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Méthodologies et Outils de Synthèse pour des
Fonctions de Filtrage Chargées par des

Impédances Complexes
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Examinateurs
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Abstract

The problem of impedance matching in electronics and particularly in RF engineering
consists on minimising the reflection of the power that is to be transmitted, by a genera-
tor, to a given load within a frequency band. The matching and filtering requirements in
classical communication systems are usually satisfied by using a matching circuit followed
by a filter. We propose here to design matching filters that integrate both, matching and
filtering requirements, in a single device and thereby increase the overall efficiency and
compactness of the system.

In this work, the matching problem is formulated by introducing convex optimisation
on the framework established by the matching theory of Fano and Youla. As a result, by
means of modern non-linear semi-definite programming techniques, a convex problem,
and therefore with guaranteed optimality, is achieved.

Finally, to demonstrate the advantages provided by the developed theory beyond the
synthesis of filters with frequency varying loads, we consider two practical applications
which are recurrent in the design of communication devices. These applications are, on
the one hand, the matching of an array of antennas with the objective of maximizing the
radiation efficiency, and on the other hand the synthesis of multiplexers where each of the
channel filters is matched to the rest of the device, including the filters corresponding to
the other channels.
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Chapter 1. Structure and organization of the manuscript

The work presented here is the result of a long collaboration between two institutions of
different nature and different backgrounds. On one side INRIA, the national institute of
research in computer science and automatic and on the other hand XLIM, a laboratory
belonging to the University of Limoges, the CNRS and the University of Poitiers. These
two laboratories provide different competencies to this thesis, which at the same time are
complete. INRIA is an institute focused on fundamental research, which in many cases
provides some degree of rigorous solutions to external problems, which may come from
the private or public sector. In particular, the work presented here has been done within
the teams APICS/FACTAS at INRIA and MACAO at XLIM.

The APICS team (which has subsequently been converted into FACTAS) is spe-
cialised in functional analysis applied to communications. In particular, among the usual
topics are the inverse problems in electromagnetism for the location of electromagnetic
sources and the problems of rational approach for the identification and modelling of
communication systems.

XLIM presents a more applied background in continuous contact with the most
relevant agents in the space communications sector. Most of the products developed
in the laboratory are directly transferred to the industry. Among the most recurrent
topics are the design of filters for radio-frequency systems using diverse technologies. We
could highlight, for example, the microwave filters built from resonant cavities and other
devices such as multiplexers, direct application of the filters presented. Besides, the
MACAO team of XLIM has a great experience in the prototyping of these components
through additive manufacturing processes.

As a result of the collaboration between both institutes, the present thesis contains
a fairly extensive theoretical part, but without forgetting the implementation of real
devices, which are manufactured in the laboratory XLIM and measured to validate the
theory developed.

In addition to the mentioned collaboration, the work presented here is also the result
of double founding between two organisations of diverse nature and interests. On the one
hand, the French armaments directorate (DGA) and, on the other hand, the national
centre for space studies (CNES). This double financing implies a dual thematic because
of the difference of interests between the two organisations. For this reason, the thesis
has been divided into two parts which, although they share the same background, can be
well differentiated.

Below we summarise the content of each chapter in each of the parts. In this way, the
reader can get an idea of the subject of each chapter and the type of background necessary.
This practice allows a better organisation during the reading of the manuscript, possibly
omitting specific chapters that may not be very interesting for a particular type of reader.
The first part consists of a common introduction to both parts 2 and 3. This part is
composed of 3 chapters including the present one.

1. The current chapter provides a general vision of the framework in which this thesis
has been developed as well as a brief summary of each other chapters. We also
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introduce the different institution involved in this work.

2. In the chapter 2, we review some of the most important concepts for the correct
understanding of the theory developed in subsequent chapters. Particularly some
classical theorems in the field of functional analysis that can be useful for a reader
with a background in engineering. At the same time, the most important concepts
regarding the design of radio-frequency devices are formulated from a mathematical
perspective. In this way, we facilitate reading to a reader with a different back-
ground.

3. After having introduced the basic concepts necessary for the understanding of the
thesis, it is time to take a journey through the history of the matching problem.
Chapter 3 is, therefore, a bibliographic chapter where the main contributions to the
matching problem that can be found in the literature are reviewed. Besides, we
also take the opportunity to lay the foundations of the problem that will occupy us
during the first part of the thesis.

In the second part, we find a study of the problem of matching in radio-frequency
devices. This part is based on the theories developed in the 40s and 50s mainly by Fano
and Youla. The content of this first part has been distributed in the following seven
chapters.

4. In chapter 4, we continue with the study of the problem of matching, from where we
left it in the previous chapter. Precisely, we return to the problem originally posed by
Fano and reformulated by Youla later. This problem has remained unresolved since
the 1950s. Thanks to the theory developed in this chapter, combining the original
problem with modern techniques of convex optimisation, we achieve a significant
advance towards the solution of this problem, guaranteeing optimality in certain
particular cases. Additionally, we present as an example the particular case of the
matching of an antenna which is modelled by a rational function of grade 1.

5. In chapter 5, we extend the theory presented previously in the framework of a
degree 1 antenna. In this way, we obtain a completely generalised formulation of
the problem of matching. Thanks to this formulation, the results obtained can
be applied to other problems more complex than the one of grade 1. Also, an
important property of said formulation is introduced, which will allow the numerical
implementation of the problem in question.

6. After having introduced the general problem that we are trying to solve in this work,
in chapter 6 we make a small parenthesis to a particular case of the matching problem
which is of relevance for the antenna community and has not been considered before.
We also use it to present some preliminary results, comparing the provided lower
bounds with the matching level obtained by means of a matching filter of fixed
degree. With this chapter, we intend to provide the reader with an additional
motivation on the usefulness of the problem of matching before moving on to the
numerical implementation.

In part III we deal with a topic that is a little different from the rest of the thesis. In
this chapter, we provide a numerical implementation of the matching problem. This
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Chapter 1. Structure and organization of the manuscript

implementation is detailed throughout chapters 7 and 8 and section 8.3. Moreover in
chapters 9 and 11 we move a little away from the numerical implementation to resume
in some way the theory about the matching problem.

It is also important to note that the algorithm presented in part III has been imple-
mented in MATLAB during the course of this thesis, giving birth to the MATLAB toolbox
called PUMA which can be found in [6]. This toolbox has the aim of providing the optimal
filtering response for the matching network once the load L is fixed. The aforementioned
toolbox also serves as a proof of concept of the previous theory and validates the effi-
cacy of the algorithm obtained. Moreover the implemented toolbox allows to compute
in an efficient manner the optimal solution to an optimization problem with a consider-
able number of variables and constraints. Finally several examples obtained through the
presented algorithm and some applications of the matching problem are provided.

7. Chapter 7 introduces a reformulation of the matching problem as a non-linear op-
timisation program which includes matrix inequalities. This numerical formulation
corresponds to the field of SDP in optimisation. However, when including non-linear
constraints, a program of type NL-SPD is obtained. This program even being a con-
vex problem, is one of the most complicated problems in optimisation that can be
solved optimally.

8. Chapter 8 deals with the resolution of the formulated SDP . This chapter provides
the details of the numerical implementation of the matching problem as it has been
programmed in the core of PUMA toolbox. We introduce some classical techniques
in the field of optimization such as the elimination of linear equalities by the substi-
tution method. In this way, the non-linear SDP derived in chapter 7 is simplified.
Additionally, as we use an interior-point algorithm, an introduction to the concept
of barrier functions is performed.

9. In chapter 9 we discuss some different heuristic approaches for the computation of a
sub-optimal matching network of finite degree. These matching networks approach
as close as possible the optimal lower bounds obtained as a result of the convex
formulation of the matching problem.

10. Chapter 10 contains a compilation of the results obtained during the development
of this thesis, except those that have already been presented in chapter 6. In this
chapter, we can find some examples related to the matching of more complex an-
tennas destined to applications of different nature. In addition we also provide an
interesting discussion comparing the lower bounds issue of the previously formu-
lated optimization problem and the sub-optimal practical results obtained when to
approximate those bounds. Both results, the lower bounds and the sub-optimal
responses are calculated by means of the PUMA toolbox providing a valuable in-
formation on the optimality of the obtained results when comparing with the lower
bounds.

11. In chapter 11 we present an additional application of the matching problem. This
is one of the applications that has occupied us most of the time during the course
of the thesis and the main reason for the conception of the PUMA toolbox. This
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application deals with the problem of maximizing the efficiency of an array of an-
tennas. This differs from the classic matching problem previously discussed in the
fact that the dissipation in both the matching filters and the antenna is taken into
account. In addition, upon working with an antenna array we face the matching of
a multi-port device. This problem opens up one of the main and most interesting
lines of future work due to its perspective results and potential applications.

After the exhaustive revision of the matching theory carried out in parts II and III,
in part V we apply this theory to the design of multiplexers. The motivation for this
application stems from the fact that multiplexer design can also be seen as a somewhat
peculiar matching problem. However, when trying to adapt this theory, we face some
difficulties that prevent us for the direct application of the theory developed for matching
filters synthesis. Nevertheless we find the path to overcome those difficulties in one of the
scientific contributions to the literature of the problem of matching in the recent years.

12. The third part of this work begins directly with a bibliographic study of the different
multiplexer design techniques. In addition, in chapter 12 we include a small state of
the art, detailing the most important contributions of the most renowned authors to
literature in this field. Finally, we also take the opportunity to highlight the main
problems that engineers face in the design of this type of device.

13. In chapter 13 we are dedicated to one of the most recurrent problems in the design
of multiplexers. This is the problem of manifold peaks. In the previous parts of
the thesis, we have devoted considerable effort in the synthesis of filters. However,
in the case of multiplexers, the mastery of filter synthesis is not enough. In this
chapter, we propose a practical algorithm for the manifold design that minimise the
appearance of such manifold peaks.

14. In chapter 14, we present an original technique for the synthesis of the channel
filters once the manifold of the multiplexer is designed. This technique consists of
an adaptation for the design of multiplexers of a point-wise matching algorithm
available in the literature and reviewed in Chapter 3. Thanks to the reformulated
algorithm, the synthesis of the filters is done simultaneously obtaining the circuital
model for all of them. In this way, we obtain a much higher computational efficiency
compared to the traditional techniques for the optimisation of multiplexers.

15. In chapter 15 we present the results obtained through the previously developed al-
gorithm. These results consist of the design of a manifold coupled triplexer for space
applications. Finally, a prototype made by additive manufacturing is presented to
serve as a proof of concept to the novel algorithm for multiplexer synthesis. This
prototype is constructed in plastic where the inner surface of the structure is met-
allised to obtain a conductive boundary.

Finally, we conclude the present thesis providing a list of interesting lines of future work
which have emerged from the different applications treated.

16. Chapter 16 of this thesis provides an overview of the accomplished work and some
concluding remarks drawn from this work. With this chapter, we also take the
opportunity to add some considerations and comments about the synthesis and
manufacturing of matching filters and multiplexers.
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Chapter 2. Fundamental concepts

In this work, the problem of matching arises for the first time as an optimization problem
where the requirements in terms of matching simply represent an additional condition.
The said problem is related to the traditional problem of synthesis of transfer functions.
In fact, the classical problem of synthesis can be seen as a particularisation of the problem
of matching where the matching condition has been relaxed. For this reason, the classic
problem of synthesis of filtering functions is reformulated in the present chapter using the
same approach and the same terminology as in the problem of matching, which will be
introduced in later chapters. In this way, after introducing the matching problem, it will
be easier to see it as a generalization of the traditional synthesis problem, established in
this chapter.

We begin this chapter, namely the first one dedicated to the topic dealt with in this
thesis, with an introduction to the concept of matching in engineering. This introduction
includes a list of some classical definitions and theorems, which although they may seem
trivial for someone with a certain background in the topic, are necessary for a rigorous
statement of the problem. The convenience of such definitions is further demonstrated
when dealing with the proofs of the numerous theorems and lemmas stated in next
chapter. Hence a quick review of the main definitions provided here is recommended
before tackling the exhaustive theory developed in chapter 4 .

Broadband matching is one of the classic problems in circuit theory. This problem
arises in communication systems when the power that is intended to be transmitted, by a
generator, to a load is reflected. The said reflected power, on the one hand, represents a
loss of the useful power provided to the system and on the other hand, it will deteriorate
the elements prior to the load, such as amplifiers or the generator which are not usually
prepared to receive this reflected power from load. Therefore, by improving the matching
between the generator and the load, we are litigating with a double problem that could
have very harmful consequences both in terms of power loss and in terms of the reception
of this power by devices not prepared for it.

2.1 Transmitted power

Consider the simple circuit in fig. 2.1 consisting of a resistor connected to a generator,
the power delivered to the load, or in this case, dissipated in the resistor, is computed as
[7, Chapter 3, section 2]

P =
1

2
ℜ
(
IR · VR

)
. (2.1)

Note that the bar in eq. (2.1) and in the rest of this thesis indicates complex conjugate.
Introducing the expressions for VR and IR, namely

VR = E1
R

R +R1

,

IR =
E1

R +R1

,
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2.2. Power waves

we have

P =
1

2
ℜ (R)

∣
∣
∣
∣

E1

R +R1

∣
∣
∣
∣

2

.

Equivalently we write

P =
|E1|2
2

ℜ (R)

ℜ (R +R1)
2 + ℑ (R +R1)

2 .

It can be easily proved that the previous quantity is maximum the assumptions of
ℑ (R +R1) = 0 and ℜ (R +R1) = 2ℜ (R1). Therefore the transmitted power is max-
imum when the resistor equals the conjugate of the internal impedance of the generator,
namely R = R1, thus

Pmax =
|E1|2

8ℜ (R1)
.

−+E1

R1

+

−
V1

IR

R

+

−

VR

Figure 2.1: Simple transmitting circuit

2.2 Power waves

For a better understanding of the phenomena occurring in fig. 2.1, lets consider a now a
transmission line which interconnect both sides of the circuit as shown in fig. 2.2. This
transmission line might be consider later on to be of zero length, leading to the same
schematic. Take now the transmission line segment of differential length from fig. 2.3a
and consider the distributed circuit model shown in fig. 2.3b as in [8, Chapter 2]. It
should be noted that a lossless transmission line is assumed and then a pure reactive
model is considered, namely with no dissipating elements.

Appliying Kirchhoff’s laws we can express

v(z, t) = Ldz · ∂
∂t
i(z, t) + v(z + dz, t),

i(z, t) = i(z + dz, t) + Cdz · ∂
∂t
v(z + dz, t).
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Chapter 2. Fundamental concepts

−+E1

R1

+

−
V1

IR

R

+

−

VR

Figure 2.2: Simple transmitting circuit interconnected by a transmission line.

+

−
v(z)

dz

+

−
v(z+dz)

(a) Transmission line differential element

+

−
v(z)

Ldzi(dz) i(z+dz)

+

−
v(z+dz)Cdz

(b) Lumped equivalent circuit

Figure 2.3: Differential lenght element of a tramission line and LC equivalent.

Letting now the differential dz tend to zero we obtain the derivatives of v(z, t) and i(z, t)

lim
dz→0

v(z + dz, t)− v(z, t)

dz
=

∂

∂z
v(z, t),

lim
dz→0

i(z + dz, t)− i(z, t)

dz
=

∂

∂z
i(z, t).

Therefore Kirchhoff’s laws lead to

L
∂

∂t
i(z, t) +

∂

∂z
v(z, t) = 0,

C
∂

∂t
v(z, t) +

∂

∂z
i(z, t) = 0.

In order to eliminate one of the unknowns, we derivative both expression with respect to
t obtaining

L
∂2

∂t2
i(z, t) +

∂2

∂t∂z
v(z, t) = 0,

C
∂2

∂t2
v(z, t) +

∂2

∂t∂z
i(z, t) = 0.

Combining both expression and eliminating the derivative of i(z, t), we obtain the wave
equation for the transmission line

∂2

∂z2
v(z, t)− LC

∂2

∂t2
v(z, t) = 0.

We obtain a differential homogeneous equation with partial derivatives which admits a
particular solution in the form

v(z, t) = A(t− t0(z)) + B(t+ t0(z)), (2.2)

Page 12 Mart́ınez Mart́ınez David



2.2. Power waves

with

t0 = z
√
LC.

Note therefore that eq. (2.2) is the sum of two functions displaced in time. The time
displacement t0 depends on the position along the transmission line and the constant
1/
√
LC represents the displacement speed. Similarly, if we denote Z0 =

√

L/C we obtain
the expression for i(z, t), namely

i(z, t) =
1

Z0

(A(t− t0)− B(t+ t0)) . (2.3)

Expressing now eqs. (2.2) and (2.3) we have

v(z, w) = a(ω)e−jωz
√
LC + b(ω)ejωz

√
LC ,

i(z, w) =
1

Z0

(

a(ω)e−jωz
√
LC − b(ω)ejωz

√
LC
)

.

We define the propagation constant β(ω) as

β(ω) = ω
√
LC.

This function β(ω) determines the speed at which the phase of the functions a(ω), b(ω)
varies along the transmission line. We have

v(z, w) = a(ω)e−jβ(ω)z + b(ω)ejβ(ω)z, (2.4)

i(z, w) =
1

Z0

(
a(ω)e−jβ(ω)z − b(ω)ejβ(ω)z

)
. (2.5)

Each of the expressions eqs. (2.4) and (2.5) can be considered to be composed of a progres-
sive wave a(ω)e−jβ(ω)z which moves forward along the transmission line and a regressive
wave a(ω)ejβ(ω)z moving backward in the transmission line.

2.2.1 Reflection coefficient

Under the assumption that the function a(ω) is a function of minimum phase, we can
define the reflection coefficient s(ω) as the ratio between the regressive and the progressive
wave

s(z, ω) =
b(ω)ejβ(ω)z

a(ω)e−jβ(ω)z
=
b(ω)

a(ω)
e2jβ(ω)z.

Therefore we can express

v(z, w) = a(ω)
(
e−jβ(ω)z + s(ω)ejβ(ω)z

)
, (2.6)

i(z, w) =
a(ω)

Z0

(
e−jβ(ω)z − s(ω)ejβ(ω)z

)
. (2.7)
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2.3 Reflection coefficient

As in section 2.1, we can now compute the power transmitted to the load by meas of
eqs. (2.6) and (2.7) as

P (z, ω) =
1

2
ℜ
(

v(z, ω)i(z, ω)
)

.

Thus we have

P (z, ω) =
1

2

|a(ω)|2
Z0

ℜ
(
1− 2jℑ

(
s(ω)e2jβ(ω)z

)
− |s(ω)|2

)
,

and therefore taking the real part

P (z, ω) =
1

2

|a(ω)|2
Z0

(
1− |s(ω)|2

)
. (2.8)

Remark 2.3.1. Note that the transmitted power P (z, ω) does not depends on the position
z along the transmission line because of the non dissipation assumption. Therefore the
power is conserved through the circuit.

Remark 2.3.2. Note as well that maximum available power is given by the progressive
wave a(ω). This maximum power is obtained when s(ω) = 0 as

Pmax =
1

2

|a(ω)|2
Z0

.

In this case, assuming s(ω) = 0, the relation between the current and the voltage in
the transmission line is given by the impedance Z0. Nevertheless at the terminal of the
load in fig. 2.2 this relation is given by the value of R. Therefore if the load R in fig. 2.2
is distinct from the impedance Z0 at a given frequency, we have s(ω) 6= 0. Lets define
now z = 0 as the position of the load in fig. 2.2 and compute the relation between both
quantities, we have

R(ω) =
v(0, ω)

i(0, ω)
= Z0

a(ω) + b(ω)

a(ω)− b(ω)
.

Thus

R(ω) (a(ω)− b(ω)) = Z0 (a(ω) + b(ω)) .

Expressing now b(ω) in function of a(ω) we have

b(ω) =
R(ω)− Z0

R(ω) + Z0

a(ω).

We obtain the expression of the reflection coefficient s(ω) induced by the load R(ω)

s(0, ω) =
R(ω)− Z0

R(ω) + Z0

.
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Similarly we can compute the input impedance seen at any point z < 0 of the transmission
line. The impedance Zin(z, ω) is therefore obtained as

Zin(z, ω) =
v(z, ω)

i(z, ω)
= Z0

a(ω)e−jβ(ω)z (1 + s(z, ω))

a(ω)e−jβ(ω)z (1− s(z, ω))
= Z0

1 + s(z, ω)

1− s(z, ω)
.

If we set z = −l where l is the length of the transmission line, eventually 0, we can
translate the condition of conjugate matching, namely Zin(z, ω) = R1 onto the reflection
coefficient s(z, ω). We have

R1 = Z0
1 + s(−l, ω)
1− s(−l, ω) .

Therefore the optimal reflection coefficient sopt(ω) which maximises the transmitted power
takes the expression

sopt(ω) =
R1 − Z0

R1 − Z0

.

If we denote by sg(ω) the reflection coefficient when looking to the input of the resistor
R1, namely

sg(ω) =
R1 − Z0

R1 − Z0

,

then we have

sopt(ω) = sg(ω). (2.9)

Therefore the condition of conjugate impedance translates to conjugate reflection coeffi-
cients.

Remark 2.3.3. It should be noted that a generic impedance Z0 has been considered in the
preceding results. Nevertheless those results still hold for a zero length transmission line,
namely l = 0. In this case an arbitrary impedance Z0, commonly denoted as normalising
impedance, can be considered.

Remark 2.3.4. In this work we consider Z0 to be a pure real value. Additionally, we also
assume that the value of R1 is a real constant. Therefore we can set Z0 = R1 obtaining
sg(ω) = 0 for all ω ∈ R. In this case eq. (2.9) becomes

sopt(ω) = 0 ∀ω ∈ R.

2.4 Scattering Parameters

Consider again fig. 2.1, When the power dissipated in the load equals the maximum power
Pmax, we say the load matches the generator. In this case we have

Pmax =
1

2

|a|2
Z0

=
1

2

|E1|2
4R1

.
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Assuming now R1 real and taking Z0 = R1 we obtain

a =
E1

2
.

Conversely, if R 6= R1, part of the incident power is said to be reflected. We have in this
case a reflection coefficient s of the form

s =
R−R1

R +R1

.

The amount of reflected power is given by eq. (2.8) and denotes the power not dissi-
pated in the load

Pref =
1

2

|a|2
Z0

s2 =
1

2

|E1|2
4R1

(
R−R1

R +R1

)2

.

The reflected wave b takes the expression

b =
E1

2

R−R1

R +R1

.

In this case, we say that the load is unmatched. In this work we are interested in
passive, linear and invariant microwave devices over time. These devices can be modelled
traditionally by means of the scattering matrix, which relates linearly the outputs
and inputs to the system, namely the parameters b and a previously defined. This
motivates the formulation of the problem of matching in terms of the scattering ma-
trix of each device. The aforementioned coupling matrix is defined in the following section.

Parameters a and b, denoted before as power waves represents the amount of power
delivered to the load by the generator and the amount of reflected power. Using the
previous definitions of delivered and reflected power, we can consider now a two-port
device, where either port 1 or 2 can be excited by the generator. When port 1 is connected
to a generator with internal impedance Z0 and port 2 is closed by a resistor Z0 (fig. 2.4
with E2 = 0), we denote as a21 the maximum available power and by b22 the power actually
delivered to the resistor Z0. Also, denote b21 the reflected power (not dissipated in the
resistor). Scattering parameters associated to port 1 are then defined as the ratio between
b1, b2 with respect to a1

S11 =
b1
a1

∣
∣
∣
∣
E2=0

, S21 =
b2
a1

∣
∣
∣
∣
E2=0

. (2.10)

Similarly, if port 2 is connected to the generator with internal impedance Z0 and port 1 is
closed by the resistor Z0 (fig. 2.4 with E1 = 0) we denote a22 the maximum available power,
b21 the power delivered to resistor Z0 and b22 the reflected power. Then define scattering
parameters associated to port 2 as the ration between b1, b2 and a2

S12 =
b1
a2

∣
∣
∣
∣
E1=0

, S22 =
b2
a2

∣
∣
∣
∣
E1=0

.
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−+E1

Z0 Z0

−+ E2

a1

b1

a2

b2

Figure 2.4: Incident and reflected waves

The principle of superposition, allows to compute b1 and b2 when both generator are
connected by means of the scattering parameters.

b1 = S11a1 + S12a2,

b2 = S21a1 + S22a2.

These parameters are of customary use in RF-circuits as they completely characterise
the behaviour of a linear device. We can therefore express parameters b1, b2 in terms of
parameters a1, a2

(
b1
b2

)

=

(
S11 S12,
S21 S22

)

·
(
a1,
a2

)

= [S] ·
(
a1,
a2

)

. (2.11)

with the left and right column vectors containing the output and input power waves
respectively. The matrix S, called scattering matrix is the main object of interest in this
work.

2.4.1 Definitions

In this section, some basic notions in engineering as passivity or stability are linked to
traditional concepts in complex analysis as the Schur class of functions. Those concepts
are later used to tackle a well-known problem in electronics from a functional analysis
point of view. From the functional perspective, the matrix S presents some important
properties that will be useful for the theory developed in the following sections. However,
before discussing such features, we need to provide some definitions.

Definition 2.4.1 (Analyticity domain). In this work we consider the real variable ω ∈ R

where R represents the real line. The extended real line R is also considered in some cases,
which is defined as

R = R ∪∞.

Consider further the complex variable λ = ω+ jα. We denote by C+ (C−) the open upper
(lower) half plane (figs. 2.5c and 2.5e):

C
+ = {λ : ℑ(λ) > 0},

C
− = {λ : ℑ(λ) < 0}.
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Equivalently C+ (C−) denotes the closed upper (lower) half plane (figs. 2.5d and 2.5f)

C− = {λ : ℑ(λ) ≥ 0} ∪∞,

C+ = {λ : ℑ(λ) ≤ 0} ∪∞.

In this work we consider C− as the analyticity domain unless it is specified otherwise.

An analytic function in C− is a function that has convergent series in a neighbourhood
of every point λ ∈ C− (i.e. it is complex differentiable) [9, chapter 2, section 1]. For the
electronic world, an analytic function in a domain is a function with no singularities in
that domain. Therefore an analytic function is a stable function.

Definition 2.4.2 (Unit disk). We denote the open unit disk (fig. 2.5a) by D

D = {λ : |λ| < 1}.

Similarly we use D to refer to the closed unit disk (fig. 2.5b)

D = {λ : |λ| ≤ 1}.

Remark 2.4.1. In contrast to the usual definition in electronics or control theory, where
the stable functions are defined as analytic in the right half of the λ-plane

Π
+ = {λ ∈ C : ℜ(λ) > 0} .

We consider analyticity in the lower half plane for convenience of notation in many parts
of this thesis, we define λ = ω + jα as the frequency variable and ω the frequency axis.

Remark 2.4.2. With the chosen domain of analyticity, we also redefine a stable (Hur-
witz) polynomial as the polynomial having all its roots in the open upper half plane (C+).

Definition 2.4.3 (Star operation). We use the notation S⋆ to denote the transpose
conjugate matrix of S.

S(λ)⋆ = S(λ)T .

Additionally, we also define the star of a (matrix) function S as

S⋆(λ) = S(λ)⋆.

It should be noted that S(ω)⋆ is the particularisation of S⋆(λ) on the frequency axis

S⋆(ω) = S(ω)⋆ ω ∈ R.

Therefore the star of the function S (S⋆(λ)) represents the analytic continuation of S(ω)⋆

with ω ∈ R to the complex plane.

Similarly, the definition of the star operation over polynomials become just the complex
conjugation of its roots. The starred polynomial (i.e. the polynomial with conjugate roots)
is obtained by taking the complex conjugate of all coefficients.

Remark 2.4.3 (Star of a polynomial). Given the polynomial p(λ). Define the starred
polynomial p⋆(λ) as

p⋆(λ) = p(λ)
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ℜ{λ}

ℑ{λ}

1−1

i

−i

D

(a) Open unit disk

ℜ{λ}

ℑ{λ}

1−1

i

−i

D

(b) Closed unit disk

ℜ{λ}

ℑ{λ}

0

C+

(c) Open upper half plane

ℜ{λ}

ℑ{λ}

0

C+

(d) Closed upper half plane

ℜ{λ}

ℑ{λ}

0

C−

(e) Open lower half plane

ℜ{λ}

ℑ{λ}

0

C−

(f) Closed lower half plane

Figure 2.5: Representation of the different domains defined in this work

Thèse de doctorat — Université de Limoges — 2019 Page 19
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As an example we plot in fig. 2.6 the roots of the polynomial p

p(λ) = λ5 − 1.5λ4 + 2iλ3 + (0.5− 3i)λ2 − 1.8λ+ 1.5,

along with the conjugate roots corresponding to the polynomial p⋆

p(λ) = λ5 − 1.5λ4 − 2iλ3 + (0.5 + 3i)λ2 − 1.8λ+ 1.5.

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0.5

1

1.5

2

ℜ{λ}

ℑ{λ} Roots of p

Roots of p⋆,color=rootsQ

Figure 2.6: Roots of polynomial p and p⋆.

Let now introduce the Schur class of functions. Schur functions is a well-known class
in functional analysis. It consists of analytic functions whose modulus is bounded by one
in the analyticity domain. Traditionally, they are analytic functions from the unit disk
to the unit disk. However, to fit the convention used in this work, they are redefined as
analytic functions from the open lower half plane to the open unit disk. Schur functions
repeatedly appear in this work, and therefore we denote the set of Schur functions by Σ.

Definition 2.4.4 (Schur functions). Denote by Σ the class of functions analytic in C−

from the lower half plane to the disc.

Σ ≡
{
f : C

− −→ D
}
.

Among the class of Schur function, one particular kind of functions is remarked namely
the functions composed by the product of factors in the form (λ − βi)(λ − βi)

−1. Those
are functions whose modulus equals one at the boundary of the analyticity domain. We
provide then the following additional definition [10, chapter 1, section 2]

Definition 2.4.5 (Blaschke product). A Blaschke product b(λ) of degree N with zeros
at the points βi is the function in the form

b(λ) =
N∏

i=1

λ− βi

λ− βi
, (2.12)

with β1, β2, · · · , βN ∈ C−.
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2.5. Losslessness

Note that |b(λ)| = 1 for all λ ∈ R. In the domain of filter design, this function can be
seen as the transmission coefficient of an all-pass filter .

Before continuing with the basic theory on scattering matrices, let us define the sets
of Hermitian matrices of size N ×N

Definition 2.4.6 (Hermitian matrices).

H
N =

{
S ∈ C

N×N : Skl = Slk ∀k, l ∈ [1, N ]
}
.

Now we define some matrix inequalities as matrix algebra plays a crucial role in this
thesis.

Definition 2.4.7 (Matrix inequalities). Let us consider the N ×N matrices A,B ∈ HN

such that the matrix A− B is positive semi-definite (A− B � 0). Then we denote

A � B.

Equivalently to represent the fact that B − A � 0 we write

B � A.

Now consider C,D ∈ HN such that C −D is positive definite (C −D ≻ 0). Then

C ≻ D.

Similarly we have D − C ≺ 0. Then we denote

D ≺ C.

Finally if X � Y , with X, Y ∈ HN we define the notation

X ≻= Y.

to represent that the matrix X − Y is singular.

These inequalities are particularly important for chapters 5 and 7.

Next we continue by providing some properties of scattering matrices. Note that,
on the frequency axis λ ∈ R, scattering parameters have modulus smaller than 1 for
passive systems (if the system does not create energy, the output power cannot be greater
than maximum available input power). Additionally, if the system is stable, scattering
parameters have no poles in C−. At this point, it is important to remember the maximum
modulus principle for holomorphic functions [9, theorem 12]

Theorem 2.4.1 (Maximum modulus principle). Given a function f analytic on an open
subset Ω ⊂ C, there exist a point λ0 ∈ Ω such that |f(λ0)| ≥ |f(λ)| for all λ in a
neighbourhood of λ0 if and only if f is a constant function.

2.5 Losslessness

We discuss now another important property of Scattering matrices related to losses. In
reality, energy is always dissipated inside communication devices or any other system in
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the form of heat or lost in any other form. The amount of power lost inside the device is
called losses. Throughout this work, we often assume scattering matrices S are lossless,
this is a physic assumption saying no energy is lost inside the device characterised by S.
Equivalently, we mean the system is lossless. Note this assumption is never correct in
practice. Nevertheless, losslessness is still an entirely reasonable approximation for the
cases where losses are small providing us with an essential property of scattering matrices.

Note first that, by the maximum modulus principle, and from the fact that scatter-
ing parameters Sij have modulus bounded by 1 in R (the boundary of the analyticity
domain), we conclude that scattering parameters have also modulus bounded by 1 inside
the analyticity domain C−.

|Sij(λ)| < 1 λ ∈ C
−.

Additionally, if there exist a point λ0 ∈ C− such that |Sij(λ0)| = 1, then Sij is a constant
function. Consider now the complex parameters a and b of the variable λ ∈ C. Let review
first the case where the device is strictly passive, namely some energy is dissipated inside
of it. In this case, using the notation in fig. 2.4 again the sum of the power entering the
system must be greater or equal than the power leaving the system

|a1(ω)|2 + |a2(ω)|2 − |b1(ω)|2 − |b2(ω)|2 ≥ 0 ω ∈ R. (2.13)

Denote now by B the vector of output waves and by A the vector of input waves

A(ω) =

(
a1(ω)
a2(ω)

)

B(ω) =

(
b1(ω)
b2(ω)

)

.

Note that a1(ω)a1(ω) = |a1(ω)|2. Thus imposing eq. (2.13) we have

A(ω)⋆A(ω)− B(ω)⋆B(ω) ≥ 0 ω ∈ R.

Now introduce the expression of B provided by the scattering matrix

B(ω) = S(ω) · A(ω), B(ω)⋆ = A(ω)⋆S(ω)⋆.

Therefore

A(ω)⋆A(ω)− A(ω)⋆S(ω)⋆S(ω)A(ω) ≥ 0 ω ∈ R,

A(ω)⋆ (I − S(ω)⋆(ω)S(ω))A(ω) ≥ 0 ω ∈ R.

where I represents the identity matrix of size 2×2, and for any input vector A. Therefore
I − S(ω)⋆S(ω) is positive semi-definite for ω ∈ R or equivalently

S(ω)⋆S(ω) � I ω ∈ R.

When the previous relation holds, we refer to the scattering matrix as a lossless or con-
servative matrix. If now we assume that B(ω)⋆B(ω) = A(ω)⋆A(ω) for a non-zero vector
A(ω) and ω ∈ R, we obtain

I − S(ω)⋆S(ω) = 0.

This is the unitary property on the real axis. We can state now the following definition
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Definition 2.5.1 (Losslessness). A 2× 2 scattering matrix S is lossless if and only if for
any ω ∈ R

S(ω)⋆S(ω) = I,

where I represents the 2x2 identity matrix.

We suppose hereinafter that scattering S matrices are lossless. Thus scattering pa-
rameters verify at ω real

S11(ω)S11(ω)
⋆ + S12(ω)S12(ω)

⋆ = 1, (2.14)

S22(ω)S22(ω)
⋆ + S21(ω)S21(ω)

⋆ = 1, (2.15)

S11(ω)S21(ω)
⋆ + S12(ω)S22(ω)

⋆ = 0. (2.16)

Corollary 2.5.1 (Absolute value at real frequencies). Note that, if the matrix is unitary,
then we also have

|S11(ω)| = |S22(ω)| ∀ω ∈ R. (2.17)

Finally the last definition before introducing the general form of the scattering matrix
the notion of reciprocity. A system is said to be reciprocal if the transmission from port
k to port l equals the transmission from port l to port k. In other words, a reciprocal
matrix is a symmetric matrix.

Definition 2.5.2 (Reciprocity). A matrix S is reciprocal if and only if

S(λ) = S(λ)T ∀λ ∈ C.

Reciprocity property is often found in passive communication devices. It should be
noted that it is not impossible to implement a non-reciprocal passive device; however,
the physics requirements behind it make it extremely complicated. This difficulty is the
reason why usually scattering matrices are constrained to be reciprocal, even though non-
reciprocal systems exist. For the theory developed in this thesis, most devices are assumed
to be non-reciprocal, although reciprocal matrices also appear when convenient.

Remark 2.5.1 (Analytic continuation of scattering parameters to the complex plane).
It should be remarked that the theory developed up to this point considering the evaluation
of scattering matrices on the real line (ω ∈ R) extends to the complex plane by replacing
S(ω)⋆ by S⋆(λ) with λ ∈ C.

With the expressions derived in this section, we state the definition of the scattering
matrix

Definition 2.5.3 (Scattering matrix). We call scattering matrix a 2 × 2 matrix of the
complex variable λ, analytic in C− whose elements are scalar Schur functions.

S =

(
S11 S12

S21 S22

)

Sij ∈ Σ. (2.18)

Moreover scattering matrices satisfies the following property

S⋆(λ)S(λ) �I ∀λ ∈ C, (2.19)

where equality in eq. (2.19) holds everywhere in the complex plane if the matrix S is
lossless.
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Corollary 2.5.2 (Determinant of unitary matrices). The unitary property allows us to
obtain the determinant of a lossless scattering matrix as a function of the coefficients S11

and S22 only

det(S) = S11S22 − S12S21. (2.20)

Note that eq. (2.20) is a stable function if the matrix S is stable. From (2.16)

S12 = −S11S
⋆
21

S⋆22
.

Thus

det(S) = S11S22 + S11
S⋆21S21

S⋆22
= S11

(

S22 +
S⋆21S21

S⋆22

)

=
S11

S⋆22
(S22S

⋆
22 + S21S

⋆
21) .

Using now (2.15) we obtain

det(S) =
S11

S⋆22
, (2.21)

which is uni-modular on the frequency axis as showed in eq. (2.17). Thus det(S) is a
Blaschke product in the form given by eq. (2.12).

det(S) = ǫ
q⋆

q
, (2.22)

with ǫ an uni-modular constant and q a stable polynomial.

Finally, we introduce the class of rational Schur functions of degree N.

Definition 2.5.4 (Rational Schur Functions). Denote by ΣN the class of rational Schur
functions where both numerator and denominator are polynomials of degree at most
N ∈ N. Additionally we denote by P

N the set of polynomials of degree at most N .

Σ
N =

{

f =
p

q
: p, q ∈ P

N ; f ∈ Σ

}

,

where q is a stable polynomial, namely q has no roots in C−.

2.6 Impedance and admittance matrices

The impedance and admittance parameters express the relations between the input-output
voltage vS, vL and current iS, iL of a two-port network as the one shown in fig. 2.7 (see
[7]). We can compare the circuit in fig. 2.7 and in fig. 2.4. Using now eqs. (2.4) and (2.5)
and setting the reference z = 0 at the input terminal we have vS(ω) = v(0, ω) and
iS(ω) = i(0, ω). Therefore

vS(ω) = a1(ω) + b1(ω),

iS(ω) =
1

Z0

(a1(ω)− b1(ω)) .
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2-port

iS
R1

−

+

vS

iL
R2

−

+

vL−+E1 −+ E2

Figure 2.7: Voltage and current definition on a generic 2-port device

Similarly at port 2 we set the reference z = 0 at the output terminal to obtain

vL(ω) = a2(ω) + b2(ω),

iL(ω) =
1

Z0

(a2(ω)− b2(ω)) .

Let us now omit the dependence of the frequency variable ω for economy of notation. We
can then write

a1 =
1

2
(vS + Z0iS) ,

b1 =
1

2
(vS − Z0iS) ,

a2 =
1

2
(vL + Z0iL) ,

b2 =
1

2
(vL − Z0iL) .

Using eq. (2.11) we can relate the voltage and current at the input-output terminals of
the network in fig. 2.7 by means of the scattering parameters as

(
vS − Z0iS
vL − Z0iL

)

= S ·
(
vS + Z0iS
vL + Z0iL

)

.

Or equivalently, if we define the column vectors v = [vS, vL]
T and i = [iS, iL]

T we have

v − Z0i = S · (v + Z0i). (2.23)

2.6.1 Impedance matrix

The impedance parameters represents the relation between the voltage at the input-output
terminals vS, vL and the current values iS, iL.

(
vS
vL

)

=

(
Z1,1 Z1,2

Z2,1 Z2,2

)

·
(
iS
iL

)

.

The impedance parameters provide us with simple equivalent circuit of the network
represented by the matrix Z which is shown in fig. 2.9. Additionally, in the case of a
passive network we have Z12 = Z21. In this case the network in fig. 2.9 is simplified as in
fig. 2.10.
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Finally note that from eq. (2.23) we have

v − S · v = Z0 (I + S) i,

and expressing the vector v as a function of the vector i

v = Z0 (I − S)−1 (I + S) i = Z · i,
Therefore the impedance parameters are obtained from the scattering parameters as

Z = Z0 (I − S)−1 (I + S) . (2.24)

Equivalently if the Z parameters are know we can compute

S = (Z − Z0I) (Z + Z0I)
−1 .

Remark 2.6.1. Note that eq. (2.24) sends the unit disk to the right half plane Π+ as
illustrated in fig. 2.8. Therefore given a Schur S matrix, the corresponding Z parameters
are positive real.

ℜ{λ}

ℑ{λ}

1−1

i

−i

Sk,l ∈ D

(a) Sk,l : C− 7→ D

ℜ{λ}

ℑ{λ}

0

Zk,l ∈ Π+

(b) Zk,l : C− 7→ Π+

Figure 2.8: For λ ∈ C−, the scattering parameters belong to the unit disk and impedance
parameters to the right half plane

2.6.2 Admittance matrix

Similarly to the impedance matrix introduced in the previous section, the admittance
matrix allows to express the values of iS, iL in fig. 2.7 as a function of the voltage at
the input and output terminals, namely vS, vL. This admittance matrix is traditionally
denoted by Y (ω) in circuit design. Note that the matrix Y is related to the impedance
matrix Z by

Y (ω) = Z(ω)−1.

Furthermore, it is also possible to construct a simple circuit (shown in fig. 2.11) equiv-
alent to the network represented by the Y matrix. Finally, as in the case of the Z
parameters, we have for a passive network Y12 = Y21 and the simplified circuit shown in
fig. 2.12 is obtained.
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Z1,1iS

−+Z1,2iL

−

+

vS

Z2,2 iL

−+ Z2,1iS

−

+

vL

Figure 2.9: Equivalent circuit of the network represented by the Z matrix

iS
Z1,1 − Z1,2

Z1,2

−

+

vS

iL
Z2,2 − Z1,2

−

+

vL

Figure 2.10: Equivalent circuit of a passive network (Z12 = Z21) represented by the Z
matrix .

iS

Y1,2vL−

+

vS Y11

iL

Y2,1vS −

+

vLY22

Figure 2.11: Equivalent circuit of the network represented by the Y matrix

iS
−Y1,2

Y1,1 + Y1,2

−

+

vS

iL

Y2,2 + Y1,2

−

+

vL

Figure 2.12: Equivalent circuit of a passive network (Z12 = Z21) represented by the Y
matrix .
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2.7 Rational model of scattering matrices

So far we have considered the scattering parameters in terms of Schur functions only with-
out any additional restriction. However, in most of this thesis we will consider that the
scattering matrices follow a rational model of a certain degree. Furthermore, it is impor-
tant to note that this approach is legitimate even when we are representing the scattering
matrix associated with a physical microwave device since the response of said device can
be faithfully approximated by a rational function within a not too large frequency interval.

In this section we provide a more in-depth analysis of linear systems in the field of
communications. Linear systems have already been widely studied in the literature and
are therefore familiar to many readers with a wide range of different backgrounds. In any
case, we provide here some basic concepts related to the state space representation of a
linear systems, which will serve as an introduction for other more specific topics discussed
later. Nevertheless, for those who are interested in this topic and wish to read more in
detail, I must recommend T. Kailath’s book [11] on linear systems.

2.7.1 State space representation

Rational scattering matrices represents the impulse response of a linear, time-invariant
(LTI) system with 2 input and 2 outputs which can be written in the general state-space
form as

dx

dt
= U · x(t) + V · a(t), (2.25)

b(t) = C · x(t) +D · a(t), (2.26)

where a, b ∈ R2 are the input and output vector respectively and x(t) is denoted the state
vector (as we show below, the number of states corresponds to the McMillan degree of
the system). Additionally, U, V, C,D are matrices with the following sizes

• C: number of inputs × number of states

• U: number of states × number of states

• V: number of states × number of outputs

• D: number of inputs × number of outputs

The aspect of these matrices is illustrated in fig. 2.13 for a system with 2 inputs, 2
outputs, and 5 states.

The frequency response of the previous system is trivially obtained by taking the
Laplace transform in eqs. (2.25) and (2.26)

λX(λ) = UX(λ) + V A(λ),

B(λ) = CX(λ) +DA(λ),
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(a) Matrix C

(b) Matrix U (c) Matrix V

(d) Matrix D

Figure 2.13: Size of the matrices appearing in the state space representation of a system
with 5 states, 2 inputs and 2 outputs

where we consider the initial state equal to zero and upper-case variable as the Laplace
transform to the corresponding lower-case ones. Then we have

X(λ) = (λI − U)−1 V A(λ),

B(λ) = C (λI − U)−1 V A(λ) +DA(λ).

Introducing the definition of the scattering matrix to express B(λ) = S(λ)A(λ) we have

S(λ) = D − C (U − λI)−1 V. (2.27)

Remark 2.7.1. It should be noted that given a rational matrix S(λ), the matrices D, V, U
appearing in eq. (2.27) are not unique.

2.7.2 Rational form of the transfer function obtained from its
state space representation.

The numerator of each element in the matrix S(λ) as well as the denominator can be
easily obtained from the matrices U, V, C,D. First note that there exists a unique matrix
D such that eq. (2.27) holds. This matrix D contains the values at infinity, namely

D = lim
λ→∞

S(λ).

Note further that the eigenvalues of the matrix U represents the values of λ for which
λI − U is singular. These eigenvalues correspond to the poles of the matrix S(λ).

Finally, we shall compute the zeros of the element i, j of S(λ) to fully determine the
rational matrix S. Let us consider now an element i, j and denote by c the i-th row of
the matrix C, by v the j-th column of V meanwhile d represents the i, j element of the
matrix D. We have

Si,j(λ) = d− c(U − λI)−1v.

Consider now the matrix M(λ) defined as

M(λ) =







U v

c d






−







λI 0

0 0






=







u(λ) v

c d






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Chapter 2. Fundamental concepts

where u(λ) = U − λI. For compacity denote by z the inverse z = u(λ)−1. The inverse of
the matrix M takes then the block-wise expression

M−1 =







z + uzv(d− czv)−1cz −zv(d− czv)−1

−(d− czv)−1cz (d− czv)−1






.

We have already determined the values of λ for which z = u(λ)−1 is singular. We seek
now the values of λ such that d− czv = 0, namely Si,j(λ) = 0. Equivalently we compute
the values of λ such that the matrix M(λ) is singular

det













U v

c d






− λ







I 0

0 0













= 0. (2.28)

Equation (2.28) is a generalised eigenvalue problem where the generalised eigenvalues
solution to eq. (2.28) correspond to the roots of the function Si,j(λ).

Remark 2.7.2. It can be remarked that the above discussion allows us to write the func-
tion Si,j in a rational form

Si,j(λ) =
p(λ)

q(λ)
,

where the polynomials p, q are given by

p(λ) = det













U v

c d






− λ







I 0

0 0












,

q(λ) = det (U − λI) .

We have reached Rosenbrock’s expression which relates the state space representation
C,D,U, V of a system with its rational matrix form, which was first proposed in [12].

2.7.3 McMillan degree

After this introduction to state space representation, let us provide the definition of
McMillan degree of a matrix S.

Definition 2.7.1 (McMillan degree). The McMillan degree of the rational scattering
matrix S(λ) is defined as the minimum size of the square matrix U in eq. (2.27) required
to realise S(λ).
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2.8 The coupling matrix

Once in possession of a rational model of the optimal matching filter, there are different
tools in the literature to assist in the design of physical structures which provide a
frequency behaviour as close as possible to the behaviour of the optimal model.

One of the tools which are commonly used microwave engineering for the design of
coupled resonators filters is the coupling matrix. The coupling matrix is a ruse that
allows us to convert the scattering parameters, determined by means of a rational matrix,
to a set of coefficients directly related to the physical dimensions of the structure, which
provides the desired response. We provide next a basic introduction to the coupling
matrix formalism. Nevertheless note that an exhaustive lecture on this topic can be
found, for instance, in [7].

The circuit in fig. 2.14 represents the low-pass prototype of a coupled resonator net-
work. This circuit provides a response of type low-pass, where the elements Mk,k denote
frequency invariant reactances which are included to consider asynchronous responses.

MS,1 M1,k Mk,N MN,L

RS RL
L1

M1,1

Lk

Mk,k

LN

MN,N

Figure 2.14: Lowpass prototype of a coupled resonators network

Remark 2.8.1. Note that, with the appropriate choice of the values Mi,k, we can nor-
malise all inductance and resistor values to one without loss of generality, namely

RS = 1,

Lk = 1 ∀k ∈ [1, N ],

RL = 1.

Remark 2.8.2. Note that the circuit in fig. 2.14 allows for the representation of band
limited responses in a high frequency interval ω1 ≤ ω ≤ ω by means of the frequency
transformation

ωT =
2ω − (ω2 + ω1)

(ω2 − ω1)
.

This transformation sends the frequency ω1 to ωT = −1 and ω2 to ωT = 1 while the band
ω1 ≤ ω ≤ ω is transformed to the interval [−1, 1].

Let us now compute the admittance matrix provided by the circuit in fig. 2.14. In
order to apply a Kirchoff analysis, the current ik is defined clockwise in the k-the resonator
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while vS, vL together with iS, iS represent the voltage and current at the input-output
terminals as illustrated in fig. 2.15 where the normalised value 1 is considered for the
elements RS, RL, Lk with 1 ≤ k ≤ N .

MS,1 M1,k Mk,N MN,L

RS

iS
−

+

vS

RL

iL
−

+

vL

L1

i1

M1,1

Lk

ik

Mk,k

LN

iN

MN,N

Figure 2.15: Voltage and current definition for the circuit in fig. 2.14

Considering the section k in fig. 2.15 other than the source or load loop, we can write
the current law as the sum of currents equal to zero

iSMk,S + i1Mk,1 + · · ·+ ik(ωLk +Mk,k) + · · ·+ iNMN,1 + iLML,1 = 0.

Setting the elements Lk equal to one we can write in matrix form




ωI +






M1,1 · · · M1,N

...
. . .

...
MN,1 · · · MN,N









 ·






i1
...
iN




 = −






M1,S M1,L

...
...

MN,S MN,L




 ·
[
iS
iL

]

.

Therefore we express






i1
...
iN




 = −




ωI +






M1,1 · · · M1,N

...
. . .

...
MN,1 · · · MN,N











−1 




M1,S M1,L

...
...

MN,S MN,L




 ·
[
iS
iL

]

. (2.29)

Considering the input and source loops we have

vS = i1MS,1 + i2MS,2 + · · ·+ iNMS,N + iSRS + iLMS,L,

vL = i1ML,1 + i2ML,2 + · · ·+ iNML,N + iSML,S + iLRL.

Again in matrix form we obtain

[
vS
vL

]

=

[
RS MS,L

ML,S RL

]

·
[
iS
iL

]

+

[
MS,1 · · · MS,N

ML,1 · · · ML,N

]

·






i1
...
iN




 . (2.30)
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Let us define now the matrices C,D,U, V

C =

[
MS,1 · · · MS,N

ML,1 · · · ML,N

]

(2.31)

D =

[
RS MS,L

ML,S RL

]

(2.32)

U = −






M1,1 · · · M1,N

...
. . .

...
MN,1 · · · MN,N




 (2.33)

V =






M1,S M1,L

...
...

MN,S MN,L




 . (2.34)

Introducing now eq. (2.29) in eq. (2.30) we can express the values of vS, vL as a function
of the currents iS, iL only, by means of the matrices C,D,U, V

[
vS
vL

]

= D ·
[
iS
iL

]

− C (ωI − U)−1 V ·
[
iS
iL

]

.

Thus the 2×2 impedance matrix Z of the network in fig. 2.14 takes the following rational
expression

Z(ω) = D − C(ωI − U)−1V. (2.35)

Remark 2.8.3. Note we can compare eq. (2.35) to eq. (2.27) to conclude that the matrices
C,D,U, V represents a space state realisation of the impedance matrix Z.

We can define finally the coupling matrix by using the matrices C,D,U, V defined
before

Definition 2.8.1 (Coupling matrix). Given a 2-port network with rational 2 × 2
impedance matrix Z such that

Z(ω) = D − C(ωI − U)−1V , (2.36)

where C,D,U, V are defined as in eqs. (2.31) to (2.34).

The coupling matrix M associated to the given 2-port device is defined as the matrix
composed by the elements in the matrices C,D,U, V

M =














RS MS,1 · · · MS,N MS,L

M1,S M1,1 · · · M1,N M1,L

...
...

. . .
...

...

MN,S MN,1 · · · MN,N MN,L

ML,S ML,1 · · · ML,N RL














. (2.37)
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Remark 2.8.4. Note that the element highlighted in red in eq. (2.37) constitute the matrix
C in eq. (2.36). Similarly the blue corners corresponds to the matrix D, the purple column
to V meanwhile the inner sub-matrix highlighted in green in eq. (2.37) equals to −U .

Remark 2.8.5. We have derived an expression of the impedance matrix of the network
represented by the coupling matrix M , which is shown in fig. 2.14, as a function of the
sub-matrices C,D,U, V . This expression is given by eq. (2.35). Therefore we conclude
that the coupling matrix corresponds simply to a state space representation of the matrix
Z(ω). Nevertheless it should be noted that this understanding the the coupling matrix as
a state space realisation of the impedance matrix Z(ω), being more general, differs from
the classical definition found in [7] which is commonly taught in microwave courses.

Remark 2.8.6. Due to the equivalent network in fig. 2.14 where the elements Mk,l are
defined as the mutual coupling between the different sections, it is usually assumed in the
design of microwave filters that, for a lossless passive network, all elements Mk,l are pure
imaginary

ℜ (Mk,S) = 0 ∀k ∈ [1, N ],

ℜ (MS,l) = 0 ∀l ∈ [1, N ],

ℜ (Mk,l) = 0 ∀k, l ∈ [1, N ],

ℜ (Mk,L) = 0 ∀k ∈ [1, N ],

ℜ (ML,l) = 0 ∀l ∈ [1, N ].

Together with the normalisation RS = RL = 1, this assumption allows us to obtain the
coupling matrix M only by specifying its imaginary part, namely −jM . Nevertheless note
that we can multiply the matrices C,U, V by a complex basis change matrix T which is
not singular such that the matrices C,D,U, V represents the same systems as the matrices
Ĉ,D, Û , V̂ defined by

Â = T · A · T−1,

Ĉ = C · T−1,

V̂ = T · V.

Note that we have

D − C(ωI − U)−1V = D − Ĉ(ωI − Û)−1V̂ .

Therefore we obtain an equivalent representation of the same lossless network where the
matrices Ĉ, Û , V̂ are complex. Additionally note that we can also consider a complex D
matrix if we allows for frequency independent phase shift elements. In this case the value
of limω→∞ Z(ω) can be implemented by a given input-output reactance which is frequency
independent.

Remark 2.8.7. The impedance matrix Z(λ) expressed as in eq. (2.36), the correspond-
ing coupling matrix M can be immediately obtained. Nevertheless, as pointed out in re-
mark 2.7.1, the matrices C,U, V , and therefore the coupling matrix are not unique. As a
result we can obtain different coupling topologies in the form of the circuit in fig. 2.14, all
of them providing the same impedance matrix Z(λ). Taking into account the non-unicity
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of the matrix M is crucial for the physical implementation of the network represented in
fig. 2.14 as the realisation of each topology might have a different level of complexity. This
fact is specially important when some of the elements Mk,l vanish in a particular topology,
providing a simplified network.

2.9 Belevitch form

The rational scattering matrices are defined here following the Belevitch model used
traditionally to parametrise lossless 2-port networks. This parametrisation is customary
in the synthesis of electrical network, specially coupled resonator networks (see for instance
[13]). Belevitch stated that, any 2× 2 matrix S rational and stable that satisfies S⋆S = I
can be parametrised a function of 3 polynomials p, r, q ∈ PN with q a stable polynomial
of maximum degree N which can be obtained by spectral factorisation of the positive
polynomial qq⋆ = pp⋆ + rr⋆. We state next the original Belevitch theorem [14]

Theorem 2.9.1 (Belevitch form). Any rational 2×2 unitary (lossless) matrix of McMillan
degree N ∈ N can be parametrised in the Belevitch form as

S =
1

q

(
ǫp⋆ −ǫr⋆
r p

)

, (2.38)

with ǫ a uni-modular constant, and q, p, r ∈ PN with q a stable polynomial of maximum
degree N satisfying qq⋆ = pp⋆ + rr⋆.

Proof. Consider the rational matrix S. If S is lossless equality holds in eq. (2.19). Hence
we have

S⋆ = S−1. (2.39)

Using now the co-factors matrix to express S−1

S−1 =
cof(S)

det(S)
=

(
S22 −S12

−S21 S11

)

det(S)
.

Using now eqs. (2.22) and (2.39) we express

ǫq⋆ · S⋆ = q · cof(S). (2.40)

Note that, cof(S) has poles only in C+ meanwhile the poles of S⋆ belong to C−. Therefore,
since equality holds in eq. (2.40), all poles of S⋆ are simplified by q⋆ and all poles of cof(S)
cancel with the roots of q. Thus S can be written as a polynomial matrix divided by q

S =
1

q

(
p1 p2
p3 p4

)

.

Finally using eq. (2.39) we have

1

q⋆

(
p⋆1 p⋆3
p⋆2 p⋆4

)

=
1

q · det(S)

(
p4 −p2
−p3 p1

)

=
ǫ

q⋆

(
p4 −p2
−p3 p1

)

.
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Thus

p1 = ǫp⋆4,

−p2 = ǫp⋆3.

Finally note that when computing the determinant as in eq. (2.21), the denominator of
S11 can not simplify with the denominator of S⋆22 while both numerators cancels out. Also
note that the eigenvalues of matrix U in eq. (2.27) correspond to the poles of S.

2.9.1 Transmission zeros and transmission polynomial

Next let us provide the definition of transmission zeros. This notion is widely used in the
design of RF devices and references the frequencies at witch a device is able to completely
isolate port 2 and 1. This is the reason for the denomination, since the transmission from
one port to the other is zero at those frequencies.

Definition 2.9.1 (Transmission zeros). We define the transmission zeros associated to a
matrix function S in the form (2.18) as the zeros in C− (possibly at ∞) of S12S21(λ):

tz [S] =
{
λ ∈ C− : S12S21(λ) = 0

}

where we consider the classical multiplicity of the transmission zeros in C− and half of
the multiplicity for the transmission zeros in R.

Remark 2.9.1. If α0 is a transmission zero of S and S12(α0) = 0, from property (2.14) we
obtain S11(α0)S

⋆
11(α0) = 1; conversely if S21(α0) = 0 then (2.15) gives S22(α0)S

⋆
22(α0) = 1.

Additionally, at a transmission zero α0 ∈ R from eq. (2.17) we have |S11(α0)| = |S22(α0)| =
1 and S21(α0) = S12(α0) = 0. Consequently transmission zeros α0 ∈ R are zeros of both
S12 and S21 and therefore have even multiplicity.

Note that it is possible, even in the case of reciprocal matrices, that a pole-zero
cancellation occurs in S12(λ) or S21(λ) at a point λ ∈ C+. Nevertheless, with the given
definition, the transmission zeros, being in C−, can never simplify with the roots of q,
which belong to C+. Related to the notion of transmission zeros, we find the concept of
transmission polynomial.

Definition 2.9.2 (Transmission polynomial). We denote by transmission polynomial of a
scattering matrix S the positive polynomial R = rr⋆ where r is the polynomial appearing
in the Belevitch form of S (eq. (2.38)). This polynomial R contains among its roots all
transmission zeros counting multiplicity, apart for those at infinity.

As an example, we show in fig. 2.16 the poles and zeroes of the functions S21 and S22

corresponding to an arbitrary scattering matrix of McMillan degree 5. Particularly we
indicate the roots of each polynomial appearing in the Belevitch form of the system. It
can first be noted how the denominator polynomial q is stable, namely its roots belong
to the open upper half plane. Additionally we can remark that the system is reciprocal
as the roots of the transmission polynomial r appear either on the real axis or in complex
conjugate pairs.

Remark 2.9.2. Note that for the purposes of this work, the distribution of the roots of
R between the polynomials r and r⋆ is not relevant and can therefore be done arbitrary.
Furthermore, we consider most of the time, scattering matrices to be non-reciprocal. Thus
no additional condition is imposed on the polynomial R or its roots, apart for it being
positive. Nevertheless if matrix S is reciprocal, then all roots of R have even multiplicity.
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Figure 2.16: Pole-zero diagram with the roots of each polynomial p, r, q from the Belevitch
form of an arbitrary reciprocal system.

2.9.2 Belevitch form of an all-pass device

An all-pass device is characterised for having zero reflection coefficients S11, S22 while
presenting a non-constant uni-modular transmission coefficient, either S12, S21 or both.
Therefore we have a zero reflection polynomial p = p⋆ = 0 and an arbitrary transmission
polynomial r. Note that the denominator q obtained as the stable factor of qq⋆ = rr⋆,
have roots at all zeros of rr⋆ in C+. As a result, all zeros of r belonging to C+ simplify
out in S21 with the corresponding zeros of q while the zeros of r⋆ in C+ simplifies in S12.
Additionally, no transmission zeros are introduced on the frequency axis by an all-pass
device as if r(αi) = 0 with αi ∈ R then we have r(αi) = r⋆(αi) = q(αi) = 0 obtaining a
pole-zero cancellation in both S21 and S12.

As an example consider the transmission polynomial of degree B = B1+B2 with roots
at the points βi, αi ∈ C− such that

r =

B1∏

i=1

(λ− αi)

B2∏

i=1

(λ− βi).

If this polynomial is reciprocal, namely B1 = B2 and αi = βi for all i ∈ [1, B1], then
we obtain a transmission coefficients S12 = S21 of the form

S21 = S21 =

B1∏

i=1

(λ− αi)

(λ− αi)
.

However, in the general case of a non-reciprocal all-pass device, the function S21 has
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roots at the points αi ∈ C− while S12 vanishes at the points βi ∈ C−. Thus

S21 =

B1∏

i=1

(λ− αi)

(λ− αi)
,

S12 =

B2∏

i=1

(λ− βi)

(λ− βi)
.

Remark 2.9.3. Note that the degree of both parameters S21 and S12 might not be the
same in this case. Indeed if B1 6= B2 a different number of simplifications occurs in each
of the functions. Nevertheless the McMillan degree (B) of the device does not drop unless
a simplification occurs in both S12 and S21.

As an example, we can consider the limiting case where the polynomial r has all roots
in C−, namely

r =
B∏

i=1

(λ− αi).

In this case we have

S11 = 0,

S22 = 0,

S12 = 1,

S21 =
B∏

i=1

(λ− αi)

(λ− αi)
.

Note that transmission zeros are only present in the coefficient S21, namely the transmis-
sion from port 1 to port 2 while the transmission from port 2 to port 1 never vanishes.
This fact evidences the non-reciprocity of the device. This case is illustrated in fig. 2.17
where we show the roots of the polynomials q and r corresponding to an all-pass device.
Note that the roots of r are all in C−, therefore no simplification occurs in the coefficient
S21. Conversely the roots of r⋆ coincide with the roots of q producing a complete pole-zero
cancellation in the function S12. As a result we obtain a constant parameter S12 = 1.

2.9.3 Darlington equivalent

The Belevitch form allows to reconstruct the scattering matrix given the polynomials p, q, r
and the uni-modular constant ǫ. Additionally, if only polynomials p and q are known,
such that f = p

q
∈ Σ, then we can construct transmission polynomial R = qq⋆ − pp⋆ such

that there exist a scattering matrix S

S =
1

q

(
p −ǫr∗
r ǫp⋆

)

,

with rr⋆ = R. This matrix satisfies S11 = f .

Darlington theorem states
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Figure 2.17: Pole-zero diagram of the function S21 of an all-pass network.

Theorem 2.9.2 (Darlington equivalent). Any passive (Schur) reflection S11 can be seen
as the input reflection of a lossless two-ports network closed at port two by an arbitrary
impedance.

To illustrate the concept of Darlington equivalent, we represent in fig. 2.18 an antenna
with input reflection coefficient S11 along with a Darlington equivalent of the latter. This
equivalent consist of a lossless two-port device which shows the same input reflection S11.

S11

⇐⇒
two
port

S22S11

Figure 2.18: Darlington equivalent illustration

Remark 2.9.4. Note that the Darlington equivalent is not unique. Particularly, it is
possible to multiply polynomials p, r by a product of factors (λ− α) with α ∈ C− and the
polynomial q by the factors (λ − α) without modifying the element S11. This is done at
the expenses of increasing the degree of the functions S22 and S12, thereby increasing the
McMillan degree of the matrix S as well.

For the better understanding of this concept we can use the diagram provided in
fig. 2.19. In this case an all-pass block of an arbitrary degree D has been added at the right
port of the Darlington equivalent shown in fig. 2.18. This all-pass block has the effect of
multiplying the reflection coefficient S22 by an uni-modular factor meanwhile the reflection
S11 is not modified. We have

Sa22 = S22

D∏

i=1

λ− αi
λ− αi

.
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Thus a set of reflection zeros are introduced at the points αi for all i ∈ [1, D] along with
the corresponding poles at the conjugate positions. Note that when looking from port 1,
the additional poles and zeros cancel out, therefore keeping the degree of the function
S11. Nevertheless the McMillan degree of the Darlington equivalent is increased as the
parameter S22 increases.

S11

⇐⇒
two
port

all
pass

Sa22S11

Figure 2.19: Darlington equivalent of not-minimal McMillan degree

Remark 2.9.5. Note further that if polynomials p, r are multiplied by such factor (λ−α)
with α ∈ C+, a transmission zero is added at λ = α, i.e. the polynomial R = rr⋆ vanish
at α ∈ C−. Therefore, if the matrix S realising the function f as its element (1, 1) is
desired to be reciprocal, we can distribute the roots of qq⋆ − pp⋆ between r and r⋆, adding
some extra roots in C− if necessary, such that all roots of polynomial R = rr⋆ have even
multiplicity.

Example 2.9.1 (Darlington equivalent). Consider the example of an antenna (one-port
device) where only the reflection coefficient at port one S11 can be measured. The antenna
is a passive device, therefore there exist a lossless two-port with the same input reflection
S11 characterised by a 2× 2 scattering matrix S as illustrated in fig. 2.18. Note that the
function S11 can be modelled by a rational function of finite arbitrary degree N

S11(λ) =
p(λ)

q(λ)
p, q ∈ P

N ,

with q a stable polynomial. The reflection coefficient S11 can then be written as the (1, 1)
element of a matrix S

S =






p

q
S12

S21 ǫ
p⋆

q




 ,

with functions S12 and S21 satisfying

S12(λ)S21(λ) =
−ǫR(λ)
q(λ)2

,

and R = qq⋆ − pp⋆. Note the uni-modular constant ǫ can be arbitrarily chosen.

2.10 Rational form of the impedance matrix Z

The impedance parameters Z of any stable and lossless device can be calculated from the
polynomials scattering matrix S as follows

Z = Z0
I + S

I − S
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Introducing now the Belevitch form the scattering matrix S from eq. (2.38) we have

I + S =

(
q + ǫp⋆ −ǫr⋆
r q + p

)
1

q
, (2.41)

(I − S)−1 =

(
q − p −ǫr⋆
r q − ǫp⋆

)
1

q + ǫq⋆ − p− ǫp⋆
. (2.42)

From eqs. (2.41) and (2.42) we reach

Z =

(
q − ǫq⋆ − (p− ǫp⋆) −2ǫr⋆

2r q − ǫq⋆ + p− ǫp⋆

)
1

q + ǫq⋆ − p− ǫp⋆
. (2.43)

2.11 Coupling matrix derivation from the Belevitch

form

We have obtained in the above section a rational form for the 2 × 2 impedance matrix
Z(ω) which is computed from the polynomials p, q, r taking part in the Belevitch model
of the Scattering matrix S(ω). In order to obtain the corresponding coupling matrix,
the matrix Z(ω) should be expressed by a State Space realisation. We denote by ζi the
poles of the matrix Z(ω) with 1 ≤ i ≤ N and where N is the McMillan degree of the
system with scattering parameters S(ω). Furthermore we define the 2 × 2 matrix θi as
θi = res (Z(ω), ζi), namely the residue of the matrix Z(ω) at the pole ζi.

Now we express the matrix Z(ω) in the form

Z(ω) = D + C(ωI − U)−1V.

Matrix D As reviewed in section 2.8 the matrix D is obtained directly as

D = lim
ω→∞

Z(ω).

Matrix U Moreover the eigenvalues of the matrix U corresponds to the poles ζi for all
i ∈ [1, N ]. It should be noted that we have at this moment an infinite amount of
possibilities for this matrix U , nevertheless the simpler one is the diagonal matrix

U =








ζ1
ζ2

. . .

ζN







.

Matrices C, V With the previous choice for the matrix U , the matrices C and V only
depend now of the residues of Z(ω) at each point ζi, in particular we have

C · V = θi ∀i ∈ [1, N ]. (2.44)

Now we choose the matrices C and V , which again are not unique, satisfying
eq. (2.44). Note that in the case of a reciprocal network, we can additionally impose
C = V T .
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Remark 2.11.1. In section 2.7.2 we have derived the expression of the rational form
corresponding a any arbitrary state space (C,D,U, V ) representation of a system. Note
that any system represented by a state space realisation can be written in a rational form.
Nevertheless, not every rational matrix admits a state space representation. Indeed there
might not exist matrices C, V such that eq. (2.44) holds at every point i ∈ [1, N ]. Nev-
ertheless a rational matrix which is proper with residues of rank 1 admits a state space
representation. It is the case of every matrix in the form given by eq. (2.43).

2.11.1 Coupling matrix

Finally, we denote

C =

(
C1

C2

)

,

D =

(
D11 D12

D21 D22

)

,

V =
(
V1 V2

)
,

where C1, C2 are row vectors, V1, V2 are column vectors and D11, D12, D21, D22 the scalar
elements of the matrix D. Then we construct the coupling matrix M as

M =





D11 C1 D12

V1 −U V2
D21 C2 D22



 .

2.12 Rational Schur functions associated to a pre-

scribed transmission polynomial

The Belevitch parametrisation is customary in classical filter design and allows us to have
additional control on the location of the points of zero reflection or zero transmission by
properly placing the roots of polynomials p and q respectively. Indeed, when the classical
synthesis of a filtering function with a resistive load is performed, the transmission zeros
are often set to given positions either inside the complex plane as a complex conjugate
pair or on the frequency axis. This practice has the purpose of increasing the out-of-band
selectivity (if transmission zeros are placed on the frequency axis) or to have some control
on the group delay in the passband (by imposing complex conjugate pairs of zeros). In
this work, we inherit the practice of imposing the location of the transmission zeros.

Therefore, it is also interesting to define the set of rational Schur functions ΣN obtained
as the (2, 2) element of a 2 × 2 rational matrix following the Belevitch parametrisation
where the transmission polynomial R = rr⋆ ∈ P2N

+ is prescribed

Definition 2.12.1 (Rational Schur function). We define the concept of rational Schur
functions of degree N associated to the transmission polynomial R ∈ P2N

+ as the set of
input (or output) reflection coefficients provided by a 2-port system that is passive and
stable having the polynomial R as transmission polynomial.

Σ
N
R =

{

f =
p

q
: p, q ∈ P

N | qq⋆ − pp⋆ = R

}

, (2.45)
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where polynomial p, q are not required to be co-prime.

Remark 2.12.1. Remark that, even though the transmission polynomial R of a matrix S
has all transmission zeros of S as roots, some transmission zero might not be obtained only
from the scalar functions S11 or S22 since a pole-zero cancellation might occurs in either
S11 or S22 (not both). Therefore, when defining the rational scalar functions associated
to a transmission polynomial R (ΣNR ) we allow for some of the transmission zeros not to
be present as roots of the positive polynomial qq⋆ − pp⋆. If this happens, we can multiply
both p and q by a factor (λ− α) with α ∈ C−, introducing a transmission zero at λ = α.

Moreover, if the transmission polynomial R is fixed, then it is possible to parametrise
the set ΣNR only by the numerator polynomial p. Thus, given p ∈ PN such that pp⋆(λ) +
R(λ) > 0 for all λ ∈ R, expression qq⋆ = pp⋆+R determines the polynomial q ∈ PN . This
is possible because q(λ) 6= 0 for all λ ∈ C− (q has all roots in C− and q⋆ in C+). However,
note that polynomial q is only determined up to an uni-modular constant ǫ = ejθ (if
q̂ = ǫq, then qq⋆ = q̂q̂⋆). Nevertheless this constant ǫ can be absorbed by p allowing to
normalise q in a unique way. In this work we assume that polynomial q is normalised at
a reference frequency λ = λ0 such that arg q(λ0) = φ ∈ [−π, π].

2.13 Classical synthesis of transfer functions with a

resistive load

After introducing the parametrisation chosen in this work for the function f ∈ ΣNR , and
in order to show the benefits of such parametrisation, we use it in the classical statement
of the filter synthesis problem where a resistive load is considered. The classical synthesis
problem consisting in finding, given the frequency band I, the reflection coefficient S11

with the minimum return loss level l

Problem 2.13.1 (Classical synthesis problem).

lopt = min
S11∈ΣN

R

max
ω∈I

|S11(ω)|,

with a specified rejection γ on the stop band J

|S11(ω)| ≤ γ ∀ω ∈ J.

The Belevitch parametrisation allows for the uniform constraints on the modulus of
S11 to be cast to uniform constraints on the filtering function pp⋆/R with R = rr⋆

|S11|2 =
pp⋆

qq⋆
=

pp⋆

pp⋆ +R
=

(

1 +
R

pp⋆

)−1

.

The optimal solution to this classical problem is proved to be the quasi-elliptic functions
[15]. These functions are obtained by solving the following problem for a fixed R over the
coefficients of p:

Problem 2.13.2 (Classical synthesis problem.). Find min
p∈PN

(L), subject to:

pp⋆

R
(ω) ≤ L ω ∈ I,

pp⋆

R
(ω) ≥ Γ ω ∈ J, (2.46)
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where the value of L, obtained as

L = max
ω∈I

p(ω)p⋆(ω)

R(ω)
,

represents the reflection level in the passband and (2.46) the rejection requirement on the
stop-band. The constant Γ can be computed from the specified rejection constraint:

Γ =
1

γ−1 − 1
,

where the value γ in the denominator was defined in problem 2.13.1.

Note this problem is a minimisation of a linear criterium under a set of linear con-
straints only, which can be solved by means of well known methods like linear program-
ming.

2.13.1 Optimal multi-band transfer functions

The optimal solution to the preceding problem is well known in the filter synthesis
community in the case in which the band I is composed of a single interval. Additionally
the solution in this case is unique and the polynomial p that provides this solution is the
Tchebyshev polynomial weighted with the polynomial R.

In the generic case in which the passband I is composed of the union of an
arbitrary number of real compact intervals, the result of the previous problem is
not so well known. However, we must emphasize that the solution of the problem
with a single interval is guaranteed optimal since it is the solution to a Zolotarev
problem which is characterized in terms of the number of oscillations present in the
pass-band. In the same way the solution of the general problem considering a generic
band I is solution to another Zolotarev problem and can be characterized in the same way.

Nevertheless it was not until the recent years when the general version of prob-
lem 2.13.2 was formally stated and the optimal solution provided. In [16] problem 2.13.2 is
formulated in a generalised form where the optimisation set consists on both polynomials
(p, r) ∈ PN1 × PN2 with the assumption pp⋆ = p2 and rr⋆ = r2 as

Problem 2.13.3 (Optimal multi-band filter synthesis).

Find : min
(p,r)

(L) (p, r) ∈ P
N1 × P

N2 ,

Subject to :
p2(ω)

r2(ω)
≤ L ω ∈ I,

p2(ω)

r2(ω)
≥ Γ ω ∈ J.

This problem is proven to be quasi-convex as for a fixed value of L, the set of polyno-
mials (p, r) ∈ PN1 × PN2 such that

p2(ω) ≤ Lr2(ω),

Page 44 Mart́ınez Mart́ınez David



2.13. Classical synthesis of transfer functions with a resistive load

is a convex set. The solution is then obtained by solving a sequence of convex problems

Find : h = min
(p,r)

p2(ω)− L(i)r2(ω) (p, r) ∈ P
N1 × P

N2 ,

Subject to : p2(ω) ≥ Γr2(ω) ω ∈ J,

where the value of L(i) is fixed and reduced in each iteration until no positive value of h
is found.

2.13.2 Non-reciprocal multi-band transfer functions

It should be noted in the previous formulation of the synthesis problem introduced in
[16], it is assumed both polynomial to be star-symmetric, namely p⋆ = p and r⋆ = r,
thereby obtaining pp⋆ = p2 and rr⋆ = r2. This assumption is not done without loss
of generality as if it is not imposed a better solution can be obtained. For instance,
the previous problem without the constrain p⋆ = p would in general provide a better
criterium. Furthermore if the second constraint r⋆ = r is also relaxed, namely a general
non-reciprocal response is sought, the best solution for the synthesis problem is attained.

Nevertheless, this formulation can also be applied to the case where both conditions
r⋆ = r and p⋆ = p are relaxed and all properties provided for such problem still hold.
The problem is then formulated in an equivalent form by considering, instead of the
polynomials (p, r), the couple of positive polynomials (P,R) ∈ P

2N1
+ × P

2N2
+ with P = pp⋆

and R = rr⋆. We obtain the following problem

Problem 2.13.4 (Generalised multi-band filter synthesis).

Find : min
(P,R)

(L) (P,R) ∈ P
2N1
+ × P

2N2
+ ,

Subject to : P (ω) ≤ LR(ω) ∀ω ∈ I,

P (ω) ≥ ΓR(ω) ∀ω ∈ J.

As before, the optimal solution to problem 2.13.4 is computing by solving a following
sequence Pi of convex problems

Problem 2.13.5 (Pi).

Find : h = min
(P,R)

P (ω)− L(i)R(ω) (P,R) ∈ P
2N1
+ × P

2N2
+ ,

Subject to : P (ω) ≥ ΓR(ω) ω ∈ J,

where the value of L(i) is reduced on each iteration until no h ≥ 0 can be found.

This problem is of special importance in this thesis since it constitutes a particular
case of the optimization problem studied in later chapters. This formulation is obtained
by considering the simplest case of the matching problem, namely the case where the load
is a constant impedance. Therefore, the properties of the optimization problem presented
in [16] apply directly to our problem in the mentioned case.
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Chapter 3. General matching problem and state of art

In the design of communication devices, the matching problem has as objective the min-
imisation of the reflected power when the load impedance does not match the conjugate
of the internal impedance of the generator. For that, a matching network is introduced
between the load and the generator. This matching network is used to convert the load
impedance into a different one as close as possible to the conjugate of the generator
impedance (fig. 3.1).

ZL

Matching
network

R1

−
+

E1

ZLR1

Figure 3.1: Matching circuit

In classical matching problems, the objective is to design a passive network showing
the conjugate of the generator impedance at port one when the load impedance closes
port two. If the matching network can show precisely the impedance R1 at its input, we
speak about a perfect match. However, when the load is frequency variant (ZL = ZL(λ)),
employing classical matching techniques, ideal matching is usually only attained at one
frequency point λ1. For narrow-band applications, obtaining a perfect match at one
frequency is typically acceptable since the reflected power is still low around the frequency
of perfect matching. However, it might not be good enough for a broad frequency band
or when the design specifications in term of maximum reflected power are stringent. The
goal then becomes to obtain uniform matching within the interval of interest with the
smallest possible reflected power within the whole band and, possibly, with no perfect
match at any frequency.

3.1 Classical matching problem

The matching problem is stated in this work in a different but still equivalent form.
To begin with, we normalise all impedances in the circuit using as reference an arbitrary
impedance Z0. We can assume Z0 = 50Ω as it is customary in classical matching problems.
This technique is standard in the field of circuits design to obtain the reflection coefficient
seen when the load is connected to the reference impedance. In practice, it is done just by
applying the Möbius transform that maps the class of positive real functions (PR) onto
Σ.

f :PR −→ Σ

ZL −→ f(ZL) = S11(ZL),

where

f(ZL) =
ZL −R1

ZL +R1

. (3.1)

Page 48 Mart́ınez Mart́ınez David



3.1. Classical matching problem

ZL

Matching
network

R1

−
+

E1

F22F11

S11 L11

Figure 3.2: Matching circuit after normalising to R1

This transformation provides us with an alternative representation of the circuit in fig. 3.1
where each component is parametrised by its scattering parameters referenced to the
internal impedance of the generator. This representation is shown in fig. 3.2 where the
input and output reflection parameters of the matching network are denoted by F11 and
F22 respectively while the reflection coefficient of the load is denoted L11. Additionally,
we denote S11 the reflection coefficient at the input of the global system composed of the
matching network connected to the load. With the new formalism, the objective becomes
the minimisation of the reflection coefficient S11, this time, in a frequency band instead
of a single point.

This reflection coefficient S11 can be computed from the scattering matrix of the
matching network F as the chaining of the 2× 2 matrix F with the scalar reflection L11.
This operation will be referred repeatedly, and therefore it deserves some attention before
moving on

Definition 3.1.1 (Scalar chaining). We denote by scalar chaining the operation (rep-
resented by the symbol ◦) of closing one of the ports of the two port device F by an
impedance (possibly frequency-dependent) ZL with reflection coefficient L11 (normalised
to the reference impedance R1). The result is a one-port device S with the input reflection
(normalised to the same reference) S11

S11 = F ◦ L11.

The function S11 at each frequency, is computed as

S11 = F ◦ L11 = F11 +
F21F12L11

1− F22L11

. (3.2)

Similarly, we define the chaining of two-ports devices F and L as the interconnection
of port 2 of F with port 1 of L providing the global scattering matrix S

Definition 3.1.2 (Chaining operation). The global scattering matrix resulting of chain-
ing two matrices F and L (at each frequency) is computed as:

S = F ◦ L =








F11 +
F12L11F21

1− F22L11

F12L12

1− F22L11

L21F21

1− F22L11

L22 +
L21F22L12

1− F22L11







. (3.3)
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In this chapter we are mostly interested in eq. (3.2), since the absolute value of the
function S11 is the quantity to be minimised within a given interval if a good matching
between the matching network and load is desired. With the purpose of studying such
expression, we provide the concept of pseudo-hyperbolic metric which happens to be of
great relevance.

Definition 3.1.3 (Pseudo-hyperbolic distance). The Pseudo-hyperbolic distance is a dis-
tance in D. The pseudo-hyperbolic distance between two points a, b ∈ D is defined as

δ(a, b) =

∣
∣
∣
∣

a− b

1− ab

∣
∣
∣
∣
,

where a denotes again the complex conjugate of the value a. As a distance, it verifies the
properties

1. Non-negativity: δ(a, b) ≥ 0; additionally δ(a, b) = 0 if and only if a = b.

2. Symmetry: δ(a, b) = δ(b, a).

3. Triangle inequality: δ(a, c) ≤ δ(a, b) + δ(b, c)

One more property we should remark is the fact that the pseudo-hyperbolic disc
DH(c0, r) of centre c0 and radius r defined as [17, section 1]

DH(c0, r) = {λ : δ(λ, c0) < r}
is also a disc DE(C0, R) in euclidean geometry, namely

DH(c0, r) = DE(C0, R) = {λ : |λ− C0| < R} , (3.4)

with a different centre C0 and radius R where

C0 =
1− r2

1− r2|c0|2
c0,

R =
1− |c0|2
1− r2|c0|2

r.

Note that for any point c0 ∈ D, the disc DH(c0, 1) is the unit disk

DH(c0, 1) = DE(0, 1) = D ∀c0 ∈ D.

Therefore there are not two points a, b ∈ D such that δ(a, b) ≥ 1. We obtain then

δ(a, b) <1 ∀a, b ∈ D.

Before giving the formal statement of the matching problem, it is interesting to note
that some properties of scattering matrices can be used to simplify eq. (3.2). First, at
each frequency λ ∈ C we write

F ◦ L11 = F11 +
F21F12L11

1− F22L11

=
F11 − F11F22L11 + F21F12L11

1− F22L11

=
F11 − det(F)L11

1− F22L11

.
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Assuming the matrix F is unitary we apply eq. (2.21)

F ◦ L11 =

F11 −
F11

F ⋆
22

L11

1− F22L11

=
F11

F ⋆
22

F ⋆
22 − L11

1− F22L11

. (3.5)

Similarly the chaining operation F22 ◦ L can be written as

F22 ◦ L =
L22

L⋆11

L⋆11 − F22

1− L11F22

. (3.6)

Finally we can use eq. (2.17) to compute |F(ω) ◦ L11(ω)| in the real axis

|F(ω) ◦ L11(ω)| =
∣
∣
∣
∣
∣

F22(ω)− L11(ω)

1− F22(ω)L11(ω)

∣
∣
∣
∣
∣

∀ω ∈ R. (3.7)

Previous expression is the pseudo-hyperbolic distance between F ⋆
22 and L11.

|S11(ω)| = |F(ω) ◦ L11(ω)| = δ
(

F22(ω), L11(ω)
)

∀ω ∈ R.

Hence the modulus of the input reflection obtaining by chaining a two-port scattering
matrix F with the scalar reflection coefficient L11 is expressed as the pseudo-hyperbolic
distance between two scalar functions, namely the conjugate of the reflection coefficient
of the matching network (F11) and the output reflection coefficient of the load (L22).

3.2 General broadband matching problem

Now we are ready to formulate the matching problem as the minimisation of the maximum
pseudo-hyperbolic distance δ

(
F11, L22

)
, or equivalently, the minimisation of the pseudo-

hyperbolic distance δ
(
L11, F22

)
within the set compact set I ⊂ R. Note that, as it is

done for the classical synthesis of filtering functions in problem 2.13.1, the filter F to be
synthesise is parametrised by the scalar reflection coefficient F22. The scalar function F22

allows to recover afterwards a 2× 2 scattering matrix having F22 as output reflection by
means of the Darlington equivalent.

Problem 3.2.1 (General broadband matching problem). Let I, denoted hereinafter as
the passband, represents a finite union of compact frequency intervals and L11 ∈ Σ the
reflection coefficient of the load. The problem of matching the load with reflection L11

within the passband I is stated as

Find: min
F22∈E

max
ω∈I

δ
(

L11(ω), F22(ω)
)

E ⊂ Σ.

This is a problem of finding the best approximant of the function L11 in a limited band
over a given subset E of the Schur functions. The best approximant is the minimiser of
the error Ψ(F22) representing the maximum value of the pseudo-hyperbolic distance.

Ψ(F22) = max
ω∈I

δ
(

L11(ω), F22(ω)
)

.
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It is important to note here that L11(λ) is the restriction to the real axis of the function
L⋆11(λ) which is not a Schur function, and most importantly it is an anti-analytic function.
Therefore it can not be perfectly approached by F22 ∈ E .

min
F22∈E

Ψ(F22) = Ψopt > 0.

This fact differs already from what happens with a resistive load where perfect match-
ing can be obtain in an arbitrary large interval.

Remark 3.2.1. Remark that we have not specified yet what is the class E ∈ Σ in which
the function F22 is sought for. In the literature, previous authors have chosen the set E
differently either to cope with realisability constraints of the synthesised matching network
F or to guarantee the optimality of the obtained solution to problem 3.2.1. Indeed, the
complexity of problem 3.2.1 strongly depends on the choice of the subset E . Furthermore,
the optimal solution to problem 3.2.1 also differs depending on the nature of the set E .

Next, instead of providing a chronological review of the different contributions to the
problem, we believe its more important to follow a pragmatic order, allowing the reader
to better understand the evolution of the matching problem in terms of the different
subsets E of the Schur functions used to parametrise the function F22.

In first place (although last in the chronology) we review the approach to problem 3.2.1
taken by Helton in the eighties where he considered the set E as the set of Schur function
itself Σ ⊂ E . This choice allows him to state the problem in a convex form, ensuring
the optimal solution is reached. As a result, Helton solution represents a remarkable
contribution to the literature of problem 3.2.1 as he computes the best solution F opt

22

among all Schur functions F22 ∈ Σ providing thus a hard bound on the smallest attainable
error Ψ(F22)

min
F22∈E

Ψ(F22) = Ψopt ≥ Ψ
(
F opt
22

)
.

3.3 Helton’s solution to the matching problem

Let us consider the fundamental question of finding, for an arbitrary reflection coefficient
L11 ∈ Σ what is the best matching level that can be obtained on an interval I. In other
words, the minimum value attainable in problem 3.2.1. This question has been already
answered by Helton who solved the general matching problem in [18] as the minimisation
of the pseudo-hyperbolic distance between the reflection F22 and L11

Ψ(F22) = max
ω∈I

δ
(

F22(ω), L11(ω)
)

.

without any additional constraints on F22. It is only supposed that F22 belong to Σ namely
an infinite dimensional class of functions. The functional space Σ is a convex space since
any convex combination between two functions f1, f2 ∈ Σ is still a Schur function. For
instance, we have f1, f2 such that |f1(λ)| < 1 and |f2(λ)| < 1 for all λ ∈ C−. Then the
function

f3(λ) =κf1(λ) + (1− κ)f2(λ) 0 ≤ κ ≤ 1

satisfies |f3(λ)| < 1 for all λ ∈ C− and therefore f3 ∈ Σ. The convexity of Σ represents
the main reason of the success of Helton approach.
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3.3.1 The problem

In order to compute the optimal solution, the problem is stated as finding a function
F22 ∈ Σ belonging to the Pseudo-hyperbolic disc with centre L11 and radius Ψ

δ
(

F22(ω), L11(ω)
)

≤ Ψ(ω) ∀ω ∈ I, (3.8)

with Ψ(ω) a fix tolerance K within the passband and 1 outside

Ψ(ω) =

{
K ω ∈ I

1 ω /∈ I
. (3.9)

Note that if F22(ω) ∈ D for all ω ∈ R, since the Pseudo-hyperbolic distance is
smaller than 1, then eq. (3.8) imposes a restriction only in the interval I. Conversely,

δ
(

F22(ω), L11(ω)
)

> 1 with ω ∈ R implies that F22 is not a Schur function, even though

it might be stable.

Thus, if there exist F22 ∈ Σ such that eq. (3.8) is verified, then matching tolerance
Ψ(ω) is admissible. The idea is then to iterate on the tolerance Ψ(ω) by reducing the
value of K until the pseudo-hyperbolic disk DH(L11,Ψ) contains only the single function
F opt
22 ∈ Σ.

3.3.1.1 The Hardy space H∞

In this work, most theory is developed around the class of Schur functions Σ, however a
bigger class in functional analysis is the class of functions H∞. H∞ represents the space
of analytic functions bounded in its analyticity domain, in our case, C−. Therefore we
define

Definition 3.3.1 (Hardy space H∞).

H∞ ≡
{
f ∈ H(C−) | sup(|f(λ)|) <∞, λ ∈ C

−} ,

where H denotes holomorphic functions.

Note H∞ contains all analytic functions bounded by a finite value ψ ≤ ∞. In
particular, taking ψ = 1, we obtain the set of Schur function Σ, which is also included
in H∞. In circuit theory, the class H∞ is often used to denote reflection or transmis-
sion coefficients of stable devices when passivity is not a constraint. In other words,
it can also represent the reflection or transmission coefficient of active microwave systems.

Nevertheless it is important to remark that the extension of the function L11(ω) to the
complex plane is not analytic and hence it does not belong to H∞. This function L11(ω)
belong instead to the broader class L∞. Therefore, we shall introduce now the concept of
p− norm, which is useful for the definition of the Lebesgue spaces, among which we find
the L∞ space.

Definition 3.3.2 (p-norm). Consider again a function f(ω) with ω ∈ R and an integer p
with 1 ≤ p <∞. The p norm of the function f(ω) is defined as

‖f‖p =
(∫

ω

|f(τ)|pdτ
) 1

p

. (3.10)
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Remark 3.3.1. Note that we can also define the ∞-norm as the limit of eq. (3.10) when
p→ ∞. We have

‖f‖∞ = sup f.

We obtain the supremum of the function f . For this reason the ∞-norm is usually known
as sup-norm.

Definition 3.3.3 (Lebesgue spaces Lp). Consider again a function f(ω) with ω ∈ R. The
space Lp with 1 ≤ p <∞ consists in all functions f with finite p-norm, namely

‖f‖p <∞.

Remark 3.3.2. We can also consider the special case of p = ∞. The space L∞ contains
the functions f(ω) which are bounded for ω ∈ R, namely

sup f <∞.

3.3.2 The approach

Helton’s approach is based on the fact that pseudo-hyperbolic disks are also disc in eu-
clidean geometry as showed in eq. (3.4), therefore the problem can be solved by verifying
whether the euclidean disk DE (C0(ω), R(ω)) with

C0(ω) =
1−Ψ(ω)2

1−Ψ(ω)2|L11(ω)|2
Ψ(ω), R(ω) =

1− |L11(ω)|2
1−Ψ(ω)2|L11(ω)|2

Ψ(ω),

is non-empty, or equivalently, the disk of unit radius DE (C0(ω)R0(ω)
−1, 1) after dividing

by the minimum phase factor of the function R(ω), denoted here by R0(ω).

Helton approach to problem 3.2.1 consist on relaxing the set Σ, obtaining the minimi-
sation problem over the functions f ∈ H∞ of the maximum of |f(ω) − C0(ω)R0(ω)

−1|.
This formulation of the matching problem by minimising the euclidean distance from a
function f(ω) ∈ H∞ to a function belonging to L∞ is a classical Nehari problem

Problem 3.3.1 (Nehari).

Find: min
f∈H∞

max
ω∈R

|f(ω)− C0(ω)R0(ω)
−1|.

Problem 3.3.1 is an approximation problem with a function f ∈ H∞ to a function
C0R

−1
0 ∈ L∞ and the optimal solution is given by Nehari’s theorem by means of Nehari’s

Hankel operator. Also, if the obtained minimiser fopt satisfies

|fopt(ω)− C0(ω)R0(ω)
−1| ≤ 1 ∀ω ∈ R,

then the given tolerance Ψ(ω) is admissible. In such case the tolerance Ψ(ω) is reachable
with a function F22 ∈ Σ.
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M.N.
F22

L11

(a) Matching network + one-port load.

D.E.M.N.

F22 L11 L22

S22S11

(b) Global system (matching circuit + load Darlington
equivalent).

Figure 3.3: Different matching approaches: classical matching and global system synthesis

3.3.3 The result

Helton’s solution provides a hard lower bound

Ψopt = min
F22∈Σ

Ψ(F22),

to the best matching level attainable with any arbitrary load of reflection coefficient L11.
However, in spite of being a remarkable result, Helton’s work did not have a big impact
in the electronic community. This is partly because of the complexity of his approach,
based on Nehari’s Hankel operator theory but also due to the fact that the F22 required
to attain the best matching Ψopt is of infinite degree. In electronics a function F22 of
infinite degree can be translated to either a matching network having an infinite number
of lumped components or a coupled microwave structure having an infinite number of
resonators. In either case, it is not suitable for practical applications.

3.4 Baratchart-Seyfert-Olivi: point-wise matching

We review next the work presented in [19] as this approach shares the same conceptual line
as Helton’s problem, this is minimising the pseudo-hyperbolic distance δ(F22(ω), L11(w))
within the band of interest ω ∈ I. The formulation chosen by Baratchart et al. to
establish the problem of matching differs from that of Helton in two fundamental aspects.

The first aspect is the choice of the set E . In the work of Helton the set E was
selected as the complete set of Schur functions, namely Σ. This choice represents a
huge relaxation of the problem but allowed to guarantee the optimality of the obtained
solution. In the present case, the authors have decided to restrict the set E to the
rational functions of degree N associated with a transmission polynomial R ∈ P2N

+ fixed
in advance. This set corresponds to the set ΣNR introduced in eq. (2.45).

The choice E = ΣNR provides a formulation fully equivalent to the problem of synthesis
of classical transfer functions introduced in problem 2.13.1 where the parametrisation
F22 ∈ ΣNR was used. With this parametrisation, the existence of a scattering matrix F
of McMillan degree equal to N having the function F22 as element (2, 2) is guaranteed.
The control obtained on both, the maximum McMillan degree and the transmission
polynomial R facilitates the implementation of the physical 2-port device with scattering
matrix F . Furthermore, the possibility to impose the polynomial R provides an in-
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creased versatility as the technology and structure of the device can be decided in advance.

In comparison with the formulation of Helton, the set of rational functions of finite
degree introduces a tremendous restriction with respect to the set of Schur functions
without degree restriction. As a result of such restriction the convexity of the optimisation
set is lost and so is the optimality of the obtained solution.

3.4.1 An algorithm for point-wise matching

The second aspect in which this formulation differs from that of Helton is the type of
set of the real axis on which it is intended to minimize the reflection of the system,
expressed as the pseudo-hyperbolic distance δ(F22(ω), L11(w)). While in the work of
Helton the minimization is done uniformly over the whole interval I, here it has been
decided to impose the points of perfect matching, namely a set X with a maximum of
N + 1 frequency points [x1, x2, · · · , xN+1].

Note as it was pointed out in section 3.2, if the function L11(λ) is rational, we can not
obtain F22(λ) = L⋆11(λ) for all λ ∈ I as L11(λ) corresponds to the evaluation on the real
axis of L⋆11(λ), which is an anti-analytic function. However, we can still find a function
F22 ∈ ΣNR such that F22(xi) = L11(xi) for a finite set of points X. At each point xi we
have

δ(F22(xi), L11(xi)) = 0 ∀i ∈ [1, N + 1].

These points λi can a priory be placed either on the real line or inside the analyticity
domain C−, in which case the evaluation of the function L⋆11(λi) should be considered.
However to obtain a solution that approach as close a possible the solution to problem 3.2.1
we consider in the present summary that the interval I is discretised distributing the
matching points xi within the passband X ⊂ I. Therefore

δ(F22(ω), L11(ω)) = 0 ∀ω ∈ X.

Having the transmission polynomial of F22 prescribed, what is easily done for the functions
in ΣNR , allows to parametrise the function F22 ∈ ΣNR in terms of the polynomial p ∈ PN

only. Additionally from eq. (3.7) the condition of perfect matching at the points xi
becomes an interpolation problem where the function F22 interpolates the value of L11 at
each point xi ∈ X.

[F22(p)](xi) = L11(xi) 1 ≤ i ≤ N + 1.

3.4.2 The result: perfect matching points with a matching net-
work of fixed degree.

The contribution provided in [19] represents the first step toward the solution of the
general matching problem when a matching filter of McMillan degree N is considered.
The main result is stated in the following theorem.

Theorem 3.4.1 (Baratchart-Seyfert-Olivi: pointwise matching). Let L11 ∈ Σ be the
reflection of the load at port one and fix a transmission polynomial R ∈ P2N

+ . Given
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Figure 3.4: Load reflection and global response using the point-wise matching strategy
and a matching network of degree 5. Shaded area indicates the interval I.

N + 1 distinct points on the real axis x1, x2, · · · , xN+1 ∈ R, there exist a unique function
F22 ∈ ΣNR such that F22(xi) = L11(xi) for all i ∈ [1, N + 1].

Example 3.4.1. An example of the kind of results obtained with this point-wise matching
algorithm can be seen in fig. 3.4. In this example the passband I consists on a single
frequency interval with range from 2.2 GHz to 2.5 GHz. Within this interval six perfect
matching points have been distributed at approximately the following frequencies

X ≈
{

2.2, 2.23, 2.3, 2.4, 2.47, 2.5
}

GHz.

Remark 3.4.1. Note as it is stated by theorem 3.4.1, the result appearing in fig. 3.4 and
featuring six matching points inside the passband can be attained with a matching filter of
degree N = 5. Furthermore two transmission zeros are imposed at the frequencies of 2.17
GHz and 2.53 GHz. We obtain the polynomial R ∈ P2N

+ as

R = (λ− 2.53)2(λ− 2.17)2.

Therefore we have F22 ∈ ΣNR .

Remark 3.4.2. Note that nothing has been said yet with respect to the optimal placement
of the points xi ∈ X. Indeed the set of points X can not be chosen arbitrarily in order to
obtain an equioscillating response such that the one shown in fig. 3.4. The reason comes
from the fact that the position of such points influences the reflection level ψ obtained as

ψ = max
ω∈I

|S11(ω)|.
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In order to determine the points xi ∈ X, we can define different heuristic approaches
which optimises the location of such points with the goal of minimising the criterium ψ.
In our case we state the following optimisation problem

Problem 3.4.1 (Placement of the perfect matching points).

Find: ψopt = min
X∈RN+1

max
ω∈I

|S11(ω)|.

Remark 3.4.3. Note further in fig. 3.4 that all maxima of the function |S11(ω)| has the
same value. Nevertheless it has not been proved yet that the optimal location of the points
xi satisfy this property for every possible load.

3.5 Fano-Youla’s contribution to the broadband

matching problem

Problem 3.2.1 of minimising the pseudo-hyperbolic distance between the output reflection
of the matching network and the conjugate of the load reflection coefficient is illustrated
in fig. 3.3a. With this formulation the optimisation is done on the function F22 while only
the input reflection L11 of the load is required. Nevertheless, since the load is a passive
device, we can construct a Darlington equivalent (see section 2.9.3) which provides us
with a 2-ports extension of the reflection coefficient L11. If the load in fig. 3.3a is now
replaced by its Darlington equivalent, the two-ports global system showed in fig. 3.3b is
obtained. The Darlington equivalent in fig. 3.3b shows at port 1 the same reflection L11

as the load, therefore the global system reflection S11 given by eq. (3.5) is not modified.
Additionally, by eq. (2.17), we have

|S22(ω)| = |S11(ω)| = δ
(

F22(ω), L11(ω)
)

∀ω ∈ R.

Moreover, the obtained reflection of the global system is also a Schur function.

Lemma 3.5.1. Given the unitary scattering matrix F and the scalar function L11 ∈ Σ,
the function obtained as the chaining S11 = F ◦ L11 is a Schur function.

Proof. Consider first the case when |L11(ω)| < 1 for all ω ∈ R. In this case the de-
nominator of eq. (3.5) can not vanish inside the analyticity domain. Additionally, if a
transmission zero occurs at a point α ∈ R such that F22(α)L11(α) = 1, by lemma A.3.1 a
pole-zero simplification happens cancelling the singularity at λ = α. Moreover the zeros
of L⋆11 in eq. (3.5) cancels with those of L22. Thus S11 = F ◦L11 is analytic in C−. Finally
we check |S11(ω)| < 1 for all ω ∈ R. We have

|S11(ω)| = |F(ω) ◦ L11(ω)| = δ
(

F22(ω), L11(ω)
)

< 1 ∀ω ∈ R.

.

Therefore problem 3.2.1 can be stated over the scalar Schur function S11 ∈ Σ under
the constraint that there exist a device F that is passive and stable such that

|F (λ) ◦ L11(λ)| = |S11(λ)| ∀λ ∈ C. (3.11)
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Remark 3.5.1. Note that from eq. (2.17) we have |S11(λ)| = |S22(λ)| for all λ ∈ R.
Therefore the problem can be stated equivalently over the function S22.

The main contribution of Fano-Youla’s matching theory is the characterisation of the
global system S such that eq. (3.11) holds for a passive stable matching network F .

3.5.1 Fano-Youla’s global system approach

In [20] the matching problem is stated as the synthesis of the two-ports global system
issue of the association of the matching network together with the Darlington equivalent
of the load (fig. 3.3b). Using the Darlington equivalent, the input reflection of the load
can be seen as the input reflection of a lossless 2-port device since by introducing the
Darlington equivalent, the global system is considered to be lossless. Note that even if
the reflection coefficient L11 is dissipative (not lossless), when the Darlington equivalent
is computed, it is assumed that all the power that is not reflected is transmitted, thus
obtaining a lossless device.

Fano’s approach, was built around the characterisation of the global systems
containing the Darlington equivalent of the load (fig. 3.3b). This characterisation is
done at the transmission zeros αi of the Darlington equivalent of the load. At these
transmission zeros, looking from the right of the global system in fig. 3.3b it is not
possible to see the matching network, because the load completely isolates port 1 and 2.
Therefore the behaviour of the reflection coefficient S22 depends only on the load at these
frequencies. In particular at λ = αi we have S22(αi) = L22(αi). Additionally, conditions
on the derivatives of S22 are obtained depending on the nature and multiplicity of
the transmission zero at αi. Fano introduced a set of integral equations involving the

function log
∣
∣
∣

1
S22

∣
∣
∣ providing the conditions to be satisfied by the global reflection S22

at each transmission zero αi. Some years later, in [21], Fano integral restrictions were
reformulated as a complex interpolation problem, and sufficiency proofs were given.
In Fano’s theory, complex interpolation conditions are imposed at the transmission
zeros of the load. It constitutes the necessary and sufficient conditions on the global
system to contain the Darlington equivalent of the load. These interpolation condi-
tions are the crux of this work, and therefore they receive special attention in section 3.5.2.

Next, we formulate Fano-Youla’s characterisation of the global system. However,
before addressing such formulation, we provide in appendix A some important basic
concepts related to the chaining operation of two-ports devices.

3.5.2 Fano-Youla characterisation

The remarkable contribution of Fano-Youla to the solution of the matching problem is
the characterisation of the set of functions S22 that can be obtained as the association of
a passive matching network with the Darlington equivalent of the load, which is given.
In other words, the conditions satisfied by the scattering parameters of the global system
S that depends only on the load (necessary conditions). Furthermore, it was also proved
that those conditions are indeed sufficient to guarantee the existence of a network F
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satisfying eq. (3.11).

Let L be the 2 × 2 scattering matrix of the Darlington equivalent of the load and
consider the matching network parametrised by the scalar reflection coefficient F22 which is
denoted by f for the economy of notation. Similarly, let the global system be parametrised
by the scalar function S22 ∈ Σ representing the reflection coefficient at port two as we can
see in fig. 3.5.

D.E.M.N.

f L11 L22

S22

Figure 3.5: Global reflection S22 obtained by closing port one of the load with f

Remark 3.5.2. For simplicity, we consider first the case of a load for which no trans-
mission zero happens at the boundary of the analyticity domain (R). In consequence, the
reflection coefficients L11, L22 do not take uni-modular values on the frequency axis (R).

|L11(λ)| < 1 |L22(λ)| < 1 ∀λ ∈ R.

The necessary conditions can be easily seen from eq. (3.2) of the chaining operation
when the port 1 of L is closed by the reflection f ∈ Σ

S22 = f ◦ L = L22 +
L12L21f

1− L11f
. (3.12)

Let α1, α2, · · ·αM ∈ C− be the transmission zeros of L. Note we assume the points αi have
simple multiplicity. Then we have L21(αi)L12(αi) = 0, ∀i = [1,M ]. Since all transmission
zeros belong to C− the reflection of the load is strictly less than 1 |L11(αi)| < 1 . Therefore
the denominator 1− L11f does not vanish at the points αi. Computing now the value of
S22(αi)

S22(αi) = L22(αi) +
L12(αi)L21(αi)f(αi)

1− L11(αi)f(αi)
= L22(αi),

we obtain a set of interpolation conditions on the reflection coefficient L22 that does not
depends on the matching network.

S22(αi) = L22(αi) ∀i ∈ [1,M ].

These conditions were first written by Youla who proved that they are indeed necessary
and sufficient to guarantee that a function S22 ∈ Σ can be expressed in the form of
eq. (3.12). In this case we say the matrix L is de-chainable from the function S22.

Definition 3.5.1 (De-chaining). A lossless two port, L is said to be de-chainable from a
function, S22 ∈ Σ if and only if there exists f ∈ Σ, such that S22 = f ◦ L. Expression for
f is obtained by inverting eq. (3.12),

f =
L22 − S22

det(L)− S22L11

. (3.13)
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3.5. Fano-Youla’s contribution to the broadband matching problem

Let us provide now Fano-Youla’s theorem [21] assuming only simple transmission
zeros αi ∈ C−

Theorem 3.5.1 (De-embedding conditions). Consider S22 ∈ Σ and let L be the 2 × 2
lossless scattering matrix of the load with M simple transmission zeros α1, α2, . . . , αM ∈
C−. The matrix L is de-chainable from S22 if and only if at each transmission zero of αi,
the following condition is satisfied

S22(αi) = L22(αi) 1 ≤ k ≤M. (3.14)

Instead of giving now Youla’s original proof of theorem 3.5.1, we provide an alternative
one based on functional analysis. Note the proof of necessity has already been done with
the previous theory. Before continuing with the proof of sufficiency, I recall Rouche’s
theorem [22, corollary to theorem 18], on which the second part of the proof is based.

Theorem 3.5.2 (Rouche’s theorem). Let f and g be two complex-valued functions and
holomorphic inside a closed domain X with simple contour ∂X. If |f(λ)| < |g(λ)| for all
λ ∈ ∂X then h = f + g has the same number of zeros in X as f (counting multiplicity).

Sufficiency proof of theorem 3.5.1. Now assume that eq. (3.14) is satisfied at each trans-
mission zero of L. Then consider the function f obtained from eq. (3.13)

f =
L22 − S22

det(L)− S22L11

.

We need to show that f is a Schur function, namely f(λ) is analytic in C− and |f(ω)| ≤ 1
for all ω ∈ R. We prove first |f(ω)| ≤ 1. Using eq. (2.21) we have

f =
L22 − S22

det(L)− S22L11

=
L22 − S22

L11

L⋆
22
− S22L11

=
L⋆22
L11

L22 − S22

1− S22L⋆22

=
L⋆22
L11

δ (L22, S22) .

We have
∣
∣
∣
L⋆
22(ω)

L11(ω)

∣
∣
∣ = 1 for all ω ∈ R. Additionally δ (L22(ω), S22(ω)) is the pseudo-

hyperbolic distance between L22 and S22 which is bounded by one. Thus

|f(ω)| =
∣
∣
∣
∣

L⋆22(ω)

L11(ω)

∣
∣
∣
∣
δ (L22(ω), S22(ω)) ≤ 1 ∀ω ∈ R.

Now we prove that f is analytic in C−. Consider again the expression

f(λ) =
L⋆22(λ)

L11(λ)

L22(λ)− S22(λ)

1− S22(λ)L⋆22(λ)
. (3.15)

At each transmission zero αi the numerator of eq. (3.15) vanishes since

L22(αi)− S22(αi) = 0 1 ≤ k ≤M.
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From remark 2.9.1 we have

L⋆22(αi)S22(αi) = L⋆22(αi)L22(αi) = 1.

Therefore both numerator and denominator vanishes. As a result, M zeros in the denom-
inator of eq. (3.15) gets cancelled out with the M zeros of the numerator. Finally, we
apply Rouche’s theorem to show that the denominator (det(L) − S22L11) has no other
zeros in C−. From unitary property of L we have | det(L(λ))| = 1 for all λ ∈ R. Note that
S22 ∈ Σ, therefore |S22(λ)| ≤ 1 for all λ ∈ R and given that L has no transmission zero
αi ∈ R we obtain for all λ ∈ R, |L22(λ)| < 1. At the boundary of the analyticity domain
we obtain

| det(L(ω))| > |S22(ω)L22(ω)| ∀ω ∈ R.

This implies, using Rouche’s Theorem, det(L)− S22L22 has the same number of zeros in
C− as det(L), which is M . Since we already showed that those M zeros cancel with M
zeros in the numerator, we prove that f is analytic in C−. Therefore, we have a function
f ∈ Σ, such that S22 = f ◦ L and hence proving the de-chainability of L from S22.

We have now proven Youla’s interpolation conditions which are necessary and sufficient
to ensure that the Darlington equivalent of the load can be de-embedded from the right
of the global system. Nevertheless, we shall also provide before moving on the original
de-embedded conditions stated by Fano some years earlier and proven to be necessary.
These conditions are stated with an integral formulation and introduced for the first time
the interpolation problem at the transmission zeros of the load.

3.6 Fano’s integral formulation

Youla’s interpolation conditions are stated in [20] in an integral form involving the function

− log |S22(λ)| .

Let us state now Fano’s interpolation conditions. Consider the case of a load L
whose Darlington equivalent is of McMillan degree M and has an arbitrary number of
transmission zeros α1, α2, · · · , αm with m ≤ M and where µi denotes the multiplicity of
the transmission zero at αi. Also denote by zb the zeros of the function S22 inside the
analyticity domain C−.

Fano considered different cases where the transmission zeros αi may be located on
the frequency axis αi ∈ R (possibly at ω = 0 or ω = ∞, as a complex pair αi,−αi with
αi ∈ jR or a quadruplet αi,−αi, αi,−αi with αi ∈ C−. Each of those cases were treated
separately and necessary conditions were given in every case. We provide next the
necessary condition in its integral form which are satisfied at a transmission zero αi ∈ R

as it represents a clear example of the work done by Fano. Nevertheless, it is advisable
to check Fano’s complete work in [20] as it constitutes one of the most remarkable
contribution to the synthesis of matching filters.
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3.6. Fano’s integral formulation

For each transmission zero αi ∈ R we have for all k ∈ [0, 2µi − 2]

1

π

∫

R

log |S22(τ)|
(τ − αi)

k+1
dx+

1

k

∑

b

(
1

(zb − αi)k
− 1

(zb − αi)k

)

= Ki,k,

while for k = 2µi − 1 the following inequality is obtained

1

π

∫

R

log |S22(τ)|
(τ − αi)

2µi
dx+

1

k

∑

b

(
1

(zb − αi)2µi−1
− 1

(zb − αi)2µi−1

)

≤ Ki,2µi−1,

where

Ki,k = ℑ
(
∂k

∂λk
logL22(λ)

)

λ=αi

.

In the case where a transmission zero of the load occurs at ∞, the previous integrals are
reformulated with the change of variable λ −→ λ−1. If µ∞ represents the multiplicity of
the transmission zero at ∞, then we have

− 1

π

∫

R

xk−1 log |S22(x)| dx+
1

k

∑

b

(
zb
k − zb

k
)
= K∞,k ∀k ∈ [1, 2µ∞ − 2],

− 1

π

∫

R

xk−1 log |S22(x)| dx+
1

k

∑

b

(
zb
k − zb

k
)
≤ K∞,k k = 2µ∞ − 1,

where

K∞,k = ℑ
(
∂k

∂λk
logL22

(
1

λ

))

λ=0

.

3.6.1 Load of degree 1 with no finite transmission zeros.

These integral conditions were used to provide bounds on the smaller realisable |S22| in
the case where the reflection of the load is expressed as a rational function of degree 1
without finite transmission zeros. For instance, the integral restriction for a load of degree
1 with no finite transmission zeros is

1

π

∫ ∞

−∞
log

∣
∣
∣
∣

1

S22(λ)

∣
∣
∣
∣
dλ ≤ ℑ

(
∂

∂λ
logL22

(
1

λ

))

λ=0

. (3.16)

Additionally, in the case of a load of degree 1, the optimal function S22 was proven
to be of minimum phase. Equation (3.16) can be seen as a limitation on the maximum
area covered by the function log |S22(λ)

−1|.

In order to minimise |S22(λ)| over an interval I = [ω1, ω2] he considered a function Sopt22

whose modulus is constant within the interval I and zero outside

|Sopt22 (λ)| =
{
Kopt λ ∈ I

0 λ /∈ I
. (3.17)
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Intuitively, eq. (3.17) can be seen as the function using all ”the available area” inside the
interval [ω1, ω2]. Denoting

h = ℑ
(
∂

∂λ
logL22

(
1

λ

))

λ=0

. (3.18)

We obtain from eq. (3.16) the constraint

1

π

∫ ∞

−∞
log

∣
∣
∣
∣

1

Sopt22

∣
∣
∣
∣
dλ = h,

therefore we have

1

π

∫ ω2

ω1

log

∣
∣
∣
∣

1

Sopt22

∣
∣
∣
∣
dλ = h,

and after solving the integral

1

π
(ω2 − ω1) log

∣
∣
∣
∣

1

Kopt

∣
∣
∣
∣
= h.

The lower bound on the minimum matching tolerance, Kopt takes the expression

Kopt ≥ e
− πh

(ω2 − ω1) . (3.19)

Furthermore, apart from the previous bounds, Fano’s integral conditions were used
to yield a practical realisation of a global system S approaching those bounds. This was
possible in the case where the system has no finite transmission zeros and the load is of
degree 1. It was done by considering a global reflection S22 of Tchebyshev type. We can
see an example of the Tchebyshev type response introduced by Fano in fig. 3.6. This
function approximates the optimal tolerance indicated in eq. (3.17) with a reflection level
that oscillates between two levels λ1 and λ2 within the passband and grows toward 1 out
of the band.

With this kind of response it is straightforward to compute the values of λ1 and λ2
allowing for the de-embeddeding of the load. Additionally it can be shown that the
minimum value of the reflection level λ2 which still allows us to de-embed the load exists
and is unique, indeed a formal proof for this statement is provided in appendix D. With
this oscillating responses, good results in terms of matching are achieved in this simple
case. However, note that this type of responses is known to be non-optimal concerning
matching performances unless the load is a constant impedance.
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3.7. Bode’s result for an RC-load
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Figure 3.6: Equioscillating response.

3.7 Bode’s result for an RC-load

We also review in this section the result first introduced by Bode in [23, chapter 16,
section 3] as he realised trying to match a RC-load, that perfect matching Ψopt = 0
cannot be attained. This result can be easily derived now by particularising Fano-Youla’s
interpolation conditions to the case of a RC-load. In particular, for a RC-load (fig. 3.7)
we have

ZL =
(
jλC +R−1

)−1
.

Applying eq. (3.1) we obtain the reflection coefficient L11

L11(λ) =
ZL −R1

ZL +R1

=
(jλC +R−1)

−1 −R1

(jλC +R−1)−1 +R1

=
1− jλCR1 −R1/R

1 + jλCR1 +R1/R
. (3.20)

Bode’s RC load is included in the class of load of degree 1 with a single transmission
zero as λ → ∞. It can be seen in eq. (3.20) that L11 is expressed as a rational function
of degree 1 and |L11(λ)| tends to 1 as λ → ∞. Therefore the integral constrain given by
eq. (3.16) is a necessary condition. Computing now the derivative of log(L22(λ

−1))

d

dλ
log(L22(λ

−1)) =
d

dλ
log

(
λ(1−R1/R)− jCR1

λ(1 +R1/R) + jCR1

)

=
1−R1/R

λ(1−R1/R)− jCR1

− 1 +R1/R

λ(1 +R1/R) + jCR1

.

Considering now R1 as the reference impedance and evaluating at λ = 0 we have

d

dλ
log(L22(λ

−1))

∣
∣
∣
∣
λ=0

=
2j

R1C
.
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C R

Matching
network

R1

−
+

E1

S11 L11

Figure 3.7: Matching circuit for an RC load

Defining now h as in eq. (3.18)

h = ℑ
(
d

dλ
log(L22(λ

−1))

)

λ=0

=
2

R1C
,

and introducing it in eq. (3.19) we obtain

Kopt = e
− 2π

(ω2 − ω1)R1C .

Or equivalently, in a logarithmic scale

Kopt(dB) = − 2π log10 e

(ω2 − ω1)R1C
.

The previous result corresponds to the fundamental bound with respect to matching
tolerances found by Bode in [23, chapter 16, section 3]. With this result, Bode was able
to provide a hard lower bound on Ψopt for problem 3.2.1 with a load consisting on a shunt
RC association. Additionally, as long as the load presents a transmission zero at infinity
(i.e. the transmission vanishes when the frequency tends to infinity) the bound provided
by Bode still applies since in this case the load can be seen as a generic network ended at
port 2 in a shunt capacitor

Ψ(F22) = max
λ∈I

δ
(
L11, F22

)
≥ e

− 2π

(ω2 − ω1)RC .

3.8 Carlin’s real frequency technique

Theorem 3.5.1 provides us with the restrictions on the function S22 when the load L
is fixed. However, despite its undeniable elegance, this theory, like Helton’s theory, did
not lead to great practical applications in the field of electronics, mainly due to its
complexity and the relative rigidity of its practical implementations induced. Finally,
Youla’s focus was, therefore, progressively forgotten and replaced by the optimization
based on Carlin’s real frequency technique introduced in [24].
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3.8. Carlin’s real frequency technique

Carlin motivated the use of this technique of real frequency by the fact that the
theory previously developed by Fano and Youla needs and assumes a load specified from
a rational model. On the contrary, the Carlin real frequency technique does not need the
aforementioned rational model of the load. However, this method, as we will see below,
also ends up performing a rational approximation.

3.8.1 The problem

Carlin’s frequency technique is actually quite equivalent to the problem in pseudo-
hyperbolic geometry formulated by Helton. However, instead of considering this problem
in an analytical way as indicated in Helton’s contribution, Carlin uses a more rudimentary
procedure, without the need to use tools as advanced as Nehari’s theory.

Carlin made the assumption that the optimal filter F is of minimal phase and then
parametrise the output impedance of the matching filter ZF by means of its real and
imaginary parts. The problem consists therefore in maximizing the transmission of the
global system S21 over the set of minimum phase impedances ZF and within a given
passband I. Additionally, to ensure stability of the matching filter, the imaginary part of
the impedance ZF is computed from its real part thanks to the minimum phase property.

3.8.2 The approach

The simplicity of the approach here comes from the fact that this parametrisation
of the matching filter is not done at every frequency within the interval I but at a
finite set of control points ω1, ω2, · · · , ωn ∈ R while an interpolation based on straight
line segments is used to obtain the value of the matching filter between two control points.

Note, however, that the matching filter whose output impedance is a function defined
by straight line segments represents a function of infinite degree. Indeed, if the number
of control points used to parametrize the impedance of the filter tends to infinity, the
response of the global system acquires the optimal form shown in eq. (3.9), probably
with a higher reflection value than the optimum level provided by the Helton’s method
due to the minimum phase assumption.

Once the impedance ZF defined by line segments has been obtained, the last step is
to perform a rational approximation of the said impedance ZF by means of a rational
function of the desired degree for the matching filter.

3.8.3 The result

At this point we can argue whether it is better to perform this rational approximation,
before solving the matching problem to obtain a rational model of the load or later on
to approximate the optimum matching filter of infinite degree. In this context we can
find two important arguments in favour of the rational approximation of the load at the
beginning
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1. In many cases, the load shows a response close to a rational function within a not
too large band. For example, an antenna composed of a single resonance will provide
a response similar to a rational function of degree 1. In the worst case the reflection
of the load is a function of infinite degree while the matching filter obtained by the
real frequency technique has an infinite degree.

2. If the rational approximation is made at the beginning of the process to obtain
the said rational model of the load, a higher degree can be used to perform the
approximation in case this approach is not good enough with a lower degree. On
the other hand, if the approximation of the optimum matching filter is made once the
optimization process has been completed, the degree used in the rational approach
is determined by the desired degree for this filter, and it can not be increased in the
case where the rational approximation process does not end well.

3.9 Concluding remarks

In this chapter we have made a quick review of the main contributions to the theory
of matching problem. However, due to the long history of this problem since the first
formulation made by Bode, it is possible to find many other contributions of interest. As
an honourable mention we have to highlight, for example, Carlin’s numerous publications
on the problem of double matching introduced in [25]. In this problem the matching
network, represented by a 2 × 2 scattering matrix , is connected between two devices,
each of them presenting a complex impedance variable in frequency. An example of this
problem is the use of a passive matching network to match the impedance shown by a
generator (which is considered complex in this case) to the impedance of the load, variable
in frequency.
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Chapter 4. General broadband matching problem

In this thesis, we pursue the goal of providing more accurate lower bounds than the
fundamental limitations obtained for the set of functions H∞. In particular, bounds
that are sharper when matching networks of finite degree are considered, particularly
networks with a rational scattering matrix of McMillan degree bounded by N < ∞.
The problem of finding the best matching network of such type is a very hard one that
remains unsolved. Indeed not much is know about that problem apart from the already
introduced fundamental bounds.

This chapter concerns a new formulation of the matching problem where the degree
of the function f is fixed rendering it suitable for practical applications. In practice,
matching networks of low degree are preferred. On the one hand to meet the specifications
in term of complexity (i.e maximum size of the devices) and cost, and on the other
hand, due to the fact that matching networks of increased degree intrinsically involves
(considering not ideal components), an increment of the power dissipation inside the
system, reducing the overall performance of the device. In general, networks used in
electronics are of degree one to five, and never more than 10.

Our route to the solution of such a problem consists on relaxing the previous set of
rational functions of bounded McMillan degree allowing a higher degree, in particular
N + M with M finite as well. This relaxation leads to a convex formulation of the
matching problem when a matching network of finite degree is considered. As a result,
we are provided with hard bounds for the matching tolerance that is attainable with a
matching network of degree N . Furthermore, in some cases where those bounds happen
to be sharp, we provided the optimal matching network of degree N . Conversely, in the
scenarios where the provided bounds are not sharp, we are still computing more accurate
bounds as the ones obtained with the class functions H∞.

4.1 Optimisation problem in Fano-Youla framework

The classical and well-known filter synthesis problem makes use of the Belevitch
parametrisation to formulate a convex problem and thereby obtain a guaranteed solution.
Nevertheless, for an arbitrary frequency-varying load, the problem is much less studied,
and no optimal solution is known to exist.

Following Youla’s and Fano’s approach, the problem is stated similarly for the global
system that is formed by the filter connected to the load, instead of focusing on the
matching filter. With this formulation, the objective is to minimise, within the band of
interest, the input reflection of the system composed of the matching network chained at
port 2 with a two-ports loss-less reciprocal load. The schematic of the system appears
in fig. 4.1 where we denote by F the scattering matrix of the matching network, and by
L the scattering matrix of the load. Finally we denote S = F ◦ L the scattering matrix
of the global system obtained as the cascade of the scattering matrix of the matching
network with the 2× 2 scattering matrix of the load as in fig. 4.1.
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LF

F22S11 F11 L11 L22

S22

Figure 4.1: Schematic of global system obtained as the cascade of the matching filter with
the load.

4.1.1 The load

In this chapter we consider a lossless 2-port load with 2 × 2 scattering matrix L in the
Belevitch form (eq. (2.38)) having McMillan degree M ∈ N. Note that if the load under
study has only one port, the Darlington equivalent can be used to obtain a 2-port extension
of the load. This is the case, for instance, of an antenna where only the input reflection
coefficient L11 is known, namely

L11(λ) =
pL(λ)

qL(λ)
,

with pL, qL ∈ PM and qL a stable polynomial (roots only in C+). In this case we construct
the 2-ports extension of L11 as

L(λ) =
1

qL(λ)

(
pL(λ) −r⋆L(λ)
rL(λ) p⋆L(λ)

)

.

Note the Darlington equivalent is not unique as the roots of the transmission polynomial,
denoted by RL ∈ P2M

+ , with

RL = r⋆L · rL,
can be arbitrarily distributed between rL and r⋆L. Nevertheless only the polynomial RL

is relevant in this work. The polynomial RL, which is non negative on R can be factored
in a unique manner RL = rLr

∗
L (up to uni-modular constant) if one imposes that rL

has only roots in C−. The multiplicity of each transmission zero in the such chosen
polynomial rL, we call the multiplicity of the transmission zero.

Additionally note that the uni-modular constant appearing in section 2.9.3 has already
been normalised to 1. Unless specified otherwise (this will be the case in chapter 6),
we consider here as in chapter 3 a matrix L where no transmission zero happens on the
boundary of the analyticity domain, namely R. Furthermore we assume every transmission
zero of L in C− has simple multiplicity, so that the load has exactly M transmission zeros
in C−. We denote then α1, α2, · · ·αM ∈ C− the transmission zeros of the matrix L.
Therefore we have

L12(αi)L21(αi) = 0 ∀i ∈ [1,M ].

4.1.2 The matching network

In eq. (3.8), Helton formulated the matching problem on the reflection of the matching
filter F22 belonging to Σ, namely an infinity dimensional class of functions. In this chapter,
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we take F22 ∈ E with E a subset of Σ containing only rational functions of bounded
degree. In particular, we consider a lossless matching network with scattering matrix F
parametrised in the Belevitch form having McMillan degree K

F (λ) =
1

qF (λ)

(
pF (λ) −r⋆F (λ)
rF (λ) p⋆F (λ)

)

,

with pF , qF , rF ∈ PK and qF a stable polynomial that satisfies qF q
⋆
F = pFp

⋆
F + rF r

⋆
F . We

denote further RF = r⋆F rF the transmission polynomial of the matching network. We
have RF ∈ P2K

+ . Furthermore, as it is customary in classical filter synthesis we assume
transmission zeros of the matching network to be fixed at prescribed positions in the
complex plane (possibly at infinity). Hence the polynomial RF is fixed. Note that in
problem 2.13.2, convexity is obtained when the transmission polynomial of the network
is prescribed. We denote ν1, ν2, · · · νk ∈ C− with k ≤ K the finite transmission zeros of
F . Thus

F12(νi)F21(νi) = 0 ∀i ∈ [1, K].

4.1.3 Necessary conditions on the global system

Now, with the previous assumptions made on the load L and the matching filter F ,
we obtain a set of properties that are necessarily satisfied by the global system whose
scattering matrix we call S.

1. The matrix S is obtained as the chaining of a rational matrices F of McMillan
degree K and the scattering matrix of the load L of McMillan degree M , both of
them in the Belevitch form. Hence the scattering matrix of the global system is also
rational and has McMillan degree N = K + L.

2. The transmission zeros of both F and L are prescribed. Therefore the transmission
zeros of the global system (the zeros in C− of S12 · S21) are also fixed to the given
positions in the complex plane. Moreover, the transmission polynomial R ∈ P2N

+ of
the global system is defined by

R = RF ·RL,

with RF =
∏k

i=1 (λ− νi) (λ− νi) the transmission polynomial of the matching net-

work and RL =
∏M

i=1 (λ− αi) (λ− αi) the transmission polynomial of the load.
Thus R has roots at the transmission zeros αi of the load as well as any other
possible transmission zero νi fixed in advance.

3. The last necessary condition to ensure that the global system can be expressed in
the form F ◦ L is given by Youla’s interpolation conditions. Indeed, if the global
system S is obtained by chaining a load L at port 2 of the matching network, at
the transmission zeros of the load, the system verifies

S22(αi) = L22(αi) ∀i ∈ [1,M ].
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As it has already been discussed in chapter 3, note these conditions are actually necessary
and sufficient to ensure that the system can be obtained as S = F ◦ L with F a rational
matrix of McMillan degree K with transmission zeros νi as indicated before. Particularly
Youla’s interpolation conditions ensure there exists a scattering matrix F passive and
stable such that F ◦ L = S meanwhile the bound on the McMillan degree of the
system together with the fact that the transmission polynomial R of the system is fixed,
guarantees the matrix F has McMillan degree K = N − L and prescribed transmission
zeros at the points νi.

Our goal is then to minimise the maximum value of the function |S11(ω)| within the
passband ω ∈ I. It should be noted that the global system, being lossless, it can also be
written using the Belevitch form as

S(λ) =
1

q(λ)

(
p⋆(λ) −r⋆(λ)
r(λ) p(λ)

)

,

with p, q, r ∈ PN . Additionally note the transmission polynomial R = rr⋆ is fixed. Thus
q can be obtained as the stable polynomial satisfying qq⋆ = pp⋆ +R.

From the losslessness property we have

|S11(ω)|2 = |S22(ω)|2 =
p(ω)p⋆(ω)

q(ω)q⋆(ω)
∀ω ∈ R.

We can now reformulate the necessary conditions on the 2-port global system S over the
scalar function S22 such as

1. The function S22 is expressed as the ratio of the polynomials p, q of degree at most
N .

2. The transmission polynomial R of the global system is fixed. Thus

qq⋆ − pp⋆ = R.

.

3. Youla’s interpolation conditions bearing on S22 = p/q are verified.

4.1.4 Class of feasible reflection coefficients

Next, let us define the class of functions S22 that are feasible for the given load L. In
other words, once the load is fixed, the class of functions S22 satisfying the previous
necessary conditions. We first define the class of functions F satisfying a set of M
interpolation conditions.

Definition 4.1.1 (The load). Let consider a lossless two-port load with 2× 2 scattering
matrix L. We assume that the load presents only simple transmission zeros α1, α2 · · ·αM ∈
C−. Note that a one-port load can also be considered, in this case the 2 × 2 matrix L
and the transmission zeros αi, 1 ≤ i ≤ M refers to the Darlington equivalent of the load
instead.
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Definition 4.1.2 (Feasible functions). We define the class of feasible functions F for the
load L as the set of Schur functions satisfying Fano-Youla’s interpolation conditions.

F = {S22 ∈ Σ : S22(αi) = L22(αi), ∀i ∈ [1,M ]} .

Remark 4.1.1. For ease of notation, we are not explicitly writing the dependency of the
set F with respect of the load L. Nevertheless each time that feasible functions F appears
in this work, it always refers to a load with scattering matrix L and transmission zeros αi
with 1 ≤ i ≤ M . Therefore, in order to make clear the kind of load we are referring to,
the load is introduced at the beginning of the section or chapter where it is relevant.

Rational Schur functions of degree bounded by N , namely of the class ΣN are of
high importance in this chapter. Particularly the functions satisfying the interpolation
conditions S22(αi) = L22(αi) for all i ∈ [1,M ] among the class ΣN , Therefore we define
the following class

Definition 4.1.3 (Rational feasible functions). Let again L be a scattering matrix of a
load of degree M . We denote the class of rational feasible Schur functions as

F
N = F ∩ Σ

N =

{

S22 =
p

q
: p, q ∈ P

N ; S22 ∈ Σ; S22 ∈ F

}

,

where q is a stable polynomial, namely q has no roots in C−.

Additionally, the reflection of the global system is a rational Schur function of degree
at most N with the transmission polynomial R. This is the class of functions ΣNR defined
in eq. (2.45). Let us now denote FNR the set of functions S22 ∈ F ∩ ΣNR .

Definition 4.1.4 (Rational feasible functions with transmission polynomial R). Let L
be as before the 2×2 rational scattering matrix of a load L of degreeM with transmission
polynomial RL. Consider again the polynomial R ∈ P2N

+ defined as R = RFRL where RF

represents the transmission polynomial of the matching network F . The set of rational
functions of degree N with N ≥M feasible for the load L is defined as

F
N
R =

{

S22 =
p

q
: p, q ∈ P

N | qq⋆ − pp⋆ = R; S22 ∈ F

}

,

where polynomial p, q are not required to be co-prime.

4.1.5 Statement of the problem

We state now our version of the matching problem as an optimisation problem while
considering the class of rational functions satisfying Fano-Youla interpolations conditions,
namely the class FNR . This problem represents a particular version of problem 3.2.1 where
the scattering matrix of the matching network is restricted to have a rational form with
bounded McMillan degree.

Problem 4.1.1 (Matching problem with bounded degree).

Find: ψopt = min
S22∈FN

R

max
ω∈I

|S22(ω)|2,

Subject to: |S22(ω)| ≥ γ ∀ω ∈ J.
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Note that in problem 4.1.1 we use Fano-Youla’s theory by imposing that the global
reflection S22 belongs to the set of feasible functions FNR . Next we state an optimisation
problem on that framework by asking for the best function S22 in terms of matching
level while satisfying Fano-Youla’s conditions. This optimisation was never considered
together with Fano-Youla’s interpolation conditions, what is the main reason behind the
rigidity of the original matching theory developed in the sixties.

This problem is equivalent to the classical filter synthesis problem (problem 2.13.1)
with the function S22 belonging to FNR instead of ΣNR . This fact introduces an additional
constraint to ensure the de-chaining of the load. Nevertheless note that problem 2.13.1
can be seen as a matching problem with a resistive load and since resistive loads are of
degree 0 (they have no transmission zeros) the set FNR coincides with ΣNR in that case.

Now we argue towards a formulation of problem 4.1.1 in terms of a polynomial P =
pp⋆ ∈ P2N

+ only, such that

|S22(ω)|2 =
P (ω)

P (ω) +R(ω)
∀ω ∈ R,

with R the transmission polynomial of the global system. Constraints on the modulus of
S22 can easily be cast to constraints on the polynomial P as it is done in problem 2.13.2.
However the Fano-Youla’s interpolation conditions S22(αi) = L22(αi) are stated on the
function S22 and not on its modulus squared. This interpolation conditions over S22

renders problem 4.1.1 not convex, as the spectral factorisation of the positive polynomial
P +R is required to compute the function S22.

Because of the non-convexity of problem 4.1.1, no guarantee can be provided about
the optimality of the solution. To overcome such an issue, we introduce a relaxation of
problem 4.1.1 where only the minimum phase factor of the function S22 is considered.
First, decompose the function S22 as the product of a function u(λ) of minimum phase
and an uni-modular function b(λ):

S22(λ) = u(λ)b(λ)

This decomposition is trivial in the case of rational functions and it is known as inner-
outer factorisation [26, Chapter 8, p.132]. The function b(λ) is a Blaschke product with
zeros at the points in the lower half plane where S22 vanishes.

b(λ) =

∏M
i=1(λ− ξi)

∏M
i=1(λ− ξi)

ξi ∈ C
− M ≤ N.

Note that |b(ω)| = 1 for all ω ∈ R, therefore

|u(ω)|2 = |S22(ω)|2 =
P (ω)

P (ω) +R(ω)
∀ω ∈ R.

Hence constraints on the function |S22(ω)| with ω ∈ R also hold on the function |u(ω)|.
Note that the function b(λ) is analytic by definition as it has poles at the points ξi ∈ C+.
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Furthermore b(λ) satisfies the following interpolation conditions at the transmission zeros
of the load

b(αi) =
L22(αi)

u(αi)
∀αi ∈ [1,M ]. (4.1)

We obtain therefore the following two conditions

|u(ω)|2 = P (ω)

P (ω) +R(ω)
∀ω ∈ R, (4.2)

∃f ∈ Σ | f(αi) =
L22(αi)

u(αi)
∀i ∈ [1,M ]. (4.3)

Equations (4.2) and (4.3) are necessarily satisfied by the minimum phase factor of every
function S22 ∈ FNR . Note that in eq. (4.3) we are not seeking a Blaschke product but
a function f ∈ Σ. This constitutes the second part of the introduced relaxation as the
function f belong to a bigger class of functions, namely the class of Schur functions. The
proposed relaxation consist therefore in solving problem 4.1.1 over the set of minimum
phase functions u(λ) satisfying eqs. (4.2) and (4.3). The relaxation comes from the fact
that the connection between the function b(λ) and u(λ) that ensures the product u · b
remains of degree N is lost.

4.2 A convex relaxation to the matching problem

In this section, we present the relaxation of problem 4.1.1 which provides us with hard
lower bounds Ψ on the reflection level attainable with a rational global system of finite
degree N , or equivalently, with a matching network of degree K = N −M . Particularly
we have

Ψ ≤ min
S22∈FN

R

max
ω∈I

P (ω)

R(ω)
.

To begin with, we provide some concepts around Schur interpolation, particularly con-
sidering the interpolation conditions developed in eq. (4.1). These concepts are closely
related to the theory provided in appendix B. Nevertheless, to avoid the necessity of
having to go through the appendix B at this moment, we provide here the required result,
extracted from theorem B.1.3 and directly applied it to the interpolation conditions in
eq. (4.1) at the transmission zeros of the load α1, α2, · · · , αM . We define then the set of
Schur interpolant functions.

Definition 4.2.1 (Schur interpolant). Given the matrix L with transmission zeros αi
with 1 ≤ i ≤M . Let u ∈ Σ be a minimum phase function. Denote

E(u) ≡
{

f ∈ Σ | f(αi) =
L22(αi)

u(αi)
, ∀i ∈ [1,M ]

}

.

Note if there exists a function f ∈ Σ such that f(αi) = γi with 1 ≤ i ≤ M ,
then Nevanlinna’s theory [27, Chapter IV, section 6] states that there exists as well a
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Blaschke product of degree at most M that satisfies the same interpolation conditions
(see appendix B). Hence if the set E(u) is not empty, it contains a Blaschke product
of degree at most M . This motivates the relaxation made in eq. (4.3) where only the
existence of a Schur function f ∈ E(u) is required. Particularly if E(u) is a singleton,
then by theorem B.1.3 E(u) contains only a Blaschke product f of degree m < M . On
the contrary, if E(u) is not a singleton, then it contains a strictly contractive function
f ∈ ΣM as it is stated next.

Theorem 4.2.1 (Existence of strictly contractive interpolant). Given the matrix L of
McMillan degree M with transmission zeros αi and let u ∈ Σ be a minimum phase
function. Suppose E(u) is not a singleton. Then E(u) contains a function f ∈ ΣM

verifying eq. (4.5) such that |f(ω)| < 1 for all ω ∈ R and limω→∞ |f(ω)| < 1.

Proof. Consider E(u) which is not a singleton. Then the set of interpolant E(u) can be
parametrised by eq. (B.7). Take f(λ) = 0 in eq. (B.7). Then by remark B.1.4 we have a
function f ∈ E(u) such that

f(λ) =
A(λ)

C(λ)
A,C ∈ P

M ,

where |f(ω)| < 1 for all ω ∈ R and limω→∞ |f(ω)| < 1.

Lemma 4.2.1 suggests once the minimum phase function u is given, there exist a
connection between the set of functions f ∈ E(u) and the functions ρ ∈ F such that
|ρ(ω)| ≤ |u(ω)| for all ω ∈ R. This relation is expressed by the following lemma.

Lemma 4.2.1. Consider the 2 × 2 scattering matrix L with simple transmission zeros
α1, α2 · · ·αM ∈ C− as introduced before. The following statements are equivalent:

1. The set E(u) is not empty.

2. There exist a function ρ ∈ F verifying |ρ(ω)| ≤ |u(ω)| for all ω ∈ R.

We shall prove before moving on that both statements are equivalent.

Proof. Consider the function u(λ) of minimum phase. Assume first that E(u) is not
empty. Then there exists a rational function f ∈ E(u) which is of degree at most M .
This function satisfies eq. (4.1) at each transmission zero αi. Take now the function
ρ(λ) = u(λ) · f(λ). This function belong to FN+N as it has a degree bounded by the
sum of the maximum degree of u(λ) and f(λ) and it verifies the interpolation conditions
ρ(αi) = u(αi)f(αi) = L22(αi) for all i ∈ [1,M ]. Additionally we have |f(ω)| ≤ 1 for all
ω ∈ R, hence

|ρ(ω)| ≤ |u(ω)| ∀ω ∈ R. (4.4)

Conversely, suppose u(λ) is a minimum phase function and eq. (4.4) is verified with ρ ∈ F,
i.e. ρ(λ) verifies ρ(αi) = γi for all i ∈ [1,M ]. Given the minimum phase property of u(λ),
the function f(λ) constructed as

f(λ) =
ρ(λ)

u(λ)
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is analytic on C−. Additionally from eq. (4.4) we have

|f(ω)| ≤ 1 ∀ω ∈ R

hence f ∈ Σ. Finally notice f satisfies the interpolation conditions

f(αi) =
L22(αi)

u(αi)
,

for all i ∈ [1,M ] proving the equivalence.

We formulate now a relaxed version of problem 4.1.1 allowing to express constraint on
the function S22 in a convex form. We start by providing the definitions of the relaxed
set of functions described before and a convex set of positive polynomials.

4.2.1 Admissible functions

Let us define a relaxation of the set FNR containing the functions u(λ) of minimum phase
satisfying eqs. (4.2) and (4.3). Note that eq. (4.2) translates into the fact that u ∈ ΣNR .

Definition 4.2.2 (Admissible minimum phase functions). Given the load L with trans-
mission zeros α1, α2 · · ·αM ∈ C−, we denote as admissible the set of functions u ∈ ΣNR of
minimum phase such that there exists a Schur function f(λ) satisfying

f(αi) =
L22(αi)

u(αi)
∀i ∈ [1,M ], (4.5)

or equivalently, there exist a function ρ ∈ F verifying

|ρ(ω)| ≤ |u(ω)| ∀ω ∈ R.

We parametrise the function u(λ) in terms of the positive polynomial P ∈ P2N
+ as in

eq. (4.2) since minimum phase property of the function u(λ) allows for it to be recovered
in a unique form from its modulus squared up to an uni-modular constant. Notice
that the function u(λ) does not vanish inside C−. Thus by imposing the normalisation
ℑ(u(−j)) = 0 the phase ambiguity when determining u(λ) is eliminated. Let us now
provide the formal definition of u(λ).

Definition 4.2.3 (Minimum phase factor uP ). Given the polynomials P,R ∈ P2N
+ , define

uP (λ) as the minimum phase function satisfying

|uP (ω)|2 =
P (ω)

P (ω) +R(ω)
∀ω ∈ R \ X,

ℑ(uP (λ)) =0 λ = −j,

where X ⊂ R is a set containing at most 2N points on the real line where the polynomial
R might vanish.
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Remark 4.2.1. The function uP (ω) is well defined in C− and on the real line apart from
the points ω0 ∈ X. Nevertheless note that if it happens that P and R vanish at a point
ω0 ∈ X then both polynomials have a zero of even multiplicity at the point ω0 due to the
positivity property. Denote the multiplicity of the zero of P at ω0 by 2n0. In this case we
can divide P and R by the positive polynomial (ω − ω0)

2n0 removing the singularity of uP
at the point ω0.

Remark 4.2.2. Remark that the dependence of uP (ω) with respect to R is not indicated
as the polynomial R is fixed containing the transmission zeros of the load together with
the transmission zeros prescribed for the matching filter R = RFRL.

4.3 Admissible polynomials

We now define the set of polynomials P ∈ P2N
+ such that the associated minimum phase

function uP is an admissible function.

Definition 4.3.1 (Admissible polynomials). Denote ANR the set of polynomials P ∈ P2N
+

such that the function uP (λ) is admissible.

Lemma 4.3.1 (Bounds on the degree of the feasible function). Let P ∈ ANR . Then there
exists a function ρ ∈ FM+N , that is rational with degree at most M +N , satisfying

|ρ(ω)|2 ≤ P (ω)

P (ω) +R(ω)
∀ω ∈ R.

Proof. Follows from lemma 4.2.1. If the set E(uP ) is not empty, it contains a rational
function f ∈ Σ of degree at most M . Then take the function ρ ∈ FM+N as ρ = f · uP . It
should be noted that uP is rational of degree N . Therefore the product ρ = f · uP is of
degree at most M +N .

We state the following lemma

Lemma 4.3.2 (Concavity of |uP (ω)|2). Denote by X ⊂ R the set of at most 2N points
where R(ω) = 0 (assuming the polynomial R is not identically 0). The function Uω :
P −→ |uP (ω)|2 with ω ∈ R \ X and P ∈ P2N is strictly concave with respect to the
coefficients of polynomial P .

|Uω(κP1 + (1− κ)P2))|2 > κ|Uω(P1)|2 + (1− κ)|Uω(P2)|2.
Proof. Consider the function ga : R+ −→ R+ with

ga(x) =
x

x+ a
a > 0.

This function is concave with respect to x as its second derivative is negative.

D2
xga(x) =

−2a

(x+ a)3

Note that we have strict concavity D2
xga(x) < 0 for all x ≥ 0 assuming a 6= 0. Therefore

the composition Uω(P ) = ga(P (ω)) with a = R(ω) is concave with respect to P since the
evaluation P → P (x) is an affine map. Additionally P → |uP (ω)|2 is strictly concave for
all ω ∈ R \ X.

Thèse de doctorat — Université de Limoges — 2019 Page 83



Chapter 4. General broadband matching problem

Lemma 4.3.2 is of vital importance as it contributes to prove many valuable theorems
in this work. For instance, we use next this lemma to prove an important theorem which
will provide us with the convexity of the set of admissible polynomials.

Theorem 4.3.1 (Convex combinations in ANR ). Let P1, P2 ∈ ANR be distinct polynomials
and ρ1, ρ2 ∈ F the Schur functions satisfying

|ρ1(ω)|2 ≤
P1(ω)

P1(ω) +R(ω)
∀ω ∈ R \ X, (4.6)

|ρ2(ω)|2 ≤
P2(ω)

P2(ω) +R(ω)
∀ω ∈ R \ X. (4.7)

Let P3 = κP1 + (1− κ)P2 with 0 ≤ κ ≤ 1. The function ρ3 = κρ1 + (1− κ)ρ2 is feasible,
namely ρ3 ∈ F, and it satisfies

|ρ3(ω)|2 ≤|uP3(ω)|2 ∀ω ∈ R \ X,

where equality may hold only on set L ⊂ R \ X of at most 2N points. ANR is therefore a
convex set.

Before providing the proof, we need to remark the fact that the modulus square
function is convex.

Lemma 4.3.3. The function f : C −→ R+ that associates to each complex value its
modulus square f(λ) = |λ|2 is convex.

Proof. The proof is immediate if we remark that the modulus function m : C −→ R+

with m(λ) = |λ|, as a norm in C satisfies

|κλ1 + (1− κ)λ2| ≤ κ|λ1|+ (1− κ)|λ2| ∀λ1, λ2 ∈ C

is a convex function. Additionally note the function g : w ∈ R+ −→ w2 is convex and non
decreasing, which proves the convexity of λ ∈ C −→ g(m(λ)).

Lemma 4.3.3 can now be used to prove theorem 4.3.1.

Proof of theorem 4.3.1. Note P1, P2 are polynomials of degree at most 2N , therefore
P1(ω) = P2(ω) with P1 6= P2 can only holds in at most 2N points. Then we define

L ≡ {ω ∈ R | P1(ω) = P2(ω)} ,

where the set L can only contain 2N points at most. Take a point ω0 ∈ R\ (X∪L). From
the strict concavity of the function Uω0 : P −→ |uP (ω0)|2 with respect to P as stated in
lemma 4.3.2 we have

|Uω0(P3)|2 > κ|Uω0(P1)|2 + (1− κ)|Uω0(P2)|2. (4.8)

Now take ρ3 = κρ1+(1−κ)ρ2. The functions ρ1, ρ2 are feasible, namely ρ1(αi) = L22(αi)
and ρ2(αi) = L22(αi) for all i ∈ [1,M ]. Then we have that ρ3 also satisfies the interpolation
conditions ρ3(αi) = L22(αi). Hence ρ3 ∈ F. From the convexity of the modulus square we
have

|ρ3(ω0)|2 ≤ κ|ρ1(ω0)|2 + (1− κ)|ρ2(ω0)|2. (4.9)
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Given the statement of the theorem, namely from eqs. (4.6) and (4.7) we have

|ρ1(ω0)|2 ≤ |uP1(ω0)|2, (4.10)

|ρ2(ω0)|2 ≤ |uP2(ω0)|2. (4.11)

Introducing now eqs. (4.10) and (4.11) in eq. (4.9) we obtain

|ρ3(ω0)|2 ≤ κ|Uω0(P1)|2 + (1− κ)|Uω0(P2)|2. (4.12)

Finally combining eqs. (4.8) and (4.12) we reach the inequality

|ρ3(ω0)|2 <|uP3(ω0)|2 . (4.13)

Note that eq. (4.13) holds for all ω0 ∈ R \ (X ∪ L). Additionally note if ω0 ∈ L, then we
have equality in eq. (4.8), and therefore

|ρ3(ω)|2 ≤|uP3(ω)|2 ∀ω ∈ L.

This concludes the proof of theorem 4.3.1

Corollary 4.3.1 (Convexity). The set of polynomials ANR is convex.

Next we show that the set ANR is closed.

Theorem 4.3.2 (Closure of admissible set). ANR is closed.

Before providing the proof of theorem 4.3.2, note that the set of polynomials P ∈ PN

identifies with CN , using the coefficients associated to a given basis as coordinates. Also
note that all norms defined on the space RN with N finite are equivalent. Therefore
when speaking about convergence of a sequence of polynomials, we consider convergence
in terms of any of the equivalent norms of CN . Furthermore, we provide the following
lemma.

Lemma 4.3.4. Consider a sequence {fn}∞1 ∈ FN . There exists a sub-sequence
{
fφ(n)

}∞
1

that converges uniformly on every compact K ⊂ C− and point-wise on R \ L where L ∈ R

is a set of at most N points to a function p/q ∈ FN .

Proof. Let {fn}∞1 ∈ FN . The function fn can be written as the ratio of two polynomials
pn, qn ∈ PN

fn =
pn
qn
,

with qn a stable polynomial. Now denote by a
(k)
n with k ∈ [0, N ] the coefficients of the

polynomial qn with respect to the canonical basis [λn, · · · 1]. The polynomial qn takes the
expression

qn =
N∑

k=0

a(k)n λk.

Now as qn 6= 0, we can divide numerator and denominator by the l2 norm ‖qn‖2 (any
other norm on polynomials would do here)

‖qn‖2 =
(

N∑

k=0

|a(k)n |2
) 1

2

,
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and obtain

fn =
p

‖qn‖2

(
qn

‖qn‖2

)−1

.

Note the sequence of polynomials {An}∞1 with

An =
qn

‖qn‖2
,

is bounded in norm as every element of {An}∞1 has norm 1. Therefore there exists a
convergent subsequence

{
Aφ(n)

}∞
1

which converges to a polynomial q. Considering again
the l2 norm we have

lim
n→∞

‖q − An‖2 = 0.

By an argument using Rouche’s theorem it is easy to show that the polynomial q is stable
in the broad sense, that is has all its roots in C−. The sequence of functions

{
An

−1
}∞
1

therefore converges uniformly on every compact K ∈ C− and on the real line R apart from
the points where the polynomial q might have zeros. This is a set L ⊂ R of at most N
points.

L = {ω ∈ R | q(ω) = 0} .

Now note that the modulus of the functions fn is bounded |fn(λ)| ≤ 1 for all λ ∈ C−.
Hence

|pn(λ)| ≤ |qn(λ)| ∀λ ∈ C−.

Dividing again by ‖qn‖

|pn(λ)|
‖qn‖2

≤ |qn(λ)|
‖qn‖2

∀λ ∈ C−. (4.14)

Consider now the sup-norm on polynomials

‖p‖∞ = max
w∈[−1,1]

|p(w)|.

The convergence of the sequence of polynomials Aφ(n) and eq. (4.14) is to the consequence
that the sequence Bφ(n) = pφ(n)/‖qφ(n)‖2 is bounded for the sup-norm, and hence for any
norm by the equivalence of norms in finite dimensions. Thus we can extract a convergent
sub-sequence

{
Bϕ(φ(n))

}∞
1

that converges to a polynomial p, and we have:

• fϕ(φ(n)) converges uniformly to p/q on every compact of C−

• fϕ(φ(n)) converges point-wise to p/q on R \ L

• eventually,

∀λ ∈ R \ L,

∣
∣
∣
∣

p

q
(λ)

∣
∣
∣
∣
≤ 1.
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Pole-zero simplifications in the fraction p/q, at the real zeros of q, that by previous
inequality are necessarily zeros of p (with same or higher multiplicity) yield the expected
result.

We do now the proof of theorem 4.3.2.

Proof. Consider now any convergent sequence {Pn}∞1 in ANR . Note that any convergent
sequence {Pn}∞1 ∈ P2N

+ converges to a polynomial P ∈ P2N
+ since P2N

+ is closed. Since
{Pn}∞1 ∈ ANR , by lemma 4.3.1 there exists a sequence of rational function {ρn}∞1 ∈ FM+N

satisfying

|ρn(ω)|2 ≤
Pn(ω)

Pn(ω) +R(ω)
∀ω ∈ R \ X.

The degree of the Schur functions ρn is bounded by M +N , therefore by lemma 4.3.4 we
can extract a subsequence

{
ρφ(n)

}∞
1

that converges point-wise to a function ρ ∈ FM+N

point-wise on R apart from a set L of at most M +N . By continuity (at the points of L)
we have,

|ρ(ω)|2 ≤ P (ω)

P (ω) +R(ω)
∀ω ∈ R \ X.

Therefore P ∈ ANR and the set ANR is closed.

Let us now provide a characterisation of the polynomials P belonging to the boundary
of ANR . First note that any polynomial P ∈ P2N

+ that vanishes at a point ω0 ∈ R belongs
to the boundary of ANR since it belongs to the boundary of the set of positive polynomials.

Definition 4.3.2 (Boundary of positivity). Denote by ∂0A
N
R the set of polynomials P ∈

ANR vanishing at some point ω0 on the real line:

∂0A
N
R ≡

{
P ∈ A

N
R | ∃ω0 ∈ R : P (ω0) = 0

}
.

Then take a polynomial P ∈ P2N
+ such that P (ω) 6= 0 for all ω ∈ R. We next provide

the following lemma

Lemma 4.3.5 (Interior of ANR ). The polynomial P ∈ ANR \ ∂0ANR belongs to the interior of

the set ANR , denoted here by
◦
A
N
R if and only if the set of interpolant functions E(uP ) is not

a singleton.

Proof of sufficiency. Consider a polynomial P ∈ ANR . Suppose there exist at least two
functions in E(uP ). Then by theorem 4.2.1 we have a function b ∈ E(uP ) such that
|b(ω)| < 1 for all ω ∈ R and limω→∞ |b(ω)| < 1. Hence the function ρ ∈ F constructed as
ρ = b · uP verifies

|ρ(ω)|2 < ǫ <
P (ω)

P (ω) +R(ω)
∀ω ∈ R, (4.15)

with ǫ > 0. Then considering definition 4.2.2, there exist an open set Ω around polynomial
P such that eq. (4.15) still holds. Thus uP with P ∈ Ω is admissible. Therefore P is not
on the boundary of the set ANR .
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Proof of necessity. Let P ∈ ANR and assume set of interpolating functions E(uP ) is a
singleton, then by theorem B.1.3 E(uP ) contains only a Blaschke product b of degree
m < M . The Blaschke product B is the unique function in Σ such that

b(αi) =
L22(αi)

uP (αi)
∀i ∈ [1,M ].

In this case the function ρ = b ·uP is the unique function ρ ∈ F satisfying |ρ(ω)| ≤ |uP (ω)|
for all ω ∈ R. Additionally we have

|ρ(ω)|2 = P (ω)

P (ω) +R(ω)
∀ω ∈ R.

Now take the sequence {Pn}∞1 with Pn =
(
1 + −1

n

)
P converging to the polynomial P .

Suppose that P ∈
◦
A
N
R then for n big enough Pn ∈ ANR and there exists ρn ∈ F such that

∀ω ∈ R |ρn(ω)|2 ≤ Pn(ω)/(Pn(ω) +R(ω)). But

∀ω ∈ R, Pn(ω)/(Pn(ω) +R(ω)) < P (ω)/(P (ω) +R(ω))

which indicates |ρn(ω)|2 < |ρ(ω)|2 = P (ω)/(P (ω) +R(ω)) : a contradiction.

Lemma 4.3.5 also provide us with the characterisation of the polynomials P ∈ P2N
+

such that P (ω) > 0 for all ω ∈ R belonging to the boundary of ANR . We state it as a
corollary of lemma 4.3.5.

Corollary 4.3.2 (Boundary of admissibility). Polynomial P ∈ ANR \ ∂0ANR belong to the
boundary of ANR if and only if E(uP ) is a singleton.

Corollary 4.3.2 is defining a second type of boundary of ANR , different from ∂0A
N
R . The

definition of this boundary is of great utility for the for the relaxed matching problem
stated in next section as it contributes to the characterisation of the optimal solution. We
provide therefore a formal definition.

Definition 4.3.3 (Boundary of admissibility). We denote by ∂ANR the set of polynomials
P such that E(uP ) is a singleton.

Note if we consider now the boundary of the set ANR we can distinguish between two
boundaries of different nature namely the boundary of the set of positive polynomials
∂0A

N
R and the boundary of admissibility ∂ANR . The set ANR is then obtained as the union

A
N
R =

◦
A
N
R ∪ ∂0ANR ∪ ∂ANR

4.4 Statement of the problem

We are now in position to formulate the relaxed version of problem 4.1.1 where the
optimisation is performed over the minimum phase factor uP of the function S22 under
the restriction that uP is admissible for the given load. Note that uP is parametrised by
the positive polynomial P ∈ ANR , therefore the problem is stated in terms of the polynomial
P only as it is usually done in the classic synthesis of filter functions (problem 2.13.2)
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Problem 4.4.1 (Relaxed matching problem).

Find: min
P∈AN

R

max
ω∈I

P (ω)

R(ω)
,

Subject to:
P (ω)

R(ω)
≥ Γ ω ∈ J. (4.16)

The belonging to the set ANR synthesis all the conditions a minimum phase factor
S22 ∈ FNR verifies. As already mentioned the sets I and J are union of compact intervals of
the real line. Whereas J can be empty, we will suppose here that I is not discrete, that is
contains a continuum in order to avoid trivial situations. We review next the properties
of problem 4.4.1.

4.4.1 Properties

Theorem 4.4.1 (Feasability of problem 4.4.1). There exists a polynomial P ∈ ANR satis-
fying eq. (4.16).

Proof. We are looking for a polynomial P ∈ P2N
+ satisfying eq. (4.16) such that there exist

a function ρ ∈ Σ verifying ρ(αi) = L22(αi) for all i ∈ [1,M ] and

|ρ(ω)|2 ≤ P (ω)

P (ω) +R(ω)
∀ω ∈ R,

where

L22(λ) =
pL(λ)

qL(λ)
pL, qL ∈ P

M ,

and the transmission polynomial RL = qLq
⋆
L − pLp

⋆
L of the load is a divisor of R. Take

ρ = L22. We have

|ρ(ω)|2 =pL(ω)p
⋆
L(ω)

qL(ω)q⋆L(ω)
∀ω ∈ R.

Let us look now for a polynomial P ∈ P2N
+ such that

pL(ω)p
⋆
L(ω)

qL(ω)q⋆L(ω)
≤ P (ω)

P (ω) +R(ω)
∀ω ∈ R.

Solving for P we reach

P (ω) (qL(ω)q
⋆
L(ω)− pL(ω)p

⋆
L(ω)) ≥ R(ω)pL(ω)p

⋆
L(ω) ∀ω ∈ R,

P (ω)RL(ω) ≥ R(ω)pL(ω)p
⋆
L(ω) ∀ω ∈ R.

Let denote R̂ = R
RL

and PL = pLp
⋆
L where R̂ ∈ P

2N−2M
+ and PL ∈ P2M

+ . Thus

P (ω) ≥ R̂(ω)PL(ω) ∀ω ∈ R. (4.17)

Note that R̂ · PL belong to P2N
+ . Therefore the polynomial R̂ · PL belong to ANR . Finally,

to ensure that eq. (4.16) is satisfied we take the polynomial P as

P = R̂ · PL + Γ ·R
Note P (ω) ≥ Γ ·R(ω) for all ω ∈ R, therefore P verifies eq. (4.16). Additionally eq. (4.17)
holds, hence P ∈ ANR .
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Lemma 4.4.1 (Existence of P opt). There exists a polynomial P opt ∈ ANR solution of
problem 4.4.1.

Proof. We proved in theorem 4.4.1 that the set of admissible P satisfying eq. (4.16) is not
empty. Then consider the image of the set ANR by the application

Ψ : A
N
R −→ R+

P −→ Ψ(P ) = max
ω∈I

P (ω)

R(ω)
.

Denote Ψ the image set of Ψ(P ) with P ∈ ANR and eq. (4.16) satisfied.

Ψ ≡
{
Ψ(P ) | P ∈ A

N
R : P (ω) ≤ ΓR(ω) ∀ω ∈ J

}
.

The set Ψ is a set of real numbers which is bounded below by 0 and therefore it has
an infimum Ψopt . Thus for all Ψ ∈ Ψ we have Ψ ≥ Ψopt with Ψopt ≥ 0. Now take a
minimising sequence of numbers {Ψn}∞1 ∈ Ψ converging to Ψopt such that

lim
n→∞

Ψn = Ψopt.

Take then a sequence of polynomials {Pn}∞1 ∈ ANR such that

Ψ(Pn) = Ψn

Pn(ω) ≤ ΓR(ω) ∀ω ∈ J.

As I contains a continuum, the sequence {Pn}∞1 which is bounded on I is bounded for
any norm on polynomials of P2N . From the sequence {Pn}∞1 we can therefore extract a
convergent subsequence

{
Pφ(n)

}∞
1

converging to a polynomial Popt. By theorem 4.3.2 the

set ANR is closed, which implies Popt ∈ ANR . The continuity of ψ, as a weighted sup norm,
implies

lim
n→∞

Ψ(Pφ(n)) = Ψopt.

Thus we have a polynomial Popt which attain the optimum criterium Ψopt. This concludes
the proof.

Next we provide a necessary condition for the optimality of the solution to prob-
lem 4.4.1 using the definition of the set E(uP )

Theorem 4.4.2 (Optimality). If Popt ∈ ANR is the solution to problem 4.4.1, and eq. (4.16)
is not binding, then Popt ∈ ∂ANR

Proof. Let Popt be the optimal solution to problem 4.4.1. Now assume Popt /∈ ∂ANR , namely
the set E(uP ) is not a singleton, then by theorem 4.2.1 there exist a Schur function b(λ)
satisfying

b(αi) =
L22(αi)

uP (αi)
∀i ∈ [1,M ],
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such that

|b(ω)| <1 ∀ω ∈ R,

lim
ω→∞

|b(ω)| <1.

Now construct the function ρ ∈ F as ρ = uPopt
· b. We have

|ρ(ω)|2 < µ <
Popt(ω)

Popt(ω) +R(ω)
∀ω ∈ R,

where µ > 0. Therefore, since eq. (4.16) is not saturated we can multiply Popt by a
constant κ with 0 < κ < 1 such that κPopt ∈ ANR . Additionally we have

κPopt(ω)

R(ω)
<
Popt(ω)

R(ω)
∀ω ∈ R \ {w ∈ R, Popt(w) = 0}

which shows that κPopt improves the criterium in problem 4.4.1. A contradiction.

Corollary 4.4.1. If Popt ∈ ANR is the solution to problem 4.4.1, and eq. (4.16) is not
binding, the unique function b ∈ Σ satisfying

b(αi) =
L22(αi)

uPopt
(αi)

∀i ∈ [1,M ]

is a Blaschke product of degree at most M − 1.

Corollary 4.4.2. In the preceding case, if we assume further a load of degree 1, the
obtained Blaschke product b is of degree M − 1 = 0. Therefore this is a case in which the
introduced relaxation exact, namely the polynomial Popt is also solution to problem 4.1.1.

We have proven in lemma 4.4.1 the existence of a sequence {Pn}∞1 converging to a
polynomial Popt such that Ψ(Popt) = ψopt. Nevertheless it is not clear for the moment if
the polynomial Popt is the only polynomial P ∈ ANR such that Ψ(P ) = ψopt. To answer
that question, we shall prove next the unicity of the solution to problem 4.4.1

Theorem 4.4.3 (Unicity). The optimal polynomial Popt solution to problem 4.4.1 is
unique.

Proof. To study the unicity of the solution to problem 4.4.1, two different scenarios must
be considered.

1. Suppose there exists a polynomial Popt solution to problem 4.4.1 which does not
belong to ∂ANR . In this case problem 4.4.1 is only constrained by eq. (4.16) and
therefore Popt is the solution to the classical filter convex synthesis problem on
P
+
2N which is known to have a unique solution, characterised by an equioscillation

property. Hence we conclude Popt is unique.

2. Suppose now P1, P2 ∈ ∂ANR are distinct optimal solutions to problem 4.4.1, for which
eq. (4.16) is saturated or not, and that provide the optimal criterium ψopt

P1(ω) ≤ ψoptR(ω) ∀ω ∈ I,

P2(ω) ≤ ψoptR(ω) ∀ω ∈ I.
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Note that polynomials P1 and P2 also satisfy eq. (4.16), therefore

P1(ω) ≤ ΓR(ω) ∀ω ∈ J,

P2(ω) ≤ ΓR(ω) ∀ω ∈ J.

Then take P3 = κP1 + (1 − κ)P2 with 0 ≤ κ ≤ 1. Polynomial P3 obtained as a
combination of P1 and P2 also satisfies

P3(ω) ≤ ψoptR(ω) ∀ω ∈ I,

P3(ω) ≤ ΓR(ω) ∀ω ∈ J.

Furthermore since P1, P2 are admissible, from theorem 4.3.1 and corollary 4.3.1 we
have a function ρ3 ∈ F with ρ3 = κρ1 + (1− κ)ρ2 such that

|ρ3(ω)| < |uP3(ω)| ∀ω ∈ R \ L, (4.18)

where L ⊂ R is a finite set of points. Hence P3 belongs to ANR but not to ∂ANR
because of the strict inequality in eq. (4.18) and we are back to the first case: a
contradiction.

4.5 Characterisation of the optimal solution

Up to this point, we have stated the matching problem using a relaxed convex for-
mulation and provided some basic properties of the solution to this relaxed problem.
Nevertheless, we have not provided any effective characterisation of the optimal solution
to problem 4.4.1. In this section, we describe some property verified by the optimal
polynomial Popt in terms of number of extremal points. First we need to provide a
particular definition for the multiplicity of a real root ξ of a polynomial p ∈ PN .

Definition 4.5.1 (Multiplicity of polynomial roots). Consider a polynomial p ∈ PN with
roots at the points xi ∈ R for all i ∈ [1, N ]. Let mi be the standard multiplicity of the
root xi of p. We define µ(xi) as the smallest even integer such that mi ≤ µ(xi).

We can now state the main theorem.

Theorem 4.5.1 (Number of optimal extrema points). Take the polynomial Popt ∈ P2N
+

which provides the optimal criterium Ψopt in problem 4.4.1 and denote by xi ∈ I with
i ∈ [1, n ≤ N ] all the roots of the polynomial Popt −ΨoptR within the interval I. We have

1

2

n∑

i=1

µ(xi) ≥ N + 1.

Before providing the proof, we shall remember following basic property

Theorem 4.5.2 (Positive polynomials with prescribed roots). Given xi ∈ R a finite
number of points, and mi ∈ N a set of associated multiplicities. Let M =

∑

i 2mi. There
exists a polynomial Φ ∈ P2N

+ with roots at the points xi of multiplicity 2mi if and only if
N ≥M .
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Proof of theorem 4.5.1. To prove theorem 4.5.1, we assume

1

2

n∑

i=1

µ(xi) ≤ N,

and then we construct an admissible polynomial P 6= Popt such that P (ω) ≤ ψoptR(ω) for
all ω ∈ I. This contradicts the unicity of Popt stated in theorem 4.4.3. We have

n∑

i=1

µ(xi) ≤ 2N.

From theorem 4.5.2 there exists a polynomial Φ ∈ P2N
+ with roots of multiplicity µ(xi) at

each points xi. Then consider the polynomial

P (ω) = Popt(ω) + ǫΦ(ω),

with ǫ is a positive constant. We show next that there exist ǫ > 0 such that

P (ω)−ΨoptR(ω) ≤ 0 ∀ω ∈ I,

P (ω)− ΓR(ω) ≥ 0 ∀ω ∈ J. (4.19)

Note that eq. (4.19) is satisfied for any ǫ > 0 since P (ω) ≥ Popt(ω) for all ω ∈ R.

Furthermore since Popt ∈ ANR then we have P̂ ∈ ANR as well. Define

S(ω) = Popt(ω)−ΨoptR(ω),

which is by construction negative or zero on I. The Taylor expansions of S and Φ at xi,
a zero of order mi of S, writes as:

S(xi + h) =
DmiS(xi)

(mi)!
hmi + o(hmi+1),

Φ(xi) =







DmiΦ(xi)

(mi)!
hmi + o(hmi+1) if mi is even

Dmi+1Φ(xi)

(mi + 1)!
hmi+1 + o(hmi+2) if mi is odd

We claim that we can find an open neighbourhood Ωi of xi and ǫ > 0 sufficiently small
such that S + ǫΦ has same sign as S on Ωi. If mi is odd, Φ(xi + h) is an o(hm+1), so that
any neighbourhood Ωi small enough will do. For mi even, the first term in the Taylor
expansion of S + φ around xi is

DmiS(xi) + ǫDmiΦ(xi)

mi!
hmi

so that taking

ǫ ≤ 1

2

∣
∣
∣
∣

DmiS(xi)

DmiΦ(xi)

∣
∣
∣
∣
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and Ωi small enough will do. Doing this repeatedly for all xi and taking the minimum of
all found values for ǫ, we have:

∀w ∈
⋃

i

Ωi ∩ I, S(w) + ǫΦ(w) ≤ 0.

Now on the compact set I \⋃i Ωi, which contains no zeros of S, the maximum of S is a
strictly negative value a < 0. Upon one final lowering of ǫ > 0 we have therefore,

∀ω ∈ I, S(ω) + ǫΦ(ω) = Popt(ω)−ΨoptR(ω) + ǫΦ(ω) ≤ 0.

Hence the polynomial P = Popt + ǫΦ satisfies P (ω) ≤ ΨoptR(ω) for all ω ∈ I what
contradicts theorem 4.4.3.

Theorem 4.5.3 (Number of points where the optimal criterium is attained). If all points
xi with i ∈ [1, n] have “simple” multiplicity mi ≤ 2 then the optimal criterium Ψopt is
attained by the function Popt(ω)/R(ω) at least N + 1 times within the interval ω ∈ I.

Proof. Let mi ≤ 2 for all i ∈ [1, n], considering definition 4.5.1 we have

1

2

2∑

i=1

µ(xi) ≤
1

2

n∑

i=1

2 = n

and from theorem 4.5.1 we conclude n ≥ N + 1. Hence the the polynomial Popt − ΨoptR
has at least N + 1 roots in the interval I.

4.6 Characterisation of ANR for a load of degree 1

Note that parametrisation of the set ANR is still very abstract since it requires to establish
the existence, or not, of a Schur function satisfying a set of interpolation conditions. We
have used for the moment Nevanlinna parametrisation of the set of such Schur interpolant
(provided in theorem B.1.3) for this purpose. Nevertheless it still does not allow for a
simple numerical implementation of problem 4.4.1. Nevertheless there is one case where
this characterisation become quite simple. It is the case of a load of degree 1 with one
single transmission zero α1 ∈ C. In this case we have P ∈ ANR if and only if there exist a
Schur function f(λ) satisfying the single interpolation condition

f(α) =
L22(α)

uP (α)
.

For a load of degree 1, we have the following lemma

Lemma 4.6.1. There exist a Schur function f(λ) of degree at most one satisfying f(α) =
γ, with α ∈ C− and γ ∈ D if and only if |γ| ≤ 1.

Proof. Follows from eq. (B.2).

From the previous lemma we obtain the following characterisation

Page 94 Mart́ınez Mart́ınez David



4.6. Characterisation of ANR for a load of degree 1

Theorem 4.6.1 (Characterisation of ANR ). The positive polynomial P belong to the set
ANR if and only if the function uP satisfies

|uP (α)| ≥ |L22(α)|. (4.20)

By definition, the evaluation of a the modulus of a minimum phase function inside its
analyticity domain can be computed by means of the Poisson integral of its log modulus
functions. See for instance [28] where the Poisson integral is studied using the Poisson
kernel of the unit disk. Remember now that the Poisson kernel of the lower plane is:

Py(x) =
1

π

−y
x2 + y2

.

The Poisson integral for the lower half plane is computed as

log(up(α = x+ iy)) =
1

π

∫

R

log |uP (τ)|Py(x− τ)dτ

=
1

π

∫

R

−y log |uP (τ)|
|x− τ |2 + y2

dτ

log(up(α = x+ iy)) =
1

π

∫

R

log

(√

P (τ)

P (τ) +R(τ)

)

ℑ (α)

|α− τ |2dτ

which yields for α ∈ C−

=
ℑ (α)

2π

∫

R

log
(

P (τ)
P (τ)+R(τ)

)

|α− τ |2 dτ.

Finally we take logarithm in eq. (4.20) to obtain

log |uP (α)| =
ℑ (α)

2π

∫

R

log
(

P (τ)
P (τ)+R(τ)

)

|α− τ |2 dτ ≥ log |L22(α)|,

or equivalently

∫

R

log
(

1 + R(τ)
P (τ)

)

|α− τ |2 dτ ≤ K,

with

K =
2π log |L22(α)|

ℑ (α)
,

where both quantities are real positive.

Additionally, we can characterise the subset ∂ANR ⊂ ANR as the set of polynomials
P ∈ P2N

+ where eq. (4.20) is saturated.

Theorem 4.6.2 (Characterisation of ∂ANR ). The positive polynomial P belong to ∂ANR if
and only if

|uP (α)| = |L22(α)|.
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4.6.1 Statement of the problem

We are now prepared to state problem 4.4.1 in the case where the load is of degree 1 by
using the provided parametrisation of the set ANR

Problem 4.6.1 (Relaxed matching problem of degree 1).

Find: Lopt = min
P∈P2N

R

max
λ∈I

P (λ)

R(λ)
,

Such that:
P (λ)

R(λ)
≥ Γ ∀λ ∈ J, (4.21)

∫

R

log
(

1 + R(τ)
P (τ)

)

|α− τ |2 dτ ≤ K K > 0, (4.22)

where

K =
2π log |L22(α)|

ℑ (α)
.

If J = ∅ (no selectivity constraints are considered) the relaxed matching problem
(problem 4.6.1) is in fact exact.

Problem 4.6.1 is a convex optimization program with linear cost function and a single
non linear scalar convex constraint. The latter can therefore be solved efficiently with a
guarantee of optimality: to the best of our knowledge this result is new and constitutes
one of the rare situation, but already an interesting one (loads of degree one are quite
common), where problem 4.1.1 can be solved optimally for any degree N .

4.7 Extraction of the matching filter

At this point we believe it is convenient to include a small overview of the algorithm
introduced in this work for the computation of matching filters as it differs from the
classical design procedure. Throughout this chapter, we have developed an optimisation
problem focused on the minimisation of the magnitude of the global system reflection
|S22(ω)| within a given frequency interval. Equivalently, the synthesis problem over the
function S22 also provides the optimal system when the input reflection coefficient S11 is
considered since for lossless devices we have |S11(ω)| = |S22(ω)| for all ω ∈ R. This is,
indeed, the ultimate goal of the matching problem as we are interested on minimising the
input reflection of the system. Nevertheless, in order to obtain the optimal reflection in
practice, it is still necessary to compute the matching filter which provides such reflection
S11.

In the case of degree one, the matching filter providing the optimal global reflection
can be computed directly from the Belevitch model of the global system after the de-
embedding of the load. This is possible if the relaxation made in problem 4.4.1 is exact,
namely the solution obtained by solving problem 4.4.1 is also the solution to problem 4.1.1.

Page 96 Mart́ınez Mart́ınez David
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Therefore when eq. (4.21) is not saturated in problem 4.6.1 the optimal polynomial
Popt ∈ ANR , once it is factorised in its inner and outer factors such that Popt = poptp

⋆
opt

where popt has all roots in C+ and p⋆opt in C−, the polynomial popt satisfies

S22 =
popt
qopt

∈ F
N
R ,

where qopt is the stable polynomial satisfying qoptq
⋆
opt = Popt + R. Since S22 ∈ FNR , there

exist a filter which chained at the input of the antenna provides the global reflection S22.
The output reflection F22 of this filter can be computed by eq. (3.13) as

F22 =
L22 − S22

det(L)− S22L11

.

The reflection coefficient expressed in the rational form F22 = pF/qF with pF , qF ∈ PN

provides us with the Belevitch model of the scattering matrix F of the matching filter

F =
1

qF

(
p⋆F −r⋆F
rF pF

)

,

where the polynomial rF ∈ PN satisfies rF r
⋆
F = RF and RF ·RL = R.

Remark 4.7.1. Note that the function F22 does not depend on the distribution of the
roots of RF between rF and r⋆F . Therefore this distribution can be done arbitrarily. Note
further that in the where all roots of the polynomial RF has even multiplicity, we can
obtain a reciprocal matching filters by assigning the same roots to rF and r⋆F such that
rF = r⋆F .

4.7.1 Overview of the proposed algorithm

We provide finally a conceptual overview of the proposed algorithm in the case of a load
of degree one, and assuming eq. (4.21) is not saturated in problem 4.6.1.

1. Minimisation of the global system reflection (fig. 4.2a). The filter synthesis approach
begins with the synthesis of the global system by minimising the output reflection
|S22(ω)| within the passband I. Note that being the global system lossless we have
|S22(ω)| = |S11(ω)| for all ω ∈ R.

2. De-embedding of the load model (fig. 4.2b). Extraction of the matching filter after
the de-embedding of the Belevitch model of the load or its Darlington equivalent in
the case where only the input reflection of the load is known.

3. Realisation of the matching filter (fig. 4.2c). Use of the rational model for the
physical implementation of the matching filter as it is also done with the classical
filter synthesis. Note that this time, as we minimised the global reflection, the
output impedance of the filter is as close as possible to the conjugate of the input
impedance of the load.

4. Cascade of the implemented filter with the load (fig. 4.2c). Once the filter has been
built, we can replace the Darlington equivalent by the actual load. Since the Darling
equivalent shown the same input impedance as the load, when the matching filter
is plugged to the input port of the load, the global reflection S11 synthesised at the
beginning is recovered.
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Global
system |S22

opt| = Popt

Popt+R
Popt = arg min

P∈AN
R

max
ω∈I

∣
∣
∣
∣

P (ω)

P (ω) +R(ω)

∣
∣
∣
∣

(a) Step 1: synthesis of the global system.

Global
system =⇒ F L

S11

S22

F22F11 L11 L22

(b) Step 2: De-embedding of the load.

F L =⇒ F

S11 L11F22F11 L11 L22

(c) Step 3&4: realisation of the matching filter and cascade to the load.

4.8 Concluding remarks

This result obtained in this chapter represents an extension of the classical filter
synthesis problem, where the optimality is guaranteed, to the case of rational loads of
degree one. Note that the classical problem can be seen as a matching problem with
a resistive load. Indeed when a constant load is considered, eq. (4.22) is not required
as no transmission zeros are present, removing therefore such constraint from the problem.

Additionally note that, in the case of a not constant load, if constraint eq. (4.21)
is removed (i.e. there are no selectivity requirements), problem 2.13.1 is unbounded
meanwhile problem 4.1.1 is not, showing how the load imposes a limitation in terms of
matching regardless of the selectivity requirements.

It should also be noted that in the case of a load of degree one, we have derived
a practical characterisation of the set of admissible polynomials P , which is given by
eq. (4.22). We will now consider the case of load of general degree and work towards a
constructive description of the set ANR in chapter 5.
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Chapter 5. Practical characterisation of the admissible set: a perspective of
admissibility as a classical Nevanlinna-Pick interpolation problem

We have introduced in chapter 4, a relaxed version of problem 4.1.1 by using the notion
of admissible polynomials. This relaxed problem happens to be of special interest as
we demonstrated in corollary 4.3.1 the convexity of this admissible set. Furthermore
in section 4.6 the theory developed through chapter 4 is applied to the most simple
kind of load that is considered in this work, namely those whose reflection coefficient is
modelled as a rational function of degree one, which provides us with several remarkable
results. These results are reached by introducing a practical characterisation of the
set of admissible polynomials for the particular case of a load of degree one. Such
characterisation allows for problem 4.4.1 to be solved numerically as a standard convex
optimisation problem.

Next, to generalise the results obtained in chapter 6, we shall first generalise the
characterisation of the set of admissible polynomials for a load of degree M ∈ N. This
characterisation is achieved in a very straightforward manner utilising the Nevanlinna-
Pick interpolation theorem. However, we also perform a small parenthesis in this chapter
to introduce some more advanced theoretical concepts, very well known in the field of
functional analysis, which is used for an in-depth study of a valuable property satisfied
by the given characterisation. The reason behind the importance of this additional
property of the admissible set (which is, in fact, stronger that convexity) will become
clear in chapter 7.

Nevertheless, note that in chapter 7 we come back to the matching problem which we
left in chapter 4 but already having the generalised characterisation of the admissible set.
Furthermore, a different style is adopted in chapter 7, which is more computationally
oriented. Therefore an impatient reader might skip the present chapter and go directly
to chapter 7 as quick as possible, perhaps returning to chapter 5 afterwards. To study
such characterisation of the admissible polynomials, we include a more bibliographic
chapter here, where some classic concepts related to the Nevanlinna-Pick interpolation
problem are extracted from the literature and formulated in the framework established
in this thesis, so it can be directly applied to our problem.

Additionally, we provide some required basic notions on Hilbert spaces and more
particularly the Hardy space H2. Those basic concepts are briefly revised to give the
reader an overall intuition on where the story is going and immediately applied in a slightly
more complex form to the problem we are dealing with in this chapter. Nevertheless, a
quick revision of some of the books treating Hilbert spaces and Hardy spaces is suggested,
for instance, [29, Chapter 4] for a basic introduction to Hilbert spaces, and [29, Chapter 17]
to acquire some notions on Hardy spaces. Similarly, a reader who is interested in the field
of functional analysis should not miss the opportunity to review the reference book [30]
for a more advanced lecture.

5.1 Nevanlinna-Pick interpolation

Schur interpolation is recurrent in this thesis to the point that it could be considered as
the second main topic after matching problem. Note further that the general matching
problem, namely problem 4.1.1 is indeed a Schur interpolation problem as the set of

Page 100 Mart́ınez Mart́ınez David



5.1. Nevanlinna-Pick interpolation

feasible functions F consists of the Schur functions satisfying an interpolation problem.

We start this section with an introduction to Nevanlinna-Pick interpolation and the
Pick theorem. After having introduced the problem in its standard form, the motivation
for this chapter will become clear. The Nevanlinna-Pick interpolation problem has already
been introduced in theorem B.1.3 where the Schur recursion and the original characteri-
sation of the interpolant solutions by Nevanlinna are presented. Let us recall the problem
we are referring to

Definition 5.1.1 (Nevanlinna-Pick interpolation). Given γ1, γ2 ... γM ∈ D and the set
of points α1, α2 ... αM ∈ C−. The Nevanlinna-Pick interpolation problem consists on
determining the functions f ∈ Σ such that

f(αi) = γi ∀i ∈ [1,M ]. (5.1)

Let us now provide the Pick theorem, a powerful tool for the characterisation of the
set of interpolant functions satisfying eq. (5.1).

Theorem 5.1.1 (Pick Theorem). There exist a Schur function f : C− → D satisfying
eq. (5.1) if and only if the Pick matrix ∆ defined as

∆ =
1

j



















1− γ1γ1
α1 − α1

1− γ1γ2
α1 − α2

· · · 1− γ1γM
α1 − αM

1− γ2γ1
α2 − α1

1− γ2γ2
α2 − α2

· · · 1− γ2γM
α2 − αM

...
...

. . .
...

1− γMγ1
αM − α1

1− γMγ2
αM − α2

· · · 1− γMγM
αM − αM



















(5.2)

is positive semidefinite. Furthermore, f is unique if and only if ∆ is singular. In this case
f is a Blaschke product of degree equal to the rank of the matrix in eq. (5.2).

Now after all the theory developed in chapter 4 around the realisability of the global
system reflection with a prescribed load and its application to the case of a load of degree
1, we are ready to apply such theory to the general case. First let us illustrate how the
Pick theorem can be used for that purpose.

Note that in the same way as in chapter 4, we consider a load with a 2× 2 scattering
matrix L of McMillan degree M and simple transmission zeros α1, α2, · · · , αM ∈ C−.
The matrix L present a rational form and its parametrised by means of the polynomials
pL, qL, rL ∈ PM as in eq. (2.38)

L =
1

qL

(
p⋆L −r⋆L
rL pL

)

.

We denote by RL = rLr
⋆
L the transmission polynomial of L and qL the stable polynomial

such that qLq
⋆
L = pLp

⋆
L + RL. From definition 4.2.2, a minimum phase function u ∈ Σ is
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admissible if and only if the set of interpolant functions E(u) (see definition 4.2.1) which
contains the functions f satisfying

f(αi) =
L22(αi)

u(αi)
∀i ∈ [1,M ] (5.3)

is not empty. Note in eq. (5.3) all points αi lies in the interior of C− and the values
L22(αi) belong to D. Additionally, since the function u is of minimum phase, the values
of L22(αi)u(αi) are bounded. Hence E(u) is the set of solutions of a Nevanlinna-Pick
interpolation problem.

Therefore by means of eq. (5.2) a more tangible characterisation of admissibility is
provided in terms of the positivity of the matrix ∆. This new characterisation is equivalent
to definition 4.2.2, Particularly we obtain that the minimum phase function u is admissible
if and only if the matrix in eq. (5.2) is positive semidefinite ∆ � 0 where the interpolation
values γi for all i ∈ [1,M ] are computed as γi = L22(αi)u(αi)

−1.

5.2 Introduction to Hardy spaces of vector valued

functions

The purpose of this section is to provide a general notion on Hardy spaces providing
some properties that applies to the characterisation of the set of admissible polynomials.
Nevertheless it might be pertinent to remember the definition of a Hilbert space. A
Hilbert space is a Banach space, namely it is normed and complete, provided with an
inner product. For instance, the euclidean space with N dimensions RN provided with
the usual inner product 〈a, b〉 = aT b with a = (a1, a2, · · · , aN)T , b = (b1, b2, · · · , bN)T and
a, b ∈ RN is a Hilbert space.

Let us now introduce the Hilbert space L2 which contains the functions f : R −→ C

that are square integrable
∫

R

|f(λ)|2dλ <∞.

The space L2 is endorsed with the standard inner product 〈f, g〉 defined as

〈f, g〉 =
∫ ∞

−∞
f(ω)g(ω)dω f, g ∈ L2. (5.4)

This is actually, the only Hilbert space among the LP spaces.

In section 3.3.1.1 we already introduced the Hardy space H∞. Now we provide a more
general view of Hardy spaces, namely Hp spaces, where the space H2 outstands over the
rest by showing some properties of particular interest for our purposes. We give next the
general definition of Hp

Definition 5.2.1 (Hardy spaces). Denote by Hp, with 1 ≤ p ≤ ∞ the following class of
functions

Hp =

{

f ∈ H(C−) | sup
σ<0

(∫ ∞

−∞
|f(ω + jσ)|pdω

) 1
p

<∞
}

,
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where ‖f‖p, defined as

‖f‖p =sup
σ<0

(∫ ∞

−∞
|f(ω + jσ)|pdω

) 1
p

1 ≤ p <∞,

can be proved to be a norm. Particularly, it corresponds to the norm associated to the
space HP . Additionally note that if f ∈ HP , then the non-tangential limit of f(ω + jσ)
when σ → 0 exist and allows to define the function f on the real axis as

f(ω)|ω∈R
= lim

σ→0
σ<0

f(ω + jσ).

For the case of H∞ the norm ‖f‖∞ is defined separately as in section 3.3.1.1

‖f‖∞ = sup
ω∈R

|f(ω)|.

In this chapter, among the previously introduced Hardy spaces, we are mostly inter-
ested in the space H2. The space H2 is a Hilbert space equipped with the scalar product
in eq. (5.4) and the norm

‖f‖2 =
(∫ ∞

−∞
|f(ω)|2dω

)1/2

.

Consider further the space of 1×k vector valued functions where each element belong
to H2. We denote such space H2

1×k. Equivalently we can define the inner product of two
functions f, g ∈ H2

1×k as

〈f, g〉 =
∫ ∞

−∞
f(ω)g(ω)⋆dω f, g ∈ H2

1×k.

Additionally, we extend now some of the concepts introduced in section 2.1 to the case
of matrix valued functions. First we extend the set of Schur functions to allow for the
inclusion of matrix functions

Definition 5.2.2 (Contractive matrix). We denote by Σk×l the set of analytic and con-
tractive matrix functions.

Σk×l =
{
S ∈ H(C−) | S : C −→ C

k×l;S(λ)⋆S(λ) � Ik ∀λ ∈ C
−} ,

where Ck×l represents the complex k × l matrices.

Note also that when referring to a column vector, we omit the column index and
use the simplified notation Ck referring to a complex valued column vector or Σk to
represents the analytic vector valued functions S such that S(λ)⋆S(λ) ≤ 1 for all λ ∈ C−.

Furthermore we also have the equivalent to the maximum modulus theorem for matrix
functions. Particularly, if S ∈ H(C−), S : C −→ Ck×l and S(ω)⋆S(ω) � I for all ω ∈ R

therefore S ∈ Σk×l. We also develop next the Cauchy’s formula for functions in the space
H2

1×k and a formula to evaluate the projection of a function belonging to the space L2
k

onto H2
1×k. We follow now by remembering Cauchy’s integral formula and we develop the

remaining theory from there, in that way no major mathematical knowledge is required.
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Theorem 5.2.1 (Cauchy’s integral theorem). Let f ∈ H(K) where K ⊂ C is an open
subset of C such that f : K −→ C. Then if γ ⊂ K is a simple closed path going clockwise
around a point λ0 ∈ K, we have

f(λ0) =
1

2πj

∫

γ

f(λ)

λ0 − λ
dλ. (5.5)

With the choice of the analyticity domain used in this work namely C−, if f ∈ H2 and
λ0 ∈ C− then we can express Cauchy’s integral by means of the inner product defined
above

f(λ0) =
1

2πj

∫

γ

f(λ)

λ0 − λ
dλ =

〈

f,
1

2πj
(
λ− λ0

)

〉

.

It should be noted the function Kλ0(λ)

Kλ0(λ) =
1

2πj
(
λ− λ0

)

belongs to H2. The expression f(λ) = 〈f,Kλ0〉 is the Cauchy’s formula for H2 which
allows to evaluate any function f ∈ H2 at a point λ0 ∈ C− as the scalar product of f with
a function Kλ0 ∈ H2.

5.2.1 Reproducing kernel Hilbert space

Next let us provide the notion of reproducing kernel Hilbert space is required. A Hilbert
space H is a reproducing kernel Hilbert space if and only if the evaluation of any function
f ∈ H at a point λ inside the analyticity domain, in our case C− is obtained as the scalar
product of the function f with a function Kλ ∈ H.

f(λ) = 〈f,Kλ〉 ∀λ ∈ C
− ∀f ∈ H.

This function Kλ is called reproducing kernel of H, giving the name to this kind of
Hilbert spaces. Hence we obtain the function Kλ as the reproducing kernel of H2.

Equivalently if f ∈ H2
1×k (a row vector) we obtain a similar expression by applying

eq. (5.5) to the evaluation of the function f(λ0)ξ with ξ ∈ Ck (a column vector) we have

f(λ0)ξ =
1

2πj

∫

γ

f(λ)ξ

λ0 − λ
dλ =

〈

f,
ξ⋆

2πj
(
λ− λ0

)

〉

.

Therefore

f(λ0)ξ = 〈f, ξ⋆Kλ0〉 . (5.6)

Similarly eq. (5.6) is known as the Cauchy’s formula for the space H2
1×k.

Corollary 5.2.1. Note that lemma 5.2.1 can be used to compute

〈S, ξ⋆Kλ0〉 = S(λ0)ξ ∀ξ ∈ C
k ∀S ∈ H2

1×k. (5.7)
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In particular note that applying eq. (5.7) to compute the norm of ‖f‖2 with

f =
M∑

i=1

ξ⋆iKαi
αi ∈ C

− ξi ∈ C
k

yields

‖f‖2 =
〈

M∑

j=1

ξ⋆jKαj
,

M∑

i=1

ξ⋆iKαi

〉

=
M∑

i=1

M∑

j=1

ξ⋆jKαj
(αi)ξi ≥ 0,

where the positivity of the norm implies the right side is positive.

Next note that a function f ∈ H2(C−) where the parenthesis indicates the choice of
analyticity domain, if it is evaluated in the real line we obtain a function belonging to
L2, namely for −∞ < ω < ∞ we have f(ω) ∈ L2(R). Furthermore the same property
holds if f ∈ H2(C+). Indeed it can be shown that the space L2(R) can be decomposed
in two orthogonal spaces H2(C−) and H2(C+). Denote then by p : L2

k −→ H2
1×k the

projection function from L2
k to H2

1×k. Lemma 5.2.1 states that the projection onto H2
1×k

of the function ξ⋆S⋆Kλ0 is obtained as ξ⋆S(λ0)
⋆Kλ0 .

Lemma 5.2.1. Let S ∈ Σl×k. Therefore

p

(
ξ⋆S⋆(λ)

2πj(λ− λ0)

)

=
ξ⋆S(λ0)

⋆

2πj(λ− λ0)
= ξ⋆S(λ0)

⋆Kλ0 .

Proof. The function S∗(λ)/(λ − λ0) is analytic in C+ up to the point λ0 where it might
have a pole of degree one. In the decomposition

S∗(λ)

λ− λ0
=

(
S∗(λ)

(λ− λ0)
− S∗(λ0)

λ− λ0

)

+
S∗(λ0)

λ− λ0
,

the first term is a function in H2 while the second one is in H
2
. Recalling that such a

decomposition is unique completes the proof.

This lemma is particularly useful in the proof of the Nevanlinna-Pick interpolation
theorem as it is shown in the following section.

5.3 Vectorial formulation of the Nevanlinna-Pick in-

terpolation problem: generalised Pick matrix

We provide now an extended version of theorem 5.1.1 to the case where the interpolating
function is a matrix valued function and the interpolation conditions are composed by
a set of M directions and M vectors. This problem shares many properties with the
standard one already mentioned, the reason why we believe it should be reviewed in this
chapter. Nevertheless only a first glance of this problem and theory is provided, for more
advanced information, as it is done for the literature on Hilbert spaces, we refer to [31,
Chapters 1,2]. Let us provide now one of the vectorial formulations of the Nevanlinna-Pick
interpolation theorem.
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Theorem 5.3.1 (Left interpolation problem). Consider the left interpolation

S(αi)ξi =vi ∀i ∈ [1,M ], (5.8)

with α1, α2, · · · , αM complex values in C− the set of complex vectors v1, v2, · · · , vM ∈ Ck

and with the set of directions ξ1, ξ2, · · · , ξM ∈ Cl. There exist a function S ∈ Σk×l
satisfying eq. (5.8), if and only if ∆ � 0 where

∆ =
1

j



















ξ⋆1ξ1 − v⋆1v1
α1 − α1

ξ⋆2ξ1 − v⋆2v1
α1 − α2

· · · ξ⋆Mξ1 − v⋆Mv1
α1 − αM

ξ⋆1ξ2 − v⋆1v2
α2 − α1

ξ⋆2ξ2 − v⋆2v2
α2 − α2

· · · ξ⋆Mξ2 − v⋆Mv2
α2 − αM

...
...

. . .
...

ξ⋆1ξM − v⋆1vM
αM − α1

ξ⋆2ξM − v⋆2vM
αM − α2

· · · ξ⋆MξM − v⋆MvM
αM − αM



















. (5.9)

Proof of necessity. We only prove the necessity part here. Suppose there exists S ∈ Σk×l
verifying eq. (5.8). Define the Toeplitz operator,

T :
H2

1×l 7→ H2
k×1

h 7→ p(gS∗).

The operator T is contractive, as ‖gS⋆‖2 ≤ ‖g‖2 and the orthogonal projection on H2
1×k

also is. The Hermitian form D on H2
l×1 × H2

1×l defined by:

(h, g) ∈ (H2
l×1)

2 D(h, g) = 〈h, g〉 − 〈T (h), T (g)〉
is therefore positive semi-definite.

Let V be the finite dimensional vector subspace of dimension M of H2
l×1 spanned by

the vectorial functions ξ∗i .
√
2πKαi

(λ) that is ,

V = span{i = 1 . . .M, ξ∗i .
√
2πKαi

(λ)}.
We claim that the matrix ∆, is the Hermitian matrix representing D restricted to V 2.
To see this we compute Di,j, the element with index (i, j) in the matrix representing the
restriction of D in the canonical basis of V . We have,

Di,j = 2πD(ξjKαj
(λ), ξiKαi

(λ))

= 2π
(
〈ξ∗jKαj

, ξ∗iKαi
〉+ 〈P (ξ∗jKαj

S∗(λ)), P (ξ∗iKαi
)S∗(λ)〉

)

=
1

j

ξ∗j ξi

αi − αj∗
+ 2π〈ξ∗jS∗(αj)K(αj), ξ

∗
i S

∗(αi)K(αi)〉

=
1

j

ξ∗j ξi

αi − αj∗
+ 2π〈v∗jK(αj), v

∗
iK(αi)〉

=
1

j

ξ∗j ξi − v∗j vi

αi − αj∗
= ∆i,j.
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We are now disposed to argue towards the parametrisation of the set ANR with the aid
of theorem 5.3.1.

5.4 Parametrisation of ANR

We deal in this section with functions that associates a M ×M matrix to a polynomial
P . Particularly we have the function ∆(P ) that associates positive definite matrices to
positive polynomials. This pleads in flavours of defining now the set of positive definite
Hermitian matrices

Definition 5.4.1 (Positive semi-definite Hermitian matrices).

H
N
+ =

{
S ∈ H

N | S � 0
}
.

Furthermore we redefine the Pick matrix in eq. (5.2) as a matrix function

∆ : P
2N
+ −→ H

M
+ .

We can now parametrise the set of admissible polynomials P by means of the Pick matrix
∆(P ) associated to the interpolation problem in eq. (5.3). let us apply theorem 5.1.1
to determine the existence of a function b ∈ Σ satisfying eq. (5.3). Thus by taking in
eq. (5.2) the interpolation values γi defined as

γi =
L22(αi)

uP (αi)
∀i ∈ [1,M ],

we obtain the matrix

∆(P ) =































1− L22(α1)

uP (α1)

L22(α1)

uP (α1)

α1 − α1

1− L22(α1)

uP (α1)

L22(α2)

uP (α2)

α1 − α2

· · ·
1− L22(α1)

uP (α1)

L22(αM)

uP (αM)

α1 − αM

1− L22(α2)

uP (α2)

L22(α1)

uP (α1)

α2 − α1

1− L22(α2)

uP (α2)

L22(α2)

uP (α2)

α2 − α2

· · ·
1− L22(α2)

uP (α2)

L22(αM)

uP (αM)

α2 − αM

...
...

. . .
...

1− L22(αM)

uP (αM)

L22(α1)

uP (α1)

αM − α1

1− L22(αM)

uP (αM)

L22(α2)

uP (α2)

αM − α2

· · ·
1− L22(αM)

uP (αM)

L22(αM)

uP (αM)

αM − αM































.

Note that, as an element of the space HM , we can apply any change of basis to the matrix
∆. Consider then the transition matrix T

T =








uP (α1) 0 · · · 0
0 uP (α2) · · · 0
...

...
. . .

...
0 0 · · · uP (αM)







.
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The matrix T is invertible as the function uP , being of minimum phase, can not vanish at
the points αi. After applying the change of basis, the matrix T ⋆∆(P )T is positive if and
only if the original matrix ∆(P ) is positive. Therefore we have the transformed matrix

T ⋆∆(P )T = U(P )−▲,
where

U(P ) =
1

j























uP (α1)uP (α1)

α1 − α1

uP (α1)uP (α2)

α1 − α2

· · · uP (α1)uP (αM)

α1 − αM

uP (α2)uP (α1)

α2 − α1

uP (α2)uP (α2)

α2 − α2

· · · uP (α2)uP (αM)

α2 − αM

...
...

. . .
...

uP (αM)uP (α1)

αM − α1

uP (αM)uP (α2)

αM − α2

· · · uP (αM)uP (αM)

αM − αM























, (5.10)

and

▲ =
1

j























L22(α1)L22(α1)

α1 − α1

L22(α1)L22(α2)

α1 − α2

· · · L22(α1)L22(αM)

α1 − αM

L22(α2)L22(α1)

α2 − α1

L22(α2)L22(α2)

α2 − α2

· · · L22(α2)L22(αM)

α2 − αM

...
...

. . .
...

L22(αM)L22(α1)

αM − α1

L22(αM)L22(α2)

αM − α2

· · · L22(αM)L22(αM)

αM − αM























. (5.11)

Note that only the matrixU(P ) depends on the polynomial P while the matrix ▲ depends
only on the values of the reflection coefficient of the load at port 2 at the transmission
zeros αi. This decomposition of the Pick matrix in U(P ) and ▲ provides us with an
elegant characterisation of the set admissible polynomials

Theorem 5.4.1 (Admissibility). The polynomial P ∈ P2N
+ belong to the set of admissible

polynomials ANR if and only if

U(P ) �▲. (5.12)

This parametrisation is equivalent to the parametrisation of ANR obtained in chapter 6
as we compare a function of P with a fix matrix ▲ which is imposed by the load. Indeed
note the similarity between theorem 5.4.1 and theorem 4.6.1. Particularly, taking M = 1
we have

uP (α1)uP (α1)

−2ℑα1

� L22(α1)L22(α1)

−2ℑα1

,
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therefore

|uP (α1)|2 ≥ |L22(α1)|2,

what correspond to the result obtained in eq. (4.20).

We can now express some of the results obtained in chapter 4 in terms of the matrix
U(P ). By corollary 4.3.1, the set of polynomials P ∈ P2N

+ such that U(P ) � ▲ is a
convex set. Additionally, the subspace ∂ANR ⊂ ANR can be characterised as the positive
polynomials P such that U(P ) ≻= ▲, namely the matrix U(P )−▲ is positive semi-definite
and singular.

Definition 5.4.2 (Boundary of admissibility). The polynomial P ∈ ANR belong to ∂ANR
if and only if

U(P ) ≻= ▲.

Note this definition constitutes a generalisation of theorem 4.6.2. Similarly, we are
now in measure to provide a more concise formulation of theorem 4.4.2 by means of the
previous definition and the matrices U(P ) and ▲ which characterise the optimal solution
to problem 4.4.1 with a matrix inequality

Theorem 5.4.2 (Optimality). If Popt ∈ ANR is the optimal solution to problem 4.4.1, and
eq. (4.16) is not binding, then U(P ) ≻= ▲.

Also note the degree of the function b ∈ Σ solution to the interpolation problem in
eq. (5.3) is linked to the rank of the Pick matrix in eq. (5.2) in the sense that if U(P ) � ▲
then there exist a function b ∈ Σ of degree at most the rank of the matrix U(P ) − ▲
verifying eq. (5.3).

Similarly, if we consider the function ρ = b · uP , where b is an interpolant to eq. (5.2)
of minimum degree, this function satisfies the interpolation conditions ρ(αi) = L22(αi)
with 1 ≤ i ≤M and also deg(ρ) = deg(uP ) + rank(U(P )−▲). This allows us to state a
more precise version of lemma 4.3.1

Lemma 5.4.1. Let P ∈ ANR and ✗ = rank(U(P )−▲). There exists a function ρ ∈ FN+✗

such that

|ρ(ω)|2 ≤ P (ω)

P (ω) +R(ω)
∀ω ∈ R.

We introduce next a vectorial version of the Nevanlinna-Pick interpolation problem as
it is required to prove a crucial property of the matrix U(P ).

5.4.1 Concavity of the matrix function U(P )

This section is devoted to study a remarkable property of the matrix function ∆(P ) which
is of vital importance for the numeric solution of problem 4.4.1 in chapter 7. We are
referring to the concavity property. Note the relaxation version of the matching problem
formulated in problem 4.4.1 is convex thanks to the convexity of the admissible set of
polynomials ANR . Moreover the convexity of such set is demonstrated in corollary 4.3.1 as
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a consequence of the concavity of the function UP (λ) at a point λ ∈ C with respect to
polynomial P (shown in lemma 4.3.2).

In this chapter we characterise the set ANR such that P ∈ ANR if and only if U(P ) � ▲.
This characterisation is particularly interesting because of the properties of the matrix
function U(P ). In particular, we use now again lemma 4.3.2 to prove the concavity of
U(P ) with respect to P , namely the main theorem of this chapter

Theorem 5.4.3 (Concavity of U(P )). The matrix function U(P ) defined in eq. (5.10)
is concave in the matrix sense. In other words it satisfies

U(κP1 + (1− κ)P2) � κU(P1) + (1− κ)U(P2) ∀P1, P2 ∈ P
2N
+ .

Proof. We shall prove now that for every P1, P2 ∈ P2N
+ and κ ∈ [0, 1] we have

U(P3) � κU(P1) + (1− κ)U(P2), (5.13)

where P3 = κP1+(1−κ)P2. Equivalently we prove the positivity of the matrix Λ defined
as

Λ = U(P3)− κU(P1)− (1− κ)U(P2).

Once again, we apply a particular change of basis to the matrix Λ. This time we use the
transition matrix

T3 =













1

uP3(α1)
0 · · · 0

0
1

uP3(α2)
· · · 0

...
...

. . .
...

0 0 · · · 1

uP3(αM)













.

Since the function uP is of minimum phase we have uP3(αi) 6= 0 for all i ∈ [1,M ], therefore
T3 is invertible. Also note that when computing the matrix T ⋆3ΛT3 the element (i, j) of
the matrix Λ is divided by uP3(αi)uP3(αj). Thus we have for all i, j ∈ [1,M ]

[T ⋆3ΛT3]i,j =
1

j(αi − αj)

(

1− κ
uP1(αi)uP1(αj)

uP3(αi)uP3(αj)
− (1− κ)

uP2(αi)uP2(αj)

uP3(αi)uP3(αj)

)

. (5.14)

Consider the column function F

F (λ) =
[ √

κ
uP1

(λ)

uP3
(λ)

√
1− κ

uP2
(λ)

uP3
(λ)

]
T .

First we show that F ∈ Σ2. We have

F ⋆(ω)F (ω) =
κ|uP1(ω)|2 + (1− κ)|uP2(ω)|2

|uP3(ω)|2
∀ω ∈ R

=
κ
(

P1(ω)
P1(ω)+R(ω)

)

+ (1− κ)
(

P2(ω)
P2(ω)+R(ω)

)

(
P3(ω)

P3(ω)+R(ω)

) ∀ω ∈ R

=
κUω(P1) + (1− κ)Uω(P2)

Uω(P3)
∀ω ∈ R.
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Consider now the function Uω : P −→ |uP (ω)|2. This function Uω(P ) was introduced in
the proof of lemma 4.3.2. Moreover by lemma 4.3.2 we have

Uω(P3) ≥ κUω(P1) + (1− κ)Uω(P2).

Hence F (ω)⋆F (ω) ≤ 0 for all ω ∈ R, concluding by the maximum modulus theorem that
F ∈ Σ2. Furthermore the function F satisfies the right interpolation condition

F (αi)ξi = vi ∀i ∈ [1,M ],

with ξi = 1 for all i ∈ [1,M ] and

vi =

[ √
κ
uP1(αi)
uP3(αi)

√
1− κ

uP2(αi)
uP3(αi)

]

T .

Therefore by eq. (5.9) we have ∆ � 0 where

∆ =
1

j



















ξ⋆1ξ1 − v⋆1v1
α1 − α1

ξ⋆2ξ1 − v⋆2v1
α1 − α2

· · · ξ⋆Mξ1 − v⋆Mv1
α1 − αM

ξ⋆1ξ2 − v⋆1v2
α2 − α1

ξ⋆2ξ2 − v⋆2v2
α2 − α2

· · · ξ⋆Mξ2 − v⋆Mv2
α2 − αM

...
...

. . .
...

ξ⋆1ξM − v⋆1vM
αM − α1

ξ⋆2ξM − v⋆2vM
αM − α2

· · · ξ⋆MξM − v⋆MvM
αM − αM



















.

Setting ξi = 1 and introducing the expression for vi for all i we obtain

[∆]i,j =
1

j(αi − αj)

(

1− κ
uP1(αi)uP1(αj)

uP3(αi)uP3(αj)
− (1− κ)

uP2(αi)uP2(αj)

uP3(αi)uP3(αj)

)

,

which coincides with eq. (5.14). Thus ∆ = T ⋆3ΛT3 implying T ⋆3ΛT3 � 0. Hence eq. (5.13)
follows.

5.5 Remarks about the positivity of the Pick matrix

Before this chapter concludes, we must point out that only the proof of necessity of
theorem 5.3.1 is provided here as it is essential for the general parametrisation of the
set ANR . Nevertheless the positivity of the matrix in eq. (5.9) is indeed necessary and
sufficient to guarantee that there exist a function S ∈ Σk×l satisfying eq. (5.8).

Furthermore, the equivalent right interpolation problem can be considered if ξi and vi
are row vectors. An exhaustive revision of matricial interpolation is available in [32] or
[33], for instance, where the reader will find the remarkable theory behind the Nevanlinna-
Pick interpolation problem without any lack of detail.
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5.6 Remarkable contributions

To sum up, in this chapter we have introduce a characterisation of the set of admissible
polynomials in terms of the matrix inequality provided by eq. (5.12). Additionally we
have stated and proved the concavity property of U(P ) in the matrix sense which is
given in theorem 5.4.3. This property allows in chapters 7 to 9 for the implementation
of eq. (5.12) by means of barrier functions and therefore, for the numerical resolution of
problem 4.4.1.
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Chapter 6. Solution to the problem of matching a rational load of degree one with a
transmission zero on the boundary

We have provided in chapter 4 a convex relaxation of the general matching problem
commonly studied in electrical engineering. To formulate the mentioned problem, we
have considered an arbitrary rational load of degree M . However, in the development
of the theory presented in chapter 4 we have considered a load L with only a simple
transmission zero α ∈ C−. The reason comes from the fact that when a transmission
zero of the load approaches the boundary of the analyticity domain, previous formulas
degenerates to an indetermination. Nevertheless, a limiting case of problem 4.6.1 where
α → R can be considered.

In this chapter, we consider the case of a load of degree one having a transmission
zero on the boundary of the analyticity domain, namely the real line, and possibly at
infinity. The result obtained in this case is particularly enlightening due to the simplicity
of the associated expressions and also because the problem of matching with a load of
degree 1 has some additional properties, which provide sufficient motivation for said case
of degree 1 to be studied separately. In this case the optimal bound is exactly attained
with a matching filter of fixed McMillan degree. Furthermore, this particular case is of
greater importance due to the fact that the loads that are commonly faced in electronics
have a transmission zero at infinite or sufficiently high frequencies.

Finally, some applications of the theory already developed are provided where the
function to be matched is represented by the reflection coefficient of an antenna in a
limited frequency band. In those examples, real data coming from different antennas is
considered obtaining sharp bounds on the best attainable matching level.

6.1 The load

In this chapter we consider, exceptionally, a load that differs from the one used in the rest
of the thesis. This load is represented by the scattering matrix L̃

L̃(λ) =
1

q̃L(λ)

(
p̃⋆L(λ) −r̃⋆L(λ)
r̃L(λ) p̃L(λ)

)

,

with q̃L the stable polynomial that satisfies q̃Lq̃
⋆
L = p̃Lp̃

⋆
L + r̃Lr̃

⋆
L. We assume the load L̃

has McMillan degree 1, namely p̃L, r̃L, q̃L ∈ P1. Additionally the single root of r̃L is on
the real line. We define

r̃L(λ) = (αλ− 1) α ∈ R.

Note the polynomial r̃L has one single zero at the frequency λ = 1
α
. Additionally, the

transmission polynomial R̃L of the matrix L̃ is computed as

R̃L(λ) = r̃L(λ)r̃
⋆
L(λ) = r̃L(λ)

2 = (αλ− 1)2 .

With this definition we include as well the case of a transmission zero at infinity. Indeed
note that if α → 0 then the roots of polynomial R̃L(λ) tends to infinity, obtaining at the
limit the positive polynomial R̃L(λ) = 1. Eventually, we consider the change of variable
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λ = τ−1. This change of variable sends infinite to the origin and the origin to infinity.

L(τ) =
1

τ q̃L(τ−1)

(
τ p̃⋆L(τ

−1) −τ r̃⋆L(τ−1)
τ r̃L(τ

−1) τ p̃L(τ
−1)

)

=
1

qL(τ)

(
p⋆L(τ) −r⋆L(τ)
rL(τ) pL(τ)

)

.

Note transmission zeros of the matrix L(τ) happens at a finite frequency α ∈ R as the
transmission polynomials becomes

RL(τ) = τ 2
(α

τ
− 1
)2

= (τ − α)2 α ∈ R.

6.2 The feasible set

The first requirement here is a characterisation of the set of feasible functions in the case
of a load L with a transmission zero on the real line. In appendix A we have provided a
generalised version of Fano-Youla’s characterisation of the global reflection when the load
present a transmission zero α ∈ R. Let us now restate here theorem 6.2.1

Theorem 6.2.1 (Generalised de-embedding conditions). Consider S22 ∈ Σ and let L be
the 2 × 2 lossless scattering matrix with simple transmission zeros α1, α2, . . . , αMr ∈ R

and αMr+1, . . . , αM ∈ C−. The matrix L is de-chainable from S22 if and only if at each
transmission zero αi, the following condition is satisfied

S22(αi) = L22(αi) i ∈ [1,M ],

angS22(αi) ≤ angL22(αi) i ∈ [1,Mr].

This characterization allows for the load to present any number of transmission zeros
on the boundary of the analyticity domain, namely R. However an additional condition is
imposed at each transmission zero αi ∈ R. This condition bears on the angular derivatives
of the system reflection angS22(αi) which are defined as

angS22(αi) = j
d

dλ
log S22(λ) λ = αi. (6.1)

Remark 6.2.1. Note that eq. (6.1) is not well defined when αi → ∞. As transmission
zeros at infinity are of interest in this section, to overcome this issue we apply here the
change of variable λ → τ−1 introduced before, allowing to handle a possible transmission
zero at λ = ∞. We assume then that transmission zeros cannot happen at λ = 0.

We apply now theorem 6.2.1 to the load L(τ) considered in this section. This load has
one single transmission zero at α ∈ R. Hence we obtain the following necessary conditions
over the reflection S22 of the global system

S22(α) = L22(α) (6.2)

j
d

dτ
log S22(τ) ≤ j

d

dτ
logL22(τ) τ = α. (6.3)

Let us now provide a modified version of the feasible set for the load of degree 1 L(τ).
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Definition 6.2.1 (Feasible functions for a load with a boundary tranmission zero). We
denote by G the set of functions S22 ∈ Σ satisfying eqs. (6.2) and (6.3).

G =

{

S22 ∈ Σ | S22(α) = K0;

[

j
d

dτ
log S22(τ)

]

τ=α

≤ K1

}

,

where K0 and K1 are defined as follows:

K0 = L22(α)

K1 =

[

j
d

dτ
logL22(τ)

]

τ=α

.

6.3 The matching problem

With this new set of feasible functions, the general problem of matching still without
degree restriction becomes

Problem 6.3.1 (General matching problem of degree 1 with transmission zeros on the
boundary.).

Find: lopt = min
S22∈Σ

max
τ∈I

|S22(τ)|,

Such that: |S22(λ)| ≥ γ ∀λ ∈ J, (6.4)

S22(α) = K0, (6.5)
[

j
d

dτ
log S22(τ)

]

τ=α

≤ K1. (6.6)

It should be noted that the function S22 can be multiplied by any uni-modular value
ǫ without modifying neither the criterium of problem 6.3.1 nor the constrains eq. (6.4) or
eq. (6.6) since

d

dλ
log (ǫS22(τ)) =

d

dλ
[log S22(τ) + log(ǫ)] =

d

dλ
log S22(τ).

Therefore eq. (6.5) can be replaced by the fact that α is also a transmission zero of S22,
namely |S22(α)| = 1. Let us now redefine as well the set of rational Schur function ΣNR

that are feasible for the load L. Note the restriction of S22 to the set ΣNR allows us to easily
impose the transmission zeros of the system S by the choice of the positive polynomial
R ∈ P2N

+ . Then we can now drop eq. (6.5) with the assumption that R(α) = 0 obtaining
the following definition for the set of rational functions GNR .

Definition 6.3.1 (Feasible rational functions). We denote by GNR the set of rational
functions S22 ∈ ΣNR satisfying eq. (6.3)

G
N
R =

{

S22 ∈ Σ
N
R , |S22(α)| = 1 :

[

j
d

dτ
log S22(τ)

]

τ=α

≤
[

j
d

dτ
logL22(τ)

]

τ=α

}

,

where R ∈ P2N
+ satisfies R(α) = 0.
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Next, we introduce a special version of problem 4.6.1 where the transmission zero α
is on the real axis. The difference from the original formulation of problem 4.6.1 comes
from the fact that the redefined feasible set GNR in definition 6.2.1 is used. Similarly to the
previous case, we denote by I the set in which the reflection level is minimized (passband)
and by J the set where rejection constraints are imposed (stop-band).

Problem 6.3.2 (Matching problem with transmission zeros on the boundary.).

Find: lopt = min
S22∈GN

R

max
τ∈I

|S22(τ)|,

Such that: |S22| ≥ γ ∀λ ∈ J. (6.7)

The most important difference of the problem of matching with a zero of transmission
in the real axis with respect to the original problem where all the zeros of transmission
are inside the domain of analyticity is found in the fact that the relaxation of the set of
feasible functions is not necessary. Indeed, as shown below, the set of feasible functions GNR

allows to obtain a formulation of the previous problem in terms of a positive polynomial
P only.

6.4 Characterisation of GNR

In this section, as it has been done for the classical synthesis problem and for the matching
problem with transmission zeros inside the analyticity domain, we express condition on
the angular derivative of S22 in terms of the modulus square of the function S22 along the
real line. First we express from eq. (A.2)

angS22(αi) =
1

2π

∫

R

log |SO22(τ)|2
(τ − αi)2

dτ + 2
N∑

n=1

ℑ
(

1

βn − αi

)

.

We can now state the characterisation of the functions S22 ∈ GNR as a function of the
modulus square |S22(τ)|2 for τ ∈ R and the position of the hypothetical zeros of S22 inside
the analyticity domain.

Definition 6.4.1 (Characterisation of GNR ). Given the load L(τ) introduced in this sec-
tion with a transmission zero α ∈ R, and let R ∈ P2N

+ such that R(α) = 0. We have
S22 ∈ GNR if and only if S22(ω) is well defined at the point α and additionally

1

2π

∫

R

log (|S22(τ)|−2)

(x− α)2
dx+ 2

∑

k

ℑτk
|α− τk|2

≤
[

j
d

dx
logL22(τ)

]

τ=α

,

where the values τk correspond to the zeros of S22(τ) inside the analyticity domain C−.

This characterization of the set of feasible functions GNR provides us with the necessary
tool to derive the property we were looking for at the beginning of this section, which
motivates the fact of considering this particular case of the matching problem separately.

6.5 Minimum phase property

We provide next the theorem stating that the optimal function S22 solution to prob-
lem 6.3.2 is of minimal phase. It is important to remember that in previous sections
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when the transmission zeros of the load were inside the analytic domain we have obtained
similar results with respect to the minimum phase property of the function S22 under the
assumption that the condition of Selectivity was not active. However, it is impossible to
determine a priori whether the aforementioned selectivity condition will be active or not
without having to solve the problem.

In this case, the result obtained does not depend on the selectivity condition. The
function S22 solution to problem 6.3.2 will be of minimum phase regardless of whether the
selectivity condition is saturated or not, obtaining a true characterization of the optimal
solution.

Lemma 6.5.1 (Minimum phase of popt). Denote by Sopt22 ∈ GNR the optimal solution to
problem 6.3.2. This solution is of minimum phase, therefore it can be written in the form

Sopt22 =
popt
q(popt)

,

where the polynomial p has no roots in C− and q(popt) is the stable polynomial satisfying
qq⋆ = poptp

⋆
opt +R.

Proof. To prove this statement assume p(τk) = 0 for some τk ∈ C−. Then we have

2
∑

k

ℑτk
|τ − τk|2

= C > 0.

Now multiply p by the inverse Blaschke b−1(τ) such that the roots of p in C− are flipped
to C+. Note that b⋆ = b−1, therefore the function pp⋆ is not modified

p̂p̂⋆ = (p · b−1)(p · b−1)⋆ = (p · b−1)(p⋆ · b) = pp⋆.

Therefore we have |Sopt22 (τ)| = |Ŝ22(τ)| for all τ ∈ R where

Ŝ22 =
p̂

q(p̂)
.

We consider now three possible scenarios, note that when the solution Sopt22 is obtained, at
least one of the constraints in problem 6.3.2 must be binding, either eq. (6.7) or eq. (6.6)

1. Only eq. (6.6) is binding. In this case the function Ŝ22 provides the same criterium
as Sopt22 and none of the constraints are saturated

Ŝ22 > γ ∀τ ∈ J,
[

j
d

dτ
log S22(τ)

]

τ=α

≤ K1 − C.

Thus we can multiply Ŝ22 by a positive constant improving the criterium in prob-
lem 6.3.2.

2. Only eq. (6.7) is binding. In this case the solution is only constrained by the selec-
tivity requirements. Therefore the solution is the well-known quasi-elliptic response
and Sopt22 has all roots in R.
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3. Both eqs. (6.6) and (6.7) are binding. This is a particular case since Ŝ22 still saturates
eq. (6.7). However if the value of the criterium provided by Ŝ22, where only eq. (6.7)
is active, can not be improved, then we are in the previous case where the solution is
the quasi-elliptic response. On the other hand, if the criterium can be improved, we
have a better solution that contradicts the assumption of the optimality of Sopt22 .

Lemma 6.5.1 allows to restrict the class of polynomial on which the solution of prob-
lem 6.3.2 is sought, to the minimum phase functions S22 ∈ GNR , were a limiting case of
Sopt22 having only real roots may occur if the quasi-elliptic solution is obtained.

6.6 An exact convex relaxation

Problem 6.3.2 is not convex since the spectral factorization of the positive polynomial qq⋆

is needed. Nevertheless, in a similar form as it is done for the transmission zeros inside
the analyticity domain in the previous section by using the Poisson integral, this time we
can use Hilbert Transform to express eq. (6.6) as a function of the modulus |S22|2

|S22(τ)|2 =
p(τ)p⋆(τ)

p(τ)p⋆(τ) +R(τ)
∀τ ∈ R

Furthermore, due to the minimum phase property of S22, we can apply the change of
variable P (τ) = p(τ)p⋆(τ) where P ∈ P2N

+ . Therefore problem 6.3.2 can then be restated
as a function of the positive polynomial P as:

Problem 6.6.1 (Convex matching problem with boundary tranmission zeros.).

Find: Lopt = min
P∈P2N

+

max
τ∈I

P (τ)

R(τ)
,

Subject to: P (τ) ≥ Γ ·R(τ) τ ∈ J,

f(P ) ≤ K1. (6.8)

where the function f(P ) is now defined as

f(P ) =

∫

R

log

(

1 +
R(x)

P (x)

)

(x− α)−2 dx, (6.9)

and K1 is computed as

K1 = 2πj

[
d

dτ
logL22(τ)

]

τ=α

.

Remark 6.6.1. Note that in problem 6.6.1 the condition P (α) 6= 0 is also required to
ensure the feasibility of the obtained reflection coefficient S22. Nevertheless it is important
to remark that if the polynomial P in problem 6.6.1 tends to a polynomial PS such that
PS(α) = 0 then the integral in eq. (6.9) tends to infinity which implies that such polyno-
mial P is not admissible for a finite value of K1. Therefore we can relax this additional
constraint.

We obtain an alternative formulation of problem 4.6.1 allowing for the α ∈ R. Fur-
thermore, theorems 4.3.2, 4.4.1 and 4.5.1, lemma 4.4.1, and corollary 4.3.1 still holds.
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6.6.1 Different kinds of solutions

Note that, in problem 6.6.1, two different kinds of solutions can be distinguished depending
on which constraints are active:

• Quasi-elliptic response: if eq. (6.8) is not active, the solution Popt solves a classical
filter synthesis problem. If popt is defined as poptp

∗
opt = Popt then popt is the extended-

Tchebychev polynomial of the interval I.

• Minimum-area responses : if eq. (6.8) is active, the solution realizes the best possible
matching level under the specified selectivity requirement.

6.7 Transmission zeros at infinity

As a particular case, note that if the transmission zero α occurs at the origin, the previous
formulation is still valid. Introducing α = 0 in eq. (6.9) we obtain

f(P ) =
1

2π

∫

R

log
(
|S22(τ)|2

)
τ−2dτ.

If we now undo the change of variable performed at the beginning of the section we have
τ = λ−1 and dτ = −λ−2dλ. Therefore eq. (6.9) becomes

f(P ) =
1

2π

∫

R

log
(

|S̃22(λ)|2
)

dλ,

representing the surface covered by the function log |S̃22(λ)|2 where S̃22(λ) = S22(λ
−1).

We obtain then a particular version of the classical synthesis problem where the maximum
area under the magnitude of the reflection coefficient of the global system (in a logarithmic
scale) is constrained.
.

This allows to easily derive Fano bounds introduced in [34] for a load of degree 1. If
we consider, for instance, an interval I = [−1, 1], the optimal function S̃22 is a function
that employees all the available area on the interval I with a constant reflection level on
that interval and zero everywhere else

|S̃22(τ)|2 =
{
Lopt τ ∈ I

0 τ /∈ I
.

Computing now the value Lopt such that eq. (6.9) is maximum

f(P ) = − 1

2π

∫

R

log
(

|S̃22(λ)|2
)

dλ = K1

= − 1

2π

∫ 1

−1

log (Lopt) dλ = K1

= − 1

π
log (Lopt) = K1.

Thus

Lopt = e−πK1 .

We obtain the bound known in the literature of the matching problem and attainable
with a function S22 of infinite degree.
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6.8 Sharpness of the provided bounds

We obtain in this chapter the optimal solution to problem 4.1.1, namely the provided
bounds are sharp, in two different cases.

1. The case of a load of degree 1 with a transmission zero on the frequency axis
(possible at infinity) with any possible constraint on the rejection with the stop-
band J imposed by eq. (4.16).

2. The case of a load of degree 1 with a transmission zero inside the complex plane
and no selectivity requirement.

Note that in practice, these results are suitable for many antennas since they often feature
one single resonance, particularly small antennas.

6.9 Examples

We present now some practical results concerning the broadband matching of some anten-
nas whose reflection coefficient is modelled as a rational function of degree odd. Further-
more, we illustrate the procedure to follow from the measurement of the load reflection
to the physical design of the 3D filter structure which implements the optimal response
in terms of matching. In the example provided in this chapter, the practical design of the
filter is done via the classical coupling matrix approach [35] using the full wave simulation
software Ansoft Electronic Desktop. The target coupling matrix (MT ) is obtained from
the scattering matrix F as discussed in section 2.11. The algorithm to follow in the case
of a load of degree odd remains

1. Computation of the Darlington equivalent of the load

(a) Perform a rational approximation of the reflection coefficient L11 of the load
within the passband of interest. In other words, find the polynomials pL, qL of
degree one with qL stable such that

L11(ω) ≈
p⋆L(ω)

qL(ω)
∀ω ∈ I.

(b) Obtain the Darlington equivalent L as the two port extension of the function
pL/qL, namely

L(ω) =

(
p⋆L(ω) −r⋆(ω)
r(ω) pL(ω)

)

, (6.10)

such that rLr
⋆
L = qLq

⋆
L − pLp

⋆
L.

(c) The single root of the positive polynomial RL = rLr
⋆
L in the lower half plane

(C−) provides us with the point α1 where the interpolation condition on the
global system is imposed.

S22(α1) = L22(α1) α1 ∈ C
+ RL(α1) = 0. (6.11)
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2. Design of the global system

(a) Pick a degree N for the global system and fix the transmission polynomial of
the matching filter RF ∈ P

2N−2
+ . Once the polynomial RF is fixed we have

R = RL · RF . Finally problem 6.6.1, possibly with some rejection constraints
P (τ) ≥ ΓR(τ) if additional filtering constraints are required within a given
stop-band J.

(b) Factorise the polynomial P = pp⋆ such that all roots in the upper half plane
(C+) are assigned to p. In other words, p is a stable (Hurwitz) polynomial.

(c) Ensure the interpolation condition in eq. (6.11). To satisfy this condition the
function S22 is constructed as

S22(ω) =
ǫp(ω)

q(ω)

with |ǫ| = 1 and q the stable polynomial which satisfies qq⋆ + pp⋆ = R. Note
that we also have R(α1) = 0, therefore since α1 ∈ R we have |S22(α1)| =
|L22(α1)| = 1. Thus the constant ǫ is computed such that eq. (6.11) is satisfied
as

ǫ =
q(α1)

p(α1)
L22(α1)

(d) 2-port extension of the global system. Note that, similarly to what was done
for the load, only the S22 coefficient of the global system has been synthesized.
Nevertheless we can again use the Darlington equivalent to extend the reflection
coefficient S22 to the 2× 2 matrix S

S =
1

q

(
p⋆ −ǫr⋆
r ǫp

)

. (6.12)

3. Computation of the matching filter

(a) De-embedding of the load. Equation (3.13) allows us to obtain the rational
model of the matching filter. Introducing eqs. (6.10) and (6.12) in eq. (3.13)
we have

F22 =

pL
qL

− ǫp
q

ǫ
pLp

⋆
L
+RL

qLqL
− ǫ

pp⋆
L

qqL

.

Using now the relation qLq
⋆
L = pLp

⋆
L + rLr

⋆
L we obtain

F22 =
ǫpLq − pqL
q⋆Lq − p⋆Lp

.

Therefore we have

pF = ǫpLq − pqL,

qF = q⋆Lq − p⋆Lp.

Finally we also perform the 2-port extension of the function F22 as

F =
1

qF

(
p⋆F −r⋆F
rF pF

)

.
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6.10. Single band matching and example of matching filter design.

(b) Extraction of the coupling matrix corresponding to the coupled resonator
model of the matching filter following the procedure proposed in section 2.11;

(c) Design of the 3D structure of the coupled resonators matching filters with the
aid of an electromagnetic simulation software.

6.10 Single band matching and example of matching

filter design.

We solve first the matching problem considering a microstrip patch antenna for a GNSS
(Global Navigation Satellite System) receiver. The specifications are the coverage of the
band L1 (from 1.55GHz to 1.6GHz). The reflection of the antenna to be matched along
with the passband interval are shown in fig. 6.1.
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Figure 6.1: Load of degree 1

We fix a transmission polynomial for the global filter with no finite transmission
zeros RF = 1 and then solve optimaly the matching problem for a matching network of
McMillan degree K from 1 to 13. We can see in fig. 6.2 the level of optimal matching,
which coincides with the lower bound since the load is of degree 1, depending on the
degree of the matching filter K. We can see how this limit tends to a value around −14
dB when the value of K tends to infinity.

As an example we have selected the value K = 3 to implement the filter that
provides the optimal solution in terms of matching. First we show in fig. 6.3 the
optimal reflection of the global system S22 with K = 3. We obtain an optimal
reflection level ψopt = −11.47dB. In this example it is interesting to note, on the one
hand, that the global system is of degree N = 4, namely the degree of the matching
filter K = 3 plus the antenna degree M = 1; On the other hand, we can check
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Figure 6.2: Lower bound for the best matching level in band GPS L1

the optimality condition obtained in the previous chapter in terms of the number of
times that the optimum matching level is reached within the band, in particular N+1 = 5.

We provide, with an illustrating purpose, the location of the roots and poles of the
relevant functions in the complex plane. We indicate in fig. 6.4a the poles and zeros of
the function S22 which is plotted in fig. 6.3. Remember that the degree of the global
system is obtained as N = K + 1 = 4. It should be noted how all zeros of both p and
q belong to C+, namely both are Hurwitz polynomials. This fact indicates that the
function S22 is indeed of minimum phase as stated by lemma 6.5.1.

After de-embedding the Darlington equivalent of the load from the port 2 of the global
system, the rational function F22 = pF

qF
is obtained. Note that we have also indicated in

fig. 6.4b the poles and zeros of the function F22. Note that after the de-embedding of the
load, a drop in degree is produced, leading to the function F22 of degree K = 3. This
rational function F22 allow us to compute the Belevitch model of the matching filter. We
also plot in fig. 6.3 the scattering parameters of the matching filter, namely the functions
F22 and F21 that provide the aforementioned global reflection.

6.10.1 Effect of the filter transmission zeros

It can be remarked that the algorithm proposed in this thesis does not tells anything
about the optimal choice of the filter transmission polynomial RF . Indeed, in this work
we assume that the function F22 belong to the set ΣKRF

, what implies that the transmission
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Figure 6.3: Matching result with a filter of degree K = 3 in band GPS L1
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Figure 6.4: Location of poles and zeros in the complex plane.
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polynomial RF is fixed and not part of the optimisation. Therefore the task of deciding
which is the right choice for the said transmission polynomial RF falls on the user.

Remark 6.10.1. Note, in fact, that only the roots of the polynomial RF = rF r
⋆
F need

to be fixed by the user. Note that, since the leading terms of the polynomial p are q are
computed in the optimisation procedure, adding a multiplicative constant to the polynomial
RF has no effect as the algorithm would provide the polynomials p, q multiplied by the
corresponding factor. Therefore the multiplicative constant added to the polynomial RF is
simplified.

Fixing the transmission zeros of the filter is not new in filter design since in most of
the classic design techniques which are commonly used in this field, it is the designer
who is in charge of selecting the appropriate position for the filter transmission zeros.
In the previous example, we have choose to place all transmission zeros of the filter at
infinity, therefore we have fixed RF = 1. Nevertheless we should also investigate the
disadvantages or benefits obtained in terms of matching when those transmission zeros
are set at different positions.

1. Position A. We consider first the case of one single transmission zero positioned
next to the passband at the frequency of 1.54GHz, namely rAF = λ − 1.54 · 109.
With this choice for the polynomial rF we obtain the result shown in fig. 6.5 where
the transmission and reflection of both the global system and the matching filter
are provided. It should be noted that in this case the optimal reflection level is
improved reaching ψAopt = −11.76dB.

2. Position B. Next we investigate the effect of shifting this transmission zero toward
the interior of the complex plane. This time we take rBF = λ− (1.54 + 0.001j) · 109.
Note that this polynomial rF implies a non reciprocal matching filter as rF 6= r⋆F
which provides us with the response in fig. 6.6. The optimal reflection level in this
case is ψBopt = −11.63dB.

3. Position C. Finally we provide a third example illustrated in fig. 6.6 where two
transmission zeros have been symmetrically located at both edges of the passband
at the frequencies of 1.54GHz and 1.61GHz. Therefore we have rCF = (1 − 1.54 ·
109)(1− 1.61 · 109). In this case we obtain the best reflection level among the three
cases considered, namely ψCopt = −12.15dB.

We summarise in table 6.1 the optimal matching level ψopt obtained with each of the
choices made in this section for the position of the filter transmission zeros. It should
be noted that the original result obtained with rF = 1, namely ψopt = −11.47dB is only
slightly improved with the presence of transmission zeros at finite frequencies.

It can be noted that get the most benefit in terms of matching when a transmission
zero is placed at each side of the passband. This case coincides with the global response
providing the strongest rejection at both edges of the passband due to the presence of
such transmission zeros. We are therefore encouraged to explore further this configuration
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Figure 6.5: Matching result in case A by placing a transmission zero next to the passband
obtaining a reflection level ψAopt = −11.76dB.
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Figure 6.6: Matching result in case A by placing a transmission zero in the complex plane
reaching a reflection level ψBopt = −11.63dB.
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Figure 6.7: Matching result in case A by placing a pair of transmission zeros, one at each
side of the passband. The optimal reflection level is ψBopt = −12.15dB.

Case Transmission zeros position Optimal matching level
Ref. No finite t.z. ψopt = −11.47dB
A σ1 = 1.54 · 109 ψAopt = −11.76dB

B σ1 = (1.54 + 0.001j) · 109 ψBopt = −11.63dB

C σ1 = 1.54 · 109; σ2 = 1.61 · 109 ψCopt = −12.15dB

Table 6.1: Matching result obtained in each of the cases of study provided above
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with a matching filter having two finite transmission zeros. We choose two transmission
zeros σ1, σ2 symmetrically located around the passband centre fC = 1.575GHz such that

σ1 = fC − δ,

σ2 = fC + δ.

Let now compute, for different values of δ, the optimal reflection level ψopt(δ). In
fig. 6.8 we show the transducer gain, namely the parameter S21 of the global system for
each value of δ. We can see the displacement along the frequency axis of the transmission
zeros along with the different out-of-band rejection.

Furthermore we provide in fig. 6.9 the optimal global system reflection S22 which is
computed by the algorithm proposed in this work. We verify that the displacement along
the axis of the transmission zeros has indeed an influence on the optimal matching. The
chosen values of δ along with the correspondent value of ψopt(δ) are listed in table 6.2 and
plotted in fig. 6.10. We can see in fig. 6.10 that the minimum reflection level is obtained
around δ = 32.5 MHz while as long as the transmission zeros are shifted toward infinity,
this optimal level approaches the value ψopt = −11.47 dB obtained in the reference case
with no finite transmission zeros. We obtain therefore a minimum value around−12.21 dB
when two transmission zeros are placed at the frequencies

σ1 = 1.575GHz − 32.5MHz = 1.5425GHz,

σ2 = 1.575GHz + 32.5MHz = 1.6075GHz.

Remark 6.10.2. It must also be noted that, although the optimal reflection level does
depends on the position of the transmission zeros, the variation of this level in fig. 6.10
occurs within a range of less than 1 dB. This result helps to justify fixing the transmission
zeros of the matching filter in the matching problem under the reasoning that the obtained
optimal reflection level would not vary much if the polynomial rF is modified.

Nevertheless, the solution to the matching problem where the transmission zeros of
the matching filter are optimally positioned is still unknown. Note that this solution cor-
responds to problem 3.2.1 when the function F22 belong to the class of rational Schur
function of degree K (ΣK). This problem is stated as

Find: min
F22∈ΣK

max
ω∈I

|F22 ◦ L11(ω)|.

6.10.2 SIW filter

We have performed in section 6.10 a study of the theoretical limitations regarding the
matching of the load with the reflection shown in fig. 6.1 within the GPS band L1.
Before concluding the study of the previous load, we shall offer the reader an example of
matching filter synthesis with the aid of the information provided the proposed algorithm.

We consider again the solution to the matching problem where the matching filter is
set to have no finite transmission zeros, namely RF = 1. This solution has already been
illustrated in fig. 6.3 where the optimal response for the global system is plotted along
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Figure 6.8: Global transducer gain (S21). Different position of the transmission zeros
along the frequency axis according to the value of δ.
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Figure 6.9: Optimal global reflection (S22) attainable with each value of δ.
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δ (MHz) ψopt(δ) (dB)
27.5 -11.7836
30 -12.1663
32.5 -12.2071
35 -12.1513
37.5 -12.0747
40 -12.0015
50 -11.8006
60 -11.6967
70 -11.6371
80 -11.5999
90 -11.5749
100 -11.5574

Table 6.2: Values of ψopt(δ)
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Figure 6.10: Optimal reflection level as a function of the displacement of the transmission
zeros (δ).
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with the scattering parameters of the matching filter. In this example, since we have
RF = 1, the matching filter has no additional transmission zeros and can be implemented
by a coupled resonators network with an in-line topology.

The term in-line topology refers to a coupled resonator network as depicted in fig. 2.14
where only the coupling elements MS,1, Mi,i+1 and MK,L with i ∈ [1, K − 1] are non-zero.
Note that in this case the matching filter is of degree K = 3, therefore the filter response
can be implemented with a network of 3 resonators, each of them coupled to the previous
and the following one while the first and last are coupled to the input and output ports
respectively as represented in fig. 6.11.

S MS,1 res.
1

M1,2 res.
2

M2,3 res.
3

M3,L L

Figure 6.11: Structure of the in-line coupled resonators filter of order 3. Boxes represent
microwave resonators while the connecting lines denotes inter-resonators couplings.

This filter is realized in SIW (Substrate Integrated Waveguide) planar technology fed
with CPWG (Co-Planar WaveGuide) input and output lines as illustrated in fig. 6.12
by using the substrate Rogers RT/duroid 6010LM. The SIW structure consists on a
dielectric substrate with a bottom and top copper layers where resonant cavities are
formed with the aid of metallic post walls interconnecting the upper and lower metal
surfaces. The inter resonator couplings are implemented by properly sized openings
in the resonator walls which connect the adjacent cavities. We can also notice the
input/output feeding lines which provides a tunable input/output coupling by varying
the penetration inside the resonator.

The electromagnetic (EM) response provided by the structure in fig. 6.12 is computed
with the aid of the EM-simulation software Ansys HFSS [36]. In order to fit the EM
response to the desired transfer function, the width and length of the resonators, as

Figure 6.12: Designed SIW filter.
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well as the size of the inter-resonator windows and input-output feeding lines are adjusted.

In this example we obtain the target coupling matrix MT after performing the steps
from 1 to 3(b) in section 6.9

MT =









0 1.195 0 0 0
1.195 0 1.018 0 0

0 1.018 −0.007 0.7 0
0 0 0.7 −0.404 1.009
0 0 0 1.009 0









.

However before performing the design of the 3D structure, it should be noted that this
kind of filtering functions differs from the classical Tchebyshev responses in the sense that
they do not present all reflection zeros distributed on the frequency axis but inside the
complex plane. For this reason and in order to achieve a good agreement between the
circuital response and the EM response, the design has been assisted with the circuit -
extraction software PRESTO-HF which can be consulted in [37]. This software is used
to perform the rational approximation of the EM-simulated response FEM provided by
the structure in fig. 6.12 such that

FEM ≈
(
εp⋆EM −εr⋆EM
rEM pEM

)

.

This rational matrix allows us to compute a coupling matrix MEM representing the sim-
ulated response.

Remark 6.10.3. As discussed in remark 2.8.7, it is important to remember that the
matrix MEM associated to a given rational response is not unique. This not uniqueness of
the coupling matrix is an issue which has already been rigorously studied in the literature
of filter synthesis, for instance in [35]. In our case, we seek a matrix MEM which is
equivalent to the target coupling matrix MEM , or with the nomenclature commonly used
in the field of filter design, we choose the coupling matrix MEM with the same topology as
the matrix MT .

In order to optimise the 3D structure of the filter shown in fig. 6.12, we use a heuristic
procedure that compares the target coupling matrix MT to the matrix MEM extracted
from the EM response adjusting the physical dimensions in consequence. The goal is
to minimise the Frobenius norm ‖E‖ where the error matrix E is computed as E =
MT −MEM . Once the optimisation procedure concludes, we obtain the error

E =









0 −3.2 0 0.5 0
−3.2 −0.4 0.3 −0.3 0.5

0 0.3 −1.1 0.8 0
0.5 −0.3 0.8 −0.6 −2.1
0 0.5 0 −2.1 0









· 10−2.

It is important to remark that, in contrast with the traditional filter synthesis,
synthesising the right phase of F22 is a crucial point here in order to obtain a filter that
is matched at port 2 to the antenna. Nevertheless as the coupling matrix corresponding
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Figure 6.13: EM simulation of the matching filter and target response.

to the filter response has already been adjusted to fit the target matrix MT , the phase
of the EM simulated FEM

22 would only differ from the target F T
22 by a constant factor.

This factor, namely a constant phase shift, is approximated within the passband by a
transmission line. Therefore, a transmission line of 10.5mm has been required to adjust
the phase of S22.

Figure 6.13 shows the comparison between the S-parameters of the filter, obtained
in one case from the EM simulation (FEM

22 and FEM
21 ) and in the other case from the

circuital analogue (F T
22 and F

T
21). Moreover, the line SEM22 in fig. 6.14 represents the input

reflection obtained when the designed SIW filter is connected to the antenna. Note
that an excellent match between the reflection parameters SEM22 and ST22 is obtained,
validating the employed synthesis technique for matching filters.

Remark 6.10.4. It should be remarked that the present example constitutes an academic
exercise which is meant to confirm the benefits of using a matching filter with this kind
of loads regarding the input reflection coefficient of the system. For this reason, although
the simulated SIW filter introduces a certain level of losses in the system, dissipation
losses have not been considered during the optimisation of the SIW structure, obtaining
the lossless response shown in fig. 6.13. Similarly the result in fig. 6.14 is obtained when
the matching filter is assumed to be lossless.

In practice a certain level of power dissipation occurs inside the filter structure
shown in fig. 6.12 which in the microwave field corresponds to a finite quality factor Q0.
Particularly, for the filter shown in this section we obtain an unloaded quality factor per
resonator of about Q0 ≈ 200. If we now consider real materials in the matching filter,
which means that a given amount of power is dissipated due to heat dissipation inside the
matching filter, we obtain the response shown in fig. 6.15. We can now observe that the
global response has been degraded, obtaining even a lower reflection than in the lossless
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Figure 6.14: Reflection: synthesis and lossless EM simulation.

case. This lower reflection is possible because of the power being dissipated inside the
structure, which is not reflected. Nevertheless this response is not optimal anymore when
losses are considered. In fact minimising the global reflection has no sense in the case
of lossy devices as it would be possible to obtain zero reflection by dissipating everything
inside the matching filter and still no transmission would be obtained.

Nevertheless even in the lossy case, where dissipation inside the matching filter is taken
into account, the lower bound provided for the global reflection level ψopt computed by the
proposed algorithm, still provides fundamental a upper bound 1− |ψopt|2 on the maximum
transmission level that can be achieved. Namely

min
ω∈I

|S21(ω)|2 ≤ 1− |ψopt|2.

In this case, some alternative criteria should be considered to perform, starting from
the optimal filter in the lossless case, a final re-optimisation where losses are considered.
This alternative criterium might be the amount of power transmitted by the global system
or, in the case of an antenna, the radiated efficiency. Note that, for the moment we have
not said anything about the transmission of the global system or the radiation efficiency of
the antenna, only the matching criterion has been considered in this example. However in
chapter 9 we return to this topic considering the efficiency of the global system in terms
of dissipation and taking into account that criterion in the design of the matching filter.
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Figure 6.15: Reflection: synthesis and EM simulation considering dissipation losses in the
structure shown in fig. 6.12.

6.11 Further applications: multi-band matching

As a second example consider an antenna of type inverted-F (IFA) of the type presented
in [38]. In the statement of the matching problem, we consider each frequency band
designated for the standard LORA, namely the band for the European standard, America
and the band that is planned to be used for LORA communications in China. The
frequency specifications of each band are listed in table 6.3.

Band F. min (MHz) F. max (MHz)
EU 863 870
US 902 928
China 779 787

Table 6.3: Lora frequency bands

As in the previous example, we set the transmission polynomial of the matching filter
RF = 1 and calculate the optimal matching level based on the McMillan K degree of this
filter from 1 to 13. This result is shown in fig. 6.16. In this case the load is also of degree
1, therefore the bound shown in fig. 6.16 is sharp for all values of K.

The first detail that stands out is that the curve shown in fig. 6.16 does not have the
smooth shape we saw earlier in fig. 6.2. Indeed the difference in the level of matching
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obtained for two adjacent values of K is negligible in certain cases, as for K = 6 and
K = 7 while for different adjacent degrees as K = 7 and K = 8 the decrease in the
matching level is considerably higher. This effect is intimately linked to the fact that the
application is multi-band, I is composed of three different bands. In this case, increasing
the McMillan degree of the matching filter only by 1 may not be enough to improve the
level of matching in all bands, since one additional pole or reflection zero of the matching
filter in one of the bands have a negligible effect on another band that is far enough away.

This fact also indicates that the optimal solution for the matching filter will not be
Max McMillan’s degree in certain cases. For example for K = 7 the solution is practically
the same as for K = 6 so the matching filter of degree 6 is almost optimal for degree 7 as
well. The same applies to the filters of degree K = 8 and K = 10 which provide almost
the same result as for K = 9 and K = 11. In fact, in fig. 6.17 we show the response
of the global system that reaches the optimal matching level for K = 13. Note that
this response not only satisfies the optimality criterion for K = 13, namely to reach the
optimal reflection level at N + 1 points, but also satisfies that criterion for K = 14 since,
as can be seen in fig. 6.17, the level of optimal matching is reached at 15 different points
within the three bands.
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Figure 6.16: Optimal matching level considering the frequency bands in table 6.3
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Figure 6.17: Result of matching an antenna with a matching filter of McMillan degree
K = 13 in all LORA bands (table 6.3)

6.12 The bandwidth problem.

The potential bandwidth of an antenna is closely related to broadband matching theory, in
the sense that in order to reach a certain bandwidth with a given antenna, it is necessary to
obtain conjugate impedance matching over that bandwidth within a prescribed tolerance.
In previous sections, we deal with the problem of minimising the global reflection S22 in a
prescribed interval I. However a problem that arises, even more often in practice, is, given
a prescribed reflection level Lopt (the required level to guarantee the optimal operation of
the system) find the largest interval I such that

max
τ∈I

|S22(τ)|2 ≤ Lopt.

We introduce now the definition of potential bandwidth as it is used in this section.

Definition 6.12.1 (Potential bandwidth). Given the rational function L11 of degree 1
and considering function S22 ∈ GNR of finite degree N feasible for such load. We denote
by potential bandwidth the maximum frequency τc such that the supremum, of |S22(τ)|2
with τ ∈ [−τc, τc] is below a prescribed level Lopt.

τopt = max
S22∈GN

R

τc s.t. max
τ∈I

|S22(τ)|2 ≤Lopt I = [−τc, τc].

Therefore, the problem is reformulated in order to obtain the best bandwidth attain-
able with a given load and a matching network of a fixed finite degree when the reflection
level is prescribed. Note that an iterative version of problem 4.6.1 where no selectivity
constraint is considered namely
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Problem 6.12.1 (Direct problem).

Find: Lopt = min
P∈P2N

+

max
ω∈I

P (τ)

R(ω)

Subject to: f(P ) ≤ K K ∈ R+.

By adjusting the limits of the interval I at each iteration, for instance following a
dichotomy algorithm to attain the desired Lopt, the bandwidth problem could be solved.
Nevertheless, the bandwidth problem can be stated in a more direct and elegant form.
With this aim let us state a dual version of problem 6.12.1.

Problem 6.12.2 (Dual problem).

Find: Kopt = min
P∈P2N

+

f(P )

Subject to:
P (ω)

R(ω)
≤ L ∀ω ∈ I.

We have following lemma

Lemma 6.12.1. problem 6.12.2 is equivalent to problem 4.6.1 in the following sense:
if Popt solves problem 4.6.1 with optimal criterion Lopt then it is also the solution of
problem 6.12.2 with L = Lopt and optimal criterion Kopt = K.

Proof. Let Popt be the optimal solution to problem 6.12.1 with criterium Lopt given the
value K ∈ R. Now assume Popt is not the solution to problem 6.12.2. This implies there
exists a polynomial PA ∈ P2N

+ such that

f(PA) < f(Popt) ≤ K

PA(ω)

RA(ω)
≤ Lopt ∀ω ∈ I.

Therefore there exist a positive value ǫ < 1 such that the polynomial ǫPA provides a
better criterium in problem 6.12.1 than Popt. This contradict the optimality of Popt for
problem 6.12.1.

Conversely, assume now Popt is the solution problem 6.12.2 with criterium Kopt and
any value L ≥ 0. Suppose further Popt is not the optimal solution to problem 6.12.1.
Therefore there exist PB ∈ P2N

+ such that

max
ω∈I

PB(ω)

R(ω)
< max

ω∈I

Popt(ω)

R(ω)
≤ L

f(PB) ≤ Kopt.

In this case we can multiply PB by a constant ε > 1 such that f(εPB) < f(Popt) what
contradict the optimality of Popt. This concludes the proof.

Problem 6.12.2 provides direct information about the feasibility of the desired band-
width by comparing the obtained value Kopt with K:

Kopt ≤ K −→feasible,

Kopt > K −→not feasible.
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Note if we obtain strict feasibility (Kopt < K) in the previous test, then the bandwidth
can be increased until Kopt matches K. Here we are still using an iterative procedure
to determine the potential bandwidth. Nevertheless it is possible to compute how the
Kopt will be modified after modifying the interval I allowing us to determine the optimal
bandwidth without recomputing Kopt.

After solving problem 6.12.2 with a reference passband, (i.e. taking τc = 1), we apply
the change of variable t = τopt · τ where τopt is the sought potential bandwidth. We
compute now how the function f(P ) is modified with the proposed change of variable.

f̂(P ) =

∫

R

log
(

1 + R(τopt·x)
P (τopt·x)

)

(τopt · x− α)2
dx.

Now define

t = τopt · x dt = τopt · dx.

The function becomes

f̂(P ) =

∫

R

log
(

1 + R(t)
P (t)

)

(t− α)2
dt

τopt
=
f(P )

τopt
.

This provides us with the following lemma

Lemma 6.12.2. Given the problem 6.12.2 with an interval I = [−τc, τc] the optimal
criterium Kopt is inverse proportional to the value τc. Precisely Kopt =

K0

τc
where K0 is

the optimal criterion with τc = 1.

Finally compute τopt such that Kopt

τopt
= K. We have

τopt =
Kopt

K1

.

Therefore the potential bandwidth is obtained by solving the following problem once:

Problem 6.12.3 (Bandwidth problem).

Find: τopt = min
P∈P2N

+

fK(P )

Subject to: P (τ) ≤ Lopt·R(τ) Lopt ≥ 0 ∀τ ∈ [−1, 1]

where Lopt is the desired reflection level within the band and

fK(P ) =

∫

R
log
(

1 + R(x)
P (x)

)

(x− α)−2dx

2πj
[
d
dτ

logL22(τ)
]

τ=α

.
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Figure 6.18: Measured reflection L11 of the antenna with 50Ω reference.

6.12.1 Practical example

Next we show as an illustrative example an antenna designed for the LTE-20 band:

LTE-20 Band: 791− 862 MHz.

A bandwidth of at least 70MHz and a reflection level smaller than −6dB is required. This
antenna present the input reflection shown in fig. 6.18. The load has no finite transmission
zero, therefore we choose R = 1 as transmission polynomial. The potential bandwidth
can be obtained from the data issue of problem 6.12.3. Results are shown in fig. 6.19, as
a function of the degree of the matching network N and the reflection level l in dB such
that

L =
(
l−1 − 1

)−1
.

If we fix now l = −6dB we obtain the result shown in fig. 6.20. It can be seen that
the desired bandwidth of 70 MHz can only be obtained with a matching network of
degree 10, which in practice is not a realistic solution since a matching network of that
complexity would introduce an important amount of losses and reduce drastically the
system efficiency, apart from the footprint increment.
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Figure 6.19: Potential bandwidth of the presented antenna.
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Figure 6.20: Potential bandwidth with a reflection level l = −6dB.
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Chapter 7. Formulation as a Semi-Definite Program

After all the theory developed in chapter 4 and considering the parametrisation of the
set of admissible polynomials obtained at the end of chapter 5, it is time to do a little
more practical work. Now we are finally able to formulate the matching problem in
a more concise way. This formulation fits on the framework of one of the problems
that are well known in the field of convex optimisation. We are speaking about a
non-linear semi-definite program (NLSDP) which might be considered to be among the
most complex problems in numeric optimisation that can be optimally solved. This
reason motivates us to perform a numerical implementation of the developed theory.
Furthermore, the numerical implementation allow us to deal with different matching sce-
narios coming from several external organizations which are facing the matching problem.

In chapter 4 the problem of matching has been formulated as a minimax problem
equivalent to the classical synthesis problem of transfer functions with an additional con-
straint that carries over the set of polynomials among which we seek the optimal solution
to the problem. This condition to determine the admissibility of a polynomial P , which
might seem a little abstract in chapter 4, can be expressed in terms of a matrix inequality
by comparing a matrix U(P ) depending on P with another matrix ▲ which depends
solely on the load under consideration. This is the main result obtained in chapter 5
which states the positive polynomial P is admissible if and only if

U(P ) � ▲.

In addition, we believe it is convenient to highlight the fact that the different appli-
cations of the theory developed in chapter 4, together with the relevant results, are not
found in this chapter. These results have their own chapter which follows the present
one, similarly as what we did in chapter 6. In this way we obtain a certain atomicity that
facilitates the task to a reader not so interested in the numerical aspects of the problem,
allowing him to go directly to chapter 10 to review these results.

7.1 Statement of the general problem

We state now the problem we deal with in this chapter issue of the theory developed
in chapters 4 and 5. This is a problem that contains a matrix inequality and that will
be progressively transformed throughout the present chapter into a problem that only
involves matrix inequalities. As you can already guess, matrix algebra is an important
pillar of the implementation of the matching problem. For this reason, and with the
aim of achieving greater clarity in the text, the variables that represent matrices will be
indicated in capital letters and bold from this chapter.

Consider the load introduced in chapter 4 of McMillan degree M with rational scat-
tering matrix L in the Belevitch form (see eq. (2.38))

L =

(
L11 L12

L21 L22

)

=
1

qL

(
p⋆L −r⋆L
rL pL

)

.

Again we denote RL = rLr
⋆
L the transmission polynomial of L and α1, α2, · · · , αM ∈ C−

the transmission zeros of L which are assumed to have simple multiplicity.
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Let us state now the generalised form of the matching problem introducing the char-
acterisation of the admissible set obtained from theorem 5.4.1.

Problem 7.1.1 (General matching problem). Minimize the reflection level, Γ, in the
passband Ψ under some specified rejection level in the stop-band.

Find: Ψ = min
P∈P2N

+

max
ω∈I

P (ω)

R(ω)
,

Subject to: P (ω) ≤ R(ω) · Γ ω ∈ J,

U(P ) � ▲,

where I and J stand for the passband and stop-band intervals respectively with the matrix
U(P ) and ▲ defined as in eqs. (5.10) and (5.11).

As the first step toward the implementation, 7.1.1 is restated by introducing the slack
variable Ψ which becomes the criterium to be minimised:
Problem 7.1.2 (General problem).

Find: min
(Ψ,P )

Ψ (Ψ, P ) ∈ R+ × P
2N
+ ,

Subject to: P (ω) ≤ Ψ ·R(ω) ω ∈ I, (7.1)

P (ω) ≥ Γ ·R(ω) ω ∈ J, (7.2)

U(P ) � ▲. (7.3)

As a result, we obtain a problem of minimization of the slack variable Ψ over the
pair (Ψ, P ). Note Ψ also represents the toss level on the passband I, as it is ensured by
eq. (7.1) meanwhile eq. (7.2) imposes some additional rejection constraint on the stop-
band J. Finally, eq. (7.3) guarantees the admissibility of the polynomial P .

7.2 Positive polynomials

Note in problem 7.1.2 we several types of positivity constraints are imposed. On the one
hand we have the constraint P (ω) ≥ 0 for all ω ∈ R and on the other hand if we define
the polynomials WΨ,WΓ ∈ P2N as

WΨ = ΨR− P,

WΓ = P − ΓR,

then we obtain different additional positivity constraint which holds only on a finite
interval of the real line, namely

P (ω) ≥ 0 ∀ω ∈ R,

WΨ(ω) ≥ 0 ∀ω ∈ I,

WΓ(ω) ≥ 0 ∀ω ∈ J.

Constraints on the positivity of a polynomial P (ω) ≥ 0 is recurrent in optimisation
as positive polynomials form a convex set, although such constraint is difficult to express
over the coefficients of the polynomial P . Note the condition P (ω) ≥ 0 represent in
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fact a set of an infinite amount of linear constraints P (ωi) ≥ 0 for every point ωi ∈ R.
The space of polynomials P ∈ P2N under the said set of infinite linear constraints is
indeed a convex set. The same argument can be applied to polynomials positive on an
interval I with I ⊂ R. However in practice, an infinite amount of constraints is hardly ever
implemented as a finite amount of resources are available in the machines used to perform
that computation. One reasonable approximation is the discretisation of the intervals I,J
with a finite number of points x1, x2, · · · , xnI

∈ I and y1, y2, · · · , ynJ
∈ J as well as the

sampling of the real line by choosing a set of control points ωi ∈ R with i ∈ [1, nR], which
allows us to impose the positivity constrain on a finite amount of points. We have

P (ωi) ≥ 0 1 ≤i ≤ nI,

WΨ(xi) ≥ 0 1 ≤i ≤ nJ,

WΓ(yi) ≥ 0 1 ≤i ≤ nR.

As the number of points nI, nJ, nR tends to infinity, the previous set of constraints con-
verges to the desired positivity constraint on the corresponding intervals.

7.2.1 Parametrisation by means of linear matrix inequalities

We introduce in this section a more elegant formulation that ensures the positivity of a
polynomial uniformly on the real line or an interval I ⊂ R. This is done by means of
a SDP problem, namely a semi-definite program, where some constraint in term of the
positivity of a matrix is present. Problems of type SDP have gained popularity in recent
years with the apparition of interior point methods. Interior point methods allows to
solve SDP optimally and efficiently, what was not the case before, even in the case of a
convex problem. This fact comes from the difficulty of ensuring the positive-definiteness
of a matrix, rendering complicated the numerical solution of an optimisation problem
over a set of positive definite matrices, regardless of the convexity of such set.

Positive polynomials can be associated to positive definite matrices such that to each
square matrix of size N × N correspond a unique polynomial in P2N

+ . We have that a
matrix V is positive definite V � 0, then there exist a unique polynomial associated to
it, which is positive. Note the relation is not one to one as the space of N ×N matrices is
bigger than P2N . This property, which is detailed later on, allows to state problem with
constraints on the positivity of a polynomial in the form of a SDP, involving the positivity
of one or more matrices.

7.2.2 Trace

Before providing the parametrisation of polynomials by means of square symmetric ma-
trices, some definitions are required. We begin by defining the trace of a matrix.

Definition 7.2.1 (Trace). Given a square matrix V of size (N + 1) × (N + 1), define
trk (V) with −N ≤ k ≤ N as the sum of the elements in the k-th diagonal of V.

Diagonals of V are numbered such that the index 0 corresponds to the main diagonal,
positive indexes correspond to diagonals on the upper triangle and negative indexes to
the diagonals in the lower triangle as it is indicated in fig. 7.1.
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Figure 7.1: Numbering of matrix diagonals
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Figure 7.2: Numbering of matrix anti-diagonals

Additionally, we provide a second definition referring to the trace along the anti-
diagonal of a matrix V.

Definition 7.2.2 (Anti-diagonal trace). Given a square matrixV of size (N+1)×(N+1),
define atrk (V) with 0 ≤ k ≤ 2N as the sum of the elements in the k-th anti-diagonal ofV.

Anti-diagonals of V are numbered from the bottom-right element that corresponds to
index 0 to the top-left element of V (index 2N) as in fig. 7.2.

Finally we introduce the function tri that associates to each matrix V ∈ HN , the
vector of coefficients in the lower triangle.

Definition 7.2.3 (Lower triangle elements). Define triV with V ∈ HN the linear map

triV : H
N −→ C

(N2+N)/2,

where tri(V) is the vector of elements column-wise in the lower triangle of V. Similarly
we also stablish a correspondence between real symmetric matrices, namely S

N and the
elements of R(N2+N)/2 obtained by the function tri.

7.2.3 The Gram matrix

We discuss next the polynomial parametrisation used in this work. A detailed review of
this parametrisation can be found throughout [39]. Note that the set PN of polynomi-
als with real coefficients identifies with RN+1, namely the column vector of coefficients,
associated to a particular basis. Consider the canonic basis BN of the space PN defined
as

BN(λ) = [λN , λN−1, · · · , λ0]T .

We denote by PB ∈ RN+1 the vector of coefficients of the polynomial P ∈ PN such that

P (λ) = BN(λ)
T · PB ∀λ ∈ C.
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Consider now the set of polynomial P ∈ P2N with real coefficients PB ∈ R2N+1 such
that

P (λ) = B2N(ω)
T · PB,

where B2N(ω) is the canonic basis of degree 2N . Each polynomial P of this class can be
associated to a matrix V ∈ SN+1, which is not unique, such that

P (λ) = B2N(λ)
T · PB = BN(λ)

T ·V · BN(λ) ∀λ ∈ C. (7.4)

Definition 7.2.4 (Gram matrix). The set of matrices V ∈ SN+1 satisfying eq. (7.4) is
the set of Gram matrices associated to P .

This parametrisation provides us with a theorem [39, Theorem 2.5] that allows han-
dling of positivity constraints on polynomials by means of SDP .

Theorem 7.2.1 (Polynomial positivity). The polynomial P ∈ P2N is positive, namely
P ∈ P2N

+ if and only if there exist a matrix V ∈ SN+1, with V � 0 associated to P .
Additionally, we have P (λ) > 0 for all ω ∈ R if and only if there exist a matrix V ∈ SN+1,
associated to P such that V ≻ 0.

Proof of necessity. Necessity follows from the fact that P (λ) = BN(λ)
T · V · BN(λ) is

a quadratic form. Therefore if V � 0 (V ≻ 0), then the quadratic form P (λ) satisfies
P (λ) ≥ 0 (P (λ) > 0) for all BN(λ) 6= 0.

Proof of sufficiency. Consider P ∈ P2N
+ . In this case we can express P = p · p⋆ with

p ∈ PN . If we denote by pB ∈ RN+1 the vector of coefficients of the polynomial p with
respect to the basis BN(λ), namely p(λ) = BN(λ) · pB for all λ ∈ C then

P (λ) = BN
T (λ) · pB ·

(
BN

T (λ) · pB
)⋆

= BN
T (λ) · pBp⋆B · BN(λ).

Defining V = pBp
⋆
B we have V ≻= 0. Therefore there exist a Gram matrix V � 0

associated to P .

Consider now a polynomial P ∈ P2N
+ such that P (λ) > 0 for all x ∈ R. Let define the

polynomial s ∈ P2N
+ as follows

s(λ) = λ2N + λ2N−2 + · · ·+ λ2 + λ0.

Note that the (2N + 1)× (2N + 1) identity matrix I2N+1 is a Gram matrix associated to
s. Let us define as well the polynomial P̂ = P − s. In this case we can take ǫ > 0 small
enough such that P̂ ∈ P2N

+ . Additionally we have for all λ ∈ C

P̂ (λ) = BN
T (λ) ·

(

V̂ + ǫI2N+1

)

· BN(λ).

where V̂ ≻= 0 is a Gram matrix of P (λ) computed as before. Therefore the matrix V =

V̂ + ǫI2N+1 is a Gram matrix associated to P which satisfies V ≻ 0.

We can then consider the set of real symmetric matrices of size (N+1)×(N+1) which
are positive definite, denoted here by S

N+1
+ instead of the set of positive polynomials P2N

+ .
The motivation behind this choice is the fact that the positivity constraint is easier to
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ensure over SN+1 than over P2N . Nevertheless note there exist a one to one correspondence
between the set SN+1 and R(N+2)(N+1)/2. Similarly each element of P2N can be mapped
to an element of R2N+1. Therefore this ease for handling positivity comes at the expenses
of an optimisation space of higher dimension since if we replace the set R2N+1 by SN+1,
the number of coefficient that parametrise the optimisation set increases from 2N + 1 to
(N + 2)(N + 1)/2.

7.2.4 Basis of Tchebyshev polynomials

We define in this section a kind of polynomials which are associated to a basis composed
of the Tchebyshev polynomials of degree less or equal to N . We need to define first
the Tchebyshev polynomial of degree N . Note that a Tchebyshev polynomial is always
associated to a given interval.

The Tchebyshev polynomial of degree N associated to an interval I is the polynomial
of degree N whose absolute value remains bounded by 1 on the interval I and grows
the fastest outside the given interval. If we consider the interval [−1, 1], the Tchebyshev
polynomial of degree N can be obtained by the following recurrence

◗N(ω) = 2ω◗N−1(ω)−◗N−2(ω),

where ◗0(ω) = 1 and ◗1(ω) = ω. We define then the Tchebyshev basis ❇N(λ) of order
N as

❇N(λ) = [◗N(λ),◗N−1(λ), · · · ,◗0(λ)]
T .

This choice of basis is made to overcome some numerical issues faced in the opti-
misation procedures which are introduced later on. These issues arises from the fact
that Tchebyshev polynomials are recurrent in the field of filter synthesis as they are the
solution of a Zolotarev problem of the first kind. However the coefficients of Tchebyshev
polynomials easily become badly conditioned when the degree increases, which motivates
the choice of the Tchebyshev basis for our purposes.

The Tchebyshev polynomials of degree from 0 to N form an orthonormal basis of the
space PN such that any polynomial P ∈ PN can be expressed as

P (λ) = ❇N(λ)
T · P❇,

where P❇ ∈ RN+1 is the column vector with the coefficients of P with respect to the
Tchebyshev basis.

It should be noted that the vectors PB, P❇ ∈ RN+1 are different representation of
the polynomial P ∈ PN with respect to the canonic and Tchebyshev basis respectively,
namely

P (λ) = BN(λ) · PB = ❇N(λ) · P❇ ∀λ ∈ C.

We have ❇N(λ) = CN ·BN(λ) where CN is a non-singular (N +1)× (N +1) matrix with
real coefficients. Furthermore if V is a Gram matrix of P ∈ P2N , we have

P (λ) = BN(λ)
TVBN(λ) = ❇N(λ)

TC−1
N

TVC−1
N ❇N(λ).
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Since CN is non-singular, the matrix T = C−1
N

TVC−1
N is also a Gram matrix associated

to P . Hence from theorem 7.2.1, we have P ∈ P2N
+ if and only if T � 0.

7.3 Positivity on an interval

In this section we study the class of polynomials that are positive on an interval. Without
loss of generality we consider the interval [−1, 1]. Note that a polynomial P1(λ) positive
on any arbitrary interval [a, b] can be mapped to a polynomial P2(x) positive on the unit
interval by the variable change λ = (2x− (b+ a))(b− a)−1.

To ensure the positivity of a polynomial P ∈ P2N on an interval, we use the following
theorem derived from [39, Theorem 1.11]

Theorem 7.3.1 (Positivity on an interval). Given the polynomial P ∈ P2N , we have
P (ω) ≥ 0 for all ω ∈ [−1, 1] if and only if

P (λ) = F (λ) + (1− λ2)G(λ),

where F ∈ P2N
+ and G ∈ P

2N−2
+ .

Polynomials F,G in theorem 7.3.1 are positive on the real line. Therefore there exist
TF ∈ S

N+1
+ and TG ∈ SN+ such that for all λ ∈ C

F (λ) = ❇N(λ)
TTF❇N(λ),

G(λ) = ❇N−1(λ)
TTG❇N−1(λ).

Corollary 7.3.1. The polynomial P ∈ P2N is positive on the unit interval if and only if
there exist two Gram matrices (TF ,TG) ∈ S

N+1
+ × SN+ such that

P (λ) = ❇N(λ)
TTF❇N(λ) + (1− λ2)❇N−1(λ)

TTG❇N−1(λ) ∀λ ∈ C. (7.5)

7.3.1 Dealing with several intervals

Once we are able to characterise the positivity of a polynomial on an interval we can use
such characterisation to ensure the positivity of a polynomial P ∈ P2N on a finite union
of compact intervals I ⊂ R.

Next we argue toward parametrisation of the polynomials P ∈ P2N such that

P (ω) ≥ 0 ∀ω ∈ I.

To obtain such parametrisation, we use the tool that we have already introduced, this is
the parametrisation of the positive polynomials on the unit interval. Let define I =

⋃n
i=1 Ii

with Ii = [ai, bi]. Then consider the set of distinct polynomials {P (1), P (2), · · · , P (n)} with
P (i) ∈ P2N

+ . The polynomial P (i) is positive on the unit interval if and only if there exist

(T
(i)
F ,T

(i)
G ) ∈ S

N+1
+ × SN+ that parametrise the polynomial P (i) as in eq. (7.5). Now we

apply to each polynomial P (i) the change of variable that sends the unit interval onto the
interval Ii = [ai, bi]. Thus take the polynomial P̂ (ω) = P (i)(Φi(ω)) with

Φi(ω) =
2ω + ai + bi
bi − ai

.
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The polynomial P̂ (ω) is positive for all ω ∈ Ii if and only if the polynomial P (i)(ω) is
positive on the unit interval. Hence we obtain a set of polynomials {P̂ (1), P̂ (2), · · · , P̂ (n)}
which are positive on the corresponding interval Ii.

Now we use an interesting trick to guarantee the positivity in the set I. First note the
following lemma

Lemma 7.3.1. Consider two polynomials P (1), P (2) ∈ P2N . Assume there exist a set of
2N + 1 different points ωi such that P (1)(ωi) = P (2)(ωi) for all i ∈ [1, 2N + 1]. Then the
polynomials P (1) and P (2) are necessarily the same.

Proof. Suppose P1, P2 ∈ P2N are distinct polynomials and P1(ωi) = P2(ωi) for 1 ≤ i ≤
2N + 1 with ωi 6= ωj if i 6= j. The polynomial P ∈ P2N defined as P = P1 − P2 vanishes
in at least 2N + 1 points. This is not possible unless P = 0, and therefore P1 = P2.

Now we pick a set X of distinct 2N + 1 control points X = {ω1, ω2, · · · , ω2N+1}. Then
we impose the equality

P̂ (1)(ω) = P̂ (2)(ω) = · · · = P̂ (n)(ω) ∀ω ∈ X, (7.6)

obtaining that every polynomials P̂ (i) with i ∈ [1, n] is the same. Therefore the polynomial
P = P̂ (1) = P̂ (2) = · · · = P̂ (n) verifies

P (ω) ≥ 0 ∀ω ∈ I,

as long as there exist (T
(i)
F ,T

(i)
G ) ∈ S

N+1
+ × SN+ associated to each polynomial P (i)(ω) for

all i ∈ [1, n]. Note further that eq. (7.6) can be stated over the polynomials P (i) with
1 ≤ i ≤ n as

P (1)(Φi(ω)) = P (2)(Φi(ω)) = · · · = P (n)(Φi(ω)) ∀ω ∈ X.

We have developed here the theory behind the characterisation of a polynomial P ∈ P2N

such that P (ω) ≥ 0 for all ω ∈ I. Let us now provide the formal theorem that state the
results. Denote first by Xi the image of the set X under the application Φi : X 7→ Xi.
Therefore we have the set of points where each polynomial P (i) is evaluated

Xi =
{

x
(i)
1 , x

(i)
2 · · · , x(i)2N+1

}

x
(i)
k = Φi(ωk).

Consider now the (N + 1)× (2N + 1) matrix ❇
(i)
N defined as

❇
(i)
N =

(

❇N(x
(i)
1 ) ❇N(x

(i)
2 ) · · · ❇N(x

(i)
2N+1)

)

x
(i)
k ∈ Xi ∀k ∈ [1, 2N + 1],

and the diagonal matrix X(i) with the evaluation of 1−
(

x
(i)
k

)2

on its diagonal

X(i) =















1−
(

x
(i)
1

)2

0 · · · 0

0 1−
(

x
(i)
2

)2

· · · 0

...
...

. . .
...

0 0 · · · 1−
(

x
(i)
2N+1

)2















.

Then we state the following theorem
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Theorem 7.3.2 (Positivity on a finite union of intervals). Consider the union of compact
intervals I =

⋃n
i=1 Ii with I ∈ R. The polynomial P ∈ P2N is positive in I

P (ω) ≥ 0 ∀ω ∈ I

if and only if there exist (T
(i)
F ,T

(i)
G ) ∈ S

N+1
+ × SN+ for each i ∈ [1, n] such that

❇
(i)T

N T = ❇
(i)T

N T
(i)
F ❇

(i)
N +X(i)❇

(i)T

N−1T
(i)
G ❇

(i)
N−1 ∀i ∈ [1, n],

where T contains the coefficients T ∈ R2N+1 with respect to the Tchebyshev basis. The
matrix X(i) is defined as

X(i) =












1−
(

x
(i)
1

)2

0 · · · 0

0 1−
(

x
(i)
2

)2

· · · 0

...
...

. . .
...

0 0 · · · 1−
(

x
(i)
2N+1

)2












,

where x
(i)
k = Φi(ωk) and ωk with k ∈ [1, 2N + 1] belong to a set of 2N + 1 distinct

points arbitrarily distributed in the complex plane. Finally the matrix ❇
(i)
N contains the

evaluation of the Tchebyshev polynomials of degree up to N at those points x
(i)
k

❇
(i)
N =











◗N

(

x
(i)
1

)

◗N

(

x
(i)
2

)

· · · ◗N

(

x
(i)
2N−1

)

...
... . .

. ...

◗1

(

x
(i)
1

)

◗1

(

x
(i)
2

)

· · · ◗1

(

x
(i)
2N−1

)

◗0

(

x
(i)
1

)

◗0

(

x
(i)
2

)

· · · ◗0

(

x
(i)
2N−1

)











.

Proof. Follows from the previous theory.

7.4 Matrix parametrisation

After introducing the characterization of polynomial positivity in terms of a matrix in-
equality, as well as a generalized characterization of positive polynomials in a finite union
of compact subintervals of the real line, it is time to apply these concepts to problem 7.1.2.

First we formulate the problem as a minimization of the slack variable Ψ under the
condition that a set of polynomials dependent on Ψ are positive in certain subsets of R.
The problem is as follows.

Problem 7.4.1 (General matching problem with slack polynomials).

Find: min
(Ψ,P )

Ψ (Ψ, P ) ∈ R+ × P
2N
+ ,

Subject to: WΨ(ω) ≥ 0 ω ∈ I,

WΓ(ω) ≥ 0 ω ∈ J,

U(P ) � ▲,
and the equalities: WΨ(ω) = ΨR(ω)− P (ω), (7.7)

WΓ(ω) = P (ω)− ΓR(ω). (7.8)
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7.4.1 Positivity on the real axis

In order to introduce the results obtained in the previous section, the optimization
variable P ∈ P2N

+ is to be replaced by a Gram matrix TP ∈ SN+1 that parametrizes this
polynomial P , so that the positivity of P in the entire real axis can be replaced by a
matrix inequality TP � 0.

Remark 7.4.1. It is important to note, as already mentioned above, that the fact of
performing the optimization on the set of symmetric matrices SN+1 instead of on the set
of polynomials P ∈ P2N

+ , leads to an increase in the dimensionality of the problem since the
number of parameters increases 2N + 1, which corresponds to the number of coefficients
in P , up to (N + 2)(N + 1)/2, namely the number of coefficients in the lower triangle of
the matrix TP (dimension of triTP ). However, this increase in the number of parameters
eliminates an even higher number of constraints, providing a more accurate result and a
more efficient calculation.

With respect to the conditions of positivity in each of the corresponding intervals,
theorem 7.3.2 can be used, replacing the WΨ,WΓ polynomials with a set of positive
definite matrices. In particular if

I =
n⋃

i=1

Ii Ii ⊂ R,

J =
m⋃

i=1

Ji Ji ⊂ R,

we consider the set of matrices

(M
(i)
Ψ ,N

(i)
Ψ ) ∈ S

N+1
+ × S

N
+ ∀1 ≤ i ≤ n (7.9)

that characterises the polynomial WΨ and

(M
(i)
Γ ,N

(i)
Γ ) ∈ S

N+1
+ × S

N
+ ∀1 ≤ i ≤ m (7.10)

to characterise the polynomial WΓ.

7.4.2 Positivity on a closed subset of R

It is important to note that, once the polynomial P has been parametrized by the
Gram matrix TP which easily provides the aforementioned polynomial P and therefore
also the WΨ,WΓ polynomials, it is very expensive to calculate the Gram matrices that
parametrize the polynomials WΨ,WΓ which are already known.

Therefore, what we do in this case is to add each of the Gram matrices that parametrize
the polynomialsWΨ,WΓ introduced in eqs. (7.9) and (7.10) as variables in the optimization
problem. Therefore we have

TP � 0,

M
(i)
Ψ ,N

(i)
Ψ � 0 ∀1 ≤ i ≤ n,

M
(k)
Γ ,N

(k)
Γ � 0 ∀1 ≤ k ≤ m.
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Remark 7.4.2. It is important to note that only the lower triangle of each matrix is
necessary. Therefore we have a polynomial P ∈ P2N

+ , obtained from the matrix TP .

Additionally we obtain a set of polynomials W
(i)
Ψ and W

(k)
Γ for all i ∈ [1, n] and k ∈ [1,m],

which are positive in the intervals I and J respectively.

However, when doing this the connection between W
(i)
Ψ , W

(k)
Γ and P is lost as we

allows P,WΨ and WΓ to be independent. Hence it is necessary to explicitly include the
equalities in eqs. (7.7) and (7.8) into the problem to ensure the matrix TP and the set

of matrices (M
(i)
Ψ ,N

(i)
Ψ ) with 1 ≤ i ≤ n and (M

(k)
Γ ,N

(k)
Γ ) where 1 ≤ k ≤ m parametrise

indeed the same polynomial P . This is done, for instance, by imposing

WΨ(ωi) = ΨR(ωi)− P (ωi),

WΓ(ωi) = P (ωi)− ΓR(ωi),

in a set of at least 2N + 1 points ωi, which can be taken to be equal to the set X =
{ω1, ω2, · · · , ω2N+1} introduced above. Therefore we use the map ❇N and ❇2N defined as

❇N =
(
❇N(ω1) ❇N(ω2) · · · ❇N(ω2N+1)

)
ωk ∈ X ∀k ∈ [1, 2N + 1],

❇2N =
(
❇2N(ω1) ❇2N(ω2) · · · ❇2N(ω2N+1)

)
ωk ∈ X ∀k ∈ [1, 2N + 1],

we have








P (ω1)−ΨR(ω1)
P (ω2)−ΨR(ω2)

...
P (ω2N+1 −ΨR(ω2N+1))








= ❇N
TTP❇N − L❇2NTR,

where TR is the coefficient vector of R with the Tchebyshev basis. Therefore we obtain
the set of linear equalities

∀i ∈ [1, n] :

L❇2NTR − ❇NTTP❇N = ❇
(i)T

N M
(i)
Ψ ❇

(i)
N +X(i)❇

(i)T

N−1N
(i)
Ψ ❇

(i)
N−1, (7.11a)

∀k ∈ [1,m] :

❇N
TTP❇N − Γ❇2NTR = ❇

(k)T

N M
(k)
Γ ❇

(k)
N +X(k)❇

(k)T

N−1N
(k)
Γ ❇

(k)
N−1. (7.11b)

7.4.3 Parametrisation of U(P )

In this section, a re-parameterisation of the problem of matching based on positive
defined matrices has been carried out. However, it is still necessary to calculate the
original P polynomial since the matrix U(P ) depends on P .

The evaluation of the polynomial P (λ) which has been parametrized by the positive
definite matrix TP can be obtained as ❇N(λ)

TTP❇N(λ). Thus we re-define the function
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uT(λ) with T ∈ S
N+1
+ as the minimum phase function of λ such that

|uT(ω)|2 =
❇N(ω)

TT❇N(ω)

❇N(ω)TT❇N(ω) +R(ω)
∀ω ∈ R,

ℑ(uT(λ)) =0 λ = −j,
where R is the fixed transmission polynomial of degree at most 2N . Now we can also
re-define the matrix U(T) as

U(T) =
1

j























uT(α1)uT(α1)

α1 − α1

uT(α1)uT(α2)

α1 − α2

· · · uT(α1)uT(αN)

α1 − αN

uT(α2)uT(α1)

α2 − α1

uT(α2)uT(α2)

α2 − α2

· · · uT(α2)uT(αN)

α2 − αN

...
...

. . .
...

uT(αM)uT(α1)

αM − α1

uT(αM)uT(α2)

αM − α2

· · · uT(αM)uT(αN)

αM − αN























.

7.4.4 Formulation of the general matching SDP

We can now formulate a SDP version of problem 7.4.1 over the matrices TP , (M
(i)
Ψ ,N

(i)
Ψ )

for all i ∈ [1, n] and (M
(k)
Γ ,N

(k)
Γ ) for all k ∈ [1,m].

Problem 7.4.2 (Generalised matching SDP).

Find: min
Ψ TP

M
(i)
Ψ ,N

(i)
Ψ

M
(k)
Γ ,N

(k)
Γ

Ψ,

where: Ψ ∈ R+ (M
(i)
Ψ ,N

(i)
Ψ ) ∈ S

N+1 × S
N ∀i ∈ [1, n],

TP ∈ S
N+1 (M

(k)
Γ ,N

(k)
Γ ) ∈ S

N+1 × S
N ∀k ∈ [1,m],

Subject to: TP � 0, (7.12)

M
(i)
Ψ � 0 ∀i ∈ [1, n], (7.13)

N
(i)
Ψ � 0 ∀i ∈ [1, n], (7.14)

M
(k)
Γ � 0 ∀k ∈ [1,m], (7.15)

N
(k)
Γ � 0 ∀k ∈ [1,m], (7.16)

U(TP ) � ▲, (7.17)

with the additional equality constraints in eqs. (7.11a) and (7.11b).

At this point, we have obtained a formulation of the matching problem in the form
of a SDP. However, this problem is a non-linear SPD, since the matrix U(TP ) depends
non-linearly on the parameters of the problem, namely the coefficients of the TP matrix.
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7.5 Computation of the minimum phase factor uP

To calculate this matrix U(T), it is necessary to evaluate the function uT(ω) in the points
αi with 1 ≤ i ≤ N located inside the domain of analyticity. This section is devoted to
the development of the procedure necessary for the calculation of the minimum phase
function uT.

7.5.1 Polynomial coefficients

We introduce next a linear map PN that associated the vector of coefficients P❇ ∈
R(N+2)(N+1)/2 to each symmetric matrix TP ∈ SN . Note the set SN and R(N+2)(N+1)/2

are isomorphisms. We define the map PN which maps the set R(N+2)(N+1)/2 onto R2N+1.

Definition 7.5.1 (Computation of the polynomial coefficients from a Gram matrix asso-
ciated to it.). Define PN as the linear map

PN : R
(N+2)(N+1)/2 −→ R

2N+1,

that given a Gram matrix TP ∈ SN , associate to the vector tri(TP ) ∈ R(N+2)(N+1)/2 the
column vector P❇ ∈ R2N+1 with the coefficients vector P❇ = [t2N , · · · , t0]T with respect
to the Tchebyshev basis such that

❇2N(λ)
T · P❇ = ❇N(λ)

TTP❇N(λ) ∀λ ∈ C,

where ❇N(λ) is the Tchebyshev basis of degree N evaluated at λ. The elements tk are
obtained as

2tk = atrk (TP ) N ≤k ≤ 2N,

2tk = atrk (TP ) + 2trk (TP ) 1 ≤k < N,

2t0 = atr0 (TP ) + tr0 (TP ) .

Furthermore if we denote Ξ(PN) the (2N + 1)× (N + 2)(N + 1)/2 matrix associated
to the map PN we have

❇N(λ)
TTP❇N(λ) = ❇2N(λ)

T ·Ξ(PN) · tri(TP ) ∀λ ∈ C. (7.18)

Example 7.5.1. Consider the matrix:

TP =







a1 a2 a3 a4
a2 a5 a6 a7
a3 a6 a8 a9
a4 a7 a9 a10






,

then the vector P❇ = P4(T) = [t6, t5, t4, t3, t2, t1, t0]
T is defined as:

2t6 = a1, t3 = 0.5(a4 + a6 + a6 + a4) + a4,

2t5 = a2 + a2, t2 = 0.5(a7 + a8 + a7) + a3 + a7,

2t4 = a3 + a5 + a3, t1 = 0.5(a9 + a9) + a2 + a6 + a9,

t0 = 0.5(a10 + a1 + a5 + a8 + a10).
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As an illustrating example, in this case we have:

Ξ(P4) =
1

2













1 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 2 0 1 0 0 0 0 0
0 0 0 4 0 2 0 0 0 0
0 0 2 0 0 0 4 1 0 0
0 2 0 0 0 2 0 0 4 0
1 0 0 0 1 0 0 1 0 2













.

It is important to highlight the fact that the vector of coefficients of the polynomial
P ∈ P2N

+ can be obtained from the matrix TP by means of the application PN as

P❇ = Ξ(PN) · triTP .

7.5.2 Polynomial factorisation

Once in disposition of the polynomial P ∈ P2N
+ , it is necessary to obtain the polynomial

p ∈ PN such that

p⋆p = P.

What we could think about trivially is the computation of the polynomial p as the fac-
torization of P by calculating its roots as

P =
N∏

i=1

(λ− ξi)(λ− ξi)

to later select those N roots inside analyticity domain ξi ∈ C−. However, this procedure
has several drawbacks. The first one appears due to the choice of the Tchebyshev basis
to represents the polynomials and computing roots of a polynomial defined in terms of
the basis of Tchebyshev polynomials of degree up to 2N is not immediate, the second one
is the fact that roots computation is an unstable operation for polynomials of high degree.

As an alternative to the roots computation, we apply the method proposed in [40],
where a newton optimisation is used to compute the polynomial p(ω). We are looking
for the polynomial p ∈ PN of minimum phase such that p⋆p = P with P ∈ P2N

+ . Hence,
given the polynomial pi of minimum phase, we define the function f(pi) as

[f(pi)](ω) = p⋆i (ω)pi(ω) = Pi(ω),

at each frequency ω. Compute now the best linear approximation of the function f given
by the derivative Df(pi) with respect to the coefficients of pi at any frequency point ω.
We have

Df(pi) [pi+1 − pi] = [f(pi+1)− f(pi)] ,

when pi+1 → pi. Additionally we have the following lemma
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Lemma 7.5.1. Let pi ∈ PN be a polynomial of minimum phase with pi(ω) 6= 0 for all
ω ∈ R, and Pi = f(pi) = p⋆i pi. Given a positive polynomial P ∈ P2N

+ , there exist a
polynomial Pi+1 in the form

Pi+1 = κP + (1− κ)Pi,

with 0 < κ ≤ 1 such that the polynomial pi+1 defined as

pi+1 = pi +Df(pi)
−1(Pi+1 − Pi), (7.19)

where is of minimum phase as well

Proof. Let us write eq. (7.19) in the form

pi+1 = pi +Df(pi)
−1(κPi+1 − κPi) = pi + κDf(pi)

−1(Pi+1 − Pi).

Then the proof follows directly from Rouche’s theorem [41, corollary to theorem 18] as if
pi(ω) 6= 0 for all ω ∈ R, we can take a value κ small enough such that

|pi(ω)| ≥ κ|Df(pi)−1(ω)(Pi+1(ω)− Pi(ω))| ∀ω ∈ R.

Hence the function pi(ω) has the same number of zeros inside the analyticity domain C−

as the function pi(ω)+κDf(pi)
−1(ω)(Pi+1(ω)−Pi(ω)). Note that since both functions are

polynomials of the same degree, if pi(ω) is of minimum phase, then pi+1 is of minimum
phase as well.

Using the iterative algorithm indicated in lemma 7.5.1 we can obtain the minimum
phase factorisation of a polynomial P ∈ P2N

+ . Furthermore it should be noted that even
if the polynomial P vanishes at a point ω0 ∈ R, the previous algorithm provides as with
a polynomial pi ∈ PN such that Pi = p⋆i pi is arbitrarily close to the polynomial P .

Note that in the decomposition P = p⋆p, polynomial p is unique up to an uni-
modular constant. To disambiguate we consider polynomial p is normalised at a ref-
erence frequency λ0 ∈ C− such that ℑp(λ0) = η. Denote now by p❇ ∈ R2N+1 the vector
[aN , aN−1, · · · , a0, bN , bN−1, · · · , b0]T with the coefficients of the polynomial p ∈ PN in the
Tchebyshev basis such that

p(λ) =
N∑

i=0

(ai + jbi)◗i(ω). (7.20)

We can then define a map between the vector p❇ ∈ R2N+2 and the pair (P❇, η) ∈ R2N+1×R

where η = ℑp(λ0)

Q : p❇ ∈ R
2N+1 −→ (P❇, η) ∈ R

2N+1 × R. (7.21)

7.5.2.1 Computing derivatives

It should be noted Q is not a linear application. However, we can compute the matrix
associated to the linearisation of the application Q at the point p❇, namely the Jacobian
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matrix JQ(p❇). This Jacobian matrix presents the structure shown in eq. (7.22).

JQ(p❇) =






























aN

aN−1 aN
...

...
. . .

a1 a2 · · · aN

2a0 a1 · · · aN−1 aN

a1 2a0 · · · aN−2 aN−1

...
...

. . .
...

...

aN−1 aN−2 · · · 2a0 a1

aN aN−1 · · · a1 2a0

0 0 · · · 0 0

bN

bN−1 bN
...

...
. . .

b1 b2 · · · bN

2b0 b1 · · · bN−1 bN

b1 2b0 · · · bN−2 bN−1

...
...

. . .
...

...

bN−1 bN−2 · · · 2b0 b1

bN bN−1 · · · b1 2b0

cN cN−1 · · · c1 c0






























(7.22)

where ci = ◗i(λ0) for all i ∈ [0, N ].

From [42] we can deduce that the application Q in eq. (7.21) is continuous and has
differentiable inverse Q−1

Q−1 : (P❇, η) 7→ p❇ : ℑ(p❇(λ0)) = η.

We apply now the iterative procedure introduced in lemma 7.5.1. Let us denote by
p(i) ∈ PN the minimum phase factor obtained in the i-th iteration and define P (i) =
p(i)

⋆
p(i). Additionally denote η(i) = ℑp(i)(λ0). The factorisation of the polynomial P is

performed by iterating over the following formula

p
(i+1)
❇

= p
(i)
❇

+ κJQ(p❇)
−1

[

, P❇ − P
(i)
❇

0− η(i),

]

,

where the quantity

E =

[

, P❇ − P
(i)
❇

0− η(i),

]

,

represents the error made in the i-th iteration. Note that the termination criterium can
be given either by reaching an error smaller than a prescribed target value or by the
conditioning of the matrix JQ(p❇) in the case that the polynomial P vanishes at some
point ω0 ∈ R. We can now compute the minimum phase factor of the function uP (ω)
whose modulus squared is defined as

|uP (ω)|2 =
P (ω)

P (ω) +R(ω)
∀ω ∈ R, (7.23)

by selecting the minimum phase factor of both numerator and denominator of eq. (7.23).
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7.5.3 Derivatives of the spectral factorisation

Let us consider now the application that associates to each polynomial P ∈ P2N
+ , the

minimum phase polynomial q ∈ PN such that q⋆q = P + R and ℑq(λ0) = 0, namely
Q(P +R, 0).

After performing the factorisation with the previous or any other method, we obtain
the function uP (ω) as

uP (ω) =
p(ω)

q(ω)
,

where q⋆(ω)q(ω) = p⋆(ω)p(ω) + R(ω). Note the derivatives of P = p⋆p with respect to
the k-th coefficient of p are given by JQ(p❇). Similarly if we denote by q❇ the vector of
coefficient of q in the Tchebyshev basis, the derivatives of the positive polynomial q⋆q are
given by JQ(q❇). Additionally we have

D(q⋆q) = D(P +R) = DP.

Therefore

JQ(q❇)Dkq = DkP,

Dkq = JQ(q❇)
−1DkP. (7.24)

The previous formulation shown that the Jacobian matrix of the map Q−1(P + R, 0)
is given by JQ(q❇)

−1.

Similarly, we can compute the second derivative of q by derivating again the polynomial
P with respect to its l-th coefficient we have

D2P = DlpDkp
⋆ + pD2

k,lp
⋆ +Dlp

⋆Dkp+ p⋆D2
l,kp = 2ℜ

(
Dlp

⋆Dkp+ p⋆D2
l,kp
)
.

Thus

2ℜ
(
Dlq

⋆Dkq + q⋆D2
l,kq
)
= 0.

Remark now that the matrix JQ(p) represents the linearisation of the application p 7→ p⋆p
in a neighbourhood of the point p. Therefore, if we denote now by Dkp and Dlp the
derivative of the polynomial p with respect to the k-th and l-th coefficients respectively,
then the coefficients of the product Dlp

⋆Dkp are obtained by the matrix operation JQ(Dlp)·
Dkp❇. Similarly at the point p, the product by q⋆ is computed by means of the matrix
JQ(p). Thus

2
[
JQ(Dlq)Dkq + JQ(D

2
l,kq)

]
= 0.

Moreover introducing eq. (7.24) we have

JQ(Dlq)JQ(q❇)
−1DkP + 2JQ(p)D

2
l,kq = 0,

D2
l,kq = −1

2
JQ(p)

−1JQ(Dlq)JQ(q❇)
−1DkP.
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Finally, we can evaluate such derivatives at the points αi by means of the basis vector
❇
C
N(αi) which contains real and imaginary coefficients as

❇
C
N(αi) =

[
❇N(αi)
j❇N(αi)

]

.

We obtain the following expressions referring to a scalar quantity, namely the derivative
of the evaluation q(αi) with respect to the k-th and the l-th coefficients of P .

Dkq(αi) =
❇
C
N(αi)

T

2
JQ(q❇)

−1Dkp,

D2
l,kq(αi) = −❇

C
N(αi)

T

2
JQ(p)

−1JQ(Dlq)JQ(q❇)
−1DkP.

Note that the derivative of the vector of coefficients of p with respect to the k-th coefficient
is just the vector with 1 in the k-th position and zeros everywhere else. Additionally if
we consider the derivative with respect of each of the coefficients of p, namely we set DkP
equal to the identity matrix of size (2N + 2) × (2N + 2) we obtain the gradient of the
evaluation q(αi)

Gq(αi) =
❇
C
N(αi)

T

2
JQ(q❇)

−1. (7.25)

Similarly the Hessian matrix of q(αi) is obtained by taking every element Dlp and Dlq

Hq(αi) = −












❇
C
N(αi)

T

2 JQ(p)
−1JQ(D1q)JQ(q❇)

−1

❇
C
N(αi)

T

2 JQ(p)
−1JQ(D2q)JQ(q❇)

−1

...

❇
C
N(αi)

T

2 JQ(p)
−1JQ(D2N+2q)JQ(q❇)

−1












.

Note we have just computed the derivatives of the map that associates to each polynomial
P the corresponding stable polynomial q such that q⋆q = P + R with respect to P while
the derivatives with respect to the vector triTP are required instead. Nevertheless the
coefficient vector P❇ is obtained as P❇ = Ξ(PN)triTP . Therefore if we denote by GT and
HT the gradient vector and the Hessian matrix respectively of q(αi) with respect to the
vector triTP , then we have

GTq(αi) = Gq(αi) ·Ξ(PN),
HTq(αi) = Ξ(PN)T ·Hq(αi) ·Ξ(PN).

Finally, if we repeat the previous computation for the derivatives of p with respect to the
coefficients of P = p⋆p we obtain

GTp(αi) = Gp(αi) ·Ξ(PN),
HTp(αi) = Ξ(PN)T ·Hp(αi) ·Ξ(PN),
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where

Gp(αi) =
❇
C
N(αi)

T

2
JQ(p)

−1

Hp(αi) = −












❇
C
N(αi)

T

2 JQ(p)
−1JQ(D1p)JQ(p)

−1

❇
C
N(αi)

T

2 JQ(p)
−1JQ(D2p)JQ(p)

−1

...

❇
C
N(αi)

T

2 JQ(p)
−1JQ(D2N+2p)JQ(p)

−1












.

7.5.4 Derivatives of the matrix UT

We compute next the first and second derivatives of the function uP (αi) with respect to
polynomial P . Note that we have already computed the derivatives of p(αi) and q(αi)
with respect of the vector triTP that we can use together with the chain rule to obtain
the derivatives of uP (αi) with respect to triTP . We have

DkuP =
Dkp

q
− uPDkq, (7.26)

D2
k,luP =

D2
k,lp− uPD

2
k,lq

q
− DkpDlq +DlpDkq

q2
+ 2uP

DkqDlq

q3
.

If we consider now the element (i, h) of the matrix UT with i, h ∈ [1, N ] we have

[UT]i,h =
uT(αi)uT(αh)

αi − αh
,

Dk[UT]i,h =
DkuT(αi)uT(αh) + uT(αi)DkuT(αh)

αi − αh
,

D2
k,l[UT]i,h =

D2
k,luT(αi)uT(αh) + DkuT(αi)DluT(αh)

αi − αh
+

+
DluT(αi)DkuT(αh) + uT(αi)D2

k,luT(αh)

αi − αh
.

The computed formulas provides us with the first and second derivatives of each el-
ement of the matrix UT with respect to the vector triTP namely the coefficients in the
lower triangle of the matrix TP . These derivatives result of vital importance in the next
chapter for the numerical solution of problem 7.4.2, specially given the non-linearity of
the matrix UT.
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Chapter 8. Computation of the optimal solution

Semi-definited programs have become popular in recent years as a result of the ap-
pearance of interior-point optimization methods. Interior-point optimisation allows to
solve problems with matrix inequalities constraints by guaranteeing the feasibility of the
problem throughout the optimization. In addition, if the function to be minimized or
maximized, as well as the feasible region, are convex; interior-point optimization methods
represent a practical tool to compute numerically the optimal solution to the problem,
which was not evident before the appearance of such methods.

Among the positive definite problems that have gained attention with the appearance
of the interior-point methods out-stand linear matrix inequality programs or LMI. These
programs consist of the minimization or maximization of a linear criterion under a
series of matrix inequalities. In addition, these matrices must depend linearly on the
parameters of the problem. To obtain the solution of these problems, barrier functions
come to the rescue. In particular, logarithmic barrier functions are of special importance
in the case of LMI programs.

We return now to the semi-definited program obtained at the end of chapter 7. This
program is characterized as a convex optimization problem, therefore any local solution
is a global solution. Particularly, we are facing a problem of the type NLSDP, namely a
non-linear semi-definited program. NLSDP are still among the types of problems that can
be solved optimally in practice by numerical methods. However, this resolution becomes
substantially more complex than in the linear case. Indeed, non-linear semi-definite
programs might represent, within the field of convex problems, the most complex type of
problem that can, at the present time, be solved numerically with guarantee of optimality.

In this chapter we provide an overview of the numerical implementation of the
NLSDP problem derived in chapter 7, including a review of interior-point optimization
methods. For this matter, we begin with a motivation for the use of the said methods in
the resolution of convex problems subject to matrix inequalities.

An important remark before continuing, is the fact that the rest of this chapter is
dedicated solely to the numerical resolution of the optimization problem formulated at
the end of the previous section. This resolution could be done with the help of one
of the commercial solvers available, although only a couple of them exist for the time
being due to the non-linearity of the matrix inequality in eq. (8.11). In any case, in the
following sections we provide an overview of the optimization methods used to solve the
aforementioned type of problems.

In addition, although we did not perform any specific study on, for example, the
order of the number of operations necessary to obtain the said solution with a certain
precision, or the calculation time with respect to the size of the problem or the number
of inequalities, what is provided is a detailed review of the algorithm implemented to
calculate the desired solution. This information will be appreciated by a non-conformist
reader who does not settle for simply pressing a red button on a black box and waiting
for the solution to appear on screen but needs to know what is actually happening inside.

For the reader convenience, let us restate here problem 7.4.2. This problem, already
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formulated as a non-linear SDP, presents different matrix constraints of every possible
type that can be imposed while keeping the convexity property. As a result, the
complexity of the problem is maximised as a barrier function of different nature is
conceived to handle each one of those constraints. Furthermore, equality constrains are
also imposed in problem 7.4.2, providing a complete illustrating example of non-linear
SDP.

Problem 7.4.2 (Generalised matching SDP).

Find: min
Ψ TP

M
(i)
Ψ ,N

(i)
Ψ

M
(k)
Γ ,N

(k)
Γ

Ψ,

where: Ψ ∈ R+ (M
(i)
Ψ ,N

(i)
Ψ ) ∈ S

N+1 × S
N ∀i ∈ [1, n],

TP ∈ S
N+1 (M

(k)
Γ ,N

(k)
Γ ) ∈ S

N+1 × S
N ∀k ∈ [1,m],

Subject to: TP � 0, (7.12)

M
(i)
Ψ � 0 ∀i ∈ [1, n], (7.13)

N
(i)
Ψ � 0 ∀i ∈ [1, n], (7.14)

M
(k)
Γ � 0 ∀k ∈ [1,m], (7.15)

N
(k)
Γ � 0 ∀k ∈ [1,m], (7.16)

U(TP ) � ▲, (7.17)

with the additional equality constraints in eqs. (7.11a) and (7.11b).

∀i ∈ [1, n] :

L❇2NTR − ❇NTTP❇N = ❇
(i)T

N M
(i)
Ψ ❇

(i)
N +X(i)❇

(i)T

N−1N
(i)
Ψ ❇

(i)
N−1, (7.11a)

∀k ∈ [1,m] :

❇N
TTP❇N − Γ❇2NTR = ❇

(k)T

N M
(k)
Γ ❇

(k)
N +X(k)❇

(k)T

N−1N
(k)
Γ ❇

(k)
N−1. (7.11b)

It should be noted that the revision of the computational procedure provided here
is supposed to be self-contained, namely no additional information should be required.
Nevertheless, if the reader is further interested on other more advance aspects of interior
points methods, I must recommend some other lectures which are more appropriate
for this topic as [43, 44] which we find particularly enlightening. As you can already
guess, in the rest of this chapter we do not continue with the study of the problem of
matching itself or provide any results with respect to the aforementioned problem. We
are exclusively dealing with the solution of this particular optimization problem, having
to wait until chapter 9 to return to the problem of matching again.

Next, there is the list of each of the constraints present in problem 7.4.2 and treated
in this chapter.

• Linear equalities (section 8.2): we use the elimination method to ensure that equal-
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ities are satisfied reducing at the same time the number of parameter (dimension)
of the problem. This technique ensures eqs. (7.11a) and (7.11b).

• LMI: linear matrix inequalities are handled by the classical logarithmic barrier func-
tion. We can distinguish between two different kind of these constraints

– Strict feasible matrix inequalities (section 8.4.1): strict feasible inequalities
need to be satisfied at every point during the whole optimisation process. This
is the case of eq. (7.12) as if TP 6= 0 the matrix function UTP

is not defined
and therefore admissibility can not be determined.

– Non-strict matrix inequalities (section 8.4.2): eqs. (7.13) to (7.16) are con-
straints that could be violated during the optimisation process as the convexity
of the problem does not required these to be satisfied. Note that even if any
of the mentioned inequalities is not satisfied, the problem remain well defined.
Nevertheless, non-strict inequalities still need to be satisfied by the optimal
solution.

• NLMI (section 8.4.3): these are matrix inequalities where the matrix function de-
pends non-linearly on the parameters of the problem as it is the case, in this problem,
of eq. (7.17). It must be assumed that non-linear matrix inequalities are non-strict.
With the last assumption, this case still represents the most complicated kind of
constraint that one can consider in SDP.

Note we have not spoken here about non-linear equality constraints. However, since
no practical benefit can be obtained from these, conversely to the case of linear equali-
ties which allow to reduce the dimensionality of the problem. Therefore we can simply
implement each of the non-linear equalities such as

B = AT ·X,

by means of two non-linear inequalities as

B ≥ ATx,

B ≤ ATx.

Next we review in more detail each of the listed constraints, but not without stating
before problem 7.4.2 in an standard form.

8.1 Semi-definite program statement: criterium and

objective function

We restate now the previous SDP problem as a minimisation over a vector X ∈ RK of a
convex function f(X). This minimisation is constrained by a set of matrix inequalities
where each matrix function depends on the vector X. Furthermore we have a given
number of linear equality constraints in the form AX = B.

First, we parametrise each of the linear matrices in problem 7.4.2 by the elements
in the lower triangle, using the symmetry property to reduce the number of parameters.
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8.1. Semi-definite program statement: criterium and objective function

We obtain a minimisation problem with respect to the column vector X ∈ RK defined in
eq. (8.1).

X =

































Ψ
triTP

triM
(1)
Ψ

...

triM
(n)
Ψ

triN
(1)
Ψ
...

triN
(n)
Ψ

triM
(1)
Γ

...

triM
(m)
Γ

triN
(1)
Γ
...

triN
(m)
Γ

































(8.1)

Note if we have a matrix TP ∈ SN+1 then the number of coefficients in the lower
triangle is equal to (N+2)(N+1)/2. Hence we have triTP ∈ R(N+2)(N+1)/2. Applying the
same relation to each of the matrices composing the vector X through the tri function,
we can compute the size K of such vector X ∈ RK .

K = 1 +
(N + 2)(N + 1)

2
+ (n+m)

(N + 2)(N + 1)

2
+ (n+m)

(N + 1)N

2
,

= 1 +
(N + 2)(N + 1)

2
+ (n+m)(N + 1)2.

Having all matrices parametrised by X, the criterium of problem 7.4.2 becomes

min
Ψ TP

M
(i)
Ψ ,N

(i)
Ψ

M
(k)
Γ ,N

(k)
Γ

Ψ = min
X∈RK

f(X),

where, in this case f(X) is a linear function, namely the value of Ψ, and can be expressed
as

f(X) = CTX,

with C,X ∈ RK . The vector C is the vector with a value 1 in the first position and zeros
everywhere else.

C =

[
1

0K−1

]

.
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8.2 Linear equalities

We rewrite now the equality constraints eqs. (7.11a) and (7.11b) in function of the vector
X. First note that we can express the evaluation of the gram matrix TP in terms of the
vector triTP by using the map PN as in eq. (7.18).

❇N
TTP❇N = ❇2N

TΞ(PN) · triTP .

Then we have for all i ∈ [1, n] and for all k ∈ [1,m]

❇2NTRΨ− ❇2N
TΞ(PN)triTP = ❇

(i)T

2N Ξ(PN)triM(i)
Ψ +X

(i)
Ψ ❇

(i)T

2N−2Ξ(PN−1)triN
(i)
Ψ ,

❇2N
TΞ(PN)triTP − Γ❇2NTR = ❇

(k)T

2N Ξ(PN)triM(k)
Γ +X

(k)
Γ ❇

(k)T

2N−2Ξ(PN−1)triN
(k)
Γ .

Let us denote❲ = ❇2N
TΞ(PN) as well as

❲
(i)
Ψ = ❇

(i)T

2N Ξ(PN) ❈
(i)
Ψ = X

(i)
Ψ ❇

(i)T

2N−2Ξ(PN−1) ∀i ∈ [1, n],

❲
(k)
Γ = ❇

(k)T

2N Ξ(PN) ❈
(k)
Γ = X

(k)
Γ ❇

(k)T

2N−2Ξ(PN−1) ∀k ∈ [1,m],

and then write it in the form AX = B to obtain eq. (8.2).

Problem 8.2.1 (Non-linear SDP).

Find: min
X∈RK

CTX,

Subject to: TP (X) � 0,

M
(i)
Ψ (X) � 0 ∀i ∈ [1, n],

N
(i)
Ψ (X) � 0 ∀i ∈ [1, n],

M
(k)
Γ (X) � 0 ∀k ∈ [1,m],

N
(k)
Γ (X) � 0 ∀k ∈ [1,m],

U(X) � ▲,
AX = B.

Problem 8.2.1 is already stated in a form allowing for the application of standard
SDP solvers. Nevertheless it can still be further simplified for a matter of computational
efficiency. This simplification is achieve by the elimination of the equality constraints
AX = B. Such elimination can be performed as long as an initial point X0 satisfying the
equality constraints AX0 = B is known.

8.2.1 Initial point

It should be noted first that the initial point X0 must also satisfy the strict feasible matrix
inequalities, namely TP (X0) ≻ 0. Hence, even if problem 8.2.1 is convex, a fully arbitrary
initial point cannot be used. Nevertheless assume the vector X can be divided in two
sub-vectors XF ∈ RKF , XU ∈ RKU where K = KF +KU and

X =

[
XF

XU

]
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              

−
❇

2
N
T
R

❲

. . .
. . .

−
❇

2
N
T
R

❲

0 2
N
+
1

−
❲

. . .
. . .

0 2
N
+
1

−
❲

︸
︷
︷

︸

A
F

❲
(1
)

Ψ
··
·

0
M

❈
(1
)

Ψ
··
·

0
N

. . .
. .
.

. . .
. . .

. .
.

. . .

0
M

··
·
❲

(n
)

Ψ
0
N

··
·
❈

(n
)

Ψ

❲
(1
)

Γ
··
·

0
M

❈
(1
)

Γ
··
·

0
N

. . .
. .
.

. . .
. . .

. .
.

. . .

0
M

··
·
❲

(m
)

Γ
0
N

··
·
❈

(m
)

Γ

              

︸
︷
︷

︸

A
U

︸
︷
︷

︸

A

                                      

Ψ

tr
iT

P

tr
iM

(1
)

Ψ

. . .

tr
iM

(n
)

Ψ

tr
iN

(1
)

Ψ

. . .

tr
iN

(n
)

Ψ

tr
iM

(1
)

Γ

. . .

tr
iM

(m
)

Γ

tr
iN

(1
)

Γ

. . .

tr
iN

(m
)

Γ

                                      

︸
︷
︷

︸

X

  
X
F

                                                                

X
U

=

              

0 2
N
+
1

. . .

0 2
N
+
1

−
Γ
❇

2
N
T
R

. . .

−
Γ
❇

2
N
T
R

              

︸
︷
︷

︸

B

0
M

=
0
2
N
+
1
,(
N
+
2
)(
N
+
1
)/
2

0
N
=

0
2
N
+
1
,(
N
+
1
)N
/
2

E
q
u
a
ti
o
n

8
.2
:
L
in
ea
r
eq
u
al
it
ie
s
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such that the strict matrices can be computed only from XF . For any vector XF such
that strict inequalities are satisfied, TP (XF ) ≻ 0, there exist XU ∈ RKU such that

A ·
[
XF

XU

]

= B

as long as KU ≥ (n +m)(2N + 1). Dividing also the matrix A = [AF,AU] with AF of
size (2N + 1)× (KF ) and AU of size (2N + 1)× (KU) the linear equation system

AU ·XU = B −AF ·XF (8.3)

is under-determined. Therefore we can just take any solution XU to eq. (8.3).

Example 8.2.1. Consider problem 8.2.1, we can take

Ψ = 1,

TP = IM ≻ 0,

with IM the (N + 1)× (N + 1) identity matrix. Then we have

XF =

[
Ψ

triTP

]

=

[
1

triIM

]

,

which provides us the equation system in eq. (8.4).

8.2.2 Equality elimination

We apply elimination method to ensure equalities constraints AX = B are satisfied while
reducing the number of variables in the problem. Note we already dispose of an initial
point X0 ∈ RK such that AX0 = B. If we now denote Y = X − X0 we have the
homogeneous system

AY = A(X −X0) = B − B = 0.

Considering the vector Y as the new problem variable, the equality constrains become

Y ∈ ker(A),

where ker(A) denotes the null-space of the linear application Y 7→ AY . Moreover the
vector Y belongs to kerA if and only if it can be written as

Y = KAW W ∈ R
Z , (8.5)

where KA is a basis of kerA and Z denotes the nullity of A. Introducing the expression
of Y in eq. (8.5) we have the parametrisation of the vector X

X = X0 +KAW,

which ensures the equality constraints AX = B are satisfied for every W ∈ RZ . Now
we need an initial point W0 such that the strict feasible matrix inequalities are satisfied.
This is now trivial as the vector X = X0 has been computed to satisfied those strict
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              
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inequalities. Therefore we choose W0 = 0Z . With this new parametrisation in W , and
assuming that the matrix A is of full rank, the dimension of the problem is reduced by a
quantity equal to the number of equalities, namely (n+m)(2N + 1). Therefore we have

Z = K − (n+m)(2N + 1),

= 1 +
(N + 2)(N + 1)

2
+ (n+m)(N + 1)2 − (n+m)(2N + 1),

= 1 +
(N + 2)(N + 1)

2
+ (n+m)N2.

We can now restate problem 8.2.1 without equality constraints.

Problem 8.2.2 (Non-linear SDP without equality constraints).

Find: min
W∈RZ

CTKAW,

Subject to: TP (X0 +KAW ) � 0, (8.6)

M
(i)
Ψ (X0 +KAW ) � 0 ∀i ∈ [1, n], (8.7)

N
(i)
Ψ (X0 +KAW ) � 0 ∀i ∈ [1, n], (8.8)

M
(k)
Γ (X0 +KAW ) � 0 ∀k ∈ [1,m], (8.9)

N
(k)
Γ (X0 +KAW ) � 0 ∀k ∈ [1,m], (8.10)

U(X0 +KAW ) � ▲. (8.11)

Next we begin with the introduction to the interior-point methods. Problem 8.2.2
is the minimization of a linear function, namely the function f(W ) = CTKAW , with
respect to the vector W ∈ RZ . This minimization is done within a subspace of RZ

determined by the positivity of a set of matrices which depend on the vector W . To
determine the aforementioned subspace can be used many optimization techniques of
varied nature.

In our case, we choose to use interior point methods what implies that every point W
during the optimisation process is located inside a determined region, which as we show
later on, does not necessarily coincide with the feasible region to the problem.

8.3 Introduction to interior point methods

Consider now a subspace K ⊂ RZ and suppose we are interested on minimising the
function f(W ) within that subspace. This problem can be solved by folding the
constraints of belonging to the set K into the criterium and then computing the solution
to an unconstrained optimisation problem. The said unconstrained problem refers to
the minimisation of the function f(W ) + h(W ) where h(W ) is the hard barrier function
that takes the value 0 if W belong to the inside of K and infinity if W is exactly on the
boundary of K. Therefore the solution to this unconstrained problem is also the solution
to the problem of minimising f(W ) with W ∈ K since when W reaches the boundary of
the feasible set the criterium grows infinitely what represents without any doubt a non
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decreasing criterium.

This concept is analogous to having a numeric barrier on the boundary of the
feasible set, where numeric barrier stands for an infinity criterium value. Nevertheless a
function h(W ) that only takes the values 0 or ∞ depending on the vector W is absolutely
non-differentiable and does not facilitates in any aspect the solution of the constrained
problem. In order to overcome this issue we apply a trick used by mathematician each
time this kind of unfriendly functions are faced, we approach it with a differentiable
function. Hence, instead of the hard barrier function h(W ) we use a different function
which is as flat as possible in the interior of the feasible domain while smoothly growing
toward infinity as long as W approaches the boundary of the domain. This function is
continuous on the domain K and at least twice differentiable, allowing for an efficient
numerical computation of its fist and second derivatives, namely the gradient and the
Hessian matrix with respect to the vector W .

Additionally, this smooth barrier function also depends on a parameter t ∈ R+ used
to control the error in the approximation of the function h(W ). Let us denote here this
function by βt(W ). We have limt→∞ βt(W ) = h(W ) for all W ∈ K meanwhile for a small
value of t the function function βt(W ) is extremely well behaved. Therefore the barrier
function is easy to minimize with a small value of t, say t = 0, for example by the classical
Newton method, while, as the value of t increases, the said minimization becomes more
complicated, requiring a greater number of iterations in the aforementioned Newton
method.

Nevertheless note that since the solution to the optimization problem is easy to
calculate for t = 0, if the value of t is increased by a small quantity ǫ, we have a new
optimisation problem that is extremely close to the previous one. Then if the optimal
solution to the problem with t = 0 is taken as initial point, we can make the problem
with t = ǫ as easy to solve as necessary by taking the value of ǫ arbitrary small. Indeed
the proofs showing the convergence of the interior points methods are based on the
fact that if a value Wopt is the optimal solution to the problem for a given value of t,
then you can always take ǫ small enough such that the point Wopt is still in the region
of quadratic convergence of the classical Newton method. This process of gradually
transforming the problem by means of a parameter t from a version of the problem that
is trivially solvable to a final problem which is much more complicated is called homotopy.

We discuss next another vital property of the barrier function βt(W ). Note when
we are facing a highly not convex problem as it could be the case of our matching
problem, we could consider such problem as solved from the moment when we are able
to express such problem by using a convex formulation. Particularly, if you are able to
formulate a convex problem and prove the unique local solution to the convex problem
is global optimal solution to the original one, then you are done. The reason comes
from the fact that in theory, the optimal solution to a convex problem can be eas-
ily found by any optimisation method as there is no local minima where we could get stuck.

However, if a non-convex barrier function βt(W ) is used, the convexity of the problem
we just came with is lost. Hence the work carried out to transform the original problem
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onto a convex one was all for nothing. With this argument we try to emphasize the
importance of the convexity of the barrier function βt(W ). This is indeed a crucial
property of the barrier function.

8.3.1 Lagrangian function

As mentioned above, barrier functions are used to include the constraints of the problem
in the function to be optimized in such a way that the constrained problem becomes a
non-constrained optimization problem. To provide a first notion of the type of problem
we face, let us consider a simple inequality constrained problem.

Problem 8.3.1 (Constrained optimisation problem).

Find: min
W

f(W ),

Subject to: g(W ) ≥ 0.

We denoteWopt the value ofW providing the optimal criterium in problem 8.3.1. Now
let us introduce the Lagrange function which is defined as

Λ(W, y) = f(W )− y · g(W ). (8.12)

where y ≥ 0 is called the Lagrange multiplier. We also define W
(y)
opt by means of the

minimisation of the Lagrangian Λ(W, y) with respect to W

W
(y)
opt = argmin

W
Λ(W, y).

Computing now the gradient of Λ(W, y) with respect to W we have

DWΛ(W, y) = DWf(W )− yDWg(W ),

which vanishes at the optimal point W
(y)
opt

DWΛ(W
(y)
opt , y) = 0 ∀y ≥ 0.

The first thing to be noted here is the fact that, if the point W
(y)
opt is feasible for prob-

lem 8.3.1, namely g(W
(y)
opt ) ≥ 0, we have yg(W

(y)
opt ) ≥ 0 and hence the value of the La-

grangian at the point W
(y)
opt verifies

Λ(W
(y)
opt , y) ≤ f(Wopt) ∀y ≥ 0.

This can be seen intuitively for any y ≥ 0. For instance, take y = 0, then Λ(W
(0)
opt , 0) is

the solution to problem 8.3.1 without any constraint, and therefore the criterium f(Wopt)
including the constraint g(W ) ≥ 0 is necessarily worse. Similarly, if we take y > 0, simply

by introducing the value Wopt into eq. (8.12), since y · g(W (y)
opt ) ≥ 0 we have

Λ(Wopt, y) = f(Wopt)− y · g(Wopt) ≤ f(Wopt), (8.13)
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where equality holds if and only if g(Wopt) = 0. Therefore the minimisation of the
Lagrangian function in eq. (8.12) with any value y ≥ 0 provides a lower bound on the so-

lution to problem 8.3.1 as long as the obtained minimiserW
(y)
opt is feasible for problem 8.3.1.

At this point, we find the classical Lagrangian dual problem which simply consists on
looking for the best lower bound to problem 8.3.1. As the said lower bound is given by
Λ(W

(y)
opt , y), then we just maximise this quantity with respect to y.

Problem 8.3.2 (Lagrange dual problem).

Find: max
y

Λ(W
(y)
opt , y),

Subject to: y ≥ 0.

This dual problem provides the best lower bound with respect to the Lagrange
multiplier value y. In addition, often the dual problem is solved at hands of the original
problem, commonly called primal, since it allows to include the constraints within the
objective function. In fact, in many cases it is possible to show that this better lower
bound is indeed sharp. Therefore, the solution to Lagrange’s dual problem is also the
optimal solution to the original problem.

Additionally note that the previous concept can be easily generalised to matrix in-
equalities. For instance if have the problem

Find: min
W

f(W ),

Subject to: A(W ) � 0 A(W ) ∈ S
N ,

then we can just define the Lagrangian function ∆(W,Y)

∆(W,Y) = f(W )− 〈Y,A(W )〉, (8.14)

where Y ∈ SN+ is the matrix version of the Lagrange multiplier and 〈Y,A〉 = tr (Y,A)
denotes the Frobenious product, namely an inner product in the space SN .

After this introduction to Lagrange dual problem, which we refer conveniently later
on, let us move on to the barrier functions.

8.4 Barrier functions

Barrier functions represents the main interest of the present chapter, providing a slightly
different approach to include inequality constraints into the criterium. Consider again
problem 8.3.1 with the inequality constraint g(W ) ≥ 0. This time, instead of simply
adding the function yg(W ) into the criterium, we define a different version of the La-
grangian function as

Λ(W, t) = f(W ) +
1

t
βt(g(W )),
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where the function βt : R+ 7→ R satisfies

lim
x→0
x>0

βt(W ) = ∞ ∀t > 0.

Note that the domain of Λ(W, t) is the feasible region for problem 8.3.1. Furthermore, as
t tends to infinity, the function Λ(W, t) tends to f(W ) in the region where g(W ) > 0.

lim
t→∞

Λ(W, t) = f(W ) ∀W : g(W ) > 0.

The barrier function βt(g(W )) ensures that if the minimiser of the Lagrangian Λ(W, t),

denoted here by W
(t)
opt

W
(t)
opt = argmin

W
Λ(W, t)

is a feasible point for problem 8.3.1. This is so since when g(W ) approaches 0, the value
of the function Λ(W, t) grows to infinity, which is certainly not the minimum of Λ(W, t).
Additionally note we have only defined Λ(W, t) for t > 0, where we give more importance
to the function f(W ) over the barrier βt(g(W )) as long as t→ ∞. The value t = 0 implies
then that only the barrier function is considered. Hence we can define

Λ(W, 0) = β0(g(W )).

The minimisation of the function Λ(W, 0) provides thereby a point W
(0)
opt as far as possible

from the boundary of the domain of Λ(W, 0) and therefore centered in the feasible region
of problem 8.3.1.

Next we come back to the semi-definite program in problem 8.2.2 and apply the notion
of barrier functions introduced above. For this matter, we introduce different choices of
the function βt, each one suitable for one of the constraints presented in problem 8.2.2.

8.4.1 The log barrier

The first barrier considered in this work is the pure logarithmic barrier βL

βL : S
N 7→ R,

T 7→ βL(T) = − log detT.

This barrier function is widely used in the literature of interior-points methods. The
log barrier is used in this work to ensure the positive-definiteness of the matrix TP in
eq. (8.6). Therefore consider the problem

Problem 8.4.1 (Simple SDP).

Find: min
X∈RN2

f(W ),

Subject to: T(W ) � 0.
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It should be noted that when the matrix T evolves toward a singular matrix during
the optimisation process, the function βL(T) grows to infinity. At the limit we have

βLt (T) = ∞ ∀T ≻= 0.

Additionally, the convexity of the function βL is easily verified as shown for instance in
[44, Chapter 3, section 1].

Theorem 8.4.1 (Convexity of the log barrier). The function βL(A) is convex.

Proof. The function βL(A) is defined for all A ≻ 0. Then we take a line A = Z+ tY in
the domain of βL(A). We consider Z ≻ 0 and Z+ tY ≻ 0. We have

Z+ tY =
√
Z(IN + t

√
Z−1Y

√
Z−1)

√
Z.

Taking the determinant of the previous expression

det(Z+ tY) = detZ+ det (IN + t
√
Z−1Y

√
Z−1).

Now compute the Schur decomposition of the matrix
√
Z−1Y

√
Z−1 as

√
Z−1Y

√
Z−1 = VTTV

where T is a triangular matrix with the eigenvalues of
√
Z−1Y

√
Z−1 as diagonal elements

and V is unitary, namely VTV = IN . Therefore

det(IN + tVTTV) = det(VT (IN + tT)V) =
N∏

k=1

(1 + tυk),

where υk denotes the eigenvalues of the matrix
√
Z−1Y

√
Z−1. Now we have

βL(Z+ tY) = − log det(Z+ tY)

= − log det(Z)− log

(
N∏

k=1

(1 + tυk)

)

= − log det(Z)−
N∑

k=1

log(1 + tυk).

If we compute the derivatives of βL(Z+ tY) with respect to t we have

Dtβ
L(Z+ tY) = −

N∑

k=1

υk
1 + tυk

,

D2
tβ

L(Z+ tY) =
N∑

k=1

υ2k
(1 + tυk)2

≥ 0.

We have D2
tβ

L(Z+ tY) ≥ 0 and hence the convexity of βL.

Thèse de doctorat — Université de Limoges — 2019 Page 183



Chapter 8. Computation of the optimal solution

If we denote now by X ∈ RN
2
the vector containing the coefficients of the matrix T

such that T = T(W ), then we have the scalar function

βL : R
N2 7→ R,

X 7→ βL(W ) = − log detT(W ).

We include in fig. 8.1 a graphical example to illustrate the function 1
t
βL(T) namely

1

t
βL(T) =

1

t
log detT

for different values of the parameter t. This illustration shows how the barrier function
evolves from a soft barrier (with a small value for the parameter t) to the hard barrier
function h(T) such that

h(T) =

{
0 T ≻ 0
∞ T ≻= 0

.

8.4.1.1 Gradient and Hessian matrix

The definition of the function βL(W ) as a scalar function with a vector variable simplifies
the task of writing its gradient ∇βL(W ) and Hessian matrix HβL(W ), which becomes
a N2 column vector and a N2 ×N2 symmetric matrix respectively. Nevertheless, before
providing the expressions of ∇βL(W ) and HβL(W ), we should introduce the function
inv(W ).

Definition 8.4.1 (Function inv). We define inv : RN
2 7→ RN

2
as the function that asso-

ciates to each vector X ∈ RN
2
, the column vector with the coefficients of T(W )−1

inv(W ) = v(T(W )−1)T .

Let us now compute the Jacobian and Hessian matrix of the function inv(W ) since
they are required later on.

Theorem 8.4.2 (Jacobian of the inverse matrix). The Jacobian matrix of the function
inv(W ) defined before takes the expression

Jinv(W ) = T(W )−1 ⊗T(W )−1,

where A⊗B represents the Kronecker product of the matrices A and B.

Note that the matrix function Jinv(W ) keeps the symmetry property of T(W ). In
other words, if T(W ) ∈ SN , then Jinv(W ) ∈ SN

2
. We provide next the derivatives of

the function F (W ) = 〈Y,T(W )−1〉 where Y ∈ SN and 〈A,B〉 denotes the Frobenious
product. This product is defined as

〈A,B〉 = v(A)Tv(B).

Theorem 8.4.3 (Hessian matrix of the inv function). Consider the scalar function F :
RN

2 7→ R defined as

F (W ) = v(Y)T inv(W ).

The Hessian matrix of the function F (W ) can be computed as

HF (W ) = inv(W )v(Y)T∇inv(W ) +∇inv(W )Tv(Y)inv(W )T .
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Figure 8.1: Log barrier
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Proof of theorem 8.4.2. Denote A = T−1. To prove the theorem, we compute the deriva-
tive of the entry Ai,h with respect to the element Tk,l in the original matrix. Let us
compute the derivative of the product AT

D
Tk,l

AT = (D
Tk,l

A)T+A(D
Tk,l

T) = 0.

Therefore we have

(D
Tk,l

A)T = −A(D
Tk,l

T). (8.15)

Multiplying at the left both sides of eq. (8.15) by A = T−1 we get

D
Tk,l

A = −A(D
Tk,l

T)A.

Notice the derivative D
Tk,l

T with respect to every element k, l is the zero matrix of size

N × N with 1 in the entry (k, l). Therefore the derivative of each coefficient Ai,h with
respect to the (k, l) entry in T, namely D

Ti,h
Ak,l is given by the element (i, h) of the

matrix D
Tk,l

A, which takes the expression

D
Ti,h

Ak,l = −Ai,kAh,l.

The previous quantities correspond to the entries in the matrix resulting from the Kro-
neker product

D
Ti,h

Ak,l = [A⊗A]iN+h,kN+l .

The proof is completed.

Proof of theorem 8.4.3. Denote againA = T−1. Now let us compute the second derivative
of the inverse matrix. We have D

Ti,h
A = AD

Ti,h
TA. Computing further the second

derivative with respect to Tk,l of the previous expression.

D2
Tk,lTi,h

A = (D
Tk,l

A)(D
Ti,h

T)A+A(D
Ti,h

T)(D
Tk,l

A),

= (D
Tk,l

A)(D
Ti,h

T)A+
(

(D
Tk,l

A)(D
Ti,h

T)A
)
T .

The matrix D
Ti,h

T contains the value 1 in the (i, h) entry, which is the only non-zero
entry. Therefore, we have as before

[(D
Tk,l

A)(D
Ti,h

T)A]p,q = (D
Tk,l

Ap,i)Ah,q k, l, i, h, p, q ∈ [1, N ].

If we denote now A = A(W ) where X ∈ RN
2
is the column vector with the coefficients of

A, for every pair (k, l) ∈ RN ×RN and (p, i) ∈ RN ×RN the derivatives D
Tk,l

Ap,i are given

by the Jacobian matrix of the function inv(W ) = v(T(W )−1) computed before. Then the
Hessian matrix of F can be computed row-wise as

HF (W ) =











A1,1(W )v(Y)TJinv(W )

A2,1(W )v(Y)TJinv(W )
...

AN,N(W )v(Y)TJinv(W )











+











A1,1(W )v(Y)TJinv(W )

A2,1(W )v(Y)TJinv(W )
...

AN,N(W )v(Y)TJinv(W )











T .

Hence HF (W ) = inv(W )v(Y)TJinv(W ) +
(
inv(W )v(Y)TJinv(W )

)
T .
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The function inv(W ) together with the expression of its Jacobian Jinv(W ) allows us
to easily obtain the derivatives of the barrier function βL.

Theorem 8.4.4 (Gradient and Hessian matrix of the log barrier). The gradient and the
Hessian matrix of the function βL(W ) with respect to W are obtained as

∇βL(W ) = −inv(W ), (8.16)

HβL(W ) = T(W )−1 ⊗T(W )−1. (8.17)

Notice that, apart from the product operations, one matrix inversion is required to
compute ∇βLt (W ) and HβLt (W ) what entails a high computational efficiency.

Let us provide next the proof of eqs. (8.16) and (8.17). First notice the Jacobi formula

Theorem 8.4.5 (Jacobi formula). The derivative of detT with respect to the (i, h) entry
of the matrix T equals the i, h adjugate of the matrix T.

D
Ti,h

detT = adji,hT.

Proof of eq. (8.16). Using theorem 8.4.5 we write

D
Ti,h

log detT =
D

Ti,h
detT

detT
=

adji,hT

detT
,

which is the expression of the (i, h) entry in the matrix A = T−1.

Proof of theorem 8.4.4. The proof of eq. (8.16) follows from theorem 8.4.5. For the proof
of eq. (8.17) note that the Hessian matrix of βL corresponds to the Jacobian matrix of
the function inv(W ). Hence eq. (8.17) follows from theorem 8.4.2.

8.4.1.2 Lagrangian function

We can now write the Lagrangian function associated to problem 8.4.1 as

ΛL(W, t) = f(W )− 1

t
log detT(W ),

which is a convex function in X. The barrier βLt guarantees the feasibility of the problem
for each of the matrices T obtained during the optimization process. This barrier function
allows us to obtain an approximation of the solution to problem 8.4.1 by solving the
following sequence of convex problems.

Problem 8.4.2 (Problem SDP(t) with strict feasible barrier).

Find: min
X∈RN2

ΛL(W, t).

Since problem 8.4.2 has no constraints, the optimal solution W opt satisfies

∇ΛL(W opt) = ∇f (W
opt)− 1

t

〈
T(W opt)−1,∇T

〉
= 0. (8.18)

Remark that eq. (8.18) can be compared to the derivative of eq. (8.14) by taking

Y =
1

t
T(W opt)−1.
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Therefore the point W opt minimises the Lagrangian

Λ(W,Y) = f(W )− 〈Y,T(W )〉.

As in eq. (8.13), the minimisation of the Lagrangian provides us a lower bound on the
optimal criterium of problem 8.4.1 where the quantity

G = 〈Y,T(W )〉 = 1

t
tr
(
T(W opt)−1,T(W opt)

)
=
N

t

represents the duality gap. Hence we have

f(W opt)− N

t
< min

X∈RN2
f(W ) T(W ) � 0. (8.19)

Note that the solution W opt to problem 8.4.2 is only N/t sub-optimal for problem 8.4.1.
Therefore as the value of the parameter t increases in problem 8.4.2, we approach the
solution to problem 8.4.1. However, since this barrier function is not defined for T ⊁ 0 a
feasible initial matrix T ≻ 0 is required. This is the reason why the function β is only
used to ensure the positivity of TP in eq. (8.6).

If a feasible initial point is not known, we can redefine this barrier, to handle any
arbitrary starting point as it is done in the following section.

8.4.2 Shifted logarithm barrier

This function is defined similarly to the logarithmic barrier function introduced in the
previous section. However, given an initial matrix T, we perform a scaling and displace-
ment so that the matrix T is within the domain of this function. The cited function
is

βSs : R
N2 7→ R

X 7→ βSs (W ) = − log det (sT(W ) + IN) ,

where IN represents the N × N identity matrix. Notice the function βSs (W ) with s > 0
is only defined for T(W ) ≻ −IN/t. Additionally a barrier is present at the points where
T(W ) ≻= −IN/t.

It can also be verified that the function βSs converges as well towards the ideal bar-
rier h(T) when t → ∞. We show in fig. 8.2 the evolution of the function 1

s
βSs (T) =

1
s
log det(sT + IN) where in order to allow for a 2D visualisation, we choose the matrix

T ∈ S1, namely a scalar value.

8.4.2.1 Gradient and Hessian matrix

Note that only a linear transformation as been applied to the matrix T(W ) with respect
to the previous function βLt , therefore we can easily state the following theorem
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Figure 8.2: Shifted log barrier
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Theorem 8.4.6 (Gradient and Hessian matrix of the shifted logarithmic barrier). The
gradient and the Hessian matrix of the function βSS (W ) with respect to W are obtained
as

∇βSs (W ) = −s · v((sT(W ) + IN)
−1)T ,

HβSs (W ) = s2 · (sT(W ) + IN)
−1 ⊗ (sT(W ) + IN)

−1.

Proof. Follows from eqs. (8.16) and (8.17)

8.4.2.2 Lagrangian function and weight parameter update

This time we solve a secuence of non constrained problem SDP(ν, s) where the value of s
is also increased in each iteration.

Problem 8.4.3 (Problem SDP(ν,s) with non-strict feasible barrier).

Find: min
X∈RN2

ΛS(W, s),

where: ΛS(W, s) = f(W )− 1

νs
log det(sT(W ) + IN).

We consider further that the objective function is linear, namely f(W ) = CTX with
C ∈ RN

2
. In addition to the aforementioned update of s, notice the presence of the value

ν ∈ R+ which plays the role of a Lagrange multiplier. This parameter is used to push the
matrix T(W ) toward the feasible domain if T(X̂), where X̂ denotes the optimal point
X in the previous iteration, is infeasible. Similarly if T(X̂) is inside the feasible region,
the value of ν is increased allowing for T(W ) to approach the boundary of the admissible
domain. In particular, we take advantage of the linear dependence of the function f(W )
and the matrix T(W ) with respect to X and perform, at each iteration a linsearch toward
the boundary of the feasible region. We compute the value µ ∈ R that satisfies

T(X̂) + µC ≻= 0.

Then we update the parameter ν such that

‖∇f(X̂ + µC)‖ =
1

νs
‖∇βSs (X̂ + µC)‖,

‖C‖ =
1

ν
· ‖v((sT(X̂) + sµC+ IN)

−1)‖.

Therefore the value ν is updated according to the following rule

ν =
‖v((s(T(X̂) + µC) + IN)

−1)‖
‖C‖ .

This update decreases the value of ν if the point X̂ obtained in the previous iteration was
not feasible while producing bigger values of ν if the previous optimal point is feasible.
At the point X̂ we have

∇ΛS(X̂) = ∇f (X̂)− 1

ν

〈

(sT(X̂) + IN)
−1, s∇T(X̂)

〉

= 0,
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which corresponds to the derivative of the function

Λ(W,Y) = f(W )− 〈Y,T(W )〉,

with the choice of Y

Y =
1

ν

(

T(X̂) +
1

s
IN

)−1

.

Therefore similarly to eq. (8.19) we have

f(X̂)− 1

ν

〈(

T(X̂) +
1

s
IN

)−1

,T(X̂)

〉

< min
X∈RN2

f(W ) T(W ) � 0.

Note that

lim
s→∞

〈(

T(X̂) +
1

s
IN

)−1

,T(X̂)

〉

=
〈

T(X̂)−1,T(X̂)
〉

= N.

Obtaining that, if T(X̂) ≻ 0, the duality gap is approached by 1
ν
N and decreases as the

value of ν increases.

8.4.3 A barrier function for non-linear constraints

As we have demonstrated in previous sections, the convexity property is one of the
benefits of the logarithm barrier to guarantee the feasibility of linear matrix inequalities.
However when non-linear matrices come into play, things are a bit more complex. This
is the case of the matrix constraint in eq. (8.11).

Lemma 8.4.1. Let f1 and f2 be convex uni-variate functions with f2 non-decreasing over
its domain. Then the composition f2(f1) is a convex function.

Remark 8.4.1. Note that the convexity property does not follows from the composition
of two convex functions without any additional assumption.

Remark 8.4.2. Note further that in theorem 8.4.1 we have shown the convexity of the
logarithm barrier βL(T) with respect to the entries of the matrix T. Nevertheless, the
convexity of βL(T) does not holds in general if the entries of T are only supposed to be
convex functions.

Remark 8.4.3. Furthermore in problem 8.2.2, we have not stated anything about the
convexity of the function X0 + KAW in eq. (8.11). The convexity property carries over
the set of polynomials P ∈ P2N

+ , parametrised in this case as a function of the variable
W ∈ RZ such that U(P ) � ▲. This condition, although is enough to guarantee the absence
of local minima in the primal problem, it is not sufficienty to ensure the convexity of the
barrier log detU(P ). Therefore local minima might appears uppon the minimisation of
the Lagrangian function. As a result the convexity property obtained in part II is lost by
the choice of an innapropiate barrier function.
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In order to overcome the issue discused in remark 8.4.3, instead of the previously
introduced logarithmic barrier, we apply the barrier function studied in [45]. This barrier
function is defined as

βYr : S
N 7→ S

N ,

U 7→ βYr (U) = (rU+ IN)
−1 − IN .

Notice the βYr is a matrix function instead of a scalar one. This matrix function is com-
bined with a matricial Lagrange multiplier Y ∈ SN+ to compose the following Lagrangian
function

Λ(W, r,Y) = f(W ) +
1

r
〈Y, βYr (U(W ))〉 U(W ) = U(W )−▲. (8.20)

Additionally, the matrix multiplier Y is updated in each iteration according to

Y = (rU+ IN)
−1 Ŷ (rU+ IN)

−1 .

where Ŷ represent the matrix Y used in previous iteration.

Lemma 8.4.2. Consider a matrix function U(P ) with the convex property in the matrix
sense, namely for all P1, P2 ∈ P2N

+ and 0 ≤ κ ≤ 1 we have

U(κP1 + (1− κ)P2) � κU(P1) + (1− κ)U(P2).

Then the Lagrangian function defined in eq. (8.20) is convex.

Therefore this special choice of barrier provides us with a convex augmented la-
grangian. However the convexity is obtained at the expenses of imposing an additional
property on the matrix U(P ), with is stronger than the convexity of the set of polynomi-
als P ∈ P2N

+ such that U(P ) � ▲. This property is the convexity of the matrix function
U(P ) which has been studied in chapter 5.

Finally, as in the previous cases, it is interesting to show a graphical representation of
the function βYr in the case where U ∈ S1. This function is plotted in fig. 8.3 for different
values of the parameter t.

8.4.3.1 Gradient and Hessian matrix

Let us now state

Theorem 8.4.7 (Derivatives of the barrier function βYr ). Consider the vector function
B(W ) : RN

2 7→ RN
2
where

B(W ) = v(Y)Tv
(
(rU(W ) + IN)

−1 − IN
)
.

The gradient and Hessian matrix of B are expressed as

∇B(W ) = v(Y )T
[
(rU(W ) + IN)

−1 ⊗ (rU(W ) + IN)
−1
]
,

HB(W ) = v
[
(rU(W ) + IN)

−1]∇B(W ) +∇B(W )T .v
[
(rU(W ) + IN)

−1] T
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Figure 8.3: Nonlinear barrier
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Proof. Follows from theorems 8.4.2 and 8.4.3.

Again, it is important to remark that, apart from the operations required to compute
the product, only one matrix inversion is required to compute ∇B and HB, namely the
inversion of the matrix (rU(W ) + IN). This implies, as in the case of the previous barrier
functions, a significant computational efficiency.

8.4.3.2 Lagrangian function

The function in eq. (8.20), which has the form in eq. (8.14) is the Lagrangian associated
to the following optimisation problem

Problem 8.4.4 (Unconstrained SDP(k) with non linear matrix inequalities ).

Find: min
X∈RN2

f(W ),

Subject to: −βYr (W ) � 0,

where βYr (W ) � 0 if and only if U(W ) � 0.

Therefore if we denote X̂ = argminX∈RN2 Λ(W, r,Y), assuming U(X̂) � 0 we obtain
the bound

f(X̂) +
1

r
〈Y, βYr (X̂)〉 ≤ min

X∈RN2
f(W ) U(W ) ≥ 0,

with the duality gap given by −1
r
〈Y, βYr (X̂).

8.5 A non-constrained convex problem

Combining each of the barrier functions presented here, namely aplying βL to eq. (8.6), βSs
to eqs. (8.7) to (8.10) and βYr to eq. (8.11), we obtain the following Lagrangian function
that includes every matrix inequality in problem 8.2.2

Λ(W, t, s, r, ν,Y) = CTKAW

+
1

t
βLt (TP (W ))

+
1

νs

n∑

l=1

βSs (M
(l)
Ψ (W )) + βSs (N

(l)
Ψ (W ))

+
1

νs

m∑

k=1

βSs (M
(k)
Γ (W )) + βSs (N

(k)
Γ (W ))

+
1

r
〈Y, βYr (U(W )−▲)〉. (8.21)

This Lagrangian function allows us to obtain an approximation of the solution of the
original problem by solving a series of convex optimization problems without constraints.

Problem 8.5.1 (Unconstrained dual Lagrange problem in iteration i: SDP(i)).

Find: min
W

Λ(W, ti, si, ri, νi,Yi).
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where in each iteration the values ti, si, ri are increased in a given amount meanwhile
the multipliers νi,Yi are updated as indicated previously in the correspondent sections.
In addition assuming all matrices are positive semi-definite, the vector W

(i)
opt providing the

optimal solution in the i-th iteration satisfies

CTKAW
(i)
opt − φ(i)(W

(i)
opt) < CTKAWopt,

where Wopt is the minimizer of the original problem and

φ(i)(W
(i)
opt) =

N + 1

ti
+

(n+m)(2N + 1)

νi
− 1

ri

〈

Yi, β
Y
ri
(W

(i)
opt)
〉

.

Then we can ensure that the solution is at most φ(i)(W
(i)
opt) sub-optimal. In addition

φ(i)(W
(i)
opt) → 0 when t, ν, r → ∞. Therefore the solution to the optimal problem is

approached at each iteration.

8.5.1 The newton solver

The Newton method is one of the most efficient methods used in optimization. Especially
in the search for the extreme values of a multivariate scalar function f(W ) : RZ 7→ R.
Although it is very probable that said method is already more than known considering the
profile of a potential reader, it always deserves a small discussion, even more considering
its importance in this chapter. Newton’s method is based on the minimization of the
quadratic approximation of the function f(W ) around an initial point W (i). We define
the quadratic approximation of f around Wi as Fi(W ), and denote the gradient of Fi by

∇Fi
(W ) : R

Z 7→ R
Z .

The function ∇Fi
(W ) is linear in W and therefore its Jacobian matrix J∇Fi

does not
depends on the variable W . Hence

J∇Fi
(W0 −W ) = ∇Fi

(W0)−∇Fi
(W ).

The point W opt
i such that ∇Fi

(W opt
i ) = 0Z is then expressed as

W opt
i = W − J−1

∇Fi
∇Fi

(W )

for any W ∈ RZ . The Jacobian matrix of the gradient of Fi(W ) corresponds to the
Hessian matrix Hf (W ) of the function f(W ) at the point Wi. Newton’s method allows
the displacement in the i-th iteration to the point Wi+1 which minimizes the quadratic
approximation of the function f(W ) at Wi. The operation performed at each iteration is
given by

Wi+1 = Wi −Hf (Wi)
−1∇f (Wi). (8.22)

This algorithm provides a quadratic convergence rate in the region where the second order
approximation of the f function is good. Notice if the function to be minimised f(W )
is quadratic, previous method provides the optimal minimiser W opt in only one iteration
as as the quadratic approximation F coincides with the function f itself. Nevertheless,
a quadratic approximation might not be good for the Lagrangian function in eq. (8.21),
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specially as the values of t, s, r grows. Furthermore, note that the vector W in eq. (8.21)
must always remain within the feasible region for the strict feasible inequalities, namely
TP (W ) ≻ 0. To account for this restriction, we add a parameter ξ to eq. (8.22) such that

Wi+1 = Wi + ξdir(Wi), (8.23)

where dir(Wi) denotes the direction given by −Hf (Wi)
−1∇f (Wi). This method of updat-

ing the variableW corresponds to the modified Newton method, which can be interpreted
as a variable displacement in the direction indicated by dir(Wi) which points towards the
minimum of the quadratic approximation of f(W ) at W = Wi. This prevents the incre-
ment given by dir(Wi) from being too large or too short, providing for instance a vector
Wi outside the region where TTP (W ) ≻ 0. Finally note that the exception where the f
function has a good quadratic approximation and the previous method fails is the case
where f is linear, in which case the Hessian matrix of f is zero. Nevertheless in this case
the descent direction of the function f(W ) is simply provided by the gradient −∇f (W ).
Therefore we choose the direction dir(W ) as

dir(W ) =







−Hf (W )−1∇f (W ) if Hf (W ) ≻ 0

−∇f (W ) if Hf (W ) ≻= 0
.

8.5.2 The linear search

The last step for the determination of the minimizing vector W opt in iteration i -th is
the determination of the optimal value of the parameter ξ in eq. (8.23). Considering the
point Wi and the direction given by dir(Wi), the parameter ξ is chosen in an interval
[ξmin, ξmax] where T(Wi + ξdir(Wi)) ≻ 0. The interval [ξmin, ξmax] is determined a priori
by a dichotomy procedure. By the convexity of the feasible set of (W ), if it is verified
that Wi + ξdir(Wi) for the values ξmax and ξmin are inside such set, it is also verified for
every ξ ∈ [ξmin, ξmax]. The optimal ξ is obtained by solving the following optimisation
problem.

Problem 8.5.2 (Linear search).

Find: ξopt =argmin
ξ
g(ξ) ξ ∈ [ξmin, ξmax],

where

g(ξ) = f(Wi + ξdir(Wi)).

Problem 8.5.2 is a convex optimisation problem in one single variable which can be
solved easily with any classical tool. Nevertheless since we disposed of the analytical
expression of the gradient∇f and Hessian matrixHf corresponding to the function f(W ),
we can also compute ∇g and Hg as the projection of the former ones into the space (of
dimension one) spanned by the vector dir(Wi)

∇g(ξi) = ∇f (Wi + ξidir(Wi))
Tdir(Wi),

Hg(ξi) = dir(Wi)
THf (Wi + ξidir(Wi))dir(Wi).
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Therefore simplest method to minimise the function g(ξ) is by applying the Newton
algorithm again. We start by an initial guess ξ0 ∈ [ξmin, ξmax] which is refined iteratively
by the update formula

ξi+1 =







ξi −Hg(ξi)
−1∇g(ξi)

−1 if Hg(ξi) > 0

ξmax if Hg(ξi) = 0
.

This lineseach algorithm is carried on until the gradient of g(ξ) is sufficiently small∇g(ξ) ≈
0 or a value ξi+1 located outside the interval [ξmin, ξmax] is obtained, in which case the
closest value to ξi+1 in the interval [ξmin, ξmax] is taken.
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Chapter 9. Hard bounds and sub-optimal functions

Throughout the theory developed in chapter 4, and thanks to the characterisation of
the set of admissible polynomials obtained in chapter 5, we have obtained a convex
formulation of the matching problem. This formulation consists of the minimization on
the set of positive polynomials P ∈ P2N

+ of the maximum over ω of the filtering function
P (ω)/R(ω) with ω belonging to a band I contained in the real axis. Furthermore, as is
usual in the classical synthesis, it is possible to add an arbitrary number of restrictions
on the minimum selectivity allowed within another frequency band J, whose intersection
with the set I is empty.

Introducing the variable slack Ψ so that Ψ ≥ P (ω)/R(ω) for all ω ∈ I, the matching
problem was formulated in problem 7.1.2 as follows

Problem 7.1.2 (General problem).

Find: min
(Ψ,P )

Ψ (Ψ, P ) ∈ R+ × P
2N
+ ,

Subject to: P (ω) ≤ Ψ ·R(ω) ω ∈ I, (7.1)

P (ω) ≥ Γ ·R(ω) ω ∈ J, (7.2)

U(P ) � ▲. (7.3)

This problem has been conveniently reformulated in this part III of the thesis until
the form of a non-linear semi-defined program is obtained. The solution to this problem
can be computed by conventional interior-point techniques. However, due to the relax-
ation introduced in chapter 4 with the concept of admissibility, in the majority of cases
problem 7.1.2 does not produce a filtering function which can be implemented with a
matching network of fixed McMillan degree K. However, problem 7.1.2 provides, in any
case, hard lower bounds to the original problem with McMillan degree K, which may or
not be sharp. In this chapter, we make an analysis of these bounds considering a McMillan
degree K for the matching network.

9.1 Blaschke product and feasible function

Equation (7.3) guarantees the existence of an admissible function uPopt
(λ), therefore ac-

cording to lemma 4.2.1, there exists a function f ∈ ΣM such that S22(λ) = f(λ)uPopt
(λ) is

of degree as most M +N and feasible for the load, namely S22(λ) ∈ FN+M . This function
f(λ) can be computed by the Schur recursion procedure reviewed in appendix B as the
interpolant function f ∈ E(uPopt

) solution to the interpolation problem

f(αi) =
L22(αi)

uPopt
(αi)

∀i ∈ [1,M ]. (9.1)

Additionally from corollary 4.4.1 we have that if eq. (7.3) is binding, namely U(Popt) ≻= ▲,
then E(uPopt

) contains only a Blaschke product b(λ) of degree ✗ which equals the rank of
U(Popt)−▲. Thus

|b(ω)uP (ω)| = |uP (ω)| ∀ω ∈ R.
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Therefore we have a function S22 = b · uP ∈ FN+✗ which satisfies

|S22(ω)|2 ≥ γ ∀ω ∈ J, (9.2)

|S22(ω)|2 ≤ ψ ∀ω ∈ I, (9.3)

where ψ = (Ψ−1 − 1)
−1

and γ = (Γ−1 − 1)
−1
. Namely the constraints that correspond to

eqs. (7.1) and (7.2) stated over the function |uPopt
(λ)|2. On the contrary if eq. (7.3) is not

binding in problem 7.1.2, namely U(Popt) ≻ ▲, then the set of functions f ∈ E(uPopt
) is

not a singleton. Note that by corollary 4.4.1, this case only occurs if eq. (7.2) is saturated
as well, and therefore eq. (9.2) can not be guaranteed for a function S22 = f · uPopt

with f ∈ ΣM . Nevertheless if E(uPopt
) is not a singleton, the functions f ∈ E(uPopt

) are
parametrised by theorem B.1.3 as

f(λ) =
A(λ) + B(λ)f(λ)

C(λ) +D(λ)f(λ)
A,B,C,D ∈ P

M ,

where the polynomials A,B,C,D are given by the interpolation data and computed by
means of the Schur recursion. If we now choose f(λ) = c with c a uni-modular constant,
then the function b(x) takes the expression

b(λ) =
A(λ) + cB(λ)

C(λ) + cD(λ)
A,B,C,D ∈ P

M . (9.4)

The function b(λ) defined by eq. (9.4) is a Blaschke product of degree M satisfying
eq. (9.1). Therefore we have S22 = b · uP ∈ FN+M satisfying eqs. (9.2) and (9.3).

The possibility of obtaining this function S22 from the optimal solution Popt implies
that problem 7.1.2 not only gives us a lower limit to the solution of the problem of matching
with a fixed degree, but also allows to calculate a function S22 ∈ FN+✗ with ✗ the rank
of the matrix U(Popt) − ▲. In other words, the mentioned S22 is a function of degree
N + ✗ that can be expressed in absolute value as the magnitude of the reflection at the
input of a matching network connected to the load, namely S22 = F22 ◦ L. This function
also verifies the selectivity constraints imposed on the original problem. Nevertheless the
McMillan degree of the function F22 is increased with respect to the desired McMillan
degree K for the matching filter. Indeed we obtain a function F22 ∈ ΣK+✗ (of McMillan
degree K +✗) .

9.1.1 De-embedding of the load

In possession of the Blaschke product b(λ) it is possible to obtain the function S22 which
allows the extraction of the load to recover by means of eq. (3.13) the reflection function
of the matching network F22. The function b(λ) in eq. (9.4) can be written as

b(λ) =
pb(λ)

qb(λ)
=

✗∏

k=1

λ− ξk

λ− ξk
ξk ∈ C

−.

Moreover we denote

uPopt
(λ) =

p(λ)

q(λ)
p, q ∈ P

N ,
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where p, q are polynomials of minimum phase satisfying p⋆p = Popt and q
⋆q = Popt + R.

Now we compute S22 ∈ FN+✗ as

S22(λ) =
pS(λ)

qS(λ)
=
p(λ)

q(λ)

pb(λ)

qb(λ)
.

Nevertheless it should be remarked that S22 /∈ F
N+✗
R , this can be verified after computing

the transmission polynomial which corresponds to the function S22 obtained for the global
system, namely

RS = q⋆SqS − p⋆SpS = (qqb)
⋆qqb − (ppb)

⋆ppb

= (q⋆q − p⋆p)p⋆bpb = R · p⋆bpb. (9.5)

Notice that eq. (9.5) entails that ✗ additional transmission zeros are introduced in the
global system at the positions where pb vanishes, namely the points ξk with 1 ≤ k ≤ ✗.

Let us now compute the reflection coefficient F22 of the matching filter by the de-
embedding of the scattering matrix of the load, which is defined as

L(λ) =
1

qL(λ)

(
p⋆(λ) −r⋆(λ)
r(λ) p(λ)

)

,

with qL the stable polynomial satisfying q⋆LqL = p⋆LpL+r
⋆
LrL. The de-embedding operation

is expressed as

F22 =
L22 − S22

detL− S22L11

=

pL
qL

− pS
qS

pLp
⋆
L + rLr

⋆
L

q2L
− pS
qS

p⋆L
qL

=

pL
qL

− pS
qS

q⋆L
qL

− pS
qS

p⋆L
qL

=
pLqS − pSqL
q⋆LqS − p⋆LpS

, where numerator and denominator are polynomials of degree N +✗+M . Nevertheless
at the transmission zeros αi we can express

F22(αi) =
L22(αi)− S22(αi)

L11(αi)L22(αi)− S22(αi)L11(αi)

=
L22(αi)− S22(αi)

L11(αi)(L22(αi)− S22(αi))
∀i ∈ [1,M ].

Note that we have L12(αi)L21(αi) = 0, obtaining a pole-zero cancellation at each point
αi. Additionally since the points αi are transmission zeros of both the global system and
the load we also have

q⋆S(αi)qS(αi) = p⋆S(αi)pS(αi),

q⋆L(αi)qL(αi) = p⋆L(αi)pL(αi).

Page 202 Mart́ınez Mart́ınez David



9.1. Blaschke product and feasible function

Therefore conjugating both sides we obtain

qS(αi)qS(αi) = pS(αi)pS(αi),

qL(αi)qL(αi) = pL(αi)pL(αi).

Therefore

S22(αi) =
(

S22(αi)
)−1

∀i ∈ [1,M ],

L22(αi) =
(

L22(αi)
)−1

∀i ∈ [1,M ],

what implies that M additional simplifications occur at the points αi. Hence after can-
celling out the common zeros in numerator and denominator of F22 a rational function

F22(λ) =
pF (λ)

qF (λ)

is obtained with pF and qF polynomials of degree N +✗−M = K +✗.

Remark 9.1.1. Note that the additional transmission zeros at the points ξk with k ∈ [1,✗]
are not present in the transmission polynomial of the load and therefore they are not
simplified after the load is de-embedded. This fact entails two important consequences

1. The degree of the matching filter reflection F22 is increased by ✗ with respect to the
desired degree K. We obtain F22 ∈ ΣK+✗.

2. The filter has ✗ additional transmission zeros at the positions ξk with 1 ≤ k ≤
✗, namely the roots of pb. These transmission zeros can be arbitrarily distributed
between the transmission coefficients F21 and F12. Therefore we have F22 ∈ Σ

K+✗
RF ·pb.

This increase in degree with respect to the desired degree K in the original problem is
the price to pay for the convex formulation studied in the preceding chapters.

Remark 9.1.2. Note that the degree increase ✗ corresponds to the range of the matrix
U(Popt)−▲, which is bounded by the McMillan degree of the load L. Therefore we have
✗ ≤ M which indicates that the maximum degree of the obtained function F22 can be
computed with the information of the load L.

9.1.2 Degree of the Blaschke product

Let us now study the link between the degree of the Blaschke product (✗) and the degree
of the load (M). With this goal, we begin by reformulating, once again, problem 7.1.2. It
is important to remember that the purpose of eq. (7.3) is to guarantee the admissibility
of the polynomial P . Note that from definition 4.2.2 we have that P is admissible if and
only if E(uP ) is not empty. As we commented already, the set E(uP ) is a singleton if and
only if U(P ) ≻= ▲. Therefore,

U(P ) � ▲⇐⇒ E(uP ) 6= ∅.
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From lemma 4.3.5 we can parametrise the the interior of the set ANR in terms of E(uP ) as

◦
A
N
R =

{
P ∈ P

2N
+ | cardE(uP ) > 1;P (ω) > 0 ∀ω ∈ R

}
,

where card denotes the cardinality number. We can now use theorem B.1.2 to characterise
the polynomials P such that the set E(uP ) contains at least two functions

Theorem 9.1.1 (Characterisation of the admissible set by scalar inequalities). Given

the polynomial P ∈ P2N
+ which does not vanishes on the real line, we have P ∈

◦
A
N
R if and

only if
∣
∣
∣
∣

L22(αi)

uP (αi)

∣
∣
∣
∣
< 1 ∀i ∈ [1,M ], (9.6)

δ(γ
(k)
k (P ), γ

(k)
k−1(P )) <

∣
∣
∣
∣

αk − αk−1

αk − αk−1

∣
∣
∣
∣

∀k ∈ [2,M ], (9.7)

where

γ
(1)
k (P ) =

L22(αk)

uP (αk)
∀k ∈ [1,M ],

γ
(l+1)
k (P ) =

γ
(l)
k (P )− γ

(l)
l (P )

1− γ
(l)
l (P )γ

(l)
k (P )

αk − αl
αk − αl

∀l ∈ [1,M − 1] ∀k ∈ [l + 1,M ]. (9.8)

Therefore the matrix inequalityU(P ) ≻ ▲ can be replaced by the set of scalar inequal-
ities shown in eqs. (9.6) and (9.7). We use now a limiting argument to characterise also
the boundary ∂ANR of the set ANR , namely the polynomials P ∈ P2N

+ such that U(P ) � ▲.

Remark 9.1.3. It should be noted that, assuming αk 6= αl for all k 6= l, parameters

γ
(l+1)
k (P ) are not defined if γ

(l)
l (P ) = γ

(l)
k (P ) and

∣
∣
∣γ

(l)
l (P )

∣
∣
∣ =

∣
∣
∣γ

(l)
k (P )

∣
∣
∣ = 1. This comes

from the fact that the pseudo-hyperbolic distance δ(a, b) is only defined for |a| and |b|
smaller than 1.

However δ(a, a) = 0 for all a ∈ D and the limit of δ(a, b) when a, b approach t0 ∈ T

equals 0 provided that |a| < 1 and |b| < 1. It is not the case, for instance, if tangential
directions to the unit disc are taken. Nevertheless if interior-point methods are used, the
feasibility of the polynomial P can be ensured at every iteration. Therefore P can only
tend to the boundary ∂ANR at the end of the optimisation and not tangentially. In addition,
if the feasibility of P is ensured, only the case for i = 1 in eq. (9.6) is not-redundant, as
if the P tends toward a polynomial Popt that saturates eq. (9.6) with i > 1, then it also
saturates eq. (9.7) with k = i.

9.1.3 Alternative characterisation of the admissible polynomials
by means of scalar inequalities.

Note from remark 9.1.3 that given the set of points α1, α2 · · ·αM ∈ C− and the inter-
polation values γ1(P ), γ2(P ) · · · γM(P ) ∈ D and provided that the set of interpolating
functions EM is not empty, a limiting case can be considered where the set EM degener-
ates to a singleton containing only a Blaschke product. To include this case, we complete
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the function in eq. (9.8) with the non-tangential limit at the boundary of the admissibility
domain as

γ
(l+1)
k (P ) =







γ
(l)
k (P )− γ

(l)
l (P )

1− γ
(l)
l (P )γ

(l)
k (P )

αk − αl
αk − αl

γ
(l)
l (P ) 6= γ

(l)
k (P )

0 γ
(l)
l (P ) = γ

(l)
k (P )

, (9.9)

for all l ∈ [1,M − 1] and for all k ∈ [l + 1,M ]. We replace now eq. (7.3) with eqs. (9.6)
and (9.7) to restate a new version of problem 7.1.2 involving only scalar inequalities.

Problem 9.1.1 (General matching problem with scalar inequalities).

Find: min
(Ψ,P )

Ψ (Ψ, P ) ∈ R+ × P
2N
+ ,

Subject to: P (ω) ≤ Ψ ·R(ω) ω ∈ I,

P (ω) ≥ Γ ·R(ω) ω ∈ J,

δ(γ
(k)
k (P ), γ

(k)
k−1(P )) ≤

∣
∣
∣
∣

αk − αk−1

αk − αk−1

∣
∣
∣
∣

∀k ∈ [1,M ], (9.10)

where γ
(1)
k = L22(αk)

uP (αk)
, and γ

(k)
0 = α0 = 0 for all k ∈ [1,M ].

We state now a theorem on the number of constraints in eq. (9.10) that are saturated
at the optimal point.

Lemma 9.1.1. The polynomial Popt solution to problem 9.1.1 can only saturate at most
one of the constraints in eq. (9.10).

The proof is based on the fact that if any constraint in eq. (9.10) is saturated, namely

δ(γ
(i)
i (P ), γ

(i)
i−1(P )) =

∣
∣
∣
αi−αi−1

αi−αi−1

∣
∣
∣ with i ∈ [1,M − 1], the remaining ones are zero from the

definition in eq. (9.9). In this case the only interpolating function is a Blaschke product
of degree i− 1.

Proof. Suppose that |γ(1)1 (Popt)| = 1, then since the interpolation is feasible we have

γ
(1)
1 (Popt) = γ

(1)
k (Popt), for all k ∈ [1,M ]. Computing now the value of eq. (9.7) we obtain

0 ≤
∣
∣
∣
∣

αk − αk−1

αk − αk−1

∣
∣
∣
∣

∀k ∈ [2,M ],

which is clearly satisfied. In this case the set E(uPopt
) contains only the function γ

(1)
1 .

Conversely, suppose that |γ(1)1 (Popt)| < 1 and

δ(γ
(i)
i (Popt), γ

(i)
i−1(Popt)) =

∣
∣
∣
∣

αi − αi−1

αi − αi−1

∣
∣
∣
∣

i ∈ [2,M ].

Then we have

|γ(i+1)
i (Popt)| = δ(γ

(i)
i (Popt), γ

(i)
i−1(Popt))

∣
∣
∣
∣

αi − αi−1

αi − αi−1

∣
∣
∣
∣
= 1.

Once again, since we supposed E(uPopt
) is not empty

γ
(i+1)
k = γ

(i+1)
i i+ 1 < k ≤M.

Additionally, we from eq. (9.7) with k ∈ [i+1,M −1] we obtain 0 ≤
∣
∣
∣
αk−αk−1

αk−αk−1

∣
∣
∣. Therefore

when the i-th constraint is saturated we obtain δ(γ
(k)
k , γ

(k)
k−1) = 0 for all k in [i + 1,M ].

Hence at the optimal point only one of the constrains in 9.7 can be binding.
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9.1.4 Reducible matching problem

Note now that, if the k-th constraint of the condition set given by eq. (9.10) is binding,
the set E(uPopt

) is a singleton containing a Blaschke product of degree k − 1. In this
case the inequalities in eq. (9.10) with i ∈ [k + 1,M ] are not saturated and therefore the
can be removed without modifying the optimal solution Popt to problem 9.1.1. In other
words, the interpolation conditions in eq. (9.1) with k + 1 > i ≥ M are redundant since
they are not used in any of the binding constraints. Thus the problem can be reduced by
removing the interpolation conditions at αk+1, ..., αM .

This simplification of the matching problem by eliminating the interpolation condi-
tions at the points αi with i > k corresponds to a different problem with a load L̂ of
lower degree k since it only has k transmission zeros in the points αi with i ∈ [1, k].
Therefore the solution Popt of the problem of matching with the load L of degree M and
with a fixed degree N for the global system is also the optimal solution to the reduced
problem with global degree N and a load L̂ of degree k < M . This implies that the
Blaschke product obtained from Popt and the load L̂ is still of degree k − 1, namely the
degree of the load minus 1.

The previous argument can also be applied to problem 7.1.2 depending on the range
of the array U(Popt)−▲ as stated next.

Theorem 9.1.2 (Degree of the Blaschke product). Let Popt be the optimal polynomial
for problem 7.1.2 and ✗ the rank of the matrix U(Popt) − ▲ with a load L of McMillan

degree M . If ✗ < M − 1 then there exist a reduced load L̂ of degree ✗+1 such that Popt
is also the optimal solution to the problem of matching the reduced load L̂.

Corollary 9.1.1. Problem 7.1.2 is not reducible if and only if ✗ ≥M − 1.

Remark 9.1.4. Theorem 9.1.2 gives us the necessary motivation to consider the case
where ✗ ≥ M − 1 as the general case of the matching problem. This case corresponds
to the set of problems of the form problem 7.1.2 that are not reducible, which can be
characterized by a matrix U(Popt)−▲ of rank at least M − 1.

9.1.5 Example of reducible matching problem

To facilitate the correct understanding of the concept of reducibility introduced above,
we show below how, from a non-reducible matching problem, we can obtain an-
other equivalent and reducible problem which provides the same optimal solution as the
first. To begin, we consider the load L̂ of degree ✗+1 and set N ≥ ✗+1 in problem 7.1.2.

Consider the problem of matching a load L of degree M within a passband I ⊂ R. We
pick a degree for the global system N > M and a transmission polynomial R = RFRL

where RL is the transmission polynomial of the load and RF ∈ P
2N−2M
+ . We denote by

ANR the set of admissible polynomials corresponding to the load. We have

Popt = arg min
P∈AN

R

max
ω∈I

P (ω)

R(ω)
.
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L̂

deg: ✗+ 1

F̂

deg: N − 1

F̂22 L̂11 L̂22

Ŝ22 = uPopt
bopt

Figure 9.1: Optimal global system of McMillan degree N +✗.

F (2)

deg: K2

F (1)

deg: K1

F
(1)
22 F

(2)
11 F

(2)
22

F22 = F
(1)
22 ◦ F (2)

Figure 9.2: Decomposition of the matching filter F̂ of McMillan degree K = K1+K2 into
the sub-devices F (1) and F (2) with McMillan degree K1 and K2 respectively.

Assume that once the optimal solution Popt is calculated, we have a Blaschke product
bopt of degree ✗. Therefore the reflection S22 = uP · bopt is of degree N + ✗ and after
performing the extraction of the load of degree ✗ + 1, the matching network obtained
presents a degree N +✗− (✗+ 1) = N − 1.

Theorem 9.1.3 (Equivalent reducible problem). The polynomial Popt is also solution to a

reducible problem with a load of degree M̂ > M and same global degree and transmission

polynomial. Denoting the admissible set for this new load by ÂNR we have

Popt = arg min
P∈ÂN

R

max
ω∈I

P (ω)

R(ω)
.

We illustrate in fig. 9.1 the obtained global system, which is composed of a matching
filter of degree N − 1 cascaded with the load of degree ✗+ 1.

Proof. The modulus squared of the function Ŝ22 in fig. 9.1 can be expressed as

|Ŝ22(ω)|2 =
Popt(ω)

Popt(ω) +R(ω)
∀ω ∈ R.

Let us express the matching filter F̂ in fig. 9.1 as the cascade of two sub-devices
F̂ = F (1) ◦ F (2) where F (1) is of McMillan degree K1 < N − 1 while F (2) has McMillan
degree K2 with 1 ≤ K2 ≤ N − 1 as shown if fig. 9.2. This decomposition can be done for
any matching filter F̂ of any arbitrary degree K > 0 since the sub-device F (1) could be
of degree 0.

Now are disposed to state the reducible version of the former problem by considering
the load L constructed as L = F (2) ◦ L̂. Note that the device F (2) is part of the optimal
filter obtained with the non-reducible problem. Let us again illustrate this problem in
fig. 9.3. We are looking for the best matching filter F such that the squared modulus of
the global reflection S22 = F22 ◦ L can be expressed as

|S22(ω)|2 =
P (ω)

P (ω) +R(ω)
P ∈ P

2N
+ ∀ω ∈ R.

Thèse de doctorat — Université de Limoges — 2019 Page 207



Chapter 9. Hard bounds and sub-optimal functions

L

deg: K2 +✗+ 1

?

L11 L22

S22

Figure 9.3: Reducible problem considering the load L = F (2) ◦ L̂.

However, the best filter F can not be other than the sub-device F (1) since the existence of
a better matching network for the problem outlined in fig. 9.3 would contradict optimality
of the matching filter F obtained in the preceding problem. We have

F = F (1),

S22 = Ŝ22 = uPopt
bopt.

This implies that the Blaschke product for the problem illustrated in fig. 9.3 is of degree
✗ − 1. With the above procedure, we have constructed a problem of matching a load
of degree M = K2 + ✗ + 1 such that the matrix U(Popt) − ▲ is of rank ✗ < M − 1.
Therefore, according to corollary 9.1.1 this problem is reducible.

Remark 9.1.5. Note that, in this case the reducibility of the obtained problem is trivial
since by extracting F (2) from the load, we obtain the simplified problem that we started
with.

9.2 Sub-optimal feasible function

In this section we consider exclusively the case of a matching problem formulated as
in problem 7.1.2 which is not reducible. Obviously, in practice there are also reducible
problems which can be addressed directly or through the convenient prior simplification.
However, from a theoretical point of view, non-reducible problems present a greater
interest.

Furthermore, we consider the case where the optimal polynomial Popt verifies

U(Popt) ≻= ▲.

The motivation for this assumption comes from the fact that if we have U(Popt) ≻ ▲,
then the constraint eq. (7.3) is not binding and the polynomial Popt is the optimal solution
to the classical filter synthesis problem, namely problem 2.13.4, which has already been
studied in depth. With those assumptions we have

rank(U(Popt)−▲) = ✗ =M − 1.

In this case the evolution of the optimal lower bound with respect to the degree of the
load is clear since the obtained function S22 is of degree N +M − 1 while the matching
network F has McMillan degree N−1. As have already discussed, problem 7.1.2 provides
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lower hard bounds for the optimal criterium in problem 4.1.1 in the following sense: if lB
denotes the criterium provided by the polynomial Popt in problem 7.1.2

ψopt = max
ω∈I

Popt(ω)

Popt(ω) +R(ω)

and ψbest the optimal criterium in problem 4.1.1 as

ψbest = min
S22∈FN

R

max
ω∈I

|S22(ω)|2.

subject to γ ≤ |S22(ω)|2 for all ω ∈ J. Then we have the lower bound

ψopt ≤ ψbest.

Additionally, problem 7.1.2 provides us with a function S22 ∈ FN+✗ such that

max
ω∈I

|S22(ω)|2 = lB.

However, we are still missing a function S22 ∈ FNR . Our goal now is, firstly, to obtain
a function S22 ∈ FNR ; and secondly to minimise the level of reflection ψ = maxω∈I |S22|2
approaching the optimal bound ψopt as closely as possible while satisfying the selectivity
constraints γ ≤ |S22(ω)|2 for all ω ∈ J .

With respect to the calculation of a feasible function S22 ∈ FNR , we can easily find
different possibilities, each of them providing different results in terms of optimality or
computational efficiency. Next we are going to review two procedures of completely
different nature but nevertheless, both related to the thematic or algorithms treated in
this thesis.

9.2.1 Forced Blaschke simplification. A matching problem with
prescribed reflection zeros.

Here is a rather different technique for obtaining a function S22 ∈ FNR by solving a series
of problems similar to problem 7.1.2. It is important to note that this time we are
calculating a feasible function for the global system S22 and not for the matching filter as
in the previous section. However, if this function S22 presents a McMillan N , the function
F22 obtained after the extraction of the load is of degree K = N −M . To obtain the
function S22 ∈ FNR we impose a McMillan degree of N on the function S22 calculated as

S22 = uPopt
· bopt (9.11)

where uPopt
is a minimum phase function and McMillan degree N while bopt is a Blaschke

product of degree ✗ in the form

bopt =
✗∏

k=1

λ− ξk

λ− ξk
. (9.12)

Note that we are considering in this section only the case where the Blaschke product
bopt is of degree ✗, therefore a necessary condition to obtain a function S22 of degree

Thèse de doctorat — Université de Limoges — 2019 Page 209



Chapter 9. Hard bounds and sub-optimal functions

N is that ✗ simplifications occur between the function uPopt
and the Blaschke product bopt.

Since bopt does not vanish in C+, namely where uPopt
has poles, then ✗ pole-zero

cancellation shall occurs at the points ξk with 1 ≤ k ≤ ✗. Therefore we impose the fact
that the function uPopt

vanishes at the points ξk. Note that we do not know a priory

the points ξk, namely the poles of the Blaschke. Nevertheless we try to enforce the
simplification by imposing some of the roots of the polynomial P in problem 7.1.2 to
given positions in the complex plane. Then we have

Problem 9.2.1 (General problem with prescribed reflection zeros).

Find: min
(Ψ,P )

Ψ (Ψ, P ) ∈ R+ × P
2N
+ ,

Subject to: P (ω) ≤ Ψ ·R(ω) ω ∈ I,

P (ω) ≥ Γ ·R(ω) ω ∈ J,

P (ξk) = 0 1 ≤ k ≤ ✗,
U(P ) � ▲,

where the points ξk are fixed by the user as the estimated poles of the Blaschke product.
To fix the points ξk, we take the poles of the optimal Blaschke product bopt obtained after
solving problem 7.1.2.

Similarly to problem 7.1.2, we can state the convexity of this enhanced problem

Theorem 9.2.1 (Convexity of the matching problem with prescribed reflection zeros).
Problem 9.2.1 is convex.

Proof. The proof follows directly from the fact that the set P 2N
+ is a vector space, and

therefore the set of polynomials P ∈ P2N
+ |P (ξk) = 0 ∀k ∈ [1,✗ ] is a convex sub-space of

P2N
+ .

Therefore, this problem is solved as explained for the case of problem 7.1.2 since
these new conditions of equality can be ensured by the elimination method discussed in
section 8.2.2. Let us now provide a reformulated version of theorems 4.5.1 and 4.5.3 which
holds for problem 9.2.1.

Theorem 9.2.2 (Number of extremal point of Popt). Let Popt be the polynomial providing
the optimal criterium Ψopt to problem 9.2.1. Denote xi ∈ I with i ∈ [1, n ≤ N ] all the
roots of the polynomial Popt − ΨoptR within the interval I. Considering the multiplicity
function µ(xi) defined in definition 4.5.1, we have

1

2

n∑

i=1

µ(xi) ≥ N −✗+ 1.

Proof. We can now just adapt the proof of theorem 4.5.1 which is very similar to the
proof of theorem 9.2.2. Indeed the proof follows almost identically with two exception.
The first one is that this time we assume

1

2

n∑

i=1

µ(xi) ≤ N −✗.
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The second one comes from the fact that the positive polynomial Φ(λ) ∈ P2N
+ must have

zeros at the points ξk to ensure that the obtained polynomial P̂ satisfies P̂ (ξk) = 0 for all
1 ≤ k ≤ ✗. Since Φ is a positive polynomial, it also vanishes at the points ξk. Therefore,
counting multiplicity, Φ(λ) has at most 2N − 2✗ zeros at the points xi and 2✗ additional
zeros at the points ξk, ξk, thus obtaining a polynomial of degree 2N .

Furthermore with the assumption that ✗ =M−1 and denoting as in previous sections
by K = N −M the McMillan degree of the matching network F such that S22 = F22 ◦L,
we have the following corollary

Corollary 9.2.1. If all points xi have multiplicity less or equal to 2, then the optimal
criterium Ψopt is attained by the function Popt(ω)/R(ω) at least K + 2 times within the
interval ω ∈ I.

With respect to the remaining theorems and properties enunciated in chapter 4, they
still hold for problem 9.2.1. This can be easily verified if we reformulate problem 9.2.1
in the following form similar to problem 7.1.2 allowing us to reuse the already provided
proofs of the theorems stated in previous chapters, with the exception of theorems 4.5.1
and 4.5.3.

Problem 9.2.2 (General problem with prescribed reflection zeros).

Find: min
(Ψ,P )

Ψ (Ψ, P ) ∈ R+ × P
2(N−✗)
+ ,

Subject to: Ξ(ω)P (ω) ≤ Ψ ·R(ω) ω ∈ I,

Ξ(ω)P (ω) ≥ Γ ·R(ω) ω ∈ J,

U(P ) � ▲,

with Ξ(λ) =
∏
✗

k=1 (λ− ξk)
(
λ− ξk

)
.

Remark 9.2.1. Note that we assume N ≥ ✗ in problem 9.2.2.

9.2.2 A fixed-point version of the optimisation algorithm

We have just introduced a version of the matching problem where some reflection zeros,
namely roots of the polynomial P , are fixed. However, it is important to bear in mind
that the Blaschke product bopt depends on both the problem data, namely the load, and
the polynomial Popt. Then, once the optimal solution to problem 9.2.2 is obtained, the
Blaschke product bopt and also the set of points ξk are modified and therefore the solution
obtained Popt is not optimal for the new set of points ξk with 1 ≤ k ≤ ✗. Additionally,
since pole-zero cancellation in eq. (9.11) might not occur anymore, the obtained solution
is again of the class FN+✗, namely we have F22 ∈ ΣK+✗.

Thus, in order to obtain a matching filter of degree K, we propose the implementation
of a fixed-point algorithm consisting of the resolution of a series of problems such as the
one formulated in problem 9.2.2 where the polynomial S(λ) in each iteration is obtained
from the zeros and poles of the Blaschke product obtained in the previous iteration. With
this algorithm we attempt to reach with this procedure a fix point where the solution
of this series of problem converges toward S22 in the form given by eq. (9.11) where ✗
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pole-zero cancellations occurs providing a function S22 ∈ FNR . This fixed-point algorithm
has been used in all examples of matching filter synthesis provided in next chapter.

We proceed as follows

• Iteration 0. The algorithm starts with the solution to problem 7.1.2 with a global de-
gree N ≥M is computed. We obtain the polynomial P

(0)
opt solution to problem 7.1.2

as well as the minimum phase function u
P

(0)
opt

(λ). We compute the Blaschke product

b
(0)
opt such that Sopt22 = u

P
(0)
opt

·b(0)opt is feasible, particularly Sopt22 ∈ FN+✗ with ✗ =M−1.

The function b
(0)
opt is in the form given by eq. (9.12), namely

b
(0)
opt =

✗∏

k=1

λ− ξ
(0)
k

λ− ξ
(0)
k

.

The points ξ
(0)
k with k ∈ [1,✗] are used to initialise the fixed-point algorithm.

• Iteration i-th. With the points ξ
(0)
k obtained in the previous iteration define

Ξ(i)(λ) =
✗∏

k=1

(

λ− ξ
(0)
k

)(

λ− ξ
(0)
k

)

.

Now we state and solve problem 9.2.2 with the same global degree N and using the
function S(0). We haveN ≥M and ✗ =M−1, therefore the conditionN ≥ ✗ holds.
We obtain the polynomial P

(i)
opt solution to the problem and a Blaschke product b

(i)
opt

such that b
(i)
opt · u(S(i)P

(i)
opt

) is feasible. The function b
(i)
opt has the form

b
(i)
opt =

✗∏

k=1

λ− ξ
(i)
k

λ− ξ
(i)
k

.

• Iterarion i+1-th. We update the function Ξ(λ) and solve again problem 9.2.2. Note
that if the function Ξ(i+1) is not heavily modified, then the optimal polynomial in
the iteration k+1, namely P

(i+1
opt , is not far from the polynomial P

(i)
opt. Therefore the

polynomial P
(i)
opt is a remarkably good starting point in the iteration i+ 1. To avoid

big changes from the polynomial Ξ(i) to Ξ(i+1) we use the update formula

Ξ(i+1)(λ) = (1− κ)Ξ(i)(λ) + κ

✗∏

k=1

(

λ− ξ
(i)
k

)(

λ− ξ
(i)
k

)

0 < κ ≤ 1,

where the value of κ can be modified to adjust the convergence rate. In the
implementation done in this work, we have selected κ = 0.5.

• Termination criterium. We define the error function E(i+1) in the i+1-th iteration
as

E(i+ 1) = max
ω∈I

∣
∣
∣
∣
∣
∣

1−
u(

S(i)P
(i)
opt

)(ω)

u(
S(i+1)P

(i+1)
opt

)(ω)

∣
∣
∣
∣
∣
∣

.
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The algorithm is then stopped when for a small value of ε we have E(i) < ε.

It should be noted that we have not provided any convergence proof of the presented
fixed-point algorithm. Indeed although this algorithm has shown an outstanding
convergence rate in practice, we can still find some cases where the algorithm fails
to converge, this might happens, for instance when some of the points ξk are located
close to the real interval I. For this reason we also stop the algorithm if it happens
that E(i + 1) > E(i). Assuming the algorithm is stopped at the t-th iteration, we
compute the global reflection parameter Sbest22 as

Sbest22 = u(
S(t)P

(t)
opt

).

With this fixed-point algorithm, we try to obtain at the final iteration, ✗ pole-zero
simplifications in the function Sbest22 , such that Sbest22 ∈ FNR . In this case the Darlington
equivalent of the load L can be de-embedded from the function Sbest22 obtaining a function
F22 ∈ ΣKRF

such that F22 ◦L = Sbest22 . Nevertheless these simplifications are never exact in
practice, even assuming the convergence of the algorithm, and the task of removing the
common factors in the numerator and denominator of Sbest22 together with the posterior
de-embedding of the load can become problematic.

To overcome this issue, we introduce next a numeric algorithm which allows us to
de-embed the load from the function Sbest22 without need of removing the common poles
and zeros, and obtaining a function F22 with the desired degree, namely F22 ∈ ΣKRF

.

9.2.3 Load extraction to obtaining a matching network of de-
gree K. A different application of the point-wise matching
algorithm.

The algorithm proposed in this section is a direct application of the point-wise matching
procedure proposed in [46]. This method has already been introduced in section 3.4.2
and is based on theorem 3.4.1. The aforementioned procedure allows us to determine the
unique rational Schur function F22 of degree K which solves the interpolation problem

F22(xi) = νi ∀i ∈ [0, K].

Therefore we can just distribute a set of points xi ∈ I with 0 ≤ i ≤ K and compute the
interpolation values νi from eq. (3.13) as the values of the filter reflection F22 at those
points. We have

νi =
L22(xi)− S22(xi)

det(L(xi))− S22(xi)L11(xi)
∀i ∈ [0, K].

The procedure introduced in section 3.4.2 allows us to obtain a function F22(ω) of
McMillan degree K which perfectly interpolates the values νi on a given set of K +
1 distinct frequency points x0, x1 · · · xK ∈ R. Moreover this procedure allows for the
transmission polynomial RF to be prescribed, therefore the obtained rational function
F22 is of the class ΣKRF

, namely

F22(ω) =
pF
qF
, (9.13)
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Chapter 9. Hard bounds and sub-optimal functions

with pF ∈ PK and qF the stable polynomial satisfying q⋆F qF = p⋆FpF + RF . Additionally,
as it has been proved in [46], the application that associates to each polynomial pF ∈ PK

the evaluation of the rational function F22 at each point xi is twice differentiable and has
differentiable inverse. If we denote by ΘF ∈ R2N+1 the vector [θ2N+1, θ2N−1, · · · , θ0]T with
the coefficients of the polynomial pF with respect to the Tchebyshev basis as in eq. (7.20)
we can consider the function [q(pF )](xi) with i ∈ [0, K], whose gradient with respect to the
vector Θp denoted here by ∇q(xi)(Θp) has already been calculated in eq. (7.25). Therefore
the derivatives of the function [q(pF )](xi) at each point xi with respect to the coefficient
θk of pF takes the expression derived in eq. (7.26), namely

DkF22(xi) =
DkpF (xi)

[q(pF )](xi)
− F22(xi)DkqF (xi) ∀i ∈ [0, K]. (9.14)

If we consider now the function F : R2K+2 −→ CK+1 defined as

F (Θp) =
[
F22(x0) F22(x1) · · · F22(xK)

]
T ,

then the Jacobian matrix of F with respect to the vector Θp can be computed as

JF (Θp) = diag(qF (xi))
−1Jp(Θp)− diag(F̂22(xi))Jq(Θp),

where Jp(Θp) and Jq(Θp) represent the Jacobian matrices of pF (xi) and qF (xi) respec-

tively, at each point xi and with respect to Θp. Therefore for a point Θ
(l)
p in a neighbour-

hood of the vector Θ
(0)
p we have

JF (Θ
(l)
p )
(
Θ(l+1)
p −Θ(l)

p

)
= F (Θ(l+1)

p )− F (Θ(l)
p ).

Finally, the function F22 can be calculated by means of the homotopy which consists in
deforming an initial solution F (Θ

(0)
p ) in small increments ∆F = F (Θ

(l+1)
p ) − F (Θ

(l)
p ) so

that in each iteration the correspondent vector Θl+1
p can be approximated by

Θl+1
p = Θl

p + JF (Θ
(l)
p )−1∆F.

At each time the Jacobian matrix JF (Θ
(l)
p ) is inverted. However as it has been shown in

the literature, the matrix JF (Θ
(l)
p ) is well conditioned and accidents are not encountered

in the general case. This process is then iterated until to obtain the vector Θp satisfying

F (Θp) =
[
ν0 ν1 · · · νK

]
T .

This vector Θp contains the coefficients of the polynomial pF ∈ PN such that the function

F22(ω) =
pF (ω)
qF (ω)

interpolates the values νi at the points xi with i ∈ [0, K].

9.2.4 Local optimisation of the matching network

With the previous algorithm, we try to obtain a function F22 ∈ FKR which provides a
criterion in problem 4.1.1 as close as possible to the optimal bound ψopt obtained from
problem 7.1.2. However, none of the presented algorithms guarantees the optimality of the
function F22 for problem 4.1.1. Therefore, as a final step, we perform a local optimization
of the solution obtained. This minimization can be expressed as
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9.3. Summary

Problem 9.2.3 (Local minimisation).

Find: ψbest = min
F22∈ΣN

R

max
ω∈I

δ (F22(ω), L
⋆
11(ω)) ,

Subject to: δ (F22(ω), L
⋆
11(ω))

2 ≥ γ.

To perform such minimisation, the function F22 ∈ ΣNR is again parametrised as a
function of the polynomial pF ∈ PK as in eq. (9.13), namely

F22(ω) =
pF (ω)

qF (ω)
,

with pF , qF ∈ PK and qF the stable polynomial satisfying qF q
⋆
F = pFp

⋆
F + RF . Note

that given the pair of polynomials pF , qF the analytical expressions for the gradient and
Hessian matrix of F22 with respect to the coefficients of pF have already been computed.
Therefore we can make use of these analytical formulas to write an efficient solver for
problem 9.2.3 by means of the already recurrent Newton method.

9.3 Summary

Next we provide an overview of the matching algorithm used in conjunction with loads of
degree M > 1. This algorithm is analogous to the procedure summarised in section 6.9
for a load of degree 1, nevertheless a couple of additional steps are required.

1. Computation of the Darlington equivalent of the load. This step is unchanged with
respect to section 6.9. We obtain in this case a rational 2 × 2 scattering matrix L
of McMillan degree M in the form

L(ω) =

(
p⋆L(ω) −r⋆(ω)
r(ω) pL(ω)

)

.

We consider here that the transmission polynomial of the load RL = rLr
⋆
L does not

vanish on the real axis, namely RL(ω) 6= 0 for all ω ∈ R. Additionally we assume
all roots of RL to have simple multiplicity. Therefore there exists M points αi ∈ C−

such that RL(αi) = 0 for all i ∈ [1,M ].

2. Determine lower bounds for the system reflection. We fix here a transmission polyno-
mial RF for the matching filter and a passband I. Now with the points αi computed
before from the Darlington equivalent of the load, the solution to problem 7.1.2
with a global degree N ≥ M is computed. We obtain the polynomial Popt solution
to problem 7.1.2 as well as the minimum phase function uPopt

(λ). This function
provides us with a lower hard bound ψopt for the reflection for the global system
reflection within the band I. If we consider a reflection F22 ∈ ΣKRF

We have for all
S22 in the form S22 = F22 ◦ L

max
ω∈I

|S22(ω)|2 ≥ ψopt.

3. Fixed-point algorithm. We perform a fixed-point algorithm as described in sec-
tion 9.2.2 by solving iteratively a sequence of problems in the form of problem 9.2.2.
As the result of the fixed-point algorithm we obtain a function Sbest22 (ω) ∈ FN+✗

where ✗ pole-zero cancellations occurs.
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4. De-embedding of the load. We use the interpolation procedure discussed in sec-
tion 9.2.3 to de-embed the Darlington equivalent of the load L by computing the
filter reflection F22 ∈ ΣKRF

which solves the interpolation problem

F22(xi) =
L22(xi)− S22(xi)

det(L(xi))− S22(xi)L11(xi)
.

in a set of K + 1 points xi distributed within the passband I. The function F22

provides an upper bound ψbest for the reflection level ψ solution to problem 4.1.1.
We have

ψopt ≤ ψ ≤ ψbest. (9.15)

5. Local optimisation. Finally we perform a local optimisation of the filter reflection
F22 to compute

ψ = min
F22∈ΣK

RF

max
ω∈I

|F22 ◦ L|,

where we already dispose of the information that the computed value ψ must satisfy
eq. (9.15).
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Chapter 10. Practical examples and results

In this chapter we present some practical applications of the theory developed previously
in the thesis, particularly in chapter 4. In this section we focus on antenna matching so
we consider as load the reflection of an antenna. The matching filter, therefore, should
provide a global reflection as weak as possible throughout the working band.

Note that in this chapter the load is generally a device with a single port, however
in these cases we obtain, using the Darlington equivalent, a two-port device without
losses, and with the reflection of the load as a reflection in port 1. Then we can use this
Darlington equivalent to build the global system and solve the problem of matching as
we have done so far. In this case the element S11 of the global system corresponds to the
reflection at the input of the matching filter when it is connected to the antenna. On the
other hand the element S21 of the global system represents an equivalent transmission,
namely |S21|2 = 1 − |S11|2 which, as the load and the generator are terminated by the
reference impedance, we denote transducer gain following the notation introduced in [47].

The goal is to minimize the reflection level ψ such that |S11(ω)|2 ≤ ψ in the
whole band ω ∈ I by means of a matching filter of fixed McMillan degree K, or what
is equivalent due to the absence of losses, maximize the transducer gain. It is also
important to note that with the algorithm presented in [48] the obtaining of a matching
filter of McMillan degree K is guaranteed.

With the theory developed in the preceding chapters, on the other hand, we obtain
a lower limit for the best level of matching ψopt reached with a McMillan degree filter
K, but without obtaining in all cases a filter of that degree that reaches that level of
matching ψopt. However, through the process presented in this chapter it is possible to
obtain a sub-optimal filter of degree K which is locally optimal for the matching problem
and provides a level of matching ψbest ≥ ψopt.

In addition, for each of the antennas presented here, we make a theoretical study
comparing the lower limit ψopt with respect on the McMillan degree K of the matching
filter with the reflection level ψbest achieved through a sub-optimal filter of the same
McMillan degree K. This sub-optimal filter is calculated by the fix-point algorithm
described in chapter 9 followed by a local optimisation.

Finally, it should be noted that, in addition to this sub-optimal filter, the formulation
of the matching problem developed in this thesis also provides us with another matching
filter through which the optimal matching level ψopt is reached. Nevertheless this filter
has a McMillan K +M − 1 degree,where M is the McMillan degree of the load, or the
Darlington equivalent in this case, so it can not be considered as a solution to the original
problem.

10.1 Small superdirective antenna

As a first and simple example, we consider the problem of matching the small super-
directive antenna presented in [49] in the interval I defined as

I = [870, 900] MHz.
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10.1. Small superdirective antenna

The reflection of this antenna L11 appears in fig. 10.1 and corresponds to the reflection
at the input of a two-ports Darlington equivalent of McMillan degree M = 2. In addition
we also set the polynomial RF to have no finite transmission zeros, in particular RF = 1.
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Figure 10.1: Superdirective small antenna

In table 10.1 we list the lower bound ψopt obtained for the reflection level of the
global system as a function of the McMillan degree K of the matching filter from K = 1
to K = 12. Additionally we compute, for each degree K in table 10.1, by means of the
fixed-point algorithm proposed in section 9.2.2, the function Sbest22 ∈ FNR . The function
Sbest22 allows us to obtain a function F22 ∈ ΣKRF

, namely a matching filter of degree K
having the polynomial RF as transmission polynomial. We denote by ψbest the reflection
level provided by the function Sbest22 which is attained with a sub-optimal filter of degree
K and transmission polynomial RF .

In fig. 10.2 we show the obtained level ψbest with the sub-optimal matching filter
as well as the lower limit ψopt. We start with the solution to problem 7.1.2. Note the
mismatch of the reflection L11 around 870 MHz and the significant improvement for any
value of K obtaining a matching level between −6.5 and −9 dB. It is also interesting
to note the proximity of the obtained level ψbest to the lower limit ψopt. Indeed note in
fig. 10.3 the extremely small optimality gap, which quickly converges towards zero. This
fact together with the local optimality of the filter that provides the matching level ψbest
certify the obtained result.

10.1.1 Example of matching filter synthesis

Next we study with higher detail the case of degree K = 5. Let us start with the solution
to problem 7.1.2. We show in fig. 10.4 the reflection coefficient L11 compared to the
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Degree (K) ψbest dB ψopt dB

1 -6.5028 -7.0389

2 -7.4389 -7.7777

3 -7.9916 -8.1925

4 -8.3218 -8.4512

5 -8.5351 -8.6237

6 -8.6815 -8.7444

7 -8.7859 -8.8320

8 -8.8629 -8.8977

9 -8.9212 -8.9480

10 -8.9663 -8.98745

11 -9.0020 -9.0188

12 -9.0306 -9.0442

Table 10.1: Obtained matching level vs lower bound.

1 2 3 4 5 6 7 8 9 10 11 12
−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

McMillan degree K of the matching network

R
efl
ec
ti
on

le
ve
l
(d
B
)

Lower bound ψopt
Obtained level ψbest

Figure 10.2: Lower bounds and obtained reflection level
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Figure 10.3: Optimality gap.

function Sopt22 as well as the transducer gain defined as 1 − |Sopt22 |2. The maximum level
reached by the reflection parameter Sopt22 provides the lower hard bound ψopt attainable
in the matching problem considered in this section.

We also compare the poles and zeros of the load reflection L22 (in fig. 10.5a) to the
poles and zeros of Sopt22 (in fig. 10.5b). We can also see the transmission zeros αi with
i ∈ [1, 2] in fig. 10.5a and the transmission zeros of the system in fig. 10.5b. It can be
noted that the points αi are also tranmission zeros of the global system. Nevertheless an
additional transmission zero appears in the global system. This transmission is introduced
by the Blaschke product and can be spotted in fig. 10.5b as it coincides with a zero of Sopt22 .

10.1.1.1 Fixed-point algorithm

We carry out now the fixed point algorithm presented in section 9.2.2, which in the case
of K = 2 provides us the function Sbest22 whose modulus is traced in fig. 10.6.

Remark 10.1.1. Note that, as commented already, this function reaches a reflection level
ψbest that is extremely close to the lower bound ψopt. It can be remarked from fig. 10.6 that
the functions Sbest22 and Sopt22 achieve nearly the same reflection level within the passband.

We can also see in fig. 10.7a the poles and zeros of this function Sbest22 . It can be
verified that the additional pole introduced by the Blaschke product is being cancelled
with a zero of Sbest22 . Thanks to this pole-zero simplification, we are able to obtain, once
the load is de-embedded, a function F22 ∈ ΣKRF

whose poles and zeros are indicated in
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Figure 10.4: Response Sopt22 and transducer gain obtained by solving problem 7.1.2
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10.1. Small superdirective antenna

fig. 10.7b.

We have obtained an lower bound ψopt = −8.62 dB as well as an upper bound ψbest =
−8.54 dB for the solution to problem 4.1.1, namely the original problem. We can therefore
bound the reflection level ψ solution to problem 4.1.1 as

ψopt ≤ ψ ≤ ψbest
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Figure 10.6: Sub-optimal function Sbest22 .

10.1.1.2 Load de-embedding and matching filter optimisation

We are now in disposal of an exceptionally accurate bound for the solution to problem 4.1.1
with the load, passband and other parameters considered in this section. Additionally
we have computed an initial point which achieves the upper bound ψbest = −8.54 dB
for the solution to problem 4.1.1. We can then use this starting point to perform a final
optimisation over the function F22. The optimisation problem is stated as

Find: ψ = min
F22∈ΣK

RF

max
ω∈I

|S22|2,

where S22 = F22 ◦ L.

It can be noted that the best possible improvement that can be obtained by means
of this final optimisation is less than 0.1 dB as we also have the lower bound ψopt =
−8.62 dB. Nevertheless this optimisation allows us to guarantee the local optimality of
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Figure 10.7: Poles and zeros of Sbest22 , F22 and transmission polynomials.

the obtained solution. We show in fig. 10.8 the modulus of the function S22 issue of the
local optimisation and compared to the initial point Sbest22 in absolute value. As we can
remark in fig. 10.8 both functions coincide. Note that although the system reflection is
not improved, this final optimisation provides us with outstanding information about the
function Sbest22 . It tell us that the global reflection computed by the fixed-point algorithm
from section 9.2.2 is already a local optimum for problem 4.1.1. Finally plot in fig. 10.9
the transmission and reflection parameters F21 and F22 of the optimum matching filter
obtained for the load in fig. 10.1
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Figure 10.8: Result of the local optimisation and comparison with the starting point Sbest22 .
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Figure 10.9: Scattering parameter of the optimum matching filter.
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10.2 High degree antenna

Here we provide a more complex example of matching filter synthesis. This time we
consider a load with the input reflection L11 shown in fig. 10.10 where the passband has
been normalised to the interval I = [−1, 1]. The reflection coefficient L11 in fig. 10.10 is
obtained as the (1, 1) element of a Darlington equivalent L with McMillan degree M = 5
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Figure 10.10: Input reflection of a load of degree 5.

L =
1

qL

(
p⋆L −r⋆L
rL pL

)

,

with rL, pL ∈ P5 and qL the stable polynomial satisfying qLq
⋆
L = pLp

⋆
L = rLr

⋆
L. As before

we compute the points αi ∈ C− with i ∈ [1,M ] as the roots of the tranmission polynomial
RL = rLr

⋆
L in the lower half plane.

10.2.1 Global system optimisation

In contrast to the previous example, this time we consider a fairly complicated load, as
the one whose reflection is shown in fig. 10.10 and perform the synthesis of a matching
filter of low degree. In particular we chose a filter of McMillan degree K = 1. Therefore
the degree of the global system remains N = K + M = 6. Additionally we fix the
tranmission polynomial for the matching filter RF = 1. We can then state the matching
problem over the interval I.

Next we solve problem 7.1.2 to obtain an optimal polynomial Popt ∈ P2N
+ . This

polynomial allows us to compute the minimum phase function uPopt
which provides us

with a lower bound ψopt for the matching level along with a blaschke product bopt such
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10.2. High degree antenna

that the function Sopt22 = uPopt
· bopt is feasible. Note that we obtain a Blaschke product

of degree ✗ = M − 1 = 4. The function Sopt22 is plotted in absolute value in fig. 10.11
where it is compared to the input reflection of the load L11 without matching filter.
Additionally we also show the transducer gain of the global system which is computed
as TG = 1 − |Sopt22 |2. It can be noticed that the load reflection has been considerably
improved at the centre of the passband where the function L11 is about −3dB in absolute
value. Indeed we obtain in this case a reflection level of −7.43 dB which corresponds to
the lower bound ψopt.
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Figure 10.11: Function Sopt22 and transducer gain TG = 1 − |Sopt22 |2 obtained by solving
problem 7.1.2.

To further compare the obtained result to the load L, we show in fig. 10.12a the
complex roots of the polynomials pL and qL, namely the poles and zeros of the function
L22. Additionally we indicate in fig. 10.12a the location of the 5 tranmission zeros αi ∈ C−

of the load. Similarly we show in fig. 10.12b the poles and zeros of the function Sopt22 along
with the tranmission zeros of the system S. We first observe the increase in degree of the
function Sopt22 , which is of degree N + ✗ = 10, with respect to the desired degree N = 6.
We can further verify that the points αi are also tranmission zeros of the global system,
along with ✗ additional transmission zeros corresponding to the Blaschke product bopt.
These tranmission zeros introduced by the Blaschke product can be spotted in fig. 10.12b
as the tranmission zeros that coincide with a zero of the function Sopt22 .

Remark 10.2.1. Similarly to the previous example, it should be noted that since we have
Sopt22 ∈ FN+✗, it is possible to extract now the Darlington equivalent of the load L from
the function Sopt22 to recover a function F22 ∈ ΣK+✗. Nevertheless this function F22 would
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not belong to the space ΣKRF
, namely the set of functions where the filter reflection F22 is

sought for.
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(a) Poles/zeros of L22 and T.Z. of L.
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(b) Poles/zeros of Sopt22 and T.Z. of S.

Figure 10.12: Poles and zeros of the function L22 and Sopt22 and transmission zeros.

10.2.2 Fixed-point algorithm and de-embedding of the load

In this section we show the results of the fixed-point algorithm proposed in section 9.2.2.
We plot in fig. 10.15 the absolute value of the function Sbest22 compared to the function
Sopt22 obtained above. We have

ψbest = max
ω∈I

|Sopt22 |2 = −6.78 dB

Note that in this case, we obtain a relative larger optimality gap as the difference between
the reflection levels provided by the functions Sopt22 and Sbest22 is of 2.2 dB. This is the
price to pay in order to have a function Sbest22 ∈ FNR instead of the function Sopt22 which
is of degree N + ✗ = 10. Furthermore, as we have also done in the previous example
we have computed the optimal bound ψopt and the reflection level ψbest as a function of
the filter degree K, which are plotted in fig. 10.13. It can be noted that the value of the
optimal bound ψopt is almost constant with respect to the degree K even from K = 1.
However this is not unexpected as the function Sopt22 corresponding to K = 1 is of degree
K +M = 6 and shows already a rather flat absolute value within the passband as shown
in fig. 10.11. Additionally we illustrate in fig. 10.14 the reflection level ψbest achieved
by the function Sbest22 issue of the fixed point algorithm. This function exibit a faster
variation with respect to the degree K, with a considerably large optimality gap (see
fig. 10.14) for 1 ≤ K ≤ 4 and quickly converging towards ψopt for K ≥ 5. We provide in
table 10.2 a list of the values plotted in fig. 10.13 and fig. 10.14.
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Figure 10.13: Lower bounds and obtained reflection level
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Figure 10.14: Optimality gap.
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Degree K ψopt (dB) ψbest (dB) Opt. Gap (dB)

1 -7.431 -6.787 0.644

2 -7.488 -7.144 0.343

3 -7.521 -7.293 0.227

4 -7.543 -7.368 0.174

5 -7.560 -7.425 0.134

6 -7.572 -7.470 0.102

7 -7.582 -7.504 0.078

8 -7.590 -7.529 0.060

9 -7.597 -7.549 0.048

10 -7.599 -7.564 0.035

11 -7.606 -7.575 0.030

Table 10.2: Lower reflection bound and achieved value.
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Figure 10.15: Function Sbest22 obtained by the fixed-point algorithm and comparison with
the function Sopt22 .
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Figure 10.16a shows the position in the complex plane of the zeros and poles of the
function Sbest22 . We indicate as well the tranmission zeros of the system, namely the
points αi with 1 ≤ i ≤ M along with the ✗ additional tranmission zeros introduced
by the Blaschke product. Note in fig. 10.16a that all poles of the Blaschke product
coincide now with a zero of the function Sbest22 producing in total 4 simplifications. These
simplifications allow us to de-embed the Darlington equivalent of the load from the
function Sbest22 , obtaining a function F22 ∈ ΣKRF

. We show in fig. 10.16b the single pole
and zero of the filter reflection F22, which is indeed of degree K = 1.
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Figure 10.16: Poles and zeros of the global system and the matching filter after the
fixed-point algorithm.

Finally we perform the local optimisation of the matching filter to compute

min
F22∈ΣK

RF

max
ω∈I

|F22 ◦ L|.

We trace in fig. 10.17 the function |S22| = |F22 ◦ L| obtained from the previous opti-
misation along with the initial point given by Sbest22 .

Remark 10.2.2. It can be noted again how the result from the local optimisation has
barely moved away from the initial point. Indeed in all examples provided in this thesis, the
result of the fixed-point algorithm coincides with the optimum point computed by means of
the local optimisation made a posteriori. This result opens the path for a prospective work
that could link the result computed by the fixed-point algorithm discuses in section 9.2.2
and the optimal points of problem 4.1.1.

To conclude this section, we provide in fig. 10.18 the scattering parameters of the
matching filter, which are computed as the 2-port extension of the function F22. These
parameters correspond to a device of McMillan degree K = 1 which can be easily imple-
mented with any simple resonant structure.
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Figure 10.17: Result of the local optimisation and comparison with the starting point
Sbest22 .
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Figure 10.18: Scattering parameters of the matching filter of degree K = 1.
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10.3 Yagi antenna

Next, we return to the reflection of the yagi-type antenna shown in fig. 3.4 and used
in section 3.4.2 to exemplify the type of result obtained with the point-wise matching
algorithm introduced in [48]. This reflection is shown again in fig. 10.19 where the
passband interval I is indicated, namely from 2.2GHz to 2.5GHz. This load has a
Darlington equivalent of minimal McMillan degree M = 3. At this point, it is interesting
to compare the results obtained with the algorithm cited in section 3.4.2 and by the
theory presented in this thesis. Furthermore, to properly compare with the example
provided in section 3.4.2, two transmission zeros are imposed at the frequencies ν1 = 2.17
GHz and ν2 = 2.53 GHz. Therefore we have R = RFRL = (λ− 2.53)2(λ− 2.17)2RL.
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Figure 10.19: Reflection of yagi antenna

Additionally, we impose a third transmission zero at infinity, this means that the degree
of the polynomial rF is strictly lower than the degree of the polynomial pF . Therefore we
have deg(pF ) > 2. Assuming that pF and rF have no common roots, we conclude that
a McMillan degree K greater or equal to 3 is required. We perform now a comparison,
for each McMillan degree K ≥ 3, between the reflection level obtained by the point-wise
matching algorithm and the level ψbest provided by the sub-optimal filter computed as
explained in previous section. At the same time, both results are compared to the lower
bound ψopt for the matching level with a filter of McMillan degreeK which is computed by
means of the convex relaxation of the problem. This comparison can be seen in fig. 10.20.
The first fact that should be highlighted in fig. 10.20 is the difference between the level of
matching provided by the point-wise matching algorithm ψpointwise(green square markers)
and the level obtained by the uniform matching procedure ψbest (red circular markers)
developed in this thesis. This result is not surprising since it is known that the type
of global responses provided by the point-wise matching method, namely with perfect
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matching points on the frequency axis, are generally not optimal for the uniform matching
problem. Indeed as can be seen in fig. 10.20, the level of matching obtained by the point-
wise matching method presented in [48] is clearly not optimal in terms of matching.
Furthermore, if we compare both results with the lower limit ψopt for each value of K
(blue triangular markers), we can verify that the result obtained by the uniform matching
algorithm tends towards the lower limit ψopt as K increases. This does not happen with
the level of matching obtained through point-wise matching which, although it also tends
to a certain limit as K increases, this limit does not coincide, generally with the lower
bound for degree K. We have in general

lim
K→∞

ψbest(K) = ψopt(K).

With respect to the result obtained with low values of K, we can see that the obtained
level ψbest is further from the limit ψopt when K decreases. Indeed the duality gap,
defined here as the difference between the ψbest level in dB and the ψopt limit in dB, is
maximum for small values of K and tends to zero when K increases as can be checked
in fig. 10.21. In fig. 10.21 we can see that the duality gap is considerably small, with a
difference between ψbest and ψopt of around 2dB for K = 3 and less than 1dB from K = 4.
This information, namely the fact that the optimality gap is small, gives us a certification
of the optimality of the sub-optimal matching filter which reaches a level of matching ψbest.
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Figure 10.20: Lower bounds and obtained reflection level

Finally, we have decided to show two examples of the type of result obtained with
our uniform matching algorithm with two particular values of K.

Firstly we choose K = 5, namely the same degree used in section 3.4.2 to be able to
perform a comparison with the former. We see in fig. 10.22a a comparison between the
result obtained with point-wise matching and with uniform matching, both in term of
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Figure 10.21: Optimality gap.

the global reflection, parameter S22 in the figure, and transducer gain S21. Figure 10.22a
shows that the matching level of obtained by the uniform matching algorithm is lower
than that provided by the response obtained through point-wise matching. It is also
necessary to emphasize that the point-wise matching algorithm provides a more selective
response, as it can be clearly seen when comparing the transducer gain outside the band.

Remark 10.3.1. Note that although in the problem of uniform matching we can add a
restriction in terms of selectivity, in this case no requirement has been imposed in that
regard. Therefore we can compare both results when the objective is to achieve the best
possible matching within the band. Nevertheless, if we add a certain selectivity level to the
requirements in the uniform matching problem, the response obtained would progressively
become closer to the response obtained by the point-wise matching method.

In the second example we show a high degree result, namely K = 10 to provide an idea
of the type of limit response to which the presented algorithm converges upon increasing
the degree. We can see, in fig. 10.22b, on the one hand the sub-optimal filter of McMillan
degree K = 10 represented by dashed lines and on the other hand the global reflection
and transducer gain obtained with this filter.

Remark 10.3.2. Note that the filter reflection F22 in module approaches the function L11.
This fact corresponds to the expected result since when the global reflection, whose module
is expressed as the pseudo-hyperbolic distance |S22(ω)| = δ(F22(ω), L11(ω)), tends to zero,
the module |F22(ω)| approaches the absolute value of the reflection of the load |L11|.
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2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7
−60

−50

−40

−30

−20

−10

0

Frequency (GHz)

M
ag
n
it
u
d
e
(d
B
)

Load L11

Filter F22

Filter F21

System S22
Transducer Gain

(b) Matching network of McMillan degree K = 10

Figure 10.22: Result of matching a yagi antenna
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10.4 Dual-band RHCP Antenna

In this section we present a dual-band antenna implemented by microstrip patch which is
used to illustrated the second part of the theory provided in this chapter. This antenna,
which features two orthogonal excitation ports and four slots, provides a right-hand
circular polarised radiated wave when the excitation use for both ports presents a 90
degrees phase shift.

The aforementioned structure is shown in fig. 10.23a. A more detailed description of
this antenna can be found in [50]. This antenna is part of a receiver for GNSS which
has as objective the reception in the frequency bands of the GPS and GALILEO system
indicated in table 10.3. We can see a top view of the manufactured path antenna in
section 10.4.

Band F. min (GHz) F. max (GHz)

GPS L2 1.21 1.24

GPS L1 1.55 1.60

GALILEO E6 1.26 1.30

Table 10.3: GNSS bands used for the matching problem

Since in this case the antenna has 2 ports, one for each polarization, we obtain the
scattering matrix A of size 2 × 2 plotted in function of the frequency in fig. 10.24 along
with the relevant frequency bands. In this case the elements A11 and A22 correspond to
the reflection in ports 1 and 2 respectively. These are the reflections to be matched in this
example by means of the introduced broadband matching algorithm. The transmission
parameter A21 however, is not related to the transmission of the antenna but represents
the coupling between the two input ports.

To excite each port with the right phase, the excitation is performed through a 90
degree hybrid coupler which provides the appropriate signals in phase and quadrature
configuration as it is illustrated in fig. 10.25. This coupler is excited by port 1 with the
input signal while port 4 is loaded by a matched load R0 = 50Ω.

To solve the problem of mismatch, a matching filter is used to match each port of the
antenna. Note that although the antenna is excited by ports 1 and 2 simultaneously, the
coupling between both ports is weak enough, below 20 dB in all passband as it can be seen
in fig. 10.24, to consider each one separately. Therefore we are facing two independent
matching problems, one with the load of reflection L

(1)
11 = A11 and the other with the

reflection L
(2)
11 = A22. However, both reflections are almost identical due to the symmetry

of the antenna, therefore the same matching filter F is used for both ports as indicated
in fig. 10.26.
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(a) Schematic view

(b) Manufactured prototype

Figure 10.23: Dual-band RHCP antenna integrated a microstrip slotted patch
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Figure 10.24: Scattering parameters of the dual-band antenna
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Figure 10.25: Schematic of the RHCP antenna connected to a hybrid which provides the
appropriate feeding signals to each input port with 90 phase difference.
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4 3
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Figure 10.26: Schematic of the RHCP antenna with both matching filters inserted.

10.4.1 Matching bounds

Following the same procedure as in the examples shown previously, below we perform
a study of the optimal matching level in the three bands with the antenna introduced
in fig. 10.24. For this we set the transmission polynomial of the matching filter RF = 1
obtaining R = RFRL = RL a polynomial of degree 3, and we vary the McMillan
degree of the filter K between 1 and 9. Each of the reflection parameters A11 and A22

can be extended to obtain a two-port device of McMillan degree M = 3 by means of
the Darlington equivalent. We compute, for each value of K, the optimal solution to
problem 7.1.2 considering degree N = K +M for the global system.

By means of the fixed-point algorithm presented in chapter 9, we obtain in each
case a sub-optimal matching filter of McMillan degree K which is locally optimal for
problem 4.1.1, namely the original matching problem. In fig. 10.27 we show the lower
bound obtained as the optimal criterium for problem 7.1.2 along with the level of
matching provided by the sub-optimal filter of degree K. It should be noted that, as it
was the case in fig. 6.16, the levels shown in fig. 10.27 do not present a smooth decrease
in function of K as the derivative of both levels vary strongly as K increases. This is due
to the multi-band character and it may occurs, for instance, that the optimal matching
filter of McMillan degree K is in fact not of full degree, namely of degree less than K.

Furthermore, in this case we also obtain an extremely high optimality gap for matching
filters of degree less than 3 (K ≤ 2) as it can be seen in fig. 10.28. It is usual for the
optimality gap to be maximum for K = 1 and then to tend to zero when the value of K
increases. However in this case the value of the lower bound obtained for K ≤ 2 does not
provide much information about the optimality of the sub-optimal solution. Nevertheless,
in this case the lower bound given by the blue line in fig. 10.28 gives us information of
different nature and even more valuable than the optimality of the sub-optimal filter
obtained. This additional information refers to the optimal placement of the tranmission
zeros, which allows to improve the global reflection level, until reaching the value ψopt
with a matching filter of degree K +M − 1 = K + 2.
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Remark 10.4.1. It is important to remember now that the matching value corresponding
to the lower limit can be obtained through a filter of degree K+M−1, namely F opt

22 ∈ FK+2.

Nevertheless note that this reflection F opt
22 does not belong to F

K+2
R since two additional

transmission zeros are introduced. Therefore fig. 10.27 also serves as a comparison between
the matching level obtained with a filter of degree K and no tranmission zeros and a filter
of degree K + 2 with 2 finite transmission zeros.

For a proper comparison, we plot both levels for the same value of K in fig. 10.29.
We can verify in fig. 10.29 that the optimal matching level, which is attain using a
filter presenting two finite transmission zeros is not reached in any case by means of
a filter which does not include those transmission zeros. This does not happen, for
instance, in fig. 10.2 where the filter obtained with degree K provides a matching
level lower than the hard bound computed for degree K − 1. Therefore in the pre-
vious case, the filter of degree K + 1 which provides the matching level in blue in
fig. 10.2 at the expense of including a finite transmission zero is of no interest as for de-
gree K+1 a better matching filter is obtained without the need of such transmission zero.

The result shown in fig. 10.29 not only informs us of the improvement in the level of
matching obtained when considering a polynomial rF ∈ P2, without also providing us
with information about the position of said transmission zeros (the roots of rF r

⋆
F in the

complex plane) so that the indicated level is reached. Taking as an example the case
K = 3, the problem of matching as it has been formulated in this thesis provides us with
the information collected in table 10.4.

Degree (K) F best
22 (no TZ) F opt

22 (2 TZ) Bound (no TZ)

1 -3.4188 N/A -8.6438

2 -3.5220 N/A -8.6470

3 -7.8482 -8.6438 -10.1902

4 -8.1115 -8.6470 -10.4057

5 -9.4450 -10.1902 -11.0517

6 -10.1423 -10.4057 -11.4547

7 -10.7360 -11.0517 -11.6029

8 -11.3288 -11.4547 -12.0888

9 -11.4656 -11.6029 -12.1966

Table 10.4: Matching results (in dB) provided by the presented algorithm

10.4.2 Results

Below we analyse more deeply three of the cases listed in table 10.4. In fig. 10.30b with
dashed lines we plot the scattering parameters of the Filter of McMillan 3 which gives us
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Figure 10.27: Lower bounds and obtained reflection level
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Figure 10.28: Optimality gap

Page 244 Mart́ınez Mart́ınez David



10.4. Dual-band RHCP Antenna

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

−12

−10

−8

−6

−4

McMillan degree K of the matching network

M
at
ch
in
g
le
ve
l
(d
B
)

rF ∈ P2

rF = 1

Figure 10.29: Matching level obtained without transmission zeros (rF = 1) and with 2
finite transmission zeros (rF ∈ P2).

the lower bound for degree K = 1. This bound, provided by the global system response
in fig. 10.30b, is marked by the shaded squares. Similarly, in fig. 10.30a we see the best
obtained matching filter of McMillan degree K = 1 (with dashed lines) along with the
global response obtained after connecting this filter to the antenna (solid lines).

We also include, for comparison, the reflection of the optimal global system extracted
from fig. 10.30b. By doing this we can visualize the huge optimality gap obtained in this
case as the shaded gray area, namely the difference between the reflection level provided
by the system reflection S22 (of degree K = 1) and the optimal reflection (of degree
K = 3).

The analogous comparison is performed in fig. 10.31 for degree K = 3 and in
fig. 10.32 for degree K = 9. In both cases (in figs. 10.31b and 10.32b) we can
see the matching filter of degree K + 2 (5 and 11 respectively) together with the
global system response which attain the lower bound for the matching level using a
filter of degree K. Similarly in figs. 10.31a and 10.32a we show the sub-optimal fil-
ters of McMillan 3 and 9 respectively and the scattering parameters obtained in each case.

Additionally, as in the previous example, the reflection of the global system in
fig. 10.31b has been plotted again with dotted lines in figs. 10.31a and 10.32a to compare
with the reflection S22 of degree K. It can be note how the optimality gap, namely the
gray square in figs. 10.31a and 10.32a decreases as the McMillan degree K increases.
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(b) Matching bound for McMillan degree K = 1

Figure 10.30: Result of matching a dual-band antenna
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(a) Matching network of McMillan degree K = 3
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(b) Matching bound for McMillan degree K = 3

Figure 10.31: Result of matching a dual-band antenna
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(a) Matching network of McMillan degree K = 9
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(b) Matching bound for McMillan degree K = 9

Figure 10.32: Result of matching a dual-band antenna
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10.5 Concluding remarks

Thanks to the examples studied in this chapter, it is possible to highlight, on the one
hand, the dependence with the K value of the lower bound ψopt. We verify that there is
a substantial difference between the value of ψopt corresponding to small values of K and
the limit limK→∞ ψopt. This confirms that the limits in the literature for K = ∞, namely
the results obtained in [51] are imprecise for finite values of K.

On the other hand we can also remark that the form of the response corresponding to
the optimal matching filter, namely the parameters F22 and F21 also vary substantially
with the value of K. We can compare the parameters F opt

22 and F opt
21 as well as F best

22

and F best
21 shown in figs. 10.30 to 10.32 which corresponds to K = 1, K = 3 and K = 9

respectively. Note for instance that the response shown in fig. 10.30 does not approach
the result for K = 9 plotted in fig. 10.32. This fact highlights the interest of the presented
algorithm, allowing for the calculation of filter responses with finite degree K as opposed
to other procedures available in the literature which provides a matching filter of infinite
degree.
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Chapter 11. Radiation efficiency and dissipation

In the first part of the thesis we have provided a lot of theory around the problem
of matching and the numerical implementation of this problem. However, in all the
theory presented so far nothing has been said about the effect of dissipation losses in the
system. Indeed, in the problem of synthesis, as it happens with the traditional problem
of synthesis of transfer functions for the design of filters, the devices are considered
lossless at first.

However, it is also important to consider the real case with losses in the system. Note
that in this case minimizing the reflection of the system is not equivalent to maximizing
the transmission. In fact, if losses due to dissipation in the system are considered, the
problem of matching loses its meaning since it is possible to minimize the reflection of the
system with a matching filter that dissipates all the received power without transmitting
or reflecting anything. This also occurs in the classical synthesis of filters when devices
with losses are considered. Indeed, the classic pre-distortion filter design techniques treat
this problem by calculating an optimal transfer function in the sense of maximizing
transmission in the presence of losses. We can see, for example, in Darlington’s con-
tributions in [52] that the mentioned techniques are almost as old as the synthesis of filters.

In the synthesis of matching filters, the limits ψopt obtained previously for the
reflection level also represent limits for the transmission if the quantity

√

1− ψopt|2 is
considered. Therefore, it is possible to apply the same criterion, namely the maximization
of the transmission in the presence of losses, using as initial point, for example the
optimum matching filter in the lossless case.

In this chapter we discuss a practical implementation of a matching filter in presence
of losses. Additionally we apply the theory to an array of antennas where the radiation
efficiency, namely the transmission, is to be maximised. Therefore, before addressing this
practical implementation we introduce the concept of radiation efficiency of an antenna
which can be considered as the equivalent to the transmission coefficient of a 2-port device.

11.1 Radiated efficiency

The radiation efficiency corresponds to the percentage of the energy delivered to the an-
tenna that is effectively radiated into space and not dissipated in the physical structure
of the antenna because of the finite conductivity of metals and losses in the dielectric ma-
terials. This amount of radiated energy is easily calculated thanks to Poynting’s theorem
[53].

Theorem 11.1.1 (Poynting). As part of the Poynting theorem, given the electric and
magnetic field vectors E,H and the current density function J , we find the result stating
that the variation of the energy density stored inside a volume V can be computed as the
volume integral

∂

∂t

∫

V

EdV = −
∫

V

div(Π)dV −
∫

V

E · JdV,

where
∫

V
EdV corresponds to the stored energy in the volume V and Π denotes the
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Poynting vector Π = E ×H. Additionally by the divergence theorem we have

∂

∂t

∫

V

EdV = −
∫

∂V

ΠdA−
∫

V

E · JdV,

with dA the area differential element. Therefore, the variation of energy inside the volume
equals the integral of the Poynting vector in a surface covering the given volume.

We show next the motivation behind this theorem and the application to the problem
that concerns us. Let us first remember Maxwell equations, since it is the basis for
every electromagnetism based calculation, in particular we are interested about the curl
equations.

rotE = −µ∂H
∂t

, (11.1)

rotH = J + ε
∂E

∂t
, (11.2)

where µ and ε denotes the magnetic and electric permittivity respectively while the rot
notation denotes the curl operator. Similarly we indicate the divergence by the div
notation. Developing now the expression div(E ×H) by the fundamental vector identity
and introducing eqs. (11.1) and (11.2) we have

div(E ×H) = (rotE) ·H − E · (rotH)

= H ·
(

−µ∂H
∂t

)

− E ·
(

J + ε
∂E

∂t

)

.

Using now the product rule we have

E
∂E

∂t
=

1

2

∂

∂t
(E · E),

H
∂H

∂t
=

1

2

∂

∂t
(H ·H).

Therefore

−divΠ =
µ

2

∂

∂t
(H ·H) +

ε

2

∂

∂t
(E · E) + E · J

=
∂

∂t

1

2
(µH ·H + εE · E) + E · J.

Finally taking the integral on the volume V and using the dominated convergence theorem
to exchange the derivative and integral operators we have

− ∂

∂t

1

2

∫

V

(µH ·H + εE · E) dV =

∫

V

div(Π)dV +

∫

V

E · JdV. (11.3)

Note that the term 1
2

∫

V
(µH ·H + εE · E) dV corresponds to the magnetic and electric

energy stored by the fields H and E inside the volume V . Furthermore the integral
∫

V
E · JdV represents the power loss due to dissipation inside the volume V because of

the existence of given conductivity density J . We obtain then that the negative variation

Thèse de doctorat — Université de Limoges — 2019 Page 253



Chapter 11. Radiation efficiency and dissipation

of the stored energy in the volume equals the integral of div(Π) + E · J as stated by the
theorem.

In eq. (11.3) the left-hand terms represents the derivative of the electromagnetic energy
stored in the volume V and therefore by the energy conservation theorem, the right-
hand side indicates the power balance, namely the power dissipation inside the volume
V and the power flow through the surface of the volume ∂V . Therefore as an immediate
consequence of the Poynting’s theorem, we conclude that the integral of the Poynting
vector in eq. (11.3) corresponds to the electromagnetic power flux through the surface of
the volume

P =

∫

∂V

Π dA =

∫

∂V

E ×H dA.

Note that the differential dA is a vector with direction normal to the surface ∂V , therefore
the scalar product with dA has direction normal to ∂V . Denoting by ET and HT the
component tangent to ∂V of the electric and magnetic field respectively we have

P =

∫

∂V

|ET ||HT | dA. (11.4)

Finally, for far field and free space propagation, we can use the free space impedance µ0c0
to express eq. (11.4) in terms of the component |ET | only

P =

∫

∂V

|ET |2
µ0c0

dA.

We consider now a spherical volume V containing the radiating element shown in
fig. 10.23a and section 10.4 and define the perpendicular directions Θ and Φ tangent
to the surface of the volume ∂V as indicated in fig. 11.1. With this notation we can
decompose ET = EΦ + EΘ.

If we denote by a the incident wave and by b the reflected wave as shown in fig. 11.2,
assuming that the reference impedance equals the generator impedance (Z0 = Rg) we can
define the radiation efficiency as the ratio between the total radiated power P and the
incident power to the antenna which is given by the magnitude of a

η =
P

|a|2 . (11.5)

Let us now consider a single direction of radiation instead of the entire sphere. In
this case, the punctual value of the radiated power in the direction (θ, φ) is given by the
expression

Pθ,φ =
|ET (θ, φ)|2

µ0c0
.

Similarly we can define the radiation efficiency in the direction defined by (θ, φ) as

ηθ,φ =
1

µ0c0

∣
∣
∣
∣

ET (θ, φ)

a

∣
∣
∣
∣

2

.
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Figure 11.1: Definition of Θ and Φ directions

a

b

Figure 11.2: Incident and reflected waves
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11.2 Extended scattering matrix

The expression of the radiation efficiency given by eq. (11.5) is similar to the transmission
coefficient defined in eq. (2.10) as it provides the amount of power that is transmitted with
respect to the incident wave a. Therefore we could now think of defining an equivalent
matrix of scattering parameters where the transmission to free space represents an
additional output port in order to calculate the power radiated by the antenna in terms
of the incident waves only. While this is quite simple for a mono port antenna, if we
consider an array of antennas or just an antenna with a double input port like in the
previous case, things become more complicated.

Our objective now is to calculate an equivalent scattering matrix that allows us to
calculate the power radiated by the antenna as a function of the excitation of each port,
even in the case of the association of an arbitrary number of antennas. Thus let us consider
now a N -ports device with scattering matrix S, we can compute the output wave at port
1 when several ports are excited by means of the superposition principle

b1 = a2S1,2 + a3S1,3 + · · ·+ aNS1,N . (11.6)

Nevertheless note that the efficiency η ∈ [0, 1] is a positive quantity with no phase in-
formation. This missing phase information prevent us from predicting how the radiating
waves interact upon the excitation of several input ports simultaneously.

Definition 11.2.1 (Effective transmission). We define as effective transmission in the
direction φ, θ, denoted by SEφ,θ, the ratio between the component of the radiated E field
tangent to the surface ∂V and the incident wave a.

SEθ,φ =
ET (θ, φ)

a
√
µ0c0

.

Additionally in the direction (θ, φ) we have

ηθ,φ = |SEθ,φ|2.

Consider now the schematic in fig. 11.3 representing the circular polarisation antenna
introduced before. We denote by a1, a2 and b1, b2 the incident and reflected waves in ports
1 and 2 respectively. Additionally we denote by SEθ,φ,1 and S

E
θ,φ,2 the effective transmission

associated to ports 1 and 2 in the direction (θ, φ), which are computed by exiting only one
port of the antenna at a time. Therefore, by only exciting the i-th port of the antenna
and calculating the electric field vector E(θ, φ) we have

SEθ,φ,i =
ET (θ, φ, i)

ai
√
µ0c0

,

with ET (θ, φ, i) represents the radiated E field tangent to the surface ∂V in the direction
(θ, φ) when only the input port i is excited. It is important to note here that once divided
by the value of ai, assuming a linear behaviour for the antenna, the parameters SEθ,φ,i
obtained do not depend on the excitation ai. Therefore we can define now the radiated
wave bθ,φ in the direction (θ, φ) as

bθ,φ = a1S
E
θ,φ,1 + a2S

E
θ,φ,2. (11.7)
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21input a1
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1
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Figure 11.3: Incident and reflected waves in each input port of the RHCP antenna.

Note the similarity between eq. (11.7) and eq. (11.6). Indeed, these parameters SEθ,φ
allow us to model the antenna using a traditional scattering parameter matrix, obtaining
a multi-port device where each direction (θ, φ) in the free space represents an output port.
In the general case of an structure with N input ports we have

bθ,φ =
N∑

i=1

aiS
E
θ,φ,i. (11.8)

We define now an extended scattering matrix of size (N + 1) × (N + 1) where an addi-
tional port corresponding to the transmission to the free space in the direction (θ, φ) has
been added. Filling the gaps in the aforementioned scattering matrix extended with the
parameters SEθ,φ,i we obtain

AE =










A1,1 A1,2 · · · A1,N SEθ,φ,1
A2,1 A2,2 · · · A2,N SEθ,φ,2
...

...
. . .

...
...

AN,1 AN,2 · · · AN,N SEθ,φ,N
SEθ,φ,1 SEθ,φ,2 · · · SEθ,φ,N










. Note that the last element in the previous matrix is missing. However, if we assume
that the only input ports in the matrix AE are the ports from 1 to N then the element
N + 1, N + 1 is not necessary. This assumption is equivalent to considering that only
the original ports of the antenna, from 1 to N, are excited. Therefore we can calculate
the reflection in each of these ports and the coupling between them, by the scattering
parameters provided by the original scattering matrix A , as well as the transmission to
free space from each one of the input ports.

It is important to note that by reciprocity, the antenna behaves in the same way in
transmission as in reception, so the missing parameters could also be defined in a similar
way. Nevertheless, the theory developed below is made, without loss of generality, from
the point of view of a transmitting antenna, thus only the N first columns of the matrix
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AE are necessary. Therefore we define the non-square (N + 1) × N matrix Ae as the
sub-matrix containing the first N columns of AE

Ae =










A1,1 A1,2 · · · A1,N

A2,1 A2,2 · · · A2,N

...
...

. . .
...

AN,1 AN,2 · · · AN,N
SEθ,φ,1 SEθ,φ,2 · · · SEθ,φ,N










.

Remark 11.2.1. Note that this extended scattering matrix can be calculated from the
electric field vector radiated by the antenna and allows to obtain the transmitted power for
each set of excitations a1, a2, · · · , aN under assumptions made previously and without the
necessity to perform a new EM simulation to recalculate the radiated fields.

11.3 Optimisation of the array efficiency

Let us now compute the radiated power in the direction (θ, φ). This power is given by

Pθ,φ = |bθ,φ|2.

Moreover we can again compute the radiation efficiency in the given direction as the ratio
between the radiated power and the incident which is given by |a1|2 + |a2|2 + · · ·+ |aN |2.
We have

ηθ,φ =
Pθ,φ

∑N
i=1 |ai|2

=
|bθ,φ|2

∑N
i=1 |ai|2

. (11.9)

Next we consider in a similar way the radiation in every direction (θ, φ). Note that
considering the full surface covering the volume V , we have an infinite amount of
directions in which power is transmitted. We are therefore facing a device with N input
ports and an infinite number of output ports.

We introduce expression of bθ,φ given by eq. (11.8) in eq. (11.9) and integrate over
the surface covering a volume V which contains the radiating structure. In this way we
obtain an expression for the radiation efficiency of the array under consideration from the
knowledge of the parameters SEθ,φ and the waves ai incident at each input port.

η =

∫∫

θ,φ

ηθ,φ dθdφ =
1

∑N
i=1 |ai|2

∫∫

θ,φ

∣
∣
∣
∣
∣

N∑

i=1

aiS
E
θ,φ,i

∣
∣
∣
∣
∣

2

dθdφ. (11.10)

In eq. (11.10) we calculate the radiation efficiency from the integral of the pointing
vector which is obtained as the vector sum of the field contributions corresponding to
each of the input excitations to the antenna.
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Figure 11.4: Efficiency of the dual-band antenna

11.4 Example: Four elements array

Next we return to the problem of matching within the bands listed in table 10.3. However,
this time we consider an array of 4 radiating elements as shown in fig. 10.26, each with two
input ports that are fed with phase and quadrature signals respectively. This array gives
us a 3-dimensional control of the pointing direction in the space of the main radiation lobe.

Each of the radiating elements is fed throughout a 90-degrees hybrid coupler as illus-
trated in fig. 10.25. However, due to the mismatch of the antenna, a significant part of
the energy is reflected and passes through the coupler in the opposite direction being dis-
sipated in the 50Ω charge. Consequently, the total efficiency is degraded in the passband
edges as shown in fig. 11.4.

Once again, in order to overcome the matching issue, a matching filter is introduced
in each of the input ports to compensate for the mismatch of each radiating element as
indicated in fig. 10.26. Nevertheless in this case it is necessary to match each of the 8
input ports to the 4-elements array. Figure 11.5 shows a diagram of the aforementioned
structure, together with a part of the feeding network that provides the signals with the
appropriate phase shift at the input ports of each radiant element. We have also included
the matching filters preceding each feeding port of the antennas. In total we need a
set of 8 matching filters, which are considered equal due to the symmetry of the structure.

Figure 11.6 also shows a top view of the built structure where you can see the four
radiating elements along with the excitations of each of them. The matching filters
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Figure 11.5: Array of radiating elements with matching filters.

together with the hybrid couplers are integrated in the same substrate on the back of
each of the antennas.

The structure shown in fig. 11.6 can be parametrised by a scattering matrix A of size
(8× 8). This matrix is obtained directly from a scattering parameters analysis. In addi-
tion, for each of the 8 input ports, we perform an additional analysis using the software
CST to calculate, in the far field, the electric field vector E at each position of the space.
This allows us to also obtain the elements SEθ,φ,i for all θ, φ ∈ [−π, π] and with i ∈ [1, 8].
Note, as it has been mentioned previously, that there is an infinity amount of directions
parametrised by the values θ, φ. However, in practice we sample the interval [−π, π]
selecting a finite number of values for θ and φ within that interval. This allows us to
obtain a numerical approximation of the efficiency by transforming the integral provided
in eq. (11.10) onto a finite sum. Once both parameters are available, on the one hand the
matrix A of the array and on the other hand the parameters of equivalent transmission, we
calculate the extended matrix Ae. This is a matrix with 8 columns, since the structure has
8 input ports, and a number of rows equal to the number of directions considered in space.

11.4.1 Filter model and optimisation

To implement the matching filters, we select the option corresponding to the result of
degree 3 in table 10.4 with 2 transmission zeros. This filter gives us a matching level of
-8.6338dB. Note in fig. 10.29 that this is the best possible option with a low degree since
to improve the level of matching it would be necessary for a filter of degree 5, which is
excessive for this practical implementation. The scattering parameters of this filter are
shown in fig. 10.30b with dashed lines. As we have discussed previously, the presented
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Figure 11.6: Dualband antenna: 4-elements array. Top view.

algorithm can provide us with information on where to place the transmission zeros. In
this case it is important to note, as we can see in fig. 10.30b the presentation of one of
these transmission zeros extremely close to the frequency axis around 1.47 GHz.

Next we perform a local optimization of the matching filters shown in fig. 11.5. Once
again we make the assumption that they are all the same. To carry out this optimization,
the filter previously obtained when only one of the elements was considered provides us
with a good starting point. Note that in the case where the coupling between the radiating
elements is null, namely the matrix A is diagonal, the solution obtained in the previous
section represents the optimum solution in the case of an array since each of the radiating
elements it can be considered separately.

11.4.2 Optimisation parameters

The optimization of matching filters F is done again by means of a rational model
parametrized by two polynomials p ∈ P3, r ∈ P2 in the Belevitch form

F =
1

q

(
p⋆ −r⋆
r p

)

,

where q is the stable polynomial such that qq⋆ = pp⋆+rr⋆. In this model, both polynomials
p, r are taken as parameters what allows for both the reflection and transmission zeros to
be optimised.
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11.4.3 Optimisation criterium

In the optimization of matching filters, the objective is to maximize the efficiency
calculated by eq. (11.10). This expression is equivalent to the vectorial sum of the
effective transmissions in each direction of the space.

In this case we have considered the transmission in all directions to obtain the real
efficiency of the array. However, if the objective is the maximization of directivity, or the
pointing of the main lobe in a certain direction, we can consider a limited interval for the
angles θ, φ, so that only a portion of the surface ∂V is taken into account.

The motivation to use the initial point shown in fig. 10.30b comes from the fact
that for an antenna without dissipation losses, the solution shown in fig. 10.30b also
maximizes the efficiency of the antenna, since the totality of the energy that it is not
reflected it is transmitted. If we then consider a structure with weak dielectric losses, the
solution to the efficiency problem is found in the vicinity to the optimal solution for the
matching problem.

Remark 11.4.1. Note that the efficiency is obtained as the transmission of the global
multi-port system whose scattering matrix is computed by the chaining of the matrices
corresponding to the matching filters with the extended scattering matrix Ae of the
array.This extended matrix takes into account the transmission of each of the radiating
elements as well as the reflections and coupling between the said elements.

Moreover, the criterion of maximizing transmission requires that the reflection
coefficient F22 of the filters must be matched to the reflection of each port of the antenna.
However, in this case the transmission criterion also implies an even stronger condition,
namely that the signals from the i-th matching filter, coupled between the radiating
elements i and k and finally reflected by the k-th filter must be added constructively with
the signal coming directly from the k-th input port.

This phenomenon is implicitly imposed in the process of maximizing the transmission
of a multi-port device, since a destructive interference, on the contrary, would produce a
lower efficiency and therefore a worse criterion in the optimization.

In fig. 11.7 the response of the matching filter resulting from the optimization is shown
together with the initial point in fig. 10.30b. This response shares some characteristics
with the initial response as the transmission zero around 1.47 GHz. However, both
devices differ fundamentally in the McMillan degree. While the initial response obtained
by solving the matching problem with a single radiant element is of degree 3, the filter re-
sponse optimized considering the array of antennas shown in the figure is only of degree 1.

Note as we have already highlighted several times previously, the response of the
optimal matching filter may not be of full degree, especially in the multi-band case.
Moreover, in this case we have also moved from a structure with a single radiant element
to an array in which 8 filters intervene, such as the one shown in fig. 11.7. Because
of the coupling between the different radiating elements, each filter contributes to the
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Figure 11.7: Result of efficiency optimisation

optimization of overall efficiency, since, as has already been pointed out, the efficiency
criterium from the point of view of each matching filter takes into account the signals
coming from the other filters, which must be reflected to the antenna with the appropriate
phase. Therefore, the decrease in degree is only apparent since we start from a filter of
degree 3 to obtained a network of 8 filters of degree 1 each.

11.4.4 Design of the matching filter

Given the result obtained in fig. 11.7 the objective is to design a filter that can be
integrated with the antenna and which approximates as close as possible the response
shown in fig. 11.7. From the objective response obtained above, we can extract the pi
network shown in fig. 11.8a composed of lumped elements, namely capacitors and coils
only, together with a transmission line at the input which interconnects with the an-
tenna feeding port, implementing a phase shift of 1.87 radians at the frequency of 1.4 GHz.

The first step taken for the practical implementation of the structure shown in
fig. 11.8a has been to neglect the 64.1 nH coil since due to its great value, the influence
on the response is minimum. Note that a coil of a sufficiently large value in parallel can
be approximated by an open circuit. Then the series resonator has been implemented by
means of a resonator in microstrip technology while the 3.7 nH coil has been conserved
in the form of a lumped component.

The matching matching filter has a transmission zero and a zero of reflection at finite
frequencies. This implies that a direct coupling between the input and the output is
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necessary to implement said zeros with a degree 1 response. In fig. 11.8, the final filter
designed is shown. We can observe the direct input-output coupling, namely between the
ports P1 and P2. We can also appreciate the λ/4 resonator together with transmission
line which implements a λ/4 impedance inverter to introduce the transmission zero
present in the target response. Finally we can see the ports P3 and P4 destined to the
connection of the coil.

The structure shown in fig. 11.8 has been optimized to closely implement the target
response, in the pass bands. In addition, to select the optimum value of the inductance
shown in fig. 11.8a (of 3.8nH in the ideal circuit) a sweep has been made on the different
commercial values of said component around the nominal value. A set of 8 copies of this
filter have been integrated, along with the antenna in a single component, each filter
connected to one of the input ports of the antenna as in the schematic shown in fig. 11.5.

Figure 11.10a shows the back side of the antenna array illustrated in fig. 11.6 where
we can see the implementation of the network from fig. 11.5. Additionally we provide in
fig. 11.10b a close view of the feeding circuit of each radiating element. In this figure we
can distinguish the 90 degrees hybrid coupler and the two matching filters whose layout
is provided in fig. 11.8.

In fig. 11.9 the response obtained as a result of the filter optimization in fig. 11.8 is
shown in both module and in phase. The optimization has been carried out within the
bands shown in the figure in which the criterion is defined in this application, namely
the maximization of efficiency.

11.4.5 Global efficiency result

Using the matching structure presented in this chapter we can calculate the improvement
in terms of radiation efficiency achieved by using the network of matching filters obtained.
In fig. 11.4 we show a comparison between the efficiency of the array without matching
elements (in blue), the efficiency obtained by the ideal matching filters (lossless) synthe-
sized shown in yellow and finally in red the efficiency obtained through the matching
network shown in fig. 11.10.

In fig. 11.11 it is possible to appreciate the efficiency improvement by adding the
matching network, which is more pronounced in the GALILEO E6 band. Additionally,
the decrease in the minimum efficiency between the result issue of the lossless synthesis
and by the actual filters due to the dissipation. This dissipation causes the decrease
from -1.1dB reached by the ideal curve at the frequency of 1.3GHz to -2.36 dB obtained
at the frequency of 1.24 GHz with the matching network implemented. However, it is
important to note that in this case, no selectivity requirements have been considered.
Therefore, it is necessary to obtain a compromise between the gain in efficiency provided
by the matching filters and the losses due to dissipation introduced by the filters
themselves. This trade off is reached by choosing the McMillan degree of the matching
filters. If this degree is too high, the losses introduced by the filters will exceed the ob-
tained gain in efficiency and therefore deteriorating the overall performance of the system.
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Figure 11.8: Design of the matching filter

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7
−20

−15

−10

−5

0

Frequency (GHz)

M
ag
n
it
u
d
e
(d
B
)

F22 synthesis
F22 optimised
F21 synthesis
F21 optimised

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7
−6

−4

−2

0

Frequency (GHz)

P
h
as
e
(r
ad

)

F22 synthesis
F22 optimised

Figure 11.9: Result of filter optimisation
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(a) Top view

(b) Close view

Figure 11.10: Matching filter array
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Figure 11.11: Final efficiency of the array.

Conversely, it should also be noted that when selectivity specification are imposed
and the received signal need to be filtered whatsoever, no drawback is added by the use
of matching filters since additional losses will be introduced by the filters in any case.

Finally, we present the final result of this study in fig. 11.12, namely the original
efficiency of the array compared to the efficiency obtained through the use of matching
filters, this time in a linear scale. We can see that the efficiency of the antenna has been
improved from a minimum value of about 0.28% at the frecuency of 1.3 GHz to a value
of 0.58 % attained by the final result at the frequency of 1.24 GHz as it is summarised in
table 11.1.

Freq. (GHz) Eff. without matching (%) Eff. with matching (%)
1.21 0.64 0.62
1.24 0.61 0.58
1.26 0.49 0.61
1.30 0.28 0.63
1.55 0.50 0.60
1.60 0.61 0.72
min 0.28 (1.3GHz) 0.58 (1.24GHz)

Table 11.1: Summary of the obtained efficiency at each frequency.
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Chapter 12. Introduction to multiplexer synthesis and state of art

The high power amplifiers used in satellite payloads require a narrowband signal to
avoid the effects introduced by the non-linearity of these devices and operate with high
efficiency. As a result, multiplexers are needed to separate a broadband signal in a
given number of narrowband channels. Multiplexers are also used to combine a group
of narrow-band channels into a broadband signal transmitted through a conventional
antenna.

Figure 12.1 shows the simplified block diagram of a satellite payload system composed
of a receiving antenna (uplink), a low noise amplifier (LNA) and an input multiplexer
to separate the signal into narrower-band channels. The amplification chain composes
high power amplifiers to amplify each channel separately and an output multiplexer to
recombine the amplified channels into a single signal suitable to be transmitted. However,
it is possible to distinguish between two categories of multiplexing applications.

On the one hand, we have input/output multiplexers. Input multiplexers divide
a received broadband signal into a given number of narrowband channels. This task
is performed after the broadband amplification of the signal by an LNA. Conversely,
output multiplexers are used to recombine the frequency channels after the high power
amplification. In this application, shallow insertion losses are a critical condition, since
it has a direct impact on the transmitted signal.

On the other hand, we can speak about the transmitter-receiver diplexers. A duplexer
is a two-channel multiplexer that is often used to share a single antenna between the
transmitter and the receiver allowing to separate the uplink and downlink bands.
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Figure 12.1: Simplified satellite payloads diagram.

12.1 Multiplexing techniques

The design of multiplexers is a recurring problem in the field of passive microwave devices
which takes the synthesis of transfer functions a step further by considering a set of
filters coupled together. In addition, the type of coupling between the different channels
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can simplify or further complicate the design process. Indeed, depending on the type of
coupling between channels we can distinguish different types of multiplexers, which do
not differ simply in the topology, but also in the features and in the design techniques
used to perform the dimensioning of the structure.

Below is a list of the main types of multiplexers according to the type of junction
used, which allows us to review the main characteristics of each one as well as the design
procedure necessary in each case. Nevertheless note that we can find a more exhaustive
list in [54].

12.1.1 Modular multiplexer configurations

Below we present two types of structures characterized by having a modular design. This
is possible since there is no interaction between the different channels, so it is possible to
eliminate or add a new channel at any time without disturbing the operation of the other
channels. These structures present mainly the disadvantage of the high level of losses and
the large volume occupied.

12.1.1.1 Hybrid multiplexers

Multiplexers coupled by 90-degree hybrids are based on the direct properties of this
hybrid. We can see an example in fig. 12.2. The 90 degree hybrid splits the input signals
from ports 1 onto the port 2 and 3 meanwhile the input signals at ports 2 and 3 get
combined to the port 4. Therefore in the structure shown in fig. 12.2 the broadband
input signal passes through a directional coupler that divides the signal between two
identical filters in the first channel. At the output, another hybrid combines these signals.
Similarly, the reflected signals of both filters go back to the first 90-degree hybrid that
recombines these signals on the direction to the next channel and cancels them on the
return way. This structure made of the 90-degree hybrids together with the recombining
and destructive path composes the manifold of the multiplexer in this case.

Through this structure, we manage to separate the signals transmitted and reflected
by the filters, so that the transmitted signal, already filtered, is recovered at the output
of the multiplexer, while the reflected signal, corresponding to the rest of the channels, is
redirected to the next set of filters, without interfering with the input signal to the first
channel.

As a negative aspect of this structure it is important to note that the signal that
crosses the coupler at the entrance of each channel is divided into two separate branches,
so two identical copies of the same filter are necessary. In addition a second coupler is
necessary in each channel to recombine the signals coming from these two filters. As
a result the structure corresponding to each channel represents a considerable volume
needing to locate two filters and two couplers. It is also necessary to consider the increase
in the level of losses introduced into the system due to the presence of cascaded couplers.
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Figure 12.2: Hybrid coupled multiplexer.

12.1.1.2 Circulator-coupled multiplexers

Multiplexers based on couplings by circulators follow exactly the same principle as those
based on 90-degree hybrids introduced in the previous section. The only difference is
that the function performed by the hybrids, namely the direction of the signals reflected
in one channel at the entrance of the next, is performed by a circulator. Therefore
the advantages provided by the multiplexers with directional couplers related to the
modular design are maintained. It is possible to design each channel independently of the
structure of the multiplexer due to the unidirectional property of the circulator, as well
as to add new channels at any time. Besides, this structure overcomes the disadvantage
present in the multiplexer with directional filters in terms of the need for two filters in
each channel. This fact leads to a reduction in size since each channel is composed only
of a circulator and the corresponding filter.

We still have, however, the problem of cumulative losses since the signal at the entrance
of the second channel must first pass through the first circulator, the input signal to
channel 3 must pass through circulators 1 and two, and so on successively.

12.1.2 Non modular multiplexer configurations

Unlike modular structures, these structures work by coupling all channels directly to the
input port. In this case the design is a simultaneous matching problem since each of the
filters is matched, within its respective band, to the set of all the other filters, which
are also matched in the corresponding band simultaneously. As a consequence, it is not
possible to modify the channel configuration once the device has been designed since the
elimination or addition of a new channel modifies the operation of the rest of the channels.
However, as an advantage of these non-modular devices, we obtain a lower footprint due
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Figure 12.3: Circulator coupled multiplexer.

to the simplicity of the structure, which also leads to a lower level of losses.

12.1.2.1 Star junction multiplexers

Star-junction multiplexers consist of a certain number of filters, depending on the
number of channels, directly coupled to a common input port as in fig. 12.4. This type
of multiplexers represents, among the non-modular multiplexers, the type of multiplexers
that is easier to synthesize. In fact, if we assume that the junction is small enough to
be considered non-dispersive in frequency, the design of this type of device becomes a
problem of simultaneous matching.

If we also suppose that the passband of the channels are sufficiently separated in
frequency so that the impedance shown by each channel within the band of the other
channels is constant, the synthesis of the multiplexer is equivalent to the classical
synthesis of filters. The synthesis of star-junction multiplexers with channels spaced in
frequency is already well know, and classical papers can be found in the literature. We
can find for instance [55] where the method of synthesis of traditional filter prototypes,
prior to the coupling matrix, based on impedance inverters, is used for the synthesis
of multiplexers. Additionally, we can also find modern studies where these structures
are synthesized by an equivalent circuit based on coupled resonators. For instance in
[56, 57, 58].

However, this structure does not allow the inclusion of a large number of channels due
to the topological restrictions that prevent the connection of more than a certain number
of channels to the same input node, without including transmission lines or other devices.
Therefore Star junction multiplexers are used when only a small number of channels is
required, such as diplexers or triplexers [59, 60, 61, 62].

12.1.2.2 Manifold-coupled multiplexers

Finally, manifold multiplexers are the approach in which we have focused this work.
These multiplexers are composed of a bandpass filter for each channel interconnected by
transmission lines as shown in fig. 12.5. With a manifold configuration, the channels
are not isolated from each other, and the reflected signal of a given filter influences the
response of the whole device.

Thèse de doctorat — Université de Limoges — 2019 Page 275



Chapter 12. Introduction to multiplexer synthesis and state of art

Input

Channel 1

Channel 2

Channel 3

Figure 12.4: Star multiplexer.

input

Channel 1 Channel 2 Channel 3

Figure 12.5: Manifold multiplexer.

This configuration is widely implemented for spatial applications since this approach
offers the best result in terms of structure miniaturization and total insertion losses
in each channel. Also, the inability to perform a modular design is usually not an
inconvenience in the space sector where no physical access to the designed and operating
devices is possible ([54, 63]).

In this context, some authors have developed optimization methods to achieve the
desired behaviour [64, 65, 66, 67] and also synthesis techniques for the whole multiplexer
[68]. This is the most relevant type of multiplexers for this thesis since it presents the
greatest challenge in terms of synthesis of the channel filters and design of the structure.
Therefore in this chapter multiplexers of the manifold type receive special attention. In
the next section we recapitulate the existing design techniques as they have been presented
over the years. In the same way, the most important contributions will be highlighted as
they are of greater interest for the work done in this part.

12.2 State of art and techniques for manifold-type

multiplexer synthesis

The literature on the design of multiplexers of manifold type is vast since many authors
have tried over the years to obtain an analytical synthesis procedure similar to the syn-
thesis of filters by means of the model of coupled resonators. However, the synthesis of
filters benefits from the fact that the responses obtained by a structure formed by coupled
resonators can be approximated in a relatively narrow band to a rational function. This
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does not occur in the case of multiplexers of the manifold type. The reason is that the
manifold, constituted mainly by transmission lines is by definition, not rational. Indeed,
a moderately accurate manifold model must contain functions of exponential type.

12.2.1 Rhodes and Levy’s theory. Classical multiplexer synthe-
sis

Among the first contributions in manifold design we find in [69] the works of J. Rhodes
and R. Levy who introduced the synthesis of this type of devices is an extension of the
synthesis of double ended filters. The synthesis of double terminated filters supposes a
constant impedance in each one of the ports.

It is interesting to note that this type of synthesis can easily be applied to the design
of multiplexers as long as the impedance shown by each channel filter in the adjacent
bands is constant. Therefore in [69] it is considered that the channels are sufficiently
spaced to validate the previous assumption. This assumption is even more legitimate
in the case of narrow-band channels where the variation of the impedance seen by each
of the channel filters, namely the impedance shown by the rest of the multiplexer, is small.

In addition, the assumption is also made that the manifold response is independent of
frequency. This means that the transmission lines that make up the manifold introduce
a constant phase shift in frequency instead of a disperse phase shift. With these assump-
tions we are again in the case of the synthesis of a star-coupled multiplexer. Indeed,
the structure obtained is a star multiplexer where a series of frequency-independent
reactances, which we can consider as part of the star-junction, have been introduced
between the different channels.

The theory presented here used elegant approaches to formulate the problem of the
multiplexer synthesis in a rigorous way, as the synthesis of filters was formulated at
the time, by means of a equivalent low-pass prototype computed by reactive elements,
to reduce the number of condensers or coils, and impedance or admittance inverters.
However, this effort to formulate a synthesis problem in an analytic way has progressively
disappeared, and the synthesis of multiplexers has not followed the same evolution as
that of microwave filters using coupled resonators. The reason lies undoubtedly in the
difficulty to relax the assumption made about the absence of frequency-dispersion in the
behaviour of the transmission lines.

12.2.2 Transition to optimisation-based synthesis

In the following years, while the synthesis of filters evolved from the newly introduced
concept of the coupling matrix, the synthesis of multiplexers remained stagnant. The
concept of the coupling matrix allowed to represent the interactions in the complete
structure of a filter by simply using a matrix. In fact, we can find several contributions
(i.e. [70]) where this concept applies equally to the design of multiplexers obtaining a
much more tractable parametrisation than that obtained by Rhodes and Levy. This
simplified parametrisation makes it possible to directly apply classical optimization
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techniques to the whole structure.

Since then, multiplexer design has evolved along with non-linear optimization algo-
rithms, relying increasingly on the increasing computational efficiency to solve the prob-
lem.

12.2.3 Fix-point algorithm. An iterating matching procedure

One of the recent design techniques that is worth noting is the fixed-point algorithm
used in [71, 72]. This method seeks to formulate the problem of simultaneous matching
as a problem of standard matching with a variable impedance in frequency similar to
the problem dealt with in this thesis. To do this, it considers the synthesis of a single
channel filter in each iteration and poses a matching problem assuming that the rest of
the filters are fixed. However, to solve this problem, non-linear optimization techniques
are used, so the optimality of the solution or even the convergence of the algorithm is
not guaranteed. Additionally, it should be noted that the case in which the load shown
by the other filters is relatively constant in frequency constitutes one of the rare cases
in the aforementioned matching problem can be optimally solved. This is the case of
multiplexers with sufficiently spaced channels.

Moreover, as the pass band of the channels becomes increasingly wider and the sepa-
ration between them narrower, another problem has appears in the design of this type of
devices, already complicated by itself. This is the problem of the manifold peaks.

12.2.4 Modern manifold synthesis. Dealing with the problem of
manifold peaks.

The problem of manifold peaks consists mainly of the appearance of transmission zeros
within the pass-band of one of the channels due to the phase recombination produced
within the manifold. Remember that the design of these multiplexers of manifold type is
equivalent to a problem of simultaneous matching where each of the filters matches the
impedance shown by the rest of the multiplexer. However, if said impedance is 0 namely,
a short-circuit, matching is not possible.

Although the case of finding a null impedance may seem strange, consider that each
of the filters presents a practically uni-modular reflection within the adjacent bands. In
addition, due to the phase shift produced by the transmission lines that make up the
manifold, it is possible to introduce a virtual short circuit in any of the channels. This is
illustrated in fig. 12.6, where the filter in channel 3 shows a short circuit at a frequency
f0 within the band of channel 2. If the transmission line L indicated in the figure takes
then the value λG/4 at any frequency belonging either to the band of channel 1 or 3, a
short circuit is introduced at the input of the multiplexer at that frequency. Therefore a
manifold peaks occurs at the same frequency within the band of the respective channel.

This is an important disadvantage in the synthesis of multiplexers, so much so
that it is even difficult to detect until the device has been physically constructed.
The reason comes from the fact that, when using transmission lines of too long a
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Figure 12.6: Occurrence of a virtual short circuit, namely a manifold peak.

length, the variation speed of the reflection seen by each of the channel filters increases.
This causes the said manifold peaks to appear at a very precise frequency, making
it difficult to detect them in a simulation if the sampling of the frequency axis is
not too large. This is usually the case in practice since in order to perform the simu-
lation, a refined sampling of the frequency axis would slow down the whole design process.

The typical solution to the problem of manifold peaks is to perform a first optimization
where these peaks are ignored, then through an EM simulation with sufficient resolution
the presence of the manifold manifold peaks in the response is revealed. Once these are
localized, the contributions in this regard found in the literature (for instance in [73])
propose the modification of the physical structure to displace the frequency at which said
peaks occur and perform a new iteration which consists of a successive optimization. Note
that when modifying for example, the coupling topology of one of the filters changes the
level of dispersion present in the structure and therefore also the position of said peaks.
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Chapter 13. Manifold model and manifold peaks

In this chapter we introduce the first part of the design technique presented in part V of
this thesis. The main objective is the synthesis and subsequent design of a multiplexer of
the manifold type. As mentioned in the previous chapter, manifold multiplexers offer the
greatest advantage in terms of compactness and insertion losses. However, they present
the important inconvenience that constitutes the need to perform a very complex and
computationally expensive synthesis.

In previous chapters, if the problem of matching comes into play, the decomposition
of the global system into two devices, namely a matching filter and a load, has facilitated
the task with regards to matching. This holds in both the use of traditional techniques
of matching and in the procedure developed in this work, where a series of necessary
conditions on the global system are determined solely by one of those two sub-devices.
Indeed, one of the main reasons for the manifold multiplexer design complexity comes
from the fact that the device to be designed is essentially multi-port, which can not be
decomposed into two-port sub-devices only.

When it comes to synthesizing a device with more than two ports, the different
paths that the input signal can follow inside the device before recombining at the
output represent a quite complex combinatorial problem. Because of the said multipath
effect, when this multi-port device is inserted in a larger block, interconnected with
other devices, transmission zeros may appear between two of its ports, which were
not present in the isolated device. This fact differs fundamentally from the behaviour
obtained when two-port are connected in cascade, since in this case the transmission ze-
ros obtained in the global system are necessarily present in at least one of the sub-devices.

In general, multiplexer synthesis involves dealing with multiple spikes that appear
within the pass bands. These are transmission zeros at an extremely precise frequency that
appear due to phase recombinations within the manifold. In the design of multiplexers,
we often face the problem of avoiding these peaks. However, due to the nature of the
design techniques traditionally used in the synthesis of multiplexers, the presence of said
peaks is revealed thanks to an EM simulation of the complete structure once the design of
the multiplexer has been completed. This implies that to solve the problem it is necessary
to go back, modifying or restarting the synthesis of the device.

13.1 Multi-port scattering matrices

At this point, some of the concepts introduced in chapter 2 with respect to scattering
matrices need to be extended or particularized for the case of multi-port devices.

It is important to note that the theory developed in chapter 2 was particularized for
the case of 2× 2 scattering matrices without loss of generality. Therefore, the mentioned
theory can be extended to the general case of N × N scattering matrices. However, the
concepts introduced in chapter 2 need to be adapted.

The main difference in the synthesis of multi-port scattering matrices with respect to
the traditional synthesis of 2× 2 matrices is the absence of a parametrization equivalent
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to the Belevitch form. Indeed when it comes to synthesizing a multi-port device, no
Belevitch form exists. The absence of a Belevitch form entails the absence of a Darlington
equivalent that allows the parametrization of this N ×N scattering matrix by means of
a smaller number of rational Schur functions. This is one of the main problems we are
going to face in this part of the thesis.

Finally we find the concept of transmission zeros that, although it does not directly
apply as defined in chapter 2, can be extended to the case of scattering matrices of size
N ×N .

13.1.1 Transmission zeros

Next, we provide an extension of the concept of transmission zeros for the case of
multi-port devices. In this case the concept of transmission zero needs to be associated
with a pair of input-output ports to the device.

In order to simplify the subsequent development, we assume that all multi-port scatter-
ing matrices S appearing in this chapter are reciprocal. This implies from definition 2.5.2
that

S(λ) = S(λ)T ∀λ ∈ C.

Therefore if the parameter Si,j vanishes at a point λ ∈ C, then the parameter Sj,i also
vanishes at that point. Note in this case the reciprocity assumption is completely legit
since if a non-reciprocal junction is allowed, then we can just avoid the problem of the
interaction between channels by means of such non-reciprocal junction. This is indeed
the case of the circulator-coupled multiplexer as the circulator structure represents a
non-reciprocal manifold.

Remark 13.1.1. It is important to note the numbering used for multi-port devices in
this chapter. Unlike the classic numbering from 1 to N for a device with N ports, we
have decided to use a 0-based numbering. Therefore, the rows and columns of a scattering
array of size N ×N are numbered from 0 to N −1. This numbering allows us to associate
the port i of the junction or manifold to the i-th channel while port 0 corresponds to the
common port of the multiplexer.

We state the following definition for transmission zeros.

Definition 13.1.1 (Transmission zeros of multi-port devices). Let denote by transmission
zeros between the ports i, j of the scattering matrix S the set of points O

S
i (K) with Ω ⊂ C−

defined as

O
S
i (K) = {λ ∈ K | S0,i(λ)Si,0(λ) = 0} .

The approach presented in this chapters is developed around the transmission zeros
as in the second part of this work. With definition 13.1.1 we generalise the definition of
transmission zeros provided in chapter 2 such that definition 13.1.1 with i = 1 and C− ⊂ K

corresponds to the original definition. Nevertheless, although the definition is general,
we are only interested in this chapter on the transmission zeros occurring on the real
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line. Additionally it should be noted in this case the concept of multiplicity is not required.

In the next section, we carry out a study of the necessary and sufficient conditions for
the apparition of a transmission zero ω ∈ OLi (K) with K ⊂ C− in a sub-device L when
it is inserted into a larger block. This study is necessary for the correct understanding
of the notion of transmission zeros associated with multi-port devices. In order to get a
first perspective of the problem, let us start with the simplest case, namely a two-channel
multiplexer.

13.2 Manifold peaks in duplexer synthesis

We address now the problem of manifold peaks in a three port-device, our objective is to
understand why such peaks appear, allowing us to develop an analytic strategy to avoid
them. Consider then the duplexer schematic shown in fig. 13.1. In the figure we can see
the two channel filters (Filter 1 and Filter 2) interconnected by a three port junction.
The junction has been represented by the T-shaped sub-block in fig. 13.1.

Next we will apply a similar approach to that developed in chapter 4 in the study
of matching between a matching filter and a two-port load. The objective therefore is
to obtain a decomposition of the duplexer in different two-port sub-devices. However, as
previously mentioned, it is not possible to decompose a multi-port device into two-port
sub-devices only. This decomposition will be possible, however, if we authorize the use
of three-port devices as well. Therefore, we will use the grouping indicated in fig. 13.1
where the Filter 1 of the duplexer has been connected to port 1 of a three-port device,
composed of the junction together with the second filter. This decomposition serves us
in the following section to determine in what positions of the frequency axis, and under
what conditions we can find a transmission zero ω ∈ OLi (K) with K ⊂ C−.

13.2.1 Channel filters and passbands

We consider the duplexer with two channel filters which are shown in fig. 13.1. We
denote by F (i) the scattering matrix of Filter i, with i ∈ [1, 2]. Similarly we denote by
I1 the passband of filter 1, and by I2 the passband of the second filter. Both I1 and I2

are composed of a finite union of compact real intervals I1, I2 ⊂ R as it was the case of
the matching filter passband in previous chapters. Additionally both passbands do not
intersect, namely I1 ∩ I2 = ∅. We denote further by S the scattering matrix of the global
duplexer in fig. 13.1. Note that with the provided definitions, the manifold peaks in the
duplexer consists on the transmission zeros OS1 (I1) and OS2 (I2).

The aim of this chapter is not to synthesize the mentioned channel filters, but to
determine the possible manifold peaks (transmission zeros) that could appear in the
global duplexer when all the subsystems, namely the junction and the channel filters are
assembled. For this reason, the channel filters are assumed to be fixed for the time being
and the global system obtained from the chaining expression of the three sub-devices will
be studied.
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Filter 1

1
Junction

0

2

Filter 2

Load

f1

f2

J00

J11

J22

S11

S22

S00

Figure 13.1: Diplexer schematic

We consider that the Filter i has no transmission zeros inside the interval Ii as otherwise
a transmission zero α ∈ OSi (Ii) would be trivially present in the global system at the
frequency α ∈ Ii where the filter has a transmission zero. We have

|F (i)
22 (ω)| = |F (i)

11 (ω)| ≤ 1 ∀ω ∈ Ii,

|F (i)
12 (ω)| = |F (i)

21 (ω)| 6= 0 ∀ω ∈ Ii.

Additionally we assume that both filters are reciprocal, namely

F
(i)
21 (ω) = F

(i)
12 (ω) ∀ω ∈ R.

13.2.2 Two-port chaining

We determine next the expression of the scattering matrix of the global device in fig. 13.1
as a function of the scattering matrix of Filter 1 and the scattering matrix of the Load.
Note that the chaining expression introduced in chapter 2 does not apply to this case since
the Load is a 3-port device. Therefore let us suppose now that Filter 2 is connected to a
matched load as in fig. 13.2. We obtain in this way the cascade of filter with a load, both
two-port devices. We denote by L the 2× 2 scattering matrix of the load in fig. 13.2. We
are looking for the transmission zeros of the system S = F (1) ◦ L namely OS1 (I1). Using
now eq. (3.3) we obtain the 2 × 2 scattering matrix resulting of the cascade operation
F (1) ◦ L.

S = F (1) ◦ L =










F
(1)
11 +

F
(1)
12 L11F

(1)
21

1− F
(1)
22 L11

F
(1)
12 L12

1− F
(1)
22 L11

L21F
(1)
21

1− F
(1)
22 L11

L22 +
L21F

(1)
22 L12

1− F
(1)
22 L11










,
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Figure 13.2: Diplexer seen as the chaining of two-port sub-devices

where

S12 = S21 =
L21F

(1)
21

1− F
(1)
22 L11

. (13.1)

Note that L11 ∈ Σ then |L11(ω)| ≤ 1 for all ω ∈ R. Therefore the denominator of eq. (13.1)

cannot vanish in I1. Hence since F
(1)
21 (ω) has no zeros in the interval I1, we conclude that

OS1 (I1) contains only the zeros OL1 (I1) of the load.

O
S
1 (I1) ⊂ O

L
1 (I1).

Next we have to determine when the set OL1 (I1) is not empty. This time the load L can
not be decomposed in two sub-devices of two-ports since the filter 2 has to be connected
to the port 2 of the junction and since we need to determine the zeros of transmission from
port 0 to 1 of L, we can not close any of these ports 0 or 1. Thus we need to introduce
now a generalised formula for the chaining of multi-port devices.

13.2.3 Chaining of multiport scattering matrices

In this section we consider the N + 1-ports device with (N + 1) × (N + 1) scattering
matrix J and the one port reflections [fn, fn+1, · · · , fN ] ∈ Σ. Each of these reflection
represents the reflection used to close the respective port of the junction as indicated
in fig. 13.3. Now consider that ports [n,N ] of the junction are closed by the reflections
[fn, fn+1, · · · , fN ]. As a result a n× n scattering matrix L is obtained. This operation is
equivalent to the scalar chaining defined in eq. (3.2) when the load is a multi-port device.
We provide then a generalised definition of scalar chaining.
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Definition 13.2.1 (Scalar chaining onto a multi-port). Define T (n) as the diagonal matrix

T (n) =






fn
. . .

fN




 n ≤ N,

where fi ∈ Σ for all i ∈ [n,N ]. Additionally partition the matrix J , which corresponds to
the junction, in 4 sub-matrices as

J =

[

J
(n)
1,1 J

(n)
1,2

J
(n)
2,1 J

(n)
2,2

]

=











J0,0 · · · J0,n · · · J0,N
...

. . .
...

. . .
...

Jn,0 · · · Jn,n · · · Jn,N
...

. . .
...

. . .
...

JN,0 · · · JN,n · · · JN,N











.

We denote by L = T (n) ◦ J the n× n matrix resulting of closing the port i of J with the
reflection fi with i ∈ [n,N ] as shown in fig. 13.3. This matrix L takes the expression

L = T (n) ◦ J = J
(n)
1,1 + J

(n)
1,2

(

I(n) − T (n)J
(n)
2,2

)−1

T (n)J
(n)
2,1 , (13.2)

where I(n) stands for the (N − n+ 1)× (N − n+ 1) identity matrix.

Note the similarity between eq. (3.2) and eq. (13.2). Indeed if J is a 2 × 2 matrix
and T (2) ∈ Σ is a scalar function, then eq. (3.2) is obtained. It is important to note that,
as in the case of scalar in which the chaining formula can degenerate if the two devices
have a common transmission zero, in this case, zero-pole simplifications can also occur.
Particularly the denominator of eq. (13.2) vanish if and only if the matrix I(n) − T (n)J

(n)
2,2

is singular. Nevertheless we overcome this issue as it will become clear later on, with the
assumption that the J

(n)
2,2 is strictly passive, namely

J
(n)
2,2

⋆
(ω)J

(n)
2,2 (ω) ≺ I(n) ∀ω ∈ R (13.3)

It is important to remark that this assumption does not imply that the junction J is lossy
such as J ≺ I. However it does imply |Ji,i(ω)| ≤ 1 with n ≤ i ≤ N .

13.2.4 Transmission Zeros in 3-Port Devices

We use now eq. (13.2) to determine how the manifold peaks, namely transmission zeros
from port 0 to 1 of the load in fig. 13.2, are produced. To do so it is important to
understand when the 3-port device J presents a transmission zero α ∈ OJ1 (I1) when
terminal 2 is closed by a reflection f2 ∈ Σ.

Let J(λ) be the scattering matrix of the 3-port junction in fig. 13.2. If port 2 of J is
closed by the reflection coefficient f2(λ) ∈ Σ applying eq. (13.2) to compute T (2) ◦ J with
T (2) = f2, the following 2× 2 matrix is obtained

L = f2 ◦ J =

[
J00 J01
J10 J11

]

+
[
J0,1 J0,2

] f2
1− f2J22

[
J1,0
J2,0

]

=

[
J00 J01
J10 J11

]

+

[
J02J20 J02J21
J12J20 J12J21

]
f2

1− f2J22
. (13.4)
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Figure 13.3: Schematic of channels filters connected to the junction.
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From eq. (13.3) we have |J22(ω)| ≤ 1 for all ω ∈ R. Hence the denominator of eq. (13.4)
can not vanish on the real line, in particular on the interval I1. Then we compute the
value of f2 such that the previous matrix has a transmission zero at ω ∈ OL1 (I1). Assuming
the matrix J is reciprocal, we seek the transmission zero by equating the element L01(ω)
to zero

J01(ω) +
J02(ω)J21(ω)f2(ω)

1− f2(ω)J22(ω)
= 0 ω ∈ I1,

J01(ω) + f2(ω)(J02(ω)J21(ω)− J01(ω)J22(ω)) = 0 ω ∈ I1,

−J01(ω)
J02(ω)J21(ω)− J01(ω)J22(ω)

= f2(ω) ω ∈ I1.

Note that the previous denominator is the (1, 0) element of the cofactor matrix of J . The
cofactor matrix takes the expression

C =








C1,1 C1,2 · · · C1,N

C2,1 C2,2 · · · C2,N

...
...

. . .
...

CN,1 CN,2 · · · CN,N








where Ci,k = (−1)i+k det (subi,k(J)) and subi,k(J) is the sub-matrix of S where the i-th
row and the k-th column are removed. Thus

f2(ω) =
−J01(ω)

− det

(
J01(ω) J02(ω)
J21(ω) J22(ω)

) =
−J01(ω)
C10(ω)

∀ω ∈ I1.

If we express now the inverse matrix of J by means of the cofactor matrix we have

J−1 =
CT

det J

We have C10 = [J−1]01 det(J), therefore

f2(ω) =
−J01(ω)

[J−1(ω)]01 det(J(ω))
ω ∈ I1. (13.5)

Finally, if we consider the matrix J to be lossless, this implies J−1 = J⋆ and together
with the reprocity we have for all ω ∈ R, J−1(ω) = J(ω). Then

f2(ω) =
−J01(ω)

J10(ω) det(J(ω))
∀ω ∈ I1.

Note the previous expression is well defined if J01(ω) 6= 0. Conversely if J01(ω) = 0 at
any frequency ω ∈ I we have

L01(ω) =
J02(ω)J21(ω)

1− f2(ω)J22(ω)
= 0 ∀ω ∈ I1,

J02(ω)J21(ω)f2(ω) = 0 ∀ω ∈ I1,

what, assuming J02(ω), J21(ω) do not vanish at the same point as J01(ω), provides us the
result f2(ω) = 0. Let consider the case where J01(ω) 6= 0 for all ω ∈ I1 as it would be the
general case for an arbitrary junction. Then we state the following theorem whose proof
has been already done in this section.
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Theorem 13.2.1 (Transmission zeros of 3-port devices). A 3-port device with ports
{0, i, k} and 3× 3 scattering matrix J , present a transmission zero α ∈ OJi (I) if and only
if port k of J is closed by the impedance with reflection coefficient fk(ω) where

fk(α) =
−J0,i(α)

J0,i(α) det J(α)
α ∈ I. (13.6)

Remark 13.2.1. Note that we made the assumption that J is a lossless scattering matrix.
This assumption does not influence the nature of the obtained result, as if the load is not
lossless, then eq. (13.5) can be used instead of eq. (13.6). However eq. (13.6) indicates
that if the junction is lossless, then port 2 of J has to be closed necessarily by a lossless
impedance in order for a transmission zero α ∈ OJ1 (I1) to appear.

From a physical point of view, reflection f2 introduces a virtual short-circuit in the
3-port device. Additionally, note that the fact that the junction was assumed lossless,
implies the channel filters must be lossless as well for a manifold peak to occurs and the
reflection in eq. (13.6) is uni-modular

fk(α) =
ej (π + 2 arg J0,i(α))

det J(α)
α ∈ Ik.

Additionally a transmission zero of the k-th filter should be present at the point α.
This phenomenon, however, never happens in an exact way in theory unless the user
places a transmission zero of the k-th filter on a particular frequency of the band Ii with
i 6= k. This is one of the reasons why it is so difficult to detect the dreaded manifold
peaks during the circuital optimization stage since in ideal conditions the appearance
of the mentioned peaks is very limited. However, in practice, when we try to address
the implementation of these devices, we can find a situation extremely close to the
aforementioned scenario.

For example, in the case where the k-th filter presents a reflection fk whose zeros are
sufficiently far from the band Ii which also verifies limω→∞ |fk(ω)| = 1. In this case the
reflection fk(ω) in the band ω ∈ Ii will present an absolute value arbitrarily close to the
unit (depending on the distance between the band Ii and the closest point in frequency
where fk is cancelled). In this scenario, it only remains that the phase condition on fk
indicated in 12.4 is satisfied at a frequency α ∈ I1 to cause this manifold peak at the
frequency α. Nevertheless, if the k-th filter is connected to the junction or manifold by
a dispersive transmission line, the phase of fk(ω) will present a monotonous variation in
frequency with a periodicity in frequency equivalent to a wavelength. Therefore there
will be a frequency α ∈ R at which the manifold peak will occur, repeating itself at each
wavelength. In the extreme case in which the band Ii covers a bandwidth corresponding to
at least one wavelength, a manifold peak will inevitably appear at at least one frequency
α ∈ Ii.

13.2.5 Transmission lines

We come back now to the duplexer in fig. 13.1. To gain control over the location of
the points ω ∈ OSi (I), where k ∈ [1, 2] it is required to play with the phase reflection
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coefficients fk(ω) on the interval I. In order to obtain some control over this phase, two
transmission lines are added in the interconnection between each of the filters and the
junction. In this way we obtain the scheme shown in fig. 13.4.

In this chapter we assume that transmission lines have a transmission whose phase
is exponentially decaying. We assume further that this transmission is uni-modular.
Additionally let us suppose that filter k presents an uni-modular reflection in every band
Ii with i 6= k respecting the condition of uni-modularity over the reflection fk seen from
each of the terminals of the junction.

|F (k)
22 (ω)| = 1 ∀ω ∈ Ii i 6= k.

It is important to emphasize that these assumptions are only made with the objective of
obtaining a clearer explanation. In practice, it is possible to use any transmission line
model, as long as power losses are not introduced into the system, which would imply a
reflection fi of a modulus smaller than 1. Let Φ(1)(ω) and Φ(2)(ω) represent the scattering
matrices of the transmission lines 1 and 2 respectively. We have

Φ(1)(ω) =

(
0 e−jβ1ω

e−jβ1ω 0

)

Φ(2)(ω) =

(
0 e−jβ2ω

e−jβ2ω 0

)

.

Now we apply again the previous reasoning to study the necessary conditions for
the appearance of a transmission zero α ∈ OS1 (I1). The transmission line 1 essentially
modifies the phase of the signal that passes through it and can not therefore introduce a
transmission zero in the path between the filter 1 and the junction. Then line 1 does not
influence the occurrence of transmission zeros ω ∈ OS1 (I1) which can only be introduced
by the load. However, line 2 directly influences the position of the transmission ze-
ros α ∈ OL1 (I1) since it modifies the phase of reflection seen from terminal 2 of the junction.

Therefore, transmission lines 1 and 2 can be used to control the position of zeros
α ∈ OS1 (I1) and α ∈ OS2 (I2) independently since the phase of reflections f1 and f2 depends
directly on these transmission lines as

f1(β1) = F
(1)
22 (ω)e−2jβ1ω ∀ω ∈ R,

f2(β2) = F
(2)
22 (ω)e−2jβ2ω ∀ω ∈ R.

Particularly, the procedure to be carried out consists of two stages

• Find β2 corresponding to the transmission line 2 so that

F
(2)
22 (ω)e−2jβ2ω 6= −J0,1(ω)

J0,1(ω) det J(ω)
∀ω ∈ I1,

e2jβ2ω 6= J0,1(ω) det J(ω)F
(2)
22 (ω)

−J0,1(ω)
∀ω ∈ I1.

Therefore if we take for instance the principal determination for the logarithm we
have the following constraint on the value β2

jβ2 6=
1

2ω
log

(

J0,1(ω) det J(ω)F
(2)
22 (ω)

−J0,1(ω)

)

∀ω ∈ I1.
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• Find β1 corresponding to the transmission line 1 so that

F
(1)
22 e

−2jβ1ω 6= −J0,2(ω)
J0,2(ω) det J(ω)

∀ω ∈ I2

e2jβ1ω 6= J0,2(ω) det J(ω)F
(1)
22 (ω)

−J0,2(ω)
∀ω ∈ I2.

Similarly to the previous case we have now

jβ1 6=
1

2ω
log

(

J0,2(ω) det J(ω)F
(1)
22 (ω)

−J0,2(ω)

)

∀ω ∈ I2.

Manifold peaks are therefore avoided as long as we pick the values of β1, β2 such that
previous equation are satisfied. We state this result with the following theorem.

Theorem 13.2.2 (Transmission lines value). Given the structure shown in fig. 13.4 and
let J represent the scattering matrix of the junction with port numbering {0, i, k}. Denote
by Ii the passband of the i-th channel and by Φ(k) the scattering matrix of the k-th
transmission line

Φ(k)(ω) =

(
0 e−jβkω

e−jβkω 0

)

.

Manifold peaks are avoided in channel i if and only if ejβk ∈ T \ Ψk where Ψk ∈ T is the
image set of the application Gk : Ik −→ Ψk defined as

Gk(ω) =

(

J0,i(ω) det J(ω)F
(k)
22 (ω)

−J0,i(ω)

) 1
2ω

∀ω ∈ Ii.

Remark 13.2.2. It is important to note that ejβk is a constant function in the range Ii.
So if Gk is a surjective application from Ii onto Ψk, such that T ⊂ Ψk then T \ Ψk is the
empty set. This means that there is no value of βk with which the appearance of manifold
peaks in the i-th band is avoided.

This values βk implicitly depends on the length of the k-th transmission line allow-
ing for the determination of the transmission lines lengths according to the technology
used to implements such lines. Additionally, we supposed in this section that βk(lk) is
not frequency dependent. However if the transmission line model involves a frequency
dependency βk(lk, ω), then the condition to avoid manifold peaks in channel i becomes

ejβ(ω) 6= Gk(ω) ∀ω ∈ Ii.
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Figure 13.4: Diplexer schematic with transmission lines

13.3 Manifold model

After the intense study carried out in the case of a duplexer on how to avoid manifold
peaks by appropriately choosing the values of the transmission lines, we must apply this
study to the general case of a junction (manifold) of (N + 1)-ports.

While in the case of a duplexer the task of determining the lengths of all the
transmission lines in such a way that no manifold peak appears in any of the pass bands
is relatively simple, in the general case of a junction of N-ports, this task becomes an
extremely complicated combinatorial problem. In this case, to avoid the manifold peaks
in the i-th channel it is not enough to adjust one of the transmission lines, but it would
be necessary to determine all the transmission lines of each of the j-th channels with j 6= i.

To overcome such problem we use a divide and conquer strategy. This strategy
consists on dividing the manifold in a given number of sub-devices each of them equivalent
to the duplexer shown in fig. 13.4. With the mentioned sub-division, we obtain the model
shown in fig. 13.5 representing a N -channel multiplexer. This model is based of several
3-port devices, denoted hereinafter by elements Ji, interconnected by transmission lines.

Note that, similarly to the duplexer case, transmission zeros from channel ports
to the common port can not be introduced by the transmission lines since they only
modify the phase of the signal. Therefore transmission zeros happen inside the J elements.

The schematic model in fig. 13.5 is composed of N − 1 sections equivalent to the
structure in fig. 13.4. Each of these sections contains a 3-port junction whose scattering
matrix is denoted by J (k) with 2 ≤ k ≤ N . Ports 1 and 2 of each junction J (k) is connected
to a transmission line denoted by Φ

(k)
1 and Φ

(k)
2 respectively. The scattering matrices of

Thèse de doctorat — Université de Limoges — 2019 Page 295



Chapter 13. Manifold model and manifold peaks

the transmission lines Φ
(k)
i with i ∈ {1, 2} are defined as

Φ
(k)
i =

(

0 ejβ
(k)
i ω

ejβ
(k)
i ω 0

)

i ∈ {1, 2} k ∈ [2, N ].

We denote by L
(k)
i ∈ Σ the respective reflection shown by the load at the opposite end

of each transmission line Φ
(k)
i and by f

(k)
i ∈ Σ the reflection shown at ports i of the k-th

junction. Reflection coefficients L
(k)
i (ω) and f

(k)
i (ω) are related as

f
(k)
i (ω) = L

(k)
i (ω) · e2jβ(k)

i ω i ∈ {1, 2} k ∈ [2, N ]

Finally we denote by S the scattering matrix of the complete multiplexer.

As in the case of the duplexer, we will use the Ii notation to refer to the passband of
the i-th channel. This sub-band Ii is constituted by a finite union of compact intervals
of the real line. In addition, we assume that the intersection between the bands Ii ∩ Ik is
empty for all i, k ∈ [1, N ] and with i 6= k.

Remark 13.3.1. It is important to note that the ordering of the channels in the figure
is important and determines the result in terms of the necessary transmission lines. In
this example we have chosen to order the channels from left to right from channel 1 to
channel N.

With a different arrangement (for example, a right-to-left arrangement), the result
obtained would be different. However, since there is only a finite number of combinations
between N channels, it is possible to test all of them and choose among the different
options, the one that provides the most satisfactory result.

With the decomposition performed in fig. 13.5 we can apply the same analysis per-
formed in the case of the duplexer in the previous section. However, in this case it is
necessary to differentiate between two types of channels depending on the number of in-
terconnections between each channel port to the common port to the multiplexer. In
particular, a distinction must be made between main branches and secondary branches.
This classification determines the dependency between the optimal lengths for the trans-
mission lines. The values of the transmission lines in the secondary branches depend on
the already fixed values of the lines in the main branches. Next, each of these types of
branches is analysed, introducing the concept of priority when determining the transmis-
sion lines that constitute the manifold so that the manifold peaks are avoided.

13.3.1 Main branch

The main branches are constituted by the channels whose path from the channel filter
to the common port of the multiplexer passes through a maximum number of elements
J (k). Furthermore, depending on the topology obtained in the multiplexer schematic,
there could be 1 or several different main branches. If the obtained scheme is sufficiently
complex, then there could even be secondary branches that in turn are sub-divided into
one or more main and secondary branches.
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Consider again the structure shown in fig. 13.5. We can see that the road from port
1 to port 0 necessarily crosses all junctions. Therefore channel 1 belongs to a main
branch. It is necessary to note that the channel 2 also belong to a main branch since the
path from channel 2 to the common port also crosses all the J-junctions. To illustrate
the proposed procedure, we choose the main branch as the one corresponding to the
first channel. Working with this branch we can not only determine the position of the
manifold peaks α ∈ OS1 (I1) unequivocally, but also obtain certain necessary conditions
(not sufficient) to avoid the appearance of manifold peaks in each one of the remaining
channels.

To study the path from terminal 1 to terminal 0, we consider that all other channels
are terminated in a matched load, thus obtaining the 2-port device shown in fig. 13.6
constituted by the chaining of N 2-port device. Let us treat first the manifold peaks
in channel 1. In fig. 13.6 the global scattering matrix, denoted by S1 is obtained as
the cascade of the matrix of filter 1, denoted here by F1, and a sequence of two port
scattering matrices corresponding to each one of the sections. Let us then denote by Σ1

the scattering matrix of section k with 2 ≤ k ≤ N . We have

S1 = F1 ◦ Σ1 ◦ · · · ◦ Σ1.

We are now looking for the manifold peaks α ∈ OS1 (I1), namely the transmission zeros of
the system S1. As a cascade of two ports devices, the transmission zeros of the system S1

must be present in at least one of the sub-devices. Thus we have

O
S
1 (I1) = O

F1
1 (I1) ∪ O

Σ1
1 (I1) ∪ · · · ∪ O

ΣN

1 (I1).

Note the filter F1 cannot have transmission zeros inside its own passband α ∈ I1. Further-
more, as discussed before, the transmission line Φ

(k)
1 can not introduce neither a transmis-

sion zero inside the k-th section as it has an unimoduluar transmission coefficient. Hence
it only remains to ensure that each J-element does not introduce a transmission zero in
the main branch. From theorem 13.2.2 and with the notation defined in this section we
have

ejβ
(k)
2 ∈ T \ Ψ

(k)
2 (I1),

where Ψ
(k)
2 (I1) ⊂ T is the image set of the application G

(k)
2 : I1 −→ Ψ

(k)
2 (I1) defined as

G
(k)
2 (ω) =




J
(k)
0,1 (ω) det J

(k)(ω)L
(k)
2 (ω)

−J (k)
0,1 (ω)





1
2ω

ω ∈ I1.

Nevertheless we can now also consider the path from filter 2 to the common port shown
in fig. 13.7. It must be noted here that the transmission zeros in band I2 in sections from
3 to N are are also present in OS2 (I2) as the only path to the filter 2 goes through sections

Σk with 3 ≤ k ≤ N . We obtain therefore the following necessary condition over ejβ
(k)
2

ejβ
(k)
2 ∈ T \ Ψ

(k)
2 (I2) ∀k ∈ [3, N ],

with Ψ
(k)
2 (I2) ⊂ T the image of the set I2 under the application G

(k)
2 : I2 −→ Ψ

(k)
2 (I2)

defined as before. Applying now the same argument for the transmission zeros OSk Ik in
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each channel with 2 ≤ k ≤ N we reach a generalised condition over the values ejβ
(k)
2 that

is necessary to avoid manifold peaks in the k-th channel with k from 2 to N . In the most
general case, this condition would be necessary to avoid manifolds peaks in every channel
that belong to the main branch under study apart from the channel used to obtain the
mentioned branch.

Theorem 13.3.1 (Transmission zeros in a main branch). Given the schematic in fig. 13.5.
The following condition is necessary to avoid manifold peaks in OSk Ik in every channel with
2 ≤ k ≤ N

ejβ
(k)
2 ∈ T \ Ψ

(k)
2 (Kk) ∀k ∈ [2, N ],

where Kk is the union of the passbands of every channel whose path to common port goes
through the section k, namely

Kk =
k−1⋃

i=1

Ii

and Ψ
(k)
2 (Kk) the image set of Kk under the application G

(k)
2 (ω) defined as

G
(k)
2 (ω) =




J
(k)
0,1 (ω) det J

(k)(ω)L
(k)
2 (ω)

−J (k)
0,1 (ω)





1
2ω

∀ω ∈ Kk.

Here concludes the analysis of the main branch with the aim of avoiding the manifold
peaks. Defining this main branch has given us a set of necessary conditions that must be
met by each of the transmission lines which, even without belonging to the main branch
in question, are connected to it.
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It is important to note that we have not yet said anything about the transmission lines
that constitute the main branch under study. In effect, the necessary conditions obtained
are independent of the transmission lines belonging to the main branch in question. How-
ever, it is necessary that the transmission lines already treated are fixed before moving
on to the next stage. This next stage consists in the determination of the remaining
transmission lines, which are part of the main branch.

13.3.2 Secondary branches

The last step in the dimensioning of the manifold is the adjustment of the remaining
transmission lines, which belong to one of the main branches. To carry out this task it is
necessary to define now the concept of secondary branch.

Given the scheme of a multiplexer composed of 3-port sub-devices interconnected by
transmission lines similar to the structure shown in fig. 13.5. Now considering the main
branch defined in the previous section, formed by the path from filter 1 to the common
port.

The secondary branches associated with the aforementioned main branch consist of
each of the branches contained entirely in the main branch with the exception of one single
transmission line which connect the channel filter to the main branch. Additionally, when
secondary branches are considered, the notion of branch length is necessary as secondary
branches are sorted in function of its length.

Definition 13.3.1 (Length of a branch). We define the length of a secondary branch as
the minimum number of 3-port elements in the path from the corresponding channel filter
to the common port (number 0) of the multiplexer.

Example 13.3.1 (Secondary branches). Consider the main branch in fig. 13.5 from filter
1 to the common port. The paths from filter k with 2 ≤ k ≤ N to the common port are
secondary branches of length N − k + 1.

The length of each secondary branch determines the ordering in which they have to
be considered. Let us now continue with the example treated in this chapter, namely the
multiplexer in fig. 13.5. We must consider the k-th secondary branches from k = 2 to
k = N in that particular order.

1. Secondary branch 2. The first to be treated in this section is the path from filter 2
to the common port. We consider now the schematic in fig. 13.8. Note that we have
determined in the previous section the transmission lines Φ

(k)
2 with 3 ≤ k ≤ N to

ensure that the transmission through sections 3 to N is not vanishing in the band of
channel 2, namely I2. We fix now these transmission lines Φ

(k)
2 . Therefore manifold

peaks α ∈ OS2 (I2) can only be introduced now by J (2).

O
S
2 (I2) ⊂ O

J(2)

2 (I2).

According to theorem 13.2.2, the set of manifold peaks OJ
(2)

2 (I2) is empty if and

only if we have ejβ
(2)
1 ∈ T \ Ψ

(2)
1 (I2) being Ψ

(2)
1 (I2) the image of the set I2 under the
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application G
(2)
1 defined as

G
(2)
1 (ω) =




J
(2)
0,2 (ω) det J

(2)(ω)L
(2)
1 (ω)

−J (2)
0,2 (ω)





1
2ω

∀ω ∈ I2.

2. Secondary branch 3. Let us now fix the transmission line Φ
(2)
1 to an admissible

value according to the previous criterium. We consider the path from filter 3 to
port number 0 (the common port) in fig. 13.9. Using the same argument as in the
previous case, transmission zeros α ∈ OS3 (I3) can only be introduced by the 3-port
junction J (3).

Our objective now is to determine the admissible values for the transmission line Φ
(3)
1

connected at port 1 of J (3). It should be noted that the opposite end of the line Φ
(3)
1

is now loaded by a fix load with reflection coefficient L
(3)
1 since every transmission

line at the left of Φ
(3)
1 has already been fixed. Therefore we have a manifold peak

in the band I3 if and only if ejβ
(3)
1 ∈ Ψ

(3)
1 (I3). This set Ψ

(3)
1 (I3) represents as before

the image set of the application G
(3)
1 : I3 −→ Ψ

(3)
1 (I3) with

G
(3)
1 (ω) =




J
(3)
0,2 (ω) det J

(3)(ω)L
(3)
1 (ω)

−J (3)
0,2 (ω)





1
2ω

∀ω ∈ I3.

3. Secondary branch n. Finally, the described procedure is repeated with each of the
secondary branches, ordered from highest to lowest length, determining space of ad-
missible values for the corresponding transmission line Φ

(n)
1 until reaching the last

channel, namely the channel with the shortest path to the common port. In the
above discussion here, the last mentioned step consists of determining the trans-
mission line Φ

(N)
1 to avoid the transmission zeros α ∈ OJ

(N)

2 (IN) in the path shown
in fig. 13.10 from channel N to the common port through the junction J (N). In
the general case, the transmission line Φ

(n)
1 is selected according the the following

theorem.

Theorem 13.3.2 (Transmission zeros in secondary branches). Consider now the

schematic in fig. 13.10 where every transmission line Φ
(k)
2 with 2 ≤ k ≤ N has been

fixed to ensure no transmission zeros appear in the main branch.

Assume further that the transmission lines Φ
(i)
1 with 2 ≤ i < n are also fixed.

We consider now the section n with 1 ≤ n ≤ N . We denote by Ln1 the reflection

presented by the load seen from the transmission line Φ
(n)
1 at the terminal opposite

from J (N). Then manifold peaks α ∈ OS2 (In) are avoided if and only if

ejβ
(n)
1 ∈ T \ Ψ

(n)
1 (In),

where Ψ
(n)
1 (In) ⊂ T represents the image of the passband In under the application

G
(n)
1 (ω) =




J
(n)
0,2 (ω) det J

(n)(ω)L
(n)
1 (ω)

−J (n)
0,2 (ω)





1
2ω

∀ω ∈ In.
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Figure 13.8: Multiplexer schematic

13.4 Concluding remarks

With the analysis of the manifold peaks which can appear in the secondary branches
we finish the present chapter in which a systematic procedure has been presented to
optimally size the manifold in order to minimize the risk of occurrence of manifold peaks
inside of the bands of any of the channels. Note that for the synthesis process presented
here to be well determined, it is necessary to define the criterion by which to select
the lengths of each of the transmission lines that constitute the manifold among all the
admissible lines. This criterion can be, for example, the minimum lengths for which all
the manifold peaks present are at a certain safety distance of the pass bands. However,
in this work we have considered as a criterion the maximization of the minimum distance
of all manifold peaks to the passbands.

Note that due to the periodic character of the manifold peaks in the presence
of transmission lines with a frequency dispersive response, the maximization of the
minimum distance between the peaks and the bands implies that each of the bands will
be centred between two peaks of manifold. Therefore, in the case where the bandwidth
of the channels increases, assuming that a solution without manifold peaks within the
bands is still possible, we will find peaks at the lower and upper edges of the bands.

Before finishing the present chapter it is interesting to note that the analysis of the
manifold presented here is done once the topology of said manifold has been determined.
Therefore it is possible to combine this analysis with the numerous existing techniques in
the literature to handle the manifold peaks as the use of certain structures that influence
the level of dispersion induced by the manifold.
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Chapter 14. Multiport point-wise matching. Application to multiplexer synthesis

The algorithm introduced in chapter 13 provides an equivalent model of the manifold
once the channel filters have been fixed. The aforementioned model is built from
transmission lines and basic 3-port junctions and ensures the absence of manifold peaks
in any of the channels. This result is achieved by means of a systematic analysis of
the obtained responses, through the interconnection of the sub-blocks constituting the
manifold, with respect to the scattering parameters of each of block separately.

In this chapter we present the second part of the design technique for multiplexers.
This second part consists of the procedure complementary to the theory developed in
the previous chapter. Particularly, this time we assume that the manifold has already
been calculated is fixed with an optimum structure. Then we calculate the matching
filters that are matched simultaneously to the load seen from each one of the ports of
the manifold, which includes the filters corresponding to others channels, to provide
the desired level of reflection in each of the pass bands. Unlike the philosophy used
in the previous chapter, where a divide and conquer strategy was used, this time the
synthesis of the channel filters is not performed by decomposition into smaller parts, on
the contrary we consider all of them as a single multi-port block. The formulation of
the problem therefore consists in determining, simultaneously, the set of matching filters
that minimize the reflection corresponding to each of the channels when the multiplexer
is assembled.

In general, the design method presented in part V of this thesis consists in the division
of the problem into two well differentiated parts. On the one hand the determination of
the transmission lines that form the manifold, and on the other hand the synthesis of the
matching filters in the form of a multi-port device. Furthermore, the simultaneous filter
synthesis entails a high computational efficiency, compared with the tradition synthesis
procedures for multiplexers.

14.1 Framework and notation

In the previous chapter, a procedure for the dimensioning of a multi-port structure
has been developed. This structure was subject to a series of restrictions, such as the
fact that it can be built through an arbitrary number of 3-port connections connected
by transmission lines. In addition, a certain hierarchy between the different branches,
namely the different paths from the common port to each of the channels, was required.
These conditions restrict the topology of the dimensioned structures to those of the
manifold type with certain exceptions or variations.

In this chapter, however, we consider a generic multi-port junction which is not con-
strained to be of manifold-type. Additionally we denote by N the number of channels
and by J the (N + 1) × (N + 1) scattering matrix of the junction. Note here that we
adopt, similarly as in the previous chapter, a 0-based numbering for the rows and column
of the matrix J such that the index 0 corresponds to the common port meanwhile the
index i with i ∈ [1, N ] denotes the port associated to the i− th channel. Additionally, as
in previous chapter, we denote by Ii with i ∈ [1, N ] the passband of the i-th channel. We
assume that the passbands Ii have empty intersection
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14.1.1 Belevitch model of channel filters

Along with the junction described above, we also have a set of N filters that complete
the multiplexer. Each of those filters is constrained to have a McMillan degree Mi with
i ∈ [1, N ] and a prescribed transmission polynomial Ri = rir

⋆
i ∈ P2N

+ . The parametrisation
used for each of the channel filters which ensures the previous requirements consists of
a rational model with the Belevitch structure as shown in chapter 2. With this model,
the scattering matrix of the filter corresponding to the channel i, denoted here as F

(i)
22 is

written as

F
(i)
22 =

1

q(pi)

(
p⋆i −r⋆i
ri pi

)

,

where pi ∈ PMi and q(pi) ∈ PMi is the stable polynomial such that

q(pi)q(pi)
⋆ − pip

⋆
i = Ri.

Each of the channel filters is then parametrised in terms of the polynomial pi ∈ PN only.
This Belevitch parametrisation is recurrent in the field of filter synthesis and has also
been applied to multiplexer design in [74].

14.2 Algorithm to synthesize the channel filters

Now we tackle the synthesis of the channel filters as a matching problem in which the
i-th filter is matched to the impedance shown by the rest of the multiplexer in the i-th
band. At the same time, the aforementioned filter i should provide a rejection as strong
as possible in the bands of the other channels in order to avoid transmission to the port i
of the multiplexer within the frequency band corresponding to the channel j with i 6= j.

For this purpose we use the point-wise-matching technique introduced in [75] (see
section 3.4). To illustrate the procedure, consider as a simple example the case of channel

1 we have the load with reflection L
(1)
1,1 which is composed of the N+1-ports junction with

the i-th filter with i ∈ [2, N ] connected to the i-th port and terminated at the opposite
end by the reference impedance as in fig. 14.1. According to theorem 3.4.1 the load
L
(1)
1,1 can be perfectly matched in a set M1 + 1 points ξ

(1)
m with a filter F (1) of McMillan

degree M1 meanwhile a perfect rejection in a different set of points ζ
(1)
m , with m ∈ [1,M1]

some of them possible at infinity. Nevertheless the unique network F (1) providing perfect
matching at the points ξ

(1)
m with i ∈ [1,M1] presents a reflection F

(1)
2,2 such that the phase

a high frequencies given by

lim
ω→∞

argF
(1)
2,2 (ω) = φ

takes an arbitrary value φ ∈ [−π, π]. This phase φ is usually not a drawback as it is
implemented by adjusting the transmission line Φ(1) connected at the right port of Filter
1 fig. 14.1.

Nevertheless in this case the transmission line Φ(1) is an essential part of the junction
and it has already been adjusted to deal with the problem of manifold peaks in the band
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Filter N

R0

Filter 2

R0

Φ(1)

Filter 1 Load: junction + channel filters

F
(1)
2,2

L
(1)
1,1

Figure 14.1: Synthesis of filter N to match the rest of the multiplexer.

of filter 1. Therefore a further modification of the line Φ(1) is not allowed. To overcome
this issue, we fix a particular interpolation condition at infinity such that

lim
ω→∞

F
(1)
2,2 (ω) = 1 (14.1)

The price to be paid for having this additional interpolation condition is losing one of the
matching points ξ

(1)
m . It is interesting to note that the condition imposed at the infinite

frequency over the reflection F2,2 is equivalent to a perfect matching point where the load
to be matched is an open circuit. The synthesis problem concerning the filter of channel
1 is stated as finding the function F

(1)
2,2 (p1) such that M1 frequencies of perfect matching

ξ
(1)
m and M1 different frequencies ξ

(1)
m of perfect rejection are prescribed

[F
(1)
2,2 (p1)](ξ

(1)
m ) = L

(1)
1,1(ξ

(1)
m ),

|[F (1)
2,2 (p1)](ζ

(1)
m )| = 1, (14.2)

for all m ∈ [1,M1] and where [F
(1)
2,2 (p1)](ω) tends to an open circuit as ω → ∞.

14.2.1 Simultaneous computation of matching filters

In this section, instead of dealing with each of the N filters separately, we consider that all
of them are contained in a single multi-port device with a total of 2N ports as illustrated
in fig. 14.2 where each of the ports from 1 to N are connected to the ports from 1 to
N of the junction. For each channel, we fix the polynomial Ri ∈ P

2Mi−2
+ having roots at

the left and right of the i-th passband in order to contribute to the selectivity of the i-th
filter. Additionally, a set of matching points ξ

(i)
m is distributed within each passband with

i ∈ [1, N ] and m ∈ [1,Mi]. The obtained multi-port device, composed by the union of
N different filters, which are isolated from each other, can be parametrized by the set of
reflection coefficients fi ∈ Σ

Mi

Ri
such that the reflection of the multiplexer at the i-th port

vanishes at the points ξ
(i)
m , namely

Si,i(ξ
(i)
m ) = 0 ∀m ∈ [1,Mi] ∀i ∈ [1, N ].

This implies fi(ξ
(i)
m ) = Li(ξ

(i)
m ) where Li is the reflection of the load seen from the port 2

of the filter i. In this case the load includes as well other filters as it was illustrated in
fig. 14.1. The problem to solve is then stated as:
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Figure 14.2: Multiplexer structure

Problem 14.2.1 (Simultaneous matching). Find fi ∈ Σ
Mi

Ri
, such that:

fi[ξ
(i)
m ]− Li[ξ

(i)
m ] = 0 i ∈ [1, N ] m ∈ [1,Mi], (14.3)

where Li is the load seen by filter i when the other filters are connected to the manifold.

Remark 14.2.1. Note that the output reflection fi allows us to recover the 2×2 scattering
matrix F (i) of the filter i such that F

(i)
22 = fi. This matrix is uniquely determined from fi

up to an uni-modular constant. Nevertheless since only the parameter F22 of each filter
plays a role in the design, we consider only the set of Schur functions [f1, · · · , fN ] while the
extension of fi from a scalar function to a 2× 2 matrix is performed trivially afterwards.

14.2.2 Multi-port load

We have stated a simultaneous matching problem where each filter is perfectly matched
in a set of Mi points to a load which depends on the other filters. Thus we need now an
expression for this load with respect of each sub-device in the system, namely the junction
and the channel filters. This expression can be found in definition 13.2.1, indeed with the
appropriate ordering of rows/columns of the scattering matrix J , eq. (13.2) can be used

to derive an expression for the load Li with respect to the reflection coefficients fi(ξ
(i)
m ).
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Les us now partition the matrix J such that the i-th column and row are extracted

J =















J1,1 · · · J1,i−1 J1,i J1,i+1 · · · J1,N
...

. . .
...

...
...

. . .
...

Ji−1,1 · · · Ji−1,i−1 Ji−1,i Ji−1,i+1 · · · Ji−1,N

Ji,1 · · · Ji,i−1 Ji,i Ji,i+1 · · · Ji,N
Ji+1,1 · · · Ji+1,i−1 Ji+1,i Ji+1,i+1 · · · Ji+1,N

...
. . .

...
...

...
. . .

...
JN,1 · · · JN,i−1 JN,i JN,i+1 · · · JN,N















.

We denote by Vi the column vector [Jk,i] with k ∈ [1, N ] and k 6= i (note that by reciprocity
we have Vi = Vi

T )

Vi =
[
J1,i · · · Ji−1,i Ji+1,i · · · JN,i

]
T

and byWi the sub-matrix of J where the rows and columns with index 0 and i are removed

Wi =













J1,1 · · · J1,i−1 J1,i+1 · · · J1,N
...

. . .
...

...
. . .

...
Ji−1,1 · · · Ji−1,i−1 Ji−1,i+1 · · · Ji−1,N

Ji+1,1 · · · Ji+1,i−1 Ji+1,i+1 · · · Ji+1,N

...
. . .

...
...

. . .
...

JN,1 · · · JN,i−1 JN,i+1 · · · JN,N













.

Additionally we define Fi as the diagonal matrix which have the functions fk in the
diagonal with k 6= i

Fi =













f1
. . .

fi−1

fi+1

. . .

fN













.

Definition 14.2.1 (Load of channel i). The expression of the reflection Li seen by Filter
i when all other filters are connected to the junction is given by

Li = Ji,i + Vi
T (I − FiWi)

−1 FiVi. (14.4)

This expression represents the multi-port scalar chaining where all ports apart from
the port i of the junction J are closed by the scalar reflection coefficients fk with k 6= i,
providing then the scalar reflection L1 to be matched by the filter i. Note that the row
and column of J with index 0 does not intervene in the computation of the reflection Li.
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14.2.3 A multi-port continuation algorithm

The goal now is to obtain the set of functions fi satisfying eq. (14.3). Equation (14.3)
consists of a set of non-linear equalities, and the solution to problem 14.2.1 satisfying
those equalities can be obtained by different approaches. In this chapter we propose the
resolution of the aforementioned problem by means of a homotopy similar to the one
introduced in section 3.4. With this purpose we formulate an extended problem which de-
pends on a parameter ❧ and whose solution is trivial for ❧ = 0. Furthermore, as ❧ tends to
1, the solution to this extended problem converges towards the solution of problem 14.2.1.

To perform the continuation, we add a complex parameter ❧
(i)
m for each ξ

(i)
m in the

expression of Li(ξ
(i)
m ) obtaining

▲i,m = Ji,i + ❧
(i)
m Vi

T [I − FiWi]
−1 Fi(P )Vi (14.5)

evaluated at ξ
(i)
m . Therefore problem 14.2.1 becomes

Problem 14.2.2 (Matching conditions as a function of ❧). Find fi ∈ Σ
Mi

Ri
, such that:

fi(ξ
(i)
m )−▲i,m = 0 i ∈ [1, N ] m ∈ [1,Mi]. (14.6)

Note that for ❧
(i)
m = 0 we have ▲i,m = Ji,i(ξ

(i)
m ) for which the solution to the problem is

trivial. The objective then is to continuate this initial solution, varying these parameters
from ❧

(i)
m = 0 to ❧

(i)
m = 1 for all i,m in small increments ∆❧. At each step, the increment

to the polynomials pi (denoted by ∆p) is computed by

∆p = [J❧]−1 ∆❧,

where J❧ is the Jacobian of the vector of parameters ❧
(i)
m where i ∈ [1, N ] and for all

m ∈ [1,Mi] with respect to the polynomials pi. Note here that when ❧
(i)
m = 1, the filters

with output reflections [f1, · · · , fN ] are perfectly matched to the manifold simultaneously

at the points ξ
(i)
m .

The efficiency of the algorithm proposed here depends fundamentally on the good
conditioning of the Jacobian matrix J❧. In particular, the fact that said matrix is
non-singular, for a vector ❧ determined, implies that, given the variation ∆❧, there exists
a unique direction ∆p that indicates the variation to be applied to the parameters of the
problem so that eq. (14.6) is still satisfied.

Additionally, it should be noted that the path from ❧
(i)
m = 0 to ❧

(i)
m = 1 is of relevance

here since accidents can happen during the continuation (points where the Jacobian matrix
is singular). In this case, we can modify the trajectory to follow in order to avoid such

problematic points. For each of the parameters ❧
(i)
m we can choose a path in the complex

plane from the starting point 0 to 1.

14.3 Numerical implementation

In this section we provide a detailed development of the numerical procedure used to
determine the solution to problem 14.2.1. In addition, as part of this development, we
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derive the analytical formulas necessary for the efficient calculation of the aforementioned
solution.

In order to ensure eq. (14.2) we impose that the polynomials pi and q(pi) are monic.
Therefore, similarly as introduced in chapter 7, the polynomial pi is parametrised by the
vector Θi ∈ R2Mi containing the 2Mi real coefficients [θ1, · · · , θ2Mi

] with respect to the
basis of Tchebyshev polynomials such that

pi(ω) = ◗Mi
(ω) +

Mi∑

k=1

(θk + jθMi+k)◗Mi−k(ω),

where ◗k is the Tchebyshev polynomial of degree k. Therefore if we denote the basis
vector ❇k(ω) as

❇k(ω) = [◗k(ω), · · · ,◗0(ω), j◗k(ω), · · · , j◗0(ω)]
T ,

then we have

pi(ω) = ◗Mi
+ ❇Mi−1(ω)

TΘi.

Consider now the map Q introduced in eq. (7.21) that associates to each polynomial
pi ∈ PN the coefficients vector Ti of the positive polynomial pip

⋆
i . Note that since the

polynomial pi is monic, no additional normalisation is needed. Then we have

Qi : Θi ∈ R
2Mi −→ Ti ∈ R

2Mi .

Additionally denote by 1
2
Ξi(Θi) the Jacobian matrix of Qi at the point Θi. Let us now

compute the Jacobian of the evaluation [q(pi)](ξ
(i)
m ) for each i ∈ [1,Mi] with respect to

the coefficients of pi. We have q(pi)q(pi)
⋆ = pip

⋆
i + Ri, derivating with respect to pi as it

was done in chapter 7 we obtain

D[q(pi)](ξ
(i)
m ) = Dpi(ξ

(i)
m ),

Ξi(Φi)Jq(Θi) = Ξi(Θi).

Therefore

Jq(Θi) = Ξi(Φi)
−1 ·Ξi(Θi).

14.3.1 Derivation of analytic formulas providing the derivative
of the load

Unlike the case of matching 2-port devices where the load is fixed and the matching
problem arises in terms of the matching filter only, this time the load also depends on
the matching filters. This fact motivates the calculation of the derivative of the reflection
coefficient Li at the points ξ

(i)
m with respect to fk(ξ

(i)
m ) with k 6= i and m ∈ [1,Mi].

Therefore we consider now the evaluation of the load Li in eq. (14.4) at the points ξ
(i)
m .

Similarly consider the N ×N matrix J(ξi) where again the row and column with index 0
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is removed and the matrix Fi(ξ
(i)
m evaluated at ξ

(i)
m . The derivative of Li(ξ

(i)
m ) with respect

to fk(ξ
(i)
m ) with i ∈ [1, N ] and k 6= i takes the expression

Dfk
Li =

(
Fi,k

T (I − FiWi)
−1 FiVi

)2

evaluated at (ξ
(i)
m ) where Fi,k is defined as the row of Fi containing the element fk

Fi,k =

{ [
0k−1

T fk 0N−(k+1)
T
]
T if k < i

[
0k−2

T fk 0N−k
T
]
T if k > i

,

where 0k is the zero column vector in Rk.

Once we have the derivative of the function Li(ξ
(i)
m ) with respect to fi(ξ

(i)
m ), we only

need to calculate the derivative of the function fi(ξ
(i)
m )

fi(ξ
(i)
m ) =

pi(ξ
(i)
m )

[q(pi)](ξ
(i)
m )

,

with respect to the parameters of the problem, namely the coefficients of the polynomial
pi. Note that we have already computed the Jacobian matrix of the coefficients of the
polynomial q(pi) with respect to the vector Θi with the coefficients of pi in eq. (7.25).

Consider now the vector of matching points ξ
(i)
m for all i ∈ [1, N ] and for all m ∈ [1,Mi]

X = [ξ
(1)
1 , · · · , ξ(1)M1

, ξ
(2)
1 , · · · , ξ(2)M2

, · · · · · · , ξ(N)
MN

]T .

We have X ∈ RM with M =
∑N

i=1Mi. The evaluation of at the points X =
[x1, x2, · · · , xM ] can now be obtained by means of the basis matrix ❇i defined as

❇i = [❇Mi−1(x1),❇Mi−1(x2), · · · ,❇Mi−1(xM)] .

Since the coefficients of polynomials pi, q(pi) were decomposed in real and imaginary parts,
we also consider both parts here, hence

Jq(pi)(X) =
[
❇i

T ❇i
T
]
Ξi(Φi)

−1Ξi(Θi).

Let us consider now the application Fi : R2Mi −→ CM that associates to the vector Θi

the evaluation of the function fi at the points xm for all m ∈ [1,M ].

Fi : Θi −→ [fi(x1), fi(x2), · · · , fi(xM)]T .

Additionally note that the Jacobian matrix of Fi with respect to the vector Θi is given
as in eq. (9.14) by the expression

JFi =






[q(pi)](x1)
. . .

[q(pi)](xM)






−1

−






fi(x1)
. . .

fi(xM)




Jq(pi)(X).
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Each Jacobian matrix JFi has therefore the size M × 2Mi. If we consider finally the
application F : R2M −→ CN ·M that associates to the set of vectors {Θ1,Θ2, · · · ,ΘN} the
evaluation of all functions fi with i ∈ [1, N ] at every point xm where m ∈ [1,M ]

F :








Θ1

Θ2

...
ΘN







−→








F1(Θ1)
F2(Θ2)

...
FN(ΘN)







,

With the previous formulation we can now easily construct the Jacobian matrix of F as
the block-diagonal matrix

JF =






JF1

. . .

JFN




 .

It is important to note that the present section up to this point we have developed
an expression for the derivative of the reflection coefficient Li evaluated in the perfect
matching frequencies ξ

(i)
m with respect to the vector of fi with i ∈ [1, N ], namely

[f1(ξ
(i)
m ), f2(ξ

(i)
m ), · · · , fN(ξ(i)m )]. Also by means of the matrix JF we can obtain the

derivative of the load Li(ξ
(i)
m ) with respect to the coefficients of the polynomials pi.

14.3.2 Derivative of the Chaining Expression

Concluding the implementation of the fixed-point algorithm presented in this chapter, it is
necessary to express the derivative of the vector of parameters ❧

(i)
m introduced in eq. (14.5)

with respect to fi(ξ
(i)
m ) for all i ∈ [1, N ] and with m ∈ [1,Mi]. Introducing eq. (14.5) into

eq. (14.6) we obtain

fi(ξ
(i)
m )− Ji,i(ξ

(i)
m )− ❧

(i)
m Vi

T (I − FiWi)
−1 FiVi = 0. (14.7)

At each point ξ
(i)
m there is a value of ❧

(i)
m such that eq. (14.7) holds

❧
(i)
m =

fi(ξ
(i)
m )− Ji,i(ξ

(i)
m )

ViT (I − FiWi)
−1 FiVi

. (14.8)

Finally compute the derivative of ❧
(i)
m with respect to fk

Dfk
❧
(i)
m =







(

ViT (I − FiWi)
−1 FiVi

)−1

k = i
(

Ji,i(ξ
(i)
m )− fi(ξ

(i)
m )
)
Fi,k (I − FiWi)

−1 FiVi
Vi
T (I − FiWi)

−1 FiVi
k 6= i

.

It is important to note that for any arbitrary value of fi(ξ
(i)
m ), this analytical expression

allows us to directly calculate the value of ❧
(i)
m that satisfies the matching condition in

eq. (14.7) under the condition that the denominator in eq. (14.8) is non-zero and the
matrix (I−FiWi) is non-singular. Furthermore note that the matrix (I−FiWi) is singular
if and only if the reflection Li is lossless. Nevertheless since the port 0 has been removed
from the matrix J , a lossless Li implies no transmission toward the common port. This
is not possible if we suppose that no manifold peak appears at the frequency ξ

(i)
m .
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Chapter 15. Multiplexer design and results

The theory developed in the preceding chapters at the beginning of this part may
seem quite abstract a priori without a practical example that serves as a support for
the correct understanding of it. Especially when certain somewhat unusual definitions
such as the concept of main and secondary branches is introduced. This absence of
practical applications and real examples is mitigated to a certain extent by the inclusion
of several examples of application of the theory introduced above. Specifically in this
chapter we detail the design of an X-band triplexer for the space sector. This triplexer is
implemented in waveguide technology with a prototype made by additive manufacturing
techniques.

Therefore, this chapter, and at the same time this last part, are of a more applied
character compared to part 2. In fact, in this chapter we discuss more technical aspects of
the implementation and manufacture of the devices designed such as technology chosen for
the implementation, the level of dissipation, or the adequate tuning of the final structure.

15.1 Application and target specifications

In order to exemplify the theory developed in part V, we considered the design of an X-
band triplexer with the specifications listed in table 15.1. These specifications correspond
to the following passband I1, I2, I3 in GHz

I1 = [11.932, 12.168],

I2 = [11.677, 11.913],

I3 = [11.145, 11.645].

In what the transmission concerns, we have a criterion in terms of the flatness of the
transmission coefficient from each channel to the common port. As it is indicated in
table 15.1, the maximum variation of insertion losses within any of the passbands is of
1.1 dB. This requirement could be met through the use of predistorted filtering functions
achieving an equalization of the transmission along the pass band. Nevertheless, the
aforementioned predistortion technique deviates from the objectives of this thesis. As an
alternative, in this chapter we consider filters implemented in waveguide technology which
provides us with a high quality factor.

15.2 Reference filters

Before approaching the design of the multiplexer according to the theory developed
in part V, we made 3 filters in waveguide technology, each of which implements a
Tchebyshev type 6 response with 2 transmission zeros, one on each side of the band.
Through these reference filters, we can validate the feasibility of the proposed technology
in order to meet the specifications required for each channel. It is important to remember
that by using channel filters of degree Mi it is possible to set Mi matching points in
each passband. Therefore in the response of the multiplexer in each channel, namely
the parameters Si,i and Si,0 of the final structure, we have the same amount of perfect
matching points and transmission zeros .
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This implies that by using the reference filters we obtain a response which, although
the points of perfect matching and perfect rejection are not located exactly on the same
frequency, is of the same type as that provided by the final structure. Each of these filters
satisfies the specifications required for the corresponding channel in terms of selectivity
as can be seen in fig. 15.2. With respect to the insertion losses, we obtain the minimum
quality factor Q0 = 2000 required per resonator such that the cited response with 6 poles
and 2 transmission zeros satisfies the specifications listed in table 15.1. A view of the
channel transmission showing that the insertion loss requirement is verified with a value
Q0 = 2000 is provided in fig. 15.3.

Channel 1 Channel 2 Channel 3

G
e
n
e
ra
l Centre frequency 12.050 GHz 11.795 GHz 11.395

Bandwidth 236 MHz 236 MHz 500 MHz
Return loss 21 dB 21 dB 21 dB
Insertion loss 10 dB 10 dB 10 dB

R
e
je
c
ti
o
n Fc± 144 Mhz 20 dB 20 dB

Fc± 300 MHz 20 dB
Fc± 380 MHz 40 dB 40 dB
Fc± 800 MHz 40 dB

IL
v
a
ri
a
ti
o
n

Fc± 70 Mhz 0.25 dB 0.25 dB
Fc± 100 MHz 0.4 dB 0.4 dB
Fc± 118 MHz 1.1 dB 1.1 dB
Fc± 150 MHz 0.25 dB
Fc± 200 MHz 0.4 dB
Fc± 250 MHz 1.1 dB

Table 15.1: Required specifications for each channel filter

15.2.1 Coupling topology and waveguide implementation

We shall now decide the technology and the coupling topology used to implement the
filters. This step is important since it determines the out of band behaviour of the
channel filters. Note that in chapter 13 we assumed that the channel filters are fixed and
used the out-of-band reflection of those filters to determine the transmission lines which
compose the manifold. In this way we manage to avoid the manifold peaks inside the
bands.

In addition, in chapter 14, the aforementioned reflection outside the band of the filters
is normalized to a certain value. Particularly in eq. (14.1) we impose a normalization of

F
(i)
22 at infinity. This ensures that the out-of-band trend of F

(i)
22 is known. Alternatively

a different normalization is possible, for example at a certain frequency in the adjacent
passband. This normalisation allows us to make the assumption that the reflection of the
matching filters (or more specifically its phase) obtained as a result of the simultaneous
synthesis algorithm is not drastically modified with respect to the reflection of the
reference filters.
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Figure 15.1: Rejection and return loss levels (in dB) indicated in table 15.1.
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Figure 15.2: Scattering parameters of reference response.
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Figure 15.3: Insertion loss of the reference filters (in dB) with a quality factor Q0 = 2000
together with the specifications indicated in table 15.1.

We choose for this example the cross-coupled topology shown in fig. 15.4 which allows
for 2 transmission zeros and 6 reflection zeros. The three filtering functions shown in
figs. 15.2 and 15.3 are represented by the same coupling matrix after the normalisation
with respect to the respective bandwidth and centre frequency. For all of them we have
the coupling matrix

M =















0 1.01 0 0 0 0 0 0
1.01 0 −0.35 0.76 0 0 0 0
0 −0.35 −0.94 0 −0.07 0.19 0 0
0 0.76 0 0.20 −0.19 0.51 0 0
0 0 −0.07 −0.19 0.94 0 0.35 0
0 0 0.19 0.51 0 −0.20 0.76 0
0 0 0 0 0.35 0.76 0 1.01
0 0 0 0 0 0 1.01 0















.

These filters are implemented in waveguide technology through rectangular resonant
cavities with an fully inductive structure. The structure of each filter consists of four
in-line cavities, where the resonant mode TE101 is used for the input and output cavities
meanwhile the two remaining cavities make use of the higher order modes TE102 and
TE201. The filter structure can be seen in fig. 15.5. This type of all inductive dual-
mode structures were introduced in [76] and have been widely studied in the recent years.
Additionally, a more detailed work on inductive dual mode filters, including the structure
shown in fig. 15.5, can be found in [77]. This choice of topology allows us to reach,
with a standard manufacturing technique, the required quality factor while obtaining a
reasonably result in terms of volume and footprint of the structure.
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Figure 15.4: Coupling topology

15.2.2 Manufactured prototype

Concluding the study of the reference filters a prototype of the reference filter has been
realised by additive manufacturing. This prototype, which is shown in appendix E
provides, after being implemented by the structure shown in fig. 15.5, the response shown
in fig. 15.6.

Figure 15.5: 3D view of the structure used to implement the reference filters.

The manufactured filters shows an unloaded quality factor Q0 per resonator of about
Q0 ≈ 1200. Note that this result does not reach the value of Q0 = 2000 required to meet
the specifications, however considering the fact that it corresponds to a plastic prototype
the obtained result is exceptional. This results also indicates that the required value
Q0 = 2000 would be attained easily by means of a standard high quality manufacturing
technique such that metal milling and silver plating.

The synthesized reference filters provide us with an estimate of the out-of-band phase
of each of the channel filters. We show in fig. 15.7 the out-of-band phase of each reference
filter.
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Figure 15.6: Response of the reference filter after tuning (the manufactured device is
shown in appendix E) compared to the EM simulated (lossless) response.
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Figure 15.7: Out-of-band phase of each reference filter

Thèse de doctorat — Université de Limoges — 2019 Page 323



Chapter 15. Multiplexer design and results

15.3 Manifold synthesis

To carry out the implementation of the triplexer to which this chapter is dedicated,
we selected a fishbone structure with three channels coupled by a manifold. With the
fishbone configuration, the channels are arranged alternating to the right and to the left
of the manifold. This configuration can be seen in fig. 15.9. The manifold is composed
by two T-junctions interconnected by the transmission line Φ(0). The model taken for
the T-junctions is a 3-port EM-simulation of the waveguide T shown in fig. 15.8a. The
simulated structured is modelised by the circuit provided in fig. 15.8b. We de-embed the
transmission lines at each access of the 3-port obtaining the core of the T-junction J
where a minimal line length per terminal is considered. Additionally the i-th channel is
connected to the manifold by means of the transmission line Φ(i).

(a) Simulated structure

J
2 0

1

(b) Circuit model

Figure 15.8: T-junction model.

Note that both T-junctions appearing in fig. 15.9 are identical. We denote then their
scattering matrix by J . We compute now the uni-modular reflection P1(ω) given by
eq. (13.6) that produces a transmission zero in J2,0 at the frequency ω when it is used to
close the port 1 of the junction J . Similarly we compute P2(ω) such that J1,0(ω) = 0 with
P2(ω) closing the port 2. We have

P2(ω) =
−J02(ω)

J20(ω) det J(ω)
,

P1(ω) =
−J21(ω)

J12(ω) det J(ω)
.

Using the previously designed reference filters, along with the theory developed in the
previous chapters, we can determine the lengths of the transmission lines in fig. 15.9 that
minimise the risk of encountering a manifold peak in any of the channel passbands. First
it is necessary to identify the different branches that constitute the manifold. In this
structure we can distinguish a main branch, namely the horizontal path from port 3 to
the common port and two secondary branches. As it has been explained in the previous
chapter, the design will consist of two stages. The first stage aims to avoid the manifold
peaks in the main branch within the passband of channel 3. For this we will adjust the
transmission lines connected to the main branch, which are arranged vertically in fig. 15.9.
The second phase consists of guaranteeing the absence of manifold peaks in each of the
secondary branches, namely the path from the common port to channel 1 and to channel 2
through the corresponding adjustment of the length of the transmission lines Φ(3) and Φ(0).
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Figure 15.9: Multiplexer schematic

15.3.1 Main branch

We compute in this section the length of the lines Φ(1) and Φ(2) (vertical transmission
lines in fig. 15.9). We consider the transmission along the main (horizontal) branch of
the manifold. The junction J (1) must allow the transmission from terminal 2 to 1 in the
bands of channels 2 and 3, meanwhile transmission from terminal 2 to 1 of J (2) in band
3 must be possible. Transmission lines Φ(1) and Φ(2) are used to shift the phase of the
reflections f1 and f2 such that the phase showed at terminal 1 of T1 does not coincide
with P1(ω) within the bands 2 and 3. Equivalently the phase brought to terminal 1 of T2
must not coincide with P1(ω) in the third band. We can see in fig. 15.10 that the phase of
f1(ω) and f2(ω) does not coincide with P1(ω) within the bands of interest. Nevertheless
we choose minimal length of 1mm is chosen for Φ(1) and Φ(2) to ensure that manifold
peaks does not occurs at the edges of passbands I2 and I3.

15.3.2 Secondary branches

Next, after Φ(1) and Φ(2) are selected and reference filters 1 and 2 connected, we compute
the lines Φ(3) and Φ(0) (horizontal transmission lines in fig. 15.9). We can see in fig. 15.11
that f3(ω) coincides with P2(ω) in the band of channel 2. Therefore J2 introduces a
transmission zero from terminal 3 to 1 and a manifold peak will appear in channel 2.
To avoid this problem, reflection f3 is shifted by means of a line Φ(3) of 7mm obtaining
the reflection fΦ

3 (shown in fig. 15.11) which does not intersect P2(ω) within the band of
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Figure 15.10: Relevant phases to adjust Φ(1) and Φ(2)

interest. Finally we verify that f0(ω) (the reflection of the load seen from port 2 of T1)
does not coincide with P2(ω) within the band I1 as we can see in fig. 15.11. Finally a
minimal length is taken for Φ(0) as in the case of Φ(1) and Φ(2).As a result of the previous
procedure we obtain the lengths listed in table 15.2 for each transmission line.

Transmission line Φ(0) Φ(1) Φ(2) Φ(3)

Length (mm) 2 7 1 1

Table 15.2: Selected transmission line length

As it can be seen in fig. 15.11, the result in this second stage is much more tight due
to the dispersion introduced by the transmission lines Φ(1) and Φ(2), which accumulates
throughout the entire process. Furthermore, this effect is increased by the fact that the
channels have a considerable relative bandwidth (the relative bandwidth of the band
I3 is 4.4 %) together with the narrow channel spacing (note that the variation of the
out-of-band phase is faster the greater the proximity to the band in question, as can be
seen in fig. 15.7). However, generally, as long as the bandwidth per channel and the gap
between channels allow it, this algorithm can be continued to deal with an arbitrary
number of channels.

In this example, the length of the transmission lines has been selected to maximize
the distance of the manifold peaks to the corresponding passband in both stages of
the process, both in the main branch and in the secondary branches. It is important
to note that a compromise must be reached between moving the manifold peaks away
from the band in the main branch and in the secondary branches. Indeed if the
length selected for Φ(1) and Φ(2) is excessive, we would be introducing a high level of
frequency dispersion, which would complicate the process of adjusting Φ(3) and Φ(0)

in the next step. In order to provide a precise criterium to determine the optimal
length of the transmission lines we chose the values of Φ(0), Φ(1), Φ(2) and Φ(3) such that
the minimum distance of all manifold peaks to their correspondent passband is maximised.

As long as dispersive transmission lines are used, due to the periodicity in frequency
of the response of these elements, manifold peaks are necessarily repeated periodically.
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Therefore the best location for the mentioned peaks is that in which the passband is cen-
tred in the middle of two occurrences of said peaks. In the same way, if two manifold peaks
occur within the same passband originated by the same element Ji, then the appearance
of said peaks within the band can not be avoided without reducing the bandwidth thereof.

Note that due to the variation in frequency of the phase introduced by the transmission
lines, with the presented algorithm we will obtain manifold peaks to the right and to the
left of the passband, at a greater or lesser distance. If we now consider the reflection Li
of the load seen by each of the matching filters, this reflection will be uni-modular in the
points where the manifold peaks occur. Similarly, the closer to a manifold peak ω is, the
closer |Li(ω)| to 1. Hence after the matching filters are synthesised we expect to obtain
for each channel i a load with reflection Li of small modulus in the middle of the passband
meanwhile |Li(ω)| grows as ω approaches the edges of the passband.
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Figure 15.11: Relevant phases to adjust Φ(3) and Φ(0)

15.4 Matching filters

Once the structure of the manifold is determined and the transmission lines that compose
it are determined, the synthesis of the channel filters can be addressed. Each of these
filters has been modelled in the previous chapter by means of a rational scattering matrix
with the Belevitch structure. Once the structure of the manifold is determined and the
transmission lines that compose it are determined, the synthesis of the channel filters can
be addressed. Each of these filters has been modelled in the previous chapter by means
of a rational scattering matrix with the Belevitch structure. However, once the channel
filter technology, namely waveguide filters with inductive character in our case, and the
coupling topology used, the topology with cross coupling shown above, it is possible to
further refine the model used for the matching filters in such a way that the result obtained
in the synthesis stage is much closer to the actual response provided by the filters once
manufactured. The aforementioned model is obtained by the rational approximation of
the response provided by each of the reference filters.
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Figure 15.12: Equivalent model for the channel filters

15.4.1 Extraction of rational model

The extraction of a rational model for the reference filters is a crucial task for the subse-
quent procedure of dimensioning the manifold. In this chapter we use a rational model
with the Belevitch form to model the channel filters. However, the reference filters im-
plemented in the previous section show, as a general rule, a non-rational response. The
main factor behind this problem is the set of time delays that occur within the struc-
ture. Considering these delays, the reflection function of the reference filters F22(i) can
be approximated within the passband by

F
(i)
22 =

pi(ω)

qi(ω)
eAω+B = fi(ω)e

Aω+B ω ∈ Ii,

with qi the stable polynomial such that q⋆i qi = p⋆i pi+Ri and fi denotes the rational factor

of F
(i)
22 . Note that the product by eAω+B corresponds to the cascade operation with an

all-pass device S(i) as shown in fig. 15.12. The all-pass device has the scattering matrix

S(i)(ω) =

(
0 e

1
2
(Aω+B)

e
1
2
(Aω+B) 0

)

.

During the optimisation, this element S(i) is fixed for each channel and only the rational
factor is synthesised allowing us to apply the Belevitch form for the modelling of the
rational factor.

15.4.2 Synthesis algorithm

The synthesis of the matching filters is carried out as explained in chapter 14, that is,
solving eq. (14.3) through the algorithm introduced previously. In this case we have N = 3

and M1 = M2 = M3 = 6. To begin with we distribute the points ξ
(i)
m within the band of

each channel i with m ∈ [1, 6]. Additionally we fix the transmission polynomial for each
channel having roots at the previous points. Therefore we are looking for the optimal set
of functions

{
f opt1 , f opt2 , f opt3

}
∈ Σ6

Ri
for i ∈ [1, 3] such that

f opti [ξ(i)m ] = Lopti (ξ
(i)
m ) ∀i ∈ [1, 3] ∀m ∈ [1, 6].

The algorithm introduced in chapter 14 is based on the parametrisation of eq. (14.3) by
means of a vector of parameters ❧i,m for all i,m so that for ❧i,m = 0 the solution is trivial
and for ❧i,m = 1 we obtain the solution to eq. (14.3). The presented algorithm is based
on the continuation of an initial solution obtained for ❧i,m = 0 by varying the parameter
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vector ❧i,m from its initial value to ❧i,m = 1.

The circuit model of each filter is obtained using the presented method. The
computation takes an average time of one second in a laptop with CPU i7-6600U under
the environment Matlab R2019a [78]. After the computation is concluded, the global
response shown in figs. 15.13a and 15.13b is obtained.

In fig. 15.13a we can see the 6 matching points set in the passband of each channel.
The position of these matching points has been optimized to obtain a constant oscillation
level in all the bands. It is important to note that the position of these matching points
does not correspond exactly to the position of the roots of the Tchebyshev polynomial of
degree 6 in the corresponding interval, unless the load seen by the matching filter is of
degree 1. Additionally , the reflection level has been adjusted to −21dB modifying the
dominant coefficient of each of the transmission polynomials Ri.

In fig. 15.13b the transmission of each channel to the common port is shown. We can
also distinguish the position set for each transmission zero, two of them per channel, on
each side of the passbands. Finally, what is more important, is the presence of manifold
peaks on the left and right of the bands.

In particular we can distinguish for example the peak in the frequency of 11.66 GHz.
These manifold peaks were already preceded in the previous section where it was proved
that said peaks would necessarily appear on the sides of the bands due to the bandwidth
of the channels. To properly visualize the position of said manifold peaks, it is interesting
to study the reflection of the load L

(i)
1,1 seen by each of the matching filters. This reflection

has been graphed in fig. 15.14 where we can appreciate its magnitude in each of the bands.
In particular we can see how this reflection L

(i)
1,1(ω) is lower in the centre of the band i

while growing toward 0dB when (ω) approaches the edge of the band. In particular, in
fig. 15.14a we can see the manifold peak mentioned above to the right of channel 3 (the
lowest channel in frequency represented in blue) around 11.66 GHz.
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Figure 15.13: Target scattering parameters of the global structure.
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Figure 15.14: Load reflection L
(i)
1,1 to be matched by each filter.
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15.5 Results

The circuit model of each filter is obtained using the presented method. Note that the
manifold was dimensioned at the beginning and the matching filters have been synthesized
with the manifold already fixed. Furthermore, the synthesis of the filters carried out
previously provides us with the circuit model of each filter, which we represent in terms
of coupling matrices, so that all the filters are simultaneously matched to the manifold.
By using the obtained circuit for the EM-design of the waveguide filters, this procedure
allows us to obtain the objective response for the global structure shown in figs. 15.13a
and 15.13b only by optimizing the channel filters separately. Thus we avoid the need for
a global optimization of the entire structure, which can become excessively slow in the
case of a generic multiplexer.

15.5.1 Channel filters optimisation

We show in fig. 15.15 the result of each filter optimisation compared to the goal provided
by the presented procedure. These optimisations are carried out with the help of the
EM-simulation software Microwave Wizard [79] and Ansys Electronic Desktop [80]
together with the segmentation technique presented in [81, 82]. It should be highlighted
here that a good fit of the target response both in magnitude and phase is required here
in order to recover afterwards the target global response. This fit in phase of the target
response is particularly important since a channel filter providing the wrong phase, even
with the proper magnitude, modifies the matching condition between the filters and
the manifold preventing us from obtaining the global response shown in figs. 15.13a
and 15.13b. Note that the optimization in fig. 15.15 is not perfect since small errors are
always made between the EM result and the objective result. However, these errors are
less than the errors due to tolerance in the manufacturing process and will be corrected
by the use of tuning screws. We include already in the design of each channel filters a set
of tuning screws in each coupling and each cavity. One in the centre of the single mode
cavities, and four in each dual-mode cavity, all of them positioned at the locations of
maximum electric field. These screws are inserted to allow for a compensation of a 50 µm
error in the dimensions, namely the attainable precision in the manufacturing process.

It is now important to compare the out-of-band phase obtained by the EM result of
each filter shown in fig. 15.15. Remember that for the dimensioning of the manifold we
made the assumption that the out-of-band phase of the matching filters is not strongly
modified with respect to the out-of-band phase of the reference filters. This comparison is
provided in fig. 15.16 where we can see that the maximum discrepancy between the phase
of f refi and f finali occurs near the edge of the passband Ii while both functions tends to
the same value as ω tends to infinity as it is imposed in the filter model. Therefore this
result validates the assumption made at the manifold design stage.

15.5.2 Global response

Once the three filters are optimised with the fit shown in fig. 15.15, we assemble the
global structure of the triplexer using the manifold previously designed. The obtaining
global structure composed of the three channel filters connected to the manifold is shown
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Figure 15.15: Filter response. S22S22S22: thick; S21S21S21: thin. Circuit response (solid line) vs EM
simulation (dashed line).
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Figure 15.16: Out-of-band phase. f refi : reference filters. f finali : final filters

in fig. 15.17. At this point, without need for a global optimisation, we verify the response
of the global structure and compare it to the target result. This comparison can be
seen in fig. 15.19. We can verify that the result is good enough without performing any
additional optimization. The differences between the triplexer EM response and the
objective response are due to the small errors in the optimization separately from each of
the channel filters, which is why we consider that the device is ready for manufacturing,
correcting possible errors in the tuning stage later on.

The per-channel reflection and transmission parameters measured after tuning the
structure are shown in fig. 15.20. As it can be noticed, the measured response shows a
frequency shift toward lower frequencies of about 10% the total bandwidth. This fact is
due to a manufacturing error higher than expected that could not be compensated by
means of the tuning screws. It can also be noted that the complete fishbone structure
shown in fig. 15.17 allows the insertion of the tuning screws in each of the cavities and
couplings of the channel filters. This condition was imposed as a design restriction, lim-
iting the compactness of the structure which presents filters oriented towards alternating
directions.

15.6 Concluding remarks

It is possible to notice at the end of this chapter that in this last part of the thesis a greater
effort has been made in the realization of prototypes that validate the theory presented.
However, we have not deepened the study of the manufacturing techniques used. We
believe that the said study is already widely covered in the literature while the proposed
synthesis technique represents a mayor contribution to the field of multiplexers design.
For this reason, we have decided to offer a detailed study of the proposed algorithm which,
although it is still at a rather preliminary stage, represents one of the main lines of future
research issue of the work done.
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Figure 15.17: 3D view of the triplexer waveguide structure.

Figure 15.18: 3D view of the triplexer structure.
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Figure 15.19: Triplexer response in dB: circuit (dashed line) vs EM simulation (solid line)
without need of a global optimisation.
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Figure 15.20: Triplexer response in dB: circuit (dashed line) vs EM simulation (dotted
line) vs measurements (solid line).
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In this thesis, a considerable amount of work has been done on the problem of matching
complex impedances and their applications. This is one of the beautiful problems in
engineering that, although having been introduced in the first half of the last century
and studied by numerous authors since then, both from the point of view of its practical
applications as well as from an analytical perspective, still remains present. The main
reason is the inherent complexity of this problem, due to both the wide variety of loads
that can be faced, and the high non-linearity of the equations involved in the chaining
operations of these loads with the respective matching networks

During the course of this document, we have been able to corroborate, as it has
been noted previously by the different authors who faced the problem of impedance
matching in the past, the complexity of the mentioned problem. Particularly in the case
of matching networks of fixed degree, this complexity appears in two different ways,
either in terms of a rational approximation problem where the criterion to be minimized
is expressed in terms of the pseudo-hyperbolic distance to a prescribed function, or in the
form of a complex interpolation problem where the interpolating function is expressed
as a rational function, with a number of interpolation conditions located in the complex
plane. In both cases, if the degree of the aforesaid rational function is bounded, the
problem obtained is clearly non-linear. This non-linearity prevents us, for example, from
directly applying modern optimization techniques unless the load under consideration is
relatively simple.

In order to deal with the problems mentioned, we have formulated a convex problem
within the framework of the original matching theory presented by Fano and Youla in
the past century. In this way we overcome one of the main disadvantages of this theory
as is the rigidity of its practical applications since a prescribed model, either Tchebyshev
or Butterworth, was required for the global response. We also provide a generalized
algorithm where no model of the network under consideration is required.

16.1 The problem

The convex formulation of the matching problem is achieved by means of a relaxation
of the set of functions among which the response of the optimal matching network
is sought. This relaxation provides us with fundamental limits that dictate the best
possible result in terms of matching for a given load, whose complex impedance varies
in frequency. The provided results were unknown until now for a matching network
of bounded degree. These limits allow us to determine, for example, that a certain
level of matching can not be reached once the load is set, even making a series of
strong relaxations on the matching network, such as the absence of power dissipation.
The only assumptions made in the matching network are passivity, causality, and stability.

However, these results are not obtained for free, as always, there is a price to pay. The
price is given in terms of the sharpness of the obtained bounds, and depends largely on
the degree of the load under consideration. Indeed, for a load of degree 1, the computed
limitations are sharp without any sacrifice been made. However, when the load is of
higher degree, an optimality gap appears between the lower bound and the best result
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achieved by a matching filter of fixed degree. This optimality gap is considerably small
for a low degree loads and increases as the load’s degree increases.

The presented optimization problem is accompanied by a series of interesting
properties such as the existence and uniqueness of the solution which indicate that a
correct numerical implementation is possible, with the guaranty that the only existing
optimal result is obtained in a finite time.

As a result, we obtain a semi-defined non-linear program (NLSDP) which, although
being a convex program, does not fit into any of the more typical formulations which
can be solved optimally by the solvers available today. However, it is still possible to
find some publication in the literature where the NLSDP programs are treated, although
without an available implementation capable of correctly handling the problem presented
here. We are therefore facing one of the most complex problems in optimization among
which the optimality of the solution can be guaranteed. In this thesis we have decided
to implement a solver, based on the algorithms available in the literature of NLSDP
programs in recent years, adapted to the matching problem we face. The presented
algorithm is complemented with a series of heuristic procedures destined to calculate,
once the problem of convex optimization has been solved providing the fundamental limits
of matching for the load under consideration, a matching network of the desired degree
which reaches a result in matching terms as close as possible to those bounds. In addition,
we also present a characterization of said optimal solution which, although not allowing
direct calculation of it, can be used to certify that a certain result obtained is not incor-
rect, which would imply, among others, a problem in the implementation of the algorithm.

Next, we also made an interesting discussion about the two applications considered in
the present study to illustrate the benefits of the theory developed. These applications
concern the problem of matching with two types of loads of a very different nature.
The first type is the impedance provided by different antennas, which is represented by a
complex function variable in frequency. The second type of loads consists of the impedance
seen from the output of each of the channel filters that compose the multiplexer.

16.2 Application to antenna matching

The problem of antenna matching is a classic in modern communication, particularly in
the mobile word where the miniaturisation of communication devices and batteries has
made of power efficiency a crucial aspect. To achieve the sought energy efficiency, two
fundamental aspects are essential in the conception of the global device. These aspects
are, on the one hand, the minimization of the dissipation losses in the dielectric materials
that make up two physical devices and on the other hand the minimization of the losses
caused by the power reflected at the input of the different subsystems.

Particularly when we speak about an antenna, it is implicitly said that the antenna
does not show a constant impedance at its input terminal. Usually an important part of
the design of the said antenna consists of obtaining a determined impedance, in most cases
50Ω at a specific frequency. However, in the field of radiating devices there is no equivalent
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model established as it is the model of coupled resonators in the synthesis of microwave
filters. In addition, the design of antennas is conditioned by numerous external factors,
such as the interaction between the radiating structure and the rest of the system, namely
batteries, metal housing, and other conductive parts which modify the behaviour of the
antenna. These effects make the design of the radiating structures extremely complicated.

Therefore, the normalization of the input impedance shown by the antenna to a
reference impedance, say 50Ω, imposed only for reasons of standardization supposes an
additional restriction in the design of antennas, in addition to the usual requirements in
terms of of directivity, efficiency, polarisation, main to secondary lobe level, etc. This
requirement is however artificial since it is not related to the fundamental functioning of
the antenna itself. Through the algorithms provided in this thesis, the matching condition
is transferred to the microwave filter commonly used in the reception/transmission chain
to eliminate unwanted signals.

The synthesis of filters, on the other hand, has a more advanced level of maturation
and thanks to tools such as the coupling matrix or filter optimization assisted by rational
approximation techniques it is possible to design a filter of a certain degree which handles
the same time the filtering and matching requirements in a similar way to the design of
traditional filters with filtering criteria only.

From the point of view of the design of antennas, by relaxing the condition of
matching, there is greater freedom to optimize other criteria that are more relevant to
radiation, such as those mentioned above. It is important to note that an antenna does
not cease to be a device for the transmission/reception of signals, so it is in this aspect
that the design must be focused.

In addition, with the study of antenna arrays, we take this transfer of the matching
criterion from the antenna to the matching filter even further. In the case of an array of
antennas, the impedance shown at the input of each of the elements is conditioned by the
presence of other radiating elements, whether passive or active. This fact is transparent
from the point of view of the matching filter since the objective of the matching problem
is to adapt a generic load variable in frequency. However, when matching this impedance,
from the point of view of the array, the matching filter also fulfils the task of reflecting
the signals coming from the rest of the radiating elements that reach this filter due to
the coupling between the different elements. These signals are reflected by the matching
filter and retransmitted with the appropriate phase so that, through constructive inter-
ference with the rest of the radiated signals, they contribute to the overall radiation of
the structure.

16.3 Application to the synthesis of multiplexers

Finally, concluding the work done in this thesis, we find the problem of multiplexer
synthesis. In this problem the frequency variable impedance which must be matched is
obtained as a result of another matching problem which in turn depends on the result
of the first. In this case we are facing a simultaneous matching problem where all the
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channel filters must be matched to the impedance shown by the rest of the multiplexer.
This impedance is not like the case of antennas, a fixed impedance set depends on other
matching filters which are also variable in the problem. These particularities make
necessary an important adaptation of the classic matching theory to allow the handling
of this problem of simultaneous matching.

In addition, in this case the nature of the problem and the application to real devices
provide an even more complex problem than the aforementioned simultaneous matching.
In fact, we are faced with a problem of filter synthesis where the mastery of filter
techniques is not enough, even considering that the synthesis of ideal filters is possible.
This is due to the manifold influence. In the problem of matching presented above, even
having claimed that the optimal matching of a generic impedance is possible, there is a
case where the problem is poorly conditioned and no transmission is possible between the
matching filter and the load. This is the case in which the impedance shown by the load
is a short circuit. In the synthesis of multiplexers, especially multiplexers of the manifold
type, this case can be found recurrently. The reason comes from the fact that the channel
filters exhibit a reflection almost unimodular in the bands of the adjacent channels and the
manifold, basically composed of transmission lines, provides effect of shifting the phase
of this reflection to the point where a short circuit might appear in the impedance seen
from any of the channels. This short circuit is commonly known as a manifold peak. If
this occurs, the synthesis of the channel filters is not possible with any synthesis technique.

The first of the innovative contributions introduced in the field of multiplexer design
consists of a preliminary analysis of the manifold in order to predict the position of the
manifold peaks allowing. This allows us to design the manifold accordingly to avoid such
peaks.

The second contribution presented consists of the simultaneous synthesis of the
channel filters once the manifold has been designed. This synthesis is carried out through
a point-wise matching algorithm based on the continuation from an arbitrary initial
solution to the final response of the matching filters, ensuring the perfect matching of
each of the filters in a set of points fixed on the frequency axis.

Note that the design of multiplexers usually involves the optimization of the mul-
tiplexer structure using direct optimization techniques. This process is extremely slow
due to the complexity of the global structure and the numerous amount of local minima
found during the optimization. By means of the presented algorithm we also achieve
a dissociation between the synthesis of the manifold and the synthesis of the channel
filters, which represents a major advance in the design of this type of devices.

Finally, by designing and manufacturing one of these devices, namely a triplexer for
satellite applications with extremely tight frequency specifications, we were able to vali-
date the presented theory by obtaining the synthesis of the channel filters simultaneously
in a matter of seconds while a much longer time would have been necessary through
traditional synthesis techniques.
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At the end of the study conducted in this work, having obtained several results of
considerable importance, especially in relation to the fundamental limits in the problem
of matching with bounded degree filters, we also have an important part of prospective
results. These results have been outlined during this work, indicating possible lines
of investigation to pursue. However, they have not been further developed due to the
limited time available.

In particular, we consider that the most relevant results in the context of the matching
problem are still to come in the form of a definitive solution to the matching problem
by eliminating the optimality gaps shown in chapter 9 as a final implementation of
an algorithm of synthesis or transfer functions for multiplexers with guaranteed optimality.

These are, however, the most ambitious results to the problems dealt with in this
thesis, which could, as far as our current understanding goes, not have a unique optimal
solution in all cases. Furthermore, even if such an optimal solution exists, there may not
be a method to obtain it in a guaranteed manner.

However, there are also other less ambitious and more immediate research lines which
seek to respond to some of the most interesting open questions about the work done.
Following the outline of the previous chapter, where we have made a summary of the
results obtained, we provide a quick list of all these open questions to serve as a guide
for possible future work on the problem of matching in its different forms . This list
constitutes a summary of the missing results, which would have a greater importance in
our study by completing the obtained results.

17.1 Optimal synthesis of transfer function for

matching synthesis

Even with the results obtained in part II of this thesis, we can not consider that the match-
ing problem is over. Especially when the most significant results have been obtained in
terms of lower fundamental limits to the solution of said problem, without obtaining the
optimal solution guaranteed in the majority of cases. It is important to note that in chap-
ter 9 a vague connection has been obtained between the solution of the relaxed problem
and the solution of the original problem which seeks to obtain the best filter of degree K
in terms of matching with a load L which is fixed. We next make a hypothesis about the
number of zeros in the analyticity domain of the optimal function for problem 4.1.1.

Conjecture 17.1.1. Consider the function Sbest22 ∈ ΣKR solution to problem 4.1.1 with
a load L of degree M and R = RFRL with RF a positive polynomial of degree K and
RL ∈ P2M

+ the transmission polynomial of the load. We state that the function Sbest22 can
be expressed as

Sbest22 = SO22 · SB22 (17.1)

where SO22 is a minimum phase function and SB22 is a Blaschke product of degree exactly
M − 1.
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The motivation to formulate this conjecture comes from the necessary conditions in
the form of integrals that must be satisfied by the global system S once the load L is fixed.

We already know that it is possible to construct a load of degree M , namely a
reducible load, for which the optimal solution to problem 4.1.1 can be expressed in the
form given by eq. (17.1) with a function SB22 of a degree strictly less than M −1. However
we can still ask if the function SB22 is in the general case of degree M − 1 and even more,
if SB22 is never of degree greater or equal to M . Note that in the relaxed problem the
Blaschke product obtained as part of the solution to the relaxed problem is a maximum
of M . This is one of the results obtained in the relaxed formulation of the problem that
is uncertain when considering problem 4.1.1.

In addition, further results can be investigated with respect to problem 4.1.1. Note
that problem 4.1.1 is not convex, therefore we can not guarantee for the moment the
uniqueness of the optimal solution and little can be said about it. We can investigate
if the aforementioned solution Sbest22 , assuming that this function presents exactly M − 1
zeros in C−, can be calculated from problem 9.2.2 if the positions of such zeros are known
in advance. This leads to the following conjecture

Conjecture 17.1.2. Consider an arbitrary load L of McMillan degree M with the trans-
mission polynomial RL. Let Sbest22 ∈ ΣNR be the optimal solution to problem 4.1.1 over an
interval I, where N ≥ M and R = RFRL with RF a fixed polynomial. Assume now that
the function Sbest22 can be written as in eq. (17.1) with

SB22 =
M−1∏

k=1

λ− ξk

λ− ξk
ξk ∈ C

− ∀k ∈ [1, 2...M − 1]

Now take Ξ =
∏M−1

k=1 (λ− ξk)
(
λ− ξk

)
and solve problem 9.2.2 with the same load and the

same values of I, N,R. After solving problem 9.2.2 we obtain an outer function uΞPopt

and a Blaschke product bopt such that S22 = uΞPopt
bopt ∈ FN+M−1. We have bopt = SB22

and therefore S22 = Sbest22 , namely the solution to problem 4.1.1 is computed by means
problem 9.2.2, which is a convex problem.

Therefore another interesting question arises to determine if those M − 1 zeros of
Sbest22 inside C− can be estimated a priory by some procedure.

Finally, on the way to the solution of problem 4.1.1 we could ask ourselves what
other additional information gives us the relaxed problem about the optimality of the
solution obtained for problem 4.1.1. For example, we know that if this solution is outer,
then it is also the optimal solution to problem 4.1.1. Yet other details are unknown to
our eyes, like the information provided by the fix point algorithm proposed in chapter 9.
Suppose for instance that from the relaxed problem we obtain a function S22 ∈ FNR issue
of the fixed-point algorithm presented, can we say anything about the optimality of this
function for problem 4.1.1?

For instance we could assume that the fix point algorithm stated in chapter 9 converges
and study the optimality of the provided solution for problem 4.1.1.
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Conjecture 17.1.3. Consider a load L of degree M along with the values of I, N,R as
before. Take now the function S22 = uΞPopt

bopt computed from the solution to problem 9.2.2
and assume that bopt is of degreeM−1 and S22 of degree N . ThereforeM−1 simplifications
occurs between uΞPopt

and bopt. The computed function S22 is optimal for problem 4.1.1.

17.2 Efficiency optimisation

It is also important to note that in parallel to the synthesis of transfer functions for
matching filters, a study of the radiation efficiency provided by a given antenna has also
been carried out.

17.2.1 Efficiency optimization

In the context of the maximization of efficiency, namely the transmission of the system,
the first missing result is the optimality of the solution obtained in the presence of losses
due to dissipation in the system. In addition, on the way to the aforementioned uniqueness
we can study the following aspects

• First, the existence and uniqueness of the optimal solution to the matching problem,
namely problem 4.1.1 with non-lossless devices. The uniqueness implies, in the case
where the losses are sufficiently low, that the optimal solution to the problem with
losses is relatively close to the lossless problem. Therefore we can consider the
calculation of this optimal solution by solving the lossless problem presented in this
thesis followed by a local optimization from the obtained solution and considering
the corresponding level of losses in order to maximize the efficiency of the system.

• The next question that arises is whether the optimal solution in the case of a system
with a high level of dissipation can be obtained by means of a continuation algorithm,
which starts with calculating the solution to the system considering lossless devices,
then increasing the level of losses in small increments so that the solution in each
iteration is obtained simply by a deformation of the solution obtained in the previous
iteration. Along with the uniqueness of the solution in each iteration, an algorithm
of this type could provide the optimal solution to the problem of transmission with
lossy devices.

17.2.2 Parametrisation of the antenna array

In chapter 11 the radiation efficiency of an antenna array has been expressed in terms of
a matrix of equivalent scattering parameters. However, the definition of these equivalent
scattering parameters is still very immature and needs to be improved.

In particular, we have considered as an equivalent output port of the antenna each of
the spatial directions parametrised by two angles (θ, φ). This parametrisation introduces
a new transmission parameter for each of those directions. However, there are infinite
directions in the free space and therefore the obtained scattering matrix is theoretically
of infinite size. This matrix is reduced by a sampling of the angles (θ, φ), nevertheless a
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better model is possible.

It is important to note that a function defined in the sphere, such as, for example, the
radiation diagram of an antenna can be decomposed into a series of orthogonal functions
in the sphere. A possible set of the mentioned orthogonal functions is the set of spherical
harmonics which is usually used for this purpose. With an illustrating purpose, we show
in fig. 17.1 some of the lowest order spherical harmonics.

(a) Y 0
0 (θ, φ)

(b) Y 1
1 (θ, φ)

(c) Y 0
1 (θ, φ) (d) Y −2

2 (θ, φ)

Figure 17.1: Spherical harmonics (magnitude of the real part)

These spherical harmonics can perform the same function as the different resonance
modes within a resonance cavity. Therefore, in the same way as in the traditional fil-
ter design where the coupling matrix defines the coupling between the different resonant
modes present in the structure, it is possible to define an equivalent model for the anten-
nas. In this equivalent model the output ports are represented by each of these spherical
harmonics, thus parametrising the effective transmission of the antenna to each of these
harmonics. Note that in the case of simple antennas, the radiation pattern in space can be
decomposed into a small number of spherical harmonics, namely lower order harmonics.

17.3 Multiplexer synthesis

As with the synthesis of matching filters, we can find a large number of open questions
throughout part V of this thesis, dedicated to the design of multiplexers. Indeed, the
theory provided in part V is largely prospective since a significant number of results are
still absent. These results can be classified into two categories, each corresponding to one
of the parts of the presented algorithm, namely the dimensioning of the manifold in the
first instance as described in chapter 13 and the synthesis of the channel filters afterwards
following the algorithm provided in chapter 14.
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17.3.1 Manifold synthesis

With respect to the dimensioning of the manifold, the presented algorithm allows to
obtain, for a set of determined channel filters, the dimensions of said manifold so that the
manifold peaks are as far as possible from the passbands. In this study, a rational model
for channel filters is assumed, allowing for a normalization of the phase of the reflection
parameter of each of these filters is imposed at an infinite frequency. This condition has
the objective of ensuring that the response of the channel filters does not vary too much
in the adjacent bands.

However, it is still uncertain whether the aforementioned normalization at infinity is
the optimal choice. Indeed, we could think that, at least in the case of a multiplexer with
passbands extremely close to each other, a normalization of the reflection of each filter in
the adjacent passband is a better choice.

17.3.2 Synthesis of channel filters

In the design of channel filters we find the main prospective aspect in the synthesis
of multiplexers. In chapter 14 the synthesis begins by computing these channel filters
when the channels are completely isolated. In this case the solution is trivial since
the multiplexer synthesis problem is equivalent to a classic matching problem for
each channel. Next, the presented algorithm is based on the continuation of this
trivial solution from the initial point where the channels are isolated, to the final
state of the multiplexer, varying a set of isolation parameters from 0 to 1. However
it could happen that at some point of the trajectory from 0 to 1 the Jacobian matrix
of the application that relates the isolation parameters with the coefficients of the
problem is singular. In these cases we say that an accident occurs. These accidents
can be caused, for example by the appearance of a manifold peak in the passband in
the case that the preceding stage of manifold design has not been satisfactorily performed.

In this context a large number of interesting open questions appear. Among these
questions we can find the following two.

• Are there other kinds of accidents in the presented continuation algorithm apart
from the manifold peaks?

• In the event that accidents are encountered, can they always be contoured by a
deformation of the trajectory from 0 to 1 in the complex plane, or can there be an
accident barrier around the optimum point in the problem that absolutely prevents
us from reaching that optimal solution?
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The angular derivatives are defined as the derivative of the phase of a Schur function
S22 ∈ Σ at a point α ∈ R where |S22(α)| = 1. This occurs in the transmission zeros of the
global system S. At these points, due to the condition of losslessness and the definition
of transmission zeros we obtain |S22(α)| = 1. Therefore, only the phase of the function
S22 is variable in the transmission zeros α which converts the interpolation condition
S22(λ) = K1 where |K1| = 1 in a degenerate condition. In other words, we are facing a
medium interpolation condition since the aforementioned condition only carries on a real
parameter.

One possible manner to overcome this problem is to add an additional condition on
the phase, in particular the derivative of the phase of S22 at the point α, value called
the angular derivative of S22. In this way, the problem of interpolation with conditions
on the real axis can be formulated in an equivalent way to that obtained by considering
transmission zeros inside the complex plane.

Note that the concept of angular derivative which is widely available in the literature.
In this context we must highlight [83] where a rigorous definition of angular derivatives is
made. In the same context, this appendix is devoted to the study of the main properties
of the angular derivatives which we summarise below.

A.1 Definition

Definition A.1.1 (Angular derivatives). We define the angular derivative of S22 as the
derivative of the function j log(S22(λ)) at the transmission zeros αi ∈ R.

angkS22(αi) = j
(
Dk(log S22)

)
[αi] |S22(αi)| = 1, (A.1)

where
(
Dk(log S22)

)
[αi] represents the k-th derivative of the function S22 evaluated at αi.

Note that being αi being a transmission zero of the system S, implies that the func-
tion S22 in eq. (A.1) does not vanish in a neighbourhood of αi. Therefore the function
angS22(λ) = j log(S22(λ)) is analytic in a neighbourhood of each transmission zero αi ∈ R.
Additionally note that all possible determination of the complex logarithm only differ by
a constant. Thus the angular derivative does not depends on the selected determination
of the log.

A.2 Properties

We first prove some elementary properties about angular derivatives.

Theorem A.2.1 (Properties of angular derivatives). Suppose S22 is not constant. The
angular derivative is real and strictly positive:

angS22(αi) > 0.

If mi is the multiplicity of the transmission zero αi then

∀k ∈ 1 . . . 2mi − 1, ℑ(angk(S22(αi))) = 0
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and
ℑ(ang2mi

(S22(αi))) < 0.

Proof. Around a transmission zero αi ∈ R we have,

log(S22(αi + λ)) = log(S22(αi)) + D(log(S22(αi)))λ+ o(λ)

= j arg(log(S22(αi))) + D(log(S22(αi)))λ+ o(λ).

The real part of log(S) is locally maximal on R in λ: this indicates that Dlog((S22(αi))
is pure imaginary. Moreover by the maximum principle the modulus of S22 around the
point αi cannot increase while moving inwards C−, that is

∀α ∈ C
−, D(log(S22(αi)))α ∈ C

−.

This imposes ℑ(Dlog((S22(αi))) ≤ 0.
Suppose now that D(log(S22(αi))) = 0. As S22 is not a constant, one of its derivative

is non zero say the kth, (k > 1) and again we need

D(log(S22(αi)))α
k ∈ C

−

for all α ∈ C−. But this is impossible because zk take all possible arguments when the
direction α varies in C−, and therefore ℑ(Dlog((S22(αi))) < 0.

Eventually note that on the real line 2 log(|S22|(λ)) = log(1 − S12(λ)S
∗
12(λ)), where

the numerator of the fraction S12S
∗
12 has a zero of order 2mi, as the fraction itself. We

therefore have
∀k ∈ 1 . . . 2mi − 1, ℜ(Dk( log(S22)(αi))) = 0

and
ℜ(D2mi( log(S22)(αi))) 6= 0.

Noting again that the modulus of S22 can not increase in the real vicinity of αi imposes
that ℜ(D2mi( log(S22)(αi))) < 0.

Next we introduce the first of the main theorems in this appendix which provides us
with an alternative expression for the angular derivative.

Theorem A.2.2 (Integral expression of the angular derivatives). Let S22 ∈ ΣNR with
N ∈ N and R ∈ P2N

+ such that R(αi) = 0 at a point αi ∈ R. Denote by βi ∈ C− with
i ∈ [1, n] and n ≤ N the zeros of S22 in the lower half plane. The angular derivatives of
S22 at αi are expressed as

angS22(αi) =
−1

2π

∫

R

log |SO22(τ)|2
(τ − αi)2

dτ + 2
N∑

n=1

ℑ
(

1

βn − αi

)

. (A.2)

To perform the proof, we first decompose the function S22 as the product of a minimum
phase function SO22 times a Blaschke product SB22. Then we have

S22(αi) = SO22(αi) · SB22(αi),
log S22(αi) = log SO22(αi) + log SB22(αi),

angS22(αi) = angSO22(αi) + angSB22(αi).

Next we threat both terms SO22 and SB22 separately. We give first special attention
to the angular derivatives of a Blaschke product. Those derivatives can be expressed in
function of the zeros of the Blaschke product only as stated in the following lemma.
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Lemma A.2.1 (Angular derivatives of a Blaschke product). Consider the Blaschke prod-
uct SB22 of degree N > 0

SB22 =
N∏

n=1

λ− βn

λ− βn
βn ∈ C

−, ∀n ∈ [1, N ].

The angular derivatives of the function SB22 are computed as

angkS
B
22(αi) = 2

N∑

n=1

ℑ
(

1

(βn − αi)k

)

k ≥ 1.

Proof. We follow now Fano’s procedure, first divide by SB22(αi)

SB22(λ) = SB22(αi)
S22(λ)

SB22(αi)
=

N∏

n=1

λ− βn

λ− βn

αi − βn
αi − βn

=
N∏

n=1

1− λ−αi

βn−αi

1− λ−αi

βn−αi

,

log SB22(λ) = log SB22(αi) +
N∑

n=1

log

(

1− λ− αi
βn − αi

)

−
N∑

n=1

log

(

1− λ− αi

βn − αi

)

.

Each factor log
(

1− λ−αi

βn−αi

)

can be developed around 1 when λ→ αi:

− log

(

1− λ− αi
βn − αi

)∣
∣
∣
∣
λ→αi

= − log SB22(αi) +
∞∑

k=1

1

k

(λ− αi)
k

(βn − αi)k
,

therefore

log(SB22(λ))
∣
∣
λ→αi

= log(SB22(αi)) +
∞∑

k=1

(
N∑

n=1

1

(βn − αi)k
− 1

(βn − αi)k

)

(λ− αi)
k

= log(SB22(αi))−
∞∑

k=1

2j
N∑

n=1

ℑ
(

1

(βn − αi)k

)

(λ− αi)
k . (A.3)

The Taylor development of log(λ) around αi

log(SB22(λ))
∣
∣
λ→αi

= log(SB22(αi))− j
∞∑

k=1

angkS
B
22(αi)

k
(λ− αi)

k . (A.4)

Now by inspection, comparing eqs. (A.3) and (A.4) we obtain the values angkS
B
22(αi)

angkS
B
22(αi) = 2

N∑

n=1

ℑ
(

1

(βn − αi)k

)

k ≥ 1.

Next let us compute the derivative of the minimum phase factor SO22.
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Lemma A.2.2 (Angular derivatives of a minimum phase function). Consider a minimum
phase function SO22. We have

ang( log(SO22))(αi) =
−1

2π

∫

R

log |SO22(τ)|2
(τ − αi)2

dτ.

Proof. The evaluation of the logarithm of the outer function SO22 at a point λ ∈ C− is given
in terms of its real part on the boundary by the classical Riesz-Herglotz representation:

log(SO22)(λ) =
1

jπ

∫

R

log |SO22(τ)|
(

1

λ− τ
+

τ

1 + τ 2

)

dτ.

Later representation is unique up to an imaginary constant. Here the normalization
ℑ(log(S22(−i))) = 0 has been taken. Differentiation with respect do z ∈ C−, yields

Dlog(SO22)(λ) =
−1

jπ

∫

R

log |SO22(τ)|
(λ− τ)2

dτ.

Eventually taking the limit λ→ αi and noting that log(|SO22(α)|) has a zero of order two
in τ = αi allows to apply the Lebesgue’s dominated convergence theorem and yields,

Dlog(SO22)(αi) =
−1

jπ

∫

R

log |SO22(τ)|
(αi − τ)2

dτ,

which concludes the proof.

A.3 Degenerate chaining

After introducing these properties, we use them to study the chaining operation, when
trasmission zeros αi ∈ R are considered. Denote now by L a 2×2 lossless scattering matrix
and define the Schur function F22 ∈ Σ. We proved in lemma 3.5.1 that the function issue
of the chaining operation S22 = F22 ◦ L is a Schur function. To do so we used the fact
that the denominator of S22 can not vanish at a point αi ∈ C− (inside the domain of
analyticity). Nevertheless, if a transmission zero happens at the boundary (αi ∈ R), a
simplification in S22 may occurs. We provide then the following lemma

Lemma A.3.1 (Simplifications at transmission zeros). Given the 2× 2 scattering matrix
L and F22 ∈ Σ, the denominator of the function S22 ∈ Σ computed as S22 = F22 ◦L could
have a zero simple (not multiple) at each transmission zero αi ∈ R that is common to L
and F22, namely |L11(αi)| = |L22(αi)| = |F22(αi)| = 1. In this case a simplification occurs
in S22.

Proof. Consider the expression of S22 = F22 ◦ L at αi ∈ R

S22 =
L22

L11

L11 − F22

1− L11F22

. (A.5)

Note that the denominator vanish at αi ∈ R if and only if F22(αi)L11(αi) = 1, namely
F22(αi) = L11(αi) and |F22(αi)| = |L11(αi)| = 1 (both L and F have a transmission zero
at αi). Suppose now that F22(αi)L11(αi) = 1 and compute the derivative

D(1− F22L11) = −F22DL11 − L11DF22 = −F22L11

(
DF22

F22

+
DL11

L11

)

.
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In the parenthesis we have the derivatives of logF22 and logL11, Therefore

D(1− F22L11) = jF22L11 (jDlogF22 + jDlogL11) .

Evaluated at αi we have F22(αi)L11(αi) = 1. Additionally note that by theorem A.2.1
we have jDlogF22(αi) = angF22(αi) > 0 and jDlogL11(αi) = angL11(αi) > 0. Thus the
derivative of the denominator can not vanish at αi.

D(1− F22L11)[αi] = angF22(αi) + angL11(αi) > 0.

Finally if F22(αi) = L11(αi) and |F22(αi)| = |L11(αi)| = 1, namely the denominator of
eq. (A.5) vanishes, then the numerator vanish as well producing the simplification.

Corollary A.3.1. Given a scattering matrix L of degree M with transmission zeros

αi, α2, · · · , αMr ∈ R

and

αMr+1, · · · , αM ∈ C
−.

Let F22 ∈ ΣK. From the previous theorem a maximum of Mr simplification may occur
after chaining the function F22 of degree K with the 2 × 2 matrix L of McMillan degree
M . Therefore the function S22 resulting of the operation S22 = F22 ◦L is of degree N with

K +M −Mr ≤ N ≤ K +M.

After showing that one simplification might occur at each transmission zero αi ∈ R,
we are interested to know how the angular derivatives are modified at those points upon
the chaining operation.

Lemma A.3.2 (Degenerate chaining). Consider again the 2× 2 scattering matrix L and
the function F22 ∈ Σ. The reflection of the global system S22 = F22 ◦ L satisfies at each
transmission zero αi ∈ R:

S22(αi) = L22(αi),

angS22(αi) = angL22(αi)−
|DL21(αi)|2

angL11(αi) + angF22(αi)
. (A.6a)

Proof. From eq. (3.3), the function log(S22) can be expressed as:

log(S22) = log(L22) + log (1 + ϕ) ,

with

ϕ =
L21F22L12

L22(1− L11F22)
.
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Note here that ϕ is not defined at αi. Indeed, by lemma A.3.1, one pole-zero cancellation
occurs in ϕ(λ) at λ = αi. Let us compute the limit limλ→αi

ϕ(λ) by applying the L’Hôpital
rule

lim
λ→αi

ϕ(λ) = lim
λ→αi

D(L21F22L12)[λ]

L22(λ)D(1− L11F22)[λ]

= lim
λ→αi

−1

L22(λ)
· D(L21F22L12)[λ]

L11(λ)DF22(λ) + F22(λ)DL11(λ)

=
−j

L22(αi)F22(αi)L11(αi)
· D(L21F22L12)[αi]

angF22(αi) + angL11(αi)
,

where angF22(λ) + angL11(λ) > 0.

Note that L21F22L12 = 0. Therefore the derivative of ϕ vanish and we obtain

S22(αi) = L22(αi)

Next we compute the limit limλ→αi
D2mi−1ϕ(λ) at αi, namely the value of the angular

derivative of S22 after simplification. We have

lim
λ→αi

D2mi−1φ(λ)[αi] =
−j

L22(αi)F22(αi)L11(αi)
· D(L21)[αi]F22(αi)D(L12)[αi]

angF22(αi) + angL11(αi)
. (A.8)

Note from eq. (2.16) that

L11 ·DL21 = −L22 ·DL12 ∀λ ∈ R. (A.9)

From eqs. (A.8) and (A.9) and since |L22(αi)|2 = 1 we have

lim
λ→αi

Dφ(λ) = j
|DL21[αi]|2

angF22(αi) + angL11(αi)
.

Finally eq. (A.6a) follows

angS22(αi) = angL22(αi) + j lim
λ→αi

Dφ(λ)

= angL22(αi)−
|DL21[αi]|2

angF22(αi) + angL11(αi)
.

From this result we obtain a necessary condition that relates the angular derivatives
of L22 and S22 = F22 ◦ L at a transmission zero αi ∈ R.

Corollary A.3.2. Last term in eq. (A.6a) is a real positive quantity. Thus given the 2×2
lossless scattering matrix L and the Schur function f , then the function S22 ∈ Σ obtained
from the chaining operation S22 = f ◦ L at a transmission zero αi ∈ R satisfies

S22(αi) = L22(αi),

angS22(αi) ≤ angL22(αi).
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Appendix B. Nevanlinna-Pick interpolation and schur recursion with interpolation
conditions inside the lower half plane

In chapter 4, a large part of the theory concerning the matching problem has been
developed based on the Nevanlinna-Pick interpolation problem and the Schur recursal
algorithm. In addition, numerous demonstrations known in the literature are referenced
which can be found in [84].

In order to provide the reader with a quick review of the classical concepts in chapter 4
and at the same time without saturating too much chapter 4 with long demonstrations,
we have decided to include in this appendix a part of the theory related to the mentioned
interpolation problem.

We recall therefore Nevanlinna parametrisation of the solutions of a Schur interpolation
problem. We will use that parametrisation later on to obtain an alternative characterisa-
tion of the functions satisfying Fano-Youla’s interpolation conditions. The Schur recursion
can be found in [84, chapter IV, section 6], however to fit the notation used in the rest of
this thesis and for the reader convenience we particularise it for analytic functions in the
lower half plane.

B.1 Schur recursion

We are concerned about the following interpolation problem

Problem B.1.1 (Nevanlinna-Pick interpolation problem). Consider the set of points
α1, α2 · · ·αM ∈ C− and γ1, γ2 · · · γM ∈ D. Now state the interpolation conditions

f(αi) = γi ∀i ∈ [1,M ]. (B.1)

First define the set of Schur functions satisfying the first m interpolation conditions
in eq. (B.1)

E
m = {f ∈ Σ | f(αi) = γi; 1 ≤ i ≤ m} ,

with m ≤M .
Note that

E
m ⊂ E

m−1 ⊂ · · · ⊂ E
2 ⊂ E

1.

Also note that the only condition for E1 not to be empty is |γ1| ≤ 1. Moreover if
|γ1| = 1, from the principle of maximum modulus, E1 contains only one function f(x) =
γ1. Additionally, we can obtain the following characterisation of E1 due originally to
Nevanlinna and closely related to Fano-Youla’s characterisation.

Theorem B.1.1 (Nevanlinna characterisation of E1). The function f1 ∈ Σ verifies the
simple interpolation condition f1(α1) = γ1 if and only if

f1(λ) =
γ1(λ− α1) + (λ− α1)f2(λ)

(λ− α1) + γ1(λ− α1)f2(λ)
, (B.2)

where f2 ∈ Σ.

Proof of sufficiency. First we show that all f1 in the form eq. (B.2) is a Schur function.

f1(λ) =
γ1(λ− α1) + (λ− α1)f2(λ)

(λ− α1) + γ1(λ− α1)f2(λ)
=

γ1 +
λ−α1

λ−α1
f2(λ)

1 + γ1
λ−α1

λ−α1
f2(λ)

=
γ1 − f̂2(λ)

1− γ1f̂2(λ)
,
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where b(λ) = −λ−α1

λ−α1
is a Blaschke product. Note now that if f̂2 = bf2 ∈ Σ and γ1 ∈ Σ then

f1 is a Schur function. To conclude the proof we check that f1 satisfy the interpolation
condition

f1(α1) =
γ1(α1 − α1)

(α1 − α1)
= γ1.

Proof of necessity. To proof necessity, we check that every f1 ∈ Σ satisfying f1(α1) = γ1
can be express in the form eq. (B.2). Let f1 ∈ Σ, and compute f2 by inverting eq. (B.2).
Then we proof that f2 ∈ Σ.

f2(λ) =
f1(λ− α1)− γ1(λ− α1)

(λ− α1)− f1γ1(λ− α1)
=

f1 − γ1
1− f1γ1

(λ− α1)

(λ− α1)
,

which corresponds to the product of the function h(λ) = γ1−f1
1−f1γ1 and the inverse of

the Blaschke product b. We can check that |f2(λ)| ≤ 1 for all λ ∈ R since |h(λ)| =
|δ(γ1, f1(λ))| ≤ 1 and |b(λ)| = 1 for all λ ∈ R. Furthermore the function b−1 has one
single pole in C− at λ = α1. This pole cancels out due to the fact that f1(α1) = γ1 which
makes the numerator vanish as well at λ = α1. Thus f2 ∈ Σ.

Using Fano-Youla’s theory a physical interpretation to this characterisation is possible.
We are characterising the Schur functions (i.e. passive stable reflection coefficients) that
satisfy an interpolation condition f1(α1) = γ1.

The characterisation says f1 ∈ E1 if and only if it can be obtained as the chaining of
a function f ∈ Σ with a 2× 2 scattering matrix, S22 = f ◦ L, where

L(λ) =
1

λ− α1

(
−γ1(λ− α1)

√

1− |γ1|2(λ− α1)√

1− |γ1|2(λ− α1) γ1(λ− α1)

)

. (B.3)

Note that this matrix satisfy

L21(α1) = 0,

L22(α1) = γ1.

The main idea is illustrated in fig. B.1. The function L22 belongs to E1. Moreover,
since the L22 has a tranmission zero at α1, the value at α1 is not modified after closing
port one by chaining any Schur reflection. Additionally, if f1 ∈ E1, then we can dechain
the load L from f1 obtaining the parametrisation f1 = f2 ◦ L.

L

f2 ∈ Σ L22

f1 ∈ E1

Figure B.1: Conceptual parametrisation of the functions S22 ∈ E1
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Computing from eq. (3.6) the expression of f1 we obtain

f1(λ) = f2(λ) ◦ L(λ) =
L22(λ)

L⋆11(λ)

L11(λ)
⋆ − f2(λ)

1− L11(λ)f2(λ)

=
λ− α1

λ− α1

γ1
λ−α1

λ−α1
+ f2(λ)

1 + γ1
λ−α1

λ−α1
f2(λ)

=
γ1(λ− α1) + (λ− α1)f2(λ)

(λ− α1) + γ1(λ− α1)f2(λ)
,

which is equivalent to eq. (B.2).

Remark B.1.1. Note that if |γ1| = 1, by the maximum modulus principle f1 = γ1 is
the unique interpolation function. Equivalently from the previous expression we obtain
f1 = γ1 independently of the function f2

f1(λ) =
γ1(λ− α1) + (λ− α1)f2(λ)

(λ− α1) + γ1(λ− α1)f2(λ)
= γ1

(λ− α1) + γ1(λ− α1)f2(λ)

(λ− α1) + γ1(λ− α1)f2(λ)
= γ1.

In this case E1 is a singleton containing only the function f1 = γ1. From the physical
point of view, a unimodular interpolation condition such as |γ1| = 1 implies L11 = γ1 and
therefore L12 = 0. As it is illustrated in fig. B.2, the interpolation condition is satisfied
with a single phase shift with no transmission. The function f2 has no influence in this
case.

Lf2 γ1

f1 = γ1

Figure B.2: Unique unimodular reflection satisfying f1(α1) = γ1

Suppose now E1 contains more than one function and f1 ∈ E1, then

f1(λ) =
γ1(λ− α1) + (λ− α1)f2(λ)

(λ− α1) + γ1(λ− α1)f2(λ)
,

with f2 ∈ Σ. Now since f1 ∈ E1 for any arbitrary function f2 ∈ Σ, we can compute the
required values of f2(α2) such that f1 ∈ E2. That is, the values of f2(α2) such that the
interpolation conditions also holds at α2 (f1(α2) = γ2). We have

f1(α2) = γ2 =
γ1(α2 − α1) + (α2 − α1)f2(α2)

(α2 − α1) + γ1(λ2 − α1)f2(α2)
.

Then we obtain the value of f2(α2) as

f2(α2) =
γ2 − γ1
1− γ1γ2

α2 − α1

α2 − α1

= γ
(2)
2 .

The idea then is to parametrise again f2 such that

f2(α2) = γ
(2)
2 (B.4)
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Therefore, as before, E2 is not empty iff |γ(2)2 | ≤ 1

∣
∣
∣
∣

γ1 − γ2
1− γ1γ2

α2 − α1

α2 − α1

∣
∣
∣
∣
≤ 1.

Since ℑ (αi) ≤ 0 we have

∣
∣
∣
∣

α2 − α1

α2 − α1

∣
∣
∣
∣
≤ 1.

Thus we obtain a condition on the maximum pseudo-hyperbolic distance from γ1 to γ2

δ(γ2, γ1) ≤
∣
∣
∣
∣

α2 − α1

α2 − α1

∣
∣
∣
∣
. (B.5)

Again, if |γ(2)2 | = 1 then the only function satisfying eq. (B.4) is f2 = γ
(2)
2 and therefore

the set E2 is a singleton containing only the Blaschke product

f1(λ) =
γ1(λ− α1) + (λ− α1)γ

(2)
2

(λ− α1) + γ1(λ− α1)γ
(2)
2

= −γ(2)2

γ1(λ− α1) + (λ− α1)γ
(2)
2

γ1(λ− α1) + (λ− αi)γ
(2)
2

.

If we suppose E2 contains at least two different functions, namely eq. (B.5) holds with
inequality, then the parametrisation we are seeking is

f1 =
γ1(λ− α1) + (λ− α1)f2
(λ− α1) + γ1(λ− α1)f2

f2 =
γ
(2)
2 (λ− α2) + (λ− α2)f3

(λ− α2) + γ
(2)
2 (λ− α2)f3

, (B.6)

with f3 ∈ Σ. Now we compute the interpolation conditions over f3 at α3 such that f1 ∈ E3.
First we need to propagate that condition from f1 to f2

f1(α3) = γ3 =
γ1(α3 − α1) + (α3 − α1)f2(α3)

(α3 − α1) + γ1(α3 − α1)f2(α3)
−→ f2(α3) = γ

(2)
3 =

γ3 − γ1
1− γ1γ3

α3 − α1

α3 − α1

.

Then we can write the interpolation value of f3(α3)

f3(α3) =
γ
(2)
3 − γ

(2)
2

1− γ
(2)
2 γ

(2)
3

α3 − α2

α3 − α2

= γ
(3)
3 .

Once again, the set E3 is non-empty iff |γ(3)3 | ≤ 1

δ(γ
(2)
3 , γ

(2)
2 ) ≤

∣
∣
∣
∣

α3 − α2

α3 − α2

∣
∣
∣
∣
.

Therefore problem B.1.1 is feasible iff at each step of the Schur recursion the interpo-
lation value γ

(k)
k imposed on fk(αi) satisfies |γ(k)k | ≤ 1.

This recursion can be seen as a succession of elementary blocks in the form eq. (B.3).
Each of the blocks Li ensures the interpolation condition f(αi) = γi introducing a trans-
mission zero at αi (fig. B.3). In addition, the output reflection of the block Li at αi is
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Appendix B. Nevanlinna-Pick interpolation and schur recursion with interpolation
conditions inside the lower half plane

computed such that f1(αi) = γi

L122(α1) = γ1,

L222(α2) ◦ L1(α2) = γ2,

L322(α3) ◦ L2(α3) ◦ L1(α3) = γ3,

...

fM+1(αM) ◦ LM(αM) ◦ · · · ◦ L2(αM) ◦ L1(αM) = γM .

LM

LM12(αM) ≡ 0

· · ·
L2

L212(α2) ≡ 0

L1

L112(α1) ≡ 0

fM+1 ∈ Σ f2 = f3 ◦ L2 L122fM = fM+1 ◦ LM

f1 ∈ EM

Figure B.3: Parametrisation of the interpolation problem f(αi) = γi

Note that if the m-th reflection Lm22(αi) becomes unimodular, the recursion stops
obtaining the structure shown in fig. B.4. In this case the function f1 is a unique Blaschke
product of degree m.

Lm
· · ·

L2 L1
f1 ∈ EM

Figure B.4: Construction of the interpolant function when the solution to the interpolation
problem is a unique Blaschke product of degree m < M .

Theorem B.1.2 (Cardinality of EM). The set EM contains at least two functions, iff

|γk| < 1,

δ(γ
(k)
k+1, γ

(k)
k ) <

∣
∣
∣
∣

αk+1 − αk
αk+1 − αk

∣
∣
∣
∣

∀k ∈ [1,M − 1],

where γ
(1)
k = γk for all k ∈ [1,M ] and

γ
(l+1)
k =

γ
(l)
k − γ

(l)
l

1− γ
(l)
l γ

(l)
k

αk − αl
αk − αl

∀l ∈ [1,M − 1] ∀k ∈ [l + 1,M ].

If we suppose that E3 contains at least two functions, then it can be characterised
by adding to eq. (B.6) the interpolation condition f3(α3) = γ

(3)
3 . Thus can obtain the

characterisation of EM proceeding by induction [84, Chapter IV,Lemma 6.1]
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B.1. Schur recursion

Theorem B.1.3 (Nevanlinna characterisation of EM). Given the set of points

α1, · · · , αM ∈ D,

and the values

γ1, · · · , γM ∈ C
−.

If the set of Schur interpolant EM is a singleton, it contains only a Blaschke product of
degree m < M . Assuming EM is not a singleton, then S22(λ) ∈ EM iff

S22(λ) =
AM(λ) + BM(λ)f(λ)

CM(λ) +DM(λ)f(λ)
, (B.7)

where f ∈ Σ, A0 = 0, B0 = 1, C0 = 1, D0 = 0 and

Ai(λ) = (λ− αi)
(

Ai−1(λ) + γ
(k)
k Bi−1(λ)

)

,

Bi(λ) = (λ− αi)
(

Bi−1(λ) + γ
(k)
k Ai−1(λ)

)

,

Ci(λ) = (λ− αi)
(

Ci−1(λ) + γ
(k)
k Di−1(λ)

)

,

Di(λ) = (λ− αi)
(

Di−1(λ) + γ
(k)
k Ci−1(λ)

)

.

Remark B.1.2. Note that this characterisation is equivalent to Fano-Youla’s character-
isation since chaining of the elements L = LM ◦ · · · ◦ L1 in fig. B.3 is a matrix having
transmission zeros at the point αi and reflection L(αi) = γi for all i ∈ [1,M ]. There-
fore the Schur function S22 satisfying S22(αi) = γi are parametrised as f ◦ L with f ∈ Σ

(fig. B.5).

L

f ∈ Σ

L11 L22

S22 : S22(αi) = γi

Figure B.5: Nevanlinna-Youla Parametrisation of the functions S22 ∈ EM

Remark B.1.3. Also note that A0 = D⋆
0 and B0 = C⋆

0 . Now assuming Ai−1 = D⋆
i−1 and

Bi−1 = C⋆
i−1 we have

Ai = (λ− αi)
(

Ai−1 + γ
(k)
k Bi−1

)

= (λ− αi)
(

D⋆
i−1 + γ

(k)
k C⋆

i−1

)

= D⋆
i ,

Bi = (λ− αi)
(

Bi−1 + γ
(k)
k Ai−1

)

= (λ− αi)
(

C⋆
i−1 + γ

(k)
k D⋆

i−1

)

= C⋆
i .

Therefore we obtain by induction AM = D⋆
M and BM = C⋆

M .

Remark B.1.4. Next assume |Ci(ω)| > |Di(ω)| for all ω ∈ R and develop

|Ci + γ
(k)
k Di|2 = |Ci|2 + 2ℜ

(

γ
(k)
k DiCi

)

+ |γ(k)k Di|2, (B.8)

|Di + γ
(k)
k Ci|2 = |Di|2 + 2ℜ

(

γ
(k)
k DiCi

)

+ |γ(k)k Ci|2. (B.9)
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From eqs. (B.8) and (B.9) we have

|Ci + γ
(k)
k Di|2 − |Di + γ

(k)
k Ci|2 = (1− |γ(k)k |2)

(
|Ci|2 − |Di|2

)
> 0.

Then if |Ci| > |Di| we have |Ci+1| > |Di+1| and since |C0| > |D0| we obtain

|CM(ω)| > |DM(ω)| ∀ω ∈ R.

Note the same recursion holds for the leadings terms of the polynomials Ci+1 and Di+1,
namely ld(Ci+1) and ld(Di+1)

ld(Ci+1) = ld(Ci) + γ
(k)
k ld(Di),

ld(Di+1) = ld(Di) + γ
(k)
k ld(Ci).

Therefore since ld(C0) > ld(D0) by induction we have ld(CM) ≥ ld(DM). If we now take
the limits when ω → ∞

lim
ω→∞

|CM(ω)| − |DM(ω)| > 0.

Moreover if Ci−1(λ) 6= 0 for all λ ∈ C− then by Rouche’s theorem Ci(λ) = (λ −
αi)
(

Ci−1(λ) + γ
(i)
i Di−1(λ)

)

has no zeros in the lower half plane. Thus CM(λ) 6= 0 for all

λ ∈ C−. We conclude that

L11(λ) ≡ −DM(λ)

CM(λ)
∈ Σ.

Now from eq. (B.7)

S22 =
BM

CM

AM

BM
+ f

1 + DM

CM
f
=
C⋆
M

CM

D⋆
M

C⋆
M

+ f

1 + DM

CM
f
=
L11

L⋆22

f − L⋆11
1− L11f

= f ◦ L,

with L22(λ) ≡ −D⋆
M (λ)

CM (λ)
. We obtain the expression of the chaining operation illustrated

in fig. B.5 showing the relation between Nevanlinna characterisation and Fano-Youla’s
results. This result can be found in [84, Chapter IV, Lemma 6.2-6.3]
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Appendix C. Schur recursion with simple interpolations conditions on the real line

In appendix B we reviewed the Nevanlinna-Pick interpolation problem which assumes a
set of interpolation conditions inside the analyticity domain.

This interpolation problem appears upon writing the necessary and sufficient con-
ditions that ensure the extraction of a fixed load from the port 2 of the global system.
Those conditions are stated as a Schur interpolation conditions at the transmission zeros
αi of the load with the interpolation values provided by the reflection coefficient of the
load at port 2.

Although the case of transmission zeros within the complex plane may seem the
most general case, which in theory is true since in real life transmission zeros never
occur exactly on the frequency axis, it is also quite common to find a load with a
transmission zero sufficiently close to the real axis or far enough from the passband
so that it can be considered at infinity. In these cases, Fano-Youla’s parametrisation
considering transmission zeros inside the complex plane provides very poorly conditioned
interpolation conditions, close to an indetermination. To overcome this problem, in
practice we assume that the aforementioned zeros are exactly on the real axis so they are
treated in a special manner.

With this motivation we review, in the present appendix, an interpolation problem
similar to that formulated by Nevanlinna-Pick where the interpolation occurs in the real
axis and the interpolation values take a slightly more complex form introducing an in-
equality on the angular derivative of the interpolating function at the interpolation points.
This problem was first studied in [85] and a detailed theory can be found in [86] or [87]
where the problem of boundary interpolation is studied with the notion of angular deriva-
tives. In this Appendix we provide, following Nevanlinna theory, the parametrisation of
the feasible set G when the interpolation conditions occurs on the boundary, namely the
load to be de-embedded presents transmission zeros on the frequency axis. This constitute
the case analogous to the theory developed in appendix B for a load with transmission
zeros inside the complex plane.

C.1 Elementary de-chaining matrix for a transmis-

sion zero on the boundary

Before dealing with the characterisation of G, it is necessary to first introduce the concept
of elementary section which allows the de-chaining of a simple transmission zero on the
real axis. We consider now a function S22 ∈ ΣN with a transmission zero αi ∈ R, namely
|S22(αi)| = 1. Additionally we have

S22(αi) = βi, (C.1)

angS22(αi) = γi. (C.2)

The purpose of this section is to show that the function S22 can be expressed as the
chaining S22 = F22 ◦ C where C is a 2 × 2 scattering matrix of McMillan degree 1 and
F22 ∈ ΣN−1 with |Fαi

| 6= 1. In other words the transmission zero at the point αi ∈ R can
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C.1. Elementary de-chaining matrix for a transmission zero on the boundary

be extracted by dechaining the matrix

C =
1

λ− (αi + j/ρ)

(
jβi/ρ λ− αi
λ− αi −jβi/ρ

)

. (C.3)

Let us therefore state the theorem first.

Theorem C.1.1 (De-chaining of simple transmission zero on the boundary). Let S22 be
a non-constant Schur function satisfying eqs. (C.1) and (C.2) with |βi| = 1 and αi ∈ R.
Then a matrix C in the form given by eq. (C.3) of McMillan degree 1 can be extracted
from S22. Namely S22 is written as S22 = S2 ◦ C with S2 ∈ Σ and

Proof. For this proof we operate on the positive real function given by the admittance
associated to S22 when the value Y0 = jβi is taken as reference. This admittance is
obtained by Cayley transform as

Y1(λ) =
Y0 + S22(λ)

Y0 − S22(λ)
=
βi − jS22(λ)

βi + jS22(λ)
. (C.4)

Note that Y1 ∈ PR(C−). Moreover by the interpolation condition in eq. (C.1) the function
Y1(λ) in eq. (C.4) has a pole at αi. Additionally, positive real functions have only simple
poles and zeroes on the boundary of the analyticity domain (in this case the real axis)
with strictly positive residues at each of those poles and strictly positive derivative at
each zero on the boundary. Let us now the residue of Yi(λ) at the pole on the real axis
at αi. This residue takes the expression

resαi
(Y1) =

βi + S22(αi)

−(−jDS22(αi))
,

where −jDS22(αi) represents the derivative of S22 in the direction −j, namely correspond-
ing to the lower half plane. Using now eq. (C.2) we have

DS22(αi) = −jS22(αi)angS22(αi) = −jβiγi.

Therefore

resαi
(Y1) =

2

γi
.

Next we subtract from Y1 an elementary positive real term YR with the expression

YR =
2/ρ

s− jαi
,

with ρ > 0. Again from the elementary theory on positive real functions, the function
Y1 remains positive real after subtracting YR as long as 2/ρ ≤ resαi

(Y1). Additionally if
2/ρ = resαi

(Y1) the pole of Y1 at jαi is removed completely and therefore the McMillan
degree is decreased by one. After subtraction we have

Y2 = Y1 − YR =
βi + S22

βi − S22

− YR =
βi(1− YR) + S22(1 + YR)

βi − S22

.
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Appendix C. Schur recursion with simple interpolations conditions on the real line

After subtracting the function YR we can now invert the Cayley transform to obtain
the Schur function S2 corresponding to the positive real function Y2. Therefore

S2 = −βi
1− Y2
1 + Y2

,

= −βi
βiYR − S22(2 + YR)

βi(2− YR) + S22YR
.

Finally let us express the function S22 in terms of S2. We have

S2βi(2− YR) + S2S22YR = −β2
i YR − S22βi(2 + YR),

S22(S2YR − βi(2 + YR)) = −β2
i YR − S2βi(2− YR).

Thus using the fact that |βi| = 1 we obtain the expression for S22

S22 =
βiYR + S2(2− YR)

(2 + YR)− S2βiYR
.

Introducing now the expression of YR(λ) with the change of variable s = jλ, namely

YR(λ) =
−j2/ρ
λ−αi

, we have

S22 =
−jβi/ρ+ [(λ− αi) + j/ρ]S2

[(λ− αi)− j/ρ]− jβi/ρS2

. (C.5)

Note that expression eq. (C.6) corresponds to the chaining operation S22 = S2 ◦C where
C is the 2× 2 elementary matrix expressed in the Belevitch form as

C =
1

qC

(
−p⋆C r⋆C
rC pC

)

,

where qCq
⋆
C = pCp

⋆
C + rCr

⋆
C . Let us the expression of the chaining operation S2 ◦ C

S2 ◦ C = C22
C21C21S2

1− C11S2

=
pC
qC

+

r⋆C
qC

rC
qC
S2

1 +
p⋆
C

qC
S2

=
pCqC + (pCp

⋆
C + rCr

⋆
C)S2

qC(qC + p⋆CS2)

=
pC + q⋆CS2

qC + p⋆CS2

. (C.6)

Identifying the terms in eqs. (C.5) and (C.6) we have

pC = −jβi/ρ,
rC = λ− αi,

qC = λ− (αi + j/ρ).

This matrix C corresponds to the matrix introduced in theorem C.1.1 concluding therefore
the proof.
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C.2. Interpolation problem with boundary interpolation conditions

C.2 Interpolation problem with boundary interpola-

tion conditions

Let give now the characterisation of the problem analogous to problem B.1.1 when the
interpolation conditions happens at the boundary (R) of the analyticity domain. We
consider in this case the interpolation problem where uni-modular values and the angular
derivatives are specified at the points αi. Let us denote now by f the Schur function S22

in the previous section.

Problem C.2.1 (Nevanlinna-Pick with boundary conditions). Let α1, α2 · · ·αM be dis-
tinct points in R, then consider the set of uni-modular values β1, β2 · · · βM ∈ T and positive
real values γ1, γ2 · · · γM ∈ R : γi ≥ 0. Now we consider the following interpolation condi-
tions over the function f ∈ Σ

f(αi) = βi ∀i ∈ [1,M ], (C.7a)

angf(αi) ≤ γi ∀i ∈ [1,M ]. (C.7b)

We define now a class of interpolant functions to problem C.2.1

B
m = {f ∈ Σ | f(αi) = βi; angf(αi) ≤ γk; 1 ≤ i ≤ m} ,

with m ≤M . We have

B
m ⊂ B

m−1 ⊂ · · · ⊂ B
2 ⊂ B

1.

Note that if β1 ∈ T and γ1 = 0, B1 contains only the function f(x) = β1. Additionally,
we can obtain the following characterisation of B1 with an argument equivalent to the
Schur recursion. We use the degenerate matrix introduced in theorem C.1.1 to obtain
a function f1 ∈ B1, namely satisfying C22(α1) = β1 and angC22(α1) ≤ β1. Then from
eq. (3.6) we state the characterisation of B1

Theorem C.2.1 (Characterisation of B1 with boundary interpolation conditions). Given
β1 ∈ T and γ1 > 0, the function f1 ∈ Σ verifies f1(α1) = β1 and angf1(αi) ≤ γ1 if and
only if

f1(λ) =
β1 + Γ1(λ)f2(λ)

Γ1(λ) + β1f2(λ)
, (C.8)

where Γ1(x) = 1 + jγ1(λ− αi) and f2 ∈ Σ.

Proof of sufficiency. We verify that the function f1 in eq. (C.8) verifies eqs. (C.7a)
and (C.7b) for i = 1. Note that Γ1(αi) = 1 therefore f1(α1) = β1 follows since

f1(λ) =
β1 + f2(λ)

1 + β1f2(λ)
= β1

1 + β1f2(λ)

1 + β1f2(λ)
= β1.

Additionally angf1(αi) ≤ γ1 follows from corollary A.3.2.

Proof of necessity. To proof follows from theorem C.1.1.

Thèse de doctorat — Université de Limoges — 2019 Page 375



Appendix C. Schur recursion with simple interpolations conditions on the real line

Function f2(λ) can be obtain by inverting eq. (C.8)

f2(λ) =
β1 − Γ1(λ)f1(λ)

β1f1(λ)− Γ1(λ)
.

We develop next the characterisation of the set Bm using an inductive argument as it
was done in appendix B for the interpolation conditions inside the analyticity domain.

Remark C.2.1. Note if γ1 = 0 then Γ1(λ) = 1 and we obtain f1 = β1 independently of
the function f2

f1(λ)|Γ=1 =
β1 + Γ1(λ)f2(λ)

Γ1(λ) + β1f2(λ)

∣
∣
∣
∣
Γ1(λ)=1

=
β1 + f2(λ)

1 + β1f2(λ)
= β1

1 + β1f2(λ)

1 + β1f2(λ)
= β1.

In this case B1 is a singleton containing only the function f1 = β1.

Suppose B1 contains more than one function and f1 ∈ B1, then

f1(λ) =
β1 + Γ1(λ)f2(λ)

Γ1(λ) + β1f2(λ)
,

with f2 ∈ Σ. Now since f1 ∈ B1 for any arbitrary function f2 ∈ Σ, we can compute the
required values of f2(α2) and angf2(α2) such that f1 ∈ B2. We have

f1(α2) = β2 =
β1 + Γ1(α2)f2(α2)

Γ1(α2) + β1f2(α2)
.

Then we obtain the value of f2(α2) as

f2(α2) = β2
β1β2 − Γ1(α2)

β1β2 − Γ1(α2)
= β

(2)
2 .

Note here that
∣
∣
∣
∣

β1β2 − Γ1(α2)

β1β2 − Γ1(α2)

∣
∣
∣
∣
= 1.

Therefore we have |β(2)
2 | = |β2| = 1. Now compute angf1(α2) = jDlog f1(λ)|λ=α2

jDlog f1(λ) = j
f2(λ)DΓ1(λ) + Γ1(λ)Df2(λ)

β1 + Γ1(λ)f2(λ)
− j

DΓ1(λ) + β1Df2(λ)

Γ1(λ) + β1f2(λ)
,

where DΓ1(λ)) = jγ1. Evaluating at λ = α2 and using f2(α2) = β
(2)
2

angf1(α2) =
β
(2)
2 γ1 + Γ1(α2)jDf2(α2)

β1 + Γ1(α2)β
(2)
2

+
γ1 − β1jDf2(α2)

Γ1(α2) + β1β
(2)
2

=
γ1 + β

(2)

2 Γ1(α2)jDf2(α2)

Γ1(α2) + β1β
(2)

2

+
γ1 − β1jDf2(α2)

Γ1(α2) + β1β
(2)
2

= γ1ℜ
(

1

Γ1(α2) + β1β
(2)
2

)

+

+

(

β
(2)

2 Γ1(α2)

Γ1(α2) + β1β
(2)

2

− β1

Γ1(α2) + β1β
(2)
2

)

jDf2(α2).
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We have ℜ (Γ1(λ)) = 1, then

angf1(α2) = γ1
1

1 + ℜ
(

β1β
(2)
2

)+

+
β
(2)

2 |Γ1(α2)|2 + β1Γ1(α2)− β1Γ1(α2)− β
(2)

2
∣
∣
∣Γ1(α2) + β1β

(2)
2

∣
∣
∣

2 jDf2(α2)

= γ1
1

1 + ℜ
(

β1β
(2)
2

) +
|Γ1(α2)|2 − 1

∣
∣
∣Γ1(α2) + β1β

(2)
2

∣
∣
∣

2 · jβ(2)

2 Df2(α2).

Note that jβ
(2)

2 Df2(α2) is the angular derivative angf2(α2). Thus

angf1(α2) = γ1
1

1 + ℜ
(

β1β
(2)
2

) +
|Γ1(α2)|2 − 1

∣
∣
∣Γ1(α2)− β1β

(2)
2

∣
∣
∣

2 · angf2(α2)

=
γ1

1 + ℜ
(

β1β
(2)
2

) +
γ21(α2 − α1)

2

∣
∣
∣Γ1(α2) + β1β

(2)
2

∣
∣
∣

2 · angf2(α2).

We compute the value of angf2(α2) such that angf1(α2) = γ2

angf2(α2) =

∣
∣
∣Γ1(α2) + β1β

(2)
2

∣
∣
∣

2

γ21(α2 − α1)2



γ2 −
γ1

1 + ℜ
(

β1β
(2)
2

)



 = γ
(2)
2 .

The question that arises now is whether γ
(2)
2 is positive. We have

γ
(2)
2 ≥ 0 ⇐⇒ γ2 ≥

γ1

1 + ℜ
(

β1β
(2)
2

) .

If γ
(2)
2 = 0 we obtain f2 = β

(2)
2 . Then the class B2 is a singleton containing only a Blaschke

product, namely the function

f1(λ) =
β1 + Γ1(λ)β

(2)
2

Γ1(λ) + β1β
(2)
2

= β
(2)
2

β1β
(2)

2 + Γ1(λ)

Γ1(λ) + β1β
(2)
2

.

Conversely if γ
(2)
2 > 0 we can parametrise the functions f1 ∈ B2 as

f1(λ) =
β1 + Γ1(λ)f2(λ)

Γ1(λ) + β1f2(λ)
f2(λ) =

β
(2)
2 + Γ

(2)

2 (λ)f3(λ)

Γ
(2)
2 (λ) + β

(2)

2 f3(λ)
,

where Γ1(λ) = 1 + jγ1(λ− α1) and Γ
(2)
2 (λ) = 1 + jγ

(2)
2 (λ− α2).

Let us denote now by γ
(i)
k the angular derivative imposed on fi at the point αk while β

i
k

represents the value fi(αk) for all l ∈ [1,M ] and k ∈ [l,M ]. Additionally we set β
(1)
k = βk
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and γ
(1)
k = γk. Defining now The values βik, γ

(i)
k for all i ∈ [2,M ] are obtained recursively

as

β
(i)
k = β

(i−1)
k

β
(i−1)
i−1 β

(i−1)

k − Γ
(i−1)
i−1 (αk)

β
(i−1)

i−1 β
(i−1)
k − Γ

(i−1)

i−1 (αk)

γ
(i)
k =

∣
∣
∣Γ

(i−1)
i−1 (αk) + β

(i−1)

i−1 β
(i)
k

∣
∣
∣

2

(

γ
(i−1)
i−1 (αk − αi−1)

)2



γ
(i−1)
k − γ

(i−1)
i−1

1 + ℜ
(

β
(i−1)

i−1 β
(i)
k

)



 ,

with Γ
(i−1)
k (λ) = 1 + jγ

(i−1)
k (λ− αk).

We state now that problem C.2.1 is feasible if and only if at each step of the recursion
the maximum angular derivative γ

(k)
k imposed on fk(αk) satisfies γ

(k)
k ≥ 0

Theorem C.2.2 (Cardinality of BM with boundary interpolation conditions). The BM

contains at least two functions, if and only if

γ
(k)
k ≥ 0 ∀k ∈ [1,M ].

Proceeding by induction we obtain the characterisation of BM (assuming it contains
at least two functions)

Theorem C.2.3 (Characterisation of BM with boundary interpolation conditions). Con-
sider the set of points α1, · · · , αM ∈ D and γ1, · · · , γM ∈ C−, define the polynomials Ai(λ),
Bi(λ), Ci(λ) and Di(λ) for all i ∈ [2,M ] as

Ai(λ) = Ai−1(λ)Γ
(i)
i (λ) + Bi−1β

(i)
i ,

Bi(λ) = Bi−1(λ)Γ
(i)

i (λ) + Ai−1β
(i)

i ,

Ci(λ) = Ci−1(λ)Γ
(i)
i (λ) +Di−1β

(i)
i ,

Di(λ) = Di−1(λ)Γ
(i)

i (λ) + Ci−1β
(i)

i ,

with Γ
(i)
k = 1 + jγ

(i)
k (λ − αk) while for i = 0 we have A0 = 0, B0 = 1, C0 = 1, D0 = 0.

Then S22(λ) ∈ BM if and only if

S22(λ) =
AM(λ) + BM(λ)f(λ)

CM(λ) +DM(λ)f(λ)
,

where f ∈ Σ.

C.3 Dealing with transmission zeros at infinity

In appendix A we provide the necessary and sufficient conditions to be able to express the
function S22 as the chainig of a Schur function with the given load S22 = F22 ◦ L. Those
are given as a set of interpolation conditions at the transmission zeros of the load αi.
However we have not considered the case where the transmission zero happens at infinity
(αi = ∞) yet. It can be shown that, if the load L has a transmission zero at infinity, the
theory developed in appendix A can be reformulated equivalently by applying the change
of variable λ→ 1

λ
.
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Figure D.1: Equioscillating response.

In Fano, the theory of matching was introduced for the first time from the point of view
of the global system. This theory dictated in the simplest case, that a two-port system
S of McMillan degree N can be represented as the chaining of a device of degree K and
a fixed load L of degree M , assuming that both the system and the load has no finite
transmission zeros, if and only if the following integral condition holds

1

π

∫ ∞

−∞
log

∣
∣
∣
∣

1

S22(λ)

∣
∣
∣
∣
dλ ≤ ℑ

(
∂

∂λ
logL22

(
1

λ

))

λ=0

. (3.16)

Also with the objective of implementing a finite degree function N which approximates
a constant reflection with magnitude as small as possible within the passband and equal
to unity everywhere else in the frequency axis, an oscillating type of response, computed
from the Tchebyshev class of polynomials, was considered. This type of response is shown
in fig. D.1 where it can be seen that the reflection level oscillates in the passband between
two levels ψ1 and ψ2. Similarly, as it can be seen in fig. D.1, the modulus squared of the
global transmission S21 also oscillates between two values γ1 and γ2 with

ψ1 = 1− γ1,

ψ2 = 1− γ2.

In this appendix, we indicate how to obtain the response of the aforementioned type,
which is optimal in terms of matching, namely with the lowest possible reflection level
ψ2. In addition, we also show that this optimal solution is unique.
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D.1 Synthesis of oscillating Tchebyshev responses

Using the Belevitch form to parametrise the global system with a rational matrix of
degree N , it can easily be shown that the modulus squared of the polynomials appearing
in eq. (2.38) and providing the response in fig. D.1 is expressed as

rr⋆ = β2 − α2 β > α,

pp⋆ = T 2
N + α2,

qq⋆ = T 2
N + β2,

with TN the Tchebyshev polynomial of degree N and

α2 =

(
γ2(1− γ1)

γ1 − γ2

)

,

β2 =

(
γ2

γ1 − γ2

)

.

Additionally, the spectral factorisation of |p|2 and |q|2 is uniquely determined by
imposing the minimum phase character of the polynomial p and the stability of q.

In order to allow for the dechaining of the load afterwards, function S22 must verify
eq. (3.16). It must be remarked that assuming a rational form for S22

S22(λ) =
p(λ)

q(λ)
,

with p = p0
∏N

i=1(λ− ξi) and q = q0
∏N

i=1(λ− ζi) the solution to the integral in eq. (3.16)
can be expressed as

1

π

∫

R

log
∣
∣ρ(λ)−1

∣
∣ dλ =

N∑

i=1

ζi −
N∑

i=1

ξi.

Furthermore, the roots of the minimum phase polynomial p such that pp⋆ = T 2
N +α2 have

the explicit expression

ξi =
1

2

(
X1/N
α ejθk +X−1/N

α e−jθk
)
,

with Xα = α +
√
α2 + 1 and θk =

π
2N

(2k − 1).

This is the main reason behind the interest of imposing a Tchebyshev shape for the
global response S22 since it is possible now to write the restriction on α and β such that
eq. (3.16) is saturated, namely the value of the integral is maximised. We have

h =
N∑

k=1

ζk −
N∑

k=1

ξk

=
1

2

(

X
1/N
β

N∑

k=1

ejθk +X
−1/N
β

N∑

k=1

e−jθk

)

− 1

2

(

X1/N
α

N∑

k=1

ejθk +X−1/N
α

N∑

k=1

e−jθk

)

,
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with Xβ = β +
√

β2 + 1. By means of trigonometric relations, the previous sums can be
expressed as

N∑

k=1

ejθk = sin
( π

2N

)−1

,

N∑

k=1

e−jθk = − sin
( π

2N

)−1

.

Also note that 1
2

(

X
1/N
β −X

−1/N
β

)

= sinh
(

1
N
arcsinh(β)

)
. Therefore we have

h · sin
( π

2N

)

= sinh

(
1

N
arcsinh (β)

)

− sinh

(
1

N
arcsinh (α)

)

.

Now solving for β

β = sinh

(

N · arcsinh
(

sinh

(
1

N
arcsinh (α)

)

+ h · sin
( π

2N

)))

.

Now suppose that I represent a single compact interval of the real line and TN is the
Tchebyshev polynomial in the interval I such that −1 ≤ TN(ω) ≤ 1 for all ω ∈ I. Finally
the reflection coefficient S22 is expressed

|S22(ω)|2 =
TN(ω)

2 + α2

TN(ω)2 + β(α)2
.

Additionally we have

max
ω∈I

|S22(ω)|2 =
1 + α2

1 + β(α)2
. (D.1)

The optimal parameter α is obtained by minimising the function in eq. (D.1) with respect
to α. Additionally, as show in next section, this function has a unique minimum in α.

D.2 Generalised oscillating responses

Instead of proving now the unicity of the optimum α in eq. (D.1), we consider now a more
generic transfer function where some finite transmission zeros are allowed in the global
system. This can be easily done by replacing the polynomial function TN(ω) with the

rational filtering function p̂(ω)
r̂(ω)

where r̂(ω) has roots at the desired transmission zeros and

p̂(ω) is the Tchebyshev polynomial of degree N with the weight r̂. This filtering function
oscillates between −1 and 1 within the passband. We provide next the definition of a
function F (ω) which represents the reflection coefficient of the global system.

Definition D.2.1 (). Let f(ω) =
∣
∣
∣
p(ω)
r(ω)

∣
∣
∣

2

be a rational function with p and r non-zero

polynomials and r of degree less than the degree of p (deg(r) < deg(p)). We define a
function Fα,β(ω) as the minimal phase realization of |Fα,β(ω)|2:

|Fα,β(ω)|2 = Fα,β(ω)F
∗
α,β(ω) =

f(ω) + α

f(ω) + β
=
n

e
0 ≤ α < β <∞.

It implies that Fα,β(ω) and (Fα,β(ω))
−1 are analytic in the lower half plane ω ∈ C−. Then

Fα,β(ω) can be computed assigning the roots of n and e that lies in the upper half plane
of ω to Fα,β(ω) and the conjugate roots to F ∗

α,β(ω).
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We are now disposed to state the main problem in this appendix, namely the function
Fα,β(ω) within the passband ω ∈ I where β is obtained as a function β = β(α) ensuring
that the load can be de-embedding.

Problem D.2.1 (Oscillating transfer function).

Find: min
α

f1 + α

f1 + β(α)
f1 = max

ω∈I

∣
∣
∣
∣

p̂(ω)

r̂(ω)

∣
∣
∣
∣

2

.

Next we argue towards the proof of unicity of the optimal value α. Note that this
time we do not have an explicit relation between α and β, nevertheless we can define
an implicit function Φα,β(ω) such that the de-embedding condition is satisfied, namely
the derivative of the global reflection at a point ω0 on the frequency axis matches the
derivative of the reflection provided by the load, denoted here by η.

Lemma D.2.1. Define Φα,β(ω) = arg (Fα,β(ω)), η a strictly negative constant and ω0

strictly positive such as r(ω0) = 0. Then for every value α > 0 there exist an unique value
β that satisfies:

d

dω
Φα,β(ω)

∣
∣
∣
∣
ω=ω0

= η. (D.2)

Proof. Fα,β(ω) is minimum-phase and both Fα,β(ω) and ln(Fα,β(ω)) are analytic for ω ∈
C−. In that case the phase (Φα,β(ω) = Im{ln|F (ω)|}) can be obtained from the Hilbert
transform up to an unknown constant.

Φα,β(ω) =
1

π

∮

R

Re{ln(Fα,β(τ))}
τ − ω

dτ + C =
1

π

∮

R

ln|Fα,β(τ)|
τ − ω

dτ + C. (D.3)

The condition necessary and sufficient for the Hilbert transform to exist is that
ln|Fα,β(τ)| ∈ Lp(R) for 1 ≤ p ≤ ∞. Therefore we study the integrability of ln|Fα,β(τ)|.
We express the integral in two parts, one over |τ | > M and another over |τ | ≤ M where
M >> β.

∫

|τ |>M
ln|Fα,β(τ)|dτ +

∫

|τ |≤M
ln|Fα,β(τ)|dτ =

∫

R

ln|Fα,β(τ)|dτ.

The function ln|Fα,β(τ)| can be expressed as:

ln|Fα,β(τ)| = ln (1− (1− |Fα,β(τ)|)) = ln




1− β − α

∣
∣
∣
p(τ)
r(τ)

∣
∣
∣

2

+ β




 . (D.4)

Since |Fα,β(τ)| → 1 as τ → ∞, in the first integral the logarithm is equivalent to the
function gα,β(τ).

gα,β(τ) = −
(

1− α

β

)
1

1 + 1
β

∣
∣
∣
p(τ)
r(τ)

∣
∣
∣

2 .

This function is bounded by Gε,α(τ) =
1

1+ ε
β
τ2

as τ → ∞ where ε is the relation between

the leading coefficients of p and r and Gε,α(τ) ∈ L2. Therefore gα,β(τ) ∈ L2. Conversely,
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in the second integral we found logarithmic singularities if α = 0 and f(τ) = 0. However
this singularities are integrable. Thus we conclude that the Hilbert transform in (D.3)
exists almost everywhere. Moreover, the derivative and the Hilbert transform operators
can be inverted provided that the integral in (D.3) exist [88].

∂Φα,β(ω)

∂ω
=

1

π

∮

R

∂
∂τ
ln|F (τ)|
τ − ω

dτ. (D.5)

From (D.4), it can be seen that the function ln|Fα,β(τ)| has a double zero at τ = ω0

since r(ω0) = 0. In this case, the singularity at τ = ω0 in equation (D.5) cancels and the
principal value integral becomes a classic integral of a real negative function. Thus it is
possible to integrate by parts in (D.5).

∂Φα,β(ω)

∂ω
=

1

π

∫

R

∂
∂τ
ln|F (τ)|
τ − ω

dτ =
1

2π

∫

R

ln|Fα,β(τ)|
(τ − ω)2

dτ. (D.6)

Let denote by H(α, β) the left hand side of (D.2).

H(α, β) =
∂Φα,β(ω)

∂ω

∣
∣
∣
∣
ω=ω0

=
1

2π

∫

R

ln|Fα,β(τ)|
(τ − ω0)

2 dτ, (D.7)

where |Fα,β(τ)| has continuous partial derivatives with respect to the parameters α and
β. In addition, if we define the function Tǫ(τ) ∈ L2 as:

Tǫ(τ) =
1

f(τ) + ǫ
with 0 < ǫ < α, (D.8)

then the partial derivatives of |Fα,β(τ)| remain bounded by Tǫ(τ).

∂

∂α
|Fα,β(τ)| =

1

f(τ) + α
< Tǫ(τ) 0 < ǫ < α,

∂

∂β
|Fα,β(τ)| =

1

f(τ) + β
< Tǫ(τ) 0 < ǫ < β.

Under this conditions, the Leibniz lemma claims that the passage of the limit under the
integral sign is licit and therefore, the derivative can be passed under the integral sign.
Thus:

∂

∂β
H(α, β) = − 1

2π

∫

R

dτ

(τ − ω0)2(f(τ) + β)
,

where the previous integral is strictly positive. Hence if we fix α, the function H(α, β)
will be strictly decreasing with β. Then we compute the values H(α, β) when β = α and
when β → ∞:

H(α, α) =
1

2π

∫

R

ln (1)

(τ − ω0)
2dτ = 0,

lim
β→∞

H(α, β) =
1

2π

∫

R

ln (0)

(τ − ω0)
2dτ = −∞.

We conclude that H(α, β) with α fixed is strictly monotonous from 0 to −∞ if β varies
in the interval α < β < ∞. Therefore for a given η negative, there exist an unique value
β that satisfies H(α, β) = η.
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Remark D.2.1. It is also possible that ω0 = ∞ and it will be necessary, for instance if
r(ω) has no finite roots. In this case condition (D.2) takes an alternative form as follows:

d

dω
Φα,β

(
1

ω

)∣
∣
∣
∣
ω=0

= −η.

The proof remains similar but considering the function H(α, β) as in (D.9) and the same
arguments are valid .

H(α, β) =
d

dω
Φα,β

(
1

ω

)∣
∣
∣
∣
ω=0

= − 1

2π

∫

R

ln|Fα,β(τ)|dτ. (D.9)

Moreover this function Φα,β(ω) presents some interesting properties which are neces-
sary in next section.

Lemma D.2.2. Let Φα,β(ω) be defined as before and β = β(α) such as condition (D.2)
is satisfied. Then β is a function β = β(α) ∈ C∞ with the following properties:

1. β′(α) > 1.1

2. β′′(α) < 0.

3. lim
α→∞

β′(α) = 1.

Proof. Define again H(α, β) as in (D.7). Thus since H(α, β) is differentiable and
∂
∂β
H(α, β) 6= 0, by introducing (D.7) in (D.2), the expression H(α, β) − η = 0 defines

an implicit function β(α) within the range 0 < α < β. Let define now the function h(x)
as the integral:

h(x) =

∫

R

dτ

(τ − ω0)2(f(τ) + x)
x > 0.

The integrand of h(x) is again bounded by the function Tǫ(τ) (D.8).

d

dx

(
1

(τ − ω0)2(f(τ) + x)

)

<
1

f(τ) + ǫ
0 < ǫ < x.

Thus we can apply the Leibniz rule to obtain h′(x).

h′(x) = −
∫

R

dτ

(τ − ω0)2(f(τ) + x)2
x > 0.

This function is strictly negative since the integral is strictly positive. Then h(x) is strictly
decreasing. This approach can be iterated since the successive derivatives are all bounded
by Tǫ(τ) and consequently h(x) ∈ C∞. We obtain:

dn

dxn
= (−1)n

∫

R

n!

(τ − ω0)2(f(τ) + x)n+1
dτ x > 0. (D.10)

1The notation β′(α) and β′′(α) stands for d

dα
β(α) and d

2

dα2 β(α) respectively.
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Now the partial derivatives of H(α, β) can be expressed in term of h(α) and h(β):

∂

∂α
H(α, β) =

h(α)

2π
,

∂

∂β
H(α, β) = −h(β)

2π
.

By the theorem of the implicit function we compute β′(α) as:

β′(α) = −
(
∂H(α, β)

∂β

)−1
∂H(α, β)

∂α
=
h(α)

h(β)
,

where h(x) is positive and decreasing. This implies that β′(α) > 1 and if h(x) ∈ C∞ then
β(α) ∈ C∞. This proves (a).

Next let write β′(α) as the relation between h(α) and h(β) and compute β′′(α) by
differentiating again with respect to α:

h(α) = β′(α)h(β), (D.11)

h′(α) = β′′(α)h(β) + h′(β) (β′(α))
2
.

Introducing (D.11) and dividing by h(α)2:

β′′(α)h(β) = h′(α)− h′(β)

(
h(α)

h(β)

)2

,

β′′(α)h(β)

h(α)2
=
h′(α)

h(α)2
− h′(β)

h(β)2
, (D.12)

where h(x) > 0. Consider now the function χ(x) = h′(x)
h(x)2

. This is a strictly negative

function due to the negative sign of h′(x) and its derivative is:

χ′(x) =
h′′(x)h(x)− 2h′(x)2

h(x)3
,

Using (D.10):

χ′(x) = 2

∫

R

dτ
(τ−ω0)2(f(τ)+x)3

∫

R

dτ
(τ−ω0)2(f(τ)+x)

−
(∫

R

dτ
(τ−ω0)2(f(τ)+x)2

)2

(∫

R

dτ
(τ−ω0)2(f(τ)−x)

)3 .

If we finally define the functions |ϕ1(τ)| and |ϕ2(τ)|

|ϕ1(τ)| =
1

(τ − ω0)(f(τ) + x)3/2
|ϕ2(τ)| =

1

(τ − ω0)(f(τ) + x)1/2
.

the we obtain that χ′(x) ≥ 0 by the Schwarz inequality :

(∫

R

|ϕ1(τ)|2dτ
) 1

2
(∫

R

|ϕ2(τ)|2dτ
) 1

2

≥
∫

R

|ϕ1(τ)||ϕ2(τ)|dτ.
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Moreover, equality in the Schwarz lemma holds only if ϕ2
1 and ϕ2

2 are linearly dependent
for some non-zero constant λ. Assume λϕ2

1 = ϕ2
2. Then

1

(τ − ω0)2(f(τ) + x)
= λ

1

(τ − ω0)2(f(τ) + x)3

(τ − ω0)
2(f(τ) + x)3

(τ − ω0)2(f(τ) + x)
= λ

(f(τ) + x)2 = λ.

It implies that the function (f(τ) + x)2 is equal to a constant for all τ ∈ R. This results

in a contradiction since f(τ) =
∣
∣
∣
p(τ)
r(τ)

∣
∣
∣ and the degree of p is strictly greater that the

degree of r. Then the assumption λϕ2
1 = ϕ2

2 must be false. As a result χ′(x) is strictly

positive and therefore χ(x) = h′(x)
h(x)2

is strictly increasing. Returning now to the equation

(D.12) and considering that χ(α)− χ(β) < 0 it follows that β′′(α) < 0. It yields (b).

Finally consider the function α
β(α)

and compute the derivative d
dα

(
α

β(α)

)

.

d

dα

(
α

β(α)

)

=
β(α)− αβ′(α)

β(α)2
=
N(α)

β(α)2
. (D.13)

Next take the derivative of the numerator N(α) in (D.13):

N ′(α) = −αβ′′(α).

Since α > 0 and β′′(α) < 0, N(α) is strictly increasing and therefore the derivative of α
β(α)

can not vanish more that once. This implies that the function α
β(α)

can not have more
than one minimum and considering that it is bounded 0 < α

β(α)
< 1, then the limit of α

β(α)

as α → ∞ exists. Now consider again the expression (D.2) along with (D.6):

∫

R

ln
(

f(τ)+α
f(τ)+β(α)

)

(τ − ω0)
2 dτ = 2πη. (D.14)

We split (D.14) in two parts, the first one over an interval X near ω0

X =

{

τ : ω0 − 1 < τ < ω0 −
1

M + 1

}

.

The second part over the complement of X.

∫

X

ln
(

f(τ)+α
f(τ)+β(α)

)

(τ − ω0)
2 dτ +

∫

R\X

ln
(

f(τ)+α
f(τ)+β(α)

)

(τ − ω0)
2 dτ = 2πη.

We know that both integrals are negative, then

∫

X

ln
(

f(τ)+α
f(τ)+β(α)

)

(τ − ω0)
2 dτ ≤ 2πη. (D.15)
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The integrand in (D.15) is bounded by Gα0(τ) ∈ L2 for all τ ∈ X.

Gα0(τ) =

∣
∣
∣
∣
∣
∣

lg
(

α0

β(α0)

)

(τ − ω0)2

∣
∣
∣
∣
∣
∣

0 < α0 < α.

Then we can apply the Lebesgue dominated convergence theorem:

lim
α→∞

∫

X

ln
(

f(τ)+α
f(τ)+β(α)

)

(τ − ω0)
2 dτ =

∫

X

lim
α→∞

ln
(

α
β(α)

)

(τ − ω0)
2 dτ =M lim

α→∞
ln

(
α

β(α)

)

.

We denote K = lim
α→∞

ln
(

α
β(α)

)

. Then from (D.15) we have:

MK ≤ 2πη.

If we assume K 6= 0 and we take M > 2πη
K

. Then MK ≤ 2πη and MK > 2πη, a

contradiction. We conclude that K = 0 what implies that lim
α→∞

(
α

β(α)

)

= 1. To complete

the prove, we know that lim
α→∞

α = ∞ and β(α) > α. Moreover β′(α) is decreasing and

greater than 1, this implies that lim
α→∞

β′(α) exists. Furthermore α and β(α) are both

differentiable for every α greater than a fixed positive value L. Under this conditions we
can apply the l’Hôpital rule for an indetermination ∞

∞ .

lim
α→∞

α

β(α)
= lim

α→∞

1

β′(α)
=

1

lim
α→∞

β′(α)
= 1.

Hence, (c) holds.

D.3 Unicity of the solution to problem D.2.1

We are now disposed to proof the unicity of the value α optimal for problem D.2.1.

Lemma D.3.1. Consider the function β = β(α) such as condition (D.2) is satisfied for
a given f(ω). Fix a constant f1 ≥ 0, then the function ψ(α):

ψ(α) =
f1 + α

f1 + β(α)
α ≥ 0

is minimum at an unique finite value α = α0.

Proof. Denote by Ψ(α) the numerator of the derivative of ψ(α).

ψ′(α) =
f1 + β(α)− β′(α)(f1 + α)

(f1 + β(α))2
=

Ψ(α)

(f1 + β(α))2
.

Since (f1 + β(α)) 6= 0 then ψ′(α) if and only if Ψ = 0. Now compute Ψ(α).

Ψ′(α) = −β′′(α)(f1 + α),

where β′′(α) < 0 and (f1 + α) > 0. Therefore Ψ(α) is strictly increasing and vanish at
most once. It allows us to distinguish between three possible cases:
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1. Ψ(α0) = 0 for 0 < α0 <∞.

2. Ψ(α) > 0 for all α > 0.

3. Ψ(α) < 0 for all α > 0.

In the first case, the function ψ(α) has an unique minimum at α = α0 ∈]0,∞[. If (ii)
holds, ψ(α) is an increasing function for α > 0. Then the minimum occurs for α = 0.
Finally, it can be proved that (iii) never happens. Compute:

lim
α→∞

Ψ(α) = lim
α→∞

(f1 + β(α)− β′(α)(f1 + α)) = lim
α→∞

(β(α)− α).

Since by definition β > α, it is possible to conclude that lim
α→∞

Ψ(α) > 0 and (iii) cannot

hold.
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Appendix E. Manufactured prototypes

In chapter 15 we have shown the measurements of two manufactured prototypes, both of
them made of plastic using additive manufacturing techniques and subsequently metal-
lized. In this appendix we provide a compilation of the illustrations as well as tables with
the dimensions corresponding to of each of the structures presented in chapter 15.

E.1 Six-poles dual-mode filter.

The first prototype included in this chapter is the waveguide filter corresponding to the
3D model shown in fig. 15.5. This filter has a 3d-printed plastic body while the inner
surface has been metallised by silver painting. The parameters which define the filter
structure are depicted in fig. E.1 while the dimensions (in mm) are listed in table E.1. The
obtained device is shown in fig. E.2 where the transparent plastic body can be appreciated.

The device shown in fig. E.2 presents a mono block structure where no assembling of
spare pieces is required. This mono block manufacturing is possible by means of a printed
plastic support filling the inner volume of the cavities which is removed afterwards. When
this type of manufacturing is used, the transparent body helps to perform an adequate
cleaning and metallising of the interior of the structure since it allows to visualize any
possible imperfection. The result of the metallisation process is illustrated in fig. E.3
where the filter structure shown in fig. 15.5 can be perfectly recognised. This technique
has already been used in the literature, for instance in [89]. Moreover, fig. E.4 shows the
tuning screws used to compensate the small manufacturing tolerances. These screws allow
to fine tune each coupling and each resonant mode in the structure. This filter provides,
after tuning, the response shown in fig. 15.6.

L2

L4
L6

L8

A1 A3
A5 A7 A9

A2

A4 A6

A8

D1
D2 D3 D4

L1

L3
L5 L7

L9

Figure E.1: Dimmensions of the manufactured dual-mode filter.
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E.1. Six-poles dual-mode filter.

Parameter Value Parameter Value Parameter Value
A1 9.903 L1 1.000 D1 5.534
A2 19.050 L2 14.617 D2 5.019
A3 7.174 L3 1.000 D3 2.815
A4 30.338 L4 27.875 D4 6.180
A5 7.384 L5 1.555
A6 28.654 L6 28.609
A7 7.234 L7 1.000
A8 19.050 L8 14.621
A9 9.824 L9 1.000

Table E.1: Values in mm of the dimensions indicated in fig. E.1.

Figure E.2: Prototype of reference filter: plastic body
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Figure E.3: Prototype of reference filter: front view

Figure E.4: Prototype of reference filter: back view
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E.2. Manifold multiplexer

E.2 Manifold multiplexer

The second manufactured prototype corresponds to the structure shown in fig. 15.17,
which has also been implemented by means of additive manufacturing techniques.

We have on the one side in fig. E.13 the dimensions of the box that covers the
external volume of the final device, including the flasks, the coupling and assembly
screws and other external elements. On the other side we provide the final dimensions
of the waveguide structure which constitutes the internal volume of the multiplexer.
These dimensions are denoted with the parameters shown in fig. E.14a. Note that we
use the same parameters name for all channels. The values of the cited parameters for
each of the channel filters are listed in table E.2. Additionally we indicate in fig. E.14b
the dimension obtained as the result of the manifold synthesis following the procedure
presented in chapter 13.

We can see in figs. E.5 to E.7 the 3d-printed plastic body which is ready to be
metallised. It is important to note that, unlike the previous case and due to the high
complexity of the triplexer structure, we have decided to manufacture the device in two
halves, using assembly screws to join both halves posteriorly. This allows us greater
control in the process of metallization of the device, since by applying the silver paint
on each of the halves separately, we get better access to each of the internal surfaces of
the device. Figures E.8 and E.9 illustrate the inner metallisation of both halves of the
device while figs. E.10 to E.12 show the final assembled device, after the inner surface is
metallised and with the tuning screws inserted.

Figure E.5: Triplexer prototype: inside view
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Figure E.6: Triplexer prototype: front view

Figure E.7: Triplexer prototype: top view
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E.2. Manifold multiplexer

Figure E.8: Triplexer prototype: metallisation of upper section.
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Figure E.9: Triplexer prototype: metallisation of lower section.

Figure E.10: Triplexer final structure: front view.
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E.2. Manifold multiplexer

Figure E.11: Triplexer final structure: top view.

Figure E.12: Triplexer final structure: back view.
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256 mm

(a) Front view

47 mm

(b) Side view

83 mm

(c) Top view

Figure E.13: Designed fishbone structure
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E.2. Manifold multiplexer

L1 L3 L5 L7 L9

L2 L4 L6 L8

A1 A3A2

A4

A5

A6

A7 A8 A9D1 D2 D3
D4

(a) Channel filter parameters

1 mm

1 mm1 mm

4 mm

3 mm

(b) Manifold dimensions

Figure E.14: Definition of the dimension parameters in the triplexer structure
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Parameter Value Parameter Value Parameter Value
A1 9.708 L1 1.000 D1 7.236
A2 19.050 L2 14.648 D2 1.929
A3 7.301 L3 1.000 D3 4.599
A4 28.683 L4 28.665 D4 6.340
A5 7.207 L5 1.523
A6 30.310 L6 28.083
A7 6.959 L7 1.000
A8 19.050 L8 14.784
A9 9.372 L9 1.000

(a) Channel 1

Parameter Value Parameter Value Parameter Value
A1 8.296 L1 1.000 D1 5.024
A2 19.050 L2 14.864 D2 4.643
A3 5.290 L3 1.000 D3 5.969
A4 28.821 L4 27.669 D4 3.540
A5 5.683 L5 1.117
A6 28.088 L6 28.076
A7 5.014 L7 1.000
A8 19.050 L8 14.761
A9 8.440 L9 1.000

(b) Channel 2

Parameter Value Parameter Value Parameter Value
A1 7.914 L1 1.000 D1 4.714
A2 19.050 L2 14.457 D2 4.284
A3 5.009 L3 1.000 D3 6.187
A4 28.212 L4 27.104 D4 5.296
A5 5.105 L5 1.032
A6 27.453 L6 27.596
A7 4.746 L7 1.000
A8 19.050 L8 14.627
A9 7.629 L9 1.000

(c) Channel 3

Table E.2: Values of the parameters shown in fig. E.14a
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RÉSUMÉ

Le probléme de l’adaptation d’impédances en électronique et particulièrement en
ingénierie des hyper fréquences consiste à minimiser la réflexion de la puissance qui doit
être transmise, par un générateur, à une charge donnée dans une bande de fréquence.
Les exigences d’adaptation et de filtrage dans les systèmes de communication classiques
sont généralement satisfaites en utilisant un circuit d’adaptation suivi d’un filtre. Nous
proposons ici de concevoir des filtres d’adaptation qui intègrent à la fois les exigences de
filtrage et d’adaptation dans un seul appareil et augmentent ainsi l’efficacité globale et la
compacité du système.

Dans ce travail, le problè d’adaptation est formulé en introduisant un problème convexe
d’optimisation dans le cadre établi par la théorie de d’adaptation de Fano et Youla. De ce
contexte, au moyen de techniques modernes de programmation semi-définies non linéaires,
un problème convexe, et donc avec une optimalité garantie, est obtenu.

Enfin, pour démontrer les avantages fournis par la théorie développée au-delà de la
synthèse de filtres avec des charges complèxes variables en fréquence, nous examinons
deux applications pratiques récurrentes dans la conception de ce type de dispositifs. Ces
applications correspondent, d’une part, à l’adaptation d’un réseau d’antennes dans le but
de maximiser l’efficacité du rayonnement, et, d’autre part, à la synthèse de multiplexeurs
où chacun des filtres de canal est adapté au reste du dispositif, notamment les filtres
correspondant aux autres canaux.

Mots-clés: Synthèse de filtres, adaptation large bande, limites, Nevanlinna-Pick, interpo-
lation Schur, optimisation convexe, antennes, manifold, multiplexeurs.

ABSTRACT

The problem of impedance matching in electronics and particularly in RF engineering
consists on minimising the reflection of the power that is to be transmitted, by a gener-
ator, to a given load within a frequency band. The matching and filtering requirements
in communication systems are usually satisfied by using a matching circuit followed
by a filter. We propose here to integrate both, matching and filtering requirements,
in a single device and thereby increase the overall efficiency and compactness of the system.

In this work, the matching problem is formulated by introducing convex optimisation
on the framework established by the matching theory of Fano and Youla. As a result,
by means of modern non-linear semi-definite programming techniques, a convex problem,
and therefore with guaranteed optimality, is achieved.

Finally, to demonstrate the advantages provided by the developed theory beyond the
synthesis of filters with frequency varying loads, we consider two practical applications
which are recurrent in the design of communication devices. These applications are, on
the one hand, the matching of an array of antennas with the objective of maximizing the
radiation efficiency, and on the other hand the synthesis of multiplexers where each of the
channel filters is matched to the rest of the device, including the filters corresponding to
the other channels.

Keywords: Filter synthesis, broadband matching, bounds, Nevanlinna-Pick, Schur inter-
polation, convex optimisation, antennas, manifold, multiplexers.
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