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Introduction

In Electronic Warfare (EW) [Sch86], radar signal identification is a crucial component of Elec-
tronic Support Measures (ESM) systems [Rog85]. ESM functions enable surveillance of enemy
forces such as movements of enemy planes and warning of imminent attack such as launches of
rockets. By providing information about the presence of threats, classification of radar signal
has a self protection role ensuring that countermeasures against enemies are well-chosen by ESM
systems [Wil82]. Furthermore, Electronic Intelligence (ELINT) functions focus on the intercep-
tion and the analysis of unknown radar signals to update and improve EW databases. Then
clustering of radar signals can play a significant role by detecting unknown signal waveforms
and supporting ESM functions. Through its classification and clustering aspects, identification
of radar signals is a supreme asset for decision making in military tactical situations. Depend-
ing on the information available in databases, the identification process can be distinguished
into Source Emission Identification, also known as Radar Emitter Classification (REC), which
concerns the classification of types of emission sources and Specific Emitter Identification (SEI)
which focuses on recognition of copies of electromagnetic emission sources which are of the same
type [Dud16]. REC practically relies on statistical analysis of radar signal patterns from distinct
emitters [SL02, HZWT09, PJR13, YWY+13, LJLC16, ZWCZ16, Che17, Sun18] whereas SEI
aims to extract distinctive features in the process of signal processing to identify even a single
copy of an emission source [GBB+03, KO04, DK13, CLH14, Shi14, DK15b, Dud16]. Generally,
the main di�culties for SEI result from the lack of a precise and detailed description of a source
emission model in databases [DK15a]. Indeed, information required for SEI can be exhaustive
and are not always available in databases provided by operational entities. Therefore, this work
only focuses on REC to meet operational constraints.

A radar signal [Ric05] is conceived as a pulse-to-pulse modulation pattern in order to per-
form a specific role such as surveillance, missile guidance or short range tracking. The ability
of a radar to perform such a role relies on its capacity to measure range and velocity of its
targets. As a pulse-to-pulse modulation pattern, a radar signal pattern is decomposed into a
relevant arrangement of sequences of pulses where each pulse is defined by continuous features
and each sequence is characterized by categorical features. The continuous features of a pulse
mainly refer to its time of interception, its radio frequency, its duration and its amplitude whereas
the categorical features of a sequence refer to modulations of the continuous features. Then, a
radar signal pattern is chosen as the combination of continuous and categorical features that
minimizes ambiguities related to range measurements and velocity measurements. Depending
on its expected function and the military context, radar signal patterns can be either simple or
extremely complex. As an example, Multi-Function Radars (MFR) emitters [But98, BWW15],
widely used in surveillance and tracking, are able to adapt their emitted patterns to a specific
tactical situation they are operating in. Indeed, their emitted waveforms are designed to fit
with characteristics of intercepted targets. Therefore in presence of multiple targets, their pat-
terns can become extremely complex and provide to ESM systems a real challenge in terms of
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identification. As for the military context, it deeply has an e↵ect on the choice of patterns for
radar emitters. Indeed, the continuous and categorical features related to radar emitter patterns
mostly remain unchanged in a peace context and radar emitters can be mainly identified through
their continuous features such as their pulse frequencies and pulse durations which refer to their
spectral signature. On the contrary in a war context, radar emitters likely change their spectral
signature to avoid being identified by enemy ESM systems which listed their continuous features
during the previous peace context. Nonetheless, some categorical and continuous features remain
identical since they characterize the way radar emitters operate in the electromagnetic environ-
ment. As an example, temporal evolution of radar emitter amplitudes completely characterizes
scanning behaviours of radar emitters regardless of the military context.

Most of the time, ESM systems receive mixtures of signals from di↵erent radar emitters in
the electromagnetic environment. Before identifying radar emitters, ESM systems have to iso-
late each radar signal from the received mixtures of radar signals. To this end, deinterleaving
methods [Mar89, MP92, MK94] are deployed as source separation algorithms to transform the
homogeneous signal into a set of heterogeneous signals. Nonetheless, deinterleaving techniques
cannot always manage to group all the pulses that belong to a radar emitter which results in a
partial observation of its pattern. Furthermore, EW sensor deficiency and low Signal-to-Noise
Ratio (SNR) values in sensors can also cause measurement errors [KP16] that disable detection
of modulations related to radar signal patterns. When measurements are known to be erroneous,
considering them as missing measurements can also be a more reliable approach than using them
or discarding them. These material constraints introduce outliers in continuous radar data and
missing components in both continuous and categorical radar data. At last, military databases
are filled by human beings and may also be imperfect by gathering outliers and missing data due
to human errors.

In statistical words, a radar signal pattern is described by continuous and categorical data
which can be partially missing and erroneous. Depending on the complexity of radar signal pat-
terns, the classification and clustering procedure should take into consideration any type of data
and model a dependence structure to handle outliers and missing data. Classification and clus-
tering problems are closely connected with pattern recognition [Bis06] where many general algo-
rithms [HW79, EKS+96, Bre01] have been developed and used in various fields [SEKX98, Jai10].
However, most algorithms cannot handle missing data and imputation methods [TCS+01] are
required to generate data to use them. Hence, the main objective of this work is to define a
classification and clustering framework that handles both outliers and missing values. Here, an
approach based on mixture models is preferred since mixture models provide a mathematically
based, flexible and meaningful framework for the wide variety of classification and clustering
requirements [BCG00]. More precisely, a scale mixture of Normal distributions [AM74] is up-
dated to handle outliers and missing data issues for any types of data. Exact inference in that
Bayesian approach is unfortunately intractable, therefore a Variational Bayesian (VB) inference
[WMR+96] is used to find approximate posterior distributions of parameters and to provide a
lower bound on the model log evidence used as a criterion for selecting the number of clusters.

Outline of the thesis is as follows. In Chapter 1, classification and clustering methods from
state of the art are first presented according to their degree of supervision. After detailing super-
vised and unsupervised learning methods dedicated to classification and clustering, the selected
approach is introduced through its theoretical aspects by defining mixture models as a flexible
probabilistic framework that can handle both classification and clustering applications. However,
estimation of parameters can turn out to be a cumbersome task and an approximation method
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is proposed to overcome this issue. Once theoretical aspects of mixture models have been pre-
sented, mixture models for continuous data are studied in Chapter 2 where generalizations of
standard Gaussian mixture models are developed to handle outliers and missing data issues. The
resulting model is performed on realistic simulated data obtained through an experimental pro-
tocol reproducing faults from real acquisition systems. Chapter 3 is dedicated to the extension
of the model for mixed data composed of continuous and categorical features. After presenting
categorical features of radar emitters by defining di↵erent types of modulations, a dependence
structure between mixed data is investigated in order to develop a mixture model that handles
both continuous and categorical data even in presence of outliers and missing values. The result-
ing model is performed on simulated data issued from a real-world database gathering various
radar emitter patterns. Then Chapter 4 focuses on integration of temporal evolution radar data
into the mixture model framework to take into consideration temporal evolution of radar emitter
amplitudes that significantly reveal radar emitter scanning behaviours. To this end, the temporal
evolution of radar emitter amplitudes is assumed to be either parabolic or piecewise parabolic
and resulting models are evaluated on real operational cases to exhibit their performance. At
last, an overall conclusion and work perspectives are given to conclude this thesis.
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Chapter 1

State of the art and selected
approach

Classification is used mostly as a supervised learning method to achieve a predictive goal
[VP98] by extrinsically adding unlabelled groups of data to reference classes. As for clustering,
it is used for unsupervised learning to achieve a descriptive goal by discovering new groups of
interest in data via an intrinsic assessment [RM05]. The main goal of this work is to develop a
framework that handles both classification and clustering for mixed-type data gathering outliers
and missing values. Then in this chapter, general state-of-the-art algorithms are first detailed in
Section 1.1 before introducing the selected approach based on mixture models in Section 1.2.
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CHAPTER 1. STATE OF THE ART AND SELECTED APPROACH

1.1 State of the art

According to classification and clustering methods, three families of methods can be distin-
guished. Partitioning methods focus on relocating observations by moving them from one cluster
to another conditionally to an initial partitioning. These partitioned-based methods generally
require an a priori number of clusters set by the user. Then, density-based methods assume
that each cluster is distributed according to a specific probability distribution [BR93] involving
that the resulting marginal distribution of the data follows a mixture of distributions related to
clusters. These density-based methods are designed for discovering clusters of arbitrary shape
and for identifying their distribution parameters. At last, model-based methods aim to optimize
the fit between data and chosen mathematical models by finding characteristic descriptions for
each class or cluster [RM05]. Classification and clustering methods from these three families are
successively presented in subsections 1.1.1 and 1.1.2.

1.1.1 Supervised learning

General state-of-the-art classification algorithms are introduced in this subsection.

Discriminant Analysis

Discriminant Analysis (DA) is a generalization of Fisher’s linear discriminant [Fis36], a method
used to find a linear combination of features that characterizes or separates two or more classes
of objects or events. The resulting combination may be used as a linear classifier, or, more com-
monly, for dimensionality reduction before later classification. DA works when the measurements
made on independent variables for each observation are continuous quantities. DA is used on
labelled data to learn model parameters and then DA can perform classification. Moreover, the
analysis is quite sensitive to outliers and the size of the smallest group must be larger than the
number of predictor variables. In the case where there are more than two classes, the analysis
used in the derivation of the Fisher discriminant can be extended to find a subspace which ap-
pears to contain all of the class variability.

DA approaches the problem by assuming that the conditional probability density functions
p(x|y = 0) and p(x|y = 1) are both normally distributed with mean and covariance parameters
(µ0, �0) and (µ1, �1). Under this assumption, a classification rule is built by computing the log
of likelihoods ratio and testing if it is higher than some threshold ‘. The obtained classification
rule is given by

(x ≠ µ0)T �≠1
0 (x ≠ µ0) + ln �0 ≠ (x ≠ µ1)T �≠1

1 (x ≠ µ1) ≠ ln �1 > ‘ . (1.1)

The resulting classifier is referred to Quadratic Discriminant Analysis (QDA) since the classifi-
cation rule (1.1) is quadratic according to data x. The classification rule (1.1) can be linearly
relaxed by assuming homoscedasticity (�0 = �1) and becomes

a · x + b > 0 (1.2)

with

a = (µ1 ≠ µ0)T �≠1
0 ,

b = 1
2

1
µ

T
0 �≠1

0 µ0 ≠ µ
T
1 �≠1

0 µ1 ≠ ‘
2

.

In that case, the resulting classifier is referred to Linear Discriminant Analysis (LDA). Perfor-
mance of LDA and QDA classifiers are illustrated on Figure 1.1.
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CHAPTER 1. STATE OF THE ART AND SELECTED APPROACH

Figure 1.1: Linear Discriminant Analysis and Quadratic Discriminant Analysis performed on Iris dataset
[Lic13]

Logistic regression

Logistic regression [Cox58] is a powerful statistical way of modeling a binomial outcome with
one or more explanatory variables. It measures the relationship between the categorical depen-
dent variable and one or more independent variables by estimating probabilities using a logistic
function, which is the cumulative logistic distribution. The predictive variables can be from any
type ranges from continuous to categorical. Logistic regression can be extended to multinomial
logistic regression [J.88] which is used to predict the probabilities of the di↵erent possible out-
comes of a categorically distributed dependent variable, given a set of independent variables.

Mathematically, the outcome variable y is modeled conditionally to the explanatory variable
x as follows

y =
I

1 if — · x + ‘ > 0
0 otherwise .

(1.3)

where ‘ follows a standard logistic distribution. The classification rule (1.3) can be interpreted
in probabilistic way such that

y ≥

Y
__]

__[

p(y = 0|x) = 1
1 + e≠—·x

p(y = 1|x) = e≠—·x

1 + e≠—·x

(1.4)

k-nearest neighbors

k-nearest neighbors (k-NN) algorithm belongs to the family of instance-based learning algorithms
[AKA91] which are non-parametric general algorithms that classify a new unlabelled observation
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Figure 1.2: Impact of the choice of the number of neighbors on the classification rule

according to similar labelled observations in the training set. The k-NN algorithm [Alt92] par-
ticularly assigns a new observation to the class of training observations gathering its k-nearest
neighbors. The k-nearest neighbors of the unlabelled observation result from a simple search
procedure based on selection of the k nearest training samples measured from a given distance
metric. The distance metric is generally designed to meet the data structure in order to create
the most relevant neighbors according to the type of data. The k-NN algorithm can induce com-
plex classifiers from a relatively small training set and can be really e↵ective for large training
datasets [Rok10]. Nevertheless, it can be sensitive to outliers and can not handle multimodal
classes. Furthermore, it requires a value for k and can have a high computation cost since for a
new observation its distance to all training samples has to be computed. In the case of mixed-type
data, finding an appropriate and meaningful distance can be complex. The k-NN algorithm is
detailed in procedure 1.1 and Figure 1.2 shows the impact of the choice of k on the classification
rule. Indeed the choice of a larger k involves a smoother classification rule leading to a simpler
modeling of data.

Procedure 1.1 k-NN algorithm

Input: Training data (xn)N
n=1 with labels z = (z1, . . . , zN ), number of neighbors k, a distance

measure d and unlabelled observation x
ú

Output: Label zú of the observation x
ú

for n = 1 to N do

Compute distance d(xn, x
ú)

end for

Compute set I containing labels zn for the k smallest distances d(xn, x
ú)

Compute zú = mode(I) to find the majority label in I
return label zú

Decision trees and random forests

Decision trees [Bre17] are decision support tools that use tree-like graphs or models of decisions
and their possible consequences, including chance-event outcomes, resource costs, and utility.
Each internal node represents a test on an attribute, each branch represents the outcome of the
test, and each leaf node represents a class label. The paths from root to leaf represent classifi-
cation rules. Decision trees are simple to understand and interpret since they can be generated
from experts’ rules based on mixed data. However, they are not robust to outliers since a small
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Figure 1.3: A classification rule di↵erently learned by four standard algorithms

change in the data can lead to a large change in the structure of the optimal decision tree. This
can be remedied by replacing a single decision tree with a random forest of decision trees, but a
random forest is not as easy to interpret as a single decision tree.

Random Forests [Bre01] are an ensemble learning method [Rok10] for classification and regres-
sion that operates by constructing a multitude of decision trees at training time and outputting
the mode of the classes (classification) or mean prediction (regression) of the individual trees.
Random forests use boosting and bagging techniques [Sch90, Fre95, FS97] in order to correct
for decision trees’ habit of overfitting to their training set and having high variances [FHT+00].
Indeed as an aggregation of multiple decision trees randomly trained on di↵erent feature sets
of the training dataset [Ho98], random forests reduce the correlation between trees by avoiding
over-focusing on features that appear highly significant in the training set but reveal less rele-
vant in the test set. The ability of random forests to learn smoother decision rules than classical
decision trees is visible on Figure 1.3. As predictive tools, random forests can not provide a
description of features’ relationships in datasets leading to infer on missing data.

Support vector machines

Support vector machines (SVM) [CV95] are supervised learning models with associated learning
algorithms that analyze data used for classification and regression analysis. Given a set of
binary examples, the SVM method maps that set into a transformed feature space [BGV92]
where data are linearly separable and generates an hyperplane to separate those points into two
distinct groups. SVM are scalable algorithms and can perform classification on large and sparse
datasets. However, SVM methods focus on maximizing the margin between the two groups, they
can not provide information about clusters’ structure used to infer on missing data. An example
of a decision rule learned by a SVM algorithm is presented on Figure 1.3.
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Neural networks

Neural Networks (NN) [MP43] were popularized by [Ros58] with networks called perceptrons
making predictions based on a linear predictor function combining a set of weights with fea-
ture vectors. Perceptrons’ limitations had been stated by [MP69] before [RHW85] introduced
internal representation that enables a non linear mapping of data and ensures a better repre-
sentation of the problem by adding hidden units in neural networks architecture. Thanks to
the back-propagation procedure which distributes pattern recognition errors throughout the net-
work, [RHW88] generalized the learning rule for multilayer networks [HSW89] demonstrated
that standard multilayer feed-forward networks are capable of approximating any measurable
function f to any desired degree of accuracy. Indeed, feed-forward networks define a mapping
y = g(x; ◊) and learn values of parameter ◊ in order to find the best function approximation.
Their architectures are straightforward in a sense that information flows through the function
being evaluated from x, through the intermediate computations used to define g, and finally to
the output y.

Mathematically, a feed-forward neural network with K layers is a function from a subset
X0 œ Rn to a subset XK œ Rp recursively defined by :

Xk = gk(WkXk≠1 + bk), k œ {1, . . . , K} (1.5)

where Wk and bk are the kth layer weights and bias. X0 and XK are the input and output
layers whereas (Xk)2:(K≠1) are hidden layers. The mapping g results in the composition of the
(gk)1:K called activation functions.

Therefore, NN show strong results in classification [LBBH98, KSH12] since they can extract
features and learn classification rules (Figure 1.3) for a given architecture. However, NN are not
descriptive models and can not provide explainable and relevant information about structure of
classes.

1.1.2 Unsupervised learning

General state-of-the-art clustering algorithms are introduced in this subsection.

k-means

k-means algorithm [HW79] partitions observations into K clusters in which each observation
belongs to the cluster with the nearest mean defined as the cluster whose mean has the least
squared Euclidean distance (Figure 1.4). The k-means algorithm is described in procedure 1.2.
The k-means algorithm is easily scalable and can be applied to large datasets without extra com-
putational costs. Nonetheless, a key limitation is its cluster model which is based on isotropic
clusters that are separable so that the mean converges towards the cluster center. The clusters
are expected to be of similar size, so that the assignment to the nearest cluster center is the
correct assignment. In addition, this algorithm is sensitive to noisy data and outliers and is
limited to numeric attributes since it uses euclidean distance as metric. At last, it requires a
value for the number of clusters k which is not trivial when no prior knowledge is available

The k-prototypes algorithm was presented by [Hua98] to handle categorical data by defining
the k-modes algorithm which uses a simple matching dissimilarity measure to deal with cate-
gorical objects, replaces the means of clusters with modes, and uses a frequency-based method
to update modes in the clustering process to minimise the clustering cost function. Then, the
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k-prototypes algorithm results from integrating the k-means and k-modes algorithms to enable
clustering of mixed-type data.

As for outliers and noise handling, [KR87] proposed the k-medoids method which di↵ers from
the k-means mainly in its representation of the di↵erent clusters. Each cluster is represented by
the most centric object in the cluster, rather than by the implicit mean that may not belong
to the cluster. Hence, the k-medoids method is more robust than the k-means algorithm in the
presence of noise and outliers since a medoid is less influenced by outliers or other extreme values
than a mean.

At last, the kernel k-means method was introduced as an extension of the k-means method by
mapping the input data points non-linearly into a higher-dimensional feature space via a kernel
function [DGK04]. The kernel k-means method enables discovering clusters with no arbitrary
shape by relaxing the assumption on isotropic clusters.

Both presented updates of the k-means algorithm are more complex in nature and have
a larger time complexity than the standard k-means algorithm. Moreover both methods still
require the user to specify the a priori number of clusters K.

Procedure 1.2 K-means algorithm

Input: Unlabeled dataset x œ RdúN and number of clusters K
Output: Partition of z and cluster centroids µ1, µ2, . . . , µK œ Rd

Initialise cluster centroids µ1, µ2, . . . , µK randomly
repeat

Assign each data point to its closest cluster centroid :

’n œ {1, . . . , N}, zn = arg min
k

||xn ≠ µk||

Update each cluster center by computing the mean of all points assigned to it :

’k œ {1, . . . , K}, µk =
qN

n=1 Izn=kxnqN
n=1 Izn=k

until convergence
return labels z and cluster centroids µ1, µ2, . . . , µK

Density-based spatial clustering of applications with noise

Density-based spatial clustering of applications with noise (DBSCAN) [EKS+96] is a density-
based clustering algorithm which groups together points with many nearby neighbors and marks
as outliers points that lie alone in low-density regions. The mean idea behind DBSCAN is to
continue growing a cluster as long as the density in the neighborhood exceeds a given threshold
‘ under the constraint that the neighborhood has to contain at least a minimum number of data
points minPts. An abstract algorithm for the DBSCAN algorithm is proposed in procedure
1.3. Advantages of the DBSCAN algorithm lie in its ability to discover clusters of arbitrary
shapes even for large spatial databases. Indeed, DBSCAN is one of the most common clustering
algorithms and also most cited in scientific literature since it can better learn the underlying
structure of data (Figure 1.5). In addition to its robustness to outliers, DBSCAN does not
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Figure 1.4: Clusters centers are moving as and when iterations of the k-means algorithm are progressing.

require one to specify the number of clusters in the data a priori but DBSCAN cannot cluster
data sets well with large di↵erences in densities.

Procedure 1.3 Abstract Algorithm for DBSCAN

Input: Unlabeled dataset, threshold ‘ and minimum number of data points minPts
Output: Estimated partition of the dataset

Find the points in the ‘ neighborhood of every point, and identify the core points with more
than minPts neighbors
Find the connected components of core points on the neighbor graph, ignoring all non-core
points
Assign each non-core point to a nearby cluster if the cluster is an ‘ neighbor, otherwise assign
it to noise
return the estimated partition of the dataset

Spectral clustering

The main idea behind spectral clustering techniques [VL07] lies in the use of the spectrum of
a given similarity matrix of the data to perform dimensionality reduction before clustering in
fewer dimensions (Figure 1.5). The similarity matrix is provided as a symmetric matrix whose
each element represents a measure of the similarity between data points. The general approach
to spectral clustering is to use a standard clustering method on relevant eigenvectors of a Lapla-
cian matrix of the similarity matrix. For computational e�ciency, these eigenvectors are often
computed as the eigenvectors corresponding to the largest several eigenvalues of a function of
the Laplacian. When the relevant eigenvectors are processed through a k-means algorithm, the
spectral clustering can be reformulated as a weighted kernel k-means problem [DGK04] where
the kernel function is assimilated to the dimensionality reduction step leading to creation of the
relevant eigenvectors. Moreover, spectral clustering can also be related to DBSCAN clustering
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[HMDH18] since optimal spectral clusters can correspond to density-connected components ob-
tained by an asymmetric neighbor graph with edges removed when source points are not dense.
Limitations of the spectral clustering lie in its computational cost and the choice of the similarity
when data do not have a trivial structure.

13



CHAPTER 1. STATE OF THE ART AND SELECTED APPROACH

(a) K-means clustering (b) DBSCAN clustering (c) Spectral clustering

Figure 1.5: Clustering performance of k-means algorithm in Figure (a), DBSCAN in Figure (b) and
spectral clustering in Figure (c) for various datasets by using Scikit-learn library [PVG+11].

14



CHAPTER 1. STATE OF THE ART AND SELECTED APPROACH

1.2 Selected approach : mixture models

Here, an approach based on mixture models is preferred since mixture models provide a mathematical-
based, flexible and meaningful framework for the wide variety of classification and clustering
requirements [BCG00]. Indeed mixture models, as generative models, enable the creation of a la-
tent space where each latent variable can model a constraint of the problem of interest. Moreover,
mixture models incorporate every degree of supervision since they handle both unsupervised or
supervised classification problems. Finally, number of classes can be selected using criteria built
on the model likelihood.

This section can be considered as a general theoretical framework used as a building block
in the following chapters.

1.2.1 Definition

Mixture modeling [JJ94] is a natural framework for classification and clustering. It can be
formalized as :

p(xj |�, K) =
ÿ

kœK
akÂk(xj |◊k) , (1.6)

where xj œ X is an observation variable on the observation space X , K = {1, . . . , K} is the set
of clusters and � = (a, ◊1, . . . , ◊K), with a = [a1, . . . , aK ]Õ, stands for parameters. Each
probability distribution Âk stands for the kth component distribution with a weight ak where
ak Ø 0 and

q
k ak = 1.

Assuming a dataset x œ X J of i.i.d observations (x1, . . . , xJ), the log likelihood function is
given by

log p(x|�, K) =
ÿ

jœJ
log

ÿ

kœK
akÂk(xj |◊k) , (1.7)

where J = {1, . . . , J}.

According to the degree of supervision, three problems can be distinguished : supervised
classification, semi-supervised classification and unsupervised classification known as clustering.
Supervised classification consists in parameters estimation of K known classes through a set of
training data. Semi-supervised requires estimation of parameters of K unknown clusters whereas
clustering proceeds to estimation of both parameters and number of clusters K.

Hence, parameters estimation is required to proceed to these three techniques. Unfortunately,
classical Maximum Likelihood estimation turns out to be a complex problem since maximizing
the log likelihood function (1.7) requires to deal with the summation over k that appears inside
the logarithm and leads to a non closed form solution [Bis06].

One way of solving that estimation problem is to consider it as an incomplete data problem
where only x is observed and where the complete data are composed of x and latent variables
h such as labels of observations. The likelihood function for the complete dataset simply takes
the form log p(x, h|�) and maximization of this complete-data log likelihood function should
be straightforward. However since only the incomplete data x are given in practice, the com-
plete data likelihood cannot be used and its expected value under the posterior distribution
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of the latent variable p(h|x, �) is considered. An elegant and powerful method for solving
that issue is called the expectation-maximization algorithm (EM) [DLR77] and consists in per-
forming an expectation (E) step, which creates a function for the expectation of the complete
log-likelihood evaluated using the current estimate for the parameters, and a maximization (M)
step, which computes parameters maximizing the expected log-likelihood found on the E step.
These parameter-estimates are then used to determine the distribution of the latent variables in
the next E step.

The EM algorithm iterative scheme can be formalized as follows :

• E step : Calculate the expected value of the log likelihood function, with respect to the
conditional distribution of h given x under the current estimate of the parameters �t

Q(�|�t) = Eh|x,�t
[log p(x, h|�)] ,

• M step: Find the parameters that maximize this quantity

�t+1 = arg max
�

Q(�|�t) .

Nonetheless for some models, it can be infeasible to evaluate the posterior distribution or
to compute expectations with respect to this distribution since the dimensionality of the latent
space is too high to work with directly or because the posterior distribution has a highly complex
form for which expectations are not analytically tractable [Bis06]. Hence approximation schemes
are needed and rely on stochastic or deterministic approximations. Stochastic techniques such as
Markov chain Monte Carlo have enabled the widespread use of Bayesian methods across many
domains. They generally have the property that given infinite computational resource, they can
generate exact results, and the approximation arises from the use of a finite amount of processor
time. In practice, sampling methods can be computationally demanding, often limiting their use
to small-scale problems. Also, it can be di�cult to know whether a sampling scheme is generat-
ing independent samples from the required distribution. Deterministic approximation schemes,
some of which scale well to large applications, are based on analytical approximations to the
posterior distribution by assuming that it factorizes in a particular way or that it has a specific
parametric form. As such, they can never generate exact results, and so their strengths and weak-
nesses are complementary to those of sampling methods [Bis06]. In this study, a deterministic
approximation method known as Variational Bayes is developed for parameter estimation.

1.2.2 Latent variables

A mixture can be formalized as a latent model since the component label associated to each data
point is unobserved. To this end, a categorical variable zj œ K can be considered to describe the
index of the component distribution generating the observation variable xj . Then, the mixture
distribution (1.6) is expressed as

p(xj |�, K) =
ÿ

zjœK
p(xj |zj , �, K)p(zj |�, K) (1.8)

where
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p(xj |zj , �, K) =
Ÿ

kœK
Âk(xj |◊k)”k

zj ,

p(zj |�, K) =
Ÿ

kœK
a

”k
zj

k .

and ”k
zj

denotes the Kronecker symbol which is 1 if zj = k and 0 otherwise. The latent
representation (1.8) can also be viewed in a hierarchical way as

xj |zj = k ≥ Âk(xj |◊k) (1.9)

zj ≥ Categorical(a) (1.10)

Then the joint distribution is

p(xj , zj |�, K) =
Ÿ

kœK
[akÂk(xj |◊k)]”

k
zj .

Depending on the target problem, other latent variables can be introduced to model the data. h

will refer to latent variables in the following parts.

1.2.3 Bayesian framework

Assuming a dataset x œ X J of i.i.d observations (x1, . . . , xJ) and independent latent data h =
{hj}J

j=1, likelihood functions can be expressed as

p(x|�, K) =
Ÿ

jœJ
p(xj |�) , (1.11)

p(x, h|�, K) =
Ÿ

jœJ
p(xj , hj |�) , (1.12)

where p(x, h|�, K) is called the complete likelihood since it represents the joint distribution of
the observed and latent data and J = {1, . . . , J}. That Bayesian framework imposes to specify
a prior distribution for the parameters �

p(�|K) = p(a)
Ÿ

kœK
p(◊k) .

Eventually, the posterior distribution of interest is obtained as

p(h, �|x, K) = p(x, h|�, K)p(�|K)
p(x|K) (1.13)

with the marginal distribution of data given by

p(x|K) =
⁄

p(x, h|�, K)p(�|K)ˆhˆ� .
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1.2.4 Inference

The Variational Bayesian inference was introduced in [WMR+96] as an ensemble learning method
for the mixtures of experts in order to avoid over-fitting and noise level under-estimation problems
of traditional maximum likelihood inference. In [Att99], the Variational Bayesian inference was
generalized for di↵erent types of mixture distributions and took the name Variational Bayes
(VB). VB can be viewed as a Bayesian generalization of the Expectation-Maximization (EM)
algorithm [DLR77] combined with a Mean Field Approach [OS01]. It consists in approximating
the intractable posterior distribution p(h, �|x, K) by a tractable one q(h, �) whose parameters
are chosen via a variational principle to minimize the Kullback-Leibler (KL) divergence

KL [q||p] =
⁄

q(h, �) log
3

q(h, �)
p(h, �|x, K)

4
dhd� .

Noting that p(h, �|x, K) = p(x,h,�|K)
p(x|K) , the KL divergence can be written as

KL [q||p] = log p(x|K) ≠ L(q|K) .

L(q|K) is considered as a lower bound for the log evidence log p(x|K) and can be expressed as

L(q|K) = Eh,� [log p(x, h, �|K)] ≠ Eh,� [log q(h, �)] , (1.14)

where Eh,�[·] denotes the expectation with respect to q(h, �). Then, minimizing the KL di-
vergence is equivalent to maximizing L(q|K). Assuming that q(h, �) can be factorized over the
latent variables h and the parameters �, a free-form maximization with respect to q(h) and
q(�) leads to the following update rules :

VBE-step : q(h) Ã exp (E� [log p(x, h|�, K)]) ,

VBM-step : q(�) Ã exp (Eh [log p(�, x, h|K)]) .

The expectations Eh[·] and E�[·] are respectively taken with respect to the variational posteri-
ors q(h) and q(�). Thereafter, the algorithm iteratively updates the variational posteriors by
increasing the bound L(q|K).

1.2.5 Classification and clustering

According to the degree of supervision, three problems can be distinguished : supervised classi-
fication, semi-supervised classification and unsupervised classification known as clustering.

The supervised classification problem is decomposed into a training step and a prediction
step. The training step consists in estimating parameters � given the number of classes K and
a set of training data x with known labels z. Then, the prediction step results in associating
label zú of a new sample x

ú to its class kú chosen as the Maximum A Posteriori (MAP) solution

kú = arg max
kœK

p(zú = k|xú, �, K)

given the previous estimated parameters �.

In the semi-supervised classification, only the number of classes K is known and both labels
z of the dataset x and parameters � have to be determined. As for the prediction step, the
MAP criterion is retained for a↵ecting observations to classes such that

kú = arg max
kœK

p(z = k|x, �, K) .
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Given a set of data x, the clustering problem aims to determine the number of clusters K̃, labels
z of data and parameters �. Selecting the appropriate K̃ seems like a model selection issue and
is usually based on a maximized likelihood criterion given by

K̃ = arg max
K

log p(x|K) . (1.15)

where

p(x|K) =
⁄

p(x, �|K)d� (1.16)

Unfortunately, (1.16) is intractable and many penalized likelihood criteria such as AIC [Aka98],
BIC [S+78] and ICL [BCG00] had been proposed. The lower bound (1.14) for (1.16), found in
subsection 1.2.4, is preferred to other criteria since it does not depend on asymptotical assump-
tions and does not require Maximum Likelihood estimates.

Then according to an a priori range of numbers of clusters {Kmin, . . . , Kmax}, the semi-
supervised classification is performed for each K œ {Kmin, . . . , Kmax} and both z

K and �K are
estimated. Finally, the number of classes K̃ in (1.15) is chosen as the maximizer of the lower
bound L(q|K) :

K̃ = arg max
K

L(q|K) . (1.17)

After determining K̃, only z
K̃ and �K̃ are kept as estimated labels and parameters.

1.3 Conclusion

In this chapter, state-of-the-art classification and clustering algorithms have been presented.
Some of them are dedicated to create boundaries to separate data into heterogeneous clusters
such as LDA, SVM or NN whereas others focus on learning underlying structure of data to build
them such as k-NN or k-means algorithms. However both types of algorithms do not provide
an internal framework that infers on missing data and copes with any degree of supervision.
Therefore, an approach based on mixture models is proposed and developed through its theoret-
ical aspects. As hierarchical graphical models, mixture models provide a flexible framework to
handle classification and clustering issues by introducing a latent space where each latent vari-
able focuses on a specific constraint. However, the resulting model is not tractable and model
learning is processed through an approximation method known as Variational Bayes Approx-
imation. Eventually whatever degree of supervision is required, the number of classes K and
parameters can be estimated to perform classification and clustering tasks. Next chapters deal
with implementations of such models with di↵erent types of data.
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Chapter 2

Continuous data

Radar emitter patterns are partly described by continuous features that can be partially
observed and approximately measured due to a noisy electromagnetic environment and sensor
deficiencies. This chapter focuses on the development of a model that handles outliers and
missing values to enable classification and clustering of radar emitters. First, continuous
features of a radar emitter pattern are presented in Section 2.1 before introducing an
experimental protocol developed to acquire realistic data since real military data are often
classified. Then, the proposed model is explained in Section 2.2 where latent variables are
introduced to model outliers and missing values. Inference procedure is processed through a
Variational Bayesian Approximation in Section 2.3. Finally, evaluation of the model is proposed
through two experiments and performance of the method are detailed in Section 2.4.
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CHAPTER 2. CONTINUOUS DATA

2.1 Data

In this section, typical continuous radar features are first presented before introducing an acqui-
sition system designed to generate realistic radar data which naturally embed outliers.

2.1.1 Continuous radar features

Continuous features of a radar emitter (Figure 2.1) are traditionally extracted from its Pulse
Description Words (PDW). Each PDW gathers information related to a given pulse in the radar
signal pattern such as

• its Time of Arrival (TOA) which is the time in µs at which the pulse is detected,

• its Amplitude (A) which the average measured amplitude of the pulse,

• its Radio Frequency (RF) which is the average measured frequency of the pulse in GHz,

• its Pulse Width (PW) which is the pulse duration in µs,

• its Pulse Repetition Interval (PRI) which is the di↵erence in µs between its TOA and the
TOA of the previous pulse in the radar signal pattern.

The TOA of a pulse can be taken as the instant that a threshold is crossed. In presence of
low signal-to-noise ratio (SNR), this measurement may be not precise and retaining the TOA of
the first 3 dB is preferable [DH82]. Moreover, the TOA is not an invariant feature since TOA
sequence depends on the first observed TOA. Therefore, the PRI is retained as an invariant
feature since it is the di↵erence between times of arrival of two successive pulses. Then, the RF
of a pulse can be either fixed or modulated pulse-to-pulse. The RF is said to be frequency agile
if it is randomly modulated pulse-to-pulse within fixed bounds and frequency hopping if it has
systematic variations. Finally, the PW is the pulse duration chosen to ensure that a radar emits
su�cient energy such that reflected pulses are always detectable by its receiver. The amount of
energy that can be delivered to a distant target is the product of two things; the output power
of the transmitter, and the duration of the transmission. Therefore, pulse width constrains the
maximum detection range of a target. Depending on sensor sensitivity, the PW may not be
reliable and considering PW as missing data can be preferable.

2.1.2 Realistic data acquisition

In this subsection, an experimental protocol is introduced to acquire unclassified realistic data
from di↵erent radar emitters. This protocol consists in an acquisition step followed by a feature
extraction step.

The acquisition system is composed of two Software Defined Radio (SDR) platforms based on
Ettus USRP E312 (Emitter) and B200 (Receiver) boards, linked to a laptop to record the data.
As in [SEG+16], this setup was chosen because it allows quick development and experimentation
tasks on radiofrequencies from 70 MHz to 6 GHz, it is quite cheap and is available o↵-the-shelf.
Radar waveforms, emitted by the URSP E312 board, are generated from bin files coded from
a database gathering more than 40 typical radar waveforms with agile and hopping frequencies
and jittered and staggered PRI. The developed system is presented in Figure 2.2. In order to
meet hardware constraints, RF range was mapped to a 4MHz bandwidth and patterns of TOA
and PW were slightly modified but their dynamic was preserved.
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Figure 2.1: Four pulses from a radar emitter whose related amplitudes and times are shown on the vertical
axis and the horizontal axis. Then, the continuous features PRI and RF are obtained by delimiting each
pulse according to their TOA and PW.

Radar Waveform Emitter Signal Receiver Laptop

Figure 2.2: Diagram of the acquisition system

Then, a threshold algorithm, provided by [DH82], is used to detect pulses in the recorded
signal sr(t) of duration T . Each pulse at TOAt is characterised by a triplet (PRIt,RFt,PWt)t

where PRIt is the di↵erence between TOAt and TOAt≠1 and the RFt feature is estimated with
a Fast Fourier Transform (FFT) algorithm. Figure 2.3 shows parameters measurement on real
data. For a given recorded signal s gathering ns pulses, the following PDW matrix is obtained

PDW =

Q

ccccccca

RF1 PW1 PRI1
...

...
...

RFm PWm PRIm
...

...
...

RFns PWns PRIns

R

dddddddb

(2.1)

where m œ {2, . . . , ns ≠ 1} is the index of pulses in recording.

SDR platforms are imperfect [FLP+07] and their defects can introduce outliers due to mea-
surement errors. Hardware imperfections are visible on Figure 2.4 where the third pulse is cut
into two pulses which leads to the formation of PRI and PW outliers. Furthermore since ex-
periments take place in real outside conditions, other signals and reflections can disturb the
acquisition [DH82].

23



CHAPTER 2. CONTINUOUS DATA

0.04243 0.04244 0.04245 0.04246 0.04247 0.04248 0.04249 0.0425 0.04251
Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

A
m

p
lit

u
d

e
TOA

PW

PRI

Threshold

FFT RF

Figure 2.3: Acquired pulses from a radar emitter where the three features (PRI,PW,RF) are shown on
the figure.
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Figure 2.4: Outliers formation during primary parameters measurement on real data. (a), (c) and (e) are
respectively exact TOA, PW and PRI. (b), (d) and (f) are outliers for TOA, PW and PRI.
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Figure 2.5: Presence of outliers in observations of a radar emitter.

Finally for each signal sj gathering nj pulses of the J recorded signals (sj)J
j=1, a matrix

PDWj is created from (2.1) and an observation vector xj is defined according to (2.2) such that

xj = (R̄Fj , ¯PWj , ¯PRIj) (2.2)

where R̄Fj is the average value of RF, ¯PWj is the average value of PW and ¯PRIj is the average
value of PRI defined in (2.3), (2.4) and (2.5).

R̄Fj = 1
nj

njÿ

m=1
RFm , (2.3)

¯PWj = 1
nj

njÿ

m=1
PWm , (2.4)

¯PRIj = 1
nj

njÿ

m=1
PRIm . (2.5)

Once all observation vectors (xj)J
j=1 have been constructed, they are normalized to meet con-

straints of machine learning algorithms. Figure 2.5 shows the distribution of 150 normalized
observation vectors of a radar emitter, where three outliers are visible.
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2.2 Model

In this section, K emitters defined by continuous data are considered. Therefore, the main
objective is to develop a mixture model which can build K distinct clusters even in presence of
outliers and missing values. First, state-of-the-art approaches are reviewed. Then, the standard
Gaussian mixture model is presented and two varieties of this model are introduced to handle
outliers and missing values. At last, the proposed mixture model is developed into a Bayesian
framework.

2.2.1 State of the art

Radar emitter classification relies on statistical analysis of Pulse Description Words (PDW) of
a radar signal that gather its basic measurable parameters such as Radio Frequency (RF), Am-
plitude, Pulse Width (PW) or Pulse Repetition Interval (PRI). In terms of classification and
clustering of emission sources from di↵erent types, many approaches based on data fusion and
machine learning have been developed and traditionally proceed to feature extraction, dimen-
sionality reduction and classification or clustering. For example, [SL02, PJR13, LJLC16, Sun18]
propose various neural classification approaches based on the PDW structure of observed sig-
nals whereas [YWY+13] introduce a hybrid radar emitter recognition method based on rough
k-means and relevance vector machine and [Che17] develop an e�cient classification method us-
ing weighted-xgboost model for complex radar signals in large datasets. As regards the clustering
problem, [HZWT09] develop a dynamic clustering algorithm that uses designed distances and
dynamic cluster centers and does not require fixing the number of classes which depends on the
input data, [ZWCZ16] also introduce a clustering framework composed of local processing and
multi-sensor fusion processing and use a Minimum Description Length criterion to update dy-
namically the number of clusters rather than setup in advance. These practical approaches mostly
result from more general algorithms such as Random Forests [Bre01], Neural Networks [Ros58],
Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN) [EKS+96]
and k-means algorithm [HW79] which are also considered as state-of-the-art algorithms since
they are used in various fields [SEKX98, Jai10]. However, these practical and general algorithms
can not handle missing data and imputation methods [TCS+01] are required to generate data to
use them. Hence, an approach based on mixture models is preferred since mixture models provide
a mathematically based, flexible and meaningful framework for the wide variety of classification
and clustering requirements [BCG00]. More precisely, a scale mixture of Normal distributions
[AM74] is updated to handle outliers and missing data issues. On the one hand, this model is
robust to outliers by accounting for the uncertainties of variances and covariances since the asso-
ciated marginal distributions are heavy-tailed [AV07]. On the other hand, dependencies between
features can easily be modelled through a multivariate Gaussian distribution in order to infer on
missing values by benefiting from attractive Gaussian properties.

2.2.2 Standard Gaussian mixture models

Gaussian mixture models [QR78, JJ94] (GMM) are the most well-known mixture models for
continuous data and have been widely used for decades. As a natural framework for classification
and clustering, a GMM can be formalized as :

’j œ J , p(xj |�, K) =
ÿ

kœK
akN (xj |µk, �k) , (2.6)

where xj œ Rd is an observation vector, K = {1, . . . , K} is a finite and known set of clusters
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and � = (a, (µk, �k)kœK), with a = [a1, . . . , aK ]Õ, stands for parameters. Moreover, µk and �k

are respectively the mean and the covariance matrix of the kth component distribution with a
weight ak where ak Ø 0 and

q
kœK ak = 1.

The GMM can be formalized as a latent model since the component label associated to each data
point is unobserved. To this end, a categorical variable zj œ K can be considered to describe the
index of the component distribution generating the observation variable xj . Then, the mixture
distribution (1.6) is expressed as

p(xj |�, K) =
ÿ

zjœK
p(xj |zj , �, K)p(zj |�, K) , (2.7)

where

p(xj |zj , �, K) =
Ÿ

kœK
N (xj |µk, �k)”k

zj , (2.8)

p(zj |�, K) = Cat(zj |a) =
Ÿ

kœK
a

”k
zj

k (2.9)

and ”k
zj

denotes the Kronecker symbol which is 1 if zj = k and 0 otherwise.

Assuming a dataset x = (xj)jœJ of i.i.d observations and independent labels z = (zj)jœJ , the
complete likelihood is obtained as follows

p(x, z|�, K) =
Ÿ

jœJ

Ÿ

kœK
[akN (xj |µk, �k)]”

k
zj . (2.10)

At last, the Bayesian framework imposes to specify priors for the parameters �. The resulting
conjugate priors are Y

______]

______[

p(a|K) = D(a|Ÿ0)
p(µ|�, K) =

Ÿ

kœK
N (µk|µ0, ÷≠1

0 �k)

p(�|K) =
Ÿ

kœK
IW(�k|“0, �0) .

(2.11)

where the Dirichlet and the Inverse Wishart distributions are defined as follows :

D(a|Ÿ) = cD(Ÿ)
Ÿ

kœK
aŸk≠1

k ,

IW(�|“, S) = cIW(“, S)|�|≠
“+d+1

2 exp
3

≠1
2 tr(S�≠1)

4
,

where cD(Ÿ) and cIW(“, S) are normalizing constants such that

cD(Ÿ) = � (qkœK Ÿk)
r

kœK �(Ÿk) , cIW(“, S) = |S|
“
2

2 d“
2 �d(“

2 )
.

The standard Gaussian model is shown on Figure 2.6.
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Figure 2.6: Graphical representation of the standard Gaussian mixture model. The arrows represent
conditional dependencies between the random variables. The K-plate represents the K mixture compo-
nents and the J-plate represents the independent identically distributed observations xj and the indicator
variables zj . Known quantities, respectively unknown quantities, are in blue, respectively in red.

2.2.3 Gaussian mixture models with missing data

As weighted sums of Gaussian distributions, GMMs benefit from attractive Gaussian properties
that enable modeling dependencies between features to infer on missing data. Indeed, missing
values can be handled by decomposing the features vector xj œ Rd into observed features x

obs
j œ

Rdobs
j and missing features modeled by a latent variable x

miss
j œ Rdmiss

j such that 1 Æ dobsj Æ d

and dmiss
j = d ≠ dobs. Reminding that conditionally to its index cluster the features vector xj is

Gaussian distributed as

xj =
A

x
miss
j

x
obs
j

B

|zj = k ≥ N
A

µk =
A

µ
miss
k

µ
obs
k

B

, �k =
A

�miss
k �cov

k

�covÕ
k �obs

k

BB

,

the latent variable x
miss
j can be expressed as a Gaussian distributed variable such that

x
miss
j |xobs

j , zj = k ≥ N
1
x
miss
j |µx

miss

jk , �x
miss

k

2
(2.12)

where

µ
x
miss

jk = µ
miss
k + �cov

k �obs≠1
k (xobs

j ≠ µ
obs
k ) , (2.13)

�x
miss

k = �miss
k ≠ �cov

k �obs≠1
k �covÕ

k . (2.14)

Then, a marginal distribution for x
obs
j is obtained such that x

obs
j ≥ N

1
x
obs
j |µobs

k , �x
obs

k

2
with

�x
obs

k =
3

�obs≠1
k + 2 ◊ �obs≠1

k �covÕ
k

1
�x

miss

k

2≠1
�cov

k �obs≠1
k

4≠1
.

Eventually, a Gaussian mixture model handling missing data is obtained by integrating missing
data distributions (2.12) into the complete likelihood (2.10) such that

p(x, z|�, K) =
Ÿ

jœJ

Ÿ

kœK
[akN (xj |µk, �k)]”

k
zj

=
Ÿ

jœJ

Ÿ

kœK

Ë
akN

1
x
miss
j |µx

miss

jk , �x
miss

k

2
N

1
x
obs
j |µobs

k , �x
obs

k

2È”k
zj .

(2.15)

Parameters are a priori distributed according to (2.11). A graphical representation of the model
is exhibited on Figure 2.7.
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Figure 2.7: Graphical representation of the Gaussian mixture model handling missing data. The arrows
represent conditional dependencies between the random variables. The K-plate represents the K mixture
components and the J-plate the independent identically distributed observations xj decomposed into
observable data x

obs
j and missing data x

miss
j and the indicator variables zj . Known quantities, respectively

unknown quantities, are in blue, respectively in red.

2.2.4 Gaussian mixture models with outliers

A major limitation of GMMs is their lack of robustness to outliers that can lead to over-estimate
the number of clusters since they use additional components to capture the tails of the distribu-
tions [SB05]. Nonetheless, outlier values in xj can be handled by introducing a latent variable
uj to scale each mixture component covariance matrix �k. That family of mixture models is
known as scale mixtures of Normal distributions [AM74] and benefits from heavy-tailed marginal
distributions accounting for the uncertainties of variances and covariances [AV07]. Introducing
the latent positive variable uj into (2.8), the following scale component distribution is obtained

p(xj |uj , zj , �, K) =
Ÿ

kœK
N (xj |µk, u≠1

j �k)”k
zj , (2.16)

and the joint distribution of (xj , uj) is derived from (2.16) such that

p(xj , uj |zj , �, K) =
Ÿ

kœK

Ë
N (xj |µk, u≠1

j �k)pk(uj)
È”k

zj (2.17)

where pk(uj) is the prior distribution of uj conditionally to zj = k.

Conditionally to the choice of a prior distribution for uj , the marginal distribution p(xj |zj , �, K) =s Œ
0 p(xj , uj |zj , �, K)ˆuj of xj over uj can take di↵erent forms [WS00]. [SB05, AV07, SZKL17,
NW14] mainly propose using a Gamma distribution parametrized by a deterministic parameter
‹k such that the joint distribution of (xj , uj) from (2.17) becomes

p(xj , uj |zj , �, K) =
Ÿ

kœK

5
N (xj |µk, u≠1

j �k)G
3

uj |‹k

2 ,
‹k

2

46”k
zj

(2.18)

Then the resulting marginal distribution p(xj |zj , �, K) follows a Student-t distribution obtained
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Figure 2.8: Graphical representation of the Gaussian mixture model handling outliers. The arrows rep-
resent conditional dependencies between the random variables. The K-plate represents the K mixture
components and the J-plate the independent identically distributed observations xj , the scale variables uj

and the indicator variables zj . Known quantities, respectively unknown quantities, are in blue, respectively
in red.

by

p(xj |zj , �, K) =
⁄ +Œ

0
p(xj , uj |zj , �, K)ˆuj

=
⁄ +Œ

0
N

1
xj |µk, u≠1

j �k

2
G

3
uj |‹k

2 ,
‹k

2

4
ˆuj

= �(d+‹k
2 )

�(‹k
2 )(‹kfi) d

2
◊ |�≠1

k |
1
2 ◊

5
1 + 1

‹k
(xj ≠ µk)T �≠1

k (xj ≠ µk)
6≠ d+‹k

2

= T (xj |µk, �k, ‹k)

(2.19)

where d is the dimension of the feature space and ‹k is the degree of freedom of the Student-t
distribution. Eventually, a Gaussian mixture model handling outliers is obtained by integrating
(2.18) into the complete likelihood (2.10) such that

p(x, u, z|�, K) =
Ÿ

jœJ

Ÿ

kœK

5
akN

1
xj |µk, u≠1

j �k

2
G

3
uj |‹k

2 ,
‹k

2

46”k
zj

.

where u = (uj)jœJ are the scale latent variables related to continuous data x = (xj)jœJ . As
for prior distributions, ‹k does not require a prior distribution since it is deterministic and other
parameters are a priori distributed according to (2.11). Then, a graphical representation of the
model is shown on Figure 2.8.

The degree of freedom variable ‹k has been considered as a deterministic variable updated
via an optimization argument during the maximization step of the VB inference [PM00] and
[SB05, AV07, SZKL17, NW14] did not assume any prior distribution for ‹k since there do not exist
any known conjugate priors for ‹. For the sake of keeping conjugacy between prior and posterior
distributions and adopting a full Bayesian treatment, a Gamma distribution G(uj |–k, —k) with
shape and rate parameters (–k, —k) is chosen for pk(uj) = p(uj |z = k) = G(uj |–k, —k) such that
the joint distribution of (xj , uj) from (2.17) becomes

p(xj , uj |zj , �, K) =
Ÿ

kœK

Ë
N (xj |µk, u≠1

j �k)G (uj |–k, —k)
È”k

zj (2.20)

30



CHAPTER 2. CONTINUOUS DATA

As in (2.19), the resulting marginal distribution p(xj |zj , �, K) is also a Student-t distribution
[DLGMD17] which is obtained as follows

p(xj |zj , �, K) =
⁄ +Œ

0
p(xj , uj |zj , �, K)ˆuj

=
⁄ +Œ

0
N

1
xj |µk, u≠1

j �k

2
G (uj |–k, —k) du

= �(–k + d
2)

�(–k)(2—kfi) d
2

◊ |�≠1
k |

1
2 ◊

5
1 + 1

2—k
(xj ≠ µk)T �≠1

k (xj ≠ µk)
6≠(–k+ d

2 )

= T (xj |µk, �k, –k, —k)

Then, a Gaussian mixture model handling outliers is obtained by integrating (2.20) into the
complete likelihood (2.10) such that

p(x, u, z|�, K) =
Ÿ

jœJ

Ÿ

kœK

Ë
akN

1
xj |µk, u≠1

j �k

2
G (uj |–k, —k)

È”k
zj . (2.21)

In a full Bayesian treatment, both –k and —k require a prior distribution. Hence, a new conjugate
prior distribution is introduced to avoid a non closed-form posterior distribution for (–k, —k). This
prior distribution is defined below :

p(–k, —k|p0, q0, s0, r0) Ã p–k≠1
0 e≠q0—k—s0–k

k

�(–k)r0
I{–k>0}I{—k>0} (2.22)

where p0, q0, s0, r0 > 0. The previous expression can be reformulated as :

p(–k, —k|p0, q0, s0, r0) = p(—k|–k, s0, q0)p(–k|p0, q0, s0, r0)

with

p(—k|–k, s0, q0) = G(—k|s0–k + 1, q0) ,

p(–k|p0, q0, s0, r0) = 1
M0

p–k≠1
0 �(s0–k + 1)
qs0–k+1

0 �(–k)r0
I{–k>0}

where

M0 =
⁄

p–k≠1
0 �(s0–k + 1)
qs0–k+1

0 �(–k)r0
I{–k>0}ˆ–k .

The normalization constant M0 is intractable and a Laplace approximation method is derived to
estimate it. As for other parameters, they are a priori distributed according to (2.11). At last,
the resulting mixture model is shown on Figure 2.9.

2.2.5 Proposed mixture model

Varieties of the standard GMM have been introduced in (2.15) and (2.21) to handle outliers
or missing values. The proposed model results from combining these two varieties to enable
the handling of both outliers and missing values. Assuming a dataset x = (xj)jœJ of i.i.d
observations decomposed into observed features x

obs = (xobs
j )jœJ and missing features x

miss =
(xmiss

j )jœJ and independent latent variables u = (uj)jœJ and z = (zj)jœJ , the proposed model
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Figure 2.9: Graphical representation of the Gaussian mixture model handling outliers with hyper-
parameters (–, —). The arrows represent conditional dependencies between the random variables. The
K-plate represents the K mixture components and the J-plate the independent identically distributed
observations xj , the scale variables uj and the indicator variables zj . Known quantities, respectively
unknown quantities, are in blue, respectively in red.

results in

p(xobs, h|�, K) =
Ÿ

jœJ

Ÿ

kœK

C

akN
AA

x
miss
j

x
obs
j

B
--µk, u≠1

j �k

B

G(uj |–k, —k)
D”k

zj

=
Ÿ

jœJ

Ÿ

kœK

Ë
akN

1
x
miss
j |µx

miss

jk , u≠1
j �x

miss

k

2
N

1
x
obs
j |µobs

k , u≠1
j �x

obs

k

2
G(uj |–k, —k)

È”k
zj

(2.23)

where h = (xmiss, u, z) is the set of latent variables and � =
!
a = (ak)kœK, µ = (µk)kœK, � =

(�k)kœK, – = (–k)kœK, — = (—k)kœK
"
is the set of parameters. Finally, the required prior distri-

bution for � is decomposed as follows

p(�|K) = p(a)p(–, —|K)p(µ|�, K)p(�|K)

where prior distributions for a, µ and � are given in (2.11) and the prior distribution of (–, —)
is a product of distributions defined (2.22) such that

p(–, —|K) =
Ÿ

kœK
p(–k, —k|p0, q0, s0, r0) . (2.24)

A graphical representation of the proposed model is shown on Figure 2.10.
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Figure 2.10: Graphical representation of the proposed model. The arrows represent conditional depen-
dencies between the random variables. The K-plate represents the K mixture components and the J-plate
the independent identically distributed observations xj , the scale variables uj and the indicator variables
zj . Known quantities, respectively unknown quantities, are in blue, respectively in red.

2.3 Inference

Direct inference on the proposed model is not trivial since the posterior distribution of latent
missing data and parameters is intractable. Therefore, the Variational Bayes (VB) procedure is
processed to estimate parameters of the mixture model defined in (2.23). Variational posterior
distributions are obtained from the VB Expectation (VBE) and VB Maximization (VBM) steps.
These variational posterior distributions are similarly obtained from classical posterior related
in [SB05, AV07] and [MP04]. In addition to standard results, missing values are incorporated as
latent variables in posterior calculations and a posterior distribution for missing data is proposed.
At last, a lower bound on the log evidence is defined to master the convergence of the VB
procedure.

2.3.1 Variational posterior distributions

Recalling that the VB procedure consists in approximating the intractable posterior distribution
p(h, �|xobs, K) by a tractable factorized distribution q(h, �) = q(h)q(�) that maximizes

L(q|K) = Eh,�
Ë
log p(xobs, h, �|K)

È
≠ Eh,� [log q(h, �)] , (2.25)

where Eh,�[·] denotes the expectation with respect to q(h, �), variational posterior distributions
are obtained by performing a free-form maximization through the following update rules :

VBE-step : q(h) Ã exp
1
E�

Ë
log p(xobs, h|�, K)

È2
,

VBM-step : q(�) Ã exp
1
Eh

Ë
log p(xobs, h, �|K)

È2
.

According to a conditional factorization of q(h) and q(�) given by

q(h) = q(xmiss|u, z)q(u|z)q(z) ,

q(�) = q(a)q(µ, �)q(–, —) ,
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the following conjugate variational posterior distributions are obtained from the VB procedure

Y
______________________]

______________________[

q(xmiss|u, z) =
Ÿ

jœJ

Ÿ

kœK
N

3
x
miss
j |µ̃x

miss

jk , u≠1
j �̃x

miss

k

4”k
zj

,

q(u|z) =
Ÿ

jœJ

Ÿ

kœK
G(–̃jk, —̃jk)”k

zj ,

q(z) =
Ÿ

jœJ
Cat(zj |r̃j) ,

q(a) = D(a|k̃) ,

q(–, —) =
Ÿ

kœK
p(–k, —k|p̃k, q̃k, s̃k, r̃k) ,

q(µ, �) =
Ÿ

kœK
N (µk|µ̃k, ÷̃≠1

k �k)IW(�k|“̃k, �̃k) .

(2.26)

where the variational posterior distributions of (–, —) are defined in (2.22). Their respec-
tive parameters are estimated during the VBE and VBM steps by developing expectations

E�
Ë
log p(xobs, h|�, K)

È
and Eh

Ë
log p(xobs, h, �|K)

È
.

2.3.2 VBE-step

The VBE-step consists in deriving the following expectation

E�
Ë
log p(xobs, h|�, K)

È
=

ÿ

jœJ

ÿ

kœK
”k

zj

3
E� [log ak] ≠ 1

2

3
d(log 2fi ≠ log uj) + E� [log |�k|]

+ ujE�
Ë
(xj ≠ µk)T �≠1

k (xj ≠ µk)
È 4

+ E� [–k]E� [log —k]

+ (E� [–k] ≠ 1) log uj ≠ E� [log �(–k)] ≠ ujE� [—k]
4

(2.27)

where ’(j, k) œ J ◊ K :

E�
Ë
(xj ≠ µk)T �≠1

k (xj ≠ µk)
È

= (xj ≠ µ̃k)T “̃k�̃≠1
k (xj ≠ µ̃k) + d

÷̃k
(2.28)

is obtained from properties of the variational distribution q(µ, �|K) in (2.26). Hence continuous
data x are distributed a posteriori according to a product of normal distributions conditionally
to latent variables u and labels z such that

x|u, z ≥
Ÿ

jœJ

Ÿ

kœK
N

1
xj |µ̃k, u≠1

j “̃≠1
k �̃k

2”k
zj

Mean parameters (µ̃k)kœK and variance parameters (“̃≠1
k �̃k)kœK of these normal distributions

are obtained from (2.28). By decomposing x into (xmiss, x
obs) and by exploiting properties of

the multivariate normal distribution, the following variational posterior distribution is obtained
for missing values x

miss :

q(xmiss|u, x
miss
c , z, K) =

Ÿ

jœJ

Ÿ

kœK
N

3
x
miss
j |µ̃x

miss

jk , u≠1
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miss
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4”k
zj
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with ’(j, k) œ J ◊ K :

µ̃
x
miss

jk = µ̃
miss
k + �̃cov

k �̃obs≠1

k (xobs
j ≠ µ̃

obs
k ) ,

�̃x
miss

k = �̃miss
k ≠ �̃cov

k �̃obs≠1

k �̃covÕ

k

“̃k
.

Then by marginalising over x
miss in (2.27), the expectation (2.27) becomes

⁄
E� [log p(x, u, z|�, K)] ˆx

miss =
ÿ
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E� [log ak] + E� [log |�k|]
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with ’k œ K,
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Conditionally to z, the scale latent variables u are distributed according to a product of Gamma
distribution whose parameters are obtained by aggregating terms related to u such that

q(u|z, K) =
Ÿ

jœJ

Ÿ

kœK
G

1
uj |–̃jk, —̃jk

2”k
zj

with ’(j, k) œ J ◊ K :
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dobsj
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2
+ d
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4
.

Finally, variational posterior categorical distributions are obtained for labels z by marginalising
over u in (2.29) such that

⁄
E� [log p(x, u, z|�, K)] ˆx
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jœJ
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(2.30)
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where ’j œ J , k œ K,

log fljk = E� [log ak] ≠ 1
2

3
dobsj log 2fi + E� [log |�k|] ≠ log |�̃x
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k |
4

+ E� [–k]E� [log —k] ≠ E� [log �(–k)] + log �(–̃jk) ≠ –̃jk log —̃jk .
(2.31)

Hence the variational categorical distributions are deduced from (2.30) and are given by

q(z|K) =
Ÿ

jœJ
Cat(zj |r̃j)

where probabilities (r̃j)jœJ are obtained from (2.31) such that ’j œ J , k œ K,

r̃jk = fljkq

kœK
fljk

.

2.3.3 VBM-step

The VBM-step consists in deriving the following expectation
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Ë
log p(xobs, h, �|K)

È
= Eh

Ë
log p(xobs, h|�, K)

È
+ p(�|K)
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ÿ
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2 4
≠ log M0

+ (–k ≠ 1) log p0 ≠ r0 log �(–k) + s0–k log —k ≠ q0—k ,

(2.32)

where ’(j, k) œ J ◊ K :

Eh

Ë
uj(xj ≠ µk)T �≠1

k (xj ≠ µk)
È

= Eh [uj ] (Eh [xj ] ≠ µk)T �≠1
k (Eh [xj ] ≠ µk)

+ Trace
1
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k

2 (2.33)

is obtained from properties of the variational distribution q(h|K) with

Eh [uj ] = –̃jk

—̃jk
,
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By factorizing terms related to a in (2.32), the following Dirichlet distribution is obtained

q(a|K) = D(a|Ÿ̃)

where

’k œ K, Ÿ̃k = Ÿ0k +
ÿ

jœJ
Eh

Ë
”k
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È
.

Then, (–, —) are a posteriori distributed according to the distribution defined in (2.22) such that

q(–, —|K) =
Ÿ

kœK
p(–k, —k|p̃k, q̃k, s̃k, r̃k) ,

where
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Ë
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.

By aggregating and factorizing terms related to each µk in (2.32), a Normal distribution is
obtained for each µk such that

q(µ|�, K) =
Ÿ

kœK
N

1
µk|µ̃k, ÷̃≠1

k �k

2

where ’k œ K,
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.

Eventually, variance parameters � are a posteriori distributed according to Inverse Wishart
distributions given by

q(�|K) =
Ÿ

kœK
IW(�k|“̃k, �̃k)

where

“̃k = “0 +
ÿ

jœJ
Eh

Ë
”k

zj

È
,

�̃k = �0 +
ÿ

jœJ
Eh

Ë
”k

zj

È 1
Eh [uj ]Eh [xj ]Eh [xj ]T + Vh [xj ]

2
+ ÷0kµ0k

µ
T
0k

≠ ÷̃kµ̃kµ̃
T
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2.3.4 Lower bound

The lower bound L(q|K) on the log evidence (2.25) is decomposed into the free energy

Eh,�
Ë
log p(xobs, h, �|K)

È
and the entropy of the approximate posterior q(h, �|K) given by

Eh,� [log q(h, �|K)]. The free energy can be developed as
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As for the entropy term, the following decompositon is obtained

Eh,� [log q(h, �|K)] = Eh

Ë
log q(xmiss

q , u, z|K)
È

+ E� [log q(�|K)]
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Ë
log q(xmiss

q |u, z, K)
È

+ Eh [log q(u|z, K)]
+ Eh [log q(z|K)] + E� [log q(�|K)]

38



CHAPTER 2. CONTINUOUS DATA

where
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kœK
Eh

Ë
”k

zj

È
log r̃jk

and

E� [log q(�|K)] =
ÿ

kœK
(Ÿ̃k ≠ 1)E� [log ak] + log cD(Ÿ̃k) ≠ 1

2

3
(“̃k + d + 1)E� [log |�k|]

+ Trace
1
�̃kE�

Ë
�≠1

k

È2 4
+ cIW(“̃k, �̃k) + 1

2

3
d(log ÷̃k ≠ log 2fi)

≠ E� [log |�k|] ≠ ÷̃kE�
Ë
(µk ≠ µ̃k)T �≠1

k (µk ≠ µ̃k)
È 4

≠ log Mk

+ (E� [–k] ≠ 1) log p̃k ≠ r̃kE� [log �(–k)] + s̃kE� [–k]E� [log —k]
≠ q̃kE� [—k]

with

E�
Ë
(µk ≠ µ̃k)T �≠1

k (µk ≠ µ̃k)
È

= d

÷̃k
.

2.3.5 Expectations from variational distributions

Expectations developed in variational calculations are derived from properties of variational
posterior distributions and are obtained as follows. Categorical distribution properties lead to

’j œ J , ’k œ K :
Eh

Ë
”k

zj

È
= r̃jk .

Dirichlet distribution properties lead to

’k œ K :

E� [log ak] = Â(Ÿ̃k) ≠ Â

Q

a
ÿ

kœK
Ÿ̃k

R

b ,

where Â(·) is the digamma function. Gamma distribution properties lead to

’j œ J , ’k œ K :

Eh [uj ] = –̃jk

—̃jk
,

Eh [log uj ] = Â(–̃jk) ≠ log —̃jk .
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Normal distribution properties lead to

’k œ K :
E� [µk] = µ̃k ,

E�
Ë
µkµ

T
k

È
= V� [µk] + E� [µk]E� [µk]T

= ÷̃≠1
k �k + µ̃kµ̃

T
k ,

Inverse Wishart distribution properties lead to

E�
Ë
�≠1

k

È
= “̃k�̃≠1

k ,

E� [log |�k|] = log |�̃k| ≠
dÿ

i=1
Â

3
“̃k + 1 ≠ i

2

4
≠ d log 2 .

Posterior expectations of —k are derived from the posterior Gamma distribution (2.26) properties
and can easily be computed conditionally to –k

E�[—k] = s̃kE�[–k] + 1
q̃k

,

E�[log —k] = E�[Â (s̃k–k + 1)] ≠ log q̃k .

However, expectations depending on –k are intractable

E�[Â (s̃k–k + 1)] =
⁄

Â (s̃k–k + 1) p(–k|p̃k, r̃k)d–k , (2.34)

E�[–k] =
⁄

–kp(–k|p̃k, r̃k)d–k , (2.35)

E�[log �(–k)] =
⁄

log �(–k)p(–k|p̃k, r̃k)d–k . (2.36)

Since lower bound calculation is required as a stop criterion, expectations (2.34), (2.35) and (2.36)
have to be approximated. A deterministic method [TK86] based on Laplace approximation is
then applied. This method consists in approximating integrals of a smooth function times the
posterior h(–)p(–|p, q, s, r) with an approximation proportional to a normal density in ◊ such
that

E[h(–] = h(–0)p(–0|p, q, s, r)(2fi)d–/2| ≠ u
ÕÕ(–0)|1/2 ,

where d– is the dimension of –, u(–) = log (h(–)p(–|p, q, r, s)) and –0 is the point at which
u(–) is maximized.

In the case of unnormalized density q(–|p, q, r, s), Laplace’s method can be applied separately to
hq and q to evaluate the numerator and denominator here :

E[h(–] =
s

h(–)q(–|p, q, s, r)d–s
q(–|p, q, s, r)d–

.

2.4 Experiments

In this section, the proposed method is performed on the set of acquired data. For comparison,
a standard neural network (NN), the k-nearest neighbours (k-NN) algorithm, Random Forests
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Figure 2.11: Dataset gathering 6300 observations from 42 radar emitters. Some clusters are completely
separable whereas some others share features and can not be linearly separated.

(RdF) the k-means algorithm and the DBSCAN are also evaluated. Two experiments are carried
out to evaluate classification and clustering performance with respect to a range of percentages
of missing values. First, characteristics for realistic data acquisition and imputation methods for
missing data are detailed. Then, both experiments are described with their error measure and
their performance are shown to exhibit the e↵ectiveness of the proposed model.

2.4.1 Data

Real data are acquired from the system detailed in Section 2.1. For each recording, the sampling
frequency and the observation time T are respectively chosen as 4.17 MHz and 20 ms. The
database exactly gathers 42 di↵erent radars waveforms and 150 observations are recorded for
each waveform. Outliers and missing values are naturally embedded in observations due to
material defects and real conditions detailed in Section 2.1. The dataset is shown in Figure 2.11.
However, extra missing values are added to evaluate limits of the proposed approach. Missing
information are introduced by randomly deleting coordinates of (xj)150

j=1 for each of the 42 radar
emitters. Percentages of deletion range from 5% to 40%. Nevertheless, comparison algorithms do
not handle datasets including missing values. Discarding observations that contain missing values
can be a restrictive solution, therefore imputation methods have been developed [GLSGFV10].
In this chapter, two classical imputation methods, based on statistical analysis and machine
learning, are performed. First, the mean imputation consists in filling a missing component
of an observation by the average of observed values of that component. This method has the
obvious disadvantage that it under represents the variability and also ignores correlations between
observations [Sch97]. Then, imputation can be processed through a K-nearest neighbours method
[HTS+01] in order to replace missing values of an observation with a weighted mean of the k
nearest completed observations where the weights are inversely proportional to the distances
from the neighbours. Since replacements are influenced only by the most similar cases, the
KNN method is more robust with respect to the amount and type of missing data [TCS+01].
These imputation methods are compared with the proposed approach in terms of classification,
clustering and reconstruction performance. For the comparison of reconstruction performance,
mean-squared errors between original data and previous imputation methods are compared with
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Table 2.1: Initialisation of hyper-parameters values for classification on continuous data

Ÿ0 ÷0 “0 p0 r0 q0 s0
0.5 10≠4 4 0.9 1 1 1

the mean-squared error between original data and the variational posterior marginal mean of
missing data given by

’j œ J , Eq[xmiss
j ] = Eq(

⁄ ⁄
q(xmiss

j , uj , zj)dujdzj)

=
ÿ

kœK
r̃jkµ̃

x
miss

jk .
(2.37)

2.4.2 Classification experiment

The classification experiment evaluates the ability of each algorithm to assign unlabeled data
to one of the K classes trained by a set of labeled data. The classification task is decomposed
into a training step and a prediction step defined in procedures 2.1 and 2.2. The training step
consists in estimating variational parameters of q(�) defined in (2.26) given a set of training
data with known labels. As for the prediction step, it results in associating new data to the
class that maximizes their posterior probabilities. Since comparison algorithms do not handle
datasets including missing values, a complete dataset is used to enable their training. During
the prediction step, incomplete observations are either discarded and gathered in a reject class or
completed thanks to the mean and KNN imputation methods. Standard configurations provided
by Matlab are chosen for the RnF, the NN and the KNN algorithm. The proposed model and
comparisons algorithms are trained on 70% of the initial database without extra missing values
and tested on the remaining 30% of the database whose elements are randomly deleted according
to di↵erent proportions of missing values. The RnF gathers 50 trees. The NN is composed of one
hidden layer of 70 neurons and a softmax output layer and is trained with a cross-entropy loss.
An accuracy metric is chosen for the classification experiment and observations belonging to the
reject class are considered as misclassification errors. For each experiment, hyper-parameters are
initialised as in Table 2.1 and 100 simulations are performed to take into account randomness of
data deletion.

Procedure 2.1 Classification procedure on continuous data : Training step

Input: Training set x
train and associated labels z

train

Output: Learned parameters �̃train

Initialise Ÿ0, “0, ÷0 , µ0, �0, p0, r0, s0 and q0
for iter = 1 to itermax do

Update –̃jk, —̃jk, µ̃
x
miss

jk , �̃x
miss

k

Update Ÿ̃k, ÷̃k, “̃k, p̃k, r̃r, s̃k, q̃k, µ̃k, �̃k

Calculate the lower bound L
if Liter ≠ Liter≠1 Æ tol ◊ Liter≠1 then

return �̃train =
1
Ÿ̃k, ÷̃k, “̃k, p̃k, r̃r, s̃k, q̃k, µ̃k, �̃k

2

kœK
end if

end for
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Procedure 2.2 Classification procedure on continuous data : Prediction step

Input: Unlabelled dataset x
pred and learned parameters �̃train

Output: Predicted labels z̃
pred

Update –̃jk, —̃jk, µ̃
x
miss

jk , �̃x
miss

k , r̃jk

return z̃
pred such that each z̃predj = arg max

kœK
r̃jk

For the classification experiment, results are shown in Figure 2.12. Without missing data,
both algorithms perfectly classify the 42 radar emitters. When the proportion of missing values
increases, the proposed model outperforms comparisons algorithms and achieves an accuracy of
85% for 40% of deleted values whereas the accuracy of NN and KNN is lower than 50% with
or without missing data imputation. As for the RnF, it outperforms both NN and KNN by
achieving accuracies of 67% and 72% with standard imputation methods for 40% of deleted val-
ues. This higher performance of the proposed model reveals that the proposed method embeds
a more e�cient inference method than other imputation methods. That result is confirmed on
Figure 2.12 where comparison algorithms are applied on data reconstructed by the proposed
model. Indeed when the proposed inference is chosen, performance of NN and KNN increase
up to 80% for 40% of deleted values and the RnF has almost the same performance than the
proposed model. The Figure 2.12 also reveals that the proposed approach is more robust to miss-
ing data since it has a lower variance than other algorithms and imputation methods. Finally,
this e�ciency is shown on Figure 2.13 where the proposed model exhibits a lower mean-squared
error for missing data imputation than the mean and KNN imputation methods. E↵ectiveness
of the proposed model can be explained by the fact that missing data imputation methods can
create outliers that deteriorate performance of classification algorithms whereas the inference on
missing data and labels prediction are jointly estimated in the proposed model. Indeed, em-
bedding the inference procedure into the model framework allows properties of the model, such
as outliers handling, to counterbalance drawbacks of imputation methods such as outlier creation.

Concerning the computational burden of the proposed approach, Figure 2.14 shows the evo-
lution of computing times taken by model learning of the proposed model and comparison al-
gorithms according to di↵erent numbers of observations. Considering that the learning of the
proposed model is done o✏ine and that its code can be drastically optimized since it is only
developed under Matlab, the computational burden of the proposed approach is acceptable. In-
deed the proposed model is ten times slower than the RnF but shares similar computing times
with the NN when the number of observations increases. Moreover, once the model learning has
been performed o✏ine, predictions can be done online in real time.

2.4.3 Clustering experiment

The clustering experiment is composed of two experiments that aim to exhibit the clustering
ability of each algorithm according to an a priori number of clusters K œ {Kmin, . . . , Kmax}. As
developed in the previous chapter, the clustering algorithm is decomposed into two parts. First,
a semi-supervised classification is performed for each K ranges from Kmin to Kmax to estimate
variational parameters of q(�, h) in (2.26) and labels of data in a mixture of K components.
Then, the value of K that maximizes the lower bound (2.25) is retained as the posterior number
of clusters as well as its associated parameters. According to the dataset visualised in Figure
2.11, Kmin and Kmax are set to 12 and 72 in order to evaluate the impact of the a priori number
of clusters on data clustering. Parameters of DBSCAN are set to Minpts = 4 and eps = 8e-3
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Figure 2.12: Classification performance are presented for the proposed model (PM) in blue, the NN in red,
the RnF in green and the KNN in cyan. The solid lines represent the average accuracies with discarded
observations for the NN, the RnF and the KNN, the dashed lines stands for the average accuracies with
mean imputation for the NN, the RnF and the KNN whereas the doted lines shows average accuracies
with KNN imputation. Shaded error regions represent standard deviations of accuracies.
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Figure 2.13: Mean-squared errors of missing data imputation methods are presented in blue for the
proposed model, in red for the NN and in cyan for the KNN. Solid lines are average mean-squared errors
and shaded error regions represent standard deviations of mean-squared errors.
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Figure 2.14: Evolution of computing times taken by model learning for Random Forests (RF), K nearest
neighbors algorithm (KNN), Neural Network (NN) and the proposed model (PM).

Procedure 2.3 Semi-supervised classification procedure on continuous data

Input: Unlabelled dataset x and number of classes K
Output: Labels z̃ and parameters �̃
Initialise Ÿ0, “0, ÷0 , µ0, �0, p0, r0, s0 and q0
for iter = 1 to itermax do

Update –̃jk, —̃jk, µ̃
x
miss

jk , �̃x
miss

k , r̃jk

Update Ÿ̃k, ÷̃k, “̃k, p̃k, r̃r, s̃k, q̃k, µ̃k, �̃k

Calculate the lower bound L
if Liter ≠ Liter≠1 Æ tol ◊ Liter≠1 then

return �̃ =
1
Ÿ̃k, ÷̃k, “̃k, p̃k, r̃r, s̃k, q̃k, µ̃k, �̃k

2

kœK
and z̃ such that each z̃j = arg max

kœK
r̃jk

end if

end for

Procedure 2.4 Clustering procedure on continuous data

Input: Unlabelled dataset x and a priori range of numbers of clusters K œ {Kmin, . . . , Kmax}
Output: Labels z̃, parameters �̃ and optimal number of clusters K̃
for K = Kmin to Kmax do

Perform semi-supervised classification with K classes

Stock labels z̃
K , parameters �̃K

and LK

end for

return z̃
K̃ and �̃K̃

such that K̃ = arg max
K

LK
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Table 2.2: Initialisation of hyper-parameters values for clustering on continuous data

Ÿ0 ÷0 “0 p0 r0 q0 s0
0.5 100 4 1 1 1 1

by using an heuristic proposed in the original paper [EKS+96]. A supervised initialisation is
retained for the proposed model due to its sensitivity to initialisation. It consists in initialising
prior component means µ0 from results of a k-means algorithm and prior component covariance
matrices �0 from diagonal matrices whose diagonal elements are variances of observed features.
Since comparison algorithms do not handle observations with missing values and do not provide
a clustering result for them, missing data are either discarded and gathered in a reject class or
completed thanks to the mean and KNN imputation methods before running these algorithms.
For each experiment, hyper-parameters are initialised as in Table 2.2 and 100 simulations are
performed to take into account randomness of data deletion.

The first clustering experiment aims to determine the ability of each algorithm to restore the
true clusters according to an a priori number of clusters K œ {Kmin, . . . , Kmax}. Performance are
evaluated through the Adjusted Rand Index (ARI) [HA85] that compares estimated partitions
of data with the ground-truth. Results of the first experiment on realistic data are shown in
Figures 2.15 and 2.16. Without the presence of missing values, performance of DBSCAN and
the proposed model are similar with an ARI of 97% (Figure 2.15) whereas the k-means algorithm
ARI reaches 95% (Figure 2.16). When the proportion of missing values increases, the proposed
model outperforms both DBSCAN and k-means and achieves an ARI of 87% for 40% of deleted
values whereas the ARI of comparison algorithms is lower than 30% with standard missing data
imputation. This higher performance reveals that the proposed method embeds a more e�cient
inference method than other imputation methods. That result is confirmed on both Figure 2.15
and Figure 2.16 where DBSCAN and k-means are applied on data reconstructed by the proposed
model. Indeed, performance of both algorithms increase up to 77% and 69% for 40% of deleted
values when the proposed inference is chosen.

The second experiment tests the ability of each algorithm to find the true number of clusters
K̃ among {Kmin, . . . , Kmax}. The lower bound (2.25) and the average Silhouette score [KR09]
are criteria used to select the optimal number of clusters for the proposed model and the k-means
algorithm. Indeed, the ARI can not be used since it requires the ground-truth and DBSCAN
automatically selects a number of clusters for a given dataset. Results of the second experiment
on realistic data are visible on Figures 2.18 and 2.17. Figure 2.18 shows the evolution of the
number of clusters estimated by DBSCAN according to di↵erent proportions of missing values
and imputation methods. Since DBSCAN automatically estimates the number of clusters and
manages outliers by creating new clusters, results on Figure 2.18 can be used to evaluate perfor-
mance of imputations methods. For mean and k-NN imputation methods, DBSCAN estimates
a number of clusters greater than 140 as proportion of missing values is equal or greater than
5%. When DSBCAN is run on the posterior reconstruction (2.37), the estimated number of
clusters stays under 50 until 20% of missing values and reaches 70% for 40% of missing values.
These performance indicate that the proposed approach creates less outliers than other imputa-
tion methods by providing a more robust inference on missing data since DBSCAN localizes less
outliers in the posterior reconstruction (2.37) than in standard imputation methods. Figure 2.17
presents numbers of clusters selected by the lower bound and average Silhouette scores for the
proposed model and k-means algorithm according to di↵erent proportions of missing values and
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Figure 2.15: Performance of the proposed model compared with DBSCAN for K = 42 according to
di↵erent proportions of missing values and imputation methods on realistic data.
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Figure 2.16: Performance of the proposed model compared with k-means algorithm for K = 42 according
to di↵erent proportions of missing values and imputation methods on realistic data.
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Figure 2.17: Estimation of the number of clusters using the lower bound (LB) and the silhouette score
(S) for the proposed model and only the silhouette score (S) for the k-means algorithm.

imputation methods. Without missing data, the correct number of clusters (K=42) is selected
by the two criteria for the k-means algorithm and the proposed model. In presence of missing
values, the average Silhouette score always selects K = 72 when the k-means algorithm is run
on data completed by standard imputation methods. When, the k-means algorithm performs
clustering on the posterior reconstruction (2.37), the average Silhouette score correctly selects
K = 42 until 15% of missing values and chooses K œ {62, 72} when the proportion of missing
values is greater than 20%. Eventually when the proposed model does clustering, the two criteria
select the correct number of clusters K = 42 for every proportion of missing values. These results
show two main advantages of the proposed model. As previously, the proposed model provides
a more robust inference on missing data since the average Silhouette score chooses more repre-
sentative number of clusters when the k-means algorithm is run on the posterior reconstruction
(2.37) than on data completed by standard imputation methods. Furthermore, since the lower
bound criterion also selects the correct number of clusters as the average Silhouette score, it can
be used as a valid criterion for selecting the optimal number of clusters and does not require extra
computational costs as the Silhouette score since it is computed during the model parameters
estimation. Finally, the proposed approach provides a more robust inference on missing data
and a criterion for selecting the optimal number of clusters without extra computations.

Figure 2.19 shows the evolution of computing times taken by model learning of the proposed
model and comparison algorithms according to di↵erent numbers of clusters and observations. As
the model learning in Subsection 2.4.2, clustering is only performed o✏ine to extract information
from radar signals recorded during operational missions. Even if the proposed method is ten times
slower than the k-means algorithm, the computational burden of the proposed approach is still
acceptable and meets operational requirements.
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Figure 2.18: Estimation of the number of clusters by DBSCAN according to mean imputation, k-NN
imputation and posterior reconstruction of the proposed model.
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Figure 2.19: Evolution of computing times for DBSCAN, k-means algorithm (KM) and the proposed
model (PM).
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2.5 Conclusion

In this section, we propose a mixture model to classify and cluster radar emitters. Radar signals
are often partially observed due to imperfect conditions of acquisition and deficient hardwares.
Therefore to account for missing data and outliers, a scale mixture of Normal distributions,
known for its robustness to outliers and its flexible framework for classification and clustering,
is chosen. Moreover, thanks to the introduction of latent variables, the proposed model can
infer on missing data. Since the posterior distribution is intractable, model learning is processed
through a Variational Bayes inference where a variational posterior distribution is proposed for
missing values. Experiments on various real data showed that the proposed approach handles
both outliers and missing values and can outperform standard algorithms in classification and
clustering tasks. Indeed the main advantage of our approach is that it allows properties of
the model, such as outliers handling, to counterbalance drawbacks of imputation methods by
embedding the inference procedure into the model framework.
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Chapter 3

Mixed data

Continuous data describing radar emitter waveforms such as the Carrier Frequency, the Pulse
Width and the Pulse Repetition Interval have been previously taken into account in order to
cluster radar emitters. Nonetheless, these continuous features are frequently modulated to
enhance functions of the radar emitters. Therefore, these modulations can be exploited as
categorical features to cluster radar emitters. According to types of modulations, a dependence
structure can be established to model conditional relations between continuous and categorical
features. This dependence structure is then included into the previous mixture model to take
advantage of specific patterns related to each radar emitter. This chapter contains four sections
which focus on the integration of mixed data to enhance classification and clustering
performance. Section 3.1 presents assumptions on continuous and categorical features of radar
emitters. Section 3.2 introduces the dependence structure of mixed data and the proposed
model. Section 3.3 details the inference procedure for the estimation of parameters related to
the proposed model. At last in Section 3.4, various experiments are carried out to exhibit
performance of the proposed approach.
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3.1 Data

In this chapter, data consist of J pulses gathering J continuous features xq = (xqj)jœJ and
J categorical features xc = (xcj)jœJ from K distinct emitters. Let xj = (xqj , xcj) the jth

observation vector of mixed variables where

• xqj œ Rd is a vector of d continuous radar features such as the Radio Frequency, the Pulse
Width and the Pulse Repetition Interval,

• xcj =
1
x0

cj , . . . , xq≠1
cj

2
œ Cq is a vector of q categorical radar modulations such as intrapulse

modulations, pulse-to-pulse modulations or scanning types.

Radar features and distributions related to continuous and categorical data are presented in the
following subsections.

3.1.1 Assumptions on continuous data

In this subsection, continuous radar features are first recalled from the previous chapter. Then,
the distribution of continuous data is presented.

Radar Features

As in the previous chapter, continuous features of a radar emitter are extracted from its Pulse
Description Words (PDW). Each PDW gathers the radio frequency (RF), the pulse width (PW)
and the pulse repetition interval (PRI) of a given pulse in the radar signal pattern. These
continuous features are exhibited on Figure 3.1.
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Figure 3.1: Acquired pulses from a radar emitter where the three features (PRI,PW,RF) are shown on
the figure.

Distribution of continuous features

The continuous features of the jth observation are modeled through xqj œ Rd which is a vector
of d continuous variable distributed according to a multivariate normal distribution with mean
and variance parameters (µ, �). Indeed through its properties, the multivariate distribution can
enhance the dependence structure between continuous variables in order to handle outliers and
missing values.
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Outliers Outliers for continuous data xq = (xqj)jœJ are handled as the previous chapter by
introducing the scale latent variables u = (uj)jœJ such that

’j œ J ,
xqj |uj ≥ N (xqj |µ, u≠1

j �) ,

uj ≥ G(uj |–, —) ,

where each uj follows a Gamma distribution with shape and rate parameters (–, —) œ Rú+ ◊Rú+.

Missing values Since continuous data xq = (xqj)jœJ can be partially observed, they are
decomposed into observed features x

obs
q = (xobs

qj )jœJ and missing features x
miss
q = (xmiss

qj )jœJ
such that

’j œ J , xqj =
A

x
miss
qj

x
obs
qj

B

with (xmiss
qj , x

obs
qj ) œ Rdmiss

j ◊ Rdobs
j and dmiss

j + dobsj = d ,

where Rdmiss
j and Rdobs

j , are disjoint subsets of Rd embedding missing features x
miss
qj and observed

features x
obs
qj . Then, properties of the multivariate normal distribution leads to obtain two normal

distributions for observed and missing features such that

’j œ J ,

x
miss
qj ≥ N

3
x
miss
qj |µx

miss
q

j , �x
miss
q

4
,

x
obs
qj ≥ N

3
x
obs
qj |µx

obs
q

j , �x
obs
q

4
,

where

µ
x
miss
q

j = µ
miss + �cov�obs≠1 1

x
obs
qj ≠ µ

obs
2

,

µ
x
obs
q

j = µ
obs ,

�x
miss
q = �miss ≠ �cov�obs≠1�cov’ ,

�x
obs
q =

3
�obs≠1 + 2 ◊ �obs≠1�cov’

1
�x

miss
q

2≠1
�cov�obs≠1

4≠1
,

and parameters (µ, �) are decomposed as follows

µ =
A

µ
miss

µ
obs

B

,

� =
A

�miss �cov

�cov’ �obs

B

.

3.1.2 Assumptions on categorical data

In this subsection, categorical radar features are first introduced. Then, the distribution of
categorical data is presented.

Radar Features

Categorical radar features are mainly related to continuous radar features since they describe
modulations of a radar emitter pattern. Depending on the nature of continuous features, di↵erent
types of categorical features can be taken into consideration. Considering the continuous fea-
tures RF, PRI and PW of a radar emitter, categorical features are modulations related to these
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quantities. Then as regards a pattern of pulses, modulations of RF, PRI and PW are called
pulse-to-pulse modulations when they are applied on a group of pulses whereas modulations of
RF are called intrapulse modulations when they are applied on single pulses. These two families
of modulations are used by radar emitters to achieve a common goal. Indeed, both families of
modulations aim to obtain a higher resolution of targets by reducing ambiguities related to target
range and target velocity. Furthermore, intrapulse modulations also focus on avoiding identifica-
tion of radar emitters since they enable the minimization of these ambiguities even in presence of
noise. Considering amplitudes of a radar emitter, the related categorical feature is the scanning
behaviour of the radar emitter. These three types of categorical features are presented below.

Pulse-to-pulse modulations Pulse-to-pulse modulations consist in modulating parameters
of a group of pulses to minimize ambiguities related to range and velocity. They are mostly
applied on RF and PRI parameters through deterministic and random patterns. These various
patterns are defined below for parameter values (pi)1ÆiÆn of a group of n pulses and are also
visible in Figure 3.2.

Constant modulation When there is no modulation, all values (pi)1ÆiÆn are identical
such that

’i œ {1, . . . , n}, pi = v

where v is a constant.

Slide modulation When parameter values (pi)1ÆiÆn are sliding, they are linearly modu-
lated around a nominal v value such that

’i œ {1, . . . , n}, pi = a ◊ i + v

where a and v are the slope and the intercept of the linear function.

Dwell and Switch modulation When parameter values (pi)1ÆiÆn are piecewise constant,
the emission of the n pulses is known to be dwelled or switched. Hence, for J disjoint subsets Vj

forming a partition of {1, . . . , n}, parameter values pi are dwelled or switched if they are constant
on each Vj such that

’i œ {1, . . . , n}, pi =
Jÿ

j=1
vjIiœVj

where vj is the value of the piecewise Vj .

Stagger modulation The emission of the n pulses is staggered when parameter values
(pi)1ÆiÆn are distributed according a sequence of q moments (v1, . . . , vq) such that

’i œ {1, . . . , n}, pi = vm(i)

where m : {1, . . . , n} æ {1, . . . , q} is a surjective application associating moments to parameters
values. If m produces a periodic sequence of the q moments, the stagger is regular.

Wobble modulation The emission of the n pulses is wobulated when parameter values
(pi)1ÆiÆn are repetitively modulated through a periodic pattern such that

’i œ {1, . . . , n}, pi = f(pi)

where f is a periodic pattern usually chosen as a sinus wave or a triangular wave.
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Figure 3.2: Examples of di↵erent modulations of parameter values. Figure (a) shows no modulation of
parameter values. Figure (b) introduces sliding values on sequences of 5 pulses. Figure (c) exhibits a
sinusoidal wobulated emission. Figure (d) presents a dwelled emission shaped with 5 piecewises. Figure
(e) shows a staggered emission composed of 5 moments distributed according to a sequence mapped on 10
pulses. At last, Figure (f) presents a jittered emission where parameter values are normally distributed.

Jitter modulation The emission of n pulses is jittered when parameter values (pi)1ÆiÆn

are randomly generated around a nominal value v. Jittered emissions are commonly Gaussian
such that

’i œ {1, . . . , n}, pi = v + ‘

where v is the nominal value and ‘ ≥ N (0, ‡2) is a Gaussian noise.

Intrapulse modulations To avoid identification of operating radars by ESM systems, radar
designers have developed Low Probability of Intercept (LPI) waveforms. Theses waveforms are
either frequency-modulated or phased-modulated in order to improve resolution for the radar
emitter at the expense of a suboptimal signal-to-noise ratio (SNR) [LM04]. In other words,
theses pulse modulations enable the maximization of the target range and the range resolution
of radars. On the contrary, ESM resolution is less accurate since LPI signals are embedded in
much noise and the identification task can be compromised. Intrapulse modulations are presented
below.

Frequency Modulation Signal By spreading energy over a modulation bandwidth, Fre-
quency Modulation (FM) signals provide a better range resolution than constant frequency sig-
nals. A Linear FM (LFM) signal, also known as a chirp, is obtained by swepting linearly the
frequency band during the pulse duration. However, the LFM can involve relatively high au-
tocorrelation sidelobes. Therefore to counter that drawback, Nonlinear FM (NLFM) [Cos84]
signals are used to provide a more accurate spectrum which is shaped by deviating the constant
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Figure 3.3: Linear Frequency Modulation on a pulse. The Figure (a), respectively Figure (b), shows a time
domain representation, respectively a frequency domain representation, of a linear frequency modulation
signal.

Table 3.1: All known binary Barker codes

Code length Code
2 11 or 10
3 110
4 1110 or 1101
5 11101
7 1110010
11 11100010010
13 1111100110101

rate of frequency change. That non linear variation results in spending more time at frequencies
that need to be enhanced and in avoiding high autocorrelation sidelobes.

Phase Modulation Signal Phase coding is one of the first methods for pulse compression.
The concept rests on dividing a pulse of duration T into M bits of identical duration tb = T

M and
assigning a di↵erent phase value to each bit. The main advantage of phase coding over frequency
modulation is low peak side lobe level [LM04]. Barker codes [Bar53] are the most famous family
of phase codes gathering 13 known binary sequences which were reported by [Bar53] and [Tur63]
and are given in Table 3.1. Other polyphase codes such as the Frank code [FZH62] and the
Zado↵ code [Z+63] are widely used for pulse compression. Figure 3.4 exhibits an example of
pulse compression with a Zado↵ code.

Scanning types A radar emitter can truly di↵er from another one through its scanning pat-
tern. While searching for targets across the environment, its beam steering can behave di↵erently
depending on its antenna shape, its composition and its mission. The most common scanning
types are presented below and illustrated on Figure 3.5.

Circular Scan A circular scanning radar is a constant rotational scanning radar that pro-
vides accurate target range and azimuth information. It uses an antenna system that continuously
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Figure 3.4: Phase coding generated from a Zado↵ code.

scans 360° in azimuth making it ideal for the roles of early warning and initial target acquisition.

Sector Scan A sector scanning radar is a radar which scans unidirectionally or bidirec-
tionally in a delimited sector. For example, the helical scan is a unidirectional scan pattern that
enables a “pencil” beam to search a 360° pattern. As a bidirectional scan, the raster scan uses a
thin beam to cover a rectangular area by scanning in azimuth and elevation.

Track-While-Scan (TWS) A track-while-scan (TWS) system generates two or more dis-
tinct radar beams that enable a radar to track multiple targets while scanning for others.

Electronic Scan An electronic scanning radar provides a computer-controlled scanning in
which radar beams are electronically steered to point in di↵erent directions without moving the
antenna.

Distribution of categorical features

The categorical features of the jth observation are modeled through xcj =
1
x0

cj , . . . , xq≠1
cj

2
œ Cq

which is a vector of q categorical variables where Cq = C0 ◊ . . . ◊ Cq≠1 is the tensor gathering

each space Ci =
Ó

mi
1, . . . , mi

|Ci|

Ô
of events that xi

cj can take ’i œ {0, . . . , q ≠ 1}.

As continuous data xq, categorical data xc = (xcj)jœJ can be partially observed. Hence xc

are decomposed into observed features x
obs
c = (xobs

cj )jœJ and missing features x
miss
c = (xmiss

cj )jœJ
such that

’j œ J , xcj =
A

x
miss
cj

x
obs
cj

B

with (xmiss
cj , x

obs
cj ) œ Cqmiss

j
◊ Cqobsj

and qmiss
j + qobsj = q .

where Cqmiss
j

and Cqobsj
, are disjoint subsets of Cq embedding missing features x

miss
cj and observed

features x
obs
cj .

If each categorical feature xi
cj of the jth observation xcj is assumed to be independent from

other features and distributed according to a categorical distribution, a dependence structure
between features cannot be modeled and inference on missing categorical features cannot be
handled. Hence, a multivariate categorical distribution integrating a dependence structure for
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Figure 3.5: Di↵erent scanning types from [AWT18]. Sketches on the left illustrate scanning behaviours
over the scanning period. Graphics on the right represent the evolution of pulse amplitudes over the
scanning period.
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xcj is proposed to tackle that issue. As detailed below, xcj follows a multivariate categorical
distribution MC(xcj |fi) if

p(xcj) =
Ÿ

cœCq

fi
”c

xcj
c (3.1)

where ’c = (c0, . . . , cq≠1) œ Cq = C0 ◊ . . . ◊ Cq≠1 :
ÿ

cœCq

fic = 1 ,

”c

xcj
=

I
1 if x0

cj = c0, . . . , xq≠1
cj = cq≠1

0 otherwise
.

Noting that the dependence structure between categorical features is modeled through Kronecker
symbols (”c

xcj
)cœCq , this dependence structure can be exploited to handle missing features such

that the multivariate categorical distribution in (3.1) can be written as

p(xmiss
cj , x

obs
cj ) =

Ÿ

cmiss,cobsœC
qmiss

j
◊C

qobs
j

fi
”cmiss,cobs

xmiss
cj

,xobs
cj

cmiss,cobs

where

”c
miss,cobs

x
miss
cj ,xobs

cj
=

I
1 if xmiss

cj = c
miss and xobs

cj = c
obs

0 otherwise

J

= ”c
miss

x
miss
cj

◊ ”c
obs

x
obs
cj

. (3.2)

By using the previous equality (3.2), the multivariate categorical distribution in (3.1) becomes

p(xmiss
cj , x

obs
cj ) =

Ÿ

cmissœC
qmiss

j

Q

cca
Ÿ

cobsœC
qobs

j

fi
”cobs

xobs
cj

cmiss,cobs

R

ddb

”cmiss

xmiss
cj

(3.3)

Therefore, a marginal distribution for observed features x
obs
cj and a conditional distribution for

missing features x
miss
cj are obtained from (3.3) such that

p(xobs
cj ) =

ÿ

x
miss
cj œC

qmiss
j

p(xmiss
cj , x

obs
cj ) =

Ÿ

cobsœC
qobs

j

Q

cca
ÿ

cmissœC
qmiss

j

ficmiss,cobs

R

ddb

”cobs

xobs
cj

,

p(xmiss
cj |xobs

cj ) =
p(xmiss

cj , x
obs
cj )

p(xobs
cj ) =

Ÿ

cmissœC
qmiss

j

Q

cccccca

Ÿ

cobsœC
qobs

j

Q

cccca

ficmiss,cobsq

cmissœC
qmiss

j

ficmiss,cobs

R

ddddb

”cobs

xobs
cj

R

ddddddb

”cmiss

xmiss
cj

.

(3.4)

Then, a multivariate categorical distribution for missing features x
miss
cj conditionally to observed

features x
obs
cj is deduced from (3.4) where ’(cmiss, c

obs) œ Cqmiss
j

◊ Cqobsj
:

p(xmiss
cj = c

miss|xobs
cj = c

obs) =
ficmiss,cobsq

cmissœC
qmiss

j

ficmiss,cobs
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with ficmiss,cobs the joint probability fic defined in (3.1) for c = (cmiss, c
obs). Outliers are not

considered for categorical data since in our case only reliable categorical variables are filled in
databases and unreliable ones are processed as missing data.

3.2 Model

In this section, K emitters presenting mixed data are considered. Therefore, the main objective
is to develop a mixture model which can build K distinct clusters even in presence of outliers and
missing values. Before introducing a mixture model that handles mixed data, state-of-the-art
mixture models for mixed data are reviewed. Then, component distributions for mixed data are
defined and the mixture model is developed into a Bayesian framework.

3.2.1 State of the art

Two families of models emerge from finite mixture models fitting mixed-type data :

• The location mixture model [LK96] that assumes that continuous variables follow a multi-
variate Gaussian distribution conditionally on both component and categorical variables.

• The underlying variables mixture model [Eve88] that analyzes data sets with continuous
and ordinal variables. It assumes that each discrete variable arises from a latent continuous
variable and that all continuous variables (observed and unobserved) follow a Gaussian
mixture model.

These two families are first detailed before introducing the retained approach.

Location Mixture Model

[LK96] introduced a location mixture model by assuming that the continuous variables are dis-
tributed as a finite mixture of Gaussians conditionally on the categorical variables. In other
words, a Gaussian mixture exists for the continuous variables and its component mean vectors
depend on the specific combination of categories modeled by the categorical variables. As pointed
out by [WB99] the mixture of location models is not identifiable without imposing some con-
straints on the mean parameters of the Gaussian distributions. This is due to the indeterminacy
of class memberships at each location. Even if all within component dependences are taken into
account, we note that each combination of categories identifies a set of clusters. It follows that
the total number of clusters can be unnecessarily large. A more parsimonious model is given by
[HJ99], according to which the variables are decomposed into conditionally independent blocks
containing a set of continuous variables or one categorical variable. This generally works as well
as the within-independence assumption is realistic, and we know that there are cases where it is
not. However, the local independence assumption represents a strong limitation, since it could
lead to a solution with too many clusters, as shown by [VM02]. By relaxing this assumption, a
simpler solution with a lower number of groups can be obtained yielding a better classification.
An even better classification can be reached by assuming di↵erent dependences in each group.

Underlying Variables mixture model

[Eve88] and [EM90] proposed a model according to which both the continuous and the categorical
ordinal variables follow a homoscedastic Gaussian mixture model. However, as regards the ordinal
variables, the mixture variables are only partially observed through their ordinal counterparts.
In other words, the ordinal variables are modeled following the Underlying Response Variable
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(UVR) approach. This satisfies the two main requirements: dealing with ordinal data properly
and modeling dependences between ordinal and continuous variables. It is interesting to note
that this model can be rewritten in terms of copulas [MBV17]. The main drawback of this model
is that, in practice, it cannot be estimated through a full maximum likelihood approach, due to
the presence of multidimensional integrals making the estimation time consuming. In sight of
this, [Mor12] proposed a model-based clustering for mixed binary and continuous variables: each
binary attribute is generated by dichotomizing a latent continuous variable, while the scores of the
latent variables are estimated from the binary data. The estimated scores of the latent variables
and the observed continuous data follow a multivariate Gaussian mixture model. Thus the
estimation is carried out in two steps where the scores for binary data are firstly estimated before
estimating the parameters of the mixture model. Eventually, [RR17] proposed a model with
no local independence or conditionally independent blocks assumption where the dependences
between variables can be easily measured by adopting the URV approach for the ordinal variables
and assuming that each component of the mixture follows a multivariate normal distribution such
that the corresponding covariance matrices capture all the dependences regardless the nature of
variables.

Retained approach

In this work, the location mixture model approach is retained since it better models relations
between continuous and categorical radar features. Indeed, a radar pattern is mostly designed by
first choosing a pattern of modulation features (categorical variables) to achieve a specific goal
and then choosing continuous features (continuous variables) that meet constraints related to the
chosen pattern and the tactical environment. Hence, continuous radar features are mainly chosen
conditionally to categorical radar features and the location mixture model naturally responds
to that dependence structure by assuming that continuous variables are normally distributed
conditionally to categorical variables. Moreover, the local independence assumption proposed by
[HJ99] is not retained in order to take advantage of the dependence structure between continuous
and categorical data to infer on missing data.

3.2.2 Assumptions on mixed data

In this subsection, a joint distribution for mixed data is introduced to model the dependence
structure between continuous and categorical data. Then, outliers and missing values are tackled
by taking advantage of the joint distribution.

Distribution of mixed data

Considering that the retained approach focuses on conditioning continuous data xq = (xqj)jœJ
according to categorical data xc = (xcj)jœJ , the following joint distribution is introduced

’j œ J , p(xqj , xcj) =
Ÿ

cœCq

(ficN (xqj |µc, �))”c
xcj (3.5)

where continuous variables xqj are normally distributed according to categorical variables xcj

with means (µc)cœCq and variance �. As for categorical variables xcj , they are jointly distributed
according to the multivariate categorical distribution defined in (3.1) and parametrized by fi =
(fic)cœCq . Indeed, these conditional and marginal distributions can be obtained from (3.5) as
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follows :

’j œ J ,

p(xcj) =
⁄

p(xqj , xcj)ˆxqj =
Ÿ

cœCq

fi
”c

xcj
c = MC(xcj |fi) ,

p(xqj |xcj) = p(xqj , xcj)
p(xcj) =

Ÿ

cœCq

N (xqj |µc, �)”c
xcj .

(3.6)

Outliers

As developed in Section 3.1, outliers are only considered for continuous data xq = (xqj)jœJ
and they are handled as in subsection 3.1.1 by introducing scale latent variables u = (uj)jœJ .
Nonetheless, the latent variables u are introduced conditionally to categorical data xc due to the
dependence structure established in (3.5) and (3.6) such that

’j œ J ,

xqj |uj , xcj ≥
Ÿ

cœCq

N
1
xqj |µc, u≠1

j �
2”c

xcj ,

uj |xcj ≥
Ÿ

cœCq

G (uj |–c, —c)”c
xcj ,

where each uj follows conditionally to categorical data xcj a Gamma distribution with rate and
shape parameters (–c, —c) œ Rú+ ◊ Rú+.

Missing Data

Both quantitative and categorical data (xqj , xcj)jœJ can be partially observed. Hence (xqj , xcj)jœJ
are decomposed into observed features (xobs

qj , x
obs
cj )jœJ and missing features (xmiss

qj , x
miss
cj )jœJ such

that

’j œ J ,

xqj =
A

x
miss
qj

x
obs
qj

B

with (xmiss
qj , x

obs
qj ) œ Rdmiss

j ◊ Rdobs
j and dmiss

j + dobsj = d ,

xcj =
A

x
miss
cj

x
obs
cj

B

with (xmiss
cj , x

obs
cj ) œ Cqmiss

j
◊ Cqobsj

and qmiss
j + qobsj = q .

where (Rdmiss
j , Cqmiss

j
) and (Rdobs

j , Cqobsj
), are disjoint subsets of (Rd, Cq) embedding missing features

(xmiss
qj , x

miss
cj ) and observed features (xobs

qj , x
obs
cj ).

Missing continuous data x
miss
q = (xmiss

qj )jœJ are nearly handled as in subsection 3.1.1 by
taking advantage of properties of the multivariate normal distribution to obtain a distribution
for missing values. The only di↵erence with the subsection 3.1.1 lies in the fact that continuous
data are also distributed conditionally to categorical data xc due to the dependence structure
established in (3.5) and (3.6). Hence, the following distributions are obtained

’j œ J ,

x
miss
qj |xobs

qj , xcj ≥
Ÿ

cœC
N

3
x
miss
qj |µx

miss
q

jc
, �x

miss
q

4”c
xcj

,

x
obs
qj |xobs

qj , xcj ≥
Ÿ

cœC
N

3
x
obs
qj |µx

obs
q

jc
, �x

obs
q

4”c
xcj

,
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where ’j œ J , ’c œ Cq :

µ
x
miss
q

jc
= µ

miss
c + �cov�obs≠1 1

x
obs
qj ≠ µ

obs
c

2
,

µ
x
obs
q

jc
= µ

obs
c ,

�x
miss
q = �miss ≠ �cov�obs≠1�cov’ ,

�x
obs
q =

3
�obs≠1 + 2 ◊ �obs≠1�cov’

1
�x

miss
q

2≠1
�cov�obs≠1

4≠1
.

Regarding missing categorical data, they are handled as in subsection 3.1.2 such that missing
features x

miss
cj follow a multivariate categorical distribution conditionally to observed features

x
obs
cj where ’(cmiss, c

obs) œ Cqmiss
j

◊ Cqobsj
:

p(xmiss
cj = c

miss|xobs
cj = c

obs) =
ficmiss,cobsq

cmissœC
qmiss

j

ficmiss,cobs

with ficmiss,cobs the joint probability fic defined in (3.5) and (3.6) for c = (cmiss, c
obs).

3.2.3 Proposed model

In this subsection, the retained approach is developed into a Bayesian framework where the
proposed mixture model handles mixed-type data. Component distributions of clusters are first
introduced before detailing the proposed model and its Bayesian framework.

Component Distribution

Assuming independent labels z = (zj)jœJ for continuous and categorical observations x =
(xqj , xcj)jœJ and according to assumptions on mixed data defined in subsection 3.2.2, a compo-
nent distribution for each cluster k œ K is obtained as follows

’j œ J , ’k œ K, p(xj |uj , zj = k) = p(xqj |uj , xcj , zj = k)p(xcj |zj = k) ,

where

p(xqj |uj , xcj , zj = k) =
Ÿ

cœCq

N
1
xqj |µkc, u≠1

j �k

2”c
xcj ,

p(xcj |zj = k) =
Ÿ

cœCq

fi
”c

xcj

kc
.

Finally, the complete component distribution for each cluster k œ K results in

’j œ J , ’k œ K, p(xj , uj |zj = k) =
Ÿ

cœCq

1
fikcN

1
xqj |µkc, u≠1

j �k

2
G(uj |–kc, —kc)

2”c
xcj , (3.7)

with

• u = (uj)jœJ the scale latent variables handling outliers for quantitative data xq and dis-
tributed according to a Gamma distribution with shape and rate parameters
(–, —) = (–kc, —kc)(k,c)œK◊Cq

,

• (µ, �) = ((µkc)cœCq , �k)kœK the mean and the variance parameters of quantitative data
xq for each cluster,

• fi = (fik)kœK the weights of the multivariate Categorical distribution of categorical data
xc for each cluster.
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K

J
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x
miss
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obs
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x
miss
cj x

obs
cj

zj a

Ÿ0

p0

r0
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s0

Figure 3.6: Graphical representation of the proposed model integrating mixed data. The arrows represent
conditional dependencies between the random variables. The K-plate represents the K mixture com-
ponents and the J-plate the independent identically distributed observations (xqj , xcj)jœJ decomposed
into quantitative data (xqj)jœJ and categorical data (xcj)jœJ , the scale variables uj and the indicator
variables zj . Known quantities, respectively unknown quantities, are in blue, respectively in red

Mixture model

Recalling that p(zj = k) = ak where a = (ak)kœK are the weights related to component distribu-
tions, the mixture model is obtained from (3.7) such that ’j œ J ,

p(xj , uj |�) =
ÿ

kœK
ak

Ÿ

cœCq

1
fikcN

1
xqj |µkc, u≠1

j �k

2
G(uj |–kc, —kc)

2”c
xcj (3.8)

where � = (a, fi, –, —, µ, �) is the set of parameters.

Bayesian framework

As in previous chapters, a Bayesian framework is used to estimate parameters �. Assuming a
dataset x = (xq, xc) of i.i.d observations (xj = (xqj , xcj)jœJ , independent labels z = (zj)jœJ
and scale latent variables u = (uj)jœJ , the complete likelihood associated to (3.8) is defined by

p(x, z, u|�, K) =
Ÿ

jœJ

Ÿ

kœK

Q

aak

Ÿ

cœCq

1
fikcN

1
xqj |µkc, u≠1

j �k

2
G(uj |–kc, —kc)

2”c
xcj

R

b
”k

zj

Eventually, the prior distribution required for � is chosen as

p(�|K) = p(a|K)p(fi|K)p(–, —|K)p(µ, �|K)

where Y
___________]

___________[

p(a|K) = D(a|Ÿ0) ,

p(fi|K) =
Ÿ

kœK
D(fik|fi0) ,

p(µ, �|K) =
Ÿ

kœK

Ÿ

cœCq

N
1
µkc|µ0kc

, ÷≠1
0kc

�k

2
IW(�k|“0, �0) ,

p(–, —|K) =
Ÿ

kœK

Ÿ

cœCq

p(–kc, —kc|p0, q0, s0, r0) .
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and p(·, ·|p, q, s, r) is the prior distribution defined in the previous chapter such that

’(–, —) œ Rú+ ◊ Rú+, p(–, —|p, q, s, r) = 1
M

p–≠1e≠q——s–

�(–)r
(3.9)

where p, q, s, r > 0 and M =
s p–≠1e≠q——s–

�(–)r I–>0I—>0ˆ—ˆ–. Graphical representation of the pro-
posed model is shown in Figure 3.6.

3.3 Inference

Direct inference on the proposed model is not trivial since distributions of latent missing data
and parameters may not be defined when both continuous and categorical features are missing.
To overcome that issue, latent data and parameters are assumed to be independent a posteriori
and their posterior distributions can be defined while keeping dependencies between parameters
of these distributions. Therefore, the Variational Bayes (VB) procedure is processed to estimate
parameters of the mixture model defined in (3.8). Variational posterior distributions are obtained
from the VB Expectation (VBE) and VB Maximization (VBM) steps and a Lower Bound on the
log evidence is defined to master the convergence of the VB procedure.

3.3.1 Variational posterior distributions

As previously, a factorized posterior distribution
q(xmiss

q , u, x
miss
c , z, �|K) = q(xmiss

q , u, x
miss
c , z|K)q(�|K) is chosen as an approximation of the

intractable posterior joint distribution p(xmiss
q , u, x

miss
c , z, �|xobs

q , x
obs
c , K) such that latent vari-

ables h = (xmiss
q , u, x

miss
c , z) and parameters � are a posteriori independent and

q(h|K) = q(xmiss
q |u, x

miss
c , z, K)q(u|xmiss

c , z, K)q(xmiss
c |z, K)q(z|K) ,

q(�|K) = q(a|K)q(fi|K)q(–, —|K)q(µ, �|K) .

According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

Y
__________________________________]

__________________________________[

q(xmiss
q |u, x

miss
c , z, K) =

Ÿ

jœJ

Ÿ

kœK

Ÿ

cœC
N

3
x
miss
qj |µ̃x

miss
q

jkc
, u≠1

j �̃x
miss
q

k

4”c
xcj

”k
zj

,

q(u|xmiss
c , z, K) =

Ÿ

jœJ

Ÿ

kœK

Ÿ

cœC
G

1
uj |–̃jkc, —̃jkc

2”c
xcj

”k
zj ,

q(xmiss
c |z, K) =

Ÿ

jœJ

Ÿ

kœK
MC

1
x
miss
cj |r̃x

miss
c

jk

2”k
zj

q(z|K) =
Ÿ

jœJ
Cat(zj |r̃j) ,

q(a|K) = D(a|Ÿ̃) ,

q(fi|K) =
Ÿ

kœK
D(fi|fĩk) ,

q(µ, �|K) =
Ÿ

kœK

Ÿ

cœCq

N
1
µkc|µ̃kc, ÷̃≠1

kc
�k

2
IW(�k|“̃k, �̃k) ,

q(–, —|K) =
Ÿ

kœK

Ÿ

cœCq

p(–kc, —kc|p̃k, q̃k, s̃k, r̃k) ,

(3.10)
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where the variational posterior distributions of (–, —) are defined in (3.9). Their respective pa-
rameters are estimated during the VBE and VBM-steps by developing expectations E� [log p(x, u, z|�, K)]
and Eh [log p(x, u, z, �|K)].

3.3.2 VBE-step

The VBE-step consists in deriving the following expectation

E� [log p(x, u, z|�, K)] =
ÿ

jœJ

ÿ

kœK
”k

zj

3
E� [log ak] +

ÿ

cœCq

”c

xcj

3
E� [log fikc] ≠ 1

2

3
d(log 2fi ≠ log uj)

+ E� [log |�k|] + ujE�
Ë
(xqj ≠ µkc)T �≠1

k (xqj ≠ µkc)
È 4

+ E� [–kc]E� [log —kc]

+ (E� [–kc] ≠ 1) log uj ≠ E� [log �(–kc)] ≠ ujE� [—kc]
44

(3.11)

where ’(j, k, c) œ J ◊ K ◊ Cq :

E�
Ë
(xqj ≠ µkc)T �≠1

k (xqj ≠ µkc)
È

= (xqj ≠ µ̃kc)T “̃k�̃≠1
k (xqj ≠ µ̃kc) + d

÷̃kc

(3.12)

is obtained from properties of the variational distribution q(µ, �|K) in (3.10). Hence quantitative
data xq are distributed a posteriori according to a product of normal distributions conditionally
to categorical data xc, latent variables u and labels z such that

xq|u, xc, z ≥
Ÿ

jœJ

Ÿ

kœK

Ÿ

cœC
N

1
xqj |µ̃kc, u≠1

j “̃≠1
k �̃k

2”c
xcj

”k
zj

Mean parameters (µ̃kc)(k,c)œK◊Cq
and variance parameters (“̃≠1

k �̃k)kœK of these normal distribu-

tions are obtained from (3.12). By decomposing xq into (xmiss
q , x

obs
q ) and by exploiting properties

of the multivariate normal distribution, the following variational posterior distribution is obtained
for missing values x

miss
q :

q(xmiss
q |u, x

miss
c , z, K) =

Ÿ

jœJ

Ÿ

kœK

Ÿ

cœC
N

3
x
miss
qj |µ̃x

miss
q

jkc
, u≠1

j �̃x
miss
q

k

4”c
xcj

”k
zj

with ’(j, k, c) œ J ◊ K ◊ Cq :

µ̃
x
miss
q

jkc
= µ̃

miss
kc + �̃cov

k �̃obs≠1

k (xobs
qj ≠ µ̃

obs
kc ) ,

�̃x
miss
q

k = �̃miss
k ≠ �̃cov

k �̃obs≠1

k �̃covÕ

k

“̃k
.

66



CHAPTER 3. MIXED DATA

Then by marginalising over x
miss
q in (3.11), the expectation (3.11) becomes

⁄
E� [log p(x, u, z|�, K)] ˆx

miss
q =

ÿ

jœJ

ÿ

kœK
”k

zj

3
E� [log ak] +

ÿ

cœCq

”c

xcj

3
E� [log fikc]

≠ 1
2

3
dobsj (log 2fi ≠ log uj) + E� [log |�k|] ≠ log |�̃x

miss
q

k |

+ uj

31
x
obs
qj ≠ µ̃

obs
kc

2T
�̃x

obs
qj ≠1

k

1
x
obs
qj ≠ µ̃

obs
kc

2
+ d

÷̃kc

4 4

+ E� [–kc]E� [log —kc] + (E� [–kc] ≠ 1) log uj

≠ E� [log �(–kc)] ≠ ujE� [—kc]
44

(3.13)

with ’k œ K,

�̃x
obs
qj

k =

A

�̃obs≠1

k + 2 ◊ �̃obs≠1

k �̃covÕ

k

3
�̃x

miss
q

k

4≠1
�̃cov

k �̃obs≠1

k

B≠1

“̃k
.

Conditionally to xc and z, the scale latent variables u are distributed according to a product of
Gamma distribution whose parameters are obtained by aggregating terms related to u such that

q(u|xmiss
c , z, K) =

Ÿ

jœJ

Ÿ

kœK

Ÿ

cœC
G

1
uj |–̃jkc, —̃jkc

2”c
xcj

”k
zj

with ’(j, k, c) œ J ◊ K ◊ Cq :

–̃jkc = E� [–kc] +
dobsj

2 ,

—̃jkc = E� [—kc] + 1
2

31
x
obs
qj ≠ µ̃

obs
kc

2T
�̃x

obs
qj ≠1

k

1
x
obs
qj ≠ µ̃

obs
kc

2
+ d

÷̃kc

4
.

Then by marginalising over u in (3.13), the expectation (3.13) becomes

⁄
E� [log p(x, u, z|�, K)] ˆx

miss
q ˆu =

ÿ

jœJ

ÿ

kœK
”k

zj

3
E� [log ak] +

ÿ

cœCq

”c

xcj

3
E� [log fikc]

≠ 1
2

3
dobsj log 2fi + E� [log |�k|] ≠ log |�̃x

miss
q

k |
4

+ E� [–kc]E� [log —kc] ≠ E� [log �(–kc)]

+ log �(–̃jkc) ≠ –̃jkc log —̃jkc

44

=
ÿ

jœJ

ÿ

kœK
”k

zj

3
E� [log ak] +

ÿ

cœCq

”c

xcj
log fl

xcj

kc

4

(3.14)

where ’(j, k, c) œ J ◊ K ◊ Cq,

log fl
xcj

kc
= E� [log fikc] ≠ 1

2

3
dobsj log 2fi + E� [log |�k|] ≠ log |�̃x

miss
q

k |
4

+ E� [–kc]E� [log —kc]

≠ E� [log �(–kc)] + log �(–̃jkc) ≠ –̃jkc log —̃jkc .

(3.15)
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By decomposing each xcj œ Cq into (xmiss
cj , x

obs
cj ) œ Cqmiss

j
◊ Cqobsj

and c œ Cq into (cmiss, c
obs) œ

Cqmiss
j

◊ Cqobsj
, the marginalised expectation (3.14) can be developed as

⁄
E� [log p(x, u, z|�, K)] ˆx

miss
q ˆu =

ÿ

jœJ

ÿ

kœK
”k

zj

3
E� [log ak]

+
ÿ

cmissœC
qmiss

j

”c
miss

xmiss
cj

ÿ

cobsœC
qobs

j

”c
obs

xobs
cj

log fl
xcj

kcmisscobs

4

=
ÿ

jœJ

ÿ

kœK
”k

zj

3
E� [log ak] +

ÿ

cmissœC
qmiss

j

”c
miss

xmiss
cj

log fl
x
miss
cj

kcmiss

4

(3.16)

where ’(j, k, c
miss) œ J ◊ K ◊ Cqmiss

j
:

log fl
x
miss
cj

kcmiss =
ÿ

cobsœC
qobs

j

”c
obs

xobs
cj

log fl
xcj

kcmisscobs
(3.17)

Hence, a multivariate categorical distribution is deduced for x
miss
c from (3.16) conditionally to

labels z such that

q(xmiss
c |z, K) =

Ÿ

jœJ

Ÿ

kœK
MC

1
x
miss
cj |r̃x

miss
c

jk

2”k
zj

and their parameters (r̃x
miss
c

jk )(j,k)œJ ◊K are obtained from (3.17) where ’(j, k, c) œ J ◊ K ◊ Cqmiss
j

r̃x
miss
c

jkcmiss =
fl

x
miss
cj

kcmiss

q

cmissœC
qmiss

j

fl
x
miss
cj

kcmiss

.

Finally, variational posterior categorical distributions are obtained for labels z by marginalising
over x

miss
c in (3.16) such that

⁄
E� [log p(x, u, z|�, K)] ˆx

miss
q ˆuˆx

miss
c =

ÿ

jœJ

ÿ

kœK
”k

zj

3
E� [log ak] + log

ÿ

cmissœC
qmiss

j

fl
x
miss
cj

kcmiss

4

=
ÿ

jœJ

ÿ

kœK
”k

zj
log fljk

(3.18)

where ’j œ J , k œ K,

log fljk = E� [log ak] + log
ÿ

cmissœC
qmiss

j

fl
x
miss
cj

kcmiss . (3.19)

Hence the variational categorical distributions are deduced from (3.18) and are given by

q(z|K) =
Ÿ

jœJ
Cat(zj |r̃j)

where probabilities (r̃j)jœJ are obtained from (3.19) such that ’j œ J , k œ K,

r̃jk = fljkq

kœK
fljk

.
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3.3.3 VBM-step

The VBM-step consists in deriving the following expectation

Eh [log p(x, u, z, �|K)] = Eh [log p(x, u, z|�, K)] + p(�|K)

=
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È 3
log ak +

ÿ

cœCq

Eh

Ë
”c

xcj

È 3
log fikc ≠ 1

2

3
log |�k|

+ d(log 2fi ≠ Eh [log uj ]) + Eh

Ë
uj(xqj ≠ µkc)T �≠1

k (xqj ≠ µkc)
È 4

+ –kc log —kc + (–kc ≠ 1)Eh [log uj ] ≠ log �(–kc) ≠ Eh [uj ] —kc

44

+
ÿ

kœK
(Ÿ0k ≠ 1) log ak + log cD(Ÿ0) ≠ 1

2

3
(“0 + d + 1) log |�k|

+ Trace
1
�0�≠1

k

2 4
+ cIW(“0, �0) +

ÿ

cœCq

1
2

3
d(log ÷0kc ≠ log 2fi)

≠ log |�k| ≠ ÷0kc

1
µkc ≠ µ0kc

2T
�≠1

k

1
µkc ≠ µ0kc

2 4
≠ log M0

+ (–kc ≠ 1) log p0 ≠ r0 log �(–kc) + s0–kc log —kc ≠ q0—kc

+ (fi0kc ≠ 1) log fikc + log cD(fi0k) ,

(3.20)

where ’(j, k, c) œ J ◊ K ◊ Cq :

Eh

Ë
uj(xqj ≠ µkc)T �≠1

k (xqj ≠ µkc)
È

= Eh [uj ] (Eh [xqj ] ≠ µkc)T �≠1
k (Eh [xqj ] ≠ µkc)

+ Trace
1
Vh [xqj ] �≠1

k

2 (3.21)

is obtained from properties of the variational distribution q(h|K) with

Eh [uj ] = –̃jkc

—̃jkc

,

Eh [xqj ] =
A

µ̃
x
miss
q

jkc

x
obs
qj

B

,

Vh [xqj ] =

Q

a �̃x
miss
q

k 0dmiss
j ◊dobs

j

0dobs
j ◊dmiss

j 0dobs
j ◊dobs

j

R

b .

By factorizing terms related to a in (3.20), the following Dirichlet distribution is obtained

q(a|K) = D(a|Ÿ̃)

where
’k œ K, Ÿ̃k = Ÿ0k +

ÿ

jœJ
Eh

Ë
”k

zj

È
.

Like the variational distribution of a, variational posterior distributions of fi are obtained by
factorizing terms related to fi in (3.20) and are given by

q(fi|K) =
Ÿ

kœK
D(fik|fĩk)
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where
’(k, c) œ K ◊ Cq, fĩkc = fi0kc +

ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”c

xcj

È
.

with Eh

Ë
”c

xcj

È
is obtained by decomposing categorical features into observed and missing features

such that

Eh

Ë
”c

xcj

È
= ”c

obs

x
obs
cj

◊ Eh

5
”c

miss

x
miss
cj

6
.

Then, (–, —) are a posteriori distributed according to the distribution defined in (3.9) such that

q(–, —|K) =
Ÿ

kœK

Ÿ

cœCq

p(–kc, —kc|p̃kc, q̃kc, s̃kc, r̃kc) ,

where

p̃kc = p0 exp

Q

a
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”c

xcj

È
Eh [log uj ]

R

b ,

q̃kc = q0 +
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”c

xcj

È
Eh [uj ] ,

s̃kc = s0 +
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”c

xcj

È
,

r̃kc = r0 +
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”c

xcj

È
.

By aggregating and factorizing terms related to each µkc in (3.20), a Normal distribution is
obtained for each µkc such that

q(µ|�, K) =
Ÿ

kœK

Ÿ

cœCq

N
1
µkc|µ̃kc, ÷̃≠1

kc
�k

2

where ’k œ K and ’c œ Cq

÷̃kc =
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”c
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È
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jœJ Eh

Ë
”k

zj

È
Eh

Ë
”c

xcj

È
Eh [uj ]Eh [xqj ] + ÷0kcµ0kc

÷̃kc

.

Eventually, variance parameters � are a posteriori distributed according to Inverse Wishart
distributions given by

q(�|K) =
Ÿ

kœK
IW(�k|“̃k, �̃k)

where

“̃k = “0 +
ÿ

jœJ
Eh

Ë
”k

zj

È
,

�̃k = �0 +
ÿ

jœJ

ÿ

cœCq

Eh

Ë
”k

zj

È
Eh

Ë
”c

xcj

È
Eh [uj ]Eh [xqj ]Eh [xqj ]T +

ÿ

jœJ
Eh

Ë
”k

zj

È
Vh [xqj ]

+
ÿ

cœCq

÷0kcµ0kc
µ

T
0kc

≠ ÷̃kcµ̃kcµ̃
T
kc .
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3.3.4 Lower Bound

Recalling that the Lower Bound on the log evidence is given by

L(q|K) = Eh,� [log p(x, h, �|K)] ≠ Eh,� [log q(h, �|K)] (3.22)

where Eh,� [log p(x, h, �|K)] is the free energy and Eh,� [log q(h, �|K)] is the entropy of the
approximate posterior q(h, �|K). The free energy can be developed as

Eh,� [log p(x, h, �|K)] = Eh,� [log p(x, h|�, K)] + E� [log p(�|K)]

where

Eh,� [log p(x, h|�, K)] =
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È 3
E� [log ak] +

ÿ

cœCq

Eh

Ë
”c

xcj

È 3
E� [log fikc]

≠ 1
2

3
d(log 2fi ≠ Eh [log uj ]) + E� [log |�k|]

+ Eh,�
Ë
uj(xqj ≠ µkc)T �≠1

k (xqj ≠ µkc)
È 4

+ E� [–kc]E� [log —kc]

+ (E� [–kc] ≠ 1)Eh [log uj ] ≠ E� [log �(–kc)] ≠ Eh [uj ]E� [—kc]
44

with

Eh,�
Ë
uj(xqj ≠ µkc)T �≠1

k (xqj ≠ µkc)
È

= Eh [uj ]
3

(Eh [xqj ] ≠ µ̃kc)T “̃k�̃≠1
k (Eh [xqj ] ≠ µ̃kc)

d

÷̃kc

4
+ Trace

1
Vh [xqj ] “̃k�̃≠1

k

2

and

E� [log p(�|K)] =
ÿ

kœK
(Ÿ0k ≠ 1)E� [log ak] + log cD(Ÿ0) ≠ 1

2

3
(“0 + d + 1)E� [log |�k|]

+ Trace
1
�0E�

Ë
�≠1

k

È2 4
+ cIW(“0, �0) +

ÿ

cœCq

1
2

3
d(log ÷0kc ≠ log 2fi)

≠ E� [log |�k|] ≠ ÷0kcE�

51
µkc ≠ µ0kc

2T
�≠1

k

1
µkc ≠ µ0kc

26 4
≠ log M0

+ (E� [–kc] ≠ 1) log p0 ≠ r0E� [log �(–kc)] + s0E� [–kc]E� [log —kc]
≠ q0E� [—kc] + (fi0kc ≠ 1)E� [log fikc] + log cD(fi0) .

with

E�

51
µkc ≠ µ0kc

2T
�≠1

k

1
µkc ≠ µ0kc

26
=

1
µ̃kc ≠ µ0kc

2T
“̃k�̃≠1

k

1
µ̃kc ≠ µ0kc

2
+ d

÷̃kc

.

As for the entropy term, the following decompositon is obtained

Eh,� [log q(h, �|K)] = Eh

Ë
log q(xmiss

q , u, x
miss
c , z|K)

È
+ E� [log q(�|K)]

= Eh

Ë
log q(xmiss

q |u, x
miss
c , z, K)

È
+ Eh

Ë
log q(u|xmiss

c , z, K)
È

+ Eh

Ë
log q(xmiss

c |z, K)
È

+ Eh [log q(z|K)] + E� [log q(�|K)]
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where

Eh

Ë
log q(xmiss

q |u, x
miss
c , z, K)

È
=

ÿ

jœJ

ÿ

kœK

ÿ

cœCq

Eh

Ë
”k

zj

È
Eh

Ë
”c

xcj

È 1
2

3
dmiss

j (Eh [log uj ]

≠ log 2fi ≠ 1) ≠ log |�̃xqj

k |
4

,

Eh

Ë
log q(u|xmiss

c , z, K)
È

=
ÿ

jœJ

ÿ

kœK

ÿ

cœCq

Eh

Ë
”k

zj

È
Eh

Ë
”c

xcj

È 3
–̃jkc log —̃jkc ≠ log �(–̃jkc)

+ (–̃jkc ≠ 1)Eh [log uj ] ≠ —̃jkcEh [uj ]
4

,

Eh

Ë
log q(xmiss

c |z, K)
È

=
ÿ

jœJ

ÿ

kœK

ÿ

cmissœC
qmiss

j

Eh

Ë
”k

zj

È
Eh

5
”c

miss

x
miss
cj

6
log r̃x

miss
c

jkcmiss

Eh [log q(z|K)] =
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È
log r̃jk

and

E� [log q(�|K)] =
ÿ

kœK
(Ÿ̃k ≠ 1)E� [log ak] + log cD(Ÿ̃k) ≠ 1

2

3
(“̃k + d + 1)E� [log |�k|]

+ Trace
1
�̃kE�

Ë
�≠1

k

È2 4
+ cIW(“̃k, �̃k) +

ÿ

cœCq

1
2

3
d(log ÷̃kc ≠ log 2fi)

≠ E� [log |�k|] ≠ ÷̃kcE�
Ë
(µkc ≠ µ̃kc)T �≠1

k (µkc ≠ µ̃kc)
È 4

≠ log Mk

+ (E� [–kc] ≠ 1) log p̃kc ≠ r̃kcE� [log �(–kc)] + s̃kcE� [–kc]E� [log —kc]
≠ q̃kcE� [—kc] + (fĩkc ≠ 1)E� [log fikc] + log cD(fĩk) ,

with

E�
Ë
(µkc ≠ µ̃kc)T �≠1

k (µkc ≠ µ̃kc)
È

= d

÷̃kc

.

3.3.5 Expectations from variational distributions

Expectations developed in variational calculations are derived from properties of variational
posterior distributions and are obtained as follows. Categorical distribution properties lead to

’j œ J , ’k œ K, ’c
miss œ Cqmiss

j
:

Eh

Ë
”k

zj

È
= r̃jk ,

Eh

5
”c

miss

x
miss
cj

6
= r̃x

miss
c

jkcmiss .

Dirichlet distribution properties lead to

’k œ K, ’c œ Cq :

E� [log ak] = Â(Ÿ̃k) ≠ Â

Q

a
ÿ

kœK
Ÿ̃k

R

b ,

E� [log fikc] = Â(fĩkc) ≠ Â

Q

a
ÿ

cœCq

fĩkc

R

b ,
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where Â(·) is the digamma function. Gamma distribution properties lead to

’j œ J , ’k œ K, ’c œ Cq :

Eh [uj ] = –̃jkc

—̃jkc

,

Eh [log uj ] = Â(–̃jkc) ≠ log —̃jkc .

Normal distribution properties lead to

’k œ K, ’c œ Cq :
E� [µkc] = µ̃kc ,

E�
Ë
µkcµ

T
kc

È
= V� [µkc] + E� [µkc]E� [µkc]T

= ÷̃≠1
kc

�k + µ̃kcµ̃
T
kc ,

Inverse Wishart distribution properties lead to

E�
Ë
�≠1

k

È
= “̃k�̃≠1

k ,

E� [log |�k|] = log |�̃k| ≠
dÿ

i=1
Â

3
“̃k + 1 ≠ i

2

4
≠ d log 2 .

Posterior expectations of — can easily be computed conditionally to – such that ’(k, c) œ K ◊ Cq

:

E�[—kc] = s̃kcE�[–kc] + 1
q̃kc

,

E� [log —kc] = E�[Â (s̃kc–kc + 1)] ≠ log q̃kc .

However, expectations depending on –kc are intractable

E�[Â (s̃kc–kc + 1)] =
⁄

Â (s̃kc–kc + 1) p(–kc|p̃kc, r̃kc)d–kc ,

E�[–kc] =
⁄

–kcp(–kc|p̃kc, r̃kc)d–kc ,

E�[log �(–kc)] =
⁄

log �(–kc)p(–kc|p̃kc, r̃kc)d–kc .

As in previous chapter, the deterministic method introduced by [TK86] is applied to estimate
these expectations.

3.4 Experiments

In this section, the proposed method is performed on 3 sets of realistic simulated data which
are composed of continuous, categorical and mixed data. For comparison, a standard neural
network (NN), the k-nearest neighbours (KNN) algorithm, Random Forests (RdF) the k-means
algorithm and the DBSCAN are also evaluated. Two experiments are carried out to evaluate
classification and clustering performance with respect to a range of percentages of missing values.
First, characteristics for realistic data acquisition and imputation methods for missing data are
detailed. Then, both experiments are described with their error measure and their performance
are shown to exhibit the e↵ectiveness of the proposed model.
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Figure 3.7: Dataset gathering 5500 continuous observations from 55 radar emitters. Some clusters are
completely separable whereas some others share features and cannot be linearly separated.

Table 3.2: Categorical features observed in categorical data where 42 di↵erent combinations of these
features are shared by the 55 emitters.

Intrapulse Pulse-to-Pulse PRI Pulse-to-pulse RF Scan
Barker 13 Dwell Agility Circular
Barker 7 Triangular Dwell Agility Burst Sector
Chirp Complex Diversity None

Diversity HFR FMICW
Double Chirp Increasing Wobble None

FMCW Jitter
Trapeze Chirp Sinus Jitter
Phase Code Stagger

S Law Wobble
Trapeze None
None

3.4.1 Data

Realistic data are generated from an operational database gathering 55 radar emitters presenting
various patterns. Each pattern consists of a sequence of pulses which are defined by a triplet
of continuous features xq = (RF,PW,PRI) and a fourtet of categorical features xc referring to
pulse-to-pulse modulations of RF and PRI, intrapulse modulations of RF and scanning types.
42 combinations of the categorical features are observed among the 55 emitters and they are
composed of modulations listed in Table 3.2. For each radar emitter, 100 observations (xj)100

j=1
are simulated from its pattern of pulses such that an observation xj = (xqj , xcj) is made up of
continuous features xqj and categorical features xcj related to one of the pulses. Then, continu-
ous observations are noised by applying a multivariate Gaussian noise with a diagonal covariance
matrix whose diagonal elements are [‡2

RF , ‡2
P W , ‡2

P RI ] = [1MHz, 50ns, 1µs]. Negative features
issued from the generated noise are thresholded to zero. Hence, outliers are embedded in obser-
vations due to the thresholding step. The dataset is shown in Figure 3.7. Moreover, extra missing
values are added to evaluate limits of the proposed approach by randomly deleting coordinates
of (xqj)100

j=1 and (xcj)100
j=1 for each of the 55 radar emitters. Percentages of deletion range from 5%
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to 90%. At last the continuous dataset, categorical dataset and the mixed dataset are composed
of (xqj)5500

j=1 , (xcj)5500
j=1 and (xj)5500

j=1 = (xqj , xcj)5500
j=1 . As in the previous chapter, imputation

methods [GLSGFV10] are used to handle missing data for comparison algorithms. Mean and
k-nearest neighbours imputation methods are still implemented for continuous data. Regarding
missing categorical data, they are handled through the k-nearest neighbours and mode imputa-
tion methods. The mode imputation consists in filling a missing component of an observation by
the mode of observed values of that component. This method has the obvious disadvantage that
it under represents the variability and also ignores correlations between observations [Sch97].
These imputation methods are compared with the proposed approach in terms of classification,
clustering and reconstruction performance. For the comparison of reconstruction performance on
continuous data, mean-squared errors between original continuous data and previous imputation
methods are compared with the mean-squared error between original continuous data and the
variational posterior marginal mean of missing continuous data given by

’j œ J , x̃
miss
qj = E

x
miss
qj

5⁄
q(xmiss

qj , uj , xcjzj)ˆujˆxcjˆzj

6

=
ÿ

kœK
r̃jk

ÿ

cobsœC
qobs

j

”c
obs

x
obs
cj

ÿ

cmissœC
qmiss

j

r̃x
miss
c

jkcmissµ̃
x
miss
q

jkcobscmiss .
(3.23)

As for categorical data, reconstruction performance are evaluated through the comparison of
Jaccard distances between original categorical data and imputation methods against Jaccard
distances [Jac01] between original categorical data and the variational posterior marginal mode
of missing categorical data given by

’j œ J , x̃
miss
cj = arg max

cmissœC
qmiss

j

⁄
q(xmiss

cj , zj)dzj

= arg max
cmissœC

qmiss
j

ÿ

kœK
r̃jkr̃x

miss
c

jkcmiss .
(3.24)

3.4.2 Classification experiment

The classification experiment evaluates the ability of each algorithm to assign unlabeled data to
one of the K classes trained by a set of labeled data. As in the previous chapter, the classification
task is decomposed into a training step and a prediction step defined in procedures 3.1 and 3.2.
The training step consists in estimating variational parameters of q(�) given a set of training
data with known labels. As for the prediction step, it results in associating new data to the
class that maximizes their posterior probabilities. Since comparison algorithms do not handle
datasets including missing values, a complete dataset is used to enable their training. During the
prediction step, incomplete observations are completed thanks to the mean and KNN imputation
methods and the posterior reconstructions defined in (3.23)-(3.24). Standard configurations
provided by Matlab are chosen for the RnF, the NN and the KNN algorithm. The proposed
model and comparisons algorithms are trained on 70% of the initial database without extra
missing values and tested on the remaining 30% of the database whose elements are randomly
deleted according to di↵erent proportions of missing values. The RnF gathers 50 trees. The
NN is composed of one hidden layer of 70 neurons and a softmax output layer and is trained
with a cross-entropy loss. An accuracy metric is chosen for the classification experiment and
observations belonging to the reject class are considered as misclassification errors. At last,
hyper-parameters are initialised as in Table 3.3.
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Table 3.3: Initialisation of hyper-parameters values for classification on mixed data

Ÿ0 fi0 ÷0 “0 p0 r0 q0 s0 µ0c �0
0.5 0.5 10≠4 4 0.9 1 1 1 [0, 0, 0] I3

Procedure 3.1 Classification procedure on mixed data : Training step

Input: Training set x
train and associated labels z

train

Output: Learned parameters �̃train

Initialise Ÿ0, fi0, “0, ÷0 , µ0, �0, p0, r0, s0 and q0
for iter = 1 to itermax do

Update –̃jkc, —̃jkc, r̃
x
miss
cj

jkc
, µ̃

x
miss
q

jkc
, �̃x

miss
qj

k

Update Ÿ̃k, ÷̃kc, “̃k, p̃kc, r̃kc, s̃kc, q̃kc, fĩkc, µ̃kc, �̃k

Calculate the lower bound L
if Liter ≠ Liter≠1 Æ tol ◊ Liter≠1 then

return �̃train =
1
Ÿ̃k, ÷̃kc, “̃k, p̃kc, r̃kc, s̃kc, q̃kc, fĩkc, µ̃kc, �̃k

2

(k,c)œK◊Cq

end if

end for

For the classification experiment, results are shown in Figure 3.8 where classification perfor-
mance are exhibited for the 3 datasets. Without missing data, both algorithms cannot perfectly
classify the 55 radar emitters for the 3 datasets. Indeed, both algorithms reach accuracies of 90%
for the continuous dataset, 75% for the categorical dataset and 98% for the mixed dataset. These
performance can be explained by the non total separability of continuous and categorical datasets
since the 55 emitters share 42 combinations of categorical features (Table 3.2) and (RF,PRI,PW)
intervals as shown in Figure 3.7. Nonetheless when mixed data are taken into consideration, the
dataset becomes more separable leading to higher performance of both algorithms. When the
proportion of missing values increases, the proposed model outperforms comparisons algorithms
for each dataset. It achieves accuracies of 80%, 55% and 95% for 90% of deleted continuous,
categorical and mixed values whereas accuracies of comparison algorithms are lower than 65%,
50% and 75% with missing data imputation from standard methods. As in the previous chapter,
these higher performance of the proposed model reveal that the proposed method embeds a more
e�cient inference method than other imputation methods. That result is confirmed on Figure
3.8 when comparison algorithms are applied on data reconstructed by the proposed model. In-
deed when the proposed inference is chosen, comparison algorithms share the same performance
than the proposed model and manage to handle missing even for 90% of deleted values. Fi-
nally, this e�ciency is shown on Figure 3.9 where data reconstructed by the proposed model
exhibit lower mean-squared errors and Jaccard distances for missing data imputation than the
standard imputation methods. Indeed, the lowest mean-squared errors and Jaccard distances
are obtained by the proposed model reconstruction on the mixed dataset, which demonstrate

Procedure 3.2 Classification procedure on mixed data: Prediction step

Input: Unlabelled dataset x
pred and learned parameters �̃train

Output: Predicted labels z̃
pred

Update –̃jkc, —̃jkc, r̃
x
miss
cj

jkc
, µ̃

x
miss
q

jkc
, �̃x

miss
qj

k , r̃jk

return z̃
pred such that each z̃predj = arg max

kœK
r̃jk
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that missing data imputation is even more e�cient when both continuous and categorical are
jointly modeled. Furthermore, a correlation between higher performance of the proposed model
and the quality of its reconstructions can be noticed for any percentage of missing values. Then,
e↵ectiveness of the proposed model can be explained by the fact that missing data imputation
methods can create outliers that deteriorate performance of classification algorithms whereas
the inference on missing data and labels prediction are jointly estimated in the proposed model.
Indeed, embedding the inference procedure into the model framework allows properties of the
model, such as outliers handling, to counterbalance drawbacks of imputation methods such as
outlier creation.
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(a) Classification on continuous data.
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(b) Classification on categorical data.
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(c) Classification on mixed data.

Figure 3.8: Classification performance are presented for the proposed model (PM) in blue, the NN in
red, the RnF in green and the KNN in cyan. Figure (a) exhibits classification performance when only
continuous data are taken into consideration. Figure (b) exhibits classification performance when only
categorical data are taken into consideration. Figure (c) exhibits classification performance when both
continuous and categorical data are taken into consideration. For each figure, the solid lines represent
accuracies with a posteriori reconstructed missing data for the NN, the RnF and the KNN, the doted
dashed lines stands for accuracies with mean/mode imputation for the NN, the RnF and the KNN whereas
the dashed lines shows accuracies with KNN imputation.
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and the posterior reconstruction (3.23).
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(b) Jaccard distances of imputation methods
and the posterior reconstruction (3.24).

Figure 3.9: Evaluation of imputation methods and posterior reconstructions (3.23-3.24) while considering
continuous, categorical and mixed data. Performance of reconstructions are presented in red for the Mean
and Mode imputations, in cyan for the KNN imputation and in blue for the proposed model. Figure (a)
exhibits mean-squared errors related to imputation methods and the posterior reconstruction (3.23) when
continuous data (dashed lines) and mixed data (solid lines) are considered. Figure (b) exhibits Jaccard
distances related to imputation methods and the posterior reconstruction (3.24) when categorical data
(dashed lines) and mixed data (solid lines) are considered.

3.4.3 Clustering experiment

The clustering experiment is composed of two experiments that aim to exhibit the clustering
ability of each algorithm according to an a priori number of clusters K œ {Kmin, . . . , Kmax}. As
developed in previous chapters, the clustering algorithm is decomposed into two parts. First,
a semi-supervised classification is performed for each K ranges from Kmin to Kmax to estimate
variational parameters of q(�, H) and labels in a mixture of K components. Then, the value of
K that maximizes the lower bound is retained as the posterior number of clusters as well as its
associated parameters.

Procedure 3.3 Semi-supervised classification procedure on mixed data

Input: Unlabelled dataset x and number of classes K
Output: Labels z̃ and parameters �̃

Initialise Ÿ0, fi0, “0, ÷0 , µ0, �0, p0, r0, s0 and q0
for iter = 1 to itermax do

Update –̃jkc, —̃jkc, r̃
x
miss
cj

jkc
, µ̃

x
miss
q

jkc
, �̃x

miss
qj

k , r̃jk

Update Ÿ̃k, ÷̃kc, “̃k, p̃kc, r̃kc, s̃kc, q̃kc, fĩkc, µ̃kc, �̃k

Calculate the lower bound L
if Liter ≠ Liter≠1 Æ tol ◊ Liter≠1 then

return �̃ =
1
Ÿ̃k, ÷̃kc, “̃k, p̃kc, r̃kc, s̃kc, q̃kc, fĩkc, µ̃kc, �̃k

2

(k,c)œK◊Cq
and z̃ such that each

z̃j = arg max
kœK

r̃jk

end if

end for

According to the dataset visualised in Figure 3.7, Kmin and Kmax are set to 35 and 85 in
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Procedure 3.4 Clustering procedure on mixed data

Input: Unlabelled dataset x and a priori range of numbers of clusters K œ {Kmin, . . . , Kmax}
Output: Labels z̃, parameters �̃ and optimal number of clusters K̃
for K = Kmin to Kmax do

Perform semi-supervised classification with K classes

Stock labels z̃
K , parameters �̃K

and LK

end for

return �̃K̃
and z̃

K̃ such that K̃ = arg max
K

LK

Table 3.4: Initialisation of hyper-parameters values for clustering on mixed data

Ÿ0 fi0 ÷0 “0 p0 r0 q0 s0
0.5 0.5 100 4 0.9 1 1 1

order to evaluate the impact of the a priori number of clusters on data clustering. Parameters
of DBSCAN are set to Minpts = 5 and eps = 0.01 by using an heuristic proposed in the original
paper [EKS+96]. A supervised initialisation is retained for the proposed model due to its sen-
sitivity to initialisation. It consists in initialising prior component means µ0c from results of a
k-means algorithm and prior component covariance matrices �0 from diagonal matrices whose
diagonal elements are variances of observed features. Other hyper-parameters are initialised as
in Table 3.4. Since comparison algorithms do not handle observations with missing values and
do not provide a clustering result for them, missing data are reconstructed through the mean,
the KNN and the proposed model imputation methods before running these algorithms.

The first clustering experiment aims to determine the ability of each algorithm to restore the
true clusters according to an a priori number of clusters K œ {Kmin, . . . , Kmax}. Performance
are evaluated through the Adjusted Rand Index (ARI) [HA85] that compares estimated parti-
tions of data with the ground-truth. Results of the first experiment on the 3 datasets are shown
in Figures 3.10 and 3.11. Without the presence of missing values, performance of DBSCAN,
k-means and the proposed model are similar with ARIs of 62%, 72% and 88% for the contin-
uous, categorical and mixed datasets. As in the classification experiment, these performance
are explained by the non total separability of continuous and categorical datasets since the 55
emitters share 42 combinations of categorical features (Table 3.2) and (RF,PRI,PW) intervals
as shown in Figure 3.7. Once again when mixed data are taken into consideration, the dataset
becomes more separable leading to higher performance of both algorithms (ARI = 88%). When
the proportion of missing values increases, the proposed model outperforms both DBSCAN and
k-means and achieves ARIs of 35% ,40% and 58% on continuous, categorical and mixed datasets
for 90% of deleted values whereas the ARIs of comparison algorithms with standard missing
data imputation are lower than 35% on each dataset. As in the classification experiment, these
higher performance reveal that the proposed method embeds a more e�cient inference method
than other imputation methods. That result is confirmed on both Figure 3.10 and Figure 3.11
where DBSCAN and k-means are applied on data reconstructed by the proposed model. Indeed,
performance of both algorithms increase up to performance of the proposed model for any per-
centages of deleted values when the proposed inference is chosen.

The second experiment tests the ability of each algorithm to find the true number of clusters
K̃ among {Kmin, . . . , Kmax}. The lower bound (3.22) and the average Silhouette score [KR09] are
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criteria used to select the optimal number of clusters for the proposed model and the k-means
algorithm. Indeed, the ARI cannot be used since it requires the ground-truth and DBSCAN
automatically selects a number of clusters for a given dataset. Results of the second experiment
on the 3 datasets are visible on Figures Figure 3.12 and 3.13. Figure 3.12 presents numbers of
clusters selected by the lower bound and average Silhouette scores for the proposed model and
k-means algorithm according to di↵erent proportions of missing values and imputation methods.
Without missing data, the correct number of clusters (K=55) is selected by the two criteria for
the k-means algorithm and the proposed model when continuous and mixed data are clustered.
As for categorical data, both criteria select 45 as the optimal number of clusters since the 42
combinations of categorical features (Table 3.2) shared by the 55 emitters constitute 42 distinct
clusters. In presence of missing values, the average Silhouette score mainly selects K = 65 when
the k-means algorithm is run on the 3 datasets completed by standard imputation methods.
When, the k-means algorithm performs clustering on the posterior reconstructions, the average
Silhouette score correctly selects K = 55 until 60% of missing values for continuous data and
40% of missing values for mixed data. Eventually when the proposed model does clustering,
the two criteria select the correct number of clusters K = 55 until 70% of missing values for
continuous and mixed data. These results show two main advantages of the proposed model. As
previously, the proposed model provides a more robust inference on missing data since the aver-
age Silhouette score chooses more representative number of clusters when the k-means algorithm
is run on the posterior reconstructions than on data completed by standard imputation methods.
Furthermore, since the lower bound criterion also selects the correct number of clusters as the
average Silhouette score, it can be used as a valid criterion for selecting the optimal number of
clusters and does not require extra computational costs as the Silhouette score since it is com-
puted during the model parameter estimation. Finally, the proposed approach provides a more
robust inference on missing data and a criterion for selecting the optimal number of clusters
without extra computations. As for the Figure 3.13, it shows the evolution of the number of
clusters estimated by DBSCAN according to di↵erent proportions of missing values and impu-
tation methods. Since DBSCAN automatically estimates the number of clusters and manages
outliers by creating new clusters, results on Figure 3.13 can be used to evaluate performance of
imputations methods. For mean, mode and k-NN imputation methods, DBSCAN estimates a
number of clusters greater than the number estimated for the proposed model according to any
proportion of missing values. These performance indicate that the proposed approach creates
less outliers than other imputation methods by providing a more robust inference on missing
data since DBSCAN localizes less outliers in the posterior reconstructions (3.23-3.24) than in
standard imputation methods.
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(a) Clustering performance for continuous data.
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(b) Clustering performance for categorical data.
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(c) Clustering performance for mixed data.

Figure 3.10: Performance of the proposed model compared with DBSCAN according to di↵erent propor-
tions of missing values and imputation methods. The number of clusters K is fixed at 45 for categorical
data and 55 for continuous and mixed data.
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(a) Clustering performance for continuous data.
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(b) Clustering performance for categorical data.
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(c) Clustering performance for mixed data.

Figure 3.11: Performance of the proposed model compared with k-means algorithm according to di↵erent
proportions of missing values and imputation methods. The number of clusters K is fixed at 45 for
categorical data and 55 for continuous and mixed data.
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(a) Estimation of the number of clusters for con-
tinuous data.
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(b) Estimation of the number of clusters for cat-
egorical data.
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mixed data.

Figure 3.12: Estimation of the number of clusters using the lower bound (LB) and the silhouette score
(S) for the proposed model and only the silhouette score (S) for the k-means algorithm.
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(a) Estimation of the number of clusters for con-
tinuous data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Proportion of missing values

40

60

80

100

120

140

160

180

200

220

N
u

m
b

e
r 

o
f 

cl
u

st
e

rs

Evolution of the number of clusters for categorical data

DBSCAN
PM

DBSCAN
Mean

DBSCAN
Knn

(b) Estimation of the number of clusters for cat-
egorical data.
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Figure 3.13: Estimation of the number of clusters by DBSCAN according to mean imputation, k-NN
imputation and posterior reconstruction of the proposed model.
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3.5 Conclusion

In this chapter, various modulations of radar emitter patterns have been presented. These modu-
lations can be used as categorical data in the classification and clustering tasks. Hence, a mixture
model handling both continuous data and categorical data has been developed. An approach
based on the Location Mixture Model has been investigated by establishing conditional relations
between continuous and categorical data. Benefiting from a dependence structure designed for
mixed data, the proposed model shows its e�ciency for inferring on missing data, performing
classification and clustering tasks and selecting the correct number of clusters. Since the poste-
rior distribution is intractable, model learning is processed through a variational Bayes inference
where variational posterior distributions are proposed for continuous and categorical missing
values. Experiments show that the proposed approach handles mixed data even in presence of
missing values and can outperform standard algorithms in clustering tasks. Indeed the main ad-
vantage of our approach is that it enables the counterbalance of imputation methods drawbacks
by embedding the inference procedure into the model framework.

85



CHAPTER 3. MIXED DATA

86



Chapter 4

Temporal Evolution Data

Continuous data describing radar emitters waveforms such as the Carrier Frequency, the Pulse
Width and the Pulse Repetition Interval have been previously taken into account in order to
cluster radar emitters. Nonetheless, the Pulse Description World gathers other features such
the Amplitude whose relation with the Time of Arrival reflects the scanning behaviour of a
radar emitter. Therefore, this temporal relation can be exploited to cluster radar emitters.
Depending on the scanning type, this relation can be represented by either a parabola or a
piecewise parabola. These two relations have to be included into the mixture distribution to
take advantage of the temporal behaviour of each radar emitter. This chapter contains three
sections which focus on three di↵erent cases. The first section deals with data where only
emitters having a parabolic scanning behaviour are observed. The second section introduces
the case where temporal evolution data are only distributed according to piecewise parabolic
relations. As for the last section, it is about the case where any type of scanning behaviours
can be observed in data. Each section presents the model integrating radar temporal evolution
data and its inference procedure before proposing a more complete model taking into
consideration temporal evolution data and mixed data. Eventually, experiments are carried out
to exhibit performance of the proposed approach. In this chapter, radar temporal evolution
data consist of J pulses gathering J amplitudes xt = (xtj)jœJ and J times of arrival
t = (tj)jœJ from K distinct emitters.

Contents
4.1 Parabolic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.3 Complete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Piecewise parabolic data . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.3 Complete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3 Parabolic and piecewise parabolic data . . . . . . . . . . . . . . . . . 126

4.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3.3 Complete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

87



CHAPTER 4. TEMPORAL EVOLUTION DATA

4.1 Parabolic data

In this section, K emitters presenting parabolic scanning behaviours are considered. Therefore,
the main objective is to develop a mixture model which can build K distinct clusters formed by
K parabolas and to define an inference procedure for parameter estimation. Then, the proposed
model is enhanced with the mixture model designed for mixed data in Chapter 3 in order to
improve clustering performance. Finally, experiments on synthetic and real data are carried out
to exhibit performance of the proposed approach.

4.1.1 Model

Before introducing a mixture model that handles parabolic data, the parabolic relation between
amplitudes and times of arrival is defined. Then, the mixture model is developed into a Bayesian
framework.

Parabola Equation

The parabolic relation between the amplitude xtj of the jth pulse and its time of arrival tj , visible
on Figure 4.1, can be described by the following parabolic equation

xtj = at2
j + btj + c + ‘ (4.1)

where ‘ ≥ N (0, ‡2) is a measurement noise introduced to model defects of materials. Since the
measurement noise ‘ is only embedded in materials, the variance parameter ‡2 is independent
from xt and t. Equation (4.1) can be reformulated as a linear regression problem such that
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Figure 4.1: Simulated data where amplitudes xt and times of arrival t are distributed according to a
parabolic relation.

xtj = �(tj)T
Ê + ‘ (4.2)

with �(tj) = (t2
j , tj , 1)T the vector containing polynomial transformations of tj and Ê = (a, b, c)T

the vector of regression parameters. Since the measurement error is assumed to be Gaussian,
the amplitude xtj is distributed according to a normal distribution centered in �(tj)T

Ê with
variance ‡2

xtj ≥ N
1
xtj |�(tj)T

Ê, ‡2
2

. (4.3)
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Mixture model

Since each radar emitter has its own scanning behaviour, K unique parabolas exist in data
and they are configured with K regression parameters Ê = (Êk)kœK. Then, each amplitude
xtj belongs to one of these parabolas which is related to a specific emitter. In other words,
conditionally to its label zj and its time of arrival tj , the amplitude xtj is distributed according
to (4.3) such that the component distribution is defined by

xtj |tj , zj = k ≥ N
1
xtj |�(tj)T

Êk, ‡2
2

(4.4)

Recalling that p(zj = k) = ak where a = (ak)kœK are the weights related to component distribu-
tions, the mixture model is obtained from (4.4) such that

’j œ J , p(xtj |tj , �) =
ÿ

kœK
akN

1
xtj |�(tj)T

Êk, ‡2
2

(4.5)

where � = (a, Ê, ‡2) is the set of parameters.

Bayesian framework

As in chapters 2 and 3, a Bayesian framework is used to estimate parameters �. Assuming
datasets (xt, t) of i.i.d observations (xtj , tj)jœJ and independent labels z = (zj)jœJ , the complete
likelihood associated to (4.5) is defined by

p(xt, z|t, �, K) =
Ÿ

jœJ

Ÿ

kœK

1
akN

1
xtj |�(tj)T

Êk, ‡2
22”k

zj

Eventually, the prior distribution required for � is chosen as

p(�|K) = p(a|K)p(Ê|‡2, K)p(‡2)

where a follows a Dirichlet distribution, each Êk follows a Normal distribution and ‡2 follows
an Inverse Gamma distribution such that

Y
____]

____[

p(a|K) = D(a|Ÿ0) ,

p(Ê|‡2, K) =
Ÿ

kœK
N

1
Êk|Ê0, ‡2�0

2
,

p(‡2) = IG(‡2|›0
1 , ›0

2) .

The resulting mixture model is shown on Figure 4.2.

4.1.2 Inference

The Variational Bayes (VB) procedure is derived to estimate parameters of the mixture model
defined in (4.5). Variational posterior distributions are obtained from the VB Expectation (VBE)
and VB Maximization (VBM) steps and a lower bound on the log evidence is defined to master
the convergence of the VB procedure.
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Figure 4.2: Graphical representation of the proposed mixture model handling parabolic data. The arrows
represent conditional dependencies between the random variables. The K-plate represents the K mixture
components and the J-plate the independent identically distributed observations (xtj , tj) decomposed
into the amplitude xtj and the polynomial transformation �(tj) and the indicator variables zj . Known
quantities, respectively unknown quantities, are in blue, respectively in red.

Variational posterior distributions

As previously, a factorized posterior distribution q(z, �|K) = q(z|K)q(�|K) is chosen as an
approximation of the intractable posterior joint distribution p(z, �|xt, t, K) such that latent
variables z and parameters � are a posteriori independent and q(�|K) = q(a|K)q(Ê|‡2K)q(‡2).
According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

Y
_________]

_________[

q(z|K) =
Ÿ

jœJ
Cat(zj |r̃j) ,

q(a|K) = D(a|Ÿ̃) ,

q(Ê|‡2, K) =
Ÿ

kœK
N

1
Êk|Ễk, ‡2�̃k

2
,

q(‡2) = IG(‡2|›̃1, ›̃2) .

(4.6)

Their respective parameters are estimated during the VBE and VBM steps.

VBE-step

The VBE-step consists in deriving the following expectation

E� [log p(xt, z|t, �, K)] =
ÿ

jœJ

ÿ

kœK
”k

zj

3
E� [log ak] ≠ 1

2

3
log 2fi + E�

Ë
log ‡2

È

+ E�

C
(xtj ≠ �(tj)T

Êk)2

‡2

D 44

=
ÿ

jœJ

ÿ

kœK
”k

zj
log fljk

(4.7)

where

log fljk = E� [log ak] ≠ 1
2

A

log 2fi + E�
Ë
log ‡2

È
+ E�

C
(xtj ≠ �(tj)T

Êk)2

‡2

DB

. (4.8)

Hence, a categorical distribution for labels z is deduced from (4.7) such that

q(z|K) =
Ÿ

jœJ
Cat(zj |r̃j)
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and their parameters (r̃j)jœJ are obtained from (4.8) as follows

’j œ J , ’k œ K, r̃jk = fljkq

kœK
fljk

.

VBM-step

The VBM-step consists in deriving the following expectation

Ez [log p(xt, z, �|t, K)] =Eh [log p(xt, z|t, �, K)] + log p(�|K)

=
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È 3
log ak ≠ 1

2

3
log 2fi + log ‡2

+ (xtj ≠ �(tj)T
Êk)2

‡2

44
+

ÿ

kœK
(Ÿ0

k ≠ 1) log ak

≠ 1
2

A

3(log 2fi + log ‡2) + log |�0| + (Êk ≠ Ê0)T �≠1
0

‡2 (Êk ≠ Ê0)
B

≠ (›0
1 + 1) log ‡2 ≠ ›0

2
‡2 + log cD(Ÿ0) + log cIG(›0

1 , ›0
2) .

(4.9)

By factorizing terms related to a in (4.9), the following Dirichlet distribution is obtained

q(a|K) = D(a|Ÿ̃)

where
’k œ K, Ÿ̃k = Ÿ0

k +
ÿ

jœJ
Ez

Ë
”k

zj

È
.

By aggregating terms related to each Êk in (4.9), a Normal distribution is obtained for each Êk

such that
q(Ê|‡2, K) =

Ÿ

kœK
N

1
Êk|Ễk, ‡2�̃k

2

where ’k œ K,

�̃k =

Q

a
ÿ

jœJ
Ez

Ë
”k

zj

È
�(tj)�(tj)T + �≠1

0

R

b
≠1

,

Ễk = �̃k

Q

a
ÿ

jœJ
Ez

Ë
”k

zj

È
xtj�(tj) + �≠1

0 Ê0

R

b .

Eventually, an Inverse Gamma distribution is deduced from (4.9) such that

q(‡2) = IG(‡2|›̃1, ›̃2)

where

›̃1 = ›0
1 + J

2 ,

›̃2 = ›0
2 + 1

2
ÿ

kœK

Q

a
ÿ

jœJ
Ez

Ë
”k

zj

È
x2

tj + Ê
T
0 �≠1

0 Ê0 ≠ Ễ
T
k �̃≠1

k Ễk

R

b .
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Lower bound

Recalling that the lower bound on the log evidence is given by

L(q|K) = Ez,� [log p(xt, z, �|t, K)] ≠ Ez,� [log q(z, �|K)]

where Ez,� [log p(xt, z, �|t, K)] is the free energy and Ez,� [log q(z, �|K)] is the entropy of the
approximate posterior q(z, �|K). The free energy can be developed as

Ez,� [log p(xt, z, �|t, K)] = Ez,� [log p(xt, z|t, �, K)] + E� [log p(�|K)]

where
Ez,� [log p(xt, z|t, �, K)] =

ÿ

jœJ

ÿ

kœK
Ez

Ë
”k

zj

È
log fljk

and

E� [log p(�|K)] =
ÿ

kœK
(Ÿ0

k ≠ 1)E� [log ak] ≠ 1
2

3
3(log 2fi + E�

Ë
log ‡2

È
) + log |�0|

+ E�

5 1
‡2

6
(E� [Êk] ≠ Ê0)T �≠1

0 (E� [Êk] ≠ Ê0) + Trace
1
�̃k�≠1

0
2 4

≠ (›0
1 + 1)E�

Ë
log ‡2

È
≠ ›0

2E�

5 1
‡2

6
+ log cD(Ÿ0) + log cIG(›0

1 , ›0
2) .

As for the entropy term, the following decompositon is obtained

Ez,� [log q(z, �|K)] = Ez [log q(z|K)] + E� [log q(�|K)]

where
Ez [log q(z|K)] =

ÿ

jœJ

ÿ

kœK
Ez

Ë
”k

zj

È
log r̃jk

and

E� [log q(�|K)] =
ÿ

kœK
(Ÿ̃k ≠ 1)E� [log ak] ≠ 1

2
1
3(1 + log 2fi + E�

Ë
log ‡2

È
) + log |�̃k|

2

≠ (›̃1 + 1)E�
Ë
log ‡2

È
≠ ›̃2E�

5 1
‡2

6
+ log cD(Ÿ̃) + log cIG(›̃1, ›̃2) .

Expectations

Expectations developed in variational calculations are derived from properties of variational
posterior distributions and are obtained as follows. Categorical distribution properties lead to

’j œ J , ’k œ K :
Ez

Ë
”k

zj

È
= r̃jk .

Dirichlet distribution properties lead to

’k œ K :

E� [log ak] = Â(Ÿ̃k) ≠ Â

Q

a
ÿ

kœK
Ÿ̃k

R

b ,
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where Â(·) is the digamma function. Normal distribution properties lead to

’k œ K :
E� [Êk] = Ễk ,

E�
Ë
ÊkÊ

T
k

È
= V� [Êk] + E� [Êk]E� [Êk]T

= ‡2�̃k + ỄkỄ
T
k ,

Inverse Gamma distribution properties lead to

E�

5 1
‡2

6
= ›̃1

›̃2
,

E�
Ë
log ‡2

È
= log ›̃2 ≠ Â(›̃1) .

Using all these properties, the following expectation can be calculated as

’j œ J , ’k œ K :

E�

C
(xtj ≠ �(tj)T

Êk)2

‡2

D

=
›̃1

1
xtj ≠ �(tj)T

Ễk

22

›̃2
+ Trace

1
�(tj)T �̃k�(tj)

2

4.1.3 Complete model

A model integrating parabolic data and mixed data is now presented. By taking into consid-
eration any types of available data, the resulting model can fit data better and can estimate
more accurate clusters. First, data formalism and assumptions are detailed. Then, the resulting
mixture model and its inference procedure are developed.

Data and assumptions

In this part, data consist of J pulses gathering J amplitudes xt = (xtj)jœJ associated to J
times of arrival t = (tj)jœJ , J continuous features xq = (xqj)jœJ and J categorical features
xc = (xcj)jœJ from K distinct emitters. Let xj = (xqj , xcj , xtj) the jth observation vector of
mixed variables where

• xqj œ Rd is a vector of d continuous radar features such as the Radio Frequency, the Pulse
Width, the Azimuth or the Pulse Repetition Interval,

• xcj =
!
xcj0 , . . . , xcjq≠1

"
œ Cq is a vector of q categorical radar modulations such as intra-

pulse modulations or pulse-to-pulse modulations,

• xtj œ R is a continuous variable modeling the Amplitude.

For each pulse j, the temporal evolution variable xtj and mixed variables (xqj , xcj) are assumed
to be independent conditionally to each cluster k œ K

’j œ J , (xq, xc)|zj = k |= xt|zj = k . (4.10)

with zj the latent variable modeling the label of the jth observation vector xj = (xqj , xcj , xtj).
Moreover, the temporal data (xtj , tj)jœJ are distributed according to a parabolic relation and the
quantitative data (xqj)jœJ are normally distributed conditionally to categorical data (xcj)jœJ .
Both quantitative and categorical data (xqj , xcj)jœJ can be partially observed. Hence (xqj , xcj)jœJ
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are decomposed into observed features (xobs
qj , x

obs
cj )jœJ and missing features (xmiss

qj , x
miss
cj )jœJ such

that

’j œ J ,

xqj =
A

x
miss
qj

x
obs
qj

B

with (xmiss
qj , x

obs
qj ) œ Rdmiss

j ◊ Rdobs
j and dmiss

j + dobsj = d ,

xcj =
A

x
miss
cj

x
obs
cj

B

with (xmiss
cj , x

obs
cj ) œ Cqmiss

j
◊ Cqobsj

and qmiss
j + qobsj = q .

Mixture model

According to the independence assumption (4.10), the distribution of mixed data (Chapter 3)
and the parabolic relation between temporal evolution data, the component distribution results
in

’j œ J , p(xqj , xcj , xtj |zj = k) = p(xqj , xcj |zj = k)p(xtj |zj = k)
where

’j œ J ,

p(xqj , xcj |zj = k) =
Ÿ

cœCq

1
fikcN

1
xqj |µkc, u≠1

j �k

22”c
xcj ,

p(xtj |tj , zj = k) = N
1
xtj |�(tj)T

Êk, ‡2
2 (4.11)

with

• u = (uj)jœJ the scale latent variables handling outliers for quantitative data xq and dis-
tributed according to a Gamma distribution with shape and rate parameters (–, —) =
(–kc, —kc)(k,c)œK◊Cq

conditionally to categorical data xc and labels z = (zj)jœJ ,

• (µ, �) = ((µkc)cœCq , �k)kœK the mean and the variance parameters of quantitative data
xq for each cluster,

• fi = (fik)kœK the weights of the multivariate Categorical distribution of categorical data
xc for each cluster,

• Ê = (Êk)kœK the regression parameters for temporal evolution data xt for each cluster,

• ‡2 the variance of the measurement noise related to temporal evolution data xt.

Recalling that p(zj = k) = ak where a = (ak)kœK are the weights related to component distribu-
tions, the mixture model is obtained from (4.11) such that ’j œ J ,

p(xj , uj |tj , �) =
ÿ

kœK
akN

1
xtj |�(tj)T

Êk, ‡2
2 Ÿ

cœCq

1
fikcN

1
xqj |µkc, u≠1

j �k

2
G(uj |–kc, —kc)

2”c
xcj

(4.12)
where � = (a, Ê, ‡2, fi, –, —, µ, �) is the set of parameters.

Bayesian Framework

As in chapters 2 and 3, a Bayesian framework is used to estimate parameters �. Assuming
datasets (x = (xq, xc, xt), t) of i.i.d observations (xj = (xqj , xcj , xtj), tj)jœJ , independent labels
z = (zj)jœJ and scale latent variables u = (uj)jœJ , the complete likelihood associated to (4.12)
is defined by

p(x, z, u|t, �, K) =
Ÿ

jœJ

Ÿ

kœK

Q

aakN
1
xtj |�(tj)T

Êk, ‡2
2 Ÿ

cœCq

1
fikcN

1
xqj |µkc, u≠1

j �k

2
G(uj |–kc, —kc)

2”c
xcj

R

b
”k

zj
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Figure 4.3: Graphical representation of the proposed model integrating temporal evolution data and
mixed-type data. The arrows represent conditional dependencies between the random variables. The
K-plate represents the K mixture components and the J-plate the independent identically distributed
observations (xqj , xcj , xtj , tj) decomposed into temporal evolution data (xtj , tj) and mixed-type data
(xqj , xcj), the scale variables uj and the indicator variables zj . Known quantities, respectively unknown
quantities, are in blue, respectively in red.

Eventually, the prior distribution required for � is chosen as

p(�|K) = p(a|K)p(Ê|‡2, K)p(‡2)p(fi|K)p(–, —|K)p(µ, �|K)

where Y
___________________]

___________________[

p(a|K) = D(a|Ÿ0) ,

p(fi|K) =
Ÿ

kœK
D(fik|fi0) ,

p(µ, �|K) =
Ÿ

kœK

Ÿ

cœCq

N
1
µkc|µ0, ÷≠1

0 �k

2
IW(�k|“0, �0) ,

p(–, —|K) =
Ÿ

kœK

Ÿ

cœCq

p(–kc, —kc|p0, q0, s0, r0) ,

p(Ê|‡2, K) =
Ÿ

kœK
N

1
Êk|Ê0, ‡2�0

2
,

p(‡2) = IG(‡2|›0
1 , ›0

2) .

Graphical representation of the proposed model is shown in Figure 4.3.

Inference

As previously, a factorized posterior distribution q(xmiss
q , u, x

miss
c , z, �|K) = q(xmiss

q , u, x
miss
c , z|K)q(�|K)

is chosen as an approximation of the intractable posterior joint distribution p(xmiss
q , u, x

miss
c , z, �|x, t, K)

such that latent variables h = (xmiss
q , u, x

miss
c , z) and parameters � are a posteriori independent

and

q(h|K) = q(xmiss
q |u, x

miss
c , z, K)q(u|xmiss

c , z, K)q(xmiss
c |z, K)q(z|K) ,

q(�|K) = q(a|K)q(Ê|‡2, K)q(‡2)q(fi|K)q(–, —|K)q(µ, �|K) .
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According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

Y
_________________________________________]

_________________________________________[

q(xmiss
q |u, x

miss
c , z, K) =

Ÿ

jœJ

Ÿ

kœK

Ÿ

cœC
N

3
x
miss
qj |µ̃x

miss
q

jkc
, u≠1

j �̃x
miss
q

k

4”c
xcj

”k
zj

,

q(u|xmiss
c , z, K) =

Ÿ

jœJ

Ÿ

kœK

Ÿ

cœC
G

1
uj |–̃jkc, —̃jkc

2”c
xcj

”k
zj ,

q(xmiss
c |z, K) =

Ÿ

jœJ

Ÿ

kœK
MC(xmiss

cj |r̃x
miss
c

jk )”k
zj

q(z|K) =
Ÿ

jœJ
Cat(zj |r̃j) ,

q(a|K) = D(a|Ÿ̃) ,

q(fi|K) =
Ÿ

kœK
D(fi|fĩk) ,

q(µ, �|K) =
Ÿ

kœK

Ÿ

cœC
N

1
µkc|µ̃kc, ÷̃≠1

kc
�k

2
IW(�k|“̃k, �̃k) ,

q(–, —|K) =
Ÿ

kœK
p(–kc, —kc|p̃k, q̃k, s̃k, r̃k) ,

q(Ê|‡2, K) =
Ÿ

kœK
N

1
Êk|Ễk, ‡2�̃k

2
,

q(‡2) = IG(‡2|›̃1, ›̃2) .

Their respective parameters are estimated during the VBE and VBM steps by developing expec-
tations E� [log p(x, u, z|t, �, K)] and Eh [log p(x, u, z, �|t, K)]. Noting that

E� [log p(x, u, z|t, �, K)] =E�
Ë
log p(xt|t, z, Ê, ‡2, K)

È
+ E� [log p(xq, u, xc|z, fi, –, —, µ, �, K)]

+ E� [log p(z|a, K)] ,

(4.13)

and

Eh [log p(x, u, z, �|t, K)] =Eh

Ë
log p(xt, Ê, ‡2|t, z, K)

È
+ Eh [log p(xq, u, xc, fi, –, —, µ, �|z, K)]

+ Eh [log p(z, a|K)] ,

(4.14)

the VBE (4.13) and VBM (4.14) steps can be independently derived for latent variables and
parameters related to temporal evolution data xt and mixed data (xq, xc). Therefore, variational
posterior distributions of latent variables (xmiss

q , u, x
miss
c ) and parameters (fi, –, —, µ, �) related

to mixed data (xq, xc) are obtained as in Chapter 3 by deriving green expectations in (4.13) and
(4.14). As for (Ê, ‡2), their variational posterior distribution are obtained as in subsection 4.1.2
by developing blue expectations in (4.13) and (4.14). As in subsection 4.1.2 or in Chapter 3, the
Dirichlet posterior distribution of a is deduced from the red expectation in (4.14). Eventually,
the variational distribution of labels z is obtained by marginalising over latent variables in the
green expectation and developing both blue and red expectations in (4.13) such that

⁄
E� [log p(x, u, z|t, �, K)] ˆx

miss
q ˆuˆx

miss
c =

ÿ

jœJ

ÿ

kœK
”k

zj
log fljk
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where log fljk is deduced from red, blue and green expectations in (4.13) as follows

’j œ J , ’k œ K, log fljk = E� [log ak] + log flt
jk + log flqc

jk . (4.15)

with

’j œ J , ’k œ K,

E� [log ak] = Â(Ÿ̃k) ≠ Â

Q

a
ÿ

kœK
Ÿ̃k

R

b ,

log flt
jk = ≠1

2

A

log 2fi + E�
Ë
log ‡2

È
+ E�

C
(xtj ≠ �(tj)T

Êk)2

‡2

DB

,

log flqc
jk = log

ÿ

cmissœC
qmiss

j

fl
x
miss
cj

kcmiss .

The red term E� [log ak] is deduced from properties of the Dirichlet distribution, the blue term
log flt

jk is deduced from (4.7) and (4.8) in subsection 4.1.2 and the green term log flqc
jk has been

detailed in Chapter 3. Hence, z is distributed a posteriori according to a product of Categorical
distributions parametrized by r̃ = (r̃jk)(j,k)œJ ◊K given by

’j œ J , ’k œ K, r̃jk = fljkq

kœK
fljk

(4.16)

The lower bound on the log evidence is still required to master the VB inference and can be
also decomposed into terms related to temporal evolution data (blue terms), mixed data (green
terms) and labels z (red terms). This decomposition is obtained as follows

L(q|K) = Eh,� [log p(x, u, z, �|t, K)] ≠ Eh,�
Ë
log q(xmiss

q , x
miss
c , u, z, �|K)

È

where the free energy can be developed as

Eh,� [log p(x, u, z, �|t, K)] = Eh,� [log p(x, u, z|t, �, K)] + E�
Ë
log p(Ê, ‡2|K)

È

+ E� [log p(a, fi, –, —, µ, �|K)]

and the entropy as

Eh,�
Ë
log q(xmiss

q , x
miss
c , u, z, �|K)

È
= Eh,�

Ë
log q(Ê, ‡2|K)

È
+ Eh,�

Ë
log q(xmiss

q , x
miss
c , u|z, K)

È

+ Eh,� [log q(z|K)] + Eh,� [log q(a, fi, –, —, µ, �|K)] .

Blue terms, respectively green terms, have been previously detailed in subsection 4.1.2 , respec-
tively in Chapter 3. As for red terms, they are detailed below :

Eh,� [log p(x, u, z|t, �, K)] =
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È
log fljk ,

Eh,� [log q(z|K)] =
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È
log r̃jk .
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(a) Data, ‡2 = 0.0001
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(b) Data, ‡2 = 0.01
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(c) Data, ‡2 = 0.25
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(d) Ground-Truth, ‡2 = 0.0001
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(e) Ground-Truth, ‡2 = 0.01
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(f) Ground-Truth, ‡2 = 0.25

Figure 4.4: Synthetic parabolic data generated from di↵erent values of the variance parameter ‡2. Figures
(a), (b) and (c) present unlabeled data where 4 parabolas are generated. Ground-truth are visible on
Figures (d), (e) and (f).

4.1.4 Experiments

Two experiments are carried out to evaluate clustering performance with respect to a set of
synthetic data and a set of real data. In the first experiment, only temporal evolution data
are taken into consideration in the clustering procedure. Then, both temporal evolution data
and quantitative data are considered in the second one. For comparison, the spectral clustering
[VL07] and the k-means algorithm from [HW79] are also evaluated. First, characteristics of
data, comparison algorithms and evaluation metrics are detailed. Then, both experiments are
described and performance are shown to exhibit the e↵ectiveness of the proposed model.

Data, algorithms and metrics

Both synthetic and real data are composed of temporal evolution data related to amplitudes which
are distributed according to a parabolic relation and quantitative data related to continuous
radar features which are jointly distributed according to a multivariate normal distribution.
In synthetic data, temporal evolution data are generated by sampling a set of data from four
parabolas directed by

Ê =

Q

ca
≠1 ≠2 ≠3 ≠4
1 2 3 4
1 2 3 4

R

db

and quantitative data are generated by sampling a set of data from four well-separated bivariate
clusters with centers [0, 0]T , [1, 0]T ,[0, 1]T and [1, 1]T and identity covariance matrices. Three
synthetic datasets are generated with respect to a range of values of ‡2. These datasets are
shown in Figures 4.4 and 4.5 where each radar emitter is represented by a parabola (Figure 4.4)
and a Gaussian cluster (Figure 4.5). Real data are extracted from operational recordings which
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(a) Quantitative Data
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(b) Ground-Truth

Figure 4.5: Synthetic quantitative data generated from 4 multivariate normal distributions. Figure (a)
shows unlabeled data and Figure (b) exhibits the ground-truth.

include unlabeled pulses that are mainly described by their Pulse Description World (PDW)
composed of

• Time Of Arrival (TOA) ,

• Amplitude (A) ,

• Radio Frequency (RF) ,

• Pulse Width (PW) ,

• Azimuth (Az) .

Therefore, temporal evolution data are pairs (TOA,A) and quantitative data are triplets (RF,PW,Az).
Unfortunately, these real data are classified and values of PDW cannot be released. Hence, axes
of figures related to real data are not displayed. Three cases are obtained from real recordings
and they are visible on Figure 4.6. Di↵erent numbers of parabolas and (RF,PW,Az) clusters
can be observed according to a chosen real case. These di↵erences result in di↵erent numbers
of emitters for the 3 cases such that 5, 4 and 2 emitters are identified in the cases 1, 2 and 3.
Eventually, synthetic and real data are linearly transformed by a min-max normalization to meet
algorithms requirements.

Except for the k-means algorithm, an initialisation is required for clustering algorithms that
are involved in these experiments. The similarity graph required for the spectral clustering is
obtained from a k-nearest neighbor graph as suggested in [VL07] where the number of neighbors
k is chosen as the product of the log number of observations and the number of clusters. As for
the proposed model, a supervised initialisation is retained due to its sensitivity to initialisation.

First, prior hyperparameters ›0
1 and ›0

2 are initialised such that the prior mean E[ 1
‡2 ] = ›0

1
›0

2
of

the variance parameter ‡2 is equal to the inverse of the determinant of the covariance matrix of
temporal evolution data points. This choice is motivated by the fact that the determinant of the
covariance matrix can be interpreted as the generalized variance that reflects the overall spread
of the data. Setting ›0

2 = 1, ›0
1 is initialised as the inverse of the generalized variance of the

sample of temporal evolution data. Then, prior component means µ0, respectively covariance
matrices �0, are initialised from results of a k-means algorithm on quantitative data, respec-
tively from diagonal matrices whose diagonal elements are variances of quantitative data. Other
hyper-parameters are initialised as in Table 4.1.
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Figure 4.6: Real data obtained from 3 operational cases. Figures (a), (b) and (c) exhibit distributions of
Times of Arrival (TOA) and Amplitudes (A). Figures (d), (e) and (f) exhibit distributions of Frequencies
(F) and Azimuths (Az). Figures (g), (h) and (i) exhibit distributions of Frequencies (F) and Pulse Widths
(PW).

Performance on synthetic data are evaluated through the Adjusted Rand Index (ARI) [HA85]
that compares estimated partitions of data with the ground-truth and the Silhouette Coe�cient
[KR09] which does not require the ground-truth and provides a higher score when clusters are
dense and well separated. Performance on real data are only evaluated through the Silhouette
score since the ground-truth is not available for each case.

Experiments and results

The first experiment aims to determine the ability of each algorithm to restore the true clusters
according to an a priori number of clusters K when only temporal evolution data are taken into
consideration. According to datasets visualised in Figure 4.4 and Figure 4.6, K is set to 4 for syn-
thetic data and to 5, 4 and 2 for the three real cases. Results of the first experiment on synthetic
data are shown in Figure 4.7 and in Table 4.2. The proposed model and the spectral clustering
succeed in clustering synthetic data for ‡2 œ {0.0001, 0.01} since the ground-truth partition is
recovered in Figure 4.7 with an ARI equals to 1 visible on Table 4.2. The lower performance of
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Table 4.1: Initialisation of hyper-parameters values for clustering on parabolic data

Ê0 �0 Ÿ0 ÷0 “0 p0 r0 q0 s0
(0, 0, 0)T I3 0.5 100 1 1 1 1 1

the k-means algorithm (ARI = 0.33) can be explained by the fact that the k-means algorithm
creates convex and isotropic clusters that cannot handle the parabolic structure of the generated
data. This limitation is emphasized by higher Silhouette Coe�cients of the k-means algorithm
since the Silhouette Coe�cient is generally higher for convex clusters. Moreover, the lower Sil-
houette Coe�cients of the ground-truth for ‡2 œ {0.0001, 0.01} confirm the non-convexity of
the data. Even if all algorithms poorly perform when data are embedded in noise (‡2 = 0.25),
the proposed algorithm estimates clusters with a more parabolic shape than other algorithms
which build more isotropic clusters (Subfigures (f), (i) and (l) in Figure 4.2). Indeed the Sil-
houette Coe�cient of the proposed model (S = 0.14) is closer to the Silhouette Coe�cient of
the ground-truth (S = 0.10) than Silhouette Coe�cients of spectral clustering (S = 0.53) and
k-means (S = 0.56). Results of the first experiment on real data are shown in Figure 4.8 and
in Table 4.3. Interpretation of algorithm performance through Silhouette coe�cients and visual
representations is complex since the Silhouette coe�cient enhances algorithms that create convex
clusters whereas the visual representations of estimated clusters tend to choose algorithms that
create clusters with a parabolic shape. As in the example of real case 1, the proposed model
succeeds in finding the radar emitter whose scanning behaviour is described by the red parabola
(Subfigure (d) in Figure 4.8) whereas spectral clustering and k-means find that this parabola
belongs to many emitters (Subfigures (g) and (j) in Figure 4.8). Nonetheless, spectral clustering
and k-means provide higher Silhouette Coe�cient (S = 0.46 and S = 0.57) than the proposed
model (S = 0.05).

The second experiment aims to determine the ability of each algorithm to restore the true
clusters according to an a priori number of clusters K when all types of data are taken into
consideration. The number of clusters K is still set to 4 for synthetic data and to 5, 4 and 2 for the
three real cases. Results of the second experiment on synthetic data are shown in Figure 4.9 and
in Table 4.4. All algorithms succeed in clustering synthetic data for ‡2 œ {0.0001, 0.01, 0.25} since
the ground-truth partition is recovered in Figure 4.9 with an ARI equals to 1 visible on Table 4.4.
Adding quantitative information enables algorithms to recover the ground-truth for any value of
‡2. Results of the second experiment on real data are shown in Figure 4.10 and in Table 4.5. The
proposed model perfectly estimates clusters for the three cases whereas spectral clustering and
k-means cannot manage to recover the correct clusters in real case 1 (Subfigures (d), (g) and (j)).
Indeed, the proposed model finds the five di↵erent emitters by exploiting quantitative features
while spectral clustering and k-means cannot identify the emitter whose temporal evolution
features are distributed according to the parabola which is slowly increasing (red parabola in
Subfigure (d)). Nonetheless, k-means and spectral clustering have higher Silhouette coe�cients
than the proposed model since they provide more convex clusters than the proposed method.
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(a) Ground-Truth, ‡2 = 0.0001
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(b) Ground-Truth, ‡2 = 0.01
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(c) Ground-Truth, ‡2 = 0.25
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(d) PM, ‡2 = 0.0001
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(e) PM, ‡2 = 0.01
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(f) PM, ‡2 = 0.25
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(g) SC, ‡2 = 0.0001
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(h) SC, ‡2 = 0.01
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(i) SC, ‡2 = 0.25
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(j) KM, ‡2 = 0.0001
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(k) KM, ‡2 = 0.01
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(l) KM, ‡2 = 0.25

Figure 4.7: Results on synthetic data during the first experiment when only temporal evolution data are
considered. Figures (a), (b) and (c) show synthetic data generated with di↵erent values of the variance
‡2. Figures (d), (e) and (f) show clustering results of the proposed model (PM). Figures (g), (h) and (i)
show clustering results of the spectral clustering (SC). Figures (j), (k) and (l) show clustering results of
the k-means algorithm (KM).
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Table 4.2: Adjusted Rand Index (ARI) and Silhouette coe�cient (S) values for the proposed model (PM),
the spectral clustering (SC) and the k-means algorithm (KM) during the first experiment on synthetic
data when only temporal evolution data are considered.

ARI S
PM SC KM Data PM SC KM

‡2 = 0.0001 1 1 0.34 0.32 0.32 0.32 0.63
‡2 = 0.01 1 1 0.33 0.27 0.27 0.27 0.63
‡2 = 0.25 0.42 0.23 0.27 0.10 0.14 0.53 0.56

Table 4.3: Silhouette coe�cients of the proposed model (PM), the spectral clustering (SC) and the k-
means algorithm (KM) during the first experiment on real data when only temporal evolution data are
considered.

Silhouette Coe�cient
PM SC KM

Case 1 0.05 0.46 0.57
Case 2 0.12 0.28 0.57
Case 3 0.26 0.61 0.61

Table 4.4: Adjusted Rand Index (ARI) and Silhouette coe�cient (S) values for the proposed model (PM),
the spectral clustering (SC) and the k-means algorithm (KM) during the experiment on synthetic data
when all types of data are considered.

ARI S
PM SC KM Data PM SC KM

‡2 = 0.0001 1 1 1 0.76 0.76 0.76 0.76
‡2 = 0.01 1 1 1 0.75 0.75 0.75 0.75
‡2 = 0.25 1 1 1 0.73 0.73 0.73 0.73

Table 4.5: Silhouette coe�cients of the proposed model (PM), the spectral clustering (SC) and the k-means
algorithm (KM) during the second experiment on real data when all types of data are considered.

Silhouette Coe�cient
PM SC KM

Case 1 0.77 0.75 0.81
Case 2 0.57 0.32 0.61
Case 3 0.71 0.73 0.74
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Figure 4.8: Results on real parabolic data during the first experiment when only temporal evolution data
are considered. Figures (a), (b) and (c) show real data in di↵erent cases. Figures (d), (e) and (f) show
clustering results of the proposed model (PM). Figures (g), (h) and (i) show clustering results of the
spectral clustering (SC). Figures (j), (k) and (l) show clustering results of the k-means algorithm (KM).
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(a) Ground-Truth, ‡2 = 0.0001
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(b) Ground-Truth, ‡2 = 0.01
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(c) Ground-Truth, ‡2 = 0.25
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(d) PM, ‡2 = 0.0001
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(e) PM, ‡2 = 0.01
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(f) PM, ‡2 = 0.25
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(g) SC, ‡2 = 0.0001
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(h) SC, ‡2 = 0.01
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(i) SC, ‡2 = 0.25
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(j) KM, ‡2 = 0.0001

0 0.2 0.4 0.6 0.8 1
Times of Arrival

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

p
lit

u
d

e
s

1
2
3
4

(k) KM, ‡2 = 0.01
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(l) KM, ‡2 = 0.25

Figure 4.9: Results on synthetic parabolic data when all types of data are considered. Figures (a), (b)
and (c) show synthetic data generated with di↵erent values of the variance ‡2. Figures (d), (e) and (f)
show clustering results of the proposed model (PM). Figures (g), (h) and (i) show clustering results of the
spectral clustering (SC). Figures (j), (k) and (l) show clustering results of the k-means algorithm (KM).
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Figure 4.10: Results on real parabolic data when any types of data are considered. Figures (a), (b) and
(c) show real data in di↵erent cases. Figures (d), (e) and (f) show clustering results of the proposed model
(PM). Figures (g), (h) and (i) show clustering results of the spectral clustering (SC). Figures (j), (k) and
(l) show clustering results of the k-means algorithm (KM).
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4.2 Piecewise parabolic data

In this section, K emitters presenting piecewise parabolic scanning behaviours are considered.
Therefore, the main objective is to develop a mixture model which can build K distinct clusters
formed by K piecewise parabolas with P piecewises and to define an inference procedure for
parameter estimation. Then, the proposed model is enhanced with the mixture model designed
for mixed data in Chapter 3 in order to improve clustering performance. Finally, experiments
on synthetic data are carried out to exhibit performance of the proposed approach.

4.2.1 Model

Before introducing a mixture model that handles piecewise parabolic data, the piecewise parabolic
relation between amplitudes and times of arrival is defined. Then, the mixture model is developed
into a Bayesian framework.

Piecewise parabola equation

The piecewise parabolic relation between amplitudes (xtj)jœJ and times of arrival (tj)jœJ gives
form to a set of P piecewises of constant amplitudes (µt

p)pœP that are linked by a parabolic
relation (Figure 4.11). Each piecewise µt

p gathers pulses (xtj , tj)jœJp whose amplitude xtj is

equal to µt
p and where Jp is the set of indexes of pulses that belong to the pth piecewise. These

P sets Jp of pulses are disjoint and constitute a partition of J such
t

p Jp = J . Finally, the
piecewises (µt

p)pœP belong to a parabola parametrized by Ê and
!
minjœJp tj

"
pœP which are the

times of the first pulses belonging to the piecewises. That definition can be translated into the
following system

’j œ Jp,

Y
_]

_[

xtj = µt
p + ‘

µt
p = �

3
min
jœJp

tj

4T

Ê

(4.17)

where ‘ ≥ N (0, ‡2) is a measurement noise introduced to model defects of materials, Jp = {j œ
J , |xtj ≠ µt

p| Æ ‡} and �(·), respectively Ê, are the polynomial transformation, respectively the
regression parameter, defined in (4.2). Since the measurement error is assumed to be Gaus-
sian, amplitude (xtj)jœJp are distributed according to a normal distribution centered in µt

p with
variance ‡2

’j œ Jp, xtj ≥ N
1
xtj |µt

p, ‡2
2

. (4.18)

If (Jp)pœP and (µt
p)pœP are known, the regression parameter Ê is the solution of a linear problem

given by
µ

t = �(X )T
Ê

where �(X ) is a 3 ◊ P matrix whose columns are the P polynomial transformations!
�

!
minjœJp tj

""
pœP and µ

t = (µt
1, . . . , µt

P )T . Then the regression parameter Ê is obtained such
that

Ê =
1
�(X )�(X )T

2≠1
�(X )µt .

Mixture model

Since each radar emitter has its own scanning behaviour, K unique piecewise parabolas exist in
data and they are configured with K regression parameters Ê = (Êk)kœK and K sets of piecewises
µ

t = (µt
kp)(p,k)œP◊K. Then, each amplitude xtj belongs to one of these sets of piecewises which is
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Figure 4.11: Simulated data where amplitudes xt and times of arrival t are distributed according to a
piecewise parabolic relation defined with P = 4 piecewises.

related to a specific emitter. In other words, conditionally to its label zj and its a�liations to one
of the piecewises, the amplitude xtj is distributed according to (4.18) such that the component
distribution is defined by

’j œ Jp, xtj |zj = k ≥ N
1
xtj |µt

kp, ‡2
2

(4.19)

In order to model its a�liations to one of the piecewises, a latent discrete variable yj is introduced
such that (4.19) becomes

’j œ J , xtj |yj = p, zj = k ≥ N
1
xtj |µt

kp, ‡2
2

(4.20)

where yj belongs to P and follows, conditionally to zj = k, a categorical distribution with weights
bk = (bk1, . . . , bkP ). Therefore the initial component distribution (4.19) can be reformulated as
a mixture model such that

p(xtj |zj = k, �, K) =
ÿ

pœP
bkpN

1
xtj |µt

kp, ‡2
2

Recalling that p(zj = k) = ak where a = (ak)kœK are the weights related to component distribu-
tions, the proposed mixture model is a mixture of mixture models given by

’j œ J , p(xtj |�) =
ÿ

kœK
ak

ÿ

pœP
bkpN

1
xtj |µt

kp, ‡2
2

(4.21)

where � = (a, b, µ
t, ‡2) is the set of parameters.

Bayesian framework

As in previous chapters, a Bayesian framework is used to estimate parameters �. Assuming
datasets (xt, t) of i.i.d observations (xtj , tj)jœJ and independent labels z = (zj)jœJ and y =
(yj)jœJ for clusters and piecewises, the complete likelihood associated to (4.21) is defined by

p(xt, h|�, K) =
Ÿ

jœJ

Ÿ

kœK

Q

aak

Ÿ

pœP

1
bkpN

1
xtj |µt

kp, ‡2
22”p

yj

R

b
”k

zj
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where h = (y, z) is the set of latent variables. Eventually, the prior distribution required for �
is chosen as

p(�|K) = p(a|K)p(b|K)p(µt|‡2, K)p(‡2)

where a and b follow a Dirichlet distribution, each µt
kp follows a Normal distribution and ‡2

follows an Inverse Gamma distribution such that

Y
_________]

_________[

p(a|K) = D(a|Ÿ0) ,

p(b|K) =
Ÿ

kœK
D(bk|o0) ,

p(µt|‡2, K) =
Ÿ

kœK

Ÿ

pœP
N

1
µt

kp|µt
0, ·≠1

0 ‡2
2

,

p(‡2) = IG(‡2|›0
1 , ›0

2) .

The resulting mixture model is shown on Figure 4.12.

K

J

›0
2 ›0

1 ‡2

µt
0

·0

µ
t
k

o0

bk

yj

xtj

zj a

Ÿ0

Figure 4.12: Graphical representation of the proposed mixture model handling piecewise parabolic data.
The arrows represent conditional dependencies between the random variables. The K-plate represents
the K mixture components and the J-plate the independent identically distributed amplitudes xj and the
indicator variables (zj , yj). Known quantities, respectively unknown quantities, are in blue, respectively
in red.

4.2.2 Inference

The Variational Bayes (VB) procedure is derived to estimate parameters of the mixture model
defined in (4.21). Variational posterior distributions are obtained from the VB Expectation
(VBE) and VB Maximization (VBM) steps and a lower bound on the log evidence is defined to
master the convergence of the VB procedure.

Variational posterior distributions

As previously, a factorized posterior distribution q(h, �|K) = q(h|K)q(�|K) is chosen as an ap-
proximation of the intractable posterior joint distribution p(h, �|xt, K) such that latent variables
h and parameters � are a posteriori independent and

q(h|K) = q(y|z, K)q(z|K) ,

q(�|K) = q(a|K)q(b|K)q(µt|‡2K)q(‡2) .
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According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

Y
___________________]

___________________[

q(y|z, K) =
Ÿ

jœJ

Ÿ

kœK
Cat(yj |r̃y

jk)”k
zj ,

q(z|K) =
Ÿ

jœJ
Cat(zj |r̃j) ,

q(a|K) = D(a|Ÿ̃) ,

q(b|K) =
Ÿ

kœK
D(bk|õk) ,

q(µt|‡2, K) =
Ÿ

kœK

Ÿ

pœP
N

1
µt

kp|µ̃t
kp, ·̃≠1

kp ‡2
2

,

q(‡2) = IG(‡2|›̃1, ›̃2) .

Their respective parameters are estimated during the VBE and VBM steps.

VBE-step

The VBE-step consists in deriving the following expectation

E� [log p(xt, h|t, �, K)] =
ÿ

jœJ

ÿ

kœK
”k

zj

3
E� [log ak] +

ÿ

pœP
”p

yj

3
E� [log bkp] ≠ 1

2

3
log 2fi

+ E�
Ë
log ‡2

È
+ E�

C
(xtj ≠ µt

kp)2

‡2

D 444

=
ÿ

jœJ

ÿ

kœK
”k

zj

Q

aE� [log ak] +
ÿ

pœP
”p

yj
log fly

jkp

R

b

(4.22)

where

log fly
jkp = E� [log bkp] ≠ 1

2

A

log 2fi + E�
Ë
log ‡2

È
+ E�

C
(xtj ≠ µt

kp)2

‡2

DB

. (4.23)

Hence, a categorical distribution for piecewise labels y is deduced from (4.22) conditionally to
cluster labels z such that

q(y|z, K) =
Ÿ

jœJ

Ÿ

kœK
Cat(yj |r̃y

jk)”k
zj

and their parameters (r̃y
jk)jœJ are obtained from (4.23) as follows

’j œ J , ’k œ K, ’p œ P, r̃y
jkp =

fly
jkpq

pœP
fly

jkp

.

Marginalising over y in (4.22), a categorical is obtained for cluster labels z such that

q(z|K) =
Ÿ

jœJ
Cat(zj |r̃j)

with
’j œ J , ’k œ K, r̃jk = fljkq

kœK
fljk

.

where
fljk = E� [log ak] + log

ÿ

pœP
fly

jkp .
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VBM-step

The VBM-step consists in deriving the following expectation

Eh [log p(xt, h, �|t, K)] = Eh [log p(xt, h|t, �, K)] + log p(�|K)

=
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È 3
log ak +

ÿ

pœP
Eh

Ë
”p

yj

È 3
E� [log bkp] ≠ 1

2

3
log 2fi

+ log ‡2 +
(xtj ≠ µt

kp)2

‡2

444
+

ÿ

kœK
(Ÿ0

k ≠ 1) log ak + log cD(Ÿ0)

≠ (›0
1 + 1) log ‡2 ≠ ›0

2
‡2 + log cIG(›0

1 , ›0
2) +

ÿ

kœK

ÿ

pœP
(o0

kp ≠ 1) log bkp

≠ 1
2

3
log 2fi + log ‡2 + ·0

‡2 (µt
kp ≠ µt

0)2
4

+
ÿ

kœK
log cD(o0

k) .

(4.24)

By factorizing terms related to a in (4.24), the following Dirichlet distribution is obtained

q(a|K) = D(a|Ÿ̃)

where
’k œ K, Ÿ̃k = Ÿ0

k +
ÿ

jœJ
Eh

Ë
”k

zj

È
.

Following the same reasoning, b is distributed according to a product of Dirichlet distributions
given by

q(b|K) =
Ÿ

kœK
D(bk|õk)

where
’k œ K, ’p œ P, õkp = o0

kp +
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”p

yj

È
.

By aggregating terms related to each µt
kp in (4.24), a Normal distribution is obtained for each

µt
kp such that

q(µt|‡2, K) =
Ÿ

kœK

Ÿ

pœP
N

1
µt

kp|µ̃t
kp, ·̃≠1

kp ‡2
2

where ’k œ K and ’p œ P

·̃kp =
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”p

yj

È
+ ·0 ,

µ̃t
kp =

q
jœJ Eh

Ë
”k

zj

È
Eh

Ë
”p

yj

È
xtj + ·0µt

0

·̃kp
.

Eventually, an Inverse Gamma distribution is deduced from (4.24) such that

q(‡2) = IG(‡2|›̃1, ›̃2)

where

›̃1 = ›0
1 + J

2 ,

›̃2 = ›0
2 + 1

2
ÿ

kœK

ÿ

pœP

Q

a
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”p

yj

È
x2

tj + ·0µt
0

2 ≠ ·̃kp(µ̃t
kp)2

R

b .
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Lower bound

Recalling that the lower bound on the log evidence is given by

L(q|K) = Eh,� [log p(xt, h, �|t, K)] ≠ Eh,� [log q(h, �|K)]

where Eh,� [log p(xt, h, �|t, K)] is the free energy and Eh,� [log q(h, �|K)] is the entropy of the
approximate posterior q(h, �|K). The free energy can be developed as

Eh,� [log p(xt, h, �|t, K)] = Eh,� [log p(xt, h|t, �, K)] + E� [log p(�|K)]

where

Eh,� [log p(xt, h|t, �, K)] =
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È
Q

aE� [log ak] +
ÿ

pœP
Eh

Ë
”p

yj

È
log fly

jkp

R

b

and

E� [log p(�|K)] =
ÿ

kœK
(Ÿ0

k ≠ 1)E� [log ak] ≠ (›0
1 + 1)E�

Ë
log ‡2

È
≠ ›0

2E�

5 1
‡2

6
+ log cD(Ÿ0)

+ log cIG(›0
1 , ›0

2) +
ÿ

kœK

ÿ

pœP
(o0

kp ≠ 1)E� [log bkp] ≠ 1
2

3
log 2fi + E�

Ë
log ‡2

È

+ E�

5 1
‡2

6
·0(E�

Ë
µt

kp

È
≠ µt

0)2 + ·0·̃≠1
kp

4
+

ÿ

kœK
log cD(o0

k) .

As for the entropy term, the following decompositon is obtained

Eh,� [log q(h, �|K)] = Eh [log q(y, z|K)] + E� [log q(�|K)]
= Eh [log q(y|z, K)] + Eh [log q(z|K)] + E� [log q(�|K)]

where

Eh [log q(y|z, K)] =
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È ÿ

pœP
Eh

Ë
”p

yj

È
log r̃y

jkp ,

Eh [log q(z|K)] =
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È
log r̃jk .

and

E� [log q(�|K)] =
ÿ

kœK
(Ÿ̃k ≠ 1)E� [log ak] ≠ (›̃1 + 1)E�

Ë
log ‡2

È
≠ ›̃2E�

5 1
‡2

6
+ log cD(Ÿ̃)

+ log cIG(›̃1, ›̃2) +
ÿ

kœK

ÿ

pœP
(õkp ≠ 1)E� [log bkp] ≠ 1

2
1
log 2fi + E�

Ë
log ‡2

È
+ 1

2

+
ÿ

kœK
log cD(õk) .

Expectations

Expectations developed in variational calculations are derived from properties of variational
posterior distributions and are obtained as follows. Categorical distribution properties lead to

’j œ J , ’k œ K, ’p œ P :
Eh

Ë
”p

yj

È
= r̃y

jkp ,

Eh

Ë
”k

zj

È
= r̃jk .
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Dirichlet distribution properties lead to

’k œ K, ’p œ P :

E� [log ak] = Â(Ÿ̃k) ≠ Â

Q

a
ÿ

kœK
Ÿ̃k

R

b ,

E� [log bkp] = Â(õkp) ≠ Â

Q

a
ÿ

pœP
õkp

R

b .

where Â(·) is the digamma function. Normal distribution properties lead to

’k œ K, ’p œ P :
E�

Ë
µt

kp

È
= µ̃t

kp ,

E�
Ë
(µt

kp)2
È

= V�
Ë
µt

kp

È
+ E�

Ë
µt

kp

È2

= ‡2·̃≠1
kp + (µ̃t

kp)2 ,

Inverse Gamma distribution properties lead to

E�

5 1
‡2

6
= ›̃1

›̃2
,

E�
Ë
log ‡2

È
= log ›̃2 ≠ Â(›̃1) .

Using all these properties, the following expectation can be calculated as

’j œ J , ’k œ K, ’p œ P :

E�

C
(xtj ≠ µt

kp)2

‡2

D

=
›̃1

1
xtj ≠ µ̃t

kp

22

›̃2
+ ·̃≠1

kp .

4.2.3 Complete model

A model integrating piecewise parabolic data and mixed data is now presented. By taking into
consideration any types of available data, the resulting model can fit data better and can estimate
more accurate clusters. First, data formalism and assumptions are detailed. Then, the resulting
mixture model and its inference procedure are developed.

Data and assumptions

In this part, data consist of J pulses gathering J amplitudes xt = (xtj)jœJ associated to J
times of arrival t = (tj)jœJ , J continuous features xq = (xqj)jœJ and J categorical features
xc = (xcj)jœJ from K distinct emitters. Let xj = (xqj , xcj , xtj) the jth observation vector of
mixed variables where

• xqj œ Rd is a vector of d continuous radar features such as the Radio Frequency, the Pulse
Width, the Azimuth or the Pulse Repetition Interval,

• xcj =
!
xcj0 , . . . , xcjq≠1

"
œ Cq is a vector of q categorical radar modulations such as intra-

pulse modulations or pulse-to-pulse modulations,

• xtj œ R is a continuous variable modeling the Amplitude.
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For each pulse j, the temporal evolution variable xtj and mixed variables (xqj , xcj) are assumed
to be independent conditionally to each cluster k œ K

’j œ J , (xq, xc)|zj = k |= xt|zj = k . (4.25)

with zj the latent variable modeling the label of the jth observation vector xj = (xqj , xcj , xtj).
Moreover, the temporal evolution data (xtj , tj)jœJ are distributed according to a piecewise
parabolic relation and the quantitative data (xqj)jœJ are normally distributed conditionally
to categorical data (xcj)jœJ . Both quantitative and categorical data (xqj , xcj)jœJ can be par-
tially observed. Hence (xqj , xcj)jœJ are decomposed into observed features (xobs

qj , x
obs
cj )jœJ and

missing features (xmiss
qj , x

miss
cj )jœJ such that

’j œ J ,

xqj =
A

x
miss
qj

x
obs
qj

B

with (xmiss
qj , x

obs
qj ) œ Rdmiss

j ◊ Rdobs
j and dmiss

j + dobsj = d ,

xcj =
A

x
miss
cj

x
obs
cj

B

with (xmiss
cj , x

obs
cj ) œ Cqmiss

j
◊ Cqobsj

and qmiss
j + qobsj = q .

Mixture model

According to the independence assumption (4.25), the distribution of mixed data (Chapter 3) and
the piecewise parabolic relation between temporal evolution data, the component distribution
results in

’j œ J , p(xqj , xcj , xtj |uj , zj = k) = p(xqj , xcj |uj , zj = k)p(xtj |zj = k)

where

’j œ J ,

p(xqj , xcj |uj , zj = k) =
Ÿ

cœCq

1
fikcN

1
xqj |µkc, u≠1

j �k

22”c
xcj ,

p(xtj |zj = k) =
Ÿ

pœP

1
bkpN

1
xtj |µt

kp, ‡2
22”p

yj

(4.26)

with

• u = (uj)jœJ the scale latent variables handling outliers for quantitative data xq and dis-
tributed according to a Gamma distribution with shape and rate parameters
(–, —) = (–kc, —kc)(k,c)œK◊Cq

conditionally to categorical data xc and labels z = (zj)jœJ ,

• (µ, �) = ((µkc)cœCq , �k)kœK the mean and the variance parameters of quantitative data
xq for each cluster,

• fi = (fik)kœK the weights of the multivariate Categorical distribution of categorical data
xc for each cluster,

• y = (yj)jœJ the latent variables indicating the pth piecewise temporal evolution data xt

belong to,

• b = ((bkp)pœP)kœK the weights of the Categorical distribution of latent variables y,

• µ
t = ((µt

kp)pœP)kœK the set of piecewises for temporal evolution data xt for each cluster,

• ‡2 the variance of the measurement noise related to temporal evolution data xt.
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Figure 4.13: Graphical representation of the proposed model integrating temporal evolution data and
mixed-type data. The arrows represent conditional dependencies between the random variables. The
K-plate represents the K mixture components and the J-plate the independent identically distributed
observations (xqj , xcj , xtj , tj) decomposed into temporal evolution data (xtj , tj) and mixed-type data
(xqj , xcj), the scale variables uj and the indicator variables (yj , zj). Known quantities, respectively
unknown quantities, are in blue, respectively in red.

Recalling that p(zj = k) = ak where a = (ak)kœK are the weights related to component distribu-
tions, the mixture model is obtained from (4.26) such that ’j œ J ,

p(xj , uj , yj |�) =
ÿ

kœK
ak

Ÿ

pœP

1
bkpN

1
xtj |µt

kp, ‡2
22”p

yj
Ÿ

cœC

1
fikcN

1
xqj |µkc, u≠1

j �k

2
G(uj |–kc, —kc)

2”c
xcj

(4.27)
where � = (a, b, µ

t, ‡2, fi, –, —, µ, �) is the set of parameters.

Bayesian framework

As in previous chapters 2 and 3, a Bayesian framework is used to estimate parameters �. Assum-
ing datasets (x = (xq, xc, xt), t) of i.i.d observations (xj = (xqj , xcj , xtj), tj)jœJ , independent
labels z = (zj)jœJ , piecewise indicators y = (yj)jœJ and scale latent variables u = (uj)jœJ , the
complete likelihood associated to (4.27) is defined by

p(x, y, u, z|�, K) =
Ÿ

jœJ

Ÿ

kœK

3
ak

Ÿ

pœP

1
bkpN

1
xtj |µt

kp, ‡2
22”p

yj

◊
Ÿ

cœCq

1
fikcN

1
xqj |µkc, u≠1

j �k

2
G(uj |–kc, —kc)

2”c
xcj

4”k
zj

Eventually, the prior distribution required for � is chosen as

p(�|K) = p(a|K)p(b|K)p(µt|‡2, K)p(‡2)p(fi|K)p(–, —|K)p(µ, �|K)
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where Y
________________________]

________________________[

p(a|K) = D(a|Ÿ0) ,

p(b|K) =
Ÿ

kœK
D(bk|o0) ,

p(fi|K) =
Ÿ

kœK
D(fik|fi0) ,

p(µ, �|K) =
Ÿ

kœK

Ÿ

cœCq

N
1
µkc|µ0, ÷≠1

0 �k

2
IW(�k|“0, �0) ,

p(–, —|K) =
Ÿ

kœK

Ÿ

cœCq

p(–kc, —kc|p0, q0, s0, r0) ,

p(µt|‡2, K) =
Ÿ

kœK

Ÿ

pœP
N

1
µt

kp|µt
0, ·≠1

0 ‡2
2

,

p(‡2) = IG(‡2|›0
1 , ›0

2) .

Graphical representation of the proposed model is shown in Figure 4.13.
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Inference

As previously, a factorized posterior distribution
q(xmiss

q , u, x
miss
c , y, z, �|K) = q(xmiss

q , u, x
miss
c , y, z|K)q(�|K) is chosen as an approximation of

the intractable posterior joint distribution p(xmiss
q , u, x

miss
c , y, z, �|xobs, K) such that latent vari-

ables h = (xmiss
q , u, x

miss
c , y, z) and parameters � are a posteriori independent and

q(h|K) = q(xmiss
q |u, x

miss
c , z, K)q(u|xmiss

c , z, K)q(xmiss
c |z, K)q(y|z, K)q(z|K) ,

q(�|K) = q(a|K)q(b|K)q(µt|‡2, K)q(‡2)q(fi|K)q(–, —|K)q(µ, �|K) .

According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

Y
___________________________________________________]

___________________________________________________[

q(xmiss
q |u, x
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c , z, K) =

Ÿ
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Ÿ
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j �̃x
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4”c
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,
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Ÿ
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Ÿ
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q(xmiss
c |z, K) =

Ÿ

jœJ

Ÿ

kœK
MC(xmiss

cj |r̃x
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c

jk )”k
zj

q(y|z, K) =
Ÿ

jœJ

Ÿ

kœK
Cat(yj |r̃y

jk)”k
zj ,

q(z|K) =
Ÿ

jœJ
Cat(zj |r̃j) ,

q(a|K) = D(a|Ÿ̃) ,

q(fi|K) =
Ÿ

kœK
D(fi|fĩk) ,

q(µ, �|K) =
Ÿ

kœK

Ÿ

cœC
N

1
µkc|µ̃kc, ÷̃≠1

kc
�k

2
IW(�k|“̃k, �̃k) ,

q(–, —|K) =
Ÿ

kœK
p(–kc, —kc|p̃k, q̃k, s̃k, r̃k) ,

q(b|K) =
Ÿ

kœK
D(bk|õk) ,

q(µt|‡2, K) =
Ÿ

kœK

Ÿ

pœP
N

1
µt

kp|µ̃t
kp, ·̃≠1

kp ‡2
2

,

q(‡2) = IG(‡2|›̃1, ›̃2) .

(4.28)

Their respective parameters are estimated during the VBE and VBM steps by developing expec-
tations E� [log p(x, u, y, z|�, K)] and Eh [log p(x, u, y, z, �|K)]. Noting that

E� [log p(x, u, y, z|�, K)] =E�
Ë
log p(xt, y|z, b, µ

t, ‡2, K)
È

+ E� [log p(xq, u, xc|z, fi, –, —, µ, �, K)]
+ E� [log p(z|a, K)] ,

(4.29)

and

Eh [log p(x, u, y, z, �|K)] =Eh

Ë
log p(xt, y, b, µ

t, ‡2|z, K)
È

+ Eh [log p(xq, u, xc, fi, –, —, µ, �|z, K)]
+ Eh [log p(z, a|K)] ,

(4.30)
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the VBE (4.29) and VBM (4.30) steps can be independently derived for latent variables and
parameters related to temporal evolution data xt and mixed data (xq, xc). Therefore, variational
posterior distributions of latent variables (xmiss

q , u, x
miss
c ) and parameters (fi, –, —, µ, �) related

to mixed data (xq, xc) are obtained as in Chapter 3 by deriving green expectations in (4.29) and
(4.30). As for (y, b, µ

t, ‡2), their variational posterior distribution are obtained as in subsection
4.2.2 by developing blue expectations in (4.29) and (4.30). As in subsection 4.2.2 or in Chapter 3,
the Dirichlet posterior distribution of a is deduced from the red expectation in (4.30). Eventually,
the variational distribution of labels z is obtained by marginalising over latent variables in the
green expectation and developing both blue and red expectations in (4.29) such that

⁄
E� [log p(x, u, y, z|�, K)] ˆx

miss
q ˆyˆuˆx

miss
c =

ÿ

jœJ

ÿ

kœK
”k

zj
log fljk

where log fljk is deduced from red, blue and green expectations in (4.29) as follows

’j œ J , ’k œ K, log fljk = E� [log ak] + log flt
jk + log flqc

jk . (4.31)

with

’j œ J , ’k œ K,

E� [log ak] = Â(Ÿ̃k) ≠ Â

Q

a
ÿ

kœK
Ÿ̃k

R

b ,

log flt
jk = log

ÿ

pœP
fly

jkp ,

log flqc
jk = log

ÿ

cmissœC
qmiss

j

fl
x
miss
cj

kcmiss .

The red term E� [log ak] is deduced from properties of the Dirichlet distribution, the blue term
log flt

jk is deduced from (4.22) and (4.23) in subsection 4.2.2 and the green term log flqc
jk has been

detailed in Chapter 3. Hence, z is distributed a posteriori according to a product of Categorical
distributions parametrized by r̃ = (r̃jk)(j,k)œJ ◊K given by

’j œ J , ’k œ K, r̃jk = fljkq

kœK
fljk

(4.32)

The lower bound on the log evidence is still required to master the VB inference and can be
also decomposed into terms related to temporal evolution data (blue terms), mixed data (green
terms) and labels z (red terms). This decomposition is obtained as follows

L(q|K) = Eh,� [log p(x, u, y, z, �|K)] ≠ Eh,�
Ë
log q(xmiss

q , x
miss
c , u, y, z, �|K)

È

where the free energy can be developed as

Eh,� [log p(x, u, y, z, �|K)] = Eh,� [log p(x, u, y, z|�, K)] + E�
Ë
log p(b, µ

t, ‡2|K)
È

+ E� [log p(a, fi, –, —, µ, �|K)]

and the entropy as

Eh,�
Ë
log q(xmiss

q , x
miss
c , u, y, z, �|K)

È
= Eh,�

Ë
log q(b, µ

t, ‡2|K)
È

+ Eh,� [log q(y|z, K)]

+ Eh,�
Ë
log q(xmiss

q , x
miss
c , u|z, K)

È
+ Eh,� [log q(z|K)]

+ Eh,� [log q(a, fi, –, —, µ, �|K)] .
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Blue terms, respectively green terms, have been previously detailed in subsection 4.2.2 , respec-
tively in Chapter 3. As for red terms, they are detailed below :

Eh,� [log p(x, u, y, z|t, �, K)] =
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È
log fljk ,

Eh,� [log q(z|K)] =
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È
log r̃jk .

4.2.4 Experiments

Two experiments are carried out to evaluate clustering performance with respect to a set of
synthetic data. In the first experiment, only temporal evolution data are taken into consideration
in the clustering procedure. Then, both temporal evolution data and quantitative data are
considered in the second one. For comparison, the spectral clustering [VL07] and the k-means
algorithm from [HW79] are also evaluated. First, characteristics of data, comparison algorithms
and evaluation metrics are detailed. Then, both experiments are described and performance are
shown to exhibit the e↵ectiveness of the proposed model.

Data, algorithms and metrics

Synthetic data are composed of temporal evolution data related to amplitudes which are dis-
tributed according to a piecewise parabolic relation and quantitative data related to continuous
radar features which are jointly distributed according to a multivariate normal distribution.
Temporal evolution data are generated by sampling a set of data from four piecewise parabolas
directed by

Ê =

Q

ca
≠1 ≠2 ≠3 ≠4
1 2 3 4
1 2 3 4

R

db .

For each piecewise parabola, p = 4 piecewises are obtained by dividing the time interval in p
equal subintervals and assigning to each piecewise the value of the parabola at the minimal time
of its related time subinterval. Quantitative data are generated by sampling a set of data from
four well-separated bivariate clusters with centers [0, 0]T , [1, 0]T ,[0, 1]T and [1, 1]T and identity
covariance matrices. Three synthetic datasets are generated with respect to a range of values of
‡2 and are linearly transformed by a min-max normalization to meet algorithms requirements.
These datasets are shown in Figures 4.14 and 4.15 where each radar emitter is represented by a
piecewise parabola (Figure 4.14) and a Gaussian cluster (Figure 4.15).

Except for the k-means algorithm, an initialisation is required for clustering algorithms that
are involved in these experiments. The similarity graph required for the spectral clustering is
obtained from a k-nearest neighbor graph as suggested in [VL07] where the number of neighbors
k is chosen as the product of the log number of observations and the number of clusters. As for
the proposed model, a supervised initialisation is retained due to its sensitivity to initialisation.

First, prior hyperparameters ›0
1 and ›0

2 are initialised such that the prior mean E[ 1
‡2 ] = ›0

1
›0

2
of

the variance parameter ‡2 is equal to the inverse of the determinant of the covariance matrix
of temporal evolution data points. This choice is motivated by the fact that the determinant
of the covariance matrix can be interpreted as the generalized variance that reflects the overall
spread of the data. Setting ›0

2 = 1, ›0
1 is initialised as the inverse of the generalized variance

of the sample of temporal evolution data. In addition, prior piecewise means µt
0 are initialised

from results of a k-means algorithm on temporal evolution data. Then, prior component means
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(a) Data, ‡2 = 0.0001
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(b) Data, ‡2 = 0.01
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(c) Data, ‡2 = 0.25
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(d) Ground-Truth, ‡2 = 0.0001
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(e) Ground-Truth, ‡2 = 0.01
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(f) Ground-Truth, ‡2 = 0.25

Figure 4.14: Synthetic piecewise parabolic data generated from di↵erent values of the variance parameter
‡2. Figures (a), (b) and (c) present unlabeled data where 4 piecewise parabolas are generated. Ground-
truth are visible on Figures (d), (e) and (f).
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(b) Ground-Truth

Figure 4.15: Synthetic quantitative data generated from 4 multivariate normal distributions. Figure (a)
shows unlabeled data and Figure (b) exhibits the ground-truth.
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Table 4.6: Initialisation of hyper-parameters values for clustering on piecewise parabolic data

·0 Ÿ0 ÷0 “0 p0 r0 q0 s0
1 0.5 100 1 1 1 1 1

Table 4.7: Adjusted Rand Index (ARI) and Silhouette coe�cient (S) values for the proposed model (PM),
the spectral clustering (SC) and the k-means algorithm (KM) during the first experiment on synthetic
data when only temporal evolution data are considered.

ARI S
PM SC KM Data PM SC KM

‡2 = 0.0001 0.73 0.73 0.35 0.30 0.35 0.35 0.64
‡2 = 0.01 0.76 0.84 0.34 0.26 0.31 0.33 0.64
‡2 = 0.25 0.54 0.26 0.27 0.10 0.14 0.53 0.56

µ0, respectively covariance matrices �0, are initialised from results of a k-means algorithm on
quantitative data, respectively from diagonal matrices whose diagonal elements are variances of
quantitative data. Other hyper-parameters are initialised as in Table 4.6.

Performance on synthetic data are evaluated through the Adjusted Rand Index (ARI) [HA85]
that compares estimated partitions of data with the ground-truth and the Silhouette Coe�cient
[KR09] which does not require the ground-truth and provides a higher score when clusters are
dense and well separated.

Experiments and results

The first experiment aims to determine the ability of each algorithm to restore the true clusters
according to an a priori number of clusters K when only temporal evolution data are taken
into consideration. According to datasets visualised in Figure 4.14, K is set to 4 for synthetic
data. Results of the first experiment on synthetic data are shown in Figure 4.16 and in Table
4.7. When ‡2 œ {0.0001, 0.01}, the proposed model and the spectral clustering have similar per-
formance in clustering synthetic data with an ARI equals to 0.73 while the k-means algorithm
has the lowest performance (ARI = 0.35) in creating convex and isotropic clusters that cannot
handle the piecewise parabolic structure of the generated data. This limitation is emphasized by
higher Silhouette Coe�cients of the k-means algorithm whereas the non-convexity of the data
is confirmed by the lower Silhouette Coe�cients of the ground-truth. Even if all algorithms
poorly perform when data are embedded in noise (‡2 = 0.25), the proposed algorithm estimates
clusters with a more parabolic shape than other algorithms which build more isotropic clusters
(Subfigures (f), (i) and (l) in Figure 4.7). Indeed the Silhouette Coe�cient of the proposed model
(S = 0.14) is closer to the Silhouette Coe�cient of the ground-truth (S = 0.10) than Silhouette
Coe�cients of spectral clustering (S = 0.53) and k-means (S = 0.56).

The second experiment aims to determine the ability of each algorithm to restore the true
clusters according to an a priori number of clusters K when all types of data are taken into
consideration. The number of clusters K is still set to 4 for synthetic data.. Results of the
second experiment on synthetic data are shown in Figure 4.17 and in Table 4.8. All algorithms
succeed in clustering synthetic data for ‡2 œ {0.0001, 0.01, 0.25} since the ground-truth partition
is recovered in Figure 4.17 with an ARI equals to 1 visible on Table 4.8. Adding quantitative
information enables algorithms to recover the ground-truth for any value of ‡2.
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(a) Ground-Truth, ‡2 = 0.0001
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(b) Ground-Truth, ‡2 = 0.01
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(c) Ground-Truth, ‡2 = 0.25
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(d) PM, ‡2 = 0.0001
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(e) PM, ‡2 = 0.01
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(f) PM, ‡2 = 0.25
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(g) SC, ‡2 = 0.0001
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(h) SC, ‡2 = 0.01
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(i) SC, ‡2 = 0.25
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(j) KM, ‡2 = 0.0001
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(k) KM, ‡2 = 0.01
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(l) KM, ‡2 = 0.25

Figure 4.16: Results on synthetic parabolic piecewise data when only temporal evolution data are con-
sidered. Figures (a), (b) and (c) show synthetic data generated with di↵erent values of the variance ‡2.
Figures (d), (e) and (f) show clustering results of the proposed model (PM). Figures (g), (h) and (i) show
clustering results of the spectral clustering (SC). Figures (j), (k) and (l) show clustering results of the
k-means algorithm (KM).
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(a) Ground-Truth, ‡2 = 0.0001
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(b) Ground-Truth, ‡2 = 0.01
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(c) Ground-Truth, ‡2 = 0.25
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(d) PM, ‡2 = 0.0001
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(e) PM, ‡2 = 0.01
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(f) PM, ‡2 = 0.25
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(g) SC, ‡2 = 0.0001
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(h) SC, ‡2 = 0.01
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(i) SC, ‡2 = 0.25
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(j) KM, ‡2 = 0.0001
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(k) KM, ‡2 = 0.01
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(l) KM, ‡2 = 0.25

Figure 4.17: Results on synthetic data when all types of data are considered. Figures (a), (b) and (c)
show synthetic data generated with di↵erent values of the variance ‡2. Figures (d), (e) and (f) show
clustering results of the proposed model (PM). Figures (g), (h) and (i) show clustering results of the
spectral clustering (SC). Figures (j), (k) and (l) show clustering results of the k-means algorithm (KM).
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Table 4.8: Adjusted Rand Index (ARI) and Silhouette coe�cient (S) values for the proposed model (PM),
the spectral clustering (SC) and the k-means algorithm (KM) during the second experiment on synthetic
data when all types of data are considered.

ARI S
PM SC KM Data PM SC KM

‡2 = 0.0001 1 1 1 0.76 0.76 0.76 0.76
‡2 = 0.01 1 1 1 0.75 0.75 0.75 0.75
‡2 = 0.25 0.64 1 1 0.73 0.45 0.73 0.73
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4.3 Parabolic and piecewise parabolic data

In this section, we consider that both scanning behaviours are observed among the K emitters.
Hence, parabolic and piecewise parabolic relations are observed in data and have to be taken
into account in the clustering procedure by developing a mixture model that can build K distinct
clusters formed by either parabolas or piecewise parabolas. Then, the proposed model is enhanced
with the mixture model designed for mixed data in Chapter 3 in order to improve clustering
performance. Finally, experiments on synthetic data are carried out to exhibit performance of
the proposed approach.

4.3.1 Model

Definitions of parabolic relation and piecewise parabolic have been previously introduced in
Sections 4.1 and 4.2. Now, data can be modeled either by a parabolic relation (4.1) or a piecewise
parabolic relation (4.17). Since the measurement noise ‘ is still Gaussian, amplitudes (xtj)jœJ
are normally distributed according to (4.3) and (4.18) such that

’j œ J , xtj |tj ≥

Y
_]

_[

N
1
xtj |�(tj)T

Ê, ‡2
2
if (xtj , tj) have a parabolic relation .

÷p œ P, N
1
xtj |µt

p, ‡2
2
if (xtj , tj) have a piecewise parabolic relation .

(4.33)
Figure 4.18 presents data where amplitudes xt and times of arrival t are distributed according
to a parabolic relation and a piecewise parabolic relation from two distinct emitters.
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Figure 4.18: Data generated from two distinct emitters presenting a parabolic scanning behaviour and
a piecewise parabolic scanning behaviour. Hence, amplitudes xt and times of arrival t are distributed
according to a parabolic relation and a piecewise parabolic relation defined with P = 4 piecewises.

Mixture model

Since each radar emitter has its own scanning behaviour, radar emitters can be distinguished
into two groups where K0 unique parabolas exist in the first group and K1 piecewise parabolas
exist in the second one such that K = K0 + K1. Therefore K0 from K regression parameters
Ê = (Êk)kœK and K1 from K sets of piecewises µ

t = (µt
kp)(p,k)œP◊K have to be estimated. Then,

each amplitude xtj belongs to one of these sets which is related to a specific emitter. In other
words, conditionally to its label zj , the amplitude xtj is distributed according to (4.33) such that
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the component distribution is defined by

’j œ J , xtj |tj , zj = k ≥

Y
_]

_[

N
1
xtj |�(tj)T

Êk, ‡2
2
if k œ K0 .

÷p œ P, N
1
xtj |µt

kp, ‡2
2
if k œ K1 .

(4.34)

In order to model its a�liations to one of the groups, a latent discrete variable wj is introduced
such that (4.34) becomes

’j œ J ,
xtj |tj , wj = 0, zj = k ≥ N

1
xtj |�(tj)T

Êk, ‡2
2

xtj |yj = p, wj = 1, zj = k ≥ N
1
xtj |µt

kp, ‡2
2 (4.35)

where wj œ {0, 1} follows, conditionally to zj = k, a categorical distribution with weights ck =
(ck0, ck1) and yj is the latent variable defined in (4.20) that follows, conditionally to zj = k
and wj = 1, a categorical distribution with weights bk = (bk1, . . . , bkP ). Therefore the initial
component distribution (4.34) can be reformulated as

p(xtj |tj , zj = k, �, K) = ck0N
1
xtj |�(tj)T

Êk, ‡2
2

+ ck1
ÿ

pœP
bkpN

1
xtj |µt

kp, ‡2
2

Recalling that p(zj = k) = ak where a = (ak)kœK are the weights related to component distribu-
tions, the proposed mixture model is a mixture of mixture models given by

’j œ J , p(xtj |tj , �) =
ÿ

kœK
ak

Q

ack0N
1
xtj |�(tj)T

Êk, ‡2
2

+ ck1
ÿ

pœP
bkpN

1
xtj |µt

kp, ‡2
2

R

b (4.36)

where � = (a, b, c, Ê, µ
t, ‡2) is the set of parameters.

Bayesian framework

As in previous chapters, a Bayesian framework is used to estimate parameters �. Assuming
datasets (xt, t) of i.i.d observations (xtj , tj)jœJ and independent labels z = (zj)jœJ , w = (wj)jœJ
and y = (yj)jœJ for clusters, scanning types and piecewises, the complete likelihood associated
to (4.36) is defined by

p(xt, h|�, K) =
Ÿ

jœJ

Ÿ

kœK

Q

caak

1
ck0N

1
xtj |�(tj)T

Êk, ‡2
22”0

wj

Q

ack1
Ÿ

pœP

1
bkpN

1
xtj |µt

kp, ‡2
22”p

yj

R

b
”1

wj

R

db

”k
zj

.

where h = (y, w, z) is the set of latent variables. Eventually, the prior distribution required for
� is chosen as

p(�|K) = p(a|K)p(b|K)p(c|K)p(Ê|‡2, K)p(µt|‡2, K)p(‡2)
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K

J

›0
2 ›0
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µt
0
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’0

ck

o0

bk

Ê0
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Êk

yj

xj

�(tj)

wj

zj a

Ÿ0

Figure 4.19: Graphical representation of the proposed mixture model handling parabolic and piecewise
parabolic data. The arrows represent conditional dependencies between the random variables. The K-plate
represents the K mixture components and the J-plate the independent identically distributed observations
(xtj , tj) decomposed into the amplitude xj and the polynomial transformation �(tj) and the indicator
variables (yj , wj , zj). Known quantities, respectively unknown quantities, are in blue, respectively in red.

where a, bk and ck follow a Dirichlet distribution, each Êk and µt
kp follow a Normal distribution

and ‡2 follows an Inverse Gamma distribution such that
Y
___________________]

___________________[

p(a|K) = D(a|Ÿ0) ,

p(b|K) =
Ÿ

kœK
D(bk|o0) ,

p(c|K) =
Ÿ

kœK
D(ck|’0) ,

p(Ê|‡2, K) =
Ÿ

kœK
N

1
Êk|Ê0, ‡2�0

2
,

p(µt|‡2, K) =
Ÿ

kœK

Ÿ

pœP
N

1
µt

kp|µt
0, ·≠1

0 ‡2
2

,

p(‡2) = IG(‡2|›0
1 , ›0

2) .

The resulting mixture model is shown on Figure 4.19.

4.3.2 Inference

The Variational Bayes (VB) procedure is derived to estimate parameters of the mixture model
defined in (4.36). Variational posterior distributions are obtained from the VB Expectation
(VBE) and VB Maximization (VBM) steps and a lower bound on the log evidence is defined to
master the convergence of the VB procedure.

Variational posterior distributions

As previously, a factorized posterior distribution q(h, �|K) = q(h|K)q(�|K) is chosen as an ap-
proximation of the intractable posterior joint distribution p(h, �|xt, K) such that latent variables
h and parameters � are a posteriori independent and

q(h|K) = q(y|w, z, K)q(w|z, K)q(z|K) ,

q(�|K) = q(a|K)q(b|K)q(c|K)q(Ê|‡2, K)q(µt|‡2, K)q(‡2) .
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According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

Y
__________________________________]

__________________________________[

q(y|w, z, K) =
Ÿ

jœJ

Ÿ

kœK
Cat(yj |r̃y

jk)”1
wj

”k
zj ,

q(w|z, K) =
Ÿ

jœJ

Ÿ

kœK
Cat(yj |r̃w

jk)”k
zj ,

q(z|K) =
Ÿ

jœJ
Cat(zj |r̃j) ,

q(a|K) = D(a|Ÿ̃) ,

q(b|K) =
Ÿ

kœK
D(bk|õk) ,

q(c|K) =
Ÿ

kœK
D(ck|’̃k) ,

q(Ê|‡2, K) =
Ÿ

kœK
N

1
Êk|Ễk, ‡2�̃k

2
,

q(µt|‡2, K) =
Ÿ

kœK

Ÿ

pœP
N

1
µt

kp|µ̃t
kp, ·̃≠1

kp ‡2
2

,

q(‡2) = IG(‡2|›̃1, ›̃2) .

Their respective parameters are estimated during the VBE and VBM steps.

VBE-step

The VBE-step consists in deriving the following expectation

E� [log p(xt, h|t, �, K)] =
ÿ

jœJ

ÿ

kœK
”k

zj

3
E� [log ak] + ”0

wj

3
E� [log ck0] ≠ 1

2

3
log 2fi + E�

Ë
log ‡2

È

+ E�

C
(xtj ≠ �(tj)T

Êk)2

‡2

D 44
+ ”1

wj

3
E� [log ck1] +

ÿ

pœP
”p

yj

3
E� [log bkp]

≠ 1
2

3
log 2fi + E�

Ë
log ‡2

È
+ E�

C
(xtj ≠ µt

kp)2

‡2

D 4444

=
ÿ

jœJ

ÿ

kœK
”k

zj

3
E� [log ak] + ”0

wj

3
E� [log ck0] ≠ 1

2

3
log 2fi + E�

Ë
log ‡2

È

+ E�

C
(xtj ≠ �(tj)T

Êk)2

‡2

D 44
+ ”1

wj

3
E� [log ck1] +

ÿ

pœP
”p

yj
log fly

jkp

44

(4.37)

where

log fly
jkp = E� [log bkp] ≠ 1

2

A

log 2fi + E�
Ë
log ‡2

È
+ E�

C
(xtj ≠ µt

kp)2

‡2

DB

. (4.38)

Hence, a categorical distribution for piecewise labels y is deduced from (4.37) conditionally to
indexes z and w such that

q(y|w, z, K) =
Ÿ

jœJ

Ÿ

kœK
Cat(yj |r̃y

jk)”1
wj

”k
zj
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and their parameters (r̃y
jk)jœJ are obtained from (4.38) as follows

’j œ J , ’k œ K, ’p œ P, r̃y
jkp =

fly
jkpq

pœP
fly

jkp

.

Marginalising over y in (4.37), the expectation (4.37) becomes

E� [log p(xt, w, z|t, �, K)] =
ÿ

jœJ

ÿ

kœK
”k

zj

1
E� [log ak] + ”0

wj
log flw

jk0 + ”1
wj

log flw
jk1

2
(4.39)

where

log flw
jk0 = E� [log ck0] ≠ 1

2

3
log 2fi + E�

Ë
log ‡2

È
+ E�

C
(xtj ≠ �(tj)T

Êk)2

‡2

D 4
,

log flw
jk1 = E� [log ck1] + log

ÿ

pœP
fly

jkp .
(4.40)

Then, a categorical distribution for scanning type labels w is deduced from (4.39) conditionally
to cluster labels z such that

q(w|z, K) =
Ÿ

jœJ

Ÿ

kœK
Cat(wj |r̃w

jk)”k
zj

and their parameters (r̃y
jk)jœJ are obtained from (4.40) as follows

’j œ J , ’k œ K, ’i œ {0, 1}, r̃w
jki =

flw
jkiq

iœ{0,1}
flw

jki

.

Eventually by marginalising over w in (4.39) a categorical distribution is obtained for cluster
labels z such that

q(z|K) =
Ÿ

jœJ
Cat(zj |r̃j)

with

’j œ J , ’k œ K, r̃jk = fljkq

kœK
fljk

.

where

fljk = E� [log ak] + log
ÿ

iœ{0,1}
flw

jki .
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VBM-step

The VBM-step consists in deriving the following expectation

Eh [log p(xt, h, �|t, K)] = Eh [log p(xt, h|t, �, K)] + log p(�|K)

=
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È 3
log ak + Eh

Ë
”0

wj

È 3
log ck0 ≠ 1

2

3
log 2fi + log ‡2

+ (xtj ≠ �(tj)T
Êk)2

‡2

44
+ Eh

Ë
”1

wj

È 3
log ck1 +

ÿ

pœP
Eh

Ë
”p

yj

È 3
E� [log bkp]

≠ 1
2

3
log 2fi + log ‡2 +

(xtj ≠ µt
kp)2

‡2

4444
+

ÿ

kœK
(Ÿ0

k ≠ 1) log ak + log cD(Ÿ0)

≠ 1
2

A

3(log 2fi + log ‡2) + log |�0| + (Êk ≠ Ê0)T �≠1
0

‡2 (Êk ≠ Ê0)
B

≠ (›0
1 + 1) log ‡2 ≠ ›0

2
‡2 + log cIG(›0

1 , ›0
2) +

ÿ

kœK

ÿ

pœP
(o0

kp ≠ 1) log bkp

≠ 1
2

3
log 2fi + log ‡2 + ·0

‡2 (µt
kp ≠ µt

0)2
4

+
ÿ

kœK

ÿ

iœ{0,1}
(’0

ki ≠ 1) log cki +
ÿ

kœK
log cD(o0

k) + log cD(’0
k) .

(4.41)

By factorizing terms related to a in (4.41), the following Dirichlet distribution is obtained

q(a|K) = D(a|Ÿ̃)

where
’k œ K, Ÿ̃k = Ÿ0

k +
ÿ

jœJ
Eh

Ë
”k

zj

È
.

Following the same reasoning, b and c are distributed according to a product of Dirichlet distri-
butions given by

q(b|K) =
Ÿ

kœK
D(bk|õk) ,

q(c|K) =
Ÿ

kœK
D(ck|’̃k) ,

where
’k œ K, ’p œ P, õkp = o0

kp +
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”1

wj

È
Eh

Ë
”p

yj

È

and
’k œ K, ’i œ {0, 1}, ’̃ki = ’0

ki +
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”i

wj

È
.

By aggregating terms related to each µt
kp and Êk in (4.41), a Normal distribution is obtained for

each µt
kp and Êk such that

q(µt|‡2, K) =
Ÿ

kœK

Ÿ

pœP
N

1
µt

kp|µ̃t
kp, ·̃≠1

kp ‡2
2

,

q(Ê|‡2, K) =
Ÿ

kœK
N

1
Êk|Ễk, ‡2�̃k

2
,
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where ’k œ K and ’p œ P

·̃kp =
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”1

wj

È
Eh

Ë
”p

yj

È
+ ·0 ,

µ̃t
kp =

q
jœJ Eh

Ë
”k

zj

È
Eh

Ë
”1

wj

È
Eh

Ë
”p

yj

È
xtj + ·0µt

0

·̃kp
,

�̃k =

Q

a
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”0

wj

È
�(tj)�(tj)T + �≠1

0

R

b
≠1

,

Ễk = �̃k

Q

a
ÿ

jœJ
Eh

Ë
”k

zj

È
Eh

Ë
”0

wj

È
xtj�(tj) + �≠1

0 Ê0

R

b .

Eventually, an Inverse Gamma distribution is deduced from (4.41) such that

q(‡2) = IG(‡2|›̃1, ›̃2)

where

›̃1 = ›0
1 + J

2 ,

›̃2 = ›0
2 + 1

2
ÿ

kœK

ÿ

jœJ

3 ÿ

pœP
Eh

Ë
”k

zj

È
Eh

Ë
”1

wj

È
Eh

Ë
”p

yj

È
x2

tj + ·0(µt
0)2 ≠ ·̃kp(µ̃t

kp)2 + Eh

Ë
”k

zj

È
Eh

Ë
”0

wj

È
x2

tj

+ Ê
T
0 �≠1

0 Ê0 ≠ Ễ
T
k �̃≠1

k Ễk

4
.

Lower bound

Recalling that the lower bound on the log evidence is given by

L(q|K) = Eh,� [log p(xt, h, �|t, K)] ≠ Eh,� [log q(h, �|K)]

where Eh,� [log p(xt, h, �|t, K)] is the free energy and Eh,� [log q(h, �|K)] is the entropy of the
approximate posterior q(h, �|K). The free energy can be developed as

Eh,� [log p(xt, h, �|t, K)] = Eh,� [log p(xt, h|t, �, K)] + E� [log p(�|K)]

where

Eh,� [log p(xt, h|t, �, K)] =
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È 3
E� [log ak] + Eh

Ë
”0

wj

È
log flw

jk0

+ Eh

Ë
”1

wj

È 3
E� [log ck1] +

ÿ

pœP
Eh

Ë
”p

yj

È
log fly

jkp

44
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and

E� [log p(�|K)] =
ÿ

kœK
(Ÿ0

k ≠ 1)E� [log ak] ≠ (›0
1 + 1)E�

Ë
log ‡2
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+ log cD(Ÿ0)
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iœ{0,1}
(’0

ki ≠ 1)E� [log cki]

+
ÿ

kœK
log cD(o0

k) + log cD(’0
k) .

As for the entropy term, the following decompositon is obtained

Eh,� [log q(h, �|K)] = Eh [log q(y, w, z|K)] + E� [log q(�|K)]
= Eh [log q(y|w, z, K)] + Eh [log q(w|z, K)]
+ Eh [log q(z|K)] + E� [log q(�|K)]

where

Eh [log q(y|w, z, K)] =
ÿ

jœJ

ÿ

kœK
Eh
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”k

zj

È
Eh
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”1
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2
1
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Ë
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2

+
ÿ

kœK
log cD(õk) + cD(’̃k) .

Expectations

Expectations developed in variational calculations are derived from properties of variational
posterior distributions and are obtained as follows. Categorical distribution properties lead to

’j œ J , ’k œ K, ’p œ P, ’i œ {0, 1} :
Eh

Ë
”p

yj

È
= r̃y

jkp ,

Eh

Ë
”i

wj

È
= r̃w

jki ,

Eh

Ë
”k

zj

È
= r̃jk .
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Dirichlet distribution properties lead to

’k œ K, ’p œ P, ’i œ {0, 1} :

E� [log ak] = Â(Ÿ̃k) ≠ Â

Q

a
ÿ

kœK
Ÿ̃k

R

b ,

E� [log bkp] = Â(õkp) ≠ Â

Q

a
ÿ

pœP
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R

b ,

E� [log cki] = Â(’̃ki) ≠ Â

Q

a
ÿ

iœ{0,1}
’̃ki

R

b .

where Â(·) is the digamma function. Normal distribution properties lead to

’k œ K, ’p œ P :
E�

Ë
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kp

È
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Ë
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ÊkÊ

T
k

È
= V� [Êk] + E� [Êk]E� [Êk]T

= ‡2�̃k + ỄkỄ
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and Inverse Gamma distribution properties lead to

E�

5 1
‡2

6
= ›̃1

›̃2
,

E�
Ë
log ‡2

È
= log ›̃2 ≠ Â(›̃1) .

Using all these properties, the following expectations can be calculated as

’j œ J , ’k œ K, ’p œ P :

E�

C
(xtj ≠ µt

kp)2

‡2

D

=
›̃1

1
xtj ≠ µ̃t

kp

22

›̃2
+ ·̃≠1

kp ,

E�

C
(xtj ≠ �(tj)T
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‡2

D

=
›̃1

1
xtj ≠ �(tj)T

Ễk

22

›̃2
+ Trace

1
�(tj)T �̃k�(tj)

2
.

4.3.3 Complete model

A model integrating parabolic data, piecewise parabolic data and mixed data is now presented.
By taking into consideration any types of available data, the resulting model can fit data better
and can estimate more accurate clusters. First, data formalism and assumptions are detailed.
Then, the resulting mixture model and its inference procedure are developed.
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Data and assumptions

In this part, data consist of J pulses gathering J amplitudes xt = (xtj)jœJ associated to J
times of arrival t = (tj)jœJ , J continuous features xq = (xqj)jœJ and J categorical features
xc = (xcj)jœJ from K distinct emitters. Let xj = (xqj , xcj , xtj) the jth observation vector of
mixed variables where

• xqj œ Rd is a vector of d continuous radar features such as the Radio Frequency, the Pulse
Width, the Azimuth or the Pulse Repetition Interval,

• xcj =
!
xcj0 , . . . , xcjq≠1

"
œ Cq is a vector of q categorical radar modulations such as intra-

pulse modulations or pulse-to-pulse modulations,

• xtj œ R is a continuous variable modeling the Amplitude.

For each pulse j, the temporal evolution variable xtj and mixed variables (xqj , xcj) are assumed
to be independent conditionally to each cluster k œ K

’j œ J , (xq, xc)|zj = k |= xt|zj = k . (4.42)

with zj the latent variable modeling the label of the jth observation vector xj = (xqj , xcj , xtj).
Moreover, the temporal evolution data (xtj , tj)jœJ are distributed according to either a parabolic
relation or a piecewise parabolic relation and the quantitative data (xqj)jœJ are normally dis-
tributed conditionally to categorical data (xcj)jœJ . Both quantitative and categorical data
(xqj , xcj)jœJ can be partially observed. Hence (xqj , xcj)jœJ are decomposed into observed fea-
tures (xobs

qj , x
obs
cj )jœJ and missing features (xmiss

qj , x
miss
cj )jœJ such that

’j œ J ,

xqj =
A

x
miss
qj

x
obs
qj

B

with (xmiss
qj , x

obs
qj ) œ Rdmiss

j ◊ Rdobs
j and dmiss

j + dobsj = d ,

xcj =
A

x
miss
cj

x
obs
cj

B

with (xmiss
cj , x

obs
cj ) œ Cqmiss

j
◊ Cqobsj

and qmiss
j + qobsj = q .

Mixture model

According to the independence assumption (4.42), the distribution of mixed data (Chapter 3) and
the parabolic and piecewise parabolic relations between temporal evolution data, the component
distribution results in

’j œ J , p(xqj , xcj , xtj |zj = k) = p(xqj , xcj |zj = k)p(xtj |zj = k)

where

’j œ J ,

p(xqj , xcj |zj = k) =
Ÿ

cœCq

1
fikcN

1
xqj |µkc, u≠1

j �k

22”c
xcj ,

p(xtj |tj , zj = k) =
1
ck0N

1
�(tj)T

Êk, ‡2
22”0

wj

Q

ack1
Ÿ

pœP

1
bkpN

1
xtj |µt

kp, ‡2
22”p

yj

R

b
”1

wj
(4.43)

with

• u = (uj)jœJ the scale latent variables handling outliers for quantitative data xq and dis-
tributed according to a Gamma distribution with shape and rate parameters (–, —) =
(–kc, —kc)(k,c)œK◊Cq

conditionally to categorical data xc and labels z = (zj)jœJ ,
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• (µ, �) = ((µkc)cœCq , �k)kœK the mean and the variance parameters of quantitative data
xq for each cluster,

• fi = (fik)kœK the weights of the multivariate Categorical distribution of categorical data
xc for each cluster,

• y = (yj)jœJ the latent variables indicating the pth piecewise temporal evolution data xt

belong to,

• w = (wj)jœJ the latent variables indicating if temporal evolution data xt are distributing
according to a parabolic relation or a piecewise parabolic relation,

• b = ((bkp)pœP)kœK the weights of the Categorical distribution of latent variables y,

• c = (ck0, ck1)kœK the weights of the Categorical distribution of latent variables w,

• µ
t = ((µt

kp)pœP)kœK the set of piecewises for temporal evolution data xt for each cluster,

• Ê = (Êk)kœK the regression parameters for temporal evolution data xt for each cluster,

• ‡2 the variance of the measurement noise related to temporal evolution data xt.

Recalling that p(zj = k) = ak where a = (ak)kœK are the weights related to component distribu-
tions, the mixture model is obtained from (4.43) such that ’j œ J ,

p(xj , uj , yj |tj , �) =
ÿ

kœK
ak

1
ck0N

1
xtj |�(tj)T

Êk, ‡2
22”0

wj

Q

ack1
Ÿ

pœP

1
bkpN

1
xtj |µt

kp, ‡2
22”p

yj

R

b
”1

wj

◊
Ÿ

cœCq

1
fikcN

1
xqj |µkc, u≠1

j �k

2
G(uj |–kc, —kc)

2”c
xcj

(4.44)

where � = (a, b, c, µ
t, Ê, ‡2, fi, –, —, µ, �) is the set of parameters.

Bayesian framework

As in previous chapters, a Bayesian framework is used to estimate parameters �. Assuming
datasets (x = (xq, xc, xt), t) of i.i.d observations (xj = (xqj , xcj , xtj), tj)jœJ , independent labels
z = (zj)jœJ , indicators (y, w) = (yj , wj)jœJ and scale latent variables u = (uj)jœJ , the complete
likelihood associated to (4.44) is defined by

p(x, y, u, z|t, �, K) =
Ÿ

jœJ

Ÿ

kœK

3
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1
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.

Eventually, the prior distribution required for � is chosen as

p(�|K) = p(a|K)p(b|K)p(c|K)p(µt|‡2, K)p(Ê|‡2, K)p(‡2)p(fi|K)p(–, —|K)p(µ, �|K)
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Figure 4.20: Graphical representation of the proposed model integrating temporal evolution data and
mixed-type data. The arrows represent conditional dependencies between the random variables. The
K-plate represents the K mixture components and the J-plate the independent identically distributed
observations (xqj , xcj , xtj , tj) decomposed into temporal evolution data (xtj , tj) and mixed-type data
(xqj , xcj), the scale variables uj and the indicator variables (yj , wj , zj). Known quantities, respectively
unknown quantities, are in blue, respectively in red.

where

Y
__________________________________]

__________________________________[
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Graphical representation of the proposed model is shown in Figure 4.20.
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Inference

As previously, a factorized posterior distribution
q(xmiss

q , u, x
miss
c , y, w, z, �|K) = q(xmiss

q , u, x
miss
c , y, w, z|K)q(�|K) is chosen as an approxima-

tion of the intractable posterior joint distribution p(xmiss
q , u, x

miss
c , y, w, z, �|xobs, K) such that

latent variables h = (xmiss
q , u, x

miss
c , y, w, z) and parameters � are a posteriori independent and

q(h|K) = q(xmiss
q |u, x

miss
c , z, K)q(u|xmiss

c , z, K)q(xmiss
c |z, K)q(y|w, z, K)q(w|z, K)q(z|K) ,

q(�|K) = q(a|K)q(b|K)q(c|K)q(µt|‡2, K)q(Ê|‡2, K)q(‡2)q(fi|K)q(–, —|K)q(µ, �|K) .

According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

Y
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D(bk|õk) ,

q(c|K) =
Ÿ

kœK
D(ck|’̃k) ,

q(µt|‡2, K) =
Ÿ

kœK

Ÿ

pœP
N

1
µt

kp|µ̃t
kp, ·̃≠1

kp ‡2
2

,

q(Ê|‡2, K) =
Ÿ

kœK
N

1
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(4.45)
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Their respective parameters are estimated during the VBE and VBM steps by developing expec-
tations E� [log p(x, u, y, w, z|t, �, K)] and Eh [log p(x, u, y, w, z, �|t, K)]. Noting that

E� [log p(x, u, y, w, z|t, �, K)] =E�
Ë
log p(xt, y, w|z, t, b, c, Ê, µ

t, ‡2, K)
È

+ E� [log p(xq, u, xc|z, fi, –, —, µ, �, K)]
+ E� [log p(z|a, K)] ,

(4.46)

and

Eh [log p(x, u, y, w, z, �|t, K)] =Eh

Ë
log p(xt, y, w, b, c, Ê, µ

t, ‡2|z, t, K)
È

+ Eh [log p(xq, u, xc, fi, –, —, µ, �|z, K)]
+ Eh [log p(z, a|K)] ,

(4.47)

the VBE (4.46) and VBM (4.47) steps can be independently derived for latent variables and
parameters related to temporal evolution data xt and mixed data (xq, xc). Therefore, variational
posterior distributions of latent variables (xmiss

q , u, x
miss
c ) and parameters (fi, –, —, µ, �) related

to mixed data (xq, xc) are obtained as in Chapter 3 by deriving green expectations in (4.46)
and (4.47). As for (y, w, b, c, Ê, µ

t, ‡2), their variational posterior distribution are obtained as
in subsection 4.3.2 by developing blue expectations in (4.46) and (4.47). As in subsection 4.3.2
or in Chapter 3, the Dirichlet posterior distribution of a is deduced from the red expectation
in (4.47). Eventually, the variational distribution of labels z is obtained by marginalising over
latent variables in the green expectation and developing both blue and red expectations in (4.46)
such that

⁄
E� [log p(x, u, y, w, z|t, �, K)] ˆx

miss
q ˆyˆwˆuˆx

miss
c =

ÿ

jœJ

ÿ

kœK
”k

zj
log fljk

where log fljk is deduced from red, blue and green expectations in (4.46) as follows

’j œ J , ’k œ K, log fljk = E� [log ak] + log flt
jk + log flqc

jk . (4.48)

with

’j œ J , ’k œ K,

E� [log ak] = Â(Ÿ̃k) ≠ Â

Q

a
ÿ

kœK
Ÿ̃k

R

b ,

log flt
jk = log

ÿ

pœP
flw

jkp ,

log flqc
jk = log

ÿ

cmissœC
qmiss

j

fl
x
miss
cj

kcmiss .

The red term E� [log ak] is deduced from properties of the Dirichlet distribution, the blue term
log flt

jk is deduced from (4.37) and (4.38) in subsection 4.3.2 and the green term log flqc
jk has been

detailed in Chapter 3. Hence, z is distributed a posteriori according to a product of Categorical
distributions parametrized by r̃ = (r̃jk)(j,k)œJ ◊K given by

’j œ J , ’k œ K, r̃jk = fljkq

kœK
fljk

(4.49)
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The lower bound on the log evidence is still required to master the VB inference and can be
also decomposed into terms related to temporal evolution data (blue terms), mixed data (green
terms) and labels z (red terms). This decomposition is obtained as follows

L(q|K) = Eh,� [log p(x, u, y, w, z, �|t, K)] ≠ Eh,�
Ë
log q(xmiss

q , x
miss
c , u, y, w, z, �|K)

È

where the free energy can be developed as

Eh,� [log p(x, u, y, w, z, �|t, K)] = Eh,� [log p(x, u, y, w, z|t, �, K)] + E�
Ë
log p(b, c, Ê, µ

t, ‡2|K)
È

+ E� [log p(a, fi, –, —, µ, �|K)]

and the entropy as

Eh,�
Ë
log q(xmiss

q , x
miss
c , u, y, w, z, �|K)

È
= Eh,�

Ë
log q(b, c, Ê, µ

t, ‡2|K)
È

+ Eh,� [log q(y, w|z, K)]

+ Eh,�
Ë
log q(xmiss

q , x
miss
c , u|z, K)

È
+ Eh,� [log q(z|K)]

+ Eh,� [log q(a, fi, –, —, µ, �|K)] .

Blue terms, respectively green terms, have been previously detailed in subsection 4.3.2 , respec-
tively in Chapter 3. As for red terms, they are detailed below :

Eh,� [log p(x, u, y, w, z|t, �, K)] =
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È
log fljk ,

Eh,� [log q(z|K)] =
ÿ

jœJ

ÿ

kœK
Eh

Ë
”k

zj

È
log r̃jk .

4.3.4 Experiments

Two experiments are carried out to evaluate clustering performance with respect to a set of
synthetic data. In the first experiment, only temporal evolution data are taken into consideration
in the clustering procedure. Then, both temporal evolution data and quantitative data are
considered in the second one. For comparison, the spectral clustering [VL07] and the k-means
algorithm from [HW79] are also evaluated. First, characteristics of data, comparison algorithms
and evaluation metrics are detailed. Then, both experiments are described and performance are
shown to exhibit the e↵ectiveness of the proposed model.

Data, algorithms and metrics

Synthetic data are composed of temporal evolution data related to amplitudes which are dis-
tributed according to either a parabolic relation or a piecewise parabolic relation and quantitative
data related to continuous radar features which are jointly distributed according to a multivariate
normal distribution. Temporal evolution data are generated by sampling a set of data from 2
parabolas and 2 piecewise parabolas directed by

Ê =

Q

ca
≠1 ≠2 ≠3 ≠4
1 2 3 4
1 2 3 4

R

db .

For each piecewise parabola, p = 4 piecewises are obtained by dividing the time interval in p
equal subintervals and assigning to each piecewise the value of the parabola at the minimal time
of its related time subinterval. Quantitative data are generated by sampling a set of data from
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(d) Ground-Truth, ‡2 = 0.0001
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(e) Ground-Truth, ‡2 = 0.01
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(f) Ground-Truth, ‡2 = 0.25

Figure 4.21: Synthetic parabolic and piecewise parabolic data generated from di↵erent values of the
variance parameter ‡2. Figures (a), (b) and (c) present unlabeled data where 4 parabolas are generated.
Ground-truth are visible on Figures (d), (e) and (f).

four well-separated bivariate clusters with centers [0, 0]T , [1, 0]T ,[0, 1]T and [1, 1]T and identity
covariance matrices. Three synthetic datasets are generated with respect to a range of values of
‡2 and are linearly transformed by a min-max normalization to meet algorithms requirements.
These datasets are shown in Figures 4.21 and 4.22.

Except for the k-means algorithm, an initialisation is required for clustering algorithms that
are involved in these experiments. The similarity graph required for the spectral clustering is
obtained from a k-nearest neighbor graph as suggested in [VL07] where the number of neighbors
k is chosen as the product of the log number of observations and the number of clusters. As for
the proposed model, a supervised initialisation is retained due to its sensitivity to initialisation.

First, prior hyperparameters ›0
1 and ›0

2 are initialised such that the prior mean E[ 1
‡2 ] = ›0

1
›0

2
of
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(b) Ground-Truth

Figure 4.22: Synthetic quantitative data generated from 4 multivariate normal distributions. Figure (a)
shows unlabeled data and Figure (b) exhibits the ground-truth.
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Table 4.9: Initialisation of hyper-parameters values for clustering on parabolic and piecewise parabolic
data

Ê0 �0 ·0 Ÿ0 ÷0 “0 p0 r0 q0 s0
(0, 0, 0)T I3 1 0.5 100 1 1 1 1 1

the variance parameter ‡2 is equal to the inverse of the determinant of the covariance matrix
of temporal evolution data points. This choice is motivated by the fact that the determinant
of the covariance matrix can be interpreted as the generalized variance that reflects the overall
spread of the data. Setting ›0

2 = 1, ›0
1 is initialised as the inverse of the generalized variance

of the sample of temporal evolution data. In addition, prior piecewise means µt
0 are initialised

from results of a k-means algorithm on temporal evolution data. Then, prior component means
µ0, respectively covariance matrices �0, are initialised from results of a k-means algorithm on
quantitative data, respectively from diagonal matrices whose diagonal elements are variances of
quantitative data. Other hyper-parameters are initialised as in Table 4.9.

Performance on synthetic data are evaluated through the Adjusted Rand Index (ARI) [HA85]
that compares estimated partitions of data with the ground-truth and the Silhouette Coe�cient
[KR09] which does not require the ground-truth and provides a higher score when clusters are
dense and well separated.

Experiments and results

The first experiment aims to determine the ability of each algorithm to restore the true clusters
according to an a priori number of clusters K when only temporal evolution data are taken into
consideration. According to datasets visualised in Figure 4.21, K is set to 4 for synthetic data.
Results of the first experiment on synthetic data are shown in Figure 4.23 and in Table 4.10.
When ‡2 œ {0.0001, 0.01}, the proposed model and the spectral clustering have similar perfor-
mance in clustering synthetic data with an ARI equals to 0.73 while the k-means algorithm has
the lowest performance (ARI = 0.35) in creating convex and isotropic clusters that cannot handle
the parabolic and piecewise parabolic structures of the generated data. This limitation is empha-
sized by higher Silhouette Coe�cients of the k-means algorithm whereas the non-convexity of the
data is confirmed by the lower Silhouette Coe�cients of the ground-truth. Even if all algorithms
poorly perform when data are embedded in noise (‡2 = 0.25), the proposed algorithm estimates
clusters with a more parabolic shape than other algorithms which build more isotropic clusters
(Subfigures (f), (i) and (l) in Figure 4.10). Indeed the Silhouette Coe�cient of the proposed
model (S = 0.14) is closer to the Silhouette Coe�cient of the ground-truth (S = 0.10) than
Silhouette Coe�cients of spectral clustering (S = 0.53) and k-means (S = 0.56).

The second experiment aims to determine the ability of each algorithm to restore the true
clusters according to an a priori number of clusters K when all types of data are taken into
consideration. The number of clusters K is still set to 4 for synthetic data.. Results of the
second experiment on synthetic data are shown in Figure 4.24 and in Table 4.11. All algorithms
succeed in clustering synthetic data for ‡2 œ {0.0001, 0.01, 0.25} since the ground-truth partition
is recovered in Figure 4.24 with an ARI equals to 1 visible on Table 4.11. Adding quantitative
information enables algorithms to recover the ground-truth for any value of ‡2.
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(a) Ground-Truth, ‡2 = 0.0001
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(b) Ground-Truth, ‡2 = 0.01
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(c) Ground-Truth, ‡2 = 0.25
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(d) PM, ‡2 = 0.0001
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(e) PM, ‡2 = 0.01
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(f) PM, ‡2 = 0.25
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(g) SC, ‡2 = 0.0001
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(h) SC, ‡2 = 0.01
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(i) SC, ‡2 = 0.25
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(j) KM, ‡2 = 0.0001
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(k) KM, ‡2 = 0.01
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(l) KM, ‡2 = 0.25

Figure 4.23: Results on synthetic data when only temporal evolution data are considered. Figures (a),
(b) and (c) show synthetic data generated with di↵erent values of the variance ‡2. Figures (d), (e) and
(f) show clustering results of the proposed model (PM). Figures (g), (h) and (i) show clustering results
of the spectral clustering (SC). Figures (j), (k) and (l) show clustering results of the k-means algorithm
(KM).
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(a) Ground-Truth, ‡2 = 0.0001
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(b) Ground-Truth, ‡2 = 0.01
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(c) Ground-Truth, ‡2 = 0.25
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(d) PM, ‡2 = 0.0001
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(e) PM, ‡2 = 0.01
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(f) PM, ‡2 = 0.25
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(g) SC, ‡2 = 0.0001
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(h) SC, ‡2 = 0.01
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(i) SC, ‡2 = 0.25
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(j) KM, ‡2 = 0.0001
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(k) KM, ‡2 = 0.01
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(l) KM, ‡2 = 0.25

Figure 4.24: Results on synthetic data when any types of data are considered. Figures (a), (b) and (c)
show synthetic data generated with di↵erent values of the variance ‡2. Figures (d), (e) and (f) show
clustering results of the proposed model (PM). Figures (g), (h) and (i) show clustering results of the
spectral clustering (SC). Figures (j), (k) and (l) show clustering results of the k-means algorithm (KM).
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Table 4.10: Adjusted Rand Index (ARI) and Silhouette coe�cient (S) values for the proposed model (PM),
the spectral clustering (SC) and the k-means algorithm (KM) during the first experiment on synthetic
data when only temporal evolution data are considered.

ARI S
PM SC KM Data PM SC KM

‡2 = 0.0001 0.73 0.73 0.35 0.30 0.35 0.35 0.64
‡2 = 0.01 0.76 0.84 0.34 0.26 0.31 0.33 0.64
‡2 = 0.25 0.54 0.26 0.27 0.10 0.14 0.53 0.56

Table 4.11: Adjusted Rand Index (ARI) and Silhouette coe�cient (S) values for the proposed model (PM),
the spectral clustering (SC) and the k-means algorithm (KM) during the first experiment on synthetic
data when only temporal evolution data are considered.

ARI S
PM SC KM Data PM SC KM

‡2 = 0.0001 0.73 0.73 0.35 0.30 0.35 0.35 0.64
‡2 = 0.01 0.76 0.84 0.34 0.26 0.31 0.33 0.64
‡2 = 0.25 0.54 0.26 0.27 0.10 0.14 0.53 0.56

4.4 Conclusion

In this chapter, two types of scanning behaviours have been presented. They can be observed
in data when amplitudes and times of arrival shared either a parabolic relation or a piecewise
parabolic relation. Since scanning behaviours fully characterise radar emitters, they can be taken
into consideration to cluster radar emitters. Hence, mixture models handling parabolic data and
piecewise parabolic data have been developed. Three approaches have been investigated : the first
one assumes that temporal evolution data are only distributed according to parabolic relations,
the second one mainly focuses on piecewise parabolic data and the last one handles both types of
relations. Moroever in each approach, the proposed mixture model is enhanced with the mixture
model designed for mixed data in Chapter 3 in order to improve clustering performance. Then,
parameter estimation has been derived from the Variational Bayesian inference and experiments
on real and synthetic data have exhibited the e↵ectiveness of these three approaches.
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Chapter 5

Conclusion and perspectives

Radar emitter identification is a crucial function of ESM systems since it prevents enemy forces
from surprise attacks by detecting enemy radar signals and it improves military databases by
analyzing unknown signals. Depending on radar emitter function and geopolitical context, radar
emitters can emit complex signals based on pulse-to-pulse modulation patterns. Radar signal
patterns can be decomposed into continuous features given by the continuous parameters of
radar pattern pulses and categorical features that represent modulations of pulse sequences.
Furthermore, radar signals are often partially observed in the electromagnetic environment due
to failures of deinterleaving techniques or sensors deficiencies. Therefore, a framework handling
any types of data has been developed in this work to perform classification and clustering of
radar emitters even in presence of outliers and missing data.

State-of-the-art algorithms have been reviewed in Chapter 1. They perform either classifi-
cation or clustering by learning boundaries that separate data into heterogeneous clusters or by
learning underlying structure of data to constitute clusters. However, neither of these algorithms
provides an internal framework that infers on missing data and copes with any degrees of super-
vision or any types of data. Therefore, an approach based on mixture models has been proposed.
Theoretical aspects of mixture models have been introduced by detailing ways of modeling and
estimating them for a generic type of data. Indeed, mixture models benefit from a flexible and
probabilistic framework to handle outliers and missing data by introducing a latent space where
each latent variable focuses on a specific constraint. However, the resulting model is not tractable
and model learning is processed through Variational Bayes Approximation. Eventually whatever
degree of supervision is required, the number of classes K and parameters can be estimated to
perform classification and clustering tasks. Nonetheless, the Variational Bayes Appromixation
tends to under-estimate uncertainties related to variational estimation. To this end, the Expecta-
tion propagation algorithm [Min01], which minimizes the reversed Kullback-Leibler divergence,
can be implemented in future works to improve estimation accuracy.

Chapter 2 has focused on classification and clustering of continuous data with a scale mixture
of Normal distributions accounting for missing data and outliers. Benefiting from Gaussian prop-
erties and the introduction of latent variables, the proposed model has shown its e�ciency for
inferring on missing data, performing classification and clustering tasks and selecting the correct
number of clusters in a dataset obtained from an experimental protocol generating realistic data.
A major contribution in this chapter is the incorporation of latent variables handling missing data
and provided with a variational posterior distribution that leads to a more e↵ective inference on
missing data. As pointed out in both experiments, the e↵ectiveness of the proposed model results
from the fact that standard missing data imputation methods can create outliers that deteriorate
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performance of classification and clustering algorithms whereas in the proposed model inference
on missing data and labels prediction are jointly estimated. Indeed, embedding the inference
procedure into the model framework allows properties of the model, such as outliers handling,
to counterbalance drawbacks of imputation methods such as outlier creation. As for outliers
handling, a full Bayesian approach has been adopted to avoid using the deterministic variable
‹k parametrizing the distribution of the latent variable u modeling outliers. This full Bayesian
treatment enables a less restrictive modeling of data since parameters of the latent variable u
are estimated into the Variational Bayes Approximation framework instead of being updated via
an optimization procedure. Despite these advantages, the proposed model has a higher compu-
tational cost than comparison algorithms especially during the model learning step. Hence, a
parallelization of the proposed model would be useful in order to reduce its computational burden.

As for Chapter 3, it has presented the general case where both continuous and categorical
data are used for classification and clustering tasks. This chapter has precisely focused on model-
ing dependencies between continuous and categorical data in order to infer on missing data while
performing classification and clustering. To this end, an approach based on the Location Mix-
ture Model has been investigated on by establishing conditional relations between continuous
and categorical data to tackle issues related to outliers and missing data. The developed ap-
proach has exhibited its e↵ectiveness for inferring on missing data, performing classification and
clustering tasks and selecting the correct number of clusters even for high proportions of missing
values. As pointed out in Chapter 2, the proposed approach enables joint estimation of missing
components and labels by embedding the inference procedure into the model framework. Indeed,
estimating the missing components conditionally to their labels proves to be more e↵ective than
standard imputation methods which do not take into consideration information related to the
data partition. Moreover, experiments have pointed out that using continuous and categorical
data can really improve classification and clustering performance than considering either only
continuous data or only categorical data. Indeed, higher performance on mixed data lie in a
more relevant separation of clusters obtained by taking advantage of the more complex structure
of mixed-type data. In this work, the Location Mixture Model assumption has been naturally
considered since radar pattern designers use to define pulse modulation sequences (categorical
radar data) before assigning pulse values (continuous radar data). However in the Electronic
Warfare context, continuous radar data are first measured by sensors before being processed to
deduce categorical data related to modulation patterns. Therefore, it would be interesting to
investigate the Underlying Response Variable approach [Eve88, EM90] to assess assumption on
conditioning categorical radar data by continuous radar data.

In Chapter 4, two types of scanning behaviours have been presented. They can be observed
in radar data when amplitudes and times of arrival of radar emitters share either a parabolic or
a piecewise parabolic relation. Since scanning behaviours fully characterise radar emitters, they
have been taken into consideration to cluster radar emitters. To this end, both types of relation
have been integrated into the mixture model framework by modeling the parabolic relation as
a Bayesian regression and the piecewise parabolic relation as a mixture of normal distributions.
As in Chapters 2 and 3, estimation of parameters has been processed through the Variational
Bayesian inference and experiments on real and synthetic data have exhibited the e↵ectiveness
of the proposed model. Indeed, the resulting model enables creation of non isotropic clusters
which better fit parabolic data than standard algorithms as the k-means algorithm. Nonethe-
less, when radar emitters share similar scanning behaviours, namely when amplitude parabolas
of radar emitters intersect during their scanning period, the proposed model cannot perfectly
identify radar emitters. Therefore, the proposed mixture model has been enhanced with the
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mixture model designed for mixed data in Chapter 3 in order to improve clustering performance.
Then, the complete model has managed to separate radar emitters in real operational cases by
taking advantage of the whole available information related to radar emitters. In this work,
only radar emitters presenting parabolic scanning behaviours have been clustered in real data
cases. Hence, piecewise parabolic scanning behaviours remain to be evaluated on real data cases
in future practical studies. Moreover, a radar signal pattern could be modeled as a Markovian
process through its temporal evolution, continuous and categorical features since it is mainly
defined as a pattern of pulses whose features share sequential and conditional relations. To this
end, a clustering method, that integrates a Markovian process while handling missing data and
outliers, could be developed in future works.

To conclude, the di↵erent mixture models developed in this work have focused on performing
classification and clustering on various types of real and simulated data while handling outliers
and missing values. These models have managed to reach high performance in classification
and clustering tasks even in presence of large proportions of missing data and have proposed an
e↵ective inference procedure to reconstruct missing features. These models have been assessed on
datasets gathering around 50 radar emitters according to the di↵erent experiments. Nonetheless,
real databases may contain thousands of radar emitters. Therefore, the proposed models have to
be tested on larger databases before being integrated into industrial and operational products.
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Extended abstract in french

Dans le contexte de la Guerre Electronique, l’identification des signaux radar est un atout ma-
jeur de la prise de décisions tactiques liées au théâtre d’opérations militaires. En fournissant
des informations sur la présence de menaces, la classification et le partitionnement des signaux
radar ont alors un rôle crucial assurant un choix adapté des contre-mesures dédiées à ces men-
aces et permettant la détection de signaux radar inconnus pour la mise à jour des bases de
données. Les systèmes de Mesures de Soutien Electronique enregistrent la plupart du temps
des mélanges de signaux radar provenant de di↵érents émetteurs présents dans l’environnement
électromagnétique. Le signal radar, décrit par un motif de modulations impulsionnelles, est
alors souvent partiellement observé du fait de mesures manquantes et aberrantes. Le processus
d’identification se fonde sur l’analyse statistique des paramètres mesurables du signal radar qui le
caractérisent tant quantitativement que qualitativement. De nombreuses approches mêlant des
techniques de fusion de données et d’apprentissage statistique ont été développées. Cependant,
ces algorithmes ne peuvent pas à la fois e↵ectuer la classification ainsi que le partionnement des
émetteurs radar et gérer les données manquantes. A cette fin, des méthodes de substitution
de données sont requises en amont de la classification et du partitionnement mais leur utilisa-
tion entraine l’apparition de nouvelles valeurs aberrantes. L’objectif principal de cette thèse est
alors de définir un modèle de classification et partitionnement intégrant la gestion des valeurs
aberrantes et manquantes présentes dans tout type de données. Une approche fondée sur les
modèles de mélange de lois de probabilité est proposée dans cette thèse. Les modèles de mélange
fournissent un formalisme mathématique flexible favorisant l’introduction de variables latentes
permettant la gestion des données aberrantes et la modélisation des données manquantes dans
les problèmes de classification et de partitionnement. L’apprentissage du modèle ainsi que la
classification et le partitionnement sont réalisés dans un cadre d’inférence bayésienne où une
méthode d’approximation variationnelle est introduite afin d’estimer la loi jointe a posteriori
des variables latentes et des paramètres. Des expériences sur diverses données montrent que la
méthode proposée fournit de meilleurs résultats que les algorithmes standards.

Le premier chapitre de cette thèse présente les di↵érents algorithmes de l’état de l’art en
matière de classification et de partitionnement. Tant par l’apprentissage de frontières au sein des
données que par l’apprentissage d’une structure sous-jacente des données, ces algorithmes répon-
dent aux problématiques de classification et partitionnement en créant des groupes hétérogènes
d’observations. Cependant, aucun de ces algorithmes ne peut à la fois intégrer des données con-
tinues et catégorielles, gérer les contraintes liées aux données manquantes et s’adapter à di↵érents
degrés de supervision. L’approche fondée sur les modèles de mélange de lois de probabilité est
alors introduite afin de palier ces divers problèmes. En e↵et, les modèles de mélange fournissent
un cadre probabiliste favorisant l’introduction de variables latentes permettant l’intégration de
données de tout type, la gestion de données aberrantes ainsi que la modélisation des données man-
quantes dans les problèmes de classification et de partitionnement. Néanmoins, cette approche
requiert l’utilisation d’une méthode d’approximation bayésienne appelée Variational Bayes et
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dont les aspects théoriques sont détaillés dans ce chapitre.

Le deuxième chapitre introduit un modèle de mélange de lois gaussiennes afin de prendre en
compte les données continues représentant les paramètres physiques des impulsions. Ce modèle
de mélange gaussien est ensuite mis à jour via l’introduction de variables latentes modélisant
les valeurs aberrantes et manquantes afin d’obtenir un modèle robuste à ces deux contraintes.
L’inférence est menée au travers de la méthode Variational Bayes permettant d’obtenir une ap-
proximation de la distribution jointe a posteriori des paramètres et des variables latentes du
modèle. Enfin, ce modèle est testé sur des données acquises à l’aide d’un protocole expérimen-
tal fournissant des données réalistes intégrant les contraintes des systèmes d’acquisition opéra-
tionnels.

Le troisième chapitre intègre les données categorielles au modèle précédent en conditionnant
les variables continues d’une observation par ses variables catégorielles. Le modèle obtenu est
alors un mélange de lois gaussiennes conditionnelles intégrant également des variables latentes
modélisant les valeurs manquantes propres aux observations catégorielles. L’inference est à nou-
veau faite par le biais de l’approximation variationelle bayésienne afin d’obtenir la distribution
jointe a posterior des paramètres et variables latentes du modèle. Les performances du modèle
proposé sont ensuite testées sur des données générées à partir d’une base de données réelles com-
portant 55 émetteurs radar avec des motifs impulsionnels variés.

Enfin, le dernier chapitre se focalise sur le caractère temporel des données impulsionnelles. En
e↵et, l’évolution temporelle des amplitudes liées aux impulsions d’un émetteur radar présente une
forme parabolique qui peut être exploitée afin d’améliorer la classification et le partionnement
des émetteurs radar. Dans ce but, cette relation parabolique est modélisée par le biais d’une
régression parabolique bayésienne intégrée au modèle de mélange. Les paramètres du modèle
sont alors estimés par le biais de la précédente méthode d’approximation variationnelle et le
modèle résultant est testé sur des données synthétiques et réelles provenant de di↵érents cas
opérationnels.

En conclusion, les di↵érents modèles développés dans cette thèse ont permis la classification
et le partionnement d’émetteurs radar caractérisés par des motifs impulsionnels présentant des
valeurs manquantes et aberrantes tant continues que catégorielles. Ces modèles ont démontré leur
e�cacité en réalisant de bonnes performances sur des bases de données synthétiques et réelles
même en présence d’une grande proportion de valeurs manquantes. Néanmoins, les bases de
données réelles peuvent contenir des milliers d’émetteurs radar et les modèles proposés doivent
alors être mis à l’épreuve sur de plus grandes bases de données avant d’être intégrés dans de
futurs produits industriels.
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Titre : Gestion des incertitudes en identification des modes radar

Mots clés : émetteurs radar ,classification,partitionnement,valeurs aberrantes,données manquantes,modèles
de mélange

Résumé : En Guerre Electronique, l’identification
des signaux radar est un atout majeur de la prise
de décisions tactiques liées au théâtre d’opérations
militaires. En fournissant des informations sur la
présence de menaces, la classification et le parti-
tionnement des signaux radar ont alors un rôle cru-
cial assurant un choix adapté des contre-mesures
dédiées à ces menaces et permettant la détection
de signaux radar inconnus pour la mise à jour
des bases de données. Les systèmes de Mesures
de Soutien Electronique enregistrent la plupart du
temps des mélanges de signaux radar provenant de
différents émetteurs présents dans l’environnement
électromagnétique. Le signal radar, décrit par un mo-
tif de modulations impulsionnelles, est alors souvent
partiellement observé du fait de mesures manquantes
et aberrantes. Le processus d’identification se fonde
sur l’analyse statistique des paramètres mesurables
du signal radar qui le caractérisent tant quantita-
tivement que qualitativement. De nombreuses ap-
proches mêlant des techniques de fusion de données
et d’apprentissage statistique ont été développées.
Cependant, ces algorithmes ne peuvent pas gérer

les données manquantes et des méthodes de sub-
stitution de données sont requises afin d’utiliser
ces derniers. L’objectif principal de cette thèse est
alors de définir un modèle de classification et par-
titionnement intégrant la gestion des valeurs aber-
rantes et manquantes présentes dans tout type de
données. Une approche fondée sur les modèles de
mélange de lois de probabilité est proposée dans
cette thèse. Les modèles de mélange fournissent
un formalisme mathématique flexible favorisant l’in-
troduction de variables latentes permettant la ges-
tion des données aberrantes et la modélisation des
données manquantes dans les problèmes de clas-
sification et de partitionnement. L’apprentissage du
modèle ainsi que la classification et le partitionnement
sont réalisés dans un cadre d’inférence bayésienne
où une méthode d’approximation variationnelle est in-
troduite afin d’estimer la loi jointe a posteriori des va-
riables latentes et des paramètres. Des expériences
sur diverses données montrent que la méthode pro-
posée fournit de meilleurs résultats que les algo-
rithmes standards.

Title : Uncertainty in radar emitter classification and clustering

Keywords : radar emitter,classification,clustering,outliers,missing data,mixture models

Abstract : In Electronic Warfare, radar signals iden-
tification is a supreme asset for decision making in
military tactical situations. By providing information
about the presence of threats, classification and clus-
tering of radar signals have a significant role ensu-
ring that countermeasures against enemies are well-
chosen and enabling detection of unknown radar si-
gnals to update databases. Most of the time, Elec-
tronic Support Measures systems receive mixtures
of signals from different radar emitters in the electro-
magnetic environment. Hence a radar signal, descri-
bed by a pulse-to-pulse modulation pattern, is often
partially observed due to missing measurements and
measurement errors. The identification process relies
on statistical analysis of basic measurable parame-
ters of a radar signal which constitute both quanti-
tative and qualitative data. Many general and prac-
tical approaches based on data fusion and machine
learning have been developed and traditionally pro-
ceed to feature extraction, dimensionality reduction
and classification or clustering. However, these algo-

rithms can not handle missing data and imputation
methods are required to generate data to use them.
Hence, the main objective of this work is to define a
classification/clustering framework that handles both
outliers and missing values for any types of data.
Here, an approach based on mixture models is de-
veloped since mixture models provide a mathemati-
cally based, flexible and meaningful framework for the
wide variety of classification and clustering require-
ments. The proposed approach focuses on the intro-
duction of latent variables that give us the possibility
to handle sensitivity of the model to outliers and to
allow a less restrictive modelling of missing data. A
Bayesian treatment is adopted for model learning, su-
pervised classification and clustering and inference is
processed through a variational Bayesian approxima-
tion since the joint posterior distribution of latent va-
riables and parameters is untractable. Some numeri-
cal experiments on synthetic and real data show that
the proposed method provides more accurate results
than standard algorithms.
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