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List of Abbreviations

In this thesis, several abbreviations are used and they are summarized here in order to facilitate
reading and examination.

The abbreviations related to operational context are :

e EW : Electronic Warfare
e ESM : Electronic Support Measures
e ELINT : Electronic Intelligence

e SNR : Signal-to-Noise Ratio

The abbreviations related to state-of-the-art algorithms are :
e DA : Discriminant Analysis
e DBSCAN : Density-Based Spatial Clustering of Applications with Noise
e GMM : Gaussian Mixture Model
e KM : k-means algorithm
e KNN or k-nn : k-nearest neighbors algorithm
e LDA : Linear Discriminant Analysis
e NN : Neural Networks
e RAF : Random Forests
e SC : Spectral Clustering
e SVM : Support Vector Machines
The abbreviations related to radar signal pattern are :
e PDW : Pulse Description Word
e TOA : Time-Of-Arrival

RF : Radio Frequency

A : Amplitude

PRI : Pulse Repetition Interval
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e PW : Pulse Width
The abbreviations related to Bayesian theory are :
e MAP : Maximum A Posteriori
e VB : Variational Bayes
e VBA : Variational Bayes Approximation
e VBE : Variational Bayes Expectation

e VBM : Variational Bayes Maximization
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Introduction

In Electronic Warfare (EW) [Sch86], radar signal identification is a crucial component of Elec-
tronic Support Measures (ESM) systems [Rog85]. ESM functions enable surveillance of enemy
forces such as movements of enemy planes and warning of imminent attack such as launches of
rockets. By providing information about the presence of threats, classification of radar signal
has a self protection role ensuring that countermeasures against enemies are well-chosen by ESM
systems [Wil82]. Furthermore, Electronic Intelligence (ELINT) functions focus on the intercep-
tion and the analysis of unknown radar signals to update and improve EW databases. Then
clustering of radar signals can play a significant role by detecting unknown signal waveforms
and supporting ESM functions. Through its classification and clustering aspects, identification
of radar signals is a supreme asset for decision making in military tactical situations. Depend-
ing on the information available in databases, the identification process can be distinguished
into Source Emission Identification, also known as Radar Emitter Classification (REC), which
concerns the classification of types of emission sources and Specific Emitter Identification (SEI)
which focuses on recognition of copies of electromagnetic emission sources which are of the same
type [Dud16]. REC practically relies on statistical analysis of radar signal patterns from distinct
emitters [SL02, HZWT09, PJR13, YWY 13, LIJILC16, ZWCZ16, Chel7, Sunl8] whereas SEI
alms to extract distinctive features in the process of signal processing to identify even a single
copy of an emission source [GBBT03, KO04, DK13, CLH14, Shil4, DK15b, Dud16]. Generally,
the main difficulties for SEI result from the lack of a precise and detailed description of a source
emission model in databases [DK15a]. Indeed, information required for SEI can be exhaustive
and are not always available in databases provided by operational entities. Therefore, this work
only focuses on REC to meet operational constraints.

A radar signal [Ric05] is conceived as a pulse-to-pulse modulation pattern in order to per-
form a specific role such as surveillance, missile guidance or short range tracking. The ability
of a radar to perform such a role relies on its capacity to measure range and velocity of its
targets. As a pulse-to-pulse modulation pattern, a radar signal pattern is decomposed into a
relevant arrangement of sequences of pulses where each pulse is defined by continuous features
and each sequence is characterized by categorical features. The continuous features of a pulse
mainly refer to its time of interception, its radio frequency, its duration and its amplitude whereas
the categorical features of a sequence refer to modulations of the continuous features. Then, a
radar signal pattern is chosen as the combination of continuous and categorical features that
minimizes ambiguities related to range measurements and velocity measurements. Depending
on its expected function and the military context, radar signal patterns can be either simple or
extremely complex. As an example, Multi-Function Radars (MFR) emitters [But98, BWW15],
widely used in surveillance and tracking, are able to adapt their emitted patterns to a specific
tactical situation they are operating in. Indeed, their emitted waveforms are designed to fit
with characteristics of intercepted targets. Therefore in presence of multiple targets, their pat-
terns can become extremely complex and provide to ESM systems a real challenge in terms of



identification. As for the military context, it deeply has an effect on the choice of patterns for
radar emitters. Indeed, the continuous and categorical features related to radar emitter patterns
mostly remain unchanged in a peace context and radar emitters can be mainly identified through
their continuous features such as their pulse frequencies and pulse durations which refer to their
spectral signature. On the contrary in a war context, radar emitters likely change their spectral
signature to avoid being identified by enemy ESM systems which listed their continuous features
during the previous peace context. Nonetheless, some categorical and continuous features remain
identical since they characterize the way radar emitters operate in the electromagnetic environ-
ment. As an example, temporal evolution of radar emitter amplitudes completely characterizes
scanning behaviours of radar emitters regardless of the military context.

Most of the time, ESM systems receive mixtures of signals from different radar emitters in
the electromagnetic environment. Before identifying radar emitters, ESM systems have to iso-
late each radar signal from the received mixtures of radar signals. To this end, deinterleaving
methods [Mar89, MP92, MK94] are deployed as source separation algorithms to transform the
homogeneous signal into a set of heterogeneous signals. Nonetheless, deinterleaving techniques
cannot always manage to group all the pulses that belong to a radar emitter which results in a
partial observation of its pattern. Furthermore, EW sensor deficiency and low Signal-to-Noise
Ratio (SNR) values in sensors can also cause measurement errors [KP16] that disable detection
of modulations related to radar signal patterns. When measurements are known to be erroneous,
considering them as missing measurements can also be a more reliable approach than using them
or discarding them. These material constraints introduce outliers in continuous radar data and
missing components in both continuous and categorical radar data. At last, military databases
are filled by human beings and may also be imperfect by gathering outliers and missing data due
to human errors.

In statistical words, a radar signal pattern is described by continuous and categorical data
which can be partially missing and erroneous. Depending on the complexity of radar signal pat-
terns, the classification and clustering procedure should take into consideration any type of data
and model a dependence structure to handle outliers and missing data. Classification and clus-
tering problems are closely connected with pattern recognition [Bis06] where many general algo-
rithms [HW79, EKS196, Bre01] have been developed and used in various fields [SEKX98, Jail0].
However, most algorithms cannot handle missing data and imputation methods [TCS*01] are
required to generate data to use them. Hence, the main objective of this work is to define a
classification and clustering framework that handles both outliers and missing values. Here, an
approach based on mixture models is preferred since mixture models provide a mathematically
based, flexible and meaningful framework for the wide variety of classification and clustering
requirements [BCG00]. More precisely, a scale mixture of Normal distributions [AM74] is up-
dated to handle outliers and missing data issues for any types of data. Exact inference in that
Bayesian approach is unfortunately intractable, therefore a Variational Bayesian (VB) inference
[WMR96] is used to find approximate posterior distributions of parameters and to provide a
lower bound on the model log evidence used as a criterion for selecting the number of clusters.

Outline of the thesis is as follows. In Chapter 1, classification and clustering methods from
state of the art are first presented according to their degree of supervision. After detailing super-
vised and unsupervised learning methods dedicated to classification and clustering, the selected
approach is introduced through its theoretical aspects by defining mixture models as a flexible
probabilistic framework that can handle both classification and clustering applications. However,
estimation of parameters can turn out to be a cumbersome task and an approximation method



is proposed to overcome this issue. Once theoretical aspects of mixture models have been pre-
sented, mixture models for continuous data are studied in Chapter 2 where generalizations of
standard Gaussian mixture models are developed to handle outliers and missing data issues. The
resulting model is performed on realistic simulated data obtained through an experimental pro-
tocol reproducing faults from real acquisition systems. Chapter 3 is dedicated to the extension
of the model for mixed data composed of continuous and categorical features. After presenting
categorical features of radar emitters by defining different types of modulations, a dependence
structure between mixed data is investigated in order to develop a mixture model that handles
both continuous and categorical data even in presence of outliers and missing values. The result-
ing model is performed on simulated data issued from a real-world database gathering various
radar emitter patterns. Then Chapter 4 focuses on integration of temporal evolution radar data
into the mixture model framework to take into consideration temporal evolution of radar emitter
amplitudes that significantly reveal radar emitter scanning behaviours. To this end, the temporal
evolution of radar emitter amplitudes is assumed to be either parabolic or piecewise parabolic
and resulting models are evaluated on real operational cases to exhibit their performance. At
last, an overall conclusion and work perspectives are given to conclude this thesis.






Chapter 1

State of the art and selected
approach

Classification is used mostly as a supervised learning method to achieve a predictive goal
[VP98] by extrinsically adding unlabelled groups of data to reference classes. As for clustering,
it is used for unsupervised learning to achieve a descriptive goal by discovering new groups of
interest in data via an intrinsic assessment [RMO5]. The main goal of this work is to develop a
framework that handles both classification and clustering for mixed-type data gathering outliers
and missing values. Then in this chapter, general state-of-the-art algorithms are first detailed in
Section 1.1 before introducing the selected approach based on mixture models in Section 1.2.
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CHAPTER 1. STATE OF THE ART AND SELECTED APPROACH

1.1 State of the art

According to classification and clustering methods, three families of methods can be distin-
guished. Partitioning methods focus on relocating observations by moving them from one cluster
to another conditionally to an initial partitioning. These partitioned-based methods generally
require an a priori number of clusters set by the user. Then, density-based methods assume
that each cluster is distributed according to a specific probability distribution [BR93] involving
that the resulting marginal distribution of the data follows a mixture of distributions related to
clusters. These density-based methods are designed for discovering clusters of arbitrary shape
and for identifying their distribution parameters. At last, model-based methods aim to optimize
the fit between data and chosen mathematical models by finding characteristic descriptions for
each class or cluster [RM05]. Classification and clustering methods from these three families are
successively presented in subsections 1.1.1 and 1.1.2.

1.1.1 Supervised learning

General state-of-the-art classification algorithms are introduced in this subsection.

Discriminant Analysis

Discriminant Analysis (DA) is a generalization of Fisher’s linear discriminant [Fis36], a method
used to find a linear combination of features that characterizes or separates two or more classes
of objects or events. The resulting combination may be used as a linear classifier, or, more com-
monly, for dimensionality reduction before later classification. DA works when the measurements
made on independent variables for each observation are continuous quantities. DA is used on
labelled data to learn model parameters and then DA can perform classification. Moreover, the
analysis is quite sensitive to outliers and the size of the smallest group must be larger than the
number of predictor variables. In the case where there are more than two classes, the analysis
used in the derivation of the Fisher discriminant can be extended to find a subspace which ap-
pears to contain all of the class variability.

DA approaches the problem by assuming that the conditional probability density functions
p(x|ly = 0) and p(x|y = 1) are both normally distributed with mean and covariance parameters
(rg, X0) and (pq,31). Under this assumption, a classification rule is built by computing the log
of likelihoods ratio and testing if it is higher than some threshold e. The obtained classification
rule is given by

(x — o) S e — p) + g — (2 — py) ' e —py) —In 2y > e (1.1)

The resulting classifier is referred to Quadratic Discriminant Analysis (QDA) since the classifi-
cation rule (1.1) is quadratic according to data @. The classification rule (1.1) can be linearly
relaxed by assuming homoscedasticity (3o = ¥1) and becomes

a-x+b>0 (1.2)
with

a= (IJ‘l - lJ’O)Tzal )
L re—t Ty—1
bzi( 020 Mo — M1 X H1—€> .
In that case, the resulting classifier is referred to Linear Discriminant Analysis (LDA). Perfor-

mance of LDA and QDA classifiers are illustrated on Figure 1.1.
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Figure 1.1: Linear Discriminant Analysis and Quadratic Discriminant Analysis performed on Iris dataset
[Lic13]

Logistic regression

Logistic regression [Cox58| is a powerful statistical way of modeling a binomial outcome with
one or more explanatory variables. It measures the relationship between the categorical depen-
dent variable and one or more independent variables by estimating probabilities using a logistic
function, which is the cumulative logistic distribution. The predictive variables can be from any
type ranges from continuous to categorical. Logistic regression can be extended to multinomial
logistic regression [J.88] which is used to predict the probabilities of the different possible out-
comes of a categorically distributed dependent variable, given a set of independent variables.

Mathematically, the outcome variable y is modeled conditionally to the explanatory variable
x as follows

(1.3)

B 1ifB-x+e>0
v= 0 otherwise .

where € follows a standard logistic distribution. The classification rule (1.3) can be interpreted
in probabilistic way such that

1
ply =0lz) = 5
Yy~ B (1~4)
(y=1lz) = ——F57
b 1+e Bz

k-nearest neighbors

k-nearest neighbors (k-NN) algorithm belongs to the family of instance-based learning algorithms
[AKA91] which are non-parametric general algorithms that classify a new unlabelled observation
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Figure 1.2: Impact of the choice of the number of neighbors on the classification rule

according to similar labelled observations in the training set. The k-NN algorithm [Alt92] par-
ticularly assigns a new observation to the class of training observations gathering its k-nearest
neighbors. The k-nearest neighbors of the unlabelled observation result from a simple search
procedure based on selection of the k nearest training samples measured from a given distance
metric. The distance metric is generally designed to meet the data structure in order to create
the most relevant neighbors according to the type of data. The k-NN algorithm can induce com-
plex classifiers from a relatively small training set and can be really effective for large training
datasets [Rok10]. Nevertheless, it can be sensitive to outliers and can not handle multimodal
classes. Furthermore, it requires a value for k and can have a high computation cost since for a
new observation its distance to all training samples has to be computed. In the case of mixed-type
data, finding an appropriate and meaningful distance can be complex. The k-NN algorithm is
detailed in procedure 1.1 and Figure 1.2 shows the impact of the choice of k on the classification
rule. Indeed the choice of a larger k involves a smoother classification rule leading to a simpler
modeling of data.

Procedure 1.1 k-NN algorithm

Input: Training data (x,))_; with labels z = (21,...,2y), number of neighbors k, a distance

measure d and unlabelled observation x*
Output: Label z* of the observation x*
forn=1to N do
Compute distance d(x,,, z*)
end for
Compute set I containing labels z, for the k smallest distances d(x,,, x*)
Compute z* = mode(I) to find the majority label in I
return label z*

Decision trees and random forests

Decision trees [Brel7] are decision support tools that use tree-like graphs or models of decisions
and their possible consequences, including chance-event outcomes, resource costs, and utility.
Each internal node represents a test on an attribute, each branch represents the outcome of the
test, and each leaf node represents a class label. The paths from root to leaf represent classifi-
cation rules. Decision trees are simple to understand and interpret since they can be generated
from experts’ rules based on mixed data. However, they are not robust to outliers since a small
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Figure 1.3: A classification rule differently learned by four standard algorithms

change in the data can lead to a large change in the structure of the optimal decision tree. This
can be remedied by replacing a single decision tree with a random forest of decision trees, but a
random forest is not as easy to interpret as a single decision tree.

Random Forests [Bre01] are an ensemble learning method [Rok10] for classification and regres-
sion that operates by constructing a multitude of decision trees at training time and outputting
the mode of the classes (classification) or mean prediction (regression) of the individual trees.
Random forests use boosting and bagging techniques [Sch90, Fre95, FS97] in order to correct
for decision trees’ habit of overfitting to their training set and having high variances [FHT*00].
Indeed as an aggregation of multiple decision trees randomly trained on different feature sets
of the training dataset [Ho98], random forests reduce the correlation between trees by avoiding
over-focusing on features that appear highly significant in the training set but reveal less rele-
vant in the test set. The ability of random forests to learn smoother decision rules than classical
decision trees is visible on Figure 1.3. As predictive tools, random forests can not provide a
description of features’ relationships in datasets leading to infer on missing data.

Support vector machines

Support vector machines (SVM) [CV95] are supervised learning models with associated learning
algorithms that analyze data used for classification and regression analysis. Given a set of
binary examples, the SVM method maps that set into a transformed feature space [BGV92]
where data are linearly separable and generates an hyperplane to separate those points into two
distinct groups. SVM are scalable algorithms and can perform classification on large and sparse
datasets. However, SVM methods focus on maximizing the margin between the two groups, they
can not provide information about clusters’ structure used to infer on missing data. An example
of a decision rule learned by a SVM algorithm is presented on Figure 1.3.
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Neural networks

Neural Networks (NN) [MP43] were popularized by [Rosb8] with networks called perceptrons
making predictions based on a linear predictor function combining a set of weights with fea-
ture vectors. Perceptrons’ limitations had been stated by [MP69] before [RHWS85] introduced
internal representation that enables a non linear mapping of data and ensures a better repre-
sentation of the problem by adding hidden units in neural networks architecture. Thanks to
the back-propagation procedure which distributes pattern recognition errors throughout the net-
work, [RHWS8S] generalized the learning rule for multilayer networks [HSW89] demonstrated
that standard multilayer feed-forward networks are capable of approximating any measurable
function f to any desired degree of accuracy. Indeed, feed-forward networks define a mapping
y = g(x;0) and learn values of parameter 6 in order to find the best function approximation.
Their architectures are straightforward in a sense that information flows through the function
being evaluated from zx, through the intermediate computations used to define g, and finally to
the output y.

Mathematically, a feed-forward neural network with K layers is a function from a subset
Xo € R" to a subset Xg € RP recursively defined by :

X =W Xpo1 + i), k€ {1,..., K} (1.5)

where W), and by, are the k" layer weights and bias. X and X are the input and output
layers whereas (Xx)o.( K1) are hidden layers. The mapping g results in the composition of the
(g9x)1:x called activation functions.

Therefore, NN show strong results in classification [LBBH98, KSH12] since they can extract
features and learn classification rules (Figure 1.3) for a given architecture. However, NN are not
descriptive models and can not provide explainable and relevant information about structure of
classes.

1.1.2 Unsupervised learning

General state-of-the-art clustering algorithms are introduced in this subsection.

k-means

k-means algorithm [HWT79] partitions observations into K clusters in which each observation
belongs to the cluster with the nearest mean defined as the cluster whose mean has the least
squared Euclidean distance (Figure 1.4). The k-means algorithm is described in procedure 1.2.
The k-means algorithm is easily scalable and can be applied to large datasets without extra com-
putational costs. Nonetheless, a key limitation is its cluster model which is based on isotropic
clusters that are separable so that the mean converges towards the cluster center. The clusters
are expected to be of similar size, so that the assignment to the nearest cluster center is the
correct assignment. In addition, this algorithm is sensitive to noisy data and outliers and is
limited to numeric attributes since it uses euclidean distance as metric. At last, it requires a
value for the number of clusters k which is not trivial when no prior knowledge is available

The k-prototypes algorithm was presented by [Hua98] to handle categorical data by defining
the k-modes algorithm which uses a simple matching dissimilarity measure to deal with cate-
gorical objects, replaces the means of clusters with modes, and uses a frequency-based method
to update modes in the clustering process to minimise the clustering cost function. Then, the
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k-prototypes algorithm results from integrating the k-means and k-modes algorithms to enable
clustering of mixed-type data.

As for outliers and noise handling, [KR87] proposed the k-medoids method which differs from
the k-means mainly in its representation of the different clusters. Each cluster is represented by
the most centric object in the cluster, rather than by the implicit mean that may not belong
to the cluster. Hence, the k-medoids method is more robust than the k-means algorithm in the
presence of noise and outliers since a medoid is less influenced by outliers or other extreme values
than a mean.

At last, the kernel k-means method was introduced as an extension of the k-means method by
mapping the input data points non-linearly into a higher-dimensional feature space via a kernel
function [DGKO04]. The kernel k-means method enables discovering clusters with no arbitrary
shape by relaxing the assumption on isotropic clusters.

Both presented updates of the k-means algorithm are more complex in nature and have
a larger time complexity than the standard k-means algorithm. Moreover both methods still
require the user to specify the a priori number of clusters K.

Procedure 1.2 K-means algorithm

Input: Unlabeled dataset & € R™*N and number of clusters K
Output: Partition of z and cluster centroids gy, o, . .., pye € R?
Initialise cluster centroids pq, tto, .. ., ptx randomly
repeat
Assign each data point to its closest cluster centroid :

Vne{l,...,N},z, :argmkinHwn—ukH

Update each cluster center by computing the mean of all points assigned to it :

N
I
Vk € (1,... K}, py = o=t L=k o
n=1 Hzn:k‘
until convergence

return labels z and cluster centroids gy, to, ..., g

Density-based spatial clustering of applications with noise

Density-based spatial clustering of applications with noise (DBSCAN) [EKST96] is a density-
based clustering algorithm which groups together points with many nearby neighbors and marks
as outliers points that lie alone in low-density regions. The mean idea behind DBSCAN is to
continue growing a cluster as long as the density in the neighborhood exceeds a given threshold
€ under the constraint that the neighborhood has to contain at least a minimum number of data
points minPts. An abstract algorithm for the DBSCAN algorithm is proposed in procedure
1.3. Advantages of the DBSCAN algorithm lie in its ability to discover clusters of arbitrary
shapes even for large spatial databases. Indeed, DBSCAN is one of the most common clustering
algorithms and also most cited in scientific literature since it can better learn the underlying
structure of data (Figure 1.5). In addition to its robustness to outliers, DBSCAN does not

11
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Figure 1.4: Clusters centers are moving as and when iterations of the k-means algorithm are progressing.

require one to specify the number of clusters in the data a priori but DBSCAN cannot cluster
data sets well with large differences in densities.

Procedure 1.3 Abstract Algorithm for DBSCAN

Input: Unlabeled dataset, threshold ¢ and minimum number of data points minPts

Output: Estimated partition of the dataset
Find the points in the € neighborhood of every point, and identify the core points with more
than minPts neighbors
Find the connected components of core points on the neighbor graph, ignoring all non-core
points
Assign each non-core point to a nearby cluster if the cluster is an € neighbor, otherwise assign
it to noise
return the estimated partition of the dataset

Spectral clustering

The main idea behind spectral clustering techniques [VLO7] lies in the use of the spectrum of
a given similarity matrix of the data to perform dimensionality reduction before clustering in
fewer dimensions (Figure 1.5). The similarity matrix is provided as a symmetric matrix whose
each element represents a measure of the similarity between data points. The general approach
to spectral clustering is to use a standard clustering method on relevant eigenvectors of a Lapla-
cian matrix of the similarity matrix. For computational efficiency, these eigenvectors are often
computed as the eigenvectors corresponding to the largest several eigenvalues of a function of
the Laplacian. When the relevant eigenvectors are processed through a k-means algorithm, the
spectral clustering can be reformulated as a weighted kernel k-means problem [DGKO04| where
the kernel function is assimilated to the dimensionality reduction step leading to creation of the
relevant eigenvectors. Moreover, spectral clustering can also be related to DBSCAN clustering

12
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[HMDH18] since optimal spectral clusters can correspond to density-connected components ob-
tained by an asymmetric neighbor graph with edges removed when source points are not dense.
Limitations of the spectral clustering lie in its computational cost and the choice of the similarity

when data do not have a trivial structure.

13
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Figure 1.5: Clustering performance of k-means algorithm in Figure (a), DBSCAN in Figure (b) and
spectral clustering in Figure (c) for various datasets by using Scikit-learn library [PVGT11].
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1.2 Selected approach : mixture models

Here, an approach based on mixture models is preferred since mixture models provide a mathematical-
based, flexible and meaningful framework for the wide variety of classification and clustering
requirements [BCGO00]. Indeed mixture models, as generative models, enable the creation of a la-
tent space where each latent variable can model a constraint of the problem of interest. Moreover,
mixture models incorporate every degree of supervision since they handle both unsupervised or
supervised classification problems. Finally, number of classes can be selected using criteria built

on the model likelihood.

This section can be considered as a general theoretical framework used as a building block
in the following chapters.

1.2.1 Definition

Mixture modeling [JJ94] is a natural framework for classification and clustering. It can be
formalized as :

p(z;|©,K) = apu(x;|0k) , (1.6)
ke
where x; € X' is an observation variable on the observation space X, I = {1,..., K} is the set
of clusters and ® = (a, 01, ...,0F), with a = [a1,...,ak]|, stands for parameters. Each

probability distribution v, stands for the k" component distribution with a weight a; where
ar > 0and ) par = 1.

Assuming a dataset © € X7 of i.i.d observations (x1,...,2x7), the log likelihood function is
given by
log p(x[©,K) = > log Y arte(z;16)) (1.7)
€T keK

where J ={1,...,J}.

According to the degree of supervision, three problems can be distinguished : supervised
classification, semi-supervised classification and unsupervised classification known as clustering.
Supervised classification consists in parameters estimation of K known classes through a set of
training data. Semi-supervised requires estimation of parameters of K unknown clusters whereas
clustering proceeds to estimation of both parameters and number of clusters K.

Hence, parameters estimation is required to proceed to these three techniques. Unfortunately,
classical Maximum Likelihood estimation turns out to be a complex problem since maximizing
the log likelihood function (1.7) requires to deal with the summation over k that appears inside
the logarithm and leads to a non closed form solution [Bis06].

One way of solving that estimation problem is to consider it as an incomplete data problem
where only x is observed and where the complete data are composed of  and latent variables
h such as labels of observations. The likelihood function for the complete dataset simply takes
the form logp(x, h|®) and maximization of this complete-data log likelihood function should
be straightforward. However since only the incomplete data @« are given in practice, the com-
plete data likelihood cannot be used and its expected value under the posterior distribution
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of the latent variable p(h|x,®) is considered. An elegant and powerful method for solving
that issue is called the expectation-maximization algorithm (EM) [DLR77] and consists in per-
forming an expectation (E) step, which creates a function for the expectation of the complete
log-likelihood evaluated using the current estimate for the parameters, and a maximization (M)
step, which computes parameters maximizing the expected log-likelihood found on the E step.
These parameter-estimates are then used to determine the distribution of the latent variables in
the next E step.

The EM algorithm iterative scheme can be formalized as follows :

e E step : Calculate the expected value of the log likelihood function, with respect to the
conditional distribution of h given & under the current estimate of the parameters ©;

Q(0|0;) = Epjy0, [logp(z, h|O)] ,

e M step: Find the parameters that maximize this quantity

Oy = arg max Q(0|6,) .

Nonetheless for some models, it can be infeasible to evaluate the posterior distribution or
to compute expectations with respect to this distribution since the dimensionality of the latent
space is too high to work with directly or because the posterior distribution has a highly complex
form for which expectations are not analytically tractable [Bis06]. Hence approximation schemes
are needed and rely on stochastic or deterministic approximations. Stochastic techniques such as
Markov chain Monte Carlo have enabled the widespread use of Bayesian methods across many
domains. They generally have the property that given infinite computational resource, they can
generate exact results, and the approximation arises from the use of a finite amount of processor
time. In practice, sampling methods can be computationally demanding, often limiting their use
to small-scale problems. Also, it can be difficult to know whether a sampling scheme is generat-
ing independent samples from the required distribution. Deterministic approximation schemes,
some of which scale well to large applications, are based on analytical approximations to the
posterior distribution by assuming that it factorizes in a particular way or that it has a specific
parametric form. As such, they can never generate exact results, and so their strengths and weak-
nesses are complementary to those of sampling methods [Bis06]. In this study, a deterministic
approximation method known as Variational Bayes is developed for parameter estimation.

1.2.2 Latent variables

A mixture can be formalized as a latent model since the component label associated to each data
point is unobserved. To this end, a categorical variable z; € K can be considered to describe the
index of the component distribution generating the observation variable x;. Then, the mixture
distribution (1.6) is expressed as

p(x;|©,K) = > p(xjlz;, ©,K)p(2]©, K) (1.8)
ZjEIC

where
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5k
p(x5lz,0,K) = [] ve(x;101)"
kGIC

p(z;|©, K) H ak
kel

and 5§j denotes the Kronecker symbol which is 1 if z; = k£ and 0 otherwise. The latent
representation (1.8) can also be viewed in a hierarchical way as

@jlzj =k ~ i (x;]01) (1.9)
zj ~ Categorical(a) (1.10)

Then the joint distribution is
5%
p(x;, 210, K) = [] larvr(z;]0)] "
ke
Depending on the target problem, other latent variables can be introduced to model the data. h
will refer to latent variables in the following parts.
1.2.3 Bayesian framework

Assuming a dataset & € X7 of i.i.d observations (z1, ...
{h;}! 51, likelihood functions can be expressed as

,xs) and independent latent data h =

p(x|©,K) = [] p(z;|©), (1.11)
JjET
p(z,h|®,K) = H p(z;,hj|®), (1.12)
jeET

where p(x, h|®, K) is called the complete likelihood since it represents the joint distribution of
the observed and latent data and J = {1,...,J}. That Bayesian framework imposes to specify
a prior distribution for the parameters ©

p(®|K) =p(a) [] p(6k) -
rek

Eventually, the posterior distribution of interest is obtained as

p(z, h|®, K)p(O|K)
p(z|K)

with the marginal distribution of data given by

p(x|K) = /p(x,h|@,n)p(@\1c>aha@ .
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1.2.4 Inference

The Variational Bayesian inference was introduced in [WMR196] as an ensemble learning method
for the mixtures of experts in order to avoid over-fitting and noise level under-estimation problems
of traditional maximum likelihood inference. In [Att99], the Variational Bayesian inference was
generalized for different types of mixture distributions and took the name Variational Bayes
(VB). VB can be viewed as a Bayesian generalization of the Expectation-Maximization (EM)
algorithm [DLR77] combined with a Mean Field Approach [OSO01]. It consists in approximating
the intractable posterior distribution p(h, ®|x, K) by a tractable one ¢(h, ®) whose parameters
are chosen via a variational principle to minimize the Kullback-Leibler (KL) divergence

KLIqllp] = /Q(h,®)10g <p(z(g|(j)lc)> dhd® .

Noting that p(h,®|x,K) = %, the KL divergence can be written as

KL [gllp] = log p(z|K) — L(g|K) -
L(q|K) is considered as a lower bound for the log evidence logp(x|K) and can be expressed as
L(q|K) = Ep,e [logp(x, h, ©|K)] — Ep,e [logq(h, ©)] (1.14)

where Ep, @[] denotes the expectation with respect to ¢(h,®). Then, minimizing the KL di-
vergence is equivalent to maximizing £(¢|K). Assuming that g(h,®) can be factorized over the
latent variables h and the parameters ©, a free-form maximization with respect to ¢(h) and
q(®) leads to the following update rules :

VBE-step : q(h) x exp (Eg [log p(z, h|©,K)]),
VBM-step : ¢(©) x exp (Ep, [logp(®, z, h|K)]) .

The expectations Ep[| and Egl[-] are respectively taken with respect to the variational posteri-
ors q(h) and ¢(®). Thereafter, the algorithm iteratively updates the variational posteriors by
increasing the bound L(¢|K).

1.2.5 Classification and clustering

According to the degree of supervision, three problems can be distinguished : supervised classi-

fication, semi-supervised classification and unsupervised classification known as clustering.

The supervised classification problem is decomposed into a training step and a prediction
step. The training step consists in estimating parameters ® given the number of classes K and
a set of training data @ with known labels z. Then, the prediction step results in associating
label z* of a new sample x* to its class k* chosen as the Maximum A Posteriori (MAP) solution

k* = argmaxp(z* = klz*,0,K
g A p( | )
given the previous estimated parameters ©.

In the semi-supervised classification, only the number of classes K is known and both labels
z of the dataset & and parameters ® have to be determined. As for the prediction step, the
MAP criterion is retained for affecting observations to classes such that

k* = argr]?éi;é(p(z = k|x,©,K) .
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Given a set of data @, the clustering problem aims to determine the number of clusters K, labels
z of data and parameters ®. Selecting the appropriate K seems like a model selection issue and
is usually based on a maximized likelihood criterion given by

K = argm}z{xxlogp(aﬂK) . (1.15)

where
p(@|K) = /p(m, ©|K)d® (1.16)

Unfortunately, (1.16) is intractable and many penalized likelihood criteria such as AIC [Aka98],
BIC [ST78] and ICL [BCGO00] had been proposed. The lower bound (1.14) for (1.16), found in
subsection 1.2.4, is preferred to other criteria since it does not depend on asymptotical assump-
tions and does not require Maximum Likelihood estimates.

Then according to an a priori range of numbers of clusters {Kuin, ..., Kmax}, the semi-
supervised classification is performed for each K € {Kpin, ..., Kmax} and both 2% and 0K are
estimated. Finally, the number of classes K in (1.15) is chosen as the maximizer of the lower
bound L(q|K) :

K= arg max L(q|K) . (1.17)

After determining K, only 2K and ©K are kept as estimated labels and parameters.

1.3 Conclusion

In this chapter, state-of-the-art classification and clustering algorithms have been presented.
Some of them are dedicated to create boundaries to separate data into heterogeneous clusters
such as LDA, SVM or NN whereas others focus on learning underlying structure of data to build
them such as k-NN or k-means algorithms. However both types of algorithms do not provide
an internal framework that infers on missing data and copes with any degree of supervision.
Therefore, an approach based on mixture models is proposed and developed through its theoret-
ical aspects. As hierarchical graphical models, mixture models provide a flexible framework to
handle classification and clustering issues by introducing a latent space where each latent vari-
able focuses on a specific constraint. However, the resulting model is not tractable and model
learning is processed through an approximation method known as Variational Bayes Approx-
imation. Eventually whatever degree of supervision is required, the number of classes K and
parameters can be estimated to perform classification and clustering tasks. Next chapters deal
with implementations of such models with different types of data.
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Chapter 2

Continuous data

Radar emitter patterns are partly described by continuous features that can be partially
observed and approximately measured due to a noisy electromagnetic environment and sensor
deficiencies. This chapter focuses on the development of a model that handles outliers and
missing values to enable classification and clustering of radar emitters. First, continuous
features of a radar emitter pattern are presented in Section 2.1 before introducing an
experimental protocol developed to acquire realistic data since real military data are often
classified. Then, the proposed model is explained in Section 2.2 where latent variables are
introduced to model outliers and missing values. Inference procedure is processed through a
Variational Bayesian Approximation in Section 2.3. Finally, evaluation of the model is proposed
through two experiments and performance of the method are detailed in Section 2.4.
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CHAPTER 2. CONTINUOUS DATA

2.1 Data

In this section, typical continuous radar features are first presented before introducing an acqui-
sition system designed to generate realistic radar data which naturally embed outliers.

2.1.1 Continuous radar features

Continuous features of a radar emitter (Figure 2.1) are traditionally extracted from its Pulse
Description Words (PDW). Each PDW gathers information related to a given pulse in the radar
signal pattern such as

e its Time of Arrival (TOA) which is the time in ps at which the pulse is detected,

e its Amplitude (A) which the average measured amplitude of the pulse,

e its Radio Frequency (RF) which is the average measured frequency of the pulse in GHz,
e its Pulse Width (PW) which is the pulse duration in us,

e its Pulse Repetition Interval (PRI) which is the difference in us between its TOA and the
TOA of the previous pulse in the radar signal pattern.

The TOA of a pulse can be taken as the instant that a threshold is crossed. In presence of
low signal-to-noise ratio (SNR), this measurement may be not precise and retaining the TOA of
the first 3 dB is preferable [DH82]. Moreover, the TOA is not an invariant feature since TOA
sequence depends on the first observed TOA. Therefore, the PRI is retained as an invariant
feature since it is the difference between times of arrival of two successive pulses. Then, the RF
of a pulse can be either fixed or modulated pulse-to-pulse. The RF is said to be frequency agile
if it is randomly modulated pulse-to-pulse within fixed bounds and frequency hopping if it has
systematic variations. Finally, the PW is the pulse duration chosen to ensure that a radar emits
sufficient energy such that reflected pulses are always detectable by its receiver. The amount of
energy that can be delivered to a distant target is the product of two things; the output power
of the transmitter, and the duration of the transmission. Therefore, pulse width constrains the
maximum detection range of a target. Depending on sensor sensitivity, the PW may not be
reliable and considering PW as missing data can be preferable.

2.1.2 Realistic data acquisition

In this subsection, an experimental protocol is introduced to acquire unclassified realistic data
from different radar emitters. This protocol consists in an acquisition step followed by a feature
extraction step.

The acquisition system is composed of two Software Defined Radio (SDR) platforms based on
Ettus USRP E312 (Emitter) and B200 (Receiver) boards, linked to a laptop to record the data.
As in [SEG™16], this setup was chosen because it allows quick development and experimentation
tasks on radiofrequencies from 70 MHz to 6 GHz, it is quite cheap and is available off-the-shelf.
Radar waveforms, emitted by the URSP E312 board, are generated from bin files coded from
a database gathering more than 40 typical radar waveforms with agile and hopping frequencies
and jittered and staggered PRI. The developed system is presented in Figure 2.2. In order to
meet hardware constraints, RF range was mapped to a 4MHz bandwidth and patterns of TOA
and PW were slightly modified but their dynamic was preserved.
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Figure 2.1: Four pulses from a radar emitter whose related amplitudes and times are shown on the vertical
axis and the horizontal axis. Then, the continuous features PRI and RF are obtained by delimiting each
pulse according to their TOA and PW.
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Figure 2.2: Diagram of the acquisition system

Then, a threshold algorithm, provided by [DH&2], is used to detect pulses in the recorded
signal s,(t) of duration T. Each pulse at TOA; is characterised by a triplet (PRI, RF;, PW,);
where PRI; is the difference between TOA; and TOA;_; and the RF; feature is estimated with
a Fast Fourier Transform (FFT) algorithm. Figure 2.3 shows parameters measurement on real
data. For a given recorded signal s gathering ns pulses, the following PDW matrix is obtained

RF, PW, PRI
PDW = | RF,, PW,, PRI, (2.1)

RF,, PW,, PRI,
where m € {2,...,ngs — 1} is the index of pulses in recording.

SDR platforms are imperfect [FLPT07] and their defects can introduce outliers due to mea-
surement errors. Hardware imperfections are visible on Figure 2.4 where the third pulse is cut
into two pulses which leads to the formation of PRI and PW outliers. Furthermore since ex-
periments take place in real outside conditions, other signals and reflections can disturb the
acquisition [DH82].
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Figure 2.3: Acquired pulses from a radar emitter where the three features (PRI,PW,RF) are shown on
the figure.
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Figure 2.4: Outliers formation during primary parameters measurement on real data. (a), (c) and (e) are
respectively exact TOA, PW and PRI (b), (d) and (f) are outliers for TOA, PW and PRI.
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PRI

Figure 2.5: Presence of outliers in observations of a radar emitter.

Finally for each signal s; gathering n; pulses of the J recorded signals (sj)‘jjzl, a matrix

PDWj is created from (2.1) and an observation vector x; is defined according to (2.2) such that
Tj = (R_Fj,PWj,PRIj) (2.2)

where R_Fj is the average value of RF, PWj is the average value of PW and PRIj is the average
value of PRI defined in (2.3), (2.4) and (2.5).

_ 1
RF; = — > RF,, (2.3)
nj m=1
_ 1
PW, = — PW,, , (2.4)
nj m=1
_ 1
PRI; = — PRI, . (2.5)
nj m=1

Once all observation vectors (wj)le have been constructed, they are normalized to meet con-
straints of machine learning algorithms. Figure 2.5 shows the distribution of 150 normalized
observation vectors of a radar emitter, where three outliers are visible.
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2.2 Model

In this section, K emitters defined by continuous data are considered. Therefore, the main
objective is to develop a mixture model which can build K distinct clusters even in presence of
outliers and missing values. First, state-of-the-art approaches are reviewed. Then, the standard
Gaussian mixture model is presented and two varieties of this model are introduced to handle
outliers and missing values. At last, the proposed mixture model is developed into a Bayesian
framework.

2.2.1 State of the art

Radar emitter classification relies on statistical analysis of Pulse Description Words (PDW) of
a radar signal that gather its basic measurable parameters such as Radio Frequency (RF), Am-
plitude, Pulse Width (PW) or Pulse Repetition Interval (PRI). In terms of classification and
clustering of emission sources from different types, many approaches based on data fusion and
machine learning have been developed and traditionally proceed to feature extraction, dimen-
sionality reduction and classification or clustering. For example, [SL02, PJR13, LILC16, Sunl§|
propose various neural classification approaches based on the PDW structure of observed sig-
nals whereas [YWY"13] introduce a hybrid radar emitter recognition method based on rough
k-means and relevance vector machine and [Chel7] develop an efficient classification method us-
ing weighted-xgboost model for complex radar signals in large datasets. As regards the clustering
problem, [HZWT09] develop a dynamic clustering algorithm that uses designed distances and
dynamic cluster centers and does not require fixing the number of classes which depends on the
input data, [ZWCZ16] also introduce a clustering framework composed of local processing and
multi-sensor fusion processing and use a Minimum Description Length criterion to update dy-
namically the number of clusters rather than setup in advance. These practical approaches mostly
result from more general algorithms such as Random Forests [Bre01], Neural Networks [Ros58],
Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN) [EKST96]
and k-means algorithm [HW79] which are also considered as state-of-the-art algorithms since
they are used in various fields [SEKX98, Jail0]. However, these practical and general algorithms
can not handle missing data and imputation methods [TCS*01] are required to generate data to
use them. Hence, an approach based on mixture models is preferred since mixture models provide
a mathematically based, flexible and meaningful framework for the wide variety of classification
and clustering requirements [BCGO00]. More precisely, a scale mixture of Normal distributions
[AMT74] is updated to handle outliers and missing data issues. On the one hand, this model is
robust to outliers by accounting for the uncertainties of variances and covariances since the asso-
ciated marginal distributions are heavy-tailed [AV07]. On the other hand, dependencies between
features can easily be modelled through a multivariate Gaussian distribution in order to infer on
missing values by benefiting from attractive Gaussian properties.

2.2.2 Standard Gaussian mixture models

Gaussian mixture models [QR78, JJ94] (GMM) are the most well-known mixture models for
continuous data and have been widely used for decades. As a natural framework for classification
and clustering, a GMM can be formalized as :

Vj € \77 p(:IZﬂ@,lC) = Z akN(mj’u’k? Ek) 5 (26)
ke

where x; € R is an observation vector, K = {1,..., K} is a finite and known set of clusters
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and © = (a, (py, Xk )kek), with @ = [aq, . .., ak], stands for parameters. Moreover, p; and X
are respectively the mean and the covariance matrix of the k" component distribution with a
weight aj where ap > 0 and )y cxcar = 1.

The GMM can be formalized as a latent model since the component label associated to each data
point is unobserved. To this end, a categorical variable z; € K can be considered to describe the
index of the component distribution generating the observation variable x;. Then, the mixture
distribution (1.6) is expressed as

p(x;|©,K) = Z p(xjlz, ©,K)p(z]©,K) , (2.7)
z;e
where
5k
p(wjlzj,(‘),’C) = H N(CU]’[J,k,Zk) K (28)
ke
p(2;|©,K) = Cat(zjla) = H ak (2.9)
ke

and 52, denotes the Kronecker symbol which is 1 if z; = k£ and 0 otherwise.

Assuming a dataset = (x;);c s of i.i.d observations and independent labels z = (2;);e7, the
complete likelihood is obtained as follows

p(a,210,K) = T TT lae (2], B0)] ™ (2.10)

jeT kek

At last, the Bayesian framework imposes to specify priors for the parameters ®. The resulting
conjugate priors are

p(alK) = D(a|ro)

p(p|Z,K) = T Nl pos 5 ")
kH,c e (2.11)

p(ZIK) = [ 2V (Zklr0, Z0) -
keK

where the Dirichlet and the Inverse Wishart distributions are defined as follows :

D(alk) = cp(k H apt” L

ke

1
DV(E,8) = ey, SB[ exp (—er(SE ) |

where ¢p(k) and ey (7, S) are normalizing constants such that

P(Shecrn) o oogy_ ISI2

CD(K/) — er’c F(Hk;) y CT == 2%7Fd(%) .

The standard Gaussian model is shown on Figure 2.6.
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=

Hole

Figure 2.6: Graphical representation of the standard Gaussian mixture model. The arrows represent
conditional dependencies between the random variables. The K-plate represents the K mixture compo-
nents and the J-plate represents the independent identically distributed observations x; and the indicator
variables z;. Known quantities, respectively unknown quantities, are in blue, respectively in red.

2.2.3 Gaussian mixture models with missing data

As weighted sums of Gaussian distributions, GMMs benefit from attractive Gaussian properties
that enable modeling dependencies between features to infer on missing data. Indeed, missing

values can be handled by decomposing the features vector x; € R? into observed features m‘;bs €
obs s miss
R% " and missing features modeled by a latent variable a:;mss € RE™ such that 1 < d;?bs <d

and d;niss = d — dybs- Reminding that conditionally to its index cluster the features vector x; is
Gaussian distributed as

pmiss ppiss DI Y
T; = (m]Qbs> 2 =k~ N <Mk = (J%m) » X = (2%‘”' ) )
J

the latent variable x;-“iss can be expressed as a Gaussian distributed variable such that

w;niss‘ ;B;bs’ =k~ N (w;nissmﬁnm, sziss> (2.12)
where

“ﬁniss _ Nrkniss n Ziovzzbs_l(a??bs . Nibs) 7 (2.13)

2i.miss _ E?iss B Ziovzzbs—lziovl ‘ (2.14)

Then, a marginal distribution for a:;?bs is obtained such that :c;’»bs ~N (:c;?bs| uzbs, 2z0b5> with

obs . / miss -1 « -1
EZ b, _ (22135—1 +2x Ezbs—lzzov (Ei ) 220v22b5—1>

Eventually, a Gaussian mixture model handling missing data is obtained by integrating missing
data distributions (2.12) into the complete likelihood (2.10) such that

p(a:,z\@,lC) = H H [ak/\/(a:j\uk,zlk)]‘s%

JE€ET ke

- H H [ak/\[ (w;mss‘uﬁniss7zimiss)j\/.(w?bs|“%bs72%obs)}

jET kek

5 (2.15)
Zj

Parameters are a priori distributed according to (2.11). A graphical representation of the model
is exhibited on Figure 2.7.
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OO

Figure 2.7: Graphical representation of the Gaussian mixture model handling missing data. The arrows
represent conditional dependencies between the random variables. The K-plate represents the K mixture
components and the J-plate the independent identically distributed observations x; decomposed into

observable data :c‘J?bS and missing data J:;?Iiss and the indicator variables z;. Known quantities, respectively
unknown quantities, are in blue, respectively in red.

2.2.4 Gaussian mixture models with outliers

A major limitation of GMMs is their lack of robustness to outliers that can lead to over-estimate
the number of clusters since they use additional components to capture the tails of the distribu-
tions [SB05]. Nonetheless, outlier values in «; can be handled by introducing a latent variable
u; to scale each mixture component covariance matrix 3. That family of mixture models is
known as scale mixtures of Normal distributions [AM74] and benefits from heavy-tailed marginal
distributions accounting for the uncertainties of variances and covariances [AV07]. Introducing
the latent positive variable u; into (2.8), the following scale component distribution is obtained

1 55,
keK

and the joint distribution of (x;,u;) is derived from (2.16) such that

5k
p(ej, w525, 0,K) = T [N (@jlee, uy  Se)pe(uy)| (2.17)
ReK

where pj(u;) is the prior distribution of u; conditionally to z; = k.

Conditionally to the choice of a prior distribution for u;, the marginal distribution p(x;|z;, ®,K) =
Io° p(j, ujlzi, ©,K)Ou; of ; over u; can take different forms [WS00]. [SB05, AV07, SZKL17,
NW14] mainly propose using a Gamma distribution parametrized by a deterministic parameter
i, such that the joint distribution of (x;,u;) from (2.17) becomes

-1 Vg Vg 51%‘
N (2| g U, k)G (%"27 2)] (2.18)

p(wJ"uj‘Zj’ G’IC) = H
kex

Then the resulting marginal distribution p(x;|z;, ®, K) follows a Student-t distribution obtained
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>
,T—518

Figure 2.8: Graphical representation of the Gaussian mixture model handling outliers. The arrows rep-
resent conditional dependencies between the random variables. The K-plate represents the K mixture
components and the J-plate the independent identically distributed observations x;, the scale variables u;
and the indicator variables z;. Known quantities, respectively unknown quantities, are in blue, respectively
in red.

by

+0o0
Pyl 0.6) = [ bl ]z, 0. K)0u,

+oo Vi Uk
_/ wj|uk,u Ek> (u]| )8%

RGBT LR S
= e X[” (2 = )" (25 = i)

= T (x;|pg, Sk, vk)

(2.19)

_dtvg

where d is the dimension of the feature space and vy is the degree of freedom of the Student-t
distribution. Eventually, a Gaussian mixture model handling outliers is obtained by integrating
(2.18) into the complete likelihood (2.10) such that

1 Vi Vg 55]’
p(z,u,2|0®,K) = H H [ak/\/ (azj\uk,uj Zk> g (ug‘ 29 )] .

jeT kek

where u = (u;)jes are the scale latent variables related to continuous data € = (x;)jes. As
for prior distributions, v; does not require a prior distribution since it is deterministic and other
parameters are a priori distributed according to (2.11). Then, a graphical representation of the
model is shown on Figure 2.8.

The degree of freedom variable v, has been considered as a deterministic variable updated
via an optimization argument during the maximization step of the VB inference [PMO00] and
[SB05, AV07, SZKL17, NW14] did not assume any prior distribution for v since there do not exist
any known conjugate priors for v. For the sake of keeping conjugacy between prior and posterior
distributions and adopting a full Bayesian treatment, a Gamma distribution G(u;|og, Bx) with
shape and rate parameters (o, 8)) is chosen for py(u;) = p(uj|z = k) = G(uj|ag, fi) such that
the joint distribution of (z;,u;) from (2.17) becomes

k

0.
kek
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As in (2.19), the resulting marginal distribution p(x;|z;, ®, ) is also a Student-t distribution
[DLGMD17] which is obtained as follows

+oo
Pyl 0.0 = [ plwy il 0,000

= /0+OON(%'Mk,ujlﬁk)g(ujlakﬁk)d“

:M >l 14— (s — Tsv—1(g. _
I() (2Bxm) 2 < 1=l X[ +2ﬁ (@) — pi)" By (@5 — )

=T (x| s, Xk, o, Br)

—(ap+2)

Then, a Gaussian mixture model handling outliers is obtained by integrating (2.20) into the
complete likelihood (2.10) such that

p(@,u,200,K) = T IT e (25l ;' 3%) @ (uj\ozk,ﬁk)rk . (2.21)

JET kek

In a full Bayesian treatment, both aj and 5 require a prior distribution. Hence, a new conjugate
prior distribution is introduced to avoid a non closed-form posterior distribution for (v, 8). This
prior distribution is defined below :

pgk 1 _QDIBkBSOO‘k
p(au, Brlpo, g0, S0, 70) X T lap) Lo, >03L8, >0 (2.22)

where po, qo, So, 70 > 0. The previous expression can be reformulated as :

p(aw, Brlpo, o, S0, 70) = p(Br|ow, S0, q0)p(ak|po, qo, So,70)

with
p(Bklak, s0,90) = G(Belsoar +1,4q0) ,
(o] ) = 1 pS ' (spap 4+ 1)
P\Ck|Po, 405 S0, T0
MO qgoak—i-ll—\(ak)ro {Olk>0}
where

1

soak +1)
M / Soak-i-l )T’O H{ak>0}aak .
The normalization constant M is intractable and a Laplace approximation method is derived to
estimate it. As for other parameters, they are a priori distributed according to (2.11). At last,
the resulting mixture model is shown on Figure 2.9.

2.2.5 Proposed mixture model

Varieties of the standard GMM have been introduced in (2.15) and (2.21) to handle outliers
or missing values. The proposed model results from combining these two varieties to enable
the handling of both outliers and missing values. Assuming a dataset * = (x;);cs of ii.d

observations decomposed into observed features x£°b = (29"%) jes and missing features ™ =

: J
(:c}mss)je 7 and independent latent variables u = (u;)jcs and 2z = (2;);jes, the proposed model
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Figure 2.9: Graphical representation of the Gaussian mixture model handling outliers with hyper-
parameters (c, 3). The arrows represent conditional dependencies between the random variables. The
K-plate represents the K mixture components and the J-plate the independent identically distributed
observations x;, the scale variables u; and the indicator variables z;. Known quantities, respectively
unknown quantities, are in blue, respectively in red.

results in

miss 6];]
p(aBObS,h|@,IC) — H H [akN <<33 Obs) ’I“l‘kﬂu 2k> g(U]|O[k,/8k)‘|
.7

jeT kek
5k

I
—
—

ak./\[ (mmISS| pmiss ;1 Eimiss) N ( ObS|HObS ;12z0bs) (u] |Ozk, ﬁk)]
(2.23)

miss

where h = (™%, u, z) is the set of latent variables and ©® = (a = (ag)kex, b = (Bp)kek, X =
(Xk) ke, o = (ar)kek, B = (Br)kek) is the set of parameters. Finally, the required prior distri-
bution for ® is decomposed as follows

p(O[K) = p(a)p(e, BIK)p(p|%, K)p(5[K)

where prior distributions for a, p and 3 are given in (2.11) and the prior distribution of (a, 3)
is a product of distributions defined (2.22) such that

p(Oé?ﬂVC) = H p(ak’>5k|p07q0a SO7TO) . (224)
ke

A graphical representation of the proposed model is shown on Figure 2.10.
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Figure 2.10: Graphical representation of the proposed model. The arrows represent conditional depen-
dencies between the random variables. The K-plate represents the K mixture components and the J-plate
the independent identically distributed observations x;, the scale variables u; and the indicator variables
z;. Known quantities, respectively unknown quantities, are in blue, respectively in red.

2.3 Inference

Direct inference on the proposed model is not trivial since the posterior distribution of latent
missing data and parameters is intractable. Therefore, the Variational Bayes (VB) procedure is
processed to estimate parameters of the mixture model defined in (2.23). Variational posterior
distributions are obtained from the VB Expectation (VBE) and VB Maximization (VBM) steps.
These variational posterior distributions are similarly obtained from classical posterior related
in [SB05, AV07] and [MPO04]. In addition to standard results, missing values are incorporated as
latent variables in posterior calculations and a posterior distribution for missing data is proposed.
At last, a lower bound on the log evidence is defined to master the convergence of the VB
procedure.

2.3.1 Variational posterior distributions

Recalling that the VB procedure consists in approximating the intractable posterior distribution
p(h, ®|x°P ) by a tractable factorized distribution q(h,®) = ¢(h)q(®) that maximizes

L(qlK) = Epe [logp(***, h, O|K)| — Epe llogq(h, ©)] , (2.25)

where Ej, g[-] denotes the expectation with respect to g(h, ®), variational posterior distributions
are obtained by performing a free-form maximization through the following update rules :

VBE-step : q(h) x exp (E@ {logp(cc‘)bs, h[@,IC)D ,
VBM-step : ¢(®) x exp (Eh {logp(m‘)bs, h, @]IC)D .

According to a conditional factorization of ¢(h) and ¢(®) given by
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the following conjugate variational posterior distributions are obtained from the VB procedure

mlSS 61;
q(mmiss|u’z H HN< miss mmlss’ 22; ) J ’
JjeTJ kex
q(ulz) = H H g( a]k?/Bjk j )
JjeT kex
= Cat(zj|7;) ,
]1;[7 Y (2.26)
q(a) = D(alk) ,
(o, B) = [ plowk, Belbrs G Sk, 7x)
ke
q(ps 2) = TT Nl b, 7 ' Se) IV (| Ak, Zie) -
ke

where the variational posterior distributions of (a, ) are defined in (2.22). Their respec-
tive parameters are estimated during the VBE and VBM steps by developing expectations
Ee [logp(w‘)bs,h\@,lC)} and Ep {logp(a:(’bs, h, @|IC)}.

2.3.2 VBE-step

The VBE-step consists in deriving the following expectation

e {logp(:c(’bs, h|®,K) } Z Z or (E@ [logag] — = (d(log 21 —logu;) + Ee [log | 3|]
jeT kek

+ u;Ee {(w] - p,k)TE,;l(a:j — ,uk)} ) + Ee [o]) Ee [log k]

+(Bolar] — 1) ogu; — Ee log T(ar)] — ujEe [ )
(2.27)

where V(j,k) € T x K :

Fo [(e) )" 55 (@) = )] = () — ) 5 oy — ) + (2.28)

is obtained from properties of the variational distribution ¢(pu, ¥|K) in (2.26). Hence continuous
data x are distributed a posteriori according to a product of normal distributions conditionally
to latent variables u and labels z such that

ok
zlu,z ~ [] H/\/(wj\ﬂk,uj_lﬁk_lilk) I

JET kek

Mean parameters (fi;)rex and variance parameters (7, '3 )rex of these normal distributions
are obtained from (2.28). By decomposing = into (™, :BObS) and by exploiting properties of
the multivariate normal distribution, the following variational posterior distribution is obtained

for missing values ™" :

ala™fu, 22,2 10) = [ TLV (2™ 5877 )

jeT kek
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with V(j,k) € I x K :

~ gmiss miss cov &obs™ obs ~ obs
I TSRS Yl it (in — ")

miss cov. & obs™ cov’

~_pmiss Ek —Ek Ek’ 2]{:
k
Vi

Then by marginalising over ™ in (2.27), the expectation (2.27) becomes

/E@ log p(x, u, 2|0, K)] dz™> = 3~ 3" 6% (Ee log ax] + Ee [log |Z|]
JET kek

~ pIiss
xr

1
- 2<d§’bs(log 21 —logu;) —log |2, |

. obs ~obs S ’”?bs 1 obs _ ~obs i (2.29)
+ u; (( — fy ) DI (ccj oy )+ﬁk)>
+Ee (k] Eo [log Bk] + (Ee [ax] — 1) logu;

—Ee [logI'(ax)] — ujEe [Bx] ))

with Vk € IC,

i <Ezbs 19 % Ezbs EZOV (2:J ) Ezovzzbs )
~ $0 S

k =

Vi
Conditionally to z, the scale latent variables w are distributed according to a product of Gamma
distribution whose parameters are obtained by aggregating terms related to w such that

g(ulz, €)= [T II g(uj|a]k,ﬁjk)

jeTJ kex
with V(j,k) € I x K :

obs
d3

5
Bjk = Ee [B] —l—% <<x¢;bs _ ﬁzbs) gwﬁbs 1 (a:ObS _ ﬁ%"s) + ﬁi) .

ajr = Ee [ou] +

Finally, variational posterior categorical distributions are obtained for labels z by marginalising
over u in (2.29) such that

/]E@ log p(x, u, 2|©, K)] dz™0u = Z Z ok ( log ax] + log T'(&jx) — ajx log Bjx
JjET kek

+ Ee [a] Eg [log Br] — Ee [log I'(ax)]

1 obs ~ mII]lSS (230)
-3 d;™ log 21 + Eg [log ||| —log |3y |

= > 6% logpji

JjET kek
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where Vj € J, k € K,

1 ~ pmiss
log pjr, = Ee [log ai] — 5 (d?bs log 27 + Ee [log |Z|] — log |27, |>

(2.31)
+Eeo (k] Ee [log 8] — Ee [log I'(a)] + log I'(ajx) — dvjk log Bk -
Hence the variational categorical distributions are deduced from (2.30) and are given by
q(z|K) = ] Cat(z]7;)
JjeJ
where probabilities (7;);e7 are obtained from (2.31) such that Vj € J, k € K,
~ Pik
T =
o Z Pik
kek
2.3.3 VBM-step
The VBM-step consists in deriving the following expectation
En [log p(x°™, b, ©|K)| = B, [log p(x**, h|©, K)| + p(OK)
1
=Y Y Ep [5’;} (logak + —2<log |2k
JET kek
+d(log2m — Bp [log ) + B [u; (@ — 1) "7 (2~ )] )
+alog B+ (s — 1) flog ] ~ log T{a) — En uy) 5
(2.32)
1
+ > (Ko, — 1) logay, + log cp(ko) — 3 ((’Yo +d + 1) log [ Xy
kel
1
+ Trace (202;1) > + ez (70, Xo) + 5 (d(log 1o, — log 2m)
T
— log [Xk| — no,, (uk - Hok> = (uk - .Uok) ) — log My
+ (ag — 1) logpo — ro log I'(a) + socu log Bk — qoBk
where Y(j,k) € T x K :
Tsr—1 _ T -1
En [u(x; — 1) "S5 (w5 — )| = B ] (Bn ] — )" S (B [25] — ) o)

+ Trace (Vh [x;] 2,;1)

is obtained from properties of the variational distribution ¢(h|K) with

~ wmiss miss obs
[ ] Ek OdJ xdj
Vi [z;] = b i b b :
J QdsP X doh s
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By factorizing terms related to a in (2.32), the following Dirichlet distribution is obtained
q(a|K) = D(al)

where

vk € K, fip = ko, + Y Bp |35 .
JjeT

Then, (e, B) are a posteriori distributed according to the distribution defined in (2.22) such that

q(a, BIK) = ] plow, Belbe, ks s )
kex

where

Pk = Po exp (Z En |08 | En [10ng]) :
jeT i
Gk =qo+ Y En |68 | En[uy]
jeT -
S = so + Z Ep, (5];, ,
jeg -
T =19+ Z Ep, 5];], .
JjeTJ S

By aggregating and factorizing terms related to each p; in (2.32), a Normal distribution is
obtained for each p; such that

a(u2,K) = TT N (el 7 =)
keK

where Vk € IC,

ﬁk‘ = Z Eh [6];]] ]Eh [u]] + nok 3
ied
_ Zjes En {5’%} En [u;] En [225] + oy ko,

. = ~
F Nk

Eventually, variance parameters 3 are a posteriori distributed according to Inverse Wishart
distributions given by

q(ZIK) = T DV (el =)

kel
where
ﬁk’ =Y + Z ]Eh {6’;} )
JjeT
=30+ En [52} (Eh (] B, (@] B (5] + Vi, [wj]) + 10, Ko, B0, — Tikityit, -
JjeJ
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2.3.4 Lower bound

The lower bound £(g|K) on the log evidence (2.25) is decomposed into the free energy
Ene [logp(wObs,h,G)UC)} and the entropy of the approximate posterior g(h,®|K) given by
Ep.@ [logg(h,®|K)]. The free energy can be developed as

Ene [logp(x, h, O|K)| = Epe [logp(z*™, k|, K)| + Ee [log p(©|K)]
where

1
Ene [logp(@™ A, K)] = 3 3 B, [6 ] <u~«:@ floga] — 3 (d(log 27 — Ep, [log u;])
jeJ kek

+Ee [l0g [Zk]] + Ene [us(@; — ) S (5 — )| )
+ Ee [ox] Ee [log Bi] + (Ee [ax] — 1)Ep [log uy]

— Ee [log I'(ax)] — En [u;] Ee [Bx] )
with
Ene |uj(@; — )" S @) - )] = En [u)] ( (En )] = )" 35Sy (En [a] — i)

d a1
77k> + Trace (Vh (2] Y25, )

and

Ee [logp(@K)] = 3" (k0. — 1)Ee [log ax] + log ep(so) — ;((70 +d+1)Ee [log [Sl]
ke

_ 1
+ Trace (EOE@ [Zk 1D ) + czw (Y0, X0) + 3 (d(log 1o, — log2m)

— Ee [log |Zk[] — n0,Ee |:<I'l'k - uok)TE;jl (P’k - Nok)] ) — log My

+ (Ee [ak] — 1) log pg — roEe [log I'(ax)] + soEe [ak] Ee [log B
— qoEe [Br]

with
Ee {(ﬂk - Hok)ngl (Hk - Hok)] = (ﬂk - Hok)T’YkEi;l (ﬂk - Hok> +77Ci .

As for the entropy term, the following decompositon is obtained

Ene [logq(h, ©|K)] = By, [log g(2}"™, u, 2[K)| + Ee [log ¢(©|K)]
= By, [log g(@}™|u, z,K)| + Ep log g(ulz, )]
+ Ep, [log ¢(2|K)] + Ee [log ¢(©|K)]
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where
1 .
b ooz ] = 3 3 B[] 37 Do
jeTJ kex
—log2m — 1) — log |2:3 ]) ,
Ep [log ¢(u|z, K)] Z Z E, { } <64jk logﬁjk —log I'(&,)
JET kex
+ (&1, — 1)Ep log u;] — BjxEn [%‘]) :
Ep [logg(z Z Z Es { } log 7,
JjET kek
and

o g 4(BIK)] = 3 (R ~ DBe logay] + logen(r) - 5 (G + d-+ 1)Ee llog |24
ke

- - =~ 1 B
+ Trace (EkE@ [Ek 1D ) + eow (g, k) + 3 (d(log Mk — log 27)

— Ee [log [Zx[] — kEe {(Hk; — )2 (e — ﬁk)} ) — log Mj,
+ (Ee [ax] — 1) log pr — TxEe [log I'(ax)] + 8xEe [ax] Ee [log By]
— grEe [B]

with

o (G~ i) =5 (o — )] = =

2.3.5 Expectations from variational distributions

Expectations developed in variational calculations are derived from properties of variational
posterior distributions and are obtained as follows. Categorical distribution properties lead to

VieJ, Vke K.
B [0F ]| = e .

Dirichlet distribution properties lead to

Vk e K :

Ee [logay] = (&x) — (Z fik) :

keK
where 9(-) is the digamma function. Gamma distribution properties lead to
VieJ, VkeK:
Yk
Bik
Eh [log Uj] = w(djk) — log ﬂjk .

Ep [u;] =
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Normal distribution properties lead to

VE e K:
Ee [pi] = Ay,
Ee {Hkﬂﬂ = Ve [] + Ee (1] Bo (1]
=il Sk + g
Inverse Wishart distribution properties lead to
Ee [ZEI} = %2;1 ,
e +1—1

d
Eo (g [Suf) = log [£4] - > v (5

) —dlog?2 .
i=1

Posterior expectations of §, are derived from the posterior Gamma distribution (2.26) properties
and can easily be computed conditionally to ag

Ee[Bi] = ng@[quk] -

Ee[log Bk] = Ee (¥ (Skax + 1)] — log gy, -

)

However, expectations depending on o4 are intractable

Eolt (3rax + 1)] = / b (Bran + 1) plaw|pe, 7 )day, | (2.34)
Eelax] = /akp(ak\ﬁk,fk)dak ; (2.35)
Eollog ()] = [ log T (ax)p(arlfsri)da - (2.36)

Since lower bound calculation is required as a stop criterion, expectations (2.34), (2.35) and (2.36)
have to be approximated. A deterministic method [TK86] based on Laplace approximation is
then applied. This method consists in approximating integrals of a smooth function times the
posterior h(a)p(alp,q,s,r) with an approximation proportional to a normal density in 6 such
that

E[h(a] = h(ao)p(aolp, ¢, 5,7)(2m) "2 — u” (a0)[/2

where d,, is the dimension of a, u(a) = log (h(a)p(a|p, q,r, s)) and g is the point at which
u(«) is maximized.

In the case of unnormalized density ¢(«/|p, ¢, T, s), Laplace’s method can be applied separately to
hq and ¢ to evaluate the numerator and denominator here :

_ [ h(a)qlalp, q,s,7)da
]E[h(a] a fq(a|p7q7377")d04

2.4 Experiments

In this section, the proposed method is performed on the set of acquired data. For comparison,
a standard neural network (NN), the k-nearest neighbours (k-NN) algorithm, Random Forests
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Figure 2.11: Dataset gathering 6300 observations from 42 radar emitters. Some clusters are completely
separable whereas some others share features and can not be linearly separated.

(RAF) the k-means algorithm and the DBSCAN are also evaluated. Two experiments are carried
out to evaluate classification and clustering performance with respect to a range of percentages
of missing values. First, characteristics for realistic data acquisition and imputation methods for
missing data are detailed. Then, both experiments are described with their error measure and
their performance are shown to exhibit the effectiveness of the proposed model.

2.4.1 Data

Real data are acquired from the system detailed in Section 2.1. For each recording, the sampling
frequency and the observation time 7' are respectively chosen as 4.17 MHz and 20 ms. The
database exactly gathers 42 different radars waveforms and 150 observations are recorded for
each waveform. Outliers and missing values are naturally embedded in observations due to
material defects and real conditions detailed in Section 2.1. The dataset is shown in Figure 2.11.
However, extra missing values are added to evaluate limits of the proposed approach. Missing
information are introduced by randomly deleting coordinates of (mj)}iol for each of the 42 radar
emitters. Percentages of deletion range from 5% to 40%. Nevertheless, comparison algorithms do
not handle datasets including missing values. Discarding observations that contain missing values
can be a restrictive solution, therefore imputation methods have been developed [GLSGFV10].
In this chapter, two classical imputation methods, based on statistical analysis and machine
learning, are performed. First, the mean imputation consists in filling a missing component
of an observation by the average of observed values of that component. This method has the
obvious disadvantage that it under represents the variability and also ignores correlations between
observations [Sch97]. Then, imputation can be processed through a K-nearest neighbours method
[HTS'01] in order to replace missing values of an observation with a weighted mean of the k
nearest completed observations where the weights are inversely proportional to the distances
from the neighbours. Since replacements are influenced only by the most similar cases, the
KNN method is more robust with respect to the amount and type of missing data [TCS*01].
These imputation methods are compared with the proposed approach in terms of classification,
clustering and reconstruction performance. For the comparison of reconstruction performance,
mean-squared errors between original data and previous imputation methods are compared with
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Table 2.1: Initialisation of hyper-parameters values for classification on continuous data

Ko To Yo Do o qo So
05 100* 4 09 1 1 1

the mean-squared error between original data and the variational posterior marginal mean of
missing data given by

Vi€ T, Byl = By( [ [ (@, uj.z)dudz)

o ~ Nmmiss
=D Tkl -
kek

(2.37)

2.4.2 Classification experiment

The classification experiment evaluates the ability of each algorithm to assign unlabeled data
to one of the K classes trained by a set of labeled data. The classification task is decomposed
into a training step and a prediction step defined in procedures 2.1 and 2.2. The training step
consists in estimating variational parameters of ¢(®) defined in (2.26) given a set of training
data with known labels. As for the prediction step, it results in associating new data to the
class that maximizes their posterior probabilities. Since comparison algorithms do not handle
datasets including missing values, a complete dataset is used to enable their training. During
the prediction step, incomplete observations are either discarded and gathered in a reject class or
completed thanks to the mean and KNN imputation methods. Standard configurations provided
by Matlab are chosen for the RnF, the NN and the KNN algorithm. The proposed model and
comparisons algorithms are trained on 70% of the initial database without extra missing values
and tested on the remaining 30% of the database whose elements are randomly deleted according
to different proportions of missing values. The RnF gathers 50 trees. The NN is composed of one
hidden layer of 70 neurons and a softmax output layer and is trained with a cross-entropy loss.
An accuracy metric is chosen for the classification experiment and observations belonging to the
reject class are considered as misclassification errors. For each experiment, hyper-parameters are
initialised as in Table 2.1 and 100 simulations are performed to take into account randomness of
data deletion.

Procedure 2.1 Classification procedure on continuous data : Training step

train train

Input: Training set x and associated labels z
Output: Learned parameters Otrain
Initialise ko, Y0, Mo » Ko, 20, Po, 70, So and go
for iter = 1 to itermax do
Update &;, Bk, ;l'ﬁ,mss, 2:
Update Fg, Tk, Yis Pks Trs Sky Qs Hgy 2k
Calculate the lower bound £
if Liter — Liter—1 < tol X Liter—1 then
return Oy = (F&k,ﬁkﬂk,ﬁk,ﬁ-ﬁkﬁk,ﬁka Ek)
end if
end for

miss

kel
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Procedure 2.2 Classification procedure on continuous data : Prediction step

Input: Unlabelled dataset P™ and learned parameters e

Output: Predicted labels zPred

~ ~ ~ pmiss Nmmiss ~

Update a;i, 5jk, ,u;ck , 2 ) Tjk
~pred
J

return zP™9 such that each 22 = arg max Tk
€

For the classification experiment, results are shown in Figure 2.12. Without missing data,
both algorithms perfectly classify the 42 radar emitters. When the proportion of missing values
increases, the proposed model outperforms comparisons algorithms and achieves an accuracy of
85% for 40% of deleted values whereas the accuracy of NN and KNN is lower than 50% with
or without missing data imputation. As for the RnF, it outperforms both NN and KNN by
achieving accuracies of 67% and 72% with standard imputation methods for 40% of deleted val-
ues. This higher performance of the proposed model reveals that the proposed method embeds
a more efficient inference method than other imputation methods. That result is confirmed on
Figure 2.12 where comparison algorithms are applied on data reconstructed by the proposed
model. Indeed when the proposed inference is chosen, performance of NN and KNN increase
up to 80% for 40% of deleted values and the RnF has almost the same performance than the
proposed model. The Figure 2.12 also reveals that the proposed approach is more robust to miss-
ing data since it has a lower variance than other algorithms and imputation methods. Finally,
this efficiency is shown on Figure 2.13 where the proposed model exhibits a lower mean-squared
error for missing data imputation than the mean and KNN imputation methods. Effectiveness
of the proposed model can be explained by the fact that missing data imputation methods can
create outliers that deteriorate performance of classification algorithms whereas the inference on
missing data and labels prediction are jointly estimated in the proposed model. Indeed, em-
bedding the inference procedure into the model framework allows properties of the model, such
as outliers handling, to counterbalance drawbacks of imputation methods such as outlier creation.

Concerning the computational burden of the proposed approach, Figure 2.14 shows the evo-
lution of computing times taken by model learning of the proposed model and comparison al-
gorithms according to different numbers of observations. Considering that the learning of the
proposed model is done offline and that its code can be drastically optimized since it is only
developed under Matlab, the computational burden of the proposed approach is acceptable. In-
deed the proposed model is ten times slower than the RnF but shares similar computing times
with the NN when the number of observations increases. Moreover, once the model learning has
been performed offline, predictions can be done online in real time.

2.4.3 Clustering experiment

The clustering experiment is composed of two experiments that aim to exhibit the clustering
ability of each algorithm according to an a priori number of clusters K € {Kyin, - .., Kmax}- As
developed in the previous chapter, the clustering algorithm is decomposed into two parts. First,
a semi-supervised classification is performed for each K ranges from Ky to Knax to estimate
variational parameters of ¢(®,h) in (2.26) and labels of data in a mixture of K components.
Then, the value of K that maximizes the lower bound (2.25) is retained as the posterior number
of clusters as well as its associated parameters. According to the dataset visualised in Figure
2.11, Kin and Kiax are set to 12 and 72 in order to evaluate the impact of the a priori number
of clusters on data clustering. Parameters of DBSCAN are set to Minpts = 4 and eps = 8e-3
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Classification performances
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Figure 2.12: Classification performance are presented for the proposed model (PM) in blue, the NN in red,
the RnF in green and the KNN in cyan. The solid lines represent the average accuracies with discarded
observations for the NN, the RnF and the KNN, the dashed lines stands for the average accuracies with
mean imputation for the NN, the RnF and the KNN whereas the doted lines shows average accuracies
with KNN imputation. Shaded error regions represent standard deviations of accuracies.
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Figure 2.13: Mean-squared errors of missing data imputation methods are presented in blue for the
proposed model, in red for the NN and in cyan for the KNN. Solid lines are average mean-squared errors
and shaded error regions represent standard deviations of mean-squared errors.
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3 Evolution of computing times
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Figure 2.14: Evolution of computing times taken by model learning for Random Forests (RF), K nearest
neighbors algorithm (KNN), Neural Network (NN) and the proposed model (PM).

Procedure 2.3 Semi-supervised classification procedure on continuous data

Input: Unlabelled dataset & and number of classes K
Output: Labels z and parameters ©
Initialise ko, Y0, M0 » Ko, 20, Do, 70, So and go
for iter = 1 to itermax do i
Update djlm /lem /:L;E];nlss, z , 7:]‘]€
Update R, Tk, Vs Dks Trs Sks Gk, Pogy 2k
Calculate the lower bound £
if Liter — Liter—1 < tol X Liter—1 then
return © = (Rk,ﬁk,ﬁlk,ﬁk,fh Sk, Qs Py, ik)kelc and z such that each z; = arg rl?ealé( Tk
end if
end for

Procedure 2.4 Clustering procedure on continuous data

Input: Unlabelled dataset & and a priori range of numbers of clusters K € {Kpin, - - -, Kmax}
Output: Labels z, parameters © and optimal number of clusters K
for K = Kin to Kp.x do
Perform semi-supervised classification with K classes
Stock labels 2, parameters @" and LK
end for i ~
return 25 and ©" such that K = arg max LK
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Table 2.2: Initialisation of hyper-parameters values for clustering on continuous data

Ko 1o Yo Po To Go So
0.5 100 4 1 1 1 1

by using an heuristic proposed in the original paper [EKS1T96]. A supervised initialisation is
retained for the proposed model due to its sensitivity to initialisation. It consists in initialising
prior component means p from results of a k-means algorithm and prior component covariance
matrices ¥ from diagonal matrices whose diagonal elements are variances of observed features.
Since comparison algorithms do not handle observations with missing values and do not provide
a clustering result for them, missing data are either discarded and gathered in a reject class or
completed thanks to the mean and KNN imputation methods before running these algorithms.
For each experiment, hyper-parameters are initialised as in Table 2.2 and 100 simulations are
performed to take into account randomness of data deletion.

The first clustering experiment aims to determine the ability of each algorithm to restore the
true clusters according to an a priori number of clusters K € { Kpin, - .., Kmax}. Performance are
evaluated through the Adjusted Rand Index (ARI) [HAS85] that compares estimated partitions
of data with the ground-truth. Results of the first experiment on realistic data are shown in
Figures 2.15 and 2.16. Without the presence of missing values, performance of DBSCAN and
the proposed model are similar with an ARI of 97% (Figure 2.15) whereas the k-means algorithm
ARI reaches 95% (Figure 2.16). When the proportion of missing values increases, the proposed
model outperforms both DBSCAN and k-means and achieves an ARI of 87% for 40% of deleted
values whereas the ARI of comparison algorithms is lower than 30% with standard missing data
imputation. This higher performance reveals that the proposed method embeds a more efficient
inference method than other imputation methods. That result is confirmed on both Figure 2.15
and Figure 2.16 where DBSCAN and k-means are applied on data reconstructed by the proposed
model. Indeed, performance of both algorithms increase up to 77% and 69% for 40% of deleted
values when the proposed inference is chosen.

The second experiment tests the ability of each algorithm to find the true number of clusters
K among {Kmin, - - -, Kmax}. The lower bound (2.25) and the average Silhouette score [KR09]
are criteria used to select the optimal number of clusters for the proposed model and the k-means
algorithm. Indeed, the ARI can not be used since it requires the ground-truth and DBSCAN
automatically selects a number of clusters for a given dataset. Results of the second experiment
on realistic data are visible on Figures 2.18 and 2.17. Figure 2.18 shows the evolution of the
number of clusters estimated by DBSCAN according to different proportions of missing values
and imputation methods. Since DBSCAN automatically estimates the number of clusters and
manages outliers by creating new clusters, results on Figure 2.18 can be used to evaluate perfor-
mance of imputations methods. For mean and k-NN imputation methods, DBSCAN estimates
a number of clusters greater than 140 as proportion of missing values is equal or greater than
5%. When DSBCAN is run on the posterior reconstruction (2.37), the estimated number of
clusters stays under 50 until 20% of missing values and reaches 70% for 40% of missing values.
These performance indicate that the proposed approach creates less outliers than other imputa-
tion methods by providing a more robust inference on missing data since DBSCAN localizes less
outliers in the posterior reconstruction (2.37) than in standard imputation methods. Figure 2.17
presents numbers of clusters selected by the lower bound and average Silhouette scores for the
proposed model and k-means algorithm according to different proportions of missing values and
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; Performances of DBSCAN
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Figure 2.15: Performance of the proposed model compared with DBSCAN for K = 42 according to
different proportions of missing values and imputation methods on realistic data.
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Figure 2.16: Performance of the proposed model compared with k-means algorithm for K = 42 according
to different proportions of missing values and imputation methods on realistic data.
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Estimation of the number of clusters
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Figure 2.17: Estimation of the number of clusters using the lower bound (LB) and the silhouette score
(S) for the proposed model and only the silhouette score (S) for the k-means algorithm.

imputation methods. Without missing data, the correct number of clusters (K=42) is selected
by the two criteria for the k-means algorithm and the proposed model. In presence of missing
values, the average Silhouette score always selects K = 72 when the k-means algorithm is run
on data completed by standard imputation methods. When, the k-means algorithm performs
clustering on the posterior reconstruction (2.37), the average Silhouette score correctly selects
K = 42 until 15% of missing values and chooses K € {62,72} when the proportion of missing
values is greater than 20%. Eventually when the proposed model does clustering, the two criteria
select the correct number of clusters K = 42 for every proportion of missing values. These results
show two main advantages of the proposed model. As previously, the proposed model provides
a more robust inference on missing data since the average Silhouette score chooses more repre-
sentative number of clusters when the k-means algorithm is run on the posterior reconstruction
(2.37) than on data completed by standard imputation methods. Furthermore, since the lower
bound criterion also selects the correct number of clusters as the average Silhouette score, it can
be used as a valid criterion for selecting the optimal number of clusters and does not require extra
computational costs as the Silhouette score since it is computed during the model parameters
estimation. Finally, the proposed approach provides a more robust inference on missing data
and a criterion for selecting the optimal number of clusters without extra computations.

Figure 2.19 shows the evolution of computing times taken by model learning of the proposed
model and comparison algorithms according to different numbers of clusters and observations. As
the model learning in Subsection 2.4.2, clustering is only performed offline to extract information
from radar signals recorded during operational missions. Even if the proposed method is ten times
slower than the k-means algorithm, the computational burden of the proposed approach is still
acceptable and meets operational requirements.

48



CHAPTER 2. CONTINUOUS DATA

200 Evolution of the number of clusters
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Figure 2.18: Estimation of the number of clusters by DBSCAN according to mean imputation, k-NN
imputation and posterior reconstruction of the proposed model.
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Figure 2.19: Evolution of computing times for DBSCAN, k-means algorithm (KM) and the proposed
model (PM).
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2.5 Conclusion

In this section, we propose a mixture model to classify and cluster radar emitters. Radar signals
are often partially observed due to imperfect conditions of acquisition and deficient hardwares.
Therefore to account for missing data and outliers, a scale mixture of Normal distributions,
known for its robustness to outliers and its flexible framework for classification and clustering,
is chosen. Moreover, thanks to the introduction of latent variables, the proposed model can
infer on missing data. Since the posterior distribution is intractable, model learning is processed
through a Variational Bayes inference where a variational posterior distribution is proposed for
missing values. Experiments on various real data showed that the proposed approach handles
both outliers and missing values and can outperform standard algorithms in classification and
clustering tasks. Indeed the main advantage of our approach is that it allows properties of
the model, such as outliers handling, to counterbalance drawbacks of imputation methods by
embedding the inference procedure into the model framework.
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Chapter 3

Mixed data

Continuous data describing radar emitter waveforms such as the Carrier Frequency, the Pulse
Width and the Pulse Repetition Interval have been previously taken into account in order to
cluster radar emitters. Nonetheless, these continuous features are frequently modulated to
enhance functions of the radar emitters. Therefore, these modulations can be exploited as
categorical features to cluster radar emitters. According to types of modulations, a dependence
structure can be established to model conditional relations between continuous and categorical
features. This dependence structure is then included into the previous mixture model to take
advantage of specific patterns related to each radar emitter. This chapter contains four sections
which focus on the integration of mixed data to enhance classification and clustering
performance. Section 3.1 presents assumptions on continuous and categorical features of radar
emitters. Section 3.2 introduces the dependence structure of mixed data and the proposed
model. Section 3.3 details the inference procedure for the estimation of parameters related to
the proposed model. At last in Section 3.4, various experiments are carried out to exhibit
performance of the proposed approach.
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CHAPTER 3. MIXED DATA

3.1 Data

In this chapter, data consist of J pulses gathering J continuous features x, = (x4;)jes and
J categorical features . = (%.j)jcs from K distinct emitters. Let x; = (x4, z.;) the j
observation vector of mixed variables where

e I, € R? is a vector of d continuous radar features such as the Radio Frequency, the Pulse
Width and the Pulse Repetition Interval,

0 —1

oy T

modulations, pulse-to-pulse modulations or scanning types.

® .= (a: ) € C, is a vector of g categorical radar modulations such as intrapulse

Radar features and distributions related to continuous and categorical data are presented in the
following subsections.

3.1.1 Assumptions on continuous data

In this subsection, continuous radar features are first recalled from the previous chapter. Then,
the distribution of continuous data is presented.

Radar Features

As in the previous chapter, continuous features of a radar emitter are extracted from its Pulse
Description Words (PDW). Each PDW gathers the radio frequency (RF), the pulse width (PW)
and the pulse repetition interval (PRI) of a given pulse in the radar signal pattern. These
continuous features are exhibited on Figure 3.1.

T T T T T T T T

TOA L | PRI |

H
) \ '

0151 FFT —RF Bl

Amplitude

L L L L L L L L
0.04243  0.04244  0.04245  0.04246  0.04247  0.04248  0.04249  0.0425  0.04251
Time (s)

Figure 3.1: Acquired pulses from a radar emitter where the three features (PRI,PW,RF) are shown on
the figure.

Distribution of continuous features

The continuous features of the j* observation are modeled through Ty € R? which is a vector
of d continuous variable distributed according to a multivariate normal distribution with mean
and variance parameters (u, ). Indeed through its properties, the multivariate distribution can
enhance the dependence structure between continuous variables in order to handle outliers and
missing values.
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Outliers Outliers for continuous data &, = (24;)jes are handled as the previous chapter by
introducing the scale latent variables u = (u;);jes such that

Tgjluj ~ N(wqj!uau;lfl) )

Vi e J,
jed uj ~ Glujla, B)

where each u; follows a Gamma distribution with shape and rate parameters (a, ) € R*T x R**.

Missing values Since continuous data @, = (x4;)jecs can be partially observed, they are
decomposed into observed features m;’bs = (mgz?s)je g and missing features x"* = (2y}™) e
such that

miss

. _ [T : miss ,,obs dmiss dobs miss obs __
VieJ, xqj_<wqo]bs> with (7™, g;*) € R x R% and dj"™ +d;™ = d ,
q)

miss
qj
features a:g;?s. Then, properties of the multivariate normal distribution leads to obtain two normal

distributions for observed and missing features such that

miss obs
where RY and R% , are disjoint subsets of R embedding missing features and observed

miss

miss miss s x
@™~ N (g™t BT ,

q7 q)
VJ € \7’ mobs N N mobs| mgbs 2)wgbs
qj aj | ’
where
xiss __ . miss covyobs™! obs obs
pt o= pt NN (wqj — K )
obs
x obs
Bt = po,

miss

»rgt — zmiss _ Zcovzobsflzcov’
~1
szbs _ <z:0bs1 +92x Eobsflzcov’ (Ew{;‘iss)_l zcovzobsl)

and parameters (u, ) are decomposed as follows
Hmiss
n= ( Mobs ’
Emiss ycov
3= <Ecov’ Eobs) :
3.1.2 Assumptions on categorical data
In this subsection, categorical radar features are first introduced. Then, the distribution of
categorical data is presented.

Radar Features

Categorical radar features are mainly related to continuous radar features since they describe
modulations of a radar emitter pattern. Depending on the nature of continuous features, different
types of categorical features can be taken into consideration. Considering the continuous fea-
tures RF, PRI and PW of a radar emitter, categorical features are modulations related to these

93



CHAPTER 3. MIXED DATA

quantities. Then as regards a pattern of pulses, modulations of RF, PRI and PW are called
pulse-to-pulse modulations when they are applied on a group of pulses whereas modulations of
RF are called intrapulse modulations when they are applied on single pulses. These two families
of modulations are used by radar emitters to achieve a common goal. Indeed, both families of
modulations aim to obtain a higher resolution of targets by reducing ambiguities related to target
range and target velocity. Furthermore, intrapulse modulations also focus on avoiding identifica-
tion of radar emitters since they enable the minimization of these ambiguities even in presence of
noise. Considering amplitudes of a radar emitter, the related categorical feature is the scanning
behaviour of the radar emitter. These three types of categorical features are presented below.

Pulse-to-pulse modulations Pulse-to-pulse modulations consist in modulating parameters
of a group of pulses to minimize ambiguities related to range and velocity. They are mostly
applied on RF and PRI parameters through deterministic and random patterns. These various
patterns are defined below for parameter values (p;)i<i<n of a group of n pulses and are also
visible in Figure 3.2.

Constant modulation When there is no modulation, all values (p;)i<i<n are identical
such that
Vie{l,...,n}, pi=v

where v is a constant.

Slide modulation When parameter values (p;)i1<i<p are sliding, they are linearly modu-
lated around a nominal v value such that

Vie{l,...,n}, pi=axi+v

where a and v are the slope and the intercept of the linear function.

Dwell and Switch modulation When parameter values (p;)1<i<p are piecewise constant,
the emission of the n pulses is known to be dwelled or switched. Hence, for J disjoint subsets V;
forming a partition of {1, ..., n}, parameter values p; are dwelled or switched if they are constant
on each Vj such that

J
Vi € {1, . ,n}, pi = ZijiEVj
j=1
where v; is the value of the piecewise V;.

Stagger modulation The emission of the n pulses is staggered when parameter values
(pi)1<i<n are distributed according a sequence of ¢ moments (vy, ..., v,) such that

Vie{l,...,n}, pi = vng)

where m : {1,...,n} — {1,...,q} is a surjective application associating moments to parameters
values. If m produces a periodic sequence of the ¢ moments, the stagger is regular.

Wobble modulation The emission of the n pulses is wobulated when parameter values
(pi)1<i<n are repetitively modulated through a periodic pattern such that

vie{l,...,n}, pi = f(p:)

where f is a periodic pattern usually chosen as a sinus wave or a triangular wave.
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Figure 3.2: Examples of different modulations of parameter values. Figure (a) shows no modulation of
parameter values. Figure (b) introduces sliding values on sequences of 5 pulses. Figure (c) exhibits a
sinusoidal wobulated emission. Figure (d) presents a dwelled emission shaped with 5 piecewises. Figure
(e) shows a staggered emission composed of 5 moments distributed according to a sequence mapped on 10
pulses. At last, Figure (f) presents a jittered emission where parameter values are normally distributed.

Jitter modulation The emission of n pulses is jittered when parameter values (p;)i<i<n
are randomly generated around a nominal value v. Jittered emissions are commonly Gaussian
such that

Vie{l,...,n}, pi=v+e

where v is the nominal value and € ~ NV(0,0?) is a Gaussian noise.

Intrapulse modulations To avoid identification of operating radars by ESM systems, radar
designers have developed Low Probability of Intercept (LPI) waveforms. Theses waveforms are
either frequency-modulated or phased-modulated in order to improve resolution for the radar
emitter at the expense of a suboptimal signal-to-noise ratio (SNR) [LMO04]. In other words,
theses pulse modulations enable the maximization of the target range and the range resolution
of radars. On the contrary, ESM resolution is less accurate since LPI signals are embedded in
much noise and the identification task can be compromised. Intrapulse modulations are presented
below.

Frequency Modulation Signal By spreading energy over a modulation bandwidth, Fre-
quency Modulation (FM) signals provide a better range resolution than constant frequency sig-
nals. A Linear FM (LFM) signal, also known as a chirp, is obtained by swepting linearly the
frequency band during the pulse duration. However, the LFM can involve relatively high au-
tocorrelation sidelobes. Therefore to counter that drawback, Nonlinear FM (NLFM) [Cos84]
signals are used to provide a more accurate spectrum which is shaped by deviating the constant
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Figure 3.3: Linear Frequency Modulation on a pulse. The Figure (a), respectively Figure (b), shows a time
domain representation, respectively a frequency domain representation, of a linear frequency modulation
signal.

Table 3.1: All known binary Barker codes

Code length Code
2 11 or 10
3 110
4 1110 or 1101
5 11101
7 1110010
11 11100010010
13 1111100110101

rate of frequency change. That non linear variation results in spending more time at frequencies
that need to be enhanced and in avoiding high autocorrelation sidelobes.

Phase Modulation Signal Phase coding is one of the first methods for pulse compression.
The concept rests on dividing a pulse of duration 7" into M bits of identical duration t; = % and
assigning a different phase value to each bit. The main advantage of phase coding over frequency
modulation is low peak side lobe level [LM04]. Barker codes [Bar53] are the most famous family
of phase codes gathering 13 known binary sequences which were reported by [Bar53] and [Tur63]
and are given in Table 3.1. Other polyphase codes such as the Frank code [FZH62] and the
Zadoff code [Z163] are widely used for pulse compression. Figure 3.4 exhibits an example of
pulse compression with a Zadoff code.

Scanning types A radar emitter can truly differ from another one through its scanning pat-
tern. While searching for targets across the environment, its beam steering can behave differently
depending on its antenna shape, its composition and its mission. The most common scanning
types are presented below and illustrated on Figure 3.5.

Circular Scan A circular scanning radar is a constant rotational scanning radar that pro-
vides accurate target range and azimuth information. It uses an antenna system that continuously
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Figure 3.4: Phase coding generated from a Zadoff code.

scans 360° in azimuth making it ideal for the roles of early warning and initial target acquisition.

Sector Scan A sector scanning radar is a radar which scans unidirectionally or bidirec-
tionally in a delimited sector. For example, the helical scan is a unidirectional scan pattern that
enables a “pencil” beam to search a 360° pattern. As a bidirectional scan, the raster scan uses a
thin beam to cover a rectangular area by scanning in azimuth and elevation.

Track-While-Scan (TWS) A track-while-scan (TWS) system generates two or more dis-
tinct radar beams that enable a radar to track multiple targets while scanning for others.

Electronic Scan An electronic scanning radar provides a computer-controlled scanning in
which radar beams are electronically steered to point in different directions without moving the
antenna.

Distribution of categorical features

The categorical features of the j** observation are modeled through Tej = (a:(c)j, e ,xgj_l) € Cy
which is a vector of ¢ categorical variables where C; = Cp x ... x C4—1 is the tensor gathering
each space C; = {mﬁ, e ,m‘icil} of events that wij can take Vi € {0,...,q — 1}.

As continuous data x4, categorical data . = (j)jes can be partially observed. Hence x.

are decomposed into observed features a2 = (:Bg;”) jes and missing features xMs = (:cg;iss) jeg
such that

qpiniss . b . b
VieJ, Tej = | s | With (2], 2)®) € Cpmiss X Cpons and ¢; +¢77° = ¢ ..

ascj J J

miss

cj - and observed

where Cjmiss and Cgons, are disjoint subsets of C4 embedding missing features
J J

obs

features xy;®.

If each categorical feature xf:j of the j*" observation x.; is assumed to be independent from
other features and distributed according to a categorical distribution, a dependence structure
between features cannot be modeled and inference on missing categorical features cannot be
handled. Hence, a multivariate categorical distribution integrating a dependence structure for
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Figure 3.5: Different scanning types from [AWT18]. Sketches on the left illustrate scanning behaviours
over the scanning period. Graphics on the right represent the evolution of pulse amplitudes over the
scanning period.
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x.j is proposed to tackle that issue. As detailed below, x.; follows a multivariate categorical

distribution MC(x.j|m) if
5
plxe) = ] 7e ™ (3.1)

ceCy
where Ve = (%,...,c07 1) €Cp=Cox ... x Cyq :
S m-t,
ceCy
.0 0 g—1 _ g—1
¢ 11fa;cj—c,...,xcj =
Tej

0 otherwise

Noting that the dependence structure between categorical features is modeled through Kronecker
symbols (5§cj)c€cq, this dependence structure can be exploited to handle missing features such
that the multivariate categorical distribution in (3.1) can be written as

less’cobs

miss ’wobs

miss ,0bs) __ Fej cj
p(wC] 7xcj ) - H ﬂ-cmiss’cobs
Cmiss’cobsec'qr.niss XCquS
J J
where . ‘ . .
: miss __ _,1iss obs __ _,0Ds
Cmiss,CObS o 1if LUCj =C and l'cj =cC . 5cmiss 5Cobs
wmiss wobs - . — Ugpmiss X zol_)s . (32)
i Pe 0 otherwise cj cj

By using the previous equality (3.2), the multivariate categorical distribution in (3.1) becomes

cl'l’llSS
pmiss

. b 2obs <
p(wg;,lss’ w(c)j S) = H H chciis7cobs (33)

cmiss ecqmiss cobs GCqus
J J

cobs

Therefore, a marginal distribution for observed features accc’;?s and a conditional distribution for

missing features £ are obtained from (3.3) such that

<)

obs

6;0bs

cj

obsy __ } : miss obsy __ } : .
p(a:C] ) - p(wc] 7a:cj ) - H ﬂ-cmlssycobs s
wrcr;_lssecqmiss CObSECq;?bs lessecq;}‘liss
miss
cObs 6;miss
zobs ej
cj
miss ,,0bs .
miss obs _ p(ij 7wcj ) _ Wcmlss7cobs
plamsjaer) = PEE T L
(wo.s) Z T miss ~obs
p c) emisscC Lo CObSEC b . CHHsS, cobs
q§mbb qa;7® lessecq',“iss
J
(3.4)
Then, a multivariate categorical distribution for missing features x¢;" conditionally to observed

features azg;?’s is deduced from (3.4) where V(c™5, c°>) € C gmiss X C ovs
J J

Trcmiss,cobs
Z ﬂ—cmiss 7cobs

cmiss cC miss
%

miss __ miss|mobs
c)

p(mq —c obs) _

=C
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With 7emiss cobs the joint probability 7. defined in (3.1) for ¢ = (™5 c°P%). Outliers are not
considered for categorical data since in our case only reliable categorical variables are filled in
databases and unreliable ones are processed as missing data.

3.2 Model

In this section, K emitters presenting mixed data are considered. Therefore, the main objective
is to develop a mixture model which can build K distinct clusters even in presence of outliers and
missing values. Before introducing a mixture model that handles mixed data, state-of-the-art
mixture models for mixed data are reviewed. Then, component distributions for mixed data are
defined and the mixture model is developed into a Bayesian framework.

3.2.1 State of the art

Two families of models emerge from finite mixture models fitting mixed-type data :

e The location mixture model [LK96] that assumes that continuous variables follow a multi-
variate Gaussian distribution conditionally on both component and categorical variables.

e The underlying variables mixture model [Eve88] that analyzes data sets with continuous
and ordinal variables. It assumes that each discrete variable arises from a latent continuous
variable and that all continuous variables (observed and unobserved) follow a Gaussian
mixture model.

These two families are first detailed before introducing the retained approach.

Location Mixture Model

[LK96] introduced a location mixture model by assuming that the continuous variables are dis-
tributed as a finite mixture of Gaussians conditionally on the categorical variables. In other
words, a Gaussian mixture exists for the continuous variables and its component mean vectors
depend on the specific combination of categories modeled by the categorical variables. As pointed
out by [WB99] the mixture of location models is not identifiable without imposing some con-
straints on the mean parameters of the Gaussian distributions. This is due to the indeterminacy
of class memberships at each location. Even if all within component dependences are taken into
account, we note that each combination of categories identifies a set of clusters. It follows that
the total number of clusters can be unnecessarily large. A more parsimonious model is given by
[HJ99], according to which the variables are decomposed into conditionally independent blocks
containing a set of continuous variables or one categorical variable. This generally works as well
as the within-independence assumption is realistic, and we know that there are cases where it is
not. However, the local independence assumption represents a strong limitation, since it could
lead to a solution with too many clusters, as shown by [VM02]. By relaxing this assumption, a
simpler solution with a lower number of groups can be obtained yielding a better classification.
An even better classification can be reached by assuming different dependences in each group.

Underlying Variables mixture model

[Eve88] and [EM90] proposed a model according to which both the continuous and the categorical
ordinal variables follow a homoscedastic Gaussian mixture model. However, as regards the ordinal
variables, the mixture variables are only partially observed through their ordinal counterparts.
In other words, the ordinal variables are modeled following the Underlying Response Variable
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(UVR) approach. This satisfies the two main requirements: dealing with ordinal data properly
and modeling dependences between ordinal and continuous variables. It is interesting to note
that this model can be rewritten in terms of copulas [MBV17]. The main drawback of this model
is that, in practice, it cannot be estimated through a full maximum likelihood approach, due to
the presence of multidimensional integrals making the estimation time consuming. In sight of
this, [Mor12] proposed a model-based clustering for mixed binary and continuous variables: each
binary attribute is generated by dichotomizing a latent continuous variable, while the scores of the
latent variables are estimated from the binary data. The estimated scores of the latent variables
and the observed continuous data follow a multivariate Gaussian mixture model. Thus the
estimation is carried out in two steps where the scores for binary data are firstly estimated before
estimating the parameters of the mixture model. Eventually, [RR17] proposed a model with
no local independence or conditionally independent blocks assumption where the dependences
between variables can be easily measured by adopting the URV approach for the ordinal variables
and assuming that each component of the mixture follows a multivariate normal distribution such
that the corresponding covariance matrices capture all the dependences regardless the nature of
variables.

Retained approach

In this work, the location mixture model approach is retained since it better models relations
between continuous and categorical radar features. Indeed, a radar pattern is mostly designed by
first choosing a pattern of modulation features (categorical variables) to achieve a specific goal
and then choosing continuous features (continuous variables) that meet constraints related to the
chosen pattern and the tactical environment. Hence, continuous radar features are mainly chosen
conditionally to categorical radar features and the location mixture model naturally responds
to that dependence structure by assuming that continuous variables are normally distributed
conditionally to categorical variables. Moreover, the local independence assumption proposed by
[HJ99] is not retained in order to take advantage of the dependence structure between continuous
and categorical data to infer on missing data.

3.2.2 Assumptions on mixed data

In this subsection, a joint distribution for mixed data is introduced to model the dependence
structure between continuous and categorical data. Then, outliers and missing values are tackled
by taking advantage of the joint distribution.

Distribution of mixed data

Considering that the retained approach focuses on conditioning continuous data xq = (x4;)jes
according to categorical data x. = (x;)je 7, the following joint distribution is introduced

Vi €T, p(@g,@e) = [[ (TN (2q5ltie, 2)) ™ (3.5)
ccCy

where continuous variables x,; are normally distributed according to categorical variables x.;
with means (p.)cec, and variance 3. As for categorical variables ., they are jointly distributed
according to the multivariate categorical distribution defined in (3.1) and parametrized by 7 =
(m¢)eec,- Indeed, these conditional and marginal distributions can be obtained from (3.5) as
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follows :
5.,
p@e) = [ D@y @e)omy = [] 7 = MClag|m)
ceC
vjeJd, o ' (3.6)
p(xgjlTej) = # H N ( (Tgjlttes ) wej .
p(xcj) ceCy

Outliers

As developed in Section 3.1, outliers are only considered for continuous data x, = (x4;)jes
and they are handled as in subsection 3.1.1 by introducing scale latent variables u = (u;)je.
Nonetheless, the latent variables u are introduced conditionally to categorical data . due to the
dependence structure established in (3.5) and (3.6) such that

60
-1 T
mQj|uj7ij ~ H N (mqj“l’muj 2) “ )

ceCy

oS .
uj|$cj ~ H g(“jb‘caﬁc) Fei

ceCy

Vi e J,

where each u; follows conditionally to categorical data x.; a Gamma distribution with rate and
shape parameters (ag, 8c) € R*T x R*T.

Missing Data

Both quantitative and categorical data (x4, Z¢;)jes can be partially observed. Hence (45, Zcj) jes

are decomposed into observed features (:CZ?S, x‘c);?s) jeg and missing features (:cg}iss, w?}iss) jeg such
that
R x(r]r}lss ith Inle obs Rd;"iss Rd?bs d dmiss dobs —d
Tgj = | obs | Wi (g™ xg;") € X and dj"™ +dj> = d
) qj
Vj € "7’ mlss b b
wcj = ObS Wlth ( mlSS ngs) 6 Cq;ﬂlbb X C obs and qmlSS + q]O S = q .
cj

where (R%" iss,cqt_niss) and (Rdgbs, Cyobs ), are disjoint subsets of (R4, C,) embedding missing features
J J

miss ,,miss obs ,.obs
(g™, x¢;™) and observed features (z(;°, g;®).
o : miss __ miss) . : :
Missing continuous data g™ = (:cqj )jes are nearly handled as in subsection 3.1.1 by

taking advantage of properties of the multivariate normal distribution to obtain a distribution
for missing values. The only difference with the subsection 3.1.1 lies in the fact that continuous
data are also distributed conditionally to categorical data x. due to the dependence structure
established in (3.5) and (3.6). Hence, the following distributions are obtained

c

miss 63: ;
miss obs miss s <
Lgj 1Tgj »Lej HN ( ’“]C , 2% ) ’
. ceC
vViedJ, bs b oS .
obs obs obs q xoPs €
o[, T HN ( |,“Jc 3% ) ;

ceC
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where Vj € J, Ve € Cy -

mmiss . 1
q __ . .1miss cov yobs obs obs
ll’jc = M, +2 b (mqj — M ) )
wobs

q __ ,,0bs
I“l’jc _IJ’C )

miss

x miss covyrobs ™! §rcov’
»2g — yymiss _ yycovyrobs ! greov’

obs

nTe <§:0bs_1 +9x% Eobs_lzcov’ (zmg‘iss)_l Ecovzobs_l)

Regarding missing categorical data, they are handled as in subsection 3.1.2 such that missing

features :cgj‘-iss follow a multivariate categorical distribution conditionally to observed features

ngbs where V(c™$s, c°P%) € C gmiss X € ovs
J J
7rcmiss7cobs

) Z 7TCmiss 7Cobs
c™SSeC s
%

miss miss| ,,obs
L |a;.

p(mcj =cC c) = CObS) =

With 7 miss cobs the joint probability 7. defined in (3.5) and (3.6) for ¢ = (¢™5, ¢°).

3.2.3 Proposed model

In this subsection, the retained approach is developed into a Bayesian framework where the
proposed mixture model handles mixed-type data. Component distributions of clusters are first
introduced before detailing the proposed model and its Bayesian framework.

Component Distribution

Assuming independent labels z = (zj)jcs for continuous and categorical observations & =
(), xcj)jeg and according to assumptions on mixed data defined in subsection 3.2.2, a compo-
nent distribution for each cluster k£ € K is obtained as follows

VjieJ, Yk e, p(xjluj, zj = k) = p(xgjluj, Tcj, 25 = k)p(xejlz; = k),
where
1 0%e;
P(@qilug, @es, 2 = k) = [T N (@gslbteruy ' S) 7

ceCy

c

oS
p(xejlz; = k) = H 77,;26” .
ceCy

Finally, the complete component distribution for each cluster k € K results in

c

05
\V/j € \77 Vk € IC7 p(wj,Uj|Zj = k) = H (chN (mqj|ukcau;12k) g(“jb‘koaﬁkc)) “ s (37)
ceCy

with

e u = (uj)jcy the scale latent variables handling outliers for quantitative data x, and dis-
tributed according to a Gamma distribution with shape and rate parameters

(e, B) = (Qke, Bre) (k,e)ek xCy

o (1,X) = ((Me)eecy» Bk)rex the mean and the variance parameters of quantitative data
x, for each cluster,

o ™ = (my)rex the weights of the multivariate Categorical distribution of categorical data
x. for each cluster.
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Figure 3.6: Graphical representation of the proposed model integrating mixed data. The arrows represent
conditional dependencies between the random variables. The K-plate represents the K mixture com-
ponents and the J-plate the independent identically distributed observations (z;, @;)jes decomposed
into quantitative data (xz,;)jes and categorical data (x.j);e7, the scale variables u; and the indicator
variables z;. Known quantities, respectively unknown quantities, are in blue, respectively in red

Mixture model

Recalling that p(z; = k) = a;, where a = (aj)krex are the weights related to component distribu-
tions, the mixture model is obtained from (3.7) such that Vj € 7,

c

5
p(zj,ui|©) =D ap ] (ch/\/ (wqj|ukcau]12k> Q(Uj|akc,ﬁkc)) “ (3.8)

ke ceCy

where ©® = (a, T, a, B, u, ) is the set of parameters.

Bayesian framework

As in previous chapters, a Bayesian framework is used to estimate parameters ®. Assuming a
dataset @ = (x4, x.) of i.i.d observations (x; = (g, ®cj)jes, independent labels z = (z;)e7
and scale latent variables w = (u;);e7, the complete likelihood associated to (3.8) is defined by

5k
c %

5
p(@ zu®,K) = TT T] | ar T (meeV (@aslisee: uj ' ) Gujlane, Bre)) ™

JEJ kek ceCy

Eventually, the prior distribution required for ® is chosen as

p(®|K) = p(a|K)p(m|K)p(e, BIK)p(p, |K)

where
p(alK) = D(alko) ,
p(w|K) = [T D(mxlmo) ,
ke
P, ZIK) = T TT N (selito,. 5t Zn) TW(Sk o, Zo) |
ke ceCy
p(Oé,BVC) = H H p(ak676kc|p07qm 507T0) .
ke ceCy
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and p(+,-|p, q, s,7) is the prior distribution defined in the previous chapter such that

1 paflefqﬁﬁsa

(3.9)

o— 1e qB s

where p,q,s,7 > 0 and M = [ pi)r]la>(ﬂ[lg>gaﬂaa. Graphical representation of the pro-
posed model is shown in Figure 3.6.

3.3 Inference

Direct inference on the proposed model is not trivial since distributions of latent missing data
and parameters may not be defined when both continuous and categorical features are missing.
To overcome that issue, latent data and parameters are assumed to be independent a posteriori
and their posterior distributions can be defined while keeping dependencies between parameters
of these distributions. Therefore, the Variational Bayes (VB) procedure is processed to estimate
parameters of the mixture model defined in (3.8). Variational posterior distributions are obtained
from the VB Expectation (VBE) and VB Maximization (VBM) steps and a Lower Bound on the
log evidence is defined to master the convergence of the VB procedure.

3.3.1 Variational posterior distributions

As previously, a factorized posterior distribution

g5, u, xS, 2, O|K) = q(a, u, 2", 2|K)q(O|K) is chosen as an approximation of the

intractable posterior joint dlstrlbutlon p(x gliss, w, TS 2, @\mgbs, xoP%, IC) such that latent vari-

ables h = (wgmss w, T2 2) and parameters © are a posteriori independent and

q(h|K) = (g™ |u, 2™, 2, K)q(ulag™, z, K)q(zd™|z, K)q(2(K) ,
4(8[K) = q(alK)q(m|K)q(ex, BIK)q(p, Z[K) -

According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

6E 51‘
1 1 1T Tcj
q( mss‘u xmss ,’C) — H H HN< mlSS|/“"]kC , j 12kq ) J 7

JEJ ke ceC

m1ss 5 3 556'65
qule?™, z,K) =[] TT1 I] 9 (uj|0éjkc,5jkc) R

JET keK ceC

miss IC MC mlss amiss 65]'
Q(wc \z, H H 'r]k
JET kex

q(z|K) = ] Cat(z|7) , (3.10)
jeTJ
q(a|K) =D(alk) ,

= ][ D(=l7x)

kek
a(1, 1K) = TT TT N (Becl e fird ) TW(Skl3n, B
keK ceCy
q(o, BIK) = T T p(ctkes BrelPrs @rs 55 )
ke ceCy
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where the variational posterior distributions of (e, 8) are defined in (3.9). Their respective pa-
rameters are estimated during the VBE and VBM-steps by developing expectations Eg [log p(x, u, z2|©, )]
and Ep, [logp(x, u, z, ©|K)].

3.3.2 VBE-step

The VBE-step consists in deriving the following expectation

1
Ee [log p(x,u, 2|0, K)] Z Z 6k <[E@ [log ay| + Z o (]E@ [log mke] — 2<d(log 21 — logu;)
JjET kek ceCy

+ Ee [log |Zx|] + u;Ee [(m(IJ ﬂkc) 3 l(mCI] M) ) + Eg [ake] Eo [log fe]

4 (Ee [oke] — 1) logu; — Ee [logT(cke)] — u;Ee [Brc] ))
(3.11)

where V(j,k,c) € T x K x Cy :

_ . =l - d
Fe {(% tie) Sy (@) — Nkc)} = (xgj — fire) Wk (Tqj — fipe) + e (3.12)
C

is obtained from properties of the variational distribution ¢(p, 3|K) in (3.10). Hence quantitative
data x4 are distributed a posteriori according to a product of normal distributions conditionally
to categorical data x., latent variables w and labels z such that

c k

N
xg|u, e, 2 ~ H H HN<mqj|chvUj 17k 12k) Fei %

Jj€T ke ceC

Mean parameters (fie) (k,c)ekxc, and variance parameters (7, 13 ) kex of these normal distribu-
tions are obtained from (3.12). By decomposing x, into (zy"*, :cObs) and by exploiting properties
of the multivariate normal distribution, the following variational posterior distribution is obtained

for missing values x;"* :

SS

nuss 6;C 6k
q( InlSS|u mmlss ,IC) — H H HN< mISS|u]kC 7 qu ) J g

JE€T ke ceC
with V(j,k,¢) € T x K x Cy :

_ s COV &Oobs™ b b
q __ ~miss o S obs
Pjre = Bge DY s ( — o) s
miss cov.obs™! & cov’

s _ s _ greovgobs e
k Y
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Then by marginalising over a:fzniss in (3.11), the expectation (3.11) becomes

/]E@ [log p(x, u, 2|0, K)] mlbb = Z Z oF <E@ log ag] + Z ) (E@ [log 7]
JET ke ceCyq
1 - ~emiss
-3 (d;bsaog 21 —logu;) + Ee [log [ S]] — log |5, |
T . xobs_1 d (3.13)
. obs _ ~obs aj obs ~ obs el
+uj (( p’kc) Ek ( Mkc>+ﬁkc)>
+ Ee [ake] Eo [log Bre] + (Ee [ake] — 1) log u;
~ Bo logT(axo)] - 1Ee 31 ) )

with Vk € IC,

. gobs

(22135 192 x 2st EZOV (2:?1%) 2Zovzzbs )
2 Tai —

Vi

Conditionally to x. and z, the scale latent variables w are distributed according to a product of
Gamma distribution whose parameters are obtained by aggregating terms related to u such that

(’U,‘ HllSS H H Hg (u]|a‘]kﬁcaﬁjk‘0) CJ J
JET kek ceC
with V(j,k,¢) € T x K xCq :

dobs
Ajre = Eo [ape] + —J2 :

2. 1 obs ~ obs T & E?S 1 obs ~ obs d
/Bjkc = E@ [ﬁkc] + 5 (( — Mie ) Ek ( ,U»kc ) + % .

Then by marginalising over u in (3.13), the expectation (3.13) becomes

/]E@ [log p(x,u, z|©,K)] 0 mlssau = Z Z ok <E@ [log ax] + Z o (E@ [log Tke]
JET ke ceCq

]_ obs ~ wmiss
-3 (djb log 27 + Eg [log |Zx|] — log |, ° y>
+ Ee [akc] Eo [log Bre] — Ee [log I'(avkc)] (3.14)

+ log F(djkc) — djkc log Bjkc))

_ Z Z sk <E@ log ay] + Z 5ch log pr.e? )

JET kek ceCy

where V(j, k,c) € J x K x Cg,

; 1 ~ pmiss
log p:fj = Eg [log 7| — 5 (d‘]?bs log 27 4+ Eg [log | Xk|] — log IEZE‘ \) + Eo [ake] Eo [log Bke)

— Ee [log T'(ake)] + log T (@jke) — @jke 10g Bjke -
(3.15)
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By decomposing each x.; € C4 into (a:g;iss, m‘c’?s) € Cq;_niss X Cq;_)bs and ¢ € C, into (e, ¢°P%) €

Cymiss X Cpobs, the marginalised expectation (3.14) can be developed as
J J

/ Ee [log p(x, u, 20, K)] 0z 0u = > >~ 6L <JE@ [log a]
Jje€T kek

Cmiss CObS Tcj
+ § 51.2}_iss E 5$2;?S ]-Og pkcmisscobs

) J :
cmissgC Lo cobseC obs
q. (Ij

J
miss wren_iss
= Z Z 55] <]E@ [log ak] + Z 6;2_133 ]-Og Pkcfm'ss>

jej ke Cmissecqmiss
J
(3.16)
where V(j, k, €5%) € J x K X Cypmiss :
J
mrgn_iss obs T
l0g pyemise = D Trone 108 Py chiss o (3.17)
CObSECquS J

J

Hence, a multivariate categorical distribution is deduced for ™ from (3.16) conditionally to
labels z such that

. . _ pmiss §§
o200 = T1 T me (w550 )
S S

and their parameters (i']w,g )(j,k)eg xk are obtained from (3.17) where V(j, k,¢) € J X K X C miss
J

miss

. cj
NEanss pkcmiss
Tjkcmiss - wmjss

cj
Z pkcmiss
cmiss ec miss

J

€T

Finally, variational posterior categorical distributions are obtained for labels z by marginalising
over ™5 in (3.16) such that
/ Ee [log p(x, u, 20, K)] & dude™ = 3~ 3 6 (Ee logax] +log > pZzisms)

jej ke Cmissec miss
J

= Z Z 52 log pjk
JET kekK
(3.18)

where Vj € J, k € K,
wmviss
log pji. = Ee [logay] +log Y p .. (3.19)

cmiss ecqr_niss
J

Hence the variational categorical distributions are deduced from (3.18) and are given by

q(z|K) = [] Cat(z|7)

JET
where probabilities (7;);es are obtained from (3.19) such that Vj € J, k € K,
N Pik
Tik =
! > Pik
kek
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3.3.3 VBM-step

The VBM-step consists in deriving the following expectation

Ep, [log p(z, u, 2, ©|K)] = Ep [log p(x, u, 2|©, K)] + p(6|K)

=3 Y By [of] (logak + 3 B |5, <log7rkc - ;(log|§]k|

jET keK ceCy

+ d(log 2T — Ep, [log uj]) + Ep, [Uj(ﬂﬁqj — o) Sy (@) — /’ch)} )
1 ke 108 Bre + (ke — 1)En [log ;] — log T(ae) — Ep [u;] ﬁkc))

1
+ Z(ﬁok —1)log ag + log cp(ko) — 2((’70 +d+1)log|Xg|
ke

_ 1
+ Trace (202k 1) ) + eow(70. o) + Y 2 (d(log Moy — log 2)
ceCy

— log || — noy. (ukc - uokc)T z ! (ukc - Nokc) ) — log Mo

+ (age — 1) log po — rolog I'(atge) + S00tke 108 Bre — q0Bke

+ (ﬂ-okc - 1) log ﬂ-k‘C + log CD(ﬂ'Ok) 9
(3.20)

where V(j,k,c) € T x K x Cy :

En [j(@g; — 1re) S5 (@) — trie)| = Bn [wy] (B [g5] = paye) " " (B [g,] — paye)

+ Trace (Vh [x4;] E,;l) (32

is obtained from properties of the variational distribution ¢(h|K) with

d%m
Ep [u;] = =
7 Bike
~$;niss
Ep [45] = (”jggs ) )
Lyj

- gpmiss mis: bs
Gty = [ ST 0T
h $q] - Od?bst;—niss Od;?bsxd;)bs

By factorizing terms related to a in (3.20), the following Dirichlet distribution is obtained
q(alK) = D(alk)

where
vk € K, fip = Ko, + Y Bp |35 .
JjeJ
Like the variational distribution of a, variational posterior distributions of 7 are obtained by
factorizing terms related to 7 in (3.20) and are given by

q(w|K) = T[ D(mr|7r)
kek
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where
V(k‘,c) e x Cq, MThe = M0ke T Z Ep, [65]} Ep, [5;6]} .
JjeJ
with Ep, [(5;0]} is obtained by decomposing categorical features into observed and missing features
such that

B (05, ] = 45 x B {6’3222:] .

<cJ

Then, (o, B) are a posteriori distributed according to the distribution defined in (3.9) such that

Q(OQIB‘IC) = H H p(akm/@kc‘ﬁkcachagkcyfkc) )

ke ceCy

where

Pke = Po €XP (Z En 5];] En {550} Ep, [log Uj]) :
JjET
Gke=qo0+ > _ Ep {52 Ep [55%.] Ep [u;] ,
JjeT
Ske =0+ > Ep {52_ Ep, [5§;cj] ,
JjeET
The = T0 + Z Ep [(52} Ep, {5;@} .
JjeJ

By aggregating and factorizing terms related to each p,. in (3.20), a Normal distribution is
obtained for each p;,. such that

q(l‘l‘|z”c) = H H N(“kc’ﬂkc’ﬁlzclzk>

ke ceCy

where Vk € K and Ve € C,
Mhe =Y En {52} En {dicj} En [us] 4 nose »
JjeJ
Y ic7En [5 } Ep [5 ] Ep, [u;] En [245] + 10y b0y,
ﬁkc .

p/kc =

Eventually, variance parameters 3 are a posteriori distributed according to Inverse Wishart
distributions given by

o(ZIK) = [[ DV (Ek 3k Zi)

kel
where
=7+ Y En [52] :
JjeT
Ek = 20 + Z Z Eh [(5k } Eh [(56 } Eh [u]]Eh [$q] Eh a:qj —|— Z Eh [ } Vh xq]]
JEJT c€Cyq jeT
+ Y M0ty B, — Tkelticitie -

ceCy
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3.3.4 Lower Bound

Recalling that the Lower Bound on the log evidence is given by

L(q|K) = Ep e [logp(z, h, ®|K)] — Ep e [log g(h, O|K)] (3.22)

where Ep @ [log p(x, h, ®|K)] is the free energy and Ej g [logg(h, ®|K)] is the entropy of the

approximate posterior g(h, ®|K). The free energy can be developed as

En.e [logp(z, h, ®|K)] = Ene [logp(z, h|©,K)] + Ee [log p(©|K)]

where
Eno [log p(a, h|©,K)] = ; k%% B [of] (]E@ llog ax] + ; En [02,)] <IE@ llog xe]
- 5 (dttog 27 — By log u,)) + o [log 2
+Ene [ui(es; ~ 13e) "5 (20 ~ ye)] ) + Bo [ Ee llog e
+(Bo lare] —~ B llog ]  Ee log T(axe)] — En ;] Ee [frc] ) )
with

En.e [“J‘(wqa‘ — bke) By (w5 — :uk;c)} = Ep [uy] <(Eh [os] = e Sy (B [g5] — fine)

d) ~—1
— | + Trace (Vy, |2, 2
Tk ( h[ qJ]'Yk k)

and

Bo llogp(@)1)] = X (k0, ~ DEe logay] + logen(iso) — 5 (30 + d-+ )Ee [log S
kel

1
+ Trace (ZOE@ {Z,;l}) ) + czw (Y0, Xo) + Z 3 (d(log N0, — log 2m)
ceCy

T —1
— Ee [log [Z|] — n0,..Ee [(Nkc - Hokc) X (Nkc - Nokc)} ) — log My

+ (Ee [ake] — 1) log pg — roEe [log T'(ake)] + soEe [ake] Eo [log Brc]
— qoEe [Bke] + (m0,, — 1)Ee [log mge) + log ep (o) -

with

Ee [(ukc - uo,w)T = (ukc - ﬂokc)} = (ﬁkc - uokc)T%fJ;Z 1 (ﬂkc - Hokc) + ﬁic :

As for the entropy term, the following decompositon is obtained
Ene [logg(h, O|K)] = B [log g™, u, 22, 2|K)| + Ee [log ¢(©|K)]
=E, {log q(w;“iss\u, xS 2 IC)} +E; {log q(u|z™ss, 2, IC)}

+ Ep, [log g(@™|2, K)| + En [log ¢(2[K)] + Ee [log (©|K)]

71



CHAPTER 3. MIXED DATA

where

oo, 2.0] = 5 5 5 5 3 i)

(d;niss (En [log ;]
JET keK ceCy

N

—log2m — 1) — log \f]:qj|> ,

Es, []og q(u’a)mlss } Z Z Z Ep [5k ] Ep { ]} (djkc log/éjkc - logr(d]’kc)

JET keK ceCy

+ (djkc — 1)Eh [log uj] - Bjkth [UJ]) )

B floga(@r™(=, 0] = X 50 %[5 a [oshn | e
jej ke cmissecqmiss <€
J

r [log q(z|K)] ZZEh[ ]logrgk

JjeTJ kek

and

Bo log4(©1K)] = X (71 ~ e log ag] + logen(mi) — 5 (31 +d + 1)Ea llog i
ke

- - 1
+ Trace (EkEe) [251]) ) + e (T, Bk) + Y 2 (d(log fike — log 2)
ccCyq

—Ee [log ‘Ek” LC) [(/J‘kc - [l’kc)T 2};1 (P’kc - [l'kc)] ) — log Mj,
+ (Ee [ake] — 1) 10g Dre — TheEo [l0g ' (ake)] + SkcEo [ake]) Eo [l0g Bic]
— GrcEo [Bre] + (Tre — 1)Ee [log mie] + log ep ()
with
d

- T —— ~
Ee {(ch — fge) > ! (Bge — P’kc)] ==
Nke

3.3.5 Expectations from variational distributions

Expectations developed in variational calculations are derived from properties of variational
posterior distributions and are obtained as follows. Categorical distribution properties lead to

VjeJ, Vk €K, Ve™ € Cmiss :
J
B |05] =,

Cmiss wmlss
Eh |:5:1:m.155:| =T

cj jkcmlSS .
Dirichlet distribution properties lead to
Vk e K, VeeCy:
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where 9(+) is the digamma function. Gamma distribution properties lead to

VieJ,Vke K, VeelCy:

Bjke
En log uj] = 9 (ajke) — 108 Bjke -
Normal distribution properties lead to
VEe K, VeelCy,:
Ee [Bre] = Pye
Eo [prctte] = Vo [tic] + Eo [11c Eo [yl
= Toe D + Biyelthe -
Inverse Wishart distribution properties lead to
Ee [221] =Sy,
e +1—1

d
Eo (og [Suf) = log [£4] - > v (5

) —dlog?2 .
i=1

Posterior expectations of B can easily be computed conditionally to o such that V(k, c) € K xC,

S1..E 1
Ee[Bie] = M ,
ke
Ee [log Bre] = Eo[v (3kctke + 1)] — 108 Gre -

However, expectations depending on «y. are intractable
Bolt (steare + 1)) = [ (Sotre + 1) p(anelres Fre)daee
Eelake] = /Oékcp(akc\ﬁkc,fkc)dakc ;
Ee[logI'(ake)] = /logf(akc)p(akc\ﬁkc,fkc)doékc :

As in previous chapter, the deterministic method introduced by [TKS86] is applied to estimate
these expectations.

3.4 Experiments

In this section, the proposed method is performed on 3 sets of realistic simulated data which
are composed of continuous, categorical and mixed data. For comparison, a standard neural
network (NN), the k-nearest neighbours (KNN) algorithm, Random Forests (RdF) the k-means
algorithm and the DBSCAN are also evaluated. Two experiments are carried out to evaluate
classification and clustering performance with respect to a range of percentages of missing values.
First, characteristics for realistic data acquisition and imputation methods for missing data are
detailed. Then, both experiments are described with their error measure and their performance
are shown to exhibit the effectiveness of the proposed model.
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Continuous Data

RF 0 o0 PRI

Figure 3.7: Dataset gathering 5500 continuous observations from 55 radar emitters. Some clusters are
completely separable whereas some others share features and cannot be linearly separated.

Table 3.2: Categorical features observed in categorical data where 42 different combinations of these
features are shared by the 55 emitters.

Intrapulse Pulse-to-Pulse PRI | Pulse-to-pulse RF Scan
© Barker 13 | ] Dwell | Agility | ¢ Circular
Barker 7 Triangular Dwell Agility Burst Sector
Chirp Complex Diversity None
Diversity HFR FMICW
Double Chirp | Increasing Wobble None
FMCW Jitter
Trapeze Chirp Sinus Jitter
Phase Code Stagger
S Law Wobble
Trapeze None
None

3.4.1 Data

Realistic data are generated from an operational database gathering 55 radar emitters presenting
various patterns. Each pattern consists of a sequence of pulses which are defined by a triplet
of continuous features ¢, = (RF,PW,PRI) and a fourtet of categorical features x. referring to
pulse-to-pulse modulations of RF and PRI, intrapulse modulations of RF and scanning types.
42 combinations of the categorical features are observed among the 55 emitters and they are
composed of modulations listed in Table 3.2. For each radar emitter, 100 observations (mj)}gol
are simulated from its pattern of pulses such that an observation x; = (x4, ;) is made up of
continuous features x,; and categorical features x.; related to one of the pulses. Then, continu-
ous observations are noised by applying a multivariate Gaussian noise with a diagonal covariance
matrix whose diagonal elements are [0%p, 0by, 0pgr;] = [IMHz, 50ns, 1us]. Negative features
issued from the generated noise are thresholded to zero. Hence, outliers are embedded in obser-
vations due to the thresholding step. The dataset is shown in Figure 3.7. Moreover, extra missing
values are added to evaluate limits of the proposed approach by randomly deleting coordinates
of (aij)}gol and (mcj)}gol for each of the 55 radar emitters. Percentages of deletion range from 5%
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to 90%. At last the continuous dataset, categorical dataset and the mixed dataset are composed
of (q)22P, ()32 and ()22 = (@45, c;)72%. As in the previous chapter, imputation
methods [GLSGFV10] are used to handle missing data for comparison algorithms. Mean and
k-nearest neighbours imputation methods are still implemented for continuous data. Regarding
missing categorical data, they are handled through the k-nearest neighbours and mode imputa-
tion methods. The mode imputation consists in filling a missing component of an observation by
the mode of observed values of that component. This method has the obvious disadvantage that
it under represents the variability and also ignores correlations between observations [Sch97].
These imputation methods are compared with the proposed approach in terms of classification,
clustering and reconstruction performance. For the comparison of reconstruction performance on
continuous data, mean-squared errors between original continuous data and previous imputation
methods are compared with the mean-squared error between original continuous data and the
variational posterior marginal mean of missing continuous data given by

VjeJ, :Eg;.iss = E_miss [/ q(wg}iss, uj,xcjzj)auj(?wcjazj}

q

miss

- obs ~wgliss - (323)
= Z Tjk Z 6;2135 Z Tjkcmiss Hj]zcobscmiss .

J .
kel cobs Ecqus cmiss ecqr_niss
J J

As for categorical data, reconstruction performance are evaluated through the comparison of
Jaccard distances between original categorical data and imputation methods against Jaccard

distances [Jac01] between original categorical data and the variational posterior marginal mode
of missing categorical data given by

VieJ, :i:?}iss =arg max /q(a:g]‘-iss,zj)dzj

cmiss ecqmiss

’ wmiss (324)
= arg max Z rjkrjlgcmiss .
cmiss ecq;_niss k;e](:

3.4.2 Classification experiment

The classification experiment evaluates the ability of each algorithm to assign unlabeled data to
one of the K classes trained by a set of labeled data. As in the previous chapter, the classification
task is decomposed into a training step and a prediction step defined in procedures 3.1 and 3.2.
The training step consists in estimating variational parameters of ¢(®) given a set of training
data with known labels. As for the prediction step, it results in associating new data to the
class that maximizes their posterior probabilities. Since comparison algorithms do not handle
datasets including missing values, a complete dataset is used to enable their training. During the
prediction step, incomplete observations are completed thanks to the mean and KNN imputation
methods and the posterior reconstructions defined in (3.23)-(3.24). Standard configurations
provided by Matlab are chosen for the RnF, the NN and the KNN algorithm. The proposed
model and comparisons algorithms are trained on 70% of the initial database without extra
missing values and tested on the remaining 30% of the database whose elements are randomly
deleted according to different proportions of missing values. The RnF gathers 50 trees. The
NN is composed of one hidden layer of 70 neurons and a softmax output layer and is trained
with a cross-entropy loss. An accuracy metric is chosen for the classification experiment and
observations belonging to the reject class are considered as misclassification errors. At last,
hyper-parameters are initialised as in Table 3.3.
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Table 3.3: Initialisation of hyper-parameters values for classification on mixed data

Ko To Mo Y Po To qo S0 Moe 20
05 05 107% 4 09 1 1 1 10,00 I3

Procedure 3.1 Classification procedure on mixed data : Training step

train train

Input: Training set x and associated labels z
Output: Learned parameters Oypain
Initialise ko, 7o, Y0, Mo » Mo, 30, Po, To, so and qo
for iter = 1 to itermax do

miss i miss
: gmiss  _ gpml

Update ke, Bjke, ijci , ,&j,‘jc , 2,
Update Ry ﬁkca ’7]67 Dkes Tkey Skey Qkes Tkes p’kca Ek
Calculate the lower bound £
if Liter — Liter—1 < tol X Liter—1 then
return Oqp,in = (/%Im Tkes Vi Dkes Tkes Skes Qkes e, ﬂkca 2]{)
end if
end for

(k,c)ekxCq

For the classification experiment, results are shown in Figure 3.8 where classification perfor-
mance are exhibited for the 3 datasets. Without missing data, both algorithms cannot perfectly
classify the 55 radar emitters for the 3 datasets. Indeed, both algorithms reach accuracies of 90%
for the continuous dataset, 75% for the categorical dataset and 98% for the mixed dataset. These
performance can be explained by the non total separability of continuous and categorical datasets
since the 55 emitters share 42 combinations of categorical features (Table 3.2) and (RF,PRIL,PW)
intervals as shown in Figure 3.7. Nonetheless when mixed data are taken into consideration, the
dataset becomes more separable leading to higher performance of both algorithms. When the
proportion of missing values increases, the proposed model outperforms comparisons algorithms
for each dataset. It achieves accuracies of 80%, 55% and 95% for 90% of deleted continuous,
categorical and mixed values whereas accuracies of comparison algorithms are lower than 65%,
50% and 75% with missing data imputation from standard methods. As in the previous chapter,
these higher performance of the proposed model reveal that the proposed method embeds a more
efficient inference method than other imputation methods. That result is confirmed on Figure
3.8 when comparison algorithms are applied on data reconstructed by the proposed model. In-
deed when the proposed inference is chosen, comparison algorithms share the same performance
than the proposed model and manage to handle missing even for 90% of deleted values. Fi-
nally, this efficiency is shown on Figure 3.9 where data reconstructed by the proposed model
exhibit lower mean-squared errors and Jaccard distances for missing data imputation than the
standard imputation methods. Indeed, the lowest mean-squared errors and Jaccard distances
are obtained by the proposed model reconstruction on the mixed dataset, which demonstrate

Procedure 3.2 Classification procedure on mixed data: Prediction step

Input: Unlabelled dataset 2P and learned parameters Q"™

Output: Predicted labels zPred

- mjss miss - wm_iss
~ ~"cj ~Tq qj =
Upda‘te Ajkc, 5jk67 Tjkc ) Il']kc ) Ek y ik
- _pred ~
return 2P™4 such that each z?re = argmaxr;p,
€
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that missing data imputation is even more efficient when both continuous and categorical are
jointly modeled. Furthermore, a correlation between higher performance of the proposed model
and the quality of its reconstructions can be noticed for any percentage of missing values. Then,
effectiveness of the proposed model can be explained by the fact that missing data imputation
methods can create outliers that deteriorate performance of classification algorithms whereas
the inference on missing data and labels prediction are jointly estimated in the proposed model.
Indeed, embedding the inference procedure into the model framework allows properties of the
model, such as outliers handling, to counterbalance drawbacks of imputation methods such as
outlier creation.

1 . Classification On Continuous Data . 075 Classification On Categorical Data
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Figure 3.8: Classification performance are presented for the proposed model (PM) in blue, the NN in
red, the RnF in green and the KNN in cyan. Figure (a) exhibits classification performance when only
continuous data are taken into consideration. Figure (b) exhibits classification performance when only
categorical data are taken into consideration. Figure (¢) exhibits classification performance when both
continuous and categorical data are taken into consideration. For each figure, the solid lines represent
accuracies with a posteriori reconstructed missing data for the NN, the RnF and the KNN, the doted
dashed lines stands for accuracies with mean/mode imputation for the NN, the RnF and the KNN whereas
the dashed lines shows accuracies with KNN imputation.
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(a) Mean-squared errors of imputation methods (b) Jaccard distances of imputation methods
and the posterior reconstruction (3.23). and the posterior reconstruction (3.24).

Figure 3.9: Evaluation of imputation methods and posterior reconstructions (3.23-3.24) while considering
continuous, categorical and mixed data. Performance of reconstructions are presented in red for the Mean
and Mode imputations, in cyan for the KNN imputation and in blue for the proposed model. Figure (a)
exhibits mean-squared errors related to imputation methods and the posterior reconstruction (3.23) when
continuous data (dashed lines) and mixed data (solid lines) are considered. Figure (b) exhibits Jaccard
distances related to imputation methods and the posterior reconstruction (3.24) when categorical data
(dashed lines) and mixed data (solid lines) are considered.

3.4.3 Clustering experiment

The clustering experiment is composed of two experiments that aim to exhibit the clustering
ability of each algorithm according to an a priori number of clusters K € {Kunin, - - -, Kmax}. As
developed in previous chapters, the clustering algorithm is decomposed into two parts. First,
a semi-supervised classification is performed for each K ranges from Kj, to Kpax to estimate
variational parameters of ¢(®, H) and labels in a mixture of K components. Then, the value of
K that maximizes the lower bound is retained as the posterior number of clusters as well as its
associated parameters.

Procedure 3.3 Semi-supervised classification procedure on mixed data

Input: Unlabelled dataset & and number of classes K
Output: Labels Z and parameters ©
Initialise ko, 7o, Y0, 10 » Ko 30, po, 70, So and qo
for iter = 1 to itermax do

Update ke, Bjtes Ty » fyte » 0"+ Tin
Update g, Nkes Vi Pkes Tkes Skes Qkes Tkes p’kca 3
Calculate the lower bound £

if Liter — Liter—1 < tol X Liger—1 then

return © = (Fx, ke Tes Pres Thes Skes Ghes Thes Boer 5

> k) and Zz such that each
(k,c)eKxCq

Z; = argmaxrii
J Sl
end if
end for

According to the dataset visualised in Figure 3.7, Kunin and K. are set to 35 and 85 in
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Procedure 3.4 Clustering procedure on mixed data

Input: Unlabelled dataset & and a priori range of numbers of clusters K € {Kpin, - - ., Kmax}
Output: Labels 2, parameters © and optimal number of clusters K
for K = Kin to Kiax do
Perform semi-supervised classification with K classes
Stock labels 2/, parameters 0" and K
end for _
K

return © ' and #X such that K = arg max Lx

Table 3.4: Initialisation of hyper-parameters values for clustering on mixed data

Ko 7o Mo 7Y Po To 4qo So
0.5 05 100 4 09 1 1 1

order to evaluate the impact of the a priori number of clusters on data clustering. Parameters
of DBSCAN are set to Minpts = 5 and eps = 0.01 by using an heuristic proposed in the original
paper [EKST96]. A supervised initialisation is retained for the proposed model due to its sen-
sitivity to initialisation. It consists in initialising prior component means i, from results of a
k-means algorithm and prior component covariance matrices 3o from diagonal matrices whose
diagonal elements are variances of observed features. Other hyper-parameters are initialised as
in Table 3.4. Since comparison algorithms do not handle observations with missing values and
do not provide a clustering result for them, missing data are reconstructed through the mean,
the KNN and the proposed model imputation methods before running these algorithms.

The first clustering experiment aims to determine the ability of each algorithm to restore the
true clusters according to an a priori number of clusters K € {Kpin, ..., Kmax}. Performance
are evaluated through the Adjusted Rand Index (ARI) [HA85] that compares estimated parti-
tions of data with the ground-truth. Results of the first experiment on the 3 datasets are shown
in Figures 3.10 and 3.11. Without the presence of missing values, performance of DBSCAN,
k-means and the proposed model are similar with ARIs of 62%, 72% and 88% for the contin-
uous, categorical and mixed datasets. As in the classification experiment, these performance
are explained by the non total separability of continuous and categorical datasets since the 55
emitters share 42 combinations of categorical features (Table 3.2) and (RF,PRILPW) intervals
as shown in Figure 3.7. Once again when mixed data are taken into consideration, the dataset
becomes more separable leading to higher performance of both algorithms (ARI = 88%). When
the proportion of missing values increases, the proposed model outperforms both DBSCAN and
k-means and achieves ARIs of 35% ,40% and 58% on continuous, categorical and mixed datasets
for 90% of deleted values whereas the ARIs of comparison algorithms with standard missing
data imputation are lower than 35% on each dataset. As in the classification experiment, these
higher performance reveal that the proposed method embeds a more efficient inference method
than other imputation methods. That result is confirmed on both Figure 3.10 and Figure 3.11
where DBSCAN and k-means are applied on data reconstructed by the proposed model. Indeed,
performance of both algorithms increase up to performance of the proposed model for any per-
centages of deleted values when the proposed inference is chosen.

 The second experiment tests the ability of each algorithm to find the true number of clusters
K among { Kmin, - - - , Kmax }. The lower bound (3.22) and the average Silhouette score [KR09] are
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criteria used to select the optimal number of clusters for the proposed model and the k-means
algorithm. Indeed, the ARI cannot be used since it requires the ground-truth and DBSCAN
automatically selects a number of clusters for a given dataset. Results of the second experiment
on the 3 datasets are visible on Figures Figure 3.12 and 3.13. Figure 3.12 presents numbers of
clusters selected by the lower bound and average Silhouette scores for the proposed model and
k-means algorithm according to different proportions of missing values and imputation methods.
Without missing data, the correct number of clusters (K=55) is selected by the two criteria for
the k-means algorithm and the proposed model when continuous and mixed data are clustered.
As for categorical data, both criteria select 45 as the optimal number of clusters since the 42
combinations of categorical features (Table 3.2) shared by the 55 emitters constitute 42 distinct
clusters. In presence of missing values, the average Silhouette score mainly selects K = 65 when
the k-means algorithm is run on the 3 datasets completed by standard imputation methods.
When, the k-means algorithm performs clustering on the posterior reconstructions, the average
Silhouette score correctly selects K = 55 until 60% of missing values for continuous data and
40% of missing values for mixed data. Eventually when the proposed model does clustering,
the two criteria select the correct number of clusters K = 55 until 70% of missing values for
continuous and mixed data. These results show two main advantages of the proposed model. As
previously, the proposed model provides a more robust inference on missing data since the aver-
age Silhouette score chooses more representative number of clusters when the k-means algorithm
is run on the posterior reconstructions than on data completed by standard imputation methods.
Furthermore, since the lower bound criterion also selects the correct number of clusters as the
average Silhouette score, it can be used as a valid criterion for selecting the optimal number of
clusters and does not require extra computational costs as the Silhouette score since it is com-
puted during the model parameter estimation. Finally, the proposed approach provides a more
robust inference on missing data and a criterion for selecting the optimal number of clusters
without extra computations. As for the Figure 3.13, it shows the evolution of the number of
clusters estimated by DBSCAN according to different proportions of missing values and impu-
tation methods. Since DBSCAN automatically estimates the number of clusters and manages
outliers by creating new clusters, results on Figure 3.13 can be used to evaluate performance of
imputations methods. For mean, mode and k-NN imputation methods, DBSCAN estimates a
number of clusters greater than the number estimated for the proposed model according to any
proportion of missing values. These performance indicate that the proposed approach creates
less outliers than other imputation methods by providing a more robust inference on missing
data since DBSCAN localizes less outliers in the posterior reconstructions (3.23-3.24) than in
standard imputation methods.
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Figure 3.10: Performance of the proposed model compared with DBSCAN according to different propor-
tions of missing values and imputation methods. The number of clusters K is fixed at 45 for categorical
data and 55 for continuous and mixed data.
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Figure 3.11: Performance of the proposed model compared with k-means algorithm according to different
proportions of missing values and imputation methods. The number of clusters K is fixed at 45 for
categorical data and 55 for continuous and mixed data.
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Figure 3.12: Estimation of the number of clusters using the lower bound (LB) and the silhouette score
(S) for the proposed model and only the silhouette score (S) for the k-means algorithm.
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Figure 3.13: Estimation of the number of clusters by DBSCAN according to mean imputation, k-NN
imputation and posterior reconstruction of the proposed model.
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3.5 Conclusion

In this chapter, various modulations of radar emitter patterns have been presented. These modu-
lations can be used as categorical data in the classification and clustering tasks. Hence, a mixture
model handling both continuous data and categorical data has been developed. An approach
based on the Location Mixture Model has been investigated by establishing conditional relations
between continuous and categorical data. Benefiting from a dependence structure designed for
mixed data, the proposed model shows its efficiency for inferring on missing data, performing
classification and clustering tasks and selecting the correct number of clusters. Since the poste-
rior distribution is intractable, model learning is processed through a variational Bayes inference
where variational posterior distributions are proposed for continuous and categorical missing
values. Experiments show that the proposed approach handles mixed data even in presence of
missing values and can outperform standard algorithms in clustering tasks. Indeed the main ad-
vantage of our approach is that it enables the counterbalance of imputation methods drawbacks
by embedding the inference procedure into the model framework.
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Chapter 4

Temporal Evolution Data

Continuous data describing radar emitters waveforms such as the Carrier Frequency, the Pulse
Width and the Pulse Repetition Interval have been previously taken into account in order to
cluster radar emitters. Nonetheless, the Pulse Description World gathers other features such
the Amplitude whose relation with the Time of Arrival reflects the scanning behaviour of a
radar emitter. Therefore, this temporal relation can be exploited to cluster radar emitters.
Depending on the scanning type, this relation can be represented by either a parabola or a
piecewise parabola. These two relations have to be included into the mixture distribution to
take advantage of the temporal behaviour of each radar emitter. This chapter contains three
sections which focus on three different cases. The first section deals with data where only
emitters having a parabolic scanning behaviour are observed. The second section introduces
the case where temporal evolution data are only distributed according to piecewise parabolic
relations. As for the last section, it is about the case where any type of scanning behaviours
can be observed in data. Each section presents the model integrating radar temporal evolution
data and its inference procedure before proposing a more complete model taking into
consideration temporal evolution data and mixed data. Eventually, experiments are carried out
to exhibit performance of the proposed approach. In this chapter, radar temporal evolution
data consist of J pulses gathering J amplitudes x; = (24;)jcs and J times of arrival

t = (tj)jes from K distinct emitters.
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4.1 Parabolic data

In this section, K emitters presenting parabolic scanning behaviours are considered. Therefore,
the main objective is to develop a mixture model which can build K distinct clusters formed by
K parabolas and to define an inference procedure for parameter estimation. Then, the proposed
model is enhanced with the mixture model designed for mixed data in Chapter 3 in order to
improve clustering performance. Finally, experiments on synthetic and real data are carried out
to exhibit performance of the proposed approach.

4.1.1 Model

Before introducing a mixture model that handles parabolic data, the parabolic relation between
amplitudes and times of arrival is defined. Then, the mixture model is developed into a Bayesian
framework.

Parabola Equation

The parabolic relation between the amplitude z;; of the 4t pulse and its time of arrival tj, visible
on Figure 4.1, can be described by the following parabolic equation

Ttj :at?—l-btj+c—|—e (4.1)

where € ~ N(0,0?) is a measurement noise introduced to model defects of materials. Since the
measurement noise € is only embedded in materials, the variance parameter o is independent
from x; and ¢t. Equation (4.1) can be reformulated as a linear regression problem such that
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Figure 4.1: Simulated data where amplitudes x; and times of arrival ¢t are distributed according to a
parabolic relation.

Ttj = <I>(tj)Tw + € (4.2)

with ®(t;) = (t?, t;,1)T the vector containing polynomial transformations of ¢; and w = (a,b,c)T
the vector of regression parameters. Since the measurement error is assumed to be Gaussian,
the amplitude z;; is distributed according to a normal distribution centered in ®(¢;)7w with
variance o2

2ty ~ N (2@ (t)) w, 07) (4.3)
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Mixture model

Since each radar emitter has its own scanning behaviour, K unique parabolas exist in data
and they are configured with K regression parameters w = (wy)rexc. Then, each amplitude
x4 belongs to one of these parabolas which is related to a specific emitter. In other words,
conditionally to its label z; and its time of arrival ¢;, the amplitude zy; is distributed according
to (4.3) such that the component distribution is defined by

xtj|tj, Zj =k~ N (thj’@(tj)ka, 0'2) (4.4)

Recalling that p(z; = k) = a, where a = (ai)rekx are the weights related to component distribu-
tions, the mixture model is obtained from (4.4) such that

VjeJ, p(fl)tj‘tj, @) = Z ak./\/' (1'tj|(1)(tj)ka,O‘2> (4.5)
ke

where ©® = (a,w, 0?) is the set of parameters.

Bayesian framework

As in chapters 2 and 3, a Bayesian framework is used to estimate parameters ©. Assuming
datasets (x;,t) of i.i.d observations (x;,t;) e and independent labels z = (z;) e 7, the complete
likelihood associated to (4.5) is defined by

(e 216,0,K) = [T T (a0 (rl0t5)Teop. o)) ™

JjeJ kek

Eventually, the prior distribution required for ® is chosen as
p(©IK) = p(a|K)p(wlo?, K)p(a?)

where a follows a Dirichlet distribution, each wy, follows a Normal distribution and o2 follows
an Inverse Gamma distribution such that

p(alK) = D(alro) ,
p(w|o?, K) = H N(wk|w0,02A0> ,

kek
p(o?) = IG(o?I€1.€3) -

The resulting mixture model is shown on Figure 4.2.

4.1.2 Inference

The Variational Bayes (VB) procedure is derived to estimate parameters of the mixture model
defined in (4.5). Variational posterior distributions are obtained from the VB Expectation (VBE)
and VB Maximization (VBM) steps and a lower bound on the log evidence is defined to master
the convergence of the VB procedure.
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—t—

() O ®

Figure 4.2: Graphical representation of the proposed mixture model handling parabolic data. The arrows
represent conditional dependencies between the random variables. The K-plate represents the K mixture
components and the J-plate the independent identically distributed observations (zy;,t;) decomposed
into the amplitude z;; and the polynomial transformation ®(¢;) and the indicator variables z;. Known
quantities, respectively unknown quantities, are in blue, respectively in red.

Variational posterior distributions

As previously, a factorized posterior distribution ¢(z,®|K) = ¢(z|K)q(®|K) is chosen as an
approximation of the intractable posterior joint distribution p(z,®|x;,t,K) such that latent
variables z and parameters © are a posteriori independent and ¢(®|K) = ¢(a|K)q(w|a?K)q(c?).
According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

q(z|K) = ] Cat(z|7)
jeJ
q(alK) = D(alk) ,

) s (4.6)
a(w|o?,K) = T] N (wilor, 0Ar)
kel
q(0%) = IG(0*|61,&) -
Their respective parameters are estimated during the VBE and VBM steps.
VBE-step
The VBE-step consists in deriving the following expectation
1
Ee [logp(xy, z|t,©,K)] = Z Z 5§j (E@ [log ag] — 3 (log 21 + Ee {log 02}
JET kek
' Eo (24 — ®(t;) w)? )) (4.7)
o2
= 6k logpji
jeT kek

where

(15 = ‘I’(tj)T‘*”“)2D . (4.8)

1
log pjr. = Ee [log ax] — 3 <log 2 + Eg [log 02} +Eeo p

Hence, a categorical distribution for labels z is deduced from (4.7) such that

q(z|K) = ] Cat(z|7))
jeT
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and their parameters (7;),;cs are obtained from (4.8) as follows

VieJ, Vk €K, iy =

VBM-step

The VBM-step consists in deriving the following expectation

Ez [logp(a:t, zZ, @|t,,€)] :Eh [lng({Bt7 Z|t7 G)K)] + logp(@‘]c)

1
=Y > E4 [62} <logak - 2<log27r + log o
JET kek
(zj — B(t;)" wi)?
+ an >) + kz’;(m% —1)log ay,
c

A—l
<3(log 27 + log o) + log | Ao| + (wi — wo)TTOQ(wk - wo))

N | =

50
— (€ + D)logo® — 23 +logen(k?) + log erg (€1, €9) -

(4.9)
By factorizing terms related to a in (4.9), the following Dirichlet distribution is obtained
q(a|K) = D(a|r)

where
~ 0 k
vk € K, B =k + Y B [0] .
JjeJ
By aggregating terms related to each wy in (4.9), a Normal distribution is obtained for each wy,
such that )
q(w|02, /C) = H N (wk|<bk, 0'2Ak>

kel
where Vk € IC,

-1
Ay = (Z E. o5 | ®(t)®(t;)" + A61> ,

JjeJ
@y, = Ay (Z E. [of | 2@ (t;) + Aglw()) .
JjeJ

Eventually, an Inverse Gamma distribution is deduced from (4.9) such that

CI(UZ) = IQ(U2|§~1, 52)

where
~ J
‘51 = g? + 5 )
~ 1 _ =1
& = 53 + B Z (Z E, [52} iL'?j + ngo 1w0 — w%Ak wk) .
kel \jeJ
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Lower bound
Recalling that the lower bound on the log evidence is given by
L(q|K) = E: e [logp(x:, z,0[t,K)] — E- e [log¢(z, ©|K)]

where E, g [log p(x¢, 2, ®|t, K)] is the free energy and E, g [log ¢(z, ®|K)] is the entropy of the
approximate posterior ¢(z, ®|K). The free energy can be developed as

E. e [logp(xs, z,O|t,K)] = E. e [log p(x:, z|t, ©, K)] + Eg [log p(©|K)]

where

E: e logp(a:, 2[t, ©,K)) = > > B 3% | log pje
JET kek

and

1
Ee [logp(®|K)] = ) (kp — 1)Ee [log ag] — 3 (3(log 21 + Ko [1og aﬂ ) + log | Ao
ke

+Eo | 5| (Bo [wi] — w0)T A7 (Be fwi] - wo) + Trace (41457 )
~ (€] + )Be [logo?] ~ €8Ba | -] + logen(n?) +logere(€1. 9)
As for the entropy term, the following decompositon is obtained
E- e [logq(z, ©|K)] = E: [log q(2|K)] + Ee [log ¢(©|K)]
where

E, [logq(z|K)] = Z Z E. [52} log 7,
JET kek

and

- 1 -
Ee [log¢(®|K)] = Z(kak — 1)Ee [log ax] — 3 (3(1 +log2m + Eg [log 02}) + log ]Ak\)
ke

— (&1 + 1)Ee {bg 02} ~-&HEe {012} +log ep(&) + log ezg (61, &) -

Expectations

Expectations developed in variational calculations are derived from properties of variational
posterior distributions and are obtained as follows. Categorical distribution properties lead to

VjeJ, VkeK:

Dirichlet distribution properties lead to

Vk e K :

Ee [log ay] = ¥(Fy) — ¢ (Z /-%) :

kek
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where 9(+) is the digamma function. Normal distribution properties lead to

Vk e K
Ee [wi] = @y ,
T T
Ee |wiwi | = Ve [wi] + Ee [wi] Ee [w)]
) Y
Inverse Gamma distribution properties lead to
1} _&
o? &’

Ee {log 02} =log& — (&)

B |

Using all these properties, the following expectation can be calculated as

VieJ,Vkek:
(20 — ®(t;)Twp)? & (mtj - @(tj)TLDk)2 -
Eo [ tj J) %k ] — z + Trace (@(tj)TAk@(tj))
2

g

4.1.3 Complete model

A model integrating parabolic data and mixed data is now presented. By taking into consid-
eration any types of available data, the resulting model can fit data better and can estimate
more accurate clusters. First, data formalism and assumptions are detailed. Then, the resulting
mixture model and its inference procedure are developed.

Data and assumptions

In this part, data consist of J pulses gathering J amplitudes x; = (x4j);cs associated to J
times of arrival t = (t;)jes, J continuous features x, = (x4j)jcs and J categorical features
x. = (Tej)jes from K distinet emitters. Let @; = (x4, Tcj, 71;) the j7 observation vector of
mixed variables where

o I, € R? is a vector of d continuous radar features such as the Radio Frequency, the Pulse
Width, the Azimuth or the Pulse Repetition Interval,

oz, = (Tejos-- -, xchfl) € (g is a vector of ¢ categorical radar modulations such as intra-
pulse modulations or pulse-to-pulse modulations,

e 7;; € R is a continuous variable modeling the Amplitude.

For each pulse j, the temporal evolution variable z;; and mixed variables (x4, ;) are assumed
to be independent conditionally to each cluster k € IC

Vied, (g, xe)|zj =k AL ay|z; =k . (4.10)

with z; the latent variable modeling the label of the j* observation vector &; = (24j, Tcj, T15)-
Moreover, the temporal data (z;,t;)jcs are distributed according to a parabolic relation and the
quantitative data (xg;)jes are normally distributed conditionally to categorical data (x;)je.s-
Both quantitative and categorical data (x4, ;) jes can be partially observed. Hence (45, ;) je s
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are decomposed into observed features (acgg?s, ar:‘c’;)s) jeg and missing features (mg}iss, m‘c‘;iss) jeg such
that
o iI}Iqr}iSS ith ( miss ObS) e Rd;piss X Rd?bs d dmiss + dobs —d
Tgj = | obs | With (@™, 2 and dj G =d,
) aj
V] = j’ miss
mcj : miss ,,obs miss obs
SBC]- = mg}DS Wlth (SL'C] ,CL‘C]- ) 6 Cq;_niss X Cq;_)bs and q,] + q.7 = q .

Mixture model

According to the independence assumption (4.10), the distribution of mixed data (Chapter 3)
and the parabolic relation between temporal evolution data, the component distribution results
in

Vi €T p(®qjs Bej, w1j]25 = k) = p(®qj; ®ejl2j = k)p(1j]2) = k)
where
_ 0z,

p(@gj ejlzy = k) = [T (ke (2ot u; " B1)) ™
vieJ, ceCq

p(alty, 2 = k) = N (w51 @(t5) wp, o)
with

e u = (uj)jey the scale latent variables handling outliers for quantitative data x, and dis-

tributed according to a Gamma distribution with shape and rate parameters (a,3) =
(Qkes Bre) (k,e)ek xc, conditionally to categorical data x. and labels z = (2;)je7,

(1, 2) = ((Mge)eec,» Xk)kex the mean and the variance parameters of quantitative data
x, for each cluster,

7 = (7)kex the weights of the multivariate Categorical distribution of categorical data
x. for each cluster,

e w = (wk)kek the regression parameters for temporal evolution data x; for each cluster,

e 02 the variance of the measurement noise related to temporal evolution data x;.

Recalling that p(z; = k) = a;, where a = (ay)rex are the weights related to component distribu-
tions, the mixture model is obtained from (4.11) such that Vj € 7,

55
p(xj,uilt;, ©) = Y apN (fﬂtj@(tj)ka,UQ) II (ch/\/ (fﬂqjlukc,u;lﬁk) Q(Ujl%c,ﬁkc)) ’
kek ceCy
(4.12)
where © = (a,w, 0%, 7, a, B, u, X) is the set of parameters.

Bayesian Framework

As in chapters 2 and 3, a Bayesian framework is used to estimate parameters ©. Assuming
datasets (x = (x4, ., 1), t) of i.i.d observations (x; = (g, Tcj, T4j), tj) jes, independent labels
z = (zj)jes and scale latent variables u = (u;);c7, the complete likelihood associated to (4.12)
is defined by

(4.11)

ok
pa,zult,0,K) = ][ ] (akN (ztj"I’(tj)kavf’Q) 11 (ch/\f (-’I:qjmkm“flzk) g(“jchaBkC))(sij)

JeT kek ceCy
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q0
20 o S0

Figure 4.3: Graphical representation of the proposed model integrating temporal evolution data and
mixed-type data. The arrows represent conditional dependencies between the random variables. The
K-plate represents the K mixture components and the J-plate the independent identically distributed
observations (@g;, €cj, ¥j,t;) decomposed into temporal evolution data (z;,t;) and mixed-type data
(4, %c;), the scale variables u; and the indicator variables z;. Known quantities, respectively unknown
quantities, are in blue, respectively in red.

Eventually, the prior distribution required for ® is chosen as

p(B|K) = p(a|K)p(w|o?, K)p(a?)p(|K)p(ar, BIK)p(p, TIK)

where
p(alK) = D(a|ro) ,
K) = 1] P(mrlmo) ,
ke

p( 2K =TT T] N(“kc’“ﬂvnalzk) IW(Zk |70, Zo) ,
kek ceCy

p(a,ﬂ\lC) = H H P(Oékcaﬁkc‘poa%ﬁoﬂ“o) s
ke ceCy

p(w|o?, K) = H N(wk\wo,azA()) ,
ke

p(0?®) = IG(a%1€7,&3) -

Graphical representation of the proposed model is shown in Figure 4.3.

Inference

As previously, a factorized posterior distribution ¢(z7 miss g, P 2 O|K) = q(zxy miss gy, M5 2|KC)q(O|K)

is chosen as an approximation of the intractable posterlor joint distribution p( miss ,u, xS 2 Oz, t, K)

miss
q

such that latent variables h = (x miss

and

,u, x5 z) and parameters © are a posterlorl independent

q(h|K) = (g™ |u, 22, 2, K)q(ulag™, z, K)q(zd™|z, K)q(2(K) ,
9(8|K) = ¢(alK)q(w|o?, K)a(o®)a(w|K)a(ex, BIK)q(m, BIK) -
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According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

miss 6; Yz
1T cj %j
Q( rnlss’,u wmlss H H HN( mlss‘lJ/jkC 7“] Ekq ) ,

JET ke ceC

mlss ~ 2 5;c‘6§'
(’U,’CC 7’C) = H H Hg(u]|a]k656]k6> 7 ’

JET ke ceC

. mlbb k
Q(-'L'ICmSS’Z, ,C H H MC mlss )5zj
jeJ kek
q(z|K) = [ Cat(z]|7;)
jeTJ

q(alK) = D(alk) ,

kek

kel ceC

q(a, BIK) = T plctke, Brelbr: Gk, Sk, )
kex
q(|o?, K) = [T N (wilor, 0?Ay)

kek

Q(UQ) = 19(02\51, 52) .

Their respective parameters are estimated during the VBE and VBM steps by developing expec-
tations Eg [log p(x, u, z|t, ®, K)| and Ej, [log p(x, u, z, Ot, K)]. Noting that

Ee [logp(=, u, 2It, ©,K)] =Ee [logp(a:t, z,w,0%, K)| +

+ Ee [logp(z|a, K)] ,
(4.13)

and

Ep [logp(x, u, z, O|t, K)] =Ep, [logp(a:t,w,UQIt,z,lC)} +

+ Ep, [logp(2, a|K)] ,
(4.14)

the VBE (4.13) and VBM (4.14) steps can be independently derived for latent variables and
parameters related to temporal evolution data x; and mixed data (x4, z.). Therefore, variational
posterior distributions of latent variables (2", w, £2*) and parameters (7, o, 8, p, X) related
to mixed data (x4, x.) are obtained as in Chapter 3 by deriving in (4.13) and
(4.14). As for (w,0?), their variational posterior distribution are obtained as in subsection 4.1.2
by developing blue expectations in (4.13) and (4.14). As in subsection 4.1.2 or in Chapter 3, the
Dirichlet posterior distribution of a is deduced from the red expectation in (4.14). Eventually,
the variational distribution of labels z is obtained by marginalising over latent variables in the
and developing both blue and red expectations in (4.13) such that

miss miss k
/E@ [log p(x, u, z|t, ©, K)] 02" udx"™ = Z Z oz, 1og pji
jeT kek
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where log pjj;, is deduced from red, blue and green expectations in (4.13) as follows
VjeJ, Vk e K, logpjr =Ee [logax] + log p?k + log /)(j} ) (4.15)
with
VieJ, Vk ek,

Ee [logax] = (k) — ¢ (Z Fék) :

kel

Y

1 = ®(t) wy)?
logp’;k =5 <log 27 + Eg {log 02} + Ee l(xtj 0(2]) W) ])

miss

. !
qc __ cj
g /)’//,‘ - log Z pkcmiss .

MSEC miss
%

lo

The red term Eg [logax| is deduced from properties of the Dirichlet distribution, the blue term
log,oﬂ,C is deduced from (4.7) and (4.8) in subsection 4.1.2 and the green term log p?, has been
detailed in Chapter 3. Hence, z is distributed a posteriori according to a product of Categorlcal
distributions parametrized by # = (7jx)(jx)esxkx given by

Vi€ J, Yk €K, 7y = o2 (4.16)

The lower bound on the log evidence is still required to master the VB inference and can be
also decomposed into terms related to temporal evolution data (blue terms), mixed data (green
terms) and labels z (red terms). This decomposition is obtained as follows

E(QVC) = Eh7® [Ing(ma u, z, ®|t’ ’C)] ]Eh (C] {IOg q( miss mzniss’ u, z, @|IC)}
where the free energy can be developed as

En 6 logp(@,u. 2, O[t, K)] = Eye llog p(e. u. 2[t, ©, K)] + Ee [logp(w, 0?/)]
+ Eg [logp(a, m, o, B, p, X|K)]

and the entropy as

Ene [logq(@™, o, u, 2,0|K)| = Ene |logq(w, 0?|K)| + By e logq(z)™ =™ ulz 1)

q

+ Ep.0 [logq(z|K)] + Ep e [loggla, m, o, B, . E\/&f)} )

Blue terms, respectively green terms, have been previously detailed in subsection 4.1.2 , respec-
tively in Chapter 3. As for red terms, they are detailed below :

Epe [logp(x,u, 2|t, 0, K)] ZZEh[ }logp]k,
JjET kel

Ep.e [log Z Z Ey, [ } log 7.

jeJ kek
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Figure 4.4: Synthetic parabolic data generated from different values of the variance parameter 2. Figures
(a), (b) and (c) present unlabeled data where 4 parabolas are generated. Ground-truth are visible on
Figures (d), (e) and (f).

4.1.4 Experiments

Two experiments are carried out to evaluate clustering performance with respect to a set of
synthetic data and a set of real data. In the first experiment, only temporal evolution data
are taken into consideration in the clustering procedure. Then, both temporal evolution data
and quantitative data are considered in the second one. For comparison, the spectral clustering
[VLO7] and the k-means algorithm from [HW79] are also evaluated. First, characteristics of
data, comparison algorithms and evaluation metrics are detailed. Then, both experiments are
described and performance are shown to exhibit the effectiveness of the proposed model.

Data, algorithms and metrics

Both synthetic and real data are composed of temporal evolution data related to amplitudes which
are distributed according to a parabolic relation and quantitative data related to continuous
radar features which are jointly distributed according to a multivariate normal distribution.
In synthetic data, temporal evolution data are generated by sampling a set of data from four
parabolas directed by
-1 -2 -3 —4
w=[|1 2 3 4
1 2 3 4

and quantitative data are generated by sampling a set of data from four well-separated bivariate
clusters with centers [0,0]7, [1,0]7,[0,1]7 and [1,1]7 and identity covariance matrices. Three
synthetic datasets are generated with respect to a range of values of 02. These datasets are
shown in Figures 4.4 and 4.5 where each radar emitter is represented by a parabola (Figure 4.4)
and a Gaussian cluster (Figure 4.5). Real data are extracted from operational recordings which

98



CHAPTER 4. TEMPORAL EVOLUTION DATA
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(a) Quantitative Data (b) Ground-Truth
Figure 4.5: Synthetic quantitative data generated from 4 multivariate normal distributions. Figure (a)

shows unlabeled data and Figure (b) exhibits the ground-truth.

include unlabeled pulses that are mainly described by their Pulse Description World (PDW)
composed of

e Time Of Arrival (TOA) ,

Amplitude (A)

Radio Frequency (RF) ,

Pulse Width (PW) ,

Azimuth (Az) .

Therefore, temporal evolution data are pairs (TOA,A) and quantitative data are triplets (RF,PW,Az).
Unfortunately, these real data are classified and values of PDW cannot be released. Hence, axes

of figures related to real data are not displayed. Three cases are obtained from real recordings
and they are visible on Figure 4.6. Different numbers of parabolas and (RF,PW,Az) clusters
can be observed according to a chosen real case. These differences result in different numbers

of emitters for the 3 cases such that 5, 4 and 2 emitters are identified in the cases 1, 2 and 3.
Eventually, synthetic and real data are linearly transformed by a min-max normalization to meet
algorithms requirements.

Except for the k-means algorithm, an initialisation is required for clustering algorithms that
are involved in these experiments. The similarity graph required for the spectral clustering is
obtained from a k-nearest neighbor graph as suggested in [VL07] where the number of neighbors
k is chosen as the product of the log number of observations and the number of clusters. As for
the proposed model, a supervised initialisation is retained due to its sensitivity to initialisation.

0
First, prior hyperparameters ¢) and &9 are initialised such that the prior mean E[U—g] = %1) of
2

the variance parameter o2 is equal to the inverse of the determinant of the covariance matrix of
temporal evolution data points. This choice is motivated by the fact that the determinant of the
covariance matrix can be interpreted as the generalized variance that reflects the overall spread
of the data. Setting £ = 1, £) is initialised as the inverse of the generalized variance of the
sample of temporal evolution data. Then, prior component means i, respectively covariance
matrices Xy, are initialised from results of a k-means algorithm on quantitative data, respec-
tively from diagonal matrices whose diagonal elements are variances of quantitative data. Other
hyper-parameters are initialised as in Table 4.1.
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. e ‘ e e T
(a) Case 1 : TOA and A (b) Case 2 : TOA and A (c) Case 3: TOA and A
| °
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il R I IR
Frequences Frequences Frequences
(d) Case 1: F and Az (e) Case 2 : F and Az (f) Case 3 : F and Az
.
2o H .
Fy P
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(g) Case 1: F and PW (h) Case 2 : F and PW (i) Case 3 : F and PW

Figure 4.6: Real data obtained from 3 operational cases. Figures (a), (b) and (c) exhibit distributions of
Times of Arrival (TOA) and Amplitudes (A). Figures (d), (e) and (f) exhibit distributions of Frequencies
(F) and Azimuths (Az). Figures (g), (h) and (i) exhibit distributions of Frequencies (F') and Pulse Widths

(PW).

Performance on synthetic data are evaluated through the Adjusted Rand Index (ARI) [HAS85]
that compares estimated partitions of data with the ground-truth and the Silhouette Coefficient
[KRO9] which does not require the ground-truth and provides a higher score when clusters are
dense and well separated. Performance on real data are only evaluated through the Silhouette
score since the ground-truth is not available for each case.

Experiments and results

The first experiment aims to determine the ability of each algorithm to restore the true clusters
according to an a priori number of clusters K when only temporal evolution data are taken into
consideration. According to datasets visualised in Figure 4.4 and Figure 4.6, K is set to 4 for syn-
thetic data and to 5, 4 and 2 for the three real cases. Results of the first experiment on synthetic
data are shown in Figure 4.7 and in Table 4.2. The proposed model and the spectral clustering
succeed in clustering synthetic data for o2 € {0.0001,0.01} since the ground-truth partition is
recovered in Figure 4.7 with an ARI equals to 1 visible on Table 4.2. The lower performance of
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Table 4.1: Initialisation of hyper-parameters values for clustering on parabolic data

wo Ay kKo 70 Y Po To qo So
0,000 I3 05 100 1 1 1 1 1

the k-means algorithm (ARI = 0.33) can be explained by the fact that the k-means algorithm
creates convex and isotropic clusters that cannot handle the parabolic structure of the generated
data. This limitation is emphasized by higher Silhouette Coefficients of the k-means algorithm
since the Silhouette Coefficient is generally higher for convex clusters. Moreover, the lower Sil-
houette Coefficients of the ground-truth for o2 € {0.0001,0.01} confirm the non-convexity of
the data. Even if all algorithms poorly perform when data are embedded in noise (o2 = 0.25),
the proposed algorithm estimates clusters with a more parabolic shape than other algorithms
which build more isotropic clusters (Subfigures (f), (i) and (1) in Figure 4.2). Indeed the Sil-
houette Coefficient of the proposed model (S = 0.14) is closer to the Silhouette Coefficient of
the ground-truth (S = 0.10) than Silhouette Coefficients of spectral clustering (S = 0.53) and
k-means (S = 0.56). Results of the first experiment on real data are shown in Figure 4.8 and
in Table 4.3. Interpretation of algorithm performance through Silhouette coefficients and visual
representations is complex since the Silhouette coefficient enhances algorithms that create convex
clusters whereas the visual representations of estimated clusters tend to choose algorithms that
create clusters with a parabolic shape. As in the example of real case 1, the proposed model
succeeds in finding the radar emitter whose scanning behaviour is described by the red parabola
(Subfigure (d) in Figure 4.8) whereas spectral clustering and k-means find that this parabola
belongs to many emitters (Subfigures (g) and (j) in Figure 4.8). Nonetheless, spectral clustering
and k-means provide higher Silhouette Coefficient (S = 0.46 and S = 0.57) than the proposed
model (S = 0.05).

The second experiment aims to determine the ability of each algorithm to restore the true
clusters according to an a priori number of clusters K when all types of data are taken into
consideration. The number of clusters K is still set to 4 for synthetic data and to 5, 4 and 2 for the
three real cases. Results of the second experiment on synthetic data are shown in Figure 4.9 and
in Table 4.4. All algorithms succeed in clustering synthetic data for 2 € {0.0001,0.01, 0.25} since
the ground-truth partition is recovered in Figure 4.9 with an ARI equals to 1 visible on Table 4.4.
Adding quantitative information enables algorithms to recover the ground-truth for any value of
o2. Results of the second experiment on real data are shown in Figure 4.10 and in Table 4.5. The
proposed model perfectly estimates clusters for the three cases whereas spectral clustering and
k-means cannot manage to recover the correct clusters in real case 1 (Subfigures (d), (g) and (j)).
Indeed, the proposed model finds the five different emitters by exploiting quantitative features
while spectral clustering and k-means cannot identify the emitter whose temporal evolution
features are distributed according to the parabola which is slowly increasing (red parabola in
Subfigure (d)). Nonetheless, k-means and spectral clustering have higher Silhouette coefficients
than the proposed model since they provide more convex clusters than the proposed method.

101



CHAPTER 4. TEMPORAL EVOLUTION DATA

10— . - =T . . 1
0.9 e . 1 oo
N
. 4 08
1 0.7
o 0. 41 906 « 0.6
3 8 8
s 3 3
= 4 £05 Z05
= =3 =3
E E E
<04 4 <04 <04
03 41 o3
0.2 1 0.2
0.1 1 0.1
o o e | 0 B
0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Times of Arrival Times of Arrival Times of Arrival

(a) Ground-Truth, 02 = 0.0001 (b) Ground-Truth, 62 = 0.01  (c) Ground-Truth, 0% = 0.25

-1
09 1 09 09 2
3
08 4 o8 08 4
— 1 o7 o7t
T IR
° = 1 w086 06
3 8 8
3 - 3 3
XX ~ 4 205 205
=4 5 5
3 3 3
<04 . 4 <04 <04
S —
03 e e 4 03 03
- gy
02 1 02 02
0.1 EER 0.1
0 0 0 :
0 02 0.4 06 0.8 1 [ 02 0.4 06 08 1 [ 02 0.4 06 08 1
Times of Arrival Times of Arrival Times of Arrival
2 __ 2 __ 2 _
(d) PM, o2 = 0.0001 (e) PM, 02 = 0.01 (f) PM, 02 = 0.25
1 1 - 1
09 1 09
08 1 08
] 07
0. R 1a 206
3 - 8 8
S € k<]
2 0. e 4 2o 205
5 =1 5
E E €
<04 4 <o. <04
03 1 03

e b
s,
v

o o
SN
o o
- N

‘m
° ©
)

e

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 08 1
Times of Arrival Times of Arrival Times of Arrival

(g) SC, 2 = 0.0001 (h) SC, o2 = 0.01 (i) SC, 02 = 0.25

o o
® ©
o o
® o
!

< 0.7 0.7
0. 1 w086 06
3 8 8
5 k<l k<]
2 0! 1 205 205
= = =
3 E E
<04 1 <04 <04
I ER T
0.3 e —a R .., 103 0.3
- -
02 1 02 02
0.1 4 o1 0.1
0L teeen = L L 0 . L i ol L L L L 4
0 02 0.4 06 0 02 0.4 06 08 1 [ 02 0.4 06 08 1
Times of Arrival Times of Arrival Times of Arrival

(j) KM, o2 = 0.0001 (k) KM, 02 = 0.01 (1) KM, 02 = 0.25

Figure 4.7: Results on synthetic data during the first experiment when only temporal evolution data are
considered. Figures (a), (b) and (¢) show synthetic data generated with different values of the variance
o2. Figures (d), (e) and (f) show clustering results of the proposed model (PM). Figures (g), (h) and (i)
show clustering results of the spectral clustering (SC). Figures (j), (k) and (1) show clustering results of
the k-means algorithm (KM).
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Table 4.2: Adjusted Rand Index (ARI) and Silhouette coefficient (S) values for the proposed model (PM),
the spectral clustering (SC) and the k-means algorithm (KM) during the first experiment on synthetic
data when only temporal evolution data are considered.

0 =0.0001 1 1 034! 032 032 032 0.63
0®=001 1 1 033,027 027 027 0.63
0®=025 042 023 027 ' 0.10 0.14 0.53 0.56

Table 4.3: Silhouette coefficients of the proposed model (PM), the spectral clustering (SC) and the k-
means algorithm (KM) during the first experiment on real data when only temporal evolution data are
considered.

Silhouette Coefficient

Table 4.4: Adjusted Rand Index (ARI) and Silhouette coefficient (S) values for the proposed model (PM),
the spectral clustering (SC) and the k-means algorithm (KM) during the experiment on synthetic data
when all types of data are considered.

ARI j S
PM SC KM, Data PM SC KM
02=00001 1 1 1 '076 0.76 0.76 0.76
0?2 =0.01 1 1 1,075 0.75 0.75 0.75

02 =0.25 1 1 1 1073 073 073 0.73

Table 4.5: Silhouette coeflicients of the proposed model (PM), the spectral clustering (SC) and the k-means
algorithm (KM) during the second experiment on real data when all types of data are considered.

Silhouette Coefficient
“Casel 0.77 075 081
Case 2 0.57 0.32 0.61
Case 3 0.71 0.73 0.74
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Figure 4.8: Results on real parabolic data during the first experiment when only temporal evolution data
are considered. Figures (a), (b) and (c) show real data in different cases. Figures (d), (e) and (f) show
clustering results of the proposed model (PM). Figures (g), (h) and (i) show clustering results of the
spectral clustering (SC). Figures (j), (k) and (1) show clustering results of the k-means algorithm (KM).
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Figure 4.9: Results on synthetic parabolic data when all types of data are considered. Figures (a), (b)
and (c) show synthetic data generated with different values of the variance o2. Figures (d), (e) and (f)
show clustering results of the proposed model (PM). Figures (g), (h) and (i) show clustering results of the
spectral clustering (SC). Figures (j), (k) and (1) show clustering results of the k-means algorithm (KM).
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Figure 4.10: Results on real parabolic data when any types of data are considered. Figures (a), (b) and
(c) show real data in different cases. Figures (d), (e) and (f) show clustering results of the proposed model
(PM). Figures (g), (h) and (i) show clustering results of the spectral clustering (SC). Figures (j), (k) and
(1) show clustering results of the k-means algorithm (KM).
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4.2 Piecewise parabolic data

In this section, K emitters presenting piecewise parabolic scanning behaviours are considered.
Therefore, the main objective is to develop a mixture model which can build K distinct clusters
formed by K piecewise parabolas with P piecewises and to define an inference procedure for
parameter estimation. Then, the proposed model is enhanced with the mixture model designed
for mixed data in Chapter 3 in order to improve clustering performance. Finally, experiments
on synthetic data are carried out to exhibit performance of the proposed approach.

4.2.1 Model

Before introducing a mixture model that handles piecewise parabolic data, the piecewise parabolic
relation between amplitudes and times of arrival is defined. Then, the mixture model is developed
into a Bayesian framework.

Piecewise parabola equation

The piecewise parabolic relation between amplitudes (z;)jc7 and times of arrival (;) e gives
form to a set of P piecewises of constant amplitudes (,U,};)pe'p that are linked by a parabolic
relation (Figure 4.11). Each piecewise M; gathers pulses (z4j,t;)jc7, Whose amplitude x;; is
equal to u; and where 7, is the set of indexes of pulses that belong to the " piecewise. These
P sets J) of pulses are disjoint and constitute a partition of J such U, J, = J. Finally, the
piecewises (/,L;'))pep belong to a parabola parametrized by w and (min;e A tj)p cp which are the
times of the first pulses belonging to the piecewises. That definition can be translated into the
following system

t
Tij = py T €

t .
=& | min ¢,
Hp <j€~7p /

Vje gy, >T (4.17)
w

where € ~ N(0,0?) is a measurement noise introduced to model defects of materials, J, = {j €
T, |xey — pﬁ,] < o} and ®(-), respectively w, are the polynomial transformation, respectively the
regression parameter, defined in (4.2). Since the measurement error is assumed to be Gaus-
sian, amplitude () ez, are distributed according to a normal distribution centered in uf, with
variance o>

Vi€ Ty, xj~N (xtj|u§,,o2> ) (4.18)

If (Jp)pep and (M;)pe’p are known, the regression parameter w is the solution of a linear problem
given by

pl=aX) w
where ®(X) is a 3 x P matrix whose columns are the P polynomial transformations
(® (minje g, tj))p op and put = (pt, ..., ;u)T. Then the regression parameter w is obtained such
that

Mixture model

Since each radar emitter has its own scanning behaviour, K unique piecewise parabolas exist in
data and they are configured with K regression parameters w = (wy)rex and K sets of piecewises
pl = (,u';p)(p’ k)epxic- Then, each amplitude x;; belongs to one of these sets of piecewises which is
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Figure 4.11: Simulated data where amplitudes x; and times of arrival ¢ are distributed according to a
piecewise parabolic relation defined with P = 4 piecewises.

related to a specific emitter. In other words, conditionally to its label z; and its affiliations to one
of the piecewises, the amplitude x; is distributed according to (4.18) such that the component
distribution is defined by

Vj€ Tp, wijlzj=k~N (xtj\,uzp,(fQ) (4.19)

In order to model its affiliations to one of the piecewises, a latent discrete variable y; is introduced
such that (4.19) becomes

Vj € j, xtj|yj =p,zj= k ~ N (xtj|u§€p,a2) (420)

where y; belongs to P and follows, conditionally to z; = k, a categorical distribution with weights
br = (bk1,--.,bkp). Therefore the initial component distribution (4.19) can be reformulated as
a mixture model such that

p(aylz = k,0,K) = 3 b (w5l11ky 0%)

peEP

Recalling that p(z; = k) = a;, where a = (aj)rex are the weights related to component distribu-
tions, the proposed mixture model is a mixture of mixture models given by

\V/] S ja p(xt]|®) = Z ag Z bkpN (xtj|l‘bi:p70-2) (42]‘)

ke peEP

where © = (a, b, u?, 0?) is the set of parameters.

Bayesian framework

As in previous chapters, a Bayesian framework is used to estimate parameters @. Assuming
datasets (x¢,t) of i.i.d observations (z,t;)jes and independent labels z = (2j)jcs and y =
(yj)jeg for clusters and piecewises, the complete likelihood associated to (4.21) is defined by
(Sk
sho\
p(x,h[©,K) = TT II (e ] (bkpN (thj\ufﬁp,fo)) "

JET kex peEP
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where h = (y, z) is the set of latent variables. Eventually, the prior distribution required for @
is chosen as

p(©IK) = p(al)p(blK)p(k'|o?, K)p(a?)

where a and b follow a Dirichlet distribution, each ,u';p follows a Normal distribution and o?
follows an Inverse Gamma, distribution such that

p(alK) = D(alro) ,
= ][ D(bloo) ,

ke

w'o? k) = TT TN (whpluh 071 0?)

ke peP

p(0®) = IG(o|€7, €3) -

The resulting mixture model is shown on Figure 4.12.

70
1o -
EEE)
0 0
EIGES®
J;tj
p G2

Figure 4.12: Graphical representation of the proposed mixture model handling piecewise parabolic data.
The arrows represent conditional dependencies between the random variables. The K-plate represents
the K mixture components and the J-plate the independent identically distributed amplitudes z; and the
indicator variables (z;,y;). Known quantities, respectively unknown quantities, are in blue, respectively
in red.

4.2.2 Inference

The Variational Bayes (VB) procedure is derived to estimate parameters of the mixture model
defined in (4.21). Variational posterior distributions are obtained from the VB Expectation
(VBE) and VB Maximization (VBM) steps and a lower bound on the log evidence is defined to
master the convergence of the VB procedure.

Variational posterior distributions

As previously, a factorized posterior distribution g(h, ®|K) = q(h|K)q(®|K) is chosen as an ap-
proximation of the intractable posterior joint distribution p(h, ®|x;, ) such that latent variables
h and parameters © are a posteriori independent and

q(h|K) = q(y|z, K)q(z|K) ,
q(8|K) = q(alK)q(b|K)q(u'|0*K)q(c?) .
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According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

q(y|z,K) H H Cat( y]|rjk) z ,

jeJ kek
q(z|K) = [] Cat(zl7) ,
jeg
q(alK) = D(alk) ,
q(b|K) = ] D(brlor) ,

kel

a(u'o? K) = TT TI NV (thpliity 7' 0®)

ke peP
q(0%) = IG(0*[61,&) -
Their respective parameters are estimated during the VBE and VBM steps.

VBE-step

The VBE-step consists in deriving the following expectation

o [log p(x:, h|t, 0, K)] Z Z oF (E@ [log ay] + Z ob. (E@ [log byp] — = (log 2
JjeT kex peEP

(@) ;Q:ukp) ] ))) (4.22)

-y (E o ax) + 3, log pﬁp)

jeT kek peP
(15 — pify)?
Tp . (4;23)

Hence, a categorical distribution for piecewise labels y is deduced from (4.22) conditionally to

cluster labels z such that
q(ylz,K) H H Cat( yj]r]k) 5
JjeT kel

+Ee [log 02} +Ee

where

1
log p?kp = Ee [log bip] — 3 <log 2r +Ee {log 02} +Ee

and their parameters (%gk) jeg are obtained from (4.23) as follows

Pik
VieJ,Vke K, VpeP, # AL
S o

Marginalising over y in (4.22), a categorical is obtained for cluster labels z such that

q(z|K) = ] Cat(z|7)

jeT
with o
Vie T, VkeK, fyp= L2t
! Z Pik
kex
where

pjk = Ee [logar] +1og > pY -
peEP
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VBM-step
The VBM-step consists in deriving the following expectation
Ep [log p(z¢, b, ©[t, K)] = Ep, [log p(z¢, hlt, ©, K)] + log p(©|K)
1
_ k _ =
- Z > En [52J (log ap+ Y Ep [55J_] <IE@ [log by 5 <log 27
JjeT kex peEP

o (@ — “fcp)Z 0 0
+logo +T —|—Z(/€k—1)10g(lk+10g01)(li )

kel
50
— (&) +1)1logo® — 0—22 +logezg(€9,€9) + Z Z(ogp — 1) log by
ke peP
1 0
~3 (log 21 4 log 0% + ﬁ(uip — MB)Q) + > logep(o}) -
ke

(4.24)
By factorizing terms related to a in (4.24), the following Dirichlet distribution is obtained
q(a|K) = D(alk)

where
k€K, Rk =+ Y B |0k ]
jeJ
Following the same reasoning, b is distributed according to a product of Dirichlet distributions
given by

q(b|K) = T[] D(bk|ok)
keK

where
k€K, ¥p € P, Gy = o, + > By [0 Bp |07 ] .
JjeJ

By aggregating terms related to each ;ﬂ,@p in (4.24), a Normal distribution is obtained for each
Mip such that

a(w'0® K) = TT TI N (hopliiky 7' 0?)

ke peP

where Vk € C and Vp € P

7-k:p = Z Eh [(52] Eh |:(55J:| +T[) s
JjeJ
S e Bn |05 Bn (00| @i + o

Tkp

~t .
:ukp -

Eventually, an Inverse Gamma distribution is deduced from (4.24) such that

q(0?) = IG(0?(&1, &)

where
- J
gl = g? + 5 )
g 0o, 1 k p | .2 12~ =t N2
o =268 + 5 S D Es [5%} En {5%} T+ Topy” — Trp(fkp)™ | -
ke peP \jeJ
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Lower bound
Recalling that the lower bound on the log evidence is given by
L(q|K) = Ep,e [logp(x:, h, ©lt,K)] — Ep e [log q(h, O[K)]

where Ep, @ [logp(x¢, h, ®t, )] is the free energy and Ep, @ [log ¢(h, ®|K)] is the entropy of the
approximate posterior ¢(h, ®|K). The free energy can be developed as

Ep.e [logp(xt, h, O[t,K)] = Ep e [log p(z:, hlt, ©, K)] + Eg [log p(O[K)]
where
Ene [logp(zy, hlt,©,K) = > > Ep [5’;} Ee [logai] + > Ex [ }logp]kp
JjET kex peEP
and

o logp(®[f0)] = Y- (k2 - DEe logar] — (6] + DEe [logo?] - Ee | ;| +logen(x")
ke

1
+logerg(€, )+ Y Y (o, — Ee [logbiy] — 5 (log 2r + B [log o?]
kel peP

1
+Ee { } 7o(Ee |:/J’k:p:| 16)? + 107, > > logep(o
keK
As for the entropy term, the following decompositon is obtained
En.e [log q(h, ©|K)] = Ep [log q(y, 2|K)] + Ee [log ¢(©|K)]
= Ep [logq(y|z, K)] + Ep [log ¢(2|K)] + Ee [log ¢(©|K)]

where
Ep, [log q(y|z, K)] Z Z Ep [6k] Z Ep [ } logfjl./kp ,
JjeT kek pEP
Ep, [log q(z ZZEh[ }logr]k
JET ke
and
- = 1
Ee [logq(®|K)] =Y (7 — 1)Ee [logax] — (&1 + 1)Ee [10g0 } &HEe { } +log cp(K)
kel
.- ~ 1
+ log ng(fl,fz) -+ Z Z(Okp — I)E@ [log bkp] — 5 (log 27 + Eeg []Og 02} + 1)
ke peP
+ Z IOgCD(E)k) .
ke
Expectations

Expectations developed in variational calculations are derived from properties of variational
posterior distributions and are obtained as follows. Categorical distribution properties lead to

VieJ, Vke K, VpeP:

113



CHAPTER 4. TEMPORAL EVOLUTION DATA

Dirichlet distribution properties lead to
Vke K, VpeP:

Ee [log ax] = ¢(Rk) — ¢ (Z Fék) ;

kek

peEP

Ee [log bip] = 1 (0rp) — ¢ (Z 6k:p) :

where 9(+) is the digamma function. Normal distribution properties lead to
Vke K, VpeP:
Ee |:Mi:p:| = [y
Ee [(M}lp)ﬂ =Ve [M}Zp] +Ee [Mipr
=0y + (k)
Inverse Gamma distribution properties lead to
wf3]-§.
g &2
Ee [108; 02] =logér —¥(&) .
Using all these properties, the following expectation can be calculated as

VieJ, Vkel, VpeP:

2
(xtj — sz)2‘| _ &1 («th - ﬂip)

~—1
= —|—Tkp .

o? &2

|

4.2.3 Complete model

A model integrating piecewise parabolic data and mixed data is now presented. By taking into
consideration any types of available data, the resulting model can fit data better and can estimate
more accurate clusters. First, data formalism and assumptions are detailed. Then, the resulting
mixture model and its inference procedure are developed.

Data and assumptions

In this part, data consist of J pulses gathering J amplitudes x; = (z¢j)jes associated to J
times of arrival ¢ = (t;);es, J continuous features x, = (x4j)jcs and J categorical features
. = (x¢j)jey from K distinct emitters. Let x; = (x4, Tcj, x15) the 4t observation vector of
mixed variables where

e I, € R? is a vector of d continuous radar features such as the Radio Frequency, the Pulse
Width, the Azimuth or the Pulse Repetition Interval,

o x.j = (ZTejgs oo s Tej, 1) € Cg is a vector of ¢ categorical radar modulations such as intra-
pulse modulations or pulse-to-pulse modulations,

e z;; € R is a continuous variable modeling the Amplitude.
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For each pulse j, the temporal evolution variable z;; and mixed variables (z4;, ;) are assumed
to be independent conditionally to each cluster k& € IC

Vied, (g, )|z =k AL aylz; =k . (4.25)

with z; the latent variable modeling the label of the j* observation vector &; = (24j, Tcj, T15)-
Moreover, the temporal evolution data (xj,t;)jes are distributed according to a piecewise
parabolic relation and the quantitative data (x4;)jes are normally distributed conditionally

to categorical data (x.j)jcy. Both quantitative and categorical data (x4;, xc;j)jc7 can be par-
tially observed. Hence (x4, ¢j)jcs are decomposed into observed features (x‘é}’s, w?}’s) jeg and
miss ,,miss

missing features (zy}**, x¢;>)je7 such that

ajmiss . miss obs s
. q . miss ., obs a” d° miss obs __
:cqj—<m03bs with (zg;™, 2g°) € R x RY  and dj™ + dj> = d ,

qj aj
. q)
ViedJd, pmiss . ) . )
_ c . miss ,.,obs ) miss obs __
xcj = m(‘)]bs Wlth (’JCC] ,mcj ) € Cq;_nlss X Cq;)bs and q‘] + q‘7 = q .
cj

Mixture model

According to the independence assumption (4.25), the distribution of mixed data (Chapter 3) and
the piecewise parabolic relation between temporal evolution data, the component distribution
results in

Vi€ T, p(Tg, Tej, Tijlug, 25 = k) = p(xgs, Tejlug, 25 = k)p(aislz; = k)

where
e
P(®gj, Tejluj, 2z = k) = [] (WN ("Jqﬂ'“"kc’“fz’f)) A
ceCy

ViedJd, 5t (4.26)

plaglzy = k) =[] (bkp/\/ (wtj|uip702)) ’

peP

with

e u = (u;);jcy the scale latent variables handling outliers for quantitative data x, and dis-
tributed according to a Gamma distribution with shape and rate parameters
(e, B) = (e, Bre) (k,e)ek xc, conditionally to categorical data @, and labels z = (2;) e,

o (1,X) = ((Mpe)eccy» Br)rek the mean and the variance parameters of quantitative data
x, for each cluster,

o m = (my)kex the weights of the multivariate Categorical distribution of categorical data
x. for each cluster,

e y = (y;)jes the latent variables indicating the p'" piecewise temporal evolution data x;
belong to,

o b= ((bkp)per)rek the weights of the Categorical distribution of latent variables y,
o p' = ((f,y)per ek the set of piecewises for temporal evolution data x; for each cluster,

e o2 the variance of the measurement noise related to temporal evolution data x;.
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Figure 4.13: Graphical representation of the proposed model integrating temporal evolution data and
mixed-type data. The arrows represent conditional dependencies between the random variables. The
K-plate represents the K mixture components and the J-plate the independent identically distributed
observations (@4, €cj, ¥j,t;) decomposed into temporal evolution data (z;,t;) and mixed-type data
(g5, %c;), the scale variables u; and the indicator variables (y;,z;). Known quantities, respectively
unknown quantities, are in blue, respectively in red.

Recalling that p(z; = k) = a;, where a = (ay)rex are the weights related to component distribu-
tions, the mixture model is obtained from (4.26) such that Vj € 7,

c

t 2 553' -1 6wc'
p(@j,u),y;10) = D ar [] (bkpN (ﬁtj\ﬂkp»ﬂ )) II (ch/\/' (mqj“l'kcauj 2k> g(“j|aka,8kc)) ’
kek  peP ceC
(4.27)

where ® = (a,b, u', 02, 7w, a, B, u, ) is the set of parameters.

Bayesian framework

As in previous chapters 2 and 3, a Bayesian framework is used to estimate parameters @. Assum-
ing datasets (x = (x4, @, @), t) of i.i.d observations (x; = (xg;, Zcj, Ttj), tj)jes, independent
labels z = (2j)e7, piecewise indicators y = (y;)jcs and scale latent variables u = (u;);c7, the
complete likelihood associated to (4.27) is defined by

p(x,y,u,z|0,K) = H H (ak H (bkpN (mtj’NZp7U2)>65j

JET kek peEP
. 5e \%%
<1 (e (@il ;1 5) Gulanes 510)) ™ )
ceCy

Eventually, the prior distribution required for @ is chosen as

p(®|K) = p(a|K)p(b|K)p(p'|o?, K)p(a®)p(|K)p(a, BIK)p(p, Z[K)

116



CHAPTER 4. TEMPORAL EVOLUTION DATA

where
p(alK) = D(a|ko) ,
=[] D(bkloo) ,
ke
p(m|K) = H D(mg|mo) ,
kex
p( 2K =TT T] N(Nkc’“()vnalzk) IW(Zk]v0, Xo)
ke ceCy
p(a,BUC) = H H p(akc>ﬁkc|p0aQO780>r0) 5
ke ceCy
|U IC H HN<:ukp|:u077_0 U) ’
ke peP
p(0?) = IG(0?|¢], £9) -

Graphical representation of the proposed model is shown in Figure 4.13.
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Inference

As previously, a factorized posterior distribution
q(xgmss u, Sy 2 OK) = q(xy miss gy, 2% g, 2|K)q(O|K) is chosen as an approximation of
the intractable posterior joint dlstrlbutlon p(x flmss, u, "y, z, C-)\w‘)bs, KC) such that latent vari-

ables h = (a:flmss u, x5y, z) and parameters © are a posteriori independent and

q(h|K) = q(x)|u, ™, z, K)q(ule™, z, K) (x| 2, K)q(y|z, K)q(z|K)
q(8IK) = q(alK)q(blK)q(p'|0?, K)q(0?)q(w|K)q(ex, BIK)q(p, IK) .

According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

SS

i 5;6_
q( mlSS‘u mmlss ,K:)Z H H HN< mlSS“L]kc , ;12:(1 > J % :

JEJ ke ceC

R N
(u\wmlss z,K) = H H Hg (Uj’ajkcaﬁjkc) o

JEJT keK ceC

. miss Sk
q(mlcmss‘z’ IC H H MC mlss ~m )52j
JET kek

a(yl=,K) = ] T Catly; |7 )’% ,

JjeTJ kex
= [ cat(zl7;)
jeg
q(alK) = D(alk) , (4.28)

= [ D(=|74)

kek

kel ceC

(o, BIK) = ] p(ke, Brelbrs @rs 55 )
kek
q(b|K) = [ D(bklox) ,
kek

a(p'10%,K) = T TI N (pliitps 7 0?)

kEK peP
q(0®) = 2G(0*|61, &) -

Their respective parameters are estimated during the VBE and VBM steps by developing expec-
tations Eg [log p(x, u,y, z|®, K)] and Ey, [log p(x, u,y, z, ®|K)]. Noting that

Ee [log p(, u,y, 20, K)] =Ee [log p(@1, y|2, b, u', 0%, K)| +

+Ee [logp(2|a,K)]
(4.29)

and
Ey log p(x, u,y, 2, ©|K)] =Ej, [logp(ar, y, b, ', 0?2, K)| +
+ Eh [logp(zv a’|IC>} )
(4.30)
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the VBE (4.29) and VBM (4.30) steps can be independently derived for latent variables and
parameters related to temporal evolution data x; and mixed data (x4, z.). Therefore, variational
posterior distributions of latent variables (sc;niss, w, 75%) and parameters (7, , 8, u, ) related
to mixed data (x4, x.) are obtained as in Chapter 3 by deriving in (4.29) and
(4.30). As for (y, b, u,0?), their variational posterior distribution are obtained as in subsection
4.2.2 by developing blue expectations in (4.29) and (4.30). As in subsection 4.2.2 or in Chapter 3,
the Dirichlet posterior distribution of @ is deduced from the red expectation in (4.30). Eventually,
the variational distribution of labels z is obtained by marginalising over latent variables in the
and developing both blue and red expectations in (4.29) such that

/ Ee [log p(@, u, y, 2|0, K)] 9z =0ydudz™= = 3" 3 6¢ log pjy

JET kek
where log pj is deduced from red, blue and expectations in (4.29) as follows
VjeJ, Vk e, logpjr =Ee [loga] + log p?k + . (4.31)
with
VjeJ, Vk ek,
Ee [logak] = ¢(Rx) — ¢ (Z f?lk) ;
kel

log ply, = log >~ p%, s
peEP

miss

$C
= log Z kaZniss .

cmiSSECq;niss
The red term Eg [log ax| is deduced from properties of the Dirichlet distribution, the blue term
log /’;k is deduced from (4.22) and (4.23) in subsection 4.2.2 and the has been
detailed in Chapter 3. Hence, z is distributed a posteriori according to a product of Categorical
distributions parametrized by r = (fjk)(j,k)ejxic given by

Vi€ T, Yk €K, 7y = 2 (4.32)

The lower bound on the log evidence is still required to master the VB inference and can be
also decomposed into terms related to temporal evolution data (blue terms), mixed data (
) and labels z (red terms). This decomposition is obtained as follows

E(Q‘K) = Eh,@ [logp(a:, u,y, =z, ®|IC)] - Eh,@ |:10g Q(m;niss) m{:ﬂiSS7 u,y, =z, G)VC)]
where the free energy can be developed as
Eh,@ [1ng($7 w,y,z, ®|,C)] = Eh,@ [logp(m u,vy, Z|®v IC)} +Ee |:10gp(ba )uta U2|IC)]
+

and the entropy as
Ene [logq(f™, a2 u,y, z,0|K)| = Ene [loga(b, ', 0*[K)| + Ene [loga(y|2, K)]
+ + En,e [log q(z|K)]
+
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Blue terms, respectively , have been previously detailed in subsection 4.2.2 , respec-
tively in Chapter 3. As for red terms, they are detailed below :

Ene [logp(x, u,y, 2[t,©,K)] = 3 3" By [6% | log pji ,
jeJ kek

Ene lloga(2/)] = 3 3 By 0% | log i .
jeT kex

4.2.4 Experiments

Two experiments are carried out to evaluate clustering performance with respect to a set of
synthetic data. In the first experiment, only temporal evolution data are taken into consideration
in the clustering procedure. Then, both temporal evolution data and quantitative data are
considered in the second one. For comparison, the spectral clustering [VL07] and the k-means
algorithm from [HW79] are also evaluated. First, characteristics of data, comparison algorithms
and evaluation metrics are detailed. Then, both experiments are described and performance are
shown to exhibit the effectiveness of the proposed model.

Data, algorithms and metrics

Synthetic data are composed of temporal evolution data related to amplitudes which are dis-
tributed according to a piecewise parabolic relation and quantitative data related to continuous
radar features which are jointly distributed according to a multivariate normal distribution.
Temporal evolution data are generated by sampling a set of data from four piecewise parabolas
directed by

-1 -2 -3 4
w=|1 2 3 4
1 2 3 4

For each piecewise parabola, p = 4 piecewises are obtained by dividing the time interval in p
equal subintervals and assigning to each piecewise the value of the parabola at the minimal time
of its related time subinterval. Quantitative data are generated by sampling a set of data from
four well-separated bivariate clusters with centers [0,0]7, [1,0]7,[0,1]7 and [1,1]7 and identity
covariance matrices. Three synthetic datasets are generated with respect to a range of values of
0?2 and are linearly transformed by a min-max normalization to meet algorithms requirements.
These datasets are shown in Figures 4.14 and 4.15 where each radar emitter is represented by a
piecewise parabola (Figure 4.14) and a Gaussian cluster (Figure 4.15).

Except for the k-means algorithm, an initialisation is required for clustering algorithms that
are involved in these experiments. The similarity graph required for the spectral clustering is
obtained from a k-nearest neighbor graph as suggested in [VLO7] where the number of neighbors
k is chosen as the product of the log number of observations and the number of clusters. As for
the proposed model, a supervised initialisation is retained due to its sensitivity to initialisation.

First, prior hyperparameters ¢) and &9 are initialised such that the prior mean E[%] = % of
the variance parameter o2 is equal to the inverse of the determinant of the covariance matrix
of temporal evolution data points. This choice is motivated by the fact that the determinant
of the covariance matrix can be interpreted as the generalized variance that reflects the overall
spread of the data. Setting &9 = 1, £ is initialised as the inverse of the generalized variance
of the sample of temporal evolution data. In addition, prior piecewise means pf, are initialised
from results of a k-means algorithm on temporal evolution data. Then, prior component means
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Figure 4.14: Synthetic piecewise parabolic data generated from different values of the variance parameter
o?. Figures (a), (b) and (c) present unlabeled data where 4 piecewise parabolas are generated. Ground-
truth are visible on Figures (d), (e) and ().
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Figure 4.15: Synthetic quantitative data generated from 4 multivariate normal distributions. Figure (a)
shows unlabeled data and Figure (b) exhibits the ground-truth.
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Table 4.6: Initialisation of hyper-parameters values for clustering on piecewise parabolic data

0o Ko Mo Y Po To Go So
1 05 10 1 1 1 1 1

Table 4.7: Adjusted Rand Index (ARI) and Silhouette coefficient (S) values for the proposed model (PM),
the spectral clustering (SC) and the k-means algorithm (KM) during the first experiment on synthetic
data when only temporal evolution data are considered.

0% =0.0001 0.73 0.73 0.35 : 0.30 035 035 0.64
02=001 0.76 084 0.34, 026 0.31 0.33 0.64
02=0.25 054 0.26 0.27 ' 0.10 0.14 0.53 0.56

W, respectively covariance matrices 3y, are initialised from results of a k-means algorithm on
quantitative data, respectively from diagonal matrices whose diagonal elements are variances of
quantitative data. Other hyper-parameters are initialised as in Table 4.6.

Performance on synthetic data are evaluated through the Adjusted Rand Index (ARI) [HAS85]
that compares estimated partitions of data with the ground-truth and the Silhouette Coeflicient
[KR09] which does not require the ground-truth and provides a higher score when clusters are
dense and well separated.

Experiments and results

The first experiment aims to determine the ability of each algorithm to restore the true clusters
according to an a priori number of clusters K when only temporal evolution data are taken
into consideration. According to datasets visualised in Figure 4.14, K is set to 4 for synthetic
data. Results of the first experiment on synthetic data are shown in Figure 4.16 and in Table
4.7. When o2 € {0.0001,0.01}, the proposed model and the spectral clustering have similar per-
formance in clustering synthetic data with an ARI equals to 0.73 while the k-means algorithm
has the lowest performance (ARI = 0.35) in creating convex and isotropic clusters that cannot
handle the piecewise parabolic structure of the generated data. This limitation is emphasized by
higher Silhouette Coeflicients of the k-means algorithm whereas the non-convexity of the data
is confirmed by the lower Silhouette Coefficients of the ground-truth. Even if all algorithms
poorly perform when data are embedded in noise (02 = 0.25), the proposed algorithm estimates
clusters with a more parabolic shape than other algorithms which build more isotropic clusters
(Subfigures (f), (i) and (1) in Figure 4.7). Indeed the Silhouette Coefficient of the proposed model
(S = 0.14) is closer to the Silhouette Coefficient of the ground-truth (S = 0.10) than Silhouette
Coefficients of spectral clustering (S = 0.53) and k-means (S = 0.56).

The second experiment aims to determine the ability of each algorithm to restore the true
clusters according to an a priori number of clusters K when all types of data are taken into
consideration. The number of clusters K is still set to 4 for synthetic data.. Results of the
second experiment on synthetic data are shown in Figure 4.17 and in Table 4.8. All algorithms
succeed in clustering synthetic data for o € {0.0001,0.01,0.25} since the ground-truth partition
is recovered in Figure 4.17 with an ARI equals to 1 visible on Table 4.8. Adding quantitative
information enables algorithms to recover the ground-truth for any value of o2.
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Figure 4.16: Results on synthetic parabolic piecewise data when only temporal evolution data are con-
sidered. Figures (a), (b) and (c) show synthetic data generated with different values of the variance o2.
Figures (d), (e) and (f) show clustering results of the proposed model (PM). Figures (g), (h) and (i) show
clustering results of the spectral clustering (SC). Figures (j), (k) and (1) show clustering results of the
k-means algorithm (KM).
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Figure 4.17: Results on synthetic data when all types of data are considered. Figures (a), (b) and (c)

show synthetic data generated with different values of the variance o

2. Figures (d), (e) and (f) show

clustering results of the proposed model (PM). Figures (g), (h) and (i) show clustering results of the
spectral clustering (SC). Figures (j), (k) and (1) show clustering results of the k-means algorithm (KM).
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Table 4.8: Adjusted Rand Index (ARI) and Silhouette coefficient (S) values for the proposed model (PM),
the spectral clustering (SC) and the k-means algorithm (KM) during the second experiment on synthetic
data when all types of data are considered.

ARI j S
PM SC KM ,h Data PM SC KM
"02=00001 1 1 1 "076 0.76 0.76 0.76
o2 =0.01 1 1 1,07 075 075 0.75

c?=025 064 1 1 '073 045 0.73 0.73
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4.3 Parabolic and piecewise parabolic data

In this section, we consider that both scanning behaviours are observed among the K emitters.
Hence, parabolic and piecewise parabolic relations are observed in data and have to be taken
into account in the clustering procedure by developing a mixture model that can build K distinct
clusters formed by either parabolas or piecewise parabolas. Then, the proposed model is enhanced
with the mixture model designed for mixed data in Chapter 3 in order to improve clustering
performance. Finally, experiments on synthetic data are carried out to exhibit performance of
the proposed approach.

4.3.1 Model

Definitions of parabolic relation and piecewise parabolic have been previously introduced in
Sections 4.1 and 4.2. Now, data can be modeled either by a parabolic relation (4.1) or a piecewise
parabolic relation (4.17). Since the measurement noise € is still Gaussian, amplitudes (z4;);jes
are normally distributed according to (4.3) and (4.18) such that

N (:Utj|<I>(tj)Tw, 02> if (x4, t;) have a parabolic relation .
VieJd, xtj|tj ~
dpeP, N (l'tjm;, 02) if (x4;,t;) have a piecewise parabolic relation .

(4.33)
Figure 4.18 presents data where amplitudes x; and times of arrival t are distributed according
to a parabolic relation and a piecewise parabolic relation from two distinct emitters.
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Figure 4.18: Data generated from two distinct emitters presenting a parabolic scanning behaviour and
a piecewise parabolic scanning behaviour. Hence, amplitudes x; and times of arrival ¢ are distributed
according to a parabolic relation and a piecewise parabolic relation defined with P = 4 piecewises.

Mixture model

Since each radar emitter has its own scanning behaviour, radar emitters can be distinguished
into two groups where K unique parabolas exist in the first group and K piecewise parabolas
exist in the second one such that K = Ko+ K;. Therefore Ky from K regression parameters
w = (wi)rex and Ky from K sets of piecewises p' = (1,,) (p.ryepx ik have to be estimated. Then,
each amplitude x;; belongs to one of these sets which is related to a specific emitter. In other
words, conditionally to its label z;, the amplitude z;; is distributed according to (4.33) such that
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the component distribution is defined by

N (xtj\cp(tj)%k,a?) if ke Ko .

Vie T, xlti,zj =k~
e Jp e P, N(xtj|u}f€p,a2> ifk ey .

(4.34)

In order to model its affiliations to one of the groups, a latent discrete variable w; is introduced
such that (4.34) becomes

) xtj’tj,wj = O,Z’j =k~N (xt]"q)(tj)ka,O'Z)
vjied, (4.35)

xt]|yj :p, ’LU‘7 = 17Zj = ]{? ~ N(flﬁtﬂ,ui:p,oz)

where w; € {0,1} follows, conditionally to z; = k, a categorical distribution with weights ¢;, =
(cko,ck1) and y; is the latent variable defined in (4.20) that follows, conditionally to z; = k
and w; = 1, a categorical distribution with weights by = (bg1,...,bgp). Therefore the initial
component distribution (4.34) can be reformulated as

p(:ctj\tj, Zj = ,IC, @,]C) = CkQN (l‘tj’(l)(tj)ka, 0'2) + Ck1 Z bkpN (.CUtj‘,U,l];p,Oz)
peEP

Recalling that p(z; = k) = ay, where a = (ay)rex are the weights related to component distribu-
tions, the proposed mixture model is a mixture of mixture models given by

kel peEP

Vi€ T, playlt;, ©) = ar (CkON (flftj\q’(tj)TmeQ) +opr Y bV (ﬂftj\ﬂfgp702>) (4.36)
where © = (a, b, c,w, u', 0?) is the set of parameters.

Bayesian framework

As in previous chapters, a Bayesian framework is used to estimate parameters @. Assuming
datasets (¢, t) of i.i.d observations (z;,t;) jes and independent labels z = (%) je7, w = (wj)jes
and y = (y;)jes for clusters, scanning types and piecewises, the complete likelihood associated
to (4.36) is defined by

s
plar,h1©,6) =TT TT | or (o’ (a6 wr,0%)) ™ <k IT (beV (xtjmzp,az))é’y’j>

JEJT kek peEP

where h = (y,w, z) is the set of latent variables. Eventually, the prior distribution required for
© is chosen as

p(©|K) = p(a|K)p(b|K)p(c|K)p(w|o?, K)p(u'lo?, K)p(o?)
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& @D

Figure 4.19: Graphical representation of the proposed mixture model handling parabolic and piecewise
parabolic data. The arrows represent conditional dependencies between the random variables. The K-plate
represents the K mixture components and the J-plate the independent identically distributed observations
(@tj,t;) decomposed into the amplitude x; and the polynomial transformation ®(¢;) and the indicator
variables (y;,w;, z;). Known quantities, respectively unknown quantities, are in blue, respectively in red.

where a, by and c;, follow a Dirichlet distribution, each wy and ,uffp follow a Normal distribution
and o2 follows an Inverse Gamma distribution such that

p(a|K) = D(a|ro) ,
p(®IK) = [ D(bloo)
kel

p(el) = T Dlexl¢o)

kek

p(w|o?, K) = H /\/’(wk\wo,GQAo) ,

kek

p(p'lo?,K) = TT TI N (shpleth 7 '0?)

ke peP
p(o?) = IG(o|€1, &3) -

The resulting mixture model is shown on Figure 4.19.

4.3.2 Inference

The Variational Bayes (VB) procedure is derived to estimate parameters of the mixture model
defined in (4.36). Variational posterior distributions are obtained from the VB Expectation
(VBE) and VB Maximization (VBM) steps and a lower bound on the log evidence is defined to
master the convergence of the VB procedure.

Variational posterior distributions

As previously, a factorized posterior distribution g(h, ®|K) = q(h|K)q(®|K) is chosen as an ap-
proximation of the intractable posterior joint distribution p(h, ®|x¢, K) such that latent variables
h and parameters © are a posteriori independent and

q(h|K) = q(y|w, z, K)q(w|z,K)q(z|K) ,
q(8|K) = q(a|K)q(b|K)q(c|K)q(wl|o?, K)g(p'|o?, K)q(o?) .
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According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

q(y|w, z,K) H H Cat( y]|r 11“J‘ I;j

jeJ kek
q(w|z,K) H H Cat(y;|75;) zj ,
JjET kel
q(z|K) = H Cat(zj|7;) ,

jeT

q(alK) = D(alk) ,

q(bK) = [] D(bklor) ,
kek

q(c|K) = [] DP(exlér) ,

keK

a(w|o?,K) = T] N (wilor, o®Ar)

kek

a(w'o?,K) = TT TI N (spliiky 7' 0%)

kel peP
q(0”) =IG(0*I61. &) -
Their respective parameters are estimated during the VBE and VBM steps.

VBE-step

The VBE-step consists in deriving the following expectation

o log (e, hit,0.)) = 3= 3 8 (Ee llogai] + 6%, (Ee log ol — 5 (log2r + o [logo?)
JjeT kex
(z1j — B(t;)" wp)?

E
+ ke 2

)) + 5111;]. (IE@ [log cp1] + Z 557_ (E@ [log b,]

pEP

)

= z Z ok (]E@ [log ax] + 62 <E@ [log cro] — 1<log 27+ Ee [loga }

(z1j — pfyp)?

1 2
_2(log27r+E@ {loga}—i-IE@ =

JET ke
T — P(t;)Twp)?
+ Ee (¢ (23) k) )) + (511%_ (E@ [log cx1] + Z 51]/)]- log p?kp)>
g pEP
(4.37)
where
1 () — p)°

log p?kp = Ee [log bip] — 5 <log 27 4+ Eeg {log 02} +Eeo % . (4.38)

Hence, a categorical distribution for piecewise labels y is deduced from (4.37) conditionally to
indexes z and w such that

k
q(ylw, z,K) = H H Cat(y;|75,) %
jeJ kek

129



CHAPTER 4. TEMPORAL EVOLUTION DATA

and their parameters ('F]yk) jeg are obtained from (4.38) as follows

VieJ,Vke kK, VpeP, f;’kp

Marginalising over y in (4.37), the expectation (4.37) becomes

Ee [log p(@1, w, 2[t,©,K)] = > 3" 6% (Ee [logay] + 63, log plfig + 0L, log plis ) (4.39)
JjeT kek

where

1 . P(t; T 2
log plfo = Ee [log cxo] — 2<log o +Fe [bg 02} \ Ee l(l‘t] (2;) wg) ] > ,

log pj31 = Ee [log cx1] + log Z p?kp .
peEP

Then, a categorical distribution for scanning type labels w is deduced from (4.39) conditionally
to cluster labels z such that

q(w|z,K) H H Cat( w]|'r'jk) 5

JjeT kek

and their parameters (f“?k) jeg are obtained from (4.40) as follows

VieJ, Vk e K, Vie {0,1}, 7, =

Eventually by marginalising over w in (4.39) a categorical distribution is obtained for cluster
labels z such that

q(z|K) = ] Cat(z|7)

JjeET
with
VjeJ, Yk eK, F = Z”f’;)jk
ke
where

pjr = Ee [log ax] + log Z Pjki -
1€{0,1}
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VBM-step
The VBM-step consists in deriving the following expectation
IEh [logp(mta h, ®’t7 IC)] = HEh [logp(mt, h”ta 67 IC)] + 10gp(®|l€)

— Z Z Ep [65]} (log ar + Ep, {5&} (log Cro — ;<log om + log o

JET kek
= (1) wg)?
+ (lBt] 0(2]) wk) )> + Ep, [61%11} <logck1 + ZE},[ } (E@ [logbkp]
peEP
1
— (10g27r+10g02+(ukp>)>> + > (kp — 1) logay, + log ep(k°)
2 o? kek

1 At
~3 (3(log 21 4 log 02) + log |Ao| + (wi, — wo)T 02 (wp — w0)>

5
— (& +1)logo® — =2 +1logezg(€9,69) + D > (0p, — 1) log byy
ke peP

1
<log27r+10ga + = (ukp Hg)z)

0> (G- log cki + Y logep(op) +logep(CP) -

kek i€{0,1} kek
(4.41)

By factorizing terms related to a in (4.41), the following Dirichlet distribution is obtained
q(a|K) = D(alk)

where
vk €K, Fr=r+ Y En[0h] .
JjeTJ
Following the same reasoning, b and ¢ are distributed according to a product of Dirichlet distri-
butions given by

q(blK) = T] D(brlox) ,

kel
q(c|K) = H D(ck|Cy)
ke
where
Vk € IC, Vp € P, 1y = 0, + 3 Ep [5k]Eh [5 }Eh [5 }
jeJ
and j

Vh € K, Vi € {0,1}, G =i+ > B [0F | En [0, ] -
JjeTJ
By aggregating terms related to each ui;p and wy, in (4.41), a Normal distribution is obtained for
each iy, and wy, such that

a(u'o?,K) = TT TI N (spliiky 7' 0%)

keK peP

a(w]o?,K) = T] N (wilor, o”Ar)

kel
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where Vk € K and Vp € P

i = 3 B [o5 B [o, | 2 [33] +
JjeJ
~§cp = 2ieq B [62} En [61103} En [55;‘] Ty + To

)

Tkp

~1
Ay = (Z En [0 | En |60, | ®(t))®(t;)" + Aal) ,

jeT

(IJk = [\k (Z Eh {5’;]} Eh [52]]} $tj<b(tj) + Aalwo) .
JjeT

Eventually, an Inverse Gamma distribution is deduced from (4.41) such that
4(0?) = IG(0*|é1,&)

where

~ J
51:£?+§7

fo =&Y+ % ¥ ( 3 En [5’;} Ey, [530]} Ey, [55}} 22+ 1o(ub)? — Fop(jil))? + B [5’;],] Ey, [5&} %
keK jeJg “peP

_ T x—1
+ wl Agtwo — @F A, wk) .

Lower bound

Recalling that the lower bound on the log evidence is given by
E(QVC) = Eh,@ [logp(mta hv ®|ta IC)] - Eh,@ [1Og Q(ha ®|,C)]

where Ep, @ [logp(x¢, b, ®t, )] is the free energy and Ep, @ [log ¢(h, ®|K)] is the entropy of the
approximate posterior ¢(h, ®|K). The free energy can be developed as

Ep.e [logp(xi, h, O|t,K)] = Ep @ [logp(xs, h|t,©,K)] + Eg [log p(®©|K)]

where

En e [logp(xe, h[t,©,K)] = > > By [0} (E@ llog ax] + Ep, [35, ] log pli
JET kek

B 1] (B o + B 5 o 3, )
peEP
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and

Bo g p(©1)C)) = 3 (i} - VEo loga] - (&) + DEe [logo’] - JEe || +logen(s?)
kel

+ log ezg(£9,€9) — % (3(10g 2r + Ee {log 02}) + log |Ag| + Trace (AkAal>
+Eeo [ ! } (Ee [wi] —wo) Ay ! (Be [wi] — wo))

1
+ Z Z<02p — 1)Ee [log bip] — 2<log 27 + Ee [log 02}
keK peP

1 ~ —
*he Lﬂ} mo(Ee [“ZP] —1p)” + ToTkz:l) +Y Y (G — DEe [log ci]
kek ie{0,1}

+_logep(a}) +logen(CY) -
kel
As for the entropy term, the following decompositon is obtained
En.e [logq(h, O|K)] = Ep log q(y, w, z|K)] + Ee [log ¢(O[K)]
= IEh [log Q(y|w7 Z, IC)] + IEh [lOg Q(w|z7 IC)]
+ En [log q(2|K)] 4 Ee [log ¢(©|K)]

where

Ep, [log ¢(y|w, z, K)] Z Z En [5k } En [ } Z En [ } logr]kp ,

JET ke pEP
Ep, [log q¢(w|z, K)] ZZEh[ ] > Eh[ :|]'Og,r]k7,7
JET kek i€{0,1}
Ep, [logq(z Z ZEh [ }logr]k
JET kel

and

Ee [log¢(®|K)] = > (i — 1)Ee [log ax] — (&1 + 1)Ee [108;0 } &HEe { ! } +log ep(R)
kek

L 1 ~
+logezrg(€,62) = 5 (3(1 + log 27 + Ee [log0”]) + log | A )

+ Z Z (Okp — 1)Ee [log bip] — = <log 27 + E@ [logo } + 1)
ke peP

+ 3 logep(ay) + en () -
ke

Expectations

Expectations developed in variational calculations are derived from properties of variational
posterior distributions and are obtained as follows. Categorical distribution properties lead to

VieJ, Vkek, VpeP, Vie{0,1}:

En [553} = f?kp )
Ep {5111@} = N;Ukz )
En [0 ]| = 7
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Dirichlet distribution properties lead to

Vke K, Vpe P, Vie{0,1}:

Ee [logar] = ¢(Rk) — ¢ (Z Fﬂk) :

ke

peEP

o [log byy| = ¥(0kp) — (Z Okp) )
® [1Og cki] - Ckz ( Z Ckz) .

1€{0,1}
where 1(+) is the digamma function. Normal distribution properties lead to
Vke K, VpeP:
Ee {:u}fcp:| = fikp »
Ee [(M'fgp)z] =Ve [Mfgp} +Ee |:Mi;p:|2

- 0—27_14;_1;1 + (/’Lk'p)2 )

Ee [wi] = @y,
Ee [wiw}] = Ve [wi] + Ee [wi] Ee [wi]”

= 02 Ap + Opol

and Inverse Gamma distribution properties lead to

Using all these properties, the following expectations can be calculated as
VieJ, Vke, VpeP:

o)
o [(ztj lukp) O SU\TE T ey

~—1
= — +Tkp’

&2

~ S ' T(:J 2
Eo [(xtj . <I>(tj)ka)21 _ &1 ( tj ?(tj) k) | Trace (Cb(tj)TAk(I)(tj)) .
2

4.3.3 Complete model

A model integrating parabolic data, piecewise parabolic data and mixed data is now presented.
By taking into consideration any types of available data, the resulting model can fit data better
and can estimate more accurate clusters. First, data formalism and assumptions are detailed.
Then, the resulting mixture model and its inference procedure are developed.
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Data and assumptions

In this part, data consist of J pulses gathering J amplitudes x; = (24j)jcs associated to J
times of arrival t = (t;)jes, J continuous features x, = (x4j)jcs and J categorical features
x. = (Tej)jes from K distinet emitters. Let @; = (x4, Tcj, 71;) the j observation vector of
mixed variables where

e I, € R? is a vector of d continuous radar features such as the Radio Frequency, the Pulse
Width, the Azimuth or the Pulse Repetition Interval,

o i = (Tejos-- - xchfl) € Cy is a vector of ¢ categorical radar modulations such as intra-
pulse modulations or pulse-to-pulse modulations,

e 7;; € R is a continuous variable modeling the Amplitude.

For each pulse j, the temporal evolution variable x;; and mixed variables (x4, z.;) are assumed
to be independent conditionally to each cluster k& € IC

Vied, (g, xe)|z; =k AL a4]z; =k . (4.42)

with z; the latent variable modeling the label of the ;' observation vector ; = (24j, Tcj, T15)-
Moreover, the temporal evolution data (z,t;),cs are distributed according to either a parabolic
relation or a piecewise parabolic relation and the quantitative data (x4;)jcs are normally dis-
tributed conditionally to categorical data (x.j)jey. Both quantitative and categorical data
(gj, Tcj)jes can be partially observed. Hence (4, &¢j)jcs are decomposed into observed fea-

tures (mg}”, mg;?s) jeg and missing features (a:g;-iss, mg;-iss) jeg such that
miss .
T = mQj with (wmiss mObS) e Rd}”‘ss « Rd;’bs and dmiss + dobs —d
q mobs q *%qj j ;g — Y
, aj

vj €J, pruiss

Tej = | Ghe | with (zg;™, m‘g}?S) € Cymiss X Cpobs and ¢;™™* + q?bs =q.

wcj q] qJ

Mixture model

According to the independence assumption (4.42), the distribution of mixed data (Chapter 3) and
the parabolic and piecewise parabolic relations between temporal evolution data, the component
distribution results in

viedJd, p(mqjawcjaxtj‘zj = k) = p(33qj,$cj|2j = k)p(xtj’fzj = k’)

where
s
p(mqj,ggcﬂzj =k)= H (chN (aij]ukc,uj*lEk)) -
ceC,
vViedJd, q 80 5P o,  (443)
p(xtj|tj,zj =k)= (ckoN (@(tj)ka,g2>> R R H (bkpN (a:tjml;gp,a?)) v
peEP
with

e u = (uj)jey the scale latent variables handling outliers for quantitative data x, and dis-
tributed according to a Gamma distribution with shape and rate parameters (a,3) =
(Qkes Bre) (k,e)ek xc, conditionally to categorical data . and labels z = (2;)je7,
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o (1,XY) = ((Mpe)eecy» Bk)rek the mean and the variance parameters of quantitative data
x4 for each cluster,

o m = (my)kex the weights of the multivariate Categorical distribution of categorical data
x. for each cluster,

e y = (y;)jes the latent variables indicating the pth piecewise temporal evolution data
belong to,

e w = (w;);jcs the latent variables indicating if temporal evolution data x; are distributing

according to a parabolic relation or a piecewise parabolic relation,
o b= ((bkp)per)rek the weights of the Categorical distribution of latent variables y,
e ¢ = (cko, ck1)kex the weights of the Categorical distribution of latent variables w,
o ut = ((M};p)pe’p) reic the set of piecewises for temporal evolution data x; for each cluster,
o w = (wy)kek the regression parameters for temporal evolution data @; for each cluster,
e o2 the variance of the measurement noise related to temporal evolution data ;.

Recalling that p(z; = k) = a, where a = (ai)rex are the weights related to component distribu-
tions, the mixture model is obtained from (4.43) such that Vj € 7,

5L
Pl 1511:©) = 3 i cuo (s (1) %)) ( [T (b <xtj|uzp,o2>>55j) |
kex peEP

c

% H (chj\f (a:qj’/,l,kc,uj_lxk) g(Uj‘Oékc,ﬂkc))é%j
ceCy
(4.44)

where © = (a,b,c, ut,w, 0%, 7, , B, 1, X) is the set of parameters.

Bayesian framework

As in previous chapters, a Bayesian framework is used to estimate parameters @. Assuming
datasets (x = (x4, ., x¢),t) of i.i.d observations (x; = (g, Tcj, Ttj), t;) jes, independent labels
z = (zj)jeg, indicators (y, w) = (yj, w;)jecs and scale latent variables u = (u;);e7s, the complete
likelihood associated to (4.44) is defined by

L,
eyt 0.0 =] 1] (ak <C’“ON <xtj@(tj)ka’02))6gj (Cm 11 (bkpN (xtj!MZwC’Q))égj)

JjeJ kek peP

5k
Zj

I (e (e 051 50) 9 ) ™ )

ceCy

Eventually, the prior distribution required for © is chosen as
p(OIK) = p(alC)p(blK)p(c|K)p(p'|o?, K)p(w|o?, K)p(a?)p(r|K)p(e, BIK)p(1, SIK)
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Figure 4.20: Graphical representation of the proposed model integrating temporal evolution data and
mixed-type data. The arrows represent conditional dependencies between the random variables. The
K-plate represents the K mixture components and the J-plate the independent identically distributed
observations (&g, Tcj, 2tj,t;) decomposed into temporal evolution data (xj,t¢;) and mixed-type data
(zqj,c;), the scale Variables u; and the indicator variables (y;,w;, z;). Known quantities, respectively
unknown quantities, are in blue, respectively in red.

where

p(alK) = D(alko) ,
p(blK) = T] D(biloo) ,

kel

p(c|K) = H D(cklCo) »

kek

p(x|K) = ] D(mylmo) ,
ke

P, ZIK) = TT TT N (selizo ng ' Sx) TW(Skly0, Zo) |
ke ceCq

p(a,ﬂ“C) = H H p(ak6718kc|p07q0)807r0) )

kek e,

p(p'lo?,K) = T TT N (whpluth 75 '0?)

ke peP

p(wlo?,K) = [T N (wrlwo, a*Ao)

kel

p(0®) = IG(o|€7, €3) -

Graphical representation of the proposed model is shown in Figure 4.20.
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Inference

As previously, a factorized posterior distribution
q(:ngnss w, TV gy w, z, O|K) = q(xy miss gy, 2™ 4w, z|K)q(O|K) is chosen as an approxima-
miss 4w, z, O]z, ) such that

w, Ty w, z) and parameters ©® are a posteriori independent and

miss

tion of the intractable posterior Jomt distribution p( , U, T

latent variables h = (mg“ss

q(h|K) = q(@"™u, ™, z, K)q(u|zi"™, z, K)q(x2|z, K)q(y|w, 2, K)q(w|z, K)q(2|K)
a(®|K) = q(alK)q(b|K)q(c|K)q(p'|0*, K)g(wlo?, K)q(o?)q(m|K)q(e, BIK)q(p, BIK) .

According to VB assumptions, the following conjugate variational posterior distributions are
obtained from the VB procedure

N
q( mlss‘u :Bmlss ,’C): H H HN( mlss“l/]kC ’u]—lzzq ) J 3 ’

JEJ k€K ceC

(u|meSS H H Hg(uﬂaﬂcaﬁjkc) CJ K ;

JET keK ceC

miss mlss ~JJ 55
q(x|z,K) = ] ] MC(= ) g
jeJ kek

1
q(y|z,K) H H Cat( yj\r]k wi
JET kex

q(w|z,K) H H Cat(w;|75;,) ZJ' ,
JET kEK

q(z|K) = [] Cat(z|7;)
jeT
q(a|K) = D(alk) ,

K) = I D(xl#)

kek

a(1 BIK) = T TTN (Hkelfores e ) IV (Silae, i)
ke ceC

Q(aa /3|IC) = H p(akcv Bkc|ﬁka Qka gka fk) s
ke

q(bIK) = T] D(bklor)
kek

q(c|K) = T[] P(exlér) ,

ke

a(u'o?,K) = T TI N (shpliiky 7' 0?) -
ke peP
q(w]aQ,lC) = H/\/(wk]d:k,anxk) s

kek

q(0?) = IG(o%€1, &)

(4.45)
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Their respective parameters are estimated during the VBE and VBM steps by developing expec-
tations Eg [log p(x, u, y, w, z|t,®, K)] and Ej, [logp(x, u, y, w, z, O|t,K)]. Noting that

Ee [logp(x, u,y, w, z|t,®,K)] =Ee [logp(wt,y,w]z,t,b, c,w,,ut,UQ,lC)}

n (4.46)
+Ee [logp(zla,K)],

and

Ep [log p(x, u, y, w, z,O|t, K)] =E, {logp(a:t,y,w,b, c,w,ut,UQIz,t,lC)}
n (4.47)
+ Ep [logp(z, alK)] ,

the VBE (4.46) and VBM (4.47) steps can be independently derived for latent variables and
parameters related to temporal evolution data x; and mixed data (x4, x.). Therefore, variational

posterior distributions of latent variables (:cgliss, w, 7%) and parameters (m, o, B, u, ) related
to mixed data (x4, x.) are obtained as in Chapter 3 by deriving in (4.46)

and (4.47). As for (y,w,b, c,w, u',0?), their variational posterior distribution are obtained as
in subsection 4.3.2 by developing blue expectations in (4.46) and (4.47). As in subsection 4.3.2
or in Chapter 3, the Dirichlet posterior distribution of a is deduced from the red expectation
in (4.47). Eventually, the variational distribution of labels z is obtained by marginalising over
latent variables in the and developing both blue and red expectations in (4.46)
such that

/IE@ [log p(x, u,y, w, z|t,®,K)] 8wf]nissﬁy8w8u8wf‘iss = Z Z 52, log pjk

JjeJ kek
where log p;i is deduced from red, blue and expectations in (4.46) as follows
VjeJ, Vk e K, logpjr =Ee [logay| + log pﬁk + . (4.48)
with
VieJ, VkeK,
Ee [logax] = (k) — 9 (Z I%k) ;
ke

log pj = log Y Pl -
pEP

miss

= log Z p:]:;zniss .

CEC i
The red term Eg [loga| is deduced from properties of the Dirichlet distribution, the blue term
log ,o;.k is deduced from (4.37) and (4.38) in subsection 4.3.2 and the has been
detailed in Chapter 3. Hence, z is distributed a posteriori according to a product of Categorical
distributions parametrized by 7 = (7jx)(jx)esxkx given by

Vi€, k€K, iy = 2 (4.49)
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The lower bound on the log evidence is still required to master the VB inference and can be
also decomposed into terms related to temporal evolution data (blue terms), mixed data (
) and labels z (red terms). This decomposition is obtained as follows

L(q|K) = Epe [logp(x,u,y,w, z,0[t,K)] —Ep e {log g™ 2™ 4y w, 2, @]IC)}

q ) C )
where the free energy can be developed as
Epe [logp(x,u,y,w, z,0O[t,K)] = Ep e [logp(x, u, y, w, 2|t,0,K)] + Eg {logp(b, c,w, pt, JQUC)}
_l’_

and the entropy as

c 9

Ene |logq(@™, o™, u,y,w, 2,0|K)| = Ene [logq(b, c,w, u',0*|K)| + Ep e [logq(y, |z, K)]

+ + En,e [log ¢(2|K)]
_'_
Blue terms, respectively , have been previously detailed in subsection 4.3.2 | respec-

tively in Chapter 3. As for red terms, they are detailed below :

th@ Uogp(mauvvav'z‘tv@vlc)] = Z Z ]Eh |:5§J:| logp]k: ’
JET kek

Ene [logq(z[K)] =D > En [52} log 7. -
JET kek

4.3.4 Experiments

Two experiments are carried out to evaluate clustering performance with respect to a set of
synthetic data. In the first experiment, only temporal evolution data are taken into consideration
in the clustering procedure. Then, both temporal evolution data and quantitative data are
considered in the second one. For comparison, the spectral clustering [VL07] and the k-means
algorithm from [HW79] are also evaluated. First, characteristics of data, comparison algorithms
and evaluation metrics are detailed. Then, both experiments are described and performance are
shown to exhibit the effectiveness of the proposed model.

Data, algorithms and metrics

Synthetic data are composed of temporal evolution data related to amplitudes which are dis-
tributed according to either a parabolic relation or a piecewise parabolic relation and quantitative
data related to continuous radar features which are jointly distributed according to a multivariate
normal distribution. Temporal evolution data are generated by sampling a set of data from 2
parabolas and 2 piecewise parabolas directed by

-1 -2 -3 -4
w=|1 2 3 4
1 2 3 4

For each piecewise parabola, p = 4 piecewises are obtained by dividing the time interval in p
equal subintervals and assigning to each piecewise the value of the parabola at the minimal time
of its related time subinterval. Quantitative data are generated by sampling a set of data from
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Figure 4.21: Synthetic parabolic and piecewise parabolic data generated from different values of the
variance parameter o2. Figures (a), (b) and (c) present unlabeled data where 4 parabolas are generated.
Ground-truth are visible on Figures (d), (e) and (f).

four well-separated bivariate clusters with centers [0,0]T, [1,0]%,[0,1]T and [1,1]T and identity
covariance matrices. Three synthetic datasets are generated with respect to a range of values of
0% and are linearly transformed by a min-max normalization to meet algorithms requirements.
These datasets are shown in Figures 4.21 and 4.22.

Except for the k-means algorithm, an initialisation is required for clustering algorithms that
are involved in these experiments. The similarity graph required for the spectral clustering is
obtained from a k-nearest neighbor graph as suggested in [VLO7] where the number of neighbors
k is chosen as the product of the log number of observations and the number of clusters. As for
the proposed model, a supervised initialisation is retained due to its sensitivity to initialisation.

0
First, prior hyperparameters ¢ and &9 are initialised such that the prior mean E[%] = g—é of
2

Quantitative feature 2
o o
X o
!

Quantitative feature 2

. . 02 04 06 08 1 12 14
Quantitative feature 1 Quantitative feature 1

(a) Quantitative Data (b) Ground-Truth

Figure 4.22: Synthetic quantitative data generated from 4 multivariate normal distributions. Figure (a)
shows unlabeled data and Figure (b) exhibits the ground-truth.
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Table 4.9: Initialisation of hyper-parameters values for clustering on parabolic and piecewise parabolic
data

wo Ao 70 kKo Mo Y Po To Go So
0,000 13 1 05 100 1 1 1 1 1

the variance parameter o2 is equal to the inverse of the determinant of the covariance matrix

of temporal evolution data points. This choice is motivated by the fact that the determinant
of the covariance matrix can be interpreted as the generalized variance that reflects the overall
spread of the data. Setting &9 = 1, £ is initialised as the inverse of the generalized variance
of the sample of temporal evolution data. In addition, prior piecewise means pf, are initialised
from results of a k-means algorithm on temporal evolution data. Then, prior component means
W, respectively covariance matrices 3, are initialised from results of a k-means algorithm on
quantitative data, respectively from diagonal matrices whose diagonal elements are variances of
quantitative data. Other hyper-parameters are initialised as in Table 4.9.

Performance on synthetic data are evaluated through the Adjusted Rand Index (ARI) [HAS85]
that compares estimated partitions of data with the ground-truth and the Silhouette Coefficient
[KRO9] which does not require the ground-truth and provides a higher score when clusters are
dense and well separated.

Experiments and results

The first experiment aims to determine the ability of each algorithm to restore the true clusters
according to an a priori number of clusters K when only temporal evolution data are taken into
consideration. According to datasets visualised in Figure 4.21, K is set to 4 for synthetic data.
Results of the first experiment on synthetic data are shown in Figure 4.23 and in Table 4.10.
When o2 € {0.0001,0.01}, the proposed model and the spectral clustering have similar perfor-
mance in clustering synthetic data with an ARI equals to 0.73 while the k-means algorithm has
the lowest performance (ARI = 0.35) in creating convex and isotropic clusters that cannot handle
the parabolic and piecewise parabolic structures of the generated data. This limitation is empha-
sized by higher Silhouette Coefficients of the k-means algorithm whereas the non-convexity of the
data is confirmed by the lower Silhouette Coefficients of the ground-truth. Even if all algorithms
poorly perform when data are embedded in noise (62 = 0.25), the proposed algorithm estimates
clusters with a more parabolic shape than other algorithms which build more isotropic clusters
(Subfigures (f), (i) and (1) in Figure 4.10). Indeed the Silhouette Coefficient of the proposed
model (S = 0.14) is closer to the Silhouette Coefficient of the ground-truth (S = 0.10) than
Silhouette Coefficients of spectral clustering (S = 0.53) and k-means (S = 0.56).

The second experiment aims to determine the ability of each algorithm to restore the true
clusters according to an a priori number of clusters K when all types of data are taken into
consideration. The number of clusters K is still set to 4 for synthetic data.. Results of the
second experiment on synthetic data are shown in Figure 4.24 and in Table 4.11. All algorithms
succeed in clustering synthetic data for o € {0.0001,0.01,0.25} since the ground-truth partition
is recovered in Figure 4.24 with an ARI equals to 1 visible on Table 4.11. Adding quantitative
information enables algorithms to recover the ground-truth for any value of o2.
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Figure 4.23: Results on synthetic data when only temporal evolution data are considered. Figures (a),
(b) and (c) show synthetic data generated with different values of the variance 2. Figures (d), (e) and
(f) show clustering results of the proposed model (PM). Figures (g), (h) and (i) show clustering results
of the spectral clustering (SC). Figures (j), (k) and (1) show clustering results of the k-means algorithm
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Figure 4.24: Results on synthetic data when any types of data are considered. Figures (a), (b) and (c)
show synthetic data generated with different values of the variance o2. Figures (d), (e) and (f) show
clustering results of the proposed model (PM). Figures (g), (h) and (i) show clustering results of the
spectral clustering (SC). Figures (j), (k) and (1) show clustering results of the k-means algorithm (KM).
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Table 4.10: Adjusted Rand Index (ARI) and Silhouette coefficient (S) values for the proposed model (PM),
the spectral clustering (SC) and the k-means algorithm (KM) during the first experiment on synthetic
data when only temporal evolution data are considered.

02 =0.0001 0.73 0.73 0.35 : 0.30 035 035 0.64
02=0.01 0.76 0.84 0.34, 0.26 0.31 0.33 0.64
02=0.25 054 0.26 0.27 ' 0.10 0.14 0.53 0.56

Table 4.11: Adjusted Rand Index (ARI) and Silhouette coefficient (S) values for the proposed model (PM),
the spectral clustering (SC) and the k-means algorithm (KM) during the first experiment on synthetic
data when only temporal evolution data are considered.

0?=0.0001 0.73 0.73 0.35' 0.30 0.35 0.35 0.64
0?=001 076 0.84 034, 026 031 0.33 0.64
0c?=025 054 026 0.27'0.10 0.14 0.53 0.56

4.4 Conclusion

In this chapter, two types of scanning behaviours have been presented. They can be observed
in data when amplitudes and times of arrival shared either a parabolic relation or a piecewise
parabolic relation. Since scanning behaviours fully characterise radar emitters, they can be taken
into consideration to cluster radar emitters. Hence, mixture models handling parabolic data and
piecewise parabolic data have been developed. Three approaches have been investigated : the first
one assumes that temporal evolution data are only distributed according to parabolic relations,
the second one mainly focuses on piecewise parabolic data and the last one handles both types of
relations. Moroever in each approach, the proposed mixture model is enhanced with the mixture
model designed for mixed data in Chapter 3 in order to improve clustering performance. Then,
parameter estimation has been derived from the Variational Bayesian inference and experiments
on real and synthetic data have exhibited the effectiveness of these three approaches.
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Chapter 5

Conclusion and perspectives

Radar emitter identification is a crucial function of ESM systems since it prevents enemy forces
from surprise attacks by detecting enemy radar signals and it improves military databases by
analyzing unknown signals. Depending on radar emitter function and geopolitical context, radar
emitters can emit complex signals based on pulse-to-pulse modulation patterns. Radar signal
patterns can be decomposed into continuous features given by the continuous parameters of
radar pattern pulses and categorical features that represent modulations of pulse sequences.
Furthermore, radar signals are often partially observed in the electromagnetic environment due
to failures of deinterleaving techniques or sensors deficiencies. Therefore, a framework handling
any types of data has been developed in this work to perform classification and clustering of
radar emitters even in presence of outliers and missing data.

State-of-the-art algorithms have been reviewed in Chapter 1. They perform either classifi-
cation or clustering by learning boundaries that separate data into heterogeneous clusters or by
learning underlying structure of data to constitute clusters. However, neither of these algorithms
provides an internal framework that infers on missing data and copes with any degrees of super-
vision or any types of data. Therefore, an approach based on mixture models has been proposed.
Theoretical aspects of mixture models have been introduced by detailing ways of modeling and
estimating them for a generic type of data. Indeed, mixture models benefit from a flexible and
probabilistic framework to handle outliers and missing data by introducing a latent space where
each latent variable focuses on a specific constraint. However, the resulting model is not tractable
and model learning is processed through Variational Bayes Approximation. Eventually whatever
degree of supervision is required, the number of classes K and parameters can be estimated to
perform classification and clustering tasks. Nonetheless, the Variational Bayes Appromixation
tends to under-estimate uncertainties related to variational estimation. To this end, the Expecta-
tion propagation algorithm [Min0O1], which minimizes the reversed Kullback-Leibler divergence,
can be implemented in future works to improve estimation accuracy.

Chapter 2 has focused on classification and clustering of continuous data with a scale mixture
of Normal distributions accounting for missing data and outliers. Benefiting from Gaussian prop-
erties and the introduction of latent variables, the proposed model has shown its efficiency for
inferring on missing data, performing classification and clustering tasks and selecting the correct
number of clusters in a dataset obtained from an experimental protocol generating realistic data.
A major contribution in this chapter is the incorporation of latent variables handling missing data
and provided with a variational posterior distribution that leads to a more effective inference on
missing data. As pointed out in both experiments, the effectiveness of the proposed model results
from the fact that standard missing data imputation methods can create outliers that deteriorate
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performance of classification and clustering algorithms whereas in the proposed model inference
on missing data and labels prediction are jointly estimated. Indeed, embedding the inference
procedure into the model framework allows properties of the model, such as outliers handling,
to counterbalance drawbacks of imputation methods such as outlier creation. As for outliers
handling, a full Bayesian approach has been adopted to avoid using the deterministic variable
Vi, parametrizing the distribution of the latent variable v modeling outliers. This full Bayesian
treatment enables a less restrictive modeling of data since parameters of the latent variable u
are estimated into the Variational Bayes Approximation framework instead of being updated via
an optimization procedure. Despite these advantages, the proposed model has a higher compu-
tational cost than comparison algorithms especially during the model learning step. Hence, a
parallelization of the proposed model would be useful in order to reduce its computational burden.

As for Chapter 3, it has presented the general case where both continuous and categorical
data are used for classification and clustering tasks. This chapter has precisely focused on model-
ing dependencies between continuous and categorical data in order to infer on missing data while
performing classification and clustering. To this end, an approach based on the Location Mix-
ture Model has been investigated on by establishing conditional relations between continuous
and categorical data to tackle issues related to outliers and missing data. The developed ap-
proach has exhibited its effectiveness for inferring on missing data, performing classification and
clustering tasks and selecting the correct number of clusters even for high proportions of missing
values. As pointed out in Chapter 2, the proposed approach enables joint estimation of missing
components and labels by embedding the inference procedure into the model framework. Indeed,
estimating the missing components conditionally to their labels proves to be more effective than
standard imputation methods which do not take into consideration information related to the
data partition. Moreover, experiments have pointed out that using continuous and categorical
data can really improve classification and clustering performance than considering either only
continuous data or only categorical data. Indeed, higher performance on mixed data lie in a
more relevant separation of clusters obtained by taking advantage of the more complex structure
of mixed-type data. In this work, the Location Mixture Model assumption has been naturally
considered since radar pattern designers use to define pulse modulation sequences (categorical
radar data) before assigning pulse values (continuous radar data). However in the Electronic
Warfare context, continuous radar data are first measured by sensors before being processed to
deduce categorical data related to modulation patterns. Therefore, it would be interesting to
investigate the Underlying Response Variable approach [Eve88, EM90] to assess assumption on
conditioning categorical radar data by continuous radar data.

In Chapter 4, two types of scanning behaviours have been presented. They can be observed
in radar data when amplitudes and times of arrival of radar emitters share either a parabolic or
a piecewise parabolic relation. Since scanning behaviours fully characterise radar emitters, they
have been taken into consideration to cluster radar emitters. To this end, both types of relation
have been integrated into the mixture model framework by modeling the parabolic relation as
a Bayesian regression and the piecewise parabolic relation as a mixture of normal distributions.
As in Chapters 2 and 3, estimation of parameters has been processed through the Variational
Bayesian inference and experiments on real and synthetic data have exhibited the effectiveness
of the proposed model. Indeed, the resulting model enables creation of non isotropic clusters
which better fit parabolic data than standard algorithms as the k-means algorithm. Nonethe-
less, when radar emitters share similar scanning behaviours, namely when amplitude parabolas
of radar emitters intersect during their scanning period, the proposed model cannot perfectly
identify radar emitters. Therefore, the proposed mixture model has been enhanced with the
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mixture model designed for mixed data in Chapter 3 in order to improve clustering performance.
Then, the complete model has managed to separate radar emitters in real operational cases by
taking advantage of the whole available information related to radar emitters. In this work,
only radar emitters presenting parabolic scanning behaviours have been clustered in real data
cases. Hence, piecewise parabolic scanning behaviours remain to be evaluated on real data cases
in future practical studies. Moreover, a radar signal pattern could be modeled as a Markovian
process through its temporal evolution, continuous and categorical features since it is mainly
defined as a pattern of pulses whose features share sequential and conditional relations. To this
end, a clustering method, that integrates a Markovian process while handling missing data and
outliers, could be developed in future works.

To conclude, the different mixture models developed in this work have focused on performing
classification and clustering on various types of real and simulated data while handling outliers
and missing values. These models have managed to reach high performance in classification
and clustering tasks even in presence of large proportions of missing data and have proposed an
effective inference procedure to reconstruct missing features. These models have been assessed on
datasets gathering around 50 radar emitters according to the different experiments. Nonetheless,
real databases may contain thousands of radar emitters. Therefore, the proposed models have to
be tested on larger databases before being integrated into industrial and operational products.
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Extended abstract in french

Dans le contexte de la Guerre Electronique, I'identification des signaux radar est un atout ma-
jeur de la prise de décisions tactiques liées au théatre d’opérations militaires. En fournissant
des informations sur la présence de menaces, la classification et le partitionnement des signaux
radar ont alors un roéle crucial assurant un choix adapté des contre-mesures dédiées a ces men-
aces et permettant la détection de signaux radar inconnus pour la mise a jour des bases de
données. Les systemes de Mesures de Soutien Electronique enregistrent la plupart du temps
des mélanges de signaux radar provenant de différents émetteurs présents dans I’environnement
électromagnétique. Le signal radar, décrit par un motif de modulations impulsionnelles, est
alors souvent partiellement observé du fait de mesures manquantes et aberrantes. Le processus
d’identification se fonde sur I’analyse statistique des parametres mesurables du signal radar qui le
caractérisent tant quantitativement que qualitativement. De nombreuses approches mélant des
techniques de fusion de données et d’apprentissage statistique ont été développées. Cependant,
ces algorithmes ne peuvent pas a la fois effectuer la classification ainsi que le partionnement des
émetteurs radar et gérer les données manquantes. A cette fin, des méthodes de substitution
de données sont requises en amont de la classification et du partitionnement mais leur utilisa-
tion entraine ’apparition de nouvelles valeurs aberrantes. L’objectif principal de cette these est
alors de définir un modele de classification et partitionnement intégrant la gestion des valeurs
aberrantes et manquantes présentes dans tout type de données. Une approche fondée sur les
modeles de mélange de lois de probabilité est proposée dans cette these. Les modeles de mélange
fournissent un formalisme mathématique flexible favorisant I'introduction de variables latentes
permettant la gestion des données aberrantes et la modélisation des données manquantes dans
les problemes de classification et de partitionnement. L’apprentissage du modele ainsi que la
classification et le partitionnement sont réalisés dans un cadre d’inférence bayésienne ou une
méthode d’approximation variationnelle est introduite afin d’estimer la loi jointe a posteriori
des variables latentes et des parametres. Des expériences sur diverses données montrent que la
méthode proposée fournit de meilleurs résultats que les algorithmes standards.

Le premier chapitre de cette thése présente les différents algorithmes de 1’état de ’art en
matiere de classification et de partitionnement. Tant par ’apprentissage de frontiéres au sein des
données que par I’apprentissage d’une structure sous-jacente des données, ces algorithmes répon-
dent aux problématiques de classification et partitionnement en créant des groupes hétérogenes
d’observations. Cependant, aucun de ces algorithmes ne peut a la fois intégrer des données con-
tinues et catégorielles, gérer les contraintes liées aux données manquantes et s’adapter a différents
degrés de supervision. L’approche fondée sur les modeles de mélange de lois de probabilité est
alors introduite afin de palier ces divers problemes. En effet, les modeles de mélange fournissent
un cadre probabiliste favorisant 'introduction de variables latentes permettant 'intégration de
données de tout type, la gestion de données aberrantes ainsi que la modélisation des données man-
quantes dans les problemes de classification et de partitionnement. Néanmoins, cette approche
requiert l'utilisation d’une méthode d’approximation bayésienne appelée Variational Bayes et
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dont les aspects théoriques sont détaillés dans ce chapitre.

Le deuxieme chapitre introduit un modele de mélange de lois gaussiennes afin de prendre en
compte les données continues représentant les parametres physiques des impulsions. Ce modele
de mélange gaussien est ensuite mis a jour wvia l'introduction de variables latentes modélisant
les valeurs aberrantes et manquantes afin d’obtenir un modele robuste & ces deux contraintes.
L’inférence est menée au travers de la méthode Variational Bayes permettant d’obtenir une ap-
proximation de la distribution jointe a posteriori des parametres et des variables latentes du
modele. Enfin, ce modele est testé sur des données acquises & 1’aide d’un protocole expérimen-
tal fournissant des données réalistes intégrant les contraintes des systemes d’acquisition opéra-
tionnels.

Le troisieme chapitre integre les données categorielles au modele précédent en conditionnant
les variables continues d’une observation par ses variables catégorielles. Le modele obtenu est
alors un mélange de lois gaussiennes conditionnelles intégrant également des variables latentes
modélisant les valeurs manquantes propres aux observations catégorielles. L’inference est a nou-
veau faite par le biais de 'approximation variationelle bayésienne afin d’obtenir la distribution
jointe a posterior des parametres et variables latentes du modele. Les performances du modele
proposé sont ensuite testées sur des données générées a partir d’une base de données réelles com-
portant 55 émetteurs radar avec des motifs impulsionnels variés.

Enfin, le dernier chapitre se focalise sur le caractere temporel des données impulsionnelles. En
effet, I’évolution temporelle des amplitudes liées aux impulsions d’un émetteur radar présente une
forme parabolique qui peut étre exploitée afin d’améliorer la classification et le partionnement
des émetteurs radar. Dans ce but, cette relation parabolique est modélisée par le biais d’une
régression parabolique bayésienne intégrée au modele de mélange. Les parametres du modele
sont alors estimés par le biais de la précédente méthode d’approximation variationnelle et le
modele résultant est testé sur des données synthétiques et réelles provenant de différents cas
opérationnels.

En conclusion, les différents modeles développés dans cette thése ont permis la classification
et le partionnement d’émetteurs radar caractérisés par des motifs impulsionnels présentant des
valeurs manquantes et aberrantes tant continues que catégorielles. Ces modeles ont démontré leur
efficacité en réalisant de bonnes performances sur des bases de données synthétiques et réelles
méme en présence d’une grande proportion de valeurs manquantes. Néanmoins, les bases de
données réelles peuvent contenir des milliers d’émetteurs radar et les modeles proposés doivent
alors étre mis a I’épreuve sur de plus grandes bases de données avant d’étre intégrés dans de
futurs produits industriels.
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Mots clés : émetteurs radar ,classification,partitionnement,valeurs aberrantes,données manquantes,modéles

de mélange

Résumé : En Guerre Electronique, l'identification
des signaux radar est un atout majeur de la prise
de décisions tactiques liées au théatre d’opérations
militaires. En fournissant des informations sur la
présence de menaces, la classification et le parti-
tionnement des signaux radar ont alors un réle cru-
cial assurant un choix adapté des contre-mesures
dédiées a ces menaces et permettant la détection
de signaux radar inconnus pour la mise a jour
des bases de données. Les systémes de Mesures
de Soutien Electronique enregistrent la plupart du
temps des mélanges de signaux radar provenant de
différents émetteurs présents dans I'environnement
électromagnétique. Le signal radar, décrit par un mo-
tif de modulations impulsionnelles, est alors souvent
partiellement observé du fait de mesures manquantes
et aberrantes. Le processus d’identification se fonde
sur l'analyse statistique des paramétres mesurables
du signal radar qui le caractérisent tant quantita-
tivement que qualitativement. De nombreuses ap-
proches mélant des techniques de fusion de données
et d’'apprentissage statistique ont été développées.
Cependant, ces algorithmes ne peuvent pas gérer

les données manquantes et des méthodes de sub-
stitution de données sont requises afin d'utiliser
ces derniers. Lobjectif principal de cette thése est
alors de définir un modele de classification et par-
titionnement intégrant la gestion des valeurs aber-
rantes et manquantes présentes dans tout type de
données. Une approche fondée sur les modeles de
mélange de lois de probabilité est proposée dans
cette these. Les modeles de mélange fournissent
un formalisme mathématique flexible favorisant I'in-
troduction de variables latentes permettant la ges-
tion des données aberrantes et la modélisation des
données manquantes dans les problémes de clas-
sification et de partitionnement. Lapprentissage du
modele ainsi que la classification et le partitionnement
sont réalisés dans un cadre d’inférence bayésienne
ol une méthode d’approximation variationnelle est in-
troduite afin d’estimer la loi jointe a posteriori des va-
riables latentes et des parametres. Des expériences
sur diverses données montrent que la méthode pro-
posée fournit de meilleurs résultats que les algo-
rithmes standards.

Title : Uncertainty in radar emitter classification and clustering

Keywords : radar emitter,classification,clustering,outliers,missing data,mixture models

Abstract : In Electronic Warfare, radar signals iden-
tification is a supreme asset for decision making in
military tactical situations. By providing information
about the presence of threats, classification and clus-
tering of radar signals have a significant role ensu-
ring that countermeasures against enemies are well-
chosen and enabling detection of unknown radar si-
gnals to update databases. Most of the time, Elec-
tronic Support Measures systems receive mixtures
of signals from different radar emitters in the electro-
magnetic environment. Hence a radar signal, descri-
bed by a pulse-to-pulse modulation pattern, is often
partially observed due to missing measurements and
measurement errors. The identification process relies
on statistical analysis of basic measurable parame-
ters of a radar signal which constitute both quanti-
tative and qualitative data. Many general and prac-
tical approaches based on data fusion and machine
learning have been developed and traditionally pro-
ceed to feature extraction, dimensionality reduction
and classification or clustering. However, these algo-

rithms can not handle missing data and imputation
methods are required to generate data to use them.
Hence, the main objective of this work is to define a
classification/clustering framework that handles both
outliers and missing values for any types of data.
Here, an approach based on mixture models is de-
veloped since mixture models provide a mathemati-
cally based, flexible and meaningful framework for the
wide variety of classification and clustering require-
ments. The proposed approach focuses on the intro-
duction of latent variables that give us the possibility
to handle sensitivity of the model to outliers and to
allow a less restrictive modelling of missing data. A
Bayesian treatment is adopted for model learning, su-
pervised classification and clustering and inference is
processed through a variational Bayesian approxima-
tion since the joint posterior distribution of latent va-
riables and parameters is untractable. Some numeri-
cal experiments on synthetic and real data show that
the proposed method provides more accurate results
than standard algorithms.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France



	Acknowledgements
	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	State of the art and selected approach
	State of the art
	Supervised learning
	Unsupervised learning

	Selected approach : mixture models
	Definition
	Latent variables
	Bayesian framework
	Inference
	Classification and clustering

	Conclusion

	Continuous data
	Data
	Continuous radar features
	Realistic data acquisition

	Model
	State of the art
	Standard Gaussian mixture models
	Gaussian mixture models with missing data
	Gaussian mixture models with outliers
	Proposed mixture model

	Inference
	Variational posterior distributions
	VBE-step
	VBM-step
	Lower bound
	Expectations from variational distributions

	Experiments
	Data
	Classification experiment
	Clustering experiment

	Conclusion

	Mixed data
	Data
	Assumptions on continuous data
	Assumptions on categorical data

	Model
	State of the art
	Assumptions on mixed data
	Proposed model

	Inference
	Variational posterior distributions
	VBE-step
	VBM-step
	Lower Bound
	Expectations from variational distributions

	Experiments
	Data
	Classification experiment
	Clustering experiment

	Conclusion

	Temporal Evolution Data
	Parabolic data
	Model
	Inference
	Complete model
	Experiments

	Piecewise parabolic data
	Model
	Inference
	Complete model
	Experiments

	Parabolic and piecewise parabolic data
	Model
	Inference
	Complete model
	Experiments

	Conclusion

	Conclusion and perspectives
	Publications
	Extended abstract in french
	Bibliography

