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Introduction and summary

Quantum physics and computing

Quantum physics is a fundamental field of physics that arose in the early 20th century. Its first postulate is that any given physical system can be described by quantum states |ψ , vectors in an Hilbert space. The properties of quantum physics are significantly different from those of classical physics. For example, the superposition principle has no classical equivalent. It is a consequence of the first postulate, where a quantum state |ψ can be a superposition of two quantum states, |0 and |1 , at the same time, as |ψ = α |0 + β |1 where |α| 2 + |β| 2 = 1. Another important property of quantum mechanics is entanglement. A quantum system composed of several sub-systems can present entangled states which cannot be separated into a product of quantum states of each sub-system. For example, the state |ψ = |0 S 1 |1 S 2 -|1 S 1 |0 S 2 is an entangled state of the system S = {S 1 + S 2 } with sub-systems S i .

Until now, all computing has been performed with classical computers via the encoding of information into classical binary digits (bits). The values of a classical bit are binary, i.e. it can only be either 0 or 1; it can only be either off or on. You can see them, for example, as a switch (on or off), or as a small magnetic domain (aligned up or down) as it is used nowadays in hard disk.

In 1982, Richard Feynman introduced the idea of a quantum computer [1]. The quantum bits (qubits) of such a computer would follow the physical laws of quantum mechanics and therefore allow to overcome some limitations of classical computing. Indeed, if we consider n bits (classical or quantum), there are 2 n possible configurations. With a classical computer, only one configuration at a time is accessible while with a quantum computer, all configurations would be accessible at a time if the n qubits are placed in an entangled superposition state. Such a state can contain exponentially more information than the classical n bits state.

Quantum algorithms exploits the specificity of quantum physics to solve certain problems faster than is possible with a classical computer. The most well-known quantum algorithms include Shor's algorithm [START_REF] Shor | Proceedings 35th Annual Symposium on Foundations of Computer Science[END_REF] for factorization of large numbers or Grover's algorithm [START_REF] Grover | Proceedings of the twenty-eighth annual ACM symposium on Theory of computing -STOC'96[END_REF] for searching an unsorted database.

Link back to Table of contents →

Chapter 1 Introduction and summary A quantum computer does not require a specific physical implementation for the qubits, however, any quantum computer must satisfy certain requirements, known as the DiVincenzo criteria [START_REF] Barenco | [END_REF]5]: A) "A scalable physical system with well characterized qubits" B) "The ability to initialize the state of the qubits to a simple fiducial state" C) "Long relevant decoherence times, much longer than the gate operation time" D) "A 'universal' set of quantum gates" E) "A qubit-specific measurement capability" Reading this list of criteria, we can intuit how challenging building a quantum computer is. One limiting physical effect for such a computer is decoherence. Because of its interaction with the environment, a quantum system, after a characteristic time, the coherence time, will behave as a probabilistic classical system. The quantum system cannot be in a quantum superposition anymore but will be in a probabilistic mixture and some information will be lost in the environment. Therefore, a quantum computer would be highly susceptible to errors. And these errors should render a quantum computer unpractical in real life. Fortunately, Shor demonstrated that quantum error correction codes [6] and a fault-tolerant quantum computer [START_REF] Shor | Proceedings of 37th Conference on Foundations of Computer Science[END_REF] are possible.

Possible physical implementations of qubits

Any physical quantum system with two accessible and distinct quantum states can be used as a qubit. Therefore, several candidates has been proposed and are studied for quantum computing. First experimental demonstrations of a quantum algorithms used nuclear magnetic resonance techniques with nuclear spins as qubits [START_REF] Chuang | [END_REF]9,10], in a solution of chloroform molecules for example. However, doubts arose on the usefulness of NMR quantum computing [11] because of the scaling problem with notably the issue of initialization.

Another promising candidate is trapped ions [12,13]. Ions are confined and trapped using electromagnetic fields and qubits are chosen via their electronic or nuclear energy states. Trapped ion qubits currently hold the record for qubit readout fidelity [14] and for gate fidelity [15]. Nonetheless, a large-scale trapped ions quantum computer remains a daunting challenge [16].

Other credible candidates are found in solid-state physics. On chip, solid-state qubits are believed to be easier to scale-up but they often have a much more limited coherence time. For instance, semiconductor quantum dots [17,18], diamond NV centers [19], or superconducting quantum circuits [20] have been proposed for quantum computing.

The systems that interest us are superconducting quantum circuits. They can be completely designed and fabricated in cleanroom facilities with usual lithography techniques. One can thus envision its mass-production. Moreover, they can be engineered and we can tailor their energy levels, even tune them in-situ. Their interactions can also be engineered. Thus superconducting circuits are not only 1.1 Introduction interesting for quantum computing but are also a good platform to explore a lot of different regime and physical quantum phenomena.

Superconducting quantum circuit and qubit

In a superconducting electrical circuit, there are a lot of microscopic degrees of freedom. Each of them could possibly leads to loss mechanism and decoherence. However, thanks to superconductivity, the circuits can be described by only a small number of "macroscopic" degrees of freedom. For example, the "macroscopic" superconducting phase difference across a Josephson tunnel junction [21]. Minimizing sources of environmental noise and its coupling to the circuit is usually a common objective in the superconducting circuit community. The field of superconducting quantum circuits has seen a remarkable experimental progress, notably in term of quantum coherence control. Energy quantization was first demonstrated in 1985 by Martinis et al [22]. It is thanks to the non-linearity provided by the Josephson junction that superconducting circuits are labeled artificial atom" and can be considered and used as qubit. Indeed, the Josephson non-linearity makes the quantized energy levels to be not evenly spaced. Thus, the spectrum can be restricted to the first two levels because they can be addressed individually. Naka- taken from [20].

mura et al [23] in 1999 demonstrated the first superconducting qubit manipulation with coherence time around few nanoseconds. Since then, coherence times have improved by around 5 order of magnitudes (Fig. 1.1). Nowadays, coherence times are found to be between tens to hundred of microseconds [24,25,26,27].

Light-matter interaction has been remarkably well described by the Jaynes-Cummings Hamiltonian in both Cavity-QED and c-QED [START_REF] Haroche | Exploring the quantum: atoms, cavities and photons[END_REF][START_REF] Blais | [END_REF]. Indeed, the dominant interaction between light and matter is often the electric field to dipole moment interaction. This interaction, also called transverse coupling, is reduced, for a single cavity mode light and a matter two-levels system (tls) as the Rabi interaction or the Jaynes-Cumming interaction in the rotating-wave approximation (rwa). It is so common that sometimes we don't even make the effort to precise the type of coupling and we erroneously reduce light-matter interaction to the Jaynes-Cumming interaction.

Operating a qubit in a QED scheme has two main purposes: one is to isolate the qubit from the environment by filtering through the cavity the vacuum noise. This filtering is known as the Purcell effect [49]. The system can thus be engineered to control the qubit spontaneous emission [50]. The second purpose is to be able to readout the qubit states through the response of the cavity to a drive.

Qubit readout and recent improvements

For superconducting qubit, the common strategy, known as the dispersive readout [35,[START_REF] Blais | [END_REF], relies on transverse coupling in the dispersive limit between the qubit and the resonator. The dispersive regime consists in a large detuning between qubit and resonator compared to their transverse coupling strength. In this case, their interaction can be approximated to a cross-Kerr coupling [35,[START_REF] Blais | [END_REF]. Thus, the cavity has its frequency conditioned on the qubit state. Driving the resonator displaces its initial vacuum state to qubit-state dependent coherent states. Resolving these 1.1 Introduction pointer states defines the readout of the qubit states.

A readout method able to discriminate the qubit states in a single readout pulse is called single-shot. For most setups, the signal-to-noise ratio (SNR) is not enough to discriminate qubit states in one single experimental sequence [51]. This is due to two distinct constraints limiting the efficiency of the dispersive readout method. First, the integration time cannot be longer than the qubit relaxation time T 1 . And T 1 is ultimately limited by the transverse coupling to the resonator via Purcell effect. In addition, the dispersive approximation has its validity limited to low photon number occupation of the resonator and therefore a weak drive. This means that we are obliged to measure a weak signal, in a limited time.

The bottleneck is then the noise of the first amplifier. With usual cryogenic HEMT amplifiers, the added noise, at best around 2 K, does not allow single shot readout with high fidelity. Nevertheless, the average value of the signal computed over many identical realizations still gives the average qubit state and a lot of interesting quantum experiments could still be performed this way, like for example violation of Bell inequality [52].

Using an amplifier with a quantum-limited noise, the SNR can be improved enough to obtain high fidelity single shot measurements. The first single shot high fidelity measurement was performed in 2009 by Mallet et al [53]. In their article, they used a Josephson bifurcation amplifier (JBA) as a sample-and-hold detector which allows to reduce noise via a longer integration time. It is thanks to a Josephson parametric amplifier (JPA) that quantum jumps have been observed for the first time in superconducting quantum circuits in 2011 by Vijay et al [54]. Since then, Purcell filters have been introduced [55,56,57] allowing better compromise between the Purcell limited T 1 and the strength of the readout shift. Moreover, parametric amplifiers with broader bandwidth [58,59,60] are being developed allowing for faster measurement. Even with these advances, readout fidelities are still limited by qubit decay during the measurement time [56,61,62,63]. At the moment of this redaction, the qubit readout state-of-the-art has been achieved by Walter et al in 2017 [63]. They increased and optimized the dispersive interaction strength as well as the resonator linewidth thanks to Purcell filtering. Using a phase-sensitive parametric amplifier, they demonstrated a 99.2 % readout fidelity in a 88 ns measurement time with a mean photons number of 2.5.

A single-shot measurement is not only characterized by its fidelity but also by its projective or destructive character. Ideally, the readout is projective, i.e. it is associated to a Quantum Non Demolition (QND) measurement that leaves the qubit in a state corresponding to the outcome of the readout performed. For example, if the meter gives the result e, the qubit is in the state |e . For an ideal QND readout, subsequent readouts yield the same result. A readout that completely scrambles the qubit is said to be destructive. For example, qubit readouts using a switch to resistive state [34,64] are destructive.

A single-shot high fidelity measurement which also demonstrates QND-ness is the goal to pursue for qubit readout. Until recently, most qubit readouts were performed relying on the always-on transverse coupling in the dispersive limit. However, this transverse coupling intrinsically brings non QND-ness. Also, the Chapter 1 Introduction and summary weak signal constraint it imposes intrinsically limits the readout fidelity. One idea to circumvent this is to introduce a dynamical control of the transverse coupling [65]. Another idea is to engineer another type of coupling on the qubit in order to outperform the limitations of the transverse coupling. For example, Didier et al [66] proposed in 2015 to use a "longitudinal" coupling (or radiation pressure coupling) with parametric modulation. This scheme ideally leads to an optimal separation of the pointer states in a QND-manner. Touzard et al [67] reported the first experimental implementation of such readout scheme.

One of the main motivations of my Ph.D. work was to investigate, in the aim of qubit readout, a novel dominant coupling between the qubit and the readout cavity. We called it hereafter cross-Kerr coupling, corresponding to an energy-energy interaction between qubit and resonator. Due to its form, this coupling does not lead to Purcell decay. Moreover, there is no compromise between the strength of the readout shift and the detuning used. A larger detuning can be used to reduce hybridization. Therefore, measurements with a large number of photons can be performed and still generate reliable QND properties. This idea comes from an artificial atom presenting a V-shaped energy spectrum (or transmon molecule) thanks to a cross-Kerr coupling between its two eigenmodes [38]. This circuit was predicted [68] to lead to a QND readout in a few tens of nanoseconds with fidelity as large as 99.9 % with Josephson parametric amplifier.

Summary

Different couplings for qubit readout

During my thesis, I theoretically investigated different light-matter couplings in the aim of qubit readout in a c-QED scheme. The general and most simple system in c-QED is described by an atom and a resonator (Fig. 1.2). We call atom an anharmonic oscillator with not evenly spaced energy levels. We describe by annihilation and creation ladder operators, q, q † and c, c † the atom and the cavity respectively. The atom is isolated from the environment thanks to the resonator. The resonator is coupled to the environment via input and output ports. Given this system, we want to investigate what is the best coupling between the atom and the resonator to allow a QND measurement of the atom, i.e. a readout with the less consequences on the atom.

Ideally, we would like a simplified cross-Kerr coupling 2χq † qc † c for two reasons.

One is that driving the resonator gives pointer states allowing to resolved the qubit states. The second is that this readout is QND, because the coupling Hamiltonian commutes with the qubit Hamiltonian. However, achieving this simplified cross-Kerr comes with approximation that degrades this picture.

The most common way to readout a qubit is to start with the transverse coupling g xx (q † + q)(c † + c). Operated in the dispersive regime, this transverse coupling behaves approximately as the ideal simplified cross-Kerr coupling. However, its domain of validity implies a weak driving signal on the resonator. It is a really strong constraint in the pursue of single shot high fidelity readout of the qubit. This limitation has been a little bit reduced thanks to the introduction of quantum Another limitation of the transverse coupling is hybridization. Indeed, this coupling means that the qubit and resonator exchange excitations. Meaning that the qubit is dressed by the resonator and vice versa. This might still be important, even in the dispersive regime. Because of this hybridization, the readout cannot be perfectly QND. And because of this hybridization, the qubit always have a Purcell limitation in its relaxation time T 1 . There is therefore a compromise between how much we want to couple the qubit to the resonator and the resonator to the environment in order to be able to read "fast" the qubit and how much we can allow a shorter T 1 on the qubit. This constraint has been a little bit relieved thanks to the introduction of Purcell filters [55].

The original coupling we proposed and investigated is the direct cross-Kerr coupling g x 2 x 2 (q † + q) 2 (c † + c) 2 . This coupling is not perfect as it hybridized the atom to the resonator by exchange of two excitations. However, it conserves the parity of each modes and thus does not lead to Purcell decay. Therefore, in the cross-Kerr coupling scheme, there is no T 1 limitation imposed on the qubit by the resonator and their coupling. In addition, this hybridization disturbance on the qubit becomes negligible when a large enough detuning ∆ is considered. It corresponds to a rwa neglecting the fast rotating terms at 2∆. And this approximation can be achieved without loosing on the wanted strength of the readout shift, contrary to the transverse case. This hybridization also imposes a constraint on the strength of the drive. However, this constraint is strongly reduced when a large detuning is considered. Therefore, the cross-Kerr coupling relieves the two limiting constraints The idea of the transmon molecule goes back to a decade ago. At first, it was thought as a DC squid [69,70]. Then it was realized by two transmons inductively 1.2 Summary coupled leading to an artificial atom with two degrees of freedom [38,68,71] presenting a V-shaped energy spectrum, an interesting property for qubit readout. During my thesis, its design (Fig. 1.3.(a-c)) has been adapted for 3D-architecture which is known to show better qubit lifetime [24]. It is modeled via a lumped element circuit (Fig. 1.3.(c-d)) corresponding to two transmons inductively and capacitively coupled. It has two eigenmodes, the Qubit mode and the Ancilla mode. The Qubit mode corresponds to symmetric excitations in the two initial transmons while the Ancilla mode corresponds to antisymmetric excitations. Because, for both modes, current oscillations occur through the same Josephson junctions, a direct cross-Kerr coupling is achieved between the Qubit and the Ancilla. This cross-Kerr coupling can also be seen as a cross-anharmonicity between the two modes. And because, we operate in the "transmon regime" [35], anharmonicities α s , α a of the Qubit and Ancilla are mostly given by the charging energies of the circuit. The cross-Kerr coupling is given by √ α s α a . The self-Kerr anharmonicities and the cross-Kerr anharmonicity are in the order of tens to hundreds of megahertz. Thus this cross-Kerr coupling between the Qubit and Ancilla modes is direct, always-on, does not depend on their detuning and can be made large.

Another keypoint of the transmon molecule circuit is its symmetry. Both Qubit and Ancilla eigenmodes have orthogonal dipolar moments. Thus, thanks to symmetry, one eigenmode of the transmon molecule can be transversely coupled to a resonator independently of the other mode. We chose to transversely coupled only the Ancilla mode to a 3D-cavity resonator. By this way, the Qubit does not ideally suffer from the limitations imposed by the transverse coupling. We experimentally chose to implement the coupling inductance L a via an array of squids to be able to tune its strength in-situ. Two different magnetic fluxes, Φ b and Φ s (Fig. 

Two regimes of operation

When only the Ancilla is transversely coupled to the Cavity resonator, we have two regimes of operation. Both regimes have been studied theoretically and experimentally with the two different samples presented here. The first regime corresponds to a dispersive regime between the Ancilla and the Cavity (Fig. In the first regime, even without direct coupling between the Qubit and the Cavity, an original effective cross-Kerr coupling exist thanks to the presence of the Ancilla. It is a regime closer to the usual case of the dispersive readout in term of strength of parameters. However, the Qubit should be Purcell protected contrary to the usual case. We achieved an original Qubit-Cavity readout shift of -1.3 MHz with a detuning of approximately 5 GHz and a residual transverse coupling estimated to be less than 30 MHz.

In the second regime, Ancilla and Cavity are close to the resonance condition. Here, it is more accurate to speak about new eigenmodes, called lower and upper Polaritons. These Polaritons are a mixture of Ancilla and Cavity and thus inherit the properties of both Ancilla and Cavity. We can experimentally tune the Ancilla transition by the applied flux. An avoided crossing between Ancilla and Cavity is observed (Fig. 1.5.(a)) at Φ ∼ 6Φ 0 .

Summary

The Polaritons spectroscopy is well described by numerical diagonalization of the transmon molecule circuit with transverse coupling to an harmonic resonator.

As we can control the frequency of the Ancilla, we can thus control the hybridization condition of the Polaritons via flux-tuning. For example, at zero flux, the lower Polariton is more Cavity-like than Ancilla-like and vice versa for the upper Polariton. At the degeneracy point, both Polaritons share in the same proportion the Ancilla and Cavity characters.

In Fig. 1.5.(b), we report the cross-Kerr strength 2χ measured between the Qubit and the two Polaritons. A much stronger readout shift can be achieved than its equivalent dispersive readout shift from transverse coupling. We report a readout shift ranging from 10 MHz to 58 MHz. The cross-Kerr couplings between Qubit and Polaritons come from the initial cross-Kerr coupling between the Qubit and the Ancilla. If a Polariton is more Ancilla-like, it will inherit more of the property of the Ancilla, such as its cross-Kerr coupling to the Qubit. Thus, by flux-tuning the hybridization condition of the Polaritons, we are changing how much they are Ancilla-like and therefore the strength of their cross-Kerr interaction with the Qubit (Fig. 1.5.(b)). For example, at zero flux, the lower Polariton which is more Cavity-like gets less cross-Kerr strength than the upper Polariton which is more Ancilla-like. Near Ancilla-Cavity degeneracy point, Φ ∼6Φ 0 , the two cross-Kerr coupling strengths become equal. In Fig. 1.6.(a), we report, as function of flux, the Qubit frequency measured via two-tone spectroscopy. The Qubit demonstrates a typical cosine-like behavior with flux of a transmon with a maximum frequency of 6.284 GHz. Coherence times T 1 = 3.4 µs and T Ramsey = 3.2 µs are reported at zero flux. We suspect that T 1 is currently limited by the remaining transverse coupling on the Qubit due to system imperfections. To verify that, we measured Qubit T 1 as a function of Chapter 1 Introduction and summary integer flux. They are measured one thousand times for each flux and we displayed their statistical mean and standard deviation as orange point with errorbar in Fig. 1.6.(b). We observed a decrease of T 1 as the flux is increased. For each integer flux point, the Qubit frequency remains the same. One can therefore naively expect the T 1 to stay constant. To explain this dependence, we have introduce in our model a residual transverse coupling, mainly coming from an asymmetry in the Josephson junctions of the transmon molecule and from a misalignment of the sample chip inside the 3D-cavity. A Purcell limit on T 1 has been computed via numerical diagonalization, using circuit parameters measured by other means or estimated. It is displayed as the blue shaded curve in Fig. √ κ out data for ground (blue) and excited (orange) versus drive frequency, for lower Polariton in (a) and upper Polariton in (b) for different input power with from bottom to top, P in = -24 dBm to P in = 0 dBm with a step of 6 dBm. The output amplitudes have been vertically shifted for visibility. The amplitudes are computed via ME simulations in dark blue and dark red for both Qubit states.

on the Polaritons, we observe a non-linear behavior. Fig. 1.7 depicts the non-linear behavior at Φ = 5Φ 0 of the lower and upper Polaritons for a Qubit prepared in the ground state (blue) and excited state (orange). At low input power, the Polaritons have a Lorentzian lineshape. With increasing power, their resonant frequencies are down-shifted and their lineshapes acquire a wave-like behavior typical of Duffing oscillator. This is mostly due to the non-linearity of the Ancilla. Indeed, the Ancilla is a weakly non-linear oscillator and both Polaritons pick up this non-linearity. The lineshapes and their input power dependences are currently being analyzed and fitted (dark blue and dark red curves) thanks to the theoretical support of Tomás Ramos and Juan Jose Garcia Ripoll from IFF CSIC in Madrid (Spain).

We noticed, for the upper Polariton, a region in input power and frequency where strong contrast is achieved between the two Qubit states. In this region, single shot high fidelity readouts are reported. the Qubit has been prepared in the ground state, in red, it has been prepared in the excited state. Points correspond to heralded datasets, solid lines to Gaussian or Double Gaussian fits. Green shaded region correspond to the overlap error (0.2 %), blue shaded region to the ground state error (0.8 %) and red shaded region to the excited state error (1.8 %). The total readout fidelity is 97.2 %.

Qubit readout in the non-linear Polaritons regime

We report an overall fidelity of 97.2 % in a 500 ns readout pulse with heralding (Fig. 1.8) at 5Φ 0 . It was performed with a mean photon number of 23 with an uncertainty of ± 3 dB. No JPA and no Purcell filter were employed. An error P e|g = 1.9 % of reading out the ground state when the excited state has been prepared and vice versa an error P g|e = 0.9 % are observed. This low error rate P e|g = 1.9 % does not match the expected error T 1 7 % due to relaxation with T 1 = 3.4 µs in a measurement time τ = 500 ns. However, this high fidelity single shot readout can be explained in terms of a latching measurement [53,72] via the bifurcation of the upper Polariton. Indeed, looking back at the lineshapes power dependence of the upper Polariton in Fig. 1.7.(b), we note a Duffing-like behavior with abrupt switching from low amplitude to high amplitude state. This switching is a characteristic of bifurcation and bistability. To verify this assumption, the bistability zones of the upper Polariton has been measured for each Qubit states (Fig. 1.9.(a-b)) by measuring the hysteresis between a ramp-up and ramp-down in power. These bistability zones are well described by a semi-classical analysis (blue and red lines in Fig. 1.9.(a-c)) of the Ancilla-Cavity system with an Ancilla frequency conditioned on the Qubit-state. Moreover, these bistability zones are correlated to the region showing single shot high fidelity property (Fig. cited Qubit state but not for the ground state and where it cannot down-bifurcate for both Qubit states. By this way, the upper Polariton up-bifurcates or not depending on the Qubit-state and if the Qubit relaxes after the up-bifurcation, the upper Polariton does not down-bifurcate and is maintained in its high output amplitude state. Thus, the readout becomes less sensitive to Qubit relaxation during measurement.

Qubit readout in the linear Polaritons regime

Single shot readout

An external phase-sensitive JPA with a gain of 23 dB is used to improve the readout at 0Φ 0 on the lower Polariton. At a mean photon number n = 0.7 with an uncertainty of ± 3 dB, the readout performances have been studied as a function of readout pulse duration τ (Fig. 1.10.(a-b)). In Fig. 1.10.(a), are displayed the readout error (black), the overlap error (green), the excited Qubit error r e→g (red) of reading out the ground state when the excited state has been prepared, and the ground Qubit error r g→e (blue) of reading out the excited state when the ground state has been prepared. At short readout times, τ ≤ 80 ns, the readout fidelity is mainly limited by the overlap error. The signal is not integrated enough to separate the two Qubit states. After an initial "slow" transient decrease when τ ≤ 80 ns, the overlap error drops exponentially with τ (exponential fit in gray solid line). It decreases approximately a readout fidelity of 94.7 % for a 50 ns readout pulse. In blue, the Qubit has been prepared in the ground state, in red, it has been prepared in the excited state. Points correspond to heralded datasets, solid lines to Gaussian or Double Gaussian fits. Green shaded region correspond to the overlap error (0.2 %), blue shaded region, ground state error (0.9 %) and red shaded region, excited state error (4.1 %).

by one decade every 30 ns. The overlap fidelity reaches 99 % for τ > 120 ns.

For time greater than 110 ns, the readout error is mainly due to the transition error Chapter 1 Introduction and summary r e→g which is increasing with time. This error is well understood by the expected relaxation error (gray dash line) with an additive error Rabi 1 % due to wrong preparation with finite π-pulse time in finite T Rabi time.

From the histograms with a double Gaussian fit, the experimental SNR is extracted as a function of readout time (Fig. 1.10.(b)). The SNR is increasing with pulse time τ and becomes greater than 1 for time greater than 70 ns and reaches 4.1 in 200 ns. The SNR is fitted (orange dash line) by the theoretical SNR of cross-Kerr coupling in the optimal case χ = κ/2.

We report an overall fidelity of 94.7 % in a 50 ns readout pulse with heralding (Fig. 1.11). It has been achieved with a mean photon number n 2 with an uncertainty of ± 3 dB. The JPA has been biased to obtain a gain of 20 dB. (dark colored dotted lines). The solid lines correspond to the averaged quadrature Q(t) R over 1 × 10 3 realizations and the shaded area is the standard deviation within these realizations.

Continuous measurement records

With the same configuration as in Fig. 1.11, one thousand individual measurements records Q(t) have been performed as function of time for a readout pulse of 1 µs when the Qubit was prepared either in the ground or excited state. The raw data Q(t) of each measurement records are numerically averaged within a time window of 20 ns. Four different realization of measurement records are displayed in dot dash line in Fig. 1.12.(a-b). The Qubit has been prepared in its ground or excited state in dark blue or in dark red respectively. The blue and red solid lines are the mean value averaged over one thousand realizations and the shaded area correspond to their standard deviations. The readout pulse begins at 170 ns and ends at 1170 ns. As expected, we notice that the ground and excited state of the Qubit can be resolved in a single-shot manner. During the readout pulse, the solid red line Q e (t) decreases with time while the standard deviation increases. This is attributed to the Qubit relaxation during the measurement. Indeed, Q e (t) follows an exponential decay on a characteristic time 3 µs ± 0.5 µs corresponding 1.2 Summary to the Qubit T 1 . In Fig. 1.12.(b), we note in the measurement record that we can resolve a quantum jump. We now consider only the time between 320 ns and 1160 ns in all the measurement records. At that times, a steady state regime of the applied squared pulse is achieved for the lower Polariton. In these times, we define a measurement Q t as an integration of 20 ns of the raw data. Therefore, we have 82 × 10 3 counts of successive measurements. From these successive measurements, we define four conditional probabilities P α,β , as the probability to measure α in a first measurement and β in the following measurement. The measurement repeatability or QND-ness is defined as QND = (P g,g + P e,e )/2. A 99.2 % QND-ness is reported.

Manuscript organization

The manuscript is divided in eight chapters. Superconducting quantum circuits and the field of c-QED are briefly reviewed in chapter 2. The transmon molecule circuit is also introduced. In chapter 3, the choice of coupling and its consequences is investigated in term of qubit readout. In the chapter 4, we study theoretically how this can be translated for the transmon molecule circuit and two regimes of operation are pointed out. The fabrication and design of the system are described in detail in chapter 5 while the cryogenic and microwave setup are described in chapter 6. In chapter 7, the first regime is experimentally explored. In chapters 8 and 9, the second regime is studied. High fidelity single shot readout is achieved in chapter 8 thanks to the Polaritons non-linearity and in chapter 9 thanks to the introduction of an external JPA.

Superconducting artificial atoms and circuit-QED.

2

In this chapter, we review some notions of superconducting quantum circuits and introduce the circuit of interest of this work, the transmons molecule. Finally, the field of circuit Quantum Electro Dynamics (c-QED) and the usual scheme to readout the state of a qubit will be presented.

Superconducting buildings blocks: the Josephson junction and transmon qubit

The Josephson junction, being dissipationless and nonlinear, is a good candidate for the construction of qubits. It is in fact the main ingredient of superconducting quantum circuit and c-QED. Here, we will briefly summarize the Josephson effect, and introduce one particular design, the transmon.

The Josephson effect

A Josephson junction is composed of two superconducting leads separated by an insulating barrier. In our case, the superconductors are made of aluminum and the barrier is an aluminum oxide thin film insulator -see Chapter 5 -.

The Josephson junction

B. D. Josephson [START_REF] Josephson | [END_REF]75], in 1962 and 1964, predicted that Cooper pairs can tunnel through the insulating barrier. This tunneling creates a current of Cooper pairs called supercurrent. This supercurrent I can flow at zero voltage across the two superconducting leads. Between the two superconducting electrodes, there is a gauge invariant superconducting phase difference ϕ. It is the difference of the BCS phase of each superconducting parts. This phase difference modulates sinusoidally the supercurrent with a modulation amplitude I C called the critical current. The critical current indicates how much Cooper pairs can tunnel. It is a factor that only depends on the materials used, the thickness of the insulating barrier and the area of the junction. I C corresponds to the maximum current before the junction transits from a superconducting state to a normal state behavior. The supercurrent is given by the first Josephson equation:

I = I C sin(ϕ) (2.1)
Link back to Moreover, if a non-zero voltage V is applied across the junction, the superconducting phase ϕ will vary with time according to the second Josephson equation:

dϕ dt = 2e h V = 1 ϕ 0 V (2.2) 
where ϕ 0 = h/(2e) is the reduced magnetic flux quantum. According to Eq. (2.1), Eq. (2.2) imposes then the existence of an AC supercurrent of amplitude I C and angular frequency ω = V/ϕ 0 .

By combining the Josephson equations, Eq. (2.1) into Eq. (2.2), a Josephson junction can be seen as an inductance L J given by:

L J = V dI/dt = ϕ 0 I C cos(ϕ) = ϕ 0 I C 1 -( I I C ) 2 = L J 0 1 -( I I C ) 2 (2.3)
where L J 0 = ϕ 0 /I C is the linearized inductance of the Josephson junction. It corresponds, in lowest order, to the inductance L J when the supercurrent (or equivalently the superconducting phase ϕ) is close to zero. The Josephson inductance L J is not a constant but depends on the current I (or equivalently on the phase ϕ).

That's why a Josephson junction is called a non-linear inductor.

It is also interesting to note that as the critical current I C gets bigger, the linear inductance L J 0 value gets smaller. To get an idea on the order of magnitude, a critical current I C of 10 nA approximately gives a linearized inductance value L J 0 of 33 nH. Therefore, a Josephson junction allows to achieve a spatially compact and large inductance. A Josephson junction, as any inductance, has the ability to store energy U J , which is given by averaging over time the instantaneous power V(t)I(t):

U J = V Idt = ϕ 0 dϕ dt I C sin(ϕ)dt = ϕ 0 I C sin(ϕ)dϕ = -E J cos(ϕ) (2.4)
with the Josephson energy E J = ϕ 0 I C .

Superconducting buildings blocks: the Josephson junction and transmon qubit

On the other hand, a Josephson junction, being two electrodes separated by a layer of dielectric also shows a capacitive behavior. In the Capacitively Shunted model [START_REF] Tinkham | Introduction to superconductivity[END_REF], this effect is modeled by a self-capacitance C J in parallel to a pure Josephson element (Fig. 2.1). Therefore, in a linear approximation, a Josephson junction is composed of an inductance shunted by a capacitance. It is approximately an LCresonator whose resonance frequency is given by the plasma frequency ω p :

ω p = 1 L J 0 C J (2.5)
The plasma frequency ω p is a fabrication constant defined during the deposition process. In first order, it does not depend on the area of the junction because the self-capacitance (and the critical current) is proportional to the area while the inductance is inversely proportional to the area. It only depends on the thickness of the insulating barrier, controlled by the oxidation process.

In the end, a Josephson junction is not exactly an harmonic LC-resonator, but an anharmonic one because of the non-linearity of its inductance.

The SQUID

To have one more in-situ experimental knob on a circuit, a Josephson junction is replaced by a Superconducting QUantum Interference Device (squid). It consists of two Josephson junctions in parallel, forming a superconducting loop. By applying a magnetic flux Φ int through the loop, each arms will acquire distinct superconducting phase difference (ϕ R for the right arm and ϕ L for the left arm).

The difference between ϕ R and ϕ L is given by the magnetic flux quantization [START_REF] Tinkham | Introduction to superconductivity[END_REF]:

ϕ R -ϕ L = 2π Φ int Φ 0 = 2πϕ int (2.6)
where Φ 0 = h/(2e) is the magnetic flux quantum and ϕ int = Φ int /Φ 0 is the normalized internal magnetic flux.

Because of this difference in phases, two different supercurrents in the squid (I R in the right arm and I L for the left arm) can interfere and modulate the total amount I tot of supercurrent passing through the squid. Assuming equal critical current for both arms, I C,R = I C,L = I C , the total supercurrent I tot is given by:

I tot = I R + I L =I C sin(ϕ R ) + sin(ϕ L ) (2.7a) =2I C cos ϕ R -ϕ L 2 sin ϕ R + ϕ L 2 (2.7b) =2I C cos(πϕ int ) sin ϕ R + ϕ L 2 (2.7c) =I C tot sin(ϕ tot ) (2.7d)
where I C tot = 2I C cos(πϕ int ) is the effective critical current of the squid and ϕ tot = (ϕ R + ϕ L )/2 is the mean superconducting phase drop across the squid. In the Chapter 2 Superconducting artificial atoms and circuit-QED.

case of non identical critical current, I C,R = I C,L , the total supercurrent has the same form as Eq. (2.7d) but the effective critical current [35] is now given by:

I C tot = I C,Σ cos(πϕ int ) 1 + d 2 J tan 2 (πϕ int ) (2.8)
where I C,Σ = I C,R + I C,L is the sum of the two critical currents and

d J = (I C,R - I C,L )/(I C,R + I C,L
) is the asymmetry factor between the junctions.

In the end, a squid can be seen as a unique Josephson junction with a flux-tunable critical current I C tot given by Eq. (2.8). Therefore a squid can also be seen as a fluxtunable non-linear inductance with linearized inductance strength L J 0 = ϕ 0 /I C tot .

Circuit quantization: example of an LC-circuit

Here, the quantum treatment of a circuit is introduced via the example of a parallel LC-circuit with inductance L, and capacitance C as in Fig. 2.2. We define the generalized flux node Φ n (t) at node n = 1, 2 and at time t as the integral over time of the voltage node V n :

Φ n (t) = t -∞ V n (t )dt (2.9) 
where we have assumed a zero initial state at time t = -∞, i.e. zero current and zero voltage.

Using Kirchhoff's current law, we obtain the equation of motion on the flux drop across the circuit Φ = Φ 2 -Φ 1 :

C d 2 Φ dt 2 + 1 L Φ = 0 (2.10)
Eq. (2.10) can be recognized as the equation of motion of an harmonic oscillator with resonant angular frequency ω LC = 1/ √ LC. The flux drop Φ can therefore be seen as the position of a fictitious particle of mass C. The parameter 1/L is thus the spring constant acting on the fictitious particle. This analogy of the generalized flux Φ as the position of a fictitious particle is used in the rest of this work to describe quantum circuits.

Pursuing this analogy, we can say that the LC-circuit has a kinetic energy K = C(dΦ/dt) 2 /2 = C Φ2 /2 and a potential energy V = Φ 2 /(2L). The fictitious particle is trapped in the parabolic potential V = Φ 2 /(2L) as expected for a linear LC-resonator. In Lagrangian mechanics, the way to describe the circuit is to define its Lagrangian L given by:

L( Φ, Φ) = K -V = C 2 Φ2 - 1 2L Φ 2 (2.11)
Lagrangian description is usually easier to manage when the circuit becomes more complex. 

C L Φ 1 Φ 2 Φ Figure 2.2 -Parallel LC-circuit schematic with a generalized flux drop Φ = Φ 2 -Φ 1 .
Q and is obtained from the Lagrangian by:

Q = ∂ L ∂ Φ = C Φ (2.12)
With a Legendre transformation, the circuit Hamiltonian is obtained:

H = Q Φ -L = 1 2C Q 2 + 1 2L Φ 2 (2.13)
Imposing the commutation relation between flux and charge and promoting the circuit variables to the status of quantum operators, the circuit Hamiltonian is now a quantized Hamiltonian. The commutation relation is:

[Φ, Q] = ih (2.14)
The Hamiltonian Eq. (2.13) is therefore quantized and its eigenenergies E n are described by a single quantum number n corresponding to the number of excitations contained in the LC-circuit. The eigenenergies are given by:

E n = hω LC (n + 1 2 ) (2.15)
with ω LC = 1/ √ LC. Normalized variables Φ and Q are introduced by:

Φ = 1/L hω LC Φ Q = 1/C hω LC Q (2.16)
With these normalized variables, ladder operators are defined by:

c = Φ + i Q √ 2 c † = Φ -i Q √ 2 (2.17)
The ladder operators are quantum operators obeying the commutation relation c, c † = 1. The Hamiltonian Eq. (2.13) is then written as:

H = hω LC (c † c + 1 2 ) (2.18)
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with eigenenergies given by Eq. (2.15). For a linear LC-circuit, the energies are evenly spaced with a spacing of hω LC . It is then impossible to distinguish and address individually the first transition from the others transitions. To be able to do that and restrict the system to a qubit or two-level-system (tls), the nonlinearity of the Josephson junction is essential. In the next section, we review two superconducting qubit systems, the Cooper Pair Box (cpb) and the transmon.

2.1.2

From the cpb to the transmon qubit.

(a) The Cooper Pair Box (cpb) is the first quantum circuit in which Rabi oscillations between the ground and first excited state were observed in 1999 [23]. It is made with a small Josephson junction connecting a superconducting island to a superconducting reservoir (Fig. 2.3.(a)). Moreover, a gate voltage V g can be applied to tune the energy levels. The Hamiltonian of this system is:

V g C g E J, C J (b) V g C g C S E J, C J
H CPB = E C ( n -n g ) 2 -E J cos( φ) (2.19)
where E J is the Josephson energy of the Josephson junction,

E C = (2e) 2 /2(C g + C J
) is the charging energy of the island and n g = C g V g /(2e) is the gate-induced charge normalized by Cooper pair charge. Please note here that the convention used for the charging energy is with the charge of Cooper pair and not the charge of a single electron. There is a conversion factor of 4 between the two definitions. Because the junction is small, for the cpb the Josephson energy is negligible in front of the charging energy, E J E C .

In the cpb case, because the charging energy E C is large, the energies spectrum varies strongly with the gate charge n g . Because of this strong dependence, fluctuations in n g will reduce drastically the coherence time of the cpb. At the sweet spot, n g = 1/2, there is a zero first derivative of the energy with regard to the gate charge n g . The system is thus insensitive to small amplitude charge noise at this working point. Therefore, using a cpb implies a very precise control and management of the gate voltage to be at the sweep spot. However, because the 2.1 Superconducting buildings blocks: the Josephson junction and transmon qubit higher derivatives at the sweet spot are still non-zero, it is still sensitive to large amplitude charge noise, like for example, the low frequency 1/f noise found in any electronic devices. Moreover, thermal excitations and InfraRed (IR) radiations can create quasiparticles in the superconductors leading to single electron jumps (n g jumps by a factor 1/2) in the cpb. Therefore, good thermalization and good shielding are required.

To overcome these limitations, Koch et al. proposed in 2007 the transmon [35]. It is nowadays one of the most known and used superconducting qubit. The transmon design is derived from the cpb and is described by the same Hamiltonian Eq. (2.19) as the cpb. The novelty of this design is based on an increase of the energy ratio E J /E C to become insensitive to charge noise. To do so, a large shunting capacitance C S is added in parallel to the Josephson junction (Fig.

2.3.(b)

). The charging energy E C is therefore decreased and the E J /E C ratio is increased. The downside to this charge insensitivity is a reduced anharmonicity of the artificial atom. However, as discussed in their paper [35], while the charge dispersion is exponentially decreased with increased E J /E C ratio, the anharmonicity only follows a weak power law. Therefore, a good working range of E J /E C can be reached. The validity range given by the authors to be in the transmon regime converted in our energy convention is given by:

5 ≤ E J E C 1.25 × 10 4 (2.20) 
In this range, the anharmonicity is still sufficiently large to be able to address only the two lowest levels and consider the transmon circuit as a tls. Also in this range, the insensitivity to the charge noise is significantly improved compared to the cpb. In the transmon regime Eq. (2.20), the anharmonicity of the transmon α T is approximately given by its charging energy:

α T = E 12 -E 01 - E C 4 (2.21)
where E ij = E j -E i is the transition energy between the j level and the i level of the transmon and E i or E j is the energy of the i or j level of the transmon, respectively. In a time-resolved measurement, the finite time duration of a pulse involves a frequency spread. This frequency spread should not excite higher levels of the transmon and thus should be smaller than the transmon anharmonicity α T . Considering finite pulse durations (of the order of 10 ns in the transmon paper) imposes a lower limit on the transmon anharmonicity and therefore the upper limit in Eq. (2.20).

Remark: There are two main reasons to add a shunting capacitance to increase the E J /E C ratio and not just increase the size of the Josephson junction. First, an increased junction area corresponds to an increase of the possibility to have tls defects in the oxide insulating layer of the Josephson junction [70]. Second, thank to the added shunting capacitance, the value of the Josephson energy and of the charging energy can be chosen almost independently.
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Transmon molecule: two coupled transmons

The transmon molecule has been introduced in the paper and Ph.D. thesis of Dumur [38,76] as a V-shape artificial atom. At that time, the circuit under study was a two transmons circuit with only an inductive coupling between them. Here, in the model, an added capacitor C a between the two transmons is also considered. This is a more accurate description of the samples studied during my thesis as can be seen in Chapter 5. The circuit of interest is pictured in Fig. 2.4. It consists of two 

L a C a Φ b Φ 1 Φ 2 I s (1+d C )C qb (1-d C )C qb (1+d J )E J (1-d J )E J Figure 2.

Circuit Lagrangian and Hamiltonian

The circuit Lagrangian and Hamiltonian are derived in this section. We compute the Lagrangian with the two independent variables Φ 1 and Φ 2 which are the generalized flux at the left and right node respectively (Fig. 2.4). The kinetic energy K (energy stored in the capacitances) of the circuit is:

K = C qb (1 + d C ) 2 Φ2 1 + C qb (1 -d C ) 2 Φ2 2 + C a 2 ( Φ1 -Φ2 ) 2 (2.22)
The potential energy V is given by the Josephson energy of the two junctions plus the inductive energy of the coupling inductance L a . The junctions plus inductance form a squid. Therefore, flux quantization [START_REF] Tinkham | Introduction to superconductivity[END_REF] imposes the following constraint :

Φ 2 -Φ 1 = Φ int (2.23)
with Φ int the internal magnetic flux inside the loop. It is the sum of the external applied magnetic flux Φ b and the flux I s L a created by the screening current I s through the inductance L a :

Φ int = Φ b + I s L a (2.24)
The screening current is therefore given by:

I s = 1 L a (Φ int -Φ b ) = 1 L a (Φ 2 -Φ 1 -Φ b ) (2.25)
The inductive energy is then written as a function of bias flux and the circuit variables:

E L = 1 2 L a I 2 s = 1 2L a (Φ 2 -Φ 1 -Φ b ) 2 (2.26)
The potential energy of the system is given by the Josephson energy of the two junctions plus the inductive energy as follow:

V = -E J (1 + d J ) cos Φ 1 ϕ 0 -E J (1 -d J ) cos Φ 2 ϕ 0 + 1 2L a (Φ 1 -Φ 2 -Φ b ) 2 (2.27)
The Lagrangian of the circuit (L = K -V) can then be written as:

L( Φ1 , Φ2 , Φ 1 , Φ 2 ) = C qb (1 + d C ) 2 Φ2 1 + C qb (1 -d C ) 2 Φ2 2 + C a 2 ( Φ1 -Φ2 ) 2 + E J (1 + d J ) cos Φ 1 ϕ 0 + E J (1 -d J ) cos Φ 2 ϕ 0 - 1 2L a (Φ 1 -Φ 2 -Φ b ) 2 (2.28)
Chapter 2 Superconducting artificial atoms and circuit-QED.

In order to simplify the discussion, for the rest of this section, we will consider the ideal case where there is no asymmetry in the transmons (d C = 0, d J = 0). The effect of asymmetry will be discussed in Section 4.4. The simplified Lagrangian is then:

L = C qb 2 ( Φ2 1 + Φ2 2 ) + C a 2 ( Φ1 -Φ2 ) 2 (2.29a) + E J (cos Φ 1 ϕ 0 + cos Φ 2 ϕ 0 ) - 1 2L a (Φ 1 -Φ 2 -Φ b ) 2 (2.29b)
We introduce a new set of variables:

x = Φ 1 + Φ 2 2ϕ 0 , y = Φ 1 -Φ 2 2ϕ 0 (2.30)
where x is the symmetric (or in-phase) reduced flux and y is the antisymmetric (or out-of-phase) one. In this new variables basis, the Lagrangian becomes:

L( ẋ, ẏ, x, y) = C qb ϕ 2 0 ẋ2 + (C qb + 2C a )ϕ 2 0 ẏ2 + 2E J [cos(x) cos(y) -b(y - Φ b 2ϕ 0 ) 2 ]
where b =

ϕ 2 0 E J L a = L J 0
L a is the ratio of inductive energy ϕ 2 0 /L a to Josephson energy E J . Equivalently, b is the ratio of the Josephson inductance L J 0 to the coupling inductance L a .

The conjugate charges Q x and Q y of the phases x and y, respectively, are given by:

Q x = ∂ L ∂ϕ 0 ẋ = 2C qb ϕ 0 ẋ (2.32) Q y = ∂ L ∂ϕ 0 ẏ = 2(C qb + 2C a )ϕ 0 ẏ (2.33)
Finally, the Legendre transformation allows to obtain the circuit Hamiltonian: 

H = 1 4C qb Q 2 x + 1 4(C qb + 2C a ) Q 2 y + 2E J [-cos(x) cos(y) + b(y - Φ b 2ϕ 0 ) 2 ] (2.
H circuit = 2E C x n 2 x + 2E C y n 2 y + 2E J [-cos(x) cos(y) + b(y - Φ b 2ϕ 0 ) 2 ] (2.35)
This Hamiltonian describes a fictitious particle trapped in the two variables potential

V (x, y) = 2E J [-cos(x) cos(y) + b(y -Φ b 2ϕ 0 ) 2 ]
with an anisotropic mass m x ∝ 1/E C x and m y ∝ 1/E C y along the x and y direction respectively. This Hamiltonian is similar to the one described in E. Dumur work [38,76]. The only difference is that, because of the coupling capacitance C a , the two modes x and y don't have the same charging energy (or same mass). The y mode has a lowered charging energy due to this extra capacitance C a . Equivalently, it has a larger mass. In case of no capacitive coupling between the transmons, C a = 0, the y mode charging energy becomes equal to the x mode charging energy:

E C y ---→ C a →0 E C x (2.36)
Along the y direction, there are two contributions, a 2π-periodic cosine and a

x parabola with amplitude b and an offset given by the bias flux. Along the x direction, the potential is 2π-periodic. The barrier to cross from one well to the other in the x direction is given by 4E J at zero bias flux.The normalized potential V (x, y)/2E J is represented in Fig. 2.5 for a zero bias flux Φ b = 0 and a unitary Chapter 2 Superconducting artificial atoms and circuit-QED.

inductance ratio b = 1.

The Hamiltonian Eq. (2.35) needs to be solved numerically, however an analytical insight is given in the next section.

2.2.2

Taylor expansion around the bottom of a potential well.

Here, we want to simplify the potential V (x, y) in order to obtain an analytically tractable Hamiltonian. With that purpose in mind, we restrict the study around one well of the potential and make a Taylor expansion.

Close to zero bias flux, the potential along the x direction can be restricted to one well around its bottom position x 0 in the large E J /E C x limit. Indeed, the barrier to cross between two wells is given by approximately 4E J and the plasma frequency is approximately given by 2E J E C x /h. Moreover, the potential consists essentially of only one well along the y direction with its bottom located at y 0 because of the parabolic behavior. Therefore, close to zero bias flux, Φ b 0, the potential is restricted to one well around its bottom position {x 0 , y 0 }.

At this position, the fictitious particle oscillates in both directions, with frequencies given by the plasma frequencies ω x and ω y , in the x and y direction respectively, defined by:

h2 ω 2 x =E C x ∂ 2 x V | x 0 y 0 | h2 ω 2 y =E C y ∂ 2 y V | x 0 y 0 | (2.37) 
Insuring that {x 0 , y 0 } is a potential extremum, the first derivatives of the potential V (x, y) in respect to x and y vanish:

∂ x V | x 0 ,y 0 =0 ∂ y V | x 0 ,y 0 =0 (2.38)
Also, to guarantee that the given extremum is a minimum and not a maximum, there are some constraints on the second derivatives given by:

∂ xx V | x 0 ,y 0 >0 ∂ xx V | x 0 ,y 0 ∂ yy V | x 0 ,y 0 -∂ xy V | x 0 ,y 0 ∂ yx V | x 0 ,y 0 >0 (2.39)
These two conditions, Eqs. (2.38) and (2.39), are reduced to:

x 0 mod [π] =0 (2.40a) sin(y 0 ) + 2b(y 0 - Φ b 2ϕ 0 ) =0 (2.40b) cos(y 0 ) >0 (2.40c)

Transmon molecule: two coupled transmons

The potential is then approximately given by its Taylor expansion up to the fourth order in (x, y) around {x 0 , y 0 }:

V (x, y) V 0 (2.41a) + E J cos(y 0 )x 2 + E J (cos(y 0 ) + 2b)y 2 (2.41b) -E J sin(y 0 )x 2 y - 1 3 E J sin(y 0 )y 3 (2.41c) - 1 12 E J cos(y 0 )(x 4 + y 4 ) - 1 2 E J cos(y 0 )x 2 y 2 (2.41d)
The circuit Hamiltonian is therefore approximated around the bottom well position by:

H circuit 2E C x n 2 x + E J cos(y 0 )x 2 - 1 12 E J cos(y 0 )x 4 (2.42a) + 2E C y n 2 y + E J (cos(y 0 ) + 2b)y 2 - 1 12 E J cos(y 0 )y 4 (2.42b) -E J sin(y 0 )x 2 y - 1 3 E J sin(y 0 )y 3 (2.42c) - 1 2 E J cos(y 0 )x 2 y 2 (2.42d)
The circuit Hamiltonian Eq. (2.42) is thus approximately given by two Taylor expanded transmon-like Hamiltonians, one in x, H x and one in y, H y :

H x =2E C x n 2 x + E J cos(y 0 )x 2 - 1 12 E J cos(y 0 )x 4 (2.43) H y =2E C y n 2 y + E J (cos(y 0 ) + 2b)y 2 - 1 12 E J cos(y 0 )y 4 (2.44)
H x is called S-transmon as it correspond to symmetric (or in-phase) excitations of the two initial transmons. It maps to the transmon Hamiltonian [35] and its E J /E C ratio in the Koch notation is given by 4E J cos(y 0 )/E C x . H y corresponds to asymmetric (or out-of-phase) excitations of the two initial transmons. It is not exactly a transmon as it has a reduced anharmonicity compared to a normal transmon because of the coupling inductance (Table 2.1). Its equivalent E J /E C ratio in the Koch notation is given by 4E J (cos(y 0 ) + 2b)/E C y . Because of its reduced anharmonicity, it can be seen more as a non-linear resonator instead of the usual transmon.

H y is called Ancilla because it will be used as an ancillary system to readout the state of the S-transmon as discussed in Chapter 4. There are also some extra terms Eqs. (2.42c) and (2.42d) that will affect and couple the two modes, S-transmon and Ancilla.

At exactly zero flux bias, Φ b = 0, the bottom well position is given by {x 0 , y 0 } = {0, 0}. Therefore the two terms in Eq. (2.42c) vanish. At non zero bias flux, Φ b = 0, Chapter 2 Superconducting artificial atoms and circuit-QED.

the bottom position will be shifted in the y axis according to Eq. (2.40b). Then, the barrier to cross along the x direction is reduced and given by 4E J cos(y 0 ) where 0 < cos(y 0 ) ≤ 1. The restriction to only one well in the x direction is thus becoming less valid. Even more, close to half flux quantum, Φ b Φ 0 /2, there are two families of potential wells labeled by the two possible position in the y axis y [69,70,76].

The key message to remember here is that departing from the zero bias flux condition, the analytical Hamiltonian Eq. (2.42) will become less and less valid.

Quantized Hamiltonian

We want to quantize the approximated Hamiltonian Eq. (2.42). For that purpose, normalized variables are introduced:

x = ∂ 2 x V | x 0 y 0 | hω x x ỹ = ∂ 2 y V | x 0 y 0 | hω y y (2.45a) ñx = 4E C x hω x n x ñy = 4E C y hω y n y (2.45b)
where ω x and ω y are the plasma frequencies defined by Eq. (2.37). The circuit is then quantized by promoting the variables { ñx , x, ñy , ỹ} to quantum operators satisfying the commutation rules:

[ x, ñx ] = i [ ỹ, ñy ] = i (2.46)
We can therefore introduce ladder operators for the x and y motions:

a x = x + i ñx √ 2 a y = ỹ + i ñy √ 2 (2.47) a † x = x -i ñx √ 2 a † y = ỹ -i ñy √ 2 (2.48)
At zero magnetic flux in the loop, Φ b = 0 and y 0 = 0, the quantized circuit Hamiltonian is given by:

H =hω x (a † x a x + 1 2 ) - h K x 4 (a x + a † x ) 4 (2.49a) + hω y (a † y a y + 1 2 ) - h K y 4 (a y + a † y ) 4 (2.49b) - h ω 22 4 (a x + a † x ) 2 (a y + a † y ) 2 (2.49c)

Transmon molecule: two coupled transmons

Eq. (2.49a) describes an harmonic oscillator with frequency ω x in the x direction corrected by a self-Kerr anharmonic term K x . It corresponds to a Taylor expanded transmon valid in the large E J /E C limit or equivalently to a Duffing oscillator [35].

In the same manner, Eq. (2.49b) describes an harmonic oscillator with frequency ω y in the y direction corrected by another self-Kerr anharmonic term K y . This two transmon-like oscillators are coupled through Eq. (2.49c) with the cross-Kerr coupling strength ω 22 . These order four terms K x , K y and ω 22 are named self and cross-Kerr as they are shifting the frequency when a mode is populated [77].

Remark:

The transmon molecule circuit in Fig. 2.4, can be seen in the symmetric case as two identical transmons with an inductive and capacitive coupling. Because of these couplings, there is a degeneracy lift and the system is now described by Eq. (2.49), i.e. two non identical transmons, x and y, with a cross-Kerr coupling between them. At a non-zero flux, Φ b = 0 and y 0 = 0, the Hamiltonian Eq. (2.49) has two new terms:

- h J y √ 2 3 (a y + a † y ) 3 (2.50a) - h ω 21 √ 2 3 (a x + a † x ) 2 (a y + a † y ) (2.50b)
Eq. (2.50a) is a cubic anharmonic correction J y in the y direction. It causes a mixing of the eigenstates n y of the y transmon Eq. (2.49b). In a first order perturbation theory, the eigenstate n y mixes with eigenstates n y ± 3 and n y ± 1 . Eq. (2.50b) is another coupling term between the x and y. It has been experimentally studied in the past by F. Lecocq [70,71]. It can be used to perform coherent up and down frequency conversion. Indeed, two x excitations can be converted in one y excitation and vice versa. This phenomena is more favorable at resonant condition where energy is conserved during the frequency conversion. Beginning from one y excitation, the frequency can be down converted into two x excitations and pair of correlated x excitations can even be created. In the end, for any bias flux as long as the Taylor expansion is valid, the quantized Hamiltonian H Q is given by:

H Q =hω x (a † x a x + 1 2 ) - h K x 4 (a x + a † x ) 4 (2.51a) + hω y (a † y a y + 1 2 ) - h J y √ 2 3 (a y + a † y ) 3 - h K y 4 (a y + a † y ) 4 (2.51b) - h ω 21 √ 2 3 (a x + a † x ) 2 (a y + a † y ) - h ω 22 4 (a x + a † x ) 2 (a y + a † y ) 2 (2.51c)
In Table 2.1, we report the different definitions of the prefactor used in the quantized Hamiltonian as well as their expressions. In Fig. 2.6 are represented the plasma frequencies ω x and ω y versus flux. Because of the term cos(y 0 ) + 2b in ω y instead cos(y 0 ) in ω x , the y plasma frequency ω y is flatter than the x plasma frequency ω x .

Remarks: When the coupling inductance tends to a short-circuit, L a → 0, the inductive ratio tends to infinity b → +∞ and the circuit behaves as a usual simple transmon squid.
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Denomination Formula

Plasma frequency

x direction

ω x = 1 h E C x 2E J cos(y 0 ) y direction ω y = 1 h E C y 2E J (cos(y 0 ) + 2b)

Anharmonic terms

Third order in y J y = sin(y 0 )

3 4 E 3 C y E J 8(cos(y 0 )+2b) 3 Self-Kerr (fourth order) in y K y = E C y 24h cos(y 0 ) cos(y 0 )+2b Self-Kerr (fourth order) in x K x = E C x 24h

Coupling terms

Cross-Kerr coupling 5.1.

ω 22 = √ E C x E C y 4h cos(y 0 ) cos(y 0 )+2b Coherent frequency conversion ω 21 = sin(y 0 ) h E J E 2 C x E C y 8 cos(y 0 )(cos(y 0 )+2b)
The y plasma frequency goes to infinity, ω y ∝ cos(y 0 ) + 2b → +∞. At half flux quantum, the x plasma frequency vanishes, ω x = 0, since y 0 → π/2 as can be seen from Eq. (2.40b). When the coupling inductance tends to an open, L a → +∞, the inductive ratio tends to zero b → 0. The circuit behaves as two transmons with only a capacitive coupling. Therefore, there is no more superconducting loop and no flux dependence anymore. The plasma frequencies are flat versus magnetic flux. Between this two limits, around half flux quantum, there is two solutions for y 0 . This effect has been discussed in [70]. Because

2.2

Transmon molecule: two coupled transmons of this, the x plasma frequency ω x does not vanish at half flux quantum, like it is the case for the usual squid transmon. We emphasize the fact that the vertical scale is not the same for both curves. Circuit parameters used are the ones of sample B reported in Table 5.1.
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Understanding the spectrum

In this section, a first order perturbation treatment, as well as a numerical comparison, is given for the Hamiltonian of Eq. (2.51).

Perturbation theory

Considering the harmonic oscillators part of the Hamiltonian (Eq. (2.51)) as the main Hamiltonian H 0 = hω x (a † x a x + 1 2 ) + hω x (a † y a y + 1 2 ) with eigenbasis n x , n y , the remaining terms are treated as a corrective perturbation of this main Hamiltonian. This treatment can be done because of the difference of scale in frequencies. As seen previously, the plasma frequencies are about 5 GHz to 10 GHz, see Fig. 2.6 while the other frequencies terms are of the order of 100 MHz, Figs. 2.7 and 2.8.

The non-zero magnetic flux terms, with strengths J y and ω 21 are odd functions of the quadratures (a x + a †

x ) or (a y + a † y ). They don't conserve the number of excitations in the x or y oscillators. Therefore, at first order in perturbation theory, they don't affect the eigenenergies. So the only terms we consider for the perturbed eigenenergies are the self-Kerr non-linearities K x and K y and the cross-Kerr coupling ω 22 . The first-order corrected eigenenergies are:

E |nx,ny = + hω x (n x + 1 2 ) - 3 2 K x [(n x + 1 2 ) 2 + 1 4 ] (2.52a) 
+ hω y (n y + 1 2 ) - 3 2 K y [(n y + 1 2 ) 2 + 1 4 ] (2.52b) - hω 22 4 (2n x + 1)(2n y + 1) (2.52c)
where a non-degenerate energy spectrum of the main Hamiltonian H 0 has been assumed. Thanks to the self-Kerr terms K x and K y , the eigenenergies are not evenly spaced. The different transitions in the transmon molecule can then be distinguished and addressed individually. The absolute anharmonicity α x and α y , along the x and y direction respectively, are given by:

α x = (E |2,0 -E |1,0 ) -(E |1,0 -E |0,0 ) = -3K x (2.53
)

α y = (E |0,2 -E |0,1 ) -(E |0,1 -E |0,0 ) = -3K y (2.54)
The anharmonicity α y is always smaller than the anharmonicity α x as can be seen in Fig. 2.7.(a). Indeed, looking at the anharmonic terms in Table 2.1, because of the coupling inductance, there is a smaller than one ratio cos(y 0 )/(cos(y 0 ) + 2b) < 1 in K y that is not present in K x . Also, because of the coupling capacitance C a , the y charging energy E C y is smaller than the x charging energy E C x . For both these reasons, α y < α x .

Moreover, we see in this treatment that the term ω 22 acts in first perturbation order as a simplified cross-Kerr coupling term. Indeed, the resonance frequency of one oscillator depends on the number of excitations in the other oscillator. Thus there The analytic derivation reproduces the shape of the numerical solution with a discrepancy that gets bigger closer to half flux quantum but stays below 5 % to 10 %. In (b), there are some avoided crossing, due to the frequency conversion term ω 21 , that are unexplained by the first order analytical formula which supposed a non-degenerate spectrum of H 0 .

The quantized circuit Hamiltonian Eq. (2.51) is numerically diagonalized in the harmonic oscillators Fock basis using the Python library QuTIP [78,79]. In Fig. 2.9, we see the first five energy levels versus flux for two sets of circuit parameters. The first set of parameters are the ones of sample B given in Table 5.1. The analytical formula of Eq. (2.52) well describes the eigenenergies versus flux. The discrepancy between analytic and numeric gets bigger when the bias flux gets closer to half quantum flux Φ 0 /2 but stays below a relative error of 5 % to 10 %.

For the second set of parameters, only the coupling inductance L a has been changed, it has been reduced in such a way that the first excited Ancilla energy E |0,1 is close to the second excited S-transmon energy E |2,0 . Therefore, the term ω 21 becomes important by creating a degeneracy lifting. This lifting and avoiding crossing is not considered in the first order perturbation treatment where we assumed a nondegenerate energy spectrum of H 0 . There are then more discrepancies between analytics and numerics. Around these avoided crossing, S-transmon states and Ancilla states are mixed and dressed each other and it is no more accurate to consider the Ancilla and S-transmon as the eigenmodes of the circuit.
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Figure 2.10 -Equivalence between the first energy levels of the transmon circuit Eq. (2.51) in the x-y notations and the energy levels of the V-shape artificial atom in the tls approximation [76].

Here, we are interested in the first energy levels. We will approximate each mode by a tls. We then transform the ladders operators into Pauli operators in the following way:

a x → σ qb - a y → σ a - (2.55a) a † x → σ qb + a † y → σ a + (2.55b) 2a † x a x → σ qb z 2a † y a y → σ a z (2.55c) (2.55d)
The tls represented by σ qb z of the S-transmon has been called "qubit" and the one by σ a z of the Ancilla has been called "ancilla qubit" [76]. In the rest of this thesis, the denomination qubit when speaking about the transmon molecule circuit will refer to the tls restriction of the S-transmon. The idea behind these names is that the qubit is the "logical qubit" on which we want to perform measurement and the ancilla will "help" us to do that. There are two main reasons that we used the qubit and not the ancilla as the "qubit" mode. The first one is that the plasma frequency ω x is usually smaller than the plasma frequency ω y , which diverges for 2.3 Circuit-QED: From free space to intra-cavity small coupling inductance L a . The second reason is that the anharmonicity α y is always smaller than the anharmonicity α x .

In the tls approximation for both modes of the circuit, the following Hamiltonian is obtained:

H V = hω qb 2 σ qb z + hω a 2 σ a z - hω 22 4 σ qb z σ a z (2.56)
where ω qb = ω x -3K xω 22 and ω a = ω y -3K yω 22 . The corresponding energy spectrum is drawn in Fig. 2.10. It corresponds to a diamond-like energy diagram where all possible transitions have different frequencies. The direct transition between the qubit and the ancilla, |1, 0 ↔ |0, 1 , is not allowed because there is no term in the Hamiltonian Eq. (2.51) that couple one qubit excitation to one ancilla excitation.

The first two transitions, |0, 0 ↔ |1, 0 and |0, 0 ↔ |0, 1 , with respectively, the frequency ω qb + ω 22 /2 and ω a + ω 22 /2, can be addressed individually. Therefore, the fourth level can be "discarded" and the energy spectrum forms a V-shape diagram. For this reason, the circuit has been called a V-shape artificial atom in previous works [38,71,76]. The V-shape atom is described by its ground state |g = |0, 0 , the qubit excited state |e = |1, 0 , the ancilla excited state |a = |0, 1 and the both qubit-ancilla excited state |p = |1, 1 .

Circuit-QED: From free space to intra-cavity

The field of light-matter interaction of real atom interacting with confined light in micro cavity is named Cavity-QED. In analogy to this field, the scheme of coupling a superconducting artificial atom to a cavity and reading out the states of this atom through the cavity is known as circuit-QED (c-QED). First, the case of an atom in free space will be studied. Then, the interest of placing the atom in a cavity to protect it against noise will be addressed. Finally, the standard readout scheme of a superconducting atom in a cavity will be reviewed.

Qubit in free space

By Fermi's golden rule, we know that the rate at which a qubit decays is proportional to the available density of states (DoS) of the local electromagnetic field at that qubit frequency. A qubit in free space sees an available DoS which is a flat function of frequency. So there are available states at the qubit frequency towards which the qubit can leak. In other words, nothing prevents the qubit from decaying by spontaneously emitting a photon into free space. We can estimate this spontaneous emission decay with a semi-classical approach, where the qubit is considered as an electric dipole. Having a dipolar moment d at angular frequency ω, the dipole like qubit system emits on average the Larmor power P L [START_REF] Jackson | Classical Electrodynamics[END_REF] given by: 3 (2.57)

P L = 1 4π 0 d 2 ω 4 3c
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The resulting decay time is given by the ratio between the qubit energy and the Larmor power:

T 1 = hω P = 12π 0 hc 3 d 2 ω 3 (2.58)
Estimation of dipolar moment can be made with d = 2enL, i.e. the charge of a Cooper pair 2e times the number of Cooper pairs involved in one qubit excitation times the mean distance traveled by Cooper pairs tunneling between the two superconducting islands. For 3D-transmon, typical distance is 400 µm and typical angular frequency ω/2π is 7 GHz. Assuming that only one Cooper pair is involved in one quantum excitation, n = 1, which is not valid for a transmon, this leads to a decay time of order of 0.7 µs. For a more compact 2D-architecture, the typical distance is smaller, L∼ 15 µm, which gives T 1 ∼ 0.5 ms.

Qubit in a cavity

When a qubit is placed inside a cavity, its spontaneous emission rate is altered. Indeed, it is well-known that spontaneous emission rate is not an intrinsic property of the qubit but depends on the environment. This effect is called the Purcell effect [49]. The cavity redefines the DoS available to the qubit. The DoS is no more flat versus frequency. It peaks at the cavity resonance frequency and decreases rapidly out of resonance. Placing the qubit far detuned or near resonance with the cavity allows to reduce or enhance its spontaneous emission rate.

The qubit is no more directly coupled to the environment but it is the cavity who is coupled to the environment via coaxial lines. The Hamiltonian describing the interaction between the cavity and the outside lines is given by:

H κ = h ∑ k λ k (e † k c + e k c † ) (2.59)
where c, c † and e k , e † k are ladder operators for the cavity and for the mode k of the bath environment in the coaxial lines. The factor λ k are the coupling strength between the cavity and the mode k of the bath. We want to estimate the rate Γ i, f Purcell for the transition from an initial eigenstate |i with energy E i of the system qubit plus cavity to the final eigenstate | f with energy E f , by the loss of one photon with energy E i -E f towards the environment. Using Fermi's golden rule, assuming a continuum limit for the environment, the rate Γ i, f

Purcell is given by:

Γ i, f Purcell = 2π h p(ω k )| 1 k | f | ∑ k λ k (e † k c + e k c † ) |i |0 k | 2 (2.60a) =κ| f | c |i | 2 (2.60b)
where p(ω k ) is the DoS of the bath reservoir at the energy hω k = E i -E f and

κ = 2πhp(ω k )|λ k | 2
is the cavity damping rate.

Usually for Purcell computation, the eigenstates |i and | f , of the qubit plus cav- ity system, correspond to the excited and ground state of the qubit, respectively.
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Because of the coupling between the qubit and the cavity, these eigenstate are often a mixture of the bare qubit and the bare cavity eigenstates (Section 3.1). Because of this mixing, which depends on the coupling, the matrix element f | c |i may be non zero. Thus, the coupling might limit the qubit lifetime through Purcell decay. Eq. (2.60b) gives us a good physical insight but is known to not give good quantitative agreement with experiments where the effects of the others modes of the cavity are not so negligible [50].

In conclusion, a cavity can shape the accessible local electromagnetic environment to a qubit. And thus, a cavity can shape the qubit lifetime. This property is very important with the target of building long-lived coherent qubits. There is also another interest to place a qubit inside a cavity; it is the ability to readout the qubit state through the cavity, as explained in the next section. For simplification here, the qubit mode of the superconducting quantum circuit is assumed as a real qubit, i.e. a tls. We consider a one-mode cavity connected to the coaxial lines with coupling strength κ. The cavity can then be probed in transmission or reflection. This cavity measurement depends on the qubit state and therefore the qubit states can be readout through the cavity. The system is pictured in Fig. 2.11.
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Transverse Hamiltonian in the dispersive limit

The usual way to couple a qubit to a cavity is via dipolar interaction creating the transverse coupling g xx σ x (c † + c) where σ x is the off-diagonal Pauli operator describing the qubit, c (c † ) are the creation (annihilation) operators on the cavity field and g xx is the transverse coupling strength. The transverse factor g xx is written with the double 'x' exponent to emphasize the fact that the transverse coupling is following the X quadrature of both modes, σ x and (c † + c) and to differentiate from other couplings, as discussed in Chapter 3.

The system Hamiltonian is therefore given by the well-known Rabi Hamiltonian H Rabi Eq. (2.61a) or in the Rotating Wave Approximation (rwa), by the Jaynes-Cummings Hamiltonian H JC [START_REF] Jaynes | Proceedings of the IEEE[END_REF], Eq. (2.61b).

H Rabi = ω qb 2 σ z + ω c c † c + g xx σ x (c † + c) (2.61a) --→ rwa H JC = ω qb 2 σ z + ω c c † c + g xx (σ -c † + σ + c) (2.61b)
where ω qb and ω c are the qubit and cavity frequencies and σ are the Pauli operators describing the qubit. In the rwa, the counter rotating terms (or non rwa terms), σ + c † and σ -c are considered negligible compared to the rotating terms (or rwa terms), σ -c † and σ + c because they are evolving quickly at ω ∼ 2ω c .

In the dispersive regime, the transverse coupling strength g xx is small compared to the qubit-cavity detuning ∆ qbc = (ω qbω c ), g xx |∆ qbc |. The transverse interaction can then be eliminated to first order in g xx /∆ qbc by a canonical transformation:

H JC = U H JC U † (2.62) where U = exp g xx ∆ qbc (σ -c † -σ + c
) is a unitary displacement operator. In first order, the transformed Hamiltonian H JC is computed:

H JC = 1 2 (ω qb + (g xx ) 2 ∆ qbc )σ z + (ω c + χ jc σ z )c † c (2.63) with χ jc = (g xx ) 2
∆ qbc the dispersive cross-Kerr shift. In the case of the Rabi Hamiltonian, the same procedure can be done but with the unitary displacement operator given by [START_REF] Richer | [END_REF]:

U = exp g xx ∆ qbc (σ -c † -σ + c) - g xx ω qb + ω c (σ + c † -σ -c) (2.64)
A more complete analysis of the dispersive transformation is given in Section 3.2, where the qubit mode is a multi-level system and counter-rotating terms are also taken into account.

The readout shift χ jc σ z c † c is a really important term. Indeed, the qubit pulls the cavity frequency. The states of the qubit can thus be mapped to the resonance 2.3 Circuit-QED: From free space to intra-cavity frequency of the cavity (Fig. 2.12), and therefore to the results of a cavity transmission (or reflection) measurement at a given frequency as will be studied in the next section. Reciprocally, the frequency of the qubit depends on the number of excitations in the cavity, it is the so-called AC-Stark shift [83,84]. Therefore, the measurement, putting photons in the cavity, induces some dephasing on the qubit by changing its frequency. Moreover, in the case where χ jc > κ, the photons number in the cavity can even be resolved through spectroscopic measurement on the qubit [85].

When the cavity is unpopulated, the qubit has its bare frequency renormalized because of the transverse coupling and is shifted by

(g xx ) 2 ∆ qbc
. In a same manner, when the qubit is in its ground state, the cavity has its bare frequency renormalized because of the transverse coupling and is shifted by

-(g xx ) 2 ∆ qbc
. This renormalization effect has been called Lamb shift [86]. The contributions of this renormalization from normal modes splitting to quantum fluctuations is discussed in the paper of Gely [87].

Input-output theory and readout

The input-output theory [88] is briefly presented here. It develops a formulation of quantum damping theory for open quantum system. Among many things, it allows to compute transmission or reflection coefficient.

A quantum circuit plus cavity system H syst is considered. We suppose that the quantum circuit is uncoupled to the environment. Only the cavity is coupled to the environment through two ports, an input port with coupling κ in and an output port κ out and we have the total port coupling κ tot = κ in + κ out . Through the input port κ in , an input field c in and an output field c r interact with the cavity. The input field c in is composed of incoming waves towards the cavity and the reflected field c r is composed of outgoing waves. Through the output port κ out , there are also an input field c in and a output field c t that interact with the cavity. The input and output fields are bound to the intra-cavity field via the input-output relations:

c r -c in = √ κ in c (2.65a) c t -c in = √ κ out c (2.65b)
Eqs. (2.65a) and (2.65b) mean that there is a balance between the input fields, the intra-cavity field and the output fields. The outgoing field c r is composed of two contributions, the input field c in that get reflected at the interface κ in and the field that leaks out of the cavity through the port κ in .

In the end, we want to know the dynamics of the system and the transmission coefficient T = c t / c in . In the Heisenberg picture, the dynamics of the intracavity field is given by:

∂ t c = - i h c, H syst - κ tot 2 c + √ κ in c in + √ κ out c in (2.66)
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The first right-hand-side (rhs) term of Eq. (2.66) describes the internal dynamics of the quantum system, e. g. the dynamics due to the interaction of the cavity with a qubit. The damping through the two ports κ tot = κ in + κ out is described by the second rhs term of Eq. (2.66). Finally, the last rhs terms are the field supply given by the input fields. For any other operator O of the system that is not coupled to the environment, its dynamics is given by the Heisenberg equation of motion:

∂ t O = - i h O, H syst (2.67)
In the usual transmission measurement, as sketched in Fig. 2.11, an incoming wave is sent through the input port, and the outcoming wave from the output port is collected and measured. Therefore, forgetting about noise and stochastic processes, the ingoing field c in from the output port is assumed to be zero, c in = 0.

In the case where the system Hamiltonian is given by Eq. (2.63), H syst = H JC . The equations of motion are given by:

∂ t c = -i(ω c + χ jc σ z )c - κ tot 2 c - √ κ in c in (2.68a) ∂ t σ z =0 (2.68b) 
The qubit state σ z is a constant of motion, it can be replaced by one of its two eigenvalue s z = ±1. We note also that the cavity field dynamics depend on the qubit state through the term -iχ jc σ z c. Assuming a noiseless sinus input field at frequency ω and a steady-state regime, a qubit state dependent cavity field is obtain:

[i(ω -ω c -χ jc s z ) - κ tot 2 ]c = √ κ in c in (2.69)
Combining this with Eqs. (2.65a) and (2.65b), and casting the operators as classical complex values, the qubit state dependent transmission coefficient is obtain:

T(s z ) = c t c in = 2 √ κ in κ out κ tot -2i∆(s z ) (2.70)
where ∆(s z ) = ∆ωχ jc s z = ωω cχ jc s z is the detuning between the drive frequency ω and the qubit dependent cavity frequency and ∆ω = ωω c is the detuning between the drive frequency and the bare cavity frequency. The amplitude |T| and phase ϕ T of the transmission coefficient are plotted in Fig. 2.12. For a drive frequency at one of the pulled cavity frequency ∆ω = ±χ jc , depending on the qubit state, the transmitted signal will be either not transmitted or transmitted. The information about the qubit state is mostly stored in the transmitted amplitude, i.e. the mean photons number n = c † c .

For a drive frequency at the bare cavity frequency, the information on the qubit state will be encoded in the phase of the signal but with a relatively "low" mean photon number. The signal acquires a phase difference δθ = ± arctan(2χ/κ) when the qubit is in the ground (+ arctan(2χ/κ)) or excited state (-arctan(2χ/κ)).
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Some limitations

The qubit readout model we just described contains approximations. Therefore there are some imposed experimental limitations if we want to be in the validity domain of this model.

One constraint of this description is that measurements need to be done at low mean photon number n. The Hamiltonian of Eq. (2.63) will become less and less valid as n approaches the critical value [START_REF] Blais | [END_REF]. Indeed, to perform the canonical transformation Eq. (2.62), we have supposed the dispersive regime where g xx ∆ qbc . However, g xx is the strength of the transverse coupling only when there is 0 or 1 photon in the cavity. And the strength of the transverse coupling gets bigger as the photon number. It scales as the square root of the mean photon number, g xx ∝ √ n. Therefore, the dispersive approximation breaks down if the mean photons number n gets close to the critical photon number n crit . In conclusion, with the transverse coupling, there is a upper limit on the input power P in , given by n(P in ) n crit and therefore the output power is also limited.

n crit = ∆ 2 qbc 4(g xx ) 2
Another restriction of this readout scheme is the so-called Purcell decay [49]. From Eq. (2.60) with the "qubit" eigenstates of the Jaynes-Cummings Hamiltonian H JC Chapter 2 Superconducting artificial atoms and circuit-QED.

of Eq. (2.61b), the Purcell rate is approximately given by:

Γ Purcell κ tot (g xx ) 2 ∆ 2 qbc (2.71)
Experimentally, we usually want the Purcell rate to be small enough so that it can be neglected compared to the other loss rates like, for example, dielectric loss [89,90,91,92,93]. This imposes some limitations on the strengths of the couplings κ tot , g xx and the detuning ∆ qbc .

Readout performances

Signal over Noise Ratio

The Signal over Noise Ratio (SNR) for distinguishing the two states of a qubit is given by [94]:

SN R(t) = η Γ m (t) γ 1 = η κ tot γ 1 |c e (t) -c g (t)| 2 (2.72)
where η is the quantum efficiency of the setup, Γ m (t) = κ tot |c e (t)c g (t)| 2 is the maximum measurement rate and γ 1 is the qubit decay rate. κ tot is the rate at which photons leak out of the cavity and |c e (t)c g (t)| 2 is the amount of information about the qubit state encoded in the leaking photons. c g (t) and c e (t) correspond to the intra-cavity field amplitude when the qubit is in the ground or excited state respectively.

For the Hamiltonian Eq. (2.63), in the steady state limit, the SNR is given by:

SN R = 4ηnκ tot χ 2 jc γ 1 ( κ 2 tot 4 + χ 2 jc ) (2.73)
where the mean photon number n is assumed to be small compared to the critical photon number n crit and the drive frequency is at the frequency of the bare cavity. In these conditions, for a fixed number of photons n n crit and fixed decay rate γ 1 , the SNR is maximal when κ tot = 2χ jc and is given by SN R = 2ηnκ tot /γ 1 = ηnκ tot T 1 with T 1 = 1/γ 1 the Relaxation time of the qubit.

Remark: For a qubit transversely coupled to a single mode cavity, the product κ tot T 1 is bounded by the detuning over coupling strength ratio, κ tot T 1 ≤ (∆ qbc /g xx ) 2 and the mean photons number n is bounded by the critical photons number n n crit = (2g xx /∆ qbc ) 2 . Therefore, the SNR is bounded to SN R 8η.

Due to the finite decay time T 1 of the qubit, the measurement integration time T meas needs to be kept small, T meas < T 1 . With a standard commercial cryogenic HEMT amplifier and its added noise, and because of the limitations of the dispersive limit, a single-shot qubit measurement doesn't allow to separate sufficiently the two pointer states of the cavity, the SNR being too small. For this reason, usual qubit measurements are done in a repetitive and averaged way. So the quantum 2.3 Circuit-QED: From free space to intra-cavity parameter which is measured is the expected value, σ z averaged over several realizations and not the instantaneous quantum operator σ z (t). Averaging over several realizations allows to reduce the noise and distinguish the two qubit states.

The first Single-Shot-High-Fidelity measurement has been performed in 2009 with a Josephson Bifurcation Amplifier (JBA) [53]. Since then, single shot measurements have been improved, in term of fidelity and measurement time, thanks to the introduction of quantum limited amplifier like the Josephson Parametric Amplifier (JPA) [START_REF] Planat | BIBLIOGRAPHY 08476v1[END_REF] and to the introduction of Purcell filter [55,56,57]. Using a Josephson based amplifier allows to reduce the noise of the setup (Chapter 6), and therefore increased the quantum efficiency η and thus the SNR. Moreover, using a Purcell filter allows to increase the product κ tot T 1 and the readout shifts χ jc without impeding the qubit. Indeed, thanks to the Purcell filter, the bound κ tot T 1 ≤ (∆ qbc /g xx ) 2 can be overcome [56].

Readout fidelity

The qubit state is readout through the frequency shift of the cavity. For one given readout frequency, the transmission (or reflection) real and imaginary parts, Q and I respectively, takes both two different values depending on the two qubit states. Let's assume that it is on the Q direction that the two qubit states are the most separated. Then, on the I direction, we don't distinguish the two qubit states. In the IQ plane, after several realizations of qubit states measurement, when preparing half the time the ground state |g and the other half the excited state |e , we see two blobs, with a Gaussian width given by the quantum plus thermal fluctuations in the experimental setup. Along the Q-quadrature, there are two main Gaussian corresponding to the two qubit states, highlighted by the black dashed lines in Fig. 2.13. We define the readout fidelity F RO of a measurement by: F RO =1 -P(e|g) -P(g|e) (2.74a)

F RO =1 -P(Q ≥ Q T |g) -P(Q ≤ Q T |e) (2.74b)
where P(e|g) is the error of reading out the e state while having prepared the g state and vice versa for P(g|e). Experimentally, we define a threshold Q T and these errors are approximated by P(Q ≥ Q T |g) the probability to be above threshold when having prepared the g state for P(e|g) and by P(Q ≤ Q T |e) the probability to be under threshold when having prepared the g state for P(e|g). In a similar way, we define the g state readout fidelity F g and the e state readout fidelity F e by:

F g =1 -P(e|g) (2.75a
)

F e =1 -P(g|e) (2.75b)
Inside these errors, we can distinguish two types of errors, Gaussian (or overlap or separation) errors and transitions errors. The Gaussian error is given by the green shaded area in Fig. 2.13. It correspond to the overlap of the two main Gaussian Chapter 2 Superconducting artificial atoms and circuit-QED.

due to the noise of the setup. We define the Gaussian separation fidelity F G by:

F G =1 -P g (Q ≥ Q T ) -P e (Q ≤ Q T ) (2.76a) (2.76b)
where P g (Q ≥ Q T ) is the error probability that the Gaussian corresponding to the ground state is above threshold and P e (Q ≤ Q T ) is the error probability that the Gaussian corresponding to the excited state is under threshold.

In Fig. There are two main Gaussian in dashed blacked lines corresponding to the two qubit states. The green shaded area corresponds to Gaussian errors and the blue and red shaded areas correspond to transition errors.

using the same readout scheme of the dipolar or transverse coupling between a qubit and a resonator. One of the aim of this work is to perform single-shot qubit measurement without qubit to cavity transverse coupling.

2.4 Chapter keypoints

Chapter keypoints

In this chapter, the main ingredient of superconducting quantum circuit, the Josephson junction, has been introduced. Being a non-linear inductance, it allows to design what is called superconducting artificial atom and superconducting qubit. The transmon, one of the most used superconducting qubit, has been introduced. The basics of c-QED as well as the standard process to perform qubit readout have also been briefly reviewed. The circuit of interest in this thesis, the transmon molecule or V-shape atom, has been presented. Consisting of two coupled transmons, it results in two eigenmodes called S-transmon and Ancilla. Between these two modes, there is a cross-Kerr coupling which can be useful for qubit readout as will be explained in Chapter 4.

Different qubit readout schemes and consequences

3

In this chapter, three types of coupling between an atom and a readout mode are reviewed with the perspective of qubit readout in mind.

We call readout mode a mode that is coupled to the outside coaxial lines and can be probed by a one-tone transmission or reflection measurement. The system we are interested in is represented in Fig. 3.1. We focus on the coupling with two goals, qubit readout through the readout mode and the hindrances caused by the coupling on the qubit. Three types of couplings are studied theoretically. The first one is the ideal simplified cross-Kerr coupling allowing Quantum-Non-Demolition (QND) measurement of the qubit states. The two other couplings, transverse and cross-Kerr, are not ideal and will impede the qubit. However, they Link back to Table of contents →

Chapter 3 Different qubit readout schemes and consequences behave under some approximations as the ideal simplified cross-Kerr coupling, and therefore can be used for qubit readout.

In Table 3 

g zz (b † b)(c † c) g zz 2 σ z (c † c) transverse coupling g xx (b † + b)(c † + c) g xx σ x (c † + c) cross-Kerr coupling g x 2 x 2 (b † + b) 2 (c † + c) 2 g x 2 x 2 (σ z + 1)(c † + c) 2 "longitudinal" coupling 2g zx b † b(c † + c) g zx σ z (c † + c)
Table 3.1 -Denominations used for different couplings terms for a multilevel atom or a tls atom. For the exponents of the coupling strengths, the first is dedicated to the atom and the second to the readout mode, 'z' means that it is following the number of excitations, for example b † b or σ z , 'x' means that it is following the quadrature, for example (b † + b) or σ x and 'x 2 ' means that it is following the quadrature squared, for example (b † + b) 2 .

Ideal readout with simplified cross-Kerr coupling

QND measurement thanks to ideal simplified cross-Kerr coupling

As mentioned in Section 2.3.3, having a simplified cross-Kerr coupling between a qubit and a readout mode allows to measure a qubit state through the cavity resonance thanks to the conditional frequency shift. If a qubit-cavity system could be described by only this ideal simplified cross-Kerr coupling term, then one can perform a Quantum-Non-Demolition (QND) measurement no matter the number of photons put inside the resonator.

To perform a measurement on a quantum system S, one needs a meter M, with the observable O M , that will evolve among a set of pointer states. Each of them 'points towards' an eigenvalue of the observable O S , of the system S, that we want to measure. There should be a bijection between the eigenstates of O S and the pointer states of O M . The total Hamiltonian H = H S + H M + H SM of the ensemble S M is made of three terms describing the system H S , the meter H M , and their mutual coupling H SM respectively.

Ideal readout with simplified cross-Kerr coupling

A QND measurement is an ideal process where we can extract information about a quantum state without disturbing it [START_REF] Haroche | Exploring the quantum: atoms, cavities and photons[END_REF][START_REF] Caves | [END_REF]. A QND measurement should be projective, and repeatable. It projects the observable O S into one of its eigenstate and a immediately after repeated measurement should give the same results as the one before. This QND aspect of a measurement imposes a set of commutation conditions on the Hamiltonians, given by:

[H SM , O M ] =0 (3.1a) [H SM , O S ] =0 (3.1b) [H S , O S ] =0 (3.1c)
The inequality in Eq. (3.1a) means that some information about the measured observable O S should be encoded in the meter pointer states after the interaction. The equality of Eq. (3.1b) means that the measurement should not affect the eigenstates of O S . The last equality Eq. (3.1c) means that O S is a constant of motion for H S . The eigenstates of O S should not evolve under the action of the free system Hamiltonian H S between two interactions with the meter, making the measurement repeatable.

For the case of a tls qubit with simplified cross-Kerr coupling to a cavity, the system Hamiltonian H S and the observable O S are:

H S = ω qb 2 σ z O S =σ z (3.2) 
The meter Hamiltonian H M is the cavity Hamiltonian plus a time dependent Hamiltonian corresponding to a pulsed drive with amplitude (t) at a frequency ω D close to the cavity frequency. The observable O M is one quadrature of the cavity field.

H M =ω c c † c + (t)(c † e -iω D t + ce iω D t ) , O M (1) =c † -c or O M (2) = c † + c (3.3)
And finally, the coupling Hamiltonian H SM is the simplified cross-Kerr Hamiltonian:

H SM = g zz σ z c † c (3.4)
We see easily that the set of Eq. (3.1) is fulfilled with:

H SM , O M (1) = -g zz σ z (c † + c) = 0 (3.5a) [H SM , O S ] =0 (3.5b) [H S , O S ] =0 (3.5c)
Qubit readout thanks to simplified cross-Kerr coupling is then a QND measurement. That's why we call the simplified cross-Kerr coupling an ideal coupling.

Chapter 3 Different qubit readout schemes and consequences

But can we build a superconducting quantum circuit fully described by this ideal Hamiltonian? To the best of my knowledge, some approximations are always made to achieve the simplified cross-Kerr coupling. We can then wonder how close to this ideal situation we can engineer our system. The first way, which is the most known, is to use transverse coupling in a far detuned manner so that qubit and resonator are approximately simplified cross-Kerr coupled and their eigenstates are not too much perturbed by each other. This transformation from transverse coupling to simplified cross-Kerr coupling and how much it disturbs the states will be studied in the following Section 3.2.

The second way would be to use a cross-Kerr coupling. In Section 3.3, we will see that the cross-Kerr coupling is equivalent to the simplified cross-Kerr coupling in the rwa. The perturbation on the eigenstates created by this coupling will also be studied.

Another ideal readout scheme: the parametrically modulated longitudinal coupling

In 2015, Didier et al [66] proposed a new scheme to readout a qubit state. They proposed to use the coupling Hamiltonian, they call longitudinal, given by:

g zx σ z (c † + c) (3.6) 
It is different from the simplified cross-Kerr and from the transverse coupling. Like the transverse and unlike the simplified cross-Kerr coupling, it is following the quadrature of the readout mode field (c † + c). Like the simplified cross-Kerr and unlike the transverse coupling, the longitudinal coupling is following σ z . Because of this reason, the longitudinal coupling also allows QND measurement.

By parametrically modulating the coupling strength g zx at the cavity frequency, the qubit-oscillator interaction acts as a qubit-state dependent drive on the cavity. It is a situation fundamentally different from the standard simplified cross-Kerr case, leading to the fastest and optimal separation of the cavity pointer states, according to the authors.

In the transmon molecule, the frequency conversion coupling term ω 21 in Eq. (2.50b) can be seen in the rwa and tls approximation as the "longitudinal" coupling of Eq. (3.6). However, in this thesis, we decided to focus on the direct cross-Kerr as it was still an unexplored possibility.

Simplified cross-Kerr readout from the transverse coupling

The transverse coupling is usually made thanks to electric dipolar interaction between an atom and the cavity electric field. The resulting coupling Hamiltonian is proportional to the charge operator Q of the atom (e. g. a transmon) and the quadrature of the electromagnetic field (c † + c), as shown in [46]. In the large E J /E C limit, the transmon charge operator can be approximated by ladder operators b and b † as in [35]:

Q ∝ (b -b † ) (3.7)
3.2 Simplified cross-Kerr readout from the transverse coupling

In this limit, the transmon states can be described by a unique quantum number n. The transverse coupling strengths g xx n,l , between the readout mode and the transmon eigenstates |n and |l , are proportional to the projection of the charge operator on these states:

g xx n,l ∝ n| Q |l (3.8)
where the coupling between transmon states with a difference of more than one excitation tends to zero, g xx n,n+k -------→

E J /E C →+∞ 0 for |k| > 1 [35].
The total Hamiltonian is therefore written in the following way:

H h = ∑ n ω n |n n| H T + ω c c † c H C + ∑ n g xx n,n+1 |n -1 n| + |n + 1 n| (c † + c) H XX (3.9)
where H C describes the cavity with frequency ω c , H T describes a transmon with frequencies ω n and H XX describes their mutual coupling given by a transverse coupling.

From transverse to simplified cross-Kerr Hamiltonian

We want to know how to readout the atomic state via the readout mode. For that, as in Section 2.3.3, we will see that the simplified cross-Kerr coupling can be obtained from the transverse coupling. The derivation is similar to the one given in [35], however, the difference is that, here, the rwa will not be performed before the dispersive approximation.

From the Hamiltonian of Eq. (3.9), we define the detuning ratio β n and the sum ratio λ n as:

β n = g xx n,n+1 δ n -ω c λ n = g xx n,n+1 δ n + ω c (3.10)
where δ n = ω n+1ω n is the n → n + 1 transition energy of the atom.

In the dispersive regime, those ratio are small, β n , λ n 1 for any n. We can then eliminate the cavity-atom transverse interaction to lowest order in β n and in λ n by a canonical transformation:

H = U H U † (3.11)
where U is an unitarian displacement operator defined by:

U = exp(Θ) (3.12a) Θ =S -S † (3.12b) S = ∑ n (β n c + λ n c † ) |n + 1 n| (3.12c)
Chapter 3 Different qubit readout schemes and consequences

Using the Baker-Campbell-Hausdorff relation where we stopped at first order in β n , the transformed Hamiltonian H is given by:

H H +[Θ, H] (3.13)
Therefore, the computation of the transformed Hamiltonian H is reduced to the computation of the commutator [Θ, H]. First thing to check is that the choice of the unitary displacement operator U allows the suppression of the transverse coupling with:

[Θ, H C + H T ] = -H XX (3.14)
The transformed Hamiltonian is therefore given by:

H = H C + H T +[Θ, H XX ] (3.15)
where the transformed Hamiltonian now describes the transmon H T and the readout mode H C and a transformed coupling between the two of them [Θ,

H XX ].
This transformed coupling term is the one that will lead us to an effective simplified cross-Kerr coupling. Computing the commutator, the transformed coupling is given by:

1 h [Θ, H XX ] = ∑ n χ n,n+1 |n + 1 n + 1| (3.16a) + ∑ n [χ n-1,n -χ n,n+1 ]c † c |n n| (3.16b) + ∑ n η n [c 2 |n + 2 n| + c † 2 |n n + 2|] (3.16c) + ∑ n χ n-1,n -χ n,n+1 2 (c † 2 + c 2 ) |n n| (3.16d) + ∑ n [ξ n + c † c(η n + ζ n )](|n n + 2| + |n + 2 n|) (3.16e) + ∑ n ζ n [c † 2 |n + 2 n| + c 2 |n n + 2|] (3.16f)
where χ -1,0 = 0 and ∀n ≥ 0:

χ n,n+1 = g xx n,n+1 2 (β n -λ n ) (3.17a) η n = g xx n,n+1 β n+1 -g xx n+1,n+2 β n (3.17b) ζ n = g xx n,n+1 λ n+1 -g xx n+1,n+2 λ n (3.17c) ξ n = g xx n,n+1 β n+1 -g xx n+1,n+2 λ n (3.17d)
3.2 Simplified cross-Kerr readout from the transverse coupling

The atom frequencies will be shifted by χ n,n+1 because of the presence of the cavity and their mutual coupling, see Eq. (3.16a). This shift does not depend on the photon number inside the cavity and exists even when there is no photons inside the cavity. It corresponds to the Lamb shift, a renormalization of the atomic frequencies by the presence of the cavity even when there is no mean photon in the cavity.

The second effect is a photon-number dependent shift by [χ n-1,nχ n,n+1 ]c † c on all the atoms frequencies, see Eq. (3.16b). It is called the AC-Stark shift. The other side of this effect is that the cavity resonance transition will be shifted differently for each states of the atom. The atomic level |n pulls the cavity resonance by a frequency [χ n-1,nχ n,n+1 ]. In this way, the cavity is a good meter to readout the atom states.

Finally, terms of Eqs. (3.16c) to (3.16f) correspond to a transition of two photons for the cavity, or two excitations for the atom or for both of them. In the transmon paper [35], because the rwa was done before the first order dispersive transformation, most of those terms were not considered. Even if the rwa is perform before hand, the non-rwa term in Eq. (3.16c) is still obtained from the dispersive transformation. The discarded terms correspond to the spontaneous creation (or annihilation) of only two transmon excitations, Eq. (3.16e), even when the cavity is unpopulated, or the spontaneous creation (or annihilation) of only two photons Eq. (3.16d) even when the transmon is in its ground state. Finally, there is also the simultaneously spontaneous creation (or annihilation) of both two photons and two transmon excitations, Eq. (3.16f). In the end, all of those terms Eqs. (3.16c) to (3.16f) are negligible and suppressed during the rwa.

However, not doing the rwa beforehand does not only give the new terms Eqs. (3.16c), (3.16e) and (3.16f) but also brings the correctives factors λ n to the other terms. As stated previously in the case n = 0, the ratio λ n is usually one order of magnitude less than β n . So doing the rwa before the dispersive shift creates a relative error on the estimated shifts χ n,n+1 of about 10 %, if we see λ n as an error made on β n .

Making the rwa now, we can drop the terms of Eqs. (3.16c) to (3.16f). And, within the tls approximation, the transverse Hamiltonian gives approximately the simplified cross-Kerr Hamiltonian:

H ZZ = hω qb 2 σ z + h(ω c + χ qb,c σ z )c † c (3.18)
where

ω qb = ω 1 -ω 0 + χ 0,1 is the renormalized qubit frequency, ω c = ω c + χ 1,2
2 is the renormalized cavity frequency and χ qb,c is the effective simplified cross-Kerr readout shift. It is given by:

χ qb,c = χ 0,1 - χ 1,2 2 (3.19)
As discussed in [35], the effective qubit readout shift is modified from the simple case of a tls with Jaynes-Cumming coupling to the cavity as in Section 2.3.3. The simplified cross-Kerr shift is not anymore given by the simple χ 0,1 = (g xx ) 2 /∆ qbc but is reduced because of the multi-level aspect of the atom. Indeed, it consists of Chapter 3 Different qubit readout schemes and consequences two contributions which differ in signs and so there is a partial cancellation. In a perturbative energy picture, the first and second excited states of the transmons can be seen as repelling the energy levels in opposite direction. In case of a pure harmonic oscillator and not an atom, these two contributions perfectly cancel each other. From the tls to the harmonic oscillator (HO) case, the readout shift scales as the anharmonicity α T over the sum of detuning ∆ qbc plus anharmonicity:

χ rwa qb,c (g xx ) 2 α T ∆ qbc (∆ qbc + α T ) tls ----→ α T →+∞ (g xx ) 2 ∆ qbc (3.20a) χ rwa qb,c (g xx ) 2 α T ∆ qbc (∆ qbc + α T ) HO ---→ α T →0 0 (3.20b)
where we have neglected the λ n correction for simplicity, ∆ qbc = δ 0ω c is the qubit-cavity detuning and α T = δ 1δ 0 is the transmon anharmonicity.

Usually, the sum ratio λ n is one order of magnitude smaller than the detuning ratio β n and that's why, it is neglected. We define the error χ made on the dispersive simplified cross-Kerr shifts by:

χ = χ qb,c -χ rwa qb,c χ qb,c (3.21) 
where χ qb,c is the shift, with the sum ratio, given by Eq. (3.19) and χ rwa qb,c is the approximated shift, without the sum ratio, given by Eq. (3.20). This error χ is shown in Fig. 3.2 as a function of the ratio λ/β of the sum ratio λ 0 over the detuning ratio β 0 . The λ/β ratio is equal to the detuning over the sum, (δ 0ω c )/(δ 0 + ω c ) for the first transition of the atom and is independent of the transverse coupling strength.

In an experiment, we sometimes want to extract the transverse coupling strength g xx from the measurement of the dispersive simplified cross-Kerr coupling strength. Depending on the formula used, Eq. (3.19) or Eq. (3.20), a different transverse coupling strength can be extracted, g xx λ with the sum ratio or g xx rwa without the sum ratio. We also define the error g made on the transverse coupling strength by:

g = g xx λ -g xx rwa g xx λ (3.22)
This error g is shown in Fig. 3.2 as a function of the λ/β ratio.

For example, for a cavity frequency ω c /2π = 7 GHz and a qubit frequency ω qb /2π = 3 GHz, the λ/β ratio is 40 % and the errors are χ 15 % ± 1 % and g 9 % ± 1 % for an anharmonicity α T /2π between 100 MHz and 600 MHz.

States mixing and Purcell effect with transverse coupling

Usually, the transverse coupling g xx 0,1 /2π is of the order of 100 MHz while the qubit and cavity frequencies are of the order of 5 GHz to 10 GHz. The transverse coupling can then be treated as a perturbation on the main Hamiltonian H 0 = H T + H C . The eigenbasis {|n b , n c } of H 0 is given by two quantum numbers, n b the number of atom excitations and n c the number of resonator excitations. To first order in perturbation theory, the new eigenbasis is written as:

|n b , n c = |n b , n c (3.23a) + g xx n b -1,n b √ n c + 1 ω c + (ω n b -1 -ω n b ) |n b -1, n c + 1 (3.23b) + g xx n b ,n b +1 √ n c -ω c + (ω n b +1 -ω n b ) |n b + 1, n c -1 (3.23c) + g xx n b ,n b +1 √ n c + 1 ω c + (ω n b +1 -ω n b ) |n b + 1, n c + 1 (3.23d) + g xx n b -1,n b √ n c -ω c + (ω n b -1 -ω n b ) |n b -1, n c -1 (3.23e)
where we suppose that there are no energy degeneracy between the atom and the resonator. As we see in Eq. (3.23a), the new eigenstates are mostly made by their Chapter 3 Different qubit readout schemes and consequences corresponding old states. However, these new eigenstates also spread on other states, see Eqs. (3.23b) to (3.23e). More specifically, the two 'almost' qubit (excited |1, 0 and ground |0, 0 ) states while the cavity is unpopulated are:

|1, 0 = |1, 0 + g xx 0,1 ∆ qbc |0, 1 + g xx 1,2 ω 2 -ω 1 + ω c |2, 1 (3.24a) |0, 0 = |0, 0 + g xx 0,1 (ω 1 -ω 0 ) + ω c |1, 1 (3.24b) 
where ∆ qbc = (ω 1ω 0 )ω c is the detuning between qubit and cavity. The second right hand side term of Eq. (3.24a) is the term that leads to Purcell decay as it mixes the qubit excited state without photon |1, 0 to the qubit ground state with a photon |0, 1 . In the end, the Purcell decay is given by:

Γ P = κ| 0, 0|c|1, 0 | 2 κ (g xx 0,1 ) 2 ∆ 2 qbc (3.25)
where κ is the damping rate of the bare cavity. As stated in Section 2.3.2, this formula doesn't give a good quantitative agreement with experiments because it doesn't consider the multi modes aspect of the cavity [50]. Also, when a Purcell filter is used [55,56,57], a new analysis of the system and its Purcell decay should be made.

The ratio g xx 0,1 /∆ qbc might not be so small. As we have seen previously, this ratio can't be too small in order to achieve a large enough dispersive simplified cross-Kerr readout shift. In the literature, it is often found to be on the order of 10 %. A non exhaustive list of these ratio is reported in Table 3.2. This means that thinking of the "qubit" as only the bare qubit might sometimes be misleading because it is dressed by the cavity. To emphasize this hybridization effect, the eigenstates of the system have sometimes be renamed "quton" and "phobit" [97].

From the cross-Kerr coupling

The cross-Kerr coupling Hamiltonian is assumed to be proportional to the squared flux operator Φ 2 of the transmon and the squared quadrature of the readout mode (c † + c) 2 . We have seen that this coupling is achieved with the transmon molecule with Eq. (2.49c). In the large E J /E C limit, the squared flux operator can be approximated by ladder operators b and b † as:

Φ 2 ∝ (b † + b) 2 = b † 2 + b 2 + 2b † b + 1 (3.26)
In this limit, the transmon states can be described by a unique quantum number n b . The cross-Kerr coupling strengths are given by the projection of the squared flux operator between the transmon states |n b and |l b as: By the cross-Kerr coupling, the state |n b will then be coupled only to the states |l b with l b = n b and l b = n b ± 2. Therefore, we define the different coupling strengths:

g x 2 x 2 n b ,l b ∝ n b | Φ 2 |l b ∝ n b | (b † 2 + b 2 + 2b † b + 1) |l b (3.
2g x 2 x 2 n b ,n b + g x 2 x 2 0
between the state |n b and himself and g x 2 x 2 n b ,n b +2 between the states |n b and |n b + 2 . g x 2 x 2 0 corresponds to a Lamb shift by shifting the cavity frequency even when the transmon is in its ground state. The coupling g x The transmon plus readout mode Hamiltonian is then given by:

H = H T ∑ n b ω n b |n b n b | + H C ω c c † c + g x 2 x 2 0 + ∑ n b g x 2 x 2 n b ,n b +2 {|n b n b + 2| + |n b + 2 n b |} + 2g x 2 x 2 n b ,n b |n b n b | (c † + c) 2 H X 2 X 2 (3.28)
where H C describes a cavity with frequency ω c , H T describes the transmon with frequencies ω n b and H X 2 X 2 describes their mutual coupling given by a cross-Kerr coupling.

Approximations from cross-Kerr

In the rwa, the terms that do not conserve the total number of excitations in the transmon and the readout mode are dropped, because they are rotating fast at ω ∼ 2ω c or 4ω c . Assuming a large enough detuning ∆ between the transmon and readout mode, the terms corresponding to an exchange of two excitations are also dropped in the rwa as they evolve fast at ω ∼ 2∆. The cross-Kerr Hamiltonian Chapter 3 Different qubit readout schemes and consequences H X 2 X 2 of Eq. (3.28) is then reduced to:

H rwa X 2 X 2 = ∑ n b (2g x 2 x 2 n b ,n b + g x 2 x 2 0 )(2c † c + 1) |n b n b | (3.29)
Using the tls approximation, the simplified cross-Kerr Hamiltonian is achieved:

H ZZ = hω qb 2 σ z + h(ω c + χ qb,c σ z )c † c (3.30)
where

ω qb = ω 1 + 2g x 2 x 2 1,1 -ω 0 is the renormalized qubit frequency, ω c = ω c + g x 2 x 2 0
is the renormalized cavity frequency and χ qb,c = 2g x 2 x 2 1,1 is the effective readout shift.

The multilevel aspect of the transmon does not affect the achievable effective simplified cross-Kerr readout shift, directly given by χ qb,c = 2g x 2 x 2 1,1 and can thus be made large contrary to the transverse coupling case where it is, by construction, a difference of two close terms (Eq. (3.19)). The strength of the effective simplified cross-Kerr shift therefore depends on how large the cross-Kerr coupling strength can be engineered and will be system dependent. As seen in Table 2.1 and Fig. 2.8, for the transmon molecule circuit, the cross-Kerr coupling strength is of the same order of magnitude as the charging energies and is of the order of 100 MHz.

States mixing and Purcell effect with cross-Kerr coupling

The strength of cross-Kerr coupling is of the order of 100 MHz while the frequencies of the transmon and readout mode are around 5 GHz to 10 GHz. The cross-Kerr coupling can then be treated as a perturbation on the main Hamiltonian H 0 = H T + H C . The eigenbasis {|n b , n c } of H 0 is given by two quantum numbers, n b the number of atom excitations and n c the number of readout mode excitations. To first order in perturbation theory, the new eigenbasis is written:

|n b , n c = |n b , n c + |D exch,2 + |D crea,2 + |D anni,2 + |D crea,4 + |D anni,4 (3.31) 
where |D exch,2 is the perturbation corresponding to an exchange of two excita- tions, |D crea,2 (|D anni,2 ) is the perturbation corresponding to the creation (anni- hilation) of two excitations in either the atom or the readout cavity, and |D crea,4 (|D anni,4 ) is the perturbation corresponding to the creation (annihilation) of two excitations in both the atom and the readout cavity. The two excitations exchange perturbation |D exch,2 is given by:

|D exch,2 = + g x 2 x 2 n b ,n b +2 √ n c √ n c -1 ω n b +2 -ω n b -2ω c |n b + 2, n c -2 (3.32a) + g x 2 x 2 n b -2,n b √ n c + 2 √ n c + 1 2ω c -(ω n b -2 -ω n b ) |n b -2, n c + 2 (3.32b)

From the cross-Kerr coupling

The two excitations creation or annihilation are given by:

|D crea,2 = + g x 2 x 2 n b ,n b +2 (2n c + 1) ω n b +2 -ω n b |n b + 2, n c (3.33a) + (2g x 2 x 2 n b ,n b + g x 2 x 2 0 ) √ n c + 1 √ n c + 2 2ω c |n b , n c + 2 (3.33b) |D anni,2 = + g x 2 x 2 n b -2,n b (2n c + 1) ω n b -2 -ω n b |n b -2, n c (3.33c) + (2g x 2 x 2 n b ,n b + g x 2 x 2 0 ) √ n c √ n c -1 -2ω c |n b , n c -2 (3.33d)
And the four excitations creation or annihilation are given by:

|D crea,4 = + g x 2 x 2 n b ,n b +2 √ n c + 2 √ n c + 1 ω n b +2 -ω n b + 2ω c |n b + 2, n c + 2 (3.34a) |D anni,4 = + g x 2 x 2 n b -2,n b √ n c √ n c -1 (ω n b -2 -ω n b ) -2ω c |n b -2, n c -2 (3.34b) 
To compute these perturbations, no degeneracy in the energy spectrum of H 0 has been assumed. The cross-Kerr coupling is parity preserving. It is one keypoint of this coupling. Indeed, it conserves the parity of each mode. And more specifically, a bare transmon eigenstate |n will only be mixed with the eigenstates |n b , |n b + 2 and |n b -2 and never with |n b + 1 or |n b -1 . By this way, even with the presence of parasitic photons number n c in the cavity, the Purcell rate will always be zero:

Γ Purcell (n c ) = κ| 0, n c |c|1, n c + 1 | 2 = 0, ∀n c ∈ N (3.35)
Therefore, to first order in perturbation theory, the cross-Kerr coupling does not create an increase of relaxation rate of the excited qubit state due to Purcell effect. It is one of the strong point of cross-Kerr coupling compared to transverse coupling. It is in fact more general than a first order perturbation theory. Indeed, because cross-Kerr coupling can only induce transition of two excitations on the qubit mode, it will never imposes a relaxation channel (a one excitation transition) on the qubit.

Another interesting point of the cross-Kerr coupling is that the two excitations exchange perturbation, which required a large detuning in order to be neglected, does not disturb the first eigenstates with n b and n c in (0, 1). In the rwa, even at zero detuning, the states |n b = {0, 1}, n c = {0, 1} are still eigenstates after the perturbation of the cross-Kerr coupling.

Approximations summary towards simplified cross-Kerr coupling

transverse coupling RWA We summarize the transformations used to obtain the simplified cross-Kerr coupling from the transverse and cross-Kerr coupling in Fig. 3.3. From the transverse coupling, the steps are the first order dispersive transformation, then the rwa neglecting two-excitations transitions and finally the tls approximation. From the cross-Kerr coupling, the steps are only the rwa neglecting two-excitations transitions and the tls approximation. To go towards the simplified cross-Kerr coupling, the transverse coupling uses the same line of approximations as the cross-Kerr coupling but with one more initial step, the dispersive approximation. Physically, the transverse coupling means an exchange of one excitation energy between the two modes. It causes of full hybridization of the two modes on resonance and only a slight hybridization resulting on a small dispersive simplified cross-Kerr shift when the two modes are far detuned. On the other way, the cross-Kerr coupling means two things, an always on intrinsic simplified cross-Kerr coupling and an exchange of two excitations energy between the two modes. Except near resonance, this exchange is negligible.

(b Ϯ +b) 2 (c Ϯ +c) 2 g x 2 x 2 Simplified cross-Kerr coupling RWA g xx (b Ϯ +b)(c Ϯ +c) cross-Kerr coupling 2χ b Ϯ bc Ϯ c + counter rotating terms Dispersive χ σ Z c Ϯ c TLS 2χ b Ϯ b c Ϯ c
In the end, there are two advantages of the cross-Kerr coupling over the transverse. The first one is that it does not lead in first order to Purcell effect. The second is that the resulting simplified cross-Kerr coupling does not depend strongly on the detuning between the two modes. The detuning can therefore be designed to be much larger than the simplified cross-Kerr coupling from transverse coupling.

We have seen in Section 2.2.3 that the transmon molecule possess a cross-Kerr coupling between its two eigenmodes. Now we would like to use this inherent property of the transmons molecule to be able to readout the qubit state without suffering from qubit-cavity hybridization and Purcell effect. This is studied in the next chapter.

Chapter keypoints

Chapter keypoints

In this chapter, three types of coupling between an atom and a readout mode have been studied. The ideal simplified cross-Kerr coupling allows to readout the atom states in a QND manner. Therefore, the simplified cross-Kerr coupling is not detrimental to the qubit properties. However, it is hard to experimentally implement it directly. The transverse coupling is the usual and intuitive way to couple a transmon to a readout cavity. In the dispersive regime and using the rwa, the transverse coupling behaves as the simplified cross-Kerr coupling and this approximative behavior is used to perform qubit readout. However, it intrinsically causes limitations like states mixing, measurement-induced transitions or Purcell decay. The cross-Kerr coupling is another coupling that we propose to use to perform qubit readout. In the rwa, it gives a readout shift and hybridization by exchange of two excitations. However, this states mixing is parity conserving and therefore does not cause Purcell decay. In addition, the hybridization can be strongly reduced by a larger detuning without loosing on the strength of the readout shift. The question is now how to physically implement the cross-Kerr coupling between a qubit mode and a readout mode. As will be seen in the next chapter, the transmon molecule can be used for that purpose.
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In this chapter, we study how the transmon molecule circuit presented in Section 2.2 can be coupled to an electric field. The circuit is positioned inside a cavity such that the S-transmon mode is uncoupled to the cavity and therefore do not suffer from the limitations of the transverse coupling like the Purcell decay. Meanwhile, the Ancilla is coupled to the cavity, which allows to readout the Stransmon even without transverse coupling. Two regimes of Ancilla-cavity coupling are studied, a dispersive regime and an almost resonant regime. In the ideal case, the S-transmon does not suffer from Purcell decay, but it is not perfectly true anymore when an asymmetry is considered in the Josephson junction critical currents of the circuit. The limitations due to asymmetry are studied in the end of this chapter.

Coupling the transmon molecule circuit to a cavity.

Electrical dipole moments

We want to place the sample in an electric field antinode and magnetic node position inside the cavity. The circuit will then be coupled to the electromagnetic field through an electrical dipolar interaction. In order to know the couplings between the cavity and the sample, we need to evaluate the electrical dipolar moments of both modes of the sample circuit.

The transmon molecule circuit is a two-eigenmodes circuit, called respectively S-transmon and Ancilla. We want to estimate their polarization properties and dipolar moments in order to be able to understand their dipolar coupling to a given electric field.

For the S-transmon mode, one excitation corresponds physically to an in-phase oscillating supercurrent through the Josephson junctions. In other words, it corresponds to having a charge difference of Cooper pairs across the Josephson junctions which oscillates. We can then estimate the dipolar moment d x of this mode from the mean distance L x one Cooper pair travels during one way of this oscillation. Therefore, we have:

d x ∼ 2en x L x u x (4.1)
where n x is the mean number of Cooper pairs oscillating through the Josephson junction for one S-transmon excitation and u x is a unitary vector given by the Link back to geometry and symmetry of the sample.

In the same way, for the Ancilla mode, the dipolar moment d y is estimated from the mean distance L y traveled by one Cooper pair across the coupling inductance.

d y ∼ 2en y L y u y (4.2)
where n y is the mean number of Cooper pairs oscillating through the Josephson junction for one Ancilla excitation and u y is a unitary vector given by the geometry and symmetry of the sample. The unitary vectors u x and u y are indicated in Figs. 4.1 and 5.6. By construction, the two dipolar moments d x and d y are orthogonal.

Dipoles and E-field alignment

For a given direction u E of the electrical field E of the cavity mode of interest, with amplitude | E| = V rms L c (c † + c), we get the interaction Hamiltonians:

H qb,c = d x . E H a,c = d y . E (4.3) =2e L x L c V rms n x (c + c † ) u x . u E =2e L y L c V rms n y (c + c † ) u y . u E (4.4) =2e L x L c V rms sin θ g n x (c + c † ) =2e L y L c V rms cos θ g n y (c + c † ) (4.5)
4.2 Qubit readout in the Ancilla-cavity dispersive regime with n x and n y are the number of Cooper pairs for the S-transmon and Ancilla respectively, V rms is the RMS voltage of the cavity field over the distance L c , c and c † are the cavity field ladder operator and θ g is the angle between the electric field and the u y direction. The transverse coupling strength between the cavity and the S-transmon g x 0 and between the cavity and the Ancilla g y 0 are given by:

g x 0 = 2e L x L c V rms sin θ g , g y 0 = 2e L y L c V rms cos θ g (4.6)
Thanks to the orthogonality of the dipolar moments, one of the transverse coupling can be suppressed while the other is extremum. It corresponds to the two angle cases,

θ g = 0 or θ g = π/2.
In the rest of this thesis, we will consider the case θ g = 0 because we want the S-transmon mode to be unspoiled by the cavity. Therefore, the S-transmon does not suffer from Purcell effect as it is not coupled to the cavity. The Ancilla-cavity transverse coupling allows to consider the system Ancilla plus cavity as a meter to perform S-transmon readout. We will study two regimes of the Ancilla-cavity meter. In the first one, the Ancilla-cavity system is in the dispersive regime, i.e. the Ancilla first transition is far detuned from the cavity transition with detuning much larger than the transverse coupling strength. In the second regime, the Ancilla and the cavity are in near resonance and forms two new eigenmodes called lower and upper Polaritons. Each of these Polariton modes can be used to perform S-transmon readout.

Qubit readout in the Ancilla-cavity dispersive regime

The system we consider here is represented in Fig. 4.2. The Qubit is coupled to the Ancilla via the cross-Kerr coupling. The cavity is only coupled to the Ancilla and not the Qubit. Therefore, the Qubit does not suffer from Purcell effect. The Ancilla-cavity transverse coupling along with the Ancilla-Qubit cross-Kerr coupling allows to have a Qubit state dependent cavity transmission measurement. This effect of having a Qubit-cavity cross-Kerr shift without having a Qubit-Cavity transverse coupling has been mentioned in [101]. It is also discussed in [40] where the quantum circuit considered possesses three eigenmodes. Up to my knowledge, they are the only papers discussing this effective Qubit-cavity readout shift and both considered the rwa before the dispersive transformation. First, the effective readout is explained through hand-waving physical arguments. Second, it is computed from the dispersive approximation (before rwa) between the Ancilla and Cavity conditioned on the Qubit states.

Simple picture

The system we consider here (Fig. 4.2), is described by the following Hamiltonian in the rwa: where the Ancilla mode is approximated by a Duffing Hamiltonian with frequency ω a and Kerr anharmonicity U a . The Qubit mode is restricted to its tls approximation. The cross-Kerr coupling between Qubit and Ancilla is approximated by a simplified cross-Kerr coupling with strength g zz . The cavity has a bare frequency ω c and is transverse coupled to the Ancilla with coupling strength g a .

H = 1 2 ω qb σ z + (ω a + U a (a † a -1))a † a + g zz σ z a † a + g a (a † c + c † a) + ω c c † c (4.
In this system, the Qubit state shifts the frequency of the Ancilla from ω ag zz to ω a + g zz . Therefore, the Qubit state shifts the Ancilla-Cavity detuning from

∆ ac ( σ z = -1) = ω a -g zz -ω c to ∆ ac ( σ z = +1) = ω a + g zz -ω c .
The dispersive regime for the Ancilla-Cavity system is assumed (g a ∆ ac ( σ z = ±1)). In the dispersive regime, we know that the dressed Cavity frequency ω c dressed is shifted from its bare frequency ω c by the Lamb shift factor:

ω c dressed -ω c = -χ 0,1 g 2 a ∆ ac (4.8)
where g a is the Ancilla-Cavity transverse coupling strength and ∆ ac is the detuning between the bare Ancilla and the bare Cavity.

Remark: ω c dressed corresponds to the dressed cavity frequency when the Ancilla is in its ground state.

As the detuning ∆ ac is conditioned on the Qubit state, the dressed Cavity fre- quency ω c dressed is also conditioned on the Qubit state via the Lamb shift Eq. (4.8). The Qubit state dependent Cavity frequency shift is given by:

4.2 Qubit readout in the Ancilla-cavity dispersive regime ω c 2χ qb, c ω ω c ω c | > ↓ ~ωc | ↑> ωa ~| ↑> ω a | ↑> ω a ~| > ↓ ω a | > ↓ | ↑> | > ↓
2χ qb,c g 2 a ∆ ac ( σ z = -1) - g 2 a ∆ ac ( σ z = +1) 2g 2 a g zz ∆ 2 ac (4.9)
This effect is pictured on Fig. 4.3. It is in fact an effective dispersive readout shift or an effective simplified cross-Kerr coupling between the S-transmon and Cavity even though they don't have any direct transverse coupling between them.

Ancilla-Cavity canonical dispersive transformation

We start from the following Hamiltonian:

H = H C + H M + H XX (4.10)
where H C , H M and H XX describe the Cavity, the transmon molecule and the Ancilla-Cavity transverse coupling respectively. They are given by:

H C =ω c c † c (4.11a) H M = ω qb 2 σ z + ∑ n a [ω n a -n a g zz σ z ] |n a n a | (4.11b) H XX = ∑ n a g xx n a ,n a +1 (|n a -1 n a | + |n a + 1 n a |)(c † + c) (4.11c)
Chapter 4 Qubit readout with transmon molecule in c-QED where for the transmon molecule Hamiltonian H M , the Qubit is considered as a tls and the Ancilla as a single transmon with eigenbasis |n a . The Ancilla frequen- cies are given by ω n an a g zz σ z and depend on the Qubit state. The term -n a g zz σ z in the Ancilla frequencies comes from the Qubit-Ancilla simplified cross-Kerr coupling with the tls approximation for the Qubit. Considering the Qubit as a constant of motion, the quantum operator σ z can be replaced by the classical parameter s z = ±1. As in Section 3.2, a canonical unitary transformation is performed to suppress the transverse coupling in first order in β n a (s z ) = g xx n a ,n a +1 /(δ n ag zz s zω c ) and λ n a = g xx n a ,n a +1 /(δ n ag zz s z + ω c ) with δ n a = ω n a +1ω n a the Ancilla n a -transition. Compared to Section 3.2, the difference comes from the conditional dependence on the Qubit state of the parameters β n a and λ n a . The Ancilla-Cavity dispersive regime is defined by the small parameters β n a and λ n a for all n a and for both Qubit states: ∀n a , β n a (s z = ±1)

1 and λ n a (s z = ±1) 1.

Following the same derivation as in Section 3.2, but now with a Qubit state dependence, an effective Ancilla-Cavity cross-Kerr Hamiltonian is obtained:

H disp = hω qb 2 σ z + hω a (s z ) 2 σ a z + h(ω c (s z ) + χ a,c (s z )σ a z )c † c (4.12)
where the Ancilla is now reduced to its tls approximation σ a z and ω a (s

z ) = ω 1 - ω 0 -g zz s z + χ 0,1 (s z ) is the renormalized Ancilla frequency, ω c (s z ) = ω c - χ 1,2 (s z ) 2
is the renormalized cavity frequency and χ a,c (s z ) is the Ancilla-Cavity simplified cross-Kerr shift. All those parameters depend on the Qubit state. When the Qubit is in its ground state, as in the case of a single transmon, the Ancilla-Cavity cross-Kerr readout shift is approximately given by:

2χ a,c (g xx 0,1 ) 2 α a ∆ ac (∆ ac + α a ) α a ( g xx 0,1 ∆ ac ) 2 (4.13)
where the λ n a terms have been neglected for simplicity of writing.

When the Ancilla stays in its ground state, the Qubit state modifies not only the Ancilla frequency but also the Cavity renormalized frequency by a shift given by the effective S-transmon-Cavity cross-Kerr coupling χ qb,c :

2χ qb,c = [ω c (s z = +1) -χ a,c (s z = +1)] -[ω c (s z = -1) -χ a,c (s z = -1)] (4.14)
After computations, it is given by:

2χ qb,c = 4g zz (2δ 0 ω c -(g zz ) 2 )(g xx 0,1 ) 2 (δ 0 -g zz -ω c )(δ 0 + g zz -ω c )(δ 0 -g zz + ω c )(δ 0 + g zz + ω c ) (4.15a) 2g zz ( g xx 0,1 ∆ ac ) 2 (4.15b)
where ∆ ac = δ 0ω c is the mean bare detuning between the Ancilla and the Cavity. The Qubit-Cavity cross-Kerr shift 2χ qb,c has the same functional form than the Ancilla-Cavity cross-Kerr shift where 2g zz plays the role of the Ancilla anharmonicity α a . Also, contrary to the usual case, the Qubit-Cavity cross-Kerr shift 4.3 Qubit readout with Polaritons does not depend on the Qubit-Cavity detuning. Therefore, the Cavity does not impose direct constraint on the Qubit frequency neither in terms of the strength of the readout shift nor in terms of Purcell limitation. Another important parameter, that we can experimentally measure, is the energy difference of the Ancilla transition between the two Qubit states ω a (s z = +1)ω a (s z = -1). Without the Cavity, the Qubit shifts the Ancilla frequency by -2g zz , however, the Ancilla being dispersively transverse coupled to the cavity, the shift has to be corrected. It is now given by:

ω a (s z = +1) -ω a (s z = -1) = -2g zz + 2χ qb,c (4.16) 
Further analysis, where we also take into account a possible residual transverse coupling between Qubit and Cavity, are given in Appendix C.

We can try to put numbers on the effective Qubit-Cavity readout shift. A Qubit-Ancilla cross-Kerr coupling strength g zz /2π = 100 MHz is assumed. In the work of Dumur [38], it was found to be 60 MHz and in the Trimon paper [40], Roy et al obtained cross-Kerr coupling strength from 100.6 MHz to 126 MHz. To be in the dispersive regime for the Ancilla-Cavity system, the ratio g a /∆ ac should be small. Choosing a ratio g a /∆ ac = 10 %, we obtain a readout shift about 2χ qb,c /2π 2 MHz. Even though the readout shift is not that big, it is on par with usual readout shift obtain from the standard transverse coupling in the dispersive limit [62,63,72]. The strong point in comparison with usual readout scheme is its Purcell-free property. Being Purcell-free, the damping rate of the cavity κ can be increased, without worrying for the Qubit lifetime. If we want faster readout of the Qubit, we need to increase the cavity damping rate κ. Therefore, in order to still be able to distinguish the two Qubit states, we need to increase the cross-Kerr readout shift 2χ qb,c . To do so, there are two solutions. The first one is to increase the Qubit-Ancilla coupling g zz while maintaining constant the Ancilla-Cavity dispersive regime, g xx 0,1 /∆ ac = cst. However, the Ancilla-Qubit cross-anharmonicity or cross-Kerr g zz , like the anharmonicity of a single transmon, cannot reach too large value without escaping the transmon regime. The coupling strength g zz is expected to be at best around 10 % of the Qubit or Ancilla frequencies. The other solution is to go over the Ancilla-Cavity dispersive regime for a given coupling g zz . The Ancilla-Cavity system will then be nearly resonant, creating two new eigenmodes that we call Polaritons. These Polaritons both inherit from the Ancilla and therefore are cross-Kerr coupled to the Qubit.

Qubit readout with Polaritons

We consider the circuit is placed in a cavity in such a way that only the Ancilla mode is coupled to the cavity by a transverse coupling g a . The system is operated in a regime where the bare Ancilla and bare Cavity are close to resonance, ∆ ac ≤ 2g a , with ∆ ac the detuning between the bare Ancilla and the bare Cavity.
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Polaritons modes

We want to find the eigenmodes of the Ancilla-Cavity system. We first focus on the Ancilla-Cavity system and neglect the Qubit. The Hamiltonian is thus given by:

H a,c = hω a a † a -hK a (a † + a) 4 + hω c c † c + hg a (a † + a)(c + c † ) (4.17)
where the Ancilla is described by a Duffing oscillator with frequency ω a and Kerr anharmonicity K a , the Cavity is a harmonic oscillator with frequency ω c and the Ancilla-Cavity interaction is the transverse coupling with strength g a .

To simplify the formulae, we use the rwa. In Appendix D, the calculations are performed without the rwa. In the rwa, the Hamiltonian becomes:

H rwa a,c = hω a a † a -hU a (a † a) 2 + hω c c † c + hg a (a † c + c † a) (4.18)
where the Kerr anharmonicity K a (a † + a) 4 in the rwa becomes U a (a † a) 2 with U a = 4K a and we have neglected the term a † c † + ac.

Linear Ancilla framework

The linear regime is assumed by neglecting the anharmonicity of the Ancilla. The Ancilla is thus considered as a harmonic oscillator.

H rwa,linear

a,c = hω a a † a + hω c c † c + hg a (a † c + c † a) (4.19) 
A rotation of angle θ on the operator basis (c, a) is considered:

c = cos(θ)l + sin(θ)u , l = cos(θ)c -sin(θ)a (4.20a) a = -sin(θ)l + cos(θ)u , u = cos(θ)a + sin(θ)c (4.20b)
This rotation defines a new operators basis (l, u). For a particular value of the rotation angle θ = θ 0 , the Ancilla-Cavity Hamiltonian is diagonal in the (l, u) basis and is given by:

H rwa,linear a,c = H linear l,u = hω l l † l + hω u u † u (4.21)
Where H linear l,u describes two independent harmonic oscillators, with frequencies ω l and ω u , called respectively lower and upper Polaritons. The formulae of the frequencies ω l and ω u are given in Table 4.1.

The choice of the mixing angle θ 0 is made by suppressing terms like l † u or u † l, corresponding to a non-diagonal transverse coupling term between the polaron modes l and u. The equation setting θ 0 is given by:

sin(2θ 0 )(ω c -ω a ) + 2g a cos(2θ 0 ) = 0 (4.22)
There are two specific cases; the first one is when there is no Ancilla-cavity transverse coupling, g a = 0. In this case, the Ancilla-cavity system is already diagonal, the mixing angle is zero, θ 0 = 0, meaning there is no mixing between the Ancilla 4.3 Qubit readout with Polaritons and the cavity, the polaron modes are given by the Ancilla-cavity modes, l = c and u = a. The second specific case is when the Ancilla and cavity are at resonance, ω c = ω a . In this case, the mixing angle is θ 0 = π/4 and the polaron modes correspond to a symmetric u = (c+a) √ 2 , and antisymmetric l = (c-a) √ 2 , mixture of the Ancilla-cavity modes.

In the general case, the mixing angle is given by:

θ 0 = 1 2 arctan 2g a ω a -ω c (4.23)
It corresponds to the angle ratio between the coupling strength 2g a and the detuning ω aω c between the bare Ancilla and the bare cavity.

Denomination Formula

Frequencies

ω l ω c cos 2 (θ 0 ) + ω a sin 2 (θ 0 ) -g a sin(2θ 0 ) ω u ω c sin 2 (θ 0 ) + ω a cos 2 (θ 0 ) + g a sin(2θ 0 ) Mixing angle θ 0 1 2 arctan 2g a ω a -ω c
Table 4.1 -Polariton parameters as a function of the linear Ancilla-Cavity system.

Anharmonic Ancilla framework

Now, we consider the effect of the Ancilla anharmonicity U a on the Polariton modes. We still perform the rotation transformation Eq. (4.20) with the mixing angle given by Eq. (4.23). In this case, the obtained Polaritons Hamiltonian is given by:

H l,u (ω l -U l l † l)l † l + (ω u -U u u † u)u † u -2χ u l u † ul † l (4.24)
where H l,u describes two Duffing oscillators, with frequencies ω l and ω u and anharmonicities U l and U u respectively; and the Polaritons are now cross-Kerr coupled with strength χ u l . The different parameters of this Hamiltonian are reported in Table 4.2. To obtain the Hamiltonian Eq. (4.24), two terms have been neglected. The first one is given by:

-U a sin 2 (2θ 0 ) 4 [l † 2 u 2 + u † 2 l 2 ] (4.25)
It corresponds to a second order transverse coupling between the Polaritons. Being grouped together with the simplified cross-Kerr term -2χ u l u † ul † l, it can be seen Chapter 4 Qubit readout with transmon molecule in c-QED

Denomination Formula

Frequencies as a cross-Kerr coupling -U a sin 2 (2θ 0 )/4(l † + l) 2 (u † + u) 2 where the main nonrwa terms l † 2 u † 2 and l 2 u 2 have been dropped. In the rwa, the term Eq. (4.25) can be neglected as long as its strength is small compared to the Polaritons detuning,

ω l ω c cos 2 (θ 0 ) + ω a sin 2 (θ 0 ) -g a sin(2θ 0 ) -U a 4 sin 2 (2θ 0 ) ω u ω c sin 2 (θ 0 ) + ω a cos 2 (θ 0 ) + g a sin(2θ 0 ) -U a 4 sin 2 (2θ 0 ) Self-Kerr anharmonicities U l U a sin 4 (θ 0 ) U u U a cos 4 (θ 0 ) Cross-Kerr shift χ u l U a 2 sin 2 (2θ 0 )
U a sin 2 (2θ 0 )/4 ω u -ω l .
The second term that was neglected is:

-U a sin(2θ 0 )[sin 2 (θ 0 )l † l + cos 2 (θ 0 )u † u](l † u + u † l) (4.26)
It corresponds to a residual transverse coupling whose strength g u,l depends on the number of excitations in the Polaritons. The term Eq. (4.26) can be neglected as long as the numbers of excitations n l and n u in the lower and upper Polaritons respectively are small. The rotation angle θ may be chosen differently from the choice in the linear Ancilla case, θ = θ 0 . We may chose the mixing angle θ = θ 1 in order to also suppress the residual transverse coupling of Eq. (4.26). In this case, the mixing angle depends on the numbers of polaron excitations n l and n u and follows a non-linear equation given by:

tan(2θ 1 ) = 2g a ω a -2U a [n l sin 2 (θ 1 ) + n u cos 2 (θ 1 )] -ω c (4.27)
The new mixing angle does not change the form of the Hamiltonian Eq. (4.24). It also does not change the functional form of all the parameters in Table 4.2, but only their strengths. In the end, increasing the input power, therefore, increasing the mean photon numbers of the Polariton, will not change the form of the Hamiltonian.

Remark: the term ω a -2U a [n l sin 2 (θ 1 ) + n u cos 2 (θ 1 )] in the definition of the mixing angle θ 1 can be understood as the effective Ancilla transition seen at a given input power, corresponding to a given mean photons numbers n l and n u in the Polaritons. 

Qubit-Polaritons Hamiltonian

We now add the Qubit in the model. The system is described in the rwa by the following Hamiltonian:

H = + hω b b † b -hU b (b † b) 2 (4.28a) -hg zz (b † b)(a † a) (4.28b) + hω a a † a -hU a (a † a) 2 (4.28c) + hg a (a † c + c † a) (4.28d) + hω c c † c (4.28e)
where b (b † ), a (a † ) , c (c † ) are the creations (annihilations) operators for the Qubit, Ancilla and Cavity respectively; ω b , ω a , and ω c are the frequencies of the Qubit, Ancilla and Cavity; U b and U a are the Kerr anharmonic term for the Qubit and Ancilla; g zz is the cross-Kerr coupling between Qubit and Ancilla and finally g a is the transverse coupling between Ancilla and Cavity.

The Polariton modes l and u are defined by the same rotation transformation described in Eq. (4.20). The system Hamiltonian is therefore approximated by the Qubit-Polaritons Hamiltonian given by:

H + ω b b † b -U b (b † b) 2 (4.29a) + (ω l -2χ l qb b † b + U l l † l)l † l (4.29b) + (ω u -2χ u qb b † b + U u u † u)u † u (4.29c) -2χ u l u † ul † l (4.29d)
where the parameters are defined in Table 4.3. This Hamiltonian describes now three anharmonic oscillators, the Qubit, with frequency ω b and Kerr anharmonicity U b , the lower Polariton, with frequency ω l and Kerr anharmonicity U l and the upper Polariton, with frequency ω u and Kerr anharmonicity U u . All three modes are cross-Kerr coupled to each other with coupling strength χ l qb between the Qubit and the lower Polariton, χ u qb between the S-transmon and the upper Polariton and finally χ u l between the two Polaritons. In a linear approximation for the Ancilla, the mixing angle is given by:

tan(2θ 0 ) = 2g a ω a -g zz b † b -ω c = 2g a ∆ a,c (n b ) (4.30)
where Frequencies given by the Qubit-Ancilla cross-Kerr coupling g zz and the mixing angle θ 0 , i.e. the hybridization condition between Ancilla and Cavity. Here, the fact that the hybridization angle θ 0 depends on the Qubit state complicates a little bit the understanding. However, in the experiments, the Qubit-Ancilla cross-Kerr coupling g zz is small enough in front of the Ancilla-Cavity detuning and transverse coupling g a so that we can consider in a first approximation that the state of the Qubit does not change the hybridization condition and the mixing angle θ 0 . This is less valid near the Ancilla-Cavity resonance across which the mixing angle changes its sign.

∆ a,c (n b ) = ω a -g zz b † b -ω c is
ω l ω c cos 2 (θ 0 ) + ω a sin 2 (θ 0 ) -g a sin(2θ 0 ) ω u ω c sin 2 (θ 0 ) + ω a cos 2 (θ 0 ) + g a sin(2θ 0 ) Self-Kerr anharmonicities U l U a sin 4 (θ 0 ) U u U a cos 4 (θ 0 ) Cross-Kerr shifts χ l qb g zz 2 sin 2 (θ 0 ) χ u qb g zz 2 cos 2 (θ 0 ) χ u l U a 2 sin 2 (2θ 0 )
The strength of the inter-Polaritons cross-Kerr coupling comes directly from the Ancilla anharmonicity U a and also from the mixing angle θ 0 . For a given Ancilla anharmonicity, it will be the strongest at Ancilla-Cavity resonance where sin(2θ 0 ) = 1.

Master equation: couplings to the environment

In the previous section, we did not consider the leakage towards the coaxial lines connected to the cavity. In this section, we derive a master equation to investigate the coupling of the Polariton modes with the environment. If we consider Eq. (4.28), and no loss channel on the Qubit, we obtain the following master equation:

dρ dt = -i[H, ρ] - κ 2 (c † cρ + ρc † c -2cρc † ) - γ a 2 (a † aρ + ρa † a -2aρa † ) (4.31)
4.3 Qubit readout with Polaritons where κ is the Cavity coupling to the environment and γ a is the Ancilla decay rate. We rewrite this master equation in the l, u basis and obtain:

dρ dt = -i[H , ρ] - κ l 2 (l † lρ + ρl † l -2lρl † ) - κ u 2 (u † uρ + ρu † u -2uρu † ) (4.32)
where we have neglected terms of the form u † lρ or similar as they do not conserve energy and/or are non-rwa and κ l , κ u are given by:

κ l =κ cos 2 (θ 0 ) + γ a sin 2 (θ 0 ) (4.33a) κ u =κ sin 2 (θ 0 ) + γ a cos 2 (θ 0 ) (4.33b)
The Polaritons decay rate therefore depend on the initial Ancilla and Cavity decay rates and on the mixing angle θ 0 . In conclusion, both Polariton modes are coupled to the environment lines and can be probed by a single tone transmission or reflection measurement. Moreover both Polariton modes can be used to readout the state of the Qubit thanks to the cross-Kerr terms χ u qb and χ l qb . The strengths of the cross-Kerr couplings and of the couplings to the environment differ depending on the Ancilla-Cavity hybridization condition given by the mixing angle θ 0 . The system is not anymore described Chapter 4 Qubit readout with transmon molecule in c-QED by a Qubit, an Ancilla and a Cavity as previously in Fig. 4.2 but is better described by a Qubit with two non-linear resonators, the Polaritons, like described in Fig. 4.4.

Conclusion

Asymmetry in the transmons molecule circuit

Until now, we have considered the ideal case where the circuit pictured in Fig. 2.4 is perfectly symmetric, i.e. the two transmons, coupled via the inductance L a and the capacitance C a , are identical. In the symmetric case, the basis x, y given by Eq. (2.30) represents the eigenmodes we called Qubit and Ancilla respectively. In the asymmetric case, new coupling terms arise and will modify the Qubit and the Ancilla.

Asymmetric circuit Hamiltonian

From the asymmetric Lagrangian Eq. (2.28), the asymmetric Hamiltonian is obtained as:

H = 2E Cx n 2 x + 2E Cy (n 2 y + d C n x n y ) + 2E J [-cos(x) cos(y) + d J sin(x) sin(y) + b(y -π Φ b Φ 0 ) 2 ] (4.34)
There are two sources of asymmetry between the transmons, the capacitances

C qb (1 ± d C ) and the critical current I C (1 ± d J ).
The main source of asymmetry in the circuit comes from the asymmetry of critical current, d J = 0. Indeed, with the e-beam writer, the resolution is about tens nanometers (Chapter 5). And the capacitances are a geometrical design parameter coming from large metallic pads in regards with each other with typical distance over several hundreds of micrometer. Therefore capacitances are quite robust against nanofabrication stochasticity. In the end, the problem is simplified assuming no asymmetry in the transmon capacitances d C = 0. Therefore, the difference in the Hamiltonian between the ideal and non-ideal case comes only from a change in the potential:

V (x, y) = 2E J [-cos(x) cos(y) + d J sin(x) sin(y) + b(y -π Φ b Φ 0 ) 2 ] (4.35)
The potential surface being modified by the additional term 2E J d J sin(x) sin(y), the position {x 0 , y 0 } of the bottom well will be shifted. The constraints to find the 4.4 Asymmetry in the transmons molecule circuit bottom well position are now given by: sin(x 0 ) cos(y 0 ) + d J sin(y 0 ) cos(x 0 ) = 0 (4.36a) cos(x 0 ) sin(y 0 ) + d J sin(x 0 ) cos(y 0 ) + 2b(y 0φ) = 0 (4.36b) cos(x 0 ) cos(y 0 )d J sin(x 0 ) sin(y 0 ) > 0 (4.36c)

(cos 2 (y 0 ) -sin 2 (x 0 ))(1 + d 2 J ) (4.36d) +2b(cos(x 0 ) cos(y 0 ) -d J sin(x 0 ) sin(y 0 )) + d J 2 sin(2x 0 ) sin(2y 0 ) > 0 (4.36e)
Then, the coefficients in the fourth order Taylor expansion of the symmetric potential Eq. (2.41) will be corrected but also some new terms appear. Some previously zero-derivatives in the symmetric case, do not vanish anymore in the asymmetric case. The different derivatives up to the fourth order are reported in Table B.1.

Introducing ladders operators as before in Section 2.2.3, the asymmetric circuit Hamiltonian is given by:

H = hω x a † x a x - h K x 4 (a x + a † x ) 4 (4.37a) + hω y a † y a y - h K y 4 (a y + a † y ) 4 (4.37b) + h J y √ 2 3 (a y + a † y ) 3 (4.37c) + hg xy (a x + a † x )(a y + a † y ) (4.37d) + h ω 21 √ 2 3 (a x + a † x ) 2 (a y + a † y ) (4.37e) + h ω 31 4 (a x + a † x ) 3 (a y + a † y ) + h ω 13 4 (a x + a † x )(a y + a † y ) 3 (4.37f) + h ω 22 4 (a x + a † x ) 2 (a y + a † y ) 2 (4.37g)
The links between the potential derivatives and the Hamiltonian parameters of Eq. (4.37) are given in Appendix B. There are three new terms compared to the Hamiltonian of Eq. (2.49). There are two contributions ω 31 , or ω 13 , mixing three x excitations with one y excitation, or one x excitation with three y excitations, respectively. These terms can be used for frequency conversion and the creation of correlated triplet photons. They will become important when ω a 3ω qb or ω qb 3ω a . By construction of the circuit, ω a ≥ ω qb , therefore the term ω 13 can be neglected. Last, there is a transverse coupling g x,y that appears between the Qubit and the Ancilla. Its strength versus the asymmetry factor d J is represented in Fig. sample B parameters given in Table 5.1. This transverse coupling creates some loss channel for the Qubit.

Purcell effect because of asymmetry

The circuit asymmetry gives rise to a transverse coupling between the Qubit and the Ancilla, leading to a new loss channel for the Qubit. To understand this loss channel, we would like to transfer this transverse coupling to a new one between the Qubit and a readout mode. There is then two ways to think about it. One can perform a rotation transformation (polariton-like) on the Qubit-Ancilla system:

a x = cos θ xy A + sin θ xy B (4.38a) a y = -sin θ xy A + cos θ xy B (4.38b)
and choose the angle θ xy in order to suppress the Ancilla-Qubit transverse coupling in first order. The new eigenmodes A and B will be renamed Qubit and Ancilla modes respectively. This is equivalent to say that the dipolar moments of the Qubit and the Ancilla are tilted because of the circuit asymmetry and therefore, the transverse coupling strengths will be modified. The Ancilla-Cavity transverse coupling g 0 in the zero-asymmetry case then becomes a transverse coupling g a = cos θ xy g 0 between Ancilla and Cavity and a transverse coupling g qb = sin θ xy g 0 between Qubit and Cavity. The former is the one leading to Qubit 4.5 Chapter keypoints loss like Purcell decay. This way of computing is more suited in the case where the Ancilla and Cavity are far detuned. The Purcell decay can then be approximated by:

Γ Purcell = κ| 0 A , 0 B , 0 c |c|1 A , 0 B , 0 c | 2 κ g 2 qb ∆ 2 qbc (4.39)
The other way is to performed the polariton rotation transformation on the Ancilla-Cavity system in order to suppress their transverse coupling as in Section 4.3.

The residual Qubit-Ancilla transverse coupling g x,y therefore becomes a transverse coupling between the Qubit and lower Polariton g l =sin(θ)g x,y and a transverse coupling between the Qubit and upper Polariton g u = cos(θ)g x,y . This is more suited to the case where the Ancilla and Cavity are nearly resonant. The Purcell decay can then be approximated by:

Γ Purcell =κ u | 0 qb , 0 l , 0 u u 1 qb , 0 l , 0 u | 2 + κ l | 0 qb , 0 l , 0 u u 1 qb , 0 l , 0 u | 2 (4.40) κ u g 2 u ∆ 2 qb,u + κ l g 2 l ∆ 2 qb,l (4.41) 

Chapter keypoints

In this chapter, we investigated Qubit readout with the transmon molecule sample placed inside a cavity. We have seen the Qubit, without transverse coupling to the Cavity, does not suffer from Purcell decay in first order and can still be read-out thanks to the Ancilla. In the case where the Ancilla-Cavity system is placed in the dispersive regime, thanks to the Ancilla, there is a resulting effective readout shift between the Qubit and the Cavity. In the case where the Ancilla-Cavity system are nearly resonant, there are two new eigenmodes, called lower and upper Polaritons. Each of the Polaritons, corresponding to a mixture of the Ancilla and Cavity, are coupled to the environment coaxial lines and can be probed. Also, each of them inherits the Qubit-Ancilla cross-Kerr coupling and therefore the Qubit state can be measured through one of the two Polaritons. Finally, the effect of asymmetry in the circuit has been studied. Because of the circuit asymmetry, the Qubit and the Ancilla are mixed, notably via a transverse coupling. This coupling leads to a new loss channel for the Qubit which may Purcell limit the Qubit.

Samples design and fabrication

5

In this chapter, focus is made on the fabrication and design of the samples presented in this thesis. First a quick general presentation of the two experimentally studied sample is given. Second the employed nanofabrication recipe with electron beam (e-beam) lithography technique will be reviewed. Then the circuit design and its embedding inside a 3D-cavity is discussed. Finally, the roomtemperature characterization of the devices is presented. We have seen that a Josephson junction can be modeled as a non-linear inductor with a large linearized inductance value given by L J 0 = ϕ 0 /I C . Making an array of Josephson junctions allows to obtain a more linear behavior of the effective total inductance while maintaining the inductance value. Indeed, for a given phase difference ϕ across a M junctions array, the total inductance L tot J will be given by:

L tot J = L a cos ϕL J 0 L a = L a 1 -( L a I Mϕ 0 ) 2
(5.1)

The two studied transmon molecule samples

where identical junction and evenly distributed phase difference across each junction is assumed. I is the supercurrent flowing through the array and L a = ML J 0 is the linearized inductance value. We notice that increasing M or equivalently decreasing L J 0 while keeping L a constant, makes the total inductance L tot J more linear. Indeed, L a I/Mϕ 0 ----→ M→+∞ 0 or ϕL J 0 /L a ---→

L J 0 →0 0.
One point to be aware of is that each junction of the array possesses a selfcapacitance C J . Therefore, in order to be able to forget these self-capacitances and the possibility of self-oscillation at the plasma frequency ω p = 1/ L J 0 C J , the plasma frequency needs to be much higher than the frequencies of interest. In this case, large, compact and almost linear inductors can thus be fabricated using an array of Josephson junctions.

Moreover, using a Josephson junctions squid array gives an in-situ tunability of the coupling inductance L a with magnetic flux. An array of 10 squids with Josephson junction size of 0.2 µm times a few µm are employed in our devices. Because the coupling inductance L a is made of a squids array instead of a single Josephson junctions array, the coupling inductance L a is tunable with magnetic flux. There are thus two different superconducting loop areas. Therefore, for a given applied magnetic field, there will be two different applied magnetic flux, Φ b in the large loop of area A b and Φ s = Φ b /R S in the small loop of area A s where R S = A b /A s is the ratio between the large loop area and the small loop area with typically R S ∼ 24 (Fig. 5.2).

Link with the transmon molecule circuit

All the samples were designed with the same features as represented in Fig. 5.3. There are three aluminum pads, one center and two extrema. The center pad is connected to each extremum pad by a small transmon-like Josephson junction. The extrema pads are connected together through an array of squid made with large Josephson junctions.

In a lumped element approximation, two metallic pads facing each other is modeled by a capacitance. The small transmon Josephson junction are modeled as Josephson junction while the array of squid is modeled as a tunable inductance (Eq. (5.1)). We therefore recover the transmon molecule circuit represented in Fig. 2.4.

3D-cavity presentation

The cavity is a 3D-rectangular box with copper walls and dimensions b = 5 mm, a = 24.5 mm and d = 35 mm, see Fig. of turns, a magnetic field B 45 µT perpendicular to the sample is applied with a current of I = 1 mA in the coil. Part 1 has a feet which can be tightened to the base temperature plate of the cryostat and contains small holes and fixations for microwave input-output connectors.

From the input-output connectors b the Teflon is removed and the central conductor is shortened to achieve the desired coupling strength, see Fig. 5.5. The output port coupling strength is chosen to be around 20 times or more greater than the input one.

Sample dipole directions and positioning inside the cavity

On the optical microscope pictures of Fig. 5.6, the electrical dipole orientations of the S-transmon ( u x ) and Ancilla ( u y ) are represented.

Because of the symmetry of the geometry, the orientation of the two dipoles are perpendicular to each other. Thanks to this property, we can independently coupled to the cavity one mode of the transmon molecule while leaving the other mode uncoupled, see Section 4.1.1.

A ridge on part 2 of the cavity allows to position the sample chip, see Fig. closing the two cavity parts. This indium also helps to have better mechanical contact between the sample chip and the copper walls of the cavity and therefore a better thermalization. Thanks to the ridge, centering the sample inside the cavity is achieved with an accuracy of approximately 100 µm in the b direction but only with an accuracy of 0.5 mm to 1 mm in the a direction. We also estimate an angle between the sample and the cavity to be θ g = 0 degrees ± 5 degrees.

Nanofabrication

In this section, the nanofabrication technique is described. First, electron beam (ebeam) lithography and the controlled undercut technique are briefly introduced. Finally, the exact recipe is detailed. 

Electron-beam lithography and the controlled undercut technique

The nanofabrication process is based on e-beam lithography and aluminum evaporation and can be summarized in five steps. In the first step, the silicon substrate is covered with an electron-sensitive resist. In the second step, some region of the resist is insolated with the e-beam writer to create the desired pattern. Then the sample is plunged into a developer. After development, the desired mask is cre- ated. Afterwards, metal is deposited over the wafer and finally, the leftover resist with metal on top is removed with the lift-off process, leaving only the desired metallic circuit on top of the substrate.

5.2 Nanofabrication θ -θ O 2 (a) (b) (c)
The Josephson junction are the most important structure we want to fabricate. In our case, it is fabricated with aluminum and aluminum oxide. This fabrication requires two metallic deposition of aluminum and in-between an oxidation. The critical current of a Josephson junction depends exponentially on the thickness of the insulating barrier. Having a good control on the critical current therefore necessitates a good control over the oxidation process. The wafer is kept under high-vacuum (below 1 × 10 -7 mbar) from the first metallic deposition to the second metallic deposition. By this way, it avoids native uncontrolled oxidation and other kind of pollution during manipulation. For this reason, the samples are designed with only one mask and in only one lithography step.

In this single lithography step, a double angles evaporation is employed (Fig. 

c))

. With the first angle, +θ, the first metal layer is deposited, after, this layer is oxidized with a controlled di-oxygen O 2 atmosphere, and finally, the second metal layer is deposited with an opposite angle, -θ.

When a resist is exposed to an e-beam, not only the intended area is exposed but also its surroundings. This phenomenon of extra exposition is called proximity effect. Indeed, when a material is shined with an e-beam, the electrons can be scattered in several directions. Therefore, there are some scattered electrons that will insolate the surroundings of the intended exposed area. There is an extra width δ 0 of exposed resist, called undercut in the case of a bilayer resist. The scattering of electrons depends on their speed and therefore depends on the acceleration voltage of the electrons. Using a higher voltage reduces the undercut δ 0 . For an acceleration voltage V =100 kV, the residual undercut is δ 0 ∼40 nm [102]. More information on e-beam lithography and proximity effect can be found in the book of Levinson [START_REF] Levinson | Principles of Lithography[END_REF]. To be able to deposit metal selectively from one of the two angles evaporation, two layers of different resists with different electron sensitivity 5.2 Nanofabrication are spin-coated successively. The resist bottom layer is pmma-maa and the top layer is pmma. In addition to using suitable bilayer of resists, by adjusting a low and high dosage of e-beam, an asymmetric controlled undercut can be obtained (Fig. 5.8). As the bottom layer is more sensitive to electrons than the top layer, the low dose patterns only the bottom layer while the high dose patterns both layers. The high dose comes with an the undesired undercut δ 0 . With the added low dose, a controlled undercut δ, greater than the undesired undercut δ 0 , can be achieved.

In this work, we used a controlled undercut δ = 700 nm.

Alternating between asymmetric controlled undercut and symmetric controlled undercut with different mask widths, wires and Josephson junctions can be fabricated (Fig. 5.9).

Josephson junctions fabrication

Two techniques have been used to realize the Josephson junctions in our circuits.

Josephson junctions can be fabricated without a suspended bridge thanks to the design of strongly asymmetric undercuts by e-beam lithography. This is a technique known as the bridge free fabrication technique [102]. By adjusting differently, it is also possible to realize a suspended bridge and to perform the standard technique proposed by Niemeyer [START_REF] Niemeyer | [END_REF] and often called Dolan technique [105].

The bridge free technique was used to fabricate large size Josephson junction (area above 0.3 µm 2 ) while the suspended bridge technique was used to fabricate small size Josephson junction (area under 0.3 µm 2 ). Bridge free technique has several advantages over suspended bridge technique. Indeed, having a suspended bridge, the substrate surface where the Josephson junction will be fabricated on cannot be well cleaned because of the bridge, leaving some leftover residual resist on the surface. Also, fabrication with a bridge can leave some shadow patterns near the structure, as can be seen in Fig. 5.10.(b) or in Fig. 5.2. These extra metallic islands might create undesired charging effect or even two-level-system. However, with the bridge free technique, the shapes of the edges of the Josephson junction are not so well controlled as can be seen in Fig. 5.10.(a). Well controlled area of Josephson junction is therefore not achieved with the bridge free technique for very small size junction.

Nanofabrication

Finding your way around the wafer

In one fabrication process, thirty sample chips of size 5 mm × 6.8 mm are fabricated on a 2 inch wafer (Fig. 5.11.(a)). In these thirty chips, around three of them will be used as "test" samples to characterize at room temperature the fabrication process and more specifically the critical current of the different junctions, see Section 5.5. With the e-beam lithography, structures can be accurately written in the nanometer scale. However, for writing large scale structures, like the ones presented in Fig. 5.1, moving mechanically the substrate stage is necessary.

To do this, the design is divided in squares of size 300 µm × 300 µm, called main fields and subdivided in squares of size 20 µm × 20 µm, called subfields. Between two subfields, the electron beams is moved using coarse deflection coils. Between two main fields, it is the stage that is moved mechanically. For this reason, it is essential that the e-beam writer is well focused in order to stitch together all these fields [106]. To reach a good focus, specifics marks are written in a first lithography step. They consist in 8 µm × 8 µm gold squares allowing the e-beam to focus by measuring the marks at different heights until fitting the contour to the right size square. These focus marks allow the e-beam writer to dynamically adapt the focus by mapping the substrate surface to a plane, thus taking into account any tilt of the substrate. Four global marks, at the edges of the wafer, allow to map the whole wafer surface by a plane. They are indexed by a couple of number (a, b) with a and b equal to 0 or 1. Also, on each sample chips, five marks in each corner are used to make local focus mapping. In each sample corner, a quarter of cross mark is used to attain good alignment when dicing the wafer into 30 chips. And finally, on the edge of the wafer, arrow like marks are used to help the user find its way on the wafer during imaging for example.

Standard Recipe

In one fabrication process, several samples chip are fabricated. Because of the stochasticity of the fabrication process, all the samples of one wafer are not exactly the same. To increase the rate of achieving the targeted circuit parameters, an on purpose dispersion in the Josephson junction sizes is introduced.

Nanofabrication were made in two distinct clean-rooms. Most of the steps of the recipe are done in the Néel Institute Nanofab clean-room except the double-angles aluminum deposition which is performed in the CEA PTA clean-room.

Fabrication is done on a 2 inch wafer for mainly two reasons, the first one is to optimize time by fabricating several sample chips at the same time, the second reason is to obtained a better thickness uniformity of the resist layers with spincoating.

Marks recipe

In the first lithography step, a titanium-gold marks pattern is deposited (Fig. 

Nanofabrication

2. Spin-coating a solution of pmma 3% d with a rotational speed of 4000 rpm during 30 s. Baking the wafer 5 min at 180 • C to evaporate the solvant and fix the polymer resin. This second step insures a resist thickness around 150 nm.

3. E-beam writing e 4. Developing in mibk-ipa1:3 f for 60 s and rincing in ipa for 30 s and finally with a flow of ipa g . Blowing dry with nitrogen.

5. Depositing h 5 nm of Ti with a rate of 0.1 nm/s and then depositing 50 nm of Au at the same rate than Ti.

6.

Lift-off by plunging the sample 5 h in a N-Methyl-2-pyrrolidone (nmp) solution at 80 • C. Finally rinsing with acetone, ethanol and ipa in that order to reduce contamination of the sample. Blowing dry with N 2 .

Structures recipe

1. Reactive Ion Etching (RIE) cleaning for 2 min with O 2 plasma at 50 W and pressure of 2 × 10 -1 mbar.

2.

Prebaking the wafer for 2 min at 200 • C.

Spin-coating:

-First resist layer with pmma-maa 9% i at a speed of 4000 rpm for 30 s. The obtained thickness is around 725 nm ± 25 nm.

-Baking for 10 min at 200 • C.

-Second resist layer with pmma 4% j at 5000 rpm for 30 s. The obtained thickness is around 250 nm ± 25 nm. 1. Spin-coating with s1818 at a speed of 4000 rpm for 30 s and without baking.

k Methyl isobutyl ketone (MIBK) diluted in isopropanol (ipa) in proportion 1 to 3 l Maintain the N 2 flow perpendicular to the wafer to not kicked it out m To achieve this high vacuum, the chamber is pumped overnight

5.3 Embedding in a 3D-cavity 2.
Dicing n of the wafer into several sample chips.

The results of fabrication and dicing of a wafer is shown in Fig. 5.12. A rectangular box of size a × b × d, has resonant frequencies [START_REF] Pozar | Microwave Engineering[END_REF] given by:

Embedding in a

f mnl = c 2π √ µ r r ( mπ a ) 2 + ( nπ b ) 2 + ( pπ d ) 2 (5.2)
where µ r and r are the relative permeability and permittivity and (m, n, l) refer to the TE mnl or TM mnm mode. 

H z = jπE 0 kηa cos πx a sin πz d (5.3c)
where E 0 is the electric field amplitude, Z TE is the transverse electric wave impedance, k is the wavenumber and η is the characteristic impedance of the medium. The field distribution is represented in the drawing of Fig. 5.13. The EM field does not depend on y and therefore is uniform along the y-axis. At the center, x = a/2 and z = d/2, the magnetic field vanishes, H x = H z = 0 and the electric field is maximal, E y = E 0 . More informations on the modes of a microwave 3D-cavity can be found in the book of Pozar [START_REF] Pozar | Microwave Engineering[END_REF].

ElectroMagnetic (EM) S-parameters simulations

EM simulation softwares are used to estimate the resonant frequencies of the system for a given device geometry and Josephson junctions. During this work, the EM software Sonnet R was already installed, however it is a software specialized in 2.5D structures. The EM software HFSS R , which is fully 3D, has been acquired during the last year of my thesis work. With these finite elements softwares, the measured system, sample inside a cavity, can be simulated. A metallic box is defined as the cavity. A 50 Ω input port 1 and output port 2 are defined. The superconducting circuit is simulated as a lossless metal where the Josephson junctions are replaced by lumped element linear inductance. A mesh is defined where, on each point of the mesh, Maxwell equations are solved numerically at a given frequency. Therefore, the 'S'-parameters, transmissions, S 21 and S 12 , and reflections, S 11 and S 22 , through the input-output ports, are computed as a function of frequency. From the room temperature characterization of the Josephson junctions (Section 5.5), the inductance values are estimated and fed to the EM software in order to simulate the response of the real experimental system. With an EM solver, all the Josephson junctions are taken as linear inductances L J 0 = ϕ 0 /I C , where I C is the critical current of the junction.

In Fig. 5.14 a SONNET S 21 simulation is shown for the sample B geometry with a mean S-transmon inductance L qb = 16 nH with an asymmetry d J =50 % and a coupling inductance L a = 8 nH. In the S 21 curve, peaks can be seen corresponding to different resonances of the system. The simulated system is a multi modes system, with the two modes of the circuit plus the different modes of the cavity, and therefore the S 21 parameter will have several resonance peaks. To know which peaks represent which mode, they are several options. The cavity alone, i.e. without the circuit, can be simulated and therefore, the peaks associated with the cavity modes are thus identified. Also, changing the values of the lumped element inductances also allows to better identify the resonances. Remarks: As a not full 3D solver, contrary to HFSS, it is not convenient to simulate the exact system with SONNET. For example, the round corners of the real cavity are not taken into account in the SONNET simulations where the cavity is a perfect rectangular box. Also, in SONNET, the silicon chip size is overestimated and take the whole cut plane of the cavity.

There is one difficulty with the simulation of ports parameters, like S 21 . A resonant frequency might be missed if it is not clearly visible in the S 21 .

Estimation of the capacitances of the transmon molecule circuit

We would like to map the EM simulations onto the circuit model of Fig. 2.4 in order to estimate the capacitances C qb and C a of the circuit for a given geometry. In the EM simulation, the Josephson junctions are replaced by linear lumped element inductances. Therefore, a linearized transmon molecule circuit is simulated, and from the linear lumped element circuit, two resonant frequencies, one for the Qubit ω qb and one fore the Ancilla ω a , are derived as: of the cavity TE 101 mode in order to only use the simple equations of Eq. (5.4) to fit the frequencies. By this way, the effect of the coupling to the cavity are disregarded.

ω qb = 1 L qb C qb ω a =ω qb 1 + 2 L qb L a 1 + 2 C a C qb

HFSS simulations of Sample B

In this section, we simulate sample B measured in Chapters 8 and 9 via HFSS eigenmode. The HFSS simulations have been performed in close collaboration with Christophe Hoarau, microwave engineer at Neel Institute, and then was performed by Gonzalo Troncoso, Master 2 student under my supervision. With HFSS,

5.3

Embedding in a 3D-cavity we determine the electric field distribution, the Ancilla-Cavity transverse coupling and the decay rate of each modes. In addition, we precise the effect of Josephson junctions asymmetry d J on the residual transverse coupling between Qubit and Cavity.

Electric vector field distribution

After an eigenmode analysis, it is possible to visualize the electric field vector distribution for each simulated eigenmode. In Fig. 5.16, the electric vector distribution of the TE 101 mode of the cavity is represented in the ZX plane. The sinus shape of a rectangular box, as discussed in Fig. 5.13, is globally recovered with some distortions due to the presence of the input-output pins and the sample and also the fact that the cavity is not exactly a rectangular box. The electric field vector is mostly carried by the Y direction except near the distortion zones. 

Ancilla-cavity transverse coupling and avoided crossing

Sample B is simulated for different value of coupling inductance L a around its estimated via room temperature measurement (L a = 8.24 nH). The resonant frequencies of the first three eigenmodes of the simulated system are plotted as a function of the coupling inductance L a in Fig. 5.17.(a). The frequency of the first mode seems constant around 6.3 GHz. It is attributed to the Qubit.

The frequencies of the two other modes vary with the coupling inductance and an avoided crossing is observed. It is attributed to the crossing between the bare Cavity and the bare Ancilla. The bare Cavity has been simulated giving a bare frequency around 7.17 GHz. To quantify the transverse coupling strength between Cavity and Ancilla, we plot the detuning ∆ 23 between the two eigenmodes 2 and 3 as a function of coupling inductance (Fig. coupling 2g a . We deduce a transverse coupling strength g a /2π 306 MHz. It is similar to the measured value (295 MHz in Chapter 8), however quantifying the errorbar on the simulated value is still under investigation.

Quality factors and decay times

In the eigenmode, the quality factor is also simulated along with the resonant frequency for each mode of the system. From their quality factor Q, and frequency f , the decay time T 1 is computed with T 1 = Q/(2π f ). They are plotted for the 5.3 Embedding in a 3D-cavity first three modes of the system versus the coupling inductance L a in Fig. 5.17.(c).

Modes 2 and 3 have a decay time between few nanoseconds to one hundred nanosecond for the simulated value of coupling inductance. At the Ancilla-Cavity degeneracy point, modes 2 and 3 have approximately the same decay time, below degeneracy, L a < 13 nH, mode 2 has a smaller decay time and above degeneracy, it is mode 3 who has a smaller decay time. This is understood by the fact that mode 2 is more Cavity-like below degeneracy and above degeneracy it is mode 3 who is more Cavity-like. Mode 1 has its decay time going down from almost one millisecond at L a = 4 nH to less than one hundred nanosecond at L a = 25 nH. At degeneracy, Qubit mode 1 has a decay time around tens of microseconds.

Remark: In our simulation, the decay times have mainly three contributions, the loss in the copper metal of the cavity, loss in the silicon dielectric (loss tangent tan(δ) = 0.004) and last but not least, loss towards the environment through the 50 Ω ports. Here we want to estimate with simulations the residual transverse coupling strength g qb between the Cavity and the S-transmon mode of the circuit and its de-Chapter 5 Samples design and fabrication pendence on the Josephson junction asymmetry d J . As discussed in Section 4.4, an asymmetry in the Josephson junctions creates some unwanted couplings. Therefore, we simulated the eigenfrequencies of the Qubit and Cavity by sweeping the mean inductance of the Josephson junction L qb for different value of asymmetry d J . The value of the mean inductance L qb is chosen in order that the bare Qubit frequency crosses the bare Cavity frequency. The value of the coupling inductance L a is chosen in order to have an Ancilla frequency around 12 GHz. By this way, we can neglect the effect of the Ancilla. Avoided crossing between the Qubit and the Cavity are observed. We quantify them by plotting the detuning ∆ between the two modes (Fig. 5.18). At resonance, the detuning is given by two times the transverse coupling strength, ∆ = 2g qb . We observe that for increasing asymmetry d J , the detuning at resonance is getting bigger and therefore the transverse coupling strength between the Qubit and the Cavity is also getting bigger. At zero asymmetry, the transverse coupling is close to zero and increases to 33 MHz for a 35 % asymmetry. It is still under investigation to quantify the errorbars on the simulated transverse couplings.

S-transmon-cavity residual transverse coupling, effect of junction asymmetry

Approximating the S-transmon-Cavity transverse coupling as a linear law with the asymmetry d J , we estimate a residual transverse coupling strength g qb /2π = 1.3 MHz for the measured asymmetry d J = 1.3 %. We simulated a 1.3 MHz Stransmon-Cavity transverse coupling for a S-transmon frequency close to the cavity frequency (around 7.17 GHz). However, the strength of the transverse coupling strength approximately evolves as the square root of its frequency in the transmon regime [35]. Therefore, for sample B, with Qubit frequency approximately at 6.3 GHz, the residual transverse coupling strength is around 7 % smaller and is g qb /2π 1.2 MHz because of the frequency renormalization.

Understanding the effect of junction asymmetry, sample rotation inside the cavity.

As discussed in Section 4.4.2, the Josephson junctions asymmetry d J can be understood as altering the initial S-transmon and Ancilla modes, when no asymmetry is considered, into new eigenmodes. These new eigenmodes have an electrical dipolar moment tilted by an angle θ xy compared to the symmetric case. As discussed in Section 4.1.1, the transverse coupling strength is proportional to the angle between the electric field and the dipolar moment.

In the ideal case of no asymmetry, d J = 0, the sample chip is placed inside the cavity in order to have alignment between the Ancilla dipolar moment and the electric field and to have orthogonality between the Qubit dipolar moment and the electric field. However, when a non-zero asymmetry exist, the dipolar moments of both Qubit and Ancilla are tilted. With the circuit theory of the transmon molecule, the rotation of angle θ xy of the dipolar moments can be computed. The angle -θ xy is plotted in red solid line in Fig. 5.19. We can therefore wonder if we can realign experimentally realign the dipolar moments with the electric field by rotating the sample chip inside the cavity in the other direction.

To estimate this possibility, we simulated the system in HFSS, for different geometrical angle θ g between the circuit and the cavity, see bottom right inset of Fig. 5.19. In the simulation, we rotate only the metallic part of the sample and not its silicon substrate chip. For each value of asymmetry, we obtain a curve of Qubit Q-factor versus geometrical rotation angle θ g . One example is given in the top left inset of Fig. 5.19 for an asymmetry of d J = 1.3 %. From each asymmetry, we extract the value of angle θ g max where the Q-factor is maximal. These angles θ g max are displayed in Fig. 5.19 as black circles when different input/output coupling pins are considered and as blue triangle when identical input/output coupling pins are considered. The errorbar are estimated via the possible error on the identification of θ g max due to the large step of approximately 1 degrees in the HFSS simulations of the Q-factors. This large step was taken to not consume too much time.

We observe a good match between the simulated geometrical angles and the opposite of the dipolar angle. We can therefore hope to reduce the Purcell limitation due to a given Josephson junctions asymmetry by rotating the sample inside the cavity. Also, we observe with the simulations that the experimental asymmetry in the input/output coupling pins does not seems to affect the rotation angles.

Obtaining the non-linear coefficient from perturbation theory.

It is described in more details in Appendix E. Following the Black-Box-Quantization computation from [START_REF] Nigg | [END_REF], the non-linear coefficients of the quantized Hamiltonian can be computed from the results of EM simulations. To do so, the non-linearity of Chapter 5 Samples design and fabrication the Josephson junctions are treated by perturbation theory. We used this method to compute cross-Kerr coupling strengths in Fig. 8.11 and in Fig. 8.13.

Design considerations

Here we discussed the choices of fabrication and the assumptions to consider that the sample behaves as the circuit described in Fig. 5.3.

Transmon molecule size

Until now, we have considered that the sample circuit see a uniform field when discussing the coupling between the transmon molecule and the cavity. This assumption is valid only if the spatial extension L x of the transmon molecule circuit in the x-axis of the cavity is small compared to the wavelength of the cavity TE 101 mode. To give an order of magnitude, the wavelength λ 101 of the TE 101 mode of our cavity is λ 101 = 49 mm. For our circuit, the spatial extension is around L x 300 µm, and is small compared to the wavelength L x λ 101 . At L x from the center, using Eq. (5.3a), the variation of electric field is given by

(E y (x = a/2, z = d/2) -E y (x = a/2 + L x , z = d/2))/E 0 2 × 10 -5
. Therefore the electric field of the cavity TE 101 mode is considered uniform over the circuit sample area.

Self-capacitances

The self-capacitance C J of a junction is estimated through a simple model of a parallel plate capacitance C J = 0 r S/d with r = 10.5 the relative permittivity of aluminum oxide, S the area of the junction, and d the thickness of the insulating layer. In our case, the thickness d is around 2 nm. This gives a capacitance per area unit of C J /S 45 fF/µm 2 . These self-capacitances were not considered in the EM simulations and need to be added in parallel to obtain the right circuit parameters. For sample A, an estimated value of 2.6 fF needs to be added to the simulated C qb and 2.1 fF needs to be added to the simulated C a . For sample B, an estimated value of 4 fF needs to be added to the simulated C qb and 2.7 fF needs to be added to the simulated C a .

Wires, flux vortices and parasitic inductances.

Magnetic shielding is used to protect the inside of the cryostat from the Earth field, around 50 µT (Section 6.1.4). We estimate the magnetic field applied perpendicularly to the sample. For the large of area A b 6 µm × 30 µm, a quantum flux Φ 0 inside the squid loop corresponds to a magnetic field of B = Φ 0 /A b = 11.5 µT. With aluminum circuits, we need to be careful on the strength of the applied magnetic field. Indeed, a flux vortex can be created in a superconducting wire of width w when the amplitude of a perpendicular applied magnetic field is larger than B lim = Φ 0 /w 2 . The largest wire width of the circuit is typically 4 µm. This gives a magnetic field limit B lim = 0.13 mT. This means that we can apply around 11 Φ 0 before introducing vortices inside the wires of width 4 µm.

Room Temperature Characterization

Flux vortices are not wanted for two reasons: first, their motion, due to microwave signal, leads to energy dissipation, which then leads to worsen quality factors of the device, secondly, flux vortices passing by near the squid loops create noise in the flux of the squid loops and therefore create fluctuations in the energy spectrum of the device. Therefore, to prevent flux vortices in the wires, we want thin wires. However, thin wires will creates some parasitic inductance. A trade-off is reached by using thin wires close to the Josephson junctions squid and wider wires to connect to the pads. Small wires of width 0.2 µm, thickness 20 nm and length 40 µm give a parasitic kinetic inductance of approximately 0.4 nH. Meanwhile the large wires of width 4 µm, thickness 70 nm and length 700 µm give a parasitic kinetic inductance of 0.1 nH. To be able to neglect them, we need to keep them small compared to the inductances due to the Josephson junctions.

Room Temperature Characterization

A room temperature resistance measurement gives us an insight about the critical currents of the fabricated Josephson junctions. Indeed, the Ambegaokar-Baratoff formula [109] linked the critical current I C of a junction to its normal state resistance R N at low temperature by:

R N I C (T) = π 2 ∆ e tanh ∆ 2k B T π 2 ∆ Al e (5.5) 
where ∆ is the superconducting gap and k B is the Boltzmann constant. In case of aluminum thin films [70], the gap value is ∆ Al /e = 210 µV. The experiments are carried out at a base temperature T 20 mK leading to the simplification in Eq. (5.5).

The normal resistance R N is estimated through the room temperature resistance of the junction R RT . They are not exactly the same because of temperature effect. Indeed, the Fermi-Dirac distribution broadens with an increased temperature, leading to more tunneling because of increased available states [110]. Therefore, a higher temperature induces a lower resistance. To take that effect into account, a constant factor r 0 1.3 is introduced [69]:

R N = r 0 R RT (5.6)
In order to check the fabrication process, several chips of a wafer are dedicated to test junctions. Those test junctions are fabricated during the same fabrication process as the samples, and thus, should give the same circuit parameters.

Resistance measurement

The room temperature resistances, R RT of test junctions, are measured via DC measurements. In Fig. Current is applied and voltage drop is measured. The IV curve measurement is automated via Python script.

voltage when no current is applied. Via python script, the IV curve measurement is automated and a linear fit is performed to gives the total resistance R tot of the test structure. R tot is the in series resistance of the first wire R w1 , of the tested junctions nR RT with n the number of junctions, of the second wire R w2 and also of the setup cables R setup (Fig. 5.21). The wire resistances R w1 and R w2 are not equal because the thickness of the first metallic deposition is smaller than the thickness of the second metallic deposition.

Here, we use a two-probes configuration instead of four-probes configuration for two reasons. A two-probes configuration reduces by a factor two the needed number of pads and then by approximately two the needed area for a test structures. It therefore simplifies the design of the test structures and reduces the time to write them. Moreover, in the two-probes configuration, by sweeping the number of junctions while keeping the same configurations for the wires on several test structures, the different parasitic contributions in the resistance are taken out. Indeed, we design several test structures with different odd numbers, from one to nine, of test junctions with the same wire lengths (inset of Fig. 5.21). If an even number of junction is taken, one of the wire would be flip from first metallic deposition to second metallic deposition or vice versa and therefore the wire resistances would not be the same. Measuring these different test structures gives a total resistance versus number of junctions curve where the slope is the resistance given by only one test junction and the intersect with the y-axis is the parasitic resistance, as can be seen in Fig. 5.21. 

Critical current density

From one sample fabrication to another, the critical current density can differ. In Fig. 5.22 is reported, for several test chips on several wafer, the critical current estimated from DC room temperature resistance measurements versus the junction area measured with SEM picture. Usually with our recipe, the values of critical current density J C are comprised between 20 A/cm 2 and 40 A/cm 2 . The nanofabrication process is not perfectly reproducible. Indeed, the critical current density varies slightly from one fabrication process to another (Fig. 5.22). The reasons for these differences are multiple and may come from differences of thickness of the resist bilayer, differences in the deposition angles because of tilts, a not perfectly uniform and reproducible oxidation. However, for one sample chip, the critical current density is the same for the small junctions with area around 300 nm × 300 nm than for large junctions with area around 0.2 µm × 4 µm. Interestingly we notice that the critical current density is the same for small junction fabricated with a bridge technique and large junctions fabricated with the bridge free technique. 

Transmon molecule junctions asymmetry

During his Ph.D. Javier Puertas Martinez [106] extracted a standard deviation of σ = 3 % in the room temperature resistance measurements of 100 asymmetric Josephson squids with size 3.2 µm × 0.2 µm and 4 µm × 0.2 µm in one single fabrication process using the same fabrication recipe. This shows a quite reproducible fabrication process. It is on par with the dispersion of σ =3.5 % found in [111].

From the distribution of the resistance of one junction with a dispersion σ 1 , the asymmetry of resistances between two junctions will have a distribution with a zero mean value and a dispersion given by σ 2 = √ 2σ 1 . So for a dispersion σ 1 = 3.5 %, we expect an asymmetry dispersion of σ 2 5 %. Therefore, approximately 95 % of the time (Gaussian statistic), the absolute junction asymmetry |d J | should be under 2σ 2 , |d J | < 10 %.

In my Ph.D. project, we would like to achieve a transmon molecule circuit with a minimal asymmetry. As discussed in Section 4.4, the junction asymmetry is an essential parameter that can impede the S-transmon. It is therefore mandatory to characterize the asymmetry before cooling down a sample. To do that, one resistance measurement per pair combination of the three pads on each transmon molecule sample are performed.

The resistances we want to extract are the resistances of the small Josephson junction R qb1 and R qb2 and the resistance of the squids array R a (Fig. 5.23). However, the measured resistances are the resistances between the three network pads nodes P 1 , P 2 and P 3 . The resistances R 1 , R 2 and R 3 are the resistances of the dif- The resistances can only be probed through the three ports P 1 , P 2 and P 3 . There are two type of contributions to the resistances, one is from the wires R 1 , R 2 and R 3 and the other is from the Josephson junctions R a , R qb1 and R qb2 .

(b) SEM picture where different wires, highlighted by different colors, differ by thickness, width and length and so their resistance also differ.

equations with three unknowns R a , R qb1 and R qb2 given by:

R P 1 ,P 2 = 2R 1 + R a //(2R 2 + R qb1 + R qb2 ) (5.7a) R P 1 ,P 3 = R 1 + (R 2 + R qb1 )//(R a + R 2 + R qb2 ) + R 3 (5.7b) R P 2 ,P 3 = R 1 + (R 2 + R qb2 )//(R a + R 2 + R qb3 ) + R 3 (5.7c)
The junction asymmetry is given by: 

d J = R qb1 -R qb2 R qb1 + R qb2 = I C 2 -I C 1 I C 1 + I C 2 (5.8)
If the wires resistances are neglected, the Josephson junction R qb1 and R qb2 are overestimated by the same additional amount and therefore, the asymmetry d J is underestimated. For 51 samples over three different wafers, the three nodes network of resistances has been measured. The resulting junction asymmetry d J and mean critical current I C = (I C 1 + I C 2 )/2 are shown in Fig. 5.24.

In Fig. 5.24 is also shown the distribution of the absolute value of asymmetry over the 51 different samples. We have obtained at minimum, an asymmetry of 0.35 % and at maximum, an asymmetry of 14.75 %. Here, it is hard to conclude on the statistics of the asymmetry factor d J , because there is not enough counts and the different measured asymmetry are not performed for only one size of Josephson junction. However, the measured values of asymmetry is consistent with a single junction dispersion around 3.5 %.

Among a batch, we have selected the samples which present the smallest asymmetry factor and which have the estimated S-transmon and Ancilla frequencies the closest to the target values. Table 5.1 -Summary of the estimated and extracted from measurement circuit parameters for sample A and B. Columns "SON-NET" and "HFSS" mean estimation via EM simulations.

Columns "Resistance" mean estimated from DC-room temperature resistance measurement and columns "Spectro fit" mean extracted from the fit of the spectrum via numerical diagonalization.

Circuit parameters summary

In Table 5.1 are summarized the parameters of the two circuits presented in Chapters 7 and 8. The estimations on capacitances come from SONNET simulations without considering the self-capacitances of the junctions (of the order of few fF). The estimations on critical current and inductances come from room temperature resistance measurement. The extracted values of the different parameters come from fitting the spectroscopic lines as discussed in Chapters 7 and 8.

Chapter keypoints

In this chapter, the two samples under study have been presented. The design and fabrication process have been reviewed. The embedding of the circuit in a 3Dcavity has been studied. The link between the sample and the transmon molecule circuit model has been established. EM simulations have been used to predict circuit capacitances and eigenfrequencies. EM simulations have also been used to better understand the physics investigated with sample B. transverse couplings and decay rates have been simulated. We also introduced the idea of possibly mitigating the Purcell limit, imposed by the junctions asymmetry, by rotating the 6

In this chapter, the experimental setup used to perform measurements is described.The cryogenic setup is optimized to allow low temperature and low noise microwave measurement. Then, the room temperature microwave setup allowing time-resolved measurement is introduced. Finally, the software setup management is briefly presented. To study a superconducting quantum circuit, it is important to reduce as much as possible the number of thermal excitation in the system. As seen in Chapter 2, the relevant transition frequencies are in the GHz range. At thermal equilibrium at temperature T, the mean number of thermal photons n(ω, T) is given by the In Fig. 6.1, the Bose-Einstein distribution in the GHz range is shown for the typical temperatures of the different stages of the cryostat. We observe that for the base temperature of the cryostat, T = 20 mK, the mean thermal photons number is always smaller than 1/2 in the GHz range. Therefore, the quantum circuit can be considered mostly in its ground state at thermal equilibrium for this frequency window. This consideration is more valid as the frequency is increased.

Cryogenic setup

Presentation

Pictures of the inner part of the cryostat can be found in Appendix A. The cryostat used is an homemade wet dilution fridge designed and mounted by the SERAS a and "Pôle cryogénique" at Néel Institute in 2008-2009. It was moved in the new "Z" building in 2015, just before I joined the team. The base temperature at the mixing chamber is T MxC ∼ 20 mK with a roots vacuum pump and T MxC ∼ 50 mK without it. The different temperature stages are represented in Fig. 6.2 along with the low temperature microwave setup.

Low temperature microwave setup

Inside the fridge, there are in total eight microwave lines arriving to the 4 K stage.

The eight microwave lines are divided into two sets allowing to measure separately and independently two samples thanks to two High-Electron-Mobility-Transistor (HEMT) amplifiers. One of this two sets is represented in Fig. 6.2.

To insure that all microwave components in the cryostat are at the same temperature as the stage they reside in, they are anchored to their respective stage plates via copper brackets. One example is given with an attenuator with the picture in Fig. 6.3.

Thermal noise

The sample is placed and thermalized at the 20 mK to be able to consider the quantum system in its ground state at equilibrium. However, the sample is not only connected to a 20 mK thermal bath but also to other baths at different temperatures via the input and output lines. We want to evaluate the noise power reaching the sample. In the input lines, several attenuators are anchored at the different thermal stages to lower the thermal noise going towards the sample to almost the base temperature of the cryostat. Indeed, an attenuator can be modeled as a beam splitter with two incomings signals and two outgoings signals (Fig. 6.3). The two incomings signals are a in , the noise signal amplitude that we want to thermalize, coming from a higher temperature stage and b in , the noise signal amplitude, coming from the thermal stage of the attenuator itself. The two a "Service Etudes et Réalisation d'Appareillages Scientifiques" outgoing signal are a out , the noise signal amplitude going to a lower temperature stage and b out the noise signal amplitude absorbed by the attenuator thermal stage. For an attenuator with intensity transparency t (or transmission factor), the variances of the outputs signal, |a out | 2 and |b out | 2 , are given by [START_REF] Walls | Quantum optics[END_REF]:

|a out | 2 =t |a in | 2 + (1 -t) |b in | 2 |b out | 2 =t |b in | 2 + (1 -t) |a in | 2 (6.2)
which is correct for uncorrelated noise amplitudes, a in b in = 0 and the noise mean value is zero, a in = b in = 0. There are two contributions to the noise after an attenuator |a out | 2 , the thermal noise coming from the attenuator itself at the temperature stage (1t) |b in | 2 , and the noise from the input of the attenuator that is transmitted t |a in | 2 . We aim for a noise arriving at the sample to be as low as possible and close to the noise given by the 20 mK base stage temperature.

As shown in Fig. 6.2, the first thermalization in the output lines is handled by a -20 dB attenuator (t = 0.01) fixed at 4 K. In the Z 0 = 50 Ω lines, the input noise power spectral density |a in (ω)| 2 /4Z 0 coming from the room temperature stage T 300K = 300 K is well approximated by the classical Johnson-Nyquist white noise, k B T 300K . As well the input noise power spectral density |b in (ω)| 2 /4Z 0 is approximated by a Johnson-Nyquist white noise at temperature T 4K :

|a in (ω)| 2 4Z 0 k B T 300K |b in (ω)| 2 4Z 0 k B T 4K (6.3)
Therefore, the outgoing power spectral density corresponds approximately to the one of a Johnson-Nyquist noise at temperature

T out = |a out (ω)| 2 /4Z 0 k B ∼ 7 K.
This attenuator, thermalized at 4 K can then be considered, in terms of noise, as a virtual 50 Ω resistance thermalized at 7 K.

The next thermalization is handled by two -20 dB attenuators anchored at the 20 mK stage. Doing the same computation and still using a Johnson-Nyquist white noise approximation, the effective noise temperature T out = |a out | 2 20mK /4Z 0 k B arriving at the sample from the input lines is T out 20.7 mK. Therefore, within the Johnson-Nyquist white noise approximation, the thermal noise arriving toward the sample anchored at 20 mK corresponds to the thermal noise of a virtual 50 Ω resistance thermalized at T = 20.7 mK.

The Johnson-Nyquist white noise is a good approximation as long as the fre-6.1 Cryogenic setup quency ω of interest are well below the equivalent temperature frequency f T = k B T/h. In the case of a temperature of 20 mK, the equivalent temperature frequency is f T 417 MHz, which is below the GHz eigenfrequencies of the quantum circuit. Therefore, quantum correction needs to be added to obtain the correct noise density [START_REF] Van Der Ziel | Noise in solid state devices and circuits[END_REF]. For a temperature T and at angular frequency ω, the power spectral density PSD(ω) = |a(ω)| 2 /4Z 0 is not anymore given by k B T but is given by:

PSD(ω) = |a(ω)| 2 4Z 0 = hω exp hω k B T -1 (6.4)
In Fig. 6.4 is shown in blue the computed noise power spectral density after the three attenuators with the quantum correction. Below the GHz frequency, the noise is well attenuated and corresponds approximately to the noise of a virtual 50 Ω resistance thermalized at T = 20.7 mK. Above the GHz frequency, the effective power spectral density is dominated by the high frequency transmitted noise power coming from the 4 K stage. This high frequency noise can impede the decay and coherence times of the circuit, as explained in Section 6.1.4. To attenuate this high frequency noise, we use low-pass filter (LPF). Considering the LPF as a frequency dependent attenuator, Eq. (6.2) are used to compute the noise arriving at the sample. Assuming the LPF as a perfect first order LPF with cutoff frequency of 12 GHz, the noise power spectral density is computed and shown in green in Fig. 6.4.

On the output line, the thermalization strategy is different because we cannot afford to attenuate the signal going out of the sample. Therefore, to thermalize the noise coming from the HEMT amplifier, circulators or isolators are used. They are directional component with an isolation around -18 dB. One of the three ports of Chapter 6 Experimental Setup. the circulator is connected to a 50 Ω resistance which dissipate the power received. By this way, a circulator is transformed into an isolator with S-parameters S 21 ∼ 0 dB and S 12 ∼ -18 dB in their working frequency range. To compute the noise going towards the sample, we approximate the circulators/isolators as attenuators with an attenuation of -18 dB. Considering the thermal noise coming from the HEMT amplifier as a Johnson-Nyquist white noise of temperature T HEMT = 5.5 K b , the effective Johnson-Nyquist noise arriving on the sample after the three -18 dB isolators is at a temperature almost equal to 20 mK. Like in the input lines, LPF with cutoff frequency 12 GHz is used to reduced the high frequency noise.

Remark: the isolator model should be refined. Indeed, its response in frequency is not flat, and its parameter S 12 behaves more like a band-stop filter, with rejection band being the working frequency band of the isolators, in our case from 4 GHz to 8 GHz. Therefore, for low frequency, below 4 GHz and for high frequency, above 8 GHz, the isolator doesn't work as an attenuator and the noise is not as well filtered as in the case of a real attenuator. Now that we have estimated the power spectral density arriving towards the sample, we want to estimate the effect of these noises in terms of mean photons number inside the cavity. Considering only a cavity c, with input port κ in and output port κ out , the input-output theory [88] gives the equation of motion:

ċ = (-iω c - κ in + κ out 2 )c + √ κ in a 1 + √ κ out a 2 (6.5)
with a 1 the ingoing noise amplitude at the input port and a 2 the ingoing noise amplitude at the output port. Using Fourier transform and taking the squared modulus, the mean photons number inside the cavity is given by:

|c(ω)| 2 = |T in (ω)| 2 |a 1 (ω)| 2 + |T out (ω)| 2 |a 2 (ω)| 2 (6.6)
where uncorrelated noises have been assumed, a 1 a 2 = 0 and T in/out are the transfer function between the environment and the cavity field through the input (or the output) port:

|T in/out | 2 = 4κ in/out κ 2 Σ + 4∆ω 2 (6.7)
with κ Σ = κ in + κ out is the total cavity damping rate and ∆ω = ωω c is the detuning in regards to the cavity frequency. The residual energy inside the cavity E = n th hω c , with n th the mean number of thermal photons, is given by:

E = 2 +∞ 0 |T in (ω)| 2 PSD 1 (ω) + |T out (ω)| 2 PSD 2 (ω) dω 2π (6.8)
where PSD 1 and PSD 2 are the power spectral density arriving towards the cavity at the input port and output port respectively. The transfer functions |T in/out | 2 are Cauchy-Lorentz functions with heights and FWHM given by 4κ in/out /κ 2 Σ and κ Σ around the frequency position ω c . They are approximated as delta functions where the power spectral densities are considered as constant and therefore are b Noise temperature given in the datasheet 6.1 Cryogenic setup taken out of the integral. The residual energy is thus approximately given by:

E 2PSD 1 (ω c ) ω end ω start |T in (ω)| 2 dω 2π + 2PSD 2 (ω c ) ω end ω start |T out (ω)| 2 dω 2π (6.9) 2PSD 1 (ω c ) κ in κ Σ + 2PSD 2 (ω c ) κ out κ Σ (6.10)
Therefore, the mean number of thermal photon is approximately given by:

n th 2PSD 1 (ω c ) κ in κ Σ + 2PSD 2 (ω c ) κ out κ Σ /hω c (6.11)
In the end, the residual thermal number of photons inside the cavity is estimated to be n th = 1.9 × 10 -4 photons with the approximative formula of Eq. (6.11) and n th = 1.83 × 10 -4 photons with numeric computation of Eq. (6.8) for κ in /2π = 1 MHz and κ out /2π = 30 MHz. If a qubit is simplified cross-Kerr coupled to this cavity with coupling strength χ/2π = 15 MHz, then the coherence time of the qubit will have a limitation T th 2 imposed by the thermal fluctuations [26,[START_REF] Clerk | [END_REF] given by T th 2 = (κ 2 Σ + χ 2 )/(κ Σ χ 2 n th ) 143 µs. Therefore, good thermalization of the cavity is required if we don't want to limit the coherence time of the qubit, specially when there is a large simplified cross-Kerr coupling strength.

In recent literature [25,115,116,117,118,119], the mean thermal photon number n th is estimated to range from 6 × 10 -4 to 0.15, corresponding to temperatures ranging from 55 mK to 140 mK. Good thermalization, n th < 2 × 10 -4 , has been achieved in [26], with the use of an additional dissipative cavity acting like a narrowband attenuator.

Shielding

Magnetic shielding

Outside the cryostat, a µ-Metal cylinder shield with a thickness of 2 mm surrounds the cryostat to protect the inner vacuum chamber against external magnetic field, mainly the residual Earth magnetic field.

A second magnetic shield has been realized by wrapping the still screen (the 800 mK screen) with one layer of Metglas ribbon attached with aluminum tape.

Inside the cryostat, there are other sources of residual magnetic field. They come from the microwave components that rely on ferromagnetic material like the circulators or isolators but also sometimes some microwave connectors which may contain ferromagnetic material like nickel. The last magnetic shield is a 1.5 mm thick µ-Metal cylinder c fixed around a copper screen surrounding the 3D cavity and sample (Fig. 6.5).

IR shielding

Quasiparticles are generated by the absorption of infra-red (IR) light, which can enter the sample mount through the lid joint and connectors. The superconducting gap of aluminum is about 50 GHz. So every radiation above twice this frequency can excite some unwanted non-equilibrium quasiparticles in the superconducting aluminum. These quasiparticles create significant loss mechanism in superconducting quantum circuits, resonators and qubits [120,121,122,123,124]. Therefore, we need to limit these IR radiations.

To do that, the strategy of "a box in a box" for light-tight sample with multi-stage shielding is adopted. The sample, already closed inside the 3D-cavity is placed inside a copper cylinder screen (Fig. 6.5.(a-b)). On the inner part of this screen, we use a black coating that absorbs IR photons. It is composed of carbon powder and silicon balls of different sizes mixed inside of black Stycast R d following the recipe described in [START_REF] Klaassen | IEEE Tenth International Conference on[END_REF].

Also, IR radiation can comes from the inner conductors of the coaxial cables. To attenuate this source of radiation, we use reflective low-pass filter K&L e (with a cut-off frequency at 12 GHz) and/or homemade dissipative low-pass filter. These dissipative homemade filters were fabricated by Y. Krupko and J. Puertas [106]. They consist in a 50 Ω short section of a coaxial cable with silver-plated copper for the inner conductor, copper for the outer conductor, and a microwave absorbing material f that filters out the frequency above 20 GHz.

Amplification chain

On each output line, there are several amplifiers in series. Both amplification chain begins with a Josephson Parametric Amplifier (JPA). However, the JPAs are power supplied only in Chapter 9, therefore we forget about them for now. The amplification chain consists of several amplifiers with different noise temperature. It
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Microwave Room-Temperature setup can be modeled by a unique amplifier with gain G tot and noise temperature T tot according to Friis formula [START_REF] Friis | [END_REF] given by:

G tot =G 1 × G 2 × ... × G N (6.12) T tot =T 1 + T 2 G 1 + ... + T N G N G tot (6.13)
meaning that the total gain G tot is the product of each amplifier gain and the effective noise temperature T tot is given by the sum of each amplifier noise temperature normalized by the gain of the following amplifier. In the limit of extremely large gain for the first amplifier, then the effective total noise is dominated by the noise of the first amplifier. The aim is therefore to have as first amplifier one with a low noise and with strong gain. In our setup the first amplifier is a cryogenic HEMT amplifier exhibiting a gain of 39 dB and a noise temperature of 5.5 K over a bandwidth from 1 GHz to 12 GHz, according to the datasheet for the Low Noise Factory LNF-LNC1-12A. For the Caltech HEMT amplifier CITCRYO1-12A-1, it exhibits a gain of 35 dB and a noise temperature of 5 K over a bandwidth from 1 GHz to 12 GHz.

The first room temperature amplifier is Miteq AFS4-08001200-10-CR-4 exhibiting a 32 dB gain or Mini-Circuits ZVA-183+ exhibiting a 26 dB gain. Then the microwave signal is downconverted with a mixer for heterodyne scheme or with an IQ mixer for homodyne scheme. The mixers usually saturate around 5 dBm at the RF input and have a conversion loss around -5.5 dB. After the down-conversion, there is another stage of amplification, which is now at low frequency, to exploit fully the range of the acquisition board, ± 400 mV.

Considering the example of the amplification chain depicted in Fig. 6.6.a, the setup before the first amplifier is assumed as a virtual Z 0 =50 Ω resistance thermalized at 20 mK. The voltage standard deviation σ V of the signal acquired is given by:

σ V = 4Z 0 k B T N ∆ f (6.14)
where ∆ f is the bandwidth over which the noise is integrated and T N is the effective noise temperature of the signal arriving on the acquisition board.

In Fig. 6.6.b is shown an histogram over 1 × 10 5 realizations for noise signal integrated in 4 µs (∆ f = 250 kHz). Fitting by a Gaussian, a voltage deviation of σ V = 1.2 mV was found. In the amplification chain model, we consider some possible disparity from the datasheet values. Assuming an errorbar of ± 2 dB in the different gains and ± 50 % in the noise temperatures, we estimate using Eq. (6.14), a voltage standard deviation σ V = 1.4 mV ± 0.7 mV, in agreement with the measured voltage deviation.

Microwave Room-Temperature setup

During my Ph.D., the room temperature microwave setup, located outside the dilution fridge, has been continuously optimized. At the beginning, I used the Chapter 6 Experimental Setup. setup developed by E. Dumur during his Ph. D. [76]. The setup has since then evolved, notably with the arrival of the arbitrary waveform generator (AWG) g . Within all the different optimizations, the microwave setup can be categorized into two schemes, an heterodyne one and an homodyne one. Here, homodyne (single frequency) and heterodyne (dual frequency) are to be taken in an engineering signal processing sense.

We moved from heterodyne to homodyne scheme in order to be able to use the JPA in a phase-sensitive fashion [127]. Indeed, phases control for signal and pump are required. The AWG have a phase noise about 6 mrad when operated at 50 MHz because of jitter about few 10 ps on the AWG triggering. This becomes a phase noise about 1 rad between signal and pump which does not allow for a phasesensitive operation of the JPA. With homodyne scheme, this triggering phase noise becomes irrelevant. As long as the total measurement time is small compared to T phase , the phase of each instruments can be considered as constants. It is therefore important for a given measurement that the total measurement time to be much smaller than the lost phase time, or if it is not the case, to be able to correct the drift in the phase.

Triggering

In a pulsed measurement, the devices are triggered to know for example when to generate or when to acquire or when to change a swept parameter like the frequency or the power. In our setup, the triggering is performed thanks to the AWG. The AWG can send trigger, called marker, with controlled voltage amplitude up to 1.2 V, temporal position and width.

After receiving a trigger, the acquisition board begins to acquire the data. The board can be set internally to wait a certain amount of delay time between receiving the trigger and acquiring the data. This allows to compensate the differences in the times of flight of the different triggers and of the pulsed signal going through the cryostat.

g Tabor WX2184C h from Pôle service électronique, Institut Néel 

Down-conversion

Mixing component

Up-conversion

Mixing component It results in a pulsed microwave signal (RF) with some envelop given by the AWG and in the heterodyne case, the frequency is slightly shifted by the intermediate frequency of the AWG as illustrated here in (c). In the homodyne case, the RF frequency is the one of the LO. For down-conversion, an RF signal is mixed with a LO, resulting in an IF signal. For a fixed LO, the IF signal, which can be acquired, is a function of the RF signal.

Microwave Room-Temperature setup

Up-conversion

The LO signal is a microwave source delivering in a continuous way, a sinusoid at a given frequency f LO and given amplitude a LO . The IF signal is handled by an AWG i . The AWG can generate any arbitrary signal within a time step of 1 ns and an amplitude up to 2 V with a vertical resolution of 14 Bits.

For the homodyne scheme, the up-conversion is handled by two mixers j in series. 

Down-conversion

The acquisition card m possesses a sampling rate from 0.3 GS/s to 1.8 GS/s with an external clock. It is used to acquire and digitize the pulsed RF signal on 12 Bits in a ± 400 mV range. To be able to acquire the pulsed RF signal whose frequency is around 7 GHz, we need to down-convert it.

In the heterodyne case, the down-conversion is handled by a mixer n . Multiplying an LO signal at frequency f 0 to an RF signal at frequency f 1 gives a signal with two frequencies, the difference frequency

f ∆ = | f 0 -f 1 | and the sum frequency f Σ = f 0 + f 1 .
In our case, the difference frequency is f ∆ = 50 MHz and the sum frequency is typically f Σ = 14 GHz. As the IF port of the mixer has a frequency range from DC to 2 GHz, the high frequency signal is filtered out. Moreover, between the mixer and the acquisition board, two low-pass filters o with a cutoff frequency of 155 MHz are used to further filter the high frequencies.

In the homodyne case, an IQ-mixer p is used. An IQ mixer consists of two mixers where on one of the two mixers a 90 phase shift is added between the LO and RF thanks to a quadrature hybrid. Therefore, two IF ports, I for the in-phase component and Q for the 90 out-of-phase component, corresponding to the real i Tabor WX2184C 

Mixers and power management

For all the different mixers, the power arriving at the LO port is kept constant and close to the optimal working point given by the datasheet. By this way, there is a unique correspondence between the RF and IF powers as long as they don't explore the non linearity of the mixer. To control the RF powers going towards the sample, it is possible to modulate the IF power. However, there is an optimal working point for the IF power. If it is too much reduced, the mixer will not work properly. The RF output will become comparable to the LO leakage or to the suppressed sideband.

Therefore, we choose to keep the LO and IF powers arriving on the mixers as setup constants and to manage the RF input power, a programmable attenuator r with an attenuation range from 0 dB to 30 dB and a step of 0.25 dB. To reach a better precision than 0.25 dB, the optimal IF power is modulated within this 0.25 dB accuracy.

Data acquisition

The board is usually used with an acquisition rate of 1 GS/s. In a standard measurement, a readout pulse of duration from few 10 ns to several µs is repeated after a waiting time of 200 µs allowing the system to come back to thermal equilibrium. From each pulse, the real and imaginary part of the RF signal after downconversion, are extracted.

In the heterodyne case, we need to acquire a pulsed sinusoid with frequency f IF = 50 MHz. This IF frequency is chosen to avoid sampling problem as its inverse correspond to an integer of 20 ns. This means that an IF period correspond to 20 acquired points by the board. To extract the real and imaginary parts from this pulsed sinusoid, we numerically multiply the digitized signal by a cosine or by a sine of amplitude 1 and frequency f IF giving two array S I and S Q . These two arrays have a DC component plus a sinusoid component at frequency 2 f IF . By averaging over an integer of IF period, only the DC components, corresponding to the real and imaginary parts I t and Q t , remains. Again, the two quadratures can be averaged over several pulses realizations to give I t R and Q t R .

In the homodyne case, the two channels of the board receive one of the two quadratures of the RF signal. The two quadratures I(t) and Q(t) are then averaged over the pulse duration, I t and Q t . They can also be averaged over several pulses realizations, I t R and Q t R .

Because of the finite internal memory of the card and to optimize the time of measurement, a FIFO (First-In-First-Out) strategy along with multiprocessing was implemented. In parallel and in an asynchronous way, the data is acquired, given q Mini-Circuits SLP-100+ r Mini-Circuits RCDAT-8000-30

6.2 Microwave Room-Temperature setup first treatment by the card and then sent to the computer for more data treatment and plotting. The first data treatment is what we have just described to extract I t R and Q t R for each readout pulse.

Better data analysis for short pulse duration

When the pulse time becomes short, it is no more accurate to consider that the pulsed signal to acquired is a squared envelop like the one we sent. Indeed, the cavity, with coupling κ tot have a rising and lowering time given by 1/κ tot (Fig. 6.9).

Therefore, instead of using a simple integral over the squared pulse duration, it is better to integrate with a weight function where there is less weight at the beginning and ending of the pulse.

Q = T f T i q(t)W(t)dt (6.15)
We move from using a weight function W square proportional to the ideal square pulse (green line) to a weight function W rising (proportional to the orange line) that takes into account the response time of the cavity. By this way, more weight is given when the cavity is close to its high amplitude steady state and less weight is given when it is close to its low amplitude steady state. This weight W rising has been used for the single-shot measurements in Chapter 8.

Another weight function W e-g has been used in Chapter 9, one can be seen in Fig. 6.10. It is the weight function which maximizes the distinguishably between the two states of the Qubit, |g and |e , and is given by: W e-g (t) ∝ | q g R (t)q e R (t)| (6.16)

Chapter 6 Experimental Setup.

where q α (t) is the acquired complex quadrature when the Qubit has been prepared in the state α and . R is the mean value over several realizations. part and in orange, imaginary part. Solid lines, no pulse applied to the Qubit, dash lines, a π-pulse is applied to the Qubit. Acquired voltages are averaged over 1 × 10 3 realizations for an applied square readout pulse of 50 ns.

Heterodyne measurement

The employed setup for heterodyne measurement is summarized in Fig. 6.11. The readout microwave tone, with frequency f LO close to the cavity (or readout mode) frequency is split in two signals. One will be pulsed, modulated at frequency f IF with dominant sideband f RO = f LOf IF and sent through the sample. The other is used for reading out by frequency down-conversion of the pulsed signal. Along with the microwave readout tone, another tone can be sent towards the sample. This second tone, usually pulsed, is used to excite the qubit.

Homodyne measurement

In a homodyne measurement, the RF signal is down-converted to two DC signals corresponding to its real and imaginary parts. This is performed with an IQ-mixer supplied with a local oscillator with the same frequency as the RF signal.

Imperfections in the setup

Until now, we have described each components as perfect components. Here, we emphasize the imperfections of the microwave components and their possible consequences. First of all, each microwave components are not perfectly 50 Ω matched over the frequency range. These impedance mismatches create parasitic standing waves that modulates in an uncontrolled way the amplitude with frequency. Also, each microwave components have some insertion loss. These losses must be minimized between the sample and the first amplifier. Indeed, they directly reduce the quantum efficiency of the measurement.

Moreover, when creating pulsed RF signal, there is not only the desired frequency but also higher harmonics because of the non-linearity of the mixers. This can become troublesome when one of this harmonics hits an eigenfrequency of the sample system. We can by this way misinterpret a resonant frequency. To reduce this effect, low-pass filter are used, filtering out the higher harmonics. However, one has to be careful when combining mixers which are non-linear elements with low-pass filters that are reflective in the stop band, because it enhances unwanted interference phenomena modulating the amplitude versus the LO frequency. To avoid this effect, we acquired during the last year of my work a reflectionless low-pass filter, Mini-Circuit XLF-762+, which is dissipative in the stop band. 

Software environment

The different devices and measurement executions are managed through computer on the platform QTLab with the Python language.

Python

Python is a free and open-source programming language which works on GNU/Linux, Mac, or Windows. Python scripts and drivers can therefore be shared and exploited by every person in the group whatever the operating system they use. We used the version Python 2.7.

Version control with Git allows to have an always up-to-date driver versions for the different instruments. This is really useful when an instrument is shared among the team. Moreover, it helps in fixing bugs to have several users on the same drivers. During my thesis, several new physical instruments, needing a python driver interface, arrived in the group. And so, a part of my job was to code these drivers. During my Ph.D., I mainly interfaced three physical instruments, the programmable step attenuators Mini-Circuits RCDAT8000-30, the AWG Tabor WX2184C in collaboration with Nicolas Roch and the Vector Network Analyser Anritsu MS46522B-020 in collaboration with Luca Planat. Another part of my Chapter 6 Experimental Setup.

work was to create a driver for the virtual instrument "Pulses manager" who manages and control together several physical instruments, the microwaves sources, the AWG and the acquisition board. The driver possesses two categories of functions, the functions that write a given pulses sequence inside the memory of the AWG and the functions that prepare the different physical instruments to run a given pulses sequence. For example, with a Twotones spectroscopy pulses sequence, the write function will write the first tone and the second tone pulses sequence in the memory of the both dedicated channels of the AWG. The prepare function will prepare the first tone microwave source in single frequency (CW mode) and the second tone source in a sweeping frequency mode. The prepare function also put the microwave sources and the acquisition board in a external trigger mode before running the triggers from the AWG so that all devices run accordingly. I also updated the driver used for data treatment written by E. Dumur and N. Roch to have the possibility to perform data acquisition with a weight function and also homodyne detection.

Chapter keypoints

In this chapter the experimental setup have been reviewed. It consists in low noise low temperature time-resolved microwave transmission measurement. First the dilution fridge and the low-temperature setup have been described. Second, the room temperature setups allowing pulsed measurement in a heterodyne or homodyne scheme have been studied. Finally, the computer-assisted management of the measurements has been briefly introduced.

Qubit readout based on an orginal effective cross-Kerr coupling.

7

This chapter aims at discussing the quantum dynamics of the transmon molecule circuit embedded in a 3D cavity where the Ancilla-Cavity system is operated in the dispersive regime. It was realized with sample A (Table 5.1). The aims of this sample were multiple: first, to show the possibility to implement the transmon molecule in a 3D c-QED architecture; second, to check the ability to tune almost independently the Ancilla from the S-transmon thanks to the coupling inductance L a as a squids array; last but not least, to explore experimentally the Ancilla-Cavity dispersive regime theoretically introduced in Section 4.2. This regime allows to achieve, between the Qubit and the Cavity, an original effective simplified cross-Kerr coupling without relying on a direct transverse coupling. In the first section, the system is spectroscopically characterized. Then the Qubit-Cavity effective simplified cross-Kerr coupling without transverse coupling is investigated. In the last section, the Qubit time dynamics is reviewed. Circuit parameters of sample A are recalled in Table 8.1.

Spectroscopies results

Cavity spectroscopy

Cavity at 4 K

The acquired transmitted amplitude of a microwave pulsed single tone measurement is shown in Fig. 7.1 when the system is at a temperature of liquid helium T He ∼ 4.2 K. This microwave tone is called readout tone. The heterodyne room temperature microwave setup (Fig. 6.11) is employed. The pulses have a duration of 3 µs and a power P in = 0 dBm ± 2 dBm at the entrance of the cryostat. The errorbar in the power comes from the uncertainty in the conversion loss of the SSB and the insertion losses of the different microwave components. Microwave powers of the different tones will be expressed at the entrance of the cryostat. The readout frequency is swept during measurement. For each frequency point, the pulses are repeated with a period of 100 µs and averaged 200 times. Peaks in the transmitted amplitude can be seen in the inset of Fig. 7 the superconducting quantum circuit. Indeed, at this temperature, the aluminum of the circuit is in its normal state. For the rest of this chapter, the term Cavity will Fig. 7.2 presents the power and frequency dependence of single tone transmission S 21 measurement. Readout pulses last for 4 µs and are averaged 400 times for each frequency and input power value. At "low" power, P in ≤ -27 dBm, a Lorentzian peak, centered at 7.0986 GHz, can be seen in the transmission versus frequency. At "high" power, P in ≥ -5 dBm, the Lorentzian peak is now centered at 7.086 GHz. For power in between, the transmission doesn't present a Lorentzian lineshape anymore, several peaks can be distinguished.

The "low" power regime is explained by the Cavity being dressed by its coupling with the transmon molecule circuit. Its resonant frequency is Lamb shifted towards the dressed frequency ω c,dressed = 7098.6 MHz ± 0.1 MHz. Therefore, between the bare and dressed frequencies, we measured a Lamb shift of δ L = ω c,dressedω c,bare = 12.6 MHz ± 0.2 MHz.

With increasing power, the non-linearity of the dressed Cavity, induced by the transmon molecule, begins to be explored, leading to complex multiple resonance peaks. And, at "high" power, P in ≥ -5 dBm, the quantum circuit is saturated and the frequency of the bare cavity ω c,bare = 7.086 GHz is recovered. The frequency position of the dressed Cavity as a function of current in the magnetic coil is displayed in Fig. 7.3. For every current value, the frequency position is extracted via a Lorentzian fit from a single tone measurement with P in = -30 dBm, 400 averaging and 4 µs of pulse duration. The dressed Cavity frequency oscillates with a periodic behavior and an amplitude of approximately 2 MHz over 0.5 mA of applied current.

In first approximation, the Lamb shift is inversely proportional to the detuning ∆ ac between the bare Cavity and the bare (without the transverse couplings to the Cavity) Ancilla, δ L ∝ ∆ ac , see Section 4.2.2. Applying a current in the coil is equivalent to apply a magnetic flux through the squid loops of the transmon molecule sample. By applying flux, the quantum circuit frequencies are tuned and more specifically the Ancilla frequency is varied. Therefore, the dressed Cavity frequency is also tuned via current in the coil.

Transmon molecule spectroscopy

Qubit spectroscopy versus flux

The normalized phase of the readout tone as a function of excitation frequency of the second tone and current in the magnetic coil is plotted in Fig. 7.4.(a). The readout tone has a duration of 4 µs and is averaged 2000 times. Its power is fixed during the measurement to P in = -30 dBm. It has a fixed frequency for each current chosen from single tone measurement of the Cavity. This single tone measurement, for every current value, is executed and fitted before the two-tone measurement. It is necessary to adapt the frequency of the readout tone for each current values because of the variation of the Cavity frequency (Fig. 7.3). The second tone A periodic behavior with current can be noticed over three periods. This period is associated to flux quantification in the large area squid loop, see Fig. 5.2. A magnetic flux of 1Φ 0 in the large loop of area A b corresponds to an applied current of 870 µA. No magnetic flux onto the circuit corresponds to an applied current of 100 µA. The residual magnetic field inside the sample is therefore approximately 2 µT (with an area A b = 5 µm × 28 µm taken). The same current, or flux, periodic behavior was already observed in Fig. 7.3 with however less precision on the maximum frequency position corresponding to integer value of Φ 0 in the large loop. In the rest of the chapter, flux will always be defined as a number of quantum flux Φ 0 in the large squid loop.

These dips in frequency for different current values are attributed to excitations of the Qubit transition. At zero magnetic flux, the Qubit has its maximum frequency ω qb /2π = 2.050 GHz ± 1 MHz (Fig. 

Higher levels

The frequency of the higher excited states of the transmon molecule are extracted, from two-tones measurement like the one presented in Fig. 7.4. Along with the first S-transmon transition at 2.050 GHz, the first Ancilla transition at 3.914 GHz, the second S-transmon transition at 4.020 GHz and even higher energy transition of the transmon molecule are extracted. These frequency positions are shown as black circle in Fig. 7.5 around zero flux. By lowering the excitation power, we made sure that we extracted the frequency position of single photon transitions and not multiple photon transitions. To compare and understand the spectrum, a numerical diagonalization of the system Hamiltonian H tot is used, where:

H tot = H Q +g a (a † + a)(c + c † ) + ω c c † c (7.1)
and H Q is the transmon molecule Hamiltonian given in Eq. (2.51), ω c c † c is the Cavity and g a (a † + a)(c + c † ) is the transverse coupling between the Cavity and the Ancilla. The Hamiltonian before diagonalization is written in the bares Stransmon, Ancilla and cavity basis |n b , n a , n c with a truncated Hilbert space up to levels (N b , N a , N c )= 10 × 8 × 4 for S-transmon, Ancilla and Cavity respectively. For the sake of simplicity, the dressed eigenstates of the transmon molecule are referred by their corresponding bare states basis |n b , n a . In Fig. 7.5, the naming with the bare states is correct only at an integer number of quantum flux. At a non-integer flux value, other coupling terms mix the bare states (Section 2.2.4).

Remark:

The numerical simulation depends on 5 free parameters, the mean critical current of the Josephson junction I C , the shunting capacitance C qb , the coupling inductance L a , the coupling capacitance C a , and the transverse coupling strength g a . For the set of parameters given in Table 5.1, the numerical simulation fits the spectrum with a discrepancy

Chapter 7 Qubit readout based on an orginal effective cross-Kerr coupling. of less than 1 %. If we want to take into account the effect of Josephson junctions asymmetry d J in the transmon molecule, H Q is given by Eq. (4.37), however no asymmetry is considered in sample A.

Some transitions stay visible while others become invisible at zero magnetic flux. The visible transitions are the ones from the ground state |0, 0 to the states, |1, 0 , or |0, 1 , or |3, 0 or |2, 1 . The invisible ones are from the ground state |0, 0 to the states, |2, 0 , or |1, 1 , or |4, 0 or |0, 2 . To know if a transition in the trans- mon molecule is allowed or forbidden, the probability P i→ f to excite a transition in the transmon molecule circuit from the initial state |ψ i to the final state ψ f is introduced. It is proportional to the matrix element of the coupling operator We emphasize that the y-scaling differs from bottom to top.

Ω x x + Ω y ỹ:

P i→ f ∝ | ψ f Ω x x + Ω y ỹ |ψ i | 2 (7.2)
where Ω x and Ω y are the amplitude of coupling between the input microwave field and the S-transmon and Ancilla modes respectively and x and ỹ are one quadrature of the S-transmon and Ancilla modes respectively. We emphasize that the basis |n b , n a will be used for easing the reading but is not exactly the eigenstates of the system. As expected, the probability to excite the first transitions of the S-transmon and of the Ancilla are non zero,

P |0,0 →|1,0 ∝ | 1, 0| Ω x x |0, 0 | 2 = 0 and P |0,0 →|0,1 ∝ | 0, 1| Ω y ỹ |0, 0 | 2 = 0. The probabilities P |0,0 →|3,0 ∝ | 1, 0| Ω x x |0, 0 | 2 = 0 and P |0,0 →|2,1 ∝ | 0, 1| Ω y ỹ |0, 0 | 2 = 0 are
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non-zero thanks to the anharmonicity of the S-transmon.

The transitions that becomes invisible at zero flux have a zero probability to be excited because of symmetry. For example, the transition |0, 0 → |2, 0 is forbid- den at zero flux, just like in the case of the usual transmon. However, it is not forbidden anymore at non-zero flux because of the coupling term ω 21 x2 ỹ [128]. This coupling term ω 21 x2 ỹ mixes the state |2, 0 with the state |0, 1 and therefore the transition becomes allowed thanks to the non-zero term | 0, 1| Ω y ỹ |0, 0 | 2 . In the same way, the transitions, |0, 0 → |1, 1 , |0, 0 → |4, 0 and |0, 0 → |0, 2 become also allowed at non-zero flux thanks to the non-zero terms J y and ω 21 in Eq. (2.51).

Anharmonicities

From the transmon molecule spectrum (Fig. 7.5), the anharmonicities, at zero flux, of the S-transmon, α qb , and of the Ancilla, α a , are deduced. Indeed, the S-transmon anharmonicity and Ancilla anharmonicity are respectively given by α qb = ω |1,0 →|2,0ω |0,0 →|1,0 and α a = ω |0,1 →|0,2ω |0,0 →|0,1 . Therefore, the anharmonicities α qb /2π = -80 MHz ± 2 MHz and α a /2π = -14 MHz ± 4 MHz are found.

Qubit-Ancilla cross-Kerr coupling strength

The Qubit-Ancilla cross-Kerr coupling is an important property of the transmon molecule. It is thanks to this property that we have been able to measure the Qubit spectroscopy (Fig. 7.4) without having a transverse coupling between the Qubit and the Cavity, as explained in Section 4.2. Therefore, it is essential to characterize the strength ω 22 of the cross-Kerr coupling. This coupling creates a shift of ω 22 in the bare Ancilla transition conditioned on the Qubit state. To measure this shift, a three-tones measurement with two different pulses sequences is applied. In the first one, a spectroscopic pulse around the Ancilla frequency is followed by a readout pulse at the Cavity frequency. The spectroscopic pulse last for 5 µs with power P ex = -30 dBm while the readout pulse lasts for 4 µs with power P in = -30 dBm. The second sequence is the same as the first but a π-pulse on the Stransmon is added (Fig. 7.6.(a)). The π-pulse has a time of 400 ns for a power of P π = 0 dBm. Both pulses sequences are repeated and averaged 2000 times. Therefore, we perform the spectroscopy of the transition |0, 0 → |0, 1 during the first pulses sequence while the transition |1, 0 → |1, 1 is investigated during the sec- ond one, as depicted in Fig. 7.6.(b). The phase of the readout pulses, normalized by its value when the transmon molecule is in its ground state |0, 0 , is plotted in Fig. 7.6.(c) in blue for the first pulses sequence and in orange for the second one. One main peak can be seen at frequency ω a (s z = -1)/2π = ω |0,0 →|0,1 /2π = 3.914 GHz on the blue curve. For the second pulses sequence, the main peak is down-shifted to ω a (s z = +1)/2π = ω |1,0 →|1,1 /2π = 3.851 GHz. The Qubit state dependent shift of the Ancilla transition is given by Eq. (4.16). Neglecting the term 2χ qb,c in Eq. (4.16), the S-transmon-Ancilla cross-Kerr coupling strength is obtained, g zz /2π

32.5 MHz ± 1 MHz, or equivalently ω 22 /2π 65 MHz ± 2 MHz. This result is confirmed by the spectrum of the transmon molecule shown in Fig. 7.5 where we have:

ω |0,0 →|1,1 =ω |0,0 →|1,0 + ω |1,0 →|1,1 (7.3a) =ω |0,0 →|0,1 + ω |0,1 →|1,1 (7.3b) 
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where we know with a 1 MHz uncertainty the frequencies ω |0,0 →|1,1 /2π = 5.901 GHz, ω |0,0 →|1,0 /2π = 2.050 GHz, and ω |0,0 →|0,1 /2π = 3.914 GHz.

We therefore compute with a 2 MHz uncertainty the frequencies ω |0,1 →|1,1 /2π = 1.987 GHz, and ω |1,0 →|1,1 /2π = 3.851 GHz. The link between the energy of the different transitions is illustrated in Fig. Remark: For the first pulses sequence, at the given excitation power, another peak can be seen at 3.909 GHz. It corresponds to a two-photons process for the transition |0, 0 → |0, 2 . Therefore, an Ancilla anharmonicity of α a /2π = 12 MHz ± 4 MHz is deduced. Also, because of non-zero thermal population of the excited Qubit state, the Ancilla transition |1, 0 → |1, 1 can be perceived in the readout phase. Remark: For the second pulses sequence, because of the finite relaxation time and errors in the preparation of the excited state |1, 0 of the Qubit, the Ancilla transition |0, 0 → |0, 1 can still be observed in the normalized readout phase.

Tuning the Ancilla frequency while keeping the S-transmon frequencies constant

In the sample, there are two squid loop sizes (Fig. 5.2). Therefore, there are two magnetic flux dependences. The fast flux dependence corresponds to flux inside the large loop and the slow flux dependence corresponds to flux inside the small loop. For all integer values of fluxes inside the large loop, all parameters of the transmon molecule circuit are the same except the coupling inductance L a which depends on flux as L a (Φ) = L a (0)/| cos Φ R S Φ 0 π | with R S the ratio of area between the larger and the smaller squid. Changing the coupling inductance mostly affects the Ancilla transitions while the S-transmon transitions should remain almost constant. Indeed, ω x and K x are constants while ω y and ω 22 vary with L a (Table 2.1) and as ω 22 is one order of magnitude less than ω x and ω y , the Ancilla transitions are tuned while the S-transmon transition appears constant. The extracted frequency positions of the first Ancilla transition, |0, 0 → |0, 1 and of the second S-transmon transition, |0, 0 → |2, 0 , are recorded over 3 Φ 0 (Fig. 7.7). We see that the transition |0, 0 → |2, 0 appears constant over integer values of Φ 0 while the transition |0, 0 → |0, 1 is tuned down by around 100 MHz.

Original cross-Kerr coupling without transverse coupling

Effective cross-Kerr couplings to the Cavity

Looking at the change of readout phase ∆φ = 0.14 rad in Fig. 7.6 between the two Qubit states, we can roughly estimate the cross-Kerr coupling strength χ qb,c between the Qubit and the Cavity. Indeed, the qubit-state induced frequency shift of the Cavity is given by 2χ qb,c . We assume, for both Qubit-state, that the readout phase is a step function of the readout frequency corresponding to a π jump with a smooth step that varies linearly in the frequency window [ω rκ, ω r + κ] with ω r the resonant frequency and κ its width. In this case, for a readout frequency close to ω r , the readout phase change is approximately given by ∆φ = χ qb,c π/κ. We therefore estimate χ qb,c /2π ∼ 0.6 MHz.

To measure more properly the cross-Kerr couplings to the Cavity, we use the AC-Stark shift and measurement-induced dephasing effects [83,84]. First, a long pulse of duration 20 µs at the Cavity frequency is sent to populate the Cavity. After some ringing up time, in our case a time of 500 ns corresponding to ∼40 κ -1 is chosen, the Cavity achieved a steady state with a mean photon number n. At that time, a spectroscopic pulse with frequency around the transmon molecule transition of interest is sent for 19.5 µs. At the end of this pulse, a waiting time of 250 ns (∼20 κ -1 ) is used to depopulate the photons number in the cavity. This waiting time should be long enough but still smaller than the characteristic relaxation time T 1 of the considered transmon molecule transition. After this waiting time, a 4 µs pulse with power P in = -30 dBm is used to readout the state of the cavity. This sequence is repeated with a period of 100 µs and averaged 2000 times. The spectroscopic frequency and the populating power are swept during measurement. The pulses sequence is summarized in Fig. 7.8.(f).

The frequency position and width of the lineshape in the normalized readout phase vary with the populating tone power (Fig. for the Ancilla). We notice that the transition frequency of the Qubit and of the Ancilla is down-shifted as the populating pulse power is increased. And also, with an increased power, the lineshape width of the transition raises.

For a given transition considered as a tls simplified cross-Kerr coupled with strength χ to a cavity with photon damping rate κ, when a coherent displacement with mean photon number n is applied to the cavity, the tls will have its frequency AC-Stark shifted by 2χn. The tls is also dephased because of quantum fluctuations in the photons number. In case χ κ, the qubit spectroscopy only shows one peak because the underlying discrete energy levels of the cavity is not visible. This peak is Lorentzian at low mean photon number n with a width Γ m that broadens with photons number, as 8χ 2 n/κ [84]. In (e), mean photons number calibration as a function of input power. In red, the photons number is calibrated from the linear fits. In blue, it is calibrated from the Qubit frequency AC Stark shift assuming a constant and known readout shift χ qb,c . A sketch of the employed pulses sequence is displayed in (f)

For every populating power, the lineshape in the normalized readout phase is fitted by a Lorentzian from which the frequency position and FWHM are extracted. The extracted frequencies and widths are displayed as blue circles and green diamonds respectively in Fig. The mean photon number inside the cavity n is a function of the input power P in applied to the cavity. We suppose that we have a linear law n = λP in between the 7.2 Original cross-Kerr coupling without transverse coupling mean photons number and the input power. The assumption should holds at low input power before the non-linearities of the system are explored. The proportionality factor can even be computed. Indeed, supposing a linear Cavity with an input κ in and output port κ out and resonant frequency ω c , the steady state mean photons number n for a room temperature resonant microwave input power P in is given by [129]:

n = 4κ in AP in hω c (κ in + κ out ) 2 (7.4)
where A is the attenuation in the input line of the cryostat.

Thus, both the frequency shift and the FWHM are linear functions of input power and are fitted (red solid lines) as linear functions at low power. From the fit, we extract the cross-Kerr strength χ and the conversion factor λ between the mean photons number and the populating power. Assuming κ tot /2π = 13 MHz ± 1 MHz, we obtain χ qb,c /2π = -0.65 MHz ± 0.06 MHz and χ a,c /2π = -0.34 MHz ± 0.06 MHz. The values of achieved effective cross-Kerr are similar to the ones obtained in [40]. We can now also calibrate the mean photons number n as a function of input power P in . This calibration is given in Fig. 7.8.(e) where n is obtained from the linear law n = λP in for the red diamonds and n is obtained from the AC-Stark shift on the Qubit 2χ qb,c n for the blue circles assuming a constant and known readout shift χ qb,c . The photons number calibration gives an attenuation of ∼ -70 dB consistent with the estimated attenuation of the line in the cryostat.

Transverse couplings extraction

Assuming no Qubit-Cavity transverse coupling and therefore no junction asymmetry in the transmon molecule sample, we obtain, from the Lamb shift, an Ancilla-Cavity transverse coupling of g a /2π = 237 MHz ± 2 MHz (with only an errorbar of 0.2 MHz on the Lamb shift). From the effective Qubit-Cavity simplified cross-Kerr coupling, a coupling g a /2π = 236 MHz ± 7 MHz is obtained (errorbar of 0.06 MHz on the Qubit χ-shift).

This couple of transverse couples (g a , g qb ) is consistent with the experimental data and what we expect. However, the experimental data doesn't allow to claim for sure that there is no transverse coupling between the Qubit and the Cavity, g qb = 0. Indeed, if now, we allow a non-zero Qubit-Cavity transverse coupling (g qb = 0), we can extract g a from the Lamb shift equation and from the effective Qubit-Cavity cross-Kerr coupling equation for any given value of g qb . Solving these two equation give us two curves in Fig. 7.9, the orange solid lines comes from the Lamb shift and the blue solid line comes from the Qubit-Cavity simplified cross-Kerr shift. Taking all possible uncertainties in the different variables (± 0.2 MHz on the Lamb shift, ± 0.06 MHz on the Qubit-Cavity simplified cross-Kerr shift, ± 12.6 MHz on the qubit and ancilla frequency (the formulae takes the bare frequencies), ± 1 MHz on the anharmonicities and the Qubit-Ancilla cross-Kerr coupling) the shaded regions are obtained in Fig. 7.9. The overlap of the two shaded regions indicates the possible couples of value for the transverse couplings (g a , g qb ). We obtain g a /2π Assuming a Qubit-Cavity transverse coupling only coming from the junctions asymmetry d J , the two transverse couplings are therefore constraint by a proportionality factor, see Section 4.4.2. In Fig. 7.9 are plotted in dashed lines the relation between the two couplings only due to junction asymmetry for asymmetries of d J = 10 %, 50 % and 95 % from darker to lighter lines respectively. We expect a junction asymmetry d J smaller than 15 %. Therefore, we expect the contribution to g qb /2π due to junction asymmetry to be smaller than 9 MHz. We also estimate the contribution to g qb /2π due to a wrong positioning of the sample inside the cavity to be 21 MHz for a 5 degrees geometrical angle. Thus, it seems reasonable to reduce the uncertainties on the transverse couplings to g a /2π ∈ [235 MHz, 238 MHz] and g qb /2π ∈ [0 MHz, 30 MHz].

Remarks: Even for the worst case scenario of an unexplained Qubit-Cavity transverse coupling of g qb /2π = 115 MHz, it only contributes to 7 % of the total effective Qubit-Cavity cross-Kerr coupling. For g a /2π = 236 MHz, the critical photons number is n c = (∆ ac /2g a ) 2 45. For mean photons number n n c , the used dispersive approximation between the Ancilla and the
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Cavity holds. For P in = -30 dBm, the mean photons number is approximately n ∼ 1, and therefore the dispersive approximation is valid. Considering a non-zero transverse coupling between Qubit and Cavity, a critical photons number n c also exist. For g qb /2π = 115 MHz, the critical photon number is estimated around n c = (∆ qbc /2g qb ) 2 480.

Junctions asymmetry estimation from Qubit variations over flux

In Fig. 7.10.(a) is shown the extracted frequency positions of the S-transmon transition |0, 0 → |1, 0 over several flux values. The Qubit frequency appears constant over several integer flux values. To quantify this constance, we define the Qubit frequency variation qb (n) given by:

qb (n) = ω qb (0Φ 0 ) -ω qb (nΦ 0 ) ω qb (0Φ 0 ) (7.5) 
In Fig. In the ideal case (symmetric circuit with identical junctions), the Qubit frequency varies a little bit because of the variation of the cross-Kerr term ω 22 , see Table 2.1.

In the asymmetric case, the bare state |1, 0 mixes with |0, 1 and therefore, the Qubit frequency will depends more strongly on the flux number. In Fig. 
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The characteristic times are measured at 0 magnetic flux inside the circuit.

Driving the Qubit

In case of a tls under the presence of an oscillatory driving field at amplitude Ω f ield and frequency ω, the probability P e to be in the excited state oscillates with time at the Rabi frequency Ω Rabi with [START_REF] Haroche | Exploring the quantum: atoms, cavities and photons[END_REF]:

P e (t) = 1 2 1 -cos(Ω Rabi t) exp - t T Rabi (7.6a
)

Ω Rabi = Ω 2 f ield + (ω -ω qb ) 2 (7.6b)
where the Qubit is in the ground state at time t = 0 and T Rabi is the characteristic time of decoherence of the Qubit under a microwave field. Such oscillations can be seen in Fig. 7.11 (a) and (b) where the readout tone lasts for 4 µs with input power P in = -30 dBm and is averaged 2 × 10 4 times. Length of the excitation pulse is swept from 0 µs to 1 µs with power P ex = 3.5 dBm in Fig. Sweeping the excitation frequency, a Rabi Chevron pattern can be observed in the readout phase (Fig. 7.12.(a)). The readout phase oscillates with the excitation time with an higher frequency as the excitation frequency is detuned from the Qubit frequency. The Rabi frequency Ω Rabi is extracted for each excitation frequency via cosine with exponential decay fit. They are plotted as black circles in Fig. 7.12.(b). Using Eq. (7.6a), they are fitted (red solid line).

For a anharmonic oscillator instead of a perfect tls, the multi levels aspect modi- fies the Rabi oscillation [130]. As long as the Rabi frequency is small compared to the anharmonicity, the multi levels aspect can be neglected. We have here at most a frequency of 5 MHz which is well under the 80 MHz of anharmonicity.

With a power P ex = -5 dBm, a frequency of 2.0502 GHz, and a pulse duration T π = 200 ns, we do a π-pulse, i.e. a pulse that maximizes the population of the excited state. With a T π = 200 ns and T Rabi = 8 µs, we prepare the Qubit in its excited state at best 97.5 % of the times because of its finite coherence time under drive.

Relaxation

Relaxation measurement is performed by sweeping the waiting time T between a π-pulse on the Qubit and a pulse reading out the Cavity state, see the inset of Fig. (We obtain an ensemble average of 9.5 µs with a width of 0.5 µs.

We can wonder what is limiting the relaxation of the Qubit. Indeed, by the way the system was designed, the Qubit should not be limited by Purcell effect in the ideal case. However, if the symmetries of the system are not exactly respected,
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we can end-up with a residual transverse coupling g qb between the Qubit and the Cavity. Assuming the worst case scenario g qb /2π = 115 MHz, and using the analytical formula Γ P = κ(g qb /∆) 2 which is accurate only for a single-mode cavity, a relaxation rate Γ P /2π = 45 kHz corresponding to a Purcell time T P = 22 µs. So, it seems that this device is not limited by Purcell effect. To confirm this, a finite element electromagnetic simulation, taking into account the effect of all modes of the 3D-cavity, may be done to compute the Purcell Relaxation. Or more experimental investigation should be performed, like for example measuring the T 1 as a function of flux or measuring T 1 as a function of the Cavity photons leakage rate κ. However, these time-consuming investigations were not carried out during my thesis work.

There exist also other known sources of loss that can limit the Relaxation time, like dielectric loss [89,90], which can be located at the surfaces or in the bulk [91,92,93], quasiparticles [131,132], capacitive loss in the self-capacitance of the junctions [133] or spurious tls [134,135,136]. However, we did not took the time to investigate properly the main source of the T 1 limitation for our Qubit.

The measured relaxation time T 1 = 9.5 µs ± 0.5 µs is in between measured T 1 of early transmons [137] and 3D-transmon [24]. This suggests that our original transmon molecule design doesn't a priori introduce new strong channels of Relaxation.

To obtain the same cross-Kerr with a usual transmon with transverse coupling, with a transmon anharmonicity of 80 MHz and a cavity decay rate of 13.6 MHz, the Qubit would be Purcell limited to 1.4 µs.

Coherence

Ramsey oscillation

In a Ramsey sequence, the Qubit is first prepared in the superposition state (|g + |e )/ √ 2 with a π/2 pulse. Then, it can evolves freely for a time T before a second π/2 pulse. The probability P e to be in the excited state oscillates with the time of free evolution T at the Ramsey frequency Ω Ramsey as:

P e (T) = 1 2 1 -sin Ω Ramsey T exp - T T Ramsey (7.7a 
)

Ω Ramsey = (ω -ω qb ) 2 (7.7b)
where T Ramsey is the characteristic time of decoherence of the Qubit and the Qubit is supposed to be in the ground state before the sequence and perfect π/2 pulses are assumed.

Ramsey fringes [138] is a well suited method to determine the frequency of the Qubit with good accuracy and its intrinsic coherence time.

A coherence time T Ramsey = 8.2 µs ± 0.5 µs is obtained. The total dephasing rate Γ 2 is given by Γ 2 = Γ 1 /2 + Γ φ with Γ 1 the Relaxation rate and Γ φ the pure dephas- 
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Chapter keypoints ing rate. Even in the absence of pure dephasing sources, the coherence time will be limited by the relaxation time as T 2 = 2T 1 . Every noise that can creates fluctuations in the Qubit frequency is a source of pure dephasing. Charge noise and quasiparticles tunneling are a known source of such fluctuations however, they are exponentially reduced in the case of a transmon [35]. Then, as the frequencies of the transmon molecule depends on flux, noise in the flux also creates noise in the Qubit frequency. On the 'sweet' working point of zero flux, low amplitude noise in flux is suppressed because the first derivative of Qubit frequency versus flux vanishes. Following the transmon paper estimation [35], we estimate a flux noise coherence time of T φ 8 ms at zero flux. Another source of pure dephasing is fluctuations in the critical current [35], we obtain a dephasing time of T φ 80 µs.

The last but not least source of pure dephasing are photons-induced dephasing due to thermal fluctuations in the photons number and the cross-Kerr coupling between the Qubit and the Cavity. The photon shot-noise dephasing time [START_REF] Clerk | [END_REF] is then given by T φ = κ/(4nχ 2 ) where n = 1/(exp hω c k B T -1). From the height ratio between peaks in Fig. 7.6.(c), we very roughly estimate a thermal population of the Qubit around 17 %, corresponding to a temperature of 50 mK. For this temperature, we compute a thermal mean photons number of n c 1 × 10 -3 in the Cavity. It brings a dephasing time T φ = 575 µs. The Qubit can also be dephased through thermal fluctuations in the Ancilla. With a temperature of 50 mK, we have an Ancilla thermal population n a 0.024. We assume a decay rate for the Ancilla of 0.5 MHz, estimated via its linewidth. Thus we obtain T φ = 42 µs. Summing all these sources of dephasing, we obtain a total coherence time of T 2 ∼ 8 µs.

Chapter keypoints

The transmon molecule sample A measurements have been reviewed. The spectrum of the transmon molecule has been experimentally validated. We have also checked that implementing the coupling inductance L a as a squids array allows to tune in-situ the Ancilla transition without modifying in first order the S-transmon transition. An effective cross-Kerr coupling between the Qubit and the Cavity of χ qb,c /2π = -0.65 MHz ± 0.06 MHz has been measured. This effective Qubit-Cavity cross-Kerr coupling is due to the cross-Kerr coupling between the S-transmon and the Ancilla which in turns is transversely coupled to the Cavity in the dispersive regime. We have measured relaxation and coherence times around 10 µs. In order to implement a faster readout, a large value of photon leakage κ is necessary and therefore a large cross-Kerr coupling χ is also recommended to obtained a good SNR. We have seen that the dispersive regime between the Ancilla and the Cavity, g a ∆ a , only allows a small value of cross-Kerr coupling between the Qubit and the Cavity. However, a larger cross-Kerr coupling can be realized by tuning the Ancilla transition close to resonance with the Cavity, as demonstrated in the next chapter.
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This chapter is dedicated to the study of quantum dynamics of the transmon molecule in a 3D-cavity in the Polaritons regime, i.e. when the Ancilla and Cavity are nearly resonant. This regime is investigated using sample B. In the first section, the Ancilla-Cavity system and their hybridization into the upper and lower Polaritons system is reviewed. Then, the S-transmon is characterized spectroscopically and in the time-domain. In the third section, the different cross-Kerr couplings and their flux dependence are studied. The calibration of mean photons number is addressed in the fourth section. Then, the Qubit conditional transmission is investigated as a function of input power. Finally, single-shot high fidelity measurements are realized in a region of input power and frequency where the upper Polariton presents bistability and bifurcation behavior. A single-shot measurement with readout fidelity as high as 97.2 % without using a quantum-limited amplifier nor Purcell filter is reported. Circuit parameters of sample B are recalled in Table 8.1.

From Ancilla-Cavity towards lower and upper Polaritons

Bare Cavity at 4K

The bare Cavity is probed at 4.2 K temperature as explained in Section 7.1.1. We measured the resonance frequency of mode TE 101 of the bare cavity to be ω c,bare /2π = 7.1685 GHz ± 1 MHz with a FWHM of κ tot /2π = 36 MHz ± 2 MHz using a Lorentzian fit (Fig. 8.1). In the rest of this chapter, the measurements are performed at the base temperature of the cryostat T ∼ 20 mK, unless otherwise indicated.

Ancilla-Cavity hybridization and avoided crossing

Single tone measurement is performed using a VNA by sweeping the frequency and also current in the coil. An input power P in = -47 dBm and a measurement bandwidth of 10 Hz were chosen. In the transmission, two resonant peaks are observed (Fig. 8.2). They correspond to the two eigenmodes of the hybridized system Ancilla plus Cavity. We call the new eigenmodes lower and upper Polaritons (Section 4.3). Their separation is given by the Rabi vacuum splitting [44].

These Polariton peaks are modulated with current. Fast and slow modulations are Link back to observed. These two dependences are related to two magnetic fluxes applied to the large and small loops of the sample respectively (Fig. 5.

2).

At large flux, above 40 mA, the spectroscopy becomes "noisy". There are three possible causes: (1) spurious tls that couple to the Polaritons, (2) flux jumps in Chapter 8 Qubit readout using an on resonance Ancilla-Cavity system the circuit, or (3) hysterical behavior with magnetic flux of the transmon molecule spectrum due to the high coupling inductance value L a [70].

To simplify, we display the resonances only at integer value of flux Φ = nΦ 0 inside the large loop (black circles in Fig. 8.3). Indeed, at these points, only the coupling inductance L a (Φ) is tuned. All other circuit parameters of the transmon molecule are kept identical. Therefore, we expect to tuned only the bare Ancilla frequency. An avoided crossing between Ancilla and Cavity is thus observed. The conversion between current and flux is explained in Section 8.2.1.

Using a numerical diagonalization of the Hamiltonian Eq. (4.37), these frequency positions are fitted (green solid lines). The fit results in the set of circuit parameters given in Table 5.1. The bare frequencies of the Ancilla and the Cavity are computed and plotted in gray in the figure for vanishing Ancilla-Cavity transverse coupling g a . The bare Ancilla and bare Cavity are on resonance for Φ ∼ 6.2 Φ 0 . We estimate a transverse coupling strength g a /2π = 295 MHz ± 10 MHz.

This value is consistent with the simulated transverse coupling strength obtained using HFSS (Section 5.3.4). For flux between [-9, 9] Φ 0 , the detuning ∆ ul between the upper and lower Polaritons is at most around 900 MHz which is only slightly larger than 2g a /2π = 590 MHz. For this reason, for all these flux values, it is more accurate to speak about lower and upper Polaritons than to speak about Ancilla and Cavity.

Because Polaritons are the result of hybridization between Ancilla and Cavity, they inherit the properties of both Ancilla and Cavity modes. Therefore, both Polariton modes are coupled to the outside coaxial lines and can be probed in transmission (Fig. 8.2) and their heights and widths are modified with flux as the hybridization condition between Ancilla and Cavity is varied.

Polaritons decay rate

For integer flux, Φ = nΦ 0 , a single tone transmission measurement is performed by sweeping frequency around the resonant frequency of the Polaritons. The input power is kept low enough so the peaks show a Lorentzian shape. Indeed, as the Polaritons are non-linear resonators, their decay rates correspond to the extracted FWHM only in the low input power regime. The Polaritons FWHM are plotted as a function of integer flux value in green in Fig. 8.4.

Using the formulae Eq. (4.33) without any free fit parameter, the theoretical leakage rates are computed and plotted in black in Fig. 8.4. A bare Cavity damping rate of κ c,bare /2π = 32 MHz and a bare Ancilla decay rate of γ a /2π = 0 MHz were chosen. An uncertainty of ± 5 MHz and ± 3 MHz in, respectively, the Cavity and Ancilla damping rates, are considered. In Eq. (4.33), the Polariton angle θ is obtained from Eq. (4.23) using transverse coupling g a /2π = 295 MHz and bare detuning ω aω c = ω u + ω l -2ω c with ω c /2π = 7.1685 GHz the bare Cavity frequency. We observe that the linewidths follow qualitatively the expected behavior. However, quantitative agreement is not yet obtained. We found that the lower Polariton linewidth is systematically smaller than the theoretically expected one and vice versa for the upper Polariton. Moreover, we noticed that (κ lκ u ) changes sign between 4Φ 0 and 5Φ 0 contrary to what is expected, between 6Φ 0 and 7Φ 0 . This feature is currently under investigation to obtain a more quantitative analysis. One lead is to look into the validity of the approximations used to obtain Eq. (4.33) where we have neglected terms like u † lρ.

Qubit characterization

Spectroscopy versus flux

Two-tone spectroscopy results as function of current (flux) are displayed in Fig. 8.5.(ab). They are obtained by measuring the normalized transmitted amplitude A out at the resonant frequency of the lower Polariton mode (first tone) as function of the frequency of the excitation tone (second tone). The normalization is performed by removing the mean amplitude of the first tone when the second is not applied. This second tone, which excites the Qubit transition, has a power of -15 dBm. The frequency window of the excitation ranges from 5.75 GHz to 6.15 GHz or from 5.9 GHz to 6.3 GHz depending on the current value. It is empirically chosen in order to follow more closely the Qubit resonance and save time. Because the lower Polariton resonance also depends on flux, the experimental procedure is to realize first a single tone spectroscopy to determine the resonant frequency of the lower Polariton. A pulse duration of 500 ns, with power -35 dBm, averaged 400 times is employed and then lower Polariton frequency is extracted via automatic Lorentzian fit. Then the two-tone spectroscopy is performed with 2500 averaging. 5.1 are plotted in red solid lines.

For each flux, the transmitted amplitude is normalized by its value when no second tone is sent.

In the normalized readout amplitude, the usual cosine-like flux dependence of a transmon qubit is observed (Fig. 8.5.(a)). The 0 flux value is attributed to a current of 1.1 mA and a quantum of flux Φ 0 in the large loop corresponds to a current of 7.67 mA. At 0Φ 0 , the Qubit has a maximum frequency of 6.284 GHz. At different integer flux, Φ = nΦ 0 , the Qubit has the same frequency, with variation less than 0.1 % because its plasma frequency does not depend on the coupling inductance L a (nΦ 0 ).

The frequency positions are extracted and displayed as black circles in Fig. 8.5.(b).

Qubit characterization

Using a numerical diagonalization of the Hamiltonian Eq. (4.37), the Qubit frequency is fitted (red solid line). This fit gives the set of circuit parameters reported in Tables 5.1 and 8.1.

Remarks:

The parameters of Table 5.1 are obtained by fitting simultaneously the Qubit spectroscopy and the Polaritons spectroscopy The Qubit spectroscopy has also been measured via the upper Polariton giving the same frequency results for the Qubit. At zero flux, two-tone spectroscopy is performed using continuous waves. The readout tone frequency is the lower Polariton resonant frequency, ω u /2π = 7.037 GHz, with input power -47 dBm. The transmission S 21 as function of excitation power and frequency is plotted in Fig. 8.6. At low excitation power, P ex < 0 dBm, only one peak is observed in the transmission, corresponding to the Qubit resonance at 6.284 GHz. A second peak becomes visible at 6.240 GHz for higher power, P ex > 0 dBm. It is attributed to the two-photon process between the ground state and second excited state of the S-transmon. We therefore deduced an anharmonicity α qb /2π = 2(ω 20 /2ω 10 )/2π = -88 MHz ± 1 MHz. The transmon regime is thus confirmed with an effective E J /E C ratio of approximately 150.

S-transmon anharmonicity
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Rabi oscillations (not shown) are observed in a similar way as discussed in Section 7.3.1. Excitation powers are usually chosen to obtain a π-pulse time around 30 ns. Rabi oscillations decayed on a characteristic time T Rabi 3 µs. At zero flux, we measured the relaxation time T 1 of the Qubit. A 30 ns π-pulse at 6.2839 GHz is applied to prepare the Qubit in the excited |e state. Between the π-pulse and the readout pulse, a waiting time τ from 0 µs to 31 µs is employed. The readout pulse lasts 500 ns, with power -35 dBm, at the lower Polariton frequency. The sequence is averaged 5000 times. We call e-g distance D e-g , the distance in the IQ plane of the readout signal between an applied π-pulse and no applied pulse on the Qubit. The e-g distance as function of waiting time τ is fitted by an exponential decay to extract the Qubit T 1 .

Relaxation

Histogram of T 1 measurements with 160 events run every two minutes, is shown in Fig. 8.7. A relaxation time T 1 = 3.3 µs ± 0.25 µs is obtained at 0Φ 0 via Gaussian fit of the histogram. Between different cool-downs and at temperature of 45 mK (roots pump off), the measured T 1 stays around 3.4 µs ± 0.5 µs.

To investigate the relaxation limitations, we measured, the Qubit T 1 as a function of integer values of quantum flux. For each flux point, T 1 has been measured at a temperature of 45 mK, one thousand times. Histograms of T 1 are displayed in Fig. 8.8.(a) and are fitted by a Gaussian. From 0Φ 0 to 5Φ 0 , the T 1 appears to be constant and close to 3.2 µs. After 5Φ 0 , T 1 begins to drop, reaching 0.9 µs at 9Φ 0 .

By design and because of the system symmetry, we expect no-Purcell limitation on the Qubit. However, asymmetry is present in any physical implementation, thus leads to Purcell decay. An asymmetry d J (experimentally challenging to suppress) in the critical current of the Josephson junctions and/or a wrong positioning of the sample inside the 3D-cavity create residual transverse coupling between the Qubit and the Cavity. Assuming a single-mode cavity, we compute numerically the Purcell limited T 1 via Eq. (2.60). This single-mode approximation is usually considered as quantitatively inaccurate [50]. However, since the Qubit frequency Chapter 8 Qubit readout using an on resonance Ancilla-Cavity system is close to the bare Cavity frequency, the first mode of the 3D-cavity can be considered as the dominant one for the Purcell effect. Therefore, the single-mode approximation is justified. In the computation, we considered a junctions asymmetry d J = 1.3 % ± 0.3 % which has been measured (Fig. 5.24) and a bare cavity photon leakage κ c /2π = 36 MHz ± 4 MHz measured at 4.2 K (Fig. 8.1). We assumed a bare ancilla decay rate γ a /2π = 0 MHz ± 3 MHz and a Qubit-Cavity transverse coupling g G qb due to a geometrically wrong positioning of the sample g G qb /2π = 20.5 MHz ± 5.5 MHz. The transverse coupling g G qb is estimated for a misalignment angle of 4 degrees ± 1 degrees. We estimate that an error up to 5 degrees can be made when positioning the sample inside the current 3D-cavity (Fig. 5.4). For the future, a cavity with a tighter ridge might be used in order to reduce this imprecision. With these parameters and the ones described in Table 5.1, we obtain a numerical curve (blue shadow in Fig. Ramsey measurements are performed as described in Section 7.3.3. A coherence time of T Ramsey = 3.2 µs ± 0.3 µs has been measured at 0Φ 0 . An example of one Ramsey oscillation with exponential decay is displayed in Fig. 8.9. Two 15 ns π/2-pulses are sent with variable waiting time between them at frequency 6.282 GHz. Then a readout pulse of 500 ns with power -35 dBm is sent.

As for sample A (Section 7.3.3), we are not in the limit of T 2 = 2T 1 . We assume at zero flux a mean thermal number of photons n l = 8.7 × 10 -3 in the lower Using decay rates κ l /2π = 21 MHz and κ u /2π = 7 MHz, and, Qubit-Polaritons cross-Kerr couplings χ l qb /2π = 5 MHz and χ u qb /2π = 29 MHz (measured later-on Section 8.3), for the lower and upper Polaritons respectively, the pure dephasing rate Γ φ due to photon-shot noise [26,[START_REF] Clerk | [END_REF] is estimated via:

Γ φ = 4n l κ l (χ l qb ) 2 κ 2 l + 4(χ l qb ) 2 + 4n u κ u (χ u qb ) 2 κ 2 u + 4(χ u qb ) 2 ∼ 0.17 MHz (8.1)
Using a relaxation time of T 1 = 3.4 µs and a pure dephasing solely due to thermal photons Γ φ , we obtain a total coherence time of approximately 3.2 µs. It seems therefore that the Qubit at zero flux shows a coherence limited by relaxation and pure dephasing due to thermal photons.

To increase the coherence time of the Qubit, we need to improve its relaxation but also to reduce the thermal populations of the Polariton resonators. Better noise filtering may be achieved, for example via cavity attenuator [26].

Cross-Kerr shifts

Qubit-Polaritons cross-Kerr shifts

To measure the Qubit to Polaritons cross-Kerr shifts, we measure the spectroscopy of the Polariton conditioned on the Qubit state, i.e. when a π-pulse or no pulse is applied to the Qubit.

The π-pulse duration is 30 ns. And the spectroscopy is performed by pulse measurements of 500 ns duration. The readout pulses are averaged over 4000 realizations. The pulses sequence is sketch and summarized in Fig. The two Qubit conditioned lineshapes are fitted using a Lorentzian. From this, we find the Qubit state conditioned Polariton frequencies and thus the cross-Kerr shifts 2χ l qb (Φ) and 2χ u qb (Φ) induced on the lower and upper Polaritons respectively. As the cross-Kerr shifts 2χ are greater or of the same magnitude as the photon leakage κ, 2χ κ, conditional transmission measurement is a precise enough method to extract the cross-Kerr shifts even with errors due to false preparations and relaxation.

The measured Qubit-Polaritons cross-Kerr shifts versus flux are presented on Fig. 8.11. Both cross-Kerr shifts are tuned with flux. At 0Φ 0 , the lower Polariton is more Cavity-like than Ancilla-like and the upper Polariton is more Ancilla-like than Cavity-like. Therefore, the upper Polariton inherits more of the initial Qubit-Ancilla cross-Kerr shift than the lower Polariton. Going towards 6Φ 0 , the Ancilla gets closer to resonance with the Cavity (Fig. 8.3). Both Polaritons share in more equal proportion the properties of the Ancilla and therefore, their cross-Kerr shifts χ l qb and χ u qb become equal in strength.

Chapter 8 Qubit readout using an on resonance Ancilla-Cavity system Using the theoretical formulae for the Qubit-Polaritons cross-Kerr shifts (Table 4.3), a Qubit-Ancilla cross-Kerr coupling strength of g zz /π = 69 MHz ± 2 MHz is extracted.

Simulating the system via HFSS and using the black box quantization technique (Appendix E), the cross-Kerr shifts are computed and displayed as gray diamonds in Fig. 8.11. The simulated cross-Kerr shifts describe qualitatively well the experimental data. The simulated eigenfrequencies are obtained within a relative convergence ∆ f / f < 1 %. In the simulations, it is not the flux which is tuned but the coupling inductance L a . For each flux, the obtained simulated eigenfrequencies are chosen to be within 1 % of the experimentally measured frequency (Qubit and Polaritons). It is still an on-going work to quantify how much this uncertainty in the eigenfrequencies impacts the uncertainty in the simulated cross-Kerr shifts. 

Inter-Polaritons cross-Kerr shifts

As discussed in Section 4.3, we know that, because of the Ancilla self-Kerr-anharmonicity U a , the Polaritons end up with a cross-Kerr coupling (Table 4.3). Its strength is proportional to the Ancilla Kerr-anharmonicity and depends on the hybridization angle θ. To check this property, we perform cross-Kerr shift measurement between the Polaritons via two-tone continuous wave measurement. We measure the spectroscopy of one Polariton while sweeping the power injected in the second Polariton. The output amplitude as a function of spectroscopic frequency and power are displayed in Fig. 8.12.(a-b) for a flux of 5Φ 0 .

When no tone is applied, the lower Polariton shows a Lorentzian shape with frequency ω l /2π = 6.963 GHz and FWHM κ l /2π = 11.9 MHz. The upper Polariton characteristics are ω u /2π = 7.606 GHz and κ u /2π = 14.6 MHz. These two frequencies, ω l /2π = 6.963 GHz and ω u /2π = 7.606 GHz are the ones used when driving the lower or upper Polaritons respectively. This protocol is not perfect as it neglect the self-Kerr effect of each Polariton.

When populating the lower Polariton, the frequency position of the upper Polariton is down-shifted and its width grows. The lower Polariton shows the same behavior. This measurement is similar to the AC-Stark shift and measurementinduced dephasing [83,84] and therefore we perform the same analysis as discussed in Section 7.2.1. We fit the frequency shift as 2χn and FWHM broadening as 8χ 2 n/κ. We thus obtain a cross-Kerr coupling strength χ u l /2π = 3.9 MHz ± Using the Polariton theory formula (Table 4.3), we extract the Ancilla self-Kerranharmonicity U a /2π = 12 MHz ± 1 MHz. This value is consistent with the An- 

Mean photon number calibration

We have seen that each Polariton acts like a resonator (a non-linear one) with its own resonant frequencies ω u,l , its own photon damping rate κ u,l and its own cross-Kerr coupling strength to the Qubit χ u,l qb . And all these properties are modified with flux.

In the linear regime (low power limit), for an input power at room temperature P in , the steady state mean photons number n ss in a readout mode is given by input-output theory [129] as:

n ss = 4κ in AP in hω r (κ in + κ out ) 2 (8.2)
where A is the attenuation in the cryostat line, ω r the resonant frequency of the readout mode and κ in,out its input/output damping rate.

We want to calibrate the mean photons number n u,l for the two Polariton resonators. For each Polariton, we can either use the AC-Stark shift induced on the Qubit spectroscopy χ u,l qb n u,l σ z or the cross-Kerr shift induced on the other Polariton spectroscopy, 2χ u l n u l † l or 2χ u l n l u † u.

From AC-Stark shifts on the Qubit

We use an AC-Stark shift pulses sequence similar to the one described in Section 7.2.1. First a populating pulse is sent for 10 µs. Its amplitude is swept between different sequences. After 1 µs of this pulse, a steady state is assumed for the mean photons population in the resonator. At this moment, a 9 µs pulse is sent around the Qubit frequency. A waiting time of 200 ns is then used to let the resonator decay and a 600 ns pulse with fixed power and frequency is used for readout. The readout amplitude if averaged 3000 times.

At Φ = 5Φ 0 At zero populating power, the readout amplitude shows one Lorentzian dip corresponding to the Qubit frequency 6.270 GHz. At populating power of -30 dBm, two peaks can be observed. They are separated by 46 MHz in Fig. These separations correspond to 2χ u qb and 2χ l qb respectively. We are in a regime of resolved low-photons number of the two Polaritons modes. Indeed, the maximum number of photons that can be resolved by AC-Stark measurement is given by 2χ/κ [85]. In our case, we have 2χ l qb /κ l ∼ 20/11 ∼ 1.8 and 2χ u qb /κ u ∼ 46/14 ∼ 3.3. Normalizing the readout amplitude and the frequency, we empirically compared to a Poissonian distribution (Fig. 8.14.(b) inset). Qualitative agreement is achieved but more work, following [85], is required in order to be quantitative in the mean photons number. Moreover, in Schuster paper [85], the readout mode is a linear resonator, however, in our case, both Polariton modes are non-linear. Therefore, we are closer to a regime of AC Stark with a non-linear resonator described by Ong et al paper [139] where the spectroscopic behavior depends strongly on the frequency of the populating tone. The analysis of these measurements is still going on.

At Φ = 0Φ 0 At 0 flux, the lower Polariton is more Cavity-like and linear. Indeed, the expected lower Polariton Kerr-anharmonicity is U l /2π = 220 kHz ± 20 kHz using U a /2π = 12 MHz ± 1 MHz and formula Table 4.3. Moreover, at 0 flux, the lower Polariton is not in the photon resolved limit, 2χ l qb /κ l 0.5. Therefore usual AC-Stark shift analysis [83,84] can be used. We thus calibrate the mean photons number for the lower Polariton at 0 flux Fig. 8.15. Assuming a linear law between mean photons number n and input power, we calibrate n from fitting both the AC Stark frequency shift and the measurement induced dephasing. This calibration is given by the blue line in the inset of Fig. Owing to this calibration between input power and mean photons number, we make a calibration between mean photon number and output amplitude α out . According to input-output theory, the output amplitude α out is proportional to the Chapter 8 Qubit readout using an on resonance Ancilla-Cavity system intra-cavity field α c , α out = √ κ out α c with κ out the coupling strength of the output port. This calibration is not conventional. Usually, we perform a calibration between mean photon number n and input power P in as n = f (P in ). However, here we have a calibration via the output amplitude α out (or output power P out ) as

|α out | = √ κ out √ n.
And, this proportionality does not dependent on the input power which is interesting because of the non-linearity of the Polariton resonator.

Moreover, this input-output formula is true for any Polaritons and at any flux: α u,l out (Φ) = κ u,l out (Φ)α u,l c (Φ). We can thus roughly estimate the mean photon number, n u,l (Φ) = |α u,l c (Φ)|2 , for any flux and any Polaritons knowing their damping rate and measuring their output amplitude. Indeed, for the lower Polariton with FWHM κ l out (0) at 0 Φ 0 , we calibrated the mean number of photons n l (0) to the output amplitude α l out (0). Therefore, we can use the formula:

n u,l (Φ) = κ l out (0) κ u,l out (Φ) α u,l out (Φ) α l out (0) 8.5 Strong drive response
However, there is one issue in this calibration. It is the fact that we do not measure the output amplitude α out just after the device but we measure an output amplitude α RT out at room temperature with the relation α RT out = λα out where λ is the amplification factor of the output line. And the amplification factor λ is frequency dependent due to the non-flatness of the gains of the amplifiers, of the attenuations in the line, and of the insertion losses. We can still assume a constant amplification factor λ with an errorbar of ± 3 dB and therefore we have at least an errorbar of 3 dB in the mean photon number calibration via the output amplitudes.

From cross-Kerr shift between Polaritons

We have seen that, because of the anharmonicity of the bare Ancilla the Polaritons inherit a cross-Kerr coupling. Analyzing the data in Section 8.3.2, and approximating the relation between mean photons number and input power as a linear law, we extract the mean photon number for the lower Polariton in blue and the upper Polariton in red, for different values of flux, the flux varies from 0Φ 0 to 5Φ 0 from light to darker colors.

We observe, as expected, that the calibration of mean photons number depend on flux value and on which Polariton is populated (Fig. 8.16.(a)). Indeed, as the resonant frequency and damping rate are Polariton and flux dependent, the mean photons number also depends on them. For each Polariton and each flux value, the attenuation in the line is extracted. It is plotted as a function of frequency in Fig. 8.16.(b). Assuming that the attenuation A in the line is constant, we obtain an attenuation of A = -75 dB ± 6 dB. Computing the expected attenuation in the input line, we have -60 dB ± 1.5 dB of discrete attenuators, -7 dB ± 2 dB of attenuation along propagation through the coaxial cables and -6 dB ± 3 dB of insertion loss of the different components. At the end, we obtain an expected attenuation of -73 dB ± 6.5 dB in accordance with the extracted attenuation. In Fig. 8.17.(a), we have observed wiggles in the transmission with an amplitude around 10 dB. The attenuation in the input line may follow this modulation with frequency, however, we don't have enough extracted attenuation point as a function of frequency to claim it.

Strong drive response

Polaritons non-linearities

In this section, we focus on the Polaritons and investigate their response to a strong drive. Taking a step back in the description of the Polaritons, we have the Ancilla, a non-linear oscillator which is transversely coupled to a linear harmonic oscillator, the Cavity.

A single tone transmission S 21 measurement is displayed in Fig. 8.17.(a) using the VNA in continuous wave mode at zero flux. Input power is swept between -60 dBm to 8 dBm while input frequency is swept around the bare Cavity resonant frequency between 6.8 GHz to 8 GHz. The measurement bandwidth of the VNA is empirically changed along the input power, from a low bandwidth of 10 Hz at low power P in = -60 dBm to an higher bandwidth of 1 kHz at high power P in = 8 dBm.

At high power, P in > 4 dBm, only one resonant peak can be seen in the transmission. It has a frequency position of ω/2π = 7.168 GHz ± 2 MHz and corresponds to the bare Cavity resonance. At low power, P in < -40 dBm, the two Polaritons resonant peaks are observed. In between, -30 dBm < P in < 0 dBm, a more complex lineshape develops; the Polaritons non-linearities, induced by the non-linearity of the Ancilla and by the transverse coupling, play an important role. The driven response of a non-linear oscillator transverse coupled to a linear oscillator has been studied in different regimes. In the case of a tls coupled to a cavity [141,142], the √ n-behavior of the Jaynes-Cumming ladder has been observed. The case of a transmon coupled to a cavity also has been investigated [140,143]. Another studied regime is the one of a Bose-Hubbard dimer, with two coupled Kerr-non-linear resonators [144]. In this case, the non-linearities of the coupled Chapter 8 Qubit readout using an on resonance Ancilla-Cavity system system are used to generate quantum-limited amplification.

In our case, the Ancilla is a weakly anharmonic oscillator. Its behavior is closer to a quantum Duffing oscillator than to a tls. We describe it by ladder operators a, a † with frequency ω a and self-Kerr anharmonicity U a . Moreover, the Ancilla is conditioned on the state of the Qubit because of their direct cross-Kerr interaction g zz . Considering an infinite T 1 Qubit, we replace its Pauli operator by one of its two eigenstates: σ z → s z = σ z = ±1. Indeed, with this assumption, the Qubit dynamic is a constant of motion. Therefore, the system Hamiltonian is given by:

H = (ω a -U a a † a)a † a + g zz s z a † a + g a (a † c + c † a) + ω c c † c (8.4)
where the rwa has been performed on the transverse coupling.

The steady state response to a drive of such a system, without the Qubit (s z = 0) has been theoretically studied by Elliott et al [140]. Using Fokker-Planck equations in the generalized P-representation, they obtained analytical expressions for the moments of both modes, Ancilla and Cavity in our case. Using their analytical formula for the Cavity field c , the S 21 transmission is computed as a function of drive amplitude and frequency (Fig. 8.17.(b)). In this calculation, we took for the Ancilla a frequency of 7.778 GHz, a self-Kerr anharmonicity of -10 MHz and a negligible damping rate. For the Cavity, we took the frequency of 7.169 GHz with a damping rate of 36 MHz. The Ancilla-Cavity transverse coupling strength of 300 MHz has been chosen. The existence of the S-transmon is not considered.

The features are qualitatively reproduced. At low power P in < -40 dBm, there are two Lorentzian resonants peaks and at high power P in > 4 dBm, the peak of the bare cavity is recovered. In the middle, all the features are not reproduced. In this region, we suspect the Duffing approximation and the rwa for the driving field are not valid anymore.

Remarks: in the transmission (Fig. 8.17.(a)), wiggles with an amplitude around 10 dB can be observed. They are attributed to parasitic Fabry-Perot interferences because of impedance mismatches along the lines. contrary to Bishop et al paper [141], the Jaynes-Cumming ladder √ n of the transverse coupling is not visible at first glance because the Ancilla anharmonicity is weak compared to the transverse coupling g a and the Cavity damping rate is not negligible compared to the ladder spacing (1/ √ n -1/ √ n + 1)g a . to my point of view, there is a typo in one definition of Elliott et al paper, with their notation, I used γt = γ t + 2i∆ t + 4g 2 / γc instead of γt = γ t + 2i∆ t + 2g 2 / γc .

Qubit states conditional transmission versus input power

Hereafter, we consider the working point Φ = 5Φ 0 . We prepare the Qubit in its ground (no applied pulse) or in its excited (a π-pulse is applied) state and then perform a transmission measurement at different input powers sweeping its frequency around the lower Polariton frequency (Fig. Chapter 8 Qubit readout using an on resonance Ancilla-Cavity system on the Qubit state. Then for increasing power, P in > -18 dBm, the lineshapes are not Lorentzian anymore. The non-linearity of the Polaritons is being explored. The lineshapes have a wave-like behavior, characteristic of Duffing oscillator (or equivalently Kerr non-linear resonator). A switching process occurs (discussed later-on), the lineshape switch "abruptly" from a low output amplitude to a high output amplitude. For high power, P in > 12 dBm, a peak around the bare Cavity frequency begins to appear (data not shown).

Numerical simulation of the steady state master equation (ME) for Eq. (8.4) has been developed. This is a work in collaboration with Tomás Ramos and Juan Jose Garcia Ripoll from IFF CSIC who provide theoretical and numerical support. We use this simulation to fit the lineshapes at different input powers (dark red and dark blue in Fig. 8.18.(a-b)). For this analysis, we assume the Qubit as fixed, i.e. without driving nor decay. The Ancilla is assumed as a Duffing oscillator which is transversely coupled to the Cavity. Only the Cavity is driven via the input port κ in and we compute the output amplitude c out = √ κ out c. The Ancilla has an intrinsic decay rate γ a . We used the following parameters: g zz /2π = 35 MHz, ω c,bare /2π = 7.169 GHz, ω a,bare /2π = 7.383 GHz, U a /2π = 12 MHz, κ c,bare /2π = 31.5 MHz, g a /2π = 296.8 MHz and γ a /2π = 1.75 MHz. We also considered a thermal population of each modes (Qubit, Ancilla and Cavity) corresponding to an effective temperature of T eff = 80 mK. We also add an error of 1 % in the preparation of the Qubit excited state due to finite π-pulse time and coherence time. To be numerically tractable, specially in the high input power regime, a displacement transformation as been used on both Cavity and Ancilla, c = β c + δ c and a = β a + δ a where β c and β a are classical solution and δ c and δ a are quantum fluctuations around them.

The model describes well the non-linear response of the Polaritons for both Qubit states. The frequency shifts as the input power is increased are respected as well as the switching effect. Also, the amplitudes are well fitted, giving us an insight on the mean photons number for each Polaritons, for both Qubit states and for different drive frequency. However, discrepancies are still important for the lower Polariton. The fitting is quite sensitive to the Ancilla anharmonicity and to the exact value of attenuation in the input line and exact value of gain in the output line. Work is still in progress.

Qubit distinguishability versus input power

In Fig. 8.19 the e-g distance D eg = |α eα g | is displayed as a function of readout power and frequency. It is the in plane distance between a π-pulse and no pulse applied on the Qubit. At low input power, four peaks are observed. They correspond to the resonance transitions (highlighted by black dashed lines) of the two Polaritons, conditioned on the two Qubit states, ω u (g), ω u (e), ω l (g) and ω l (e). Indeed, in the case κ < 2χ, the drive frequencies maximizing the e-g distance correspond to the eigenfrequencies of the readout mode conditioned on the Qubit states.

When the power is increased, until P in ∼ -18 dBm, D eg increases at these frequencies because the mean photon number is increased. After, for P in > -18 dBm, the working frequencies maximizing the distance begin to down-shift due to the Polaritons non-linearities.

At even larger power, P in > 12 dBm, we observe that around the bare Cavity frequency (highlighted by a gray dash line), the distance is maximized. This high readout contrast has been used by Reed et al [99] to perform their single-shot high fidelity measurement. In this high power limit where the bare Cavity behavior is recovered, the readout was found destructive. At this power, the circuit begins to switch to a resistive state.

We notice a region of large distance for readout frequency, approximately between 7.45 GHz and 7.6 GHz and readout power between -15 dBm and 10 dBm. It is in this region, highlighted by an orange rectangle in Fig. 8.19 that we explore the single-shot ability of the readout.

Single-shot High Fidelity performance

Now, we are interested in quantifying this readout process in the single-shot regime. Therefore, instead of averaging the signal on several sequences of pulses, we assess the statistical distribution of the results of a single sequence of pulses.

There are two types of sequence, depicted in Fig. (also called pre-selection) [145]. This technique allows to take out of the second readout data set the events corresponding to a false preparation of the Qubit state due mostly to thermal excitation. Indeed, analyzing the data of the first readout pulse, only the sequences where the result of the first readout corresponds to the ground state |g , are kept. We notice that the blobs in Fig. 8.20.(a-b) are round, showing no squeezing behavior, as expected with coherent states. According to the calibrations in Section 8.4, a mean photons number of 23 is estimated at this readout frequency and power when the Qubit is prepared in the excited state and 0.4 photons when the Qubit is in the ground state. This calibration is accurate within ± 3 dB. According to the on-going work of fitting the lineshapes by ME simulation, we expect a mean photons number of 9 for the Qubit excited state, however, this number is very sensitive to the Ancilla self-Kerr U a and also to the input line attenuation and output line gain that we don't know with a precision better than few dB.

Single-shot High Fidelity performance

To quantify the single shot measurement, we project on the axis of maximal sep- For the heralding, to reduce the error of false preparation of the state |g , we also need to define a threshold I T,H . We define R p the remaining percentage of data after the pre-selection. Sweeping I T,H from right to left, we keep all the raw Chapter 8 Qubit readout using an on resonance Ancilla-Cavity system data or reject all the data, R p goes from 0 % to 100 %. The readout fidelity increases with increasing data rejection R p until R th p around 3 % where the readout fidelity reaches the top value of 97.2 %. Analyzing the Double Gaussian foot with and without heralding, we find P e|g -P H e|g = 1.5 %. Assuming perfect heralding procedure, the Qubit is found in the excited state instead of the ground state due to thermal excitation between 1.5 % and 3 %. We thus estimate the effective temperature T eff of the Qubit assuming thermal equilibrium and obtained a temperature between T eff ∼ 71 mK and T eff ∼ 85 mK.

We can further analyze the readout errors defining:

P e|g = G |g + r e|g (8.7a) P g|e = G |e + r g|e (8.7b)
where G |g = 0.1 % and G |e = 0.1 %, are the overlap errors (green shadow in Fig. 8.21) and r are the remaining errors due to failed preparation events and transitions during the measurement like excitation and relaxation. We measured r e|g = 0.8 % (blue shaded region) and r g|e = 1.8 % (red shaded region). In r g|e , there is a least, 1 % due to wrong preparation of the excited state because of the finite times of π-pulse, T π = 30 ns and Rabi coherence time T Rabi ∼ 3 µs. Also, as the envelop of the π-pulse is squared, we expect the π-pulse to also populate in some amount the second excited state of the S-transmon.

The remaining error r e|g =0.8 % is still unexplained. Moreover, if we look back at the value of Relaxation T 1 ∼ 3.4 µs ± 0.5 µs, within a measurement time of T RO = 500 ns, we should expect an error of reading out the ground state when preparing the excited state of around 10 %. Owing to the non-linearity of the Polaritons (Fig. 8.18), we are actually doing a latching measurement [53,72] as demonstrated in the following section. Therefore, we expect r e|g =0.8 % to be due to bifurcation errors where the Polariton bifurcate to the high-amplitude state when the Qubit is prepared in the ground state because of uncontrolled input power and frequency. We also expect the remaining errors in r g|e to be due to the absence of bifurcation for the same reasons or because of Qubit relaxation before bifurcation.

High fidelity measurement thanks to Polariton bifurcation

Bistability and bifurcations

A Duffing oscillator is a system known for showing a region in the input power and frequency space where the oscillator has two stable output amplitudes [146]. For some sweep in power or frequency, the resonator will bifurcate from one stable output to the other stable one, for example from a low amplitude to a high amplitude output. This bifurcation property is the basis of qubit readout using Josephson Bifurcation Amplifiers (JBA) for example [36,147]. It is thank to a bifurcation property that the first single-shot high fidelity measurement of a superconducting qubit state has been achieved in 2009 by Mallet et al [53]. We measured Duffing-like lineshapes for the Polaritons (Fig. 8.18). Therefore, we also expect the Polaritons to present some bistability zones and bifurcation behaviors. From Eq. (8.4), using input-output theory, we compute the Langevin equations:

∂ t c = -iω c c -ig a a - κ 2 c + √ κ in c in ∂ t a = -i(ω a + g zz s z -U a )a + i2U a a † aa -ig a c (8.8)
with c in the input field sent toward the Cavity input port κ in . Taking the Fourier transform, or equivalently looking at the steady state of an input sinus, we end up with:

0 = -i(ω c -ω)c -ig a a - κ 2 c + √ κ in c in 0 = -i(ω a -ω + g zz s z -U a )a + i2U a a † aa -ig a c (8.9) 
Considering the quantum operator a and c as a complex value α a and α c (classical limit), we derive a non-linear equation on the number of Ancilla excitation n a = a † a → |α a | 2 . It is an order 3 polynomial which can have bistable solutions. Therefore, the number of photons in the cavity also has bistable solutions in the same bistability region. The order 3 polynomial is solved for ω a /2π = 7.397 GHz, ω c /2π = 7.169 GHz, g zz /2π = 35 MHz, U a /2π = 9.5 MHz, κ/2π = 32 MHz for different input power and frequency. For the two states of the Qubit, we report the computed bistability region in Fig. 8.22, in blue for the ground state and in red for the excited state. For the upper Polariton, with an increasing power, the resonant frequencies are down-shifted, then a bistability region opens up and closes down when the resonant frequency approach the bare Cavity frequency. Chapter 8 Qubit readout using an on resonance Ancilla-Cavity system used in order to allow a correspondence between time and the input amplitude (or power) while sweeping up or down (Fig. 8.23.(b)). Similarly we link the output amplitude and time and it is thus easy to plot output amplitude versus input amplitude. Folding the data in two and measuring the distance D ud between the two output amplitudes for the ramp-up and ramp-down, we assess the bistability zone.

However, two experimental issues exist to measure the bistability zone because of the limitations of the mixer. Indeed, a mixer has an always-on LO leakage. Therefore, there is always some residual input power going towards the sample. This residual power needs to be lower than the input power corresponding to B down to allow the upper Polariton to bifurcate to the low-amplitude output state. Moreover, a mixer has a finite dynamical range. This is a limit on the maximum power a mixer can give. This maximum power needs to be higher than the power corresponding to B up to ensure the upper Polariton bifurcates to the high-amplitude output state. Therefore, the bistability region cannot be measured if it extends above the mixer dynamical range. We have measured a dynamical range a little below 30 dB. We empirically modified, along the drive frequency, the highest mixer power and leakage LO amplitude via a programmable attenuator after the mixer (strip lines in Fig. Using Eq. (8.9), we fit the bistability zones with only one free parameter being the conversion between room temperature input power and driving amplitude. The fits are displayed as blue and red solid lines for ground and excited state of the Qubit respectively. In Fig. 8.24, ω a /2π = 7.397 GHz was used. We took U a /2π = 12 MHz, κ c /2π = 32 MHz, ω c /2π = 7.169 GHz and g zz /2π = 35 MHz. We also measured the bistability zones at Φ = 4Φ 0 (Fig. 8.25.(a-b)). Using the same param- eters for Eq. (8.9) except the Ancilla frequency, ω a /2π = 7.538 GHz, the bistability zones are also well described.

For the same ranges of input power and frequency, we measured the readout fidelity with heralding within 500 ns (Fig. 8.24.(c) and Fig. 8.25.(c)). We observed that the region of high fidelity are between the lines of up-bifurcation B e up and B g up for the excited and ground states respectively. This confirm the hypothesis of a latching measurement. In this region, the dynamics are not anymore govern by the Qubit T 1 but by the time needed for the upper Polariton to bifurcate to the high-amplitude output state. We expect this bifurcation time to be short compared to T 1 and the readout time T RO . For this reason, the measurement becomes less sensitive to Qubit relaxation during the measurement. Indeed, if the Qubit relaxes after the bifurcation, the upper Polariton will stay in the high-amplitude output state as long as it do not cross the down-bifurcation point B g down . We might wonder about the QND performances of this readout. The ability to perform heralding seems to indicate that our measurement does not induce excitation transition when the Qubit is in the ground state. Following [148], the QND aspect of our measurement scheme should be assessed (currently under investigation). Now that we have demonstrated that the readout corresponds to a latching measurement, we would like to compare ( comparison between both readout fidelities might prove to be difficult since the technical optimization were not the same. In our case, we used heralding which reduced false preparation error due to thermal equilibrium of 1.5 % for the ground and 1.1 % for the excited state errors. In Schmitt paper, they did not use heralding but they estimate a thermal error of 2.2 %. For the excited state preparation, the authors expect an error smaller than 0.1 % due to Gaussian envelop shaping while we expect an error of 1 % with a squared pulse envelop and finite timings. Moreover, they employed shelving which increase by 0.9 % their readout fidelity. Finally, they used a "two-steps" readout pulse while we used a one-step readout pulse. This shaping should make a faster ring up [149] and reduce bifurcations errors. A 10 ns rising and falling linear ramp was employed in our case to reduce what we believe to be bifurcation errors. Lastly, none of us used data treatment with a weight function that optimize Qubit states distinguishability [63]. In our case, we employed a Heaviside weight function W rising with an exponential rising and falling time τ = 50 ns corresponding to the measured κ -1 u which make the measurement less sensitive to noise compared to a no weight function case.

To further increase our readout fidelity, there are several leads. Better π-pulse using Gaussian or even DRAG pulse [150,151] to reduce excited state preparation errors. Moreover, we believe that with better readout pulse shaping, we can reduce the errors of wrong bifurcations. For example, the shaping in Schmitt paper allows to have a probability for the resonator to up-bifurcate close to 100 % when the Qubit is excited and, close to 0 % when the Qubit is in the ground state. For this purpose, the dynamics of bifurcation should be studied. One last but not least leads should be to reduce the non-linearity of the upper Polariton. By this way, we should be able to increase the mean photons number and therefore increase the distinguishability between the two pointer states before the bistability regions close up and therefore loosing Qubit state distinguishability. Faster Qubit readout with a JPA 9

This chapter is dedicated to the study of Qubit readout at short time thanks to the introduction of a Josephson parametric amplifier (JPA). The presented work was performed in collaboration with Luca Planat who provided the JPA. It is preliminary work, sometimes carried out under my supervision by Vladimir Milchakov who will take over this project. In a first section, a general and brief presentation of the JPA used in this work is given. In a second section, the problem of pump leakage is discussed and the chosen protocol to mitigate it is described. Finally, the ability to perform fast single-shot high fidelity measurement is demonstrated along with the measurements of quantum jumps and quantification of measurement QND-ness. Using a JPA as the first amplifier instead of a commercial HEMT amplifier allows to reduce the effective noise temperature of the measurement chain or equivalently to increase the quantum efficiency of the experimental setup. The JPA is made from an eighty squids array forming a non-linear quarter-wave resonator (Fig. 9.1.(a-b)). It will be used in a phase-sensitive mode [127]. It requires: i) the same frequency for the pump and for the signal and, ii) a good control of the phase difference between the signal and the pump. Indeed, small signals that are Link back to Table of contents → Chapter 9 Faster Qubit readout with a JPA combined in phase or in quadrature with the pump tone are respectively amplified or de-amplified, creating squeezing. Experimentally, we tune the phase between signal and pump in order to obtain maximal amplification onto the quadrature corresponding to the one with maximum Qubit-states separation. The results presented in this Section 9.2 were measured by L. Planat on another nominally identical JPA. We briefly review the characteristics of the JPA. However, more information on this type of JPA can be found in [START_REF] Planat | BIBLIOGRAPHY 08476v1[END_REF]. The figures The currently used JPA has a maximum bare frequency a little bit higher, at 7.4 GHz. Therefore, its operating frequency ranges between 6.3 GHz to 7. The measurement and analysis is closed to the one described in appendix B of Lin et al paper [152]. We made here a measurement to have an insight on the 9.4 Pump leakage towards the sample and possible solutions added noise of the JPA. To do so, we compared the output power with a spectral analyzer a when the JPA is power supplied or not. We consider the amplification chain consisting in a JPA followed by a HEMT amplifier (Fig. 9.4.(a)). Between them, there is some attenuation η mostly due to insertion losses of different microwave components like circulators for example (Fig. 6.2). For a given pump frequency ω pump , the power spectral density (PSD) at this frequency will have a given value PSD off when the JPA is not pumped. We referred the PSD to the input of the HEMT amplifier. Assuming the sample and devices before the JPA as a virtual 50 Ω resistance giving a vacuum noise of half a photon, T in = hω pump /2 = 166 mK, the PSD is given by:

PSD off = k B (T HEMT + T in ) k B T HEMT (9.1)
Here the HEMT amplifier is supposed to be the dominant source of noise in this amplification chain with T in T HEMT . When the JPA is pumped to a gain G, the PSD increases. Indeed, at the input of the HEMT, there is an added noise G(1η)k B (T JPA + T in ) due to JPA amplification. The added noise temperature of the JPA is given by T JPA and we suppose it is independent on the JPA gain. The PSD is then given by:

PSD on = k B (T HEMT + G(1 -η)(T JPA + T in ) + ηT in ) (9.2) 
We define the ratio R PSD by:

R PSD = PSD on PSD off = T HEMT + ηT in T HEMT + T in + G(1 -η) T JPA + T in T HEMT + T in 1 + G(1 -η) T JPA + T in T HEMT (9.
3)

It follows a linear law with the gain of the JPA. Its slope is given by (1η)

T JPA +T in T HEMT . We measured the ratio R PSD for several value of JPA gain (Fig. 9.4.(b)) at frequency ω pump /2π = 6.913 GHz. The ratio R PSD of our device is comparable to that of other quantum-limited amplifiers [153]. It is very well fitted by a linear law. From the slope, we obtained T JPA + T in T HEMT /23(1η). The attenuation η is expected to be smaller than 2 dB. The data-sheet gives a HEMT noise temperature of 5.5 K. During his Ph.D. [76], E. Dumur measured the HEMT noise to be T HEMT /(1η) = 8 K. It was not measured with the exact same setup but we expect a change in the attenuation η to be smaller than 1 dB. In the end, we found an added noise [127] for the JPA to be between the quantum limit (half a photon added) and two times the quantum limit (one photon added).

Pump leakage towards the sample and possible solutions

Due to the strength of the pump amplitude, there will be leakage of the pump toward the Polariton readout modes of the sample. We can roughly estimate the number of parasitic photons caused by the pump. The power of the pump at a R&S FSQ Signal Analyzer Chapter 9 Faster Qubit readout with a JPA the JPA input is about P cold = -80 dBm [START_REF] Planat | BIBLIOGRAPHY 08476v1[END_REF]. With the low temperature microwave setup described in Fig. 6.2, the pump leaks towards the sample with an attenuated power by -34 dB compared to the JPA input power because of the directionality of the directional coupler and the isolation of the circulators. So an input power P leakage = -114 dBm arrives at the output port of the resonator, which presents a coupling strength κ out /2π 20 MHz. When the pump frequency is equal to the resonant frequency of the resonator, this creates approximately a mean photons number n leakage given by:

n leakage = 4κ out P leakage hω r (κ in + κ out ) 2 4P leakage hω r κ tot (9.4)
where κ in κ out . For a frequency of 7 GHz, n leakage is around 30 photons. We need this photon leakage to be, at worst, at the same level than thermal photons. Indeed, the coherence of the Qubit is already partially limited by thermal photons in our case (Section 8.2.3). To reduce this parasitic photons leakage, there are several possibilities.

-One is to increase the number of isolator/circulator between the sample and the JPA. However, we are limited by the space in the cryostat. We could only add one circulator and thus having a photon leakage around 0.4. Moreover, as microwave components are added between sample and JPA, the quantum efficiency is expected to become smaller. To win a little bit more attenuation on the leakage, the directional coupler can be positioned in between the JPA and the circulator. The experimental problem with this solution is that the directional coupler shows a larger VSWR than the circulator. Therefore, the JPA will not see a good 50 Ω at its input and its performances might be degraded. Also parasitic Fabry-Perot resonances will appear.

-Another solution is to use a double pumps scheme [154], where (ω pump1 + ω pump2 )/2 = ω pump = ω signal . For a power P arriving at the output cavity port with a detuning ∆ from the resonant cavity frequency, the mean photons number n leakage scales as 1/(1 + 4∆ 2 /κ 2 out ). For example, with a detuning of 400 MHz, the photon leakage could be reduced to 2 × 10 -4 , which is one order of magnitude less than the estimated thermal photons number. However, we also need to increase the room temperature power of each pump compare to the single pump scheme in order to obtain similar gain with the JPA. One intrinsic problem of this double pump scheme resides in the presence of the two Polariton resonators. Therefore, using more detuning compared to one Polariton resonator in order to reduce its mean photons number, might increase too much at some point the mean photons number in the other Polariton resonator. Lastly, for this scheme to work, we need that both pumps arrive with the exact same power at the JPA input. This requires fine tuning and we never experimentally succeeded in obtaining a gain better than 15 dB. For these reasons, we did not use this double pumping scheme.

-The last solution, which is the one used in this chapter, is pump cancellation.

Along with the pump, a compensation tone is sent to destructively interfere 9.5 Recipe for using JPA with pump cancellation with the pump in the direction of the sample and only slightly modify the amplitude of the pump at the input of the JPA. How to compensate and how much compensation can be achieve is described in the next section. We estimate a photons leakage around 2 × 10 -5 (or even smaller with timeconsuming fine tuning of the pump cancellation). With this photon leakage number, we estimate a coherence time reduced by around 1 % in the presence of the pump power. The setup and basic idea of amplification with pump cancellation is summarized in Fig. 9.5.(a). The objectives are to obtain signal amplification from line 1 to-Chapter 9 Faster Qubit readout with a JPA ward line 2 while appreciably reducing pump leakage from lines 3 and 4 towards the sample line 1. It can be achieved thanks to the directional coupler directivity by fine tuning the amplitude and phase of the compensation tone.

Before setting the amplification with pump cancellation, a readout frequency ω RO is fixed. It is chosen for a given input power by the frequency which maximizes the measured mean e-g distance. Therefore, the JPA pump frequency ω pump is fixed equal to this signal readout frequency, ω pump = ω RO . Because the JPA is operated in the phase-sensitive regime, a single microwave source is used for both signal and pump. This reduces phase noise and drifts which can happen when different microwave sources are used.

In order to obtain optimal amplification with cancellation of the pump at the sample output, several steps are followed (Fig. 9.5.(b)).

In step 1, the JPA is tuned in order to have gain at this frequency. The compensation line ( 4) is unplugged and the signal is sent through the same line as the pump (line 3). With a VNA, we measure the JPA gain by measuring S 23 with the pump on and off. Initial parameters of current and pump power are found to obtain the targeted gain and bandwidth at the frequency ω pump = ω RO , usually around 20 dB and 45 MHz.

Then, in step 2, the compensation line (line 4) is plugged. We check the gain via VNA measurement and adapt pump power if necessary.

In step 3, VNA measurement is stopped, and we measure with a spectrum analyzer the power at frequency ω RO at the output (line 2). We tune the attenuation (via manual attenuator b ) and phase (manual phase shifter c ) on the compensation line (line 4) in order to minimize the power collected by the spectrum analyzer. Attenuation and phase need to be iteratively tuned because there is always a small variation of phase when the attenuation is changed and vice versa.

After finding good destructive interferences condition (end of step 3), we check the gain with the VNA (step 2), and adapt the pump power if necessary. Steps 2 and 3 are iteratively performed until desired convergence on the JPA gain and pump cancellation. We regularly can achieve up to 40 dB attenuation thanks to the destructive interferences. With extra careful tuning, up to 60 dB attenuation is obtained. However, it is not stable with time (mostly due to variations of attenuation and phase between pump line 3 and compensation line 4 because of temperature changes).

For the last step, step 4, the time-resolve microwave setup is used. We measure the characteristic times of the Qubit (Rabi-Ramsey and Relaxation) in order to check that the pump does not induce back-action on the Qubit. We achieve characteristic times that are comparable to the ones measured without JPA. We set the pump cancellation condition in order to reach within 10 % of the observed mean values without pumping the JPA (Section 8. In the following, we have studied the readout performances at zero flux using the lower Polariton mode via single-shot measurements. The JPA is biased for a gain of 23 dB. With pump on, the Qubit characteristic times are maintained to T 1 = 3 µs and T Ramsey = 3 µs. The π-pulse on the Qubit has a duration of 26 ns with a Gaussian envelop to reduce population of higher excited states. The readout and pump frequency is 7.032 GHz. The readout input power is P in = -18 dBm. The weight function used to treat the acquired voltages is W rising (Section 6. At short readout times, τ ≤ 80 ns, the readout fidelity is mainly limited by the overlap error (green shaded area). As the readout time increases, the overlap error strongly reduces and errors due to false state preparation and transitions during measurement, become dominant. For long readout time, τ > 160 ns, the Double Gaussian fit presents discrepancies with the data histograms. The transitions during measurement can explained such behavior. Indeed, they give counted results that are in-between the two Gaussian instead of a result located within one Gaussian [63].

The overlap error is reduced by collecting more and more photons. We can either increase the input power for a given readout time (not studied yet) or increase the measurement time for a given input power. However, increasing the measurement time also increases the probability of transition errors during the measurement. An optimal point in time can be found to maximize the readout fidelity.

To fully characterize the time dependence, heralded single-shot histograms have been measured for a readout time τ ranging from 1 ns to 200 ns with a time step of 1 ns. From each single-shot measurement, the different fidelities F or errors (=infidelities) ≡ 1 -F are extracted from an automatic Double-Gaussian fitting procedure. The readout error (black), the overlap error (green), the excited Qubit error r e→g (red) of reading out the ground state when the excited state has been prepared, and the ground Qubit error r g→e (blue) of reading out the excited state when the ground state has been prepared are reported in Fig. 9.7.(a). We recall that in the excited and ground Qubit errors, the overlap error has been removed. From 0 ns to 100 ns, the total readout error decreases from 100 % to 4 %. It saturates around 4 % between 100 ns to 150 ns before increasing again. The overlap fidelity reaches 99 % for τ > 120 ns. After an initial "slow" transient decrease when τ ≤ 80 ns, the overlap error drops exponentially with increased readout time (exponential fit in gray solid line). It decreases approximately by one decade every 30 ns. These features are similar to the ones presented in Jeffrey et al [56]. We thus estimate that 80 ns (several κ -1 ) is the time required to reach the field steady state in the lower Polariton.

The Qubit errors are not plotted for time τ ≤ 50 ns because their extraction becomes less accurate as the overlap error is dominant at short time. The ground Qubit error r g→e seems constant over readout time around 0.2 %. It appears larger at short time. We impute this to the fact that the heralding rejection procedure Chapter 9 Faster Qubit readout with a JPA becomes less accurate at short pulse time. To confirm this effect, a constant time for the first readout pulse should be used.

For time greater than 110 ns, the readout error is mainly due to the transition error r e→g which is increasing with time. The expected error T 1 1exp -τ 2T 1 due to relaxation with characteristic time T 1 in an integration time τ is shown in dash gray line. Indeed, the relaxation error for a measurement time τ is the integration over a time τ of the probability to have decayed at time t. For small integration time τ T 1 , the relaxation error is approximately given by the probability to have decayed at half the time τ. We took the previously measured T 1 = 3 µs with JPA pump on. This error T 1 is the dominant source of error for τ > 150 ns. The leftover 1 % discrepancy between r e→g and T 1 is partially explained by false preparation error Rabi . Indeed, with T π = 26 ns and T Rabi = 2.8 µs, we expect a preparation error Rabi = (1exp -T π T Rabi )/2 0.5 % (Eq. (7.6a)). We note an oscillating behavior in the red transition error and therefore in the readout error. The period is about 10 ns and thus corresponds to a frequency of 100 MHz. Its origin is still under investigation. However, we believe it is a measurement artifact. For example, it can be caused by the automatic histogram data analysis or by the code of the pulse sequence and notably in the Qubit Gaussian π-pulse.

From the Double Gaussian extractions of the histograms, the SNR is defined as:

SN R = |µ e -µ g | σ e + σ g (9.6) 
The SNR is extracted (Fig. where Ω is the drive amplitude and κ is the photon decay rate of the resonator. Using Eq. (9.7), the SNR is qualitatively fitted (orange dash line in Fig. It gives a driving amplitude of Ω = 28 × 10 -3 and a photon decay rate of κ = 42 MHz, which is approximately twice the value that has been measured. However, we know that Eq. (9.7) is only valid for χ/κ = 1/2 and in our case, we have χ/κ ∼ 1/4. Work is still in progress to fit with the theoretical formula in the case of χ/κ = 1/2.

In the future, to further improve the readout fidelity, two directions should be explored. One is to increase the T 1 in order to reduce the excited Qubit error e→g and then measure at longer readout time τ (not done yet). Also in our case, increasing T 1 should also increase T 2 and therefore reduce Rabi . The second way is to try to improve the separation fidelity at short time where the excited Qubit error is still small. There are several means to improve the separation fidelity at short time. One is to bias the JPA at a higher gain, however for gain above or similar to 25 dB, the JPA becomes unstable. Another option is to increase the input readout power. A full characterization of fidelities with input power is still 9.7 Fast Single-Shot High Fidelity under investigation. However, this characterization is time consuming because of the lower Polariton non-linearity forcing us to change the signal readout and pump frequency when the input power is changed. Therefore, we also need to change the bias point of the JPA in order to obtain similar bandwidth and gain. And start again the pump cancellation procedure. We could also perform readout pulse shaping optimization in order to reach faster the lower Polariton steady state [149] (not done yet). The last option is to perform better data analysis with a weight W g-e function (Section 6.2.2) that maximizes the separation between the two Qubit states. Acquired voltages averaged 300 times as a function of time: real part in dash lines, imaginary part in dotted dash lines, the Qubit is prepared in its ground state in blue, and in its excited state in orange. Black solid line is the e-g distance D e-g (t), which is proportional to the weight function W e-g (t)

Fast Single-Shot High Fidelity

We focus in this section on a fast single-shot readout at 0Φ 0 , at frequency 7.028 GHz with power P in = -13.5 dBm, with a readout pulse duration of 50 ns and weight function W g-e . To obtain the weight function, we measure the quadratures voltages versus time and average over 300 realizations, Q(t) R (dash lines) and I(t) R (dotted dash lines) for the two states of the Qubit, i.e. when no pulse (blue) or a π-pulse (orange) is applied to the Qubit (Fig. 9.8). From this measurement, we extract the average distance D g-e (black solid line) versus time, given by Figure 9.9 -Histograms with 24 × 10 3 events in IQ plane when preparing the ground state |g in (a) and when preparing the ex- cited state |e in (b), for a readout power P in = -13.5 dBm and frequency 7.028 GHz the gray shaded area in Fig. 9.8. During the applied pulse, the output quadratures evolve as the lower Polariton is being populated and at the end of the pulse, the quadratures decay back to zero. To fully understand the transient dynamics of the lower Polariton depending on the Qubit state, more study is required both experimentally and using numerical simulation. Using optimal control theory, the shape of the input pulse, its power and/or its frequency may be optimized numerically to reach faster the steady states when populating or depopulating the lower Polariton [149]. We found an improvement in using the weight function W g-e instead of W rising . Indeed, we obtained a similar separation error in a readout pulse duration τ = 50 ns with W g-e instead of 80 ns for W rising . Green shaded region correspond to the overlap error, blue shaded region, ground state error and red shaded region, excited state error.

Histograms in the IQ plane show squeezing (Fig. 9.9). The phase between signal and pump is manually shifted via a phase shifter in order to align the two squeezed blobs. The JPA has been tuned to obtain a gain of 20 dB. We estimated, for the steady state of the lower Polariton, a mean photons number n = 2 with an uncertainty of ± 3 dB. Without heralding, we have extracted: where G |g = 0.1 % and G |e = 0.1 %, are the overlap errors. In r g|e , we expect around 1.5 % error due to finite T 1 = 3.3 µs and around 1.4 % error because of the finite π-pulse time T π = 40 ns compared to the finite Rabi time T Rabi = 2.9 µs. Here, we used a square envelop for the π-pulse, so we estimate that the Qubit | f state is populated less than 2 % of the time. There are still 0.9 % error in r e|g for the ground state and 1.2 % error r g|e for the excited state that remain unexplained. Due to the relatively small number of counts, N = 24 × 10 3 , in the histograms, we know that we have an uncertainty of 1/ √ N = 0.6 % in the different probabilities.

F RO =90.1% ( 

Continuously monitored measurements records

In this section, we directly study the individual measurements records I(t) which gives an insight on the real time dynamics of the Qubit.

We send a readout pulse of 1 µs after no pulse or a π-pulse applied to the Qubit. The other parameters are similar to the previous section. One thousand trials have been measured. Two typical measurement records are reported, one in Fig. 9.11.(ab) and the other in Fig. 9.11.(c-d). The signal is acquired a little bit before and also after the time window of the readout pulse. It is acquired at a samplerate of 1 GS/s (see raw data in Fig. 9.11.(a, c)). Then it is numerically averaged within 20 ns, approximately corresponding to the decay rate of the Polariton (Fig. 9.11.(b, d)). In Fig. 9.11.(b, d), one realization of measurement record is displayed in dot dash line in dark blue or in dark red when no pulse or a π-pulse is applied to the Qubit respectively. The blue and red solid lines are the mean value averaged over 1 × 10 3 realizations and the shaded area correspond to their standard deviations. At time τ = 170 ns, the readout pulse begins and ends at 1170 ns.

In the measurement record, we note that the ground and excited states of the Qubit can be resolved in a single-shot manner. During the readout pulse, the solid red line I e (t) R decreases with time while the standard deviation increases. We attribute this effect to the Qubit relaxation. Indeed, the averaged response I e (t) R shows decay which can be fitted by an exponential law with characteristic time T decay = 3 µs ± 0.5 µs, corresponding to the Qubit T 1 .

In Fig. 9.11.(d), we observe in the measurement record that we can resolve a quantum jumps. This notion that quantum systems evolve instantaneously by "jumping" between eigenstates was first proposed by Bohr in 1913 [155]. Until 1986 when it was first observed using trapped ions [156,157,158], the concept of "quantum jumps" remained a purely theoretical curiosity, and a subject of substantial debate. It was first observed in superconducting qubits in 2011 [54]. It is thanks to the introduction of JPA with noise near the quantum limit with a large enough band- width that quantum jumps could be resolved for superconducting circuit. Indeed, to be able to observe and resolve quantum jumps, two things are required: first, a QND measurement scheme, in the sense that it projects into one of the system eigenstates and allows repeated measurements, and second, the measurements must be performed on a timescale much shorter than the characteristic relaxation time T 1 .

The jumps occur stochastically on the time scale T 1 , in the condition that the measurement is not too strong and disturb the Qubit. Looking at the statistics of jump times, one can extract a characteristic relaxation time and check that it corresponds to the T 1 of the Qubit. Comparing relaxation rates under and not under measurements, we can check that the measurement is not "too strong". Here "too strong" means that the measurement disturbs too much the Qubit. However, we don't have yet a large enough statistics of quantum jumps to extract a characteristic time of jumps. We still expect the measurement to be not too strong because the averaged response Q e (t) shows an exponential decay on a timescale similar to T 1 .

Another way to check if the measurement is not too strong is to check its repeata-Chapter 9 Faster Qubit readout with a JPA bility. We now look only at the measurement records between time 320 ns and 1160 ns, to be in the steady state regime of the applied squared pulse. We define a measurement Q t as an integration of 20 ns. It corresponds to the ground state if Q t < Q th or to the excited state if Q t > Q th with Q th = 15.5 mV. This means that we have 41 successive measurements, with the qubit ideally initialized in the ground or excited state in a measurement record. The measurement records are repeated 1000 times. Therefore, we have 82 × 10 3 counts of successive measure- ments. We define four conditional probabilities, P α,β , the probability to measure α in the first measurement and β in the second measurement, where α and β are the ground or excited states. We obtain the probabilities: The errorbars come from the finite counting 1/ √ N where there are 48 499 counts where the first measurement is in |g and 33 501 counts where the first measure- ment is in |e .

P g,
From these probabilities, we define a Quantum Non Demolition probability QND following Touzard et al [67]: QND = P g,g + P e,e 2 (9.12)

We found a QND-ness of QND = 99.2 % ± 0.5 %. It is slightly better than the QND-ness obtained in Touzard et al [67] and corresponds, to the best of our knowledge to the state-of-the-art. How to quantify the QND-ness aspect is not an easy question. Indeed, in this definition of QND-ness Eq. (9.12), we assume that the Qubit is really a tls where the measurement can only give the binary answer |g or |e . Therefore, this definition does not consider the possibility that the measurement can induce transitions to higher excited states of the Qubit seen as a multi-levels system. The Qubit disturbance caused by the measurement [65] is theoretically a better definition. However, it is experimentally challenging to realize a meter that gives an appreciably different results for each levels of the Qubit.

In P e,g = 1.3 %, we expect 0.7 % ± 0.1 % to be due to relaxation. From the estimated thermal equilibrium Qubit population, around 3 %, we expect 0.02 % in P g,e to be due to thermal excitation. The rest of the probabilities P e,g and P g,e are within the errorbar due to finite counting.

Chapter keypoints

In this chapter, we presented preliminary results on fast Qubit readout using a JPA with large bandwidth operated in a phase-sensitive manner. We first reviewed the 9.9 Chapter keypoints characteristics of the JPA, then discussed the issue of pump leakage and backaction on the Qubit. The interferometric pump cancellation procedure is then described. Qubit single-shot readout specifications as a function of readout time is characterized. Because of the short finite T 1 of the Qubit, readout needs to be fast in order to mitigate the effect of relaxation and to achieve high-fidelity. Therefore, a good separation at short time is also required. A readout fidelity of 94.7 % has been achieved in 50 ns. DRAG pulses [150,151] to limit excited state false preparation and CLEAR pulses [149] to achieve faster steady state, are currently being implemented to further improve the readout fidelity. For a mean photon number around 2, we demonstrate that the Qubit can be measured non-destructively 99.2 % of the time. The impact of mean photon number on readout fidelity and QND-ness is also currently under investigation.

Conclusion and perspectives 10

Conclusion

In this manuscript, I tackled theoretically the question of light-matter coupling in the aim of qubit readout in c-QED. Ideally, one would like the simplified cross-Kerr coupling χσ z c † c between the qubit and resonator. Driving the resonator gives a qubit-state dependent response and the qubit is thus resolved in a perfectly QND way. However, effort is needed in order to experimentally approach this ideal coupling.

The most common way to readout a qubit is to start with the transverse coupling g xx (q † + q)(c † + c). Operated in the dispersive regime, where the frequency detuning is much stronger than the coupling, this transverse coupling behaves approximately as the ideal simplified cross-Kerr coupling. However, the domain of validity of the approximations implies a weak driving signal on the resonator. Another limitation of the transverse coupling is hybridization. Indeed, this coupling means that the qubit and resonator exchange excitations.The qubit is dressed by the resonator and vice versa. Because of this hybridization, the readout cannot be perfectly QND. The qubit always has a Purcell limitation in its relaxation time T 1 .

There is therefore a compromise between how much we want to couple the qubit to the resonator and the resonator to the environment in order to read "fast" the qubit and how much we can tolerate a low T 1 .

The original coupling we proposed and investigated for qubit readout is the direct cross-Kerr coupling g x 2 x 2 (q † + q) 2 (c † + c) 2 . With such a coupling, the strength of the effective simplified cross-Kerr coupling 4g x 2 x 2 q † qc † c is not restricted to a dispersive limit and therefore does not depend on detuning. The cross-Kerr coupling can be decomposed into two parts, the always-on ideal simplified cross-Kerr coupling and the non-ideal rest. The rest of this coupling hybridized the atom to the resonator by exchange of two excitations. However, this hybridization is parity conserving and thus does not lead to Purcell decay. Therefore, in the cross-Kerr coupling scheme, there is no T 1 relaxation limitation imposed on the qubit by the resonator and their coupling. Also, the unwanted part of this coupling can be neglected. Indeed, in the rwa and with a large enough detuning, this hybridization disturbance on the qubit is kept small enough. This approximation can be achieved without loosing on the wanted strength of the readout shift, contrary to the transverse coupling. Like the transverse coupling, there is a constraint on the strength of the driving signal. However, this constraint can be reduced by a larger Link back to Table of contents →

Chapter 10 Conclusion and perspectives detuning to a point where it is not a limiting constraint. Therefore, the cross-Kerr coupling relieves the two limiting constraints that are found with the common dispersive readout scheme of the transverse coupling.

To achieve cross-Kerr coupling, we employed the transmon molecule coupled to a 3D microwave cavity. The transmon molecule is built by coupling two nominally identical transmon atoms. During my thesis, I completed the theoretical description of the transmon molecule to also consider some capacitive coupling along the inductive coupling between the two transmon atoms. I also adapted the circuit design for a 3D architecture. There are two interesting properties in the transmon molecule. First, it results in two eigenmodes, the transmon Qubit and the Ancilla with a direct cross-Kerr coupling between the two. Second, the symmetry of the circuit allows to transversely couple only the Ancilla to the Cavity. Therefore, the Qubit is not transversely coupled and does not suffer from its limitations.

The transmon molecule can then be operated in two distinct regimes: either the Ancilla is far detuned from the Cavity or it is closed to the resonance. Both regimes have been studied theoretically and experimentally. In the far detuning (or dispersive) regime, thanks to the Ancilla, an original simplified cross-Kerr coupling arises between the Qubit and the Cavity. We reported a readout shift of 1.3 MHz with sample A. In the near resonant regime, the Ancilla and Cavity are hybridized into two new eigenmodes corresponding to weakly anharmonic resonators, called lower and upper Polaritons. The Polaritons are a mixture of Ancilla and Cavity and thus inherit the properties of both Ancilla and Cavity. Both Polaritons present large and direct cross-Kerr coupling with the Qubit. This regime has been studied via sample B. The hybridization condition between Ancilla and Cavity is varied experimentally via applied flux. Changing this condition changes the properties of each Polaritons and the different cross-Kerr couplings with the Qubit and between Polaritons. We demonstrated a readout shift from 10 MHz to 58 MHz with a Qubit T 1 around 3.4 µs. These values are hardly achievable with transverse coupling. It would be even harder with a resonator decay rate about 15 MHz as we reported for the Polaritons. Because of imperfections in the setup, creating a residual transverse coupling, the Qubit is Purcell limited. The first imperfection is an asymmetry in the critical current of the Josephson junctions of the transmon molecule circuit. The second is a misalignment between the circuit sample and the electrical field of the cavity. We believe these imperfections can be reduced and/or rendered less significant via a larger detuning between the Qubit and the Polaritons. Despite this limitation, we demonstrate a single shot readout fidelity of 97.2 % in a 500 ns latching measurement. Indeed, a latching measurement is possible thanks to the non-linearity of the Polaritons who present bifurcation and bistability behavior. We are currently in a collaboration to better understand the non-linearity of the Polariton, its dynamics, its number of photons and its utility for Qubit readout. We estimated a photon number in the high output state of about 23 photons. In a linear regime, with a mean photon number about 2, we reported a single shot readout fidelity of 94.7 % in a 50 ns readout pulse thanks to an external JPA operated in a phase-sensitive regime. We could thus resolved quantum jumps and measured non-destructively the Qubit 99.2 % of the time. Both fidelity and QND- 

Better control of the Relaxation channels

We have seen that the Qubit has Purcell limited T 1 because of residual Qubit-Cavity transverse coupling, which is due to either an asymmetry d J of Josephson junctions or a misalignment of the sample inside the 3D-cavity. First solution is to detune the Qubit frequency from the transition frequencies of the Ancilla and of the Cavity. Contrary to usual circuit scheme, the cross-Kerr coupling strength does not depend strongly on the detuning and therefore large readout can be achieved even with far detuned Qubit.

Another solution is to control in a better way the geometrical angle between sample and cavity. We have simulated that the transverse coupling due to a geometrical angle can cancel the residual transverse due to junctions asymmetry. Therefore, for a given fabricated sample with a given asymmetry, an optimal geometrical angle can be found where the Qubit is not Purcell limited. 3D-cavity with tighter ridges may allow a more precise alignment of the sample chip.

Chapter 10 Conclusion and perspectives

Last solution is to be able to control in situ the junctions asymmetry d J . To be able to completely manage in situ the asymmetry, each Josephson junction needs to be replaced by a squid. Then, with fine tuning of the magnetic flux through these squid, the asymmetry can be tuned. An independent flux tuning inside the different squid loop is required, therefore several sources of magnetic field are also necessary. In a 3D-architecture, the external coils need to be engineered for that purpose. In a 2D-architecture, like presented in Fig. 10.1, flux lines might answer this issue.

We can wonder how much we will still be able to excite and address the Qubit state when we will tune the residual transverse coupling to zero. As mentioned in [40], the less transverse coupling there is, the longer would be the gate time and input power necessary for a π-pulse for example. The input port of the 3D-cavity may be redesigned in order to have enough, but not too much, coupling to the Qubit. Otherwise, in a 2D-architecture, an input line may be dedicated for qubit excitation (Fig. 10.1).

Transforming the Ancilla into a more linear resonator by reducing its anharmonicity

By reducing the Ancilla anharmonicity, we can more easily put photons inside the Polaritons modes before reaching their bistability zones. It will also be easier to handle the use of a JPA in a phase sensitive manner since the readout (and pump) frequency stay the same for a longer range of input power. However, by reducing the Ancilla anharmonicity, we may also change the other circuit parameters like the cross-Kerr coupling ω 22 between the Qubit and the Ancilla. To be able to implement a fast readout, we require a Cavity decay rate around κ/2π ≥ 20 MHz and therefore we also require a cross-Kerr coupling ω 22 /2π ≥ 20 MHz. Using formulae in Fig. 2.6, the Ancilla anharmonicity evolves as the charging energy E C y and decreases with an increasing inductance ratio b = L J 0 /L a , while ω 22 evolves as the square root of the Ancilla anharmonicity and ω y is increasing with increasing b. Depending on the targets, different circuits parameters may be found. For example, with circuits parameters of C qb = 70 fF, C a = 70 fF, I C = 15 nA and L a = 5 nH, we simulate plasma frequencies ω x /2π = 4 GHz, ω y /2π = 7.3 GHz, self-Kerr anharmonicities α x /2π = 138 MHz, α y /2π = 4.7 MHz, and cross-Kerr ω 22 /2π = 51 MHz. The transmon E J /E C ratio is about 27 with these parameters. With these parameters, the Qubit is further detuned from the Ancilla, the Ancilla is close to resonance with the Cavity, its anharmonicity is reduced while the cross-Kerr coupling strength is still sufficient. We can also aim for an Ancilla frequency in the frequency band [8 GHz,12 GHz] which may help to reduce its anharmonicity. However, changing the working frequency band of readout implies to rewire the microwave lines in the cryostat, like for example changing the circulators, the HEMT amplifiers, et cetera.

Another way to reduce the Ancilla anharmonicity is to embed the transmon molecule inside a resonator as proposed in the supplementary paper of Didier et al. The phase operator of the Ancilla corresponds to the end part of the distributed phase of a waveguide resonator. The keypoint is that part of the resonator effective inductance has to be the coupling inductance of the transmon molecule. However, one need to be careful in the design to not introduce other sources of asymmetry in 10.2 Perspectives the transmon molecule circuit, like for example an asymmetry d C in the shunting capacitances of the transmon Qubit. If the Ancilla is linearized in such a way, it may be used directly as a resonator coupled to input and output lines (Fig. 10.1).

Using the transmon molecule for fast parametric longitudinal readout

Looking back on the Hamiltonian of the transmon molecule Eq. (2.51), we see that we have a non-linear coupling term: ω 21 (q + q † ) 2 (a + a † ). This term in the rwa and tls approximation gives the "longitudinal" coupling ω 21 σ z (a + a † ) discussed in [66]. This coupling strength is zero at zero magnetic flux and grows to several hundreds of megahertz at a quarter of quantum flux. A parametric modulation of this coupling strength leads to a fast QND readout of the Qubit. Moreover, the pointer states take the optimal path in phase space towards their steady-state separation. With the circuit presented in Fig. 10.1, the "longitudinal" coupling can be parametrically modulated via flux modulation around ω a in the large loop with a fast flux line.

Another point to consider and study, with this flux modulation, is the effect of the parametric modulation of the other terms in the Hamiltonian, like for example, the third anharmonic term J y for the Ancilla.

In-situ amplification and squeezing with the Polaritons

Looking closely to the non-linearity of the Polaritons, this system has some similarities to a Josephson parametric dimer (JPD) [144]. Therefore, the Polaritons may be seen as an in situ JPD whose parameters depend conditionally on the Qubit state. To operate a JPD, a pump is sent in between its two resonant frequencies, ω l and ω u , to obtain gain, in a non-degenerate way, around ω l or around ω u . As it is a non-degenerate pump scheme, the pump does not impose too much back-action on the Qubit. Moreover, only inputing vacuum into the pumped Polaritons, a two-mode squeezing spectrum and creation of entangled photon pairs may be observed. This squeezing property along with the external phase-sensitive JPA provide interesting physics for Qubit readout. The use of squeezing is shown to theoretically improve the SNR [159,160], yet experimental enhancement has only been demonstrated recently [161,162]. With the current system however, with U a /2π 12 MHz, κ/2π 34 MHz and g a /2π

295 MHz, the Polaritons parameters where not optimized to be operated as a JPD and investigation is required in order to see if reasonable gain and squeezing are achievable. In Eichler et al paper [144], they investigated parameter regime U a g a ≤ κ. We may also use other non-linear terms for amplification. For instance, at nonzero flux in the large loop, a third order anharmonic term arises for the Ancilla (Eq. (2.50a)). Pumping at 2ω a , a pump photon may be converted into two photons, each of them at ω a . Thus, the Ancilla may also be used as an in situ amplifier with three-wave mixing. However, at non-zero flux, the Qubit is coupled to the Ancilla via new terms, like the radiation pressure coupling in Eq. (2.50b) and back-action on the Qubit has not been studied yet.

General formulae of quantized Hamiltonian versus potential derivatives B

All the potential derivatives are taken at the bottom of the well position {x 0 , y 0 }. The parameters of the Hamiltonian Eq. (4.37) are given as a function of potential derivatives by:

ω x = 1 h E C x ∂ xx V , ω y = 1 h E C y ∂ yy V g xy = ∂ xy 2h hω x ∂ xx V hω y ∂ yy V , J y = 1 h ∂ yyy V ( hω y ∂ yy V ) 3 2 ω 21 = 1 h ∂ xxy V hω x ∂ xx V hω y ∂ yy V , ω 22 = 1 h ∂ xxyy V ( hω x ∂ xx V )( hω y ∂ yy V ) K x = 1 h ∂ xxxx V ( hω x ∂ xx V ) 2 , K y = 1 h ∂ yyyy V ( hω y ∂ yy V ) 2 ω 31 = 1 h ∂ xxxy V ( hω x ∂ xx V ) 3 2 ( hω y ∂ yy V ) , ω 13 = 1 h ∂ xyyy V ( hω x ∂ xx V )( hω y ∂ yy V ) 3 2
The analytical formulae of the different derivatives of the potential are given in the following Table B ∂ xy -2E J (sin(x 0 ) sin(y 0 )d J cos(x 0 ) cos(y 0 ) 0 ∂ yy -2E J (cos(x 0 ) cos(y 0 ) + d J sin(x 0 ) sin(y 0 ) + 2b) 2E J (cos(y 0 ) + 2b) third order derivatives ∂ xxx -2E J (sin(x 0 ) cos(y 0 ) + d J cos(x 0 ) sin(y 0 )) = 0 0 ∂ xxy -2E J (cos(x 0 ) sin(y 0 ) + d J sin(x 0 ) cos(y 0 )) -2E J sin(y 0 )

∂ xyy -2E J (sin(x 0 ) cos(y 0 ) + d J cos(x 0 ) sin(y 0 )) = 0 0 ∂ yyy -2E J (cos(x 0 ) sin(y 0 ) + d J sin(x 0 ) cos(y 0 )) -2E J sin(y 0 )

fourth order derivatives ∂ xxxx -2E J (cos(x 0 ) cos(y 0 )d J sin(x 0 ) sin(y 0 )) -2E J cos(y 0 )

∂ xxxy -2E J (sin(x 0 ) sin(y 0 ) + d J cos(x 0 ) cos(y 0 )) 0 ∂ xxyy -2E J (+ cos(x 0 ) cos(y 0 )d J sin(x 0 ) sin(y 0 )) -2E J cos(y 0 )

∂ xyyy -2E J (sin(x 0 ) sin(y 0 ) + d J cos(x 0 ) cos(y 0 )) 0 ∂ yyyy -2E J (cos(x 0 ) cos(y 0 )d J sin(x 0 ) sin(y 0 )) -2E J cos(y 0 ) The eigenstates |i, j of the molecule are indexed by two integers i and j, repre- senting the number of excitations i for the first degree of freedom and j for the second one. For example, i is for the Qubit and j is for the Ancilla in the case of the transmon molecule.

In the final effective dispersive cross-Kerr shifts between one mode and the cavity, there are two contributions: a direct one and an indirect one. The direct one is computed in the same way as in the case of a single transmon atom described in Eq. (3.19). The indirect one is computed similarly to Eq. (4.14). It comes from the change of "Lamb" shift due to the change of the frequency 2g zz of the second mode of the molecule.

In the end, we obtain the approximative effective readout shifts, χ qb e f f for the first mode and χ a e f f for the second as:

χ qb e f f = - g 2 qb α qb ∆ qb (∆ qb + α qb ) - g 2 a g zz ∆ a (∆ a + g zz ) (C.5a)
χ a e f f = -

g 2 a α a ∆ a (∆ a + α a ) - g 2 qb g zz ∆ qb (∆ qb + g zz ) (C.5b)
where ∆ qb , and ∆ a are the bare detunings between the cavity and the qubit and between cavity and ancilla respectively, α qb and α a are the anharmonicities of the qubit and of the ancilla and g qb and g a are the transverse couplings of the qubit and of the ancilla.

Polaritons computation without rwa

D

We want to find the eigenmodes of the ancilla-cavity system. The Hamiltonian we want to diagonalize is given by: H a,c = hω a a † a -hK a (a † + a) 4 + hω c c † c + hg a (a † + a)(c

+ c † ) (D.1)
where the ancilla is described by a Duffing oscillator with frequency ω a and Kerr anharmonicity K a ; the cavity is an harmonic oscillator with frequency ω c and the ancilla-cavity interaction is the transverse coupling with strength g a .

To diagonalize this Hamiltonian, we introduce the conjugate variables:

X a = a + a † √ 2 X c = c + c † √ 2 (D.2a) P a = i(a -a † ) √ 2 P c = i(c -c † ) √ 2 (D.2b)
The ancilla-cavity Hamiltonian is then rewritten as:

H a,c = h ω a 2 (X 2 a + P 2 a ) -4hK a X 4 a + h ω c 2 (X 2 c + P 2 c ) + 2hg a X a X c (D.3)

Linear ancilla framework

The linear regime is given when the mean excitation number n a of the ancilla is of the order or smaller than one, n a ≤ 1. In this case, the anharmonicity of the ancilla can be neglected and the ancilla is considered as an harmonic oscillator. 

E

Following Black-Box-Quantization [START_REF] Nigg | [END_REF], and using the work of Zlakto Minev, and Zaki Legthas from Github pyEPR, we will briefly summarize here how a Electromagnetism software, like HFSS can be used to know also the non-linear coefficients of a system Hamiltonian.

Let's consider a system, for example a superconducting quantum circuit in a 3D cavity, with N modes and M Josephson junctions. We decomposed its Hamiltonian in two parts, a linear one and a non-linear one as:

H = H linear + H non-linear (E.1)
where: with φ m the phase difference across the Josephson junction number m and E m J its Josephson energy and a n , a † n the ladder operators of mode n with frequency ω n . The non-linearities are assumed to only come from the cosine potential of the Josephson junctions. And, so we write the non-linear Hamiltonian as the sum of these cosine potential minus their linear parts. We suppose that the energy scale of the non-linear part is small compared to the one of the linear part. Therefore, we can treat the non-linear Hamiltonian as a perturbation.

H linear = ∑ n=1,N ω n a † n a n
Across each Josephson junction, the phase difference φ m can be expressed as a linear combination of the N modes ladder operators:

φ m = ∑ n=1,N φ ZPF n,m (a n + a † n ) (E.3)
To be able to compute the non-linear coefficient, we want to know the coefficients before terms like (a n 1 + a † n 1 ) p (a n 2 + a † n 2 ) q , with p, q ≥ 2. Therefore, we need to know the values of the coefficients φ ZPF n,m . To do that, we introduce a new physical quantity, the participation ratio P n,m , which can be calculated with a EM finite elements software like HFSS. 
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 11 Figure 1.1 -Superconducting qubits lifetime over the years. Figure taken from [20].
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 212 Figure 1.2 -Schematic of the typical c-QED system. An atom is coupled to a readout mode which can be probed by sending a signal c in through the input port κ in and measuring the output signal c out going out of the output port κ out .
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 112213 Figure 1.3 -(a) Optical microscope pictures of the samples, sample A on the left and sample B on the right. (b) Zoom in on the heart of the samples, optical and scanning electron microscopes pictures. (c) Sketch showing the correspondence between sample design and lumped element circuit model. (d) Lumped element circuit model of the transmon molecule

  1.3.(b)) are therefore applied into the sample. For every integer value of quantum flux of Φ b in the large loop, only the Ancilla transition is tuned.

  1.4.(a)). The second regime corresponds to an Ancilla close to resonance with the Cavity (Fig. 1.4.(b)).
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 11415 Figure 1.4 -(a) First regime: the Ancilla is transversely coupled to the Cavity in the dispersive limit. This results in an original cross-Kerr coupling between the Qubit and the Cavity (b) Second regime: Cavity and Ancilla are strongly hybridized into lower and upper Polaritons. Both Polaritons are nonlinear resonator cross-Kerr coupled to the Qubit.
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 16 Figure 1.6 -(a) Extracted Qubit frequencies in black circles as a function of flux. Numerical diagonalization fit in red solid lines. (b) T 1 versus flux, in orange points are the extracted Gaussian position and errorbars are the Gaussian width. Blue shaded area is a computation using numerical solution of Eq. (2.60), which assumed a one-mode cavity. The parameters are κ tot /2π = 36 MHz ± 4 MHz, γ a /2π = 0 MHz ± 3 MHz, d J = 1.3 % ± 0.3 %, g qb /2π = 20.5 MHz ± 5.5 MHz and parameters of Table 5.1.
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 17 Figure 1.7 -Conditional normalized amplitude c out / √ κ out data for ground (blue) and excited (orange) versus drive frequency, for lower Polariton in (a) and upper Polariton in (b) for different input power with from bottom to top, P in = -24 dBm to P in = 0 dBm with a step of 6 dBm. The output amplitudes have been vertically shifted for visibility. The amplitudes are computed via ME simulations in dark blue and dark red for both Qubit states.
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 18 Figure 1.8 -Single-shot histograms projected on the real part. In blue, the Qubit has been prepared in the ground state, in red, it has been prepared in the excited state. Points correspond to heralded datasets, solid lines to Gaussian or Double Gaussian fits. Green shaded region correspond to the overlap error (0.2 %), blue shaded region to the ground state error (0.8 %) and red shaded region to the excited state error (1.8 %). The total readout fidelity is 97.2 %.
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 119 Figure 1.9 -At 5Φ 0 , (a-b) Measured bistability zones when the Qubit is prepared in its ground state in (a) and in the excited state in (b). In (c) is the measured single-shot heralded readout fidelity in a 500 ns pulse duration on 10 × 10 5 counts. In (a-b-c), the blue and red solid lines are the computed bistability zones for both Qubit states.

Figure 1 .

 1 Figure 1.10 -(a) Errors versus applied readout pulse duration: total readout error in black, overlap error in green, excited state error in red and ground state error in blue. Gray solid line is an exponential fit of the overlap error. Gray dash line is the predicted error due to relaxation with T 1 = 3 µs. (b) SNR versus time extracted from Double-Gaussian fits in blue. In dash orange line, the experimental SNR is fitted using Eq. (9.7).
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 111 Figure 1.11 -Single-shot histograms projected on the real part showing a readout fidelity of 94.7 % for a 50 ns readout pulse. In blue, the Qubit has been prepared in the ground state, in red, it has been prepared in the excited state. Points correspond to heralded datasets, solid lines to Gaussian or Double Gaussian fits. Green shaded region correspond to the overlap error (0.2 %), blue shaded region, ground state error (0.9 %) and red shaded region, excited state error (4.1 %).
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 1 Figure 1.12 -(a-b) Four measurement records where each point comes from the raw data averaged within a time window of 20 ns (dark colored dotted lines). The solid lines correspond to the averaged quadrature Q(t) R over 1 × 10 3 realizations and the shaded area is the standard deviation within these realizations.
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 21 Figure 2.1 -(a) and (b) are two equivalent electrical circuit representations of the Capacitively Shunted Junction model [73] of a Josephson Junction: it consists of a non linear inductance -or pure Josephson junction with critical current I C -in parallel with the self-capacitance C J . There is a superconducting phase drop ϕ across the junction.
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 23 Figure 2.3 -Circuit schematics of (a) a cpb and (b) a transmon. The cpb consists of a Josephson junction with Josephson energy E J and self-capacitance C J . The transmon consists of a Josephson junction with Josephson energy E J , self-capacitance C J and shunting capacitance C S . Both of them are coupled through a capacitance C g to a gate voltage V g .
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 25 Figure 2.5 -Surface plot of the normalized potential energy V (x, y)/2E J with b = 1 and Φ b = 0.

  two families are called flux states and are characterized by the number of flux quanta in the squid loop. Along the x axis, the y (0) 0 family have its wells positioned at x 0 = 0 mod [2π] and the y (1) 0 family at x 0 = π mod [2π]. The interested reader can find more information about those flux states in
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 26 Figure 2.6 -Plasma frequencies ω x in blue and ω y in green versus reduced flux Φ b /Φ 0 . The y-mode plasma frequency ω y is flatter than the x-mode plasma frequency ω x . They are even function of bias flux. The plasma frequencies are computed for circuit parameters of sample B reported inTable 5.1.
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 272728 Fig.2.7 depicts the anharmonic term strengths K x , K y and J y versus bias flux. The self-Kerr term K x of the x transmon is independent of flux. K y is an even function of flux while J y is an odd function of flux. In Fig.2.8, we see the non-linear cou-
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 33 Usual qubit readout: transverse coupling in the dispersive limit
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 211 Figure 2.11 -Sketch of the usual configuration for the readout of a qubit. The qubit is transversely coupled to the cavity with strength g xx . The cavity can be probed in transmission, sending a signal c in through the input port κ in and collecting the output signal c out from the output port κ out .
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 31 Figure 3.1 -Schematic of the typical c-QED system. An atom is coupled to a readout mode which can be probed by sending a signal c in through the input port κ in and measuring the output signal c out going out of the output port κ out .
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 232 Figure 3.2 -Errors on χ in blue and on g in green from using rwa formula instead of non-rwa one as a function of the sum ratio λ over the detuning ratio β. Resonator frequency ω c /2π = 10 GHz, anharmonicity α/2π = 400 MHz, transverse coupling strength anharmonicity g xx /2π = 200 MHz. To sweep the λ/β ratio, it is the qubit frequency which is swept.

2 x 2

 2 n b ,n b ∝ n b | b † b |n b scales as n b and vanishes for n b = 0.
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 33 Figure 3.3 -Schematic of approximations to go from transverse or cross-Kerr coupling to simplified cross-Kerr coupling.
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 41 Figure 4.1 -Schematic of the transmon molecule circuit electrical dipolar moments direction u x and u y and the electric field direction u E .
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 42 Figure 4.2 -Input-output schematic of a Qubit cross-Kerr coupled tothe Ancilla which is transversely coupled to the cavity. The Qubit is uncoupled to the cavity and does not suffer from Purcell effect. The Ancilla, being coupled to the cavity and to the Qubit allows to readout the Qubit states through the cavity.
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 43 Figure 4.3 -Not to scale schematic of the Ancilla and Cavity energy levels when the Qubit is in its ground |↓ or excited |↑ states. Dashed lines represent the Ancilla and Cavity bare states, i.e. without considering their mutual transverse coupling. In solid lines are represented the Ancilla and Cavity dressed states. Because of the Ancilla-Qubit cross-Kerr coupling, the bare Ancilla frequency depends on the Qubit state. And so do the Ancilla-Cavity dressed frequencies. The effective Qubit-Cavity readout shift 2χ qb,c is also pictured by the green arrow.

4. 3

 3 Qubit readout with Polaritons

Chapter 4

 4 the detuning between the bare cavity and the bare Ancilla. The detuning now depends on the number of excitation n b in the Qubit. And therefore, the mixing angle θ 0 also depends on the Qubit state. The strengths of these two Qubit-Polaritons cross-Kerr couplings χ l qb and χ u qb are Qubit readout with transmon molecule in c-QED Denomination Formulae
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 44 Figure 4.4 -The resulting input-output system in the Polaritons regime. The Qubit is cross-Kerr coupled to the two Polariton modes u and l with coupling strength χ u qb and χ l qb .
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 45 Figure 4.5 -The Qubit-Ancilla transverse coupling versus critical current junction asymmetry. The transverse increases linearly with the asymmetry. In a realistic sample, as discussed in Chapter 5, the junction asymmetry d J is below 10 %, highlighted by the shaded green region.
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 51 Figure 5.1 -Optical microscope pictures of sample (A) and sample (B).In (C), typical heart of the samples.

5

 5 

. 4 .Figure 5 . 3 -

 453 Figure 5.3 -Lumped elements transmon molecule circuit modeling. The squid array is modeled by a tunable inductance L a , and between the metallic pads, there are capacitances C qb and C a .
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 454 Figure 5.4 -3D-cavity: it is made out of Cu OFHC, in two parts. The 3D-cavity consists in the empty space when the two parts are tight together. The 3D-cavity can be probed by transmission/reflection measurement through the coupling pins connected to SMA connectors. There is a ridge allowing to position inside the cavity a sample. One of the two parts is framed by a coil. Applying a current through the coil corresponds to applying a magnetic current perpendicular to the sample plane.
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 55556 Figure 5.5 -Cavity external coupling κ versus pin length. In blue, data points, in green solid lines, fit by an exponential. The coupling strengths are estimated from room temperature calibrated reflection and transmission measurements of the cavity.
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 5758 Figure 5.7 -Double angles evaporation for Josephson junction fabrication. (a) first metal deposition with an angle +θ, (b) oxidation and (c) second metal deposition with an angle -θ.
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 559 Figure 5.9 -SEM top view picture of a squid with false colors highlighting the two metal depositions, orange for the first and green for the second. In the insets (a-b-c) are side view drawings of the double angles ±θ evaporation. In (a), thanks to the asymmetric undercut, only the bottom layer of metal is deposited on the substrate while the other layer rests upon the resists. In (b), with a symmetric undercut without a bridge, both layers of metal are deposited on the substrate and thus forming the Josephson junction in the region where they overlap. In (c), thanks to the asymmetric undercut in the opposite way of (a), only the top layer of metal is deposited on the substrate.
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 155 Figure 5.11 -(a) Sample chips layout on a 2 inch wafer. The schematic is not to scale. On each chip are corner marks to help aligning the saw for cutting the wafer in the thirty chips. (b) Optical microscope picture of Ti-Au marks. There is several type of marks. In each corner of the wafer is a global focus mark consisting of a 8 µm × 8 µm squared. Here we see the one indexed (0,0). They allow the e-beam to have a focus reference over the wafer size. The arrow marks are there to help the user find its way on the wafer towards the closest corner. Every chip sample has in its corner one corner mark and 5 squared local focus marks. The corner marks help the alignment for the dicing and the local focus marks help to focus the e-beam over the sample size.
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 423210255678512 Figure 5.12 -Picture of a cut wafer into 28 transmon molecule samples and 2 test chips, one at the center almost fully recovered by test structures and one, not fully written, at the top right.
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 513 Figure 5.13 -Schematic of a rectangular 3D-cavity. The three components of the TE 101 electromagnetic mode, E y , H x and H z are represented.
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 35 Figure 5.14 -S 21 simulations for SONNET for sample B geometry with L qb = 16 nH in mean value with an asymmetry d J =50 % and L a = 8 nH.
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 45515 Figure 5.15 -In (a) and (b) the blue points come from the frequency position of the pics of the S 21 SONNET simulations identified as Ancilla or Qubit for several value of L a and L qb . They are fitted in green solid lines using Eq. (5.4). In (a), the Ancilla frequency squared depends linearly on the inverse of the coupling inductance 1/L a . Changing the Qubit inductance L qb only changes the y-intersect. In (b) the Qubit frequency squared depends linearly on the inverse of the Qubit inductance 1/L qb and changing the coupling inductance L a does not change the Qubit frequency.
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 516 Figure 5.16 -Electric vector field distribution in the ZX plane of TE 101 mode simulated with HFSS.
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 55 Figure 5.17 -(a) Resonances eigenfrequencies of the first three modes as a function of coupling inductance L a with a junction asymmetry of d J = 1.3 %. (b) The frequency detuning ∆ 23 between mode 2 and mode 3 is represented. The minimum gives two times the transverse coupling between the Cavity and the Ancilla. (c) The decay times of the first three modes are plotted. Modes 2 and 3 have decay times below 1 µs and mode 1 has its decay time varying from almost 1 ms to below 1 µs.
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 518 Figure 5.18 -Simulated anticrossing between the S-transmon and the cavity for different asymmetry factor d J . The absolute detuning ∆ = |ω qbω c | between the S-transmon and the cavity is plotted as a function of the mean S-transmon inductance value L qb . When the detuning is minimal ∆ = ∆ min , the bare S-transmon and bare cavity are on resonance and the detuning is given by two times the transverse coupling g qb , ∆ min = 2g qb .
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 3519 Figure 5.19 -Simulated angles of maximal Q, θ g max , in blue triangles and black dots and analytical circuit theory dipolar angles -θ xy in red solid line. In blue, the lengths of the input and output connectors are identical and in black, they are non-identical, close to the experimental value of Chapter 8. The errorbars come from the estimated error of finding the maximum position of the Q-factor versus sample rotation angle θ g .
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 5520 Figure 5.20 -Setup for DC room temperature resistance measurements.Current is applied and voltage drop is measured. The IV curve measurement is automated via Python script.
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 5521 Figure 5.21 -Room temperature measurement as a function of Josephson junctions number. The number of junctions are odd to keep the same design for the wires and therefore the same parasitic wire resistance. In the inset, test structure and corresponding resistance schematic. The resistance measured are from mainly three contributions, the resistance of the first wire R w1 , the resistance of the n junctions nR RT and the resistance of the second wire R w2 .
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 5522 Figure 5.22 -Critical current versus junction area for different wafers. Wafer 1 in red, J C = 24.1 A/cm 2 . Wafer 2 in green, J C = 33.1 A/cm 2 and J C = 36.9 A/cm 2 and Wafer 3 in blue, J C = 31.5 A/cm 2 .
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 55 Figure 5.23 -(a) Resistances network of the transmon molecule circuit.The resistances can only be probed through the three ports P 1 , P 2 and P 3 . There are two type of contributions to the resistances, one is from the wires R 1 , R 2 and R 3 and the other is from the Josephson junctions R a , R qb1 and R qb2 .(b) SEM picture where different wires, highlighted by different colors, differ by thickness, width and length and so their resistance also differ.
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 524 Figure 5.24 -Mean critical current I C versus junction asymmetry d J and junction asymmetry histograms for 51 samples on three different wafers. In a given wafer, identified by a unique color, the samples have different size of Josephson junctions from each other, the area varying from 200 nm × 200 nm to 400 nm × 400 nm.
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 61 Figure 6.1 -Mean thermal photons number versus frequency for the different typical temperature stages of the cryostat. For a temperature T = 20 mK, the mean photons number is less than 0.1 for frequency above 1 GHz.
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 162 Figure 6.2 -Schematic of the low temperature microwave setup inside the inner vacuum chamber of the cryostat. The different background colors indicate different temperature stages.
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 63 Figure 6.3 -Picture of one attenuator anchored at the 4 K stage in the background. Superimpose on the picture is the equivalent beam splitter model of the attenuator. It is characterized by a transparency t, an incoming signal a in to thermalize, and an incoming noise b in from the attenuator itself.
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 64 Figure 6.4 -Power spectral density versus frequency.
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 65 Figure 6.5 -(a) Picture of the copper and µ-Metal screens around the sample and 3D-cavity. (b) Sketch of the first shielding around the sample.
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 66 Figure 6.6 -(a) Amplification chain. (b) measured noise histogram for an integration time of 4 µs.
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 267 Figure 6.7 -Schematic of devices clocks synchronization and triggering
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 68 Figure 6.8 -Pulsed measurement is achieved thank to mixing components for up-conversion (a) and down-conversion (b). For up-conversion, a local oscillator (LO) signal is mixed with the intermediate signal (IF) of an AWG.It results in a pulsed microwave signal (RF) with some envelop given by the AWG and in the heterodyne case, the frequency is slightly shifted by the intermediate frequency of the AWG as illustrated here in (c). In the homodyne case, the RF frequency is the one of the LO. For down-conversion, an RF signal is mixed with a LO, resulting in an IF signal. For a fixed LO, the IF signal, which can be acquired, is a function of the RF signal.

Figure 6 . 9 -

 69 Figure 6.9 -Green, expecting sent squared pulse, blue acquired output amplitude averaged on 2000 realizations, orange, pulse with exponential rising and falling.

Figure 6 . 10 -

 610 Figure6.10 -Solid gray line, weight function W e-g (t). In blue, real part and in orange, imaginary part. Solid lines, no pulse applied to the Qubit, dash lines, a π-pulse is applied to the Qubit. Acquired voltages are averaged over 1 × 10 3 realizations for an applied square readout pulse of 50 ns.
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 2611 Figure 6.11 -Microwave room temperature schematic in the heterodyne scheme.

Chapter 6 Figure 6 . 12 -

 6612 Figure 6.12 -Microwave room temperature schematic in the homodyne scheme.

Figure 6 . 13 -

 613 Figure6.13 -Schematic of the virtual instrument driver "Pulses manager" and its two main functions, writing a given pulses sequence and running a given pulses sequence.

Figure 7 . 1 -

 71 Figure 7.1 -Transmitted amplitude of a single tone spectroscopy of the cavity at 4.2 K. Averaging 200, readout pulse time of 3 µs, power P in = 0 dBm at cryostat entrance. Black circle, data points, red line, Lorentzian fit. Inset, same on a wider range of frequency.
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 172 Figure 7.2 -Transmission S 21 as a function of frequency and power. Pulse time 4 µs, averaging 400, coil current 100 µA.
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 7 Qubit readout based on an orginal effective cross-Kerr coupling.

Figure 7 . 3 -

 73 Figure 7.3 -Extracted frequency positions of the cavity via a Lorentzian fit versus applied current in the magnetic coil.

7. 1

 1 Spectroscopies results serves to excite the transmon molecule transitions. It has a duration of 20 µs and a fixed power P ex = -10 dBm. The second tone excitation frequency is swept for each current value. Dips in the normalized readout phase can be seen as a function of current and frequency (Fig. 7.4.(a) and cut at current 100 µA Fig. 7.4.(b)).

  7.4.(b)).

Figure 7 . 4 -

 74 Figure 7.4 -Qubit two-tone spectroscopy: (a) readout normalized phase φ 21 as a function of excitation frequency and current in the coil at P ex = -10 dBm, P in = -30 dBm, averaging 2000 times and readout pulse duration 4 µs (b) Cut highlighted by dash line in (a) at a current of 100 µA.

7. 1 Figure 7 . 5 -

 175 Figure 7.5 -Transmon molecule frequencies versus flux. Frequencies extracted from two-tones measurements are in black circle. Red solid lines are numerical diagonalization of Eq. (7.1).We emphasize that the y-scaling differs from bottom to top.

Figure 7 . 6 -

 76 Figure 7.6 -Three-tone spectroscopy: (a) pulses sequence sketch (b) Corresponding energy diagram sketch (c) Normalized readout phase, averaged 2000 times, showing the Ancilla spectroscopy without in blue and with in orange a 400 ns πpulse on the Qubit. Second tone power and readout power are -30 dBm.

7 . 6 .

 76 (b). From the transmon molecule spectrum, we conclude on a cross-Kerr strength of ω 22 /2π = (ω |0,0 →|0,1ω |1,0 →|1,1 )/2π = 63 MHz ± 3 MHz, in good agreement with the three-tones measurements.

7. 2 Figure 7 . 7 -

 277 Figure 7.7 -Extracted frequency of the first Ancilla transition and second S-transmon transition as black circle over 3 quantum flux Φ 0 . Solid red lines are numerical diagonalization of Eq. (7.1). Two Flux dependences can be noticed showing that the Ancilla can be tuned down while keeping the Stransmon at the same frequency. Horizontal dash lines are an helper for the eyes.
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 78 (a) for the Qubit and Fig. 7.8.(c)

Chapter 7 Figure 7 . 8 -

 778 Figure 7.8 -AC-stark shift and measurement-induced dephasing: In (a, c), normalized readout phase versus populating power and spectroscopic frequency around Qubit frequency in (a) and Ancilla frequency in (c). Extracted frequency position (blue circle) and FWHM (green diamond) in (b) and (d) from (a) and (c) respectively. They are fitted by linear laws for low input power in red solid lines.In (e), mean photons number calibration as a function of input power. In red, the photons number is calibrated from the linear fits. In blue, it is calibrated from the Qubit frequency AC Stark shift assuming a constant and known readout shift χ qb,c . A sketch of the employed pulses sequence is displayed in (f)

  7.8.(b) for the Qubit and Fig. 7.8.(d) for the Ancilla.
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 79 Figure 7.9 -Ancilla-Cavity transverse coupling g a extraction as a function of Qubit-Cavity transverse coupling g qb . In orange, extraction from the Lamb shift. In blue, extraction from the effective Qubit-Cavity simplified cross-Kerr shift. The shaded areas correspond to the errorbars in the different known parameters. The expected proportionality between g a and g qb due only to junction asymmetry d J is plotted in dash lines. From darker to lighter dash lines, d J = 10 %, 50 % and 95 %.

  7.10.(b) is shown the Qubit frequency variation qb versus flux number. It grows up to 1 % ± 0.1 % at 7 Φ 0 (with an uncertainty of 1 MHz on the frequency).

  7.10.(b) is plotted the simulated Qubit frequency variation versus flux number for a junctions asymmetry d J from 0 % to 40 %. The simulation of Qubit frequency variation tends to indicates a junction asymmetry d J ≤ 15 %.

FrequencyFigure 7 .

 7 Figure 7.10 -(a) Qubit frequency, as function of flux, is extracted from data in black circles, and is numerically simulated via Hamiltonian diagonalization with parameters ofTable 5.1 in red solid lines. (b) Qubit frequency variation qb versus flux, extracted from measured data in black circles. It is simulated with parameters of Table 5.1 for different junction asymmetry d J in color lines.
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 3711 Figure 7.11 -Rabi oscillation with 20 000 averaging and P ex = 3.5 dBm in (a) and P ex = -5 dBm in (b). Black circles are data points and red solid lines are fit using Eq. (7.6a), the orange dashed line highlight the exponential decay envelop giving T Rabi = 8 µs.
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 712 Figure 7.12 -Rabi Chevron measurement: (a) readout phase as a function of excitation frequency and time. It is averaged 10 5 times with a readout power P in = -30 dBm and an excitation power P ex = -3.5 dBm.
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 7 7.13.(a). This pulses sequence is averaged 20 × 10 3 times with a readout pulse duration of 4 µs. The π-pulse lasts for 200 ns for a power of P ex = 3.5 dBm and frequency of 2.0502 GHz. Fitting by an Exponential decay, we obtained the relax-Qubit readout based on an orginal effective cross-Kerr coupling.

Figure 7 .

 7 Figure 7.13 -(a) Relaxation measurement (pulses sequence sketch in inset). The measurement time is 4 µswith 2 × 10 4 averaging, P in = -30 dBm. (b) Histogram of 1000 T 1 measurement realizations over 8 h. Each measurement takes less than 1 min. Same parameters as in (a).
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 7 Qubit readout based on an orginal effective cross-Kerr coupling.

Figure 7 . 14 -

 714 Figure 7.14 -Ramsey measurement: (a) Pulse sequence sketch. (b) Data points in black and sine with exponential decay fits in colored solid lines for three different frequencies, 2.0502 GHz in blue, 2.0505 GHz in orange, 2.0508 GHz in green. The fits give T Ramsey = 8.2 µs. (c) Ramsey frequency Ω Ramsey as a function of excitation frequency.

Figure 8 . 1 -

 81 Figure 8.1 -Amplitude of a single tone measurement at 4.2 K in black circles. A Lorentzian fit gives ω c,bare /2π = 7.1685 GHz and κ tot /2π = 36 MHz in red solid line.
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 18283 Figure 8.2 -Continuous wave transmission S 21 as a function of frequency and coil current. The current is swept from negative to positive values.

8. 2 Figure 8 . 4 -

 284 Figure 8.4 -Linewidths versus flux of the lower Polariton in dark green and upper Polariton in light green. The theoretical linewidths following Eq. (4.33) are plotted in black with κ c,bare /2π = 32 MHz and γ a /2π = 0 MHz. An uncertainty of ± 5 MHz and ± 3 MHz are considered in the Cavity and Ancilla damping rates respectively.
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 885 Figure 8.5 -Qubit spectroscopy versus flux. (a) Normalized readout amplitude A out as a function of excitation frequency and current. (b) Extracted frequency position in black circles as a function of flux. Numerical diagonalization fit giving the parameters of Table 5.1 are plotted in red solid lines.

Figure 8 . 6

 86 Figure 8.6 -S-transmon spectroscopy versus excitation power: readout transmission as a function of excitation frequency and power.

Figure 8 . 7 -

 87 Figure 8.7 -Histogram of 160 measurements of T 1 taken every 2 min at 0Φ 0 and the red solid line is a Gaussian fit giving T 1 = 3.3 µs ± 0.25 µs.

Figure 8 . 8 -

 88 Figure 8.8 -(a) Histograms of measured T 1 and Gaussian fits for flux value from 0Φ 0 (purple) to 9Φ 0 (red). (b) T 1 versus flux. Orange points and errorbars are the extracted Gaussian means and standard deviations respectively. Blue shaded area is obtained using numerical solution of Eq. (2.60), which assumed a one-mode cavity. The parameters are κ tot /2π = 36 MHz ± 4 MHz, γ a /2π = 0 MHz ± 3 MHz, d J = 1.3 % ± 0.3 %, g qb /2π = 20.5 MHz ± 5.5 MHz and parameters of Tables 5.1 and 8.1.

  8.8.(b)) which describes the measured T 1 . We thus conclude that the Qubit relaxation is currently limited by the imperfections creating Purcell losses.

Figure 8 . 9 -

 89 Figure 8.9 -Ramsey oscillations: IQ plane distance D in black circles, for an excitation frequency of 6.282 GHz and T π/2 =15 ns. The red solid line is a cosine with exponential decay fit.

8. 3

 3 Cross-Kerr shiftsPolariton and n u = 4.8 × 10 -3 in the upper Polariton, corresponding to a thermal equilibrium at T = 71 mK. This temperature is estimated in Section 8.6 from Qubit single-shot readout.

  8.10.(a). One example of conditioned spectroscopy at Φ = 3Φ 0 is plotted in Fig. 8.10.(b).

Figure 8 .

 8 Figure 8.10 -(a) Pulse sequence sketch of Qubit conditioned transmission (b) Qubit conditioned transmitted amplitude of the Polaritons at Φ = 3Φ 0 . In blue, no pulse, and in orange, a π-pulse, are applied on the Qubit as explained by the pulses sequence sketch in (a).

8. 3

 3 Figure 8.11 -Qubit-Polaritons cross-Kerr shifts versus flux. Dark green, 2χ l qb , light green, 2χ u qb . Black solid line is the fit using formulae from Table 4.3 with g zz /π = 69 MHz. Gray diamonds, computed Qubit-Polaritons cross-Kerr coupling via Black Box Quantization and HFSS simulations.
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 8812 Figure 8.12 -Inter-Polaritons cross-Kerr shifts at 5Φ 0 . (a) Upper Polariton spectroscopy as a function of power injected in the lower Polariton at frequency 6.963 GHz. (b) Lower Polariton spectroscopy as a function of power injected in the upper Polariton at frequency 7.606 GHz.

8. 4

 4 Mean photon number calibration

Figure 8 .

 8 Figure 8.13 -Inter-Polaritons cross-Kerr coupling χ u l versus flux. Green stars are the extracted value from cross-Kerr shift measurements like presented in Fig. 8.12. Black points correspond to the theory fromTable 4.3 with U a /2π = 12 MHz ± 1 MHz. Gray dash line is computed from HFSS simulation with Black Box Quantization.

  8.14.(a) and by 20 MHz in Fig. 8.14.(b).

8 . 15 . 4 Figure 8 .

 81548 Figure 8.14 -At 5Φ 0 , Qubit AC-Stark shift with populating frequency 7.593 GHz in (a) and 6.963 GHz in (b). In (b) inset, normalized output amplitude in blue as a function of normalized frequency for different populating power, from bottom to top, no applied power, -30 dBm to -15 dBm by step of 3 dBm. In orange, Poisson distribution with n = [1, 1, 1.4, 2.8, 4.5, 6] from bottom to top. Curves are vertically shifted for visibility in the inset.

Figure 8 . 15 -

 815 Figure 8.15 -Photons-input power calibration via AC-Stark shift measurement at 0Φ 0 . The populating tone frequency is 7.037 GHz. Inset, in blue, mean photon number calibration assuming a linear law with input power, in orange, calibration from the AC-Stark frequency shift assuming a known χ/2π = 7 MHz ± 1 MHz. Both calibration agree, showing that we are in the linear regime for this range of input power.

Chapter 8 Figure 8 .

 88 Figure 8.16 -(a) Mean photon number calibration as a function of input power for flux between 0Φ 0 to 5Φ 0 (from light to darker colors) for lower Polariton (blue) and upper Polariton (red). (b) Extracted attenuation in the input line as a function of Polariton frequency.

8. 5 Figure 8 .

 58 Figure 8.17 -(a) Continuous wave transmission S 21 as a function of input power and frequency at zero flux.(b) Analytical computation of transmission S 21 as a function of input power and frequency following Elliott et al paper [140] with the Ancilla considered as a Duffing oscillator with frequency 7.778 GHz, anharmonicity -10 MHz, a Jaynes-Cumming transverse coupling of 300 MHz with the Cavity and Cavity damping rate of 36 MHz.
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 5 8.18.(a)) and around the upper Polariton frequency (Fig. 8.18.(b)). It is the same pulse sequences as in Section 8.3.1, sketched in Fig. 8.10.(a). At low power P in < -20 dBm, for both Polaritons, we observe a Lorentzian peak that is conditionally shifted depending 8.Strong drive response 6850

Figure 8 . 18 -

 818 Figure 8.18 -Conditional normalized amplitude c out /√ κ out data for ground and excited in blue and orange respectively versus ME simulation in dark blue and dark red respectively for lower Polariton in (a) and upper Polariton in (b) for different input powers f(rom bottom to top, P in = -24 dBm to P in = 0 dBm with a step of 6 dBm). The output amplitudes have been vertically shifted for visibility.

8. 6 Figure 8 . 19 -

 6819 Figure 8.19 -Distance D eg versus input power and frequency. Black horizontal lines, low power Polaritons frequencies conditioned on Qubit state, ω u (g), ω u (e), ω l (g) and ω l (e) from top to bottom. Gray horizontal dash line, bare Cavity frequency.
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 8820 Figure 8.20 -Histograms with 1 × 10 5 counts in IQ plane when preparing the ground state |g in top panel and when preparing the excited state |e in bottom panel, for a readout power P in = 5 dBm and frequency 7.5 GHz.
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 7822 Figure 8.22 -Computed bistability zones with the Qubit in its ground state in blue and in its excited state in red with ω a /2π = 7.397 GHz, ω c /2π = 7.169 GHz, g zz /2π = 35 MHz, U a /2π = 12 MHz, κ/2π = 32 MHz
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 824 Figure 8.24 -At 5Φ 0 , (a-b) Measured bistability zone when the Qubit is prepared in its ground state in (a) and in the excited state in (b). (c) Measured single-shot heralded readout fidelity in 500 ns pulse duration on 10 × 10 5 counts.

  8.24.(a-b) and Fig. 8.25.(a-b)).
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 825 Figure 8.25 -At 4Φ 0 , (a-b) Measured bistability zone when the Qubit is prepared in its ground state in (a) and in the excited state in (b). (c) Measured single-shot heralded readout fidelity in 500 ns pulse duration on 10 × 10 5 counts.
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 91 Figure 9.1 -(a) Optical microscope picture of the JPA sample. (b) SEM zoom on seven squids. The sample uses a microstrip geometry and is wire-bonded to a 50 Ω microwave coaxial line.
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 292 Figure 9.2 -(a) Readout phase as function of current (flux) and frequency (b) Gain curves for four different flux point from 0Φ 0 to 0.25Φ 0 .

9. 2 Figure 9 . 3 -Chapter 9

 2939 Figure 9.3 -(a) Maximum gain and bandwidth as a function of the pump frequency. (b) 1 dB compression point as a function of the initial maximum gain.
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 29394 Figure 9.4 -(a) Simplified diagram of the amplification chain (b) Ratio of PSD, R PSD as a function of JPA gain.
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 595 Figure 9.5 -(a) Simplified sketch of microwave lines used to perform pump cancellation. (b) Sketch of the microwave instruments and lines connection for the four steps used in the pump cancellation procedure.
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 96 Figure 9.6 -(a) Sketch of the pulse sequence (b-e)Histograms on heralded datasets for four different readout pulse duration τ are plotted with dots. The Qubit is prepared in |g in blue and in |e in red. Gaussian fits, in gray, and double Gaus- sian fits, in colors, are shown in solid lines. The quadrature Q is normalized by the fitted Gaussian width 2σ. Color shaded areas indicate overlap error in green, remaining excited state error in red and remaining ground state error in blue. The vertical dash lines highlight the threshold separating ground and excited state.
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 9796 Figure 9.7 -(a) Errors versus readout pulse duration: total readout error in black, overlap error in green, excited state error in red and ground state error in blue. The overlap error is fitted by an exponential decrease for τ >80 ns in gray solid line. An expected error due to relaxation is plotted in gray dashed line. (b) SNR versus time extracted from Double-Gaussian fits in blue. In dash orange line, the experimental SNR is fitted using Eq. (9.7).
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 97 (b)) for each pulse duration. It increases with pulse time τ and becomes greater than 1 for time greater than 70 ns and reaches 4.1 in 200 ns. For a Qubit cross-Kerr coupled with an optimal strength χ = κ/2 to a resonator, the SNR is given by[66]:

  9.7.(b)).

Figure 9 . 8 -

 98 Figure 9.8 -A squared 50 ns readout pulse (gray shaded area) is sent.Acquired voltages averaged 300 times as a function of time: real part in dash lines, imaginary part in dotted dash lines, the Qubit is prepared in its ground state in blue, and in its excited state in orange. Black solid line is the e-g distance D e-g (t), which is proportional to the weight function W e-g (t)

2 R.

 2 D g-e (t) = (Q g (t) -Q e (t))2 + (I g (t) -I e (t)) The weight function is then given by W g-e (t) = D g-e (t)/ D 2 g-e (t)dt. The input 50 ns pulse is highlighted by Chapter 9 Faster Qubit readout with a JPA

9. 7 Figure 9 .

 79 Figure 9.10 -Single-shot histograms projected on the real part. In blue, the Qubit has been prepared in the ground state, in red, it has been prepared in the excited state. Points, heralded datasets. Solid lines, Gaussian or Double Gaussian fits. Green shaded region correspond to the overlap error, blue shaded region, ground state error and red shaded region, excited state error.
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 8911 Figure 9.11 -Two measurement records (a, b) and (c, d) when no pulse (in blue) or a π-pulse (in red) has been applied to the Qubit. The raw data are displayed in (a) and (c). In (b) and (d), the raw data are averaged within a time window of 20 ns (dark colored dotted lines). The solid lines correspond to the averaged quadrature I(t) R over 1 × 10 3 realizations and the shaded area is the standard deviation within these realizations. The readout pulse begins at 170 ns and ends at 1170 ns.
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 2101 Figure 10.1 -Possible circuit design for next generation of the transmon molecule.
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 45 To find the eigenfrequencies ω + and ω -of the two normal modes, we solve the system:Link back toTable of contents → Electromagnetic Simulation and perturbation theory

  

  

  

  

  

  

  

  

  The two transmons, highlighted in dark blue, possess a mean Josephson energy E J and capacitance C qb . A bias magnetic flux Φ b can be applied through the squid loop. transmons with Josephson energy E J (1 + d J ), and E J (1d J ) and charging energy (2e) 2 /2C qb (1 + d C ), and (2e) 2 /2C qb (1d C ) respectively where C qb is the mean value of the transmon capacitances and d C is the asymmetry in the transmon capacitances. E

[START_REF] Barenco | [END_REF] 

-Transmon molecule electrical circuit model. It is composed of two transmons coupled by an inductance L a and a capacitance C a

[38,76]

. J is the mean Josephson energy of the transmons and d J is the asymmetry in the transmons Josephson energy or equivalently in the transmons critical current. These two transmons are coupled via an inductance L a and a capacitance C a and therefore they form a transmon molecule with two degrees of freedom.

2.2 Transmon molecule: two coupled transmons

Table 2 .

 2 

1 -Formulae and denominations of the strengths of the different terms in the quantized Hamiltonian Eq. (2.51).

  Figure 2.12 -Schematic of qubit state dependent cavity transmission versus the normalized drive frequency ∆ω/χ, where ∆ω = ωω c is the difference between the drive frequency and the bare cavity frequency. In solid lines are represented the transmitted amplitude |T|. In dashed lines are the transmitted phase φ T . In red, the qubit is in the excited state, in blue, the qubit is in the ground state. The parameters for this plot are κ in = κ out = χ/4
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			χ		

  2.13, the error P(Q ≥ Q T |g) is shown by the blue shaded area and the error P(Q ≤ Q T |e) is shown by the red shaded area.

						Transition errors are due to the
	qubit flipping between its two states during measurement or due to wrong prepa-
	ration of the qubit state before measurement. In these transition errors, we can
	identify several sources of error like for example the relaxation of the qubit dur-
	ing measurement or the residual population of the excited state at thermal equi-
	librium. Until now, single-shot qubit measurement has always been performed
				<Q g >	Q T	<Q e >	
		10 0					
		10 -1					
	Probability	10 -3 10 -2					
		10 -4					
		10 -5					
		-6 10 -6	-4	-2	0	2	4	6
					Q		
	Figure 2.13 -Sketch of histograms of a qubit state measurement. In
			blue, histograms of measurement when the qubit is pre-
			pared in the g state, in red, it is prepared in the e state.

  .1, the different names and Hamiltonian terms are reported where the atom behaves as a multilevel system or as a tls. It is then respectively described by ladder operators b, b † or by Pauli operators σ -, σ + . The readout mode is always described by the ladder operators c, c † and is coupled to the environment baths with total damping rate κ tot = κ in + κ out .

	denomination	Hamiltonian coupling terms
		multilevel	TLS
	simplified cross-Kerr coupling	

Table 3 .
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	References	g/∆ ratio
	Without Purcell filter
	Majer et al 2007 [98]	7.5 %
	Reed et al 2010 [99]	20.6 %
	Paik et al 2011 [24] 11.3 % to 66.1 %
	With Purcell filter
	Jeffrey et al 2014 [56]	11.3 %
	Sank et al 2016 [100]	6.3 %
	Walter et al 2017 [63]	13.3 %

27) 

3.3 From the cross-Kerr coupling 2 -Literature review of the transverse coupling over detuning ratio, g/∆.

Table 4 . 2

 42 

-Polariton parameters as a function of the anharmonic Ancilla and Cavity system.

Table 4 . 3

 43 

-Qubit-Polaritons parameters as a function of the Qubit-Ancilla-Cavity system

  For the given dimension, b < a < d, the dominant resonant mode of the cavity is the TE 101 mode. The first TM mode is TM 110 . The frequencies of the first modes are f 101 = 7.468 GHz, f 102 =10.526 GHz, f 201 =12.964 GHz and f 110 =30.597 GHz.

	by:						
	E y =E 0 sin	πx a	sin	πz d		(5.3a)
	H x =	-jE 0 Z TE	sin	πx a	cos	πz d	(5.3b)

For the mode TE 101 , the spatial Electro-magnetic (EM) field distribution is given n Plate-forme Découpe of CIME Chapter 5 Samples design and fabrication

  The central element for a time-resolved microwave setup is the mixer. It allows to translate the frequency of electromagnetic signals by multiplying two signals at different frequencies. By multiplying a Local Oscillator (LO port) at microwave frequency to an Intermediate Frequency or DC signal (IF port) with a pulsed envelop, the mixer creates a Radio Frequency pulsed signal (RF port). This way of handling a mixer is known as the frequency up-conversion. Reciprocally, by multiplying a LO with a pulsed RF signal, the mixer gives an IF pulsed signal. This is known as the frequency down-conversion. Pulsed RF measurement is illustrated in Fig.6.8.

	6.2.2 Pulsed measurement

  The pulsed DC signal of the AWG is split k before reaching each IF ports of the mixers. Mixer always have an LO to RF leakage, typically the LO-RF isolation is about 30 dB to 40 dB. The IF frequency ranged typically from DC to 2 GHz. A typical mixer has a maximum output power around 5 dBm.For the heterodyne scheme, the up-conversion is handled by a Single Sideband modulator (SSB) l . The SSB have a working frequency window for both LO and IF. All our SSB have a working IF band from 30 MHz to 90 MHz, and for example, for a readout frequency around 7 GHz, we used the SBB4080 LINK which has a LO band from 4 GHz to 8 GHz. With an SSB, one of the two side bands, LO + IF or LO -IF, is dominant compared to the other. The sideband suppression is typically about -37 dBc. One advantage of an SSB over an usual mixer is the fact that the always on intrinsic LO to RF leakage is now detuned by f IF from the frequency of interest of the system. The IF frequency ranged typically from 30 MHz to 90 MHz.

  Experimental Setup. and imaginary parts of the RF signal, are available to the user. The IF ports of the IQ-mixer have a bandwidth from DC to 500 MHz. High frequencies are further attenuated with a low pass filter q .

j Marki Microwave, M8-0420LS k PicoPulse Lab PSPL5333 l Polyphase Microwave, Inc. m AlazarTech ATS-9360 n M8-0220SA o Mini Circuits SLP-150+ p Marki IQ4509LXP Chapter 6

  QTLab is an IPython-based measurement environment. It has been written by Reinier Heeres, Pieter de Groot, and Martijn Schaafsma with last commit made in 2015. It is used as a general framework for our software environment. There are three main interacting classes, Instrument, Data and Plot. The class Instrument helps to control and manage different type of devices. It classifies the instruments into two category, "physical instrument" such as a microwave source device and "virtual instrument". Usually, physical instruments are grouped together as one virtual instrument in a way that operating the different physical instrument becomes "user friendly". The class Data handles the data, from organization to saving. The class Plot allows to trace the data. One interesting point is its ability to automatically update the different plots while the measurement is occurring. The graphics are handled with Gnuplot.

		6.3 Software environment
	6.3.2 QTLab		
	6.3.3 My contributions to the code	
			Writing a pulses sequence
			in the AWG memory
	Virtual instrument	
	ʺPulses managerʺ	
	microwave	arbitrary waveform	Pulses Sequences
	generator	generator	Onetone spectroscopy
	R&S SMA 100A master	Tabor WX2184C	Twotones spectroscopy Threetones spectroscopy
			Rabi
	microwave generators	acquisition board AlazarTech ATS9360	Ramsey Relaxation Conditional spectroscopy Etc
			Preparing all instruments
		for running a pulses sequence

  .1. They correspond to the resonances, TE 101 and TE 201 modes of the bare cavity, i.e. without the couplings to Link back to Table of contents → Chapter 7 Qubit readout based on an orginal effective cross-Kerr coupling.

	Circuit Parameters		Sample A	
		Spectro fit Resistance SONNET HFSS
	I C (nA)	8		8.3		
	L a (nH)	21		24		
	C qb (fF)	131		102 ± 8	∅
	C a (fF)	30			9 ± 6	∅
	d J (%)	0		∅		
	g a /2π (MHz)	234		∅	∅
	Table 7.1 -Summary of the estimated and extracted from measurement
	circuit parameters for sample A. Columns "SONNET" and
	"HFSS" mean estimation via EM simulations. Column "Re-
	sistance" means estimated from DC-room temperature re-
	sistance measurement and column "Spectro fit" means ex-
	tracted from the fit of the spectrum via numerical diagonal-
	ization.					
	7.05	7.06	7.07	7.08	7.09	7.10
		Frequency [GHz]		

  ∈ [228 MHz, 239 MHz] and g qb /2π ∈ [0 MHz, 115 MHz]. Due to the different uncertainties in the measurements, it is not possible to extract precisely Chapter 7 Qubit readout based on an orginal effective cross-Kerr coupling.

  Qubit readout based on an orginal effective cross-Kerr coupling.
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 8 Table of contents →Chapter 8 Qubit readout using an on resonance Ancilla-Cavity system 1 -Summary of the estimated and extracted from measurement circuit parameters for sample B. Columns "SONNET" and "HFSS" mean estimation via EM simulations. Column "Resistance" means estimated from DC-room temperature resistance measurement and column "Spectro fit" means extracted from the fit of the spectrum via numerical diagonalization.

	Circuit Parameters		Sample B	
		Spectro fit Resistance SONNET HFSS
	I C (nA)	49.6	49.4	
	L a (nH)	8.6	8.24	
	C qb (fF)		60 ± 2	84 ± 5
	C a (fF)		8 ± 3	23 ± 8
	d J (%)	1.3	1.3	
	g a /2π (MHz)	295	∅	306

  Figure 8.21 -Single-shot histograms projected on the real part. In blue, the Qubit has been prepared in the ground state, in red, it has been prepared in the excited state. Points, heralded datasets. Solid lines, Gaussian or Double Gaussian fits. Green shaded region correspond to the overlap error, blue shaded region, ground state error and red shaded region, excited state error.aration, which is the real part in this case. The projected histograms are plotted in Fig.8.21 using the heralding procedure. Each histogram is fitted by a Double Gaussian. We define the threshold I T separating the ground and excited state as the intersection of the two Double Gaussian fits, here it is I T = 2.9 mV (highlighted by a vertical black dashed line in Fig.8.21). Without heralding, we measured:

		10 4			|g> |e>
	Counts	10 2 10 3		
		10 1		
		10 0	5	0 Real part [mV] 5	10
				F RO =94.6%	(8.5a)
			P e|g =2.4%	(8.5b)
			P g|e =3%	(8.5c)
	And with heralding, we measured:	
				F H RO =97.2%	(8.6a)
			P H e|g =0.9%	(8.6b)
			P H g|e =1.9%	(8.6c)
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 8 2) to the work of Schmitt et al[72] 8.7 High fidelity measurement thanks to Polariton bifurcation to see what can be done to improve further the readout fidelity. Up to our knowledge, it is the state-of-the-art superconducting qubit state latching readout. Direct

	Parameters	Schmitt et al [72]	our work
	T 1	1.7 µs to 3.2 µs	3.4 µs ± 0.5 µs
	cross-Kerr χ/π	-3.4 MHz	-47 MHz
	Readout mode non-linearity	-0.2 MHz	-6 MHz
	"Raw" readout fidelity	95.8 %	94.6 %
	"Optimized" readout fidelity	97.7 %	97.2 %
	Applied pulse time	2.025 µs	0.5 µs
	mean photons number in |e	40 to 100	23
	mean photons number in |g	11	0.4

Table 8 . 2
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-Comparison of two latching measurements.

  We notice that P e|g -P H e|g =2.6 % is larger than for the non-linear latching measurement (Section 8.6). This may be due to the pump leakage of the JPA heating Chapter 9 Faster Qubit readout with a JPA the Qubit. The ground state and excited state errors are decomposed as:

	P H e|g = G |g + r	e|g	(9.10a)
	P H g|e = G |e + r	g|e	(9.10b)
				9.8a)
	P e|g =3.6%	(9.8b)
	P g|e =6.3%	(9.8c)
	And with heralding (Fig. 9.10), we have measured:
	F H RO =94.7%	(9.9a)
	P H e|g =1%	(9.9b)
	P H g|e =4.2%	(9.9c)

  g = 99.6 % ± 0.45 % (9.11a) P g,e = 0.4 % ± 0.45 % (9.11b) P e,g = 1.3 % ± 0.55 % (9.11c) P e,e = 98.7 % ± 0.55 % (9.11d)

  .1, in the case of an asymmetry d J of Josephson junctions or without the asymmetry.Link back to Table of contents →Appendix B General formulae of quantized Hamiltonian versus potential derivatives (cos(x 0 ) cos(y 0 ) + d J sin(x 0 ) sin(y 0 )) 2E J cos(y 0 )

	derivatives	with asymmetry	without asymmetry
		second order derivatives	
	∂ xx	-2E J	

Table B .

 B 1 -Table of the potential derivatives up to the fourth order in the case of non-zero or zero critical current junctions asymmetry.Appendix C Dispersive regime of a two modes molecules in a cavityH M = ∑ qb ij |i + 1, j i, j| + g a ij |i, j + 1 i, j|] ĉ + h.c. (C.4)

	ω ij |i, j i, j|	(C.3)
	ij	
	H coupling = ∑	

ij

[g
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When crossing the bistability region, there is an hysteresis behavior. In Fig. 8.23.(a), the computed mean photons number in the upper Polariton is displayed for a drive frequency of 7.5 GHz. It is computed as a function of input power for each Qubit states. At low or at high power, there is only one stable solution. In the region of power between the points B down and B up , two stable solutions exist, one with low output and one with high output. The Polariton, with a sweep-up of power, bifurcates from a low output state to a high output state when crossing B up . With a sweep-down of power, it is the same, the Polariton bifurcates from a high output state to a low output state when crossing B down .

Pulsed measurements correspond to a swept power measurement. When the pulse begins, the power is ranked up from zero to a given value P max . And when the pulse finishes, the power is leveled down to zero. And the pulse frequency is kept constant. Therefore, to compare the dynamics of pulsed measurements, it is more suited to measure bistability zone via power sweeping than via frequency sweeping.

We have measured the bistability zone for the upper Polariton at 5Φ 0 (Fig. 8.24.(ab)). To measure the bistability region, we employed triangular shaped pulses of 1 µs after either a π-pulse applied on the Qubit or no pulse. Triangular pulses are Chapter 8 Qubit readout using an on resonance Ancilla-Cavity system

Chapter keypoints

We have reviewed the Polariton regime via experiments on sample B. The Ancilla is tuned close to resonance with the Cavity creating two new eigenmodes called lower and upper Polaritons. The hybridization condition between Ancilla and Cavity can be varied via applied flux. And changing this condition changes the properties of each Polaritons and the different cross-Kerr couplings with the Qubit and between Polaritons. Large and direct cross-Kerr coupling with the Qubit, up to 60 MHz has been achieved. The Qubit is ideally Purcell free, however due to imperfections, it has a Purcell limited T 1 , around 1 µs to 3.5 µs that varies with flux. However, thanks to the non-linearity of the Polaritons, showing bistability regions, a latching measurement in 500 ns allows to realize single-shot high fidelity readout, as high as 97.2 % without any added components like a JPA or a Purcell filter. 
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Appendix A Cryostat

A.2 Valves control panel

The cryostat is manually managed with a control valves panel (Fig. ). Both degrees of freedom are transverse coupled (H coupling ) to an harmonic oscillator H cav , a cavity resonator for instance. The system Hamiltonian is given by:

where:

Link back to Table of contents →

Appendix D Polaritons computation without rwa

The eigenfrequencies are:

with eigenvectors:

where N ± is the norm of the vector

, 1]. The plus + refers to the upper Polariton while the minusrefers to the lower Polariton.

In the end, the Hamiltonian is given by:

Anharmonic ancilla framework

Now, we also consider the term -4hK a X 4 a in the Hamiltonian. Because X a is a linear combination of X -and X + , five types of terms (not described here) arise:

Appendix E Electromagnetic Simulation and perturbation theory

This participation ratio P n,m corresponds to the inductive energy stored in the inductance/Josephson junction m for the mode n and normalized by half the energy of mode n.

Now that we have the factors φ ZPF n,m , we can compute the non-linear terms. For example, we will obtain in the Hamiltonian the first non-linear term (Kerr term) written for mode n:

By this way, the cross-Kerr coefficients between Qubit and Polaritons have been simulated in Section 8.3 thanks to HFSS simulations. In this computation, the possibility of an applied magnetic flux is not considered as it is performed experimentally. However, for integer values of quantum flux in the large loop, everything is happening as if no magnetic flux is applied and the value of the coupling inductance L a is varied.

Abstract

Using the transverse coupling between a qubit and a microwave cavity in the dispersive limit is the most common technique in circuit-QED to readout a qubit state. However, despite important progress in the last decade, implementing a fast single shot high fidelity readout remains a major challenge. Indeed, inferring the qubit state is limited by the trade-off between speed and accuracy. The transverse coupling imposes two significant experimental limitations: firstly, increasing the interaction for faster readout leads to limited qubit lifetime via the Purcell effect. Secondly, the strength of the signal is limited to avoid unwanted measurement-induced transitions. Therefore, the experimental challenge with transverse coupling is to acquire a weak signal in a short time... To overcome these limitations, we want to change this coupling paradigm by introducing a new readout scheme relying on a direct cross-Kerr coupling. This scheme is obtained thanks to a superconducting artificial molecule coupled to a microwave 3D cavity. The molecule is built by inductively coupling two transmon artificial atoms, resulting in two eigenmodes: a symmetric mode, the transmon qubit and an antisymmetric mode, the ancilla. By optimal positioning of the molecule in the cavity, a transverse hybridization between ancilla and cavity leads to two weakly anharmonic resonators, called polaritons. The latter possess a large and direct cross-Kerr coupling with the transmon qubit. By driving one of the polariton, the qubit states can be resolved.

Theoretically, in such a coupling scheme, the qubit is immune to the limitation of the transverse coupling such as the Purcell effect. However, for the two studied samples, a residual transverse coupling remains due to experimental imperfections. Even if it is weak, it limits for now the qubit lifetime and the readout performances. Despite this, we observe single shot qubit readout performance with fidelity as high as 97.2% in a 500 ns latching measurement using the non-linearity of the polariton. In a low photons number linear regime, we report fidelity as high as 94.7% in only 50 ns thanks to the addition of a Josephson parametric amplifier. In this regime, quantum jumps are resolved and the qubit is measured non-destructively 99.2% of the time.

Résumé

En circuit-QED, la technique la plus usuelle pour lire l'état d'un qubit est d'utiliser le couplage transverse entre le qubit et une cavité micro-onde dans la limite dispersive. Cependant, malgré d'importants progrès au cours de cette décennie, obtenir une lecture rapide, en un seul coup et hautement fidèle d'un qubit reste un défi majeur. En effet, la distinction de l'état d'un qubit est limitée par le compromis entre vitesse d'acquisition et précision. Cette limite a pour origine le couplage transverse qui impose deux importantes contraintes expérimentales : premièrement, augmenter les interactions pour lire plus rapidement restreint la durée de vie du qubit via l'effet Purcell. La seconde contrainte est sur la force du signal, qui est limitée pour éviter des transitions non voulues et induites par la mesure. Par conséquent, le défi expérimental à relever avec le couplage transverse est d'acquérir un signal faible en un temps court... Pour surmonter ces limitations, nous voulons changer de paradigme en introduisant un nouveau schéma de lecture qui se base sur un couplage cross-Kerr direct. Ce schéma est obtenu grâce à une molécule artificielle supraconductrice couplée à une cavité micro-onde 3D. La molécule est construite en couplant inductivement deux atomes transmons supraconducteurs. Elle manifeste alors deux modes propres : le mode symétrique qubit transmon et le mode antisymétrique ancilla. En insérant cette molécule dans la cavité de manière optimale, une hybridation transverse entre l'ancilla et la cavité conduit à deux résonateurs faiblement anharmoniques, appelés polaritons. Ces derniers possèdent un couplage cross-Kerr direct et large avec le qubit transmon. En mesurant le signal micro-onde transmis par un polariton, l'état du qubit peut être résolu.

Théoriquement, dans ce nouveau paradigme, le qubit est immunisé contre les limitations du couplage transverse tel que l'effet Purcell. Cependant, pour les deux échantillons étudiés, un couplage transverse résiduel existe à cause d'imperfections expérimentales. Même faible, il limite pour l'instant la durée de vie du qubit et nos performances de lecture. Malgré cela, nous avons obtenu une lecture du qubit en un seul coup avec une fidélité allant jusqu'à 97.2% en 500 ns par une mesure dite de verrouillage grâce à la non-linéarité du polariton. Dans une limite linéaire à faible nombre de photons, nous démontrons une fidélité atteignant 94.7% en seulement 50 ns de lecture grâce à l'ajout d'un amplificateur paramétrique Josephson. Dans ce régime, les sauts quantiques sont résolus et le qubit est lu de manière non-destructive 99.2% du temps.