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Résumé 

Le tabagisme est la cause de longues maladies, responsables chaque année de 6 millions de décès. Le 

principal composant du tabac, la nicotine, est l'un des psychotropes les plus addictifs. L’abandon du 

tabac est difficile et les pharmacothérapies les plus efficaces, telles que la varénicline, ne viennent en 

aide qu’à une proportion limitée des 70% de fumeurs qui souhaitent stopper. 

Des études cliniques et précliniques ont démontré que plusieurs mécanismes psychopharmacologiques 

différents contribuent au maintien de la prise de nicotine. Des données psychologiques, génétiques et 

neurobiologiques, issues d’études cliniques, indiquent désormais que le poids respectif de ces 

mécanismes psychopharmacologiques pourrait varier d’un fumeur à l’autre. Cette hétérogénéité 

pourrait contribuer à l’inégale efficacité de la varénicline, dont les cibles psychopharmacologiques 

sont encore mal connues, ainsi qu’à la faible validité prédictive des modèles précliniques, qui ne 

tiennent pas compte de cette possible hétérogénéité individuelle. 

Dans ce travail de thèse, au moyen de l’auto-administration intraveineuse de nicotine chez le rat, nous 

avons exploré les variations individuelles dans la sensibilité aux effets renforçants primaires de la 

nicotine et aux effets de la nicotine sur la sensibilité aux effets renforçants de stimuli 

environnementaux associés. Nous avons mis en évidence trois sous-populations d'individus dont la 

recherche de nicotine est contrôlée par une contribution différente de ces deux types d’effets de  la 

nicotine. Les phénotypes de ces sous-populations ont été validés par des marqueurs comportementaux 

préexistants à la consommation de nicotine (l’approche conditionnée pavlovienne), par des marqueurs 

du métabolisme de la nicotine et des marqueurs neurobiologiques des neurotransmissions 

cholinergique et dopaminergique dans des structures cérébrales clés. En parallèle, nous avons exploré 

les cibles psychopharmacologiques de la varénicline. En utilisant une nouvelle approche qui permet de 

manipuler, pendant l’autoadministration, les effets de la nicotine sur les effets renforçants d’un 

stimulus environnemental associé, nous avons montré que la varénicline antagonise à la fois ces effets 

de la nicotine et ses effets renforçants primaires. Néanmoins, dans le premier cas, la varénicline agit 



d’autant plus que la sensibilité individuelle aux effets de la nicotine est élevée, alors que l’intensité de 

son effet ne dépend pas de l’amplitude des effets renforçants primaires de la nicotine. 

Ce travail de thèse met en évidence et valide des variations individuelles dans les mécanismes qui 

régissent le comportement de recherche de nicotine dans un modèle préclinique. Il offre pour 

perspective d'explorer les mécanismes neurobiologiques responsables de ces variations individuelles et 

l’impact à long terme de ces variations sur le développement de la dépendance à la nicotine, ainsi que 

de tester si la varénicline est plus efficace chez l’une des sous-populations identifiées. 

 

Mots clés: nicotine, auto-administration, différences individuelles 

 

 

 

 

 

 

 

 

 

 



Abstract 

Tobacco use leads to 6 million deaths every year due to severe long lasting diseases. The main 

component of tobacco, nicotine, is recognized as one of the most addictive drugs, making smoking 

cessation difficult, even when 70% of smokers wish to do so. Critically, even the most effective 

pharmacotherapies for smoking cessation, such as varenicline, have only limited efficacy. 

Clinical and preclinical studies have demonstrated consistently that nicotine seeking is a complex 

behavior involving various psychopharmacological mechanisms. Critically, converging psychological, 

genetic and neurobiological data from clinical studies support that the mechanisms controlling nicotine 

seeking may vary from individual to individual. This heterogeneity could explain the unequal 

efficiency of treatments, notably of varenicline, whose psychopharmacological targets are still poorly 

understood, and the poor predictive validity of preclinical models, which do not consider possible 

individual variations in the mechanisms of nicotine seeking.  

In this PhD work, using intravenous nicotine self-administration in the rat, we have explored 

individual variations in the control of nicotine seeking, by the primary reinforcing effects of nicotine, 

nicotine’s impact on environmental cues, or both. We have evidenced three sub-populations of 

individuals whose nicotine seeking is controlled by distinct contributions of nicotine primary 

reinforcing effects and nicotine-cue interactions. Their phenotypes of nicotine seeking have been 

supported and validated by pre-existing behavioral markers of Pavlovian conditioned approach, as 

well as by markers of nicotine metabolism, and neurobiological markers of cholinergic and dopamine 

transmissions in key brain structures. In parallel, we have explored psychopharmacological targets of 

varenicline. Using a novel approach that allows manipulating the reinforcing-enhancing effects of 

nicotine on cues, during nicotine self-administration, we evidenced that varenicline antagonizes both 

these cue reinforcing-enhancing effects and the primary reinforcing effect of nicotine, but as a function 

of the individual response amplitude for the former, and not for the latter. 



This PhD work evidences and validates preclinical individual variations in the mechanisms of nicotine 

seeking. It opens the perspective of exploring the neurobiological causal mechanisms for these 

individual variations, their long term impact on the development of nicotine dependence and whether 

varenicline efficacy benefits more to the subpopulation mostly driven by nicotine-induced 

enhancement of cue reinforcing effects. 

Keywords:  nicotine, self-administration, individual differences 
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Preface 

Tobacco has one of the highest prevalence of use of all drugs of abuse (Peacock et al., 2018), and its 

associated chronic use carries a heavy burden of premature mortality worldwide (World Health 

Organization, 2018). Despite this, clinical and preclinical studies on the mechanisms that drive 

tobacco dependence appear not to capture the complexity of the neuropsychopharmacology of 

nicotine, its major psychoactive compound. This failure is ultimately translated into limited 

therapeutic options for smokers struggling to quit their harmful addiction.  

The general aim of this doctoral dissertation is to bring into light the existence of individual 

differences in the mechanisms that drive nicotine seeking. The evidencing of these individual 

differences could help reframe the ongoing discussions about nicotine addiction vulnerability, explain 

some of the complexity observed in human and animal studies, as well as providing insights on why 

“one-size-fits-all” therapeutic approaches fail to meet the desired clinical efficacy.  

This doctoral dissertation is divided into five chapters. The first chapter serves as an introduction, in 

which we first present psychological, genetic and neurobiological data, collected from clinical and 

preclinical studies, which strongly suggest that existence of individual differences in the mechanisms 

of nicotine seeking, in particular in the complex interactions between nicotine and surrounding 

environmental cues (“nicotine-cue interactions”). In the second chapter, we introduce the aims of our 

experimental work. Our third chapter oversees the identification and characterization of different 

clusters of rats, which differ in the strength in nicotine-cue interactions behind their nicotine seeking 

behavior. We validated this characterization using behavioral, metabolic, and neurobiological 

correlates. Our fourth chapter is devoted to a first step in refining the psychopharmacology of one of 

the most important pharmacotherapies against nicotine dependence, varenicline, where we show that it 

powerfully targets the reinforcing-enhancing effects of nicotine on surrounding cues, with only a 

limited effect on the primary reinforcing actions of nicotine. This raises important implications in its 

therapeutic use against tobacco dependence. We conclude with a fifth chapter, where we provide a 

general discussion of this doctoral dissertation, emphasizing the relevance of individual differences in 

the mechanisms of nicotine seeking, as well as providing future directions for further research. 
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“Tobacco, divine, rare superexcellent tobacco,  
which goes far beyond all panaceas,  

potable gold and philosopher's stones,  
a sovereign remedy to all diseases…” 

 
Robert Burton – “Anatomy of Melancholy” (1621) 

 
 

 
“…Quoi que puisse dire Aristote, et toute la philosophie,  

il n'est rien d'égal au tabac, c'est la passion des honnêtes gens; 
 et qui vit sans tabac, n'est pas digne de vivre.  

non seulement il réjouit, et purge les cerveaux humains,  
mais encore il instruit les âmes à la vertu, 

 et l'on apprend avec lui à devenir honnête homme… ” 
 

Molière – “Dom Juan ou le Festin de Pierre” (1665) 
 
 
 

“…For I hate, yet love, thee so, 
That, whichever thing I shew, 

The plain truth will seem to be 
A constrained hyperbole, 

And the passion to proceed 
More from a mistress than a weed […] 

For I must (nor let it grieve thee, 
Friendliest of plants, that I must) leave the. 

For thy sake, TOBACCO, I 
Would do any thing but die, 

And but seek to extend my days 
Long enough to sing thy praise…” 

 
Charles Lamb – “A Farewell to Tobacco” (1805) 
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General Introduction 

 

The Health and Economical Burden of Tobacco Use 

Tobacco is a drug of choice for an estimated of 1.1 billion people worldwide (World Health 

Organization, 2018), ranking as the drug of abuse with the highest prevalence of use, only behind 

alcohol (Peacock et al., 2018). Tobacco use is particularly high in the European Union, where 24% of 

individuals above 15 years of age are current smokers, of which 80% are daily users (Eurostat, 2016). 

The health burden of these numbers is not insignificant, as habitual smoking, as well as indirect 

exposure to tobacco smoke, are direct causes for premature mortality, being responsible for 6 million 

deaths worldwide every year (World Health Organization, 2018). Indeed, in Europe tobacco is 

responsible for as much as 26% of all deaths among adults aged 30-69 years (Goodchild et al., 2018).  

Lung cancer, normally associated with poor prognosis and high mortality, is the prime cause of 

smoking-attributable mortality, with 90% of all diagnosis linked to active smoking (Centers for 

Disease Control and Prevention (CDC), 2018). Moreover, smoking has been also linked to pharynx, 

esophagus, cervix, kidney and colorectal cancers, as well as being a strong risk factor for chronic 

obstructive respiratory disorders, cardiovascular diseases and diabetes (Centers for Disease Control 

and Prevention (CDC), 2018). These smoking-attributable diseases represent around 6% of global 

health expenditure, and in Europe, an estimated 2.5% of the European Union’s gross domestic product 

(Goodchild et al., 2018). Despite social and political measures developed in the last fifteen years to 

curtail smoking, it continues to be the leading cause of preventable deaths worldwide (World Health 

Organization, 2018).  

The Problem of Tobacco Dependence  

Initiation of smoking and experimentation with tobacco normally occurs in adolescence, with more 

than 90% of adult smokers having had initiated smoking before their twentieth year of age (Glynn et 

al., 1993; Institute of Medicine (US), 1994), in a developmental period characterized by heightened 

risk taking and novelty seeking (Bava and Tapert, 2010). A combination of social, environmental, 

economic, familiar and biological factors  need to be in place to foster smoking initiation (Hawkins et 
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al., 1992; Brown and Rinelli, 2010; Lovato et al., 2011; Audrain-McGovern et al., 2012; García-

Rodríguez et al., 2014; Leventhal, 2016). While a discussion of these factors is well beyond the scope 

of this doctoral dissertation, it is important to note that not all individuals that have ever experimented 

with tobacco during their adolescence would continue to do so in the future, or transit into tobacco 

dependence into adulthood (Hiroi and Agatsuma, 2005; Audrain-McGovern et al., 2012)).  Individuals 

who pass the first stage of tobacco experimentation normally progress into irregular, non-daily 

smoking, with varying degrees of intermittency between one cigarette and the following (DiFranza, 

2015), representing roughly 25% of all smokers (Jamal et al., 2015). From this group, a large 

proportion will later escalate smoking towards habitual daily use (Coggins et al., 2009), with a 

minority escalating to more than 25 cigarettes per day (Wilson et al., 1992) 

What drives the need to reach for the next cigarette? Addiction has been globally defined as a 

compulsive drive to take a drug despite serious adverse consequences (Volkow and Li, 2004), and for 

some smokers, tobacco is no exception (Anthony et al., 1994; Nutt et al., 2007; van Amsterdam et al., 

2010). Between 30 and 50% of all smokers meet diagnostic criteria for tobacco dependence (Breslau 

et al., 1993; Anthony et al., 1994; Breslau et al., 1994; National Survey on Drug Use and Health, 

2013), the proportion depending on sample size and diagnostic tool used (Smith and Fiore, 1999; Hiroi 

and Scott, 2009).  Despite 70% of all smokers wanting to quit, only 50% of all smokers attempt to quit 

in a year, but only 6% of them will succeed without medical intervention (Benowitz, 2010; National 

Center for Health Statistics, 2012; Rigotti, 2012). Non-daily smokers are not spared from the addictive 

profile of tobacco, and also report high rates of cessation failure (Tindle and Shiffman, 2011). In fact, 

occasional non-daily smokers can experience strong cravings that cannot be explained by 

pharmacokinetics alone (Fernando et al., 2006), but which nonetheless strongly predict smoking 

cessation failure (Killen and Fortmann, 1997; Potvin et al., 2015). Exacerbating this problem, 

approved pharmacotherapies against tobacco dependence show efficacy only in a limited proportion of 

individuals wanting to quit (Schuit et al., 2017). For instance, varenicline, despite being the most 

efficacious of the available therapies against tobacco dependence (Cahill et al., 2013; Hartmann-Boyce 

et al., 2014), can only sustain long-term abstinence from tobacco in about 20% of users beyond 6 
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months post-quitting (Oncken et al., 2006; Niaura et al., 2008; Jordan and Xi, 2018). Biomedical 

research efforts in the fight against tobacco have thus aimed their attention in understanding the 

biological mechanisms of tobacco dependence, which could improve the use, and development, of 

therapies and help improve cessation rates.  

Nicotine drives Tobacco Dependence  

As their name suggests, tobacco products incorporate extracts from the tobacco plant, Nicotiana 

tabacum, native to the Americas and introduced to Europe at the dawn of the 16
th
 century (Russo et al., 

2011). Among the thousands of compounds contained in combusted tobacco (Stedman, 1968; Löfroth, 

1989), one of them, an alkaloid named nicotine, has been long identified as the main responsible for 

the addictive potential of tobacco (Benowitz, 1992). Nicotine is an agonist at the nicotinic 

acetylcholinergic receptors (nAChRs), so named after the discovery that nicotine selectively activates 

them (Changeux et al., 1970; Klett et al., 1973). As a family of receptors, nAChRs are all ionotropic 

(Dajas-Bailador and Wonnacott, 2004), although recent evidence suggests that they may couple with 

G-proteins in certain cases (Kabbani et al., 2013). Different subtypes of nAChRs are assembled as 

pentamers through different combinations of their constituent α and β subunits, which determine the 

receptor gating properties, i.e. the speed of opening and desensitization (Sargent, 1993; Dani, 2015). 

The most common nAChR assembly in the brain is the α4β2 configuration, allowing for high affinity 

for nicotine, fast activation, but also rapid desensitization (Lippiello et al., 1987; Dani et al., 2000; 

Gotti et al., 2006)  

nAChRs, as part of the brain cholinergic system, play key roles in attention, memory, arousal, mood, 

and reward (Pich et al., 1997; Levin and Simon, 1998; Phillips et al., 2000; Dani and Bertrand, 2007; 

Wallace and Bertrand, 2013; Kutlu and Gould, 2016; Gandelman et al., 2018). Of particular interest 

for tobacco dependence, α4β2-containing nAChRs are highly expressed in the ventral tegmental area 

(VTA), where they play a role in modulating the burst firing of dopaminergic neurons (Picciotto et al., 

1998; Klink et al., 2001; Pidoplichko et al., 2004). The monomeric α7 nAChRs are also important in 

the VTA, as their pre-synaptic location facilitate glutamate release into VTA neurons (Jones and 
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Wonnacott, 2004; Gao et al., 2010), and as they desensitize less rapidly than α4β2 nAChRs 

(Wooltorton et al., 2003), allow for a sustained modulation of dopamine neurotransmission  

(Schilström et al., 2003; Pidoplichko et al., 2004). The dopaminergic projections from the VTA to the 

nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) constitute the most central pathway 

involved in reinforcement, and not surprisingly, in drug addiction (Pich et al., 1997; Koob et al., 2004; 

Pidoplichko et al., 2004; Everitt and Robbins, 2005; Salamone et al., 2007), explaining its central role 

in the development of tobacco dependence (Picciotto et al., 1998).  

Despite this, nicotine has surprisingly only limited primary reinforcing properties, compared to other 

drugs of abuse (Henningfield and Goldberg, 1983). Previous studies have shown that nicotine, by 

itself, is poorly self-administered (Caggiula et al., 2001, 2002). The primary reinforcing effects of 

nicotine are not able, by themselves, to explain the pervasiveness of tobacco use (Chaudhri et al., 

2006; Caggiula et al., 2009). Thus, in the last fifteen years, research has shifted attention to the 

powerful effects that nicotine exerts on surrounding stimuli instead (Caggiula et al., 2002; Donny et 

al., 2003; Chaudhri et al., 2006; Palmatier et al., 2007; Caggiula et al., 2009). It is widely known that 

nicotine can transform surrounding environmental cues into conditioned reinforcers (Caggiula et al., 

2001; Cohen et al., 2005; Rose, 2006; Donny et al., 2007), which can later trigger craving and 

facilitate relapse (Conklin and Tiffany, 2002; Ferguson and Shiffman, 2009; Rupprecht et al., 2015). 

Newer evidence has also identified that nicotine can enhance the reinforcement value of stimuli that 

are already reinforcers by themselves (Palmatier et al., 2006, 2007; Caggiula et al., 2009; Perkins and 

Karelitz, 2013; Perkins et al., 2017; Constantin and Clarke, 2018). Not surprisingly, this potentiation 

appears to rely on the dopaminergic system (Palmatier et al., 2014). Although the precise 

neurobiology of these actions are yet to be explored, it is possible that they could involve structures 

related to reward-cue interactions, such as NAcc, hippocampus, mPFC and the basolateral amygdala 

(BLA), structures that express both nAChRs and dopamine receptors (Gasbarri et al., 1997; Palermo-

Neto, 1997; Paterson and Nordberg, 2000; Kröner et al., 2005; Zhu et al., 2005; Gotti et al., 2006; 

Raybuck and Gould, 2010; Kutlu and Gould, 2016).  
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Altogether, this evidence supports that smokers would seek nicotine for two main reasons: (1) for the 

psychopharmacology of nicotine in and of itself, whether through primary reinforcement or 

withdrawal alleviation, and (2) for the psychopharmacology of nicotine in modulating environmental 

stimuli (“nicotine-cue interactions”), whether through Pavlovian conditioning, or through acute 

enhancement of the incentive value of non-nicotine primary reinforcers.  

Individual Differences in the Mechanisms of Nicotine Seeking 

Despite that these distinct motivations for nicotine seeking are well-known (see (Rupprecht et al., 

2015), most preclinical studies focusing in understanding the neurobiological mechanisms of nicotine 

seeking have only explored them from what it is inferred from the mean observations in their study 

populations. Over the same time, preclinical addiction research in cocaine has demonstrated the 

importance of individual variability in factors governing initial drug intake, transition to habitual use, 

and progression to compulsive drug use (Piazza et al., 1998, 2000; Deroche-Gamonet et al., 2004; 

Kasanetz et al., 2010; Bardo et al., 2013; Lenoir et al., 2013; Piazza and Deroche-Gamonet, 2013; 

Pelloux et al., 2015), an approach also recently developed with alcohol (Augier et al., 2018). Despite 

their possible relevance, individual variations in the previously mentioned mechanisms contributing to 

nicotine seeking have been scarcely explored in human or animal research on nicotine addiction (Hiroi 

and Scott, 2009).   

In our first publication (Garcia-Rivas and Deroche-Gamonet, 2018) presented below, we reviewed 

extensive evidence from clinical and preclinical studies, suggesting that  individual differences in 

nicotine seeking behavior do exist, and that they have different neurobiological underpinnings.  In our 

second publication (Garcia-Rivas et al., 2017), presented immediately after, we propose preclinical 

experimental strategies that would allow to capture, in a rodent model, these individual differences in 

the mechanisms that drive nicotine seeking. The aim of these strategies would not only be useful to 

explore the precise neurobiology of these different mechanisms, but also provide a tool to better tailor 

current pharmacotherapies, while also helping developing individualized approaches against tobacco 

dependence.    
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 REVIEW1: Garcia-Rivas & Deroche-Gamonet V (2018)  
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REVIEW2: Garcia-Rivas et al. (2017)  
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Experimental Objectives 

Given this general context, and in particular the preclinical experimental approach proposed in our 

perspective review (Garcia-Rivas et al., 2017), the objectives of this doctoral study were to:  

1. Evidence individual differences in the contributions of nicotine, and its associated cue, in 

nicotine seeking, through experimental strategies in a well-established model for nicotine 

self-administration in rats, 

2. Characterize and validate these observed individual differences through external 

behavioral, metabolic, and neurobiological correlates, that could also shed light on the 

biological mechanisms through which these different behaviors occur, 

3. Determine whether varenicline, the most efficacious pharmacotherapy against tobacco 

dependence, targets the contributions of nicotine, its associated cue, or a combination of 

both, in nicotine seeking, that could explain its limited efficacy in smokers attempting to 

quit, and that could evidence the need for better tailored therapies based on the individual 

mechanisms of nicotine seeking.  

Objectives 1 and 2 will be covered in Chapter 3, while Objective 3 will be covered in Chapter 4.  
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Chapter 3 
 

EVIDENCE AND CHARACTERIZATION 
OF INDIVIDUAL DIFFERENCES 

IN THE MECHANISMS OF 
NICOTINE SEEKING 
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Introduction  
 

We have recently proposed that the predictive validity of animal models may increase if individual 

variations are taken into account (Garcia-Rivas et al., 2017). This implies determining, within the 

same individuals, how nicotine seeking is controlled by (1) the pharmacology of nicotine in and of 

itself, and (2) the pharmacological effects of nicotine on surrounding environmental stimuli (Garcia-

Rivas et al., 2017). While preclinical studies that have sought to understand the mechanisms of 

nicotine seeking, they have done it through what is inferred from the mean observations in their study 

populations. Since the classical, and most widely used, preclinical model of nicotine intravenous self-

administration involves the contingent delivery of nicotine with a visual stimulus (‘cue’) (Rose and 

Corrigall, 1997) , we sought to capture and bring into evidence such individual differences using this 

classical approach, by identifying subgroups of rats that differed in the particular contributions of 

nicotine and its associated cue in their habitual nicotine self-administration.  

A key advantage of our individual-based approach of nicotine is that it is suitable for exploration of 

the neurobiology of individual differences. It is widely known that nicotine reinforcement involves the 

activation of α4β2-nAChRs in the ventral tegmental area (VTA), where they determine dopaminergic 

input into the nucleus accumbens (NAcc) and the prefrontal cortex (PFC) (Picciotto et al., 1998; Klink 

et al., 2001; Pidoplichko et al., 2004). However, other structures, including the basolateral amygdala 

(BLA), also express nAChRs, and can powerfully modulate dopamine transmission at the NAcc 

(Everitt et al., 1999; Chiamulera, 2005; Everitt and Robbins, 2005). The BLA, in addition, has been 

linked to conditioned reinforcement of drug-paired cues (Everitt and Robbins, 2005; Sharp, 2018). 

Since the balance between nicotine reinforcement and aversion plays a role in nicotine seeking, 

another structure of interest includes the medial habenula (mHb), which relays sensory information 

about nicotine aversive effects downstream towards the VTA (Antolin-Fontes et al., 2015).  

In this chapter, we present in successive fashion, two experiments that aimed at characterizing these 

individual differences in nicotine-cue interactions during nicotine self-administration, using external 

behavioral, metabolic and neurobiological variables to validate such characterization.  
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Materials and Methods 

 

SUBJECTS 

 

Male Sprague–Dawley rats (n=124) weighing 280–300 g at the beginning of the experiments were 

single housed under a 12 h reverse dark/light cycle. In the animal facility, temperature (22 ± 1°C) and 

humidity (60 ± 5%) were controlled. Rats were habituated to environmental conditions and handled 

every day for 15 days before the start of experimental procedures. Standard chow food and water were 

provided ad libitum. All procedures involving animal experimentation and experimental protocols 

were approved by the Animal Care Committee of Bordeaux (CEEA50, N° 50120168-A) and were 

conducted in accordance with the guidelines of the European Union Directive 2010/63/EU regulating 

animal research.  

SURGERY  

A silastic catheter (internal diameter = 0.28 mm; external diameter = 0.61 mm; dead volume = 12μl) 

was implanted in the right jugular vein under ketamine (80 mg/kg) / xylazine (16 mg/kg) anesthesia.  

The proximal end reached the right atrium through the right jugular vein, whereas the back-mount 

passed under the skin and protruded from the mid-scapular region. Immediately after surgery, rats 

received a single antibiotic injection (gentamicine 1 mg/kg i.p.). Rats were given a minimum of 5 days 

recovery before nicotine self-administration training began.  

DRUGS 

-(-)Nicotine-Hydrogen-Tartrate (Glentham, UK) was dissolved in sterile 0.9% physiological saline, for 

an initial training dose of 0.04 mg/kg free base. Nicotine solutions with concentrations different to the 

training dose (0.02mg/kg, 0.005mg/kg and 0.06mg/kg free base) were prepared afresh, and used 

instead of the training dose where indicated. All nicotine solutions were adjusted to pH =7.0. Nicotine, 

as well as sterile 0.9% physiological saline in control groups, was self-administered via intravenous 

(IV) route in a volume of 40µl per self-infusion.  
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For the Pavlovian Conditioned Approach (PCA), sodium saccharin salt (Glentham Life Sciences, UK) 

was dissolved in drinking tap water, to a final concentration of 0.2% w/v free acid.  

PAVLOVIAN CONDITIONED APPROACH (PCA) 

Pavlovian Conditioning Apparatus 

The setup used for Pavlovian Conditioned Approach consisted of 20 operant chambers made of 

plexiglas and metal (Imetronic, France).  Each chamber (40 cm long x 30 cm wide x 36 cm high) was 

located in an opaque sound-attenuating cubicle equipped with an exhaust fan to assure air renewal and 

mask background noise. They were equipped with a retractable metal lever on the right side panel, 7 

cm above the grid floor, and a drinking cup, located 6.5cm to the side of each retractable lever, on the 

same panel, and 8 cm above the grid floor (Figure 1). A lickometer circuit allowed for monitoring and 

recording of cup contacts. A pump attached to the cubicle delivered 0.12ml of 0.2% saccharin solution 

to the drinking cup via Silastic tubing (Dow Corning Corportation, MI, USA) 

 

 

 

 

 

 

 

Pavlovian Conditioned Approach  

Rats (n=59) were first habituated to drink the saccharin solution over three consecutive sessions. In 

these sessions, each rat was placed in one chamber, and once the session was initiated, 0.12ml of 0.2% 

saccharin solution was dispensed to the drinking cup, for a total of 20 presentations, at a fixed interval 

of 4 minutes and 30 seconds. Following habituation, rats were trained for Pavlovian conditioned 

Figure 1 - Pavlovian 
Conditioning Apparatus 

Figure 1 - Pavlovian Conditioning Apparatus – Operant chambers were equipped with a 

retractable lever and a drinking cup, placed on the same side of the operant chamber. An attached 

pump would deliver a small quantity of a a solution containing saccharin to the drinking cup.  
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approach to the saccharin sweet reward. Every 4 minutes and 30 seconds, the retractable lever was 

deployed for a total of 10 seconds. Lever deployment made a brief and easily localizable noise. After 

10 seconds, the lever was retrieved, coinciding with the activation of the pump, delivering 0.12ml of 

0.2% saccharin to the adjacent drinking cup. The activation of the pump reinitiated the timer.  

Saccharin delivery was not dependent on responses at the lever or contacts with the cup, i.e. it 

remained non-contingent to the animal behavior. The retractable lever thus served as the conditioned 

stimulus (CS) to the delivery of the sweet reward, which acted as the unconditioned stimulus (US). A 

retractable lever was used as a CS, instead of a cue light, in order for it to be sufficiently different from 

the visual stimulus associated with nicotine delivery in the Self-Administration experiment described 

below. Every daily session consisted of 20 CS-US pairings, for a total of 11 sessions. Cup contacts (or 

“licks”) were measured for the 10 second period during lever deployment. Data was collected with a 

PC-Windows-compatible SK_AA software (Imetronic, France). The mean amount of licks during CS 

presentation, as well as the probability to lick and latency to first lick, were calculated, per rat, for 

sessions 10 and 11, and used as an individual variable for correlational studies with subsequent 

nicotine self-administration measures.  

 

INTRAVENOUS SELF-ADMINISTRATION 

Self-administration Apparatus 

The self-administration setup consisted of 48 self-administration chambers made of Plexiglas and 

metal (Imetronic, France), and equipped with holes as operant manipulanda. These chambers were 

different, and located in a separate room, from those used in the PCA described above. Each chamber 

(40 cm long x 30 cm wide x 36 cm high) was located in an opaque sound-attenuating cubicle equipped 

with an exhaust fan to assure air renewal and mask background noise (Figure 2). For self-

administration sessions, each rat was placed in one chamber, where its chronically implanted 

intracardiac catheter was connected to a pump-driven syringe (infusion speed: 20μl /sec) via Silastic 

tubing. Two holes, located at opposite sides of the chamber, at 5.5 cm from the grid floor, were used to 

record instrumental responding. One hole was associated with infusion delivery and designated as the 
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active hole, while the other was designated as the inactive hole and served as control. A white cue 

light (white LED, Seoul Semiconductor, South Korea), 1.8 cm in diameter, located 11.5 cm above the 

active hole, was used as nicotine (or saline) delivery-associated discrete visual cue, and is named 

thereafter ‘cue light’ or ‘cue’. It produced 5 Lux. Experimental contingencies were controlled and data 

was collected with a PC-Windows-compatible SK_AA software (Imetronic, France).  

 

 

 

 

 

 

 

 

 

Self-administration Procedures 

Basal Training Protocol: Rats were separated into two groups: the “nicotine” group was trained to self-

administer 0.04mg/kg infusions of nicotine, while the “saline” group was self-administering 0.9% 

physiological saline infusions. Group allocation was randomized to ensure homogenous groupings. 

For those rats that underwent prior characterization via PCA, it was ensured that both groups in mean 

did not differ significantly in their PCA variables, to minimize the potential of bias.  Rats in both 

groups performed self-administration (SA) training 5 days a week, i.e. Monday to Friday. Sessions 

began two hours after the onset of the dark phase. Sessions lasted for three hours, during which, 

following nose-poking in the active hole under a fixed ratio 3 schedule of reinforcement, the white cue 

light was illuminated at the same time as the infusion pump was activated (40 μl/infusion over 2s). 

Figure 2 - Self-Administration Apparatus 

Figure 2 - Self-Administration Apparatus - Operant chambers were equipped with two 

holes at opposing sides of the chamber, with one cue light above the active hole. Contingent IV 

delivery of nicotine (or saline) was ensured by the activation of a pump loaded with a syringe 

loaded with the solution for IV delivery. The pump was connected to the rat via Silastic tubing, 

which would be attached to the back mount of the catheter on each rat.  
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The white cue light remained on for 4 s in total; no further time out was applied. Nose-pokes at the 

inactive hole were recorded but had no scheduled consequences. To maintain catheter patency, 

catheters were flushed with ~10µl of heparinized saline (30IU/ml) after each self-administration 

session and before the self-administration sessions run on Monday. To define a significant self-

administration behavior at the individual level, we used a discrimination index between active and 

inactive holes [active nose-pokes/total nose-pokes)*100] strictly superior to 50% together with a 

minimal number of at least 6 self-infusions per session over the three consecutive sessions.  

Response to Cue Omission Test: Nicotine and Saline rats performed a session similar to a standard SA 

session, except that infusions were not paired with the presentation of the contingent white cue-light 

for the whole duration of the session. Individual response to cue omission was expressed as percent 

change respect to baseline infusions.  

Response to Nicotine Omission: Rats performed a session similar to a standard SA session, except that 

nicotine solutions were replaced with 0.9% physiological saline for the whole duration of the session. 

These infusions were still delivered with the contingent white cue-light. Saline rats kept self-

administering saline during this test session. Individual response to cue omission was expressed as 

percent change respect to baseline infusions.  

Response to Changes in SA Dose: Dose responsiveness was tested in all rats by changing the dose of 

nicotine to 0.02 mg/kg, 0.005mg/kg or 0.06mg/kg during the whole duration of the session. In sessions 

of Change in Dose (CD), new pump-driven syringes containing the new nicotine concentration were 

loaded before start of session. Infusions in all CD sessions were delivered with the contingent white 

cue-light, just as baseline protocol. Saline rats kept self-administering saline during these test sessions. 

Individual response to the first session after change in dose was expressed as percent change respect to 

baseline infusions. For comparison of individual responses to changes in different doses, a 

compensation index was calculated, according to the mathematical formula proposed by Harris et al., 

2009: 1-(%drop in nicotine intake followed by change in dose/%drop in nicotine unit dose). A 

compensation index of 1.0 means that nicotine seeking behavior has adjusted to maintain the same 
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level of nicotine intake per session, i.e. intake has been completely compensated despite change in 

dose, while a compensation index close to zero means that rats had not attempted to change their 

responding from baseline parameters, despite the change in dose.  

PLASMA COTININE QUANTIFICATION 

The following day after completion of the self-administration schedule, rats were returned to their SA 

chambers, and placed for one last session, in which they non-contingently received five IV nicotine 

infusions, at the training dose of 0.04mg/kg. Saline rats received saline infusions instead. Upon 

starting the session, the pump was activated non-contingently, following the average spacing of the 

first 5 infusions during a habitual Monday session, in such a way that all nicotine rats received the 

same amount of nicotine at the same time. Rats remained undisturbed in the SA chamber for a total of 

45 minutes after their last non-contingent infusion received, allowing enough time for nicotine to be 

partially metabolized to cotinine to detectable levels (Guillem et al., 2005). Rats were then 

anesthetized with 3% isoflurane and immediately euthanized by terminal decapitation. Trunk blood 

was collected in 9ml Vacuette® K2-EDTA tubes (Greiner Bio-One, France) and immediately placed 

in ice until centrifugation. To allow for plasma separation, samples were centrifuged at 3500 rpm for 

10 minutes at 4ºC, after which plasma was collected and stored at -80ºC for later analysis. Cotinine 

was quantified in the plasma samples using a rat/mouse cotinine ELISA kit (Calbiotech, CA, USA), 

according to the manufacturer's protocol. 

BRAIN MICRODISSECTION  

Upon terminal decapitation, described above, brains were quickly isolated and snap-frozen by 

immersion in cold isopentane (-45ºC), and stored at -80ºC. Selected frozen brains were thawed to 

−20°C in a cryostat chamber (CM3050 S, Leica Microsystems, Wetzler, Germany). Whole brain tissue 

was sectioned at 30 μm using a Leica cryostat and mounted in series with 8-10 sections per slide on 

polyethyl-ene-naphthalate membrane 1mm glass slides (P.A.L.M. Microlaser Technologies AG, 

Bernried, Germany) that have been pretreated to inactivate RNases. Series were created from distinct 

coronal sections (bregma positions based on a reference brain atlas by Georges Paxinos and Charles 

Watson) and individual regions were matched across section and harvested by Laser Capture 
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Microdissection (LCM). The accumbens core (cNAcc) and shell (shNAc) series were collected from 

bregma 3.00 mm to 0.48 mm, the basolateral amygdala (BLA)  series were collected from bregma -

1.60 mm to -3.00 mm and finally, the medial habenular nucleus area (MHb) series were collected from 

bregma -1.88 mm to -4.30 mm. Subsequently, the sections were immediately fixed for 30 seconds 

with 95% ethanol, followed by 75% ethanol for 30 seconds and by 50% ethanol for 30 seconds to 

remove the OCT. Sections were stained with 1% cresyl violet in 50% ethanol for 30 seconds and 

dehydrated in 50%, 75% and 95% ethanol for 30 seconds each, 2x in 100% ethanol for 30 seconds. 

Laser Pressure Catapulting microdissection (LPC) of samples was performed using a PALM 

MicroBeam microdissection system version 4.6 equipped with the P.A.L.M. RoboSoftware (P.A.L.M. 

Microlaser Technologies AG, Bernried, Germany). Laser power and duration were adjusted to 

optimize capture efficiency. Microdissection was performed at 5X magnification. The microdissected 

brain structures were collected in adhesives caps and re-suspended in 250µl guanidine isothiocyanate-

containing buffer (BL buffer from ReliaPrep™ RNA Cell Miniprep System, Promega, WI, USA) with 

10 µl 1-Thioglycerol, and stored at −80°C until extraction was done. Total RNA was extracted from 

microdissected tissues using the ReliaPrep™ RNA Cell Miniprep System (Promega, WI, USA) 

according to the manufacturer’s protocol. The integrity of the RNA was checked by capillary 

electrophoresis using the RNA 6000 Pico Labchip kit and the Bioanalyser 2100 (Agilent 

Technologies, Massy, France), and quantity was estimated using a Nanodrop 1000 (Thermo Scientific, 

MA, USA). The RNA integrity number (RIN) was between 9.8 to 7.9. 

 

QUANTIFICATION OF GENE EXPRESSION 

Preparation of cDNA 

The cDNA of each microdissected structure mentioned above were prepared from 105ng of total 

RNA, with the help of the qScript
TM 

cDNA Super Mix kit (Quanta Biosciences, MA, USA). The 

reverse transcription reaction was done at 42°C for one hour, followed by an inactivation step at 85°C 

for 5 minutes. The corresponding cDNA solutions were stored at -80ºC. 
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Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) 

For the qPCR, each well plate contained 3 μl of primers (at a concentration of 2µM), 2 μl of 

previously synthesized cDNA and 5 μl of the 2X LightCycler ® 480 SYBR Green I Master Mix 

(Roche, Basel, Switzerland), for a total reaction volume of 10 μl. The first step of the qPCR consisted 

in activation of the DNA polymerase for 5 minutes, at 95 °C. After this, 45 cycles were performed, 

consisting in a denaturation step at 95 °C for 15 seconds, then a step at 61 °C for 30 seconds 

combining the hybridization of the primers and the elongation. The measurement of the fluorescence 

was carried out at the end of the elongation step in every cycle. An amplification curve obtained by 

plotting the fluorescence as a function of the number of cycles allowed for the quantification of the 

qPCR product.  

Selection and validation of primers for qPCR 

Genes of interest in the microdissected structures were of those encoding relevant nAChR subunits: α2 

(CHRNA2), α4 (CHRNA4), α5 (CHRNA5), α7 (CHRNA7), β2 (CHRNB2), β3 (CHRNB3) and β4 

(CHRNB4), as well as those encoding for dopamine receptors: D1 (Drd1), D2 (Drd2) and D3 (Drd3).  

The choice of primers was made by Primer Express 2.0 software (Thermo Fischer Scientifics, MA, 

USA).  Primers were selected according to their specificity and efficacy. Specificity was verified by 

means of the melting curve representing the fluorescence emission as a function of temperature. This 

step was performed at the end of the qPCR by incrementing the temperature by 0.3 ° C every 3 

seconds between 65 °C and 95 °C, which dissociated the amplification product. Efficacy of the 

reaction was measured by performing a standard curve, plotting the number of cycles as a function of 

the decimal logarithm of the amount of cDNA on different concentrations (20, 10, 4, 0.8 and 0.16 ng 

per well). Only the pairs of primers with a single amplification product and efficiency close to 100% 

were retained. The sequences of the pairs of primers are reported in Table 1, below.  

Selection of housekeeping genes  

The expression of the 10 genes of interest, and 2 potential housekeeping genes, was analyzed first by 

qPCR on all individuals. The analysis of these results was carried out using the geNorm software 
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which classifies all the genes tested according to the different expressions between all the individuals. 

The gene with the lowest geNorm value was selected as housekeeping gene, suggesting that its 

expression is independent of the experimental conditions  (Livak and Schmittgen, 2001; Bustin et al., 

2009). This housekeeping gene, Eef1a1 (eukaryotic translation elongation factor 1 alpha 1), was 

common to the different structures studied. 

Gene GenBank ID Forward Sequence (5’-3’) Reverse Sequence (5’-3’) 

Eef1a1 NM_175838 ACCCTCCACTTGGTCGTTTTG AGCTCCTGCAGCCTTCTTGTC 

Drd1 NM_012546 CGCGTAGACTCTGAGATTCTGAATT GAGTTAAGGAGCCACCACATCAGT 

Drd2 NM_012547 GGGTGCTGGGACTGCTGATA GAACCCTCCAAACTGCAGCTT 

Drd3 NM_017140 CGTGGAAAGGACTCGGAACTC GTGGATAACCTGCCGTTGCT 

Chrna2 NM_133420 CCCGATGTCACCTACTACTTTGTG GCATGGGATGATGAGGTTGAT 

Chrna4 NM_024354 GGCAGTAGAAGGCGTCCAGTAC CCTCCTTCACCGAGAAGTCAGT 

Chrna5 NM_017078 TGTCTGGGCTAGCACAAAACC ATACAGAACAGGGCAAAGTGGAG 

Chrna7 NM_012832 CCTGGGCTCACAAGAATTCG GACTGCTCTGCATTGGTTTCAG 

Chrnb2 NM_019297 TCACACCTCCGTTCACACATAGT GGAGAAGGCTCGACCACAAG 

Chrnb3 NM_133597 GCTCGGCAGATACGGTGCTA CCCAGGCCAGTCTCTCTCTTC 

Chrnb4 NM_052806 AAAGTGTCATCGAGGACTGGAAG AAACACGAACACCCACAGGAA 

Table 1 - Primers for Polymerase Chain Reaction 

 

 

EXPERIMENTAL PROCEDURES 

Experiment 1 – Exploration of Individual Differences in Nicotine-Cue Interactions 

As a first step, we launched an exploratory experiment to assess whether individual differences in 

nicotine-cue interactions could be evidenced during a classical nicotine self-administration paradigm. 

For this experiment, 59 rats self-administered nicotine while 6 self-administered saline. After 

acquisition of self-administration, a first cue-omission test was done. Upon returning to baseline 

responding, the dose was then changed to 0,02mg/kg, followed by a second cue-omission test at this 

new dose. Sensitivity to nicotine was further assessed by testing responsiveness to 0,005mg/kg and 

0.06mg/kg. To test whether nicotine metabolism could be related to nicotine-cue interactions, plasma 

was collected and cotinine quantified as described above. The precise timeline of this experiment is 

detailed in Figure 3.   

Table 1 – Primers for Polymerase Chain Reaction (PCR). Listed are the forward and reverse 

nucleotide sequences used for the 10 genes of interest, and the housekeeping gene Eef1a1.  
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Experiment 2 – Refined Identification and Characterization of Individual Differences in Nicotine-

Cue Interactions 

Having evidenced individual differences in nicotine-cue interactions in the previous experiment, we 

launched a second experiment, to further refine the identification and characterization of these 

individual differences, as well as validating them through external variables.  For this experiment, 59 

rats were first characterized according to the Pavlovian conditioning to a saccharin-predicting cue, 

using the PCA approach. Rats were then put into self-administration, with 51 rats self-administering 

nicotine while 8 self-administered saline. The self-administration schedule was similar to Experiment 

1, with three exceptions: (1) a nicotine-omission test was introduced after the first cue-omission test, 

(2) only one change in dose (0.02mg/kg) was tested and (3) gene expression in selected brain areas 

was quantified, as described above. The precise timeline of this experiment is detailed in Figure 4.   

 

 

 

 

Figure 3 - Experiment 1 - Timeline 

Figure 3 – Experiment1 – Timeline. After arrival and handling, rats were first catheterized and allowed for 

recovery before entering basal nicotine SA. A first cue omission test was done on session 14, before returning to 

basal conditions. On session 23, the training dose was changed to 0.02mg/kg, and a second cue omission test done 

on session 28. To further assess dose responsiveness, the dose was then lowered further to 0.005mg/kg, then 

returned to basal conditions, before a final dose change to 0.06 mg/kg. At the end of the experiments, blood was 

collected for quantification of plasma cotinine.  

Figure 4 - Experiment2 - Timeline 

Figure 4 – Experiment2 – Timeline. After arrival and handling, rats were first habituated to saccharin drinking for 

three days prior to Pavlovian Conditioned Approach, which lasted for 11 sessions. Surgeries were done immediately 

after, and a post-op recovery period set in place before launching basal nicotine SA. The first cue omission test was 

done on session 13, before returning to basal conditions, after which a nicotine omission test was performed on session 

22. On session 27, the dose was changed to 0,02 mg/kg. A last cue omission test was done on this dose on session 31. 

Blood and brains were collected at the end of self-administration schedule, as described above.  
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DATA ANALYSIS 

General Self-Administration Behavior 

Self-administration behavior was analyzed using repeated measures ANOVA with Time (number of 

sessions), Hole (active vs inactive) as within-subject factor, and experimental group (saline vs 

nicotine) or subgroups (subgroup1 vs subgroup 2 vs subgroup 3; cluster 1 vs cluster 2 vs cluster 3) as 

between-subject factor. 

One sample t-tests were used to compare baseline self-infusions with those obtained after omission 

tests or changes in dose, or to compare omission scores obtained at two different doses. One way 

ANOVAs were performed to compare multiple variables in the nicotine groups (compensation indexes 

to three changes in dose), or to compare one variable across identified subgroups or clusters (omission 

scores, extinction indices, compensation indices, effects of change in dose baselines, inter-infusion 

intervals, cotinine levels, fold expression of genes). Significant main effects or interactions were 

explored by pairwise comparisons of means using the Tukey post hoc test. 

To identify statistical differences in the temporal evolution of cumulative infusions, repeated unpaired 

t-tests were performed, using GraphPad Prism version 7.00 data analysis software system (La Jolla, 

CA, USA), comparing the mean infusions, achieved every minute, in baseline vs omission tests. In this 

case, to correct for multiple testing, we used a false discovery rate (FDR) approach, namely the  two-

stage linear step-up procedure of Benjamini, Krieger and Yekutieli, with a Q = 1%, taking the q-value 

as a corrected p-value.  

Pearson’s correlation analyses were used to investigate correlations between continuous variables of 

interest.  

All graphs were done using GraphPad Prism. The results are presented as mean ± SEM. Differences 

were considered significant at p<0.05.  

Unless otherwise specified, the statistical analyses were performed using the STATISTICA 13.3.0 

(2017) data analysis software system (TIBCO Software, CA, USA) 
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Criteria for Identification of Subpopulations  

Experiment 1 – Cue Omission as Function of Nicotine Dose 

Cue omission responses at both doses were expressed as percent change respect to their respective 

baseline infusions (%CueOm-004 and %CueOm-002). In order to assess the contributions of the cue 

as a function of nicotine dose, a cue omission ratio was individually determined by dividing 

%CueOm-004 by %CueOm-002 per rat. Since a ratio of 1.0 meant an equivalent cue omission 

regardless of dose, a threshold was defined at ±25% of ratio=1.0 (threshold points: ratio=0.75 and 

ratio=1.25), in order to form three distinct groups, differing in their cue omission as a function of 

nicotine dose.  

Experiment 2 – Cluster Analysis based on Cue and Nicotine Omission Tests 

A k-Means cluster analysis was run, taking into consideration two variables from cue (0,04mg/kg) and 

nicotine omission test, taken individually for each rat: (1) the global omission effect, expressed as the 

percent change of total infusions respect to their respective baseline infusions and (2) an extinction 

index, which was calculated by subtracting the relative amount of cumulative infusions achieved after 

60 mins into the omission test session, from the same relative amount of cumulative infusions 

achieved after 60 mins on the corresponding baseline sessions (Figure 5). The 60 mins threshold was 

used, as preliminary data had shown that responding is generally stabilized after that time-point in the 

session. This extinction index variable provides temporal information about how quickly an 

extinction-like profile, following an omission test, is evident in the session 

For the clustering analysis, only the first cue omission test was used (CueOm-004), as it was the cue 

omission done at the training dose, allowing a clear head to head comparison with the nicotine 

omission test, done also after a history of self-administration at the training dose. The k-Means cluster 

analysis was run using a v-fold cross-validation algorithm provided by the STATISTICA software, 

which allows for an automatic determination of cluster numbers. This allows for clusters to be formed 

from subpopulations arising naturally from the data, without any a priori assumptions on the number 

of clusters to be formed.   
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Analysis of gene expression 

The analysis of gene expression was based on relative quantification, which results from the 

calculation of the variation factor (Fold Change, FC) between the different conditions, in this case, 

nicotine vs saline conditions. This calculation was based on the formula proposed by Livak & 

Schmittgen: FC = 2 
(-ΔΔCt)

 (Livak and Schmittgen, 2001). For this, it was first necessary to calculate 

ΔCt, equal to the difference in expression between the gene of interest and the selected housekepeing 

Figure 5 - Variables for Cluster Analysis 

Figure 5 – Variables for Cluster Analysis. Two variables were chosen per omission test: 

(A) Global Effect of Omission Test, defined as the percent change of total infusions respect to 

their respective baseline infusions. In this example, this rat achieved 24.5 infusions in mean 

during baseline sessions, but only 10 in the omission test. This represents a -59.18% change in 

self-infusions. (B) Extinction Index, defined as the difference in the relative amount of infusions 

reached at t=60, between omission test day and baseline sessions. In this example, this rat 

achieved 47% of all baseline infusions by the 60
th
 minute, but during the omission test, it had 

already reached its maximal infusions to be earned on that session (100%), leaving an extinction 

index of +53. The higher the extinction index, the strongest the extinction profile for the rat.  

(B) 

(A) 
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genes: ΔCt = Ct (gene of interest) - Ct (reference gene). Then, the value ΔΔCt was calculated through 

the difference of expression between the nicotine and the saline conditions: ΔΔCt = ΔCt (nicotine) - 

ΔCt (saline). Since the aim of the study was to characterize individual differences, the ΔΔCt was 

calculated by subtracting the mean ΔCt of the saline samples for that gene and structure, from the 

individual ΔCt obtained for each nicotine rat, for that gene and structure.  
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Experiment 1 - Exploration of Individual Differences in Nicotine-

Cue Interactions 
 

Results 

Acquisition of Nicotine Self-Administration 

Rats in both saline and nicotine groups successfully acquired self-administration after the first 13 days 

of training (Figure 6). The self-infusion rate increased progressively for the nicotine group, until 

stable, remaining significantly higher than the saline group [Session effect, F(12, 756)=3,2170, 

p=0,0001; Session x Group effect, F(12, 756)=14,713, p<0,0001]. By the last two sessions of the 

acquisition period, both groups had learned to significantly discriminate between active and inactive 

holes, demonstrating self-administration behavior [Hole effect, F(1, 63)=35,223, p=<0,0001; Hole x 

Session effect, F(1,63)=0,59064, p= ns; Hole x Session x Group effect, F(1, 63)=0,03834, p= ns]. 

Peaks at sessions 6 and 11 in both groups correspond to Mondays, when rats would return to the self-

administration chambers after two days in the vivarium.   

 

General Effects 

Response to Cue Omission 

Removal of the cue during the first cue omission test was associated with a significant drop in self-

infusions, in both nicotine (p<0.0001) and saline (p=0.04) groups, revealing the contributions of the 

cue in their self-administration (Figure 7).  

In the nicotine group, removal of the cue was nicotine-dose dependent (Figure 8A), with an overall 

stronger effect at the lower of dose of 0.02mg/kg (p=0.008). In the saline group, the second cue 

omission test resulted in a reversal of the effect seen at the first test (p=0.046), possibly due to a 

habituation effect of cue removal, or a progressive decrease in the reinforcing effects of the cue over 

time. Interestingly, in the nicotine group, the extent of cue omission effect at 0.04mg/kg was not 

correlated to the extent of cue omission at 0.02mg/kg (Figure 8B).  
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Figure 7 - Experiment1 - Acquisition of Self-Administration 

Figure 6 – Acquisition of Self-Administration – Both nicotine and saline rats acquired self-

administration behavior by the end of the acquisition period. (A) Progression of saline vs nicotine 

self-infusions across time. By the end of the acquisition period, nicotine rats had a higher self-

infusion baseline compared to saline rats. The relatively low infusion number of the nicotine rats in 

the first two sessions reveals a potential limiting effect of nicotine upon first encounter (B) 

Progression of active vs inactive nose pokes in both nicotine and saline groups across time. By the 

end of the acquisition period, rats in both groups could significantly discriminate active vs inactive 

responding. Symbols represent means and error bars represent SEM.  

(A) 

(B) 

Figure 6 - Experiment1 - Cue Omission Effect (0.04mg/kg) 
Figure 7 – Cue Omission Effect (0.04mg/kg) – Omission of the cue resulted in a drop in 

self-infusions, in both nicotine and saline groups. **** = p<0.0001; * = p<0.05, respective to their 

corresponding baseline. Bars represent means and error bars represent SEM.  
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Response to Changes in Nicotine Doses 

A sudden reduction of 50% in nicotine dose, from 0.04 to 0.02 mg/kg, resulted in a drastic increase in 

self-infusions (p<0.0001) with respect to its corresponding baseline (Figure 9A). A further reduction 

of 75% in nicotine dose, from 0.02 to 0.005 mg/kg, further increased responding (Figure 9B). Upon 

returning to the 0.04 mg/kg baseline, a 50% increase in nicotine dose resulted in a significant decrease 

in self-infusions (p<0.0001) (Figure 9C). As expected, saline groups had no changes in their 

responding during these test days (Figure 9D).  

Figure 8 - Experiment1 - Dose Dependency of Cue Omission Effect 

Figure 8 – Dose Dependency of Cue Omission Effect – (A) For the nicotine group, cue 

omission was stronger at the lower dose of 0.02mg/kg. (B) For the saline group, the second cue 

omission test resulted in the reversal of the first observed cue omission. ** = p<0.01; * = p<0.05, 

respective to the first cue omission test. Bars represent group means, and error bars represent 

SEM (C) For the nicotine group, the percent changes in self-infusions after the respective cue 

omission in either dose were not correlated. Symbols represent individual nicotine rats, solid black 

line represents the linear regression line, and dotted curves represent the 95% confidence bands.  

(A) (B) 

(C) 
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Since the compensation index assesses change in nicotine seeking according to the proportion of dose 

changed, it allows for a clear comparison between changes in behavior after several changes in dose. 

In the nicotine group, a 50% decrease in nicotine resulted in an incomplete compensation in mean 

(Figure 10A), which is consistent with previous studies (Harris et al., 2009) , although rats differed in 

the individual degree of compensation. A shift to 0.005mg/kg resulted overall in strong reduction in 

compensatory attempt, probably due to the futility of attempting complete compensation with such a 

low dose of nicotine. A shift to 0.06mg/kg shows in mean the same degree of compensation as with a 

shift to 0.02mg/kg, although with a wider amplitude of individual responses.  

 

Figure 9 - Experiment1 - Effects of Nicotine Dose Change 

Figure 9 – Effects of Nicotine Dose Change - (A) A 50% reduction in nicotine dose, from 0.04 to 

0.02mg/kg, resulted in an increase in self-infusions. (B) A further 75% reduction leads to a further increase 

in self-infusions. (C) Upon returning to training dose, rats were given a 50% increase in nicotine dose, 

leading to a significant decrease in self-infusions. (D-F) Saline rats continued to receive saline infusions 

during these test days, thus the responses remaining statistically equivalent to their respective baselines. 

**** = p<0.0001; * = p<0.05, respective to the corresponding baseline. Bars represent group means, and 

error bars represent SEM.  

(A) (B) (C) 

(D) (E) (F) 
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Based on previous studies, we sought to explore whether a compensatory attempt to a decrease in 

nicotine dose could be correlated negatively to the baseline pre-change in dose (Harris et al., 2009). In 

our nicotine population, the baseline pre-change in dose did not correlate to the compensation index 

calculated for the new baseline at 0.02mg/kg (Figure 10B).  

Response to Cue Omission as a Function of Dose Change 

Interestingly, at the population level, the compensation index after change to 0.02mg/kg correlated 

negatively with response to cue omission at the new dose of 0.02mg/kg (Figure 11), suggesting that 

the second cue omission is affected by how much they had compensated for the change in dose, at 

least in some of the individuals.  

 

 

Figure 10 - Experiment1 - Compensatory Attempts following Nicotine Dose Change 

Figure 10 – Compensatory Attempts following Nicotine Dose Change – (A) After a change to 

0,02mg/kg and to 0.06mg/kg, nicotine rats have a mean compensatory index of around 0.50, meaning that 

compensation is not complete. Noteworthy are, however, the individual variations in compensatory attempts. 

A shift to 0.005mg/kg resulted overall in strong reduction in compensatory attempts, probably due to the 

futility of attempting complete compensation with such a low dose of nicotine. **** = p<0.0001. Bars represent 

the mean responses, and error bars represent the SEM. Symbols represent individual rats. (B) Baseline self-

infusions before change in dose did not correlate with compensation index resulting in a new baseline after a 

50% reduction in nicotine dose. Compensation index reported in this graph corresponds to the new stable 

baseline post-dose change (sessions 24-25-27) and not to the acute change (session 23), in order to 

compare it with results obtained by Harris et al (2009). Symbols represent individual rats, solid black line 

represents the linear regression line, and dotted curves represent the 95% confidence bands. 

(A) (B) 
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Nicotine Metabolism 

At the population level, plasma cotinine levels were positively correlated with infusions at the end of 

the acquisition period (p=0.011) (Figure 12), and inversely correlated with percent change in 

infusions after cue-omission (p=0.014), suggesting that nicotine metabolism may be modulating 

aspects of nicotine self-administration, in particular involvement of cue, at least in some individuals.  

  

 

Figure 11 - Experiment1 - Compensation to New Dose and Cue Omission at New Dose 

Figure 11 – Compensation to New Dose and Cue Omission at New Dose – Compensation 

index after an acute change to 0.02mg/kg correlates negatively with cue omission score at the same dose. 

This suggests that for some individuals, the second cue omission score is affected by the amount of 

compensation after change in dose. Symbols represent individual nicotine rats, solid black lines represent 

linear regression lines, and dotted curves represent the 95% confidence bands. 

Figure 12 - Experiment1 - Nicotine Metabolism and Nicotine Self-Administration 

Figure 12– Nicotine Metabolism and Nicotine Self-Administration – Plasma cotinine levels 

correlated positively with baseline infusions at the end of the acquisition period, while also correlating 

negatively with cue omission effect at 0.04 mg/kg. Symbols represent individual nicotine rats, solid black 

lines represent linear regression lines, and dotted curves represent the 95% confidence bands. 
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Individual Differences in Nicotine-Cue Interactions  

Definition and Characterization of Subgroups 

Our first approach in studying individual differences in nicotine-cue interactions was to characterize 

individuals according to their cue omission effects as a function of nicotine dose. Rats that have the 

same cue omission effect regardless of nicotine dose can be argued to have a stable cue contribution in 

their nicotine self-administration, compared to rats that have a dose-dependent effect of cue omission. 

The lack of correlation between cue omission effects at 0.04 and 0.02 mg/kg (Figure 8) further 

suggested that this may be a potential source of individual differences in nicotine-cue interactions. We 

thus calculated a cue omission ratio (as explained in the Methods section), and separated animals 

according to a predefined threshold of ±0.25 around a cue omission ratio of 1.0 (Figure 13A).  

Subgroup 1 (n=22) was selected for the effect of cue omission irrespective of dose; Subgroup2 (n=24) 

had a lower cue omission effect at 0,04 mg/kg, and a stronger effect at 0,02 mg/kg, driving the 

observed general trend (Figure 8A). Subgroup 3 (n=13) had a stronger effect at 0,04mg/kg compared 

to 0,02mg/kg.  

 

Baseline Self-Administration 

During acquisition, Subgroup1 appeared to have had higher responding than Subgroup3 (Figure 14), 

although the differences are not statistically significant [Session effect, F(12, 672)=31,013, p<0,0001; 

Subgroup effect, F(2, 56)=2,2519, p=ns; Session x Subgroup effect, F(24,672)=1,0501, p= ns]. There 

were also no differences in active vs inactive hole discrimination by the end of acquisition [Hole 

effect, F(1, 56)=192,76, p<0,0001; Hole x Session effect, F(1, 56)=1,3648, p= ns; Hole x Session x 

Subgroup effect, F(2, 56)=,60976, p= ns].  
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Figure 13 - Experiment1 - Subgroup Selection 

Figure 13 – Subgroup Selection – (A) Histogram of cue omission ratios in the nicotine group. Ratios of 

0.75 and 1.25 were used as thresholds for group selection (B) Situation of individual groups in the graph 

plotted on Figure 09C. Subgroup 1 (n=22) had a cue omission ratio between 0.75 and 1.25; Subgroup2 

(n=24) had a cue omission ratio of less than 0.75; Subgroup 3 (n=13) had a cue omission ratio greater than 

1.25. Symbols represent individual nicotine rats. (C) Subgroup differences in self-infusions between baseline 

and cue omission, for two different doses. Subgroup 1 has the same effect regardless of dose; Subgroup 2 

has a higher drop at 0.02mg/kg, while Subgroup 3 has a lower drop at 0.02mg/kg. ****=p<0.0001, 

***=p<0.001, respective to the corresponding baseline. (D-E) Subgroup2 had the weakest cue omission effect 

at the 0.04mg/kg dose, but the strongest effect at the 0.02mg/kg dose.  ****=p<0.0001, ***=p<0.001; 

**=p<0.01. Bars represent mean of subgroups, and error bars represent SEM.  

(A) (B) 

(C) 

(D) (E) 
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Relationship between Baselines and Cue Omission Scores 

For the first cue omission test (0.04mg/kg), Subgroups 1 and 2 showed an inverse correlation between 

baseline infusions and the extent of cue omission effect (Figure 15A-B), suggesting that baseline 

responding could be correlated with the contributions of the cue in their self-administration. However, 

at the second cue omission test (0.02mg/kg), the relationship is only maintained in Subgroup2 (Figure 

15E).  

Response to Changes in Nicotine Doses 

Subgroup2 appears to have stronger sensitivity to the first change in dose when compared to 

Subgroup3, although this difference is not statistically significant (Figure 16A). Notably, Subgroup3 

had the weakest increase in infusions after change to 0.02mg/kg, and the weakest decrease in infusions 

after change to 0.06mg/kg (Figure 16A and C).  

 

Figure 14 - Experiment1 - Acquisition of Nicotine Self-Administration per Subgroup 

Figure 14 – Acquisition of Nicotine Self-Administration per Subgroup – Progression of active 

and inactive nose pokes during the 13 sessions of acquisition, per subgroup. Subgroup1 appears to have a 

higher acquisition baseline than subgroup 3, although differences are not significant. Symbols represent 

the mean of each subgroup and error bars represent SEM.  
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Figure 16 - Experiment1 - Differential Nicotine Sensitivity per Subgroup 

Figure 16 – Differential Nicotine Sensitivity per Subgroup – (A) Rise in self-infusions after first 

change in dose to 0.02mg/kg. Upper panel: All subgroups have a significant increase in self-infusions, although 

the effect is weaker in Subgroup 3.. Bottom panel: Compensation index at 0.02mg/kg appears higher, although 

differences are not statistically different (B) Rise in self-infusions after change in dose to 0.005mg/kg. Upper 

panel: Only mild increases in self-infusions are reported across all subgroups. Increase in Subgroup2 

approaches statistical significance. Bottom panel: No changes among groups. (C) Decrease in self-infusions 

after change in dose to 0.06mg/kg. Upper panel: Subgroup3 had the weakest decrease in self-infusions. 

Bottom panel: no changes among groups. ****=p<0.001; **=p<0.01; *=p<0.05, respective to the corresponding 

baseline. Bars represent the mean of each subgroup and error bars represent SEM.  

(A) (B) (C) 

Figure 15 - Experiment1 - Inverse Correlations between Baseline Infusions and Cue Omission Scores Figure 15 – Inverse Correlations between Baseline Infusions and Cue Omission Scores – 

(A-C) For cue omission at 0.04mg/kg, Subgroups1 and 2 showed negative correlations between baseline 

infusions and cue omission scores, while Subgroup3 showed no correlation. (D-F)  For the second cue 

omission (0.02mg/kg), the inverse correlation is only observed in Subgroup2.  

(A) (B) (C) 

(D) (E) (F) 
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Response to Change in Dose to 0.02mg/kg 

Identified subgroups also did not have correlations between pre-change baseline and the compensation 

index at the new baseline of 0.02mg/kg (Figure 17A-C), mirroring the observation at the general 

population (Figure 10B) 

Although not statistically significant, Subgroup2 had a negative trend between compensation index 

after change to 0.02mg/kg and response to cue omission at the new dose of 0.02mg/kg (Figure 17E), 

observed in the general population (Figure 11).   

 

 

 

 

 

 

 

 

 

Figure 17 - Experiment1 - Correlations of Compensation to 0.02mg/kg with Corresponding Baseline and Cue 
Omission Effect (0.02mg/kg) 

Figure 17 – Correlations of Compensation to 0.02mg/kg with Corresponding Baseline, and 

Cue Omission Effect at 0.02mg/kg – (A-C) Mirroring the general population trend, there was no 

correlation between the baseline pre-change in dose, and the compensation index at the new baseline of 

0.02mg/kg. (D-F) Only in Subgroup2 there is a negative trend between compensation index after an acute 

change to 0.02mg/kg and cue omission score at the same dose. Symbols represent individual nicotine rats, 

solid black lines represent linear regression lines, and dotted curves represent the 95% confidence bands. 

(A) (B) (C) 

(D) (E) (F) 
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 Nicotine Metabolism  

Even though subgroups do not differ in their plasma cotinine levels (Figure 18B), only Subgroup 1 

retains the positive correlation between cotinine and baseline infusions (Figure 18B) and the negative 

correlation between cotinine and cue omission (Figure 18E). 

 

It is noteworthy that for subgroup1, the positive correlations between cotinine and baseline infusions 

occur also with the other 0,04 mg/kg baselines (before changes to 0,02 and 0,06 mg/kg, respectively) 

Figure 18 - Experiment1 - Differential Role of Nicotine Metaboklism in the Contribution of the Cue to NSA 

Figure 18 – Differential Role of Nicotine Metabolism in the Contribution of the Cue to NSA 

(A) Subgroups did not differ in the amount of cotinine in their plasma. Bar represent the mean of each 

subgroup and error bars represent SEM. (B-D) Correlations between baseline infusions at the end of 

acquisition and plasma cotinine. Positive correlation observed only in Subgroup1. (E-G) Correlations between 

cue omission at 0.04mg/kg and plasma cotinine. Correlation for Subgroup1 approaches statistical 

significance, not so for the other Subgroups. Symbols represent individual rats.  

 

(A) 

(B) (C) (D) 

(E) (F) (G) 
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(Figure 19A-B). Furthermore, the spacing of infusions loaded during their first baseline sessions is 

negatively correlated to cotinine levels, only in this subgroup (Figure 19C).    

 

Discussion  

Experimental Approaches for Identification of Individual Differences in Nicotine Seeking 

We have recently proposed that the predictive validity of animal models may increase if individual 

variations are taken into account (Garcia-Rivas et al., 2017). This implies determining, within the 

same individuals, how nicotine seeking is controlled by (1) the pharmacology of nicotine in and of 

itself, and (2) the pharmacological effects of nicotine on surrounding environmental stimuli (Garcia-

Rivas et al., 2017). In this first experimental approach, we sought to capture and bring into evidence 

such individual differences in the classical model of nicotine IV self-administration. In our study, we 

identified three populations, which differed in the extent through which nicotine dose affected the 

relative contributions of the cue in their self-administration.  

 

 

Figure 19 - Experiment1 - Nicotine Metabolism Predicts NSA at Training Dose in Subgroup1 

Figure 19– Nicotine Metabolism Predicts NSA at Training Dose in Subgroup 1 – (A) Positive 

correlation between baseline infusions prior to change in dose, and plasma cotinine. (B) Positive correlation 

between infusions obtained after return to 0.04mg/kg (session 34-35-37) and plasma cotinine. (C) Negative 

correlation between the interval between infusions, and plasma cotinine, on the first 0.04 mg/kg baseline 

after acquisition. Symbols represent individual rats. 

(A) (B) (C) 
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Sensitivity to Changes in Dose as Source of Individual Differences 

It has been widely established that nicotine has only limited primary reinforcing actions (Caggiula et 

al., 2001; Rose, 2006), although there is evidence suggesting that some individuals are more sensitive 

to the primary reinforcing effects of nicotine than others (Tapper et al., 2004; Hutchison et al., 2007). 

Furthermore, even though it is widely recognized that changes in nicotine dose allows for little 

compensation (Rose and Corrigall, 1997),  there is evidence of individual differences in the extent of 

compensation in nicotine seeking behavior following nicotine dose reduction, both in humans (Hecht 

et al., 2004) and animals (Harris et al., 2009; Grebenstein et al., 2015).  

In the general population, we show that following a switch to a lower (0.02 mg/kg) and higher (0.06 

mg/kg) nicotine resulted in incomplete compensation (Figure 10A), as expected, although rats 

differed in the extent of individual compensatory attempt, consistent with the findings of previous 

studies (Harris et al., 2009; Grebenstein et al., 2015). Contrary to the study by Harris and colleagues, 

however, we found no inverse correlation between baseline infusions pre-change in dose and 

compensation index for the baseline at the new dose (Figure 10B). This discrepancy could be due to 

differences in experimental protocol, namely rat strain (Holtzmann vs Sprague-Dawley), amount of 

animals per study (n=27 vs n=59) and exposure to nicotine (23-hr daily long-access sessions vs 3hr-

daily short-access sessions) (Harris et al., 2009).  Since long access to nicotine allows for intake 

escalation conducive to exploration of nicotine withdrawal  (O’Dell et al., 2007; Cohen et al., 2012), it 

remains a possibility that individual differences in nicotine seeking may change as a function of drug 

exposure (short vs extended) or drug state (withdrawal vs non-withdrawal), and this could explain the 

differences between our study and that of Harris et al (2009). In fact, some humans studies have 

suggested that protracted experience with nicotine can shift the control of nicotine seeking, from a 

predominant cue-controlled behavior, to one more reliant on prevention or alleviation of 

pharmacological withdrawal to nicotine (Shiffman et al., 2012, 2015; Bani et al., 2014; Piasecki et al., 

2014; Roberts et al., 2015; Ferguson et al., 2016; Shiffman and Terhorst, 2017). However, this shift is 

incomplete, and seen only in some individuals (Baker et al., 2012; Shiffman et al., 2015; Garcia-Rivas 
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and Deroche-Gamonet, 2018). Further exploration of individual differences in nicotine seeking, as a 

function of the length of nicotine exposure, is thus warranted (Garcia-Rivas et al., 2017). 

 

Cue Omission as an Exploration of Cue Contribution in Self-Administration 

The premise behind a cue omission test is to reveal the contributions of the cue in the acquired self-

administration behavior. In their seminal work, Caggiula et al (2001) showed that omission of the 

nicotine-paired cue after 25 training sessions of IV nicotine delivery paired with a cue resulted in a 

drastic reduction in operant responding, despite that nicotine was still available for rats to self-

administer. This revealed that the nicotine-paired cue is an important component of the behavior 

observed classically in nicotine self-administration (Caggiula et al., 2001, 2002). Our results are 

consistent with these findings, demonstrating that after 13 sessions of self-administration, the nicotine-

paired cue contributed to the overall nicotine self-administration behavior observed during and 

immediately after acquisition (Figure 7).  

The contributions of the cue in classical nicotine self-administration could be through two different 

mechanisms: (A) nicotine transforming the cue into a conditioned reinforcer, through repeated 

associations or (B) the potentiation of the reinforcing actions of the cue through a nicotine-induced 

enhancement of reinforcement  (Caggiula et al., 2009). Indeed, the self-administration pattern of our 

saline group (Figure 6), and the effect of cue omission experienced in this group (Figure 7), clearly 

suggest that the cue is itself reinforcing, and capable of driving a sustained self-administration 

behavior. It is thus possible that nicotine is potentiating this reinforcing effect of the cue alone.   

Since there is evidence that the nicotine-induced increase in cue reinforcement is dose-dependent (Liu 

et al., 2007), we decided to test whether cue omission responding varied as a function of nicotine dose, 

in a manner that could help clarify its dependency, or not, on nicotine dose. Contrary to our initial 

expectation, at the population level we saw an increase in cue omission effect at a lower dose, 

compared to cue omission at the training dose (Figure 8A). However, both cue omission effects were 

not correlated (Figure 8C), suggesting that rats differed individually in the extent to which dose 
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affected their cue omission response. We thus selected three subpopulations, based on how their cue 

omission response varied after a change in dose (Figure 13A).  

 

Subgroup 1: Dose-Independency of Nicotine-Cue Interactions – Cue as Conditioned Reinforcer? 

In our first subgroup (n=22), the number of self-infusions during cue omission at either dose was 

drastically lower from the corresponding baseline sessions (Figure 13C), suggesting that the cue was 

an important component of their nicotine self-administration, enough to decrease behavior if absent. 

Despite a strong increase in responding when the dose was changed to 0.02mg/kg (Figure 16A), and 

responsiveness to further changes in nicotine doses (Figure 16B-D), the response to cue omission at 

the training dose of 0.04mg/kg was the same, and proportional to, the response to cue omission at a 

lower dose of 0.02mg/kg (Figure 13B). Importantly, the degree of response to a change to 0.02mg/kg 

did not impact the degree of response to cue omission at the same dose (Figure 17). These results 

suggests that for these rats, the nicotine-associated cue has become an important component in their 

self-administration, remaining stable across time, and not being affected by changes in nicotine dose.   

The dose-independency of cue omission effects in this subgroup could suggest that the contributions 

of the cue in their basal self-administration could be more related to the cue having become a 

conditioned reinforcer, rather than nicotine potentiating the reinforcing actions of the cue. It has been 

observed that, once established, the visual cue as a conditioned reinforcer to nicotine will maintain 

responding even in the absence of nicotine (Cohen et al., 2005).  

Interestingly, nicotine metabolism in this subgroup predicted the baseline responding at the training 

dose (Figure 18B and 19), as well as the cue omission response (Figure 18E), even if mildly. Even if 

causality is not clear, it is possible that in these rats, nicotine metabolism determines their baseline 

intake at the training dose (the faster the metabolism, the higher the baseline) (Figure 19C). Then, in 

turn, the higher their baseline, the higher the likelihood to associate nicotine with its associated cue at 

this dose (Figure 15A), and thus, the greater its contribution as conditioned reinforcer. Indeed, human 

studies have revealed that smokers with faster metabolism tend to have greater reactivity to smoking-
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related cues, compared to smokers with slower metabolism  (Tang et al., 2012; Falcone et al., 2016), a 

phenomenon argued to be due to frequency of nicotine-cue associations (Tang et al., 2012).  

 

Subgroup 2: Dose-Dependent Nicotine-Cue Interactions – Nicotine Effects on Cue?  

The defining characteristic of our second subgroup (n=24) was the strongest cue omission effect at the 

lower dose of 0.02mg/kg (Figure 13), a phenomenon that drove the trend observed in the general 

population (Figure 8A). Interestingly, and despite not reaching statistical significance, subgroup2 had 

the highest compensation index for the first change in dose to 0.02 mg/kg (Figure 16B). Importantly, 

we observed a negative trend between this compensation index and the cue omission effect at the 

second dose of 0.02mg/kg (Figure 17). This suggests that degree of cue omission at 0.02mg/kg 

appears dependent on how much they attempted to compensate for an earlier change in dose.  

One possible explanation for this phenomenon could be a delay in the speed in which the cue was 

becoming a conditioned reinforcer. It is not only that the cue omission effect at 0.02mg/kg is stronger, 

but also that the first cue omission effect at 0.04mg/kg is the weakest among the three subgroups 

(Figure 13D-E). Thus, it is possible that at the moment of the first cue omission test, the contributions 

of the cue in their self-administration were still weaker. It was necessary a boost in self-infusions, 

brought about through a change in dose (Figure 16A), to increase nicotine-cue pairings, translating 

itself into a better correlation between baseline and cue omission effect (Figure 15B-E), and probably 

converting the cue into a better conditioned reinforcer. An alternate explanation could be that rats in 

this subgroup were more sensitive to nicotine, in particular to its aversive effects. Indeed, there is 

neurobiological evidence suggesting that some individuals may be more sensitive to the aversive 

effects of nicotine, even at doses that are habitually reinforcing for others (Sartor et al., 2010; Hoft et 

al., 2011; Svyryd et al., 2016). It could thus be that for these animals, the balance between nicotine 

reinforcement and nicotine aversion at 0.04mg/kg training dose was shifted towards a stronger 

aversion profile, explaining why the nicotine-cue association was stronger at a lower dose. However, 
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this latter explanation is unlikely, as a switch to the highest dose of 0.06mg/kg was accompanied by 

decrease in self-infusions in a magnitude similar to Subgroup1.  

Subgroup 3: Dose-Dependent Nicotine-Cue Interactions – Possible Effect of Nicotine on Cue? 

The defining characteristic of our third subgroup (n=13) was a strong cue omission effect at the first 

dose of 0.04mg/kg, and a weaker effect at 0.02mg/kg (Figure 13). This trend is consistent with what it 

would be expected for a dose-dependent, reinforcing-enhancing effect of nicotine on a cue (Liu et al., 

2007), in which the effect of nicotine on the cue would be reduced if the dose is reduced. Intriguingly, 

however, total infusions were consistently lower in this subgroup during acquisition period (Figure 

14), and the compensation to a decrease in dose to 0.02mg/kg was the lowest among all groups 

(Figure 16A). This is against what would it be expected for the phenotype of nicotine effects on the 

cue, as the reinforcer-enhancing effect of nicotine would have increased the rate of responding for the 

cue. Furthermore, the saline group had also a weaker effect at the second cue omission test (Figure 

8B), making interpretation problematic. An alternative possibility is that animals in this subgroup were 

sensitive to the aversive effects of nicotine that occluded the formation of any meaningful nicotine-cue 

interactions, thus following the saline trend in regards to cue involvement in their self-administration. 

However, a switch to a very low dose of nicotine (0.005mg/kg) reveals no differences in responding 

(Figure 16B), and switch to a high dose of nicotine represents the weakest decrease in responding 

among all subgroups (Figure 16C), thus making this explanation unlikely.   

 

Limitations  

Our first experimental approach allowed us to evidence how nicotine-cue interactions varied in a 

population of outbred rats trained for a classical protocol of nicotine self-administration, which 

involves intravenous delivery of nicotine paired with a visual cue. We were able to reveal three 

subgroups of rats that differed in their dose-dependency of cue omission responses, and notably, for 

Subgroup1, we found a metabolic correlate that could partially explain their behavior.  
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However, even as subgroups were identified, there are difficulties in clearly disentangling the 

mechanisms behind their nicotine seeking behavior. Classification of the groups based on their 

differential cue omission score can give a clear picture for the group with the same cue omission, but 

the interpretation of Subgroups2 and 3 is less evident. For Subgroup3, we have insufficient evidence 

in the variables tested to draw meaningful conclusions as to the putative mechanism behind their 

behavior.  

Perspectives into Experiment 2 

Based on these limitations, we proposed a refined experimental approach, with better grouping 

criteria, and the introduction of more external variables that could help better characterize 

subpopulations of rats according to their mechanisms of nicotine seeking. 

1. Nicotine Omission Test 

We decided to introduce a nicotine omission test. In this session, rats would receive saline 

instead of nicotine, while still receiving cue presentation. Comparing how rats behave in both 

cue and nicotine omission tests would allow for a better head-to-head comparison of the 

involvement of nicotine, and cue, in basal nicotine self-administration. Even though we did 

have a near-nicotine-omission test (the switch to the very low dose of 0.005mg/kg), the 

accumulation of nicotine within the session presented a problem of interpretation, especially 

for slow metabolizers. A complete removal of nicotine was thus needed to remove this 

potential bias. We proposed to make the responses to nicotine and cue omissions test the 

defining criteria for subgroups to be formed within the population.   

2. Temporal Evolution of Omission Effects Within a Session 

In this experiment we had only observed the global change in behavior after cue omission or 

change in dose, i.e. the effect on total infusions per session. However, in order to better 

identify rats who respond quickly, or slowly, to a change in dose, a cue omission, or a nicotine 

omission test, we needed to analyze the individual behavior within the test session. This would 

be critical for the nicotine omission test, as any increase in global responding could be due to a 
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pure extinction-like profile, or due to a heightened self-administration of the cue in the 

absence of nicotine. We thus decided to extend our analysis into changes in responses within 

the test sessions, and include one of such ‘in-session’ parameter as a defining characteristic for 

our subpopulations, namely the ‘Extinction Index’, as explained in the Methods section 

(Figure 5B). 

3. Cluster Analysis 

In order to increase the statistical validity of our model, we decided to move towards a 

mathematical approach that could help us identify clusters of individuals that arise naturally 

from the population, with no arbitrary thresholds, and that significantly differ in the input 

variables we were interested in. For the specific details, refer to the Methods section.  

4. External Variables to serve as correlates.  

Finally, to bring validity to our behavioral observations within nicotine self-administration, we 

decided to expand the ‘toolbox’ of external variables that could help better characterize our 

groupings, beyond nicotine metabolism.  

 Cue as Conditioned Reinforcer: to assess whether the contributions of the 

nicotine-paired cue as conditioned reinforcer could be predicted by an external, 

unrelated, and visually-different conditioned reinforcer, we decided to introduce a 

prior test to nicotine self-administration. Through Pavlovian Conditioned 

Approach, rats would be characterized in the extent of conditioning to a saccharin-

predicting cue. For the specific details, refer to the Methods section. 

 Neurobiological Targets: As a first step to understand the neurobiological 

underpinnings of the behavioral profiles identified, we decided to assess gene 

expression in key brain areas related to nicotine reinforcement, nicotine-cue 

interactions and nicotine aversion. For the specific details, refer to the Methods 

section. 
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Experiment 2 - Refined Identification and Characterization of Individual 

Differences in Nicotine-Cue Interactions  

Results 

General Effects 

Pavlovian Conditioning 

As sessions progressed, rats increased cup contacts (‘licks’), during the 10-sec period in which the CS 

was deployed [Session Effect: F(10, 580)=22,809, p<0,0001] (Figure 20A). Additionally, as session 

progressed, rats were more likely to interact with the cup [Session Effect: F(10, 580)=46,526, 

p<0,0001) (Figure 20C), and with a faster speed [Session Effect: F(10, 580)=33,346, p<0,0001] 

(Figure 20E). These general measures indicated that rats learned that the CS predicted the delivery of 

the US, and initiated conditioned approach to the cup upon CS presentation. However, the extent of 

this Pavlovian conditioning was subject to individual differences, with some rats conditioning better 

than others, as seen from the respective histograms (Figure 20A-C, lower panels).  

Figure 20 - Experiment2 - Individual Differences in Conditioning to a Saccharin-Predictive Cue 

Figure 20 – Individual Differences in Conditioning to a Saccharin-Predictive Cue – (A) Licks during 

CS presentation. Upper panel: progression across sessions. Stabilization of rising trend was evident after session 

9. Lower panel: histogram of mean licks during CS presentation in sessions 10 and 11. (B) Latency to first lick 

during CS presentation: Upper panel: progression across sessions. The latency also plateaued after session 9. 

Lower panel: histogram of mean latency in sessions 10 and 11. (C) Probability to Lick during CS Presentations: 

Upper panel: progression across sessions, also plateauing after session 9. Lower panel: histogram of the mean 

probability to lick in sessions 10 and 11. Symbols represent mean responses, error bars represent SEM. 

(A) (B) (C) 
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The mean values for session 10 and 11 per variable, per rat, were taken into consideration as 

correlation variables for nicotine self-administration analysis.  In preparation for nicotine self-

administration, rats were randomly allocated into two groups: one group for nicotine self-

administration (n=51) and another for saline self-administration (n=8). Rats in both groups did not 

differ significantly in their Pavlovian conditioning variables (Figure 21) 

 

Acquisition of Nicotine Self-Administration 

Rats in both saline and nicotine groups successfully acquired self-administration after the first 12 days 

of training (Figure 22). The self-infusion rate increased progressively for the nicotine group, while for 

the saline group it decreased, and stabilized [Session effect, F(11,627)=26,140, p<0,0001 ; Session x 

Group effect, F(11,627)=48,384, p<0,0001] (Figure 22A).  By the last two sessions of the acquisition 

period, both groups had learned to significantly discriminate between active and inactive holes 

(Figure 22B), demonstrating self-administration behavior [Hole effect, : F(1,57)=63,569, p=<0,0001; 

Hole x Session effect, F(1,57)=1,6238, p=ns; Hole x Session x Group effect, : F(1,57)=0,01439, p=ns]. 

 

 

 

Figure 21 - Experiment1 - PCA Variables of Allocated Groups for Self-Administrations 
Figure 21 – PCA Variables of Allocated Groups for Self-Administration. Rats allocated in nicotine 

and saline groups had homogenous mean values for the three Pavlovian conditioning parameters studied. Bars 

represent mean responses, error bars represent SEM.  
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Intriguingly, saline self-administration was much higher in Experiment 2 compared to Experiment 1, 

notably during the first three sessions of self-administration (Figure 23A). By contrast, the nicotine 

groups acquired self-administration at an equivalent level in both experiments (Figure 23B). This 

observation could suggest that pre-training with Pavlovian conditioning to a saccharin cue may have 

sensitized responding to visual cues, an effect masked by the presence of nicotine, which may have 

limited the amount of visual reinforcers the rat would otherwise self-administer.  

Figure 22 - Experiment2 - Acquisition of Self-Administration 

Figure 22– Acquisition of Self-Administration - Both nicotine and saline rats acquired self-administration 

behavior by the end of the acquisition period. (A) Progression of saline vs nicotine self-infusions across time (B) 

Progression of active vs inactive nose pokes in both nicotine and saline groups across time. By the end of the 

acquisition period, rats in both groups could significantly discriminate active vs inactive responding. Symbols 

represent means and error bars represent SEM 

(A) (B) 

Figure 23 - Experiment2 - Comparison of Nicotine and Saline Self-Administration in Experiments 1 and 2 

Figure 23– Comparison of Nicotine and Saline Self-Administration in Experiments 1 and 2 – (A) 

Compared to Experiment 1, the saline self-administration was much higher in Experiment 2, especially in the first 

few sessions in self-administration (B) By contrast, nicotine self-administration progressed in a similar way 

between Experiments 1 and 2. Symbols represent mean responses in each group, and error bars represent SEM.  

(A) (B) 
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Response to Cue Omission 

Removal of the cue during the first cue omission test was associated with a significant drop in self-

infusions, in both nicotine (p<0,0001) and saline (p=0.002) groups, revealing the contributions of the 

cue in their self-administration (Figure 24), in a manner consistent to Experiment 1.  

 

 

In the nicotine group, the effect of cue omission appears stronger at the lower dose of 0,02mg/kg 

(Figure 25A), although the effect is not statistically significant, probably due to three rats, in which 

the effect is in the opposite direction. In a manner similar to Experiment 1 (Figure 8C), in the nicotine 

group, the extent of cue omission effect at 0.04mg/kg was not correlated to the extent of cue omission 

at 0.02mg/kg (Figure 25B).  

To assess whether pre-training with Pavlovian conditioning had impacted nicotine seeking behavior 

between Experiments 1 and 2, in particular in nicotine-cue interactions, we performed the same 

grouping analysis as done in Experiment 1, namely, separating them into three groups according to the 

ratio between their cue omission scores (Figure 26). There were no significant changes in the 

proportion of individuals allocated in Subgroups 1, 2 and 3 [Chi-Square = 0,4944, df = 2, p = ns]. This 

finding, together with the same acquisition curve in both experiments (Figure 22) suggests that, even 

Figure 24 - Experiment2 - Cue Omission Effect Figure 24– Cue Omission Effect - Omission of the cue resulted in a drop in self-infusions, in 

both nicotine and saline groups. **** = p<0.0001; ** = p<0.01, respective to their corresponding 

baseline. Bars represent means and error bars represent SEM 
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though pre-training had affected responding in the saline group, it had not made a significant impact 

on nicotine self-administration. 

 

 

 

 

 

 

. 

 

Figure 25 - Experiment2 - Cue Omission Effects at 0.04 and 0.02 mg/kg 

Figure 25– Cue Omission Effects at 0,04 and 0,02mg/kg  - (A) For the nicotine group in general, cue 

omission was slightly stronger at the lower dose of 0.02mg/kg, although not statistically different. (B) For the 

saline group, in mean the second cue omission test was not different from the first test. Bars represent group 

means, and error bars represent SEM (C) For the nicotine group, the percent changes in self-infusions after the 

respective cue omission in either dose were not correlated. Symbols represent individual nicotine rats, solid black 

line represents the linear regression line, and dotted curves represent the 95% confidence bands. 

(A) (B) 

(C) 

Figure 26 - Experiment2 - Comparison of Subgroup Proportions between Experiments 1 and 2 
Figure 26– Comparison of Subgroup Proportions between Experiments 1 and 2. – Performing the 

same grouping strategy as Experiment 1, reveals similar proportions of subgroup composition in Experiment 2. 

A Chi-Square comparison of each Subgroup between Experiments reveals no statistical differences.  
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Response to Nicotine Omission 

Nicotine substitution with saline in the nicotine group was associated with a significant increase in 

self-infusions (p<0.0001), revealing the contribution of nicotine in their self-administration (Figure  

27A). Since the saline group continued to receive saline infusions, their self-administration behavior 

did not change during the nicotine omission test (Figure 27B). Importantly, nicotine rats differed in 

the extent of nicotine omission effect at the individual level, with some rats increasing self-infusions to 

+200%, while some other remaining close to 0% change, or even slight decrease in infusions (Figure 

27C). 

 

 

Figure 27 - Experiment2 - Nicotine Omission Effects 

Figure 27 – Nicotine Omission Effects - (A) In the nicotine group, nicotine omission test 

resulted in a significant increase in self-infusions. ****=p<0.001, respective to the corresponding 

baseline. (B) In the saline group, no difference in their behavioral response between baseline 

and test day. (C) Amplitude in nicotine omission responses reveals individual differences. Bars 

represent mean of respective groups, error bars represent SEM, and symbols represent 

individual rats.  

(A) (B) 

(C) 
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Individual Differences in Nicotine-Cue Interactions  

Definition and Characterization of Subgroups 

In a refined approach to characterize rats according to their individual nicotine-cue interactions, we ran 

a cluster analysis taking into consideration two input variables, obtained from the first cue omission 

test and nicotine omission test, as explained in the Methods section. We identified 3 clusters of 

nicotine individuals that differed in the cluster input variables: Cluster1 (n=18), Cluster2 (n=21) and 

Cluster 3 (n=12) (Figure 28). A table summarizing how each cluster differed in the variables studied 

in this experiment is provided at the end of the Results section (Table 2).  

Figure 28 - Experiment2 - Differences in Cluster Variables among Identified Clusters in Nicotine Rats 

Figure 28 – Differences in Cluster Variables among Identified Clusters in Nicotine Rats 

(A) Global Cue Omission Effect. Clusters1 and 3 had the strongest cue omission effect. (B) Extinction 

Index for Cue Omission Test. Cluster 3 had the highest extinction index for the cue omission test. (C) 

Global Nicotine Omission Effect. Cluster 1 had the highest nicotine omission effect. (D) Extinction Index 

for Nicotine Omission Test. Cluster 3 had the highest extinction index, also for the nicotine omission test. 

Cluster1 had a strongly negative extinction index, suggesting that its pattern of self-infusions during 

nicotine omission was higher than baseline. Bars represent mean of respective clusters, error bars 

represent SEM. ****=p<0.0001, ***=p<0.001, **=p<0.01, respective to Cluster2.  

(A) (B) 

(C) (D) 
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Rats in Cluster 1 had a strong drop in self-infusions after cue omission (Figure 28A), but did not 

scored high in its associated extinction index (Figure 28B). Furthermore, a timeline of cumulative 

self-infusions of baseline and cue omission test sessions shows a significant difference between both 

sessions at t=64m and sustained for the remainder of the session (Figure 29A). In terms of nicotine 

omission, Cluster1 had the highest nicotine omission score of all clusters (Figure 28C), but also a 

negative extinction index profile during nicotine omission (Figure 28D).  A timeline of cumulative 

self-infusions shows a very rapid separation between baseline and the nicotine omission test, with 

statistical significance achieved already at t=2m and sustained for the rest of the session (Figure 29B). 

Importantly, an analysis on the inter-infusion interval during the middle of the nicotine omission test 

reveals that rats in Cluster 1 had drastically diminished the spacing between their infusions (Figure 

30), compared to their baseline, suggesting a much rapid self-administration in the absence of nicotine. 

Rats in Cluster 2 reported the weakest effect in both cue and nicotine omission tests (Figure 28A and 

C). In addition, elevations in extinction indices in both cue and nicotine omission were minimal 

(Figure 28B and D).  Comparison of cumulative self-infusions show no differences between baseline 

and cue omission test (Figure 29A), but nicotine omission test reveals a significant increase in 

cumulative self-infusions to its corresponding baseline at t=4min, sustained for the remainder of the 

session (Figure 29B).  However, an analysis of the interfusion interval during the mid-session of the 

nicotine omission test reveals that, at least between t=60 and t=120, rats in this cluster were self-

administering at the same speed as during baseline sessions (Figure 30). 

Rats in Cluster 3 have the strongest drop after cue omission (Figure 28A), accompanied by a drastic 

increase in its extinction index (Figure 28B), indicative that behavior is extinguishing in the absence 

of the nicotine-associated cue. Significant differences between baseline and cue-omission self-

infusions are first evident at t=91min, and sustained for the remainder of the session (Figure 29A). 
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Figure 29 - Experiment2 - Profiles of Cue and Nicotine Omission Tests from Identified Clusters 

Figure 29 – Profiles of Cue and Nicotine Omission Tests from Identified Clusters - (A) 

Effect of Cue Omission on Cumulative Infusions. Cue omission had a global effect of reducing self-

infusions with respect to baseline, although clusters differed in the speed of such decrease.  For Cluster1, 

cue omission had the fastest observable effect, with statistical difference reached at 64 minutes into the 

session, while for Cluster 3, at the 91th minute. The curve of self-infusions in Cluster 2 was not 

statistically different between baseline and cue omission tests at any point during the session. (B) Effect 

of Nicotine Omission on Cumulative Infusions. For all clusters, a sharp increase in responding was 

observed at the start of the nicotine omission session. However, statistical difference between cumulative 

infusions reached during baseline and nicotine omissions, for the remainder of the session, was only 

maintained in Clusters 1 and 2. Points represent the mean of each cluster, while error bars represented 

SEM. *= corrected p value of at least 0.05, comparing cumulative infusions, between baseline and 

omission sessions, minute by minute.  

(A) (B) 
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In terms of nicotine omission, rats in Cluster3 have a weak global effect (Figure 28C), accompanied 

by an increase in its extinction index (Figure 28D), indicative that behavior is extinguishing in the 

absence of nicotine (Figure 29B). The extinction profile, however, is less clear than for cue omission, 

with only a limited elongation in the spacing between infusions during the mid-session period of the 

nicotine omission test (Figure 30). Interestingly, cumulative infusions between baseline and the 

nicotine omission test differ significantly only between t=4min and t=25min, after which significance 

is lost, suggesting that a compensation effort was attempted, but later abandoned (Figure 29B). 

Differences in Acquisition of Self-Administration 

During acquisition, Cluster1 appeared to have had lower active responding than Cluster3 (Figure 

31A), although the differences are not significant [Cluster effect, F(2, 48)=1,8159, p=ns; Session 

effect, F(11, 528)=13,452, p<0,0001; Cluster x Session effect, F(22, 528)=0,85325, p=ns]. Clusters 

also did not differ in active vs inactive hole discrimination by the end of acquisition [Cluster effect, 

F(2, 48)=1,3292, p= ns; Cluster x Hole effect, F(2, 48)=1,8104, p=ns; Cluster x Hole x Session effect, 

: F(2, 48)=1,5649, p=ns]. Groups also did not differ in the baseline self-infusions (Figure 31B) or in 

the spacing of infusions in the midsession by the end of acquisition (Figure 31C). 

Figure 30 - Experiment2 - Differences in Mid-Session Inter-Infusion Intervals between Baseline Sessions and Nicotine 
Omission Test 

Figure 30 – Differences in Mid-Session Inter-infusion Intervals between Baseline 

Sessions and Nicotine Omission Test. Inter-infusion intervals (III) represent the spacing 

between self-infusions during a session of self-administration. Differences in III during the mid-session 

(between t=60 and t=120) indicates the effect of the omission test of the kinetics of infusion loading 

after stabilization. Cluster1 reported a substantial decrease in III during the nicotine omission test, 

indicating that rats had increased the frequency of self-infusions. Cluster3 had an elevation in III, 

although not statistically different from Cluster2, which had a minimal effect in III. *=p<0.05, respective 

to Cluster2. Bars represent mean value of each cluster and error bars represent SEM.  
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Pavlovian Conditioning and Cue Omission  

To assess whether the extent of Pavlovian conditioning to a saccharin-predicting cue could predict the 

extent of cue omission effects, we ran a correlational analysis between the three parameters obtained 

from PCA and the individual cue omission score. At the population level, the extent of saccharin 

conditioning predicted the contribution of the cue in nicotine self-administration (Figure 32), although 

the low coefficient of determination (r2) from the correlations suggests that the relationships are not 

strong at the population level.   

Figure 31 - Experiment2 - Differences in Acquisition of Nicotine Self-Administration among Clusters 

Figure 31 – Differences in Acquisition of Nicotine Self-Administration among 

Clusters - (A) Acquisition of self-administration (active vs inactive responding). Cluster 1 appears 

to have a lower acquisition curve, compared to cluster 3, although differences are not significant.   

(B) Baseline self-infusions at the end of acquisition. Cluster 1 appears to have a lower baseline, 

compared to cluster 3, although differences are not significant. (C) Midsession III at the end of 

acquisition. No differences among clusters. Symbols and bars represent mean cluster responses, 

and error bars represent SEM.  

(A) 

(B) (C) 
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The correlations between Pavlovian Conditioning parameters and Cue Omission observed in the 

general population, are only maintained in Cluster1 (Figure 33). There are no correlations with any of 

the other clusters, explaining the low coefficient of determination in the general population, except for 

a trend between cue omission effect and licks during CS presentation in Cluster3, but which is not 

maintained with probability or latency to lick.  

Response to 50% Reduction in Nicotine Dose 

At the population level, in the nicotine group, a sudden reduction of 50% in nicotine dose, from 0,04 

to 0,02 mg/kg, resulted in a drastic increase in self-infusions (p<0,0001) with respect to its 

corresponding baseline (Figure 34A). As expected, saline rats did not experience any significant 

change in their responding on this test day (Figure 34B). Individual differences in sensitivity to a 

change in nicotine dose are also apparent (Figure 34C). Interestingly, responding to nicotine omission 

did not correlate with responding after dose reduction (Figure 34D).  

 

Figure 32 - Experiment2 - Correlates of Pavlovian Conditioning and Cue Omission 

Figure 32– Correlates of Pavlovian Conditioning and Cue Omission – Cue omission scores in 

nicotine self-administration correlated with amount of licks, probability to licks, and latency to lick during CS 

presentation in Pavlovian Conditioned Approach. Individual symbols represent nicotine rats.  
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At the cluster level, rats in Cluster1 reported in mean the highest percent increase in respect to 

baseline, to an almost complete compensation, although this percent increase was not statistically 

different from the other clusters (Figure 35A). However, when comparing actual infusion numbers 

between baseline and change in dose, only Clusters 1 and 2 have significant increases in responding, 

compared to Cluster 3, which reported a weak effect (Figure 35B). Furthermore, a minute to minute 

comparison of cumulative infusions shows a faster elevation of responding in Cluster1, with statistical 

difference between baseline and change in dose first achieved at t=61m and sustained for the rest of 

Figure 33 - Experiment2 - Differences in Correlation between Pavlovian Conditioned Approach and Cue Omission 

Figure 33 – Differences in Correlation between Pavlovian Conditioned Approach Variables and 

Cue Omission – Correlations between Cue Omission score and (A) Licks during CS Presentation, (B) 

Probability to Lick during CS Presentation and (C) Latency to Lick during CS Presentation, per Cluster. 

Correlations are only evident in Cluster 1. Symbols indicate individual rats.   

(A) (B) (C) 
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the session (Figure 35C). Cluster3 responding was not statistically different from baseline at any point 

during the change in dose session (Figure 35C).  

Interestingly, Cluster1 reports a negative trend in the relationship between cue omission response and 

change in dose response (Figure 36) while Cluster 2 reports the exact opposite trend.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34 - Experiment2 - Effect of a 50% Reduction in Nicotine Dose 

Figure 34 – Effect of a 50% Reduction in Nicotine Dose - (A) In the nicotine group, a switch to 

0.02mg/kg resulted in a significant increase in self-infusions. ****=p<0.001, respective to the corresponding 

baseline. (B) In the saline group, no difference in their behavioral response between baseline and test day. (C) 

Amplitude in nicotine omission responses reveals individual differences. (D)  Extent of nicotine omission did not 

correlate with extent of compensation after change in dose. Bars represent mean of respective groups, error bars 

represent SEM, and symbols represent individual rats.  

(A) (B) 

(C) (D) 
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Figure 35 - Experiment2 - Differences in Responses to Dose Reduction among Clusters 

Figure 35 – Differences in Response to Dose Reduction among Clusters – (A) 

Differences in percent change in self-infusions after change in dose. Cluster1 reports the highest 

percent increase, although not significantly different to the other clusters. (B) Differences in self-

infusions between baseline and change in dose. Only Clusters1 and 2 report significant increases in 

self-infusions after change in dose. Bars represent mean cluster response, and error bars represent 

SEM. ****=p<0.0001 respective to baseline. (C) Differences in cumulative infusions after change in 

dose. Cluster1 has the fastest increase in self-infusions after change in dose, with a significant 

difference to baseline self-infusions evident at t=61 min. For Cluster2, curves are only significantly 

different at the end of the session. For Cluster3, there are no statistical differences between 

cumulative infusions. Points represent the mean of each cluster, while error bars represented SEM. 

*= corrected p value of at least 0.05, comparing cumulative infusions, between baseline and change 

in dose sessions, minute by minute. 

(A) 

(B) (C) 
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Differences in Responsiveness to Cue Omission (0,02mg/kg) 

A second cue omission test at 0.02mg/kg revealed no differences in the percent decrease in self-

infusions with respect to the corresponding baseline (Figure 37A). However, when comparing actual 

infusion numbers between baseline and change in dose, Clusters 1 and 2 have a stronger decrease in 

infusions (Figure 37B). Cluster 3 had a weaker effect (Figure 37B). Furthermore, a minute to minute 

comparison of cumulative infusions shows a faster decrease of responding in Cluster1, with statistical 

difference between baseline and cue omission test first achieved at t=14m and sustained for the rest of 

the session (Figure 37C). The effect of cue omission on the timeline of self-infusions for Cluster 3 

was only significant for the last 45 minutes of the session (Figure 37C). Interestingly, the extent of 

responsiveness to a change in dose (to 0,02mg/kg) correlated with cue omission at 0,02mg/kg, but 

only for Cluster 3 (Figure 38), suggesting that in this cluster, sensitivity to the change in dose 

predicted the role of the cue in the self-administration at 0,02mg/kg.  

Figure 36 - Experiment2 - Correlates between First Cue Omission (0.04mg/kg) and Change in Dose 
Figure 36 – Correlates between First Cue Omission (0.04mg/kg) and Change in Dose – 

Despite not being statistically significant, Clusters 1 and 2 have opposing trends in the relationship between 

response to cue omission at 0.04mg/kg, and response to change in dose (0.02mg/kg). Symbols represent 

individual rats.  



 
84 

 

Figure 37 - Experiment2 - Differences in Response to Cue Omission at 0.02mg/kg per Cluster 

Figure 37 – Differences in Response to Cue Omission at 0,02mg/kg per Cluster - (A) 

Differences in percent change in self-infusions after cue omission (0.02mg/kg). No differences among 

clusters. (B) Differences in self-infusions between baseline and cue omission. All clusters report 

significant decreases in self-infusions, although Cluster3 had the weakest decrease. Bars represent 

mean cluster response, and error bars represent SEM. ****=p<0.0001 respective to baseline. (C) 

Differences in cumulative infusions after cue omission. Cluster1 has the fastest decrease in self-infusions 

after cue omission, with a significant difference to baseline self-infusions evident at t=14 min. For 

Cluster2, curves are only significantly different at t=90 min, and for Cluster3, at t=135min. Points 

represent the mean of each cluster, while error bars represented SEM. *= corrected p value of at least 

0.05, comparing cumulative infusions, between baseline and change in dose sessions, minute by minute. 

(A) 

(B) (C) 
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Nicotine Metabolism  

At the population level, plasma cotinine levels were positively correlated with baseline infusions at the 

end of the acquisition period (Figure 39A), consistent with observations in Experiment 1. However, 

plasma cotinine was not correlated with percent change in infusions after cue-omission (Figure 39B), 

compared to Experiment 1.   

 

Figure 39 - Experiment2 - Correlates of Nicotine Metabolism 

Figure 38 - Experiment2 - Correlates between Change in Dose and Cue Omission (0.02mg/kg) Figure 38 – Correlates between Change in Dose and Cue Omission (0,02mg/kg) – The 

behavioral response to change in dose to 0.02mg/kg was correlated to cue omission at that dose, but only 

for Cluster3. Symbols represent individual nicotine rats.  

Figure 39 – Correlates of Nicotine Metabolism – (A) Plasma cotinine levels correlated positively 

with baseline infusions at the end of the acquisition period. (B) Plasma cotinine levels did not correlate with 

cue omission effect at 0.04 mg/kg. Symbols represent individual nicotine rats, solid black lines represent 

linear regression lines, and dotted curves represent the 95% confidence bands. 

(A) (B) 
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The aforementioned correlation between baseline infusions and plasma cotinine is not seen in the 

individual isolated clusters (Figure 40). Given the previous data obtained in Experiment 1, in which 

nicotine metabolism appeared to predict the first baseline in the group with stronger cue involvement 

in their self-administration, it remained a possibility that in our current clustering we are failing to 

capture that dimension, in isolation from nicotine responsiveness.  

 

 

 

 

 

 

 

 

 

 

 

In order to assess this possibility,  we ran a secondary clustering, in which all 51 nicotine rats were 

divided only based on their cue omission variables (global cue omission effect, and extinction index at 

t=60). We obtained two clusters (Figure 41A), a ClusterA (n=24), with the highest cue omission 

effect, and Cluster B (n=27), with the lowest cue omission effect.  Notably, the positive correlation 

between baseline infusions and cotinine plasma levels were only observed in those rats with the 

highest cue contribution in their self-administration (Figure 41C).  

Figure 40 - Experiment2 - Relationship between Nicotine Metabolism and Baseline Infusions per Cluster 

Figure 40 – Relationship between Nicotine Metabolism and Baseline Infusions per Cluster – (A) 

Comparison of plasma cotinine levels per cluster. There were no statistical differences between clusters. Bars 

represent mean cluster values, and error bars represent SEM. (B) Correlations between nicotine metabolism and 

baseline infusions after acquisition. Despite a correlation at the population level, no correlation at the individual 

cluster level. Symbols represent individual nicotine rats.  

(A) 

(B) 
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Figure 41 - Experiment2 - Nicotine Metabolism predicts Baseline Nicotine Infusions, but only in Rats with Strong Cue 
Contribution 

Figure 41 – Nicotine Metabolism predicts Baseline Nicotine Infusions, but only in Rats with 

Strong Cue Contribution – (A) Cluster analysis based only on Cue Omission parameters reveals two 

subpopulations: Cluster A, with the highest cue omission effect and highest extinction index at t=60, and Cluster 

B, with the lowest cue omission effect and lowest extinction index. Bars represent mean values per cluster and 

error bars represent SEM. ****=p<0.0001; *=p<0.05, respective to Cluster B. (B) Effect of Cue Omission on 

cumulative self-infusions. For Cluster A, the cue omission effect occurs fast, with significant differences in self-

infusions at t=55min. No statistical differences in cumulative self-infusions for Cluster B. Points represent the 

mean of each cluster, while error bars represent SEM. *= corrected p value of at least 0.05, comparing cumulative 

infusions, between baseline and change in dose sessions, minute by minute. (C) Correlation between baseline 

infusions and plasma cotinine. Correlation is only evident in Cluster A. Symbols represent individual rats.  

(A) 

(B) 

(C) 
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Gene Expression 

General Effects 

From all brains collected for gene expression (n=59), those of 22 nicotine and 3 saline rats were 

randomly selected for a first screening of gene expression. Due to time constraints, only the results of 

this first screening are shown.  

At the population level, nicotine self-administration produced an upregulation of β2 nAChR 

expression in both shell and core of the NAcc, although with a much more pronounced effect in the 

core (Figure 42A). In the shNAcc, the α4 nAChR was strongly upregulated, followed by α7 nAChR 

and D3 dopamine receptor. Expression of genes of interest in the BLA were all downregulated 

compared to saline controls. Gene expression at the mHb of genes of interest -α5 and β4 nAChRs, 

involved in nicotine aversion- was not altered at the population level (Figure 42A).   

At the cluster level, from all brains collected for gene expression (n=59), those of 22 nicotine and 3 

saline rats were randomly selected for a first screening of gene expression. From these 22 nicotine 

brains, 9 belonged to Cluster 1, 8 belonged to Cluster2 and 5 belonged to Cluster 3. Expression of the 

housekeeping gene Eef1a1 did not differ between clusters (data not shown). Cluster1 appeared to have 

the the highest upregulation of β2 nAChR in the cNAcc, and α4 nAChR in the shNAcc, although not 

statistically significant (Figure 42B). However, expression of α4 nAChR in the BLA was the lowest in 

Cluster 1. Cluster 2 and Cluster 3 appear to have some downregulation of β4 nAChR in the mHb 

compared to saline, although the trend is not statistically significant.  

Comparison of these results with the DCts (Figure 42C) suggests that the observed effects, in 

particular the decreased expression of α4 nAChR in the BLA, are not due to a bias introduced by 

comparison to saline rats.  
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Correlates of Gene Expression and Behavioral Variables 

(1) cNAcc 

When comparing gene expression with nicotine self-administration, response to a 50% reduction 

in dose was positively correlated with fold expression of α4 nAChR expression in the cNAcc 

(Figure 43A). Cluster2 appears to be its major contributor (Figure 43B).  

 

 

Figure 42 - Experiment2 - Differences in Gene Expression in Brain Areas Related to Nicotine Reinforcement, Nicotine-
Cue Interactions and Nicotine Aversion 

Figure 42 – Differences in Gene Expression in Brain Areas Related to Nicotine 

Reinforcement, Nicotine-Cue Interactions and Nicotine Aversion – (A) Fold expression of 

selected nAChR subunits, as well as dopamine receptors, in the core and shell of the nucleus 

accumbens (cNAcc and shNAcc), the basolateral amygdala (BLA) and the medial habenula (mHb) of 

nicotine rats (n=22). Nicotine treatment upregulated β2 nAChR in the cNAcc, as well as α4 nAChR in 

the shNAcc, while decreasing gene expression of α4, α7 and β2 nAChR in the BLA. (B) Fold expression 

of selected genes, per subcluster. Cluster1 had a trend of strong upregulation of β2 nAChR in the 

cNAcc, as well as α4 nAChR in the shNAcc, while having the least gene expression of α4 nAChR in the 

BLA. (C) Same data as above, but expressed as Delta CTs prior to conversion to Fold Expression by 

comparison to saline rats. Bars represent mean responses and error bars represent SEM. *=p<0.05.  

(A) 

(B) 

(C) 
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(2) shNAcc 

Response to a change in dose was correlated negatively to fold expression of α7 nAChR in the 

shNAcc at the population level (Figure 44A). At the cluster level, this correlation was maintained 

in Clusters 1 and 2, but not in Cluster 3 (Figure 44B).  Interestingly, and despite no correlation at 

the population level (Figure 44A), Cluster2 shows a negative trend between fold expression of 

dopamine D2 receptor and response to the cue omission test (Figure 44B).  

(3) BLA 

Neither response to change in dose nor to cue omission was correlated with α4 nAChR expression 

in the BLA at the population level (Figure 45A). However, at the cluster level, cluster 2 and 3 

showed positive correlations between α4 nAChR expression and change in dose (Figure 45B). 

Furthermore, Cluster 3 shows a positive correlation between fold expression of α4 nAChR and 

response to cue omission (Figure 45C) 

Figure 43 - Experiment2 - Correlates between Gene Expression in the cNAcc and Nicotine Self-Administration 
Figure 43 – Correlates between Gene Expression in the cNAcc and Nicotine Self-

Administration – (A) At the population level, change in responding after change in dose to 0.02mg/kg 

was positively correlated to fold expression of α4 nAChR in the cNAcc (B) At the cluster level, only 

Cluster2 maintained the correlation seen at the population level. Symbols represent individual rats.  

(A) 

(B) 
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Response to change in dose was correlated with both α4 and β2 nAChR expression in the BLA at 

the population level (Figure 46A). These relationships were only retained by Cluster 2 (Figure 

46-B-C), while Cluster 3 only showed the correlation between change in dose and β2 nAChR 

expression (Figure 46C). Cluster 1 reported none of these correlations.  

 

Figure 44 - Experiment2 - Correlates between Gene Expression in the shNAcc and Nicotine Self-Administration 

Figure 44 – Correlates between Gene Expression in the shNAcc and Nicotine Self-

Administration – (A) At the population level, change in responding after change in dose to 0.02mg/kg was 

negatively correlated to fold expression of α7 nAChR in the shNAcc; Response to cue omission at 0.04mg/kg 

was not correlated to fold expression of dopamine D2 in the shNAcc. (B) At the cluster level, only Cluster3 did 

not maintain the correlation between change in dose and α7 nAChR expression seen at the population level. 

(C)  Cluster 2 reports a negative trend between cue omission response and expression of dopamine D2 

receptor in the shNAcc. Symbols represent individual rats. 

(A) 

(B) 

(C) 
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(4) mHb 

Response to a nicotine omission test was correlated positively to fold expression of β4 nAChR in 

the mHb at the population level (Figure 47A). At the cluster level, only Cluster1 maintained the 

same level of correlation (Figure 47B). Interestingly, and despite the lack of correlation at the 

population level, Cluster 1 showed a negative correlation between β4 nAChR and response to 

change in dose (Figure 47C).  

Figure 45 - Experiment2 - Correlates between Gene Expression of a4-nAChR in BLA and Nicotine Self-Administration 

(A) 

(B) 

(C) 

Figure 45 – Correlates between Gene Expression of α4-nAChR in BLA and Nicotine Self-

Administration - (A) At the population level, neither change in responding after change in dose to 

0.02mg/kg nor response to cue omission at 0.04mg/kg were correlated to fold expression of α4 nAChR in 

the BLA. (B) At the cluster level, Clusters 2 and 3 had a positive correlation between change in dose and 

expression of α4 nAChR. (C) Cluster 3 had also a positive correlation between response to cue omission 

and expression of α4 nAChR. Symbols represent individual rats. 
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Figure 46 - Experiment2 - Correlates between Gene Expression of a7- and b2-nAChR in BLA and Nicotine Self-
Administration 

(A) 

(B) 

(C) 

Figure 46 – Correlates between Gene Expression of α7- and β2-nAChR in BLA and 

Nicotine Self-Administration - (A) At the population level, responding after change in dose 

correlated positively with both α7 and β2 nAChR expression in the BLA. (B) At the cluster level, only 

Clusters 2 retained the correlation between α7 nAChR and change in dose observed at the population 

level. (C) Only Cluster 1 did not show the positive correlation between response to change in dose 

and expression of β2 nAChR. Symbols represent individual rats. 
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Summary 

To provide a global picture of the behavioral, metabolic and neurobiological differences per cluster, 

Table 2 summarizes their distinct profiles. 

Figure 47 - Experiment2 - Correlates between Gene Expression of b4-nAChR in mHb and Nicotine Self-Administration 

(A) 

(B) 

(C) 

Figure 47 – Correlates between Gene Expression of β4-nAChR in mHb and Nicotine Self-

Administration - (A) At the population level, responding after nicotine omission correlated positively 

with both β4 nAChR expression in the mHb. No correlations were observed between response to change 

in dose and β4 nAChR expression (B) At the cluster level, only Clusters 1 retained the correlation between 

β4 nAChR and nicotine omission observed at the population level. (C) Despite no correlations at the 

population level, Cluster 1 did not show negative correlation between β4 nAChR and response to change 

in dose. Symbols represent individual rats. 



 

 

Characteristic Cluster1 (n=18) Cluster2 (n=21) Cluster3 (n=12) 

Cue Omission  
Strong cue omission effect. Cue is needed for 
SA.  

Weakest cue omission effect. Nicotine alone can 
drive most SA without cue.  

Strongest cue omission effect, extinction 
profile. Cue is needed for SA.  

Nicotine Omission 
Strongest nicotine omission effect. Omission of 
nicotine elevates SA. Cue is needed for SA.   

Weak nicotine omission, pattern of self-
administration is similar to baseline. Cue alone 
can drive most SA without nicotine.  

Weak nicotine omission effect, sharp early rise 
in infusions, but SA approaches an extinction 
profile. Nicotine is needed for SA.  

Pavlovian Conditioning vs  
Cue Omission 

Correlated, suggesting sensitivity to reward-
paired visual cues.  

No correlations No correlations 

Acquisition and Baseline 
Infusions 

Slightly lower acquisition and baseline 
infusions, but not statistically different. 

No differences 
Slightly higher acquisition and baseline 
infusions, but not statistically different. 

Change in Dose  
Strongest, and fastest, increase in cumulative 
infusions after change in dose. The most 
sensitive cluster.  

Increase in cumulative infusions after change in 
dose.  

Weakest increase in cumulative infusions after 
change in dose. Least sensitive cluster.  

Cue Omission (0,02 mg/kg) 
Strongest, and fastest, decrease in cumulative 
infusions after cue omission at new dose.  

Decrease in cumulative infusions after cue 
omission at new dose 

Weakest decrease in cumulative infusions 
after cue omission at new dose. 

Change in Dose vs  
Cue Omission (0,02 mg/kg) 

No correlations No correlations 
Correlated, suggesting that cue experience is 
related to sensitivity to change in dose  

Nicotine Metabolism No differences No differences No differences 

Gene Expression - cNAcc 
α4 nAChR – trend positively with change in 
dose response (not significant) 

α4 nAChR – correlated positively with change in 
dose response 

No correlations 

Gene Expression - shNAcc 
α7 nAChR -  correlated negatively with change 
in dose response 

α7 nAChR -  correlated negatively with change 
in dose response 
 
D2 dopamine -  negative trend with cue omission 
effect 

No correlations 

Gene Expression - BLA Lowest α4 nAChR in the BLA. No correlations 
α4, β2 and α7 nAChR – correlated positively 
with change in dose response 
 

α4 and β2 nAChR – correlated positively with 
change in dose response 
 
α4 nAChR – correlated positively with cue 
omission 

Gene Expression - mHb 
β4 nAChR – correlated positively with nicotine 
omission, but negatively with change in dose 
response 

No correlations. No correlations.  

Table 2 - Experiment 2 - Summary of Behavioral, Metabolic and Neurobiological Correlates of Identified Clusters Table 2 – Summary of Behavioral, Metabolic, and Neurobiological Correlates of Identified Clusters.   
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Discussion  

Refined Approach at Identifying Individual Differences in the Mechanisms of Nicotine Seeking 

In this second experiment, we sought to refine our experimental approach by improving our 

classification criteria, as well as expanding the external variables that could help validate the 

behavioral phenotypes identified. Through the combination of (1) adding a nicotine omission test that 

would allow direct comparison to cue omission test, (2) developing an ‘extinction index’ parameter, 

that would give us a temporal dimension of the omission effects and (3) using a clustering method 

widely used to identify individual differences (Newby and Tucker, 2004) without arbitrary thresholds, 

we evidenced three clusters of rats, which differed in the contributions of nicotine, cue, or their 

combination, in their nicotine self-administration, with external correlates that could confirm their 

behavioral phenotype.  

 

Cluster1 – Strong Cue Sensitivity despite Nicotine Aversion Sensitivity  

Rats in Cluster1 appeared to combine a strong sensitivity to the reinforcing effects of the visual cue, 

with sensitivity to the aversive effects of nicotine.   

The strong involvement of the cue in the nicotine self-administration of Cluster 1 is evidenced by the 

strong cue omission response at the training dose of 0.04 mg/kg, with a sharp and sustained decrease 

in self-infusions (Figure 29), which was part of its defining criteria. Despite that the global effect of 

the cue-omission at 0.02mg/kg was not different from other groups (Figure 37A), a within-session 

analysis reveals that Cluster 1 had the most sustained reduction in self-infusions respective to its 

baseline, compared to the other clusters (Figure 37C).   

Interestingly, Cluster1 was the only subgroup in which the cue omission effect at 0.04mg/kg was 

correlated with all variables obtained from Pavlovian Conditioned Approach (Figure 33A-C). This is 

noteworthy, as it reflects that the extent of conditioning to a saccharin-predicting cue (how many licks, 

how fast, and how likely) predicted the contributions of the nicotine-paired cue during nicotine self-

administration. The extent of the conditioned response directed to the site where saccharin was to be 
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delivered (also known as ‘goal tracking’ response) is indicative of how strongly the CS has become 

predictive of the reward (Robinson and Flagel, 2009). This could be interpreted that for those rats in 

Cluster1 that were faster, and better, to learn the CS-US relationship during Pavlovian conditioning to 

saccharin, tended to have a faster, and better, learning capacity to associate nicotine with its associated 

cue, which was revealed through the cue omission test. In other words, rats in this cluster would retain 

the magnitude of reward-stimulus learning from saccharine, and apply it to nicotine.  

However, this interpretation presents a key limitation for this cluster: rats in Cluster 1 appear to have 

sensitivity to nicotine aversion. Upon nicotine omission, rats not only self-administer the cue in the 

absence of nicotine, but they do it with a higher magnitude (Figure 29B), and with a much faster 

frequency (Figure 30) than their baseline conditions. Furthermore, the acquisition curve (Figure 

31A), and the baseline infusions at the end of acquisition (Figure 31C) during nicotine self-

administration is the lowest among the three clusters, suggesting a limited tolerance to nicotine. 

Finally, when switching to a lower dose, Cluster 1 had the strongest (Figure 35A) and fastest (Figure 

35C) increase in self-infusions. Interestingly, the extent of cue omission response appears to predict 

the extent of response to a reduction in nicotine dose (Figure 36), i.e. those rats that tended to drop 

more self-infusions after cue omission tended to have the highest compensatory response when the 

dose was changed.  This data suggests that nicotine was playing a limiting role in their self-

administration, and that the most important component of their operant behavior was responding for 

the cue. Indeed, it is well known that nicotine is an irritant, and some individuals are protected from 

nicotine dependence through increased sensitivity to the aversive effects of nicotine (Sartor et al., 

2010; Hoft et al., 2011; Haller et al., 2012; Svyryd et al., 2016). 

Confirming a profile of nicotine aversion sensitivity, Cluster 1 was the only subgroup in which the 

expression of β4 nAChR in the mHb is strongly correlated with nicotine omission score (Figure 47-

B). The β4 subunit is a key accessory subunit of nAChRs, linked to the efficacy of nicotine-evoked 

currents (Frahm et al., 2011; Slimak et al., 2014) and, in the mHb, it has been identified as one of the 

key players in mediating nicotine aversion (Salas et al., 2009; Frahm et al., 2011).  The partnership of 

α5 and β4 nAChR subunits in supporting evoked nicotine currents in the habenular-interpeduncular 
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pathway allows for negative regulation of nicotine intake (Antolin-Fontes et al., 2015). Indeed, mice 

that have a genetically-induced overexpression of β4 nAChR in the mHb have reduced nicotine intake, 

and show strong place aversion to nicotine (Frahm et al., 2011; Slimak et al., 2014). Even if overall 

levels of β4 in the mHb are not different among clusters (Figure 42B), the strong positive correlation 

between β4 nAChR in the mHb and nicotine omission response in this cluster, suggests the 

involvement of habenular signaling in their nicotine omission response, adding strength to their 

nicotine aversion profile.   

Interestingly, expression of β4 nAChR in the mHb was also correlated with a change in dose response, 

but through a negative correlation (Figure 47C). This indicates that those rats in Cluster 1 with the 

highest expression of β4 nAChR in the mHb were the most sensitive to nicotine aversive properties, 

with the highest increase in responding in a nicotine-free environment, but with the lowest 

compensatory increase when the dose of nicotine was lowered. It is possible that 0.02mg/kg was still 

too high a dose of nicotine for these rats with heightened β4 expression, explaining their lack of 

compensatory increase in responding.  

However, an increased sensitivity to nicotine reinforcement cannot be ruled out completely in rats of 

Cluster1. Mice that have oversensitive α5/α3/β4 nAChR have a shifted dose response curve, i.e., they 

are more sensitive to both the reinforcing and aversive effects of nicotine (Gallego et al., 2012). It can 

be argued that the lower baseline observed in our study could be explained by an increased sensitivity 

to nicotine, thus requiring less amount of nicotine to maintain nicotine self-administration. However, 

rats with hypersensitive α5/α3/β4 nAChR tend to show a quicker acquisition curve, with a quicker 

discrimination between active and inactive holes (Gallego et al., 2012), which is not the case in our 

study (Figure 31).  

In humans, the single nucleotide polymorphisms (SNPs) in β4 nAChRs that provide hypersensitivity 

to nicotine aversion make smokers less likely to be nicotine dependent, with fewer number of 

cigarettes per day (Haller et al., 2012). Furthermore, these rare human β4 nAChRs variants show 

increased currents to low doses of nicotine (Haller et al., 2014), and their forced expression in mice 
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reduced nicotine intake in a two-bottle choice protocol (Slimak et al., 2014), without abolishing it 

completely. In our Cluster 1, rats continued nicotine self-administration, even if at a low level. This 

suggests that their aversion to nicotine was not strong enough to prevent them from acquiring, and 

maintaining, self-administration, but it seems strong enough for the balance between nicotine 

reinforcement and aversion to be tipped towards the latter. In fact, rats in this cluster retain some level 

of reinforcement to nicotine, even if not heightened. Cluster1 reports the highest increase in α4 

nAChR subunit expression in the shNAcc, and the highest increase in β2 nAChR subunit expression in 

the cNAcc. The α4β2 nAChR assembly in the nucleus accumbens plays key roles in nicotine 

reinforcement (Corrigall et al., 1994; Pontieri et al., 1996; McGranahan et al., 2011). In this regard, it 

is noteworthy that Cluster1 shows a positive trend between the expression of α4 nAChR subunit in the 

cNAcc and change in dose response (Figure 43B).  Nicotine reinforcement is dependent on α4β2 

nAChR activation in both the VTA and the NAcc, in the latter through presynaptic modulation of 

dopamine release from incoming VTA axons (Dani et al., 2000), but also through activation of 

cholinergic interneurons in the NAcc (Aosaki et al., 1995). Activation of cholinergic interneurons in 

the NAcc is able to trigger release of dopamine from VTA axons terminating in the NAcc  (Cachope et 

al., 2012; Threlfell et al., 2012), thus providing a complex interplay of the dopaminergic and 

cholinergic systems in the nucleus accumbens. This may suggest that compensation to a change in 

dose in this cluster may also involve a seeking for higher reinforcing effects of nicotine, rather than 

responding more for the cue in the midst of lower amounts of nicotine.  

Furthermore, Cluster 1 and 2 showed negative correlations between α7 nAChR subunit expression in 

shNAcc and response to change in dose (Figure 44B), consistent with previous studies that have 

shown how α7-nAChR-mediated signaling in the shNAcc is inversely correlated with motivation to 

self-administer nicotine (Brunzell and McIntosh, 2012; Harenza et al., 2014). Indeed, pharmacological 

blockade of α7-nAChRs in the shNAcc greatly reduced nicotine self-administration using a 

progressive ratio approach (Brunzell and McIntosh, 2012), while full α7-KO mice have been shown to 

have higher dopamine release in the NAcc (Besson et al., 2012), and show nicotine place preference at 

a lower dose compared to wild-types (Harenza et al., 2014). Furthermore, human studies have shown 
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that loss-of-function mutations in CHRNA7, the gene that encodes the α7 subunit, are a risk factor for 

tobacco dependence (Mexal et al., 2010; Araud et al., 2011; de Lucas-Cerrillo et al., 2011; Cameli et 

al., 2018). 

Even if limited, this evidence suggests that rats in Cluster1 have some degree of reinforcement to 

nicotine, as shown by the involvement of α4 nAChR in the cNAcc, and that of α7 in the shNAcc, with 

the response to a change in dose. However, the balance between nicotine reinforcement and aversion 

may be tipped towards the latter.  

In this sense, an alternative explanation for the correlation between conditioning to a saccharin-

predicting cue and cue omission effect could be explained by the fact that ‘goal-tracking’ responses 

also tell us how strongly the reward itself is ‘wanted’, as rats with the highest goal-tracking response 

show incentive salience for the reward (Lee et al., 2018a). When considering the effect of saccharin 

conditioning to baseline saline self-administration (Figure 23), but not on that of nicotine, it is 

possible that conditioning to a sweet-reward, like saccharin, cross-sensitized responding to the visual 

cue, priming the dopaminergic system for a heightened response (Rada et al., 2005). In that sense, if 

Cluster 1 is more sensitive to nicotine aversion, then its true goal in nicotine self-administration is not 

much the reinforcement of nicotine or the effects of nicotine on the cue, but rather the reinforcing 

effects of cue alone, as revealed by the nicotine omission test. This response to the cue can be made 

equivalent to their ‘goal-tracking’ behavior during Pavlovian conditioning.  Therefore, they retain a 

‘saline-like’ heightened responsiveness for the cue, as the balance between nicotine aversion and 

reinforcement is tipped towards the former.  

 

Cluster2 – Sensitivity to Nicotine and Nicotine-paired Cue as a Conditioned Reinforcer  

Nicotine seeking in rats in Cluster 2, the biggest subgroup, appears driven by a combination of the 

primary reinforcing actions of nicotine, and the transformation of the nicotine-paired cue as a 

conditioned reinforcer, capable of driving self-administration even in the absence of nicotine.  
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Cluster2 had the defining characteristic of having the lowest effect of cue or nicotine omission (Figure 

28), both in global effects, as well as extinction indexes. Removal of the cue did not greatly alter their 

self-administration profile (Figure 29A), while removal of nicotine caused an initial sharp increase in 

responding (Figure 29B), followed by a rate of self-infusions not different from their baseline rate 

(Figure 30).  

The characteristic response to cue omission at the training dose could be explained by a heightened 

sensitivity to the reinforcing actions of nicotine, which, by themselves, appear enough to sustain self-

administration.  For example, rats in Cluster 2 show a substantial increase in their self-infusions after 

change in dose (Figure 35). When nicotine was omitted, the initial response was a sharp increase in 

self-infusions, possibly in an attempt to seek for the absent nicotine. The nicotine omission response of 

this Cluster2 is remarkable in that, after this brief initial response, the cue appears to have gained 

sufficient power as a conditioned reinforcer to drive a rate of self-administration that is not different 

from their baseline, even in the absence of nicotine. This is consistent with previous studies that have 

shown that nicotine can transform associated cues into conditioned reinforcers, which can sustain self-

administration long after nicotine has been discontinued (Johnson et al., 2004; Cohen et al., 2005; 

Donny and Jones, 2009; Rupprecht et al., 2015). 

In human studies, it has been shown that, in some individuals, the environmental stimuli that had 

become conditioned reinforcers due to their association with nicotine are major sources of craving  

(Tiffany and Hakenewerth, 1991; Cepeda-Benito and Tiffany, 1996), and thus contribute to relapse 

(Tiffany et al., 2000). Some smokers that have been switched to de-nicotinized cigarettes report lower 

cravings to smoke (Dallery et al., 2003; Donny and Jones, 2009; Barrett, 2010), suggesting that the 

conditioned stimuli associated with smoking, such as rolling a cigarette (Baker et al., 2006), or the 

oropharyngeal sensations of smoking (Rose et al., 1985; Brauer et al., 2001), have become strong 

reinforcers. On the same regard, some smokers report an increase in craving after observing friends 

smoking, or when visiting the places associated with smoking (Niaura et al., 1992; Conklin and 

Tiffany, 2002; Van Gucht et al., 2010; Shiffman et al., 2015).  



 
102 

Despite that in Cluster 2 both nicotine reinforcement and cue as conditioned  reinforcer drive nicotine 

seeking, , there seems to be some degree of individual variations within the same cluster, in which rats 

appear to form a continuum, from those who are predominantly more nicotine sensitive, to those who 

are predominantly more sensitive to the cue as a conditioned reinforcer. It is noteworthy that, despite 

not being statistically significant, there is a positive trend between cue omission and the response to an 

acute change in dose (Figure 36) seen only in this cluster, suggesting that those with the lowest cue 

omission score had the highest sensitivity to nicotine. Despite the general observation that nicotine is 

only poorly reinforcing (Caggiula et al., 2001; Rose, 2006), there is evidence that suggests that some 

individuals may have greater sensitivity to the reinforcing actions of nicotine than others, in particular 

those with key SNPs in α4 nAChRs (Tapper et al., 2004; Hutchison et al., 2007).  Notably, the 

response to a change in dose was correlated positively with the expression of α4 nAChR subunit in the 

cNAcc (Figure 43), just like Cluster 1, albeit with a much stronger correlation.  

It is interesting that response to a change in dose was also correlated to α4 nAChR, α7 and β2 nAChR 

subunits in the BLA (Figure 45B and 46B). Furthermore, expression of α4 nAChR in the BLA was 

the highest in Cluster 2 (Figure 42). The BLA is part of a wider network of brain structures involved 

in drug reinforcement (Everitt and Robbins, 2005), in particular in the establishment of contingent 

relationships between drugs and associated environmental cues (Sharp, 2018), the latter becoming 

conditioned reinforcers that can energize drug seeking. The BLA receives dopaminergic input from 

the VTA, as well as glutamatergic inputs from the thalamus and medial prefrontal cortex, and sends 

projections to the NAcc, where it plays a role in modulating dopamine neurotransmission (Everitt et 

al., 1999; Chiamulera, 2005; Everitt and Robbins, 2005). Activation of the BLA upon cue presentation 

precedes, and it is necessary to, cue-evoked firing at the NAcc (Ambroggi et al., 2008).  

While an involvement of the BLA in the sensitivity to the reinforcing effects of nicotine per se has 

never been directly studied in the literature, the correlations observed in this study could simply 

evidence the complex involvement of the BLA-NAcc pathway in nicotine-cue interactions, in 

particular in updating the contingency of the behavior after a sudden decrease in dose.  
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Despite not being statistically significant, Cluster2 reports a trend between dopamine D2 receptor 

expression in the shNAcc, and the response to cue omission (Figure 44C), i.e. the highest D2 

expression in this area was related to the highest drop in self-infusions after cue omission. Dopamine 

neurotransmission in the shell of the nucleus accumbens, through activation of both D1 and D2 

dopamine receptors, has been long implicated with nicotine reinforcement (Corrigall and Coen, 1991; 

Corrigall et al., 1994), but also with the establishment of cues as conditioned reinforcers to nicotine 

(Liu et al., 2010). Pharmacological blockade of D1 or D2 dopamine receptors reduced cue-induced 

reinstatement to nicotine seeking (Liu et al., 2010), providing evidence that the dopamine 

neurotransmission at the D1-D2 receptors are important in nicotine-paired cues becoming conditioned 

reinforcers, in a similar way that it has been found for other food or drug reinforcers (Koch et al., 

2000; Schmidt and Pierce, 2006; Wise, 2006; Di Chiara and Bassareo, 2007; Lex and Hauber, 2008). 

Considering the role of dopamine in cue conditioning, our results suggest that, for Cluster2, the extent 

of cue omission response occurs as a function of how much the cue has gained reinforcement 

properties by its Pavlovian association with nicotine, most probably involving a dopamine at the 

shNAcc. This could explain why those rats with the lowest cue omission score had also the highest 

sensitivity to a change in dose to nicotine (Figure 36).  

Thus, for Cluster 2, nicotine seeking is potentiated by sensitivity to nicotine primary reinforcement, as 

well as by a cue acting as conditioned reinforcer. Since the strength of a conditioned reinforcer 

depends, in part, on the strength of the primary reinforcer (Annau and Kamin, 1961; A. Rescorla and 

Wagner, 1972), including nicotine (Palmatier et al., 2008a), it comes as no surprise that in this 

subgroup of rats with an overall heightened sensitivity to nicotine reinforcement, the cue has also 

gained strength as a conditioned reinforcer, both factors contributing to the nicotine seeking profile of 

this subgroup.  
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Cluster3 – Nicotine-induced Enhancement of Cue Reinforcing Effects  

Nicotine seeking in rats in Cluster 3, appears driven by the reinforcing-enhancing effects of nicotine 

on surrounding stimuli, and less by the primary reinforcing actions of nicotine, or cue, by themselves.  

The defining characteristic of Cluster 3 is a strong decrease in cue omission, a relatively low increase 

in nicotine omission, but strong extinction indexes in both omission tests (Figure 28). Omission of the 

cue, or nicotine, leads to an extinction-like phenotype (Figure 29), revealing the necessity of both 

nicotine and cue to be present in order to drive the self-administration behavior  

A closer observation should reveal that the extinction-like behavior after cue omission is much 

stronger than that after nicotine omission. In other words, if needed to be separated from each other, 

the contributions of the cue appear to be more well-defined than those of nicotine alone. In fact, 

Cluster 3 showed the poorest response to change in nicotine dose (Figure 35C). Furthermore, the 

response at cue omission at 0.02mg/kg was the weakest of all clusters (Figure 37C), and not 

comparable with the strong cue omission profile seen in this cluster at the training dose. This trend is 

consistent with what it would be expected for a dose-dependent, reinforcing-enhancing effect of 

nicotine on a cue (Liu et al., 2007), in which the effect of nicotine on the cue would be reduced if the 

dose is reduced. Critically, however, the contributions of the cue were dose-dependent, as the extent of 

cue omission response at 0.02mg/kg was negatively correlated to how much they had compensated in 

response to the change in dose from 0.04 to 0.02mg/kg (Figure 38). This adds further support to the 

notion that nicotine is directly determining cue reinforcement in this cluster.  

The reinforcing-enhancing effects on cues exerted by nicotine have been proposed as one of the key 

mechanisms through which nicotine can be so addictive (Caggiula et al., 2009; Rupprecht et al., 2015), 

as it can powerfully increase the incentive salience of surrounding stimuli, making self-administration 

much more robust. It is noteworthy that Cluster 3 had greater number of self-infusions achieved during 

acquisition days, and had a slightly higher baseline before the first cue omission test (Figure 37), a 

trend that was maintained throughout the experiment (data not shown).  
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The behavioral profile of Cluster3 reminds the profile of those smokers who consume nicotine for its 

effect in enhancing the salience of stimuli in their surrounding environment. Even though the 

reinforcer-enhancing effects of nicotine were first documented in animals (Chaudhri et al., 2006; Liu 

et al., 2007; Palmatier et al., 2007), there is now substantial evidence of its existence in humans 

(Perkins and Karelitz, 2013, 2014; Perkins et al., 2015, 2017, 2018; Martin and Sayette, 2018). In 

addition, some studies have proposed a ‘self-medication’ hypothesis of nicotine seeking, in which 

individuals with socioeconomic or health conditions associated with poor opportunities for reward 

seek nicotine for its reinforcer-enhancing effects on environmental stimuli (Perkins, 2009; Audrain-

McGovern et al., 2014; Leventhal, 2016; Lee et al., 2018b). It is now well documented that sensory 

anhedonia during nicotine withdrawal can be a strong factor for relapse (Pergadia et al., 2014; Cook et 

al., 2015; Piper, 2015; Piper et al., 2017).  

For Cluster3, correlations between gene expression and selected variables in nicotine self-

administration were only seen in the BLA. Expression of α4 and β2 nAChR in the BLA was positively 

correlated with response to a change in dose in a manner similar to Cluster2 (Figure 45 and 46). 

Importantly, for Cluster3, α4 nAChR in the BLA was also correlated with cue omission effect (Figure 

45C), although it is noteworthy that rats with the lowest α4 nAChR in the BLA had the highest cue-

omission effect, but at the same time had the lowest response to change in dose. This suggests that α4-

containing nAChRs in the BLA of Cluster 3 may play opposing roles in the modulation of sensitivity 

to nicotine dose and response to cue omission.   

The association of the BLA in the cue omission response in Cluster 3 is not surprising, considering 

that BLA is pivotal in stimulus-control of drug seeking behaviors (Whitelaw et al., 1996; Meil and 

See, 1997; Di Ciano and Everitt, 2004; Everitt and Robbins, 2005; Sharp, 2018), including nicotine 

(Everitt et al., 1999; Chiamulera, 2005; Kelsey et al., 2009; Koob and Volkow, 2010; Khaled et al., 

2014). Although the nicotine-induced enhancement of cue reinforcement has been extensively studied 

in animal studies (Olausson et al., 2004; Chaudhri et al., 2006; Palmatier et al., 2007; Liu et al., 2007; 

Caggiula et al., 2009; Grimm et al., 2012; Palmatier et al., 2013), and is also evident in some human 

studies (Perkins and Karelitz, 2013, 2014), the precise neurobiology of these effects is poorly known. 
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The only studies that have attempted to discover the biological mechanisms of this phenomenon 

showed that the reinforcing-enhancing effects of nicotine are dependent on α4β2 nAChR (Liu et al., 

2007) and D1 and D2 dopamine signaling (Palmatier et al., 2014), but are not dependent on α7 nAChR 

(Liu et al., 2007) nor metabotropic glutamate receptor function  (Palmatier et al., 2008b). The precise 

structures in the circuitry recruited in this phenomenon are, however, still unknown, although there are 

reasons to point at the BLA as a key structure in this enhancement of reinforcement. The BLA is rich 

in nAChRs, in particular those containing α4β2 (Wada et al., 1989) and α7 (Klein and Yakel, 2006) 

subunits, which have been found to fine tune amygdalar synaptic transmission (Huang et al., 2008; 

Jiang and Role, 2008; Mansvelder et al., 2009; Feduccia et al., 2012; Pidoplichko et al., 2013), thus 

impacting behaviors like working memory (Addy et al., 2003; Barros et al., 2005) and conditioned 

place preference (Zarrindast et al., 2010). Dopamine signaling in the NAcc can be controlled by the 

BLA (Everitt et al., 1999; Chiamulera, 2005; Everitt and Robbins, 2005), and because of this, the BLA 

it is thought a major integrative hub for incoming information about sensory and motivational value of 

environmental stimuli, relaying such signals to the NAcc in preparation for a behavioral response to 

said stimuli (Chiamulera, 2005; Everitt and Robbins, 2005).  It follows that the BLA would play a key 

role in the nicotine effects on cue observed in Cluster3.  

 

Nicotine Metabolism and Baseline Self-Administration of Nicotine 

The speed of nicotine metabolism has been identified as an often-overlooked factor in determining the 

eventual risk for nicotine dependence in humans, with slow metabolizers being at a reduced risk to 

being smokers (Mamoun et al., 2015), while fast metabolizers being more likely to transit into heavy 

smoking (Rubinstein et al., 2013). While nicotine metabolism in our Experiment 2 was not related to 

any parameter in our identified clusters, baseline self-infusions correlated with the speed of 

metabolism at the population level, (Figure 39). Interestingly, this correlation was maintained only in 

those rats with the strongest sensitivity to the cue (Figure 41). Although causality is unknown, a 

possible interpretation could be that a faster metabolism is translating itself into a quicker self-
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administration to nicotine, and this in turns results in increased nicotine-cue presentations. A similar 

proposal has risen in human studies, which have evidenced that fast metabolizers tend to have higher 

cue-induced craving to smoking-related cues compared to slow metabolizers (Tang et al., 2012; 

Falcone et al., 2016).  It thus follows that the metabolism-baseline relationship would be more evident 

in those where the cue has gained reinforcement properties in its pairing with nicotine. However, the 

low coefficient of variation (Figure 41)  suggests that these relationships are weak, as nicotine-cue 

interactions are probably much more complex than simple Pavlovian CS-US pairings, as it has been 

explained in the description of our Clusters.  

 

Limitations 

In this study, we have sought to evidence, and characterize, individual differences in the mechanisms 

that drive nicotine seeking, in particular, those that involve different nicotine-cue interactions, as we 

had previously proposed (Garcia-Rivas et al., 2017).  

There are specific limitations to our findings. First, the gene expression analysis presented is not 

complete, as due to time constraints, only 42% of all brains underwent microdissection and PCR. A 

first important step is to complete the validation of these neurobiological correlates that distinguish 

each cluster, and by so doing validating the conclusions discussed in this manuscript. 

Second, an inherent limitation of correlational studies is that causation can only be inferred. While 

correlational studies provide us with useful information to support the involvement of structures and 

suggest possible mechanisms, further studies should assess causality, through interventions that 

prevent, generate, or reverse, the phenotypes observed in this study, through the use of techniques like 

opto- or chemogenetics, or through the plethora of genetic tools developed in mice.  

Third, given the limited timeline of the experiment, only limited tests were done. Further tests could 

have provided complementary information about the contributions of the cue, and the nicotine 

reinforcement, in their nicotine seeking, for example, testing more dose changes (to better assess 

nicotine sensitivity), using a progressive ratio protocol (to evidence different degrees of nicotine 
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reinforcement) and cue-induced reinstatement (as complementary dimension to cue omission tests), as 

well as extending the length of nicotine exposure, to assess the temporal evolution of these nicotine-

cue interactions 

Conclusion 

Despite the aforementioned limitations, which have the potential to be bypassed in further studies 

extending beyond this dissertation, here we have provided neurobiological, metabolic and behavioral 

correlates of individual differences in the mechanisms that drive nicotine seeking. We evidenced three 

clusters of rats that differ in the extent in which nicotine, and its associated cue, can drive their self-

administration behavior. One of such groups (Cluster1) showed self-administration of the cue, despite 

an aversive sensitivity to nicotine. The other two groups (Cluster2 and 3) showed nicotine-cue 

interactions: for Cluster 2, the cue seemed a conditioned reinforcer, while for Cluster 3, the 

reinforcement of the cue appeared dependent on nicotine. These results are not only the first 

preclinical demonstration of different mechanisms that drive nicotine seeking, but also raise important 

implications in the therapeutic approaches against tobacco dependence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
109 

 

Chapter 4 

THE EFFECT OF VARENICLINE ON 
THE REINFORCEMENT-ENHANCING 

EFFECT OF NICOTINE ON ASSOCIATED 

CUES 
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ABSTRACT 

Varenicline (Champix® or Chantix®), a partial agonist of nicotine at the α4β2 nicotinic receptor, is an 

approved pharmacotherapy against tobacco dependence, although with limited efficacy.  

Nicotine seeking is strongly supported by complex interactions between nicotine and environmental 

cues. A key effect of nicotine on surrounding cues is its capacity to enhance the reinforcing properties 

of salient environmental stimuli, a phenomenon that is thought to play a prominent role in nicotine 

seeking. It is still not well understood whether the decrease of nicotine self-administration by acute 

Varenicline results from antagonism of the primary reinforcing effects of nicotine, of the 

reinforcement-enhancing effect of nicotine on cues, or of a combination of both. 

Using an intravenous self-administration paradigm in rats, we confirmed that acute Varenicline 

decreases self-administration reinforced by nicotine accompanied by a salient visual cue light and 

demonstrated that it also decreases self-administration reinforced by nicotine alone, to a lesser extent. 

Using a novel approach that allows for changing the visual salience of the nicotine-paired cue during 

self-administration, we demonstrate that nicotine enhances the reinforcing effects of a sudden increase 

in cue salience. Critically, we show that Varenicline specifically targets this potentiation by nicotine of 

increased cue salience.  

Our results support individual variations in both nicotine reinforcing effects and nicotine-induced 

enhancement of cue reinforcing effects. Importantly, individual variations in the latter, but not in the 

former, would determine the amplitude of acute Varenicline-induced decrease in seeking.  

Since it is known that smokers differ in the mechanisms that drive their drug seeking, these results 

suggest that Varenicline might be more beneficial as a clinical tool in those smokers who are more 

sensitive to nicotine effects on surrounding stimuli, and less for those who seek nicotine primarily for 

the primary reinforcing effects of nicotine. 
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INTRODUCTION 

Tobacco dependence continues to be a worldwide major health burden, being responsible for as much 

as 7 million deaths per year (WHO, 2017). More than 70% of smokers wish to quit (U.S. Department 

of Health and Human Services, 2012), but less than 10% succeed without medical support (Rigotti, 

2012). Even so, a major obstacle in ceasing to smoke is the limited efficacy of available treatments 

against tobacco dependence (Schuit et al, 2017). For instance, from all patients treated with 

Varenicline (Champix® or Chantix®), one of the most effective approved pharmacotherapies in 

supporting smoking cessation (Cahill et al, 2013; Hartmann-Boyce et al, 2014), only 40% remain 

abstinent at the end of a 12-week-long treatment, dropping to 20% in the following months after 

treatment cessation (Jordan and Xi, 2018; Niaura et al, 2008; Oncken et al, 2006).  

Varenicline was specifically developed as a partial agonist for α4β2-containing nicotinic cholinergic 

receptors (Coe et al, 2005; Rollema et al, 2007b, 2007a), which mediate the primary reinforcement 

properties of nicotine, the major psychoactive compound of tobacco (Benowitz, 1992). Considering, 

however, that nicotine has a very complex psychopharmacology (Caggiula et al, 2001, 2002; Le 

Houezec and Benowitz, 1991; Palmatier et al, 2007, 2009, Perkins and Karelitz, 2013, 2014; 

Rupprecht et al, 2015; Yager and Robinson, 2015), the precise psychopharmacological targets of 

Varenicline remain poorly understood (Brandon et al, 2011; Gass et al, 2012).  

Despite its strong addictive potential, nicotine has relatively poor direct primary rewarding and 

reinforcing properties by itself, compared to other drugs of abuse (Caggiula et al, 2001; Rose, 2006). 

In addition, and in a manner different to other psychostimulants, nicotine can enhance the reinforcing 

value of environmental cues that are primary reinforcers by themselves, or that have acquired 

reinforcing value through pairing with another reinforcer (Caggiula et al, 2009; Rupprecht et al, 2015). 

The interplay between nicotine and environmental cues is complex and difficult to disentangle, but 

plenty of evidence suggests it is a determinant factor in tobacco seeking (Caggiula et al, 2001, 2002; 

Garcia-Rivas and Deroche-Gamonet, 2018).  

Understanding which psychopharmacological dimensions of nicotine seeking are being affected by 

Varenicline could clarify its limited efficacy, and could help better define future treatments against 

tobacco dependence. In this perspective, preclinical animal models can be useful. Studies using 

classical nicotine self-administration in rats have shown the interplay between nicotine and 

environmental cues: nicotine itself is poorly self-administered, while pairing it with a salient visual 

cue synergistically enhances nicotine seeking (Caggiula et al, 2001, 2002; Donny et al, 2003). In these 

conditions, it is well known that acute Varenicline decreases nicotine self-administration in rats (Funk 

et al, 2016; Le Foll et al, 2012; O’Connor et al, 2010; Rollema et al, 2007b) and that Varenicline 

would poorly target the sole nicotine reinforcing effects (Clemens et al, 2017). In these studies, 

however, varenicline effects on nicotine or its associated cue, have been demonstrated exclusively in 

rats trained for self-administration of nicotine paired with a cue (nicotine+cue), in experimental 

conditions which do not allow to clearly disentangle the psychopharmacology of Varenicline.  

Some preclinical studies have aimed at specifically studying the effects of varenicline in nicotine-cue 

interactions. Varenicline has been shown to dose-dependently antagonize the reinforcement-enhancing 

effect caused by nicotine (Levin et al., 2012). Consistent with its nature as partial agonist, it has also 

been shown that varenicline can enhance the reinforcement value of surrounding stimuli in a dose-

dependent manner, although with a much weaker effect than nicotine (Barrett et al., 2018). This last 

result is consistent with a previous study, which used self-administration of varenicline and a visual 

cue self-administered through two different levers, to reveal such reinforcement-enhancing effect of 
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varenicline (Schassburger et al., 2015). However, the studies by Levin and Barret assessed the effect 

of nicotine and varenicline in responding for a visual cue, after nicotine was administrated passively 

by the experimenter.  

Thus, to date, whether varenicline affects nicotine self-administration through antagonizing the 

primary reinforcing effects of nicotine, the reinforcement-enhancing effect of nicotine on visual cues, 

or a combination of both, is still not well understood. Because a key determinant of the synergistic 

interaction between nicotine and a salient cue is the primary reinforcing effects of the cue (Caggiula et 

al, 2009; Chaudhri et al, 2006), we developed an experimental procedure that allows for increasing 

these primary reinforcing effects during self-administration and tested the effect of Varenicline while 

contingently manipulating the reinforcing-enhancing effect of nicotine on the cue. 
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METHODS AND MATERIALS 

SUBJECTS 

Male Sprague–Dawley rats, weighing 280–300 g at the beginning of the experiments, were single 

housed under a 12 h reverse dark/light cycle. In the animal house, temperature (22 ± 1°C) and 

humidity (60 ± 5%) were controlled. Rats were habituated to environmental conditions and 

experimental handling for 15 days before surgery. Standard chow food and water were provided ad 

libitum. All procedures involving animal experimentation and experimental protocols were approved 

by the Animal Care Committee of Bordeaux (CEEA50, N° 50120168-A) and were conducted in 

accordance with the guidelines of the European Union Directive 2010/63/EU regulating animal 

research. 

SURGERIES 

A silastic catheter (internal diameter = 0.28 mm; external diameter = 0.61 mm; dead volume = 12μl) 

was implanted in the right jugular vein under ketamine (80 mg/kg) / xylazine (16 mg/kg) anesthesia.  

The proximal end reached the right atrium through the right jugular vein, whereas the back-mount 

passed under the skin and protruded from the mid-scapular region. Immediately after surgery, rats 

received a single antibiotic injection (gentamicine 1 mg/kg i.p.). Rats were given 5-7 days recovery 

before nicotine self-administration training began.  

DRUGS 

Ketamine hydrochloride (80 mg/kg) (Imalgène 1000; Rhône Mérieux, Lyon, France) and xylazine 

hydrochloride (16 mg/kg) (Rompun; Rhône Mérieux, Lyon, France) were mixed with saline and 

administered intraperitoneally in a volume of 2 ml/kg of body weight. (-)-Nicotine-Hydrogen-Tartrate 

(Glentham, UK) was dissolved in sterile 0.9% physiological saline for a final dose of 0.04 mg/kg free 

base. Nicotine, as well as sterile 0.9% physiological saline in control groups, was self-administered by 

the rats via intravenous (i.v.) route in a volume of 40µl per self-infusion. Nicotine solution was 

adjusted to a pH of 7. 

Varenicline or 7,8,9,10-Tetrahydro-6,10-methano-6H-pyrazino[2,3-h] [3]benzazepine tartrate (Tocris, 

UK) was dissolved in sterile 0.9% physiological saline for a final dose of 1 mg/kg free base. 

Varenicline was administered intraperitoneally (i.p.) 30 min prior to self-administration, in a volume 

of 1ml/kg. 
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INTRAVENOUS SELF-ADMINISTRATION 

Self-administration Apparatus 

The self-administration setup consisted in 48 self-administration chambers made of plexiglas and 

metal (Imetronic, France), and equipped with holes as operant manipulanda. Each chamber (40 cm 

long x 30 cm width x 52 cm high) was located in an opaque sound-attenuating cubicle equipped with 

an exhaust fan to assure air renewal and mask background noise. For self-administration sessions, each 

rat was placed in one chamber where its chronically implanted intracardiac catheter was connected to a 

pump-driven syringe (infusion speed: 20μl / sec). Two holes, located at opposite sides of the chamber 

at 5.5 cm from the grid floor, were used to record instrumental responding. In given experimental 

groups and experiments, a common white light (white LED, Seoul Semiconductor, South Korea), 1.8 

cm in diameter, located 11.5 cm above the active hole, was used as nicotine (or saline) delivery-

associated discrete visual cue, and is named thereafter ‘cue light’ or ‘cue’. It produced 5 Lux. As well, 

in given experimental groups and experiments, a blue light (blue LED, Sloan Precision 

Optoelectronics, Switzerland), 1.8 cm in diameter, located on the opposite wall at 17 cm of the floor 

on the left side, was used as, and is named thereafter, Ambient light and abbreviated AL 

(Supplementary Fig1). It produced 15 Lux at a wavelength of 475nm, which is known to not affect 

vision in Sprague Dawley rats in similar exposure time as our experimental approach (Tosini et al., 

2016). LED intensities were both measured in the middle of the cage with a Lux-meter (Moineau 

Instruments, France). Experimental contingencies were controlled and data was collected with a PC-

windows-compatible SK_AA software (Imetronic, France). 

Self-administration Procedures  

In the three experiments presented below, self-administration testing is initiated on a Tuesday. Then 

rats performed self-administration training 5d/week (Monday to Friday). Self-administration sessions 

began two hours after the onset of the dark phase.  Nose-poke in the active hole under a fixed ratio 3 

schedule of reinforcement (FR3) produced the activation of the infusion pump (40 μl over 2 seconds). 

Nose-pokes at the inactive hole were recorded but had no scheduled consequences. To maintain 

catheter patency, catheters were flushed with ~10 µl of heparinized saline (30 IU/ml) after each self-

administration session and before the self-administration sessions run on Monday. 

In Experiment 1, to define a significant self-administration behavior at the individual level, we used a 

discrimination index between active and inactive holes [active nose-pokes/total nose-pokes)*100] 

strictly superior to 50%, together with a minimal number of at least 6 self-infusions per session over 

the three consecutive sessions and with stability in the number of self-infusions (±10%) over the last 

two sessions.  
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EXPERIMENTAL PROCEDURES 

A. Effect of Varenicline on self-administration behavior reinforced by either a discrete cue light, 

a nicotine infusion or a combination of both nicotine and cue light. 

Experiment 1: Comparison of self-administration behavior reinforced by a discrete cue light, a 

nicotine infusion or a combination of both nicotine and cue light.  

Rats were trained for intravenous self-administration, during 2-hour daily access to reinforcers.  Nose-

poking in the active hole at FR3 was reinforced either by a nicotine infusion (nicotine, n=25), a 

nicotine infusion plus a discrete cue light (nicotine+cue, n=8), or a saline infusion plus a discrete cue 

light (saline+cue, n=10). For the nicotine group, following nose-poking in the active hole at FR3, the 

infusion pump was activated for 2 sec. For the nicotine+cue and saline+cue groups, nose-poking in 

the active hole at FR3, turned on the white cue light located above the hole, simultaneous to the 

activation of the infusion pump. The white cue light remained on for 4 s in total.  

Effect of Varenicline on self-administration behavior. After 27 daily basal sessions, rats, showing a 

significant self-administration behavior according to the acquisition criteria, were administered with 

Varenicline (1 mg/kg, ip) 30 min prior to a basal self-administration session. The average number of 

infusions over training sessions 26-27 was used as baseline.  

B. Effect of Varenicline on the synergistic reinforcing effects of nicotine and a discrete cue light. 

Experiment 2: A procedure to alter the primary reinforcing effects of the cue light.  

A key determinant of the synergistic interaction between nicotine infusion and an associated discrete 

cue light relies on the primary reinforcing effect of the cue. Our goal here was to manipulate these 

reinforcing effects, and notably to provoke an increase in these effects. 

Two groups of rats were trained for saline+cue self-administration, as described in experiment 1, 

except that for one group (AL, n=15), the Ambient light (AL) was on throughout the first 7 acquisition 

sessions. For the other group (No Ambient light, No AL, n=15) the AL was off during the same period. 

On the eighth session of self-administration, the Ambient light conditions were switched; turned off for 

the AL group and on for the No AL one. On sessions 9 and 10, the No AL group was split into two, 

with half of the rats switched back to their original No AL condition (Single AL Insertion subgroup, 

n=7), while the other half remaining under the new AL condition (Sustained AL Insertion subgroup, 

n=8). All rats from the AL group remained without the AL for sessions 9 and 10 (see protocol diagram 

on Supplementary Fig 2). 

Experiment 3: Effect of Varenicline on the reinforcing-enhancing effects of nicotine on cues in 

nicotine+cue self-administration.  

Effect of increasing (vs decreasing) the cue primary reinforcing effects on nicotine self-

administration: Two groups of rats were trained for nicotine+cue self-administration, as described in 

experiment 1. As in experiment 2, the AL was on throughout the basal training self-administration 

sessions, for one group (AL, n=36), and was off for the other one (No AL, n=19). After 22 daily basal 

sessions, we tested the effect of: (1) suppressing, and adding, the AL on self-administration in the AL 

and No AL groups, respectively.  

Effect of Varenicline on increasing (vs decreasing) the cue primary reinforcing effects during 

nicotine+cue self-administration: Back to respective basal conditions, we then tested the effect of: (1) 
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Varenicline (1 mg/kg, i.p.) administered 30 min prior to a basal session, (2) Varenicline (1 mg/kg, i.p.) 

administered 30 min prior to session during which the AL was manipulated, i.e. suppressed in the AL 

group and inserted in the No AL group.  

Tests sessions were interspaced by 2 to 4 basal sessions. A new test was performed only if baseline 

was stable over 2 consecutive sessions and had return to the level of infusions of sessions 21-22.  

DATA ANALYSES 

Self-administration. 

Total responses in the active and inactive holes and total number of infusions per self-administration 

session were considered.  

Effect of Varenicline and/or AL manipulation. 

To evaluate Varenicline and/or AL manipulation (AL removal or AL insertion), delta infusions from 

baseline (infusions at test – infusions at baseline) were calculated. Baseline infusions correspond to the 

mean infusions over the two sessions preceding a test. 

STATISTICAL ANALYSES 

Self-administration behavior was analyzed using repeated measures ANOVA with Time (number of 

sessions), Hole (active vs inactive), Test (Baseline vs Test), Condition (ALOn to ALOff, ALOff to 

ALOn, ALOn to ALOff+Var, ALOff to ALOn+Var), as within-subject factor, and experimental group 

(saline+cue/nicotine+cue/nicotine, AL/ No AL) as between-subject factor. 

 Significant main effects or interactions were explored by pairwise comparisons of means using the 

Newman Keuls post hoc test. Pearson’s correlation analyses were used to investigate correlation 

between variables of interest. A t-test was used to compare the AL Removal effects (or of AL Insertion 

effects) on saline+cue and nicotine+cue self-administration. 

The results are presented as mean±SEM. Differences were considered significant at p<0.05.  

The statistical analyses were performed using the STATISTICA 13.3.0 (2017) data analysis software 

system (TIBCO Software Inc., Palo Alto, CA, USA). 
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RESULTS 

Nicotine and a discrete cue light contribute synergistically to self-administration (Fig 1a). 

Rats were trained for intravenous self-administration reinforced by either saline infusions associated 

with a discrete cue light (saline+cue), nicotine infusions associated with a discrete cue light 

(nicotine+cue) or nicotine infusions alone (nicotine).  

Over the first 15 self-administration sessions, the three groups differed significantly regarding both 

number [Group, F(2,42)=10.77, p<0.001] and pattern [Group x Session, F(28,588)=6.7, p<0.0001] of 

reinforcers earned (Fig 1a), and number and discrimination in responses (Fig 1b). 

Nicotine first tended to compromise, but secondarily amplified, the reinforcing effects of a discrete 

cue light. Thus, nicotine+cue rats tended to show lower self-administration behavior than saline+cue 

rats during the first two sessions. Then nicotine+cue rats increased their self-administration behavior, 

while saline+cue rats decreased it. This increase in nicotine+cue self-administration was only partly 

paralleled by a slight increase in nicotine self-administration that never overcame the level of 

saline+cue self-administration. These self-administration patterns indicate that nicotine and cue 

synergistically enhanced each-other reinforcing values.  

Nicotine and saline+cue are both mild, but different, reinforcers 

Although the behavior of the saline+cue and the nicotine groups stabilize at a similar level from 

session 6, observations exclude that they are similar, and due to their common stimulus, i.e. 

intravenous infusion.  

First, if the behavior of the two groups was exclusively supported by the intravenous infusion, the two 

groups would be similar. Now, up to session 6, the saline+cue group produced a higher number of 

self-infusions than the nicotine one [Group, F(1,36)=8.5, p<0.01] and the two profile of self-infusions 

differ with decrease and progressive increase up to stabilization, respectively [Group x Session, 

F(5,180)=5.7, p<0.0005].  

Second, the intravenous infusion is most likely poorly involved in supporting the behavior. In the 

saline+cue group, the cue is a reinforcer. Indeed, in a preliminary experiment, 8 rats were trained for 

saline+cue for 13 sessions in conditions similar to the ones described in experiment 1. Omission of the 

cue on session 14 produced a significant decrease in self-administration (Supplementary Fig 3) 

supporting that the cue contributes to the reinforcing effects.  

The mild reinforcing effects in nicotine and saline+cue rats, as compared to nicotine+cue rats, were 

further confirmed when using threshold criteria for discrimination, i.e. number of infusion and stability 

in behavior (see methods), to define a significant self-administration behavior at the individual level. 

While 100% of the nicotine+cue rats reached the criteria (8/8), only 40% of the nicotine rats (10/25) 

and 50% of the saline+cue rats did (5/10) (Supplementary Fig 4a).  

Distribution of the individual scores of self-infusions in the rats showing self-administration based on 

these criteria (Supplementary Fig 4b) also further supports the difference in nature of the reinforcer 

acting in the nicotine and the saline+cue groups. 

Supplementary Figs 4c-f show the self-infusions and responses in rats, which reached 

(Supplementary Fig4c-d) or not (Supplementary Fig4e-f) these criteria.  



 
119 

 

Varenicline decreases nicotine+cue and nicotine self-administration (Fig 2).  

After 27 sessions, the effect of Varenicline on self-administration was tested in the saline+cue (n=6), 

nicotine+cue (n=8) and nicotine (n=11) rats that met self-administration criteria evaluated on behavior 

expressed on sessions 26 and 27. Varenicline decreased self-administration as measured by the 

number of self-infusions earned [Test effect, F(1,24)=30.6, p<0.0001]. This effect was function of the 

experimental group [Test x Group, F(2,24)=4.71, p<0.05] with a significant effect in rats self-

administering nicotine+cue (p<0.0001) and nicotine (p<0.05) (Fig 2a). According to the effect on self-

infusions, Varenicline decreased nose-poking in a group-dependent [Test effect, F(1,24)=22.49, 

p<0.0001; Test x Group, F(2,24)=4.55, p<0.05] and hole-dependent manner [Test x Hole, 

F(1,24)=28.4, p<0.0001], exclusively targeting the active hole (Supplementary Fig 5).  

The effect of Varenicline, as measured by the delta-infusions from baseline [Group effect, 

F(2,24)=3.29, p<0.05], was higher in the nicotine+cue group than in the saline+cue (p<0.05) and 

nicotine groups (p<0.05), in which the delta-infusions were similar (Fig 2b). However, it was different 

from zero in the nicotine group (p<0.0001), but not in the saline+cue one. Also, in the nicotine group 

no correlation was observed between the number of basal self-infusions and the effect of Varenicline 

as measured by delta-infusions from baseline (Fig 2c). Hence, despite a low level of self-

administration, Varenicline appears to exert a specific effect on nicotine self-administration, unrelated 

to the individual behavioral level.  

   

Varenicline targets the reinforcing-enhancing effect of nicotine on its associated salient cue. 

Because a key determinant of the synergistic interaction between nicotine and a salient cue is the 

primary reinforcing effects of the cue (Caggiula et al, 2009; Chaudhri et al, 2006), we developed an 

experimental procedure that allows for increasing these primary reinforcing effects during self-

administration and tested the effect of Varenicline while contingently manipulating the reinforcing-

enhancing effect of nicotine on the cue. 

Results of experiment 1 supported that nicotine and the cue interact synergistically to produce 

reinforcing effects, but did not allow concluding whether Varenicline was able specifically targeting 

this interaction. To further explore this hypothesis, we aimed at testing the effect of Varenicline while 

manipulating this nicotine-cue synergy in the same individuals.  As a first step, we aimed at 

developing a procedure that would allow to promoting (vs compromising) the nicotine-induced 

enhancement of the reinforcing properties of its associated cue. As this enhancement is depending on 

the primary reinforcing effects of the cue, we initially worked on a procedure allowing to increase (vs 

decrease) these reinforcing effects. 

An interfering Ambient light (AL) alters the primary reinforcing effects of the discrete cue light. 

As in experiment 1, rats self-administered saline+cue, as shown by a significant discrimination 

between active and inactive holes over the 7 sessions of self-administration [Hole effect, F(1,28)=28.7, 

p<0.0001]. However, this discrimination was function of the experimental group. The 15 Lux AL 

compromised the expression of the reinforcing effects of the discrete cue light [Group effect, 

F(1,28)=10.4, p<0.01]. In standard conditions (No AL), saline+cue induced self-administration 

behavior, while in the AL condition, with the same saline+cue reinforcer, rats did not discriminate 
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significantly between active and inactive holes [Group x Hole, F(1,28)=18.7, p<0.0001]. In the 

standard No AL condition, although behavior decreased over sessions, discrimination remained 

significant up to the last session (p<0.005) (Supplementary Fig 6a-b).  

Not only No AL rats discriminated between the inactive control hole and the active hole associated 

with saline+cue delivery (Supplementary Fig 6a-b), but they also earned significantly more 

reinforcers than the AL rats [Group effect, F(2,44)=8, p<0.01] (Fig 3a).  

Critically, it is unlikely that the absence of discrimination between active and inactive holes, as well as 

the decrease in the number of reinforcers earned result from a non-specific stress-like or aversive 

effect of the AL. First the number of inactive nose-poking is not affected (Supplementary Fig 6b) and 

the switch of the AL conditions on session 8 further attested that the AL compromises the cue light 

reinforcing effects. The AL was suppressed in the AL rats (AL Removal) and inserted in the No AL 

ones (AL Insertion). The switch altered self-administration behavior differently according to the group, 

increasing self-infusions in the AL Removal group while decreasing it in the AL Insertion group 

[Condition x Group, F(1,28)=7.7, p<0.01] (Fig 3b).  

To better understand the effect of AL Removal and Insertion, No AL rats were split into two groups for 

the following two sessions (9 and 10): one group (Sustained AL Insertion, n=8), maintained the newly 

acquired AL condition, while the other (Single AL Insertion, n=7) returned to their No AL condition 

(protocol diagram on Supplementary Fig 2).  Sustained AL Insertion further diminished self-

administration in sessions 9 and 10, compared to sessions 6 and 7, while rats in the Single AL Insertion 

group appeared to compensate by increasing their mean infusions, when back to the initial No AL 

condition (Supplementary Fig 7). In the case of the Sustained AL Removal rats, for sessions 9 and 10 

the removal of the AL was maintained, further increasing self-administration in comparison to sessions 

6 and 7 (Supplementary Fig 7). 

The interfering AL procedure allows revealing the reinforcement-enhancing effect of nicotine on its 

associated salient cue during nicotine self-administration. 

Having established that it was possible to increase the reinforcing effects of the cue by AL Removal, 

we tested its effect on nicotine+cue self-administration, both on acquisition and once behavior was 

established.  

During acquisition under the No AL condition, the number of nicotine+cue self-infusions was higher 

than under the AL condition [Group effect, F(1,49)=5.36, p<0.05], but the difference decreased over 

the 20 self-administration sessions [Group x Session, F(19,331)=4.14, p<0.0001] and the AL group 

reached and maintained the level of self-infusions of the No AL group by session 15 (Fig 3c). 

Supporting that the AL was affecting discrimination of the cue light, and was not playing as a stress 

factor, nose-poke responses (Supplementary Fig 6c) reveal that rats in the AL condition did not 

discriminate on the first session and as for the saline+cue self-administration, inactive nose-poking 

was similar in the AL and No AL conditions from session 2. 

Once stabilized, removal of the AL increased self-administration behavior by the AL group [Test 

effect, F(1,35)=47.9, p<0.0001], while insertion of the AL decreased self-administration behavior by 

the No AL group [Test effect, F(1,18)=24.46, p<0.001] (Fig 3d).  

Critically, as summarized on Fig 3e, the effect of the AL removal was much more pronounced in 

nicotine+cue conditions compared to saline+cue conditions (t-test, p<0.01), supporting that any 

increase in visual salience of the cue is magnified by nicotine.  



 
121 

By comparison, introduction of the AL had the same effect in both nicotine+cue and saline+cue 

conditions, suggesting a non-specific effect on visual perception, which is not potentiated by nicotine.  

 

Varenicline targets the reinforcement-enhancing effect of nicotine on its associated salient cue. 

Once stabilized, self-administration behavior by the AL group was altered by removal of the AL, by 

Varenicline or a combination of both [Test effect, F(2,70)=64.8, p<0.0001]. According to the 

condition tested, the test effect was different however [Test x Condition, F(2,70)=76.3, p<0.0001]. AL 

removal alone produced an increase (Fig 4a red bar) in nicotine+cue self-administration (p<0.001). 

When AL removal was combined with Varenicline administration, Varenicline abolished completely 

the effect of AL Removal and decreased nicotine+cue self-administration even below AL Baseline (Fig 

4a dashed red bar, p<0.01 vs AL Baseline). However, this later effect was of a lower extent than 

when Varenicline was applied in the basal self-administration conditions, i.e. with maintenance of the 

AL (p<0.001) (Fig 4a grey bar). Critically, Varenicline and AL Removal effects were not simply 

additive. When evaluating the effect of AL Remov + Var to the effect of AL Remov alone, one yields 

an effect which is much higher than the one of Varenicline alone on basal self-administration, 

suggesting that Varenicline specifically abolishes the enhancing effects of the AL Removal (Fig 4b). 

Noteworthy, this interpretation is supported by the correlation analysis (Fig 4c) showing a high 

reverse, almost 1 to 1 correlation, between the effect of Increased Cue Salience by AL Removal 

(ΔALRemov=ALRemov – AL baseline) and the calculated Var effect during Increased Cue Salience by 

AL Removal (ΔALRemov+var – ΔALRemov). Varenicline treatment during Increased Cue Salience by 

AL Removal appears to reduce infusions from an amount equivalent to the increase produced by the 

Increased Cue Salience alone. In other words, in these AL Removal conditions, Varenicline decreases 

specifically the individual increase produced by AL Removal, i.e. the individual potentiation of 

nicotine+cue self-administration produced by the Increased Cue Salience. 

Self-administration behavior by the No AL group was decreased by insertion of the AL, by Varenicline 

or a combination of both [Test effect, F(2,36)=4.4, p<0.05] (Fig 4d). According to the condition 

tested, the test effect was different however [Test x Condition, F(2,36)=9.3, p<0.001]. Insertion of the 

AL, in rats trained in absence of it, produces a significant decrease in nicotine+cue self-administration 

(Fig 4d blue bar), which was similar in amplitude to the effect of Varenicline (Fig 4d grey bar). 

When combined to AL Insertion, Varenicline amplified the effect of the AL Insertion (Fig 4d dashed 

grey bar). Notably, the combined effect of AL Insertion and Varenicline were not synergistic but 

additive as shown on Fig 4e. When subtracting the AL Insert effect from the AL insert+Var effect, to 

get the Var effect on decreased cue salience, the result was similar to the effect of Varenicline alone 

(Var effect alone) (Fig 4e). Differently from what was observed for the effect of Varenicline on 

Increased Cue Salience by AL Removal, there were no 1 to 1 correlation between the decreased effect 

of AL Insertion on self-administration and the effect of Varenicline on this AL Insertion effect (Fig 4f), 

indicating that Varenicline had no specific effect on the AL Insertion-induced decrease in self-

administration.  
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DISCUSSION 

Varenicline is acknowledged as one of the most efficient therapeutic tools for tobacco dependence. 

However, its efficacy is limited both in time and to a portion of patients (Jordan and Xi, 2018; Niaura 

et al, 2008; Oncken et al, 2006). Even though the molecular pharmacology of Varenicline is well-

known (Coe et al, 2005; Rollema et al, 2007a), its psychopharmacological actions are still poorly 

understood. Importantly, growing evidence supports a heterogeneity in the psychopharmacological 

mechanisms underlying tobacco dependence (Garcia-Rivas et al, 2016; Garcia-Rivas and Deroche-

Gamonet, 2018). Hence, subpopulations of smokers might benefit from Varenicline less than others 

and contribute to its apparent limited efficacy. 

In this study, we evidenced that acute Varenicline reduced nicotine-induced enhancement of the 

reinforcing properties of a nicotine-paired cue during intravenous self-administration. This effect was 

depending on how much nicotine-cue interactions was contributing to self-administration behavior at 

the individual level. Differently, the decrease by acute Varenicline of self-administration of nicotine 

alone was not related to individual basal levels of self-administration.   

Nicotine alone is a poor primary reinforcer, but is strong enough to drive self-administration in 

certain individuals, but not in others.  

Nicotine has weak primary reinforcement properties. Hence, classical nicotine self-administration has 

been developed to pair contingent nicotine IV delivery with the presentation of a salient visual cue 

light (Caggiula et al., 2001). In our study, we used the saline+cue condition as a control group 

evidencing the contribution of the cue in driving self-administration behavior. Comparison with the 

nicotine+cue group reveals the actual contribution of nicotine in nicotine+cue self-administration 

behavior. It is unlikely that the intravenous infusion, and not the cue (Supplementary Fig 3) or 

nicotine, supports the self-administration behavior. A discrete cue light alone can act as a primary 

reinforcer in drug naïve rats (Deroche-Gamonet et al., 2002) and previous studies have shown that 

nicotine alone at a similar dose as the one used here produced a self-administration behavior, while 

saline alone does not (Caggiula et al, 2002).  

In our study, by session 15, 100% of all rats trained in nicotine+cue condition showed criteria of 

significant self-administration behavior, but only 40% of all rats trained in the nicotine alone condition 

reached the same criteria (Supplementary Fig 4a). These results not only confirm the well-known 

observation described by Caggiula and colleagues, but it extends it with the observation that some rats 

appear much more sensitive to the reinforcing properties of nicotine, thus driving nicotine self-

administration despite the lack of salient environmental cues. To the best of our knowledge, this is the 

first time this is evidenced in a nicotine self-administration paradigm, supporting that individuals may 

vary in the mechanisms that drive their nicotine seeking (Garcia-Rivas and Deroche-Gamonet, 2018).  

 

A novel procedure that allows targeting the reinforcing-enhancing effects of nicotine on its 

associated salient cue during nicotine self-administration. 

In a previous study, Palmatier et al (2007) first compared two visual stimuli for the strength of their 

primary reinforcement in nicotine-naïve animals. Then they observed that nicotine, administered 

passively, powerfully increased the reinforcement of the visual stimulus with the strongest primary 

reinforcing effects, with a much weaker effect for the other visual stimulus. Thus, the authors 

concluded that the reinforcing-enhancing effects of nicotine are dependent on the strength of the 
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primary reinforcement of the visual cue in a nicotine-naïve state. Further studies have assessed the 

effect of varenicline on this nicotinic enhancement of cue reinforcement, but in conditions that are 

different from volitional nicotine intake (Levin et al., 2012; Barrett et al., 2018). Here, we developed a 

novel experimental approach that consists of a sudden increasing in the visual salience of the nicotine-

paired cue, through the removal of an interfering Ambient light (AL). This approach allowed us to 

explore the observations by Palmatier et al (2007), but in the context of nicotine self-administration, 

and within the same individuals.  

In our experiment, the presence of the AL reduced operant responding in both saline+cue and 

nicotine+cue conditions (Fig 3). A possible explanation for the interfering effect of the AL could be a 

non-specific aversive or stressful effect, rather than a reduction in the reinforcing effects of the cue. 

However, this explanation is unlikely. The aversive effect of an ambient stressor would have impacted 

both active and inactive responding, while this is not the case. While active nose pokes where higher 

in the No AL condition, inactive nose-pokes in both AL and No AL conditions remained at the same 

level, both during saline+cue and nicotine+cue (Supplementary Fig 6) self-administration. 

Importantly, in the AL condition, discrimination between active and inactive holes is greatly affected 

in the first sessions during acquisition (Supplementary Fig 6), compared to the No AL condition. It is 

noteworthy that the presence of the AL delayed the acquisition of self-administration of nicotine+cue, 

which became equivalent to that of the No AL condition starting session 17 (Fig 3c). Overall, this data 

strongly supports that the interfering effect of the AL is due to a reduction of the visual salience of the 

cue through visual interference, rather than a mere stress effect caused by the AL. 

It is also noteworthy that the increase in self-administration due to removal of the visual interference 

was much more pronounced in nicotine+cue conditions compared to saline+cue conditions (Fig 3e), 

evidencing the magnifying effect by nicotine on a sudden increase in cue reinforcing effects. This is 

consistent with previous studies showing that nicotine can increase the reinforcement and incentive 

salience of cues that have already reinforcing value (Donny et al, 2003; Palmatier et al, 2007, 2013; 

Rupprecht et al, 2015). It thus follows that any increase in salience of nicotine-paired cues would be 

magnified even further by nicotine, as supported by our study. No other study to date has specifically 

addressed this possibility. By comparison, decreasing the cue salience by introduction of the AL has 

the same decreasing effect on both nicotine+cue and saline+cue self-administration, suggesting a non-

specific decrease in visual perception, which is not altered by nicotine (Fig 3e).  

 

Varenicline targets the reinforcing effects and reinforcing-enhancing effects of nicotine on its 

associated cue. 

In accordance with the literature (Funk et al, 2016; Le Foll et al, 2012; O’Connor et al, 2010; Rollema 

et al, 2007b), we showed that Varenicline reduces nicotine+cue self-administration. We demonstrated 

that acute Varenicline also decreases behavior in rats self-administering nicotine alone, although to a 

lesser absolute extent. In the same conditions, acute Varenicline has no effect on the self-

administration of the salient visual cue by itself.  

A limitation in exploring Varenicline effects on the sole reinforcing effects of nicotine is that these are 

relatively weak, and even for those rats that acquired nicotine self-administration without the presence 

of a nicotine-paired cue, their baseline nicotine seeking behavior is substantially lower than in for 

nicotine+cue self-administration. This could compromise the detection of varenicline effects, as 

decreases in responding are less evident when the baseline responding is already low. However, it is 

critical that the effect of Varenicline was independent of baseline self-administration (Fig 2c). 
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Clemens et al. (2017) reported that after early training in nicotine+cue self-administration, acute 

Varenicline (1mg/kg) did not significantly impact self-administration of nicotine alone, 7 sessions 

after the cue had been removed from the protocol. Prior association with a cue together with a 7 

sessions extinction-like procedure might be responsible for the difference between Clemens et al. 

(2017) and our study. 

Our study also complement previous findings in clarifying the reinforcing-enhancing effects of 

varenicline on a visual cue: namely, that these effects are only observed when individuals have been 

previously exposed to nAChR agonists. Contrary to our study, Clemens et al. (2017) and Barrett et al 

(2018) showed that acute Varenicline increased the self-administration of a visual cue alone in the 

absence of nicotine. Furthermore, Levin et al. (2012) briefly reports, in drug-naïve animals, the 

reinforcing-enhancing effects of varenicline on visual cues. However, and differently to our case, in 

these studies rats had been previously exposed to either nicotine or varenicline: In Clemens et al. 

(2017), rats had been previously trained for nicotine+cue self-administration and Varenicline tested 

after 7 self-administration of the cue alone, through a nicotine extinction-like procedure. In Barrett et 

al. (2018), varenicline was tested following a history of repeated passive exposure to nicotinic agonist 

(nicotine) administered after the cue self-administration sessions. In Levin et al. (2012), the authors 

make a brief comment that the reinforcing-enhancing effects of varenicline were evident in the first 

seven sessions of repeated varenicline exposure, although it remains unknown where such reported 

effects were already substantial on the first session. It is noteworthy that in these three cases, the 

reinforcing-enhancing effects of varenicline appear similar, regardless of whether the nicotinic agonist 

was present at the moment of cue self-administration (Clemens et al., 2017; Levin et al., 2012) or 

disconnected from it (Barrett et al., 2018). In our study, the lack of previous history with nAChR 

agonists in saline+cue rats could thus explain the lack of reinforcing-enhancing effects of varenicline 

described by Clemens, Levin and Barrett. This temporal requirement could most probably involve 

upregulation of alpha4beta2-containing nAChRs, caused by chronic exposure to both nicotine (Marks 

et al., 1983; Buisson and Bertrand, 2001; Staley et al., 2006) and varenicline (Marks et al., 2015). 

Nicotine, however, is known for its acutely reinforcing-enhancing effect of stimuli, even in drug-naïve 

individuals (Rupprecht et al. 2015; Perkins, Karelitz, & Boldry 2017).  This supports that varenicline 

does not necessarily reproduce a nicotine-like increase in cue reinforcing effects, but requires a 

cholinergic system already sensitized by nicotinic agonists, making rats more sensitive to the 

reinforcing-enhancing effect of nicotinic agonists to cues. Further studies are needed to explore this 

possibility.  

 

Varenicline targets the reinforcement-enhancing effect of nicotine on its associated cue during 

self-administration. 

Using the visual interfering procedure described in the first paragraph, we evidenced a direct 

indication that Varenicline specifically reduces the reinforcement-enhancing effects of nicotine on 

surrounding cues during nicotine self-administration.  

Varenicline effect on nicotine self-administration was magnified when the nicotine-paired cue gains 

salience during removal of the visual interference, in comparison with the nicotine-paired cue 

remaining undisturbed, or when its salience is decreased during AL insertion. Critically, Varenicline 

appeared to specifically target the enhanced response due to AL removal. Indeed large individual 

differences were observed in the increase of self-administration in response to AL removal (Fig 3c, 

abscissa). Varenicline appeared to precisely target this enhanced effect, at the individual level. Thus, 
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for example a rat showing an increase of 30 reinforcers in response to AL removal in control condition 

had a decrease of 30 infusions by Varenicline in the AL removal condition. To our knowledge, we are 

the first to report an effect of varenicline that depends on the strength of nicotine-cue interactions: 

when the interaction is stronger, the effect of varenicline is stronger, and it is less so when the 

interaction is weaker. This observation strongly supports the rationale for individual variations in the 

mechanisms of nicotine seeking (Garcia-Rivas and Deroche-Gamonet, 2018), with individuals being 

more sensitive than others to the influence of the reinforcement-enhancing effect of nicotine on 

environmental cues, and that could differently benefit from Varenicline treatment. 

Levin et al. (2012) showed that Varenicline could antagonize the nicotine-induced enhancing of 

reinforcement of an unconditioned cue. However, rats were not self-administering nicotine+cue, but 

rather receiving non-contingent nicotine through a subcutaneous injection before every session of cue 

self-administration. Notwithstanding, altogether with our data, this strongly supports that Varenicline 

can reduce the nicotine-induced increase in cue reinforcement.  

It has been previously shown that the reinforcement-enhancing effect of nicotine on cues is dependent 

on α4β2-containing nAChRs (Liu et al, 2007), but also on the dopaminergic system (Palmatier et al, 

2014). Given the precise molecular pharmacology of Varenicline, a possible mechanism for 

Varenicline actions could be to antagonize nicotine at the α4β2-containing nAChRs located in the 

ventral tegmental area (VTA), thus reducing the nicotine-induced tonic firing of dopaminergic 

neurons, leading to decreased tonic release of dopamine in the nucleus accumbens (NAcc) (Crunelle et 

al, 2010). Such a mechanism could also be involved in the effect of varenicline on the primary 

reinforcing effects of nicotine, which are also thought to be dependent on VTA to NAcc signaling (Di 

Chiara, 2000; Picciotto and Corrigall, 2002). An alternative mechanism could involve other structures 

in the circuitry controlling nicotine-cue interactions, such as the basolateral amygdala, an area rich in 

α4β2-containing nAChRs (Feduccia et al, 2012) and also involved in drug-cue interactions (Janak and 

Tye, 2015).  

In our study, we have investigated the psychopharmacological targets of Varenicline during early 

nicotine+cue self-administration. Future studies should address whether prolonged exposure to 

nicotine changes the way Varenicline affects nicotine and nicotine+cue self-administration. The 

differential effects of Varenicline in nicotine+cue self-administration in short vs prolonged exposure to 

nicotine might depend on the experimental approach: George et al. (2011) reports that Varenicline 

does not differently affect rats with long access to nicotine (23-hour sessions) compared to short 

access (1-hour session). The study by Clemens et al. (2017) on the other hand, shows that after an 

extended training (40 sessions) with a short access protocol, Varenicline seems to also target the 

reinforcing properties of nicotine alone, compared to early training (20 sessions).  However, the 

specificity of this Varenicline effect is problematic, as the decrease in responding is seen both in active 

and inactive responding. These results warrant further exploration.  

Furthermore, as a treatment for tobacco cessation, daily doses of Varenicline are recommended in the 

week leading up to a cessation attempt, with continuous daily administration over the following 11 

weeks after cessation (Ebbert et al, 2010). While our study only assessed the effect of an acute 

exposure to 1mg/kg Varenicline, further studies need to assess if prolonged exposure to Varenicline 

affects the psychopharmacological dimensions of nicotine seeking during nicotine self-administration 

in a different way than those after acute exposure shown here.  Studies with repeated varenicline 

administration have been performed but focused on the reinforcing effects of a visual cue either in rats 

never exposed to nicotine (Levin et al., 2012) or previously administered with passive nicotine 

injections (Barrett et al., 2018). In addition, within the same study by Levin et al (2012), varenicline 
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1mg/kg failed and succeeded to increase the reinforcing effects of a visual stimulus in two experiments 

within the same study, obscuring any consistent interpretation of the effect of varenicline at this dose.  

Despite this, our results raise therapeutic implications. Increasing clinical and preclinical data suggests 

that smokers differ in the mechanisms that drive their nicotine seeking (Garcia-Rivas and Deroche-

Gamonet, 2018), with some smokers having stronger sensitivity to the primary reinforcing actions of 

nicotine (Esterlis et al, 2016; Hutchison et al, 2007), while some others being more sensitive to the 

effects of nicotine on surrounding cues (Perkins, 2009; Perkins et al, 2017; Van Heel et al, 2017). Our 

results support individual variations in both nicotine reinforcing effects and nicotine-induced 

enhancement of cue reinforcing effects in the rat. Critically, our data suggest that individual variations 

in nicotine-induced enhancement of cue reinforcing effects, but not individual variations in nicotine 

reinforcing effects, would determine the amplitude of acute Varenicline-induced decrease in seeking. 

Altogether, Varenicline might be more beneficial for smoking cessation in those who are especially 

sensitive to nicotine effects on surrounding cues, and not for those who are more sensitive to the 

primary reinforcing effects of nicotine. 

Further studies need to clarify more precisely the action of Varenicline, using a preclinical model that 

would allow for the fine exploration of individual differences in the mechanisms that drive nicotine 

seeking (Garcia-Rivas et al, 2016).  
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FIGURES LEGENDS 

Figure 1. Nicotine and infusion-associated discrete cue light contribute synergistically to self-

administration behavior. Operant nose-poking at FR3 in active hole was reinforced by the delivery 

of an intravenous infusion of saline associated with the lighting of a salient visual cue above the active 

hole (saline+cue), of a nicotine intravenous infusion associated with the lighting of a salient visual cue 

above the active hole (nicotine+cue) or of the sole delivery of a nicotine intravenous infusion 

(nicotine). a. Infusions earned per session over the 15 first behavioral sessions. b. Responses in the 

active and inactive holes per session over the 15 first behavioral sessions Symbols denote group mean 

and error bars denote SEM. 

 

Figure 2. Varenicline targets nicotine primary reinforcing effects and the nicotine-cue 

synergistic interactions. a. Mean infusions earned in basal conditions (Baseline) and after 

Varenicline administration (1mg/kg i.p., 30 min prior to session) in rats self-administering saline+cue, 

nicotine+cue or nicotine. For Baseline, infusions are averaged over the two last sessions prior to 

Varenicline test. b. Effect of Varenicline as calculated by the delta between infusions earned in 

baseline and infusions earned under Varenicline effect, in rats self-administering saline+cue, 

nicotine+cue or nicotine. c. Correlation between basal self-infusions and acute Varenicline effect as 

measured by delta-infusions from baseline, in the nicotine group. 

Symbols and bars denote group mean and error bars denote SEM. *p = 0.05, ***p=0.001. $p=0.05 and 

$$$p=0.001 as compared to respective baseline. %p=0.05, %%p=0.01, as compared to zero. 

 

  

Figure 3. An interfering ambient light (AL) alters of the primary reinforcing effects of a salient 

discrete cue light. a. Infusions earned per session over 7 behavioral sessions during which operant 

nose-poking in the active hole was reinforced at FR3 by the delivery of an intravenous infusion of 

saline associated with the lighting of a salient visual cue above the active hole. The presence of a 15 

Lux Ambient light (AL) reduced self-administration behavior as compared to the control condition (No 

AL). b. Effect on infusions earned of AL Removal and AL Insertion in rats trained for saline+cue self-

administration over 7 sessions in the AL and No AL conditions, respectively. Basal infusions are 

averaged over the two last sessions prior to AL Insertion (or Removal) test. The interfering AL delays 

acquisition of nicotine+cue self-administration. c. Infusions earned per session over the first 19 

behavioral sessions during which operant nose-poking in the active hole was reinforced at FR3 by the 

delivery of an intravenous infusion of nicotine associated with the lighting of a salient visual cue 

above the active hole. d. Effect on infusions earned of AL Removal and AL Insertion in rats trained for 

nicotine+cue self-administration in the AL and No AL conditions, respectively. The interfering AL 

procedure allows revealing the reinforcement-enhancing effect of nicotine on its associated salient 

cue. e. Comparison of AL Removal and AL Insertion effects in rats trained for saline+cue or 

nicotine+cue self-administration. While AL Insertion in No AL rats produced a similar decrease in 

saline+cue and nicotine+cue rats (bottom), AL Removal produced a stronger increase in nicotine+cue 

rats (top). 

Symbols and bars denote group mean and error bars denote SEM. *p = 0.05; **p=0.01, ***p=0.001. 
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Figure 4. Varenicline targets the reinforcement-enhancing effect of nicotine on its associated 

salient cue. a. Infusions earned in rats trained for nicotine+cue self-administration in the presence of 

the interfering AL (AL Baseline), in response to Varenicline (Var), to AL Removal (AL Remov) or a 

combination of both (AL Remov+Var). b. Comparison of Varenicline effect in AL Baseline condition 

(Infusions Var AL Baseline – Infusions AL Baseline) and in Increased Cue Salience condition (by AL 

Removal) [calculated from the combined effect of AL Removal and Varenicline (Infusions AL 

Remov+Var – Infusions AL Baseline) minus the effect of AL Removal (Infusions AL Remov – 

Infusions AL Baseline)]. Varenicline absolute effect was amplified in the Increased Cue Salience 

condition (by AL Removal). c. Almost 1 to 1 negative correlation between the effect of Increased Cue 

Salience and the calculated effect of Varenicline on Increased Cue Salience. The individual increase in 

nicotine+cue infusions by Increased Cue Salience was antagonized by Varenicline. d. Infusions 

earned in rats trained for nicotine+cue self-administration in the absence of the interfering AL (No AL 

Baseline), in response to Varenicline (Var), to AL Insertion (AL Insert) or a combination of both (AL 

Insert+Var). e. Comparison of Varenicline effect in No AL baseline condition (Infusions Var No AL 

baseline – Infusions No AL Baseline) and in Decreased Cue Salience condition (by AL Insertion) 

[calculated from the combined effect of AL Insertion and Varenicline (Infusions AL Insert+Var – 

Infusions No AL Baseline) minus the effect of AL Insertion (Infusions AL Insert – Infusions No AL 

Baseline)]. Varenicline absolute effect was similar in the two conditions. f. Poor correlation between 

the effect of Decreased Cue Salience (by AL Insertion) and the calculated effect of Varenicline on 

Decreased Cue Salience (by AL Insertion). The individual alteration in nicotine+cue infusions by 

Decreased Cue Salience was not of comparable amplitude to the alteration produced by Varenicline 

on Decreased Cue Salience. 

Bars denote group mean and error bars denote SEM. Data points reflect individual scores. *p = 0.05; 

**p=0.01, ***p=0.001. 

 

 

  

 

  



 
133 

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

0

1 0

2 0

3 0

4 0

S e s s io n s

In
fu

s
io

n
s

 /
 2

h
r
s

s a lin e + c u e

n ic o t in e

n ic o t in e + c u e
a b

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

S e s s io n s

R
e

s
p

o
n

s
e

s
 /

 2
h

r
s

s a lin e + c u e

n ic o t in e

n ic o t in e + c u e

s a lin e + c u e

n ic o t in e

n ic o t in e + c u e

a c tiv e  h o le

in a c tiv e  h o le

FIGURES 

 

Figure 1 

 

  



 
134 

B a s e lin e V a re n ic lin e

0

5

1 0

1 5

2 0

In
fu

s
io

n
s

 /
 2

 h
r
s

s a lin e + c u e

n ic o t in e

n ic o t in e + c u e

* * *

$ $ $

$

-1 0

-8

-6

-4

-2

0

D
e

lta
 in

fu
s

io
n

s

(V
a

r
 - B

a
s

e
lin

e
)

**

% % %

% %

a b c

6 8 1 0 1 2 1 4

-7

-6

-5

-4

-3

-2

-1

0

B a s a l s e lf-in fu s io n s

D
e

lt
a

 i
n

fu
s

io
n

s

(V
a

r
 -

 B
a

s
e

li
n

e
)

Figure 2 

  



 
135 

1 2 3 4 5 6 7

0

4

8

1 2

1 6

2 0

2 4

2 8

S e s s io n s

S
a

li
n

e
+

c
u

e
 i

n
fu

s
io

n
s

 /
 2

h
r
s

N o  A L

A L

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9

0

4

8

1 2

1 6

2 0

2 4

2 8

S e s s io n s

N
ic

o
ti

n
e

+
c

u
e

 i
n

fu
s

io
n

s
 /

 2
h

r
s

A L

N o  A L

0

5

1 0

1 5

E
ff

e
c

t 
o

f
A

L
 R

e
m

o
v

a
l

(
In

fu
s

io
n

s
) * *

S
a
li
n

e
+
c
u

e

N
ic

o
t i

n
e
+
c
u

e

-1 5

-1 0

-5

0

E
ff

e
c

t 
o

f
A

L
 I

n
s

e
r
ti

o
n

(
In

fu
s

io
n

s
)

A
L

 I
n

s
e
r t

io
n

A
L

 R
e
m

o
v
a
l

0

4

8

1 2

1 6

2 0

2 4

2 8

N
ic

o
ti

n
e

+
c

u
e

 i
n

fu
s

io
n

s
 /

 2
 h

r
s

N o  A L

A L

* * *

* * *

A
L

 I
n

s
e
r t

io
n

A
L

 R
e
m

o
v
a
l

0

4

8

1 2

1 6

2 0

2 4

2 8

S
a

li
n

e
+

c
u

e
 i

n
fu

s
io

n
s

 /
 2

h
r
s

N o  A L

A L

* *
*

d

b

c

a

e

Figure 3 

  



 
136 

0

4

8

1 2

1 6

2 0

2 4

2 8

N
ic

o
ti

n
e

+
c

u
e

 i
n

fu
s

io
n

s

N o  A L  B a s e lin e

A L  In s e rt

V a r

A L  In s e r t  +  V a r

***
***

***

V a r  E f fe c t  o n

D e c re a s e d

C u e  S a lie n c e

V a r

E ffe c t

A lo n e

V a r  E ffe c t  

A lo n e

V a r  E ffe c t  

o n  D e c re a s e d

C u e  S a lie n c e

-2 0

-1 5

-1 0

-5

0


in

fu
s

io
n

s
 (

te
s

t 
- 

b
a

s
e

li
n

e
)

0

4

8

1 2

1 6

2 0

2 4

2 8

N
ic

o
ti

n
e

+
c

u
e

 i
n

fu
s

io
n

s

A L  B a s e lin e

A L  R em ov

V a r

A L  R e m o v + V a r ***

**

***

V a r  E f fe c t  o n

In c re a s e d

C u e  S a lie n c e

V a r

E ffe c t

A lo n e

V a r  E ffe c t  

A lo n e

V a r  E ffe c t  

o n  In c re a s e d

C u e  S a lie n c e

-2 0

-1 5

-1 0

-5

0


in

fu
s

io
n

s
 (

te
s

t 
- 

b
a

s
e

li
n

e
)

* *

d

a

-1 0 0 1 0 2 0 3 0 4 0

-4 0

-3 0

-2 0

-1 0

0

E ffe c t o f In c re a s e d  C u e  S a lie n c e

( In fu s io n s )

V
a

r
e

n
ic

li
n

e
 E

ff
e

c
t 

o
n

In
c

r
e

a
s

e
d

 C
u

e
 S

a
li

e
n

c
e

(
In

fu
s

io
n

s
)

r= -0 .8 3

p < 0 .0 0 0 1

-2 0 -1 5 -1 0 -5 0 5

-4 0

-2 0

0

2 0

E ffe c t o f D e c re a s e d  C u e  S a lie n c e

( In fu s io n s )

V
a

r
e

n
ic

li
n

e
 E

ff
e

c
t 

o
n

D
e

c
r
e

a
s

e
d

 C
u

e
 S

a
li

e
n

c
e

(
In

fu
s

io
n

s
)

r= -0 .5 2

p = 0 .0 2

b c

e f

Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
137 

 

SUPPLEMENTARY MATERIAL 

Supplementary Figure 1 

 

 

 

 

 

 

 

 

 

 

Scheme of the intravenous self-administration operant chamber. Each chamber (40 cm long x 30 

cm width x 52 cm high) was located in an opaque sound-attenuating cubicle equipped with an exhaust 

fan to assure air renewal and mask background noise. For self-administration sessions, each rat was 

placed in one chamber where its chronically implanted intracardiac catheter was connected to a pump-

driven syringe (pump). Two holes, located at opposite sides of the chamber at 5.5 cm from the grid 

floor, were used to record instrumental responding. In given experimental groups and experiments, a 

white light (white LED, Seoul Semiconductor, South Korea), 1.8 cm in diameter, located 11.5 cm 

above the active hole, was used as nicotine (or saline) delivery-associated discrete visual cue. A blue 

light (blue LED, Sloan Precision Optoelectronics, Switzerland), 1.8 cm in diameter, located on the 

opposite wall at 17 cm of the floor on the left side, was used as ambient light (AL). It produced 15 Lux 

at a wavelength of 470nm. 
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 Supplementary Figure 2 

 

 

 

 

 

 

Protocol of experiment 2. Two groups of rats were trained for saline+cue self-administration. For 

one group (Ambient light, AL, n=15), the Ambient light was on throughout the first 7 sessions. For the 

other group (No Ambient light, No AL, n=15) the AL was off during the same period. On the eighth 

session of self-administration, the AL conditions were switched; turned off for the AL group and on for 

the No AL one. On sessions 9 and 10, the No AL group was split into two, with half of the rats 

switched back to their original No AL condition (white squares, Single AL Insertion subgroup, n=7), 

while the other half remaining under the new AL condition (blue triangles, Sustained AL Insertion 

subgroup, n=8). All rats from the AL group remained without the AL for sessions 9 and 10. Each 

symbol represents one self-administration session. 
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Supplementary Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

Cue omission decreases saline+cue self-administration. Mean infusions earned in basal conditions 

(Baseline) and during a cue omission test in rats self-administering saline+cue. For Baseline, infusions 

are averaged over the two last sessions prior to omission test. **p=0.01. Bars denote group mean and 

error bars denote SEM. 
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Acquisition of self-administration behavior in rats self-administering nicotine, nicotine+cue or 

saline+cue.  a. % of tested rats acquiring self-administration according to the defined criteria. b. 

Distribution of individual scores of mean self-infusions per session in rats meeting acquisition criteria, 

in nicotine+cue, nicotine, and saline+cue groups, from left to right. c-d. Mean self-infusions per 

session and hole responses (squares=active hole, triangles=inactive hole) in rats meeting self-

administration criteria. e-f. Mean self-infusions per session and hole responses (squares=active hole, 

triangles=inactive hole) in rats not meeting self-administration criteria, in the nicotine and the 

saline+cue groups.  

c-f: Symbols denote group mean and error bars denote SEM. 
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Supplementary Figure 5 

 

 

Varenicline targets the nicotine-cue synergistic interactions, rather than nicotine or cue primary 

reinforcing effects. a. Mean active nose-pokes in basal conditions (baseline) and after Varenicline 

administration (1mg/kg i.p., 30 min prior to session) in rats self-administering saline+cue, 

nicotine+cue or nicotine. For Baseline, responses are averaged over the two last sessions prior to 

Varenicline test. b. same as a. for inactive nose-pokes. 

Bars denote group mean and error bars denote SEM. ***p=0.001 as compared to respective baseline. 

££ p=0.01, %p=0.05. 
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Impact of Ambient light (AL) on saline+cue and nicotine+cue self-administration. a. Mean active 

responses per session in rats self-administering saline+cue in presence or absence of AL. b. Same as a. 

for inactive responses. c. Mean active and inactive responses per session in rats self-administering 

nicotine+cue in presence of absence of AL. Symbols denote group mean and error bars denote SEM. 
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An interfering Ambient light (AL) alters of the primary reinforcing effects of a salient discrete 

cue light. Effect on saline+cue infusions per session of insertion or removal of an interfering AL. 

Sessions 6 and 7 represent the last 2 of 7 self-administration sessions during which active nose-poking 

was reinforced at FR3 by the delivery of an intravenous infusion of saline associated with the lighting 

of a salient visual cue (saline+cue), in the absence (control - No AL - white symbols) or presence (AL - 

blue symbols) of an interfering AL. At this point (session 8), according to Supplementary Fig 2, the AL 

conditions were switched; turned off for the Ambient light group and on for the No AL one (mean data 

shown on Figure 3b).   

Then initial No AL rats were split into two groups for the following two sessions (9 and 10): one group 

(Sustained AL Insertion), maintained the newly acquired AL condition, while the other (Single AL 

Insertion) returned to their No AL condition. AL insertion effect was further amplified by Sustained AL 

insertion, while a rebound was observed by AL Removal in the Single AL Insertion subgroup. To show 

the similarity in baseline and in response to AL Insertion of the two subgroups of No AL rats, results of 

the two subgroups are shown separately on sessions 6, 7 and 8 (white squares and triangles).   

In the initial AL rats, the removal of the AL was maintained (Sustained AL Removal), further 

increasing self-administration in comparison to sessions 6 and 7. Symbols denote group mean and 

error bars denote SEM. 
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Chapter 5 

GENERAL DISCUSSION 
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General Discussion and Perspectives 

 

While tobacco dependence remains a leading cause of preventable premature deaths worldwide 

(WHO, 2017), therapeutic strategies to help smokers quit have only limited efficacy (Schuit et al., 

2017). In the introduction of this dissertation, we have summarized plenty of animal and human data, 

which suggest that the mechanisms that drive nicotine seeking may be different among individuals, 

and this could explain the limited efficacy of available treatments (Garcia-Rivas et al., 2017; Garcia-

Rivas and Deroche-Gamonet, 2018).  

Based on a preclinical strategy we recently proposed (Garcia-Rivas et al., 2017), we identified three 

clusters of rats that differed in the contributions of nicotine, and associated cue, in their nicotine 

seeking. One of such groups (Cluster1) showed predominant self-administration of the cue, despite 

showing some aversive sensitivity to nicotine. This is the first time, to our knowledge, that aversion to 

nicotine is evidenced in a classical model of nicotine self-administration using a dose within the 

standard range often used in the literature (Donny et al., 1998; Abrous et al., 2002; Adriani et al., 

2003; Harris et al., 2009; Smith et al., 2014; Grebenstein et al., 2015). This raises interesting questions 

about the validity of the mean behavior observed in studies that use nicotine self-administration, as 

until now an increased sensitivity to nicotine aversion in subpopulations of individuals within outbred 

populations of rats has been widely overlooked. Further studies could explore the precise involvement 

of the β4 nAChR subunit in the mHb (Haller et al., 2012; Slimak et al., 2014; Antolin-Fontes et al., 

2015), in the aversive-like effects observed during a classical protocol of nicotine self-administration, 

as observed in our Cluster 1.  

The other two groups (Cluster2 and 3) showed nicotine-cue interactions: for Cluster 2, the cue seemed 

to have become a conditioned reinforcer to nicotine, while for Cluster 3, the reinforcement of the cue 

appeared dependent on the presence of nicotine. We validated these behavioral profiles using external 

correlates that could also provide information about the possible biological mechanisms behind them. 

In Cluster3, notably, we saw consistent correlations of expression of nAChRs in the BLA in responses 
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to a change in dose, and to cue omission effects, suggesting that the nicotine-dependent reinforcement 

of the cue observed in this cluster could probably involve the BLA. This suggestion is not far from 

what the literature already shows about the involvement of the BLA in drug-cue interactions 

(Ambroggi et al., 2008; Chiamulera, 2005; Everitt and Robbins, 2005; Janak and Tye, 2015; Sharp, 

2018).  

The nicotine-dependent reinforcement of surrounding cues is thought to be a separate phenomenon 

from the classical observation of a drug-paired cue becoming a conditioned reinforcer upon repeated 

pairings with nicotine (Caggiula et al., 2009; Rupprecht et al., 2015). Indeed, various studies have 

evidenced that the reinforcer-enhancing effects of nicotine on surrounding cues is not dependent on 

any learning or associative mechanisms, as it can be evidenced upon non-contingent delivery of 

nicotine (Chaudhri et al., 2006; Palmatier et al., 2007; Levin et al., 2012; Perkins et al., 2015) and even 

at the first acute exposure to nicotine (Rupprecht et al., 2015; Perkins et al., 2017). Because of the 

powerful regulation that nicotine can thus exert on the incentive salience of surrounding 

environmental stimuli, this process of nicotine-induced enhancement of cue reinforcement is seen as a 

key component in nicotine seeking (Caggiula et al., 2009; Rupprecht et al, 2015).  

Whether available therapies against tobacco dependence specifically target any of these 

psychopharmacological dimensions of nicotine seeking is still not well understood. Varenicline, the 

most efficacious of all pharmacotherapies against tobacco dependence, was developed specifically as a 

partial agonist of α4β2 nAChRs  (Coe et al., 2005; Rollema et al., 2007), and thus, combines an 

antagonist-like effect at these receptors in the presence of nicotine, thus reducing the reinforcement of 

tobacco products, while acting as partial agonist in the absence of nicotine, reducing tonic background 

craving thought to play a pivotal role in triggering smoking relapse. Up until now, only limited 

evidence exists as to its targeting of the aforementioned dimensions of nicotine seeking. In our chapter 

4, we developed an experimental strategy conducive to evidence the nicotine-induced enhancement of 

nicotine reinforcement within a classical model of self-administration. Based on this model, we 

provided evidence that varenicline is directly affecting the reinforcing-enhancing effects of nicotine on 

surrounding cues, with only a very limited effect in the reinforcing actions of nicotine per se. 
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Importantly, the magnitude of the effect of varenicline was proportional to the magnitude of the 

reinforcing-enhancing effect of nicotine on the cue, indicating that varenicline may be more beneficial 

in those individuals that are most sensitive to such nicotine effects on the environment.  

In Cluster 2, we observed nicotine seeking controlled by both nicotine, and its associated cue as a 

classical conditioned reinforcer.  Despite plenty of evidence suggesting that varenicline can reduce 

background tonic craving (Ferguson and Shiffman, 2009; Ravva et al., 2015; Cui et al., 2018), its role 

in episodic cue-induced craving remains controversial, with some studies suggesting that varenicline 

reduces it  (Brandon et al., 2011; Franklin et al., 2011; Ray et al., 2013; Versace et al., 2017; Wilcox et 

al., 2018), while others seeing no effect at all  (Niaura et al., 2008; Ferguson and Shiffman, 2009; Gass 

et al., 2012; Hitsman et al., 2013; Ravva et al., 2015; Cui et al., 2018). Since we did not directly assess 

the acute effect of varenicline on the strength of a conditioned reinforcer to nicotine, further studies 

could assess whether, and how, varenicline treatment can disrupt this phenomenon in rats that have the 

same behavioral phenotype as Cluster2 in our study.  

Given our findings in Chapter 4, varenicline could be of greater benefit for individuals that match the 

profile of our Cluster 3 rats, in which the main driver of their self-administration behavior appears to 

be the nicotine-induced enhancement of cue reinforcement. A potential experiment to test this 

possibility would be to train rats to self-administer nicotine, cluster them according to their differential 

responding to cue and nicotine cue omission tests as done before, and then test the extent of drop in 

their normal self-administration in the three clusters after an acute IP injection of varenicline. We 

hypothesize a greater drop in the percent of self-infusions of Cluster3, compared to the other clusters.  

However, a deeper exploration of the neurobiology of the reinforcing-enhancing effect of nicotine, and 

its antagonism by varenicline, would be more useful in disentangling the precise mechanisms of this 

psychopharmacological phenomenon. An inherent limitation of correlational studies, like the one 

presented in this dissertation, is that causation can only be inferred. As important as correlational 

studies are for evidencing phenomena, further studies should assess causality, through interventions 

that prevent, generate, or reverse, the phenotypes observed in this study. In this regard, a potential 
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approach could be to turn to the plenty genetic tools developed for the exploration of mice 

neurobiology (Zelena et al., 2017). Although obvious species differences ought to be considered 

(Ellenbroek and Youn, 2016), both mice and rats have been extensively used in the study of the 

nicotine dependence (Malin and Goyarzu, 2009; O’Dell and Khroyan, 2009; Cohen and George, 

2013). In particular, the recent development of light-controlled nAChRs (Tochitsky et al., 2012), 

which combine optogenetics with pharmacology, now gives the opportunity to alter, rapidly and 

reversibly, nicotinic cholinergic signaling in key brain areas relevant to nicotine seeking (Durand-de 

Cuttoli et al., 2018). Given our findings in Chapter 3, the role of α4β2 nAChRs in the BLA could be 

on interest in these further studies. A potential experiment to test the role of α4β2 nAChRs in the 

BLA, in the nicotine-induced enhancing of cue reinforcement, could be to train mice, which would 

have been genetically modified to express light-controlled α4β2-nAChRs in the BLA, to develop 

operant responding for a cue light, as others have done with wild-type mice (Contet et al., 2010). After 

acquisition, we would test for the reinforcing-enhancing effect of nicotine, by administering nicotine 

subcutaneously prior to their habitual cue operant session, in a manner similar to other studies in rats 

(Palmatier et al., 2007; Levin et al., 2012). The nicotine-induced enhancement of reinforcement would 

be quantifiable by an increase in visual reinforcers earned, compared to a control group pre-treated 

with saline. Then, by directing an optic fiber to the BLA, we would assess whether inactivation of the 

photo-sensitive α4β2 nAChRs in this site would decrease the reinforcing-enhancing effect of nicotine 

on the visual reinforcer, and whether activation of the photo-sensitive α4β2 nAChRs in the absence of 

nicotine would ‘mimic’ such reinforcing-enhancing effect. This would give us key evidence about 

whether nicotinic cholinergic transmission at the BLA is central to this phenomenon.  

To complement these findings, and build a bridge towards individual approaches to therapeutics, later 

studies can also be done in rats to confirm these observations obtained from mice studies. These other 

studies could involve a classical pharmacological approach, directing α4β2 antagonists or partial 

agonists, like varenicline, through bilateral cannulae directed to the BLA of rats trained to self-

administer nicotine in conditions in which the reinforcing-enhancing effects can be identified. Such a 

protocol as the one we used in Chapter 5 could be of relevance in this experiment. If the effects of 
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intra-BLA varenicline are the same as those observed through systemic infusion of varenicline in 

Chapter 5, this would bring conclusive evidence of the involvement of the BLA in the reinforcing-

enhancing effects of nicotine, as well as demonstrating the precise mechanism through which 

varenicline can antagonize these effects. These findings would give us interesting insights in the 

neurobiological mechanisms behind the reinforcement-enhancing effects of nicotine on surrounding 

cues, as well as raising important implications for a better, and tailored use, of varenicline, in those 

individuals more sensitive to the reinforcing-enhancing effects of nicotine.  
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Résumé 

Le tabac est une drogue de choix pour environ 1,1 milliard de personnes dans le monde. C'est la 

drogue dont l'abus a la prévalence la plus élevée, derrière l'alcool. L'usage du tabac est 

particulièrement élevé dans l'Union européenne, où 24% des personnes de plus de 15 ans sont des 

fumeurs, dont 80% sont des utilisateurs quotidiens. Les conséquences sanitaires sont importantes, car 

le tabagisme, ainsi que l’exposition indirecte au tabac, sont des causes directes de mortalité 

prématurée, causant 6 millions de décès chaque année dans le monde. En effet, en Europe, le tabac est 

responsable de 26% des décès chez les adultes âgés de 30 à 69 ans. Les maladies attribuées au 

tabagisme représentent environ 6% des dépenses mondiales de santé et environ 2,5% du produit 

intérieur brut de l’Union Européenne. En dépit des mesures sociales et politiques développées au cours 

des quinze dernières années pour réduire le tabagisme, il continue d'être la principale cause de décès 

évitables dans le monde entier.  

Entre 30 et 50% des fumeurs répondent aux critères de diagnostic de dépendance au tabac. Bien que 

70% des fumeurs souhaitent arrêter de fumer, seuls 6% d'entre eux seront en mesure de le faire sans 

intervention médicale. Les fumeurs occasionnels ne sont pas épargnés par les propriétés addictives du 

tabac et présentent également des taux élevés d'échec au sevrage tabagique. En fait, les fumeurs 

occasionnels peuvent éprouver de fortes envies de consommer qui ne peuvent être expliquées que par 

des facteurs pharmacocinétiques, mais qui prédisent néanmoins fortement l’échec des tentatives de 

sevrage. Exacerbant ce problème, les pharmacothérapies approuvées contre la dépendance au tabac ne 

sont efficaces que chez un nombre limité de personnes désireuses d’arrêter de fumer. Par exemple, la 

varénicline, bien qu'elle soit le traitement le plus efficace contre la dépendance au tabac, ne maintient 

l'abstinence au-delà de six mois que chez environ 20% des utilisateurs. Les efforts de recherche 

biomédicale dans la lutte contre le tabagisme ont donc focalisé leur attention sur la compréhension des 

mécanismes biologiques de la dépendance au tabac, qui pourraient améliorer l'utilisation et le 

développement de thérapies et contribuer à améliorer le taux de succès du sevrage. 



La nicotine est le principal composant du tabac responsable de ses fortes propriétés addictives. De 

nombreuses études ont montré que deux principaux mécanismes contribuent au maintien de la prise de 

nicotine : (1) les effets pharmacologiques de la nicotine impliqués dans la dépendance physique, 

rechercher pour leurs effets renforçants primaires ou pour l’atténuation des effets du sevrage 

nicotinique,  (2) les effets de stimuli environnementaux neutres qui ont acquis des propriétés de la 

nicotine par conditionnement pavlovien et produisent une envie de fumer, (3) la recherche des effets 

de la nicotine sur les renforçateurs naturels (le café ressenti « meilleur » quand il est consommé en 

même temps qu’une cigarette).  Ces sources distinctes de motivation pour la cigarette  sont bien 

connues. La plupart des études précliniques axées sur la compréhension des mécanismes 

neurobiologiques de la dépendance à la nicotine considère qu’elles sont identiques chez l’ensemble 

des individus car elles sont observées en moyenne sur l’ensemble de la population testée. Néanmoins,  

il existe de nombreuses données psychologiques, génétiques et neurobiologiques, issues d’études 

cliniques et précliniques, qui indiquent désormais que le poids respectif de ces mécanismes 

psychopharmacologiques pourrait varier d’un fumeur à l’autre. Cette hétérogénéité pourrait contribuer 

à l’inégale efficacité de la varénicline, dont les cibles psychopharmacologiques sont encore mal 

connues, ainsi qu’à la faible validité prédictive des modèles précliniques, qui ne tiennent pas compte 

de cette possible hétérogénéité individuelle. 

Dans ce travail de thèse, au moyen de l’auto-administration intraveineuse de nicotine chez le rat, nous 

avons exploré les variations individuelles dans la sensibilité aux effets renforçants primaires de la 

nicotine et aux effets de la nicotine sur la sensibilité aux effets renforçants de stimuli 

environnementaux associés.  59 rats ont été entraînés à l'auto-administration de nicotine, accompagnée 

de la présentation d'un bref stimulus visuel. Ce stimulus visuel, qui possède par lui-même de légères 

propriétés renforçantes primaires, agirait comme un stimulus associé à la nicotine, qui peut acquérir 

les propriétés de la nicotine par conditionnement pavlovien ou dont la nicotine peut augmenter les 

propriétés renforçantes primaires.  Après l'acquisition de l'auto-administration, le rôle de la nicotine et 

des stimuli associés a été évalué lors de deux séances différentes. Lors d'une session ("cue-omission") 

l'auto-administration de nicotine, le stimulus visuel a été omis.  Après un retour aux conditions de 



base, les rats ont ensuite été soumis à une deuxième session  ("nicotine-omission") au cours de laquelle 

la nicotine a été remplacée par une solution de solvant. Le stimulus visuel était, lui, toujours présent. 

Ces deux tests nous ont permis d’explorer indépendamment le rôle de la nicotine et de son stimulus 

visuel associé, dans la recherche de drogue. 

Nous avons mis en évidence trois sous-populations d'individus.  Chez les uns (groupe1, 35% des 

individus) c’est le stimulus visuel associé à la nicotine qui apparaît comme le principal moteur du 

comportement d’auto-administration, alors que la nicotine en elle-même semble limitée leur 

comportement d’auto-administration. Ce groupe suggère que certains individus sont plus sensibles aux 

aspects négatifs de la nicotine, limitant leur auto-administration. Certaines études cliniques indiquent 

que certaines personnes semblent protégées de la dépendance au tabac, car elles sont plus sensibles 

aux propriétés aversives de la nicotine.   

Les deux autres sous-populations (groupes 2 et 3) présentaient des interactions entre la nicotine et son 

stimulus associé: pour le groupe 2 (41% des individus) les rats étaient très sensibles aux effets 

renforçants primaires de la nicotine et le stimulus visuel était devenu un renforçateur conditionné 

capable de stimuler l'auto-administration même en l'absence de nicotine.  Cette sous-population 

suggère que chez les individus particulièrement sensibles aux effets renforçants primaires de la 

nicotine, les stimuli environnementaux associés à la nicotine peuvent de façon complémentaire être 

des incitateurs de la consommation. Pour la troisième sous-population (24% des individus), les rats 

semblaient être principalement sensibles à la capacité de la nicotine à amplifier les effets renforçants 

primaires du stimulus visuel associé.  Chez ces individus, l'auto-administration n'était possible qu'en 

présence du stimulus visuel et de la nicotine, suggérant que l'auto-administration était motivée par 

l'effet de la nicotine sur le stimulus visuel et pas principalement par la nicotine ou le stimulus visuel en 

soi. 

Les phénotypes de ces sous-populations ont ensuite été caractérisés et validés par des marqueurs 

comportementaux mesurés avant toute consommation de nicotine (l’approche conditionnée 

pavlovienne), par des réponses comportementales provoquées par une réduction de la dose de nicotine 



par injection, par des marqueurs du métabolisme de la nicotine et des marqueurs neurobiologiques des 

neurotransmissions cholinergique et dopaminergique dans des structures cérébrales clés. Cette 

caractérisation permettra aux futures études d’explorer la neurobiologie de ces différences 

individuelles dans la recherche de nicotine. 

En parallèle, nous avons exploré les cibles psychopharmacologiques de la varénicline. Nous avons 

développé une nouvelle approche qui permet de révéler la facilitation par la nicotine des effets 

renforçants primaires d’un stimulus visuel associé. Cette approche implique la manipulation de la 

saillance du stimulus visuel associé à la nicotine, au moyen d'une interférence visuelle. Dans un 

premier temps, nous avons montré que la suppression de l’interférence visuelle augmente le 

comportement d’autoadministration et que cette augmentation résulte d’une amplification par la 

nicotine des effets renforçants primaires du stimulus visuel. Ensuite, nous avons montré qu’une 

exposition aiguë à la varénicline antagonise cet effet de la nicotine. La varénicline agit d’autant plus 

que l’individu est sensible à ces effets amplificateurs de la nicotine sur les effets renforçants du 

stimulus visuel.  Ces résultats soulèvent des implications thérapeutiques: la varénicline pourrait être 

plus bénéfique pour le sevrage tabagique chez ceux qui sont particulièrement sensibles aux effets de la 

nicotine sur les stimuli environnementaux et notamment ceux possédant des propriétés renforçantes, 

mais moins pour ceux dont la consommation est motivée principalement par les effets renforçants 

primaires de la nicotine. 

Ce travail de thèse met en évidence et valide des variations individuelles dans les mécanismes qui 

régissent le comportement de recherche de nicotine dans un modèle préclinique. Il offre pour 

perspective d'explorer les mécanismes neurobiologiques responsables de ces variations individuelles et 

l’impact à long terme de ces variations sur le développement de la dépendance à la nicotine, ainsi que 

de tester l’efficacité relative de la varénicline chez ces sous-populations.  

 

Mots clés: nicotine, auto-administration, différences individuelles 


