CTD) of the largest RNAPII subunit (discussed later) (Buratowski et al., 1989; Cheung 

and Cramer, 2012; Sainsbury et al., 2015; Sikorski and Buratowski, 2009). 
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Figure 2. Schematic representation of PIC 
assembly. The binding of TBP and TAFs (TFIID) at 
promoters leads to the bending of the DNA fiber. 
TFIIB and TFIIA stabilize TFIID prior to the 
recruitment of RNAPII and TFIIF which constitutes the 
core initiation complex. The formation of the PIC is 
achieved after the recruitment of TFIIE and TFIIH. The 
subsequent formation of the transcription bubble 
requires the hydrolysis of Adenosine TriphosPhate 
(ATP). The polymerase then initiates the synthesis of 
the RNA molecule and enters a productive elongation 
mode. From Sainsbury et al., 2015. 
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As previously mentioned, a vast majority of core promoters contains a less conserved TATA-

box consensus (TATA-like). The presence of this sequence has been shown to be more 

prevalent among constitutively expressed genes (housekeeping genes) and correlates with 

the presence at these genes of TBP associated with TAFs to form the TFIID complex. In 

contrast, highly regulated genes such as stress-induced genes are generally associated with 

canonical TATA sequences and with the presence of the SAGA (Spt-Ada-Gcn5 

Acetyltransferase) coactivator (Huisinga and Pugh, 2004; Kubik et al., 2017). These two 

complexes share common subunits including the TATA-binding protein and other TAFs. 

Interestingly, two recent studies published in 2017 challenge this notion of SAGA versus TFIID-

dominated genes. Using Chromatin Endogenous Cleavage and sequencing (ChEC-Seq), a 

formaldehyde-independent method for mapping DNA-binding proteins, the authors revealed 

that both TFIID and SAGA are present at TATA and TATA-less promoters. Consistent with this 

notion, depletion of either complex leads to the perturbation of nearly all yeast Messenger RNA 

(mRNA) coding genes suggesting a synergistic role for SAGA and TFIID in regulating RNAPII 

transcription (Baptista et al., 2017; Warfield et al., 2017).  

 

An additional important coactivator of transcription is the mediator. In budding yeast, the 

mediator is composed of 25 subunits organised into four distinct modules (head, tail, kinase 

and middle). This well conserved complex plays a role in the formation and stabilisation of the 

PIC through multiple and direct interactions with GTFs. A well-established function of the 

mediator is also to constitute a bridge between sequence specific transcription regulators 

(activators or repressors) and the polymerase (Hahn and Young, 2011; Poss et al., 2013).  

 

1.3 Chromatin organisation at promoters 

 

In eukaryotes, nuclear DNA is wrapped around histone proteins that arrange DNA into a more 

compact structure called chromatin. The single unit of chromatin, called nucleosome,  consists 

of two copies each of the four core histones H2A, H2B, H3 and H4, surrounded by 

approximatively 147 bp of DNA (Kornberg, 1974; Luger, 1997). The presence of histones 

interferes with the binding of proteins to the DNA thus influencing the occurrence of many DNA 

associated events including transcription initiation, replication or DNA repair (Field et al., 2008; 

Han and Grunstein, 1988; Lee et al., 2004). Importantly, nucleosomes are highly dynamic 

structures, which represents an important source of regulation. For instance, nucleosomes can 

slide along the DNA, can be evicted from the DNA and are also subject to a myriad of Post-

Translational Modifications (PTM) (review: Lai and Pugh, 2017).  
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The position of nucleosomes can be assessed by the deep sequencing of DNA that is resistant 

to digestion by Micrococcal DNase (MNase-Seq). This has allowed the genome-wide 

cartography of nucleosomes. Within genes, nucleosomes are usually regularly spaced and 

separated by a short DNA linker. In yeast, the average length of the linker sequence is 15 bp 

but varies between species (Jansen and Verstrepen, 2011; Jiang and Pugh, 2009). Unlike 

gene body, promoters of actively transcribed genes have been shown to be depleted in 

nucleosomes (Nucleosome Free or Depleted Regions, NFR / NDR) (Figure 3). NDRs in 

promoters is a conserved feature of all eukaryotes from yeast to human. These regions are 

usually located immediately upstream of transcription start sites (Lee et al., 2004; Mavrich et 

al., 2008a; Schones et al., 2008; Yuan, 2005). NDRs are bordered by two well-positioned 

nucleosomes referred to as +1 and -1 nucleosomes. The “+1” is the first of the array of 

nucleosomes present along the gene body. Its exact position and histone composition 

influences transcription, notably by affecting the binding of transcription factor (Lai and Pugh, 

2017; Lee et al., 2007b; Shivaswamy et al., 2008).  

 

 
 

Figure 3. Nucleosome organisation at class II genes. The red line corresponds to the average 
nucleosome occupancy along the gene. Peaks indicated by a grey arrow represent the position of the 
nucleosome center and valleys indicate regions with low occupancy. Promoters are characterized by 
the presence of nucleosome depleted regions (NDR) flanked by two well positioned nucleosomes 
termed +1 and -1. The nucleosome occupancy becomes less defined (or “fuzzy”) at the 3’ end of the 
gene body. Adapted from Lai et Pugh 2017. 

 

The +1 nucleosome has the particularity to contain the H2A.Z variant of the H2A histone. Such 

feature has been proposed to favour the eviction of the latter by destabilizing the promoter-

proximal side of the nucleosome, thus facilitating the passage of the polymerase during 

transcription elongation (Albert et al., 2007; Lai and Pugh, 2017).  In yeast, the -1 nucleosome 
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is also characterized by this H2AZ variant. In Drosophila and human, H2AZ-containing 

nucleosomes are absent in the -1 position, but usually extend beyond the +1 position across 

the gene body (nucleosomes +2 and +3) (Mavrich et al., 2008a; Schones et al., 2008).   

 

Importantly, the position of the +1 nucleosome correlates with the position of the TSS. In 

S.cerevisiae, the TSS is buried in the +1 nucleosome and located 12 to 15 NucleoTides (nt) 

downstream of its upstream border (Hughes et al., 2012; Lee et al., 2007b; Mavrich et al., 

2008b; Tsankov et al., 2010). Unlike NDR formation or H2A.Z presence, the distance of the +1 

nucleosome relative to the TSS is not a conserved feature among eukaryotes. The 5’ border 

of the +1 nucleosome is located ~60 bp downstream of the TSS in Drosophila, (Mavrich et al., 

2008a) and at ~40 bp downstream of the TSS of actively transcribed genes in human (Schones 

et al., 2008). Such differences may have important consequences regarding the mechanisms 

of TSS selection in different species.  

 

In addition to be associated with a canonical TATA element (see I.1.2), promoters of regulated 

genes are also characterized by a dynamic and generally higher nucleosome occupancy close 

to TSSs. Presence of nucleosomes is believed to outcompete the binding of transcription 

factors by burying cis-regulatory sequences. Upon transcriptional activation, nucleosomes 

have been shown to be evicted from promoters, as for heat-shock genes upon stress response 

(Shivaswamy et al., 2008) or genes involved in phosphate metabolism (Ertel et al., 2010). This 

is distinct from what is observed for promoters of housekeeping genes that have a static and 

well-defined architecture of nucleosomes, which enables the constant accessibility of the 

transcription machinery to core elements (Lee et al., 2004; Tirosh and Barkai, 2008). Taken 

together, these studies confirm the clear relationship that exists between the nucleosome 

architecture at promoters and gene activation. 

 

In 2015, a study conducted by Kubik and colleagues unveiled the presence of an additional 

and non-canonical nucleosome within yeast NDRs, hence challenging the above-mentioned 

idea that active promoters are simply flanked by well-positioned +1 and -1 nucleosomes (Kubik 

et al., 2015). By using a decreased concentration of MNase for mapping nucleosome position, 

the authors found that 40% of mRNA-coding genes display an unstable nucleosome named 

“Fragile Nucleosome” (FN) that is surrounded by only 100 bp of DNA. FNs are found at broad 

NDRs (i.e. for which the distance between two stables -1 and +1 nucleosomes exceeds 300 

bp) and are characteristic of highly expressed genes. The occupancy of a FN at NDRs would 

be a consequence of the presence of a long naked DNA fragment and would serve to restrict 

the access of RNAPII to specific regions. The existence of FNs remains, however, a matter of 

debate. While Chereji and colleagues propose that this particle actually correspond to non-
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histone protein complexes (Chereji et al., 2017), Brahma and Henikoff could confirm the 

presence of FNs by immunoprecipitating chromatin following MNase-digestion (Brahma and 

Henikoff, 2019).   

 

In summary: Transcription initiation is a complex and conserved process that involves many 

factors that assemble in a sequential manner at promoter regions to form the pre-initiation 

complex. Assembly of the PIC is dependent both on the presence of cis-regulatory 

sequences recognized by general transcription factors and on the formation of a nucleosome 

free region that exposes core promoter elements to GTFs.  
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2. Transcription Elongation 

 

2.1 Promoter clearance and TSS selection 

 

During transcription elongation, the RNA polymerase travels along DNA, catalysing the 

addition of nucleotides on the nascent transcript. Elongation starts with the release of the 

polymerase from promoters, i.e. promoter clearance (also called promoter escape). The 

transition from the initiation complex to a fully committed transcription elongation state 

represents a real challenge for the polymerase. Within the PIC, TFIIE and TFIIF complexes 

respectively bind to the Rpb1 clamp domain and Rpb2 protrusion domain of the polymerase 

(Chen et al., 2007; Luse, 2013). Moreover, the TFIIB complex occupies the RNA exit channel 

of RNAPII where the nascent transcript will next reside. These interactions between 

components of the PIC need to be lost in order to allow the release of the polymerase. One 

important requirement for polymerase initiation is the opening of the DNA template that forms 

the transcription bubble upstream of the TSS. This step is carried out by Ssl2 (XPB in human), 

a component of the TFIIH complex that possesses an ATP-dependent DNA-translocase 

activity and that acts by pulling the downstream DNA sequence into the polymerase (Fishburn 

et al., 2015; Sainsbury et al., 2015).  

 

During the early stages of elongation, the polymerase still in contact with TFIIB undergoes 

many events of abortive transcription (Luse, 2013). As the neo-synthetized RNA lengthens, 

the elongation complex gets stabilized by the formation of the DNA-RNA hybrid within the 

RNAPII holoenzyme. In parallel, the activity of TFIIH leads to the progressive unwinding of the 

transcription bubble until it reaches ~18 bp, a size that is typical of the early stages of 

elongation. At one point, the upstream part of the bubble suddenly closes (bubble collapse 

transition) to trap and stabilize the polymerase into a smaller (~10 bp long) bubble, more 

characteristic of a productively elongating complex. About 13 nt downstream of the TSS, the 

interaction between TFIIB and RNAPII is lost (Čabart et al., 2011). Once the transcript reaches 

~17 nt, the 5’ end is released from the template DNA and enters the exit channel of the 

polymerase. Promoter clearance is achieved when the transcript is about 30 nt long which 

corresponds to the distance that is required for the polymerase to adopt all the characteristics 

of a proficient elongation complex (Liu et al., 2011; Luse, 2013). This transition state is 

characterized by the hyperphosphorylation of the polymerase CTD at serine 5 (see section 

I.2.2). The phosphorylation of this residue by Kin28 (TFIIH component) has been shown to 

impede the interaction between Rpb1 and the mediator, thus favouring the release of the 

polymerase from the promoter (Max et al., 2007; Wong et al., 2014). Finally, apart from TFIIB 
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that gets destabilized and TFIIH that travels with the polymerase during the first part of 

transcription elongation across the gene, most of the other GTFs remain bound  to the core 

promoter, thus favouring the reassembly of the PIC for further rounds of initiation (Dvir et al., 

1997; Luse, 2013; Sainsbury et al., 2015).  

 

Despite the wealth of studies on the topic, it remains unclear how the exact position of the 

transcription start site is defined. In higher eukaryotes, transcription initiation usually occurs at 

a single site and in a narrow region located about 30 bp downstream of the TATA-box (see 

1.1). In this context, the architecture of the PIC is thought to be the major determinant of the 

TSS selection by directly placing the active center of the RNAPII holo-enzyme on top of the 

initiation site (Bushnell et al., 2004; Leuther et al., 1996). Although this pattern is to some extent 

conserved in S. pombe (+30 to +70 from the TATA-box), it diverges completely in S.cerevisiae 

(+40 to +120 from the TATA-box) (Chen and Struhl, 1985; Nagawa and Fink, 1985; Zhang and 

Dietrich, 2005) where TSSs are selected after a scanning step that does not require RNA 

synthesis and is driven by the Ssl2 translocase motor  (Fishburn et al., 2016; Kuehner and 

Brow, 2006).  

 

Prior studies performed in the 90s defined the polymerase and TFIIB as being the major 

determinants of the TSS utilization in budding yeast. For instance, deletion of the non-essential 

RPB9 gene (RNAPII subunit) (Hull et al., 1995), mutations of the largest subunit of the 

polymerase (RPB1) (Berroteran et al., 1994) and mutation of SUA7 (TFIIB) (Pinto et al., 1992, 

1994) have been shown to be associated with upstream (Rpb9) or downstream (Rpb1 and 

Sua7) shifts of the TSS (Kwapisz et al., 2008; Sun et al., 1996; Thiebaut et al., 2008). 

Consistent with the role of these factors in TSS selection, in vitro assays using the S. pombe 

polymerase and TFIIB in a S. cerevisiae transcription context (i.e. S. cerevisiae promoter and 

other GTFs) confer a species-specific transcription profile that resembles the one of S. pombe 

(Li et al., 1994; Yang and Ponticelli, 2012). TFIIF has also been involved in TSS selection since 

mutation of TFG1 or TFG2 (components of TFIIF) is accompanied by an overall upstream shift 

of the TSS that is exacerbated in a rpb9Δ (Δ = deletion) strain and partially suppressed in 

SUA7 mutants (Ghazy et al., 2004). Finally, in two later studies that aimed at mapping the 5’ 

ends of transcripts in yeast, the authors observed a strong bias for transcription to start at the 

A(Arich)5NYR motif, with Y = C/T and R = A/G and where R correspond to the mapped TSS and 

is mostly an A (Malabat et al., 2015; Zhang and Dietrich, 2005). Taken together, these data 

suggest that the selection of the TSS during early elongation in yeast may result from the 

synergic action of both components of the PIC, and cis-regulatory elements present at or close 

to the TSS.   
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2.2 Mechanism and function of CTD phosphorylation  

 

The unstructured carboxy-terminal domain of Rpb1, the largest subunit of the yeast RNAPII, 

is composed of tandem repeats of the heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. While 

the consensus sequence of the CTD is conserved, it varies in number of repeats across the 

eukaryotic kingdom (26 in S. cerevisiae, 29 in S. pombe, 37 in D. melanogaster and A. thaliana 

and 52 in H. sapiens). The CTD is a substrate of various kinases and phosphatases that act 

subsequently to modify the phosphorylation state of the polymerase during the transcription 

cycle. These post-translational modifications are highly regulated in space and time and play 

a crucial role in the establishment of specific interactions between the polymerase and various 

cofactors. Among the 7 residues, 5 (Tyr1, Ser2, 5 and 7 and Thr4) are subject to 

phosphorylation (Harlen and Churchman, 2017). In this section, I will describe the pattern of 

the CTD code during transcription and define its interplay with co-transcriptional events.  

 

 2.2.1 Dynamic of CTD phosphorylation 
 

The polymerase is recruited to the PIC under its unphosphorylated form, which favours the 

tight interaction with the mediator (Lu et al., 1991). The Kin28 cyclin-dependent kinase triggers 

phosphorylation of the Ser5 and Ser7 residues of the CTD leading to the release of the 

polymerase from promoters (see 2.1) (Kim et al., 2009; Komarnitsky et al., 2000; Max et al., 

2007; Wong et al., 2014). The Ser5/7-P (Phosphorylated) state is characteristic of polymerases 

close to the TSS and undergoing early elongation (Figure 4). As the elongation complex moves 

away from the TSS, the polymerase undergoes the Ser5-Ser2 transition under the effect of the 

Ser5-phosphatase Rtr1 (Hunter et al., 2016; Mosley et al., 2009) and the Ser2-kinase Bur1 

(Liu et al., 2009; Qiu et al., 2009) even though the extent to which Bur1 participate to the 

deposition of Ser2-P remains a matter of debate (Bataille et al., 2012; Keogh et al., 2003). The 

Ser5-Ser2 transition starts occurring about 150 bp downstream of the TSS (Milligan et al., 

2016) and is not dependent of gene length but rather on the absolute distance from the 

initiation site (Bataille et al., 2012; Mayer et al., 2010). Later steps in transcription are 

characterized by the increase in the Ser2-P mark due to the action of the Ser2-kinase Ctk1 

(Bataille et al., 2012; Qiu et al., 2009) and a massive drop in Ser5 phosphorylation caused by 

Ssu72 (Bataille et al., 2012; Krishnamurthy et al., 2004), a component of the Cleavage and 

Polyadenylation Factor (CPF) (see I.3.1). Prior to termination, Ssu72 also abrogates the Ser7 

phosphorylated mark. Finally, the Ser2 phosphatase Fcp1 is required to bring back the 

polymerase to its unphosphorylated form thereby allowing its recycling for new rounds of 

transcription (Bataille et al., 2012; Egloff et al., 2012a).  
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The phosphorylation events of Ser2, 5 and 7 are the best documented modifications occurring 

on the CTD. More recently, two other residues have been shown to be reversibly 

phosphorylated: Tyr1 and Thr4. In yeast, the distribution of Tyr1-P resembles the one of Ser2-

P except that it drops before the termination site (Mayer et al., 2012). Glc7, which belongs to 

the CPF complex, has been proposed to be the major phosphatase of Tyr1 in vivo (Schreieck 

et al., 2014). Thr4 is also increasing in the 5’ to 3’ direction, however, the phosphatases and 

kinases responsible for this PTM are still unknown.  

 

 
 

Figure 4. The CTD pattern across yeast protein-coding genes. The average level of Ser5, Ser7, 
Ser2, Thr4 and Tyr1 phosphorylation at protein-coding genes during the transcription cycle is 
represented. TSS and PAS indicate the position of the Transcription Start Site and the 
PolyAdenylation Site respectively. Phosphatases (bottom) and kinases (top) responsible for the 
establishment of the pattern are indicated with the corresponding colour. The top panel illustrates the 
average occupancy of the different phosphorylated form of the RNAPII CTD. Co-transcriptional 
events and factors associated with specific CTD forms are indicated. Adapted from Egloff et al., 
2012a; Harlen and Churchman, 2017.  

 

 2.2.2 Co-transcriptional events and the CTD code 
 

Several studies have reported the importance of the CTD code in coupling transcription with 

co-transcriptional events by favouring the recruitment of specific factors such as elongation or 

termination factors, the capping enzymes or the splicing machinery. Yet, the role of some CTD 

marks remains unclear and is still under debate.  
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In addition to its role in promoter clearance, the Ser5-P state serves as a platform for the 

binding of the 5’-capping enzymes (Komarnitsky et al., 2000; Mayer et al., 2010; McCracken 

et al., 1997a) whose action close to the promoter enables the rapid protection of the nascent 

transcript from degradation. Interestingly, cells defective for the TFIIH kinase activity display a 

strong decrease in mRNA steady state level and a limited effect on RNAPII occupancy along 

the gene. Moreover, the reduction of mRNA level can be partially counteracted by deletion of 

XRN1, a gene coding for the major cytoplasmic 5’-3’ exonuclease, suggesting that the major 

role of Ser5-P mark might actually be related to its interaction with the capping enzyme and 

not to transcription (Hong et al., 2009). Supporting the notion that Ser5-P is important for 

capping, the fusion of the CTD of Rpb1 with the capping enzyme prevent the lethality observed 

in S. pombe cells expressing a S5A CTD form (i.e. mutation of every Ser5 to alanine) (Schwer 

and Shuman, 2011). The Ser5-P also favours the interaction with the COMPASS (COMplex 

Protein ASsociated with Set1, described in I.2.3.1) at 5’ regions (Ng et al., 2003). Finally, the 

combined presence of specific RNA sequences and the Ser5-P mark also promotes the 

recruitment of the Nrd1-Nab3-Sen1 (NNS) complex to trigger early transcription termination 

(see I.3.2) (Gudipati et al., 2008; Tudek et al., 2014; Vasiljeva et al., 2008). The persistence of 

the NNS complex within the coding region is limited by the phosphorylation of Tyr1 that 

prevents its binding (Mayer et al., 2012).  

 

The phosphorylation of Ser2 and Ser5 residues mediates the recruitment of the elongation 

factor Set2 (see 2.3.1) and the conserved TREX complex which plays a role in the export of 

mRNA molecules from the nucleus to the cytoplasm (MacKellar and Greenleaf, 2011; Meinel 

et al., 2013). The splicing machinery is also recruited co-transcriptionally and interacts with 

both Ser2-P and Ser5-P (Gu et al., 2013; Harlen et al., 2016; McCracken et al., 1997b).  

 

At 3’ ends of genes, the increase in RNAPII Ser2-P mark is associated with an enrichment of 

RNA processing and termination factors. Pcf11 and Rtt103, two components of the CPF-CF 

(Cleavage and Polyadenylation Factor and Cleavage Factor I) complex in yeast interact with 

the  Ser2-P CTD to trigger termination and catalyse the addition of the polyA tail on the nascent 

RNA (Harlen and Churchman, 2017; Harlen et al., 2016). Moreover, although Thr4-P has been 

originally shown to only affect the processing of histone mRNAs (Hsin et al., 2011), a recent 

study from the Churchman group unveiled the role of this residue in transcription termination. 

Indeed, in budding yeast, Rtt103 also recognizes Thr4-P after the polyA site to ensure efficient 

termination (Harlen et al., 2016). Finally, throughout the coding region, the presence of the 

Tyr1-P mark impairs the early binding of termination factors thus preventing premature 

termination from the CPF-CF complex (Mayer et al., 2012; Schreieck et al., 2014). Altogether, 
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these three marks contribute to the accurate localisation of the CPF-CF complex at the 3’ end 

of genes.  

 

In 2019, Collin and colleagues reinvestigated the role of the CTD code in transcription 

termination using a dual tag system (Collin et al., 2019). A rpb1 allele carrying different CTD 

mutations and a flag tag were co-expressed with the wild-type (WT) version of RPB1. The 

distribution of RNAPII was monitored by ChIP and NET-seq. In this context, the authors could 

confirm the genome-wide role of Ser2 and Thr4 in transcription termination by the CPF-CF 

complex. Interestingly however, they revealed that the implication of Tyr1 in termination is only 

restricted to ~100 mRNA-coding genes and does not seem to be dependent on its 

phosphorylation state. Unlike mRNAs, ncRNAs are more sensitive to mutations of Tyr1 and 

display a major termination defect upon expression of a Tyr1 phosphomimic form of the 

polymerase. This difference between mRNAs and ncRNAs is explained by the different 

termination pathways associated with these two types of transcripts (see I.3). Finally, although 

Ser7 had been proposed to participate in termination of Small-Nuclear RNAs (snRNA) in 

mammals (Egloff et al., 2012b), no termination defect was reported in this study (Collin et al., 

2019). This dual system represents a powerful tool in the study of the CTD code as it limits 

secondary and indirect effects that can be observed upon depletion of Rpb1-targeted 

phosphatases and kinases.  

 

2.3 RNAPII transcription through chromatin     

 

Akin to transcription initiation, the progression of the transcription machinery is also impeded 

by the presence of nucleosomes. Thus, numerous elongation factors are recruited in order to 

facilitate the elongation process.  

 

In 1991, Izban and Luze reported that RNAPII transcription through a nucleosomal template is 

associated with a severe decrease in the elongation rate as compared to a naked DNA 

template (Izban and Luse, 1991). This work was the first clear evidence exposing the 

repressive role of chromatin organisation on elongation. Since then, a lot of efforts have been 

devoted to the characterization of factors and mechanisms that support transcription 

elongation in vivo. Transcription elongation factors the operate on chromatin can be divided 

into two main groups: (i) elongation factors that participate to PTMs of histones which alter the 

interaction between DNA and histones and favour the recruitment of other factors such as 

chromatin remodelers, (ii) elongation factors that are able to slide, evict and reassemble 

nucleosomes as the polymerase progresses along the gene. Among these factors are the well 

characterized histone modifiers, the ATP-dependent chromatin remodelers and the histone 
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chaperones (Selth et al., 2010). In this section, I will briefly describe these different factors and 

their implication in transcription elongation. 

 

 2.3.1 Histone modifiers 
 

Covalent histone modifications are often concomitant with transcription elongation of RNA 

polymerase throughout the gene. The three main characterized modifications are acetylation, 

methylation and ubiquitylation (Figure 5).  

 

Acetylation 

The addition and removal of acetylation groups are carried out by histone acetyltransferases 

(HAT) and histone deacetylases (HDAC) respectively. Acetylation occurs mainly on lysines 

located at the N-terminal region of histones. This modification neutralizes the positive charges 

of histones, which in turn reduces electrostatic interactions with the surrounding DNA molecule 

(Hong et al., 1993). The decreased affinity between the DNA and acetylated histones 

destabilises nucleosome architecture thus favouring the binding of other factors to the DNA at 

promoters and facilitating transcription through chromatin (Lee et al., 1993; Selth et al., 2010). 

The acetylation mark is predominantly found at promoters of active genes and less abundantly 

in coding regions (Pokholok et al., 2005). Yet, many HAT and HDAC complexes have been 

shown to be enriched at coding regions (Gilbert et al., 2004; Govind et al., 2007; Keogh et al., 

2005; Wang et al., 2002) and mutations in HATs associated with human neuropathies cause 

a gradual decrease in RNAPII density along the coding regions of targeted genes (Close et 

al., 2006). Together, these data suggest a role for HDAC and HAT in both transcription initiation 

and elongation. A possible model is that HAT and HDAC would both travel with the polymerase 

to ensure the decompaction (acetylation) of the chromatin downstream the elongation complex 

and the direct re-compaction (deacetylation) of the transcribed region upstream (Selth et al., 

2010).  

 

Methylation 

Unlike acetylation, methylation does not directly impact chromatin structure but is rather 

important for the subsequent recruitment of many other factors. Methylation essentially occurs 

on lysines and arginines of H3 and H4 histones and are associated with either active (H3K4, 

H3K36) or silent (H3K9, not present in S. cerevisiae) transcription regions (Freitag, 2017). In 

S. cerevisiae, two factors have been identified as carrying a methyltranferase activity: the Set1 

protein encompasses into the COMPASS and Set2.  
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COMPASS is composed of eight proteins including the catalytic subunit Set1 that is 

responsible for the mono- di- or tri-methylation of lysine 4 in histone H3 (H3K4me1, 2, 3) 

(Briggs, 2001; Roguev, 2001). Active genes are characterized by a decreasing gradient of the 

H3K4 methylation profile. While 5’ regions are enriched in the H3K4me3 mark, downstream 

nucleosomes are characterized by the presence of H3K4me2 and H3K4me1 modifications (Liu 

et al., 2005; Pokholok et al., 2005). The mechanisms and effects underlying the establishment 

of this gradient still need to be fully determined. Tri-methylation of histones is recognized by 

the HAT proteins Nua3, Hbo1 and SAGA and is thought to influence the acetylation profile of 

histone H4 and to destabilize nucleosomes around promoters (Woo et al., 2017). Di-

methylation instead has been shown to favour the recruitment of the HDAC complex Set3C 

(Set3 Hos1 Hst1) to promote histone deacetylation in the body of genes. This deacetylation 

triggers the compaction of chromatin and somehow promotes efficient transcription elongation 

(Kim and Buratowski, 2009). The exact mechanism by which the action of Set3C would 

positively act on transcription is not clear. The Set1–Set3C pathway has also been investigated 

for its role in gene silencing during transcriptional interference (discussed in section III).  

 

Another well characterized methyltransferase associated with transcription is Set2. This factor 

methylates lysine 36 in histone H3. H3K36 is more prevalent inside the gene body and is 

associated with highly expressed genes (Pokholok et al., 2005). The main function of this 

modification is the recruitment of factors, among which the Rpd3S histone deacetylase 

complex that recognizes both H3K36me2 and me3 marks and maintains an hypoacetylated 

state at coding regions (Keogh et al., 2005; Li et al., 2009). This pathway is particularly 

important to counteract intragenic transcription initiation and is also involved in the mechanism 

of transcriptional interference (see III), similarly to Set3C. 

 

The recruitment of both Set1 and Set2 is linked with the phosphorylation-state of the 

polymerase. At the 5’ end of active genes, phosphorylation of the serine-5 of the CTD is 

associated with the recruitment of COMPASS histone methyltransferase complex. The 

recruitment of COMPASS by Ser5-P CTD is not direct but is mediated by the Paf1 elongation 

complex (Krogan et al., 2003a; Ng et al., 2003). In 2003, four independent studies have 

reported the ability of Set2 to interact with both the Ser-2 and Ser-5 phosphorylated forms of 

the polymerase (Krogan et al., 2003b; Li et al., 2003; Schaft et al., 2003; Xiao et al., 2003). 

Supporting this notion is the fact that deletion of the CTK1 kinase (Ser2 phosphorylation) or 

partial deletion of the CTD affect both H3K36me3 profile and the recruitment of Set2.  

 

Histone methylation has long been thought to be a permanent mark that could be depleted 

from chromatin only by replacing the corresponding nucleosome. In 2004, Shi and colleagues 
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were the first to provide evidence for the existence of an enzyme (Lysine Specific histone 

Demethylase, LSD1) endowed with a demethylase activity. LSD1 is a conserved factor from 

S. pombe to human but is absent in S. cerevisiae. Knock-down of LSD1 causes an increase 

in both H3K4 methylation and transcription level of targeted genes (Shi et al., 2004). Since 

then, more than 20 additional demethylases belonging to two main families have been 

identified from bacteria to human (Shi and Tsukada, 2013).  

 

 
 

Figure 5. Model of transcription elongation through nucleosomes. The main factors implicated 
in the progression of RNAPII though chromatin is represented. The scheme essentially recapitulates 
the central role of acetylation and methylation marks along the gene. Histone methylation mediates 
the recruitment of various complexes including histone deacetylases. The removal of the acetylation 
group enables the restoration of the chromatin structure behind the polymerase. Adapted from Selth 
et al., 2010; Kim and Buratowski 2009.   

 

Ubiquitylation 

Ubiquitin is a mall polypeptide of 76 amino acids that can be added to protein under different 

forms. Its presence is often considered as a signal that triggers degradation by the proteasome. 

Nonetheless, mono-ubiquitylation is also a source of regulation of protein activity. The addition 

of ubiquitin is divided into three main steps: (i) an ubiquitin activating enzyme (E1) activates 

the polypeptide (ii) that is then conjugated via a thioester bond to a cysteine residue (ubiquitin-

conjugating enzyme E2) and (iii) finally swaps from the cysteine of E2 onto the lysine residue 

of the targeted protein by an ubiquitin-protein isopeptide ligase E3 (Weake and Workman, 

2008).  

 

The mono-ubiquitylation of histones occurs on H2B protein and is carried out, in S. cerevisiae, 

by a complex composed of Rad6, Bre1 and Lge1 (Weake and Workman, 2008). This mark is 

present all along the genes and increases gradually into the transcribed regions (Minsky et al., 

2008; Xiao et al., 2005). The mono-ubiquitylation mark is associated with highly transcribed 

genes (Henry et al., 2003; Kao et al., 2004; Xiao et al., 2005) and works in cooperation with 
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the histone chaperone Spt16 (see below) to reassemble histones during transcription 

elongation (Fleming et al., 2008; Pavri et al., 2006). Perturbation of the deposition of this mark 

is associated with a decrease in RNAPII occupancy at the 3’ ends of genes but does not 

prevent its recruitment, thus supporting a specific role of mono-ubiquitylation in transcription 

elongation (Tanny et al., 2007). Histone ubiquitylation has also been shown in many instances 

to promote histone methylation by favouring the recruitment of COMPASS and other 

methyltransferase complexes (Briggs et al., 2002; Dover et al., 2002; Henry et al., 2003; Lee 

et al., 2007a; Ng et al., 2002; Sun and Allis, 2002). Nonetheless, the positive effect of 

ubiquitylation on the elongation rate of RNAPII is not mediated by methylation (Shukla and 

Bhaumik, 2007; Tanny et al., 2007). Finally, histone-ubiquitylation is reversible and de-

ubiquitylation is executed by two distinct enzymes in yeast: Ubp8, component of the SAGA 

complex and Ubp10 (Henry et al., 2003; Weake and Workman, 2008). 

 

 2.3.2 Histone chaperones  
 

Up to date, two main histone chaperone complexes have been shown to play an important role 

in transcription elongation: the FACT (FAcilitating Chromatin Transcription) complex and Spt6. 

FACT has first been identified in vitro by addition of a Hela cell extract on a chromatinized 

template (Orphanides et al., 1998). It comprises two proteins, Spt16 and Pob3 in yeast (SPT16 

and SSRP1 in human), that are able to destabilize nucleosomes by displacing the histone 

dimer H2A-H2B (Orphanides et al., 1999). FACT also has the ability to promote the re-

deposition of the H2A/H2B dimer onto the  DNA after the passage of the elongation complex 

(Belotserkovskaya et al., 2003; Kwak and Lis, 2013).  

  

Spt6 is well-conserved throughout eukaryotes and has the ability to control the structure of 

chromatin via its interactions with histones H3 and H4, which is thought to be particularly 

important for the reestablishment of nucleosomes in the wake of transcribing RNAPII (Bortvin 

and Winston, 1996; Kaplan et al., 2003; Selth et al., 2010). Spt6 is recruited early during the 

5’ transition and has been shown in many instances to interact with the polymerase (Endoh et 

al., 2004; Kaplan et al., 2000; Mayer et al., 2010). However, unlike most of the transcription 

associated factors, its recruitment is not mediated by the CTD of the polymerase although its 

distribution along the gene coincides with the Serine-2 phosphorylated form of RNAPII (Sdano 

et al., 2017). Last but not least, the elongation rate of RNAPII on naked DNA in vitro can be 

enhanced by the addition of Spt6, suggesting an additional, more direct role for Stp6 in 

promoting transcription elongation (Endoh et al., 2004).   
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 2.3.3 Chromatin remodelers 
 

Chromatin remodelers are able to slide, evict or deposit histones in an ATP-dependent 

manner. Their role has been extensively studied in the context of transcription initiation and 

NDR formation (see II.2). However, the extent to which these complexes affect the transcription 

elongation rate is not clear. In vitro studies revealed that the presence of RSC and to a lesser 

extent SWI/SNF, ISW1 and Chd1 (detailed in II.2) facilitates the passage of RNAPII through 

chromatin in an ATP-dependent manner (Carey et al., 2006). In vivo, depletion of RSC causes 

a decrease in RNAPII occupancy within the Open Reading Frame (ORF) of a subset of RSC-

targeted genes but not at promoters (Mas et al., 2009; Spain et al., 2014). It is however unclear 

how RSC would specifically affect RNAPII progression at some, and not all, of its targets.  

 

The role of Chd1 in transcription elongation is clearer. Chd1 interacts with many different 

elongation factors such as the FACT chaperone complex and is found at coding regions of 

actively transcribed genes. During elongation, Chd1 together with Isw1 acts to maintain the 

structure of chromatin by preventing hyperacetylation and helps the compaction of the 

chromatin upstream of the polymerase (Simic et al., 2003; Smolle et al., 2012). 

 

2.4 Transcriptional pausing within genes  

 

Transcription elongation is not a linear process. During its journey along the DNA, RNA 

polymerase encounters various obstacles that can slow down or stall its progression. As 

already mentioned, this includes nucleosomes, but also other DNA-binding factors, DNA 

damages, nucleotides misincorporation, DNA sequences or NTP depletion. Different 

mechanisms have evolved to help the polymerase to reach the 3’ end of genes and to complete 

the synthesis of the full-length RNA molecule. 

 

When pausing, RNA polymerase can backtrack, i.e. move backwards along the DNA from 2 

to 14 bp (Wilson et al., 2013). During backtracking, the neo-synthetized RNA slides forward 

relative to the enzyme and enters the front channel of the polymerase, thus exposing the 3’ 

end of the RNA. An elegant work from the Cramer laboratory that aimed at characterizing the 

structure of the backtracked complex revealed that up to 9 nucleotides of the nascent RNA 

can be extruded from the polymerase. The DNA-RNA hybrid into the RNA polymerase is 

maintained and may contribute to the preservation of the stability of the elongation complex 

(Cheung and Cramer, 2011). Such configuration of the RNAPII-RNA-DNA complex favours 

the recruitment of an elongation complex called TFIIS (Dst1 in yeast) that stimulates the 

intrinsic endonucleolytic activity of the polymerase, resulting in the cleavage of the backtracked 
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RNA fragment. This step is required for re-aligning the 3’-OH of the nascent RNA with the 

catalytic center of the polymerase, thus allowing the resumption of elongation (Izban and Luse, 

1993; Reines, 1992).  

 

 
 

Figure 6. Mechanism of RNAPII ubiquitylation and degradation during transcriptional arrest. 
Paused polymerases can be removed via an ubiquitylation mechanism leading to the degradation of 
Rpb1. First, the Rsp5 and Ubc5 trigger the mono-ubiquitylation of Rpb1 (1). The mono-ubiquitin chain 
can be extended on lysine-63 (and reversed by the ubiquitin protease Ubp2) which is however not 
associated with RNAPII degradation (2). The Elc1-Cul3 complex together with Ubc5 recognize the 
mono-ubiquitin form of Rpb1 and promote the formation of the lysine-48 poly-ubiquitin chain (3) that 
can be removed by Ubp3 to prevent undesirable proteolysis (4). The lysine-48 poly-ubiquitin chain 
serves as a signal for the recruitment of the ATPase Cdc48-Ubx and the 26 proteasome (5) which 
promotes the dismantling of the polymerase and the degradation of Rpb1 (6). Adapted from (Wilson 
et al., 2013). 
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The past decades have been accompanied by the emergence of techniques allowing the 

genome-wide cartography of the polymerase at nucleotide resolution. In 2011, Churchman and 

Weissman described a technique called NET-seq (Native Elongating Transcript sequencing), 

a method based on the purification of elongated polymerases and the sequencing of the 3’ 

ends of the nascent RNAs (Churchman and Weissman, 2011). Analyses of RNAPII distribution 

in S. cerevisiae have revealed the accumulation of polymerases upstream of the first four 

nucleosomes of the array. More interestingly, in cells deleted for DST1, most of the observed 

peaks are increased and slightly shifted downstream, which indicate the occurrence of 

backtracking in wild type cells. Finally, using a dominant-negative TFIIS mutant, Sheridan and 

colleagues confirmed the role of this elongation factor in favouring rapid and efficient 

elongation in human cells (Sheridan et al., 2019).   

 

When the backtracked state is not resolved and becomes more prolonged, RNAPII enters 

transcriptional arrest. In this particular situation the paused polymerase needs to be removed 

from the DNA, possibly to prevent additional accumulation of elongation complexes upstream. 

To do so, ubiquitin ligases are recruited at the pausing site to ubiquitylate RNAPII, which will 

favour its degradation via the proteasome (Ribar et al., 2006, 2007; Somesh et al., 2005, 2007). 

Among the different actors, the Rsp5 E3 ubiquitin ligase has been particularly studied, 

especially in the context of DNA damages (Beaudenon et al., 1999; Wilson et al., 2013). The 

mechanism through which RNAPIIs undergo degradation is presented in Figure 6. 

  

In summary: One of the main phenomena associated with transcription elongation is the 

reversible and dynamic phosphorylation of the carboxy-terminal domain of the polymerase. 

PTMs of Rpb1 play a role in every step of the elongation process from the promoter 

clearance to the processing of pre-mRNA molecules. It also contributes to the progression 

of the polymerase along the gene through the recruitment of elongation factors.  
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3. Transcription Termination 

 

Once the synthesis of the pre-mRNA is complete, the elongation complex must be 

disassembled in order to release the transcript and recycle the RNAPII holo-enzyme for new 

rounds of transcription. In S. cerevisiae, two main transcription termination mechanisms have 

been described: The Cleavage and Polyadenylation Factor-Cleavage Factor I (CPF-CF) and 

the Nrd1-Nab3-Sen1 (NNS) pathway. Accurate termination by these two pathways requires 

the recognition of specific sequences on the nascent RNA and the interaction with Rpb1. The 

CPF-CF and NNS pathways are mainly dedicated to the termination of mRNAs and ncRNAs 

respectively and are associated with specific fates of the neo-synthetized transcript. 

 

In this section, I will describe the mechanisms of these termination pathways and explain how 

they determine the fate of the resulting RNA molecule. Other, minor pathways of termination 

are also present in S. cerevisiae, which I will also discuss below. Finally, I will present a quick 

overview of termination pathways employed by different RNA polymerases or existing in other 

organisms.  

 

3.1 The CPF-CF termination pathway 

 

The CPF-CF pathway is the first termination mechanism described in eukaryotes. It employs 

generally conserved multiprotein sub-complexes that act collectively to promote termination of 

mRNA-coding genes as well as some non-coding RNAs. The action of the CPF-CF can be 

divided into three successive steps: i) the recruitment of the complex via its interaction with the 

polymerase and the recognition of cis-regulatory elements on the neo-synthetized transcript, 

ii) the cleavage of the nascent RNA and iii) the dismantling of the elongation complexes from 

the DNA.  

 

 3.1.1 Organisation and function of the CPF-CF complex 
 

The CPF-CF is composed of about 20 proteins organised into four main modules: CFI and 

CFII that constitute the CPF complex and carry the catalytic activity and CFIB and IA that are 

important for the recognition of the RNA (see I.3.1.2). The role of the different factors is 

presented in table 1 (adapted from (Kuehner et al., 2011; Lidschreiber et al., 2018; Mandel et 

al., 2008)). Many proteins of the complex are able to interact with specific sequences on the 

nascent RNA (Rna15, Hrp1, Yhh1/Cfp1, Ydh1/Cfp2 and Yth1, see I.3.1.2). Another key factor 

of the CPF-CF is Pcf11 (CFIA). This protein contains a CTD-interacting domain (CID) and has 
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been shown to specifically contact the Ser2 phosphorylated form of Rpb1, thus favouring its 

recruitment at the 3’ region of genes (Barilla et al., 2001; Kim et al., 2004a; Lunde et al., 2010; 

Meinhart and Cramer, 2004; Sadowski et al., 2003). Once the polyA sequence is transcribed 

and the complex assembled on the RNA, the endoribonuclease Ysh1 (CPF) catalyses the 

cleavage of the RNA. A stretch of adenosines is then added to the newly formed 3’ end by the 

polyA polymerase Pap1 (PAP in human) (Figure 7). The activity of Pap1 is regulated by the 

Nab2 protein that interacts with the CPF complex. Nab2 contains a zinc finger domain 

important for its binding to the polyA tail. The presence of this factor limits the number of A 

residues added by Pap1 and is also important to protect the newly synthetized RNA molecules 

and promote their rapid and efficient export (Green et al., 2002; Hector et al., 2002; Tudek et 

al., 2018; Viphakone et al., 2008).  

 

Table 1. Components of the yeast CPF-CF complex.  

Factor Protein Function 

CFIA Rna14 Scaffolding protein 

CFIA Rna15 RNA recognition 

CFIA Pcf11 Interaction with Ser2-P CTD, scaffolding protein 

CFIA Clp1 Scaffolding, interaction with CPF and Pcf11 

CFIB Hrp1 RNA recognition 

CPF (PFI) Pfs2 Interaction with Fip1 (PFI), Rna14 (CFI) and Ysh1 (CFII) 

CPF (PFI) Fip1 Pap1 recruitment and interaction with Yth1 (Scaffolding) 

CPF (PFI) Yth1 Interaction with Fip1 and Ysh1, RNA recognition 

CPF (CFII) / APT Pta1 Interaction with Ysh1, Ydh1, Pti1, Syc1 and Ssu72 

CPF (CFII) Ysh1/Brr5 Endoribonuclease, cleavage of the polyA site 

CPF (CFII) Yhh1/Cft1 RNA and CTD-binding 

CPF (CFII) Ydh1/Cft2 RNA recognition and Scaffolding (Ysh1, Yhh1/Cft1, Pta1, Pfs2, Ssu72, Pcf11) 

CPF Mpe1 RNA interaction, scaffolding, mediates ubiquitylation   

CPF Pap1 Synthetizes the polyA tail after pre-mRNA cleavage 

CPF / APT Ssu72 Phosphatase (Ser5 and 7) 

CPF / APT Glc7 Phosphatase (Tyr1)  

CPF / APT Pti1 Scaffolding 

CPF / APT Swd2 Scaffolding, also member of the COMPASS 

CPF / APT Ref2 RNA-binding, regulation of Glc7,  

APT Syc1 Only belongs to the APT complex 

 

Purification of the core-CPF has revealed the presence of 6 additional subunits present in a 

substoichiometric manner: Glc7, Ssu72, Ref2, Pti1, Swd2 and Syc1. These proteins form a 

subcomplex called APT (Associated with PTa1) that promotes efficient transcription 

termination (Nedea et al., 2003) of Small-NucleOlar RNAs (snoRNA). Among these proteins, 
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two (Ssu72 and Glc7) carry a phosphatase activity involved in the modification of the CTD (see 

I.2.2). In 2018, the Passmore laboratory reinvestigated the structural and functional connection 

between the APT and the CPF complexes (Lidschreiber et al., 2018). By performing purification 

of TAP-tagged (Tandem-affinity purification) factors followed by LC-MS/MS (Liquid 

chromatography - mass spectrometry), the authors discovered that the APT could form a 

distinct complex from the CPF. While Glc7, Ssu72, Ref2, Pti1 and Swd2 can be found in both 

the CPF and APT, the Syc1 protein is present only in the APT complex. Pta1, the protein that 

mediates the interaction between Ssu72 and Pti1 (i.e. the APT) and the CPF complex can also 

be present independently within the APT. In terms of function, cells defective for the APT 

complex (syc1Δ) show a decrease in the transcription level at sn/snoRNA but not at mRNA-

coding genes. Consistent with this observation, Syc1/APT is more abundant at sn/snoRNA-

coding genes and binds more efficiently than CPF-CF to sn/snoRNA. Together with previously 

published data, these results unveil a specific and independent role of the APT in the 

processing of some ncRNAs in S. cerevisiae (Dheur et al., 2003; Lidschreiber et al., 2018). 

Because of its role in processing RNAs that do not possess canonical polyA tail, Syc1/APT 

has been proposed to be connected to another termination pathway with a similar role: the 

NNS pathway (discussed below).  

 

 3.1.2 The core cleavage and polyadenylation signal sequence 
 

In budding yeast, the polyA site can contain five distinct RNA sequences: an AU-rich efficiency 

element (EE), an A-rich positioning element (PE), an upstream uridine-rich element (UUE), the 

cleavage site and a downstream uridine-rich element (DUE) (Mischo and Proudfoot, 2013) 

(Figure 8).  

 

The EE element consists of the hexanucleotide TAYRTA (Y = C/T and R = A/G) and is located 

at a variable distance from the cleavage site (Mischo and Proudfoot, 2013). This sequence is 

recognized by the Hrp1 component of the CFIB sub-complex. Neither the binding sequence 

nor Hrp1 are strictly required for the cleavage of the nascent transcript. Instead, they play a 

role in the efficiency of the 3’ end processing and the selection of the position of the polyA 

cleavage site (Dichtl and Keller, 2001; Guo et al., 1995; Minvielle-Sebastia et al., 1998). The 

TATATA sequence is important for efficient 3’ end formation and is present in more than half 

of the 3’ UnTRanslated regions (UTR) of genes in yeast (Guo et al., 1995). 

 

The PE element is located 10 to 30 nt upstream of the cleavage site. This A-rich sequence is 

conserved in eukaryotes and mutation of the consensus motif is associated with human 

diseases (Mandel et al., 2008). As for the EE sequence, the PE module is dispensable for 
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polyA site recognition (Dichtl and Keller, 2001). Once the PE is transcribed, it is recognized by 

Rna15, a protein that belongs to the CFIA complex. Interestingly however, Rna15 alone does 

not show any RNA sequence specificity in vitro. The presence of Rna14 (CFIA) and Hrp1 

(CFIB) instead promotes the specific binding of Rna15 to the A-rich element. Consistent with 

its crucial role in mRNA recognition, mutation in the RNA recognition motif (RRM) of Rna15 is 

lethal (Gross and Moore, 2001). 

 

 
 

Figure 7. Mechanism of transcription termination by the CPF-CF pathway. The recruitment of 
the CPF-CF at the 3’ end of mRNA-coding genes depends on its interaction with the CTD of the 
polymerase and the presence of specific sequences on the nascent transcript (green box). 
Endonucleolytic cleavage of the RNA by Ysh1 leads to the formation of an uncapped 5’ end that 
serves as an entry point for the 5’-3’ exonuclease Rat1. The dismantling of the elongation complex 
occurs via a torpedo mechanism (Rat1 dependent), an allosteric mechanism (conformational changes 
of the complex) or a combination of both. Adapted from (Porrua and Libri, 2015) 

 

In S. cerevisiae, the cleavage site is surrounded by two U-rich sequences that act in concert 

to enhance and position the cleavage of the polyA site (Dichtl and Keller, 2001; Graber et al., 

1999). Components of the CPF complex (Yhh1/Cft1, Ydh1/Cft2, Mpe1 and Yth1) bind to the 

U-rich element and the cleavage site to promote the association of the mature CPF complex 

(Barabino et al., 2000; Dichtl and Keller, 2001; Dichtl et al., 2002; Kyburz et al., 2003; Lee and 

Moore, 2014). The cleavage of the nascent RNA requires the lose sequence Y(A)n (Y = C/T) 

and occurs at the 3’ end of an adenosine (Mandel et al., 2008).  
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 3.1.3 Disassembly of the polymerase: The torpedo vs allosteric model 
 

In budding yeast, the elongation complex is released from the template about ~200 bp 

downstream of the polyA site (Baejen et al., 2017; Schaughency et al., 2014). An important 

and still debated question in the field of transcription termination is to determine whether the 

cleavage of the nascent transcript is required for the disassembly of the polymerase. In this 

respect, two main and not mutually exclusive models have been proposed to explain the 

dismantling of the elongation complex: the allosteric model and the torpedo model, both 

supported by independent findings (Figure 7).  

 

 
 

Figure 8. The CPF-CF transcription termination signal in yeast. 3’ UnTranslated Regions (UTRs) 
encompass the polyadenylation signal composed of up to five distinct modules involved in the 
recognition of the CPF-CF and that signal the position of the cleavage site. EE, PE, UUE and DUE 
correspond to the AU-rich efficiency element, A-rich positioning element, upstream uridine-rich 
element and the downstream uridine-rich element respectively. Y = pyrimidine (C or T). Adapted from 
(Mandel et al., 2008; Mischo and Proudfoot, 2013) 

 

The allosteric model proposes that the cleavage of the nascent transcript is not a strict 

requirement for RNAPII dismantling, although the polyA site itself is important (Orozco et al., 

2002). Many different studies and approaches support this notion. For instance, visualization 

of transcription by electron microscopy in drosophila suggests that RNA cleavage occurs in a 

majority of cases post-transcriptionally and therefore does not participate to termination 

(Osheim et al., 2002). In addition, Pcf11 has been proposed to dissociate the elongation 

complex independently of cleavage in vitro in both S. cerevisiae and D. melanogaster by 

interacting with the nascent RNA and the CTD (Zhang and Gilmour, 2006; Zhang et al., 2005). 

More recently, Zhang and colleagues (Zhang et al., 2015) showed that the cleavage of the 

RNA is not required for termination in a mammalian in vitro reconstituted system, proposing 

that a conformational change of the elongating RNAPII holo-enzyme induces its release from 

the DNA template.  

 

The co-transcriptional cleavage of the nascent RNA leads to the formation of an uncapped 5’ 

end attached to the elongation complex. The torpedo model posits that the 5’-P end would 

serve as an entry point for exonucleases that would progressively degrade the RNA to finally 

displace the polymerase from the DNA. The first evidence supporting this model derives from 

studies published in 2004 by the Buratowski and Proudfoot groups (Kim et al., 2004b; West et 
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al., 2004). In the yeast model, the authors described the role of Rat1-Rtt103 complex in eliciting 

transcription termination (Kim et al., 2004b). Rtt103 is a scaffold protein able to interact with 

the Ser2-P and Thr4-P of the CTD at the 3’ end of genes (Harlen et al., 2016; Jasnovidova et 

al., 2017a, 2017b; Kim et al., 2004b; Lunde et al., 2010). Rat1 is a 5’ to 3’ exonuclease 

originally described for its role in 5.8 S and snoRNA processing. The non-essential protein 

Rai1 interacts with Rat1 and enhances its activity. ChIP experiments reveal that Rat1, Rai1 

and Rtt103 localized together at the 3’ end of protein-coding genes in vivo. Furthermore, 

deletion of RAI1 or expression of a thermosensitive mutant for RAT1 are both associated with 

accumulation of RNAPII downstream or the normal region of termination (Kim et al., 2004b). 

Similar results were also obtained in a parallel study on the human homologue of Rat1, Xrn2 

(West et al., 2004). In the past years, the effect of both Rat1 and Xrn2 on termination was 

validated genome-wide using ChIP-Seq, sequencing of newly synthesized transcripts or NET-

seq experiments (Baejen et al., 2017; Eaton et al., 2018; Fong et al., 2015). In addition, 

mutations causing a decrease or an increase in the elongation rate are respectively linked with 

early or late termination events (Fong et al., 2015). This effect is in agreement with the idea 

that termination is a dynamic process occurring when Rat1/Xrn2 degrades the uncapped 

molecule and catches up with the polymerase. Despite all the in vivo evidence however, 

whether Rat1 can elicit termination in vitro remains a controversial question (Dengl and 

Cramer, 2009; Park et al., 2015; Pearson and Moore, 2013). Lastly, a combined model arguing 

that in vivo, the torpedo and allosteric model may probably act in concert to promote the 

disassembly of the elongation complex has also been proposed (Luo et al., 2006).  

 

3.2 The NNS termination pathway 

 

The NNS termination pathway is the second canonical termination mechanism known is S. 

cerevisiae. It operates on termination of ncRNAs such as snoRNAs (Steinmetz et al., 2001), 

and various additional non-functional and unstable RNAs (describe later) (Arigo et al., 2006a; 

Thiebaut et al., 2006). It relies on the action of three essential proteins, Nrd1, Nab3 and Sen1, 

that are all required for efficient termination of ncRNAs. In S. pombe, homologues of these 

proteins are found but only Seb1 (the Nrd1 homologue) appears to be involved in termination 

(Larochelle et al., 2018) although only for the production of mRNAs. The human homologue of 

Sen1 (senataxin) has also been proposed to elicit termination in cooperation with Xrn2 (Rat1 

in yeast) but the evidence remains controversial (Proudfoot, Natoli, personal communication).  

 

In addition to be essentially dedicated to the termination of distinct categories of RNAs, the 

NNS also differs from the CPF-CF for the intrinsic mechanism that leads to termination and 

the processing of the resulting RNA. Unlike CPF-CF, termination by the NNS is not linked to 
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the endonucleolytic cleavage of the nascent RNA. Instead, the release of the transcript and 

the dismantling of the elongation complex rely on the action of a helicase of the complex (see 

below). Another important difference with the CPF-CF pathway is that termination by the NNS 

is mechanistically associated with the action of nuclear degradation pathways, which function 

in the processing or the complete degradation of the released transcript (Porrua and Libri, 

2015).   

 

 3.2.1 The NNS components 
 

Nrd1 

Nrd1 (nuclear pre-mRNA down-regulation) is an RNA-binding protein that is also able to 

interact with many different factors. In this regard, it plays an essential role in the recruitment 

of the NNS complex at target genes and contributes to coordinating transcription termination 

with RNA degradation by the nuclear exosome.  

 

Nrd1 is a 68KDa protein that contains a central RRM motif necessary for  the recognition of a 

GUAA/G motif present on the nascent RNA (Carroll et al., 2004; Porrua et al., 2012; 

Schaughency et al., 2014; Steinmetz and Brow, 1998; Wlotzka et al., 2011). It also contacts 

the RNAPII CTD through its N-terminal CID domain and interacts directly with Nab3 to form a 

heterodimer (Conrad et al., 2000). The CID domain of Nrd1 is required for accurate termination 

(Arigo et al., 2006a; Tudek et al., 2014) and is also important for the interaction with Tfr4, a 

component of the TRAMP (Trf4-Air2-Mtr4) complex to mediate RNA degradation (see later) 

(Tudek et al., 2014).  

 

Nab3 

The 90KDa Nab3 (nuclear polyadenylated RNA-binding) factor recognizes the RNA sequence 

UCUUG through its RRM motif (Carroll et al., 2004; Hobor et al., 2011; Porrua et al., 2012; 

Schaughency et al., 2014; Wlotzka et al., 2011). It encompasses a Nrd1-interaction domain 

and complexes with Sen1 in vivo (Chinchilla et al., 2012; Conrad et al., 2000). Nab3 is capable 

of forming homotetramers in vitro. The multimerization of Nab3 is carried out by its low 

complexity carboxy-terminal domain that is distinct from the RRM and Nrd1-interaction. This 

domain is important for transcription termination and has been proposed to favour the 

formation of multiple Nrd1-Nab3 heterodimer in vivo (Loya et al., 2012, 2013). 

 

Sen1 

Among the three factors that constitute the NNS, Sen1 (splicing endonuclease) is the only one 

to bear enzymatic activities. It is also the biggest (252KDa) and less abundant protein of the 
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complex (30 to 100 times less than Nab3 and Nrd1) (Ghaemmaghami et al., 2003), suggesting 

that the three proteins are not always present stoichiometrically in the complex.  

 

Sen1 is a helicase that belongs to the superfamily 1 (SF1) helicases and resembles to the 

Upf1 helicase, a protein involved in the Nonsense-Mediated mRNA Decay (NMD) pathway. 

Sen1 binds and can translocate on both RNA and single stranded DNA in a 5’ to 3’ manner  

(Han et al., 2017; Martin-Tumasz and Brow, 2015). Sen1 alone is sufficient to trigger 

termination in vitro. In this system, is has been shown that the dissociation of the elongation 

complex requires the presence of the nascent RNA and hydrolyses of ATP but not the CTD of 

the polymerase (Porrua and Libri, 2013). Later studies have revealed that the sole helicase 

domain is sufficient to ensure robust termination in vitro, thus placing Sen1 as the main 

terminator factor of the NNS pathway (Han et al., 2017). In vivo, however, the N-terminal 

domain of Sen1 is also required for termination, possibly because it is required for the 

interaction with the CTD of Rpb1 (Ursic et al., 2004). 

 

 3.2.2 NNS-dependent termination mechanism 
 

The current model posits that the recruitment of the NNS complex depends both on the binding 

of the two RNA-binding proteins on short RNA sequences and the interaction of Nrd1 with the 

CTD of the polymerase. NNS terminators often contain clusters of binding sites that are 

believed to be bound by Nrd1-Nab3 heterodimers. Consistent with the essential role of the 

RNA recognition, mutation of these sites drastically impairs transcription termination in vivo. In 

addition to the previously mentioned motifs, in vivo selection experiments have highlighted the 

presence of  AU-rich sequences located close to the Nab3 site that are important for efficient  

termination (Porrua et al., 2012).  

 

Unlike Pcf11 or Rtt103 (see I.3.1), the interaction between Nrd1 CID and the CTD is not 

mediated by the Ser2-P mark. Instead, structural and biochemical analyses of the NNS 

complex have revealed an important role of Ser-5 phosphorylated CTD in the recruitment of 

Nrd1 (Gudipati et al., 2008; Heo et al., 2013; Kubicek et al., 2012; Mayer et al., 2012; Vasiljeva 

et al., 2008). Ser5-P is characteristic of the early stages of elongation (See I.2.2). This finding 

is consistent with a model according to which NNS-dependent termination occurs early in the 

transcription cycle (i.e. close to the TSS), which explains why NNS-targeted genes are usually 

shorter (less than ~600 bp) than mRNA-coding genes. Consistently, it has been shown that 

displacing NNS terminators far from the TSS (~1000 bp) decreases the Nrd1-dependency of 

termination (Gudipati et al., 2008). Interestingly however, the extent to which the Ser5-P 

contributes to termination remains unclear. It has been shown that deletion of the CID of Nrd1 
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decreases the efficiency of transcription termination at many loci (Tudek et al., 2014), which 

also depends on the integrity of the Kin28 kinase (Gudipati et al., 2008). Yet, a more recent 

study did not observe such readthrough events when using Rbp1 variants that are mutated at 

the essential Ser5 residues of the CTD (Collin et al., 2019).  

 

The crystal structure of Nrd1 shows an interaction between an aspartate present in the CID 

and the Tyr1 residue of the polymerase (Kubicek et al., 2012). Tyr1 has a significant effect on 

termination as shown by the mutation to phenylalanine of this residues in all of the CTD repeats 

(Collin et al., 2019). However, this residue has been proposed to play a distinct role in the 

termination than recruiting Nrd1 (Collin et al., 2019), notably by inducing RNAPII pausing 

around the site of termination. 

 

 
 

Figure 9. Overview of the NNS transcription termination pathway.  Nrd1 and Nab3 are recruited 
to non-coding transcripts by the recognition of specific motifs present on the nascent RNA (yellow 
and orange boxes). The interaction between Nrd1 and the Ser5-phosphorylated form of the CTD 
contributes to the specificity of the NNS complex for termination of short genes. By hydrolysing ATP, 
the Sen1 helicase is able to translocate along the RNA and disassemble the polymerase from the 
DNA template. Subsequently, the interactions between Nrd1 and Nab3, the TRAMP complex and the 
nuclear exosome promote the polyadenylation of the RNA (TRAMP) and its degradation or 
processing (exosome). Adapted from Porrua and Libri, 2015.  

 

The assembly of the Nrd1-Nab3 heterodimer on the nascent RNA is believed to facilitate the 

recruitment of the Sen1 helicase. The present model posits that once Sen1 is recruited, it 

translocates along the nascent RNA to reach the polymerase and dismantles the elongation 

complex (Porrua and Libri, 2015) (Figure 9). It has been shown that the NNS termination 

defects can be partially or completely suppressed by slowing down the elongation rate of the 
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polymerase across the gene (Collin et al., 2019; Hazelbaker et al., 2013; Lenstra et al., 2013). 

This has led to the suggestion that robust termination of the NNS pathway relies on a kinetic 

competition between the translocation of Sen1 on the nascent RNA and RNAPII elongation 

(Hazelbaker et al., 2013; Porrua and Libri, 2013).  

 

 3.2.3 RNA metabolism and NNS termination pathway 
 

Following termination, NNS-dependent transcripts are targeted to the nuclear exosome that 

degrades some RNAs (Cryptic Unstable Transcripts (CUT) described later) and trims 

snoRNAs into the mature and functional molecule. An important actor that participates to the 

processing of the transcript is the TRAMP complex, a cofactor of the nuclear exosome that 

recruits and stimulates its activity (Jensen et al., 2013; Porrua and Libri, 2015) (Figure 9).  

 

The nuclear exosome is composed of 11 subunits and is endowed with 3 ribonucleic activities. 

The enzymatic activities are organised around the core exosome arranged in 2 distinct layers: 

6 factors forming a bottom ring-like structure and a top layer of 3 “cap” proteins with an RNA-

binding capacity. Two 3’ to 5’ exonucleases, Dis3 and Rrp6, are located at each extremity of 

the core complex (Chlebowski et al., 2013; Makino et al., 2015). Dis3 also carries an 

endonucleolytic activity mediated by a different domain (Lebreton et al., 2008). Rrp6 is only 

present in the nuclear form of the exosome and functions partially redundantly with Dis3 

(Gudipati et al., 2012). In the nucleus, the exosome machinery degrades CUTs (Wyers et al., 

2005) and trims snoRNAs up to the size of the mature form, most likely because the snoRNP 

core ribonucleoprotein complex prevents further progression of the exonuclease. As expected 

for a role of Rrp6 in RNA turnover and processing, deletion of the gene leads to accumulation 

of polyadenylated sn/snoRNA precursors and normally unstable transcripts (Porrua and Libri, 

2015). Another striking phenotype associated with the deletion of RRP6 is the occurrence of 

transcription termination defects at NNS gene targets (Castelnuovo et al., 2013; Fox and 

Mosley, 2016; Vasiljeva and Buratowski, 2006). Therefore, it has been proposed that the 

exosome may directly impact termination by a mechanism that remains unclear. An ongoing 

study in the Libri laboratory, however, supports a model whereby the excess of RNAs that 

accumulate in the absence of Rrp6 leads to the titration of the NNS complex, therefore 

preventing its efficient recruitment at nascent RNAs (Villa et al., in preparation).  

 

The TRAMP complex is composed of three factors: the polyA polymerase Trf4, the RNA-

binding factor Air2 and the RNA helicase Mtr4. Together, they are responsible for the 

polyadenylation of a plethora of non-coding transcript including sn/snoRNAs, some rRNAs, 

hypomodified tRNAMet and CUTs, which are a major product of pervasive transcription (Kadaba 



33 
 

et al., 2004; LaCava et al., 2005; Vanácová et al., 2005; Wyers et al., 2005). Structurally, the 

Trf4 polyA polymerase shares similarity with the CPF-CF Pap1 polymerase. Deletion of TRF4 

results in an important accumulation of NNS-dependent transcripts in vivo. In vitro, Trf4 alone 

is not sufficient to catalyse the addition of a polyA tail and requires the Air2 factor. Consistently, 

cells defective for AIR2 show a similar defect in RNA degradation as compared to a trf4Δ strain 

(Wyers et al., 2005). The Mtr4 protein limits the number of adenosines added on the transcript 

(Jia et al., 2011). PolyA tails of steady states RNA molecules that are terminated by the NNS 

pathway are usually shorter (~5 nt) than the CPF-CF terminated transcripts. This difference 

probably explains why these RNAs are not stable but rather directed to the nuclear exosome 

(Wlotzka et al., 2011).  

 

The accurate coupling between transcription and RNA processing is mediated by successive 

interactions involving the polymerase, the NNS complex, the TRAMP and the nuclear exosome 

machinery. The Trf4 component of the TRAMP interacts via its CTD mimic domain (also called 

NIM, for Nrd1-interacting motif) with the CID domain of Nrd1. Interestingly, the Nrd1-Trf4 and 

Nrd1-Rpb1 interactions both rely on the same CID domain of Nrd1. Hence, these interactions 

are mutually exclusive which may participate to the sequential coordination of transcription and 

degradation (Tudek et al., 2014). The recruitment of the exosome at NNS targets is promoted 

by the interaction between Rrp6 and Trf4, Rrp6 and Nrd1 (Tudek et al., 2014) and Rrp6 and 

Nab3 (Fasken et al., 2015).  

 

3.3 Alternative transcription termination pathways 

 

Together, the CPF-CF and NNS pathways contribute to the termination and 3’ end processing 

of most of the RNAPII-dependent transcripts expressed in S. cerevisiae. Yet, at least two other 

mechanisms have been shown to impact termination: a Rnt1-dependent and a roadblock-

associated pathway.  

 

 3.3.1 The Rnt1-dependent termination 
 

Rnt1 is the eukaryotic homologue of bacterial dsRNA-specific endonuclease Rnase III. This 

factor has been extensively studied for its role in the maturation of precursor RNA molecules 

such as pre-rRNA, sn/snoRNAs as well as intron-encoded snoRNAs (Ghazal et al., 2005). 

Rnt1 cleavage sites are mostly characterized by the presence of a stem-loop structure 

containing an AGNN tetraloop (Chanfreau et al., 2000) although other type of substrates have 

also been identified (Gagnon et al., 2015; Ghazal et al., 2005). It has been shown that Rnt1-
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dependent cleavages can trigger transcription termination (Ghazal et al., 2009; Rondón et al., 

2009). 

 

The NPL3 gene has been used as a model to study the role of Rnt1 in termination. The 3’ 

region of NPL3 is characterized by the presence of a weak polyA site (inefficient for 

transcription termination) followed by an AGNN motif predicted to form a tetraloop hairpin. 

Mutation of the Rnt1 motif or deletion of RNT1 leads to readthrough transcription downstream 

of the Rnt1 cleavage site. Importantly, no termination defect was detected at the primary site 

(CPF-CF) when Rnt1-dependent termination was impaired demonstrating that Rnt1 acts 

independently of the CPF-CF pathway. Nonetheless, similarly to CPF-CF termination (3.1.1), 

Rnt1-dependent termination requires the exonuclease Rat1 (Ghazal et al., 2009; Rondón et 

al., 2009). The Rnt1 termination pathway also shares similarity with the NNS pathway since 

transcripts that are produced are stabilized in cells defective for either Rrp6 (nuclease 

exosome) or Trf4 (TRAMP complex) (Egecioglu et al., 2006; Rondón et al., 2009).  

 

 
 

Figure 10. Rnt1-dependent transcription termination pathway. Recruitment of the endonuclease 
Rnt1 requires the presence of specific stem-loop structures on the nascent transcript (in red). The 5’ 
end of the downstream portion of the RNA is targeted by Rat1 to trigger termination and the released 
transcript is degraded by the nuclear exosome.  

 

The current model therefore posits that Rnt1 is recruited at specific sites through the 

recognition of a stem-loops structure, cleaves the RNA and generates a free 5’-OH extremity 

that serves as an entry point for Rat1 (Ghazal et al., 2009; Rondón et al., 2009). The released 

transcript is subsequently subjected to degradation (or maturation) by the TRAMP / Nuclear 

exosome (Figure 10).  
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Finally, in addition to NPL3, the Rnt1 pathway is involved in termination of about 30 other 

genes in yeast, including snRNA and mRNA-coding genes (Ghazal et al., 2009). Importantly, 

it can serve as the main (snRNA) or back-up (mRNA) termination pathway. In the latter cases, 

Rnt1 has been proposed to act as a fail-safe mechanism to prevent the progression of 

polymerases that fail to terminate at primary sites.  

 

 3.3.2 The roadblock termination pathway 
 

The roadblock termination mechanism relies on the ability of the Reb1 DNA-binding factor to 

physically impede the progression of transcribing polymerases. Unlike the previously 

described pathways, roadblock events do not involve the recognition of the nascent transcript 

or the transcription of specific signals present on DNA (Figure 11). The first extensive 

characterisation of this mechanism has been made by our laboratory, in a study published in 

2014 (Colin et al., 2014).  

 

In order to discover new termination mechanisms, Colin and colleagues performed an in vivo 

selection from a pool of naïve DNA sequences, and assessed their ability to terminate 

transcription. From this experiment, the authors found that a short motif of ~ 10 bp was 

particularly enriched, and corresponds to the binding site of the essential Reb1 DNA-binding 

factor. Reb1 is a general regulatory factor known to regulate hundreds of genes in yeast by 

binding at specific sequences present within promoter regions (discussed later). Using a 

reporter system, they confirmed the implication of the Reb1 motif and protein in termination. In 

addition, the expression of a truncated form of Reb1 lacking the activator domain is sufficient 

to induce termination, thus revealing that the transcription activation activity and the 

termination activity of Reb1 are independent.  

 

Importantly, Reb1-dependent termination is characterized by a marked pausing peak of 

RNAPII upstream of Reb1-binding sites. This accumulation of polymerases is abolished upon 

depletion of Reb1 or mutation of the binding site and enhanced in the absence of TFIIS/Dst1 

or in cells defective for the Rsp5 ubiquitin ligase (see I.2.4). A plausible model is that 

polymerases encountering the Reb1 factor are stalled and backtracked, leading to the 

recruitment of TFIIS. However, the persistence of Reb1-binding on DNA prevents RNAPII to 

restart transcription and triggers its ubiquitylation and most probably its degradation by the 

proteasome.  

 

Akin to the Rnt1 mechanism, the roadblock pathway can account for the primary termination 

mechanism of a few non-coding transcripts or can function as a back-up mechanism to restrict 
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the disruptive effects of leaky CPF-CF termination. In both cases however, the RNAs derived 

from Reb1-dependent termination are unstable and degraded in the nucleus by the TRAMP 

and exosome pathway. This class of RNA has been called RUTs, for Reb1 unstable 

transcripts.   

 

Prior study had already suggested a role for various DNA-binding proteins in inducing RNAPII 

roadblock termination. This includes for instance other general regulatory factors such as Rap1 

(Yarrington et al., 2012) or Abf1 (Valerius et al., 2002), or the RNAPIII transcription factor 

TFIIIB (Korde et al., 2014). These studies were however restricted to a limited amount of 

natural case study and did not address the molecular mechanism behind such termination 

events. 

 

 
 

Figure 11. Reb1-mediated roadblock termination pathway. RNA polymerases encountering the 
Reb1 factor are stalled upstream of the Reb1-binding site. The paused polymerases are targeted to 
degradation via the Rsp5-dependent ubiquitylation pathway and the released RNA is degraded by 
the nuclear exosome.  

 

My first thesis project aimed at evaluating the genome-wide occurrence and the functional role 

of roadblock termination in S. cerevisiae. To do so, I have analysed the distribution of the 

polymerase genome-wide using a modified version of the CRAC (UV crosslinking and analysis 

of cDNA) technique (Granneman et al., 2009). By sequencing nascent RNAs after purification 

of RNAPII elongation complexes, this method allows the detection of elongated complexes in 

a strand specific manner and with nucleotide resolution. This work is described in the first result 

section.  
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3.4 Diversity of transcription termination pathways 

 

Mechanisms that govern transcription termination are diverse and generally specific of the 

polymerase that is considered. In this section, I will give a rapid overview of the mechanisms 

associated with termination of RNAPI and III in yeast, or present in different organisms such 

as bacteria or mammals.   

 

 3.4.1 Transcription termination of RNA polymerase I and III   
 

RNA polymerase I 

RNAPI is responsible for the transcription of the 35S ribosomal RNA whose post-transcriptional 

maturation leads to the formation of the 5.8S, 18S and 25S. The yeast genome contains 150 

to 200 copies of rDNA organised in tandem repeat on chromosome XII. The termination region 

is encompassed within the InterGenic Sequence (IGS) containing specific sequences and 

recognition motifs for DNA-binding factors. In both yeast and higher eukaryotes, RNAPI-

dependent termination occurs through a similar mechanism to the previously mentioned 

roadblock mechanism (Porrua et al., 2016). In S. cerevisiae the binding of Nsi1 at IGS induces 

an arrest of the polymerase and is sufficient to induce termination in vitro and in an artificial 

termination system in vivo (Merkl et al., 2014). Nsi1 and its paralogue Reb1 contain similar 

Myb-like DNA-binding domains and bind an identical site. For this reason, Reb1 was long 

thought to be the main terminator factor of RNAPI (Lang and Reeder, 1993, 1995; Lang et al., 

1994; Reeder et al., 1999).  

 

The termination region also contains an Rnt1 site upstream the Nsi1-binding site. During the 

termination process, the endonuclease Rnt1 is recruited at the site of transcription and cleaves 

the nascent transcript after recognition of the stem-loop structure. The presence of the newly 

formed RNA 5’ end attached to the paused polymerase has been proposed to be a substrate 

for the Rat1 exonuclease and the Sen1 helicase. These two factors may act in concert to 

dislodge the polymerase and elicit termination (El Hage et al., 2008; Kawauchi et al., 2008). 

Finally, in yeast, a T-rich motif (absent in higher eukaryotes) has also been proposed to favour 

RNAPI termination efficiency in cooperation with Nsi1 (Lang and Reeder, 1995; Lang et al., 

1994; Reiter et al., 2012).  

   

RNA polymerase III 

RNAPIII transcribes relatively short and abundant RNA molecules (tRNAs, U6 snRNA, 5.S 

rRNA). The RNAPIII termination mechanism differs remarkably from the other mechanisms in 
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the sense that it does not involve any specific factors in addition to the DNA sequence (Porrua 

et al., 2016).  

 

Termination of RNAPIII requires the presence of a short T-stretch at the 3’ end of genes. The 

number of Ts varies in a species-specific manner. In budding yeast, the stretch contains 7 Ts 

on average but can also be longer (up to 10 nt long) at some genes. In S. pombe and H. 

sapiens, the motif is usually shorter and rarely exceed 8 and 5 nt respectively (Braglia et al., 

2005). Despite the simplicity of the termination signal, the structural modifications leading to 

the release of the polymerase are still poorly understood. Three RNAPIII subunits, Rpc11, 

Rpc37 and Rpc53, have been proposed to be particularly important for termination. The current 

model posits that during transcription of the first four As of the template strand (T-stretch on 

the non-template strand), the polymerase enters a metastable pre-termination complex (PTC). 

This transition requires the three above-mentioned factors but is not sufficient to induce 

termination. Once the polymerase reaches the 5th A, the interaction between this nucleotide 

and the C-terminal region of Rpc7 may destabilise the complex and switch the PTC to a 

transcript release mode, which leads to termination (Arimbasseri and Maraia, 2015).  

 

 3.4.2 Transcription termination among the living world 
 

Transcription termination in bacteria 

Two main distinct termination pathways are known in bacteria. The first one is called intrinsic 

termination and is characterized by the strict requirement for a specific sequence. Intrinsic 

terminators are composed of GC-rich motif followed by a stretch of Us. Transcription of the 

GC-rich sequence leads to the formation of a hairpin structure on the nascent RNA. The 

presence of the hairpin and the formation of an unstable RNA:DNA hybrid at the U-rich site 

destabilises the elongation complex and induces termination. The precise function of the 

hairpin in promoting termination is still under debate.  

 

The second known pathway, the Rho-dependent termination, depends on the action of the 

Rho helicase factor. Rho is a molecular motor structured into a homo-hexametric ring complex 

that acts in an ATP dependent manner. It binds the nascent RNA at clustered Rho utilization 

elements composed of C-rich G-poor motifs and translocates towards the polymerase for 

dismantling the elongation complex. Because of their analogous mechanism and despite the 

difference in structure, the Rho factor is often compared to the yeast Sen1 helicase of the NNS 

complex (Porrua et al., 2016; Ray-Soni et al., 2016).  

 

RNAPII transcription termination in mammals 
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Akin to yeast, different mechanisms of RNAPII termination exist in mammals and are often 

linked with the 3’ end formation and processing of distinct classes of transcript. As previously 

mentioned, the components and function of the CPF-CF are conserved in mammals (CPSF-

CF) while the NNS pathway is instead mainly present in the budding yeast. In mammals, 

termination of short transcription units relies on a different set of factors that are mainly 

dependent on the essential 5’ cap-binding complex (CBP). The CBP is a complex of two 

proteins (CBP20 and CBP80) involved in various steps of RNAs metabolism including RNA 

stability, transport and translation.  

 

During transcription, CBP has been shown to interact with the ARS2 protein to promote 3’ end 

termination and processing of short transcripts. As a proof of concept, knock-down of either 

factors leads to readthrough transcription at various RNAPII-dependent coding genes (Hallais 

et al., 2013). This pathway is mainly dedicated to the termination of snRNAs, as well as some 

classes of highly unstable transcripts that are relatively similar to CUTs (PROMoter-Proximal 

Transcripts, PROMPT) or Enhancer RNAs (eRNA)) (Iasillo et al., 2017). The CBP-ARS2 

together with the zinc-finger ZC3H18 protein interact with the Nuclear EXosome Targeting 

(NEXT) complex which in turn favours the recruitment of the exosome and the degradation of 

these RNAs (Andersen et al., 2013; Preker et al., 2008). In this respect, the CBP-ARS2 shares 

a common feature with the NNS pathway as it also connects transcription termination with 

RNA decay. Finally, it has been proposed that two components of the CPSF-CF pathway 

(PCF11 and CLP1) may also play a role in the CBP-ARS2 pathway, perhaps by participating 

to the release of the elongation complex (Hallais et al., 2013).   

 

In summary: Across the living world, a plethora of different mechanisms have evolved to 

ensure robust transcription termination of RNA polymerases. Many of them rely on the 

recognition of specific signals present on the nascent RNA and the combined action of 

endonucleases and exonucleases or the recruitment of a 5’ to 3’ helicase. Some other 

pathways on the contrary are characterized by the strict requirement of a DNA motif and 

may in this case be marked by a structural switch of the polymerase to favour its release 

from the template strand. Importantly, all these termination mechanisms share common 

functions: on one hand, they often couple transcription with the 3’ end processing of the 

nascent transcript, which is important to determine its metabolic pathway (i.e. export, 

translation, degradation…); on the other hand, they are crucial to delimit the 3’ border of 

transcription units and avoid extensive readthrough of elongation complexes. In this respect, 

some pathways have been selected to act as a fail-safe mechanism in order to counteract 

the leakage of RNAPs at canonical terminators. 
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II - Role of General Regulatory Factors 
and Chromatin Remodelers in Gene 
Regulation 
 

General regulatory factors (GRFs) and chromatin remodelers (CRs) are two classes of factors 

whose function is intimately correlated with the formation and the maintenance of the 

nucleosomal structure at inter- and intragenic regions. Because of their impact on NDR 

formation, GRFs and CRs have been extensively studied in the context of transcription 

regulation. During my thesis, I have studied the role of GRFs in delimiting transcription units 

and investigated, in collaboration with the Shore laboratory, the function of CRs on transcription 

initiation.  

 

This second chapter will present the yeast GRFs and CR complexes. A particular attention will 

be devoted to the effect of their depletion on NDR formation and gene expression.  
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1. General Regulatory Factors  

 

GRFs are essential and abundant sequence-specific DNA-binding proteins involved in the 

regulation (activation or repression) of several classes of genes in S. cerevisiae. The three 

most documented GRFs are Rap1, Reb1 and Abf1. As many transcription factors, these 

master regulators are structurally organised into at least two distinct domains: a DNA-binding 

domain and an activator (or regulatory) domain. These domains are important for the function 

of the protein and are implicated in the interaction with various additional factors.  

 

1.1 Rap1 

 

Rap1, for Repressor Activator Protein 1, is one of the best characterized GRFs. It is a 827 

amino acid protein composed of central DNA-Binding Domain (DBD) flanking by a C-terminal 

domain harbouring most of the regulatory function, and a N-terminal domain important for the 

maintenance of cell wall homeostasis (for a recent review see Azad and Tomar, 2016). Its DBD 

is similar to the human oncogene Myb (Myb-like domain) and binds to a G-rich DNA motif 

whose consensus is TGTAC/TGGGTG (Badis et al., 2008; Rhee and Pugh, 2011).  

 

Rap1 is involved in the regulation of about 5% (~300) of S. cerevisiae genes, which are mainly 

highly expressed (Lieb et al., 2001). It is responsible for the activation of more than 90% of the 

ribosomal protein-coding genes (RPG: 129 out of the 138 present in yeast) (Knight et al., 

2014). It also controls the expression of genes implicated in the glycolytic pathway (Brindle et 

al., 1990; Lieb et al., 2001; Mizuno et al., 2004) as well as some low-glucose dependent targets 

(Buck and Lieb, 2006) and genes related to the production of rRNAs  (some RNAPI-associated 

subunits and transcription factors or rRNA processing factors) (Lieb et al., 2001). Lastly, Rap1 

has also been described as a repressor of the HML and HMR mating-type loci during 

vegetative growth (Kimmerly et al., 1988; Kurtz and Shore, 1991).  

 

At ribosomal protein genes, Rap1 acts in concert with additional factors. The FIS complex 

(Fhl1-Ifh1-Sfp1) has been shown to be particularly enriched at all Rap1 RPG-targets. In 

addition, about half of the Rap1-dependent RPGs are regulated by the Hmo1 DNA-binding 

factor (Knight et al., 2014; Reja et al., 2015; Wade et al., 2004). Rap1 is often positioned in 

NDRs at the most upstream position with respect to the TSS and is followed by the FIS and 

Hmo1 (Knight et al., 2014; Reja et al., 2015).  
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Downregulation of RPGs is known to occur as a result of various stress conditions including 

heat shock or inhibition of the TOR (Target Of Rapamycin) pathway (Cardenas et al., 1999; 

Powers and Walter, 1999). Interestingly, in this particular context, Ifh1, Sfp1 and Hmo1, have 

been shown to dissociate from the template DNA while Rap1 and Fhl1 remain strongly bound 

to their promoter sequence (Reja et al., 2015; Wade et al., 2004). This might suggest that the 

binding of Rap1 is not submitted to regulation but rather is ubiquitous, at least in the tested 

conditions.  

 

The regulation of HMR and HML is also under the dependence of various factors. Sir1, 3, 4, 

the histone deacetylase Sir2, (Silent Information Regulators) and Abf1 have been all shown to 

participate to the transcriptional silencing of these two loci (Azad and Tomar, 2016; Kimmerly 

et al., 1988). In the case of the Sir proteins, their recruitment at mating-type loci is mediated 

by the direct interaction of Sir3 and 4 with the C-terminal domain of Rap1 (Liu and Lustig, 1996; 

Luo et al., 2002).  

 

Rap1 has been shown to interact with components of the PIC as well as some chromatin 

remodeler complexes. These interactions have been proposed to underlie the gene activation 

capacity of Rap1. Notably, Rap1 interacts with the TFIID and TFIIA general transcription 

factors (Bendjennat and Weil, 2008; Garbett et al., 2007; Johnson and Weil, 2017; Papai et 

al., 2010; Tomar et al., 2008). in vitro pull-down experiments using recombinant versions of 

Rap1 or TFIID have revealed that their association is mainly mediated by the C-terminal 

domain of Rap1 and the Taf12, 4 and 5 subunits of TFIID. Nonetheless, a truncated version of 

Rap1 containing only the DBD is also able to interact with TFIID albeit to a lesser extent 

(Garbett et al., 2007; Tomar et al., 2008). These associations could be confirmed by cryo-

electron microscopy experiments (Papai et al., 2010) and are also supported by in vivo data 

showing that Rap1 is sufficient to recruit Tafs factors to promoters in a TBP and RNAPII 

independent manner (Mencı́a et al., 2002). By using a variant of Rap1 with altered DNA-

binding specificity, Johnson and Weil recently showed that the vast majority of the activation 

function of Rap1 is carried by a 41 amino acid long region located at the C-terminal part of the 

protein, whose mutation partially impairs the interaction with Taf5 (Johnson and Weil, 2017). 

Affinity chromatography of yeast extract using Rap1-bound columns show that, as for TFIID, 

the SWI/SNF remodeler complex associates with the C-terminal domain of Rap1 and to a 

lesser extent with the DBD (Tomar et al., 2008). Collectively, these data indicate that Rap1 

has the ability to interact with factors involved in gene activation, suggesting a possible mode 

of action as a transcriptional activator. 
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Another well characterized and extensively studied function of Rap1 is related to telomere 

maintenance. Telomeres are DNA regions located at the extremity of linear eukaryotic 

chromosomes. S. cerevisiae telomeres consist in tandem repeats of the DNA sequence TG1-3 

(T followed by 1 to 3 Gs). In all eukaryotes, telomeres serve as docking sites for various factors 

that work together to control their size during aging and protect them from fusion and action of 

DNA repair mechanisms (Wellinger and Zakian, 2012). Rap1 is one of these factors. Cells 

expressing various rap1ts (thermosensitive) alleles are known to be associated with variations 

in telomere lengths (Kyrion et al., 1992; Lustig et al., 1990). Similarly to HML and HMR loci, 

the interaction between Rap1, and SIR factors (Sir2, 3 and 4) is crucial for establishing a silent 

heterochromatin-like structure near telomeric regions (Luo et al., 2002; Mattarocci et al., 2016). 

Finally, Rap1 also associates with the Rap1-Interacting Factor 1 and 2 (Rif1, Rif2) via its C-

terminal domain. Deletion of either RIF factors leads to an increase in telomere length, 

suggesting that Rap1 and Rifs act together to maintain telomere length homeostasis (Hardy et 

al., 1992; Wotton and Shore, 1997).  

 

1.2 Abf1 

 

The structure of the essential Abf1 (ARS-Binding Factor 1) protein is close to that of Rap1 and 

other GRFs. Abf1 is composed of 731 amino acids organised into a C-terminal activation 

domain and an N-terminal myb-like DNA binding domain. It binds a consensus sequence 

CGTNN(T4)TGAT where the underlines positions correspond to nucleotides that are most 

frequently found (Badis et al., 2008; Beinoravičiūtė-Kellner et al., 2005; Yarragudi et al., 2007).  

Abf1 plays a role in DNA replication (Wiltshire et al., 1997), DNA repair (Nucleotide excision 

repair) (Reed et al., 1999) and repression or activation of many genes in S. cerevisiae (Bosio 

et al., 2017a; Fermi et al., 2017).  

 

Abf1 governs the expression of about 10% of RPGs (Fermi et al., 2016; Knight et al., 2014) 

and also associates with hundreds of genes involved in the biogenesis of ribosomes (Ribi 

genes) (Bosio et al., 2017b, 2017a). It plays a role in silencing of the HMR locus although to a 

lesser extent compared to Rap1 (Kimmerly et al., 1988; Shore et al., 1987). 

 

A recent analysis of Abf1-associated RPG promoters has revealed the presence of Fhl1 (FIS 

component) binding sites located at the 3’ end of Abf1 motifs (Fermi et al., 2016). Unlike Rap1, 

the occupancy of Abf1 at promoters can be modulated by external signals. Notably, inhibition 

of the TOR pathway is associated with a concomitant decrease in the expression of Abf1-

dependent RPG and Ribi genes and an increase in Abf1 association (Fermi et al., 2016). The 

reason for this is however unclear since Abf1 promotes the expression of these genes in a WT 
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context. The link between Abf1 and the TOR pathway had already been suggested by 

intendent studies showing that Abf1 is one of the downstream effectors of the TORC1 complex 

(Oliveira et al., 2015) that is phosphorylated depending on growth conditions (e.g. nitrogen 

starvation, carbon sources…) (Silve et al., 1992). Hence, unlike other GRFs whose binding is 

thought to be ubiquitous, the occupancy of Abf1 on DNA can be regulated by external signals 

through post-translational modifications (Bosio et al., 2017a).  

 

1.3 Reb1 

 

Akin to Rap1 and Abf1, Reb1 (RNA polymerase I Enhancer-Binding protein 1) binds to specific 

DNA sequences through its Myb-like DNA-binding domain that recognizes the TTACCCGG 

motif (Badis et al., 2008; Morrow et al., 1990, 1993).  

 

Reb1 has been first characterized as an RNAPI transcription factor. By binding at spacer 

regions between rRNA-coding genes, Reb1 promotes the synthesis of the 35S precursor 

(Kulkens et al., 1992; Morrow et al., 1989). Parallel studies also demonstrated a role for Reb1 

in the regulation of class II genes (Chasman et al., 1990; Ju et al., 1990; Wang et al., 1990). 

Notably, Reb1 governs the expression of hundreds of Ribi genes where it can be found either 

in association with Abf1, or alone (Bosio et al., 2017b). 

 

Reb1 has also been implicated in the termination of RNAPII through a roadblock mechanism 

(see I.3.3.2). Importantly, the termination function of Reb1 is distinct from its regulation function 

as expression of the Reb1-DBD alone is sufficient to induce termination, but not to ensure 

robust gene expression at its targets (Colin et al., 2014). 

 

1.4 Cbf1 and Tbf1 

 

Cbf1 (Centromere-Binding Factor 1) and Tbf1 (TTAGGG repeat-Binding Factor 1) are two 

additional GRFs whose function is however less spread as compared with Rap1, Abf1 and 

Reb1.  

 

The non-essential factor Cbf1 has been particularly studied for its role in centromere binding. 

Centromeres are ~120 bp long DNA regions organised into three different modules called 

CDEI, CDEII and CDEIII (Centromere-Determining Elements) to which multiple DNA factors 

are bound (Biggins, 2013). The dispensable CDEI element is characterized by the presence 

of the RTCACRTG (with R = A/G) sequence that serves as a binding site for the helix-loop-

helix factor Cbf1 (Niedenthal et al., 1991). Cbf1 is also involved in the transcriptional regulation 
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of a few genes including the MET genes, i.e. genes implicated in the S-adenosyl-methionine 

metabolism (Mellor et al., 1990).  

 

Tbf1 is an essential factor containing a SANT/Myb type DNA-binding domain able to interact 

with the TTAGGG DNA motif (Bilaud et al., 1996; Brigati et al., 1993). Tbf1 binds sub-telomeric 

regions where it acts to prevent the recognition of DNA ends as DNA damage sites (Koering 

et al., 2000; Ribaud et al., 2012). Tbf1 has also been shown to bind to most snoRNAs 

promoters and to be required for robust expression of these genes (Preti et al., 2010).  

 

2. Chromatin Remodeler Complexes 

 

Chromatin remodelers are ATP-dependent complexes that are able to modify the chromatin 

structure by sliding, evicting or depositing nucleosomes along the DNA. Their action not only 

impacts the formation of the NDR at promoters but also influences the occupancy of 

nucleosomes at intragenic regions. In all eukaryotes, chromatin remodelers can be divided into 

four main subfamilies, depending on their ATPase domain and their respective partners: the 

SWItch/Sucrose Non-Fermentable (SWI/SNF), INOsitol requiring INO80, Imitation SWItch 

(ISWI) and Chromodomain Helicase DNA-binding (CHD) subfamily (Clapier et al., 2017; Lai 

and Pugh, 2017) 

 

2.1 The SWI/SNF subfamily 

 

In S. cerevisiae the SWI/SNF subfamily comprises two main subtype multi-protein complexes, 

the SWI/SNF and the essential RSC (Remodel the Structure of Chromatin) remodeler, whose 

catalytic activity is carried out by the Snf2 and Sth1 factors respectively. In vitro studied have 

revealed that RSC and SWI/SNF are able to eject (Clapier et al., 2017; Lorch et al., 2006, 

2011) and slide nucleosomes along and beyond the end of a linear DNA template (Flaus and 

Owen-Hughes, 2003; Kassabov et al., 2003). In vivo, the SWI/SNF subfamily mediates the 

establishment of the NDR by sliding the +1 and -1 nucleosomes away from the promoter (Badis 

et al., 2008; Ganguli et al., 2014; Hartley and Madhani, 2009; Kubik et al., 2015; Parnell et al., 

2008, 2015; Yen et al., 2012) and/or by destabilizing or ejecting the fragile nucleosome present 

within promoter regions (Floer et al., 2010; Kubik et al., 2015).  

 

Overall, the RSC complex has been shown to target more promoters than the SWI/SNF 

complex (Ganguli et al., 2014). Cells defective for the RSC complex show an increase in 

nucleosome density at hundreds of gene promoters (Badis et al., 2008; Ganguli et al., 2014; 
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Hartley and Madhani, 2009; Kubik et al., 2015; Parnell et al., 2015). The action of RSC is 

intimately linked to the presence of two DNA sequences, a GC-rich motif and a poly(A) tract 

sequence (Badis et al., 2008; Krietenstein et al., 2016; Kubik et al., 2015). Notably, two 

components of the RSC, Rsc3 and Rsc30 are able to directly bind the GC-rich motif present 

within NDRs (Angus-Hill et al., 2001; Badis et al., 2008). More recently, Kubik and colleagues 

confirmed the role of the DNA sequence in the recruitment of RSC and demonstrated that the 

arrangement of the two motifs (i.e. orientation and spacing) influences the activity and binding 

of RSC (Kubik et al., 2018). The ability of RSC to promote the formation of larger NDRs by 

evicting nucleosomes has been shown to positively affect the recruitment of the TATA-binding 

protein by exposing its binding site (Kubik et al., 2018). 

 

2.2 The ISWI and CHD subfamily 

 

The yeast ISWI subfamily comprises the ISW1 (ISW1a and ISW1b) and ISW2 subtypes. They 

are composed of 2 to 3 proteins organised around the Isw1 and Isw2 ATPase-translocase 

factor. The Chd1 protein is the only representative of the CHD subfamily in budding yeast 

(Clapier et al., 2017). ISW1a, ISW1b, ISW2 and CHD1 are all able to slide nucleosomes along 

the DNA in vitro, although to a different extent (Krajewski, 2013; Stockdale et al., 2006). By 

using an in vitro nucleosome assembly set up with purified components, the Korber lab 

demonstrated that ISW1 and CHD1 promote the regular spacing of nucleosomes 

independently of nucleosome concentration (Lieleg et al., 2015). This important result 

suggests that ISW1 and CHD1 are capable to sense the distance between two adjacent 

particles in vitro. 

 

In vivo, chromatin remodelers of the ISWI and CHD subfamily act mainly at intragenic regions 

where they participate to the phasing of the array of nucleosomes (Gkikopoulos et al., 2011; 

Ocampo et al., 2016; Parnell et al., 2015; Tirosh et al., 2010; Whitehouse et al., 2007). Unlike 

ISW2, deletion of CHD1 and ISW1 leads to a dramatic redistribution of nucleosomes at most 

genes. Moreover, cells defective for both Chd1 and Isw1 proteins display a much stronger 

defect in intragenic nucleosome phasing as compared with either single mutants, suggesting 

a cooperative effect of the two remodelers in determining the nucleosome architecture 

(Gkikopoulos et al., 2011; Ocampo et al., 2016). Interestingly, the size of the linker between 

two adjacent nucleosomes was found to depend on the remodeler: CHD1 target genes have 

on average a shorter distance between consecutive dyads (~160 bp) as opposed to ISW1 

(~175 bp) and ISW2 (~200 bp) target genes. This difference between CHD1 and ISW1 has led 

the authors to speculate that they may not act in concert but rather compete at most yeast 

expressed genes to set the correct spacing (Ocampo et al., 2016).  
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Supporting the role of ISW1 and CHD1 in setting up the organisation of intragenic 

nucleosomes, and unlike the SWI/SNF subfamily, their depletion has only a minor effect on 

the position of the +1 nucleosome and on transcription initiation (Gkikopoulos et al., 2011; 

Lenstra et al., 2011; Ocampo et al., 2016; Parnell et al., 2015; Vary et al., 2003). Instead, they 

are important to promote efficient elongation of the polymerase across the genes (Simic et al., 

2003; Smolle et al., 2012). However, isw2Δ strains also show a downstream shift of the +1 

nucleosome indicating that it may function differently with respect to the other subtypes of the 

ISWI subfamily (Whitehouse et al., 2007; Yadon et al., 2010; Yen et al., 2012).   

 

2.3 The INO80 subfamily  

 

Ino80 and Swr1 compose the catalytic subunit of the INO80 and SWR-C subtypes. They both 

belong to the INO80 subfamily and share many common factors (Clapier et al., 2017). In vitro 

INO80 (but not SWR-C) moves nucleosomes towards the center of a linear DNA fragment 

(Udugama et al., 2011).  

 

In the early 2000’s, three independent studies have demonstrated that the Swr1 ATP-ase is 

responsible for the deposition of the H2A.Z histone variant (Kobor et al., 2004; Krogan et al., 

2003b; Mizuguchi et al., 2004). The SWR-C complex catalyses the exchange of the H2A-H2B 

with the H2A.Z-H2B dimer (Kobor et al., 2004; Mizuguchi et al., 2004) at the +1 nucleosome 

(see I.1.3). The recruitment of SWR-C requires a long nucleosome-free region adjacent to a 

nucleosome (which usually correspond to the +1 nucleosome core particle) and is also 

dependent on the acetylated pattern of histones (Ranjan et al., 2013; Watanabe et al., 2013). 

INO80 has been originally proposed to be implicated in the reverse process, i.e. replacing the 

H2A.Z-H2B by the H2A-H2B dimer at the +1 position (Papamichos-Chronakis et al., 2011; Yen 

et al., 2013) even though its role in evicting H2A.Z remains controversial (Wang et al., 2016; 

Watanabe and Peterson, 2016; Watanabe et al., 2013).  

 

3. Function of GRFs and Remodelers in Chromatin Organisation 

 

3.1 The central role of general regulatory factors on NDR formation 

 

It is now well established that GRFs not only bind at NDRs but also actively take part in their 

formation and maintenance. This notion has emerged about 20 years ago, notably with studies 

from the Morse lab showing that the insertion of a GRF DNA-binding motif into a chromatinized 
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plasmid was sufficient to alter its nucleosomal architecture (Morse, 2000; Yarragudi et al., 

2004; Yu and Morse, 1999; Yu et al., 2003).  

 

Later on, independent studies could confirm the genome-wide implication of GRFs in NDRs 

formation by showing that their depletion is associated with an increase in nucleosome 

occupancy at promoters of targeted genes (Badis et al., 2008; Ganapathi et al., 2011; Hartley 

and Madhani, 2009; Tsankov et al., 2011). In addition, Hartley and Madhani have 

demonstrated a connection between GRFs and the RSC remodeler complex. Indeed, NDRs 

affected by Reb1 depletion show a similar degree of sensitivity to the depletion of the catalytic 

subunit of RSC, Sth1. This also appears to be true for Abf1 albeit to a lesser extent. Supporting 

the connection between Reb1 and RSC, an artificial NDR resulting from the intragenic insertion 

of a Reb1 site could be similarly disrupted by depletion of either factor. Taken together, this 

results allowed the authors to propose a model whereby the binding of GRF at NDR could 

promote the recruitment of the RSC remodeler in order to position the +1 and -1 nucleosome 

(Hartley and Madhani, 2009). The connection between GRFs and chromatin remodelers in 

NDR formation is also supported by later studies showing that DNA-binding proteins with a 

nucleosome displacing activity (including Reb1 and Abf1) are all known to interact directly with 

remodeler complexes (Ozonov and van Nimwegen, 2013).   

 

The function of GRFs in NDRs formation has been confirmed more recently in a study 

published by the Shore lab (Kubik et al., 2015). In this report, the authors proposed that the 

binding of Reb1, Rap1 and Abf1 could not only promote the sliding of the +1 and -1 

nucleosomes away from the promoter region, but also destabilize an MNase sensitive 

nucleosome particle present at large NDRs (see I.1.3). 

 

Collectively, these studies have demonstrated the role of GRFs in modulating the chromatin 

organisation in the vicinity of their binding sequences. This function is crucial to favour the 

formation of the NDRs which in turn ensures the assembly of the pre-initiation complex.  

 

3.2 Cooperative and antagonist action of chromatin remodelers 

  

In vivo, different chromatin remodelers have been shown to bind the 5’ end of the same sets 

of genes (Yen et al., 2012), suggesting that they function together at these targets. Chromatin 

remodelers with similar activity such as SWI/SNF and RSC (Rawal et al., 2018) but also CHD1 

and ISW1 (Gkikopoulos et al., 2011) can cooperate to promote gene expression and 

nucleosome positioning at common genes. Antagonistic effects have also been reported for 

RSC and ISW1 (Parnell et al., 2008) or SWI/SNF and ISW2 (Tomar et al., 2009) at some 
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genes. Collectively, these studies and others have established that accurate organisation of 

the nucleosome landscape in eukaryotes is the result of the synergistic and antagonistic action 

of different chromatin remodelers (Gkikopoulos et al., 2011; Morris et al., 2014; Parnell et al., 

2015; Rawal et al., 2018; Tomar et al., 2009; Yen et al., 2012). 

 

In 2016, the Korber lab set up an in vitro chromatin assembly system using purified histones 

and genomic DNA to assesse the ability of nucleosomes to correctly organise depending on 

the presence of chromatin remodelers and GRFs (Krietenstein et al., 2016). This in vitro 

reconstituted system constitutes a remarkable tool as it allows to precisely define the major 

determinants of nucleosome positioning and the connection between different complexes and 

factors. In this system, it has been shown that INO80 by its own is sufficient to correctly position 

the +1 nucleosome in presence of DNA and histones only. In the absence of INO80, the 

position of the +1 could also be obtained by the combined action of RSC and ISW2 (and to a 

lesser extent ISW1a) although in this context, the presence of a GRF (Abf1 or Reb1) is 

required. This result demonstrates that chromatin remodelers with opposite action can 

collaborate in vitro to establish nucleosome organisation. In addition, the authors could confirm 

the crucial role of the ISWI subfamily, and most particularly ISW1a, and INO80 in the 

establishment of the nucleosome spacing. More importantly, the ability of GRFs and chromatin 

remodelers to properly reconstitute the pattern of nucleosomes demonstrates that these 

factors are the main actors of the chromatin organisation.  

 

In summary: In eukaryotes, the establishment of the chromatin architecture is crucial for 

proper gene expression and other DNA associated events (DNA repair, replication, telomere 

maintenance…). GRFs and chromatin remodelers have been particularly studied for their 

ability to shape the nucleosomal landscape. GRFs (also called pioneer factors in mammals) 

are DNA-binding factors that, despite the absence of any enzymatic activity, play a role in 

the formation of NDRs at hundreds of promoters. Chromatin remodelers act in an ATP-

dependent manner to slide, evict or deposit nucleosomes along the DNA. These two 

categories of factors and complexes have been shown to act in concert and at common 

targets to define nucleosome positioning. Importantly, the activity of GRFs and remodelers 

is an evolutionary conserved feature of eukaryotes and perturbation of the latter can be 

associated with diseases in human. 
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III - Pervasive Transcription in S. 
cerevisiae 
 

The development of high-throughput techniques has revealed an unexpected complexity of 

the transcriptome in virtually all organisms analysed. At the beginning of the 21st century, many 

different groups identified a plethora of mainly non-functional RNAPII-dependent transcripts 

derived from intergenic regions of eukaryotic genomes. This discovery gave rise to the notion 

of “pervasive” or “hidden” transcription, i.e.  transcription occurring beyond regions annotated 

for the production of functional molecules such as tRNAs, snRNAs, snoRNA, rRNA, and 

mRNAs.  

 

In this section, I will summarize the major studies that have led to the discovery of such 

transcriptional events and will briefly describe the landscape of pervasive transcription in yeast. 

I will describe the mechanisms that are devoted to the control of pervasive transcription and 

will finally show how pervasive transcription can represent a source of regulation for canonical 

RNAPII transcripts.   
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1. The Landscape of Pervasive Transcripts  

  

1.1 Discovery of pervasive transcripts 

 

In 2005, the Libri, Jacquier and Seraphin laboratories reported the existence of cryptic unstable 

transcripts in yeast (Wyers et al., 2005). CUTs are a class of RNAs that are very unstable and 

rapidly degraded in the nucleus by the Rrp6 component of the nuclear exosome (see I.3.2.3). 

The instability of the largest share of pervasive transcripts partially explains their late 

observation. This discovery was soon after confirmed by two independents studies (Davis and 

Ares, 2006; Houalla et al., 2006). Despite the fact that CUTs are probably the most abundant 

pervasive transcripts in yeast, other kinds of RNAs were later characterized.  

 

Stable Unannotated Transcripts (SUTs), as opposed to CUTs, are stable transcripts that can 

be observed in a WT context (Xu et al., 2009). SUTs are primarily degraded in the cytoplasm 

by the Xrn1 5’-3’ exonuclease (Marquardt et al., 2011) and are also sensitive to the nuclear 

exosome, albeit to a lesser extent (Gudipati et al., 2012; Marquardt et al., 2011). CUTs and 

SUTs are respectively terminated by the NNS (Arigo et al., 2006b; Thiebaut et al., 2006) and 

CPF-CF (Marquardt et al., 2011) pathway although the two classes often overlap with one 

another.  

 

Table 2. Yeast transcripts and their associated termination and processing/degradation pathways. 

Transcript Termination pathway Stability Degradation factors 

mRNA CPF-CF Stable  

sn/snoRNA NNS; Pcf11 Stable (3’ end processed) Nuclear exosome 

CUT NNS Unstable Nuclear exosome 

SUT CPF-CF and possibly NNS Partially unstable Nuclear exosome, Xrn1 (NMD) 

XUT CPF-CF Unstable Xrn1 (NMD) 

RUT Reb1 roadblock Unstable Nuclear exosome & NMD 

 

In 2011, the Morillon group characterized the XUT RNAs (Xrn1-sensitive Unstable Transcripts) 

using cells defective for Xrn1 (van Dijk et al., 2011). XUTs are terminated by the CPF-CF 

pathway and exported in the cytoplasm where they are rapidly degraded. Unlike SUTs, XUTs 

are more difficult to observe in WT cells, but the difference between these two categories is 

largely relates to the stability of the molecule.  

 

As previously mentioned, RUTs are specifically terminated by the Reb1-dependent roadblock 

mechanism. They are stabilized in rrp6Δ cells but can also be targeted to the nonsense-
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mediated mRNA decay pathway (see III.2.3) for instance when they overlap mRNA-coding 

regions (Colin et al., 2014) (see the general discussion and perspectives section).  

 

CUTs, SUTs, XUTs, and RUTs are defined according to the termination and degradation 

pathway to which they are associated (Table 2 adapted from Porrua and Libri, 2015). 

Importantly, however, the distinction between these different classes of pervasive transcripts 

is sometimes blurry. Indeed, a given pervasive transcript can be primarily targeted by the NNS 

pathway and degraded in the nucleus by the TRAMP and nuclear exosome pathway (CUTs). 

Nonetheless, as biological processes are not fully efficient, a fraction of the transcripts can 

escape the main termination pathway and be subsequently terminated by another mechanism 

(CPF-CF or roadblock) and thus, be considered as a XUT, SUT or RUT. Similarly, some RNAs 

may escape nuclear degradation and be exported and targeted by cytoplasmic quality control 

pathways. Consistent with this idea is the fact that most of the considered pervasive transcripts 

are sensitive to both the cytoplasmic and nuclear degradation pathways (Malabat et al., 2015; 

Smith et al., 2014). Common characteristics of these RNAs are the absence of any clear 

function and their poor coding potential. Even though they can sometimes be found associated 

with polysomes similar to mRNAs, they do not appear to code for functional peptides (Carvunis 

et al., 2012; Smith et al., 2014; Wilson and Masel, 2011).   

 

1.2 Origins of pervasive transcription 

 

Akin to canonical RNAPII transcripts, cryptic RNAs also emanate from nucleosome depleted 

regions (NDRs) present at 5’ and 3’ of genes or from cryptic promoters present in intragenic 

regions (Malabat et al., 2015; Neil et al., 2009). An essential notion that has emerged about 

10 years ago is the fact that most promoters are bidirectional. The ability of promoters to fire 

in both direction has been proposed to be the major source of pervasive transcription in yeast 

(Neil et al., 2009; Xu et al., 2009) (Figure 12). Importantly, non-coding transcription depends 

on the formation of a distinct PIC with respect to the divergent or sense coding gene (Murray 

et al., 2012; Rhee and Pugh, 2012) and, in some instances, it has been proposed that the two 

PICs may compete with one another for the same pool of general transcription factors. For 

instance, mutation of the TATA box of the TPI1 gene leads to an upregulation of the divergent 

CUTs (Neil et al., 2009).  

 

Despite the clear bidirectional state of promoters in yeast, the level of transcription is often 

higher towards the “mRNA-coding” direction with respect to the non-coding direction 

(Churchman and Weissman, 2011; Jin et al., 2017). In a recent study, Jin and colleagues have 

introduced in S.cerevisiae a Yeast Artificial Chromosomes (YAC) containing DNA from other 
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yeast species, in order to study the bidirectional nature of promoters. Remarkably, they found 

that the preference for the sense direction tends to be lost when promoters are transferred in 

a different species (Jin et al., 2017). This result suggests that promoters are intrinsically 

bidirectional and that active mechanisms have likely contributed to the progressive selection 

of the “correct” orientation across evolution. Supporting this concept, newly evolved promoters 

(i.e. only present in the Saccharomyces sensu stricto genus) are more markedly bidirectional 

as opposed to promoters of genes that are also present in more divergent yeast species.  

 

 
 

Figure 12. Origin and fate of yeast pervasive transcripts. Pervasive transcripts mainly originate 
from bidirectional promoters where distinct pre-initiation complex assemble. After their release, non-
coding RNAs are immediately degraded in the nucleus or are exported to the cytoplasm and targeted 
by quality control mechanisms including the nonsense-mediated decay. The action of the decapping 
enzymes Dcp1 and Dcp2 enables the digestion of the RNA by the Xrn1 5’-3’ exonuclease. Adapted 
from (Tudek et al., 2015).  

 

The intrinsic bidirectionality of promoters is a shared feature of all eukaryotic cells (Wei et al., 

2011). In humans, various non-coding RNAs originate from NDRs located at the 5’ or 3’ of 

genes. These include stable ncRNAs such as short and long RNA (sRNA and lRNA), 

transcription initiation RNAs (tiRNA), promoter or terminator associated RNA (PASR, PALR, 

TASR) as well as unstable RNAs like the promoter proximal transcript (PROMPT) (Kapranov 

et al., 2007; Preker et al., 2008; Seila et al., 2008; Sigova et al., 2013; Taft et al., 2009).     
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2. Control of Pervasive Transcription 

 

As demonstrated above, pervasive transcription is widespread in the S. cerevisiae genome. 

The occurrence of spurious transcription initiation events is a potential danger for the cell, 

since, if uncontrolled, it could notably interfere with other DNA-associated events. Also, 

production of aberrant transcripts may generate unwanted translational products or titrate 

processing/export factors. Hence pervasive transcription needs to be tightly controlled. This 

control is commonly considered to occur via three distinct mechanisms: (i) by limiting the 

number of spurious initiation events, (ii) by promoting termination of non-coding transcription 

(iii) by degrading non-functional transcripts post-transcriptionally via nuclear and cytoplasmic 

quality control mechanisms (Jensen et al., 2013). 

 

2.1 Control of pervasive transcription initiation 

 

Many studies in the last decade have highlighted the notion that transcription initiation is tightly 

controlled by many factors, and is not only strictly dependent on cis-acting sequence signals. 

In this section, I will describe some of the factors that have been characterized in the literature 

and explain how they affect transcription initiation. This section is relevant to one of my main 

thesis projects (results section).  

 

 2.1.1 The Spt6 & Spt16 histone chaperones  
 

The first factor that has been reported to function in restricting spurious transcription initiation 

is the Spt6 histone chaperone (see I.2.2.1). In 2003, Kaplan, Laprade, and Winston found that 

mutation of SPT6 (spt6-1004 thermosensitive mutant) causes the emergence of aberrant 

initiation events within coding regions (Kaplan et al., 2003). These newly synthesized RNA 

molecules are often shorter than the full-length mRNA and are transcribed in the same 

orientation. Moreover, careful analysis of the FLO8  model gene has revealed that the internal 

initiation site is located close to a TATA sequence element bound by the TBP factor and  whose 

mutation abolishes intragenic initiation.  

 

More recently, the effect of the same spt6-1004 mutant was reinvestigated using various 

genome-wide approaches (Doris et al., 2018). Mapping of TSSs in wild-type and spt6-1004 

cells at non-permissive temperature have revealed thousands of new or upregulated intragenic 

(sense ~6000, or antisense ~2000), as well as some intergenic (~400) initiation events. In 

agreement with the results from Kaplan et al, components of the PIC complex (TFIIB) are 

enriched at new intragenic initiation sites. Importantly, internal TSSs arise at regions containing 
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motifs and features that are characteristic of bona fide intergenic promoters: they are located 

at loci where the nucleosome occupancy decreases in the Spt6 mutant (NDR-like), they take 

place within AT-rich regions (like promoters), they often contain the A(Arich)5NYR motif 

associated with the transcription initiation site (Malabat et al., 2015) and a consensus TATA 

motif (Doris et al., 2018; Uwimana et al., 2017).  

Note: The study of antisense transcripts emerging within 
mRNA-coding regions in Spt6 mutant revealed that 
these RNAs often terminate at the CPF-CF terminator 
located at the 3’ end of the upstream gene. This appears 
to be true even when the upstream gene is tandemly 
oriented as compared with the gene from which the 
antisense Spt6-dependent transcript arises. These set of 
experiments demonstrate that most CPF-CF terminators 
are bidirectional which might be required to limit the 
extension of pervasive transcripts (Uwimana et al., 
2017).    

 

Similarly, the Spt16-comprising FACT chaperone complex is also important to ensure 

transcription fidelity by limiting the occurrence of initiation from internal coding regions in yeast 

(Cheung et al., 2008; Mason and Struhl, 2003) as well as in more complex eukaryotes such 

as A. thaliana (Nielsen et al., 2019). Mutation of the yeast Spt16 causes the activation of 

internal and bidirectional cryptic promoters and results in the production of ~1000 “Spt6-

suppressed Non-coding Transcripts” (SNTs) (Feng et al., 2016).  

 

The occurrence of spurious intragenic initiation has been shown to depend on the transcription 

of the gene (Kaplan et al., 2003), suggesting that  histone chaperones might act by favouring 

the redeposition of nucleosomes behind the polymerase, which limits the production of 

pervasive transcripts.  

 

 2.1.2 The Set2-Rpd3S pathway 
 

During transcription elongation, the deposition of the H3K36 methylation mark by Set2 

promotes the recruitment of the histone deacetylase Rpd3S. Perturbation of either complex 

has a disruptive effect on chromatin organisation and leads to an increase in spurious 

transcription initiation events (Carrozza et al., 2005; Cheung et al., 2008; Churchman and 

Weissman, 2011; Li et al., 2009; Malabat et al., 2015; Venkatesh et al., 2016). For instance, 

cells defective for Rco1 (component of Rpd3S) show a higher proportion of antisense 

transcription at divergent promoters (Churchman and Weissman, 2011), and an increased 

production of internal transcripts at the FLO8 and STE11 loci (Carrozza et al., 2005).  

 

Set2 is also involved in the repression of many internal TSSs (Malabat et al., 2015) and its 

deletion induces internal initiation in the FLO8 and STE11 genes similar to what observed in 
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Rco1 or Spt6 mutants (Carrozza et al., 2005). In 2016, Venkatesh and colleagues gave the 

name of SRATs (Set2-repressed antisense transcripts) to antisense RNAs whose expression 

is governed by Set2. The authors have found more than 800 antisense transcripts that are 

produced in the absence of Set2. Importantly, many of these RNAs are already pre-existing in 

WT cells and can be better detected when they are stabilized in the absence of Xrn1 (involved 

in the main cytoplasmic degradation pathway) (Malabat et al., 2015; Venkatesh et al., 2016). 

It has been proposed that the production of these transcripts is also related to the redeposition 

of nucleosomes behind the transcribing polymerase, which is facilitated by the histone 

deacetylation activity of Rpd3S (see I.2.3.1). 

 

 2.1.3 Chromatin remodelers 
 

At coding regions, ISW1b and CHD1 function together to repress intragenic transcription, 

notably by limiting the exchange between histones incorporated onto the DNA fiber and free 

particles present in the cell (Smolle et al., 2012). Moreover, the cryptic transcripts observed in 

a double mutant (Isw1Δ and Chd1Δ) often overlap with those detected in Set2Δ strains. This 

is explained at least partially by the fact that the recruitment of ISW1 (and more particularly 

ISW1b) requires the presence of the H3K36 methylation mark (Smolle et al., 2012).  

 

The chromatin remodelers ISW2 and INO80 restrict the size of NDRs (See II.2). Perturbation 

of their function is associated with an increase in the levels of pervasive transcription 

emanating from bidirectional promoters (Whitehouse et al., 2007; Xue et al., 2015, 2017; 

Yadon et al., 2010). Deletion of components of the MINC (Mot1-Ino80-NC2) complex leads to 

a drastic increase in the steady state level of XUTs, SUTs or CUTs initiating from yeast 

bidirectional promoters. This role of MINC in limiting transcription at bidirectional promoters is 

also conserved in humans where it prevents the synthesis of PROMPTs (Xue et al., 2017). 

The MINC has been shown to co-purify with the PICs at promoters. Based on this observation, 

the authors have proposed that the MINC may contribute to the silencing of pervasive 

transcription by binding at PICs thereby preventing the recruitment of the polymerase at 

promoters (Xue et al., 2017). However, since INO80 impacts chromatin structure, it is also 

possible that the observed defect in transcription initiation results from the altered intragenic 

nucleosome positioning (Whitehouse et al., 2007; Yadon et al., 2010). 

 

2.2 Transcription termination limits pervasive transcription 

 

Despite the strong control on initiation, pervasive transcription events occur genome-wide. In 

this context, transcription termination plays an important role as it allows to partition the 
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genome and restrict the progression of polymerases thereby limiting the chances to encounter 

other DNA associated events (e.g. transcription of coding genes or replication forks) and to 

perturb their function (see III.3 and the general discussion and perspectives section).  

 

Although all the previously mentioned termination pathways participate to this layer of 

regulation (see I.3 and III.1.1), the NNS pathway appears to be particularly involved in the 

control of pervasive transcription. Indeed, unlike CPF-CF, NNS termination events occur 

rapidly after initiation (Gudipati et al., 2008) and is coupled with efficient turn-over of the neo-

synthetized non-coding transcript, thus preventing its accumulation (see below).  

 

2.3 Nuclear and cytoplasmic quality control mechanisms 

 

As previously mentioned, a vast majority of pervasive transcripts are degraded in the nucleus 

by the TRAMP and nuclear exosome pathway. Many of these RNAs contain Nrd1 and Nab3-

binding sites. The action of the NNS pathway ensures the efficient and rapid degradation of 

the transcripts by coupling termination with degradation through direct interactions between 

components of the NNS, TRAMP, and exosome (detailed in I.3.2). The degradation of cryptic 

RNAs is considered as being important to avoid the accumulation of non-functional species 

that could otherwise compete with functional RNAs (mRNA, rRNA…) for the recruitment of 

various RNA-binding factors.  

 

Despite the efficient degration of pervasive transcripts in the nucleus, a non-negligible amount 

of non-coding transcripts reaches the cytoplasm. This is the case for instance for the XUTs, 

SUTs and for transcripts that have escaped NNS termination. The latter molecules generally 

derived from transcription events that terminate at downstream terminators by the CPF-CF 

pathway, and are therefore directed to the export pathway. 

 

In the cytoplasm, many different quality control mechanisms coexist to control the presence of 

aberrant transcripts. Most of these pathways are activated during translation and result in the 

degradation of the RNA, generally via the 5’ to 3’ exoribonuclease Xrn1. The main cytoplasmic 

quality control mechanism associated with the decay of cryptic transcript is the NMD pathway.  

 

The NMD degrades mRNA molecules containing premature termination codons, generally 

derived from inefficiently spliced pre-mRNAs, mRNAs containing upstream ORFs or mRNAs 

undergoing a frameshift of the ribosome during translation. Overall, the NMD signals the 

presence of abnormally long 3’ UTR regions. One of the central effectors of the NMD pathway 

is the Upf1 helicase. Upf1 interacts with the Dcp1-Dcp2 decapping enzymes and the 5’ to 3’ 
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exoribonuclease Xrn1. The action of the decapping complex offers an entry point for Xrn1 that 

degrade the targeted RNA (Kervestin and Jacobson, 2012). The helicase activity of Upf1 is 

also required for NMD, eventhough, the exact mechanism through which it triggers degradation 

is still under debate. A plausible model is that Upf1 favours termination and release of the 

paused ribosome, which somehow enhances degradation efficiency (Serdar et al., 2016) 

 

Remarkably, deletion of XRN1 in an upf1Δ background does not further enhance the stability 

of most XUTs and SUTs as is the case for mRNA (Malabat et al., 2015). This result indicates 

that the two factors function in the same pathway and therefore that NMD is the main 

mechanism limiting the accumulation of XUTs and SUTs in the cytoplasm. Supporting this 

idea, the analysis of the sequence of these two categories of transcripts has revealed the 

frequent presence of small ORFs, often located close to the 5’ region. Furthermore, the 3’ UTR 

region following these spurious ORFs are longer, on average, than mRNA 3’ UTRs thus 

representing an efficient substrate for the NMD pathway.  

 

3. Role of Pervasive Transcription 

 

What is the role of pervasive transcription? This question has obviously been raised soon after 

the discovery of pervasive transcription. Several studies have revealed that, even though the 

non-coding RNA molecules have no clearly established role per se in budding yeast, the 

process of pervasive transcription is a powerful mechanism that participates to gene 

expression regulation. In addition to its role on regulation, pervasive transcription may 

represent an important source of novel protein-coding genes across evolution. 

 

3.1 Pervasive transcription and regulation of protein-coding genes 

 

The SER3 gene is the first reported case of gene regulation by a pervasive transcription event 

(Martens et al., 2004). SER3 is implicated in the biosynthetic pathway of serine and glycine. 

The SRG1 (SER3 Regulatory Gene 1) gene is located upstream and transcribed in tandem 

relative to SER3. SRG1 transcription is under the control of various activators including the 

Cha4 transcription factor, the SAGA complex and the SWI/SNF chromatin remodeler. 

Importantly, SRG1 transcription overlaps the SER3 promoter and causes its downregulation 

by a transcriptional interference mechanism when serine is present in the growth medium 

(Martens et al., 2004, 2005). It has been shown that the repressive effect of SRG1 on the 

expression of SER3 requires the action of Spt6 and the FACT complex (Spt16) that act in a 
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synergistic manner to increase the nucleosome occupancy at SER3 promoter after the 

passage of the polymerase (Hainer et al., 2011).  

 

The expression of DCI1 and GLO4 is also associated with the transcription of a non-coding 

gene producing a CUT initiating in the 5’ region (sense) or 3’ region (antisense) relative to 

DLC1 and GLO4, respectively. In both cases, Set3, a component of the Set3C histone 

deacetylase, is required for the repression of the targeted genes by favouring the compaction 

of the chromatin upstream of the polymerase (Kim et al., 2012) (see I.2.3.1).  

 

Like GLO4, PHO84 repression is also controlled by antisense transcription that is activated 

during cell aging (Camblong et al., 2007). Interestingly, single cell FISH analysis reveals that 

the expression of the sense and antisense transcript are anticorrelated and never occur 

concomitantly. This suggests that transcriptional interference occurs by epigenetic 

mechanisms and not by preventing elongation because of collisions between polymerases 

transcribing in the opposite direction. Consistently, silencing of the gene depends on the action 

of an histone deacetylases, Hda1 and its cofactors Hda2 and Hda3, as well as the Set1 H3K4 

histone methyltransferase (Camblong et al., 2007, 2009; Castelnuovo et al., 2013).  

 

PHO5 and CDC28 belong to the rare cases for which antisense transcription leads to the 

increased production of the mRNA (Nadal-Ribelles et al., 2014; Uhler et al., 2007). In the case 

of PHO5, the ncRNA reaches the promoter of the mRNA-coding gene and influences the 

kinetic of PHO5 activation by a mechanism that involves chromatin re-organisation (Uhler et 

al., 2007). Regarding CDC28, the expression of the long antisense non-coding transcript is 

driven by the binding of the Hog1 SAPK (Stress-activated protein kinases) at the 3’ region 

upon stress condition. Then, it has been suggested that Hog1 contacts the +1 nucleosome of 

CDC28 through a gene looping phenomenon depending on the Ssu72 phosphatase. The 

presence of Hog1 in close proximity of the +1 nucleosome promotes the recruitment of the 

RSC complex and the upregulation of CDC28. This mechanism plays a role in the re-entry of 

cells into the cell cycle following stress-induced response (Nadal-Ribelles et al., 2014).  

 

The process of gametogenesis (sporulation in yeast) requires the transient expression of IME1 

(Inducer of MEiosis 1) in diploid cells. In haploid cells, the transcriptional activator Rme1 

promotes the expression of the SUT IRT1 located upstream and transcribed in the same 

orientation of IME1. The IRT1-induced transcriptional interference requires the histone 

methyltransferase Set2 and the Set3 histone deacetylase that increase the density of 

nucleosome around IME1 promoter, thus preventing the binding of its transcriptional activator 

Pog1. Remarkably, the introduction of an early terminator close to the IRT1 initiation site 



60 
 

causes the activation of IME1, which is sufficient to force the entry in meiosis even in haploid 

cells. In the same system, it has been shown that antisense transcription giving rise to the 

production of RME2 represses the IME4 coding gene that is also implicated in efficient entry 

into sporulation. RME2 and the IRT1-activator Rme1 are both under the control of the a1-α2 

repressor expressed in diploid cells (van Werven et al., 2012). Thus, the gametogenesis 

process is under the control of genes producing non-coding RNAs whose transcription 

negatively controls the expression of mRNA-coding meiotic genes that are silenced during 

mitotic growth conditions.    

 

Many additional examples of gene regulation by a sense or antisense ncRNA have been 

described in the literature (e.g. GAL1, GAL10, NDC80, ADH1, FLO11, HMS2…). One of the 

common features of all these transcriptional interference events is the implication of 

methyltransferases and deacetylases to promote gene silencing. In this context, the role of the 

Set1–H3K4me2–Set3C and the Set2–H3K36me3–Rpd3S pathway have been extensively 

studied genome-wide and under different physiological conditions (Kim et al., 2016, 2012; 

Nevers et al., 2018). The dependency on either one of the two pathways is intimately linked to 

the distance between the TSS of the ncRNA and the mRNA. Indeed, while the Set1-Set3C 

pathway functions  when the non-coding RNA TSS is located at ~900bp on average from the 

TSS of the coding gene, the Set2-Rpb3S is involved in the silencing of promoters located on 

average 2kb downstream from the initiation site of the non-coding gene (Kim et al., 2016).  

Note: Mutants of the NNS pathway are known to induce 
a high frequency of transcriptional interference events 
due to readthrough transcription of pervasive transcripts. 
Remarkably, deletion of both SET2 and SET3 leads to a 
less severe growth phenotype in some NAB3 mutants 
(personal communication from the Jacquier lab), 
suggesting that an important role of the NNS pathway is 
to protect promoters from inappropriate silencing.  

 

Pervasive transcription is also associated with other types of regulatory mechanisms that are 

independent of transcription interference. This is, for instance, the case for URA2 and IMD2, 

two genes whose expression is linked to the concentration of nucleotides (uracil and guanine 

respectively). Those two genes share a similar organisation with an upstream 5’ CUT 

transcribed from a distinct TSS with respect to the mRNA but regulated by a unique promoter 

and TATA element. When the pool of nucleotide is high, transcription starts from the upstream 

TSS and gives rise to an unstable transcript terminated by the NNS pathway. Upon nucleotide 

starvation, transcription initiates from the downstream TSS, thereby bypassing the NNS 

terminator and promoting the synthesis of a full-length and functional mRNA molecule 

(Kuehner and Brow, 2008; Thiebaut et al., 2008).  
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3.2 Pervasive transcription: a source of new genes? 

 

Despite the large variety of non-coding RNAs produced in S. cerevisiae (CUTs, XUTs, 

SURs…), they do not appear to play a major role in the cellular fate. However, there is clear 

evidence that some of these molecules can be translated (Carvunis et al., 2012; Smith et al., 

2014; Wilson and Masel, 2011). Thus, strikingly, a lot of energy seems to be devoted to 

pervasive transcripts. An interesting idea that has emerged during the last decades is that 

some of the non-coding transcription units may evolve over time to form new genes.  

 

Apart from horizontal transfers, the acquisition of new coding genes can occur via two main 

distinct strategies: they can derive from the re-organisation or duplication of pre-existing coding 

sequences or emerge from non-coding RNAs that acquire functional ORFs (Carvunis et al., 

2012; Thiebaut et al., 2006). In the latter case, evolution would be gradual as it would not affect 

(or to a lesser extent) the pool of pre-existing mRNA-coding genes.  

 

Interestingly, by comparing genomes of 15 yeast species from two genera (Lachancea and 

Saccharomyces), Vakirlis and colleagues could identify 30 non-coding transcriptional units 

whose mutations have led to the formation of an ORF in S. cerevisiae (Vakirlis et al., 2018). 

Moreover, by analysing a set of de novo gene candidates, the authors demonstrated that new 

genes are more likely to emerge from bi-directional promoters where they may benefit from 

the transcription of the divergent coding region. Taken together, these data suggest that non-

coding units have the potential to evolve towards coding genes. 

 

In summary: Pervasive transcription emanates from nucleosome depleted regions that form 

at 5’ and 3’ regions of genes. It gives rise to the production of a plethora of different RNA 

molecules that are mostly characterized by their poor coding potential and low stability. The 

role of these ncRNAs in S. cerevisiae, if any, is not clear. However, the act of transcription 

represents an efficient strategy for the regulation of mRNA-coding genes. In the light of 

evolution, this is of particular interest in the budding yeast where no RNA interference 

machinery is present. Finally, because pervasive transcription can interfere with the 

expression of canonical genes, it is important to limit its occurrence. Different layer of 

regulations acts in concert to this purpose. These include the restriction of initiation events, 

the early termination of non-coding RNAs coupled with nuclear degradation and the 

presence of cytoplasmic quality control mechanisms that promote the turnover of aberrant 

transcripts.  
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I - High-resolution Transcription Maps 
Reveal the Widespread Impact of 
Roadblock Termination in Yeast   

When I initially joined the laboratory, the Reb1-dependent roadblock termination (described in 

I.3.3.2) was still under investigation. In addition, a Ph.D. student from the laboratory had also 

started to address the role of another GRF, Rap1, in promoting RNAPII termination by a similar 

mechanism as Reb1. The ability of these two factors to physically prevent the progression of 

elongation polymerases raised an important question: How general and widespread is the 

roadblock termination across the yeast genome?  

In order to successfully answer this question, we needed a technique that would allow the 

accurate detection of the RNAPII elongation complexes at a nucleotide resolution and in a 

strand specific manner. Thus, I started my project by setting up and improving the CRAC (UV 

crosslinking and analysis of cDNA) technique, a method originally developed by the Tollervey 

lab that allows the detection of transcripts bound by any RNA-binding protein (Granneman et 

al., 2009). The goal was to apply the CRAC technique to isolate and sequence nascent 

transcripts bound to the RNAPII. Under the supervision of Jessie Colin, we could significantly 

improve the CRAC method through different modifications that are detailed in Candelli et al., 

2018 and Challal et al., 2018 (see below).  

RNAPII CRAC in various mutant for termination pathways have revealed that the roadblock 

termination is a widespread mechanism employed in S. cerevisiae to limit the progression of 

natural readthrough arising at canonical termination pathways. Importantly, we have 

demonstrated that roadblock termination occurs independently from the other known 

termination mechanisms. Finally, we have provided evidence that roadblock events can be 

carried out by various DNA-binding proteins including GRFs, centromere-binding proteins and 

RNAPIII transcription factors.  
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Detailed contribution: D.L and J.C supervised the project. D.L wrote the paper and was 

responsible for funding acquisition. J.C, T.C, D.C and O.P reviewed and edited the draft. In 

vivo selection and prior investigations were performed by O.P and J.B. The bioinformatic part 

(data processing and analysis) was performed by T.C. Northern blot experiments were mainly 

performed by J-B.B. Yeast strains and plasmids were constructed and designed by J.C, J-B.B 

and D.C. RNA-Seq data were performed by J.C and D.C. RNAPII CRAC experiments were 

carried out by D.C.  
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Abstract

Transcription termination delimits transcription units but also plays
important roles in limiting pervasive transcription. We have previ-
ously shown that transcription termination occurs when elongating
RNA polymerase II (RNAPII) collides with the DNA-bound general
transcription factor Reb1. We demonstrate here that many different
DNA-binding proteins can induce termination by a similar roadblock
(RB) mechanism. We generated high-resolution transcription maps
by the direct detection of RNAPII upon nuclear depletion of two
essential RB factors or when the canonical termination pathways
for coding and non-coding RNAs are defective. We show that RB
termination occurs genomewide and functions independently of
(and redundantly with) the main transcription termination path-
ways. We provide evidence that transcriptional readthrough at
canonical terminators is a significant source of pervasive transcrip-
tion, which is controlled to a large extent by RB termination. Finally,
we demonstrate the occurrence of RB termination around centro-
meres and tRNA genes, which we suggest shields these regions from
RNAPII to preserve their functional integrity.

Keywords pervasive transcription; Rap1; roadblock termination; transcription

readthrough; transcription termination mechanism

Subject Categories RNA Biology; Transcription

DOI 10.15252/embj.201797490 | Received 2 June 2017 | Revised 14 December

2017 | Accepted 15 December 2017 | Published online 19 January 2018

The EMBO Journal (2018) 37: e97490

Introduction
The compact genome of Saccharomyces cerevisiae is covered by

several machineries that need to be temporally and spatially coordi-

nated for allowing the robust reading and perpetuation of the

genetic information.

The complexity of the transcriptional landscape is paradigmatic

in this regard. Transcription initiation occurs frequently in regions

and direction that largely overrun the canonical annotation of genes,

a phenomenon known as pervasive transcription. This is due to the

inherently loose control imposed on initiation by the structure of

chromatin and to the intrinsic bi-directionality of promoters, which

is generally conserved in evolution (Porrua & Libri, 2015). This

promiscuity of transcription events is a potential threat to the stabil-

ity of gene expression programs because many transcription events

are susceptible to interfere with each other. Pervasive transcription

might also affect other DNA-related events, such as replication,

chromosome segregation, or the expression of RNA polymerase I-

and III-dependent genes. The integration of widespread transcription

with other cellular processes is a complex process, requiring tools to

limit and coordinate concurrent events.

Transcription termination plays essential roles in the control

of pervasive transcription. In yeast, two main termination path-

ways exist. The first depends on the cleavage and polyadenyla-

tion factor–cleavage factor (CPF-CF, referred to as CPF hereafter)

and terminates transcription of genes producing mRNAs and

some non-coding RNAs. The CPF complex recognizes signals on

the nascent RNA and cleaves the latter, producing a 50 fragment

that is polyadenylated by the Pap1 poly(A) polymerase and

exported to the cytoplasm. The 30 fragment, still associated with

the transcribing polymerase, is recognized and degraded by a 50-
30 exonuclease, Rat1, which contributes to dismantling the elon-

gation complex by a still elusive mechanism. The CPF is also

believed to be directly involved in the polymerase release step of

termination by allosterically modifying the properties of the tran-

scription elongation complex (for a recent review, see Porrua

et al, 2016).

The second canonical pathway depends on the NNS (Nrd1-Nab3-

Sen1) complex and was first associated with the production of

sn- and snoRNAs (Steinmetz et al, 2001). Nrd1 and Nab3 bind the
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nascent RNA at short motifs containing a well-conserved 4–5

nucleotides core and are thought to recruit the Sen1 helicase that

translocates on the nascent RNA to release the polymerase. Peculiar

to this pathway is that the released RNA is polyadenylated by a dif-

ferent poly(A) polymerase, Trf4, functioning within the TRAMP4/5

(Trf4/5-Air2/1-Mtr4-polyadenylation) complex, and trimmed to its

mature size in the nucleus by the exosome, a large multisubunit

complex that is endowed with 30–50 exonuclease activities (Porrua &

Libri, 2015).

A large share of the transcripts produced by pervasive transcrip-

tion do not code for proteins, and to what extent these RNAs have

specific functions remains matter of debate. They are sorted in

classes, generally defined by the pathways associated with their

metabolism. CUTs (cryptic unstable transcripts) have been first

described based on their extreme instability (Wyers et al, 2005).

These RNAs derive from transcription events terminated by the

NNS pathway and are degraded to completion by the TRAMP-

exosome pathway (Wyers et al, 2005; Arigo et al, 2006; Thiebaut

et al, 2006). When NNS termination is defective, elongated forms of

CUTs are produced that have been recently named NUTs (Nrd1

unterminated transcripts, Schulz et al, 2013). Some of the non-

coding RNAs produced by pervasive transcription are sufficiently

stable to be detected in wild-type cells (SUTs, stable unannotated

transcripts, David et al, 2006) or are degraded in the cytoplasm by

the nonsense-mediated decay (NMD) and Xrn1 pathways (XUTs,

Xrn1-sensitive unstable transcripts, van Dijk et al, 2011; Malabat

et al, 2015). Finally, some are only detected in particular physiologi-

cal conditions (MUTs, meiotic unannotated transcripts, Lardenois

et al, 2011).

We have recently described an additional pathway of transcrip-

tion termination that depends on the general regulatory factor (GRF)

Reb1. We have shown that the elongating polymerase pauses

upstream of DNA-bound Reb1, which prompts its release by a

mechanism that involves its ubiquitylation and presumably degra-

dation (Colin et al, 2014). Insertion of a Reb1 binding site in a

region of elongation is sufficient for termination, indicating that this

“roadblock” (RB) pathway does not require additional sequence

elements. Because, akin to CUTs, the RNAs released are polyadeny-

lated by TRAMP and degraded by the nuclear exosome, these tran-

scripts were dubbed RUTs (Reb1-dependent unstable transcripts;

Colin et al, 2014).

Here we demonstrate that many additional DNA-binding

complexes or factors can elicit RB termination and studied the over-

all impact of RB termination in the yeast genome. Using an

improved crosslinking and cDNA analysis protocol (CRAC, Granne-

man et al, 2009), we sequenced nascent transcripts to generate the

first high-resolution transcription maps upon depletion of two RB

factors, and analyzed the genomewide impact of roadblock termina-

tion in wild-type cells or under conditions defective for NNS- or

CPF-dependent termination. We directly demonstrate that RNAPII

pausing depends on the roadblock factor and not on sequence

elements or other events. We show that many RB events are associ-

ated with natural readthrough at canonical CPF or NNS terminators

and that RB termination plays a general quality control role in limit-

ing such pervasive transcription events. We studied the mutual rela-

tionships between RB termination and the other pathways and

conclude that they are functionally independent and act redundantly

to provide robust demarcation of adjacent transcription units.

Finally, we show that roadblock termination also occurs around

centromeres and tRNAs, which we suggest to be protected from the

potentially negative interference of surrounding pervasive transcrip-

tion events.

The faculty of DNA-associated factors to alter the processivity of

elongation complexes, and the diversity of these factors, reveals a

major role of RB termination in shaping the transcription landscape.

This also underlies a large potential for regulation that likely

extends to many organisms.

Results

In vivo selection reveals Rap1-dependent transcription
termination

We have previously described a procedure to select transcription

terminators from pools of naı̈ve sequences (Porrua et al, 2012;

Colin et al, 2014). Briefly, test sequences are inserted within a

transcription unit driven by the tetracycline-repressible promoter

(TETP), roughly 200 nt downstream of the transcription start site.

A second promoter, from the GAL1 gene (GAL1P), is inserted

downstream and drives expression of a selectable marker, CUP1,

the expression of which is required for yeast growth in copper-

containing medium (Fig 1A). In the absence of a terminator in the

test sequence, transcription driven from TETP silences GAL1P by

transcription interference and prevents CUP1 expression, leading to

copper sensitivity. When the test sequence induces termination,

the CUP1 gene is expressed and yeasts grow on copper-containing

plates. Using this system, we selected terminators from a pool of

sequences containing a stretch of 120 random nucleotides. We

selected many sequences inducing termination via the NNS path-

way and via the Reb1-dependent roadblock pathway (Porrua et al,

2012; Colin et al, 2014). We also selected sequences that do not

belong to either class, some of which contain a motif resembling a

Rap1 binding site (Figs 1A and EV1A). Rap1 recognizes its site via

a Myb-like DNA-binding domain and is involved in many DNA-

associated processes, including telomere maintenance and gene

expression (for a review, see Azad & Tomar, 2016). Rap1 is also

strongly associated with the positioning and formation of nucleo-

some-free regions (NFR; Hartley & Madhani, 2009; Kubik et al,

2015 and references therein).

RNA species of a size compatible with termination occurring

immediately upstream of the Rap1 site were observed when a

selected terminator was present in the reporter construct (Figs 1B,

lane 1 and EV1A). These transcripts are only detected when the

Rap1 binding site is present (Fig 1B, lanes 3–4) and are strongly

sensitive to degradation, as indicated by their marked steady-state

increase in rrp6Δ or rrp6Δtrf4Δ mutants of the nuclear 30–50 RNA
degradation pathway (Fig 1B and C). A major fraction of the tran-

scripts detected in rrp6Δ cells are non-adenylated (Fig 1C, compare

lanes 5 and 6), and a fraction is polyadenylated by Trf4 (compare

lanes 5 and 8) and is strongly sensitive to exosomal degradation

(Fig 1C, compare lanes 2–3 to 5–6). Non-adenylated RNAs are also

subject to degradation by the exosome (compare lanes 3 and 6), but

can be detected in the wild-type strain (Fig 1C, lanes 1,3), consistent

with the notion that they represent the nascent RNAs associated

with stalled polymerases.
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To demonstrate that Rap1, and not overlapping termination

signals, is responsible for releasing RNAPII, we analyzed the RNAs

produced upon nuclear depletion of Rap1 with the anchor away

methodology (Haruki et al, 2008; Kubik et al, 2015). In the absence

of Rap1, we observed the disappearance of the short RNA species,

to the profit of a longer species earmarking termination at a down-

stream site (Fig 1D). As a control, we also show the effect of the

nuclear depletion of Reb1 at a site of Reb1-dependent termination

(Colin et al, 2014).

Finally, we have previously shown that release of the road-

blocked polymerase from the DNA template occurs following its

ubiquitylation that depends on the Rsp5 ubiquitin ligase. The failure

to clear the roadblocked RNAPII results in increasing levels of both

the nascent transcript (preferentially detected in a wild-type strain)

and the RT transcripts, due to increased opportunity to overcome

the RB when the polymerase is not released (Colin et al, 2014).

Northern blot analysis confirmed such expected increase when the

Rap1-roadblocked polymerase is less efficiently removed in a ther-

mosensitive rsp5-1 mutant strain (Fig 1E).

Together, these results demonstrate that Rap1 induces transcrip-

tion termination by a roadblock mechanism.

Rap1-dependent transcription termination in the Saccharomyces
cerevisiae genome

To assess the natural extent of Rap1-dependent RB termination, we

analyzed the occurrence of RNAPII pausing immediately upstream

of Rap1 sites, which is a hallmark of roadblock termination (Colin

et al, 2014). We profiled RNAPII occupancy in a wild-type and a

Rap1 anchor away (Rap1-AA) strain by an improved version of the

crosslinking and cDNA analysis protocol (CRAC, Granneman et al,

2009). This approach allows assessing the position of the poly-

merase at the nucleotide resolution level by sequencing the

nascent transcript associated with the largest subunit of the

enzyme after in vivo UV crosslinking (RNAPII CRAC, Milligan

et al, 2016). The analysis indeed detects nascent transcripts, as

demonstrated by the coverage of intronic regions in the RNAPII

CRAC dataset but not in the sequencing of mature, total RNAs

(Figs 2C and EV1B).

Notable examples of Rap1-dependent roadblock sites are shown

in Fig 2. CRAC analysis revealed a marked RNAPII peak upstream

of sites of Rap1 binding (Rhee & Pugh, 2011; Knight et al, 2014) at

the HYP2, RPL11B, and RPS24A loci.

At the HYP2 locus (Fig 2A), a Rap1-dependent RB terminates

transcription of an upstream, non-annotated transcription unit

(dubbed uHYP2), leading to the production of a cryptic transcript as

revealed by SAGE analysis (Fig 2A, Neil et al, 2009). At the RPL11B

and RPS24A loci (Fig 2B and C), roadblocked polymerases most

likely derive from transcription events reading through the upstream

terminator (see below). Nuclear depletion of Rap1 by the addition

of rapamycin led to the significant decrease of the RNAPII peak and

to the spreading of a readthrough signal downstream of the RB site

(Fig 2, insets). Rap1-dependent termination could be confirmed by

inserting a short region only containing the two Rap1 sites present

at the HYP2 locus in the heterologous context of our reporter system

(Appendix Fig S1A).

To extend these findings genomewide, we generated aggregate

plots by profiling the average distribution of the RNAPII CRAC

signal around aligned sites of Rap1 occupancy (Fig 3). A major

peak of average RNAPII occupancy is present downstream of the

aligned occupancy sites, due to general presence of genes regulated

by Rap1 (Fig 3A, left). Importantly, however, a significant road-

block peak was observed upstream of Rap1 binding, which

strongly decreased upon Rap1 depletion (compare the red and blue

traces).

Similar RNAPII CRAC analyses were also performed upon deple-

tion of Reb1. Peaks of RNAPII pausing were readily observed at

individual sites of Reb1 occupancy that significantly decreased upon

Reb1 depletion (Appendix Fig S1B and data not shown). Aggregate

plots (Fig 3A, right) show, as for Rap1, a major peak of transcrip-

tion initiation mainly due to Reb1-regulated genes, and a prominent

RB peak that is Reb1-dependent.

The detection of a RB at Rap1 sites was not due to crosslinking

of Rap1 to the DNA, because it could be observed using techniques

that do not rely on crosslinking (NET-seq, Churchman & Weissman,

2011; Appendix Fig S2A and B) or that rely on the sole crosslinking

of the RNA to proteins (PAR-CLIP, Schaughency et al, 2014;

Appendix Fig S2B and data not shown). Finally, the occurrence of

transcription termination at Rap1 and Reb1 occupancy sites is

consistent with a peak of RNA 30 ends that coincides with the site of

RB and is generally more prominent in a degradation defective

rrp6Δ strain (Appendix Fig S2C and D).

◀ Figure 1. Analysis of the transcripts produced upon transcription termination induced by Rap1.

A Scheme of the reporter used for selecting terminators from naïve sequences. TETP: doxycycline-repressible promoter; GAL1P: GAL1 promoter. The random sequence
(120 nt, red box) was inserted within HSP104 sequences upstream of GAL1P . The transcripts produced in the presence (red) or absence (blue) of termination signals
are indicated. The readthrough (RT) transcript terminates at a cryptic terminator within the GAL1 promoter. A logo (http://weblogo.berkeley.edu/logo.cgi) derived from
the putative Rap1 binding sites found in the selected terminators is shown. The approximate position of the oligonucleotide probe used for Northern blot analysis is
indicated by a black arrow.

B Northern blot analysis of transcripts produced in the presence of a Rap1-dependent terminator in wt or rrp6Δ cells as indicated. ΔBS: RNAs derived from a construct
containing a precise deletion of the Rap1 binding site (BS). A red arrow indicates the position of the short transcript produced at the Rap1 termination site. RT
transcripts are indicated by a black arrow.

C Analysis of the polyadenylation status of transcripts derived from Rap1-dependent termination. Total, polyadenylated (A+, oligo dT-selected) and non-adenylated (A�,
oligo dT-depleted) fractions are analyzed in the strains indicated. Rap1-terminated and RT transcripts indicated as in (B). U4snRNA and RPS28A RNAs are used as
controls for non-adenylated and adenylated species, respectively.

D Northern blot analysis of strains containing reporters bearing a Rap1-dependent or a Reb1-dependent terminator (clone X3, Colin et al, 2014) as indicated. Reb1
(Reb1-AA) or Rap1 (Rap1-AA) anchor away strains were used to deplete either protein by the addition of rapamycin (lanes 7–12, two biological replicates). Red and
black arrows indicate short and readthrough transcripts as in (B).

E Northern blot analysis of RNAs derived from a reporter containing a Rap1-dependent terminator in a wild-type (lanes 1–5) or a thermosensitive rsp5-1 strain (lanes
6–10) grown at different temperatures as indicated. Note that the short RNA (red arrow) mainly represents nascent RNA associated with the roadblocked polymerase.

Source data are available online for this figure.
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Figure 2. RNAPII occupancy at sites of Rap1 roadblock detected by CRAC analysis.

A RNAPII CRAC profile at a site of roadblock upstream of HYP2 (only the signals on the strand of the annotated features are shown). A peak of CRAC RNAPII signal is
visible upstream the site of Rap1 occupancy (blue arrow, ChIP exo data, Rhee & Pugh, 2011) in a wild-type strain in the presence of rapamycin (dark green track) or
Rap1-AA in the absence of the drug (light green track). The roadblock peak is markedly diminished when Rap1 is depleted from the nucleus by the addition of
rapamycin to Rap1-AA cells (red track). Transcription termination at the RB site is accompanied by the production of a non-annotated cryptic transcript (uHYP2,
gray arrow) with a predominant 30 end located 13 nt upstream of the Rap1 site (data from Roy et al, 2016). The maximum value of the RNAPII peak is 26 nt
upstream of the sequence of the Rap1 site. The position of multiple polyadenylation (pA) sites for HYP2 as defined by 30-T-Fill analysis (Wilkening et al, 2013) is
indicated. Note the occurrence of transcriptional readthrough after the roadblock when Rap1 is depleted (inset).

B, C Same as in (A), with Rap1 sites located between two genes arranged in tandem. The dotted oval underscores the level of polymerase occupancy between the CPF
terminator and the roadblock, which is not affected by depletion of the roadblock factor. The maxima of the RNAPII peak are located 33 nt (PIL1) and 15 nt (ALD5)
upstream of the first Rap1 binding site.
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Overall, these results demonstrate the widespread occurrence of

Rap1- and Reb1-dependent, roadblock transcription termination in

S. cerevisiae.

Roadblock termination limits widespread readthrough
transcription in the Saccharomyces cerevisiae genome

Many Reb1 and Rap1 sites are located in intergenic regions,

frequently downstream of genes. Based on a few model cases, we

have previously proposed that roadblock termination might function

to limit transcription reading through canonical, CPF-dependent

terminators (Colin et al, 2014), but neither the general validity of

this concept, nor the generalized occurrence of readthrough tran-

scription could be demonstrated.

If polymerases fail to terminate at canonical sites with a signifi-

cant frequency, they are expected to accumulate at sites of Reb1 and

Rap1 binding downstream of genes, where they should be easily

detected because of the roadblock.

To address this possibility, we restricted our RNAPII CRAC meta-

site analyses to Reb1 and Rap1 occupancy sites located within

300 nt downstream of mRNA-coding genes. In these conditions,

only polymerases escaping CPF-dependent termination, if any,

should contribute to the metaprofile upstream of the roadblock. As

shown in Fig 3B, polymerases accumulate at Rap1 and Reb1 sites

downstream of canonical CPF terminators in the wild-type strain

strongly suggesting the existence of a constitutive transcriptional

readthrough. To substantiate this notion, we also performed a paral-

lel RNAPII CRAC analysis using a thermosensitive rna15-2 allele,

which impairs CPF termination. In these conditions, we observed a

clear increase in the roadblock peak relative to what observed in wt

cells, supporting the notion that the flux that aliments roadblocked

polymerases originates from upstream transcription units and

increases when upstream termination is defective (Fig 3B, compare

green and blue traces). As a control, we profiled RNAPII distribution

at the same set of CPF-dependent features upon nuclear depletion of

Nrd1 (Schaughency et al, 2014), an essential actor of NNS termina-

tion that is not involved in termination of mRNA-coding genes. In

these conditions, we did not observe an increase in the roadblock

peak (Fig EV2A and data not shown). Manual inspection of a signif-

icant number of these locations ruled out the existence of intergenic

transcription initiation based on the recent published repertoire of

RNAPII transcripts 50 ends (data not shown; see also Fig EV2B;

Malabat et al, 2015).

Similarly to Reb1 and Rap1, Abf1 belongs to the class of general

regulatory factors and contains a myb-like DNA-binding domain

(Fermi et al, 2017 and references therein). We profiled the RNAPII

CRAC signal around sites of Abf1 occupancy downstream of CPF

terminators. Although less prominent, a RB peak was observed,

which increased, as for Rap1 and Reb1, when termination was

impaired in an rna15-2 mutant (Fig EV2C). A metaprofile analysis

using a larger set of Abf1 occupancy sites is shown below in Fig EV3.

Transcriptional readthrough was not restricted to sites containing

a downstream Rap1, Reb1, or Abf1 roadblock but could be consis-

tently revealed by the significant detection of intergenic transcrip-

tion downstream of genes in the absence of dedicated initiation

sites. A few representative snapshots are shown in Fig EV2B, in

which the levels of readthrough transcription are comparable to the

levels of transcription of the downstream gene.

Overall, these results demonstrate the widespread occurrence of

transcription readthrough at CPF terminators in strains that are pro-

ficient for transcription termination. Such pervasive readthrough

events are restricted, to a significant extent, by downstream road-

block termination.

Roadblock termination and the CPF pathway
function independently

RNA polymerase II pausing is generally considered to promote

termination by favoring “chasing” of the polymerase by Rat1 at

CPF-dependent genes. It could be conceived that RB pausing func-

tions as part of the CPF pathway for the efficient release of the poly-

merase. In this perspective, removing the roadblock should

significantly affect the overall efficiency of termination. To address

this possibility, we assessed whether termination failure could be

observed at CPF terminators when the downstream Reb1- or Rap1-

dependent roadblocks were removed by nuclear depletion of either

factor. Two examples of CPF-dependent genes with a downstream

roadblock are shown in Fig 2. In both cases, transcription termina-

tion occurs efficiently at the CPF sites even in the absence of the

roadblock as witnessed by the similar decrease in the RNAPII signal

at and downstream of the termination region (Fig 2B and C, dotted

oval).

To generalize these observations, we compared the RNAPII

metaprofile in regions of CPF termination upstream of a Rap1 bind-

ing site in the presence and absence of the roadblock factor (Fig 4).

The precise location of transcription termination for each gene is

not known, but we reproducibly observed a decrease in the RNAPII

CRAC signal in the region around the sites of poly(A) addition (Fig 2

and data not shown). This early decrease in the RNAPII signal was

to some extent unexpected, but was also observed using NetSeq

(data from Harlen et al, 2016; not shown). It might be due to termi-

nation at cryptic or earlier sites of poly(A) addition or to the higher

speed of the polymerase in this region. Irrespective of its possible

components, this signal was clearly different in rna15-2 cells (see

below, Fig 4B), which are termination impaired at the non-permis-

sive temperature, suggesting that it is linked to the occurrence of

termination. We therefore anchored the alignment to the strongest

site of poly(A) addition for each gene (Pelechano et al, 2014) and

focused our analysis on the region of early termination, to avoid

interference with the RNAPII signals at the roadblock. As shown in

Fig 4A, a progressive decrease in the average RNAPII signal was

observed in wild-type cells in this region, consistent with the occur-

rence of termination. As a control, transcription readthrough was

clearly observed when termination was impaired in rna15-2 cells at

the non-permissive temperature (Fig 4B, compare green and blue

traces). Importantly, however, upon depletion of Rap1, CPF-depen-

dent termination occurred efficiently, as witnessed by the identical

decline in the RNAPII CRAC signal in the termination region

(Fig 4A, compare red and blue traces). Similar results were obtained

for the set of CPF-dependent genes upstream of a Reb1-dependent

roadblock (data not shown). To quantitate these results, we calcu-

lated the fractional level of readthrough for each CPF-dependent

gene upstream of a Rap1-dependent roadblock by dividing the

density of reads in the termination region by the density in the gene

body (Fig 4C). The distribution of the values obtained is strongly

affected by the rna15-2 mutation, as expected for a bona fide
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termination defect (P = 10�5), but not by the absence of Rap1

(P = 0.4), demonstrating that removing the roadblock does not

significantly impact CPF termination.

Relationships between RB- and NNS-dependent termination

While this work was in progress, another study (Roy et al, 2016)

proposed that roadblock- and NNS-dependent termination are func-

tionally linked, notably suggesting that (i) roadblocked polymerases

are released by the NNS pathway and (ii) the roadblock is part

of the mechanism of snoRNA termination. We revisited these

important questions using our high-resolution RNAPII CRAC in cells

defective for the CPF, NNS, and roadblock pathways.

Roadblock peaks have been shown to increase in strains defec-

tive for NNS termination, which was interpreted as evidence that

roadblocked polymerases are not efficiently cleared when NNS

termination is impaired (Roy et al, 2016). Alternatively, it is possi-

ble that this increase in RB peaks is due to the accumulation of

polymerases failing to terminate at upstream NNS-dependent

terminators. Consistent with this notion, we observed increased RB

peaks only at sites downstream of NNS terminators when the NNS

complex is defective (Fig 5 and data not shown). When the RB site
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Figure 3. Metasite analysis of roadblock termination at Rap1 and Reb1 sites.

A Average RNAPII CRAC profile at genomic regions aligned on Rap1 (left panel) or Reb1 (right panel) occupancy sites, in the presence (blue) or absence (red) of the
roadblock factor. In both cases, the latter was depleted from the nucleus by the addition of rapamycin. Overlapping purple arrows represent features transcribed
downstream of Rap1 or Reb1 occupancy sites. Note that the two panels have a different y-axis scale due to the average higher expression of Rap1-dependent genes;
a dotted horizontal line marks the same average occupancy for comparison.

B Same as in (A), using only Rap1 or Reb1 sites located within 300 nt downstream of genes terminated by the CPF pathway. The RNAPII average profile was determined
for the wild-type strain (blue) or an rna15-2 (green) strain at the non-permissive temperature of 37°C for the mutant; data from the same cells at permissive
temperature have not been plotted, but are available.

Data information: For all panels, the number of sites used is indicated. Rap1 and Reb1 sites used in these analyses are listed in Dataset EV1.
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follows a CPF terminator, depletion of Nrd1, Sen1, or mutation of

Nab3 does not affect the levels of roadblocked polymerases. This is

illustrated at the PIL1 and ALD5 loci (Appendix Fig S3A), and more

generally in the aggregate RNAPII CRAC profile at Rap1 RB sites

downstream of CPF terminators (Fig EV2A). Here, the depletion of

Nrd1 poorly affects the signal at the Rap1 roadblock, which is, on

the contrary, strongly increased upon impairment of CPF termina-

tion in the rna15-2 mutant (Fig 3B and Appendix Fig S3A). These

data demonstrate that the NNS pathway is not generally required

for the clearance of roadblocked polymerases.

We also addressed the converse possibility, that is, that the RB

pathway could be required for termination of snoRNAs (Roy et al,

2016). We analyzed the polymerase profile around four snoRNAs

for which a Reb1 (SNR161, SNR8, SNR48)- or Rap1-dependent

(SNR39B) roadblock peak of variable intensity was detected in the

termination region (Fig 5). We compared the distribution of poly-

merases at these NNS-dependent targets under conditions of defec-

tive RB termination by depleting either one of the RB factors. As a

control, we generated RNAPII CRAC data upon depletion of Nrd1

with the auxin degron method (Nishimura et al, 2009). Depletion

of Nrd1 led to transcription readthrough at the NNS-dependent

terminator as expected, which fed the flow of polymerases accu-

mulating at the downstream roadblock peak (Fig 5A–D, compare

red and blue tracks in the insets, red arrows; see also Fig 5E, left

scheme). This was clearly visible at the SNR8 and SNR48 loci,

where the roadblock is slightly more distal (Fig 5, panels A and

B), but also observed at SNR161 and SNR39B where the read-

through signal merges to some extent with the roadblock signal

(Fig 5C and D).

Upon depletion of the roadblock factor (Rap1 or Reb1), we did

not observe alterations in termination at the primary NNS site,

which occurred with similar overall efficiency as in the presence of

the RB (Fig 5A–D, note that the RB-less tracks, pink/red, are always

beneath the wt tracks, light blue). A small readthrough was only

detected downstream of the RB site (Fig 5, blue arrows), due to the

release of polymerases that had accumulated at the roadblock (see

Fig 5E, right scheme). These results strongly suggest that the RB is

not required for NNS-dependent termination at these sites.

The small readthrough at the RB in the absence of Rap1 or Reb1

leads to the production of longer transcripts that might have diverse

fates and stability, depending on many factors including their

sequence and the nature of downstream termination. We analyzed

the levels of these RNAs by RNAseq in the presence or absence of

the RB. To visualize the primary product of termination that is

trimmed to the mature snoRNA by the nuclear exosome, we

performed this analysis in an rrp6Δ strain. As shown in Fig 5A–D,

variable levels of readthrough transcripts accumulated at three of

the four snoRNAs studied in the absence of the RB. The strongest

accumulation was observed at the SNR39B site and intermediate

levels at SNR161 and SNR8, but in all cases the transcript levels

hardly mirrored the levels of polymerases reading through the site

of RB detected by CRAC. This indicates that the abundance of these

RNAs is mainly dictated by their stability and not by the levels of

readthrough transcription.

Together with the results shown in the previous section, our data

strongly support the notion that the roadblock pathway functions as

a fail-safe mechanism to neutralize natural readthrough transcrip-

tion at both the CPF- and NNS-dependent canonical terminators.

Functional importance of fail-safe transcription termination

As shown in Fig 2, depletion of Rap1 strongly affects transcription of

RPL11B and RPS24A. These genes might be downregulated either

because the absence of the roadblock exposes their promoters to tran-

scriptional interference or because they require Rap1 for transcrip-

tional activation. To distinguish between these non-exclusive

possibilities, we investigated whether the RB alone could be sufficient

to restore, at least partially, their expression. To this end, we depleted

Rap1 in cells expressing the well-characterized DNA-binding domain

of Rap1 (Rap1-DBD, aa. 358–601), which is not expected to activate

transcription, but supports roadblock termination, as verified by RT–

qPCR upstream of HYP2 (Appendix Fig S3B). As a control, we used

strains containing the wild-type Rap1 or an empty plasmid and

sequenced the RNAs produced in these cells. Because expression of

Rap1-DBD alone affects growth in a dominant-negative manner, we

could not perform reliable CRAC experiments in these conditions, but

sequenced the transcriptome at two different time points after Rap1

depletion. Consistent with the RNAPII CRAC data, expression of

RPL11B and RPS24A RNAs was markedly affected by the depletion of

endogenous Rap1 and restored by the concomitant expression of wt

Rap1 (Fig 6A and B, compare red and blue tracks). Importantly,

expression of the DNA-binding domain alone of Rap1 is sufficient to

restore RPL11B and RPS24A RNAs to wild-type levels (Fig 6A and B,

purple tracks). This is not due to Rap1-DBD retaining a general acti-

vation function as demonstrated by the failure of the latter to restore

expression of genuine Rap1 targets sites such as RPS0A (Fig 6C),

RPL29, orMF(ALPHA)1 (data not shown).

Together, these results support the notion that the constitutive

readthrough at CPF (and possibly NNS) terminators can be suffi-

cient for silencing downstream genes, underscoring the importance

of the protective action of roadblock factors.

Extent of roadblock termination in the Saccharomyces
cerevisiae genome

In light of the results shown here on Rap1 and Reb1, we assessed

more generally the occurrence of roadblock termination at sites of

occupancy for DNA-binding proteins or complexes. We first used

published data on the genomewide distribution of transcription

factors (Harbison et al, 2004) and profiled RNAPII occupancy at

genomic regions aligned on sites of binding as defined by MacIsaac

et al (2006). We found evidence for RB termination at many such

sites, some of which are shown in Fig EV3. These profiles are

indicative of roadblock occurring at a variable distance upstream of

the protein-binding site, likely reflecting the topology of the collision

between RNAPII and the DNA-bound factor or complex of factors.

We also observed prominent levels of RNAPII roadblocks at

centromeres and tRNA genes. In S. cerevisiae, centromeres are

defined by a set of short, well-conserved sequence elements located

in a 125-nt region. These sequences, CDEI, CDEII, and CDEIII (Fig 7),

are specifically occupied by DNA-binding factors that are part of the

kinetochore (for a review, see Westermann et al, 2007; Biggins,

2013). The 8-bp CDEI is directly recognized by Cbf1, a DNA-binding

factor that is also a transcriptional activator. CDEIII (26 nt) is instead

recognized by CBF3, a complex of four proteins, while the CDEII

sequence (78–86 nt) is wrapped around a specific centromeric

nucleosome (CENP-A), containing a histone H3 variant, Cse4. We
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analyzed the distribution of polymerase around centromeres using

both PAR-CLIP (Schaughency et al, 2014) and our RNAPII CRAC

data. A marked peak of localized RNAPII pausing was clearly

observed at individual centromeres (Figs 7B and EV4A and B), the

average position of which was roughly 25 nt upstream of CDEI as

shown in the aggregate plot (Fig 7A), strongly suggesting that Cbf1

induces roadblock termination, at least in the context of centromeres.

A RB peak was also observed around CDEIII and upstream of

CDEII, as shown in the RNAPII CRAC metaprofile and at individual

centromeres (Figs 7B and EV4). In many cases, the RB was more

prominently observed when incoming transcription was increased

by affecting termination of convergent genes in rna15-2 cells

(Figs 7B and EV4C–E, rna15-2 tracks). Termination by the RB path-

way occurred in these regions, as witnessed by the presence of RNA

30 ends peaks that overlap the peaks of pausing and that often repre-

sent unstable transcripts (compare the wt and the rrp6Δ profile,

Fig EV5A and B). Interestingly, two peaks of termination can be

observed around CDEIII (Fig EV5B), one within and another
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Figure 4. Aggregate RNAPII profile at genes followed by a Rap1 site aligned on the poly(A) site.

A Genes terminated by the CPF pathway and followed by a Rap1 site were aligned on the major poly(A) site and the average RNAPII CRAC signal was plotted for the
wild-type (blue) or Rap1-AA (red) strain in the presence of rapamycin to induce the nuclear depletion of Rap1 in Rap1-AA. The termination region, defined by the
region displaying an average decrease of the RNAPII signal, is indicated by a yellow rectangle. Note that the signal in this region is not affected by the depletion of
the RB. The roadblock peak (RB), indicated by a blue arrow, is broader and smaller in these plots because genomic regions are not precisely aligned on the RB site.

B As in (A), the average RNAPII profile in wild-type (blue) and rna15-2 (green) cells at the non-permissive temperature was plotted to highlight a bona fide termination
defect. To visually appreciate the occurrence of readthrough, we normalized the read counts so that the average RNAPII CRAC signals in gene bodies are comparable
in wt and rna15-2 cells.

C Boxplots representing the distribution of the ratios between the density of reads in the 100 nt immediately preceding the major poly(A) site (RT) and the density of
reads in each ORF (body) in the indicated strains and conditions. The plots were generated by the standard R boxplot function. The central line represent the 50th

percentile. The top and bottom of the box represent the 75th and 25th percentile respectively. The bottom whisker is the lowest value still within 1.5 Interquartile
range (IQR); the top whisker is the highest values still within 1.5 IQR. The number of sites used for the analysis corresponds to the rap1 sites for which an
experimentally defined polyadenylation site could be found within 300 bp upstream of the site (123). A two-sided t-test has been used to assess statistical
significance. Sites used in these analyses are listed in Dataset EV1.
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upstream of it, indicating heterogeneity in the position of the RB

around (Fig 7A).

In apparent contrast with published data (Ohkuni & Kitagawa,

2011, 2012), no evidence of transcription within CDEII was

observed, which we find to be virtually free of polymerases. Note

that this is unlikely due to failure from mapping A-T-rich reads to

this region, because reads with virtually identical sequences (i.e.,

containing one or two mismatches) could be efficiently mapped to

other regions in the genome (data not shown).

Transcription of tRNA genes depends on internal promoters,

which harbor sequences (A and B boxes) that are bound by the

TFIIIC hexameric complex (Arimbasseri & Maraia, 2016). TFIIIC

covers the whole tRNA sequence and interacts with TFIIIB,

composed of three subunits, which binds at position �60 relative to

the transcription start site (Nagarajavel et al, 2013). The aggregate

profile of RNAPII distribution around tRNA genes is presented in

Fig 7C and one representative example in Fig 7D, together with the

mapped “bootprints” of TFIIIB and TFIIIC (Nagarajavel et al, 2013).

A prominent peak of RNAPII accumulation was observed at position

�75 relative to the start site consistent with a roadblock induced by

TFIIIB bound at position �60. Interestingly, a major roadblock was

also observed for RNAPII transcription running antisense to tRNA

genes, peaking roughly 50 nt upstream of the aligned U-rich tract

that defines the RNAPIII termination signal. Evidence for the

production of unstable transcripts for termination occurring

upstream of tRNA start sites and for antisense transcription down-

stream of tRNA terminators is provided by the distribution of stable

and unstable RNA 30 ends around these features (Fig EV5C and D).

Evidence for RNAPII roadblocks was also observed around the

gene coding for the ribosomal 5S RNA subunit, which is an RNAPIII

gene with a structure similar to that of tRNA genes (Fig 7E).

TFIIIC was also found to bind at locations distinct from tRNA

genes, in the absence of TFIIIB (ETC, extra TFIIIC sites, Roberts

et al, 2003; Moqtaderi & Struhl, 2004; Nagarajavel et al, 2013). We

could not find evidence of transcriptional roadblock at ETC sites,

suggesting that the sole binding of TFIIIC is not sufficient to prevent

RNAPII elongation (data not shown). Together, these data illustrate

the genomewide extension of roadblock termination and underscore

its large potential for modeling the yeast transcriptional landscape.

Discussion

In a previous study, we have demonstrated that transcription termi-

nation occurs when the RNAPII encounters the factor Reb1 bound

to the DNA. Here we generated high-resolution genomewide RNAPII

transcription maps data under conditions of defective RB, CPF, or

NNS termination to study the overall impact of RB termination on

the yeast genome, and the functional relationships with the other

pathways.

We provide evidence that natural readthrough at canonical CPF

and NNS terminators constitutes an additional and functionally

significant source of pervasive transcription in S. cerevisiae. We

demonstrate that the canonical pathways and RB termination func-

tion independently from each other but act redundantly at the end

of transcription units, limiting pervasive readthrough and favoring

insulation of transcription events. Finally, we extend the repertoire

of roadblocking factors, which we propose to play major roles in

determining the distribution of transcription events.

Rap1 is a roadblock termination factor

We demonstrated that Rap1, a DNA-binding factor that has roles in

transcription activation, gene silencing, and telomere homeostasis

(Azad & Tomar, 2016), is also a roadblock termination factor. An

earlier study showed that the fortuitous introduction of a Rap1 site

in a Ty1 retrotransposon leads to RNAPII stalling and repression of

gene expression (Yarrington et al, 2012). Based on the analysis of

the RNA produced, which was reported to be non-adenylated and

insensitive to exosome degradation, it was concluded that termina-

tion of transcription does not occur in this system. In contrast to this

early study, we show that roadblock termination occurs at Rap1

binding sites, leading to the production of RNAs that can be

polyadenylated by Trf4 and are degraded for a large part by the

nuclear exosome. Importantly, nuclear depletion of Rap1 prevents

termination, indicating that the protein—and not the presence of

termination signals that might overlap its binding site—is essential

for the release of the polymerase. Failure to detect the nuclear

degradation of the adenylated and non-adenylated RNAs for techni-

cal reasons in the study by Yarrington et al (2012) might account

for the discrepancies; alternatively, release of the polymerase might

not occur in the Ty1 retrotransposon model for unknown reasons.

The mechanism of roadblock termination

Similar to what previously shown for Reb1 (Colin et al, 2014),

release of the polymerase paused upstream of the roadblock

depends on its ubiquitylation by Rsp5 and possibly its degradation.

Thus, this pathway is not restricted to Reb1-dependent termination

but presumably extends to all cases of roadblock, and possibly of

◀ Figure 5. Analysis of the impact of RNAPII roadblocks in termination of snoRNAs.

A–D RNAPII CRAC and RNAseq profiles at the indicated genomic loci and conditions (only the signals on the strand of the annotated features are shown). The position
of the Reb1 or Rap1 occupancy (Rhee & Pugh, 2011) is indicated (light blue filled arrow). The occupancy profile in the presence or absence of the RB factor or Nrd1
has been overlapped for ease of comparison. The regions of the readthrough after the roadblock (dark blue arrow) or after the NNS terminator (red arrow) have
been enlarged in the insets.

E Model of primary (NNS) and secondary (RB) termination at snoRNAs that contain a downstream RB site. The flow of RNAPII is indicated in blue, and the internal
arrow indicates the direction of transcription. The sites of NNS and RB termination are indicated, respectively, by red and blue arrows; a site of cryptic or
alternative (e.g., CPF-dependent) termination downstream of the RB is indicated by a black arrow. A low level of natural readthrough at the primary site is
indicated by a low schematic flow of polymerases (blue) between the NNS and RB sites, which feeds the RB peak. Under defective NNS termination, this
readthrough flux increases, together with the RB (left scheme, dotted line, light green). When the RB is affected (right scheme), only the readthrough due to
unblocked polymerases (dotted line, light green) downstream of the RB site is observed, terminating at downstream sites (black arrows). The transcripts produced
in the different conditions are indicated by plain or dotted lines, which roughly represent the stability and steady-state levels of the different species. The colors
represent the kind of termination (NNS, RB, or cryptic) that leads to the production of a given species.
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most RNAPII pausing that cannot be resolved in a more “conserva-

tive” manner (Wilson et al, 2013). We generally observed very

sharp peaks of stalling at the roadblock sites, which is compatible with

one or two polymerases on average roadblocked at a time and indi-

cates that, at steady state, the clearance due to the Rsp5 pathway must

be as efficient as the feeding of the peak by incoming polymerases.

It has been recently proposed, mostly based on the analysis of

RNA 30 ends in several mutant conditions, that the NNS and the RB

termination pathways are functionally interconnected, in that the

NNS is required for releasing roadblocked polymerases and, conver-

sely, that the presence of a RB is necessary for NNS termination

(Roy et al, 2016). The analyses presented here based on the direct

and high-resolution detection of RNAPII transcription in conditions

defective for RB, CPF, or NNS termination do not generally support

this model. We observed that RB termination is largely insensitive

to depletion of Nrd1 (e.g., see Fig EV2 and Appendix Fig S3), or

mutation of Nab3 (data not shown), which is also consistent with

the findings that the insertion of the sole Reb1 (Colin et al, 2014) or

Rap1 sites (Fig 1 and Appendix Fig S1A) in the heterologous context

of the HSP104 gene is sufficient for efficient, NNS-independent

termination. Similarly to what reported by Roy et al (2016), we

detected increased RNAPII occupancy at some roadblock sites upon

impairment of NNS function (e.g., Fig 5), but we show that this is

due to the accumulation of polymerases that fail to terminate at

NNS terminators upstream of the RB rather than to the general

defective clearance of stalled elongation complexes.

We favor a model according to which polymerases are not

recycled for further steps of transcription when encountering a RB
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(as if it were released by the NNS complex) but degraded, together

with the RNA that is produced. This might look uneconomical,

but the energetic balance might still be favorable in light of the

evolutionary cost of developing highly efficient, error-proof termi-

nation processes. In this respect, the genomewide analyses

reported here suggest that roadblock termination is likely devoted

to controlling a relatively low fraction of polymerases that might

nevertheless significantly affect the efficiency or robustness of

neighboring processes.

Relationships between RB and the main pathways of termination
in Saccharomyces cerevisiae

Many studies support the notion that pausing is a prerequisite for

transcription termination (for a recent review, see Porrua et al,

2016). Slowing down the speed of the polymerase has been shown

to promote earlier termination at NNS targets (Hazelbaker et al,

2012), and RNAPII pausing sites are preferential sites of Sen1-

dependent termination in vitro (Porrua & Libri, 2013). This is

thought to be due to a kinetic competition between RNAPII elonga-

tion and translocation on the RNA by Sen1, a concept that might

also apply to CPF termination whereby “pursuing” of the poly-

merase is operated by the Rat1/XRN2 exonuclease (Fong et al,

2015). Whether pausing is induced by intrinsic components of the

NNS or the CPF pathway, or by extrinsic factors, remains a poorly

understood and important facet of termination.

We considered the possibility that roadblock pausing could be

required for upstream termination, both CPF- and NNS-dependent.

However, we did not detect the termination defects predicted by this

model upon depletion of Rap1 or Reb1. In these conditions, read-

through was only observed downstream of the RB site, due to the

release of a low fraction of polymerases that had accumulated at the

RB. Transcription beyond the site of RB in the absence of Rap1 or

Reb1 might produce RNAs that are more stable than the ones

derived from RB- or NNS-dependent termination, as we suggest

occurring at the SNR8, SNR161, and SNR39B sites. In the absence of

the RB, the levels of these transcripts do not match the actual levels

of transcriptional readthrough, which might lead to overestimating

the impact of the RB on termination, possibly explaining the

discrepancies with the model proposed by Roy et al (2016).

Although it remains possible that in the absence of Reb1 or

Rap1, other roadblock events take over to slow down the RNAPII

and promote termination, we favor the notion that pausing is

induced by components of the NNS or CPF complexes, or depends

on specific sequences, the nature of which remains elusive.

Widespread transcriptional readthrough at gene terminators in
Saccharomyces cerevisiae

It is generally accepted that pervasive transcription is mainly gener-

ated by the leaky control imposed on transcription initiation by the

structure of chromatin. Many studies have shown that altering the

positioning or the modification status of nucleosomes (see for

instance Churchman & Weissman, 2011; Marquardt et al, 2014;

Venkatesh et al, 2016) significantly impacts the relative extent of

initiation at divergent or cryptic promoters, generating pervasive

transcription events. Our data strongly suggest that in addition to

the leaky control on initiation, leaky termination generates perva-

sive transcription events, which might significantly impact gene

expression and other cellular events. Extensive occurrence of tran-

scriptional readthrough has been observed in the B. subtilis (Nicolas

et al, 2012) and E. coli transcriptome (Stringer et al, 2014). In

S. pombe, antisense transcripts derived from readthrough transcrip-

tion are produced in wild-type cells and degraded by the exosome

(Zofall et al, 2009) while in human cells readthrough transcripts

induced by osmotic stress have been shown to represent a consider-

able fraction of pervasive transcription (Vilborg et al, 2015).

However, the direct demonstration of widespread and constitutive

transcriptional readthrough in wild-type cells was not attempted in

these studies. Detection of these events in the present study is facili-

tated by the sensitivity and resolution of RNAPII CRAC and by the

analysis of RB sites, where polymerases escaping termination accu-

mulate. Because the genes used for the metasite analyses in Fig 3B

were solely selected based on Reb1 or Rap1 downstream binding,

they can be reasonably considered as a random sampling for their

efficiency of termination. The average detection of transcriptional

readthrough at these terminators therefore strongly suggests that

leaky termination occurs genomewide, widening the repertoire and

the potential impact of pervasive transcription. This conclusion is

supported by the direct detection of significant readthrough signals

◀ Figure 7. RNAPII roadblock occurs at centromeres and RNAPIII genes.

A Aggregate plot of RNAPII occupancy (median reads count, PAR-CLIP data) around centromeres. Centromeres have been aligned on the beginning of the CDEI (top
plot) or the CDEIII sequence (bottom plot) and a virtual centromere has been reconstituted by aligning the two plots based on the average length of the centromere.
The 50–30 direction is indicated by a black arrow for each plot. The structure of the centromere and the interacting factors are schematically shown on the top.

B Snapshot showing the distribution of polymerases around CEN14. RNAPII CRAC distribution is shown for both wild-type and rna15-2 cells at the permissive and non-
permissive temperature for the mutant. A roadblock peak (red arrow) is observed upstream of CDEI in all conditions. Detection of the roadblock upstream of the
CDEIII sequence requires increasing readthrough transcription at the upstream gene (CIT1) with the rna15-2 mutation (bottom track). Cyan arrows indicate the
direction of transcription.

C Metaprofile analysis of RNAPII distribution (median reads count, PAR-CLIP data) around tRNA genes. Genomic regions were aligned on the transcription start sites
(top) or the transcription termination site (bottom) and the plots combined as for centromeres. A scheme of tRNA genes and associated factors is shown on the top of
the plots. The 50–30 direction is indicated by a black arrow for each plot. Note that reads in the body of tRNAs have been removed because representing
contamination from mature tRNAs (Schaughency et al, 2014).

D Snapshot of RNAPII distribution around tC(GCA)B. The profiles in wt cells grown at 30°C and 37°C have been shown as duplicates, as only minor differences are
observed. Roadblock peaks are indicated by red arrows. The footprints of TFIIIB and TFIIIC (Nagarajavel et al, 2013) are shown for comparison. The direction of
transcription is indicated by cyan arrows. Reads in the body of tRNAs are from contaminating tRNAs and should not be considered as bona fide RNAPII CRAC signals.

E RNAPII CRAC profile around the gene coding for 5S rRNA (RDN5) in wt cells at 30°C and 37°C as in (D). Roadblock peaks are indicated by red arrows. The footprints of
TFIIIB and TFIIIC are shown. A scheme of the gene and the factors bound is shown in the top of the figure. As for tRNAs, the strong signal in the body of the gene
should not be considered as a bona fide RNAPII signal, but contaminating 5S RNA.
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in intergenic regions downstream of many genes, which do not

reflect the occurrence of independent intergenic initiation (see for

instance Appendix Fig S2C).

Extensive occurrence of transcriptional readthrough might confer

additional evolutionary advantages over the generation of ex novo

genes from pervasive initiation (Carvunis et al, 2012; Wu & Sharp,

2013). Readthrough transcripts might evolve to generate new func-

tions from existing modules, leading for instance to the fusion of

contiguous ORFs or the generation of protein extensions.

The non-quantitative feature of termination also brings about a

large potential for regulation, allowing anticorrelated expression of

tandem genes and possibly its modulation by alterations in the effi-

ciency of termination.

Roadblock occurs at many genomic sites

We show here that although the elongation complex is armed to

progress relatively efficiently through nucleosomes in vivo, it is

significantly affected by the presence of many other factors bound

to the DNA. Two notable examples are centromeres and tRNAs.

Roadblock peaks for RNAPII were observed upstream of both

centromere edges, where they are roadblocked presumably by Cbf1

and the CBF3 complex, binding, respectively, the CDEI site and the

CDEIII sequence, which is consistent with early observations (Doheny

et al, 1993). Very little, if any, RNAPII CRAC signal can be detected

within the centromeric DNA in general and particularly in CDEII,

suggesting that centromeres use intrinsic roadblock barriers to

prevent trans-centromere transcription. This might underlie a require-

ment for maintaining the identity of the centromeric nucleosome,

containing a specific variant of histone H3, Cse4, the occupancy of

which might be affected by through transcription, and is consistent

with the notion that directing strong transcription toward a centro-

mere generally inactivates it (Hill & Bloom, 1987; Doheny et al,

1993). In contrast to these conclusions, earlier studies have proposed

that a relatively moderate level of transcription through centromeres

is actually required for function, which was supported by the detec-

tion of trans-centromeric transcripts by RT-qPCR, and by genetic

experiments (Ohkuni & Kitagawa, 2011). Although we might have

failed to detect RNAPII CRAC signals corresponding to very low levels

of these trans-centromeric transcripts, we do not fully understand the

basis of this discrepancy, and future work is required to elucidate the

role of transcription at the point centromeres of S. cerevisiae.

We also show that RNAPII is roadblocked at the 50 and 30 ends of
tRNA genes. The existence of a 50 end roadblock is consistent with

earlier studies on the tV(UAC)D locus, proposing a role for TFIIIB in

preventing upstream intergenic transcription from entering the tRNA

gene body (Korde et al, 2014; see also Roy et al, 2016). Here we

extend this finding to a genomewide perspective, and additionally

demonstrate the existence of an additional roadblock barrier that

prevents antisense RNAPII transcription from crossing tRNA genes.

The 30 RB is aligned to the tRNA terminators, to which, in turn, is

also aligned the trailing edge of TFIIIC footprint (Nagarajavel et al,

2013). However, the binding of TFIIIC alone at ETC sites is not suffi-

cient for inducing a RB, which might indicate that additional factors

(presumably TFIIIB) must be present to stabilize the interaction

of TFIIIC with the DNA and induce a RB. Alternatively, it is

possible that the specific topology of these transcription units, which

are believed to be circularized for a more efficient transcription

re-initiation (Dieci et al, 2013), or the general high persistence of

RNAPIII at these sites might underlie the formation of the 30 end RB.

In conclusion, our results suggest that the transcriptional land-

scape is modeled to a large extent by non-histone proteins bound to

the DNA, which has a considerable impact in the partitioning of DNA-

linked activities and in the control of pervasive transcription events.

Aside from operating a quality control mechanism on the efficiency of

termination at canonical sites, roadblock pausing (and termination) of

polymerases has a large potential for shaping and regulating the tran-

scriptome, in yeast and most likely many other organisms.

Materials and Methods

Yeast strains and plasmids

Yeast strains used in this study are listed in Appendix Table S1.

Plasmids are listed in Appendix Table S3. The reporter construct

used for selecting the Rap1-dependent terminators was previously

described (Porrua et al, 2012). The full sequences of the selected

terminators are available upon request. Rap1 constructs were

expressed from the RAP1 gene promoter to avoid growth defects

due to the overexpression of Rap1 derivatives. The whole Rap1

coding sequence and 598 nt of the upstream region were cloned in a

pCM185 backbone (Garı́ et al, 1997) in which the TRP1 marker was

replaced with the S. pombe HIS5 gene. The Tet promoter and hybrid

transactivator of pCM185 were deleted. The Rap1-DBD construct

was obtained by replacing the Rap1 coding sequence with a frag-

ment of the gene coding for amino acids 358–601.

RNA analyses

Northern blot analyses were performed as previously described

(Colin et al, 2014). RT–qPCR was performed with standard proce-

dures, using the primers listed in Appendix Table S2. Amplification

efficiencies were calculated for every primer pair in each amplifi-

cation reaction.

Growth conditions and preparation of cells for CRAC

Two liters of yeast cells expressing Rpb1-HTP tag (Granneman et al,

2009) were grown at 30°C to OD600 = 0.6 in CSM-Trp medium. For

nuclear depletion of Reb1 and Rap1, rapamycin was added to

anchor away strains or control untagged wild type for two hours to

a final concentration of 1 lg/ml. rna15-2 or wild-type cells were

grown at 30°C to OD600 = 0.6; 1 volume of media preheated at 30

or 37°C was added and cultures were incubated at 30 or 37°C for

1.5 h. Nrd1 was depleted with the auxin degron system (Nishimura

et al, 2009) by adding IAA (indole-3-acetic acid, Sigma) 100 lM to

Nrd1-AID cells for 60 min before crosslinking.

Cells were submitted to UV crosslink using a W5 UV crosslinking

unit (UVO3 Ltd) for 50 s, harvested by centrifugation, washed in

cold PBS, and resuspended in TN150 buffer (50 mM Tris pH 7.8,

150 mM NaCl, 0.1% NP-40, and 5 mM beta-mercaptoethanol,

2.4 ml/g of cells) supplemented with protease inhibitors (Com-

pleteTM, EDTA-free Protease Inhibitor Cocktail). The suspension was

flash frozen in droplets, and cells were mechanically broken with a

Mixer Mill MM 400 (5 cycles of 3 min at 20 Hz).
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CRAC

The CRAC protocol used in this study is derived from Granneman

et al (2009) with a few modifications. Cell powders were thawed

and the resulting extracts were treated for one hour at 25°C with

DNase I (165 U/g of cells) to solubilize chromatin and then clarified

by centrifugation (20 min at 20,000 × g at 4°C).

IgG purification was performed with M-280 tosylactivated dyna-

beads coupled with rabbit IgG (15 mg of beads per sample). The

complexes were eluted with TEV protease and treated with 0.2 U of

RNase cocktail (RNace-IT, Agilent) to reduce the size of the nascent

RNA. High salt washes for both purification steps were done at 1 M

NaCl for increased stringency. The dephosphorylation step required

for cleaving the 20–50 cyclic phosphate left by RNase treatment

(Granneman et al, 2009) was omitted to enrich for nascent tran-

scripts, the 30 end of which being protected from RNase treatment.

After overnight binding on Ni-NTA column (Qiagen, 100 ll of

slurry per sample), sequencing adaptors were added on the RNA as

described in the original procedure. Adaptors were modified for

sequencing from the 30 end. The 30 ligation was realized with T4 rnl

2 truncated K227Q enzyme (NEB) instead of classical T4 RNA

ligase.

RNA–protein complexes were eluted in 400 ll of elution buffer

(50 mM Tris pH 7.8, 50 mM NaCl, 150 mM imidazole, 0.1% NP-40,

5 mM beta-mercaptoethanol). Eluates were concentrated with Viva-

con� ultrafiltration spin columns 30-kDa MWCO to a final volume

of 120 ll. The protein fractionation step was performed with a Gel

Elution Liquid Fraction Entrapment Electrophoresis (GelFree)

system (Expedeon). Rpb1-containing fractions were treated with

100 lg of proteinase K in a buffer containing 0.5 % SDS. RNAs were

purified and reverse-transcribed using reverse transcriptase Super-

script IV (Invitrogen).

The absolute concentration of cDNAs in the reaction was esti-

mated by quantitative PCR using a standard of known concentra-

tion. Amplifications were performed separately in 25 ll reactions

containing each 2 ll of cDNA for typically 7–9 PCR cycles (LaTaq,

Takara). The PCRs from all the samples were pooled and treated for

1 h at 37°C with 200 U/ml of Exonuclease I (NEB). The DNA was

purified using NucleoSpin� Gel and PCR Clean-up (Macherey-Nagel)

and sequenced using Illumina technology.

Dataset processing

CRAC samples were demultiplexed using the pyBarcodeFilter script

from the pyCRACutility suite (Webb et al, 2014). Subsequently,

the 50 adaptor (Appendix Table S2, read at the 30 end of reads)

was clipped with Cutadapt ({m 10}, Martin, 2011) and the result-

ing insert quality-trimmed from the 30 end using Trimmomatic

rolling mean clipping (Bolger et al, 2014) (window size = 5,

minimum quality = 25). At this stage, the pyCRAC script

pyFastqDuplicateRemover was used to collapse PCR duplicates

using a 6-nucleotide random tag included in the 30 adaptor

(Appendix Table S2, read at the 50 end of reads). During demulti-

plexing, pyBarcodeFilter retains this information in the header of

each sequence. This information is used at this stage to better

discern between identical inserts and PCR duplicates of the same

insert. The resulting sequences are reverse complemented with

Fastx reverse complement (part of the fastx toolkit, http://

hannonlab.cshl.edu/fastx_toolkit/) and mapped to the R64 genome

(Cherry et al, 2012) with bowtie2 (using “-N 1” option) (Langmead

& Salzberg, 2012).

RNAseq samples were demultiplexed by the sequencing platform

with bcl2fastq2 v2.15.0; adaptor trimming of standard Illumina

TruSeq adaptors was performed with cutadapt 1.9.1. Samples were

subsequently quality-trimmed with trimmomatic (see above) and

mapped to the R64 genome with bowtie2 (default options).

Metagene analyses and boxplots

For each feature included in the analysis, we extracted the poly-

merase occupancy values at every position around the feature and

plotted the mean or median over all the values for that position in

the final aggregate plot. To limit the influence of outliers on the final

plot when using the mean to summarize the data, we excluded from

the analysis every value at each site that was above the mean + 5

standard deviations.

To assess the occurrence of a termination defect at genes

upstream of Rap1 RB sites upon Rap1 depletion or in rna15-2 cells,

we selected a subset of genes whose termination region (opera-

tionally defined as the region around the strongest site of polyadeny-

lation) was within 300 bp upstream of a Rap1 site. To avoid

interference with the signal at the RB site, we then calculated the

average polymerase occupancy in the early segment of the termina-

tion region, that is, in a window 100 nucleotides immediately before

the major site of polyadenylation. This value was then divided by

the average polymerase occupancy signal across the whole body of

the gene. A decline in the RNAPII signal in wt cell and a signifi-

cantly higher signal in rna15-2 cells in this region confirmed that

loss of RNAPII indeed starts occurring in this region, presumably

associated with multiple sites of 30 end processing. The overall

distribution of these ratios for several datasets was represented with

boxplots and the statistical significance assessed with paired t-tests

in order to account for different termination efficiencies at each

polyadenylation site.

Dataset availability

All datasets used in this study are available under GEO numbers

GSE97913 and GSE97915.

Expanded View for this article is available online.
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Expanded View Figures

▸Figure EV1. 30 end mapping of Rap1-terminated transcripts.

A Top: Schematic drawing of the reporter system used for selecting the RB terminators with the position of the insertion and the sequence of the selected clones
containing a Rap1 site (purple). In blue the sequence of a constant linker used for constructing the pool. Flanking HSP104 sequences are indicated in red. Bottom:
PAGE-northern blot analysis of RNAs produced by the different constructs after oligonucleotide-directed RNaseH cleavage at �130 nt from the start of the insertion.
The position from the RNase H cleavage point is indicated above the sequences. The presence of several shorter RNAs might reveal the occurrence of termination at
sites of RNAPII piling up. All analyses were done in an trf4Δ strain to detect unstable transcripts. All lanes are derived from the same gel; marker M1 is shown twice
for clarity.

B Snapshots showing the RNAPII CRAC and RNAseq signal at intron-containing genes, illustrating the co-transcriptional nature of the CRAC signal.
Source data are available online for this figure.
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▸Figure EV2. Roadblock termination functions as a fail safe mechanism to limit constitutive readthrough.

A Aggregate plot showing the average RNAPII CRAC profile at sites of Reb1 occupancy located within 300 nt downstream of genes terminated by the CPF pathway as in
Fig 3B. The plot demonstrates that in striking contrast to alteration of the CPF pathway, affecting NNS termination by nuclear depletion of Nrd1 has no significant
effects on the accumulation of RNAPII at the site of roadblock. Sites used in these analyses are listed in Dataset EV1.

B Snapshots illustrating the presence of significant levels of intergenic RNAPII CRAC signals at three tandem gene loci. The transcription initiation sites (TSS, Malabat
et al, 2015) detected in the regions shown are indicated on top of the RNAPII CRAC tracks. In all these cases, intergenic initiation cannot be detected, indicating that
the intergenic RNAPII signal derives from the constitutive readthrough at the CPF-dependent terminator of the upstream gene. Note that the levels of the
readthrough signal in these cases are comparable to the levels of transcription of the downstream gene.

C Aggregate plot showing the average RNAPII CRAC profile at sites of Abf1 occupancy located within 300 nt downstream of genes terminated by the CPF pathway as in
Fig 3B. The plots show the average RNAPII occupancy in the wild-type and in rna15-1 cells grown for 1.5 hours at the non-permissive temperature. Sites used in these
analyses are listed in Dataset EV1.
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Figure EV3. Metasite analyses illustrating the profile of RNAPII CRAC signal at various transcription factor binding sites.

Aggregate plots showing the profile of RNAPII CRAC signal around sites of binding for the transcription factors indicated. The large peak after each binding site corresponds to

downstream events of transcription initiation as for the plots in Fig 3A. The roadblock peak precedes the position of aligned binding sites. Sites used in these analyses are

listed in Dataset EV1.
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Supplementary Figures 

 
 

 
Figure S1. A. Northern blot analysis of transcripts derived from a construction containing the two Rap1 sites 

upstream of the HYP2 gene in the context of the TETP-HSP104-GAL1p-CUP1 reporter (scheme shown on top). 

Strains have been grown at permissive temperature (25°C) and shifted to 37°C for 4 hour to inactivate the rap1-2 

thermosensitive mutant. The transcript derived from termination at the Rap1 sites is indicated by a red arrow.  

Because of its instability, this transcript is best detected in rrp6∆ cells (lane 2). B. Snapshot showing the RNAPII 
CRAC signal at a site of Reb1-dependent transcriptional roadblock. The roadblock peak decreases significantly 

upon nuclear depletion of Reb1 by the addition of rapamycin for 1 hour to the Reb1-AA strain. As a control, the 

parental strain (containing untagged Reb1) was also treated with rapamycin for the same time. The inset contains 

a magnification of the region of the roadblock illustrating the appearance of a readthrough signal upon Reb1 

depletion. 
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Figure S2. A. Metasite analysis analogous to the one shown in Figure 3A, but using NET-Seq, instead of CRAC 

data. B. Comparison of the CRAC, NET-Seq and PAR-CLIP signals at a site of Rap1 RB. For better comparison 

between CRAC and NET-Seq only the read 3’ ends have been plotted in the last to tracks. Note the prominent 
presence of an RNAPII pausing peak revealed with all techniques. C-D. Aggregate distribution of RNA 3’-ends 

in wt or rrp6∆ cells as indicated upstream of Rap1 and Reb1 binding sites. The presence of these RNAs testifies 

to the occurrence of termination events at sites of roadblock.  
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Figure S3. A. Representative snapshots illustrating the impact of the NNS complex on roadblock termination. 

The RNAPII CRAC signal at sites of roadblock termination downstream of PIL1 and ALD5 is shown (dotted 
rectangle). In both cases, the roadblock peak is insensitive to depletion of Nrd1 (bottom track, compare blue and 

red lines). As a control, the RB peak is strongly diminished by depletion of Rap1 (top track) and strongly 

increased upon mutation of the CPF pathway (middle track) because polymerases that fail to terminate at the 

CPF terminator accumulate at the RB site. B. Expression of the Rap1 DNA binding domain alone induces 

roadblock termination upstream of the HYP2 locus. RT-qPCR analyses of transcripts around the Rap1 sites (n= 

2, error bars indicate the half difference between the replicates). The ratio between the RT-qPCR signal detected 

before (up) and after (down) the roadblock (down/up) is used as a measure of roadblock efficiency upon 

depletion of Rap1 in the presence of ectopic Rap1, the Rap1 DNA binding domain (Rap1-DBD) or an empty 

vector as indicated. Data have been corrected for the different efficiency of amplification of the two amplimers. 

A schematic representation of the HYP2 locus is shown on the top. The amplimers used for the RT-qPCR 

analysis are located 46nt before the first Rap1 site (“up”) and immediately after the second Rap1 site (“down”).  
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Table S1. Strains used in this study 

 

 

  

Library # Name Genotype Reference 

DLY671 BMA64 MATa ura3-1; ade2-1; his3-11,15; leu2-3,112; can1-100; 

trp1∆ 
F. Lacroute 

DLY678 trf4∆ rrp6∆ As BMA, MATa; trf4::KAN; rrp6::URA Libri Lab 

DLY815 rrp6∆  As BMA,  MATa; rrp6::KAN Libri Lab 

DLY2241 W303 ade2-1; ura3-1; his3-11,15; trp1-1; leu2-3,112; can1-100 (Thomas & 

Rothstein, 

1989)9)  

DLY2207 rap1-2 As W303  MATa; rap1-2  (Kurtz & 
Shore, 1991)1)  

DLY2242 rsp5-1 As W303 rsp5-1::HIS (Harreman et 

al, 2009)  

DLY2547 HHY212 Anchor away 

loxed 

As W303,  MATa ; tor1-1; fpr1::loxP; RPL13A-

2xFKBP12::loxP; ura3-1 

(Haruki et al, 

2008)  

DLY2568 Reb1-AA as DLY2547, REB1-FRB::KAN  this study 

DLY2570 Rap1-AA as DLY2547, RAP1-FRB::KAN  this study 

DLY2571 Rpb1-HTP As BMA,  MATa; RPB1-HTP::TRP1Kl this study 

DLY2736 Reb1-AA Rpb1-HTP As DLY2568,  MATa; RPB1-HTP::TRP1Kl  this study 

DLY2754 Rpb1-HTP rna15-2 As DLY2571,  MAT  rna15-2 this study 

DLY2838 Rpb1-HTP Anchor 

away 

As W303; MAT  RPB1-HTP::URAKl,  tor1-1; fpr1::NAT; 

RPL13A-2xFKBP12::loxP-TRP1-loxP 
this study 

DLY2840 Rap1-AA Rpb1-HTP As DLY2838,  MAT RAP1-FRB-RAP1::LEU  this study 

DLY2859 WT AA Rpb1-HTP 

rrp6∆  

As DLY2838,  MAT  rrp6::HIS5Sp 
this study 

DLY2860 Reb1AA Rpb1-HTP 

rrp6∆  

As DLY2736,  MATa  rrp6::HIS5Sp 
this study 

DLY2861 Rap1 AA Rpb1-HTP 
rrp6∆  

As DLY2840,   MAT  ; rrp6::HIS5Sp 
this study 

DLY2867 Rpb1-HTP Nrd1-AID  As 2571, MATa, RPB1-HTP::TRP1kl NRD1-3Flag-mAID,  

KAN::OsTIR1 
this study 

DLY3080 rap1-2 rrp6::KAN As DLY2207, rrp6::KAN  this study 
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Table S2. Oligonucleotides used in this study 

 

  

Library # Sequence (5’-3’) Use 

DL190 TTGAGCCAACGTCAAAATCGTTAGAGCCCTTTCTGTAAATTGCGTTTGGTCGTTCAT 
 

Northern blot 

probe, against 

HSP104 

DL2627 ATTCAAAAGCGAACACCGAATTGACCATGAGGAGACGGTCTGGTTTAT Northern blot 

probe, U4 

DL3248 AGCGTCCAGCTACAGCGT RT-Q-PCR 
(uHYP2, up) 

DL3249 AACGGGAACGGCGACTTG 
 

RT-Q-PCR 

(uHYP2, up) 

DL3198 TGTCGCCTCACACGGACC 
 

RT-Q-PCR 

(uHYP2, 

down) 

DL3199 CCTCGATGTATTCCGTAG 
 

RT-Q-PCR 

(uHYP2,down 

L3-6N-GA 
 

/5rApp/GCTtcNNNNNNAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT/3ddC
/ 
 

3’-adapter 

L3-6N-GU 
 

/5rApp/GCTacNNNNNNAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT/3dd
C/ 
 

3’-adapter 

L3-6N-AC 
 

/5rApp/GCTgtNNNNNNAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT/3ddC
/ 
 

3’-adapter 

L3-6N-UC 
 

/5rApp/GCTgaNNNNNNAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT/3dd
C/ 
 

3’-adapter 

L5miRCat 
 

5-/5InvddT/CTTGrGrCrArCrCrCrGrArGrArArUrUrCrCrA-3  
 

5’-adapter 

RT L3-2 
 

5-ACACTCTTTCCCTACACGACGCTCTTCCG-3 
 

RT primer 

P5_3prime 
 

5-
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT
CT-3 
 

PCR 

miRCat_PCR2 
 

5-CAAGCAGAAGACGGCATACGAgatcCTTGGCACCCGAGAAT-3 
 

PCR 
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Table S3. Plasmids used in this study 

 

  

Library 

# 

Name Description Reference 

pDL431 pCM190(TRP)-TET-HSP104-X3-HSP104-GAL1-

LACZ 

Reporter containing a Reb1-

dependent terminator 

(Colin et al, 2014)  

DL435 pCM190(TRP)-TET-HSP104-X118-HSP104-GAL1-
LACZ 
 

Reporter containing a Rap1-

dependent terminator 

This study 

DL468 pCM190(URA)-TET-HSP104-X118-HSP104-GAL1-
CUP1 

Reporter containing a Rap1-
dependent terminator 

This study 

DL436 pCM190(TRP)-TET-HSP104-X118-ΔRap1 BS-

HSP104-GAL1-LACZ 

 

Same as DL435, containing 

a precise deletion of the 

Rap1 binding site 

This study 

DL878 pcM185(HIS)-PRAP1 RAP1 

 

Plasmid expressing full 

length Rap1 under control of 

the RAP1 promoter 

This study 

DL879 pcM185(HIS)- PRAP1 -RAP1-DBD358-601 

 

Plasmid expressing the DNA 

binding domain of Rap1 (aa. 

358-601) under control of 

the RAP1 promoter 

This study 
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II - General Regulatory Factors Control the 
Fidelity of Transcription by Restricting 
Non-coding and Ectopic Initiation  
 

GRFs participate to the formation of nucleosome depleted regions at active promoters and are 

also essential for controlling gene expression. In the course of our previous study on roadblock 

termination, we demonstrated that the presence of GRFs is also crucial to limit the progression 

of RNAPII that fail to terminate at canonical sites, thus ensuring gene expression integrity. 

Careful analysis of the distribution of the polymerase revealed a striking and unexpected effect 

of Rap1 depletion. Indeed, we observed that the absence of Rap1 is associated with a major 

increase in the RNAPII CRAC signal within many Rap1-bound promoters, at odd with the 

notion of Rap1 being a transcriptional activator. Therefore, we wondered what could be the 

mechanism underlying this phenomenon of ectopic transcription and how it could affect gene 

expression and transcription fidelity.  

 

In order to better understand the function of Rap1 in controlling transcription initiation, we 

mapped transcription start sites and nucleosomes in presence and absence of the latter. We 

have determined that Rap1 is not only important to correctly position nucleosomes around 

promoter regions but also to ensure transcription fidelity by preventing ectopic and pervasive 

transcription events to fire from alternative and spurious sites. The appearance of ectopic 

initiation in Rap1-depleted cells correlates with altered nucleosome positioning and is 

independent of chromatin remodelers. Interestingly, the occurrence of ectopic initiation and the 

mis-localisation of nucleosomes upon nuclear depletion of Rap1 can be partially reversed by 

expressing a truncated version of Rap1 carrying the DNA-binding domain alone, suggesting 

that Rap1, and probably other GRFs, promote NDRs formation and ensure transcription fidelity 

by a steric mechanism. 
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SUMMARY

The fidelity of transcription initiation is essential for
accurate gene expression, but the determinants of
start site selection are not fully understood. Rap1
and other general regulatory factors (GRFs) control
the expression of many genes in yeast. We show
that depletion of these factors induces widespread
ectopic transcription initiation within promoters.
This generates many novel non-coding RNAs and
transcript isoforms with diverse stability, drastically
altering the coding potential of the transcriptome.
Ectopic transcription initiation strongly correlates
with altered nucleosome positioning. We provide
evidence that Rap1 can suppress ectopic initiation
by a ‘‘place-holder’’ mechanism whereby it physi-
cally occludes inappropriate sites for pre-initiation
complex formation. These results reveal an essential
role for GRFs in the fidelity of transcription initiation
and in the suppression of pervasive transcription,
profoundly redefining current models for their func-
tion. They have important implications for the mech-
anism of transcription initiation and the control of
gene expression.

INTRODUCTION

Active promoters are generally depleted in nucleosomes (nucle-

osome depleted regions, NDRs), which is thought to provide

access to DNA binding proteins required for transcription activa-

tion (for recent reviews, see Lai and Pugh, 2017; Lieleg et al.,

2015). Promoter NDRs are bordered by two well-positioned

nucleosomes, one of which is referred to as the +1 nucleosome

because it is the first of the array of genic nucleosome that are
Molecu
also generally well positioned and regularly spaced. The concept

of the upstream �1 nucleosome is more ambiguous, because

the latter can also be the +1 nucleosome of a divergently tran-

scribed gene. This distinction is not merely semantic, because

the bona fide +1 nucleosome is characterized by a different his-

tone composition as it typically contains the H2AZ histone

variant instead of H2A. Importantly, the +1 nucleosome is asso-

ciated with the transcription start site (TSS), which is generally

located 12–15 nucleotides downstream of its upstream border

in yeast (Hughes et al., 2012; Lee et al., 2007; Rhee and Pugh,

2012; Tsankov et al., 2010; Whitehouse et al., 2007). Formation

of the NDR depends on many factors, the weight of which can

vary from case to case (for recent reviews, see Lai and Pugh,

2017; Lieleg et al., 2015). One of these factors is the sequence

of the DNA that is wrapped around the histone octamer, which

defines the most thermodynamically favorable position for

nucleosomes on naked DNA. Many studies have, however,

demonstrated that DNA-histone interactions alone do not deter-

mine proper nucleosome positioning and that trans-acting factor

are required (Struhl and Segal, 2013). Among these, chromatin

remodelers (CRs) and general regulatory factors (GRFs) play

important roles. The CR SWI/SNF and RSC complexes use the

energy of ATP to displace nucleosomes at promoters (Hartley

and Madhani, 2009; Parnell et al., 2008; Ryan et al., 1998; Shi-

vaswamy and Iyer, 2008). Other remodelers, like ISWI and

INO80, are believed to be important for positioning the +1 nucle-

osome and the packing of nucleosomes along transcription units

(Krietenstein et al., 2016; Lai and Pugh, 2017). GRFs (including

Rap1, Reb1, Abf1, and Tfb1) contain a related DNA binding

domain and are required for the expression of several classes

of genes, encoding for example ribosomal proteins, glycolytic

enzymes, and snoRNAs. GRFs bind DNA at specific sites, gener-

ally within NDRs, and have been shown to be important for

excluding nucleosomes from these regions (Badis et al., 2008;

Hartley and Madhani, 2009; Preti et al., 2010; Ganapathi et al.,

2011; Hughes et al., 2012; Kubik et al., 2015, 2018). These pro-

teins do not possess ATPase activity, and therefore they must
lar Cell 72, 955–969, December 20, 2018 ª 2018 Elsevier Inc. 955
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act on nucleosomes by different mechanisms, either directly or

indirectly, for instance, by recruiting CRs.

Rap1 (Repressor Activator Protein 1) was originally described

as an activator and a repressor of gene expression at silent mat-

ing-type loci (for a recent review, see Azad and Tomar, 2016).

Gene activation was shown to depend on a C-terminal domain

of the protein that can activate transcription alone when fused

to a DNA binding domain with altered specificity (Johnson and

Weil, 2017). This region of Rap1 interacts with the PIC (pre-initi-

ation complex) components TFIID and TFIIA (Garbett et al., 2007;

Johnson and Weil, 2017; Papai et al., 2010). Rap1 can also

repress expression when bound to promoters, possibly by

directly interacting with and inhibiting TBP binding to the DNA

(Bendjennat and Weil, 2008). However, the mechanism underly-

ing the bimodal role of Rap1 at promoters is not fully understood.

One of the salient features of promoters is their intrinsic

bi-directionality (Jin et al., 2017; Neil et al., 2009; Rhee and

Pugh, 2012; Xu et al., 2009). Bi-directional transcription allows

expression of divergent genes but can also generate non-coding

and non-functional transcripts in the opposite direction of a func-

tional gene. These transcripts are often unstable in wild-type

cells and are degraded either in the nucleus by the RNA exosome

or in the cytoplasmic by the nonsense-mediated decay (NMD)

pathway (for a review, see Porrua and Libri, 2015). Cells have

evolved strategies to favor transcription toward functional

coding regions and limit the extent of what is called pervasive,

non-coding transcription (Jin et al., 2017). The nucleosomal

architecture of NDRs appears to be important for this control

as mutants in CRs or modifiers have been shown to increase

the extent of pervasive antisense transcription events (Mar-

quardt et al., 2014; Whitehouse et al., 2007). Limiting pervasive

transcription is essential for the cell, and spurious transcription

events that have escaped control at the level of initiation are

terminated by several mechanisms (Porrua and Libri, 2015).

In this study, we have used a combination of high-resolution

genome-wide analyses to address the effects of rapid depletion

of Rap1 and other GRFs. We studied the changes in occupancy

of RNAPII after rapid Rap1 depletion and correlated these results

to changes in transcription initiation, stability of the transcripts

vis-à-vis nuclear and NMD degradation pathways, and changes

in the nucleosome architecture of NDRs. We demonstrate a

massive change in the pattern of transcription initiation, which

generates transcripts of diverse stability and coding potential.

This translates into variegated effects on gene expression,

from activation to repression and leads to the generation of

different protein isoforms, drastically changing current models

of GRF action. We show that Rap1, Abf1, and Reb1 have crucial

roles in limiting pervasive transcription at the level of initiation

since many novel non-coding RNAs are generated when any of

these factors is depleted.

Together, these results support a model whereby Rap1 partic-

ipates in orchestrating the appropriate pattern of transcription

initiation by controlling the position of neighboring nucleosomes

and by actively preventing spurious transcription initiation within

the NDR. This provides a unified view of how Rap1 controls both

gene activation and repression, and the quality of the transcripts

produced in terms of coding potential. Because we show that

neither RNA polymerase occupancy nor overall transcript levels
956 Molecular Cell 72, 955–969, December 20, 2018
can be considered a priori as faithful predictors of gene expres-

sion, our data have important and general implications for the

modeling of transcriptional networks.

RESULTS

Rap1 Depletion Promotes Ectopic and Pervasive
Transcription Initiation Events
In the course of a previous study aimed at describing the function

of Rap1 in transcription termination (Candelli et al., 2018), we

generated high-resolution transcription maps using a modified

version of the CRAC technique (crosslinking analysis of cDNA;

Granneman et al., 2009; Candelli et al., 2018), which allows de-

tecting the position of RNAPII position by sequencing the nascent

RNA. We first generated CRAC RNAPII transcription maps under

conditions of transient depletion of Rap1 from the nucleuswith the

Anchor Away technique (Candelli et al., 2018; Haruki et al., 2008).

Upon nuclear depletion of Rap1 for 2 hr, we observed the ex-

pected effects of up- and downregulation of RNAPII occupancy

at genes containing a Rap1 site within 500 nt upstream of

the TSS (Tables S1 and S2, 334 genes, Figure 1A). These alter-

ations are specific because they were not observed for a set of

randomly chosen, expression-matched genes that did not

contain a Rap1 site in their promoter region (Figure 1B; Table

S1). In a large number of cases (34%, false discovery rate [FDR]

<0.05), gene expression was downregulated in the absence of

Rap1, and only a small set of genes (1.8%, FDR <0.05) showed

statistically significant upregulation (Figure S1A; Table S2).

Surprisingly, a closer look revealed that the depletion of Rap1

is associated with a major global increase in the RNAPII signal in

the promoter regions of Rap1 targets (Figure 1A, left of TSS). This

increase was observed by a conservative estimate at 31% of all

the analyzed Rap1 targets (FDR <0.05, see STAR Methods;

Table S3) but not for control genes and is best illustrated by

sorting the same set of genes based on the CRAC signal

upstream of the TSS (Figures 1C and 1D).

We considered that some of these effects could be indirect or

due to the co-sequestration of Rap1-interacting factors in the

cytoplasm. Therefore, we generated genome-wide RNAPII dis-

tribution maps after 10 and 20 min of Rap1 depletion using the

auxin degron system (Figure S1B; Nishimura et al., 2009).

Comparison of RNAPII differential profiles sorted as in Figure 1A

revealed similar effects on gene expression even at very early

time points of Rap1 depletion (Figure S1C), with 85% of overlap

between downregulated features after 2 hr (anchor away) or

20 min (auxin degron) of Rap1 depletion (see Table S2).

Importantly, increased RNAPII signals in gene promoters ap-

peared as early as 10 min after inducing Rap1 depletion and

were more pronounced at later time points (Figures S1C).

Analysis of individual genes (Figures 1E–1HandS1D) confirmed

that depletion of Rap1 leads to the appearance of RNAPII signals

within the NDR, reflecting the unexpected emergence of novel,

ectopic transcription start sites (eTSS). Ectopic initiation was

found to arise in one (Figures 1E–1G) or both (Figure 1H) directions

of transcription relative to the site of Rap1 binding and in amanner

that is not dependent on the orientation of the non-palindromic

Rap1 site (data not shown). The presenceof eTSSwas often asso-

ciated (39% of total events, FDR <0.05) with a decreased RNAPII
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Figure 1. RNAPII CRAC Analysis Reveals Early Appearance of Ectopic Transcription upon Rap1 Depletion

(A–D) Heatmaps illustrating the distribution of the RNAPII CRAC signal change (log2 ratio) at Rap1 target (334) or control genes (424) upon Rap1 depletion by

the anchor-away technique for 2 hr. Features are aligned on the TSS and sorted by decreasing average signal within the first 200 nucleotides of the gene body

(A and B) or the 200 nt upstream of the TSS (C and D).

(E) Snapshot showing the RNAPII CRAC signal at the RPS10A-YOR292C locus upon Rap1 depletion by the anchor away (Rap1-AA) or the auxin (Rap1-AID)

methods for the times indicated. WT-AA indicates an anchor away strain containing a non-tagged Rap1. The position of the Rap1 binding site and the direction of

transcription are indicated.

(F) The same as in (E) for the locus RPL13B-RPS16A.

(G) The same as in (E) for the locus RPL8A-GUT1.

(H) The same as in (E) for the locus RPS9B-RPL21A.

(I) Heatmap illustrating the RNAPII CRAC signal change (log2 ratio) upon Rap1 depletion around Rap1 sites that do not have an annotated coding gene within the

downstream 500 nt. Genomic regions are aligned on the Rap1 site and sorted by decreasing signal.

See also Figure S1.
CRAC signal in the body of the downstream gene (Figures 1F, 1H,

and S1D, top) but was also observed concomitantly with the

apparent upregulation of downstream transcriptional activity

observed at a minority (1.8% of total) of Rap1 targets (Figures

1E and S1D, middle), prefiguring diverse effects of ectopic initia-

tion on gene expression (see below).

In many cases, we also observed the appearance of non-cod-

ing transcription in the opposite direction from a Rap1 target

gene, indicating that Rap1 restricts the intrinsic bidirectionality

of many promoters and limits pervasive transcription at the level

of initiation (Figures 1G, 1H, and S1D, bottom). To assess the

generality of this finding, we aligned all the Rap1 sites that lack

an annotated coding gene within the downstream 500 nt in either

one of the two possible orientations (n = 304) and profiled the

log2 ratio of the RNAPII CRAC signals observed in the absence

or presence of Rap1. As shown in Figure 1I, many novel non-

coding, transcription events are generated upon Rap1 depletion,

generally initiating immediately downstream of the Rap1 site. We
estimated that non-coding ectopic initiation occurs in at least

25% of Rap1-bound loci that do not have a downstream

annotated gene (FDR <0.05, Table S4). Finally, alterations in

gene expression were not exclusively associated with ectopic

initiation since some genes displayed decreased transcription

initiation from canonical sites in the absence of an eTSS (e.g.,

RPL8A and RPL13B in Figures 1E and 1F; see below).

Together, these results demonstrate that Rap1 represses

ectopic transcription initiation generating non-coding RNAs

and 50-extended RNA isoforms. Many novel transcripts are syn-

thesized extremely rapidly after Rap1 depletion, underlying the

appearance of an unexpectedly complex landscape of effects

on gene expression.

Diverse Effects of Rap1 Depletion on Gene Expression
Ectopic initiation is expected to generate transcripts with

different stabilities and coding potential, which can havemultiple

consequences for gene expression.
Molecular Cell 72, 955–969, December 20, 2018 957



To disentangle overlapping transcription events derived from

different initiation sites we mapped the 50 end of transcripts by

TSS sequencing (TSS-seq) (Malabat et al., 2015) after nuclear

depletion of Rap1 for 60 min, which we estimated to be a good

compromise for reliably detecting eTSSs while minimizing sec-

ondary effects. To detect transcripts that might be unstable,

we also performed TSS-seq in cells defective for nuclear quality

control (rrp6D) or NMD (upf1D), which degrades RNAs contain-

ing premature stop codons. As expected, many novel sites of

transcription initiation were specifically detected at Rap1-bound

loci upon depletion of Rap1, but not at control genes under the

same conditions or after addition of rapamycin to a control strain

in which Rap1 was not FKBP12-rapamycin-binding (FRB)-

tagged (Figures 2A, 2B, S2A, and S2B).

eTSSs (see Table S5 for a set of verified sites) were distributed

over a range of several hundred nucleotides around Rap1 sites

(Figures S2A and 2C), with a large fraction (42%) within the

150 nt surrounding the site (Figure 2C). Differential analyses of

the TSS-seq signal in upf1D and rrp6D cells (see STARMethods)

revealed that many eTSSs belong to RNAs that are significantly

sensitive to NMD (42%, FDR <0.05; Table S5; Figure 2D), while

only roughly 6% are sensitive to nuclear degradation (FDR

<0.05, Table S5, Figure S2C).

The cases described below illustrate the variegated and

sometimes complex impact on gene expression ensuing from

this deregulation in TSS selection fidelity.

Ectopic Initiation and Downregulation of Gene
Expression
Amarked downregulation of canonical initiation was observed at

many Rap1 target genes (Figure 2A), which mirrors the downre-

gulation observed by RNAPII CRAC (Figures 1A–1D). To assess

to what extent this downregulation is associated to the occur-

rence of ectopic initiation, we calculated the signal ratio change

at the canonical TSS of genes containing an upstream eTSS

(Table S5). The distribution of these values is shown in Figure 2E,

together with the distribution of TSS signal changes at non-Rap1

targets. Roughly 65% of the canonical TSSs of genes containing

at least one upstream eTSS are significantly downregulated

(FDR <0.05), which testifies to the strong correlation between

ectopic initiation and gene downregulation.

The paradigmatic case of the PRE2 gene is shown in

Figures 2F and 2G. Ectopic initiation generates a transcript start-

ing roughly 140 nt upstream of the canonical PRE2 TSSs, which

contains two upstream open reading frames (ORFs) and is

thereby sensitive to NMD (Figure 2F, cf. tracks –Rap1 and

–Rap1/upf1D; Figure 2G, cf. lanes 2 and 3 to 5 and 6). The

appearance of this novel 50-extended RNA is accompanied by

a marked decrease in transcription starting at the canonical

PRE2 TSS (Figures 2F and 2G) and a consistent decrease in

the production of the Pre2 protein, as shown by western blot

(Figure 2H). Thus, lower expression from the canonical TSS

and production of an unstable RNA explain the downregulation

of PRE2 expression in the absence of Rap1.

Apparent Upregulation of Gene Expression
Besides cases of downregulation, we observed apparent gene

upregulation upon selection of an upstream eTSS. One example
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is shown in Figure 2F for theNAT3 locus (see also YOR292C, Fig-

ure 4F). In the absence of Rap1, an upstream TSS is selected at

levels markedly higher than the natural TSS, leading to increased

transcription levels from an altered start site. A consistent frac-

tion of these RNAs are degraded in the cytoplasm by the NMD

pathway as they contain upstream ORFs (uORFs) (Figure 2F),

but the molecules that escape degradation are still more abun-

dant than the correctly initiated NAT3 RNAs. Thus, although

both transcription and steady-state RNA levels for NAT3 (and

YOR292C) appear to be upregulated in the absence of Rap1

(potentially qualifying Rap1 as a repressor) the RNAs produced

do not have the same coding potential as the RNA initiated at

the canonical TSS.

An interesting variant of apparent upregulation is represented

by the RXT3 locus (Figures 2F–2H). In this case, transcription is

naturally started from two TSS clusters, one that is internal to the

ORF, and a second upstream of the natural ATG. Use of the in-

ternal site leads to the production of a truncated protein, lacking

the first 51 aa. Depletion of Rap1 induces strong repression of

the natural TSS, which is accompanied both by the strong in-

duction of the internal TSS and by the selection of an additional

upstream eTSS generating NMD-sensitive transcripts. This

leads to an overall increased transcriptional and steady-state

RNA signal associated with the RXT3 locus, which, however,

translates to the increased production of a truncated isoform

and to decreased levels of the normal protein (Figure 2H).

These results strongly suggest that many cases of apparent

transcriptional upregulation in the absence of Rap1 in reality

hide a constellation of scenarios that generally converge on

downregulation of gene expression.

Bona Fide Upregulation following Rap1 Depletion
Alterations in TSS usage in the absence of Rap1 can also lead to

a bona fide increase in gene expression as illustrated by the case

of APS2 (Figures 2F–2H). In the presence of Rap1, transcription

initiates at two sites: the ATG proximal site is responsible for

the expression of the functional APS2 RNA, whereas a preferen-

tially used distal site leads to the expression of a transcript

that contains premature stop codons and is subject to NMD

(Figures 2F and 2G, cf. lanes 1 and 4). Upon Rap1 depletion,

the ATG proximal site is favored over the upstream site

(Figures 2F and 2G, lanes 3 and 6), leading to the increased

production of a stable APS2 RNA and a functional Aps2 protein

(Figure 2H). In this case, Rap1 functions as a bona fide repressor

of APS2 expression, but through a non-canonical mechanism

that favors the usage of a non-functional TSS.

Rap1 Inhibits Transcription Initiation in a Heterologous
Context
A large fraction of ectopic initiation events arise predominantly

around the Rap1 binding site (Figure 2C), suggesting that Rap1

controls ectopic initiation by physically hindering access to these

cryptic transcription initiation sites. To test this hypothesis, we

inserted a Rap1 binding site or a mutated site at various dis-

tances from the TSS of a non-coding RNA (NEL025C) driven

by the DLD3 bidirectional promoter. Initiation at the NEL025C

TSS allows expression of the CUP1 gene, which confers cop-

per-resistant growth to cup1D yeast cells. The presence of a
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Figure 2. Diverse Impact of Ectopic Transcription Initiation on Gene Expression

(A and B) Heatmaps showing the TSS-seq signal change (log2 ratio) upon nuclear depletion of Rap1 at target genes (A) or controls (B). Features are sorted for

decreasing TSS-seq signal change and aligned on the canonical TSS of target (A) or control (B) genes.

(C) Distribution of ectopic initiation events relative to Rap1 binding sites. The fraction of total eTSSs in 50-nt bins is plotted against the distance from the Rap1 site.

42% of all eTSSs are located within the window indicated by the dashed lines.

(D) A large fraction of eTSSs generate RNAs that are degraded by NMD. TSS-seq signals at ectopic initiation sites have been computed in the absence or

presence of Upf1. The binned distribution of the log2 ratio of these signals (red) is shown in comparison to the same analysis performed on the TSS of control

genes (non-Rap1 targets) that are not expected to be affected by NMD, blue. The eTSS population is significantly upregulated in upf1D cells relative to controls

(p = 4.1E–43, two-tailed Student’s t test).

(E) The occurrence of ectopic initiation strongly correlates with downregulation of normal transcription initiation. Analysis performed on features containing an

eTSS in their upstream region (red arrow in the scheme, Table S5). The distribution of TSS-seq signal change (log2 ratio –Rap1/+Rap1) at the canonical TSS of

these genes (black arrow in the scheme) is compared to the distribution of TSS-seq signal change at control genes (blue). In the presence of ectopic initiation,

transcription initiated at a canonical downstream site is significantly downregulated (p = 6.3E–21, two-tailed Student’s t test).

(F) Snapshots illustrating the alterations in TSS usage upon depletion of Rap1. The RNAPII CRAC signal is shown in parallel for comparison. Track colors for

RNAPII CRAC and TSS-seq as in Figure 1. The presence of a red arrowhead in the scheme indicates the existence of a small uORF, which induces NMD

sensitivity. Only the relevant strand is shown here (black arrow), but complete snapshots are in Figures 3 and S4.

(G) Northern blot analysis of transcripts produced at the indicated loci upon Rap1 depletion, in different genetic backgrounds. Transcripts produced in the

presence of Rap1 are indicated by a blue dot in the upf1D series of samples. Transcripts that are specifically produced or upregulated in the absence or Rap1 are

indicated by a red dot.

(H) Western blot analysis of proteins produced from HA-tagged PRE2, RXT3, and APS2 loci during Rap1 depletion for the indicated times. A red arrow indicates the

position of theN-ter truncated isoform ofRxt3 producedwhenRap1 is depleted. The asterisk indicates a cross-reacting protein that can be used as a loading control.

See also Figure S2.
Rap1 binding site prevents normal expression of CUP1 when

located at 20 or 85 nt upstream of the TSS but is permissive

for expression when located 295 nt upstream (Figures S2E and

S2F). A similar result was obtained using the strong ACT1 pro-

moter. Inhibition was dependent on the sequence of the Rap1

binding site, and on the presence of Rap1 because depletion

of the latter led to restoration of transcription initiation as de-

tected by RT-qPCR both for pACT1 and p20 constructs (Fig-
ure S2G). From this experiment, we conclude that Rap1 can

inhibit gene expression when binding close to the TSS even in

a heterologous context.

Altered Nucleosomal Architecture Is Associated with
Spurious Transcription Initiation
It has been shown that depletion of Rap1 is linked to the appear-

ance of micrococcal nuclease (MNase)-resistant segments in
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Figure 3. Nucleosome and TSS Selection

Changes upon Depletion of Rap1

(A) Heatmap showing the MNase sequencing

(MNase-seq) signal change (log2 ratio) upon Rap1

depletion at Rap1 target genes aligned by their

TSS. The MNase-seq signals in the presence or

absence of Rap1 at the same genes are shown in

Figure S3. Features are sorted by decreasing

signal change. Alternate stripes of red and blue

downstream of the alignment point (red and blue

arrowheads) indicate changes in the phasing of the

genic nucleosome array at many genes when

Rap1 is depleted (see also C).

(B) Genes are aligned and sorted as in (A), but the

log2 ratio of the TSS-seq signal change upon Rap1

depletion is shown, indicating that changes in TSS

usage strongly correlate with nucleosome posi-

tioning changes.

(C) Individual examples of the correlations be-

tween changes in the pattern of initiation and the

altered MNase-seq profile. The movement of

nucleosomes in Rap1-depleted cells (red tracks)

is indicated by small red arrowheads in the wild-

type tracks (blue) and by the characteristic

sigmoidal pattern of the log2 ratio due to nucleo-

some dephasing (see scheme on top). The latter is

responsible for the ‘‘striped’’ pattern seen in (A).

(D) Top: aggregate plots illustrating the position of

ectopic TSSs relative to newly positioned nucleo-

somes in the absence of Rap1. MNase-seq signals

have been aligned to ectopic TSSs (eTSSs) upon

Rap1 depletion (red) or in the presence of Rap1 as

a control (blue). Middle: MNase-seq signals in the

absence or presence of Rap1 have been aligned to

the TSS of genes that are not Rap1 targets.

Bottom: nucleosomes have been aligned to the

TSS of genes that are downregulated in the

absence of Rap1 but that do not contain ectopic

initiation sites in their upstream NDR.

See also Figure S3.
many NDRs (Badis et al., 2008; Hartley and Madhani, 2009;

Knight et al., 2014; Kubik et al., 2015). Increased nucleosome

occupancy (or decreasedMNase accessibility) in NDRs is gener-

ally linked to inhibition of transcription initiation (Jiang and Pugh,

2009; Lieleg et al., 2015; Shivaswamy et al., 2008), which is

seemingly at odds with the appearance of novel TSSs. We

considered the possibility that ectopic initiation and altered

nucleosome occupancy might occur independently at distinct

loci in the absence of Rap1. Therefore, we analyzed the occur-

rence of ectopic initiation at sites of high nucleosome occupancy

change upon depletion of Rap1.

Consistent with earlier reports (Knight et al., 2014; Kubik et al.,

2015), depletion of Rap1 led to a markedly increased nucleo-

some occupancy in roughly half of the NDRs bound by Rap1

(Figures S3A and S3B, regions aligned on TSSs; Figures S3E

and S3F, regions aligned on the Rap1 site) but not at NDRs not

bound by Rap1 (Figures S3C and S3D). The differential (log2
ratio) MNase resistance signal also revealed a striped pattern

(blue and red arrowheads, Figure 3A) indicating that in many in-

stances at least part of the nucleosomal array bordering the NDR
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is phase-shifted relative to the wild-type pattern and moves

toward the unoccupied Rap1 site (see individual cases in Fig-

ure 3C). Thus, increased nucleosome occupancy in Rap1-

dependent NDRs can result from +1 nucleosome shifting, the

addition of extra nucleosomes, or both.

Comparison of nucleosome occupancy and TSS-seq changes

at Rap1-bound NDRs (Figures 3A and 3B) demonstrates a

clear correlation between altered nucleosome occupancy and

changes in TSS usage (both emergence of eTSS and decreased

use of normal TSS). This indicates that in the absence of Rap1

the two events occur concomitantly, which is also illustrated

by the examples shown in Figure 3C (see also Figure S3H).

Ectopic initiation generally occurs in association with newly

positioned nucleosomes as observed at individual genes (see,

for instance, YOR292C, PRE2, and RXT3 in Figure 3C). This is

more generally illustrated by the nucleosome metaprofile at

176 eTSSs (Figure 3D, top), showing that eTSSs are generally

positioned on the 50 edge of the nucleosome, mirroring the posi-

tion of canonical TSSs relative to the +1 nucleosome (Figure 3D,

compare top and middle).



Downregulation of the canonical TSS is frequently associated

with the upstream shift of the +1 nucleosome (see, for instance,

RXT3, APS2, and RPL11A) in the absence of Rap1, which

presumably hinders the site of initiation as previously sug-

gested (Reja et al., 2015; Shivaswamy et al., 2008). This was

also observed for a set of genes downregulated in the absence

of Rap1 that do not contain eTSSs in their promoter region (Table

S5; Figure 3D, bottom).

Finally, in roughly 14% of cases, ectopic initiation occurs

within gene coding regions (Table S5). These events are also

associated with changes in nucleosome positioning. For

instance, at the RXT3 and YMR027W loci (Figures 3C and S3H)

the upstream shift of the +1 nucleosome enlarges a small NDR

between the +1 and +2 nucleosomes, which presumably favors

the use of the internal TSS coding for N-terminal truncated iso-

forms. At the PEX12 locus (Figure S3H), the upstream shift of

four nucleosomes is associated with increased internal initiation

between the +4 and +5 nucleosomes.

Taken together, the genome-wide analyses and the single

examples illustrate a strong correlation between the modified

nucleosomal architecture and the massive alterations in the

selection of the transcription initiation site observed in the

absence of Rap1.

The DNA Binding Domain of Rap1 Restores Nucleosome
Positioning and Transcription Initiation at Many Rap1
Binding Sites
The mechanism of Rap1 action on nucleosomes and on gene

activation and repression is still not well understood in spite of

a wealth of studies. Besides the DNA binding domain (DBD),

Rap1 contains regions involved in the interaction with chromatin

remodeling complexes (e.g., SWI/SNF) and general transcription

factors (TFIID), notably in the C-terminal region (Reid et al., 2000;

Garbett et al., 2007; Tomar et al., 2008; Johnson andWeil, 2017)

To assess whether the role of Rap1 in controlling the fidelity

of initiation is related to the recruitment or function of TFIID or

SWI/SNF, we depleted Rap1 from the nucleus of cells ectopically

expressing only the DBD of Rap1 (aa 358–601, Rap1DBD), the

wild-type protein or containing an empty vector as controls.

Rap1DBD has been shown to strongly bind DNA in vitro (Gilson

et al., 1993) and in vivo, because it could induce transcription

termination at a site where Rap1 roadblocks RNAPII (Candelli

et al., 2018). Under these conditions, expression of Rap1DBD
alone did not support viability and affected normal yeast growth

even in the presence of wild-type Rap1. Such a dominant-

negative phenotype is expected if Rap1DBD competes with the

wild-type protein for DNA binding.

The growth defects caused by expression of Rap1DBD pre-

cluded a reliable analysis of RNAPII distribution by CRAC.

However, in spite of their sensitivity to NMD, many 50-extended
transcripts produced in the absence of Rap1 could still be de-

tected in otherwise wild-type cells (Figures 2 and 4). Therefore,

we restricted our analyses to these RNA species as a proxy for

ectopic initiation and analyzed in parallel the nucleosomal archi-

tecture in the same conditions. To our surprise, Rap1DBD sup-

presses to a very significant extent some of the nucleosome

positioning phenotypes of Rap1-deficient cells (Figures S3E–

S3G, 4A, and 4B). When sorted based on the strongest effect
of Rap1 depletion (Figures 4A and S3E), four main NDR clusters

can be identified (Table S6): cluster 1 and 2, containing regions

with large (400–600 nt) NDRs and eccentric Rap1 binding; clus-

ter 3, with smaller NDRs and central Rap1 binding; and cluster 4,

containing regions generally insensitive to Rap1 depletion. A

clear suppression of the nucleosome positioning phenotype

was observed in clusters 1–3, whichwas, however, not complete

and most prominently observed in the region immediately sur-

rounding the Rap1 binding site (cf. the differential heatmap pro-

files, Figures 4A and 4B, and the aggregate plots for clusters

1 and 2, and 3, Figures 4C and 4D). This indicates that a nucle-

osomal architecture that is close to normal can be maintained

around the Rap1 binding site without domains of Rap1 involved

in transcriptional activation.

Significantly, partial suppression of ectopic transcription initi-

ation by Rap1DBD was also observed, generally correlating with

restored nucleosome positioning. For example, at the PRE2

and YOR292C loci (Figures 4E and 4F), Rap1DBD restores an

apparently normal position of nucleosomes as well as the normal

site of transcription initiation and the level of average steady-

state RNA (which is higher in the wild-type for PRE2 and

lower for YOR292C). Conversely, nucleosome positioning is

not restored at the PTK2 locus (Figure 4G), and ectopic initiation

leading to the expression of a 50-extended RNA is maintained

upon expression of Rap1DBD. At the RPL21A and RPS23B loci,

containing large NDRs with an eccentrically positioned Rap1

site, Rap1DBD only restores normal position of nucleosomes

and transcription initiation around its binding site (Figures S4A

and S4B).

Rap1DBD suppression occurred genome-wide, as shown by

the comparison of the RNA sequencing (RNA-seq) signal change

around eTSSs in the absence of Rap1 or in the presence

of Rap1DBD. The strong peak in the log2 signal ratio for –Rap1/

Rap1 was considerably reduced when Rap1DBD was expressed

(Figure 4H, cf. Rap1/Rap1 to DBD/Rap1), both for eTSS up-

stream of coding (Figure S4C) or non-coding (Figure S4D) genes.

As seen at individual loci, suppressionwas generally restricted to

eTSSs that are proximal to the Rap1 site (i.e., included in a 200-nt

window centered on the site, Figures 4I–4J).

For a more quantitative assessment, we plotted the distribu-

tions of RNA-seq signals in the presence of Rap1, its absence

or the presence of Rap1DBD at the most affected promoters (Fig-

ure S4E), regions of non-coding transcription (Figure S4F), and

genes (Figure S4G). In all instances, the differences in the distri-

bution of RNA-seq signals were supportive of a partial suppres-

sion of the ectopic initiation by Rap1DBD with a strong statistical

significance (p < 6.5E–4).

Together these results demonstrate that expression of only

the DBD of Rap1 is sufficient to restore the canonical position

of nucleosomes and suppress ectopic initiation at a significant

number of Rap1 binding sites.

The Control on Initiation Fidelity by Rap1 Is Not
Mediated by SWI/SNF, RSC, or INO80 CR Complexes
Although Rap1DBD can partially suppress nucleosome posi-

tioning phenotypes due to the absence of Rap1, we cannot

formally exclude that Rap1 displaces nucleosomes by recruiting

CRs. If CRs were downstream effectors of Rap1 action, affecting
Molecular Cell 72, 955–969, December 20, 2018 961
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Figure 4. Rap1DBD Partially Suppresses the

Gene Expression Phenotypes Linked to

Rap1 Depletion

(A and B) Differential map of nucleosome occu-

pancy (log2 ratio) in the absence of Rap1 (A) or in

the presence of the Rap1 DBD (Rap1DBD, B) after

nuclear depletion of Rap1. Regions are aligned to

Rap1 sites and ordered by k-means clustering and

decreasing signal change in (A). Clusters 1 and 2

contain large NDRs that have an eccentric Rap1

site relative to flanking nucleosomes.

(C and D) Aggregate plots illustrating the extent of

suppression of the nucleosome positioning defect

by Rap1DBD in clusters 1 and 2 (C) and 3 (D). For a

better visualization, all the regions in cluster 1 have

been inversed so that the closest nucleosome

lies on the left of the Rap1 site as in cluster 2

(see scheme on top), and the signals from the

two clusters have been combined. The most effi-

cient suppression of nucleosome positioning by

Rap1DBD occurs in the proximity of Rap1 sites

(shaded region).

(E–G) Individual snapshots are shown to illustrate

cases of full (E and F) or less-efficient (G) sup-

pression, which correlate with nucleosome posi-

tioning changes. Additional examples are shown

in Figure S4.

(H) Aggregate plots illustrating the partial sup-

pression of ectopic initiation by Rap1DBD after

nuclear depletion of Rap1. The log2 ratio of the

RNA-seq signals detected in the absence or

presence of Rap1 (red plot, –/+ Rap1) around

ectopic TSSs is compared to the signal detected in

the presence of Rap1DBD (blue plot, DBD/+Rap1).

The signal is maximum close to the aligned eTSSs

where ectopic transcription arises in all regions

and is significantly decreased in the presence of

Rap1DBD.

(I and J) Same as (H) but using only eTSSs distal to

the Rap1 site (i.e., located outside of a 200-nt

window centered on the Rap1 site, I) or proximal

(i.e., located within the 200-nt window, J).

See also Figure S4.
their function should lead to a similar and possibly more general

phenotype as depletion of Rap1. We therefore assessed the

effect on transcription initiation of depleting the catalytic sub-

units of the SWI/SNF or RSC complexes (Snf2 and Sth1, respec-

tively). We also co-depleted Isw2 and Ino80, which are ATPases

involved in chromatin remodeling that have been implicated,

possibly redundantly, in the positioning of the +1 nucleosome

(Krietenstein et al., 2016; Whitehouse et al., 2007). As for Rap1

depletion, experiments were also performed in an upf1D back-

ground. The distribution of TSSs at Rap1 targets, sorted accord-

ing to decreasing levels of nucleosomal changes in Rap1-

deficient cells, is shown in Figures 5B–5E. Individual snapshots

are shown in Figures 5F–5I, where we also show the changes

in nucleosome occupancy in these conditions (S.K., D.C., R.

Dreos, S. Mattarocci, M.J. Bruzzone, P. Bucher, D.L., and

D.S., unpublished data). The levels and distribution of ectopic

initiation were strikingly different in Sth1, Snf2, or Ino80/Isw2-

deficient cells compared to cells lacking Rap1. Although novel
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TSSs were observed in NDRs upon Sth1 and Snf2 depletion,

their distribution was qualitatively different from that of Rap1-

repressed eTSSs, which strongly argues against an epistatic

relationship (Figures 5F–5I). Of note, upon co-depletion of

Ino80/Isw2 the pattern of ectopic transcription initiation was

complementary and less defined relative to that observed in

Rap1-depleted cells, with eTSSs frequently present within genes

(Figure 5).

From these experiments, we conclude that Rap1 suppresses

ectopic transcription initiation independently of CRs that func-

tion at its target sites.

Reb1 andAbf1 Suppress Ectopic Transcription Initiation
Reb1 and Abf1 are GRFs that have similar roles to Rap1 in terms

of nucleosome exclusion at NDR (Badis et al., 2008; Ganapathi

et al., 2011; Hartley and Madhani, 2009; Kubik et al., 2015). We

analyzed the role of both factors in suppressing ectopic initiation

at their target genes by profiling RNAPII occupancy by CRAC.
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Figure 5. Depletion of CRs Has Distinct Effects on TSS Usage Than on Rap1 Depletion

(A–E) In all heatmaps, features are sorted according to changes in MNase-seq signal upon Rap1 depletion (A) as in Figure 3A. Changes in TSS usage (log2 ratio)

upon depletion of the indicated CR subunits are shown in (C)–(E) and compared to signal changes upon Rap1 depletion (B, same as Figure 3B, shown here for

ease of comparison). Only signals derived from cells defective for NMD (upf1D) are shown, but similar results have been obtained with NMD-proficient cells.

(F) Snapshot comparing TSS and nucleosome changes at the YOR292C locus upon depletion of Rap1 or the indicated chromatin remodeler subunits. Data from

depleted cells are shown in red. The position of the Rap1 site is indicated.

(G) The same as in (F) for the PRE2 locus.

(H) The same as in (F) for the PRO1 locus.

(I) The same as for (F) for the RXT3 locus.
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A B C D

E F G H

Figure 6. Nucleosome Occupancy and TSS Selection Changes upon Depletion of Reb1 and Abf1

(A) Genes containing a Reb1 site within the upstream 300 nt (n = 650) were aligned to their TSSs and sorted according to decreasing nucleosome changes.

(B) RNAPII CRAC signal changes upon Reb1 depletion. The same set of genes are aligned to canonical TSSs and sorted as in (A).

(C) Same as (B), but the RNAPII CRAC signal change in Abf1-deficient cells is plotted instead of Reb1-deficient cells (note that this is a specificity control for Abf1

depletion). The control for Reb1 depletion is shown in (G).

(D) Individual snapshots illustrating the occurrence of ectopic initiation at Reb1 targets upon Reb1 depletion. Top: depletion of Reb1 induces non-coding

transcription antisense to OKP1 is shown. Middle and bottom: the absence of Reb1 is associated to changes in nucleosome positioning and ectopic initiation

upstream of YML053C and DSC3 is shown.

(legend continued on next page)
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Depletion of either factor led to increased nucleosome occu-

pancy in NDRs (Figures 6A and 6E; data from Kubik et al.,

2015), as previously reported. We also observed a very frequent

upstream shift of the intragenic nucleosomal array relative to

the canonical TSS, as observed for Rap1 depletion, responsible

for the characteristic ‘‘striped’’ pattern in the differential signal

(Figures 6A and 6E).

Heatmaps reporting the changes in the RNAPII CRAC signal

upon depletion of Reb1 and Abf1 (Figures 6B and 6F, respec-

tively) clearly demonstrate the occurrence of transcription initia-

tion in the NDR upstream of Reb1 and Abf1 targets, which is

generally associated with gene downregulation (see also the

summary plots associated to each heatmap). As a control,

Reb1 and Abf1 depletion did not induce ectopic initiation at

the non-cognate targets (respectively, Abf1 dependent in Fig-

ure 6G, and Reb1 dependent in Figure 6C). As for Rap1, changes

in nucleosome positioning induced by the absence of Reb1 or

Abf1 strongly correlate with the appearance of novel eTSSs

and the downregulation of initiation at the wild-type site. In

many instances, we observed effects on gene expression that

were not previously noticed based on steady-state RNA-level

changes, most likely because they were masked by the overlap-

ping with 50-extended transcripts (data not shown).

Together these results extend the essential role of Rap1 in con-

trolling the fidelity of transcription initiation to two other GRFs and

suggest that other transcription factors may behave similarly.

DISCUSSION

In this study, we have addressed the effects on transcription and

on gene expression of depleting Rap1 and two other GRFs, Abf1

and Reb1. These factors have been known for decades to affect

the expression of many highly expressed genes, yet, their mode

of action in gene activation or repression has remained relatively

obscure. We show that Rap1 and other GRFs control the fidelity

of transcription initiation, preventing inappropriate and non-

coding transcription events from taking place within the NDRs

to which they bind (Figure 7).

Rap1 and Nucleosome Positioning
Many earlier studies have shown that Rap1 is important for the

size and nucleosome occupancy of the NDRs to which it binds

(Badis et al., 2008; Ganapathi et al., 2011; Hartley and Madhani,

2009; Kubik et al., 2015), which we also have observed. One

important facet of our work is the demonstration that the DBD

of Rap1 alone can restore nucleosome positioning at many sites

of Rap1 binding, although restoration is generally restricted to

the region around the binding site (Figures 4A–4D and S3E–

S3G). We propose that Rap1 constrains nucleosomes at least

in part by a steric hindrance mechanism, consistent with earlier

results from the Morse lab (Yu et al., 2001). In vitro reconstitution

experiments with purified factors have shown that GRFs are not
(E) Abf1 gene targets (n = 781) are aligned to their TSSs and sorted according to

(F) RNAPII CRAC signal changes at Abf1 target genes upon Abf1 depletion as in

(G) Same as (F), but the changes in RNAPII CRAC signal upon Reb1 depletion is

containing both a Reb1 and Abf1 binding site have been excluded.

(H) Individual snapshots illustrating the occurrence of ectopic initiation at Abf1 ta
intrinsically required for NDR formation but are important for

positioning the +1 nucleosome in the presence of ISW2/ISW1

remodelers (Krietenstein et al., 2016). By extension, we propose

that Rap1 constitutes a physical barrier against which genic

nucleosomes are ‘‘pushed’’ by ISW2/ISW1, a ‘‘place-holder’’

function for which in many instances only DNA binding is abso-

lutely required.

We observed that, when the Rap1 binding site is eccentric in

large NDRs (e.g., clusters 1 and 2 in Figures 3A–3C), Rap1DBD
can only constrain proximal nucleosomes, which implies that

the domains missing in Rap1DBD are important for maintaining

the integrity of the NDR at some distance from its binding site.

This might be related to the role of additional factors associated

with Rap1, such as Fhl1/Ifh1, Sfp1 (FIS), and Hmo1 (Knight et al.,

2014; Reja et al., 2015). These factors are generally associated

with Rap1 in large NDRs, notably upstream of ribosomal protein

genes, and are highly enriched in clusters 1 and 2 (Figure S5).

This notion is fully consistent with earlier results showing that

the absence of Hmo1 induces an upstream shift of the +1 nucle-

osome that inhibits gene expression (Kasahara et al., 2011; Reja

et al., 2015) and would imply that components of the FIS and/or

Hmo1 are not bound, or cannot restrict nucleosome displace-

ments when Rap1DBD is bound to the NDR (Figure 7).

The Chicken and Egg Issue of Nucleosomes and
Transcription Initiation
The presence of newly positioned nucleosomes within the NDR

and ectopic initiation might be fully independent events. Howev-

er, we observed that displaced nucleosomes and eTSSs are

frequently associated, suggesting the existence of a causal

connection. Ectopic initiation occurs roughly 12–15 nt down-

stream of the upstream border of the closest newly positioned

nucleosome (Figure 3D, top and middle), which is similar to the

relative position of canonical initiation and the +1 nucleosome

(Hughes et al., 2012; Lee et al., 2007; Tsankov et al., 2010;White-

house et al., 2007). Whether it is initiation that specifies the exact

position of the +1 nucleosome or the latter that directs the

position of initiation is still a matter of debate (for recent reviews,

see Jiang and Pugh, 2009; Lieleg et al., 2015; Struhl and

Segal, 2013).

Some support for the latter hypothesis might come from the

changes in the TSS distribution after the double depletion of

Ino80 and Isw2 (Figures 5F–5I). In this case, it can be envisioned

that the primary consequence of Ino80 and Isw2 depletion is to

induce a downstream shift of the +1 nucleosome. If initiation

were fully independent of the presence of a +1 nucleosome, it

should occur at the wild-type position even when the nucleo-

some is misplaced. Rather, we generally observe a concomitant

downstream shift of initiation that appears to ‘‘accompany’’ the

shifted nucleosome. However, a direct role of Ino80 and Isw2

in specifying the position of the TSS independently of nucleo-

somes cannot be excluded.
decreasing nucleosome changes as in (A).

(B).

shown as a control for the effect of Reb1 depletion at unrelated genes. Genes

rgets upon Abf1 depletion.
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Figure 7. Model Illustrating the Role of Rap1 and GRFs in the Suppression of Ectopic Initiation

In wild-type cells (top), Rap1 (and other GRFs) participates in the positioning of nucleosomes that are excluded from the NDR, at least in part by a steric

mechanism. In the case of Rap1, the associated FIS (Fhl1, Ifh1, and Sfp1) and Hmo1 could also be required for excluding nucleosomes from the NDR. Rap1 or

other GRFs (yellow ellipse) also prevent general transcription factors (GTFs) from accessing the DNA at cryptic sites (red boxes) and generate ectopic initiation

events. In the absence of Rap1 (middle), these cryptic PIC formation sites become accessible, leading to the production of non-coding (leftward) or miscoding

RNAs (rightward). When only the DBD of Rap1 is expressed (bottom), in many instances, nucleosome positioning is restored, mainly in the vicinity of the site,

together with the suppression of cryptic PIC formation and eTSSs. In this example, we show one of the large, Rap1-dependent NDRs in which restoration only

occurs on the side of the Rap1 binding site (yellow box).
One interesting possibility is that the position of nucleosomes

and TSSs influence each other in the absence of Rap1 and

possibly in normal conditions. Nucleosomes might encroach

on the NDR when released from the steric control of Rap1 or

other GRFs, but their precise position would be influenced by

the occurrence and position of ectopic transcription initiation.

Rap1 Controls the Fidelity of Transcription Initiation
The massive occurrence of novel initiation events observed in

the absence of Rap1 was unexpected. In many instances,
966 Molecular Cell 72, 955–969, December 20, 2018
generation of these novel TSSs must imply the formation (or

the activation) of a novel PIC. Because there is no reason to

hypothesize the existence of some evolutionary pressure to

maintain these ectopic PICs, we must conclude that they

form promiscuously in the absence of a specific negative con-

trol mechanism.

Our results indicate that Rap1 and other GRFs exert such a

negative control when bound to their sites. The observation

that Rap1DBD preferentially suppresses eTSSs at proximal sites

(Figures 4E–4J, S4A, and S4B) suggests that, akin to its effect



on proximal nucleosomes, Rap1 sterically hinders use of these

cryptic sites of initiation.

Approximately half of the eTSSs that we detected are located

more than 100 nt from the site of Rap1 binding and are generally

not, or not efficiently, suppressed by Rap1DBD. This raises the

question of how wild-type Rap1 suppresses ectopic initiation

at a distance from its binding site. It has been shown that Rap1

can bind with lower affinity to DNA sequences that do not have

a recognizable Rap1 recognition sequence (Feldmann and

Galletto, 2014), and it is possible that suppression of distal

eTSSs depends on non-canonical Rap1 binding to these sites

in a manner that is not detectable by chromatin immunoprecip-

itation (ChIP) experiments.

However, we favor the hypothesis (Figure 7) that the negative

control on ectopic initiation is exerted distally by a similar mech-

anism as the control of distal nucleosomes in large NDRs, i.e., via

the intervention of factors whose binding depends on Rap1 such

as FIS, and Hmo1. Consistent with this hypothesis, it was shown

that the absence of Hmo1 generates 50-extended RNAPII signals

and ectopic binding of TFIIB, both of which are strong indicators

of ectopic upstream initiation (Reja et al., 2015). Importantly,

because binding of Rap1 cannot inhibit transcription initiation at

a distance in a heterologous context, it must be postulated that

Rap1-dependent NDRs additionally contain specific features

(e.g., binding sites for some of the aforementioned factors; MacI-

saac et al., 2006; Badis et al., 2008; Knight et al., 2014; Reja et al.,

2015) that make them susceptible to Rap1 negative control.

In a parallel study based on the analysis of two non-coding

transcription units, upstream of the MLP1 and IME1 genes, Wu

et al. (2018) propose an alternative model according to which

the DBD is not sufficient to suppress ectopic non-coding tran-

scription initiation. It is unclear to what extent this result can be

extended to a genome-wide scale, but in our experimental setup

we observed eTSS suppression by Rap1DBD at the MLP1 and

IME1 loci (data not shown). The rational for these differences is

unclear but might relate to the fact that the DBD construct

used in the Wu et al. study is slightly different from our own

and is fused to a tag and a nuclear localization signal, which

might lead to a weaker binding and poor suppression at some

sites. This would also be consistent with the finding in the Wu

et al. study that expression of the Rap1 DBD does not induce

the same dominant-negative phenotype that we observed

(Wu et al., 2018). However, we cannot exclude that at some

sites the binding of Rap1 alone is not sufficient and that addi-

tional factors are required.

Impact of Novel TSSs on Gene Expression
One important implication of this study is that neither the assess-

ment of RNAPII levels nor the steady-state levels of RNA within

genes can be used as a reliable proxy for inferring gene expres-

sion levels, unless information concerning the position of the TSS

is also integrated into the equation. This implies that the notion

of positively or negatively regulated genes has to be generally

revisited for the GRFs that we have studied, but also potentially

for all factors that might affect the selection of transcription initi-

ation sites.

We found several examples in which overlapping transcription

signals initiated at a canonical and an ectopic TSS leads to an
apparent increase in gene expression, or an apparent lack of

effect. However, in the majority of cases deconvolution of the

two signals using TSS analysis demonstrates a likely decrease

in the ultimate outcome of gene expression because the novel

transcripts have a different and generally lower coding potential.

This already high level of indetermination is further complicated

by some uncertainty concerning the fate of the new transcripts

that contain premature stop codons or uORFs. Although we

show that these RNAs are generally strongly sensitive to NMD,

some of them can still be detected in wild-type cells. It is unclear

why they escape NMD, but it is possible that some undergo

frameshifting during translation and produce proteins with

similar composition to the normal gene product.

A similar discrepancy between RNA abundance and protein

levels was the starting point of a recent study demonstrating

the regulation of a meiotic network by the use of alternative

TSSs producing isoforms with different coding potential (Cheng

et al., 2018).

Our findings have important implications for the mathematical

modeling of complex gene expression networks. Such holistic

approaches are often based on the assumption that RNA abun-

dance or RNAPII occupancy directly translate into the expres-

sion of a gene product, which, in turn, can influence the network.

This is, however, not that frequently verified, and many physio-

logical and non-physiological perturbations might bring about

changes in transcription patterns similar to the ones that we

describe here, which could be source of inaccuracy for gene

network modeling.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-Rap1 D. Shore lab N/A

Rat anti-Tubulin Millipore Cat# MAB1864; RRID: AB_2210391

Rabbit Peroxidase Anti-Peroxidase Sigma-Aldrich Cat# P1291; RRID: AB_1079562

Mouse anti Flag Sigma-Aldrich Cat# F1804; RRID: AB_262044

Goat anti-rabbit IgG-HRP Santa Cruz Cat# sc-2004; RRID: AB_631746

Goat anti-mouse IgG-HRP Santa Cruz Cat# sc-2005; RRID: AB_631736

IgG from rabbit serum Sigma-Aldrich Cat# I5006; RRID: AB_1163659

Chemicals, Peptides, and Recombinant Proteins

cOmplete EDTA-free protease inhibitor

cocktail tablets

Sigma-Aldrich (Roche) Cat# 11873580001

Pefabloc SC-Protease-Inhibitor Carl Roth Cat# A154.3

DNase I recombinant, RNase-free Sigma-Aldrich (Roche) Cat# 04716728001

Dynabeads M-280 Tosylactivated Thermo Fisher Scientific Cat# 14204

Recombinant GST-TEV protease This paper;

Granneman et al., 2009

N/A

RNace-It Ribonuclease Cocktail Agilent Cat# 400720

Guanidine hydrochloride Sigma-Aldrich Cat# G4505

Ni-NTA Agarose Qiagen Cat# 30230

Imidazole Sigma-Aldrich Cat# I0125

RNaseOUT Recombinant Ribonuclease Inhibitor Thermo Fisher Scientific Cat# 10777019

T4 RNA Ligase 2, truncated KQ NEB Cat# M0373L

T4 Polynucleotide Kinase NEB Cat# M0201L

T4 RNA Ligase 1 (ssRNA Ligase) NEB Cat# M0204L

Proteinase K, recombinant, PCR grade Sigma-Aldrich (Roche) Cat# 03115887001

SuperScript IV Reverse Transcriptase Thermo Fisher Scientific Cat# 18090050

RNase H NEB Cat# M0297S

Exonuclease I NEB Cat# M0293S

LA Taq Takara Cat# RR002M

Phusion High-Fidelity DNA Polymerase NEB Cat# M0530S

GoTaq Flexi DNA Polymerase Promega Cat# M8291

M-MLV Reverse Transcriptase Thermo Fisher Scientific Cat# 28025013

Oligo d(T)25 Magnetic Beads NEB Cat# S1419S

Streptavidin Magnetic Beads NEB Cat# S1420S

FastAP Thermosensitive Alkaline Phosphatase Thermo Fisher Scientific Cat# EF0654

Cap-Clip Acid Pyrophosphatase Tebu-bio Cat# C-CC15011H

Glycogen Thermo Fisher Scientific Cat# AM9510

Revertaid Premium Reverse Transcriptase Thermo Fisher Scientific Cat# EP0732

NucleoMag� NGS Clean-up and Size Select Macherey-Nagel Cat# 744970.50

Agencourt RNAClean XP Kit Beckman Coulter Cat# A63987

Critical Commercial Assays

LightCycler FastStart DNA Master SYBR Green I Roche Cat# 12239364001

LightCycler 480 SYBR Green I Master Roche Cat# 04887352001

NucleoSpin Gel and PCR Clean-up Macherey-Nagel Cat# 740609

Pierce Spin Columns - Snap Cap Thermo Fisher Scientific Cat# 69725
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Vivacon 500 Sartorius Cat# VN01H22

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific

(Invitrogen)

Cat# Q32851

Amersham Hybond-N+ GE Healthcare Life Sciences Cat# RPN203B

Deposited Data

Raw and analyzed data This paper GEO: GSE1145

Experimental Models: Organisms/Strains

DLY2736 Reb1-AA Rpb1-HTP (Candelli et al., 2018) As W303; MATa; tor1-1; fpr1::loxP;

Rpl13A-2xFKBP12::loxP; Rpb1-HTP::

TRP1Kl; Reb1-FRB::KAN

DLY2838 Rpb1-HTP Anchor away (Candelli et al., 2018) As W303; MATa; tor1-1; fpr1::NAT;

Rpl13A-2xFKBP12::loxP-TRP1-loxP;

Rpb1-HTP::URAKl

DLY2840 Rap1-AA Rpb1-HTP (Candelli et al., 2018) As W303; MATa; tor1-1; fpr1::NAT;

Rpl13A-2xFKBP12::loxP-TRP1-loxP or

Rpl13A-2xFKBP12::TRP1; Rpb1-HTP::

URAKl; Rap1-FRB-Rap1::LEU2

DLY3085 Rap1-AID Rpb1-HTP This study As W303; Rpb1-HTP::TRP; Rap1-AID-Rap1;

Padh-Os.Tir1::URA3; ADE2

DLY2973 Rap1-AA Rpb1-HTP DUpf1 This study As W303; MATa; tor1-1; fpr1::NAT;

Rpl13A-2xFKBP12::loxP-TRP1-loxP or

Rpl13A-2xFKBP12::TRP1; Rap1-FRB-

Rap1::LEU2; Rpb1-HTP::URAKl; Upf1::KAN

DLY3066 Rap1-AA Rpb1-HTP DRrp6 This Study As W303; MATa; tor1-1; fpr1::NAT;

Rpl13A-2xFKBP12::loxP-TRP1-loxP or

Rpl13A-2xFKBP12::TRP1; Rap1-FRB-

Rap1::LEU2; Rpb1-HTP::URAKl;

Rrp6::HIS5Kl; Rrp6::HIS5Kl

DLY3131 AA background

Rpb1-HTP DUpf1 DSet2

This Study MATa; ade2-1; can1-100; leu2-3,112;

his3-11,15; GAL; psi+; tor1-1; fpr1::loxP-

LEU2-loxP; Rpl13A-2xFKBP12::TRP1;

Rpb1-HTP::URAKl, Upf1::HIS5Kl; Set2::KAN

DLY3133 Rap1-AA Rpb1-HTP

DUpf1 DSet2

This Study MATa; ade2-1; can1-100; leu2-3,112;

his3-11,15; GAL; psi+; tor1-1; fpr1::NAT,

Rpl13A-2xFKBP12::TRP1; Rap1-FRB-

Rap1::LEU2; Rpb1-HTP::URAKl,

Upf1::HIS5Kl; Set2::KAN

DLY3136 AA background Rpb1-HTP

DUpf1 DSet3

This Study MATa; ade2-1; can1-100; leu2-3,112; his3-11,15;

GAL; psi+; tor1-1; fpr1::loxP-LEU2-loxP;

Rpl13A-2xFKBP12::TRP1; Rpb1-HTP::URAKl,

Upf1::HIS5Kl; Set3::KAN

DLY3138 Rap1-AA Rpb1-HTP

DUpf1 DSet3

This Study MATa; ade2-1; can1-100; leu2-3,112; his3-11,15;

GAL; psi+; tor1-1; fpr1::NAT, Rpl13A-2xFKBP12::

TRP1; Rap1-FRB-Rap1::LEU2; Rpb1-HTP::URAKl,

Upf1::HIS5Kl; Set3::KAN

DLY3229 Rap1-AID Pre2-FLAG This Study As W303, MATa; ADE2; HIS3; Rap1-AID-Rap1;

Padh-Os.Tir1::URA3; Pre2-FLAG::NAT

DLY3231 Rap1-AID Rxt3-FLAG This Study As W303, MATa; ADE2; HIS3; Rap1-AID-Rap1;

Padh-Os.Tir1::URA3; Rxt3-FLAG::NAT

DLY3232 Rap1-AID APS2-FLAG This Study As W303, MATa; ADE2; HIS3; Rap1-AID-Rap1;

Padh-Os.Tir1::URA3; Aps2-FLAG::NAT

DLY3199 Sth1-AA This Study As W303, tor1-1; fpr1::NAT, Rpl13A-2xFKBP12::

TRP1; Sth1-FRB::KAN

(Continued on next page)
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DLY3200 Snf2-AA This Study As W303, tor1-1; fpr1::NAT, Rpl13A-2xFKBP12::TRP1;

Snf2-FRB::KAN

DLY3201 Isw2-AA Ino80-AID This Study As W303, tor1-1; fpr1::NAT, Rpl13A-2xFKBP12::TRP1;

Padh-Os.Tir1::URA3; Isw2-FRB::HIS5Kl;

Ino80-AID-myc::HYG

DLY3213 Sth1-AA DUpf1 This Study As DLY3199, Upf1::LEU2Cg

DLY3214 Snf2-AA DUpf1 This Study As DLY3200, Upf1::LEU2Cg

DLY3215 Isw2-AA Ino80-AIDDUpf1 This Study As DLY3201, Upf1::LEU2Cg

DLY3128 Abf1-AA Rpb1-HTP This Study MATa, ade2-1; can1-100; leu2-3,112; his3-11,15;

GAL; psi+; tor1-1; fpr1::LEU; Rpl13A-2xFKBP12::TRP1,

Rpb1-HTP::URAKl, Abf1-FRB::HIS5Sp

Oligonucleotides

See Table S7

Recombinant DNA

DL878 pcM185(HIS)-pRAP1 RAP1 (Candelli et al., 2018) Plasmid expressing full length Rap1 under control

of the RAP1 promoter

DL879 pcM185(HIS)- pRAP1 –

RAP1-DBD358-601

(Candelli et al., 2018) Plasmid expressing the DNA binding domain

of Rap1 (aa. 358-601) under control

of the RAP1 promoter

DL828 pCM190 pDLD3-NEL CUP1

Rap1-20

This Study Plasmid expressing CUP1 under the control

of pDLD3-NEL025C. A Rap1 binding site has been

inserted 20nt upstream of the NEL025C TSS.

DL829 pCM190 pDLD3-NEL CUP1

Rand-20

This Study Plasmid expressing CUP1 under the control

of pDLD3-NEL025C. A random sequence has been

inserted 20nt upstream of the NEL025C TSS.

DL830 pCM190 pDLD3-NEL CUP1

Rap1-85

This Study Plasmid expressing CUP1 under the control

of pDLD3-NEL025C. A Rap1 binding site has been

inserted 85nt upstream of the NEL025C TSS.

DL831 pCM190 pDLD3-NEL CUP1

Rand-85

This Study Plasmid expressing CUP1 under the control of

pDLD3-NEL025C. A random sequence has been

inserted 85nt upstream of the NEL025C TSS.

DL832 pCM190 pDLD3-NEL CUP1

Rap1-295

This Study Plasmid expressing CUP1 under the control

of pDLD3-NEL025C. A Rap1 binding site has been

inserted 295nt upstream of the NEL025C TSS.

DL833 pCM190 pDLD3-NEL CUP1

Rand-295

This Study Plasmid expressing CUP1 under the control

of pDLD3-NEL025C. A random sequence has been

inserted 295nt upstream of the NEL025C TSS.

DL834 pCM190 pACT1 CUP1 This Study Plasmid expressing CUP1 under the

control of pACT1.

DL835 pCM190 pACT1 CUP1

Rap1-5

This Study Plasmid expressing CUP1 under the control

of pACT1. A Rap1 binding site has been inserted

5nt upstream of the ACT1 TSS.

DL836 pCM190 pACT1 CUP1

Rand-5

This Study Plasmid expressing CUP1 under the control

of pACT1. A random sequence has been inserted

5nt upstream of the ACT1 TSS.

Software and Algorithms

pyCRAC v1.2.2.7 Webb et al., 2014 http://sandergranneman.bio.ed.ac.uk/Granneman_Lab/

pyCRAC_software.html

cutadapt v1.5 Martin, 2011 https://cutadapt.readthedocs.io/en/stable/#

Trimmomatic v0.33 Bolger et al., 2014 http://www.usadellab.org/cms/?page=trimmomatic

Fastx toolkit v0.0.13 Hannon Lab http://hannonlab.cshl.edu/fastx_toolkit/

Bowtie2 v2.2.3 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

peakCcall This Study Available upon request to D.L. or M.B.

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Qubit Fluorometer Thermo Fisher Scientific

(Invitrogen)

Cat# Q32857

Gelfree 8100 Fractionation Station Expedeon Cat# 48100

Gelfree 8100 5% Tris Acetate Cartridge Kit Expedeon Cat# 42104

"Megatron" W5 UV crosslinking unit UVO3 Ltd www.uvo3.co.uk

Mixer Mill MM 400 Retsch Cat# 20.745.0001
CONTACT FOR REAGENT AND RESOURCE SHARING

Please contact D.L. (domenico.libri@ijm.fr) for reagents and resources generated in this study.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast (S.cerevisiae) is the experimental model used in this study.

METHOD DETAILS

Yeast strains, plasmids and oligonucleotides
Yeast strains, plasmids, oligonucleotides used in this study are described in Key Resources Table.

RNA and protein analysis
RNAs were prepared by the hot acid phenol method. Briefly, yeast cells were spinned and resuspended in 400ml of 50 mM Sodium

acetate (pH 5.5), 10 mMEDTA, 1%SDS. An equal volume of water-saturated phenol was added and the samples were incubated for

30min at 65�C with shaking in a Thermomixer (Eppendorf). The aqueous phase was recovered. The phenol extraction was repeated

oncewith water saturated phenol and once with chloroform. The RNAswere ethanol precipitated. For Northern blot analysis, 10 mg of

RNA were separated by agarose gel electrophoresis and transferred to a Hybond Nylon N+, membrane (GE Helthcare) by capillarity.

Hybrydization was performed in UltraHyb buffer (Ambion). For RT-qPCR, 4 mg of RNAs were reverse transcribed using oligo d(T) and

random primers and the resulting cDNAs were analyzed by quantitative PCR (Lightcycler 480, Roche).

For protein analysis, 5 OD600 of cells from exponential cultures were harvested, washed with water and resuspended in 200 ml of

0.1 NNaOH solution. After 5min at room temperature, cells were pelleted and resuspended in 100 ml of 1X Laemmli buffer. After 5min

at 95�C, the cell debris pellets were discarded and 10 to 15 ml of supernatants were loaded on acrylamide gels. Proteins were sepa-

rated by 6 to 10% PAGE and transferred to a nitrocellulose membrane for further analysis.

RNAPII CRAC
RNAPII CRAC data upon nuclear depletion of Rap1 and Reb1 have been generated in a separate study (Candelli et al., 2018). For

nuclear depletion of Abf1 rapamycin was added to the Abf1 anchor away strain for 30 and 90 minutes and data from the 90 minutes

time point was used for the analyses shown in Figure 6. Rap1 was also depleted using the auxin degron system (Nishimura et al.,

2009) by adding IAA (Indole-30-Acetic Acid, Sigma) 500 mM to Rap1-AID cells for 10 or 20 min before crosslinking.

The CRAC protocol used in this study is derived from Granneman et al. (2009), modified as described in Candelli et al. (2018).

Briefly, 2 L of yeast cells expressing Rpb1-HTP tag were grown at 30�C to OD600 = 0.6 in CSM-Trp medium before addition of rapa-

mycin or IAA for the times required. Cells were UV crosslinked using a W5 UV crosslinking unit (UVO3 Ltd) for 50 s, harvested by

centrifugation, washed in cold PBS and resuspended in TN150 buffer (50 mM Tris pH 7.8, 150 mM NaCl, 0.1% NP-40 and 5 mM

beta mercaptoethanol, 2.4 ml/g of cells) supplemented with protease inhibitors (Complete, EDTA-free Protease Inhibitor Cocktail).

The suspension was flash frozen in droplets and cells were mechanically broken with a Mixer Mill MM 400 (5 cycles of 3 minutes

at 20 Hz). Extracts were treated for one hour at 25�Cwith DNase I (165U/g of cells) to solubilize chromatin and then clarified by centri-

fugation (20 min at 20000 g at 4�C). The complexes were purified by a two-step procedure, the second one under denaturing

conditions as described (Candelli et al., 2018). High salt washes for both purification steps were done at 1MNaCl for high stringency.

The dephosphorylation step required for cleaving the 20-50 cyclic phosphate left by RNase treatment (Granneman et al., 2009) was

omitted to enrich for nascent transcripts, the 30 end of which being protected from RNase treatment. The protein fractionation step

was performed with a Gel Elution Liquid Fraction Entrapment Electrophoresis (GelFree) system (Expedeon). Rpb1-containing frac-

tions were treated with 100 mg of proteinase K in a buffer containing 0.5% SDS. RNAs were purified and reverse transcribed using

reverse transcriptase Superscript IV (Invitrogen).
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The concentration of cDNAs in the reaction was estimated by quantitative PCR using a standard of known concentration. PCR

amplification were performed in separate 25 ml reactions containing each 2 ml of cDNA for typically 7-9 PCR cycles (LA Taq, Takara).

The PCR reactions from all the samples were pooled and treated for 1 hour at 37�C with 200 U/ml of Exonuclease I (NEB). The DNA

was purified using NucleoSpin Gel and PCR Clean-up (Macherey-Nagel) and sequenced using Illumina technology.

TSS sequencing
The TSS sequencing protocol has been described in Malabat et al. (2015). Yeast cells were grown to mid-exponential phase in

YPD-rich media. After treatment of cells with Rapamycin, Auxin, both or none, Schizosaccharomyces pombe cells were added for

spiking purposes at a ratio of 1 to 10. Cells were then harvested and pellets were frozen in liquid nitrogen. Total RNA was extracted

using two successive hot phenol steps and one chloroform. After ethanol precipitation, RNA pellet was treated with DNase and

extracted again with phenol chloroform 5:1 pH4.5.

Polyadenylated transcripts were purified from 75 mg of total RNAs using oligo d(T)25 magnetic beads (New England Biolabs).

RNAs were dephosphorylated using FastAP Thermosensitive Alkaline Phosphatase (ThermoFisher) and treated with Cap-Clip

Acid Pyrophosphatase (Tebu-bio). RNAs were then ligated overnight at 16�C to the biotinylated 50 adaptor (oligonucleotide 3365,

50 pmol) using T4 RNA ligase I (10 units, New England Biolabs) and ATP at a final concentration of 1 mM. After 50 ligation, the
RNA was fragmented for 50 at 70�C in fragmentation buffer (10 mM ZnCl2, 10 mM Tris pH7.5). The reaction was stopped by adding

75 ml of a cold solution containing 1 ml of EDTA 0.5M. Ligated RNAmolecules were purified on streptavidin magnetic beads fromNew

England Biolabs (50 ml of slurry). Binding was performed at 37�C for 10’, beads were washed and RNAwere eluted in 20 ml of water at

95�C for 50. Reverse transcription was performed with 50pmoles of primer 3018 and 300 units of RevertAid reverse transcriptase

(ThermoFisher) in 30 ml. cDNAs were purified by adding 1.8 volumes of Agencourt RNAClean XP beads (Beckman Coulter) and eluted

in 50 ml of water at room temperature for 10’.

4 independent PCR reactions were performed in a final volume of 25 ml with 5 pmoles each of primer 1 and Illumina multiplexing

PCR primer, and 0.25 ml of LA Taq DNA polymerase (Takara). The four PCR reactions were pooled, purified on NucleoMag NGS

Clean-up and Size Select dynabeads (Macherey-Nagel) and the DNA eluted in 30 ml of water.

MNase-seq
MNase-seq has been performed based on the procedure describe in Kubik et al. (2015). Briefly, 120 mL of Rap1-AA yeast cells

ectopically expressing Rap1DBD, wild-type Rap1 or containing an empty plasmid were grown at 30�C in CSM-His media to OD600

�0.15. Rapamycin was added for one hour to a final concentration of 1mg/ml and cells were crosslinked for 5min in 1% formaldehyde

at room temperature. After crosslinking the procedure was carried out as described (Kubik et al., 2015)

Dataset processing and data analysis
CRAC

CRAC datasets were analyzed as described (Candelli et al., 2018). The pyCRAC script pyFastqDuplicateRemover was used to

collapse PCR duplicates using a 6 nucleotides random tag included in the 30 adaptor (see Key Resources Table). The resulting se-

quences were reverse complemented with Fastx reverse complement (part of the fastx toolkit, http://hannonlab.cshl.edu/

fastx_toolkit/) and mapped to the R64 genome (Cherry et al., 2012) with bowtie2 (-N 1) (Langmead and Salzberg, 2012).

RNA-seq and TSS-Seq samples were demultiplexed by the sequencing platform with bcl2fastq2 v2.15.0 and illumina trueseq

adaptors were trimmedwith cutadapt 1.9. Sequencing readswere quality trimmedwith trimmomatic andmapped to the R64 genome

with bowtie2 (default options).

TSS Seq dataset processing

Cleavage of the 50 barcode and demultiplexing were performed with the script pyBarcodeFilter from the pyCRACutility suite (Webb

et al., 2014). Filtering the adaptors on the 30 end (AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCG

TATCATT, minlength = 10) was performed with cutadapt (Martin, 2011) and the 30 end was trimmed using Trimmomatic (window

size = 5, minimum quality = 25, Bolger et al., 2014).

The obtained sequences were collapsedwith the script pyFastqDuplicateRemover from the pyCRACutility suite (Webb et al., 2014)

in order to remove PCR duplicates. The resulting sequences were mapped to the S.cerevisiae R64 genome (Cherry et al., 2012) with

bowtie2 (Langmead and Salzberg, 2012). Only the position of the first 50 end base was kept for each read.

We cleaned our data from two types of noise: the random noise and the systematic noise due to the TSS Seq technique. The

random noise was filtered out by considering the signal at each position only when present in at least two out of three replicates

(and saving the sum of the signals). The systematic noise was mainly due to signals derived from non-capped molecules

(for instance caused by failure in the dephosphorylation step) and was detected by sequencing samples for which we had omitted

the decapping step. Because of the sparse nature of the signal, we aggregated signals closer than 50nt. The regions of aggregated

signals in the control samples are potentially noisy regions. Whenever these regions overlapped regions of aggregated signal in

the test sample we evaluated the background/signal ratio in the segments of overlap and excluded all the segments in which the

ratio is > 1.

Normalization among samples was done using the S.pombe spike-in. S. cerevisiae signals were divided by total number of per

million reads longer than 40 nucleotides that map only on S.pombe.
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TSS-Seq peak calling with peakCcall and eTSS identification

The TSSs are typically detected as small clusters of signals that reveal heterogeneity in the precise position of transcription initiation.

In order to define the most likely position of initiation, we created a peak-calling pipeline for clustering signals that correspond to the

same starting event (peak cluster call, peakCcall, tool). We first smoothed the signal with a Gaussian kernel to obtain a pseudo-

continuous function enabling the evaluation of the (discrete) second derivative of this function.

This smoothing process consists in computing the convolution of the TSS-Seq signal with a Gaussian with a defined standard de-

viation s. This has the effect of redistributing and combining signals derived from clusters. Given hrs(xi) the height of the TSS-Seq

profile at position xi, the height of the smoothed profile (hss) at each position xi is:

hssðxiÞ= hrs+N sðxiÞ=
X

j

1

s
ffiffiffiffiffiffi
2p

p hrsðxjÞ,e
�ðxi � xjÞ2

2s2

The value of s defines the resolution of the analysis. We empirically observed that using s equals to 15 bp allowed separating peaks

distant more than 100 bp but combined in the same peak signals closer than 30 bp.

To automatically detect TSSs we first defined as Peak Cluster Regions (PCRs) those regions included between two inflection

points of hss in which the second derivative is negative; this isolates a unique local maximum of the function in each region.

For each PCR we defined the weighted average TSS position (wTSS) using the raw signal as follows:

wTSSposz

P
i εPCRhrsðxiÞ,xiP
i εPCRhrsðxiÞ

We assigned scores to each PCR, which allowed evaluating the signals in the different conditions. The following score, which was

validated by a principal component analysis, gave the best results in terms of scoring:

PK3=
H2

rs

s
,
H2

ss

w

whereHrs =max
i ePCR

hrsðxiÞ is themaximal height of the TSS Seq profile in the PCR;Hss =max
i ePCR

hssðxiÞ is themaximal height of the smoothed

profile in the PCR; s=
P

i ePCR

hrsðxiÞ is the sum of the values in the PCR, and w is the width of the PCR i.e., the distance between the two

inflection points.

The score was used to generate a list of putative eTSS, that was validated manually and used for subsequent analyses.

Data obtained from RNAPII CRAC, TSS-Seq, RNA-Seq and MNase-seq were analyzed using deeptools 2.0 (Ramı́rez et al., 2014)

on the Roscoff (http://galaxy3.sb-roscoff.fr/root/login?redirect=%2F) and Freiburg (http://deeptools.ie-freiburg.mpg.de/) Galaxy

platforms.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical significance of expression changes for Rap1 targets has been calculated using the distribution of log2 ratio values for

control genes (i.e., genes that do not contain a Rap1 binding site). FDR q-values have been calculated from p values according to the

Benjamini and Hochberg procedure (Benjamini and Hochberg, 1995).

To assess the occurrence of ectopic transcription in intergenic regions, the log2 ratio (-Rap1/+Rap1) per nucleotide has been

calculated in the 200nt upstream of the TSS (for 50 extended transcripts) or around (�100 to +500nt) Rap1 sites that are not followed

by a canonical gene (for transcription leading to production of non-coding RNA). The number of positions displaying high signal

changes (i.e., two standard deviations above the average detected at non Rap1 targets) was scored per each genomic locus.

Loci with a statistically significant number of high signal positions relative to control genes (FDR < 0.05) were identified as positive.

This conservative procedure allowed identifying regions of sparse ectopic transcription because these signals are not averaged out

over the whole intergenic region.

For the statistical analysis of ectopic initiation, we used a list of 176 eTSSs generated by peakCcall tool andmanually curated. This

list was used for most of the subsequent analyses, e.g., to generate the distribution of distances to Rap1 sites (Figure 2C) and to

evaluate the sensitivity of eTSSs to the upf1D (Figure 2D) and rrp6D mutation (Figure S2C). For the latter analyses we evaluated

the log2 ratio of the TSS-Seq signals detected in the mutant versus the wt strains (upf1D/wt and rrp6D/wt) in the absence of Rap1

in a window of 40nt around the eTSS. The statistical significance of the scores obtained was evaluated relative to the same analysis

performed on a set of 358 randomly chosen control genes (non-Rap1 targets) that are not expected be sensitive to the absence

of Upf1 or Rrp6 (distributions shown in blue in Figures 2D and S2C). A similar procedure was used to model the impact of eTSS

on the use of the canonical TSS of Rap1 targets: the TSS-Seq signal was scored as previously in a window of 40nt around the

canonical TSS of Rap1 target genes containing at least one ectopic TSS in their promoter. Statistical significance was assessed

by the same analysis performed on control genes as above.
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Statistical significance for the differences in the distributions of RNA-Seq values shown in Figures S4E–S4G where obtained using

a two-tailed Student’s t test, with paired samples.

DATA AND SOFTWARE AVAILABILITY

The accession number for the data reported in this paper is GEO: GSE114589. RNAPII CRAC Data for Reb1-AA and Rap1-AA and

RNA-Seq data for the Rap1DBD series have been generated in a previous study (Candelli et al., 2018). The PeakCcall tool will be

described in a separate report, but is available upon request to D.L. or M.B. Source datasets have been deposited into Mendeley

and can be retrieved using the following link: The original Northern and western blot have been deposited in Mendeley (https://

doi.org/10.17632/rd2xsvsvkz.1).
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Figure S1. related to Figure 1.  A. Binned distributions of RNAPII CRAC signal changes at Rap1 target genes (red) or 

controls (blue) upon Rap1 depletion by the anchor away (solid lines, 120 min) or auxin-degron method (dashed lines, 20min 
time point). The data illustrates the general downregulation of gene expression that is seen rapidly after Rap1 depletion. B. 
western blot indicating the effectiveness of Rap1 depletion by the auxin-degron method. Rap1 is detected by a polyclonal 
anti-Rap1 antibody after addition of IAA for the indicated times. Tubulin or the HTP-tagged Rpb1 expressed in the same 
cells are used as loading controls. C. Heatmaps showing the RNAPII CRAC signal change upon fast depletion of Rap1 by 
the auxin-degron method for the times indicated. Rap1 target genes have been sorted as in Figure 1, i.e. for decreasing signal 
change in genes or in promoters in Figures 1A and 1C respectively (shown also here for comparison). Control genes are as 
in Figure 1. D. Additional snapshots showing a 5’-extended RNAPII CRAC signal at the PRE2 and RXT3 loci upon Rap1 
depletion. Note also the appearence of a prominent, non-coding transcription signal antisense to SES1.  
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Figure S2. related 
to Figure 2. A-B. 

Heatmaps 
illustrating the TSS-
Seq signal change 
(log2 ratio) around 
Rap1 sites. A. 
Regions are aligned 
on the Rap1 site and 
sorted by decreasing 
signal change (log2 
ratio) after addition 
of rapamycin to a 
Rap1-FRB strain. 
For a control on non-
specific effects of 
rapamycin, the same 
analysis was 
performed using an 
anchor away strain 
expressing an 
untagged Rap1 (no 
nuclear depletion of 
Rap1 is expected, 
B). C. A small 
fraction of eTSSs are 
sensitive to Rrp6-
dependent nuclear 
degradation. TSS-
Seq signals at 
ectopic initiation 
sites have been 
computed in the 
absence or presence 
of Rrp6 (log2 ratio 
(rrp6∆/RRP6)). The 
binned distribution 
of these signals (red) 
is shown in 
comparison with the 
distribution of log2 
ratios at the 
transcription start 
site of control genes 

(not generally sensitive to Rrp6 degradation, blue). D. Snapshots illustrating the downregulation of two ribosomal protein 
genes in association with the occurrence of ectopic initiation. E-G. Inhibition of transcription initiation by Rap1 in a 
heterologous context. E. schemes of the different constructions containing either the bi-directional promoter between DLD3 
and the CUT NEL025C (p20, p85 and p295) or the ACT1 promoter driving expression of the CUP1 gene (pACT1). Each 
construct contains a Rap1 site or a mutated derivative (yellow box) inserted at different positions from the TSSs as indicated. 
A derivative of pACT1 without insertion was also constructed. A red line indicates the approximate position of qPCR primer 
for the quantification shown in G. F. Panel illustrating the growth of yeast cells containing the indicated constructs at the 
different concentrations of copper as indicated. The presence of a Rap1 binding site (+), the mutated sequence (-) or no 
insertion (o) is indicated. G. RT-qPCR quantification of the CUP1 RNAs produced from p20 and pACT1 constructs 
containing a Rap1 binding site in the presence of Rap1 or after Rap1 nuclear depletion for one hour. The p20 and pACT1 
constructs were introduced in the Rap1 anchor away strain and Rap1 was depleted by addition of rapamycin for 1 hour. The 
oligonucleotides used anneal in the CYC1 promoter and the CUP1 gene to avoid detection of endogenous CUP1 RNAs. 
Average of 3 experiments. Error bars indicate the standard deviation. 
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Figure S3. related to Figure 3. A-B. Nucleosome positioning upon depletion of Rap1. Regions are aligned on the TSS 
of genes containing a Rap1 site in the upstream NDR and sorted by increasing MNase-seq signal in A. Endogenous 
Rap1 was depleted in cells containing a plasmid expressing wild type Rap1 (A) or an empty control (B) as indicated. 
The log2 ratio of signal shown in A and B is presented in Figure 3. C-D. The same analysis was performed on a set of 
control genes, not affected by Rap1. E-G. Heatmaps illustrating the position of nucleosomes at genomic regions 
aligned on Rap1 sites and sorted by k-means clustering based on signals in figure 4A. Depletion of Rap1 was 
performed in cells containing a plasmid expressing wild type Rap1 (E), an empty plasmid (F) or the DNA binding 
domain of Rap1 (G) (Rap1DBD). Clusters 1 and 2 contain large NDRs that have an eccentric Rap1 site relative to 
flanking nucleosomes. H. Snapshot illustrating two examples of internal initiation linked to a complex pattern of 
nucleosome shifting. The +1 nucleosome of YMR027W and 4 nucleosomes from the divergent PEX12 move upstream, 
close the original NDR and open two novel NDRs, one between the +1 and +2 nucleosomes of YMR027W and a 
second one, smaller, between the +4 and +5 nucleosomes of PEX12. This is coupled with two internal eTSS (red 
arrows), one associated with the original +2 nucleosome of YMR027W and another associated with the +5 nucleosome 
of PEX12. Note also the existence of an upstream eTSS for PEX12, associated with the original +1 nucleosome of 
YMR027W. 
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Figure S4. related to 

Figure 4. A. Snapshot 
illustrating the partial 
suppression of nucleosome 
positioning and ectopic 
initiation by Rap1DBD in 
Rap1 depleted cells. 
Suppression only occurs for 
the non-coding RNA 
antisense of RPS9B, but not 
on the opposite side for 
RPL21A (compare RNA-
Seq tracks for the relative 
conditions). Note that the 
eTSS for the non-coding 
RNA is only seen in this 
experiment in the absence 
of Rrp6 (data not shown). 
See inset at the appropriate 
scale for visualizing the 
eTSS upstream of RPL21A. 
Nucleosomes positioning is 
also only restored on the 
side of the non-coding 
RNA. Note that RPS9B is 
itself under control of 
another Rap1 site (yellow 
rectangle) around which 
nucleosome positioning is 
almost completely restored 
by Rap1DBD (not shown) 
leading to partial restoration 
of RPS9B expression (see 
RNA-Seq tracks for the 
corresponding strand). B. 
The snapshot illustrates 
another example of partial 
suppression of NAT3 gene 
expression that is paralleled 
by a partial suppression of 

the nucleosome positioning defect upon Rap1 depletion. Note that the nucleosome positioning and expression of the divergent 
RPS23B gene are not suppressed. C-D. Aggregate plots illustrating the partial suppression of ectopic initiation by Rap1DBD 
as in figure 4H but profiling the differential RNA-Seq profile at eTSSs upstream of canonical genes (indicated by a grey 
rectangle, C) or defining non-coding RNA ectopic transcription (D, white rectangle). E-G. Boxplots comparing the 
distribution of RNA-Seq signals at promoters of canonical genes (E), in regions of non-coding ectopic transcription (F) or 
within genes (G) downstream of Rap1 binding sites (yellow rectangle). Distributions are calculated for wild type cells, Rap1-
deficient cells and cells depleted for Rap1 and expressing Rap1DBD as indicated. The approximate regions for which the 
signals were calculated are shown on the top of each plot. For a more quantitative assessment, we selected the features most 
affected by Rap1 depletion. For transcription in promoters and regions of non-coding transcription (E and F) we selected 
regions with an RNA-Seq signal change (log2 ratio -/+ Rap1) >1. For genes (G) we selected features the expression of which 
is decreased at least by a factor of two.  Partial suppression by Rap1DBD  in all instances was statistically significant (E: 
p=2,7*10-5; F: p=6.5*10-4; G: p=2*10-6). Statistical significance based on a two-tailed Student t-test, paired samples, same 
variance. 
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Figure S5. Related to figure 4. Distribution of Rap1, Ifh1, Fhl1 and Hmo1 in the clusters defined in Figures 3 and 
S3.  Regions aligned on Rap1 sites and clusters defined as in Figure 4A and S3E.  ChIP data from Knight et al. 
(Knight et al., 2014)	
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Figure S6. Related to figures 1-6. Correlation plots of the genomic data presented in this study. Dots represent 1kb bins, 

plots were generated with the appropriate Galaxy tool. For the RNAPII CRAC the datasets produced in this study using the 
Rap1 degron strain were also compared to the dataset produced in Candelli et al. (Candelli et al., 2018) using the Rap1 anchor 
away strain. The data compared in the RNA-Seq panel are also from Candelli et al. (Candelli et al., 2018). We compared 
replicates (TSS-Seq) or similar conditions (different time points for RNAPII CRAC and RNA-Seq data). For each 
comparison, the Pearson correlation coefficient is indicated.  
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III - Opposing Chromatin Remodelers 
Control Transcription Initiation Frequency 
and Start Site Selection 
 

Chromatin remodelers act with GRFs to promote NDRs formation at promoters. In this context, 

many different studies have highlighted the cooperative or opposing activity of remodelers. 

However, these studies often lack a more global vision on the possible redundancy of 

remodelers thus underestimating their function. This study aims at understanding how 

chromatin remodelers activities are intertwined in vivo and how their collective action is 

integrated into the control of gene expression and NDR formation.  

 

By considering the occupancy of chromatin remodelers and the alteration of nucleosome 

positioning, we could demonstrate that the correct positioning of the +1 nucleosome is the 

result of the combined action of multiple remodelers. Interestingly, we have shown that the re-

organization observed upon depletion of a single remodeler is often due to the antagonizing 

activity of other factors. Supporting this notion, the position of the +1 remains unchanged when 

enzymes acting in an opposite-manner (i.e. sliding the +1 nucleosome in opposite direction 

with respect to the NDR) are conjointly depleted. Finally, we have assessed the role of 

chromatin remodelers in transcription initiation and have reported that the establishment of 

NDRs by the latter influences the occupancy of TBP and TSS selection.  
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Abstract 

Precise nucleosome organization at eukaryotic promoters is thought to be generated by multiple 

chromatin remodeler (CR) enzymes and to affect transcription initiation. Using an integrated 

analysis of chromatin remodeler binding and nucleosome occupancy change following rapid 

remodeler depletion, we investigate the interplay between these enzymes and their impact on 

transcription in budding yeast. We show that many promoters are acted upon by multiple CRs that 

operate either in concert or in opposition to position the key transcription start site-associated +1 

nucleosome. We demonstrate that nucleosome movement following CR inactivation usually 

results from the activity of another CR and that in the absence of any remodeling activity +1 

nucleosomes maintain their positions. Finally, we present functional assays suggesting that +1 

nucleosome positioning often reflects a trade-off between maximizing RNA Polymerase II 

recruitment and minimizing transcription initiation at incorrect sites. Our results provide a detailed 

picture of fundamental mechanisms linking promoter nucleosome architecture to transcription 

initiation. 

  



Introduction 

The availability of information encoded in eukaryotic genomes is restricted by wrapping of the 

DNA helix in nucleosomes, the basic units of chromatin. Regulation of the accessibility of 

chromosomal DNA to transcription factors (TFs) and the transcriptional machinery itself is believed 

to play an important role in keeping certain genes silenced while permitting transcription initiation 

at precisely defined positions at active genes. Such tight and selective regulation is reflected by 

canonical patterns of promoter nucleosome architecture typically followed by phased arrays of 

nucleosomes over the downstream gene bodies 1. Thus, at promoters of active genes, the 

transcription start site (TSS) is typically located upstream of the dyad axis of a well-positioned 

nucleosome termed “+1” which is followed by regularly spaced genic nucleosomes (+2, +3, etc.). 

Directly upstream of the +1 nucleosome one typically finds a region of accessible chromatin, 

termed the nucleosome-depleted region (NDR), whose size is gene-dependent and which at some 

promoters can be occupied by an unstable nucleosome-like particle termed a “fragile nucleosome” 

(FN) 2-7. The position of the +1 nucleosome and the existence of the NDR are crucial for 

recruitment of the transcriptional machinery and initiation of transcription 8,9. 

ATP-dependent chromatin remodelers (CRs), multi-subunit molecular machines that utilize the 

energy of ATP hydrolysis to slide, eject or modify nucleosomes 10, have emerged as major factors 

shaping the chromatin landscape at promoters 1. There are four main CR subfamilies – SWI/SNF, 

ISWI, CHD and INO80 – all of which are conserved from yeast to humans. Each subfamily displays 

unique biochemical activities and is associated with specific roles in the cell 10. SWI/SNF subfamily 

members, in budding yeast represented by the essential remodeler RSC and the canonical 

SWI/SNF remodeler, slide nucleosomes to the edge of linear DNA templates in vitro, maximizing 

the amount of nucleosome-free DNA 11,12. They are also able to displace histone octamers from 

the DNA template 13-16. In vivo, RSC and SWI/SNF participate in the generation of NDRs at 

promoters by at least two mechanisms: sliding the +1 and -1 nucleosomes away from each other 

5,17-20 and destabilizing or ejecting promoter nucleosomes 5,13,21,22. ISWI type (represented by ISW1 

and ISW2 in budding yeast) and CHD type (CHD1) CRs equalize the length of the naked DNA on 

both sides of a nucleosome in vitro 23. In vivo they have a predominant role in setting the spacing 

of intragenic nucleosomes, with CHD1 acting mostly at genes with shorter linkers than ISWI 24-27. 

Curiously, despite acting mostly within gene bodies, binding by these CRs is detected 

predominantly at gene promoters 28. Finally, members of the INO80 family, SWR-C and INO80, 

are implicated in deposition and removal of histone H2A.Z, respectively 29-32, although the latter 

function is currently controversial 33,34. In vitro, INO80 but not SWR-C can slide nucleosomes 



similarly to ISWI 35 and recently was also shown to be able to move a significant number of +1 

nucleosomes to in vivo-like positions on a reconstituted yeast chromatin template 19. The actual in 

vivo chromatin state likely results from the interplay between these diverse remodeling activities 

but the links between them are just starting to emerge. 

Several studies, in both yeast and mammalian cells, point to concordant or opposing activities 

of certain CRs 20,24,36-40. It is thus of interest to learn how the activities of the complete set of these 

enzymes are intertwined. Since RSC is the only yeast CR essential for cell viability, the activities 

of all other CRs in live cells have been studied predominantly by the use of deletion mutants. 

However, this approach carries the risk of underestimating the role of individual CRs due to 

compensating effects 41. Recent analysis with in vitro-reconstituted chromatin and purified 

remodeling complexes 19 suggests that nucleosome positioning in live cells is achieved by the 

combined action of CRs and specific transcription factors. However, since many cellular processes 

such as transcription or replication were not reconstituted in vitro, and the concentrations of 

proteins used do not necessarily reflect the physiological state, this model awaits rigorous testing 

in vivo. 

By integrating the analysis of novel remodeler binding data with nucleosome occupancy and 

position changes upon conditional depletion of these complexes we obtained insights into their 

functionality and the interplay between them. We show that promoter nucleosome arrangements 

are the net result of combined activities of collaborating and opposing CRs. We demonstrate that 

the majority of nucleosome rearrangements observed in the absence of a remodeler are caused 

by the antagonizing activity of other enzymes. As a consequence, the in vivo position of +1 

nucleosomes is often determined by the activities of two opposing groups – “pushers” and “pullers” 

– and has a significant effect on both RNA polymerase II (RNAPII) initiation rates and TSS 

selection. Remarkably, removal of all “pushers” and “pullers” leaves +1 nucleosome positions 

largely unaffected, in contrast to removal of only one type of remodeler. Our results provide a 

detailed picture of mechanisms leading to the establishment of promoter nucleosome architecture 

and the functional significance of +1 nucleosome position. 

 



Results 

Chromatin remodelers bind intergenic regions in specific combinations 

To investigate links between the activities of different CRs we performed parallel 

measurements of remodeler binding, using chromatin endogenous cleavage (ChEC)-seq 42,43, and 

nucleosome occupancy changes upon conditional depletion of each remodeler, by MNase-seq 

(Figure 1a). ChEC-seq signals for individual remodeler subunits were normalized to the signal 

obtained in a strain expressing “free” MNase (see Methods). Since SWR-C is known to lack 

nucleosome sliding activity 35 we did not investigate this remodeling complex. Strains used for 

ChEC analysis, which carried MNase tags at endogenous CR subunits genes, did not display any 

growth defects (Supplementary Fig. 1a). 

A distinct MNase-cleavage pattern was observed for each remodeler (RSC, SWI/SNF, ISW2, 

INO80, ISW1 and CHD1), whilst a common feature noted was the predominant location of signal 

peaks in intergenic regions, with the majority found at gene promoters (Fig. 1b and Supplementary 

Fig. 1b). Rsc8 binds at a large number of gene promoters (n=3,702) whereas Swi3, Isw2 and 

Ino80 bind at a smaller subset (n=466, 1,802, and 1,646, respectively; Supplementary Fig. 1c). 

Isw1 and Chd1 displayed lower ChEC-seq signals at a large number of promoters (n=2,236 and 

2,927, respectively) and a higher signal within the coding regions than other CRs. Due to a 

frequent overlap between regions bound by various CRs we decided to assemble a single 

common list of all regions bound by at least one remodeler (see Methods) and calculated 

normalized ChEC signal of every remodeler in each of these regions. By comparing these 

normalized ChEC signals at all bound regions, we observed a relatively strong correlation between 

the Isw2 and Ino80 signals as well as between Isw1 and Chd1, whereas Swi3 binding was anti-

correlated with that of Isw1 and Chd1 (Supplementary Fig. 1d).  

To further investigate remodeler co-occurrence at distinct intergenic regions we performed k-

means clustering of ~5,000 gene promoters for the CRs known to affect promoter nucleosomes 

(RSC, SWI/SNF, ISW2, and INO80) using CR binding data that were converted to binary form 

(see Methods for details and Supplementary Table 1). ISW1 and CHD1 were not included in the 

clustering analysis since their promoter binding signals were relatively low and these complexes 

act predominantly in coding regions 24,26,27. This analysis identified 8 clusters, with RSC binding 

observed at a majority of clusters (I-V) representing over two-thirds of all promoters (Fig. 1c and 

Supplementary Fig. 1e). Slightly less than 8% of RSC-bound promoters (n=294) are also bound 



by SWI/SNF (cluster I). RSC-bound promoters more frequently display binding by ISW2 and/or 

INO80 (n=2,147; clusters I-IV) whereas SWI/SNF-bound promoters display a slight bias for ISW2 

co-binding compared to INO80 (cluster VI). Cluster V is bound by RSC but no other CR, whereas 

cluster VII is bound most prominently by ISW2, sometimes together with INO80. Cluster VIII did 

not show a clear signal for either RSC, SWI/SNF, ISW2 or INO80. Promoters in different clusters 

display diverse nucleosome arrangements with SWI/SNF-bound clusters I and VI having the 

broadest NDRs and clusters VII-VIII, not bound by either RSC or SWI/SNF, the narrowest 

(Supplementary Fig. 1f). SWI/SNF-bound clusters are also associated with the highest 

transcription rate, as measured either by RNAPII ChIP-seq 44 or NET-seq 45, whereas cluster VIII 

is associated with the lowest (Fig. 1g). Moreover, SWI/SNF-bound clusters (I, VI and VII) contain 

promoters bearing the canonical TATA-box more frequently than other clusters (Supplementary 

Fig. 1h). Finally, several clusters are enriched for specific functional categories based upon gene 

ontology (GO) term analysis (Supplementary Table 2), suggesting that their unique remodeler 

configurations might play some role in their co-regulation. In summary, clustering analysis points 

to the existence of a limited number of remodeler combinations present at particular genomic 

locations.  

Effects of remodeler depletion define three distinct remodeler classes 

To reveal how the activities of CRs interact to establish genomic nucleosome patterns we 

compared nucleosome occupancy changes upon conditional depletion of chromatin remodeler 

catalytic subunits at different genomic regions. Rapid depletion was achieved by the anchor-away 

method 42 or, in cases where the FRB tag required for anchoring conferred a slight growth defect, 

using the AID* degron system 46,47. For RSC we used our previously published Sth1 anchor-away 

data 9. We confirmed nuclear depletion of FRB-tagged remodeler subunits (Sth1, Snf2, Isw2 and 

Chd1) by fluorescence microscopy on fixed cells following 60 min of rapamycin treatment 

(Supplementary Fig. 2a). Similarly, for AID experiments we observed extensive degradation of the 

targeted protein by 10 or 15 min following auxin addition (Supplementary Fig. 2b). We also showed 

that the endogenous tags (FRB or AID) had little or no effect on growth in the absence of the 

inducing agent (Supplementary Fig. 2c). Finally, as an additional control for our set of CR depletion 

strains and sequencing library preparation procedures, we compared the MNase-seq profiles 

generated from all of the strains following mock depletion (treatment with vehicle alone) and found 

an very high correlation (typically >0.95) in all pairwise comparisons (Supplementary Fig. 2d). 



Each remodeler depletion caused distinct changes to nucleosome occupancy patterns (Fig. 

2a). RSC depletion caused shrinkage of the NDR due to upstream movement of the +1 

nucleosome and downstream movement of the -1 (Fig. 2b; 5,17,18,38,48). Similarly, depletion of the 

catalytic subunit of the related SWI/SNF complex (Snf2) resulted in an upstream +1 nucleosome 

shift (Fig. 2b) but the number of affected regions was much lower than for RSC (n=3,010 versus 

137). Interestingly, both RSC and SWI/SNF depletion led to the stabilization of FNs at 114 and 84 

promoters, respectively (Supplementary Fig. 2e,f). We also noted that genes displaying SWI/SNF-

mediated nucleosome rearrangements are characterized by an unusually large NDR (500-750 bp; 

defined as the distance between the +1 dyad and that of the first stable nucleosome upstream) 

often occupied by more than one FN, whereas RSC-affected genes show a bi-modal distribution 

of NDR sizes with a predominant peak at ~350 bp (Fig. 2c). 

Depletion of ISW2 and INO80 both yielded similar +1 nucleosome repositioning downstream 

(i.e. away from the NDR; Fig. 2b) at distinct subsets of genes, with INO80 having an effect on a 

larger set of genes than ISW2 (n=617 versus 117). Curiously, the absence of these CRs also led 

to destabilization of a number of nucleosomes throughout the genome, some of which were +1 

nucleosomes of annotated genes (15%, n=95 for ISW2 and 57%, n=342 for INO80), as defined 

by a strong loss of signal at high levels of MNase digestion and a displacement of the dyad axis 

of >73 bp (Supplementary Fig. 2g,h). Although we do not know whether nucleosome 

destabilization following either ISW2 or INO80 depletion is a consequence of transcription itself, 

we found no significant difference in either RNAPII or TBP levels between INO80-affected 

promoters where the +1 nucleosome was either shifted or destabilized (data not shown). 

Furthermore, we noted previously 5 that the vast majority of destabilized nucleosomes (FNs) are 

unaffected by RNAPII depletion. Nevertheless, the action of puller CRs may represent a special 

case that would need to be addressed by simultaneous depletion of puller CRs together with 

RNAPII. 

Depletion of ISW1 and CHD1 did not result in any notable changes in +1/-1 nucleosome 

position (Fig. 2b). Rather, genes displayed more disordered intragenic nucleosomes (more 

variation in peak-to-peak distance and decreased peak heights), consistent with previous studies 

utilizing deletion mutants (24; Fig. 2a). The previously ascribed role of ISW2 in spacing of genic 

nucleosomes 24 appears to stem from its role in setting the position of the +1 barrier, since the 

nucleosomes of genes with an unaffected +1 following ISW2 depletion did not display any change 

in spacing or peak height (data not shown). 



Based on the observed effects at promoters and gene bodies, we defined three main groups 

of nucleosome-repositioning complexes: (1) “pushers” (RSC and SWI/SNF) that can shift 

nucleosomes away from the NDR and are able to destabilize nucleosomes, (2) “pullers” (ISW2 

and INO80) that can shift the +1 (and potentially other intragenic nucleosomes) in the direction of 

the NDR and (3) “spacers” (ISW1 and CHD1) that control the distance between intragenic 

nucleosomes without affecting +1 nucleosome position. 

Next, we examined the extent to which remodeler binding correlates with nucleosome 

occupancy changes upon remodeler depletion. To this end, we grouped sites displaying strong 

remodeler binding signal (>3-fold enrichment over background) for each remodeler and measured 

nucleosome occupancy changes in the surrounding regions upon depletion of the remodeler. 

These values were then compared to occupancy changes at sites where the remodeler signal was 

low (<1.5-fold enrichment). For each “pusher” or “puller” CR we observed significantly higher 

changes in nucleosome occupancy at remodeler-bound regions (Fig. 2d). For “spacers” we 

observed no such trend (data not shown) since the effects of their depletion are prominent in gene 

bodies despite apparent binding of the complexes at promoters 28. Nevertheless, genes whose 

promoters were strongly bound by the “spacers” displayed better nucleosome phasing in gene 

bodies than genes displaying a weak signal (Supplementary Fig. 2i,j). Curiously, though, both 

bound and unbound genes displayed a similar loss of phasing upon depletion of the respective 

CR (Supplementary Fig. 2i,j).  

Concordant and opposing activities of multiple chromatin remodelers determine 

nucleosome positions 

Existing evidence suggests that the interplay between CRs might include both additive and 

opposing interactions 20,37-40. We formulated the following hypotheses which we subsequently 

tested: (i) CRs with similar activities can act redundantly; (ii) the activity of a remodeler can be 

suppressed by that of an opposing remodeler(s). The implication of these two propositions would 

be that the depletion of a remodeler might not yield a measurable effect on nucleosome 

occupancy/position near its binding site due to compensation by synergistic remodeler(s) or in 

cases where an opposing remodeler is simultaneously depleted or simply not present. Indeed, 

nucleosome occupancy changes measured upon depletion of RSC or SWI/SNF at sites strongly 

bound by both CRs (see Methods) were weaker than at sites bound by just one of them 

(Supplementary Fig. 3a). Similarly, the effects of ISW2 depletion were stronger at clusters bound 

by ISW2 only than at clusters bound by ISW2 and INO80 (Supplementary Fig. 3b). In contrast, 



the effects of INO80 depletion were stronger when it bound together with ISW2 rather than alone 

(Supplementary Fig. 3c). However, binding of INO80 was weaker when it bound alone relative to 

cases where it bound together with ISW2 (Supplementary Fig. 3d).  

To test CR redundancy more directly we simultaneously depleted both “pushers” or both 

“pullers” and compared the resulting nucleosome rearrangements to those of the corresponding 

single depletions. Double depletion of RSC and SWI/SNF led to stronger changes at sites bound 

by both CRs than either single depletion (Fig. 3a,b), consistent with a recent report 40. Interestingly, 

RSC-SWI/SNF double depletion also had a stronger effect at sites bound by SWI/SNF but not 

RSC (cluster VI; Fig. 3b). This might indicate that upon Snf2 depletion, RSC is recruited to 

SWI/SNF targets and partially substitutes for this remodeler. We did not observe similar behavior 

of SWI/SNF at sites bound by RSC alone (clusters III-V). ISW2-INO80 redundancy was already 

evident at the level of cell growth: the double depletion is lethal, contrary to either single depletion 

(Fig. 3c). Consistent with this finding, in every cluster bound by ISW2 or INO80 the double 

depletion had stronger effects than either single depletion (Fig. 3d), leading to widespread 

aberrations in nucleosome patterns (downstream shifts and/or destabilization of +1 nucleosomes, 

and impaired phasing in gene bodies) that were qualitatively similar to single deletions but 

amplified in magnitude and number of affected genes (Fig. 3e,f). Similarly, simultaneous depletion 

of both “spacers” led to a stronger loss of nucleosome phasing in gene bodies than either single 

depletion, consistent with observations from the corresponding deletion mutants (24; 

Supplementary Fig. 3e). In summary, our analysis indicates a considerable degree of redundancy 

between RSC and SWI/SNF and between ISW2 and INO80. The same is probably true for ISW1 

and CHD1. 

+1 nucleosomes maintain their positions in the absence of opposing remodeling activities  

It is not known what causes the nucleosome repositioning frequently observed upon depletion 

of a remodeler. Given the opposing activities of “pushers” and “pullers”, we hypothesized that the 

effects observed upon depletion of one type of remodeler might result from the activity of an 

enzyme of the other type. Consistent with this idea, the effects of RSC and SWI/SNF depletion 

were strongest at sites where these CRs co-bound with ISW2 (Supplementary Fig. 4a). 

Conversely, the effects of INO80 depletion were strongest at sites where this remodeler binds 

alongside both RSC and SWI/SNF compared to sites where it binds with just one “pusher”. 

Furthermore, the weakest effect of INO80 depletion was observed at sites where neither “pusher” 

binds nearby (Supplementary Fig. 4b).  



Our results thus indicate that promoter nucleosome arrangement results from the net activity 

of specific combinations of CRs and that the absence of a given remodeler might result in 

nucleosome changes caused by the activity of the remaining remodeling complexes. In order to 

test this proposition more directly we performed experiments in which we simultaneously depleted 

“pushers” and “pullers”. Based on our binding data (Fig. 1c) RSC is often predicted to be opposed 

by either ISW2 or INO80, whereas SWI/SNF would mostly be counteracted by ISW2. We 

concentrated on RSC and ISW2/INO80-bound sites due to the high number of regions having 

these combinations and the fact that depletion of RSC cannot be compensated by SWI/SNF. If 

nucleosome rearrangements observed upon RSC depletion – upstream shift of the +1 

nucleosome and stabilization of FNs – resulted from the activity of ISW2 or INO80 we would expect 

to observe milder effects upon simultaneous depletion of RSC with ISW2 or INO80. We first 

measured nucleosome occupancy centered on the +1 nucleosome of genes associated with RSC 

and ISW2, in a wild-type strain and in strains where one or both complexes were depleted (Fig. 

4a). Interestingly, the nucleosome pattern obtained upon simultaneous depletion of RSC and 

ISW2 was similar to the one obtained upon depletion of RSC alone (Fig. 4a; compare blue versus 

green plots). We performed a similar analysis for RSC- and INO80-bound +1 nucleosomes (Fig. 

4b). Here, the effect of double depletion was slightly weaker than depletion of RSC alone, as the 

upstream +1 shift was somewhat less pronounced. Still, the +1 nucleosome clearly shifted 

upstream in the absence of both CRs and the changes upon double depletion generally resembled 

RSC depletion alone. These observations might result from (i) redundant activity of the “pullers”, 

(ii) activity of “spacer” CRs that is more pronounced in the absence of “pullers”, or (iii) an inherent 

preference of nucleosomes for positions that are more upstream than those observed in wild-type 

cells. To distinguish between these possibilities, we performed experiments in which we 

simultaneously depleted RSC together with the two opposing CRs and compared the results to 

RSC alone or ISW2/INO80 double depletion. At promoters bound by RSC and ISW2, or RSC and 

INO80, we observed only minor changes in +1 nucleosome position in the absence of all three 

CRs (Fig. 4c,d). These observations lead to an important notion, namely that when chromatin 

remodeling is shut down by multiple CR depletion +1 nucleosomes tend to remain relatively close 

to their positions under wild-type conditions.  

Although ISW1 and CHD1 act predominantly within gene bodies, they could influence the 

position of the +1 nucleosome in a way that might be masked by other CRs. To test this idea, we 

simultaneously depleted “pullers” and “spacers” and compared the results to depletion of only the 

two “pullers”. We found that the change in +1 nucleosome position is very similar under these two 

conditions, in either the presence of RSC (Fig. 4e,f) or in its absence (Fig. 4g,h), arguing against 



an additional role for “spacers” in +1 positioning. Nevertheless, genic nucleosome phasing was 

more strongly disrupted upon depletion of “spacers” and “pullers” compared to “spacers” alone, 

presumably due to the altered position of the +1 nucleosome, proposed to act as a barrier against 

which downstream genic nucleosome are phased through a “statistical positioning” mechanism 

49,50. In summary, these results indicate that while most +1 nucleosomes remain robustly 

positioned in the absence of remodeling activity, genic nucleosomes significantly change their 

positions when “spacers”, or “spacers” plus “pullers” are depleted. 

We also noted that nucleosomes destabilized by either ISW2 or INO80 depletion (i.e. ones 

that became FNs; Supplementary Fig. 2g,h) were much less affected upon simultaneous depletion 

of RSC and both “pullers” (Supplementary Fig. 4c,d). This suggests that their destabilization 

results from a destructive activity of RSC. Moreover, the FNs that became stable upon RSC 

depletion were not stabilized when RSC was co-depleted with both “pullers” (Supplementary Fig. 

4e). Co-depletion of RSC with only one “puller” did not prevent FN stabilization indicating that 

ISW2 and INO80 are also redundant with respect to this aspect of chromatin organization. Taken 

together, these results imply that nucleosome destabilization in the absence of “pullers” is due to 

the destructive activity of RSC. Conversely, substitution of an FN with a stable nucleosome 

following RSC depletion is mediated by “pullers”. 

Combined remodeler action at +1 nucleosome influences TBP binding and TSS selection 

We showed recently that the role of RSC in +1 nucleosome placement is crucial for TBP 

binding, a key step in RNAPII recruitment 9. However, it is still unknown which steps of gene 

activation are affected by SWI/SNF, or by the absence of the “pullers”, which should generally 

increase the accessibility of the TBP binding site. To explore the role of these CRs in gene 

expression we measured binding of TBP (Spt15) and the RNAPII catalytic subunit (Rpb1) by ChIP-

seq following CR depletion. 

Genes down-regulated in the absence of SWI/SNF (n=128, at least 1.5-fold decrease in 

RNAPII levels) displayed a prominent decrease in TBP binding at their promoters that was linked 

to an upstream shift of the +1 nucleosome and an increase in nucleosome occupancy at the TATA 

element (Fig. 5a). The genome-wide correlation between TBP and RNAPII occupancy change 

upon SWI/SNF depletion was strong (Pearson R=0.62; Supplementary Fig. 5a), consistent with a 

causal relationship. Nevertheless, the anti-correlation between nucleosome occupancy change (in 

a 300 bp window centered on the TATA element) and TBP signal at the promoters of these down-

regulated genes was more modest (Pearson R=-0.20; Supplementary Fig. 5b) compared to that 



associated with RSC depletion (R=-0.39; 9). These results indicate that SWI/SNF, like RSC, 

facilitates transcription at least in part by promoting TBP binding, but suggests that other 

mechanisms are also at work. A smaller number of genes (n=39) actually displayed an increase 

in RNAPII association and a modest increase in TBP signal upon SWI/SNF depletion, consistent 

with previous studies showing that SWI/SNF can act as a repressor 51. However, these effects 

were not associated with major nucleosome occupancy changes (Supplementary Fig. 5c). 

Consistent with ISW2-INO80 redundancy with respect to +1 positioning, we observed relatively 

few genes where their single depletion had a pronounced effect on either TBP binding or RNAPII 

levels (Supplementary Fig. 5d-f). As expected, double depletion of these two “puller” CRs 

produced more significant effects, with many more genes displaying increased RNAPII levels 

(n=1,592, versus 45 and 104 for ISW2 and INO80 single depletions, respectively) and only a few 

with lower levels (n=52) (Fig. 5b,c). For the up-regulated genes we observed an anti-correlation 

between nucleosome occupancy changes and TBP binding, albeit moderate (R=-0.25; 

Supplementary Fig. 5g). Amongst the group of most strongly up-regulated genes that also 

displayed the most prominent +1 nucleosome shifts (n=735) GO-term analysis identified 

“response to stimulus” as the most over-represented identifier (n=253; p<1.0e-8). Nevertheless, 

and as was the case for INO80 depletion alone, the genome-wide RNAPII – TBP binding 

correlation upon double “puller” depletion was not strong (Supplementary Fig. 5h). Regarding the 

“spacers”, we found that depletion of ISW1 led to both decreases (n=503) and increases (n=332) 

in RNAPII levels within gene bodies without any significant changes in +1 nucleosome position or 

promoter TBP binding yet a modest loss of genic nucleosome positioning (Supplementary Fig. 

5i,j). In contrast, the absence of CHD1 caused an increase in RNAPII levels at only 116 genes 

(with none showing a decrease), accompanied by negligible changes in genic nucleosome 

positioning and no change in TBP binding (Supplementary Fig. 5k). 

“Puller” depletion affects TSS selection by facilitating TBP binding at cryptic downstream 

TATA elements 

In addition to affecting RNAPII initiation rates, nucleosome repositioning can also influence 

TSS selection at individual genes 52,53, possibly giving rise to non-coding transcription 27 or altered 

levels of potentially function transcripts. In order to test how CRs affect transcription initiation 

events we first performed a genome-wide rapid amplification of 5’ cDNA ends (5’-RACE) analysis 

54 in strains depleted for the “pusher” CRs. Depletion of RSC resulted predominantly in an 

upstream shift of the +1 nucleosome and a decrease of initiation events at genes, as expected 



(5,9,18; Fig, 6a,b), but no marked change in TSS selection. Similarly, SWI/SNF depletion often led 

to a decrease in transcription initiation at genes where nucleosomes were rearranged (Fig. 6c,d). 

Four genes displayed additional strong signals 3’ of the annotated +1 nucleosome (visible as 

prominent peaks in the average plot) which were also suppressed in the absence of SWI/SNF 

(Fig. 6d). In rare cases, though, RSC or SWI/SNF depletion led to either a shift in the TSS or a 

change in TSS distribution in situations where two or more predominant initiation sites were 

observed (Supplementary Fig. 6a,b). 

Notably, simultaneous “puller” depletion had a dramatic effect on TSS selection at a large 

number of genes, often leading to a decrease of initiation at the wild type TSS and the appearance 

of high levels of novel initiation events located downstream (Fig. 6e,f and Supplementary Fig. 6c). 

When we plotted 5’-RACE signals at genes with increased RNAPII levels upon “puller” depletion 

we often observed increases in the signal downstream of the TSS without prominent decreases 

at the original TSS position (Supplementary Fig. 6d), which was not evident at those genes where 

transcription decreased (Supplementary Fig. 6e). 

To investigate in more detail possible links between +1 nucleosome shifts and the 

appearance of novel TSSs we first identified the single, strongest TSS at each gene following 

ISW2/INO80 co-depletion and retained those having a normalized signal of at least 150 reads 

(n=3524 genes). We then measured signal at these TSSs in wild-type conditions and sorted all 

genes according to the ratio of the “puller” double-depletion to wild-type signal. This identified a 

large number of sites (n=1372) where transcription clearly initiated more frequently following 

“puller” depletion (Fig. 7a, “increase”, top) but also a smaller number of sites (n=377) where the 

initiation events became less frequent (“decrease”, bottom). Most of the genes with up-regulated 

novel start sites have well-annotated TSSs in wild-type cells (n=1210 out of 1372; 48, and in most 

cases (n=946) the novel prominent TSSs following “puller” double depletion were more than 20 

bp downstream from the wild-type TSS (Fig. 7b). In only 73 cases was the novel TSS more than 

20 bp upstream from the wild-type site. Nevertheless, both cases were associated with very similar 

downstream shifts of the +1 nucleosome (Fig. 7c and Supplementary Fig. 7).  

The observations outlined above begged the question of why genes with similar 

nucleosome rearrangements following “puller” depletion would vary so much in the intensity and 

position of TSS changes. The likely answer became apparent when we plotted the distribution of 

TATA box motifs for both up-regulated and down-regulated genes (Fig. 7c). At sites where 

transcription initiated more frequently after “puller” depletion we often found a canonical TATA-

box peak within 150 bp of the strongest new TSS (n=661 genes), at a position where +1 



nucleosome occupancy decreased following “puller” depletion. This was not the case at genes 

where a decrease in initiation frequency was observed, suggesting that increased downstream 

initiation following “puller” depletion is often due to the exposure of a “cryptic” TATA box normally 

occluded in wild-type cells, at least under the conditions of growth employed here. This 

interpretation is consistent with the increased downstream TBP binding observed at these genes 

upon ISW2/INO80 double depletion (Fig. 5b). These findings indicate that ISW2 and INO80 act 

together to repress transcription at a large number of genes through a mechanism linked to 

upstream movement of the +1 nucleosome and occlusion of a TATA element otherwise capable 

of driving PIC assembly and transcription. 

 

Discussion 

Concordant and opposing remodeler activities establish promoter nucleosome landscapes 

We describe here a comprehensive examination of chromatin remodeler binding and action at 

promoters in living cells. Our approach of measuring nucleosome positions by MNase-seq 

immediately following rapid depletion of individual or multiple CRs is likely to reveal the direct 

action of these enzymes, while avoiding secondary effects that might arise from transcriptional 

changes that occur in gene deletion strains. Comparing nucleosome occupancy changes following 

remodeler depletion to ChEC analysis of remodeler localization provides additional insights into 

remodeler targeting and redundancy. Our results imply a central role for CRs in determining 

transcription initiation rates but also reveal an unanticipated role for these factors in determining 

precisely where transcription starts at individual genes. 

Our findings establish two different remodeler groups with respect to positioning of the 

canonical +1/-1 promoter nucleosomes, which we refer to as the “pushers” and “pullers”, the 

former acting to expand the NDR, the latter to contract it. We identify RSC as the most pervasive 

promoter-directed remodeler, acting as a “pusher” at a majority of protein-coding genes, consistent 

with previous reports 5,9,17,18,22,38,55,56. We show that the second “pusher”, SWI/SNF, has a much 

more restricted set of target genes, primarily working in conjunction with RSC at a set of highly-

transcribed genes 40, but also alone at a smaller set of stress responsive genes (based upon their 

high TATA box frequency and most significant GO-term enrichment). Conversely, both ISW2 and 



INO80 function as promoter-specific “pullers” that act to reduce the NDR due to movement of the 

+1 or -1 nucleosome (or both) towards its center, consistent with previous work 19,22,27,39,57.  

A picture that emerges from our study is that of a competition between “pushers” (RSC and 

SWI/SNF) and “pullers” (ISW2 and INO80), the result of which leads to precise positioning the +1 

nucleosome (Fig. 7d). This insight followed from our ability to simultaneously deplete cells of both 

ISW2 and INO80. Unexpectedly, we found that these two CRs are largely redundant at a 

significant number of genes. Thus, either ISW2 or INO80 alone are largely sufficient to counteract 

the effect of the “pushers”, whereas cells depleted of both “pullers” display a significant broadening 

of the NDR. Our results thus suggest that these two CRs probably constitute the main force 

counteracting the destructive effect of RSC on the nucleosomes flanking NDRs. 

We imagine that both “pushers” and “pullers” act immediately following replication fork 

passage to re-establish promoter nucleosome architecture, which in yeast appears to occur in a 

matter of minutes 58-60; reviewed in 61). Since our studies were carried out on populations of 

unsynchronized cells and show that depletion of one remodeler often leads to nucleosome 

movement dependent upon another, they suggest that opposing CRs might be continuously acting 

upon promoter nucleosomes, thus maintaining+1 nucleosome position within a highly limited 

range. This “spring trap” state appears to play a key role in determining the probability of TBP 

binding and PIC assembly and may poise the +1 nucleosome to change its position whenever an 

additional factor (e.g. TF binding) shifts the balance in favor of one of the two opposing activities. 

One example of such dynamic remodeler regulation could be the +1 nucleosome movement that 

occurs at hundreds of genes during cell state changes in the yeast metabolic cycle 62. 

Our finding that +1 and -1 nucleosomes remain relatively stable upon simultaneous depletion 

of both “pusher” and both “puller” CRs suggests that neither thermal motion nor some additional 

active process is sufficient to cause a major alteration in the preferred positioning of these 

nucleosomes. We imagine that under these conditions relatively few cells passage through S 

phase, and that the few that do might be largely responsible for the minimal displacements 

observed. Interestingly, genic nucleosomes, which are likely to be subjected to disruption by 

RNAPII, display a massive loss of positioning upon multiple CR depletion. 

Global and local control of remodeler action 

As pointed out previously 20, detection of CR binding by ChIP is notoriously problematic, 

making it difficult to determine the extent to which these factors are targeted to specific promoters. 



We showed here that the application of ChEC-seq to remodeler subunits reveals patterns of 

remodeler binding specificity that correlate well with nucleosome occupancy changes caused by 

depletion of the corresponding remodeler. Interestingly, these correlations are stronger for the 

“pushers” (RSC and SWI/SNF) than for the “pullers” (INO80 and ISW2), which, despite their limited 

binding overlap, are often functionally redundant. This discrepancy between INO80 and ISW2 

binding and action may indicate that one factor can rapidly replace the other when it is depleted. 

Alternatively, ChEC may not capture certain functional remodeler-promoter interactions, perhaps 

due to either their short half-life or because of limited MNase access upon remodeler binding at 

certain promoters. Interestingly, we note that RSC can often substitute for SWI/SNF when the 

latter is depleted, whereas the converse is not the case. This may reflect more stringent co-factor 

requirements for SWI/SNF binding or activity. 

The “pushers” were shown to slide nucleosomes off the edge of DNA templates in vitro, in 

effect maximizing the size of the linker between nucleosomes 11,12. The same principle seems to 

apply at NDRs in living cells – RSC and SWI/SNF act to increase the length of linker DNA 

separating the +1 and -1 nucleosomes. Although the precise mechanism(s) by which these two 

CRs act is still unclear, it is important to note that both RSC and SWI/SNF appear to engulf the 

nucleosomes upon which they act 2,63,64. Given that these CRs move the +1 and -1 nucleosomes 

in different directions, it would seem likely that they orient their direction of action with respect to 

some landmark feature(s) of the NDR that separates these nucleosomes. This could result from 

the inherent length of relatively nucleosome-free DNA in this region due to the presence of 

nucleosome-disfavoring poly(dA:dT) tracts or the binding of TFs.  

The remaining CRs that we examined (ISW2, INO80, ISW1 and CHD1) all possess similar 

activities in vitro – they slide nucleosomes towards the central position on a DNA template, thus 

equilibrating linker length on both sides of a core particle 23,35. However, their in vivo roles vary, 

with “spacers” exclusively affecting genic nucleosomes (+2, +3, etc.) and “pullers” acting on the 

+1 nucleosome (Fig. 2). What could explain this dichotomy? ISW2 and INO80 form larger 

complexes than ISW1 and CHD1 which might make it more difficult for them to act on densely 

packed genic nucleosome arrays due to steric hindrance. Moreover, accumulating evidence 

suggests that “pullers” are targeted to promoters through direct interactions with general or more 

gene-specific TFs 65, though the only well-documented example to date is that of ISW2 recruitment 

by Ume6 66. Interestingly, though neither ISW1 nor CHD1 are known to associate with promoter-

specific factors, fusing CHD1 to the DNA-binding domain of Ume6 leads to nucleosome 

repositioning at Ume6 binding sites qualitatively similar to that normally carried out by ISW2 67. 



Taken together, these findings suggest that promoter-targeted “pullers” recognize NDRs as 

extremely long linker DNAs of the +1 or -1 nucleosome, which they shorten, whereas “spacers” 

primarily scan genic regions where they act to equalize linker lengths. 

We also observed nucleosome destabilization upon depletion of the “pullers” caused by the 

destructive activity of RSC or SWI/SNF. This might result from the collision of a mobilized “pusher”-

bound nucleosome with an adjacent core particle as shown by in vitro studies of SWI/SNF 68,69. 

“Pullers” might act to directly protect the vulnerable particle or to mediate its re-deposition. 

Significance of +1 nucleosome positioning for transcription 

We have shown recently that RSC facilitates gene transcription by globally increasing the 

accessibility of TBP binding sites 9. Data presented here show that the related chromatin 

remodeler SWI/SNF has a similar role but that its action is limited predominantly to genes 

possessing a canonical TATA box in their promoter. The increase in promoter nucleosome 

occupancy observed in the absence of RSC and SWI/SNF leads to impaired transcription initiation 

events which become either less frequent or occur at altered positions. Therefore, the “pushers” 

not only create a “landing spot” for the transcriptional machinery by generating wide NDRs but 

also participate in accurate TSS selection, consistent with a recent report 22. Interestingly, general 

regulatory factors known to influence promoter nucleosome occupancy (e.g. Rap1, Abf1 and 

Reb1; 5,9,18) have also recently been shown to suppress spurious initiation events 52,70.  

Previous studies showed that NDR expansion in the absence of ISW2 leads to an increase of 

ncRNA synthesis 27,71. Studies on the SWI/SNF family CR called esBAF, carried out in mouse 

embryonic stem cells, suggest that this might be a general feature of at least some CRs 72. We 

expand this picture considerably by showing that “puller” double depletion in yeast causes 

widespread activation of novel downstream TSSs, most likely driven by cryptic TATA elements 

that become functional upon +1 nucleosome re-positioning. Importantly, these novel TSSs are 

likely to produce functional transcripts in many cases, suggesting that ISW2/INO80 may have a 

regulatory role.  

In conclusion, we provide a comprehensive view of the effect of CRs on promoter nucleosome 

positioning in a simple eukaryote (budding yeast). Our results reveal a complex interplay between 

these factors that plays an important role in determining not only transcription initiation rates but 

also the precise site of initiation. Results and methods established here will provide a basis for 

future studies to explore the role of CRs in controlling gene expression under variable growth 



conditions. Finally, since the CRs as well as the general features of promoter nucleosome 

organization are highly conserved in metazoans, we anticipate that our general findings will be 

relevant to unraveling promoter function in these more complex systems. 
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Methods 

Yeast strains 

All experiments presented in this study were performed using budding yeast Saccharomyces 

cerevisiae as the model system. Yeast strains used in this study are listed in Supplementary Table 

3. For ChIP-seq of Rpb1 and TSS-seq experiments crosslinked chromatin obtained from fission 

yeast Schizosaccharomyces pombe was used as a spike-in control. In a typical experiment, 

saturated overnight cultures were diluted to OD600 = 0.1, grown in YPAD medium at 30°C. Cells 

were collected for analysis at OD600 ≈ 0.35. 

Protein depletion experiments 

Anchor-away of FRB-tagged protein was induced by the addition of rapamycin (1 mg/ml of 90% 

ethanol/10% Tween 20 stock solution) to the culture media to a final concentration of 1 μg/ml for 

1h 42. Degradation of AID*-tagged proteins was obtained by addition of IAA to a final concentration 

of 0.5 μM for 30 min. In experiments in which anchor-away and degron were used simultaneously 

the cells were treated with rapamycin, after 30 min IAA was added to the culture and cells were 

grown for another 30 min before harvesting.  

The efficiency of protein depletion was monitored by fluorescence microscopy of cells bearing 

FRB-GFP-tagged fusion proteins. Briefly, cells fixed with cold methanol by a 6-min incubation at -

20°C, centrifugated, resuspended in PBS+DAPI solution (20 ng/ml final DAPI concentration), 

incubated for 5 min, washed once and resuspended in PBS for microscopy (Molecular Devices 

ImageXpress Micro XL). Degradation of AID*-tagged proteins was monitored by western blotting. 

ChEC-seq 

ChEC-seq experiments were performed essentially as described 9,43. A strain expressing “free” 

MNase under the control of the REB1 promoter was used as a control. Briefly, cells were washed 

and resuspended in buffer A (15 mM Tris 7.5, 80 mM KCl, 0.1 mM EGTA, 0.2 mM spermine, 0.5 

mM spermidine, 1xRoche EDTA-free mini protease inhibitors, 1 mM PMSF) with 0.1% digitonin 

and incubated for 5 min at 30°C. Calcium chloride was added to the final concentration of 2 mM 

to induce MNase activity. Reactions were stopped after 1 min by adding EGTA to a final 

concentration of 50 mM. DNA was purified using MasterPure Yeast DNA purification Kit 

(Epicentre) and small DNA fragments were preserved by purification with AMPure beads 



(Agencourt) as described 9. Libraries were prepared using NEBNext kit (New England Biolabs) as 

described before 9 and sequenced using HiSeq 2500 in single-end mode. Reads were mapped to 

the genome (sacCer3 assembly) using bowtie2 through HTSStation 73 and the positions of the 5’-

most base of each read were used as the positions of MNase cut sites. All densities were 

normalized to 10M reads. 

MNase-seq 

Experiments were performed as described before (Kubik et al., 2018). Yeast cultures were 

crosslinked, spheroplasted and treated with a range of concentrations of MNase (0.1 to 2.5U) for 

45 min at 37°C. Reactions were stopped by addition of 30 mM EDTA and the samples were de-

crosslinked by overnight incubation at 65°C in the presence of SDS (0.5%) and proteinase K (0.5 

mg/ml). DNA was purified by ethanol precipitation and treated by RNase. Samples chosen for 

library preparation included one “low MNase” sample where the density of the mono- and di-

nucleosomal bands visualized on an agarose gel were approximately equal and one “high MNase” 

sample where the density of the mono-nucleosomal band was ~90% of total DNA. Sequencing 

libraries were prepared as described (Kubik et al., 2018). The libraries were sequenced using a 

HiSeq 2500 in paired-end mode. Mapping of the sequencing data to the sacCer3 genome 

assembly was performed using bowtie2 through HTSStation 73. Mapped reads were trimmed by 

15 bp from each side when calculating densities to better visualize individual nucleosome peaks. 

All densities were derived from read counts normalized to the total number of reads for each 

experiment and displayed as a value per 10M reads. We therefore refer to these values as 

“normalized reads”. 

ChIP-seq 

ChIP-seq was performed essentially as described before 9. Crosslinked cells were lysed by bead-

beating, chromatin was sonicated, and the soluble fraction was incubated with the appropriate 

antibody and magnetic beads for 3h. For RNAPII ChIP-seq 5% (v/v) of crosslinked, sonicated S. 

pombe chromatin was added as a spike-in control prior to antibody addition. The beads were 

washed, and DNA was eluted, de-crosslinked and purified using High Pure PCR Cleanup Micro 

Kit (Roche). The libraries were prepared using TruSeq ChIP Sample Preparation Kit (Illumina) 

according to manufacturer’s instructions. The libraries were sequenced using HiSeq 2500 and the 

reads were mapped to sacCer3 genome assembly using HTSStation 73 (read densities calculated 

using shift=100 bp, extension=50 bp). All densities were normalized to 10M reads. 



TSS-seq 

The experiments were performed as described before 52,54. Total RNA was extracted from the cells 

using phenol and chloroform and precipitated with ethanol, DNA was digested with DNase I and 

RNA was extracted and precipitated again. Polyadenylated transcripts were purified using oligo 

d(T)25 magnetic beads (New England Biolabs). RNA was dephosphorylated using FastAP 

Thermosensitive Alkaline Phosphatase (ThermoFisher) and treated with Cap-Clip Acid 

Pyrophosphatase (Tebu-bio). RNA was then ligated to the biotinylated 5’ adaptor and fragmented 

for 5 min at 70°C in fragmentation buffer (10mM ZnCl2, 10mM Tris pH7.5). The reaction was 

stopped with 1 µl of 0.5 M EDTA. Ligated RNA molecules were purified using streptavidin magnetic 

beads (New England Biolabs). Reverse transcription was performed with RevertAid reverse 

transcriptase (ThermoFisher) and cDNAs were purified with Agencourt RNAClean XP beads 

(Beckman Coulter). DNA was amplified with LA Taq DNA polymerase (Takara) and purified with 

NucleoMag NGS Clean-up and Size Select (Macherey-Nagel). The resulting libraries were 

sequenced in single-end mode and the results were mapped to sacCer3 genome assembly. 

ChEC-seq signal normalization 

In our previous work 9, ChEC-seq was normalized by calculating the ratio between the ChEC-seq 

tag counts at a position (i.e. Rsc8-MNase cuts sites) and the tag counts of free MNase at the same 

site. Although this approach is generally correct and robust for Rsc8 it has a serious disadvantage: 

regions of low cut frequency tend to have high variation in signal ratio that might not reflect true 

binding events but instead result from a random fluctuation of the sequencing signal. This 

increases the noise in the data and reduces the possibility of finding true binding events, 

particularly for weak sites. Smoothing the ratio by calculating an average of ratio values in 

neighboring sites partially reduces the noise but at the same time reduces the precision of the 

technique. 

We turned to a non-parametric normalization method for ChEC-seq data that reduces the noise 

without reducing the precision. Our method uses an empirical Bayesian estimation of the prior 

distribution (in this case, the ratio between the ChEC-seq signal for the tested protein and for free-

MNase) to increase the signal to noise ratio by reducing the effect of random fluctuations in low 

coverage areas. As a result, at low-coverage regions the ratio is decreased to the genome-wide 

average. Empirical Bayes estimation uses signal ratios (scaled between 0 and 1) as the prior. The 

scaling was done by dividing the number of ChEC seq reads in a 10 bp window by the total number 

of reads in that window (i.e. ChEC-seq + MNase-seq + 1). Distribution of the ratios calculated 



genome-wide is fit to the beta distribution (as the observed distribution was unimodal) and the α 

and β parameters of the distribution are used to adjust the signal ratio according to the equation 

Ȓ=(Ti+α)/(Mi+α+β), where Ti is the signal in the test sample and Mi is the signal for control (free 

MNase). Such adjusted ratio was used in all subsequent analysis of ChEC signal. 

ChEC peak calling and clustering 

Peaks of protein binding signal were determined from genome-wide normalized ChEC ratio (see 

above) using the peak-finding algorithm described in 5 and available at 

https://gitlab.unige.ch/JLFalcone/peakmatic with the minimal normalized signal threshold of 5 and 

the window size of 100 bp. Peaks determined for different remodelers were pooled and all regions 

found within 150 bp of each other were merged. This common list of all chromatin remodeler 

binding sites was used to calculate the average normalized signal for each remodeler +/- 75 bp 

from the midpoint of each region. For analysis of promoters, signal was calculated in the region 

spanning -250 to -100 bp from the dyad of the +1 nucleosome for every gene with a well annotated 

TSS 48. In the next step, each region displaying a signal of at least 2 was assigned the value of 1 

and below 2 was assigned the value of 0. For Swi3, due to significantly higher peak signals, the 

threshold was set to 6. The list was then k-means clustered according to the 0/1 values with k=8, 

excluding data for remodelers whose depletion did not significantly affect promoter nucleosomes 

(i.e. ISW1 and CHD1). The k value was chosen empirically and validated by tabulating the 

occupancy for all possible combinations of 4 remodelers (n=16) present at the promoters and 

counting the number of occurrences of each group. The most abundant combinations represented 

individual clusters in our analysis while the less abundant ones, displaying similar occupancy of 

<4 remodelers, were merged by the clustering. 

Nucleosome occupancy and stability change 

Nucleosome occupancy change (either positive or negative) was calculated in 10 bp windows as 

the log2 ratio of read counts in remodeler-depleted cells compared to mock-treated cells (using 

high concentration MNase-seq data; Fig. 4d). To quantify the average overall magnitude of 

nucleosome occupancy change at promoter regions, absolute values for read count differences 

between CR-depleted and mock-treated cells were used (Fig. 2c and 3b,d).  

We considered +1 nucleosome occupancy as changed if the absolute log2 ratio of occupancy, 

calculated in the region spanning -/+ 150 bp from +1 dyad, was higher than 0.7. To estimate 

nucleosome stability changes nucleosome occupancy was calculated in a region -/+50 bp from 

https://gitlab.unige.ch/JLFalcone/peakmatic


each nucleosome dyad in remodeler-depleted and mock-treated cells. A fragile nucleosome was 

considered to become stabilized by remodeler depletion if its average occupancy in the high 

MNase assay increased by at least 15 normalized reads and its dyad was found within 50 bp of 

its original position (from 5). A nucleosome was considered to be destabilized by remodeler 

depletion if its average occupancy in the high MNase assay decreased by at least 15 normalized 

reads and its dyad was not found within 73 bp of its original position (determined in mock-treated 

cells).  

ChIP-seq spike-in normalization and quantification 

RNAPII ChIP-seq signal in S. cerevisiae was normalized using a S. pombe spike-in control as 

described before 44. TBP binding was calculated in regions spanning 200 bp centered on all TATA 

and TATA-like sites, taken from 8. RNAPII binding signal was calculated in the transcribed region 

of all genes with well determined TSSs and TTSs (based on 48) and in the ORF for all other genes. 

RNAPII signals that decreased/increased by 1.5-fold, and where the average signal was at least 

30 normalized reads/bp in the lowest case (treated or mock, respectively) were considered as up-

regulated/down-regulated genes, respectively. Genes were considered as not affected if the log2 

change in RNAPII signal was in the range >-0.1 and <0.1 and the average signal in the mock-

treated sample was at least 30 normalized reads/bp. 

TSS determination 

TSS signals from three replicates of each experiment were averaged separately for the Watson 

and the Crick strand. For the analysis shown in Fig. 7 all TSSs in “puller”-depleted cells were found 

with a minimum signal of 150 normalized reads. For each peak the nearest ATG on the respective 

strand was found (at a maximum distance of 500 bp) and then a single, strongest TSS was 

identified for each gene. Signals were calculated for each of these TSSs in the wild-type and 

“puller”-depleted conditions. Signals were considered as decreased or increased following CR 

depletion when signal log2 ratio (depletion/untreated) bypassed -/+1, respectively. Regions 

displaying artefactually high signal (e.g. found near rDNA) were removed from the analysis. 

TATA-box search 

All putative TATA-box sites were searched for by first looking for matches to the canonical 

TATAWAWR motif using FIMO from the MEME Suite with a threshold of p<0.001. Searches were 



also performed for motifs with up to 2 substitutions in the consensus or using the frequency matrix 

determined for TBP (Spt15) binding 74. All three types of searches yielded very similar motif 

frequencies for both up- and down-regulated gene classes shown in Fig. 7. 

Plots and statistics 

Fig. 1c, 4d and Supplementary Figs. 1b,c, 5a,f and 7 were made using EaSeq 75. For box-and-

whisker plots center line, box limits and whiskers indicate median, upper and lower quartiles, and 

1.5x interquartile range, respectively. Statistic test were applied where indicated. 

Data and software availability 

All sequencing data generated in this study were submitted to the GEO database as Series 

GSE115412 (for ChEC-seq, MNase-seq and ChIP-seq) and Series GSE114589 (TSS-seq).  

Peak-calling software is available at https://gitlab.unige.ch/JLFalcone/peakmatic. 

https://gitlab.unige.ch/JLFalcone/peakmatic




Fig. 1 | Chromatin remodelers (CRs) bind in defined combinations. a, Schematic 

representation of the experimental setup. CR binding was measured by ChEC-seq (left). 

Remodeler activity was evaluated as the local change in nucleosome occupancy measured by 

MNase-seq (right) following conditional depletion of the catalytic subunit of a CR. b, Snapshot of 

a genomic region displaying normalized ChEC-seq signal for each CR. c, Heatmap representing 

normalized remodeler ChEC signal at gene promoters clustered by k-means (k=8). 
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Fig. 2 | CRs display three broad types of activity. a, Snapshot of a genomic region displaying 

nucleosome occupancy in wild-type (grey area) or CR-depleted cells (colored lines); red arrows 

and shaded areas indicate regions and directions of strong rearrangements for each remodeler 

depletion. b, Nucleosome occupancy at promoters of genes displaying significant changes upon 

CR depletion in regions centered on the +1 nucleosome dyad. c, Density of genes plotted as a 

function of their NDR size for all genes, or those whose promoter nucleosome stability decreased 

upon RSC or SWI/SNF depletion. d, Boxplot comparing nucleosome occupancy changes upon 

depletion of RSC, SWI/SNF, ISW2 or INO80 at sites displaying low or high ChEC signal of each 

depleted remodeler; asterisk indicates significant difference (p<0.05, Mann-Whitney test).  

  





Fig. 3 | CRs with similar activities act redundantly. a, Snapshot of a sample genomic region 

displaying stronger nucleosome occupancy change upon simultaneous RSC and SWI/SNF 

depletion compared to depletion of individual complexes. b, Nucleosome occupancy changes 

upon depletion of RSC, SWI/SNF or both CRs simultaneously calculated in each cluster binding 

these complexes. c, Spot assay of wild-type yeast strain (left) and strain in which Isw2 was tagged 

with FRB in order to deplete it with rapamycin and Ino80 was tagged by AID* for auxin-mediated 

depletion (right) plated on medium containing rapamycin, auxin or both chemicals simultaneously. 

d, Nucleosome occupancy changes upon depletion of ISW2, INO80 or both CRs simultaneously 

calculated for all clusters. e, Snapshot of a representative genomic region displaying a stronger 

nucleosome occupancy change upon simultaneous ISW2 and INO80 depletion compared to 

depletion of either individual complex. f, Average nucleosome occupancy plot for wild-type cells 

and cells depleted of ISW2, INO80 or both CRs simultaneously, averaged over all genes where a 

significant change of +1 nucleosome occupancy was observed upon simultaneous depletion. 

  





Fig. 4 | Position of +1 nucleosome results from the net activity of multiple cooperating and 

opposing CRs. a, Average nucleosome occupancy upon depletion of RSC, ISW2 and both CRs 

simultaneously at all genes displaying binding of RSC and ISW2. b, As (a) but for RSC and INO80-

bound promoters. c, Snapshot of a representative genomic region displaying strong opposing 

changes in +1 nucleosome position upon depletion of RSC or the two “pullers” (ISW2 and INO80) 

and only minor changes upon simultaneous depletion of all three CRs. d, Heatmaps of 

nucleosome occupancy change (top three panels) and average plots of nucleosome occupancy 

(bottom panel) for cells depleted of either “pullers” or RSC and “pullers” simultaneously, at genes 

bound by these CRs. e, Snapshot of a sample genomic region displaying nucleosome occupancy 

changes shown for depletion of the “pullers” (ISW2, INO80), the “spacers” (ISW1, CHD1) and all 

four CRs simultaneously. f, Nucleosome occupancy in wild-type cells and cells depleted of both 

“pullers”, both “spacers” and all four CRs simultaneously, averaged over all genes displaying +1 

nucleosome occupancy changes upon RSC depletion. g, Snapshot of a representative genomic 

region displaying nucleosome occupancy changes following depletion of RSC (top), RSC and 

“puller” (RSC, ISW2, INO80; middle), and RSC, “puller” and “spacer” simultaneously (bottom). h, 

Average nucleosome occupancy plots for wild-type cells and cells depleted of RSC, RSC and both 

“pullers” and RSC, “pullers” and “spacers” simultaneously. 
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Fig. 5 | Changes in +1 nucleosome occupancy are linked to transcriptional down- and up-

regulation. a, Plots of nucleosome occupancy, RNAPII and TBP ChIP signals, in the presence 

and absence of SWI/SNF, at genes displaying a significant decrease in RNAPII level upon 

SWI/SNF depletion. b, Plots of nucleosome occupancy, RNAPII and TBP ChIP signals, in the 

presence and absence of ISW2 and INO80, at genes displaying a significant increase in RNAPII 

level upon simultaneous depletion of ISW2 and INO80. c, As (b) but for down-regulated genes. 

  





Fig. 6 | +1 nucleosome shift interferes with transcription start site selection. a, Snapshot of 

genomic region showing 5’RACE signal (“TSS”) for the Watson (w) and the Crick (c) strands as 

well as nucleosome occupancy in the presence (grey background) and absence of RSC (colored 

line). b, Average plot showing 5’RACE signal, in the presence and absence of RSC, for all genes 

displaying significant occupancy changes at their +1 nucleosome upon RSC depletion. c, As in 

(a) but for depletion of SWI/SNF. d, As in (b) but for depletion of SWI/SNF. e, As in (a) but for 

simultaneous depletion of ISW2 and INO80. f, As in (b) but for simultaneous depletion of ISW2 

and INO80. 

  





Fig. 7 | a, Heatmap showing 5’RACE signal in wild-type cells (left) and cells depleted of ISW2 and 

INO80 centered on predominant TSS site determined in the absence of these CRs for each gene. 

b, Average 5’RACE signal for genes displaying most significant increase (top) or decrease 

(bottom) in the signal. c, Plots displaying nucleosome occupancy in the presence (blue) and 

absence (red) of ISW2 and INO80 as well as average frequency of the consensus TATA-box motif 

(green) for genes displaying most significant increase (top) or decrease (bottom) in the 5’RACE 

signal. d, Schematic representation of mechanisms determining +1 nucleosome position and TSS 

selection at active genes. Recruitment of “pushers” such as RSC might be guided by specific DNA 

motifs or TFs leading to creation/expansion of the NDR, exposition of TBP binding sites (TATA) 

and formation of the PIC; “pullers” reposition the +1 nucleosome to reduce NDR size and to restrict 

transcription initiation to the position observed in wild-type cells. 
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 2 

Supplementary Fig. 2 | Verification and characterization of remodeler depletion and effects on nucleosome occupancy and 
stability; related to Fig. 2. a, Fluorescence microscopy of cells bearing FRB-GFP fusions of Sth1, Snf2, Isw2 and Chd1; cells were 
treated with rapamycin for indicated times, fixed and stained with DAPI. b, Western blotting (anti-myc antibodies) of cell lysates 
from an untagged strain and strains bearing Ino80-AID*-myc and Isw1-AID*-myc fusions treated with auxin for indicated amount of 
time. c, Growth assays (serial dilution “spot assays”, as in Supplementary Fig. 1a) of the indicated anchor-away or AID depletion 
strains on YPAD medium. “WT” indicates the parental anchor-away and/or AID strains background. d, Pearson correlations for all 
pairwise comparisons of genome-wide nucleosome occupancy change over 100 bp windows for the indicated CR depletion strains in 
the absence of depletion (mock-treated). e, Screenshots of sample regions in which nucleosomes become stabilized (marked with a 
red rectangle) upon depletion of RSC (top) or SWI/SNF (bottom). f, Average plots of nucleosome occupancy for all nucleosomes 
becoming stabilized upon depletion of RSC (top) or SWI/SNF (bottom). g, Screenshots of sample regions in which nucleosomes 
become destabilized (marked with a red rectangle) upon depletion of ISW2 (top) or INO80 (bottom). h, Average plots of nucleosome 
occupancy for all nucleosomes destabilized upon depletion of ISW2 (top) or INO80 (bottom). i,j Average plots of nucleosome 
occupancy with (red) or without (blue) depletion of ISW1 (i) or CHD1 (j), plotted separately for genes with the lowest (top) or 
highest (bottom) binding by the relevant CR (average binding profiles shown in green). 
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Supplementary Fig. 3 | Remodeler redundancy in nucleosome positioning; related to Fig. 3. a, Nucleosome occupancy change 
upon depletion of RSC (left) or SWI/SNF (right) at sites bound by each remodeler and displaying varying binding signal (+, +/-, -) of 
the other one. b, Nucleosome occupancy change upon depletion of ISW2 at sites bound by this remodeler and displaying varying 
binding signal of INO80 (as in (a)). c, Nucleosome occupancy change upon depletion of INO80 at sites bound by this remodeler and 
displaying varying binding signal of ISW2 (as in (a)). d, Boxplot of INO80 binding signal at INO80-bound sites displaying varying 
binding signal of ISW2. In (a-d), asterisks indicate significant differences (p<0.05, Mann-Whitney test). e, Snapshot of a sample 
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Supplementary Fig. 4 | Multiple concordant and opposing remodeler activities control promoter nucleosome occupancy; related 
to Fig. 4. a, Nucleosome occupancy change upon RSC depletion at sites bound by RSC (left) and change upon SWI/SNF depletion at 
sites bound by SWI/SNF (right). In both cases comparisons are made between sites co-bound by ISW2 (+) or not (-). Asterisks 
indicates significant difference (p<0.05, Mann-Whitney test). b, Nucleosome occupancy change upon INO80 depletion at sites 
bound by INO80 and co-bound by RSC and/or SWI/SNF or not, as indicated below. c, Average plots of nucleosome occupancy for all 
nucleosomes destabilized upon depletion of ISW2, comparing wild-type cells and cells depleted of RSC, ISW2, or both remodelers 
simultaneously. d, Average plots of nucleosome occupancy for all nucleosomes destabilized upon depletion of INO80, comparing for 
wild-type cells and cells depleted of RSC , INO80 , or both remodelers simultaneously. e, Average plots of nucleosome occupancy for 
all nucleosomes stabilized upon depletion of RSC, comparing wild-type cells  and cells depleted of RSC , RSC and ISW2 , RSC and 
INO80, or all three remodelers simultaneously. 
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Supplementary Fig 5 | Links between nucleosome occupancy and transcrip onal regula on; related to Fig. 5. a, Sca erplot 
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following SWI/SNF deple on, for all genes with a well-defined TSS; Pearson R value shown. b, Sca erplot showing rela onship 
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regulated upon SWI/SNF deple on. d-f, Average plots displaying nucleosome occupancy together with RNAPII and TBP ChIP-seq 
signals for genes up-regulated by INO80 deple on (d), down-regulated by INO80 deple on (e), or up-regulated by ISW2 deple on 
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Role of GRFs in Limiting Pervasive Transcription  

 

GRFs have been extensively studied for their role in gene expression (activation and 

repression). My Ph.D. project mainly aimed at understanding the role of GRFs in limiting 

pervasive transcription in yeast. We provided clear evidence that the binding of GRFs is 

essential for transcription initiation fidelity by preventing the occurrence of spurious initiation 

events but also to restrain RNAPII elongation arising from upstream initiation sites. In this 

respect, my project unveiled completely new and unexpected functions for GRFs. 

 

GRFs control pervasive transcription at the level of termination 

 

In the course of a previous study, our lab demonstrated that Reb1, one of the most abundant 

GRFs in yeast (see II.1.1.3), is able to induce transcription termination by a roadblock 

mechanism (Colin et al., 2014). Subsequently we have shown that Rap1, another GRFs, also 

functions to limit RNAPII progression, most likely by a similar mechanism that involves the 

ubiquitin ligase Rsp5 (Candelli et al., 2018a). Importantly, the analyses of RNAPII distribution 

have revealed that Reb1 and Rap1-dependent termination events are widespread across the 

yeast genome.  

 

During the course of my first project, we have shown that RNAPII often fails to efficiently 

terminate at canonical termination sites thus leading to readthrough transcription. Readthrough 

transcription also accounts for the production of a significant number of non-coding and 

unstable transcripts. In this context, we demonstrated that, along their progression across 

DNA, inefficiently terminated RNAPIIs encounter roadblock factors that trigger termination by 

acting as a failsafe mechanism. Importantly, because both the RNA and the polymerase that 

are terminated by this pathway are thought to be degraded (Candelli et al., 2018a; Colin et al., 

2014; Roy et al., 2016), it is unlikely that roadblock serves as a productive pathway for 

upstream transcription events. Instead, we favour a model whereby roadblock would be 

important to protect downstream transcription by preventing invasion of promoters by RNAPII.  

 

An important notion for GRF-mediated roadblock termination is that it does not depend on the 

regulatory domain of the factor. Instead, we have shown that the expression of Reb1-DBD 

(Colin et al., 2014) and Rap1-DBD (Candelli et al., 2018a) are, alone, able to ensure proper 

termination upstream of their respective binding site. Remarkably, we also demonstrated that 

the expression of the DBD can be sufficient to allow normal expression of a gene located 

downstream of a Rap1-dependent roadblock site (Candelli et al., 2018a; Colin et al., 2014). 
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The DBD construct is missing domains described as necessary for transcription activation 

(Azad and Tomar, 2016; Hartley and Madhani, 2009; Ozonov and van Nimwegen, 2013; Tomar 

et al., 2008), which suggested that Rap1-DBD restores normal gene expression by other 

means than transcription activation. We originally interpreted these results as supporting the 

notion that the DBD could function by preventing upstream polymerases to invade the 

downstream promoter and cause transcriptional interference. This interpretation should, 

however, be revisited in the light of our latest study demonstrating that the Rap1-DBD can also 

support gene expression by correctly positioning proximal nucleosomes (Challal et al., 2018). 

Although this does not exclude an important role for roadblock termination in the maintenance 

of robust gene expression, the two roles of Rap1 DNA-binding (in termination and nucleosome 

positioning) have to be distinguished when assessing the impact on gene expression.  

 

Roadblock termination events occur upstream of many additional DNA-binding factors, 

including other GRFs such as Abf1, but also near the RNAPIII transcription machinery or 

around centromeres (Candelli et al., 2018a; Roy et al., 2016). More recently, the laboratory 

also provided strong evidence for roadblock termination events around Autonomously 

Replicating Sequences (ARSs), notably upstream of the ORC-binding factor (Candelli et al., 

2018b). Because most roadblock factors are associated with important DNA associated 

events, it is fair to assume that this alternative termination pathway plays a global role in 

preventing RNAPII to invade crucial regions, thus insuring the integrity of these processes. 

This might be more relevant in species with compact genome such as S. cerevisiae. Finally, 

since the mechanism and proteins involved in roadblock are generally conserved, we 

anticipate that this termination pathway is also present in more complex eukaryotes.  

 

GRFs control pervasive transcription at the level of initiation 

 

Many studies have shown that the intrinsic bidirectionality of promoters constitutes an 

important source of pervasive transcription (Churchman and Weissman, 2011; Jin et al., 2017; 

Marquardt et al., 2014; Neil et al., 2009; Rhee and Pugh, 2012; Xu et al., 2009). It has also 

been recently proposed that species-specific elements (e.g. cis-elements and/or trans-acting 

factors) favour transcription towards the functional direction across evolution (Jin et al., 2017). 

Consistently with this notion, we proved that depletion of Rap1, and GRFs in general, can alter 

the bidirectional balance at many promoter regions (Challal et al., 2018). Notably, we found 

that the absence of Rap1 leads either to the appearance of transcription at silent regions, or 

to an increase of RNAPII signal at pre-existing non-coding transcription units. In some cases, 

this can also result in increased TSS usage, suggesting the presence of more efficient initiation 

sites close to canonical TSSs. Importantly, while chromatin remodelers have already been 
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shown to impact promoter bidirectionality (Whitehouse et al., 2007; Xue et al., 2017; Yadon et 

al., 2010), our study is the first to unveil a similar function of GRFs. Moreover, our data are 

consistent with a parallel work from the van Werven lab showing that Rap1 supresses 

divergent non-coding transcription (Wu et al., 2018). Because pervasive transcription can 

impact the expression of neighbouring genes or other DNA-associated phenomenon, the 

comprehension of mechanisms that limit the later is crucial.  

 

GRFs and Transcription Fidelity: Impacts and Implications 

 

As previously mentioned, transcription initiates about 15 bp downstream of the 5’ edge of the 

+1 nucleosome in S. cerevisiae (see I.1.3). Upon Rap1 depletion, we have shown that the 

upstream shift of the +1 is not only associated with a decrease transcription efficiency from the 

canonical TSS, but also with the appearance of eTSSs located in a similar position relative to 

the newly positioned +1 nucleosome. For protein-coding genes, this is particularly important 

since aberrant initiation can lead to the production of mRNAs with premature stop codon and 

upstream ORFs, leading to the degradation of the later by NMD in the cytoplasm  (Malabat et 

al., 2015). Supporting this notion, we have shown that most ectopic transcripts arising within 

promoter regions upon Rap1 depletion are sensitive to Upf1 (NMD pathway). The sensitivity 

to Upf1 constitutes an indirect, but yet strong, proof that these RNA molecules are exported in 

the cytoplasm where they are translated. Thus, at least two different mechanisms co-exist in 

the cell to restrict the production of 5’ extended mRNAs: one occurring at the level of initiation 

by limiting their production and one in the cytoplasm that prevents the synthesis of aberrant 

peptides.  

 

GRFs, and most particularly Rap1, are able to both activate and repress gene expression. 

Heatmap analyses confirm the increase in the RNAPII signal at coding regions of some genes 

upon Rap1 depletion, suggesting upregulation of these genes in the absence of Rap1 (Challal 

et al., 2018). However, careful analysis revealed that in most (if not all) cases, transcription 

initiation is in reality arising from upstream TSSs that are more efficiently used than the 

canonical site (see for instance RXT3, YOR292C or NAT3 Figure 2F, 3C or 4F). This is also 

sometimes reflected at the RNA levels, notably when NMD does not degrade very efficiently 

the aberrant transcripts. Because upregulation is linked with the usage of a different TSS, this 

questions the real role of Rap1 in negatively regulating gene transcription. This notion is 

particularly relavant when considering large scale analysis and highlights the importance of 

considering not only the absolute signal within coding regions, but also the exact TSS from 

which the signal arises.  



189 
 

The notion that DNA-binding factors are important to control transcription fidelity is emerging 

in yeast but also in other organisms. In a recent study from the Brar lab, the authors reported 

that meiosis is characterized by an increase of mRNA production and a decrease of the total 

protein level. They demonstrated that this opposite effect is due to the production of 5’ 

extended RNAs containing upstream ORFs and a poor translation efficiency. Also, they 

proposed that the modification of the TSS might result from a modification or switch in the 

binding of specific transcription factors (Cheng et al., 2018). The Reb1 GRF has also been 

shown in a previous study to be required for proper TSS selection although this work was 

performed at a single locus (Wang and Donze, 2016). In mammals, the DNA-binding factor 

NF-Y is also involved in transcription fidelity and TSS selection. NF-Y shares important 

similarity with Rap1. Notably, this protein is also a ubiquitously expressed transcription factor. 

Akin to Rap1, NF-Y has the ability to displace nucleosomes by binding upstream TSS regions. 

In their study (bioRxiv), Oldfield and colleagues reported that depletion of NF-Y leads to an 

upstream shift in TSS selection leading to the production of 5’ extended RNA molecules. The 

correlation with nucleosome organisation has also been demonstrated, thus suggesting a 

similar model as the one proposed for Rap1. Finally, the same mechanism has been described 

in D. melanogaster where it involves the NLS-binding factor (Lam et al., 2019). Collectively, 

these studies all point out the crucial and evolutionary conserved role of promoter-binding 

factors in preventing ectopic initiation and in the maintenance of transcription initiation fidelity. 

 

The effect of Rap1 on gene expression was expected since it has been demonstrated in many 

instances to bind promoters of hundreds of genes and control their expression (see II.1.1.1). 

The main unexpected observation is that transcription can still occur upon its depletion, albeit 

from a different initiation site. This is due to the fact that NDRs formation is not completely 

abolished even in the absence of GRFs although the reason why is still unclear. The 

persistence of short NDRs could result from at least three distinct but not mutually exclusive 

phenomena: (i) the presence of other DNA-binding proteins that either remain or associate 

with DNA upon Rap1 depletion (ii) the constant action of chromatin remodelers even in the 

absence of Rap1 (iii) the DNA sequence itself that has been shown to be involved in 

nucleosome exclusion, especially at AT-rich sequences present upstream of TSSs (Iyer and 

Struhl, 1995; Yuan, 2005). This latter hypothesis is favoured by the fact that NDR-like regions 

are observed along purified yeast genomic DNA even in the absence of any GRFs and 

chromatin remodelers, suggesting an intrinsic tendency for nucleosomes to be excluded from 

promoter regions (Kaplan et al., 2009; Krietenstein et al., 2016). 
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Mechanism of Gene Regulation by GRFs 

 

Current models of gene regulation and NDRs formation by GRFs favour a mechanism whereby 

DNA-binding factors recruit chromatin remodelers in order to establish the correct position of 

the +1 and -1 nucleosomes thus promoting the assembly of the PIC. This model is supported, 

for instance, by pull-down assays showing the co-purification of remodelers with Rap1 (or 

truncated forms of Rap1) (Tomar et al., 2008). In addition, Reb1 and RSC have been shown 

to both affect similar NDRs in vivo (Hartley and Madhani, 2009). Finally, the fact that chromatin 

remodelers, but not GRFs, harbour a catalytic activity has reinforced the idea that they might 

be the main direct actors of NDRs formation. 

 

Comparison of Rap1 depletion with RSC, SWI/SNF, INO80 and ISW2 depletion however 

reveals a distinct profile and effect on both TSS and nucleosome positioning (Challal et al., 

2018). The clear difference between these factors strongly suggests that they function 

independently from one another. This is consistent with a recent publication from the Shore 

lab showing that the co-depletion of GRFs (Abf1 or Reb1) and RSC has a stronger effect on 

NDRs suppression as compared with either one of the two factors independently (Kubik et al., 

2018). The absence of epistatic effects indicates that, although GRFs and chromatin 

remodelers act concomitantly at similar targets, they act independently to promote NDR 

formation.  

 

The fact that GRFs and remodelers are in reality independent is an important result that raises 

the question of how GRFs can, on their own, provoke nucleosome exclusion at promoters. The 

observation that the DBD alone is sufficient to support normal chromatin structure at 

promoters, especially close to the Rap1-binding motif, at least partially answers this question 

(Challal et al., 2018). Indeed, we speculate that part of the nucleosome-displacing activity of 

GRFs is due to the establishment of a steric constraint at promoters, which prevents the 

invasion of nucleosomes and restores, in many instances, normal or quasi-normal gene 

expression. Our results are supported by one earlier study showing that Rap1-DBD is sufficient 

to promote activation of the HIS4 gene (Yu et al., 2001) but are not in line, in this respect, with 

the parallel work published by Wu and colleagues (Wu et al., 2018) which might challenge our 

model. In the latter study, the authors reported that truncated forms of Rap1 containing the 

DBD are not sufficient to supress the occurrence of non-coding transcripts at the MLP1 and 

IME1 loci (note that this analysis was not performed genome-wide). As already mentioned in 

the published manuscript (Challal et al., 2018), we do not reproduce these results in our system 

and clearly observe suppression at both the MLP1 and IME1 loci by expressing Rap1-DBD.  
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Also, by using the system and strains construct from the van Werven lab, we could successfully 

reproduce our results at a few diagnostic natural cases (data not shown). We suspect that the 

constructs used in that study do not bind DNA as efficiently as ours, possibly because they 

contain extra amino acids (tags and nuclear localization signals). Because the predictive value 

of a positive result observed genome-wide (suppression by Rap1-DBD) is higher than a 

negative result that is limited to only a couple of examples, we are confident in the validity of 

our model.  

 

What makes GRFs different from canonical transcription factors, notably in their ability to 

displace nucleosomes? In a recent study, Yan and colleagues developed an assay to identify 

proteins with nucleosome-displacing activity by inserting DNA-binding sites for various factors 

within a nucleosome-containing region (Yan et al., 2018). In this context, the authors verify the 

ability of hundreds of proteins to induce NDRs formation and could classify transcription factors 

into three main groups: strong, weak or no nucleosome-displacing activity. Unsurprisingly, 

Abf1, Reb1 and Rap1 as well as Cbf1, Orc1 and Mcm1 all belong to the first category of factors 

(i.e. highly capable of provoking NDRs formation). The authors could link this ability of the first 

category to their high abundance and binding affinity, thus defining two main features of 

nucleosome-displacing factors. Supporting the importance of the notion of “abundance”, 

factors from the second category (i.e. weak ability) behave similarly to the first category upon 

overexpression (Yan et al., 2018). Finally, the DBD of Ume6 (second category) is also sufficient 

to evict nucleosomes away from its binding site strengthening our model of steric occlusion.   

 

When considering the organisation of nucleosomes at a more distal position from Rap1 sites, 

we found that the C-terminal and/or N-terminal domains are required for proper localisation. 

This is particularly true for clusters 1 and 2 (Challal et al., 2018) characterized by large NDRs. 

We speculate that this might result from the loss of Rap1-associated factors at promoters such 

as Hmo1 and the FIS complex (see II.1.1.1 and Challal et al., 2018 Figure S5 and discussion 

section). This idea is supported by the fact that, in a WT context, these factors are located 

between Rap1 and the eccentric +1 nucleosome and that depletion of Hmo1 has also been 

associated with upstream shift of both RNAPII and nucleosomes (Kasahara et al., 2011; Reja 

et al., 2015). This hypothesis could be confirmed by verifying the presence of Rap1-associated 

factors upon expression of the DBD alone, or by expressing a truncated version of Rap1 

containing the interaction domains with the FIS complex.  
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Chromatin Remodelers Dictate TSS Decisions 

 

Among the different chromatin remodelers, four complexes are particularly important to 

influence the position of the +1 nucleosome: RSC, SWI/SNF, INO80 and ISW2. By mapping 

the position of TSSs upon their depletion, we could confirm that accurate position of the +1 is 

intimately linked with TSS selection and gene expression (Kubik et al., 2019). Upon RSC 

depletion, the shift of the +1 nucleosome towards the NDRs is usually associated with a 

repressive effect on TSS intensity, suggesting that RSC is important to correctly expose the 

initiation site to the transcription machinery. In some instances, the upstream re-positioning of 

the +1 is coupled to a change in TSS selection. These data are in agreement with a recent 

study that also reported these two possible phenomena (i.e. complete repression or change of 

TSS usage) upon RSC depletion (Klein-Brill et al., 2019). Importantly however, the extent of 

the shift is very different from what is observed upon GRFs depletion.  

 

More interestingly, a downstream shift of the +1 nucleosome observed upon INO80 and ISW2 

double depletion is also linked with the selection of downstream TSSs, even though the PIC 

most likely assembles in the same position. This is particularly intriguing because in this 

configuration, the canonical TSS is fully accessible and could therefore be used by the 

polymerase scanning from the PIC. The more plausible hypothesis to explain the concomitant 

shift of the +1 and TSSs (also discussed in Challal et al., 2018) is that the +1 nucleosome is 

required for initiation in vivo and directly influences the position of transcription initiation. 

Although the correlation between the position of the +1 nucleosome and the TSS is well-

established, whether it is the TSS that positions the +1 nucleosome or the reverse remains 

subject of debate. If the latter hypothesis is correct, we could speculate that the +1 nucleosome 

has specific features that favour initiation, or, more simply, that the first nucleosome 

encountered during scanning triggers initiation. However, it has to be noted that, despite the 

similarity of the transcription machinery, the distance between the +1 nucleosome and the TSS 

is not a conserved feature in eukaryotes (see I.1.3), suggesting that the role of the +1 

nucleosome on initiation might not be conserved. The comprehension of the mechanisms that 

link the +1 nucleosome to TSS selection is a particularly challenging and interesting topic that 

remains to be elucidated.  
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The Ground State of Transcription Initiation among Eukaryotic 

Genomes 

 

As previously mentioned, an important discovery of our study is that transcription initiation can 

occur from alternative and spurious sites upon Rap1 depletion. Although ectopic initiation is 

mainly arising within promoter regions upon Rap1 depletion, we also found cases of internal 

and more distal initiation events (Challal et al., 2018 see for instance Figure S3H). Similarly, 

spurious initiation has also been observed in various yeast mutants including SPT6, SET2, 

INO80, CHD1 or ISW1 and has been described in more complex eukaryotes (detailed in 

III.2.1). In most circumstances, ectopic initiation arises from promoter-like regions containing 

all the required elements for efficient initiation (Doris et al., 2018; Kaplan et al., 2003). The 

production of RNAs from alternative sites represents a potential danger for genome integrity 

as it can interfere with other DNA associated events and/or provoke synthesis of aberrant 

peptides. Yet, across evolution, the cis-elements leading to spurious initiation sites have not 

been counter selected. Instead, cells have developed mechanisms to restrict the usage of 

many possible alternative transcription start sites.  

 

The crowded genome: a barrier against spurious initiation 

 

Nucleosomes and DNA-binding proteins are often considered as “obstacles” against the 

progression of DNA and RNA polymerases that need to be removed in order to ensure the 

smooth progression of the different machineries. Yet, as indicated by various studies, aberrant 

displacement of nucleosomes can be associated with ectopic initiation, suggesting an 

important role for the later in ensuring genome integrity by occluding spurious transcription 

sites. At NDRs, we demonstrated that the binding of GRFs also plays a role in the control of 

TSS positioning, suggesting a similar function of GRFs and nucleosomes at least in their ability 

to limit alternative initiation. I envision that the presence of a well-positioned +1, together with 

the binding of regulatory factor, restrict the number of possible “spots” where PICs could 

otherwise assemble and therefore promote the binding at the most favourable sites. This 

appears to be essential considering the fact that the sequence required for transcription 

initiation is not based on a strong consensus, and is thereby probably found in many instances 

in the eukaryotic genome. Besides, in this context, it would be interesting to know how often 

an ectopically formed NDR could favour the firing of transcription in at least one direction.  
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Spurious initiation: a source of new genes?  

 

One possible line of evolution could have been to increase the complexity of promoter regions, 

thus limiting the number of possible ectopic PICs and alternative initiation events. So why are 

loose sequences used as docking sites for transcription initiation? A plausible explanation is 

that it may represent a stock of new promoters and initiation sites buried under nucleosomes 

that could emerge with evolution to promote the formation of new genes. In this case, the 

appearance or modification of a binding site for a regulatory factor could potentially be sufficient 

to form a new and stable NDR and create a promoter region. In this model, two different 

strategies could be envisioned: On one hand, the modification of a pre-existing NDR could 

favour the production of 5’-extended RNAs (as is it the case upon Rap1 depletion) containing 

additional regulatory regions within 5’ UTRs or giving rise to the production of longer proteins. 

On the other hand, the formation of an ectopic NDR could promote the synthesis of an RNA 

molecule containing a new ORF and therefore give rise to the emergence of a new poly-

peptide. Despite the possible role of spurious promoters in generating new genes, it is however 

important to mention that the increased number of genes does not represent a major source 

of evolution of eukaryotic species, as even highly divergent organisms such as yeast and 

human contain a relatively similar number of coding units (~6000 and ~25000 respectively). 

Instead, other mechanisms have been shown to contribute more significantly to the acquisition 

of organism’s complexity, including for instance alternative-splicing (Barbosa-Morais et al., 

2012).   
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Binding to RNA regulates Set1 function
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The Set1 family of histone H3 lysine 4 (H3K4) methyltransferases is highly conserved from yeast to human. Here we
show that the Set1 complex (Set1C) directly binds RNA in vitro through the regions that comprise the double RNA
recognition motifs (dRRM) and N-SET domain within Set1 and its subunit Spp1. To investigate the functional relevance of
RNA binding, we performed UV RNA crosslinking (CRAC) for Set1 and RNA polymerase II in parallel with ChIP-seq
experiments. Set1 binds nascent transcripts through its dRRM. RNA binding is important to define the appropriate
topology of Set1C distribution along transcription units and correlates with the efficient deposition of the H3K4me3 mark.
In addition, we uncovered that Set1 binds to different classes of RNAs to levels that largely exceed the levels of binding to
the general population of transcripts, suggesting the Set1 persists on these RNAs after transcription. This class includes
RNAs derived from SET1, Ty1 retrotransposons, specific transcription factors genes and snRNAs (small nuclear RNAs).
We propose that Set1 modulates adaptive responses, as exemplified by the post-transcriptional inhibition of Ty1
retrotransposition.
Keywords: Set1; transcription; RNA binding; H3K4 methylation
Cell Discovery (2017) 3, 17040; doi:10.1038/celldisc.2017.40; published online 24 October 2017

Introduction

Highly conserved histone proteins undergo several
types of covalent modifications including acetylation,
methylation, phosphorylation, ubiquitylation,
SUMOylation, citrullination and ADP-ribosylation
[1]. These modifications that are deposited and
removed by specific chromatin-modifying enzymes can
either directly alter the chromatin architecture or create

docking sites that facilitate the binding of specific
domains present in chromatin readers [2]. These read-
ers in turn recruit chromatin remodeling enzymes or
additional chromatin modifiers to shape chromatin
landscapes that regulate DNA accessibility [3]. Among
these marks, methylation of lysine 4 on histone H3
(H3K4) has aroused considerable interest [4]. In
mammals, this modification is catalyzed by at least six
different complexes that differ by their catalytic SET
domain subunit (Set1a, Set1b, Mll1, Mll2, Mll3 and
Mll4) [5] but share a protein module comprises WDR5,
RbBP5, ASH2L and DPY-30, which binds to the cat-
alytic SET domain and stimulate H3K4 methyl-
transferase activity [6]. Each complex contains
additional factors specifying their recruitment to
chromatin and their biological effect [7].

In Saccharomyces cerevisiae, all H3K4 methylation
is carried out by a complex called COMPASS (for
complex of proteins associated with Set1) or Set1C (for
Set1 Complex) [8]. The catalytic subunit Set1 acts as a
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scaffold for seven other components (Swd1 (mamma-
lian homolog RbBP5), Swd2 (WDR82), Swd3
(WDR5), Bre2 (ASHL2), Sdc1 (DPY-30), Spp1
(CFP1) and Shg1 (BOD1)) [9]. Swd1, Swd3, Bre2 and
Sdc1 associate with the SET domain of Set1 to form the
SETc that is minimally sufficient to methylate free H3
in vitro [9], whereas Spp1 and Shg1 directly associate to
Set1 by binding to the N-SET domain and the Set1
central region, respectively [10]. The loss of individual
Set1C subunits differentially affects Set1 stability,
complex integrity, the pattern of global H3K4 methy-
lation and the distribution of H3K4 methylation marks
along active genes [11]. TheWD40 repeat protein Swd2
is the only essential subunit of Set1C and its depletion
strongly affects Set1 stability and H3K4 methylation
[9]. Swd2 also belongs to the APT complex (for ‘asso-
ciated with Pta1’), which is part of the cleavage poly-
adenylation factor [12]. Several studies suggested a
functional link between Set1C and 3′-end formation/
termination [13] but it remains unknown how the
binding of Swd2 to either of the two complexes (Set1C
and APT complex) is regulated. Other regions outside
of the SET domain have been reported to regulate
Set1 catalytic activity, including the N-SET domain,
the double RNA recognition motif (dRRM) and
a centrally located auto-inhibitory domain, but
the mechanism underlying such regulation is still
elusive [14].

Genome-wide studies in yeast indicate that active
transcription is characteristically accompanied by his-
tone H3K4 trimethylation (H3K4me3) at the 5′-end of
genes and by H3K4 di- and monomethylation
(H3K4me2 and H3K4me1) at downstream nucleo-
somes [15]. H3K4me3 can also be found at the 3′-end
of a number of genes most likely reflecting the presence
of antisense ncRNAs (non-coding RNAs) [16]. These
H3K4 methylation patterns correlate with Set1 occu-
pancy that is higher at the 5′-end of coding regions of
highly transcribed RNA polymerase II (RNAPII)
genes and decreases at more distal nucleosomes [17].
Set1 has been reported to associate with the elongation
complex in the early stages of the transcription cycle,
which is thought to contribute to the prevalence of
H3K4me3 at the 5′-end of active genes. Recruitment
occurs when the carboxyl terminal domain of RNAPII
is preferentially phosphorylated at the serine in the fifth
position (Ser5) of its heptad repeats, which has been
reported to depend on the Paf1 complex [18]. However,
direct interactions that underpin the recruitment of
Set1C to actively transcribed genes remain to be
characterized. Although interaction of Set1C with
chromatin was proposed to be mediated by the

interaction of Swd2 with ubiquitylated H2B (H2Bub)
[19], this model has been challenged by in vitro recon-
stitution experiments showing that the Swd2-deficient
Set1C can methylate chromatinized H3K4 in an H2B
ubiquitylation-dependent manner [20]. Thus, current
models to explain Set1 recruitment and the establish-
ment of H3K4 methylation along genes in vivo still
need to be improved.

Set1 contains two tandem RRMs, RRM1 and
RMM2 (dRRM) [14]. We previously reported that
Set1 RRM1 contains the canonical RRM-fold but
lacks some typical RNA-binding features. Con-
sistently, RRM1 is necessary but not sufficient for Set1
to bind RNA in vitro and RRM2 was also shown to be
required [21]. Deletion or mutation of RRM1 has been
shown to lead to decreased H3K4me3 in the 5′ regions
of active genes along with an increase in H3K4me2
[14], opening the possibility that a potential RNA-
binding activity of Set1 could regulate Set1 occupancy
and/or the distribution of H3K4 methylation [22].

Here, we show that Set1 binds directly RNA and
that its dRRM and N-SET, as well as Spp1, contribute
to Set1 RNA binding in vitro in the context of a
reconstituted Set1C. By combining ChIP-seq and
CRAC experiments of Set1 and Set1 mutants that have
lost the ability to bind RNA, we show that Set1 RNA-
binding activity mediated by its dRRM does not affect
Set1 recruitment to chromatin per se but maintains
Set1 in the 5′ region of genes. We propose that RNA
binding to Set1 increases the time of residency of Set1C
in the proximity of chromatin allowing additional time
for H3K4 trimethylation in the 5′-end of genes. Our
results also indicate that Set1 strongly associates, pre-
sumably post-transcriptionally to transcripts produced
by specific classes of genes, including snRNAs small
nuclear RNAs, Ty1 and adaptive response genes.
In particular, we show that Ty1 retrotransposition is
negatively regulated by Set1 at a post-transcriptional
level.

Results

Binding of RNA in vitro by reconstituted Set1C involves
the dRRM and N-SET domains of Set1

Our previous results suggested that purified Set1
RRM1-RRM2 (dRRM) binds RNA in vitro [21]. We
reconstituted the whole Set1C [20] to analyze Set1
RNA binding in the context of the complex form of
Set1 with its associated subunits. Set1C was purified
from insect cells expressing FLAG-fused full-length or
truncated Set1 together with the seven other subunits
(Figure 1a and b). Purified complexes lacking specific
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domains of Set1 were incubated with in vitro tran-
scribed and purified GAL1 and GAL10 mRNAs.
Interaction was probed by electrophoretic mobility
shift assay (Figure 1c and d). We found that recon-
stituted Set1C was able to directly bind GAL1 and
GAL10 mRNAs in vitro. In agreement with our pre-
vious results, a truncated Set1 lacking the two RRM
motifs (C569) was unable to bind RNA. Surprisingly,
we found that the C762 fragment encompassing the
N-SET and the SET domains (Figure 1a) was able to
bind RNA in contrast to C569 and C938 that could
not. These results suggest that N-SET contributes to
Set1 RNA binding, which might be inhibited by the
region between residues 569 and 762 (Figure 1c and d).

To further confirm these results, we introduced
in the full-length Set1 the Y271F272/AA mutation

previously shown to decrease the RNA-binding activ-
ity of dRRM in vitro [21], as well as a deletion of the
dRRM, or the N-SET domain, and a combination of
these mutations [21] (Figure 2a and b). Consistent with
Figure 1, either the Y271F272/AA mutation or dRRM
deletion strongly affected Set1C RNA-binding in vitro
(Figure 2c and d). Deleting only the N-SET domain
also significantly decreased RNA binding suggesting
that the N-SET domain is important for RNA binding
(Figure 2c and d). However, we did not detect inter-
action of the N-SET domain alone with RNA (data not
shown) indicating that the N-SET domain is not suf-
ficient to bind RNA. As expected, combining altera-
tions of the dRRM with the N-SET deletion abolished
Set1 RNA-binding activity in vitro. We next assessed
whether Set1C subunits contribute by themselves to the

Figure 1 Purified Set1C binds directly to RNA in vitro. (a) A schematic diagram of Set1 and derived fragments with predicted
RRM1, RRM2, N-SET and post-SET (hatched box) domains and associated subunits. FL indicates full-length. (b) Sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and Coomassie blue staining of purified Set1Cs reconstituted
with baculoviruses expressing FLAG-Set1 or FLAG-Set1 fragments and untagged subunits. FLAG-Set1 polypeptides are marked
by asterisks. (c, d) Radiolabeled GAL1 (c) and GAL10 (d) transcripts were subjected to in vitro RNA electrophoretic mobility shift
assays with 0.5 (lanes 2, 4, 6, 8, 10 and 12) or 2.5 (lanes 3, 5, 7, 9, 11 and 13) pmoles of indicated Set1Cs.
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RNA-binding activity of Set1C by monitoring the
RNA-binding activity of each subunit. None of the
Set1C subunits were found to bind GAL10 mRNA
(Supplementary Figure S1A and B). Finally, as the
N-SET domain binds Spp1, we asked whether only
omitting Spp1 in Set1C reconstitution also affected
RNA-binding activity. The results shown in Figure 2e
indicated that Spp1 was required for Set1C to bind
RNA despite the fact that Spp1 by itself does not
bind RNA.

Collectively, these results show that the fully
reconstituted Set1C has the ability to bind mRNAs

in vitro. Unexpectedly, not only the dRRM motif but
also the N-SET domain and Spp1 contributed to the
ability of Set1 to bind RNA. Therefore, Set1C RNA
binding requires the presence of multiple protein sur-
faces comprising the dRRM, as well as N-SET domain
and Spp1.

Altering Set1 dRRM affects Set1 distribution along
genes

Before addressing Set1 binding to RNA in vivo, we
performed ChIP-seq analysis to determine the genome-
wide occupancy of Set1 and Set1 mutants. ChIP-seq

Figure 2 Set1C RNA binding requires dRRM, the N-SET domain, and Spp1. (a) A schematic representation of Set1, Set1YF/AA
and Set1 deletion mutants with predicted RRM1, RRM2, N-SET and post-SET (hatched box) domains and associated subunits.
(b) Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and Coomassie blue staining of purified Set1Cs
reconstituted with baculoviruses expressing FLAG-Set1 or FLAG-Set1 fragments and untagged subunits. (c, d) Radiolabeled
GAL1 (c) andGAL10 (d) transcripts were subjected to in vitroRNA electrophoretic mobility shift assays with indicated Set1Cs. (e)
Binding of Set1C and Set1C lacking Spp1 to radiolabeled GAL10. Set1C containing Set1ΔN-SET is also shown.

Set1 binds RNA

4

Cell Discovery | www.nature.com/celldisc

http://www.nature.com/celldisc


experiments were carried out from set1Δ cells expres-
sing N-terminal tagged (Z-tag-Tev-6HIS) version of
Set1 (PTH-Set1) [23]. Because in cells grown in SC-
LEU-TRP medium, the amount of PTH-Set1 was
similar to that of endogenous Set1 (Supplementary
Figure S2A) we used these conditions for ChIP-seq and
all subsequent experiments.

To address the importance of the Set1 domains
involved in RNA-binding in vitro for chromatin bind-
ing, we performed ChIP-seq experiments of PTH-Set1
and of its mutant forms (set1YF/AA, set1ΔdRRM, set1ΔN-

SET and set1ΔdRRM,ΔN-SET) with an anti-Set1 mouse
monoclonal antibody (anti-Set1 mAb) [24] that recog-
nizes a Set1 epitope between residues 700 and 761
(Supplementary Figure S2B and C). In parallel, we also
performed ChIP-seq of a Myc-Set1 strain with an anti-
Myc antibody (9E10). The occupancy profiles for
PTH-Set1 and Myc-Set1 at selected genes were overall
similar and both datasets were highly correlated
(Supplementary Figure S3A, B and C). Set1 occupancy
was maximum beyond the H3K4me3 peak and
upstream of the H3K4me2 peak and was slightly
3′-shifted relative to RNAPII occupancy
(Supplementary Figure S3D), in agreement with pre-
vious results indicating that Set1 and its subunits are
recruited at the 5′ region of active genes transcribed by
RNAPII [17].

Set1 protein amount was controlled in the different
mutant strains by western blot (Figure 3a). We repro-
ducibly observed a reduction of the PTH-Set1YF/AA

amount by about 1.3–1.5-fold in all experiments [21],
whereas deleting dRRM increased the stability of Set1.
PTH-Set1 was functional, as it supported wild-type
levels of H3K4me3 when expressed in a set1Δ back-
ground. In contrast, H3K4me3 was globally abolished
when the dRRM and N-SET functions were compro-
mised (Figure 3b). To evaluate the importance of the
Set1 domains characterized in vitro, we next assessed
the occupancy of PTH-Set1 and mutant forms by
ChIP-seq experiments.

Surprisingly, deleting dRRM or mutating it in PTH-
Set1YF/AA did not affect the distribution of the indivi-
dual ChIP signals calculated per each mRNA-coding
gene (Supplementary Figure S4 for PTH-Set1YF/AA,
and data not shown). To analyze the chromatin dis-
tribution of Set1 and its mutant derivatives in more
details, we generated normalized occupancy profiles
over large genes, which allows a better spatial resolu-
tion of recruitment regions. As shown in Figure 3c, the
aggregate signal for Set1YF/AA and Set1ΔdRRM shows
reduced occupancy in the 5′ region of genes relative to
wild-type (WT) Set1, which is compensated by an

average increase in the 3′-end of genes to generate the
observed unchanged overall signal on a per gene basis.
This trend is illustrated in Figure 3d for individual
genes. Deletion of the N-SET domain had no detect-
able impact in the distribution of signals (data not
shown) or the average profile of the signal (Figure 3c).

Figure 3 RRM but not N-SET regulates the genome-wide
occupancy of Set1. (a, b) W303 set1Δ::TRP1 pRS415-nHTP-
SET1 (and SET1 mutant forms) cells were grown in SC -TRP-
LEU. Protein levels of Set1 (a) and methylated histone H3
(b) were verified by western blots using anti-Set1 mAb and anti-
H3K4me1, me2, and me3 antibodies, respectively. A Rap1
loading control is shown. (c) Average enrichment profiles of
PTH-Set1 and PTH-Set1 mutants in genes41500 bp. Read
counts were normalized to read counts per million of mapped
reads. ChIP-seq experiments were performed with the anti-Set1
mAb from set1Δ::TRP1 cells expressing PTH-Set1 and PTH-Set1
mutants from the pRS415-nHTP (grown in SD -TRP -LEU).
(d) Normalized occupancy profiles of Set1 at the indicated genes.
Graphs were normalized to 10 million mapped reads for each
mutant.
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These results, together with the strong impact of the
Set1YF/AA mutation on in vivo RNA binding described
below, indicate that the dRRM domain of Set1 is not
required for the overall recruitment of Set1 to chro-
matin, but is essential for its normal distribution along
genes. Importantly, the N-SET domain that is essential
for Set1C catalytic activity (Figure 3b) and is required
to bind RNA in vitro, is not involved in the recruitment
and positioning of Set1.

Set1 binding to RNA in vivo is determined by both co-
transcriptional and post-transcriptional components

We next used the CRAC procedure to analyze
in vivo the genome-wide RNA binding of Set1 and
Set1YF/AA whose RNA-binding activity is compro-
mised in vitro to detect in vivo RNA-protein interac-
tions [25]. Briefly, tagged RNA-binding proteins are
UV crosslinked to their targets in vivo and purified by

three sequential steps of affinity selection, two of which
are under denaturing conditions. The associated RNA
is isolated and sequenced. We used the same PTH-Set1
and PTH-set1YF/AA constructs and growth conditions
used for the ChIP-seq. A non-crosslinked sample was
processed in parallel as a control for specificity. A spike
in control was generated by adding to the S. cerevisiae
cultures 0.5% of S. pombe cells expressing a non-
relevant HTP-tagged protein that binds RNA and
that was purified with S. cerevisiae Set1. The number of
reads mapping to the S. pombe genome was used for
normalization. We also monitored RNAPII distribu-
tion by the same CRAC technique, which provides
high-resolution information about the level of
transcription.

We identified 2543 mRNAs displaying high-
confidence Set1 RNA crosslinking sites for which the
number of reads obtained for the crosslinked sample

Figure 4 Set1 binding to RNA occurs via two different modes and requires its dRRM. (a) Dispersion plot showing high correlation
between the Set1 and RNAPII CRAC signals. The determination coefficient (r2) of the linear, least squares regression is indicated.
(b) Dispersion plot of Set1 CRAC signals versus Set1 ChIP-Seq (IP/input). (c) Distribution of the Set1 CRAC/Set1 ChIP ratios for
all mRNAs coding genes. The average, mode and median are indicated to highlight the asymmetry of the distribution. The shaded
area corresponds to the percentage of features whose Set1 CRAC/ChIP ratios are included in a range symmetrically positioned
around the mode. (d) Distribution of the Set1/RNAPII CRAC ratios in cells expressing PTH-Set1 and PTH-Set1YF/AA.
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(Set1 CL) was 45-fold over the no-crosslinked sample
(Set1 No-CL) (Supplementary Table S1). Set1 was
found to bind mRNAs but also several other transcript
classes (Supplementary Figure S5). Set1 binds at least
partially during transcription, as witnessed by the sig-
nificant representation of intronic RNAs in the cross-
linked material (see below). For assessing to what
extent Set1 binds the RNA during transcription, we
sought correlations between the Set1 CRAC signal and
the levels of RNAPII occupancy as determined by
RNAPII CRAC (Figure 4a) for all mRNA-coding
genes. We also compared the Set1 CRAC signal with
Set1 recruitment to chromatin as determined by ChIP-
Seq (Figure 4b). We reasoned that if binding to the
RNAwere co-transcriptional, theses datasets should be
highly correlated. Consistent with this notion, binding
of Set1 to the RNA correlated remarkably well both
with RNAPII CRAC (Figure 4a, r2 = 0.68; P = 3E-22)
and recruitment of Set1 to chromatin as measured by
ChIP (Figure 4b, r2 = 0.37; P = 9E-10).

The distribution of Set1 CRAC/ChIP ratios was
clearly not symmetric as could have been expected for a
homogeneous population with random variability
(Figure 4c). Rather, it was markedly skewed toward
high values (compare the difference between the mode,
the median and the average in Figure 4c) with only 63%
of the population symmetrically distributed around the
mode (shaded area) and the remaining values tailing
over a wide range of higher ratios. This suggests the
existence of at least two classes of genes: one major,
for which the levels of RNA binding relative to
chromatin-associated Set1 are relatively homogeneous;
the second displaying levels of Set1 binding to RNA
that are generally higher than expected based on the
sole co-transcriptional interaction. Overall, these ana-
lyses strongly suggest that the levels of Set1 binding
to the RNA detected by CRAC are generally domi-
nated by a co-transcriptional component but also
contain a post-transcriptional component that might
predominate for some genes (Supplementary Table
S1). Snapshots of the second class of mRNA are
shown in Supplementary Figure S6A and B. Interest-
ingly, the feature with the highest Set1 crosslinking
signal was the SET1 mRNA, which is fully consistent
with the notion that it associates with the Set1C
containing Set1, Swd1, Spp1 and Shg1 during its
co-translational assembly [26]. We further sought to
determine whether genes encoding this specific class of
transcripts (Supplementary Table S1) have physical and/
or functional associations. Evidence that many of the
proteins encoded by these genes are linked in reliable
networks stemmed from computational analysis [27].

Gene ontology analysis revealed that genes whose
transcripts were strongly bound by Set1 included some
involved in chromosome segregation and many tran-
scription factors (DNA-binding proteins) involved in
adaptive responses (Supplementary Figure S6C).

Mutation of the RNA-binding domain in Set1YF/AA

led to a marked decrease in the Set1 CRAC signal,
which affected uniformly the whole population of Set1
targets as indicated by a general shift in the distribution
of Set1/RNAPII CRAC ratios in the set1YF/AA mutant
relative to WT (Figure 4d). These data demonstrate
that the YF/AA mutation in Set1 dramatically affect
the interaction of Set1 with mRNAs in vivo, although
this interaction was not totally abolished but partially
maintained with a different topology (see below). Set1
was found to bind with similar set1YF/AA dependency
stable unannotated transcripts, cryptic unstable tran-
scripts and sno/snRNAs (Figure 5a–c). The first two
classes interact with Set1 to a somewhat lower extent
even when normalized to the RNAPII CRAC signal,
maybe because these RNAs are unstable and the post-
transcriptional component might contribute to less to
the CRAC signal. Many sno- and snRNAs appear to
be bound by Set1 post-transcriptionally, as suggested
by the large distribution of Set1/RNAPII CRAC
values (Figure 5c) and indicated by the general lack of
signal in the regions of the precursor (Figure 5d for the
U1, U2 and U4 snRNAs and data not shown). Inter-
estingly, spliceosomal snRNAs were among the
strongest binders (Figure 5d), possibly suggesting a role
of Set1 in splicing.

Aggregated distribution of Set1 binding on RNAs
We profiled the distribution of RNA-associated Set1

for different features aligned on the transcription start
site. As co-transcriptional RNA binding at any given
position is likely to be strongly dependent on the level
of transcription, we plotted in parallel RNAPII occu-
pancy as defined by the CRAC signal. As shown in
Figure 6a, binding of Set1 to the RNA was slightly
delayed relative to the appearance of the RNAPII
signal (see inset in Figure 6a), which resulted in a
relative Set1/RNAPII signal building up in the first
100–250 nt of transcription. This is consistent with the
notion that Set1 is recruited co-transcriptionally to the
RNA and suggests that it binds the nascent transcript
after interacting directly with the polymerase. In the
set1YF/AA mutant, the CRAC signal was markedly
reduced over most of the length of the transcription
unit, particularly in the 5′ region.

To assess the distribution of the Set1 signal in the
3′ region of genes we first calculated a positionally
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weighted average p(A) site (wPAS) for every gene (see
Materials and Methods section). This was necessary to
improve the quality of the alignment in the 3′-end of
genes as most genes have multiple polyadenylation
sites. To this end, we used T-fill data [28] and assigned
to every p(A) addition site a weight depending on the
intensity of the signal at that position. This was used to
generate a positionally weighted average p(A) site
(wPAS). As shown in Figure 6b, the polymerase signal
declines in this region, either because of multiple sites
of termination or to increased speed. Interestingly, the
Set1 signal is maintained and actually slightly increases

immediately before the wPAS. Intriguingly, this
increase is maintained in the YF/AA mutant, to the
point that the signals for the mutant and WT Set1 are
identical in this region. This surprising observation
indicates that the YF/AA mutation does not affect the
binding to the RNA in this region of the transcripts.
Whether this 3′ peak is mainly because of the co-
transcriptional or post-transcriptional binding of Set1
to the RNA cannot be determined from these experi-
ments. Note that if the 3′ peak were formed co-tran-
scriptionally, its intensity relative to the polymerase
signal, which decreases in this region (Figure 6b),

Figure 5 Set1 binds to different classes of RNA. (a, b, c) Normalized distribution of Set1/RNAPII CRAC ratios in cells expressing
PTH-Set1 and PTH-Set1YF/AA for the indicated classes of RNA. The position in the distribution of each RNAPII-transcribed
snRNAs is indicated in C. The distribution of ratios for mRNAs (Figure 4d) is shown in each graph. (d) Snapshots for Set1, Set1YF/
AA and PolI CRAC normalized signals for the indicated spliceosomal RNAs.
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Figure 6 Distribution of Set1-binding sites on RNA. (a, b) Metagene analysis of Set1 and Set1YF/AA RNA-binding signals on
mRNAs as observed by CRAC compared with polymerase occupancy (a) features aligned on transcription start site; (b) features
aligned on wPAS. Insets contain zooms of relevant regions. (c) Snapshots for Set1, Set1YF/AA, and PolI CRAC normalized signals
at the 5′ region of BAP2 and RPL17-A mRNAs. (d, e) Metagene analysis of Set1 and Set1YF/AA RNA-binding signals, (d) on
intronless and intron-containing genes, the distribution of intron position is indicated as well as the average position of introns;
(e) to cryptic unstable transcripts (CUTs) compared with size matched open reading frame (ORF).
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would be higher than in other regions of the RNA (see
Discussion). After the wPAS, both the WT and mutant
Set1 signals decrease steadily (Figure 6b, inset), indi-
cating that they are significantly above background
within the range of the transcription unit. The presence
of a Set1 3′ peak can be readily observed at individual
genes, most prominently in the mutant for which the

signal before the peak is generally lower (Figure 6c; see
also snapshots for the SET1, SLK19, and SWI1 loci in
Supplementary Figure S6), indicating that this beha-
vior is not limited to a small set of genes. These data are
compatible both with increased co-transcriptional
recruitment of Set1 in the region of termination and
with a post-transcriptional binding to the mRNA in the

Figure 7 Set1 represses Ty1 retrotransposition post-transcriptionally. (a) Example of the Set1 and Set1YF-AA binding on Ty1-1
mRNA. The Set1 CRAC and ChIP profiles are shown. (b) Global expression of endogenous Ty1 retrotransposons in SET1, set1Δ
or set1-YF/AA yeast cells, monitored by quantifying Ty1 mRNA levels by RT-qPCR (normalized to 25 S rRNA values; mean±
s.d.; n = 3). (c) Ty1 retrotransposition assay from a plasmid expressing a Ty1 element tagged with the his3AI reporter gene [33].
An intron is inserted in the HIS3 gene in an antisense orientation in a spliceable orientation in the Ty1 transcript resulting in a Ty1
complementary DNA (cDNA) bearing a functional HIS3 gene. The cDNA can then be integrated into the host genome. Cells that
sustain a Ty1-HIS3 retrotransposition event give rise to His+ colonies [32]. The position of the qPCR amplicons used to amplify all
the Ty1 mRNAs in (b) and the Ty1 reporter mRNA specifically expressed from the plasmid in (e) are indicated (Ty1 and Ty1-HIS3
amplicons, respectively). (d) Frequency of Ty1-his3AI retrotransposition in SET1, set1Δ or set1-YF/AA yeast cells (number of
His+ prototrophs divided by the total number of cells; mean± s.d.; n = 3). *p≤ 0.05 (Welch’s t-test). (e) Plasmid Ty1-his3AI
expression in SET1, set1Δ or set1-YF/AA yeast cells monitored by quantifying Ty1-HIS3 mRNA levels by RT-qPCR (normalized
to 25S rRNA values; mean± s.d.; n = 3).
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immediate vicinity of the poly(A) site. Importantly and
surprisingly, in both cases the interaction with the
RNA is not dependent on dRRM.

Prompted by the strong binding of Set1 to snRNAs,
we assessed the profile of Set1 binding to intron-
containing RNAs by comparing it with size matched
mRNA-coding genes. As shown in Figure 6d, Set1
bound intronic transcripts with similar or even better
efficiency than non-intronic RNAs, causing a slight
downstream shift of the 5′-peak of Set1 binding.
Binding of the Set1YF/AA was similarly affected at
intron-containing genes, as well as to the general
population. We also assessed binding to cryptic
unstable transcripts, a class of transcripts that are
unstable in WT yeast because they are rapidly degra-
ded in the nucleus [29], which we compared with
matched size small open reading frames. Set1 binding
to these features was lower than at small open reading
frames, even when normalization to RNAPII was
applied (Figure 6e) to account for the generally dif-
ferent levels of transcription. This could be due either
to specificities residing in the sequence of the cryptic
unstable transcript, or to nuclear degradation of
these RNAs.

Set1 represses Ty1 retrotransposition post-
transcriptionally

Among the mRNAs that were strongly bound by
Set1, presumably post-transcriptionally, we also found
Ty1 retrotransposon (Figure 7a). Binding of Set1 to
Ty1 mRNA was not affected by the YF/AA mutation
suggesting that Set1 binding to Ty mRNA does not
involve its dRRM (Figure 7a). The Set1YF/AA mutation
had no major effect on steady-state Ty1 mRNA levels
(Figure 7b) as previously reported for the set1Δmutant
[30,31]. This indicates that Set1 binding does not affect
Ty1 mRNA expression or stability. To assess whether
Set1 affects Ty1 retrotransposition, we performed a
typical retrotransposition assay based on a Ty1 ele-
ment marked with a his3AI reporter gene on a plasmid,
which confers His+ prototrophy to cells upon retro-
transposition (Figure 7c). In the absence of Set1, the
frequency of Ty1 retrotransposition significantly
increased (Figure 7d), whereas no change in Ty1HIS3
mRNA levels was observed (Figure 7e). This indicates
that Set1 can repress Ty1 mobility at a post-
transcriptional stage. In contrast, Set1-YF/AA, which
retains the ability to bind Ty1 mRNAs, repressed Ty1
retrotransposition as efficiently as WT Set1. These
results suggest that Set1 binding to Ty1 mRNA could
impair Ty1 mRNA export, translation or encapsida-
tion, all essential steps to Ty1 retrotransposition

efficiency. Of note, the less than twofold decrease in
Ty1-his3AI mRNA levels observed in the set1-YF/AA
mutant may not affect Ty1 retrotransposition
(Figure 7e), as much more Ty1 mRNAs are produced
than effective transposition events occurring in cells
[32]. However, we cannot exclude that the slight defect
in Ty1-his3AImRNA levels may mask a slight increase
in Ty1 cDNA integration that could be facilitated by
the modification of the histone methylation status of
the yeast genome in the set1-YF/AA mutant.

Reduced H3K4me3 levels are due to defective
recruitment or positioning of Set1 during transcription

Although we showed that the Set1YF/AA mutation
only marginally affects the recruitment of Set1 to
chromatin on a genome-wide scale, at the gene level a
variegated range of cases exists. In some instances, a
strong RNA-binding defect translates into a marginal
effect on recruitment (for example, MOT3, Figure 8),
in other cases (for example, PMA1 and ENO1)
recruitment to chromatin is affected in spite of a
moderate effect on in vivo crosslinking to the RNA as
revealed by the CRAC signal. Although it is unclear
why in these latter particular cases, the Set1YF/AA

mutation affects Set1 occupancy, we exploited these
individual differences to address the role of the nascent
RNA and Set1 recruitment in H3K4 methylation. As
shown in Figure 8b, in all these three cases H3K4me3
was found to be strongly reduced, indicating that nei-
ther the recruitment to chromatin (MOT3) nor the
crosslinking to the RNA alone (PMA1 and ENO1,
Figure 8) are sufficient to promote methylation.

The general strong decrease in methylation when
dRRM is mutated might be due to the defective posi-
tioning of the protein along transcription units, to an
allosteric requirement for RNA interaction or to a
general inactivation of the methylation function of Set1
by the Set1-YF/AA mutation. To distinguish between
these possibilities, we analyzed in vitro the histone
methyltransferase (HMT) activity of the Set1C con-
taining the Set1YF/AA mutation in the presence or
absence of RNA. As shown in Figure 8c, Set1C YF/
AA reproducibly displayed a higher HMT activity
compared with WT on a recombinant chromatin
template containing ubiquitylated H2B. This indicates
that the Set1YF/AA not only retained full HMT activity
but its in vitro activity was even enhanced. Addition of
purified GAL1 RNA did not improve the activity of
Set1C, and actually inhibited its function in a
concentration-dependent manner. As expected, it had
no effect when added to Set1C YF/AA (Figure 8c).
This strongly suggests that the interaction with RNA is

Pierre Luciano et al.

11

Cell Discovery | www.nature.com/celldisc

http://www.nature.com/celldisc


not required for activating the HMT function of Set1,
and is consistent with the possibility that RNA might
negatively regulate its activity.

Together, these results strongly suggest that binding
to the RNA is important to define the appropriate
topology of Set1C distribution along transcription

Figure 8 Reduction of Set1 occupancy and RNA-binding activity in Set1YF/AA correlates with reduced H3K4me3 levels. (a) ChIP-
seq and CRAC signals of PTH-Set1 (Set1) and PTH-Set1YF/AA (Set1 YF/AA) at representative genes. ChIP-seq bedGraphs were
generated by normalization to 10 million mapped reads for each sample. CRAC signals were normalized as described above. (b)
H3K4me3, me2, me1 occupancies at the indicated genes in W303 set1Δ::TRP1 pRS415-nHTP-SET1 and SET1YF/AA strains.
Levels of H3K4me3, me2 and me1 are normalized to total H3. Positions of the primers used for the ChIP-qPCR for each
representative gene are indicated. Errors bars represent the s.d. from three independent experiments. (c) Recombinant
chromatin template containing fully ubiquitylated H2B (H2Bub) was subjected to in vitro HMT assays with purified Set1C and
Set1C YF/AA in the absence and presence of purified GAL10 RNA [0.1 (lanes 2 and 7), 0.2 (lanes 3 and 8), 0.5 (lanes 4 and 9)
and 2 (lanes 5 and 10) molar ratio to Set1C. H3 methylated status was monitored by western blots with indicated antibodies.
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units, which is important for the deposition of the
H3K4me3 mark.

Discussion

In this study, we first showed with in vitro studies
that the interaction between Set1C and RNA is direct.
Both the dRRM and N-SET domains of Set1 con-
tribute to Set1 RNA-binding activity in vitro in the
context of the reconstituted complex. Although struc-
tural data indicated that dRRM has the canonical
structure to bind RNA [14], binding to RNA of the
C762 fragment alone was unexpected because none of
the C762 constituents (N-SET, SET and post-SET
domains and Spp1, Bre2, Sdc1, Swd3 and Swd1) has
a canonical RNA-binding motif. In addition, no direct
interaction of Set1C subunits and N-SET domain alone
(data not shown) with RNA was observed, strongly
suggesting that interaction with RNA is mediated by a
composite surface potentially involving all or some
components associated with the C762 fragment.
Interestingly, addition of residues 569–762 to the C762
fragment, which are known to have an inhibitory effect
on Set1 methyltransferase activity [10] inhibited the
RNA-binding activity of the C762 fragment, suggest-
ing that Set1 binding to RNA could regulate the
methyltranferase activity of Set1.

The involvement of the N-SET domain in RNA
binding is of particular interest as this domain acts as
central regulatory region of Set1C by its ability to bind
Spp1 [34] and Swd1 [20]. The N-SET domain also
mediates an Spp1-dependent interaction with the SET
domain and its associated subunits, an interaction that
likely regulates Set1 methyltransferase activity [35].
Other studies have indicated a cross-talk between Swd2
and Spp1 suggesting a complex regulation mediated by
Set1C subunits for interaction between the C- and the
N-terminal regions of Set1C [21]. In this work, we
found that omitting Spp1 in the reconstitution assay
strongly decreases Set1C RNA-binding activity.
Therefore, in the context of the full-length Set1, it is
possible that dRRM, Spp1 and the N-SET cooperate
to stabilize interaction with RNA. In vivo, inhibition of
the C762 RNA-binding activity by the region of Set1
encompassing amino acids 569–762 remains an open
question.

We performed ChIP-seq experiments with the same
Set1 mutants studied in vitro using an anti-Set1 mAb
[24]. We provide a high-resolution map of Set1 occu-
pancy indicating that the peak of Set1 occupancy is
shifted 3′ to the peak of H3K4me3 and slightly shifted
with respect to RNAPII average occupancy. Analysis

of ChIP-seq signals revealed that set1YF/AA mutation
did not affect Set1 recruitment to chromatin per se but
rather regulated Set1C distribution by maintaining
Set1 in the 5′ region of genes. In addition, we show that
the N-SET domain that is required to bind RNA
in vitro is not involved in recruitment of Set1 to chro-
matin, whereas it is essential for Set1C catalytic activ-
ity. Assessing the functional importance of the RNA-
binding activity of the N-SET remains a challenge for
future studies.

To assess whether Set1 binds RNA in vivo, we per-
formed CRAC experiments using Set1 and Set1YF/AA.
Our high-resolution and strand-specific CRAC analy-
sis shows that Set1 binds to RNA in vivo thereby
extending and providing a physiological facet to our
in vitro analysis with the reconstituted complex. CRAC
analysis is expected to detect binding to the RNA both
during and after transcription. In our experiments, the
occurrence of co-transcriptional binding is demon-
strated by the observation that Set1 binds to intronic
regions and is also strongly suggested by the highly
significant correlation with Set1 and RNAPII occu-
pancy (as determined by ChIP and CRAC, respec-
tively) for most features. Although it is formally
possible that the levels of transcription and/or Set1
chromatin occupancy also impact to some extent the
post-transcriptional binding to the RNA, we favor the
hypothesis that a co-transcriptional component dom-
inates in directing Set1 binding to the RNA for the
largest fraction of the population. Binding of Set1 to
the nascent transcript is not sequence specific and
occurs preferentially at the 5′-end of RNAs, with a
peak that is slightly shifted downstream relative to the
maximum of RNAPII occupancy as detected
by CRAC.

Our results indicate that the substitution of residues
Y271 and F272, which are part of the hydrophobic
core of RRM1 and predicted to be important for
maintaining the structure of whole dRRM [36],
strongly decreased Set1 RNA binding, particularly in
the 5′ region of RNAs in vivo. This result combined
with our ChIP-seq data supports the notion that Set1 is
recruited via protein–protein interactions and subse-
quently contacts the nascent RNA 5′-region via its
dRRM. Transfer of Set1C to the nascent RNA once
the latter emerges from the elongation complex would
contribute to position Set1 predominantly to the 5′
regions of genes.

The set1YF/AA mutation markedly affects the
deposition of the H3K4me3 mark at the 5′-end of genes
for all genes tested consistent with the fact that global
H3K4me3 is strongly reduced in the set1YF/AA mutant.
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Importantly, the set1YF/AA mutation in the context of
reconstituted Set1C enhanced the methyltransferase
activity of Set1C assayed on recombinant chromatin
containing ubiquitylated H2B.

There might be several mechanisms by which the
set1YF/AA mutation affects H3K4me3. Interaction with
the nascent RNA might be important to increase the
persistence of Set1C in the proximity of chromatin to
allow additional time for H3K4 trimethylation in the
5′-end of genes, whereas transcription proceeds at its
normal speed. It is possible that binding to the RNA
activates allosterically the HMT activity of the protein.
However, we showed that in vitro addition of the RNA
does not activate Set1 but actually inhibits H3K4
methylation, in a manner that depends on the RNA-
binding activity of Set1. It is not clear whether this
inhibition detected in vitro is physiologically relevant,
but the possibility exists that binding to the RNA could
regulate Set1 activity in some phases of the H3
methylation process. The simultaneous or sequential
interaction of Set1C with the polymerase and the nas-
cent RNAmight constitute a quality control strategy to
ensure deposition of the H3K4m3 mark only to regions
of active transcription. Whether RNA binding to
N-SET could contribute to such a process remains to
be determined.

Metagene analysis experiments revealed that Set1
was also crosslinked to mRNA at the 3′-end of the
molecules, showing a 3′ peak immediately before the
poly(A) addition site. Importantly, formation of this
3′ RNA-binding peak was fully insensitive to the
set1YF/AA mutation suggesting that the binding of Set1
at poly(A) sites is independent of its dRRM. Interest-
ingly, although the level of this peak was low relative to
the levels of Set1 at the 5′-end of genes, its intensity
relative to the polymerase signal (that is low in this
region) is the highest over the whole transcription unit,
suggesting that it might have functional significance.

The dRRM-independent formation of the 3′ Set1
peak may occur via a 3′ recruitment of Set1 by Swd2,
an essential subunit of Set1C that also belongs to the
APT complex, a subcomplex of the cleavage and
polyadenylation factor that is involved in mRNA and
snoRNA 3'-end formation [36,37]. These observations
might suggest a functional link between Set1C and
3′-end formation/termination but it remains unknown
how the binding of Swd2 to either of the two complexes
(Set1C and APT) is regulated. Swd2 was shown to
directly interact with the N-terminus of Set1 [20].
Consistent with this, Swd2 recruitment to the 5′ region
of genes is reduced when SET1 is deleted [38] but
whether Swd2 contributes to recruit Set1C at the

vicinity of the poly(A) site to signal cleavage and
polyadenylation remains to be determined.

We also observed a striking enrichment of Set1 to
snRNA, suggesting that Set1 could fulfill a function in
signaling splicing events. Consistent with this notion
we observed that Set1 is enriched within introns, even
when the signal is evaluated relative to the RNA
polymerase (that also increases in introns).

Interestingly, cryptic unstable transcripts were
under-represented when compared with matched size
small mRNAs, opening the possibility that at early
stages of ncRNA (non-coding RNA) transcription,
dRRM may compete with Nab3 RRM (of the Nrd1
complex) for the recognition of sequences in the nas-
cent transcript. This might explain the more efficient
termination of ncRNA observed in cells lacking Set1
[39,40].

Finally, we show that Set1 binds to a class of tran-
scripts to an extent that cannot be justified by a co-
transcriptional component alone, or, at least, not by
the same co-transcriptional component that holds for
the majority of the population. We therefore suggest
that Set1 can bind RNAs after transcription or that
binding occurs during transcription but additionally
persists in this class of genes. The very high level of Set1
bound to SET1 mRNA was previously uncovered [26]
and probably reflects the co-translational assembly
mode of Set1C. In this model, SET1 mRNA is bound
by the nascent Set1 protein that emerges from the
ribosome through indirect interactions with the trans-
lation machinery.

Set1 also binds post-transcriptionally to other tran-
scripts. Interestingly, many of these factors are tran-
scription factors some of which are functionally
related. For instance, Mot3 and Rox1, which are
transcriptional repressors of genes encoding cell wall
proteins [36] and of hypoxic genes [37] are functionally
linked with Msn2-Msn4 in the osmostress response [36]
and with Sok2 in the ergosterol biosynthetic pathway
[41]. Interestingly, Set1 was previously described to be
required for the expression of genes in the ergosterol
biosynthetic pathway [42]. Strikingly, Set1 binds also to
mRNA of several genes functionally related to chro-
mosome segregation, in line with recent results linking
Set1 to mitotic spindle assembly [43,44]. However, the
steady-state levels of these transcripts were not affected
by deletion of SET1, at least in rich medium (YPD)
[39], suggesting that Set1 might affect the expression of
these genes at levels that do not involve mRNA
synthesis or degradation rates, or that the impact of
Set1 is revealed only under defined growth or stress
conditions.
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Our results also show that Set1 binds to Ty1 mRNA
and repress Ty1 mobility at a post-transcriptional
stage. Our data uncover a new function of Set1C as a
repressor of Ty1 mobility and add another layer of
regulation by Set1 to previous studies showing that
Set1 had a synergistic role with the histone H4 mety-
hyltransferase Set5 in repressing transcription of Ty
transposable elements [23]. Although Ty1 retro-
transposition can alter yeast genome integrity and is
consequently a highly controlled process, release of
Ty1 repression is supposed to contribute to genome
evolution and cell adaptation to stress [45]. Therefore,
it would be interesting to determine whether Set1C
repression could be alleviated under stress conditions
that are known to stimulate Ty1 retrotransposition
[46,47].

Deciphering the role of the post-transcriptional
binding of Set1 to RNAs will reveal unexpected func-
tion of Set1C that might explain the incredibly complex
genetic interaction map of Set1 [48].

Materials and Methods

Purification of recombinant Set1C and subunits, in vitro
RNA electrophoretic mobility shift assay, and in vitro
HMT assay

Preparation of FLAG-tagged recombinant Set1C and sub-
units were as described [20]. For radiolabeled RNA probe pre-
paration, DNA duplexes containing T7 promoter sequence
(5′-TAATACGACTCACTATAGGG-3′) followed by 100-
nucleotide sequence encoding GAL1 or GAL10 mRNA start-
ing from the transcription start site were generated by PCR.
GAL1 and GAL10 RNA were transcribed by T7 RNA poly-
merase according to the manufacturer’s instructions (Promega,
Fitchburg, WI, USA) and then purified by gel elution method.
After removing 5′ phosphate by Antarctic phosphatase, the
5′-end of RNA was radiolabeled by T4 polynucleotide kinase
using [γ-32P]ATP and then purified by Sephadex column
(iNtRon, Seongnam, South Korea) and gel elution method. For
in vitro RNA electrophoretic mobility shift assay, reactions
containing purified Set1C or individual subunits and 0.25 pmole
of radiolabeled RNA in 20 μl reaction buffer (10 mM Tris-Cl
(pH 7.5), 1 mM EDTA, 5 mM MgCl2, 50 mM K-glutamate, 5%
glycerol, 1 mM DTT and two units of RNasin) were incubated at
room temperature for 30 min. The samples were resolved by
electrophoresis at 4 °C on 5% polyacrylamide gels in 1×TBE
buffer and subjected to autoradiography. For in vitro HMT
assay, 40 μl reactions containing 350 ng (histone amount)
recombinant chromatin assembled as described in Kim et al.
(2013) with H2Bub-containing histone octamer [49], purified
Set1C and 100 μM S-adenosylmethionine were incubated
at 30 °C for 2 h. Proteins were resolved by sodium dodecyl
sulfate–polyacrylamide gel electrophoresis and subjected to
western blots.

Strains, constructs and growth conditions
For reconstitution of Set1Cs, SET1, set1 mutants and Set1C

subunits genes were subcloned in pFASTBAC1 with or without
a FLAG tag [20]. Baculoviruses were generated according to the
manufacturer’s instruction (Gibco-Invitrogen, Waltham, MA,
USA). Sf9 cells were infected with combinations of baculo-
viruses and proteins/complexes were affinity purified on M2
agarose (Sigma, St Louis, MO, USA) as described [20].

Yeast strains and primers used in this study are described in
Supplementary Tables S2 and S3, respectively (see
Supplementary Information). Full-length SET1 and SET1
mutants were cloned into in pRS415-nHTP [23]. Expression of
the resulting constructs (Z-tag—TEV cleavage site—His6—
SET1) is under the control of MET25 promoter. The pRS415-
nHTP-SET1 (or SET1 mutants) were transformed into W303
set1Δ::TRP1 strain. Plasmid pRS415-nHTP-SET1 comple-
ments all the tested set1Δ-associated phenotypes of the set1Δ::
TRP1 strain. For ChIP-seq and CRAC experiments, W303
set1Δ::TRP1 pRS415-nHTP-SET1 (or SET1 mutants) cells
were grown in SC-TRP-LEU. RNAPII CRAC experiments
were performed from W303 cells expressing Rpb1-HTP and
grown in SC-TRP. Construction of fully functional chromoso-
mally encoded Myc9-tagged Set1 is described in Dehe et al. [10].

CRAC analyses
Cells in exponential phase were crosslinked with a Megatron

for 100 s (Set1) and 50 s (Rpb1), harvested by centrifugation,
resuspended in 2.4 volume/g of cells of TN150 buffer (50 mM

Tris pH 7.8, 150 mM NaCl, 0.1% NP-40 and 5 mM beta mer-
captoethanol) supplemented with protease inhibitors (complete,
Mini, EDTA-free Protease Inhibitor Cocktail). This suspension
was flash frozen in droplets and cells were mechanically broken
using the Mixer Mill MM 400 by doing five cycles of 3 min at
20 Hz. A non-crosslinked sample was treated in parallel as a
background control.

Powders were thawed and the resulting extracts were treated
for one hour at 25 °C with DNase I (165 U/g of cells) to solu-
bilize chromatin and then clarified by centrifugation for 20′ at
20 000 g at 4 °C. Subsequent purifications steps were performed
essentially as described with minor modifications from Gran-
neman et al. [50]. For both nPTH-Set1 and Rpb1-HTP strains,
adaptors were modified in order to sequence RNA molecules
from the 3′-end.

The RNA was recovered after proteinase K treatment and
reverse transcribed using specific primers. The resulting com-
plementary DNA was used to perform multiple PCR reactions
in a final volume of 25 μl using the following conditions: 0.4 μM
of each primers 0.2 mM dNTP, 2.5 U LA Taq DNA polymerase
from Takara, 1X LA PCR Buffer II and 2 μl of complementary
DNA per reaction with the programme: 2′ at 95 °C, (30′′ at
95 °C, 45′′ at 58 °C, 1′ at 72 °C) × 13 cycles, 5′ at 72 °C. PCR
were pooled and treated with 200 U of Exonuclease I (NEB) per
milliliter of PCR reaction for 1 h at 37 °C. After Exonuclease I
inactivation for 20′ at 80 °C, DNA was purified on PCR clean
up columns (NucleoSpin Gel and PCR Clean-up, Macherey-
Nagel, Düren, Germany) and sequenced using Illumina
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technology (San Diego, CA, USA). Primers are indicated in
Supplementary Table S2.

Samples were demultiplexed using the pyBarcodeFilter script
from the pyCRAC utility suite. Subsequently, the 3′ adaptor is
clipped with Cutadapt and the resulting insert is quality trimmed
from the 3′-end using Trimmomatic rolling mean clipping
(window size = 5, minimum quality = 25). At this stage, the
pyCRAC script pyFastqDuplicateRemover is used to collapse
PCR duplicates and ensure each insert is represented only once.
Each unique insert in our library is associated with a six-
nucleotides random tag within the 5′ adaptor. The resulting
sequences are reverse complemented with Fastx_reverse_-
complement (part of the fastx toolkit [51]), and mapped to the
R64 genome (sgd) with bowtie2 (-N 1 –f).

Read counts were normalized relative to reads derived from
an S. pombe spike that was added to S. cerevisiae cells before the
crosslinking step. The S. pombe spike cells contain a non-
relevant protein tagged with the same HTP tag that was co-
purified with the S. cerevisiae material. The positionally
weighted average poly(A) addition site (wPAS) for every gene
was calculated by weighting the position of each poly(A) site
using its intensity and calculating an average position.

ChIP-seq, data processing and ChIP-qPCR
ChIP of Myc-Set1 and PTH-Set1 were performed as pre-

viously described [52] with 9E10 (anti-MYC, Santa Cruz Bio-
technology, Dallas, TX, USA) and anti-Set1 monoclonal
antibodies (P Nagy, University of Toronto, Toronto, Canada).
Libraries were prepared from fragmented DNA using the Chip-
seq MicroPlex Library Preparation Kit v2 samples preparation
(Diagenode, Seraing, Belgium) according to the manufacturer’s
instructions. In all, 2 ng from IP samples were used as the
starting material. Each library was barcoded using MicroPlex
Single Index (Diagenode): iPCRtagT5, T6, T7 and T8 and
amplified for 10 and 6 cycles for IP and input samples, respec-
tively. Each library was quantified on Qubit with Qubit dsDNA
HS Assay Kit (Life Technologies, Carlsbad, CA, USA) and
then, size distribution was examined on the Bioanalyser with
High Sensitivity DNA chip (Agilent, Santa Clara, CA, USA), to
ensure that the samples have the proper size, no adaptor con-
tamination and to estimate sample molarity. Each library was
diluted to 4 nM and then pulled together at equimolar ratio.
Libraries were denatured according to the manufacturer’s
instruction and sequenced on a mid-output flow cell (130 M
clusters) using the NextSeq 500/550 High Output v2 150 cycles
kit (Illumina), in paired-end 75/7 nt mode, according to the
manufacturer’s instructions. In all, 148 million (M) paired-end
reads were generated (34–39M per sample) with 93%4 = Q30.

ChIP-Seq data quality was assessed using FastQC. FasQC: a
quality control tool for high-throughput sequence data. Avail-
able online at: http://www.bioinformatics.babraham.ac.uk/pro
jects/fastqc. Sequencing reads (FastQ format) were mapped to
the Saccharomyces cerevisiae genome (sacCer3) using BFAST
alignment tool with default parameters [53] (PMID 19907642)
to obtain a Binary Alignment Mapped (BAM) file. The sorted
BAM files were used to determine average profiles of ChIP-Seq
read density using ngs.plot software [54], (PMID 24735413)
around the transcription start site. Read counts were normalized

to the total number of million uniquely mapped reads or to read
count per million of mapped reads (RPM). The RPM values
allow samples to be compared regardless of differences in
sequencing depth. To generate BedGraphs for visualization on
genome browsers, ChIP-Seq BAM files were processed using
HOMER package. The tag directory for each sample was then
created using the makeTagDirectory tool and the corresponding
BedGraph was generated using makeUCSCfile tool with default
options. Only uniquely mappable reads (non-secondary align-
ment) were considered to create BedGraphs with a normal-
ization to 10 million mapped reads for each sample. To compare
Set1 binding positions on RNAwith Set1 occupancy on genes of
interest, the Multicov command from Bedtools [55] was used to
obtain read counts within each gene.

For ChIP-qPCR, samples were prepared as previously
described [52]. DNA was analyzed by real-time qPCR using
SYBR Green Premix Ex Taq (Takara, Mountain View, CA,
USA) in a Rotor Gene 6000 (Corbett Research, Labgene,
Archamps, France). Primers are listed in Supplementary Table
S2. The following antibodies were used: anti-H3 (Abcam1791,
Cambridge, UK), anti-H3K4me2 (Abcam-ab7766, Cambridge,
UK), anti-H3K4me3 (Abcam-ab8580), anti-Myc 9E10 (Santa
Cruz Biotechnology-sc-40) and anti-Rap1 (V. Géli’s laboratory,
Marseille, France).

Data access
ChIP-seq data sets (PTH-Set1, PTH-Set1YF/AA, PTH-

Set1ΔdRRM, PTH-Set1ΔNSET, PTH-Set1ΔRRM ΔNSET, PTH-
vector, Input PTH-Set1 and input PTH-Set1YF/AA), as well as
CRAC sequences generated during this work are deposited to
the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.
nlm.nih.gov/geo/) under the accession number GSE104486
(GSE104484 for chiPseq datasets and GSE104485 for CRAC
datasets).

Ty1 transposition assays
The pOY1 URA3, centromeric vector carrying a Ty1-his3AI

reporter element expressed from its own promoter was pre-
viously described [33]. Total RNAs were extracted from
yeast cultures after 4 h or 8 h at 20 °C, for Ty1 mRNAs or
Ty1-his3AI mRNAs respectively, using the Nucleospin
RNA II kit (Macherey-Nagel) and reverse transcribed with
Superscript-II reverse transcriptase (Invitrogen, Waltham, MA,
USA). Complementary DNA quantification was achieved by
real-time PCR with a LightCycler 480 system (Roche, Basel,
Switzerland) using SYBR Green incorporation according to the
manufacturer’s instructions. The amounts of the mRNAs of
interest were normalized relative to 25S ribosomal RNA values.
Primers used are described in Supplementary Table S2.

To estimate the frequency of Ty1his3AI mobility [32], over-
night liquid cultures were grown at 30 °C from an individual
clone in HC medium (Hartwell’s synthetic complete) [56],
lacking uracil and supplemented with 2% glucose. Each culture
was diluted to OD 0.01 in HC-URA medium and grown to
saturation at 20 °C, which is permissive for Ty1 transposition. In
all, 3 ml of each culture were plated on two HC agar plates
lacking histidine. Cell titer was determined by plating 10 000-
fold diluted cultures on YEPD rich medium. Plates were
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incubated for 3 days at 30 °C and counted to determine the
fraction of [HIS+] prototrophs. Ty1 retrotransposition fre-
quencies were defined as the mean of 3 experiments, each one
performed with four independent clones.
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Supplementary information 
 

Supplementary Figure S1. In vitro interaction of RNA with individual subunits of Set1C 

(A) SDS-PAGE and Coomassie blue staining of purified Set1C subunits.  

(B) Radiolabeled GAL10 transcripts were subjected to in vitro RNA electrophoretic mobility 

shift assay with purified Set1C subunits. 0.5 pmoles (lanes 4, 6, 8, 12, 14, 16) or 2.5 pmoles 

(lanes 5, 7, 9, 11, 13, 15, 17) of each subunit were added. Set1C is shown as a positive control 

at the same concentrations. 

 

Supplementary Figure S2. Expression of the PTH-Set1 and characterization of the anti-

Set1 mAb 

(A) Set1 amount in W303 and in W303 set1∆::TRP1 pRS415-Z-tag-Tev-6His-SET1 (PTH-

Set1) cells grown in SC -TRP-LEU-MET versus SC-TRP-LEU. Set1 and PTH-Set1 are 

detected with anti-Set1 mAb. 

(B and C) The anti-Set1 mAb recognized an epitope comprised in a Set1 region lying 

between residue 700 and 761. (B) Reconstituted Set1C- containing either Flag-Set1 (Full 

length, FL) or the indicated Flag-Set1 truncations- were analysed by Western blot either with 

anti-Flag (top) or anti-Set1 mAb (bottom). (C) Yeast strains expressing the indicated Set1 

deletion mutants (Soares et al. 2014) were analysed by Western blot with anti-Set1 mAb. 
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Only the Set1 mutant lacking the region from 700 to 761 is not recognized by the anti-Set1 

mAb.  

 

Supplementary Figure S3. Comparison of Myc-Set1 and PTH-Set1 occupancy profiles 

(A) Enrichment profiles of Myc-Set1 and PTH-Set1 at the indicated region of Chr VII. 

Graphs are normalized to 10 million mapped reads for each ChIP-seq.  

(B) Occupancy snapshots of Myc-Set1 and PTH-Set1 on representative genes. 

(C) The correlation plot between Myc-Set1 and PTH-Set1 datasets. Myc-Set1 and PTH-Set1 

read coverages were compared by Pearson correlation. Read coverages were computed using 

deepTools utility multiBamSummary version 2.5.3 after binning in 100 bp intervals and 

calculating the count per regions. 

(D) Metagene analysis of PTH-Set1 occupancy on big genes (> 1500 bp). Enrichment profiles 

were compared to those of H3K4me1, me2, and me3 [50] and RNAPII  [57].  

 

Supplementary Figure S4. Distribution of ChIP signals for PTH-Set1 and PTH-Set1YF/AA in 

the whole population of mRNA coding genes 

 

Supplementary Figure S5. Distribution of Set1 CRAC reads across transcript classes. 

Reads for rRNA have not been included as they are strongly represented in the sequencing 

reaction from the non-crosslinked sample and it cannot be established if these represent 

artefacts or bona fide signals. 

 

Supplementary Figure S6. Specific classes of mRNA are highly bound by Set1 relative to 

RNAPII 
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 (A) Examples of transcripts with high Set1/RNAPII CRAC signals. The RNAPII CRAC 

(Blue) and Set1 CRAC (green) signals are shown. The scale is indicated for each snapshot. 

(B) BAP2 illustrates a transcript that is co-transcriptionally bound by Set1.  

(C) Integration of protein-protein interactions among genes whose mRNA are highly bound 

by Set1, including direct (physical) as well as indirect (functional) associations.  The graph 

was performed using the STRING database.  

 

Supplementary Table Legends. 

 

Supplementary Table S1. CRAC and ChIP-seq datasets.  

Reads are indicated. Set1CL: Set1 cross-linked; Set1noCL:Set1 not Cross-linked.  

 

Supplementary Table S2. Strains used in this study 

Name genotype Ref. 

W303-1A 
Mat a leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 Rothstein RJ 

(1983)  his3-11,15 

W303-1A Myc-Set1 
Mat a leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 Dehé et al. 

2016  his3-11,15 Myc-Set1::TRP1 

W303-1A set1::TRP1 
Mat a leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 

This study 
 his3-11,15 set1::TRP1 

W303-1A set1::TRP1  Mat a leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
This study 

pRS415-nHTP  his3-11,15  set1::TRP1 pRS415-nHTP 
W303-1A set1::TRP1  Mat a leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 

This study 
pRS415-nHTP-SET1  his3-11,15  set1∆::TRP1 pRS415-nHTP-SET1 
W303-1A set1::TRP1  Mat a leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 

This study 
pRS415-nHTP-set1YF/AA  his3-11,15  set1::TRP1 pRS415-nHTP- set1YF/AA 

W303-1A set1::TRP1  Mat a leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
This study 

pRS415-nHTP- set1∆RRM  his3-11,15  set1::TRP1 pRS415-nHTP- set1∆RRM 

W303-1A set1::TRP1  Mat a leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
This study 

pRS415-nHTP- set1∆N-SET  his3-11,15  set1::TRP1 pRS415-nHTP- set1∆N-SET 

W303-1A set1::TRP1  Mat a leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
This study pRS415-nHTP- set1∆RRM, 

∆N-SET  his3-11,15 set1::TRP1  pRS415-nHTP- set1∆RRM, ∆N-SET 

W303-1A 
set1YF/AA::TRP1  

Mat a leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
This study 

 his3-11,15 set1YF/AA::TRP1 



	
   4	
  

 

 

 

Supplementary Table S3. Primers used in this study 

Name  Sequence 5' to 3' 
 5’-PMA1-F  TCAGCTCATCAGCCAACTCAAG 

qPCR 

5’-PMA1-R CGTCGACACCGTGATTAGATTG 
3’-PMA1-F TACTGTCGTCCGTGTCTGGATCT 
3’-PMA1-R CCTTCATTGGCTTACCGTTCA 
5'-MOT3-F AACACGACTACTGTTTCCTCT 
5'-MOT3-R AAGGGTATATATACTGCTGCT 
3'-MOT3-F GTTACGATACAAACATCAAGA 
3'-MOT3-R CTATTTGTTGTGACTAACAAT 
5'-ENO1-F CGATGACTTCTTGATTTCTTT 
5'-ENO1-R GTGCTTGTATAATGGGACATT 
3'-ENO1-F ACTTTCATTGCTGACTTGGTC 
3'-ENO1-R AACAGCGTTGTCACCTAATTC 
5'-Ty1 CATTGCGTCAAATGAGATCCAA 
3'-Ty1 GGTGTGGAATCGGTTGGACTC 
5'-Ty1-HIS3 TGTGATGACAAAACCTCTTCCG 
3'-Ty1-HIS3 ACGATGTTCCCTCCACCAAA 
5'-25S rRNA AACGTCTATGCGAGTGTTTGG 
3'-25S rRNA TTCCTCTGGCTTCACCCTATT 

L3-6N-GA /5rApp/GCTtcNNNNNNAGATCGGAAGAGCGTCGTGTAGGGAAAG
AGTGT/3ddC/ 

 3' adapter 
L3-6N-GU /5rApp/GCTacNNNNNNAGATCGGAAGAGCGTCGTGTAGGGAAAG

AGTGT/3ddC/ 

L3-6N-AC /5rApp/GCTgtNNNNNNAGATCGGAAGAGCGTCGTGTAGGGAAAG
AGTGT/3ddC/ 

L3-6N-UC /5rApp/GCTgaNNNNNNAGATCGGAAGAGCGTCGTGTAGGGAAAG
AGTGT/3ddC/ 

L5miRCat 5-/5InvddT/CTTGrGrCrArCrCrCrGrArGrArArUrUrCrCrA-3 5' adapter 
RT L3-2 ACACTCTTTCCCTACACGACGCTCTTCCG-3 RT 

P5_3prime AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA
CGCTCTTCCGATCT PCR 

miRCat_PCR2 CAAGCAGAAGACGGCATACGAgatcCTTGGCACCCGAGAAT PCR 
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RESUME DE THESE 

 

 

INTRODUCTION 

 

Mes travaux de thèse ont porté sur le rôle d’une classe de facteurs de transcription appelée 

GRF (General Regulatory Factors) dans le contrôle de l’expression et de la fidélité de la 

transcription des gènes de classe II. Chez les eucaryotes, l’ARN polymérase II (ARNPII) est 

responsable de la synthèse des ARNs messagers (ARNm). Le processus de transcription de 

ces ARNs par la polymérase est communément divisé en trois grandes étapes : l’initiation, 

l’élongation et la terminaison de la transcription.  

 

L’initiation de la transcription nécessite la formation du complexe de pré-initiation (PIC) 

composé de l’ARNPII et des facteurs généraux de la transcription. Au niveau des promoteurs, 

l’absence de nucléosomes et la présence de séquences spécifiques favorisent la 

reconnaissance du PIC et son assemblage. Une fois le complexe assemblé, la polymérase 

démarre la synthèse de la molécule d’ARN au cours du processus d’élongation. Cette étape 

fait intervenir de nombreux facteurs contribuant à l’avancer de la machinerie de transcription 

à travers la chromatine. Enfin, à l’extrémité 3’ des gènes, des signaux de terminaisons 

présents le long de la molécule d’ADN sont transcrits et aident au recrutement de facteurs 

capables de promouvoir le démantèlement de l’ARNPII et la libération de l’ARN naissant. Chez 

la levure, le complexe CPF-CF (cleavage and polyadenylated factor – cleavage factor) est le 

principal acteur de la terminaison des ARNm. Il est notamment impliqué dans le clivage du 

transcrit en court de synthèse et sa polyadénylation. Une fois la maturation de l’ARNm 

achevée, il est exporté vers le cytoplasme pour être traduit.  

 

En plus des ARNm, la polymérase II est impliquée dans la transcription de nombreux ARN 

non-codants (ARNnc) issus de la transcription dite « cachée » ou « pervasive ». Les CUTs 
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(cryptic unstable transcripts) sont parmi les premiers ARNnc de classe II découverts chez la 

levure S. cerevisiae et constituent la majeure partie de la transcription pervasive. D’autres 

ARNnc ont par la suite été décrits chez la levure (SUTs, XUTs, MUTs…) et diffèrent des CUTs 

de par leur métabolisme. De façon similaire aux ARNm, la transcription des ARNnc initie au 

niveau de régions dépourvues en nucléosomes (NDRs, nucleosome depleted regions). Une 

grande partie de la transcription cachée prend d’ailleurs naissance au niveau des promoteurs 

de gènes codant pour des ARNm. Ils peuvent chevaucher le gène voisin (même orientation) 

ou au contraire, être transcrits de façon divergente. La notion de promoteurs 

« bidirectionnels », c’est-à-dire capable de générer des évènements de transcription dans les 

deux orientations possibles, est particulièrement répandue et conservée de la levure à 

l‘homme et est notamment considérée comme étant la source majeure de ces transcrits 

pervasifs.  

 

Chez S. cerevisiae, les ARNnc sont hautement instables et dégradés dans le noyau des 

cellules. La dégradation rapide de ces transcrits est principalement associée avec une voie de 

terminaison spécifique nommée NNS (Nrd1, Nab3, Sen1). Tout comme la terminaison CPF-

CF, le complexe NNS reconnait des signaux de terminaison présents sur l’ARN naissant 

conduisant finalement à la libération du transcrit. Le complexe NNS est couplé avec l’exosome 

nucléaire à travers de multiples interactions directes et indirectes aboutissant finalement à la 

polyadénylation et la dégradation (ou la maturation dans le cas des petits ARN nucléaires ou 

nucléolaires) des molécules d’ARNnc. Certains ARNnc peuvent être terminés par le complexe 

CPF-CF et sont alors dégradés dans le cytoplasme par la voie NMD (nonsense-mediated 

decay) principalement dédiée à l’élimination de transcrits avec un décalage du cadre de lecture 

ou présentant une région 3’ UTR (utranslanted) anormalement longue.  

 

De façon intéressante, le rôle des ARNnc chez S. cerevisiae, si tant est qu’il existe, reste 

énigmatique. En effet, contrairement à beaucoup d’eucaryotes et de levures proches, la levure 

de boulanger ne possède pas de machinerie permettant la formation de siRNA, miRNA ou 
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autre petit ARNs impliqués dans le phénomène d’interférence par l’ARN. En revanche, de 

nombreuses études ont démontré un rôle important de la transcription pervasive dans le 

contrôle de l’expression des gènes codant des protéines par un mécanisme d’interférence 

transcriptionnelle. En effet, lorsqu’une ARN polymérase transcrit au travers du promoteur d’un 

gène voisin, cela conduit à une réorganisation de la chromatine et une diminution de la 

transcription de ce dernier. De ce fait, il est important que la transcription pervasive soit 

contrôlée afin d’éviter la survenue de conflits entre des évènements de transcription se 

chevauchant, ou entre la transcription et d’autres machineries associées à l’ADN (réplication, 

réparation, …).  

 

RESULTATS 

 

I. Analyse de la terminaison « roadblock » à l’échelle du génome entier 

 

Au cours de ma thèse, j’ai participé à l’étude d’une nouvelle voie de terminaison de la 

transcription par l’ARNPII appelée « roadblock ». La terminaison roadblock repose sur la 

capacité de certains activateurs transcriptionnels tels que Reb1 ou Rap1, à induire la 

terminaison en se liant à leur site de fixation sur l’ADN et en bloquant physiquement la 

progression du complexe d’élongation (Colin et al., 2014; Candelli et al., 2018). La collision 

entre l’ARNPII et Reb1 ou Rap1 induit un arrêt transcriptionnel qui est résolu par 

l’ubiquitinylation et la dégradation de la polymérase. Les ARNs ainsi terminés sont instables 

et dégradés dans le noyau par l’exosome nucléaire.  

 

Afin de déterminer l’importance de la terminaison roadblock à l’échelle du génome, nous avons 

dans un premier temps travaillé sur l’optimisation d’une technique appelée « CRAC » (UV 

crosslinking and analysis of cDNA). Le CRAC consiste à réaliser un pontage aux UVs afin de 

lier de façon covalente les protéines et ARNs en contact dans la cellule (Granneman et al., 

2009). Par la suite, un complexe d’intérêt est purifié via plusieurs étapes successives afin de 

récupérer et séquencer les ARNs. Dans notre cas, cette méthode a été utilisée dans le but 
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d’isoler les ARNs naissants associés à l’ARNPII afin d’évaluer la distribution de la polymérase 

le long du génome de S. cerevisiae et plus particulièrement au niveau des sites éventuels de 

roadblock.  

 

 

 
Figure 1. Analyse de la terminaison roadblock au niveau des sites Rap1 et Reb1.  
A. Distribution de l’ARN polymérase 2 déterminée par CRAC au niveau de régions 
génomiques alignées aux sites Rap1 (gauche) ou Reb1 (droite) en présence (bleu) ou après 
déplétion nucléaire (rouge) des facteurs de roadblock. Les flèches en violet représentent des 
unités de transcription transcrites par l’ARNPII en aval des sites de fixation de Reb1 et Rap1. 
B. Comme (A) mais en considérant uniquement les sites Reb1 et Rap1 localisés dans une 
région de 300 pb en aval de sites de terminaison CPF-CF. La distribution de la polymérase 
a été déterminée dans une condition sauvage (bleu) ou dans la mutant thermosensible 
rna15-2 (vert) a température non-permissive (37°C) pour le mutant. Figure issue de Candelli 
et al., 2018.  

 
 

L’étude des données de CRAC a permis de détecter l’accumulation de l’ARNPII en amont de 

nombreux sites de fixations de Reb1 et Rap1 (Figure 1A). En accord avec le rôle de ces 
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facteurs dans la terminaison, leur déplétion nucléaire est associée à la disparition de la pause 

transcriptionnelle au profit d’évènements de translecture en aval des sites Reb1 et Rap1 

(Candelli et al., 2018) (Figure 1A).  

 

De nombreux sites de fixation pour Reb1 ou Rap1 sont localisés au niveau de régions 

intergéniques, en aval d’autres gènes. Dans une précédente étude il a été montré que dans 

ce contexte, la terminaison roadblock pourrait fonctionner comme mécanisme de secours afin 

de limiter la progression d’ARNPII n’ayant pas terminé de façon efficace au niveau des sites 

de terminaisons primaire (Colin et al., 2014). Néanmoins, seul un nombre de cas limité a été 

analysé. En étudiant la distribution de la polymérase au niveau des sites Reb1 et Rap1 

localisés en aval des sites de terminaison canoniques (CPF-CF notamment), nous avons pu 

démontrer la généralité de ce mécanisme. En effet, dans ce contexte, une accumulation de 

polymérase peut être observée au niveau des sites de roadblock (Figure 1B). De plus, nous 

avons montré que l’augmentation des fuites transcriptionnelles (utilisation de mutants CPF-

CF) s’accompagne d’un accroissement du signal de la polymérase en amont des sites Reb1 

et Rap1. Cet afflux de polymérases, en augmentant localement la transcription en amont des 

sites de roadblock, a permis de faciliter la détection des pics de pause associés (Figure 1B). 

Cette étude nous a permis d’avoir une vision plus claire de l’importance de la terminaison par 

roadblock comme mécanisme de secours. 

 

De façon intéressante, nous avons découvert que l’ARNPII s’accumulait en amont de 

nombreux autres facteurs de liaison à l’ADN tel que les activateurs transcriptionnels Abf1, 

Ume6 et Ste12. De plus, Cbf1 et TFIIB, impliqués dans la structure des centromères et 

l’activation des gènes de classe III (dépendants de l’ARNPIII) respectivement, sont également 

capable de limiter la progression de l’ARNPII via un mécanisme de roadblock. Ensemble, ces 

données suggèrent que la terminaison roablock pourrait avoir un rôle important dans la 

protection et le maintien de l’intégrité des processus associés à l’ADN.  
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II. Rôle des GRFs dans le contrôle de la fidélité de la transcription  

 

Au cours de la précédente étude visant à étudier le rôle de Rap1 dans la terminaison 

roadblock, nous avons observé un phénomène intéressant se produisant en absence de Rap1. 

En effet, en plus de l’effet de répression ou d’activation de l’expression des gènes, nous avons 

découvert que la déplétion de Rap1 s’accompagne d’une augmentation du signal de l’ARNPII 

au niveau des région promotrices de nombreux gènes (Challal et al., 2018). Une analyse 

approfondie a révélé que ces évènements de modifications de l’initiation de la transcription se 

produisent pour environ 30% des cibles de Rap1 (Figure 2).  

 

Afin d’analyser l’effet de la modification des sites d’initiation sur l’expression des gènes, nous 

avons déterminé la position des TSSs en présence ou absence de Rap1. En réalisant cette 

expérience dans des cellules délétées pour UPF1 (impliqué dans la voie de dégradation NMD) 

nous avons montré que la majeure partie des ARNs produits à partir de sites ectopiques sont 

instables et dégradés dans le cytoplasme. Cette forte sensibilité de ces transcrits à la voie 

NMD est la conséquence de la présence de codons initiateurs situés en amont et entrainant 

ainsi un décalage du cadre de lecture ou la traduction de petites ORFs localisées en amont 

(uORF, upstream open reading frame). Cependant, un certain nombre de transcrits émanant 

de sites d’initiation ectopique s’avèrent être partiellement stables et probablement traduits. De 

façon générale, cette expérience révèle que le facteur de transcription Rap1 est capable de 

contrôler l’expression des gènes en partie en favorisant la transcription à partir de sites 

d’initiations appropriés.  

 

De façon intéressante, dans un contexte d’initiation ectopique (en absence de Rap1), la 

quantité de polymérase (CRAC de l’ARNPII) ou la quantité d’ARN totale (RNA-Seq) ne semble 

pas toujours un bon indicateur de l’expression des gènes. En effet, des analyses du niveau de 

protéines (western blot) révèlent que beaucoup de gènes sont réprimés en absence de Rap1 

malgré l’augmentation apparente de la quantité d’ARN et/ou d’ARNPII. Cette différence 
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observée s’explique notamment par l’existence de ces sites d’initiations ectopiques favorisant 

la production d’ARNs dont le potentiel codant est différent des ARNs issus des sites 

canoniques.  

 

Comme précédemment indiqué, une grande partie des promoteurs des gènes sont 

bidirectionnels favorisant ainsi la production d’une multitude d’ARNs non-codants. De façon 

inattendue, la déplétion de Rap1 s’accompagne d’une forte augmentation de la transcription 

au niveau des régions intergéniques, favorisant la production d’ARNnc. Cette observation 

suggère que Rap1 joue un rôle important dans le contrôle de la bidirectionnalité des 

promoteurs en régulant le nombre d’ARN polymérases au niveau de ces régions. Cette 

fonction de Rap1 comme répresseur de la transcription cachée pourrait notamment être 

importante afin de limiter les évènements d’interférence transcriptionnelle pouvant impacter 

l’expression de gènes codants.  

 

Afin de comprendre le mécanisme de régulation de l’initiation de la transcription par Rap1, 

nous avons cartographié la position des nucléosomes en présence ou absence de Rap1. En 

effet, Rap1 a été montré dans de nombreuses études comme étant important pour la formation 

des NDRs qui, elles même, favorisent l’initiation de la transcription. En comparant la position 

des nucléosomes avec celle des TSSs, nous avons montré qu’il existe une forte corrélation 

entre la réorganisation des nucléosomes en absence de Rap1 et l’émergence de nouveaux 

sites d’initiations ectopiques. Après déplétion de Rap1, la taille des NDRs liées par Rap1 est 

réduite. Cependant, la persistance de petites NDRs semble suffisante pour permettre à 

l’ARNPII d’initier de façon efficace. Ceci suggère que Rap1 n’est pas nécessaire au 

recrutement du PIC au niveau de ses gènes cibles et que le contrôle de l’initiation par Rap1 

est étroitement lié à sa capacité à influencer le positionnement des nucléosomes.  
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Figure 2. L’analyse de la distribution de l’ARNPII en absence de Rap1 révèle 
l’apparition d’évènements de transcription ectopique.  
A-D. Heatmaps montrant la distribution de la variation du signal (ratio log2) de l’ARNPII 
déterminée par CRAC au niveau de gènes contrôlés par Rap1 (n = 334) ou de gènes 
contrôles (n = 424) après 2h de déplétion de Rap1. Le signal est aligné sur les TSS 
(Transcription Start Sites) des gènes et est trié par ordre décroissant selon la valeur 
déterminée dans les corps du gènes (TSS à +200 pb) (A et B) ou dans la région promotrice 
(-200 pb au TSS). E-F. Distribution de l’ARNPII au niveau des locus RPS10A-YOR292C (en 
E) et RPL13B-RPS16A (en F). Le temps de déplétion de Rap1 est indiqué en minute pour le 
système anchor-away (Rap1-AA) ou le système dégron (Rap1-AID). Les flèches noires 
indiquent le sens de la transcription. Figure issue de Challal et al., 2018.  
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Comme beaucoup de régulateurs transcriptionnels, Rap1 possède un domaine de liaison à 

l’ADN (DBD) séparé du domaine de régulation (ou d’activation). Le domaine carboxy-terminal 

de Rap1 joue un rôle important dans le contrôle de l’expression des gènes. Il a notamment été 

montré comme étant important pour l’interaction et le recrutement de différents complexes 

incluant certains composants du PIC. Afin de déterminer si le domaine de régulation joue un 

rôle dans la répression des TSS ectopiques, nous avons exprimé une version tronquée de 

Rap1 ne comportant que le domaine de liaison à l’ADN. Dans ce contexte, nous avons analysé 

la position des nucléosomes et l’expression des gènes. De façon très surprenante, nous avons 

découvert que l’expression du DBD de Rap1 est suffisante pour rétablir presque complétement 

la position normale des nucléosomes ainsi que pour empêcher, dans de nombreux cas, la 

transcription à partir des sites ectopiques observée en absence de Rap1. De plus, l’expression 

des gènes pour lesquels la position des nucléosomes est rétablie en présence du DBD est 

également restaurée. Ces résultats démontrent qu’une grande partie de la fonction de Rap1 

dans le contrôle de la position des nucléosomes, la régulation de l’expression des gènes et 

l’inhibition des TSSs ectopiques est portée par le domaine de liaison de l’ADN. A partir de ces 

résultats, nous avons proposé que Rap1 agit probablement par un mécanisme 

d’encombrement stérique en empêchant les nucléosomes d’envahir les régions promotrices.  

 

La capacité de Rap1 à promouvoir la formation des NDRs a longtemps été attribuée à son 

aptitude à recruter les facteurs de remodelage de la chromatine au niveau des promoteurs. 

Parmi les différents remodeleurs, les complexes RSC et SWI/SNF ont été particulièrement 

étudiés. En effet, ces facteurs agissent au niveau de nombreuses NDRs en expulsant les 

nucléosomes des promoteurs. Afin de tester le lien entre Rap1, les complexes de remodelage 

de la chromatine et le choix du site d’initiation de la transcription, nous avons cartographié et 

comparé la position des TSSs en présence / absence de Rap1, de RSC (déplétion de Sth1) 

ou de SWI/SNF (déplétion de Snf2). De façon surprenante et en accord avec une récente 
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étude (Kubik et al., 2018), la déplétion de RSC et SWI/SNF a un effet moindre sur le 

déplacement des nucléosomes en comparaison avec la déplétion de Rap1. De plus, les 

évènements d’initiation ectopique observés en absence de Rap1 ne se retrouvent pas 

présents au sein des cellules pour lesquelles RSC et SWI/SNF ont été déplétés. L’ensemble 

de ces données indique que les facteurs de remodelage de la chromatine et Rap1 agissent de 

façon indépendante mais coordonnée afin de permettre le positionnement correct des 

nucléosomes situés de part et d’autre de la région promotrice. Ceci renforce également l’idée 

que Rap1 régulerait l’expression des gènes en partie par un mécanisme d’encombrement 

stérique.  

 

Enfin, en analysant la distribution de l’ARNPII en absence d’autres facteurs de transcription 

(Reb1 et Abf1), nous avons montré que le rôle de Rap1 dans le contrôle de l’initiation de la 

transcription semble être une caractéristique partagée par d’autres GRFs. De plus, d’autres 

facteurs de liaison à l’ADN ont été récemment décrits comme étant important pour la régulation 

du choix du TSS et le maintien de la fidélité de la transcription chez différents organismes 

(Homme et D. melanogaster par exemple) (Oldfield et al., 2018 bioRxiv ; Lam et al., 2019).  

 

CONCLUSION 

 

Mes travaux de thèse ont permis de mettre en évidence de nouvelles fonctions de certains 

facteurs de transcription en lien avec l’expression des gènes et le maintien de la fidélité de la 

transcription. Nous avons notamment montré que la fixation des GRFs au niveau de leur site 

de liaison permet de prévenir de la progression de complexes d’élongation issus d’évènements 

de translecture en amont du GRFs. Les ARNs ainsi terminés sont instables et peuvent être 

considérés comme produits de la transcription cachée. En plus de contrôler la transcription 

cachée au niveau de la terminaison de la transcription, les GRFs ont aussi un rôle important 

dans la régulation de l’initiation. En effet, ils sont capables de limiter la quantité de polymérase 

impliquée dans la production d’ARNs non-codants issus des promoteurs bidirectionnels. En 
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agissant à la fois sur l’initiation et la terminaison de la transcription cachée les GRFs 

permettent très probablement de restreindre les effets potentiellement délétères de cette 

dernière en limitant les évènements de conflit entre la transcription RNAPII dépendante et 

d’autres évènements associés à l’ADN.  

 

Finalement, nous avons également montré que les GRFs ont une fonction très importante 

dans le contrôle de la transcription des gènes codants et ce, non seulement sur le plan 

quantitatif en agissant sur le nombre de polymérases initiant à un endroit donné, mais 

également d’un point de vu qualitatif en favorisant l’utilisation de TSSs permettant la production 

de transcrits ayant un fort potentiel codant. De ce fait, les GRFs s’avèrent essentiels pour 

assurer une expression fidèle des gènes chez la levure S. cerevisiae.  
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Ces dernières décennies ont été marquées par la 

découverte de la transcription dite « cachée » ou 

« pervasive ». Il a été en effet montré que la majeure 

partie du génome des eucaryotes est transcrite, 

donnant naissance à la formation de nombreux ARNs 

non-codants. La délimitation des unités de 

transcription apparait essentielle dans le contrôle de 

l’expression des gènes mais également dans le 

maintien de l’intégrité des processus associés à 

l’ADN en limitant notamment l’apparition de conflits 

avec la transcription. Dans ce contexte, l’initiation et 

la terminaison de la transcription représentent des 

étapes clés dans le partitionnement du génome et le 

métabolisme des ARNs. Nous avons montré que 

certains facteurs de transcription, appelés GRFs 

(General Regulatory Factors) chez la levure S. 

cerevisiae, jouent un rôle important dans le contrôle 

de la transcription pervasive à la fois au niveau de 

l’initiation mais également de la terminaison de la 

transcription et sont également requis pour assurer la 

fidélité de la transcription des gènes codant les ARN 

messagers.  

Nous avons prouvé que les GRFs liés au niveau des 

régions promotrices sont capables d’induire la 

terminaison de la transcription en bloquant 

physiquement la progression d’ARN polymérases 

issues de la translecture des terminateurs situés en 

amont. D’après nos études, cette voie de terminaison 

appelée « roadblock » est très répandue à l’échelle du 

génome et joue un rôle important dans la protection 

des promoteurs contre l’interférence 

transcriptionnelle. Nous avons également découvert 

que les GRFs limitent la transcription pervasive en 

obstruant les sites d’initiations ectopiques situés à 

proximité de leur site de fixation sur l’ADN. Ces 

facteurs sont aussi impliqués dans le contrôle de 

l’expression des gènes codants en favorisant 

l’utilisation de sites d’initiations les plus appropriés, 

c’est-à-dire, permettant la synthèse d’ARNs ayant un 

fort potentiel codant. Le rôle des GRFs dans le 

contrôle de l’initiation apparait intimement lié à leur 

capacité à correctement positionner les nucléosomes 

au niveau des promoteurs en collaboration avec les 

facteurs de remodelage de la chromatine. 
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The last decades have been marked by the discovery 

of pervasive transcription. Indeed, many studies have 

shown that transcription by RNA polymerase II is not 

restricted to annotated regions but is widespread in 

eukaryotic genomes, leading to the production of a 

plethora of non-coding RNAs. Precise delimitation 

of transcriptional units appears to be essential to 

ensure robust fidelity of gene expression and to 

maintain the integrity of DNA-associated events by 

preventing the occurrence of conflicts with 

transcription. In this respect, accurate transcription 

initiation and termination represent crucial 

mechanisms to partition the genome and define the 

correct processing of RNA molecules. Here, we 

show that yeast general regulatory factors (GRFs), a 

class of highly expressed transcription regulators, 

control pervasive transcription at the level of 

initiation and termination and are also involved in the 

fidelity of initiation of mRNA-coding genes. We 

demonstrate that GRFs bound at promoter regions 

can elicit transcription termination by physically 

impeding the progression of polymerases mainly 

deriving from readthrough transcription at upstream 

canonical termination sites. We provide evidence that 

this termination pathway named roadblock is 

widespread throughout the yeast genome and 

protects promoter regions from transcriptional 

interference. Furthermore, we establish that the 

presence of general regulatory factors limits 

pervasive transcription at the level of initiation, 

notably by occluding spurious transcription start sites 

present in the vicinity of their binding sites. We also 

unveil the importance of these factors in promoting 

correct transcription start site selection at mRNA-

coding genes thus favouring the synthesis of 

transcripts with an appropriate coding potential. 

Finally, we determine that the role of GRFs in 

controlling proper initiation is intimately linked to 

their ability to correctly position nucleosomes in 

promoters, a role that occurs independently from but  

in cooperation with chromatin remodelers. 
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