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La famille des kinases Src, dont Lyn fait partie, joue un rôle clé dans le contrôle de 
nombreux processus biologiques. Lyn a une fonction bien établie dans les cellules 
hématopoïétiques, jouant un rôle important dans la régulation des désordres hématopoïétiques. 
Lyn est notamment impliqué dans le maintien de différentes leucémies et son expression 
protéique est altérée dans les tumeurs solides. Plusieurs études ont mis en évidence qu’elle 
avait un rôle anti-apoptotique. Lyn peut être clivée par les caspases, protéases à cystéine 
impliquées dans l’apoptose et l’inflammation, ce qui donne une protéine tronquée avec une 
localisation subcellulaire, cytosolique, différente de la forme entière membranaire. Ainsi, elle 
pourra avoir accès à de nouveaux substrats qui expliqueraient son rôle de suppresseur de la 
mort cellulaire par apoptose. Nous avons ainsi montré que Lyn cytosolique (cLyn) régulait Bim, 
un membre pro-apoptotique de la famille Bcl-2, impliqué dans le contrôle de l’apoptose 
mitochondriale en le phosphorylant sur les tyrosines 92 et 161. Cette modification post-
traductionnelle entraîne une inhibition de la fonction pro-apoptotique de Bim, en augmentant 
son interaction avec les membres anti-apoptotiques tels que Bcl-XL, limitant ainsi la 
perméabilisation de la membrane externe mitochondriale et l’apoptose des cellules.  

Lyn possède également un rôle pro-inflammatoire. Nous avions préalablement montré 
que la surexpression de cLyn, chez la souris, conduit à un syndrome inflammatoire de la peau, 
ressemblant au psoriasis humain. Sur la base de ce résultat, nous avons voulu savoir si la 
tyrosine kinase Lyn jouait un rôle dans cette maladie chronique de la peau, qui est caractérisée 
par une différenciation anormale des kératinocytes et une augmentation de l’infiltrat 
immunitaire, conduisant à la formation de plaques de psoriasis, la principale caractéristique 
clinique de la maladie. L’analyse de l’expression de Lyn chez des patients souffrant de psoriasis 
a montré que Lyn était surexprimée dans la peau lésionnelle par rapport à la peau non 
lésionnelle ou saine, résultats confirmés dans deux modèles de psoriasis chez la souris. De 
façon intéressante, nous avons montré que l’augmentation de l’expression de Lyn se situe à la 
fois dans le derme et dans l’épiderme chez l’homme et chez la souris, indiquant que le 
recrutement de cellules immunitaires dans la peau lésionnelle mais aussi la modulation de Lyn 
dans les kératinocytes sont impliqués. Par ailleurs, une augmentation de l’expression de Lyn a 
été observée dans les kératinocytes humains stimulés par le TNF-α et l'IL-17A, deux cytokines 
importantes dans le psoriasis. Afin de déterminer le rôle de Lyn dans cette maladie cutanée 
nous l’avons induit chez des souris déficientes pour Lyn. Une réduction significative du 
phénotype cutanée a été observée dans les souris LynKO par rapport aux souris WT, identifiant 
Lyn comme un nouvel acteur dans la pathogénie du psoriasis. De plus, nos résultats ont établi 
que l’expression de Lyn dans les kératinocytes semblait cruciale et suffisant pour le maintien du 
phénotype psoriasique, indiquant un nouveau rôle de Lyn dans la régulation des kératinocytes. 

Au cours de ce travail, nous avions observé que les caspases inflammatoires étaient 
activées dans la peau lésionnelle de patients atteints du psoriasis. Les caspases 
inflammatoires, suite à leur activation au sein de l’inflammasome, vont cliver l’IL-1β et l’IL-18, ce 
qui conduit à leur maturation. Elles jouent donc un rôle important dans le contrôle de 
l’inflammation en réponse à un agent pathogène mais participent également à la pathogénie de 
nombreuses maladies inflammatoires, comme le diabète et l’obésité.  Nous avons alors voulu 
savoir si les caspases participaient au développement du psoriasis. Nous avons pu montrer que 
lorsque nous induisions une maladie semblable au psoriasis chez des souris, l’invalidation des 
caspases inflammatoires ou son inhibition pharmacologique réduisait de façon significative le 
développement de la maladie par rapport aux souris WT. Bien que les cellules immunitaires et 
les kératinocytes soient capables de secréter de l’IL-1β via l’activation de l’inflammasome, nos 
données ont établi que seule l’activation des caspases inflammatoires dans le système 
immunitaire semblait nécessaire pour une réponse inflammatoire complète.  

En résumé, l’ensemble de mon travail de thèse a permis de montrer un mécanisme 
moléculaire par lequel la kinase Lyn régule négativement la voie apoptotique mitochondriale, ce 
qui peut contribuer à la transformation et/ou la résistance des cellules cancéreuses. D’autre 
part, nos résultats montrent que Lyn pourrait être un régulateur important du psoriasis, et notre 
étude indique que les caspases inflammatoires activées dans les cellules immunitaires sont 
impliquées dans la pathogenèse du psoriasis. A ce jour, bien que plusieurs traitements aient été 
développés pour le psoriasis, la maladie reste non résolue, donc le développement de cibles 
thérapeutiques contre Lyn et les caspases inflammatoires pourraient être intéressant pour le 
traitement de la maladie. 
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totalmente juntos. Te quiero, te adoro, te amo y ahora te toca terminar a ti. Sé que lo 
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siempre presente y WELCOME PHILADELPHIA! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

  

   



1 
 

TABLE OF CONTENTS 
 

LIST OF ABBREVIATIONS ...................................................................................................... 4 

LIST OF FIGURES ..................................................................................................................... 8 

LIST OF TABLES ....................................................................................................................... 9 

FOREWORD ............................................................................................................................. 11 

INTRODUCTION ...................................................................................................................... 15 

I. Src family of non-receptor tyrosine kinase .................................................................... 17 

I.I. Definition, subfamilies ................................................................................................ 17 

I.II. Structure ...................................................................................................................... 19 

I.III. Localization of SFK ................................................................................................... 24 

a) Within the tissues ..................................................................................................... 24 

b) Within the cells ......................................................................................................... 25 

I.IV. SFK activity regulation ............................................................................................. 26 

a) Inactive and active forms ........................................................................................ 26 

b) Activation mechanisms of SFK .............................................................................. 27 

(i) Regulation by protein-protein interactions ....................................................... 27 

(ii) Regulation by phosphorylation and dephosphorylation ................................ 29 

c) Inactivation mechanisms of SFK ........................................................................... 31 

d) Redox-dependent regulation of SFK .................................................................... 34 

I.V. Regulation of SFK expression ................................................................................. 34 

a) At the mRNA level.................................................................................................... 34 

b) At the protein level ................................................................................................... 35 

I.VI. Physiological roles of SFK ...................................................................................... 36 

a) Physiological functions of SFK in tissues ............................................................. 39 

(i) In bones ................................................................................................................. 39 

(ii) In the nervous system ........................................................................................ 40 

(iii) In the hematopoietic system ............................................................................. 41 

b) Physiological functions of SFK in biological processes ..................................... 41 

(i) In cell differentiation ............................................................................................. 41 

(ii) In mitochondrial functions .................................................................................. 42 

II. Lyn tyrosine kinase .......................................................................................................... 43 



2 
 

II.I. General presentation of Lyn tyrosine kinase ......................................................... 43 

II.II. Localization of Lyn tyrosine kinase ........................................................................ 44 

a) Within the tissues ..................................................................................................... 44 

b) Within the cells ......................................................................................................... 45 

II.III. Role of Lyn tyrosine kinase .................................................................................... 46 

a) In signaling ................................................................................................................ 46 

b) In cells ........................................................................................................................ 48 

(i) B cells .................................................................................................................... 48 

(ii) Myeloid cells ........................................................................................................ 51 

(iii) Osteoclast ........................................................................................................... 52 

c) In biological processes ............................................................................................ 53 

(i) Implication of Lyn tyrosine kinase in cell death ............................................... 53 

(ii) Implication of Lyn tyrosine kinase in inflammation ......................................... 58 

 Role of Lyn in allergy ........................................................................................ 58 

 Controversial roles of Lyn in asthma ............................................................. 59 

 Roles of Lyn in other inflammatory diseases ............................................... 60 

III. Apoptosis .......................................................................................................................... 62 

III.I. Bcl-2 family members ............................................................................................... 63 

III.II. Bim ............................................................................................................................. 64 

III.III. Caspases ................................................................................................................. 67 

a) Caspases and inflammation ................................................................................... 68 

IV. Psoriasis disease ............................................................................................................ 73 

IV.I. Is it psoriasis an autoimmune disease or an autoinflammatory syndrome? ... 73 

IV.II. General characteristics of psoriasis disease ....................................................... 74 

IV.III. Genetic susceptibility of psoriasis disease ......................................................... 75 

IV.IV. Environmental triggers of psoriasis disease ...................................................... 78 

IV.V. Clinical classification of psoriasis ......................................................................... 79 

IV.VI. Histological features of psoriasis ......................................................................... 80 

IV.VII. Clinical disease assessment ............................................................................... 81 

IV.VIII. Psoriasis pathogenesis ....................................................................................... 82 

a) Principal cell types involved in psoriasis development ...................................... 83 

b) Principal cytokines implicated in psoriasis pathogenesis .................................. 85 

IV.IX. Keratinocytes and psoriasis ................................................................................. 88 

IV.X. Psoriasis treatment ................................................................................................. 89 



3 
 

IV.XI. Mouse models of psoriasis disease .................................................................... 91 

RESULTS .................................................................................................................................. 95 

RESUME ARTICLE 1: ......................................................................................................... 97 

The oncogenic tyrosine kinase Lyn impairs the pro-apoptotic function of Bim ........... 97 

RESUME ARTICLE 2: ......................................................................................................... 99 

Caspase 1/11 deficiency or pharmacological inhibition mitigates the psoriasis-like 
phenotype in mice ................................................................................................................ 99 

RESUME ARTICLE 3: ....................................................................................................... 101 

Lyn tyrosine kinase: a pivotal factor in psoriasis pathogenesis ................................... 101 

DISCUSSION AND PERSPECTIVES ................................................................................. 103 

Role of the Lyn tyrosine kinase in cell death .................................................................. 105 

Role of pro-inflammatory caspases in Psoriasis ............................................................ 109 

Role of Lyn tyrosine kinase in Psoriasis development ................................................. 116 

CONCLUSION ........................................................................................................................ 123 

REFERENCES ....................................................................................................................... 127 

ANNEXES ................................................................................................................................ 177 

ARTICLE 4........................................................................................................................... 179 

ARTICLE 5........................................................................................................................... 181 

ARTICLE 6........................................................................................................................... 183 

CURRICULUM VITAE ........................................................................................................... 185 

LISTE DES PUBLICATIONS ................................................................................................ 190 

SUMMARY .............................................................................................................................. 193 

RESUME .................................................................................................................................. 197 

 

 

 

 

 

 

 



4 
 

LIST OF ABBREVIATIONS 
3-IB-PP1:  

Abl: 

AIM2:  

ALL: 

ALR:  

AML: 

ASC:  

ATP: 

BCL-2:  

BCR:  

BFK:  

BH: 

Bim: 

Blk:  

BMDM: 

Brk: 

BSA: 

Btk: 

CARD: 

Cbp-PAG1:  

 

Cbl: 

CCL: 

CD: 

CDK:  

Chk: 

CLL: 

CML: 

CRC: 

CRH:  

Csk: 

CTLA-4: 

Cyr61/CCN1: 

DAMP: 

DISC: 

3-iodobenzyl Analog of the kinase inhibitor PP1 

Abelson murine leukemia viral oncogene homolog 1 

Absent in melanoma 2 

Acute lymphoblastic leukemia  

AIM-2- like receptors 

Acute myeloid leukemia 

Apoptosis-associated speck-like protein containing C-terminal CARD  

Adenine triphosphate  

B-cell lymphoma -2 family 

B cell receptor  

Brk family kinases 

Bcl-2 homology 

Bcl-2 interacting mediator of cell death  

B lymphocytic kinase 

Bone marrow-derived macrophages 

Breast tumor kinase 

Body surface area 

Brutus tyrosine kinase 

Caspase recruitment domain-containing protein 

Csk-binding protein/phosphoprotein associated with 

glycosphingolipid-enriched microdomains 

Casitas B-cell lymphoma 

Chemokine ligand 

Cluster of differentiation 

Cyclin-dependent kinase 

Csk-homology kinase 

Chronic lymphocytic leukemia 

Chronic myeloid leukemia 

Colorectal cancer  

Corticotrophin-release hormone 

C-terminal kinase 

Cytotoxic T lymphocyte antigen 4 

Cysteine-rich protein angiogenic inducer 61 

Damage-associated molecular patterns 

Death-inducing signaling complex 



5 
 

DNA: 

DSS: 

EGF: 

ER:  

ERK: 

EMT: 

Fak: 

FcγR:  

FcεR:   

Fgr:  

FOxO: 

Frk:  

Fyn:  

Gab2:  

G-CSF:  

GM-CSF:  

GWAS: 

Hck:  

HDM: 

HIF-1α: 

HLA:  

HS1:  

HSP: 

IBD: 

Ig: 

IL: 

IL-2Rα+: 

ITAM: 

ITIM: 

IFN: 

IRF5: 

IRS-1: 

JNK: 

Lck: 

LPS: 

Lyn: 

MAPK: 

Deoxyribonucleic acid 

Dextran sulfate sodium 

Epidermal growth factor 

Endoplasmic reticulum 

Extracellular signal-regulated kinase 

Epithelial mesenchymal transition 

Focal adhesion kinase 

Fc gamma receptor 

Fc epsilon receptor 

Gadner-Rasheed feline sarcoma virus 

Forhead-box class O 

Fyn-related kinase  

Proto-oncogene tyrosine kinase 

Grb2-associated binder 2 

Granulocyte colony-stimulator factor 

Granulocyte macrophage colony-stimulator factor 

Genome-wide association studies 

Hematopoietic cell kinase  

House dust mite 

Hypoxia-inducible factor 1α 

Human leucocyte antigen 

Hematopoietic cell specific Lyn substrate 1 

Heat shock protein 

Inflammatory bowel disease 

Immunoglobulin 

Interleukin 

IL-2 plus diphtheria toxin 

Immunoreceptor tyrosine-based activation motifs 

Immunoreceptor tyrosine-based inhibitory motifs 

Interferon 

Interferon regulatory factor 5 

Insulin receptor substrate 1 

c-Jun N-terminal kinase 

Lymphocytic-specific protein tyrosine kinase 

Lipopolysaccharides 

Lck/Yes novel tyrosine kinase 

Mitogen-activated protein kinase 



6 
 

M-CSF: 

MHC: 

MMP: 

MOMP: 

MP2A: 

NFATc1:  

NF-κB: 

NOD: 

NLR: 

OVA: 

OXPHOS: 

PAMP: 

PASI 

PBMC: 

PDGF: 

PGA: 

Ph+: 

PI3K: 

PK: 

PLCγ1: 

PP:  

PSORS: 

PTP1B: 

PTP:  

PTPN:  

RANK:  

PUVA: 

RAS: 

Ras-GAP:  

RNA: 

ROS: 

Runx3: 

S100: 

SAPK: 

SFK: 

SLE: 

SH: 

Macrophage colony-stimulator factor 

Major histocompability complex 

Matrix metalloproteinase 

Mitochondrial outer membrane permeabilization 

Membrane protein 2A 

Nuclear factor of activated T cells c1 

Nuclear factor kappa B 

Nucleotide-binding oligomerization domain 

NOD-like receptors 

Ovalalbumin 

Oxidative phosphorylation 

Pathogen-associated molecular patterns 

Psoriasis Area Severity Index 

Peripheral blood mononuclear cells 

Platelet-derived growth factor 

Physician’s global assessment 

Philadelphia chromosome 

Phosphatidylinositol 3 kinase 

Protein kinase 

Phospholipase C gamma 1 

Protein phosphatase 

Psoriasis susceptibility 

Protein-tyrosine phosphatase non-receptor type 1B 

Protein-tyrosine phosphatase  

Protein-tyrosine phosphatase non-receptor type 

Receptor activator of NF-κB 

8-methoxypsoralen ultraviolet light A 

Rat sarcoma virus oncogene 

ras-GTPase activating protein 

Ribonucleic acid 

Reactive oxygen species 

Run-related transcription factor 3 

S100 calcium binding proteins 

Stress-activated protein kinase 

Src family of non-receptor proteins kinases 

Systemic lupus erythematosus 

Src homology 



7 
 

SHIP1: 

SHP: 

SNP: 

Src: 

SOCS1: 

Srm: 

 

SPT: 

STAT: 

Syk: 

TCR: 

TLR: 

Th: 

TNF: 

Tom1L1: 

UD: 

ULBR: 

VEGF: 

WT: 

Yes: 

Yrk: 

 

 

SH2-containing inositol phosphatase 

Src homology 2 domain-containing tyrosine phosphatase 

Single nucleotide polymorphism 

Short of sarcoma virus oncogene 

Suppressor of cytokine signaling 1 

Src-related kinase lacking C-terminal regulatory tyrosine and N-

terminal myristoylation sites 

Serine palmitoyltransferase 

Signal transducer and activator of transcription  

Spleen tyrosine kinase 

T cell receptor 

Toll like receptor 

T-helper 

Tumor necrosis factor 

Target of myb1-like 1 

Unique domain 

Unique lipid binding regions 

Vascular endothelial growth factor 

Wild type 

Yamaguchi sarcoma virus oncogene 

Yes-related tyrosine kinase 

 

 

 

 

 

 

 

 



8 
 

LIST OF FIGURES 
Figure 1:  

Figure 2: 

Figure 3: 

Figure 4: 

Figure 5: 

Figure 6: 

Figure 7: 

Figure 8: 

Figure 9: 

Figure 10: 

Figure 11: 

Figure 12: 

Figure 13: 

Figure 14: 

Figure 15: 

Figure 16: 

Figure 17: 

Figure 18: 

 

Figure 19: 

Figure 20: 

Figure 21: 

Figure 22: 

Figure 23: 

Figure 24: 

 

Figure 25: 

 

 

 

 

 

 

Families of tyrosine kinase proteins 

General structure of SFK members 

Inactive and active conformations of SFK 

Activation and inactivation mechanisms of SFK 

Related-receptors to SFK activation 

Implication of SFK in different signaling pathways 

Schematic representation of Lyn tyrosine kinase 

Lyn regulation of signaling pathways 

BCR signaling 

Positive and negative regulatory effect of Lyn 

Lyn mutations in genetically engineered mice 

Subcellular localization of cLyn 

Principal phenotypical characteristic of cLyn mice 

Two major apoptosis pathways 

Bcl-2 family members  

Bcl-2 family members control cell life and death 

Bim isoforms 

Domain organization and classification of human 

caspases  

Canonical and non-canonical inflammasomes                                           

Histological features of psoriasis disease 

Inflammatory pathways in both phases of psoriasis 

Inflammatory triangle in psoriasis pathogenesis 

Recapitulative schema of the anti-apoptotic role of Lyn 

Recapitulative schema of the role of pro-inflammatory 

caspases in psoriasis 

Recapitulative schema of the role of Lyn tyrosine kinase 

in psoriasis 

 

 

 

 

 

 

18 

20 

27 

31 

36 

39 

44 

47 

48 

49 

51 

55 

61 

62 

64 

65 

66 

 

67 

70 

81 

84 

86 

108 

 

115 

 

121 

 

 



9 
 

LIST OF TABLES 
Table 1: 

Table 2: 

Table 3: 

Table 4: 

Table 5: 

Table 6: 

Table 7: 

Table 8: 

Table 9:  

Table 10:  

Table 11: 

Table 12: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Members and molecular weights of the SFK 

Amino acid alignments of SFK 

Expression of the SFK proteins 

Phosphorylation sites of SFK 

Principal substrates of SFK 

Phenotype of mice deficient for SFK  

Dual role of Lyn modulating myeloid-cell signaling 

Roles of Lyn in inflammation 

Classification of psoriasis comorbidities  

Genetic-associated loci related with psoriasis development  

Clinical classification of psoriasis disease 

Targeted therapies in psoriasis treatment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 

22 

25 

29 

38 

40 

52 

58 

75 

77 

79 

91 

 

 

 

 

 

 



10 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

 

 

 

 

 

 

 

FOREWORD 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Members of the Src family are non-receptor protein tyrosine kinases, which have 

been implicated in several cellular signaling processes regulating cell growth, 

differentiation, apoptosis, migration, immune response, adhesion and metabolism. 

Specifically, Lyn is a member of these intracellular-associated kinases, which shares 

structure and regulation mechanisms with the other members of the family. 

While Lyn was originally identified as a hematopoietic kinase due to its crucial 

role in B cell receptor and myeloid cells presenting a positive and a negative role, 

nowadays; it is well known that Lyn is expressed in many tissues. In fact, Lyn is 

involved in the transmission of signal coming from different cellular receptors and is 

implicated in the phosphorylation of several substrates, mediating the activation or 

inhibition of different cellular processes.  

Deregulation of Lyn expression results in antibody-mediated autoimmune disease 

and an increase in its expression and/or activity has been associated to malignant 

diseases and resistance to treatment. Indeed, a caspase-dependent cleaved form of 

Lyn was associated to negative control of apoptosis, which could be related with 

chemoresistance in hematological cancer. 

Thus, during the first part of my thesis, we were highly interested in 

understanding the mechanism, by which, this particular form of Lyn acted, in vitro, as 

an apoptosis suppressor. 

Moreover, and quite the contrary to its in vitro role, the overexpression in mice of 

this caspase-cleaved form of Lyn induces a psoriasis-like phenotype, suggesting a 

possible function of this protein in this skin pathology. Psoriasis is a chronic immune-

mediated disorder with a strong genetic basis affecting around 125 million people 

worldwide, whose incidence is increasing. It is a disease with negative effects on the 

quality of life of the patient and the patient’s family, which has been unfortunately 

related to social stigmatization and discomfort, impairing the interpersonal relationships 

as well as impacting sexual well-being and capacity for intimacy. In fact, psoriasis 

patients usually express feeling shame, guilt, and they manifest discrimination and 

difficulty to obtain an employment; which has contributed to anxiety and depression; 

thus conferring significantly physical and psychological distress. Although no cure 

exists today for psoriasis, several treatments have been developed, which are 

prescribed depending on the severity of the symptoms. However, this common skin 

disease is a complex multifactorial disease, which has been linked to several 

comorbidities, thus it requires a multidisciplinary approach to understand its genetic 

and immunological bases, because albeit the pathogenicity of this disease is fairly well 
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understood, the etiology remains uncertain. Therefore, identification of differentially 

expressed genes in psoriasis lesions could lead to the development of new specific 

biological treatments.  

Thus, during the second and the third part of my thesis, we were focused in 

comprehending the role of pro-inflammatory caspases and Lyn tyrosine kinase in the 

development of psoriasis. 
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Tyrosine phosphorylation is one of the most important covalent modifications 

carried out in multicellular organisms as consequence of intracellular communications 

during embryogenesis and maintenance of adult tissues. This process is produced by 

enzymes called protein tyrosine kinases which catalyze the transfer of gamma-

phosphate group from one molecule of adenine triphosphate (ATP) to hydroxyl groups 

located in tyrosine residues from protein substrates (Hubbard and Till, 2000). In 

general, tyrosine kinases are a huge group of proteins presenting in all cellular types, 

which have been classified into two big families according to their cellular localization. 

The first family is named transmembrane receptor protein tyrosine kinase that includes 

58 members organized in 20 sub-families (Lemmon and Schlessinger, 2010) and the 

second family is called non-receptor protein tyrosine kinase, with a cytosolic 

localization and composed by 32 members that fall into 10 subfamilies (Tsygankov, 

2003) (Figure 1). The largest subfamily of non-receptor protein kinases and principal 

focus of this thesis is the Src family, which has been implicated in several cellular 

processes such as cell growth, differentiation, adhesion, migration and survival 

(Roskoski, 2015; Ingley, 2012; Ingley, 2008; Tsygankov, 2003; Hubbard and Till, 2000). 

 

I. Src family of non-receptor tyrosine kinase 

I.I. Definition, subfamilies 

The Src family proteins of non-receptor tyrosine kinases (SFK) play a key role in 

the regulation of signal transduction through a diverse set of cell surface receptors due 

to several stimuli (Parsons and Parsons, 2004). Although the protein which gives the 

name to the family, Src, was discovered one hundred years ago; the understanding of 

the activity of its members, in terms of both mediators of biological signal and kinases, 

is quite recent (Martin, 2001). In fact, through the research of Dr Peyton Rous in 1911 

on a chicken tumor produced by the Rous sarcoma virus (Weiss and Vogt, 2011), the 

protein v-Src was discovered. First associated to a viral oncogene, several years after 

it was demonstrated that c-Src (hereafter referred as Src) is the normal cellular 

homologue, which is encoded by a physiological gene (Stehelin et al, 1976), being the 

first proto-oncogene to be described and characterized.     

This family of proto-oncogene proteins is composed by eight members (Src, Fyn, 

Yes, Fgr, Lyn, Hck, Lck, Blk) with similar structure and molecular weight among 51 and 

62 kDa, which are all specific to vertebrates and have been classified in two different 

subfamilies according to their amino acid similarities: the SrcA or related to Src (Src, 
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Fyn, Yes, Fgr) and the SrcB or related to Lyn (Lyn, Lck, Hck and Blk) (Table 1) (Ingley, 

2008; Parsons and Parsons, 2004; Manning et al, 2002; Thomas and Brugge, 1997). 

 

Figure 1: Families of tyrosine kinase proteins 

The family of tyrosine kinase proteins is classified in two principal groups according to 
their cellular localization. First: receptor tyrosine kinase composed by 58 members 
grouped in 20 subfamilies. Second: non-receptor tyrosine kinases integrated by 32 
members grouped in 10 subfamilies. Src family kinases from part of the non-receptor 
tyrosine kinase group (Lemmon and Schlessinger, 2010).  
 

It is worth noting that Yrk (Yes-related tyrosine kinase) can be considered as 

another member of the SFK family, but this protein is only found in chicken (Thomas 

and Brugge, 1997). Further, other three proteins have been considered as SFK related 

proteins, which are Frk (Fyn-related kinase), Brk (Breast tumor kinase) and Srm (Src-

related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation 

sites); being Frk considered as a sub-family of SFK (Ingley, 2008; Manning et al, 2002; 

Thomas and Brugge, 1997). However, currently these three proteins have been 

grouped inside a new family, the BFK (Brk family kinases) family (Goel and Lukong, 

2016; Goel and Lukong, 2015). Although both families are evolutionarily related, the 

differences found concerning the lack of acylation in the BFK family and the presence 

of a highly conserved exon structure between the three members of BFK (Serfas and 
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Tyner, 2003), but distinct form those belonging to the SFK, led to separate these three 

proteins in a different group from SFK.    

 

Table 1: Members and molecular weights of the SFK 

Two subfamilies have been described inside the SFK: SrcA (Src related proteins) and 
SrcB (Lyn related proteins).  

 

I.II. Structure 

All members of the SFK share a common structure, which can be organized in six 

different regions: (1) N-terminal region, where the Src homology (SH) 4 domain is 

found containing sites for lipid modifications; (2) the poorly-conserved unique domain 

(UD); (3) the SH3 domain, necessary to bind to specific proline-rich sequences; (4) the 

SH2 domain, which can bind to specific sites of tyrosine phosphorylation; (5) the SH1 

domain, where the catalytic function of the protein is localized and (6) a C-terminal 

region at the end of the protein, which carries the negative regulatory sequence 

(Figure 2A) (Roskoski, 2015; Boggon and Eck, 2004; Roskoski, 2004). 
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Figure 2: General structure of all members of SFK 

A. All SFK share a common structure composed from N to C terminal by the SH4 domain, 
the unique region, the domains SH3 and SH2, the catalytic domain SH1 and at the end of 
the protein the regulatory sequence (Roskoski, 2015; Boggon and Eck, 2004). 

B. Ribbon diagram illustrating the tri-dimensional structure of human Src (Taken from 
(Roskoski, 2004). 

 

The SH4 domain is a very short sequence, around 15 amino acids, present in all 

SFK in the N-terminal region. In this domain, SFK experience lipid modifications called 

acylation processes characterized by the binding of fatty acids myristate and/or 

palmitate. Both lipid modifications are necessary for membrane association of SFK. 

The binding of myristate to the Glycine in position 2 is an irreversible co-

translational/post-translational modification and can take place in all SFK. However the 

binding of palmitate to Cysteine residues is also present in all SFK, except in Src and 

Blk. Palmitoylation is a reversible post-translational modification and is possible to find 

monopalmitoylated SFK (Lyn, Yes) and dually palmitoylated (Fyn, Fgr and Lck) (Table 
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2A) (Okada, 2012). It is worth noting that palmitoylation has been involved in the 

stabilization of SFK in the lipid rafts (Oneyama et al, 2009), playing an important role in 

the localization and function of SFK. On the other hand, it has been demonstrated that 

myristoylation is sufficient to exclude localization of palmitoylated SFK proteins in the 

nucleus (McCabe and Berthiaume, 1999). Further, if Gly2 is mutated by alanine it is not 

possible to insert the palmitate in Cys3 or Cys6, indicating that N-myristoylation is 

required to palmitoylation takes place (Alland et al, 1994; Koegl et al, 1994). However, 

dual palmitoylations have been observed in absence of myristoylation (McCabe and 

Berthiaume, 1999). Moreover, the palmitoylation state specifies the trafficking of SFK 

inside cells. In fact a monopalmitoylated protein, like Lyn, is secreted to the plasma 

membrane by Golgi region along the secretory pathway (Kasahara et al, 2004), but a 

dually palmitoylated protein, like Fyn, is directly secreted to the plasma membrane 

(Sato et al, 2009), showing that a mutated dually palmitoylated SFK lacking the second 

palmitate is transported to the plasma membrane like a monopalmitoylated SFK. A 

non-palmitoylated protein like Src is moved quickly between the plasma membrane and 

late endosomes or lysosomes, and a mutation in the palmitoylation site of Lyn 

produces its intracellular traffic in a similar way to Src (Kasahara et al, 2007); 

suggesting that palmitoylation is necessary to distinguish traffic between Src and Lyn. 

Generally, non-palmitoylated but myristoylated SFK are unable to efficiently associate 

to plasma membrane leading to a reduction in signaling pathways (Resh, 2006b; Resh, 

2006a). Furthermore, palmitoylation might be involved in malignant transformation. For 

example, deletion of the palmitoylation site in Yes protein drives in a reduction of the 

Yes transforming activity in colorectal cancer (CRC) cells (Dubois et al, 2015).   

The Unique domain (UD) is a poorly-conserved region inside all SFK that is 

involved in their specific interactions and their regulation, which is constituted by 50-70 

amino acids (Boggon and Eck, 2004). Thus, this region confers the diversity to the 

family. For example, the UD of Lck is directly involved in the interactions with co-

receptors such as cluster of differentiation (CD)4 and CD8 in T cells via a zinc complex 

(Kim et al, 2003). Further, through the UD, Fyn and Lyn could interact with non-

phosphorylate motifs from the B cell receptor (BCR) (Pleiman et al, 1994). 

Phosphorylation sites have been showed in this domain for Hck that significantly 

contributes to their activation (Johnson et al, 2000) and in general phosphorylation 

processes in this domain play a key role in the regulation of SFK (Amata et al, 2014). 

Moreover, the UD of Fyn, Lyn (Luciano et al, 2001) and Src (Hossain et al, 2013) have 

been implicated in the induction of apoptosis with important consequences for their 

intracellular localization and activity. In fact, in an ischemic stroke rat model, Src is 
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cleaved by calpains in the UD generating a truncated from of this protein that is located 

at the cytosol inducing neuronal cell death (Hossain et al, 2013). Further, the 

interaction of Src with the N-methyl-D-aspartate receptors can be lost in the presence 

of a peptide consisting of amino-acids 40-49 of the UD of Src (Liu et al, 2008), 

demonstrating that the link between inflammatory and neuropathic pain behavior is 

dependent upon Src. Furthermore, lipid binding regions have been identified in the UD 

emphasizing the versatility of this region and mutations in these lipid binding regions of 

Src lead to strong phenotypes in the maturation of Xenopus laevis oocytes (Perez et al, 

2013). However, it has been recently reported that features from a well-conserved 

sequence involving aromatic residues have been found in the UD of SFK (Arbesu et al, 

2017).  

 

Table 2: Amino acid alignments of SFK 

A. N-terminal domain. All SFK are modified post-translational by the binding of fatty acids to 
the SH4 domain. Myristoylation (the red one in Glycine residues) is found in all members 
of the family while palmitoylation (the yellow one in Cysteine residues) is observed in all 
members, except in Src and Blk.  

B. Activation loop and C-terminal regulatory tail. All SFK present a highly conserved 
sequence in the activation segment for the autophosphorylation (Tyr 416) and a highly 
negative short sequence of around 20 amino acids to produce the inactivation of these 
proteins. (Okada, 2012). 

 

Although SH3 and SH2 domains do not have a catalytic function, they allow 

protein-protein interaction and play a crucial role in the SFK activity. SH3 domain is 

composed by around 60 residues distributed in five anti-parallels β-strands, which are 



23 
 

packed at almost right angles; thus, constituting a β-barrel (Figure 2B). The five β-

strands are connected by two prominent loops called the RT and N-Src loops 

(Roskoski, 2015; Bauer et al, 2005). The main function of this domain is to bind proline-

rich ligands (xPxxP, being “x” any amino acid), which are recognized by the aromatic 

and hydrophobic residues present in the two prominent loops (Lim et al, 1994), 

although recent studies have shown that the ligand-binding surface of an SH3 domain 

can be molded to interact with a variety of ligands (Kaneko et al, 2008). The xPxxP 

motifs form a canonical type II polyproline helix, which has two possible binding 

orientations, the first one, called class I, in direction N-ter toward C-ter and the second 

one, and called class II, in the opposite direction (Lim et al, 1994). Therefore, this 

domain has a key role in the interaction among the target protein and the other 

domains of SFK (Boggon and Eck, 2004). Indeed, Fyn SH3 domain can link to the 

proline motif in the immune cell adaptor SKAP55 (Kang et al, 2000) and also interact 

with the SH2 domain of the adaptor protein SAP (Chen et al, 2006; Latour et al, 2003), 

regulating in both cases the receptor signaling in immune response.  

SH2 domain (Figure 2) is constituted by around 100 amino acids and allows the 

binding of SFK to distinct C-terminal amino acid sequences to the phosphotyrosine 

(Roskoski, 2004). This domain consists of a central-three stranded β-sheet with a 

single helix packed against each side forming two pockets. The first pocket, highly 

conserved, is implicated in the recognition of phosphotyrosine residues and contains a 

conserved arginine residue (Arg178 in human Src), which is important in electrostatic 

interactions with the phosphorylated tyrosine. The second pocket, highly variable, binds 

one or more (normally three or five) C-terminal hydrophobic residues of the 

phosphorylated tyrosine (Roskoski, 2015). X-ray crystallographic studies concluded 

that SH2 domains from Fgr, Fyn, Lck and Src preferred pY-E-E-I motifs in their 

substrates comparing to other sequences (Waksman and Kuriyan, 2004); nevertheless 

this domain can bind to other huge group of sequences that do not belong to this 

typical motif (pY-E-E-I). For example, the SH2 domain binds intramolecularly to the C-

terminal phosphotyrosine resulting in the inhibition of the protein activity. The sequence 

of this intramolecular site is pY-Q-P-G, then as this sequence is a non-optimal SH2-

binding sequence, its binding can be displaced for optimal sequence leading to the 

activation of the protein (Roskoski, 2015). 

After the SH2 domain, an organized type II helix region, called SH2-kinase linker, 

is found. Although this region is a proline-rich sequence, it does not contain the xPxxP 

motif, which is the favorite binding site for the SH3 domain of the SFK. Nonetheless, 

this region is involved in the regulation of SFK activity. For example in the case of Hck, 
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SH2-kinase linker acts as an activator switch representing a suboptimal ligand for the 

SH3 domain in the context of downregulation of the protein (Trible et al, 2006). 

SH1 domain (Figure 2) is composed by around 300 amino acids and carries the 

catalytic activity of the SFK. Two main residues, highly conserved in the SFK family, 

are observed inside this domain; the first one for the ATP binding and the second one 

for the transfer of a phosphate group, which lead to the protein activation. The motif 

GxGxxG and the lysine K275 (in the Src protein) are involved in the ATP binding. 

Moreover, the tyrosine 416 (in the Src protein), presents in the region named activation 

segment, is implicated in the autophosphorylation process; necessary for the fully 

activation of the SFK. Therefore the activation segment is found highly conserved also 

among all SFK (Table 2B) (Boggon and Eck, 2004). In general, this domain has a bi-

lobe structure (Figure 2B). The small lobe, in its N-terminal region, is composed by a 

five-stranded antiparallel β-sheets and an important αC-helix. The large lobe is mainly 

α-helical with six conserved segments containing the activation segment. Nucleotide 

binding as well as the transfer of a phosphate group is done in the space between 

these two lobes (Roskoski, 2015). 

 Finally, at the end of the protein in the C-terminal region, is located a short 

sequence of around 20 amino acids (QYQ), which has the negative regulatory domain 

of the SFK family and is highly conserved among all SFK (Table 2B). Within this 

domain, another highly conserved tyrosine residue is found, the tyrosine 527 (in the Src 

protein), which is critical for the inactivation of SFK activity, once this tyrosine residue is 

phosphorylated (Roskoski, 2015; Boggon and Eck, 2004).  

I.III. Localization of SFK 

a) Within the tissues 

Two principal localizations, according to their expression, we can find through the 

SFK (Table 3). Firstly, an ubiquitous expression is seen for Src, Fyn and Yes. 

However, whether each one is analyzed separately is possible to see that expression 

level is different according to the analyzed tissue. For example, Src has a strong 

expression in the brain, osteoclasts and platelets; while Yes is strongly found in the 

brain, epithelial tissues, lungs and platelets (Senis et al, 2014; Brown and Cooper, 

1996). Moreover, Src, Yes and Fyn are well expressed in the skin (Rotzer et al, 2015; 

Szalmas et al, 2013). The second group is composed Fgr, Blk, Hck, Lck and Lyn, 

which have a main expression in hematopoietic cells (Poh et al, 2015; Thomas and 

Brugge, 1997). However, recent published data have shown that particularly Hck 

(Wang et al, 2017a) and Lyn (Hernandez-Rapp et al, 2014) can be observed in other 
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cellular tissues, like the brain. Additionally, it has been demonstrated that Lyn is 

activated in many solid cancers (Liu et al, 2016a; Ingley, 2012); demonstrating that Lyn 

expression is, in fact, less restricted than what was originally considered.  

 

Table 3: Expression of the SFK proteins 

Two major groups within SFK have been established according to their tissue 
localization: (1) Ubiquitous expression. In this group Src, Yes and Fyn are found. (2) 
Hematopoietic system expression.  In this group the rest of SFK members such as Fgr, 
Blk, Hck, Lck and Lyn are found. However, it is noteworthy that members of this group 
are also observed in others tissues (Thomas and Brugge, 1997). 

 

b) Within the cells 

Generally, SFK proteins are present inside all cell types and after myristoylation 

and palmitoylation processes, they are located in the cytoplasmic face of plasma 

membrane, although all SKF can be also found in the Golgi complex, phagosomes, 

endosomes and secretory granules (McCabe and Berthiaume, 1999). Moreover, it has 

been recently described that Src is present and activated on exosomes, specifically in 

prostate cancer exosomes (DeRita et al, 2017), enhancing proliferation and migration. 

In fact, Src might stimulate exosome production with pro-migratory activity on 

endothelial cells, being important in the cell-to-cell communication (Imjeti et al, 2017). 

Further, different isoforms have been described for SFK members, leading to distinct 

subcellular localizations. For example, two isoforms (p59 and p61) have been reported 

for Hck (Lock et al, 1991), differing in the acylation process. In fact, the larger one is 

located into the lysosomes and the shorter one is found in the plasma membrane, 

because it is the only isoform where palmitoylation modification can occur (Poh et al, 
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2015; Thomas and Brugge, 1997). Normally, in plasma membrane and according to 

lipid modifications, SFK are observed in the lipid rafts (Rege et al, 2006), which has 

been associated with the regulation of their activity. Indeed, Lyn recovered from lipid 

rafts has a markedly higher specific activity comparing to Lyn from the rest of plasma 

membrane (Young et al, 2003). Additionally, reduced levels of Src in lipid rafts have 

been found, when one of its substrates, target of myb1-like 1 (Tom1L1), is associated 

to clathrin heavy chain; leading to a decrease in the Src transforming activity. However, 

the relocation of Tom1L1 in lipid rafts promotes deoxyribonucleic acid (DNA) synthesis 

induced by Src activation (Collin et al, 2007). Moreover, SFK can be also observed in 

the perinuclear endosomes (Lowell and Soriano, 1996), as well as in the nucleus, the 

mitochondria and in the microtubules (Sulimenko et al, 2006). Furthermore, in the 

particular case of Lyn and Fyn, a caspase-dependent cleaving process can occur 

during the apoptosis in their N-terminal region. This cleavage leads to the loss of the 

part involved in the anchoring to the membrane, conducting to their localization into the 

cytosol (Luciano et al, 2001; Ricci et al, 1999). Therefore, different subcellular 

localizations are found in SFK, which has an incidence in their functions and can 

change their accessibility to distinct substrates (discussed in I.VI. Physiological roles of 

SFK). 

I.IV. SFK activity regulation 

a) Inactive and active forms 

Crystallography studies have evidenced that SFK can exist in two conformations 

(Pucheta-Martinez et al, 2016; Bernado et al, 2008), which has allowed a better 

understanding of different mechanisms involved in the activity regulation of this family.  

The first conformation is the inactive form, which is principally found under basal 

conditions and is defined as a restrained closed conformation. In this state the Tyr 527 

(referred to Src protein) is observed phosphorylated, by the action of other tyrosine 

kinase proteins such as Csk (C-terminal Src kinase) (Okada, 2012) and Chk (Csk 

homology kinase) (Advani et al, 2017) (discussed in I.IV. c) Inactivation mechanisms of 

SFK). Indeed, Tyr527 phosphorylation keeps SH3 and SH2 domains attached to N-

lobe and C-lobe from the kinase domain, respectively. This structure is called the 

clamp (Harrison, 2003) (Figure 3A) and it has been recently demonstrated that the 

active or the inactive state of the catalytic domain is close dependent from the SH2 and 

SH3 bound orientation, suggesting the crucial function of these domains in SFK 

conformations (Fajer et al, 2017). To stabilize this inactive conformation, two 

intramolecular interactions are needed: firstly the binding of the SH3 domain to the 
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SH2-kinase linker domain and second, the binding of the negative regulatory sequence 

to the SH2 domain, forming a structure called the latch (Xu et al, 1999; Xu et al, 1997). 

Therefore, in this closed form the catalytic site of the SFK is blocked and the enzymatic 

activity of these proteins in completely switched off.  

The second conformation of the SFK is the active form, which is produced after 

the binding of ligands, leading to an opened conformation (Figure 3B). In general, 

three mechanisms have been described to explain the activation of SFK. The first one 

includes the binding of proteins to the SH3 and SH2 domains, destabilizing the clamp 

(unclamping) (Lerner et al, 2005; Lerner and Smithgall, 2002). The second one 

involves the dephosphorylation of the C-terminal tail by phosphatases, breaking the 

binding between Tyr527 and SH2 domain (unlatching) (Huang et al, 2011; Somani et 

al, 1997). Finally, the third mechanism to produce SFK activation is characterized by 

the autophosphorylation of the high-conserved tyrosine residue in the activating loop of 

SH1 domain (switching) (Roskoski, 2015).  

 

Figure 3: Inactive and active conformations of SFK 

A. Inactive form of SFK. Restrained closed conformation due to intramolecular interactions. 
B. Active form of SFK. Opened conformation due to autophosphorylation (Harrison, 2003). 

 

b) Activation mechanisms of SFK 

 (i) Regulation by protein-protein interactions 

Intramolecular interactions keep SFK in the inactive state, but external 

interactions encourage the active state of these proteins because all proteins that are 

able to interact with SH2 and SH3 domains of SFK could interrupt the clamp (Figure 4) 

and promote the activation of this family. Therefore, Src structure allows its regulation 

by competition between intramolecular and external binding partners.  
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It was previously described that in the inactive form of SFK, intramolecular 

interactions in domains SH3 and SH2 are needed to stabilize this conformation. 

However, these interactions are not from high affinity (Roskoski, 2015); reason through 

which they can be easily displaced by a ligand of greater affinity. Thus, adaptor 

molecules with either specific xPxxP motifs or phosphorylated pY-E-E-I related 

sequences are required to initiate SFK signaling processes through the dismantling of 

SH3 and SH2 intramolecular associations (Ingley, 2008). In general, SFK are 

controlled by receptor protein-tyrosine kinases, integrin receptors, G proteins and Fc-

coupled receptors as well as cytokine and steroid hormone receptors. Thus, all these 

proteins are able to interact with SH3 and SH2 or both domains leading to the 

activation of the SFK. Nevertheless, it is worth noting that these receptors not only 

regulate SFK activity, but SFK can also regulate the functional activity of receptors; 

being this dual function of SFK as both effectors and regulators which allows them to 

facilitate the cross-talk between different receptors (Thomas and Brugge, 1997).  

The protein Nef from human immunodeficiency virus, which has a polyproline 

motif, can interact with the SH3 domain of Hck, leading to a decrease in CD1a lipid 

antigen presentation (Shinya et al, 2016). This interaction, which has an unusual high 

affinity, does not require a displacement in the tail dephosphorylation and SH2 domain 

(Lerner and Smithgall, 2002). Fc-gamma receptor (FcγR)IIa is a member of the 

immunoglobulin gene superfamily, which is comprised by an extracellular domain that 

binds the Fc region of an IgG, a single pass transmembrane domain, and a 

cytoplasmic tail that contains two YxxL immune receptor tyrosine-based activation 

motifs (ITAM) (Van den Herik-Oudijk et al, 1995). In human platelet, FcγRIIa is the only 

Fc receptor and its antigen-binding leads to an activation of SFK, through interaction 

with SH2 domain, producing ITAM phosphorylation (Zhi et al, 2015). Indeed, the focal 

adhesion kinase (Fak) Pyk2 is able to activate Lyn and Fyn in thrombin-stimulated 

platelets (Canobbio et al, 2015). Moreover, the adaptor-like molecule, SAP, expressed 

in immune cells promotes the selective recruitment and activation of FynT by binding to 

its SH3 domain (Latour et al, 2003). Further, other proteins like Fak and p130Cas can 

interact with SH2 and SH3 domains of Src, producing its activation (Matsui et al, 2012). 

In fact, SFK/Fak interaction and signaling mitigates drug effects in models of Epidermal 

Growth Factor (EGF) receptor-mutated lung cancer (Ichihara et al, 2017). Moreover, 

interaction between SH2 domain and the activation segment of the EGF receptor are 

needed for the Src activation of this receptor (Chen et al, 2017). 

Protein-protein interactions leading to the activation of SFK have been not only 

demonstrated with SH3 and SH2 domains, but also with the catalytic domain. Indeed, 
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G protein-coupled receptors can bind to the SH1 domain of Src and Hck, producing a 

conformational switch giving access to the catalytic site (Ma et al, 2000). Moreover, 

intramolecular association of SH3 domain and SH2-kinase linker regions has a key role 

in down-regulation of the kinase activity. For example, in a truncated form of Hck SH3 

domain and SH2-kinase linker have structure and relative orientations similar to those 

observed in normal Hck, but SH2-kinase linker failed in engaging to SH3 domains, 

supporting the idea that these non-catalytic regions work together as a “conformational 

switch” that modulates kinase activity in a manner unique (Alvarado et al, 2010). 

Thus, three principal functions have been attributed to SH2 and SH3 domains 

inside SFK structure and regulation: i) impairing enzyme activity by intramolecular 

contacts, ii) proteins-containing SH2 and SH3 domains interact with SFK, displacing 

intramolecular association of SH2 and SH3 domains driving in SFK activation, and iii) 

proteins-containing SH2 and SH3 domains serves as substrates of SFK. 

(ii) Regulation by phosphorylation and dephosphorylation 

Several sites of phosphorylation have been described for SFK, which correspond 

to Tyr and Ser/Thr residues and can be phosphorylated and dephosphorylated by 

several proteins (Table 4). 

 

Table 4: Phosphorylation sites of SFK 

SFK can be phosphorylated in Tyr and Ser/Thr residues leading to the inactivation or 
activation to these proteins. (Roskoski, 2005). 
 

Dephosphorylation of the inhibitory tyrosine 527 (Tyr527 referred to Src) and 

phosphorylation of the activator tyrosine 416 (Tyr416 referred to Src protein) are both 

processes required to complete the activation of SFK.  
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The unlatching, name of the dephosphorylation process on the Tyr527, is 

produced after removing of this tyrosine from the SH2-binding pocket. Once unlatched, 

Tyr527 rends accessible to several protein tyrosine phosphatases. These 

phosphatases can be cytoplasmic or transmembrane. Among the cytoplasmic 

enzymes, the protein-tyrosine phosphatase (PTP) non-receptor type 1 (PTP1)B and 

the Src homology 2 domain-containing tyrosine phosphatase (SHP)-1 and SHP-2 have 

been described. Moreover, among the transmembrane enzymes CD45, PTPα, PTPε 

and PTPλ have been shown (Roskoski, 2005) (Figure 4).  

The switching, name of the phosphorylation process on the Tyr416, is one of the 

most important processes to achieve the maximal kinase activity (Schindler et al, 1999) 

(Figure 4). In this case the α-helix, which is present in the activation segment and that 

impairs access to substrates, changes its conformation; being the N-terminal lobe from 

kinase domain re-orientated and allowing to C-terminal lobe to adopt an active 

conformation (Thomas and Brugge, 1997). Autophosphorylation of Tyr416 is an 

intermolecular process (Barker et al, 1995) and is consistent with the ability of SFK to 

dimerize. It is a process that is mediated by trans-autophosphorylation and not by cis-

autophosphorylation, and further, can be achieved by other tyrosine kinases (Sun et al, 

2002). The trans-autophosphorylation finding correlates with the fact that exogenous 

substrates can partially inhibit SFK in vitro, because if this process occurred in a cis-

autophosphorylation way, it would be less inhibited by competition with exogenous 

substrates (Sun et al, 2002). It is worth noting that mutation on Tyr416 to Phe leads to 

a significant decrease in the transforming potential of SFK (Ferracini and Brugge, 

1990), indicating that transforming potential of SFK is directly correlated with Tyr416 

phosphorylation level (Woods and Verderame, 1994). Moreover, it is worth noting that 

the highly conserved amino acid Gly449, in the particular case of Src protein, was 

recently described as a crucial residue mediating autophosphorylation-dependent 

maximal kinase activity in Src activation process (Tong et al, 2017).   

Beside the well-known of tyrosine phosphorylation in SFK activity regulation, 

phosphorylation of Ser and Thr residues has also been implicated in this aspect. 

Although Ser/Thr phosphorylation mechanism is not well elucidated, several studies 

have shown it leads to the activation of SFK through molecular changes as result of 

weak interactions between SH2 and SH3 domains (Shenoy et al, 1992). Several 

enzymes have been described to phosphorylate SFK in Ser/Thr residues such as 

protein kinase (PK)-A, PKC and cyclin-dependent kinase (CDK1/CdC2) (Roskoski, 

2005). Moreover, it has been demonstrated that involvement of SFK in mouse sperm 

capacitation is through Ser/Thr phosphorylation by PKA and inhibitors of this protein 
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impair all capacitation parameters including in vitro fertilization (Krapf et al, 2010). 

Additionally, in human sperm capacitation Ser/Thr phosphorylation by PKA is not only 

required, but the inactivation of Ser/Thr phosphatases, which remove phosphorylation 

in these residues, as protein phosphatase (PP)-1γ and PP2A are also needed 

(Battistone et al, 2013). 

 

Figure 4: Activation and inactivation mechanisms of SFK 

The clamp, latch and switch keep SFK in the inactive state. The unclamping, unlatching 
and switching processes lead to the activation of SFK. Then inactivation is produced by 
PTP-BL recruitment, Tyr419 dephosphorylation and Tyr527 Csk- and Chk-dependent 
phosphorylation (Roskoski, 2015).  

 

c) Inactivation mechanisms of SFK 

To inactivate SFK, these proteins have to become in their close restrained 

conformation, in which Tyr527 has to be phosphorylated and interacting with SH2 

domain and, SH3 domain has to be connected to the SH2-kinase linker; rending these 

proteins in an enzymatically inactive form. Thus, the latch and the clamp are formed 

again, leading to a swift off in the Tyr416. 

 For that, it has been demonstrated that the ubiquitously expressed human 

phosphatase PTP-BAS (BAS is referred to basophils) and its homologous in mice PTP-

BL (BL for basophils-like) can interact with active SFK dephosphorylating Tyr416 

(Palmer et al, 2002) (Figure 4). Further, other phosphatases can also dephosphorylate 

Tyr416. For example, protein-tyrosine phosphatase non-receptor type (PTPN)-2 has as 

major substrates Fyn and Lck; and deficiency in this phosphatase in human breast 
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cancer cell lines has been associated with high SFK signaling (Nunes-Xavier et al, 

2013). Moreover, it has been described that PTPN-18 dephosphorylates Fyn in the 

activation segment (Wang et al, 2001). However, dephosphorylation of Tyr416 is not 

enough to inactivate SFK, so phosphorylation of Tyr527 is necessary to achieve the 

inactive form of this family leading to the formation of the latch. Indeed, it is largely 

known that mutations in this site of phosphorylation lead to an overactivation of Src in 

colon cancer (Martinez-Perez et al, 2017; Irby et al, 1999). Two kinases are the major 

responsible for the phosphorylation of Tyr527. The first one is Csk, which is expressed 

in all mammalian cells and the second one is Chk, whose expression is restricted to 

breast, hemopoietic cells, neurons and testes (Brown and Cooper, 1996); although Chk 

has been found in other cell types such as colon tissue (Zhu et al, 2008) and smooth 

muscle (Radhakrishnan et al, 2011), but at lower levels. Both proteins, share with SFK 

the SH3, SH2 and kinase domains, but they do not have the acylation motif in the N-

terminal region, the autophosphorylation site in the kinase domain and the regulator tail 

in the C-terminal (Okada, 2012; Roskoski, 2004) (Figure 4).  

The interaction of Chk with Tyr416 renders SFK inactive, but also Chk might 

interact with SFK forming a noncovalent inhibitory complex that impairs their activation 

in an independent-phosphorylation way (Chong et al, 2004). However, Chk could also 

bind to an unphosphorylated state in SFK, which prevents the activation segment 

phosphorylation. In fact, the lack of this non-catalytic inhibitory mechanism produces an 

over activation of SFK in Chk-deficient colorectal cancer cells (Advani et al, 2017). 

Being Csk a cytoplasmic protein (Okada et al, 1991), it needs the intervention of 

other proteins to have access to the subcellular compartments where SFK might be 

found. One of these proteins is Cbp/PAG1 (Csk-binding protein/Phosphoprotein 

Associated with Glycosphingolipid-enriched microdomains) (Kawabuchi et al, 2000). 

Cbp/PAG1 is restricted in its inactive state to the lipid rafts in the plasma membrane, 

but after activation of SFK, Cbp/PAG1 is phosphorylated by SFK through the 

interaction of SH3 domain from SFK with one proline-rich region in Cbp/PAG1 protein. 

Once activated Cbp/PAG1 recruits Csk and the activated SFK to the cholesterol-

enriched microdomains forming a Cbp-Csk-SFK complex, where Csk can 

phosphorylate SFK on the Tyr527 producing its inactivation (Espada and Martin-Perez, 

2017). Therefore, Cbp/PAG1 plays an important role controlling cell transformation 

induced by Src activation (Kanou et al, 2011) and in Cbp deficient mice an alteration to 

late erythroid development related with an increase in Lyn activity was found (Plani-

Lam et al, 2017). Additionally, Csk can also interact with other scaffolding proteins like 

paxillin, insulin receptor substrate (IRS)-1 and caveolin-1 (Zhang et al, 2016b; Nuche-
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Berenguer et al, 2015; Vang et al, 2012). Indeed, a strong association between the 

SH3 domain from Csk and the proline-rich motif present in the C-terminal region of the 

non-receptor protein-tyrosine phosphatase PEP, present in hemopoietic cells, has 

been found (Cloutier and Veillette, 1996). This association suggested a more efficient 

environment to inhibit signal transductions by SFK in vivo, but recent studies have 

probed that dissociation of this complex is necessary to the recruitment of this 

phosphatase to plasma membrane to start its down-regulation process, specifically in T 

cells (Vang et al, 2012).  

It is worth noting that while the interaction of Csk with SFK leads to the 

phosphorylation of Tyr527, the autophosphorylation of Tyr416 can override the 

inhibition produced by Tyr527 phosphorylation (Sun et al, 1998). In fact, it was 

demonstrated in Src and Fyn proteins that another tyrosine residue can be 

phosphorylated by the platelet-derived growth factor (PDGF) receptor. The 

phosphorylation of Tyr213 (referred to Src protein) nullifies the effect of Tyr527 

phosphorylation due to a decrease in the ability of SH2 domain to form intramolecular 

binding with Tyr527. So, activation of Tyr213 produces a twofold activation of these 

SFK (Stover et al, 1996). 

Phenotypes of deficient mice for Csk (Csk-/-) or Chk (Chk-/-) reveal functional 

redundancy of these proteins in cells where both proteins are co-expressed, indicating 

that Csk and Chk should have overlapping functions (Lee et al, 2006; Samokhvalov et 

al, 1997). Nevertheless, specific functions have been also observed. In colorectal 

cancer cells and in brain tumor cells when Chk expression is abolished, but not Csk 

expression, an overactivation of SFK is still found (Kim et al, 2004). Thus, the presence 

of Csk in these cells fails to suppress the aberrant activation of SFK, maybe because in 

these cells Chk is necessary to control SFK activation. 

In general, it has been evidenced that the overactivation of SFK in cancer cells 

can be due to a decrease in the expression of Chk (Zhu et al, 2008) as result of a 

reduced expression in the Cbp/PAG1 (Huang et al, 2011; Oneyama et al, 2008) and by 

an upregulation of phosphatases that target the Tyr527 (Bjorge et al, 2000). Moreover, 

although reduced levels of Csk have been found in some cancer (Yang et al, 2015), 

generally Csk is expressed at normal levels in many types of cancer, but a 

downregulation in Cbp/PAG1 interferes with Csk translocation to the membrane 

leading to the overactivation of SFK in these kinds of cancer (Okada, 2012). 

Furthermore, it has been reported that deletion of Csk in granulocytes produces hyper-

responsiveness to pathogens (Thomas et al, 2004), indicating a function of this protein 

in the regulation of immune system; and a crucial role was also appreciated in the 
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maintaining of squamous epithelia because of its conditional inactivation induced 

defects in the skin leading to chronic inflammation and epidermal hyperplasia (Yagi et 

al, 2007).   

d) Redox-dependent regulation of SFK 

Recently, it has been proposed that Reactive Oxygen Species (ROS) can 

regulate the activity of SFK (Corcoran and Cotter, 2013). Transient ROS production 

triggered by the integrin-dependent linking of adherent cells to the extracellular matrix 

induces a redox-dependent activation of Src associated to cell proliferation (Giannoni 

et al, 2005). Moreover, it is worth to note that switching on a moderate and transient 

production of endogenous ROS, in situ, in human immortalized keratinocytes leads to a 

strong proliferative signal that relies on Src activity and is associated with a transient 

induction of Cyclin D1 expression (Blazquez-Castro et al, 2012). Additionally, Lyn can 

act as a redox sensor in the recruitment of neutrophils to the wound site and the 

hydrogen peroxide produced leads to the autophosphorylation and activation of Lyn 

through direct oxidation of its Cys466 (Yoo et al, 2011).  

I.V. Regulation of SFK expression 

a) At the mRNA level 

There are not too many examples about the role of transcription factors in the 

transcriptional regulation of SFK. It has been demonstrated that the ets transcription 

factor/oncogene family is implicated in B-cell gene regulation and such as those 

involved in differentiation and proliferation processes. In fact, one member of this 

family, ELF-1, has been linked to transcriptional regulation of Blk, Lck and Lyn tyrosine 

kinase proteins and another one, NERF, was able to transactivates the Lyn and Blk 

promoters from B cells (Oettgen et al, 1996).   

Small, non-coding, single stranded ribonucleic acid (RNA), known as microRNA 

(miR) have been involved in cancer development and metastasis (Lin et al, 2010; Calin 

and Croce, 2006), suppressing the expression of the targeted gene at post-

transcriptional level. It has been shown that miR-203 can suppress Src protein 

expression. In fact, lower levels of miR-203 have been found in lung cancer patients, 

which have been correlated with an increase expression in Src protein levels (Wang et 

al, 2014), resulting in an over-activation of the Ras-extracellular signal-regulated kinase 

(ERK) pathway promoting resistance to cell death in lung cancer cells. Moreover, it was 

recently demonstrated that Src expression was up-regulated in esophageal cancer 

tissues, resulting in a proliferation of cancer cells and a resistance to cell death; by 

downregulation expression of the direct Src repressor miR-1 (Liao et al, 2017).   
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DNA methylation is an epigenetic mechanism that occurs in CpG islands playing 

a crucial role in the regulation of gene expression (Deaton and Bird, 2011). In fact, 

reduced methylation patterns for Lyn and Src proteins have been observed in gastric 

cancer patients leading to increased levels of mRNA and protein expression (Mello et 

al, 2015), enhancing invasiveness and metastasis of this kind of cancer. Thus, DNA 

methylation can be involved in regulating of the expression of these protein kinases. In 

fact, DNA methylation of porcine Lyn promoter was correlated with an increase in its 

expression levels (Xiao et al, 2012).  

b) At the protein level 

Another mechanism involved in the regulation of SFK is the stability of these 

proteins. In a general way, regulation of a protein is not only related with the 

phosphorylation/dephosphorylation levels, but also with the expression level inside the 

cells. One of the mechanisms that control the expression level is the ubiquitination 

process leading to protein degradation by the proteasome pathway. Harris et al (Harris 

et al, 1999) showed that the active form of SFK is targeted for degradation and 

therefore fewer stables than the inactive conformation of the protein. In fact, in mice 

with a gain-of-function of Lyn (mice with a constitutively overactivation of Lyn) an 

inverse correlation between activity and protein level expression is observed: the more 

active the protein is, the less it is expressed (Harder et al, 2001).  

The Casitas B-cell lymphoma (Cbl) family of E3 ubiquitin ligases has been 

associated with the ubiquitination of SFK. Once activated, Src binds and 

phosphorylates Cbl, leading to the proteasomal degradation of itself and Cbl (Yokouchi 

et al, 2001). Moreover, Kyo et al (Kyo et al, 2003) demonstrated that Cbl is associated 

with the activated Lyn producing its polyubiquitination and its degradation, mechanism 

that could be extended to other proteins of the family. 

Further, the protein Cbp/PAG1 that interact with Csk to produce the inactivation 

of the SFK can also interact with another protein, called SOCS1 (Suppressor Of 

Cytokine Signaling 1), in erythroid cells. In this case, Cbp/PAG1 interacts with Lyn 

firstly producing a down regulation in its activation, but then Cbp interacts with SOCS1 

leading to an increased ubiquitination and degradation of Lyn (Ingley et al, 2006).  

Moreover, the relative expression of one SFK can induce some phenotypical and 

functional changes. In fact, depending of the mice genetic background, mast cells 

responses from the 129/Sv or C57BL/6 mice markedly differ, taking in consideration 

the different level expression of Lyn and Fyn in these cells according the mice 

genotype (Yamashita et al, 2007).  
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I.VI. Physiological roles of SFK 

It has been demonstrated that SFK play a crucial role in the triggering of several 

signaling pathways through a huge number of cellular receptors, structurally and 

functionally different, present in various kind of cells. The main receptors are those 

involved in the immune response, those coupled to G-proteins and those associated to 

cytokines as well as tyrosine kinase and cytokines receptors (Figure 5) (Thomas and 

Brugge, 1997). 

 

Figure 5: Related-receptors to SFK activation. 

Several cellular receptors have been implicated in the activation of SFK such as, 
receptors involved in the immune response, tyrosine kinase receptors, receptors 
associated to glycosyl-phosphatidylinositol, ions channels, coupled receptors to G-protein 
and cytokine receptors (Thomas and Brugge, 1997). 

 

In the same way that SFK receive activation signals from several cellular 

receptors, once activated, this family can interact with a large number of substrates. 

However, it is difficult to establish whether SFK are responsible for phosphorylation of 

these substrates following receptor activation, due to not only SFK are activated, but 

multiple protein tyrosine kinases are phosphorylated by most receptor pathways, being 

able to phosphorylate the same substrates. Further, to determine which cellular 
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responses are regulated by each substrate phosphorylation event is also hard to 

elucidate. Nevertheless, the identification of potential substrates candidates has been 

possible by the analysis of constitutively activated variants of these kinases. Around 

519 substrates have been postulated for SFK (Takeda et al, 2010), being many of them 

phosphorylated by several SFK members, reinforcing the idea of the overlapping 

functions in this family. Moreover, the phosphorylation cluster analysis grouped these 

substrates into 10 categories (Takeda et al, 2010). In Table 5, a synthetic list of 

identified favorite substrates of SFK is shown. However, although the most important 

role of SFK is the activation of substrates through phosphorylation by the kinase 

domain, it has been demonstrated that they can act as adaptor molecules through the 

use of their SH2 and SH3 domains. For example, in Lyn deficient mice expressing a 

kinase-dead allele of Lyn, an improvement in most of the principal abnormalities 

observed in Lyn deficient mice was found (Verhagen et al, 2009) and a regulation of 

the prolactin receptor-induced Jak2 signaling through the SH2/SH3 domains in a 

kinase-independent mechanism was shown for Src protein in human breast cancer cell 

lines (Garcia-Martinez et al, 2010).  

Therefore, the interaction of SFK with several protein tyrosine kinase receptors 

and the subsequent phosphorylation of a large amount of substrates lead to SFK play a 

crucial role in the regulation of a huge amount of cellular processes like: adhesion and 

spreading, migration, focal adhesion formation and disassembly, cell cycle progression, 

apoptosis, differentiation, survival as well as gene transcription and angiogenesis 

(Espada and Martin-Perez, 2017; Maa and Leu, 2016; Zhang et al, 2014) (Figure 6). 

However, to know about the normal function of one member of the SFK has been not 

possible yet taking in consideration that invalidation of only one member of this family 

in mice does not lead to a strong swift in mice (Table 6), reinforcing the idea of 

compensation effect by other SFK expressed in targeted tissues, although it is 

noteworthy that certain specific defects have been reported in those mice (Lowell et al, 

1996). In fact, during viral infection Lck, Hck and Fgr are equally induced and all them 

contribute to a negative regulatory feedback mechanism (Liu et al, 2017). Moreover, it 

has been described that Fgr, Fyn, Lyn and Src play a key role in the initiation and 

propagation signals after platelet activation; however, the deletion of only one of these 

proteins does not hamper platelet activation, although it is worth to note that a delay is 

observed in the absence of Lyn, but no effect is appreciated in the absence of Src 

(Severin et al, 2012). Either the single deficiency in Hck, Fgr or Lyn or the double 

deficiency Hck/Fgr and Fgr/Lyn do not impair the autoantibody-induced arthritis in 

mice; only the triple knockout mice were completely protected (Kovacs et al, 2014), 
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confirming the redundant role of SFK in different cellular processes. Nevertheless, no 

redundant roles in ligand sensing threshold mediated by immunoreceptors have been 

demonstrated for Lyn and Fyn. Receptors can discriminate between negative and 

positive signals depending of the ligand avidity and the phosphorylation status. Thus, 

the phosphorylation of SH2-containing inositol phosphatase 1 (SHIP1) by Lyn results in 

a homeostatic response, but the phosphorylation of the same protein by Fyn leads to 

inflammation (Mkaddem et al, 2017), confirming that depending of the ligand interaction 

Fyn and Lyn present opposite roles. 

 

Table 5: Favorite substrates of SFK 

A huge amount of 519 substrates have been proposed for SFK phosphorylations which 
have been classified into 10 categories (Takeda et al, 2010). Here a synthetic list of 
favorite substrates in presented taking in consideration that most of them are 
phosphorylated by several SFK (Ohnishi et al, 2011; Wortmann et al, 2011; Takeda et al, 
2010; Emaduddin et al, 2008; Franco et al, 2006). 
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Figure 6: Implication of SFK in different signaling pathways 

SFK are controlled by several receptors and after their activation, SFK are able to 
phosphorylate several substrates trigging various signaling pathways (Roskoski, 2015). 

 

a) Physiological functions of SFK in tissues 

(i) In bones 

The protein Src has a crucial role in the normal functioning of osteoclasts (Horne 

et al, 2005), which are cells implicated in bone degradation during development and 

repair processes of bones (Huang et al, 2018). Indeed, Src deficient mice develop 

osteoporosis due to the dysfunctional activity of osteoclasts (Lowe et al, 1993). 

Nevertheless, other SFK are expressed in osteoclasts such as Hck, Fgr, Lyn and Fyn; 

but only Hck is overexpressed in Src deficient osteoclasts (Lowell et al, 1996). This 

overexpression has been related with a compensation in the phenotype because Src 

and Hck double deficient mice develop a more severe phenotype of osteoporosis, 

which is not observed, for example, in Src and Fgr double deficient mice, where the 

phenotype is similar to those observed in Src deficient mice (Miyazaki et al, 2006). 

Moreover, the role of Hck in this compensation has been linked to the recruitment of 

osteoclast precursors (Verollet et al, 2013). Lyn has a negative role in 

osteoclastogenesis due to the interaction with phospholipase C gamma 1 (PLCγ1)-

mediated calcium signaling leading to an inhibition in the osteoclast differentiation 

(Yoon et al, 2009), although no impact of Lyn is observed in the activity of mature 

osteoclasts (Kim et al, 2009) (discussed in II.III. b) (iii) Osteoclast). Furthermore, the 
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implication of Fyn in osteoclast lineage cells is through the promotion of proliferation 

and survival processes and decreasing apoptosis in these cells (Kim et al, 2010). 

 

Table 6: Phenotype of mice deficient for SFK 

No special phenotypes have been found in mice deficient for one member of SFK, 
indicating a redundant role of these proteins in several cellular processes.  

  

 (ii) In the nervous system 

Src protein is essential in the maintenance of the blood brain barrier, which is 

crucial controlling the access of different molecules to the brain (Alluri et al, 2015; 

Daneman and Prat, 2015). Moreover, this protein is well expressed in neurons, but 

although no brain phenotype has been found in Src deficient mice, a reduction in 

glioma cell infiltration of the brain parenchyma has been observed (Lund et al, 2006); 

showing an implication of this tyrosine kinase in the regulation of the extracellular 

matrix. Besides Src, neurons express Fyn, Lyn, Yes and Lck (Lowell and Soriano, 

1996); but only Fyn deficient mice develop defects in the hippocampus presenting 

problems in the spatial representation (Grant et al, 1992). Fyn is also expressed in 

astrocytes and microglia (Brozzi et al, 2009) playing an important role in the regulation 

of neuroinflammatory responses (Ko et al, 2018), and an implication of Fyn in the 

disruptive action of amyloid-βeta in the intracellular signaling cascade (Kaufman et al, 

2015), important for the physiological synapsis, has highlighted Fyn as a potential 

target for Alzheimer’s disease treatment (Nygaard, 2018). In fact, the Src inhibitor 

Saracatinib, which failed reaching the primary endpoint in CRC patients (Reddy et al, 
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2015), has been tested in a phase IIa clinical trial with Alzheimer’s disease patients 

(http://clinicaltrials.gov Identifier: NCT02167256).  

  (iii) In the hematopoietic system 

SFK has a crucial role in lymphoid and myeloid cell signalization, having an 

essential function in hematopoietic homeostasis.  

Regarding lymphocytic cells, the invalidation of Fyn, Blk, Hck or Fgr does not 

have serious implications in the development or function of B cells, where they are 

expressed. Nevertheless, Lyn deficient mice develop a lupus-like phenotype as a result 

of defects in BCR signaling (Lowell and Soriano, 1996; Hibbs et al, 1995; Nishizumi et 

al, 1995), indicating the crucial role of Lyn in B cell development and function 

(discussed in II.III b) (i) B cells). Lck is the principal SFK expressed in T cells and it has 

been demonstrated that Lck deficient mice present a strong defect in the progression of 

T cells through thymus selection (Molina et al, 1992), producing thymus atrophy. 

Moreover, the germline invalidation of Lck and Fyn, the other SFK expressed in T cells, 

abrogates completely the double negative stage of thymocyte development (Groves et 

al, 1996), indicating the crucial role of these proteins in T cell development. 

Additionally, an increase in tyrosine phosphorylation is considered a hallmark in the 

process of spermatozoid capacitation in mice and, recently it has been demonstrated 

that the autophosphorylation process of Lck, leading to an upregulation in its kinase 

activity, is a fundamental event during capacitation (Singh et al, 2017a). 

On the other hand, Hck, Fgr, Fyn and Lyn are the main SFK expressed in 

myeloid cells (Mkaddem et al, 2017; Parravicini et al, 2002), which are involved in 

different signaling pathways in these cells. However, the invalidation of Hck or Fgr does 

not produce a remarkable phenotype in these mice (Lowell et al, 1994); which can be 

explained by Lyn compensation, taking into account that Lyn is highly implicated in the 

development of myeloid cells. Nonetheless, double invalidated mice for Hck and Fgr 

have serious defects in neutrophil function and can develop an immunodeficiency 

syndrome (Lowell et al, 1996).  

b) Physiological functions of SFK in biological processes 

(i) In cell differentiation 

SFK are implicated in several cell differentiation processes such as keratinocyte 

and macrophage differentiation processes. Tyrosine phosphorylation is required in the 

differentiation process carried out by keratinocytes, which is a Fyn-dependent activity. 

Fyn deficient keratinocytes have an abnormal process of differentiation and present 
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morphological defects (Calautti et al, 1995), suggesting an alteration in the skin 

differentiation process from Fyn deficient mice. Src, Lyn, Fyn and Yes are normally 

expressed in these cells, but only Fyn has an increase in its activity during the 

differentiation of keratinocytes leading to the recruitment of junctional components to 

form adherent junctions (Fenton and Denning, 2015), through the regulation of calcium 

flux in cell-cell adhesion process (Tu et al, 2011). Osteoclastogenesis is the 

differentiation process of osteoclasts and a negative role of Lyn during this process it 

has been previously demonstrated (discussed in II.III b) (iii) Osteoclast). However, 

although Fyn is not considered a key protein in this cellular process, a partial reduction 

in osteoclastogenesis has been observed in Fyn deficiency cells (Kim et al, 2010). SFK 

such as Src, Lyn and Hck are also involved in monocytes/macrophages differentiation 

(Endele et al, 2017) and a crucial function of Hck in this process has been reported 

through its interaction with the macrophage colony-stimulating factor (M-CSF) receptor 

(Suzu et al, 2005).  

 (ii) In mitochondrial functions 

The SFK Src, Fyn, Fgr and Lyn can be permanently found within mitochondria 

(Salvi et al, 2005), although other studies have elucidated that these proteins might be 

translocated into the mitochondria after extracellular receptor activation (Boerner et al, 

2004) through different adaptor proteins phosphorylating subunits of complex I, II and 

IV as well as pyruvate dehydrogenase enzyme (Hebert-Chatelain, 2013). Thus, the 

implication of SFK in mitochondria functions is through the regulation of the oxidative 

phosphorylation (OXPHOS) process in charge of the most part of the energy 

production used by cells. For example, a study showed that once Fyn is translocated to 

the mitochondria, it can regulate ROS production and cell death in cardiomyocytes 

(Matsushima et al, 2016), being involved in the phosphorylation of the translational 

machinery in this organelle (Koc et al, 2017). Moreover, intramitochondrial Src kinase 

inhibition drives in a diminished mitochondrial respiration process correlated with lower 

phosphorylation in subunits of the complex I in cancer cells (Hebert-Chatelain et al, 

2012), suggesting that SFK might be target in cancer treatment. 

 

As during my thesis, my principal project was to study the role of the Lyn protein 

tyrosine kinase in the context of cell death and inflammation, I decided to focus in more 

details on this family member.    
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II. Lyn tyrosine kinase 

II.I. General presentation of Lyn tyrosine kinase 

The Lck/Yes-related Novel tyrosine kinase, Lyn, was identified by Yamanashi et 

al in 1987 (Yamanashi et al, 1987). In fact they found through the screening of a 

human cDNA library made from placental RNA, under conditions of reduced stringency 

and using a v-yes probe, DNA clones from a novel genetic locus; which encodes for a 

novel tyrosine kinase that they called Lyn. Moreover, a high homology between Lyn 

and Lck was demonstrated, and with regard to Src, Yes, Fgr, a high homology was 

also observed, but less than that seen between Lyn and Lck, confirming that this new 

protein shared a high degree of homology with the rest of members of the SFK. 

Furthermore, its coding gene is located on chromosome 8 q13-qter (Yamanashi et al, 

1987). It is noteworthy that translocations in this chromosome have been evidenced 

associated to diverse pathologies. Indeed a fusion gene (ETV6-Lyn, previously known 

as TEL-Lyn) was identified in patients with myelofibrosis driving in chromosomal 

abnormalities (12;8)(p13;q11q21) (Tanaka et al, 2010), fusion gene that has been later 

associated with myeloproliferative neoplasm (Takeda et al, 2011) and recently with 

acute myeloid leukemia (Ma et al, 2017); enhancing its broaden disease association.     

The structure of Lyn protein tyrosine kinase is similar to that observed in the other 

members of the SFK (Figure 7). Lyn has only one palmitoylation site in the unique 

domain. Furthermore, the autophosphorylation site is found in Tyr397, and the 

phosphorylation on Tyr508 renders the protein in the inactive form (Ingley, 2012). 

Additionally, two isoforms of the protein, obtained by alternative splicing, can be found: 

p56 (LynA, 512 amino acids) and p53 (LynB, 491 amino acids) (Stanley et al, 1991). 

The difference between these two isoforms is the absence of 21 amino acids in the 

unique domain of p53, corresponding to those ranging from the position 24 to 44 in p56 

(Yi et al, 1991); thus Tyr32, which modulates activity and interactions, is an isoform-

specific motif only found in p56 or LynA. Related functions have been observed for 

these two isoforms of Lyn. However, few studies have described a significant isoform-

specific function. For example, after BCR stimulation by anti-immunoglobulin (Ig)M, the 

down-regulation signaling via each isoform was slightly different (Yamanashi et al, 

1991). Moreover, if mast cells derived from Lyn deficient mice are reconstituted with 

LynA, a better PLCγ phosphorylation in response to FcεRI ligation is obtained; 

however, if these cells are reconstituted with LynB, a LynB-SHIP1 complex is formed 

and a decrease in calcium and degranulation processes is produced; although it is 

worth noting that reconstitution with both isoforms led to normalized responses 
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indicating a complementation of both isoforms for mast cell activation (Alvarez-Errico et 

al, 2010). Additionally, it has been reported that LynA is the primary mediator in the 

downstream signaling after 3-iodobenzyl analog of the kinase inhibitor PP1 (3-IB-PP1) 

stimulation in macrophages, and LynB produces negative feedback signaling, taking 

negative-regulatory effects (Freedman et al, 2015).  

 

Figure 7: Schematic representation of Lyn tyrosine kinase 

Functional domains and motifs of Lyn protein kinase: amino terminal lipid modification, 
Unique domain (UN), where the LynA isoform-specific motif Tyr32 is found; SH3 and SH2 
domains, the proline motif in the hinge region (P) and the SH1 domain (kinase activity) 
are shown; myristoylation is indication in blue and palmitoylation is shown in light blue. 
Moreover, phosphorylated motifs such as Tyr397 (active kinase) and Tyr508 (inactivated 
kinase) are described. Further, molecular interactions between SH3 domain and proline 
region as well as between SH2 domain and C-terminal motif are indicated (Ingley, 2012). 

 

Lyn presents a similar structure to the other members of SFK being regulated as 

well by SH2/SH3 interactions and phosphorylation (Tyr397: activator, Tyr508: inhibitor) 

(Figure 7).  

II.II. Localization of Lyn tyrosine kinase 

a) Within the tissues 

In the first years after the discovery of this protein, Lyn was considered an 

exclusive hematopoietic-specific SFK with a strong expression in B cells, platelets and 

macrophages and with a relative marked expression in granulocytes and erythrocytes 

(Stanley et al, 1991; Yi et al, 1991). However, presently is known that Lyn can be 

equally expressed in physiological conditions in other tissues such as brain (Chen et al, 

1996), kidneys (Pontrelli et al, 2006), prostate (Goldenberg-Furmanov et al, 2004), 

colon (Bates et al, 2001), lung (Zhao et al, 2006) and skin (Marchetti et al, 2009), 

indicating that Lyn can be an important tyrosine kinase regulating several signaling 

pathways in different tissues. 
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b) Within the cells 

Like all SFK, Lyn is attached to the plasma membrane by a myristoylation 

modification in Gly2 and also by a palmitoylation modification in Cys3 (Figure 7). Inside 

the plasma membrane Lyn is going to be principally located in the caveolin regions and 

in lipid rafts, where it can be more active after receptor signaling (Young et al, 2003), 

although it has been demonstrated in Csk deficient cells that Lyn localization in the lipid 

rafts plays a suppressive role with respect to the SFK-mediated transformation 

(Oneyama et al, 2009). However, Lyn is not only found attached to the plasma 

membrane. In fact, Lyn can be located in Golgi apparatus where it is synthetized, 

although is not only found in the cytoplasmic face of caveolin-positive-containing Golgi 

membranes to be transported to plasma membrane, but in the caveolin negative 

membranes, suggesting that Lyn moves apart from caveolin within the Golgi apparatus 

possibly to recycling endosomes that moves to the plasma membrane (Okamoto et al, 

2018). Further, in stimulated macrophages Lyn is strongly associated with M-CSF 

receptor, but is also observed in endocytic vesicles such as macropinosomes (Dwyer 

et al, 2016) specialized in the internalization of small amount of M-CSF receptor. Lyn is 

constitutively present in the interne structure of the mitochondria and its activation in 

this organelle is associated with the proliferative status of the cell (Tibaldi et al, 2008) 

and cell fractionation experiments have shown a nuclear localization of Lyn (Yoshida et 

al, 2000), which has been associated with its kinase activity and lipid modifications 

(Ikeda et al, 2008). Additionally, Lyn can be present in a multi-client chaperone 

complex with the heat shock protein (HSP)-90 in chronic lymphocytic leukemia (CLL) 

cells (Guo et al, 2017) contributing to the over-activity of the BCR signaling. 

It has been described that SFK are implicated in monolayer maintenance and 

tight junction formation (Dorfel and Huber, 2012), and although Lyn is located in 

plasma membrane in polarized epithelial cells (Tsukita et al, 1991); recently it has been 

shown that Lyn is translocated to the endomembranes upon depolarization by the loss 

of cell-cell interaction and calcium deprivation (Morinaga et al, 2017). Finally, it has 

been demonstrated that subcellular localization of Lyn is essential for its normal 

function. Specifically, in our lab it was demonstrated that Lyn can be a substrate from 

caspases producing a caspase-cleaved form of Lyn (LynΔN or cLyn), which is 

immediately relocated from the plasma membrane to the cytosol (Luciano et al, 2003; 

Luciano et al, 2001), functioning as a suppressor of the apoptosis (discussed in II.III. c) 

(i) Implication of Lyn tyrosine kinase in cell death). 
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II.III. Role of Lyn tyrosine kinase 

a) In signaling  

One of the principal functions of Lyn is the transduction of signals after the 

activation of different cellular receptors. In fact, Lyn has been associated to BCR 

(Hibbs et al, 2002), FcεR1 (Gilfillan and Rivera, 2009), erythropoietin receptor (Ingley et 

al, 2005), c-kit (Linnekin et al, 1997), granulocyte macrophage colony stimulator factor 

(GM-CSF) receptor (Scapini et al, 2009), granulocyte colony-stimulator factor (G-CSF) 

receptor, interleukin (IL)-4 and other cytokine receptors (Hibbs and Harder, 2006), as 

well as integrins (Nakata et al, 2006). Moreover, Lyn can have an essential role in the 

nuclear translocation of EGF receptor (Iida et al, 2013).  

In response to the activation of these receptors, Lyn can activate a large number 

of signaling molecules such as the ITAM and immunoreceptor tyrosine-based inhibitory 

motifs (ITIM) on FcγR (Xu et al, 2005), as well as phosphatidylinositol 3 kinase (PI-3K), 

CD45, FAK (PTK2), PLCγ 1/2, ras-GTPase activating protein (ras-GAP), 

Hematopoietic lineage cell specific protein (HS)1 (Ingley et al, 2000), Cbp/PAG1 

(Ingley, 2009), the signal transducer and activator of transcription (STAT)5 (Chin et al, 

1998) and mitogen-activated protein kinases (MAPK) (Ingley, 2012), among others; 

demonstrating that Lyn can participate in the regulation of different signaling pathways 

related with essential biologic processes (Figure 8). Moreover, it was recently 

demonstrated that interferon (IFN) regulatory factor 5 (IRF5), a crucial transcription 

factor in the pathogenesis of systemic lupus erythematosus (SLE), is a new substrate 

of Lyn. Indeed, Lyn inhibit the ubiquitination and phosphorylation of IRF5 in the Toll like 

receptor (TLR)-MyD88 pathway leading to the suppression of its transcriptional activity, 

which is mediated by a kinase-independent mechanism (Ban et al, 2016), indicating 

that Lyn may have a role as specific suppressor of the TLR-MyD88-IRF5 pathway in 

SLE pathogenesis. Cortactin, a regulator of actin cytoskeleton, has been recently 

postulated as a new substrate of Lyn. In fact, after its Lyn phosphorylation in Y421, this 

factor is implicated in cell migration and cancer progression in CLL patients through the 

release of matrix metalloproteinase (MMP)-9 and motility of neoplastic cells. The 

treatment of cancer cells with the Src inhibitor PP2 produces lower levels of cortactin 

phosphorylation and the decrease of MMP-9 in culture medium (Martini et al, 2017).   

Therefore, Lyn has important functions in different hematopoietic cell types 

through the implication in different signaling pathways, and it has been demonstrated 

that Lyn can have a dual role by both activating and inhibiting these pathways; being a 

signaling modulator. In fact, Lyn exercises a positive role in TLR4-induced response. 
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Lipopolysaccharide (LPS)-TLR-4 engagement immediately activates Lyn and other 

SFK in macrophages/monocytes, mast cells and dendritic cells (Avila et al, 2012; 

Smolinska et al, 2008), driving in the release of pro-inflammatory cytokines. However, 

the restoration of Lyn catalytic activity during LPS stimulation induces TLR4 

phosphorylation, playing an inhibitory role in TLR4 signaling through disruption in the 

MyD88/TLR4 complex; impairing LPS-induced pro-inflammatory response (Mitchell et 

al, 2018). Moreover, Lyn plays a pivotal role in TLR-2 dependent internalization of 

Pseudomonas aeruginosa by alveolar epithelial cells (Kannan et al, 2006) and 

mediating bacteria phagocytosis and autophagosome maturation in alveolar 

macrophages (Li et al, 2016), being a crucial factor in the regulation of NF-κB activation 

after TLR-2-mediated activation of the innate immune response in human mononuclear 

cells (Toubiana et al, 2015). However, Lyn can also negatively regulate activation of 

innate cells after TLR engagement. In fact, activation of mouse bone marrow-derived 

macrophages (BMDM) deficient for Lyn produced more pro-inflammatory cytokines 

than WT BMDM after LPS-TLR4 engagement (Keck et al, 2010). 

 

Figure 8: Lyn regulation of signaling pathways 

Lyn is implicated in the regulation of different signaling pathways, through the 
transmission of signaling from different receptors and by the direct interaction or by 
phosphorylation processes in several target proteins, presenting a positive 
(enhancement) and a negative (inhibition) role in these cellular pathways (Ingley, 2012). 
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b) In cells 

(i) B cells 

Lyn has a crucial role in the BCR signaling. Indeed, in mature B cells, once BCR 

is activated by antigen-binding, Lyn becomes active and leads to the phosphorylation 

of ITAM motifs, beginning the signal amplification cascade (activation of the spleen 

(Syk) and brutus (Btk) tyrosine kinases, leading to the phosphorylation of several 

substrates (PLCγ2 and PI-3K), which propagate the BCR signaling (calcium flux as well 

as MAPK family proteins, such as ERK-1/2 and p38) and driving in the activation of 

transcription factors implicated in the regulation of proliferation, differentiation, antibody 

production or apoptosis (Stevenson et al, 2011; Irish et al, 2006; Xu et al, 2005) 

(Figure 9). 

  

Figure 9: BCR signaling 

After antigen binding Lyn, Btk and Syk are activated and the adaptor molecule BLNK 
connects these kinases to their principal effectors such as PI3K and PLCγ2 leading to Akt 
activation and Ca2+ release, driving in the activation of several transcription factors related 
with several cellular processes (Stevenson et al, 2011). 
 

In the activation of BCR, Lyn has a positive regulatory effect. For example, Lyn is 

a key mediator in various signaling pathways through the BCR such as CD19/CD21 

and CD180 (Xu et al, 2005). In fact, Lyn was required for CD19 tyrosine 

phosphorylation in its ITAM motifs (Hibbs et al, 2002), leading to a signal amplification 
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loop in mouse B cells, indicating that Lyn is crucial for antigen-receptor induced signal 

transduction through CD19 signaling pathway (Gauld and Cambier, 2004; Fujimoto et 

al, 2000). Additionally, Lyn has a positive role as substrate of CD148, a receptor-like 

protein tyrosine phosphatase, in B1 cell BCR signaling that was not evidenced for B2 

BCR signaling (Skrzypczynska et al, 2016). However, a negative regulatory effect of 

Lyn has been also elucidated. For example, CD5 negatively regulates BCR stimulation 

through the association with SHP-1, which is Lyn dependent (Ochi and Watanabe, 

2000) and CD22, which is quickly phosphorylated after BCR engagement in its ITIM 

motifs by Lyn leads to the recruitment of SHP-1 and SHP-2 to inhibit BCR signaling 

(Ohashi and DeFranco, 2002). Therefore, the positive regulatory role of Lyn is given by 

the phosphorylation of kinases and the negative regulator role of Lyn is through the 

activation of phosphatases (Figure 10). 

 

Figure 10: Positive and negative regulatory effect of Lyn 

Lyn contributes to the positive regulation of signaling through the phosphorylation of 
ITAM motifs promoting B cell activation. The negative regulation of signaling is through 
the phosphorylation of ITIM motifs in inhibitory cell surface receptors leading to the 
recruitment of inhibitory phosphatases (Xu et al, 2005). 
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This functional duality of Lyn is well supported by the phenotype of Lyn deficient 

mice. These mice, which are viable, have a normal development of pro-B cells; 

however the quantity of peripheral mature B cells is decreased, indicating that Lyn is 

important in the survival and selection process of mature B cells (Chan et al, 1997). 

Moreover, Lyn deficient B cells have a highly rate of proliferation with an increase 

activation of the MAPK signaling pathway that is not observed in Wild Type (WT) B 

cells, indicating that other SFK can compensate the absence of Lyn in the initiation 

process, but the down-regulation signaling process seems to be non-redundant and 

Lyn deficient cells present a strong defective inhibitory mechanism (Gross et al, 2011). 

Thus, the inhibitory function of Lyn is dominant with regard to the activation role of this 

protein. Nevertheless, in B cells from Lynup/up mice (mice with a gain-of-function 

mutation in Lyn gene, which express a constitutive active form of Lyn) (Figure 11) a 

decrease in the proliferation rate has been observed after BCR stimulation and 

constitutive tyrosine phosphorylation from both negative and positive regulators for 

BCR signaling have been observed (Hibbs et al, 2002).  

Lyn deficient mice develop an autoimmune disease that resembles to human 

SLE with a large number of autoantibodies-secreting plasma cells, which scape to 

negative selection process, resulting in a glomerulonephritis (Gutierrez et al, 2010). 

Moreover, it is worth to note that in SLE patients a significant reduction number of B 

cells and less Lyn expression within these cells have been reported (Liu et al, 2013). 

Nevertheless, Lyn deficiency in B cells have not only been associated with the 

phenotype developed in Lyn deficient mice, but there is an important contribution of 

Lyn deficiency in macrophages and dendritic cells (Lamagna et al, 2013; Scapini et al, 

2010), although another study showed that Lyn deficiency in B cells is enough to 

induce the immune-complex producing glomerulonephritis in mice (Lamagna et al, 

2014). Moreover, and similar to that found in Lyn deficient mice, Lynup/up mice develop 

autoantibodies and glomerulonephritis (Hibbs et al, 2002), confirming the idea that Lyn-

dependent signaling pathways are essential in the regulation of B cell homeostasis and 

activation and therefore an upregulation or a downregulation in Lyn 

expression/activation drives in the development of autoimmune processes. However, it 

is worth noting that mice expressing Lyn protein, but with a defective kinase activity 

(LynMld4/Mld4 mice) (Verhagen et al, 2009), (WeeB mice) (Barouch-Bentov et al, 2009) 

(Figure 11) develop an attenuated autoimmune phenotype compared to Lyn deficient 

mice. Both mutant mice have B cell hyperactivity explained by the loss of Lyn kinase 

activity, but autoantibodies production is only observed in WeeB mice. Indeed, in these 

mice, the suppression of the MyD88-mediated activation of IRF5 is totally lost (Ban et 



51 
 

al, 2016); indicating that Lyn functions independent of its kinase activity is implicated in 

the development of autoimmune-like phenotype. 

 

Figure 11: Lyn mutations in genetically engineered mice 

A. Lynup/up mice contain a point mutation of the C-terminal tyrosine, generating a 
phenylalanine (Y508F) that is unable to be phosphorylated.  

B. LynMld4/Mld4 mice contain a point mutation of a threonine at the end of the activation loop to 
a lysine (T410K), which inhibits the activity of the enzyme. 

C. WeeB mice contain a point mutation in the glycine loop, a glutamic acid is changed to a 
glycine (E260G), inhibiting binding of Mg-ATP, resulting in an inactive enzyme. 
(Ingley, 2012). 

 

 (ii) Myeloid cells 

Deletion or overactivation of Lyn is not only related with defects in the lymphoid 

system. Indeed, abnormal development of the myeloid system has been also observed 

in Lyn deficient mice and Lynup/up mice (Harder et al, 2001), showing the implication of 

Lyn, through a positive (ITAM phosphorylation) and a negative role (ITIM 

phosphorylation), in the regulation of myeloid cells such as macrophages, dendritic 

cells, basophils and neutrophils (Table 7).  

Lyn has been reported to be a crucial regulator in the G-CSF signalization in 

neutrophils, showing a positive role in differentiated cells and a negative effect in the 

response of immature neutrophils to this growth factor (Sampson et al, 2007). In Lyn 

deficient mice the uncontrolled humoral self-response producing the lupus-like nephritis 

phenotype is partially mediated by hyper-proliferative basophils (Charles et al, 2010), 

which leads to a peripheral basophilia (accumulation of basophils in secondary 

lymphoid organs) in these mice.   
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Deficiencies in the erythroid compartment of Lyn deficiency mice have been also 

described (Harder et al, 2004). Indeed, being Lyn the most important SFK in mature 

erythrocytes (De Franceschi et al, 1997), it is involved in the erythropoietin receptor 

signaling and ion transporters in these cells (Maccaglia et al, 2003) as well as in the 

morphology regulation of erythrocytes (Ingley, 2009). Moreover, Lyn regulates 

signaling through integrins and FcγR, which is essential in the processes of adhesion 

and aggregation carried out by mature platelets (Brunati et al, 2005). Finally, Lyn is 

implicated in the signaling by thrombopoietin receptor in megakaryocytes (Santini et al, 

2002) as well as in the regulation of mast cell degranulation through its interaction with 

FcεRI (Hernandez-Hansen et al, 2004; Odom et al, 2004).  

 

Table 7: Dual role of Lyn modulating myeloid-cell signaling 

Specific receptors, ligands, cell type and functions that are either positively or negatively 

regulated by Lyn activity in myeloid cells: MP, myeloid precursors; Mϕ, macrophages; 
DC, dendritic cells; MC, mast cells; PMN, neutrophils; E, eosinophils; FcεRI, Fc receptor ɛ 
I; CSF, colony-stimulating factor; IL-3, interleukin-3; SCF, stem cell factor; IgE, 
immunoglobulin E  (Scapini et al, 2009). 

 

 (iii) Osteoclast  

A negative role in osteoclastogenesis has been described for Lyn. In fact, Lyn 

impairs osteoclastogenesis through suppression of the receptor activator of nuclear 

factor (NF)-κB (RANK) ligand-mediated Grb2-associated binder 2 (Gab2) signaling, 

which is produced by the activation of the SHP-1-dependent inhibitory signaling 
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pathway (Kim et al, 2009). The nuclear factor of activated T cells c1 (NFATc1) is an 

osteoclastogenic gene induced by the binding of RANK ligand to RANK, which is 

calcium dependent through the activation of PLCγ (Koga et al, 2004). Indeed, the 

negative role of Lyn in osteoclast differentiation has been also reported by the fact that 

a downregulation in Lyn expression by siRNA stimulates RANK ligand-induced 

NFATc1 activation by enhancing PLCγ-mediated calcium flux (Yoon et al, 2009). 

c) In biological processes 

(i) Implication of Lyn tyrosine kinase in cell death 

The involvement of Lyn in the regulation of cell death has been well established 

in the study of the apoptosis (discussed in ¡Error! No se encuentra el origen de la 

referencia.), a highly regulated process of programmed cell death. In fact, this protein 

can exhibit, dependent of the context, an anti-apoptotic or a pro-apoptotic role.  

The pro-apoptotic role of Lyn has been shown in studies related with DNA 

damage (Uckun et al, 1996), being able to stabilize p53 in the nucleus, which assist its 

pro-apoptotic effects (Ren et al, 2002). Through the activation of stress signaling 

pathways in response to genotoxic agents, Lyn is activated and required for the 

activation of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) 

leading to the apoptosis of these cells (Yoshida et al, 2000). However, in response to 

these genotoxic agents, Lyn can be also translocated to sphingomyelin and 

cholesterol-enriched membrane domains, which in turn leads to neutral 

sphingomyelinase activation and the generation of the pro-apoptotic lipid second 

messenger, ceramide (Grazide et al, 2002). Dasatinib is a dual BCR-Abl (Abelson 

murine leukemia viral oncogene homolog 1)/SFK tyrosine kinase (Src, Lyn, Yes, Fyn) 

inhibitor, which has been used to treat chronic myeloid leukemia (CML) and 

Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ALL) patients 

(Lindauer and Hochhaus, 2014). Indeed, the combined treatment of dasatinib and 

genotoxic agents enhances p53-mediated elimination of human acute myeloid 

leukemia (AML) stem cells (Dos Santos et al, 2013). Therefore, Lyn may act as a 

negative regulator of genotoxic apoptosis. Nevertheless, the pro-apoptotic role of Lyn is 

not only appreciated in response to DNA damage, but also in response to activation of 

the cell death receptor Fas. Mature B cells from Lyn deficient mice are resistant to 

apoptosis induced by the Fas ligand (Wang et al, 1996) and in response to tumor 

necrosis factor (TNF)-α and Fas ligand, SHIP1 is activated by Lyn through nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase and relocated to the plasma 

membrane, where its association with integrins enhances neutrophils apoptosis, which 
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is fully abrogated in Lyn deficient neutrophils (Gardai et al, 2002). Moreover, another 

study showed that Lyn is required by latent membrane protein 2A (MP2A) transcript, 

which function as a BCR mimic, to upregulated Fas expression during normal Epstein-

Barr virus infection and produced Fas-mediated apoptosis (Incrocci et al, 2015).  

On the other hand, the protective role of Lyn to avoid apoptosis has been 

evidenced in the association of activated Lyn with different integrins in mouse brain and 

in oligodendrocytes to prevent acid sphingomyelinase activity and ceramide-mediated 

apoptosis (Chudakova et al, 2008). In the same way Lyn has a protective apoptosis 

role in liver regeneration. During the early phase of liver generation after hepatectomy 

although an increase in oxidative stress and mitochondrial membrane potential is 

found, no cytochrome c release is observed, which has been associated with Lyn 

translocation to the mitochondria preserving its integrity (Gringeri et al, 2009). The 

overexpression and overactivation of Lyn in primary AML cells have been critically 

associated to the maintaining of proliferation and anti-apoptotic pathways in these cells 

(Dos Santos et al, 2008). BCR-Abl is a specific chromosomal abnormality, which is 

essential for the initiation, transformation and progression of CML disease due to its 

constitutive tyrosine kinase activity (Ren, 2005) and it has been demonstrated that Lyn 

activation is essential in the survival of BCR-Abl positive leukemia cells, because Lyn 

deletion in these cells leads immediately to apoptosis (Rubbi et al, 2011). Moreover, it 

has been demonstrated that in B-CLL cells, the resistance to apoptosis associated to 

an overactivation of Lyn is related to the Lyn-dependent phosphorylation of caspase 8 

zymogen. Tyr380 phosphorylation of caspase 8 leads to the formation of a homodimer, 

which confers resistance to apoptosis in B-CLL cells and is abrogated by the use of 

SFK inhibitors (Zonta et al, 2014). Further, the decrease in the antigen-induced 

apoptosis related with phosphatase PTPN22 overexpression in CLL cells has been 

linked to a selective uncoupling of the AKT pathway related with an inhibition of the 

negative role of Lyn in the BCR signaling (Negro et al, 2012) and the resistance to 

apoptosis observed in these cells is partially related to the deregulated activity by Lyn-

mediated mechanisms of the proteins PP2A and SHP-1 (Tibaldi et al, 2017).  

Caspases are normally active in apoptotic process (discussed in ¡Error! No se 

encuentra el origen de la referencia.) and in this context a caspase-dependent 

cleavage of Lyn has been previously shown in my PhD lab, demonstrating that this 

cleaved-form of Lyn might act as a suppressor of apoptosis. It has been previously 

described that SFK such as Lyn and Fyn can be cleaved by caspase 3 and 7 in their 

unique region (Asp 18 and Asp 19, respectively) in cells undergoing apoptosis (Luciano 

et al, 2001; Ricci et al, 2001), resulting in removal of the myristoylation and 
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palmitoylation sites. Thus, this new form of Lyn called LynΔN (cLyn) will be relocated 

from the plasma membrane to the cytosol compartment (Figure 12). Once in the 

cytosol, they may negatively regulate the apoptosis induced by the BCR engagement 

(Luciano et al, 2001; Ricci et al, 2001). The overexpression of cLyn in immature B cells, 

such as Ramos cells, leads to an inhibition of the apoptosis induced by BCR-mediated 

activation (Luciano et al, 2003), although the mechanism by which Lyn exerts its anti-

apoptotic effect remains to be elucidated. However, it is possible to speculate that the 

new subcellular localization confers to cLyn access to new substrates with which the 

WT form of Lyn could not interact. 

 

Figure 12: Subcellular localization of cLyn 

Schematic representation of the subcellular localization of the native form of Lyn (LynWT) 
and the cytosolic form (cLyn).   

 

In B-CLL cells Lyn is found rather in the cytosol that in the plasma membrane, 

whose cytosol overexpression has been associated to cell death resistance (Contri et 

al, 2005), and the overexpression of Lyn associated to an increase in its tyrosine 

kinase activity has been found in the resistance of different CML cells lines to imatinib 

(Donato et al, 2003). To analyze the role of cLyn in the context of CML, cLyn and its 
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catalytic inactive form (cLynKD) were studied in K562 cell line (an imatinib sensitive cell 

line derived from CML). The overexpression of cLyn led to an inhibition of the apoptosis 

induced by imatinib treatment, which was not found when cLynKD was overexpressed 

in the same cells. Moreover, treatment with Src inhibitors produced apoptosis in these 

cells confirming the role of cLyn as a negative regulator of apoptosis depending on its 

tyrosine kinase activity (Gamas et al, 2009). The caspase-dependent cleavage of Lyn 

leads to an anti-apoptotic effect of Lyn, and this can be related with the onset of 

resistance associated to imatinib treatment. In fact, imatinib resistance has been 

associated to an increase in the expression and/or in the activity of Lyn with an 

abnormal localization in the cytosol (Gamas et al, 2009).  

Thus, the caspase-cleaved form of Lyn has an important role in cancer, notably 

implicated in treatment resistance, suggesting that Lyn deregulation could be linked to 

hematopoietic abnormalities. In fact, an increase in Lyn activity has been found in 

different leukemias and lymphomas. However, studies with Lyn deficient (Lyn-/-), Lyn 

hyperactivated (Lynup/up) and Lyn inactivated (LynMld4/Mld4) mice have demonstrated that 

Lyn is not so important in the beginning of transformation process of malignant cells, 

but rather Lyn plays a role as an oncogene after transformation initiation (Donato et al, 

2003), contributing to the development and maintaining of neoplastic cells. Indeed, 

positive correlations between Lyn activity, and SFK in general, with disease severity 

have been shown (Russello and Shore, 2003) and good clinical responses have been 

reached in the treatment of CML patients with dasatinib (Chen and Chen, 2015), 

confirming the role of Lyn in hematopoietic abnormalities. 

Several studies have demonstrated that Lyn is overexpressed and overactive in 

various hematological malignancies (Ingley, 2012), being strongly implicated in 

leukemias and lymphomas such as CML (Donato et al, 2003), AML (Dos Santos et al, 

2008), CLL (Contri et al, 2005), B-cell ALL (Hu et al, 2004), B-cell-CLL (Contri et al, 

2005), B-Non Hodgkin’s lymphomas (Tauzin et al, 2008) and more recently in myelo-

proliferative disorders (Takeda et al, 2011).   

Considerable studies put in relation the tyrosine kinase Lyn with the development 

of solid cancer. In one study that compared 130 tumor lines through proteomic 

analysis, Lyn was found activated in most of all cell lines tested (Du et al, 2009). Lyn 

has been associated with prostate cancer (Goldenberg-Furmanov et al, 2004), 

colorectal cancer (Bates et al, 2001; Chen et al, 1999), head and neck cancer (Xi et al, 

2003), renal cancer (Roseweir et al, 2016), oral cancer (Bundela et al, 2014), gastric 

cancer (Mello et al, 2015), cervical cancer (Liu et al, 2016a), bladder cancer (Thaper et 

al, 2017), glioblastoma (Stettner et al, 2005), Ewing’s sarcoma (Guan et al, 2008), and 
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breast cancer (Choi et al, 2010; Bougeret et al, 2001). In fact, Lyn has been identified 

as a factor of poor prognosis in triple negative breast cancer (Hochgrafe et al, 2010) 

and the treatment with the experimental drug and BCR-Abl and Lyn selective inhibitor, 

Bafetinib, significantly decreased the levels of Claudin-2, a protein that enhances 

breast cancer liver metastasis (Tabaries et al, 2015), suggesting that Lyn-specific 

inhibitors could be a potential therapeutic target for the treatment of breast cancer-

derived metastasis. Furthermore, it has been demonstrated that Lyn is the principal 

SFK activated in glioblastomas presenting a key role in PDGF-mediated migration of 

these cells (Ding et al, 2003). The association of Lyn with cancer metastasis has been 

linked to a role of Lyn in promoting epithelial-mesenchymal transition (EMT) (Guarino, 

2010). In fact, silencing Lyn in highly aggressive triple negative breast cancer cells 

decreases cell migration and invasion (Choi et al, 2010). Moreover, it was recently 

demonstrated that Lyn promotes EMT, invasion and metastasis through the activation 

of SNAIL family of transcription factors, which transcriptionally repress E-cadherin 

expression starting mesenchymal phenotype development (Thaper et al, 2017). 

Furthermore, an essential role of Lyn in tumor formation microenvironment has been 

lately evidenced. Indeed, Lyn deficient macrophages were less efficient in supporting 

both human and mouse CLL cell survival, indicating that Lyn protein is key in the 

microenvironment supporting leukemic growth (Nguyen et al, 2016).    

Like it was elucidated in leukemia and lymphoma studies, the expression of Lyn 

in solid tumors is not related with the cancer initiation, but with the maintaining of the 

phenotype. Although, according to the kind of solid tumor Lyn seems to have different 

expression levels. For example the expression of Lyn in metastatic colorectal cancer, 

which has been associated with CD24-induced ERK-1/2 activation (Su et al, 2012), has 

been found in metastatic cancer, but no in the first stages of cancer development or 

even in normal tissue (Chen et al, 1999). However, in prostate cancer a high Lyn 

expression is observed in primary prostate tissue, which has been linked to the 

regulation of cell migration, once transformation has been initiated (Sumitomo et al, 

2000).  

Therefore, all the evidence detailed above confirm that Lyn has a significant 

impact in solid tumor development as well as leukemias and lymphomas through its 

effects in the deregulation of several signaling pathways or acting as a suppressor of 

the programmed cell death process, apoptosis; which validates Lyn as a therapeutic 

target in the treatment of all these malignant diseases.  
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(ii) Implication of Lyn tyrosine kinase in inflammation 

Lyn can have an anti and a pro-inflammatory role depending on the context 

(Table 8). The protective role in inflammation has been reported in the maintaining of 

the lung vascular barrier function (Han et al, 2013). In fact, Lyn deficient mice were 

susceptible to develop endotoxin-induced lung inflammation through the activation of 

NF-κB signaling pathway, increased caspase-1 and IL-1β cleavage and activation (Gao 

et al, 2015), evidencing that Lyn could be a negative mediator in inflammation. 

Moreover, it was evidenced that Lyn expression in plasma cells acts as a regulatory 

threshold preventing excessive signaling in response to IL-6 and IL-3 cytokines 

(Infantino et al, 2014), suggesting that the plasmacytosis observed in Lyn deficient 

mice could be related to an excessive signal transduction mediated by these cytokines.    

 

Table 8: Roles of Lyn in inflammation 

Lyn has an anti-inflammatory and a pro-inflammatory role depending of the context.  

 

On the other hand, the pro-inflammatory role of Lyn has been described in 

studies related with allergic diseases like asthma and other immune-mediated 

diseases. 

 Role of Lyn in allergy 

Mast cells are known to be the principal effector cells in allergy development 

(Bischoff, 2007). In fact the binding of antigens to IgE associated to FcεRI on plasma 

membranes from mast cells produces the release of allergy-induced substances like 
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histamines and prostaglandins, leading to the secretion of inflammatory cytokines 

(Simons and Simons, 2011). In this context, Lyn is implicated in initial signaling events 

through the phosphorylation of ITAMs motifs, leading to the recruitment/activation and 

binding of Syk to the phosphorylated ITAMs and producing the allergic response (Nam 

et al, 2017; Mocsai et al, 2010). Furthermore, it has been demonstrated altered levels 

of DJ-1, a redox sensitive protein, in patients with mast cell-related disorders (Kim et al, 

2016a; Kim et al, 2013). In fact, it was recently established that reduced levels of DJ-1 

in a human mast cell derived line, significantly impaired Lyn activation; and no 

interaction between DJ-1 and Lyn in the lipids rafts was evidenced, indicating that mast 

cells need the early interaction between Lyn and DJ-1 proteins to activate Lyn and then 

the FcεRI to trigger the allergy response in these patients (Kim et al, 2017a).  

 Controversial roles of Lyn in asthma  

Asthma is one of the most chronic airway inflammatory diseases, leading to 

goblet cell metaplasia, mucus hypersecretion and eosinophil infiltration (Balenga et al, 

2015). While a study showed that blocking Lyn activation significantly reduced airway 

eosinophil infiltration in a mouse model of asthma (Adachi et al, 1999), validating Lyn 

as a therapeutical target for this disease; Lyn deficient mice are prone to develop 

severe and persistent asthma (Beavitt et al, 2005), suggesting contradictory roles of 

this protein in asthma development. Moreover, Lyn deficiency led to mucus 

hypersecretion when mice were challenged with House Dust Mite (HDM) allergen, a 

mouse model of asthma (Li et al, 2013), indicating that Lyn can be a negative regulator 

in asthma progression. Nevertheless, nowadays it is well known that asthma is a T 

helper (Th)-2 pattern-mediated disease (Fahy, 2015) and Lyn is not expressed in this 

kind of cell population, but it has been described that Lyn can influence T-cell function 

through signaling modulation in those cells that interact with T cells (Beavitt et al, 

2005). In fact, Lyn can regulate the expression of the transcription factor GATA-3 in 

basophils controlling the onset and extent of basophil-mediated Th2 differentiation 

(Charles et al, 2009); but more studies are needed to clarify the role of Lyn in this 

disease. 

 Mucins are the principal components of mucus (Pelaseyed et al, 2014), being 

MUC5AC one of the primary mucins in human airways, which has been implicated in 

pulmonary diseases through mucus hypersecretion (Bonser et al, 2016). Moreover, as 

Th2 pattern-mediated disease, IL-13 levels are significantly increased during asthma 

pathogenesis, which induce mucus production in the airways (Kanoh et al, 2011), 

through the activation of transcription factor STAT6. In fact, STAT6-deficient mice were 

protected from airway inflammation in a mouse model of allergic airway inflammation 
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(Miyata et al, 1999). A recent study showed that Lyn overexpression reduced 

ovalbumin (OVA)-induced mucus hypersecretion, MUC5a expression, airway 

inflammation and IL-13 levels through the decrease of STAT6 expression and 

activation as well as by decreased STAT6 binding to the muc5ac promoter (Wang et al, 

2017b); evidencing that Lyn protein kinase plays a crucial role in mucus hypersecretion 

in antigen-challenged mice. Furthermore, endoplasmic reticulum (ER) stress has been 

correlated with mucus secretion and asthma development (Li et al, 2012) and HDM 

induces ER stress in airway epithelial cells (Hoffman et al, 2013). Recently, it has been 

demonstrated that Lyn overexpression improved mucus hypersecretion and ER stress 

through the inhibition of AKT and NF-κB signaling pathways. Moreover, Lyn 

overexpression reduced IL-13-induced ER stress and MUC5AC expression in airway 

epithelial cells (Wang et al, 2017b); confirming the negative role of this protein in 

asthma pathology. 

 Roles of Lyn in other inflammatory diseases 

The role of Lyn in inflammation has also been evidenced in diabetes. Indeed the 

inhibition of the aldose reductase, an enzyme expressed in oxidative stress conditions 

and involved in ROS-mediated inflammation commonly observed in diabetes, prevents 

the high glucose-induced innate immune response by regulating the release of pro-

inflammatory cytokines via a decrease in Lyn signaling (Pal et al, 2017).  

In models of dextran sulfate sodium (DSS)-induced colitis a protective role of Lyn 

has been observed through elevated levels of IL-22 and IL-22-responsive factors in the 

colon through an enhanced TLR-dependent dendritic cell activation of group 3 innate 

lymphocytes (Bishop et al, 2014). However, it is noteworthy that this study was made 

with Lynup/up mice, where Lyn is constitutively activated; and in the same study it was 

demonstrated that Lyn deficiency significantly increases susceptibility to DSS-induced 

colitis. Moreover, Lyn deficient mice have shown increased predisposition to enteric 

infection. In fact, these mice were highly susceptible to bacterial colonization and 

inflammation in the gut during gastroenteritis and typhoid models of salmonellosis 

(Roberts et al, 2014). Altogether, these results elucidate that Lyn have a pivotal role in 

controlling intestinal inflammatory responses, indicating that Lyn can be a possible 

target in the treatment of inflammatory bowel diseases (IBD), such as Crohn’s disease 

and ulcerative colitis.  

A significant increase of SFK activation has been found in lesional skin biopsies 

from psoriasis patients (Ayli et al, 2008), indicating SFK activation is related with 

pathogenesis of hyperproliferative epidermal disorders. Furthermore the ubiquitous 
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expression of cLyn in mice led to the development of a chronic inflammatory syndrome 

resembling human psoriasis (Figure 13) (Marchetti et al, 2009). Indeed, six days after 

birth, mice develop skin lesions associated to an epidermal hyperplasia and to an 

altered keratinocyte differentiation as well as a significant increase in the immune cell 

infiltration and in the expression of proinflammatory cytokines. Further, albeit all cLyn 

mice do not reach adulthood, in those mice who arrive to the fifth or sixth week the skin 

phenotype disappears, indicating that skin phenotype can be reversible like it has been 

shown in mice with an overexpression of active STAT3 in the skin (Sano et al, 2005) or 

in psoriasis patients, where disease is through flare ups (Conrad and Gilliet, 2018), 

thus showing that cLyn mice develop an inflammatory phenotype resembling human 

psoriasis.  

 

Figure 13: Principal phenotypical characteristic of cLyn mice 

A. cLyn (LynΔN) transgenic mice developed skin defects characterized by scaling patches, 
being smaller than control mice.  

B. The 4-week-old LynΔN mice with skin defects resembling scalp psoriasis with a 
macroscopic view of scaly patches affecting ear. 

C. Histological comparison of skin sections from 2-week-old cLyn (LynΔN) and control mice 
reflecting the hallmarks of psoriasis. Haematoxylin/eosin staining revealed a marked 
epidermis hyperplasia, a large number of nuclei in the cornified layer (arrowheads), 
hyperkeratosis and inflammatory infiltrates in the epidermis and dermis of cLyn skin 
(arrows). Bar scale: 100 μm (Marchetti et al, 2009). 
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III. Apoptosis 

Apoptosis is a highly regulated process of programmed cell death, which 

normally occurs in the development of living organisms and as an homeostatic process 

in the maintenance of tissues, whose principal characteristics are the mitochondrial 

outer membrane permeabilization (MOMP), leading to Smac/Diablo and cytochrome c 

release to the cytosol as well as chromatin condensation, nuclear and chromosomal 

DNA fragmentation. Two pathways have been described in the induction of apoptosis: 

the intrinsic pathway (also known as mitochondrial pathway) and the extrinsic pathway 

(Figure 14) (Nagata and Tanaka, 2017), where the activation of initiator caspases 

results in the cleavage and activation of executioner caspases, which cleave several 

target proteins, leading to cell death (Cullen and Martin, 2009). 

 

Figure 14: Two major apoptosis pathways 

The extrinsic pathway is activated trough the binding of death inducer factor to its 
receptor. The intrinsic pathway activates apoptotic members from Bcl-2 family leading to 
the apoptosome formation. In both pathways caspase 3 is activated, which cleaves more 
than 500 cytoplasmic proteins to induce apoptotic cell death (Nagata and Tanaka, 2017). 

 

The first pathway is the most induced in mammals and is initiated through 

apoptotic intracellular signals (DNA damage, ER stress, growth factor deprivation) 

leading to the activation of pro-apoptotic members of B-cell lymphoma-2 (Bcl-2) family 

producing MOMP and the activation of caspase 9 through the apoptosome formation 

(Pop et al, 2006). Briefly, intracellular stress signals are sensed at the mitochondria 

level by Bcl-2 family members producing Bax/Bak oligomerization resulting in a pore 

formation and the subsequent MOMP and the release of Smac/Diablo and cytochrome 

c release into the cytosol. In the cytosol, the cytochrome c is enabled to associate to 
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Apaf-1 and pro-caspase 9 forming a complex called apoptosome. Once apoptosome is 

built, caspase 9 is activated leading to the subsequent activation of caspases 3 and 7, 

which can cleave specific substrates related to cell death by apoptosis (Galluzzi et al, 

2016a).  

In the second pathway, apoptosis is induced by TNF family death ligands such as 

FAS and TRAIL, which induce the multi-molecular death-inducing signaling complex 

(DISC) formation resulting in the homodimerization and the subsequent activation of 

effector caspases 8 and 10 (Dickens et al, 2012).  

III.I. Bcl-2 family members  

The intrinsic pathway of apoptosis or the mitochondrial apoptosis (Kapoor et al, 

2013) is tightly regulated by the members of the Bcl-2 family, which control the integrity 

of the mitochondria by preventing, in proliferating cells, MOMP and release of 

cytochrome c into the cytosol (Birkinshaw and Czabotar, 2017; Estaquier et al, 2012). 

This family is composed by several members, which share BH (Bcl-2 homology) 

domains, classifying its member in those which have four BH domains and in those 

which have only one BH domain. Moreover, the different members of this family, 

according to its function, can be classified in two groups: the anti-apoptotic group 

(prevent MOMP) and the pro-apoptotic group (produce MOMP). The anti-apoptotic 

group is composed by Bcl-2, Bcl-XL, Bcl-W, Mcl-1, A1 and Bcl-B and all these 

members have four BH domains. Meanwhile the pro-apoptotic group is divided in two 

subgroups: one with four BH domains composed by Bak, Bax and Bok, and the other 

one with only one BH domain (BH3-only members) composed by Bim, Bid, Puma, 

Noxa, Bad, Hrk, Bmf and Bik (Figure 15) (Cory et al, 2016). 

To promote apoptosis the domain from a BH3-only protein has to be inserted in 

the groove from one of the multi-BH domain proteins (Bak and Bax), which is mediated 

by conserved hydrophobic residues (Liu et al, 2003); and these protein-protein 

interactions between the Bcl-2 family members are going to decide whether cells live or 

die (Edlich, 2017). Therefore, the expression of the Bcl-2 family members is well-

regulated. Indeed, all members of the family are regulated by several transcriptional, 

translational and post-translational mechanisms (Kutuk and Letai, 2008). Among all, 

post-translational modifications, is worth mentioning ubiquitination and cleavage as well 

as phosphorylation/dephosphorylation mechanisms.   
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Figure 15: Bcl-2 family members 

Pro-survival and pro-apoptotic members of Bcl-2 family: All proteins from this family share 
BH domains and a C-terminal trans-membrane domain (TM) for anchoring to organelles 
(Shukla et al, 2017). 

 

III.II. Bim  

The Bcl-2 interacting mediator of cell death (Bim) is a potent inducer of apoptosis 

and promotes apoptosis either by direct activation of pro-apoptotic members Bax/Bak 

or by inhibiting anti-apoptotic Bcl-2 members via its BH3 domain, driving the MOMP, 

and the subsequent events leading to cell death (Figure 16) (Cory et al, 2016; Brunelle 

and Letai, 2009). Through alternative splicing three major isoforms of this protein are 

obtained: BimEL (extra-large, 22 kDa), BimL (large, 15.8 kDa) and BimS (small, 12.3 

kDa) (Shukla et al, 2017) (Figure 17), being BimEL the predominant isoform in all body 

tissues.  

Bim plays a key role in the induction of apoptosis after chemotherapeutic agent 

treatments such as imatinib, dasatinib, nilotinib and bortezomib (Akiyama et al, 2009). 

In fact, in CML patients, Bim has a crucial role in apoptosis induction after imatinib 

treatment via the mitochondrial pathway (Kuroda et al, 2006). Moreover, the successful 

treatment with dasatinib and nilotinib in imatinib resistant CML patients is the induction 

of cell death in a Bim-dependent manner (Bhamidipati et al, 2013). Bortezomib, an 

inhibitor of the 20S proteasome (Chen et al, 2014), increases Bim half-life and 
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decreases the binding with Mcl-1, (Gomez-Bougie et al, 2007); which promotes 

Bak/Bax dependent mitochondrial permeabilization leading to apoptosis. Therefore, 

Bim is a key regulator of immune homeostasis and a major obstacle for the 

development of cancer (Bouillet et al, 1999), and a negative regulation of its expression 

correlates with a decrease in the cellular apoptosis and an increase in the tumor growth 

(Mestre-Escorihuela et al, 2007).  

 

Figure 16: Bcl-2 family members control cell life and death 

In healthy cells pro-survival factors prevent activation of Bax and Bak. Stress signal 
activate BH3-only proteins like Bim, which interact with pro-apoptotic members, resulting 
in the activation of Bax and Bak leading to the MOMP and subsequently cell death by 
apoptosis (Cory et al, 2016). 

 

Bim is regulated at transcriptional level by epigenetic mechanisms and several 

transcription factors (Ridinger-Saison et al, 2013). In fact, Bim promoter acetylation has 

been associated with an increase in apoptosis in multiple myeloma cancer (De Bruyne 

et al, 2010) and transcription factors such as Forkhead-box class O (FoxO) 3a (Liu et 

al, 2014), Hypoxia-inducible factor-1α (HIF-1α) (Whelan et al, 2013) and the chromatin 

regulator Brd4 (Patel et al, 2014) lead to a transcriptional repression of Bim. However, 

Run-related transcription factor 3 (Runx3) promotes Bim expression in breast cancer 

cells (Merino et al, 2015). At post-transcriptional level, Bim is regulated by various 

microRNA where nine potential sites have been identified in Bim RNA to be target from 

microRNA (Koralov et al, 2008). For example, miR-192 interacts with the region 3’-UTR 

from Bim gene and the expression of Bim is inhibited in esophageal squamous cell 
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carcinoma (Li et al, 2015), and downregulation of mIR-101-3p in serum deprivation 

conditions increases Bim expression inducing apoptosis in endothelial cells (Kim et al, 

2017b). Further, Bim is also regulated at post-translational level via phosphorylation 

and ubiquitination processes, principally. Indeed, it has been demonstrated that 

ERK1/2-dependent phosphorylation of human Bim at Ser residues (59, 69 and 77) 

reduces interaction with pro-survival proteins (Mcl-1 and Blc-XL) (Ewings et al, 2007; 

Hinds et al, 2007) and allowed its degradation by proteasome (Wiggins et al, 2011). 

Moreover, it has been described that JNK-mediated phosphorylation of Bim in Ser100, 

Thr112 and Ser114 enhances its stabilization and drives to a more effective activation 

of Bax/Bak in presence of apoptotic stimuli (Geissler et al, 2013). Furthermore, 

phosphorylation of Bim in Ser87 by protein kinase A increases its half-life and apoptotic 

potential (Moujalled et al, 2011). Additionally, phosphorylation on Ser93, Ser94 and 

Ser98 by Aurora A kinase leads to Bim ubiquitination and its subsequent degradation 

(Moustafa-Kamal et al, 2013). However, although ERK1/2-dependent phosphorylation 

of Bim is well-known in the literature, in knock-in mice expressing BimEL, which cannot 

be directly controlled by ERK1/2, there is no altered hematopoietic system 

homeostasis, indicating that the physiological regulation of Bim relies in other ERK 

independent mechanisms (Clybouw et al, 2012), such as the phosphorylation by other 

proteins, like SFK, on the tyrosine residues. In fact, it has been demonstrated in a 

model of fibrosarcoma cells that the particularly interesting cysteine-histidine-rich 

protein-1 suppresses Bim both transcriptionally and post-transcriptionally by promoting 

the activation of Src family kinases (Chen et al, 2008).   

 

Figure 17: Bim isoforms 

Predominant Bim isoforms, which are target of post-transcriptional modifications, are 
showed.  The domain structure arising from alternative splicing, the number of amino 
acids as well as ERK 1/2 and JNK phosphorylation sites are presented (Shukla et al, 
2017). 
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III.III. Caspases  

Caspases are Cysteinyl ASPartate- specific proteASES encoded by 12 genes in 

humans and 10 in mice (Songane et al, 2018), which are going to cleave specific 

substrates after an aspartate residue. These proteases are firstly synthetized as 

inactive zymogens, which can be activated by other caspases or by auto-activation 

mechanisms. Moreover, according to the structure and functional similarities caspases 

have been classified in apoptotic and inflammatory caspases (Figure 18). The 

subfamily of apoptotic caspases is divided in two groups: initiator (Caspases 2, 8, 9 

and 10) and executioner (Caspases 3, 6 and 7) caspases (Fuentes-Prior and 

Salvesen, 2004). On the other hand, the subfamily of proinflammatory caspases is 

composed by caspases 1, 4, 5 and 12 in humans and caspases 1, 11 and 12 in mice 

(Fuentes-Prior and Salvesen, 2004). It is worth noting that caspase 11 is the mouse 

orthologous of human caspases 4 and 5 (Wang et al, 1998). Moreover, caspase 12 has 

limited enzymatic activity in mice (Roy et al, 2008) and is completely inactive in 

humans (Xue et al, 2006). Furthermore, caspase 13 is another pro-inflammatory 

caspase and is the human orthologous of caspase 4 only found in bovine animals 

(Evans et al, 2004).   

 

 

Figure 18: Domain organization and classification of human caspases 

Caspases have been grouped according to their sequences similarities, being classified 
in inflammatory, initiator and effector caspases (Fuentes-Prior and Salvesen, 2004). 
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Initiator caspases are activated by proximity through signaling platforms such as 

the apoptosome in the case of pro-caspase 9 or the death-inducing signaling complex 

(DISC) for pro-caspases 8 and 10 (Ramirez and Salvesen, 2018), driving in the 

induction of intrinsic and extrinsic pathways of apoptosis, respectively. On the other 

hand inflammatory caspases, except caspase 12, are activated by proximity within 

large macromolecular complexes called inflammasomes (Broz and Dixit, 2016). 

Although caspases have been classified in apoptotic and pro-inflammatory 

caspases, it is noteworthy these proteases have been implicated in other cellular 

processes. For example, caspase 2 has been found playing a crucial role in the cell 

cycle regulation (Fava et al, 2012), and caspase 3 as well as caspase 8 have been 

associated with differentiation processes in myeloid cells (Solier et al, 2017). In fact, 

caspase 3 and 8 inhibition impairs differentiation of erythrocytes (Zermati et al, 2001). 

Moreover, caspase 8 deletion in mouse spoils monocytes differentiation to 

macrophages (Kang et al, 2004) and caspase 3 deficient mice have a reduced number 

of osteoclasts because osteoclastic precursors are not able to differentiate to mature 

osteoclasts (Szymczyk et al, 2006).   

Caspase are widely expressed proteins, although caspase 14 is only present in 

keratinocytes (Denecker et al, 2007). Indeed, caspase 14 has been considered a highly 

specialized protease with an essential function in the cornification process that take 

place in the terminal differentiation of keratinocytes leading to the formation of the 

stratum corneum in the epidermis (Denecker et al, 2008). Thus, this specific caspase 

has not been classified as apoptotic or pro-inflammatory. Additionally, other four 

caspases have been reported in mammals; although three of them (caspases 15, 17 

and 18) are not expressed in placental mammals. The other one, caspase 16, exists as 

a pseudogene in humans and mice and it has not been detailed so far (Eckhart et al, 

2008). 

a) Caspases and inflammation  

Inflammasomes are macromolecular structures, which serve as platforms for the 

activation, through oligomerization, of pro-inflammatory caspases after the recognition 

of pathogen (PAMP) or damage (DAMP)-associated molecular patterns by the pattern 

recognition receptors (PRR) such as TLR, c-type lectin receptors, absent in melanoma 

2 (AIM2)-like receptors (ALR) and nucleotide-binding oligomerization domain (NOD)-

like receptors (NLR) (Ramirez and Salvesen, 2018; Yi, 2017). Once activated, pro-

inflammatory caspases cleave precursors of pro-inflammatory cytokines IL-1β and IL-

18, rendering these two cytokines in their active form. Moreover, these caspases also 

cleave Gasdermin D (Liu et al, 2016b), which induce pore formation in plasma 



69 
 

membrane producing the release of pro-inflammatory cytokines and cell death by 

pyroptosis (Fink and Cookson, 2005) (Figure 19).  

Pro-inflammatory caspases have a CARD (Figure 18), which allows the 

interaction with CARD-containing partners such as the apoptosis-associated speck-like 

protein containing C-terminal CARD (ASC) (Srinivasula et al, 2002). ASC links 

caspase-1 to NLR and ALR producing the formation of inflammasome structures and 

the subsequent activation of pro-inflammatory caspases. At the present time, 10 

inflammasomes, leading to the activation of caspase 1, have been described such as 

NLRP1, NLRP3 and AIM2 (Songane et al, 2018). The activation of caspase 1 

depending of the adapter protein ASC is known as the canonical pathway of caspase 

activation (Martinon et al, 2002). Nevertheless, the activation of caspase 11 and their 

human orthologous caspase 4 and 5 do not require ASC adaptor molecule, thus their 

activation is produced through the non-canonical inflammasome pathway (Kayagaki et 

al, 2011). In fact, caspase 11 is an essential mediator of endotoxic shock acting as a 

sensor of cytosolic LPS during macrophage-mediated inflammatory response (Hagar et 

al, 2013).  

It has been demonstrated that caspase 8 can cleave the precursor of IL-1β 

(Maelfait et al, 2008) and caspase 8 inflammasome is formed in dendritic cells in 

response to several pathogens (Chen et al, 2015; Ganesan et al, 2014; Gringhuis et al, 

2012). It is noteworthy that in some case caspase 8 inflammasome do not require 

pathogen internalization (Gringhuis et al, 2012), which is essential for caspase 1 and 

11-mediated inflammasomes. Moreover, caspase 2 has been implicated in 

inflammation signaling. Indeed, under ER stress, NLRP-3 inflammasome is recruited 

towards the mitochondria driving in caspase 2 activation and producing mitochondrial 

damage (Bronner et al, 2015). Furthermore, caspase 3, 6 and 7 have been also 

involved modulating inflammation. For example, the release of caspase 6 by sensor 

neurons drives in microglial activation and TNF production leading to the induction of 

chronic pain (Berta et al, 2014).  
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Figure 19: Canonical and non-canonical inflammasomes 

The NLR and ALR members assemble canonical inflammasomes, where caspase-1 is 
the central mediator, while caspase-11 acts as cytosolic danger sensor in non-canonical 
inflammasome (Lamkanfi and Dixit, 2014). 

 

Therefore, the simple classification of caspases in apoptotic and pro-

inflammatory cannot be restrictive and completely absolute taking into account that all 

mammalian caspases are totally involved in inflammation and immunity (Songane et al, 

2018).    

It is noteworthy that caspases are implicated in the control of organism 

homeostasis by favoring the establishment and preservation of normal tissue 

architecture (Galluzzi et al, 2016b), through the regulation of inflammatory responses to 
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both microbial and neoplastic challenges (Maltez et al, 2015). However, in patho-

physiological scenarios with a deregulation in the inflammatory response, an important 

role of pro-inflammatory caspases has been demonstrated. For example, a crucial role 

of pro-inflammatory caspases has been described in the pathogenesis of IBD (Dupaul-

Chicoine et al, 2010). IBD is mediated by recurrent and chronic inflammation of the 

gastrointestinal tract manifested in two principal forms: Crohn’s disease and ulcerative 

colitis (Galgut et al, 2017). In this context, increased levels of IL-1β and IL-18 pro-

inflammatory cytokines, which are processed upon inflammasome-mediated caspase-1 

activation, have been observed (Becker et al, 2013), indicating a role of caspase 1 in 

driving intestinal inflammation. Moreover, a positive correlation between the expression 

of caspase 4 and 5 with disease severity was found in ulcerative colitis patients (Flood 

et al, 2015), demonstrating that the enhanced expression of pro-inflammatory 

caspases is associated to IBD pathogenesis. Another example in the implication of pro-

inflammatory caspases in inflammatory processes is the link between inflammasome-

mediated caspase activation and the pathogenesis of several metabolic disorders such 

as type 2 diabetes, gout and obesity (Wen et al, 2012). On the other hand, pro-

inflammatory caspases have been also related with epithelial cancers such as CRC. 

CRC is one of the most common solid cancers in humans and an inflammatory 

microenvironment has been postulated as essential for tumor progression (Terzic et al, 

2010). Recently, a high expression of caspase 4 and 5 was observed in neoplastic 

epithelial intestinal cells (Flood et al, 2015), validating both caspases as possible 

therapeutic target for the treatment of CRC.  

Although the pathological role of pro-inflammatory caspases is well documented 

in neoplastic diseases, IBD and metabolic disorders, few things are known about their 

role in psoriasis. Interestingly, an increased activity of caspase 1 has been described in 

lesional skin from psoriasis patients (Marchetti et al, 2009; Johansen et al, 2007), 

which has postulated caspase 1 as a potential target in the treatment of psoriasis 

disease. Indeed, it was recently demonstrated that the suppressive effects of 

methotrexate in the immunopathogenesis of psoriasis is partially justified by the 

decrease levels in protein and mRNA expression of caspase 1 and IL-18 in treated 

patients (Thirupathi et al, 2016). The NLRP-3 inflammasome is activated in skin 

inflammatory diseases, and recently, it has been demonstrated that NLRP-3 deficient 

mice present reduced histological score after IMQ treatment through a decrease in IL-

1β production (Irrera et al, 2017), confirming the role of this inflammasome in psoriasis. 

Moreover, the genetic ablation of caspase 1 and 11 in a mouse model of chronic 

proliferative dermatitis leads to a significant reduction in the skin inflammatory 

syndrome as well as a delayed onset in the phenotype (Douglas et al, 2015). The 
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mRNA expression of caspase 1, 4 and 5 has been demonstrated in psoriasis skin, but 

only caspase 5 was found up-regulated (Salskov-Iversen et al, 2011). Moreover, 

protein expression of caspase 5 has been detected in lesional psoriasis skin (Zwicker 

et al, 2017), although it is worth noting that it has been shown in only one patient; and 

polymorphisms in this caspase have been related with psoriasis susceptibility in the 

Han Chinese population (He et al, 2015). Furthermore, in response to inflammatory 

stress, keratinocytes are able to activate caspase 5 (Zwicker et al, 2017) and secrete 

IL-1β and IL-18 (Goblos et al, 2016; Feldmeyer et al, 2007), suggesting that caspase 

activation inside these cells leading to secretion of pro-inflammatory cytokines IL-1β 

and IL-18 contributes to psoriasis development.  
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IV. Psoriasis disease 

IV.I. Is it psoriasis an autoimmune disease or an 
autoinflammatory syndrome? 

Autoimmune diseases are pathological conditions caused by an increase in the 

immunological response against the own cells and tissues in the body (Lu, 2013), 

characterized by the manifestation of a humoral and cellular response against the 

target tissue (Lleo et al, 2010). Currently, although the specific etiology of the majority 

of autoimmune diseases remains to elucidate, a general consensus exists regarding 

the onset of these diseases, defined by the combination of genetic predisposition and 

environmental triggers (Ngalamika et al, 2012; Selmi et al, 2012a; Selmi et al, 2012b). 

Recently, it has been postulated that epigenetic regulation plays a key role in the 

development and pathogenesis of most of them (Lu, 2013).  

Autoinflammatory diseases are a relatively new and expanding group of self-

directed inflammatory disorders, clinically described as periodic fever syndromes but 

also with episodes of acute inexplicable inflammation involving the innate immune 

system (Doria et al, 2012a; Doria et al, 2012b; Kastner et al, 2010). They are 

characterized by inflammatory episodes at disease-prone sites, in the absence of 

autoreactive T cells and high autoantibody titers (Goldbach-Mansky and Kastner, 

2009). 

Autoimmune diseases and autoinflammatory diseases share common 

characteristics, such as self-tissue directed inflammation in the absence of an obvious 

infectious trigger or injury, while differences in primary players are observed. In fact in 

autoinflammatory diseases the innate immune system directly causes tissue 

inflammation, while in autoimmune diseases the innate immune system activates the 

adaptive system and this later activates the inflammatory process (Arakelyan et al, 

2017). 

Psoriasis has been considered as a mixed disease between autoimmune and 

autoinflammatory diseases, sharing the acquired component through major 

histocompatibility complex (MHC) class I associations and autoinflammatory 

components (McGonagle and McDermott, 2006). However, it is worth to note that 

psoriasis has been never classified as an autoinflammatory disease (Murthy and 

Leslie, 2016), but as an autoimmune disease (Carter and Zhao, 2010), although not all 

the scientific community has considered this skin pathology as an autoimmune disease 

because no auto-antigen and no self-reactive T cells have been identified (Fry et al, 

2015). Nevertheless, for those who reinforce the idea to present psoriasis as an 
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autoimmune disease, two theories have been evidenced. Firstly, the postulate of 

molecular mimicry (Besgen et al, 2010), justified by the homology found between 

streptococcal and keratin peptides, which are equally recognized by CD8 T cells in 

psoriasis patients (Valdimarsson et al, 2009), and second, the hypothesis that psoriasis 

is triggered by bacterial microbiota in the skin (Fry et al, 2013), which has been 

denoted by the fact that a high expression of TLR2 in psoriasis keratinocytes has been 

observed (Baker et al, 2003). This TLR is involved in the recognition of peptidoglycans 

from Gram-positive bacteria (Lien et al, 1999) and moreover, streptococcal and 

staphylococcal peptidoglycans have been found in antigen-presenting cells from 

psoriasis patients (Baker et al, 2006).  

Therefore, actually, psoriasis is considered as a chronic immune-mediated skin 

disease that shares altered signaling pathways with other autoimmune diseases such 

as type I diabetes, SLE and rheumatoid arthritis (Ayala-Fontanez et al, 2016). 

IV.II. General characteristics of psoriasis disease 

Its name itself comes from the Greek ‘’psora’’ meaning itch or prickle and 

although it is a known disease since antiquity, it was not until 19th century that the 

establishment of psoriasis as a disease entity occurred; producing its definitive 

separation from leprosy and finishing ending hundreds of years of discussion about this 

topic (Nestle et al, 2009).  

Psoriasis is a skin disease characterized by an aberrant proliferation of 

keratinocytes and an abnormal immune cell infiltration into the skin, whose etiology is 

unknown and its course is completely unpredictable (Ogawa et al, 2018; Sabat et al, 

2007). It is a very common skin pathology whose prevalence worldwide is 2-3 % 

(Danielsen et al, 2013). It is worth noting that in continental American native 

populations and in Australian aborigines psoriasis has never been reported, while in 

northern regions of Europe can reach a 7% of prevalence (Raychaudhuri and Farber, 

2001), being in this way, the most widespread immune-mediated skin pathology in 

adults. Men and women are equally affected (Gelfand et al, 2005), albeit women 

manifest a more severe pattern of the disease (Lebwohl, 2003), like it was also 

demonstrated in females cLyn mice (Marchetti et al, 2009). 

 Psoriasis disease has been associated with the development of several 

comorbidities. Indeed, psoriasis patients can present cardiovascular diseases, 

hypertension, and obesity as well as type 2 diabetes, metabolic syndrome, Crohn’s 

disease (Table 9) (Brooks, 2018; Furue et al, 2018; Vena et al, 2010b; Vena et al, 

2010a). Moreover, psoriasis patients can develop a disorder causing joint pain and 
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inflammation called psoriasis arthritis, whose prevalence is around 10% from all cases 

of psoriasis (Boutet et al, 2018; Schon and Boehncke, 2005). This skin pathology 

imposes physical and social burdens that extend beyond of dermatological symptoms 

and interferes with daily performance, which negatively impact family and social 

relationship (Patel et al, 2018; Eghlileb et al, 2007), leading to a high incidence of 

depression (Poot, 2017; Zieciak et al, 2017) and increased tendencies to suicide 

(Prabhakar et al, 2018; Singh et al, 2017b).  

A small increased risk of solid cancers has been linked to psoriasis patients, 

mainly in those patients with high incidence in smoking and alcohol dinking. However a 

high risk to develop squamous cell carcinoma has been found in those patients 

previously treated with 8-methoxypsoralen plus ultraviolet light A (PUVA) (Pouplard et 

al, 2013). Some recent studies are indicating an association between the exposure to 

TNF inhibitors and the risk to develop non melanoma skin cancers (Peleva et al, 2018), 

suggesting that long-term pharmacovigilance is still required to establish a correlation 

between biological therapies and cancer development in psoriasis patients. 

 

Table 9: Classification of psoriasis comorbidities 

A summarized list of the main associated comorbidities observed in psoriasis patients 
(Grozdev et al, 2014). 

 

IV.III. Genetic susceptibility of psoriasis disease 

Although the inheritance pattern in psoriasis disease has not been proven for all 

psoriasis cases (Hebert et al, 2012), a strong genetic background has been 

demonstrated. In fact, in monozygotic twins the rate of concordance is around 70% and 

in dizygotic twins is approximatively 20% (Capon, 2017; Bowcock, 2005), showing an 
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involvement of genetic factors in psoriasis development. Indeed, by genome-wide 

association studies (GWAS), about 30 single nucleotide polymorphisms (SNPs) have 

been associated with a risk to develop psoriasis and at least 12 major psoriasis 

susceptibility (PSORS) loci have been identified, although only two gene mutations 

have been observed to induce psoriasis (IL36RN and CARD14) (Lowes et al, 2014).  

PSORS1 was the first associated psoriasis susceptibility loci observed and it is 

located on chromosome 6p21, in the MHC class-1, encoding for human leukocytes 

antigens (HLA). HLACw6 is the haplotype more related with psoriasis susceptibility 

(Stuart et al, 2002) and it has been demonstrated that more than 60% of psoriasis 

patients bring along the HLACw0602 haplotype, conferring them a 20-fold increased 

risk to develop psoriasis (Chen and Tsai, 2017; Mallon et al, 1999). Moreover, a gain-

of-function mutation in PSORS2 or Caspase recruitment domain-containing protein 

(CARD)14 was found in this locus (Van Nuffel et al, 2017; Jordan et al, 2012a), which 

should cause psoriasis by the increased induction of NF-κB signaling pathway leading 

to an increased expression of different chemokines involved in psoriasis development 

(Lowes et al, 2014). Nevertheless, although this mutation is present, an environmental 

trigger is needed to initiate the psoriasis disease process (Jordan et al, 2012b) and in 

CARD14 deficient mice an abrogation of induced psoriasis-like phenotype is obtained 

(Tanaka et al, 2018), indicating the key role of this psoriasis-susceptibly gene in the 

skin pathology. IL36RN is a gene encoding for the anti-inflammatory protein IL-36 

receptor antagonist (IL36Ra) and mutations in this gene has been associated with a 

loss of protein activity and increased neutrophil infiltration in psoriasis patients (Lowes 

et al, 2013). SNPs identified in psoriasis patients have been associated with the IL-

23/IL-17 axis (Duffin and Krueger, 2009), which have been involved in several 

immunological processes related with psoriasis pathogenesis such as keratinocytes 

differentiation, T cell proliferation, cytokines responses, among others (Tsoi et al, 

2012). In table 10 a summarized list of genetic loci found to be associated with 

psoriasis development is presented.  

Furthermore, epigenetic alterations have been linked to psoriasis, in particular 

DNA methylation and histone modifications. In fact, a higher expression of DNA 

methyltransferases was observed in peripheral mononuclear cells (PBMC) from 

psoriasis patients compared to healthy donors (Zhang et al, 2010) as well as a general 

histone H4 hypoacetylation, which was negatively correlated with the disease activity 

(Trowbridge and Pittelkow, 2014). Moreover, several microRNA have been found 

modulated compared to healthy donors, showing the implication of these non-coding 

RNA in psoriasis pathogenesis. Indeed, an over-expression of miR-203 was found in 
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patient skin, leading to a negative regulation of STAT3 pathway (Sonkoly et al, 2007). 

In the same way, miR-146, which targets TNF-α regulators like IRAK1 and TRAF6, was 

described upregulated in psoriasis skin (Shams et al, 2018; Sonkoly et al, 2007), but 

miR-125, a suppressor of keratinocyte proliferation, was seem downregulated (Xu et al, 

2011); validating the role of microRNA modulating keratinocyte proliferation in psoriasis 

skin. 

 

Table 10: Genetic-associated loci related with psoriasis development 

A summarized list of the principal genetics associations reported in psoriasis patients 
(Chandra et al, 2015). 
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IV.IV. Environmental triggers of psoriasis disease 

Various are the environmental factors that have been associated with a 

predisposition toward psoriasis disease development such as physical trauma, drug 

reactivity, psychological stress and smoking (Ayala-Fontanez et al, 2016). Physical 

trauma was the first reported environmental factor to trigger psoriasis. Studies from 

Heinrich Koebner demonstrated that after skin injury, psoriasis lesions emerged in 

previously normal-appearing skin (Sagi and Trau, 2011). Currently, it has been 

accepted that Koebner response in psoriasis patients has prevalence about 30% 

(Ladizinski et al, 2013), although psoriasis development after skin injury may be 

dependent on the season of the year, being more common in winter. This aspect was 

also dependent from pre-existing disease because in psoriasis patients, Koebner’s 

trauma is an exacerbating factor of psoriasis (Ganguly et al, 2018; Kalayciyan et al, 

2007). Several drugs have been associated with psoriasis development and its 

exacerbation (Gupta et al, 2014; O'Brien and Koo, 2006). The most usually described 

drugs to induced psoriasis disease are lithium, beta-blockers, tetracycline, anti-

malarials and non-steroidal anti-inflammatory medications; although today, TNF-α 

blockers (Denadai et al, 2013), IL-6R blockers (Grasland et al, 2013) and medications 

against INF-α, -β, -γ (Basavaraj et al, 2010) have been also shown to trigger psoriasis 

onset. Moreover, imiquimod, a ligand for TLR 7/8, which is used in clinical for the 

topical treatment of genital and perineal warts, has been reported to induced or 

exacerbate psoriasis disease (Fanti et al, 2006; Gilliet et al, 2004; Geisse et al, 2002). 

Infections by microorganisms have been also reported as psoriasis triggers. In fact, 

Streptococcus pyogenes infection has been linked to psoriasis onset and exacerbation 

of chronic disease (Naldi et al, 2001) and Staphylococcus aureus, Helicobacter pylori 

and Candida albicans gave the same potentiation (Campanati et al, 2015; 

Sigurdardottir et al, 2013; Onsun et al, 2012). The relationship between pathogen 

colonization and psoriasis development is given by the release of exotoxins and 

peptidoglycan from these microorganisms, which can activate T cells producing an 

abnormal immunological response (Baker et al, 2006). Possibly, stress is the most 

common trigger known by the worldwide population to aggravate psoriasis disease 

(Snast et al, 2017), which is explained by increased level expression of hormone stress 

called Corticotrophin-release hormone (CRH) that have been reported in psoriasis skin 

(Weigl, 2000). Although the mechanism through which this hormone can modulate 

inflammatory response is not yet clear, CRH can act on keratinocytes to stimulate IL-6 

production and exacerbate psoriasis in this way (Zbytek et al, 2002). Finally, another 

environmental trigger is smoking (Nguyen et al, 2018). Indeed, one study showed that 



79 
 

the risk to develop psoriasis was higher in current smokers than in individuals who 

have never smoked (Naldi et al, 2005). Furthermore, combination of genetic 

susceptibility and smoking increase the risk of psoriasis onset. Presence of HLACw6 

haplotype in smoker individuals produces 11-fold increased risk of psoriasis 

susceptibility compared to non-smokers without this haplotype (Jin et al, 2009).  

In general, although several studies evidenced the present understanding of 

genetic predisposition and environmental factors with psoriasis disease development, 

more studies are needed to fully demonstrate the direct relationship between these 

factors and psoriasis onset. 

IV.V. Clinical classification of psoriasis  

Because no diagnostic criteria have been described to diagnose psoriasis 

disease, only a detailed morphologic assessment of a skin lesion is the clinical pattern 

to diagnose a psoriasis patient. Thus, taking into account this morphological 

classification, psoriasis has been divided into several clinical phenotypes, which are 

exemplified in table 11 (Raychaudhuri et al, 2014). 

 

Table 11: Clinical classification of psoriasis disease 

According to several clinical criteria, psoriasis can be classified in different subtypes. 
BSA: body surface area (Raychaudhuri et al, 2014). 

 

Plaque psoriasis is the most common manifestation of psoriasis disease, 

affecting almost 90% of all psoriasis cases described worldwide (Raychaudhuri et al, 

2014; Levine and Gottlieb, 2009) and is commonly known as psoriasis vulgaris. 

Lesions, which are generally symmetric, are characterized by chronic erythematous 

and scaly plaque, which are well demarcated and covered with silvery scales (Lebwohl, 
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2003). These lesions can appear in any part of the body, but generally arise over 

elbows, knees, umbilicus, lumbosacral region and scalp, being the last one the most 

common site of involvement (Griffiths and Barker, 2007; Raychaudhuri and Gross, 

2000).  

IV.VI. Histological features of psoriasis 

Three are the principal characteristics of lesional skin in psoriasis disease 

observed by hematoxylin and eosin staining: i) epidermal hyperplasia, ii) dilated and 

prominent blood vessels in the dermis and iii) epidermal and dermal infiltration of 

immune cells. In non-lesional skin, histology is like in normal skin (Ogawa et al, 2018; 

Griffiths and Barker, 2007) (Figure 20). The significant thickness of epidermis is called 

acanthosis and is histologically characterized by elongated rete ridges, which is a 

product of the marked movement of keratinocytes through the epidermis, which is 

reduced to 4-5 days producing a tenfold acceleration compared to normal skin (Lowes 

et al, 2014). In this process, an underexpression of keratinocytes differentiation 

markers (keratins K1 and K10) is found, leading to the loss of the normal granular 

layer. Moreover, a thickened stratum corneum called hyperkeratosis and a retention of 

nuclei in the upper layers and stratum corneum, which causes squamous cell layer 

thickening denominated parakeratosis, are seen. All these factors (acanthosis, 

hyperkeratosis and parakeratosis) lead to the production of desquamation (scaling) in 

the psoriasis plaque. Further, an increases K16 staining, marker of basal and non-

differentiated keratinocytes is observed throughout the epidermis. The increased 

vascularity in the dermis is because of the production of angiogenic factors by 

keratinocytes, like the vascular endothelial growth factor (VEGF), leading to an 

abnormal dermal vascular proliferation and angiogenesis, which is the basis for the 

redness (erythema) of psoriasis lesions. The increased inflammatory cell infiltrate is 

composed of neutrophils (Kogoj pustules and Munro’s microabscesses) in the stratum 

corneum and epidermis, mononuclear cells in the epidermis and mostly T, B and 

myeloid cells in the dermis (Ayala-Fontanez et al, 2016; Boehncke and Schon, 2015; 

Lowes et al, 2014; Griffiths and Barker, 2007; Lowes et al, 2007).  
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Figure 20: Histological features of psoriasis disease 

A. Keratin 16 stains basal epidermis in non-lesional skin but stains almost all full epidermis 
in lesional skin.  

B. Hematoxylin and eosin of non-lesional and lesional skin at the magnification. Lesional 
psoriasis exhibits a greatly thickened epidermis (acanthosis) with elongation into the 
dermis (rete ridges). Retention of the nuclei (parakeratosis) can be seen in the thickened 
stratum corneum. 

C. Increased numbers of CD3+ T cells in lesional psoriasis skin. 
D. Accumulation of neutrophils in the epidermis (Munro microabscesses) (white arrow). 

Infiltration of mononuclear cells in the epidermis and dermis (black arrowhead)   
(Greb et al, 2016; Lowes et al, 2014). 

    

IV.VII. Clinical disease assessment 

In a clinical research point of view, psoriasis severity is focused in clinical signs 

such as area of involvement, degree of scaling (desquamation), erythema (redness) 

and induration (thickness) of the skin (Finlay, 2005). To analyze the area of 
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involvement or the percentage of the body surface area (BSA) affected by psoriasis, 

the area of the palm of the hand (handprint) is taken as 1% of the body (Lowes et al, 

2014). To assess the parameters of severity (scaling, erythema and induration) a scale 

from 0 (no symptoms) to 4 or 5 (very marked symptoms), depending on the score 

system, has been established. Although several scoring systems have been proved 

(Weisman et al, 2003), two are the major scoring systems to classify the severity of 

psoriasis in patients: the psoriasis area and severity index (PASI) and the physician’s 

global assessment (PGA) (Ayala-Fontanez et al, 2016). The PASI scale quantifies the 

extent of psoriasis disease as a degree of area (BSA) and intensity, from 0 to 4, of 

scaling, erythema and induration (Finlay, 2005), oscillating between 0 (no psoriasis) 

and 72 (the highest score reached). Taking into account the complicated nature of 

PASI estimation, PGA score was introduced as an alternative measure for clinical 

evaluation of patients. In PGA score system, the degree of BSA and intensity of 

scaling, erythema and induration is measured through a score from 0 (no psoriasis) to 

5 (more severe disease) (Langley and Ellis, 2004). However, the PASI score is the 

most used score to assess the response to a therapy and albeit the absolute PASI 

score is frequently used to define severity in evaluated patients, PASI score is often 

used to define response to treatment. For example, for a patient to be included in a 

clinical trial a PASI score of 10 or greater is needed and this value is assigned as a 

baseline PASI score. However, after treatment evaluations of the PASI score are made 

at different time points and then improvement is calculated. Thus, PASI75 or PASI50 

mean an improvement of 75% or 50%, respectively, compared to the baseline 

assigned PASI score. In general, to consider a therapy as clinically relevant a PASI75 

is needed in almost all treated patients (Feldman and Krueger, 2005).   

IV.VIII. Psoriasis pathogenesis 

Until the 1990s, psoriasis was considered a disease produced by the high rate of 

proliferation and disorganized differentiation of keratinocytes, because the hyperplasia 

of the epidermis displayed the most obvious clinical and histological characteristics of 

the disease (Bowcock and Krueger, 2005). More recent evidences indicated that 

changes in the epidermis occur in response to immune cell infiltration, thus at present, 

psoriasis is recognized as an immune-mediated inflammatory disease caused by the 

inappropriate activation of immune cells and the aberrant proliferation of keratinocytes 

(Ogawa et al, 2018).  

The administration to psoriasis patients of the fusion protein known as IL-2Rα+ 

(IL-2 plus diphtheria toxin), which resulted in decreased lymphocyte infiltration in skin 

biopsies and clinical remission (Gottlieb et al, 1995), was the first evidence that T cells 
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induced hyperplasia of epidermal keratinocytes and vascular alterations in skin lesions. 

The administration of another fusion protein, the antigen 4 of the cytotoxic T 

lymphocytes (CTLA-4) linked to the Fc portion of a human IgG, demonstrated that a 

continuous co-stimulation of T-cells was necessary to sustain the activity of the 

disease, which included excessive infiltration of dendritic cells and T cells into the skin 

(Abrams et al, 1999). Generally, the physiopathology of psoriasis disease is given by 

an abnormal activation and infiltration of T cells, which release cytokines that attract 

other immune cells and thus perpetuate the inflammatory cascade, which leads to 

inflammation and excessive production of keratinocytes, developing the typical 

psoriasis plaques (Prinz, 2003). Going further in details, dermal dendritic cells are 

activated, which produce release of pro-inflammatory cytokines such as TNF-α, IL-12, 

IL-6, TGF-β and IL-23, leading to the activation of CD4+ and CD8+ cells (Di Meglio et 

al, 2016; Hijnen et al, 2013). Upon T cell activation, they proliferate and migrate into the 

epidermis, where they interact with keratinocytes through the secretion of IL-17 and IL-

22 (Cheuk et al, 2014). Moreover, T cells can recognizes epidermal autoantigens such 

as keratin 7 or the antimicrobial peptide LL37 expressed by keratinocytes (Lande et al, 

2014) driving to the epidermal hyperplasia and keratinocyte activation to secrete 

cytokines, chemokines and antimicrobial peptides, which produces the disease 

development and the maintaining of the inflammatory phenotype (Conrad and Gilliet, 

2018). Therefore, psoriasis disease can be divided in two phases, the first one is the 

initiation phase, which a close interaction between external factors and genetic 

alterations that lead to the development of the phenotype. The second one is the 

chronic inflammatory phase characterized by recruitment and activation of 

inflammatory cells, which contribute to the amplification of skin phenotype (Mahil et al, 

2016) (Figure 21).  

a) Principal cell types involved in psoriasis development  

The role of T cells in psoriasis has been well demonstrated, being the crucial 

immune cell population in psoriasis pathogenesis. In human lesional skin as well as in 

the bloodstream CD4+ and CD8+ T cell population are highly increased compared to 

healthy donors (Hijnen et al, 2013). They express chemokines receptors such as 

CCR6, CCR4 as well as CXCCR3, penetrating in the skin through interaction with 

endothelial cells expressing adhesion molecules such as P- and E-selectins (Chiricozzi 

et al, 2018). Different Th patterns and their counterparts T cytotoxic have been 

identified in psoriasis skin. In fact, three are the most relevant Th patterns described in 

psoriasis: Th1, Th17 and Th22, which secrete IFN-γ/TNF-α, IL-22/IL-17 and IL-22, 

respectively (Amatya et al, 2017; Kagami et al, 2010) and the continuous exposure to 
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IL-23 led to the proliferation of mature T cells (Gaffen et al, 2014). However, other 

patterns like Th2, Th9 and T regulatory cells have been also described in psoriasis 

pathogenicity (Harden et al, 2015). Furthermore, a significant increase of γδ T cells is 

found in lesional skin compared to healthy donors, and most of the IL-17 found in the 

skin is produced by these cells (Mabuchi et al, 2011), describing the essential function 

of this cell population in psoriasis pathogenesis (O'Brien and Born, 2015).  

 

Figure 21: Inflammatory pathways in both phases of psoriasis 

Psoriasis is mediated by the aberrant activation of dermal dendritic cells (light blue) 
producing TNF and IL-23 cytokines. These dendritic cells stimulate autoimmune CD4 
(Th17) and CD8 (Tc17) cells to migrate into the epidermis, where they recognize 
epidermal autoantigens and produce Th17 cytokines IL-17 and IL-22. Th17 cytokines 
trigger the epidermal phenotype of plaque psoriasis, characterized by an abnormal 
keratinocyte hyperproliferation and the activation of keratinocytes to produce 
antimicrobial peptides and chemokines. The TNF-IL-23-Th17 pathway appears to be 
central in the pathogenesis of chronic plaque psoriasis (central portion of the figure). 
Another inflammatory pathway, mediated by plasmacytoid dendritic cells producing large 
amounts of type I IFNs, has emerged by studying early events in the pathogenesis of 
psoriasis. The plasmacytoid dendritic cells-IFN pathway is dominant in acute forms of 
psoriasis such as erythrodermic psoriasis (left part of the figure). Finally, analysis of 
pustular psoriasis has revealed that neutrophil infiltration triggered by IL17 is central for 
the cleavage and activity of IL-36, which in turn induces IL-1 production by dendritic cells 
and further stimulates Th17 polarization. The IL-36-IL-1 pathway appears to be dominant 
in pustular psoriasis (right part of the figure). (Conrad and Gilliet, 2018). 

 

B cells have been also involved in psoriasis development although their role in 

this pathology is not completely understood. Indeed, regulatory B cell population is 

numerically decreased in psoriasis patients and no production of the anti-inflammatory 
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cytokine IL-10 by this cell population has been observed (Mavropoulos et al, 2016). 

Moreover, the number of splenic regulatory B cells have been found reduced in mouse 

models of psoriasis-like phenotype (Yanaba et al, 2013), and the treatment of psoriasis 

patients with recombinant IL-10 protein has showed an improvement in the skin 

pathology (McInnes et al, 2001) with a significant decrease in macrophages and T cells 

infiltration, indicating that the diminution of B regulatory cells is fundamental in 

psoriasis.  

Dendritic cells are crucial cells in the secretion of pro-inflammatory cytokines and 

chemokines in the early stages of psoriasis and two main populations have been 

reported in the pathology: plasmacytoid and myeloid dendritic cells; principally localized 

in the dermis (Chiricozzi et al, 2018). In fact, the inhibition of plasmacytoid dendritic 

cells signalization blocks T cell activation and prevents psoriasis development (Capon 

et al, 2002). Langerhans cells are another kind of dendritic cells closely related with 

keratinocytes, but although these cells are able to present antigen to T cells, their role 

in psoriasis pathogenesis is still unclear. 

Neutrophils are very important in the early stages of psoriasis and have been 

identified as a key factor in the recruitment of T cells and keratinocyte proliferation 

(Reich et al, 2015). Antimicrobial peptides are secreted by activated neutrophils as 

neutrophil extracellular traps, which have been found in lesional psoriasis skin biopsies 

(Lin et al, 2011) and they are able to release elastase, which induce keratinocyte 

proliferation and cytokine activation (Meyer-Hoffert et al, 2004).  

Other important populations in psoriasis pathogenesis are macrophages, mast 

cells as well as NK and NKT cells. The role of the first one has not been well 

characterized yet, although CD163+ macrophages have been described in lesional 

skin and activated macrophages secrete TNF-α and regulate angiogenesis through the 

release of VEGF (Fuentes-Duculan et al, 2010). Mast cells are known to infiltrate 

lesional skin in the early phases of psoriasis contributing to the T cell-mediated skin 

inflammation by the production of IL-1β (Bonnekoh et al, 2018). In the other hand, NK 

cells play a role in psoriasis because they secrete IFN-γ, TNF-α and IL-22 (Dunphy and 

Gardiner, 2011). NKT cells have been associated with the release of IFN-γ and CD1d, 

an invariant stimulator of NKT cells, is highly expressed in the epidermis of psoriasis 

patients (Bonish et al, 2000).  

b) Principal cytokines implicated in psoriasis pathogenesis 

Pro-inflammatory cytokines are pivotal mediators in psoriasis development and 

several studies have been made to analyze the effect of each cytokine in this disease. 



86 
 

In fact, this skin pathology has been considered as an inflammatory triangle conceived 

by the action of TNF, type I IFN and IL-17 (Grine et al, 2015) (Figure 22). 

 

Figure 22: Inflammatory triangle in psoriasis pathogenesis 

Overactivation of TNF can lead to inflammation and synergizing with IL-17, they enhance 
neutrophil recruitment. IL-17 mediates psoriatic inflammation acting, directly or indirectly, 
on keratinocytes. Plasmacytoid dendritic cell-derived type I IFNs initiate psoriasis and is 
normally silenced by TNF. Type I IFN can act on keratinocytes indirectly together with IL-
17 through increase of IL-22 receptor (Grine et al, 2015). 

 

TNF-α was the first cytokine to be targeted in psoriasis treatment. Increased 

levels of this cytokine have been described in lesional skin and serum from psoriasis 

patients (Arican et al, 2005) and the production of this pro-inflammatory mediator is 

mediated by keratinocytes, T cells and dendritic cells (Kim et al, 2014; Mabuchi et al, 

2012; Chu et al, 2011). Nowadays it is considered an upstream cytokine in the IL-23/IL-

17 pathways acting as inducer of IL-23 production by dendritic cells (Zaba et al, 2009a; 

Zaba et al, 2009b). 

IFN-α is produced by plasmacytoid dendritic cells activating myeloid dendritic 

cells to produce IL-12, IL-15, IL-18 and IL-23 (Lande and Gilliet, 2010), being 

considered one of the principal initiators of skin inflammation acting as an upstream 

cytokine along the IL-23/IL-17 axis. IFN-α-induced genes are upregulated in psoriasis 
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skin compared to non-lesional skin and heathy donors, and its neutralizations prevents 

the spontaneous development of psoriasis lesions in mice xenotransplanted with non-

lesional skin obtained from psoriasis patients (Nestle et al, 2005). High IFN-γ levels 

have been detected in lesional skin correlating with disease severity (Johnson-Huang 

et al, 2010). In vitro stimulation of keratinocytes with this cytokine alters the expression 

of around 1200 genes, although the transcriptome modulated by this cytokine is weak 

in comparison with those regulated by IL-17 (Chiricozzi et al, 2014). 

IL-17A is the most known member of the IL-17 family, whose concentration has 

been observed strongly increased in psoriasis patients correlating with the high number 

of circulating IL-17-producing cells in this disease (Chiricozzi et al, 2016a; Chiricozzi et 

al, 2016b). Pro-inflammatory effects from this cytokine are mainly exerted on 

keratinocytes leading to the activation and proliferation of these cells, but also IL-17 

induces the production of IL-19, a cytokine that once secreted by keratinocytes drives 

in positive feedback for these cells (Witte et al, 2014). The most relevant proof of the 

crucial role of IL-17 in psoriasis pathogenesis is given by the strong improvement 

achieved with IL-17 blockers in psoriasis patients (Conrad and Gilliet, 2018) reverting 

clinical, histological and molecular features of this disease.  

IL-22 receptor and IL-22 cytokine levels are increased in psoriasis epidermis and 

effects of this cytokine are mainly directed to keratinocytes leading to migration, 

inhibition of differentiation and inducing chemokines production, resulting in epidermal 

thickness (Mashiko et al, 2015; Sa et al, 2007). Indeed, blocking IL-22 has resulted in a 

significant decrease in the induction of psoriasis-like phenotype (Van Belle et al, 2012) 

and its pro-inflammatory activity is enhanced by the synergism with IL-17 and TNF-α 

(Tohyama et al, 2009). However, the development of an IL-22-neutralizing antibody 

was discontinued (Gottlieb, 2005), demonstrating that pathological effects of this 

cytokine are more relevant in mouse model that in psoriasis patients.  

IL-23 is the key effector cytokine in the IL-17 signaling pathway (Chiricozzi et al, 

2018). A large amount of cells in psoriasis disease are able to secrete IL-23 pro-

inflammatory cytokine such as keratinocytes, dendritic cells and macrophages 

(McGeachy et al, 2007), being myeloid cells the principal source of this cytokine. IL-23 

contributes to the differentiation, survival and expansion of IL-17-producing T cells 

(Chiricozzi et al, 2014) and lesional psoriasis samples have shown increased levels of 

IL-23p19 compared to non-lesional skin (Sofen et al, 2014), which has been associated 

with a marked infiltration of myeloid dendritic cells (Zaba et al, 2009a). In fact, in IL-

23p19 deficient mice a fully protection to develop psoriasis-like phenotype has been 

shown (van der Fits et al, 2009) and the clinical improvement obtained in psoriasis 
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patients treated with IL-23 neutralizing antibodies (Fotiadou et al, 2018) have 

demonstrated the importance of this cytokine in psoriasis pathogenesis. 

Other cytokines such as IL-1β and IL-18 are taken in the last years a prominent 

role in psoriasis development (discussed in ¡Error! No se encuentra el origen de la 

referencia.), indicating that the development of psoriasis phenotype is the outcome of 

multiple cytokine-mediated signaling pathways.  

IV.IX. Keratinocytes and psoriasis 

Keratinocytes, the principal cells in the epidermis, are crucial in both early stages 

and chronic phase of psoriasis disease. Indeed psoriasis pathogenesis is mediated by 

a keratinocyte-activation induced epidermal hyperplasia and cytokine-mediated 

inflammation, which in part, are released by these epidermis cells (Sun et al, 2017).  

Antimicrobial peptides are released by keratinocytes and have a crucial role in 

psoriasis pathogenesis because they are induced by the IL-17 signaling pathway in 

psoriasis pathogenesis (Morizane and Gallo, 2012) and led to the secretion of pro-

inflammatory cytokines and chemokines such as IL-6, IL-8 and CXCL10, mediating the 

recruitment of macrophages and neutrophils (Gambichler et al, 2011). In fact, LL37 

complexed to self-DNA or RNA can be also recognized by myeloid dendritic cells via 

TLR7 and TLR8, leading to the dendritic cell maturation and to the secretion of TNF-α 

and IL-6 (Lande et al, 2014; Ganguly et al, 2009); which supports the effect of the 

TLR7/8 agonist imiquimod inducing a psoriasis-like phenotype in mice. Furthermore 

S100 calcium binding proteins such as S100A12 (calgranulin C), S100A7 (psoriasin), 

S100A8, S100A9 and S100A15 play a major inflammatory role in psoriasis because 

they can activate TLR (Son et al, 2016; Wilsmann-Theis et al, 2016; Vogl et al, 2007) 

and together with the β-defensins act as chemotactic proteins for the immune cell 

infiltration leading to the amplification of the immune response (Kolbinger et al, 2017; 

Wolf et al, 2008).  

Keratinocytes secrete IL-1β and IL-18, two cytokines activated through the 

activation of inflammatory caspase 1 in multi-protein complexes called inflammasomes 

(Lamkanfi and Dixit, 2014), being keratinocytes immunocompetent cells. IL-1β and IL-

18 are implicated in the differentiation of Th17 and Th1 cells, and once differentiated 

these cells form a positive feedback loop, leading to the secretion of more cytokines 

(IL-17, IL-22) and to the proliferation and activation of other keratinocytes (Chung et al, 

2009). In fact, keratinocytes are the main cell type expressing IL-17R in the skin 

(Nograles et al, 2008), and the combined stimulation by IL-17, TNF-α, IFN-γ and IL-22 

lead to the regulation of a huge amount of genes in human keratinocytes and to the 



89 
 

self-amplifying loop (Morizane et al, 2018; Chiricozzi et al, 2011), showing synergistic 

effects. In fact, the combined cytokine stimulation drives in the activation of NF-κB 

pathway and the transcriptional factor IκBζ (Morizane et al, 2018), being this latter a 

key driver in psoriasis pathogenesis through the regulation of IL-17 signaling pathway 

(Johansen et al, 2016; Johansen et al, 2015). During inflammatory states keratinocytes 

are able to secrete VEGF, which induces angiogenesis and the proliferation of 

endothelial cells, driving in the formation of the psoriasis plaques (Patel et al, 2018).  

MicroRNAs are also involved in keratinocyte proliferation in psoriasis. In fact, 

levels miR-6731-5p have been found diminished in IL-22-stimulated keratinocyte 

leading to an activation of the antimicrobial peptide S100A7 (Qiao et al, 2018), and 

levels of miR-122-5p and miR-548a-3p were observed increased in the same 

conditions of stimulation leading to an increase in keratinocyte ERK/MAPK signaling 

pathways (Jiang et al, 2017) and keratinocyte proliferation (Zhao et al, 2017), 

respectively.   

Cyr61 (Cysteine-rich angiogenic inducer 61, now named Cyr61/CCN1), a 

secreted matricellular protein, has been found elevated in psoriasis patients; 

modulating key function in keratinocytes (Quan et al, 2015) enhancing epidermal 

hyperplasia and inflammation through keratinocyte activation (Sun et al, 2017). In fact, 

Cyr61/CCN1 stimulates chemokine ligand (CCL)-20 production leading to an 

hyperproliferation on keratinocytes (Li et al, 2017), being implicated in IL-8 synthesis 

and release by these cells in a JNK/NF-κB-dependent pathway (Wu et al, 2017). 

Moreover, keratinocyte stimulation with Cyr61/CCN1 drives in IL-1β production by p38 

signaling pathways (Sun et al, 2017), indicating that Cyr61/CCN1 is a new and key 

driver in psoriasis pathogenesis through the activation of keratinocytes and could be a 

new trigger for psoriasis treatment development drugs.   

IV.X. Psoriasis treatment 

Patients with psoriasis often require lifelong treatments (Kim et al, 2012). 

Currently, the dermatological medical community has several therapeutic alternatives. 

In general, therapy begins with the safest option and advances to the most aggressive 

to achieve the control of symptoms in psoriasis patients. Among the safest option for 

patients there are two examples. Firstly, phototherapy, which includes treatment with 

ultraviolet light B (UVB) and PUVA (Morita, 2018; Shirsath et al, 2018; Menter et al, 

2008) and second, the use of anti-inflammatory creams for the skin (topical therapy) 

(Traub and Marshall, 2007). The action of phototherapy is given by the induction of 

apoptosis of inflammatory cells, the increase in the production of IL-10 and the switch 

to Th2 and T regulatory populations (Tartar et al, 2014). Topical therapy is principally 
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based in topical corticosteroids (Greb et al, 2016), which induce keratinocyte apoptosis 

and topical retinoids (Lebwohl et al, 1998), which lead to a normal keratinocyte 

differentiation and suppression of immune response.    

In addition, oral systemic therapies are also prescribed for patients in the first 

moments of the disease development. In fact, the small inhibitory molecules of T cells 

that act as immunosuppressive agents, such as methotrexate, acitretin and 

cyclosporine are widely used in psoriasis patients owing to their low cost (Heydendael 

et al, 2003). However, most patients treated with these oral systemic therapies are bad 

responders. Most of them present some contraindications and they are not able to 

maintain the clinical response after discontinuing the treatment and the majority of 

them become intolerant because of their adverse effects. Therefore, the search of 

biological drugs (injectable systemic therapies) against specific targets of the disease 

has been a very active research field in recent years (Garcia-Valladares et al, 2011; 

Kurzeja et al, 2011; Alwawi et al, 2009).  

Biological agents (Table 12) such as monoclonal antibodies and fusion proteins 

that bind to specific antigens and cytokines as well as small inhibitor molecules (Table 

12) implicated in the inhibition of different signaling pathways may offer safer systemic 

treatment options for patients with moderate to severe psoriasis (Kim et al, 2012). Due 

to its specificity, biological treatments for psoriasis prevent collateral damage to organs 

that can occur with the application of methotrexate, acitretin and cyclosporine. 

Although most of the biological agents available are effective in achieving a 75% 

improvement of PASI score over a 12-week period of treatment, more data on long-

term treatments are required. Therefore, when choosing the most effective biological 

agent for psoriasis treatment, multiple factors must be considered, such as the patient's 

preference, cost, tolerance, adverse events, the dose scheme and the mode of 

administration (Kim et al, 2012). 

Albeit the first approved biological drugs for psoriasis treatment targeted T cell 

activation (alefacept) and T cell transmigration (efalizumab), today both of them have 

been discontinued (Menter et al, 2008). However, a novel antibody against the pan T 

cell marker (CD6) involved in co-stimulation, adhesion and maturation of T cells has 

been approved in Cuba (Hernandez et al, 2016) and India (Parthasaradhi et al, 2017) 

for the treatment of psoriasis. Itolizumab (Alzumab) treatment leads to a significant 

decrease in T cell activation, pro-inflammatory cytokine secretion and T cell infiltration 

to the inflammation site (Aira et al, 2016; Aira et al, 2014). 

Actually and due to the deeper knowledge of psoriasis pathogenesis, several 

topical, systemic and biologic agents have been approved for psoriasis treatment 

(Table 12) (Greb et al, 2016), although taking in consideration that the physiopathology 
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of psoriasis remains unknown, it is worth noting that additional therapies in the future 

should be developed in a more personalized way with the patients (van de Kerkhof, 

2018). 

 

Table 12: Targeted therapies in psoriasis treatment 

A summarized list of the principal therapies to treat psoriasis (Conrad and Gilliet, 2018). 

 

IV.XI. Mouse models of psoriasis disease 

Several mouse models have been developed to better understand the 

pathogenesis of psoriasis, which have been classified as xenografts, allografts, 

transgenics, targeted mutations and spontaneous models (Hawkes et al, 2018; 

Nakajima and Sano, 2018; Gudjonsson et al, 2007). In total, 27 models have been 

proposed to study psoriasis disease (Wagner et al, 2010) and although none of them 

represents all cellular and molecular features of psoriasis disease, sub-elements of this 

disease are appreciated across all of them. In fact, similarities in gene expression 

patterns between humans and the different mouse models of psoriasis were found, 



92 
 

particularly related with epidermal hyperplasia and keratinization. However, several 

differences were observed in immune-associated gene expression across the models 

(Swindell et al, 2011). Six are the major mouse models that have been studied in the 

understanding of psoriasis pathogenesis: 1) overexpression of human amphiregulin in 

the basal epidermal layer (K14-AREG) (Hawkes et al, 2018; Cook et al, 1997), 2) basal 

keratinocyte-specific overexpression of a constitutively active mutant of STAT3 (K5-

Stat3c) (Hawkes et al, 2018; Nakajima and Sano, 2018; Sano et al, 2005), 3) 

overexpression of the endothelial specific receptor tyrosine kinase in basal 

keratinocytes (K5-Tie2) (Hawkes et al, 2018; Wolfram et al, 2009), 4) overexpression of 

the latent form of transforming growth factor beta 1 in basal keratinocytes (K5-TGF-β1) 

(Hawkes et al, 2018; Li et al, 2004), 5) Imiquimod cream application in shaved and 

epilated mouse backs (IMQ) (Hawkes et al, 2018; van der Fits et al, 2009) and 6) ear 

intradermal injections of mouse recombinant IL-23 protein (IL-23) (Hawkes et al, 2018; 

Hedrick et al, 2009). However, in our lab, another mouse model has been developed 

and also recapitulates the main characteristics of psoriasis pathogenesis. This murine 

model is named cLyn (Marchetti et al, 2009) and it was previously described 

(discussed in Role of Lyn in other inflammatory diseases). Recently, another mouse 

model has been characterized (Nakajima and Sano, 2018). The serine 

palmitoyltransferase (SPT)-targeted mice under the keratin 5 promotor is a new model 

in which mice keratinocytes are not able to produce ceramide leading to a phenotype 

characterized by skin barrier disruption and developing most of the principal features of 

psoriasis disease.  

Three of these principal models were used in this work for the development of all 

in vivo experiments (IMQ, IL-23 and cLyn mice). In the three models a significant 

increase in the erythema, scaling and thickness of the treated-skin is observed 

compared to control mice. Through H&E-stained sections an increased epidermal 

hyperplasia is found and moreover, parakeratosis and hyperkeratosis as well as no 

terminal keratinocyte differentiation, analyzed by the loss of involucrin marker, are 

observed in treated skin. Immunohistochemical staining showed a significant increase 

of antigen-presenting cells composed, mainly, by dermal (dDC) and plasmacytoid 

(pDC) dendritic cells. Further, an increase in T cells and neutrophils were described, 

although no differences in macrophages were appreciated to compare with control-

treated skin. Moreover, in treated skin, an increased vascularization has been 

demonstrated. In addition, the development of the psoriasis-like phenotype in these 

models is fully dependent of the IL-23/IL-17 axis and TNF-α signaling, which have been 

described as crucial signaling pathways in psoriasis pathogenesis. Thus, these models 

evidence several similarities with human psoriasis skin regarding the principal features 
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of this disease, the composition of the immune cell infiltrate and the process of 

neoangiogenesis (Hawkes et al, 2018; Hedrick et al, 2009; Marchetti et al, 2009; van 

der Fits et al, 2009).    

IMQ is a potent immune activator and a TLR 7/8 agonist, which it is used in clinic 

to treat genital and perianal warts produced by papilloma virus infection (Beutner and 

Tyring, 1997), although its prescription has been extended to the treatment of actin 

keratosis and superficial basal cell carcinoma (Geisse et al, 2002). However, an 

exacerbation of psoriasis was observed in well-controlled psoriasis patients who were 

treated with IMQ (Fanti et al, 2006); leading to the development of IMQ topical 

treatment in mice as a new model for the study of psoriasis disease. A daily topical 

dose of 62.5 mg (3.125 mg of active compound) of IMQ cream (Aldara 5%, Meda) is 

applied for 6 days in shaved and epilated mouse backs to produce the main features of 

psoriasis disease (van der Fits et al, 2009). As a TLR 7/8 agonist, the first cells 

activated by IMQ treatment are monocytes, macrophages and pDC (Schon and Schon, 

2007b). In fact, one of the most important hallmarks of IMQ treatment is the increased 

infiltration of pDC and type I IFN activity (Gilliet et al, 2004), producing the migration of 

Langerhans cells from the skin to the draining lymph nodes (Suzuki et al, 2000). 

However, keratinocytes do not express TLR 7/8 (Lebre et al, 2007), but an increased 

production of pro-inflammatory cytokines have been observed after IMQ treatment of 

keratinocytes, which have been explained by the fact that IMQ can activate 

keratinocytes through the adenosine receptor signaling pathway (Schon and Schon, 

2007a).  

In the IL-23 model, 500 ng of mouse recombinant IL-23 protein are diluted in PBS 

and intradermally injected into the ears of mice daily for eight days or each other day 

for 12 days. Although acanthosis, parakeratosis and hyperkeratosis as well as dermal 

immune cell infiltration are appreciated through the injections, the IL-23 model fails in 

the infiltration of CD8+ T cells into the epidermis (Chan et al, 2006; Kopp et al, 2003). 
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RESUME ARTICLE 1: 
The oncogenic tyrosine kinase Lyn impairs the pro-

apoptotic function of Bim 

 

The Src family kinase, composed of 8 members, has a key role in the control of 

many biological processes such as differentiation, migration and survival. Lyn, one of 

these proteins, has a well-established function in hematopoietic cells, participating in 

the regulation of different hematological abnormalities. Indeed, it has been 

demonstrated that Lyn play an important role in the maintaining of several leukemia 

phenotypes and a dysfunctional regulation of the protein has been found in various 

solid tumors. Recently it was shown that Lyn can have an anti-apoptotic role. In fact, 

the caspase-cleaved form of Lyn (cLyn), which is going to be relocated from the 

plasma membrane into the cytosol, can negatively control apoptosis after the binding of 

IgM to the BCR, indicating that cLyn can have access to new substrates with which the 

native form of the protein cannot interact. Moreover, it was evidenced that apoptosis 

inhibition by Lyn has been associated to the intrinsic pathway or the mitochondrial 

pathway and the chemoresistance of cancer cells to some treatments such as imatinib 

has been associated to an increase in the activation and expression of Lyn as well as 

its cytosolic localization. Therefore, we focused our study to determine the molecular 

mechanism of this anti-apoptotic function of Lyn.  

Taking into account that Bcl-2 family members are crucial proteins in the 

regulation of mitochondrial apoptosis and specially that Bax and Bak, the essential 

effectors controlling apoptosis intrinsic pathway, need to be activated by Bim, we drove 

our work to determine whether the interaction of Lyn with Bim could explain the anti-

apoptotic effects of Lyn. Bim is a highly regulated protein by post-translational 

modifications. In fact, it has been demonstrated that the phosphorylation of Ser/Thr 

residues of Bim is key in the modulation of the pro-apoptotic functions of the BH3-only 

protein Bim. However, nothing is known about the putative tyrosine phosphorylation of 

this Bcl-2 family member and its potential impact on Bim function and subsequent 

Bax/Bak-mediated cytochrome c release and apoptosis. Bim has three major isoforms 

(EL, L and S). We found that Lyn was able to interact with BimEL and BimL. Moreover, 

BimEL was phosphorylated onto tyrosine residues 92 and 161 by Lyn, leading to an 

inhibition of its pro-apoptotic function. Going more in details within the mechanism we 

showed that Lyn-dependent tyrosine phosphorylation of Bim increases its interaction 

with anti-apoptotic members such as Bcl-xL, therefore limiting mitochondrial outer 

membrane permeabilization and subsequent apoptosis. 
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Altogether, these results showed a direct link between Lyn and Bim, confirming 

the implication of Lyn in the resistance of cancer cells to chemotherapeutic treatments 

through the Bim regulation by its tyrosine phosphorylation. Therefore, we demonstrated 

a molecular mechanism through which the oncogenic tyrosine kinase Lyn negatively 

regulates the mitochondrial apoptotic pathway, demonstrating its suppressor role in 

apoptosis. 
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Abstract
Phosphorylation of Ser/Thr residues is a well-established modulating mechanism of the pro-apoptotic function of the BH3-
only protein Bim. However, nothing is known about the putative tyrosine phosphorylation of this Bcl-2 family member and
its potential impact on Bim function and subsequent Bax/Bak-mediated cytochrome c release and apoptosis. As we have
previously shown that the tyrosine kinase Lyn could behave as an anti-apoptotic molecule, we investigated whether this Src
family member could directly regulate the pro-apoptotic function of Bim. In the present study, we show that Bim is
phosphorylated onto tyrosine residues 92 and 161 by Lyn, which results in an inhibition of its pro-apoptotic function.
Mechanistically, we show that Lyn-dependent tyrosine phosphorylation of Bim increases its interaction with anti-apoptotic
members such as Bcl-xL, therefore limiting mitochondrial outer membrane permeabilization and subsequent apoptosis.
Collectively, our data uncover one molecular mechanism through which the oncogenic tyrosine kinase Lyn negatively
regulates the mitochondrial apoptotic pathway, which may contribute to the transformation and/or the chemotherapeutic
resistance of cancer cells.

Introduction

The Src family of non-receptor tyrosine kinases (SFKs)
plays an important role in the control of many biological
processes, such as proliferation, differentiation, survival,
and cell motility [1]. There are eight SFKs that all share a
common structure consisting of six distinct regions (for

detailed see ref. [2]). SFKs are activated by a wide variety
of cell-surface receptors to orchestrate intracellular signal-
ing networks in many cell types [3]. In addition to their
relevant role in physiological conditions, SFKs also parti-
cipate in oncogenesis [4]. Overexpression or excessive
activation of SFKs is frequently observed in tumors, playing
a central role in the regulation of multiple signaling path-
ways important for tumor progression, such as apoptosis
[4]. Moreover, their activation level often correlates with
disease severity and metastatic potential.

In physiological conditions, the SFK Lyn plays a key
role in the regulation of B lymphocyte and myeloid cell
homeostasis [5–7]. Furthermore, several studies have shown
that Lyn is overactive in hematological malignancies,
including chronic myelogenous leukemia (CML) [8], B-cell
chronic lymphocytic leukemia B [9], and Burkitt lymphoma
[10], and in solid cancers [11, 12]. During tumorigenesis,
Lyn is involved in tumor progression [2] and resistance to
cancer treatments [9, 13] rather than in neoplasia initiation.
Resistance to chemotherapeutic agents can be linked to an
increase in Lyn expression and activity as well as an
aberrant localization within the cytosol [9, 14]. Interest-
ingly, we showed that the cytosolic form of Lyn (hereafter
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cLyn) behaves as an inhibitor of the mitochondrial apop-
tosis pathway, and this effect relies on its kinase activity [9,
14, 15]. Therefore, Lyn inhibition by pharmacological
inhibitors or siRNA in resistant cells resensitizes them to
apoptotic death induced by chemotherapeutic treatment
[13]. Although Lyn-mediated regulation of apoptosis has
previously been linked to the regulation of caspase-8 acti-
vation [16], the direct regulation of the apoptotic mito-
chondrial pathway has not yet been addressed.

The intrinsic apoptotic pathway is tightly controlled by
the Bcl-2 family proteins, which are primary regulators of
mitochondrial outer membrane permeabilization (MOMP),
an essential event in mitochondrial apoptosis, resulting in
the release of cytochrome c into the cytosol to activate
executioner caspases [17]. The Bcl-2 family is composed of
anti-apoptotic members, (Bcl-2, Mcl-1, and Bcl-xL), that
are required for cell survival to counteract the pro-apoptotic
effector (Bax and Bak) and BH3-only (such as Bim and
Bid) protein functions [18]. Among the pro-apoptotic, the
BH3-only proteins act as stress sentinels that relay apoptotic
signals to the mitochondria and induce MOMP via Bax/Bak
activation [17]. BH3-only proteins are regulated both tran-
scriptionally and by post-translational modifications, such
as phosphorylation [19, 20]. For example, phosphorylation
of Bim on serine/threonine residues by kinases such as ERK
and JNK [21, 22] represents an important regulatory
mechanism of its pro-apoptotic function that primarily
modulates its degradation. Although Bim is a key regulator
of immune homeostasis and a major obstacle to the devel-
opment of autoimmune diseases and cancer [23], the
importance of ERK regulation of Bim function in vivo
seems to be limited, as knock-in mice expressing BimEL,
one of the molecular forms of Bim obtained by alternative
splicing [24], that cannot be directly controlled by ERK do
not exhibit altered hematopoietic system homeostasis [25].
These observations suggest that other regulations of Bim
could be implicated in such aspects.

In the present study, we report that BimEL can be
directly phosphorylated by Lyn on tyrosine residues 92 and
161 and that the Lyn-dependent tyrosine phosphorylation of
BimEL inhibits MOMP and subsequent apoptosis.

Results

Lyn interacts with BimEL and BimL but not BimS

Based on our previous results showing that the cytosolic
form of Lyn (cLyn) can inhibit the mitochondrial pathway
upstream of caspase activation [14, 15], we determined
whether Lyn can regulate one of the Bcl-2 family members.
We focused our attention on Bim because of its major role
in the context of B-cell receptor-mediated and imatinib-

induced apoptosis [26, 27]. To identify whether Lyn is
involved in Bim regulation, we first analyzed their putative
interaction. Using a GST pull-down approach with cell
protein extract (Fig. 1a, b) or recombinant protein (Fig. 1c),
we identified an interaction between BimEL and Lyn.
Interestingly, this interaction seemed to be specific to Lyn,
as no interaction was observed with Fyn (Fig. 1d), another
SFK known to negatively regulate apoptosis [28]. More-
over, to determine whether Lyn activity is involved in its
interaction with Bim, an inactive form of cLyn (cLyn
Kinase Dead, cLynKD) was used. We found that both
forms of cLyn, WT and KD, interact with Bim, indicating
that Lyn activity is not required for its interaction with Bim
(Fig. 1e, Supplementary Fig. 1a).

Bim exists as three major isoforms, obtained by alter-
native splicing (BimEL, BimL, and BimS) [24]. We next
wanted to know which one of these isoforms Lyn interacts
with. We confirmed that BimEL interacts with cLyn (Fig.
1f, Supplementary Fig. 1b) and showed that BimL, but not
BimS (Fig. 1e, f), could bind to Lyn. Finally, the interaction
between endogenous BimEL and Lyn was also observed
(Fig. 1g). Thus, Lyn binds to BimEL and BimL in a kinase-
independent manner.

Bim is phosphorylated on tyrosine residues by Lyn

To assess whether Bim could be a direct substrate of Lyn,
recombinant GST-Bim was subjected to an in vitro kinase
assay with an active Lyn recombinant protein. As shown in
Fig. 2a, b, the mouse BimEL and BimL isoforms, but not
BimS, were phosphorylated in the presence of Lyn. We also
confirmed that a commercially available recombinant
human BimL protein was phosphorylated in vitro by Lyn
(Supplementary Fig. 2a), suggesting that upon binding, Lyn
could phosphorylate BimEL and BimL. We then investi-
gated whether Bim tyrosine phosphorylation could occur
within cells by transfecting BimEL with the WT or inactive
(KD) form of cLyn into HEK293 cells. To increase the pool
of tyrosine-phosphorylated proteins, transfected cells were
treated with pervanadate, a tyrosine phosphatase inhibitor.
As shown in Fig. 2c (Supplementary Fig. 2b), a tyrosine-
phosphorylated form of Bim was observed in the presence
of cLyn and pervanadate (lane 1), but not when cLyn was
inactive (lane 3). Conversely, the ERK-dependent phos-
phorylation of BimEL on serine 65 was increased in cells
treated with pervanadate but in a Lyn-independent manner.
Similar results were obtained when cells were treated with
the Src kinase inhibitor PP2 to inhibit Lyn activity (Fig. 2d,
Supplementary Fig. 2c). Moreover, inhibition of either the
MEK/ERK pathway (U0126) or the JNK pathway
(SP600125) had no impact on Bim tyrosine phosphoryla-
tion (Fig. 2d). Altogether, these results suggest that tyrosine
phosphorylation of Bim can occur independently of Ser/Thr

L. E. Aira et al.



kinase-dependent phosphorylation, already known to reg-
ulate Bim functions [17, 20]. Furthermore, the tyrosine
phosphorylation of BimL was detected in cells (Supple-
mentary Fig. 2d), and the human BimEL was also phos-
phorylated on tyrosine residues in a Lyn-dependent manner
(Supplementary Fig. 2e), indicating that this phosphoryla-
tion event is not restricted to the murine BimEL.

We next analyzed the phosphorylation of Bim using
Phos-tag SDS gels, which are made with a particular

acrylamide that binds to phosphorylated tyrosine, serine,
and threonine residues, producing stepwise gel shifts for
each phosphorylated residue [29]. As shown in Fig. 2e,
BimEL is a highly phosphorylated protein, with several
shifted bands in all conditions tested. However, only the
WT form of cLyn induced an additional shifted band of
transfected BimEL (lane 2 versus lane 3, right arrowhead),
which occurred independently of pervanadate treatment
(lane 1 versus lane 4, left arrowhead).

Fig. 1 Lyn interacts with BimEL and BimL. a, b Recombinant GST
and GST-Lyn proteins (a) or recombinant GST-BimEL (b) were
incubated with protein extracts from Ramos cells. After GST pull-
down, the interaction between Lyn and Bim was analyzed by WB. c
Recombinant GST and GST-BimEL were incubated with a recombi-
nant Lyn protein produced by TNT. After GST pull-down, protein
interactions were analyzed by WB. d Same experiment as depicted in c
but with a recombinant Fyn protein. e Recombinant GST, GST-
BimEL, and GST-BimS were incubated with recombinant Lyn WT or
its inactive form (KD). After GST pull-down, protein interactions were
analyzed by WB. The input is presented in Supplementary Fig. 1a. f
HEK293 cells were transfected with vectors encoding EE-tagged
BimEL, BimL, or BimS proteins in the presence or absence of cLyn.

Twenty-four hours after transfection, cell extracts (input) were
immunoprecipitated with an anti-EE antibody, and protein interactions
were analyzed by WB. Cells were treated with the pan-caspase inhi-
bitor Q-VD-OPh (20 μM) during transfection to prevent Bim-
dependent cell death. The input is presented in Supplementary Fig.
1b. g WEHI-231 cell extracts were immunoprecipitated with an anti-
Bim antibody or a nonrelevant Ig (NR), and protein interaction was
analyzed by WB. The asterisk indicates cross-reactivity with the
antibody light chain used in the IP. All GST proteins were purified
from bacteria. The recombinant Lyn and Fyn proteins were obtained
by in vitro transcription and translation in reticulocyte lysates. EV,
empty vector
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Then, we compared the ability of different forms of Lyn,
active or inactive (KD), to phosphorylate Bim on tyrosine
residues. To do so, we analyzed (i) the native anchored form
(Lyn) and (ii) two different cytosolic forms of Lyn, the
caspase-cleaved form of Lyn (cLyn) [14, 30] and one in
which acylated residues were mutated (cLyn-2), preventing
anchoring to the plasma membrane (Fig. 2f, Supplementary
Fig. 2f). Although all active Lyn constructs could induce
tyrosine phosphorylation of Bim, the two cytosolic forms
appeared to be more effective than the native anchored form

of Lyn. However, neither the WT nor the cytosolic form of
Fyn could generate the tyrosine phosphorylated form of
Bim. These results support the idea that Lyn, and more
efficiently its cytosolic forms, phosphorylates Bim on tyr-
osine residues.

Finally, we detected endogenous tyrosine-
phosphorylated BimEL both in HEK293 cells transfected
with cLyn and treated with pervanadate (Fig. 2g, Supple-
mentary Fig. 3a), and in activated WEHI-231, a murine B-
cell line activated upon BCR activation through IgM
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(Supplementary Fig. 3b) where Lyn and Bim are known to
control B-cell response [2, 23]. Altogether, these data sug-
gest that Lyn-mediated phosphorylation of Bim can occur at
the endogenous level in physiological conditions.

BimEL is phosphorylated by Lyn on tyrosine
residues 92 and 161

An analysis of the mouse BimEL sequence revealed four
tyrosine residues, Y92, Y123, Y161, and Y170, with the
last three being common to BimL (Supplementary Fig. 4a).
To identify the tyrosine residue(s) targeted by Lyn, we
performed an in vitro kinase assay with recombinant active
Lyn and GST-Bim mutants, whereby each tyrosine was

individually mutated to phenylalanine (Y to F) by site-
directed mutagenesis. In contrast to the Y123F and Y170F
mutants, which were phosphorylated to the same extent as
WT BimEL, the mutation of tyrosine 92 or 161 significantly
reduced Bim phosphorylation, indicating that both residues
are phosphorylated by Lyn (Fig. 3a). The same experiments
conducted with a single tyrosine mutant of BimL confirmed
that tyrosine 105 (Y161 in BimEL) was targeted by Lyn
(Supplementary Fig. 4b). To confirm that both tyrosine
residues 92 and 161 are also phosphorylated by Lyn within
cells, we co-transfected cells with each single mutant or the
double mutant Y92/161F (DM-YF) and cLyn (Fig. 3b,
Supplementary Fig. 4c). A reduction in the tyrosine phos-
phorylation of both Y92F and Y161F single mutants com-
pared to WT BimEL was observed, whereas mutation of the
other two tyrosine residues had no impact. Notably, the
Y92F mutant was the most affected. However, phosphor-
ylation was completely abolished when both tyrosine resi-
dues (92 and 161) were concomitantly mutated (double
mutant-YF: DM-YF) (Fig. 3b, Supplementary Fig. 5a).
Furthermore, mutating Y105 of BimL abolished its tyrosine
phosphorylation, suggesting that this residue was also tar-
geted by Lyn within cells (Supplementary Fig. 4d). We
generated Bim mutants that could not be phosphorylated on
Y92 and Y161 and Ser65 (S65G/DM-YF), one of the serine
residues targeted by ERK [21]. As we observed with
pharmacological inhibitors of Lyn and ERK pathway (Fig.
2d), the tyrosine phosphorylation of Bim occurred inde-
pendently of the Ser65 phosphorylation (Supplementary
Fig. 4e). However, there are many Ser and Thr residues in
Bim that can be phosphorylated, and we cannot completely
exclude that one or more other phosphorylated sites could
affect the tyrosine phosphorylation mediated by Lyn.
Therefore, BimEL is phosphorylated on tyrosine residues
92 and 161 in a Lyn-dependent manner, and this event is
independent of Bim phosphorylation by ERK or JNK.

To better examine Bim tyrosine phosphorylation, we
generated phospho-specific polyclonal antibodies against
synthetic peptides containing either the Y92 or Y161
phosphorylated residues. After affinity purification against
the nonphosphopeptide to remove any cross-reactivity, we
were only able to obtain an antibody specific for phos-
phorylated tyrosine 92, which specifically detected ectopi-
cally expressed WT BimEL but not a nonphosphorylatable
double mutant (Fig. 3c, Supplementary Fig. 5b). Immuno-
precipitation experiments confirmed that this antibody
recognizes phosphorylated Bim when Lyn is active and
tyrosine 92 is not mutated (Fig. 3d, Supplementary Fig. 5c),
and allowed the detection of tyrosine-phosphorylated Bim
in the absence of sodium pervanadate stimulation, when a
constitutively active form of cLyn was expressed (Supple-
mentary Fig. 5d). Interestingly, proteasome inhibition by
velcade did not modify the level of tyrosine phosphorylated

Fig. 2 Bim is phosphorylated on tyrosine residues by Lyn. a, b In vitro
Lyn phosphorylation assay of GST-BimEL, GST-BimL, and GST-
BimS. GST was used as a negative control. Proteins were separated by
SDS-PAGE, and gels were stained with Coomassie blue and exposed
for autoradiography. c HEK293 cells were co-transfected with vectors
encoding BimEL and the WT (cLyn) or inactive form of Lyn (cLyn-
KD). Twenty-four hours after transfection, cells were treated with or
without sodium pervanadate (H6Na3VO10), an inhibitor of tyrosine
phosphatases, for 15 min. Cell extracts (input) were immunoprecipi-
tated for Bim, separated by SDS-PAGE and immunoblotted with anti-
phosphotyrosine, anti-Bim and anti-P-Ser65 Bim antibodies. Non-
relevant Ig (IP NR) served as an immunoprecipitation control. The
input is presented in Supplementary Fig. 2b. d HEK293 cells were co-
transfected with vectors encoding BimEL and cLyn. Twenty-four
hours after transfection, cells were pre-treated for 30 min either with a
Src inhibitor (PP2, 10 μM), a MEK1/2 inhibitor (U0126, 10 μM) or a
JNK inhibitor (SP600125, 20 μM). Then, cells were treated for 15 min
with sodium pervanadate. Cell extracts (input) were immunoprecipi-
tated for Bim, separated by SDS-PAGE and immunoblotted with anti-
phosphotyrosine, anti-Bim, and anti-P-Ser69 Bim antibodies. The
input is presented in Supplementary Fig. 2c. e The same extracts used
in c were run on Phos-tag SDS gels, which are made with a special
acrylamide that binds to each serine/threonine and tyrosine phos-
phorylated residues and produces gel shifts in a given protein. The
membrane was immunoblotted with an anti-Bim antibody. The
arrowhead indicates Bim-phosphorylated forms dependent on Lyn
kinase activity, observed in the presence (right arrowhead) and in the
absence (left arrowhead) of sodium pervanadate stimulation. f
HEK293 cells were co-transfected with vectors encoding BimEL and
the WT or inactive forms (KD) of cytosolic or membrane-anchored
Lyn and Fyn. For Lyn, we compared two different cytosolic forms of
Lyn, the caspase-cleaved form of Lyn (cLyn) and another one in which
acylated residues were mutated (cLyn-2). Twenty-four hours after
transfection, cells were treated for 15 min with sodium pervanadate to
inhibit tyrosine phosphatases. Cell extracts (input) were immunopre-
cipitated for Bim, separated by SDS-PAGE and immunoblotted with
anti-phosphotyrosine and anti-Bim antibodies. The input is presented
in Supplementary Fig. 2f. In all transfection experiments, the cells
were treated with the pan-caspase inhibitor Q-VD-OPh (20 μM) to
prevent Bim-dependent cell death. g HEK293 cells were transfected
with a vector encoding cLyn or an empty vector. Twenty-four hours
after transfection, cells were treated with or without sodium pervana-
date, an inhibitor of tyrosine phosphatases, for 15 min. Cell extracts
(input) were immunoprecipitated for Bim, separated by SDS-PAGE
and immunoblotted with anti-phosphotyrosine and anti-Bim anti-
bodies. The input is presented in Supplementary Fig. 3a
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Fig. 3 BimEL is phosphorylated by Lyn on tyrosine residues 92 and
161. a In vitro Lyn phosphorylation assay with recombinant WT GST-
BimEL and nonphosphorylatable mutants (Y to F) of GST-BimEL.
The proteins were separated by SDS-PAGE, and gels were stained
with Coomassie blue and exposed for autoradiography. b HEK293
cells were co-transfected with vectors encoding cLyn and WT BimEL
or nonphosphorylatable single mutants (Y to F) of BimEL. The non-
phosphorylatable Y92F/Y161F double mutant was also tested (DM-
YF). Twenty-four hours after transfection, sodium pervanadate, an
inhibitor of tyrosine phosphatases, was added for 15 min. Cell extracts
(input) were immunoprecipitated for Bim, separated by SDS-PAGE
and immunoblotted with anti-phosphotyrosine and anti-Bim anti-
bodies. Cells were treated with the pan-caspase inhibitor Q-VD-OPh
(20 μM) during transfection to prevent Bim-dependent apoptosis. The
input is presented in Supplementary Fig. 4c. c HEK293 cells were co-
transfected with vectors encoding cLyn and WT BimEL or the non-
phosphorylatable Y92F/Y161F (DM-YF) double mutant of BimEL.
Twenty-four hours after transfection, cells were treated with or without
sodium pervanadate for 15 min to inhibit tyrosine phosphatases. Cell
extracts (input) were immunoprecipitated for Bim, separated by SDS-
PAGE and immunoblotted with anti-phospho-Bim (Y92) and anti-Bim
antibodies. The input is presented in Supplementary Fig. 5b. d

HEK293 cells were co-transfected with vectors encoding cLyn and
WT or mutant forms of BimEL (single mutants Y92F and Y161F and
the double mutant Y92/Y161F). Twenty-four hours after transfection,
cells were treated with or without sodium pervanadate for 15 min to
inhibit tyrosine phosphatases. Cell extracts (input) were immunopre-
cipitated for phospho-Y92 Bim, separated by SDS-PAGE and
immunoblotted with an anti-Bim antibody. When indicated, a Src
kinase inhibitor (PP2, 10 μM) was added 1 h before pervanadate sti-
mulation. The input is presented in Supplementary Fig. 5c. e HEK293
cells were transfected with a vector encoding cLyn or an empty vector.
Twenty-four hours after transfection, cells, which were either pre-
treated or not for 30 min with Src inhibitors (PP2, 10 μM or Dasatinib,
100 nM), were then treated with or without sodium pervanadate for 15
min. Cell extracts (input) were immunoprecipitated for Bim, separated
by SDS-PAGE and immunoblotted with anti-phosphotyrosine and
anti-Bim antibodies. The input is presented in Supplementary Fig. 5e. f
Ramos cells were stimulated for the indicated time points with 10 μg/
ml goat anti-human IgM, and then treated with sodium pervanadate for
10 min. The cell extracts (input) were immunoprecipitated for
phospho-Y92 Bim, separated by SDS-PAGE and immunoblotted with
an anti-Bim antibody. Nonrelevant Ig (IP NR) served as an immu-
noprecipitation control
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Bim. Finally, as the S65G Bim mutant was immunopreci-
pitated with the P-Y92 Bim antibody, we confirmed that
both phosphorylation events could occur independently of
each other (Supplementary Fig. 5d). Altogether, these data
validated this antibody as a tool to analyze Lyn-dependent
Bim tyrosine phosphorylation in both physiological and
pathological conditions.

Therefore, to observe the endogenous tyrosine 92 phos-
phorylation of Bim, we first transfected HEK293 cells with
cLyn and treated them with sodium pervanadate. Interest-
ingly, Bim phosphorylation on tyrosine 92 was observed
preferentially when cLyn was expressed and active, as PP2
or Dasatinib treatment, two Src kinase inhibitors, fully
abolish the detection of phosphorylated Bim (Fig. 3e,
Supplementary Fig. 5e). Next, we investigated whether this
phosphorylation could also occur in the mouse (WEHI-231)
and human (Ramos) lymphoma B-cell lines. As expected,

B-cell receptor engagement induced activation of Lyn as
early as 15 min after stimulation (Fig. 3f and Supplementary
Fig. 5f). Concomitantly, in this condition, phosphorylation
of Bim on tyrosine 92 was observed (Fig. 3f, Supplemen-
tary Fig. 5f) both in mouse and human cells, indicating that
Bim phosphorylation on tyrosine 92 can occur when Lyn is
activated through B-cell receptor stimulation.

Bim phosphorylation on tyrosine residues 92 and
161 increases its stability

Serine/threonine phosphorylation of Bim by several survi-
val kinases regulates its pro-apoptotic function, primarily by
modulating its stability [19, 21]. Therefore, we investigated
the effect of Bim tyrosine phosphorylation on its pro-
apoptotic function and/or stability by comparing nonpho-
sphorylatable (DM-YF) Bim to phosphomimetic (DM-YE)

Fig. 4 Phosphomimetic (DM-
YE) double mutant is more
stable than WT BimEL and
nonphosphorylatable (DM-YF)
double mutants of BimEL. a
HEK293 cells were co-
transfected with vectors
encoding for WT or mutants
forms of BimEL. Twenty-four
hours after transfection, Bim
expression was evaluated by
WB. Histograms represent the
mean± SD of the Bim/ERK
quantification corresponding to
five independent experiments.
Student’s t-test was applied, *p
< 0.05; **p< 0.01; ****p<
0.0001; n.s. non significant. b
Bax/Bak DKO MEFs were
transduced with pMIG vector
encoding WT or mutants forms
of BimEL, and GFP through an
IRES sequence. After GFP
FACS sorting, the cells were
treated with cycloheximide (10
μg/ml) and then harvested at the
indicated times. BimEL and
Mcl-1 expression was analyzed
by WB. Actin was used as a
loading control. c Quantification
of the WB presented in b (Bim/
actin ratio in % of control). d
HeLa cells were transfected with
increasing amount of cLynCA,
and 24 h after transfection,
endogenous BimEL expression
was analyzed by WB
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double mutants of Bim, to get rid of the Lyn kinase. Each
variant was expressed in DKO Bax/Bak MEFs, because
they are defective in the mitochondrial apoptotic pathway,
and immunofluorescence analyses revealed that both
mutants were localized at the mitochondria, similar to the
BimEL WT form (Supplementary Fig. 6). These results
confirmed the mitochondrial localization of BimEL but also
suggested that tyrosine phosphorylation of BimEL, based

on the phosphomimetic mutant localization, did not influ-
ence its subcellular distribution.

We next compared the basal expression of BimEL WT
and double mutants (DM-YF and DM-YE) in HEK-293
cells. Transfection of BimEL variants indicated that DM-
YE mutant protein expression was higher than that of the
WT form and the DM-YF mutant (Fig. 4a), despite an
equivalent transfection efficiency, indicating that the

Fig. 5 Lyn-dependent tyrosine phosphorylation of BimEL inhibit its
pro-apoptotic function. a, b HEK293 cells were co-transfected with
vectors encoding WT or double mutant forms of BimEL (nonpho-
sphorylatable DM-YF or phosphomimetic DM-YE) and either Myc-
tagged Mcl-1 (a) or HA-tagged Bcl-xL (b). Twenty-four hours after
transfection, cell extracts (input) were immunoprecipitated with the
respective anti-tag antibody, separated by SDS-PAGE and immuno-
blotted with anti-Bim and anti Mcl-1 or Bcl-xL antibodies. The inputs
are presented in Supplementary Fig. 8a, b. c The Kd was determined
by measuring the RLuc-BimEL variant/YFP-Bcl-xL BRET ratio that
corresponded to a relative affinity determined at 50% of the BRET
saturation plateau. d The BH3-mimetic (WEHI-539) response of the
RLuc-BimEL variant/YFP-Bcl-xL BRET signals was assessed by
concentration curve experiments. The data are presented as the mean
± SD, and are representative of three independent experiments. e HeLa
cells stably expressing Smac-GFP were co-transfected with vectors
encoding RFP and WT or double mutant forms of BimEL

(nonphosphorylatable DM-YF or phosphomimetic DM-YE). Cells
were treated with the pan-caspase inhibitor Q-VD-OPh (20 μM) during
transfection to prevent Bim-dependent cell death. Fifteen hours after
transfection, the RFP+ cells (transfected cells) were analyzed for GFP
expression by flow cytometry. The percentage of high-GFP-expressing
cells (corresponding to cells with Smac-GFP within the mitochondria)
was plotted relative to the control cells (EV, empty vector). Data are
presented as the mean± SD (n= 4). Student’s t-test was applied, *p<
0.05; **p< 0.01; n.s. non significant. f HeLa cells were co-transfected
with vectors encoding membrane-GFP (pBB14) and WT or double
mutant forms of BimEL (nonphosphorylatable DM-YF or phospho-
mimetic DM-YE). Twenty-four hours after transfection, cell death of
the transfected population (GFP+ cells) was monitored by flow
cytometry using Annexin V-PE and DAPI. The percentage of AnV-
DAPI-negative cells (live cells) was plotted by normalizing to the
control cells (EV, empty vector). Data are presented as the mean± SD
(n= 2). Student’s t-test was applied, *p< 0.05; n.s. non significant
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phosphomimetic mutant (DM-YE) should be post-
translationally stabilized. To confirm this finding, we next
performed cycloheximide experiments on sorted DKO Bax/
Bak MEFs infected with WT and mutant BimEL-expressing
retroviruses. As expected, the phosphomimetic mutant
(DM-YE) had an increased half-life (>16 h) compared to
WT BimEL (10 h) and the nonphosphorylatable (DM-YF)
mutant (8 h) (Fig. 4b, c), whereas the clearance of Mcl-1, a

highly labile protein, was equivalent between each condi-
tion. Notably, the half-life of endogenous BimEL was not
significantly different from the exogenous WT BimEL,
although their basal expression was different (Supplemen-
tary fig. 7a). Thus, the differences in basal expression level
do not affect the half-life of Bim, indicating that the
increased half-life of the phosphomimetic mutant cannot be
attributed to its increased basal expression. Interestingly,

Fig. 6 Tyrosine 92 phosphorylation of BimEL in human cancer cell
lines is associated with cellular survival. a Sudhl4 were pre-treated or
not with 10 μM PP2 for 2 h or b with 2 μM of doxorubicin to induce
apoptosis for 48 h, before sodium pervanadate treatment for 10 min.
Cell extracts (input) were immunoprecipitated either for phospho-Y92
Bim or Bim, separated by SDS-PAGE and immunoblotted with an
anti-Bim or PY92 Bim antibody. The respective inputs are presented in
Supplementary Fig. 10a, c. Nonrelevant Ig (IP NR) served as an
immunoprecipitation control. c K562 cells sensitive and resistant to
nilotinib (K562-RN) were stimulated with 20 nM of nilotinib for the
indicated time points and then cells were treated with sodium perva-
nadate for 10 min. Cell extracts (input) were immunoprecipitated for
phospho-Y92 Bim, separated by SDS-PAGE and immunoblotted with
an anti-Bim antibody. PARP cleavage was analyzed to monitor

apoptosis induction. The input is presented in Supplementary Fig. 10e.
Nonrelevant Ig (IP NR) served as an immunoprecipitation control. d
K562-RN cells were treated with nilotinib for 48 h. 100 nM Dasatinib,
a dual Src-Abl kinase inhibitor, was added 2 h before 10 min of
sodium pervanadate treatment. Cell extracts (input) were used as in c.
The input is presented in Supplementary Fig. 10f. Histogram repre-
sents caspase activity monitored on the same protein extracts. e K562-
RN cells were treated with nilotinib for 24 h. 10 μM PP2 was added 2 h
before 10 min of sodium pervanadate treatment. Cell extracts (input)
were immunoprecipitated for phospho-Y92 Bim or Bcl-xL, separated
by SDS-PAGE and immunoblotted with indicated antibodies. The
input is presented in Supplementary Fig. 10g. Nonrelevant Ig (IP NR)
served as an immunoprecipitation control

Bim tyrosine phosphorylation is anti-apoptotic



transfection of cLynCA, a cytosolic form of Lyn with
constitutive tyrosine kinase activity in HEK293 cells, leads
to an increase in BimEL protein expression (Fig. 4d).
Hence, this result suggests that Lyn-dependent tyrosine
phosphorylation of BimEL increases its stability.

Tyrosine phosphorylation of Bim inhibits its pro-
apoptotic function

The key role of Bim in apoptosis regulation has been well
established [31, 32]. However, non-apoptotic Bim func-
tions, such as negative regulation of autophagy [33] or
prosurvival signaling [34], have recently been described. To
examine whether tyrosine phosphorylation could impact
this, we used GFP FACS-sorted DKO Bax/Bak MEFs
expressing Bim WT and double mutants (DM-YF and DM-
YE) and confirmed that the phosphomimetic mutant (DM-
YE) exhibited higher expression than both the WT form and
the nonphosphorylatable mutant (DM-YF) (Supplementary
Fig. 7a). Furthermore, none of the BimEL variants expres-
sed affected either the basal and EBSS-induced autophagy,
as determined by LC3 I-II conversion (Supplementary Fig.
7b, c), or cell proliferation (Supplementary Fig. 7d, e).
Based on these results, we speculate that tyrosine phos-
phorylation could regulate the canonical pro-apoptotic
function of BimEL.

Interactions between anti-apoptotic Bcl-2 proteins and
pro-apoptotic BH3-only proteins are pivotal in regulating
apoptosis [17]. In proliferating cells, the pro-apoptotic
function of Bim is silenced by its interaction with anti-
apoptotic Bcl-2 members, such as Mcl-1 and Bcl-xL, thus
preventing unwanted cell death. Therefore, we transiently
co-transfected HEK293 cells with each BimEL variants and
either Mcl-1-myc or Bcl-xL-HA, and immunoprecipitations
were performed (Fig. 5a, b, Supplementary Fig. 8a, b).
Although the amount of IP-transfected Mcl-1 or Bcl-xL was
equivalent in all conditions, more DM-YE BimEL mutant
was co-immunoprecipitated compared to its WT or the DM-
YF counterpart, suggesting that the phosphomimetic mutant
interacted more with the anti-apoptotic proteins.

To confirm that the tyrosine phosphorylation of Bim
changes its ability to interact with anti-apoptotic members,
the spatial proximity between transiently transfected
luciferase-fused Bim variants and YFP-fused Bcl-xL was
measured by bioluminescence resonance energy transfer
(BRET) in live cells [35]. Consistently, the relative affinity
(Kd) of the Bim phosphomimetic mutant (DM-YE) for Bcl-
xL was lower than those of the other BimEL variants (Fig.
5c), indicating that Bim tyrosine phosphorylation improves
its interaction with anti-apoptotic members. It is worth
noting that all Bim mutant fusion proteins had the same
luciferase activity indicating that they were expressed at the
same level (Supplementary Fig. 8c). Moreover, Bim DM-

YE/Bcl-xL binding was more resistant to WEHI-539 BH3-
mimetic treatment (Fig. 5d), confirming the higher affinity
of the Bim phosphomimetic mutant for Bcl-xL.

We further explored whether modulation of Bim binding
capability of those mutants could also influence its pro-
apoptotic function and consequently cell death. To answer
that we first monitored MOMP induced by Bim transfection
into HeLa Smac-GFP cells [36]. Flow cytometry
analysis showed a decrease in Smac-GFP fluorescence
intensity induced by actinomycin D treatment in the
presence of Q-VD-OPh, as previously described [36], and
upon Bim transfection (Supplementary Fig. 9a). Based on
this, we compared the potential of each BimEL variant
in the absence of Lyn overexpression, but expressed at
the same protein level, to induce MOMP. Interestingly,
the BimEL phosphomimetic mutant (DM-YE) induced
MOMP with a lower efficiency than the WT form and
the nonphosphorylatable mutant (DM-YF) (Fig. 5e), the
latter having the strongest effect. In addition, in an
in vitro MOMP assay using isolated mitochondria,
Lyn could inhibit the mitochondrial release of Smac
induced by BimEL and BimL, but not BimS (Supplemen-
tary Fig. 9b).

Analysis of phosphatidylserine exposition confirmed that
the Bim phosphomimetic mutant (DM-YE) displayed a
decreased pro-apoptotic potential compared to the WT form
and the nonphosphorylatable mutant (DM-YF) (Fig. 5f).
These results suggest that despite an increased protein sta-
bility, the phosphomimetic BimEL mutant exhibits reduced
pro-apoptotic potential.

Altogether, these results suggest that the tyrosine phos-
phorylation of BimEL by Lyn inhibits its pro-apoptotic
function via its increased affinity for the anti-apoptotic
members of the Bcl-2 family.

Tyrosine 92 phosphorylation of BimEL in human
cancer cell lines is associated with cellular survival

To address the impact of Bim tyrosine phosphorylation in
pathological conditions, we first checked the presence of
PY92-Bim in several hematological cancer cell lines. By
immunoprecipitation, we identified that Bim was phos-
phorylated on tyrosine 92 in Sudhl4, a B-cell lymphoma
cell line (Fig. 6a, Supplementary Fig. 10a), and in LAMA-
84 and K562, two CML (Supplementary Fig. 10b, Fig. 6c)
in a Lyn-dependent manner, as confirmed by PP2 treatment
(Fig. 6a, Supplementary Fig. 10a) and silencing of Lyn by
shRNA expression in K562 cells (data not shown). Inter-
estingly, this phosphorylation event was reduced when cells
undergo apoptosis, visualized by PARP cleavage (Fig.
6b–d, Supplementary Fig. 10c), suggesting that tyrosine 92
phosphorylation of Bim inhibits its pro-apoptotic function.
To confirm this, we compared the tyrosine phosphorylation
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status of K562 cells sensitive and resistant (K562-RN) to
nilotinib treatment, whose resistance has been attributable to
overexpression of Lyn, with a large proportion into the
cytosol [13, 14]. Upon nilotinib treatment, Bim tyrosine 92
phosporylation was decreased in K562-sensitive cells along
with induction of apoptosis, while in K562-RN nilotinib-
resistant cells, Y92 phosphorylation was maintained (Fig.
6c). Dasatinib treatment, a dual Src-Abl kinase inhibitor,
inhibited PY92-Bim in K562-RN cells. Interestingly, inhi-
bition of Bim tyrosine phosphorylation increased apoptosis
induced by nilotinib treatment, confirming that Bim tyrosine
phosphorylation is Lyn dependent (Fig. 6d, Supplementary
Fig. 10f) and suggesting that this event is implicated in cell
death resistance of K562-RN cells. Finally, we further
demonstrated in these cells an increased binding between
Bim and Bcl-xL when Bim is phosphorylated on tyrosine
92 (Fig. 6e), as PP2 treatment reduced the level of Bim co-
immunoprecipitated with Bcl-xL. Altogether, these data
demonstrate that Bim tyrosine phosphorylation by the Src
tyrosine kinase Lyn is a novel mechanism of Bim pro-
apoptotic function inhibition implicated in chemo-resistance
of cancer cells.

Discussion

The Bcl-2 proteins have been implicated in the control of
the mitochondrial apoptotic pathway [17], and, importantly,
the cellular decision to live or die relies on complex inter-
actions between the anti-apoptotic and pro-apoptotic
members of this family. Regulation of BH3-only protein
expression represents a key event in controlling the com-
mitment to mitochondrial apoptotic cell death. In a large
majority of tumors, the levels of pro- and anti-apoptotic
Bcl-2 proteins are altered, leading to evasion of apoptosis, a
hallmark of cancer development [37]. Negative regulation
of Bim expression has been associated with decreased
apoptosis and accelerated tumor growth [38, 39] as well as
resistance to various chemotherapeutic agents, such as
imatinib in CML cells [27, 40]. Bim expression is tightly
regulated at several levels, one of which is the post-
translational regulation by phosphorylation that controls its
pro-apoptotic activity and stability [41]. For example, ERK-
mediated phosphorylation of BimEL negatively regulates
the BimEL pro-apoptotic function by targeting it for pro-
teasomal degradation [21, 42]. However, deciphering the
effect of a single phosphorylation event on the pro-
apoptotic function of Bim remains difficult, as it is regu-
lated by several phosphorylation events [41] that can occur
at the same time within the same molecule. In accordance to
that, our results also demonstrate that tyrosine phosphor-
ylation of Bim could occur at the same time as ERK1/2-
dependent phosphorylation.

This complex code of Bim phosphorylation is supported
by a study by Clybouw and colleagues, who showed that
knock-in mice expressing a mutated Bim that cannot be
regulated by ERK display a normal hematopoietic system
homeostasis [25], suggesting that other processes or phos-
phorylation events are critical for regulating BimEL func-
tion. In our study, we identified that BimEL is directly
phosphorylated on two tyrosine residues by the non-
receptor tyrosine kinase Lyn and that this leads to an inhi-
bition of Bim pro-apoptotic function. Surprisingly, we
found that a Bim phosphomimetic mutant is more stable but
less able to induce cell death, an outcome that is the
opposite of what is known about Bim regulation by Ser/Thr
kinases such as ERK and JNK [21, 22]. Indeed, stabilizing
Bim expression has been associated with an increase in Bim
pro-apoptotic function, whereas proteasomal degradation is
able to inhibit its function. This observation suggests that
the Bim phosphorylation status, rather than its expression
level, may be a good marker of its pro-apoptotic function.
Therefore, further experiments are required to better
understand how tyrosine phosphorylation of Bim can
increase its expression. However, as Bcl-xL is a highly
stable protein [43], one hypothesis would be that the
increase in protein stability of the BimEL phosphomimetic
mutant is related to its stronger interaction with Bcl-xL,
possibly preventing its subsequent degradation. Hence, as
Bim is a direct activator BH3-only protein [17], its stronger
interaction with anti-apoptotic molecules when phosphory-
lated on tyrosine residues should be considered as a cell
survival mechanism, which is consistent with the reduced
pro-apoptotic potential of BimEL phosphomimetic mutant.

Here, we demonstrated for the first time the direct reg-
ulation of one of the Bcl-2 family proteins by a member of
the SFKs. Src kinases are divided into two subgroups: the
Src-related kinases (Src, Yes, Fyn, and Fgr) and the Lyn-
related kinases (Lyn, Hck, Lck, and Blk) [44]. As we
established that Lyn but not Fyn induces Bim tyrosine
phosphorylation, it would be interesting to determine
whether other Lyn-related kinases could also fulfill this
function. Inhibition of BH3-only protein function by tyr-
osine phosphorylation has already been described for Bak
and Puma [45, 46] and has been linked to the negative
regulation of protein stability, at least for Puma. Whereas
HER2 is responsible for Puma tyrosine phosphorylation
[45], the kinase implicated in Bak phosphorylation remains
to be identified. Hence, the role of Src family kinases, and
especially Lyn, in the direct control of other Bcl-2 proteins
needs to be more carefully examined. However, as not all
Src kinases are expressed in all cell types, it may be chal-
lenging to determine which cellular contexts are optimal for
deciphering the potential tyrosine phosphorylation of Bcl-2
proteins regulated by one specific member of this family.
Our data also showed that the cytosolic form of Lyn
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regulates Bim function. In addition, we observed that the
native anchored form of Lyn can phosphorylate BimEL
(Fig. 2f). Thus, this observation suggests that Lyn-
dependent BimEL tyrosine phosphorylation could be a
more general mechanism and could be important in other
contexts than chemotherapeutic resistance associated with
the cytosolic localization of Lyn.

Mice lacking Bim exhibit lymphocyte hyperplasia and
antibody-mediated autoimmune pathology [23], demon-
strating that Bim is an important regulator of B-cell
homeostasis. Notably, the tyrosine kinase Lyn also plays
important roles in regulating myeloid and B-cell functions
[6, 47], and although several studies have noted a link
between Lyn and Bim, none of them have addressed the
direct regulation of Bim by tyrosine phosphorylation. B
cells isolated from Lyn-deficient mice display an increased
expression of this BH3-only protein [48], and treatment
with dasatinib, a dual ABL/Lyn inhibitor, increased the
expression of Bim but not the expression of other BH3-only
proteins in acute lymphoblastic leukemia [49]. These
observations would indicate that Lyn negatively regulates
Bim expression, which disagrees with our results showing
that once phosphorylated by Lyn, Bim is more stable.
However, we must consider that Lyn likely regulates Bim
expression at different levels through both direct and
indirect mechanisms. Indeed, Src kinases are implicated in
various signaling cascades; in particular, Lyn has been
shown to phosphorylate several signaling molecules such as
PI3K, STAT-5 or MAP kinase [2], which could be involved
in an indirect Lyn-dependent regulation of Bim. Impor-
tantly, Src has previously been shown to regulate apoptosis
through the degradation of the BH3-only protein Bik upon
activation of the ERK pathway [50], and we cannot rule out
the possibility of such indirect regulation by Lyn. Regarding
this hypothesis, we have observed that Lyn inhibition, fol-
lowing dasatinib or PP2 treatment, increased Bim expres-
sion both at the protein and mRNA level (data not shown),
indicating that Lyn could regulate Bim at both the tran-
scriptional and post-translational levels.

In our study, we identified that BimEL is phosphorylated
on tyrosine residues 92 and 161. Notably, these two resi-
dues among all the tyrosine residues present in the BimEL
sequence were the most evolutionarily conserved (Supple-
mentary Fig. 11). An in silico analysis with NetPhos soft-
ware predicted Y92 (Y96 in the human protein) to be a
potential targeted site for phosphorylation in both human
and mouse BimEL, whereas Y161 was predicted to be
phosphorylated only in mouse BimEL. Moreover, recently,
two different tyrosine phosphoproteomic studies identified
Bim as a phosphotyrosine protein [51, 52] but only con-
firmed the Y92 residue. Unlike our results, these studies
also identified Y172 (Y170 in the mouse protein) as a
potential phosphorylated residue, but there is no indication

about which kinase would be responsible for Tyr172
phosphorylation. Thus, we cannot exclude that this phos-
phorylation could be mediated by another member of the
SFKs or another tyrosine kinase. Interestingly, in HEK293
cells, the observation of a slight tyrosine phosphorylation of
Bim in the presence of the tyrosine phosphatase inhibition
by pervanadate but when Lyn was not overexpressed (Fig.
3e, Supplementary Fig. 5a) support the notion that other
SFKs or other tyrosine kinases could be implicated in such
post-translational modification of Bim. Indeed, the NetPhos
software analysis predicted that BimEL could be phos-
phorylated on Y172 in an EGFR-dependent manner, and the
phosphorylation of Y172 has been observed in breast cancer
cells [51, 52]. Thus, supplementary experiments are needed
to determine whether Y172 could be a target of EGFR
signaling.

In summary, our study identifies a new regulatory
mechanism of Bim pro-apoptotic function, which depends
on its tyrosine phosphorylation by the oncogenic tyrosine
kinase Lyn. The integration of this event in the complex
regulation of Bim should facilitate a better understanding of
its role in the physiological control of the hematopoietic
system homeostasis. Moreover, Bim tyrosine phosphoryla-
tion may also be relevant in cancer resistance to che-
motherapeutic agents and more particularly in contexts
where both Lyn and Bim are key mediators of this
resistance.

Materials and methods

Reagents and antibodies

Reagents and antibodies are detailed in Supplementary
Information.

Cell culture

HEK293 and HeLa cells were purchased from ATCC.
WEHI-231 was kindly provided by Dr. Andreas Villunger
(Medical University of Innsbruck, Austria). Immortalized
MEFs (WT, Bax/Bak dKO), Sudhl4, and HeLa Smac-GFP
[37] cells were kindly provided by Dr. Jean-Ehrland Ricci
(C3M, Nice, France). LAMA84 and K562 sensitive and
resistant to nilotinib [13] were kindly provided by Dr. Jean-
Max Pasquet (Université de Bordeaux, France).

HEK293, HeLa, HeLa Smac-GFP, and MEFs cells were
maintained in DMEM supplemented with 10% fetal calf
serum (FCS), 100 units/ml penicillin, 100 µg/ml streptomy-
cin and 1 mM pyruvate. For WEHI-231 cells, 50 μM 2-
mercaptoethanol was added to the previously described
medium. Ramos (Burkitt lymphoma), Sudhl4 (DLBCL),
LAMA84 (CML), K562 (CML) cells were maintained in
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RPMI supplemented with 10% FCS, 100 units/ml penicillin,
100 µg/ml streptomycin and 50 μM 2-mercaptoethanol. K562
expressing a doxycycline-inducible Sh-RNAi specific for
Lyn [14] were cultured with zeocin (200 μg/ml) and blas-
ticidin (10 μg/ml). All cell lines were maintained in 5% CO2/
95% air in a humidified incubator. All cells were tested for
mycoplasma contamination.

To inhibit tyrosine phosphatases, cell-permeable sodium
pervanadate (H6Na3VO10) was generated by combining
250 μl of sodium orthovanadate Na3VO4 (100 mM) with
1.97 ml of PBS and 280 μl of hydrogen peroxide (30%).
After an incubation at room temperature for 10 min, catalase
(Sigma) was added to inactivate the H2O2. The resulting
sodium pervanadate solution (10 mM) was immediately
added to cells at a concentration of 100 μM.

Transfection and infection

The experimental procedures are detailed in Supplementary
Information.

Immunoprecipitation

To analyze Bim phosphorylation, cells were lysed in RIPA
buffer (50 mM Tris-Cl pH 7.4, 150 mM NaCl, 5 mM EDTA,
1% Triton X-100, 0.5% NaDOC). To analyze the interac-
tion of Bim with anti-apoptotic Bcl-2 members and Lyn,
cells were lysed in CHAPS buffer (20 mM Tris pH 7.5, 137
mM NaCl, 2 mM EDTA, 2% CHAPS, 10% glycerol). In both
cases, protein extracts were prepared in ice-cold lysis buffer
supplemented with protease inhibitors (10 μg/ml leupeptin,
5 μg/ml aprotinin, 1 mM PMSF) and phosphatase inhibitors
(1 mM Na3VO4, 100 μM NaF). Pre-cleared lysates (0.4–3.5
mg) were incubated with the appropriate antibody (1–3 µg)
with protein A/G plus sepharose beads. For the analysis of
endogenous BimEL tyrosine phosphorylation, antibody for
the IP was crosslinked to protein A/G plus beads according
to the manufacturer's protocol (ThermoScientific). After 16
h at 4 °C under end-over-end agitation, the beads were
washed six times by centrifugation in ice-cold correspond-
ing lysis buffer. The immunoprecipitated protein complexes
were then resuspended in Laemmli buffer and boiled for 5
min at 95 °C before immunoblot analysis.

Western blotting

The experimental procedures are detailed in Supplementary
Information.

Plasmids and site-directed mutagenesis

The experimental procedures are detailed in Supplementary
Information.

In vitro kinase assay

The experimental procedures are detailed in Supplementary
Information.

In vitro transcription/translation and GST pull-down

The experimental procedures are detailed in Supplementary
Information.

Analysis of Smac release from isolated mitochondria

The experimental procedures are detailed in Supplementary
Information.

Annexin V-DAPI staining

Twenty-four hours after transfection, HeLa cells were re-
suspended in 200 μl of buffer (150 mM NaCl, 10 mM

HEPES pH, 5 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2) and
incubated with recombinant Annexin V-PE (BD Bios-
ciences) for 10 min at room temperature. DAPI (0.5 μg/ml)
(Molecular Probes) was then added, and the samples were
analyzed immediately by flow cytometry using a MACS-
Quant Analyzer (Miltenyi Biotec).

Immunofluorescence

The experimental procedures are detailed in Supplementary
Information.

BRET experiment

The experimental procedures are detailed in Supplementary
Information.

Caspase activity measurement

The experimental procedures are detailed in Supplementary
Information.

Acknowledgements This work was supported by grants from the
Fondation ARC pour la Recherche sur le Cancer (#PJA 20131200392
and #PGA1RF201702053889), the Fondation pour la Recherche
Médicale (DMP20101120387), the INSERM, the Ministere de la
Recherche, and the University of Nice-Sophia-Antipolis. This work
and LEA were funded by the French Government (National Research
Agency, ANR) through the “Investments for the Future” LABEX
SIGNALIFE: program reference #ANR-11-LABX-0028-01. We thank
Frederic Larbret for technical support for FACS sorting. We thank Dr.
Simon Cook for GST-Bim constructs, Dr. Andreas Villunger for
kindly providing the WEHI-231 cell line, Dr. David Rubinsztein for
the plasmid encoding human BimEL, and Drs. Doug Green and Ste-
phen Tait for HeLa cells stably expressing Smac-GFP. We thank Drs.
Eric Eldering and Fabio Brocco for insights and helpful discussion.

Bim tyrosine phosphorylation is anti-apoptotic



We thank the Conseil général des AM et de la région PACA et Corse
for its financial support.

Author contributions SM and PA conceived the project. LEA, EV,
PG, and SM conducted the experiments and were assisted by PC, LS,
SO, EP. FG and PPJ contributed to the BRET experiments. SM wrote
the paper. PA, J-ER, LEA, BB-M, AJ, GR, FL, FG, and PPJ reviewed
and edited the paper. SM and PA supervised the study and obtained
funding.

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing
interests.

References

1. Thomas SM, Brugge JS. Cellular functions regulated by Src
family kinases. Annu Rev Cell Dev Biol. 1997;13:513–609.

2. Ingley E. Functions of the Lyn tyrosine kinase in health and
disease. Cell Commun Signal. 2012;10:21.

3. Parsons SJ, Parsons JT. Src family kinases, key regulators of
signal transduction. Oncogene. 2004;23:7906–9.

4. Kim LC, Song L, Haura EB. Src kinases as therapeutic targets for
cancer. Nat Rev Clin Oncol. 2009;6:587–95.

5. Harder KW, Parsons LM, Armes J, Evans N, Kountouri N, Clark
R, et al. Gain- and loss-of-function Lyn mutant mice define a
critical inhibitory role for Lyn in the myeloid lineage. Immunity.
2001;15:603–15.

6. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto
R, et al. Multiple defects in the immune system of Lyn-deficient
mice, culminating in autoimmune disease. Cell. 1995;83:301–11.

7. Scapini P, Pereira S, Zhang H, Lowell CA. Multiple roles of Lyn
kinase in myeloid cell signaling and function. Immunol Rev.
2009;228:23–40.

8. Ptasznik A, Nakata Y, Kalota A, Emerson SG, Gewirtz AM. Short
interfering RNA (siRNA) targeting the Lyn kinase induces
apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia
cells. Nat Med. 2004;10:1187–9.

9. Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro
L, et al. Chronic lymphocytic leukemia B cells contain anomalous
Lyn tyrosine kinase, a putative contribution to defective apoptosis.
J Clin Invest. 2005;115:369–78.

10. Tauzin S, Ding H, Khatib K, Ahmad I, Burdevet D, van Echten-
Deckert G, et al. Oncogenic association of the Cbp/PAG adaptor
protein with the Lyn tyrosine kinase in human B-NHL rafts.
Blood. 2008;111:2310–20.

11. Goldenberg-Furmanov M, Stein I, Pikarsky E, Rubin H, Kasem S,
Wygoda M, et al. Lyn is a target gene for prostate cancer:
sequence-based inhibition induces regression of human tumor
xenografts. Cancer Res. 2004;64:1058–66.

12. Chen WS, Kung HJ, Yang WK, Lin W. Comparative tyrosine-
kinase profiles in colorectal cancers: enhanced arg expression in
carcinoma as compared with adenoma and normal mucosa. Int J
Cancer. 1999;83:579–84.

13. Mahon FX, Hayette S, Lagarde V, Belloc F, Turcq B, Nicolini F,
et al. Evidence that resistance to nilotinib may be due to BCR-
ABL, Pgp, or Src kinase overexpression. Cancer Res.
2008;68:9809–16.

14. Gamas P, Marchetti S, Puissant A, Grosso S, Jacquel A, Colosetti
P, et al. Inhibition of imatinib-mediated apoptosis by the caspase-
cleaved form of the tyrosine kinase Lyn in chronic myelogenous
leukemia cells. Leukemia. 2009;23:1500–6.

15. Luciano F, Herrant M, Jacquel A, Ricci JE, Auberger P. The p54
cleaved form of the tyrosine kinase Lyn generated by caspases
during BCR-induced cell death in B lymphoma acts as a negative
regulator of apoptosis. FASEB J. 2003;17:711–3.

16. Zonta F, Pagano MA, Trentin L, Tibaldi E, Frezzato F, Gattazzo
C, et al. Lyn-mediated procaspase 8 dimerization blocks apoptotic
signaling in B-cell chronic lymphocytic leukemia. Blood.
2014;123:875–83.

17. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The
BCL-2 family reunion. Mol Cell. 2010;37:299–310.

18. Green DR, Llambi F. Cell death signaling. Cold Spring Harb
Perspect Biol. 2015;7:a006080.

19. Hubner A, Barrett T, Flavell RA, Davis RJ. Multisite phosphor-
ylation regulates Bim stability and apoptotic activity. Mol Cell.
2008;30:415–25.

20. Pinon JD, Labi V, Egle A, Villunger A. Bim and Bmf in tissue
homeostasis and malignant disease. Oncogene. 2008;27(Suppl 1):
S41–52.

21. Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, Pages G,
et al. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes
its degradation via the proteasome pathway and regulates its
proapoptotic function. Oncogene. 2003;22:6785–93.

22. Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A.
The proapoptotic activity of the Bcl-2 family member Bim is
regulated by interaction with the dynein motor complex. Mol Cell.
1999;3:287–96.

23. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW,
Kontgen F, et al. Proapoptotic Bcl-2 relative Bim required for
certain apoptotic responses, leukocyte homeostasis, and to pre-
clude autoimmunity. Science. 1999;286:1735–8.

24. O’Connor L, Strasser A, O’Reilly LA, Hausmann G, Adams JM,
Cory S, et al. Bim: a novel member of the Bcl-2 family that
promotes apoptosis. EMBO J. 1998;17:384–95.

25. Clybouw C, Merino D, Nebl T, Masson F, Robati M, O’Reilly L,
et al. Alternative splicing of Bim and Erk-mediated Bim(EL)
phosphorylation are dispensable for hematopoietic homeostasis
in vivo. Cell Death Differ. 2012;19:1060–8.

26. Enders A, Bouillet P, Puthalakath H, Xu Y, Tarlinton DM,
Strasser A. Loss of the pro-apoptotic BH3-only Bcl-2 family
member Bim inhibits BCR stimulation-induced apoptosis and
deletion of autoreactive B cells. J Exp Med. 2003;198:1119–26.

27. Kuroda J, Puthalakath H, Cragg MS, Kelly PN, Bouillet P, Huang
DC, et al. Bim and Bad mediate imatinib-induced killing of Bcr/
Abl + leukemic cells, and resistance due to their loss is overcome
by a BH3 mimetic. Proc Natl Acad Sci USA. 2006;103:14907–12.

28. Ricci JE, Lang V, Luciano F, Belhacene N, Giordanengo V,
Michel F, et al. An absolute requirement for Fyn in T cell
receptor-induced caspase activation and apoptosis. FASEB J.
2001;15:1777–9.

29. Ban T, Sato GR, Nishiyama A, Akiyama A, Takasuna M, Ume-
hara M, et al. Lyn kinase suppresses the transcriptional activity of
IRF5 in the TLR-MyD88 pathway to restrain the development of
autoimmunity. Immunity. 2016;45:319–32.

30. Luciano F, Ricci JE, Auberger P. Cleavage of Fyn and Lyn in
their N-terminal unique regions during induction of apoptosis: a
new mechanism for Src kinase regulation. Oncogene.
2001;20:4935–41.

31. Puthalakath H, O’Reilly LA, Gunn P, Lee L, Kelly PN, Hun-
tington ND, et al. ER stress triggers apoptosis by activating BH3-
only protein Bim. Cell. 2007;129:1337–49.

32. Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Putha-
lakath H, et al. BH3-only Bcl-2 family member Bim is required
for apoptosis of autoreactive thymocytes. Nature.
2002;415:922–6.

L. E. Aira et al.



33. Luo S, Garcia-Arencibia M, Zhao R, Puri C, Toh PP, Sadiq O,
et al. Bim inhibits autophagy by recruiting Beclin 1 to micro-
tubules. Mol Cell. 2012;47:359–70.

34. Gogada R, Yadav N, Liu J, Tang S, Zhang D, Schneider A, et al.
Bim, a proapoptotic protein, up-regulated via transcription factor
E2F1-dependent mechanism, functions as a prosurvival molecule
in cancer. J Biol Chem. 2013;288:368–81.

35. Pecot J, Maillet L, Le Pen J, Vuillier C, Trecesson SC, Fetiveau A,
et al. Tight sequestration of BH3 proteins by BCL-xL at sub-
cellular membranes contributes to apoptotic resistance. Cell Rep.
2016;17:3347–58.

36. Tait SW, Parsons MJ, Llambi F, Bouchier-Hayes L, Connell S,
Munoz-Pinedo C, et al. Resistance to caspase-independent cell
death requires persistence of intact mitochondria. Dev Cell.
2010;18:802–13.

37. Hanahan D, Weinberg RA. Hallmarks of cancer: the next gen-
eration. Cell. 2011;144:646–74.

38. Egle A, Harris AW, Bouillet P, Cory S. Bim is a suppressor of
Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA.
2004;101:6164–9.

39. Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R,
Climent J, Fresquet V, et al. Homozygous deletions localize novel
tumor suppressor genes in B-cell lymphomas. Blood.
2007;109:271–80.

40. Belloc F, Moreau-Gaudry F, Uhalde M, Cazalis L, Jeanneteau M,
Lacombe F, et al. Imatinib and nilotinib induce apoptosis of
chronic myeloid leukemia cells through a Bim-dependant pathway
modulated by cytokines. Cancer Biol Ther. 2007;6:912–9.

41. Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in
health and disease. Oncotarget. 2015;6:23058–134.

42. Ley R, Ewings KE, Hadfield K, Howes E, Balmanno K, Cook SJ.
Extracellular signal-regulated kinases 1/2 are serum-stimulated
“Bim(EL) kinases” that bind to the BH3-only protein Bim(EL)
causing its phosphorylation and turnover. J Biol Chem.
2004;279:8837–47.

43. Rooswinkel RW, van de Kooij B, de Vries E, Paauwe M, Braster
R, Verheij M, et al. Antiapoptotic potency of Bcl-2 proteins pri-
marily relies on their stability, not binding selectivity. Blood.
2014;123:2806–15.

44. Ingley E. Src family kinases: regulation of their activities, levels
and identification of new pathways. Biochim Biophys Acta.
2008;1784:56–65.

45. Carpenter RL, Han W, Paw I, Lo HW. HER2 phosphorylates and
destabilizes pro-apoptotic PUMA, leading to antagonized apop-
tosis in cancer cells. PLoS ONE. 2013;8:e78836.

46. Fox JL, Ismail F, Azad A, Ternette N, Leverrier S, Edelmann MJ,
et al. Tyrosine dephosphorylation is required for Bak activation in
apoptosis. EMBO J. 2010;29:3853–68.

47. Nishizumi H, Taniuchi I, Yamanashi Y, Kitamura D, Ilic D, Mori
S, et al. Impaired proliferation of peripheral B cells and indication
of autoimmune disease in lyn-deficient mice. Immunity.
1995;3:549–60.

48. Gross AJ, Proekt I, DeFranco AL. Elevated BCR signaling and
decreased survival of Lyn-deficient transitional and follicular B
cells. Eur J Immunol. 2011;41:3645–55.

49. Leonard JT, Rowley JS, Eide CA, Traer E, Hayes-Lattin B,
Loriaux M, et al. Targeting BCL-2 and ABL/LYN in Philadelphia
chromosome-positive acute lymphoblastic leukemia. Sci Transl
Med. 2016;8:354ra114.

50. Lopez J, Hesling C, Prudent J, Popgeorgiev N, Gadet R, Mikae-
lian I, et al. Src tyrosine kinase inhibits apoptosis through the
Erk1/2- dependent degradation of the death accelerator Bik. Cell
Death Differ. 2012;19:1459–69.

51. Bian Y, Li L, Dong M, Liu X, Kaneko T, Cheng K, et al. Ultra-
deep tyrosine phosphoproteomics enabled by a phosphotyrosine
superbinder. Nat Chem Biol. 2016;12:959–66.

52. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR,
Wang P, et al. Proteogenomics connects somatic mutations to
signalling in breast cancer. Nature. 2016;534:55–62.

Bim tyrosine phosphorylation is anti-apoptotic



Supplementary Materials and Methods 

Reagents 

RPMI, DMEM and fetal calf serum (FCS) were purchased from ThermoFischer Scientific. 

Sodium fluoride, phenylmethylsulfonyl fluoride (PMSF), aprotinin, and leupeptin were 

purchased from Sigma-Aldrich. Sodium orthovanadate (Na3VO4) was purchased from New 

England Biolabs. PP2 and U0126 were purchased from Tocris. Dasatinib was purchased 

from Selleckchem. SP600125 was purchased from Calbiochem. Coomassie Blue was 

purchased from ThermoFisher Scientific. The active Lyn recombinant protein was purchased 

from Millipore. The TNT-coupled reticulocyte lysate system was purchased from Promega. 

Recombinant BimL was obtained from R&D systems. Q-VD-OPh was obtained from SM 

Biochemicals LLC. The unconjugated goat F(ab’)2 anti-mouse and anti-human IgM 

antibodies were purchased from Jackson Immunoresearch. The Phos-Tag M series was 

obtained from WAKO. The JetPEI transfection reagent was purchased from Ozyme. 

 

Antibodies 

Antibodies for western blotting, immunostaining and immunoprecipitation were obtained from 

the following suppliers: anti-Bim (#2933) for immunostaining and western blotting, anti Bim 

(#2819) for immunoprecipitation, anti-Phospho-Bim (Ser69) (#4585), anti-HA (#3724), anti-

Lyn (#2732), anti-Phospho-Src (Y416) (#2101), anti-Fyn (#4023), anti-PARP (#9542), anti-

ERK1/2 (#4695), anti-Phospho-ERK1/2 (#4370), anti-cleaved caspase-3 (#9661), anti-Bcl-xL 

(#2762), anti-LC3 B (#2775), anti-Phospho-S6 ribosomal (#4858), anti-Phospho-Jun (#2361), 

and anti-Phospho-Tyrosine (#9411) were purchased from Cell Signaling Technology. Anti-

Lyn (sc-15 and sc7274), anti-mcl-1 (sc-819), anti-hsp90 (sc-69703), anti-myc 9E10 (sc-40), 

anti-TOM20 (sc-11415), and anti-Hsp60 (sc-1722) were purchased from Santa Cruz 

Biotechnology. Anti-Smac was purchased from R&D systems. Anti-Phospho-Bim (Y92) was 

custom made by ThermoFisher Scientific. Mouse anti-rabbit IgG (Conformation Specific) 

mAbs were purchased from Cell Signaling Technology. Secondary antibodies coupled to 

Alexa Fluor 488, Alexa Fluor 594 and Alexa Fluor 647 for immunofluorescence were 

obtained from Molecular Probes (ThermoFisher Scientific). 

 

Transfection and infection 

For plasmid transfections, cells were seeded twenty-four hours prior transfection and were 

transfected with the JetPei method according to the manufacturer’s instructions.  

For the cell cycle experiments, cells were permeabilized in 70% ethanol overnight at -20°C, 

washed with PBS, incubated with PBS, RNase (20 g/ml) and propidium iodide (50 g/ml, 



Sigma Aldrich) for 30 minutes at 4°C, and then analyzed by flow cytometry (MacsQuant 

Cytometers, Miltenyi Biotec).  

DKO Bax/Bak MEFs were seeded in a 6-well plate (1.25 × 105 cells/well) and incubated for 

24 h with 500 l of retroviral particles. The cells were washed with PBS, cultured for 2 days 

and then analyzed by FACS for GFP.  

 

Western blotting 

Proteins were separated on polyacrylamide gels and transferred onto PVDF membranes. 

After nonspecific binding sites saturation, the membranes were incubated overnight at 4°C 

with a primary antibody in blocking buffer (10 mM Tris HCl pH 7.4, 150 mM NaCl, 1 mM 

EDTA, 0.1% Tween-20, 3% BSA, 0.5% gelatin). The membranes were washed three times in 

TNA-1% NP40 (50 mM Tris pH 7.5, 150 mM NaCl, 1% NP40) and incubated with the HRP-

conjugated secondary antibody for 1 h at room temperature. The immunoblots were 

visualized using an enhanced chemiluminescence detection kit (Pierce). 

Bim phosphorylation was also analyzed by immunoblotting using acrylamide conjugated with 

Phos-tag, a phosphate-binding chemical. SDS-PAGE was performed using 50 μM Phos-tag 

Acrylamide (Wako) and 100 μM MnCl2 per the manufacturer’s instructions.  

 

Plasmids and site-directed mutagenesis.  

Mouse BimEL, BimL and BimS cDNA cloned into pEF PGKhygro vector, were previously 

described 21. Mouse BimEL and BimS cloned into pGEX-6P1 and mouse Bim L into pGEX-

4T1 were previously described 21,54. Tyrosine mutations to phenylalanine in both the pEF 

PGK hygro- Bim and pGEX-Bim constructs were generated by QuikChange site-directed 

mutagenesis (Stratagene) using the following pairs of oligonucleotides: 5’-

CCGGTCCTCCAGTGGGTTTTTCTCTTTTGACAC-3’ and 5’- 

GTGTCAAAAGAGAAAAACCCACTGGAGGACCGG-3’ (Tyr92 to Phe mutation); 5’- 

CCAGGCCTTCAACCACTTTCTCAGTGCAATGGC-3’ and 5’- GCCAT 

TGCACGGAGAAAGTGGTTGAAGGCCTGG-3’ (Tyr123 to Phe mutation); 5’-

GTTCAACGAAACTTTCACAAGGAGGGTG-3’ and 5’-CACCCTCCTTGTGAAAGTTT 

CGTTGAAC-3’ (Tyr161 or Tyr105 to Phe mutation); 5’-GTGTTTGCAAATGATTTCC 

GCGAGGCTGAAGAC-3’ (Tyr170 to Phe mutation); 5’-CCGGTCCTCCAGTGGGGA 

GTTCTCTTTTGACAC-3’ and 5’-GTGTCAAAAGAGAACTCCCCACTGGAGGACCG 

G-3’ (Tyr92 to Glu mutation); and 5’-GTTCAACGAAACTGAGACAAGGAGGGTG-3’ and 5’-

CACCCTCCTTGTCTCAGTTTCGTTGAAC-3’ (Tyr161 to Glu mutation). The pEF PGKhygro 

mBimEL S65G was previously described21. The plasmid encoding human BimEL was a 

generous gift from Dr David Rubinsztein34. 



The mouse BimEL WT form and mutants were PCR amplified from the pEF PGKhygro 

plasmid and subcloned into the pMIG-GFP viral vector containing an IRES-controlled GFP 

cassette for co-expression. For BRET experiments, the mouse BimEL variants were PCR 

amplified and subcloned into the Renilla luciferase fusion protein expression vector pRLuc 

provided by Dr Philippe Juin. All constructs were confirmed by sequencing. 

The pcDNA3-Lyn WT, LynKD and cLyn (cytosolic and caspase-cleaved form of Lyn, LynN) 

constructs were also previously described30. To obtain the kinase-dead form of cLyn (cLyn-

KD), the lysine residue at position 275 in the putative ATP-binding site was replaced with an 

arginine using QuikChange site-directed mutagenesis (Stratagene). The primers used were 

previously described30. 

To obtain the constitutive active form of cLyn (cLynCA), an Xba-1 fragment containing the 

mutation (Y508K) obtained from the pcDNA3-LynCA construct was subcloned into an Xba-1-

digested pcDNA3-cLyn construct.  

The cytosolic form of Lyn (cLyn-2) obtained by mutation of the two acylation motifs of Lyn 

(Glycine at position 2 and Cysteine at position 3 to Alanine) was generated from pcDNA-Lyn 

WT constructs using QuikChange site-directed mutagenesis (Stratagene). The primers used 

were as follows: sense 5’-CGCGTAGCGAGAAATAT 

GGCAGCTATTAAATCAAAAAGG-3’ and antisense 5’- CCTTTTTGATTTAATAGCTG 

CCATATTTCTCGCTACGCG-3’. Lyn was PCR amplified from pcDNA3-LynWT and then 

subcloned into pGEX-5X3. 

The myc-tagged Mcl-1 construct cloned into the pcDNA3-myc-his vector was previously 

described55. The HA-tagged Bcl-xL cloned into the pcDNA3 vector was a generous gift from 

Dr Jean-Ehrland Ricci. The pHcRed1 vector was obtained from Clontech. pBB14, expressing 

a membrane-anchored GFP, pBB14 was a gift from Lynn Enquist (Addgene plasmid # 

18657). 

 

In vitro kinase assay 

GST fusion proteins were produced from BL21 bacteria transformed with either the pGEX-6P 

vector for BimEL and BimS, as previously described21, the pGEX-4T1 vector for BimL, as 

previously described54, or pGEX-5X3-Lyn. 

The assay was performed in kinase buffer (30 mM HEPES pH 6.8, 5 mM MnCl2, 5 mM 

MgCl2) containing 20 ng of recombinant active Lyn (Millipore), 1 g of GST protein, and 10 

Ci ATPP32 (Amersham Biosciences) for 30 min at 30°C. The reaction was stopped by the 

addition of Laemmli sample buffer and resolved by SDS-PAGE. P32-labeled proteins were 

electrophoresed on polyacrylamide gels. The gels were autoradiographed using Amersham 

hyperfilm.  

 



In vitro transcription and translation 

Wild-type Lyn and Fyn constructs were transcribed and translated using the Promega TNT-

coupled reticulocyte lysate system in the presence of cold methionine as previously 

described55. The recombinant proteins contained in the cell lysates were used for GST pull-

down assays.  

 

GST pull-down 

Purified GST fusion proteins (20 g) were incubated for 16 h at 4°C with either a protein 

extract from Ramos B cells (2 mg) or a recombinant protein produced in vitro in reticulocyte 

lysates. The protein complexes were then pulled down with glutathione sepharose beads for 

2 h at 4°C. After 6 washes, the GST pull-down protein complexes were analyzed by WB. 

 

Analysis of Smac release from isolated mitochondria 

Mitochondria were isolated from HeLa cells using a differential centrifugation method as 

previously described56. Briefly, the cells were centrifuged at 1,000 × g for 5 min at 4°C, 

washed, and resuspended in mitochondrial isolation buffer (MIB) buffer (10 mM HEPES-KOH 

pH 7.4, 250 mM d-mannitol, 0.5 mM EGTA) supplemented with protease inhibitors (20 μg/ml 

leupeptin, 20 μg/ml aprotinin, and 1 mM PMSF). The cells were homogenized in a Dounce 

homogenizer. The homogenates were centrifuged twice at 1,000 × g for 5 min at 4°C to 

pellet nuclei and unbroken cells. The supernatants were centrifuged at 10,000 g for 10 min at 

4°C, and the mitochondrial pellet was washed twice with MIB buffer. The mitochondria were 

resuspended in MIB buffer and used within 1 h. 

To assess mitochondrial protein release, 250 ng of purified GST-BimEL, L and S were pre-

incubated with or without 500 ng of recombinant Lyn (Millipore) for 15 min at 30°C. The GST-

Bim +/- Lyn protein samples were then incubated with 25 g of purified mitochondria in a 

total volume of 30 l of MIB buffer for 1 h at 30°C. The samples were then centrifuged to 

separate the mitochondrial and supernatant fractions, and denatured protein samples in 

Laemmli Buffer were analyzed by western blotting for Smac and Hsp60 expression. 

 

Immunofluorescence 

Cells were grown on coverslips for 24 h and then fixed in 3.3% paraformaldehyde, 

permeabilized in PBS containing 0.1% Triton X-100, blocked in 2% fetal bovine serum (FBS), 

and stained with anti-Bim (C34) and anti-cytochrome-c antibodies. The cells were next 

labeled with the respective Alexa Fluor-coupled secondary antibody (Molecular Probes, 

Thermo). The cells were observed by confocal microscopy (Nikon). 

 

 



BRET experiment 

The BRET experiment was performed as previously described36. Briefly, BimEL and mutated 

coding sequences were subcloned into the pRLuc-C2 luciferase expression vector (BioSignal 

Packard) to produce the donor moiety in the BRET assay. The acceptor moiety was obtained 

by cloning the sequence of Bcl-xL A221R into the pEYFP-C1 vector (BD Biosciences). Dose 

response curves were generated according to the following protocol: cells were plated in 12-

well plates and transfected 24 h later using Lipofectamine 2000 (Life Technologies) with 200 

ng of donor plasmid (pRLuc-BIM-EL, pRLuc-BIM-EL-YE, or pRLuc-BIM-EL-YF) and 500 ng 

of acceptor plasmid (pEYFP-BCL-xL-A221R) per well (day 0). On day 1, the cells were 

trypsinized and seeded in 96-well white plates before being treated on day 2 with increasing 

concentrations of WEHI-539. Sixteen hours later, the cells were washed once with PBS, and 

BRET was then monitored using a Mithras LB 940 reader (Berthold Technologies) after the 

injection of the luciferase substrate Coelenterazine-h (5 µM final) (Interchim). The data are 

presented as the mean ±SD of three independent experiments. 

 

Caspase activity measurement 

Assay (in triplicate) was performed with 15 µg of protein prepared from control or stimulated 

cells. Briefly, cellular extracts were incubated in a 96-well plate, with 0.2 mM of Ac-DEVD-

AMC (7-amino-4methylcoumarin) as substrates for various times at 37°C as previously 

described14. Caspase activity was measured following emission at 460 nm (excitation at 390 

nm) in the presence or not of 10 µM of Ac-DEVD-CHO. Enzyme activities were determined 

as initial velocities expressed as relative intensity per min and per mg of protein. 
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Legends of supplementary figures 

 

Supplementary Figure 1:  

(a) Input related to figure 1e. 

(b) Input related to figure 1f. 

 

Supplementary Figure 2: 

(a) In vitro phosphorylation of recombinant human BimL by Lyn. Proteins were 

separated by SDS-PAGE, and the gels were stained with Coomassie blue and 

exposed for autoradiography. 

(b) Input related to figure 2c. 

(c) Input related to figure 2d. 

(d-e) HEK293 cells were transfected with vectors encoding cLyn and BimL (d) or 

human BimEL (e). Twenty-four hours after transfection, cells were treated with or 

without sodium pervanadate for 15 min to inhibit tyrosine phosphatases. Cell extracts 

(input) were immunoprecipitated for Bim, separated by SDS-PAGE and 

immunoblotted with anti-phosphotyrosine and anti-Bim antibodies. Nonrelevant Ig (IP 

NR) served as an immunoprecipitation control. 

(f) Input related to figure 2f. 

 

Supplementary Figure 3: 

(a) Input related to figure 2g. 

(b) WEHI-231 cells, a mouse B lymphoma cell line, were stimulated for 16 h with 5 

g/ml goat anti-mouse IgM in the presence or absence of velcade (10 nM), a 

proteasome inhibitor. Twenty-four hours after transfection, sodium pervanadate, an 
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inhibitor of tyrosine phosphatases, was added for the last 15 min of stimulation. Cell 

extracts (input) were immunoprecipitated for Bim, separated by SDS-PAGE and 

immunoblotted with the appropriate antibodies. 

Nonrelevant Ig (IP NR) served as an immunoprecipitation control. The black 

arrowhead indicates the tyrosine phosphorylated form of Bim. The asterisk indicates 

cross-reactivity with the antibody light chain used in the IP. 

 

Supplementary Figure 4: 

(a) Schematic representation of the tyrosine residues present in the mouse BimEL 

and BimL proteins. The black box indicates the BH3 domain. 

(b) In vitro Lyn phosphorylation assay with recombinant WT and 

nonphosphorylatable mutants (Y to F) of GST-BimL. 

(c) Input related to figure 3b. 

(d-e) HEK293 cells were co-transfected with vectors encoding (d) cLyn and WT or a 

nonphosphorylatable Y105F mutant of BimL, or (e) cLyn and WT or mutant forms of 

BimEL (double mutant Y92/Y161F, single mutant S65G, triple mutant DM-YF/S65G). 

Twenty-four hours after transfection, cells were stimulated with sodium pervanadate 

for 15 min. Cell extracts (input) were immunoprecipitated for Bim, separated by SDS-

PAGE and immunoblotted with the indicted antibodies. 

Nonrelevant Ig (IP NR) served as an immunoprecipitation control. 

 

Supplementary Figure 5: 

(a) HEK293 cells were co-transfected with vectors encoding cLyn and WT or the 

nonphosphorylatable Y92F/Y161F (DM-YF) double mutant of BimEL. Twenty-four 

hours after transfection, cells were treated with or without sodium pervanadate for 15 
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min to inhibit tyrosine phosphatases. Cell extracts (input) were immunoprecipitated 

for Bim, separated by SDS-PAGE and immunoblotted with anti-phosphotyrosine and 

anti-Bim antibodies. Nonrelevant Ig (IP NR) served as an immunoprecipitation 

control. 

(b) Input related to figure 3c. 

(c) Input related to figure 3d. 

(d) HEK293 cells were co-transfected with vectors encoding a constitutively active 

cLyn (cLynCA) and WT or mutant forms of BimEL (Y92F, Y161F, DM-Y92/Y161F or 

S65G). Twenty-four hours after transfection, cells were pre-treated for 5h with the 

proteasome inhibitor velcade (50nM) and then stimulated or not with sodium 

pervanadate for 15 min to inhibit tyrosine phosphatases. Cell extracts (input) were 

immunoprecipitated for phospho-Y92 Bim, separated by SDS-PAGE and 

immunoblotted with an anti-Bim antibody.  

(e) Input related to figure 3e. 

(f) WEHI-231 cells were stimulated for the indicated time points with 5 g/ml goat 

anti-mouse IgM in the presence or absence of velcade® (10 nM), a proteasome 

inhibitor. The cell extracts (input) were immunoprecipitated for phospho-Y92 Bim, 

separated by SDS-PAGE and immunoblotted with an anti-Bim antibody. 

Nonrelevant Ig (IP NR) served as an immunoprecipitation control. 

 

Supplementary Figure 6: 

DKO Bax/Bak MEFs were transfected with a vector encoding EE-tagged WT or 

double mutant forms of BimEL. Then, cells were fixed, permeabilized and 

immunostained for Bim (anti-EE, red) and Tom20 (green). Cells were observed by 
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confocal microscopy (Nikon). The merge panel shows that both mutants localized to 

mitochondria, similar to WT BimEL.  

 

Supplementary Figure 7: 

Bax/Bak DKO MEFs transduced with a pMIG vector encoding for WT or mutant 

forms of BimEL and GFP, were sorted for GFP and used to analyze the impact of the 

expression of BimEL variants on autophagy and cell proliferation in an apoptosis-

deficient background. 

(a) Expression of Bim and basal autophagy (monitored by LC3-I/II conversion) were 

analyzed by WB. 

(b) Cells were cultured in DMEM or EBSS for indicated time points in the presence or 

absence of bafilomycin (40 nM), an inhibitor of late stage of autophagy, which 

induces LC3-II accumulation. P-S6R was used as a control of autophagy induction. 

Note that the autophagy induction is the same in all cell lines tested, indicating that 

neither WT Bim nor the nonphosphorylatable or phosphomimetic mutants modulate 

this pathway, at least in MEFs.  

(c) Basal autophagy in the absence and presence of bafilomycin (40 nM) was 

evaluated by analyzing the conversion of LC3-I/II by WB. Note that neither the 

expression of WT Bim nor that of the Bim mutants was modulated by bafilomycin, 

indicating that none of the variants was degraded in an autophagy-dependent 

manner. 

(d) Cell cycle was evaluated by flow cytometry 24 h and 48 h after cell plating. 

Histogram graphs represent the percentage of cells in each phase of the cell cycle 

(n=2). Error bars represent the standard error of duplicate samples from the same 

experiment. 
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(e) Cells were seeded at a density of 1000 cells per well in 6-well plate, and 

proliferation was evaluated by staining cell clones with crystal violet after 5 days in 

culture.   

 

Supplementary Figure 8: 

(a) Input related to figure 5a. 

(b) Input related to figure 5b. 

(c) Luciferase activity of each fusion Bim-Luciferase variants used for BRET assay 

reported in fig. 5d. 

 

Supplementary Figure 9: 

(a) Representative GFP fluorescence profile of surviving (blue) or apoptotic (red) 

HeLa Smac-GFP cells. Note that when the cells undergo apoptosis, upon 

actinomycin D treatment or BimEL transfection, the GFP fluorescence shifts from 

high to low intensity. 

(b) WB analysis of Smac release from isolated mitochondria incubated for 30 min at 

37°C with GST-BimEL, GST-BimL and GST-BimS in the presence or absence of 

recombinant active Lyn. Lyn and GST-Bim proteins were mixed together 30 min 

before the incubation with mitochondria.  

 

Supplementary Figure 10: 

(a) Input related to figure 6a. 

(b) LAMA84 were pre-treated or not with 10M PP2 for 2h before sodium 

pervanadate treatment for 10min. The cell extracts (input) were immunoprecipitated 
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for phospho-Y92 Bim, separated by SDS-PAGE and immunoblotted with an anti-Bim 

antibody.  

(c) Input related to figure 6b. 

(d) K562 cells were treated with 20nM of nilotinib for 24h and 48h time and then 

treated with sodium pervanadate for 10min. The cell extracts (input) were 

immunoprecipitated for phospho-Y92 Bim, separated by SDS-PAGE and 

immunoblotted with an anti-Bim antibody. PARP cleavage was analyzed to monitor 

apoptosis induction. Nonrelevant Ig (IP NR) served as an immunoprecipitation 

control. 

(e) Input related to figure 6c. 

(f) Input related to figure 6d. 

(g) Input related to figure 6e. 

 

Supplementary Figure 11: 

Sequence alignment of the Bim protein and its homologs between human, mouse, 

zebrafish, xenopus, drosophila and C. elegans. Note that Y92 and Y161 are the 2 

most evolutionarily conserved tyrosine residues. 
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RESUME ARTICLE 2: 
Caspase 1/11 deficiency or pharmacological inhibition 

mitigates the psoriasis-like phenotype in mice 

 

Inflammatory caspases, clustering caspases 1, 4 and 5 in human as well as 

caspases 1 and 11 in mice, are activated through multiprotein complex known as 

inflammasomes; enacting important functions in inflammation regulation by directly 

cleaving their target proteins, notably the pro-inflammatory cytokines IL-1β and IL-18. 

Albeit they are principally activated in presence of microbial products, important 

functions for these caspases have been described in sterile inflammation, prominently 

in intestinal inflammation and metabolic disorders. Psoriasis is a chronic immune-

mediated skin pathology, where the expression and activation of inflammatory 

caspases has been reported, although the function of these caspases has not been 

well described. Thus, in this study, we analyzed the role of inflammatory caspases in 

psoriasis disease. 

First, lesional and non-lesional skin biopsies from psoriasis patients were 

compared and a significant increase in the activation and expression of inflammatory 

caspases were found in lesional skin, being this study the first one evidencing that 

caspase 4 and 5 are activated in lesional skin from psoriasis patients.         

Then, we wanted to know if these caspases were involved in psoriasis 

pathogenesis, and to answer that, inflammatory caspase deficient mice (dKO mice) 

were challenged with three mouse models of psoriasis-like disease. The crossing of 

cLyn mice with dKO mice or the treatment of dKO mice with the psoriasis-like mouse 

models, IMQ or IL-23, shown that the absence of inflammatory caspases led to a delay 

in the psoriasis-like phenotype compared to WT mice, corroborated by a significant 

decrease in the epidermal hyperplasia, immune cell infiltration and pro-inflammatory 

cytokine production. To confirm these results, WT mice were concomitantly treated with 

IMQ and the inflammatory caspase inhibitor AC-YVAD-CMK and similar results were 

obtained, indicating that inflammatory caspases are implicated in psoriasis 

pathogenesis, but either their invalidation or their pharmacological inhibition partially 

impact in the induced psoriasis-like phenotype.      

Keratinocytes are able to secrete IL-1β and IL-18 in response to stress 

conditions. Here, we demonstrated that keratinocytes are primed to activate caspase 5 

and to release the pro-inflammatory cytokine IL-1β under mimicking psoriasis 

conditions of stimulation with TNF-α and IL-17A, two of the principal pro-inflammatory 

cytokines involved in psoriasis pathogenesis, indicating that although immune cells are 
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a key source of caspase activation and IL-1β production, keratinocytes could be also 

an important wellspring. Therefore, we wanted next to know the respective contribution 

of keratinocytes or immune cells through inflammatory caspase activation in psoriasis 

disease. Bone marrow transfer experiments demonstrated that the 

expression/activation of inflammatory caspases in immune cells was sufficient to 

develop a complete cutaneous inflammatory response. 

Altogether, these results show that inflammatory caspases are involved in 

psoriasis pathogenesis and although keratinocytes are able to activate inflammasome 

leading to caspase activation and pro-inflammatory cytokine production, the activation 

of inflammatory caspases in the recruited immune cells is enough to fully develop the 

induced psoriasis-like phenotype.  
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Abstract 

 

Inflammatory caspases, activated within inflammasome, are responsible for the maturation 

and secretion of IL-1β/IL-18. While their expression in psoriasis was demonstrated several 

years ago, little is known about the role of inflammatory caspases in the context of psoriasis. 

Here, we confirmed that caspase-1, -4 and -5 are activated in lesional skin from psoriasis 

patients. We showed in three psoriasis-like models that inflammatory caspases are activated, 

and accordingly, caspase-1/11 invalidation or pharmacological inhibition by AC-YVAD-CMK 

injection induced a decrease in ear thickness, erythema, scaling, inflammatory cytokine 

expression and immune cell infiltration in mice. Interestingly, we observed that keratinocytes 

were primed to secrete IL-1β when cultured in condition mimicking psoriasis. Generation of 

chimeric mice by bone marrow transplantation was carried out in order to decipher the 

respective contribution of keratinocytes and/or immune cells in the activation of inflammatory 

caspases during psoriasis-like inflammatory response. Our data showed that the presence of 

caspase-1/11 in the immune system is sufficient for a fully inflammatory response whereas 

the absence of caspase-1/11 in keratinocytes/fibroblasts had no impact. In summary, our 

study indicates that inflammatory caspases activated in immune cells are implicated in 

psoriasis pathogenesis. 

 

 

  



 

Introduction 

Caspases are a family of proteases (Cysteine-ASPartic proteASES), highly conserved 

evolutionarily, with a key role in apoptosis and inflammatory signaling pathways (Lamkanfi et 

al., 2007). In relation to their biological function, caspases have been classified in apoptotic 

(2, 3, 6, 7, 8, 9 and 10) and pro-inflammatory (1, 4, 5, 11 and 12) (Li and Yuan, 2008), mainly 

involved in cell death signaling pathways and regulation of cytokine maturation during 

inflammation, respectively. Nevertheless, pro-inflammatory caspases have been also 

implicated in pyroptosis, another programmed cell death (Lamkanfi and Dixit, 2014, Man and 

Kanneganti, 2015). Although proinflammatory caspases 1 and 12 are functional orthologous 

between human and mice; caspases 4 and 5, only present in human, are the homologous of 

mouse caspase 11 (Liu and Lieberman, 2017).  

Pro-inflammatory caspases, firstly produced as inactive zymogens, are activated through 

multiprotein complexes called inflammasomes after cellular stimulation via engagement of 

pattern recognition receptors (Martinon et al., 2002). Once activated, inflammatory caspases 

mediated immune response against infectious stress through the maturation and secretion of 

pro-inflammatory cytokines such as interleukin (IL)-1β and IL-18. Caspase 1 activation and 

subsequent IL-1β production have been associated with a large variety of inflammatory and 

autoimmune diseases (reviewed in (Gabay et al., 2010, McIlwain et al., 2013, Patel et al., 

2017)) such as  rheumatoid arthritis, type 2 diabetes (Ruscitti et al., 2015) and inflammatory 

bowel diseases (IBD) (Perera et al., 2017).  

Psoriasis is a chronic auto-inflammatory/autoimmune skin disease (Lowes et al., 2014) 

characterized by an intense dialogue between keratinocytes and immune cells, affecting 2% 

of the worldwide population (Parisi et al., 2013). Psoriasis has been classified according to 

several clinical manifestations, psoriasis vulgaris being the most common type, whose 

principal feature is the development of red patches with silver scales called psoriasis plaques 

(Deng et al., 2016). A large and complex network of several proinflammatory cytokines such 

as IL-1-α, IL-1β, IL-17, IL-18, IL-22, IL-23, interferon (IFN)-γ and tumor necrosis factor (TNF)-

α have been associated with the development and establishment of psoriasis plaques 

(Nickoloff et al., 2007), highlighting a key role of these cytokines in the pathogenesis of 

psoriasis.  

Albeit the role of IL-1 and IL-18 cytokines has been well described in psoriasis pathogenesis 

(Companjen et al., 2004, Rabeony et al., 2015, Shimoura et al., 2017, Singh et al., 2016, 

Uribe-Herranz et al., 2013), little is known about the contribution of pro-inflammatory 

caspases in this context. It has been showed that activated caspase 1 is increased in 

lesional skin samples from psoriasis patients compared to non-lesional samples (Johansen 

et al., 2007, Marchetti et al., 2009). Moreover, an increase in the mRNA expression of 

caspase 5 was found in lesional biopsies (Salskov-Iversen et al., 2011) and a constitutive 



 

expression of this caspase was observed in the epidermis of normal skin (Zwicker et al., 

2017). However, the contribution of inflammatory caspases in psoriasis pathogenesis is 

controversial as Cho et al reported a decrease in the epidermal thickness associated with a 

significant reduction in IL-1β levels in caspase 1 -/- mice treated with IMQ (Cho et al., 2012) 

whereas another recent study concluded that the invalidation of caspase 1 had no impact in 

reducing the psoriasis-like phenotype after IMQ treatment (Rabeony et al., 2015). 

Therefore, we decided to address the implication of pro-inflammatory caspases in psoriasis 

pathogenesis. We first find in a large cohort of psoriasis patient biopsies that caspase 1 and 

5 are activated in all lesional samples and that caspase 4 is activated in most lesional 

biopsies. Further, caspase 1/11 deficiency and pharmacological inhibition of pro-

inflammatory caspases significantly reduce skin inflammatory disease in three mouse models 

of psoriasis like-phenotype. Moreover, stimulation of normal human keratinocytes (NHK) with 

TNF-α and IL-17A demonstrates that keratinocytes are primed to activate caspase 5 and 

secrete IL-1β. Finally, by adoptive transfer experiments we show that pro-inflammatory 

caspases activation in immune cells is sufficient to induce a complete inflammatory response 

in mice. 

 

  



 

Results 

 

Pro-inflammatory caspases are activated in lesional skin biopsies from psoriasis 

patients 

Although increased mRNA expression of pro-inflammatory caspases 1, 4 and 5 in lesional 

biopsies from psoriasis patients has been already observed (Salskov-Iversen et al., 2011, 

Zwicker et al., 2017) and expression of cleaved caspase 5 could be detected in one psoriasis 

patient (Zwicker et al., 2017), we decided to assess in 25 psoriasis patients, the expression 

of caspases to confirm their activation status. To do that, western blot analysis of skin 

extracts was performed from non lesional and lesional biopsies. Pro-caspase 1, 4 and 5 were 

all expressed in non-lesional biopsies; however only a strong increase of pro-caspase 5 was 

observed in lesional skin as compared to non-lesional paired and healthy donor skin (Figure 

1a, b, d; Figure S1a). Interestingly, high levels of cleaved caspase 1 and 5 were observed in 

lesional skin from all analyzed patients (Figure 1a-d; Figure S1a) and cleaved caspase 4 was 

seen in most analyzed lesional biopsies (Figure 1a, b, d; Figure S1a). Moreover, an increase 

in inflammasome component expression along with the mature forms of IL-1β and IL-18 was 

found (Figure S1b), as previously reported (Dombrowski et al., 2011, Johansen et al., 2007). 

Altogether, these data suggest that pro-inflammatory caspase activity is regulated in injured 

skin from psoriasis patients.  

 

Deficiency in pro-inflammatory caspases 1/11 impaired the psoriasis-like disease 

development in different mouse models 

While the role of inflammasome-processed cytokines IL-1β (Feldmeyer et al., 2010) and IL-

18 (Companjen et al., 2004) is well-known in psoriasis, the role of proinflammatory caspases 

in this scenario is controversial. Therefore, to clearly define the role of pro-inflammatory 

caspases in psoriasis-like disease, we decided to use three different mouse models: i) the 

LynΔN transgenic mice (Marchetti et al., 2009), which develop spontaneously psoriasis after 

birth; ii) the IMQ-induced skin dermatitis (van der Fits et al., 2009), and iii) the IL-23 

intradermal ear injections (Hedrick et al., 2009).  

First, we used the LynDN mice (Marchetti et al., 2009) which recapitulate the main features 

of human psoriasis, as illustrated by the increased skin expression of the principal cytokines 

implicated in psoriasis pathogenesis (Figure S2a).  Interestingly, an increased mRNA 

expression of some inflammasome components, such as caspase-11, Absent In Melanoma 

(AIM)-2 and NLRP-3 (Figure S2b), associated to an increase in IL-1β expression both at the 

mRNA and protein level was observed (Figure S2b-c). Next, we crossed LynΔN mice with 

C1/C11 deficient mice (Kuida et al., 1995) to obtain LynΔN C1/C11 -/- mice, named hereafter 

LynΔN dKO mice. Strikingly, the absence of pro-inflammatory caspases hampered the skin 



 

inflammatory phenotype developed by LynΔN mice over time, based on the adapted PASI 

score that we established (Figure 2a and Figure S3a), producing a significant delay in the 

initiation of the psoriasis-like phenotype in LynΔN dKO mice. Moreover, both the no weight 

gain linked to the onset of the disease and the reported death of LynΔN mice (Marchetti et 

al., 2009) were significantly reduced in LynΔN dKO mice (Figure S3b, Figure 2b). The 

improved phenotype observed in LynΔN dKO mice was associated to a decrease in 

epidermal hyperplasia (Figure 2c, d), along with a reduction in the mRNA expression of 

inflammasome components such as AIM-2 and NLRP-3 and several pro-inflammatory 

cytokines (Figure 2e), with an exception for IL-23 and TNF-α, for which similar levels were 

obtained. Concomitantly, the absence of pro-inflammatory caspases significantly reduced the 

levels of both IL-1β and IL-18 protein expression observed in LynΔN mice skin (Figure 2f). 

Therefore, activation of caspase 1/11 is necessary for the development of a complete 

inflammatory skin disease in the LynΔN mice model. 

To confirm the contribution of pro-inflammatory caspases in psoriasis pathogenesis, we 

induced a psoriasis-like phenotype either by topical IMQ cream application onto the back 

skin (Figure 3) or by IL-23 intradermal injections into ears (Figure S4) of WT and C1/C11 

deficient mice, hereafter named dKO mice. In both models (IMQ and IL-23), the absence of 

pro-inflammatory caspases delayed the onset of the clinical score measured. Indeed, 

erythema, scaling and cumulative scores quantified in the IMQ model (Figure 3a) and ear 

thickness measured in the IL-23 model (Figure S4a, b) were significantly reduced in dKO 

mice compared to WT mice. Further, H&E staining of skin sections revealed a decrease in 

epidermal hyperplasia (Figure 3b, c; Figure S4c, d), along with a reduction in the 

inflammatory cell infiltration (Figure 3d; Figure S4e), with a reduced number of CD45.2+ 

immune cells into the dKO mice skin, evidenced more precisely by a significant decrease 

number of inflammatory monocytes and neutrophils. Additionally, inflammasome 

components, pro-inflammatory cytokine mRNA expression (Figure 3e, Figure S4f and Figure 

S5) and IL1b protein level were significantly reduced in dKO mice in both models (Figure 3f, 

Figure S4g).  Surprisingly, IL-18 protein level was only differentially modulated in the IMQ 

model. Altogether, these data indicate that regulation of pro-inflammatory caspase activity is 

necessary to induce a maximal inflammatory response in psoriasis. 

 

Pharmacological inhibition of caspases 1/11 by AC-YVAD-CMK compound reduces 

IMQ-induced psoriasis like phenotype in mice 

It has been previously demonstrated in mice suffering from acute gastric injury that treatment 

with the selective caspase 1 inhibitor AC-YVAD-CMK led to a protection through the 

attenuation of NLRP-3 inflammasome activity (Zhang et al., 2016). Therefore, we next 

decided to analyze the effect of AC-YVAD-CMK treatment in the IMQ model. To do that, WT 



 

mice were treated with IMQ cream together with either DMSO or AC-YVAD-CMK compound 

injected intra-peritoneally.  

While the co-treatment had no additive effect on both weight loss (Figure S6a) and 

splenomegaly induced by IMQ treatment (Figure S6b) as reported (van der Fits et al., 2009), 

a significant reduction in erythema, scaling and cumulative score was achieved in mice 

treated with the selective caspase 1 inhibitor (Figure 4a). It is worth noting that the delay 

observed upon pharmacological inhibition of caspase 1 started later compared to deficient 

mice for C1/11 (dKO mice) (Figure 3a). However, the skin phenotype attenuation was 

associated with a significant decrease in epidermal hyperplasia (Figure 4b, c) and mRNA 

expression of different inflammasome components and pro-inflammatory cytokines (Figure 

4d; Figure S6c). Additionally, the pharmacological inhibition of caspase 1 was linked to a 

significant decrease in IL-1β and IL-18 protein levels (Figure 4e and f). Finally, no induction 

in caspase 11 protein expression was observed in AC-YVAD-CMK treated mice (Figure 4f). 

Altogether these data confirm that pro-inflammatory caspase activation is required for the 

complete achievement of the inflammatory process implicated in psoriasis pathogenesis.  

 

Primary human keratinocytes are primed to secrete IL-1β in mimicking psoriasis 

condition in an inflammasome dependent manner 

Psoriasis is characterized by a dialogue between keratinocytes in the epidermis and the 

immune cell infiltration, mainly in the dermis, through the release of cytokines. Thus, to 

decipher in which skin compartments inflammatory caspases and IL-1b were induced upon 

IMQ treatment in mice, epidermis/dermis dissociation experiment was performed (Figure S7). 

A significant increase in mRNA expression of caspase 1 and IL-1β was found both in 

epidermis and dermis compartment, while caspase 11 expression was only increased in the 

dermis. We next wanted to know whether pro-inflammatory caspases could be activated in 

normal human keratinocytes (NHK) in vitro upon stimulation with two cytokines implicated in 

psoriasis pathogenesis: IL-17A and TNF-α (Johansen et al., 2016). As expected, a significant 

increase in the mRNA expression of IL-6 and IL-8 (Bertelsen et al., 2017, Fujishima et al., 

2010) was observed, validating our in vitro model (Figure S8a). While no difference in 

caspase 1 and 4 (Figure 5a and e) expression levels was observed, a significant increase of 

caspase 5, IL-1b, NLRP-1 and NLRP-3 expression (Figure 5a-d and f), both at the mRNA 

and protein level, was observed. Moreover, it is interesting to note that there was not only an 

increase of pro-caspase 5 but also of its activated form at long-term stimulation time points 

(Figure 5d). Moreover, to know if those primed keratinocytes could be responsible for IL-1b 

release upon inflammasome activation (Stout-Delgado et al., 2012), nigericin was added to 

NHK pre-treated for 24h with TNF-a + IL-17A. Interestingly, a significant increase in the 

release of mature IL-1β and activated caspase 1 was observed (Figure 5g and h), confirming 



 

that keratinocytes in a psoriasis environment can be implicated in IL-1b secretion in an 

inflammatory caspase dependent manner.  

 

Caspase 1/11 activation in immune cells is sufficient for the development of psoriasis-

like disease in mice 

As we showed that 1) the activation of inflammatory caspases is necessary to obtain a 

complete psoriasis-like disease, and 2) inflammatory caspase activation can take place both 

in immune cells and keratinocytes, we decided to perform bone marrow transplantation 

experiments to elucidate in which cell type their activation is responsible for the psoriasis 

pathogenesis. As expected, dKO mice receiving dKO bone marrow showed a significant 

decrease in the adapted PASI score (Figure 6a), epidermal hyperplasia (Figure 6b, c), 

mRNA expression of inflammasome components and pro-inflammatory cytokines (Figure 6d) 

and IL-1β protein levels (Figure 6e) compared to WT mice transplanted with WT bone 

marrow. After IMQ treatment, WT mice transplanted with dKO bone marrow showed a 

significant reduction in erythema and scaling scores (Figure 6a), epidermal hyperplasia 

(Figure 6b, c), mRNA expression of different inflammasome components and pro-

inflammatory cytokines (Figure 6d) and IL-1β protein levels (Figure 6e) compared to WT 

mice, which received WT bone marrow. The reduction in the phenotype observed in this 

chimeric mouse is comparable to what was observed in dKO mice reconstituted with dKO 

bone marrow. On the opposite, dKO mice transplanted with WT bone marrow developed a 

phenotype comparable to WT mice reconstituted with WT bone marrow. These results 

provided evidence of a major role of inflammatory caspase activation into immune cells 

rather than keratinocytes to trigger a complete psoriasis-like disease. 

Furthermore, similar results were obtained with the IL-23 mice model (figure S9), reinforcing 

the notion that activation of pro-inflammatory caspases in immune cells is sufficient to induce 

a complete pro-inflammatory response leading to a psoriasis-like phenotype in treated mice. 



 

Discussion 

 

Psoriasis is a chronic inflammatory skin disease with an unpredictable course (Sabat et al., 

2007). While many efforts have been done to identify molecular factors implicated in the 

initiation and maintenance of the disease, which allowed the identification of new biological 

drugs targeting TNF-a, IL17 and IL-23 (Lowes et al., 2014), the etiology of psoriasis is still a 

matter of concern. In this context, controversial results are found in the literature regarding 

the impact of inflammasome pathway leading to inflammatory caspase activation and mature 

IL-1b/IL-18 secretion in psoriasis. Indeed, besides strong demonstration of the implication of 

IL-1 family members in psoriasis (Rabeony et al., 2015), the role of inflammatory caspases in 

this respect is still a matter of debate as Cho et al (Cho et al., 2012) and Rabeony et al 

(Rabeony et al., 2015) reported opposite results using IMQ psoriasis-like model. However, 

our results argue in favor of a major role of inflammatory caspases in cytokine maturation in 

psoriasis as the invalidation or the pharmacological inhibition of pro-inflammatory caspases 

leads to a significant reduction in the induced inflammatory phenotype in several psoriasis 

mouse models. Moreover, even if other proteases such as caspase-8 and neutrophil derived 

proteases have been reported to participate in the maturation of IL-1b and IL-18 (Clancy et 

al., 2017, Pierini et al., 2012), our study pointed out inflammatory caspases as major 

contributors of IL1b/IL-18 maturation in skin disease. This finding is supported by the study of 

Douglas et al, showing that atopic dermatitis/psoriasis-like disease developed by Sharpin 

(cpdm) mice, is significantly reduced when caspase 1/11 are deficient (Douglas et al., 2015). 

Indeed, neither lesions nor epidermal hyperplasia were observed, demonstrating the main 

role of pro-inflammatory caspases in the induction of dermatitis and the function of 

inflammasome activation as an initiating signal in Sharpin mice. Interestingly, the delay in the 

dermatitis onset in Sharpin-C1/C11 -/- mice is consistent with the delay observed in LynΔN 

dKO mice used in the present study, showing the improvement in psoriasis-like phenotype 

through the invalidation of pro-inflammatory caspases. It is worth noting that while genetic 

ablation of TNFR1 in Sharpin (Rickard et al., 2014) or LynDN (Marchetti et al., 2009) mice 

produced a complete rescue of the phenotype, the invalidation of inflammatory caspases 

was associated with a delay in the inflammation symptoms, demonstrating that TNF signaling 

is one of the principal pathway to induce skin inflammation, while inflammatory caspases 

pathway is more implicated in the maintenance and exacerbation of the disease. Additionally, 

the level of psoriasis-like phenotype inhibition in the absence of pro-inflammatory caspases 

is consistent with other studies where other important components for psoriasis disease 

development, like T cells, are deleted (van der Fits et al., 2009). 

Although it was previously demonstrated that cleaved-form of caspase-5 is present in 

lesional skin biopsies from psoriasis patients (Zwicker et al., 2017), we confirmed in a large 



 

cohort of lesional and non-lesional skin biopsies that cleaved forms of caspase-1, 4 and 5 

are found in all lesional samples of tested psoriasis patients whereas no cleaved forms are 

found in healthy donor samples. Moreover, cleaved forms of proinflammatory caspases were 

associated with an increase in the NLRP-3 and AIM-2 inflammasomes. Caspase inhibitors 

have been evaluated in clinical trials, specifically the small molecule inhibitors VX-740 and 

VX-765, also known as Pralnacasan and Belnacasan, respectively; which are potent and 

selective inhibitors of caspase 1 and caspase 4 (Vertex Pharmaceuticals). In our study, we 

co-treated mice with IMQ and the selective caspase-1 inhibitor AC-YVAD-CMK and a 

significant decrease in the erythema, scaling and pro-inflammatory cytokine production was 

found, reinforcing the notion that targeting pro-inflammatory caspases could be of interest to 

treat psoriasis disease. Indeed, in a model of acute gastric injury, mice were pre-treated with 

AC-YVAD-CMK and an inhibition in the production of IL-1β was observed leading to the 

protection of these mice, an effect correlated with the impairment of NLRP-3 inflammasome 

activity (Zhang et al., 2016). Moreover, like in AC-YVAD-CMK treated mice, Zhang et al 

found a strong diminution in other pro-inflammatory cytokines including IL-6, IL-8 and TNF-α. 

Actually, not only caspase inhibitors are evaluated as potential drugs to treat psoriasis 

disease, but IL-1, IL-18 and inflammasome inhibition could be possible targets to treat 

inflammatory skin diseases (Fenini et al., 2017). In this line, psoriasis patients were treated in 

an open-label clinical trial I/II with the human monoclonal antibody against IL-1α, MABp1, 

and an encouraging clinical response was achieved that must be improved with an increase 

in dose/frequency (Coleman et al., 2015).  

In our study, we showed that keratinocytes cultured in conditions mimicking psoriasis (TNF-a 

+ Il-17A) are primed to secrete IL-1β in an inflammasome-dependent manner. Recently, it 

has been demonstrated that the stimulation of keratinocytes with TNF-α or with IL-17A only 

did not trigger caspase activation (Zwicker et al., 2017), but that the combination of at least 

two pro-inflammatory cytokines is necessary (Cho et al., 2012), suggesting that in the 

presence of several pro-inflammatory cytokines (IFN-γ, TNF-α, IL-17 and IL-22) a strong 

increase in pro-inflammatory caspases could be obtained. This hypothesis is in agreement 

with what happens in a psoriatic skin, where keratinocytes are in direct contact with a huge 

amount of pro-inflammatory cytokines secreted from the recruited immune cells and from 

themselves. Our data showing that keratinocytes are primed to secrete IL-1β through the 

activation of inflammasome reinforces the idea that keratinocytes are immunological active 

cells. However, bone marrow transplantation experiment indicated that the activation of pro-

inflammatory caspases in immune cells is sufficient to induce a fully inflammatory response 

in mice.  

In conclusion, the findings presented herein confirm that pro-inflammatory caspases are 

involved in psoriasis pathogenesis, highlighting the notion that control of pro-inflammatory 



 

caspase activation and IL-β maturation/secretion is essential for the improvement of chronic 

inflammatory disease.   

  



 

Materials and methods 

 

Study approval.  

This study was conducted on biopsies from 25 patients enrolled in a study registered in 

clinicaltrials.gov under the identifier NCT01538342: Role of Tyrosine Kinase Lyn and 

Cleaved Form by Caspases in Psoriasis. This study was approved by the local ethics 

committee (Comité de Protection des Personnes Sud-Méditerranée V, n° 2011-A00786-

35.065), and was conducted in accordance with the principles of the Declaration of Helsinki 

and Good Clinical Practices guidelines. All patients and healthy donors included signed 

informed consent before their inclusion in the study. The ethics review board from the French 

Minister for the High Education and Research approved all animal studies together with the 

Institutional Animal Care and Use Committee of the Centre Méditerranéen de Médecine 

Moléculaire (C3M), Nice, France (INSERM U1065).  

 

Mice. Mice were housed under specific pathogen-free conditions and fed with standard 

laboratory food. All mice (WT, C1/C11 deficient and LynN) were on a C57BL/6J genetic 

background and were used at 8-10 weeks of age, except for adoptive transfer, where mice 

were irradiated and reconstituted at six weeks. Both males and females were used in this 

study. WT mice (C57Bl6/J) were purchased from Envigo and C1/C11 deficient mice were a 

gift from Dr Richard A Flavell (Yale University, New Haven, CT, USA). 

 

Experimental protocols 

To evaluate the skin phenotype of LynDN mice, an adapted version of the clinical PASI score 

was used by analyzing the scaling. To do that, we divided the body in six-regions and we 

assigned a percentage as followed: Head: 16%, front legs: 6%, abdomen: 27%, hind legs: 

12%, tail: 12% and back: 27%. Moreover, according to the percentage of desquamation, a 

number (#) was assigned to each region (0%: 0, <10%: 1, 10-29%: 2, 30-49%: 3, 50-69%: 4, 

70-89%: 5 and 90-100%: 6). Then, the adapted version of PASI score was calculated as 

following (%head*# + %front legs*# + %abdomen*# + %hind legs*# + %tail*# + %back*#). 

Therefore, our adapted PASI score took values between 0 (no psoriasis) and 6 (maximal 

score).   

To induce psoriasis-like phenotype, mice were treated either with Aldara cream 

corresponding to 3,125 mg of IMQ (daily for six days) in the backs after shaving and 

depilation or with mouse recombinant IL-23 (500 ng diluted in PBS) by intradermal injection 

in the ears (each other day for 12 days). The severity of inflammation in the back skin 

through erythema (redness) and scaling (desquamation) was assessed by an adapted 

version of the clinical PASI score, 0: none; 1: slight; 2: moderated; 3: strong; 4: very strong 



 

phenotype. Moreover, a cumulative score, resulting from the sum of erythema and scaling, 

was calculated. The severity of inflammation in the ears was measured through the thickness 

of the ears using a caliper Mitutoyo. The change from baseline was determined. 

To evaluate the effect of AC-YVAD-CMK compound in our model of IMQ-induced psoriasis-

like phenotype, mice were divided in four groups. 1) Vaseline plus Dimethyl sulfoxide 

(DMSO) diluted in PBS (1:66, v/v, 10 mL/kg), 2) Vaseline plus AC-YVAD-CMK, 3) IMQ plus 

DMSO diluted in PBS (1:66, v/v, 10 mL/kg) and 4) IMQ plus AC-YVAD-CMK. The compound 

AC-YVAD-CMK was prepared in DMSO and PBS (1:66, v/v) and administered by 

intraperitoneal injections (8 mg/kg) one hour before starting IMQ or Vaseline treatment.  

For the adoptive transfer experiment, six weeks WT and C1/C11 deficient mice were lethality 

irradiated at 7 Gy and then reconstituted with 3*106 bone marrow cells from donor mice. 

Donor bone marrow cells were harvested from the hind limbs (femur and tibia) and a single 

cell suspension of bone marrow cells was made. All recipient mice were left for 8 weeks to 

ensure recovery and then protocols to induce psoriasis-like phenotype (IMQ and IL-23) were 

performed. 

 

Statistics. The number of animals used in each experiment is described in the figure 

legends. All statistical analyses were performed in GraphPad Prism software (GraphPad, 

version 6) and results are represented as mean ± SD. To compare means between two 

groups, the unpaired two-tailed Student t test was used. To compare means between three 

or more groups, the one-way ANOVA with the uncorrected Fisher’s Least Significance 

Difference (LSD) multiple comparison test was applied. Kaplan-Meier survival analyses were 

performed and survival curves were compared using long-rank tests (Mantel-Cox test), (* p ≤ 

0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, ns: non-significant). 
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Figure legends 

 

Figure 1: Pro-inflammatory caspases are activated in lesional skin biopsies from 

psoriasis patients. 

Western Blot analysis of healthy donors (HD) and non-lesional (NL) and lesional (L) skin 

biopsies from psoriasis patients: a, b and c: Caspase 1, 4 and 5 were blotted in HD and in 

NL and L biopsies from different psoriasis patients showing caspase activation in lesional 

samples. d: Total of analyzed patients showing in how many patients activated caspases are 

present. 

* Unspecific band. 

 

Figure 2: Backcrossing of LynN mice with C1/C11 deficient mice leads to a reduction 

in psoriasis-like phenotype. 

LynN mice were crossed with C1/C11 deficient mice (dKO mice). Newborn mice, LynN 

C1/C11 deficient mice (LynN dKO mice), were sacrificed, together with WT and LynN 

mice, 11 days after birth and abdomen skin was harvested. a: Adapted PASI score was 

assessed at three time points (see Materials and Methods), number of analyzed mice is 

showed below the graph. b: Survival of WT, LynN and LynN dKO through the eleven days 

of the study. c: Representative histological sections stained with haematoxylin and eosin 

(10X and 20X), scale bars 50 m. d: Epidermal hyperplasia quantification through 

haematoxylin and eosin staining, (WT, n = 5; LynN, n = 7; LynN dKO, n = 10). e: Skin was 

processed for total RNA isolation and gene expression was determined by qPCR (WT, n = 4; 

LynN, n = 4; LynN dKO, n = 8). f: Total protein was prepared and IL-1 (WT, n = 5; 

LynN, n = 8; LynN dKO, n = 14) and IL-18 (WT, n = 3; LynN, n = 5; LynN dKO, n = 7) 

levels were quantified by ELISA.  

A.U: arbitrary units. Errors bars represent mean ± SD. One-way ANOVA with the uncorrected 

Fisher’s LSD multiple comparison test was applied to determine statistical significance in the 

PASI score. Long-rank test (Mantel-Cox test) was applied for survival experiment and 

Student t test was applied for the rest of panels, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 

0.0001, ns: non-significant. 

 

Figure 3: Deficiency in C1/C11 genes in mice decreases IMQ-induced psoriasis-like 

phenotype. 



 

WT and C1/C11 deficient mice (dKO mice) were treated daily for six days with vehicle 

(Vaseline (Vasel)) or imiquimod (IMQ) cream and after sacrificed them back skin was 

harvested. a: Severity of IMQ-induced psoriasis like phenotype represented by Erythema, 

Scaling and Cumulative score measurement, (Vasel, n = 2; IMQ-WT, n = 4; IMQ-dKO, n = 8). 

b: Representative histological sections stained with haematoxylin and eosin (10X and 20X), 

scale bars 50 m. c: Epidermal hyperplasia quantification through haematoxylin and eosin 

staining, (Vasel, n = 3; IMQ-WT, n = 4; IMQ-dKO, n = 8). d: The number of immune cell 

populations was quantified by FACS, (Vasel, n = 3; IMQ-WT, n = 4; IMQ-dKO, n = 8). e: Skin 

was processed for total RNA isolation and gene expression was determined by qPCR (Vasel, 

n = 3; IMQ-WT, n = 4; IMQ-dKO, n = 8). f: Skin was processed for total protein extraction and 

IL-1 and IL-18 levels were quantified by ELISA, (Vasel, n = 3; IMQ-WT, n = 4; IMQ-dKO, n = 

8). 

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01, 

*** p ≤ 0.001, **** p ≤ 0.0001, ns: non-significant. 

 

Figure 4: Inhibition of Caspase-1 by AC-YVAD-CMK compound reduces IMQ-induced 

psoriasis-like phenotype in mice. 

WT mice were treated daily for six days with vehicle (Vaseline (Vasel)) or imiquimod (IMQ) 

cream in combination with dimethylsulfoxide (DMSO) or the caspase-1 inhibitor AC-YVAD-

CMK (8 mg/kg). a: Severity of IMQ-induced psoriasis like phenotype represented by 

Erythema, Scaling and Cumulative score measurement, (Vasel, n = 2; IMQ, n = 4). b: 

Representative histological sections stained with haematoxylin and eosin (10X), scale bars 

50 m. c: Epidermal hyperplasia quantification through haematoxylin and eosin staining, 

(Vasel, n = 2; IMQ, n = 4). d: Skin was processed for total RNA isolation and gene 

expression was determined by qPCR (Vasel, n = 2; IMQ, n = 4). e: Skin was processed for 

total protein extraction and IL-1 and IL-18 levels were quantified by ELISA, (Vasel, n = 2; 

IMQ, n = 4). f: Total protein was prepared and Western Blot analyses were performed and 

densitometry quantification was made, (Vasel, n = 2; IMQ, n = 4). 

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01, 

*** p ≤ 0.001, **** p ≤ 0.0001, ns: non-significant. 

 

Figure 5: Primary human keratinocytes are primed to secrete IL-1 and activate 

caspase 5 in mimicking psoriasis conditions. 

Primary human keratinocytes were stimulated with TNF- (10 ng/ml) and IL-17A (200 ng/ml) 

at different time points and after total RNA isolation, caspase 1, caspase 4, caspase 5 (a); IL-



 

1 (b); and NLRP-1 and NLRP-3 (c) gene expression was determined by qPCR, (n = 3). d, 

e, and f: Cells were lysed and Western Blot analyses were performed, (n = 3). g: Primary 

human keratinocytes were stimulated with TNF- (10 ng/ml) and IL-17A (200 ng/ml) in the 

presence or not of nigericin to activate inflammasome, then IL-1 and caspase 1 expression 

was determined intracellular and extracellularly, (n = 3). h: After keratinocytes stimulation 

with TNF- (10 ng/ml) and IL-17A (200 ng/ml) in the presence of nigericin at two time points, 

supernatant was harvested and IL-1 secretion was quantified by ELISA, (n = 3). 

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01, 

***, p ≤ 0.001, **** p ≤ 0.0001, ns: non-significant. T: TNF- (10 ng/ml), I: IL-17A (200 ng/ml). 

 

Figure 6: Caspase 1/11 deficiency in immune cells is enough to reduce IMQ-induced 

psoriasis like phenotype. 

WT and C1/C11 deficient (dKO) mice were irradiated and then reconstituted with bone 

marrow from WT (WTWT and WTdKO) and dKO (dKOdKO and dKOWT) mice, 

which were left to recuperate for 8 weeks. Then, the four groups of mice were treated daily 

for six days with vehicle (Vaseline (Vasel)) or imiquimod (IMQ) cream. After treatment back 

skin was harvested. a: Severity of IMQ-induced psoriasis like phenotype represented by 

Erythema, Scaling and Cumulative score measurement, (n = 6). b: Representative 

histological sections stained with haematoxylin and eosin (10X), scale bars 50 m. c: 

Epidermal hyperplasia quantification through haematoxylin and eosin staining, (for each 

group of mice, Vasel, n = 3; IMQ, n = 6). d: Skin was processed for total RNA isolation and 

gene expression was determined by qPCR (for each group of mice, Vasel, n = 2; IMQ, n = 

6). e: Skin was processed for total protein extraction and IL-1 levels were quantified by 

ELISA, (for each group of mice, Vasel, n = 3; IMQ, n = 6).  

A.U: arbitrary units. Errors bars represent mean ± SD. One-way ANOVA with the uncorrected 

Fisher’s LSD multiple comparison test, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, 

ns: non-significant, ND: non-detected. 

 

 

 

 

 

 

 



 

 

 

Supplementary Materials and Methods 

Biopsies. Four-millimeter punch biopsies were collected from healthy donors and from 

psoriasis patients. In healthy donor, biopsies were taken in the upper thigh. In psoriasis 

patients, biopsies were taken from the center of a chronic plaque (lesional biopsy) and from 

non lesional skin. All biopsies were frozen immediately in liquid nitrogen and then stored at -

80 °C.  

Reagents. Aldara (5% IMQ) cream was purchased from MEDA Pharma. Mouse recombinant 

protein IL-23 was purchased from eBioscience Systems. AC-YVAD-CMK was obtained from 

Sigma-Aldrich. ELISA kits for mIL-1 and mIL-18 cytokines were provided by R&D and MBL 

international, respectively. ELISA kits for hIL-1 was purchased from e-bioscience. TRIzol 

reagent was acquired from Life Technologies. All TaqMan reagents were bought from 

Thermo Fisher Scientific. Dispase enzyme was obtained from Sigma-Aldrich. Human 

recombinant proteins IL-17A and TNF-, for keratinocyte stimulation, were purchased from 

PeproTech. 

Antibodies. Rabbit polyclonal antibodies against caspase-1 (sc-622, sc-515) and caspase-5 

(4429) were purchased from Santa Cruz Biotechnology and from Cell Signaling Technology, 

respectively. Goat polyclonal antibodies against caspase-4 (sc-1229) and IL-1 (AF-401-NA) 

were obtained from Santa Cruz Biotechnology and from R&D Systems, respectively. Mouse 

monoclonal antibodies against HSP-70 (sc-66048) and HSP-90 (sc-69703) were purchased 

from Santa Cruz Biotechnology. Mouse monoclonal antibody against Actin (A2228) was 

purchased from Sigma-Aldrich. Rat monoclonal antibody against caspase-11 (17D9) was 

obtained from Novus Biologicals.  

H&E staining. skin biopsies were fixed in 10% neutral-buffered formalin and then include in 

paraffin. Five-micrometer thick sections were cut and stained with H&E (Sigma-Aldrich). To 

quantify epidermal hyperplasia, 14 assessments were made in both portions of the tissue. 

Histopathological examinations were performed on a Nikon light microscope. 

RNA extractions and qPCR assessments. Total RNA was extracted from skin tissues 

using TRIzol reagent and reverse transcribed using random primer from Promega and 

SuperScript II reverse transcriptase from ThermoScientific. For qPCR analysis, different 

TaqMan sondes were used (Thermo Fisher Scientific), (Mouse Taqman, RPLP0: 

Mm00725448, IL-17: Mm00439618_m1, IL-6: Mm00446190_m1, IL-22: Mm01226722_g1, 

IL-23: Mm00518984_m1, TNF-α: Mm00443258_m1, IL-1β: Mm00434228_m1, NLRP-3: 



 

Mm00840904_m1, AIM-2: Mm01295719_m1 and Caspase 11: Mm00432304_m1; Human 

Taqman, RPLP0: Hs99999902_m1, IL-6: Hs00174131_m1 and IL-8: Hs00174103_m1. 

FACS. Two 8-millimeter punches were taken and single-cell suspensions of ear and back 

skin were obtained as described previously (Riol-Blanco et al., 2014). Briefly, for the ear skin 

digestion, dorsal and ventral parts of the ear were mechanically separated and for the back 

skin digestion, all hypodermis was mechanically eliminated. Then, a digestion for 90 minutes 

at 37°C in gentleMACS tubes (Miltenyi) with gentle agitation in freshly prepared digestion mix 

consisting of DMEM (Gibco) supplemented with HEPES (Invitrogen), 2% FCS, 100 μg/mL 

Liberase TM (Roche), 100 μg/mL DNase I (Roche) and 0.5 mg/mL Hyaluronidase (Sigma) 

was produced. After enzymatic digestion, the mixture was processed using a gentleMACS 

homogenizer (Miltenyi) in order to obtain a cell suspension, which was then filtered through a 

70 μM cell strainer (BD). Cells were then resuspended in FACS buffer for analysis (PBS with 

2mM EDTA and 2% FCS (GIBCO)).  

 For FACS staining, the following antibodies were used: FITC-conjugated anti-Ly-6G (clone 

1A8; BDPharmingen), PE-conjugated anti-Ly-6C (cloneHK1.4; Biolegend), PerCP/Cy5.5-

conjugated anti-CD45.2 (clone104; Biolegend), VB conjugated anti-CD11c (clone HL3; BD 

Pharmingen), Alexa647-conjugated anti-CD11b (cloneM1/70; Biolegend) and APC-Cy7-

conjugated anti I-A/I-E (cloneM5/114.15.2; Biolegend). For analysis, cells were acquired on a 

MACSQuant FACS (Miltenyi) and analyzed using the MACSQuantify Software (Miltenyi). 

Tissue dissociation. Mouse tissues and psoriasis patient skin biopsies were homogenized 

with a CK14 Soft Tissue Homogenizing Kit (VWR) in a Precellys 24 (Bertin Corporation) and 

cells were lysed in buffer containing 50 mM Tris pH 7.5, 100 mM NaCl, 5 mM EDTA, 1 mM 

NaF, 1 mM Na3VO4, 1 mM PMSF, 10 mg/ml leupeptin, 5 mg/ml aprotinin and 1% Triton X-

100. Supernatants were harvested, dosed and stored immediately at -80 °C. 

Pro-inflammatory cytokines assays. IL-1 and IL-18 protein levels were evaluated using 

ELISA kits according to the manufacturer’s instructions. Results were determined at 450 nm 

and corrected at 560 nm using a microplate reader (Corning). 

Dermis-Epidermis dissociation. Two 8-millimeter punches were obtained from mice backs 

and after removing hypodermis, punches were put, dermis face down, in a dish containing 

1% dispase for 1h30 at 37 °C. Then, epidermis and dermis were mechanically separated and 

immediately frozen for total RNA isolation. 

Western blotting. Proteins were separated by SDS-PAGE and transferred onto PVDF 

membrane (Immobilon-P, Millipore). After blocking nonspecific binding sites, the membranes 

were incubated with specific antibodies. Then, membranes were washed and incubated 



 

further with horseradish peroxidase conjugated antibody. The immunoblots were visualized 

using an enhanced chemiluminescence detection kit (Pierce). 

Keratinocyte culture. Normal Human Keratinocytes were a gift from Dr Karine Bille and Dr 

Corine Bertolotto (C3M, Nice, France). NHK were culture in presence of irradiated fibroblasts 

and a special medium consisting of 60% DMEM, 30% F-12 NutMix and 10% FCS 

supplemented with Cholera toxin 0,1 nM, Adenine 0,18 mmol/L, Insulin 5 ug/mL, 

Hydrocortisone 0,4 ug/ml, Triiodothyronine 2nmol/L and EGF 10 ng/ml. 

These cells were stimulated at different time points with both IL-17A (200 ng/ml) and TNF- 

(10 ng/ml) cytokinesand in presence of basal KGM medium plus supplemented solutions 

(PromoCell). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure Legends 

Supplemental Figure 1: 

Western Blot analysis of non-lesional (NL) and lesional (L) skin biopsies from psoriasis 

patients: a: Caspase 1, 4 and 5 were blotted in NL and L biopsies from different psoriasis 

patients showing caspase activation in lesional samples. b: Inflammasome and pro-

inflammatory cytokines were blotted in NL and L biopsies from different psoriasis patients. 

Supplemental Figure 2: 

LynN and WT mice were sacrificed 11 days after birth and skin was harvested. a-b: Skin 

was processed for total RNA isolation and gene expression was determined by qPCR, (WT, 

n = 5; LynN, n = 7). c: Total protein was prepared and IL-1 was quantified by ELISA, (WT, 

n = 5; LynN, n = 10).  

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01, 

*** p ≤ 0.001, **** p ≤ 0.0001, ns: non-significant. 

Supplemental Figure 3:  

LynN mice were backcrossing with C1/C11 deficient mice (dKO mice). Newborn mice, 

LynN C1/C11 deficient mice (LynN dKO mice), were sacrificed, together with WT and 

LynN mice, 11 days after birth. a: Mice pictures. b: Mice weight taken at three time points, 

number of analyzed mice is show below the graph.  

Errors bars represent mean ± SD. One-way ANOVA with the uncorrected Fisher’s LSD 

multiple comparison test, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. 

Supplemental Figure 4:  

WT and C1/C11 deficient (dKO) mice were treated, each other day, for 12 days with vehicle 

(phosphate buffered saline, PBS) and mouse recombinant protein IL-23 (500 ng). After 

treatment, ears were harvested. a: Measurement of ear thickness throughout the study. b: 

Increase in ear thickness at the end of the study, (PBS, n = 2; IL-23, n = 5). c: 

Representative histological sections stained with haematoxylin and eosin (40X), scale bars 

50 m. d: Quantification of the epidermal hyperplasia through haematoxylin and eosin 

staining, (PBS, n = 2; IL-23, n = 5). e: The number of immune cell populations per ear was 

quantified by FACS, (PBS, n = 2; IL-23, n = 5). f: After total RNA isolation, gene expression 

was determined by qPCR, (PBS, n = 4; IL-23-WT, n = 7; IL-23-dKO, n = 10). g:  Total protein 

was prepared, and then IL-1 and IL-18 levels were quantified by ELISA, (PBS, n = 2; IL-23, 

n = 5).  

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01, 

*** p ≤ 0.001, **** p ≤ 0.0001, ns: non-significant. 



 

Supplemental Figure 5:  

WT and C1/C11 deficient mice (dKO mice) were treated daily for six days with vehicle 

(Vaseline (Vasel)) or imiquimod (IMQ) cream. a: Skin was processed for total RNA isolation 

and gene expression was determined by qPCR (Vasel, n = 3; IMQ-WT, n = 4; IMQ-dKO, n = 

8). 

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01. 

Supplemental Figure 6:  

WT mice were treated daily for six days with vehicle (Vaseline (Vasel)) or imiquimod (IMQ) 

cream in combination with dimethylsulfoxide (DMSO) or the caspase-1 inhibitor AC-YVAD-

CMK (8 mg/kg). a: Mice were weighted each day of treatment, (Vasel, n = 2; IMQ, n = 4). b: 

Splenomegaly after six daily DMSO or AC-YVAD-CMK treatment of mice, (Vasel, n = 2; IMQ, 

n = 4). c: Skin was processed for total RNA isolation and gene expression was determined 

by qPCR (Vasel, n = 2; IMQ, n = 4). 

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ns: non-

significant. 

Supplemental Figure 7:  

WT mice were treated daily for six days with vehicle (Vaseline (Vasel)) or imiquimod (IMQ) 

cream and after sacrificed them back skin was harvested. Then dermis and epidermis were 

analyzed separately. a: Total RNA isolation was performed and gene expression was 

determined by qPCR, (Vasel, n = 4; IMQ, n = 7). 

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01, 

ns: non-significant. 

Supplemental Figure 8:  

Primary human keratinocytes were stimulated with TNF- (10 ng/ml) and IL-17A (200 ng/ml) 

at different time points and after total RNA isolation, IL-6 (a) and IL-8 (b) gene expression 

was determined by qPCR, (n = 3). 

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01. 

T: TNF- (10 ng/ml), I: IL-17A (200 ng/ml). 

Supplemental Figure 9:  

WT and dKO mice were irradiated and then reconstituted with bone marrow from WT 

(WTWT and dKOWT) and dKO (dKOdKO and WTdKO) mice, which were left to 

recuperate for 8 weeks. Then, the four groups of mice were treated daily for six days with 

vehicle (Vaseline (Vasel)) or imiquimod (IMQ) cream. a: Splenomegaly after six daily Vasel 

or IMQ treatment of mice, (for each group of mice, Vasel, n = 3; IMQ, n = 6). 



 

Errors bars represent mean ± SD. One-way ANOVA with the uncorrected Fisher’s LSD 

multiple comparison test, ns: non-significant. 

Supplemental Figure 10:  

WT and C1/C11 deficient (dKO) mice were irradiated and then reconstituted with bone 

marrow from WT (WTWT and dKOWT) and dKO (dKOdKO and WTdKO) mice, 

which were left to recuperate for 8 weeks. Then, the four groups of mice were treated were 

treated, each other day, for 12 days with vehicle (phosphate buffered saline, PBS) and 

mouse recombinant protein IL-23 (500 ng). After treatment ears were harvested. a: Increase 

in ear thickness at the end of the study, D12-D0 (for groups WTWT and dKOWT, PBS, n 

= 4; IL-23, n = 5; for groups dKOdKO and WTdKO, PBS, n = 6; IL-23, n = 8). b: 

Quantification of the epidermal hyperplasia through haematoxylin and eosin staining, (PBS, n 

= 2; IL-23, n = 3).  

Errors bars represent mean ± SD. One-way ANOVA with the uncorrected Fisher’s LSD 

multiple comparison test, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, ns: non-

significant. 
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Supplementary Materials and Methods 

Biopsies. Four-millimeter punch biopsies were collected from healthy donors and from 

psoriasis patients. In healthy donor, biopsies were taken in the upper thigh. In psoriasis 

patients, biopsies were taken from the center of a chronic plaque (lesional biopsy) and from 

non lesional skin. All biopsies were frozen immediately in liquid nitrogen and then stored at -

80 °C.  

Reagents. Aldara (5% IMQ) cream was purchased from MEDA Pharma. Mouse recombinant 

protein IL-23 was purchased from eBioscience Systems. AC-YVAD-CMK was obtained from 

Sigma-Aldrich. ELISA kits for mIL-1 and mIL-18 cytokines were provided by R&D and MBL 

international, respectively. ELISA kits for hIL-1 was purchased from e-bioscience. TRIzol 

reagent was acquired from Life Technologies. All TaqMan reagents were bought from 

Thermo Fisher Scientific. Dispase enzyme was obtained from Sigma-Aldrich. Human 

recombinant proteins IL-17A and TNF-, for keratinocyte stimulation, were purchased from 

PeproTech. 

Antibodies. Rabbit polyclonal antibodies against caspase-1 (sc-622, sc-515) and caspase-5 

(4429) were purchased from Santa Cruz Biotechnology and from Cell Signaling Technology, 

respectively. Goat polyclonal antibodies against caspase-4 (sc-1229) and IL-1 (AF-401-NA) 

were obtained from Santa Cruz Biotechnology and from R&D Systems, respectively. Mouse 

monoclonal antibodies against HSP-70 (sc-66048) and HSP-90 (sc-69703) were purchased 

from Santa Cruz Biotechnology. Mouse monoclonal antibody against Actin (A2228) was 

purchased from Sigma-Aldrich. Rat monoclonal antibody against caspase-11 (17D9) was 

obtained from Novus Biologicals.  

H&E staining. skin biopsies were fixed in 10% neutral-buffered formalin and then include in 

paraffin. Five-micrometer thick sections were cut and stained with H&E (Sigma-Aldrich). To 

quantify epidermal hyperplasia, 14 assessments were made in both portions of the tissue. 

Histopathological examinations were performed on a Nikon light microscope. 

RNA extractions and qPCR assessments. Total RNA was extracted from skin tissues 

using TRIzol reagent and reverse transcribed using random primer from Promega and 

SuperScript II reverse transcriptase from ThermoScientific. For qPCR analysis, different 

TaqMan sondes were used (Thermo Fisher Scientific), (Mouse Taqman, RPLP0: 

Mm00725448, IL-17: Mm00439618_m1, IL-6: Mm00446190_m1, IL-22: Mm01226722_g1, 

IL-23: Mm00518984_m1, TNF-α: Mm00443258_m1, IL-1β: Mm00434228_m1, NLRP-3: 



 

Mm00840904_m1, AIM-2: Mm01295719_m1 and Caspase 11: Mm00432304_m1; Human 

Taqman, RPLP0: Hs99999902_m1, IL-6: Hs00174131_m1 and IL-8: Hs00174103_m1. 

FACS. Two 8-millimeter punches were taken and single-cell suspensions of ear and back 

skin were obtained as described previously (Riol-Blanco et al., 2014). Briefly, for the ear skin 

digestion, dorsal and ventral parts of the ear were mechanically separated and for the back 

skin digestion, all hypodermis was mechanically eliminated. Then, a digestion for 90 minutes 

at 37°C in gentleMACS tubes (Miltenyi) with gentle agitation in freshly prepared digestion mix 

consisting of DMEM (Gibco) supplemented with HEPES (Invitrogen), 2% FCS, 100 μg/mL 

Liberase TM (Roche), 100 μg/mL DNase I (Roche) and 0.5 mg/mL Hyaluronidase (Sigma) 

was produced. After enzymatic digestion, the mixture was processed using a gentleMACS 

homogenizer (Miltenyi) in order to obtain a cell suspension, which was then filtered through a 

70 μM cell strainer (BD). Cells were then resuspended in FACS buffer for analysis (PBS with 

2mM EDTA and 2% FCS (GIBCO)).  

 For FACS staining, the following antibodies were used: FITC-conjugated anti-Ly-6G (clone 

1A8; BDPharmingen), PE-conjugated anti-Ly-6C (cloneHK1.4; Biolegend), PerCP/Cy5.5-

conjugated anti-CD45.2 (clone104; Biolegend), VB conjugated anti-CD11c (clone HL3; BD 

Pharmingen), Alexa647-conjugated anti-CD11b (cloneM1/70; Biolegend) and APC-Cy7-

conjugated anti I-A/I-E (cloneM5/114.15.2; Biolegend). For analysis, cells were acquired on a 

MACSQuant FACS (Miltenyi) and analyzed using the MACSQuantify Software (Miltenyi). 

Tissue dissociation. Mouse tissues and psoriasis patient skin biopsies were homogenized 

with a CK14 Soft Tissue Homogenizing Kit (VWR) in a Precellys 24 (Bertin Corporation) and 

cells were lysed in buffer containing 50 mM Tris pH 7.5, 100 mM NaCl, 5 mM EDTA, 1 mM 

NaF, 1 mM Na3VO4, 1 mM PMSF, 10 mg/ml leupeptin, 5 mg/ml aprotinin and 1% Triton X-

100. Supernatants were harvested, dosed and stored immediately at -80 °C. 

Pro-inflammatory cytokines assays. IL-1 and IL-18 protein levels were evaluated using 

ELISA kits according to the manufacturer’s instructions. Results were determined at 450 nm 

and corrected at 560 nm using a microplate reader (Corning). 

Dermis-Epidermis dissociation. Two 8-millimeter punches were obtained from mice backs 

and after removing hypodermis, punches were put, dermis face down, in a dish containing 

1% dispase for 1h30 at 37 °C. Then, epidermis and dermis were mechanically separated and 

immediately frozen for total RNA isolation. 

Western blotting. Proteins were separated by SDS-PAGE and transferred onto PVDF 

membrane (Immobilon-P, Millipore). After blocking nonspecific binding sites, the membranes 

were incubated with specific antibodies. Then, membranes were washed and incubated 



 

further with horseradish peroxidase conjugated antibody. The immunoblots were visualized 

using an enhanced chemiluminescence detection kit (Pierce). 

Keratinocyte culture. Normal Human Keratinocytes were a gift from Dr Karine Bille and Dr 

Corine Bertolotto (C3M, Nice, France). NHK were culture in presence of irradiated fibroblasts 

and a special medium consisting of 60% DMEM, 30% F-12 NutMix and 10% FCS 

supplemented with Cholera toxin 0,1 nM, Adenine 0,18 mmol/L, Insulin 5 ug/mL, 

Hydrocortisone 0,4 ug/ml, Triiodothyronine 2nmol/L and EGF 10 ng/ml. 

These cells were stimulated at different time points with both IL-17A (200 ng/ml) and TNF- 

(10 ng/ml) cytokinesand in presence of basal KGM medium plus supplemented solutions 

(PromoCell). 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure Legends 

Supplemental Figure 1: 

Western Blot analysis of non-lesional (NL) and lesional (L) skin biopsies from psoriasis 

patients: a: Caspase 1, 4 and 5 were blotted in NL and L biopsies from different psoriasis 

patients showing caspase activation in lesional samples. b: Inflammasome and pro-

inflammatory cytokines were blotted in NL and L biopsies from different psoriasis patients. 

Supplemental Figure 2: 

LynN and WT mice were sacrificed 11 days after birth and skin was harvested. a-b: Skin 

was processed for total RNA isolation and gene expression was determined by qPCR, (WT, 

n = 5; LynN, n = 7). c: Total protein was prepared and IL-1 was quantified by ELISA, (WT, 

n = 5; LynN, n = 10).  

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01, 

*** p ≤ 0.001, **** p ≤ 0.0001, ns: non-significant. 



 

Supplemental Figure 3:  

LynN mice were backcrossing with C1/C11 deficient mice (dKO mice). Newborn mice, 

LynN C1/C11 deficient mice (LynN dKO mice), were sacrificed, together with WT and 

LynN mice, 11 days after birth. a: Mice pictures. b: Mice weight taken at three time points, 

number of analyzed mice is show below the graph.  

Errors bars represent mean ± SD. One-way ANOVA with the uncorrected Fisher’s LSD 

multiple comparison test, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. 

Supplemental Figure 4:  

WT and C1/C11 deficient (dKO) mice were treated, each other day, for 12 days with vehicle 

(phosphate buffered saline, PBS) and mouse recombinant protein IL-23 (500 ng). After 

treatment, ears were harvested. a: Measurement of ear thickness throughout the study. b: 

Increase in ear thickness at the end of the study, (PBS, n = 2; IL-23, n = 5). c: 

Representative histological sections stained with haematoxylin and eosin (40X), scale bars 

50 m. d: Quantification of the epidermal hyperplasia through haematoxylin and eosin 

staining, (PBS, n = 2; IL-23, n = 5). e: The number of immune cell populations per ear was 

quantified by FACS, (PBS, n = 2; IL-23, n = 5). f: After total RNA isolation, gene expression 

was determined by qPCR, (PBS, n = 4; IL-23-WT, n = 7; IL-23-dKO, n = 10). g:  Total protein 

was prepared, and then IL-1 and IL-18 levels were quantified by ELISA, (PBS, n = 2; IL-23, 

n = 5).  

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01, 

*** p ≤ 0.001, **** p ≤ 0.0001, ns: non-significant. 

Supplemental Figure 5:  

WT and C1/C11 deficient mice (dKO mice) were treated daily for six days with vehicle 

(Vaseline (Vasel)) or imiquimod (IMQ) cream. a: Skin was processed for total RNA isolation 

and gene expression was determined by qPCR (Vasel, n = 3; IMQ-WT, n = 4; IMQ-dKO, n = 

8). 

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01. 

Supplemental Figure 6:  

WT mice were treated daily for six days with vehicle (Vaseline (Vasel)) or imiquimod (IMQ) 

cream in combination with dimethylsulfoxide (DMSO) or the caspase-1 inhibitor AC-YVAD-

CMK (8 mg/kg). a: Mice were weighted each day of treatment, (Vasel, n = 2; IMQ, n = 4). b: 

Splenomegaly after six daily DMSO or AC-YVAD-CMK treatment of mice, (Vasel, n = 2; IMQ, 

n = 4). c: Skin was processed for total RNA isolation and gene expression was determined 

by qPCR (Vasel, n = 2; IMQ, n = 4). 



 

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ns: non-

significant. 

Supplemental Figure 7:  

WT mice were treated daily for six days with vehicle (Vaseline (Vasel)) or imiquimod (IMQ) 

cream and after sacrificed them back skin was harvested. Then dermis and epidermis were 

analyzed separately. a: Total RNA isolation was performed and gene expression was 

determined by qPCR, (Vasel, n = 4; IMQ, n = 7). 

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01, 

ns: non-significant. 

Supplemental Figure 8:  

Primary human keratinocytes were stimulated with TNF- (10 ng/ml) and IL-17A (200 ng/ml) 

at different time points and after total RNA isolation, IL-6 (a) and IL-8 (b) gene expression 

was determined by qPCR, (n = 3). 

A.U: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01. 

T: TNF- (10 ng/ml), I: IL-17A (200 ng/ml). 

Supplemental Figure 9:  

WT and C1/C11 deficient (dKO) mice were irradiated and then reconstituted with bone 

marrow from WT (WTWT and dKOWT) and dKO (dKOdKO and WTdKO) mice, 

which were left to recuperate for 8 weeks. Then, the four groups of mice were treated were 

treated, each other day, for 12 days with vehicle (phosphate buffered saline, PBS) and 

mouse recombinant protein IL-23 (500 ng). After treatment ears were harvested. a: Increase 

in ear thickness at the end of the study, D12-D0 (for groups WTWT and dKOWT, PBS, n 

= 4; IL-23, n = 5; for groups dKOdKO and WTdKO, PBS, n = 6; IL-23, n = 8). b: 

Quantification of the epidermal hyperplasia through haematoxylin and eosin staining, (PBS, n 

= 2; IL-23, n = 3).  

Errors bars represent mean ± SD. One-way ANOVA with the uncorrected Fisher’s LSD 

multiple comparison test, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, ns: non-

significant. 
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RESUME ARTICLE 3: 
Lyn tyrosine kinase: a pivotal factor in psoriasis 

pathogenesis 

 

Psoriasis is a chronic T cell-mediated inflammatory disease with a relative high 

prevalence worldwide. Albeit a large number of studies have been performed the 

etiology and pathogenicity of this cutaneous diseases is not fully understood. Psoriasis 

is characterized by an intense dialogue between keratinocytes and the immune cell, 

and it has been well accepted the key role of T cells as well as pro-inflammatory 

cytokines and chemokines in the development and maintenance of this disease. In fact 

several drugs against T cells and pro-inflammatory cytokines have been approved for 

psoriasis treatment, and although clinical remission has been observed in most 

patients, psoriasis does not get cured. 

Activation of the Src family kinases, a family of proteins with a key role in the 

control of various cellular processes such as differentiation, migration and survival has 

been observed in lesional skin biopsies from psoriasis patients. Moreover, it has 

recently been shown that the overexpression in mice of a particular form of Lyn, one of 

the eight members of the Src family kinases, leads to a skin inflammatory syndrome, 

which has several features in common with human psoriasis, indicating that Lyn can 

play an important function in psoriasis pathogenesis. Based on these results, we 

wanted to know whether Lyn had a role in this autoimmune disease.  

First, we analyzed the expression and activation of Lyn in lesional human skin 

biopsies from psoriasis patients and we found an increase in Lyn expression compared 

to non lesional psoriasis skin biopsies and healthy donors that was not observed for 

several other members of SFK. These results were corroborated in two mouse models 

of psoriasis-like disease (IMQ and IL-23 models), where an increase in Lyn expression 

was observed at both mRNA and protein levels. 

It is well known that psoriasis immune cell infiltrate is composed by dendritic 

cells, neutrophils, macrophages, NK cells and to a lesser extent by B cells. All these 

cells have in common that Lyn is an important mediator of their signaling process. 

Thus, the increase in Lyn expression observed in psoriasis could be explained by the 

recruitment of immune cells. However, keratinocytes are the principal cells in the 

epidermis and certainly in the injured skin. Therefore, we investigated what kind of cells 

was involved in this modulation. In this context, we observed that Lyn expression was 

increased both in the dermis and epidermis in human and mice, indicating that the 

recruitment of immune cells within the injured skin but also the modulation of Lyn in 
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keratinocytes were both involved. Interestingly, an increase in Lyn expression and 

activation was observed in human keratinocytes stimulated in vitro with TNF-α and IL-

17A, two of the principal cytokines implicated in psoriasis pathogenesis, suggesting a 

role of Lyn in keratinocyte proliferation during psoriasis pathogenesis. To confirm this 

hypothesis, we induced a psoriasis-like phenotype in Lyn deficient mice by IMQ 

application, and a significant reduction was observed as compared to WT treated mice, 

indicating that Lyn was necessary for the continuous development of the disease. 

Moreover, by bone marrow transfer experiments we highlighted that the expression of 

Lyn in keratinocytes was enough to obtain a fully inflammatory response. 

Altogether, these results show that Lyn is an important regulator in the 

maintaining of psoriasis, presenting a pro-inflammatory role in this disease and 

validating this Src family protein kinase as a potential target for psoriasis treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The manuscript presented herein contains all the results I obtained during my 

thesis in the form of a manuscript in preparation. The discussion of this work is grouped 

in the discussion part of my thesis. It put forward in particular the different experiments 

that we would want to finish before submitting this work for publication. 
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ABSTRACT 

Lyn, a Src tyrosine kinase, has a well-established function in hematopoietic cells; but recent 

studies have shown that Lyn can also control non-hematopoietic tissues. As we found Lyn 

expression in human skin, and that its expression was increased in lesional skin biopsies 

from psoriasis patients, we wanted to know whether Lyn plays a role in this disease. In two 

different psoriasis mouse models, an increase in Lyn expression was observed, which was 

not seen for Src and Fyn, two other members of the Src family kinase. Interestingly, we 

observed that the expression of Lyn was increased both in the dermis and the epidermis in 

human and mice, suggesting that altogether the recruitment of immune cells, where Lyn is 

highly expressed, and the modulation of its expression in keratinocytes were part of this 

observation. In vitro experiments on primary human keratinocytes confirmed that Lyn 

expression was increased upon stimulation with TNF and IL17, two principal cytokines 

implicated in psoriasis pathogenesis. Finally, when psoriasis-like phenotype was induced in 

Lyn deficient mice, a significant reduction was observed as compared to WT mice. 

Interestingly, Lyn deficiency in keratinocytes/fibroblast was sufficient for a full development of 

the psoriasis-like phenotype, whereas its absence in immune cells had no or little impact. 

Altogether, these results show that Lyn could be a crucial regulator of psoriasis pathogenesis 

and highlight an important and new aspect of Lyn function in keratinocytes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

Psoriasis is an immune-mediated and chronic inflammatory skin disease of unknown etiology 

(Chiricozzi et al, 2018), whose prevalence worldwide is around 3% (Danielsen et al, 2013). 

The principal phenotype of this skin pathology is the development of a chronic erythematous 

and scaly plaque, generally well demarcated and covered with silvery scales (Raychaudhuri 

et al, 2014); leading to the development of psoriasis plaques, which is the main manifestation 

of this disease, affecting 90% of all psoriasis patients (Lowes et al, 2014). There are three 

main characteristics of psoriasis: thickness of the epidermis (acanthosis) histologically 

defined by elongated rete ridges into the dermis (epidermal hyperplasia) producing 

desquamation (scaling), dilated and prominent blood vessels in the dermis (erythema) and 

epidermal and dermal immune cell infiltration (Ogawa et al, 2018).  

Several immune cell populations are implicated in psoriasis pathogenesis. T helper (Th), 

cytotoxic and γδ T cells as well as dendritic cells, mast cells, neutrophils, natural killer (NK) 

and innate lymphoid cells have been involved in psoriasis plaque development (Boehncke 

and Schon, 2015), leading to postulate psoriasis as a result of a key dialogue between the 

aberrant proliferation and differentiation of keratinocytes with the huge recruitment of immune 

cells. This dialogue is made through the release of different pro-inflammatory cytokines, 

acting as mediators, such as tumor necrosis factor (TNF)-α, interleukin (IL)-17, -23, -6 and 

IL-1β (Ayala-Fontanez et al, 2016) that lead to the activation of several signaling pathways 

(Wu et al, 2017; Ali et al, 2016).  

The Src family protein of tyrosine kinase (SFK) is a family of proto-oncogene proteins 

composed of eight members with similar structure and molecular weight, which has been 

classified in two subgroups according to the similarities in their amino acids sequences: Src-

related proteins (Src, Fyn, Yes and Fgr) and Lyn-related members (Lyn, Lck, Hck and Blk) 

(Parsons and Parsons, 2004). All members of this family have been implicated in a large 

amount of cellular processes such as cell growth, differentiation, adhesion, migration, 

survival as well as apoptosis, gene transcription and angiogenesis (Espada and Martin-

Perez, 2017; Maa and Leu, 2016; Roskoski, 2015). SFK are activated by a wide variety of 

cell surface receptors, such as antigen receptors, growth factor receptors as well as 

interleukin receptors (Mitchell et al, 2018). In the particular case of psoriasis, it has been 

demonstrated an activation of SFK in lesional skin (Ayli et al, 2008), suggesting a possible 

role of family in psoriasis pathogenesis. 

The Lyn tyrosine kinase has a pivotal role in hematopoietic cell homeostasis presenting a 

dual role with a positive and negative function (Xu et al, 2005). In fact, deregulations in the 

expression level and in the activity of this protein have been related with a large number of 

blood malignancies (Ingley, 2012), and Lyn deficient mice develop a lupus-related syndrome 

characterized by a huge increase in autoantibodies-secreting plasma cells population 



(Gutierrez et al, 2010). However, although in the first studies related with this protein it was 

described as a specific hematopoietic kinase, nowadays it is fully accepted that Lyn is 

expressed in many others tissues (Liu et al, 2017; Roseweir et al, 2016; Mello et al, 2015; 

Bundela et al, 2014; Ingley, 2012).  

Anti- and pro-inflammatory functions have been described for Lyn. Indeed, its protective role 

has been evidenced through the susceptibility observed in Lyn deficient mice to develop 

endotoxin-induced lung inflammation (Gao et al, 2015) and to dextran sulfate sodium (DSS)-

induced colitis (Roberts et al, 2014). On the other hand, the pro-inflammatory function of Lyn 

has been observed in diabetes. In fact, a decrease in Lyn signalization was associated with a 

decrease in reactive oxygen species (ROS)-mediated inflammation preventing high glucose-

induced innate immune response (Wang et al, 2017). Moreover, it was previously reported 

that the overexpression of a particular form of Lyn in mice led to the development of a skin 

inflammatory syndrome resembling human psoriasis (Marchetti et al, 2009), suggesting an 

implication of this protein in psoriasis pathogenesis. 

Thus, taking in consideration that Lyn can exhibit a pro-inflammatory role in the new scenario 

of psoriasis; we focused our work on the mechanism by which Lyn could participate in 

psoriasis pathogenesis. Here, we show that Lyn is increased and activated in lesional skin 

biopsies from psoriasis patients and after induction of psoriasis-like phenotype in mice, 

demonstrating a significant modulation of Lyn expression and activation in cytokine-

stimulated keratinocytes and evidencing that Lyn deficient mice present a delay in the 

psoriasis-like disease. Finally, our results highlight a new aspect of Lyn function in the 

context of psoriasis that is related to its role in keratinocytes.  

 

  

 

 

       

 

 

 

 

 

 

 

 

 



MATERIAL AND METHODS 

Study approval.  

This study was conducted on biopsies from 170 patients enrolled in a study registered in 

clinicaltrials.gov under the identifier NCT01538342: Role of Tyrosine Kinase Lyn and 

Cleaved Form by Caspases in Psoriasis. This study was approved by the local ethics 

committee (Comité de Protection des Personnes Sud-Méditerranée V, n° 2011-A00786-

35.065), and was conducted in accordance with the principles of the Declaration of Helsinki 

and Good Clinical Practices guidelines. All patients and healthy donors included signed 

informed consent before their inclusion in the study. The ethics review board from the French 

Minister for the High Education and Research approved all animal studies together with the 

Institutional Animal Care and Use Committee of the Centre Méditerranéen de Médecine 

Moléculaire (C3M), Nice, France (INSERM U1065).  

Biopsies. Four-millimeter punch biopsies were collected from healthy donors and psoriasis 

patients. In healthy donors, biopsies were taken in the upper thigh and in psoriasis patients, 

were taken from the center of a chronic plaque (lesional biopsy) and from non-lesional skin. 

All biopsies were frozen immediately in liquid nitrogen and then stored at -80 °C.  

Mice. Mice were housed under specific pathogen-free conditions and fed with standard 

laboratory food. All mice (WT, LynKO) were on a C57BL/6J genetic background and were 

used at 8-10 weeks of age, except for adoptive transfer, where mice were irradiated and 

reconstituted at six weeks. Both males and females were used in this study. WT mice 

(C57Bl6/J) were purchased from Envigo and LynKO deficient mice were a gift from Dr 

Nicolas Charles (INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France). 

Experimental protocols 

To induce psoriasis-like phenotype, mice were treated either with Aldara cream 

corresponding to 3,125 mg of IMQ (daily for six days) in the backs after shaving and 

depilation or with mouse recombinant IL-23 (500 ng diluted in PBS) by intradermal injection 

in the ears (each other day for 12 days). The severity of inflammation in the back skin 

through erythema (redness) and scaling (desquamation) was assessed by an adapted 

version of the clinical PASI score, 0: none; 1: slight; 2: moderated; 3: strong; 4: very strong 

phenotype. Moreover, a cumulative score, resulting from the sum of erythema and scaling, 

was calculated. The severity of inflammation in the ears was measured through the thickness 

of the ears using a caliper Mitutoyo. The change from baseline was determined. 

For the adoptive transfer experiment, six weeks WT and LynKO deficient mice were lethality 

irradiated at 7 Gy and then reconstituted with 5*106 bone marrow cells from donor mice. 

Donor bone marrow cells were harvested from the hind limbs (femur and tibia) and a single 

cell suspension of bone marrow cells was made. All recipient mice were left for 8 weeks to 

ensure recovery and then IMQ-protocol to induce psoriasis-like phenotype was performed. 



Reagents. Aldara (5% IMQ) cream was purchased from MEDA Pharma. TRIzol reagent was 

acquired from Life Technologies. All TaqMan reagents were bought from Thermo Fisher 

Scientific. Dispase enzyme was obtained from Sigma-Aldrich. Human recombinant proteins 

IL-17A and TNF-, for keratinocyte stimulation, were purchased from PeproTech. SiRNA 

were obtained from Invitrogen (siLyn: 305588F09, siFyn: 305588G01). 

Antibodies. Rabbit polyclonal antibodies against Lyn (CS-2732, CS-2796), Src (CS-2123), 

Fyn (CS-4023), P-Src (CS-6943), STAT1 (CS-9172), Lamin A/C (CS-2032), LAMP2 (CS-

49067) and ERK (CS-4695) were purchased from Cell Signaling Technology and rabbit 

polyclonal antibody against P-Src (Ab-46660) was purchased from Abcam. Rabbit polyclonal 

antibody against keratin 10 (PRB-159P) and keratin 6 (PRB-169P-100) were bought to 

Covance. Mouse monoclonal antibody against IL-1 (CS-12242) was obtained from Cell 

Signaling Technology. Mouse monoclonal antibodies against Lyn (SC-7274), Lck (SC-433), 

Hck (SC-101428) and HSP-90 (sc-69703) were purchased from Santa Cruz Biotechnology. 

Mouse monoclonal antibody against Actin (A2228) was obtained from Sigma-Aldrich. Mouse 

monoclonal antibody against loricrin (PRB-145P) was bought to Covance. Purified rabbit 

antibodies against CD45 (304002) and laminin (L9393) were obtained from Biolegend and 

Sigma, respectively. 

H&E staining. Skin biopsies were fixed in 10% neutral-buffered formalin and then include in 

paraffin. Five-micrometer thick sections were cut and stained with H&E (Sigma-Aldrich). To 

quantify epidermal hyperplasia, 14 assessments were made in both portions of the tissue. 

Histopathological examinations were performed on a Nikon light microscope. 

RNA extractions and qPCR assessments. Total RNA was extracted from skin tissues 

using TRIzol reagent and reverse transcribed using random primer from Promega and 

SuperScript II reverse transcriptase from ThermoScientific. For qPCR analysis, different 

TaqMan sondes were used (Thermo Fisher Scientific), (Mouse Taqman, RPLP0: 

Mm00725448, IL-6: Mm00446190_m1, IL-22: Mm01226722_g1, IL-23: Mm00518984_m1, 

IL-1β: Mm00434228_m1, Lyn: Mm01217488_m1 and Mm01217484_g1; Human Taqman, 

RPLP0: Hs99999902_m1, Lyn: Hs00176719_m1, Src: Hs01082246_m1; Fyn: 

Hs00941600_m1. 

FACS. Two 8-millimeter punches were taken and single-cell suspension of back skin was 

obtained as described previously (Riol-Blanco et al, 2014). Briefly, for the back skin 

digestion, all hypodermis was mechanically eliminated. Then, a digestion for 90 minutes at 

37°C in gentleMACS tubes (Miltenyi) with gentle agitation in freshly prepared digestion mix 

consisting of RPMI (Gibco) supplemented with Colagenase IV (Sigma) was produced. After 

enzymatic digestion, the mixture was processed using a gentleMACS homogenizer (Miltenyi) 

in order to obtain a cell suspension, which was then filtered through a 70μM cell strainer 



(BD). Cells were then resuspended in FACS buffer for analysis (PBS with 2mM EDTA and 

2% FCS (GIBCO)).  

For FACS staining, the following antibodies were used: FITC-conjugated anti-CD19 

(Biolegend), Pacific blue-conjugated anti-CD3 (Biolegend), Alexa647-conjugated anti-CD11b 

(cloneM1/70; Biolegend) and APC-conjugated anti-CD45 (cloneM5/114.15.2; Biolegend). For 

analysis, cells were acquired on a MACSQuant FACS (Miltenyi) and analyzed using the 

MACSQuantify Software (Miltenyi). 

Tissue dissociation. Mouse tissues and psoriasis patient skin biopsies were homogenized 

with a CK14 Soft Tissue Homogenizing Kit (VWR) in a Precellys 24 (Bertin Corporation) and 

cells were lysed in buffer containing 50 mM Tris pH 7.5, 100 mM NaCl, 5 mM EDTA, 1 mM 

NaF, 1 mM Na3VO4, 1 mM PMSF, 10 mg/ml leupeptin, 5 mg/ml aprotinin and 1% Triton X-

100. Supernatants were harvested, dosed and stored immediately at -80 °C. 

Dermis-Epidermis dissociation. Two 8-millimeter punches were obtained from mice backs 

and after removing hypodermis, punches were put, dermis face down, in a dish containing 

1% dispase for 1h30 at 37 °C. Then, epidermis and dermis were mechanically separated and 

immediately frozen for total RNA isolation. 

Western blotting. Proteins were separated by SDS-PAGE and transferred onto PVDF 

membrane (Immobilon-P, Millipore). After blocking nonspecific binding sites, the membranes 

were incubated with specific antibodies. Then, membranes were washed and incubated 

further with horseradish peroxidase conjugated antibody. The immunoblots were visualized 

using an enhanced chemiluminescence detection kit (Pierce). 

Keratinocyte culture. Normal Human Keratinocytes were a gift from Dr Karine Bille and Dr 

Corine Bertolotto (C3M, Nice, France). NHK were culture in presence of irradiated fibroblasts 

and a special medium consisting of 60% DMEM, 30% F-12 NutMix and 10% FCS 

supplemented with Cholera toxin 0,1 nM, Adenine 0,18 mmol/L, Insulin 5 ug/mL, 

Hydrocortisone 0,4 ug/ml, Triiodothyronine 2nmol/L and EGF 10 ng/ml. 

These cells were stimulated at different time points with both IL-17A (200 ng/ml) and TNF- 

(10 ng/ml) cytokinesand in presence of basal KGM medium plus supplemented solutions 

(PromoCell). 

Statistics. The number of animals used in each experiment is described in the figure 

legends. All statistical analyses were performed in GraphPad Prism software (GraphPad, 

version 6) and results are represented as mean ± SD. To compare means between two 

groups, the unpaired two-tailed Student t test was used. To compare means between three 

or more groups, the one-way ANOVA with the uncorrected Fisher’s Least Significance 

Difference (LSD) multiple comparison test was applied. (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 

0.001, **** p ≤ 0.0001, ns: non-significant). 

 



RESULTS 

 

Increased Lyn expression is confirmed in lesional samples from psoriasis patients 

An activation of SFK was previously shown in patients suffering psoriasis (Ayli et al, 2008). 

Moreover, an increase in Lyn expression was observed in six lesional samples compared to 

non-lesional one from psoriasis patients (Marchetti et al, 2009). Here, we decided to confirm 

these results on a large cohort of psoriasis patients. Western blot analysis on skin protein 

extracts showed a significant increase in Lyn expression (Figure 1a, b) associated to an 

increase in SFK activation (Figure 1c) in lesional samples compared to non-lesional biopsies 

in all assessed psoriasis patients. Surprisingly, no increase either in Src, Fyn, Lck or Hck 

expression, several other SFK members, was observed in lesional samples with respect to 

non-lesional one (Figure S1a, b), indicating that Lyn seems to be the only SFK modulated in 

this chronic disease.  

To decipher if this Lyn modulation is specific to psoriasis, we then decided to analyze Lyn 

expression in atopic dermatitis, a chronic relapsing inflammatory skin disease, whose 

principal difference from psoriasis is the crucial Th2 immune response (Gittler et al, 2013; 

Gittler et al, 2012). Interestingly, no Lyn modulation was observed between lesional and non-

lesional skin biopsies of atopic dermatitis patients (Figure 1c, d). Altogether, these data 

confirm that Lyn protein tyrosine kinase is increased in skin suffering psoriasis plaques and 

identify that Lyn modulation is not a general mechanism of skin disease.  

 

Lyn is augmented after induction of psoriasis-like phenotype in mice  

Next, we wanted to confirm the results observed in psoriasis patients in two different mouse 

psoriasis-like models: the imiquimod (IMQ) model (van der Fits et al, 2009) and the IL-23 

model (Hedrick et al, 2009). We first observed in the IMQ treated mice (Figure S2a) a 

significant increase in Lyn mRNA (Figure S2b) and protein (Figure 2a) expression as well as 

in SFK activation (Figure 2a) as compared to control mice. In the case of IL-23-dependent 

psoriasis-like model (Figure S2c), similar results were obtained (Figure S2d). Then, we 

wanted to know whether the increase in Lyn expression was dependent of the development 

of a well-marked psoriasis-like phenotype. To address this, we analyzed the expression of 

Lyn along the IMQ induction of psoriasis disease: after two days (slight psoriasis-like 

phenotype), four days (moderate phenotype) and six days (highly marked phenotype) of IMQ 

application. Thus, as is shown in figure 2b, the increase in Lyn expression and SFK 

activation is observed starting from day four, reaching its maximum level at day six (Figure 

2b; S2e), which demonstrates that the modulation in Lyn expression and activation requires 

the development and establishment of psoriasis-like disease.   



It is well known that two phases of psoriasis disease are developed in patients: an early 

onset (acute phase) and a late stable phase (chronic phase) (Ayala-Fontanez et al, 2016), in 

which the immune cell population is transiently increased in both dermis and epidermis 

(Terhorst et al, 2015). Thus, to know whether Lyn modulation was maintained once psoriasis 

plaques were already established, a biphasic model of psoriasis-like phenotype was induced 

in WT mice (Figure S2f). Interestingly, a significant increase in Lyn mRNA (Figure S2g) and 

protein (Figure 2c) expression was observed in the chronic phase of psoriasis-like disease 

compared to control mice, indicating that Lyn expression is maintained in an established 

lesional skin although the numbers of different immune cell populations might be transiently 

modified. 

Two main groups of cells are involved in psoriasis pathogenesis: the inflammatory immune 

cell, principally into the dermis, and keratinocytes in the epidermis (Ogawa et al, 2018). To 

elucidate which compartment is responsible for Lyn modulation observed by global analysis 

of skin extract, dermis/epidermis dissociation experiment was done from IMQ-treated skin. 

Surprisingly, although an increase in Lyn expression was observed in the dermis due to huge 

amount of immune cell infiltration, a significant increase in Lyn mRNA (Figure S2h) and 

protein (Figure 2d, e) expression was found in the epidermis; suggesting a modulation of Lyn 

tyrosine kinase in the keratinocytes, the principal cellular type found in this compartment. 

 

An increase in Lyn expression is observed in human keratinocytes  

To validate the results obtained in mice, immunofluorescence-staining approaches were 

made in non-lesional and lesional skin biopsies from psoriasis patients. As it is shown in 

figure 3a, Lyn expression is augmented in lesional skin with respect to non-lesional skin in 

both dermis and epidermis, which was also observed in a large cohort of psoriasis patients 

(Figure 3b). Outstandingly, when a co-staining of CD45 and Lyn was performed, three 

populations were observed in lesional skin biopsies (Figure 3c): i) CD45+ Lyn+, indicating 

myeloid and B cells (empty arrowhead); ii) CD45+ Lyn-, showing T cells (full arrowhead) and 

iii) CD45- Lyn+ (doted arrowhead), completely present in the epidermis, suggesting a 

significant modulation of Lyn expression in keratinocytes.  

Altogether, these results highlight a modulation of Lyn protein expression in the epidermis of 

both IMQ-treated mice and lesional skin biopsies of psoriasis patients, suggesting a specific 

modulation of this SFK member on keratinocytes.  

 

Lyn tyrosine kinase is modulated in cytokine-stimulated keratinocytes 

To clarify whether a Lyn modulation can be found in keratinocytes, immunofluorescence-

staining approaches were performed in normal human keratinocytes stimulated in vitro with 

recombinant human IL-17A and TNF-α, two cytokines implicated in psoriasis pathogenesis 



(Greb et al, 2016). An enhanced expression of Lyn was seen in treated keratinocytes 

compared to control cells (Figure 4a), which was principally observed in the nucleus and 

associated to granules. Similar results were obtained when a subcellular fractionation was 

made on these cells (Figure S3a), suggesting that Lyn modulation in keratinocytes is linked 

to an increased expression in the microsome and nuclear fraction. Moreover, the high levels 

in Lyn expression (Figure 4b) was associated to an increase in Pan-P-Src activation at 

different time points of stimulation (Figure 3b), correlating with a significant increase in Lyn 

mRNA expression over time (Figure 4c).  

Different studies have elucidated the crucial role of Fyn in keratinocyte differentiation (Fenton 

and Denning, 2015) and transformation (Fenton et al, 2015). Moreover, Src has been also 

implicated in keratinocyte differentiation (Szalmas et al, 2013) and migration (Sophors et al, 

2016). Nevertheless, few things are known about the role of these proteins in mimicking 

psoriasis conditions of keratinocyte proliferation. Thus, although these two members of the 

SFK were not augmented in total skin from psoriasis patients, we wanted to determine 

whether a modulation in these proteins could be observed in stimulated keratinocytes. No 

modulation of either Src or Fyn mRNA (Figure S3b) and protein (Figure S3c) expression was 

observed in our mimicking in vitro psoriasis conditions, suggesting that these two SFK 

members are not involved in keratinocyte behavior through pro-inflammatory cytokine 

stimulation. 

To determine whether the SFK activation observed in stimulated keratinocytes was related to 

Lyn tyrosine kinase activation, immunoprecipitations experiments were performed. 

Interestingly, Lyn tyrosine kinase is activated in cytokine-stimulated human keratinocytes 

(Figure 4d, e; S3d), reinforcing the idea that Lyn could have a key role in psoriasis 

pathogenesis. 

Several cytokines are secreted by stimulated keratinocytes in psoriasis pathogenesis 

(Chiricozzi et al, 2018). So next, we analyzed which of these cytokines were modulated in 

our mimicking psoriasis condition and a significant increase in IL-1β expression (Figure S3e) 

as well as IL-6 and IL-8 (data do not shown) expression was found. To go deeper in details, 

we decided silencing Lyn expression to determine whether this effect could impact cytokine 

production. Strikingly, the silencing of Lyn expression, but not those from Fyn protein leads to 

a decrease in protein (Figure 4f) and mRNA (Figure 4g) expression of IL-1β; suggesting that 

the role of Lyn in psoriasis development could be related to the favoring of pro-inflammatory 

cytokine secretion such as IL-1β by keratinocytes. 

Finally, we decided to analyze whether Lyn could be implicated in keratinocyte differentiation. 

Curiously, no modulation in Lyn expression was appreciated through keratinocyte 

differentiation (Figure S3f), thus Lyn would play a role only in keratinocyte proliferation. 

 



Lyn deficiency impairs the IMQ induced psoriasis-like disease phenotype 

To confirm the contribution of Lyn tyrosine kinase in psoriasis pathogenesis, we induced the 

psoriasis-like phenotype in WT and Lyn deficient (hereafter KO) mice. The absence of Lyn 

delayed the onset of the clinical score measured. Indeed, erythema, scaling and cumulative 

scores were quantified after induction of psoriasis-like phenotype (Figure 5a) and a 

significantly decrease was observed in KO mice compared to WT mice. Further, H&E 

staining of skin sections revealed a decrease in epidermal hyperplasia (Figure 5b, c) along 

with a reduction in the immune cell infiltration (Figure 5d) in KO mice skin. A more precise 

analysis showed that the significant decrease in the number of CD45.2+ immune cells into 

the Lyn KO mice skin was related to a diminution in T cell and myeloid cell populations 

(Figure 5d). Additionally, pro-inflammatory cytokine mRNA expression (Figure 5e) was 

significantly decreased in Lyn KO mice with respect to WT mice. Altogether, these data 

indicate that Lyn protein is required for the establishment of the disease to reach the maximal 

inflammation, corroborating our previous results obtained in figure 2b and c, where it is 

showed that the increase in Lyn expression is observed after day 4 of IMQ application. 

 

Lyn activation in keratinocytes is sufficient for the development of a complete 

psoriasis-like disease in mice 

As we showed that 1) Lyn activation is necessary to obtain a fully psoriasis-like phenotype, 

and 2) Lyn expression/activation can take place both in immune cells and keratinocytes, we 

decided to perform bone marrow transplantation experiments to elucidate in which cell type 

Lyn protein is responsible for the psoriasis pathogenesis. As expected, Lyn KO mice 

receiving Lyn KO bone marrow showed a significant decrease in the adapted PASI score 

(Figure 6a), compared to WT mice transplanted with WT bone marrow. After IMQ treatment, 

WT mice transplanted with Lyn KO bone marrow showed a phenotype close to WT mice 

transplanted with WT bone marrow, indicating that the presence of Lyn in immune cells is not 

related to the phenotype development. However, in Lyn KO mice reconstituted with WT bone 

marrow a partial reduction in the erythema and scaling score was observed compared to WT 

mice transplanted with WT bone marrow, phenotype that was similar to the one obtained in 

Lyn KO mice receiving Lyn KO bone marrow, suggesting that the presence of Lyn in 

keratinocytes is crucial in psoriasis pathogenesis. These results provided evidence of a 

pivotal role of the expression and activation of Lyn tyrosine kinase activation in keratinocytes 

to trigger a psoriasis-like inflammatory response in mice. 
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FIGURE LEGENDS 

 

Figure 1: Increased Lyn expression is observed in lesional skin biopsies from 

psoriasis patients. 

Western Blot analysis from skin biopsy total extracts of healthy donors (HD) as well as non-

lesional (NL) and lesional (L) psoriasis (a) and atopic dermatitis patients (c); (b, d): 

Densitometry quantification of Lyn expression (b) HD: 3 patients, L and NL: 45 psoriasis 

patients; (d) L and NL: 10 atopic dermatitis patients.  

 

Figure 2: Lyn is augmented after induction of psoriasis-like phenotype in mice. 

WT were treated daily with vehicle (Vaseline (Vasel)) or imiquimod (IMQ) cream and after 

sacrificed them back skin was harvested and total protein was prepared and Western Blot 

analyses were performed. (a):  Mice were treated for 6 days to induce the phenotype; (b): A 

kinetic assay was made to assess Lyn expression at several time points; (c): A biphasic 

model of psoriasis-like disease was obtained treating mice daily for 12 days with Vasel or 

IMQ; (d): A dermis/epidermis dissociation experiment was made (T: total skin, E: epidermis, 

D: dermis); (e): Densitometry quantification of Lyn expression (T: total skin, Ep: epidermis, 

De: dermis) (Vasel: n=2, IMQ: n=4). 

 

Figure 3: An increased Lyn expression is observed in human keratinocytes. 

Immunofluorescence approaches were used in lesional and non-lesional human skin 

biopsies from psoriasis patients. (a): Immunostaining of DAPI (blue), laminin (green, λ=498 

nm) to separate dermis and epidermis as well as Lyn (violet, λ=647 nm); (b): Total of 

analyzed patients showing in how many patients an increase in Lyn expression in lesional 

sample compared to non-lesional sample was observed; (c):  Immunostaining of DAPI 

(blue), laminin (green), CD45 (red, λ=594 nm) and Lyn (violet, λ=647 nm). HD: Healthy 

donors, NL: Non-lesional skin sample, L: Lesional skin biopsy. 

 

Figure 4: Lyn tyrosine kinase is modulated in cytokine-stimulated keratinocytes 

(a): Primary human keratinocytes were stimulated with TNF- (10 ng/ml) and IL-17A (200 

ng/ml) for 24h and Lyn expression was assessed by immunofluorescence approach; (b, c): 

Keratinocytes were stimulated at different time points. (b): Cells were lysed and Western Blot 

analyses were performed, (n=5), (c): Total RNA isolation was made and Lyn gene 

expression was determined by qPCR, (n=5). (d, e): Immunoprecipitation experiments were 

done. (d): P-Src expression was blotted after IP-Lyn plus densitometry quantification; (e): 

Lyn expression was blotted after IP-P-Src. (f, g): Normal human keratinocytes were silenced 

for Lyn (siRNA Lyn) and Fyn (siRNA Fyn) and then stimulated for 24h, siLuc was used as 



control. (f): Cells were lysed and Western Blot analyses were performed, (n=3); (g): total 

RNA isolation was made and IL-1β gene expression was determined by qPCR, (n = 3). 

AU: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01, 

T: TNF- (10 ng/ml), I: IL-17A (200 ng/ml). 

 

Figure 5: Lyn deficiency impairs the IMQ induced psoriasis-like disease phenotype 

WT and Lyn deficient mice (KO mice) were treated daily for six days with vehicle (Vaseline 

(Vasel)) or imiquimod (IMQ) cream and after sacrificed them back skin was harvested. (a): 

Severity of IMQ-induced psoriasis like phenotype represented by Erythema, Scaling and 

Cumulative score measurement; (b): Representative histological sections stained with 

haematoxylin and eosin (20X), scale bars 50 m; (c): Epidermal hyperplasia quantification 

through haematoxylin and eosin staining; (d): The number of immune cell populations was 

quantified by FACS; (e): Skin was processed for total RNA isolation and gene expression 

was determined by qPCR. (Vasel, n=6; IMQ-WT, n=12; IMQ-KO, n=16). 

AU: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01, 

*** p ≤ 0.001, **** p ≤ 0.0001, ns: non-significant. 

 

Figure 6: Lyn activation in keratinocytes is sufficient for the development of a 

complete psoriasis-like disease in mice 

WT and Lyn deficient (KO) mice were irradiated and then reconstituted with bone marrow 

from WT (WTWT and WTKO) and KO (KOKO and KOWT) mice, which were left to 

recuperate for 8 weeks. Then, the four groups of mice were treated daily for six days with 

vehicle (Vaseline (Vasel)) or imiquimod (IMQ) cream. After treatment back skin was 

harvested. (a): Severity of IMQ-induced psoriasis like phenotype represented by Erythema, 

Scaling and Cumulative score measurement, (WTWT and KOKO n=7; WTKO and 

KOWT n=6). 

AU: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, ** p ≤ 0.01, 

*** p ≤ 0.001, ns: non-significant. 
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Supplementary Figure 1: 

(a): Western Blot analysis from skin biopsy total extracts of healthy donors (HD) as well as 

non-lesional (NL) and lesional (L) psoriasis patients (b): Densitometry quantification.  

 

Supplementary Figure 2: 

(a, b): WT were treated daily for 6 days with vehicle (Vaseline (Vasel)) or imiquimod (IMQ) 

cream. (a): A cumulative score (Erythema plus Scaling) was evaluated, (b): Skin was 

processed for total RNA extraction and gene expression was determined by qPCR (Vasel 

n=3, IMQ n=4); (c, d): WT were treated daily for 8 days with vehicle (phosphate buffered 

saline, PBS) or mouse recombinant protein IL-23. (c): Increase in ear thickness at the end of 

the study (PBS n=4, IL-23 n=8); (d): Ear skin was harvested and total protein was prepared 

for Western Blot analysis; (e): WT were treated daily for 6 days with Vasel or IMQ and a 

kinetic assay was made. Skin was harvested at different time points and then processed for 

total RNA extraction. Gene expression was determined by qPCR; (f, g): A biphasic model of 

psoriasis-like disease was obtained treating mice daily for 12 days with Vasel or IMQ. (f): A 

cumulative score (Erythema plus Scaling) was evaluated, (g): Skin was processed for total 

RNA extraction and gene expression was determined by qPCR (Vasel n=3, IMQ day 2 n=2, 

IMQ day 4 n=2, IMQ days 6 n=4); (h): A dermis/epidermis dissociation experiment was made 

and then processed for total RNA extraction. Lyn gene expression was determined by qPCR 

(Vasel n=6, IMQ n=12). 

AU: arbitrary units. Errors bars represent mean ± SD. Student t test, * p ≤ 0.05, **** p ≤ 

0.0001. 

 

Supplementary Figure 3: 

(a): Primary human keratinocytes were stimulated with TNF- (10 ng/ml) and IL-17A (200 

ng/ml) for 24h and a fractionation experiment was made; (b, c, e): Keratinocytes were 

stimulated at different time points. (b): Total RNA isolation was made and gene expression 

was determined by qPCR, (n=5); (c, e): Cells were lysed and Western Blot analyses were 

performed, (n=5); (d): Input from Figure 4d, e; (f): Differentiation process was induced in 

normal human keratinocytes though culture in high concentration of calcium chloride. Then 

cells were lysed and Western Blot analyses were performed, (n=2).    

AU: arbitrary units. Errors bars represent mean ± SD. Student t test, ns: non-significant.      T: 

TNF- (10 ng/ml), I: IL-17A (200 ng/ml). 
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Role of the Lyn tyrosine kinase in cell death 

Mitochondria produce most of the cellular energy ATP that cells need for several 

reactions through OXPHOX pathway, thus their critical role in both health and disease 

has been hugely documented. In fact, mitochondrial dysfunction has been related to 

many types of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s 

disease and Ischemic stroke (Ghasemi et al, 2018; Akbar et al, 2016), and its 

physiological functions include processes such as pyruvate conversion to other 

metabolites through the Krebs cycle, urea metabolism and steroid synthesis pathways 

as well as regulation of the membrane potential and the programed cell death signaling 

called apoptosis (Pickles et al, 2018).  

Two signaling pathways have been linked to apoptosis: the extrinsic and the 

intrinsic pathways. While the extrinsic pathway is produced by the stimulation of cell 

death receptors, the intrinsic pathway is mediated by extracellular and developmental 

stimulus leading to MOMP, release of apoptogenic proteins and caspase activation 

(Kapoor et al, 2013). All these processes are tightly regulated by the members of the 

Bcl-2 family, which are divided in anti-apoptotic and pro-apoptotic members (Green and 

Llambi, 2015); being the pro-apoptotic members, such as the BH-3 only protein Bim, 

implicated in the induction of MOMP via Bax/Bak activation once “stress signaling” are 

detected in cells (Shukla et al, 2017); leading to apoptosis. Therefore, an unbalance 

driving to an increase in the anti-apoptotic members or to a decrease in the pro-

apoptotic factors is one of the main causes of deregulated mitochondrial apoptosis and 

has been related with the survival of different cancer cells (Yip and Reed, 2008), being 

considered evasion of apoptosis as a hallmark of cancer development (Hanahan and 

Weinberg, 2011). Indeed, downregulation of Bim has been linked to defects in 

apoptotic pathways driving in tumor growth and conferring resistance to several cancer 

drugs (Chen et al, 2014); which has proposed Bim as a targeted chemotherapy (Shukla 

et al, 2017). 

It has been demonstrated that the overexpression and activity of the Lyn protein 

tyrosine kinase are associated to imatinib resistance in some CML cell lines and 

patients (Kimura et al, 2005; Dai et al, 2004; Donato et al, 2003). Interestingly, my 

thesis laboratory previously shown that cLyn had an anti-apoptotic role through IgM 

engagement to BCR in immature B cells (Luciano et al, 2003) and after imatinib 

treatment in CML cells (Gamas et al, 2009). Thus, the hypothesis of our work was that 

the apoptotic suppressor effects evidenced by cLyn can be explained by its interaction 

with the Bcl-2 pro-apoptotic member Bim. In fact, we demonstrated that Lyn protein 

tyrosine kinase is enabled to interact with BimEl and BimL leading to an impairment of 
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the pro-apoptotic function of Bim. Indeed, we showed that this interaction seems 

specific for Lyn, taking in consideration that no interaction was evidenced with Fyn, 

another member of SFK for which anti-apoptotic effects have been also reported (Ricci 

et al, 2001). However, it is worth noting that SFK are composed of eight members, thus 

it would be interesting to elucidate whether other members of this family are able to 

interact with Bim or other BH-3 only proteins, leading to the same outcome.  

Bim is one of the most potent inducers of apoptotic pathways directly activating 

Bax/Bak-mediated cytochrome c release and initiating the apoptotic cascade 

(Doerflinger et al, 2015), thus Bim expression and stability processes are strictly 

regulated (Shukla et al, 2017) to prevent cells to undergo apoptosis. One of these Bim 

regulatory mechanisms is the post-translational regulation by phosphorylation. In fact, it 

has been demonstrated that ERK1/2-mediated phosphorylation on Ser residues 

produces Bim ubiquitylation leading to its degradation by the proteasome, reducing the 

interaction with pro-survival or multi-domains pro-apoptotic members (Wiggins et al, 

2011; Luciano et al, 2003); thus, negatively regulating the pro-apoptotic function of 

Bim. Here, we reported for the first time in the literature Bim phosphorylation process 

on Tyr residues. Indeed, only Bim phosphorylation on Ser and Thr residues have been 

previously described, but in this study we demonstrated that Lyn can phosphorylate 

Bim on Tyr residues impairing its pro-apoptotic function. Two tyrosine residues were 

identified as target of cLyn in Bim protein and this phosphorylation process was 

abrogated either in the presence of an inactive form of cLyn or Lyn inhibitors; indicating 

that Bim tyrosine phosphorylation was a Lyn dependent process. However, for other 

BH3-only protein tyrosine phosphorylation has been already seen. In fact, PUMA can 

be tyrosine phosphorylated by HER2 in breast cancer cells leading to a destabilization 

expression of the protein (Carpenter et al, 2013), which could be explain the HER2-

mediated growth and survival of these cancer cells, and a tyrosine phosphorylation 

process is needed in Bak inactivation to avoid apoptotic cascade (Fox et al, 2010), 

although the tyrosine kinase implicated in this event is still unknown. Therefore, it will 

be interesting to elucidate whether Lyn or other member of the SFK could be involved 

in Bak tyrosine phosphorylation process or on the tyrosine phosphorylation from other 

BH3-only proteins. In fact, it was already demonstrated that Src can inhibit apoptosis 

through indirectly induction of the BH-3 only Bik protein degradation (Lopez et al, 

2012).  

Lyn WT is able to phosphorylate BimEL inhibiting Bim pro-apoptotic function, but 

at much lower levels than cLyn. Moreover, a mutated full-length form of Lyn in its 

anchored-lipid regions has the same effect of cLyn inhibiting Bim pro-apoptotic 

function, which indicates that the cytosolic localization of Lyn has the key role acting as 
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suppressor of the apoptosis. However, the overexpression of a mutated full-length form 

of Src in its UD significantly reduces the cell invasiveness capacity compared to the 

overexpression of the WT form of this protein (Arbesu et al, 2017), demonstrating that 

in this case the WT form has a protective role, although it is noteworthy that the UD of 

each SFK is sensitive to specific input signals. 

In our study we showed that Bim is more stable once it is phosphorylated by Lyn, 

avoiding apoptosis. However, quite of contrary to our results in B cells isolated from 

Lyn deficient mice an increase in Bim expression is observed (Gross et al, 2011), and 

stabilization of Bim expression has been related to an increase in its pro-apoptotic 

function (Luciano et al, 2003). Thus, this result indicates that phosphorylation status is 

the key point impairing pro-apoptotic function though, maybe, strong interaction with 

anti-apoptotic Bcl-2 family members such as Bcl-XL. Next, more experiments are 

needed to explore how tyrosine phosphorylation can stabilize Bim and also is other 

survival members of Bcl-2 family such as Mcl-1 or Bcl-2 can be involved in apoptosis 

protection.  

Due to the strong capacity of Bim inducing cell death it is not possible to analyze 

the effect of its overexpression in mice (cells would undergo quickly to apoptosis and 

mice phenotype will be totally lethal) to then analyzed the interaction with cLyn in 

preventing apoptosis, reason for which a phosphomimetic construction was employed 

in our study. However, to understand the physiological role of this interaction in vivo, a 

mouse model is totally required. Thus, a knock-in mouse model of this protein is 

required, although taking in consideration that two Tyr residues were identified in our 

work, a double knock-in mouse model will be necessary to real mimic the double 

tyrosine phosphorylation in Bim protein by Lyn, preventing apoptosis. However, 

another experiment to confirm our results would be working with cellular models where 

Bim protein is not expressed and to analyze if after cell death induction cLyn 

overexpression in these cells could impair apoptosis, albeit a question would be 

present related whether the absence of Bim in these cells would allow a normal 

apoptosis process. 

Altogether these results showed a new mechanism involved in the negative 

regulation of apoptosis by Lyn (Figure 23), evidencing an interaction between a 

member of the SFK and another one of the Bcl-2 family through direct tyrosine 

phosphorylation, indicating a new explanation related with chemoresistance, which 

could be an important target in the development of new treatment in liquid but also in 

solid cancers.    
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Figure 23: Recapitulative schema of the anti-apoptotic role of Lyn 

Several stress signals activate Bim, which immediately bind to pro-survival members 
such as Bcl-2, Mcl-1, Bcl-XL leading to Bax/Bak oligomerization, MOMP and release of 
cytochrome C to initiate the cell death process by apoptosis. However, in these 
conditions Lyn tyrosine kinase can be cleaved by apoptotic caspases impairing the pro-
apoptotic function of Bim and preventing apoptosis. 
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Role of pro-inflammatory caspases in Psoriasis 

Caspases are proteases involved in the propagation of signaling events leading 

to cell death either by apoptosis (apoptotic caspases) or pyroptosis (pro-inflammatory 

caspases). Specifically, pro-inflammatory caspases are implicated in the maturation 

and activation of IL-18 and IL-1β pro-inflammatory cytokines, leading to a lytic cell 

death and the recruitment of monocytes/macrophages to the inflammation site 

(Ramirez and Salvesen, 2018). However, it is noteworthy that cell death is not 

absolutely required for the caspase-mediated IL-1β and IL-18 activation and secretion 

(Conos et al, 2016), although the mechanism through which these cytokines are 

released remains unknown. Two cellular pathways have been described for pro-

inflammatory caspase activation. The first one, known as canonical pathway, works in 

the recognition of PAMP through TLR leading to the activation of caspase 1 in an 

inflammasome-dependent manner, while the second one, called non-canonical 

pathway, produce the activation of caspase 11 (caspase 4 and 5) and integrates 

cytoplasmic pathogen recognition in an inflammasome-independent manner (Gonzalez 

Ramirez et al, 2018). Nevertheless, activation of inflammatory caspases has not been 

only related to infections. In fact, an important role of these proteases has been 

evidenced in sterile inflammation, showing a crucial function in intestinal inflammation 

(Dupaul-Chicoine et al, 2010) and metabolic disorders (Wen et al, 2012). Moreover, 

although some aspects about their role in skin inflammation and particularly psoriasis 

have been elucidated, their implication in this disease remains controversial. Indeed, 

activation of caspase 1 (Marchetti et al, 2009) and caspase 5 expression (Salskov-

Iversen et al, 2011) have been reported in lesional psoriasis skin; but opposite results 

have been described in the literature regarding the impact of pro-inflammatory 

caspases in psoriasis pathogenesis.  

In our work, we showed in three different models of psoriasis-like disease that the 

invalidation or the pharmacology inhibition of pro-inflammatory caspases leads to a 

significant reduction in the induced inflammatory skin phenotype, demonstrating that 

activation of pro-inflammatory caspases is involved in the development of psoriasis 

pathogenesis. However, similar and totally different results have been previously 

obtained. 

First, a study where caspase 1 deficient mice (after demonstrated that were also 

deficient for caspase 11) were treated with IL-17 and IL-22 intradermal injections, a 

significant decrease in the induced psoriasis-like disease was achieved, outcome that 

was also observed when the same mice were treated with IMQ (Cho et al, 2012), 

demonstrating that signaling through Th17 cell activation produces IL-1β secretion in a 
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NLRP-3-Caspase-1 activation pathway. However, a second study evidenced that 

although the deficiency of IL-1α, IL-1β and IL-1R1 was enough to decrease the IMQ-

induced psoriasis-like phenotype, the invalidation of caspase 1 did not produce the 

rescue of the phenotype (Rabeony et al, 2015). Nevertheless, it is worth noting that the 

fact that IL-1α and IL-1β deficiency has a strong impact on psoriasis development 

indicates that IL-1 family plays an important role in this disease, suggesting an 

indirectly role of pro-inflammatory caspases taking in consideration that IL-1β 

maturation and secretion is dependent on these caspases, although it should be noted 

that other proteases present in the immune cell infiltration of psoriasis disease (Clancy 

et al, 2017) and caspase 8 (Gurung and Kanneganti, 2015) can cleave this cytokine. 

Moreover, here we must highlight that although a redundant role for IL-1α and IL-1β in 

psoriasis development has been previously described (Rabeony et al, 2015), in our 

study only a significant decrease in IL-1β protein expression was appreciated, 

confirming the role of pro-inflammatory caspases in the development of the skin 

phenotype.    

Furthermore, in another study with chronic proliferative dermatitis mutation 

(cpdm) mice; resembling atopic dermatitis and psoriasis diseases in humans, the 

crossing with caspase 1/11 deficient mice leads to a significant decrease in the skin 

pathology (Douglas et al, 2015). Near to the clinical endpoint to sacrifice cpdm mice, in 

cpdm crossed with caspase 1/11 deficient mice, no lesions and no epidermal 

hyperplasia were observed, demonstrating the main role of pro-inflammatory caspases 

in the induction of dermatitis in these mice and the function of inflammasome activation 

as an initiating signal in cpdm mice. In general, in cpdm mice crossed with pro-

inflammatory caspase deficient mice, a delay in the appearance of dermatitis was 

seen, which is congruent with the delay observed in our LynΔN dKO mice, showing the 

improvement in psoriasis-like phenotype through the invalidation of pro-inflammatory 

caspases. It is worth to note that while genetic ablation of TNFR1 from cpdm mice 

produced a complete rescue of the phenotype, the generation of cpdm IL-1R1 deficient 

mice showed a delay in the inflammation symptoms (Rickard et al, 2014), 

demonstrating that while signaling through TNFR1 is one of the principal pathway to 

induce skin inflammation, signaling through IL1R is key to maintain and exacerbate the 

disease. Previously, our group established that crossing of LynΔN mice with TNFR1 

deficient mice completely rescue the psoriasis-like phenotype (Marchetti et al, 2009), 

thus the delay observed in the onset of the inflammatory phenotype in LynΔN dKO 

mice and in the IMQ and IL-23 treated dKO mice in our study prompted us to 

hypothesize that the invalidation of pro-inflammatory caspases leads to a decrease in 

IL-18 and IL-1β maturation and secretion. Therefore, the signaling through IL1R1 is 
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reduced in the psoriasis-like phenotype, leading to a significant diminution in general 

inflammation. Indeed, this hypothesis is reinforced by the fact that IL-1R enhances the 

initiated IMQ-induced chemokine expression, being a crucial factor in the recruitment of 

IL-17-producing γδ T cells (Cai et al, 2011), and in IL1R1 deficient mice this response 

is totally abolished (Alvarez and Jensen, 2016; Uribe-Herranz et al, 2013). Moreover, in 

IL1R deficient mice and in caspase 1 and caspase 11 deficient mice, a significant 

decrease in the numbers of tumors and delayed tumor incidence after the induction of 

epithelial skin carcinogenesis was observed compared to WT mice, demonstrating that 

tumor formation and general inflammation were associated to IL-1 signaling (Drexler et 

al, 2012).  

It has been evidenced that type I IFN production is a central point in the negative 

regulation of caspase-1 activation and IL-1β secretion (Guarda et al, 2011), leading to 

a decrease in NLRP-3 inflammasome activation and to an increase in IL-10 production 

via STAT1. In our study, we checked neither type I IFN production nor IL-10 secretion, 

but this could indirectly explain the reduced inflammation phenotype observed in 

caspase 1/11 deficient mice. In fact, in DNA virus infection models with caspase 1 

deficient macrophages, an increase in type I IFN has been found, showing that 

deficiency in inflammasome components resulted in a strong protection against DNA 

virus infection (Wang et al, 2017c). Additionally, our levels of psoriasis-like phenotype 

inhibition in the absence of pro-inflammatory caspases are consistent with other 

studies where other important components for psoriasis disease development, like T 

cells, are deleted (van der Fits et al, 2009). 

Caspase 1 is activated and processed through inflammasome complex such as 

NLRP-3 inflammasome. However, it has been demonstrated that deficiency in NLRP3 

inflammasome has no impact in the rescue of the IMQ-induced psoriasis-like 

phenotype (Rabeony et al, 2015), which could be explained either by the fact that other 

inflammasome such as NLRP-1, NLRP-6 and AIM-2 could be involved in the activation 

of caspases 1 or by the role of caspase 11 in this disease taking in consideration that 

this specific caspase does not require inflammasome-dependent activation. In our 

study we showed that NLRP-3, NLRP-1 and AIM-2 inflammasomes are significantly 

reduced and although all of them are upstream caspase activation, an explanation for 

that might be the significant decrease obtained in general inflammation from dKO mice 

compared to WT mice. Moreover, it will be interesting to determine the specific role of 

each pro-inflammatory caspase in psoriasis development through induction of 

psoriasis-like phenotype either in caspase 1 deficient mice or caspase 11 deficient 

mice.   
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Although it was previously demonstrated that cleaved-from of caspase-5 is 

present in lesional skin biopsies from one psoriasis patient (Zwicker et al, 2017), here 

we confirmed with a huge amount of lesional and non-lesional biopsies from psoriasis 

patients that cleaved forms of caspase-1, 4 and 5 are found in all lesional samples. 

Moreover, cleaved forms of proinflammatory caspases were associated with an 

increase in the NLRP-3 and AIM-2 inflammasomes, found in the same assessed 

patients. In fact, AIM-2 inflammasome has been observed in psoriasis keratinocytes 

related to an increase in cytosolic DNA leading to an AIM-2-dependent IL-1β 

production (Dombrowski et al, 2011).   

Psoriasis is a chronic inflammatory immune-mediated skin disease with an 

unpredictable course (van de Kerkhof, 2018), which affects around 2-3% of worldwide 

population (Danielsen et al, 2013). At present, despite all therapies developed to cure 

this disease, no treatment is effective to guarantee the absolute remission of psoriasis 

plaques, but rather the palliative treatment of the main clinical symptoms of the disease 

has been achieved. And although the biological drugs have represented a new target 

more specific for the cure of the disease (Kim et al, 2012), various adverse events have 

occurred in the treated patients and no long-term treatments have been established. 

Caspase inhibitors have been evaluated in clinical trials, specifically with the small 

molecule inhibitors VX-740 and VX-765, also known as Pralnacasan and Belnacasan, 

respectively; which are potent and selective inhibitors of caspase 1 and caspase 4 

(Vertex Pharmaceuticals). Psoriasis patients were treated with Belnacasan, which 

progressed into a phase II clinical trial (http://clinicaltrial.gov Identifier: NCT00205465) 

and although in mouse models of skin inflammation the compound showed a significant 

reduction in disease severity and in IL-1β and IL-18 secretion (Wannamaker et al, 

2007), in treated patients the objective response was not achieved; which could be 

explained because this compound did not affect the secretion of IL-6, IL-8 and TNF-α. 

In our study, we co-treated mice with IMQ and the selective caspase-1 inhibitor AC-

YVAD-CMK and a significant decrease in the erythema, scaling and pro-inflammatory 

cytokine production was found, reinforcing the idea that pharmacological inhibition of 

pro-inflammatory caspases could be a potential target to treat psoriasis disease. 

Indeed in a model of acute gastric injury, mice were pre-treated with AC-YVAD-CMK 

and an inhibition in the production of IL-1β was observed leading to the protection of 

these mice, which was correlated with the impairment of NLRP-3 inflammasome 

activity (Zhang et al, 2016a). Moreover, like in our AC-YVAD-CMK treated mice, Zhang 

et al found a strong diminution in other pro-inflammatory cytokines like IL-6, IL-8 and 

TNF-α. Therefore, it would be interesting to analyze the therapeutical effect of AC-

YVAD-CMK compound. In fact, in our study we administered this drug concomitantly 
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with IMQ, but future experiments should be planned to decipher the role of this drug 

once psoriasis plaques have been developed and also to test this compound not only 

by systemic administration, but through subcutaneous injections and topical 

application. Furthermore, actually no only caspase inhibitors are evaluated as potential 

drugs to treat psoriasis disease, but IL-1, IL-18 and inflammasome inhibition could be 

possible targets to treat inflammatory skin diseases (Fenini et al, 2017). In fact, 

psoriasis patients were treated in an open-label clinical trial with the fully human 

monoclonal antibody against IL-1α, MABp1, and an encouraging clinical response was 

achieved that must be improved with an increase in dose/frequency (Coleman et al, 

2015). Additionally, another compound that inhibits NF-κB pathway, leading to a 

significant decrease in the NLRP-3 inflammasome pathway, was able to decrease 

IMQ-induced psoriasis-like phenotype (Irrera et al, 2017) and a significant reduction in 

the secretion of several pro-inflammatory cytokines was observed.  

In our work, we showed that keratinocytes are primed to secrete IL-1β once 

inflammasomes are activated into these cells. Moreover, we showed that an activation 

of pro-inflammatory caspases is observed after stimulation with two of the principal pro-

inflammatory cytokines involved in psoriasis pathogenesis. Recently, it has been 

demonstrated that the stimulation of keratinocytes only with TNF-α or with IL-17A did 

not produce caspase activation (Zwicker et al, 2017), but it is necessary the 

combination of at least two pro-inflammatory cytokines (Cho et al, 2012). We 

stimulated keratinocytes with a combined treatment of TNF-α and IL-17, but future 

approaches are required to analyze the activation of pro-inflammatory caspases in 

presence of several pro-inflammatory cytokines (IFN-γ, TNF-α, IL-17 and IL-22), which 

would be closely related to what happens in the site of the disease, where 

keratinocytes are in direct contact with a huge amount of pro-inflammatory cytokines 

secreted from the recruited immune cells and from themselves.  

Our data showing that human keratinocytes are primed to secrete IL-1β through 

the activation of inflammasome and caspase 5, reinforcing the idea that keratinocytes 

are immunological active cells. Therefore, we decided to analyze whether the impact of 

pro-inflammatory caspases in the development of psoriasis-like disease observed in 

our study was more dependent on their activation either in keratinocytes or in the 

recruited immune cells. We demonstrated that activation of pro-inflammatory caspases 

in immune cells is sufficient to induce a fully inflammatory response, because of a 

significant reduction in psoriasis-like phenotype was observed when pro-inflammatory 

caspases were not present in these cells, phenotype that is quite similar to that 

obtained in mice either when T cells are not present through the induction of psoriasis-

like disease in Rag deficient mice (Hedrick et al, 2009) or when mice are pre-treated 
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with anti-CD3 depleting antibodies (van der Fits et al, 2009). Thus, next it will be 

captivating determine in which specific immune cell population from the IMQ model 

caspase activation is produced. However, although no impact of caspase invalidation in 

keratinocytes was associated to an improvement in psoriasis development, it is worth 

noting that it was recently demonstrated that expression of inflammasome proteins in 

murine keratinocytes is very low or even undetectable (Sand et al, 2018), suggesting 

that immune functions in murine psoriasis-like phenotype is carried out by professional 

immune cells.      

Altogether, our results confirm that pro-inflammatory caspases are involved in 

psoriasis pathogenesis and their absence or inhibition leads to a delay in psoriasis 

development (Figure 24), reinforcing the idea that control of pro-inflammatory caspase 

activation and IL-1β maturation and secretion is essential for the improvement of 

chronic inflammatory disease. Nevertheless, it will be interesting to determine the 

implication of pro-inflammatory caspases in other immune-mediated skin pathologies. 
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Figure 24: Recapitulative schema of the role of pro-inflammatory caspases in psoriasis 

Activation of pro-inflammatory caspases in immune cells is sufficient to induce a 
psoriasis-like phenotype. However, the invalidation or the pharmacological inhibition of 
these pro-inflammatory caspases leads to a reduced psoriasis-like disease. 
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Role of Lyn tyrosine kinase in Psoriasis development 

Lyn protein tyrosine kinase has been well characterized in the context of B 

lymphocyte function regulation and myeloid cell homeostasis (Scapini et al, 2009; Xu et 

al, 2005), presenting a positive and negative role through the activation or inhibition by 

phosphorylation of down-stream pathways. In fact, deregulation in Lyn expression and 

activity has been linked to several hematological malignancies, including AML, CML, B-

ALL and B-CLL (Ingley, 2012). However, published studies in the last years have 

demonstrated that this tyrosine kinase can also have a pivotal function in other non-

hematopoietic tissues, as the oncogenic role that has been evidenced in several solid 

cancers such as prostate, basal breast, colon cancer and glioblastoma, among others 

(Ingley, 2012). Thus, several are the signaling pathways regulated by Lyn after 

receptors or integrin-initiated networks, which has led to address the role of this 

tyrosine kinase both in homeostasis and in conditions of malignancy.  

Notwithstanding, Lyn deregulation has not only been related with cancer 

development but also with autoimmune diseases. In fact, Lyn functions have been 

described in allergy and asthma (Wang et al, 2017b). The control of innate immune 

signaling by Lyn along the TLR-MyD88 pathways in dendritic cells and B cells has 

been linked to inhibition of autoimmunity (Ban et al, 2016; Lamagna et al, 2014) and 

Lyn deficient mice develop plasma cell accumulation, B cell hyperactivation, 

myeloproliferation and glomerulonephritis, leading to an autoimmune syndrome 

resembling human SLE (Gutierrez et al, 2010). Moreover, an increase in the activation 

of the SFK has been observed in lesional skin biopsies from psoriasis patients (Ayli et 

al, 2008), and an augmentation in Lyn mRNA expression has been observed in lesional 

skin from psoriasis patients (GEO Data). Indeed, the overexpression of cLyn in mice 

leads to the development of a psoriasis-like phenotype (Marchetti et al, 2009), 

associated to an epidermal hyperplasia, increase in the immune cell infiltration and 

expression of several pro-inflammatory cytokines, indicating an important role of Lyn 

tyrosine kinase in psoriasis development. 

In the third part of my thesis work, we demonstrated that Lyn could have a crucial 

role in psoriasis development. An increase in Lyn mRNA and protein expression as 

well as in its activity was shown in lesional human skin biopsies and in psoriasis-like 

treated mouse skin compared to non-lesional human samples and control mouse skin, 

respectively. It is worth noting that although an activation of SFK has been observed in 

lesional skin (Ayli et al, 2008), in our study no modulation in other SFK members such 

as the Src-related Src and Fyn and the Lyn-related Lck and Hck was appreciated in 

psoriasis skin biopsies, indicating that Lyn could be the only SFK related with psoriasis 
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pathogenesis. However, to confirm this hypothesis some experiments are needed to 

determine the expression of Yes, Fgr and Blk; SFK members that were not analyzed in 

this study and of which is known that they are expressed in epithelial cells. In fact, Yes 

expression has been observed in melanocytes and it constitutes a pivotal factor in 

enhancing malignant properties of melanoma cells (Hamamura et al, 2011). Moreover, 

the anticancer property of Bakuchiol, a natural drug used for the treatment of skin 

cancer, is by targeting Blk in the EGF-induced skin carcinogenesis (Kim et al, 2016b). 

Surprisingly, our study elucidated that the increase in Lyn protein expression was 

specific of psoriasis because no Lyn modulation was observed in atopic dermatitis 

patients, a disease that although the molecular mechanism of pathogenicity is different 

from psoriasis; the patient clinical pictures are quite similar (Gavrilova, 2018). 

It is noteworthy that although the basis of the project was that the overexpression 

of cLyn in mice leads to the development of a psoriasis-like phenotype (Marchetti et al, 

2009), in our study no caspase-cleavage of Lyn was found either in both models of 

psoriasis-like phenotype (IMQ and IL-23) or in human skin biopsies. In fact, Lyn 

deficient mice (Gutierrez et al, 2010) or mice with a sustained activation of Lyn (Hibbs 

et al, 2002) are both involved with autoimmune disease development, but no defect in 

the skin have been previously reported. Notwithstanding, the cleaved-form of Lyn can 

be present in our study, but it could be quickly degraded or to be present in small 

proportions, that are not detected by our WB conditions, but with an important function 

in the disease. The cleavage of Lyn has been shown in presence of pro-apoptotic 

caspases, which, with the exception of caspase 7 (Marchetti et al, 2009), are not 

activated in lesional psoriasis skin (data not shown). However, pro-inflammatory 

caspases are increased and activated in lesional skin biopsies, but Lyn is not a 

substrate of this kind of caspases. Nevertheless, other proteases such as calpains 

(Hossain et al, 2013) have been demonstrated that can cleave SFK in their N-terminal 

UD, which could justify Lyn cleavage in inflammatory conditions. Nonetheless, lipid 

binding regions different from those implicated in myristoylation and palmitoylation 

processes have been found in SFK (Perez et al, 2013), being implicated in the 

regulation of these proteins. Indeed, lipid binding to the unique lipid binding regions 

(ULBR) in Src protein modifies the protein conferring access to new substrates without 

to be detached from the plasma membrane. Thus, one hypothesis to explain the role of 

the WT form of Lyn in psoriasis could be though lipid modifications in the ULBR of the 

protein that allows interact with new substrates in inflammatory conditions. Moreover, 

immunofluorescence approaches in psoriasis patients suggest an intracellular 

localization of Lyn in the epidermis, thus another hypothesis could be that the WT form 

of Lyn is delocalized in inflammatory conditions producing a different regulation 
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process and interacting with different substrates, which would indicate that the 

importance of Lyn in psoriasis is given by its cytosolic localization.        

Lyn mRNA and protein expression were not only found increased in the induced 

psoriasis-like disease but also in stable phase of this phenotype, indicating that Lyn 

could be required for the maintaining of psoriasis pathogenesis, process that is 

mediated by an intense dialogue between the immune cell infiltration and keratinocytes 

through the release of pro-inflammatory cytokines (Ayala-Fontanez et al, 2016). In fact, 

our mouse dermis/epidermis experiments and our immunofluorescence approaches 

with patient biopsies demonstrated that Lyn is increased in both compartments of the 

skin, indicating a regulation of its expression in keratinocytes and a huge number of 

infiltrating Lyn positive immune cells. However, it will be interesting to know in what 

specific immune cell population Lyn expression would be increased and to confirm its 

modulation in keratinocytes. To do that, co-staining experiments analyzing Lyn 

expression alongside keratinocytes, fibroblasts and immune cells markers would be 

done by FACS after IMQ-induced psoriasis-like phenotype in mice or from fresh 

lesional and non-lesional biopsies obtained from psoriasis patients. Among the different 

immune cell population special emphasis should be made on macrophages, 

neutrophils and dendritic cells, which are the most important Lyn positive immune cells 

found in psoriasis skin. 

To go deeper in details about the Lyn modulation in keratinocytes we next 

performed experiments with normal human keratinocytes, which were stimulated with 

TNF-α and IL-17A, two of the principal cytokines implicated in psoriasis pathogenesis 

(Masalha et al, 2018). A significant increase in Lyn mRNA and protein expression was 

seen in these cells confirming previous results observed with total skin extracts 

obtained from psoriasis patients and after psoriasis-like induction in mice. No 

expression of Lck and Hck was detected in these cells (data not shown), but no 

modulation in Src and Fyn was not observed either. However, it was possible 

determine by immunoprecipitations experiments an increase in Lyn activation, although 

to confirm that Lyn is the only SFK activated on stimulated keratinocytes in mimicking 

psoriasis conditions, other experiments to assess Src and Fyn activation are required. 

Further, it would be important to determine Lyn modulation in keratinocytes stimulated 

with several cytokines at the same time such as IFN-α, IFN-γ, IL-22 in addition to TNF-

α and IL-17A, with the goal to be in conditions more similar to those of the real disease 

and perhaps a more important modulation in Lyn expression and activation could be 

found. Moreover, Lyn modulation can be evaluated in co-culture experiments between 

activated T-cells or dendritic cells with keratinocytes to ensure that pro-inflammatory 

cytokines are going to be released by the activated cells. 
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Several cytokines such as IL-6, IL-8 and IL-1β are secreted by stimulated 

keratinocytes (Harden et al, 2015). Thus, next we wanted to know whether the 

modulation of Lyn in stimulated keratinocytes could be related with a modulation in the 

expression of these cytokines. Strikingly, the increase in Lyn expression at different 

time points of stimulation was associated to an increase in IL-1β expression and, 

surprisingly, Lyn silencing led to a marked decrease in IL-1β levels that was not 

observed when other SFK, like Fyn, was silenced, suggesting that the positive role in 

psoriasis disease could be linked to enhance pro-inflammatory cytokine release by 

keratinocytes. However, more experiments are required to assess the effect of Lyn on 

the rest of keratinocyte-secreted cytokines. Moreover, a more generalized study 

analyzing several cytokines at the same time through the Cytokine Array Method would 

be performed with supernatant obtained from cytokine-stimulated normal human 

keratinocytes in the presence or absence of Lyn tyrosine kinase.     

It has been demonstrated that IL-1β leading to the translocation of p65 subunit 

into the nucleus driving in the activation of NF-κB signaling pathway (Wuertz et al, 

2011). In fact, it is well known that NF-κB pathway is implicated in the regulation of IL-

1β production and moreover, it has been reported an activation of this pathway in 

lesional biopsies from psoriasis patients (Goldminz et al, 2013). Nevertheless, cLyn 

mice have an inhibition in the NF-κB, but increased levels of IL-1β are observed 

(Marchetti et al, 2009). Therefore, it would be interesting to confirm the effect of Lyn 

modulation in NF-κB pathway to elucidate whether an impact of Lyn on NF-κB pathway 

could explain the direct relationship between the silencing of Lyn and the significant 

decrease in IL-1β pro-inflammatory cytokine levels, taking in consideration that it was 

also described that NF-κB might have a negative regulator role on IL-1β secretion 

(Greten et al, 2007).  

Once we demonstrated that Lyn was modulated in psoriasis skin, we wanted to 

know if Lyn was implicated in the development and pathogenesis of this skin pathology. 

Strikingly, the IMQ-induced psoriasis-like phenotype was impaired in Lyn deficient 

mice, indicating a pivotal role of this tyrosine kinase in the pathogenicity of psoriasis 

that was associated with a significant decrease in the recruitment of myeloid cells and 

the pro-inflammatory cytokine production compared to WT mice. It is worth noting that 

although Lyn deficient and WT mice developed a similar phenotype in the first days of 

IMQ application, after the day three the psoriasis-like phenotype was delayed in Lyn 

deficient mice, which is the time point were Lyn expression and activity begin to be 

increased in the induced psoriasis-like disease. Next, our preliminary results of 

adoptive transfer experiments allowed us to determine that the absence of Lyn in 

keratinocytes and not in the recruited immune cells seems to be essential in the 
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impairment of psoriasis-like phenotype, although more experiments are needed to 

confirm this outcome. One hypothesis to explain this could be that Lyn is implicated in 

the secretome of activated keratinocytes leading to a positive feedback loop, thus Lyn 

deficiency impairs the secretion pattern decreasing the feedback loop and the 

continuous proliferation of keratinocytes. Further, to validate this hypothesis a 

conditional knock-in K14 mouse model (Lyn deficiency only in keratinocytes) might be 

developed.  

Albeit our preliminary results indicate that Lyn deficiency in immune cells is not 

involved in psoriasis phenotype development, it would be interesting to develop 

different mouse models to determine the impact of Lyn deficiency in psoriasis 

development only in B cells, in macrophages, in dendritic cells or in granulocytes; 

which are the most important Lyn positive immune cells recruited to the skin. For 

example, quite the contrary to our results, it has been reported that CD19 deficient 

mice develop a stronger psoriasis-like disease compared to WT mice (Yanaba et al, 

2013), which is explained by the loss of IL-10-producing regulatory B cells in the skin. 

Therefore, although in a general context of Lyn deficiency it resembles that the 

presence of Lyn is immune cells is not important in psoriasis development; perhaps its 

presence in a specific type of these cells would be more important than in another one. 

It was previously described that no real cure exists for psoriasis disease, only 

palliative treatments have been obtained, which has led to outbreaks of the disease 

and to the development of resistance in treated patients. Thus, although a large 

numbers of biological drugs and small inhibitor molecules are in the clinic or under 

development (Greb et al, 2016), new targets are still required for the treatment 

development of this immune-mediated disease. In this context our results confirm the 

idea that Lyn could be a potential target for psoriasis treatment. Dasatinib is a 

reversible BCR/Abl and SFK inhibitor that has been approved in the treatment of CML 

and ALL patients (Li and Zhang, 2016) and though its uses has been principally 

focused in blood malignancies, IMQ-treated mice could be treated with this drug at the 

same concentration that it is employed in patients to assess the impact of the 

pharmacological inhibition of Lyn in psoriasis development. However, dasatinib is a 

pan-SFK inhibitor, thus more specific Lyn inhibitors such as saracatinib (McGivern et 

al, 2018; Harrach et al, 2017) and bafetinib (Zhang et al, 2016c) might be also 

evaluated in IMQ-treated mice.    

  Altogether, our results confirm that Lyn protein tyrosine kinase is implicated in 

psoriasis pathogenesis and their absence leads to impairment in the induced psoriasis-

like phenotype (Figure 25), enhancing a new function of Lyn in the context of psoriasis 
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and more specifically about its role in keratinocytes; validating this protein as a 

potential target in the treatment of psoriasis.   

    

    

Figure 25: Recapitulative schema of the role of Lyn tyrosine kinase in psoriasis 

In normal skin Lyn is expressed in keratinocytes and resident immune cells. When 
psoriasis is developed an increase in Lyn expression is observed in both compartments, 
linked to an increase in its expression in recruited immune cells and keratinocytes. 
However, an invalidation of Lyn impairs the induced psoriasis-like phenotype. 
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One of the principal characteristics of cancer cells is their resistance to cell death 

by apoptosis, producing a chemoresistance to different drugs. Here, we determined 

that Lyn tyrosine kinase, and particularly its cytosolic form, acts as an apoptosis 

suppressor through impairment of the pro-apoptotic function of the BH-3 only member, 

Bim. This study represents the first approach directly linking the one member of the 

SFK and another one of the Bcl-2 family in the tumor resistance to apoptosis. 

On the other hand, although pro-inflammatory caspases were previously 

associated to psoriasis pathogenesis, here we demonstrated that pro-inflammatory 

caspases are activated in lesional samples from psoriasis patients and its expression in 

immune cells is sufficient to develop a psoriasis-like phenotype. 

 We identified a key function of Lyn in psoriasis development and a pivotal 

regulation of Lyn in keratinocytes under psoriasis conditions, confirming the idea that 

this kinase can control several biological functions in non-hematopoietic cells.   

Altogether, these results show that Lyn has an important function preventing 

apoptosis in cancer cells as well as pro-inflammatory caspases and Lyn are crucial 

factors in psoriasis pathogenesis, thus they could be used as new targets to develop 

new treatments in eliminating tumor cells and treating psoriasis patients.       
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Abstract 

Dietary restriction (DR) prevents the growth of certain types of tumors. 
However, DR is not suitable for most cancer patients. In addition, how DR limits 
cancer progression remains largely unknown. Here, we demonstrate that 
feeding mice a low-protein (Low PROT) isocaloric diet but not a low-
carbohydrate (Low CHO) diet prevents tumor growth in two independent mouse 
models. Surprisingly, this effect relies on anticancer immunosurveillance, as 
depleting CD8+ cells or using immunodeficient mice prevented the beneficial 
effect of the diet. Mechanistically, we established that a Low PROT diet induces 
the unfolded protein response (UPR) in tumor cells and demonstrated that the 
activation of IRE1α signaling induces cytokine production, thus mounting an 
efficient anticancer immune response. Collectively, our data suggest that a Low 
PROT diet induces an IRE1α-dependent UPR in cancer cells, enhancing a 
CD8-mediated T-cell response against tumors.  
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Abstract 
 
Rationale- Macrophages face a substantial amount of cholesterol following the 
ingestion of apoptotic cells and the lysosomal acid lipase (LIPA) has a major 
role in hydrolyzing cholesteryl esters in the endocytic compartment. 
Objective- Here, we directly investigated the role of LIPA-mediated clearance 
of apoptotic cells both in vitro and in vivo. 
Methods and Results- We show that LIPA inhibition causes a defective 
efferocytic response due to impaired generation of 25-OHC and 27-OHC. 
Reduced synthesis of 25-OHC after LIPA inhibition contributed to defective 
mitochondria associated membrane (MAM) leading to mitochondrial oxidative 
stress-induced NLRP3 inflammasome activation and caspase 1-dependent 
Rac1 degradation. A secondary event consisting of failure to appropriately 
activate liver X receptor-mediated pathways led to mitigation of cholesterol 
efflux and apoptotic cell clearance. In mice, LIPA inhibition caused defective 
clearance of apoptotic lymphocytes and stressed erythrocytes by hepatic and 
splenic macrophages, culminating in splenomegaly and splenic iron 
accumulation under hypercholesterolemia. 
Conclusions- Our findings position lysosomal cholesterol hydrolysis as a 
critical process that prevents metabolic inflammation by enabling efficient 
macrophage apoptotic cell clearance. 
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Abstract 
 
Polo-like kinases (Plks) define a highly conserved family of Ser/Thr kinases with 
crucial roles in the regulation of cell division. Here we show that Plk1 is cleaved 
by caspase 3, but not by other caspases in different hematopoietic cell lines 
treated with competitive inhibitors of the ATP-binding pocket of Plk1. 
Intriguingly, Plk1 was not cleaved in cells treated with Rigosertib, a non-
competitive inhibitor of Plk1, suggesting that binding of the inhibitor to the ATP 
binding pocket of Plk1 triggers a conformational change and unmasks a cryptic 
caspase 3 cleavage site on the protein. Cleavage occurs after Asp-404 in a 
DYSD/K sequence and separates the kinase domain from the two PBDs of 
Plk1. All Plk1 inhibitors triggered G2/M arrest, activation of caspases 2 and 3, 
polyploidy, multiple nuclei and mitotic catastrophe, albeit at higher 
concentrations in the case of Rigosertib. Upon BI-2536 treatment, Plk1 
cleavage occurred only in the cytosolic fraction and cleaved Plk1 accumulated 
in this subcellular compartment. Importantly, the cleaved N-Terminal fragment 
of Plk1 exhibited a higher enzymatic activity than its non-cleaved counterpart 
and accumulated into the cytoplasm conversely to the full length and the C-
Terminal Plk1 fragments that were found essentially into the nucleus. Finally, 
the DYSD/K cleavage site was highly conserved during evolution from c. 
elegans to human. In conclusion, we described herein for the first time a 
specific cleavage of Plk1 by caspase 3 following treatment of cancer cells with 
ATP-competitive inhibitors of Plk1. 
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The Src family kinase, of which Lyn is one member, plays a key role in controlling many 

biological processes. Lyn has a well-established function in hematopoietic cells, presenting an 
important role in the regulation of hematopoietic abnormalities. In fact, Lyn plays a key role in 
maintaining several kind of leukemia, and furthermore it expression is altered in solid tumors. 
Different studies have shown that Lyn has an anti-apoptotic role. Lyn can be cleaved by 
caspases, cysteine proteases involved in apoptosis and inflammation, giving a new protein with 
a cytosolic location, different from the WT and membrane-anchored form. Thus, cLyn could 
have access to new substrates that would explain its role as suppressor of apoptosis. We have 
shown that the cytosolic form of Lyn (cLyn) regulated Bim, a pro-apoptotic member of the Bcl-2 
family, involved in the control of mitochondrial apoptosis. We have identified that Bim is 
phosphorylated on tyrosine 92 and 161 by Lyn, resulting in an inhibition of its pro-apoptotic 
function, increasing its interaction with anti-apoptotic members such as Bcl-XL, thus limiting the 
permeabilization of mitochondrial outer membrane and impairing cell apoptosis. 

Lyn also has a pro-inflammatory role. We have previously shown that overexpression of 
the caspase-cleaved form of Lyn, in mice, leads to an inflammatory skin syndrome, resembling 
human psoriasis. Based on this result, we wanted to know if Lyn played a role in this chronic 
skin disease, which is characterized by an abnormal differentiation of keratinocytes and an 
increase in immune infiltrate, leading to the formation of psoriasis plaques, the main clinical 
feature of the disease. Analysis of Lyn's expression in psoriasis patients showed that Lyn was 
overexpressed in lesional skin compared to non-lesional or healthy skin, which was 
subsequently confirmed in two mouse models of psoriasis disease. Interestingly, we have 
shown that the increase in Lyn expression is in both the dermis and the epidermis in humans 
and in mice, indicating that recruitment of immune cells into lesional skin but also the 
modulation of Lyn in keratinocytes are involved. Moreover, an increase in Lyn expression was 
observed in human keratinocytes stimulated by TNF-α and IL-17A, two important cytokines in 
psoriasis pathogenesis. To determine the role of Lyn in this skin disease we induced a 
psoriasis-like phenotype in Lyn deficient mice. A significant reduction in cutaneous phenotype 
was observed in LynKO mice compared to WT mice, identifying Lyn as a new player in the 
pathogenesis of psoriasis. In addition, our results established that Lyn expression in 
keratinocytes seemed crucial and sufficient for the maintenance of the psoriasis phenotype, 
indicating a new role of Lyn in the regulation of keratinocytes. 

During this work, we observed that inflammatory caspases were activated in lesional skin 
from psoriasis patients. Inflammatory caspases, following their activation within the 
inflammasome, will cleave IL-1β and IL-18, leading to their maturation. They play an important 
role in the control of inflammation in response to a pathogen but also contribute to the 
pathogenesis of many inflammatory diseases, such as diabetes and obesity. We then wanted to 
know if inflammatory caspases participated in the development of psoriasis. We were able to 
show that when we induced a psoriasis-like disease in mice, the invalidation of inflammatory 
caspases or its pharmacological inhibition significantly reduced the development of the disease 
compared to WT mice. Although immune cells and keratinocytes were able to secrete IL-1β via 
activation of the inflammasome, our data established that only activation of inflammatory 
caspases in the immune system seemed necessary for a complete inflammatory response. 

In summary, my thesis shows a molecular mechanism by which Lyn tyrosine kinase 
negatively regulates the mitochondrial apoptotic pathway, which may contribute to the 
transformation and/or chemotherapeutic resistance of cancer cells. On the other hand, our 
results show that Lyn could be an important regulator of psoriasis and our study indicates that 
inflammatory caspases activated in immune cells are involved in the pathogenesis of psoriasis. 
To date, although several treatments have been developed for psoriasis, the disease remains 
unresolved, so the development of therapeutic targets against Lyn and inflammatory caspases 
could be of interest for the treatment of the disease. 
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La famille des kinases Src, dont Lyn fait partie, joue un rôle clé dans le contrôle de 

nombreux processus biologiques. Lyn a une fonction bien établie dans les cellules 
hématopoïétiques, jouant un rôle important dans la régulation des désordres hématopoïétiques. 
Lyn est notamment impliqué dans le maintien de différentes leucémies et son expression 
protéique est altérée dans les tumeurs solides. Plusieurs études ont mis en évidence qu’elle 
avait un rôle anti-apoptotique. Lyn peut être clivée par les caspases, protéases à cystéine 
impliquées dans l’apoptose et l’inflammation, ce qui donne une protéine tronquée avec une 
localisation subcellulaire, cytosolique, différente de la forme entière membranaire. Ainsi, elle 
pourra avoir accès à de nouveaux substrats qui expliqueraient son rôle de suppresseur de la 
mort cellulaire par apoptose. Nous avons ainsi montré que Lyn cytosolique (cLyn) régulait Bim, 
un membre pro-apoptotique de la famille Bcl-2, impliqué dans le contrôle de l’apoptose 
mitochondriale en le phosphorylant sur les tyrosines 92 et 161. Cette modification post-
traductionnelle entraîne une inhibition de la fonction pro-apoptotique de Bim, en augmentant 
son interaction avec les membres anti-apoptotiques tels que Bcl-XL, limitant ainsi la 
perméabilisation de la membrane externe mitochondriale et l’apoptose des cellules.  

Lyn possède également un rôle pro-inflammatoire. Nous avions préalablement montré 
que la surexpression de cLyn, chez la souris, conduit à un syndrome inflammatoire de la peau, 
ressemblant au psoriasis humain. Sur la base de ce résultat, nous avons voulu savoir si la 
tyrosine kinase Lyn jouait un rôle dans cette maladie chronique de la peau, qui est caractérisée 
par une différenciation anormale des kératinocytes et une augmentation de l’infiltrat 
immunitaire, conduisant à la formation de plaques de psoriasis, la principale caractéristique 
clinique de la maladie. L’analyse de l’expression de Lyn chez des patients souffrant de psoriasis 
a montré que Lyn était surexprimée dans la peau lésionnelle par rapport à la peau non 
lésionnelle ou saine, résultats confirmés dans deux modèles de psoriasis chez la souris. De 
façon intéressante, nous avons montré que l’augmentation de l’expression de Lyn se situe à la 
fois dans le derme et dans l’épiderme chez l’homme et chez la souris, indiquant que le 
recrutement de cellules immunitaires dans la peau lésionnelle mais aussi la modulation de Lyn 
dans les kératinocytes sont impliqués. Par ailleurs, une augmentation de l’expression de Lyn a 
été observée dans les kératinocytes humains stimulés par le TNF-α et l'IL-17A, deux cytokines 
importantes dans le psoriasis. Afin de déterminer le rôle de Lyn dans cette maladie cutanée 
nous l’avons induit chez des souris déficientes pour Lyn. Une réduction significative du 
phénotype cutanée a été observée dans les souris LynKO par rapport aux souris WT, identifiant 
Lyn comme un nouvel acteur dans la pathogénie du psoriasis. De plus, nos résultats ont établi 
que l’expression de Lyn dans les kératinocytes semblait cruciale et suffisant pour le maintien du 
phénotype psoriasique, indiquant un nouveau rôle de Lyn dans la régulation des kératinocytes. 

Au cours de ce travail, nous avions observé que les caspases inflammatoires étaient 
activées dans la peau lésionnelle de patients atteints du psoriasis. Les caspases 
inflammatoires, suite à leur activation au sein de l’inflammasome, vont cliver l’IL-1β et l’IL-18, ce 
qui conduit à leur maturation. Elles jouent donc un rôle important dans le contrôle de 
l’inflammation en réponse à un agent pathogène mais participent également à la pathogénie de 
nombreuses maladies inflammatoires, comme le diabète et l’obésité.  Nous avons alors voulu 
savoir si les caspases participaient au développement du psoriasis. Nous avons pu montrer que 
lorsque nous induisions une maladie semblable au psoriasis chez des souris, l’invalidation des 
caspases inflammatoires ou son inhibition pharmacologique réduisait de façon significative le 
développement de la maladie par rapport aux souris WT. Bien que les cellules immunitaires et 
les kératinocytes soient capables de secréter de l’IL-1β via l’activation de l’inflammasome, nos 
données ont établi que seule l’activation des caspases inflammatoires dans le système 
immunitaire semblait nécessaire pour une réponse inflammatoire complète.  

En résumé, l’ensemble de mon travail de thèse a permis de montrer un mécanisme 
moléculaire par lequel la kinase Lyn régule négativement la voie apoptotique mitochondriale, ce 
qui peut contribuer à la transformation et/ou la résistance des cellules cancéreuses. D’autre 
part, nos résultats montrent que Lyn pourrait être un régulateur important du psoriasis, et notre 
étude indique que les caspases inflammatoires activées dans les cellules immunitaires sont 
impliquées dans la pathogenèse du psoriasis. A ce jour, bien que plusieurs traitements aient été 
développés pour le psoriasis, la maladie reste non résolue, donc le développement de cibles 
thérapeutiques contre Lyn et les caspases inflammatoires pourraient être intéressant pour le 
traitement de la maladie. 
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