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Spécialité de doctorat : Physique théorique
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Abstract

The aim of this thesis is to study various but interconnected theories for new physics beyond
the standard model of particle physics. Those are theories of a new kind of particles, axions, a new
symmetry principle, supersymmetry, and a new description of fundamental degrees of freedom,
string theory. Constant instrumental and theoretical progresses made over the years maintain
those already old subjects as leading BSM candidates.

Axions are first reviewed and studied from a phenomenological perspective: we present models
which disentangle the different scales which define the axion parameter space, and we discuss
axions which arise in models of flavour physics. Motivated by swampland considerations, we
insist on using gauge, and not global, symmetries as model building inputs.

The focus then shifts to supersymmetry. We study its breaking, both in explicit ultraviolet
models which generate a low supersymmetry breaking scale from high-scale matter, and at the
effective field theory level using non-linearly realized supersymmetry. In our study of the latter
topic, we focus on the constrained superfield approach. Finally, we present exact classical so-
lutions of a supersymmetric model with broad application scope, the Wess-Zumino model of a
chiral superfield.

Last, we discuss string theory. We compute string spectra as illustrations of the structure of
the theory and as starting points to compute one-loop vacuum amplitudes. Those are used to
understand supersymmetry breaking in string theory, as well as brane interactions. Then, the
latter enable us to test one of the swampland criteria, the weak gravity conjecture, in a string
theory setup with broken supersymmetry. Finally, axions in string theory are scrutinized, in
particular when they are charged under an anomalous abelian factor of the gauge group.

Résumé

Cette thèse a pour but l’étude de théories diverses, toutefois interconnectées, décrivant la
nouvelle physique au-delà du modèle standard de la physique des particules. Ce sont des théories
d’un nouveau type de particules, les axions, d’un nouveau principe de symétrie, la supersymétrie,
et d’une nouvelle description des degrés de liberté fondamentaux, la théorie des cordes. Les
progrès instrumentaux et théoriques constamment faits au fil des ans ont confirmé que ces théories
sont des candidates privilégiées pour une description de la physique au-delà du modèle standard.

Les axions sont d’abord examinés et étudiés d’un point de vue phénoménologique: nous présen-
tons des modèles qui désenchevêtrent les différentes échelles qui décrivent l’espace des paramètres
des modèles d’axions, et nous discutons les axions présents dans des modèles de saveur. Inspirés
par les recherches autour du swampland, nous nous imposons l’utilisation de symétries de jauge,
et non globales, en tant que point de départ pour la construction de modèles.

Notre intérêt se porte ensuite sur la supersymétrie. Nous étudions sa brisure, à la fois dans des
modèles explicites dans l’ultraviolet qui génèrent une échelle de brisure de supersymétrie basse à
partir de matière à haute échelle, et au niveau des théories effectives à l’aide de la supersymétrie
non-linéaire. En ce qui concerne ce dernier thème, nous nous restreignons à l’approche des
superchamps contraints. Enfin, nous présentons des solutions classiques exactes d’un modèle
supersymétrique dont la portée est grande, le modèle de Wess-Zumino d’un superchamp chiral.

Finalement, nous nous intéressons à la théorie des cordes. Nous calculons des spectres de
cordes en guise d’illustration de la structure de la théorie et de point de départ pour le calcul
d’amplitudes du vide à une boucle. Celles-ci nous permettent de tester l’une des conjectures du
swampland, qui désigne la gravité comme la plus faible des forces, dans une configuration de
théorie des cordes où la supersymétrie est brisée. Enfin, les axions en théorie des cordes sont
analysés, en particulier lorsqu’ils sont chargés sous une symétrie de jauge abélienne anomale.
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Synthèse

Le besoin de physique au-delà du modèle standard (MS) est indéniable car, par exemple, les
règles et fondements du MS et de son homologue cosmologique n’incorporent pas de description
de la masse des neutrinos ou de la matière noire. En plus de telles déviations avec les prédictions
phénoménologiques du MS, il existe des problèmes théoriques, comme la quantification de la
gravité ou le niveau d’ajustement fin que l’on espère trouver dans une théorie fondamentale. Au
cours de cette thèse, nous suivons trois approches pour identifier de la nouvelle physique au-delà
du MS. La première approche consiste à résoudre des problèmes du MS à l’aide de modifications
"minimales" de la théorie, telles que l’ajout de symétries jaugées ou d’espace-temps, et l’ajout
restreint de nouveaux champs. Une deuxième approche utilise les théories des champs effectives
afin de connecter des théories motivées de façon formelle, en particulier la théorie des cordes et
les théories supersymétriques, à la physique de basse énergie. Cela permet de sélectionner, parmi
les modifications "minimales" mentionnées précédemment, celles qui sont susceptibles de décrire
de la physique générée par ces théories, dont la structure est différente et qui sont généralement
réalisées à haute énergie. Une dernière approche, suivie marginalement ici, étudie en détail la
cohérence interne d’une théorie, c’est-à-dire sa compatibilité avec des principes bien justifiés, et
essaye d’identifier des régimes où cette cohérence n’est plus vérifiée. Ces trois approches sont
abordées dans les trois parties de cette thèse, qui ne sont cependant pas organisées selon ce
découpage.

Procédons d’abord à un survol de ces trois parties, avant d’y revenir de façon plus détaillée.
D’abord, en section 2, nous étudions soigneusement les signaux expérimentaux ou théoriques au
niveau du MS lui-même, et nous résolvons certains problèmes à l’aide de symétries abéliennes
jaugées. En particulier, nous nous intéressons au problème CP-fort de la chromodynamique
quantique (CDQ) et sa solution axionique dans les sections 2.1 et 2.2, puis aux modèles de
saveur qui expliquent les hiérarchies dans les matrices de masse fermioniques en section 2.3 et
2.4, en insistant sur l’approche de Froggatt-Nielsen (FN). Des axions émergent naturellement
des modèles que nous considérons. Ensuite, en section 3, nous examinons une extension plus
radicale du MS: la supersymétrie (SUSY), dont les bases sont rappelées en section 3.1, et qui a
la triple qualité d’être motivée d’un point de vue phénoménologique, théorique et mathématique.
Cependant, puisque la nature n’est pas supersymétrique, nous nous concentrons sur des modèles
qui brisent la supersymétrie en section 3.2, dont certains sont liés à des modèles étudiés dans
la partie précédente. Nous présentons en section 3.3 la supersymétrie non-linéaire, qui est un
formalisme général décrivant la supersymétrie brisée, et nous nous permettons en section 3.4
un écart vers un modèle qui est parfaitement supersymétrique et duquel nous calculons des
solutions exactes. Enfin, la section 4 traite de théorie des cordes, et de ses théories effectives, qui
permettent de lier cette discussion à celles menées dans les deux parties précédentes. Après avoir
présenté le spectre des théories des cordes cohérentes en section 4.1, nous nous penchons sur les
moyens de briser la supersymétrie en théorie des cordes, et sur les théories effectives qui émergent
alors. Parmi celles-ci, nous analysons les théories d’axions, en particulier celles associées à un
mécanisme de Green-Schwarz (GS). Finalement, nous nous arrêtons sur le programme dit du
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swampland en section 4.4, dont l’objectif est d’énoncer des critères permettant de discriminer les
théories qui peuvent possiblement procéder d’une théorie de gravité quantique. En particulier,
nous utilisons la théorie des cordes avec brisure de supersymétrie pour tester la conjecture de
gravité faible de façon non-triviale. Une suite d’appendices apportent pour terminer quelques
précisions techniques.

La première partie est donc dédiée à l’étude des théories des champs (quadri-dimensionnelles)
qui étendent le contenu en matière du MS, avec un intérêt particulier pour les modèles d’axions et
de saveur. La logique implicite est d’utiliser des symétries de jauge (abéliennes) en tant que seule
restriction portant sur la dynamique des particules présentes. En particulier, de petits paramètres
comme l’angle ✓ de la CDQ ou les hiérarchies entre couplages de Yukawa n’ont pas d’explication au
sein du MS, et toute nouvelle symétrie qui le permettrait doit être une conséquence de l’invariance
de jauge de la théorie. Ceci peut être justifié par l’incompatibilité apparente entre les symétries
globales et la gravité quantique. Les modèles d’axions de CDQ expliquent de façon dynamique
les limites expérimentales portant sur l’angle ✓, et nous incorporons de telles particules dans une
configuration de type clockwork. Il ressort de cette étude que le modèle de clockwork jaugé de la
section 2.2.2 limite très efficacement les possibles brisures de la symétrie de décalage de l’axion,
de sorte que ce dernier est un bon candidat d’axion de CDQ et de matière noire légère. En
revanche, les propriétés de localisation le long des modes UV, typiques du clockwork, ne sont
utilisables que pour les couplages non anormaux que toute particule-de-type-axion peut avoir.
Les couplages anormaux, par exemple aux gluons, ne peuvent pas être ajustés par la localisation
de type clockwork, et la constante de couplage de l’axion ne peut être bien plus petite que l’échelle
véritable de nouvelle physique que s’il y a un grand nombre de particules supplémentaires, afin de
satisfaire les contraintes relatives à l’annulation des anomalies. Enfin, nous utilisons le mécanisme
de Froggatt-Nielsen (FN) afin d’expliquer les hiérarchies entre masses et mélanges dans le secteur
des quarks du MS. Suivant une logique similaire à ce qui a été détaillé ci-dessus, nous jaugeons la
symétrie de FN et nous étudions si les champs lourds qui génèrent le mécanisme sont suffisants
pour annuler toutes les anomalies. Nous présentons des modèles qui y parviennent, et examinons
rapidement la cohérence et la phénoménologie des axions de CDQ avec propriétés de saveur qui
apparaissent dans nombre de ces modèles.

La deuxième partie traite quant à elle de supersymétrie et de modèles supersymétriques en
physique des particules. Nous nous concentrons sur la brisure de supersymétrie, via l’étude de
modèles explicites et l’utilisation de la supersymétrie non-linéaire, qui est le formalisme universel
pour construire des théories effectives avec brisure de SUSY. Nous examinons un modèle com-
plet de brisure spontanée de la SUSY, qui est encore un modèle clockwork jaugé et qui, pour des
raisons similaires à celles qui permettaient aux axions de la section 2.2.2 d’avoir une petite masse,
réduit fortement l’échelle de brisure de SUSY même quand peu de particules supplémentaires sont
présentes. Dans ce modèle, on trouve également des vecteurs et des axions avec des profils de type
clockwork, mais ces derniers n’induisent pas d’effets remarquables lorsque l’on souhaite générer
une échelle de brisure de SUSY qui soit pertinente d’un point de vue phénoménologique. Cepen-
dant, des hiérarchies de type clockwork apparaissent entre les champs auxiliaires qui brisent la
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SUSY, ce qui permet d’envisager de transmettre cette brisure de façon hiérarchique à la matière
observable, menant par exemple à des modèles divisés pour les superpartenaires du modèle stan-
dard supersymétrique minimal (MSSM). Nous rappelons ensuite différentes approches de la SUSY
non-linéaire, à savoir la construction des classes d’équivalence et les superchamps contraints, à
la fois pour la SUSY N = 1 et N = 2. Nous observons succintement une ambiguïté qui réside
dans la contrainte de champs auxiliaires et qui peut être pertinente pour la phénoménologie,
ainsi que pour obtenir des actions de Dirac-Born-Infeld (DBI) avec brisure de SUSY complète
à l’aide de superchamps contraints. Enfin, nous terminons avec la présentation d’une solution
exacte des équations de Bogomol’nyi-Prasad-Sommerfield (BPS) appliquées au modèle de Wess-
Zumino (WZ), qui a des applications au calcul d’amplitudes avec un grand nombre de particules
et au calcul de murs de domaine pour la CDQ supersymétrique fortement couplée. Pour nous
rapprocher de la phénoménologie, nous espérons pouvoir bientôt inclure la brisure de SUSY.

La troisième et dernière partie commence par un examen des règles fondamentales pour con-
struire une théorie quantique de supercordes, afin de pouvoir identifier le spectre de ces théories.
Nous détaillons ces spectres pour les théories des cordes de types II et I, en insistant sur la façon
dont ils permettent de calculer les amplitudes du vide à une boucle. À partir de ces dernières, en
type I, nous présentons comment extraire des informations importantes, telles que la façon dont
les différentes amplitudes se combinent pour faire émerger le spectre du type I ou comment leur
finitude restreint le contenu en particules de la théorie, de façon complémentaire aux discussions
sur les anomalies. Nous passons ensuite à la brisure de SUSY en théorie des cordes, en nous
concentrant sur la brisure de SUSY à l’aide de branes et du mécanisme de Scherk-Schwarz (SS),
et en identifiant de nouveau l’impact des modifications du spectre dues à la brisure de SUSY sur
les amplitudes du vide à une boucle. Motivés par le fait que les spectres de théorie des cordes
contiennent de nombreux axions, et que ces derniers participent parfois à une version compact-
ifiée du mécanisme de GS, nous étudions une théorie effective inspirée des cordes, dans laquelle
un axion chargé sous un groupe de jauge U(1) anormal réalise un mécanisme de GS en 4D. En
particulier, nous comprenons que l’axion obtient une masse de l’ordre de l’échelle de brisure de
SUSY lorsque cette dernière est due à la condensation des jauginos d’un secteur caché avec une
anomalie mixte par rapport au U(1) anormal, de telle sorte que l’axion ne peut pas jouer le
rôle d’un axion de CDQ. Cependant, cette conclusion peut être évitée en raffinant le modèle:
nous adaptons donc le modèle dit 3-2 à notre situation avec un U(1) anormal afin de réussir à
découpler l’échelle de brisure de SUSY et la masse de l’axion. La valeur naturelle de la constante
de couplage de l’axion est de l’ordre de l’échelle de grande unification dans nos modèles, mais
nous mentionnons des modifications additionnelles (des modules du modèle) qui permettent de
la diminuer. Nous rappelons également que les U(1) anormaux peuvent être utilisés dans les
modèles de saveur de FN, auquel cas l’annulation des anomalies et les conditions d’unification
prédisent sans ambiguïté les couplages de l’axion. Enfin, nous présentons les conjectures du
swampland, en nous concentrant sur une conjecture mentionnée plusieurs fois dans la première
partie de cette thèse, qui suggère qu’il n’existe pas de symétrie globale exacte dans une théorie de
gravité quantique, ainsi que sur la conjecture de gravité faible (CGF). Nous examinons en détail
l’application de cette dernière à la 2-forme de la théorie des cordes de type I, avec SUSY brisée
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via le mécanisme de SS, ce qui génère des interactions entre branes et des potentiels de fuite. De
fait, une telle configuration permet un test non trivial de la CGF, et de sa compatibilité avec les
possibles solutions cosmologiques à la conjecture de de Sitter. À l’aide de notre connaissance des
amplitudes du vide, qui interviennent dans le calcul des interactions entre branes via la dualité
cordes ouvertes-cordes fermées, nous montrons que les interactions à une boucle portées par des
modes massifs twistés impliquent une diminution de la tension des branes alors que leur charge
reste fixe, en accord avec la CGF.

En définitive, cette thèse a pour but de développer et d’étudier des théories au-delà du modèle
standard de la physique des particules, ce qui est un effort justifié et fécond, comme nous essayons
de le démontrer dans ce texte. Les théories qui résolvent certaines des énigmes de la physique
des hautes énergies sont parfois surprenamment connectées à d’autres branches de la physique,
quelquefois au-delà de la physique des particules. Toutes les théories qui ont été mentionnées ici
rentrent dans cette catégorie. En effet, en sections 2 et 4.3, nous étudions les axions, imaginés
à l’origine pour annuler un seul paramètre du lagrangien du MS, puis utilisés en cosmologie, en
physique de la saveur ainsi que comme des vestiges de basse énergie de la théorie des cordes. De
façon similaire, nous avons examiné en section 3 la supersymétrie, qui émerge de principes de
symétrie théoriques, qui résout d’un coup de nombreux problèmes phénoménologiques et qui est
intimement liée aux spectres de la théorie des cordes. Cette dernière domine d’ailleurs toutes ces
considérations, puisqu’elle est un candidat au statut de théorie du tout du point de vue de la
physique des particules, comme nous l’avons mentionné en section 4. Sa portée est au demeurant
encore plus grande, grâce par exemple à l’holographie. Cet état de fait suggère d’être au courant
de toutes les (ou du moins de la majorité des) questions ouvertes en physique des hautes énergies,
car elles peuvent toutes être interconnectées et interdépendantes. La solution BPS de la section
3.4.2, qui illustre la généralité et la portée des théories des champs (effectives) en produisant à la
fois des amplitudes à grand nombre de particules et des solutions de murs de domaine en CDQS,
en est un exemple. Notre jaugeage systématique en section 2 des symétries globales abéliennes
rencontrées en phénoménologie, justifié par des considérations de gravité quantique discutées en
section 4.4, en est un autre. À cette occasion, nous nous interrogeons sur les conséquences de
la nécessité de jauger, en explorant en section 2.2 l’espace de paramètres typique des modèles
d’axions clockworks jaugés, et en étudiant en section 2.4 les champs lourds, et les axions légers, qui
accompagnent nécessairement un mécanisme de Froggatt-Nielsen jaugé. Notre dernier exemple
concerne la brisure de SUSY: si la nature est supersymétrique à une certaine échelle, le besoin
de briser la SUSY et la façon dont elle l’est peuvent interférer avec d’autres aspects de physique
des particules, comme le problème CP-fort, que nous avons étudié dans un scénario inspiré de
la théorie des cordes en section 4.3.5, ou la détermination de l’étendue de la nouvelle physique
au-dessus de l’échelle électro-faible, comme illustré par la séparation entre l’échelle de brisure de
SUSY et l’échelle du secteur qui la brise dans le modèle clockwork de la section 3.2.3, ou enfin
comme l’établissement de caractères partagés par toutes les théories cohérentes qui proviennent
de la gravité quantique, ce qui est attesté par l’interaction complexe entre la brisure de SUSY et
la conjecture de gravité faible en section 4.4.2. Les connections entre les théories ou aspects de la
physique (des particules) permettent donc de tester, de renforcer mais aussi de remettre en cause
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et d’élargir le formalisme et les attentes de notre époque. De cette façon, nous serons peut-être
capables de mieux comprendre ce dont la physique moderne devrait être faite.
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1 Prelude: particle physics at a critical

time

Preparing a Ph.D. in theoretical particle physics in 2019 is a thrilling endeavor. While standing
upon decades, even centuries, of mathematizing, modeling and understanding our world down
to amazing experimental precision and conceptual awareness, the young physicist faces a time of
crisis.

In trying to define this crisis, one quickly realizes that it is twofold. There is an aspect of it
which is inherent to the research activity, for each step forward opens up dozens of questions and
dissolves many prejudices. It is the aspect which makes the scientific community vibrate and the
wonder remain. It will not be commented on further. The second one is on the other hand more
circumstantial, but lies at the center of every aspect of this thesis. However, in order to describe
it in greater details, we have to start at the beginning of the story.

1.1 What modern physics is made of

Physics in the modern era, which we initialize between the 16th and the 17th centuries, is an
interplay between mathematical concepts and scales. The latter include time scales, length scales,
energy scales, etc, which are all linked to different physical intuitions, but which all enter the
physical game in the same way: scales define the experimental setup which the physicist has to
model, translating it into mathematical concepts.

Consequently, the history of physics can be rewritten as the simultaneous progression of those
two aspects. The exploration of more and more exotic scales is easy to have in mind: from
fluid dynamics, one descends to chemistry, then to atoms and nuclei, from balls rolling on a
table, one accelerates to sound speeds, then relativistic velocities, etc. Meanwhile, the path
towards new mathematical concepts is less popular, but at least equally fascinating. At the
core of it is the notion of degrees of freedom: given a physical situation, what are the best
mathematical objects to describe it? Then comes the notion of physical laws: given such degrees of
freedom, which mathematical principles make them understandable, or even predictable? Behind
those definitions, one sees lurking all the captivating (though implicit hereafter) epistemological
questions about what makes us satisfied by a given physical theory.

One fascinating aspect of physics modelling is that mathematical concepts, introduced some-
how intuitively to describe a given observed situation, backreact on intuition itself by offering
landmarks, mind anchors from which one can go on prospecting. Key examples of this (within
a much larger set) are the introduction of kinematical variables and dynamical equations at the
time of Galileo, then Newton, who also accustomed us with the notion of force.
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Thus, it is easy to understand why the continuous exploration of scales and concepts went
together: nature is the most efficient and imaginative provider of wonder there exists, while
extracting the relevant information it carries gives strong hints about where to look next. For
instance, from the observation of the atomic world came out the principles of quantum mechanics,
which are now invoked as guiding lines to explore the physics of black holes, dramatically different
objects. Physics is, by definition, an experimental science whose goal is to reproduce observations,
but it is most importantly the art of identifying the genuine, fundamental aspects behind things
which happen.

1.2 From Maxwell to the LHC: particle physics in its glory

Let us now see how this quite general discussion is illustrated by the legacy of the late 19th and the
20th centuries to particle physics: the model of elementary particles and interactions known as the
standard model of particle physics (SM). Here, the progression in scales is almost chronological:
bigger machines, more available energy, smaller distances scrutinized. The establishment of
mathematical concepts, for its part, has reached an incomparable level of refinement and deepness.
Technical names illustrating this are gauge principle, (chiral) group representations, spontaneous
symmetry breaking, renormalization. Behind each of those words lies an almost unbelievable
balance between formal notions and experimental facts, between 19 free parameters (and a few
constants of nature) and almost every physical phenomenon taking place on Earth. However, we
do not intend to cover any of this and we only focus on the SM completeness thereafter, so that
we circle back to the aforementioned crisis.

In order not to inexactly tell or miss parts of the story, let us start by its end: the Large Hadron
Collider (LHC) at CERN in Geneva observed in 2012 the Brout-Englert-Higgs boson [1,2] (Higgs
boson in short), which was up to then the last unobserved piece of the SM. This discovery put
an end to a fantastic theoretical and experimental journey over the last century, which managed
to bring together originally different views on phenomena such as light, radioactivity or the mass
of atoms.

Quoting Stefan Pokorski at the 61th anniversary of the Centre de Physique Théorique de
l’École polytechnique, one should "be proud of the SM". Indeed, it is a remarkable success
story: experiments developed were followed by model building, which was validated by further
experiments, and so on. The structure of the theory which emerged is so strong and its consistency
so demanding that, in the later days of its development, experiments were partly aiming at
verifying what every theoretician already took for granted. Striking examples of this are the
discovery of the charm quark in 1974 [3, 4], predicted by the Glashow-Iliopoulos-Maiani (GIM)
mechanism [5] in 1970, or the discovery of the Higgs boson itself, necessary for the consistency
of theories with massive vector bosons [6–8].
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1.3 Back to the crisis: the need for BSM physics

This matter of fact brings us back to the crisis we mentioned: if the SM is complete, why should
we try to extend it? And, most importantly for researchers, how should we proceed?

The why question is actually easy to answer, since several phenomena offer discrepancies with
our current understanding of nature.

There are first "pure" particle-related issues. The neutrinos, which are massless particles in
the SM, are understood to be massive since they oscillate [9]. There are as well mismatches
(statistically significant, some long-standing) between observed and predicted quantities: dom-
inant examples are the magnetic moment of the muon [10] or decays of B-mesons (see e.g. [11]
for latest results). Theoretical troubles or specific expectations are also associated with the SM.
The major and most emphasized ones are the hierarchy issues, also called naturalness problems,
among which the hierarchy problem of the Higgs boson mass, the pattern of masses and mixings
of fermion generations and the strong CP problem. The last two of those problems are examined
in section 2. Regarding expectations about the details of a more complete theory which would
supplement the SM, those are somehow linked to naturalness/coincidence problems, and concern
mostly the unification of gauge coupling constants and the presence of supersymmetry, which is
discussed in section 3.

There are also cosmological observations which do not have any explanation within the SM. On
the one hand, the association of particle physics (under the form of the SM) and gravity (mean-
ing here general relativity) leads to predictions in extremely precise agreement with some of the
foundational cosmological observations, such as the cosmic microwave background (CMB) or the
cosmological abundance of atomic elements, explained in the framework of big bang nucleosyn-
thesis (BBN). On the other hand, approximately four fifths of the "matter-like" cosmological
constituents are made out of an unknown component, dubbed dark matter (DM) [12], which
moreover only explains roughly a quarter of the full energy budget of the universe, the rest being
named dark energy (DE) [13, 14]. In total, matter we understand represents only 5% of the
universe’s content. Similarly, there is a need to describe the kind of energy which drove a phase
of accelerated expansion 14 billion years ago, called inflation. On top of that, even at the level
of the matter we know, the universe we observe requires that there were amounts of matter and
antimatter which were extremely close to each other during the early stages of the cosmological
history, so that they almost entirely co-annihilated, leaving only a very small amount of matter
behind. This may be reminiscent of coincidence problems in particle physics.

Finally, there are troubles which (mostly) originate from theoretical expectations, such as the
need to quantize gravity. Indeed, gravity remains the only known force which has not been
unified into a quantum picture such as the SM, since quantization procedures which proved
useful fail in the presence of gravity [15, 16]. On the other hand, there are reasons to consider
and try to develop quantum gravity. Indeed, situations where curvature is strong and where
quantum effects, if they exist, should be important are known: astrophysical black holes have
been observed [17,18] and the cosmological evolution hints towards the big bang, a singular point
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in spacetime. In addition, black hole thermodynamics [19, 20] suggests that black holes, which
emit a blackbody radiation, are sensitive to Planck’s constant ~ and are intrinsically quantum
objects. Eventually, quantum gravity, once developed, may come with many features which we
would call beyond-the-standard-model (BSM) physics.

Despite all this, the second question we asked, the how question, is nevertheless at the core
of the crisis: contrary to the breakdown at high energies of Fermi theory of weak interactions
or of the scattering of massive vectors, there is nothing which promises that new physics will
undoubtedly show up in realistic, identified and upcoming experiments. There are many ways to
look for new physics, many clever questions whose answers might give the right direction. We do
not attempt to even mention all of them here, but we follow some.

1.4 Outline

In this thesis, we adopt three different strategies to find new physics. The first one aims at solving
SM issues with "minimal" modifications of the theory, such as additional gauge or spacetime
symmetries and few additional fields. A second approach is to use effective field theories (EFTs)
in order to match formally motivated theories, in particular string theory and supersymmetric
theories, to low-energy physics. This can suggest which of the "minimal" modifications mentioned
before are susceptible to capture physics generated by those differently structured theories, which
usually lie at a high energy scale. A last approach, marginally touched upon in what follows,
is to thoroughly study the internal consistency of a theory, i.e. its compatibility with strongly
motivated principles, and try to identify regimes where it breaks down. Those three approaches
are spread over the three parts of this thesis, which are however not organized according to this
splitting. Indeed, the organization of the text is as follows.

First, in section 2, we carefully consider experimental or theoretical signals at the level of the
SM itself, and we handle specific issues with the help of gauged abelian symmetries. In particular,
we are interested in the strong CP problem of quantum chromodynamics (QCD) and its axion
solution in sections 2.1 and 2.2. We present a model, inspired by the so-called clockwork models,
which addresses some of the fragile aspects of the axion solution, that have to do with the range
of the axion decay constant and with the quality of the axion shift symmetry. This model is very
efficient at ensuring a high quality or a very small mass to the axion, and it displays interesting
properties, although of limited phenomenological interest, concerning the decay constant. Then,
we look in sections 2.3 and 2.4 into flavour models which deal with the fermion mass hierarchies.
In order to do so, we follow the Froggatt-Nielsen (FN) approach, with the exception that the
FN symmetry is gauged. We are in particular interested in models where the fermion content is
minimal, meaning that all fermions involved in the FN mechanism, and only them, are enough
to cancel the gauge anomalies. In such setups, an accidental QCD axion arises and is studied.

Secondly, in section 3, we scrutinize a more radical extension of the SM: supersymmetry
(SUSY), reviewed in section 3.1. As we argue, it has the triple status of being phenomenologically,
theoretically and mathematically motivated. But since it is not an exact symmetry of nature, we
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investigate models where supersymmetry is spontaneously broken in section 3.2. In section 3.2.3,
we study a model which connects with section 2.2, since it is the immediate supersymmetrization
of the one presented there. It turns out to break supersymmetry in an interesting way: the
breaking scale is naturally very small with respect to the scales where (most of) the BSM dynamics
lives, and there is a possibility of engineering naturally split spectra for the superpartners of the
SM particles. Subsequently, we present in section 3.3 the general framework for effective models
with broken supersymmetry, namely non-linearly realized supersymmetry. We study constrained
superfields in N = 1 and N = 2 supersymmetry. Before closing the section, we make a step aside
in section 3.4 where, in a model which maintains supersymmetry, we manage to compute exact
classical solutions which are relevant for domain wall profiles in SUSY QCD and for studies of
multi-particle tree-level amplitudes. The latter can exhibit unitarity violations in scalar theories
while the former represent a toy model of the actual vacuum structure of QCD.

Finally, section 4 deals with string theory, and string theoretic EFTs. After reviewing what
are the spectra of a set of consistent string theories in section 4.1, we discuss in section 4.2 stringy
mechanisms for breaking supersymmetry, and the associated EFTs which arise, connecting with
other sections. We then study in section 4.3 axions in string theory, in particular when they
are linked with a Green-Schwarz mechanism. We work out under which conditions can they be
identified with a QCD axion. Last, we discuss in section 4.4 the swampland program, i.e. the
establishment of criteria which characterize the theories which possibly proceed from quantum
gravity. In particular, we work out what string theory, in a specific context where supersymmetry
is broken, has to say about one of those criteria called the weak gravity conjecture (WGC). Our
analysis concludes that it is satisfied in a non-trivial way.

Appendix A presents our conventions for QFT lagrangians, in general and for the (MS)SM,
as well as the list of abbreviations used in the text. Appendix B displays a calculation of axion
couplings to gauge bosons in the KSVZ model of the QCD axion. Appendix C deals with
supersymmetric QCD theories: a discussion of Seiberg duality, the vacua of SQCD and the
non-perturbative effects, which are relevant for sections 3.4.3 and 4.3.5, can be found there in
particular. Finally, appendix D presents some one-loop computations in string theory, used in
section 4.

Sections where some original material is discussed are indicated with a star in the table of
contents, and publications linked to the Ph.D. work, reviewed in the text, are attached at the
end of it.
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2 Axions, flavour, and abelian gauge

symmetries

Our exploration starts closely to the standard model, since we first look at "minimal" exten-
sions of it, meaning that we follow the rules along which the SM was built and which characterize
it in our modern view. Those include the use of relativistic quantum field theory, i.e. the fact that
the dynamical objects are fields of which particles are the quanta and whose dynamics is Lorentz
invariant, local, causal and unitary. Building blocks are the gauge symmetries and the matter
content (scalar, spinor and vector fields arranged in representations of those groups, the latter
being associated to the gauge invariance) such that the dynamics is the most general allowed (up
to undetermined coefficients). The only feature of the SM which we relax is its renormalizability:
the theories we build are understood as effective field theories and the contributions of irrelevant
operators are taken into account when necessary.

Since we do not question here (most of) the conceptual structure of the SM, we thus use
as guidelines for progress some phenomenological troubles. Those are the strong CP problem,
presented in section 2.1, together with its axion solution, as well as the mass and couplings
hierarchies within the fermion families, introduced in section 2.3. We tackle those problems by
enlarging the symmetries and the field content of the theory, such that the unexplainably small
parameters arise in a natural way. A disclaimer of this approach is that we introduce many scalars
for which we do not discuss in details possible hierarchy problems (even though supersymmetry
remains as a viable option in the models we discuss).

We do not examine some very important classes of theories which are considered as serious
candidates for physics beyond the standard model. Such theories include grand unified, com-
posite, and extra dimensional models. A subset of the latter will be implicitly encountered in
section 4, when we study string theory, but we will not go into details of their phenomenology.
We nonetheless try to do them justice by inserting their names into these introductory words.
An other iconic BSM candidate, supersymmetry, is discussed in section 3.

Our notations regarding the SM Lagrangian, as well as the coupling of fields to curved space,
is detailed in appendix A.1.

2.1 The QCD axion and axion-like particles

Since discussions about axions pop up repeatedly along this thesis, we begin by reviewing axion
models. We motivate their study by discussing the strong CP problem, axion cosmology, the
string landscape and the experimental/observational achievements and perspectives, respectively
in sections 2.1.1, 2.1.6, 2.1.5 and 2.1.7. We also give some details about reference models of the

16



QCD axion (section 2.1.2), axion EFTs (sections 2.1.3 and 2.1.4), and we focus in section 2.1.8
on two aspects of model building, namely adjusting the axion decay constant and ensuring that
the axion shift symmetry is of good enough quality.

2.1.1 The strong CP problem

The strong CP (Charge-Parity) problem1 is a statement that concerns the following P- and
CP-breaking operator which can be added to the QCD Lagrangian:

LQCD � �
✓

32⇡2
Ga

µ⌫G̃
a,µ⌫ where G̃a,µ⌫ =

✏µ⌫⇢�

2
Ga
⇢� . (2.1.1)

This ✓-term is normalized such that ✓ 2 [0, 2⇡]. This operator contributes to the neutron electric
dipole moment (EDM) [24,25] via diagrams such as the one drawn in Figure 2.1, and it is implied
by measurements of this neutron EDM [26] to be extremely small: |✓| < 10�10 (see section 2.3.2
for more details on EDMs and CP breaking in the SM).

Figure 2.1: One of the diagrams contributing to the neutron EDM
Grey blobs represent CP-preserving pion-nucleon-nucleon or pion-pion-photon couplings,

whereas the black one represents CP-violating ones involving ✓

However, the smallness of ✓ remains unexplained in the SM: P and CP are respectively already
significantly broken by the weak interactions and by the Cabibbo-Kobayashi-Maskawa (CKM)
matrix, and a bare value of ✓ should be such that it cancels (up to the aforementioned experimental
precision) the contribution coming from the quark fields redefinition which makes their Yukawa
matrices real and diagonal (see section 2.3.1). Indeed, when uL/R ! V u

L/RuL/R, dL/R ! V d
L/RdL/R,

LQCD �! LQCD �
✏µ⌫⇢�

64⇡2
arg det(MuMd)G

a
µ⌫G

a
⇢� , (2.1.2)

where Mu,d are the quark mass matrices (see appendix B for numerical details). Furthermore,
anthropic reasoning does not seem to have much to say whenever ✓ . O(1) [27,28], even though
there are attempts to link the strong CP problem to the cosmological constant problem, which
does have anthropic solutions [29,30].

Explanations of the strong CP problem lie presently in three main categories. A first class of
solutions rely on the observation that ✓ is unphysical if one of the quark masses vanishes (see [31]

1Examples of reviews about the strong CP problem and axions, which sometimes heavily inspired the content
of this section, are [21–23].
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and references therein): indeed, it is then possible to redefine left- and right-handed parts of this
quark such that ✓ is shifted away, whereas this clashes for a massive particle with the requirement
of having a real mass. More precisely, the contribution to the neutron EDM is proportional to ✓
but also to mu,d so one only needs to ensure that a quark mass is small enough to wash out the
effect of a non-zero ✓. The vanishing of a quark mass may then be enforced by UV symmetries
(such as string theory discrete symmetries), and effects mimicking a non-vanishing quark mass
could be radiatively generated out of the other quark non-vanishing masses. However, recent
lattice results (see e.g. [32]) seem to rule out this solution.

A second class of solutions uses the fact that, if ✓ is vanishing at some scale, its RG-evolution
in the standard model will keep it very small [33]. Indeed, due to the flavour structure of the
standard model, there is only one CP-violating phase in the CKM matrix, and it can only feed into
✓ in a way which respects the (spurious) SU(3)Q⇥SU(3)u⇥SU(3)d flavour symmetries of the SM.
It turns out that such a consistent expression for the ✓ �-function can only arise from the seven
loops order in perturbation theory, and if ✓ = 0 is set at some high RG scale, the induced RG-
running of ✓ will bring it to a value compatible with the neutron EDM measurements. Then, ✓ = 0

would be imposed in the UV by demanding an exact P [34, 35] or CP [36, 37] symmetry, which
would be spontaneously broken to explain its violation in the SM. CP-based solutions, known
as Nelson-Barr models, need to radiatively generate a non-zero CKM phase while maintaining ✓
small.

The third class is made of Peccei-Quinn-like solutions, on which we now focus.

2.1.2 The Peccei-Quinn solution and invisible axion models

The Peccei-Quinn (PQ) solution [38] introduces a chiral U(1)PQ symmetry with a SU(3)2⇥U(1)PQ

anomaly, such that rotating the different fields of the model towards a "physical" basis redefines
✓ away. More precisely, Peccei and Quinn showed in [38] that a theory of Lagrangian

L = �Tr

 
F 2

µ⌫

2g2
+
✓Fµ⌫F̃ µ⌫

16⇡2

!
� �µ(@µ � iAa

µT
a) � |@µ�|

2
�V (|�|

2)� (y� L R+h.c.) , (2.1.3)

which is classically invariant under the U(1)PQ symmetry  ! e
i�5↵
2  , � ! ei↵�, has the property

that ✓ = 0 when the fermion  is defined such that its mass term yh�i is real, hence inevitably
solving a possible CP problem associated to the Aµ gauge field.

A direct application of this mechanism to the SM strong CP problem [39] can be made using
a second Higgs doublet2:

L � �V (|Hu|
2, |Hd|

2) �
�
uRHu(Y

u)TQL + dRHd(Y
d)TQL + eRHd(Y

e)TLL + h.c.
�
. (2.1.4)

The U(1)PQ chiral symmetry QL ! e
i↵
2 QL, uR ! e� i↵

2 uR, dR ! e
�i↵
2 dR, LL ! e

i↵
2 LL, eR !

e� i↵
2 eR, and Hu,d ! e�i↵H1,2 has a SU(3)2 ⇥U(1)PQ anomaly and the same conclusion about the

effective value of ✓ in the vacuum follows.
2Our conventions for the Yukawa matrices in this thesis are such that they fit the MSSM extension to (2.4.1).

18



Soon after the PQ proposal, it was understood by Weinberg and Wilczek [40,41] that the PQ
solution predicts a light pseudoscalar, dubbed the axion, which is the Pseudo-Goldstone mode
of the anomalous U(1)PQ. Its (self-)couplings are dictated by (2.1.4) and the gauge anomalies of
U(1)PQ, as is discussed in the next sections. However, it was shown [40–43] that experiments at
that time were in strong tension with estimated properties of the axion (it has been completely
ruled out since). It was later understood that this tension can be alleviated if the spontaneous
breaking of U(1)PQ happens at a much higher energy than the weak scale ⇤weak. The axions
associated with such a high breaking scale are called invisible axions, and benchmark models of
this kind are the DFSZ [44,45] and the KSVZ [46,47] models.

The KSVZ model is the simplest to understand since it draws from the fact that (2.1.3) does
not need to assume that  is a SM fermion, nor � an identified scalar, to solve the strong CP
problem. Indeed, the authors of [46, 47] assumed that there is a heavy pair of Weyl fermions
 L,R in the fundamental representation of SU(3)C , as well as a SM singlet � which are precisely
coupled as in (2.1.3). Then, if h�i is taken to be much bigger than the weak scale, any physics
associated to the PQ sector is very hard to detect, and in particular the KSVZ axion is much
more weakly coupled than the original PQ axion and can evade any experimental bound. This
will however soon become an inexact statement since current detection techniques are getting
close to the standard KSVZ/DFSZ parameter space, see section 2.1.7.

On the other hand, the DFSZ model is an extension of the SM PQ model (2.1.4) where a
higher scale is introduced via a singlet scalar field � charged under U(1)PQ:

L � �V (|Hu|
2, |Hd|

2, |�|
2)�

�
uRHu(Y

u)TQL + dRHd(Y
d)TQL + eRHd(Y

e)TLL + cHuHd�
2 + h.c.

�
.

(2.1.5)
U(1)PQ now transforms SM fields as in the original PQ model if it acts on � as � ! e�2i↵�.
Then, assuming again h�i � ⇤weak, the radial part of � is very heavy and the axion is weakly
coupled to ordinary matter, even though it still solves the strong CP problem.

The couplings of the KSVZ and DFSZ axions are described by the same EFT but have very
different origins, thus very different magnitude. For instance, in the DFSZ model the axion
couples at tree level to SM fields since it mixes with the phases of the Higgs bosons, whereas
the KSVZ axion couples to gluons via  loops, and to SM particles via higher order diagrams.
Nevertheless, all axion models3 share the property of describing a pseudo-Goldstone boson (PGB)
with a typical anomalous coupling to gluons, thus making ✓ dynamical. The dynamics of QCD [48]
then selects the vacuum as the one where ✓ = 0 effectively. As we will see in section 2.1.4, this
is enough knowledge to derive the axion mass and self-couplings.

3The word axion nowadays describes light pseudoscalars in more general contexts than the PQ solution to the
strong CP problem, so we use the words QCD axion when we specifically encounter a PQ axion in what follows.
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2.1.3 General axion effective field theory

The EFT of the QCD axion coupled to SM particles [49] is composed of a defining part and a
model-dependent part4

L = �
1

2
(@µa)

2
�

a

32⇡2fa
Ga

µ⌫G̃
a,µ⌫

| {z }
Ldef.

�
@µa

fa
jµ �

Cia

32⇡2fa
F ai
i,µ⌫F̃

ai,µ⌫
i

| {z }
Ldep.

, (2.1.6)

where G is the field strength of the gluon field (we shifted the axion field such that there is
no constant ✓ term), Fi stands for the field strengths of all the other SM gauge bosons and
jµ is the symmetry current associated to the PQ symmetry, which contains terms of the form
iX  �µ�5 + iX�(�⇤@µ�� h.c.). At tree level, only U(1)PQ-charged particles can couple to the
axion via this current term, but loops of gauge or Higgs bosons generate radiatively such couplings
to the remaining uncharged particles. The defining part is made up of those terms which are
necessary to call a a QCD axion, and the rest depends on the details of the UV physics associated
with the axion. Notice that the dimensionful couplings are defined in terms of a scale fa, called
the axion decay constant. We defined it in (2.1.6) as the dimensionful coupling in the effective
✓-term, but it is usually linked to the scale f entering the axion periodicity a ⌘ a + 2⇡f via a
number called the domain wall number:

fa =
f

NDW

(2.1.7)

for reasons which will become clear in sections 2.1.4 and 2.1.6. The scale f is itself linked to the
vacuum expectation value (vev) of the scalar field whose phase is the axion in UV models such
as the ones in section 2.1.2.

Axion couplings are usually rewritten in terms of low-energy particles such as photons, elec-
trons, mesons and nucleons to match the axion theory to precise measurements (such as neutron
EDM ones) via current algebra techniques or in chiral perturbation theory. In particular, the
coupling to photons is of particular interest and is usually written as follows:

L � �
NDW

32⇡2f

✓
E

NDW

�
2(4 +mu/md)

3(1 +mu/md)

◆
aFµ⌫F̃

µ⌫
⇡ �

NDW

32⇡2f

✓
E

NDW

� 1.92

◆
aFµ⌫F̃

µ⌫ , (2.1.8)

where E is the electromagnetic anomaly determined in the UV, and the numerical factor which
appears in combination with the pure anomaly coefficients is due to the mixing with the pions.
As an illustration, there is no field charged under both U(1)PQ and U(1)em in the KSVZ model
so E = 0, whereas in the DFSZ model E/NDW ⇡ 2.67.

2.1.4 Axion mass and potential from chiral perturbation theory

Let us now evaluate the (zero temperature) mass of the QCD axion using chiral perturbation
theory (�PT) [21, 50]5. Above the scale of confinement and restricting ourselves to two flavours

4Due to the suppressed couplings of the axion, we only write here the first linear terms in the axion field in
an expansion in inverse powers of its decay constant.

5Approaches to axion couplings using the dilute instanton gas approximation, certainly not reliable at zero
temperature, have also been shown not to give satisfying results below T ⇠ 106 GeV [50]. �PT is in the contrary
defined to describe QCD dynamics below the confinement scale.
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of quarks, the QCD lagrangian augmented by the axion contribution is given by:

L � �
1

4g2
Ga,2

µ⌫ �
1

2
(@µa)

2
� u(�µ@µ +mu)u� d(�µ@µ +md)d�

@µa

fa
jµ �

a

32⇡2fa
Ga

µ⌫G̃
a,µ⌫ (2.1.9)

where we redefined the quark fields such that their masses mu,d are real and absorbed the shift
in ✓ via a corresponding shift of the axion field.

When the quark masses are taken to zero (or when the mass matrix is given a spurious
transformation), the lagrangian (2.1.9) has a classical U(2)L⇥U(2)R symmetry acting on the left-
and right-handed projections of the quark fields. At energy scales where chiral symmetry breaking
occurs, this symmetry is broken by quark condensates huui = hddi 6= 0 down to U(2)V(ectorial) =

SU(2)W ⇥ U(1)B, and the relevant degrees of freedom are the pions ⇡0, ⇡± and the ⌘, which are
understood as the pseudo-Goldstone bosons of the U(2)A(xial) symmetry. They can be embedded
in a 2 ⇥ 2 matrix:

⌃ = exp

✓
i

f⇡
(~⇡.~� + ⌘ )

◆
, (2.1.10)

where ~� is the set of Pauli matrices. U(2)L ⇥ U(2)R then acts as ⌃ ! UL⌃U
†
R. The EFT which

describes their interactions respects this symmetry up to spurious transformations of the mass
matrix, which are such that

(uR, dR)M

✓
uL

dL

◆
! (uR, dR)U

†
RM

0UL

✓
uL

dL

◆
(2.1.11)

is invariant, implying M 0 = URMU †
L. The EFT is thus as follows at first order:

L�PT = �
f 2

⇡

4
Tr
�
@µ⌃@

µ⌃†�+
f 2

⇡m
2

⇡0

2(mu +md)
Tr(M⌃+ h.c.) �

@µa

fa
jµ + Lanomaly + higher orders ,

(2.1.12)
where M = diag(mu,md) and Lanomaly contains all the symmetry breaking terms which are
generated by anomalies. For our case of study, U(1)A is anomalous with respect to QCD [51]
and6

Lanomaly � �
m2

⌘

2

✓
⌘ +

f⇡
2fa

a

◆2

+ ... , (2.1.13)

with m⌘ � m⇡0 . Restricting ourselves to neutral particles and quadratic terms, we thus get
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���������! �
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2
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p
mumdm⇡0f⇡

(mu +md)fa
⇡ 5.7µeV

✓
1012 GeV

fa

◆
.

(2.1.14)

Along with the axion mass, such �PT techniques can give us the full axion potential. It is easier
to see it after we rotate away the effective ✓-term in (2.1.9) by performing a chiral rotation of the
quarks, u/d ! e�i a

4fa
�5u/d, such that:

L �! �
1

4g2
Ga,2

µ⌫ �
1

2
(@µa)

2
�u

⇣
�µ@µ + e�i a

2fa
�5mu

⌘
u�d

⇣
�µ@µ + e�i a

2fa
�5md

⌘
d�

@µa

fa
j0µ , (2.1.15)

6The relative factor between a and ⌘ is due to their relative coupling to gluons, which one can identify by
comparing the anomalous shift induced by U(1)A: u/d ! ei↵�5u/d, i.e. ⌘ ! ⌘+ 2↵f⇡ =) �L = �

✏µ⌫⇢�

16⇡2 Ga
µ⌫G

a
⇢�

and the one associated to a shift of a in (2.1.9). Said differently, the chiral transformation U(1)A is no more
anomalous once it is extended by a suitable transformation of a, so the induced ⌘ mass term should be invariant
under such shifts.
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where the current has been shifted with respect to the original one: j0µ = jµ�
i
4
(u�µ�5u+d�µ�5d).

In this parametrisation, the �PT EFT is still as in (2.1.12), except that ⌘ has been shifted by
the chiral redefinition and that M = diag(e�i a

2famu, e
�i a

2famd) now. We thus get
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(2.1.16)
Higher precision expressions require more terms in the �PT EFT, and are for instance presented
in [50] at NLO and taking into account lattice results. Notice that (2.1.16) has an explicit
minimum at a = 0 as expected, and that it has a periodicity a ! a+2⇡fa, to be compared with
its original periodicity discussed around (2.1.7): within the domain of a, there are NDW minima
of its potential. This allows for domain-walls configurations of the axion field which interpolate
between different vacua. Those can have dramatic effects on cosmology, see section 2.1.6 for more
details.

2.1.5 Axion-like particles and string theory axions

As we saw in the preceding sections, there are well defined generic predictions concerning the
QCD axion in its minimal realization, even though lots of parametric freedom is still allowed
by UV completions7. However, many other light pseudoscalars are often used in the litterature
with a vanishing gluon coupling or other dominant sources for their potential. Those are dubbed
axion-like particles (ALPs) and have an EFT close to the QCD axion one of section 2.1.3, but the
relation (2.1.14) between the mass and the decay constant is relaxed, enabling model builders to
scan a larger parameter space. Their mass may come for example from non-perturbative effects
of additional confining gauge groups or from explicit breaking of the shift symmetry.

There are two major reasons to consider ALPs for phenomenology. The first one is pragmati-
cally due to the fact that many experiments, which are already collecting data or close to do so
(see section 2.1.7), keep on improving their sensitivity and extending their reach to broader and
broader parts of the parameter space of ALPs (and in particular of the QCD axion), such that
there might soon be a need to model a detected signal. The second one is theoretical, since some
string theory compactifications predict loads of light ALPs [55–57]. We will have more to say
about string theory and string theoretic axions in section 4.3.

7Actually, even the tight relation (2.1.14) can be circumvented with additional model building efforts, such as
linking the ✓ parameter to the one of an other QCD-like group with a Z2 symmetry [52] or a GUT embedding [53],
or by introducing copies of QCD with a specific ZN symmetry [54].
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2.1.6 Axion cosmology

If one has not been fully convinced by the previous arguments in favor of a thorough study of the
QCD axion or ALPs, the fact that such particles may have a huge cosmological impact should
provide the final impulse. Indeed, the fact that their potentials are quantum mechanically stable
due to the axion shift-symmetry enables one to naturally tune their dynamics. Consequently,
axions are excellent dark matter candidates [58–60], they can drive inflation [61,62] or make dark
energy dynamical [63–66]. There are also mechanisms to produce axions during the cosmological
history such that they can both behave as non-relativistic matter or as radiation, modifying for
instance the effective number of neutrinos [67].

We do not present details about all those possibilities and we focus on why axions can play the
role of dark matter. We mostly draw from [22], as in next section. The idea behind the analysis
is that axions, being bosons, can have large occupation numbers of their quantum states, such
that their dynamics can be understood by studying the behaviour of the classical axion field.
The latter is described by a scalar field action:
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d4x

p
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2
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, (2.1.17)

whose associated equation of motion
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and energy momentum tensor
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reduce to, for a spatially homogenous field a(t) on a Friedmann-Lemaître-Robertson-Walker
(FLRW) background gµ⌫ = diag(�1, s2, s2, s2) with s(t) the scale factor,

ä+ 3Hȧ+
@V

@a
= 0 , ⇢ =

ȧ2

2
+ V , p =

ȧ2

2
� V , (2.1.20)

where H = ṡ/s is the Hubble rate, ⇢ is the energy density and p the pressure. Considering now
the minimal potential V = 1

2
m2

aa
2 and late cosmological times when (assuming such times exist)

H ⌧ ma, we use the following ansatz to describe the solution of (2.1.20):

a = A(t) cos(mat+ �) (2.1.21)

with Ȧ/A ⇠ H ⇠ ✏ma. At first order in ✏, we find A = A0s�3/2, h⇢i = m2
aA2

0
2

s�3 and hpi = 0

(where hXi denotes the time average of X over a period 1

2⇡ma
), which defines the pressureless non-

relativistic fluid usually called cold dark matter (CDM). Interestingly, the axion field undergoes
oscillations at a frequency given by its mass, which is at the core of recent searches of axion
DM [68,69].

Much like WIMP CDM, which only behaves as a non-interacting non-relativistic fluid after
its decoupling from the thermal bath, the axion energy density only scales as s�3 at late times.
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At early times when H � ma, the axion is essentially frozen by the Hubble friction at a fixed
value, which gives the initial condition for the axion relic density. The CDM behaviour starts
when H ⇠ ma. Cosmological observations then put a lower bound on the mass of the axion,
which cannot be smaller than the Hubble scale at matter-radiation equality for instance, if it is
to explain all the dark matter budget of the universe:

ma, axion DM > 10�28 eV . (2.1.22)

The relic density can then be calculated precisely given an initial condition a0 ⌘ |a| at early times
if the mass is time-independent:

⌦ALP DM ⇡ 2 ⇥ 102
⇣ ma

10�22 eV

⌘ 1
2

✓
a0
MP

◆2

, (2.1.23)

where MP = 2.4 ⇥ 1018 GeV is the reduced Planck mass. This result can be understood (at the
order of magnitude level) by assuming that the axion stays frozen at a0 until 3H ⇡ ma (which
establishes the balance between the friction and the driving force term in (2.1.20)), after which
it is given by (2.1.21).

The assumption that the mass is time-independent is actually incorrect for the QCD axion.
Indeed, its mass is given by non-perturbative QCD effects which are quite sensitive to tempera-
tures typical of the observable cosmological history, since they kick in around T ⇠ ⇤QCD ⇠ 200

MeV. We have on the one hand
H = ⇡

r
g⇤

90

T 2

MP
(2.1.24)

during radiation domination, where g⇤ is the effective number of relativistic degrees of freedom,
and on the other hand (here for high temperatures T & 1 GeV)

ma(T ) = ↵
p

mu⇤QCD

⇤QCD

fa

✓
T

⇤QCD

◆�n

, (2.1.25)

where ↵ and n are numbers derived from lattice or instanton calculations. There is no clear
consensus on the precise values of those numbers, but n seem to range between 1 and 4 and ↵ ⇠

10�7. Choosing for instance n = 4, the onset of the axion oscillations happens at a temperature
Tosc such that

3H(Tosc) = m(Tosc) . (2.1.26)

If fa & 1017 GeV, the axion oscillations happen at temperatures low enough such that the axion
mass is stabilized at its zero temperature value (2.1.14) when its starts behaving as dark matter,
and (2.1.23) can be safely used. For the QCD axion whose mass is related to fa, (2.1.23) can be
written

⌦QCD axion DM, high scale ⇡ 5 ⇥ 103
 

a4/3
0

1016 GeV ⇥ f 1/3
a

! 3
2

. (2.1.27)

On the contrary, if fa . 1015 GeV, Tosc & 1 GeV and the mass is significantly modified along
the universe cooling. This makes the potential term in (2.1.20) time-dependent and modify the
solution (2.1.21). Eventually, we get

⌦QCD axion DM, low scale ⇡ 2 ⇥ 104
 

a12/7
0

1016 GeV ⇥ f 5/7
a

! 7
6

. (2.1.28)
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Those formulas are modified by anharmonic coefficients once one uses the full axion potential
instead of the mass term in (2.1.20), but they still give a clear picture of what is happening.

If (2.1.22) is not verified, we are considering now a cosmological fluid which cannot be inter-
preted as the dark matter we observe, since it would have had a constant energy density during
some time after matter-radiation equality. However, such a constant energy density is welcome
if we want to model dark energy and it lies at the center of axion quintessence scenarii. In such
models, one wants instead to impose that the CDM-like behaviour has not started yet:

maxion DE < H0 ⇠ 10�33 eV , (2.1.29)

where H0 is today’s Hubble rate. Then, the relic density is

⌦axion DE ⇡ 8 ⇥ 10�2

⇣ ma

10�33 eV

⌘2
✓

a0
MP

◆2

. (2.1.30)

Note that ⌦a ⇠ 1 today requires a0 > MP . We will comment more on this later.

Now, one may wonder what explains the origin of a0 in (2.1.23), (2.1.30), etc. The mechanism
invoked is called misalignment mechanism, and it takes place whenever a spontaneously broken
global symmetry is coupled to cosmology. The schematic idea goes as follows: at high tempera-
tures, the thermal fluctuations modify the zero temperature potential and the global symmetry
is not broken. When the temperature drops below the breaking scale (which is close to the axion
decay constant fa in minimal models), the minimum of the potential shifts away from the symme-
try conserving point and a Goldstone mode (our axion) appears in the spectrum. Its initial value
a0 is random, since there is no preferred one due to the global symmetry. When the temperature
drops below the scale of explicit symmetry-breaking effects (as the QCD non-perturbative ones),
a potential for a0 develops and it sources an energy density.

The interplay between this picture, inflation and the notion of causal horizon is important.
Indeed, when the spontaneous breaking happens, every causally connected patch picks up a
symmetry-breaking vev, i.e. develops a constant background value for the axion field. If this
happens before inflation, each patch grows exponentially and our observable universe is essentially
made out of a single patch (which explains the temperature correlations at large angles in the
CMB). Thus, one is free to consider whatever a0 value in e.g. (2.1.23), and the only constraints
come from one’s taste for tuning and from the fact that the axion is periodic, with a periodicity
given by the breaking scale: a0 . ⇡f . In this picture however, one must take into account the
possible thermal quantum fluctuations experienced by any field in de Sitter space (dS), which
could shift a0 during inflation and prevent from arbitrarily tuning. The scale of those effects
is given by the dS temperature Hinflation

2⇡ [70]. On the other hand, if the spontaneous breaking
happens after inflation, no such effect is relevant but the field has to locally choose a vev, so that
different values for a0 are statistically distributed over the observable universe. Consequently,
the average value of the energy density is fixed, given the average value of ha0i =

⇡fap
3

(calculated
for a uniform distribution). This scenario thus has a strong predictive power, since it is only
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determined by the scale fa. For instance, demanding that ⌦QCD axion < 0.25, we derive8

fa . 1011 GeV . (2.1.31)

However, the existence in this picture of many different patches induces the presence of topological
defects, which we will discuss soon.

We worked out the consequences of the misalignment mechanism, since it is inevitable. There
are other ways of producing axions in cosmology though, and we briefly comment on them. First,
the axions may be coupled to matter or additional fields. So they could be produced from the
decay of heavy particles, in which case they add up to the density of relativistic species. This
production mode is for instance relevant for discussions of axions in supersymmetric models,
since they could be produced from the decay of their partners, sometimes necessary to avoid the
cosmological moduli problem [84]. Axions could also be produced thermally from the particle
bath. For weakly coupled light axions, this means that they are produced relativistically again.
QCD axions, which have a defining coupling to matter, are produced thermally, but in a very
negligible amount once we look at observationally consistent values for their decay constant.
Finally, there can be production of axions from topological defects. Topological defects are of
two kinds here: there are axion strings, which are formed when the axion value smoothly scans
its periodicity range along a closed curve. Then, inside the closed curve passes a string-like region
where the symmetry is unbroken, such that there is an increased energy density at the string core.
There are also domain walls, which exist when the axion potential admits several minima within
its periodicity range, reminding us again of the discussion around (2.1.7). Indeed, there are then
classical configurations of finite energy density where the axion spatially goes from one minimum
to a second, inducing again a wall-like local increased energy density. Domain walls, when they
form, are arranged in a network of walls which meet on strings. Such topological defects carry an
energy density and can easily upset the energy budget of the universe [85] either by the scaling of
their energy density with s or due to their continuous production of axions. Interestingly, those
axions have a rich spectrum and some of them are produced with low momenta, adding up to the
CDM budget. The study of axion emission from strings is still very active, see e.g. [86]. If one
wants to get rid of the string-wall network, there are two major options. First, one can ensure
that NDW = 1 by suitably choosing the UV completion of the axion, as in the KSVZ model.
Second, one can introduce in the theory an additional controlled source of an axion potential
such that the degeneracy between the vacua is lifted and the walls become unstable [85, 87, 88].
We will come back to this solution, in an albeit different context, later.

2.1.7 A short word on experimental and observational bounds

As was mentioned before, the theoretical interest in axions is supported by a remarkably active
and diverse experimental program. The latter intends to scan very broad ranges of masses and

8This bound can also be understood as necessary for an absence of tuning in the pre-inflationary scenarii.
However, there has been some significant activity aiming at relaxing this bound [71–83], which is thus to be taken
with a pinch of salt.
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test all the different couplings displayed in (2.1.6). There are experiments and/or observations
which are aiming at axion dark matter, others which test the general fact that there exist in
nature a light scalar field with couplings of the kind (2.1.6), and some which are even testing
whether there exists a light scalar field. We briefly review the different approaches, not trying to
list references beyond the original papers on the subject.

In the first category, one finds haloscopes, an example of which is ADMX [89], an experiment
sensitive to the operator "aF F̃" which couples axions to photons. In a microwave cavity, a
magnetic field waits for a dark matter axion to deposit its energy into the cavity. It is sensitive
to the axion-photon coupling, C�

fa
in the language of (2.1.6), and to axion masses comparable

with the inverse of the size of the cavity (⇠ 10�6 eV here). Updates of ADMX (see e.g. [90]) or
alternative experiments testing the same operator (e.g. [68,91]) are planned or operative. There
are also experiments aiming at detecting the "@a  F" (or "@a  ", whose associated coupling
is denoted ga in what follows) kind of operator by measuring the oscillating EDM (respectively
the oscillating spin-dependent forces) which axion dark matter induces on electron or neutrons.
Examples are [69,92,93], working in the low mass region (. 10�6 eV).

In the second category, there are helioscopes, i.e. searches for axions emitted by the Sun
via direct conversion into X-ray photons on Earth, such as CAST [94] or the future IAXO [95],
sensitive again to the "aF F̃" operator and to sub-eV axions. Indirect astrophysical information
can be obtained on the "aF F̃" and "@a  " operators by looking at star cooling [96,97] or energy
loss in supernovae [98], for a large range of axion masses only bounded by the star temperature
(respectively . 100 keV or . 100 MeV). At the earth-only level, there is a cute kind of approach
called "light-shining-through-walls" [99, 100], which converts a photon into an axion and back
again after the axion went through a wall that light cannot pass, and experiments which study
the evolution of polarized light in the vacuum, such as PVLAS [101]. There are also limits imposed
on spin-dependent axion-mediated forces [102], which test the "@a  " operator for both nucleons
and electrons. Finally, there are collider-based searches for rare meson decays into axions.

The last kind of observations, whose generality and reach is quite impressive, is due to the
fact that spinning black holes can enhance field fluctuations in their ergosphere, in a field theory
analog of the Penrose process. This fact, dubbed black hole superradiance, tends to spin black
holes down, while it does not require anything more than the fact that there exists a field in
the theory susceptible to be enhanced as soon as it quantum mechanically fluctuates. Thus,
observations of old black holes with large spins put stringent bounds on small masses (10�22 eV
. m . 10�10 eV) spinless bosons [103–105].

Outputs of all those searches are usually expressed as exclusion regions in a plane (mass,coupling).
An example is given in Figure 2.2 for the axion-photon coupling.

As a wrap up, strong bounds which are useful to have in mind are the following:

C�

fa
. 10�11 GeV�1 and gae . 10�13 GeV�1 if ma . 100 keV (2.1.32)
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Figure 2.2: Exclusion regions for the axion-photon coupling, copied with permission from [106]
The yellow band indicates where natural values are found for the benchmark models discussed

in section 2.1.2

from stellar (white dwarfs and globular clusters) cooling, and

gaN . 10�8 GeV�1 if ma . 50 MeV (2.1.33)

from energy losses in the supernova SN1987a. None of these bounds depends on the fact that
the axion makes up most of dark matter. To those bounds, one may add that axion dark matter
should lead to correct structure formation up to non-linear observables, which imposes

ma,DM > 10�22 eV . (2.1.34)

2.1.8 Challenges for axion model building: decay constants and U(1)PQ
quality

We introduce here two of the challenges sometimes faced along axion model building, which will
be important in several of the discussions to come in this thesis.

The first one concerns the decay constant fa. As we saw, it defines the mass of the QCD axion
and, in minimal models, the strength of its interactions. For ALPs, one can analogously define a
decay constant either using the ALP periodicity or the strength of its interactions. It turns out
however that it is sometimes desirable to introduce a hierarchy between two alternative definitions
of the decay constant, e.g. between an ALP periodicity and the strength of its interactions. For
instance, we saw that the most stringent bounds on fa for a QCD axion come from constraints on
its coupling to photons and fermions. Hence, one could be tempted to design models where the
coupling to photons or fermions is strongly suppressed (see e.g. [107–109]), enabling the axion
mass to get much bigger (giving up the interpretation that the axion makes up all dark matter).
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Such setups are relevant for collider-based axion searches [110–115]. Alternatively, one may want
to decorrelate the scale which describes the axion dynamics from the scales defining the rest of
some hidden sector. An example of when this happens has already been shown around (2.1.30),
since we saw there that a big enough relic density for axion dark energy demands trans-Planckian
initial field values. Similar things happen for axion inflation [61] or relaxion models [116]. This
may feel worrying since scales above the Planck scale are expected to be associated to quantum
gravity effects and to the breakdown of a usual EFT analysis. Quantitative views on this issue
will be discussed again in the context of swampland conjectures, see section 4.4. Consequently, it
would be reassuring if the axion scale was effective, smartly built from sub-Planckian fundamental
scales (see e.g. [62]). In the same spirit, one could try to explain the hierarchy between usual
particle physics scales, such as the GUT/see-saw scale or the Planck/string scale, and fa, which
may for instance be forced to be intermediate (remember (2.1.31)).

The second challenge has to do with the quality of the axion shift symmetry (which we call
U(1)PQ in what follows, even if we talk about a generic ALP). By a high quality symmetry, we
refer to a symmetry which is "hard" to explicitly break. There are two standard meanings for
this: either the operators which break the symmetry explicitly are of high dimensions and hardly
affect low energy physics, or their associated coefficients are (naively unnaturally) suppressed,
if for example they are not generated perturbatively and enjoy the suppression associated to
non-perturbative effects (e.g. multiplication by e�8⇡2/g2 for instanton contributions).

Why are we concerned about the possible quality of U(1)PQ? Applications of axion physics
usually demand very light particles. Indeed, the QCD axion with intermediate/high fa (due to
astrophysical observations, as we said earlier) is necessarily a light particle, and it is frequent
to be interested in very light ALP dark matter [117–122], for instance to solve the core-cusp
problem [123]. In addition, we already emphasized that axion quintessence is a very light particle.
On the other hand, uncontrolled explicit symmetry breaking corrections to the lagrangian of the
theory spoil the pseudo-Goldstone nature of axions and give them an uncontrolled mass. This
can be illustrated at the level of the KSVZ model of a QCD axion: if we added to the lagrangian
(2.1.3) the U(1)PQ breaking operator

L⇠⇠⇠⇠U(1)PQ =
y

⇤n�4
�n + h.c. (2.1.35)

(where ⇤ is a high scale of new physics), it would induce the following term in the axion potential,
in addition to the usual QCD contribution:

L � �
mumdm2

⇡0f 2

⇡

2(mu +md)2

✓
a

fa
+ ✓QCD

◆2

+ |y|⇤4

✓
fa

p
2⇤

◆n

cos

✓
na

fa
+ arg(y)

◆
, (2.1.36)

where we defined � = fap
2
ei

a
fa and used that hai ⇡ �✓QCDfa. Upon minimization, we find an

effective ✓-term

hai

fa
+ ✓QCD ⇡

n|y|(mu +md)2⇤4

⇣
fap
2⇤

⌘n

sin(n✓QCD � arg(y))

mumdm2

⇡0f 2
⇡

. (2.1.37)

Assuming that all the input parameters are unrelated and O(1) (which implies n✓QCD �arg(y) =

O(1)) and noting that mumdm2
⇡0

f2
⇡

(mu+md)
2⇤4 is small, we understand that we have to ensure that the quantity
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|y|(fa/
p
2⇤)n is even smaller (such that eventually, hai

fa
+ ✓QCD < 10�10). Since, for reasons such

as the naturalness of scalar fields, we do not have any reason to expect fa ⌧ ⇤, we are left with
the two options |y| ⌧ 1 or n � 1, illustrating our characterization of a high quality symmetry.
For instance, for ⇤ = MP and fa = 1012 GeV, we need either n � 14 or |y| . 10�55. Note on
the other hand that the addition of (2.1.35) lifts the degeneracy between the vacua of the QCD-
induced axion potential. This is the explicit breaking solution to the presence of cosmological
domain walls that we mentioned earlier. Implementing it then demands a subtle balance between
keeping the breaking small enough not to spoil the PQ solution, but sufficient for the walls to
have a lifetime which does not exceed cosmological timescales.

At this stage, one may object: why should this explicit breaking happen in the first place?
The answer to this comes from expectations about quantum gravity: quantum gravity tends
to violate global symmetries [124–126], meaning that there are quantum gravitational processes
which generate additional, symmetry breaking, operators in the quantum effective action even
though they are not generated for symmetry reasons in field theory calculations. We will comment
on this in more details when we discuss swampland conjectures, but we deal with consequences for
axions here. Typically, one expects quantum gravity to generate operators such as (2.1.35), with
⇤ ⇠ MP and no restriction on n. To avoid spoiling the Peccei-Quinn solution to the strong CP
problem, one way to proceed is to make U(1)PQ accidental, arising as a byproduct of a choice of
some gauge group and matter content, since in contrast gravity goes along with gauge symmetries.
We then talk about a protected global symmetry. Such line of model building has been followed
by many authors, including [88, 127–141]. Typically, strong enough protection requires either
large gauge charges for scalar fields (see e.g. [88]) or many gauge groups as in quiver models (see
e.g. [133, 134]). The latter can be understood as latticized versions of extra-dimensional models
where the PGBs are interpreted as fifth components of vector fields, which appear as scalars
in 4D, with a shift symmetry inherited from the higher-dimensional gauge invariance. More
generally, protected axions can be obtained as zero modes of gauge fields, which could be vectors
but also higher degree forms, in compactifications of higher-dimensional theories. We will have
more to say about axions from extra dimensions and their protection when we discuss axions in
string theory in section 4.3.

2.2 A clockwork model for a high protection of an axion
shift symmetry

We present now a specific implementation of the ideas discussed just above in section 2.1.8, and
study in section 2.2.2 a quiver model for an axion protection, which exhibits at the same time
a generation of hierarchies between input and effective scales. Many features of this model are
inspired by the so-called clockwork mechanism, so we first review it in section 2.2.1.
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2.2.1 Clockwork mechanism

The clockwork mechanism was originally designed [142–144] to generate exponential hierarchies
out of order one parameters. It has been applied to models of relaxion [142], QCD axions or ALPs
[143–147], additional gauge interactions [144, 148], flavour physics [149, 150], neutrino masses
[144,151–153], dark matter [154–157], inflation [158,159], it has been extended [160], interpreted
in terms of extra-dimensional theories [144, 161–169] and it has been used within discussions of
swampland conjectures [170–172]. It can be explained with a four- or five-dimensional vocabulary,
which we will make explicit now.

Discrete clockwork mechanism

Discrete clockwork models are four-dimensional models with a symmetry-breaking pattern such
that the properties of surviving light modes are characterized by parameters exponentially dif-
ferent from the input ones, for which one may choose natural values. Clockwork models have
used any kind of symmetries one may try to break to generate this clockwork effect [144]: shift
symmetries, chiral symmetries, gauge symmetries, diffeomorphisms... However, since it is illus-
trative enough and for conciseness, we focus on scalar shift symmetries in our review of clockwork
models, closely following the treatment in [144].

The so-called scalar clockwork starts with N real scalars whose shift symmetry is softly broken
down to a diagonal one by the following lagrangian:

L = �
1

2

NX

i=1

(@µ⇡i)
2
�

m2

2

N�1X

i=1

(⇡i � q⇡i+1)
2 , (2.2.1)

where q is a number and the exact diagonal symmetry is seen to be9 ⇡i ! ⇡i + qN�i↵f . Con-
sequently, one can identify a massless Goldstone scalar ⇡(0)

/
PN

i=1

⇡i
qi�1 , which indeed is a zero

eigenvector of the mass matrix (typical of clockwork models):

M2 = m2

0

BBBBBB@

1 �q 0 ... 0 0
�q 1 + q2 �q ... 0 0
0 �q 1 + q2 ... 0 0
... .. ... ... ... ...
0 0 0 ... 1 + q2 �q
0 0 0 ... �q q2

1

CCCCCCA
(2.2.2)

The zero mode ⇡(0) has an exponential profile along the original scalars ⇡i, so if matter was
coupled at the i-th "site" of the clockwork, it would feel an exponentially suppressed coupling
to the massless eigenstate. For instance, if ⇡i was coupled to the topological density of a gauge
group10:

L � �
⇡i

32⇡2f
F a
µ⌫F̃

a,µ⌫ =) L � �
⇡(0)

32⇡2fqi�1
F a
µ⌫F̃

a,µ⌫ . (2.2.3)

9We introduced a scale f to connect with the UV discussion below.
10We will sometimes implicitly assume q � 1 to avoid clumsy

p
1 + q�2 + ...+ q�2N normalization factors.
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Then, matter living at the N -th site could feel an effective axion decay constant qN�1f , orders
of magnitude bigger than the original one f . We refer to the site-dependence of any effective
coupling, scale, etc, in clockwork models as clockwork localization in what follows. This property
has for instance been used to design models of invisible QCD axions with additional heavy physics
at the TeV scale, possibly within the reach of the LHC.

Indeed, two kinds of heavy matter come with the massless boson ⇡(0). The first one is composed
of the heavier pseudo-Goldstone modes obtained out of the ⇡is. For the mass matrix (2.2.2), their
profiles are given by

⇡mass

i =
NX

j=1

Oij⇡j , with Oij / q sin

✓
i(j � 1)⇡

N

◆
� sin

✓
ij⇡

N

◆
, (2.2.4)

and their masses are m2

i = m2
�
q2 + 1 � 2q cos

�
i⇡
N

��
, with i = 1, ..., N � 1. The spectrum thus

features a band-like structure and, contrary to the massless mode, those heavy excitations are
not exponentially localized towards one clockwork site. In particular, any matter would couple
to the heavy modes with order 1/N suppression, e.g. with a decay constant Nf for the axion
example discussed above. In such discrete models, besides being exponentially less coupled to
matter leaving at the N -th site than to matter leaving at the first one, the massless boson couples
exponentially less than heavy modes to matter leaving at the N -th site, while their couplings are
comparable at the first site.

The second kind of heavy matter consists of partners of the ⇡is in a model where the shift
symmetries are linearly realized and softly broken. For instance, the ⇡is can be understood as
the phase degrees of freedom of complex fields Ui which obtain a vev:

Ui =
f + hi
p
2

ei
⇡i
f , (2.2.5)

and which are arranged in a lagrangian which softly breaks their U(1) phase shifts down to the
diagonal one Ui ! eiq

N�i↵Ui:

L = �

NX

i=1

|@µUi|
2
� V ({|Ui|

2, i = 1, ..., N}) +

 
�

N�1X

i=1

UiU
†q
i+1

+ h.c.

!
(2.2.6)

Then, defining m2 = �
⇣

fp
2

⌘q�1

, the (second order) ⇡i lagrangian which proceeds from (2.2.6) is
(2.2.1). Even though the couplings of the longitudinal modes hi of the Uis do not follow from the
clockwork EFT (2.2.1) and for instance depend on the potential V in (2.2.6), assuming order one
coefficients locates those modes parametrically close to the scale f . Hence, the full detail of such
a model could be tested with low-energy machines even though the couplings of the light mode
seem to be governed by high-scale physics.

Continuous clockwork mechanism

It can be tempting to take the large N limit of (2.2.1). There is an interesting way to do so [144]
which sends (2.2.1) on a free massless scalar field theory living on a five-dimensional warped
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spacetime called the linear dilaton background [173]11.

Indeed, keeping m2

N2 and qN fixed as N ! 1 has a simple geometric interpretation. To see this,
let us consider a 5D theory of a free massless field, living on the 5D linear dilaton background of
metric

ds2 = e� 4ky
3 (dx2

µ + dy2) , (2.2.7)

where y is the fifth coordinate, which takes values between 0 and L, and the usual Minkowski
metric contracts 4D indices. The action is

S =

Z
d5x

p
�g

✓
�
1

2
gMN@M⇡@N⇡

◆

=

Z
d4xdye�2ky
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�
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2
((@µ⇡)

2 + (@4⇡)
2

◆

=
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d4xdy

✓
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1

2
(@µ⇡

0)2 �
1

2
e�2ky(@4[e

ky⇡0])2
◆

.

(2.2.8)

where we defined ⇡ ⌘ eky⇡0. We can latticize/deconstruct this theory by defining yi = i�4 ⌘ i LN ,
and replacing

Z L

0

dy f(x, y) !

NX

i=1

�4f(x, yi) ,

@yf(x, yi) !
f(xµ, yi+1) � f(x, yi)

�4

(2.2.9)

for any function f . We thus get (defining ⇡0(x, yi) ⌘ ⇡0
i(x)):

S = �
�4

2

NX

i=1

(@µ⇡
0
i)
2
�

1

2�4

N�1X

i=1

e� 2ikL
N

⇣
e

(i+1)kL
N ⇡0

i+1
� e

ikL
N ⇡0

i

⌘2

= �
1

2

NX

i=1

(@µ⇡i)
2
�

N2

2L2

N�1X

i=1

⇣
e

kL
N ⇡i+1 � ⇡i

⌘2

,

(2.2.10)

with ⇡0
i ⌘

⇡ip
�4

. Identifying q ⌘ e
kL
N and m2

⌘
N2

L2 , we indeed recover (2.2.1).

In this picture, site-localized matter becomes matter living on a brane localized along the fifth
dimension. In particular, couplings of the type (2.2.3) become

S �

Z
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p
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�(y � y0)
p
g44
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�
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5

(2.2.11)
where in the first line, ⇡ is normalized as in the first line of (2.2.8) and g(4) denotes the four-
dimensional metric. When projected on the four-dimensional zero mode ⇡(0), the last line includes

�

✏µ⌫⇢�q
y0
�4 ⇡i= y0

�4
(xµ)

64⇡2F 3/2
p
�4

F a
µ⌫F

a
⇢� � �

✏µ⌫⇢�⇡(0)

64⇡2F 3/2
p
�4

F a
µ⌫F

a
⇢� (2.2.12)

11Said differently, (2.2.1) can be understood as the deconstruction [174,175] of this 5D theory.
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and we see that such a deconstruction does not yield hierarchical couplings of the zero mode
to matter localized at different sites when no y-dependence for the scale F is introduced in 5D.
However, the couplings to massive modes reads

�

✏µ⌫⇢�q
y0
�4 ⇡i= y0

�4
(xµ)

64⇡2F 3/2
p
�4

F a
µ⌫F

a
⇢� � �

✏µ⌫⇢�qiOji⇡mass
j

64⇡2F 3/2
p
�4

F a
µ⌫F

a
⇢� , (2.2.13)

where Oji = O(1) are defined in (2.2.4). Hence, couplings of the zero and massive modes at a
given site are exponentially different, and the possibility that massive modes are within reach
of low-energy detectors whereas the massless mode is very weakly coupled remains. Extensive
discussions on this issue, as well as 5D formulations involving both warping in the fifth dimension
and brane mass terms can be found in [162,163,166].

2.2.2 The model

As we have said, there have been several clockwork approaches to axion models [143–147, 161].
Some of them use clockwork global symmetries, some rely on the description of the clockwork
axion as a five-dimensional field, some do both. In this section, we sum up [176], attached at the
end of this thesis, and study a 4D clockwork model of a QCD axion or cosmological ALP, with
its associated global shift symmetry being accidentally enforced by a gauge abelian quiver with
scalar bifundamental fields.

Motivation and overview

The model under study below addresses the concerns raised in section 2.1.8. Indeed, the 4D field
content is such that the most general renormalizable gauge-invariant lagrangian preserves an
accidental spontaneously broken global symmetry, associated with an axion mode. Furthermore,
the specific 4D gauge charge assignment ensures a strong protection of this accidental symmetry
from explicit breaking terms, even when the discretization is crude (i.e. when the quiver has few
sites), and it generates a hierarchy between the effective axion decay constant fa and the scale f

of spontaneous symmetry breaking: fa is reduced by a factor which grows exponentially with the
number of quiver sites, in a way opposite to the usual clockwork models. Some of the features of
the latter are nevertheless recovered: the axion has a clockwork profile along the quiver sites, and
this profile can generate effective coupling scales which are different from fa (which appears in
the potential of the axion and its couplings to gauge fields) and bigger than f , when one considers
for instance couplings of the axion to the spins of matter particles.

In what follows, we illustrate and use those properties by identifying our axion with a QCD
axion or with a dark matter ALP. In the former case, the protection is only designed such that the
QCD-induced mass overcomes any explicit breaking mass, as discussed in section 2.1.8. However,
we show that this blessing is also a curse, since it requires a number of UV fermions which
increases with the quality of the shift symmetry. On the other hand, in the latter case of a DM
ALP, one does not need to generate a non-perturbative mass for the axion and can only consider
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any explicit breaking contribution such as the one from gravity. Then, the protection ensures
that the explicit breaking mass is very small, such that the axion proves to be a particularly
economical ultra-light DM candidate.

The theory’s content and the axion

The 4D setup we consider is an abelian quiver model with bifundamental scalar fields [145,161].
The precise matter content and charge assignment is given by the quiver of Figure 2.3 (where q

and N are integers),

Figure 2.3: Abelian quiver of the model

with the following (most general renormalizable) lagrangian:

L = �

NX

i=1

1

4g2i
Fµ⌫,iF

µ⌫
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NX

k=0

(|Dµ�k|
2 +m2

k|�k|
2) �

NX

k,l=0

�kl|�k|
2
|�l|

2 , (2.2.14)

where Fi is the field strength of the abelian vector field Ai, with coupling constant gi, and with
the covariant derivatives Dµ�k =

�
@µ � i(1 � �k,0)Aµ,k + iq(1 � �k,N)Aµ,k+1

�
�k. This lagrangian

has a U(1)N+1 invariance, with a U(1)N gauged subgroup.

We choose the parameters m2

k and �kl of (2.2.14) so that all the scalar fields �k get vevs fk,
spontaneously breaking all the gauge symmetries. N out of the N + 1 phases of the �k are
absorbed by the gauge vectors through the Higgs effect (we write �k =

fk+rkp
2
e
i
✓k
fk ):

L � �Aµ
i (qfi�1@µ✓i�1 � fi@µ✓i) . (2.2.15)

The last, uneaten phase a remains in the spectrum after gauge fixing as the Goldstone boson
associated to the accidental U(1)PQ global symmetry which is the ungauged factor of the U(1)N+1

symmetry group of (2.2.14). The profile of this boson, if the vevs are taken to be all equal to a
given f , which is assumed from now on, reads:

a =
✓0 + q✓1 + ...+ qN✓Np

1 + q2 + ...+ q2N
. (2.2.16)

Eq. (2.2.16) displays the exponential localization discussed in clockwork models, and the charges
of the original scalar fields under the global symmetry also match those which appear in those
models. Indeed, U(1)PQ acts here as �k ! eiq

k↵�k.

Goldstone boson protection

The renormalizable lagrangian (2.2.14) has an accidental exact U(1)PQ global symmetry, hence
the axion a is massless. We expect however that global symmetries are broken (e.g. by gravity
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effects), which forces us to include all higher order operators allowed by gauge invariance in the
effective theory12. For the quiver of Figure 2.3, these operators must be combinations of

|�k|
2 and �0�

q
1
...�qN

N . (2.2.17)

Hence, operators that explicitly break the global symmetry must involve the second term and
be of extremely high dimension as soon as q and N are both slightly bigger than one. We thus
obtain in this setup a pseudo-Goldstone boson with a mass very well protected by the gauge
symmetry, even with a reasonable number of gauge groups. More specifically, if we use (2.2.16),
we find:

�0�
q
1
...�qN

N

M1+q+...qN�4
c

+ h.c.

����
axion terms

= 2
⇣ f

p
2Mc

⌘1+q+...+qN

M4

c cos

✓
a

fa

◆
� �

1

2
m2

aa
2 , (2.2.18)

where
fa =

fp
1 + q2 + ...+ q2N

(2.2.19)

and
ma =

⇣ f
p
2Mc

⌘ 1
2 (q+...+qN�1)p

1 + q2 + ...+ q2NMc , (2.2.20)

and Mc is the cutoff of the theory, which we take equal to the Planck mass MP hereafter since we
consider gravity-induced breaking effects for simplicity. Note that fa is significantly lower than
f when N is large and q > 1 (we will come back to this soon).

The axion as a QCD axion

Let us now identify U(1)PQ with a Peccei-Quinn symmetry. We study first the low-energy EFT
of the axion, assuming that every other massive field has been integrated out. We consider thus
the following axionic coupling, effectively written here in terms of the original fields, then using
(2.2.16):

i log
⇣
�0�

q
1
...�qN

N

⌘
Tr
⇣
Gµ⌫G̃µ⌫

⌘
+ h.c. � �

2
p

1 + q2 + ...q2N

f
aTr

⇣
Gµ⌫G̃µ⌫

⌘
, (2.2.21)

with Gµ⌫ the gluon field strength and we recognize the effective axion decay constant of (2.2.19).
The operator in the log is, as we said before, the first gauge-invariant term capable of coupling
the axion of (2.2.16) to the gluons that we could have written. This coupling has two major

12We already said that global symmetries are broken by Planck scale effects. The strength of the breaking is
well defined in a consistent theory of quantum gravity. In what follows, we parametrize gravitational corrections
as higher dimensional operators in the effective theory, suppressed by powers of the Planck scale with order one
coefficients, assuming that the breaking is described correctly by the EFT approach. One may wonder whether
such contributions could come from non-perturbative effects and consequently enjoy a greater suppression, as
suggested by studies of axions arising from antisymmetric forms in string theory [55]. However, the kind of
axions discussed here originate from charged matter fields. Even in string theory, those could in principle receive
perturbative higher-order corrections to their potential, which would appear as usual higher-order terms in the
EFT [177]. Furthermore, if the theory of gravity includes a heavy fermionic sector whose renormalizable couplings
break the axion shift symmetry, the induced Coleman-Weinberg potential is also consistent with the effective
theory point of view [133,134]. Thus, we assume that the magnitude of gravitational corrections is well described
by the EFT approach, with no additional suppression.
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features: it involves all the quiver sites, and it implies a decrease of the decay constant of the
axion compared to the scale of breaking f .

This suggests that the present setup could describe intermediate scale axion decay constant
obtained from high scale physics (such as string scale physics). This feature is common to most
models with a global symmetry protected by gauge symmetries: the scale fa is not identical
to the original scale f of the spontaneous global symmetry breaking and one may consider the
possibility of fa ⌧ f ⇠ MP . The relation between the scales fa and f depends on the scalar
fields charges, their vevs and their number, as well as on the number of gauge symmetries. Our
model is then helpful in disentangling the different contributions.

When non-perturbative effects of QCD turn on, (2.2.21) induces a potential for the axion
(which we shifted such that its vev includes ✓QCD):

L � m2

⇡0f 2

⇡

s

1 �
4mumd

(mu +md)2
sin2

✓
a

2fa

◆
. (2.2.22)

We also include every gauge-invariant term to the potential, as discussed above, and in particular
generate a classical explicit breaking mass term (2.2.20) for the axion. In order to have

��� a
fa

��� <
10�10 at the minimum of the potential and solve the strong-CP problem, we must ensure [88,131,
132] that:

"
ma,QCD ⇠

m⇡f⇡
fa

#
> 105

"
ma,explicit ⇠

⇣ f
p
2MP

⌘ 1
2 (q+...+qN�1) f

fa
MP

#
. (2.2.23)

For example, when q = 3 and N = 2, it implies f . 1012 GeV. If now q = 3, N = 3 and Mc = MP ,
this becomes f . 1016 GeV. The values of the parameters q and N can be of course translated
into the value of the ratio f/fa ⇠ qN .

Axion couplings to photons, which are the subject of most axion searches, are also part of this
low-energy discussion. They can be derived when we consider the generalization of (2.2.21):

L �
i

16⇡2
log

⇣
�0�

q
1
...�qN

N

⌘
(CGa,µ⌫G̃a

µ⌫ + EF µ⌫F̃µ⌫) ! �

p
1 + q2 + ...q2N

16⇡2f
(E � 1.92C)aF µ⌫F̃µ⌫

(2.2.24)
(see (2.1.8)), where F is the photon field strength, F̃ its dual. These couplings feature the
dependence on the decreased effective decay constant (2.2.19) we already encountered in (2.2.21).
Couplings of the axion to fermions, such as axion-spin couplings, and their effective scales are
discussed later.

Now, we study how (2.2.21) can be generated from loops of heavy fermions: (global) anomalies
with respect to SU(3)c are mediated by colored fermions with some charge under the (global)
symmetry, which run in triangle loops between gluons and scalars, whose phase contains part of
the axion mode. The schematic procedure is (see appendix B for details and notations):

L = �|@�|
2
� Q�µ(@µ � iGa

µT
a)Q � (y�QLQR + h.c.) where � =

f
p
2
ei

a
f

� �
(@a)2

2
� Q

✓
�µ[@µ � iGa

µT
a] +

yf
p
2

◆
Q+ i

y
p
2
aQ�5Q

Q loop

���! �
a

16⇡2f
GG̃ =

i

16⇡2
log(�)GG̃ ,

(2.2.25)
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where for compactness we defined GG̃ = Tr
⇣
Gµ⌫G̃µ⌫

⌘
. We then see how to generate (2.2.21),

starting from the following lagrangian:

L � �y0�0QL,0QR,0 � �1Q
i=1...q
L,1 Y1,ijQ

j
R,1 + ... � �NQ

i=1...qN

L,N YN,ijQ
j
R,Nh.c.

Qi loops

����!
i
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�
log(�0) + ...+ qN log(�N)

�
GG̃ =

i

16⇡2
log

⇣
�0�

q
1
...�qN

N

⌘
GG̃ .

(2.2.26)

This procedure, which is the straightforward one that generates an U(1)PQ ⇥ SU(3)2c anomaly
without generating gauge anomalies (or said differently, that generates (2.2.21)), nonetheless
displays important features shared by all other possible choices for the axion-fermions couplings.
First, there is no freedom in using the axion profile to modify the effective scale of the axion-gluons
coupling (here, it comes from the fact that we needed to add colored fermions at each site, in
accordance with the fact that (2.2.21) involves all quiver links). Second, the number of additional
fermions grows exponentially with N (this is obvious to check in (2.2.26)), or equivalently linearly
with the efficiency of the protection. This observation cannot be qualitatively circumvented by
modifying (2.2.26), since the new colored fermions must be such that they are unobserved at the
LHC and that they do not make the QCD gauge coupling constant diverge before any scale up to
which we would like a field theory incorporating QCD to be valid (e.g. the Planck scale, or the
GUT scale). Figure 2.4 shows the outcome of such an analysis, performed in the full publication.

Figure 2.4: Number of additional particles, function of
the first explicit breaking operator dimension

A consequence of this is that, in order to use (2.2.19) to bring a Planck scale f down to an
intermediate scale fa = 1010�11 GeV, we need in (2.2.26) ⇠ qN & 107�8 additional fermions. This
offers a last connection between the number of additional fermions and the ratio f/fa.

If we do not care about large hierarchies but only about the protection of U(1)PQ, we can look
at models with few additional particles and work out their phenomenology. For instance, if we
consider the case f ⇠ 1011 GeV, q = 3 and N = 2, which is enough to ensure the protection of
U(1)PQ as we said below (2.2.23), we get a (detectable) coupling to photons from (2.2.24), with
1 + 3 + 32 = 13 additional Dirac fermions in the 3 of SU(3)c:

L � (8.6 ⇥ 1012 GeV)�1aF µ⌫F̃µ⌫ . (2.2.27)
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The axion as a cosmological axion-like particle

Now, we study the cosmology of the axion (2.2.16) as an ALP, meaning as a pseudo-Goldstone
boson not designed to solve the strong-CP problem, and whose interactions are consequently
less constrained than those of the QCD axion. We focus on models where the ALP potential is
entirely generated by perturbative physics in a UV theory13, here gravitational physics (Mc = MP

in (2.2.20)), which grants the ALP a small mass even for few quiver sites and which is sufficient
to make it a good dark matter candidate.

Indeed, obtaining in our setup masses as low as those which appear in (2.1.34) or (2.1.29)
without tuning is easy (for instance, (2.2.20) equals ⇠ 10�33 eV when f = 0.13MP , q = 3, N = 4).
However, we saw previously that axion quintessence demands initial values which are higher than
the Planck mass. This can be achieved with some tuning on a0 or when the effective decay
constant of the axion is increased compared to the mass scales of the model (as in clockwork
models which, however, have no mass protection mechanism built in). Since our effective decay
constant (2.2.19) is reduced, the latter is not an option while the former is not enough to reach
the correct energy density (if we insist on keeping f below the Planck mass, as would be suggested
by swampland conjectures, see section 4.4): indeed if we impose ma . 10�33 eV, we can only
obtain ⌦a . 0.05 and we would need at least 13 of such ALPs to reach the observed dark energy
density. We thus do not go further into the analysis of axion quintessence in this setup.

In contrast, natural dark matter candidates do arise in our model. We scan the parameters f
and q for some values of N which satisfy the condition that ⌦a = 0.3 and (2.1.34). In (2.1.23),
we write a0 = ✏initfa and we allow for ✏init to range from 0.1 to ⇡� 0.1, and we include as well as
a constant multiplying the potential (2.2.18) ranging from 0.033 to 30. The outcome is shown in
Figure 2.5, in the (physical) (ma, fa) parameter space probed by our model. We also include the
parameter space for the QCD axion (which, due to its temperature-dependent mass, differs for
the one of other ALPs).

We see there that we obtain suitable DM candidates, and that the dependence on q and N of
the mass (2.2.20) allows us to reach very low ALPs masses. These small masses, combined with
the high scale f of their associated new physics, are hard to realize in a pure field theoretical
framework and are usually thought of as coming from a string axiverse [55–57]. Our setup
then provides an economical, in the sense of a low number of gauge groups, realization of such
values. For instance, the smallest masses discussed in the literature for ultra light dark matter,
ma ⇠ 10�21

� 10�22 eV, are obtained for f ⇡ 0.2MP , q = 3 and N = 4. This example, as well as
Figure 2.5, shows that a gravitational origin for (2.2.18) is sufficient to reproduce the cosmological
relic density of dark matter.

In order to conclude that such ALPs are to play a role in the cosmic evolution, we must check
that their lifetime can be comparable to or bigger than the age of the universe. We refer to the

13There could also be instantonic contributions to the potential, associated to a confining gauge group with a
U(1)PQ anomaly. However, since the discussion of the previous section showed us that making U(1)PQ anomalous
demands a large number of additional fermions in the theory, especially when N grows, we restrict ourselves to
those ALPs which do not have any anomalous couplings for simplicity.
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Figure 2.5: Parameter space for a DM ALP of mass ma  10�2 eV
(The pink region indicates the parameter space where ⌦a = 0.3, whereas colored bands show

where DM axions are found in our model. The QCD axion parameter space is given by the grey
line. Axes are log-scale)

full paper for more details on this, but the conclusion is that those axions are perfectly safe. It
is due to the fact that the non-anomalous, CP-even and gauge invariant operators which could
couple the axion to photons:

2aF F̃ , @µa@
⌘F µ⌫F̃⌘⌫ and @µa@⌘F̃ µ⌫F⌘⌫ (2.2.28)

are very much suppressed. They are also too weak to be probed by current ALPs searches. On
the other hand, there exist other operators which make the ALP detectable. Those are dimension
five couplings of a to fermions, generically written [49] as follows:

gaee
fa

@µa e�µ�5e and
gaNN

fa
@µa N�µ�5N , (2.2.29)

where gaXXs are dimensionless coupling constants, fa is again the axion decay constant, and N

and e are respectively the nucleon and electron fields. In our setup, due to the quiver structure,
it turns out that the couplings are naturally of the following magnitude:

�iqi@µap
1 + ...+ q2Nf

(u�5�
µu+ d�5�

µd+ e�5�
µe) . (2.2.30)

We do not discuss here details of how they are generated, but we note that, unlike anomalous
couplings (2.2.21), the ALP-spin coupling of (2.2.30) is site dependent due to the clockwork
profile (2.2.16). This is explained by the fact that they can be generated by matter localized at
a single site of the quiver.

If the mass (2.2.20) of the ALP is such that it constitutes part of the dark matter, these cou-
plings may soon be tested, for instance via Nuclear Magnetic Resonance (NMR) by the CASPEr-
Wind experiment [92]. As an illustration, in Figure 2.6 we assume that the coupling (2.2.30) is
located at site i = 0 of the quiver. We then see that CASPEr-Wind can detect some of the ALPs
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discussed in this paper (one example is for f . 5 ⇥ 1015 GeV, q = 2 and N = 4). Thus the
present model, while invisible to experiments based on axion-photons couplings, can be probed
and constrained by NMR-based ALPs searches.

Figure 2.6: Sensitivity of CASPEr-Wind to the ALPs
(colored regions indicate axions suitable to saturate the DM relic density, blue curves set the

limit of the upper left part of the plot where the sensitivity of CASPEr-Wind allows for a DM
detection. Both axes are log-scale)

Summary

In this work, we were motivated by the concerns of section 2.1.8. We have thus studied a QCD
axion or cosmological ALP in a model inspired by 4-dimensional clockwork models, with the
global symmetry accidentally arising due to gauge symmetries in an abelian quiver with scalar
bifundamental fields. We showed that with O(1) parameters, the mass induced by gravitational
effects is exponentially damped, such that the protection is sufficiently strong.

For the QCD axion we have detailed the axion EFT and the quantitative conditions to have
a protected PQ symmetry. We also remarked that the clockwork profile of the axion is useless
as far as anomalous couplings are concerned. We finally mentioned the connection between the
degree of protection of the axion mass, the explanation of the hierarchy fa ⌧ f and the number
of colored fermions needed to generate anomalous couplings to gluons, all linked together by the
underlying gauge symmetries.

In the DM ALPs models, assuming that their mass is solely given by gravitational corrections,
we have identified the parameter space such that the scale fa and the mass ma combine to give
the observed relic abundance. In the latter case, we have used gravitational corrections in a
constructive way, without referring to any additional strongly interacting sector and its chiral
anomalies. We saw that the ALP can be coupled to the standard model in a way which is
sensitive to the clockwork profile of the axion, allowing our models to be for instance tested via
Nuclear Magnetic Resonance experiments. Pseudo-Goldstone quintessence models of dynamical
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dark energy can also be obtained in such a setup, but their construction faces usual challenges,
such as a trans-Planckian axion decay constant, in order to recover the observed energy density.

What we have not covered

More details about topics which were discussed above are presented in [176]. They are briefly
listed below for the interested reader.

First, the model of Figure 2.3 can be understood as the deconstructed [174, 175, 178] version
of a 5D abelian gauge theory in a linear dilaton background with Dirichlet boundary conditions
for the 4D components of the gauge boson. The precise derivation is worked out.

Second, on top of the axion, there are massive vector and scalar modes in this model, whose
profiles and masses are shown.

Third, we deepen the discussion on the relationship between the gauge protection of the axion,
the hierarchy between the decay constant fa and the scale of new physics f , and the number of
necessary additional fermions to make U(1)PQ anomalous. In particular, the number and the
charges of the extra fermions are disentangled. From there, general conclusions on QCD axion
models that use global symmetries that are consequences of gauge symmetries are drawn and
tested on prototypical models such as [88,133,134]. The comparison with the latter models also
helps to conclude that the model of Figure 2.3 is economical, meaning that it requires less extra
particles and smaller input numbers than other models to achieve its goals.

Fourth, realizations of KSVZ- and DFSZ-like models are built, and non-gravitational explicit
breaking of U(1)PQ is discussed on this occasion. Precisely, we describe how fermionic operators
explicitly breaking U(1)PQ, which may or may not be present in addition to (2.2.26) depending
on the gauge charges, can be involved in the generation of (2.2.18) via a Coleman-Weinberg
potential calculation.

Fifth, a complete scan over parameters which enter the discussion of ALP DM is performed.
The dependence on Mc in (2.2.18) is for instance taken into account.

Last, explicit realizations of the ALP DM couplings to matter are presented, in order to show
that such couplings can be generated with a small (q,N -independent) number of additional par-
ticles and that they can be site-localized along the quiver, hence being sensitive to the clockwork
profile of the axion.

2.3 Flavour hierarchies and the Froggatt-Nielsen mechanism

We continue our treatment of the different motivations for BSM physics which we presented in
the introduction by specifically studying the fermion mass and mixing hierarchies in the SM.
This fine-tuning problem concerns the flavour sector of the SM, which has also been associated to
several experimental versus theoretical discrepancies over the years, linked with e.g. the magnetic
moment of the muon [10] or the decays of B-mesons (see e.g. [11] for latest results)
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We make those hierarchies clear by first reviewing the flavour structure of the SM in section
2.3.1. We also present important aspects of it which have to do with CP violation in section
2.3.2 and flavour changing neutral currents in section 2.3.3. Section 2.3.4 is devoted to a slightly
off-topic presentation of the notion of mass matrices textures. Then, we present the hierarchies in
section 2.3.5 and a mechanism to naturally generate them, the Froggatt-Nielsen (FN) mechanism,
in section 2.3.6. Some of its limitations, meant to be addressed later, are discussed in section
2.3.7.

2.3.1 Flavour structure of the SM: physical parameters

We thus start with a few words on the flavour structure of the SM. Examples of reviews are
[179–181]. Our conventions for the fields of the SM are presented in appendix A.1.2. Then, with
those conventions, the lagrangian of the SM is made out of kinetic terms, the Higgs potential and
the Yukawa potential. We are interested in the latter, which reads:

L � �(Y u
jiuR,iHQL,j + Y d

jidR,iH
cQL,j + Y e

jieR,iH
cLL,j) + h.c. . (2.3.1)

The Y s are 3 ⇥ 3 matrices in flavour space, and their coefficients are free in the SM. They are
not all observable though. Indeed, the phenomenological predictions are fully characterized by
fermion masses mu,d,e

i=1..3 and by the CKM matrix [182,183]. Those are defined as follows.

Due to spontaneous electroweak symmetry breaking, the Higgs field H gets a vev, such that
in unitary gauge, the relevant parametrization of the Higgs field is:

H =

✓
0

v+hp
2

◆
. (2.3.2)

Neglecting the Higgs boson h, and using a matrix notation in flavour space from now on, (2.3.1)
reduces to

L � �(uLM
uuR + dLM

ddR + eLM
eeR) + h.c. , (2.3.3)

with MX=u,d,e = vp
2
(Y X)⇤, are the mass matrices. The physical eigenstates are obtained by

diagonalizing those mass terms. To do this, let us recall that any n ⇥ n complex matrix M can
made diagonal with the help of a biunitary transformation (see e.g. chapter 4 of [184]):

8M 2 M(n, n), 9VL, VR and D, which verify

(
V �1

L/R = V †
L/R

D = diag(mi, i = 1, ..., n)
such that M = VLDV †

R .

(2.3.4)
The mis can all be taken real and positive. Using this, we write

MX = V X
L DXV X†

R . (2.3.5)

The physical fields are then defined as follows

XL �! V X
L XL, , XR �! V X

R XR , (2.3.6)

such that
(2.3.3) �! �(uLD

uuR + dLD
ddR + eLD

eeR) + h.c. . (2.3.7)
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The entries of the DXs, which are diagonal, define the mX
i=1,..,3. On the other hand, the following

happens for the couplings to the charged electroweak gauge bosons (contracting color indices for
quarks, and generation indices for all fields):
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(2.3.8)

where �i are the Pauli matrices, and we made the transformation ⌫L �! V e
L⌫L on top of (2.3.6),

using the fact that the neutrinos are massless in the SM and can be rotated without spoiling a
diagonal mass term. On the other hand, we see that in the quark sector, the couplings to the
gauge bosons are off-diagonal in flavour space. The matrix which appears there, defines the CKM
matrix:

VCKM ⌘ V u†
L V d

L =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (2.3.9)

The CKM matrix is unitary, and some of the phases of its components can be absorbed into the
left (and right) handed quark fields. Eventually, the irreducible information is contained in three
mixing angles ✓ij(i, j = 1, ..., 3, i < j) and one CP-violating phase �, as shown in the following
parametrisation of VCKM:

VCKM =

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A , (2.3.10)

where cij ⌘ cos(✓ij), sij ⌘ sin(✓ij).

The entries of the CKM matrix have been measured, and the fact that they form a unitary
matrix can thus be tested. Those tests are usually displayed using a geometrical interpretation
of the condition VCKMV †

CKM
= 1, which implies e.g.:

VudV ⇤
ub

VcdV ⇤
cb

+
VtdV ⇤

tb

VcdV ⇤
cb

+ 1 = 0 , (2.3.11)

and which can be understood as the fact that the points of the complex plane ⌦ = 0, A = 1, B =

⇢+ i⌘ ⌘ �
VudV ⇤

ub
VcdV ⇤

cb
form a triangle with

�!
AB =

VtdV ⇤
tb

VcdV ⇤
cb

, as pictured in Figure 2.7. The tests of these
relations are in good agreement with the theoretical expectations, as can be seen on Figure 2.8.

Of course, once the neutrinos are given masses to reproduce their oscillation pattern, there
is also a need to define a "leptonic CKM matrix", called the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix [185, 186]. We do not discuss it in this thesis, even though it could be of very
nice interest in the models which will soon be presented. Anyway, it is important to realize that
it represents the first set of BSM parameters ever measured.
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Figure 2.7: Geometrical representation of (2.3.11) in the (⇢, ⌘) plane,
copied with permission from [106]

2.3.2 CP violation

In the (perturbative) SM, the phase � in (2.3.10) is the only CP-violating parameter. It leads to
correlated CP violation in rare meson processes, which have been firmly observed, e.g. in [187]
(see as well [106] for a complete list of tests), and remain up to date consistent with the SM
prediction. It is interesting to notice that a third family of quarks was necessary to explain the
violation of CP observed in neutral kaon decays [187], which led Kobayashi and Maskawa [183]
to extend the CP-preserving two generations model of Cabibbo [182].

CP violation is important in cosmology, since it is one of the three Sakharov conditions [188]
for a possible baryogenesis (i.e. a cosmological generation of the matter-antimatter asymmetry
in the early universe). It is also an ingredient of many BSM scenarii. For instance, the PMNS
matrix possibly contains a CP-violating phase (even three if the neutrino are Majorana particles)
and the MSSM lagrangian incorporates fourty CP-breaking phases. Thus, tests of CP violation
provide efficient probes of BSM physics.

An important example of experimental data which are very sensitive to possible BSM physics
are the electric dipole moments of particles, already mentioned in section 2.1.1. Those are defined
as the coefficients d of the following operators (see e.g. [189]):

�
d 
2
 �µ⌫�5 Fµ⌫ , (2.3.12)

with  a fermion and F the electromagnetic field strength. CP act as d ! �d on EDMs.
We already saw in section 2.1.1 that the ✓-term induces an EDM for the neutron (which gives a
strong bound on ✓, at the source of the strong CP problem). It turns out that the CP violation
in the flavour sector also generates such an EDM, but in a way which is restricted by the flavour
structure of the SM: any CP-violating process induced by the flavour sector must depend on all
the mixing angles and vanish if one of them does (since, as we said, one needs a mixing between
at least three generations of quarks to get a physical CP-violating phase), and it must depend
on �, the CP-breaking phase. Consequently, one understands that the neutron EDM has to be
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Figure 2.8: Global fit result from various experimental tests of (2.3.11) in the (⇢, ⌘) plane,
copied with permission from [106]

proportional to the Jarlskog invariant J [190], defined by

Im(VijVklV
⇤
ilV

⇤
kj) ⌘ J(�ij�kl � �il�kj) (2.3.13)

which is the first CP-breaking physical (i.e. independent on quark field rephasings) combination
of elements of the CKM matrix which can be formed. It can be expressed in terms of the
parameters in (2.3.10):

J = c12c23c
2

13
s12s23s13 sin(�) , (2.3.14)

which has been measured to be J ⇠ 10�5. It is interesting to notice that, unlike the case of ✓,
it is small because of the arrangement of the cosines and sines of mixing angles (i.e. because of
the flavour structure), while � = O(1). Of course, since this invariant arises via weak interaction
diagrams in the calculation of the neutron EDM, there are also loop factors suppressing the result.
Eventually, one gets a prediction for dn from the flavour sector:

dn ⇠ 10�32e · cm , (2.3.15)

which is still beyond the reach of current experiments (see e.g. [191,192]).
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2.3.3 The flavour changing neutral currents

The flavour structure of the SM enables other precision tests, which have to do with flavour
changing neutral currents (FCNCs), or flavour changing neutral interactions, meaning the possi-
bility of changing the flavour of a particle without modifying its electric charge. In the SM, the
interactions with the uncharged electroweak gauge bosons, the gluons or the Higgs field are not
sensitive to the redefinitions (2.3.6). Indeed, restricting us to to the quark fields and ignoring the
gluons:
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itself, except for MX
! DX .

(2.3.16)
We understand from this that there is no tree-level FCNC in the standard model since every
uncharged interaction is flavour-diagonal, and that the only flavour changing tree-level processes
involve the emission of a charged W±

µ , as seen from (2.3.8).

On the other hand, loop diagrams such as the one of Figure 2.9 induce FCNCs. However,

Figure 2.9: A one loop diagram inducing a FCNC

since such diagrams are very much suppressed in the SM due to the GIM mechanism [5], FCNCs
set stringent bounds on many BSM scenarii.

2.3.4 Textures of the Yukawa matrices

As we said earlier, the entries of the Yukawa matrices are free parameters of the SM. There
are many BSM models which predict or correlate those free parameters, in order to reduce
the arbitrariness in the SM lagrangian, or at least which introduce model building tools to
explain some observed but unexplained features of the SM parameters. We review some of those
approaches now.
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Before we really tackle flavour hierarchies, let us discuss briefly a slightly off-topic but in-
teresting approach, which aims at increasing the predictivity of the SM. The idea is to impose
constraints on the Yukawa matrices Y X so that there are less free parameters than the usual ones.
Thus, relations are set between the different angles, phases and masses, which can be tested.

The prototypical examples are due to Fritzsch [193, 194] (see e.g. [195] for a more recent
treatment), and their physics can be understood at the level of a two-family case: if the quark
mass matrices were such that (with bX⇤ = bX)

Mu =

✓
0 Au

Au⇤ bu

◆
, Md =

✓
0 Ad

Ad⇤ bd

◆
, (2.3.17)

we get, dropping the superscripts, assuming b > 0 and writing A = aei↵,
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where x± ⌘

m±
a ⌘

p
b2+4a2±b

2a , which verify x+x� = 1, hence x± =
q

m±
m⌥

. Thus, reinstating the
superscripts, we derive the C(KM) matrix:
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(2.3.19)
and, using the hierarchies between the quark masses, one gets a prediction for the Cabibbo angle
✓C :

|sin ✓C | ⇡

����e
i(↵d�↵u

)

r
md

ms
�

r
mu

mc

���� , (2.3.20)

which is phenomenologically satisfying. (2.3.17) can for instance be justified by imposing a left-
right symmetric gauge group SU(3)C ⇥ SU(2)L ⇥ SU(2)R ⇥ U(1)B�L, parity invariance as well
as a global flavour abelian symmetry. Then, a correct phenomenology demands additional Higgs
doublets and right-handed neutrinos in the model, so it comes with precise signatures.

One can extend this toy model to the (more useful) case of three generations, with an identical
philosophy (but with more involved model building). There are also relations between the Yukawa
matrices of the different particles once they are arranged in GUT multiplets (see e.g. [196]). We
do not go further in this direction and we now discuss the flavour hierarchies.

2.3.5 The masses and mixings hierarchies

The fermion masses and the entries of the CKM matrix have been measured, and the relative
differences between their magnitudes is what is usually referred to as the flavour hierarchies.
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Indeed, the CKM matrix reads, in the Wolfenstein parametrisation [197]:

VCKM =

0

@
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� A�3(⇢� i⌘)

�� 1 �
�2

2
A�2

A�3(1 � ⇢� i⌘) �A�2 1

1

A+ O(�4) , (2.3.21)

where � is linked to the Cabibbo angle: � = sin(✓C) ⇡ 0.22, and A, ⇢, ⌘ = O(1). One sees clearly
from this parametrisation that the entries of this matrix are not all O(1), not even of the same
order of magnitude, although they are free parameters in the SM. For instance, it is easy to
understand from this parametrisation why the Jarlskog invariant is small in the SM:

J ⇡ �6A2⌘ . (2.3.22)

Even more strikingly, orders of magnitude for the quark and lepton masses can also be expressed
in terms of �:
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(2.3.23)
The strong hierarchies between the particle masses, as well as the milder ones appearing in the
CKM matrix, are unexplained input parameters in the SM. They can be traced back to hierarchies
which must be present in the Yukawa matrices Y u,d,e of (2.3.1), and inversely, suitably chosen
hierarchies in the Yukawa matrices induce such hierarchical masses and mixings.

In order to explain those features, many BSM flavour models for the mass hierarchies involve
additional symmetries, whose nature and origin are diverse: they can be discrete [198], global
abelian [195,199–206], non-abelian [207] or both [208], local abelian [209–211], non-abelian [212,
213] or both [214–216]. [214] is an example of radiative generation [217], i.e. the possibility that
low-masses fermions do not have tree level masses (for symmetry reasons), which are then only
generated quantum mechanically from the masses of heavier fermions. Thus, they are suppressed
by loop factors, which can explain the hierarchies. A nice aspect of this approach, somewhat
reminiscent of our discussion on textures, is that some masses are calculable given a set of
fundamental ones, leading to testable predictions. We do not study this further, and we turn
now to the exploration of Froggatt-Nielsen (FN) models [218–220], which are leading candidates
to account for the flavour hierarchies.

2.3.6 The Froggatt-Nielsen mechanism

Froggatt-Nielsen models address the origin of flavour hierarchies by means of a symmetry ex-
planation: the masses and mixings arise after spontaneous breaking of a chiral symmetry, which
forbids their existence when it is exact in the UV. For instance, one can postulate a global sym-
metry U(1)FN acting on the different SM fields and on a complex scalar singlet �. Then, U(1)FN

invariance of the Yukawa sector of the SM requires a dressing of the Yukawa matrices by powers
of �14, for instance as follows:

L � �Y u
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eR,iH
cLL,j+h.c. , (2.3.24)

14Powers of �⇤ could also in principle appear, unless one talks about supersymmetric models.
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where nX
ij is the U(1)FN charge of XL,jXR,i in units of the charge of �, and M is a high scale of

new physics, for instance the mass scale of heavy fermions which mix with the standard model
ones, see later and in section 2.4 for explicit examples. Once U(1)FN is spontaneously broken by
a vacuum expectation value (vev) of �, the hierarchies in the fermion mass matrices are naturally
explained in terms of a small parameter ✏ =

��� h�i
M

���, assumed to be ⇠ �. For instance, it is possible
to choose the nX

ij such that, up to order one coefficients:
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where by
��Y X

��, we mean the matrix obtained from Y X by taking the absolute values of its
elements. Then, such structures for the Yukawa matrices lead to phenomenologically acceptable
masses and CKM matrix, with model building inputs of natural size. Indeed, to generate (2.3.25),
one only needs U(1)FN charges of order unity.

A question one can ask is: how to devise a UV model such that its low energy EFT is (2.3.24)?
One could agnostically refer to a UV complete theory such as string theory (or explicitly compute
in such a framework), in which case the correct EFT involves non-renormalizable terms as in
(2.3.24), where the scale M is the scale at which the new features of the theory (such as the
string nature of the particle excitations) kick in. One could also build renormalizable field theory
models which effectively generate (2.3.24) at low energies. An example of the latter case goes as
follows: postulate the existence of heavy fermions which mix with the SM fermions, via Yukawa-
like couplings involving the field �. Then, such mixings are restricted by U(1)FN and naturally
generate (2.3.24) once the heavy fermions are integrated out. Let us show in a simple case how
this works (we leave the complete SM treatment for section 2.4): we want to generate a one-quark
mass term

L � �y�nQLHQR + h.c. , (2.3.26)

where we included an undetermined O(1) coefficient y and indicated the level of suppression of
the mass term by �n, where n is an integer. The Higgs field H is here to mimic the SM case
but we neglect any gauge quantum number. To explain the smallness of the mass term, FN
would postulate that QLHQR has U(1)FN charge �n in units of the charge of a scalar field �, for
instance by assigning charges (� : �1, QL : 0, QR : n,H : 0), and understand (2.3.26) as generated
by the spontaneous breaking of U(1)FN due to the vev of �:

(2.3.26) = �y

✓
h�i

M

◆n

QLHQR + h.c. , (2.3.27)

where we chose the potential of � such that h�i ⇠ �M . To generate this from a renormalizable
UV complete field theory, we can now introduce n pairs ( i=1,...,n

L , i
R) of fermions, which couple

to Q and H as follows:

L � �y1QLH 
1

R � M1 1

R 
1

L � y2 1

L 
2

R�� ... � Mn n
R 

n
L � yn+1 n

LQR�+ h.c. . (2.3.28)

Such a specific lagrangian can be enforced by giving adequate U(1)FN charges to the  s, for
instance ( i

L : i � 1, i
R : i � 1). We assume that the Mis are high scales so that the fermions
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 dynamics can be neglected when we look at SM processes. Thus, we integrate them out and
eventually obtain

L � �y1y2...yn+1

✓
�

M

◆n

QLHQR + h.c. , (2.3.29)

where we assumed that all Mi = M for simplicity, and which nicely reproduces the magnitude of
(2.3.26). In this approach, we see that it is actually required that all the Yukawa couplings yi are
O(1) not to spoil the mechanism. On the other hand, their magnitude is not fixed and they can
slightly modify the magnitude of the end result, thus its naive scaling with �. Consequently, the
FN symmetry U(1)FN is never completely fixed by the hierarchies in the Yukawa matrices (such
as (2.3.25)), since one of the yi could be of order �.

A problematic feature of the FN mechanism is that there is no constraint on the scale M where
the field � and the fermion  approximately live, which could be a very high scale (e.g. close to
the Planck scale), thus being associated to physics very hard to test. Luckily, precision tests in
flavour physics are already able to constraint high scales.

The study of FN models has recently been revived by the focus on flavourful axions which
arise in FN-like setups [199,204,205] and whose EFT is very much constrained by flavour physics
[221–223]. Such flavourful axions can also be linked with dark matter studies [224]. We will come
back to this point in section 2.4.2.

2.3.7 Challenges for the FN mechanism: gauging the FN symmetry

The nature of the FN symmetry is debatable, and the question of whether it can be gauged is
raised, in particular in order to evade quantum gravity corrections which explicitly break global
symmetries, as discussed in sections 2.1.8 and 4.4. Such gravitational breaking could in principle
generate uncontrolled U(1)FN-breaking Yukawa terms and spoil the symmetry-based hierarchies,
such as (2.3.25), so one could be tempted to gauge U(1)FN to protect it against such effects. It
was however shown that the standard model spectrum sometimes induces gauge anomalies when
charged under a FN symmetry [225–228]. Indeed, we can consider

��v6 det(YuYd)
�� = mumcmtmdmsmb ⇠ v6�27 , (2.3.30)

where v is the Higgs vev. On the other hand, if we consider for instance (2.3.24), we can compute
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By comparing (2.3.30) and (2.3.31), we understand that (2.3.24) defines a U(1)FN which has
an SU(3)2 ⇥ U(1)FN anomaly, hence which cannot be naively gauged. Actually, it should be
stressed that this conclusion strongly depends on the "holomorphic" nature of (2.3.24), and it
can be evaded if powers of � enter instead of � in the Yukawa couplings. However, when one
specializes to SUSY models (as [225–228] actually did), this option is not available and the issue
with anomaly cancellation remains. Ways out would either extend the scalar sector, introduce
additional heavy chiral fermions or rely on a Green-Schwarz-inspired mechanism [229]. We give
examples of those solutions in the next section.

2.4 Minimal anomaly-free gauged FN models

In this section, which is based on ongoing work with E. Dudas and S. Pokorski, we address the
concerns of section 2.3.7 and gauge the FN symmetry. Our final goal is to do so by assuming
that the heavy fermions which participate in the FN mechanism (as in (2.3.28)) are chiral with
respect to the (abelian) FN symmetry. It modifies the mixed anomalies with respect to the
SM gauge group, which opens the possibility to gauge the FN symmetry without the need to
introduce additional spectator fermions (nor using any other anomaly cancellation mechanism),
while keeping mass matrices textures usually associated to anomalous flavour symmetries.

We start by reviewing in section 2.4.1 classical ways of getting rid of anomalies, which we dub
"non-minimal" since they use two independent sectors, the (heavy fermionic) one which generate
the FN mechanism, and a second one which takes care of the anomalies. Then, we turn in section
2.4.2 to the "minimal" case, by studying two precise anomaly-free models whose structure is
typical of the models we investigated. We also show that there is an accidental Peccei-Quinn
symmetry associated with a flavourful axion in some of those models, and we briefly discuss
constraints on the model parameters arising from the axion phenomenology and the consistency
of the model.

In this section, we focus on supersymmetric models (which will enforce holomorphic struc-
tures in the Yukawa sector), and more precisely on the minimal supersymmetric standard model
(MSSM), whose flavour structure is now written in terms of chiral superfields in the superpoten-
tial15:

W = Y u
ijQiHuUj + Y d

ijQiHdDj + Y e
ijLiHdEj . (2.4.1)

We do not discuss neutrino masses generation, even though it could easily be incorporated in our
construction, for instance by adding right-handed neutrinos. However, such an addition would
not modify the mixed anomalies or the Peccei-Quinn symmetry of the next sections, so we simply
ignore it.

15We report a thorough discussion of supersymmetry to section 3. Our definitions and conventions for the
MSSM superfields can be found in Table A.2.
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2.4.1 Non-minimal models

In this section, we illustrate the usual ways, mentioned in section 2.3.7, of getting rid of the
anomalies associated with the FN mechanism. We complete the SUSY generalisation of the
latter:
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in an anomaly-free16 model, and we stick for concreteness to the following Yukawa matrices:
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(2.4.3)
which fit well the phenomenological values for masses and mixings when tan � is large.

First, we do so by adding some (heavy) spectator fields to the model. We choose for the
MSSM fields the charges displayed in Table 2.1. It is then straightforward to see that the

SU(3)C SU(2)W U(1)Y U(1)FN

� 1 1 0 �1
Hu 1 2 1 �3
Hd 1 2 �1 �3
Qi 3 2 1/3 �17/6 � (nu

11
� nu

i1)
Uj 3 1 �4/3 35/6 + nu

1j

Dj 3 1 2/3 35/6 + nd
1j

Li 1 2 �1 31/6 � (ne
11

� ne
i1)

Ej 1 1 2 �13/6 + ne
1j

Table 2.1: Gauge charges of the singlet and MSSM fields

SU(3)2C⇥U(1)FN, SU(2)2W ⇥U(1)FN and U(1)Y ⇥U(1)2
FN

anomalies cancel. However, there is then
an irreducible U(1)2Y ⇥U(1)FN anomaly coefficient, �144. We can now cancel this last anomaly by
remarking that the superfields in Table 2.2 only feed into the U(1)2Y ⇥U(1)FN anomaly coefficient,
which they shift by +144, rendering the model anomaly-free. They are also unobservable since
they can receive a mass via the following couplings:
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◆
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where Y, Y 0 and M are two-by-two matrices. This is not the only possibility, one could for
instance choose hypercharges ±2 and add 8 other copies of those fermions to the theory.

Second, we use the 4D version of the Green-Schwarz mechanism [229] to cancel the anomalies
(see also sections 4.3.2 and 4.3.4): we now choose to cancel the anomaly by including an axion
degree of freedom with the following couplings:

L � �
1

2
(@µa � �GSA

FN
µ )2 +

kia

4
F iF̃ i , (2.4.5)

16We do not discuss the U(1)3FN or U(1)FN⇥gravity anomalies, since those could be modified in a sector quite
decoupled from the SM, e.g. if we added right-handed neutrinos with a U(1)FN charge.
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SU(3)C SU(2)W U(1)Y U(1)FN

 1 1 1 6 1
 2 1 1 6 1
 3 1 1 �6 1
 4 1 1 �6 1
 ̃1 1 1 �6 0
 ̃2 1 1 �6 0
 ̃3 1 1 6 0
 ̃4 1 1 6 0

Table 2.2: Gauge charges of the spectator fields

where F i symbolizes the field strength of any gauge boson. The axion undergoes a shift a !

a+ �GS↵ under U(1)FN, which cancels an anomaly-induced variation of L if ki =
Tr(qFNT i2)

4⇡2 ⌘ Ci,
the G2

i ⇥ U(1)FN anomaly coefficient. If the ki were free parameters, it would be easy to cancel
anomalies. However, their known UV origins restrict their possible values. Indeed, they can
arise after having integrated an anomalous fermion set such that the whole theory is anomaly-
free [230], which amounts to finding anomaly-free fermion sets as we did just above. An other
possible UV origin are superstring theories [211, 231] where there are constraints on the ki. For
instance, in heterotic superstring theory the gauge couplings and the equivalent of (2.4.5) come
from the following couplings of the dilaton superfield, written here in supersymmetric language:

L �

Z
d4✓ ln

�
S + S � �GSV

FN
�
+

Z
d2✓

kiS

4
W i,2 + h.c. . (2.4.6)

Both the gauge coupling and the anomalous couplings arise from the dilaton superfield: g2i = 1

kihSi .
If the couplings unify at the string scale, one gets ki = kj and the anomalies must verify Ci = Cj

17.
Such conditions can be satisfied if we choose for instance XQ = 4553

1722
, XL = 4217

1722
, hu = hd = �
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7
.

Then, the U(1)Y ⇥ U(1)2
FN

anomaly vanishes and the three U(1)2Y ⇥ U(1)FN, SU(2)2W ⇥ U(1)FN

and SU(3)2C ⇥U(1)FN anomaly coefficients are equal (up to the normalization of U(1)Y discussed
previously).

However, those solutions are decoupled from the generation of (2.4.2): if some (vector-like)
fields are used to explain the suppression factors in (2.4.3), the additional ones which remove the
anomalies are independent of them, as in Table 2.2.

There are also solutions which do not demand any additional field beyond the MSSM ones
which contributes to the anomalies. For instance, it was shown in [228] that if (2.4.2) involved
two suppression factors ✏1 and ✏2, associated to singlet fields entering the Yukawa matrices in
ratios �1

M and �2
M , the anomalies could be canceled without any anomalous additional sector.

17With our conventions, the hypercharge gauge coupling is not the one which unifies and the correct relation
is C3 = C2 = 3

20CY .
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2.4.2 Minimal chiral models

A key assumption in (2.4.2), which we now relax, is that the only low-energy contribution of the
heavy sector at scale M is the generation of the Yukawa terms. This is true if the heavy sector
is vector-like with respect to the SM gauge group, but if it is chiral there could also be in the
EFT anomalous couplings between (the longitudinal component of) the U(1)FN gauge field and
the SM gauge bosons [230]. In this section, we explore this possibility.

We focus on models with two singlet superfields �1 and �2, which respectively replace the
flavon � and the mass M in (2.4.2), such that the Yukawa sector is as follows:

W � Y u
ij

✓
�1

�2

◆nu
ij

QiHuUj + Y d
ij

✓
�1

�2

◆nd
ij

QiHdDj + Y e
ij

✓
�1

�2

◆ne
ij

LiHdEj , (2.4.7)

and we allow in particular �2 to be charged under U(1)FN. The charges of the superfields which
appear in (2.4.7) can be found in Table 2.3. We again assume h�1i = ✏h�2i, with ✏ ⇡ �, and

SU(3)C SU(2)W U(1)Y U(1)FN

�1 1 1 0 �x1

�2 1 1 0 �x2

Hu 1 2 1 hu

Hd 1 2 �1 hd

Qi 3 2 1/3 XQ � (x1 � x2)(nu
11

� nu
i1)

Uj 3 1 �4/3 �XQ � hu + (x1 � x2)nu
1j

Dj 3 1 2/3 �XQ � hd + (x1 � x2)nd
1j

Li 1 2 �1 XL � (x1 � x2)(ne
11

� ne
i1)

Ej 1 1 2 �XL � hd + (x1 � x2)ne
1j

Table 2.3: Gauge charges of the singlet and MSSM fields,
XQ is the U(1)FN charge of Q1, XL the U(1)FN charge of L1

formulas to follow will encompass cases where �1 or �2 is uncharged and equivalent to a mass M .
However, we always impose x1 6= x2 such that U(1)FN acts non-trivially on the MSSM fields.

The contribution of the MSSM fields to the mixed anomaly coefficients are as follows:

SU(3)2C ⇥ U(1)FN : A3,SM = � 3(hu + hd) + (x1 � x2)
X

i

(nu
ii + nd

ii)

SU(2)2W ⇥ U(1)FN : A2,SM = 3(3XQ +XL) + hu + hd

� (x1 � x2)
⇣
3(2nu

11
� nu

21
� nu

31
) + 2ne

11
� ne

21
� ne

31

⌘

U(1)2Y ⇥ U(1)FN : A1,SM = � 6(3XQ +XL) � 14(hu + hd)

+ 4(x1 � x2)

 
nu
21
+ nu

31
� 2nu

11

6
+

4(nu
11
+ nu

12
+ nu

13
)

3

+
nd
11
+ nd

12
+ nd

13

3
+

2ne
12
+ 2ne

13
+ ne

21
+ ne

31

2
)

!

U(1)Y ⇥ U(1)2
FN

: A0
1,SM

= ...
(2.4.8)

and they are generally non-vanishing, since the discussion of section 2.3.7 still applies.
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Heavy sector and anomaly cancellation

We now design a UV theory which generates (2.4.7) in the IR, closely following the original
FN picture. Thus, we introduce the heavy fermions shown in Table 2.4, vector-like under the
SM gauge group but chiral with respect to U(1)FN, and which generate the masses of the first
generation fermions. Those fields together with the MSSM fields form a renormalizable UV

SU(3)C SU(2)W U(1)Y U(1)FN

Common to all quarks
 Q

i=1,...,nQ,1max[nu
11,n

d
11]

3 2 �1/3 �XQ + i(x1 � x2) + x2

 ̃Q
i=1,...,nQ,1max[nu

11,n
d
11]

3 2 1/3 XQ � i(x1 � x2)

For U ’s or D’s
 u

i=nQ,1+1,...,nu
11

3 1 �4/3 �XQ + (i � 1)(x1 � x2) � hu

 ̃u
i=nQ,1+1,...,,nu

11
3 1 4/3 XQ � (i � 1)(x1 � x2) + x2 + hu

 d
i=nQ,1+1,...,,nd

11
3 1 2/3 �XQ + (i � 1)(x1 � x2) � hd

 ̃d
i=nQ,1+1,...,,nd

11
3 1 �2/3 XQ � (i � 1)(x1 � x2) + x2 + hd

For E’s
 L

i=1,...,nL,1,ne
11

1 2 1 �XL + i(x1 � x2) + x2

 ̃L
i=1,...,nL,1,ne

11
1 2 �1 XL � i(x1 � x2)

 e
i=nL,1+1,...,,ne

11
1 1 2 �XL + (i � 1)(x1 � x2) � hd

 ̃e
i=nL,1+1,...,,ne

11
1 1 �2 XL � (i � 1)(x1 � x2) + x2 + hd

Table 2.4: Gauge charges of the FN heavy fermions

theory, with a superpotential formed of (here only for the first generation)

W � �1 ̃
X
i  

X
i+1

( meaning, e.g., �1 ̃
Q
i  

Q
i+1nQ,1

), �2 ̃
X
i  

X
i ,

Hu ̃
Q
nQ,1
 u

nQ,1+1
, Hd ̃

Q
nQ,1
 d

nQ,1+1
, Hd ̃

L
nL,1
 e

nL,1+1
.

(2.4.9)

where the  X and  ̃X in (2.4.9) can also be understood as being MSSM fields according to the
following replacement rules:

Q1 $  ̃Q
0
, U1 $  u

nu
11+1

, D1 $  d
nd
11+1

, L1 $  ̃L
0
, E1 $  e

ne
11+1

. (2.4.10)

Those couplings are (generically) the only ones one can write at renormalizable order and they
are precisely the one needed to generate (2.4.7), via diagrams such as the one of Figure 2.10.
Mixings to other generations can be similarly implemented via couplings between e.g. Qi>1 and
one of the (�1) Q (again, see Figure 2.10 for an example of a diagram which results). However,
in order to have mass matrices of rank 3 each, we need to supplement the FN fields of Table
2.4 by their equivalent for the second and third families (see e.g. [220, 232]), in which case the
indices i in Table 2.4 range between 1 and nu

22
, nd

22
, ne

22
for the second family, and between 1 and

nu
33

= 0, nd
33
, ne

33
for the third one. The charges XQ and XL in Table 2.4 should also be replaced

by XQ � (x1 � x2)(nu
11

� nu
21
) and XL � (x1 � x2)(ne

11
� ne

21
) for the second family, or by by

XQ � (x1 � x2)(nu
11

� nu
31
) and XL � (x1 � x2)(ne

11
� ne

31
) for the third one.

56



Figure 2.10: Tree diagram generating the d-quark mass, when nd
11

= 6 and nQ,1 = 4
The gray lines indicates how it should be modified to generate a mixing to Q2 when nd

21
= 4

The contribution of the FN fields to the mixed anomaly coefficients are as follows:

A3,FN = x2

⇣
2(nQ,1 + nQ,2 + nQ,3) + max(nu

11
� nQ,1, 0) + max(nd

11
� nQ,1, 0)

+ max(nu
22

� nQ,2, 0) + max(nd
22

� nQ,2, 0) + max(nd
33

� nQ,3, 0)
⌘

A2,FN = x2

⇣
3(nQ,1 + nQ,2 + nQ,3) + nL,1 + nL,2 + nL,3

⌘

A1,FN = x2

✓
2

3
(nQ,1 + nQ,2 + nQ,3) + 8(nL,1 + nL,2 + nL,3)

+
16

3
[max(nu

11
� nQ,1, 0) + max(nu

22
� nQ,2, 0)]

+
4

3
[max(nd

11
� nQ,1, 0) + max(nd

22
� nQ,2, 0) + max(nd

33
� nQ,3, 0)]

+ 4(max(ne
11

� nL,1, 0) + max(ne
22

� nL,2, 0) + max(ne
33

� nL,3, 0))

◆

A0
1,FN

= ...

(2.4.11)

Hence, we understand that the integrating out of those FN fields generate in addition to (2.4.7)
the following anomalous axionic term in the lagrangian18

W �

Z
d2✓

✓
A3,FN

32⇡2x2

log(�2)(W
a)2 + ...

◆
, (2.4.12)

where we only displayed the consequence of the QCD anomaly.

Anomaly-free models

The presence of (2.4.12) allows one to build "minimal" models where the fermions which par-
ticipate in the FN mechanism, meaning those which are necessary to generate the hierarchies
in masses and mixings, are sufficient to make the model anomaly-free, providing what could
be called a minimal anomaly-free gauged FN model. We will not study thoroughly all possible
models which achieve this, but, as proofs of principle, we restrict to two specific models.

The first one has only one singlet field �2 (and corresponds to a case where x1 = 0, hence
�1 = M). It reproduces the Yukawa matrices of (2.4.3). When the FN superfields do not feature

18For an explicit derivation, see e.g. [230] or the appendix B. There are also (scheme-dependent) anomalous
three vector couplings in the low-energy EFT, but we do not show them here for simplicity, since we will mostly
focus on the axion phenomenology later on.
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Figure 2.11: Running coupling constants of the SM, assuming msoft = TeV

any doublet (i.e. nQ,i = nL,i = 0), choosing hu = hd = 0 and x2 = �
3(3XQ+XL)

16
makes all

anomalies vanish (and the µ-term µHuHd is allowed in the superpotential). This amounts to the
usual FN model, with the exception that �

M is replaced by M
� . If one insists on using �1 as a

dynamical scalar, it is a pure singlet and there will be terms such as �n
1

in the superpotential.
There is no light degree of freedom in the FN sector in this scenario, which can be constrained
by the running of gauge couplings. Assuming that all the superpartners kick in at a TeV and all
the heavy superfields at a high scale v2 = h�2i, Figure 2.11 shows the SM gauge coupling running
for v2 = 1014 and 1016 GeV respectively. We see there that the hypercharge Landau pole, if it is
to be below the Planck mass, imposes v2 � 1016 GeV.

On our second model, we impose the condition that the heavy FN fields should respect the
qualitatively satisfying gauge coupling unification obtained in the MSSM, which can be conserved
if the FN fields contribute to the (SM gauge coupling) running as SU(5) multiplets (although
with different U(1)FN charges within a same "SU(5) multiplet"). We thus demand that19

nQ,1 + nQ,2 + nQ,3 = max(nu
11

� nQ,1, 0) + max(nu
22

� nQ,2, 0)

= max(ne
11

� nL,1, 0) + max(ne
22

� nL,2, 0) + max(ne
33

� nL,3, 0) ,

nL,1 + nL,2 + nL,3 = max(nd
11

� nQ,1, 0) + max(nd
22

� nQ,2, 0) + max(nd
33

� nQ,3, 0) .

(2.4.16)

One can check that we need this time two singlets �1 and �2, if we insist on not using additional
19This condition can be rewritten in terms of the standard model anomalies: with our conventions, AA,heavy

x2

counts the heavy chiral fields which are charged under the gauge factor A (with multiplicity and charge squared
for an abelian gauge factor). Thanks to the holomorphicity in our SUSY model, the same anomaly coefficients
appear in the �-function for the gauge couplings:

1

g2A(µ)
=

1

g2A(µ0)
+

bSM
A

8⇡2
log

✓
µ

µ0

◆
� B

AA,heavy

64⇡2
log

✓
µ

v2

◆
, (2.4.13)

where B = 1, 2 respectively for a SU(N) or an abelian factor of the gauge group. Respecting the gauge unification
of the MSSM thus demands

ASU(3)C ,heavy = ASU(2)W ,heavy =
3

10
AU(1)Y ,heavy , (2.4.14)

which, for anomaly-free models, is extended to

ASU(3)C ,SM = ASU(2)W ,SM =
3

10
AU(1)Y ,SM . (2.4.15)

This relation agrees well with phenomenological mass matrices, and is the one required to implement the Green-
Schwarz mechanism [225–228], consistently with the fact that the phase ✓2 of �2 does generate a GS mechanism
here, once the heavy fields are integrated out.
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Figure 2.12: Running coupling constants of the SM, assuming msoft = TeV

spectator fields beyond the ones which enter the FN mechanism. Choosing x1 = 1, x2 = 10,
hu = hd = 9

2
, XQ = �

67

2
, XL = �

39

2
and nQ,1 = 4, nQ,2 = 2, nQ,3 = 0, nL,1 = 0, nL,2 = 0, nL,3 = 0,

all the anomalies vanish20 and we obtain the following mass matrices (which reproduce the correct
masses and mixings up to two O(�) deviations [228])

Y u

✓
�

M

◆nu

=

0

@
✏8 ✏5 ✏4

✏7 ✏4 ✏3

✏4 ✏ 1

1

A , Y d

✓
�

M

◆nd

=

0

@
✏3 ✏3 ✏4

✏2 ✏2 ✏3

(✏) (✏) 1

1

A , Y e

✓
�

M

◆ne

=

0

@
✏4 ✏3 ✏3

✏3 ✏2 ✏2

✏ 1 1

1

A ,

(2.4.18)
where by the parenthesis in the last row of Y d, we mean that those entries are forbidden by holo-
morphicity. However, they might be generated after field redefinitions to take care of corrections
to the Kähler potential [228]. We nevertheless leave them in (2.4.18), since they indicate what
we choose for the charges of the different fields. Furthermore, notice that, in order to generate
the (1, 3) and (2, 3) entries of Y d, the heavy sector in Table 2.4 should be modified such that, for
instance, the index i for the d-quark-like heavy fields of the first generation is bounded by nd

13

instead of nd
11

.

In this model, the µ-term is forbidden and should be generated from the Kähler potential via
the Giudice-Masiero mechanism [233], by writing

K �
1

⇤2
HuHd�2�1 , (2.4.19)

assuming �1 has a non-vanishing F -term. With the same assumptions as before, Figure 2.12
shows the SM gauge coupling running for v2 = 3 ⇥ 1012 and 1015 GeV respectively. Here, we
see that the hypercharge Landau pole imposes v2 & 1014�15 GeV. If we only impose that the
unification happens before any Landau pole, we find that v2 & 3 ⇥ 102 GeV.

An interesting aspect of this model is that it has a light mode, since out of the two phases
of �1 and �2 only one is absorbed by the U(1)FN gauge boson, whereas the last one is left as a
physical Nambu-Goldstone boson. This feature is generic of the models with two singlets, so we
generally comment on it now.

20As a consistency check, it is straightforward to verify that

ASU(3)C ,SM = ASU(2)W ,SM =
3

10
AU(1)Y ,SM = �ASU(3)C ,heavy = �ASU(2)W ,heavy = �

3

10
AU(1)Y ,heavy = �180 .

(2.4.17)
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An accidental flavourful Peccei-Quinn symmetry

We now turn to the systematic discussion of the physical GB which arises in models with two
singlets �1 and �2. We stick to the kind of models discussed above, namely those where the heavy
sector (only or mostly fields participating in the FN mechanism) gets its mass via couplings to
�2.

Henceforth, we assume that the light GB is only made of the phases of �1 and �2, and that
the physical pseudoscalar originating from Hu and Hd gets a large mass. This is for instance a
valid assumption if the "bµ" soft term bµHuHd is present (i.e. gauge-invariant). It turns out that,
due to the large values for h�1,2i

MW
imposed by the running of the gauge couplings, if a modified

bµ term, such as e.g. bµHuHd�1, is present, the formulas written below are still valid at leading
order. For the same reason, the pseudoscalar aFN which gives the longitudinal component of the
U(1)FN gauge boson is also given at leading order by the contribution of �1 and �2. Its expression
is thus:

aFN / x1v1✓1 + x2v2✓2 , (2.4.20)

where we wrote �1,2 =
v1,2+r1,2p

2
e
i
✓1,2
v1,2 . Then, the physical leftover GB a is given by

a / x2v2✓1 � x1v1✓2 . (2.4.21)

As discussed extensively in sections 2.1.8 and 2.2.2, depending on the U(1)FN charges of the
different scalar fields, the first gauge-invariant operator one could write which would violate
the shift symmetry of a may be of very high dimension, thus rendering this shift symmetry
accidentally protected (more on this below).

We now show that the mode a has couplings similar to the one of flavourful axions [199, 204,
205], albeit slightly different numerically, meaning that the family symmetry U(1)FN imposes that
it has anomalous couplings to gauge fields (and in particular to QCD, making it a Peccei-Quinn
axion) and direct couplings to SM fermions.

In the kind of models we consider, the couplings to gauge fields is completely specified by
the mass matrices. Indeed, as already mentioned in (2.4.12), the heavy sector contributes to the
(axionic) anomalous couplings as

W �

Z
d2✓

✓
AX,heavy

16⇡2x2

log(�2) Tr
�
W 2

X

�◆
, (2.4.22)

where X refers to either SU(3)C , SU(2)W or U(1)Y and we used our assumption that all mass
terms come from couplings to �2. The contribution from the MSSM fields (here only focusing on
QCD) is:

W �

Z
d2✓

 
1

16⇡2
log

 ✓
�1

�2

◆P
i(n

u
ii+nd

ii)

(HuHd)
3

!
Tr
�
W 2

SU(3)C

�
+ ...

!
, (2.4.23)

Neglecting Hu,d as we assumed,
P

i(n
u
ii + nd

ii) =
A3,SM
x1�x2

, and since anomaly cancellation imposes
A3,heavy = �A3,SM, we end up with a total contribution

W �

Z
d2✓

✓
A3,SM

16⇡2(x1 � x2)
log

✓
�1�

�x1
x2

2

◆
Tr
�
W 2

SU(3)C

�
+ ...

◆
, (2.4.24)
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which is obviously gauge-invariant (aFN exactly disappears from the log), as it should.

On the other hand, (2.4.24) induces a coupling between a and the gluons, since

� i log

✓
�1�

�x1
x2

2

◆
�

x2v2✓1 � x1v1✓2
x2v1v2

=

p
x2

1
v2
1
+ x2

2
v2
2

x2v1v2
a , (2.4.25)

where we used the canonical normalization for a so that the axion decay constant21 can be read
off from (2.4.24) and (2.4.25):

fa =
x2v1v2|x1 � x2|

A3,SM

p
x2

1
v2
1
+ x2

2
v2
2

. (2.4.26)

Besides the couplings to gluons, the heavy chiral fields also feed in the axion-photons coupling.
A same line of reasoning gives us the latter:

W �

Z
d2✓

✓
�

Aem,heavy

16⇡2(x1 � x2)
log

✓
�1�

�x1
x2

2

◆
W 2

U(1)em + ...

◆
, (2.4.27)

where Aem,heavy = A1,heavy+2A2,heavy
4

is the heavy sector electromagnetic anomaly22, so that we
understand that

E

N
=

A1,heavy + 2A2,heavy

2A3,heavy

, (2.4.33)

with the conventions of section 2.1.3. For instance, the model defined around (2.4.16) has E/N =

8/3, which is the same as in the DFSZ model. Thus, in this respect, this model’s predictions do
not deviate qualitatively from those of usual flavourful axions.

21The domain of a is given by a = a + 2⇡f . In the model defined around (2.4.16), f ⌘
v1v2p

v2
1+100v2

2

⇥

min{|10m � n|, (m,n) 2 Z2
} = v1v2p

v2
1+100v2

2

. Thus, NDW = A3,SM
x2|x1�x2| = 2 in this model.

22Indeed, let us consider an arbitrarily heavy fermion  ⌘  L + R, which couples as follows to neutral gauge
bosons

L � � Q
1 �

µ

✓
@µ � iGa

µT
a

�
i

2
W 3

µ�
3

� iqY Bµ

◆
 Q

1 � �  Q
u,1�

µ

✓
@µ � iGa

µT
a

� i
1 + qY

2
Aµ

◆
 Q
u,1

�  Q
d,1�

µ

✓
@µ � iGa

µT
a

� i
�1 + qY

2
Aµ

◆
 Q
d,1 ,

(2.4.28)

where we decomposed  Q
1 =

 
 Q
u,1

 Q
d,1

!
on its isospin components, assuming those exist. It also couples to the axion

as follows
L � �y�2 

Q
R,1 

Q
L,1 + h.c. = �y�2

⇣
 Q
uR,1 

Q
uL,1 +  Q

dR,1 
Q
dL,1

⌘
+ h.c. . (2.4.29)

Then, using the calculation in appendix B, we find that it induces the following coupling:

L �
✓2

16⇡2v2

✓
2Tr

⇣
GG̃

⌘
+ 6

q2Y + 1

4
FF̃

◆
(2.4.30)

at first order in ✏ (since there might be diagonalization effects in defining the heavy fermions mass eigenstates).
A heavy coloured SU(2) singlet, on the other hand, would only contribute

L �
✓2

16⇡2v2

✓
Tr
⇣
GG̃

⌘
+ 3

q2Y
4
FF̃

◆
. (2.4.31)

Altogether, the heavy fermions contribute

L �
✓2

16⇡2x2v2

✓
A3,heavy Tr

⇣
GG̃

⌘
+

A1,heavy + 2A2,heavy

4
FF̃

◆
(2.4.32)

where we neglected again Hu,d.
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Dominant couplings between the axion and the SM fermions arise at tree-level from (2.4.7),
such that the (schematic) coupling between the axion and the SM fermions is as follows:

L � Yij

✓
�1

�2

◆nij

 R,j L,iH
(c)

� Yije
inij

⇣
✓1
v1

� ✓2
v2

⌘

 R,j L,iH
(c)

� Yije
i a
fij  R,j L,iH

(c) , (2.4.34)

where we neglected radial degrees of freedom in the first step, and projected the scalar phase
onto the physical axion in the second. We also identified the scale of axion-fermions coupling:

fij =
v1v2

p
x2

1
v2
1
+ x2

2
v2
2

nij(x1v21 + x2v22)
, (2.4.35)

where we see that the axion couples more strongly to lighter generations, since those have larger
charges, i.e. larger nij’s. The ratio between the axion coupling to gauge fields Ca and the coupling
to fermions Cij is23

Ca

Cij
⇠

fij
fa

=
Aa,SM

nij|x1 � x2|

x2

1
v2
1
+ x2

2
v2
2

x1v21 + x2v22
. (2.4.37)

An upper bound can actually be imposed on h�1,2i by demanding that the shift symmetry of
the axion a is of high enough quality [88, 131, 132, 140, 176] to actually solve the strong CP
problem once quantum gravity corrections [124–126] are taken into account. Indeed, we started
with gauge symmetries considerations and did not impose any global symmetry on the model.
Consequently, we expect to be able to write some gauge invariant operator which would break
the shift symmetry of the physical axion. On the other hand, the presence of the U(1)FN(⇥GSM)

gauge symmetry may force such an operator to be of very high dimension such that it has no
relevant impact on the axion dynamics. For instance, in the model defined around (2.4.16), the
first gauge-invariant operator one could write (beyond those such as (2.4.19) which respect the
axion shift symmetry) is24 �2�10

1
, which can be either a contribution to the Kähler potential or a

SUSY breaking term generated by gravity. In the latter case for instance, to be consistent with
the measured value [26] ✓ < 10�10, we must ensure that:

"
ma,QCD ⇠

m⇡f⇡
fa

#
> 105

"
ma,explicit ⇠ ✏4

✓
v2

p
2MP

◆ 9
2

MP

#

or equivalently

v2 .
⇣
10�4

p
2

9
2 ✏�5m⇡f⇡M

7
2
P

⌘ 2
11

⇠ 2 ⇥ 1011 GeV .

(2.4.38)

We immediately see that this is in tension with the perturbativity bound, even though not in
contradiction since there are lots of undetermined order one numbers (e.g. the precise heavy

23As a comparison, flavourful axions models [204,205] find

Ca

Cij
⇠

Aa,SM

nij |x1 � x2|
(2.4.36)

(where x1�x2 should be understood as the U(1)FN charge of the flavon field), which is also the order of magnitude
we have here, provided x1 /�x2, since v1 ⇠ ✏v2 ⌧ v2. Consequently, the strong bounds on the axion decay constant
fa derived in [204, 205] by considering the bounds on Br(K+

! ⇡+a) also apply. Those bounds, obtained from
flavour physics, which state fa & ⇥ 1010 GeV (where  = O(1) depends on the precise charge assignments and
on unknown O(1) coefficients) then interestingly complete astrophysics bounds which require fa & 109 GeV, as
discussed in section 2.1.7.

24An other dimension 11 option would be HuHd�
†9
1 but this is more suppressed since the weak scale is much

below h�2i.
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fermion mass or the coefficient in front of the operator �2�10

1
). Consequently, we conclude that

we should have v2 ⇠ 1011�13 GeV to satisfy both bounds, also implying that explicit breaking
of the Peccei-Quinn symmetry could be observable in future experiments, e.g. those aiming at
better measuring the neutron (or proton) EDM [191,192]. Furthermore, this value for v2 implies
a value for fa which is compatible with the flavourful axion to make up part or all of dark matter
(see section 2.1.6).

Summary

We studied the gauging of a horizontal abelian symmetry generating the Froggatt-Nielsen mech-
anism, when the heavy fields in the UV completion of the mechanism are chiral with respect to
this family symmetry. This for instance happens when the small parameter which explains the
flavour hierarchies is composed of the vevs of two charged scalar fields which respectively mix
and give masses to the heavy sector. The mixed anomalies between the Standard Model gauge
group and the new symmetry are modified in this setup, such that the anomaly-free completions
of the model are not the same as in the usual case when the heavy sector is vector-like.

We focused on supersymmetric models, since their holomorphicity properties usually do not
leave much freedom for the anomalies to cancel. Unlike the vector-like heavy sector case, for
which it has been shown that the FN symmetry is always anomalous at the level of the MSSM, in
our chiral heavy sector case the mixed anomalies are enough disentangled from the mass matrices
so that they sometimes vanish without adding any other spectator field than the ones which are
necessary for the FN mechanism to take place. We gave specific examples where this "minimal"
UV content is realized.

Finally, we emphasized the fact that such "minimal" models often come with a physical axion
mode, which has couplings typical of a flavourful QCD axion. There are slight numerical differ-
ences with respect to flavourful axions originating from a global FN mechanism, recently revived
as a PQ symmetry in the literature, but the qualitative phenomenology seems to be identical.

2.5 Conclusions

This first part of the thesis was devoted to the study of (4D) field theory models which extend
the matter content of the standard model, with a focus on models of axions, as well as models
for the flavour sector of the SM. The underlying logic behind the model building efforts here was
to use (abelian) gauge symmetries as the only restriction on the dynamics for a given matter
content. In particular, small parameters such as the ✓-angle of QCD or the hierarchies in Yukawa
couplings are undesirable, and any symmetry-based explanation of this smallness must be a
consequence of the gauge invariance of the theory. This requirement can be motivated by the
apparent incompatibility between global symmetries and gravity, on which we elaborate in section
4.4.1.

QCD axion models dynamically explain the bounds on the QCD ✓ angle, and we studied the
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embedding of this kind of particles in a particular gauged clockwork setup. We also relaxed the
connection between the QCD ✓ angle and the axion in order to interpret the latter as an axion-
like particle, focusing on its cosmological relevance as dark matter. Our conclusions are that the
gauged clockwork model of section 2.2.2 is very efficient at controlling the breaking of the axion
shift symmetry, so that the axion in the model is a good candidate both for a QCD axion or a
light kind of dark matter. On the other hand, the clockwork-like localization properties of the
axion along the UV modes of the model can only be used for specific type of couplings, which
are the anomaly-free couplings that any ALP can have. The anomalous couplings, to gluons
for instance, cannot be tuned by clockwork localization and, because of the constraints of gauge
anomaly cancellation, the associated decay constant is only significantly lower than the actual
new-physics scale if the model is accompanied by a large number of additional particles.

Finally, we used the Froggatt-Nielsen mechanism to explain the mass and mixings hierarchies
in the quark sector of the SM. Following the logic reminded two paragraphs above, we gauged the
Froggatt-Nielsen symmetry and studied if all the heavy fermions participating in the mechanism
could be enough to cancel the anomalies. Our answer was positive, and we exhibited models
where this happens. Some of those have a matter content such that a flavourful QCD axion
arises, whose phenomenology and consistency we briefly studied.
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3 Supersymmetry and supersymmetry

breaking

In the spectrum of BSM field theories, the supersymmetric ones have a very special status.
Indeed, supersymmetry (SUSY) stepped in the world of high energy physicists for many reasons,
some of which will be mentioned several times in what follows.

Even though the fact of pairing bosons and fermions may at first seem to be an innocent and
somewhat odd choice, it has dramatic consequences. First, it arises as the maximal spacetime
symmetry one could imagine on top of the Lorentz group [234,235]. It also imposes an extension
of the standard model [236], called the minimal supersymmetric standard model (MSSM), where
the quantum divergences are softer [237, 238], where natural candidates for dark matter are
present [239] and where the unification of gauge coupling is qualitatively better than in the
SM [240,241]. In addition, SUSY is an ingredient of the consistent formulation of string theories
[242,243]. Furthermore, and quite remarkably, any attempt to gauge supersymmetry necessarily
ends up in writing a theory which incorporates gravity (meaning that it has a spin-2 massless
field and diffeomorphism invariance) [244, 245]. Local supersymmetry is for this reason called
supergravity (SUGRA). Last (of this list, which misses many topics beyond high energy physics),
supersymmetry provides a powerful tool to control and analyze theories: it helps to smooth the
divergences which plague the quantization of gravity [246–249], it enables to get exact results in
strongly coupled theories [250–252] or in theories on compact manifold [253], and it helps to build
gravitational solutions such as supersymmetric black holes and understand their microscopics
[254].

On the other hand, the use of supersymmetry in phenomenology cannot be straightforward
since the observed particle spectrum is not supersymmetric. For this reason, supersymmetry,
if it is an ingredient of a correct description of nature at some scale, must be spontaneously
broken [255,256]. In particular, if it is gauged, the gravitino is not a massless particle. However,
the mechanism for SUSY breaking cannot be implemented in the MSSM alone and requires an
extension of it, to implement the specific SUSY breaking methods known in model building. In
addition, the recent results of the LHC are in tension with the naive incorporation of SUSY
breaking in the MSSM under the form of soft breaking, which demands more refinement in the
construction and motivation of SUSY breaking models (see e.g. [257–259]).

In what follows, we first review in section 3.1 basics about supersymmetry, supersymmetric
spectra and supersymmetric dynamics, so that we can efficiently introduce SUSY breaking in
section 3.2. We leave aside SUSY breaking in higher dimensions or in string theory to section
4.2. We present in section 3.2.3 an explicit model which breaks SUSY with a (very) suppressed
breaking scale and which features clockwork modes, before turning in section 3.3 to the general
study of spontaneously broken SUSY, using non-linear supersymmetry. Finally, we step away
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from SUSY breaking in section 3.4 and exhibit an exact BPS solution of the Wess-Zumino model,
which has applications to the calculation of multi-particle amplitudes or as a domain wall profile
for supersymmetric QCD.

We remain in this section in four dimensions, and we use the conventions (especially the two
component notations for spinors) of [260].

3.1 Review of SUSY

We start our discussion by covering the basics of SUSY model building, so that we lay down the
necessary mathematical language necessary to address SUSY breaking later. Even though we
mention supergravity, our focus at the level of this section remains on global SUSY.

3.1.1 Algebra, representations and superfields

Following the usual textbook approach for building particle physics model, we need to specify
what are the symmetries and construct their representations, using their algebra. Then, once
fields are build out of the state-creating operators, one needs to write down a dynamics invariant
under the chosen symmetries for those fields. We do not cover the full details of this, see e.g.
[260,261], but we describe what we need for the following of this thesis.

The supersymmetry algebra

The (N = 1) 4D SUSY algebra involves the usual Poincaré algebra for the translations Pµ

and the Lorentz generators Mµ⌫ , to which is added a Majorana spinorial charge (Q↵, Q↵̇). The
(anti)commutation relations of this charge are as follows:

{Q↵, Q↵̇} = 2�µ
↵↵̇Pµ , {Q↵, Q�} = {Q↵̇, Q�̇} = 0 ,

[Pµ, Q↵] = [Pµ, Q↵̇] = 0 , [Mµ⌫ , Q↵] = i�µ⌫
↵
�Q� , [Mµ⌫ , Q

↵̇
] = i�µ⌫↵̇

�̇Q
�̇
.

(3.1.1)

It is quite remarkable that this algebra is the most general one which one can impose on the S-
matrix of a relativistic quantum field theory. It is the famous graded algebra counterexample to
the Coleman-Mandula theorem [234] on usual algebras, which states that, in a d(>2)-dimensional
relativistic theory with a S-matrix, the only symmetries of the latter, beyond the Poincaré sym-
metry, are internal symmetries (i.e. symmetries which commute with every Poincaré generator).
The Haag-Lopuszanski-Sohnius theorem [235] extends the Coleman-Mandula proof to the case
of graded algebras, singling out supersymmetry. Their study showed that extended SUSY (see
section 3.1.3) is the most general extension.

The field multiplets

The representations of this algebra (called multiplets) and the one particle states are built from
(3.1.1) by boosting in a reference frame and by identifying Clifford algebras. We do not run
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Massless multiplets Massive multiplets

Chiral multiplet �|{z}
Complex scalar

,

✓
�↵
�↵̇

◆

| {z }
Majorana fermion

Same as massless chiral

Vector multiplet
✓
�↵
�
↵̇

◆

| {z }
"Gaugino"

, Aµ|{z}
Gauge boson

Same as massless vector + massless chiral

Gravity multiplet
✓
 µ↵

 
↵̇
µ

◆

| {z }
"Gravitino"

, eaµ|{z}
Vierbein

Table 3.1: Fields in usual N = 1 multiplets

the argument here, and we only display in Table 3.1 the fields which capture the content of the
different usual multiplets which we will encounter in what follows. From the construction of the
particle states, one works out the SUSY transformation of the fields which are built out of the
creation and annihilation operators for such states. For the free chiral multiplet, those read

�⇠� ⌘ [⇠Q+ ⇠Q,�] =
p
2⇠� , �⇠�↵ = i

p
2�µ

↵↵̇⇠
↵̇
@µ� , (3.1.2)

with ⇠ a constant Majorana spinor which is the parameter of the SUSY transformation. In
SUGRA, it is upgraded to a spacetime-dependent spinor. The free theory of a supersymmetric
chiral multiplet

S =

Z
d4x

�
�|@µ�|

2
� i��µ@µ�

�
(3.1.3)

thus transforms as follows under SUSY

�⇠S =

Z
d4x

⇣
�@µ�

p
2@µ(⇠�) + ��µ@µ(

p
2�⌫⇠@⌫�) + h.c.

⌘
=

Z
d4x

⇣
�@µ[

p
2@µ�⇠�] + h.c.

⌘
,

(3.1.4)
which shows the invariance of the action for correct fall-offs of the fields. Two remarks are in
order though. First, the transformations (3.1.2) do not close on the SUSY algebra unless the
equations of motions (eoms) of (3.1.3) are imposed, in particular the fermionic one �µ@µ� = 0.
Indeed,

[�⇠, �⌘]� = i(�µ�⌫@µ�)↵(⌘�⌫⇠ � ⇠�⌫⌘) = �2i(⌘�µ⇠ � ⇠�µ⌘)@µ�↵| {z }
verifies the algebra (3.1.1)

�i(�⌫ �µ@µ�| {z }
=0

)↵(⌘�⌫⇠ � ⇠�⌫⌘) .

(3.1.5)
Second, writing supersymmetric lagrangians becomes much more difficult as soon as interactions
are included. To make it doable, one introduces an auxiliary field F and extends as follows the
SUSY transformations:

�⇠� =
p
2⇠� , �⇠�↵ = i

p
2�µ

↵↵̇⇠
↵̇
@µ�+

p
2⇠↵F , �⇠F = i

p
2⇠�

µ
@µ� . (3.1.6)

With this modification, the SUSY algebra closes off-shell, i.e. without the need of using the eoms.
The supersymmetric action then becomes

S =

Z
d4x

�
�|@µ�|

2
� i��µ@µ�+ |F |

2
�
. (3.1.7)

67



The equations of motion for F make it vanish, and the SUSY transformations as well as the
action reduce to (3.1.2) and (3.1.3).

The superfields

The dynamics (3.1.7) can be easily generalized when written in superspace [262], which is a quite
deep and interesting mathematical concept (see e.g. [263,264]). At the level of our discussion, it
is enough to understand that one can recast the content of a multiplet into a single mathematical
object, called a superfield  (xµ, ✓↵, ✓↵̇), which is a function of the spacetime point and of a spinor
✓ (sort of "variable along the multiplet dimension"), on which the SUSY transformations (almost)
act as ✓ shifts:

� =


⇠↵
✓

@

@✓↵
� i(�µ✓)↵@µ

◆
+ ⇠↵̇

✓
@

@✓↵̇
� i(�µ✓)↵̇@µ

◆�
 . (3.1.8)

This is consistent with the transformations (3.1.6) if one defines for the chiral multiplet:

�(xµ, ✓↵, ✓↵̇) = �
�
xµ + i✓�µ✓

�
+

p
2✓�

�
xµ + i✓�µ✓

�
+ ✓2F

�
xµ + i✓�µ✓

�
, (3.1.9)

where we mean in the right hand side that the fields should be Taylor-expanded around xµ using
the nilpotency properties of ✓, e.g. as �

�
xµ + i✓�µ✓

�
= �(x) + i✓�µ✓@µ�+ 1

4
✓2✓

2

2�. This chiral
superfield only involves the fields � and F (and not their conjugates � and F ), and only the left-
handed fermion � (and not its right-handed conjugate �). For this reason, we may sometimes
use in what follows the following definition:

�(xµ, ✓↵, ✓↵̇) ⌘ |yµ=xµ+i✓�µ✓ �(y, ✓) = �(y) +
p
2✓�(y) + ✓2F (y) . (3.1.10)

This is important for the holomorphicity properties of the dynamics, which we describe below.
The conjugate fields appear in the anti-chiral superfield �.

Similar constructions hold for the vector multiplet, which is augmented by an auxiliary field
D, and whose associated superfield is given (for the abelian vector boson, in a gauge called
Wess-Zumino (WZ) gauge where V 3 = 0) by

V (xµ, ✓↵, ✓↵̇) = �✓�µ✓Aµ + i✓2✓�� i✓
2

✓�+
1

2
✓2✓

2

D . (3.1.11)

It is also useful to know the field strength multiplet (which is gauge-independent):

W↵(x
µ, ✓↵, ✓↵̇) = �

1

4
D

2

D↵V , with D↵ =
@

@✓↵
+ i(�µ✓)↵@µ and D↵̇ = �

@

@✓
↵̇ � i(✓�µ)↵̇@µ

= �i�↵ +


��↵D �

i

2
(�µ�⌫)↵

�Fµ⌫

�
✓� + ✓2(�µ@µ�)↵ ,

(3.1.12)
where the fields are to be evaluated at xµ+ i✓�µ✓ like in (3.1.9) and where Fµ⌫ = @µA⌫ � @⌫Aµ is
the field strength of Aµ. There are non-abelian extensions of this construction, which we do not
cover here. We do not cover details of the gravity multiplet either, or of the general dynamics of
supergravity in what follows.
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3.1.2 N = 1 supersymmetric dynamics

The supersymmetric dynamics of the multiplets in Table 3.1 can be easily constructed using their
associated superfields. The most general lagrangian with up to two spacetime derivatives acting
on a set of chiral superfields {�i} is [265,266]

L = K(�i,�j)|✓2✓2 term
+W (�i)|✓2 term +W (�j)|✓2 term

, (3.1.13)

where the function K, called the Kähler potential, should be real and the function W , called
superpotential, should be holomorphic in terms of the superfields (i.e. it should not depend on
any of the �js). In (3.1.13), the functions are understood as being again developed in Taylor
series in powers of ✓ and ✓, around xµ for K and around yµ for W . The name Kähler potential
is due to the fact that the field expansion of (3.1.13) involves

L = �Kij@�i@�j + ... where Kij ⌘
@K

@�i@�j

, (3.1.14)

meaning that the scalar manifold is a Kähler manifold, in the mathematical sense. The superpo-
tential gets its name from the fact that it determines the scalar potential as follows:

V
�
�i,�j

�
= Kij @W

@�i

@W

@�j

, (3.1.15)

where we defined Kij such that KijKkj = �ik and the same for the second variable. This is
obtained from (3.1.13) once the auxiliary fields (Fi, F j) are integrated out.

One can rewrite the action (3.1.13) as an integral over the full superspace. In order to do this,
one needs to define the Grassmann integration for an anticommuting variable ⌘:

For a function f(⌘) = f0 + f1⌘ ,

Z
d⌘ f ⌘ f1. (3.1.16)

In particular
R
d⌘ 1 = 0 and

R
d⌘ ⌘ = 1. Hence, defining d2✓ ⌘ �

1

4
d✓↵d✓�✏↵�, d2✓ ⌘ �

1

4
d✓↵̇d✓�̇✏

↵̇�̇

and d4✓ ⌘ d2✓d2✓, we can write (3.1.13) as

L =

Z
d4 ✓K(�i,�j) +

Z
d2✓ W (�i) +

Z
d2✓ W (�j) . (3.1.17)

The Kähler potential and the superpotential can be restricted by means of symmetries (gauge
ones for instance, as we discuss next). Then, there are two kind of symmetries: those which
commute with the supersymmetry generators and those which do not. Hence, the first kind acts
in the same way on a full multiplet, which means that we get (here for an abelian symmetry
acting on a chiral superfield) in superspace:

�
�
x, ✓, ✓

�
��!
U(1)

�0 �x, ✓, ✓
�
= eiq↵�

�
x, ✓, ✓

�
, (3.1.18)

where q is the charge of the multiplet and ↵ the transformation parameter. On the contrary, the
second kind differentiates between the different components of a same multiplet. It defines what
is called an R-symmetry, which we comment on again in section 3.1.3. For N = 1 SUSY, the
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R-symmetries are abelian and can be implemented in superspace via a shift of the superspace
variable ✓ ! ✓0 = ei↵✓:

�
�
x, ✓, ✓

�
���!
U(1)R

�0
⇣
x, ✓0, ✓

0
⌘
= eiq↵�

�
x, ✓, ✓

�
(3.1.19)

The parameter q is the charge of the lowest component of the superfield, since (3.1.19) gives,
when written in components:

�0 = eiq↵� , �0 = ei(q�1)↵� , F 0 = ei(q�2)↵F . (3.1.20)

From this, we understand that the superpotential needs to have R-charge 2 to define an R-
symmetric theory, since the lagrangian is given by its F -component. The Kähler potential needs
to be R-invariant. For a conserved non-R U(1) charge, both the superpotential and the Kähler
potential should be invariant.

For a set of chiral multiplets {�i} charged under some abelian symmetries of gauge superfields
{V a

}, the procedure is a bit more involved [267]. First, one needs to solve the following equations
for some real functions da(�i,�j), given a set of charges tai :

Kij(it
a
j�j) = i

@da

@�i
and Kij(�itai�i) = �i

@da

@�j

, (3.1.21)

where the vectors Xa(�) = �itai�i
@
@�i

and X
a
(�) = itaj�j

@
@�j

are (anti-)holomorphic Killing
vectors of the scalar Kähler manifold (which means that they induce the (anti-)holomorphic
shifts K(�,�) ! K(�,�) +F (�) +F (�), called Kähler transformations, on K). They generate
the gauge variations �0 = e�itai ⇤

a
�, with ⇤a a chiral superfield. Then, the gauge invariant

supersymmetric action is

L =

Z
d4✓


K(�i,�j) +

Z
1

0

d↵e
i
2↵V

a
(Xa�X

a
)V bdb

�
+

Z
d2✓

✓
W (�i) +

Hab(�i)

4g2ab
W aW b

◆
+ h.c.

�
,

(3.1.22)
where the (holomorphic) superpotential W and gauge kinetic function Hab should be gauge-
invariant. Then, the scalar potential is

V
�
�i,�j

�
= Kij @W

@�i

@W

@�j

+
g2ab
8
Habdadb , (3.1.23)

where Hab is the inverse of the gauge kinetic function. Once again, this potential is obtained from
the full superspace action (3.1.22) once the auxiliary fields Fi, F j and Da are integrated out.

Let us see what it gives for a single chiral superfield �, a single abelian vector superfield V , a
trivial Kähler potential �� = |�|

2, no superpotential W = 0 and a trivial gauge kinetic function
Hab = �ab: (3.1.21) tell us that d = c+ t|�|

2, from which we get, in WZ gauge,
Z

1

0

d↵e
i
2↵V (X�X)V d =

Z
1

0

d↵

✓
1 +

t

2
↵V

✓
�
@

@�
+ �

@

@�

◆◆
V
�
c+ t|�|

2
�

= cV + tV |�|
2 +

t2

2
V 2

|�|
2 .

(3.1.24)
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(3.1.22) then gives us back the usual gauge-invariant theory of a chiral superfield coupled to an
abelian vector multiplet:

L =

Z
d4✓

�
�etV�+ cV

�
+

✓Z
d2✓

1

4g2
W 2 + h.c.

◆
. (3.1.25)

We thus see that the undetermined constants ca which can possibly be added to the das in
(3.1.21) are actually the Fayet-Iliopoulos (FI) terms [268] that one can choose for an abelian
supersymmetric gauge theory. Those terms, which are absent for non-abelian theories, are quite
useful for SUSY breaking, as we will soon see. Finally, the scalar potential reads

V
�
�,�

�
=

g2

8

�
c+ t|�|

2
�2

. (3.1.26)

In SUGRA, the scalar potential is modified by gravitational contributions. Those are such that,
when the Planck mass is taken to infinity, all other field values being kept fixed, the potential
reduces to (3.1.23).

3.1.3 Extended supersymmetry

Around (3.1.1), we mentioned "extended" supersymmetry as the maximal (non internal) exten-
sion of the Poincaré algebra. "Extended" means that there is not only one charge (Q,Q) but
possibly N of them: (Qi=1,...,N , Qj). We then talk about N = N SUSY.

The algebra is almost a straightforward extension of the N = 1 one:

{Qi
↵, Q↵̇,j} = 2�µ

↵↵̇Pµ�
i
j , [Pµ, Q

i
↵] = [Pµ, Q↵̇,j] = 0 , [Mµ⌫ , Q

i
↵] = i�µ⌫

↵
�Qi

� , [Mµ⌫ , Q
↵̇
j ] = i�µ⌫↵̇

�̇Q
�̇
j ,

(3.1.27)
with the (fundamental) exception that one can now include central charges Zij as follows:

{Qi
↵, Q

j
�} = ✏↵�Z

ij , {Q↵̇,i, Q�̇,j} = ✏↵̇�̇Zij . (3.1.28)

The Zij are antisymmetric and thus cannot be present for N = 1 SUSY. They are called central
charges since they commute with all the other generators, so they can be diagonalized on the
Hilbert space. On each state, they appear as a set of real values assembled in an antisymmetric
matrix Zij. They have dramatic effects on the representations though, since they modify the
standard interpretation of Q and Q as creation or annihilation operators. Massive states, of mass
M , must verify

Zn  2M , (3.1.29)

where Zn are the positive real values obtained when the matrix Zij is diagonalized. (3.1.29) is
then called the BPS bound. When it is saturated, massive multiplets have less degrees of freedom
than those which do not saturate it: we talk about short, respectively long, multiplets. The short
multiplets, mostly called BPS states, are also annihilated by a subset of the supersymmetry
charges, meaning that they preserve some amount of supersymmetry, consistently with the fact
that they have less degrees of freedom. Central charges are also usually associated to topological
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Multiplets

N = 2 Vector multiplet: �,
✓
�1,↵
�
↵̇
1

◆
,

✓
�2,↵
�
↵̇
2

◆
, Aµ Hypermultiplet: �1,�2,

✓
�1,↵

�↵̇
2

◆

| {z }
Dirac spinor

N = 4 Vector multiplet: 'i=1,...,6| {z }
Real scalars

,

✓
�a=1,...,4,↵

�
↵̇
a

◆
, Aµ

N = 8 Gravity multiplet: 'a=1,...,70,

✓
�i=1,...,56,↵

�
↵̇
i

◆
, AA=1,...,28,µ,

✓
 I=1,...,8,µ↵

 
↵̇
I,µ

◆
, eaµ

Table 3.2: Fields in usual N > 1 multiplets

defects in supersymmetric theories [269]. We will give an example where this happens in section
3.4, where we will illustrate many aspects of this discussion.

There is an other aspect of the extended algebra which is worth mentioning. The algebra
without central charges is invariant under U(N) relabellings of the charges, so this U(N) =

SU(N) ⇥ U(1) invariance can be added to the algebra of the theory (from the Poincaré group
point of view, it behaves as an internal symmetry, as required by the Coleman-Mandula theorem).
It does not commute with the supersymmetry algebra and is thus the N > 1 generalization of
the R-symmetry of (3.1.19). If central charges are present, they must be compatible with the
R-symmetry which is chosen.

It turns out that the only Ns for which we know consistent theories in four dimensional flat
space verify N  8. Furthermore, every such theory with N > 4 is necessarily a theory of
supergravity. Remarkable massless multiplets are those of Table 3.2. They all can be seen as as-
semblages of N = 1 multiplets, since every supersymmetry algebra includes a N = 1 subalgebra.
The hypermultiplet can either be massless or massive BPS-saturated. The N = 4 vector multi-
plet is the one involved in the famous N = 4 Super-Yang-Mills (SYM) theory, dual to Type IIB
string theory on AdS5⇥S5 via the celebrated Anti de Sitter/Conformal Field Theory (AdS/CFT)
correspondance [270]. The N = 8 supergravity multiplet defines the maximally supersymmetric
supergravity theory, which can be dimensionally reduced from the SUGRA with the highest-
dimension known, the eleven-dimensional one [271], as well as from the ten-dimensional Type
IIA SUGRA.

The indices which appear in those remarkable multiplets denote the R-symmetry properties
of the theory: the two scalars of the hypermultiplet are exchanged by the SU(2) R-symmetry of
N = 2 SUSY, like the two fermions of the vector multiplet. The scalars and the fermions of the
N = 4 multiplet belong to SU(4) R-symmetry multiplets. Actually, the R-symmetry in N = 4

SYM has nice interpretations: it has to arise in this conformal theory since the R-symmetry
generators are present in the superconformal algebra, and it can be understood as the SO(6)

rotations in internal space when N = 4 SYM in four dimensions is dimensionaly reduced from
the ten-dimensional SYM on a T 6.
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3.1.4 Off-shell N = 2 supersymmetry

We go now in further details about N = 2 SUSY, and present the dynamics of vector multiplets
and hypermultiplets, when the latter can be written with a superfield language (see [272, 273],
for pedagogic introductions).

As for N = 1 multiplets, there are cases where the N = 2 ones can be written using superspace
and superfields. In what follows, we only consider a naive extension of the N = 1 superspace,
and leave aside more elaborate constructions such as harmonic superspace [264]. Our extended
superspace is simply the doubling of the usual one: we introduce a second set of Majorana spinors⇣
✓̃, ✓̃

⌘
and we define superfields as functions  

⇣
x, ✓, ✓, ✓̃, ✓̃

⌘
.

In N = 1 SUSY, an arbitrary superfield was composed of too many fields, meaning that it was
a reducible representation of SUSY. Thus, we imposed constraints in order to get the irreducible
representations (3.1.9) and (3.1.11). Those constraints were

D↵̇� = 0 for the chiral superfield , V = V † for the vector superfield , (3.1.30)

plus a gauge fixing condition for the vector superfield, with D↵̇ defined as in (3.1.12). We could
also have derived the vector superfield’s structure by starting with a chiral superfield W↵ (i.e.
which verifies D↵̇W↵ = 0) and by demanding in addition that

D↵W↵ +D↵̇W
↵̇
= 0 , (3.1.31)

which in reverse is solved if (3.1.12) is verified.

In N = 2 SUSY, the same happens. The vector multiplet is then obtained by the following
construction: start with a chiral-chiral superfield W (i.e. which verifies DW = D̃W = 0, with D̃

defined with respect to ✓̃ as D was with respect to ✓), and impose the following constraint:

DD̃W +DD̃W = 0 . (3.1.32)

The solution of this is defined in terms of a N = 1 chiral multiplet � and of the field strength
W↵ of a N = 1 vector multiplet as follows:

W(y, ✓, ✓̃) = �(y, ✓) + i
p
2✓̃W (y, ✓) �

1

4
✓̃2D

2

�(y, ✓) (3.1.33)

where y ⌘ x + i✓�✓ + i✓̃�✓̃, analogously to (3.1.10). Written like this, the first supersymmetry,
defined by its action on the ✓-space as in (3.1.8), is supplemented by a second one which acts on
the ✓̃-space in the same way, which makes us recover (3.1.6):

�⇠̃� = i
p
2⇠̃W , �⇠̃W↵ =

p
2
⇣
�µ⇠̃

⌘

↵
@µ�+

i

2
p
2
⇠̃↵D

2

� . (3.1.34)

Here, we see what is the rewriting of the SU(2) R-symmetry in N = 2 superspace: it rotates ✓
and ✓̃ as a doublet, consistently with the fact that the two fermions in � and W↵ are rotated into
each other, or that the two supersymmetries send the scalar on each of those fermions.
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The dynamics of the vector superfield is given in terms of a holomorphic function F , called
the prepotential:

L �

Z
d2✓d2✓̃ F(W) + h.c. =

Z
d2✓

✓
�
1

4
D

2

�F
0(�) +

F
00(�)

2
W 2

◆
+ h.c.

=

Z
d4✓

⇣
�F

0(�) + �F
0
(�)

⌘
+

✓Z
d2✓

F
00(�)

2
W 2 + h.c.

◆
.

(3.1.35)
It determines the Kähler potential and the gauge kinetic function as follows:

K
�
�,�

�
= �F

0(�) + �F
0
(�) , H(�) = 2F 00(�) . (3.1.36)

In addition, one can add a FI term and a linear superpotential

L � e1D + (e2F + h.c.) , (3.1.37)

where F and D are the auxiliary fields in � and W↵ respectively.

An other multiplet can be defined, which describes (the dual version of) an hypermultiplet
with a shift symmetry. It is called the single-tensor multiplet, and it is built out of a N = 1

tensor multiplet [274], which is encoded in superspace by a real linear superfield L, which verifies

L = L† and D2L = D
2

L = 0 , (3.1.38)

together with a chiral superfield �. One of the components of L is (the Hodge dual of) the field
strength of a 2-form, which can be dualized into a scalar in 4D to form one of the two complex
scalar fields which usually compose the hypermultiplet. Those two superfields are exchanged by
the second SUSY transformation as follows:

�⇠̃� = i
p
2⇠̃DL , �⇠̃L = �

i
p
2

⇣
⇠̃D�+ ⇠̃D�

⌘
, (3.1.39)

such that they can be arranged in a superfield Z in N = 2 superspace, which is chiral-anti-chiral:

Z = �+ i
p
2✓̃DL �

1

4
✓̃
2

D
2

� , (3.1.40)

and whose dynamics is given by

L =

Z
d2✓

Z
d2✓̃ G(Z) + e�

�
+ h.c. , (3.1.41)

where G is again holomorphic and where we included an allowed linear superpotential for �.
The SU(2) R-symmetry is not obvious here, since there are both chiral and anti-chiral spinor
coordinates, but it is manifest in the long superfield formulation of the single-tensor multiplet
(see e.g. [273]), in which case it rotates as expected the scalars and leaves the fermions invariant.

3.1.5 Quantum properties

Supersymmetric theories have remarkable properties concerning the possible (perturbative) quan-
tum corrections they undergo, called non-renormalization theorems.
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N = 1 theories can only receive quantum corrections which are written as integrals over the
whole superspace, i.e. as

R
d4✓ (something). In particular, the superpotential is not renormalized,

and its couplings constants only run when the wave-functions renormalizations at the level of the
Kähler potential are reintroduced by trivializing the kinetic terms. The gauge coupling only
receives one-loop corrections (to which one also adds the wave-functions renormalizations). The
non-renormalization of the superpotential can be seen in a simple example, with a nice argument
[275]. Let us consider the Wess-Zumino model of a chiral superfield � [237], of superpotential

W =
m

2
�2 +

�

3
�3 . (3.1.42)

Any quantum correction to W must respect its holomorphicity, both in terms of the superfield �
and of the coupling constants m and �. In addition, perturbative corrections respect the global
symmetries of the theory. W actually does not have any symmetry, but it has spurious symmetries
if the constants are granted some transformation properties. There is then a "regular" U(1)

symmetry, as well as a U(1)R R-symmetry, under which the different (spurious) fields transform
as

U(1) U(1)R
� 1 1
m �2 0
� �3 �1

(3.1.43)

Consequently, the only shape that the quantum-corrected holomorphic symmetry-preserving su-
perpotential could take is the following:

Weff =
m

2
�f

✓
��

m

◆
, (3.1.44)

with f a holomorphic function. When � ! 0, we should recover the tree-level superpotential of
(3.1.42). Thus, we understand that

f

✓
��

m

◆
��!
�!0

1 +
2�

3m
�2 . (3.1.45)

But since we could have performed the limit in a way which keeps ��
m invariant, we conclude that

f
�
��
m

�
= 1 + 2�

3m�
2 holds whatever �, hence that the superpotential is not renormalized. We see

here that holomorphy was crucial to reach this conclusion.

In N = 2 theories, the prepotential of the vector multiplet is exact at one-loop. N = 4 SYM,
for its part, is a superconformal theory and its full lagrangian is completely determined by the
gauge group, hence it does not run.

Generally, BPS states, which are short multiplets, cannot stop being BPS-saturated via quan-
tum corrections since it would require that they get extra degrees of freedom to become a long
multiplet. Thus, the saturation of the BPS bound is protected from quantum corrections.

3.2 N = 1 explicit models for supersymmetry breaking

As we argued in the introduction to this section, there is a phenomenological need of build-
ing models of supersymmetry breaking. In this section, we deal with explicit models, meaning
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supersymmetric UV models whose potential displays a minimum which spontaneously breaks su-
persymmetry. We cover in sections 3.2.1 and 3.2.2 the basics of SUSY breaking in N = 1 SUSY,
and we apply in section 3.2.3 the techniques reviewed there to a model which we already encoun-
tered in section 2.2.2, but which is now supersymmetrized. It has the nice feature of inducing a
very low SUSY breaking scale, compared to the typical scales of the problem, and enables one to
build split spectra, for instance for the superpartners of the SM fields.

3.2.1 Generalities

The main observation for SUSY breaking goes as follows: the algebra imposes that the hamilto-
nian H is given by

H ⌘ P 0 =
Q1Q1 +Q1Q1

+Q2Q2 +Q2Q2

4
, (3.2.1)

which holds as an operator equality when SUSY is not broken, implying that the charges Q are
well defined on the Hilbert space. Then, we also have

8i, Qi |0i = Qi |0i = 0 (3.2.2)

on the supersymmetry-preserving vacuum |0i. Thus we immediately conclude that H |0i = 0,
i.e. the vacuum has zero energy. Inversely, if H |0i = 0,

h0|H |0i =
|Q1 |0i|2 +

��Q
1
|0i
��2 + |Q2 |0i|2 +

��Q
2
|0i
��2

4
= 0 =) 8i, Qi |0i = Qi |0i = 0 . (3.2.3)

On the other hand, (3.1.23) shows that all the contributions to the scalar potential are positive,
since both Kij and Hab must be definite positive since they define kinetic terms. Consequently,
there is a simple criterion which is equivalent to SUSY breaking:

SUSY is broken () h0|H |0i > 0 . (3.2.4)

As for internal symmetries, when SUSY is broken there is a massless Goldstone mode in the
spectrum, which is a Goldstone fermion [255] called the Goldstino. We do not discuss it deeply
in this section but we will come back to it quite a lot in section 3.3.

3.2.2 F-term and D-term breaking

In (3.1.23), there are two contributions, one which comes from the superpotential (and is called
the "F-term") and one which comes from the couplings to the vector multiplets (the "D-term").
They add up positively to form the potential, so we conclude from our previous discussion that

SUSY is preserved () 8i, a,
@W

@�i
= 0, da = 0 . (3.2.5)

Consequently, since the SUSY vacua all have (the minimal) zero energy, any scalar field con-
figuration which verifies (3.2.5) defines a SUSY vacuum. It happens often that a continuous
set of physically distinct SUSY vacua exists, parametrized by the value of one or several scalar
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fields. Those are called moduli, and the set is called the moduli space of vacua. It is of cen-
tral interest in studies of supersymmetric non-abelian theories (see appendix C), or extended
supersymmetry [276].

The conditions (3.2.5) are easier to solve than the usual minimization conditions for an arbi-
trary potential of the same degree as the SUSY potential (3.1.23). This announces something
we will mention later, the fact that BPS conditions are easier to solve than actual equations of
motion.

Instead, if one is interested in building a SUSY breaking model, it should be such that it
is impossible to have (3.2.5), so that the field configuration of lowest energy still has a strictly
positive energy.

It is straightforward to see that, with a single chiral superfield �, a trivial Kähler potential and
a polynomial superpotential, it is not possible to break supersymmetry. Indeed, since the scalar
� in � is a complex field, the only superpotential which does not have any solution to W 0(�) = 0

is the linear one W (�) = a� + b. However, it only adds a constant term |a|2 to the on-shell
action, which is still as much supersymmetric as if a was zero. What are then the typical models
of chiral superfields which are capable of breaking SUSY? Prototypical examples of such models
are O’Raifeartaigh models [277]. O’Raifeartaigh showed that, using trivial Kähler potentials, one
needs at least three chiral multiplets to break SUSY. A model which works is the following:

W = a0�0 + a1�0�
2

1
+ a2�1�2 =)

0

@
@W
@�0

= a0 + a1�2

1

@W
@�1

= 2a1�0�1 + a2�2

@W
@�2

= a2�1

1

A 6=

0

@
0
0
0

1

A . (3.2.6)

The Nelson-Seiberg theorem [278] gives some insight on the kind of models which break SUSY
with chiral superfields. It applies to generic models, i.e. models where all the allowed operators
are present, without tuning of the coefficients, once the symmetries of the theory are chosen. It
then states that, in order to break SUSY with such models, there must be an R-symmetry among
the initial symmetries. In addition, if a R-symmetry of the model is spontaneously broken, SUSY
is also broken. The O’Raifeartaigh model (3.2.6) is consistent with the theorem since it has an
R-symmetry under which the fields have charges (�0 : 2,�1 : 0,�2 : 2), and it is the most general
superpotential once we also impose that the fields transform as follows under a Z2 symmetry:
�0 ! �0,�1 ! ��1,�2 ! ��2.

When vector multiplets are added to the theory, there are new sources of possible SUSY
breaking. Indeed, there are additional conditions in (3.2.5) but no new scalar fields. On the other
hand, there are less possible interaction terms in the superpotential since those are restricted by
the requirement of gauge invariance. For instance, only uncharged fields can appear in the linear
terms of the superpotential. One immediate outcome is that, if there are only charged fields, it
is always possible to make the F-terms vanish by assigning to all the scalar fields the value zero.
There, the interest of having FI terms arises. Indeed, we saw in section 3.1.2 that, for a set of
charged chiral superfields �i with canonical Kähler potentials and charges tai under abelian gauge
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symmetries of vector superfields V a, the D-terms were

da = ca + tai |�i|
2 , (3.2.7)

where the summation is implicit on i. Thus, if there was no FI term, it would also be possible
to make the D-terms vanish by putting all scalar fields to zero. Consequently, there could not be
SUSY breaking in supersymmetric abelian gauge theories without uncharged fields. With the FI
terms, this is prevented from happening and SUSY breaking may occur.

Let us illustrate this using the simplest such model, which is supersymmetric quantum electro-
dynamics (SQED). It has two chiral superfieds �+ and �� of opposite charges ±1, as indicated
by the subscript, under an abelian gauge symmetry of vector superfield V . The lagrangian reads

L =

Z
d4✓

�
�+e

V�+ + ��e
�V�� + cV

�
+

✓Z
d2✓


1

4g2
W 2 +m�+��

�
+ h.c.

◆
, (3.2.8)

and it is straightforward to see that (3.2.5) cannot be satisfied: SUSY is broken. The potential
reads:

V =
e2

8

�
c+ |�+|

2
� |��|

2
�2

+ |m|
2
|�+|

2 + |m|
2
|��|

2 . (3.2.9)

The minimum of the potential is here found by usual minimization techniques. Here, if we
assume that |m2

| > e2c2

4
, the minimum lies at �+ = �� = 0, and SUSY is broken with a vacuum

energy e2c2

8
. Then, the Goldstino is the gaugino, the fermion contained in the vector multiplet.

Indeed, we identify it since it shifts non-linearly under a SUSY transformation, as is expected for
a Goldstone mode:

�⇠�↵ = �
ic

2
⇠↵ + fields . (3.2.10)

We will have much more to say about this behaviour in section 3.3.

Slightly off-topic with respect to SUSY breaking, but enabling us to connect with previously
discussed themes, it is interesting to consider the case where both the FI term c and the mass
m vanish. As we argued, SUSY is not broken in the vacuum, but there is now a moduli space
of vacua: all the field configurations where |�+| = |��| minimize the potential, and the value
f ⌘ |�±| is free. If it is taken different from zero, the gauge symmetry is broken, as can be seen
when parametrizing �± = f+h±p

2
ei

a±
f :

L � �
f 2

2
(@µ[a+ � a�] � Aµ)

2 . (3.2.11)

After gauge fixing, a whole chiral multiplet is absorbed by the vector multiplet to form a massive
vector multiplet, consistently with Table 3.1. The remaining degrees of freedom precisely arrange
in a massless chiral multiplet, as required by SUSY. This example shows nicely how supersymme-
try, when it is unbroken, packages spectra according to the theory of its representations whatever
the relabellings performed.

3.2.3 A clockwork model for supersymmetry breaking

In this section, we study a specific model for SUSY breaking, which is the supersymmetric version
of the clockwork-inspired model of section 2.2.2. It can also be seen as a clockwork version of
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the model in [279]. The content of this section is based on ongoing work in collaboration with E.
Dudas and S. Pokorski.

Overview

We can organize our overview of the results by comparing the model with its non-supersymmetric
counterpart of section 2.2.2. First, there are again modes localized along the quiver sites. How-
ever, those modes are not only axions but can also be vectors. Moreover, their site-dependence
is not the same as in the non-supersymmetric model: here, the quiver fully determines the scalar
potential, the vevs of the scalars are exponentially hierarchical, which modifies the profiles and
spectra of the different modes, especially the vectors. Unlike the non-supersymmetric case, there
are naturally light vectors in this model.

The very efficient axion protection in section 2.2.2 has a supersymmetric counterpart: SUSY
breaking, due to the specific quiver structure, can only be implemented via an operator of very
high dimension. Consequently, the scale of SUSY breaking is extremely suppressed compared to
the typical scales of the model. For instance, it can easily be around the TeV with a few quiver
sites, even if the model lives close to the Planck scale.

Finally, the two aspects mentioned here can be put together by noticing that the SUSY break-
ing is not spread out homogeneously along the quiver sites: there are exponential hierarchies
between the D-terms, which allows in principle to build hierarchical spectra for the MSSM super-
partners. On the other hand, any attempt to generate big hierarchies using the clockwork modes
of the model render SUSY breaking negligible.

The model, the vacua and the clockwork modes

One considers the quiver theory of N vector superfields Vi=1,...,N and N + 1 chiral superfields
�j=0,...,N displayed in Figure 3.1. The model is defined by N , by the charge q and by two free

Figure 3.1: Abelian quiver of the model

Fayet-Iliopoulos parameters ⇠1, ⇠N , which determine dynamically all the fields vevs. We assume
q > 1 and N > 1 in what follows. The lagrangian is

L =

Z
d4✓

✓
�0e

�qV1�0 + �1e
V1�qV2�1 + ...+ �Ne

VN�N +
⇠1V1 + ⇠NVN

2

◆
+

✓Z
d2✓

1

4g2i
WiW

i + h.c

◆
.

(3.2.12)
It is the most general renormalizable one allowed by the choice of gauge symmetry. This la-
grangian has a U(1)N+1 global invariance (�i ! ei↵i�i), with a U(1)N subgroup gauged by the
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quiver and an accidental leftover global U(1)a symmetry. If it is spontaneously broken, there is
a Goldstone boson in the spectrum.

The scalar potential is:

V =
NX

i=1

1

2g2i
D2

i with Di ⌘ �
g2i
2

�
�1,i⇠1 + �i,N⇠N + |�i|

2
� q|�i�1|

2
�
, (3.2.13)

so that the model has SUSY vacua. We define vi ⌘ |�i|. The vacua can be parametrized by a
single of the vevs, vN for instance:

v2N�1
=

1

q
(v2N+⇠N) , v2

1i<N =
1

q
v2i+1

=
1

qN�i
(v2N+⇠N) , v2

0
=

1

q
(⇠1+v2

1
) =

1

q
[⇠1+

1

qN�1
(v2N+⇠N)] .

(3.2.14)
Notice the increasing scalar vevs v1 < v2 < · · · vN�1, manifest from the relations

v2N�1
= qv2N�2

= q2v2N�3
= · · · qN�2v2

1
, (3.2.15)

leading to an exponential hierarchy among v1 and vN�1. This (natural!) hierarchical structure is
independent on the values of the FI terms ⇠i. On the other hand, the "boundary" vevs v0 and
vN do depend on the FI terms. As it stands the model has one flat direction, which can be lifted
as seen later on by adding a suitable gauge-invariant superpotential.

Gauge boson masses are generated from the Higgs mechanism:

L �
1

4
(Aµ,j � qAµ,j+1)

2
|�j|

2
⌘

1

2
Aµ

i M
2

1,ijAµ,j (3.2.16)

with
M

2

1,ij =
1

2

⇥
�qv2i�1

�i�1,j + (q2v2i�1
+ v2i )�i,j � �qv2i �i+1,j

⇤
. (3.2.17)

In the SUSY vacua described above, this mass matrix takes the following form:

M
2

1 =
1

2

0

BBBBBBBBB@

q⇠1 +
v2N�1

qN�2 (1 + q) �
v2N�1

qN�3 0 ... 0 0

�
v2N�1

qN�3

v2N�1

qN�3 (1 + q) �
v2N�1

qN�4 0 ... 0

0 �
v2N�1

qN�4 ... ... ... 0

0 ... ... ... ... 0
0 ... ... ... ... �qv2N�1

0 ... ... 0 �qv2N�1
qv2N�1

(1 + q) � ⇠N

1

CCCCCCCCCA

. (3.2.18)

Scalar masses arise from the scalar potential. We can use the symmetries to make all the vevs
real. Then, writing �i = vi + ��i, we find:

V �
1

2
Re(��i)M

2

0,ij Re(��j) (3.2.19)

with
M

2

0,ij = �qvivj�i�1,j + (1 + q2)v2i �i,j � qvivj�i+1,j . (3.2.20)

All imaginary (axionic) parts remain massless in this case. In the (generic) case where all gauge
fields are massive, N of those imaginary parts are absorbed by the gauge bosons in the Higgs
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mechanism. Since the vacua we discuss are supersymmetric, the leftover physical axion should
pair up with a zero eigenvalue of the mass matrix above.

The spectrum depends on the parameters of the model. The different cases are easy to picture
if we parametrize the flat direction of the potential in terms of v0. All the cases of interest are
summarized in Table 3.3 (where we indicated when there is a light mode of interest with respect
to the clockwork properties of the model).

⇠1 < 0 and ⇠1qN�1 + ⇠N < 0

v0 = 0 : One exponentially light vector multiplet with pro-
file ⇠

⇣
1, 1q ,

1

q2 , ...
⌘

v0 > 0 : One Goldstone chiral multiplet with profile⇣q
qv20�⇠1
qv20

,
p
q, q, ..., qN/2

q
qNv20�qN�1⇠1

qNv20�⇠N�qN�1⇠1

⌘

⇠1 < 0 and ⇠1qN�1 + ⇠N = 0

v0 = 0 : One massless vector multiplet with profile⇣
1, 1q ,

1

q2 , ...
⌘

v2
0
> 0 : One Goldstone chiral multiplet with profile⇣q

qv20�⇠1
qv20

,
p
q, q, ..., qN/2

q
qv20�⇠1
qv20

⌘

⇠1 < 0 and ⇠1qN�1 + ⇠N > 0
or

⇠1 > 0 and ⇠N > 0

Allowed values for v0 :
v2
0
> ⇠1qN�1

+⇠N
qN : One Goldstone chiral multiplet with profile⇣q

qv20�⇠1
qv20

,
p
q, q, ..., qN/2

q
qNv20�qN�1⇠1

qNv20�⇠N�qN�1⇠1

⌘

⇠1 > 0 and ⇠N  0

Allowed values for v2
0

: v2
0
> ⇠1

q : One Goldstone chiral multiplet with profile⇣q
qv20�⇠1
qv20

,
p
q, q, ..., qN/2

q
qNv20�qN�1⇠1

qNv20�⇠N�qN�1⇠1

⌘

Table 3.3: Clockwork modes of the model

The existence of the Goldstone chiral multiplets are due to the fact that the leftover U(1)a is
spontaneously broken, leaving a massless Goldstone boson in the spectrum. Its profile

 s
qv2

0
� ⇠1

qv2
0

,
p
q, q, q

3
2 , ..., qN/2

s
qNv2

0
� qN�1⇠1

qNv2
0
� ⇠N � qN�1⇠1

!
(3.2.21)

is found by demanding that it is orthogonal to the bosons absorbed by the gauge vectors. It
exhibits clockwork properties, and its profile results from an interplay between the growing vevs
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and the quiver charges. This explains why it is not the same as in (2.2.16). Supersymmetry links
it to a zero mode of the scalar mass matrix, with the same profile. The phenomenological use
of this axion is the same as the one discussed in section 2.2.2: even though it is demanding to
use it as a QCD axion, due to the presence of the quiver gauge symmetries, it may be possible
to use it as an ALP, with possible trans-Planckian effective couplings due to the clockwork
profile. Furthermore, a perturbative potential for this axion is even more suppressed than the
one in section 2.2.2, since the first superpotential allowed (3.2.24) still maintains an accidental
R-symmetry, which protects the axion shift symmetry. Thus, higher orders terms are needed to
generate a mass for this axion.

As we said earlier, a combination of the scalar real parts completes the axion within a massless
chiral multiplet. The rest of the real parts join the massive vectors within massive vector multi-
plets, and the profiles of the scalar mass matrix eigenvectors match the eaten Goldstone bosons
profiles (which are at linear order the imaginary parts of the chiral multiplets after they acquire
vevs). Masses are not arranged in a band-like way and their associated modes are not smoothly
delocalized (unlike canonical models of clockwork, discussed around (2.2.4)).

The light/massless vector mode is interesting, since such modes have been used within dis-
cussions of swampland conjectures [172, 280] or can be used to naturally generate millicharges
[144, 148]. When it is massless, it is due to the fact that the vevs are arranged such that two of
them (v0 and vN) vanish and leave an abelian gauge factor unbroken1. It has a clockwork profile
(this implies that states localized on the right of the quiver diagram have very small charges):

✓
1,

1

q
,
1

q2
, ...

◆
, (3.2.22)

but it demands a tuning of the FI terms, as seen in Table 3.3. More interestingly, the same
profile characterizes the lightest vector state when only v0 vanishes (which is interesting for SUSY
breaking, see below). In this case, the N gauge symmetries are broken, but not the additional
U(1)a so the �0 multiplet does not mix with the massive gauge bosons and stays massless. The
lightness of (3.2.22) is understood from the fact that, when we switch on vN with respect to the
tuned case we mentioned just above, the massless vector almost does not feel it since �N has
an exponentially small charge with respect to this mode. Due to the asymmetry of the quiver
charges, this conclusion would not hold if we instead turned on v0: we would completely loose
the lightness of (3.2.22). One can make this statement more quantitative by computing a bound
on the smallest eigenvalue of the vector mass matrix, using the clockwork vector mode. With
|vi = (1, 1q , ...):

�min 
hv| M2

1
|vi

hv|vi
=

q2

2 hv|vi

"
v2
0
+

v2N
q2N

#
(3.2.23)

One then sees that this bound implies an extra q2N suppression in the v0 = 0, vN = O(1) case
compared to the v0 = O(1), vN = 0 one.

1The conditions vN = v0 = 0 prevent from breaking more than N � 2 abelian symmetries, so one does not
expect to identify a Goldstone boson-like particle. Nevertheless, two zero mass chiral multiplets survive the Higgs
effect from the original N + 1, and correspond to the two remaining uneaten phases and to the (1, 0, 0...) and
(..., 0, 0, 1) zero modes of the real part mass matrix.
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Finally, the case with many unbroken gauge symmetries (with v0<i<N = 0) does not display
a specifically interesting behaviour: the spectrum is composed of localized modes: one finds 2

massive vector supermultiplets located on the first and last sites (and which absorbed the �0

and �N chiral multiplets), when all the other scalar and vector modes remain massless. Due to
the high number of massless gauge fields, this case will not be considered in phenomenological
discussions.

Supersymmetry breaking: model with a superpotential

Similarly to [279] and our discussion of section 2.2.2, the model admits an extension with a
superpotential that breaks supersymmetry for a region of the FI parameter space. The goal is to
investigate supersymmetry breaking and to take advantage of the gauge structure of the model
in order to generate a hierarchically small scale of supersymmetry breaking. The lowest order
superpotential compatible with the gauge symmetries is

W =
�

M q+q2...+qN�2

P

�0�
q
1
�q2

2
...�qN

N , (3.2.24)

where we use MP , since it could be generated in an EFT of quantum gravity. Of course, this scale
could be an arbitrary scale of new physics. Notice the high powers involved in the superpotential,
due to the peculiar clockwork-like charge assignements. The superpotential contributes to the
scalar potential:

V =
NX

i=1

D2

i

2g2i
+

NX

i=0

|Fj|
2 with Fi = �

1

M q+q2...+qN�2

P

qi
 
��0�

q
1
�q2

2
...�qN

N

�i

!⇤

. (3.2.25)

These new terms do not vanish on all the previously found SUSY vacua (3.2.14), and for some
choices of ⇠1 and ⇠N , there is no SUSY preserving vacuum. Let us analyse the conditions for
SUSY breaking. In order to do this, let us consider (3.2.14) and try to identify which of these
cancel the newly added F-terms:

• If ⇠N  0: First, if ⇠1 � 0, v2N = �⇠N , vN�1 = 0, v2
0
= ⇠1

q sets the system on a SUSY
preserving vacuum. If now ⇠1 < 0, one has to choose v2N�1

> 0 in order to satisfy v2
0
=

⇠1
q +

v2N�1

qN�1 � 0, and one also obtains v2N > 0 since v2N = qv2N�1
� ⇠N . Then, whichever choice

is made, F 0 ⌘ �
�

Mq+q2...+qN�2
P

�q
1
�q2

2
...�qN

N is non zero and SUSY is broken.

• If ⇠N � 0: First, if ⇠1qN�1 + ⇠N � 0, vN = 0, v2N�1
= ⇠N , v20 = ⇠1qN�1

+⇠N
qN defines a

SUSY preserving vacuum. If now ⇠1qN�1 + ⇠N < 0, v2N = qNv2
0

� (⇠1qN�1 + ⇠N) > 0 and
v2N�1

= |�N |2+⇠N
q > 0. There one ends up again in a situation where F0 is non zero and

SUSY is broken.

Summarizing:

SUSY breaking ()

⇣
⇠N  0 & ⇠1 < 0

⌘
or

⇣
⇠N � 0 & ⇠1q

N�1 + ⇠N < 0
⌘
. (3.2.26)
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These constraints allow solutions with ⇠s of the same order of magnitude. Let us thus assume
that the ⇠s are of "natural" size, i.e. slightly below O(M2

P ), and estimate the SUSY breaking
scale. One can define a small parameter

✏ =
vq
1
vq

2

2
...vq

N�1

N

M q+q2...+qN�1

P

. (3.2.27)

Notice that due to the very high powers involved due to the clockwork charges, ✏ is extremely
small even for small values of N and q. Deviations of order ✏0 from the solutions in (3.2.14)
induce an increase in the vacuum energy of O(✏0)M4

P . However, there exist field configurations
with a vacuum energy increase of order ✏2 (an explicit example is given later), so one should
consider field configurations with deviations of at least order ✏2 from (3.2.14).

These configurations are the following (written in a way such that both sides of any identity
in (3.2.28) is clearly positive when (3.2.26) is verified):

|�0|
2 = v2

0
+a0 , |�1i<N |

2 = v2i+ai = qi�1(qv2
0
�⇠1)+ai , |�N |

2 = v2N+aN = qN�1(qv2
0
�⇠1)�⇠N+aN ,

(3.2.28)
where all ais are of order O(✏2). The choice of v0 cancels out from the calculation of the D-terms
but has an impact on the F-terms which strictly increase when v0 does. Then the minimization
of V imposes the choice v0 = 0, and the configuration of interest is :

|�0|
2 = a0 , |�i|

2 = �qi�1⇠1 + ai , |�N |
2 = �qN�1⇠1 � ⇠N + aN . (3.2.29)

The minimization of the potential now yields (at order O(✏2)):

[�⇤
0

eom] �0
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q

2
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P
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���
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���
2
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(3.2.30)
We considered solutions with vi > 0, so from the �⇤

i>0
eom we deduce at order O(✏2) the following

hierarchically distributed D-terms:

DN = 2
�2

M2(q+q2...+qN�2)

P

qN
����q
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�q2
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...�qN�1
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...�qi�1
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(3.2.31)

The �⇤
0

eom should be treated more carefully since we don’t know yet if �0 6= 0. If we assume so,
the eom gives us:

qD1 = �2
�2

M2(q+q2...+qN�2)

P

���q�q�1

1
�q2

2
...�qN

N

���
2

� 2
�2
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���q2�q
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...�qN
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+ ...

= �2�2q2N✏2M2

P
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1 +
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1 +

1

q
+ ...

1

qN�2

�◆ (3.2.32)
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which is the opposite of what was found previously. We hence need to enforce �0 = 0. One is
then left with the following vevs (recall that Di =

1

2
(qai�1 � ai)):

|�1i<N |
2 = �qi�1⇠1�2(Di+qDi�1+...+qi�1D1) , |�N |

2 = �qN�1⇠1�⇠N�2(DN+...+qN�1D1) .

(3.2.33)
F-terms are zero at this order except F0 = ��✏

p
�qN�1⇠1 � ⇠NMP .

The scale of supersymmetry breaking is given by the auxiliary fields. Can one get this scale
down to about a TeV with input scales which are not hierarchically smaller than MP ? The
D-terms schematically lie between qN✏2M2

P and q2N�1✏2M2

P , so one wants

q2N✏2 = q2N+⌃
N
i=1(i�1)qi

✓
�⇠1
M2

P

◆q+q2+...qN�1

⇠ 10�30 , (3.2.34)

where we neglected ⇠N compared to qN�1⇠1. Many values of q, ⇠1 and N can achieve this, for
instance q = 3, N = 4 or q = 6, N = 2 when ⇠1 =

M2
P
3

.

Notice however that the nice clockwork properties of the supersymmetric version of the model
(before adding the SUSY breaking superpotential) seem to be incompatible with the requirements
of supersymmetry breaking. Indeed, the Goldstone boson profile needed v0 6= 0, whereas the
SUSY breaking dynamics selects v0 = 0. On the other hand, a light U(1) gauge boson is found
in the spectrum but, for typical values which verify (3.2.34), the suppression due to profile is not
significant.

A word on phenomenological perspectives concerning the MSSM

In this section, we briefly mention phenomenological questions which could be addressed using
this model. First, the SUSY breaking set up allows to give masses to the MSSM sfermions by
charging the MSSM superfields under different subgroups of the quiver theory, writing e.g.

Z
d4✓QeViQ �

Di

2
|q|2 ⇠ q2N�i✏2M2

P |q|2 . (3.2.35)

Since there can be a factor qN�1(⇠ 101�2 in the examples we gave) between the first and last
D-terms, the spectra can thus be arranged in a way which looks like mini-split scenarii [281,282].
In addition, uncharged fields could receive masses from higher-order terms:

Z
d4✓
�0�0

M2

P

QQ �
|F0|

2

M2

P

|q|2 ⇠ ✏2M2

P |q|2 , (3.2.36)

in which case the hierarchies between the masses can go as high as q2N�1(⇠ 102�3).

Second, the hierarchical vevs can be used to generate effective Yukawa couplings à la Froggatt-
Nielsen (see section 2.3), and the hierarchies in vevs (which scale as qN/2(⇠ 10)) could be used.
Furthermore, there is more than one abelian symmetry which can possibly play the role of a FN
gauge symmetry in the quiver. The different charges may then be arranged such that strong
suppressions arise like in (3.2.27), with smaller charges than in the usual FN mechanism (where
the ratios of charges may go as high as 10).
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Summary

The supersymmetric model we put forward in this section has, for small values of the input
parameters (the charges and the number of quiver sites), supersymmetric vacua with one light
vector boson or one Goldstone boson with exponentially localized, clockwork-like profiles. As
such, the model can accomodate milicharged particles, charged under the light gauge boson, or
super-Planckian decay constants, for the Goldstone boson. It also displays naturally hierarchical
vevs for the quiver bifundamental fields. It should be noted here that due to the exponential
growth of those vevs, it might be necessary to tune the FI terms such that they remain within
the regime of validity of the EFT (e.g. below the Planck scale).

If on the other hand we choose the parameters such that SUSY is broken, we find vacua with
exponentially suppressed scale of supersymmetry breaking, of potential phenomenological inter-
est. In particular, the input parameters are all O(1), and it is easy to keep the vevs below the
Planck scale without too much tuning on the FI terms. However, in this case clockwork proper-
ties loose their appeal since qN is not large enough to effectively generate large hierarchies. In
the class of models we considered, there seems therefore to be a complementarity between super-
symmetric vacua and clockwork properties at large N , and consistent vacua with hierarchically
small supersymmetry breaking at small N . It would be interesting to find supersymmetric mod-
els in which clockwork properties coexist with a phenomenologically interesting supersymmetry
breaking scale.

What we have not mentioned, or not yet studied

A few things are not covered here, even though there are of some interest. First, as in section
2.2.2, there is a five-dimensional interpretation for this model, which may be explored e.g. using
the formulation of 5D SUSY theories in 4D superspace [283,284].

Second, there are gauge anomalies in the model of Figure 3.1, which one can suppress by
using a Green-Schwarz mechanism. Then, its 5D interpretation as a Chern-Simons term is worth
exploring further [279]. In order to implement this Green-Schwarz mechanism, it is annoying that
SUSY breaking selects the value �0 = 0. To avoid it, it may be useful to either modify the charge
assignment at the left of the quiver, or use supergravity corrections to the potential to lift the
value of �0, which is made unstable by the SUGRA corrections. Then, an axion mode would be
present in the SUSY breaking minimum and could be of phenomenological interest (even though,
for TeV SUSY breaking, it seems to be too heavy to be a QCD axion). Definitely, more work is
necessary in this direction.

Finally, the phenomenology of this model when coupled to the MSSM, barely touched upon
above, is also worth scrutinizing in more details.
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3.3 Non-linear supersymmetry

In this section, we present the model-independent treatment of broken SUSY known as non-linear
supersymmetry. It has recently received interest within discussions of supersymmetric particle
physics models [285–287], models of inflation [288,289] or EFTs of string setups [290] with broken
SUSY.

Non-linear SUSY follows from a more general construction, the coset formalism, which we
review in section 3.3.1. Then, we discuss the specific case of non-linear SUSY in section 3.3.2,
as well as its rewriting in terms of constrained superfields in sections 3.3.3 and 3.3.4 for N = 1

and N = 2 respectively. The material in this section has been studied at the early stage of the
Ph.D., and most of the work has been devoted to analyzing the impact of different constraints
on phenomenological particle physics models, such as the MSSM or R-axion models, as well as
realizing Born-Infeld actions with full supersymmetry breaking. However, since this work has
not led to any clear-cut result, we only brush over those concerns along our review of classical
aspects.

3.3.1 Spontaneous breaking and non-linear realizations

We start by presenting the general formalism of non-linear realizations, also known as the Callan-
Coleman-Wess-Zumino (CCWZ) coset construction [291, 292], which gives generic rules to build
EFTs with a spontaneously broken symmetry.

For simplicity, let us start by the case of a global internal symmetry. Spontaneous symmetry
breaking is characterized by a symmetry group G broken down to a subgroup H. The Goldstone
theorem thus states that dim(G) � dim(H) Nambu-Goldstone bosons (GBs) are found in the
spectrum. In a complete UV model, they are found among the massless physical degrees of
freedom, extracted by diagonalizing the mass matrices and maybe redefining conveniently the
fields. In the CCWZ formalism, they are associated to fields ⇠a, on which the broken generators
Aa act non-linearly, i.e. not as matrices acting on vector indices. Typical non-linearities in those
transformations are shifts, already encountered for axions in section 2 for example. The action
of an element g of the group G on the ⇠as is defined as follows:

⇠a ! ⇠0a
⌘ g · ⇠a such that ge⇠aAa

= e⇠
0aAa

h(g, ⇠a) , (3.3.1)

where h(g, ⇠a) belongs to H. If the generators Aa are chosen such that they are orthonormal to
H (with respect to the Cartan inner product), (3.3.1) induces a linear representation of H on ⇠a:

h · ⇠a = D(⇠)a
b(h)⇠

b and h(h, ⇠a) = h , (3.3.2)

where D(⇠) is a matrix. Such a procedure is reminiscent of our parametrization of pions as
Goldstone bosons in section 2.1.4.

Couplings of the GBs to matter are obtained by "dressing" appropriately interactions which are
H-invariant. By this, we mean that we select a H-invariant lagrangian describing the dynamics
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of fields  lying in linear representations of H, that we upgrade their H-transformations into a
full non-linear realization of G:

 !  0
⌘ g ·  = D(h(g, ⇠a)) , (3.3.3)

where D(h) is the matrix representation of h 2 H acting on  , and that we turn usual derivatives
into G-covariant ones. In order to do so, we define the Maurer-Cartan 1-form

⌦ ⌘
�
e⇠

aAa��1

d
�
e⇠

aAa�
⌘ !i

V V
i + !a

AA
a , (3.3.4)

where V i are the unbroken generators of H, and we define covariant derivatives for the GBs ⇠a

and the fields  as follows:

Dµ⇠
a

⌘ !a
A,µ , Dµ ⌘ (@µ + !i

V,µD(V i)) . (3.3.5)

Then, the G-transformations of the Maurer-Cartan 1-form are such that any H- and Lorentz-
invariant lagrangian built out of Dµ⇠a and (Dµ) is automatically G-invariant.

The transformations (3.3.1) and (3.3.3) are general: indeed, any set of fields expanded around
a vacuum spontaneously breaking a symmetry can be put in the standard form described in this
section. The schematic procedure is to first define the ⇠as as coordinates of the submanifold
generated by the action of G on the vacuum configuration for the fields, then to pick a set of
fields  completing the ⇠as into coordinates of the full fields manifold and linearly realizing H,
which is always possible [291,292].

Such a procedure also exists for spontaneously broken spacetime symmetries [293], but now the
spacetime coordinates are understood as non-linearly realizing spacetime translations. Thus, the
correct action of G (which is the symmetry group of the theory, including spacetime symmetries)
on the GBs is

gex
µPµe⇠

a
(x)Aa

= ex
0µPµe⇠

0a
(x0

)Aa
h(g, ⇠a(x)) . (3.3.6)

An interesting aspect of the coset construction for spacetime symmetries is that not all the GBs
associated to broken spacetime generators are physical [294,295]. Then, the unphysical ones are
removed by imposing non-trivial covariant constraints on the components of the Maurer-Cartan
form. This is called the inverse Higgs effect.

3.3.2 Non-linear SUSY

The spontaneous breaking of SUSY can be described using the formalism of section 3.3.1. The
Goldstone particle is a Goldstone fermion in this case, called the goldstino, and its SUSY trans-
formation, the equivalent of (3.3.1), has been found by Akulov and Volkov in [255]:

�✏�
↵ = f✏↵ �

i

f
(��µ✏� ✏�µ�)@µ�

↵ , (3.3.7)

which indeed verifies the SUSY algebra. The shift f✏↵ in �✏�↵, where
p
f is an energy scale, is

expected and reminiscent of what was found in (3.2.10). It characterizes the goldstino.
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Its couplings to matter can be found by introducing matter non-linear realizations of super-
symmetry [296], equivalently to (3.3.3):

�✏ = �
i

f
(��µ✏� ✏�µ�)@µ , (3.3.8)

where  can have any Lorentz or internal index. Such realizations can always be reached from a
given realization  0 of SUSY by means of the following redefinition [297]:

 ⌘ e✏Q+✏Q 0��
✏=��/f , (3.3.9)

and they are such that SUSY is realized as a local diffeomorphism with parameter ⇠µ = i
f (��

µ✏�

✏�µ�). They can be coupled to matter by introducing the Akulov-Volkov vierbein

Aµ
⌫ = �⌫µ +

i

f 2
(��⌫@µ�� @µ��

⌫�) (3.3.10)

with which we can define covariant derivatives [298,299]

Dµ = (A�1)µ
⌫@⌫ (3.3.11)

(valid for both � and  ) as well as a lagrangian

L = det(A)

✓
�
f 2

2
+ Lmatter( ,Dµ ,Dµ�)

◆
(3.3.12)

which transforms as a total derivative under a SUSY variation. The first term in the parenthesis
defines the kinetic term and self-interactions of the goldstino �. Generalizations to gauge theories
follow similar principles [298,299].

The same procedure can (more technically) be implemented for supergravity, which yields a
goldstino transformation which depends on the fields in the supergravity multiplet (here displayed
up to three spinors terms) [300,301]

�✏� = ✏� i(��µ✏� ✏�µ�)

✓
D̂µ�� i

M

18
�µ�

◆
+

M

3
✏(�2) +

bµ
3

✓
�µ�(�✏)

3
+
�(✏�µ�)

2
�
�µ✏(�2)

12

◆
,

(3.3.13)
where we used notations of [260], units where MP = 1 and each � should be understood as �/f .
In the invariant action for the goldstino, there will be a mixing with the gravitino such that
the goldstino is eaten up in unitary gauge, which defines the supersymmetric Higgs effect. Such
a transformation, together with the dressing of matter/supergravity fields as in (3.3.9), is for
instance relevant for EFTs of string models with broken SUSY [302].

3.3.3 Non-linear SUSY in superspace and constrained superfields

Theories which non-linearly realize SUSY can be directly expressed in superspace by building
superfields out of the goldstino field, or the matter fields [300,303]:

⇤↵ = e✓Q+✓Q�↵ ,  = e✓Q+✓Q , (3.3.14)
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so that their general couplings (3.3.12) can be written as a superspace integral:

L =

Z
d4✓ ⇤2⇤

2

✓
�

1

2f 2
+

1

f 4
Lmatter( , @µ ) + ...

◆
, (3.3.15)

where ... means that higher order terms, or terms involving the (supersymmetric) derivatives of
the different superfields, can be included.

It is interesting to note that the goldstino superfield ⇤↵ verifies the following constraints [303]

D�⇤↵ = f✏↵� , D
�̇
⇤↵ =

2i

f
(�µ⇤)�̇@µ⇤

↵ , (3.3.16)

where D and D are again defined in (3.1.12), and that those constraints entirely characterize the
superfield. In particular, they are enough to show that the lowest component �↵ of ⇤↵ transforms
as the Akulov-Volkov goldstino. They can also be generalized to SUGRA in order to obtain a
non-linear realization of local SUSY equivalent to (3.3.13).

This idea of imposing supersymmetric constraints on superfields to turn them into non-linear
realizations has been extensively followed and applied to different kinds of superfields [304–308].
It defines the approach of constrained superfields2. As an illustration, a simple constraint has
been proposed in [304,306,307], in which the goldstino is identified with the fermionic component
of a chiral superfield which verifies

X2 = 0 , (3.3.17)

such that the scalar component x in X is expressed in terms of its spinor � and auxiliary field F

components:

x =
�2

2F
. (3.3.18)

The most general action for X thus is
Z

d4✓ XX† +

✓Z
d2✓ fX + h.c.

◆
, (3.3.19)

where the scale f is the scale of SUSY breaking already introduced in (3.3.7). It gives back
an action which is equivalent to the Akulov-Volkov action [309]. The interest of the constraint
(3.3.17) is that it makes it easier to bridge the gap between a UV model in which SUSY is
linearly realized in superspace, and the non-linear lagrangian which arises after SUSY is broken.
In particular, the coupling of the goldstino superfield X to matter superfields is written as a
usual superspace integral. For instance, this is relevant for couplings of the goldstino to the
MSSM [285–287], for models of inflation [288, 289] or EFTs of string setups [290] with broken
SUSY.

The usual coset construction applied to SUSY does not arrange matter fields in usual multi-
plets, as can be seen in (3.3.8). This accounts for the fact that the components within the matter
superfields may be split by SUSY breaking, such that only some of them remain in the EFT
below the scale of SUSY breaking. In the constrained superfield approach, this can also be done

2Constraints on linearly transforming fields are found beyond broken SUSY models: for instance, the pions in
(2.1.10) can be obtained by considering a SU(2)L ⇥ SU(2)R bilinear field ⌃ and demanding that ⌃⌃† = 1.
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by applying constraints on the matter superfields to express some of their components in terms
of others and the goldstino. A generic procedure [310] is to impose

XX†Y = 0 , (3.3.20)

where X is the goldstino superfield which verifies (3.3.17), and Y is any superfield. This removes
the lowest component of Y from the spectrum. For instance if Y is respectively equal to � or
D↵� for a chiral superfied �, (3.3.20) removes respectively the scalar and spinor component of
�. They all have SUGRA analogs [311].

A subtlety remains in the status of auxiliary fields: using the goldstino superfield, all the
auxiliary fields can be removed (by imposing for instance XX†D2� = 0 for a chiral superfield, or
even 1

4
D2X = f for the goldstino superfield) and replaced by combinations of other fields of the

theory. For instance, the constraint proposed in [307] to remove fermions from chiral superfields,
D↵̇(X�) = 0, also removes the auxiliary field in �. Which of these auxiliary fields should be kept
in the EFT is not clear, since different constraints can in principle be identified via the couplings
between matter and goldstino, for a fixed lagrangian. This may for instance impact theories of
(R-)axions (see e.g. [287]).

3.3.4 Constraints in extended SUSY and brane actions

There also exist constraints in extended supersymmetry, which are for instance introduced to
describe 4D EFTs on branes preserving some amount of supersymmetry [312, 313], such as a
D3-brane in 6D Minkowski space [314, 315]. Those describe partial breaking of supersymmetry,
first argued to be impossible in 4D [316] before it was understood that such arguments rely on
an ill-defined supersymmetry charge [314, 315]. Explicit realizations were later found [317–319]
which introduce deformation parameters in the SUSY transformations, such that partial breaking
occur. At the level of the vector superfield, it is implemented by a modification of (3.1.33) and
(3.1.34):

�⇠̃� = i
p
2⇠̃W , �⇠̃W↵ =

p
2
⇣
�µ⇠̃

⌘

↵
@µ�+ i

p
2⇠̃↵

 
D

2

�

4
� m

!
, (3.3.21)

such that a canonical prepotential F = W2

4
in (3.1.35) now partially breaks N = 2 SUSY down

to N = 1.

A constrained version of the deformed vector superfield is linked to brane actions [312] since,
imposing W

2 = 0 gives a dynamics which is the four-dimensional Born-Infeld action, i.e. the
Maxwell part of the DBI action for the D3-brane mentioned earlier (see also (4.3.15)). Similarly,
imposing Z

2 = 0 on a deformed single-tensor multiplet yields the four-dimensional action for the
fifth and sixth coordinates of the D3-brane [313], which appear as 4D scalars. Those constraints
and actions can be recovered as infinite mass limits of linearly realized models [273].

The question of brane actions in setups where N = 2 SUSY is fully broken down to N = 0 is
on the other hand open: the constraints mentioned earlier maintain an unbroken SUSY, and it
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would be useful to have constraints which yield the DBI action in setups with complete breaking.
Additionally, it is not precisely known how to write a constraint which both incorporates the
Maxwell and the scalar part of the DBI action for the 6D D3-brane, even though field redefinitions
are believed to ensure the shift symmetry expected for the scalars [320]. Steps towards the
identification of a constraint for the N = 2 ! N = 0 breaking have been made in [321] for
both the vector and single-tensor superfields, but in a way which does not naturally yield a DBI
structure.

It turns out that a well-defined procedure to build non-linearly realized actions similar to
(3.3.17)-(3.3.20) exists for N = 2, which could be used to write down a correct DBI action.
Indeed, a chiral-chiral N = 2 ! N = 0 goldstino multiplet X was built in [322], and is such that

X D̃↵D�D̃�X = X D̃↵D�D�X = 0 , (3.3.22)

which leaves as unconstrained fields two goldstini � and �̃ as its ✓2✓̃ and ✓̃2✓ components, as well
as an auxiliary field F as its ✓̃2✓2 component. Much like in (3.3.20), one can use it to impose

XX
†� = 0 (3.3.23)

on any N = 2 superfield � to remove its lowest component. If one does not care about a UV
understanding, one can impose the following constraints on a vector superfield field strength W :

XX
†D↵W = XX

†D̃↵W = XX
†D↵D̃�W = XX

†(D2
� D̃2)W = 0 ,

XX
†
✓

1

16
D2

WD̃2
W + det

�
⌘µ⌫ + @µW@⌫W

�◆
= 0 ,

(3.3.24)

where the first line removes from W everything but the complex scalar � in � and the real part
of its auxiliary field F . Then, a lagrangian

L = eF + h.c. (3.3.25)

yields the scalar DBI action for �, plus a set of fermionic terms. This procedure, which could
already be implemented at the N = 1 level, can be generalized to explicitly encode the full
(Maxwell+scalars) DBI action for the 6D D3-brane in the real part of F . However, this suffers
from an obvious lack of UV origin, and only reintroduces in the constrained superfield language
the freedom which existed in action-building at the level of the coset construction, whereas
constrained superfields had the advantage of being more illuminating about the possible UV
origin of the non-linear SUSY model under consideration.

3.4 An aside: a BPS classical solution for the Wess-Zumino
model

Before closing this section on supersymmetry, we take a step aside and consider a model without
SUSY breaking: the Wess-Zumino (WZ) model of a single chiral superfield [237]. We are inter-
ested in classical solutions of this model, and we present in section 3.4.2 such an exact classical
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solution, which is a Bogomol’nyi-Prasad-Sommerfield (BPS) solution (see section 3.4.1). In sec-
tion 3.4.3, we then discuss two applications of our result: tree-level multi-particle amplitudes at
threshold, and domain walls in supersymmetric QCD theories (a quick review of the latter topic
is presented in appendix C). The content of this section follows [323], attached at the end of the
thesis.

3.4.1 Generalities on the BPS condition

Let us start by reviewing the BPS condition, since we will heavily refer to it in what comes next.
A field configuration is said to be BPS [324, 325] if it preserves some amount of supersymmetry.
This straightforward definition has dramatic consequences, as we now see.

Let us start with the formulation of the BPS condition for a chiral superfield, which is the one
we are mostly concerned with in this section. We consider scalar field configurations, with the
fermions vanishing. Thus, the BPS condition amounts to requiring that fermions remain equal
to zero when the preserved supersymmetry generators act. For a chiral superfield � such as the
one of the WZ model, the variation of the fermion � is, as we already saw above:

�⇠� = i
p
2�m⇠@m�+

p
2⇠F . (3.4.1)

In this section, we calculate multi-particle amplitudes or domain wall profiles, which are one-
dimensional problems. Thus for simplicity and minimality, we restrict ourselves to configurations
where �(xµ) = �(z). Then, demanding that �⇠� = 0 translates into

⇠
1d�

dz
= �i⇠1F and ⇠2

d�

dz
= i⇠2F . (3.4.2)

Whenever the scalars verify d�
dz = �ei2✓F for some real number ✓, (3.4.2) can be satisfied. Using

the on-shell value for F , for a trivial Kähler potential and a superpotential W , we find

d�

dz
= e2i✓

dW

d�
. (3.4.3)

This is the BPS condition for a chiral superfield.

The BPS condition makes it easier to solve the dynamics of a system. For instance, it is used
to get non-trivial black hole solutions in SUGRA [254]. Why it helps to solve the dynamical
equations can be understood as follows: (3.4.3) is a factorization of the equations of motion.
Indeed, imposing the former is enough to satisfy the latter:

d2�

dz2
= e2i✓

d2W

d�
2

d�

dz
=

d2W

d�
2

dW

d�
=

dV

d�
, (3.4.4)

since V =
���dWd� (�)

���
2

for a chiral superfield. Since the BPS condition is a first order one, it is
indeed easier to solve than the equations of motion, which are second order. This is reminiscent
of the fact that SUSY vacua are easier to find than usual vacua and are associated to vanishings
of auxiliary fields.

93



The BPS condition has an other interpretation, which is the equivalent of what we saw in our
N = 2 discussion of BPS states in section 3.1.3. Bogomol’nyi [324] indeed pointed out that it
can be understood as the condition which minimizes the energy per unit surface of a topological
defect (see [326]), such as a time independent wall [269,327,328]:

8 ✓ , E =

Z
dz

 ����
d�

dz

����
2

+

����
dW

d�

����
2
!

=

Z
dz

����
d�

dz
� e2i✓

dW

d�

����
2

+ 2Re(e�2i✓�W ) , (3.4.5)

where �W = W (z = +1) � W (z = �1). The fact that this condition is valid whatever ✓
implies the so-called BPS bound:

E � 2|�W | . (3.4.6)

In order to saturate this bound, one must again enforce (3.4.3). We saw already something called
a BPS bound in section 3.1.3, so let us connect the two discussions by computing the central
charge in our setup, using the results of [269]. Writing

�� = ...+ ✓↵��|✓✓,↵↵̇✓
↵̇
+ ✓2��|✓2 + ✓2✓↵̇��|

↵̇
✓2✓

+ ✓
2

✓↵��|
✓
2
✓,↵

+ ✓2✓
2

��|
✓2✓

2 (3.4.7)

and W (�) = W (�)|✓0 +
p
2✓↵W (�)|✓,↵ + ✓2W (�)|✓2 , the SUSY lagrangian is

L = ��
��
✓4
+
�
W (�)

��
✓2
+ h.c.

�
(3.4.8)

Its variation (using (3.1.8)) is
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⇠�m@m
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��
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✓
2
✓
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(3.4.9)
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⌘ (3.4.10)

Keeping only the ⌘Q contributions:
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(3.4.11)
From which we get
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(3.4.12)

For a BPS wall of finite surface energy:

{Q↵, Q�} = �0
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since at infinity, one must have d�/dz ���!
z!1

0 to ensure a finite surface energy. We thus see that
the variation of the superpotential �W , which entered the BPS bound, is as expected linked to
the central charge.

In addition, the phase ✓ which enters the BPS equation (3.4.3) bears some geometrical meaning.
Indeed:

d�

dz
= e2i✓

dW

d�
=)

dW

dz
=

dW

d�

d�

dz
= e2i✓

����
dW

d�

����
2

=) arg

✓
dW

dz

◆
= 2✓ (3.4.14)

(if the trajectory does not follow a critical path in the W plane). Hence, the image W (�(z)) of
the domain wall in the W -plane is a straight line making an angle 2✓ with the real axis. This
gives a constant of motion, which may be useful to obtain some information without knowing the
full solution of (3.4.3) (see e.g. [328]).

3.4.2 The result

We now present and discuss a solution to the BPS equations for a rather general class of WZ
models. Consider the following superpotential for a chiral superfield �:

W =
1

2
�2 +

1

p
�p , (3.4.15)

where we do not place a restriction on the allowed value of the index p, and where couplings can
be trivially reinstated by scaling. The associated scalar potential is

V =
���+ �p�1

��2 , (3.4.16)

and if p is positive one might seek domain wall solutions between the supersymmetric minimum at
� = 0 and the p� 2 supersymmetric minima at � = ei

n⇡
(p�2) , n 2 Z. We look for one-dimensional

BPS solutions, which have thus to verify (3.4.3), here specialized to (3.4.15):

d�

dt
= e2i✓

⇣
�+ �

p�1
⌘

, (3.4.17)

where t is the only coordinate and ✓ is an arbitrary constant angle. While solving (3.4.17) with
real � is trivial, the conjugation on the right hand side makes a general complex solution much
more difficult to find. Our central result is the following solution to (3.4.17):

�(z, z) =
z
⇣
1 + zp�2�zp�2

2p

⌘

✓⇣
1 + zp�2�zp�2

2p

⌘p

+
zp�2

⇣⇣
1� zp�2�zp�2

2p

⌘p
�
⇣
1+

zp�2�zp�2

2p

⌘p⌘

zp�2�zp�2

◆ 1
p�2

, (3.4.18)

where z = et+i✓.

This is a generalisation of the BPS domain-wall solution of [329] (with appropriate shifts in
�) which considered p = 3 and real �. Indeed taking ✓ = ⇡

p�2
we find

�(t) =

✓
�e(p�2)t

1 + e(p�2)t

◆ 1
p�2

, (3.4.19)
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which reduces for p = 3 to the non-singular domain wall solution

�(t) = �
et

1 + et
(3.4.20)

connecting the two minima (�(�1) = 0 and �(1) = �1) of the WZ model. It is also related
to the softly broken O(2) models of [330] (which took p = 3), examined in the context of multi-
particle amplitudes on threshold, and some other works in this domain (which typically considered
real �). However, the solution we present here seems to have a much richer structure and is much
more general than those that have been previously considered.

3.4.3 Applications

As we shall now see, (3.4.18) has applications in different areas of physics. Those concern multi-
particle amplitudes, and Seiberg duality in supersymmetric QCD.

SQCD domain walls

(3.4.18) is of interest in SQCD, whose dynamics for various numbers of colours Nc and flavours
Nf has been studied in great detail over the years (for some details and conventions, see appendix
C). We are particularly interested in the free magnetic regime, Nc + 1 < Nf < 3

2
Nc, in which

there exist WZ domain walls described by (3.4.18), as we shall now see.

Consider SQCD in such a phase, with a quartic superpotential

W (el) =
1

µX
Tr
h
(Q · Q̃)2

i
, (3.4.21)

where the dot indicates colour contractions and the trace is over flavours. This operator could be
generated by the integrating out of heavier fields of mass O(µX), as happens in the duality cascade
for example [331]. For physical consistency we therefore require that µX > ⇤, with ⇤ being the
dynamical scale of the electric theory. As described in appendix C, below the scale ⇤ the electric
SQCD theory above becomes strongly coupled, and physics is best described by a magnetic
dual [332]. This theory also has Nf flavours, but SU(N) gauge group, where N = Nf � Nc, and
classical superpotential

W (mag)

cl
= h q�q̃ +

µ�

2
Tr
�
�2
�
, (3.4.22)

where �i
j are the flavour mesons of the IR free theory, h is a Yukawa coupling of order unity, and qai ,

q̃ja are fundamental and antifundamental quarks of SU(N). The �mass-term is µ� ⇡ ⇤2/µX ⌧ ⇤.

This theory has supersymmetric minima at the origin, while the remaining ones are separated
from it by a domain wall, where � develops a much larger VEV. Along this direction one is
still in a pure SU(N) Yang-Mills theory, but nonperturbative contributions to the superpotential
become important. Including these, the complete superpotential for the mesons is of the form
(3.4.15):

W (mag) =
µ�

2
Tr
�
�2
�
+N

✓
hNfdetNf

�

⇤Nf�3N

◆ 1
N

, (3.4.23)
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where the exponent Nf

N ⌘ p is generically a rational number. In the regime of interest, 3

2
Nc >

Nf � Nc + 2, we have

3 < p 
Nf

2
. (3.4.24)

In principle (3.4.18) contains exact domain wall solutions for this magnetic theory, for any p.

To find them let us first locate the minima which are along �j
i = �ji� (where we use � to

also stand for the trace component). Setting F� = 0 we find nonperturbatively generated SUSY
preserving minima at

h�j
i i = �ji�0 = �ji ⇤

✓
�h

Nf
Nf�Nc

⇤

µ�

◆ Nf�Nc
Nf�2Nc

. (3.4.25)

The exponent is negative so that h�i < ⇤ as required for the minima to be found in the macro-
scopic theory. Also note that, as there are no massless quarks, there are generically 2Nc � Nf

solutions corresponding to the roots of -1. Now for the domain walls we define

�̂ =
�

|�0|
; Ŵ =

W

µ�|�0|
2
, (3.4.26)

giving Ŵ = �̂
2

2
+ �̂

p

p with p = Nf/N . We thus see that we recover (3.4.15) such that (3.4.19)
describes the structure of the �̂ domain wall.

Multi-particle amplitudes in generalized Wess-Zumino models

Our second application concerns multi-particle amplitudes, which have been investigated for
a long time [330, 333–340], and received renewed interest within discussions of the Higgsplosion
mechanism [341–344]. Quantities of interest include the tree-level threshold amplitudes describing
the decay of an off-shell particle to on-shell ones, all taken to be at rest. Our solution (3.4.18)
can be understood in this respect as the generating function of such tree-level multi-particle
amplitudes at kinematical threshold for the generalized Wess-Zumino models (3.4.15). One can
indeed show that such a generating function must verify a BPS condition3, consistently with
the fact that a specific limit of (3.4.18) has been previously identified as a BPS domain wall
solution [329, 346, 347]. We leave the review of standard techniques to obtain tree-level multi-
particle amplitudes at kinematical threshold to [323], and we only use here the results.

We are interested in evaluating tree-level amplitudes connecting an ingoing off-shell particle to
outgoing on-shell ones, all taken to be at rest4, for the generalized Wess-Zumino model of a chiral
superfield � with canonical Kähler potential and superpotential given in (3.4.15). We choose
p � 3 2 N in this section. The kinematic situation is summed up in Figure 3.2. Since there are
two scalar excitations, the outgoing state is labelled by two integers m and n.

3The fact that the generating function of multi-particle amplitudes verifies a BPS condition can be understood
from [345]: smooth field configurations which solve the equations of motion and originate from a supersymmetric
vacuum state must verify the BPS condition. (3.4.28) which defines the generating function (3.4.18) is thus enough
to ensure that it verifies (3.4.3).

4Exact results are much harder to obtain at loop-level or out of threshold [337–340,348–350].
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Figure 3.2: Kinematic setup (particles/anti-particles are represented using direct/reversed
arrows)

We call anm the amplitude � ! n ⇥ �+m ⇥ �. Defining a generating function:

A(z, z) =
X

n,m

ianm
n!m!((n+m)2 � 1)

znzm , (3.4.27)

we show that it verifies
(
@2tA = (p � 1)Ap�1A

p�2

+ Ap�1 + (p � 1)AA
p�2

+ A = @
@A

V (A,A)

A(t = �1, ✓) = 0 , @tA(t = �1, ✓) = ei✓
, (3.4.28)

where we defined z = et+i✓.

One can check that our solution (3.4.18) verifies all the conditions listed in (3.4.28) and is
consequently the generating function of the diagrams of Figure 3.2. Differentiating it with respect
to z and z yields the anm.

In the original papers on multi-particle amplitudes, which dealt with a model of a real scalar
� with cubic or quartic interactions, it was noticed that an (the � ! n ⇥ � amplitude) grows
as n!, which could be a threat to unitarity at tree-level in those renormalizable theories. One
question which can be asked is: what about this now? Actually, it is straightforward to see that
the anms still have this factorial growth with n and m. Indeed, the fermions of the model do not
participate in the calculation of the anms because we are at tree-level and the theory conserves
fermion number. Thus, the only sign of SUSY in the calculation is the specific squared form for
the potential. This proves not to change qualitatively the divergent behaviour.

3.4.4 Additional details

Some additional details can be found in [323]. First, as we said earlier, we explain there why the
generating function of multi-particle amplitudes verifies (3.4.28).

Second, we study modifications of (3.4.28) and (3.4.18) when soft SUSY breaking is added to
the model, which would be relevant for multi-particle production in the MSSM for instance. As
an illustration, solutions are known when one adds specific soft terms to the potential (3.4.16) of
the WZ model, here for p = 3, with reinstated couplings:

V =
����2 +m�

��2 + �m2

2

✓
�� �

2i

◆2

, (3.4.29)
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which is associated to the following classical solution5:

�(z, z) =

z + �
m i(z � z̄)

i(z�z̄)+i
⇣p

2
mIm(�)

|m| �1

⌘2
(z+z̄)

4

 
2

m2
Im(�)

m2 �1

!

1 �
�
m

z+z̄
2

+
�
�
m

�2 (z�z̄)2

4

 
2

m2
Im(�)

m2 �1

! �
�
�
m

�3
⇣p

2
mIm(�)

|m| �1

⌘4
(z�z̄)2(z+z̄)

8

 
2

m2
Im(�)

m2 �1

!3

, (3.4.30)

where m2

Im(�) = 2m2 + �m2. However, the WZ model allows for the following soft terms [351] in
addition to the supersymmetric potential, which are more general than (3.4.29):

V =
����2 +m�

��2 + �m2
|�|

2 + (µ3�
3 + µ2�

2 + h.c.) , (3.4.31)

for which no solution is known. In addition, the generalization of (3.4.30) to arbitrary p is also
unknown. Intermediate results can thus be found in [323], in particular when the soft terms are
as follows:

V =
����2 +m�

��2 + �m2
|�|

2 . (3.4.32)

Third, we comment a bit further about the supersymmetric minima of (3.4.22), in particular
about their counting in connection with the Witten index [352].

Finally, we quickly describe how (3.4.18) was found, emphasizing on the different techniques
used.

3.5 Conclusions

In this second part, we dealt with supersymmetry and supersymmetric model building in particle
physics. Our main focus was on supersymmetry breaking, which we discussed at the level of
explicit models of spontaneous SUSY breaking and using the low-energy universal framework for
EFTs with broken SUSY, namely non-linear SUSY.

We investigated a full model of spontaneous breaking which is again a gauged clockwork model,
and which, for similar reasons which ensured that the axions of section 2.2.2 had a small mass,
strongly suppresses the SUSY breaking scale even when few additional particles are present. In
this model, there are also vector or axion modes with a clockwork profile, but the latter do not
induce dramatic effects if we want to generate a phenomenologically relevant SUSY breaking
scale. Nevertheless, clockwork-like hierarchies appear in the SUSY breaking auxiliary fields,
which opens the possibility to hierarchically mediate SUSY breaking to observable matter, in
order for instance to generate split spectra for the MSSM superpartners.

We studied non-linear SUSY, which is the general framework to describe EFTs with SUSY
breaking. We reminded different approaches to this, the coset construction and constrained
superfields, both in N = 1 and N = 2 SUSY. We briefly commented on an ambiguity about

5This solution was originally derived in [329] in the context of softly broken O(2)-symmetric models. In [323],
we explicitly connect our p = 3 solution to those of [329].
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constraining auxiliary fields which may be relevant for phenomenology, as well as on how to
realize DBI actions with complete SUSY breaking using constrained superfields.

Finally, we ended with a presentation of an exact BPS classical solution of the Wess-Zumino
model, which is relevant for multi-particle amplitudes and as a domain wall solution in strongly
coupled SQCD. We hope to be able to extend it to broken SUSY scenarii relevant for phenomenol-
ogy.
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4 String theory

Many great physical questions have been given a great answer, some of which were presented
earlier in this thesis. String theory doubtlessly falls into this category. Even though it is now
almost fifty years old, it is still a subject of intense research and developments, due to the amazing
findings which were periodically made along its study. In this last part of the thesis, we study
some aspects of string theory which have to do with its phenomenology. But first, we try to do
justice to some of the great ideas which are associated to its name.

A first way of being amazed by string theory is to adopt a historical perspective. Indeed,
string theory was originally developped as a mathematical framework to describe strong interac-
tions [353–355]. However, it quickly was understood to be a theory of quantum gravity [356,357],
providing a fantastic tool to explore the consequences of associating gravity and quantum me-
chanics, as well as a theory which incorporates the usual features of particle physics. Hence, it
became a serious candidate to realize a ultraviolet completion of the standard model, providing
the framework to unify all forces in a single quantum description. Spectacularly, all the inconsis-
tencies which were foreseen along the way ended up being solved in a remarkably clever way. A
great example of such a phenomenon is the discovery of the Green-Schwarz (GS) mechanism for
anomaly cancellation [229]. However, the current picture of string theory is still far from com-
plete, as illustrated by the efforts towards developping an utter formulation of M-theory [358],
an off-shell string field theory [359, 360], or by the consequences of the AdS-CFT correspon-
dence [270], which remarkably grants string theory the additional status of being a holographic
dual description of (strongly coupled) non-gravitationnal physics. This last feature may be a
general property of gravity itself that string theory "only" precisely illustrates, much like the way
it describes the microstates behind black hole entropy [361].

This historical development can be linked to a second reason of being thrilled: (many) string
theory predictions seem to be necessary once one assumes the very starting point. Even though
it has been a great achievement around 1905, the action describing the propagation of a point
particle according to the rules of special relativity is far from telling us enough about what
can happen to the particles we know, so it had to be extended to interacting theories to match
observations. On the other hand, the "straightforward" string generalization of the free relativistic
particle dynamics seems to already encompass all the possible string interactions, which include
structures as involved as non-abelian symmetries or graviton dynamics, without much parameter
freedom. Even more strikingly, the theory’s consistency is enough for it to auto-reveal some of its
features, such as the number of spacetime dimensions it has to live in [362] or the interpretation of
D-branes as dynamical objects charged under string Ramond-Ramond forces [363]. It is thus no
surprise that the structures which came out of the study of string theory managed to sometimes
motivate ground-breaking research in mathematics.

Enthusiastic after such a description, one could ask: what is then the status of string theory
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phenomenology? There, it is tempting to say that the situation is slightly less pleasant than
imagined when formally studying the theory. Indeed, the very high scales associated to string
dynamics make it hard to test unambiguously. In addition, as we have said earlier, supersymmetry
has not been found at the LHC, although it would have been encouraging to observe this (naive)
prediction of low-energy string theory, which fitted so well the expectations of particle physicists.
For this reason, we discuss again in section 4.2 supersymmetry breaking, albeit with a stringy
perspective this time, since we mention mechanisms thanks to which supersymmetry is broken at
the string or compactification scale. Then, we move to other aspects of string phenomenology: we
first look in section 4.3 at string theory axions, which are another generic low-energy prediction of
the theory, hence connecting our current focus with topics we covered earlier. Finally, we upgrade
our notion of genericity to a stricter sense and discuss the swampland program [364]. The latter
arose from the (discouraging at first) observation that the freedom left in defining the string
setup which may describe nature, although tinier than the field theory one, is still large enough
such that there is an incredibly high number of possible inequivalent physical worlds [365], which
are still under scrutiny today. The swampland program then aims at trying, quite successfully
as we discuss in section 4.4, to establish criteria which characterize those worlds and make them
falsifiable.

As a concluding comment, it seems important to stress that, even if string theory eventually
proves not to be a correct theory of our world (or even of strongly coupled physics), it has been a
fantastically fruitful playground, which led to great insights about mechanisms and topics (such
as extra dimensions, higher spin theories or the field content of consistent effective field theories)
which may very well be incorporated in a more accurate theory. The study of string theory could
in principle be justified on the basis of this remark alone.

4.1 Spectra of type IIB/I string theories

To smoothly progress towards the details of string theory we want to investigate, we first follow
in this section a textbook approach and compute the spectrum of type IIB and type I string
theories. It will be useful later to define the field content of string effective field theories and in
order to derive one-loop vacuum amplitudes. We only present the very limited amount of string
theory basics which is necessary to compute such amplitudes or extend their computations to
more complicated geometrical setups, so this section should not be thought of as a thorough
review. We focus on types IIB/I for conciseness and because their vacuum amplitudes will be
discussed at length in sections 4.1.6, 4.1.7, 4.2 and 4.4.2. The discussion of the spectrum of type
IIA string theory is almost identical, whereas the heterotic string demands some modifications
of the action principle. The contents of this section heavily draws from [366–369].
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4.1.1 The world-sheet theory and the constraints

String theory, as a quantum theory of fundamental interactions, is understood as the quantized
version of the classical dynamics which generalizes to the string the propagation of a particle.

The classical equations describing the latter can be derived from an action principle, by de-
manding that the worldline element associated to the path Xµ(⌧) followed by the particle in
d�dimensional Minkowski spacetime be extremal. For a particle of mass m, the associated ac-
tion is:

Sparticle = �m

Z
d(Proper time) = �m

Z
d⌧
p

�Ẋ2 , (4.1.1)

where ⌧ is a parameter along the worldline and Ẋ2 = dXµ

d⌧
dX⌫

d⌧ ⌘µ⌫
1. This action is classically

equivalent to the following one:

S 0
particle

=
1

2

Z
d⌧

⇣
e�1Ẋ2

� em2

⌘
, (4.1.2)

which has the advantage of also being valid for massless particles.

The generalization to the string leads to the Nambu-Goto action [370, 371], which measures
the worldsheet area element spanned along the propagation of the string:

SNG = �
1

2⇡↵0

Z
d2�

p
�h , (4.1.3)

with d2� = d⌧d�, h = det(hab) and hab = @aXµ@bXµ, Xµ(⌧, �) being the spacetime location
where the point labelled by � along the string lies when the parametrization time is ⌧ . The
boundaries of the � 2 [�b, �f ] integral, as well as the associated boundary conditions, are defined
appropriately for closed and open strings. ↵0 is a dimensionful parameter, known as the Regge
slope, and it defines the tension of the string T = 1

2⇡↵0 . The Nambu-Goto action is classically
equivalent to the Polyakov action [372–374]:

SP = �
1

4⇡↵0

Z
d2�

p
�ggabhab , (4.1.4)

where gab is a Minkowskian worldsheet metric. This action has symmetries: there is a global
Poincaré symmetry acting on the Xµ as one would expect from special relativity, a local reparametriza-
tion invariance of the worldsheet coordinates (⌧, �) and a local Weyl rescaling of the worldsheet
metric. Those two local transformations can be gauge-fixed, up to conformal transformations
cancelled by a Weyl rescaling, by fixing gab = ⌘ab, such that the action becomes

SP = �
1

4⇡↵0

Z
d2�@aXµ@aXµ , (4.1.5)

where it is now understood that worldsheet indices are contracted using ⌘ as well. This action
must be supplemented by the equations of motion which arise from varying SP with respect to
the (non-dynamical) g before it is gauge-fixed:

Tab ⌘ �
2

p
�g

�SP

�gab
= 0 =) @aX

µ@bXµ �
1

2
⌘ab@

cXµ@cXµ = 0 , (4.1.6)

1Any greek index in this section refers to a flat space index and, when contracted, is implicitely contracted
using ⌘.
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where we defined the energy-momentum tensor T . (4.1.5) and (4.1.6) are the starting point for
the quantization of the bosonic string dynamics.

For the type II/I theories, which are superstring theories, one actually adds to the action spinor
degrees of freedom on the worldsheet2  µ(⌧, �) to find the globally supersymmetric superstring
action in the Ramond-Neveu-Schwarz (RNS) formalism [242,243]:

SRNS = �
1

4⇡

Z
d2�


1

↵0@
aXµ@aXµ + 

µ
�a@a µ

�

= �
1

4⇡

Z
d2�


1

↵0@
aXµ@aXµ � i µ(@⌧ + @�) µ + i ̃µ(�@⌧ + @�) ̃µ

�

= �
1

4⇡

Z
d2z


2

↵0@X
µ@Xµ � i µ@ µ + i ̃µ@ ̃µ

�
,

(4.1.7)

where �a=0,1
⌘

n⇣
0 1

�1 0

⌘
,
⇣
0 1

1 0

⌘o
verify the 2-dimensional Clifford algebra,  µ

⌘  µ†(i�0),

 µ
⌘

⇣
 ̃µ

 µ

⌘
verifies the Majorana condition  µ⇤ =  µ and we defined z ⌘ � � ⌧, z ⌘ � + ⌧, @ ⌘

@z, @ ⌘ @z. One also adds to this action the following constraints, called Virasoro constraints:

2

↵0 (@X
µ)2 � i µ@ µ = 0 ,  µ@Xµ = 0 ,

2

↵0 (@X
µ)2 + i ̃µ@ ̃µ = 0 ,  ̃µ@Xµ = 0 . (4.1.8)

As with (4.1.5) and (4.1.6), (4.1.7) and (4.1.8) can be derived from a complete reparametrization
invariant (and locally supersymmetric) action, see e.g. [366,369,375], in which case (4.1.8) could
be expressed in terms of the different components of the energy-momentum tensor supermultiplet.

4.1.2 The mode expansions and the different sectors

Varying (4.1.7) with respect to the fields gives

�SRNS = �
1

4⇡

 Z
d2z

⇣
�

4

↵0 �X
µ@@Xµ � 2i� µ@ µ + 2i� ̃µ@ ̃µ

⌘
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✓
2

↵0 �X
µ@�Xµ + i� µ µ � i� ̃µ ̃µ

◆��=�f

�=�b

!
.

(4.1.9)

The different cases we consider to make the boundary terms vanish depend on whether we talk
about closed or open strings. We choose without loss of generality �b = 0 and �f = ⇡, and the
cases we consider for the boundary conditions are presented in Table 4.13. For closed strings,
they are chosen such that the action is uniquely defined when we go around the string once,
whereas for open strings, they are chosen such that the boundary variation in (4.1.9) vanishes.

The coordinates can be Fourier-expanded along the compact � direction. For closed strings,
2We call Xµ the bosonic coordinates and  µ the fermionic ones, since  µs are spinors of the worldsheet but

vector with respect to the spacetime Poincaré symmetry.
3We first consider strings which are free to propagate in the whole d-dimensional spacetime, D-branes will be

discussed later. We assumed that Lorentz invariance is respected by the boundary conditions.
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Type of strings
⇣

Closed Open

Boundary values

Xµ(⌧, � + ⇡) = Xµ(⌧, �)

8
>>>>>><

>>>>>>:

R-R:

(
 µ(⌧, �) =  µ(⌧, � + ⇡)

 ̃µ(⌧, �) =  ̃µ(⌧, � + ⇡)

R-NS:

(
 µ(⌧, �) =  µ(⌧, � + ⇡)

 ̃µ(⌧, �) = � ̃µ(⌧, � + ⇡)

... (NS-R and NS-NS)

@�Xµ(⌧, 0) = @�Xµ(⌧, ⇡) = 0

 µ(⌧, 0) =  ̃µ(⌧, 0)

(
R:  µ(⌧, ⇡) =  ̃µ(⌧, ⇡)

NS:  µ(⌧, ⇡) = � ̃µ(⌧, ⇡)

Table 4.1: Boundary conditions for the different strings and sectors, without localized D-branes
NS stands for Neveu-Schwarz and R stands for Ramond

we get
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n (⌧)e

in� ,
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><

>:

R-R:  µ(⌧, �) =
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µ
n(⌧)e
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n  ̃
µ
n(⌧)e
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n(⌧)e

2in� ,  ̃µ(⌧, �) =
P

n  ̃
µ
n(⌧)e

2i(n+ 1
2)�

...
(4.1.10)

One the other hand, the coordinates verify free equations of motion from (4.1.9):

@@Xµ = 0 , @ µ = 0 , @ ̃µ = 0 , (4.1.11)

from which we conclude that they can be expressed using functions of either z ("right movers")
or z ("left movers"):

Xµ(⌧, �) = Xµ
L(⌧ + �) +Xµ
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p
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...
(4.1.12)

We refer to the ↵s,  s, ↵̃s and  ̃s as string oscillators. The normalization of pµ matches what
is expected from the computation of the Noether charges P µ of spacetime translations Xµ

!

Xµ
� cµ:

P µ =
1

2⇡↵0

Z ⇡

0

@⌧X
µ = pµ , (4.1.13)

and since Xµ is real, we have ↵µ
�n = ↵µ†

n and ↵̃µ
�n = ↵̃µ†

n .

For the open string, one can complete @�Xµ into a smooth periodic function of period 2⇡ thanks
to the Neumann-Neumann boundary condition, while  µ and  ̃µ can be completed smoothly on
a 4⇡ period. Then, upon solving the equations of motion, integrating @�Xµ, restricting  µ and
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 ̃µ with the help of the boundary conditions, we get

Xµ(⌧, �) = xµ
0
+ 2↵0pµ⌧ + i

p

2↵0
X

n 6=0

↵µ
n

n
e�in⌧ cos(n�)

 µ(⌧, �) =
X

r

 µ
r e

�ir(⌧��) ,  ̃µ(⌧, �) =
X

r

 µ
r e

�ir(⌧+�) (with R: r 2 Z, NS: r 2 Z +
1

2
) .

(4.1.14)
We use r�like latin letters for the fermionic indices from now on, keeping in mind that they can
be integers or half integers.

4.1.3 Light-cone gauge quantization

To quickly get the spectrum of the RNS superstring, we follow the procedure of light-cone gauge
quantization, meaning that we first gauge fix the residual gauge transformations of the Polyakov
action which were not fixed by our choice gab = ⌘ab. Those are combinations of conformal trans-
formations and Weyl rescalings of the metric. They act as conformal transformations on the
coordinates and can be used to partly fix the dynamics of the Xµ. In addition, in the supersym-
metric extension of the Polyakov action, these transformations are lifted to superconformal ones
and can also be used to partly fix the fermionic coordinates.

Light-cone gauge fixing amounts then to define4:

X± =
X0

± X1

p
2

,  ± =
 0

±  1

p
2

,  ̃± =
 ̃0

±  ̃1

p
2

, (4.1.15)

and to consequently completely gauge-fix the theory by imposing

X+ = x+ + 2↵0p+⌧ ,  + = 0 ,  ̃+ = 0 . (4.1.16)

This hides the Lorentz invariance of the theory, which has to be checked eventually. Why this
gauge fixing is possible for closed strings Xµ can be understood as follows5: up to the Weyl
rescaling, the leftover transformations act as conformal transformations z ! z0(z), z ! z0(z),
such that ⌧ 0 = z0�z0

2
verifies @@⌧ 0 = 0, meaning that it solves the same equation as the Xµs. In

addition, it is necessarly also a periodic function of �. Consequently, it is consistent to choose
⌧ 0(⌧, �) such that

X 0+(⌧ 0) ⌘ X+(⌧) = x+ + 2↵0p+
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| {z }
⌧ 0

. (4.1.17)

Note that this prescription fixes uniquely z0 and z0 as the left and right moving parts of ⌧ 0, such
that �0(⌧, �) = z0+z0

2
is also fixed.

4We then have ⌘µ⌫XµY ⌫ = �X+Y �
� X�Y + +

P
i=2...d�1 X

iY i. In particular, X2 = �2X+X� +P
i=2...d�1(X

i)2.
5An equivalent argument for open strings or for the fermions is not hard to work out either but we do not

explicitely do it here.
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One can now solve the Virasoro constraints (4.1.8):
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(4.1.18)

This determines the complete mode expansions of the coordinates along the � direction.

All the constraints being fixed, one can now quantize the string dynamics by following the
canonical quantization procedure. From (4.1.7), we obtain the momenta associated to the coor-
dinates:

⇧i
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2⇡↵0@⌧X
i , ⇧i

 = �
i
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 i , ⇧i

 ̃
= �

i

4⇡
 ̃i , (4.1.19)

for which we impose the canonical quantum (anti-)commutators6:

@⌧X i(⌧, �)

2⇡↵0 , Xj(⌧, �0)

�
= �i�(���0)�ij ,

�
 i(⌧, �), j(⌧, �0)

 
=
n
 ̃i(⌧, �),  ̃j(⌧, �0)

o
= 2⇡�(���0)�ij ,

(4.1.20)
all the remaining ones being zero. Commutators of the mode operators follow from such expres-
sions. For instance, for the bosonic coordinates of the closed string, the mode expansions imply
that (for n 6= 0) Z ⇡

0

d�X i(⌧, �)e2in� = �i⇡

r
↵0

2

↵i
ne

�2in⌧
� ↵̃i

�ne
2in⌧

nZ ⇡

0

d�@⌧X
i(⌧, �)e2in� = ⇡

p

2↵0(↵i
ne

�2in⌧ + ↵̃i
�ne

2in⌧ )

(4.1.21)

which leads to

Z Z Z ⇡

0

d⌧d�d�0e2i[n(⌧+�)+m(⌧+�0
)]

mn
⇡↵0 [X i(⌧, �), Xj(⌧, �0)] � im [⇧i

X(⌧, �), X
j(⌧, �0)]

⇡2

8
><

>:

= [↵i
n,↵

j
m]

and
= n�m+n,0�ij

(4.1.22)
Similar calculations can be made for all the modes, whose end results would be

⇥
↵̃i
n, ↵̃

j
m

⇤
= n�m+n,0�ij ,

�
 i
r, 

j
s

 
= �r+s,0�ij ,

n
 ̃i
r,  ̃

j
s

o
= �r+s,0�ij , (4.1.23)

all the remaining ones being zero again. We thus see that, with the very important exception
of  i

0
, the different modes verify ladder operators commutation relations. Consequently, one can

choose a vacuum state such that

↵i
n>0

|0i = ↵̃i
n>0

|0i =  i
r>0

|0i =  ̃i
r>0

|0i = 0 , (4.1.24)

and the different states of the theory are reached by appliying the negative n/r operators on this
vacuum. Particular care should be taken of zero modes though, since the momenta pi and the  i

0
s

of the R-R sector cannot be interpreted as ladder operators. The momentum, which commutes
with everything (except the position xi) is easy to treat: the vacuum is given a value for each

6More precisely, the fermion momenta in (4.1.19) form a (primary) second-class constraint, so the correct
commutators to impose are the Dirac ones. We refer to [376] for more details.
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momentum. On the other hand, the  i
0
s form the Clifford algebra in d � 2 dimensions, whose

representations are known. The vacua are then completely labelled as follows

NS-NS:
��0, ki

↵
, NS-R:

��s̃1, ..., s̃4, ki
↵
, R-NS:

��s1, ..., s4, ki
↵
, R-R:

��s1, ..., s4, s̃1, ..., s̃4, ki
↵
,

(4.1.25)
where si and s̃i = ±

1

2
, such that

pi
��..., ki

↵
all sectors

= ki
��..., ki

↵
,  2a

0
|..., sa, ...iR-NS and R-R

=
�sa,�

1
2 |..., sa + 1, ...i + �sa,

1
2 |..., sa � 1, ...i

p
2

,

 2a+1

0
|..., sa, ...iR-NS and R-R

=
�sa,�

1
2 |..., sa + 1, ...i � �sa,

1
2 |..., sa � 1, ...i

p
2i

, ...

(4.1.26)
Note that the second line of (4.1.18) implies that pµ µ

0
vanishes when evaluated on the R-(NS or

R) vacua, meaning that they verify the massless Dirac equation.

The treatment of the open string sector is analogous, and the (independent) modes verify
(4.1.23) as well. On the other hand, there exists an additional freedom one can use when defining
open string states: one can add extra degrees of freedom at the ends of an open string, called
Chan-Paton factors [377]:

|0i ! |0, iji , i, j = 1, ..., N (4.1.27)

and postulate that they do not appear in the dynamical equations: they are thus constant degrees
of freedom along the propagation of the endpoints of the string. They have a very rich dynamics:
they introduce non-abelian symmetries in string theory interactions, and are linked with the
dynamics living on D-branes. We will encounter them again in what follows.

4.1.4 Mass formula, operator ordering and the dimension of spacetime

To progress towards a complete understanding of the spectrum, we derive the mass m of the
states we just identified above. Those states are built out of one of the vacua by the action of
the negative n/r ladder operators. On the other hand, using the solution (4.1.18) to the Virasoro
constraints, we find for the closed string

↵0m2
⌘ ↵0(2p+p�

� (pi)2) = �
2p+

⇡

Z ⇡

0

d�@X�
�↵0(pi)2 = 2

X

n 6=0

↵i
�n↵

i
n +2

X

r

r i
�r 

i
r , (4.1.28)

whereas for the open string

↵0m2
⌘ ↵0(2p+p�

� (pi)2) = �
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⇡

Z
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d�@X�
�↵0(pi)2 =
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2

X

n 6=0

↵i
�n↵

i
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1

2

X

r

r i
�r 

i
r , (4.1.29)

In order to interpret those equations as operators equations defined at the quantum level, one
should take care of ordering ambiguities in the products of classical quantities. Choosing a normal
ordering on the operators, we finally write, for the open string:

↵0m2 =
X

n>0

↵i
�n↵

i
n +

X

r>0

r i
�r 

i
r + a , (4.1.30)
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where the constant a accounts for reordering the operators with respect to the naive classical
expression. This constant, as well as the dimension of spacetime d, can be fixed by demanding
that the quantum operators and the spectrum are consistent with Lorentz invariance. One can
explicitly express the Lorentz generators in terms of the bosonic and fermionic modes and check
their algebra: this gives a first constraint on both a and d. Then, demanding that states which
transform as massless states under the Lorentz group (i.e. as representations of SO(d � 2)) are
actually massless, one can fix both constants. For instance, in the NS sector of the open string,
 i

�1/2 |0i is such a state, and it has mass
q

1+2a
2↵0 . Thus, we must impose a = �1/2 in order to

match this state with a massless vector of spacetime. In the R sector, the ground states already
transform as expected for a massless (spinorial) particle, so we choose a = 0. Those choices then
imply that the spacetime dimension in which our superstring theory lives is d = 10.

For the closed string, we write

↵0m2 = 4

 
X

n>0

↵i
�n↵

i
n +

X

r>0

r i
�r 

i
r + b

!
. (4.1.31)

On the other hand, before repeating those arguments to determine b, we should note that we also
could have written

↵0m2
⌘ ↵0(2p+p�
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�n↵̃

i
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X

r

r ̃i
�r ̃

i
r , (4.1.32)

from which we determine the level-matching condition for physical closed string states:
X

n>0

↵i
�n↵

i
n +

X

r>0

r i
�r 

i
r + b =

X

n>0

↵̃i
�n↵̃

i
n +

X

r>0

r ̃i
�r ̃

i
r + b̃ , (4.1.33)

which should be understood as an operatorial equation, valid when applied on the physical states.
Thus, the first states in the NS-NS sector to consider are  i

�1/2 ̃
j
�1/2 |0i, which transform as a

massless symmetric tensor. Putting their mass to zero tells us that b = b̃ = �1/2. In the
NS-R sector, the state  i

�1/2 |s̃ii has to be massless as well, from which we understand that
b = �1/2, b̃ = 0. Similar reasoning for the other sectors enable us to conclude that the values for
b and b̃ are derived from their open string counterparts, accordingly to the fact that closed string
dynamics is a copy of two open string ones. For later purposes, we define7

L0 ⌘

X

n>0

↵i
�n↵

i
n +

X

r>0

r i
�r 

i
r + b , L0 =

X

n>0

↵̃i
�n↵̃

i
n +

X

r>0

r ̃i
�r ̃

i
r + b̃ . (4.1.34)

The level matching is then L0 = L0.

4.1.5 GSO projection, orientifold and type IIB/I spectra

At the level of our discussion, defining the consistent string theories demands a last refinement.
This need can be understood by noting that the full superstring spectrum contains tachyons, as

7We do not respect the usual definition of L0 and L0, which precisely equates them to the zero modes of the
energy-momentum tensor, but we choose here a definition for compact formulae later on.
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it was the case in the bosonic string theory. To get rid of such states, Gliozzi, Scherk and Olive
(GSO) [378] imposed a projection on the spectrum to keep well behaved states. Their projection
consists in removing the states in the spectrum which are odd under a fermion number. For the
open string, it is defined as follows:

(�1)FXµ = Xµ(�1)F , (�1)F µ = � µ(�1)F ,

(
NS: (�1)F |0i = � |0i

R: (�1)F |sai = (�1)
P

a sa |sai
,

(4.1.35)
where we note that the open string tachyon is projected out as desired. For the closed string
there are two fermion numbers F, F̃ respectively for the left and right movers. The closed string
spectrum should then be invariant under both fermion numbers. There is a leftover freedom
though, which is that the R-sector right moving vacua could be defined such that there is an
extra minus sign under the action of (�1)F̃ (when we defined the left moving one to behave as
in (4.1.35) under F ). Doing so or not leads respectively to type IIA and type IIB string theories.
We will mention again the former in section 4.1.6.

The closed-string massless spectrum of type IIB string theory forms the particle content of
one of the two ten dimensional supergravity theories with 32 supercharges, consistently known as
type IIB SUGRA: a graviton, a 2-form and a dilaton, from the NS-NS sector, a self-dual 4-form,
a 2-form and a 0-form from the R-R sector, and two gravitini (Majorana-Weyl spin 3/2) and
dilatini (Majorana-Weyl spin 1/2) from the NS-R and R-NS sectors. The emergent spacetime
supersymmetry recovered here is an output of the choice of GSO projection. In type IIB, the
fermions have the same chiralities. The fact that gravitational anomalies cancel in this theory is
thus not trivial, and is ensured by the contribution of the self-dual 4-form to the gravitational
anomaly.

The type I string theory is obtained from type IIB by performing the so-called orientifold
projection ⌦ [379]: this amounts to identifying left and right movers in the mode expansion of
the string coordinates by gauging the theory’s invariance under worldsheet parity

⌦ :

(
For closed strings: � ! ��

For open strings: � ! ⇡ � �
, (4.1.36)

which is uplifted to an action on the worldsheet fields, which we write here as an action on the
oscillator modes:

⌦ :

(
For closed strings: ↵µ

n $ ↵̃µ
n ,  µ

r $  ̃µ
r

For open strings: ↵µ
n ! ei⇡n↵µ

n ,  µ
r ! e�i⇡r µ

r

. (4.1.37)

We note that ⌦2
6= 1 on the open-string oscillators, but the definition of the GSO projection

ensures that ⌦2 = 1 on the physical states. The action on the vacua is

Closed string: ⌦·

8
>>><

>>>:

|0i
NS-NS

|0, s̃biNS-R

|sa, 0iR-NS

|sa, s̃biR-R

=

8
>>><

>>>:

|0i
NS-NS

|s̃b, 0iR-NS

|0, saiNS-R

� |s̃b, saiR-R

Open string: ⌦ |0, i, ji
NS/R

= !NS/R |0, j, ii
NS/R

,

(4.1.38)
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where the minus sign for the R-R sector can be understood from the anticommutation of the
two R-sector vertex operators exchanged, and we included an action on the Chan-Paton factors
(4.1.27) of the open string, under the form of Z2 phase ! which we determine later. There is
a subtlety about it in the NS-sector though, since we want ⌦2 = 1 on the physical states, but
⌦2 = �1 = (�1)F when applied on the fermionic oscillators. We must then define ⌦ such that
⌦2 = (�1)F = �1 on the NS-vacuum, so !NS = �i!, with ! a Z2 phase. !R = ! simply.

The result of gauging ⌦ is that the massless EFT is a ten dimensional SUGRA with only
16 supercharges, since the two gravitini of type IIB are projected down to a single Majorana-
Weyl gravitino. The gravitational multiplet is then made out of the graviton, the gravitino, a
2-form, a dilaton and a dilatino. In addition, ten-dimensional N = 1 SUSY admits matter vector
multiplets [380–382], which comes from the open sector of type I theory. Indeed, as we will discuss
again in section 4.1.7, anomaly cancellation demands the presence of a SO(32) gauge theory in
the ten-dimensional bulk, in order to implement the Green-Schwarz mechanism [229] (which we
mention again in section 4.3.5). Note that at the level of the spectrum, there are N(N+!)

2
vectors

as bosonic massless modes of the open string, as well as their gaugini superpartners:

 i
� 1

2
|0, i, ji + ! i

� 1
2
|0, j, ii

p
2

,
|sa, i, ji + ! |sa, j, ii

p
2

. (4.1.39)

Thus, if ! = 1, we describe a USp(N) gauge theory, whose adjoint has dimension N(N+1)

2
. If

! = �1, the gauge group is SO(N). We understand then that anomalies select ! = �1, as we
will see in section 4.1.7.

4.1.6 The type IIB partition function

Now that we worked out the spectrum of the type IIB/I theories, we are ready to extract the
one-loop vacuum amplitudes from it.

From field to string vacuum energies

We follow the field theory inspired derivation of [369]: in a theory of a massive real scalar field
�, of lagrangian

L = �
1

2
(@µ�)

2
�

M2

2
�2 , (4.1.40)

the vacuum energy � reads, in d�dimensional spacetime,

� = �
V

2

Z 1

✏

dt

t
e�tM2

Z
ddp

(2⇡)d
e�tp2 = �

V

2(4⇡)
d
2

Z 1

✏

dt

t1+
d
2

e�tM2
, (4.1.41)

where V is the spacetime volume and ✏ a UV regulator. In a theory with more degrees of freedom,
this formula uplifts to

� = �
V

2(4⇡)
d
2

Z 1

✏

dt

t1+
d
2

Str
⇣
e�tM2

⌘
, (4.1.42)
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where Str counts the degrees of freedom with multiplicity and sign according to spin-statistics,
for instance for a Dirac fermion of mass M :

� =
2b

d
2cV

2(4⇡)
d
2

Z 1

✏

dt

t1+
d
2

e�tM2
. (4.1.43)

In string theory, the spectrum is determined in sections 4.1.3, 4.1.4 and 4.1.5. On the other
hand, the integration region is not as in field theory, which is explained by linking the field
theory calculation to worldsheet ones, which we do now.

Let us discuss the closed sector first. There, the masses are given in (4.1.31) where we remember
that level matching (4.1.33) must hold on the physical Hilbert space. We can however sum over
the whole Fock space and insert a � function to impose level-matching:

Str
⇣
e�tM2

⌘
! Str

⇣
e�tM2

�
�
L0 � L0

�⌘
=

Z 1
2

� 1
2

ds Str
⇣
e�tM2

e2⇡i(L0�L0)s
⌘

(4.1.44)

Finally, the GSO projection (4.1.35) can be imposed by inserting the projector onto even fermion
number states:

Z 1
2

� 1
2

ds Str
⇣
e�tM2

e2⇡i(L0�L0)s
⌘

!

Z 1
2

� 1
2

ds Str

 
1 + (�1)F

2

1 + (�1)F̃

2
e�tM2

e2⇡i(L0�L0)s

!
,

(4.1.45)
where the presence of the Str reminds us that we have both a worldsheet and a spacetime fermion
number to consider here.

The torus

Doing this actually amounts to consider the one-loop worldsheet which is present in all string
theories: the torus. Once we fixed the flat metric on the torus, its geometry is characterized by
a complex parameter ⌧ ⌘ ⌧1 + i⌧2, called modulus8

Torus : {z 2 C such that z ⌘ z + 1 ⌘ z + ⌧} . (4.1.46)

Not all ⌧s are conformally equivalent, each of them is part of an equivalence class generated by
the two modular transformations T and S:

T : ⌧ ! ⌧ + 1 , S : ⌧ ! �
1

⌧
, (4.1.47)

such that the space of inequivalent ⌧s, called fundamental domain F , is characterized by the
moduli which verify:

|⌧ | � 1 and Re(⌧) 2


�
1

2
,
1

2

�
. (4.1.48)

The important part is that it does not extend to the UV region ⌧ = 0, which is the one-loop
sign of the UV finiteness of string theory. The fundamental domain gives a string origin to the

8It should not be mistaken for the worldsheet time ⌧ . The latter will be mentioned as "worldsheet time ⌧",
or something close, when it is encountered in what follows.
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cutoff ✏, which is now built in and physical. This natural cutoff, together with the level matching
condition, arises naturally when we write the one-loop contribution to the path integral without
vertex operators, i.e. the partition function Z, on the torus. The latter can be understood by
saying that a torus of modulus ⌧ is a cylinder worldsheet of length ⇡⌧2, closed on itself after being
skewed at its end so that the string points indexed by � (at time ⌧ = 0) meet points of index
� + ⇡⌧1 (at time ⌧ = ⇡⌧2). This translates into the following expression :

Z = Tr
�
e2i⇡⌧1P�2⇡⌧2H

�
, (4.1.49)

where P = L0 � L̃0 generates translations along the space coordinate � of the worldsheet, and
the hamiltonian H = L0 + L̃0 along the time coordinate ⌧ .

Torus amplitude in type IIB

Evaluating this trace gives precisely (4.1.43)-(4.1.45), once we define ⌧1 ⌘ s, ⌧2 ⌘
t
↵0⇡ . We call

this amplitude T (like torus) and rewrite it using the convient parametrization q = e2⇡i⌧ :
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. (4.1.50)

We can now compute it, using some intermediary steps. First, let us write explicitly the Fock
space states and the action of L0 and L0 on them. In the NS-NS sector, the states are spacetime
bosons and:
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where ljr and l̃jr = 0, 1, since the  modes are anticommuting. Consequently,
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and
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(4.1.53)
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where we remember that r is half-integer. The usual definitions for the Dedekind function, the
SO(8) characters and the Jacobi functions can be found in [369].

All the sectors put together9 give the type IIB partition function:

T = �
V

2(4⇡↵0)5

Z

F

d2⌧

⌧ 6
2

����
V8 � S8

⌘8

����
2

(⌧) , (4.1.54)

where we specialized (4.1.50) to ten dimensions and indicated that the characters are functions
of ⌧ and q = e2i⇡⌧ . Interestingly, we can recover from (4.1.54) what we already learnt about the
spectrum in section 4.1.5. Indeed, considering the large ⌧2 behaviour of the characters, we find

V8 � S8

⌘8
⇡ 8 � 8 + O(q) . (4.1.55)

Inserted in (4.1.54), this reminds us of two aspects of type IIB string theory. First, it is super-
symmetric, so the cancellation between the fermionic and bosonic contributions to the vacuum
energy is consistent. Second, remembering the interpretation of the Str in (4.1.43), we understand
that there are 82 + 82 massless bosonic degrees of freedom and 82 + 82 fermionic ones. Those
indeed respectively decompose into 128 = (35 + 28 + 1) + (35 + 28 + 1), i.e. the ten-dimensional
massless on-shell degree of freedoms for the NS-NS sector (a graviton, an 2-form and a dilaton)
and the R-R sector (a self-dual 4-form, a 2-form and a 0-form), and in 128 = 2 ⇥ (56 + 8), i.e.
the two gravitini (Majorana-Weyl spin 3/2) and dilatini (Majorana-Weyl spin 1/2) of the NS-R
and R-NS sectors.

Other GSO projections, other theories

In section 4.1.5, we mentioned that the extension of the GSO projection (4.1.35) to the closed
string is not unique. The consistency of the torus amplitude is such that, starting from the
features it must have, one can find all the possible forms for the integrand, which are in turn
linked to different GSO projections.

Tori paired by the modular transformations (4.1.47) are physically equivalent, and this shows
up in (4.1.54): it can indeed be shown [369] that T is modular invariant [383,384], i.e. invariant
under the transformations (4.1.47). This is a condition for a consistent torus, and it turns out
to be a strong one. In addition, it can be seen from (4.1.54) that fermions and bosons enter the
amplitude with different signs, as expected from spin-statistics. The torus amplitude should also
have this feature. Those conditions are demanding enough to single out three additional theories,
for which |V8 � S8|

2 in (4.1.54) would be replaced by

Type IIA: (V8 � C8)(V 8 � S8) , Type 0: |O8|
2 + |V8|

2 +

(
S8C8 + C8S8 (0A)
|S8|

2 + |C8|
2 (0B)

. (4.1.56)

The type 0 theories do not have spacetime fermions, as can be seen from the sign of the different
contributions in (4.1.56). They have a tachyon, as can be seen from the large ⌧2 expansion of O8,
which we will encounter again in section 4.2.2, and the two types differ by their antisymmetric

9See appendix D.1 for the contribution of the RR sector.
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forms. The type IIA theory is the other supersymmetric tachyon-free string theory, which has the
type IIA SUGRA as its massless EFT: there is the same gravitational sector as type IIB, but the
two gravitini (and dilatini) have different chiralities, and there are a 1-form and a 3-form in the
R-R sector. The type IIA SUGRA is non-chiral, so its gravitational anomaly trivially cancels.

4.1.7 Type I amplitudes, tadpoles and SO(32) gauge group

The techniques presented thus far can be applied to type I string theory. In particular, the one-
loop closed string amplitude extends the torus amplitude (4.1.54) by the addition of the other
non-oriented Riemann surface of Euler character10 0 which describes the propagation of a closed
string: the Klein bottle11.

The contribution of the Klein bottle can be written

K = �
V

4(4⇡↵0)5

Z

FK

d2⌧

⌧ 6
2

Str

 
1 + (�1)F

2

1 + (�1)F̃

2
⌦qL0qL0

!
, (4.1.57)

where we denoted the integration domain for the Klein bottle by K and where ⌦ is the orientifold
projection of section 4.1.5 such that, together with the halved torus amplitude, they form the
vacuum amplitude for the projected closed string spectrum:

1

2
T + K . (4.1.58)

The integrand in the Klein bottle amplitude, which we choose to call K as well, as we will also
do for others amplitudes, reads (see again appendix D.2)

K =
V8 � S8

⌘8
(2i⌧2) , (4.1.59)

where V8 is the contribution of the NS-NS sector and S8 the R-R sector one. The amplitude
naturally depends on 2i⌧2, which is the modulus of the doubly covering torus of the Klein bottle.
In addition, the involutive identification of some points of the torus which leads to the construction
of the Klein bottle breaks the conformal group of the torus, which has the effect of leaving the
full ⌧2 axis as the one which parametrizes the space of physical Klein bottles:

K = �
V

4(4⇡↵0)5

Z 1

0

d⌧2
⌧ 6
2

V8 � S8

⌘8
(2i⌧2) . (4.1.60)

Putting together (4.1.54) and (4.1.60) as in (4.1.58), we easily recover the massless closed-string
spectrum: we find

1

2
T + K ⇡

|V8|
2 + V8 + |S8|

2
� S8

2
�

V8S8 + S8V 8

2
= 35 + 1 + 28 � (56 + 8) + O(q) , (4.1.61)

which fits our discussion of the closed string type I massless spectrum.
10We recall that the Euler character is given by 2� 2h� b� c, where h, b and c are respectively the number of

holes, boundaries and crosscaps of the surface.
11We refer to [369] for a discussion of the other surfaces than the torus which we encounter in what follows. In

particular, we mention without defining it their doubly covering tori.
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On the other hand, the self-dual 4-form is projected out of the spectrum by the orientifold
projection, so only the gravitino contributes to the anomaly which does not vanish anymore. The
additional contributions to the anomaly come from the bulk open string sector, and the anomaly
vanishes via the GS mechanism if the gauge group is SO(32) or E8 ⇥ E8 (see e.g. [385] for a
review). Those two possibilities are realized in the heterotic string [386], but type I string theory
selects SO(32) as the realized gauge group.

To see this, we analyze the one-loop amplitudes, using the (quite deep) fact that in string
theory, anomalies are related to R-R tadpoles [387], which are themselves, like dilaton tadpoles,
related to one-loop divergences [388–391]. Indeed, the integration region of the Klein bottle
(4.1.60) goes all the way to ⌧2 = 0, which indicates a UV divergence, consistently with the fact
that its presence signals a projection of the type IIB spectrum down to an anomalous one. The
torus, as we discussed previously, is protected from this divergence by modular invariance. To
cancel it, it is necessary that the open string sector contributes as well to the vacuum energy
via two surfaces, the oriented cylinder (or annulus) A and the unoriented Möbius strip M (see
appendix D.3):

A = �
N2V

4(4⇡↵0)5

Z 1

0

d⌧2
⌧ 6
2

V8 � S8

⌘8

⇣
i
⌧2
2

⌘
, M = �

!NV

4(4⇡↵0)5

Z 1

0

d⌧2
⌧ 6
2

V̂8 � Ŝ8

⌘̂8

✓
i
⌧2
2
+

1

2

◆
,

(4.1.62)
where once again we see the moduli of the doubly covering tori appear, and where the presence
of N and ! shows that we included the contributions from (the action (4.1.38) of ⌦ on) the
Chan-Paton factors (4.1.27). The hatted characters V̂8, Ŝ8 are defined in [369], and we do not
discuss them further since we only focus on the massless modes that they describe, in which
case the hats are irrelevant. To analyze (physically) the divergence, it is easier to switch to the
"tree-level (gravitational) channel", by defining

il ⌘

8
><

>:

Klein bottle: i
2⌧2

Cylinder: 2i
⌧2

Möbius strip: i
2⌧2

, (4.1.63)

which amounts to perform an S-transform, defined in (4.1.47), on the characters of the Klein
bottle and the cylinder, and a P = TST 2S-transform on those of the Möbius strip. Up to a
factor V

2(4⇡↵0)5 , the amplitudes read

K̃ =
25

2

Z 1

0

dl
V8 � S8

⌘8
(il) , Ã = 2�10N2

K , M̃ = !N

Z 1

0

dl
V̂8 � Ŝ8

⌘̂8

✓
il +

1

2

◆
. (4.1.64)

We use tildes to emphasize that we talk about amplitudes written using l as the integration
variable, which defines the "tree-level channel". The name comes from the fact that the one-loop
open string amplitudes have a dual interpretation in terms of tree-level exchanges of closed string
states, between D-branes (for the cylinder) and between D-branes and O-planes (for the Möbius
amplitude). Then the Klein bottle describes a closed string exchange between O-planes only. l

is understood as the length of the tube describing the tree-level propagation, and the charges,
numbers and positions of the different objects can be identified from expressions such as (4.1.64).
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In our case, open strings live in the ten-dimensional bulk, and the orientifold projection ⌦ does
not leave any spacetime point fixed12, so the amplitudes (4.1.64) describe exchanges between
spacetime-filling D9-branes and/or O9-planes.

The UV-divergences of the "loop-channel" (i.e., the amplitudes expressed in terms of ⌧2)
are mapped to infrared divergences in the tree-level channel. There, the divergence is due to
the massless contributions, which are linked to constant terms in the integrands of (4.1.64), as
suggested by the (Schwinger proper time) identity

1

M2
=

Z 1

0

dl e�lM2
. (4.1.65)

In (4.1.64), the constant contributions are

K̃ + Ã + M̃ =

Z 1

0

dl
(32 + !N)2

64
(8 � 8 + O(q(l))) (4.1.66)

and we see that demanding that this divergence vanishes selects once again N = 32 and ! = �1,
which was identified as the choice of SO(32) for the gauge group in section 4.1.5.

It may seem a bit silly to fix N and ! while (the massless level of) V8 � S8 vanishes already.
However, the NS-NS and the R-R contributions to the tree-level channel amplitudes have different
interepretations: the NS-NS divergence has to do with the dilaton � tadpole in the EFT:

S ⇠ (32 + !N)

Z
d10x

p
�ge�� , (4.1.67)

whereas the R-R tadpole is linked to the overall charge neutrality of the system and to the gauge
anomalies. In type I, supersymmetry relates those two tadpoles and they both vanish. However,
as we will discuss in section 4.2.1, if SUSY is broken, one only needs to impose the cancellation
of the R-R tadpole for the consistency of the theory.

4.2 SUSY breaking in string theory

In this section, we consider mechanisms for breaking supersymmetry which are different from
those of section 3.2, since they are stringy in nature, or tied to the extra-dimensional nature of
string theory. We discuss specifically two mechanisms: brane supersymmetry breaking (BSB) and
Scherk-Schwarz (SS) (super)symmetry breaking. An other mechanism, which we do not cover,
consists in turning on magnetic fluxes in compact directions [392]. Gaugino condensation is also
often cited [393,394], even though it is a field theory effect, as we will see in section 4.3.5.

4.2.1 Brane SUSY breaking and non-linear SUSY

First, we mention briefly a mechanism with string scale SUSY breaking, called brane supersymme-
try breaking (BSB) [395–397]. It means that objects, such as (anti-)D-branes and (anti-)O-planes,

12This would be modified in a T-dual picture.
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which do not preserve the same supersymmetries are put together in the theory. We do not try
to be exhaustive about it, but we only comment the simplest ten-dimensional case where this
happens [395]: let us choose 16 anti D9-branes and an exotic O9-plane, the regular ones being
those which appear in the ten-dimensional supersymmetric type I theory of section 4.1.7. The
resulting system still does not have a R-R tadpole (understood as the vanishing of the overall
R-R charge of the two objects), but now the overall tension is not vanishing (unlike the SUSY
case, where for the non-dynamical O9-plane, we defined a negative tension13). The end result is
a theory with broken SUSY at the string scale, with an open sector which looks as follows (at
the integrand level, in the loop channel):

A =
N2

2

V8 � S8

⌘8

✓
i⌧2
2

◆
, M = �

N

2

�V̂8 � Ŝ8

⌘̂8

✓
i⌧2
2

+
1

2

◆
. (4.2.1)

The fact that the R-R tadpole still vanishes in this theory is immediately seen from the fact that
the R-R tree-level contribution, proportional to S8, have not changed with respect to (4.1.64).
On the other hand, the fact that SUSY is broken can be seen in several ways. First, the NS-NS
contributions, given by V8, suffer from a sign shift and do not cancel anymore, whereas there
were linked to the R-R tadpole by SUSY. Second, there are N(N+1)

2
massless vectors but N(N�1)

2

fermions:
A + M ⇡

N(N + 1)

2
8 �

N(N � 1)

2
8 + O(q) , (4.2.2)

so that bosons fall into the adjoint representation of USp(N = 32) but the fermions are in
a different representation, the antisymmetric representation. More precisely (and interestingly),
the third point is that N(N�1)

2
= 496 = 495+1, meaning that the fermions lie in the antisymmetric

representation up to a singlet fermion: it turns out that the couplings of this fermion are precisely
those of a Goldstino, with supersymmetry non-linearly realized à la Volkov-Akulov with a scale
of supersymmetry breaking given by the dilaton tadpole [302]. In this kind of system, there are
no supersymmetric EFT which then breaks SUSY spontaneously, SUSY is breaking at the string
scale and the low-energy EFT has a built-in SUSY breaking/non-linearly realized SUSY.

4.2.2 Scherk-Schwarz mechanism and partition functions

We now turn to the SS mechanism, which is a general mechanism for spontaneously breaking
symmetries from non-local effects in compactified dimensions. Unlike BSB, it is not purely stringy
and can be understood at the field theory level. However, since we have not encountered higher
dimensional theories before this last part of the thesis, and since we will use SS mechanism below,
we choose to discuss it here. SS mechanism was first proposed at the field-theory (supergravity)
level by Scherk and Schwarz [398], then applied to heterotic strings [399–401] and then to open
strings [402,403]. It is the oldest and probably the most popular way of breaking supersymmetry
perturbatively in string theory.

13D-branes being dynamical objects, we always need to define positive tensions for them.
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General mechanism

The idea behind the SS mechanism goes as follows: given a theory with a symmetry group G

living on a compact extra dimension, which we take to be a circle of radius R for simplicity, we
can consistently impose twisted boundary conditions on the fields of the theory:

�(xµ, xd�1 + 2⇡R) ⌘ g · �(xµ, xd�1) · g�1 , (4.2.3)

where we assume that the compact extra dimension indexed by xd�1 is the last spatial dimension
of a complete spacetime of dimension d, and g is the element of G used to twist the boundary
conditions on the field �, which image under g is denoted g · � · g�1.

An example is the theory of a set of scalar fields �(q) indexed by their charges q (assumed
to quantized and integers) under an abelian global symmetry. Choosing g = ei⇡Q, with Q the
abelian generator, the twisting reads

�(q)(xµ, xd�1 + 2⇡R) ⌘ ei⇡q�(xµ, xd�1) . (4.2.4)

The (d � 1)-dimensional Kaluza-Klein (KK) modes are found by Fourier-expanding � on the
circle, while respecting the boundary conditions (4.2.4):

�(q)(xµ, xd�1) =
X

n2N

�(q)
n (xµ)ei(n+

q
2)

xd�1

R . (4.2.5)

The KK modes then receive mass shifts which depend on the charge q:

m
�
(q)
n

=
n+ q

2

R
. (4.2.6)

Those mass contributions from the boundary conditions can be used to break SUSY [404]: use
as an example of global symmetry the fermion number  ! � . Then, bosons have the usual
KK decompositions while the fermions have shifted masses:

m n =
n+ 1

2

R
. (4.2.7)

It is quite interesting that, even though (4.2.7) appears like an explicit breaking of SUSY, the
(d� 1)-dimensional theory has all the features of a spontaneously broken supersymmetric theory
[404,405].

(Type I) strings with Scherk-Schwarz supersymmetry breaking

In string theory, the momentum shifts such as (4.2.7) can be implemented. First, we need a
compact dimension, which we choose to be X9

⌘ X9 + 2⇡R. This modifies the string spectrum
by quantifying p9 = m

R , with m 2 Z, and by introducing winding modes n (integer as well) for the
closed string, which can now wrap several times the X9-circle before closing on itself, adding an
irreducible tension to its mass. Those winding modes do not exist for open strings, which are free
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to roll and unroll around the circle. The mass for the closed string, seen as a nine-dimensional
object, is thus modified as follows:

m2

closed
=

m2

R2
+

n2R2

↵02 +
2

↵0 (L0 + L0) , m2

open
=

m2

R2
+

1

↵0L0 (4.2.8)

and vacuum amplitudes have one less 1p
4⇡2↵0⌧2

factor since we do not integrate on a non-compact

X9 anymore, which is instead replaced by a sum over compact momenta (and windings for the
closed string)

⇤m,n =
X

m,n

q
↵0
4 (

m
R+

nR
↵0 )

2

q
↵0
4 (

m
R �nR

↵0 )
2

, Pm =
X

n

q
↵0m2

R2 , (4.2.9)

for which we choose to leave implicit the sum over indices m,n in the notation ⇤m,n, Pm, or similar
expressions, in what follows. Now, the SS mechanism is applied on the theory by demanding that
the latter is invariant under a so-called freely acting orbifold g, which is the composition of a
spacetime fermion number operator and a half-shift along the compact dimension:

g = (�1)F �X9!X9+⇡R . (4.2.10)

This changes the torus amplitude of type IIB (up to the V
2(4⇡2↵0⌧2)9/2

factor):
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d2⌧

⌧ 11/2
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(|V8|
2 + |S8|

2)⇤2m,n � (V8S8 + S8V 8)⇤2m+1,n

|⌘8|2
(⌧) ,

(4.2.11)

where it is quite clear in the second line that the bosons and the fermions underwent different
momentum shifts, similarly to (4.2.7). There is a subtlety though, since (4.2.11) is not modular-
invariant, as however expected for a torus amplitude. This is due to the presence of the orbifold,
which brings new twisted states into the game. Those contribute to the full amplitude as follows:

T =

Z

F

d2⌧

⌧ 11/2
2

n
(|V8|

2 + |S8|
2)⇤m,2n � (V8S̄8 + S8V̄8)⇤m+1/2,2n

+ (|O8|
2 + |C8|

2)⇤m,2n+1 � (O8C̄8 + C8Ō8)⇤m+1/2,2n+1

o 1

|⌘8|2
(⌧) ,

(4.2.12)

where we also rescaled the radius R ! 2R, so that momentum/winding states are modified
as well, |2m,ni ! |m, 2ni, to keep the mass of a given state fixed as a function of the radius.
Expressed in terms of this new radius, we see that the bosons have all possible momenta, whereas
fermions have momenta shifted by half-integers, exactly like in (4.2.7). The action on winding
modes is purely stringy and is not captured by field theory examples such as (4.2.7).

Among the new odd winding twisted states, which are states with "wrong” GSO projection,
there is a tower of states starting with a scalar (coming from the character |O8|

2 above) with the
lightest mass given by

m2

O = �
2

↵0 +
R2

↵02 . (4.2.13)
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For small radii R <
p
2↵0 this scalar becomes tachyonic, whereas it is very heavy in the opposite

limit R �
p
2↵0. This scalar is a main actor in the brane-brane interactions at long distances

that we discuss in section 4.4.2.

If we now turn to type I string theory, the Klein bottle amplitude is now given by
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R2 . (4.2.14)

It is the same as in the superstring case, meaning that it is insensitive to the freely acting orbifold.
We also see from (4.2.14) that there is no winding propagating in the Klein bottle. In particular,
it reduces the number of bosonic components in the torus as in the superstring case. The one-loop
open string amplitudes are given by14
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(4.2.15)

4.3 Axions in string theory

Within the string spectrum, there are many bosonic tensors. When the nine space dimensions in
which string theory lives are compactified [406,407] so that only three remain macroscopic, those
tensors decompose into irreducible representations of the Poincaré group of the apparent four-
dimensional spacetime. In particular, there are scalars in the spectrum, some of which behave
like axions [408–410]. We briefly discuss in sections 4.3.1 and 4.3.2 how they arise and couple
to gauge fields. The vocabulary and notations for 4D string EFTs are then presented in section
4.3.3, and specialized to anomalous setups in the heterotic string in section 4.3.4. Eventually,
we turn in section 4.3.5 to the study of the compatibility between SUSY breaking via gaugino
condensation and the presence of a QCD axion in a four-dimensional string-inspired EFT with a
Green-Schwarz mechanism.

4.3.1 Axions in string compactifications

In string theory, we should differentiate between two kinds of axions: those which arise from the
closed or the open string sectors. The latter for instance correspond to the phases of complex
fields living on branes, and are close to field theory axions. Closed string axions, on the other
hand, arise from the bulk antisymmetric forms and have specific features (example of reviews
are [55,411]).

Ten-dimensional bulk fields, and in particular p-forms, have a KK decomposition when space-
time is split into a direct product between the four-dimensional Minkowski spacetime M4 and a
six-dimensional compact manifold Z6. Schematically, the KK decomposition goes as follows:

 (xM) ⌘

X

n

 n
M4

(xµ) n
Z6
(xm) , (4.3.1)

14We do not turn on Wilson lines for simplicity.
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where M denotes 10D spacetime indices, µ the ones of 4D Minkowski spacetime and m those
of Z6. 10D equations of motion for  reduce to 4D ones for  n

M4
once specific equations are

imposed on  n
Z6

. The set of all possible  n
Z6

s is then generated by a basis of the solutions to the
latter equations.

In our discussions of axions, we are interested in massless 4D modes15. For a 10D scalar field
 , massless modes arise when

�Z6 
n
Z6

= 0 , (4.3.2)

where �Z6 is the laplacian on Z6. This equation is only solved by a constant on the compact
space Z6 and only one massless scalar mode  n

M4
arises from our 10D scalar. For forms CM1...Mp ,

the same reasoning applies up to the fact that there is an ambiguity in (4.3.1) since no form
indices appear. The correct expression is

Cµ1..µqMq+1...Mp(x
M) ⌘

X

n

Cn
M4,µ1..µq

(xµ)Cn
Z6,Mq+1...Mp

(xm) , (4.3.3)

where Cn
M4

and Cn
Z6

are respectively a q-form on M4 and a (p� q)-form on Z6. Cn
M4

describes a
massless 4D form when

dCn
Z6

= d†Cn
Z6

= 0 (4.3.4)

where d† is the adjoint of the exterior derivative d on Z6. (4.3.4) defines what is called a harmonic
(p � q)-form on Z6. The number of such forms only depends on the topology of Z6 and is called
the Betti number bp�q(Z6). Axions are specifically found in the KK expansion of a p-form C

when the Cn
Z6

are also p-forms, so each p-form in string theory generates bp(Z6) axions after
compactification to 4D.

In string perturbation theory, there is no potential, and in particular no mass, generated for
those axions arising from forms. Their masses come entirely from non-perturbative effects, such
as instantons. We only focus on gauge instantons in what follows, but instantons in string theory
can also be gravitational, worldsheet or brane instantons.

4.3.2 Coupling to gauge fields: Green-Schwarz mechanism and D-branes

actions

Non-perturbative gauge effects, which are welcome if one wants to use the closed string axions
which we discuss here as QCD axions, need the axions to be coupled to gauge fields. We present
now two ways in which forms couplings to gauge fields arise in string theory: via anomaly
cancellation mechanisms and in the presence of D-branes.

First, forms in heterotic or type I string theory are involved in the Green-Schwarz mechanism
and have couplings dictated by the anomaly structure of the theory. The idea behind the GS
mechanism goes as follows: the gauge variation of an action due to an anomalous spectrum can
be canceled by the shift of a classical term in the action. In string theory, the latter shift comes

15We mean by this that we do not want our axions to have masses of order the compactification scale, which
is high.
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from the gauge transformation of a 2-form C2
16, which shows up from the fact that the field

strength H3 which appears in the 10D EFT

S � �
1

42
10
g2�s

Z
H3 ^ ⇤H3 (4.3.5)

is linked to the 2-form as follows

H3 = dC2 �
2
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g2
10
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✓
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2i

3
A ^ A ^ A

◆
, (4.3.6)

where gs is the string coupling, � = 0 or 1 respectively for type I or heterotic strings, 10 is the
string frame gravitational constant in 10D and g10 is the string frame gauge coupling associated
to the gauge potential A, taken here as a matrix in the fundamental representation. Wedge
products are implicit in what follows and we restrict for conciseness the discussion to pure gauge
anomalies, shortly mentioning gravitational and mixed anomalies later in this section. H3 is
gauge-invariant if C2 has the following transformation

��C2 =
2
10

g2
10

Tr(�dA) (4.3.7)

when ��A = d�� i[A,�]. Then, a coupling of the kind

S �

Z
C2X8(F ) , (4.3.8)

with X8(F ) a 8-form built out of F = dA � iA2, can cancel any anomaly whose associated
anomaly polynomial is 210

g210
Tr(F 2)X8(F ). The SO(32) and E8 ⇥ E8 gauge groups are such that

the anomaly polynomial indeed has this form:
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✓
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900

◆
, (4.3.9)

with Tra indicates that the generators are taken in the adjoint representation of the gaugini.
More remarkably, when gravitational anomalies are put into the game in a similar way such that
C2 also shifts under local Lorentz transformations, those two gauge groups are singled out as two
of the only four gauge groups for which the full anomaly polynomial factorizes. The two other
groups for which the GS mechanism is possible are E8 ⇥U(1)248 and U(1)496 but no string theory
realizing them is known.

When the 2-form C2 is compactified, axions arise from its KK expansion as discussed in section
4.3.3. There are then two origins for the axion: the obvious way is to choose q = 0 in (4.3.3),
"hiding" all the tensor indices of C2 in Z6, and the other one is linked to the fact that a four-
dimensional 2-form can be dualized into an axion. Thus, the components along M4 of C2 defines
a 4D 2-form Cµ⌫ , which is equivalent to an axion. It can be understood as follows: one can rewrite
(4.3.5) with an independent 3-form H̃3 and a Lagrange multiplier a for the Bianchi identity which
ensures that H̃3 = H3 as defined in (4.3.6). Indeed, if

S � �
VZ6

42
10
g2�s

Z
H̃3 ^ ⇤H̃3 +

Z
a

✓
dH̃3 +

2
10

g2
10

Tr
�
F 2
�◆

, (4.3.10)

16In type I string theory, the 2-form involved comes from the R-R sector whereas it comes from the NS sector
in the heterotic string.
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integrating a gives back (4.3.5). We defined VZ6 as the volume of the internal compact manifold
and all the integrals are four-dimensional ones. On the other hand, integrating H̃3 produces

S � �
2
10
g2�s

VZ6

Z
d4x

p
�g(@a)2 +

2
10

g2
10

Z
aTr

�
F 2
�
. (4.3.11)

This tells us that the axion dual to Cµ⌫ has QCD axion-like couplings to the gauge fields, hence
it is a QCD axion candidate in string theory models where the SM gauge group is embedded into
the unbroken gauge group of the theory17. In addition, its coupling are fixed: indeed, introducing
the four-dimensional Planck mass M2

P =
VZ6

210g
2
s

and gauge coupling g2 = g210g
�0
s

VZ6
, with �0 = 1 or 2 for

type I or heterotic strings, we find that the axion decay constant, defined as the inverse coupling
of the axion to the gauge field topological density is

fa =
g2MP

4
p
2⇡2g�0���1

s

, (4.3.12)

and we see that it depends neither on the volume of Z6 nor on the string coupling for both the
type I and heterotic strings. For this reason, it is called the model independent axion, and its
decay constant is fixed to be around 1016 GeV [55]. It is way too high to lie in the classic axion
window for an absence of tuning in the initial cosmological conditions for the axion field, whose
upper bound is given by (2.1.31). On the other hand, we mentioned already that the status of
this bound has been the subject of (recent) debates [71–83]. Via the Green-Schwarz term, (4.3.8)
is such that the model-independent axion can also be charged under an unbroken abelian gauge
symmetry when the components of the gauge field parallel to Z6 have non-trivial profiles. For
instance, for a gauge group SO(32), (4.3.8) implies that the 4D lagrangian contains

S �

✓
g2
10

1152(2⇡)52
10

Z

Z6

Tr
�
T hF 3

i
�◆

✏µ⌫⇢�Cµ⌫F⇢� , (4.3.13)

where T is the unbroken abelian generator and hF 3
i refers to the classical profile chosen for

the internal components of the gauge field. After dualization, (4.3.13) gives a minimal coupling
between the abelian gauge field and the axion a. The axion which couples to the abelian gauge
field becomes the longitudinal component of the latter after gauge fixing and is removed from the
spectrum.

0-form KK modes of C2 define model dependent axions, since their decay constant and their
couplings depend on VZ6 on top of MP and g2. They receive QCD axion-like couplings via (4.3.8):

S �

X

n

✓
g2
10

1152(2⇡)52
10

Z

Z6

Cn
Z6

Tr
�
T aT b

hF 2
i
�◆

Cn
M4
✏µ⌫⇢�F a

µ⌫F
b
⇢� , (4.3.14)

using notations of (4.3.3). They can also be charged under an abelian generator, in which case
the minimal coupling arises from the kinetic term (4.3.5).

In the full GS mechanism, there is in addition to Tr(F 2) in the Bianchi identity for H3 a Tr(R2)

term for gravitational anomalies, and there are also gravitational corrections to X8. Thus, the
axions can couple to gravitational instantons and one must ensure that their contribution is

17Both SO(32) and E8 ⇥ E8 have a SU(3) ⇥ SU(2) ⇥ U(1) subgroup.
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much smaller than the QCD one if the axion is to be identified with the QCD axion. Of course,
non-perturbative gauge effects beyond QCD must also be kept under control.

In type II string theories, D-branes offer a second way to couple axions to gauge fields. Indeed,
the (bosonic part of the) Dirac-Born-Infeld action for N coincident Dp-branes is

SDBI = �Tp

 Z

⌃

dp+1⇠ Tr
h
e��

p
� det(gab +Bab + 2⇡↵0Fab)

i
+ i

Z

⌃

Tr

"
eB+2⇡↵0F

^

X

q

Cq

#!
,

(4.3.15)
where Tp is the brane tension, ⇠ are the coordinates on the worldvolume ⌃ of the brane, gab, Bab

(and �) are the NS-NS fields parallel to the brane, Fab is the field strength of the gauge theory
living on the brane and Cq are the R-R forms of the bulk theory. We see for instance that QCD
axion-like couplings to gauge fields are generated for Cp�3 via the Chern-Simons term. The axion
decay constants are dependent on the volume in such setups, and can be brought in the classic
window provided the compactification volume is large in string units [57,412,413].

4.3.3 Four-dimensional EFTs and moduli stabilization

Now, we present some ingredients of four-dimensional EFTs which describe string theory axions.
We restrict ourselves to supersymmetric compactifications, so that SUSY breaking, when it hap-
pens, does not happen at the string scale as in section 4.2.1 for instance. On the other hand, we
only consider compactifications with N = 1 SUSY to match pseudo-realistic phenomenologies.

In this case, axions belong to the scalar part of chiral multiplets T , together with moduli of
the compactification (see e.g. [414]), i.e. (mostly) dynamical fields linked to the compactification
geometry. An example is the axion-dilaton superfield S. Its real part contains (a combination
of fields including) the dilaton �, and its imaginary part is an axion a, which corresponds to
the model-independent axion from C2 in the heterotic string or to the R-R 0-form C0 in type II
D-brane models.

The dynamics of those chiral superfields, given by a Kähler potential K and a superpotential
W as discussed in section 3.1.2, is such that the (closed string) axion shift symmetries are not
broken perturbatively. These symmetries, which uplift via SUSY to shifts of the superfields, such
as T ! T + i⇤ with ⇤† = ⇤, restrict the possible shapes of K and W . As an illustration, typical
tree-level Kähler potentials are

K = �c ln
�
T + T

�
, (4.3.16)

where c is a constant.

The moduli in the chiral multiplets have Planck scale couplings to matter and determine
the coupling constants of the EFT. Consequently, the need to be given masses so that they
evade bounds coming from fifth-forces experiments. On the other hand, their masses need to be
large enough so that they do not spoil the success of big bang nucleosynthesis via the so-called
cosmological moduli problem [84]. The way the moduli receive masses is crucial for discussions
of axions, since SUSY dynamics may link the masses of moduli and the masses of axions, see
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e.g. [57,414,415]. Fluxes from forms stabilize some moduli [416], there are also D-term potentials
[417] as well as possible perturbative effects which give masses to moduli. In the case of D-terms,
which are associated to a gauge field, one axion becomes a longitudinal component of the gauge
boson and is removed from the spectrum as well. There are also non-perturbative contributions
to the superpotential (examples can be found in [418]), which break the axion shift symmetry and
contribute to both the moduli and the axions potential as contributions to the superpotential.
Schematically, they read

W = W0 + Ae�aT , (4.3.17)

where W0, A and a are constants. Such contributions must be kept under control in model
building with light axions (such as QCD axion models).

4.3.4 Anomalous U(1)’s in heterotic string theory

An example of different aspects of the previous discussion can be found in heterotic string theory,
in the presence of an anomalous abelian factor in the gauge group, which we call U(1)X in what
follows.

Anomalous means here that the 4D fermionic spectrum has a gauge anomaly in the presence
of this abelian factor, even though the full theory is consistent. The consistency is ensured by a
4D SUSY version of the Green-Schwarz mechanism, made possible by the fact already mentioned
in section 4.3.2 that, after compactification, 4D axions arising from the 2-form C2 can be charged
under an abelian gauge symmetry. In this case, the theory’s lagrangian contains terms of the
form aF iF̃ i, such that the U(1)X gauge variation of the axion a cancels any mixed anomaly
between U(1)X and the (semi-simple factors of the) gauge group Gi of field strength F i.

In perturbative heterotic string theory constructions [419, 420], there is only one possible
anomalous U(1)X and one superfield, the universal axion-dilaton S, whose imaginary part is the
axion a aforementioned, transforming non-linearly under U(1)X gauge transformations. Those
act on the different superfields involved as18

�VX = ⇤ + ⇤̄ , ��a = �2qa�
a⇤ , �S = �GS⇤ , (4.3.18)

where VX is the vector superfield for the gauge group U(1)X , �a are chiral superfields of charge
qa, and �GS is a constant, in units where MP = 1 which we choose in this section.

Anomaly cancellation occurs via a 4D version of the GS mechanism, which means that the
✓-term for the gauge groups Gi which have a mixed anomaly with U(1)X is given by Im(S) (up
to a numerical coefficient). By holomorphy, we conclude that the full tree-level gauge kinetic
functions are given by S:

fi = kiS , (4.3.19)

where the kis are the Kac-Moody levels of the Gi embeddings in E8 ⇥ E8 or SO(32). Anomaly
18We use here the same convention as in [421] to define charges of chiral superfields.
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cancellation conditions relate mixed anomalies Ci = U(1)X ⇥ G2

i , such that

�GS =
C1

k1
=

C2

k2
= · · · =

CN

kN
=

1

192⇡2
Tr(qX) , (4.3.20)

where the last expression comes from the mixed U(1)X-gravitational anomaly, where Tr(qX) is
the sum of U(1)X charges over all the charged fermions in the spectrum.

The Kahler potential for the universal axion-dilaton is modified to account for the gauge
transformations:

K = � ln
�
S + S̄ � �GSVX

�
(4.3.21)

and it encodes the Fayet-Iliopoulos term which appears in the D-term

DX = qi�
i@iK +

�GS

2(S + S̄)
. (4.3.22)

We consider �GS > 0 in what follows. In all known perturbative constructions there always exists
in the massless spectrum a field with appropriate sign of the charge (negative in our conventions)
whose vev is able to cancel perturbatively the (field-dependent) FI term and maintain supersym-
metry. We consider the minimal case of one such field, called � in what follows, and normalize
its charge to �1, following [421].

When � gets a vev, its phase becomes an Goldstone boson and combine with Im(S) to be
absorbed by the vector in VX . The U(1)X is thus broken and its vector modes gets a Planckian
mass. The remaining combination of Im(S) and arg(�) is a physical axion, which we now study.

4.3.5 Axions and anomalous U(1)’s

In this section, we follow [211], attached at the end of this thesis, and consider again the anomalous
heterotic setup of section 4.3.4 with a single charged scalar �. We study the axion in S and �

when there is a non-perturbative superpotential arising from gaugino condensation [393, 394] in
a confining hidden sector gauge group, and ask whether the physical axion can be identified
with a QCD axion. Consistently with previous discussions, we see that, in the minimal gaugino
condensation case, the axion mass is tied to the supersymmetry breaking scale and cannot be light
enough. However, slightly refined models maintain a massless axion all the way down to the QCD
scale. Both kinds of models can be extended to yield intermediate scale axion decay constants.
Finally, U(1)X can be identified with the Froggatt-Nielsen symmetry in flavourful axion models.
Along the way, we establish that generic anomalous U(1) models coupled to charged scalars
getting vacuum expectation values always have one light axion, whose mass can only come from
non-perturbative effects.

Anomalous U(1) and perturbatively massless axions

We first comment on the following generic property of models with an anomalous U(1)19: at
the perturbative level, and if there is at least one charged scalar field which gets a vev, such

19In case of additional U(1) gauge symmetries, anomalous or not, the counting may be different but a similar
result always applies.
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models always contain a potential axion candidate, which can only get a mass by turning on
non-perturbative effects.

Indeed, let us consider an abelian gauge theory in a Stueckelberg phase, coupled to charged
scalars �i of charges Xi, of lagrangian

L = �|Dµ�i|
2
�

1

4g2
F 2

X,µ⌫ �
1

2
(@µaS +MAX,µ)

2 + · · · , (4.3.23)

where · · · are other terms like axionic couplings. Since we are interested in axion-like particles,
without loosing generality we only consider in what follows charged scalars having non-vanishing
vevs, parametrized as

�i =
Vi + hi

p
2

e
i✓i
Vi . (4.3.24)

From (4.3.23) one finds that the Goldstone boson which mixes in the usual way @µ✓XA
µ
X with

the gauge field is given by (up to a normalization factor)

✓X = XiVi✓i +MaS . (4.3.25)

We have therefore N + 1 potential axions/pseudoscalars, one of which is absorbed by the gauge
field via the Higgs mechanism. The perturbative scalar potential is of the form20

V (pert) =
X

↵

�↵�
m

(↵)
1

1
· · ·�

m
(↵)
N

N + h.c. , (4.3.26)

and gauge invariance imposes the restriction X1m
(↵)
1

+ · · ·+XNm
(↵)
N = 0. Simple matrix algebra

tells us that the maximal number of independent gauge invariant operators that can be written
is equal to N � 1. On the other hand, a complete basis of such gauge invariant operators also
defines the physical pseudoscalars/axions which can be expressed as a combination of the ✓i’s,
since their phases

✓↵ =
m(↵)

1
✓1

V1

+ · · · +
m(↵)

N ✓N
VN

(4.3.27)

are automatically orthogonal to the Goldstone boson (4.3.25). The scalar potential (4.3.26) then
gives masses to at most N �1 pseudoscalars. Consequently, there is always (at least) one leftover
massless pseudoscalar, which is a PQ axion candidate if it has the appropriate couplings. At the
perturbative level, it is therefore always possible to define a PQ symmetry in models with an
anomalous U(1)X gauge factor.

As one will see in the next sections, non-perturbative effects can generate gauge-invariant
potential terms of the form

V (non-pert) =
X

�

e�q�s0�ic�aS���
p
(�)
1

1
· · ·�

p
(�)
N

N + h.c. , (4.3.28)

where s0 is the vev of a scalar and q�, c� are numbers. Whenever such terms are generated, the
leftover massless axion gets a mass (possibly from effects other than the usual QCD ones, as we
discussed earlier).

20It can be checked that the argument below does not change if some of the fields in the scalar potential appear
with a complex conjugation.
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Gaugino condensation, anomalous U(1) and axion mass

Working now in the heterotic setup of section 4.3.4, we add to the dynamics contributions arising
from the gaugino condensation of a hidden sector confining gauge group. The non-perturbative
contributions to the superpotential are discussed in appendix C.2, in the absence of U(1)X . The

non-perturbative scale ⇤ ⇠ e
� 8⇡2

(3Nc�Nf )g2 in (C.2.1) now translates into

⇤ ⇠ e
� 8⇡2khS

(3Nc�Nf ) , (4.3.29)

where kh is the Kac-Moody level of the hidden sector gauge group, since khS provides the
gauge coupling according to (4.3.19). Consequently, ⇤ in (4.3.29) has a gauge variation since
S has one. However, this does not mean that gauge invariance forbids gaugino condensation
to take place: [421] showed indeed that the GS cancellation of gauge anomalies restricts the
non-perturbative dynamics such that the non-perturbative superpotential, as well as the scale of
gaugino condensation, is precisely gauge invariant.

Let us illustrate this by taking for simplicity a SUSY-QCD model with Nc colors and Nf < Nc

flavours and denoting by Q (Q̃) the hidden sector quarks (antiquarks) of U(1)X charges q (q̃).
The GS conditions (4.3.20) completely fix the sum of the charges to be

Ch =
Nf (q + q̃)

4⇡2
= �GSkh . (4.3.30)

This turns out to be precisely the gauge invariance condition of the non-perturbative superpo-
tential

W (non-pert) = (Nc � Nf )

2

4 e�8⇡2khS

det
⇣
QQ̃

⌘

3

5

1
Nc�Nf

. (4.3.31)

We also add a perturbative coupling allowed by the gauge charges:

W (pert) = �j̃i

✓
�

MP

◆q+q̃

QiQ̃j̃ . (4.3.32)

Since � gets a large vev of the order of the FI term via the D-term potential (4.3.22), below the
scale of U(1)X gauge symmetry breaking the perturbative term (4.3.32) becomes a mass term for
the hidden sector quarks and the dynamics of condensation is essentially that of supersymmetric
QCD. In particular, drawing from (C.2.3), we see that the gaugino condensation scale is

⇤3

L = (det�)
1
NcM

3�Nf/Nc

P

✓
�

MP

◆Nf (q+q̃)

Nc

e� 8⇡2khS
Nc , (4.3.33)

which is explicitly gauge invariant.

It can be explicitly shown [211] that, if the scale of condensation is much smaller than the
U(1)X breaking scale, the dynamics of the mesons QQ̃i

j is irrelevant when we discuss the axion.
Consequently, we only consider S and � in what follows and use as a superpotential

W = W0 +Nc⇤
3

L , (4.3.34)
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where the constant W0 was added for the purpose of coupling to gravity later on. In order to
identify the massless axion, it is enough to parametrize the fields by ignoring any other field than
those pseudoscalars. By defining them in order to have canonical kinetic terms, we are led to the
parametrization

S = s0

✓
1 + i

p
2
aS
MP

◆
, � =

V
p
2
e

ia�
V , , (4.3.35)

where s0 and V are vevs. One combination of those pseudoscalars

aX /
�GS

p
2s0

aS + 2V a� (4.3.36)

is absorbed by the U(1)X gauge field, and a second one remains as a physical axion. According
to our general discussion around (4.3.27), the phase of the non-perturbative term in (4.3.34)
defines this physical axion, which is orthogonal to the Goldstone boson aX precisely when the
GS anomaly cancellation conditions (4.3.30) are imposed. However, it remains massless because
(4.3.34) still has a global R-symmetry. The associated symmetry current gives us the expression
of the physical axion aPQ:

Jµ /
1

1

V + 8s20V
�2GSM

2
P

@µ

 
a� �

2
p
2s0V

�GSMP
aS

!
⌘ fa@µaPQ , (4.3.37)

where we identified the axion decay constant

1

fa
=

s
1

V 2
+

8s2
0

�2GSM
2

P

(4.3.38)

and where we can recognize as announced the axion in the phase of (4.3.33). Natural values
are of order the unification scale fa ⇠ MGUT , although smaller values are possible in orientifold
models.

At the global supersymmetry level, the axion mass is protected by the R-symmetry. However,
after coupling to supergravity, the constant W0 breaks explicitly the R-symmetry and as such
the axion gets a scalar potential and therefore a mass [422]. Without entering details of moduli
stabilization, one expects a scalar potential of the form

V (aPQ) ⇠ W0Nc(det�)
1
Nc M

3�Nf/Nc

P

✓
V

MP

◆Nf (q+q̃)

Nc

e� 8⇡2khs0
Nc cos

✓
(q + q̃)Nf

Nc

aPQ

fa

◆
, (4.3.39)

where the axion decay constant is given in (4.3.38). By using the order of magnitude value for
the gravitino mass m3/2 ⇠ W0, one finds that this axion can solve the strong CP problem if

m3/2⇤
3

L ⌧ 10�10f 2

⇡m
2

⇡ . (4.3.40)

This is a very strong constraint, which favours in this minimal model low values of the gravitino
mass and of the dynamical scale ⇤L. Using the fact that in the minimal model of [421, 423]
supersymmetry was broken, and m3/2 ⇠ ⇤3

L/(VMP ), one finds, without an additional source of
supersymmetry breaking, the constraint m3/2 ⌧ 10�14 eV, which is not realistic in known media-
tions of supersymmetry breaking. In this model therefore, an additional source of supersymmetry
breaking is necessary, whereas for a gravitino mass corresponding to standard mechanisms for
supersymmetry breaking, the axion is too heavy to solve the strong CP problem.
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A massless axion: the 3-2 model

In the previous minimal model, the hidden sector non-perturbative dynamics was giving a mass
to the axion through supergravity interactions. However, non-perturbative dynamics is as we
said earlier often instrumental for stabilizing moduli, in our case the very modulus involved in
the GS mechanism. The natural next step is to identify models in which the hidden sector non-
perturbative dynamics leaves an exactly massless axion, even after coupling to (super)gravity.
One way to achieve this goes as follows: at the perturbative level, as we said above, there is always
a massless axion in models with anomalous U(1)X . Suppose now that the hidden sector producing
the non-perturbative dynamics has an R-symmetry itself in the limit in which the anomalous
abelian gauge dynamics is turned off21. Then if the condensation breaks spontaneously the R-
symmetry, there is another R-axion coming from the hidden sector. In total there are therefore
two axions in the limit where gravity is decoupled. By turning on gravity with a constant term
in the superpotential which breaks explicitly the R-symmetry, one (linear combination) of the
two axions becomes massive, while the other one remains massless down to the QCD scale and
behaves as an ideal candidate for a PQ QCD axion.

One explicit model of this type uses for the hidden sector the 3-2 model of supersymmetry
breaking [422, 424]. The gauge group of the model is G = Gh ⇥ U(1)X ⇥ · · · , where Gh =

SU(3)⇥ SU(2) is the hidden sector gauge group. The nonabelian factor SU(3) is confining with
a dynamical scale ⇤3. The matter content in the UV contains the chiral multiplets

Q↵
i (3, 2) , L↵(1, 2) ,

h
Ū i(3̄, 1) , D̄i(3̄, 1) ! Q̄i

↵ = (D̄i, Ū i)
i
, (4.3.41)

in a self-explanatory notation (notice that the ↵ index of Q̄ is not gauged under SU(2) and only
represents a convenient repackaging). The model has two anomaly-free global symmetries, one
acting like hypercharge and an R-symmetry:

U(1)Y : Y (Q) =
1

6
, Y (Ū) = �

2

3
, Y (D̄) =

1

3
, Y (L) = �

1

2
,

U(1)R : R(Q) = �1 , R(Ū) = R(D̄) = 0 , R(L) = 3 . (4.3.42)

Below the scale of SU(3) condensation, the dynamics is governed by the gauge invariant operators

X1 = QD̄L , X2 = QŪL , X3 = det
�
Q̄
 
↵
Q� (4.3.43)

and the low-energy superpotential, compatible with the symmetries and the condensation dy-
namics, is given by

We↵ = �X1 +
2⇤7

3

X3

. (4.3.44)

The analysis of the potential, including the D-term contributions, shows that hX1i and hX3i are
non-vanishing whereas hX2i vanishes. There are then two pseudoscalars in the hidden sector, the
potential axions in the phases of X1 and X3. One linear combination of them gets a mass from
the non-perturbative dynamics, and the second one gets a mass from couplings to (super)gravity,

21In pure supersymmetric QCD there is no light axion, since the only global anomaly-free symmetry in the UV
is an R-symmetry which is broken explicitly by the mass term.
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as in the model described in the preceding section. If we now couple this model to an anomalous
U(1)X , we get an additional pseudoscalar from the high-energy anomalous U(1)X sector. There
is therefore one leftover axion which is massless all the way down to the QCD scale, being a good
candidate for a PQ axion. To restrict the superpotential, one could use the anomalous gauge
symmetry instead of imposing the hypercharge global symmetry as above. We can for instance
give the following charges to the multiplets (where n is some number):

U(1)X :

8
>>><

>>>:

X(Q) = 1

6
+ n

X(Ū) = �
1

3

X(D̄) = 1

3
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2
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n
3

=)

8
>>><

>>>:
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2n
3

X(X2) =
2(n�1)

3

X(X3) =
1

3
+ 2n

X(⇤3) =
1

21
+ 2n

7

, (4.3.45)

where, as in the model discussed previously, the condensation scale ⇤3 = e
�8⇡2k3S

7 is not-gauge
invariant anymore due to the U(1)X ⇥ SU(3)2 anomaly:

U(1)X ⇥ SU(3)2 : C3 =
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4⇡2
⇥

✓
1

3
+ 2n

◆
, U(1)X ⇥ SU(2)2 : C2 =

1

4⇡2
⇥

8n

3
, (4.3.46)

while the non-perturbative superpotential is:

We↵ = �

✓
�

MP

◆ 2n
3

X1 +
2⇤7

3

X3

. (4.3.47)

The first term in (4.3.47) is a perturbatively generated operator if we assume that n is a multiple
of 3

2
. If ⇤3 ⌧ V , analogously to the model in the previous section this axion is essentially

a combination of aS and a�. The axion decay constant will be determined as before and is
therefore naturally of the order of the unification scale.

Summary

Inspired by recent studies of high-scale decay constant or flavourful QCD axions, we reviewed
and clarified their existence in effective string models with anomalous U(1) gauge groups.

We found that such models, when coupled to charged scalars getting vacuum expectation
values, always have one light axion, whose mass can only come from non-perturbative effects
(and simultaneously turning on the coupling to gravity in supersymmetric models, where an R-
symmetry survives even after inclusion of non-perturbative effects). If the main non-perturbative
effect is from QCD, then it becomes a Peccei-Quinn axion candidate for solving the strong CP
problem. - We studied the symmetries responsible for protecting the axion and the conditions
under which the axion is light enough for solving the strong CP problem in a heterotic framework
with a single charged scalar and hidden sector gaugino condensation, and we concluded that
realistic supersymmetry breaking is incompatible with a light enough axion. However, we also
gave a refined example, the 3-2 model, where non-perturbative dynamics still preserves a massless
axion all the way to the QCD scale, even after coupling to gravity.
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Further comments

Besides more detailed discussions about the physical axion in the minimal gaugino condensation
model (4.3.31) (taking into account the mesons for instance), a few more things can be found
in [211].

First, the fact that (4.3.38) was of order the unification scale in minimal models can also be
relaxed in effective models where the moduli sector is slightly more complex22. For example, the
following model of two moduli and a charged superfield:

K = �
3

2
ln
�
T1 + T1 � �1VX

�
�

3

2
ln
�
T2 + T2 + �2VX

�
+ �†e�2VX� , (4.3.48)

coupled to two hidden strong sectors 1 and 2, with gauge kinetic functions given by:

f1 =
T1

4⇡
, f2 =

n2T1 + n1T2

4⇡
, where ni = ⇡�i are integers , (4.3.49)

such that the (stringy instanton) non-perturbative superpotential is

W = W0 + A�n1e�2⇡T1 +Be�2⇡(n2T1+n1T2) (4.3.50)

now allows for a high scale stabilization of the moduli with a small or intermediate scale V = h�i

and axion decay constant (4.3.38). A more complete discussion on this can be found in [211], as
well as a generalization of such models to incorporate the 3-2 model of (4.3.44).

Then, anomalous U(1)’s appear in the phenomenological literature because Froggatt-Nielsen
symmetries are often anomalous [225, 227], as we already discussed in section 2.3.7. In [211], we
thus identify U(1)X with a gauged flavourful symmetry and discuss the axion couplings which
arise. We show that in such a context and irrespective of the details of the model under consid-
eration, gauge invariance fixes completely the couplings of the axion to matter when the charged
scalar � is used as a flavon field. The couplings to SM charged fermions are proportional to their
anomalous charges and the couplings to the gauge fields to the mixed U(1)X ⇥ G2

a anomalies,
where Ga is one of the SM gauge group factors. Gauge coupling unification conditions [231]
alone then determine the ratio of the coupling to the photon to the coupling to the gluons to
be E/N = 8/3 at the unification scale. These couplings are similar to the ones in the axi-
flavon/flaxion models [204,205], but the symmetry is now gauged.

4.4 Swampland conjectures

In the preceding sections, we studied specific aspects of string theory phenomenology: how it is
tied to supersymmetry, how to break those ties, examples of particles of the string spectrum and
specific features of the way the latter arise in the string EFTs.

The possibilities offered by string theory to phenomenology are much more numerous, and
instead of studying in details the precise predictions of each string theory compactification, which

22Moduli stabilization and axions in string models with anomalous U(1) were studied in various papers [423]
and so was the issue of axion mass and decay constant in string theory, see e.g. [55, 57,425,426].
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are many [365] as we said previously, one may try to establish (possibly broad) criteria which
are common to all string theory compactifications. Such criteria would provide hints on how to
build models with the hope that they could be completed in string theory, or ways of disproving
string theory by direct observation of the violation of the criteria.

Actually, one could ask a similar question about quantum gravity in general, with the difference
that most people trust the fact that a theory of quantum gravity should describe nature at some
high scale, so that the disproving part of the above statement is not the one which drives research
efforts. This search for criteria which are necessary for a given theory to be completable into a
quantum theory of gravity is called the swampland program [364], which opposes the swampland
to the landscape, which is the space of theories which can be derived from quantum theories of
gravity. Beyond the usual QFT criteria to define consistent theories (absence of gauge anomalies,
unitarity, etc), the additional criteria which are typical of the mutual consistency of a theory
with quantum gravity are called swampland criteria, or swampland conjectures, since they all
have the status of conjectures, even though there are compelling and numerous evidences for the
most prominent of them.

In what follow, we first review some of those conjectures in section 4.4.1, then discuss in section
4.4.2 a string test of the weak gravity conjecture (WGC), one of the best motivated among the
swampland conjectures. A recent and complete review of the swampland is [427], from which we
drew quite a lot.

4.4.1 Some conjectures

Our focus is on two conjectures, and we mention additional ones to a lesser extent. The first one
has to do with global symmetries, while the second one is the WGC.

No global symmetries in quantum gravity

We have already mentioned this first conjecture quite a lot in section 2, so we eventually spend
some specific time discussing it. It states that, in a quantum theory of gravity, there cannot be
any exact global symmetry of the spectrum and the interactions [124–126]23.

Arguments in favor of this conjecture exist in string theory, which is known to transpose any
global symmetry on the worldsheet into a gauge symmetry of the interacting states [428] (a
prominent example is the global super-Poincaré algebra of the worldsheet theory). In addition,
there are non-perturbative effects, such as gauge, gravitational or worldsheet instantons, which
break the axion shift symmetries [429,430] as discussed in section 4.3.1.

There are also arguments which are expected to go beyond string theory, being related to
properties of gravity which are expected to be universal. Those include holography, see e.g.
[431, 432] where using AdS/CFT it was shown (among other things) that a global symmetry in
the bulk would lead to inconsistencies in the CFT side, as well as black hole physics [126].

23On the other hand, gauge symmetries are fine with respect to quantum gravity.
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The black hole argument for the conjecture goes as follows: imagine there is a global U(1) sym-
metry of the theory of particles and gravity together, then consider an uncharged Schwarzschild
black hole into which we send a set of particles which carries a global charge Q. The resulting
black hole has mass M and a global charge Q. However, the outside of the black hole is still
subject to the no hair theorem of [433] and is uniquely given by the Schwarzschild metric. In
particular, the Hawking radiation is only sensitive to the physics near the black hole horizon,
which is governed by the Schwarzschild metric, so it is thermal and uncharged, and the mass of
the black hole decreases while its charge Q remains. Thus, it eventually reaches a given mass
M0 < M , with charge Q. Consequently, there are infinitely many different black hole states
of mass M0, at least one for each possible Q. However, from the outside of the black hole, an
observer still measures a finite Bekenstein-Hawking entropy, which only depends on M0, for this
state of infinite degeneracy. This issue would be avoided if somehow, gravity is such that the
black hole could not be associated to a constant charge Q.

The black hole evaporation can be followed to smaller charges than M0, up to a stage where the
full quantum gravity effects at the horizon deviate significantly from the Hawking calculation,
such that the evaporation may end, for instance to solve the information paradox. Then, a
Planck-scale object called a remnant is left behind, which has to be stable since, if it was to fully
decay into particles, it should decay into a set of particles of total charge Q24. However, such
a set might very well be heavier than MP , as soon as the charge Q is big enough. Thus, the
theory has an infinite set of stable remnants, one of each (large enough) Q. This is expected
to source inconsistencies if those states run in loops as quantum states [434] or if they enter in
the calculation of the maximal entropy contained in a given volume, which is bounded [435].
However, the status of those troubles regarding remnants is still unclear, and we mostly mention
it here because the preceding one about black hole entropy does not apply to the WGC, unlike
the remnant one.

Let us stress that this conjecture is a prototypical example of how swampland criteria are
developed and strengthened: evidences for its validity come from at least two approaches, a first
one which uses expected properties of gravity which can interact with known physics at any scale
(such as the physics of black holes, or the holographic nature of gravity), and a second one which
precisely checks the assertion in quantum theories of gravity which we understand and master,
at least to some extent. These two complementary approaches have their own limitations, since
arguments in the first approach may be incorrect or used beyond their validity regime (which
may be the case for the interpretation of the black hole entropy in the above argument), whereas
the second approach may lead to restricted, too demanding criteria (for instance, string theory
may not have all the possible features of a quantum theory of gravity).

24It may emit some particles from an other quantum process than Hawking radiation, but at some point there
is no particle left which has enough charge to be emitted, carrying away the remnant mass.
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The weak gravity conjecture

The WGC is a second example of conjecture which is motivated beyond string theory. It states,
in its original form [436], that for each gauge symmetry there exists a particle on which gravity
is weaker than the gauge force. This is quantified by saying that, in a d-dimensional spacetime25,
there should be a particle of mass m and charge q such that

m 

r
d � 2

d � 3
gq
⇣
M (d)

P

⌘ d�2
2

, (4.4.1)

where M (d)
P is the d-dimensional Planck mass and g is the gauge coupling. We call a particle which

verifies (4.4.1) a WGC particle in what follows. (4.4.1) then precisely means that the repulsive
gauge force dominates the gravitational attraction for a WGC particle. [436] also proposed that
the WGC should also be applied to the dual gauge field and to monopoles, which led to an other
version of the conjecture, called the magnetic WGC: there must be a cutoff ⇤ to the EFT of the
gauge field and the charged states such that

⇤ . g
⇣
M (d)

P

⌘ d�2
2

. (4.4.2)

(4.4.1) is then called the electric WGC. In the magnetic version, the cutoff was originally thought
of the scale at which new physics should enter to regulate the mass of the monopole, and is
mostly understood these days as the mass scale of a tower of states which become light and enter
the EFT when g is decreased. It is quite remarkable to see that quantum gravity, whose effects
are expected to arise near the Planck scale, can actually enforce some features on EFTs at much
lower scales, here if it is coupled to a gauge field.

The arguments supporting the postulate (4.4.1)-(4.4.2) are manyfold. First, both versions of
the conjectures have been extended tested and verified in string theory [437–440] or in holography
[441–444].

Second, the tower interpretation of (4.4.2) is consistent with the conjecture about global
symmetries in quantum gravity: indeed, there should be some quantum gravity obstruction to
the fact of enforcing a global symmetry on the theory by decoupling the gauge field in the g ! 0

limit. (4.4.2) then makes it quite clear what this obstruction is: in this limit, the EFT breaks
down since its cutoff ⇤ goes to zero together with g.

Third, the electric version can be connected to remnants arguments. Indeed, (4D) charged
black holes must verify the extremality/BPS/no naked singularity bound M �

p
2gQMP . Black

holes which saturate this inequality are called extremal. Consequently, there are roughly26

NBH ⇠
⇤

gMP
(4.4.3)

different27 eternal black hole states below a scale ⇤. When g gets smaller, this number grows and
might again create the problems associated to large number of remnants mentioned previously.

25 [436] phrased the conjecture in 4D, see e.g. [437] for the d-dimensional version.
26Here, we assume that g is normalized such that the quantized charges q are integers.
27Unlike the global case, the charge of the black hole can be measured outside its horizon by interacting by

the electric field it generates, such that every charge Q defines a new black hole state. This explains in particular
why the entropy-based argument for the absence of global charges fails here.

136



Thus, one way out is to postulate that extremal black holes should be able to decay, therefore they
never are remnants. This demand can be rewritten as the electric WGC (for algebraic reasons,
as least one decay product of an extremal black hole must respect the electric WGC once one
assumes the conservation of charge and energy).

There are also tests/derivations of the WGC which are more agnostic about quantum gravity
than those which use explicitly string theory. For instance, they compute semi-classical effects to
the black hole geometry and entropy [445–447] and impose consistency conditions, for instance
on causality, unicity [448] or analyticity [449]. A frequent output of those calculations is that the
charge to mass ratio of small black holes is modified, such that the "particle" behind the electric
WGC is actually a black hole itself, such that large black holes decay in cascade to smaller black
holes. In this case, the WGC "particle" is not accessible to low-energy experimentalists as a sub-
Planckian state. There have also been connections between the WGC and cosmic censorship [450].

Motivated extensions of the WGC exist in several directions. First, the initial statement (4.4.1)
can be refined, for instance by adding constraints about which particle must verify it: it may be
the particle with the smallest charge or the smallest mass, respectively called the smallest charge
or the strong WGC [436]. Further refinements include tower versions of the WGC, meaning that
there is not only one WGC particle but towers of such states [437,439,451]. Second, the different
lines of reasoning behind (4.4.1)-(4.4.2) can be applied to something else than a single U(1) gauge
theories coupled to gravity: theories of axions have been considered [436,452–454], theories with
moduli-like scalars with or without gauge fields [455], dilaton theories [437], theories of multiple
abelian gauge fields [456] as well as p�form theories [436, 437, 457]. Dilatonic p�form theories
will be particularly interesting later (and for string theory in general), so we reproduce here the
end result about the WGC: in a p�form theory of potential Cµ1...µp , coupled to a dilaton � and
gravity, with action

S =

Z
ddx

p
�g
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e�↵�
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(where M (d)
P is the d-dimensional Planck mass, g the gauge coupling and F = dC), there must

exist a (p � 1)-dimensional extended object coupled to C with charge Q and to gravity with
tension T , and such that
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2
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p(d � p � 2)

d � 2

◆
T 2

 g2Q2 . (4.4.5)

Finally, let us mention a restriction on the predictive power of the WGC. It seems from (4.4.1)
and especially (4.4.2) that upon observing a gauge force, one gets an idea of the scale at which
quantum gravity should show up. However, it has been shown in [170] (see also [172] for a
similar implementation in a slightly different context) that the WGC may be violated in the EFT
for the light modes of a complete UV theory which respects the WGC. The idea is that specific
charge assignments, iterable in a clockwork-like way, generate small effective couplings in theories
where all couplings and charges satisfy the WGC. Thus, this mechanism violates the WGC in
a parametric way, such that the low-energy phenomenologist cannot disentangle the true cutoff
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from the contributions of conspiring unknown parameters. On the other hand, specific studies in
heterotic string theory were performed in [171], where it was showed that the parametric freedom
in the WGC violation was limited, and that there are parameter-free estimates of where the string
scale may lie.

More swampland conjectures

There are several other conjectures which arose in swampland studies. We do not go into details
about those, but we mention the most prominent of them.

The completeness hypothesis [458] states that, given a gauge symmetry, all the (Dirac quan-
tized) charges should be featured in the spectrum of the quantum gauge plus gravity theory.

The distance conjecture [459] restricts the validity regime of a theory: any (properly normal-
ized) trans-Planckian field variation away from a reference point breaks the relevance of the EFT
defined at the reference point, because the full quantum gravity theory has a tower of states
which becomes exponentially massless when the field varies and which must be included in the
EFT at the arrival point. It has a strong relevance for theories of inflation or dark energy. The
fact that in string theory, EFT parameters are linked to the vevs of moduli can give an intuition
for this conjecture.

The weak gravity conjecture has a quite unexpected consequence: super-extremal branes,
which are postulated to exist by a non-supersymmetric refinement of the WGC [460], can be
nucleated in non-supersymmetric AdS space, making it unstable. Thus, it was conjectured that
any quantum gravity realization of non-SUSY AdS is unstable [461]. It has quite interesting
consequences for particle physics [462,463].

Finally, it was shown in [464] that there exists a bound on the scalar potential V in an EFT
of quantum gravity:

|rV | �
c

MP
V , (4.4.6)

where r means differentiation in scalar field space and c > 0 and O(1). It has the immediate
consequence to forbid de Sitter space (dS) as a local minimum of the effective potential. In
particular, it justifies the interest in models of dynamical dark energy/quintessence (see e.g.
[465,466]). (4.4.6) has strong implications for particle physics, where potentials have local maxima
and minima, inducing the needs for specific couplings of quintessence to the SM which would
generate time-dependence of couplings [467, 468]. (4.4.6) has been refined since in a way which
alleviates such concerns [469].

4.4.2 The weak gravity conjecture in type I string theory with broken

SUSY

In this section, we present a new string theory test of the WGC, based on [470], which is attached
at the end of this thesis. We test the electric version of the WGC for the R-R 2-form of type I
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string theory, whose candidate WGC state are D1 branes, when supersymmetry is broken à la
Scherk-Schwarz.

Motivation and overview

From a string theory viewpoint, the majority of tests of the swampland conjectures were done
in the context of superstring compactifications. On the other hand, supersymmetry breaking
generates precisely the ingredients needed for non-trivial tests. In particular, scalar potentials are
generated and induce runaway behaviours for moduli fields, which are then potentially interpreted
as dynamical dark energy, arguably the only option for an accelerated universe consistent with the
de Sitter conjecture. In addition, effective brane-brane interactions arise and hint at a deviation
from the BPS conditions for the branes. However, the fact that the branes are BPS in the
superstring trivially verifies the WGC for the R-R forms, and the status of the latter must be
reassessed when SUSY is broken.

The goal of this work is precisely to do this. We use type I string theory with SUSY breaking
via compactification, the simplest and best understood way of breaking supersymmetry in string
theory, which we reviewed in section 4.2.2. For a finite value of the supersymmetry breaking
radius there is a runaway potential for it. While in the decompactification limit supersymmetry
is restored and the weak gravity conjecture is marginally satisfied, considering the rolling field at
a different value generates brane interactions and thus constraints from the point of view of the
weak gravity conjecture.

We use D1 branes interactions, function of the separation in spacetime, as a test of the WGC.
We take the point of view of the electric WGC and we test whether the electric repulsion between
two such branes is dominating over their gravitational attraction. The output of the calculation
has the double status of being a test of the WGC within a phenomenologically relevant setup, i.e.
string theory with SUSY breaking at some scale, as well as a test of the compatibility between
the WGC and the demands of the de Sitter conjecture, namely a rolling dynamical field, all this
in a perturbative string theory setting.

We find that at short distances and at one-loop there are attractive forces which have a
finite limit where the distance goes to zero, whereas at long distances those attractive forces
are exponentially suppressed. Since massive (closed strings) fields do not mediate long range
interactions, our interpretation is that at this order of perturbation theory the branes still have
a charge to mass ratio set by the supersymmetric BPS condition. The limit of zero distance
suggests that the corresponding self-energy can be interpreted as a negative quantum correction
to the tension, which generates an imbalance between gauge and gravitational forces at higher
loops, leading to an effective repulsion at large distances consistent with the WGC. The one-loop
attractive forces, unsuppressed at small distances, induce the formation of a finite number of
stable bound states of D1 branes.
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Scalar potential and runaway vacua

As discussed in section 4.2.2, we implement the Scherk-Schwarz mechanism on the compactified
ninth spatial dimension. The first step of our calculation is the explicit determination of the
scalar potential for the radius and the Wilson lines of the D9 branes.

The scalar potential in string theory is minus the partition function, therefore

V (R,Wi) = �

✓
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2
T + K + A + M

◆
. (4.4.7)

The Klein bottle is still supersymmetric and therefore it does not contribute to the scalar po-
tential. The potential can be easily estimated in the regime where effective field theory is valid
R �

p
2↵0. In this limit, we replace the modular functions (4.2.11) and (4.2.15) by their leading

contribution and perform a Poisson resummation of the Kaluza-Klein sums to turn them into
winding sums, to get
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still without Wilson lines for the D9-branes28. As already stated earlier, all string amplitudes
above should be multiplied by the factor 1/(4⇡2↵0)9/2. By including this factor and after a
straightforward integration, one gets
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, (4.4.9)

which generate a runaway potential, typical for quintessence models: for fixed values of the
Wilson lines, the 9D effective potential for the radius in the Einstein frame is of the form
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where � is the dilaton field, 1

29
is the nine-dimensional Planck mass and �

c
R9 is obtained when

summing the three contributions in (4.4.9), according to (4.4.7). After the field redefinition
R = R0e�, the radion action becomes
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We recover here the well-known fact that supersymmetry breaking generates runaway scalar
potentials, which generates a cosmological rolling of the corresponding field towards infinity. The
example discussed in this paper is too simple to be viable as a quintessence candidate and is ruled
out by time dependence of coupling constants, in particular. We note in passing that the vacuum
energy is not positive unless one adds Wilson lines (see [471] for discussions of this point).

The formulae above can be generalized easily after compactification to four dimensions. We
consider for simplicity a product of circles of radii RI , I = 1, . . . , 6. In the following we introduce

28For simplicity, all the Wilson lines for all the branes encountered in this section are put to zero. More
information about what happens when they are included can be found in the full publication.
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a vectorial notation for the winding numbers n = (n, n1, . . . , n5). The vacuum amplitudes, in the
large radii limit, becomes
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3 ⇥ 26V6
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X
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1

(n2R2 + n2
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R2

1
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, A = 32 T , M = �T , (4.4.12)

where V6 =
Q

I RI .

Brane interactions and effective brane tensions

Now, let us turn to the computation of the brane-brane interactions. The usual calculation of [363]
uses the fact that the brane-brane interactions can be captured, at large separations r �

p
↵0,

by a field theory computation of tree-level exchange of supergravity massless fields between the
branes. The setup present however some stringy features that are not fully captured by a pure
field-theory analysis by keeping only the supergravity modes. Indeed, the state which mediates
the first non-vanishing interactions is the SS would-be tachyon of (4.2.13), which is very heavy
in the regime of interest R �

p
↵0 and would not be kept in a low-energy effective action. Due

to this feature, we are forced to perform the computations at the string theory level, using the
open-closed duality mentioned in section 4.1.7, although the results can be understood to some
extent by field-theory arguments.

Let us consider two D1 branes wrapping the Scherk-Schwarz circle, charged under the RR
two-form C2 (which behave after compactification like particles coupled to a gauge field

R
S1 C2),

at a distance r in the transverse coordinates. The brane-brane potentials are contained in the
cylinder amplitude:
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with the mass operator given by
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extending the result of section 4.1.7 to branes of smaller dimensions. An explicit computation
leads to the one-loop amplitude
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which becomes, in the (closed string) tree-level channel,
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Notice that only massive states contribute to the D1-D1 brane interactions. In the region
of interest r, R �

p
↵0 a standard field theory computation does not capture the string result

(4.4.16). Indeed, in the region r �
p
↵0 the main contribution to the brane-brane interaction

comes from the lightest closed string states. However, since the even winding contribution which
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include the supergravity states vanishes due to a cancellation between the NS-NS and the R-
R sectors, the main contribution to the interaction comes from odd windings containing the
would-be tachyon scalar in the closed string spectrum (in character language, O8).

It is more illuminating to write the tree-level channel exchange potential in a way which
involves an integral over the noncompact momenta of the closed strings exchanged, by using the
identity Z 1
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The D1-D1 brane interactions as seen from the tree-level closed-string ("gravitational") exchange
are given by
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The contribution of the zero-mode vanishes at one-loop, according to our computation, which
implies that at one-loop the interaction of D1 branes is still governed by the the BPS tree-level
tension and charge T1 = Q1. Indeed, since the one-loop contribution is exclusively mediated
by massive states, it is short ranged and therefore cannot be interpreted as coming from an
imbalance between the tension and charge of the branes. Actually, since the would-be tachyonic
scalar for large radius R �

p
↵0 is much heavier than the supergravity modes and also heavier

than string states, one should only keep the terms with n = 0 and n = �1 in the formula above
for consistency.

An important output of the computation above is the D1 brane self-energy, obtained by
considering a single D1 brane and setting the spacetime distance r = 0. The result is completely
finite and is a contribution localized on the D1 brane worldvolume, it can safely interpreted as
a self-energy quantum correction to the brane tension, that we compute here. One gets the
approximate result

Ã11 =
8R

⇡↵0

Z 1

0

dl
X

n

e�⇡l (2n+1)2R2

2↵0 =
16

⇡2R

X

n

1

(2n+ 1)2
. (4.4.19)

By extracting the brane-brane self-energy, one obtains a one-loop correction to the brane tension,
which can be written either as a corrected D1 brane tension or as the mass M0 of the wrapped
brane on the circle

T1,e↵ = T1 �
2

⇡3R2

X

n

1

(2n+ 1)2
= T1 �

1

2⇡R2
, M0 = 2⇡RT1,e↵ , (4.4.20)

where T1 =
p
⇡p

210
(4⇡2↵0) is the standard type I D1 brane tension. Notice that this one-loop

corrected tension is lower than the tree-level one, due to supersymmetry breaking. Indeed, since
T1 ⇠ O(g�1

s ), the correction is of order O(gs) with respect to the original value.

Notice that in a realistic compactification only four spacetime dimensions are noncompact. In
this case, the brane-brane potential for r �

p
↵0 becomes

V11 = �
R↵02

8⇡2V5

X

p

Z
d3k eikr

1

k2 +m2
p + R2

↵02 �
2

↵0

, (4.4.21)
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where
P

p is the sum over all Kaluza-Klein masses in the five additional internal dimensions.
The result is particularly simple if the five additional dimensions are very small, i.e. RI ⌧ R, r,
in which case one can neglect the corresponding massive modes contributions. In this limit (and
using R �

p
↵0), the total potential energy is well approximated at large distances r �

p
↵0 by

V11 ⇠ �
R↵02

4V5

e�r
q

R2

↵02 � 2
↵0

r
. (4.4.22)

Finally, until now we considered D1 branes wrapping the supersymmetry breaking circle. If
on the other hand the D1 branes are perpendicular to the direction of the radius R used for
supersymmetry breaking, they do not experience supersymmetry breaking. They retain therefore
the BPS nature at the one-loop level and their interactions are supersymmetric.

Interactions beyond one-loop and the weak gravity conjecture

We saw that at short distances the interaction between D1 branes is attractive, such that they
tend to accumulate and form bound states. There is no reason to believe that in a perturbative
string setup this result would be upset to higher-orders in the perturbative expansion. At large
distances however, the one-loop attraction is exponentially damped since the main contribution
comes from massive closed-string states. At large distances therefore, potential higher-loop con-
tributions generating massless gravitational (closed string) exchanges would induce infinite-range
interactions, which change considerably (and dominate over) the one-loop contribution. This
effect can be understood in terms of modifications of the tension and charge of D1 branes, as well
as the generation of a dilaton mass, that we now try to include in the interaction potential. All
of these modifications are generated by supersymmetry breaking.

Let us write the D1-D1 brane interactions in a slightly more general way as a contribution
from the zero modes V (0)

11
and contributions from massive states V (n)

11
. The contribution of the

zero-mode V (0)

11
vanishes at one-loop, according to our computation (4.4.18). However, since the

one-loop contribution comes exclusively from massive states, it is short ranged and therefore any
higher-order/loop correction leading to a zero-mode exchange changes dramatically the interac-
tion at large distances. We consequently parametrize the zero-mode higher-loop contributions
by introducing three parameters: T1,e↵ and Q1,e↵ are the quantum corrected brane tension and
charge, whereas m0 denotes the mass of the dilaton generated by quantum corrections. With
these changes in mind, at large distances r �

p
↵0 where the main contribution comes from the

lightest closed string states exchanged between the branes, we arrive at the following expression
for the D1-D1 brane interaction

V11 = V (0)

11
+ V (n)

11
, where V (0)

11
=
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. (4.4.23)

The zero-mode contribution can also be written in terms of the supergravity 10d Planck mass
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10 as usually done in the literature29 [363]
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In (4.4.23), the corrected tension of the wrapped D1 brane T1,e↵ is defined in (4.4.20) and the
relative factor of 1/4 (3/4) denotes the contribution of the dilaton (graviton). The one-loop
corrected charge Q1,e↵ will be discussed below. The massive contributions V (n)

11
contain the one-

loop computation performed in (4.4.18). Notice that in a realistic compactification only four
spacetime dimensions are noncompact. In this case, the brane-brane potential becomes
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where
P

p is the sum over all Kaluza-Klein masses in the five additional internal dimensions.
The result is particularly simple if the five additional dimensions are much smaller than R and r,
in which case one can neglect the contributions from the corresponding massive modes. In this
limit, it is more transparent to express the total potential energy in terms of the four-dimensional
Planck mass MP , for which the graviton exchange provides the Newton potential in terms of the
mass M0 = 2⇡RT1,e↵ and the charge Q0 = 2⇡RQ1,e↵ of the wrapped D1 brane. In this way, one
gets the approximate potential
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5 . (4.4.26)

This expression is valid for distances r �
p
↵0, whereas for shorter distances one expects the

one-loop potential to be a good approximation, which has a constant limit when r ! 0.

The correction V0 to the D1 brane tension is negative being generated by the massive contri-
butions V (n)

11
between the same brane (r = 0). The correction to the charge would, on the other

hand, come from a genus 3/2 computation, which was not yet performed to our knowledge. How-
ever, a quantum correction to the RR charge of the brane would be of the form

R
C2e�, where � is

the dilaton. Such a coupling would violate the gauge symmetry of the RR gauge field C2, which
seems implausible in perturbation theory. Corrections to the RR field kinetic terms are possible
though, and this would generate a renormalization of the RR charge. A similar correction to the
dilaton kinetic term should also contribute to the renormalization of the tension. However, such
corrections would arise from one loop calculations and would be associated to O(g2s) corrections.
We thus do not expect them to dominate the one-loop contribution to the tension, which is O(gs),
and therefore

T 2

1,e↵ < Q2

1,e↵ () M2

0
< Q2

0
. (4.4.27)

29The extra factor of 4 with respect to the usual formula is due to the fact that branes and their images
contribute.
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As a consequence, at short distances the potential is attractive whereas it is repulsive at large
distances. If on the contrary the bound (4.4.27) was violated in the case of a massless dilaton,
i.e. if m0 = 0 (or if M2

0
> 4

3
Q2

0
for m0 > 0), the potential would remain attractive also at large

distances. This would violate the weak gravity conjecture. Our perturbative arguments dismiss
such a possibility and we conclude that the weak gravity conjecture holds in our setup, and
the massless modes exchange which it constrains determines the brane-brane dynamics at large
distances.

Existence of stable bound states

An important consequence of the previous discussion on the weak gravity conjecture is that
the negative self-energy of D1 branes, i.e. the decrease in the effective brane tension, and the
attractive one-loop potential (4.4.16) also imply that it is energetically favorable to form bound
states of D1 branes. Indeed, let us denote by V0 < 0 the self-energy of one D1 brane. Then one
can compare the energy of two configurations. The first is the energy EN,1 of N coincident D1
branes and a single D1 brane at a large distance r �

p
↵0 from them, whereas the second is the

energy EN+1,0 of N + 1 coincident D1 branes. They are given by

EN,1 = �(N + 1)T1 + (N2 + 1)V0 +O
⇣
e� rR

↵0
⌘

, EN+1,0 = �(N + 1)T1 + (N + 1)2V0 . (4.4.28)

It is then clear that EN+1,0 < EN,1 and therefore that the D1 branes tend to form bound states,
which may be black holes. Consequently, black holes stability arguments, which are sometimes
used in discussions about the WGC, are different in the small and large distance regions. To
address this question, one needs to study the regime interpolating between large distances, where
higher-order effects dominate and presumably verify the WGC as argued above, and small dis-
tances where the one-loop potential induces an attraction. Knowing the r = 0 value of the
potential given in (4.4.19) and its asymptotic behaviour (4.4.26), we understand that it reaches
a maximal value and has the shape depicted in figure 4.1.

Figure 4.1: The D1-D1 potential as a function of the distance in the transverse space
(the potentials and distances are expressed in units of ↵0, we fixed R = 8, gs = 0.2, V5 ⇠ 1.55

and introduced no Wilson lines for the D1 branes)
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To estimate the location r0 of the maximum, we can use (4.4.26) if r0 is in its validity regime.
When m0 = 0, we obtain

r0 = �
1q

R2
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↵0
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8
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1,e↵ � T 2

1

eT 2

1
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◆
, (4.4.29)

where W is the Lambert W function.30 This expression, obtained from (4.4.26), can be trusted
if r0 �

p
↵0, which can be rewritten as a constraint on the string coupling

gs ⌧
R3

↵03/2 e
� Rp

↵0 . (4.4.30)

In this case, black holes of size smaller than r0 would be stable remnants. Such black holes could
be formed from the D1 bound states about which we argued in (4.4.28) that their formation
is energetically favorable. However, we expect from black hole constructions in string theory
that there should only be a finite number of such remnants: from the bound state argument in
(4.4.28) one can guess that if the number of D1 constituents is large and the bound state size
becomes or order r0 or larger, repulsive forces prevent more D1 branes to bind and therefore
larger charge/mass remnants to form. Calculating this finite number of bound states is beyond
the scope of this paper, but we could try to estimate it by comparing r0 with the scale at which
we expect the D1-branes solutions of supergravity to break down,31 RS ⇠

N1gs↵03

V5
, where N1 is

the number of stacked D1-branes. Using (4.4.29), we can derive the following estimate,
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✓
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◆
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where all D1-branes configurations with N1 < Ncrit correspond to situations where the attractive
force is felt even in the regime where supergravity applies. In particular, this number becomes
small in the decompactifcation limit R �

p
↵0. Furthermore, (4.4.31) also shows that the smaller

gs, the more stable bound states can exist. If m0 6= 0, r0 becomes smaller than (4.4.29) and the
appearance of such states is slightly suppressed in the limit gs ! 0, but the behaviour remains
qualitatively the same. Such a scaling of Ncrit with gs seems to be consistent with the swampland
distance conjecture.

Summary and perspectives

String theory models with broken supersymmetry usually generate runaway potentials, which
could lead in special cases to quintessence models of dark energy. On the other hand, the breaking
of supersymmetry generates at the same time interactions between branes, which only disappear
in the runaway limit. While this in itself respects the weak gravity conjecture at infinity, insisting
on the rolling field cosmology could generate violations of it. With this motivation in mind, we
tested the compatibility between quintessence and WGC in a type I string theory model with
broken SUSY.

30The Lambert W function or product logarithm is defined by W (xex) = x. It has two real branches, here
only the lower branch with W  �1 is relevant.

31This scale is the one for which the harmonic function h(r) = 1 + R
S

r , which defines the D1-brane solution,
starts to deviate significantly from one.
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At one-loop, we found a short-distance attraction between D1-branes generated by massive
modes, which may naively suggest that rolling field dynamics is incompatible with the weak
gravity conjecture in this perturbative and controllable string setting. However, the long-range
brane-interaction carried by massless fields is vanishing at one-loop due to a cancellation between
the NS-NS and the RR exchanges, so that the system feels equal tension and charge at this
order of perturbation theory. The remaining one-loop attraction is exponentially damped at
large distances, so we believe that higher-loop corrections are important to settle the issue about
the WGC. In particular, the one-loop self-energy of a brane decreases its tension, such that the
effective tension T1,e↵ and charge Q1,e↵ of D1 branes satisfy the weak gravity bound Q1,e↵ > T1,e↵ .
Then, at higher-loops, a repulsive interaction generated by the exchange of massless states should
appear, and should dominate over the one-loop (short range) attraction at long distances. Overall,
this leads to a picture in which the weak gravity conjecture is respected at large distances, defined
by the parameters (gs, R). In the lower dimensional effective theory the D1 branes, wrapped
around the Scherk-Schwarz circle, behave as particles charged under a U(1)-gauge symmetry
with Qe↵ > Me↵ .

The stability of bound states and black holes is interesting in our setup. The one-loop short-
range attraction favors the formation of D1 bound states which can potentially lead to stable
black hole remnants. If the string coupling is very small, the attractive region of brane-brane
potentials extends up to scales where the effective gravitational theory applies: if gs . R3

↵03/2 e
� Rp

↵0

(with R the radius of the supersymmetry breaking dimension), a finite number of branes well
described by supergravity are sensitive to the attractive potential. This number roughly scales
like 1

gs
, and indicates that in the small gs limit an increasing quantity of stable bound states is

expected to arise.

There are a number of open interesting questions that are worth further exploration. It would
be interesting to identify string models with broken supersymmetry where the generated moduli
potentials and runaway vacua can lead to viable quintessence-like models of dark energy. There
are various difficulties for progress into this direction, from generating a small acceleration of
the present universe, which is highly nontrivial to achieve in string theory constructions [465,
466], to the constraints coming from time-dependence of fundamental constants and fifth force
experiments. From a more theoretical string theory perspective, it would be interesting to perform
higher-loop (for instance, genus 3/2) computations in order to test our result on the quantum
corrected brane tension and the absence of renormalization of the brane charges at lowest order.
Whereas supersymmetry breaking should generate, as usual, tadpoles which signal limitations in
quantum computations at higher loops, higher-order computations of brane tensions and charges
could be performed by separating two D1 branes in (our) noncompact space, in which case there
should be no such problems. It would also be important to investigate stable type I models in lower
dimensions with D9 Wilson lines and positive scalar potential in the class of models constructed in
[471] and to investigate the D1 interaction potentials in detail. It would also be very interesting to
explore quantum corrections to brane tensions and RR charges in other string models with broken
supersymmetry, such as the models with brane supersymmetry breaking [395, 396]. It would
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also be interesting to compute if supersymmetry breaking induces corrections to the black hole
extremality bound as well, to complete our test of the weak gravity conjecture. Finally, we believe
it is important to test the other various recent swampland conjectures [364,436,459,461,464,469]
in explicit perturbative string theory models with broken supersymmetry. .

4.5 Conclusions

In this third part, we examined the basic rules for building a quantum theory of superstrings,
working our way towards the spectrum of such theories. Then, we discussed in details the
spectrum of the type IIB and type I string theories, with an emphasis on how it can be used
to determine one-loop vacuum amplitudes. From the latter in type I string theories, we saw
that we could extract significant information, such as how the different amplitudes combine to
describe the type I spectrum or how their finiteness restrict the particle content of the theory, in a
way complementary to discussions on anomalies. We then discussed supersymmetry breaking in
string theory, focusing on brane supersymmetry breaking and on the Scherk-Schwarz mechanism,
again relating the impact of SUSY breaking on the spectrum to its effect on one-loop vacuum
amplitudes.

Motivated by the fact that string theory spectra contain lots of axions, and that such axions
could play a role in the compactified version of the Green-Schwarz mechanism, we studied a
string-inspired theory of an axion charged under a U(1) gauge theory and realizing a 4D Green-
Schwarz mechanism. In particular, we saw that when SUSY is broken by gaugino condensation in
a hidden sector with a mixed anomaly with the anomalous U(1), the axion gets a mass of order the
supersymmetry breaking scale, preventing it to play the role of a QCD axion. However, this can
be evaded by refining the model: we thus adapted the so-called 3-2 model to our anomalous U(1)

setup to successfully decouple the SUSY breaking scale and the axion mass. The natural value
for the axion decay constant is of order the GUT scale in our models, but we mentioned further
modifications (of the moduli sector) which can lower it. We also reminded that anomalous U(1)’s
can be used in Froggatt-Nielsen models of flavour hierarchies, in which case anomaly cancellation
and unification conditions unambiguously predict axion couplings.

Finally, we presented swampland conjectures, with a focus on a conjecture which was men-
tioned several times in the first part of this thesis, which states that no global symmetries are
exact in a quantum theory of gravity, as well as on the weak gravity conjecture. We then scruti-
nized the latter for the 2-form of type I string theory, with broken SUSY (à la Scherk-Schwarz),
which generates both brane-brane interactions and runaway potential. Thus, such a setup pro-
vides a non-trivial test of the WGC, and of its compatibility with possible cosmological ways-out
from the de Sitter conjecture. Using our previous discussion on vacuum amplitudes, relevant
for brane-brane interactions via the open-closed duality, we showed that one-loop interactions
carried by massive twisted modes induce a decrease of the tension of the brane while the charge
remains fixed, consistently with the weak gravity conjecture.
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5 Outlook: a web of theories for a web of

questions

This thesis was aimed at developing and studying theories beyond the standard model of
particle physics, which is a well motivated and fruitful endeavor, as we have tried to demonstrate
along this text. We saw that the need for BSM physics is undeniable, since, for instance, the rules
and building blocks of the SM and its cosmological counterpart do not allow for neutrino masses
or a dark matter particle. Besides such blatant discrepancies with the SM phenomenological
predictions, there are also more theoretical puzzles, such as the quantization of gravity or the
degree of fine-tuning one expects to find in a fundamental theory.

The theories which address some of those puzzles sometimes unexpectedly connect with other
branches of particle physics, sometimes even beyond particle physics. All the theories we en-
countered here fall into this category. Indeed, in sections 2 and 4.3, we studied axions, originally
designed to cancel a single parameter of the SM lagrangian, but which eventually proved to be
relevant for cosmology, for flavour physics, and as low-energy probes of string theory. Likewise,
we explored in section 3 supersymmetry, which emerges from theoretical symmetry principles,
solves in one stroke many phenomenological problems and is intimately tied to the string theory
spectrum. Finally, string theory overhangs such considerations, since it is a candidate for a theory
of everything from the particle physics perspective, as we mentioned in section 4, but has a larger
reach, for instance thanks to holography.

This matter of fact legitimates to be aware of all (or at least, most of) the questions which are
considered in high-energy physics, since they can all be interconnected and interdependent. The
BPS solution of section 3.4.2, which illustrates the generality and the reach of QFTs and EFTs by
both generating multi-particle amplitudes and describing domain walls in SQCD, is an example.
Our systematic gauging of phenomenologically motivated global abelian symmetries in section
2, justified by quantum gravity considerations of the kind discussed in section 4.4, is an other
one. There, we asked about the consequences of this need for gauging, by exploring in section
2.2 the typical parameter space of gauged clockwork axion models, and by studying in section
2.4 the heavy fermions, and light axions, which necessarily accompany a gauged Froggatt-Nielsen
mechanism for the flavour hierarchies. Our last example concerns SUSY breaking: if nature is
supersymmetric at some scale, the need to break SUSY and the way it is broken may interfere
with all other particle physics considerations, such as solving the strong CP problem, which we
studied in a string-inspired broken SUSY scenario in section 4.3.5, or determining the spread
of new physics above the weak scale, exemplified by the splitting between the SUSY breaking
scale and the scale of the SUSY breaking sector in the clockwork model of section 3.2.3, or, last
but not least, establishing criteria shared by all consistent theories which possibly descend from
quantum gravity, as can be understood from the non-trivial interplay between SUSY breaking
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and the weak gravity conjecture discussed in section 4.4.2.

The connections between theories, or aspects of (particle) physics, thus enable one to test,
strengthen, but also question and enlarge the formalism and expectations of the current time.
This way, we may be able to know more about what modern physics ought to be made of.
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A Conventions and abbreviations

In this section, we collect some notations and conventions which are used throughout this
thesis.

A.1 Conventions for QFT, GR and the (MS)SM

A.1.1 Generalities

In section 3, we use the exact conventions of [260]. Elsewhere in the text, and for generic QFT,
our conventions are those of [474]. For the (MS)SM, we use our own conventions, defined below.
Now, basic conventions are recalled.

Units are chosen such that c = ~ = 1. We use the 4D metric ⌘µ⌫ = diag(�1, 1, 1, 1) and a curved
space metric gµ⌫ with the same signature. Low case greek letters µ, ⌫, ... denote 4D spacetime
indices, whereas upper case latin ones M,N, ... denote indices in any higher dimension, specified
depending on the context. Gamma matrices verify the Clifford algebra {�µ, �⌫} = 2⌘µ⌫ . We
define �5 = �i�0�1�2�3 in 4D, and the left-handed chirality such that �5 L =  L. Summations
over indices are (almost) always implicit.

The kinetic terms for a complex scalar �, a spinor  , a gauge field Aµ and the metric in 4D
are

S ⌘

Z
d4x

p
�gL =

Z
d4x

p
�g

✓
M2

P

2
R � gµ⌫Dµ�(D⌫�)

⇤
�  (�µDµ +m) �

gµ⇢g⌫�

2g2
Tr(Fµ⌫F⇢�)

◆
,

(A.1.1)
where R with the Ricci scalar associated to the metric gµ⌫ (or the vierbein eaµ) with a Levi-
Civita connection, MP = 2.43 ⇥ 1018 GeV is the reduced Planck mass, �µ ⌘ �aeaµ with �a the
flat space gamma matrices,  =  †(i�0), the covariant derivative Dµ is @µ � iAa

µT
a in flat space

and Fµ⌫ ⌘ F a
µ⌫T

a
⌘ (@µAa

⌫ � @⌫Aa
µ + fabcAb

µA
c
⌫)T

a is the field strengh associated to Aµ. T a

generators verify the algebra of the gauge group with structure constants f : [T a, T b] = ifabcT c.
As can already be seen here, in expressions involving both the gauge coupling (kinetic terms
of gauge fields) and the metric of curved space, both (unrelated) quantities are denoted g. We
chose not to lift this ambiguity and hope that readers will figure out which is which thanks to
the context. SU(N) generators are normalized such that Tr

�
T aT b

�
= �ab

2
in the fundamental

representation. The symbol Tr denotes a trace in the fundamental representation, whereas the
symbol Tra denotes a trace in the adjoint. Apart from the language from which the letters are
taken, notations in higher dimensions are of course identical.
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SM field SU(3)C SU(2)W U(1)Y
QL,i 3 2 1/3
uR,j 3 1 4/3
dR,j 3 1 �2/3
LL,i 1 2 �1
eR,j 1 1 �2
H 1 2 1

Table A.1: Gauge charges of the SM fields
The subscripts L,R indicate the chirality of the fermion fields

A.1.2 (MS)SM conventions

The gauge couplings of the GSM = SU(3)C ⇥SU(2)W ⇥U(1)Y gauge group of the SM are denoted
g3, g2 and gY , and their respective gauge fields are called Ga=1,...,8

µ ,W i=1,...,3
µ and Bµ. Their field

strengths are denoted Ga
µ⌫ ,W

i
µ⌫ and Bµ⌫ .

The SM fields are taken in the representations of the gauge group displayed in Table A.1 (with
our conventions, the electric charge is Q = Y

2
+T 3

W ). The indices i = 1, .., 3 refer to the particle’s
generation. The weak doublets can be expressed in terms of the quarks and leptons we usually
refer to (i.e. up and down quarks, electrons and neutrinos) as follows:

QL,i =

✓
uL,i

dL,i

◆
, LL,i =

✓
⌫L,i
eL,i

◆
, (A.1.2)

as well as the Higgs field, for which we also define the conjugate field:

H =

✓
H+

H0

◆
, Hc

⌘ i�2H⇤ =

✓
(H0)⇤

�(H+)⇤

◆
, (A.1.3)

where �2 is the second Pauli matrix. In unitary gauge, we have H+ = 0, H0 = v+hp
2
, where v ⇡ 246

GeV is the weak scale and h is the Higgs boson.

The SM lagrangian, which encodes the dynamics of those fields, is the most general renormal-
izable invariant under GSM one (up to the ✓-term). Its flavour part is discussed in section 2.3.1.
The physical massive vector bosons are found from it as follows:

L � �|DµH|
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✓
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µ

�i

2
� iBµ

◆
H

����
2

�
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2

�����

 
W 1

µ�iW 2
µ

2

�
W 3

µ

2
+Bµ

!�����

2

. (A.1.4)

Reinstating the gauge couplings by performing the rescalings "Xµ ! gXXµ", we find the following
mass terms:

v2
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2

✓
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µ + iW 2

µ

2

◆✓
W 1

µ � iW 2

µ

2

◆
+

✓
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W 3

µ

2
+ gYBµ

◆2
!

, (A.1.5)

and from this, we see how to define the mass eigenstates:

W+

µ ⌘
W 1

µ � iW 2

µ
p
2

, W�
µ ⌘

W 1

µ + iW 2

µ
p
2

, Zµ ⌘
�g2

W 3
µ

2
+ gYBµq

g22
4
+ g2Y

, Aµ ⌘
gYW 3

µ + g2
2
Bµq

g22
4
+ g2Y

.

(A.1.6)
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MSSM superfield SU(3)C SU(2)W U(1)Y
Qi 3 2 1/3

Uj ⌘ uc
R,j 3 1 �4/3

Dj ⌘ dcR,j 3 1 2/3
Li 1 2 �1

Ej ⌘ ecR,j 1 1 2
Hd 1 2 �1
Hu 1 2 1

Table A.2: Gauge charges of the MSSM fields

Aµ is the photon field, of field strength Fµ⌫ . We read the masses from (A.1.5): m2

Z =
⇣

g22
4
+ g2Y

⌘
v2

and m2

W = g22
4
v2. To determine the electric charge, we write e.g.

L � �2igY eR�
µBµeR � �i

g2gYq
g22
4
+ g2Y

eR�
µAµeR ⌘ �ieeR�

µAµeR =) e =
g2gYq
g22
4
+ g2Y

. (A.1.7)

With such conventions, the electric charge is qem = T 3

W + qY
2

.

The MSSM has an extra Higgs doublet, and it is easier to express all the fields as left-handed
superfields (up to conjugation of the right-handed fields previously introduced), as in Table A.2.

Writing Hu =

✓
H+

u

H0

u

◆
and Hd =

✓
H0

d

H�
d

◆
, we define tan � = hH0

ui
hH0

di .

A.2 Abbreviations

Here, we list (hopefully) all the abbreviations which are used along the text in alphabetical order.

• AdS: anti-de Sitter space

• BBN: big bang nucleosynthesis

• BPS: Bogomol’nyi-Prasad-Sommerfield

• BSB: brane supersymmetry breaking

• BSM: beyond the standard model

• CCWZ: Callan-Coleman-Wess-Zumino

• CKM: Cabibbo-Kobayashi-Maskawa

• CMB: cosmic microwave background

• CFT: conformal field theory

• CP: charge-parity

• DBI: Dirac-Born-Infeld

• DE: dark energy

• DFSZ: Dine-Fischler-Srednicki-Zhitnitsky

• DM: dark matter

• dS: de Sitter space

• EFT: effective field theory

• eom: equation of motion

• FI: Fayet-Iliopoulos

• FN: Froggatt-Nielsen

• (P)GB: (Pseudo) Nambu-Goldstone
bosons

• GIM: Glashow-Iliopoulos-Maiani

• GR: general relativity
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• GS: Green-Schwarz

• IR: infrared

• KK: Kaluza-Klein

• KSVZ: Kim-Shifman-Vainshtein-Zakharov

• LHC: Large Hadron Collider

• MSSM: minimal supersymmetric stan-
dard model

• PMNS: Pontecorvo-Maki-Nakagawa-
Sakata

• (S)QCD: (supersymmetric) quantum
chromodynamics

• (S)QED: (supersymmetric) quantum elec-
trodynamics

• SM: standard model (of particle physics)

• SS: Scherk-Schwarz

• SUGRA: supergravity

• SUSY: supersymmetry

• SYM: Super-Yang-Mills

• UV: ultraviolet

• vev: vacuum expectation value

• WGC: weak gravity conjecture

• WZ: Wess-Zumino
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B Couplings of an axion to heavy fermions

In this appendix, we couple an axion to a set of gauge-charged heavy fermions and we derive
the one-loop induced axion-gauge bosons couplings. We recover in passing the usual result for the
chiral anomaly [475,476], and these results can also be used if the axion is charged under a gauge
group and provides the longitudinal component of a gauge boson. More general calculations of
this kind can be found in [230].

One then considers a theory with a gauge group (which we keep unspecified until the end,
where we will identify it with QCD or electromagnetism) of generators T a and vector Aa

µ (with
field strength F a

µ⌫ = @µAa
⌫ � @⌫Aa

µ + ...), a complex scalar field � and two chiral fermions  L,R in
the fundamental representation of the gauge group, with a Yukawa coupling to the scalar:

L = �
1

2g2
Tr
�
F 2

µ⌫

�
�  L�

µDµ L �  R�
µDµ R � |@µ�|

2
� V (|�|

2) � (y� L R + h.c.) , (B.0.1)

where Dµ = @µ � iAa
µT

a. This lagrangian has a U(1) global symmetry under which � ! ei↵�

and  L R ! e�i↵ L R. The transformation of the fermion bilinear makes this global symmetry
anomalous.

We choose V (|�|
2) so that � gets a vev fp

2
. We then work out the axion dynamics by

parametrizing � = fp
2
ei

a
f :

L � �
1

2g2
Tr
�
F 2

µ⌫

�
�  

✓
�µDµ +

yf
p
2

◆
 �

1

2
(@a)2 + i

y
p
2
a �5 , (B.0.2)

where we only kept the linear terms in a and merged the two chiral fermions in a Dirac fermion.

One gets a coupling between a and the gauge boson A at one loop via the two following
diagrams:

Figure B.1: Feynman diagrams leading to the axion-vector-vector couplings

156



The effective coupling is cµ⌫,ab

2
aAa

µA
b
⌫ , here in momentum space with M = yfp

2
:

cµ⌫,ab =

Z
d4k

y
p
2(2⇡)4

"
Tr

⇣
�5(�i/k +M )�µ(�i⇠⇠⇠⇠(k + p) +M )�⌫(�i⇠⇠⇠⇠⇠⇠

(k + p+ q) +M )
⌘

(k2 +M2

 � i✏)((k + p)2 +M2

 � i✏)((k + p+ q)2 +M2

 � i✏)

+
Tr

⇣
�5(�i/k +M )�⌫(�i⇠⇠⇠⇠(k + q) +M )�µ(�i⇠⇠⇠⇠⇠⇠

(k + p+ q) +M )
⌘

(k2 +M2

 � i✏)((k + q)2 +M2

 � i✏)((k + p+ q)2 +M2

 � i✏)

#

⇥ Tr
�
T aT b

�
.

(B.0.3)
Since the first non-zero trace including �5 is Tr(�5�µ�⌫�⇢��) = 4i✏µ⌫⇢� and that traces of an odd
number of gamma matrices are zero, we have:

Tr
⇣
�5(�i/k +M )�

µ(�i⇠⇠⇠⇠(k + p) +M )�
⌫(�i⇠⇠⇠⇠⇠⇠

(k + p+ q) +M )
⌘
= 4iM ✏

µ⌫⇢�p⇢q� . (B.0.4)

We also use the Feynman trick followed by a Wick rotation to calculate:
Z

d4k
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 + (x+ y)(1 � x � y)q2 + x(1 � x)p2 + 2x(1 � x � y)pq
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(B.0.5)
We can extend this result as a series in powers of momenta

M 
:
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(B.0.6)
which, with the identification pA(p) ! �i@A(x), gives finally the one-loop coupling between the
axion and the vector bosons:

L � �
✏µ⌫⇢�

64⇡2f
aF a

µ⌫F
a
⇢� +

g2✏µ⌫⇢�

384⇡2M2

 f
(�2aF a

µ⌫F
a
⇢� + @µa@⌘F

a
⇢�F

⌘,a
⌫ ) + ... , (B.0.7)

where the dots indicate the presence of higher order terms, and where we choosed that the gauge
group is unitary and normalized the generators as follows: Tr

�
T aT b

�
= �ab

2
in the fundamental

representation. The first term of (B.0.7) is the usual axionic coupling to gauge fields, and it gives
back the usual result for the chiral anomaly:

L
when  !ei↵�5 , hence a!a+2↵f
�������������������! L �

✏µ⌫⇢�

32⇡2
↵F a

µ⌫F
a
⇢� . (B.0.8)

If one now adds to the theory (B.0.1) an other set of fermions coupled in the following way:

L � �  0
L�
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0
L �  0
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0
R � (y0�⇤ 0
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p
2
a 0�5 

0 ,
(B.0.9)
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there is no anomaly anymore, but there remains non-anomalous couplings to the gauge fields
(where we defined M 0

 = y0f):

L �
g2✏µ⌫⇢�

384⇡2f

 
1

M2

 

�
1

M 02
 

!
(�2aF a

µ⌫F
a
⇢� + @µa@⌘F

a
⇢�F

⌘,a
⌫ ) . (B.0.10)
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C Supersymmetric QCD

SQCD is defined as a supersymmetric theory of an SU(Nc) gauge group, with a set of Nf

(for flavours) pairs of quark chiral superfields Qi, Q̃j, respectively in the fundamental and anti-
fundamental representation of SU(Nc) (for reviews see [275,331]). Since it is easier to handle than
non-SUSY QCD thanks to the power of non-renormalization theorems, but that it nonetheless
displays features such as confinement or chiral symmetry breaking, it is sometimes understood
as a laboratory for understanding actual QCD.

C.1 Phases of the theory and Seiberg duality

The dynamics of the theory is only determined by the kinetic terms. The one-loop �-function of
SUSY QCD reads:

�(g) = �
g3

16⇡2
(3Nc � Nf ) , (C.1.1)

from which we can understand that, if Nf � 3Nc the theory is free in the infrared (IR) and has
a Landau pole in the ultraviolet (UV). Likewise, when Nf  Nc + 1 the theory is asymptotically
free and confines in the IR. However, (C.1.1) is not enough to understand the regime when
Nc + 1 < Nf < 3Nc. However, one output of the non-renormalization theorems discussed in
section 3.1.5 is that the only renormalization of the gauge coupling beyond one-loop comes from
the Kähler potential/wave-function renormalization/quark anomalous dimensions. Moreover, due
to the global symmetries of the theory, all the quark have the same anomalous dimension �g and
the exact �-function actually reads [477,478]:

�(g) = �
g3

16⇡2

3Nc � Nf (1 � �(g2))

1 �
g2Nc

8⇡

, �(g2) = �
g2

8⇡2

N2

c � 1

Nc
+ O(g4) . (C.1.2)

This led Seiberg [332] to conjecture that, when 3

2
Nc < Nf < Nc, the theory reaches a non-trivial

fixed point in the UV. It defines the so-called conformal window.

Seiberg also conjectured that, in this conformal window, there is a dual formulation of the
IR physics of the theory, which has a different gauge group but the same physical content: it
has a SU(N) gauge group, with N ⌘ Nf � Nc, Nf pairs of quarks in the (anti-)fundamental
representation qi, q̃j, a set of uncharged fields �j

i , and a superpotential

W = h(q�q̃) . (C.1.3)

The indices indicate the behaviour of the different fields under the global symmetries of the theory,
which are the same for the two dual theories. Thus, Seiberg duality maps different unphysical
gauge formulations of the same IR physical content. It is straighforward to check that the dual
(called magnetic) theory is in the conformal window if the original (dubbed electric) theory was.
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Seiberg duality thus maps the weakly coupled part to the strongly coupled part of the conformal
window.

Below the conformal window, when Nc +1 < Nf 
3

2
Nc, Seiberg duality can still be used, but

the dual theory now has an infrared free limit. We then talk about the free magnetic phase. The
magnetic theory’s coupling constant blows up in the UV, at a scale ⇤ which we can identify with
the scale at which, inversely, the electric theory becomes strongly coupled. Seiberg duality thus
enables us to study the theory in every regime, using the most relevant description.

C.2 Moduli space of vacua and non-perturbative superpo-
tential

The classical (gauge-invariant) vacua of SQCD are given, up to global transformations, by the
values of mesons M i

j ⌘ QiQ̃j, with color indices contracted, as well as baryons Bi1,...,iNc ⌘

Qi1Qi2 ...QiNc , B̃j1,...,jNc
⌘ Q̃j1 ...Q̃jNc

if Nf � Nc. They have no classical potential and can take
arbitrary values, defining a moduli space where the gauge symmetry is spontaneously broken. At
the origin only, the gauge symmetry is maintained and all the gluons are part of the low-energy
description. SUSY is preserved everywhere in the moduli space.

On the other hand, SQCD can be strongly coupled in the IR (it is when Nf 
3

2
Nc, as we said

above), so the quantum picture is expected to change dramatically. We only talk here about the
case Nf < Nc. There, only the mesons exist and using the global symmetries of the theory, as
well as holomorphicity, one shows that the only possible superpotential is [250,479]

W (non-pert) = (Nc � Nf )

✓
⇤3Nc�Nf

det(M)

◆ 1
Nc�Nf

, (C.2.1)

where ⇤

µ = e
� 8⇡2

(3Nc�Nf )g2 defines the non-perturbative scale ⇤. This non-perturbative correction,
which is exact, is such that quantum mechanically, there are no vacua for the mesons whose
dynamics push them towards infinity. There are three interesting aspects of (C.2.1) which we
would like to emphasize. First, if Nf = 0, the superpotential (C.2.1) is constant and due to
gaugino � condensation, h��i = ⇤3. Second, if we include a quark mass mj

iQ
iQ̃j = mj

iM
i
j such

that |m| ⌧ ⇤, where |m| means one eigenvalue of m, the mesons are heavy and their mass
dominates over the dynamics induced by (C.2.1). Then, they can be integrated out:

hM i
ji =

�
⇤3Nc�Nf det(m)

� 1
Nc
�
m�1

�i
j
, (C.2.2)

such that below the scale |m|, there are no quarks left and the theory generates the constant
superpotential linked to gaugino condensation:

W (non-pert) =
�
⇤3Nc�Nf det(m)

� 1
Nc . (C.2.3)

Consequently, when the mass is given by the vev of a field, this superpotential modifies the
dynamics of this field. Third, with massive quarks we find Nc vacua given by (C.2.2), consistently
with the Witten index calculation [352].
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D More trace calculations of string amplitudes

In this appendix, we collect some more string one-loop calculations.

D.1 The R-R sector of the type IIB torus amplitude

Let us calculate a second part of the torus amplitude, which adds to (4.1.53). We have, in the
R-R sector:
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(D.1.1)
Consequently,
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where now r is integer.

D.2 The Klein bottle of type I string theory

Now, we turn to the calculation of the Klein bottle amplitude. Since the NS-R and the R-NS
sector are mapped onto each other by ⌦, they do not contribute to the trace, or said differently:
there are no fermions which run in the Klein bottle. Furthermore, we saw that:
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from which we understand that all states are not sent to their linear span, such that they do not
all contribute to the trace. Only the invariant states contribute:
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where r is half-integer whereas r0 is integer, and
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D.3 The annulus and the Möbius strip of type I string the-
ory

The annulus amplitude can be calculated analogously to the torus in (4.1.50) (with a modified
integration region as for the Klein bottle in (4.1.60)):
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where this time, to match with (4.1.43) given that q = e2⇡i⌧ and that open strings have a different
Regge slope than closed strings, we must choose ⌧ = i⌧2

2
. The open string states are
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so the result is very close to the Klein bottle calculation

NS sector : Str
✓
1 + (�1)F

2
qL0

◆
= N2

Y

i,n>0,r>0

0

@
X

kin,l
i
r

1

A 1 � (�1)
P

r l
i
r

2
q
P

i(
P

n>0 nk
i
n+
P

r>0 rl
i
r)� 1

2

= N2
V8

⌘8
,

R sector : Str
✓
1 + (�1)F

2
qL0

◆
= �N2

X

sa

Y

i,n>0,r>0

0

@
X

kin,l
i
r

1

A 1 + (�1)
P

r l
i
r+
P

a sa

2
q
P

i(
P

n>0 nk
i
n+
P

r>0 rl
i
r)

= �N2
S8

⌘8
.

(D.3.3)
For the Möbius strip, we get
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For the NS sector, we explicitely kept ei⇡ to remove phase ambiguities by defining (ei⇡)
1
2 = e

i⇡
2 .

If we redefine �q ! q, we see that the correct modulus becomes ⌧ = 1+i⌧2
2

in the Möbius strip.
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Abstract We study QCD axion or cosmological axion-like
particles (ALPs) in a model inspired by the recent interest in
4-dimensional clockwork models, with the global symmetry
being accidentally enforced by a gauge abelian quiver with
scalar bifundamental fields. For the QCD axion, we analyze
the connection between the degree of protection of the axion
mass against gravitational corrections, the explanation of the
hierarchy fa ≪ MP and the number of colored fermions
needed to generate anomalous couplings to gluons, all linked
together by the underlying gauge symmetries. Based on that
model and on the comparison with earlier models in the liter-
ature, we derive certain general conclusions on QCD axion
models that use accidental global symmetries. For the ALPs,
assuming that their mass is solely given by gravitational cor-
rections, we identify the parameter space where the decay
constant and the mass are consistent with the DM abundance,
and we show that this clockwork-inspired model is a particu-
larly economical model for a very light ALP DM candidate.

1 Introduction

New pseudo-Goldstone bosons (PGB’s) may play an impor-
tant role in particle physics and cosmology, since they can
solve the strong CP-problem (QCD axion) [1–3] and/or
explain dark matter [4–6], drive inflation [7,8] or make
dark energy dynamical [9–12]. The PGB playing the role
of the QCD axion must have anomalous couplings to gluons
whereas such couplings are not needed for the axion-like par-
ticles (ALPs) that only play the latter roles. However, in both
cases one is facing several, partly similar, issues.

One is that the PGB’s must be generically very light so
there is a need to protect the global symmetries from a too

a e-mail: quentin.bonnefoy@polytechnique.edu
b e-mail: emilian.dudas@polytechnique.edu
c e-mail: stefan.pokorski@fuw.edu.pl

large explicit breaking by gravitational corrections1 [13–
15]. If an axion is to solve the strong CP-problem, the non-
anomalous explicit breaking must be subleading and its mass
is approximately determined by the confinement scale and
the axion decay constant fa . For an ALP, the most econom-
ical possibility is that its mass is just given by the gravi-
tational corrections, the assumption we make in this paper.
The question about the proper protection of the axion and/or
ALP global symmetries has been addressed by many authors
[16–31]. In the field theoretical models in four dimensions,
one often considers the symmetry from which the PGB’s
originate as an accidental consequence of gauge symme-
tries, i.e. as unbroken by any gauge-invariant operator up
to a given dimension. Typically, strong enough protection
requires either large charges of the scalars under the gauge
symmetry(ies) (see e.g. [20]) or many gauge groups as in
quiver models (see e.g. [23,24]). The latter can be viewed as
inspired by the latticized versions of extra-dimensional mod-
els where the PGB’s can be interpreted as fifth components
of vector fields which appear as scalars in 4d.

Another issue is the origin of the scale fa and of the poten-
tial hierarchy fa ≪ MP . Such a hierarchy is required for the
generic QCD axion window but not needed for the ALPs
as dark matter (DM) candidates only, or even not accept-
able for mALPs ∼O(10−15–10−20) eV. One more difference
between the QCD axion and the ALPs models is that the for-
mer requires a set of colored fermions to generate the anoma-
lous couplings to gluons. Thus, the constraints are different
for the two cases.

In explicit models for a protected QCD axion, one can
connect the degree of protection of the axion mass, the expla-
nation of the hierarchy fa ≪ MP

2 and the number of colored
fermions and their masses, all linked together by the underly-

1 There can be other sources of such a breaking but we focus on gravi-
tational corrections.
2 In most models with good protection the scale fa is not identical to
the original scale f of the spontaneous global symmetry breaking and
one may consider the possibility of fa ≪ f ∼MP .
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ing gauge symmetries. In DM ALPs models, assuming that
their mass is solely given by gravitational corrections, one
can identify the parameter space such that the scale fa and
the mass ma combine to give the observed relic abundance.

In this paper we discuss those questions using as our
laboratory a model inspired by the recent interest in 4-
dimensional clockwork models [32–42]. Based on that model
and on the comparison with earlier models in the literature,
we derive certain general conclusions on the QCD axion
models that use global symmetries that are consequences
of gauge symmetries. Secondly, we show that the clockwork
inspired model is a particularly economical model for a very
light ALP DM candidate.

Our model is the 4d quiver model obtained by latticizing
a 5d (abelian) gauge theory in a linear dilaton background
[43], with Dirichlet boundary conditions for the 4-d compo-
nents of the gauge boson [35,38]. As a result of the 5d gauge
invariance, the 4d field content is such that its most general
renormalizable gauge-invariant lagrangian preserves an acci-
dental global symmetry. Furthermore, the specific 5d back-
ground, or equivalently the specific 4d gauge charge assign-
ment, ensures a strong protection of this accidental symmetry
from explicit breaking terms, even when the discretization is
crude (i.e. when the quiver has few sites), and it generates a
hierarchy between the effective axion decay constant fa and
the scale f of spontaneous symmetry breaking: fa is reduced
by a factor which grows exponentially with the number of
quiver sites, in a way opposite to the usual clockwork models.
This effective scale fa , which appears in the potential of the
axion and its couplings to gauge fields, is not the only scale
parametrically different from f : the axion has a clockwork
profile along the quiver sites, and this profile can generate
effective coupling scales which are bigger than f when one
considers for instance couplings to the spins of matter parti-
cles.

Before we proceed, let us recall that there are many argu-
ments, from black hole ones to string theory ones, sug-
gesting that global symmetries are broken by Planck scale
effects. The strength of the breaking is well defined in
a consistent theory of quantum gravity. In this paper, we
will parametrize gravitational corrections as higher dimen-
sional operators in the effective theory, suppressed by pow-
ers of the Planck scale with order one coefficients, assum-
ing that the breaking is described correctly by the EFT
approach. One may wonder whether such contributions could
come from non-perturbative effects and consequently enjoy
a greater suppression, as suggested by studies of axions aris-
ing from antisymmetric forms in string theory [44]. How-
ever, the kind of axions discussed in this paper originate
from charged matter fields. Even in string theory, those could
in principle receive perturbative higher-order corrections to
their potential, which would appear as usual higher-order
terms in the EFT [45]. Furthermore, if the theory of gravity

includes a heavy fermionic sector whose renormalizable cou-
plings break the axion shift symmetry, the induced Coleman-
Weinberg potential is also consistent with the effective theory
point of view [23,24]. Thus, we assume in this paper that the
magnitude of gravitational corrections is well described by
the EFT approach, with no additional suppression.

The plan of the paper is as follows: in Sect. 2 we recall
the 4d model with a focus on the light scalar and examine its
properties. In Sect. 3, we discuss its potential identification
with a QCD axion, analyze the interplay between the three
aspects mentioned earlier, compare with other models in the
literature and derive some general conclusions. In Sect. 4 we
consider the applications of the model to describe cosmolog-
ical light particles (e.g. PGB dark matter and quintessence
models) and show that it is very economical for describing
an ALP as a DM candidate. We present our conclusions in
the last section. Some appendices cover additional material:
Appendix A contains the 5d deconstruction of an abelian
vector field in a linear dilaton background whose low-energy
limit matches that of our 4d picture, Appendix B discusses
the massive states of the model of Sect. 2, Appendices C.1
and C.2 describe realizations of the QCD axion discussed
in Sect. 3, Appendix D displays a calculation of the axion–
photons couplings of Sects. 3 and 4.1 and Appendix E dis-
cusses the ranges of parameters of the model which allow the
axion to be (a detectable kind of) dark matter.

2 Model

2.1 Gauge group and matter content

The (4d) setup we consider is an abelian quiver model with
bifundamental scalar fields, first presented in [35] as the
deconstruction [46,47] of a 5d abelian gauge theory on an
orbifolded linear dilaton background with Dirichlet bound-
ary conditions for the 4d gauge field3 (see Appendix A),
and whose low-energy theory was derived in [38] as the 4d
theory obtained after chiral symmetry breaking by some con-
fining non-abelian gauge group. The precise matter content
and charge assignment is given by the quiver of Fig. 1 (where
q and N are integers),

with the following (most general renormalizable) lagra-
ngian:4

L = − 1

4g2
i

N∑

i=1

Fµν,i F
µν
i −

N∑

k=0

(|Dµφk |2 + m2
k |φk |2)

−
N∑

k,l=0

λkl |φk |2|φl |2 ,

(2.1)

3 See also Appendix A of [48].
4 We use conventions of [49], in particular signature (− +++).
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Fig. 1 Abelian quiver of the model

where Fi is the field strength of the abelian vector field Ai ,
with coupling constant gi , and with the covariant derivatives
Dµφk =

(
∂µ − i(1 − δk,0)Aµ,k + iq(1 − δk,N )Aµ,k+1

)
φk .

This lagrangian has a U (1)N+1 invariance, with a U (1)N

gauged subgroup.
This model is inspired by the so-called clockwork mech-

anism [32–42] and has been introduced in [35] as a possible
realization of it, so we will comment on defining features
of this mechanism if we recover them while we proceed, or
discuss those which are different.

2.2 Spontaneous breaking and Goldstone mode

We are interested in obtaining Goldstone bosons, so we con-
sider the spontaneous breaking of the full U (1)N+1 men-
tioned previously by choosing the parameters m2

k and λkl of
(2.1) so that all the scalar fields φk get vev’s fk . The spec-
trum then consists after gauge fixing of N massive vectors,
N + 1 massive real scalars (discussed in Appendix B) and
one Goldstone boson.

Since the vev’s fk break all the gauge symmetries, N out of
the N +1 phases of the φk are absorbed by the gauge vectors
through the Higgs effect. The absorbed phase combinations

depend on the charges and vev’s (we write φk = fk+rk√
2
ei

θk
fk ):

L ⊃ −Aµ,i (q fi−1∂µθi−1 − fi∂µθi ). (2.2)

The last, uneaten phase a remains in the spectrum after gauge
fixing as a Goldstone boson associated to the accidental
U (1)a global symmetry which is the ungauged factor of the
U (1)N+1 symmetry group of (2.1). The profile of this boson
along the original phases is orthogonal to theq fi−1θi−1− fiθi
gauge Goldstone bosons profiles. If we canonically normal-
ize the field and the vev’s are taken to be all equal, which will
be assumed from now on5 (we then note fk = f ), it reads:

a = θ0 + qθ1 + · · · qN θN√
1 + q2 + · · · + q2N

. (2.3)

Equation (2.3) displays the exponential localization dis-
cussed in clockwork models, and the charges of the origi-
nal scalar fields under the global symmetry also match those
which appear in those models. Indeed, U (1)a acts here as
φk → eiq

kαφk .

5 In the generic case, the axion profile is, up to a normalization factor,

a ∼ θ0

qN f0
+ θ1

qN−1 f1
+ · · · + θN−1

q fN−1
+ θN

fN
.

2.3 Goldstone boson protection

The lagrangian (2.1), has an accidental exact U (1)a global
symmetry at renormalizable level, hence the axion a is mass-
less. We expect however that global symmetries are broken by
gravity effects [13–15], which forces us to include all higher
order operators allowed by gauge invariance in the effective
theory. For the quiver of Fig. 1, these operators must be com-
binations of

|φk |2 and φ0φ
q
1 · · ·φqN

N . (2.4)

Hence, operators that explicitly break the global symme-
try must involve the second term and be of extremely high
dimension as soon as q and N are both slightly bigger than
one. We thus obtain in this setup a pseudo-Goldstone boson
with a mass very well protected by the gauge symmetry. The
exponential dependence on q and N of the second operator
of (2.4) can be used to make the boson mass “sufficiently”
small with a reasonable number of gauge groups, as we will
emphasize later on. More specifically, if we use (2.3), we
find:

φ0φ
q
1 · · ·φqN

N

M1+q+···qN−4
c

+ h.c.
∣∣∣∣
axion terms

= 2
(

f√
2Mc

)1+q+···+qN

M4
c cos

(
a
fa

)
⊃ −1

2
m2

aa
2 ,

(2.5)

where

fa = f
√

1 + q2 + · · · q2N
(2.6)

and

ma ∼
(

f√
2Mc

) 1
2 (q+···+qN−1)√

1 + q2 + · · · q2N Mc ,

(2.7)

and Mc is the cutoff of the theory, which we take close to the
Planck mass MP when we consider gravity-induced breaking
effects (recall however that if a large number N of particles
is present, the actual cutoff of the theory cannot be more
than roughly MP√

N [50–53]). Even though Mc may also be
the scale of other breaking effects (such as the mass of heavy
fermions explicitly breakingU (1)a and running in loops, see
Appendices A and C.1 for discussions on this topic), we will
for simplicity focus on gravitational scale breaking. Note that
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fa is significantly lower than f when N is large and q > 1
(we will come back to this when discussing the QCD axion).

3 QCD axion

We dedicate this section to the study of the compatibility of
the Peccei–Quinn (PQ) idea [1–3] (see also [54] for a review)
with the setup of Sect. 2.6

3.1 Accidental Peccei–Quinn symmetry in the low-energy
field theory

We study in this section the low-energy effective field the-
ory of the axion, assuming that every other massive field
has been integrated out. In order to identify U (1)a with a
Peccei–Quinn symmetry, we consider the following axionic
coupling:7

i log
(
φ0φ

q
1 · · ·φqN

N

)
Tr(Gµν G̃µν)+ h.c. , (3.1)

with Gµν the gluon field strength and G̃µν = ϵµνρσGρσ

its dual. In this section, we will not discuss the origin of this
coupling, which may arise from a string theory or from a UV-
complete field theory (Sect. 3.2 deals with the field theoretic
case).

The operator in the log is, as we said in Sect. 2.3, the first
gauge-invariant term capable of coupling the axion of (2.3) to
the gluons that we could have written (using a gauge-invariant
term is necessary in order not to generate anyU (1)i×SU (3)2

gauge anomaly). This coupling has two major generic fea-
tures: it involves all the quiver sites, and it implies a decrease
in the decay constant of the axion compared to the scale of
breaking f . Indeed, when we plug back the axion profile
(2.3) in (3.1), we obtain:

i log(φ0φ
q
1 · · ·φqN

N )Tr(Gµν G̃µν)+ h.c. ⊃

− 2
√

1 + q2 + · · · q2N

f
aTr(Gµν G̃µν) ,

(3.2)

where we recognize the effective axion decay constant of
(2.6). This suggests that the present setup could describe
intermediate scale axion decay constant obtained from high
scale physics (such as string scale physics).8 This feature is

6 Accidental PQ symmetries have been studied in many different setups,
see for example [16–22,25–31].
7 We will not pay attention to writing dimensionless quantities in the
log’s since it does not affect the discussion about axions which reside
in the phases of the fields. Every expression in a log to appear in the
rest of the paper should then be thought of as a dimensionless one [e.g.
a log(scalar) means a log(scalar divided by a mass scale)].
8 This feature, added to the fact that each site of the quiver contributes
to the anomalous coupling, is qualitatively different from those of axion
clockwork models, where the anomaly is generated at one site and the

common to most models with global symmetry protected by
gauge symmetries: the scale fa is not identical to the orig-
inal scale f of the spontaneous global symmetry breaking
and one may consider the possibility of fa ≪ f ∼MP . The
relation between the scales fa and f depends on the scalar
fields charges and/or the number of gauge symmetries: spe-
cific examples are (2.6) for the model under study, (3.3) and
(3.4) for other models present in the literature. In the model
of [20], which corresponds to N = 1 and q = p′/q ′, with
positive coprime integers p′ and q ′:

fa = f
√
p′2 + q ′2 , (3.3)

while in the model of [23,24], which corresponds to arbitrary
N and q = 1:

fa = f√
N

. (3.4)

From these expressions, we can deduce that to bring fa from
the Planck scale down to the intermediate scale ( fa ∼1012

GeV), we require qN (respectively
√
p′2 + q ′2 or

√
N )

∼ 106, for the model under study (respectively the mod-
els introduced above). This can be achieved in our model
if for instance q = 3 and N = 13, whereas it requires
max(p, q) ∼106 or N ∼1012 in the other cases discussed.
An exponential hierarchy between f and fa in our model
hence requires a much smaller number of additional gauge
groups or much smaller gauge charges than in the other mod-
els analyzed.

When non-perturbative effects of QCD turn on, (3.2)
induces a potential for the axion:

L ⊃ m2
π f 2

π cos
(

a
fa

− θQCD

)
. (3.5)

We also include every gauge-invariant term to the potential,
according to the discussion of Sect. 2.3, and in particular
generate a classical explicit breaking mass term (2.7) for the
axion. In order to have | afa −θQCD| < 10−10 at the minimum
of the potential and solve the strong-CP problem, we must
ensure [20–22] that:
[
ma,QCD ∼mπ fπ

fa

]

> 105

[

ma,explicit ∼
(

f√
2Mc

) 1
2 (q+···+qN−1) f

fa
Mc

]

or equivalently

f .
(

10−5
√

2mπ fπ (
√

2Mc)
1
2 (q+···+qN−3)

) 2
q+···+qN+1 .

(3.6)

Footnote 8 continued
effective decay constant is bigger than the scale of new physics, often
considered to be ∼TeV.
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For example, when q = 3, N = 2 and Mc = MP , it implies
f . 1012 GeV. If now q = 3, N = 3 and Mc = MP , this
becomes f . 1016 GeV.9 The values of the parameters q
and N can be of course translated into the value of the ratio
f/ fa ∼ qN . Those numbers can be compared with those
obtained in the other models we already discussed: in the
model of [20]

ma,explicit ∼
(

f√
2Mc

) 1
2 (p

′+q ′−2) f
fa
Mc , (3.7)

and for instance f ∼1012 GeV demands p′ + q ′ & 13. In
the model of [23,24]:

ma,explicit ∼
(

f√
2Mc

) 1
2 (N−1) f

fa
Mc . (3.8)

Then, f ∼1012 GeV demands N & 13. Clearly, the larger
the ratio f/ fa the better the protection, but sufficient protec-
tion is obtained already for f/ fa = O(10). In the present set
up, this is achieved with smaller charges or smaller number
of gauge groups than in the other examples described above.
Unfortunately, the nice feature of the possibility of obtaining
the hierarchy fa ≪ f ∼ MP in QCD axion models based
on global symmetries protected by gauge symmetries is over-
shadowed by the fermion problem discussed in Sect. 3.2.

Axion couplings to photons, which are the subject of most
axion searches, are also part of this low-energy discussion.
They can be derived when we consider the axionic general-
izations of (3.1):

L ⊃ i

32π2 log(φ0φ
q
1 · · ·φqN

N )(CGa,µν G̃a
µν + EFµν F̃µν)

→ −
√

1 + q2 + · · · q2N

32π2 f

⎛

⎜⎜⎜⎝
E − 2C

3
4 + mu/md
1 + mu/md︸ ︷︷ ︸
≈ 1.92C

⎞

⎟⎟⎟⎠
aFµν F̃µν

(3.9)

where F is the photon field strength, F̃ its dual, mu,d are
quark masses, C and E anomalous constants (which we will
specify when we deal with precise models in what follows),
the arrow indicates that we took into account the mixing
between the axion and the mesons which arises from (3.2)
and (3.5) [56] and we used mu ≈ 0.6md under the bracket in
the last line. These couplings feature the dependence on the
decreased effective decay constant (2.6) we already encoun-
tered in (3.2). Couplings of the axion to fermions, such as
axion–spin couplings, and their effective scales are discussed
in Sect. 4.2.

9 These values show the compatibility of our setup with astrophysical
( fa & 109 GeV) and cosmological ( fa . 1011 GeV) bounds on the
axion decay constant (the upper bound can be relaxed, if the PQ sym-
metry is assumed to be broken during inflation, as soon as one allows
for tuning in the cosmic initial conditions for the axion), see [55].

3.2 Axionic couplings from heavy fermion loops

We now discuss the UV origin of (3.1) in terms of loops of
heavy fermions coupling to the axion.

Let us first recall how axionic couplings are generated via
quarks loops. (Global) anomalies with respect to SU (3)c are
mediated by colored fermions10 with some charge under the
(global) symmetry, which run in loops between gluons and
scalars, whose phase contains part of the axion mode. The
schematic procedure11 is:

L = −|∂σ |2 − Qγµ(∂µ − i AaµT
a)Q − (yσQLQR + h.c.)

× where σ = f√
2
ei

a
f

⊃ − (∂a)2

2
− Qγµ

(
∂µ + y f√

2
− i AaµT

a
)
Q + i

y√
2
aQγ5Q

× Q triangle loop−−−−−−−−−→ − a

32π2 f
GG̃ = i

32π2 log(σ |a terms)GG̃ ,

(3.10)

where σ is a scalar field, QL ,R are left and right handed
colored fermions, T a are the generators of SU (3)c, A is the
gluon field of field strength G and y is a Yukawa coupling.

We then see how to generate (3.1) from fermions loops,
starting from the following lagrangian:12

L ⊃ −y0φ0QL ,0QR,0 − φ1Q
i=1...q
L ,1 Y1,i j Q

j
R,1

−φ2Q
i=1...q2

L ,2 Y2,i j Q
j
R,2 + · · · + h.c.

× triangle loops−−−−−−−→ i
32π2

(
log(φ0)+ · · · + qN log(φN )

)
GG̃

= i
32π2 log(φ0φ

q
1 · · ·φqN

N )GG̃ . (3.11)

This procedure is actually the minimal one (with dimension
four Yukawa couplings) that generates an U (1)a
×SU (3)2

c anomaly without generating gauge anomalies [or
said differently, that generates (3.1)]. It requires adding col-
ored fermions at each site, in accordance with the fact that
(3.1) involves all quiver links (and in particular, there is
no freedom in using the axion profile to modify the effec-
tive scale of the axion–gluons coupling). In terms of cou-
plings defined in (3.9), it has C = 1 and E = 0. Note that
the lagrangian (3.11) [and (3.13) below] respects the global
symmetry U (1)a . Therefore, it cannot generate the scalar
potential (2.5) by quantum corrections. However, since we
had to nonetheless include (2.5) as a gravity correction, we

10 In our case, heavy fermions must obtain their mass from Yukawa
couplings since Dirac or Majorana mass terms require vector-like rep-
resentations.
11 An example of the triangle loop calculation, including the numerical
coefficients, is presented in Appendix D.
12 This procedure, as well as (3.13), is uniquely determined by the
fermionic gauge charges, see Appendix C.1.
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should also consider all gauge-invariant non-renormalizable
fermionic operators in addition to (3.11). Those operators
could classically break U (1)a and generate both the mass of
the axion and its couplings to the gluons. In Appendix C.1,
we present a model with such fermionic operators.

The number of additional fermions grows exponentially
with N : for instance, in order to use (2.6) to bring a Planck
scale f down to an intermediate scale fa = 1010−11 GeV,
we need ∼qN & 107−8 additional fermions (which would
however be close to the Planck mass and would thus not
spoil gauge coupling unification, or perturbativity far below
the Planck mass). Alternatively, if we start with f already
at intermediate scale, the strong CP-problem is for instance
solved when f ∼ 1011 GeV, q = 3 and N = 2. This is
enough to ensure the gauge protection according to the dis-
cussion following (3.6), with 1+3+32 = 13 additional Dirac
fermions in the 3 of SU (3)c. The new fermions spoil asymp-
totic freedom but keep perturbativity of the strong interac-
tions below the Planck mass. In this specific example, we get
a (detectable) coupling to photons from (3.9):

L ⊃ (1.7 × 1013 GeV)−1aFµν F̃µν . (3.12)

If one wants to circumvent the conclusions of (3.11), one
can also assign gauge charges to the fermions so that their
lowest gauge-invariant mass terms are of higher dimension.
One example of this type is

L ⊃ −y0φ0QL ,0QR,0

− 1

Mq+···+qN−1

c

φ1φ
q
2 · · ·φqN−1

N Qi=1...q
L Yi j Q

j
R + h.c.

× triangle loops−−−−−−−→ i
32π2

(
log(φ0)+ q log

(
φ1φ

q
2 · · ·φqN−1

N

))
GG̃

= i
32π2 log

(
φ0φ

q
1 · · ·φqN

N

)
GG̃ , (3.13)

where Mc is the cutoff of the theory. The action (3.13) couples
the axion to the gluons via a number of additional fermions
independent on N , but the high dimension of the second
coupling in the first line of (3.13) lowers the mass of the Qi
fermions. Since these fermions are colored and unobserved
at the LHC, we must impose mQi & a few TeV, which gives,

if one takes as an example f =
√

2
10 Mc and Mc = MP ,

(
f√

2Mc

)1+q+···qN−1

Mc & TeV ⇒ qN − 1
q − 1

. 15 .

(3.14)

The bound is even more stringent as soon as we decrease f

in order to satisfy (3.6): f =
√

2
106 Mc would give qN−1

q−1 . 3.
It imposes in particular that we cannot reduce the decay con-
stant of the axion using (2.6) and (3.13) from the Planck scale
down to the intermediate scale of invisible axion models. One
can interpolate between (3.11) and (3.13), but then there will
either be limitations on q and N due to the high dimension

Fig. 2 Number of additional particles function of the first explicit
breaking operator dimension

of the mass terms or a number of fermions that grows with N
(or both). The situation is illustrated in Fig. 2: even though
the use of q ̸= 1 enables the dimension of the first U (1)a-
breaking operator to scale exponentially with respect to the
number of quiver groups, the number of fermions necessary
to make U (1)a anomalous scales linearly with respect to
this operator dimension [the number of fermions is bounded
above by 1+ q + · · ·+ qN , realized in (3.11), and we bound
it below by 1+q+···+qN

3 according to the discussion around
(3.14)].

This discussion goes beyond the particular case of the
quiver of Fig. 1 and concerns every theory with a protected
PQ symmetry: the higher the quality of an accidental PQ sym-
metry, the higher the number of fermions required to make
it anomalous with axionic couplings generated by fermion
loops.13

Indeed, any axionic coupling term in such a theory free of
gauge anomalies must be of the form:

i log(O)GG̃ + h.c. , (3.15)

where O is by construction gauge-invariant and not invariant
under the anomalous global symmetry. If it arises from loops
of heavy fermions, it is through the scheme discussed above:

L ⊃ −
∑

i

(Oiψi,Lψi,R)

× triangles−−−−→ i
32π2 log

(
∏

i

Oi

)

GG̃ (3.16)

13 This applies in particular if we enlarge the scalar content of the theory
depicted in Fig. 1 to additional scalar fields while keeping the quiver as
the main source of protection, as in Appendix C.2.
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(where we assumed that we removed from the sum every
pair of vector-like fermions), and O = ∏

i Oi . However,
the very notion of accidental axion symmetry means that
O is an operator of high dimension, so the targeted qual-
ity of the axion global symmetry imposes a lower bound
on dim(O) = ∑

i dim(Oi ), while the definition we adopt
for “heavy” fermions (in our case, unobserved at the LHC)
puts an upper bound on dim(Oi ) for each i . The two lim-
its together imply a lower bound on the number of heavy
fermions.

It is useful to analyze how such considerations show up in
the other models discussed in Sect. 3.1. In the model of [20]
one wants to generate i log(φq ′

0 φ
p′
1 )GG̃ + h.c. and requires

for this p′+q ′ colored Dirac fermions, whereas in the model
of [23,24] one wants to generate i log(φ0φ1 · · ·φN )GG̃ +
h.c. and requires for this N + 1 colored Dirac fermions.

One can now sum up the comparison between those two
models and the model under study:

• in order to protect a QCD axion for a fixed scale of spon-
taneous breaking f , all these models require that the first
gauge-invariant U (1)PQ-breaking operator O be of suf-
ficiently high dimension dO (e.g. dO = 13 for f ∼1012

GeV). This requires N ∼dO gauge groups for the model
of [23,24], p′, q ′ ∼dO scalar gauge charges for the one
of [20] and only N ∼ logq(dO) gauge groups for the
model under study

• the effective decay constant fa is reduced with respect to
the scale f by a factor ∼dO for our model and [20] and
by a factor ∼√

dO for [23,24]. This can be understood
by studying the U (1)a charge of O: if the shift a →
a+2πα fa defines the charge normalization, O has charge
∼√

dO in [23,24] and ∼dO in [20] and (3.1). The higher
charge is however due to the high gauge charges in [20]
whereas it is due to the clockwork profile of the axion as
well as the expression of O due to the clockwork gauge
charges in our model

• the number of fermions necessary to generate the axion–
gluons coupling is ∼dO in all the models.

4 Axion-like particles

In this section, we study the case of axion-like parti-
cles (ALPs), which generically refers to pseudo-Goldstone
bosons not designed to solve the strong-CP problem, and
whose interactions are consequently less constrained than
those of the QCD axion. We will focus on models where the
ALP potential is entirely generated by perturbative physics
in a UV theory,14 e.g. gravitational physics, which grants

14 There could also be instantonic contributions to the potential, associ-
ated to a confining gauge group with a U (1)a anomaly. However, since

the ALP a small mass even for few quiver sites and which
is sufficient to make it a good dark matter candidate. Fur-
thermore, there exist operators which make the dark matter
ALP detectable, if for example some standard model par-
ticles are charged under the quiver gauge symmetry. This
only requires limited additions to the particle content of Fig.
1, even when the number of quiver sites is large. However,
while the U (1)a protection by the quiver is strong enough to
generate quintessence-like mass scales, the need for trans-
Planckian field values of usual axion quintessence models is
still present in our setup, and is exacerbated by the reduction
of the axion effective decay constant.

4.1 ALPs potentials and dark sector candidates

Since most ALPs are used in cosmology, where their treat-
ment can differ significantly from the one of the QCD axion
(see [55] for a review), let us first discuss the cosmologi-
cal relevance of our setup. In the non-anomalous setup that
we chose to consider in this section, we think of any ALP
potential as generated by some classical explicit breaking in a
UV theory. The lowest-dimensional gauge-invariant poten-
tial of this type for the particle a of (2.3) is (2.5), which
very weakly breaks U (1)a and entitle us to call a a pseudo-
Goldstone boson, as we discussed in Sect. 2.3. It is a typical
periodic potential, consistent with the ALPs origin as a peri-
odic phase degree of freedom, and such potentials are very
useful in cosmology: the smallness of the masses and the
specific potential they provide make ALPs good dark matter
or dynamical dark energy candidates via the misalignment
mechanism. The relic density can be calculated once we are
given the initial value ainit of the ALP field after inflation and
its mass ma which is taken to be constant in time (and given
in (2.7) for our perturbative setup):

Ωa ≈

⎧
⎨

⎩
Dark matter: 2 × 102( ma

10−22eV

) 1
2
( ainit
MP

)2

Dark energy: 8 × 10−2( ma
10−33eV

)2( ainit
MP

)2
.

(4.1)

ainit is given by ainit = ϵinit fa , where fa (which defines
the periodicity of the ALP potential) is given in (2.6) and
ϵinit depends on one’s taste for tuning (we assume in the
following that the spontaneous breaking of U (1)a happens
before inflation, see the discussion of Appendix E). In order
for these formulas to be valid, i.e. for the ALP to behave like
CDM before radiation-matter equality or like dark energy
today, we supplement (4.1) with:

Footnote 14 continued
the discussion of Sect. 3.2 showed us that making U (1)a anomalous
demands a large number of additional fermions in the theory, especially
when N grows, we will for simplicity restrict ourselves to those ALPs
which do not have any anomalous couplings.
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ma

⎧
⎨

⎩
DM: & 10−28 eV

DE: . 10−33 eV,
(4.2)

(where the bound for DM can be pushed up to ma &
10−22 eV when non-linear cosmological observables are
taken into account).

In our setup, obtaining masses as low as those which
appear in (4.2) without tuning is easy (for instance, (2.7)
equals ∼ 10−33 eV when f = 0.13MP , q = 3, N = 4).
However, we can see from the comparison of (4.1) and (4.2)
that axion quintessence demands initial values which are
higher than the Planck mass. This can be achieved with some
tuning on ϵinit or when the effective decay constant of the
axion is increased compared to the mass scales of the model
(as in clockwork models which, however, have no mass pro-
tection mechanism built in). Since our effective decay con-
stant (2.6) is reduced, the latter is not an option while the
former is not enough to reach the correct energy density (if
we insist on keeping f below the Planck mass): indeed if we
impose ma . 10−33 eV, we can only obtain Ωa . 0.05 and
would need at least 13 of such ALPs to reach the observed
dark energy density.

In contrast, natural dark matter candidates do arise in our
model. In Fig. 3, we scan the parameters f and Mc for some
values of q and N (see Appendix E for a more complete
treatment) which satisfy the condition (4.1) for ΩDM = 0.3
and (4.2), allowing for ϵinit to range from 0.1 to π − 0.1, and
allowing a constant multiplying the potential (2.5) ranging
from 0.033 to 30. In Fig. 4, we focus on the case where
Mc = MP and on the minimal numbers of quiver gauge
groups, in order to highlight the (ma, fa) parameter space
probed by our model. There, we allow ϵinit to range from π

to 0.0001, and we also include the parameter space for the
QCD axion (which, due to its temperature-dependent mass,
differs for the one of other ALPs).

We see in Figs. 3 and 4 that we obtain suitable DM can-
didates, and that the dependence on q and N of the mass
(2.7) allows us to reach very low ALPs masses. These small
masses, combined with the high scale f of their associ-
ated new physics, are hard to realize in a pure field the-
oretical framework and are usually thought of as coming
from a string axiverse [44,57,58]. Our setup then provides
an economical, in the sense of a low number of gauge
groups, realization of such values. For instance, the smallest
masses discussed in the literature for ultra light dark mat-
ter, ma ∼ 10−21 − 10−22 eV, require Mc ≈ MP and are
obtained for f ≈ 0.2MP , q = 3 and N = 4 (for the
choices of q and N displayed, to be compared with p′, q ′

or N ∼ 120 − 130 respectively for [20] and [23,24], dis-
cussed in Sects. 3.1 and 3.2 ). This example, as well as Fig. 4,
shows that, even though we scan different values of Mc in
Fig. 3, a gravitational origin (Mc = MP ) for (2.5) is suf-

Fig. 3 Range of parameters for a DM ALP of mass ma ≤ 10−2 eV
(axions saturating the DM relic density are found in colored regions, all
axes are log-scale)

ficient to reproduce the cosmological relic density of dark
matter.

In order to conclude that such ALPs are to play a role in
the cosmic evolution, we must check that their lifetime can
be comparable to or bigger than the age of the universe. In
generic models, there is a decay channel of an ALP into two
photons, usually coming from aU (1)PQ ×U (1)2

em anomaly.
Even though there is no anomaly in the models of this section,
non-anomalous, CP-even and gauge invariant operators that
enable this decay exist. For instance, they can arise if we
couple one of the quiver sites of Fig. 1 to an anomaly-free set
of electrically charged fermions displayed in Table 1, while
we keep the standard model particles uncharged under the
quiver gauge group.

With such charges, one can write Yukawa couplings y1,2
to φi :

L ⊃ −y1φiψR,1ψL ,1 − y2φiψL ,2ψR,2 + h.c. . (4.3)

The effective operators describing the decay a → γ γ then
are (see Appendix D for the computation):

L ⊃ n2e2qi

192π2
√

1 + q2 + · · · q2N f

(
1

m2
1

− 1

m2
2

)

×
(
−�aF F̃ + 2∂µaFνη∂

η F̃µν
)
,

(4.4)

where m1 = y1 f√
2
,m2 = y2 f√

2
and F is the photon field

strength. Notice that, contrary to anomalous couplings such
as (3.1), non-anomalous interactions are site localized, and
exhibit clockwork-like effects due to the profile (2.3). This
feature will be present in all the operators discussed in this
section. We can also see that the non-anomalous nature of
the ALP-photons coupling makes this interaction of deriva-
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Fig. 4 Parameter space for a DM ALP of mass ma ≤ 10−2 eV when
Mc = MP (The pink region indicates the parameter space where (4.1)
gives the DM relic density, whereas colored bands show where DM

axions are found in our model. The QCD axion parameter space is
given by the grey line. Axes are log-scale)

Table 1 Anomaly-free set of fermions coupling the ALP to the photon
field (the three first columns indicate the gauge charges of the fields
whereas the last one gives the PQ charges induced by (4.3), as functions
of q1 and q2 which are arbitrary)

U (1)i U (1)i+1 U (1)em U (1)a

ψL ,1 −1 0 ne q1

ψR,1 0 −q ne q1 + qi

ψL ,2 1 0 −ne q2

ψR,2 0 q −ne q2 − qi

tive type and of higher dimension than usual anomalous aF F̃
terms, so this decay does not make our ALPs unstable over
the cosmic history. Indeed these couplings give a decay rate:

Γa→γ γ = q2i n4α2m7
a

1024π3(1 + q2 + · · · q2N ) f 2

(
1

m2
1

− 1

m2
2

)2

,

(4.5)

where α is the fine structure constant. Hence, we conclude
that this decay channel is harmless with respect to the cosmic
evolution of our ALPs.15 Indeed, as guessed above, the non-
anomalous nature of the ALP-photons coupling forces the
ma factor to appear in the decay rate (4.5) at a higher power
than in the case of usual aF F̃-induced decays and ensures a

15 For ultra-light dark matter with m ∼ 10−21 eV, if we choose
f = m1 = 2m2 = 0.3MP and n = 1, the decay rate is ∼

q2i

1+q2+···q2N (10−300s−1).

long ALP lifetime. The clockwork-like dependence of (4.5)
only tends to weaken the ALP couplings to photons when
matter is coupled to the first quiver sites.

The example of Table 1 is a realization of the more gen-
eral gauge-invariant non-anomalous operators, coupling the
axion to the photon field, which we can write within the
effective field theory:

1
Λ4 DµDµφiφ

∗
i F

µν F̃µν ,
1

Λ4 Dµφiφ
∗
i ∂ηFµν F̃ην

and
1

Λ4 Dµφiφ
∗
i ∂η F̃µνFην

× terms linear in a−−−−−−−−−−→ iqi f

2
√

1 + · · · q2NΛ4

(
�aF F̃, ∂µa∂ηFµν F̃ην

and ∂µa∂η F̃µνFην
)
,

(4.6)

where D is the covariant derivative, there is no summation
over the index i and Λ the scale at which this operator is gen-
erated. For instance, in the example of Table 1 Λ is equal to
the mass of the ψ fermions. Since (4.6) preserves U (1)a ,
Λ does not have to be equal to Mc which was the scale
of classical explicit breaking, even though there could also
be U (1)a preserving interactions at scale Mc (for instance
there could be gravitational contributions of the form (4.6)
where Λ = MP ). Thus, in a minimal, agnostic approach,
we should consider effective theory operators such as (4.6),
supplemented by the potential (2.5) where three independent
scales are used: the scale f , and fa which follows, which are
the scales of spontaneous breaking of U (1)a , are given by
the quiver and the renormalizable scalar potential in (2.1).
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The scale Mc, at which U (1)a is explicitly broken, must
verify Mc > f for the effective lagrangian to be valid and
Mc . MP since gravity anyway breaks U (1)a . Finally, Λ

is a scale of additional physics which generates couplings of
the quiver fields to other sectors of the theory, like the SM. It
must respect Λ & f , since the new physics can lie at (almost)
scale f , like in the example of Table 1, but should not be at
a lower scale than the effective theory one.

From (4.6) we can calculate the decay rate of an axion
into two photons:

Γa→γ γ ∼ q2im7
a f

2

16π(1 + q2 + · · · q2N )Λ8 . (4.7)

This result generalizes (4.5) and of course does not spoil the
conclusions made with Λ ∼ f since the dependence on ma ,
responsible of the low value of Γa→γ γ , has not changed and
Λ & f can only weaken the decay rate.

4.2 Detection via NMR

The non-anomalous couplings to photons of (4.6), too weak
to destabilize the cosmic history of our ALPs, are also too
weak to be probed by current ALPs searches, which rely on
a dimension 5 anomalous aF F̃ coupling. Non-anomalous
dimension 5 generic couplings of a Goldstone pseudoscalar
a to a detector’s matter can be written [56] as follows:
gaee
fa

∂µa eγ µγ5e and
gaNN

fa
∂µa Nγ µγ5N , (4.8)

where g’s are dimensionless coupling constants, fa is again
the axion decay constant, and N and e are respectively the
nucleon and electron fields. In our setup, they can be gen-
erated in field theory if we charge the first family of the
standard model under U (1)i,i+1, according to Table 2,16 in
a way which gives them U (1)a charges.

At lowest order, the most general lagrangian is the SM
lagrangian where only the first family Yukawa terms have
been modified:

L ⊃ − 1
Mc

(
uRHφi YuQL + dR(Hφi )

∗Yd QL

+ eR(Hφi )
∗YeLL

)
+ h.c.

⊃ − v f
2Mc

(
u
[
e
i qi a√

1+···q2N f
γ5
Yu
]
u

+ d
[
e
−i qi a√

1+···q2N f
γ5
Yd
]
d + e

[
e
−i qi a√

1+···q2N f
γ5
Ye
]
e
)
,

(4.9)

16 All anomalies involving at least one standard model factor are can-
celed with these charges. One must however add additional fermions
only charged under U (1)i,i+1 to cancel the U (1)i,i+1 × U (1)i,i+1 ×
U (1)i,i+1 and U (1)i,i+1-gravity anomalies. See Appendix C.1 for
explicit examples.

Table 2 SM charges that produce an ALP-spin coupling (the first
columns indicate the gauge charges of the fields whereas the last one
gives the PQ charges induced by (4.9), as functions of qQ , qH and qL
which are arbitrary)

Fields SU (3) SU (2) U (1)Y U (1)i U (1)i+1 U (1)a

QL 3 2 1
6 0 0 qQ

uR 3 1 2
3 −q 1 qQ + qH + qi

dR 3 1 − 1
3 q −1 qQ − qH − qi

LL 1 2 − 1
2 0 0 qL

eR 1 1 −1 q −1 qL − qH − qi

H 1 2 − 1
2 0 0 qH

where v is the Higgs vev and where we assumed that these
higher order Yukawa couplings come from the same physics
which generated (2.5), even though the fact that the precise
scale Mc divides these operators is of no importance for what
follows. One can make the fermion masses in (4.9) real with
an appropriate chiral redefinition of the fermions, and obtain
from their kinetic terms the expected couplings:

L ⊃ −iqi∂µa

2
√

1 + · · · + q2N f
(uγ5γ

µu + dγ5γ
µd + eγ5γ

µe) ,

(4.10)

where no anomalous term appeared since the U (1)a sym-
metry is anomaly-free and where we note that, similar to
what was observed previously for axion–photons couplings,
the ALP-spin coupling of (4.10) is site dependent due to the
clockwork profile (2.3).

If the mass (2.7) of the ALP is such that it constitutes
part of the dark matter, these couplings may soon be tested
via Nuclear Magnetic Resonance17 (NMR) by the CASPEr-
Wind experiment [59]. As an illustration, in Fig. 5 we assume
that the coupling (4.10) is located at site i = 0 of the quiver
and restrict ourselves to the (q, N ) values displayed in Fig. 3
and to the gravitational breaking of the axionic symmetry
(i.e. to the case where Mc = MP , see Appendix E for a
more general study). We then see that CASPEr-Wind can
detect some of the ALPs discussed in this paper (one exam-
ple is for f . 5 × 1015 GeV, q = 2 and N = 4). Thus
the present model, while invisible to experiments based on
axion–photons couplings, can be probed and constrained by
NMR-based ALPs searches. Note however that, in order for
(4.9) to be consistent with the observed values of the fermion
masses, there should not be a too strong hierarchy between
f and Mc. Notice also that possible FCNC effects induced
by such Yukawa couplings (see for ex. [60]) are completely
unobservable due to the high values of f and Mc.

17 Bounds already exist on axion-mediated spin-dependent forces
between particles, but they do not constrain models with high or inter-
mediate scale axion decay constants.
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Fig. 5 Sensitivity of CASPEr-Wind to the ALPs (colored regions indi-
cate axions suitable to saturate the DM relic density, blue curves set the
limit of the upper left part of the plot where the sensitivity of CASPEr-
Wind allows for a DM detection. Both axes are log-scale)

Like we did in (4.6), we can generalize such couplings in
the gauge-invariant effective theory:

1
Λ2 Dµφiφ

∗
i eγ µγ5e and

1
Λ2 Dµφiφ

∗
i Nγ µγ5N

× terms linear in−−−−−−−→ a
iqi f

2
√

1 + · · · q2NΛ2
(∂µaeγ µγ5e and

×∂µa Nγ µγ5N ) , (4.11)

Once again, the scale Λ is a priori undetermined since (4.11)
does not break U (1)a , for instance Λ = MP if (4.11) is
of gravitational origin. However, taking Λ = MP does not
allow to detect our DM candidates, contrary to the case of
(4.10) where it is equal to f .

5 Conclusions

A generic problem for QCD axion models or models for ultra-
light PGB’s as candidates for DM or quintessence is to con-
trol non-anomalous contributions to the PGB potential com-
ing from classical explicit breaking of the global symmetry,
e.g by gravitational interactions. Such contributions would
shift the axion field in the minimum to unacceptably large
for solving the strong CP problem values and could jeopar-
dize the possibility of having ultralight axion-like particles
as DM candidates. This problem has been often addressed
in the literature in models with the global symmetry being
an accidental remnant of gauge symmetries. Another issue
is the origin of the scale fa (the axion decay constant) and
of the potential hierarchy fa ≪ MP . Such a hierarchy is
required for the generic QCD axion window but not needed
for the ALPs as the dark matter candidates only, or even not

acceptable for mALPs ∼ O(10−15 − 10−20) eV. One more
difference between the QCD axion and the ALPs models is
that the former requires a set of colored fermions to generate
the anomalous coupling to gluons.

In this paper we have studied the QCD axion or cosmo-
logical ALPs in a model inspired by the recent interest in
4-dimensional clockwork models, with the global symmetry
accidentally arising due to gauge symmetries. For the QCD
axion we have analyzed the connection between the degree
of protection of the axion mass against gravitational correc-
tions, the explanation of the hierarchy fa ≪ MP and the
number of colored fermions needed to generate anomalous
couplings to gluons, all linked together by the underlying
gauge symmetries. In the DM ALPs models, assuming that
their mass is solely given by gravitational corrections, we
have identified the parameter space such that the scale fa and
the mass ma combine to give the observed relic abundance.
In the latter case, we have used gravitational corrections in a
constructive way, instead of invoking new anomalous gauge
interactions as a source of properly adjusted explicit breaking
and ignoring non-anomalous gravitational contributions.

Based on that model and on the comparison with ear-
lier models in the literature, we have derived certain gen-
eral conclusions on the QCD axion models that use global
symmetries as consequences of gauge symmetries, to pro-
tect the PGB potential against large non-anomalous explicit
breaking. In such models the scale f of spontaneous global
symmetry breaking is not identical to the axion decay con-
stant fa , with f/ fa > 1. The larger the ratio f/ fa the better
the protection but sufficient protection is obtained already for
f/ fa ∼O(10). Furthermore, the number of colored fermions
needed to generate axion anomalous couplings is approxi-
mately equal to the ratio f/ fa . Thus, the minimal sufficient
protection puts the lower bound ≥ O(10) on the number of
new colored fermions.

Several results for the QCD axion are specific for our sce-
nario based on an abelian gauge theory quiver with scalar
bifundamental fields. The contributions from non-anomalous
explicit breaking effects to the axion potential, and in partic-
ular to its mass are a function of the gauge charge assign-
ment (1,−q) for the scalars and the number of quiver sites.
Already with q > 1 but q = O(1) and a few quiver sites
(N = O(1), for instance q = 3 and N = 2), the mass protec-
tion against gravitational effects is sufficiently strong, with
f/ fa ∼ O(10). The number of heavy colored fermions is
growing approximately exponentially with the number N of
gauge groups as qN . Whereas a large number of sites N is not
needed for the mass protection of the PGB, it could be an use-
ful option in order to decrease the axion decay constant from a
large (Planck or string) value to an intermediate scale, since
qualitatively fa ∼ f/qN . Notice that the heavy fermions
masses necessary to generate the axion–gluons coupling can
be close to the Planck scale, without creating problems with
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the perturbativity of the low-energy theory even for large qN .
The minimal number of sites N in order to realize realistic
models of this type is then way lower than for q = 1. Such a
high N also connects the 4d model to the deconstruction of
a five-dimensional abelian vector model on a linear dilaton
background, with Dirichlet boundary conditions for the 4d
components of the gauge field, which shares the same low-
energy limit as the 4d theory. This gives some intuition to
understand some features of the 4d model.

We have shown that the clockwork inspired model is a
particularly economical model for a very light ALP as a DM
candidate, with the observed relic abundance. Interestingly,
a small number N of gauge groups is required for gravita-
tional corrections to induce a just right ALP potential, with-
out referring to any additional strongly interacting sector and
its chiral anomalies. Such a dark matter axion-like particle
can be coupled to the standard model with a small number of
extra particles, if any, that does not depend on N . In particu-
lar, those couplings would be generated at a given site of the
quiver and be sensitive to the clockwork profile of the axion.
Such models can be tested via Nuclear Magnetic Resonance
experiments, which record the matter spin precession due
to the oscillation of the dark matter field. Pseudo-Goldstone
quintessence models of dynamical dark energy can also be
obtained in such a setup, but their construction faces usual
challenges, such as a trans-Planckian axion decay constant,
in order to recover the observed energy density.
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A 5d deconstruction on a linear dilaton background

A.1 Abelian gauge field

We recall in this appendix the link between the 5 dimen-
sional deconstructed theory of an abelian gauge field on a
linear dilaton background and the low-energy modes of the
4d model defined in Eq. (2.1).

We start by considering a 5d manifold which is the product
of the 4d Minkowski space with an interval of length L , with
a 5d theory living on it:

S =
∫

d5z
√−g L(zM )

=
∫

d4x
∫ L

0
dy

√−g L(xµ, y) , (A.1)

where we split the 5d coordinates zM into 4d Minkowski
coordinates xµ, and the position along the interval y.

We discretize the fifth dimension interval down to a
regularly-spaced lattice of N + 2 sites. Defining ∆4 =
L

N+1 , yi = i∆4 (where i runs from 0 to N +1), this amounts
to replacing:

∫ L

0
dy f (x, y) →

N∑

i=0

∆4 f (x, yi ) ,

∂y f (x, yi ) → f (xµ, yi+1) − f (x, yi )
∆4

.

(A.2)

We choose to denote f (x, yi ) = fi (x) in what follows. We
do not wish to study the dynamics of the background and
restrict to the following static metrics:

ds2 = gMNdzMdzN

= e−2a(y)(ηµνdxµdxν + e2b(y)dy2) . (A.3)

The case a = ky,b = 0 describes the so-called linear dilaton
background in the conformally flat frame, whereas a = b =
ky is the Randall-Sundrum metric.

We will study a five-dimensional abelian theory of
lagrangian

√−gL = √−g
(

−1
4
gMPgNQFMN FPQ

)

= −e−5a+b

4

(
e4a FµνFµν + 2e4a−2bFµ4Fµ4

)

= −e−a+b

4
F2
µν − e−a−b

2

(
∂µA4 − ∂4Aµ

)2
,

(A.4)

where the 4d indices are contracted using the Minkowski
metric. We impose 5d Dirichlet boundary conditions for Aµ

and Neumann conditions for A4 :

Aµ(x, y = 0, L) = 0 ,

∂4(e−a−bA4)(x, y = 0, L) = 0 .
(A.5)

Deconstruction now yields:

∫ L

0
dy

√−gL =
N∑

i=0

∆4

⎛

⎝− e−ai+bi

4
F2
i,µν

− e−ai−bi

2

[
∂µAi,4 − Ai+1,µ − Ai,µ

∆4

]2
)

123



Eur. Phys. J. C (2019) 79 :31 Page 13 of 20 31

=
N∑

i=0

⎛

⎜⎜⎝− 1
4
F

′2
i,µν

−1
2

⎡

⎢⎣∂µA′
i,4 −

e
ai+1−ai−bi+1−bi

2 A′
i+1,µ − e−bi A′

i,µ

∆4

⎤

⎥⎦

2
⎞

⎟⎟⎠ ,

(A.6)

where we defined A′
i,µ = e

−ai+bi
2

√
∆4Ai,µ (with F ′ its asso-

ciated field strength) and A′
i,4 = e

−ai−bi
2

√
∆4Ai,4. Dropping

the primes and using the boundary conditions, we finally
obtain

L = − 1
4

N∑

i=1

F2
i,µν

− 1
2

N−1∑

i=1

⎛

⎜⎝∂µAi,4 − e
ai+1−ai−bi+1−bi

2 Ai+1,µ − e−bi Ai,µ
∆4

⎞

⎟⎠

2

− 1
2

⎛

⎝∂µA0,4 − e
a1−a0−b1−b0

2 A1,µ

∆4

⎞

⎠
2

− 1
2

(

∂µAN ,4 + e−bN AN ,µ

∆4

)2

.

(A.7)

Specializing to the linear dilaton background for which a =
ky,b = 0, the lattice action now becomes

L = − 1
4

N∑

i=1

F2
i,µν − 1

2

N−1∑

i=1

⎛

⎝∂µAi,4 − e
k
2 Ai+1,µ − Ai,µ

∆4

⎞

⎠
2

− 1
2

⎛

⎝∂µA0,4 − e
k
2 A1,µ

∆4

⎞

⎠
2

− 1
2

(
∂µAN ,4 + AN ,µ

∆4

)2
,

(A.8)

where we made the replacement k → k
∆4

. Defining q =
e
k
2 , f = 1

∆4
,φi = f√

2
e−i

Ai,4
f , Dµφi =

(
∂µ − i(1 −

δi,0)Aµ,i + iq(1 − δi,N )Aµ,i+1
)
φi , we can rewrite (A.8) as

L = −1
4

N∑

i=1

Fµν,i F
µν
i −

N∑

k=0

|Dµφk |2 , (A.9)

thus establishing the link between the low-energy limit of the
4d model of Sect. 2 and the deconstruction on a linear dilaton
background of an 5d abelian vector mode with boundary
conditions (A.5).

Finally, the Wilson line ei
∫
dy A4(x,y) gets mapped to the

U (1)a-violating potential of (2.4):

ei
∫
dy

√
∆4A4(x,y) = ei

∑N
i=0 q

i∆4A′
i,4(x)

= φ0φ
q
1 · · ·φqN

N
(

f√
2

)1+q+···qN . (A.10)

A.2 Charged bulk fermion

Deconstructed fermions might be useful in order to get
insights on how U (1)a can be made anomalous or classi-
cally broken [23,24]. However, as we will see below, this
procedure is not applicable in our setup. Indeed, let us con-
sider the action of a bulk fermion charged under the abelian
symmetry of the previous section:

√−gL = √−g
(

−1
2
Ψ [γ M (∂M − ie4AM )+ m]Ψ + h.c.

)

= e−5a+b
(

− 1
2
Ψ [eaγµ(∂µ − ie4Aµ)+ m]Ψ

− ea−b

2
Ψ γ 4[∂4 − ie4A4]Ψ + h.c.

)

= e−4a+b
(

− 1
2
Ψ [γµ(∂µ − ie4Aµ)+ e−am]Ψ

− e−b

2
Ψ γ 4[∂4 − ie4A4]Ψ + h.c.

)
,

(A.11)

where we did not include the spin connection of the metric
(A.3), calculable from the vielbein eMA = δMA × (ea−bδM5 ),
since it cancels out in the action, and γ 4 can be taken equal
to the 4d γ5. Deconstructing, using the normalized bosonic

fields and defining Ψ ′
i =

√
∆4e−2ai+ bi

2 Ψi we get:
∫

dy
√−gL →

N∑

i=0

∆4e
−4ai+bi

(
− 1

2
Ψi [γµ(∂µ − ie4Ai,µ)+ e−ai m]Ψi

− e−bi

2
Ψiγ5

[
Ψi+1 − Ψi

∆4
− ie4Ai,4Ψi+1

]
+ h.c.

)

=
N∑

i=0

(
− 1

2
Ψ ′
i

[
γµ
(

∂µ − i
e
ai−bi

2 e4√
∆4

A′
i,µ

)
+ e−ai m

]
Ψ ′
i

− 1
2
Ψ ′
i γ5

[ e2ai+1−2ai−
bi+1

2 − bi
2 Ψ ′

i+1 − e−bi Ψ ′
i

∆4

− i
e4√
∆4

e2ai+1− 3ai
2 − bi+1

2 A′
i,4Ψ ′

i+1

]
+ h.c.

)
.

(A.12)

We now restrict the discussion to the linear dilaton back-
ground, with the vector boundary conditions of the previ-
ous section, to supplement with boundary conditions for the
fermion. If we choose Ψ0,L = ΨN+1,R = 0, the decon-
structed lagrangian becomes (where we defined e = e4√

∆4
,

and dropped the primes):

L4d = −1
2

N∑

i=1

Ψi
[
γµ(∂µ − ie

ki
2 eAi,µ)+ e−kim

]
Ψi

−1
2
Ψ0,Rγµ∂µΨ0,R − 1

2
ΨN+1,Lγµ∂µΨN+1,L
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−1
2

N−1∑

i=1

Ψiγ5

(
e2k

∆4
− iek

(
i
2+2
)
eAi,4

)

Ψi+1

−1
2
Ψ0,R

(
e2k

∆4
− iekeA0,4

)

Ψ1,L (A.13)

−1
2
ΨN ,R

(
e2k

∆4
− iek

(
N
2 +2

)
eA0,4

)

ΨN+1,L + h.c..

However, we cannot UV complete this lagrangian as we did
in (A.9) since its k-dependence prevents from recognizing the
low-energy expansion of the φi ’s. Only when the background
is flat (k = 0 ⇐⇒ q = 1) one can follow such a procedure
(when e = 1):

L4d UV,flat = −1
2

N∑

i=1

Ψi [γµ(∂µ + ieAi,µ)+ m]Ψi

−1
2
Ψ0,Rγµ∂µΨ0,R − 1

2
ΨN+1,Lγµ∂µΨN+1,L

− 1√
2

N−1∑

i=1

Ψiγ5φiΨi+1 − 1√
2
Ψ0,Rφ0Ψ1,L

− 1√
2
ΨN ,RφNΨN+1,L + h.c. . (A.14)

This lagrangian respects U (1)a but makes it anomalous
at the loop level. If one now includes an allowed mass
term −m

2 Ψ0,RΨN+1,L + h.c., U (1)a is classically broken
by non-local effects, which can then generate the potential
φ0φ1 · · ·φN from fermionic loops [23,24]. When q ̸= 1,
none of this can be implemented. This reminds us that in
Sect. 3.2 we needed ∼qN fermions to make U (1)a anoma-
lous at the loop level, while deconstruction only provides us
with ∼N fermions.

Nevertheless, in order to make U (1)a anomalous like in
Sect. 3.2, or to classically break it like in Appendix C.1, one
can consider purely four dimensional setups.

B Massive vectors of the 4d model

The model of Eq. (2.1) contains massive modes in addition
to the Goldstone boson a. The vector bosons mass matrix is:

M2
vect = 2

×

⎛

⎜⎜⎝

q2|φ0|2 + |φ1|2 −q|φ1|2 · · · 0
−q|φ1|2 q2|φ1|2 + |φ2|2 · · · 0

0 −q|φ2|2 · · · −q|φN−1|2
0 · · · · · · q2|φN−1|2 + |φN |2

⎞

⎟⎟⎠

= f 2

⎛

⎜⎜⎝

1 + q2 −q · · · 0
−q 1 + q2 · · · 0
0 −q · · · −q
0 · · · · · · 1 + q2

⎞

⎟⎟⎠ (B.1)

after gauge symmetry breaking, with eigenvalues and eigen-
vectors:

m2
j=1...N = f 2

(
1 + q2 − 2q cos

(
jπ

N + 1

))
and

A′
j=1...N =

(
sin
(

jkπ
N + 1

)
, k = 1 . . . N

)
.

(B.2)

All vectors are massive since all gauge symmetries are bro-
ken. We recognize in (B.2) the specific (band-like) massive
spectrum of clockwork models.

The masses of the Higgs-like rk scalar fields depend on
the choices of parameters in (2.1) and do not necessarily lie
in a band.

C Realizations of benchmark QCD axion models

We discuss the compatibility of usual benchmark invisi-
ble QCD axion models, namely KSVZ [61,62] and DFSZ
[63,64] models, with our setup. In these models, theU (1)PQ
anomaly with respect to QCD is respectively carried by

Table 3 Colored fermions
charged under the quiver gauge
group of Fig. 1, canceling
SU (3)2

c −U (1)i anomalies and
leading to a QCD axion (U (1)a
charges are those imposed by
(C.1), functions of qR which is
arbitrary)

U (1)1 U (1)2 U (1)3 · · · U (1)N SU (3)c U (1)a

QL ,0 −q 0 0 · · · 0 3 qR + 1

Qi=1...q
L ,1 1 −q 0 · · · 0 3 qR + q

Qi=1...q2

L ,2 0 1 −q · · · 0 3 qR + q2

· · · · · · · · · · · · · · · · · · · · · · · ·
Qi=1...qN

L ,N 0 0 0 · · · 1 3 qR + qN

Qi=1···(1+q+···qN )
R 0 0 0 · · · 0 3 qR

Table 4 Colored fermions with
mass terms from higher
dimensional operators (qR is
arbitrary)

U (1)1 U (1)2 · · · U (1)N SU (3)c U (1)a

QL ,0 −q 0 · · · 0 3 qR + 1

Qi=1...q
L ,1 1 0 · · · 0 3 qR + q + q3 + · · · + qq

2N−1

Qi=1···(1+q)
R 0 0 · · · 0 3 qR
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Table 5 SM-singlet fermions
charged under the quiver gauge
group of Fig. 1, canceling cubic
quiver anomalies of Table 3 (qL
is arbitrary)

U (1)1 U (1)2 U (1)3 · · · U (1)N SU (3)c U (1)a

ψR,0 −q 0 0 · · · 0 1 qL + 1

ψ
i=1...q
R,1 1 −q 0 · · · 0 1 qL + q

ψ
i=1...q2

R,2 0 1 −q · · · 0 1 qL + q2

· · · · · · · · · · · · · · · · · · · · · · · ·
ψ

i=1...qN

R,N 0 0 0 · · · 1 1 qL + qN

ψ
i=1···(1+q+···qN )
L 0 0 0 · · · 0 1 qL

Table 6 Colored fermions
giving the major contribution to
the axion mass [U (1)a charges
are those imposed by (C.3),
functions of q0 which is
arbitrary)]

U (1)1 U (1)2 SU (3)c U (1)a

QL ,0 0 0 3 q0

QR,0 3 0 3 q0 − 1

Qi=1...3
L ,1 1 0 3 q0 + q + q3

Qi=1...3
R,1 0 3 3 q0 + q3

Qi=1...9
L ,2 0 1 3 q0 + q2

Qi=1...9
R,2 0 0 3 q0

additional heavy colored particles or by the standard model
quarks, and the PQ symmetry arises from the introduction
of a SM singlet scalar field (as well as an extra Higgs dou-
blet for the DFSZ model). The phase shift symmetry of this
singlet is not gauge protected in their original realization,
consequently so we replace it by the accidental symmetry
of our quiver model. We will also discuss, in the case of the
KSVZ model, how the additional fermions can break U (1)a
and generate (2.5) as a quantum correction.

C. 1 KSVZ model: anomaly mediated by additional
particles

The original KSVZ model was already (anonymously and
briefly) introduced in (3.10), where σ is a SM gauge sin-
glet, and some quiver versions of it were already described
in (3.11) and (3.13). There, the needed couplings were ad
hoc, in contrast with the fact that we talked about an acci-
dental Peccei–Quinn symmetry. However, we can choose the
fermions charges so that the procedure of (3.11) [respec-
tively (3.13)] is automatically implied by the most general
renormalizable gauge-invariant lagrangian (respectively the
lowest-order gauge-invariant lagrangian which renders all
the additional fermions massive), given the gauge charges
of the different fields involved. This is for instance achieved
if the fermions charges are those displayed in Table 3 (respec-
tively Table 4).

For example, the most general renormalizable lagrangian
associated with Table 3 is, with such charges:

L ⊃ −φ0QL ,0Y0,i Qi
R − φ1Qi

L ,1Y1,i j Q
j
R + · · · + h.c. ,

(C.1)

and it defines the U (1)a charges of the fermion bilinears
which make U (1)a accidentally conserved, which in turn
determine the U (1)a × SU (3)2 anomaly and justify the pro-
cedure (3.11).

Along with these colored fermions, one must also add
fermions only charged under the quiver gauge group to cancel
the U (1)i ×U (1) j ×U (1)k anomalies. A way of achieving
this for (3.11) is presented in Table 5.

One can check at the level of these fermionic contents that
the models are gauge-anomaly-free, and at the level of their
most general renormalizable lagrangian that they preserve an
anomalous U (1)a global symmetry.

Still, we only considered renormalizable lagrangian, so we
could ask whether Planck-suppressed fermionic terms will
be generated along with (2.5), whether such terms explicitly
break U (1)a and whether they can induce quantum correc-
tions to the axion mass. In the cases discussed above, we can
supplement (C.1) by:

L ⊃ −
φ
q∗
1 · · ·φqN ∗

N

Mq+···+qN−1
P

QL ,0Y
′
0,i Q

i
R

−
φ∗

0φ
(q−1)∗
1 φ

q2∗
2 · · ·φqN ∗

N

Mq+···+qN−1
P

Qi
L ,1Y

′
1,i j Q

j
R + · · · + h.c. ,

(C.2)

which now explicitly breaks U (1)a and induces loop cor-
rections to m2

a . However, such corrections are proportional
to the factor Y ′

Mq+···+qN−1
P

since U (1)a is perturbatively pre-

served when those terms are equal to zero. Hence, by com-
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Table 7 Matter content for the
quiver DFSZ model (U (1)a
charges are those imposed by
(Appendix C.5), functions of
qQ , qH , qe, qEW and qL which
are arbitrary)

Fields SU (3)c SU (2)EW U (1)Y U (1)1 U (1)2 U (1)3 · · · U (1)a

QL 3 2 1
6 − 4q

3 0 0 · · · qQ

uR 3 1 2
3 − q

3 0 0 · · · qQ + qH

dR 3 1 − 1
3 − q

3 0 0 · · · qQ − qH − 2

LL 1 2 − 1
2 − 4q

3 0 0 · · · qe + qH + 2

eR 1 1 −1 − q
3 0 0 · · · qe

H1 1 2 1
2 q 0 0 · · · qH

H2 1 2 − 1
2 q 0 0 · · · −qH − 2

Qi=1...16
L ,EW 1 2 0 q 0 0 · · · qEW

Qi=1...16
R,EW 1 2 0 0 0 0 · · · qEW + 1

Qi=1...5
R,0 3 1 0 −q 0 0 · · · qL − 1

Qi=1...q
R,1 3 1 0 1 −q 0 · · · qL − q

Qi=1...q2

R,2 3 1 0 0 1 −q · · · qL − q2

· · · · · · · · · · · · · · · · · · · · ·
Qi=1···(5+q+q2+···qN )

L 3 1 0 0 0 0 · · · qL

paring with (2.7) where m2
a ∼ 1

Mq+···+qN−3
P

, we conclude that

(2.7) gives the leading contribution to the axion mass.18

However, this conclusion depends on the choice of gauge
charges. For instance, if one chooses q = 3, N = 2 and
the gauge charges of Table 6, one can write the following
lagrangian:

L ⊃ − QL ,0MQR,2 − φ0QL ,0Y00QR,0 − φ1QL ,1Y11QR,1

− φ2QL ,2Y22QR,2 − φ2∗
2

MP
QL ,2Y21QR,1

− φ2∗
1 φ6∗

2

M7
P

QL ,1Y
′
10QR,0 + h.c.

(C.3)

(where we omitted flavour indices and some gauge invariant
terms which do not break U (1)a and thus have no impact
on the discussion). The five first terms of (C.3) fix the U (1)a
charges displayed in Table 6, whereas the last one breaks this
charge assignment since it has a global charge −1−q2 −q4.
However, as soon as one of the M,Y (′) is zero,U (1)a is con-
served. Consequently, (C.3) induces a loop correction to m2

a
proportionnal to 1

M8
P

whereas the square of (2.7) is propor-

tionnal to 1
M9

P
. Thus, in this case, gravitational corrections

to the fermion lagrangian induce a mass for the axion which
competes with the pure scalar breaking of (2.5).

18 When one takes into account the ψ fields of Table 5, one could also
write gauge-invariant Majorana mass terms for the ψL ’s, but these do
not break U (1)a .

C. 2 DFSZ model: anomaly mediated by standard model
quarks

We focus now on the DFSZ model, since, contrary to the
KSVZ model, the original model has the important feature
that the anomaly is only carried by the standard model quarks.
It makes uses of two Higgs doublets H1,2, an extra singlet
scalar σ and can be summarized as follows:

L ⊃ − uRH1YuQL − dRH2YdQL

− eRH2YeLL − λH1H2σ
2

u,d triangles−−−−−−−→ i
32π2 log(H1H2)GG̃ − λH1H2σ

2 .

(C.4)

The first line of (C.4) is invariant under a global U (1) which
acts on the scalars as σ → eiασ, H1,2 → e−iαH1,2. The
symmetry is spontaneously broken and, according to the sec-
ond line of (C.4), anomalous with respect to QCD.

In order to adapt this construction to the case of our
quiver, it is important to disentangle two features of (C.4):
the log(H1H2) operator originates from the Yukawa terms of
the SM quarks which run into loops,19 whereas the H1H2σ

2

term (and the rest of the tree-level lagrangian) defines which
symmetry is respected.20 Thus, if we want to apply this logic
to U (1)a , we must identify gauge charges of H1 and H2
which will preserve the accidental U (1)a , and identify a
gauge-invariant operator O , charged underU (1)a , which will

19 Actually, since three quark families run in the loops, the correct
operator is log((H1H2)

3).
20 and thus which combination of the phases of the scalars is a genuine
massless Goldstone boson. If σ is assumed to get an intermediate scale
vev, this boson is mostly located on the phase of σ and evades the
astrophysical constraints on an electroweak scale axion.
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Fig. 6 Feynman diagrams
leading to the
axion–vector–vector couplings

Fig. 7 Range of parameters for
a DM ALP of mass ma ≤ 10−2

eV (axions suitable to saturate
the DM relic density are found
in colored regions, all axes are
log-scale)

induce an axionic coupling log(O)GG̃ to the gluons. We can
immediately understand from Sect. 3.2 that O must be of high
dimension, so it must be generated by more colored particles
than standard model quarks alone. It would thus be more
precise to talk about a mixed DFSZ-KSVZ model, where
the anomaly is mediated by both standard model quarks and
additional fermions. In particular, we loose the pleasant eco-
nomical quark content of the original DFSZ model, since
one needs a growing number of additional particles as in the
KSVZ case.

As an (unoptimized) example of this procedure, we choose
the matter content and gauge charges of Table 7 in addition
to that of Fig. 1.21

21 All anomalies involving a standard model factor are canceled. The
cubic, as well as the mixed abelian-gravitational anomalies of the quiver
gauge group can be canceled by adding heavy SM-singlet fermions with
charges identical to those of the additional fermions in Table 7, with SM
representations turned into multiplicities, in the spirit of Table 5.

With these charges, one has the following most general
renormalizable interaction terms:

L ⊃ −uRH1YuQL − dRH2Yd QL − eRH2YeLL

− φ0Qi
R,EWYEW,i j Q

j
L ,EW − φ0Qi

R,0Y0,i j Q
j
L

− φ∗
1 Q

i
R,1Y1,i j Q

j
L − φ∗

2 Q
i
R,2Y2,i j Q

j
L − · · ·

− λH1H2φ2
0 + h.c.

triangles−−−−−→ − i

32π2 log
(
(H1H2)

3φ5
0φ

∗q
1 φ

∗q2

2 · · ·φ∗qN

N
)
GG̃

− (λH1H2φ2
0 + h.c.) ,

(C.5)

where we identify O = (H1H2)
3φ5

0φ
∗q
1 φ

∗q2

2 · · ·φ∗qN

N .U (1)a
charges are assigned to H1,2 so that H1H2φ

2
0 is invariant,

and log(O)GG̃ makes U (1)a anomalous. The axion effec-
tive decay constant displays the same asymptotic dependence
than (2.6): fa ∼ f

qN .

It is worth noticing that a µ2H1H2 or µH1H2σ term was
not included in (C.4) in order to maintain a global symmetry,
whereas we now cannot write something else than (C.5) that
would respect gauge symmetries, which was the original goal
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Fig. 8 Sensitivity of
CASPEr-Wind to the ALPs
(colored regions indicate axions
suitable to saturate the DM relic
density, detection happens in the
upper left part of the plot, blue
lines are identical to those of
Fig. 5, all axes are log-scale)

when we introduced the quiver. The first allowed U (1)a-

violating operator is again φ0φ
q
1 · · ·φqN

N and the discussion
around Eq. (3.6) applies.

D Couplings of the axion to gauge vectors

We compute the axion–photon–photon coupling for the
model of Fig. 1 and Table 1. However, the calculation per-

formed here is very general and can also be seen as a deriva-
tion of (3.10).

One considers first a theory with a gauge group (which
we keep unspecified until the end, where we will identify it
with QCD or electromagnetism) of generators T a , coupling
constant g and vector Aa

µ (with field strength Fa
µν = ∂µAa

ν −
∂ν Aa

µ+· · · ), a complex scalar field σ and two chiral fermions
ψL ,R in the fundamental representation of the gauge group,
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with a Yukawa coupling to the scalar:

L = − 1
4g2 F

2
µν,a − ψLγ µDµψL − ψRγ µDµψR

− |∂σ |2 − V (|σ |2) − (yσψLψR + h.c.) ,
(D. 1)

where Dµ = ∂µ − i Aa
µT

a . This lagrangian has a U (1)
global symmetry under which σ → eiασ and ψLψR →
e−iαψLψR . The transformation of the fermion bilinear
makes this global symmetry anomalous.

We choose V (|σ |2) so that σ gets a vev f . We then work
out the axion dynamics by parametrizing σ = f√

2
ei

a
f :

L ⊃ − 1
4g2 F

2
µν

−ψγ µ

(
Dµ + y f√

2

)
ψ − 1

2
(∂a)2 + i

y√
2
aψγ5ψ ,

(D. 2)

where we only kept the linear terms in a and merged the two
chiral fermions in a Dirac fermion.

One gets a coupling between the axion a and the gauge
boson A at one loop via the diagrams of Fig. 6.

The effective coupling is cµν,abaAa
µA

b
ν , here in momen-

tum space with Mψ = y f√
2

and at first order in p
Mψ

, q
Mψ

:

cµν,ab = −1
4π2 f

δabϵµνρσ pρqσ

(
1
2

− p2 + q2 + pq

12M2
ψ

)

(D. 3)

which, with the identification pA(p) → −i∂A(x), gives
finally the one-loop coupling between the axion and the vec-
tor bosons:

L ⊃ − ϵµνρσ

32π2 f
aFa

µνF
a
ρσ

+ ϵµνρσ

192π2M2
ψ f

(−�aFa
µνF

a
ρσ + 2∂µa∂ηFa

ρσ F
a
νη) .

(D. 4)

The first term of (Appendix D. 4) is the usual axionic coupling
to gauge fields, while the other terms match similar calcu-
lations already performed in the literature (see for example
[65]).

If one now adds to the theory (Appendix D. 1) another set
of fermions coupled in the following way:

L ⊃ −ψ ′
LγµDµψ ′

L − ψ ′
RγµDµψ ′

R − (y′σ∗ψ ′
Lψ ′

R + h.c.)

axion terms−−−−−−−→ −ψ ′γµ
(
Dµ + y′ f√

2

)
ψ ′ − i

y′
√

2
aψ ′γ5ψ ′ ,

(D. 5)

there is no anomaly anymore, but there remains non-
anomalous couplings to the gauge fields (where we defined

M ′
ψ = y′ f ):

O ⊃ ϵµνρσ

192π2 f

×
(

1

M2
ψ

− 1

M ′2
ψ

)(
− �aFa

µνF
a
ρσ + 2∂µa∂ηFa

ρσ F
a
νη

)
.

(D. 6)

Specializing to electromagnetism, normalizing the photon

field Aµ → eAµ and choosing σ = φi = f√
2
e
i qi a/ f√

1+···+q2N ,
one obtains (4.4).

E Scan of the parameters which allow for (detectable)
ALP DM

We extend in this appendix the analysis performed in Sect. 4
to more values of q and N , since the DM examples in Fig. 3
have been arbitrarily chosen. Figure 7 displays all DM can-
didates in our setup when q ≤ 6 and N ≤ 5, with tuning
restrictions identical to those used in Fig. 3. As mentioned
in Sect. 4, those results were obtained assuming that U (1)a
was broken above the inflation scale. Indeed, we can see
from Figs. 3, 4 and 7 that most of our ALP DM candidates
require f to be high (whereas the inflation scale, given by the
Hubble rate during inflation, verifies Hinflation . 1014 GeV).
Consequently, we only focus on the broken case (which may
suffer from isocurvature fluctuations issues, which are how-
ever negligible when f is close to MP ).

We also allow in Fig. 8 (which, as Fig. 5, compares the sen-
sitivity of the CASPEr-Wind experiment with the predictions
of our model) for more values of q and N , but also for Mc <

MP . The upper panel of Fig. 8 couples the standard model
with the first site of the quiver while the lower panel couples
it to the last site of the quiver (which, as visible in the plot,
increases the coupling and thus the detectability of the setup).
We see from Fig. 8 that CASPEr-Wind experiments are more
sensitive to high scale (e.g. gravitational) values of Mc.
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Inspired by recent studies of high-scale decay constant or flavorful QCD axions, we review

and clarify their existence in e↵ective string models with anomalous U(1) gauge groups.

We find that such models, when coupled to charged scalars getting vacuum expectation

values, always have one light axion, whose mass can only come from nonperturbative

e↵ects. If the main nonperturbative e↵ect is from QCD, then it becomes a Peccei-Quinn

axion candidate for solving the strong CP problem. We then study simple models with

universal Green-Schwarz mechanism and only one charged scalar field: in the minimal

gaugino condensation case the axion mass is tied to the supersymmetry breaking scale

and cannot be light enough, but slightly refined models maintain a massless axion all the

way down to the QCD scale. Both kinds of models can be extended to yield intermediate

scale axion decay constants. Finally, we gauge flavorful axion models under an anomalous

U(1) and discuss the axion couplings which arise.

1. Introduction and Conclusions

The Peccei-Quinn (PQ) symmetry [1] and its light axion [2] (for reviews, see [3])
is probably the most elegant solution to the strong CP problem. Its implementa-
tion in string theory is natural since at tree-level in supergravity there are often
continuous PQ like symmetries, usually broken to discrete subgroups by quantum
corrections and nonperturbative e↵ects. On the other hand, realistic string models
often contain an “anomalous” abelian gauge symmetry, called U(1)X in what fol-
lowsa, with anomaly cancellation à la Green-Schwarz (GS). Such a symmetry has
multiple phenomenological applications: generating hierarchical fermion masses and
mixing angles via the Froggatt-Nielsen mechanism [5], relating the weak angle to
anomaly coe�cients [6] and breaking supersymmetry [7].
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a
We consider the minimal case of one anomalous abelian symmetry, like in the original context it

was studied [4], the perturbative heterotic string. Our arguments do however apply to other string

models as well, in particular orientifold models, by relabeling appropriately the modulus field, as

in our Section 6.
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In this note we comment on one additional generic property of models with an
anomalous U(1): at the perturbative level, and if there is at least one charged scalar
field which gets a vacuum expectation value (vev), such models always contain a po-
tential axion candidate, which can only get a mass by turning on nonperturbative
e↵ects (and simultaneously turning on the coupling to gravity in supersymmet-
ric models, where an R-symmetry survives even after inclusion of nonperturbative
e↵ects). We study the symmetries responsible for protecting the axion and the con-
ditions under which the axion is light enough for solving the strong CP problem
in a heterotic framework with a single charged scalar and hidden sector gaugino
condensation, and we conclude that realistic supersymmetry breaking is incom-
patible with a light enough axion. However, we also give a refined example where
nonperturbative dynamics still preserves a massless axion all the way to the QCD
scale, even after coupling to gravity. Finally we show that in such a context and
irrespective of the details of the model under consideration, gauge invariance fixes
completely the couplings of the axion to matter when the charged scalar is used
as a flavon field. The couplings to Standard Model (SM) charged fermions are pro-
portional to their anomalous charges and the couplings to the gauge fields to the
mixed U(1)XG2

a anomalies, where Ga = SU(3)c, SU(2)L, U(1)Y are the SM gauge
group factors. Gauge coupling unification conditions alone then determine the ratio
of the coupling to the photon to the coupling to the gluons to be E/N = 8/3 at the
unification scale. These couplings are similar to the ones in the axiflavon/flaxion
models [8], but the symmetry is now gauged.

The generic value of the axion decay constant in these simple setups is of order
the unification scale. Such values require a tuned or nonstandard cosmology in order
to ensure a consistent relic density for the axion. We therefore discuss in the final
section models of moduli stabilization which display an intermediate scale axion
decay constant. However, aiming for such an intermediate scale decay constant
may not be required since several (recent) studies have shown that the resulting
cosmology is viable and does not necessarily involve a severe amount of tuning [9].
Moreover, new proposals for axion dark matter searches are sensitive to GUT scale
values for the axion decay constant [10].

2. Anomalous U(1) models

2.1. Perturbative axion in anomalous U(1) models

In this section one will prove the following result:

Theorem. In field (string) theory models of a U(1)X gauge theory with a Stueck-
elberg (Green-Schwarz) mechanism and at least one charged scalar field acquiring
a non-zero vacuum expectation valueb, at the perturbative level there is always a
massless pseudoscalar.

b
In case of additional U(1) gauge symmetries, anomalous or not, the counting may be di↵erent

but a similar result always applies.
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Proof. Let us consider an abelian gauge theory in a Stueckelberg phase, coupled
to charged scalars �i of charges Xi, of lagrangian

L = |Dµ�i|
2

�
1

4
F 2
X,µ⌫ +

1

2
(@µaS +MAX,µ)

2 + · · · , (1)

where · · · are other terms like axionic couplings, in which case it is more appropriate
to use the term Green-Schwarz rather than Stueckelberg for such a model. Since we
are interested in axion-like particles, without loosing generality we only consider in
what follows charged scalars having non-vanishing vev’s, parametrized as

�i =
Vi + hi

p
2

e
i✓i
Vi . (2)

Gauge transformations act as

�AX,µ = �
1

g
@µ↵ , �✓i = XiVi↵ , �aS =

M

g
↵ . (3)

From (1) one finds that the Goldstone boson which mixes in the usual way @µ✓XAµ
X

with the gauge field is given by (up to a normalization factor)

✓X = gXiVi✓i +MaS . (4)

We have therefore N + 1 potential axions/pseudoscalars, one of which is absorbed
by the gauge field via the Higgs mechanism [11]. The perturbative scalar potential
is of the formc

V =
X

↵

�↵�
m(↵)

1
1 · · ·�

m(↵)
N

N + h.c. , (5)

and gauge invariance imposes the restriction X1m
(↵)
1 + · · · +XNm(↵)

N = 0. Simple
matrix algebra tells us that the maximal number of independent gauge invariant
operators that can be written is equal to N�1. On the other hand, a complete basis
of such gauge invariant operators also defines the physical pseudoscalars/axions
which can be expressed as a combination of the ✓i’s, since their phases

✓↵ =
m(↵)

1 ✓1
V1

+ · · · +
m(↵)

N ✓N
VN

(6)

are automatically orthogonal to the Goldstone boson (4). It is convenient to repre-
sent the pseudoscalars above as vectors in a N + 1 dimensional space, such as for
example, up to normalization

~✓X = (gX1V1, · · · , gXNVN ,M) , ~✓↵ =

 
m(↵)

1 ✓1
V1

, · · · ,
m(↵)

N ✓N
VN

, 0

!
. (7)

The scalar potential (5) then gives masses to at most N � 1 pseudoscalars. Con-
sequently, there is always (at least) one leftover massless pseudoscalar, which will

c
It can be checked that the argument below does not change if some of the fields in the scalar

potential appear with a complex conjugation.



December 12, 2018 16:24 WSPC/INSTRUCTION FILE
AxionsAndAnomalousU˙1˙s

4

be a PQ axion candidate if it has the appropriate couplings. At the perturbative
level, it is therefore always possible to define a PQ symmetry in models with an
anomalous U(1)X gauge factor.

As one will see in the next sections, nonperturbative e↵ects can generate gauge-
invariant potential terms of the form

Vnp =
X

�

e�q�s0�ic�aS���
p(�)
1

1 · · ·�
p(�)
N

N + h.c. , (8)

where s0 is the vev of a scalar and q� , c� are numbers. Whenever such terms are gen-
erated, the leftover massless axion will get a mass from e↵ects other than the usual
QCD ones. Such terms can be generated by field-theory nonperturbative e↵ects,
instantonic e↵ects in string theory or quantum gravity e↵ects more generally.

2.2. Anomalous U(1): the heterotic case

In perturbative heterotic string theory constructions, there is only one possible
anomalous U(1)X and one field, the universal axion-dilaton S, transforming non-
linearly under gauge transformations. Those act on the di↵erent superfields involved
asd

�VX = ⇤ + ⇤̄ , ��i = �2 qi �
i ⇤ ⌘ �2Xi⇤ ,

�S = �GS ⇤ ⌘ �2 XS⇤ , (9)

where Xi, XS define the holomorphic Killing vectors. The modified Kahler potential
for the universal axion-dilaton is

K = � ln (S + S̄ � �GSVX) (10)

and it encodes the Fayet-Iliopoulos (FI) term which appears in the D-term

DX = XI @IG = XI @IK = qi �
i @iK +

�GS

2(S + S̄)
, (11)

where in (11) G = K+ln |W |
2 and we used the gauge invariance of the superpoten-

tial XI@IW = 0. We consider �GS > 0 in what follows. In all known perturbative
constructions there always exists in the massless spectrum a field with appropriate
sign of the charge (negative in our conventions) whose vev is able to cancel pertur-
batively the (field-dependent) FI term and maintain supersymmetry. We consider
the minimal case of one such field, called � in what follows, and normalize its charge
to �1, following [7].

Anomaly cancellation conditions relate mixed anomalies Ci = U(1)XG2
i , where

Gi are the various semi-simple factors of the gauge group G =
QN

i=1 Gi, such that

�GS =
C1

k1
=

C2

k2
= · · · =

CN

kN
=

1

192⇡2
Tr(qX) , (12)

d
We use here the same convention as in [7] to define charges of chiral superfields.
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where the ki’s are the Kac-Moody levels defining the tree-level gauge kinetic func-
tions

fi = ki S . (13)

The last term in (12) is the FI term, proportional to the mixed U(1)X - gravitational
anomaly, where Tr(qX) is the sum of U(1)X charges over all the charged fermions
in the spectrum. Therefore, once the FI term is generated, all mixed anomalies have
to be di↵erent from zero and the theory must contain charged matter.

3. A light axion: gaugino condensation and anomalous U(1) in
heterotic theories

Gaugino condensation in heterotic theories in the presence of the (generic) anoma-
lous U(1) gauge symmetry discussed in Section 2.2 has to fulfill the consistency
requirements dictated by the coexistence of two local symmetries: supersymmetry
and the gauge symmetry. However, although the pure Super-Yang-Mills gaugino
condensation superpotential e�3S/2b0 , where b0 is the beta function of the hidden
sector, is not gauge invariant, gauge invariance does not forbid gaugino conden-
sation to take place, as was discussed in the heterotic string case some time ago
in [7]. It was shown there that the GS cancellation of gauge anomalies restricts the
nonperturbative dynamics such that the nonperturbative superpotential is precisely
gauge invariant.

Taking for simplicity a SUSY-QCD model with Nc colors and Nf < Nc flavors
and denoting by Q (Q̃) the hidden sector quarks (antiquarks) of U(1)X charges q
(q̃), the GS conditions fix completely the sum of the charges to be

Ch =
1

4⇡2
Nf (q + q̃) = �GSkh , (14)

where kh is the Kac-Moody level of the hidden sector gauge group. This turns out
to be precisely the gauge invariance condition of the nonperturbative superpotential

Wnp = (Nc � Nf )

"
e�8⇡2khS

det(QQ̃)

# 1
Nc�Nf

. (15)

Notice that anomaly cancellations (12) and the structure of the D-term (11) un-
ambiguously show that the charge of the hidden sector mesons QQ̃ has the same
sign as the induced FI term. Notice also that the charges allow for a perturbative
coupling of the form

Wp = �j̃i

✓
�

MP

◆q+q̃

QiQ̃j̃ . (16)

Since � gets a large vev of the order of the FI term, below the scale of U(1)X
gauge symmetry breaking the perturbative term (16) becomes a mass term for
the hidden sector quarks and the dynamics of condensation is essentially that of
supersymmetric QCD.
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3.1. The light axion

In supersymmetric QCD there is no light axion. The only global anomaly-free sym-
metry in the UV is an R-symmetry, which is broken explicitly by the mass term. In
the model introduced in [7] and briefly reviewed above, the mass term is replaced
by the coupling (16). Then it is easy to check that the following global R-symmetry

✓0 = ei↵✓ , (Q, Q̃)0(✓0) = e
i(Nf�Nc)↵

Nf (Q, Q̃)(✓) ,

�0(✓0) = e
2iNc↵

Nf (q+q̃)�(✓) , S0(✓0) = S(✓) , (17)

is exact and anomaly-free with respect to SU(Nc)e. It is also spontaneously broken,
therefore one expects a massless Goldstone boson. More generally, one can combine
the R-symmetry above with the gauge symmetry. Indeed:

�0(✓0) = eiq�↵�(✓) , S0(✓0) = S(✓) �
i

2
qS↵ ,

Q0(✓0) = eiqQ↵Q(✓) , Q̃0(✓0) = eiqQ̃↵Q̃(✓) (18)

is a (non-anomalous) R-symmetry of the (non-perturbative) superpotential if:

q� =
2Nc

(q + q̃)Nf
�

P

q + q̃
, qQ + qQ̃ =

2(Nf � Nc)

Nf
+ P , qS =

NfP

4⇡2kh
, (19)

where P is a number and P = 0 corresponds to the R-symmetry (17).
The model has three pseudoscalars, on which we now concentrate. In order to

identify the massless axion, it is enough to parametrize the original fields by ignoring
any other field than those pseudoscalars. By defining them in order to have canonical
kinetic terms, we are led to the parametrization

S = s0

✓
1 + i

p
2
aS
MP

◆
, � =

V
p
2
e

ia�
V , M = QQ̃ = M0INf⇥Nf e

i
q

2
NfM0

aM
,

(20)
where s0, V , and M0 are vev’s. One combination of those pseudoscalars

aX /
�GS
p
2s0

aS + 2V a� � (q + q̃)
p
2NfM0aM (21)

is absorbed by the U(1)X gauge field. Another one is shifted by the symmetry (18-
19), which we choose such that it leaves aX invariant. In the limit where M0 ⌧

V,MP , the value of P which achieves this is

P =
2Nc

Nf

⇣
1 +

�2GSM2
P

8V 2s20

⌘ + O

⇣ M0

V,MP

⌘
, (22)

e
The anomalies with respect to U(1)X can be canceled by fields from other sectors, for example

(MS)SM fields.
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and the associated symmetry current gives us the expression of the physical axion
aPQ:

Jµ /
1

1
V + 8s20V

�2GSM2
P

@µ

 
a� �

2
p
2s0V

�GSMP
aS

!
+ O

h M0

V,MP

i
⌘ fa@µaPQ , (23)

where we identified the axion decay constant

1

fa
=

s
1

V 2
+

8s20
�2GSM

2
P

. (24)

Natural values are of order the unification scale fa ⇠ MGUT , although smaller values
are possible in orientifold models.

3.2. Simplified description

If the scale of hidden sector condensation is well below the scale of U(1)X gauge
symmetry breaking, which we assumed in deriving expressions (22-23), there is an
approximate decoupling between the hidden sector dynamics and the U(1)X dy-
namics. In particular, in this limit the SU(Nc) dynamics is essentially the one of
supersymmetric QCD, which has no light particles, therefore no light composite ax-
ion. It should be therefore possible to describe accurately the light axion physics by
integrating out the hidden sector. By doing this, one finds an e↵ective superpotential

Weff = W0 +Nc(det�)
1

Nc M
3�Nf/Nc

P

✓
�

MP

◆Nf (q+q̃)

Nc

e�
8⇡2khS

Nc , (25)

where the constant W0 was added for the purpose of coupling to gravity later
on. The e↵ect of the hidden sector condensation is therefore of generating a non-
perturbative superpotential, sometimes said to be of “fractional instanton” type, as
compared to “stringy instanton” e↵ects, which would be proportional to e�8⇡2S in
our conventions. According to our general discussion in Section 2, the phase of the
nonperturbative term in (25) defines a physical axion, which is orthogonal to the
Goldstone boson aX precisely when the GS anomaly cancellation conditions (14)
are imposed. One can write explicitly aX and the (for now) massless axion aPQ by
introducing a rotation matrix

aX = cos ✓ aS + sin ✓ a� , aPQ = � sin ✓ aS + cos ✓ a� , (26)

with tan ✓ = 2
p
2s0V/(�GSMP ). Notice that aPQ coincides with the leading order

expression of the axionic current obtained in (23).
At the global supersymmetry level, the axion mass is protected by the R-

symmetry (22). However, after coupling to supergravity, the constant W0 breaks
explicitly the R-symmetry and as such the axion will get a scalar potential and
therefore a mass [12]. Without entering details of moduli stabilization, one expects
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a scalar potential of the form

V (aPQ) ⇠ W0Nc(det�)
1

Nc M
3�Nf/Nc

P

✓
V
MP

◆Nf (q+q̃)

Nc

e�
8⇡2khs0

Nc cos

✓
(q + q̃)Nf

Nc

aPQ

fa

◆
,

(27)

where the axion decay constant is given in (24). By using the order of magnitude
value for the gravitino mass m3/2 ⇠ W0 and the definition of the IR dynamical scale

⇤3
L = (det�)

1
Nc M

3�Nf/Nc

P

✓
�

MP

◆Nf (q+q̃)

Nc

e�
8⇡2khS

Nc , (28)

one finds that this axion can solve the strong CP problem if

m3/2⇤
3
L ⌧ 10�10f2

⇡m
2
⇡ . (29)

This is a very strong constraint, which favors in this minimal model low values of the
gravitino mass and of the dynamical scale ⇤L. Using the fact that in the minimal
model of [7] supersymmetry was broken, and m3/2 ⇠ ⇤3

L/(VMP ), one finds, without
an additional source of supersymmetry breaking, the constraint m3/2 ⌧ 10�14 eV,
which is not realistic in known mediations of supersymmetry breaking. In this model
therefore, an additional source of supersymmetry breaking is necessary, whereas
for a gravitino mass corresponding to standard mechanisms for supersymmetry
breaking, the axion is too heavy to solve the strong CP problem.

3.3. More refined analysis

Let us perform a slightly more general analysis, by keeping the hidden sector mesons
in the discussion. The hidden mesons are described by chiral (super)fields of charge
q + q̃ and have a Kahler potential, computed along the flat directions of SU(Nc),
equal to

K = Tr(M†M)
1
2 . (30)

The hidden mesons appear in the full superpotential

W = Wnp +Wp = (Nc � Nf )

"
e�8⇡2khS

det(M)

# 1
Nc�Nf

+ �j̃i

✓
�

MP

◆q+q̃

M i
j̃

(31)

and add a pseudoscalar axionic degree of freedom aM , that is encoded in the
parametrization (20). Notice that solving for M in (31) gives back (25). Out of
the original three pseudoscalars, one is the Goldstone boson absorbed by the gauge
field (21) and the other two are physical, called a1 and a2 in what follows. They can
be parametrized by the gauge invariant operators in (31) and, up to normalization,
can be written as

a1 ⇠ 8
p
2⇡2khs0aS +

r
2Nf

M0
aM , a2 ⇠

q + q̃

V
a� +

s
2

NfM0
aM . (32)
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Notice that they are both orthogonal to the Goldstone boson aX , as enforced by
gauge invariance. They are not orthogonal to each other, fact to be taken into
account in what follows. The hidden sector nonperturbative dynamics is giving a
mass to the linear combination

ah ⇠
a1

Nc � Nf
+ a2 , (33)

whereas the orthogonal combination al defined by (ah, al) = 0 is the massless (at
the global supersymmetric level) axion. For general vev’s its expression is relatively
involved. However, in the limit we considered in the previous sections M0 ⌧ V,MP ,
one can easily find that

al ⇠ a1 � Nfa2 ! aPQ (34)

is precisely the light axion (23,26), obtained by integrating-out from the start the
hidden sector mesons in the simplified description.

4. A massless axion: the 3-2 model

The main problem with the previous minimal model is that the hidden sector non-
perturbative dynamics was giving a mass to the axion through supergravity in-
teractions. Nonperturbative dynamics is however often instrumental for stabilizing
moduli, in our case the very modulus involved in the GS mechanism. The nat-
ural next step is to identify models in which the hidden sector nonperturbative
dynamics leaves an exactly massless axion, even after coupling to (super)gravity.
One way to achieve this goes as follows: at the perturbative level, as we proved
in Section 2.1, there is always a massless axion in models with anomalous U(1)X .
Suppose now that the hidden sector producing the nonperturbative dynamics has
an R-symmetry itself, in the limit in which the anomalous abelian gauge dynamics
is turned o↵. Then if the condensation breaks spontaneously the R-symmetry, there
is another R-axion coming from the hidden sector. In total there are therefore two
axions in the limit where gravity is decoupled. By turning on gravity and adding a
constant which breaks explicitly the R-symmetry, one (linear combination) of the
two axions becomes massive. But the other one remains massless down to the QCD
scale and behaves as an ideal candidate for a PQ QCD axion. Essentially the non-
perturbative dynamics is not adding a potential for the axion, but is just stabilizing
the GS modulus.

One explicit model of this type uses for the hidden sector the 3-2 model of
supersymmetry breaking [13]. The gauge group of the model is G = Gh ⇥U(1)X ⇥

· · · , where Gh = SU(3) ⇥ SU(2) is the hidden sector gauge group. The nonabelian
factor SU(3) is confining with a dynamical scale ⇤3. The matter content in the UV
contains the chiral multiplets

Q↵
i (3, 2) , L↵(1, 2) ,

Ū i(3̄, 1) , D̄i(3̄, 1) ! Q̄i
↵ = (D̄i, Ū i) , (35)
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in a self-explanatory notation (notice that the ↵ index of Q̄ is not gauged under
SU(2) and only represents a convenient repackaging). The model has two anomaly-
free global symmetries, one acting like hypercharge and an R-symmetry:

U(1)Y : Y (Q) =
1

6
, Y (Ū) = �

2

3
, Y (D̄) =

1

3
, Y (L) = �

1

2
,

U(1)R : R(Q) = �1 , R(Ū) = R(D̄) = 0 , R(L) = 3 . (36)

Below the scale of SU(3) condensation, the dynamics is governed by the gauge
invariant operators

X1 = QD̄L , X2 = QŪL , X3 = det Q̄↵Q
� . (37)

The low-energy superpotential, compatible with the symmetries and the condensa-
tion dynamics, is given by

We↵ = �X1 +
2⇤7

3

X3
. (38)

The analysis of the potential, including the D-term contributions, shows that hX1i

and hX3i are non-vanishing whereas hX2i vanishes. There are then two pseu-
doscalars in the hidden sector, the potential axions in the phases of X1 and X3.
One linear combination of them will get a mass from the nonperturbative dynamics,
and the second one gets a mass from couplings to (super)gravity, as in the model
described in the preceding section.

If we now couple this model to an anomalous U(1)X , we would get an additional
pseudoscalar from the high-energy anomalous U(1)X sector. There is therefore one
leftover axion which is massless all the way down to the QCD scale, being a good can-
didate for a PQ axion. To restrict the superpotential, one could use the anomalous
gauge symmetry instead of imposing the hypercharge global symmetry as above.
We can for instance give the following charges to the multiplets (where n is some
number):

U(1)X :

8
>>>><

>>>>:

X(Q) = 1
6 + n

X(Ū) = �
1
3

X(D̄) = 1
3

X(L) = �
1
2 �

n
3

=)

8
>>>><

>>>>:

X(X1) =
2n
3

X(X2) =
2(n�1)

3

X(X3) =
1
3 + 2n

X(⇤3) =
1
21 + 2n

7

, (39)

where, as in the model discussed previously, the condensation scale ⇤3 = e
�8⇡2k3S

7

is not-gauge invariant anymore due to the U(1)XSU(3)2 anomaly:

U(1)XSU(3)2 : C3 =
1

4⇡2
⇥

✓
1

3
+ 2n

◆
, U(1)XSU(2)2 : C2 =

1

4⇡2
⇥

8n

3
, (40)

while the nonperturbative superpotential is:

We↵ = �

✓
�

MP

◆ 2n
3

X1 +
2⇤7

3

X3
. (41)
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The first term in (41) is a perturbatively generated operator if we assume that n is
a multiple of 3

2 . If ⇤3 ⌧ V , analogously to the model in the previous section this
axion is essentially a combination of aS and a�. The axion decay constant will be
determined as before and is therefore naturally of the order of the unification scale.

5. Gauged flavor symmetry and axion couplings to matter

We now identify the U(1)X discussed in the preceding sections with a flavor sym-
metry [8, 14], since those are naturally anomalous due to the structure of fermion
masses and lead to the GS mechanism [15]. Doing this, we will see that we generate
axionic couplings for the light physical axion of the theory. Since the explicit exam-
ples discussed so far were supersymmetric, we focus on the Minimal Supersymmetric
Standard Model (MSSM) in what follows.

We then charge the di↵erent MSSM superfields such that the Yukawa terms, as
well as the µ-term, now explicitly involve �:

WMSSM =�u,ij
⇣ �

MP

⌘Xqi+Xuj+Xhu

QiUjHu + �d,ij
⇣ �

MP

⌘Xqi+Xdj
+Xhd

QiDjHd+

�e,ij
⇣ �

MP

⌘Xli
+Xej+Xhd

LiEjHd + µ
⇣ �

MP

⌘Xhu+Xhd
HuHd .

(42)
A clever choice of U(1)X charges for the MSSM fields then allows to account for,
or at least soften, the mass hierarchies and the µ�problem of the MSSM. We note
that the U(1)X charge of � makes it possible to choose most, if all, of the MSSM
charges to be positive, consistently with the GS conditions (12).

Starting from this superpotential, one can work out the couplings of the physical
axion to the MSSM fields. Triangle loop diagrams combined with the GS term give
for instance the coupling of the axion to QCD gauge fields:

L �

P
i(2Xqi +Xui +Xdi)

64⇡2

aPQ

fa
Tr(GG̃) =

C3

16

aPQ

fa
Tr(GG̃) , (43)

where aPQ is given by the expression in (23)f , its decay constant fa in (24) and
C3 is the SU(3) gauge anomaly coe�cient which appears in (12). Note that the
domain wall number NDW =

P
i(2Xqi + Xui + Xdi) can be chosen equal to 1

with a consistent choice of charges for the Higgs doublets. This expression can be
understood as a modification of the QCD kinetic function (13) when the quarks are
integrated out:

f3 = k3S �
C3

2
ln

✓
�

MP

◆
, (44)

which displays clearly the two canceling contributions to the U(1)XSU(3)2 anomaly.
Similar expressions hold for the other factors of the MSSM gauge groups.

f
This assumes that the axion is mostly carried by a� and aS , which requires that every other

dynamics breaking the PQ symmetry in the hidden sector or in the MSSM happens at a much

lower energy.
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We can deduce from this an interesting prediction of such models if we embed
them in unified theories. Indeed, in such a case the anomaly coe�cients are linked at
the unification scale. For instance, for SU(5) unification, the MSSM gauge couplings
verify g23 = g32 = 5

3g
2
Y , while the fact that S determines all the gauge kinetic

functions gives g2Y kY = g22k2 = g23k3 and the GS conditions impose C3
k3

= C2
k2

= CY
kY

.
All this can be combined to get C3 = C2 = 3

5C1. Thus, the ratios of the couplings
of the axion to the MSSM gauge fields are determined: for instance we get that
the ratio (at the GUT scale) between the electromagnetic coupling and the gluons
coupling is

E

N
=

8

3
. (45)

We stress that (45) is valid not only in flavor models of the type (42), but in any
anomalous U(1) model in which SU(5) unification of gauge couplings is imposed.
Indeed, (45) is enforced uniquely by unification and the kinetic function (44), de-
termined by gauge invariance.

There are also couplings of the axion to the spin of fermions arising from (42):

@µa

fa
( L,IXL,I�

µ L,I +  R,IXR,I�
µ R,I) . (46)

Their strength is given by the U(1)X charges of the MSSM fields, so the lighter
generations are more coupled than the heavier ones. Besides, once expressed in terms
of mass eigenstates, those couplings can be o↵-diagonal in flavor space, leading to
possible flavor-changing currents [16]. However, if the axion dynamics lies at the
string/GUT scale, all those e↵ects are very much suppressed and evade current
constraints. Still, since the couplings to the first generation of the MSSM are not
specifically suppressed, recently proposed experiments [10] could have the sensitivity
to probe such string scale decay constants in the near future.

6. Comments on moduli stabilization and intermediate scale decay
constants

Moduli stabilization and axions in string models with anomalous U(1) were studied
in various papers [17] and the issue of axion mass and decay constant in string
theory in various works, see e.g. [18, 19].

In the context of models of the type discussed in our note, the value of the
gravitino mass is highly correlated to the stabilization of the moduli. One should
distinguish the case where the coupling to supergravity lifts the axion mass, like in
the model in Section 3, from the case where it does not, like in Section 4. In the
first case, there is a strong correlation between the values of the gravitino mass and
the axion mass such that keeping the axion light requires very small values of the
gravitino mass. It was shown that in minimal models the requirement of “uplifting”
the vacuum energy to zero is only compatible with large values of the gravitino
mass [20]. In more sophisticated models with several charged scalars the gravitino
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mass can be reduced to the TeV range [21], but still far from the small values needed
to keep the axion light enough. In other stabilization schemes, it is still possible to
keep the axion light enough with more realistic values of the gravitino mass, see
e.g. [19]. On the other hand, for models in which coupling to supergravity does not
lift the axion mass, like in our Section 4, the scale of supersymmetry breaking is
completely decorrelated from the axion mass, which then only gets a mass from
QCD nonperturbative e↵ects.

The moduli stabilization in Sections 3 and 4 was also enforcing a high-scale
axion decay constant due to the U(1)X D-term expression (11). This can be relaxed
in models where the moduli sector is slightly more complex. For example, let us
consider a model of two moduli and a charged superfield:

K = �
3

2
ln(T1 + T1 � �1VX) �

3

2
ln(T2 + T2 + �2VX) + �†e�2VX� , (47)

on which the anomalous U(1)X symmetry acts as follows:

�VX = ⇤+ ⇤̄ , �� = 2�⇤ , �T1 = �1⇤ , �T2 = ��2⇤ . (48)

The U(1)X D-term potential VD = g2
X
2 (|�|

2 + 3�2
4(T2+T2)

�
3�1

4(T1+T1)
)2 now allows for

a high scale stabilization of the moduli with a small or intermediate scale �. To
illustrate this, we furthermore assume that there are two hidden strong sectors 1
and 2, with gauge kinetic functions given by:

f1 =
T1

4⇡
, f2 =

n2T1 + n1T2

4⇡
, where ni = ⇡�i are integers , (49)

such that the group 1 is anomalous with respect to U(1)X whereas f2 is gauge
invariant. Strong dynamics can then generate couplings of the type:g

W = W0 +A�n1e�2⇡T1 +Be�2⇡(n2T1+n1T2) . (50)

In order to compute the vacuum of the theory, we assume that the uplift of the
vacuum energy does not depend on the axions (e.g. à la KKLT [22]). Thus, as far
as the axions are concerned we look at first order for the supersymmetric vacuum:h

D�W ⌘ W� +K�W = An1�
n1�1e�2⇡T1 + �W = 0

DT1W = �2⇡A�n1e�2⇡T1 � 2⇡n2Be�2⇡(n2T1+n1T2) �
3

2(T1 + T1)
W = 0

DT2W = �2⇡n1Be�2⇡(n2T1+n1T2) �
3

2(T2 + T2)
W = 0 ,

(51)

g
Those nonperturbative e↵ects have periodicity Ti = Ti+1 and are called stringy instanton e↵ects.

The other option is to use fractional instanton e↵ects, like in Section 3, which would be, with the

present section notations, of the type e�2⇡Ti/N where N 2 N.
h
Those three equations can be combined to check that the D-term potential vanishes.
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and we solve this set of equations given the value of m3/2 = |W |eK/2

M2
P

and assuming

that W ⇡ W0 and |�|
2

⌧ T�1
1,2 , which we eventually check to be valid:

T2 + T2

T1 + T1
=

n2

n1
, 2⇡n2(T1 + T1)e

�2⇡n2(T1+T1) =
3W0

2B
, |�| =

�����
W0e⇡(T1+T1)

n1A

�����

1
n1�2

.

(52)
If we choose for instance m3/2 = 10 GeV, n1 = 3 and n2 = 1, we numerically get
T1 + T1 = 3(T2 + T2) ⇡ 6MP and |�| ⇡ 1011 GeV, which implies an intermediate
scale for the physical axion. However, in this setup the axion mass is tied to the
supersymmetry breaking scale and cannot be light enough to provide a proper
QCD axion. To cope with this, one can for instance implement the configuration
(47) within the 3-2 model of Section 4. This amounts to consider the following
superpotential (where all fields are those defined either above or in Section 4):

W = W0+�

✓
�

MP

◆ 2n
3

X1+
2⇤7

3

X3
+Be�2⇡k2(n2T1+n1T2) , with ⇤3 = e

�2⇡k1T1
7 . (53)

There is as expected a massless axion in the low-energy limit, and its associated
decay constant can be of intermediate scale: for instance, choosing n1 = n2 = 1, n =
6, k1 = 17, k2 = 4 and � ⇡ 1012 GeV, one finds X1/3

1 ⇡ 1012 GeV and a gravitino
mass of ⇡ 10�4 eV (consistent with gauge mediation of supersymmetry breaking).
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1 Introduction

Recently several conjectures were put forward constraining the properties of e↵ective
quantum field theories which can be consistently UV-completed by a theory of quantum
gravity. These conjectures are usually based on known properties of string theory as
well as black hole physics and are often dubbed swampland criteria [1]. Maybe the most
prominent of them is the weak gravity conjecture (WGC) [2].1 Closely related is the
swampland distance conjecture [26] and the conjectured absence of non-supersymmetric
AdS vacua [27].2 Lately, another conjecture [34], often called the de Sitter swampland
conjecture, attracted a lot of attention.3 This conjecture constrains the scalar potential
in a way that forbids the existence of (meta)stable de Sitter vacua in string theory.

In its most common formulation the weak gravity conjecture requires that in the
presence of gravity for any gauge interaction there should exist at least one charged
particle of mass m and charge q such that (in suitable units) q � m. This condition can
be motivated by the requirement that all charged black holes in the theory should be
able to decay without leaving a large number of stable remnants. Moreover, it makes
it impossible to take a smooth limit towards vanishing gauge coupling and therefore
ensures that gravity is always the weakest interaction. These statements allow for a
natural generalization for higher-form gauge fields where the charged objects are branes.
From the viewpoint of particle-particle (or brane-brane) interactions, the condition
q � m clearly implies that the electric repulsion between two such particles (or branes)
is dominating over their gravitational attraction. Therefore one could reformulate the
weak gravity conjecture as the requirement for the existence of at least one particle or
brane for each gauge symmetry such that its e↵ective interaction potential is repulsive.
This is the point of view we want to take here.4 It is the objective of this paper to
compute such interaction potentials in explicit string theory models and to test if they
obey the weak gravity conjecture.

On the other hand, runaway potentials are abundant in string theory and this
was considered as a serious phenomenological problem in the past [74]. Motivated
by the persistent presence of runaway potentials in string theory, it was also recently
conjectured in [75] that quintessence is maybe the only realistic outcome of a theory
of quantum gravity.5 In this paper we are imposing simultaneously the weak gravity
conjecture and the existence of a runaway (space) direction in which one field continues
to roll. While in the decompactification limit supersymmetry is restored and the weak
gravity conjecture is marginally satisfied, considering the rolling field at a di↵erent
value generates brane interactions and thus constraints from the point of view of the

1For refinements and recent tests of the weak gravity conjecture see [3–25].
2For further discussions of these conjectures see also [20, 21,24,28–31] and [32,33].
3Fundamental constraints on the consistency of de Sitter vacua have been previously pointed out

in [35,36]. After the appearance of possible counter examples [37–42] the original conjecture has been
refined in [43], see also [44]. Other attempts of refinement were suggested in [45–48]. For subsequent
discussions in the context of string theory see [49–73].

4In particular, we do not consider refined and stricter versions of the conjecture, such as for instance
the strong or lattice weak gravity conjectures.

5This possibility was entertained earlier in various incarnations. For an earlier attempt, see e.g. [76].
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weak gravity conjecture.
From a string theory viewpoint, the majority of tests of these conjectures were done

in the context of superstring compactifications. On the other hand, supersymmetry
breaking generates precisely the ingredients needed for non-trivial tests: runaway po-
tentials for moduli fields, e↵ective brane-brane interactions and the generation of scalar
potentials, potentially interpreted as dark energy. The goal of the present work is to
analyze the weak gravity conjecture in type I string theory with broken supersymmetry.
Arguably, the simplest and best understood way of breaking supersymmetry in string
theory is via compactification. This was first proposed at the field-theory (supergrav-
ity) level by Scherk and Schwarz [77], then applied to heterotic strings [78] and then
to open strings [79, 80]. The usual string theory computation of brane-brane interac-
tions [81] can be captured, at large separations r �

p
↵0, by a field theory computation

of tree-level exchange of supergravity massless fields between the branes. The setup
present however some stringy features that are not fully captured by a pure field-theory
analysis by keeping only the supergravity modes. Indeed this string theory construc-
tion contains, as we review in the next section, odd-winding closed string states with
a “wrong” GSO projection, which contain the would-be scalar tachyon. These states
do couple to branes and do mediate brane-brane interactions. Even if in the regime
of interest R �

p
↵0, with R the radius of the Scherk-Schwarz circle, the would-be

tachyonic scalar is actually very heavy, its exchange is the main contribution to the
brane-brane interactions at long distances that we compute below. Due to this feature,
we are forced to perform the computations at the string theory level, although the
results can be understood to some extent by field-theory arguments.

We use D1 brane interactions as a function of the separation in spacetime as a test
of the WGC. We find that at short distances and at one-loop there are attractive forces
which have a finite limit where the distance goes to zero, whereas at long distances those
attractive forces are exponentially suppressed. Since massive (closed strings) fields do
not mediate long range interactions, our interpretation is that at this order of pertur-
bation theory the branes still have a charge to mass ratio set by the supersymmetric
BPS condition. The limit of zero distance suggests that the corresponding self-energy
can be interpreted as a negative quantum correction to the tension, which will generate
an imbalance between gauge and gravitational forces at higher loops, leading to an
e↵ective repulsion at large distances consistent with the WGC. The one-loop attractive
forces, unsuppressed at small distances, will induce the formation of a finite number of
stable bound states of D1 branes. For very small string coupling, the number of such
states can become very large, consistent with the swampland distance conjecture [26].
Notice, however, that those states seem to become heavier when we decrease gs.

The structure of this paper is the following. In Section 2 we review type I string
theory with supersymmetry breaking by compactification. In Section 3 we discuss in
more details the resulting runaway potentials. Section 4 deals with the brane-brane
interactions at one-loop and their attractive nature, which also allows us to define the
quantum corrections to brane tensions. In Section 5 we notice that D1 branes not only
interact among themselves, but they also experience an interaction with the D9/O9
background branes/O-planes. Section 6 contains arguments beyond one-loop, which
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are needed in order to clarify the fate of the weak gravity conjecture in this setup. The
paper ends with some brief conclusions and future directions.

2 Type I strings with Scherk-Schwarz supersymme-

try breaking

Scherk-Schwarz breaking of supersymmetry is the oldest and probably the most popular
way of breaking supersymmetry perturbatively in string theory. Since we are interested
in brane interactions, moduli potentials and the weak gravity conjecture, the necessary
ingredients are present in the type I string and orientifolds [82]. Vacuum energy and
brane-brane interactions are nicely encoded in one-loop string amplitudes: torus and
Klein bottle for the propagation of closed strings, and the cylinder and the Möbius
for open strings. In what follows, all string amplitudes below should be multiplied by
the factor 1/(4⇡2↵0)d/2, where d is the number of noncompact spacetime dimensions.
One will add this factor at the end of our computations, in order not to overcharge
various formulae. Keeping this in mind, for 9 non-compact dimensions times a circle of
radius R on which the Scherk-Schwarz mechanism is implemented, the one-loop torus
amplitude is given by6

T =

Z

F

d2⌧

⌧ 11/2
2

n
(|V8|

2 + |S8|
2)⇤m,2n � (V8S̄8 + S8V̄8)⇤m+1/2,2n

+ (|O8|
2 + |C8|

2)⇤m,2n+1 � (O8C̄8 + C8Ō8)⇤m+1/2,2n+1

o 1

|⌘8|2
(⌧) .

(1)

where F is the fundamental domain of the modular group SL(2,Z), V8, S8, O8 and C8

are SO(8) characters built out of Jacobi theta functions, ⌧ is the complex parameter of

the torus and ⇤m,n =
P

m,n q
↵0
4 (

m
R+

nR
↵0 )

2
q

↵0
4 (

m
R �nR

↵0 )
2
denotes the one-dimensional lattice

of states with Kaluza-Klein (KK) number m and winding number n, with q = e2⇡i⌧ .
Even windings have the familiar action of spacetime fermion number: bosons have the
usual KK masses, whereas fermions have a mass shifted by 1/2R. On the other hand,
odd winding states have a di↵erent, “wrong” GSO projection. In particular, this sector
contains a tower of states starting with a scalar (coming from the character |O8|

2 above)
with the lightest mass given by

m2

O = �
2

↵0 +
R2

↵02 . (2)

For small radii R <
p
2↵0 this scalar becomes tachyonic, whereas it is very heavy in

the opposite limit R �
p
2↵0. This scalar will be a main actor in the brane-brane

interactions at long distances that we discuss later on. The Klein bottle amplitude
provides the orientifold projection of the closed string sector and is given by

K =
1

2

Z 1

0

d⌧2

⌧ 11/2
2

V8 � S8

⌘8
(2i⌧2)

X

m

e�↵0⇡⌧2
m2

R2 . (3)

6For notations and conventions, see [83].

4



Since it is the same as in the superstring case, it does not contribute to the vacuum
energy and symmetrizes, as usual, the NS-NS sector which comprises the graviton gMN

and the dilaton �, whereas it antisymmetrizes the RR sector which consists of the two-
from C2. Consistency of the theory (RR tadpole conditions) requires the introduction
of 16 D9 branes wrapping the circle, which can be endowed with arbitrary Wilson
lines [84] Wi = diag(ai/R,�ai/R), which can be interpreted as D8 brane positions
di = 2⇡aR0 on the circle after a T-duality, where R0 = ↵0/R is the T-dual radius.
Notice that in the T-dual interpretation the branes at positions di are accompanied by
their images under the orientifold projection at �di. The physically distinct values of
the Wilson lines can be chosen to be 0  ai  1/2, where the end-points of the interval
ai = 0 and ai = 1/2 correspond to the location of the O8� planes. Whereas the
T-dual interpretation geometrizes nicely properties of brane spectra and interactions,
we should remember that the radius of the circle is large R �

p
↵0 in order to avoid

the tachyon (and obtained dynamically by the time-evolution). Therefore the T-dual
picture in the supersymmetry breaking radius is not really useful from an e↵ective field
theory description, since the T-dual radius is smaller than the string length.

The one-loop open string amplitudes are given by

A =
16X

i,j=1

Z 1

0

d⌧2

⌧ 11/2
2

hV8

⌘8

✓
i⌧2
2

◆
(Pm+ai�aj + Pm+ai+aj)

A =
16X

i,j=1

Z 1

0

d⌧2

⌧ 11/2
2

h
�

S8

⌘8

✓
i⌧2
2

◆
(Pm+1/2+ai�aj + Pm+1/2+ai+aj)

i
, (4)

M = �

16X

i=1

Z 1

0

d⌧2

⌧ 11/2
2


V8

⌘8

✓
i⌧2
2

+
1

2

◆
Pm+2ai �

S8

⌘8

✓
i⌧2
2

+
1

2

◆
Pm+1/2+2ai)

�
,

where in this loop channel V8 describes the propagation of (gauge) bosons, whereas S8

that of charged fermions. Moreover, Pm+ai =
P

n e
�⇡⌧2

↵0(m+ai)
2

R2 denotes the KK sum
of open string states shifted in mass by the Wilson lines. The parameter ⌧ = i⌧2/2
(⌧ = i⌧2/2 + 1/2) has the interpretation of the complex parameter of the doubly cov-
ering torus for the cylinder (Möbius) amplitude. For generic values of the Wilson lines
(brane positions after T-duality), the open string gauge group is U(1)16, whereas in
their absence it is SO(32). The one-loop open string amplitudes have a dual interpre-
tation in terms of tree-level exchange of closed string states between the D-branes (for
the cylinder) and between the D-branes and O-planes (for the Möbius amplitude). The
corresponding string amplitudes can be obtained by appropriate modular transforma-
tions and are expressed in terms of the length l of the tube describing the tree-level
propagation. Doing so, one obtains

Ã =
2�5R
p
↵0

16X

i,j=1

Z 1

0

dl


V8 � S8

⌘8
(il)

1 + (�1)n

2
+

O8 � C8

⌘8
(il)

1 � (�1)n

2

�

Ã =
2�5R
p
↵0

16X

i,j=1

Z 1

0

dl ⇥
⇥
e�2⇡in(ai�aj) + e�2⇡in(ai+aj)

⇤
Wn , (5)
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M̃ = �
2R
p
↵0

16X

i=1

Z 1

0

dl
V8 � (�1)nS8

⌘8

✓
il +

1

2

◆
e�4⇡inaiW2n ,

where Wn =
P

n e
�⇡ln

2R2

2↵0 denote the (closed string) winding states couplings to the
branes-O planes. In (6) V8 (S8) denote the couplings to the NS-NS (RR) closed string
sector, whereas O8 (C8) denote the coupling of the odd-winding closed string states
with the ”wrong” GSO projection. Notice in particular the coupling of the scalar O8

to D9 branes. The corresponding coupling to D1 brane in the next sections will play a
central role in our analysis.

Supersymmetry is restored in the large radius limit R ! 1. We therefore expect
the dynamics to drive the radius to large values. In the region R �

p
↵0 the would-

be tachyonic closed string scalar is very massive and should not be kept in a low-
energy e↵ective action. However, due to Jacobi function identities, V8 = S8 and the
contribution of the usual NSNS-RR sectors cancel and the main contribution to D9-D9
brane interactions comes precisely from the exchange of this scalar.

3 Scalar potential and runaway vacua

The goal of this section is to write explicitly the scalar potential for the radius and
the Wilson lines of the D9 branes. The scalar potential in string theory is minus the
partition function, therefore

V (R,Wi) = �

✓
1

2
T + K + A + M

◆
⌘ VT + VK + VA + VM . (6)

In the Scherk-Schwarz compactification, supersymmetry is broken by global boundary
conditions, which implies that the scalar potential is of field-theory origin in the open
part for large radii. It is also of field-theory origin in the closed string part in the
large radius limit. The Klein bottle is still supersymmetric and therefore it does not
contribute to the scalar potential. Supersymmetry is restored in the decompactification
limit R ! 1. The potential can be easily estimated in the regime where e↵ective field
theory is valid R �

p
2↵0. In this limit, string oscillators in all amplitudes and winding

states in the torus are very heavy and do not contribute. We can therefore replace the
modular functions by their leading contribution, such that

T ' 128

Z 1

0

d⌧2

⌧ 11/2
2

X

m

✓
e�↵0⇡⌧2

m2

R2 � e�↵0⇡⌧2
(m+1/2)2

R2

◆
,

A ' 8
16X

i,j=1

Z 1

0

d⌧2

⌧ 11/2
2

⇥
Pm+ai�aj + Pm+ai+aj � Pm+1/2+ai�aj � Pm+1/2+ai+aj

⇤
,

M = �8
16X

i=1

Z 1

0

d⌧2

⌧ 11/2
2

⇥
Pm+2ai � Pm+1/2+2ai

⇤
. (7)
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It is convenient to perform a Poisson resummation of the Kaluza-Klein sums to turn
them into winding sums, to get

T ' 128
R

p
↵0

Z 1

0

d⌧2
⌧ 6
2

X

n

[1 � (�1)n] e
�⇡n2R2

↵0⌧2 ,

A ' 8
R

p
↵0

16X

i,j=1

Z 1

0

d⌧2
⌧ 6
2

[1 � (�1)n]
⇥
e�2⇡i(ai�aj)n + e�2⇡i(ai+aj)n

⇤
e

�⇡n2R2

↵0⌧2 ,

M = �8
R

p
↵0

16X

i=1

Z 1

0

d⌧2
⌧ 6
2

[1 � (�1)n] e�4⇡iaine
�⇡n2R2

↵0⌧2 . (8)

As explained at the beginning of Section 2, all string amplitudes above should be mul-
tiplied by the factor 1/(4⇡2↵0)9/2. By including this factor and after a straightforward
integration, one gets

T =
12

⇡14

X

n

1

(2n+ 1)10
1

R9
,

A '
3

2⇡14

16X

i,j=1

X

n

cos 2⇡ai(2n+ 1) cos 2⇡aj(2n+ 1)

(2n+ 1)10
1

R9
,

M ' �
3

4⇡14

16X

i=1

X

n

cos 4⇡ai(2n+ 1)

(2n+ 1)10
1

R9
, (9)

which generate a runaway potential, also typical for quintessence models. Supersym-
metry breaking generates therefore runaway scalar potentials, a notoriously well-known
fact. Indeed, all known ways of breaking supersymmetry generate, at some order in
the perturbative expansion, a runaway potential which generates a cosmological rolling
of the corresponding field towards the runaway infinity. We will not enter here into a
phenomenological discussion of such potentials and their viability. The example dis-
cussed in this paper is too simple to be viable and is ruled out by time dependence of
coupling constants, in particular. More important for our purposes, the vacuum energy
is not positive unless one adds Wilson lines. A stability analysis including Wilson lines
shows that there are no stable solutions with positive scalar potential in nine dimen-
sions [85]. The reason is that in order to increase the value of vacuum energy some D9
branes should be displaced/separated in the T-dual version. However, as discussed in
the Appendix, D8 branes (after T-duality) attract each other and such configurations
are unstable. In lower dimensions, positive potential with stable brane configurations
is possible [85] without changing significantly the discussion on the weak gravity con-
jecture below. Because of the attractive forces between the T-dual D8 branes, in the
next sections we consider the case where there are no Wilson lines on D9 branes.

The formulae above can be generalized easily after compactification to four dimen-
sions. We consider for simplicity a product of circles of radii RI , I = 1, . . . , 6. In the
following we introduce a vectorial notation for the winding numbers n = (n, n1, . . . , n5)
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and Wilson lines of the brane i, ai = (ai,1, . . . , ai,6). The vacuum energy, in the large
radii limit, becomes7

T =
3 ⇥ 26V6

⇡9

X

n

[1 � (�1)n]
1

[n2R2 + n2

1
R2

1
+ · · ·n5R2

5
]5

,

A '
3 ⇥ 23V6

⇡9

16X

i,j=1

X

n

[1 � (�1)n]
cos(2⇡ain) cos(2⇡ajn)

[n2R2 + n2

1
R2

1
+ · · ·n5R2

5
]5

,

M ' �
3 ⇥ 22V6

4⇡9

16X

i=1

X

n

[1 � (�1)n]
cos(4⇡ain)

[n2R2 + n2

1
R2

1
+ · · ·n5R2

5
]5

. (10)

where in (10) V6 =
Q

I RI . It is now possible to obtain a positive scalar potential for
the radii with runaway vacua to infinity. For this, one needs to add Wilson lines and
check their stability [85] .

For fixed values of the Wilson lines, the 9D e↵ective potential for the radius in the
Einstein frame is of the form

L =
1

22

9
R2

(@R)2 �
ce

18�
7

R9
, (11)

where � is the dilaton field, 1

2
9
is the nine-dimensional Planck mass and �

c
R9 is ob-

tained when summing the three contributions in (9), according to (6). After the field
redefinition R = R0e�, the radion action becomes

L =
1

22

9

(@�)2 �
ce

18�
7 �9�

R9

0

. (12)

Supersymmetry is then restored in the limit � ! 1. The computation above did
not take into account the fact that the background spacetime is not static, due to the
generated scalar potential. In particular, the Scherk-Schwarz radius is expected to run
to infinity in order to restore supersymmetry. This is clearly the case if the potential
is positive after compactification, which is possible after adding suitable Wilson lines.
Actually, even for negative values of such a scalar potential, the large radius regime, in
which supersymmetry breaking is small, is generically reached by cosmological evolution
in an expanding universe, as shown in [86].

7We wrote (10) in the large radii limit. If some dimensions are small R ⇠
p
2↵0, RI ⌧

p
↵0, the

expressions (10) change. First of all, the winding masses along the supersymmetry breaking radius in
(10) come from the “wrong” GSO closed-string sector which have a tachyonic mass contribution and
we should really replace n2R2

! n2R2
� 2↵0. If the five additional dimensions are small RI ⌧

p
↵0,

only the windings along the supersymmetry breaking radius do contribute to the scalar potential and,
whereas for large radii RI the potential scales as 1/R9, for small radii it scales as 1/R4. Since our
conclusions do not change in this case, in order not to complicate too much the discussion below we
consider in most cases the limit of large radii R,RI �

p
↵0.

8



4 Brane interactions and e↵ective brane tensions

Type I strings contain charged D9, D5 and D1 branes. They are BPS in the superstring
case with their tension equal to the RR charge T = Q, which guarantees no interaction
between them. There is a subtlety for the D1-D9 amplitude which does not vanish, but
it does so after adding the Möbius amplitude D1-O9. With supersymmetry breaking
turned on, branes start to interact. Our goal is to analyze this in some detail and
to understand the change in the e↵ective tension. Consider D1 branes wrapping the
Scherk-Schwarz circle, charged under the RR two-form C2, which behave like particles
after compactification, coupling to a gauge field

R
S1 C2.

Let us consider two such D1 branes, at a distance r in the transverse coordinates.
The brane-brane potentials are contained in the cylinder amplitude. Its explicit com-
putation is very similar to a Casimir vacuum energy. The interaction is given by

A11 = �
1

2
Str

Z
dk

2⇡

Z 1

0

d⌧2
⌧2

e�⇡↵0⌧2(k2+M2
) , (13)

with the mass operator given by

M2 =
1

↵0N +
(m+ ai � aj)2

R2
+

r2

(2⇡↵0)2
, (14)

where N is the number operator for open string oscillators and Wi = ai/R are open
string Wilson lines on the circle. An explicit computation, similar to the one of D9-D9
brane amplitudes leads to the one-loop amplitude

A11 =
1

2⇡
p
↵0

Z 1

0

d⌧2

⌧ 3/2
2

e� ⌧2r
2

4⇡↵0
⇥
Pm+ai�aj + Pm+ai+aj � Pm+1/2+ai�aj � Pm+1/2+ai+aj

⇤

⇥
✓4
2

2⌘12

✓
i⌧2
2

◆
.

(15)
Written in the (closed string) tree-level channel, the amplitude becomes

Ã11 =
R

4⇡↵0

Z 1

0

dl

l4
e� r2

2⇡↵0l [1 � (�1)n]
⇥
e�2⇡i(ai�aj)n + e�2⇡i(ai+aj)n

⇤ ✓4
4

2⌘12
(il)e�⇡ln

2R2

2↵0 .

(16)
It is more illuminating to write the tree-level channel exchange potential in a way which
involves an integral over the noncompact momenta of the closed strings exchanged, by
using the identity

Z 1

0

dl

l4
e� r2

2⇡↵0l�
⇡l
2 ↵0m2

n =
↵03

8⇡

Z
d8k

eikr

k2 +m2
n

. (17)

Notice that only massive states contribute to the D1-D1 brane interactions. In the
region of interest r, R �

p
↵0 a standard field theory computation does not capture the

string result (16). Indeed, in the region r �
p
↵0 the main contribution to the brane-

brane interaction comes from the region of a long thin tube l ! 1 and therefore from
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the lightest closed string states. However, since the even winding contribution which
include the supergravity states vanishes due to a cancellation between the NS-NS and
the RR sectors, the main contribution to the interaction comes from odd windings
containing the would-be tachyon scalar in the closed string spectrum (in character
language, O8). The D1-D1 brane interactions as seen from the tree-level closed-string
(“gravitational”) exchange are given by

V11 = �
R↵02

2⇡2

X

n

Z
d8k eikr

"
(1 � 1)

cos[4⇡nai] cos[4⇡naj]

k2 + 4n2R2

↵02

+
1

8

cos[2⇡(2n+ 1)ai] cos[2⇡(2n+ 1)aj]

k2 + (2n+1)2R2

↵02 �
2

↵0

#
. (18)

The contribution of the zero-mode vanishes at one-loop, according to our computation,
which implies that at one-loop the interaction of D1 branes is still governed by the the
BPS tree-level tension and charge T1 = Q1. Indeed, since the one-loop contribution
is exclusively mediated by massive states, it is short ranged and therefore cannot be
interpreted as coming from an imbalance between the tension and charge of the branes.
Actually, since the would-be tachyonic scalar for large radius R �

p
↵0 is much heavier

than the supergravity modes and also heavier than string states, one should only keep
the terms with n = 0 and n = �1 in the formula above for consistency.

If one fixes the values of the Wilson lines and only considers the dynamics in the
dimensions perpendicular to the branes, the short-range one-loop D1-D1 brane interac-
tions are attractive (negative potential) for coincident position of branes on the circle
(zero relative Wilson line ai = aj) and are repulsive (positive potential) if the branes are
separated, for example if one sits at ai = 0 and the second brane sits at the other end
of the interval aj = 1/2. However, once the dynamics of the Wilson lines is taken into
account, one sees that the potential is such that the only stable point is the attractive
one ai = aj.

An important output of the computation above is the D1 brane self-energy, obtained
by considering a single D1 brane of Wilson line a and setting the spacetime distance
r = 0. If the result would be divergent, more care would be needed for its interpretation.
However, since the result is completely finite and is a contribution localized on the D1
brane worldvolume, it can safely interpreted as a self-energy quantum correction to
the brane tension, that we compute here. The interaction is dominated in this case by
the integration region l = 0, which is the UV region of the closed string exchange (IR
region of one-loop open strings). In this case one gets the approximate result

Ã11 =
8R

⇡↵0

Z 1

0

dl
X

n

cos2[2⇡(2n+ 1))ai]e
�⇡l (2n+1)2R2

2↵0 =
16

⇡2R

X

n

cos2[2⇡(2n+ 1))ai]

(2n+ 1)2
.

(19)
This amplitude contains brane-brane and brane-image brane interactions. By extract-
ing the brane-brane self-energy, one obtains a correction to the brane tension. One
obtains then the one-loop corrected tension of the D1 brane wrapping the circle, which
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can be written either as a corrected D1 brane tension or as the mass M0 of the wrapped
brane on the circle

T1,e↵ = T1 �
2

⇡3R2

X

n

1

(2n+ 1)2
= T1 �

1

2⇡R2
, M0 = 2⇡RT1,e↵ , (20)

where T1 =
p
⇡p

210
(4⇡2↵0) is the standard type I D1 brane tension. Notice that this one-

loop corrected tension is lower than the tree-level one, due to supersymmetry breaking.
Indeed, since T1 ⇠ O(g�1

s ), the correction is of order O(gs) with respect to the original
value. The tension becomes zero for the special value R2

⇠ gs↵0, which is actually
in the regime where type I tachyon condenses and the theory is not anymore under
control.

Notice that in a realistic compactification only four spacetime dimensions are non-
compact. In this case, the brane-brane potential for r �

p
↵0 becomes

V11 = �
R↵02

8⇡2V5

X

p

Z
d3k eikr

cos[2⇡ai] cos[2⇡aj]

k2 +m2
p + R2

↵02 �
2

↵0

, (21)

where
P

p is the sum over all Kaluza-Klein masses in the five additional internal di-
mensions.

The result is particularly simple if the five additional dimensions are very small,
i.e. RI ⌧ R, r, in which case one can neglect the corresponding massive modes con-
tributions. In this limit (and using R �

p
↵0), the total potential energy is well

approximated at large distances r �
p
↵0 by

V11 ⇠ �
R↵02

4V5

cos[2⇡ai] cos[2⇡aj]
e�r

q
R2

↵02 � 2
↵0

r
. (22)

As discussed previously, despite the naive first thought that the potential (22) is nega-
tive for close values of the Wilson lines of the two branes and positive if the branes are
well separated on the circle, the only minimum stable configuration is when they are
coincident.

An important point for the later discussion on the weak gravity conjecture is that
the negative self-energy of D1 branes and the decrease in the e↵ective brane tension
also implies that it is energetically favorable to form bound states of D1 branes. Indeed,
let us denote by V0 < 0 the self-energy of one D1 brane. Then one can compare the
energy of two configurations. The first is the energy EN,1 of N coincident D1 branes
and a single D1 brane at a large distance r �

p
↵0 from them, whereas the second is

the energy EN+1,0 of N + 1 coincident D1 branes. They are given by

EN,1 = �(N + 1)T1 + (N2 + 1)V0 +O
⇣
e� rR

↵0
⌘

,

EN+1,0 = �(N + 1)T1 + (N + 1)2V0 . (23)

It is then clear that EN+1,0 < EN,1 and therefore that the D1 branes tend to form
bound states which eventually can lead to the formation of black holes.
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Finally, until now we considered D1 branes wrapping the supersymmetry breaking
circle. If on the other hand the D1 branes are perpendicular to the direction of the
radius R used for supersymmetry breaking, they do not experience supersymmetry
breaking. They will retain therefore the BPS nature at the one-loop level and their
interactions will be supersymmetric.

5 D1 interactions with the background D9-O9

One natural question is the influence of the background D9-O9 on the potential for
the Wilson lines of D1 branes. In the type I superstring there is no net interaction
between D1 branes and the background D9 branes and O9 planes.8 More precisely,
the brane-brane interaction D1- D9 is cancelled by the interaction with the orientifold
D1-O9, a consequence of the tadpole cancelation condition and of the BPS properties
of type I branes.

In the case of supersymmetry breaking by compactification, this cancellation does
not occur anymore and D1 branes feel a net interaction with the background, This
generates a potential for the Wilson lines of D1 branes on the circle. In what follows,
due to the discussion in Section 3 on the D9 Wilson lines and their attractive nature,
we take all T-dual D8 branes to be coincident, i.e. we introduce no corresponding
Wilson lines for the D9 branes. Their addition could change the minima of the D1
positions from this interaction with the background, without changing qualitatively our
discussion in the next section concerning brane-brane interactions. As a consequence,
as one will check here, D1 brane interactions with the background D9/O9 tend to
stabilize the D1 positions ai at the origin of the (Scherk-Schwarz) circle. The D1-D9
and D1-O9 amplitudes are then given by [87]

A19 =
32

2⇡
p
↵0

Z 1

0

d⌧2

⌧ 3/2
2

⇥
(O0S8 + V0C8)Pm+ai � (S0V8 + C0O8)Pm+ai+1/2

⇤✓ ⌘

✓4

◆4

,

M1 =
1

4⇡
p
↵0

Z 1

0

d⌧2

⌧ 3/2
2

h
(Ô0V̂8 � V̂0Ô8)Pm+2ai � (Ŝ0Ŝ8 � Ĉ0Ĉ8)Pm+2ai+1/2

i✓2⌘̂

✓̂2

◆4

.

(24)

In these amplitudes O0, V0, S0, C0 describe the one-loop propagation of open strings
scalar, vector and spinors respectively in the two dimensional worldvolume of D1 branes
in the light cone formulation, whereas O8, V8, S8, C8 describes the quantum numbers
and degeneracy due to the eight Neumann-Dirichlet coordinates. The corresponding
amplitudes in the tree-level / gravitational channel are given by

Ã19 =
32R

64⇡↵0

Z 1

0

dl
h
(V0O8 � 00V8 + S0S8 � C0C8)e

�4⇡inaiW2n

Ã19 =
32R

64⇡↵0

Z 1

0

dl + (O0O8 � V0V8 � S0C8 + C0S8)e
�2⇡i(2n+1)aiW2n+1

i✓2⌘

✓2

◆4

,

8E.D. thanks Jihad Mourad for a very helpful discussion on this issue.
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M̃1 =
R

2⇡↵0

Z 1

0

dl
h
(Ô0V̂8 � V̂0Ô8) � (�1)n(Ŝ0Ŝ8 � Ĉ0Ĉ8)

i
e�4⇡inaiW2n

✓
2⌘̂

✓̂2

◆4

. (25)

In the tree-level channel, V0, O0 denote propagation of NS-NS closed string fields,
whereas S0, C0 denote propagation of RR fields. Notice that there is no net e↵ective
interaction in the RR sector exchange, due to a cancellation between the two terms.
This is consistent with the fact that there is no physical RR field to be exchanged
between the D1 and D9/O9 sector. The fact that the two amplitudes do not cancel
anymore in the presence of supersymmetry breaking is transparent from the fact that
there are odd winding states of the would-be tachyonic (for small radius R <

p
2↵0)

field O0O8 in the D1-D9 interaction, which are not present in the D1-O9 interaction.
By summing the two contributions and using identities of Jacobi functions, one finds

Ã19 + M̃1 =
R

2⇡↵0

Z 1

0

dl O0O8

✓
2⌘

✓2

◆4

e�2⇡i(2n+1)aiW2n+1 . (26)

In the limit of interest R �
p
↵0, one obtains the leading contribution by taking the

limit l ! 0 in the string oscillator contributions. By doing so, one finds the final form
of the potential from the 19 sector

V19 = �(Ã19 + M̃1) = �
8

⇡2R

X

n

cos[2⇡(2n+ 1)ai]

(2n+ 1)2
. (27)

The minimum of the potential is at ai = 0. The result (27) is valid for large five addi-
tional dimensions RI �

p
↵0 and can be understood as a Casimir field-theory vacuum

energy contribution on compact space dimensions. If the five additional dimensions are
small RI ⌧

p
↵0, (27) changes and become parametrically of order (↵0)5/V5R6. This

can also be understood by T-dualizing the small dimensions, after which one gets D6
branes wrapping the supersymmetry breaking circle plus five additional large dimen-
sions. The resulting potential energy is of order V 0

5
/R6, where V 0

5
� ↵05/2 is the T-dual

volume. This potential is purely field theoretically and can also be understood as a
Casimir energy calculation.

This interaction with the background D9 branes/O9-planes seems therefore to favor
D1 branes with vanishing Wilson lines. It is unclear and rather implausible to us that
this potential energy, localized on the D1 brane but Wilson line/position dependent,
should be interpreted as an additional correction to the D1 brane tension. In any case,
since it is of the same sign and magnitude as the self energy of the D1 brane, including
it or not would not modify the qualitative features of what we discuss next.

6 Interactions beyond one-loop and the weak grav-

ity conjecture

We consider as in Section 4 two D1 branes separated by a distance r in the three-
dimensional noncompact space. Our goal is to estimate their interaction as a function
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of the distance r. We know that at short distances the interaction is attractive and D1
branes tend to accumulate and form bound states. There is no reason to believe that in a
perturbative string setup this result would be upset to higher-orders in the perturbative
expansion. At large distances however, the one-loop attraction is exponentially damped
since the main contribution comes from massive closed-string states. At large distances
therefore, potential higher-loop contributions generating massless gravitational (closed
string) exchanges would induce infinite-range interactions, which change considerably
(and dominate over) the one-loop contribution. This e↵ect can be understood in terms
of modifications of the tension and charge of D1 branes, as well as the generation of
a dilaton mass, that we now try to include in the interaction potential. All of these
modifications are generated by supersymmetry breaking.

Let us write the D1-D1 brane interactions in a slightly more general way as a con-
tribution from the zero modes V (0)

11
and contributions from massive states V (n)

11
. The

contribution of the zero-mode V (0)

11
vanishes at one-loop, according to our computa-

tion in Section 4. However, since the one-loop contribution comes exclusively from
massive states, it is short ranged and therefore any higher-order/loop correction lead-
ing to a zero-mode exchange changes dramatically the interaction at large distances.
We consequently parametrize the zero-mode higher-loop contributions by introducing
three parameters: T1,e↵ and Q1,e↵ are the quantum corrected brane tension and charge,
whereas m0 denotes the mass of the dilaton generated by quantum corrections. With
these changes in mind, at large distances r �

p
↵0 where the main contribution comes

from the lightest closed string states exchanged between the branes, we arrive at the
following expression for the D1-D1 brane interaction

V11 = V (0)

11
+ V (n)

11
, where

V (0)

11
=

R↵02

2⇡2

Z
d8k eikr


Q2

1,e↵/Q
2

1

k2
�

T 2

1,e↵/T
2

1

4

✓
1

k2 +m2

0

+
3

k2

◆ �
,

V (n)
11

= �
R↵02

8⇡2

Z
d8k eikr

cos[2⇡ai] cos[2⇡aj]

k2 + R2

↵02 �
2

↵0

. (28)

The zero-mode contribution can also be written in terms of the supergravity 10d Planck
mass 10 as usually done in the literature9 [81]

V (0)

11
= 162

10
⇡R

Z
d8k

(2⇡)8
eikr


Q2

1,e↵

k2
�

T 2

1,e↵

4

✓
1

k2 +m2

0

+
3

k2

◆ �
. (29)

In (28), the corrected tension of the wrapped D1 brane T1,e↵ is defined in (20) and the
relative factor of 1/4 (3/4) denotes the contribution of the dilaton (graviton). The one-

loop corrected charge Q1,e↵ will be discussed below. The massive contributions V (n)
11

contain the one-loop computation performed in Section 4. Notice that in a realistic
compactification only four spacetime dimensions are noncompact. In this case, the

9The extra factor of 4 with respect to the usual formula is due to the fact that branes and their
images contribute.
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brane-brane potential becomes

V (0)

11
=

X

p

162

10
⇡R

(2⇡)8V5

Z
d3k eikr

"
Q2

1,e↵

k2 +m2
p

�
T 2

1,e↵

4

✓
1

k2 +m2
p +m2

0

+
3

k2 +m2
p

◆#
,

V (n)
11

= �
R↵02

8⇡2V5

X

p

Z
d3k eikr

cos[2⇡ai] cos[2⇡aj]

k2 +m2
p + R2

↵02 �
2

↵0

, (30)

where
P

p is the sum over all Kaluza-Klein masses in the five additional internal di-
mensions. As we discussed in the previous sections, in the T-dual version D0 branes
energetically prefer to be in the same position and coincident with the D8 branes.
Therefore in what follows we can set their position to zero, i.e. we fix ai = 0. Dis-
tributing D8 branes on the circle, which would change quantitatively the formulae
in this section, raises stability issues and complicates the analysis, without changing
qualitatively the discussion and the conclusions below.

The result is particularly simple if the five additional dimensions are much smaller
than R and r, in which case one can neglect the contributions from the corresponding
massive modes. In this limit, it is more transparent to express the total potential energy
in terms of the four-dimensional Planck mass MP , for which the graviton exchange
provides the Newton potential in terms of the mass M0 = 2⇡RT1,e↵ and the charge
Q0 = 2⇡RQ1,e↵ of the wrapped D1 brane. In this way, one gets the approximate
potential

V11 ⇠
1

M2

P

2

4
4

3
Q2

0
� M2

0
�

1

3
M2

0
e�m0r

r
�

Q2

0

3

e�r
q

R2

↵02 � 2
↵0

r

3

5 . (31)

This expression is valid for distances r �
p
↵0, whereas for shorter distances one expects

the one-loop potential to be a good approximation, which has a constant limit when
r ! 0.

The correction V0 to the D1 brane tension is negative being generated by the massive
contributions V (n)

11
between the same brane (r = 0). The correction to the charge would,

on the other hand, come from a genus 3/2 computation, which was not yet performed
to our knowledge. However, a quantum correction to the RR charge of the brane would
be of the form

R
C2e�, where � is the dilaton. Such a coupling would violate the gauge

symmetry of the RR gauge field C2, which seems implausible in perturbation theory.
Corrections to the RR field kinetic terms are possible though, and this would generate
a renormalization of the RR charge.10 A similar correction to the dilaton kinetic term
should also contribute to the renormalization of the tension. However, such corrections
would arise from one loop calculations and would be associated to O(g2s) corrections.
We thus do not expect them to dominate the one-loop contribution to the tension,
which is O(gs), and therefore

T 2

1,e↵ < Q2

1,e↵ () M2

0
< Q2

0
. (32)

10We thank J. Mourad for suggesting this possibility. We also thank I. Antoniadis, G. Bossard, H.
Partouche, A. Sagnotti for discussions on this issue.
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As a consequence, at short distances the potential is attractive whereas it is repulsive at
large distances. If on the contrary the bound (32) was violated in the case of a massless
dilaton, i.e. if m0 = 0 (or if M2

0
> 4

3
Q2

0
for m0 > 0), the potential would remain

attractive also at large distances. This would violate the weak gravity conjecture. Our
perturbative arguments dismiss such a possibility and we conclude that the weak gravity
conjecture holds in our setup, and the massless modes exchange which it constrains
determines the brane-brane dynamics at large distances.

Even if (32) holds, the one-loop potential (16) between D1 branes is attractive and
unsuppressed at small distances, which entertains the possibility that stable bound
states, which may be black holes, exist in this theory. Consequently, black holes stability
arguments, which are sometimes used in discussions about the WGC, are di↵erent in
the small and large distance regions. To address this question, one needs to study the
regime interpolating between large distances, where higher-order e↵ects dominate and
presumably verify the WGC as argued above, and small distances where the one-loop
potential induces an attraction. Knowing the r = 0 value of the potential given in (19)
and its asymptotic behaviour (31), we understand that it reaches a maximal value and
has the shape depicted in figure 1.

Figure 1: The D1-D1 potential as a function of the distance in the transverse space
(the potentials and distances are expressed in units of ↵0, we fixed R = 8, gs = 0.2,
V5 ⇠ 1.55 and introduced no Wilson lines for the D1 branes)

To estimate the location r0 of the maximum, we can use (31) if r0 is in its validity
regime. When m0 = 0, we obtain

r0 = �
1q

R2

↵02 �
2

↵0


1 +W

✓
8
T 2

1,e↵ � T 2

1

eT 2

1

◆�
⇡

↵0

R
log

✓
R2

gs↵0

◆
, (33)

where W is the Lambert W function.11 This expression, obtained from (31), can be

11The LambertW function or product logarithm is defined byW (xex) = x. It has two real branches,
here only the lower branch with W  �1 is relevant.
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trusted if r0 �
p
↵0, which can be rewritten as a constraint on the string coupling

gs ⌧
R3

↵03/2 e
� Rp

↵0 . (34)

In this case, black holes of size smaller than r0 would be stable remnants. Such black
holes could be formed from the D1 bound states about which we argued in (23) that
their formation is energetically favorable. However, we expect from black hole construc-
tions in string theory that there should only be a finite number of such remnants: from
the bound state argument in (23) one can guess that if the number of D1 constituents
is large and the bound state size becomes or order r0 or larger, repulsive forces will
prevent more D1 branes to bind and therefore larger charge/mass remnants to form.
Calculating this finite number of bound states is beyond the scope of this paper, but
we could try to estimate it by comparing r0 with the scale at which we expect the
D1-branes solutions of supergravity to break down,12 RS ⇠

N1gs↵03

V5
, where N1 is the

number of stacked D1-branes. Using (33), we can derive the following estimate,

Ncrit ⌘ N1

r0
rS

⇡
1

gs

V5

↵03/2
↵01/2

R
log

✓
R2

gs↵0

◆
, (35)

where all D1-branes configurations with N1 < Ncrit correspond to situations where the
attractive force is felt even in the regime where supergravity applies. In particular, this
number becomes small in the decompactifcation limit R �

p
↵0.

Furthermore, (35) also shows that the smaller gs, the more stable bound states can
exist. If m0 6= 0, r0 becomes smaller than (33) and the appearance of such states is
slightly suppressed in the limit gs ! 0, but the behaviour remains qualitatively the
same. Such a scaling of Ncrit with gs seems to be consistent with the swampland dis-
tance conjecture. On the other hand, when the string coupling increases, r0 decreases
and it will eventually not be consistent to use (31) and (33). Finally, when the super-
symmetry breaking (Scherk-Schwarz) radius goes to infinity, as it would be if no further
stabilization is added to the dynamics induced by (11) and (12), the one-loop potential
vanishes since supersymmetry is recovered, no attraction nor repulsion remains, and
the WGC, as well as the stability of black holes, is marginally retrieved.

Taking into account the shape of the brane-brane potential, one should clearly also
consider the tunneling from large distance r to small ones when discussing the stability
of brane configurations. Since we don’t have a complete analytic formula, we are unable
for the time being to estimate the corresponding tunneling probability. The conditions
we derived are therefore necessary but apriori not su�cient to firmly establish the
existence of bound states.

7 Conclusions and perspectives

String theory models with broken supersymmetry usually generate runaway potentials.
Such potentials are of exponential type if one canonically normalizes the rolling field and

12This scale is the one for which the harmonic function h(r) = 1 + RS
r , which defines the D1-brane

solution, starts to deviate significantly from one.
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could lead in special cases to quintessence models of dark energy. On the other hand,
the breaking of supersymmetry generates at the same time interactions between branes,
which only disappear in the runaway limit. While this in itself respects the weak gravity
conjecture at infinity, insisting on the rolling field cosmology could generate violations
of it at one-loop, coming from a short-distance attraction generated by massive modes.
Naively one would therefore conclude that in a perturbative and controllable string
setting, rolling field dynamics is incompatible with the weak gravity conjecture. Since
the long-range brane-interaction at one-loop is vanishing due to a cancellation between
the massless NS-NS (dilaton and graviton) and the RR exchanges, we believe however
that higher-loop corrections are important to settle this issue. We gave qualitative
arguments that at higher-loop a repulsive interaction generated by the exchange of
massless states should appear, which at long distances should dominate over the one-
loop (short range) attraction. Overall, this leads to a picture in which the weak gravity
conjecture should be respected at large distances defined by the parameters (gs, R).

The main result of this paper is that in this model, after taking one-loop corrections
into account, the e↵ective tension T1,e↵ and charge Q1,e↵ of D1 branes satisfy the weak
gravity bound Q1,e↵ > T1,e↵ . This is equivalent to a repulsive interaction at long
distances as here the aforementioned attractive force is exponentially suppressed. In the
lower dimensional e↵ective theory these D1 branes, wrapped around the Scherk-Schwarz
circle, behave as particles charged under a U(1)-gauge symmetry with Qe↵ > Me↵ . To
complete our test of the weak gravity conjecture, it would be interesting to compute
if supersymmetry breaking induces corrections to the black hole extremality bound as
well.

The stability of bound states and black holes is interesting in our setup. The
one-loop short-range attraction favors the formation of D1 bound states which can
potentially lead to stable black hole remnants. If the string coupling is very small,
the attractive region of brane-brane potentials extends up to scales where the e↵ective

gravitational theory applies: if gs . R3

↵03/2 e
� Rp

↵0 (with R the radius of the supersymme-
try breaking dimension), a finite number of branes well described by supergravity are
sensitive to the attractive potential. This number roughly scales like 1

gs
, and indicates

that in the small gs limit an increasing quantity of stable bound states is expected to
arise.

There are a number of open interesting questions that are worth further exploration.
It would be interesting to identify string models with broken supersymmetry where the
generated moduli potentials and runaway vacua can lead to viable quintessence-like
models of dark energy. There are various di�culties for progress into this direction,
from generating a small acceleration of the present universe, which is highly nontrivial
to achieve in string theory constructions [88], to the constraints coming from time-
dependence of fundamental constants and fifth force experiments. From a more the-
oretical string theory perspective, it would be interesting to perform higher-loop (for
instance, genus 3/2) computations in order to test our result on the quantum corrected
brane tension and the absence of renormalization of the brane charges at lowest order.
Whereas supersymmetry breaking should generate, as usual, tadpoles which signal lim-
itations in quantum computations at higher loops, higher-order computations of brane

18



tensions and charges could be performed by separating two D1 branes in (our) noncom-
pact space, in which case there should be no such problems. It would also be important
to investigate stable type I models in lower dimensions with D9 Wilson lines and pos-
itive scalar potential in the class of models constructed in [85] and to investigate the
D1 interaction potentials in detail. It would also be very interesting to explore quan-
tum corrections to brane tensions and RR charges in other string models with broken
supersymmetry, such as the models with brane supersymmetry breaking [89].

Finally, we believe it is important to test the other various recent swampland con-
jectures [1, 2, 26, 27, 34, 43] in explicit perturbative string theory models with broken
supersymmetry. Some work along these lines is in progress [90].
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A D9 brane interactions

The D9 brane potentials and interactions are contained in the cylinder vacuum ampli-
tudes. Its explicit computation is very similar to a Casimir vacuum energy and was
discussed from the viewpoint of moduli potentials in Sections 2 and 3. Consider two
D9 branes wrapping the circle, with Wilson lines Wi = ai/R. After a T-duality, they
become D8 branes localized on the circle, of positions di = 2⇡aiR0, where R0 is the
T-dual radius. In the large radius limit R �

p
↵0, their interaction is given by

VA ' �
3

4⇡14

X

n

cos 2⇡(ai � aj)(2n+ 1)

(2n+ 1)10
1

R9
, (36)

The force experienced by the two branes can be computed from

Fij = �
@VA

@aij
= �

3

2⇡13

X

n

sin 2⇡(ai � aj)(2n+ 1)

(2n+ 1)9
1

R9
. (37)

This force is attractive, for any value of the radius and any separation 0  ai �

aj  1/2 between the brane positions / Wilson lines. D9 branes are however space-
filling objects and therefore cannot be given a separation in spacetime. That is the
reason we considered D1 branes to test the WGC. Indeed, D1 branes wrapped on the
supersymmetry breaking circle behave as particles in four-dimensions and can be used
to test the gravity as the weakest force hypothesis.
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expressions for Wess-Zumino models with softly broken supersymmetry.

ar
X

iv
:1

90
6.

02
20

1v
1 

 [h
ep

-th
]  

5 
Ju

n 
20

19



Contents

1 Introduction and summary 1

2 Multiparticle amplitudes in generalised Wess-Zumino models 3

2.1 Recursion relations and classical solutions 3
2.2 Soft terms in the Wess-Zumino model 6
2.3 Towards a solution for symmetric soft masses 7

3 SQCD with quartic couplings 8

4 Conclusion 10

A The BPS condition 11

B Link with softly broken O(2) models 12

C Derivation of the solution 12

1 Introduction and summary

The purpose of this paper is to present and discuss a rather general solution to the
Bogomol’nyi-Prasad-Sommerfield (BPS) equations, for a rather general class of Wess-Zumino
(WZ) models. As we shall see the solution has applications in several areas, including multi-
particle amplitudes on threshold, and scalar domain walls in Supersymmetric QCD (SQCD)
duality.

Consider the following superpotential for a chiral superfield �:

W =
1

2
�2 +

1

p
�p , (1.1)

where we do not place a restriction on the allowed value of the index p (except p > 2),
and where couplings can be trivially reinstated by scaling. The associated scalar potential
(where � is the scalar component) is

V (�) =
���+ �p�1

��2 , (1.2)

and if p is positive one might seek domain wall solutions between the supersymmetric
minimum at � = 0 and the p � 2 supersymmetric minima at � = e

i n⇡
(p�2) , n 2 Z. Because

the potential is a complete square, the equations of motion can be integrated once and
factorised, yielding the familiar BPS equation (see Appendix A for a brief discussion of the
latter):

d�

dt
= e2i✓(�+ �

p�1
) , (1.3)

– 1 –



where t is the coordinate across the wall and ✓ is an arbitrary constant angle. If we restrict
� to be real then solving eq. (1.3) is trivial, however the conjugation on the right hand side
makes it difficult to find the general complex solution for arbitrary p. Our central result is
the following solution to eq. (1.3):

�(z, z) =
z
⇣
1 + zp�2�zp�2

2p

⌘

 ⇣
1 + zp�2�zp�2

2p

⌘p
+

zp�2
⇣⇣

1� zp�2�zp�2

2p

⌘p
�
⇣
1+

zp�2�zp�2

2p

⌘p⌘

zp�2�zp�2

! 1
p�2

, (1.4)

where z = et+i✓ (see Appendix C for a few words on the derivation).
This is a generalisation of the BPS domain wall solution of Ref.[1] (with appropriate

shifts in �) which considered p = 3 and real �. Indeed taking ✓ = ⇡
p�2

we find

�(t) =

 
�e(p�2)t

1 + e(p�2)t

! 1
p�2

, (1.5)

which reduces, for p = 3, to the non-singular domain wall solution,

�(t) = �
et

1 + et
, (1.6)

connecting the two minima (�(�1) = 0 and �(1) = �1) of the WZ model. As an illus-
tration, in Figure 1 we plot the generalised BPS solution as given in eq. (1.4) by setting
p = 3. There, we see that, even though �(z, z̄) is singular for most values of ✓, there exist

ϕ(z, z̄)

-π

-π/2

0

π/2

π

Ar
g[

ϕ(
z,

z̄)]

−π

π

       

       θ

       t
�8 �6 �4 �2 0 2 4 6 8

t

�1.0

�0.8

�0.6

�0.4

�0.2

0.0

�
(t
)

Figure 1. Plot of the solution in eq. (1.4) when p = 3. In the left panel, the colour bar denotes
the argument of the function �(z, z̄). In the right panel, ✓ = ⇡ as in eq. (1.6).

smooth configurations (along the dashed lines) that correspond to domain walls connecting
two minima of the function V (�), consistent with eqs. (1.5) and (1.6). For p = 3, when
✓ = ±⇡, the domain wall connects the two minima at �(�1) = 0 and �(1) = �1 passing
through t = 0, as shown in the right panel of Figure 1.
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The expression in eq. (1.4) is also related to the softly broken O(2) models of Ref.[2]
that were examined in the context of multiparticle amplitudes on threshold (which took
p = 3, see Appendix B), and some other work in this area (which typically considered real
�). However, the solution above has a richer structure and is more general than those that
have been previously considered in the literature. Indeed to derive it we imposed only that
� scales as et as t goes to infinity, which is enough/required for amplitudes.

In the following section we discuss the application of our solution in the amplitude
context, with particular emphasis on the recursion relations of multiparticle amplitudes
on threshold, and their relationship with classical solutions of the equations of motion.
After spending some time reviewing and discussing the classical ways of obtaining these
amplitudes in the WZ model, we demonstrate that the general complex solution presented
above translates into the ability to distinguish chiral fields and their conjugates in the
possible final multiparticle states.

The arbitrariness of the exponent p also makes eq. (1.4) applicable to situations in which
the second term in the superpotential of eq. (1.1) is generated non-perturbatively. In Section
3 we show that this allows one to find exact (classical) domain wall solutions for the scalar
mesons in the magnetic duals of Supersymmetric QCD theories with a quartic coupling. In
SU(Nc) theories with Nf flavours of quark/antiquark, this is relevant in the free-magnetic
window, where Nc + 1 < Nf < 3

2
Nc. The exponent is given by p = Nf/(Nf � Nc), so that

p is generally a rational number between 3 and Nf/2. These non-perturbatively generated
domain walls interpolate between two supersymmetric minima, going from the unbroken
magnetic dual at the origin, to one of 2Nc�Nf pure Yang-Mills minima with meson vacuum
expectation values (VEVs). This configuration is of general interest, and would appear for
example in the duality cascade.

2 Multiparticle amplitudes in generalised Wess-Zumino models

Multiparticle amplitudes have been investigated for a long time [2–10], and have been
the subject of renewed scrutiny recently within discussions of the so-called Higgsplosion
mechanism [11–14]. The quantities of interest include the tree-level threshold amplitudes,
which describe the decay of an off-shell particle to many on-shell ones, all taken to be at
rest. Our solution in eq. (1.4) can be understood in this respect as the generating function
of such tree-level multiparticle amplitudes at kinematic threshold for the generalised Wess-
Zumino models of eq. (1.1). One can indeed show that such a generating function must
satisfy a BPS condition (see Appendix A for more details), consistent with the fact that
a specific limit of eq. (1.4) has been previously identified as a BPS domain wall solution
[1, 15]. As we will also see, eq. (1.4) can be extended to softly broken SUSY scenarios,
yielding either a complete or a partial solution depending on the choice of soft terms.

2.1 Recursion relations and classical solutions

In order to review standard techniques while simultaneously applying them to our specific
problem, we will begin this section by following a diagrammatic approach to tree-level
multiparticle amplitudes at kinematic threshold before linking it to classical solutions of
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the equations of motion. We will then show that eq. (1.4) indeed generates the amplitudes
for the model of eq. (1.1), for specified numbers of emitted particles/anti-particles. In the
next section we will extend the discussion to WZ models with specific sets of soft terms.

We are interested in evaluating tree-level amplitudes connecting an ingoing off-shell
particle to outgoing on-shell ones, all taken to be at rest1, for generalised Wess-Zumino
models of a chiral superfield �. Let us take a canonical Kähler potential and for this
discussion reinstate the couplings in the superpotential,

W =
M

2
�2 +

�

p
�p , (2.1)

where p�3 2 N, giving rise to the following scalar potential for the complex scalar excitation
�:

V (�) =
��M�+ ��p�1

��2 . (2.2)

The kinematic situation is summed up in Figure 2. Since there are two possible kinds
of scalar excitation, the outgoing state is labelled by two integers m and n, denoting the
number of particles and antiparticles respectively.

Figure 2. Kinematic setup (particles/anti-particles are represented using direct/reversed arrows).

The WZ model also includes scalar-fermion interactions. However, since we will be
interested in tree-level amplitudes with initial and final states only made out of scalars,
those interactions (which preserve fermion number) will not play any role.

Following earlier works on multiparticle amplitudes [3, 4], one can recursively calculate
such amplitudes following the scheme of Figure 3. From this, after working out the correct
combinatorics, one finds the following recursion relation:

anm
m!n!

= �
(p � 1)i2p�2

|�|
2

|M |
2(2p�3)

X

P
ni = nP
mi = m

bn1m1bn2m2 ...bnp�2mp�2anp�1mp�1 ...an2p�3m2p�3Q
i=1..2p�3

ni!mi![(ni +mi)2 � 1]

�
ip

|M |
2(p�1)

X

P
ni = nP
mi = m

�Man1m1an2m2 ...anp�1mp�1 + (p � 1)�Man1m1bn2m2 ...bnp�1mp�1Q
i=1...p�1

ni!mi![(ni +mi)2 � 1]
,

(2.3)
where anm symbolises the amplitude � �! n ⇥ � + m ⇥ � and bnm the amplitude � �!

n ⇥ � +m ⇥ �. Viewing anm as a function of � and M , we can immediately deduce that
bnm(�,M) = amn(�,M) since V (�) is hermitian.

1Exact results are much harder to obtain at loop-level or in the out of threshold regime [7–10, 16–18].
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Figure 3. Recursion scheme for the amplitudes, drawn here for p = 3.

Inspection of the lowest amplitudes shows that the recursion is correctly initialised by
imposing the following conditions:

anm
[(n+m)2 � 1]

����
n=1,m=0

= � i|M |
2 ,

anm
[(n+m)2 � 1]

����
n=0,m=1 or n=0,m=0

= 0 ,

(2.4)
which, combined with eq. (2.3), imply that bnm = �amn.

A convenient factorisation can be performed:

anm = �i|M |
2Anm n!m! [(n+m)2 � 1]

✓
�

M

◆n�1
p�2
✓
�

M

◆ m
p�2

(2.5)

with coefficients Anm satisfying
8
>><

>>:

((n+m)2 � 1)Anm = (p � 1)
P

Am1n1 ...Amp�2np�2Anp�1mp�1 ...An2p�3m2p�3

+
P�

An1m1 ...Anp�1mp�1 + (p � 1)An1m1Am2n2 ...Amp�1np�1

�

A10 = 1 , A01 = A00 = 0 ,

,

(2.6)
where the summations over indices match those in eq. (2.3). In particular, it implies that
all Anm are real and positive. The fact that all coupling constants disappeared from the
above relation is a consequence of the (R-)symmetries of eq. (2.1) and of holomorphicity2.
Defining a generating function

A(z, z) =
X

n,m

Anmznzm , (2.7)

2Indeed, the effective superpotential generating tree-level diagrams can only take the form

W =
M
2
�2

X

n

✓
��p�2

M

◆n

,

and each amplitude has a dependence on �,M fixed by this expression.
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the recursion yields the differential equation3

(⇥
(z@z + z@z)2 � 1

⇤
A = (p � 1)Ap�1A

p�2
+Ap�1 + (p � 1)AA

p�2

A(z = 0, z) = 0 , @zA(0, 0) = 1 , @zA(0, 0) = 0
. (2.8)

Finally, defining z = et+i✓, this system becomes

(
@2tA = (p � 1)Ap�1A

p�2
+Ap�1 + (p � 1)AA

p�2
+A = @

@A
V (A)

A(t = �1, ✓) = 0 , @tA(t = �1, ✓) = ei✓
, (2.9)

where the potential is as in eq. (1.2). The last equality in the first line illustrates the method
of classical solutions of Ref.[6], which states that tree-level multiparticle amplitudes can be
derived from the expansion of classical solutions with specific initial conditions. Besides,
integrating it once and taking the square root yields the condition in eq. (1.3).

One can verify that our solution in eq. (1.4) indeed satisfies all of the conditions listed
in eq. (2.9). Consequently � ⌘ A is the generating function of the diagrams of Figure 2.
That is, Taylor expanding it with respect to z and z yields the amplitudes Anm.

2.2 Soft terms in the Wess-Zumino model

Given the generality of the solution in eq. (1.4), it is natural to ask if one might be able to
extend the analysis to non-supersymmetric cases, by deforming the theory with supersym-
metry breaking operators. The renormalizable p = 3 WZ model allows for the following
soft terms [19] in addition to the supersymmetric potential:

V =
����2 +m�

��2 + �m2
|�|

2 + (µ3�
3 + µ2�

2 + h.c.) , (2.10)

which can be expressed in terms of real parameters by defining µ3 = c3+ id3, µ2 = c2+ id2
and � = '+ i� as

V = �2('2 + �2)2 + (2�m+ 2c3)'
3
� 6d3'

2�+ (2�m � 6c3)'�
2 + 2d3�

3

+ (m2 + �m2 + 2c2)'
2
� 4d2'�+ (m2 + �m2

� 2c2)�
2 ,

(2.11)

where we take � and m to be real by making a suitable U(1) rotation on �.
Specific choices for the soft terms can be related to the softly broken O(2) model

described in Appendix B. Starting with eq. (B.2) and performing rotations and shifts on '
and �, one can only generate

V =
����2 +m�

��2 + �m2

2

✓
�� �

2i

◆2

. (2.12)

3The first condition on the second row is a slight generalisation of A01 = A00 = 0 since, due to the �

dependence of V (�), the number of � or � can only increase in a tree-level diagram.
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Then implementing the same series of rotations and shifts on the solution obtained for the
softly broken O(2) model yields a classical solution of the model in eq. (2.12):

�(z, z) =

z + �
m i(z � z̄)

i(z�z̄)+i
⇣p

2
mIm(�)

|m| �1

⌘2
(z+z̄)

4

 
2

m2
Im(�)

m2 �1

!

1 �
�
m

z+z̄
2

+
�
�
m

�2 (z�z̄)2

4

 
2

m2
Im(�)

m2 �1

! �
�
�
m

�3
⇣p

2
mIm(�)

|m| �1

⌘4
(z�z̄)2(z+z̄)

8

 
2

m2
Im(�)

m2 �1

!3

, (2.13)

where m2

Im(�) = 2m2+�m2. It reduces to eqs. (1.4) and (B.1), if �m2 = 0 (and � = m = 1).
Its limit when m ! 0, which both cancels the cubic vertices and makes Re(�) massless, is
the usual “'4” real scalar solution, where “'” is here the imaginary part of �:

lim
m!0

�(z, z) = i
Im(z)

1 �
�

2m2
Im(�)

Im(z)2
. (2.14)

2.3 Towards a solution for symmetric soft masses

As stated in Section 2.2, there are more general soft terms than those of eq. (2.12). In
particular, it is tempting to consider soft masses for the full complex scalar �,

V =
����2 +m�

��2 + �m2

2
|�|

2 , (2.15)

if we, for instance, want to leave some state light and decouple its superpartner. Thus far,
we have not found a closed form solution, but we have been able to identify various limits
of it. This could be used to either check or guess a more complete expression.

For simplicity, up to redefinitions in the recursion relation like the one we performed
in eq. (2.5), we can restrict ourselves to the study of

V =
��A2 +A

��2 + 1 � ↵

↵
|A|

2 , (2.16)

and of the associated recursion relation/differential equation:
(

((n+m)2 � 1)Anm = 2↵3
P

Am1n1An2m2An3m3 + ↵2
P

(An1m1An2m2 + 2An1m1Am2n2)⇥
(z@z + z@z)2 � 1

⇤
A = 2↵3A2A+ ↵2(A2 + 2AA)

.

(2.17)
Then, one can solve for real A, or use only the vertices AA

2 or A2A (see Appendix C for
details), to determine the properties of the solution in various limits:

A(�⇢,�⇢) = �
⇢

1 + ↵⇢� ↵1�↵
4
⇢2

,

A(z, 0) =
z

↵(1 �
↵z
6
)2

,

⇣
A/z

⌘
(z = 0, z) =

(1 + ↵z
6
)

↵(1 �
↵z
6
)3

. (2.18)
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Note that, the first of these is no longer a domain wall solution: depending on the value of ↵,
it either diverges or it describes a regular solution oscillating once in a potential well. Indeed,
if 0 < ↵ < 1 (the positive soft mass case), the denominator vanishes for ⇢ = 2(↵±

p
↵)

↵(↵�1)
. On

the other hand, when 1  ↵, the potential has three extrema: A = 0,
�3+

q
9↵�8

↵

4
,

�3�
q

9↵�8
↵

4
.

The last one is the true minimum, whereas the other two being a local minimum and a
local maximum, respectively. In this case the solution corresponds to the field rolling on the
inverse potential, from � = 0 in the direction of the global minimum until it gets blocked
by the potential barrier, then settling back at � = 0. Like a domain wall solution, it has a
finite action

R
dt
⇣��dA

dt

��2 + V
⌘

(for ↵ = 2 it is ⇡ 0.06).

3 SQCD with quartic couplings

The solution of eq. (1.4) is also of interest in SQCD, whose dynamics for Nc colours and
Nf flavours has been studied in great detail over the years (for reviews see [20–26]). We
are particularly interested in the free magnetic regime, Nc +1 < Nf < 3

2
Nc, in which there

exist WZ domain walls described by eq. (1.4), as we shall now see.
Consider SQCD in such a phase, with a quartic superpotential

W (el) =
1

µX
Tr
h
(Q · Q̃)2

i
, (3.1)

where the dot indicates colour contractions, and the trace is over flavours of quarks and
antiquarks Qa

i , Q̃
j
a, which are respectively in the fundamental and anti-fundamental repre-

sentations of SU(Nc). This operator could be generated by the integrating out of heavier
fields of mass O(µX), as happens generically in the duality cascade [26]. For physical
consistency we will therefore require that µX > ⇤, with ⇤ being the dynamical scale of
the electric theory. Below the scale ⇤, the electric SQCD theory described above becomes
strongly coupled, and physics is best described by its magnetic dual. This theory also has
Nf flavours, but SU(N) gauge group, where N = Nf � Nc, and a classical superpotential

W (mag)

cl
= h q�q̃ +

µ�

2
Tr
�
�2
�
. (3.2)

Here �i
j are the flavour mesons of the infrared (IR) free theory, h is a Yukawa coupling of

order unity, and qai , q̃ja are fundamental and anti-fundamental quarks of SU(N). The �

mass term is µ� ⇡ ⇤2/µX ⌧ ⇤.
This theory has supersymmetric minima at the origin. In order to be able to count them

and compare with the original SU(Nc) theory, it is useful to also allow the addition of a mass
term for the quarks in the electric theory, W (el)

� mQTr
⇣
Q · Q̃

⌘
which must have mQ < ⇤

(to avoid the quarks being integrated out of the electric theory before we ever reach the
scale ⇤). In the magnetic theory this becomes a linear meson term, W (mag)

cl
� mQ⇤Tr�.

The conditions for supersymmetric minima then become

F
�i

j
= h qi.q̃

j + µ� �ji +mQ⇤ �ji = 0 , (3.3)
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along with the Fq = Fq̃ = 0 condition, which has solutions at hqi = hq̃i = 0 and h�ji i =

��jimQ⇤/µ�, parametrically close to the origin (whereas earlier we use �ji to denote the
scalar component of the superfield). This VEV gives a mass |hmQ⇤/µ�| to all the magnetic
quarks, and therefore by the usual Witten index theorem, we expect N vacua corresponding
to the low energy pure SU(N) Yang-Mills theory.

The remaining supersymmetric minima are separated from the origin by domain walls,
beyond which � develops a much larger VEV. Along this direction one is still in a pure
SU(N) Yang-Mills theory, but non-perturbative contributions to the superpotential be-
come important. Including these (and neglecting the quark mass term), the complete
superpotential for the mesons is as in eq. (1.1)

W (mag) =
µ�

2
Tr
�
�2
�
+N

 
hNf detNf�

⇤Nf�3N

! 1
N

, (3.4)

where the effective exponent, p ⌘
Nf

N , is generically a rational number. In the regime of
interest, Nc + 2  Nf < 3

2
Nc, we have

3 < p 
Nf

2
. (3.5)

In principle using eq. (1.4) one can get the exact domain wall solutions for this magnetic
theory, for any p.

To find them let us first locate the minima which are along �ji = �ji� (where we use
� to also stand for the trace component of the scalar). Setting F� = 0, we find non-
perturbatively generated SUSY preserving minima at

h�ji i = �ji�0 = �ji ⇤

 
�h

Nf
Nf�Nc

⇤

µ�

! Nf�Nc
Nf�2Nc

. (3.6)

The exponent here is negative so that h�i < ⇤ as required for the minima to be found
in the IR theory. Also note that, as there are no massless quarks, there are generically
2Nc � Nf solutions corresponding to the roots of �1. Together with the N = Nf � Nc

minima near the origin this gives the full complement of Nc vacua predicted by the Witten
index theorem.

For the domain walls we define

�̂ =
�

|�0|
; Ŵ =

W (mag)

µ�|�0|2
, (3.7)

giving Ŵ = �̂
2

2
+ �̂

p

p with p = Nf/N . We will henceforth drop the hats.
In order to determine the possible phases of the solution to the BPS condition in

eq. (1.3), letting �(t) = |�|ei(✓+⌘) we find two equations:

@t⌘ = � sin((p � 2)✓ + p⌘)|�|
p�2

� sin(2⌘) ,

@t log |�| = cos((p � 2)✓ + p⌘)|�|
p�2 + cos(2⌘) , (3.8)
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where we recall that now both W and � are dimensionless. It is clear that domain wall
solutions with constant phase require ⌘ = 0 and ✓ = n⇡/(p � 2) for integer n. Eq. (1.4)
then has z̄p�2

� zp�2
! 0 along this direction, and we find

�(t) =
ei✓et

�
1 � (�1)ne(p�2)t

� 1
p�2

, (3.9)

which is non-singular if n is odd. Hence, there is a domain wall with constant phase between
each minimum and the origin. To illustrate this, we show a solution in Figure 4 with p = 15.
In the large p limit these solutions tend to a universal form, �(t) p!1

= 1 + #(�t)(et � 1),
where # is the Heaviside theta function.

-� -� � � �
���

���

���

���

���

���

�

ϕ
(�)

-� -� � � �
���

���

���

���

���

���

���

�

�
(�)

Figure 4. Domain wall solution for SQCD with p = 15. In the right panel we plot the potential
as a function of t.

4 Conclusion

In this paper, we have presented an exact classical BPS solution of generalised Wess-Zumino
models, which extends expressions previously known in the literature. We have discussed
its applications as a generating function for multiparticle tree-level amplitudes on threshold
and as a generalisation of known expressions for domain walls in Wess-Zumino models,
which are for instance relevant for the vacuum structure of Supersymmetric QCD.

We have also pointed out natural extensions of our work, mostly in the context of mod-
els with spontaneously or softly broken supersymmetry. There, our methods yield partial
expressions which would be interesting to complete, since they would be for instance of
relevance for supersymmetric versions of the standard model.
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A The BPS condition

In this appendix we recap some facts about the BPS condition that underlie the discussion
in the main text. A field configuration is BPS [27, 28] if it preserves some amount of super-
symmetry. For scalar field configurations (transformed into fermions by supersymmetry), it
amounts to requiring that fermions remain equal to zero when the preserved supersymme-
try generators act. For a chiral superfield � such as the one in the WZ model, the fermion
variation is4:

�⇠ = i
p
2�m⇠@m�+

p
2⇠F , (A.1)

for � = � +
p
2✓ + ✓2F . When calculating multiparticle amplitudes or domain wall

profiles, we are interested in one-dimensional problems, so without loss of generality we
choose �(xµ) = �(x), x being the spatial coordinate along which the wall extends. Then,
demanding that �⇠ = 0 translates into

⇠
2d�

dx
= i⇠1F and ⇠1

d�

dx
= i⇠2F . (A.2)

Whenever the scalars verify d�
dx = �ei2✓F for some real number ✓, eq. (A.2) can be satisfied.

Using the on-shell value for F , for a trivial Kähler potential and a superpotential W , we
find

d�

dx
= e2i✓

dW

d�
. (A.3)

For the WZ model in eq. (1.1), this reduces to eq. (1.3).
Equation (A.3) can also be understood as a factorisation of the equations of motion.

Indeed, imposing the former is enough to satisfy the latter:

d2�

dx2
= e2i✓

d2W

d�
2

d�

dx
=

d2W

d�
2

dW

d�
=

dV

d�
, (A.4)

since V =
���dWd� (�)

���
2

for a chiral superfield.
Equation (A.3) can finally be understood as the condition that minimises the energy

per unit surface of a time-independent wall [30–32]:

E =

Z
dx

 ����
d�

dx

����
2

+

����
dW

d�

����
2
!

=

Z
dx

����
d�

dx
� e2i✓

dW

d�

����
2

+ 2Re(e�2i✓�W ) , (A.5)

where �W = W (x = +1)�W (x = �1). The fact that this condition is valid regardless
of ✓ implies the so-called BPS bound:

E � 2|�W | . (A.6)

In order to saturate this bound, one must again enforce eq. (A.3).
The fact that the generating function of multiparticle amplitudes verifies a BPS condi-

tion can be understood from [33]: smooth field configurations which solve the equations of
motion and originate from a supersymmetric vacuum state must verify the BPS condition.
Eq. (2.9), which defines the generating function in eq. (1.4), thus implies eq. (A.3).

4We use the conventions of Ref.[29].
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B Link with softly broken O(2) models

Here we draw links with the special case in [2]. When p = 3, eq. (1.4) reduces to:

A(z, z) =
z(1 + z�z

6
)

1 �
z+z
2

+ (z�z)2

12
�

(z+z)(z�z)2

216

=

����
z=et+i✓

et+i✓(1 �
2iet sin(✓)

6
)

1 � et cos(✓) �
e2t sin2(✓)

3
+ e3t cos(✓) sin2(✓)

27

.

(B.1)

Equation (B.1) can be identified with generating functions in softly broken O(2) models [2]
of two real scalar fields ' and �, with potential

V (',�) = µ('2 + �2)2 +
m2

1

2
'2 +

m2
2

2
�2 . (B.2)

Indeed, defining B = A + 1

2
, V =

��A2 +A
��2 =

��B2
�

1

4

��2 matches (up to the constant
term) with V (' = Re(B),� = Im(B)) if we take µ = m2

2
= �m2

1
= 1. Then, the “broken

reflection symmetry” solution given in [2] matches eq. (B.1) once we identify A = '�
1

2
+i�.

C Derivation of the solution

Here, we outline the way eq. (1.4) was found. Although one can check from the solution
itself that it solves the BPS condition for the model of eq. (1.2), different methods have been
used in its derivation, so we quickly list them here, following our chronological progression.

First, for the p = 3 case one can start by solving eq. (2.8) with ✓ = 0 or ⇡ (i.e. z real),
which makes A(z, z = z) real, giving

A(z, z = z) =
z

1 � z
. (C.1)

In order to derive this expression, we impose that A scales as z as z goes to 0, which
is enough/required for walls or amplitudes. One then seeks the multiparticle amplitudes
where an incoming � goes into n �’s (and no �’s) in the final states. This corresponds
to graphs where only � propagates since, at each vertex, the number of �’s, or �’s, in the
out-states is always larger (or equal) than the one in the in-states. It amounts to solving
the equation @2tA = A+A2, which determines A(z, 0). The solution is

A(z, z = 0) =
z

�
1 �

z
6

�2 . (C.2)

Then, one can make an educated guess of the form

A(z, z = 0) =
z

�
1 �

z
6

�2
+ zf(z, z)

, (C.3)

and numerically solve the first steps of the recursion relation in eq. (2.6) to get the (z, z)

expansion of f(z, z), from which one can surmise the following fully resummed expression:
⇣
A/z

⌘
(z = 0, z) =

�
1 + z

6

�
�
1 �

z
6

�3 . (C.4)
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After some more recursive steps one can deduce the full p = 3 solution:

A(z, z) =
z(1 + z�z

6
)

1 �
z+z
2

+ (z�z)2

12
�

(z+z)(z�z)2

216

. (C.5)

This solution turns out to be a reshuffling of the one found in [2].
Higher p solutions are derived in the following way: the Hamilton-Jacobi equation for

the WZ model with p = 4 can be solved with a variable separation, as in [2], by defining:

A =
p
2(⇠2 � 1)(1 � ⌘2) + i

p
2⇠⌘ . (C.6)

Ultimately this gives

A(z, z) =
z
⇣
1 + z2�z2

8

⌘

rh
1 �

(z�z)2

4
+ (z2�z2)2

64

i h
1 �

(z+z)2

4
+ (z2�z2)2

64

i . (C.7)

From this example one can guess that, for general p,

A(z, z) =
z
⇣
1 + zp�2�zp�2

2p

⌘

P (z, z)
, (C.8)

with P (z, z) being a real function. This parametrisation makes it possible to solve the BPS
condition of eq. (1.3), which gives a simple first order equation for P (z, z) whose solution,
with our boundary conditions, is eq. (1.4). The latter yields expressions in particular limits
that match the results of derivations similar to the discussions for eqs. (C.1) and (C.2):

A(z, z = z) =
z

(1 � zp�2)
1

p�2

, A(z, z = 0) =
z

⇣
1 �

zp�2

2p

⌘ 2
p�2

. (C.9)
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Titre : Quelques sujets au-delà du modèle standard: axions, supersymétrie, théorie des cordes

Mots clés : physique théorique des particules, axions, supersymétrie, théorie des cordes

Résumé : Cette thèse a pour but l’étude de théories

diverses, toutefois interconnectées, décrivant la nou-

velle physique au-delà du modèle standard de la phy-

sique des particules. Ce sont des théories d’un nou-

veau type de particules, les axions, d’un nouveau

principe de symétrie, la supersymétrie, et d’une nou-

velle description des degrés de liberté fondamen-

taux, la théorie des cordes. Les progrès instrumen-

taux et théoriques constamment faits au fil des ans

ont confirmé que ces théories sont des candidates pri-

vilégiées pour une description de la physique au-delà

du modèle standard.

Les axions sont d’abord examinés et étudiés d’un

point de vue phénoménologique: nous présentons

des modèles qui désenchevêtrent les différentes

échelles qui décrivent l’espace des paramètres des

modèles d’axions, et nous discutons les axions

présents dans des modèles de saveur. Inspirés par

les recherches autour du swampland, nous nous im-

posons l’utilisation de symétries de jauge, et non glo-

bales, en tant que point de départ pour la construction

de modèles.

Notre intérêt se porte ensuite sur la supersymétrie.

Nous étudions sa brisure, à la fois dans des modèles

explicites dans l’ultraviolet qui génèrent une échelle

de brisure de supersymétrie basse à partir de matière

à haute échelle, et au niveau des théories effectives

à l’aide de la supersymétrie non-linéaire. En ce qui

concerne ce dernier thème, nous nous restreignons à

l’approche des superchamps contraints. Enfin, nous

présentons des solutions classiques exactes d’un

modèle supersymétrique dont la portée est grande,

le modèle de Wess-Zumino d’un superchamp chiral.

Finalement, nous nous intéressons à la théorie des

cordes. Nous calculons des spectres de cordes en

guise d’illustration de la structure de la théorie et de

point de départ pour le calcul d’amplitudes du vide à

une boucle. Celles-ci nous permettent de tester l’une

des conjectures du swampland, qui désigne la gravité

comme la plus faible des forces, dans une configu-

ration de théorie des cordes où la supersymétrie est

brisée. Enfin, les axions en théorie des cordes sont

analysés, en particulier lorsqu’ils sont chargés sous

une symétrie de jauge abélienne anomale.

Title : Topics beyond the Standard Model: axions, supersymmetry, string theory

Keywords : theoretical particle physics, axions, supersymmetry, string theory

Abstract : The aim of this thesis is to study various

but interconnected theories for new physics beyond

the standard model of particle physics. Those are

theories of a new kind of particles, axions, a new

symmetry principle, supersymmetry, and a new des-

cription of fundamental degrees of freedom, string

theory. Constant instrumental and theoretical pro-

gresses made over the years maintain those already

old subjects as leading BSM candidates.

Axions are first reviewed and studied from a pheno-

menological perspective: we present models which di-

sentangle the different scales which define the axion

parameter space, and we discuss axions which arise

in models of flavour physics. Motivated by swampland

considerations, we insist on using gauge, and not glo-

bal, symmetries as model building inputs.

The focus then shifts to supersymmetry. We study

its breaking, both in explicit ultraviolet models which

generate a low supersymmetry breaking scale from

high-scale matter, and at the effective field theory le-

vel using non-linearly realized supersymmetry. In our

study of the latter topic, we focus on the constrained

superfield approach. Finally, we present exact classi-

cal solutions of a supersymmetric model with broad

application scope, the Wess-Zumino model of a chiral

superfield.

Last, we discuss string theory. We compute string

spectra as illustrations of the structure of the theory

and as starting points to compute one-loop vacuum

amplitudes. Those are used to understand supersym-

metry breaking in string theory, as well as brane in-

teractions. Then, the latter enable us to test one of

the swampland criteria, the weak gravity conjecture,

in a string theory setup with broken supersymmetry.

Finally, axions in string theory are scrutinized, in par-

ticular when they are charged under an anomalous

abelian factor of the gauge group.
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