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Abstract

The increasing presence of robots in industries has not gone unnoticed. Cobots (collaborative
robots) are revolutionising industries by allowing robots to work in close collaboration with hu-
mans. Large industrial players have incorporated them into their production lines, but smaller
companies hesitate due to high initial costs and the lack of programming expertise. Recent work
has focused on enabling end-users to program robots but teaching reusable actions from scratch
is generally left up to robotic experts. In this thesis, we propose a framework that combines
two disciplines, Programming by Demonstration and Automated Planning, to enable users with
little to no technical background to program a robot. The user constructs the robot’s knowledge
base by teaching it new actions by demonstration, and associates their semantic meaning via a
graphical interface to enable the robot to reason about them. The robot adopts a goal-oriented
behaviour by using automated planning techniques to reuse taught actions to generate solutions
for previously unseen tasks. We first present preliminary work in terms of user experiments
using a Baxter Research Robot to evaluate the feasibility of our approach. We conducted quali-
tative user experiments to evaluate the user’s understanding of the symbolic planning language
and the usability of the proposed framework’s programming process. We showed that users
with little to no programming experience can adopt the symbolic planning language and un-
derstand the proposed programming process. We then present a goal-oriented programming
system for robotic shelf organisation tasks that uses Programming by Demonstration to simul-
taneously teach goals and actions. Based on the obtained results and the developed system, we
present an implementation of iRoPro, a working end-to-end system that allows teaching low-
and high-level actions by demonstration to be reused with a task planner. We evaluate the gen-
eralisation power of the system and show how taught actions can be reused for more complex
tasks. Finally, we validated the system’s usability with a user study and demonstrated that users
with any programming level and educational background can easily learn and use the proposed
robot programming system.
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Résumé

La robotique est de plus en plus présente dans l’industrie. Les cobots (robots collaboratifs),
travaillant en collaboration avec l’homme, sont en train de révolutionner l’industrie. Les
grands acteurs industriels les ont déjà intégrés dans leurs chaı̂nes de production, mais les
petites entreprises hésitent encore en raison des coûts élevés des investissements nécessaires
et de leur manque d’expertise dans leur maintenance et leur programmation. Des travaux
récents se sont concentrés sur la possibilité, pour des utilisateurs finaux, de programmer des
cobots, mais la programmation des actions qu’ils peuvent réaliser reste encore un problème
d’expert en robotique. Dans cette thèse, nous proposons un système qui combine deux disci-
plines de l’IA, l’apprentissage par démonstration et la planification automatique, pour perme-
ttre à des utilisateurs ayant peu ou pas de connaissances en programmation. Dans un premier
temps, l’utilisateur apprend de nouvelles actions au cobot par démonstration et leur associe une
sémantique via une interface graphique. Dans un second temps, le cobot est capable en util-
isant des algorithmes de planification automatique de raisonner sur la sémantique des actions
apprise de calculer dynamiquement la séquence d’actions à réaliser pour atteindre un objectif
qui lui a été confié. Nous présentons dans ce manuscrit tout d’abord des travaux préliminaires
pour évaluer la faisabilité de notre approche. Ces travaux préliminaires s’appuient sur une
expérimentation qualitative réalisée auprès d’utilisateurs afin d’évaluer leur compréhension du
langage de planification symbolique utilisé pour définir la sémantique des actions apprises au
cobot. Nous avons montré que les utilisateurs ayant peu ou pas d’expérience en program-
mation peuvent adopter ce langage et comprendre le processus de programmation proposé.
Nous présentons ensuite une méthode pour apprendre au cobot par démonstration un objectif à
réaliser. Nous avons évalué notre approche sur une tâche de packaging classique en robotique.
Finalement, sur la base des résultats obtenus, nous présentons une implémentation de notre
système de programmation par démonstration, appelé iRoPro, un système fonctionnel complet
qui permet d’apprendre à un cobot des actions de bas niveau (trajectoire) et de haut niveau
(sémantique) par démonstration capable d’être manipulée par un planificateur de tâches. Notre
système a été évalué et validé par une étude d’utilisateurs. Nous avons montré que les util-
isateurs avec des connaissances en programmation limitées pouvaient relativement facilement
apprendre et utiliser notre système de programmation par démonstration.

4



Acknowledgements

First of all, I would like to thank my parents P.Y. and H.K. Liang for the love, guidance and
support they have shown me in every step of my life. I would also like to thank my brother C.T.
and other family members for being there for me when I needed.

Thanks to my thesis advisors Damien Pellier, Humbert Fiorino, and Sylvie Pesty for their
supervision and guidance, as well as colleagues and previous members or interns in the HAwAI
(formerly MAGMA) team for their support throughout my thesis. My sincere gratitude also
goes to Nadine Mandran, who was always happy to help me with my user experiments and
provided me with essential feedback on both the design and the write-up. Similarly, I would
like to thank other members of the lab that I worked with and that helped me with any aspects
of my thesis.

I am also grateful to my doctoral school advisor Pierre Genevès and my external advisor
Dominique Duhaut for their support. I still remember the time when I just finished my Master
thesis presentation in 2016 and after my presentation Dominique told me “Someone like you
should do a Ph.D.” and now I did - thanks for believing in me. Also a big thank you to my jury
members or rapporteurs Rachid Alami and Olivier Ly for reading my thesis, as well as your
time and constructive feedback.

Finally, I would like to express my sincere gratitude to Maya Cakmak and the Human-
Centered Robotics Lab, for inviting me to work with her for 5 months of my Ph.D. It was truly
one of the most fun and inspiring experiences for me to continue work in robotics research after
my thesis. I would also like to thank my friends in Grenoble, Seattle, London, and anywhere
else in the world who supported me throughout my thesis.

5



Contents

1 Introduction 14
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Cobotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.2 Robot Programming by Demonstration . . . . . . . . . . . . . . . . . 15
1.1.3 Automated Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Document organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I Literature Review 22

2 Robot Programming 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Manual Programming Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Text-based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Graphical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Automatic Programming Systems . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Policy derivation techniques . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Learning from data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Machine Learning Systems . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.4 Programming by Demonstration . . . . . . . . . . . . . . . . . . . . . 32

2.4 End-user Involvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Discussions and Relations to Present Work . . . . . . . . . . . . . . . . . . . . 35

3 Automated Planning 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Classical planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Planning Domain Definition Language (PDDL) . . . . . . . . . . . . . . . . . 42

3.3.1 Planning domain description . . . . . . . . . . . . . . . . . . . . . . . 43

6



3.3.2 Planning problem description . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 PDDL evolution and extensions . . . . . . . . . . . . . . . . . . . . . 46

3.4 Planners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Knowledge Engineering Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Discussions and Relations to Present Work . . . . . . . . . . . . . . . . . . . . 49

II Contributions 53

4 An End-User Robot Programming Framework for Cobotic Environments 55
4.1 iRoPro - interactive Robot Programming . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Programming by Demonstration: teaching actions . . . . . . . . . . . 57
4.1.2 Automated Planning: reusing actions . . . . . . . . . . . . . . . . . . 58
4.1.3 Retro-active Loop: refining actions . . . . . . . . . . . . . . . . . . . 58

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Pre-Experiments 61
5.1 Baxter Research Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Experiment 1: Acceptance of Automated Planning and PDDL Concepts . . . . 62

5.2.1 Experimental Setup & Participants . . . . . . . . . . . . . . . . . . . . 63
5.2.2 Experimental Design & Measurements . . . . . . . . . . . . . . . . . 64
5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Experiment 2: Acceptance of the Robot Programming Framework . . . . . . . 67
5.3.1 Experimental Setup & Participants . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Experimental Design & Measurements . . . . . . . . . . . . . . . . . 68
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Goal-Oriented End-User Robot Programming 73
6.1 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Freiburg Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.2 Shelf Arrangement Representation . . . . . . . . . . . . . . . . . . . . 79
6.2.3 Goal Inference from Demonstration . . . . . . . . . . . . . . . . . . . 80
6.2.4 Goal Inference with Direct Specification . . . . . . . . . . . . . . . . . 81
6.2.5 Action Representation and Inference . . . . . . . . . . . . . . . . . . . 81
6.2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7



6.3 Goal Inference Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.1 Teaching Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.2 Evaluation on the Freiburg Dataset . . . . . . . . . . . . . . . . . . . . 84
6.3.3 User Study Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 End-User Robot Programming for Task Planning 93
7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.1 Low-level Action Representation . . . . . . . . . . . . . . . . . . . . 96
7.2.2 High-level Action Representation . . . . . . . . . . . . . . . . . . . . 97
7.2.3 Action Inference from Demonstration . . . . . . . . . . . . . . . . . . 97
7.2.4 Action Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.1 Interactive Robot Programming . . . . . . . . . . . . . . . . . . . . . 99
7.3.2 Plan Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.4.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5 User Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.5.1 Experimental Setup & Participants . . . . . . . . . . . . . . . . . . . . 103
7.5.2 Experimental Design & Measurements . . . . . . . . . . . . . . . . . 104
7.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5.4 Continuous Improvement of the System . . . . . . . . . . . . . . . . . 108

7.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Conclusion and Future Work 111
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.1.1 End-user robot programming framework . . . . . . . . . . . . . . . . 112
8.1.2 Experimental findings . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.1.3 Goal-oriented robot programming . . . . . . . . . . . . . . . . . . . . 113
8.1.4 iRoPro - System implementation . . . . . . . . . . . . . . . . . . . . . 113
8.1.5 User and system evaluation . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8



8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

References 117

A Publications and Submissions 132

B Resources for Pre-Experiment: Study 1 (Sec. 5.2) 133

C Resources for Pre-Experiment: Study 2 (Sec. 5.3) 151

D Resources for User Evaluation (Chapter 6) 163

E Resources for User Evaluation (Sec. 7.5) 164

F PDDL code used in Chapter 7 182
F.1 iRoPro planning domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
F.2 iRoPro planning problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9



List of Figures

1.1 Overview of the Programming by Demonstration life-cycle consisting of three
steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Tower of Hanoi problem where the goal is to move the entire stack of disks
from one peg to another . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Illustration of the main Automated Planning concepts . . . . . . . . . . . . . . 17

1.4 Overview of thesis chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Classical robot programming process . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Overview of Robot Programming approaches based on control over robot be-
haviour code, type of learning data and how it is acquired and teacher feedback.
Approaches are ranked by end-user involvement in the programming process
as well as data and time required to learn a skill. . . . . . . . . . . . . . . . . . 26

2.3 KUKA Robotics graphical user interface (Abdeetedal [2017]) . . . . . . . . . 28

2.4 Lego Mindstorms EV3 icon-based interface (Lego [2003]) . . . . . . . . . . . 29

2.5 Scratch: block-based visual programming language (Majed [2014]) . . . . . . 29

2.6 Sample demonstrations of the letter P in 2D: (a) trajectory demonstration (b)
keyframe-based demonstration (c) hybrid demonstration (Akgun et al. [2012]). 30

2.7 Robot programming by keyframe-based demonstration using a graphical user
interface that allows retrospectively editing (Alexandrova et al. [2014]) . . . . . 30

2.8 Types of Machine learning: Deep learning (supervised and unsupervised learn-
ing) and Reinforcement learning (Jones [2017]) . . . . . . . . . . . . . . . . . 32

3.1 A state transition system consisting of six states s0 to s5 . . . . . . . . . . . . 40

3.2 Example of a type hierarchy showing a general type ELEMENT with subtypes
OBJECT and POSITION, and BASE, CUBE, ROOF objects. . . . . . . . . . . 41

3.3 Action model representation of a move action in terms of preconditions and
effects: an action (or instantiated operator) for a cube (top), and generalised
action (or planning operator) for any object, where variables are prefixed with
‘?’ (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10



3.4 Definition of a planning problem: (a) properties describing the initial world
state (b) object names and their types (c) instantiated actions (d) properties
describing the goal state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Screenshot of a Planning UML model in itSIMPLE software (Vaquero et al.
[2013]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Screenshot of the operator editor tool in GIPO (McCluskey and Simpson [2005]) 51

4.1 An overview of the iRoPro (interactive Robot Programming) framework: A.
the user teaches primitive actions by demonstration B. the robot reuses these
with a task planner to generate an action sequence to achieve a goal. C. After
observing the robot execution, the user can refine the taught action models
(dotted lines indicate user actions, solid lines indicate robot actions). . . . . . . 56

4.2 The thesis contributions align with the design wheel consisting of successive
cycles of ‘Explore’, ‘Create’, ‘Evaluate’ and ‘Manage’ phases (University of
Cambridge [2013]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Experimental setup for user studies. . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Action model representation of a move action in terms of preconditions and
effects: an action (or instantiated operator) for a cube (top), and generalised
action (or planning operator) for any object, where variables are prefixed with
‘?’ (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Users were instructed to provide a description of (a) the initial state of the world
and (b) an initial move action model. Then they derived additional precondi-
tions for moving the ball from position A1 to B2: (c) (stackable ball cube):
the ball can be stacked onto the cube, and (d) (empty B2): if the ball cannot be
stacked, the target position should be empty. . . . . . . . . . . . . . . . . . . . 65

5.4 Definition of a planning problem (a) properties describing the initial world state
(b) object names and their types (c) instantiated actions (d) properties describ-
ing the goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Extract of questionnaire responses from Experiment 1. . . . . . . . . . . . . . 66

5.6 Continuous refinement of the move action model: (a) initial action model learned
by demonstration, (b) action model for all cubes of any colour, (c) action model
with an additional condition, if the target position is occupied and cubes can not
be stacked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.7 Summary of questionnaire responses: Extract of 18 questions on the user’s
perceived usability and understanding of the programming process after the
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

11



6.1 Overview of the developed system that allows users to demonstrate part of a
shelf arrangement task and interact with a GUI to simultaneously program both
the complete task goal (fully specified shelf arrangement) and the actions for
achieving that goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Main product shape categories, that comprise 90.1% of items in the dataset, are
defined based on the the shape of their base and their tip. The shape of the tip
determines whether the objects can be stacked or not. The shape of the base
determines whether the object is more compactly arranged on a regular grid
(rectangular) or an off-grid arrangement (circular). . . . . . . . . . . . . . . . 78

6.3 Cylindrical item arranged in a) regular grid and b) off-grid configurations. c)
Soft-packaged item arranged in interleaved grid configuration. . . . . . . . . . 79

6.4 The extended Rapid PbD interface where users can directly specify their de-
sired object arrangement (left) and the inferred arrangement is visualised (pur-
ple) overlaying the detected objects (green). . . . . . . . . . . . . . . . . . . . 83

6.5 Learning curve of 10 teaching strategies for 4 different shelf arrangements from
the Freiburg dataset, with number of actions (x-axis) and ranking of the ground
truth shelf arrangement (y-axis). . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6 Average number of steps required to infer the correct arrangement per teaching
strategy across the dataset (error bars show standard deviation). . . . . . . . . . 85

6.7 Simplified user-interface created to evaluate our goal inference model in an
online user study. The top part shows the desired configuration with a picture
and the visualisation of the current shelf arrangement inference. The bottom
part has three parts corresponding to three types of programming actions the
user can take: demonstration (drag-and-drop items onto shelf), specification
(select parameter values from drop-down menus), and selection (choose one of
the top four most likely arrangements by clicking on it). . . . . . . . . . . . . . 87

6.8 Average number of steps required for 8 arrangement tasks chosen for the online
user study, comparing 10 teaching strategies with human performance (AMT). . 88

6.9 Distribution of user strategies employed in the AMT study . . . . . . . . . . . 89

6.10 Snapshots from the executions of the eight system evaluation benchmark tasks. 91

7.1 Overview of iRoPro that allows users to teach low- and high-level actions by
demonstration. The user interacts with the GUI to run the demonstration, mod-
ify inferred action conditions, create new planning problems for the robot to
solve and execute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Experimental setup for the user study (N=21), where users programmed the
Baxter robot via a GUI to manipulate given object types (with predefined type
hierarchy). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

12



7.3 Example of a high-level action for moving an object from A to B. Conditions
are inferred from the observed predicates before (Ob) and after (Oa) the demon-
stration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 The iRoPro interface showing the action condition menu and an interactive
visualisation of the Baxter robot and detected objects. . . . . . . . . . . . . . . 100

7.5 Snapshots from the executions of the system evaluation (Tasks 3&4) showing
a claw grip from the top and the side. . . . . . . . . . . . . . . . . . . . . . . . 103

7.6 Participants who did better in the pre-test questionnaire completed the main
tasks faster, with ‘non-CS’ users scoring the highest and being the fastest on
average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.7 User responses from the post-study questionnaires comparing a) the iRoPro
user evaluation (N=20) with responses obtained in b) the pre-experiment user
study (N=11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.8 Baxter icons used for the graphical interface (Freedman [2012]). . . . . . . . . 109

C.1 Action model used in experiments . . . . . . . . . . . . . . . . . . . . . . . . 162

13



Chapter 1

Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Cobotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2 Robot Programming by Demonstration . . . . . . . . . . . . . . . . 15

1.1.3 Automated Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Document organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Context

Technologies have revolutionised the manufacturing industry ever since the Industrial revolu-
tion in the 19th century. Robots are improving productivity by replacing humans for arduous
and repetitive manual tasks. Increasing order requests for industrial robots has led to higher
capital investments into the field. Although robots can be superior in automating human tasks,
there remain many tasks that cannot be completely taken over and still need human interven-
tion, for example high-precision tasks. To allow both human precision and robot automation,
collaborative robots have been introduced.

1.1.1 Cobotics

Collaborative robots, or cobots, have been introduced by Colgate and Peshkin [1999] to allow
a close collaboration between humans and robots. They contribute to productivity gains as they
are designed to take over manual and repetitive tasks. Cobots enable humans to perform tasks
that they cannot perform on their own, due to physical constraints such as the manipulation of
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heavy parts. Furthermore, they reduce risks of work-related accidents, including health hazards
such as exposure to dangerous environments (e.g., chemical acids, excessive temperatures or
noise), as well as sleeping disorders caused by rotating work shifts. While replacing jobs of
low-skilled human workers, they open up a market for new high-skilled jobs.

Cobotic systems have been adopted in several industries from the food-processing indus-
try (Universal Robots [2016]), to aeronautics (Clapaud [2013]), to the health industry (Ac-
tive8 Robots [2014]). However, companies resist the use of robots in their daily routines as
they consider the investment cost ineffective, for example due to their high initial costs and
the lack of trained personnel. Traditional robot programming solutions require domain ex-
perts who generally program robots to complete a specific task. Approaches using Neural
Networks (Schmidhuber [2015]) or Reinforcement Learning (Gosavi [2009]) allow robots to
learn on their own but become infeasible for some task-specific applications as they require
large amounts of data. Many robot programming solutions fail as the deployment in real-world
scenarios introduces further unexpected limitations. Thus, recent research has been focusing
on robot programming for end-users where the robot learns from human teachers at the time of
deployment.

1.1.2 Robot Programming by Demonstration

Robot Programming by Demonstration (PbD), also referred to as Learning from Demonstra-
tion, is an end-user programming technique for teaching a robot new skills by demonstrating
them, without writing code (Billard et al. [2008]). Influenced by natural learning paradigms
in humans, it is an intuitive robot programming method with the goal to refine the robot’s per-
formance by providing repetitive demonstrations. PbD has become a central topic in research
areas, with the aim to move from purely pre-programmed robots to flexible user-based inter-
faces for training robots.

Figure 1.1 shows the life-cycle for teaching a robot by demonstration that consists of three
main steps: 1. The teacher demonstrates a new skill to the robot (e.g., by kinesthetically moving
its arm), which the robot observes with its sensors. 2. The robot extracts the information such
as relevant features to create a model of the skill and tries to apply it in a new context. 3.
The execution is evaluated by the teacher who can refine the skill by providing additional
demonstrations. The robot can generalise over multiple demonstrations by extracting common
features. This incremental learning process allows non-robotics users to teach the robot new
skills without having to write explicit code.

As the robot has limited knowledge about the world and restricted sensor availability, learn-
ing object manipulation tasks is still considered a hard problem (Ekvall and Kragic [2008]).
Many PbD algorithms have been proposed in the literature (Argall et al. [2009], Billing and
Hellström [2010]), but there still remain several challenges, such as the suboptimality of demon-
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Figure 1.1: Overview of the Programming by Demonstration life-cycle consisting of three steps

strations (Chen and Zelinsky [2003], Kaiser et al. [1995]) or the lack of comparative user studies
(Suay et al. [2012]). Another major problem is that the robot is generally demonstrated an ac-
tion sequence to complete a specific task (Orendt et al. [2016], Peppoloni et al. [2014]), rather
than individual reusable actions. Take for example the Tower of Hanoi problem (Hofstadter
[1985]), a puzzle consisting of three pegs and a number of disks of different sizes stacked on
one peg in descending order with the largest peg at the bottom (Fig. 1.2a) The goal is to move
the entire stack from one peg to another, by obeying the following rules:

• move only one disk at a time,

• each move consists of taking the upper disk from one of the stacks and placing it on top
of another (possibly empty) stack, and

• no disk can be moved on top of a smaller disk.
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Figure 1.2: Tower of Hanoi problem where the goal is to move the entire stack of disks from
one peg to another

The robot can be taught an action sequence to solve the problem for three disks. However,
when the problem changes to four disks (Fig. 1.2b), the robot has to be demonstrated a new
sequence as the solution is different depending on the given number of disks. In fact, the action
sequence to solve this problem always consists of a combination of the same primitive action,
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namely, to move a disk from one peg to another. A more efficient approach would be to teach
the robot the primitive action of moving a disk, associate rules or conditions to this action
(e.g., disks can only be placed on top of larger ones), and have the robot generate an optimal
solution automatically, for example using task planners like in Automated Planning.

1.1.3 Automated Planning

Automated Planning, also known as AI Planning, is a research field that focuses on the de-
velopment of task planners consisting of efficient search algorithms to generate solutions to
problems (Ghallab et al. [2004]). Given a planning domain, i.e., a description of the state of
the world and a set of actions, and a planning problem, i.e., an initial state and a goal, the task
planner generates a sequence of actions, which guarantees the transition from the initial state to
goal (Fig. 1.3a). To allow a correct transition between different world states, actions are defined
in terms of preconditions and effects, which represent states before and after the action execu-
tion respectively (Fig. 1.3b). Planning algorithms use a symbolic planning language as their
standard encoding language, such as STRIPS (Fikes and Nilsson [1971]) or PDDL (Ghallab
et al. [2004]). The Tower of Hanoi problem could be defined in terms of a planning problem,
where the domain consists of 3 pegs and a number of disks, and the action is defined as moving
a disk from one peg to another, with associated rules as preconditions and effects. A planner
can then be used to generate a solution to the problem for any number of disks.
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Figure 1.3: Illustration of the main Automated Planning concepts

1.2 Problem Statement

In this thesis we argue for teaching robots primitive actions, instead of entire action sequences,
and delegating the logical reasoning process of finding a solution to task planners. Most solu-
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tions to teach the robot new actions assume a finite list of primitive actions that these actions
are based on. However, to date, there is no database of general purpose primitive actions and
whether a finite set can list all necessary motions is questionable (Billard et al. [2016]). While
previous work has addressed integrating task planning with robotic systems (Abdo et al. [2013],
Cashmore and Fox [2015]), enabling end-users to teach new actions from scratch that can be
reused with task planners has not been addressed and is extremely challenging. The system
should allow efficient programming of both how an action is performed (low-level action) and
when it can be applied (high-level action), while being able to generalise both aspects to pre-
viously unseen scenarios. Furthermore, the system should provide an intuitive interface that
allows end-users to reuse the taught actions together with a task planner, that is generally han-
dled by domain experts. To that end, we must create a framework that combines the following
aspects:

• Programming by demonstration: the user should be able to teach the robot primitive
actions from scratch, including both how and when to perform the action, without writing
explicit code,

• Automated planning: taught actions should be part of a planning domain that can be
used by task planners to generate solutions,

• Intuitive robot programming: the user interface, planning domain and robot program-
ming process need to be intuitive enough for users to understand easily and to allow them
to navigate on their own in order to customise the robot to their specific tasks.

In other words, the system should enable the user to program the robot in an intuitive
way, e.g., by demonstration, and thereby construct reusable low- and high-level actions for the
robot to accomplish previously unseen tasks. A functioning real-world system requires solu-
tions in perception (e.g., object identification), motion planning (e.g., manipulation, navigation,
safety), cognitive robotics (e.g., action learning, task planning) and human–robot interaction
(e.g., multi-modal interaction and teacher feedback). The integration of all aspects into a real-
time system is a major challenge. In this thesis we address this with the final goal to create
a working end-to-end system for end-user robot programming. We address the following re-
search question:

Can non-robotics users teach a robot actions from scratch that it can reuse to autonomously
solve previously unseen problems?

With the focus on cobotic environments, we further investigate the difficulties encountered
by end-users, when faced with PbD and Automated Planning concepts for the first time. We
evaluate our approach with pick-and-place robots, addressing assembly and packaging tasks,
two of the most common application types in manufacturing facilities (Robotic Industries As-
sociation [2018]).
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1.3 Summary of contributions

This thesis contributes mainly to the fields of end-user robot programming and human-robot
interaction, by proposing and implementing an end-user robot programming framework and
conducting relevant user studies. The contributions can be summarised as follows:

• We propose iRoPro, an end-user robot programming framework that combines PbD and
Automated Planning techniques, where the robot learns new actions from user demon-
strations that it can reuse with a task planner. The robot programming process consists
of the following steps:

1. the user teaches the robot new actions by kinesthetic demonstration, where the robot
learns both low- and high-level action representations,

2. the robot uses these actions with a task planner to generate solutions to user-defined
problems,

3. the user can either have the robot execute the generated solution or revisit the taught
actions via the graphical interface to refine them.

• User study 1: Experimental findings on issues encountered when non-robotics end-users
are introduced to AI planning concepts and tasked to use a symbolic planning language
to describe planning domains and problems to the robot. We evaluate the user’s ability
to construct action in terms of preconditions and effects and show that users with little to
no programming experience can easily learn and use symbolic planning languages.
Research question: How do non-expert users adopt the automated planning language
with its action model representation?

• User study 2: Experimental findings on user acceptance of the proposed framework. Us-
ing the Wizard-of-Oz technique, users were tasked to teach a robot actions by kinesthetic
demonstration and assign conditions that can be used for automated planning.
Research question: Can users teach a robot action models for automated planning using
the robot programming framework?

• Goal-oriented robot programming: We present a goal-oriented robot programming sys-
tem for shelf organisation tasks using PbD and an graphical user interface. The system
allows the robot to learn and execute organisation tasks from user input to simultaneously
teach goals and actions by demonstration. The robot learns both what and how to per-
form a task using PbD and a goal inference model. We evaluated user teaching strategies
with experiments on Amazon Mechanical Turk and compared their performance to eight
benchmark strategies.
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• We implement iRoPro as an end-to-end system on a Baxter research robot that

1. allows simultaneous teaching of low- and high-level actions from a single demon-
stration,

2. includes a user interface for action creation with condition inference and modifica-
tion, and

3. allows creating and solving previously unseen problems using a task planner for the
robot to execute in real-time.

The implementation includes a graphical interface, which allows the user to teach new ac-
tions by kinesthetic demonstration, modify action conditions, define new planning prob-
lems for the robot to solve and execute the plan in real-time. This system enables end-
users to program robots from scratch, without writing code.

• User study and system evaluation: We demonstrate iRoPro’s capability to generalise
primitive actions on six benchmark tasks that are programmed and executed on the Baxter
robot. We empirically investigate the usability of our system and validate its intuitiveness
through a study with 21 users of different educational backgrounds and programming
levels. To better understand user teaching strategies, we split participants into two control
groups, with and without automatic condition inference, and showed that users in both
groups can easily learn and use the system.

1.4 Document organization

This thesis is organised into two parts:
The first part (I) provides a literature review of state of the art techniques in robot program-

ming (Chapter 2), followed by an overview of Automated Planning (Chapter 3).
The second part (II) presents our contributions involving iRoPro, the proposed end-user

robot programming framework (Chapter 4). We first conduct qualitative experiments and
present experimental findings on user acceptance and issues encountered when introduced to
Automated Planning concepts (Chapter 5). We then focus on evaluating our goal-oriented
end-user robot programming approach and present our work on shelf organising tasks to simul-
taneous program goals and actions by demonstration (Chapter 6). Our main contribution is an
end-to-end system implementation of iRoPro. We present details on the implementation and
the system and user evaluation in Chapter 7.

Finally, we conclude this thesis in Chapter 8 and discuss possibilities for future work and
research.
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Chapter 2

Robot Programming
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In this chapter we first provide an overview of traditional robot programming techniques
and categorise them to identify common bottlenecks. We discuss state-of-the-art techniques in
manual (Sec. 2.2) and automatic (Sec. 2.3) programming systems and their required end-user
involvement in the programming process (Sec. 2.4). We end this chapter by discussing common
encountered issues and relations to this thesis (Sec. 2.5).

2.1 Introduction

Robot Programming is the process of defining desired motions and associated skills of the robot
that it may perform without human intervention. Classical robot programming processes in the
industry have task-specific definitions, which are generally robot-dependent, and require pro-
gramming expertise. Figure 2.1 shows the classical robot programming process, consisting of
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at least four phases: The initial definition of a resource-centered task and layout is followed
by sequencing the workcell operations. Once the process has been validated, the robot is pro-
grammed offline using one or more native robot programming languages, before it is pushed
into production for regular execution. The programmed robot can only be used for this spe-
cific task in this particular working environment. If the task definition needs to be modified,
the programming expert has to repeat the entire programming process to ensure a consistently
valid execution in production. Therefore, classical robot programming processes can be very
time-consuming and cost intensive.

Robot Task Definition

Workcell Sequencing

Off-Line Programming

Execution in Production

Resource centered 
Task & layout

Process validation

Robot(s) programming in 
native language(s)

1

2

3

4

Figure 2.1: Classical robot programming process

In the past few decades, different robot programming techniques have been developed to fa-
cilitate this process. There are many ways to divide robot programming systems. Lozano-Perez
[1983] divided them into three categories: guiding systems, where the robot’s joint positions
are sequentially recorded, robot-level systems, where a programming language is used, and
task-level systems, where the task goal (e.g., object positions) needs to be specified. However,
the range of programming systems was very limited at that time and examined only industrial
robot programming systems. Instead, Biggs and Macdonald [2003] divided them into two main
categories, distinguishing programming methods between systems for programmers and users:

• Manual programming: the user can directly control the robot’s execution code, using a
text-based or a graphical system.

• Automatic programming: the user does not need to write explicit code and the robot
learns using a learning or an instructive system.
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Inspired by these main categories, we created an overview of the main robot programming
techniques that have been applied in most recent research (Fig. 2.2). Even though many state-
of-the-art systems use a combination of techniques, such as Deep Reinforcement Learning
(Arulkumaran et al. [2017], Mnih et al. [2015]) or PbD for Reinforcement Learning (Hester
et al. [2017]), it makes sense to differentiate them by their key attributes, which we identified
as follows:

• Control over the robot behaviour: if the code created by the user directly encodes the
robot’s executed behaviour (manual vs automatic programming), and if created manually,
how the code is generated (text-based vs visual programming)

• Learning data: for automated programming systems the robot learns from data, so we
differentiate between the type of data used: if the data is biased or unbiased, if the teacher
is involved in the learning process, how the data is acquired (provided by a teacher vs by
self-exploration), and if it is labelled (supervised vs unsupervised learning)

• End-user involvement: the level that the end-user is involved in the programming pro-
cess ranges from writing code manually, providing data or continuous feedback during
the learning process to defining reward functions.

In the following sections we will give a brief overview of the identified programming system
categories by first distinguishing between the user’s control over the robot behaviour, i.e., man-
ual (Sec. 2.2) and automatic (Sec. 2.3) programming. For manual programming, we compare
text-based (Sec. 2.2.1) and graphical (Sec. 2.2.2) systems. For automatic programming, we
differentiate between those that learn from unbiased and biased data, i.e., machine learning
systems (Sec. 2.3.3) vs programming by demonstration (Sec. 2.3.4). Finally, we will discuss
different levels of end-user involvement (Sec. 2.4) and conclude this chapter by discussing
relations to this thesis (Sec. 2.5).

2.2 Manual Programming Systems

In manual programming systems, users have direct control over the robot code for which they
often require expert knowledge in a programming language. There exists a variety of tools
to make programming, as well as testing and debugging, easier such as IDEs, spreadsheets or
macros. There are two types of manual programming: text-based programming, where the code
is written manually in a chosen programming language (e.g., python, C++, java) and graphi-
cal programming, where the code structure is created with the help of a graphical interface
(e.g., flow-charts).
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2.2.1 Text-based Systems

Text-based systems are one of the most common methods and use a traditional programming
approach. Biggs and Macdonald [2003] differentiated between the type of programming lan-
guage used: The user programs in either controller-specific languages, where the machine
language consists of simple commands specific to the robot (e.g., the KUKA Robot Language
(Braumann and Brell-Cokcan [2011], Mühe et al. [2010]) shown in Fig. 2.3), generic proce-
dural languages, where multi-purpose languages such as C++ have been extended with classes
to provide simple access to common robot specific functions (e.g., Lego [2003]), or behaviour-
based languages that specify how the robot should react to different conditions (e.g., Haskell
(Hudak et al. [2002])). There has been a trend to move from low-level command-based lan-
guages towards more intelligent programming systems (e.g., IDEs) with high-level languages
that provide more support to the user and reduce the programming workload. However, text-
based systems are more likely to be used by robot developers than end-users as they still require
trained users with programming knowledge.

2.2.2 Graphical Systems

Graphical or icon-based systems use a graph, flow-chart or diagram view where users manu-
ally specify actions and program flow. The graphical icons correspond directly to predefined
program statements. Lego [2003] and Bischoff et al. [2002] produced graphical systems using
a flow-chart approach, where the robot’s behaviour can be configured by arranging low-level
actions in a sequence (Fig. 2.4). Similarly, Scratch (Majed [2014]) is a block-based visual pro-
gramming language to allow children with no programming experience to learn development in
an intuitive way for animations and interactive applications (Fig. 2.5). Blockly (Fraser [2013])
is a framework for building visual programming languages and has been used for programming
mobile manipulator robots with a drag-and-drop interface as a high-level programming com-
ponent (Huang et al. [2016]). While the user does not have to write code explicitly, they still
have to manually sequence the components for the robot’s behaviour. Thus, graphical systems
still require some amount of programming effort and expertise to create the logical consistency
of the robot program.

2.3 Automatic Programming Systems

Automatic programming systems relate to robots that can generate their behaviour from data
provided as input to the system. Unlike manual programming, the end-user does not need to
write or sequence robot code and does not have direct control over the robot’s executed be-
haviour. The problem of learning a behaviour or skill can be considered as learning a function,
referred to as a policy, that maps a world state to an action. In real-world applications, states
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can only be partially observed due to restricted sensor availability. Hence, we assume that the
robot learner has access to the observed state Z instead. A policy is a state-action mapping
π : Z → A that allows the robot to select actions from an action domain A, given observations
of the observed world state Z. States can either be represented in a discrete way (e.g., ‘object
on the table’ or ‘robot holding object’) or in a continuous way (e.g., (x, y, z) coordinates of the
object position)). Table 2.1 shows examples of the different representations for common state
observations (e.g., object position, orientation, colour, spatial relation).

Table 2.1: State representations: continuous vs discrete

Continuous representation Discrete representation
Position (x, y, z) coordinates table

Orientation (θx, θy, θz) angles straight/upright
Colour (r, g, b) values red, yellow, green

Spatial relation (x, y, z) distance vector left/right/front/behind of

There are different techniques to derive the policy that represents the desired behaviour from
the observed state. The most efficient policy derivation techniques approximate the state-action
mapping from as few training data as possible. Chernova and Thomaz [2014] give an overview
of state-of-the-art techniques for robots learning from human teachers and differentiate between
policies that represent low-level motions and high-level tasks which use these motions.

Figure 2.3: KUKA Robotics graphical user interface (Abdeetedal [2017])
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Figure 2.4: Lego Mindstorms EV3 icon-based interface (Lego [2003])

Figure 2.5: Scratch: block-based visual programming language (Majed [2014])

2.3.1 Policy derivation techniques

2.3.1.1 Low-level skill learning

Low-level representations focus on learning action trajectories or motions that can be gen-
eralised and applied to different tasks. In the literature low-level actions have been referred
to as skill, motor skill, primitive action, or low-level motion (Chernova and Thomaz [2014]).
Low-level actions can be learned from trajectory demonstrations using Gaussian Mixture Mod-
els (Billard et al. [2008]) or Dynamic Movement Primitives (Pastor et al. [2009]). They can
also be learned from keyframe-based demonstrations, where the user kinesthetically manipu-
lates the robot’s arm to record a series of end-effector poses, referred to as keyframes (Akgun
et al. [2012]). Actions are represented as a sparse sequence of gripper states (open/close) and
end-effector poses relative to perceived objects or to the robot’s coordinate frame. Akgun
et al. [2012] compares techniques to learn from trajectory with keyframe-based demonstrations
and propose learning from hybrid demonstrations that is suitable for learning any type of skill
(Fig. 2.6). Alexandrova et al. [2014] implemented an end-user robot programming system to
teach generalisable actions from a single demonstration where keyframes are automatically
inferred and actions can be modified retrospectively via a graphical user interface (Fig. 2.7).
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Figure 2.6: Sample demonstrations of the letter P in 2D: (a) trajectory demonstration (b)
keyframe-based demonstration (c) hybrid demonstration (Akgun et al. [2012]).

Figure 2.7: Robot programming by keyframe-based demonstration using a graphical user in-
terface that allows retrospectively editing (Alexandrova et al. [2014])

2.3.1.2 High-level task learning

High-level task learning focuses on learning the sequence of primitive actions, i.e., the order
to execute them. Primitive actions are generally preprogrammed into the robot (Peppoloni
et al. [2014]), where high-level tasks are learned from observing complete task executions and
extracting the primitive actions. Paxton et al. [2017] represent task plans with Behaviour Trees
that users can modify manually to adapt to other tasks. She et al. [2014] teaches the robot
new high-level tasks by instructing the robot a sequence of lower-level actions. Rather than
representing the new action as an action sequence, it is modelled by their desired goal states
obtained from object states at the beginning and at the end of the instruction. Ahmadzadeh et al.
[2015] learns the task goal by inferring preconditions and effects from multiple demonstrations.
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2.3.2 Learning from data

There are different ways to learn from data depending on the amount provided at a time (incre-
mental vs batch learning) and the type of data. The robot can learn from data that is directly
related to the desired behaviour and has been selected by a teacher (e.g., from optimal teacher
demonstrations), which we refer to as learning from biased data. If the robot learns from
data that is not directly related to its executed behaviour (e.g., from trial and error), we refer
to it as learning from unbiased data. Thus, we differentiate automatic programming systems
between Machine Learning (Sec. 2.3.3), where the robot learns from unbiased data, and Pro-
gramming by Demonstration (Sec. 2.3.4), where the robot learns from biased data. In Machine
Learning, the data can be provided directly to the robot (e.g., Deep Learning) or acquired by
self-exploration of the environment (e.g., Reinforcement Learning). Recent approaches have
combined multiple techniques to improve the performance and accelerate the learning process,
e.g., Deep Reinforcement Learning (Arulkumaran et al. [2017]) or PbD for Reinforcement
Learning (Hester et al. [2017]). As this is beyond the scope of this thesis, we will give a brief
overview of the main techniques and leave their discussion for future work.

2.3.3 Machine Learning Systems

Machine Learning (ML) systems use inductive inference to learn a policy from unbiased data,
which includes data unrelated to the desired robot behaviour. The goal of these systems is to
construct programs that allow the robot to automatically improve its performance with increas-
ing amounts of data. Even though ML algorithms have been around since the 1980s, it has only
become popular in the past few decades. The rise of the internet led to Big Data, improved
knowledge sharing, and advances in techniques to process and store data efficiently triggered a
wave of new ML techniques. Recent applications of ML in robotics (Faggella [2019]) include
research areas such as Computer Vision (or Robot Vision) for the identification and sorting
of objects (Stager et al. [2013]) and Imitation Learning to learn action plans from watching
unconstrained videos (Yang et al. [2015]). Many approaches derive a policy using vision by
having the robot learn from image or video data or by observing a human teacher (Kuniyoshi
et al. [1994]).

We differentiate between the provided input data (Fig. 2.8): In Deep Learning (DL) (Schmid-
huber [2015]), data is provided directly to the robot in either labelled (Supervised learning) or
unlabelled format (Unsupervised learning). DL systems generally use artificial Neural Net-
works (NN) which require large amounts of data and computation power to learn the desired
behaviour. Techniques are divided into supervised (e.g., Classification, Regression) and unsu-
pervised (e.g., Clustering) learning, using labelled and unlabelled data respectively.

In Reinforcement Learning (RL) (Gosavi [2009], Kaelbling et al. [1996], Sutton et al.
[1998]) the robot acquires data autonomously by exploring its environment. The robot enters
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different states depending on the actions it takes and learns from the observed state changes.
While taking random actions, the robot uses a reward function to learn its policy and refines
it by updating expected rewards with observed outcomes. However, setting up the system’s
states, actions and initial policy is often difficult and usually requires robotics experts. Kober
et al. [2013] provides a survey of RL techniques to generate robot behaviours and highlights
the main challenges that are faced. Since the robot has to explore many states before it can
learn the correct behaviour, RL systems usually take hundred or thousands of training exam-
ples which are usually collected in a simulated environment. To accelerate the learning and
reduce the amount of exploration required, recent work includes teacher demonstrations with
RL solutions (Hester et al. [2017], Martı́nez et al. [2017]).

Figure 2.8: Types of Machine learning: Deep learning (supervised and unsupervised learning)
and Reinforcement learning (Jones [2017])

2.3.4 Programming by Demonstration

Programming by Demonstration (PbD) (Argall et al. [2009], Billard et al. [2016]) describes
various techniques where the robot learns new behaviours from teacher demonstrations. In the
literature, it has also been referred to as Learning from Demonstration, Imitation Learning,
Learning by Showing, Learning from Observation, Behavioral Cloning or Mimicry. It provides
an intuitive medium to allow non-roboticists to communicate skills to robots without having
to write code. Unlike ML solutions, the provided data is biased, i.e., directly correlated with
the robots executed behaviour (e.g., human teachers providing optimal demonstrations). The
underlying concept is for the robot to learn a new skill more efficiently from these selected
demonstrations, thus reducing the complexity of the search space and accelerating learning.
As the teacher selectively provides demonstrations that the robot should learn from, the data is
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generally sparse and research has focused on learning from as few demonstrations as possible.
The user can choose to provide positive or negative examples (Grollman and Billard [2012]).
Positive examples are demonstration data showing what the robot should do and what it can
learn directly from. Negative examples are what the robot should avoid and help to generalise
faster by eliminating bad solutions from the search space. Walsh [2010] noted that negative
examples are highly uninformative as the learner cannot easily determine the reason for the
failure, while positive examples provide very useful information as a superset of the literals
that belong to the action preconditions is identified.

There are different techniques to learn a policy depending on how demonstrations are pro-
vided to the robot and the chosen interaction modalities. The robot can learn from simply
observing the teacher demonstration (Learning by Observation).As human demonstrations are
often noisy or suboptimal, interactive policy refinement techniques can be used, where robots
learn from continuous feedback provided by the teacher (Active or Interactive Learning).

2.3.4.1 Providing demonstrations

There exist various techniques for providing demonstrations. Argall et al. [2009] define four
categories by differentiating between the choice of the demonstrator (human or robot) and
who executes the demonstration: The teacher could demonstrate either using their own hands
(shadowing or external observation), by wearing sensors (sensors on teacher), or by moving
the robot’s joints directly (kinesthetic teaching or teleoperation). If the demonstration is not
recorded directly on the robot’s joints (e.g., shadowing), the demonstrated trajectory has to
be extracted and mapped to the robot’s joints. This is related to the correspondence problem
(Nehaniv et al. [2002]), which describes the difference of humans and robots regarding their
sensing abilities and physical embodiment. If the robot joints are recorded directly from the
demonstration (e.g., kinesthetic teaching), this problem is eliminated. Previous work showed
that kinesthetic guidance can be problematic in narrow spaces (Wrede et al. [2013]) or if the
objects are large or dangerous to operate (Chernova and Thomaz [2014]). However, compar-
ing kinesthetic teaching with teleoperation showed that kinesthetic teaching produced better
results in terms of efficiency, effectiveness (success and error rate), and usability (Akgun and
Subramanian [2011], Chernova and Thomaz [2014], Fischer et al. [2016]).

2.3.4.2 Interaction modalities

There are different ways for the teacher to transfer the data to the robot, for example using
voice, vision, touch or gestures. PbD systems often use touch to provide demonstrations, i.e., by
kinesthetically moving the robot’s joints. Voice recognition can be used during demonstrations
to activate in-built actions such as opening gripper or saving end-effector poses (Alexandrova
et al. [2014]). Such instructive systems provide the user with a high-level control to program the
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action sequence by commanding sub-actions that have already been programmed into the robot
(Forbes et al. [2015]). Multi-modal communication that combines information from vision,
gesture and voice sources can be used to clarify instructions to the robot, for example men-
tioning ‘that table’ and gesturing the relevant object at the same time. Profanter et al. [2015]
evaluated four input modalities (touch, gesture, speech, 3D tracking device) and showed that
users preferred touch and gesture input, while speech input was the least preferred modality.

2.3.4.3 Interactive policy refinement techniques

For active, or interactive, learning, the teacher is involved in the learning process by providing
regular feedback to the learned action (Calinon and Billard [2007a,b], Nicolescu and Mataric
[2003]). The robot first observes the demonstration performed by the teacher. When it repro-
duces the action, the teacher can improve and correct the movement by physically moving its
limbs. In Nicolescu and Mataric [2003] the robot refines the learned skill using feedback cues
provided by the teacher and by inserting or removing behaviours from the network of abstract
behaviours. Learning tasks from interactions with a teacher is also known as Interactive Task
Learning (Laird et al. [2017]), where the goal is to learn through natural communication and to
improve performance via instruction, demonstration, and feedback. The robot can also request
feedback from the teacher when encountering problems during action execution (Abdo et al.
[2013], Cakmak and Lopes [2012], Martı́nez et al. [2017]). Other policy refinement approaches
allow the teacher to modify the taught actions using a graphical interface, therefore minimis-
ing the number of demonstrations required. (Alexandrova et al. [2015], Paxton et al. [2017],
Perzylo et al. [2016], Stenmark et al. [2017]).

2.4 End-user Involvement

There are different levels of end-user involvement in robot programming, such as writing and
organising the execution code in manual programming or providing data in the form of demon-
strations, labelled or unlabelled data for automatic programming systems. Inspired by Kormu-
shev et al. [2013] who compared different robot teaching approaches, Table 2.2 compares the
presented robot programming approaches by user involvement task, expertise required, as well
as data and time required to learn a skill. For the last three categories, we assign a ranking from
‘high’, ‘moderately high’, to ‘moderately low’ and ‘low’. The required expertise corresponds
to how hard it is for an end-user without programming experience to complete the user tasks
for the programming approach.

While manual programming approaches do not require any data, they can be considered
most difficult and time consuming, as the user has to write or sequence the execution code
manually. Even though visual programming facilitates the programming experience over text-
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based programming, it still requires users to have a good understanding of the constructed
program flow.

Programming by demonstration (PbD) provides a more intuitive low-effort solution, where
the teacher’s main task involves providing demonstrations to the robot. Since PbD solutions
allow the robot to learn from a sparse set of examples, the data and time required to learn a
skill is moderately low. While it does not require programming experts, the difficulty lies in
providing correct examples that are diverse enough to allow the robot to learn a generalised
skill that is applicable to new scenarios.

Other automated programming approaches, such as Reinforcement Learning (RL) and Deep
Learning (DL), allow the robot to learn autonomously, but require programming and domain
experts to prepare the system input (e.g., label or preprocess data for DL, define policy and re-
ward functions for RL). These systems generally require vast amounts of data and computation
power to learn a skill and are usually trained in simulation.

Table 2.2: End-user involvement for common robot programming approaches

Programming
approach

Tasks involved
Expertise
required

Data
required

Time required
to learn skill

Text-based manually write code high - high

Visual/graphical manually sequence code
moderately

high
- high

Programming
by demonstration

provide demonstrations
moderately

low
moderately

low
moderately

low

Reinforcement
learning

specify reward function,
policy parameterization,
initial policy, etc.

moderately
high

high
moderately

high

Deep learning
preprocess data,
tune parameters

moderately
high

high
moderately

high

2.5 Discussions and Relations to Present Work

Robots are currently being used for many industrial applications from welding (e.g., arc, spot
welding) to material handling (e.g., pick-and-place, packaging, palletizing) (Technavio [2018]).
Furthermore, there exists a wide range of robot grippers (e.g., claw, suction, magnetic grippers)
that are dependent on the robot platform. Instead of developing robots for domain-specific
tasks, a more flexible solution is to have robots learn new actions directly from end-users and
let them customise the robot for their specific application. A feasible programming system
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could involve a human operator teach the robot new actions and have the robot automatically
generalise the taught action to new scenarios.

Manual programming systems provide direct control over the robot’s behaviour, but require
users with programming expertise and involve high programming time and effort for debugging
and testing. The solutions are often task-specific and cannot be changed easily by end-users.
Automatic programming systems require significantly less effort when it comes to the pro-
gramming process. However, DL solutions generally need large amounts of training data that
is relevant for the desired application. RL solutions can be time-consuming as they require
the robot to explore the environment and collect the necessary data to learn an optimal policy.
There is on-going research to reduce the amount of data and time required to learn an optimal
policy with DL or RL systems, but the involved tasks (e.g., defining the reward function or
tuning parameters) remain difficult for end-users without programming experience.

Programming by Demonstration (PbD) allows end-users to teach the robot new tasks by
taking demonstrations as input and inferring the policy for the task. An intuitive way to pro-
vide demonstrations is to kinesthetically manipulate the robot’s arms, followed by refining the
learned action with subsequent demonstrations or modifications on a graphical interface. This
allows users to teach the robot new actions with minimal programming effort and indepen-
dent of the robot’s architecture. However, existing PbD solutions usually require users to teach
robots an entire action sequence to achieve a certain goal. If the goal changes, the user has to
find a new solution and teach the robot again. In this thesis we argue for teaching robots prim-
itive actions, instead of entire action sequences, that can be used with task planners. The idea
is to associate semantic meanings to actions in order to delegate the logical reasoning process
of finding a solution to task planners. For example, when teaching a pick-and-place action, the
robot should be taught the semantic meaning in the form of high-level conditions for executing
the action (e.g., to grab an object only if the gripper is empty). This information allows the
robot to reuse and apply the taught actions in a different context. We have identified two main
aspects that we address in this thesis:

1. Teaching reusable actions from scratch. Existing PbD implementations are task-specific
and cannot be applied to previously unseen scenarios. Many PbD implementations al-
ready have pick and place actions coded into the system (Veeraraghavan and Veloso
[2008]) and the robot is taught an action sequence to achieve a predefined goal. Even
slight changes in the goal could require a different solution, so the robot needs to be
taught a new action sequence again. This highlights a key issue in PbD, namely, to de-
sign a system that allows the robot to learn generic tasks that are applicable to different
scenarios. In this work, we assume that the robot does not have any primitive actions
preprogrammed. We want to enable the user to teach reusable actions from scratch.

2. Automatic action sequence generation. After having learned all primitive actions, the
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robot should be able to reuse them to complete previously unseen tasks. Current solutions
for high-level task learning either teach the robot entire action sequences or include an
intermediate manual step where the user has to manually sequence actions. Finding
an optimal solution can be tedious, expensive, or even computationally impossible for
humans (e.g., solving a rubik’s cube). Instead, we want to delegate this logical reasoning
process of finding a solution to task planners, thus facilitating the programming process
for the human operator.

In the following Chapter 3 we will give an overview of Automated Planning.
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Chapter 3

Automated Planning
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3.6 Discussions and Relations to Present Work . . . . . . . . . . . . . . . . . 49

In this chapter we give a brief overview on Automated Planning and its main concepts.
We first present the theoretical definitions (Sec. 3.2) and the standard encoding language used
(Sec. 3.3). We then discuss common techniques for planning (Sec. 3.4) and knowledge en-
gineering tools for modelling planning domains (Sec. 3.5). We conclude this chapter by dis-
cussing relations to this thesis (Sec. 3.6).

3.1 Introduction

Automated planning, also known as AI planning or task planning, is an area in A.I. that studies
the deliberation process of choosing and organising actions to achieve a goal (Ghallab et al.
[2004]). Humans automatically anticipate the outcome of their actions, even if they are not
fully aware of it. Automated planning techniques try to efficiently reproduce human reasoning
and behaviour and can be used to model a robot’s skills and strategies, when operating in
diverse environments, without the need for expensive hand-coding.
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The focus in automated planning lies within the development of domain-independent plan-
ning systems, called planners or task planners. These planners consist of search algorithms
which are not problem-specific and can generate solutions to previously unseen problems.
Given a description of the state of the world, a set of actions, an initial and a goal, the planner
generates an ordered sequence of actions, which guarantees the transition from the initial state
to the goal. Actions are defined with preconditions, i.e., conditions on the state of the world in
order to execute the action, and effects, i.e., changes in the state of the world after the action
execution. Planning can be considered the process of choosing appropriate actions to bring the
state of the world to a target state. In the following section we will present the main definitions
used in classical planning.

3.2 Classical planning

In classical planning, world dynamics are modelled as state transition systems. We will start by
providing some definitions of general concepts used in this thesis that have been derived from
Ghallab et al. [2004].

Definition 3.2.1. A state transition system is a triple Σ = (S,A, γ) such that:

• S = {s1, s2, . . . } is a finite set of states,

• A = {a1, a2, . . . } is a set of actions,

• γ : S × A→ S is a state transition function.

A state transition system Σ is represented as a directed graph where nodes are states of S and
arcs are actions ofA (Fig. 3.1). Applying an action a to state s produces a new state s′ = γ(s, a)

that is represented as an arc from s to s′, referred to as a state transition. Σ is deterministic if
for all states s and actions a and the transition function γ(a, s) produces a unique state s′.

Figure 3.1: A state transition system consisting of six states s0 to s5
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Logical representations are one of the most commonly used representations for classical
planning problems. Each world state s is represented by a set of logical propositions p, denoting
facts of the world that are true. If p is not in the state s, it is considered to be false. Planning
operators and actions change the world state by modifying the truth values of the propositions
and are represented in terms of preconditions and effects.

Definition 3.2.2. A planning operator o is a tuple o = (name(o), precond(o), effect(o)), whose
elements are as follows:

• name(o) is the name of the operator,

• precond(o) is a set of literals that must be true to apply the operator o,

• effect(o)− is a set of literals that are false after the application of the operator o,

• effect(o)+ is a set of literals that are true after the application of the operator o,

where effect(o) = effect(o)−∪ effect(o)+ and effect−(o)∩ effect+(o) = ∅. An operator has
a set of parameters that are associated with a type which can be part of a type hierarchy with
multiple layers of subtypes. For example, a general type ELEMENT with subtypes OBJECT
and POSITION, and BASE, CUBE, ROOF objects (Fig. 3.2).

Figure 3.2: Example of a type hierarchy showing a general type ELEMENT with subtypes
OBJECT and POSITION, and BASE, CUBE, ROOF objects.

Definition 3.2.3. An action is any ground instance of an operator. Or reversely, we consider an
operator as a generalised action. If a is an action and s is a state such that precond(a) are true
in s, then a is applicable to s and applying action a to state s results in a state s′, such that:

s′ = γ(s, a) = (s− effects−(a)) ∪ effects+(a), (3.1)

Definition 3.2.4. A planning domain is a state transition system Σ = (S,A, γ), with the state
transition function γ as stated in Eq. 3.1.

Definition 3.2.5. A planning problem is a triplet (Σ, s0, g) where:

• Σ is a planning domain,
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• s0 ⊆ S is the initial state of the world,

• g is a set of goal propositions describing the goal to achieve.

Definition 3.2.6. A plan is any sequence of actions π = 〈a1, · · · , ak〉, where k ≥ 0.

The state produced by applying π to a state s is the state obtained by applying each action
of π sequentially. We can denote this by extending the state transition function to plans as
follows:

γ(s, π) =


s, if |π| = 0

γ(γ(s, a1), 〈a2, · · · , ak〉), if |π| > 0 and a1 is applicable to s
undefined, otherwise.

A state sn is reachable from a state s0, if there exists a plan π such that sn = γ(s0, π). When a
full specification (i.e., planning domain and problem) are provided to the planner, it generates
a plan to achieve the specified goal using the available actions. Thus, a plan π is a solution to
a planning problem if it guarantees the transition from the initial states s0 to the goal states,
i.e., g ⊆ γ(s0, π).

When actions are triggered, they change the world state according to their effects and are
not necessarily reversible. Actions are not combinable in any order and have precedence con-
straints. Consider again the Tower of Hanoi problem, where the disks need to be stacked in
ascending order (smallest at the top). The two last actions consist of stacking the second small-
est disk and then the smallest disk on the peg. Reversing the order will result in a violation of
the rule that larger disks cannot be stacked onto smaller ones. Thus, plans need to be performed
in the correct order to achieve the goal.

Furthermore, the progression towards the goal is not always monotone, as actions can also
have negative effects. In the example with the Tower of Hanoi problem, our goal state is to
have “diskn is on top of diskn+1” and “diskn+1 is on the table” for a problem with n+ 1 disks.
If in the initial state the disks are stacked in ascending order on the left peg, then moving the
top-most disk1 to any other peg will delete the fact “disk1 is on top of disk2”, and will have to
be added again later to fulfil the goal.

3.3 Planning Domain Definition Language (PDDL)

Originally developed by Ghallab et al. [1998] and the Planning Competition Committee, the
Planning Domain Definition Language (PDDL) has become the standard encoding language
for classical planning. PDDL expresses the ‘physics’ of a domain, i.e., available predicates,
possible actions and their effects. It supports several syntactic features including conditional
effects, specification of safety constraints and hierarchical actions composed of subactions and
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subgoals. For example, in manufacturing environments, PDDL can be used to formalise the
configuration of available resources together with the intended goal in order to find a solution
using task planners (Huckaby et al. [2013]).

3.3.1 Planning domain description

A PDDL planning domain consists of objects and their types, predicates describing the object
states and possible actions. As a running example we will consider a planning domain iRoPro to
describe pick-and-place tasks with three types of objects (BASE, CUBE, ROOF). The planning
domain description is given as follows:

(define (domain iRoPro)

(:requirements :strips :typing)

(:types

element

position - element

object - element

cube - object

base - object

roof - object )

(:predicates

(clear ?e - element)

(thin ?o - object)

(flat ?e - element)

(on ?o - object ?e - element)

(stackable ?o - object ?e - element)

(:action move

:parameters (?o - object ?A - position ?B - position)

:precondition (and (on ?o ?A) (clear ?o) (clear ?B)

:effect (and (on ?o ?B) (clear ?A)

not(on ?o ?A) not(clear ?B))

)

A domain description always starts with the declaration of its name, e.g., iRoPro, preceded
by the keyword :domain. The requirements (identified by :requirements) allow to char-
acterise the expressiveness and abstraction levels of the domain, e.g., :strips indicates the
use of STRIPS (Fikes and Nilsson [1971]), the most basic subset of PDDL, :typing in-
dicates that the domain can declare parameter and object types. Other requirements include
:equality to use the predicate ‘=’ as an equality term or :adl to use conditional and uni-
versal quantifier terms.
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:types describes the type names and hierarchy that can be used subsequently for predi-
cates or actions. In this domain, we defined a 3-layered type hierarchy consisting of a general
type ELEMENT, subtypes POSITION and OBJECT, with BASE, CUBE, and ROOF (Fig. 3.2).
:predicates are logical symbols to specify facts about objects that can be used for actions.
Predicates can be standalone or have parameters with specified types. Each parameter name
is preceded with a question mark ‘?’, followed by a ‘-’ and its type name. For instance, (on
?o - object ?e - element) expresses that a variable ?o, whose type is object, is
placed on top of an element ?e. The example planning domain is comprised of the following
predicates, described as follows:

Table 3.1: Predicates for the iRoPro domain

Predicate in PDDL Description in English
(clear ?e - element) an element has nothing on top of it
(thin ?o - object) an object is thin
(flat ?e - element) an element has a flat top
(on ?o - object ?e - element) an object is on an element
(stackable ?o - object ?e - element) an object can be placed on an element

Note that thin can only be applied to an object type, while flat can refer to any element
type. Furthermore, on describes the spatial relation between two parameters and stackable
describes the possibility of placing them on top of each other.

Finally, the keyword :action defines a planning operator as in Definition 3.2.2. In gen-
eral, an action declaration consists of the following:

• :parameters – variables which it applies to,

• :precondition – conditions that must be satisfied before it can be executed; if none
are specified, it is always executable,

• :effect – changes in the world state imposed after the execution.

In the example domain, the move action describes moving an object (?obj) from position
A to B, if both the object itself and the target position (?B) are clear. After the move action
execution, the effects express that the object is no longer at initial position ?A but on ?B and
that ?A is clear, but ?B is not (Fig. 3.3).
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A B A B A B

Preconditions:
(at cube A)
(empty B)

A B

(move cube A B)Preconditions:
(at cube A)
(empty B)

            Effects:
 (at cube B)

(empty A)

Preconditions:
(at ?obj ?posA)
(empty ?posB)

(move ?obj ?posA ?posB)

A B A B A B

            Effects:
 (at ?obj ?posB)

(empty ?posA)

Figure 3.3: Action model representation of a move action in terms of preconditions and ef-
fects: an action (or instantiated operator) for a cube (top), and generalised action (or planning
operator) for any object, where variables are prefixed with ‘?’ (bottom).

3.3.2 Planning problem description

A planning problem consists of an initial state and a goal to be solved using actions in the
associated planning domain. For example, the problem of swapping two cube objects obj1 and
obj2 on positions A and B respectively, with a third position C unoccupied, is described as
follows:

(define (problem swap)

(:domain iRoPro)

(:objects

obj1 obj2 - cube

A B C - position)

(:init (on obj1 A) (on obj2 B) (clear C))

(:goal (on obj1 B) (on obj2 A) )

)

A planning problem description always starts with the declaration of its name, e.g., swap,
preceded by the keyword :problem. :domain specifies the domain it operates in, e.g., iRo-
Pro. :objects lists all instantiated objects in the world state with their names (Fig. 3.4b).
This world is composed of three positions, A, B and C, and two objects, obj1 and obj2,
which are both of type cube. :init describes the initial world state of obj1 and obj2 on
positions A and B respectively, and C unoccupied. The goal is to find a plan to swap the two
objects, i.e., obj1 from A to B and obj2 from B to A (Fig. 3.4d). The planner can generate
one of the two action sequences shown in Table 3.2. Even though both plans consist of different
actions, they both lead to the same goal states (similar to Fig. 3.1). Another planning problem
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            (a) Initial state:
(at redCube A)
(at blueCube B)
(empty C)

            (c) Actions:
(move blueCube B C)
(move redCube A B)
(move blueCube C A)

            (d) Goal state:
(at redCube B)
(at blueCube A)
(empty C)

A B C

A B C

A B C

A B C

A B C

            (b) Objects – types:
redCube – cube
blueCube – cube
A, B, C – position

(at obj1 A)
(at obj2 B)

obj1 - cube
obj2 - cube

1. (move obj2, B, C)
2. (move obj1, A, B)
3. (move obj2, C, A)

(at obj1 B)
(at obj2 A)

Objects - types:
obj1 - cube
obj2 - cube 
A, B, C – position

Figure 3.4: Definition of a planning problem: (a) properties describing the initial world state
(b) object names and their types (c) instantiated actions (d) properties describing the goal state

Table 3.2: Two plans generated by the planner to swap the positions of two objects (Fig. 3.1).

Plan 1 (Fig. 3.4c): Plan 2:
1. move(obj2, B, C) 1. move(obj1, A, C)
2. move(obj1, A, B) 2. move(obj2, B, A)
3. move(obj2, C, A) 3. move(obj1, C, B)

in this domain could include multiple objects of different types which need to be stacked in
a given order, such as the Tower of Hanoi problem. As we can define an infinite number of
objects in our planning domain, there exists an infinite number of planning problems that can
be defined and solved. PDDL provides a means to model and solve problems in any real-world
environment in the form of a planning domain.

3.3.3 PDDL evolution and extensions

Since the first version PDDL 1.2 (Ghallab et al. [1998]) was introduced as the official language
of the 1st International Planning Competition (IPC), there have been several new versions and
extensions. Succeeding versions that allow the representation of real-world problems had a par-
ticular influence on the adaptation of planners with robots in cobotic environments. In 2002,
PDDL 2.1 (Fox and Long [2003]) introduced functions to express numerical objects, durative
actions and plan-metrics for assessing plan quality. An extension called MAPL (Multi-Agent
Planning Language) (Brenner [2003]), introduced finite domain state-variables, actions with
duration determined in runtime, and explicit plan synchronisation obtained through speech acts
and communications among agents. The newly introduced functionalities are particularly use-
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ful in cobotic environments to incorporate actions of varying durations into the planning sys-
tem, or to allow multi-agent planning for several robots to collaborate in the same environment.
In the following years PPDDL (Probabilistic PDDL)(Younes and Littman [2004]) was proposed,
extending PDDL 2.1 with probabilistic effects and introducing partial observability. This ex-
tension opened up the possibility to integrate statistical models into the planning system and
improved the robot’s learning capabilities and performance in uncertain situations. Cobots can
benefit from this as they are often faced with uncertain situations when working with different
human operators, who have varying behaviours.

3.4 Planners

Task planners have found increasing applications in various areas from aeronautics and space
(Aarup et al. [1992]) to agricultural and industrial domains (Robotic Industries Association
[2017]). The majority of planning procedures are search procedures, where the difference lies
in the search spaces. We conclude this section by introducing the most common techniques for
classical planning (Table 3.3): state-space planning, plan-space planning, and planning graphs.
We refer the reader to Nau [2007] who provide a more detailed overview of the techniques with
accompanying illustrations.

The simplest planners are state-space planners (Ghallab et al. [2004]), which rely on search
algorithms in which the search space is a subset of the state space. Each node corresponds to
a world state, each arc represents a state transition, i.e., an action, and a plan is a path from
the initial state to a goal state in the search space. An extended version of the planner is the
Heuristics Search Planner (Bonet and Geffner [2001]), which includes several basic search
algorithms like breadth-first search, best-first search (e.g., A*) and iterative deepening search.
The Fast Forward planning system (HSP) (Hoffmann and Nebel [2001]) is based on the HSP,
but managed to outperform it, due to modifications aimed to avoid getting trapped in local
minima. Fast Downward (Helmert [2006]) is a state-space planner based on a finite domain
representation, with a greedy best-first search as its main search procedure. A more recent
approach is BFWS, a best-first width search (Lipovetzky and Geffner [2017]) that combines
width and simple goal-directed heuristic search. The problem with state-space search is that it
commits to plan step orderings, meaning that many different orderings of the same actions are
considered, even if none of them lead to a solution.

A second category known as plan-space planners, first proposed in TWEAK (Chapman
[1987]), handles goal orderings in an optimal way. For such partial-order planners each node
is a set of partially instantiated-operators with constraints (e.g., temporal constraints for the
application of an action). The idea is to perform a backward search from the goal and impose
an increasing number of constraints until a complete plan has been found. Besides later refine-
ments of the initially proposed technique (SNLP (McAllester and Rosenblatt [1991]), UCPOP
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Penberthy et al. [1992], O-Plan (Tate et al. [1994])), a more recent system is FAPE, a Flexible
Acting and Planning Environment proposed by Dvorak et al. [2014a]. FAPE focuses on inte-
grating acting, task decomposition and temporal planning embedded into a robotic platform.

Another category are planning-graph planners, first introduced in Graphplan (Blum and
Furst [1997]). The idea is to encode the search space in a structure called the planning graph
that is much smaller than the state transition graph and contains information about possibly
reachable states. The true set of reachable states can be estimated quickly by eliminating many
impossible ones in the search process. A plan is then extracted from the planning graph. Other
graph-based planners include SATPlan that uses a SAT solver (Kautz and Selman [1999], Kautz
et al. [2006], Rintanen [2014]), and the GP-CSP that uses a CSP solver (Cooper et al. [2011],
Do and Kambhampati [2001], Lopez and Bacchus [2003]).

There exist other planning techniques such as model checking (Triantafillou et al. [2015]) or
Markov Decision Process (Kolobov [2012]) but there is no single planning strategy or domain-
independent search heuristic that is universally better than others.

Table 3.3: Main automated planning approaches and systems

Planner Generated Plan Planning Systems

State-space sequence of actions

HSP (Bonet and Geffner [2001])
FF (Hoffmann and Nebel [2001])
FD (Helmert [2006])
LAMA (Richter and Westphal [2010])
BFWS (Lipovetzky and Geffner [2017])

Plan-space partially ordered set of actions

TWEAK (Chapman [1987])
SNLP (McAllester and Rosenblatt [1991])
UCPOP (Penberthy et al. [1992])
O-Plan (Tate et al. [1994])
FAPE (Dvorak et al. [2014b])

Planning graph sequence of sets of parallel actions

Graphplan (Blum and Furst [1997])
STAN (Long and Fox [1999])
CSP (Lopez and Bacchus [2003])
weighted CSP (Cooper et al. [2011])
SATPlan (Rintanen [2014])

The main open-source planning toolkits are the Lightweight Automated Planning ToolKit
(Ramirez et al. [2015]), based on Fast Downward and Fast Forward, and PDDL4J, a Planning
Domain Description Library for Java cross-platform developers (Pellier and Fiorino [2018]).
Integrating classical planning with the Robot Operating System (ROS) has been addressed
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recently e.g., with the ROSPlan framework (Cashmore and Fox [2015]) and other libraries
such as the ROS package pddl planner (Ueda [2018]) and ROS implementations of planners
e.g., PDDL4Jrospy (github.com/pellierd [2017]) and Downward (github.com/phuicy [2014]).

3.5 Knowledge Engineering Tools

Defining planning domain models from scratch can be expensive and error-prone, even for
Automated Planning experts. Knowledge engineering (KE) tools for automated planning facil-
itate this process by automatically encoding a domain model from provided input data. These
tools provide support with consistency checks, syntactic error checking, domain visualisation
and other functionalities. There exist tools such as GIPO (Simpson et al. [2007]), itSIMPLE
(Vaquero et al. [2013]), Planning.Domains (Muise [2016]), as well as plan editors e.g., PDDL
Studio (Plch et al. [2012]), and plan visualisers e.g., iGantt (Barták and Skalickỳ [2009]), VIZ
(Vodrázka and Chrpa [2010]), VisPlan (Glinskỳ and Barták [2011]), TransportEditor (Škopek
and Barták [2017]). Different systems require different inputs such as plan traces, a partial
domain model, predicates, or noisy plans. For example, LOCM (Learning Object Centred
Models) (Cresswell et al. [2013]) learns action schema from planning traces in Prolog, while
itSIMPLE (Fig. 3.5) takes an input in the form of UML (Unified Modeling Language) and gen-
erates representations in Petri-Nets and PDDL. Kootbally et al. [2015] created the OWL2PDDL
and SQL2PDDL tools to generate PDDL files from OWL files that are stored in a MySQL
database for replanning in case of plan execution failures. GIPO (Fig. 3.6) uses Opmaker2
(McCluskey et al. [2009]), a knowledge acquisition and formulation tool that generates a set of
PDDL action schema from a given partial domain model and training sequence.

Shah et al. [2013] and Jilani et al. [2014] compare a subset of state-of-the-art KE tools
by their learning efficiency, required user experience, system availability and support. Both
concluded that most state-of-the-art tools require PDDL experts, or common knowledge in
software engineering. However, KE tools that are available online and provide documentation
to facilitate the use for beginners remain sparse (e.g., itSIMPLE, GIPO). As most users with
different research backgrounds do not have the required background knowledge or expertise,
they cannot fully exploit KE tools and task planners in general. This bottleneck significantly
reduces the number of potential users in this domain.

3.6 Discussions and Relations to Present Work

Automated planning has found its application in a wide range of areas from virtual agent games
(Fernández et al. [2006]) to space exploration (Backes et al. [2004], Bresina et al. [2005]). A
main research area has focused on integrating task planning with robot architectures (Cash-
more and Fox [2015]), in particular to handle time, resources and synchronisation (Di Rocco
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et al. [2014], Dvorak et al. [2014a]). PDDL planners can be very powerful for generating op-
timal solutions for problems that even humans struggle to solve, e.g., Tower of Hanoi problem
(github.com/Elucidation [2012]), Tetris (Vallati et al. [2014]). However, they are generally not
accessible to end-users who do not have experience in this domain. While knowledge engi-
neering tools facilitate the modelling of planning domains, they still require PDDL experts or
common knowledge in software engineering.

In the previous Chapter 2, we discussed several end-user robot programming techniques
and concluded that Programming by Demonstration (PbD) was the most appropriate for our
approach. To integrate the taught actions with task planning, the robot needs to not only learn
the low-level actions but also their high-level representations in terms of preconditions and ef-
fects. Combining task and motion planning is an open research problem and has been addressed
previously (Ferrer-Mestres et al. [2015], Garrett et al. [2015]), especially learning preconditions
and effects of actions to be used in planning (Ahmadzadeh et al. [2015], Jetchev et al. [2013],
Konidaris et al. [2018], Ugur and Piater [2015]). In these works, the focus often lies in ground-
ing actions or learning symbolic action representations, so the robot is generally provided with
a predefined set of primitive actions that are refined by learning from plan traces or demon-
strations. For example, Abdo et al. [2013] learns a fixed set of manipulation actions from user
demonstrations, i.e., stack blocks, pour from a bottle and open a door. The robot only uses the
actions to achieve the predefined task, but does not reuse them for new tasks. In this thesis
we address scenarios where the robot has no predefined set of actions and learns them from
scratch, in particular, from human demonstrations.

In the first part of the thesis, we reviewed state-of-the-art techniques in end-user robot
programming and automated planning. We identified Programming by Demonstration as an
appropriate approach for end-users to teach low-level actions from scratch. However, they
also need to teach the high-level action representation in terms of preconditions and effects
to allow the use of planners. Task planning has been integrated in robotics systems, but they
are generally not accessible to end-users without experience in Automated Planning or related
fields. In this thesis, we argue that these end-users can still learn and use these concepts to teach
robots reusable actions to solve problems with task planners. In the second part of this thesis
we present our contributions, where we propose an end-user robot programming framework
that combines PbD and Automated Planning.
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Figure 3.5: Screenshot of a Planning UML model in itSIMPLE software (Vaquero et al. [2013])

Figure 3.6: Screenshot of the operator editor tool in GIPO (McCluskey and Simpson [2005])
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Chapter 4

An End-User Robot Programming
Framework for Cobotic Environments

Contents
4.1 iRoPro - interactive Robot Programming . . . . . . . . . . . . . . . . . . 56

4.1.1 Programming by Demonstration: teaching actions . . . . . . . . . . 57

4.1.2 Automated Planning: reusing actions . . . . . . . . . . . . . . . . . 58

4.1.3 Retro-active Loop: refining actions . . . . . . . . . . . . . . . . . . 58

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Programming robots for general purpose applications is extremely challenging due to the
great diversity of end-user tasks. Not only is it generally left up to robotics experts, but end-user
programming solutions are often limited to teaching robots predefined actions for specific tasks
that cannot be reused. This thesis argues for letting end-users teach robots primitive or atomic
actions from scratch that can be reused with task planners for previously unseen problems.
In this way, we delegate the logical reasoning process of finding a solution to task planners
and facilitate the robot programming process, while maintaining the generalisability of taught
actions.

This part of the thesis contains our contributions. In this chapter we present iRoPro, an
interactive Robot Programming framework and discuss its theoretic components. The frame-
work combines Programming by Demonstration and Automated Planning techniques for goal-
oriented robot programming by end-users. We end this chapter by discussing the research
methodology used in this thesis which resulted in the contributions presented in the remaining
chapters (Sec. 4.2).
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4.1 iRoPro - interactive Robot Programming

iRoPro, an interactive Robot Programming, is a framework that allows end-users to teach robots
primitive actions from scratch that can be reused with task planners. The framework consists
of the following three components (Fig. 4.1):

A. Programming by Demonstration: The user teaches the robot primitive actions by demon-
stration. The robot creates an action model that the user can refine and validate.

B. Automated Planning: The user defines a new planning problem with a goal to achieve.
The robot which reuses the taught actions with a planner to generate a solutions for new
problems.

C. Retro-active Loop: The user observes the robot execution and refines taught actions via
the graphical interface.

The user is provided with a graphical user interface (GUI) that abstracts from the underlying
modeling language used for automated planning. For each step, the user interacts with the GUI
to navigate between the components to teach new actions by demonstration, modify inferred
action conditions, define new planning problems for the robot to solve and execute generated
plans. In the following sections, we discuss each component in more detail.

Figure 4.1: An overview of the iRoPro (interactive Robot Programming) framework: A. the
user teaches primitive actions by demonstration B. the robot reuses these with a task planner to
generate an action sequence to achieve a goal. C. After observing the robot execution, the user
can refine the taught action models (dotted lines indicate user actions, solid lines indicate robot
actions).

56



4.1.1 Programming by Demonstration: teaching actions

Teaching robots atomic actions consists of learning both how and when an action should be
applied, i.e., the low-level (Sec. 2.3.1.1) and high-level representations (Sec. 2.3.1.2) respec-
tively. We consider an action that consists of both low- and high-level representations an action
model. To teach action models, Programming by demonstration (PbD) (Sec. 2.3.4) can be used
as an intuitive end-users programming approach. Low-level actions can be learned from multi-
ple demonstrations (Niekum et al. [2012]) or a single demonstration, where poses are assigned
heuristically and corrected by the user if needed (Alexandrova et al. [2014]). Dynamic Move-
ment Primitives (Pastor et al. [2009]) or mixture models (Calinon and Billard [2007b]) learn
actions from entire motion trajectories but generally require multiple demonstrations (Abdo
et al. [2013]). Ahmadzadeh et al. [2013] generates trajectories by extracting three key points
that represent the rest, pick and place actions of an object. In keyframe-based PbD (Akgun et al.
[2012], Alexandrova et al. [2014]), actions are represented as a sparse sequence of keyframes
that can be connected to perform a skill.

The user can teach multiple low-level actions and discriminate between them by associat-
ing different high-level conditions that specify when the robot should use the action. In iRo-
Pro, high-level actions are represented similar to planning operators in automated planning
(Sec. 3.2), where an action is a tuple o = (name(o), precond(o), effect(o)) with preconditions
and effects. State-of-the-art perception systems (e.g., SIFT (Ahmadzadeh et al. [2015])) or a
database of object features (Mason and Lopes [2011])) are used to automatically recognise ob-
ject properties such as type, position, or spatial relation relative to other objects. When the user
demonstrates an action, such as pick-and-place of a cube, it results in a change in the world
state, e.g., the cube’s position changes from A to B. The robot observes the world state before
and after the action demonstration, and infers relevant predicates for preconditions and effects
to build an action model. Predicates can be inferred from observing what changed or what
stayed the same in the state of the world. Feature-based algorithms, such as k-means clus-
tering, can be used to learn high-level action conditions from multiple demonstrations (Abdo
et al. [2013], Mollard et al. [2015]). Existing PbD approaches try to teach the robot from a
small number of demonstrations, but require at least five contextually different ones (Abdo
et al. [2013], Orendt et al. [2016]). In iRoPro, we propose an interactive programming ap-
proach, where the user can directly modify learned action models via the graphical interface.
Relying on the user’s logical reasoning and understanding of what they want to teach the robot,
we allow them to directly program and correct action models. Thus, the robot can learn a new
action from a single demonstration with the user acting as the expert to correct inferred con-
ditions. The user validates the learned action model or provides additional demonstrations to
refine the low- or high-level representations. The user repeats this process and creates an action
model for each unique primitive action.
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4.1.2 Automated Planning: reusing actions

In the PbD step, the robot learned action models that include the high-level representation that
is used in Automated Planning. The Automated Planning step consists of creating an planning
problem, defining a task goal and generating a solution to the solve the problem. Task planners
are used to generate solutions to solve complex problems (Chapter 3). Various planners have
been used for robotic task planning, such as the STRIPS planner (She et al. [2014]), Metric-FF
(Cubek et al. [2015]), fast downward planner (Abdo et al. [2013]). Given a description of a
planning domain, i.e., object types, predicates, and actions, we can define a planning problem
with an initial state and a desired goal state to achieve. The planner generates an optimal action
sequence, or plan, which guarantees the transition from initial state to the goal state.

Depending on the robot architecture and perception system, iRoPro integrates a partial
PDDL domain including a set of object types and their predicates that the robot can recognise.
The previously created action models complete the partial PDDL domain. Using the graphical
interface, the user can create a new planning problem by detecting the initial world state and
defining a goal to achieve. The predicates for the initial world state are automatically inferred
by the robot as in the PbD phase. The user can modify and correct them via the interface. Then
they enter predicates that describe a goal for the robot to achieve. The task planner generates a
plan, consisting of an ordered action sequence for the robot to execute. The user can verify the
generated plan and have the robot execute it in real life. If no plan is generated or if the plan
seems incorrect, the user can modify the taught actions, as well as the initial and goal states
and relaunch the planner.

4.1.3 Retro-active Loop: refining actions

The retro-active loop allows the user to revisit and correct created action models. It is likely that
the initially generated plan does not produce the desired outcome, especially if the context of
the planning problem is different to that of the initial demonstration (e.g., different object types
or positions). To minimise the user’s programming process and the number of demonstrations
required, taught actions can be generalised and reused, especially if the low-level action is
similar. Instead of creating new action models for each new problem, the user can revisit and
modify existing ones so that they are reused by the planner. Thus, the application to a new
context is an important step to test the generalisability of action models. There are several
possible causes for suboptimal, incorrect or non-existent solutions generated by the planner:

• Object types: they dictate what objects an action can be applied to. If they do not
match those of the observed world state in the current planning problem, the action is not
considered by the planner (e.g., pick-and-place was only defined for cube objects but not
other types).
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• Preconditions: they define when an action can be applied. If they do not match the
observed world state, the planner could make wrong assumptions about the usage of
taught actions (e.g., pick-and-place of an object that is not clear).

• Effects: they define how the world state is updated after the action execution and help the
robot to keep track of changes. If they are not defined correctly, there can be a mismatch
of the robot’s perceived world state and the actual world state (e.g., a position is still
considered free when it is occupied).

• Initial world states: they describe the existing world state of objects to the robot. If the
initial world state is incorrect the planner may consider certain actions as invalid due to
their defined preconditions.

• Goal: this defines the minimal set of predicates that need to be achieved and should not
include consequent states or intermediate steps to achieve the goal. Contradicting goal
states automatically lead to non-existing plans (e.g., ‘object is on A’ and ‘A is clear’ are
stated as goal states).

Knowledge engineering tools (Sec. 3.5) can facilitate this process of modifying action mod-
els. They often provide useful functionalities for dynamic testing, model checking and visu-
alisation (Simpson et al. [2007]), but most tools require expertise in automated planning or
Software Engineering. In this thesis we argue that the proposed robot programming process
does not require this expertise and can be learned easily by users with different educational
backgrounds.

4.2 Methodology

The contributions in this thesis were constructed using both quantitative and qualitative re-
search methodologies. Our general approach follows the design wheel of the concept design
process (University of Cambridge [2013]) consisting of successive cycles of ‘Explore’, ‘Cre-
ate’, ‘Evaluate’ and ‘Manage’ phases (Fig. 4.2). Our contributions represent the following
stages:

1. Pre-Experiments: We start by conducting initial qualitative user experiments to inves-
tigate how end-users adopt basic concepts in Automated Planning and Programming by
Demonstration. We are particularly interested in the difficulties they encounter when
learning and applying automated planning concepts as they can be considered in the iRo-
Pro system implementation. For this we create an initial prototype used for simulating
iRoPro with the Wizard-of-Oz technique (Chapter 5).
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2. Goal-oriented Programming: We then explore goal-oriented end-user programming
approaches by allowing users to simultaneously teach the robot actions and goals by
demonstration. For this we implement a system that includes learning new actions by
demonstration and a graphical interface. We evaluate the system in an online user study
on Amazon Mechanical Turk (Chapter 6).

3. End-to-end System Implementation: Taking the existing work as a basis, we imple-
ment iRoPro on a Baxter robot to allow simultaneous teaching of low- and high-level
actions by demonstration. The end-to-end system includes a graphical interface that
users interact with directly to teach, reuse and refine new action models (Chapter 7).

4. Post-Experiments: We conclude this thesis work by conducting further user experi-
ments using the implemented system. We compare user groups with different educational
backgrounds and investigate their performance on how they learn and use the system for
programming the robot. We close the concept design process by comparing the latest user
study with our initial experiments conducted at the start of this thesis work (Sec. 7.5).

Figure 4.2: The thesis contributions align with the design wheel consisting of successive cycles
of ‘Explore’, ‘Create’, ‘Evaluate’ and ‘Manage’ phases (University of Cambridge [2013]).
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In the previous chapter (Chapter 4) we proposed iRoPro, an interactive Robot Program-
ming framework that allows end-users to teach robots new actions by demonstration and can
be reused with task planners to complete previously unseen tasks. We believe that non-robotics
expert users with little to no experience in Automated Planning can easily learn to use this
framework. In this chapter we present two qualitative user experiments to respond to the fol-
lowing questions:

Q1 How do non-expert users adopt the automated planning language with its action model
representation? (Section 5.2)

Q2 Can users teach a robot action models for automated planning using the proposed iRoPro
framework? (Section 5.3)
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The experimental context was designed around a Baxter robot (Fig. 5.1a). In both experi-
ments we particularly focused on elements to assess the user’s understanding of action models
such as defining their preconditions and effects. Understanding this symbolic representation
is a key requirement to use iRoPro. In the following sections we briefly outline the experi-
mental setup, protocol (consisting of training, experimental test, planning, questionnaire and
debriefing), measurements and results for each experiment. We conclude this chapter with a
discussion on the experimental findings and notable aspects for a full implementation of the
framework.

5.1 Baxter Research Robot

In this thesis we worked with a Baxter Research Robot, created by Rethink Robotics [2016].
First released in 2012, Baxter is a two-armed humanoid robot, with 7-DoF and a load capac-
ity of 2.2kg each. Our version has one claw and one suction gripper (Fig. 5.1a). The SDK
interfaces with Baxter via the Robot Operating System (ROS) (Quigley et al.), a framework
developed in 2007 by the Stanford Artificial Intelligence Laboratory, that allows the shared use
of software across a wide variety of robotic platforms (Fernández et al. [2015]). The indus-
trial model of the Baxter robot comes with the Intera software (Rethink Robotics [2012]) that
provides a graphical user interface, allowing recording and replaying of joint trajectories. The
research model of the robot comes without the software but with a head-mounted camera and
sonar head sensors. Several research laboratories have developed algorithms using the Bax-
ter robot to implement state-of-the-art solutions e.g., to pick up golf balls and place them in a
basket (Vyvyan Pugh [2014]) or to play the game Connect 4 by picking up chips from a spec-
ified location (Rethink Robotics [2014]). Recent approaches have used Baxter with various
PbD techniques (Li et al. [2017], Tremblay et al. [2018a], Yang et al. [2016]). After the Ebola
outbreak in West Africa in 2014, Baxter has been used to reduce the risk of contamination
(Active8 Robots [2014]). In October 2018, Rethink Robotics closed down and was acquired by
German automation specialist HAHN Group (Crowe [2018]).

5.2 Experiment 1: Acceptance of Automated Planning and
PDDL Concepts

In this experiment, we address the following question:

Q1 How do non-expert users adopt the automated planning language with its action model
representation?

Users were introduced to a symbolic planning language (a simplified version of PDDL),

62



involving the STRIPS formalism (Fikes and Nilsson [1971]) with type structures used in au-
tomated planning (Chapter 3). Users were instructed to describe world state configurations
to the robot. The goal was to assess the user’s adoption of the planning concepts (i.e., ob-
ject types, properties, generalised properties, action models) and to verify that the symbolic
planning language is appropriate for non-expert users.

(a) Baxter robot (b) Experiment 1 setup

Figure 5.1: Experimental setup for user studies.

5.2.1 Experimental Setup & Participants

We recruited 10 participants (1 male, 9 female), who were sociology students at the Université
Grenoble Alpes. 3 participants reported no programming experience, 6 had experience with
office productivity software (‘beginner’), and 1 had previously taken a programming course
before (‘advanced’).

The experimental setup consisted of a 2x2 board (with positions A1, A2, B1, B2), 2 cubes,
1 ball, and 1 ball recipient in the form of a bowl (Fig. 5.1b). The participants were given
sheets with empty tables to complete for each task. Each participant was allocated 1 hour,
but the average duration of the experiment was 49 minutes. At the end, participants were
given a questionnaire related to their experience and their understanding of the learned planning
language and concepts. The participants’ behaviour was observed by the experimenter and the
experiment was recorded on camera. The experimental protocol, questionnaire and additional
material used can be found in Appendix B.
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5.2.2 Experimental Design & Measurements

Users were told that they needed to use a symbolic planning language to describe the state of
the world and the semantic meaning of actions to the robot. At the course of the experiment,
users were faced with three different scenarios of increasing complexity. We evaluated their
capability to learn the presented planning language and apply it to different problem statements.
The experiment consisted of the following phases:

• Training: Users were presented the symbolic planning language to describe object types
(i.e., position, ball, cube, bowl) and predicates, which we called properties (i.e., empty,
at, stackable, is red, is blue) to describe world states. They were shown
how to model a simple move action in terms of preconditions and effects (Fig. 5.2).
For all properties, actions and their parameters, they had to use syntax of the form
name(arg1,arg2,...) which users without a Computer Science background might
be unfamiliar with. Additionally, they were introduced to the concepts of instantiated and
generalised actions, which were equivalent to actions (e.g., move(X1)) and planning
operators (e.g., move(cube)) respectively (Sec. 3.2). In this phase, they were given a
simple example of a cube at position A1 and moved to position B2.

A B A B A B

Preconditions:
(at cube A)
(empty B)

A B

(move cube A B)Preconditions:
(at cube A)
(empty B)

            Effects:
 (at cube B)

(empty A)

Preconditions:
(at ?obj ?posA)
(empty ?posB)

(move ?obj ?posA ?posB)

A B A B A B

            Effects:
 (at ?obj ?posB)

(empty ?posA)

Figure 5.2: Action model representation of a move action in terms of preconditions and ef-
fects: an action (or instantiated operator) for a cube (top), and generalised action (or planning
operator) for any object, where variables are prefixed with ‘?’ (bottom).

• Experimental test: Users were presented a new world state that involved a cube, a bowl
and a ball object. First they were instructed to provide a description of the initial state
to the robot by using the symbolic planning language (Fig. 5.3a). Then they were asked
to define a move action model in terms of preconditions and effects (Fig. 5.3b). In the
following they were faced with 3 different scenarios to refine the preconditions of the
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move action. Users derived a (stackable ball cube) property (Fig. 5.3c), which
allowed a ball to be stacked on top of a cube. When this property did not hold, users
proposed the empty property (Fig. 5.3d), which the robot needed to verify before the
action execution. At each step, users had to give the generalised representation of the
properties and action models.

A1 1b

B2A2

(c) (stackable ball cube)(b) (move ball A1 B2)
PreC: (at ball A1)
Eff: (at ball B2)

(d) (empty B2)

A1 1b

B2A2

A1 1b

B2A2

(a) Initial state:
     (at ball A1)
     (at cube B2)
     (empty A2)
     (empty B1)

Figure 5.3: Users were instructed to provide a description of (a) the initial state of the world
and (b) an initial move action model. Then they derived additional preconditions for moving
the ball from position A1 to B2: (c) (stackable ball cube): the ball can be stacked onto the
cube, and (d) (empty B2): if the ball cannot be stacked, the target position should be empty.

• Planning: Users were presented a description of a new initial state of the world and
a goal. They were asked to define an action sequence that allows the transition from
the initial state to the goal (similar to Fig. 5.4), and explain their reasoning using the
symbolic action model representation. This optional test allowed us to further verify their
understanding of the planning concepts, in particular action preconditions and effects.

            (a) Initial state:
(at redCube A)
(at blueCube B)
(empty C)

            (c) Actions:
(move blueCube B C)
(move redCube A B)
(move blueCube C A)

            (d) Goal state:
(at redCube B)
(at blueCube A)
(empty C)

A B C

A B C

A B C

A B C

A B C

            (b) Objects – types:
redCube – cube
blueCube – cube
A, B, C – position

(at obj1 A)
(at obj2 B)

obj1 - cube
obj2 - cube

1. (move obj2, B, C)
2. (move obj1, A, B)
3. (move obj2, C, A)

(at obj1 B)
(at obj2 A)

Figure 5.4: Definition of a planning problem (a) properties describing the initial world state (b)
object names and their types (c) instantiated actions (d) properties describing the goal.

• Questionnaire: At the end, users were given a questionnaire with 5 questions related to
their experience and 15 questions to evaluate their understanding of the learned planning
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language and concepts. For the latter, questions related to their understanding of the
concepts presented at the start of the experiment (e.g., ‘Explain the difference between the
precondition and effect of an action’), syntax (e.g., ‘Using the presented language, how
do you describe the property cube X4 is on position B3?’), logical reasoning (e.g., ‘Is
it possible to have (empty A) and (at cube A) in the same state?’), and other
concepts (e.g., ‘What is the generalised form of the given object property?’).

• Debriefing: Throughout the experiment, users were asked open-ended questions
(e.g., ‘What properties do you observe in the current world state?’), so that they were
guided as little as possible and their responses were unbiased. When the participant
struggled to find an answer, the experimenter guided the participant in a possible direc-
tion (e.g., ‘Why can the ball not be placed on the cube?’).

Le participant sait… Strongly 
disagree

Somewhat 
disagree

Somewhat 
agree

Strongly agree

I can describe a world state (object types, properties) 2 1 7
I can generalise an object property 1 9
I can explain two contradicting properties in the same state 1 1 8
I can explain the difference between precondition and effect 0 10
I am able to use this language on my own 2 3 4 1
I did not encounter any difficulties during the experiment 1 8 1
No programming experience is required to learn this language 0 2 5 3

I can describe a world state (object types, properties)
I can generalise an object property

I can explain two contradicting properties in the same state
I can explain the difference between precondition and effect

I am able to use this language on my own
I did not encounter any difficulties during the experiment

No programming experience is required to learn this language
0 2 4 6 8 10

Strongly disagree Somewhat disagree Somewhat agree Strongly agree

�2

Figure 5.5: Extract of questionnaire responses from Experiment 1.

5.2.3 Results

We did not observe any significant differences in the performance of users with or without
programming experience. 9 (out of 10) participants found the symbolic representation of prop-
erties and actions easy to understand. During the experimental test, the majority (9 or 90%) of
the participants managed to describe the complete world state using the correct syntax. When
faced with different scenarios to refine the action model, 5 (or 50%) of the participants strug-
gled to formalise the stackable condition in the symbolic language. They provided alternative
formulations related to the cube’s properties (e.g., ‘if the cube can hold the ball’). However,
once the condition was defined, the majority (8 or 80%) of the participants had little to no dif-
ficulties defining the planning operators (Fig. 5.2). Due to time constraints, only 5 (or 50%)
participants were presented the planning phase. All 5 encountered no problems when defining
the action sequence to achieve the given goal.

In the questionnaire (Fig. 5.5), the majority (9 or 90%) of the participants understood the
notion of states and object properties. 8 (or 80%) correctly pointed out two properties that
could not exist in the same state (e.g., (empty A) and (at cube A)). All participants
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gave correct explanations for preconditions and effects of action models, and provided correct
examples. 9 (or 90%) participants encountered difficulties during the experiment, 6 (or 60%)
stated problems with formalising the language, especially at the beginning of the experiment.
Half of the participants believed that they could apply this language on their own. 7 (or 70%)
stated a ‘beginner’ programming level was needed to learn the symbolic planning language,
while 3 (or 30%) believed that no programming experience was required at all.

5.3 Experiment 2: Acceptance of the Robot Programming
Framework

In this experiment, we address the following question:

Q2 Can users teach a robot action models for automated planning using the proposed frame-
work iRoPro?

Users were presented a simulated implementation of iRoPro and had to teach action models
by kinesthetically manipulating a Baxter robot (Fig. 5.1a). Users were instructed to teach an
atomic action by demonstration and assign preconditions and effects. The goal was to assess the
framework’s usability and the user’s difficulties encountered during the programming process.
At the end, participants were given a questionnaire related to their experience, their perceived
understanding of the presented concepts and the usability of the framework. In the following
sections we briefly outline the experimental setup, measurements and results of the experiment.

5.3.1 Experimental Setup & Participants

We recruited 11 participants (7 male, 4 female), who were students and staff members at the
Université Grenoble Alpes1. 6 participants reported programming experience with office pro-
ductivity software (‘beginner’), 2 had previously taken a programming course before (‘ad-
vanced’), and 3 were pursuing studies in Computer Science (‘expert’). The experiments were
conducted using a Baxter robot, mounted with a partial implementation of the framework. The
implemented functionalities included:

• ‘learn new action’: record the kinesthetic action demonstration,

• ‘find a coloured object’: apply the recorded action to an object of the specified colour,

• ‘execute an action sequence’: execute a sequence of previously taught actions.

1None of the participants took part in the first experiment
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We used the Wizard-of-Oz technique to simulate the remaining functionalities (e.g., ‘infer
action preconditions and effects’, ‘generate solution using a planner’). Participants operated
on a table with 2 positions D (for departure) and A (for arrival), 2 cubes (blue and red), that
represented parts on an assembly line (Fig. 5.1a). Each participant was allocated 1 hour, but
the average duration was 29.5 minutes. The participants’ behaviour was observed by the exper-
imenter and the experiment was recorded on camera. The experimental protocol, questionnaire
and additional material used can be found in Appendix C.

5.3.2 Experimental Design & Measurements

The experiment scenario was set in a simulated assembly line, where objects of the same shape,
but different colour arrived consecutively at the departure position D. Users were told that ob-
jects were too heavy for human operators to move, hence needed to be handled by robots. Due
to the type of the objects, they should not be stacked either. Users had to teach Baxter the action
for moving an object from D to arrival position A, where another maintenance task would be
performed later. At the course of the experiment, users were faced with two different scenarios,
where Baxter had to apply the learned move action. We evaluated the user’s capability to refine
action models and associate conditions when faced with different situations, and assessed the
framework’s overall usability. The experiment consisted of the following phases:

• Training: Users were shown how to manipulate Baxter’s arm to pick and place an object,
and given time to familiarise themselves with the kinesthetic manipulation. For this
experiment we only used the robot’s suction gripper to manipulate objects.

• Experimental test: Users were instructed to teach Baxter a move action of a red cube.
Then, they were presented the action model, with preconditions and effects, that Baxter
learned from the demonstration (Fig. 5.6a). In the following, users were faced with two
different scenarios to refine the conditions of the action model, starting with the initial
action model for a red cube. At each step, users observed how Baxter executed the
learned action in the new scenario. When Baxter failed to execute the action, users had
to refine the conditions of the action model so that it was applicable to all cubes of any
colour (Fig. 5.6b) and when the target position was occupied (Fig. 5.6c).

• Planning: Users were presented a new scenario, where Baxter was instructed to achieve
a goal using the learned action model. The new goal was to switch the positions of two
cubes on the table. Users were first asked if they believed Baxter was able to solve this
task and were then shown how the taught action was reused with a task planner. Finally,
Baxter executed the action sequence to complete the task (Fig. 5.4).

• Questionnaire: At the end, users were given a questionnaire containing 18 questions
related to their experience (e.g., ‘I did not encounter any difficulties during the experi-
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ment’), their perceived understanding of the presented concepts (e.g., ‘I can explain how
Baxter represented the preconditions of a new action’), and the usability of the framework
(e.g., ‘No programming experience is required to teach Baxter a new task’). Participants
had to give a rating on a 4-point scale ranging from ‘Strongly agree’, ‘Somewhat agree’,
‘Somewhat disagree’, and ‘Strongly disagree’. The complete questionnaire can be found
in Appendix C.

• Debriefing: Throughout the experiment, users were asked about their expectations on
Baxter’s behaviour before applying the learned action model in a new scenario. Users
were asked open-ended questions (e.g., ‘What will Baxter do when applying the learned
action model?’), so that their responses were unbiased. When they encountered failure
scenarios (e.g., when Baxter stacked two cubes), they were asked to reason about Baxter’s
behaviour and proposed modifications to the taught action model.

  

1a 1b

2b2a

(b) move(ball,1a,2b):
Precond: (at ball 1a)
Effect: (at ball 2b)

(a) Initial state:
     at ball,1a)
     at(cube,2b)
     empty(2a)
     empty(1b)

(c) stackable(ball,cube)(b) move(ball,A,B):
Precond: at(ball,A)
Effect: at(ball,B)

(d) empty(2b)

1a 1b

2b2a

1a 1b

2b2a

(a) Initial state:
     at(ball,A)
     at(cube,B)
     empty(C)

A B C

            (b) (move cube A B)

PreC: (at cube A)

Eff: (at cube B)

A B C A B C

            (a) (move redCube A B)

PreC: (at redCube A)

Eff: (at redCube B)

            (c) (move cube A B)

PreC: (at cube A)
(empty B)

Eff: (at cube B)
(empty A)

            (a) Initial state:

(at redCube A)
(at blueCube B)
(empty C)

            (c) Action:

(move redCube A B):
  Precond: (at redCube A)
  Effect: (at blueCube B)

            (d) Goal state:
(at redCube B)
(at blueCube B)
(empty C)
(empty A)

A B C A B CA B C

A B C

A B C

            (d) Goal state:

(at redCube B)
(at blueCube C)
(empty A)

(empty B)
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Figure 5.6: Continuous refinement of the move action model: (a) initial action model learned by
demonstration, (b) action model for all cubes of any colour, (c) action model with an additional
condition, if the target position is occupied and cubes can not be stacked.

5.3.3 Results

During the experiments we observed how users learned and used the presented programming
process and planning concepts. When asked for improvements of the initial action model no
users pointed out missing conditions before being faced with the new scenario. Even users who
were ‘experts’ and who have heard of automated planning before, did not propose a complete
action model from the start. However, when faced with the relevant failure scenarios all of the
users detected the missing conditions easily. In the final phase, 8 (or 73%) users who had no
experience in automated planning did not expect Baxter to solve the permutation problem.

Figure 5.7 shows the user responses to the questionnaire. All 11 users were satisfied with
the programming process and Baxter’s ability to learn and reproduce the demonstrated move
action. All users stated that they encountered no difficulties during the experiment and believed
that they had taught Baxter a new task. The majority of the users agreed that they could explain

69



how Baxter learned and represented the new action model. 9 (or 82%) understood the notion of
preconditions and agreed that no programming experience was required to teach Baxter using
the proposed framework, while 2 (or 18%) somewhat disagreed.

Le participant sait… Strongly 
disagree

Somewhat 
disagree

Somewhat 
agree

Strongly 
agree

It was easy to manipulate the arm 0 0 2 9

Baxter is well adapted for workers on the assembly line 0 0 6 5

Baxter's behaviour was intelligent 0 2 2 7
I believe that I have taught Baxter a new task 0 0 0 11

I can explain how Baxter represented the new action 1 2 5 3

I can explain how Baxter learned a new action from my demonstration 1 0 8 2

I can explain how Baxter represented the preconditions of the new action 1 1 5 4

I did not encounter any difficulties during the experiment 0 0 0 11

No programming experience is required to teach Baxter a new task 0 2 1 8

It was easy to manipulate the arm
Baxter is well adapted for workers on the assembly line

Baxter's behaviour was intelligent
I believe that I have taught Baxter a new task

I can explain how Baxter represented the new action
I can explain how Baxter learned a new action from my demonstration

I can explain how Baxter represented the preconditions of the new action
I did not encounter any difficulties during the experiment

No programming experience is required to teach Baxter a new task

0 2 4 6 8 10 12

Strongly disagree Somewhat disagree Somewhat agree Strongly agree

�1

Figure 5.7: Summary of questionnaire responses: Extract of 18 questions on the user’s per-
ceived usability and understanding of the programming process after the experiment.

5.4 Findings

In both experiments, we did not observe a significant difference in the performance between
users with different programming experience. The majority of the users had issues formulating
the logical properties used for preconditions and effects. In the first experiment (Sec. 5.2), users
had difficulties formulating certain conditions in the planning language (e.g., (stackable
ball cube)), but stated equivalent ones (e.g., ‘only place the ball, if it is stackable on the
cube’). Similarly, in the second experiment (Sec. 5.3), users formulated missing preconditions
(e.g., ‘position B is empty’) with other equivalent conditions (e.g., ‘do not place the object
on position B, if it is occupied’). This means that users should be provided with predefined
conditions that they can choose from, instead of letting them formulate their own.

Some of the users made wide assumptions about the robot’s capabilities. In the second
experiment, when both arrival and departure positions were occupied, 5 (or 50%) of the users
expected Baxter to consider the occupied position, even though the condition was not men-
tioned in its action model. This is a common problem in PbD solutions as there is a difference
between the robot’s intelligence and the one perceived by its teacher (Suay et al. [2012]). This
can be addressed by reproducing the learned action in a new context and verifying the robot’s
knowledge base, as we did throughout the experiment.

With these two qualitative experiments, we showed that the automated planning language
and its main concepts can easily be learned by users without any programming background.
The action model representation, in terms of preconditions and effects, seems to be intuitive for
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non-expert users. These initial experiments provided us with an initial idea of how the users
might perceive the proposed robot programming framework. We intentionally limited the set
of automated planning concepts (i.e., object types, predicates, and actions with preconditions
and effects) that are necessary to use the framework to the bare minimum to assess the poten-
tial usability of such a framework. Further experiments should test scalability, address more
automated planning concepts (e.g., object-type hierarchy, more predicates, planning problem
definition and resolution) and potentially compare separate control groups (e.g., experts vs non-
experts) in less structured environments.

5.5 Conclusions

In this chapter we evaluated potential impacts of iRoPro, the robot programming framework
proposed in Chapter 4 with qualitative experiments. The framework combines two techniques,
Programming by Demonstration and Automated Planning, allowing end-users to teach action
models from scratch. Users with no background in Computer Science had initial difficulties
remembering the syntax of the symbolic planning language, but managed to use it after less
than an hour of training. With both experiments we showed that non-expert users can easily
learn the main automated planning concepts, even when introduced to them for the first time.
In particular, the action model representations in terms of preconditions and effects seem in-
tuitive for users despite their different educational backgrounds. Overall, the proposed robot
programming process was considered to be very intuitive and easily understood by users.

Now that we have verified the possible usability of iRoPro, we need to validate its actual
usability with the implementation of a working end-to-end system. This involves using state-
of-the-art solutions to implement functionalities that were simulated with the Wizard-of-Oz
technique during the experiments. This consists of the following key aspects:

1. learn generalisable low-level actions by demonstration (e.g., Akgun et al. [2012], Pastor
et al. [2009]),

2. learn high-level action representations in terms of preconditions and effects (e.g., Abdo
et al. [2013], Mollard et al. [2015]),

3. integrate a task planner to generate solutions using the learned actions (e.g., Abdo et al.
[2013]),

4. create a graphical user interface to guide the end-user programming process and an in-
tuitive navigation between all functionalities (e.g., Alexandrova et al. [2014], Huang and
Cakmak [2017]).

While we have validated the learnability of the main concepts in Automated Planning, we
will now focus on the subset of goal-oriented programming. Goal-oriented programming refers
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to high-level programming by providing the user with an abstraction from the underlying mod-
eling language, e.g., via a user interface. This allows end-users to understand and learn the
programming process, without having to dive into the syntax and the technical details of the
modeling language. In the next Chapter (6) we present a goal-oriented programming system
that allows end-users to program robots via an intuitive graphical interface. Our approach uses
keyframe-based PbD (Akgun et al. [2012]) to teach the robot generalisable low-level actions
that can be used to achieve a variety of different goals in the same task domain. This system
represents a foundation for the iRoPro implementation.
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In this chapter, we focus on enabling end-users to program robots using a goal-oriented
programming approach. We make use of a graphical user interface (GUI) that facilitates the
programming process by providing the user with an abstraction from the underlying modelling
language. As treating all possible application domains is beyond the scope of this thesis, we will
focus on the specific use case of shelf organising tasks, which generally involves basic pick-
and-place actions of shelf products. We choose keyframe-based PbD (Akgun et al. [2012]) as
the state-of-the-art technique to allow end-users to teach robots low-level actions by demonstra-
tion. We implement a system where end-users teach low-level actions that can be customised
with the GUI. Both, the presented system and the chosen use case build firm foundations for
this thesis and for the implementation of iRoPro, addressing assembly and packaging tasks with
pick-and-place robots.

In the following sections we first give an introduction to the problem statement of the chosen
use case of robotic shelf organisation and discuss related works (Sec. 6.1) . Then, we propose
a task representation for shelf arrangements based on a large dataset of grocery store shelf
images and a method for inferring goal configurations from user inputs (Sec. 6.2). We evaluate
our goal inference approach with ten different teaching strategies that combine alternative user
inputs on the dataset of grocery configurations and with real human teachers through an online
user study (Sec. 6.3). Finally, we evaluate the robot programming system implemented on a
Fetch mobile manipulator on eight benchmark tasks and demonstrate real-time execution of
shelf arrangement tasks (Sec. 6.4). We complete this chapter by discussing the limitations of
the system (Sec. 6.5) and relations with this thesis (Sec. 6.6).

6.1 Use Case

The supermarkets and grocery stores industry employs millions of workers for tedious tasks,
including restocking products on shelves. These tasks have certain regularities that can be ex-
ploited by automation solutions. For instance, most objects are rectangular prisms (e.g., boxes)
or cylinders (e.g., cans) and they are often organised on a shelf in a grid pattern with the label
facing forward. On the other hand, the arrangement task is slightly different for every item,
with varying grid configuration parameters (rows, columns, stacks, or object distances) due to
differences in shelf space, product types, and product dimensions. Furthermore, different robot
end-effectors require different ways of manipulating objects to get them tightly arranged in
confined shelf settings. As a result, developing universal robotic shelf arrangement capabilities
that work for all possible items in all possible stores is extremely difficult.

Instead, we argue for robot shelf arrangement tasks to be programmed by end-users at the
time of deployment. Rather than developing universal capabilities, we embrace the idea that a
robot will be customised to a specific store and the specific items in it. While this presents a
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simpler programming challenge, enabling end-users to do it is non-trivial. The system needs
to not only be intuitive and easy to use, but it should also allow efficient programming of both
what the desired arrangement of items looks like and how the robot can use its manipulator to
move each item to the desired position relative to other items.

In this chapter we propose an approach for enabling users to simultaneously program
robotic shelf arrangement task goals and actions for a given item, by demonstrating a few
steps of the shelf stocking task (Fig. 6.1). We develop a user interface to visualise inferred task
goals and actions, and enable other user input to augment their demonstrations. To better under-
stand common structure in shelf arrangement tasks, we analysed the Freiburg dataset of close
to 5,000 images covering more than 2,400 unique grocery items from 25 different categories
(Jund et al. [2016]). Our goal inference model, based on this dataset, takes demonstrations and
other input from the user and proposes them most likely shelf arrangements in order to acceler-
ate the teaching process. We analyse how quickly correct goal configurations in the dataset can
be inferred from user input according to 10 different teaching strategies and present an online
user study that empirically investigates strategies that people use in a simplified arrangement
task domain. We implement our approach on a Fetch mobile manipulator and demonstrate the
programming and execution of 8 arrangement tasks for objects from the dataset.

Partial task demonstration

GUI interaction Task goal representation

Action representation

USER INPUT INFERENCE

Full task execution

EXECUTION

Figure 6.1: Overview of the developed system that allows users to demonstrate part of a shelf
arrangement task and interact with a GUI to simultaneously program both the complete task
goal (fully specified shelf arrangement) and the actions for achieving that goal.
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6.1.1 Related work

This work relates to several topics explored in previous robotics research. The larger umbrella
of end-user robot programming has seen a range of recent work focused on programming of
mobile robots (Huang et al. [2016]), social robots (Barakova et al. [2013], Glas et al. [2012,
2016]), industrial manipulators (Stenmark et al. [2017]) and mobile manipulators (Alexandrova
et al. [2015], Huang and Cakmak [2017]). The most widely explored approach uses Program-
ming by Demonstration (Sec. 2.3.4). A majority of the work focuses on directly learning a
policy or modeling higher level actions from lower level control signals (Akgun et al. [2012],
Calinon and Billard [2009], Schaal et al. [2003], Schulman et al. [2013]), while some explore
learning task goals or task structure represented in various ways (Ekvall and Kragic [2008],
Jansen and Belpaeme [2006], Mohseni-Kabir et al. [2015], Niekum et al. [2013], Pardowitz
et al. [2007]). Most closely related to our approach, Akgun and Thomaz [2016] explored si-
multaneous learning of actions and goals by demonstration, focusing on manipulation tasks,
such as closing a box and pouring beans into a bowl.

Robot shelf stacking was part of the Amazon picking challenge in the last iteration (Correll
et al. [2016]). Teaching robots to tidy up shelves was addressed previously by Abdo et al.
[2015], but their focus is on dividing different products into categories, rather than configuring
them on a shelf.

We argue for using end-user programming for teaching task goals and robot actions to per-
form arrangements of grocery items on shelves. Shelf arrangements are different in every store;
only the store owners or staff can correctly specify the task goals for the robot. Hence, the use
of end-user programming is essential for that part of the problem. Previous work has explored
alternative interfaces, such as speech or different GUIs for specifying task goals (Alexandrova
et al. [2015], Kurenkov et al. [2015], Nguyen et al. [2013]). On the other hand, programming
of actions is not necessarily tied to end-user programming. An alternative is to give robots uni-
versal capabilities for grasping any object, planning a motion to move it without collisions, and
placing it in any desired configuration. Motion plans could further involve non-prehensile ac-
tions (Dogar and Srinivasa [2010], King et al. [2015]) to reconfigure objects closer together as
in some of the actions programmed by demonstration in this chapter. While a lot of research in
robotics focuses on giving robots those capabilities, they are still far from being universal. An-
other approach is for the robot to learn those actions by training on the job i.e., self-exploration
using reinforcement learning, but is likely undesirable due to long exploration times and nega-
tive impacts of trial errors.
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6.2 Approach

Our approach aims at enabling users to demonstrate part of the task of arranging an item on
a shelf and have the robot complete the task on its own. From the few user demonstrations,
the robot needs to infer both what the desired arrangement of objects is and how to use its end
effector to configure objects in the desired relative configuration. While both of these are well
studied problems, their joint inference is common in previous work (e.g., Akgun and Thomaz
[2016]). The specific challenge addressed in this chapter is the efficient inference of the task
goal from few demonstrations that convey both goal and action. To that end, we explore two
practical ideas:

1. We perform a thorough analysis of the task domain to come up with compact domain-
specific task representations that exploit common structure.

2. We augment the user’s input with direct specification of certain task parameters that are
less efficiently conveyed through demonstrations.

We detail this approach in the following subsections.

6.2.1 Freiburg Dataset Analysis

The Freiburg dataset (Jund et al. [2016]) contains 4,947 images of common grocery items and
was originally collected for training visual classifiers. We labeled the images according to
product type and shelf arrangement. For the shelf arrangement data we excluded 998 (20.2%)
images that either did not show a supermarket shelf (e.g., product on the table or vending
machine) or that were duplicate images of a product on a shelf already included. The remaining
3, 949 were used for understanding the structure of shelf arrangement tasks and defining a
common task representation (Sec. 6.2.2).

Our first observation is that almost all items in stores are arranged on a 2D or 3D grid. We
considered rows to be the depth (front-to-back), columns the width (left-to-right), and stacks
to be the height (bottom-to-top) of the grid. As the dataset focused more on product types
rather than product configuration, the configuration parameters were sometimes not all clearly
identifiable. The number of rows was often not visible but likely to be filled for the entire depth
of the shelf. Thus, we coded the specific number of columns and stacks and assumed rows to
be as many as possible.

Product categories. Product packaging is often designed with the objective of compact pack-
aging and efficient use of shelf space in stores. As a result a large portion of items (54.3% in
our dataset) have a flat top surface that allow stacking, of which 33.9% are rectangular prisms
(i.e., boxes) and 20.4% are cylinders (i.e., cans). Non-stackable items also have rectangular
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or circular bases to stand stably on the shelf surface, but less regular tops (e.g., bottle lids)
that prevent stable stacking (Fig. 6.2). We consider these objects equivalent to square pyra-
mids (19.5%) and cones (16.3%). Only 10% of the items did not fit into the shape categories
mentioned above and were categorised as soft packaging (8.7%) or other (1.3%), e.g., triangu-
lar pyramid or hexagon prism. Table 6.1 shows the full distribution of the dataset across the
categories of product types.

Soft packaging Other

Rectangle Cylinder Pyramid Cone

Soft packaging Other

Rectangle Cylinder Pyramid Cone

Figure 6.2: Main product shape categories, that comprise 90.1% of items in the dataset, are
defined based on the the shape of their base and their tip. The shape of the tip determines
whether the objects can be stacked or not. The shape of the base determines whether the object
is more compactly arranged on a regular grid (rectangular) or an off-grid arrangement (circular).

Table 6.1: Distribution of product types found in the Freiburg dataset.

Product type category Count %
Rectangle (stackable, on-grid) 1676 33.9%
Cylinder (stackable, off-grid) 1011 20.4%

Square pyramid (not stackable, on-grid) 964 19.5%
Cone (not stackable, off-grid) 804 16.3%

Soft packaging: e.g., candy 428 8.7%
Other: e.g., triangular pyramid, hexagon prism 64 1.3%

Total 4947 100%

We also observe that items with rectangular bases are most compactly arranged on a grid
with both side surfaces touching the neighbouring items. Whereas objects with circular bases
can sometimes be more tightly arranged when two consecutive rows are offset by half the
radius length of the item, which we refer to as an off-grid arrangement (Fig. 6.3a,b). Despite
the compactness advantage, only a small percentage (1.75%) of the dataset included off-grid
configurations. Although a majority of items were observed to be arranged as compactly as
possible (touching neighbouring items on all sides), some arrangements left space between
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objects, possibly to allow customers to take items without knocking down others. We observed
that at least 0.26% of arrangements left space between items either on the row or column
direction (not possible in the stacking direction due to gravity).

Figure 6.3: Cylindrical item arranged in a) regular grid and b) off-grid configurations. c) Soft-
packaged item arranged in interleaved grid configuration.

6.2.2 Shelf Arrangement Representation

Based on the common product arrangements observed in the dataset, we propose a simplified
grid-based task representation with the following variables: number of columns (m), rows (n),
stacks (s), row distance (dn) and column distance (dm), where m,n, s ≥ 1 and dm, dn ∈ {0, 1}
represent the binary state for touching and not touching respectively. Thus, we represent a shelf
arrangement task (where the shelf is orthogonal to the robot) as a tuple τ = (n,m, s, dn, dm).
Table 6.2 shows the distribution of the values for these variables observed in the Freiburg
dataset. Note that this representation excludes soft-packaged or irregularly shaped items, as
well as off-grid arrangements. However, the representation could easily be extended for more
complex tasks, such as continuous values for dn and dm, variables describing off-grid configu-
rations, or variables for orientation of the items.

Table 6.2: The distribution of shelf arrangement parameter values across the Freiburg dataset.

stacks
1 2 3 4 >4 Total

1 49.4% 4.4% 0.7% 0.2% 2.3% 57%
2 29.6% 3.4% 0.4% 0% 1.4% 35%
3 5.8% 0.5% 0% 0% 0% 6%

columns 4 1.3% 0.2% 0% 0% 0.1% 2%
5 0.1% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0%

Total 86% 8% 1% 0% 4% 100%
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6.2.3 Goal Inference from Demonstration

The problem of goal inference is the estimation of most likely shelf arrangement based on the
input obtained from the user. We represent this as a maximum a posteriori estimation problem,
i.e.,

τ ∗ = arg max
τi∈T

P (τi|D) (6.1)

where T is the set of all possible shelf configurations and D = {Aj, Oj}Mj=1 is the set of M
demonstrations provided by the user with Aj actions, each leading to the placement of one
additional object on the shelf. Hence, each Oj corresponds to configurations (x, y, θ, s) ∈
(SE2×N) (s for stack number) of j objects that have been placed so far on the shelf surface or
on top of another object. Since the demonstrations are assumed to be progressions of the same
shelf configuration task, the goal inference only depends on the latest shelf configuration OM

rather than all of D.
Given the M object configurations in OM we estimate the current shelf arrangement τM =

(nM ,mM , sM , d
n
M , d

m
M) as follows. The number of rows and columns are determined by sepa-

rately finding alignments (i.e., values within a small distance) in x and y dimensions of the
objects. The number of aligned groups gives the number of estimated rows and columns
(nM ,mM ). The number of stacks (sM ) is estimated as the highest stack number of any ob-
ject in the demonstrated configuration. The contact between rows and columns (dnM , d

m
M ) are

estimated based on the majority relation between rows and columns.
Next, we substitute τM for D and use the Bayes Rule to calculate the posteriors of the term

we would like to maximise as follows:

P (τi|τM) =
P (τM |τi)P (τi)∑

τj∈T
P (τM |τj)P (τj)

We assume that the probability P (τM |τi) is zero for all τi whose row, column, and stack
parameter values are already exceeded in τM . Similarly, any arrangement τi whose binary
variable (dn, dm) is contradicted in the demonstration is considered zero. Note that dn and
dm are only relevant if there are at least two rows or columns respectively (n>1, m>1). We
initialise the priors P (τi) based on their observed occurrence in the dataset (Table 6.2). To have
a finite set of possible shelf configurations we bound the grid parameters based on the dataset
as well, where m ∈ [1..7], n ∈ [1..2] and s ∈ [1..5], where n = 2 corresponds to having as
many rows as possible based on the shelf, rather than an exact number of rows.

While the computation in Equation 6.1 gives a single most likely configuration, we propose
to give the top few arrangements with the highest likelihoods as suggestions to the user. This
requires ranking all possible arrangements in terms of their likelihoods, given the demonstra-
tion. Since ties are possible due to equal priors we rank configurations with smaller parameter
values as higher.
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6.2.4 Goal Inference with Direct Specification

To allow the user to directly specify goal shelf arrangement parameters to augment demon-
strations, we exploit the way that our goal inference works as described in Section 6.2.3. If
the user directly specifies the value of a goal arrangement parameter, all arrangements that are
inconsistent with that specification are considered to have zero probability. This corresponds
to a slight change in the formulation, where the input from the user relevant for the inference
does not only include τM but also any direct specification S, where P (τi|S, τM) is zero if τi is
inconsistent with S . This allows for a fast elimination of many candidate arrangements.

6.2.5 Action Representation and Inference

We use a simple action representation proposed in previous work on keyframe-based PbD (Ak-
gun et al. [2012], Alexandrova et al. [2014]). We assume that the robot can perceive the config-
uration of the shelf and of each object on it. Each of these perceived entities are considered as
potential landmarks. The action is then represented as a sparse sequence of end-effector poses
relative to one of the landmarks and gripper states (open/close). For example, placement of an
object next to another object could be done by moving the gripper to a pose near the reference
object, lower the gripper, open the gripper, clear the gripper from potential collisions. All of
these poses would be relative to the reference object. Non-prehensile actions, such as moving
the placed object closer to the reference object, could also be easily represented in the same
way, as poses of the gripper relative to detected objects.

Such actions can be directly programmed with a single demonstration using heuristic as-
signment of poses to landmarks. The assignment can then be corrected by the user (Alexan-
drova et al. [2014]) or through multiple demonstrations of the same step (Niekum et al. [2012]).
We take the first approach; hence an individual action demonstration in Aj is already an ex-
ecutable action. While there can be ways to combine multiple demonstrations, in our imple-
mentation the robot randomly chooses an action from the subset of Aj that is reachable based
on the configuration of landmarks in the scene. Although all demonstrated actions should be
reachable for the objects in the shelf arrangement that were placed during the demonstration,
some actions may become unreachable when they are shifted for placement of other objects to
complete the desired shelf arrangement. Hence having multiple demonstrations in Aj is still
valuable.

Execution of actions simply involved detecting all landmarks in the environment, comput-
ing the actual configuration of end-effector poses that are relative to those landmarks, and then
moving through the landmarks one by one.
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6.2.6 Implementation

We implemented our approach on a Fetch mobile manipulator which has a 7-DoF arm with a
load capacity of 6kg. Our system builds on the open-source system Rapid PbD (Huang [2018a])
which implements the action representation described in Section 6.2.5. The robot detects the
shelf surface and objects on it using standard Point Cloud Library functionality. As stacked
objects are perceived as one cluster on the surface, we detect stacking from height changes that
are approximately equivalent to the height of the object measured at the demonstration of the
first action.

We extend the Rapid PbD graphical user interface (GUI) in several ways. Users first create
an empty program using the GUI. Then they kinesthetically move the robot arm to desired
poses and save poses or change the gripper state through the GUI. We assume that the items to
be placed on the shelf are always picked up from the same location. Demonstrations involve a
sequence of picking, moving, placing, and possibly pushing for non-prehensile readjusting of
one object relative to the shelf or to another object already on the shelf.

When the user confirms the end of an action demonstration the robot perceives the end
state of the demonstration OM , which is expected to include M objects. The robot then in-
fers τM as described in Section 6.2.3 and visualises the most likely configuration overlaid
onto the detected objects that are already placed (Fig. 6.4). In our implementation the aver-
age row and column distances (dm, dn ≥ 0) are read from the demonstrated arrangement and
off-grid arrangements are recognised. The user can create interleaved arrangements (Fig. 6.3c)
by changing dm, dn on the GUI. It also displays the top four arrangements that have the highest
likelihood given the demonstrations so far. The GUI allows the user to select an arrangement
from this list or directly specify task goal parameters (Sec. 6.2.4). When the goal for the shelf
arrangement is confirmed, the robot can execute the complete shelf arrangement task either
continuing from what has already been demonstrated or starting from scratch.

Our interface also allows users to reuse previously programmed tasks and actions for shelf
arrangement with different objects or grid parameters. To that end, the user can set up full or
partial shelf arrangements and then run the object detection and goal inference. They can also
change task parameters to match the new task. Programmed manipulation actions can also be
transferred in some cases, but need to be tested and possibly adjusted to work with different
objects.

6.3 Goal Inference Evaluation

We evaluate our approach in three ways. First, in this section we present (1) a systematic eval-
uation of the goal inference on the Freiburg dataset and (2) a user evaluation through an online
study with a simplified interface. Next, in Section 6.4 we present the full system evaluation.
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Figure 6.4: The extended Rapid PbD interface where users can directly specify their desired
object arrangement (left) and the inferred arrangement is visualised (purple) overlaying the
detected objects (green).

6.3.1 Teaching Strategies

Our system provides the user with different possibilities for programming shelf arrangement
tasks. As described in Section 6.2.3, at any point during the programming process the user has
three possible actions:

• Demonstrate object placement kinesthetically,

• Specify grid parameters on the interface,

• Select an arrangement from most likely arrangements proposed on the interface,

The user can have different strategies for using a combination of the different actions to
minimise costs. Often times, learning algorithms are evaluated with sample efficiency, i.e., the
number of examples needed to learn a concept. Similarly, users of our system can try to min-
imise the number of programming actions they need to take in order to correctly teach a shelf
arrangement. Alternatively, each action can be associated with a different cost, such as clock
time and the user can try to minimise it. Given the three programming actions above, we de-
vised the following programming strategies:

1. Naive demonstration (ND) involves demonstrating the full shelf arrangement filling up
rows, columns, and stacks in progression.

2. Optimal demonstration (OD) involves giving the minimum number of demonstrations to
make the inference correct; i.e., filling up one row, one column and one stack.
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3. Demonstrate and specify (D&S) involves demonstrating distances dm and dn and speci-
fying remaining variables n,m, s.

4. Naive specification (NS) involves specifying all values in order of n,m, s, dn, dm.

5. Prior-aware specification (PaS) involves only specifying values that are different from
the most likely values according to the prior.

These programming strategies are akin to optimal teaching algorithms that can be devised
for a given concept and known learner (Cakmak and Lopes [2012], Khan et al. [2011]). The
Select action can be used in combination with any of these strategies, therefore resulting in 10
teaching strategies. We assume that the interface displays the top four most likely configura-
tions. Hence, if the most desired arrangement is in the top four, the user can directly select this
configuration and complete the programming process. Note that in order to learn the action as
well as the task goal, the robot needs to obtain at least one demonstration from the user, which
is not the case for all strategies. However, for the purposes of the analysis of goal inference,
we ignore that fact. In practice, those strategies that do not involve any demonstrations would
require at least one demonstration in addition to the other programming steps.

6.3.2 Evaluation on the Freiburg Dataset

We measured the performance of each teaching strategy in terms of the number of steps (i.e., ac-
tions) required to infer the desired arrangement across the Freiburg dataset. Figure 6.5 shows
the learning curves for the ten teaching strategies for four example shelf configurations, where
the ground truth is represented as described in Section 6.2.2. We observe that for simpler con-
figurations (m,n, s ≤ 2), strategies that involve demonstrations are comparable or better than
specification strategies, because (1) dn, dm are automatically inferred from the object place-
ments and (2) our priors are based on the dataset where simpler configurations are ranked
higher (Sec. 6.2.3).

For higher m,n, s values, the naı̈ve demonstrations become infeasible, optimal demonstra-
tions are bounded by (n+m+s−2) steps, while specification strategies are always bounded by
a maximum of 5 steps. The version of each strategy that involves a final selection step from the
top four arrangements is more efficient or the same (in terms of number of actions) as the origi-
nal strategy, since it takes fewer demonstrations or specifications to get the desired arrangement
in top four versus top one. The most efficient strategy is the prior-aware specify+select strat-
egy requiring 1.85 steps on average (Fig. 6.6). Overall, the average number of steps required to
teach shelf configurations for all teaching strategies is low (between 2-3 actions) despite some
outlier cases (e.g., naive demonstrations requiring over 50 demonstrations (Fig. 6.5d)). This
is a positive outcome of using priors that are based on the dataset, which in turn allows faster
inference on the majority of the data.
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Figure 6.5: Learning curve of 10 teaching strategies for 4 different shelf arrangements from
the Freiburg dataset, with number of actions (x-axis) and ranking of the ground truth shelf
arrangement (y-axis).

Figure 6.6: Average number of steps required to infer the correct arrangement per teaching
strategy across the dataset (error bars show standard deviation).
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6.3.3 User Study Evaluation

Next we conducted a user study on Amazon Mechanical Turk (AMT)1, an online crowd-
sourcing platform used to solicit and compensate participants for user studies (Kittur et al.
[2008]). The aim was to evaluate the goal inference method and investigate teaching strategies
preferred by human users. For this, we created a graphical interface (Fig. 6.7) for a simplified
2D arrangement task domain, where users had to instruct the robot how to arrange grocery
store items by row and column. We were interested in measuring how quickly the desired goal
configuration could be inferred from user inputs, what programming actions were preferred,
and how they performed in comparison to the teaching strategies defined in Section 6.3.1. The
experimental material such as source code for the interface can be found in Appendix D.

6.3.3.1 Protocol

First users were shown a brief instruction video on how to perform the different programming
actions on the interface. Then the user moved onto programming desired arrangements, which
were communicated to them through a grocery store picture. The user interface, shown in
Figure 6.7 had three parts for performing the three programming actions. Demonstrations were
performed by dragging and dropping items onto a shelf area, which automatically updated
the specification fields with the inferred values of task parameters. Specifications were done
through drop down menus. The visualisation of the most likely top four arrangements was
updated after every user action. The user could select one of these by clicking on it. Participants
were told to confirm the inferred arrangement once it matched the desired arrangement. Each
user completed one practice task and 8 arrangement tasks in a randomised order. After the
final task, participants were asked to fill out a questionnaire to provide further insight into their
preferred actions and strategies.

6.3.3.2 Metrics

We recorded the user’s interactions with the interface, when they performed a demonstration,
when they changed the value of a specification field, when they selected one of the proposed
arrangements, and when they confirmed the inferred arrangement. We used these recordings to
measure the user’s preferred action and strategy, the number of steps and time spent per task,
and if the inferred arrangement was correct. In the survey at the end, we asked users about their
most and least preferred teacher actions, to explain their preference and strategies, and to rate
the usefulness of the proposed likely arrangements on a 4-point Likert scale.

1www.requester.mturk.com
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Figure 6.7: Simplified user-interface created to evaluate our goal inference model in an online
user study. The top part shows the desired configuration with a picture and the visualisation of
the current shelf arrangement inference. The bottom part has three parts corresponding to three
types of programming actions the user can take: demonstration (drag-and-drop items onto
shelf), specification (select parameter values from drop-down menus), and selection (choose
one of the top four most likely arrangements by clicking on it).
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6.3.3.3 Results

The study included 32 participants (21 male, 11 female) with an average age of 32.5 years
(SD=9.6). Users took an average of 26.5 seconds (SD=7.8) to complete a task.

User performance. Participants correctly completed an average of 5.6 tasks (SD=1.8), 1.8
tasks (SD=1.6) with correct number of rows and columns but wrong distances, and 0.7 (SD=0.9)
incorrectly. The wrong distances were likely caused by the angle of the example pictures, as
some users did not consider objects as touching, e.g., when they were cone-shaped. Other mis-
takes were likely due to mis-counting rows or columns. Figure 6.8 shows the average number
of steps taken by participants to complete a task in comparison to the teaching strategies de-
fined in Section 6.3.1. Overall users were slightly more efficient than the optimal demonstration
(OD) strategy, but worse than most other strategies.

User strategies. Figure 6.9 shows the strategies employed by participants across the different
shelf configurations they programmed. We see that using naive specifications (NS) was most
common, followed by two strategies that combined specifications with the other actions. Most
users (71.9%) stated their most preferred action to be specify and the least preferred to be
demonstrate, with 16 (50%) out of 32 users explaining that they found specification to be
“easier”. The majority (84.4%) of the users found the top 4 proposed arrangements to be useful,
but the Select action was not used as much as specify. Most users (28.1%) who described their
teaching strategy stated specify & select; e.g., “type in the rows and columns and then pick the
picture that was best”. Few users (9.4%) stated their strategy to be a combination of the three
actions as shown in the tutorial video. One user mentioned a prior-aware strategy: “I liked to
specify exactly what I wanted, but I also could have adjusted the proposed configurations a
little bit”.

Figure 6.8: Average number of steps required for 8 arrangement tasks chosen for the online
user study, comparing 10 teaching strategies with human performance (AMT).
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Figure 6.9: Distribution of user strategies employed in the AMT study

6.4 System Evaluation

To demonstrate our full system’s ability to learn and execute shelf arrangement tasks, we de-
fined a list of benchmark tasks described in Table 6.3. The tasks varied in product type and
grid configuration parameters, some of which required different manipulation actions (e.g., to
place objects in touching configurations while avoiding collisions of the gripper with other ob-
jects). We also included more complex arrangements such as off-grid cylinders and interleaved
soft packaging (Fig. 6.3b,c) which were excluded from our goal inference analysis due to low
frequency in the dataset.

Table 6.3: Benchmark tasks used for evaluating the full system implementation on the Fetch
robot.

# Grid (n,m,s) Used manipulation actions Product
1 (4,1,1) not-touching Pick and place Tin cans
2 (2,2,2) not-touching Pick and place Tin cans
3 (1,4,1) touching Pick, place, push left Tin cans
4 (1,3,1) close distance Pick, place, push left Cereal boxes
5 (1,3,1) close distance Pick, place, push left Toothpaste
6 (3,3,1) off-grid Pick, place, push left&front Tin cans
7 (3,3,1) off-grid Pick, place, push left&front Soda cans
8 (2,3,1) interleaving Pick and place from top Candy bags
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6.4.1 Protocol

All tasks were programmed as efficiently as possible using the teaching strategies from Section
6.3.1 and reusing previously taught actions. For each task, the experimenter decided what type
of manipulation action was required depending on the object type and the grid configuration.
The experimenter could also decide if a new action needed to be demonstrated or if a previ-
ously existing one could be reused (as described in Sec. 6.2.6). The actions were chosen to
be as simple as possible for the given task, omitting any unnecessary gestures or movements
(e.g., if a simple place action was sufficient, no additional push action should be taught). When
programming an action, the experimenter could let the robot execute the partial arrangement
task for a subset of objects as part of the programming process to mitigate errors in the final
task execution.

6.4.2 Results

We programmed four different manipulation actions to complete the eight benchmark tasks.
Manipulation actions included pick, place (from front), place from top, push left, and push
left&front. We were able to reuse these actions for similar tasks by modifying the task config-
uration and program steps. Each task was executed successfully from start to end at least two
times. Figure 6.10 shows snapshots from the action executions of the benchmark tasks. The
evaluation demonstrates our system’s capability to learn manipulation actions for the main
product types, as well as soft packaging (e.g., candy), which cover 98.7% of the Freiburg
dataset2.

6.5 Discussions

In the AMT study, users performed demonstrations using drag-and-drop operations which is
simpler than stacking objects on a shelf with a real robot. As users preferred specification
strategies over drag-and-drop demonstrations, it is likely that demonstrating object stacking
would be less preferred as well. Some limitations of our approach are as follows.

1. Our system only considers one demonstrated manipulation action, even if multiple demon-
strations are performed. An extension could consider the poses of multiple action demon-
strations and infer an action adapted to a specific scenario (e.g., only use push action if
the gripper would collide with other landmarks).

2. The system’s perception system is limited as it does not recognise separate objects that
are too close together. This limits our ability to detect demonstrated configurations for
objects that are meant to be touching.

2Sample executions of shelf arrangement tasks can be seen at https://youtu.be/liaSirH0CeM
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Figure 6.10: Snapshots from the executions of the eight system evaluation benchmark tasks.
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3. We did not consider the orientation of the object (e.g., product label facing front) as
commonly applied in shelf organisation tasks. Our perception system only recognises
the object’s bounding box, so an extension could include better object recognition of
object orientations.

6.6 Conclusions

In this chapter we presented a goal-oriented end-user robot programming system to efficiently
teach a robot shelf arrangement tasks and actions. We proposed augmenting Programming
by Demonstration with domain-aware goal inference and direct user inputs to accelerate the
teaching process. Our task goal representation is based on an analysis of a large database of
grocery store shelf images. We evaluated our goal inference with different teaching strategies
and with real human teachers in an online user study on AMT. We then demonstrated our
system’s ability to efficiently learn and perform various shelf arrangement tasks and actions on
a Fetch mobile manipulator.

In the context of this thesis, we demonstrated the generalisability of our chosen goal-
oriented robot programming approach using keyframe-based PbD and validated its usability
for end-user applications. We demonstrated the system’s expressivity by allowing users to eas-
ily teach robots a variety of customised actions with the help of a graphical user interface. The
implemented system is the first step towards creating the robot programming framework pro-
posed in Chapter 4. It includes both teaching the robot low-level actions by demonstration and
a graphical interface to facilitate the end-user programming process. The main focus for the
remaining thesis is a complete implementation of the proposed framework and augmenting the
graphical interface to allow intuitive navigation of the different functionalities. Building on top
of this system, the remaining steps to implement are learning high-level action representations
and integrating the task planner resulting in an end-to-end goal-oriented robot programming
system.
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In the previous chapters we completed preliminary steps to validate that end-users can eas-
ily learn the main concepts of the automated planning language and that the proposed robot
programming process is intuitive (Chapter 5). We then implemented a goal-oriented robot
programming system that uses keyframe-based PbD and validated its usability to teach a va-
riety of low-level actions (Chapter 6). Our main focus now lies in the full implementation of
the iRoPro framework proposed in Chapter 4. In this chapter we present an end-to-end system
implementation for teaching robots primitive actions to be reused with a task planner (Fig. 7.1).
The robot simultaneously learns low- and high-level action representations from demonstration
and infers a generalised action that can be reused directly with a task planner to solve problems
that go beyond the initial demonstration.

2.2 Task Planning

1. PROGRAMMING 3. EXECUTION2. GENERALIZATION

1.1 Low-level action 
(kinest. demonstration)

1.2 High-level action 
(condition inference)

GUI
interaction

2.1 Problem definition

Figure 7.1: Overview of iRoPro that allows users to teach low- and high-level actions by
demonstration. The user interacts with the GUI to run the demonstration, modify inferred
action conditions, create new planning problems for the robot to solve and execute.

In the following we first present some related work, followed by our approach on learning
low- and high-level action representations from demonstration to reuse them with a task planner
(Sec. 7.2). We then provide details of the system implemented on a Baxter robot (Sec. 7.3).
The system includes a graphical interface that allows users to teach new actions by kinesthetic
demonstration, modify infer action conditions, define new planning problems, have the robot
autonomously solve them and execute the plan in real-time. In Section 7.4 we demonstrate our
system’s capability to generalise primitive actions on six benchmark tasks that are programmed
and executed on the Baxter robot. In Section 7.5 we empirically investigate the usability of our
system and validate its intuitiveness through a study with 21 users of different educational
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backgrounds and programming expertise. To better understand user teaching strategies, we
split participants into two control groups, with and without automatic condition inference, and
investigate how users in both groups learn and use the system. Finally, we discuss limitations
and possible extensions to further increase the system’s generalisability (Sec. 7.6).

7.1 Related Work

End-user robot programming has been addressed previously for industrial robots to be pro-
grammed by non-robotics domain experts, where users specify and modify existing plans for
robots to adapt to new scenarios (Paxton et al. [2017], Perzylo et al. [2016], Stenmark et al.
[2017]). For example, Paxton et al. [2017] use Behaviour Trees to represent task plans that are
explicitly defined by the user and can be modified to adapt to new tasks. In our work we argue
for the use of task planners to automatically generate plans for new scenarios, rather than have
the user manually modify them.

Previous work has addressed knowledge engineering tools for constructing planning do-
mains but usually require PDDL experts (PDDL Studio by Plch et al. [2012]), or common
knowledge in software engineering (GIPO by Simpson et al. [2007], itSIMPLE by Vaquero
et al. [2013]). There has been previous work on integrating task planning with robotic systems
(Cashmore and Fox [2015], Kuhner et al. [2018]), learning high-level actions through natural
language instructions (She et al. [2014]) or learning preconditions and effects of actions to be
used in planning (Jetchev et al. [2013], Konidaris et al. [2018], Ugur and Piater [2015]). How-
ever, in all of these cases, the robot is provided with a fixed set of low-level motor skills. In
our approach, we do not provide the robot with any predefined actions but enable users to teach
both low- and high-level actions from scratch.

Programming by Demonstration (Sec. 2.3.4) has been commonly applied to allow end-users
to teach robots new actions by demonstration. Alexandrova et al. [2014] created an end-user
programming framework with an interactive action visualisation allowing the user to teach new
actions from single demonstrations but do not reuse them with a task planner. Most closely
related to our approach is the work by Abdo et al. [2013] where manipulation actions are
learned from kinesthetic demonstrations and reused with task planners. However, the approach
requires 5-10 demonstrations to learn action conditions which becomes tedious and impractical
if several actions need to be taught. In this thesis we argue for having the user act as the expert
by letting them correct inferred action conditions, thus allowing a new action to be learned from
a single demonstration. We further provide a graphical interface that allows users to create new
actions and address previously unseen problems that can be solved with task planners.
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7.2 Approach

iRoPro aims at providing end-users with an intuitive way of teaching robots new actions that
can be reused with a task planner to solve more complex tasks. Given a single demonstration,
the robot should learn both how (Sec. 7.2.1) and when (Sec. 7.2.2) an action should be applied.
To accelerate the programming process, action conditions are directly inferred from a single
demonstration (Sec. 7.2.3). The action generalisation is performed on both low- and high-level
representations (Sec. 7.2.4), allowing it to be reused with a task planner (Chapter 3). We will
describe our approach in the following sections.

7.2.1 Low-level Action Representation

As we build on top of the system presented in Chapter 6, low-level actions are represented sim-
ilarly using keyframe-based PbD as a sparse sequence of end-effector poses and gripper states
(as described in Sec. 6.2.5). The user can teach multiple manipulation actions and discriminate
between them by associating different conditions that specify when the robot should use them
(e.g., actions using claw or suction grippers). These conditions are discussed next in Section
7.2.2.

New actions are initialised with the robot’s end-effector poses in a neutral position (as seen
in Fig. 7.2) to allow unobstructed object detection. Action executions are performed by first
detecting the landmarks in the environment, calculating the end-effector poses relative to the
observed landmarks, and interpolating between the poses.

ELEMENT

OBJECT

BASE

POSITION

CUBE

ROOF

A M C
B

Figure 7.2: Experimental setup for the user study (N=21), where users programmed the Baxter
robot via a GUI to manipulate given object types (with predefined type hierarchy).
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7.2.2 High-level Action Representation

We represent high-level actions as proposed in task planning (Chapter 3), where an action is
represented as a tuple a = (param(a), pre(a), eff(a)), whose elements are:

• param(a): set of parameters that a applies to

• pre(a): set of predicates that must be true to apply a

• eff(a)−: set of predicates that are false after applying a

• eff(a)+: set of predicates that are true after applying a

where eff(a) = eff(a)− ∪ eff(a)+. Action parameters are world instances that the robot in-
teracts with and are associated with a type. We implemented a type hierarchy, consisting of
a general type ELEMENT, divided into POSITION and OBJECT, which further divides into
BASE, CUBE, and ROOF (Fig. 7.2).

Predicates are used to describe object states and relations between them and are defined
in first-order logic. In our graphical interface, predicates are translated from first-order logic
(‘on(obj, A)’) to English statements (‘obj is on A’). We implemented predicates that are com-
monly used in task planning domains as well as two additional ones to further describe object
properties:

• ELEMENT is clear: an element has nothing on top of it

• OBJECT is on ELEMENT: an object is on an element

• OBJECT is stackable on ELEMENT: an object can be placed on an element

• OBJECT is flat: an object has a flat top

• OBJECT is thin: an object is thin

Note that the set of types and predicates could easily be extended for more complex tasks and
that it is possible to detect them automatically. However, this is beyond the scope of our work,
so in our implementation CUBE and BASE objects are by default flat, and CUBE and ROOF
objects are thin enough for the robot to grasp.

7.2.3 Action Inference from Demonstration

Instead of manually defining action parameters, preconditions, and effects, we accelerate the
programming process by inferring them from the observed sensor data during the teaching
phase. Object types are inferred based on their detected bounding boxes. Object positions
are determined by the proximity of the object to given positions. For example, if the nearest
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position p to the object o is within a certain threshold d, then the predicates ‘o is on p’ and ‘p
is not clear’ are added to the detected world state.

To infer the action conditions, the robot perceives the world state before and after the kines-
thetic action demonstration as seen in similar work for learning object manipulation tasks (Ah-
madzadeh et al. [2015], She et al. [2014]). Let Ob = {φ1, φ2, ...} be the set of predicates
observed before the action demonstration and Oa = {ψ1, ψ2, ...} after. The action inference is
the heuristic deduction of predicates that have changed between Ob and Oa, i.e.,

pre(a) = (Ob −Ob ∩Oa) = {φi|φi ∈ Ob ∧ φi /∈ Oa},

eff(a) = (Oa −Ob ∩Oa) = {ψi|ψi /∈ Ob ∧ ψi ∈ Oa},

where eff(a) includes positive and negative effects (Fig. 7.3).

A predicate φ has variables var(φ) = {v1, v2, . . . }, where each vi has a type. Therefore,
action parameters are the set of variables that appear in either preconditions or effects, i.e.,

param(a) = {vi| ∃φ ∈ pre(a) s.t. vi ∈ var(φ)

∨ ∃ψ ∈ eff(a) s.t. vi ∈ var(ψ)}

Note that conditions could be learned from multiple demonstrations (Abdo et al. [2013],
Konidaris et al. [2018]). Our work argues for accelerating the teaching phase by learning
from a single demonstration and letting the user act as the expert to correct wrongly inferred
conditions.
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Figure 7.3: Example of a high-level action for moving an object from A to B. Conditions are
inferred from the observed predicates before (Ob) and after (Oa) the demonstration.

98



7.2.4 Action Generalisation

Due to simultaneously learning low- and high-level action representations, an action is gener-
alised in two ways:

1. Low-level: the demonstrated action consists of poses relative to detected landmarks
during the action demonstration. To generalise this action to different landmarks, objects are
redetected and relative poses are re-calculated.

2. High-level: the action parameter types and preconditions specify what landmarks an ac-
tion can be applied to. Changing these properties via the GUI allows an action to be generalised
and the taught manipulation action to be transferred to other tasks.

7.3 System Implementation

We implemented our system on a Baxter robot with two arms (one claw and one suction grip-
per), both with 7-DoF and a load capacity of 2.2kg each (Sec. 5.1). For the object perception
we mounted a Kinect Xbox 360 depth camera on the robot. We developed a user interface as a
web application, based on HTML and JavaScript, that can be accessed via a browser on a PC,
tablet or smartphone. The user interface provides an abstraction from the underlying planning
language and displays predicates in natural language in English.

The source code for iRoPro is developed in ROS (Quigley et al.) and available online
(Appendix E). The low-level action is learned using the open-source system Rapid PbD (Huang
[2018a]). The integration of the task planner is implemented using the ROS package PDDL
planner (Ueda [2018]). In our implementation, landmarks are either predefined table positions
or objects that are detected from Kinect Point Cloud clusters using an open-source tabletop
segmentation library (Huang [2018b]). An object is represented by its detected location and
bounding box, i.e.,

obj = (x, y, z, width, length, height)

where the bounding box is used to infer the object type. We implemented a partial PDDL
domain in iRoPro that includes a set of predefined object types and predicates (Sec. 7.2.2). The
user completes the domain by creating new actions via the interface and uses the integrated task
planner to solve new problems.

7.3.1 Interactive Robot Programming

The user interacts with the GUI (Fig. 7.4) to visualise the robot and the detected objects, create
new actions, run the kinesthetic teaching by demonstration, correct inferred action parameters
or conditions, create and solve new problems with the task planner. The interactive robot
programming cycle consists of creating and modifying actions and problems.
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Figure 7.4: The iRoPro interface showing the action condition menu and an interactive visual-
isation of the Baxter robot and detected objects.

Actions

New actions are taught by kinesthetically moving the robot’s arms (low-level action) and as-
signing action conditions (high-level action). The low-level action is learned by keyframe-
based demonstration. To verify the taught action, the user can have the robot re-execute it
immediately. The high-level action is inferred by capturing the world state before and after the
action demonstration (as described in Sec. 7.2.3). Action generalisation can be done by modi-
fying action properties. To teach more actions, the user can either create a new one or copy a
previously taught action and modify it.

Problems

New planning problems can be created if at least one action exists. To create a problem, the
robot first detects the existing landmarks and infers their types and initial states. The user can
modify them via the interface if the inference was not correct. Then, the user enters predicates
that describe the goal to achieve. The complete planning domain and problem are translated
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into PDDL and sent to the Fast-Forward planner (Hoffmann and Nebel [2001]). If a solution
is found that reaches the goal, it is displayed on the GUI for the user to verify and execute on
the robot. If no solution is found or if the generated plan is wrong, the user can open a debug
menu which summarises the entire planning domain with hints described in natural language
to investigate the problem (e.g., ‘make sure the action effects can achieve the goal states’). In
our user study (Sec. 7.5) we found that this helped users understand how the system worked
and why the generated plan was wrong. Once the user modified actions, initial or goal states,
they can relaunch the planner to see if a correct plan is generated. To solve new tasks, the user
can create a new planning problem or modify existing ones by redetecting the objects.

7.3.2 Plan Execution

The generated plan is a sequence of actions with parameters that correspond to detected objects.
For each action, the sequence of end-effector poses are calculated relative to the landmarks that
the action is being applied to (Sec. 7.2.1). To accelerate the execution, we only detect the
landmarks once at the start and save their new positions in a mental model, i.e., a temporary
memory. After each action execution, the user can confirm that it executed correctly and the
mental model is updated with the latest positions of the changed landmarks. The mental model
is also used as a workaround for our limited perception system for problems with stacked
objects in their initial states (Sec. 7.6).

7.4 System Evaluation

We evaluate our system’s generalisability on six benchmark tasks (Table 7.1) and show how
taught actions can be reused for complex tasks. The tasks involved manipulating different
object types on four marked positions with both claw and suction grippers. We take the
Blocksworld domain (Slaney and Thiébaux [2001]) for building and rebuilding stacked ob-
jects (Tasks 1-4) and an elaborate version of the Tower of Hanoi problem with different object
types to build a ‘house’ (Tasks 5&6). Instead of disks, we decided to use different object types
(ROOF, CUBE, BASE), where BASE corresponds to the largest disk, followed by CUBE and
BASE. The rules for stacking different objects still apply (e.g., BASE cannot be stacked on top
of ROOF or CUBE). However, to demonstrate the generalisation of actions to diverse tasks, ad-
ditional constraints are added as objects cannot be all manipulated in the same way, i.e., using
different grippers. The order of the tasks was given with increasing complexity, requiring the
user to modify existing actions or teach new actions from scratch.
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Table 7.1: Benchmark tasks for the system evaluation. Three different pick-and-place actions
using (claw and suction grippers) were programmed.

# Task Goal Pick-and-place action
1 Build tower with 3 CUBES claw from top
2 Build tower with 4 CUBES claw from top
3 Rebuild Task 2 on a different position claw from top
4 Build tower and move (w/o disassembly) claw from top & claw from side
5 Build house with BASE, CUBE, ROOF claw from top & suction from top
6 Rebuild Task 5 on a different position claw from top & suction from top

7.4.1 Protocol

The tasks were programmed with the most efficient teaching strategy of minimising the number
of actions created and generalising them by changing the action properties (as described in
Section 7.2.4). Depending on the given task and involved objects, the experimenter decided
what manipulation action needed to be taught. Only one planning problem was created and
reused for all tasks by redetecting the objects in the initial state and changing the goal states.
When the generated plan was incorrect, the debug menu on the GUI was used to determine
the changes to be made to generalise the actions. A task was considered completed when the
generated plan was correct and the robot successfully executed it in real-time. As the mental
model saved the latest object positions after an action execution, Tasks 3 and 6 were continued
from the preceding tasks and did not require redetecting the initial states.

7.4.2 Results

We programmed three manipulation actions for the six benchmark tasks, which involved demon-
strating pick-and-place actions with claw and suction grippers from the top and from the side.
Actions were generalised by changing parameter types (e.g., from CUBE or POSITION to EL-
EMENT) or adding preconditions or effects which were not inferred automatically. For pick-
and-place actions from the top, ‘obj is clear’ was added as a precondition (Task 1-3), while it
was not included when picking an object from the side to allow moving a pile of objects (Task
4). For actions involving the claw gripper, the precondition ‘obj is thin’ was added so that the
robot would only use it on ROOF and CUBE objects, similarly ‘is flat’ for the suction gripper
(Task 5&6). The ‘is stackable’ condition was used for the Tower of Hanoi as an equivalent to
the rule ‘larger objects cannot be placed on top of smaller ones’. The robot was able to generate
plans for all tasks and executed them in real time at least twice (Fig. 7.5).1 Note that the taught

1A subset of the task executions can be seen on https://youtu.be/NgaTPG8dZwg
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actions can be reused for a diverse range of problems beyond the six benchmark tasks. This
evaluation shows the generalisability of our system, allowing us to teach primitive actions by
demonstration and reuse them with a task planner to solve more complex problems.

Figure 7.5: Snapshots from the executions of the system evaluation (Tasks 3&4) showing a
claw grip from the top and the side.

7.5 User Evaluation

The second and main part of the evaluation was conducted using the THEDRE (Traceable
Human Experiment Design Research) method (Mandran [2018], Mandran and Dupuy-Chessa
[2017]) which aims to evaluate computer systems in a research context by integrating a user-
centered approach. It is based on continuous improvement and takes a pragmatic constructivist
approach (Avenier and Thomas [2015]), allowing us to further develop the system as well as
the scientific knowledge from the experimental ground. To that end, it offered us the possibility
to mix qualitative and quantitative approaches in order to gather as much data as possible to
evaluate and improve our system.

7.5.1 Experimental Setup & Participants

User experiments aimed to evaluate our approach implemented on a Baxter robot with real
end-users. However, we were also interested in the user’s programming strategy of using the
system. Thus, we split participants into two control groups, with and without condition infer-
ence (Sec. 7.2.3) and observe user strategies for completing the tasks. We set the following
hypotheses for our experiments:

H1 Action creation: users can teach new low- and high-level actions by demonstration

H2 Problem solving: users can solve new problems by defining the goal states and executing
the plan on Baxter

H3 Autonomous system navigation: users understand the system and can navigate and trou-
bleshoot on their own

H4 Condition inference evaluation - Group 1 vs 2: users without automatic condition infer-
ence will understand the system better
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H5 Pre-test questionnaire: users that perform better in the pre-test questionnaire can learn to
use the system faster

The experiments were conducted with a Baxter robot with two grippers (suction and claw)
and mounted with a Kinect Xbox 360 camera. A table with 4 marked positions was placed in
front of the robot with different objects to be manipulated by the robot during the experiment
(Fig. 7.2). Participants had access to a computer with a mouse and a keyboard to program the
robot via the graphical interface.

The study was conducted with 21 participants (10 male, 11 female) in the range of 18-39
years (M=24.67, SD=6.1). We recruited participants with different educational background and
programming levels: 6 ‘CS’ (either completed a degree in computer science or were currently
pursuing one), 7 ‘non-CS’ (have previously taken a programming course before), and 8 ‘no ex-
perience’ (only had experience with office productivity software). Furthermore, 3 participants
(in ‘CS’) have programmed a robot before, out of which 1 had intermediate experience with
symbolic planning languages while the remaining participants had no experience in either. One
participant in the category ‘non-CS’ failed to complete the majority of tasks and was excluded
from the result evaluation. The two control groups included equal number of participants in all
three categories.

7.5.2 Experimental Design & Measurements

Users were first given a brief introduction to task planning concepts, the Baxter robot and the
experimental set up. They were then asked to complete a pre-study questionnaire to capture
the participant’s profile and their understanding of the presented concepts. Users were given
8 tasks to complete, where the first two were practice tasks to introduce them to the system
(Table 7.2). The tasks were designed to familiarise them with different aspects of the system:
create new actions (Task 1,6), modify parameter types (Tasks 4,7), modify action conditions
(Tasks 3,5,8). For each task they needed to create a new problem, define the goal states, and
launch the planner to generate an action sequence. When the generated plan was correct, they
were executed on the robot. Otherwise, the user had to modify the existing input until the plan
was correctly generated. Tasks 6-8 were similar to the previous tasks (1-5) but use both robot
grippers. The experimental protocol, pre- and post-study questionnaires and additional material
used can be found in Appendix E.

Metrics. We captured the following data during the experiments:

1. Qualitative data: video recording of the experiment, observations during the experi-
mental protocol.

2. Quantitative data: task duration, GUI activity log, pre- and post-study questionnaires.
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Table 7.2: Benchmark tasks for the user study where the first two tasks were used to introduce
participants to the system.

# Task description Main task
(1) move a BASE object create new action (+demo)
(2) move a BASE object to any position create new problem
3 swap two BASE objects add condition (‘is clear’)
4 stack a CUBE on a BASE modify types
5 do not stack a CUBE on a ROOF add condition (‘is stackable’)
6 move a ROOF object create new action (+demo)
7 stack a ROOF on a CUBE modify types
8 build a house (BASE, CUBE, ROOF) navigate autonomously

The pre-study questionnaire included 7 questions related to their understanding of the con-
cepts presented at the start of the experiment, e.g., syntax (‘If move(CUBE) describes a move
action, tick all statements that are true.’), logical reasoning (‘Which two conditions can never
be true at the same time?’), and other concepts (‘Tick all predicates that are required as pre-
conditions for the given action’). The questions were multiple choice and each question was
normalised to count at most 1 point if answered correctly. The highest achievable score was 7.

In the post-study survey we used the System Usability Scale (SUS) (Brooke [1996]) where
participants had to give a rating on a 5-Point Likert scale ranging from ‘Strongly agree’ to
‘Strongly disagree’. It enabled us to measure the perceived usability of the system with a small
sample of users (Tullis and Stetson [2004]). As a benchmark, we included questions from our
previous user study in Section 5.3, where users were simulated a robot programming experience
using the Wizard-of-Oz technique. Finally, participants were asked which aspects they found
most useful, most difficult, and which they liked the best and the least.

7.5.3 Results

20 participants completed all tasks, while one ‘non-CS’ user failed to complete the majority of
tasks and did not seem to understand the presented concepts. This participant was excluded in
the presented results.

User performance (H1-H3)

Users took an average of 41.2 minutes (STD=9.08) to complete the main tasks (3-8). ‘non-CS’
users completed the tasks the fastest (AVG=36.6, STD=7.46), followed by users with no pro-
gramming experience (AVG=43.6, STD=5.37). ‘CS’ users took on average longer (AVG=43.8,
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STD=14.13) as they were often interested in testing the system’s functionalities with different
inputs.

Users initially had problems with different concepts that were presented at the start of the
study, in particular they confused action parameters, preconditions and goal states. For exam-
ple, in Task 3, 6 (or 30%) users tried to add intermediate action steps to achieve the goal state,
instead of simply letting the planner generate the solution. In Task 4, 14 (or 70%) wanted to
create a new action instead of generalising the existing one by changing the parameter types.
However, by Task 6, all users were able to use the system autonomously to create new actions
and problems and navigated the system with little to no guidance. By the end of the experiment,
users programmed two manipulation actions (one for each gripper). The generated PDDL code
for the planning domain can be found in Appendix F.

Condition inference (H4)

To evaluate user programming strategies, the condition inference (CI) (Sec. 7.2.3) in our study
only generated a minimal set of predicates, which did not cover predicates needed for later
tasks. We noticed a discrepancy in the programming strategies between the two control groups
(Group 1 with CI vs Group 2 without CI). As participants in Group 2 had to add action condi-
tions manually, they considered all predicates they deemed necessary for the action and there-
fore added additional ones that were required for later tasks. On the other hand, we observed
that Group 1 had the tendency to leave the inferred conditions unmodified without adding con-
ditions that were missing. Thus, Group 2 took on average longer to complete tasks where a new
action had to be created (Tasks 1&6), but was faster than Group 1 for subsequent tasks, where
conditions had to be modified (Tasks 3,5,7). Overall both groups had similar completion times
for all tasks (Group 1: AVG=41, STD=7.89 and Group 2: AVG=41.4, STD=10.56).

Task duration vs Pre-test questionnaire (H5)

As expected, participants who demonstrated a better understanding of the introduced concepts
in the pre-test questionnaire completed the main tasks (Tasks 3-8) on average faster (Fig. 7.6).
Users scored between 4.3-6.9 out of 7 points (AVG=5.8, SD=0.91), with task completion times
between 22-60 minutes (AVG=41.2, SD=9.07). ‘non-CS’ users scored above average points
(AVG=6.23, STD=0.55) and completed the fastest (AVG=36.6, STD=7.46). As an outlier we
observed that the fastest participant scored only 4.7 points, but easily learned how to use the
system and completed the tasks in 22 minutes. Even though Group 1 scored more points in the
pre-test (AVG=7.5, STD=1.35) than Group 2 (AVG=6.4, STD=2.01), both completion times
were on average similar (41min).
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Table 1

ID
Programming Level Pre-test 

Score
Duration (in s) Main s in min

7 2 - Novice 5,833333333 43 43

10 2 - Novice 5,333333333 52 52

14 2 - Novice 4,566666667 42 42

16 2 - Novice 6,433333333 40 40

18 2 - Novice 6,9 41 41

20 2 - Novice 4,3 38 38

23 2 - Novice 5,983333333 52 52

24 2 - Novice 6,666666667 41 41

11 3 - Intermediate 6,883333333 35 35

12 3 - Intermediate 5,7 47 47

13 3 - Intermediate 6,6 35 35

15 3 - Intermediate 5,733333333 33 33

19 3 - Intermediate 6,916666667 26 26

25 3 - Intermediate 5,983333333 34 34

26 3 - Intermediate 5,816666667 46 46

6 4/5 - Advanced/Expert 6,033333333 51 51

9 4/5 - Advanced/Expert 4,583333333 41 41

17 4/5 - Advanced/Expert 4,366666667 60 1:00

21 4/5 - Advanced/Expert 4,7 22 22

22 4/5 - Advanced/Expert 6,933333333 45 45

9,07628488801564
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ID Group

Programming Level Pre-test Score Group 1: 
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p 1: 
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11 A 3 - Intermediate 6,883333333 35

18 A 2 - Novice 6,9 41

19 A 3 - Intermediate 6,916666667 26

24 A 2 - Novice 6,666666667 41

25 A 3 - Intermediate 5,983333333 34

26 A 3 - Intermediate 5,816666667 46

12 B 3 - Intermediate 5,7 47
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Figure 7.6: Participants who did better in the pre-test questionnaire completed the main tasks
faster, with ‘non-CS’ users scoring the highest and being the fastest on average.

System usability and learnability

There are several ways to interpret the System Usability Scale (SUS) scores (Brooke [2013])
obtained from the post-study survey. Using Bangor et al. [2008] categories, 14 (70%) users
ranked iRoPro as ‘acceptable’, 6 (30%) rated it ‘marginally acceptable’, and no one ranked it
‘not acceptable’. Correlating this with the Net Promoter Score (Sauro [2012]), this corresponds
to 10 (50%) participants being ‘promoters’ (most likely to recommend the system), 5 (25%)
‘passive’, and 5 (25%) ‘detractors’ (likely to discourage). Overall, iRoPro was rated with a
good system usability which has been shown to be correlated with its learnability (Borsci et al.
[2009], Sauro [2011]).

User experience

We compared the post-study questionnaire responses with those obtained in the pre-experiment
user study (N=11) in Sec. 5.3, where the Wizard-of-Oz technique was used to simulate the robot
programming process (Fig. 7.7). The main difference was regarding difficulties encountered
during the experiment. While in Section 5.3, we had 11 (or 100%) state that they encountered
no difficulties, only 7 (or 35%) of users in the last study stated the same. However, all of our
users claimed to have a good understanding of the action representation and how the robot
learned new actions from the demonstration, while in the previous study, an average of 2 (18%)
disagreed. Both differences can be explained by the fact that in our latest study, users had to use
an end-to-end system to program the robot, while we previously simulated the system function-
alities using the Wizard-of-Oz technique. Even though our users encountered more difficulties,
they got a better understanding of the functionalities due to getting hands-on experience. This
also correlates with negative responses in this study to the question if ‘no programming expe-
rience was required’ where 13/20 (65%) agreed and 4 disagreed. While in the previous study,
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9 (or 81%) agreed and only 2 (or 18%) disagreed. Overall, our user study with the working
iRoPro implementation received positive responses similar to the pre-experiment user study.

Users stated the most useful feature as ‘generate solutions to defined goals automatically’
(9 or 45%), followed by ‘robot learns the action from my demonstration’ (4 or 20%) – two main
aspects of our approach. A common feedback was that ‘it takes time to understand how the sys-
tem works at the start’. 4 (20%) stated that the most difficult part was ‘finding out why Baxter
didn’t solve a problem correctly’, similarly 8 (40%) stated difficulties related to ‘understanding
predicates and defining conditions’. 11 (55%) disliked ‘assigning action conditions’ the most,
while the rest stated a variety of different aspects. The most liked actions were ‘executing the
generated plan’ (8 or 40%) and ‘demonstrating an action on Baxter’ (7 or 35%).

It was easy to manipulate Baxter’s arm
Baxter is well adapted for workers on the assembly line

Baxter's behaviour was intelligent
I believe that I have taught him a new 

I can explain how Baxter represented the atomic action
I can explain how Baxter learned an atomic action from my demonstration

I can explain how Baxter represented the preconditions of the atomic action
I did not encounter any difficulties during the experiment

No programming experience is required to teach Baxter a new action

0 2 4 6 8 10

Table 1

It was easy to 
manipulate the 
robot’s arms

The robot 
programming 
process is 
well-adapted 
for workers on 
the assembly 
line

The robot’s 
behaviour was 
intelligent

I believe that I 
have taught 
the robot a 
new 

I can explain 
how the robot 
represented 
the new action

I can explain 
how the robot 
learned a new 
action from my 
demonstration

I can explain 
how the robot 
represented 
the 
preconditions 
and effects of 
the new action

I did not 
encounter any 
difficulties 
during the 
experiment

No 
programming 
experience is 
required to 
teach the 
robot a new 

I understood 
why the 
generated plan 
was wrong

I understood 
why the robot 
failed to 
complete a 

Overall, I am 
satisfied with 
the ease of 
completing the 
s in the 
scenarios

Overall, I am 
satisfied with 
the amount of 
time it took to 
complete the s

If I was a 
factory worker 
on an 
assembly line, 
it would be 
easy for me to 
become skillful 
at using the 
system

Strongly 
agree

11 5 7 3 5 6 6 1 6 6 7 5 4 5

Agree 9 13 11 13 13 14 14 6 7 12 9 14 15 13

Neutral 0 2 1 4 1 0 0 7 3 1 3 1 0 2

Disagree 0 0 1 0 1 0 0 6 4 1 1 0 1 0

Strongly 
disagree

0 0 0 0 0 0 0 0 0 0 0 0 0 0

It was easy to manipulate the robot’s arms
The programming process is well-adapted for workers on the assembly line

The robot’s behaviour was intelligent
I believe that I have taught the robot a new 

I can explain how the robot represented the new action
I can explain how the robot learned a new action from my demonstration

I can explain how the robot represented the preconditions and effects
I did not encounter any difficulties during the experiment

No programming experience is required to teach the robot a new 
0 4 8 12 16 20

Strongly agree Agree Neutral Disagree Strongly disagree

Table 2

It was easy to 
manipulate 
Baxter’s arm

Baxter is well 
adapted for 
workers on the 
assembly line

Baxter's behaviour 
was intelligent

I believe that I 
have taught him a 
new 

I can explain how 
Baxter 
represented the 
atomic action

I can explain how 
Baxter learned an 
atomic action 
from my 
demonstration

I can explain how 
Baxter 
represented the 
preconditions of 
the atomic action

I did not 
encounter any 
difficulties during 
the experiment

No programming 
experience is 
required to teach 
Baxter a new 
action

Strongly agree 9 5 7 11 3 2 4 11 8

Somewhat agree 2 6 2 0 5 8 5 0 1

Somewhat 
disagree

0 0 2 0 2 0 1 0 2

Strongly disagree 0 0 0 0 1 1 1 0 0

a) iRoPro           b) Liang et al.

�1

    a)                                       b)

I believe that I have taught the robot a new task

No programming experience is required to teach the robot a new task

Figure 7.7: User responses from the post-study questionnaires comparing a) the iRoPro user
evaluation (N=20) with responses obtained in b) the pre-experiment user study (N=11).

7.5.4 Continuous Improvement of the System

The system underwent four phases of improvement, allowing us to refine the system function-
alities, graphical user interface, and user instruction methods. The four phases consisted of the
following:

1. Feedback from an expert in experimental evaluation of systems that involve human-
machine interaction (Dr. Nadine Mandran):
Based on the feedback we received on our initial prototype, we changed the flow for
introducing the system to a novice user as it included a lot of new information (e.g., Pro-
gramming by demonstration and Automated planning concepts) that they were not famil-
iar with. We also updated the questions in the pre-test questionnaire to include the same
keywords (i.e., predicate names) as used during the experiment to maintain consistency
and allow participants to familiarise themselves.

2. Pre-tests with 3 users:
We ran pre-tests with 3 users who have never seen the system before and further improved
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the experiment flow (e.g., create an action for one object at a time). We also made the
user interface more friendly to include Baxter icons (Fig. 7.8) and eyes that followed the
robot’s moving joint (Gaisne [2018]) on the robot’s screen so that it seemed more human-
like. We also noticed that troubleshooting incorrect actions seemed difficult for all users,
so we included an option to review actions and goals which provides a summary of the
created input and hints to guide the debugging steps.

3. First experimental tests with 5 users with condition inference:
After running the experiments with 5 users, we noticed that the majority did not modify
the inferred action conditions. This raised an interesting HRI question of whether users
who were given automatically generated conditions would ‘blindly trust’ them. Hence,
we decided to create two experiment groups: with and without condition inference, where
the first 5 participants belonged to the former. Participants in the latter group would need
to manually enter all conditions via the interface.

4. Final experimental tests with 16 users:
The remaining users were divided into the two control groups so that we had an equal
number of participants in both control groups, while also maintaining an even distribution
of programming levels. The results of the 21 participants in the experimental tests were
used as the final evaluation of the system as discussed in the previous sections.

Figure 7.8: Baxter icons used for the graphical interface (Freedman [2012]).
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7.6 Discussions

Both system and user evaluations demonstrated that iRoPro can be used to generalise primitive
actions to a range of complex manipulation tasks and that it is easy to learn for users with or
without programming experience. In our system evaluation we could have programmed other
actions, such as turning or pushing for packaging tasks in Chapter 6. As the purpose of our
evaluation was to show the generalisability of primitive actions with the use of a task planner,
we decided to stick to pick-and-place actions with two different grippers. In the following we
discuss limitations and interesting extensions of our work:

1. Our object perception is limited as it does not detect objects that are too close together
(e.g., stacked objects). An improved perception system would allow the detection of
initial states with stacked objects, automatically detecting goal states, or verifying action
executions.

2. Due to the different grippers, we did not program actions that use both arms (e.g., car-
rying a tray). A possible extension would be to include a better motion and task plan-
ning system in order to allow executing both arms simultaneously while avoiding self-
collision.

3. We only included a minimal set of predicates (Sec. 7.2.2) that we deemed intuitive and
useful for object manipulation tasks. It could be interesting to include and learn pred-
icates to capture more complex domains such as object orientation (Li and Berenson
[2016]).

7.7 Conclusion

In this chapter we presented the implementation of iRoPro, an interactive Robot Programming
system that allows simultaneous teaching of low- and high-level actions by demonstration.
The robot reuses the actions with a task planner to generate solutions to complex tasks that
go beyond the demonstrated action. The approach was implemented on a Baxter robot and
we showed its generalisability on six benchmark tasks by teaching a minimal set of primitive
actions that were reused for all tasks. We further demonstrated its usability with a user study
where participants with diverse educational backgrounds and programming levels learned how
to use the system in less than an hour. Both user performance and feedback confirmed iRoPro’s
usability, with the majority ranking it as ‘acceptable’ and half being promoters. Overall, we
demonstrated that our approach allows users with any programming level to efficiently teach
robots new actions that can be reused for complex tasks. Thus, iRoPro enables end-users to
program robots from scratch, without writing code, therefore maximising the generalisability
of taught actions with minimum programming effort.
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Chapter 8

Conclusion and Future Work
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This thesis is motivated by the idea of enabling non-robotics end-users teach robots new ac-
tions from scratch that can be generalised and reused for more complex and previously unseen
tasks. We proposed an end-user robot programming framework that combines solutions from
PbD and Automated Planning (Chapter 4). Unlike existing approaches where a complete task
execution is taught to reach a goal, our method lets users teach the robot primitive actions and
delegate the logical reasoning process of finding a solution to a task planner.

We claimed that users with or without experience in programming or related Computer Sci-
ence fields can easily learn and use Automated Planning concepts needed for our framework.
We validated this claim by conducting qualitative user experiments (Chapter 5). We chose
Programming by Demonstration, in particular keyframe-based PbD, as it provides a good mid-
dle ground between programming difficulty for the user and data and time required to teach
the robot a new skill (Sec. 2.4). We showed the generalisability and expressiveness of a goal-
oriented programming approach to be a feasible end-user programming solution by addressing
robotic organisation tasks (Chapter 6). Based on the obtained results, we implemented an end-
user robot programming framework to teach low- and high-level actions by demonstration that
can be reused with a task planner and conducted both system and user evaluations (Chapter 7).
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We found that the majority of users learned how to use and navigate the system in less than an
hour of training, despite being introduced to the automated planning concepts for the first time.
In the following we give an overview of the contributions, discuss limitations, potential future
work to address them, and perspectives for future research directions.

8.1 Contributions

8.1.1 End-user robot programming framework

In Chapter 4, we proposed iRoPro, an end-user robot programming framework that combines
PbD and Automated Planning, where the robot learns action models by demonstration, and
the problem of finding an action sequence is delegated to a planner. The robot programming
process consists of the following steps:

1. The user teaches the robot new actions by kinesthetic demonstration, including both low-
and high-level action representations.

2. The robot uses these actions with a task planner to generate solutions to user-defined
problems.

3. The user can revisit the taught action models via the graphical interface to refine them.

8.1.2 Experimental findings

In Chapter 5, we conducted qualitative experiments and obtained initial results of the frame-
work’s usability and the user’s ease to learn Automated Planning concepts.

• User study 1 - Findings on user acceptance of Automated Planning concepts: We ob-
served the issues encountered when non-robotics expert users are introduced to Auto-
mated Planning concepts and asked to use the presented language to describe the world
state to a robot. We evaluated the user’s ability to construct symbolic action models, in
terms of preconditions and effects, used by automated planners and showed that users
with little to no programming experience can easily learn and use symbolic planning
languages.

• User study 2 - Findings on user acceptance of the proposed robot programming frame-
work: Using the Wizard-of-Oz technique, users were tasked to teach a robot actions
by kinesthetically manipulating the robot’s arm and assign action conditions that can be
used for automated planning. We obtained qualitative results on user experience during
the programming process as well as difficulties encountered, which contributed to the
design of the iRoPro system implementation.
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8.1.3 Goal-oriented robot programming

In Chapter 6, we presented work on a goal-oriented programming system for teaching robots
shelf organisation tasks using keyframe-based PbD. The system allows the robot to learn low-
level actions from kinesthetic demonstrations and other user input via a graphical interface.
The robot learns both what and how to perform a task using PbD and a goal inference model
for inferring likely shelf arrangements. We evaluated user teaching strategies with experiments
on Amazon Mechanical Turk and compared their performance to eight benchmark strategies.
This work focused on shelf organisation tasks with pick-and-place actions and demonstrated
the representational power of a goal-oriented PbD system for end-users. The same system was
used as a foundation for the implementation of the proposed robot programming framework.

8.1.4 iRoPro - System implementation

In Chapter 7, we presented the implementation of iRoPro on a Baxter research robot that

1. allows simultaneous teaching of low- and high-level actions from a single demonstration,

2. includes a user interface for action creation with condition inference and modification,
and

3. allows creating and solving previously unseen problems using a task planner for the robot
to execute in real-time.

The implementation includes a graphical interface, which allows the user to teach new ac-
tions by kinesthetic demonstration, modify action conditions, define new problems, and have
the robot autonomously solve and execute the plan in real-time. Thus, it provides end-users
with a goal-oriented approach to program robots from scratch, without writing code, therefore
maximising the generalisability of taught actions with minimum programming effort.

8.1.5 User and system evaluation

We demonstrated iRoPro’s capability to generalise primitive actions on six benchmark tasks
that were programmed and executed on the Baxter robot (Sec. 7.4). We empirically investigated
the usability of our system and validated its intuitiveness through a study with 21 users of
different educational backgrounds and programming levels (Sec. 7.5). To better understand user
teaching strategies, we split participants into two control groups, with and without automatic
condition inference. We showed that users in both control groups can easily learn and use the
system, regardless of their programming experience.
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8.2 Limitations

As the developed system served as a proof-of-concept it remains an initial working prototype
with several limitations. We categorise them into the main aspects of the end-to-end system
and discuss possible technical improvements:

• Improved Perception System: An improved perception system by using multiple sen-
sors and state-of-the-art computer vision solutions, would allow automatic detection of
object types, properties and world states. This would further increase the user experience
with the detection of initial states of stacked objects, automatic detection of goal states,
verifying action executions, or real-time tracking of the world states. While we use PCL
for object pose estimation, latest state-of-the-art techniques can estimate 6-DoF poses
from RGB image data (Tremblay et al. [2018b]), allow the detection of more accurate
object orientations.

• Low-level Action Learning - Motion Planning: While we chose keyframe-based PbD
to learn low-level manipulation actions, there exist other state-of-the-art solutions such as
Dynamic Movement Primitives (Pastor et al. [2009]) or the use of statistical methods for
the generalisation of learned trajectories from multiple trajectories (Billard et al. [2008]).
Another approach to learn primitive actions would be to segment demonstrated task exe-
cutions into smaller primitive actions (Kuniyoshi et al. [1994], Wu and Demiris [2010])
that can be reused for new tasks. Furthermore, the current implementation does not take
into account dynamic environments as objects are not tracked in real-time, nor problems
with navigation in cluttered environments to avoid obstacles that were not present during
the demonstration. In cobotic environments it is important for taught low-level actions
to take into account the safety of human operators. Another extension would be to in-
clude a better motion and task planning system in order to allow executing both arms
simultaneously while avoiding self-collision.

• High-level Action Learning - Symbolic Action Representations: We only included
a minimal set of predicates (Sec. 7.2.2) that we deemed intuitive and useful for object
manipulation tasks. Further user studies could involve more challenging use cases and
planning domains by including a wider range of predicates. It could be interesting to infer
predicates to capture more complex domains, such as object orientation (Li and Berenson
[2016]) or spatial relations between objects (Tremblay et al. [2018a]). Functionality to
learn the colours and shapes of new object types would increase the possible end-user
applications. A possible extension would be to incorporate probabilistic techniques to
learn predicates or pre-train the robot on simulated scenarios to improve the condition
inference.
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• Improved Robot Programming Process: While the overall robot programming process
seems intuitive for end-users, the programming process can be improved with state-of-
the-art human-computer interaction paradigms for the design of the graphical interface.
The PbD process can be facilitated using Natural Language Processing solutions to allow
voice commands to save poses and change gripper states. To reduce the programming
overhead, it would be useful to include a feature that compares newly created actions
with already existing actions to avoid redundancies.

8.3 Future work

• A known PbD problem exists with regards to the type and quality of the demonstration
which is dependent on the teacher’s knowledge of the robot’s system. Naı̈ve teachers
often have greater assumptions on the robot’s intelligence and take less care in exe-
cuting demonstrations as compared to roboticists, who understand the effects of noisy
demonstrations (Suay et al. [2012]). Chen and Zelinsky [2003] and Kaiser et al. [1995]
recognised different sources for sub-optimality in demonstration, such as the user demon-
strating unnecessary or incorrect actions due to the lack of knowledge about the task.
Instructional materials in the form of tutorials and videos can be used to support the
learnability of a PbD system (Cakmak and Takayama [2014]). Future research could ex-
plore the development of a standardised human-robot interaction protocol for end-user
robot programming that follows successful curricula in modern education systems.

• Instead of training users directly on the real robot, an alternative approach would be to
let them perform the training in a simulated environment, such as a robot simulation on
the PC. This allows the user to familiarise themselves with the programming process,
the involved concepts, and the graphical interface. Evaluation and testing would be less
time-consuming and less risky as simulations can be restarted easily and do not involve
real-life objects. Furthermore, users might be less intimidated and take more initiatives
to try out different approaches to program a task for the robot.

• The proposed robot programming process involves interacting with the robot as well as
with a graphical interface on a tablet or a PC. While there has been increasing research in
human-robot interaction, little attention has been given to end-user robot programming.
Similarly, as end-user programming solutions mostly focuses on developing programs
without real robots and research in human-computer interaction addresses graphical in-
terfaces on smartphones, tablets or PCs, there has been little work on improving the robot
programming experience for end-users. Future research could explore the intersection of
these domains involving end-user robot programming interfaces that include multiple
interaction modalities and the robot as an additional interface.
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Appendix B

Resources for Pre-Experiment: Study 1
(Sec. 5.2)

The following documents were used in the first user study. As all experiments were conducted
in French, all documents are in French:

• Experimental protocol

• Post-study questionnaire

• Action schema used
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Protocole d’expérimentation pour les concepts de la planification 
Personnes présentes 

● K: expérimentateur 

● S: sujet de l’expérimentation 

Niveau 1 – Tâche 1  
 
Nom d’objet Type Propriété 

(état initial) 
Propriété généralisé 

X1 cube est_rouge (X1) est_rouge (cube) 
  est_sur(X1,1a) est_sur(cube,position) 

    
1a position non_vide(1a) non_vide(position) 
1b position est_vide(1b) est_vide(position) 
2a position est_vide(2a) est_vide(position) 
2b position est_vide(2b) est_vide(position) 

 
(Pour chaque nouvelle tâche, K déplace les objets sur le damier pour les états initials) 
 
Pour qu'il fasse les déplacements soi-même, il faut qu'il comprenne les objets qui existent et qu'il peut déplacer.                  
Donc, il faut lui expliquer les objets qui existent et que tu vois sur la table dans un langage qu'il comprend. On va                       
faire la premiere exemple ensemble. 
 
1. Echauffement: Voici un premier état initial. 
 
K met le cube rouge sur le damier à la position 1a. 
 
1.1 Types: - cube 

● Quels sont les noms d’objet que tu vois sur le damier? 
● Quel est le type de l’objet X1? 

 
Le type est une façon de décrire l’objet X1 d’une manière plus généralisée. 
 
1.2 Propriétés (initial): - cube 

● Quelle est la propriété de l’objet X1 que tu observes dans cet état sur le damier? 
○ Si S ne dit pas, K propose de regarder la couleur (ou la position) 

 
Dans le langage que comprend le robot, on écrit  

● ‘est_rouge(X1)’ pour dire ‘X1 est rouge’ 
● ‘est_sur(X1,1a)’ pour dire ‘X1 est sur 1a’ 

 
‘verbe’ ( ‘sujet’, ‘compléments’ ): Le verbe est au début, puis le sujet, et à la fin il y a des compléments.  
 
1.3 Propriétés (généralisée): - cube 
 

● Comment peux-tu exprimer cette propriété dans une facon plus généralisé pour qu’on peut l’utiliser pour 
n’importe quel objet de ce type? 

 
● K demande “qu’est-ce qui manque encore?” (position/couleur) 

 
 
 



1.2. Types/Propriétés: - position 
● Est-ce que le tableau est complet? 

○ Si S dit oui, K demandes “Est-ce que tu vois d’autre noms/types sur le damier?” 
 

● Remplissez le tableau (nom, type). (K continue à guider S) 
● Quelles sont leurs propriétés? 

○ Si S n’y arrive pas, K guide “Quelle est la différence entre la position 1a et les autres?” 
● Propriété généralisée? 

○ Si S n’y arrive pas, K “Comparez-la avec les propriétés généralisées qu’on a déjà rempli” 
 
1.3 Actions: K  donne à S la fiche d’action I avec le tableau vide  
Maintenant on va voir comment on peut modéliser une action. Observez les trois graphiques. 
 
Une action consiste des préconditions, c’est-à-dire des conditions qui sont nécessaire pour effectuer l’action,  
et des effets, les conditions qui s’appliquent après l’action. 
 
1.3.1: l’action dans le langage: déplace(X1,1a,2b) 
 

● Quel est l’action qui est effectuée? 
○ Si S n’y arrive pas, K “On peut dire que le cube est déplacé de 1a à 2b” 

● Comment peut-on représenter cette action dans le langage? Remplissez la case ‘action’. 
 
déplace(X1,1a,2b): si S n’écrit pas toutes les paramètres X1, 1a, 2b - p.ex. déplacer(X1): 

● Si on lis que l’action, est-ce qu’on peut comprendre ce qu’il faut faire? (de déplacer de 1a à 2b) 
● Qu’est-ce que cette action que tu viens d'écrire veut dire en français? 
● Qu’est-ce qu’il manque pour que l’action dise “déplacé X1 de 1a à 2b”? 

 
1.3.2: préconditions: est_sur(X1,1a) 
 

● Quelles sont les conditions nécessaire pour déplacer le cube? Observez l’état initial. 
 
Si S donne la bonne réponse: est_sur(X1,1a) 

● K explique: C’est exacte, pour déplacer le cube X1 de 1a à 2b, il faut que X1 soit d’abord sur 1a. 
 
Si S donne plus de conditions que nécessaire: 

● Est-ce qu’on a besoin de toutes les conditions pour déplacer le cube? 
● Est-ce qu’il est nécessaire que X1 soit rouge pour déplacer le cube X1? 

 
1.3.3: effets: est_sur(X1,2b) 

● Quelles sont les effets après l’action a été effectuée? 
● Qu’est-ce qu’il change après le déplacement? 

 
1.4 Action généralisée: 
 
De la même manière qu’on a déjà fait dans le tableau, on veut généraliser l’action. 

● Que seraient l’action généralisée pour qu’on puisse utiliser cette action pour n’import quel objet de ce type? 
○ Si S n’y arrive pas, K propose “Comment on a généralisé la propriété dans le tableau?” 

 
● Que seraient les conditions généralisées? 

○ Si S n’y arrive pas, K propose “Qu’est-ce qu’on peut généraliser? Comparez avec le tableau” 
 
1.5 Debriefing: 

● Qu’est-que vous pensez de ce langage - les types, les propriétés et leur généralisation ? 
● Qu’est-que vous pensez de la représentation de l’action avec les préconditions et les effets? 
● Est-ce que la représentation utilisée, vous semble correcte ? 
● Est-elle claire ? Facile à comprendre ? 
● Quelles améliorations apporteriez-vous ? 



Niveau 1 – Tâche 2 - ajouter des contraintes nécessaire pour l’action 
 
Nom d’objet Type Propriété (état initial) Propriété généralisée 

X3 tasse est_sur(X3, 1a) est_sur(tasse, position) 
X1 balle est_bleue (X1) est_bleue(balle) 
  est_sur(X1,X3) est_sur(balle,tasse) 
X2 cube est_marron(X2) est_marron(cube) 
  est_sur(X2,2b) est_sur(cube,position) 
    
    
1a position non_vide(1a) non_vide(position) 
1b position est_vide(1b) est_vide(position) 
2a position est_vide(2a) est_vide(position) 
2b position non_vide(2b) non_vide(position) 

 
Considérons maintenant un nouveau scénario.  
 
K met les objets sur le damier. 
 
2.1 Types/Propriétés: 

● Observez ce nouvel état. Est-ce que le tableau est toujours complet/correct? Corrigez et complétez le               
tableau. 

○ Si le tableau est faux ou incomplet, K demande “Est-ce que tu es sûr que …” 
○ Si le tableau est incomplet, K demande “Et la position du...”/”La propriété de…?” 

 
K donne à S la fiche d’action II. 
 
2.2 Actions:  
Imaginons on veut déplacer la balle vers la position 2b. Modéliser cette action comme tout-à-l’heure. 
 
3 Sous-tâches: 

● Est-ce qu’on peut utiliser cette action de déplacement? 
○ Si S dit oui, K lui demande “Montrez-moi l’action de déplacement” - Tâche 2a 

 

Tâche 2a : 
est_empilable(balle,cube) 

Tâche 2b : 
est_vide(position_arrivée) 

Tâche 2c : 
est_empilable(tasse,cube) 

   

Tâche 2a :  “Montrez-moi l’action de déplacement”  
 
La balle ne va pas tenir sur le cube. 
 

● Qu’est-ce qui ne va pas? 
○ Si S ne trouve pas la bonne réponse, K dit “La balle ne tient pas sur le cube” 

 
Donc, on ne peut pas utiliser l'action de déplacement dans ce cas.  
 
 



K pose des questions qui guident S: 
 

● Qu’est-ce qu’on peut ajouter pour qu'il déplace la balle seulement si elle tient sur le cube? 
● Autrement dit, fais l'action seulement si la balle tient sur le cube. Donc, c'est une contrainte sur les 

propriétés des objets 
● Il s'agit de quelle propriété entre la balle et le cube? 
● Comment peut-on ajouter cette contrainte en tant que condition pour l’action? 

 
Si S n’y arrive pas, K propose  

● Peut-être on peut ajouter une précondition est_empilable de la même façon?  
● En utilisant le langage avec le verbe/sujet, comment ça s’écrit? 

 
Finalement,  

● Quelle est cette condition généralisée? 
○ est_empilable(balle,cube) 

 
K explique “Donc, on a créé une action qui a deux condition pour déplacer la balle X1 

1. la balle X1 est sur la position 1a 
2. la balle est empilable sur le cube” 

 
Transition à 2b/2c: 

● On veut quand-même que la balle soit à la position 2b. Qu’est-ce qu’on peut faire? 

Tâche 2b :  “Il faut déplacer le cube”  
● Quelle est la condition que l’on obtient si on déplace le cube? 

○ S peut proposer “Autrement dit, la case est vide.” 
● Quelle est la condition que nous permet de déplacer la balle? 
● Qu’est-ce qu’il faut ajouter? 
● Quelle est sa formalisation généralisée? 

 
K explique “Donc, on a créé une action qui a deux condition pour déplacer la balle X1 

3. la balle X1 est sur la position 1a 
4. la position d’arrivée 2b est vide” 

 
! On peut enlever la condition est_sur(X2,2b) qui dit que le cube X2 est sur 2b. 
 
Transition à 2c: 

● Qu’est-ce qu’on peut faire pour que la balle soit sur la position 2b sans déplacer le cube/ au-dessus du cube? 
 

Tâche 2c :  “Il faut déplacer la tasse avec la balle”  
 

● Pourquoi peut-on déplacer la tasse sur le cube? 
● Comment représenter dans notre langage que l’on peut mettre la tasse sur le cube, mais pas la balle? 
● Quelle est la condition que l’on peut ajouter? 

 
Finalement,  

● Quelle est sa formalisation généralisée? 
○ est_empilable(tasse, cube) 

 
K explique “Donc, on a créé une action qui a deux condition pour déplacer la balle X1 

5. la balle X1 est sur la tasse X3 
6. la tasse X3 est empilable sur le cube” 

 
Transition à 2b: 

● Et si on pourrait pas empiler les objets, qu’est-ce qu’on peut faire pour que la balle soit à la position 2b? 



 
 
Debriefing: 

● Qu’est-que vous pensez de ce langage - les types, les propriétés et leur généralisation ? 
● Qu’est-que vous pensez de la représentation de l’action avec les préconditions et les effets? 
● Est-ce que la représentation utilisée, vous semble correcte ? 
● Est-elle claire ? Facile à comprendre ? 
● Quelles améliorations apporteriez-vous ? 

 

Niveau 1 - Enchainement des taches 
 

Considérons une nouvelle configuration. Vous avez un état initial.  

● Définissez le but. 

● Quelles sont les actions pour arriver de l’état initial au but? Montrez-les sur le damier. 

● Voici, les actions qui sont disponibles. Quelles sont les actions dont on a besoin? 

● Remplissez les actions et leurs préconditions et effets et mettez-les dans la bonne ordre. 

● Montrez le lien entre les actions (leur précondition/effets) 

○ Pourquoi avez-vous choisi les deux actions? 

déplacer(cube,position,position) 
déplacer(X1,1a,2b) 
 
déplacer(X2,2b,1b) 
déplacer(X2,2b,2a) 
 

préconditions action effets 

est_sur( ___ , ___ ) déplacer( _X2____, 
___2b_, __1b_____) 

est_sur(___, ___) 
est_vide( ___ ) est_vide( ___ ) 

 
 

préconditions action effets 

est_sur( ___ , ___ ) déplacer( _X2____, 
___2b_, __1b_____) 

est_sur(___, ___) 
est_vide( ___ ) est_vide( ___ ) 

 
 
  



 

?  

 
 
état initial  But 

est_sur(X1, 1a) est_sur(X1, 2b) 
  
est_sur(X2,2b) est_sur(X2,1b) 
  
non_empilable(X1,X2)  
  
  
non_vide(1a) est_vide(1a) 
est_vide(1b) non_vide(1b) 
est_vide(2a) est_vide(2a) 
non_vide(2b) non_vide(2b) 

 

Niveau 2 
 
K donne un tableau vide et repositionne les blocs sur le damier 
Essayez de remplir le tableau à partir du nouveau scénario. 
 
 



Interaction homme-machine
Bonjour, suite à l'expérimentation que vous venez de passer, je vais vous faire remplir un 
court questionnaire pour savoir ce que vous avez retenu de cette expérimentation. Merci 
de répondre le plus justement possible pour permettre une bonne analyse de vos données. 

* Required

Nom *1. 

Prénom *2. 

Numéro d'étudiant *3. 

Niveau d'étude *4. 

Domaine de formation *5. 

Numéro d'expérimentation *6. 

Niveau et numéro de la dernière tâche
finie *

7. 

Quel est votre niveau de formation en programmation informatique? *
Mark only one oval.

Votre domaine de formation est l'informatique (expert)

Vous avez suivi des cours de programmation et votre domaine de formation
n’est pas l'informatique (avancé)

Vous savez utiliser des outils de bureautique et de communication (débutant)

Vous n’avez aucune connaissance (formation ou pratique) en informatique

8. 



Avez-vous déjà utilisé un langage de programmation? *
Mark only one oval.

Oui

Non

9. 

Si oui, lequel et à quelle occasion?10. 

Avant l'expérimentation, pensiez-vous que vous aimeriez programmer un robot?
*
Mark only one oval.

Pas du tout

Un peu

Plutôt

Oui

11. 

Etiez-vous à l'aise avec le vocabulaire utilisé durant l'expérimentation? *
Mark only one oval.

Pas du tout

Un peu

Plutôt

Oui, beaucoup

12. 

En utilisant le langage du robot, comment se représente-t-il la propriété "le cube
X4 est bleu"? *

13. 



En utilisant le langage du robot, comment se représente-t-il la propriété "le
cylindre Y2 est sur la case 3b"? *

14. 

Comment peut-on généraliser cette propriété? *15. 

Pouvez-vous expliquer la différence entre une propriété et une propriété
généralisée? *

16. 

Pouvez-vous expliquer la différence entre la propriété est_bleu(cube) et
est_vide(case)? *
Mark only one oval.

Oui

Non

17. 

Si oui, laquelle?18. 

Pouvez-vous expliquer la différence entre la propriété est_sur(cube,case) et
est_empilable(cylindre, cube)? *
Mark only one oval.

Oui

Non

19. 



Si oui, laquelle?20. 

Est-ce qu'on peut avoir "est_vide(1b)" et "est_sur(X1,1b) dans le même état? *
Mark only one oval.

Oui

Non

21. 

Expliquez pourquoi. *22. 

Est ce qu'on peut avoir "non_empilable(X1,X2)" et "est_sur(X1,X2)" dans le
même état? *
Mark only one oval.

Oui

Non

23. 

Expliquez pourquoi. *24. 

Observez les trois graphiques suivantes qui
répresentent une action.



En utilisant le langage du robot, comment se représente-t-il l'action que vous
voyez ci-dessus? *

25. 

Comment peut-on généraliser cette action? *26. 

Pouvez-vous expliquer ce que signifie une précondition? *27. 

En utilisant le langage du robot, pouvez-vous donner un exemple de
précondition pour l'action de déplacement? *

28. 



Pouvez-vous expliquer la différence entre la précondition et l'effet d'une action? *29. 

Observez les graphiques ci-dessus. Est-ce qu'on peut déplacer le cube X2 de la
position 1a à 2a? *
Mark only one oval.

Oui

Non

30. 

Expliquez pourqoi. *31. 

Quelle condition est nécessaire pour qu'on puisse déplacer le cube X2 de la
position 1a à 2a? *

32. 

Seriez-vous capable de faire ce codage seul(e)? *
Mark only one oval.

Pas du tout

Un peu

Plutôt

Tout à fait

33. 



Powered by

Quel niveau de formation en programmation pensez-vous qu'il soit nécessaire
d'avoir pour apprendre ce langage du robot? *
Mark only one oval.

Avoir une formation d’informaticien (expert)

Avoir suivi des cours de programmation (avance)

Pas de formation en programmation mais utiliser des outils de bureautique et
de communication (debutant)

Aucun

34. 

Avez-vous rencontré des difficultés au cours de l'expérimentation? *
Mark only one oval.

Pas du tout

Un peu

Plutôt

Oui, beaucoup

35. 

Si oui, lesquelles?36. 

Avez-vous des remarques ou des questions concernant cette expérimentation? *37. 

Apres l'expérimentation, pensez-vous que vous aimeriez programmer un robot? *
Mark only one oval.

Pas du tout

Un peu

Plutôt

Oui

38. 



  

Action de déplacement d'un objet 1
préconditions action effets

● est_sur(X1,1a)

déplacer(X1,1a,2b)

● est_sur(X1,2b)
● est_vide(2b) ● est_vide(1a)

préconditions action généralisée effets
● est_sur(cube,position) déplacer(cube,

position_départ,
position_arrivée)

● est_sur(cube,position)

● est_vide(position) ● est_vide(position)

1a 1b

2b2a

X1
1a 1b

2b2a X1

1a 1b

2b2a

X1

gé
né

ra
lis

ée



  

Action de déplacement d'un objet 2a
préconditions action effets

● est_sur(X3,1a)

déplacer(X1,1a,2b)

● est_sur(X3,1a)
● est_sur(X1,X3) ● est_sur(X1,X3)
● est_sur(X2,2b) ● est_sur(X2,2b)
● est_empilable(X1,X2) ● est_empilable(X1,X2)

préconditions action généralisée effets
● est_sur(tasse,position) déplacer(balle,

position_départ,
position_arrivée)

● est_sur(tasse,position)

● est_sur(balle,tasse) ● est_sur(balle,tasse)

● est_sur(cube,position) ● est_sur(cube,position)

● est_empilable(balle,cube) ● est_empilable(balle,cub
e)gé

né
ra

lis
ée

1a 1b

2b2a

X1

X2

X3 1a 1b

2b2a
X2

X31a 1b

2b2a

X1

X2

X3
X1



  

Action de déplacement d'un objet 2b
préconditions action effets

● est_sur(X3,1a)

déplacer(X1,1a,2b)

● est_sur(X3,1a)
● est_sur(X1,X3) ● est_sur(X1,X3)
● est_sur(X2,2b) ● est_sur(X2,2b)
● est_vide(2b) ● est_vide(1a)

préconditions action généralisée effets
● est_sur(tasse,position) déplacer(balle,

position_départ,
position_arrivée)

● est_sur(tasse,position)

● est_sur(balle,tasse) ● est_sur(balle,tasse)

● est_sur(cube,position) ● est_sur(cube,position)

● est_vide(position) ● est_vide(position)gé
né

ra
lis

ée

1a 1b

2b2a

X1

X2

X3 1a 1b

2b2a

X2

X1
X3

1a 1b

2b2a

X1 X2
X3



  

Action de déplacement d'un objet 2c
préconditions action effets

● est_sur(X3,1a)

déplacer(X1,1a,2b)

● est_sur(X3,1a)
● est_sur(X1,X3) ● est_sur(X1,X3)
● est_sur(X2,2b) ● est_sur(X2,2b)
● est_empilable(X3,X2) ● est_empilable(X3,X2)

préconditions action généralisée effets
● est_sur(tasse,position) déplacer(balle,

position_départ,
position_arrivée)

● est_sur(tasse,position)

● est_sur(balle,tasse) ● est_sur(balle,tasse)

● est_sur(cube,position) ● est_sur(cube,position)

● est_empilable(tasse,cub
e)

● est_empilable(tasse,cu
be)gé

né
ra

lis
ée

1a 1b

2b2a

X1

X2

X3 1a 1b

2b2a

X1

X2

X31a 1b

2b2a

X1

X2

X3



Appendix C

Resources for Pre-Experiment: Study 2
(Sec. 5.3)

The following documents were used in the second user study. As all experiments were con-
ducted in French, all documents are in French:

• Experimental protocol

• Post-study questionnaire

• Action schema used

A summary of the resources used for this section can be found online:

• A demonstration of the Robot Programming process of our proposed framework: https:
//youtu.be/DTm2YjiSNQM

• The source code for the system implemented using the Wizard-of-Oz technique can be
found online: https://github.com/ysl208/Baxter_PbD/
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Protocole d’expérimentation pour la 
programmation du robot Baxter par 
démonstration

Personnes présentes
 X : expérimentateur

 Y : magicien d’Oz

 S : sujet de l’expérimentation

Accueil
Notez l’heure : ____

Bonjour S, je m'appelle X et je suis xx etc. Y va enregistrer l’expérience et mettre en route le
robot Baxter.

Je travaille  au sein de l'équipe MAGMA dont  l’une des thématiques de recherche est  la
robotique. Mon projet de recherche consiste à étudier la collaboration Homme-Robot dans
un environnement industriel. L’expérience que je vous propose aujourd’hui a pour objectif
de voir si un operateur humain sur une chaîne de production peut interagir avec le robot
industriel Baxter pour lui apprendre à réaliser une tâche de déplacement d’un objet.

J’attire votre attention sur le fait que nous ne cherchons pas à évaluer votre travail ou vos
performances. Votre participation va nous permettre d’évaluer et d’améliorer notre robot.
Faites nous part de toutes vos remarques et de toutes vos difficultés : elles sont essentielles
pour nous. 

Dans un premier temps, je vous propose de vous présenter le robot Baxter. Dans un second
temps,  vous  pourrez  le  manipuler  pour  vous  familiariser  avec  lui.  Ensuite,  je  vous
demanderai de réaliser trois activités avec lui. Avant de nous séparer, je vous demanderai de
remplir un questionnaire d’une dizaine de questions relatives à l’expérience.

Présentation de Baxter
Voici le robot Baxter, un robot utilisé dans les usines pour des tâches d'assemblage.

Voici une vidéo  pour vous le montrer dans un contexte industriel : 

https://www.youtube.com/watch?v=oD9DE0HjMM4 

Quand on reçoit Baxter, il ne sait rien faire. Il faut tout lui apprendre. Pour l’instant, nous lui
avons juste appris à chercher un objet sur la table à partir de sa couleur. Les activités que
vous allez faire avec Baxter vont permettre de lui apprendre de nouvelles tâches. 
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Avez-vous des questions ?

Contexte expérimental
Nous allons maintenant vous montrer comment fonctionne Baxter puis vous le testerez. 

Supposons que nous soyons sur une chaîne de production industrielle. Les objets arrivent de
ce côté-là dans la zone de départ (D) qui est accessible pour l'opérateur pour réaliser une
tâche de contrôle de qualité : mesure des cotes de l’objet. 

Nous supposons également que les objets sont lourds ou dangereux et qu’il est souhaitable
que l’opérateur  humain  ne manipule  pas  directement les  objets.  Le  robot  doit  déplacer
l'objet  à  la  position  d'arrivée  (A)  pour  qu’un  autre  robot  (que  je  simulerai)  puisse  le
récupérer. 

Il faut savoir que les objets ne sont pas empilables : deux objets ne peuvent être superposés
l’un sur l’autre (risque d’endommagement des objets).

Démonstration et tests

Manipulation du bras par X
Maintenant,   je  vais  vous  montrer  comment  bouger  le  bras  du  robot.  Sur  la  pince
pneumatique du robot, il existe deux zones tactiles qui rendent déverrouille le bras et qui
permettent de bouger le bras très facilement. 

Utilisez votre main gauche et placez le pouce sur un côté et les autres doigts sur l'autre. Puis,
placez votre main droite sur le poignet du robot. Essayez de laisser la pince pneumatique
dans la position verticale à environ 10 cm de la table. Vous pouvez déplacer le bras dans
n'importe quelle position du moment que la pince reste dans la zone marquée par les lettres
A et D. En appuyant sur le bouton blanc qui se trouve sur le côté du bras juste à proximité
des zones tactiles, vous pouvez activer la pince pneumatique pour saisir un objet.

Manipulation du bras par S
Notez l’heure :

Je vous laisse essayer par vous-même. Approchez-vous du bras, appuyez sur le bouton blanc,
déplacez l'objet à la position d'arrivée, relâchez l'objet et remonter le bras à 5 cm.

Vérifier le déplacement de l’objet selon les conditions de succès :  on recommence en cas
d'échec :

 Succès : S a bien guidé le bras et effectué un déplacement continu,

 Echec : proposer à S de réessayer la manipulation. Si S montre des difficultés, refaire
plusieurs fois et éventuellement reprendre l’explication et remontrer.

DEBRIEFING : noter des réponses de S

 Est-ce que vous avez des questions ?
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 Est-ce que vous vous sentez à l'aise avec Baxter ?

 Est-ce qu’il vous semble difficile de manipuler le bras de Baxter ?

 Quelles améliorations apporteriez-vous ?

Expérimentation
Maintenant, nous allons vous demander d’apprendre à Baxter à réaliser une nouvelle tâche :
déplacer un objet. Tout ce qu’il sait faire jusqu’à présent, c’est chercher un objet placé en (D)
ou (A).

X replace l'objet dans la zone de départ et le bras au-dessus.

Rappelez-vous, vous êtes sur une chaîne de production industrielle. Les objets arrivent de ce
côté noté (D) pour départ et nous souhaitons apprendre à Baxter comment déplacer l'objet
de la  zone  (D)  à  la  position d'arrivée noté  (A)  pour  que robot  suivant  sur  la  chaine  de
production (joué par moi) puisse le récupérer. Je vous rappelle que les objets ne peuvent pas
être empilés.

Enregistrement du déplacement de l’objet avec Baxter
Notez l’heure : ____

Je vous propose maintenant que vous êtes à l’aise avec Baxter d’enregistrer le déplacement
de l'objet de la position de départ à la position d'arrivée comme nous venons de le faire. Ne
vous faites pas de souci, en cas de problème, nous pourrons le refaire.

 Etes-vous prêt de commencer l'enregistrement ? 

Y démarre enregistrement sur l'ordinateur

Voilà Baxter hoche la tête quand il est prêt : vous pouvez commencer l’enregistrement. 

Le sujet montre le déplacement de l’objet de la position de départ (D) à la position d’arrivée
(A) 

Quand l'opérateur a relâché l'objet, terminer l’enregistrement. 

Vérifier le déplacement selon les conditions de succès et répéter en cas d'échec :

 Succès : il a bien guidé le bras et effectué un déplacement continu,

 Echec : on peut enregistrer le même déplacement une autre fois. Replacez l'objet à la
position de départ.

Voilà Baxter hoche la tête quand l’enregistrement est fini.

DEBRIEFING : noter les réponses de S
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 Comment s’est passé l’enregistrement ?

 Quelles améliorations apporteriez-vous ?

On va rejouer le déplacement pour voir si Baxter l'a bien appris. Replacez l'objet à la position
de départ.

 Replay : le robot déplace l'objet à la position d'arrivée (A)

 Est-ce que c'est bien le déplacement que vous lui avez appris ?

 Que pensez-vous de cet apprentissage ?

 Quelles améliorations apporteriez-vous ?

Compréhension par S de la sémantique des tâches apprises à Baxter

Notez l’heure : ____

Voilà comment Baxter se représente ce que vous venez de lui apprendre. 

X montre une fiche avec les préconditions de la tâche.

Il  a  compris  que  l'objet  rouge  doit  être  à  la  position  de  départ  (D)  pour  effectuer  le
déplacement.

Après le déplacement, il a compris que l'objet rouge n'est plus à la position de départ (D)
mais à la position d'arrivée (A).

Schéma de la tâche apprise :

 Préconditions :

o l'objet rouge est à la position de départ (D),

 Effets :

o l'objet rouge n'est plus à la position de départ (D),

o l'objet rouge est à la position d'arrivée (A).

En plus du texte, montrer la représentation graphique. 

DEBRIEFING : noter des réponses de S

 Pensez-vous que le robot a bien compris ce que vous vouliez lui apprendre ?

 Est-ce que la représentation utilisée, vous semble correcte ?

 Est-elle claire ? Facile à comprendre ? 

 Quelles améliorations apporteriez-vous ?

4



Compréhension par S des modifications à apporter aux préconditions pour 
généraliser la tâche apprise à des objets de différentes couleurs 

Notez l’heure : ____

 Enlevez l'objet rouge de la table. Posez l'objet bleu à la position de départ (D)

Je vous propose de demander à Baxter de déplacer maintenant un objet bleu.

 Que va faire le robot selon vous ?

Si S ne trouve pas la solution, essayez de faire exécuter le déplacement par Baxter

Nous allons demander à Baxter de déplacer l'objet bleu.

Démarrer le déplacement du bras : « move arm to colour »

 Pourquoi a-t-il refusé de déplacer l'objet ?

Remontrer le schéma de tâche apprise

Rappelez-vous ce que Baxter avait compris de votre démonstration. 

 Que faudrait-il dire à Baxter pour qu’il puisse déplacer un objet bleu ?

 Comment représenter la tâche pour déplacer un objet quelle que soit sa couleur ?

Si le sujet ne trouve pas la solution, proposez la modification de la condition.

Voilà ce que le robot a compris de ce vous avez dit : il a compris que la couleur n'a aucune
importance pour effectuer le déplacement.

X montre la 2e schéma :

 Préconditions :

o l'objet  est à la position de départ (D),

 Effets :

o l'objet n'est plus à la position de départ (D),

o l'objet est à la position d'arrivée (A).

DEBRIEFING : noter des réponses de S

 Pensez-vous que c'est suffisant pour que Baxter puisse déplacer l'objet bleu ?

 Que va faire le robot maintenant ?

Voyons ce que Baxter va faire maintenant. 

Y démarre Baxter pour déplacer l'objet bleu.

 Qu'en pensez vous ?

5



 Est-ce que ça vous parait normal ?

 Quelles améliorations apporteriez-vous ?

Compréhension par S d’une contrainte nécessaire au déplacement d’un objet 

Notez l’heure : ____

Placez l'objet rouge à la position de départ (D). L’objet bleu se trouve toujours à la position 
d'arrivée (A).

Je vous propose de demander à Baxter de déplacer l'objet rouge.

 Que va faire le robot selon vous ?

Si S ne trouve pas la solution, rejouer le déplacement : démarrer le robot qui déplace l'objet
rouge au dessus de l'objet bleu.

Rappelez à S qu’une des contraintes de la chaîne de production est que les objets ne sont pas
empilables. 

Remontrer le schéma de la tâche apprise.

 Pourquoi Baxter a-t-il empilé 2 objets ?

 Qu'est-ce qu'il faut faire pour déplacer l'objet bleu ?

Si S ne trouve pas la solution, proposez la modification de la précondition.

 Peut-on représenter la tâche autrement pour que Baxter ne viole pas la contrainte 
d’empilement ?

Voilà ce que Baxter se représente ce que vous avez dit.

X montre le nouveau schéma :

 Préconditions :

o l'objet est à la position de départ (D),

o la position d'arrivée (A) est vide,

 Effets :

o l'objet n'est plus à la position de départ (D),

o l'objet est à la position d'arrivée (A).

DEBRIEFING : noter des réponses du sujet

 Pensez-vous que c'est suffisant pour que Baxter puisse déplacer un objet ?

 Que va faire Baxter maintenant ?

Baxter émet un message pour dire qu’il ne peut pas effectuer le déplacement.

6



 Qu'en pensez-vous ?

 Est-ce que ça vous parait normal ?

 Quelles améliorations apporteriez-vous ?

Compréhension par S de ce que peut dorénavant faire Baxter avec la nouvelle tâche
apprise

 Notez l’heure : ____

X déplace les barrières blanches et les deux objets.

Rappel du contexte :  maintenant,  Baxter sait faire deux choses :  chercher un objet (c’est
nous qui lui avions appris avant votre arrivée), et déplacer des objets grâce à vous.

Je vous propose de demander à Baxter  de permuter l’objet bleu avec l’objet  bleu de la
position (D) à la position (A).

Nous sommes toujours sur une chaîne de production et c'est le même Baxter à qui vous avez
appris le déplacement. Les objets arrivent les uns après les autres mais, parfois, il y a des
problèmes de rangement : il faut que les objets rouges soient devant les objets bleus. Baxter
doit alors réordonner des objets. 

X montre le déplacement des deux objets sur la table

 Pensez-vous que Baxter va réussir ?

 Que va-t-il faire ?

 Si c'était vous qui deviez permuter les objets avec un seul bras, que feriez-vous ?

Y démarre la permutation des objets.

 Pensez-vous que Baxter a agi de manière intelligente ?

 Quel a été son raisonnement ? Quelles tâches a-t-il utilisé ?

Je vous remercie. Nous avons fini avec l'expérience. Installez-vous pour répondre à un 
questionnaire.

Donner le questionnaire à S.

7



Questionnaire  sur  la  programmation
d’un robot Baxter par démonstration
Nom :
Prénom :

Quel est votre niveau d’études ?
 Bac + 5
 Bac + 2
 Bac ou diplôme professionnel

Quel est votre domaine de formation ?
 Arts, lettres, langues
 Droit, économie, gestion
 Sciences humaines et sociales
 Sciences, technologies, santé

Quel  est  votre  niveau  de  formation  en  programmation
informatique ?
 Votre domaine de formation est l’informatique (expert)
 Vous avez suivi des cours de programmation et votre domaine de formation n’est

pas l’informatique (avancé)
 Vous savez utiliser des outils de bureautique et de communication (débutant)
 Vous n’avez aucune connaissance (formation ou pratique) en informatique

Avez-vous déjà utilisé un robot capable de saisir par lui-même un
objet ?
 Oui
 Non

Si oui, quel était le type de ce robot ?
 Jouet ou robot à construire soi-même
 Robot compagnon (par exemple Nao)
 Robot industriel ou de recherche

Avez-vous déjà entendu parlé de planification automatique ?
 Oui
 Non



Si oui, à quelle occasion ?

Le robot Baxter vous semble-t-il facile à manipuler physiquement ?
 Pas du tout facile
 Plutôt pas facile 
 Plutôt facile
 Tout à fait facile 

Est-ce que le robot Baxter vous semble adapté à la manipulation
par des opérateurs sur une chaîne de production ?
 Pas du tout adapté
 Plutôt pas adapté
 Plutôt adapté
 Tout à fait adapté

Pensez vous que le robot Baxter agisse de manière intelligente ?
 Pas du tout
 Un peu 
 Plutôt
 Oui, beaucoup

Pensez-vous avoir  appris  au robot Baxter  à  réaliser  de nouvelles
tâches ?
 Oui
 Non

Si oui, lesquelles ?

Pouvez-vous expliquer comment Baxter se représente la nouvelle 
tâche apprise ?
 Pas du tout
 Un peu 
 Plutôt
 Oui, beaucoup

Pouvez-vous expliquer comment Baxter apprend une nouvelle 
tâche à partir de plusieurs exemples ?
 Pas du tout
 Un peu 



 Plutôt
 Oui, beaucoup

Pouvez-vous expliquer comment Baxter se représente la pré-
condition d’une tâche ?
 Pas du tout
 Un peu 
 Plutôt
 Oui, beaucoup

Quel niveau de formation en programmation pensez-vous qu’il soit
nécessaire d’avoir pour apprendre une nouvelle tâche au robot
Baxter ?
 Avoir une formation d’informaticien (expert)
 Avoir suivi des cours de programmation (avancé)
 Pas de formation en programmation mais utiliser des outils de bureautique et de

communication (débutant)
 Aucun 

Avez-vous rencontré des difficultés au cours de l’expérimentation ?
 Pas du tout
 Un peu 
 Plutôt
 Oui, beaucoup

Si oui, lesquelles ?



Figure C.1: Action model used in experiments
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Appendix D

Resources for User Evaluation (Chapter
6)

The resources used for evaluating the teaching strategies presented in Chapter 6 are as follows:

• Python code for simulating the teaching strategies: https://github.com/ysl208/
organisingtasks/

• The graphical interface used for the AMT user study can be found on Codepen: https:
//codepen.io/ysliang208/project/editor/DYryzp#0
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Appendix E

Resources for User Evaluation (Sec. 7.5)

The following documents were used in the final user study (all documents are in English):

• THEDRE brainstorming guide

• THEDRE experimental protocol guide

• Slides used during the experiment for introduction and tasks

• Pre-study questionnaire

• Post-study questionnaire: including questions from the SUS

• The source code for the iRoPro system implementation can be found online: https:
//github.com/ysl208/iRoPro/tree/cond
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Guide de « Brainstorming » (bloc 1 et bloc 2)
Questions pour vous guider Vos Réponses
Quel est le problème ? It is extremely difficult to program robots for specific end-user applications ranging from 

manufacturing environments to personal homes. There are many companies that are robot 
resistant as they do not have the trained personnel to fully exploit the robots, and non-expert 
users cannot program the robots.
The problem that we address is how can a non-expert user program a robot.

Dans quels contextes se 
pose le problème ? quand ? 
où ?

This problem arises in many small- to medium industrial/manufacturing environment when 
deploying a robot, but also in general settings where a robot has to be programmed by a non-
expert user.

D’où émane la demande ? In general it comes from end-users without robot programming knowledge who want to 
customise their robot for specific tasks, e.g. manufacturing industries, supermarket stores, etc.

Qui est concerné par le 
problème ?

end-users without robot programming knowledge who want to customise their robot for specific 
tasks

Comment pouvez vous 
résoudre le problème ?

create an intuitive robot programming framework for non-experts that allows teaching it new 
actions by kinesthetic demonstration and interaction with a graphical interface, and the use of 
automated planning

Pourquoi est-il important de 
résoudre ce problème au 
niveau académique ?

proof of concept to show that this is a feasible robot programming approach for non-experts

Quel est l'intérêt de 
répondre à ce problème par 
rapport aux attentes de la 
société ?

companies hesitate to use robots because of the lack of programming experts, allowing non-
experts to program robots would increase productivity, allow untrained personnel to work with 
robots and therefore open a market to program robots without needing to write code

Quels sont les auteurs ou 
références bibliographiques 
à utiliser ?

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot programming by demonstration. In 
Springer Handbook of Robotics, pages 1371–1394. Springer, 2008
[2] Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from 
demonstration. Robotics and autonomous systems, 57(5), 469-483.
[3] Abdo, N., Kretzschmar, H., Spinello, L. and Stachniss, C. Learning manipulation actions from 
a few demonstrations. In 2013 IEEE International Conference on Robotics and Automation 
(ICRA), (pp. 1268-1275). IEEE.
[4] M. Ghallab, D. Nau, and P. Traverso. Automated planning: theory & practice. Elsevier, 2004
[5] Alexandrova, S., Cakmak, M., Hsiao, K., & Takayama, L. (2014, July). Robot Programming by 
Demonstration with Interactive Action Visualizations. In Robotics: science and systems.
[6] M.Stenmark,M.Haage,and E.A.Topp,“Simplified programming of re-usable skills on a safe 
industrial robot: Prototype and evaluation,” in Intl. Conf. on Human-Robot Interaction. ACM, 
2017, pp. 463–472.

Qu'est ce qui a été fait dans 
le domaine académique pour 
résoudre le problème ?

Programming by demonstration [1,2] has been commonly applied to allow end-users to teach 
robots task goals or policies by demonstration. Recent work has focused on industrial 
manipulators [6] and mobile manipulators [5]. Most closely related to our work are Alexandrova et 
al. [5], who created an end-user programming framework with an interactive action visualisation 
but without task planning; and Abdo et al. [3] that teach manipulation actions from few 
demonstrations and a symbolic planner is used to achieve goals, but does not provide an 
graphical interface for end-users to set their own goals.

Quelles sont les 
méthodologies présentes 
dans les publications ? 
Comment la construction et 
l'évaluation ont été réalisées 
?

Abdo et al. [3] takes multiple demonstrations and uses k-means and entropy to deduce action 
conditions from demonstrations. They evaluated their system with experiments on teaching the 
robot to stack blocks, pour from a bottle and to open a door programmed.

Alexandrova et al. [5] interactive action visualization to program the robot and evaluates the 
system on 12 benchmark tasks as well as a user study (N=10) for box closing tasks, stacking 
cups, and putting objects into a box.

Stenmark et al. [6] uses assembly tasks to pick and stack lego blocks and compares the 
performance of non-experts with reusable tasks (N=3x7 participants).

Quelles sont les avancées 
technologiques sur le sujet ?

dynamic activable tool in the form of a software prototype

Qu'est ce qui a été fait dans 
le domaine technique pour 
résoudre le problème ?

The main motivation for my thesis is to allow end-users to program robots, without writing explicit 
code. We implemented a system for teaching robots atomic actions with conditions that can be 
used by symbolic planners to solve more complex problems. Using the system, the user interacts 
with the graphical interface to customise the taught action and its conditions, to activate the 
robot’s perception to detect objects on the table, to teach it a new action by kinesthetic 
manipulation of its arms, and to activate the robot’s action condition generation.
The robot’s learning algorithm generalises the actions to different environments and reuses them 
to autonomously generate solutions to problems that go beyond the learned actions. The user 
can create a new problem with a goal to achieve (e.g. stacking objects) and execute the actions 
on the robot.



Par rapport au problème 
posé, quels sont les 
manques ? Que reste-t-il à 
résoudre ?

The state of the art in Programming by Demonstration uses demonstrations to teach robots 
whole action sequences to reach a goal. When the goal changes, a new action sequence needs 
to be taught. This can be very time consuming.
This is why we want to teach the robot atomic actions and their conditions, which together can be 
combined with a task planner to achieve a variety of different goals.
Now that we have created a system that addresses this problem, we need to evaluate its 
usability in terms of end-user experiments as a proof of concept.

A quoi ces résultats vont-ils 
servir ? et à qui ?

The results from the user study in the form of human-robot experiments will contribute to the 
evaluation of this proposed framework and the proof of concept.

Quelle valeur ajoutée allez 
vous apporter ?

Rédiger ce que votre recherche ajoutera à la connaissance scientifique actuelle.

The implemented real-world system to be used for robot programming by non-experts together 
with its user study will contribute to the robotics research community to compare with state-of-
the-art end-user robot programming frameworks and show that it is possible for end-users 
without programming knowledge to teach robots new actions for complex tasks.



Protocole Expérimental
Catégorie Eléments à renseigner Description de l’élément

Suivi du 
document

Date de création :
04/11/2018

Date à laquelle le document est 
créé

Dates de modification Dates des modifications 
successives du documents

auteur(s) du document
Ying Siu Liang - Experimenter

Acteurs internes : Nom et rôle

Objectifs Nom de l’expérimentation:
End-user Robot Programming
of Action models
for Symbolic planning tasks

Donner un nom à l’
expérimentation

Objectif de l'expérimentation:

The results from the user study in the form of human-robot experiments will 
contribute to the evaluation of the implemented robot programming 
framework and the proof of concept.

Décrire à quoi cette 
expérimentation va servir

Questions ou hypothèses :
H1 The user can teach the robot a new action
The user can teach the robot an action by demonstration The user 
successfully executed the taught action on the robot at least once The user 
can associate correct preconditions & effects to the robotH2 The user can 
create a new problem on the GUI
The user can define the problem states The user can define the goal states 
to solve this problem The user understands the plan generated by the 
automated plannerH3 The user understands the system
If no plan is generated, the user can troubleshoot on their own The user 
knows can navigate within the system on their own

Indiquer les questions et les 
hypothèses qui devront trouver 
des éléments de réponses lors 
de cette expérimentation

Outils et 
composants 
activables

The dynamic activable tool is the robot programming software prototype) 
and will evaluate the following components:
Action: perception demonstration action model creation Problem: initial 
state goal state generated plan

Lister les différents composants 
de l'outil activables qui vont être 
construits ou évaluer lors de l’
expérimentation.

Action: perception: activate object detection on the robot and verify objects 
are correct demonstration: move robot’s arm to teach the action and save 
arm poses action model: generate conditions and verify/modify them 
Problem: initial state: activate object detection on the robot and verify 
objects are correct goal state: enter predicates to describe the goal state 
generated plan: verify the plan is correct and execute on robot

Indiquer l’état des composants et 
comment l’utilisateur peut les 
utiliser lors de l’expérimentation 
(p.ex., statique, dynamique, non 
manipulable)

Production 
des 
données

Méthodes de production :
quantitative
user tests + questionnaire

Indiquer le type de méthode 
choisie (qualitatives, quantitative 
ou mixtes). Préciser les 
méthodes de production utilisées 
(p.ex., questionnaire, tests 
utilisateurs, construction de 
maquettes)

Matériel technique :
video+audio recording of all experiments

Indiquer le matériel technique 
nécessaire à avoir pour la 
capture des données (p.ex., 
caméra, enregistreur)

Matériel expérimental
protocol, questionnaire, consent form

Lister le matériel expérimental à 
construire pour réaliser 
l'expérimentation (p.ex., 
présentation, questionnaire)

Matériel et données produites
video recording, number of tasks successfully implemented, time taken for 
each task

Indiquer tout le matériel et les 
données produits lors de cette 
passation (schéma, audio, 
traces)

Utilisateurs Nombre d'utilisateurs : 15-20 Indiquer le nombre d'utilisateurs 
prévus pour cette passation.

Profil des utilisateurs :
English speakers of any background
We will use a logic test to evaluate their reasoning abilities as a benchmark

Indiquer qui sont les utilisateurs 
qui vont être mobilisés et 
pourquoi

Lieu de passation
lab

Indiquer le lieu où la passation 
aura lieu (p.ex., in lab, in situ)



Utilisateurs

Recrutement
users will be recruited from LIG, other labs, and acquaintances (lab’s family 
members, Grenoble PhD communities, sport groups etc.) by sending out 
emails or posting flyers

Indiquer comment le recrutement 
des utilisateurs est fait

Mode passation
experiments will be one by one

Indiquer si les utilisateurs sont 
consultés seuls ou en groupe

Ethique et déontologie
we will have each user sign a consent form at the start of the experiment

Indiquer les démarches auprès 
de la CNIL ou d’un comité d’
éthique pour déclarer l’
expérimentation

Planning Planning
06/11 Send Nadine documents
12/11 Write experimental protocole
run pre-tests with Damien/Humbert/Sylvie
20/11 final meeting with Nadine, recruit participants
21/11 prétests with team members
26/11 run experiments
03/12 evaluate results

Indiquer à gros grain les étapes 
de l’expérimentation. (un 
planning précis des jours et 
dates des passations est aussi 
établi).

Analyse des 
données

Outils de codage
excel spreadsheet (for noting down start/end times, tasks successfully 
completed etc.)
questionnaire on google docs

Lister les outils nécessaires pour 
coder les données (p.ex., grille d’
annotation)

Méthodes et outils d’analyse de données
googcsle do provides data analysis for the questionnaire
excel spreadsheets to generate charts entered

Lister les outils et méthodes d’
analyse pressentis pour analyser 
les données. Préciser le plan de 
traitement prévisionnel
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Robot Programming Study Questionnaire
* Required

Participant number *1. 

Age *2. 

Gender *
Mark only one oval.

Female

Male

Prefer not to say

Other:

3. 

Main field of study *
Mark only one oval.

Business, Management, and Law

Earth and Environmental Sciences

Engineering

Geography, Urban and Regional Planning

Health Sciences, Life Sciences, and Chemistry

Mathematics and Computer Science

Physics and Materials Science

Other:

4. 

What is your level of familiarity with programming languages? *
Mark only one oval.

1 - No experience

2 - Novice: you have experience with MS Word, Excel, PowerPoint, etc.

3 - Intermediate: you have taken a programming course before (<2 year
experience)

4 - Advanced: you are currently pursuing a degree in Computer Science (>=2
years experience)

5 - Expert: you have completed a degree in Computer Science

5. 



What is your level of familiarity with symbolic planning languages (e.g. STRIPS,
PDDL)? *
Mark only one oval.

1 - No experience

2 - Novice: you have heard of them before but never used them.

3 - Intermediate: you have taken a course before

4 - Advanced: you have worked on a project before (<2 years experience)

5 - Expert: you are actively working on a project (>=2 years experience)

6. 

Have you previously programmed a robot? *
Mark only one oval.

Yes

No

7. 

If yes, what kind of robot and which
platform/programming language did you
use?

8. 

Concepts and terminology
The following questions are to make sure you understood the concepts needed for the next 
tasks. Try to answer what seems correct.

Which action corresponds to the above described move action?
Mark only one oval.

move(obj1, posC, posB)

move(obj2, posC, posB)

move(obj1, obj2, posC, posB)

move(obj1, obj2, posC, posB, posA, posD)

9. 

Observe the image sequence below describing an action
to move an object.

(same action as above)



Tick all predicates that are required as preconditions for the given move action.
Hint: tick only those that are necessary for the given action *
Check all that apply.

obj1 is clear

obj2 is clear

obj1 is on posA

obj2 is on posC

posA is not clear

posB is clear

posC is not clear

obj1 is stackable on posA

obj1 is stackable on posB

obj2 is stackable on posB

obj2 is stackable on posC

10. 

(same action as above)



Robot Programming - Post-Study Questionnaire
Please submit feedback regarding the study you have just completed, including feedback 
on the robot programming process, user interface, or any difficulties you encountered.

* Required

Participant number *1. 

Overall system usability *
Mark only one oval per row.

Strongly
disagree Disagree Neutral Agree Strongly

agree

I think that I would like to
use this system
frequently.
I found the system
unnecessarily complex.
I thought the system was
easy to use.
I think that I would need
the support of a technical
person to be able to use
this system.
I found the various
functions in this system
were well integrated.
I thought there was too
much inconsistency in
this system.
I would imagine that most
people would learn to use
this system very quickly.
I found the system very
cumbersome to use.
I felt very confident using
the system.
I needed to learn a lot of
things before I could get
going with this system.

2. 



Overall robot programming experience *
Mark only one oval per row.

Strongly
disagree Disagree Neutral Agree Strongly

agree

It was easy to manipulate
the Baxter's arms
The robot programming
process is well-adapted
for workers on the
assembly line
Baxter's behaviour was
intelligent
I believe that I have
taught Baxter a new task
I can explain how Baxter
represented the new
action
I can explain how Baxter
learned a new action from
my demonstration
I can explain how Baxter
represented the
preconditions and effects
of the new action
I did not encounter any
difficulties during the
experiment
No programming
experience is required to
teach Baxter a new task
I understood why the
generated plan was
wrong
I understood why Baxter
failed to complete a task
Overall, I am satisfied
with the ease of
completing the tasks in
the scenarios
Overall, I am satisfied
with the amount of time it
took to complete the
tasks
If I was a factory worker
on an assembly line, it
would be easy for me to
become skillful at using
the system

3. 



What was the most useful part? *
Mark only one oval.

Detects types automatically

Objects are visualised on the interface

Robot learns the action from my demonstration

Detects conditions automatically

Generate solutions to defined goal automatically

Other:

4. 

What part of the programming process did you dislike the most? *
Mark only one oval.

Demonstrate an action on Baxter

Assign action conditions

Create a problem for Baxter to solve

Setting a goal

Execute a generated plan

Other:

5. 

What part of the programming process did you like the best? *
Mark only one oval.

Demonstrate an action on Baxter

Assign action conditions

Create a problem for Baxter to solve

Setting a goal

Execute a generated plan

Other:

6. 

What was the most difficult part of the experiment?7. 



Appendix F

PDDL code used in Chapter 7

F.1 iRoPro planning domain

(define (domain iRoPro)

(:requirements :typing :strips)

(:types

element

position - element

object - element

cube - object

base - object

roof - object )

(:predicates

(clear ?e - element)

(thin ?e - element)

(flat ?e - element)

(on ?obj2 - object ?obj1 - element)

(stackable ?obj2 - object ?obj1 - element)

)

(:action move-vacuum

:parameters (?obj - object ?fromLoc - element ?toLoc - element)

:precondition (and (on ?obj ?fromLoc)

(clear ?toLoc)

(not(clear ?fromLoc))

(flat ?obj)
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(stackable ?obj ?toLoc)

(clear ?obj) )

:effect (and (on ?obj ?toLoc)

(not(clear ?toLoc))

(clear ?fromLoc)

(not(on ?obj ?fromLoc)) )

)

(:action move-grip

:parameters (?obj - object ?fromLoc - element ?toLoc - element)

:precondition (and (on ?obj ?fromLoc)

(clear ?toLoc)

(not(clear ?fromLoc))

(thin ?obj)

(stackable ?obj ?toLoc)

(clear ?obj) )

:effect (and (on ?obj ?toLoc)

(not(clear ?toLoc))

(clear ?fromLoc)

(not(on ?obj ?fromLoc)) )

)

(:action side-pp

:parameters (?obj - object ?fromLoc - element ?toLoc - element)

:precondition (and (on ?obj ?fromLoc)

(clear ?toLoc)

(thin ?obj)

(stackable ?obj ?fromLoc)

(not(clear ?obj)) )

:effect (and (on ?obj ?toLoc)

(not(clear ?fromLoc))

(clear ?fromLoc)

(not(on ?obj ?fromLoc)) )

)

)
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F.2 iRoPro planning problems

(define (problem study-task3-swap)

(:domain iRoPro)

(:objects

posA posB posC posM - position

obj1 obj2 - base)

(:init (clear obj1) (on obj1 posA) (clear obj2) (on obj2 posB)

(clear posC) (not(clear posB)) (not(clear posA)) (clear posM)

(stackable obj1 obj2) (stackable obj1 posA) (stackable obj1 posB)

(stackable obj1 posC) (stackable obj1 posM) (flat obj1)

(stackable obj2 obj1) (stackable obj2 posA) (stackable obj2 posB)

(stackable obj2 posC) (stackable obj2 posM) (flat obj2)

(flat posA) (flat posB) (flat posC) (flat posM))

(:goal (on obj1 posB) (on obj2 posA) )

)

(define (problem blocksworld-task2)

(:domain iRoPro)

(:objects

posA posB posC posD posE posM - position

obj1 - base

obj2 obj3 obj4 - roof)

(:init (clear obj1) (on obj1 posB) (clear obj2) (on obj2 posM)

(clear obj3) (on obj3 posC) (clear obj4) (on obj4 posE)

(not(clear posC)) (not(clear posM)) (clear posA) (not(clear posB))

(clear posD) (not(clear posE)) (stackable obj1 posA)

(stackable obj1 posB) (stackable obj1 posC) (stackable obj1 posD)

(stackable obj1 posE) (stackable obj1 posM) (flat obj1)

(stackable obj2 obj1) (stackable obj2 posA) (stackable obj2 posB)

(stackable obj2 posC) (stackable obj2 posD) (stackable obj2 posE)

(stackable obj2 posM) (thin obj2) (stackable obj3 obj1)

(stackable obj3 posA) (stackable obj3 posB) (stackable obj3 posC)

(stackable obj3 posD) (stackable obj3 posE) (stackable obj3 posM)

(thin obj3) (stackable obj4 obj1) (stackable obj4 posA)

(stackable obj4 posB) (stackable obj4 posC) (stackable obj4 posD)

(stackable obj4 posE) (stackable obj4 posM) (thin obj4) (flat posA)

(flat posB) (flat posC) (flat posD) (flat posE) (flat posM))

184



(:goal (and (on obj1 posM) (on obj3 obj1)

(on obj4 obj3) (on obj2 obj4)

)))

(define (problem blocksworld-task34)

(:domain iRoPro)

(:objects

posA posB posC posD posE posM - position

obj1 obj2 obj3 obj4 - roof)

(:init (clear obj4) (clear posC) (clear posB) (clear posE)

(on obj1 obj2) (on obj3 obj1) (on obj4 obj3) (on obj2 posM)

(stackable obj1 posA) (stackable obj1 posB) (stackable obj1 posC)

(stackable obj1 posD) (stackable obj1 posE) (stackable obj1 posM)

(thin obj1) (stackable obj2 posA) (stackable obj2 posB)

(stackable obj2 posC) (stackable obj2 posD) (stackable obj2 posE)

(stackable obj2 posM) (thin obj2) (stackable obj3 posA)

(stackable obj3 posB) (stackable obj3 posC) (stackable obj3 posD)

(stackable obj3 posE) (stackable obj3 posM) (thin obj3)

(stackable obj4 posA) (stackable obj4 posB) (stackable obj4 posC)

(stackable obj4 posD) (stackable obj4 posE) (stackable obj4 posM)

(thin obj4) (flat posA) (flat posB) (flat posC) (flat posD)

(flat posE) (flat posM))

(:goal (and (on obj1 obj2) (on obj3 obj1)

(on obj4 obj3) (on obj2 posB)

)))
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