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L’effecteur Avh195 de Phytophthora parasitica :  
antagoniste de l’autophagie chez l’hôte et promoteur du processus infectieux. 

 

L’agent pathogène Phytophthora parasitica est un oomycète qui a des effets dévastateurs sur l’agriculture 

et les écosystèmes naturels. En tant qu'organisme hémi-biotrophe, il infecte les racines des plantes en 

établissant d'abord un contact intime avec les cellules hôtes (biotrophie) avant de les tuer (nécrotrophie) et 

de terminer son cycle d'infection. Pour contrôler ces processus, les oomycètes sécrètent des protéines 

effectrices, qui sont internalisées dans les cellules végétales par un motif de translocation (appelé RxLR-EER) 

pour manipuler la physiologie et les réponses immunitaires de l'hôte. Les études des échanges moléculaires 

entre Phytophthora parasitica et la plante qui ont été menées par le laboratoire d'accueil ont permis 

d'identifier un effecteur RxLR, dénommé Avh195. La séquence en acides aminés de l'effecteur est 

caractérisée par la présence de cinq motifs AIM (« ATG8 Interacting Motive ») qui indiquent une interaction 

potentielle avec la protéine centrale de l’autophagie, ATG8. Avh195 co-localise avec la fraction membranaire 

de l'ATG8, et un système double-hybride en levure permettant la détermination d’interactions entre 

protéines membranaires, a confirmé une interaction non sélective entre Avh195 et plusieurs isoformes 

d'ATG8. La caractérisation de la perturbation de l'autophagie dépendante de Avh195 a été réalisée dans 

l'algue unicellulaire Chlamydomonas reinhardtii après génération de lignées transgéniques surexprimant 

l'effecteur. Les analyses par cytométrie de flux ont révélé que Avh195 ne modifie pas la physiologie et la 

« fitness » de l'algue dans des conditions de croissance normales et pendant l'autophagie induite par la 

rapamycine. La microscopie électronique à transmission a révélé que l'effecteur provoque dans les cellules 

de l’algue un retard dans le flux autophagique, se traduisant par une réduction de la coalescence et de la 

clairance des vacuoles et une forte accumulation d'amidon dans les chloroplastes. Cependant, ce phénotype 

est transitoire et seulement légèrement lié aux modifications de la régulation transcriptionnelle de la 

machinerie autophagique. L'analyse de la fonction effectrice chez les plantes a montré que Avh195 retarde 

le développement de la mort cellulaire hypersensible, déclenchée par un éliciteur d’oomycète. Cette activité 

dépend de trois AIM sur cinq, ce qui renforce encore l’importance de l’interaction Avh195-ATG8 pour la 

fonction de l’effecteur. La surexpression stable d'Avh195 chez A. thaliana a permis de déterminer que 

l'effecteur n'altère pas les réponses immunitaires des plantes, mais favorise globalement le développement 

de l'agent pathogène, accélérant le passage de la biotrophie à la nécrotrophie au cours de l'infection. À notre 

connaissance, le travail présenté dans cette thèse représente la première preuve qu'un effecteur d’oomycète 

possède une activité transitoire, ciblant de manière non sélective la protéine ATG8 dans différents 

organismes photosynthétiques pour ralentir le flux autophagique, favorisant ainsi le mode de vie hémi-

biotrophe d'un agent pathogène. 
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The Phytophthora parasitica effector Avh195 :  
An antagonist of host autophagy and promoter of the infection cycle. 

 

The plant pathogen Phytophthora parasitica is an oomycete with devastating impacts on both agriculture 

and natural ecosystems. As a hemi-biotrophic organism it infects the roots of plants first establishing an 

intimate contact with host cells (biotrophy) before killing them (necrotrophy) and completing its infection 

cycle. To control these processes, oomycetes secrete effector proteins, which are internalized in plant cells 

by a translocation motif (called RxLR-EER) to manipulate the physiology and the immune responses of the 

host.  Studies of the molecular exchanges between Phytophthora parasitica and the plant that were 

conducted by the hosting laboratory led to the identification of an RxLR effector, designed to as Avh195. The 

amino acid sequence of the effector is characterized by the presence of five AIMs (ATG8 interacting motifs), 

that indicate a potential interaction with the autophagic core protein, ATG8. Avh195 colocalizes with the 

membrane-bound fraction of ATG8, and a yeast two-hybrid system, which allows to determine interactions 

between membrane proteins, confirmed a non-selective interaction between Avh195 and several ATG8 

isoforms. The characterization of Avh195-dependent autophagy perturbation was carried out in the 

unicellular alga Chlamydomonas reinhardtii after generation of transgenic lines overexpressing the effector. 

Analyses by flow cytometry revealed that Avh195 does not modify the physiology and fitness of the alga, 

both under normal growth conditions and during rapamycin-induced autophagy. Transmission electron 

microscopy of cells revealed that the effector provokes a delay in the autophagic flux, manifested as a 

reduced coalescence and clearance of autophagic vacuoles and a strong accumulation of starch in 

chloroplasts. However, this phenotype was transient and only slightly related to modifications in the 

transcriptional regulation of the autophagic machinery. The analysis of effector function in planta showed 

that Avh195 delays the development of hypersensitive cell death, which is triggered by an oomycete elicitor. 

This cell death-delaying activity is dependent on three out of five AIMs, further consolidating the importance 

of the Avh195-ATG8 interaction for the function of the effector. The stable overexpression of Avh195 in A. 

thaliana allowed to determine that the effector does not impair plant defense responses, but overall 

promotes the development of the pathogen, accelerating the switch from biotrophy to necrotrophy during 

infection. To our knowledge, the work presented in this thesis represents the first evidence for an oomycete 

effector to possess a transitory activity, which targets in a non-selective manner the protein ATG8 in different 

organisms from the green lineage to slow down autophagic flux, thus promoting the hemibiotrophic life style 

of a pathogen. 
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Abbreviations 
3-MA 3-methyladenine 

aa Amino acid 

A/Ade Adenine 

AIM ATG8 interacting motif 

At Arabidopsis thaliana 

ATG Autophagy related (gene/protein) 

ATP Adenosine triphosphate 

AVR Avirulence protein 

BRET Bioluminescence Resonance Energy 
Transfer 
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ct Cycle threshold in qPCR 

CVT cytosol-to-vacuole targeting 

CVT Cytosol-to-vacuole targeting 

D/Asp Aspartic acid 

DAPI 4'-6-diamino-2 phenylindole 
dihydrochloride 

DMEM Dulbecco's Modified Eagle Medium 

DNA Deoxyribonucleic acid 

E/Glu Glutamic acid 

ECL Enhanced Chemiluminescence 

EHM Extrahaustorial membrane 

EHMx Extrahaustorial matrix 

ER Endoplasmic reticulum 

EST Expressed sequence tags 

ET Ethylene 

ETI Effector triggered immunity 

FSC Forward light scattering 

FW Conidiospores per mg fresh weight 

G/Gly Glycine 

GFP Green fluorescent protein 

GTP Guanosine triphosphate 

H/His Histidine 

Hpa Hyaloperonospora arabidopsidis 

hpi Hours post inoculation 

HR /HR-PCD Hypersensitive Response 
( - programmed cell death) 

HRP Horse Radish Peroxidase 

HSP Heat shock protein 

HT Host-targeting signal 

I/Ile Isoleucine 

JA Jasmonic acid 

kDa Kilo Dalton 

L/Leu Leucine 

LB Luria-Bertani medium 

LC3 Mammalian ortholog of ATG8 proteins 

LIR LC3 interacting region 

LIRCPs LIR motif-containing proteins 

M/Met Methionine 

MAPK Mitogen activated protein kinase 

Mbp Mega base pairs 

mbSUS Mating-based split-ubiquitin system 

miRNA Micro RNA 

ML Maximum Likelihood 

MS Murashige and Skoog medium 

Mya Million years ago 

NCBI National Center for Biotechnology 
Information 

OA Oxalic acid 

OD600 Optical density measured at 600 nm 
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OE Overexpressor 

ORF Open reading frame 

p35S Cauliflower Mosaic Virus (CaMV) 35s 
promoter 

PAMPs Pathogen associated molecular 
patterns 

PAS Phagophore assembly site 

pb Base pairs 

PCD Programmed cell death 

PCR Polymerase chain reaction 

PE Phosphatidyl ethanolamine 

Pi Phytophthora infestans 

pI Isoelectric point 

PKA cAMP-dependent protein kinase 

poli(A) Poli adenylation signal 

Pp Phytophthora parasitica 

PPRs Pattern recognition receptors 

PR Pathogenesis related 

Ps Phytophthora sojae 

PSSM Position-specific scoring matrix 

PtdIns Phosphatidyl inositol 

PtdIns3K Phosphatidyl-inositol 3 kinase 

PtdIns3P Phosphatidyl inositol 3 phosphate 

PTI PAMP triggered immunity 

PVDF Polyvinylidene difluoride 

QoIs Quinone Outside Respiration Inhibitors 

Ra Rapamycin 

RFP Red fluorescent protein 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RT Reverse transcription 

RT-qPCR Real-Time Quantitative Reverse 
Transcription PCR 

S/Ser Serine 

SA Salicylic acid 

SAR Systemic acquired resistance 

SC Synthetic complete medium 

SD Standard deviation 

SDS Sodium dodecyl sulphate 

siRNA Small interfering RNA 

SNP Single Nucleotide Polymorphism 

Spp. Species 

SSC Side light scattering 

T35S Cauliflower Mosaic Virus (CaMV) 35s 
terminator 

TAP Tris Acetate Phosphate medium 

TBS Tris Buffered Saline 

TEM Transmission electron microscopy 

TMV Tobacco mosaic virus 

TOR/TORC Target of Rapamycin (-complex) 

Ub Ubiquitin 

UBC Ubiquitin conjugating enzyme 

UBL ubiquitin-like 

UTR Untranslated region 

V/Val Valine 

VSP Vacuolar protein sorting 

W/Trp Tryptophan 

WT Wild type 

X Any amino acid in aminoacidic 
sequences 

Y/Tyr Tyrosine 

Y2H Yeast two-hybrid 

α- Antibody 
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 Oomycetes 

General Introduction 

Oomycetes are one of the most economically and ecologically important class of eukaryotic 

microorganisms playing a fundamental role in nutrient recycling, but also representing a major 

threat to agriculture and natural ecosystems worldwide.  

Historically, Oomycetes were considered as members of the kingdom of Mycota, as an ancient basal 

lineage of fungi [1]. This misconception was due to the strong similarities that fungi and Oomycetes 

display, such as the filamentous growth in the form of tip-growing branching hyphae, and their 

similar ecological role and feeding behavior [2]. However, technical advances in the 20th century 

suggested that Oomycetes and Fungi share less than meets the eye: Oomycetes display distinctive 

features both at a morphological and molecular level, which unite them with brown algae and 

diatoms among Stramenopiles (Straminipila) [3]. For example, the cell wall of Oomycetes is mainly 

composed of cellulose and glucans, and the major fungal cell wall compound chitin is only a minor 

constituent. Oomycetes develop mostly non-septate hyphae, they are auxotrophic for sterols, 

diploid for the majority of their life cycle, and disseminate mainly asexually with biflagellated 

zoospores [4]. Molecular phylogenies based on conserved mitochondrial and nuclear DNA 

sequences and more recent genome-scale phylogenetic studies further confirmed the distant 

relation of Oomycetes from true fungi [5–7].  

It is thought that the common ancestor of the Straminipila lineages was a biflagellate photosynthetic 

organism that obtained the chloroplasts from endosymbiosis with a red alga. Then Oomycetes 

underwent repeated loss of plastids and genes for phototropism, leading to the current morphology 

and lifestyle [3], although some lineages still conserve photosynthesis-related genes [8]. 

The evolutionary history of Oomycetes is mostly inferred from molecular studies on living species 

and molecular clock estimates suggest that they diverged from other Straminipila in the first half of 

the Paleozoic era, up to 430 million years ago [9]. In addition, the existence of preserved oomycete 

structures in the fossil records from the Carboniferous period (300 million years ago) supports the 

Palaeozoic origins of this lineage [10]. Fossils also report the ancient parasitic lifestyle of Oomycetes 

toward plants [11]. In fact, although numerous oomycete species are saprophytic, pathogenicity 

evolved independently several times in different oomycete lineages [12]. The evolution of this trait 
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appears to be deeply rooted in the oomycete lineage [2], and was certainly facilitated by an ancient 

horizontal transfer of genes linked to pathogenicity from fungi and bacteria, such as hydrolytic 

enzymes, toxins, nutrient transporters and effectors [13,14]. 

Indeed, the attitude toward parasitism is widespread along the phylogenetic branch of Oomycetes. 

The basal-most lineage of Oomycetes comprises marine organisms which are predominantly 

parasites of seaweeds, nematodes or crustaceans [2]. The remaining clades can be broadly 

regrouped in two subclasses: the Saprolegnomycetes and the Peronosporomycetes. Saprolegnian 

organisms are mainly marine and freshwater saprophytes and parasites of animals such as the 

members of the genus Saprolegnia [15], with an exception for some species belonging to the 

Aphanomyces which are plant parasites [16]. Peronosporomycetes is by far the largest order of 

terrestrial organisms that includes the most studied species of Oomycetes, comprising downy 

mildews, Albugo, Pythium and Phytophthora and the majority of organisms belonging to those taxa 

are plant parasites with a wide range of hosts, including crop species, ornamental plants, and native 

plants and trees [12].  

Overall, pathogenic Oomycetes have evolved different lifestyles. Saprophytic species can be 

facultative necrotrophic pathogens that kill host tissue before feeding on it; such behavior can be 

found among Pythium and Aphanomyces genera. On the other hand, several lineages evolved a 

biotrophic lifestyle, characterized by maintaining an intimate interaction with living plant cells. 

Species belonging to the downy mildews and the Albuginales display obligate biotrophy, requiring 

metabolic active plant tissues to complete their live cycle and developing highly specific interactions 

with the host [17]. By contrast, species of the genera Phytophthora and Pythium display an 

intermediate lifestyle called hemibiotrophy, adopting a two-step infection: the pathogen initially 

establishes a transient biotrophic relationship with the host, followed by necrotrophy which 

determines extensive cell death of host as the infection progresses [18,19]. 

Oomycetes are ubiquitous in natural ecosystems, ranging from marine, freshwater and terrestrial 

environments and are adapted to the most diverse ecosystems, reaching the cold polar regions, the 

arid deserts and temperate forests [17]. Unsurprisingly, this global distribution represents a 

problem when we have to deal with pathogenic Oomycetes that are responsible every year for 

enormous economic losses and damages in natural and cultured ecosystems. For example, 

Saprolegnia and Aphanomyces species are responsible for the decline of natural populations of 

salmonids and represent a threat to aquaculture of freshwater fish [20]. However, the most 
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notorious and devastating Oomycetes are plant pathogens, in particular those belonging to the 

genus Phytophthora. The late blight epidemics caused in Ireland by Phytophthora infestans in the 

nineteenth century is probably the most well-known devastating outbreak in cultivated crops, and 

still represents a threat for potato and tomato crops. Another example, among several others, is the 

Phytophthora ramorum epidemics that struck California and southern Oregon in the late 1990s that 

led to the destruction of Oak forests. This pathogen is presently spreading across Europe to 

ornamental plants [21,22].  

Control of oomycete diseases relies mainly on the use of fungicides containing molecules with a high 

specific mode of action. This specificity permitted many Phytophthora species to develop resistance 

traits. One example is given by the phenylamide Mefenoxam, an inhibitor of RNA synthesis. The 

emergence of insensitive Phytophthora infestans isolates was documented across Europe, North 

America and Mexico and was associated with single nucleotide polymorphism (SNP) in the gene 

encoding the large subunit of RNA polymerase II [23]. Another class of molecules is represented by 

inhibitors of the respiratory chain called Quinone Outside Respiration Inhibitors (QoIs). Resistant 

isolates of Phytophthora viticola evolved rapidly in vineyards across Europe and once more the trait 

was associated with SNP in the sequence of the Cytochrome b gene [24]. The persisting threat by 

Oomycetes is made worse by the intensification of human displacements and the increase in 

international trading and climate warming, all factors that favor the introduction and establishment 

of new pathogens all over the world [25,26].  

Is therefore clear that the study of these organisms is crucial for the development of novel strategies 

for disease management. The ongoing sequencing projects of several Phytophthora species already 

allowed to improve our understanding of oomycete origins and the molecular basis of the infectious 

process, and underlined the importance of molecular exchanges between the pathogen and the 

host [27]. 
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1.1 The species Phytophthora parasitica 

As described in the previous Section, the most known plant parasitic Oomycetes belong to the genus 

Phytophthora ('plant destroyer' in Greek), which includes over 140 described species [28]. In this 

work a particular attention will be devoted to Phytophthora parasitica (syn. Phytophthora 

nicotianae) which is gaining importance as a pathogen in terms of distribution, host range and 

economic impact. The species was first described in 1869 on tobacco plants displaying black skank, 

and hence the species name nicotianae was coined first. However, this pathogen has currently been 

isolated all over the world on up to 90 different plant families such as Solanaceae, citrus, 

horticultural and forest trees, ornamental plants, and medicinal herbs [29,30]. Usually, P. parasitica 

isolates display preferences for specific hosts, but some of them have a marked host flexibility and 

can infect numerous hosts, like the model plant Arabidopsis thaliana [31]. This makes the pathogen 

an ideal model to study the mechanisms regulating host specificity and susceptibility, and the 

molecular exchanges between the pathogen and the plant. 

 

 

Figure 1.1: Symptoms associated with Phytophthora parasitica infection. 

Pictures show various plant hosts and plant organs presenting the disease: (A) Citrus trunk (B) Potato leaf (C) Eggplant 
fruit (D) Potato tuber (E) Tomato stem. Diseased plantlets of (F) Grevillea lanigera (G) Cyclamen recovered from 
ornamental plant nursery. Adapted from [21,30,32]. 
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1.1.1 P. parasitica life cycle and reproduction 

As a soilborne pathogen Phytophthora parasitica mainly attacks the roots of host plants, but it is 

also able to develop on aerial parts of the plants and to survive outside hosts. The typical life cycle 

of this oomycete mainly relies on the asexual multinucleated sporangium which ensures long-

distance dispersal of the organism according to two strategies: in warm and moisty soils, the 

sporangium can germinate directly and produce a hypha that starts host colonization. Yet, under 

most other conditions, the sporangium undergoes sporulation (zoosporangiogenesis). This process 

happens in specialized hyphae responsible for the asexual reproduction of the organism, in which 

the production of spores is achieved through rapid cytokinesis leading to the release of single 

nucleated, wall-less cells called zoospores.  

Zoospores are responsible for the infectious cycle (Figure 1.2): they are biflagellated motile cells 

that swim towards the roots of a potential host by means of a combination of several factors, 

including chemotaxis, electrotaxis and autotaxis [33]. When contact with the plant occurs, 

zoospores detach their flagella and adhere to the surface, become cysts through rapid formation of 

a cell wall and secrete adhesive material. The encasement leads to the formation of a germ tube 

that emerges close to the plant, growing on the surface towards a suitable penetration site. Here, it 

develops a specialized structure, the appressorium, a swollen hypha where degrading enzymes 

enable the penetration of the cuticle and the epidermal layer. Once inside plant tissues, the 

oomycete starts vegetative growth by forming hyphae that grow and branch intercellularly. During 

the initial biotrophic phase, hyphae break plant cell walls and develop inside the host cells 

specialized feeding structures called haustoria. Haustoria are surrounded by the plasma membranes 

from both the oomycete and the host cell, which provide an intimate contact for nutrient uptake 

and molecular exchanges with the host [34]. As the infection proceeds, the necrotrophic phase 

initiates via the release of toxic compounds that kill the host tissue, allowing invasive growth of the 

pathogen with a rapid increase in biomass, and culminating in the formation of new sporangia, and 

eventually, in the reiteration of the cycle on a new host [35,36].  
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Figure 1.2: Infectious cycle of Phytophthora parasitica. 

A. The infectious cycle of P. parasitica begins with the formation of zoosporangia and the release of biflagellate 
zoospores that swim towards plant roots: once the contact takes place the flagella are lost, and the zoospore 
becomes a cyst.  

B. Left panel: Magnification of a root tip from Arabidopsis thaliana being attacked by P. parasitica zoospores. The 
zoospores form clumps during encystment at the elongation and differentiation zones. Scale bar represents 
100µM. Right panel: confocal laser scanning micrograph of a GFP-expressing zoospore [38] (green 
fluorescence) penetrating in tomato roots stained with propidium iodide (red staining). The encysted 
zoospores (Sp) germinate, and the germination tube (Gt) forms an appressorium-like swelling (Sw) to push 
aside joined epidermal cells (Ec), and to enter a penetration peg (Pp) in between them. The absence of 
cytoplasmic propidium iodine stain (C) indicates that plant cells are alive. Pictures adapted from [32]. 

C. At the beginning of the infection (biotrophy) the germinated cyst searches for a suitable site where a specialized 
structure, the appressorium, enables the penetration of the oomycete into plant tissues. Here the oomycete 
starts vegetative growth by forming intercellular hyphae and intracellular specialized feeding structures called 
haustoria. As the infection proceeds, the necrotrophic phase initiates via the release of toxic compounds that 
kill the host tissue, allowing invasive growth of the pathogen with a rapid increase in biomass, and culminating 
in the formation of new sporangia, and eventually, in the reiteration of the cycle on a new host. 
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Phytophthora parasitica can also produce thick walled spores, called Chlamydospores, which are 

believed to help the pathogen to survive in a dormant state when the temperatures are too low 

[37]. If humidity and temperature are not ideal for the infection process Phytophthora can also form 

haploid gametangia, the antheridia and oogonia, carrying the male and female gametes 

respectively, which are necessary for sexual reproduction. Phytophthora parasitica is not self-fertile 

(heterothallic) and requires the interaction between gametes belonging to different mating types. 

This process leads to the formation of oospores, which may persist in soil for years prior to further 

formation of sporangia or germ tubes directly. This reproduction strategy does not only allow the 

organism to overcome adverse environmental conditions but it also constitutes an important source 

of genetic variation, and potentially of increased virulence [29]. 
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1.1.2 P. parasitica pathogenicity 

The outcome of oomycete infections depends on plant immune responses that aim at blocking the 

pathogen, and on the ability of the microorganism to overcome these responses, to adapt, and to 

exploit the resources of the host. The processes leading to the success or the failure of infection are 

based on a complex molecular dialog between the plant and the pathogen, and many research 

efforts were made to understand this dialog. Until recently, most of these efforts were focused on 

the famous and economically important P. infestans species. However, P. parasitica gains 

importance as a model, since it represents the soilborne lifestyle of most Phytophthora species 

(contrary to P. infestans, a foliar pathogen), and due to the diversity of susceptible hosts [30]. For 

these reasons several resources were developed and are evolving, starting from the generation of 

a bacterial artificial chromosome library [39] until the public release of the genome sequence [40]. 

Much interest was also devoted to the profiling of gene expression during different phases of the P. 

parasitica life cycle. Expressed sequence tag (EST) libraries were generated from in vitro-growing 

hyphae [41], from zoospores and germinating cysts [39,42], as well as from different stages of the 

plant-pathogen interaction ranging from initial penetration to sporulation [38,39,42,43]. These 

activities helped to better characterize the molecular program deployed by the pathogen 

throughout the different stages of the life cycle, especially during the interaction with the plant. 

More recently, hybridization-based transcriptome experiments allowed refining the description of 

the events modulating the infection process, both in plant and in the pathogen [44,45]. 

Emerging from studies on Phytophthora parasitica and other Phytophthora species is that 

Oomycetes achieve their infection by modulating plant immunity through the deployment of a large 

repertory of effector proteins. Effectors are molecules, mainly proteins, which are secreted during 

infection and target plant functions to alter the normal physiology and response of the plant [46]. 

The genes encoding effector proteins are mostly located in plastic regions of the genome, rich in 

repeats and transposons that promote duplication events, shuffling, mutagenesis and silencing, thus 

underlining the importance of effectors in evolution and adaptation of Oomycetes, and to a wider 

extent, filamentous pathogens [27,47]. 
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1.2 Molecular dialogue between plants and Oomycetes 

As mentioned above, the success of oomycete infection passes through the manipulation of host 

defenses, metabolism and functions, overcoming the several layers of defense implemented by 

plants [48]. The first layer of plant defense is made of passive preformed barriers, such as the cell 

wall and the cuticle, and of the constitutive accumulation of antimicrobial compounds that allow 

plants to be protected against most attacks. However, if a pathogen succeeds in overcoming those 

barriers, plants deploy an innate immune system that controls most of the infection attempts. 

Detection of the so-called pathogen-associated molecular patterns (PAMPs) is based on the 

recognition of molecules, mainly proteins, or of activity-related parts of the molecules, that are 

generally essential for the pathogen’s life cycle. PAMPs are recognized by plants when they are 

exposed and sensed by specific transmembrane receptors (PPRs) that recognize them. Activation of 

PRRs leads to the induction of defense responses, involving ion fluxes, oxidative bursts, and the 

activation of Mitogen-Activated Protein Kinase (MAPK) cascades, which in turn promote 

transcriptional regulations that aim at blocking further penetration of the pathogen [48,49]. 

Examples for identified Phytophthora PAMPS are Pep-13 and NPP1. Pep-13 is a highly conserved 13-

amino acid fragment within the cell wall glycoprotein GP42 from P. sojae [50,51]. NPP1, necrosis-

inducing Phytophthora protein 1, was identified in several Phytophthora species as a cell-wall 

protein eliciting immune responses in plants [52]. 

This second layer of plant defense can be overcome by pathogens by means of effector proteins, 

which can roughly be classified as extracellular (apoplastic) and intracellular effectors. Oomycetes 

such as Phytophthora secrete different type proteins that either protect the pathogen from host 

defenses or contribute to the process of invasion. Secreted apoplastic effectors may inhibit 

hydrolytic enzymes (chitinases, glucanases and proteases) that are released by the plant to block 

pathogen proliferation. RGD (Arginine–Glycine–Aspartic acid)-containing effectors promote entry 

and development of the pathogen by interfering with host signaling pathways that regulate 

adhesion of the plant cell wall to the plasma membrane. Other effectors are cell wall degrading 

enzymes as well as toxins, used by the oomycete to induce cell death when hemibiotrophic infection 

switches to necrotrophy [43,53,54]. A particular class of apoplastic effectors from Phytophthora that 

has been actively studied in the last decades is constituted by the elicitins. Elicitins are structurally 

conserved proteins that were initially described in Phytophthora spp. as able to elicit hypersensitive 

(HR) cell death and disease resistance in tobacco [55]. Elicitins are able to bind sterols and other 
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lipids [56]: since Phytophthora spp. are sterol auxotrophs, it was speculated that those molecules 

may serve as extractors of sterols from the plant membrane to ensure the metabolic needs of the 

oomycete, and consequently disrupt the membrane integrity leading to cell death [55]. 

Intracellular oomycete effectors are secreted proteins that carry host-translocation signals for their 

transport into the plant cell. Additional motifs then allow the relocalisation to specific subcellular 

compartments. Intracellular oomycete effectors mainly fall into two groups. The first comprises 

RXLR-effectors, whose typical feature is the presence of a conserved aminoacid signature at the N-

terminus of the protein: Arginine, any amino acid, Leucine, Arginine (hence the name RXLR) often 

followed by a shorter Glutamate-Glutamate-Arginine (-EER) motif [57]. The second class is 

composed of the so-called Crinklers, named after the cell death phenotype they induce when 

overexpressed in planta. Similar to RxLR effectors, crinklers have a modular structure comprising 

conserved aminoacid motifs and seem to target the host nucleus [58]. 

In some cases, both apoplastic and intracellular effectors may be sensed by plants and activate a 

further layer of defense, called effector-triggered immunity (ETI). This immunity is provided by 

resistance (R) proteins, that are able to detect either directly or indirectly effectors proteins (named 

in this context avirulence proteins; AVRs). The outcome of ETI is more rapid and stronger than PTI, 

and often leads to a hypersensitive response (HR), a form of localized host cell death to confine the 

pathogen at the infection site and to prevent further propagation into non-infected plant tissues. 

This tight interaction of molecules from both the plant and the pathogen is the base of the so called 

“zig-zag” model postulated by Jones and Dangl [48], according to which the co-evolution of 

pathogen virulence determinants and plant resistance and immunity factors drives the outcome of 

plant-pathogen interactions. 
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1.2.1 The RXLR effector family 

A study published in 2005 by Rhemany and colleagues compared the sequences of predicted 

secreted avirulence proteins from several oomycete species, and identified a conserved amino acid 

motif, namely the RXLR-EER motif [59]. Further searches for candidate effectors in Phytophthora 

genomes evidenced the presence of an important number of genes that potentially encode for RXLR 

effector proteins, many of which are part of gene families comprising numerous paralogs with 

marked positive selection for their C-terminal regions [60]. 

Proteins belonging to this class share a modular structure, characterized by an N-terminal signal 

peptide for secretion, the RXLR(-EER) region and a C-terminal effector domain that encodes the 

functional part of the protein [46,61]. While the N-terminal part of the protein seems to adopt a 

disordered conformation, crystallographic and in silico analyses of RxLR effectors showed that the 

C-terminal part of some of them share a conserved three alpha-helix fold, termed WY-domain after 

their composition in W and Y residues. WY domains probably allow oligomerization of the effectors, 

or modify their physiochemical properties thus leading to diversification in function [62,63]. 

The RXLR motif shares some similarities with a host-targeting signal (HT) conserved in proteins from 

malaria parasites (Plasmodium species), leading to the hypothesis that RXLR functions as a signal 

that mediates cell entry [59]. Indeed, several experiments show that this motif acts as a signal for 

host delivery [64,65]. Furthermore, the HT was demonstrated to be functional in Phytophthora to 

efficiently trigger effector translocation [66]. However, the mechanism used for translocation inside 

host cells remains unclear and is subject to controversial discussion. Published work showed that 

the motif is responsible for binding to host Phosphatidyl-Inositol-3-phosphate thus triggering lipid 

raft-mediated endocytosis in a microbe-independent way [67–69]. Nevertheless, other studies 

indicate that the motif alone is not sufficient to produce this translocation [53]. 
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Figure 1.3: The RxLR effector family. 

A. The general structure of RxLR effectors includes a N-terminal domain containing a signal peptide for secretion 
(yellow box), followed by a RxLR-EER motif (blue box), which allows the translocation of the effector into the 
host cell. The effector domain (red box) is localized at the C-terminus of the protein. 

B. RxLR effectors are synthetized with a signal peptide for secretion and are assumed to follow the canonical 
ER/Golgi secretory pathway. Prior secretion the signal peptide is cleaved, and the mature effector is secreted 
from Haustoria in the extra-haustorial matrix (EHMx). From here the effector is translocated thorough the 
extra-haustorial membrane into plant cytosol with a mechanism that is not yet clarified. Adapted from [70]. 

 

Due to the great number of putative RxLR effectors revealed by genomic screens, a lot of work still 

needs to be done to define their activities and functions. Up to now most screens were based on 

the avirulent activity of a given putative effector, possibly leading to the activation of plant immunity 

and the HR. More recently different “-omics” approaches showed that the pathogen rather deploys 

an array of virulence activities that help suppressing plant immune responses to maximize the 

infection potential. For example, transcriptional profiling of P. sojae during infection of soybean 

showed that the expression of effectors is finely orchestrated over the different stages of infection. 

This work evidenced that early expressed effectors are predominantly able to suppress ETI and are 

followed by a wave of effectors that suppress (PAMP)-triggered immunity (PTI) [71]. In addition, the 

SNE1 effector from P. infestans, expressed during the early stages of infection, was shown to 

suppress host plant cell death, but also to counteract the activity of necrosis-inducing proteins 

released by the pathogen in later stages of the infection, thus providing a regulation for the 

transition from biotrophy to necrotrophy [72]. 

 To sustain the association with the plant, pathogens have to suppress virtually any step of the 

immune response machinery. This can rely on the subcellular localization of effector activity in the 

host. Transient expression screens with effector genes from the oomycete Hyaloperonospora 
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arabidopsidis showed that RxLR effectors accumulate either in the nucleus, in the membranes or 

both in the nucleus and the cytoplasm [73]. In line with this finding, in silico analysis of effector 

localization predicted that few oomycete RxLR effectors may target chloroplasts or mitochondria, 

but that a good proportion may target the host’s nucleus [74]. 

Indeed, some characterized RxLR effectors from Phytophthora species were shown to subvert host 

defenses by interfering with transcriptional and post-transcriptional regulation. For example, the P. 

infestans effector Pi03192 binds to a host transcription factor localized in the endoplasmic reticulum 

(ER), thus preventing its relocalisation to the nucleus [75]. Two effectors from P. sojae (PSR1 and 

PSR2 - Phytophthora suppressors of RNA silencing 1 and 2 respectively) were shown to bind to a 

host’s RNA helicase involved in processing and accumulation of miRNA and siRNA, thus interfering 

with RNA silencing and leading to increased plant susceptibility [76]. 

Other effectors interfere with defense-related phytohormone signaling. The P. infestans effector 

Pi0431 interferes with the induction of jasmonic acid (JA)- and salicylic acid (SA)-responsive genes 

[77], and the P. sojae effector Pslsc1 triggers a decrease in the amount of available SA in the host 

cell [78]. The P. parasitica PSE1 is predominantly expressed during penetration of host roots, and 

modulates the local auxin content to favor infection, by altering the distribution of auxin efflux 

carriers [79]. Other oomycete effectors target PTI signaling pathways. For example, a group of 

effectors from P. infestans (called SFI, Suppressor of early Flg22-induced Immune response) act 

upstream or downstream of the MAPK signaling cascade, which is activated in response to PAMP 

perception, interfering with signal transduction events at the plasma membrane or suppressing 

defense gene upregulation, respectively [80]. 
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1.2.2  The Endomembrane system as a target for RxLR effectors 

Another important target for RxLR effectors is the endomembrane system of plant cells. In fact, this 

complex network of membranes, which includes the plasma membrane, membranes of the ER, the 

Golgi apparatus, vacuoles and endosomes, is essential for the life of a cell and the exchanges within 

this network are essential for the maintenance of cell homeostasis during development and immune 

responses. 

When pre-existing barriers cannot prevent pathogen ingress, the plants respond to penetration by 

specifically rearranging the cytoskeleton, organelles, and compartments around a spatially confined 

area where the invasion occurs. One of the earliest events is a rearrangement of actin 

microfilaments at the penetration site, together with an aggregation of the ER and Golgi bodies that 

provide material for secretion, such as callose, phenolic compounds, phytoalexins and PR proteins, 

to block pathogen entry [81–83]. 

However, this dramatic reorganization can be targeted and rerouted by the pathogen to facilitate 

infection. For example, the formation of haustoria for feeding and trafficking of effectors requires 

important subcellular rearrangements of the host plasma membrane, which accommodates and 

envelops pathogen haustoria thus forming the so called extrahaustorial membrane (EHM). 

Formation of EHM is driven by biogenesis of new membranes and the relocalisation of resident 

proteins that are selectively excluded from this newly formed area [84,85]. These rearrangements 

seem to be partially due to apposition of host vesicles, which are redirected to the haustorial 

interface. The pathogen particularly redirects late endosomes, which are emerging as modulators 

of immune responses by balancing the degradation or recycling of PRRs [86]. 

Unsurprisingly, several oomycete RxLR effectors were shown to target different processes of the 

host endomembrane traffic. The well-studied effector AVR3a from P. infestans was initially 

identified as a cell death suppressor, but it was also shown to reduce internalization of the activated 

PPR-receptor FLS2 by binding DRP2, a plant GTPase involved in receptor-mediated endocytosis, thus 

perturbing PTI responses [87]. Effectors can also block plant exocytosis, such as P. infestans AVR1 

that was shown to interact with Sec5. This protein is a component of the plant exocyst protein 

complex, which is required for tethering vesicles and their fusion with the plasma membrane. 

Binding of AVR1 to Sec5 thus disturbs an essential process in plant immunity [88]. Finally, RxLR 

effectors were also shown to target processes involving intracellular trafficking of vesicles, in 

particular autophagy. An example is the PexRD54 effector from P. infestans, which interferes with 
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complex formation between ATG8, a ubiquitin-like protein required for the formation of 

autophagosomal membranes, and Joka2, an autophagic cargo receptor. This interference leads to 

the pathogen-driven stimulation of autophagosome formation, which is supposed to favor 

elimination of plant defense-related compounds [89]. 

Although the examples for oomycete effectors are limited, research in recent years revealed an 

important role of endosomes and autophagy-related membrane trafficking in plant-pathogen 

interactions. The next chapter will focus on the process of autophagy and its role in plant immunity, 

pointing out how pathogens can manipulate this plant function for successful infection. 

 

Figure 1.4: Overview of RxLR effectors targets in plant cells.  

Effector proteins are known to subvert and manipulate plant defenses: among the identified targets are several steps 
of the PTI responses, starting from receptor internalization (AVR3a [87]) and MAPK signaling cascade (SFI [80]). Other 
effectors have been shown to deregulate defenses at a transcriptional level by preventing the relocalisation of 
transcription factors from the ER to the nucleus (Pi03193 [75] or to interfere with miRNA and siRNA-dependent RNA 
silencing (PSR1 and PSR2 [76]). Other targets are represented by defense hormones: effectors have been shown to 
deregulate their downstream signaling (Pi0431 [90]), their availability (PsIsc1 [78]) or their redistribution (PSE1 [79]). 
Finally, effector have been shown to target the endomembrane system and affect plant exocytosis (AVR1 [88]) and plant 
autophagic machinery (PexRD54 [89]) to prevent release of defense-related compound or to favor their elimination 
respectively.
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 Autophagy 

General Introduction 

Autophagy, meaning “self-eating” (from ancient Greek “auto-“, self and “-phagía” eating), describes 

a complex and highly conserved biological process, which allows eukaryotic cells to degrade and 

recycle material and to dispose of damaged organelles or toxic compounds. The term was coined by 

Christian de Duve to describe a mode of protein degradation involving their delivery to lysosomes, 

which was observed mainly by transmission electron microscopy of mammalian cells [91]. Indeed, 

during canonical autophagy, portions of the cytoplasm are sequestered within a double-

membraned vesicle, which fuses with lysosomes or vacuoles where the engulfed material is 

degraded to simple molecules such as amino acids. 

Since the discovery of autophagy, research focusses on understanding the physiological role and 

regulation of the process. Initially, progress was hindered by the lack of specific markers allowing to 

follow the evolution of autophagic flux, both at a biochemical and morphological level [92]. A huge 

advance in autophagy research was accomplished when the Nobel Prize Yoshinori Ohsumi first 

described genes regulating this process in Saccharomyces cerevisiae. The use of a simple model 

system led to the first morphological description of autophagy [93,94]. Few years later, the 

generation of autophagy-defective mutants allowed the definition of genes composing the core 

machinery of autophagy [95,96]. At present, we know that autophagy is executed through the 

coordinated action of more than 30 core Autophagy-related (ATG) proteins, together with other 

important players such as the members of the Vacuolar Protein Sorting (VPS) protein family [97]. 

Autophagy likely evolved first in unicellular organisms as a survival mechanism to overcome the 

scarcity of nutrients, and as a basal function for quality control and clearance of long-lived proteins 

and organelles. In fact, by digesting portions of the cytoplasm, cells can increase the likelihood of 

survival in hostile conditions by obtaining nutrients and metabolic precursors when they are not 

available from the environment. Moreover, autophagy is important to remove superfluous and 

damaged organelles, pathogens or toxic material, such as misfolded proteins that could endanger 

cell survival. 

After the early works on yeast, autophagy has been identified and described in all higher eukaryotes, 

pointing out how this process is important and conserved across the tree of life. In multicellular 
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organisms, autophagy is essential during embryonic development and its activity appears to 

determine lifespan and tissue homeostasis [98]. Work on human cells evidenced the role of 

autophagy in cell survival and metabolism, and dysfunction of the process leads to pathologic 

conditions such as neurodegenerative diseases and cancer [99]. In plants, too, autophagy is involved 

in developmental processes, and in events such as the regulation of programmed cell death (PCD) 

during immune responses [100]. 

2.1 A focus on macroautophagy 

Due to its fundamental role in cell homeostasis, autophagy seems to be constitutively activated in 

cells at a basal level. Nonetheless, it can be transiently induced during conditions that require rapid 

nutrient supply or extensive cell remodeling, such as starvation, abiotic and biotic stress, or switches 

in physiological programs (development, senescence, cell death) [98]. 

Autophagy (synonymous for “macroautophagy”) is a coordinated process, in which cellular 

components are non-selectively engulfed in a double membrane vesicle and delivered to the lytic 

compartment for degradation. This contrasts to “microautophagy”, which describes the selective 

direct engulfment of cytoplasm into lysosomes or vacuoles. Under particular conditions, 

macroautophagy specifically removes whole organelles, such as mitochondria and peroxisomes, 

regions of the Golgi and the ER, and even plant chloroplasts [101]. Specific proteins might also be 

delivered to the lytic compartment for degradation via the cytosol-to-vacuole-targeting or CVT in 

yeast and by chaperone-mediated autophagy in higher eukaryotes [102]. Finally, specific cargoes 

can be bound by specific adaptor proteins called autophagy receptors and degraded by the 

macroautophagic machinery via the so-called “Selective autophagy” [103]. 

During stress responses, autophagy can also mediate programmed cell death. In plants, autophagic 

components are involved in developmental cell death that is required for the formation of xylem 

[104]. The role of autophagic cell death in developmental morphogenesis was also described in 

Drosophila melanogaster and Caenorhabditis elegans [105]. Other work evidenced a strong 

interplay between autophagy and apoptosis since some autophagic components are also hubs for 

the regulation of caspase-dependent or -independent apoptosis, and of non-apoptotic cell death 

[106]. 



 [CHAPTER 2 - AUTOPHAGY 

   

  
 23 

 

2.1.1 The autophagic machinery in yeast 

As mentioned before, the earliest studies on autophagy in the 1960s were mainly based on 

Transmission Electron Microscopy, which allowed the morphological description of events leading 

to autophagic degradation. Several independent screens of yeast mutants allowed then to describe 

the molecular actors of autophagy and the identification of 31 ATG genes (autophagy-related genes) 

that encode the essential machinery of the process [97,107]. Functional analyses of these genes 

defined five protein groups, which act in a hierarchical way. These protein groups form the ATG1 

complex, the Phosphatidyl-Inositol 3-kinase complex, the ATG9 complex, and two conjugation 

systems involving ATG12 and ATG8 as key players (Figure 2.1). 

The following paragraphs describe in detail the molecular autophagic machinery, according to the 

description for S. cerevisiae. 

 

Figure 2.1: Core macroautophagy machinery in Saccharomyces cerevisiae. 

Following autophagy induction, a double-membrane vesicle begins to nucleate and to expand, randomly enclosing 
cytoplasmic material which can include organelles and aggregated proteins. The formed vesicle then fuses with the cell’s 
lytic compartment where hydrolases drive the digestion of the enclosed cargo. This process releases aminoacids and 
lipids that are recycled back to the cytoplasm by specific transporters. Colored boxes present the core functional groups 
of proteins that participate to autophagosome formation: the ATG1-ATG13 complex, The PtdIns complex, the ATG9 
cycling system and the two conjugation systems for ATG12 and ATG8.  Adapted from [108].  
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Initiation of autophagy 

Autophagy is tightly regulated by the integration of signals coming from the environment as well 

with signaling pathways regulating cell cycle, metabolism, and programmed cell death. Stimuli 

coming from the different pathways often converge in a complex including the serine/threonine 

protein kinase TOR1 (Target Of Rapamycin), which is considered as one of the master regulators of 

autophagy. As the name of the protein suggests, TOR1 can be inhibited by chemicals such as the 

bacterial metabolite Rapamycin, isolated in 1965 in Rapa Nui from a soil sample. In S. cerevisiae two 

isoforms of this protein intervene in the complex: TORC1 integrates extra- and intra-cellular signals 

coming from nutrient levels, growth factors, and the energy balance, whereas TORC2 is mainly 

involved in cytoskeleton polarization during cell growth [109]. Under normal conditions, TORC1 

phosphorylates several substrates, including the initiation complex of autophagy thus determining 

a negative regulation of the process. Under unfavorable conditions, TORC1 activity is inhibited thus 

determining a stop of the cell cycle in G0, and the release of autophagy [110]. In addition to the 

inhibition of TORC1, autophagy can be activated by alternative signaling pathways such as those 

involving the cAMP-dependent protein kinase (PKA) pathway [111], or by soluble and membrane-

associated receptors to induce the selective degradation of misfolded proteins and organelles 

[112,113]. 

ATG1-ATG13 complex and the pre-autophagosomal structure 

In yeast, the initiation of autophagosome formation is controlled by a multimeric complex 

composed of the 5 main proteins, ATG1, ATG13, ATG17, ATG29 and ATG31, which may be supported 

by specific regulators for targeted degradation of cargos such as ATG11 [114]. 

The protein ATG1, a serine threonine kinase, and its regulator ATG13, interact constitutively under 

nutrient-rich and -deprived conditions via a specific region called the FV-motif [115]. Under nutrient-

rich conditions, ATG13 is hyperphosphorylated by multiple kinases including the TORC1 complex 

[116]. These phosphorylations cause conformational changes that prevent the activation of the 

ATG1 kinase activity, and the formation of the multimeric complex mentioned above. Upon 

starvation, dephosphorylation of both ATG1 and ATG13 leads to a stabilization of ATG1, thus 

enhancing its kinase activity, promoting autophosphorylation, and allowing the interaction with 

ATG29, ATG31 and ATG17, the latter being specifically recruited in response to starvation [117,118]. 

The formation of this multimeric complex marks the beginning of nucleation of the Phagophore 
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Assembly Site (PAS). In yeast, this site has been identified as a perivacuolar region [119] where the 

core machinery proteins will assemble and function either as scaffold, or as regulators for the 

nucleation of the phagophore, a double membrane-enveloped vesicle that will eventually maturate 

into an autophagosome [120]. 

The Phosphatidyl-Inositol 3-kinase (PtdIns3K) Complex 

Biogenesis and maturation of the phagophore relies on membrane trafficking converging at the PAS. 

Membranes involved in this traffic have a unique composition, but their origin remains elusive. 

However, both the ER and the Golgi were identified as contributors to the nucleation of the 

phagophore [121]. A characteristic of phagophore membranes is the over-representation of 

Phosphatidyl-Inositide (PtdIns) and Phosphatidyl-Inositide-3-phosphate (PtdIns3P) [122]. The 

enrichment of these lipids is enabled by the PtdIns3K complex. The complex is associated to 

membranes and includes the PtdIns3K VPS34, the Ser/Thr kinase VPS15, and VPS30 (aliases: ATG6, 

Beclin1), which promotes kinase activity. These three proteins participate in both vacuolar protein 

sorting (regulating intracellular protein trafficking) and autophagy. To accomplish autophagy, the 

complex requires an additional factor, ATG14, which supports localization at the PAS. The enzymatic 

activity of the complex is the phosphorylation of PtdIns, leading to accumulation of PtdIns3P, which 

is essential for the subsequent steps of phagophore elongation and maturation [122,123]. 

The Cycling system ATG9 and the ATG2-ATG18 complex 

The presence of PtdIns3P at the PAS triggers the recruitment of other protein complexes. One of 

them is the ATG2-ATG18 complex, composed of ATG2, which associates with the lipid at the PAS, 

and of ATG18 which in turn recruits and regulates the recycling of another actor in phagophore 

nucleation, ATG9 [124]. ATG9 is a six-transmembrane domain protein that, unlike other ATG 

proteins, localizes both to a peripheral reservoir of vesicles located at the PAS and to the close 

proximity of mitochondria [125]. ATG9 cycles between the two pools, and its transport toward the 

PAS is supported by ATG11, ATG13 and ATG27. At the PAS, ATG9 self-interacts and tethers upcoming 

vesicles, thus contributing to membrane supply for the forming phagophore, and facilitating the 

recruitment of downstream complexes. The regulatory activity of ATG18 together with ATG1-ATG13 

and the PtdIns3K complexes relieve the retention of ATG9 at the PAS, thus allowing its shuttling 

back to the peripheral sites [126]. 
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Vesicle expansion: the UBL complexes ATG12 and ATG8 

The interaction of the complexes described above eventually promotes the recruitment of two 

ubiquitin-like (UBL) conjugation systems [124], which include an important fraction of the ATG 

protein core machinery. The two complexes are named after the key players of the reaction, ATG12 

and ATG8, two proteins whose crystal structure revealed the presence of a conserved ubiquitin fold 

[127,128]. During autophagy, both proteins undergo a covalent modification, similar to the process 

of ubiquitin activation, which is operated by modifying enzymes analogous to the E1-E2-E3 enzymes 

involved in ubiquitination. 

ATG12 was the first UBL-like protein that was identified as an essential component of the autophagic 

machinery [129]. This protein is first activated by an E1-like enzyme, ATG7, by the formation of a 

thioester bond between a C-terminal glycine of ATG12 and Cys507 of ATG7. Then ATG12 is 

transferred to ATG10, which acts as an E2-enzyme and operates the conjugation of ATG12 to its 

target, ATG5. The ATG12-ATG5 complex can interact with ATG16, a small protein that promotes the 

formation of a multimeric complex. Homo-oligomerization of ATG16 and binding to the lipid PtdIns 

localizes the ATG12-ATG5-ATG16 complex to the phagophore membrane [130,131], which in turn 

promotes the activity of the second UBL- complex, the ATG8 conjugation system [119]. 

ATG8 is synthesized as a precursor, which is immediately cleaved at its C-terminus by the cysteine 

protease ATG4 [132]. This cleavage exposes a Glycine residue, which becomes the target of the E1-

like enzyme ATG7. Similarly to what happens for ATG12, ATG7 forms a thioester bond with ATG8 

before ATG8 is transferred to the E2 enzyme ATG3. This transfer leads to the formation of an amide 

bond between ATG8 and the lipid Phosphatidyl-Ethanolamine (PE) [132]. The ATG8–PE conjugate 

then integrates on both sides of the double layer of the elongating vesicle, where it is essential for 

the fusion of membranes converging at the crescent phagophore. It was shown that the asymmetric 

distribution of ATG8-PE between the inner and outer face of the phagophore determines the 

curvature and the closure of the autophagic vesicle, thus defining mean radius and size of the 

autophagosome [133,134].  

ATG8 has additional functions as a recruiter and selector of autophagic cargoes by virtue of its 

interaction with cargo receptor proteins. It tethers selective cargoes bridged by the receptor ATG19 

and leads them to specific degradation. The interaction of proteins with ATG8 is mainly driven by 

the conserved aminoacidic motif W/YxxL/I/V, called AIM (ATG8 interacting motif) [135]. 

Importantly, the conjugation of ATG8 with PE is reversible, and the protein can be released from the 
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phagophore by a second cleavage operated by ATG4. This restores the pool of non-lipidated 

cytosolic ATG8 ensuring a reservoir for the formation of new autophagosomes when needed [136]. 

Autophagosome maturation and fusion with the lytic compartment 

The elongated, curved phagophore encloses the cargo and eventually maturates into the 

autophagosome, which is bordered by a doubled membrane bilayer. The completion and closure of 

the double membrane strongly relies on the action of ATG8. Recent work shows that ATG1 

phosphorylates ATG4 and inhibits its cysteine protease activity to protect the pool of available 

ATG8–PE from cleavage until completion of phagophore closure [137]. When the autophagosome 

is established, release of the ATG1-ATG13 complex from the membranes allows ATG4 to operate 

the cleavage of the PE anchor from ATG8, and thus to initiate the subsequent steps of maturation. 

The hydrolase Ymr1 is a phosphoinositide phosphatase that removes phosphate from the PtdIns of 

the autophagosome membrane. This event disrupts PtdIns3P-dependent signaling, which is 

essential for the recruitment of several ATG proteins to the forming phagophore, thus causing the 

release of the autophagic protein complexes from the membrane. Several proteins then regulate 

the fusion of the autophagosome with the lytic compartment (lysosome or vacuole). In yeast, this 

fusion is mediated, among others, by specific members of the HOPS tethering complex, the SNARE 

complex and the RAB GTPase YPT7 [138]. After the fusion, several hydrolases such as the 

proteinases A, Pep4, and B, Prb1, and the lipase ATG15 participate in the degradation of the cargo, 

which requires acidification of the compartment [139]. Eventually, molecules released by the lytic 

activities are exported from the vacuole back to the cytoplasm by means of aminoacid effluxers such 

as ATG22, and the vacuolar permeases Avt3 and Avt4 [140]. 

 

  



CHAPTER 2 - AUTOPHAGY [ 

   

  
28  

 

2.2 Autophagy in plants 

The morphology of plant autophagy was first described in the late 1970s using electron microscopy, 

leading to a first description of autophagic vesicles and their role in vacuole biogenesis [141]. In the 

following decades, genome sequencing programs allowed to confirm for photosynthetic organisms 

the conservation of the autophagic machinery in higher eukaryotes. Most of the genes encoding the 

yeast autophagic core machinery have a corresponding ortholog in photosynthetic organisms that 

range from algae to monocots and dicots [142,143]. Even though plant autophagy gene sequences 

rather diverge from their yeast orthologs, the residues that determine protein function are 

conserved. Important advances in the characterization of ATG proteins in plants were made possible 

by the generation of loss-of-function mutants, in particular in the model plant Arabidopsis thaliana 

[141]. Since, it appears confirmed that the general mechanism and the functional complexes of 

autophagy are conserved in plants [144,145]. However, it is important to note that genes encoding 

some members of the ATG core family including ATG4, ATG8 and ATG12 diversified in plants, and 

are encoded by small gene families. Individual members of these families might exhibit specific 

expression patterns, and the encoded proteins might diverge in subcellular localization and function 

[143,146]. 

 

Figure 2.2: Core autophagy machinery in Arabidopsis thaliana compared to yeast. 

The four main complexes constituting the core autophagy machinery are conserved in plants. The figure illustrates the 
core machinery of Arabidopsis thaliana: pattern-filled boxes stand for genes that are missing or that are still not 
identified whereas red boxes indicate genes that underwent expansion in plant and are now encoded by gene families. 
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Under nutrient-rich growth conditions, plants, which have mutations in genes, or are down-

regulated for genes encoding proteins of the autophagic core machinery such as those involved in 

induction (ATG13 [147]), nucleation (ATG9 [148], ATG6 [149], ATG18 [150]), conjugation (ATG7 

[151] ATG4a4b [152] ATG5 [153], ATG10 [154]), and fusion (VTI1 - [155]) achieve a normal life cycle 

and produce viable seeds (except plants lacking ATG6 [156]), but display accelerated leaf senescence 

and reduced fertility. However, when those plants grow under challenging conditions different 

phenotypes emerge. The plants exhibit senescence markers prematurely, and react hypersensitive 

to stress such as starvation with an overall reduced growth and compromised survival ([157] for 

review).  

Autophagy is essential for several developmental processes in plants. For example, autophagy 

participates in developmental cell death programs that are required for the biogenesis of the 

vacuole [158], and, in Arabidopsis thaliana, for the differentiation of tracheary elements [104] and 

the germination of pollen [156].  

Another aspect emerging from the studies on autophagy-defective mutants is the role of autophagy 

in plant nutrient recycling. As for other organisms, basal autophagy in plant cells contributes to 

control the availability of carbon and nitrogen, among others by means of upstream signaling 

converging in the regulator TORC1. However, the role of autophagy for nutrient remobilization in 

plants becomes evident during nutrient deprivation, and during certain developmental stages such 

as seed germination and senescence. For example, autophagy was shown to be active during the 

night and contributes to the degradation of starch, probably assuring its breakdown and subsequent 

carbon availability [159]. Moreover, autophagy is involved in nitrogen turnover, as ATG mutants are 

less efficient in the remobilization of nitrogen from senescing leaves to seeds [160].  

In addition, plant autophagy was shown to be essential for responses to various abiotic stress such 

as oxidative stress, salt, drought and heat [161–163]. Related to this, several forms of selective 

autophagy in plants were reported that aim at disposing of damaged organelles and protein 

aggregates, whose formation increases under certain conditions. Examples for this phenomenon 

are the degradation of peroxisomes during seed germination [164] and the removal of aggregated 

peroxisomes following oxidative stress [165], the partial or complete degradation of chloroplasts in 

senescing leaves as well as under carbon starvation [166,167]. Autophagy was also shown to be a 

sensor for ER-stress and to provide a pathway for the degradation of aggregated and misfolded 

proteins [168,169]. The study of the relation between the ER and autophagy also evidenced that 
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plant autophagy contributes to the intracellular trafficking of proteins and membranes from the ER 

to the autophagosome and the vacuole [158,170,171]. Furthermore, there is increasing evidence of 

a crosstalk between autophagy and other endocytic pathways ([172,173] for review). 
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Figure 2.3: Autophagy in plants. 

Similarly to what reported in yeasts and mammals, autophagy is induced in plants by several stimuli ranging from 
developmental processes, internal regulation of cell homeostasis but also environmental cues such as abiotic and biotic 
stresses (top of the figure). Some of those stimuli are unique to plants, especially those related to plant development 
and the response to pathogens. The autophagic digestion in plants happens with the fusion of an autophagic vesicle 
with the plant lytic compartment: the central vacuole. Those autophagic vesicles can engulf material either in a non-
selective manner or target specific cell compartments (organelles specific) and cargoes (selective autophagy mediated 
by cargo receptors). Among the different modalities, the degradation of organelles often responds to specific stimuli 
(bottom of the figure): the degradation of chloroplasts and rubisco containing bodies is unique to green organisms and 
is triggered by stimuli such as senescence and HR-PCD that unique to plants [174]. 
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2.2.1 Autophagy in plant-pathogen interactions 

As discussed in the previous chapter, autophagy contributes to endocytic trafficking and appears to 

be significantly involved in the outcome of biotic interactions. For example, autophagic components 

belonging to the PI3K-complex were shown to be essential for the mutualistic interaction between 

common bean (Phaseolus vulgaris) and both rhizobial bacteria and mycorrhizal fungi, since the 

impairment of this complex strongly compromised the formation of root nodules and of arbuscular 

structures that are necessary for symbiosis [175].  

Beside this example, most of the research on biotic interaction focused on the role of autophagy in 

plant defense and the interaction with pathogens. Over the years, autophagy has been suggested 

to play both a “pro-survival” or a “pro-death” role in plant immunity-related cell death, depending 

on at least two main factors: the lifestyle of the pathogen and the age of the plant.  

Concerning the first aspect, findings involving ATG mutants revealed that autophagy has a double-

edged role in pathogen-triggered PCD. In fact, when the plant is faced to a necrotrophic pathogen 

such as Alternaria brassicicola or Botrytis cinerea, autophagy acts as a pro-survival mechanism, as it 

contributes to removing both toxins released by the pathogen, and damaged and potentially toxic 

cellular constituents generated during the response to infection. Indeed, the impairment of the 

autophagic machinery results in extensive pathogen growth and pathogen-induced plant cell death 

[176,177].  

On the other hand, autophagy acts both as a regulator and executor of PCD during the HR, when 

the plant is challenged with (hemi)biotrophic pathogens, thus contributing as a pro-death 

mechanism to resistance. Nicotiana benthamiana infected with tobacco mosaic virus displays an 

activation of autophagy in both infected and uninfected tissues. As a response to the virus, the plant 

develops an HR-PCR, which localizes to the site of infection and limits the virus replication of the 

virus. In ATG6-, ATG4-, and ATG7-deficient plants, virus replication is no longer restricted [178]. 

Similarly, the immunity-associated cell death response of Arabidopsis thaliana to Pseudomonas 

syringae strain DC3000 relies on the activation of autophagy [179]. Cells undergoing HR-PCD were 

reported to accumulate autophagosome-like structures during the early stages of infection [180]. It 

is important to note that in both systems (N. benthamiana - TMV and A. thaliana - P. syringae) 

autophagy might have a pro-survival role, since it prevents the diffusion of the HR-PCD to uninfected 

areas, as demonstrated by ATG mutant plants displaying unrestricted PCD [149,178,181]. Other 
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reports present contrasting results, indicating that autophagy deficiency enhances the resistance to 

P. syringae and powdery mildew rather than decreasing it [180,182].  

This apparent contradiction may be explained by the second factor determining the role of 

autophagy in immunity: plant age. As mentioned, the phytohormone SA plays an important role in 

disease resistance responses to biotrophic pathogens, and it has been shown to promote 

developmental senescence [183]. A. thaliana ATG mutants display increased levels of SA, which lead 

to premature senescence, hypersensitivity to oxidative stress, and increased susceptibility to 

necrotrophic pathogens (increased SA levels antagonize the hormone JA, which mediates immunity 

to necrotrophs) [176,182,184]. The early senescence phenotype and premature cell death in ATG 

mutants can be partially reverted by impairing SA signaling, indicating that these phenotypes are 

mainly due to SA accumulation, and only an indirect effect of autophagy deficiencies. However, the 

findings show that autophagy is induced by SA accumulation, which in turn is regulated by 

autophagy thorough negative feedback loop [141]. Consequently, differences in the accumulation 

of SA, which are also dependent on plant age and growth conditions, might explain the contrasting 

findings of pro-survival and pro-death roles of autophagy during the interaction with 

(hemi)biotrophic pathogens. 

Considering the dual role of autophagy in cell survival and cell death, it is not surprising that 

microbial pathogens developed the ability to either inhibit or stimulate plant autophagy to their 

own advantage.  

For example, the necrotrophic pathogen Sclerotinia sclerotiorum secretes the phytotoxin oxalic acid  

(OA) to promote tissue invasion [185]. By using combinations of OA-deficient strains and 

Arabidopsis plants defective in autophagy, the authors show that pathogen uses oxalic acid to 

suppress autophagy and autophagy-dependent HR-PCD, and to promote pathogen-induced necrotic 

cell death.  

Other pathogens instead use plant autophagy for the success of infection. For example, the 

Ralstonia solanacearum effector, AWR5, was shown to be an inhibitor of TOR in A. thaliana and thus 

an activator of autophagy. The resulting activity mimics the effects of starvation in infected tissues, 

possibly determining a remodeling of the host metabolism favoring the development of the 

pathogen [186]. Recent work showed that the effector HopM1 from P. syringae stimulates 

autophagy for selective removal of proteasomes, which are involved in immune responses and the 

degradation of pathogen-derived compounds. Interestingly, plants counteract this activity by 
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activating simultaneously a distinct selective autophagy pathway mediated by the cargo receptor 

NBR1, which targets pathogen immunity suppressors [187].  

NBR1-mediated autophagy was also shown to be the target of other pathogens. PexRD54, an 

effector of the RxLR family from Phytophthora infestans, contains AIMs that promote its binding 

with high affinity to the potato ATG8CL protein. This binding prevents the interaction of ATG8CL 

with JOKA2, the potato homolog of NBR1, which is involved in plant resistance to P. infestans 

infections. PexRD54 also appears to stimulate autophagy and to redirect autophagosomes towards 

the EHM, redistributing membrane for EHM biogenesis and possibly nutrients to favor pathogen 

growth [89,188]. A different study shows that NBR1 can target proteins of the Cauliflower mosaic 

virus capsid and promote their degradation via autophagy. However, the virus protects itself from 

degradation by forming inclusion bodies and maintains host autophagy in an active state to promote 

survival of infected cells [189]. 

 

 

Figure 2.4: Role of autophagy in plant-pathogen interaction. 

Autophagy has a pivotal role in the outcome of interactions with pathogens. It has been shown that it can either 
promote or restrict different forms of cell death and this action appears to be dependent on the lifestyle of the 
pathogen. Autophagy was shown to suppress the necrosis induced by necrotrophic pathogens (left side) via the removal 
of pathogenic toxins and damaged cell constituents [176,177]. In turn some necrotrophic pathogens such as S. 
sclerotium have been reported to inhibit autophagy with Oxalic Acid to promote infection [185]. On the other hand 
autophagy promotes HR-PCD in response to (hemi-)biotrophic pathogens and, in parallel to prevent the diffusion of this 
response in non-infected tissues [178,180]. Various biotrophic pathogens have been reported to hijack or promote 
autophagy to escape this response [186–189] however the employment of inhibitory strategies remains to be 
discovered. Adapted from [100].
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Objectives of the PhD project 
 
As described in the first chapter, the plant pathogen Phytophthora parasitica is gaining importance 

from an economical and a scientific point of view. In fact, the oomycete is establishing as a model 

organism to understand the mechanisms regulating plant-pathogen interactions and the molecular 

exchanges between them.  

The hosting laboratory, where this thesis work has been carried out, is interested in deciphering 

those mechanisms on different levels. A previous project led to the production of two cDNA libraries 

from P. parasitica infecting onion epidermal layers and tomato plants in early [1] and late [2] stages 

of infection. This work has allowed to identify several ESTs representing transcripts from genes 

encoding potential effectors proteins, in particular those from the RxLR family. One of the genes 

encodes a protein of 195 amino acids belonging to the RxLR family. Since the sequence did not 

correspond to any known Avr protein, it was denominated avirulence-homologue 195 or Avh195. 

Interestingly, the bioinformatic analysis of the effector revealed the presence of five Atg8 

interacting motifs in the effector domain of the protein, which could indicate that PpAvh195 is 

potential perturbator of autophagy. 

Due to the importance of both RxLR proteins and autophagy in the infectious process, this PhD 

project has focused on the molecular and functional characterization of the Phytophthora 

parasitica effector Avh195 and on the elucidation of its role in autophagy perturbation. 

In Chapter 3 I will present the results obtained during my PhD thesis, which focused on the following 

objectives: 

• To infer the general function of Avh195 from its sequence and its pattern of expression 

during infection. 

• To validate the interaction between Avh195 and Atg8. 

• To characterize the molecular mode of action ofAvh195 and its effect on plant autophagy 

machinery. 

• To characterize the role of Avh195 during Plant-pathogen interaction. 

• To validate the selectivity of Avh195 action on a non-photosynthetic model. 
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 Results 

This chapter is dedicated to the presentation of the results obtained during my PhD thesis: it is 

articulated in five main sections, each of which will deal with the objectives of the work presented 

in the previous chapter. 

 

3.1  Molecular characterization of Avh195 

3.2  Avh195 interacts with ATG8 

3.3 Characterization of Avh195 in Chlamydomonas reinhardtii 

3.4 Role of Avh195 during the host-pathogen interaction 

3.5 Trans-kingdom activity of Avh195 
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3.1 Molecular characterization of Avh195 

The interaction between pathogenic oomycetes and host plants is a process that strongly relies on 

fine-tuned exchanges between the two partners. The study of the molecular mediators of this 

communication is improving and helping to shed a light on the mechanism by which the pathogen 

suppresses the host defenses and hijacks the host machinery to promote infection. A part of this 

area of research focuses on effector proteins: soluble mediators secreted by the oomycete that 

target various functions in plant cells in order to divert host machinery. 

 

On this line, the present work has based on a previous project aimed to identify the determinants 

of pathogenicity via the generation of two EST libraries obtained from P. parasitica infected plant 

tissues [38,43]. In the arsenal of molecules deployed by the oomycete during the penetration and 

infection of the host tissue, those works allowed the identification of cDNA belonging to effector 

proteins, thus potentially implicated in the outcome of infection. One of them was found to encode 

a putative effector protein, designated as PpAvh195 (Alias Avh195). The sequence of this gene 

corresponds to a transcript of 588 pb, which is predicted to encode a 195-amino acid protein with 

the typical structure of an RxLR effector.  

BLASTp search for homologs of Avh195 in other organisms revealed that this gene is unique to P. 

parasitica species and is not present in other oomycetes, except the 202 amino acid related 

sequence PITG_04099 in the potato late blight pathogen P. infestans, which presents 66.7% identity 

to PpAvh195 Figure 3.1. 
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Figure 3.1: Amino acid sequence alignment of Avh195 and PITG_04099. 

The amino acid sequences were aligned using ClustalO and the alignment was edited using Matchboxshade for 
Macintosh. Shading indicates blocks of identical (black) or similar (gray) amino acids.  
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3.1.1 Avh195 is expressed during biotrophy of P. parasitica 

To support the hypothesis that the encoded protein may act as a pathogen-specific virulence factor, 

we investigated the presence of Avh195 EST in libraries generated from additional developmental 

stages of P. parasitica. This analysis showed that the gene is neither expressed in germinated cysts, 

zoospores, nor during vegetative growth [39,41,42] suggesting that it is specifically expressed during 

infection.  

To validate this hypothesis, we investigated the expression pattern of Avh195 using RT-qPCR in roots 

of Arabidopsis plantlets at 3, 10, 30 and 48 hours post inoculation (hpi) with P. parasitica zoospores. 

This test was first designed to follow the progression of the infection starting from the beginning of 

biotrophy then going through necrotrophy. To describe the infection process we monitored the 

expression of two transcripts: PpHMP1 (the ortholog of P. infestans Haustorial Membrane Protein 

1 [7]) a gene specifically expressed in haustoria during biotrophy, and Nep1-Iike protein 1 (PpNpp1) 

[8] a necrotizing factor expressed during necrotrophic stages of Phytophthora infection [190]. 

This kinetics showed that the biotrophic stage of the infection is characterized by a rise in PpHMP1 

with a maximum corresponding to the switch from biotrophy to necrotrophy at 10hpi [6]. In turn 

PpNPP1 shows an increment after this point indicating the onset of the necrotrophic stage  

(Figure 3.2 A). 

In this context, expression of the Avh195 transcript was detected in the early steps of the infection, 

displaying a maximum at 10hpi then slowly decreasing during later steps, and becoming barely 

detectable at 48hpi (Figure 3.2 A). 

Thus, based on their respective mRNA levels we could conclude that Avh195 is expressed during P. 

parastica infection. We also determined that the transcript preferentially accumulates during the 

biotrophic step of the P. parasitica infection cycle. Therefore, we considered the effector a specific, 

biotrophy-associated pathogenicity factor. 

Since P. parasitica has a broad host range, being able to attack more than 255 plant genera in 90 

families [30] we also assessed the expression of Avh195 during infection of tomato, another 

common host of this pathogen to confirm its pattern of expression. Similarly to what showed for 

Arabidopsis thaliana, we analyzed the level of mRNA for PpHMP1 and PpNPP1 in roots of Solanum 

lycopersicum (tomato Var. Marmande) in interaction with P. parasitica zoospores. In this 

pathosystem we could identify a progressive increase in both PpHMP1 and PpNPP1 transcript levels 
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until 30hpi, followed by a decrease in the mRNA level of PpHMP1, corresponding to the switch from 

biotrophy to necrotrophy. The relative expression of Avh195 showed to be parallel to the one of the 

biotrophy marker, further confirming the accumulation in this specific stage of the infection (Figure 

3.2 B). 

 

 

Figure 3.2: Expression profile of Avh195 during the P. parasitica life cycle. 

Relative mRNA levels of Avh195 were quantified by quantitative RT-PCR in samples corresponding to A. thaliana (Panel 
A) or S. lycopersicum (Panel B) plantlets collected at different time-points after infection with P. parasitica zoospores. 
Data are presented as expression ratios relative to the UBC, WS21 and WS41 reference genes. Error bars represent 
standard error of the mean. The expression profiles of PpHMP1 (green) and PpNpp1 (brown) are also presented, as 
representative of the biotrophic and necrotrophic stages of the infection, respectively. 
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3.1.2 Avh195 potentially interferes with autophagy 

As anticipated in the previous Section, Avh195 encodes a protein of 195 amino acids with the typical 

structure of a RxLR effector. Indeed, the sequence includes a 20 amino acid signal peptide, the 

canonical RxLR-EER motif harbored by this class of proteins, followed by an effector domain  

(Figure 3.3). 

The computation of physical and chemical parameters of the encoded effector domain highlighted 

a marked abundance of positively (Arginine and Lysine) charged residues, accounting for 20% of the 

amino acid sequence, compared to 8.80% of acidic (Aspartic and Glutamic acids) residues. This 

composition leads to an elevated theoretical isoelectric point of the protein (pI: 10.31) which might 

be relevant to the function of the protein (Table 3.1). 

Further in silico analysis of Avh195 indicated that the polypeptide contains 5 putative ATG8 

interacting motifs (AIMs), alternatively known as LC3-Interacting regions, or LIRs. This motif consist 

of 6 amino acids with a typical core consensus sequence [W/F/Y]xx[L/I/V], which can be found in 

proteins across the phylogenetic tree of life, and which is crucial for interactions with ATG8-family 

proteins [135,191]. The identification of AIMs in Avh195 was performed by comparison with a 

collection of LIR motif-containing proteins (LIRCPs) from various organisms that are hosted at the 

iLIR autophagy database. The AIMs of LIRCPs are defined by a position-specific scoring matrix (PSSM) 

score which is derived from the alignment of experimentally verified AIM/LIR motifs [192,193]. The 

AIMs identified for Avh195 were located in the effector domain of the protein and their PSSM score 

ranged from 7 to 16 (Table 3.1). As shown in [192], reliability of the PSSM score as a predictor of 

genuine AIM/LIR motifs can be set in the range of 13-17, not excluding however lower or higher 

values: for this reason we decided to set a cut-off of 10 on the score, and retained 3 candidate AIMs 

for further analyses. 
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Figure 3.3: Schematic representation of the Avh195 protein sequence. 

The signal peptide and RxLR-EER motif characteristic of this class of effector are shown as yellow and blue boxes, 
respectively. The effector domain, in red, contains five AIMs ATG8 interacting motifs indicated as hexagons. The 
identified AIMs displayed different PSSM scores (as indicated in Table 3.1); the motifs retained for further investigation 
in this study are indicated by an asterisk.  

 

 

Table 3.1: Bioinformatic analysis of Avh195 protein sequence. 

The tables illustrate the physical and chemical parameters of the Avh195 coding sequence (left side) and the prediction 
of ATG8 interacting motifs in the effector domain of the protein (right side). 
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3.1.3 Avh195 transiently antagonizes HR-associated induced cell death in tobacco  

The heterologous transient expression of proteins in Nicotiana tabacum leaves is a frequently used 

preliminary screen to analyze the capacity of an effector protein to induce or repress the HR. The 

method is based on the capacity of Agrobacterium tumefaciens to transfer a defined portion of DNA 

into plant cells, and to integrate it into the host genome [194]. We thus assessed the possible 

contribution of Avh195 to HR phenotypes by transient expression in N. tabacum leaves through A. 

tumefaciens-mediated transformation.  

Firstly, several variants of mature Avh195 (without signal peptide) were tested alone for their ability 

to produce visible symptoms on plants Nicotiana leaves, notably cell death. The variants included 

the native version of Avh195 and a version deleted of the whole effector domain (Avh195ΔED). In 

addition, by the means of site-directed mutagenesis, we generated a mutant version of the effector 

in which the hydrophobic residues of the three AIM sites displaying the highest scores were changed 

into alanines, thus creating a triple mutant disabled for the three AIMs (Avh195ΔAIM). Since at 

72hpi no cell death was observed for the native construction (Figure 3.4 A), this first assay revealed 

that Avh195 has no toxic effect and/or does not trigger a hypersensitive response in tobacco. 

Similarly, no cell death was observed upon expression of the recombinant variants, indicating their 

suitability for subsequent tests (Figure 3.4 A). 

We then assessed the ability of the effector to suppress plant defense responses by simultaneous 

agroinfiltration of a construct expressing cryptogein: an elicitin secreted by P. cryptogea that 

induces a strong HR-associated cell death symptom on tobacco [55]. 

Co-infiltrations of cryptogein with Avh195 display an initial delay in the evolution of necrotic lesions 

compared to the co-infiltrations of the truncated version Avh195ΔED, as observed at 36hpi  

(Figure 3.4 B). Similarly, this delay in the evolution of symptoms was visible also when compared 

against Avh195ΔAIM. Yet all the differences were abolished at 72hpi when the lesions reached their 

maximum for all the tested combinations (Figure 3.4 B).  

To evaluate the extent of the delay observed at 36hpi, we scored the necrotic lesions produced on 

the same leaf by cryptogein and co-infiltrated with Avh195 and its variants. The scoring system was 

designed to evaluate the reduction of HR-associated cell death while not being influenced by the 

natural variability of plants linked to both plant and leaf ages, parameters, which greatly influence 

the manifestations of HR and frequently leading to deceptive results. For each analyzed leaf, a first 

score of 1 was attributed to the infiltrated patch presenting the weakest symptoms. We then 
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compared the symptoms observed in the two neighboring patches and gave them a score ranging 

from 1 to 4 with 1 indicating absence of difference and 4 greatest difference.  

An analysis conducted over 62 leaves is presented in (Figure 3.4 C). Overall, the native form of 

Avh195 was more frequently the patch presenting the lowest degree of necrosis, when compared 

to the variants Avh195ΔED and Avh195ΔAIM. Infiltrations with Avh195ΔED frequently resulted in 

more necrotized areas than infiltrations with Avh195ΔAIM, indicating that the abolition of three out 

of five AIMs does not completely disrupt the activity of Avh195. 

 

Figure 3.4: Avh195 transiently inhibits HR through interaction with ATG8. 

A. Responses of Nicotiana tabacum leaves 72 hours after agroinfiltration of native Avh195 (Avh195) and its 
derived variants, namely Avh195 deleted of the effector domain (Avh195ΔED) or mutated in AIMs 
(Avh195ΔAIM). The absence of lesions indicates that the proteins do not have toxic or HR-inducing effect on 
tobacco leaves. 

B. Response of tobacco leaves to co-agroinfiltration of cryptogein (Cry) and the various forms of the effector: 
Avh195, Avh195ΔED, Avh195ΔAIM.  Pictures were taken at 36hpi (left) and 72 dpi (right).  

C. Evaluation of cryptogein-induced necrosis extent. Differences in symptom intensity were scored from 1 to 4 
with 1 indicating absence of difference and 4 greatest difference among the compared infiltrated patches (see 
Results). Experiments were performed three times with a total of 14 plants and 62 infiltrated leaves per 
construct.  
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Taken together, these results indicate that Avh195 transiently reduces HR: it appears that the 

activity resides in the effector domain of the protein and that it is dependent of AIMs. Thus, the 

physical interaction with ATG8 seems a prerequisite for the biological activity of Avh195. 
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3.2 Avh195 interacts with ATG8 

Based on the results introduced in the previous Section we decided to further analyze if Avh195 

physically interacts with ATG8. 

As mentioned in the introduction, ATG8 is a ubiquitin-like protein with a pivotal role in autophagy: 

it promotes recruitment of autophagy-related protein complexes, cargoes and is involved in vesicle 

trafficking and vacuolar fusion of autophagosomes. This protein is highly conserved across the 

phylogenetic tree, but underwent gene expansion in higher eukaryotes, including plants. The 

number of gene family members varies among plant genera: for example it accounts for 7 members 

in tomato and 9 members in Arabidopsis [195]. Phylogenetic analysis of Arabidopsis ATG8 

sequences show that the gene diverged into three subfamilies or clades. Although some of the 

paralogs are closely related, this expansion led to diversification of function and specificity [146]. 

The members of the ATG8 gene family display differential expression in plant organs, tissues, and in 

response to various environmental cues [143,196,197].  

To evaluate whether ATG8 expression is modulated during infection, we exploited data generated 

in our lab on the root transcriptome of Arabidopsis upon infection with P. parasitica [45]. We 

evaluated the expression profile of each ATG8 member over a 30-h time course using an Affymetrix 

array. As shown in (Figure 3.5) the global expression of individual ATG8 members was relatively 

stable upon infection, but hybridization values greatly varied among biological replicates. So, we 

could anticipate that data interpretation and subsequent functional analyses would be difficult to 

conduct.  

We then decided to assess the potential binding of ATG8 by Avh195 by choosing the coding 

sequence of ATG8 issued from a reduced-complexity model: the unicellular photosynthetic alga 

Chlamydomonas reinhardtii. Indeed, the Chlamydomonas ATG machinery is encoded by single-copy 

genes [143] that are related to plant homologs. Phylogenetic alignment of ATG8 shows that the 

gene in Chlamydomonas is close enough to plant ATG8 members belonging to clades I and II to be 

considered as a sister (Figure 3.6). For this reason, the Chlamydomonas ATG8 gene (hereafter 

CrATG8) appears as a valid representative of the plant gene family. In addition, this model organisms 

presents several other advantages for the present work, which will be presented in more detail in 

Section 3.3 of this chapter. With these assumptions in mind, we designed a series of targeted 

protein-protein interaction studies aimed to confirm the possibility of a physical interaction 

between Avh195 and ATG8. 
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Figure 3.5: Relative expression of ATG8 members during Arabidopsis root infection by P. parasitica. 

A. thaliana roots were inoculated with P. parasitica and a time-course analysis was performed using the Affymetrix 
ATH1 array for four sets of conditions: transcripts of roots 2.5hpi, 6hpi, 10.5hpi, 30hpi. Expression profiles were K-mean 
clustered as previously described [45]. 
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Figure 3.6: Phylogenetic relationships of ATG8 sequences from green organisms 

The analysis was performed on ATG8 sequences from C. reinhardtii, tomato (pSolxxgxxxxxx) and A. thaliana (Ath-ATG8A-
I). The tree has been constructed using the Maximum Likelihood (ML) method based on the LG model with a gamma 
rate of heterogeneity. Three clades (I-III) are defined, in agreement with other reports [146].  
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3.2.1 Avh195 physically interacts with ATG8 in a non-specific manner 

Avh195 co-localizes on membranes with CrATG8 in planta 

Since subcellular co-localization is a prerequisite for the study of protein-protein interaction, a first 

series of experiments was designed to identify the distribution of Avh195 and its candidate partner, 

CrATG8 in living cells. To this aim Avh195 carrying a N-terminal Green Fluorescent Protein (GFP)-tag 

(GFP-Avh195) was co-expressed with N-terminal RFP-tagged CrATG8 (RFP-CrATG8) in leaves of 

Nicotiana benthamiana. Observation of leaf explants via confocal microscopy 72h after 

Agrobacterium-mediated co-infiltration showed that the GFP-Avh195 fluorescence was restricted 

to membranous structures, while ATG8-associated RFP fluorescence localized to the cytoplasm and 

to membranes, arguably corresponding to the soluble and the membrane-associated forms of this 

protein, respectively (Figure 3.7 A). In some cases, the fluorescence of the two proteins was 

detected in vesicle-rich, membrane-surrounded cytoplasmic filaments (Figure 3.7 A). 

These localization studies suggest that both proteins interact in planta at membranous structures. 

In order to obtain biochemical validation of the co-localization of Avh195 and CrATG8 and their 

association with membranes, samples of N. benthamiana leaves were co-infiltrated with the same 

constructs presented above and samples were collected 72 hours later. Membrane-associated 

proteins were separated from soluble proteins by ultracentrifugation. Proteins from both fractions 

were then separated on electrophoresis gels, prior to Western blot analysis. Detection with an anti-

ATG8 antibody showed that RFP-CrATG8 accumulates in almost equal amounts in both soluble and 

microsomal fractions (Figure 3.7 B). In contrast, immunodetection of Avh195 with an anti-GFP 

serum showed accumulation of the protein exclusively in the membrane-associated protein fraction 

(Figure 3.7 B). 

This result, in line with what we observed by confocal microscopy, further indicates that potential 

interactions between CrATG8 and Avh195 occur at membrane layers. 
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Figure 3.7: Avh195 localizes to membranes, whereas ATG8 is both soluble and membrane-associated. 

A. Optical sections of N. benthamiana epidermal cells transiently co-expressing Avh195 and ATG8 from C. 
reinhardtii, as analyzed by confocal laser-scanning microscopy. In fully turgescent cells (upper lane) the N-
terminal GFP-tagged Avh195 protein (left panel) outlines the cell border and does not appear in the cytoplasm. 
N-terminal RFP-tagged ATG8 (middle panel) localizes to the same border structure, but appears also in the 
cytoplasm, cytoplasmic threads passing the vacuole, and in the nucleus. This localization pattern becomes more 
evident in plasmolyzed epidermis cells (bottom lane). Here, green Avh195 labels the plasma membrane, and 
vesicle-rich, membrane-surrounded cytoplasm filaments (asterisks in middle and right panels) that attach to 
the cell wall. Red ATG8 (middle panel) labels the cytoplasm and the nucleus. Similar to Avh195, it localizes to 
the plasma membrane, to cytoplasm filaments, and to some, but not all, of the enclosed vesicles. Yellow color 
in the merged channel micrographs (right panels) shows co-localization of both proteins. Arrowheads point to 
cytoplasmic localization of ATG8. N = nucleus. Bars represent 20 µm.  

B. Immunoblot analysis of Soluble and Microsomal fractions prepared from N. benthamiana leaves transiently co-
expressing GFP-tagged Avh195 with free RFP, RFP-tagged ATG8 with free GFP, and GFP-tagged Avh195 with 
RFP-tagged ATG8. Detection of antigens was performed with antisera directed against ATG8 and GFP. An 
antibody recognizing the photosystem II PsbO protein, which exists in soluble and membrane-associated forms, 
was used for loading control. 

A 

B 
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Avh195 interacts with ATG8 proteins in yeast 

To identify an interaction between Avh195 and CrATG8, we used a yeast two-hybrid (Y2H) system. 

Considering that Avh195 is associated with membranes, we used the mating-based split-ubiquitin 

system (mbSUS), which has been developed to detect interactions between membrane proteins or 

between a membrane protein and a soluble partner [198]. This technique relies on the reassembling 

of N-terminal and C-terminal domains of a ubiquitin protein fused to bait and prey proteins. Physical 

proximity between bait and prey at the membrane reconstitutes a functional cytoplasmic ubiquitin. 

This last is recognized by ubiquitin specific proteases, which release the artificial transcription factor 

“PLV” (ProteinA-LexA-VP16) that is linked to the C-terminus of the bait. The released PLV 

translocates to the nucleus and binds lexA-regulated promoters of the reporter genes ADE2 and 

HIS3, which confer autotrophy for adenine and histidine to the yeast cells. Growth in the absence 

of adenine and histidine indicates interaction between bait and prey proteins.  

When we used Avh195 as a bait and CrATG8 as a prey, mated yeast transformants expressing both 

proteins readily grew on selective medium. In contrast, Avh195 did not interact with the various 

negative controls that were integrated in the experiment as shown by the absence of growth on 

selective media (Figure 3.8).  

In order to analyze whether Avh195 also interacts with plant ATG8 homologs, we used three 

members of the ATG8 family from Arabidopsis as baits. We selected AtATG8D, AtATG8G and 

AtATG8H as representatives of the clades I, II and III, respectively (Figure 3.6) Avh195 interacted 

with each of these ATG8 preys, leading to growth on selective media (Figure 3.8). 



 [CHAPTER 3 - RESULTS 

   

  
 53 

 

Figure 3.8: Avh195 interacts with ATG8 from C. reinhardtii and A. thaliana. 

The mating-based split-ubiquitin system (mbSUS) was used to monitor the interaction of membrane-anchored Avh195 
with ATG8 from C. reinhardtii and with 3 different ATG isoforms from A. thaliana. Serial dilutions of yeast cells expressing 
bait and prey constructs (labelled on the left) were assayed for growth on synthetic complete (SC) medium without 
adenine and histidine. Positive and negative controls, as well as the auto-activation control are indicated.  
SC/+Ade+His = synthetic complete medium including all amino acids; SC/-Ade-His = synthetic complete medium without 
adenine and histidine. For negative control, the membrane-associated Arabidopsis Bax Inhibitor 1 (AtBI-1) was used. 

 

 

Taken together these results show that Avh195 interacts with ATG8 proteins from organisms of 

the green lineage in a non-selective manner, and that this interaction involves membrane-

associated ATG8. These findings further support the hypothesis that the effector exerts its 

biological action through perturbation of the host’s autophagic machinery. 
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3.3 Characterization of Avh195 in Chlamydomonas reinhardtii 

As anticipated in Section 3.2 we selected Chlamydomonas reinhardtii as an alternative system to 

plants to facilitate the study of a complex process such as autophagy. This organism is a eukaryotic 

green microalga belonging to the phylum of chlorophyte, which diverged from land plants over a 

billion years ago and is adapted to live in soil and fresh water worldwide [199]. Chlamydomonas are 

motile, unicellular photosynthetic organisms: the cells have a round shape with two flagella in the 

anterior part, mitochondria and a cup-shaped chloroplast that allows the cells to obtain energy from 

the light (Figure 3.9). The efficiency of this process is guaranteed by two specialized structures: the 

eyespot that allows the alga to sense and follow the light: and the pyrenoid, an organoid where CO2 

is concentrated to improve the electron transport chain. Nonetheless Chlamydomonas has also the 

ability to grow in the dark and use acetate as a carbon source to obtain energy and in certain 

condition such as nutritional stresses it can accumulate energy rich compounds like lipids and starch. 

 

 

Figure 3.9: The microalga Chlamydomonas reinhardtii. 

A. Light microscope image of Chlamydomonas reinhardtii. Scale bar represents 5 µm.  

B. Schematic representation of the cell structure of Chlamydomonas. 

 

The nuclear genome of C. reinhardtii is composed of 17 chromosomes with a total size of ~120 Mbp 

[200] (data: Joint Genome Institute 2015). Comparative genomic analyses revealed that many 

Chlamydomonas genes are derived from the last plant-animal common ancestor, particularly, genes 

related to photosynthesis and plastid functions. Other genes such as those encoding the flagellum 

or regulatory proteins that are critical for survival under changing nutrient conditions,  

like Na+/SO4 transporters, were instead lost by land plants but maintained in this lineage [200].  
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Additional investigations in C. reinhardtii led to the identification of orthologs of ATG genes from 

yeast. Genome-wide analysis of ATG genes revealed that most of the core machinery genes are 

conserved in Chlamydomonas. Unlike plants, the microalga only possesses single copy ATG genes. 

When compared to yeast, plants and the algae miss 4 and 7 ATG proteins, respectively. However, 

both plants and algae are able to achieve functional autophagy (Figure 3.10) [143,201,202]. 

 

 

Figure 3.10: Core autophagy machinery in Chlamydomonas reinhardtii compared to yeast. 

The four main complexes constituting the core autophagy machinery are conserved in Chlamydomonas reinhardtii. 
Pattern-filled boxes stand for genes that are missing or that are still not identified in the microalga [201]. 

 

Chlamydomonas is sensitive to a range of factors that induce autophagy in higher plants, like 

nutrient limitation, oxidative stress, ER stress, or entry into the stationary phase of the cell cycle 

[203]. In addition, Chlamydomonas also responds to the treatment with the macrolide rapamycin, 

which exerts a direct action on TORC1 pathway determining arrest of cell growth and the induction 

of autophagy [204].  

Numerous techniques and molecular tools are available for analyzing this organism, and in recent 

years specific methods were developed to monitor autophagy and autophagic flux (among others: 

immunodetection of ATG8 and ultrastructure imaging of autophagic vacuoles). These methods 

greatly improved our knowledge on the regulation of autophagy in Chlamydomonas [205]. 

Moreover, Chlamydomonas is amenable to genetic transformation, and the creation of stable 
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transformants is faster than in the case of plants [206]. From the perspective of this work, this model 

was joining a reduced genetic complexity, the possibility to obtain Avh195 overexpressing lines and 

the availability of tools to study autophagy. All those reasons determined the choice of 

Chlamydomonas as a support to study the manipulations operated by a pathogen effector on the 

host autophagic machinery. 

As discussed in the introduction, plant-pathogen interactions are strongly intertwined with the 

multifaceted role of autophagy in plant physiology and immunity. Effector-mediated stimulation or 

inhibition of autophagy might per se provide an advantage to the pathogen (e.g. for nutrition), or 

selectively lead to the degradation/accumulation of regulatory compounds that interfere with other 

(defense-related) pathways. The use of Chlamydomonas reinhardtii provides here an excellent 

model to analyze the effector-mediated inhibition or the induction of autophagy, which are 

probably not related to multicellularity and complex emergent properties that are typical for higher 

(green) organisms. 
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3.3.1 Selection and characterization of Chlamydomonas transgenic lines. 

Having validated the interaction between Avh195 and CrATG8 we sought to investigate the outcome 

of this interaction on the autophagic process through heterologous expression of the effector 

protein in Chlamydomonas reinhardtii.  

Since the C. reinhardtii nuclear genome has an overall GC content of approximately 65% due to a 

bias in codon usage [200] we needed to adapt the open reading frame of Avh195 to this 

requirement. We designed a synthetic Avh195 coding region (after deletion of the signal peptide) 

adapted to the codon bias of the alga in order to facilitate the expression of the foreign gene [207]. 

The synthetic gene was then cloned into the pChlamy_3 plasmid (Thermo Fisher®) by the group 

LB3M of the CEA (Atomic Energy Commission - Cadarache). This plasmid is a nuclear integrative 

vector that provides random integration of the construction across the genome. The gene was 

placed under the control of the Heat Shock Protein 70/RUBISCO small chain 2 chimeric promoter 

(Hsp70A / RbcS2). The vector also includes a 5’-end of the transcript where the first intron of the 

RBCS2 gene acts as a transcriptional enhancer [208] and a 3’-UTR sequences from RbcS2 gene for 

proper termination of transcription. The same laboratory performed the transformation of the 

Chlamydomonas reinhardtii strain dw15.1 via electroporation of linearized plasmids and the 

selection of transgenic strains on selective media. The strain was selected, because it is deficient of 

a cell wall and thus more accessible to uptake of exogenous stimuli such as autophagy inducers and 

inhibitors.  

 
Transgenic alga lines were then analyzed to confirm the successful integration and correct 

expression of the cassette containing Avh195. At first, 101 independent clones were validated for 

the presence of the gene via PCR of genomic DNA using primers internal to the Avh195 coding 

sequence. The quality of the DNA preparation was assessed with the amplification of the 

housekeeping gene Guanine nucleotide-binding protein beta subunit-like (CBLP). Among the 

validated transgenic lines (n = 62), 33 were analyzed for proper integration and expression of 

Avh195. A further step of selection was performed on 15 lines to verify the correct processing of the 

transcript (splicing of the intron RBCS2). Finally, 8 lines were selected, which express the correctly 

spliced and validated version of Avh195 mRNA. 
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The validated lines were then analyzed for the level of expression of Avh195 via RT-qPCR: the 

relative mRNA level of Avh195 greatly varied from one transformant to another. We retained three 

independent lines for further analysis, on the basis of their high, average, and low expression of the 

transgene relative to reference genes: these lines are hereafter designed as N15, N26 and C40, 

respectively (Figure 3.12). In all following experiments, the transgenic lines will be compared to the 

non-transformed wild-type strain dw15.1, hereafter designed as WT. 

 

In order to minimize the dependency from circadian variations and the nutritional status of cells 

(parameters known to have an impact on autophagy) all experiments were performed in 

mixotrophic conditions, with a light-dark cycle to obtain synchronization of cell divisions [209]. For 

the same reason, the beginning of the light period was assessed as time t = 0 for both chemical 

treatments and sample collection, as exemplified in Figure 3.11.  

 

 

Figure 3.11: Experimental strategy applied to Chlamydomonas experiments. 

The Diagram represents the conditions that were applied to C. reinhardtii cultures. Cells were grown under a 12/12 
light-dark cycle to obtain synchronization of cell divisions. Red arrows represent the time points used during 
experiments for chemical treatments and samples uptake. 
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3.3.2 Heterologous expression of Avh195 does not affect physiology and 

fitness of Chlamydomonas 

To gain knowledge on the function of Avh195 we first checked for a putative impact of transgene 

expression on the global fitness of the transformants. As a first analysis determined growth and 

biomass increase of the selected isolates by measuring optical density at 600 nm (OD600) of liquid 

cultures. Over a period of three days of culture at 23°C with a 12/12 light-dark cycle the increase of 

OD600 was reduced in transgenic strains, when compared to the WT (Figure 3.12), possibly indicating 

that the expression of the transgene alters cell physiology. 

 

 

 

Figure 3.12: Characterization of C. reinhardtii transformant cell lines. 

A. Overexpression of Avh195 in C. reinhardtii. RT-qPCR analysis of transcripts encoding Avh195 in the wild-type 
line DW15-C2 (WT), and in 3 selected transformant lines (N15, N26 and C40). RT-qPCR data were normalized 
with the constitutive C. reinhardtii genes Cre02.g106550, Cre04.g227350 and Cre05.g232750 [210]. Shown are 
means +/- SD from 3 biological replicates. 

B. Mixotrophic growth of cultures of C. reinhardtii over a period of 72 hours. Liquid cultures of the WT and 
transformant lines N15, N26 and C40 were inoculated with equal number of cells (105) and OD600 was measured 
over time. Each time point indicated by the marker (● for WT,▲ for transformant lines) represents the means 
+/- SD from three biological replicates. Shaded areas represent the periods of darkness of the 12/12 light-dark 
cycle. 
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To further verify a potential impact of transgene expression on the global fitness of the transformant 

lines, we analyzed Chlamydomonas cultures by flow cytometry over a period of 24 hours. Several 

parameters were taken into account: physical parameters, chlorophyll content, cell viability and cell 

proliferation. 

Physical parameters of the cells were determined by measuring forward light scattering (FSC), which 

is proportional to cell size, and by determining side light scattering (SSC), which reflects cell structure 

complexity. Transformants and wild type strains displayed similar FSC and SSC parameters, which 

changed in tight connection with the light/ dark cycle (Figure 3.13 A and B). For both parameters, 

values increased progressively from time point 0h to 12h reaching a mean increase of 29% for FSC 

and 37% for SSC but returned to the initial values at time point 24 h. Over the 24 hours analyzed, 

WT and transgenic cells displayed an increase of the same magnitude. Considering the central time 

point of the kinetics (measure at 8 h), the histograms for FSC and SSC presented in  

Figure 3.13 A and B clearly show that the distribution of size and complexity within the population 

of algae is similar for cells from the WT and transformant lines.  

The second parameter taken into account was the chlorophyll content, which can be deduced by 

measuring autofluorescence intensity of cells: it presents a spectrum of emission in the range of λ = 

[660 nm - 750 nm], mainly corresponding to the spectra of chlorophyll emission. As observed for 

physical parameters, also chlorophyll content was strongly influenced by the diurnal cycle, 

increasing progressively during the light period and decreasing back to the starting values at the end 

of the dark period (Figure 3.13 C). Median values of fluorescence intensity did not differ obviously 

between WT and transgenic cells all along the analyzed period (Figure 3.13 C): once more, the 

histogram of these values at time point 8h highlights that distribution of chlorophyll content is not 

altered in the population of transformant cells, when compared to the WT. 

Viability of cells was estimated by staining with 4'-6-diamino-2 phenylindole dihydrochloride (DAPI), 

an impermeant DNA dye that is widely used to mark dying and dead cells. Throughout the 24h 

analyzed, only a very small ratio of cells stained positively with DAPI and this proportion never 

exceeded 6% of the total population (Figure 3.13 D). These results indicate a similar rate of cell 

death within cultures of WT and transformant cells.  

  



 [CHAPTER 3 - RESULTS 

   

  
 63 

 

 

We then examined the proliferation rate of WT and transgenic cells, based on the dilution of the 

fluorescence intensity of carboxy-fluorescein succinimidyl ester (CFSE) upon cell division [211]: 

Commonly used for measurements in animal cell populations, this technique has also been 

successfully applied to the microalgae [212]. As expected for synchronized cultures, the values for 

CFSE fluorescence intensity slightly decreased during the light period but were strongly reduced at 

24 h, indicating that several cell divisions (mainly) occur during the dark period. In addition, analysis 

of this staining over time did not reveal relevant differences in proliferation rate between the WT 

culture and the three transformants (Figure 3.13 E). This result, in agreement with data collected 

on the evolution of cell size and complexity, indicated that the cell cycle is not affected in 

transformants overexpressing Avh195. 

The apparent discrepancy with the result obtained for optical density of cultures might result from 

the reduced accuracy of OD600 measurements, which is influenced by the presence of debris in the 

suspension, the formation of cellular aggregates and interference with chlorophyll absorption. For 

this reason, despite the fact that a reduction of OD600 in transgenic cultures was obtained 

systematically, we did not investigate any further this aspect. 
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Figure 3.13: Flow cytometry analyses of Chlamydomonas reinhardtii WT and transgenic cell lines. 

Chlamydomonas cultures of the WT and the transformant lines were analyzed on a SP6800 spectral cytometer (SONY 
Biotechnologies®) over a period of 24 hours. For each time point, at least 80.000 cells (Events) were analyzed for the 
following parameters: Forward Light Scattering - FSC (A); Side Light Scattering - SSC (B); Autofluorescence of cells (C) 
that is indicative of chlorophyll content; DAPI staining (D) to assess cell death; CFSE repartition into daughter cells (E), 
here presented as CFSE-1 to highlight cell proliferation. 

Panels A, B, C, E: left plot represents median values of fluorescence intensity (arbitrary units) over a 24 hours period, 
shaded areas represent the periods of darkness of the 12/12 light-dark cycle. Right plot presents the distribution of 
fluorescence intensity within the indicated population of cells collected at time point 8 h. 

Panel D: left plot reports the proportion of cells positively stained with DAPI over a 24 hours period; shaded areas 
represent the periods of darkness of the 12/12 light-dark cycle. Right plot presents a magnification of the distribution 
of fluorescence intensity within the population of DAPI stained cells collected at time point 8 h. 
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3.3.3 Heat shock induction of Avh195 leads to lethality of Chlamydomonas 

As presented above, the Hsp70A / RbcS2 promoter controlling the expression of Avh195 is a chimeric 

promoter: the sequence elements belonging to the Hsp70 portion are responsive to heat shock and 

can be used to further induce the expression of the downstream gene [213].  We decided to apply 

a 40°C heat-shock for 1h on WT and transformant cell cultures and analyzed the level of expression 

of Avh195 by RT-qPCR in samples collected 4h after heat-shock. The accumulation of transcripts was 

highly increased after the heat shock for the three selected transformants. In all three lines, the 

mRNA abundance was about 800- to 1,000-fold higher after heat shock, when compared with the 

amount detected in non-induced conditions. 

Starting from the end of the heat shock, cell cultures were also observed over time and analyzed for 

their optical density. The transgenic cultures displayed different levels of bleaching and decrease in 

optical density, which in some cases led to the complete loss of the culture (Figure 3.14 A). This 

phenomenon was further investigated with the viability fluorescent dye SYTOX® that penetrates 

death cells: staining of cultures 2h after the heat shock revealed the presence of extensive cell death 

in transformant strains compared to the WT (Figure 3.14 B). These results suggest that excessive 

amounts of Avh195 are lethal for Chlamydomonas. 

We thus decided not to exploit heat shock-induced overexpression of the transgene, as lethality of 

excessive Avh195 overexpression would certainly interfere with autophagy and mask subtle effects 

of the effector on this mechanism. 



 [CHAPTER 3 - RESULTS 

   

  
 67 

 

 

Figure 3.14: Heat shock induces lethality in Chlamydomonas transformant strains. 

A. Chlamydomonas reinhardtii WT and transformant cultures were exposed to heat shock (40°C for 1 h) to induce 
expression of the transgene Avh195. 24 hours later, transformant strains show an important decrease in cell 
content as it can be observed by the bleaching of cell cultures. 

B. Light and epifluorescence micrographs of Chlamydomonas cells belonging to WT and transformant cultures 
exposed or not to heat shock. Two hours after heat shock, samples were stained with SYTOX® Green Dead Cell 
Stain to identify dying and dead cells. Scale bar represents 25µm. 
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3.3.4 Characterization of autophagy perturbation in Chlamydomonas 

To investigate the possible interaction of Avh195 with the autophagic process in C. reinhardtii we 

first analyzed the responses of WT and transgenic cells to rapamycin, a molecule that induces 

autophagy through the inhibition of the TOR kinase. 

Rapamycin treatment does not affect Chlamydomonas fitness 

TOR kinase is an essential and conserved protein that integrates nutritional and environmental cues 

and regulates cell growth in lower and higher eukaryotes. The activity of TOR is central to metabolic 

pathways by promoting anabolic processes while antagonizing catabolic ones [214]. TOR is the 

target for the drug rapamycin, which inhibits the kinase and stimulates autophagy. Due to its strong 

impact on cell physiology, we decided to use relatively low concentrations of the drug (0.5µM) for 

treatments, and to assess if this concentration affects somehow the global fitness of the culture 

under the experimental conditions that were applied throughout the work. A recent report showed 

that high doses of rapamycin (5µM) have strong impacts on cell proliferation [215]. We thus 

analyzed by flow cytometry the evolution of cells from WT and transgenic cultures that were 

exposed to 0.5μM of rapamycin for a period of 24 hours. The parameters analyzed, presented in 

Section 3.3.2 did not show significant differences between rapamycin-treated and untreated 

cultures. Moreover, we only detected slight differences in the responses between WT and 

transformant cells (Figure 3.15 A-E), which likely reflect individual variations rather than a global 

trend. 

We thus concluded that the concentration of rapamycin that we used throughout this work does 

not affect viability and fitness of both WT and Avh195-expressing Chlamydomonas cell lines. 
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Figure 3.15: Flow cytometry analysis of C. reinhardtii transformant cell lines upon rapamycin treatment. 

Chlamydomonas cultures of WT and transformant strains were analyzed on a SP6800 spectral cytometer (SONY 
Biotechnologies®) over a period of 24 hours following treatment with 0.5μM rapamycin. For each time point, at least 
80.000 cells (Events) were analyzed for the following parameters: Forward Light Scattering - FSC (A); Side Light Scattering 
- SSC (B); Autofluorescence of cells (C) that is indicative of chlorophyll content; DAPI staining (D) to assess cell death; 
CFSE repartition into daughter cells (E), here presented as CFSE-1 to highlight cell proliferation.  

Panels A, B, C, E:  left plot represents median values of fluorescence intensity (arbitrary units) over a 24 hours period; 
shaded areas represent the periods of darkness of the 12/12 light-dark cycle. Right plot presents the distribution of 
fluorescence intensity within the indicated population of cells collected at time point 8h. 

Panel D: left plot reports the proportion of cells positively stained with DAPI over a 24 hours period; shaded areas 
represent the periods of darkness of the 12/12 light-dark cycle. Right plot presents a magnification of the distribution 
of fluorescence intensity within the population of DAPI stained cells collected at time point 8h. 
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3.3.5 Chlamydomonas transformant strains respond to rapamycin by autophagy 

induction 

TOR inhibition by rapamycin was reported to activate autophagy in Chlamydomonas [204]. To test 

whether induction of autophagy is impaired in cells overexpressing Avh195 we monitored the 

formation of autophagosomes using the acidotropic dye LysoSensor® Green DND189.  This staining 

is designed to enter cells and to be retained in acidic organelles, including acidified 

autophagosomes. WT cells exposed to rapamycin for 24h display accumulation of fluorescent foci 

indicating accumulation of acidic compartments: overall, we observed an increase in the ratio of 

cells presenting fluorescence when compared to untreated cultures (Figure 3.16 A and B). We then 

verified the ability of transgenic cells to respond to the same chemical treatment. Cells from all lines 

showed an accumulation of fluorescent foci and the ratio of cells presenting acidic compartment 

increased upon rapamycin treatment (Figure 3.16 B). Since the magnitude of this accumulation is 

comparable to the one obtained for wild type strain we concluded that the overexpression of 

Avh195 does not affect the ability of cells to respond to rapamycin treatment and the inhibition 

of TOR signaling pathway. Moreover, the accumulation of acidic compartments in transgenic cells 

suggest that activities, which are related to autophagy induction and vesicle nucleation, are not 

affected by Avh195. 
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Figure 3.16: Response of Chlamydomonas cells to rapamycin treatment. 

A. Fluorescence microscopy images of WT and transgenic cells of Chlamydomonas reinhardtii in control condition 
(upper lane) or exposed for 24h to Rapamycin (lower lane). Cells were stained with 2µM of the acidotropic dye 
LysoSensor® Green DND189 and analyzed for the presence of fluorescent spots corresponding to acidic 
compartments. Some of the analyzed spots visible in the pictures are pointed by the arrowhead. Scale bar 
represents 10µm. 

B. The number of cells presenting spots was analyzed for cells in control and treated conditions. The bars 
represent the mean ratio of cells presenting a spot +/- SD of two independent experiments. 

 

For the detection of autophagy, and the analysis and quantification of autophagy-associated events, 

electron microscopy remains one of the most accurate methods [216]. To monitor autophagic flux 

in response to rapamycin treatment, we analyzed WT and transgenic cells via transmission electron 

microscopy (TEM). In a first experiment, we used untreated or rapamycin-treated WT cells that were 

collected over a period of 24 hours. The morphology of untreated cells does not change over time, 

with the only exception that starch accumulated progressively during the 12 hours light period 

(Figure 3.17 and Supplementary Figure 1). In the absence of rapamycin treatment, cells present 
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several small vacuoles that increase in volume upon rapamycin treatment. This increase in volume 

is readily visible since the first time point analyzed (4h) and is accompanied by convergence of more 

vacuoles in a unique central vacuole (8h) that occupies the whole cell at 12h and 24h after 

treatment, eventually causing swelling of the whole cell (Figure 3.17 B). In parallel, we observed the 

accumulation of material, that we assume to be autophagic bodies, at the interior of the vacuole 

and its progressive clearance until time point 24h (Figure 3.17 A and C).  

 

We conducted the same analysis with cells from the transgenic lines overexpressing Avh195. As 

observed for the WT, the morphology of cells does not present changes over the 24 hours period 

(Figure 3.17 and Supplementary Figure 1). A close observation of transgenic cells in non-induced 

conditions highlights the presence of several small vacuoles containing electron dense material, 

previously described in literature as lysosome-like structures (Figure 3.17 D and Supplementary 

Figure 2) [217,218]. These structures are rarely observed in WT cells, whose vacuoles are mostly 

empty, and we speculate they may represent cargoes that accumulate during basal autophagy. 

When exposed to rapamycin, transgenic cells show a response similar to that observed in the WT, 

namely an increase in vacuole volume and convergence into a unique central vacuole. However, 

analysis of the mean vacuole surface over time reveals that the fusion of vacuoles is delayed in 

transformant strains and is significantly reduced at time points 8h and 12h compared to the WT 

(Figure 3.17 B). However, the formation of the large vacuole is achieved by time point 24h indicating 

that the process is not completely blocked (Figure 3.17 A and B). Indeed, in several vacuoles of 

Avh195-overexpressing cells it is possible to observe fusing autophagosomes (Figure 3.17 D). Similar 

structures were previously described in Chlamydomonas cells treated with concanamycin A, an 

inhibitor of autophagic flux  [219]. Inside the vacuole it is also possible to identify cellular 

constituents among the digested cargoes such as membranous structures possibly originating from 

thylakoid fragments (Figure 3.17 D). Nonetheless, vacuoles of cells from the transgenic lines are 

heavily loaded with material during the whole analyzed period and are still not cleared at time point 

24h (Figure 3.17 D). 

 

Taken together our observation suggest that cells overexpressing Avh195 display a slowdown of 

autophagic flux and an impaired degradation of autophagic cargoes.  
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Figure 3.17: Subcellular phenotypes of Chlamydomonas cells expressing Avh195, as analyzed by TEM. 

A. TEM micrographs of Chlamydomonas recorded at different time points after onset of light over a 12h-day/night 
cycle Under non-induced conditions, WT cells (upper lane) contain several empty vacuoles that fuse upon the 
addition of rapamycin to form a predominant, large vacuole 4h after onset of treatment. Cells overexpressing 
Avh195 display delay in central vacuole fusion, as well as accumulation of non-digested materials and starch. 
No obvious other modifications in the subcellular organization are related to effector expression. The bars 
represent 2µm.  

B. Rapamycin-induced vacuole swelling is impaired in C. reinhardtii transformants expressing Avh195. For each 
line and time point of treatment, 4-5 independent TEM sections were analyzed for the presence of vacuoles. 
The surface of the biggest vacuole in each cell was determined using the ImageJ software. Shown are means 
(+/- SE) from n=30 vacuoles per line and time point of treatment. The asterisks indicate significant differences 
with p<0.05, as determined by Student’s t-test. A.U. = Arbitrary Units. 
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Figure 3.17: Subcellular phenotypes of Chlamydomonas cells expressing Avh195, as analyzed by TEM (continued). 

C. Enhanced views of vacuoles of WT and Avh195-expressing cells. Upon rapamycin treatment vacuoles start 
fusing and accumulate cargoes. At later time points (12h to 24h after rapamycin treatment), vacuoles are 
cleared in WT strain whereas in transformant strains still contain their undegraded cargo. Bars represent 2 µm. 

D. Enhanced view of vacuoles observed in Avh195-overexpressing strain N26. Without rapamycin treatment 
transformant strains contain several electron-dense, lysosome-like vacuoles rarely observed WT strain (a – 12h 
after the onset of light). Upon rapamycin treatment It is possible to recognize autophagosomes fusing to the 
central vacuoles (b, c – 4h and 12h after rapamycin treatment respectively) and cellular constituents such as 
membranous structures possibly originating from thylakoid fragments (c, d 12h and 8h after rapamycin 
treatment respectively). Scale bars represent 1 µm. 
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Avh195 perturbates starch metabolism in Chlamydomonas cells 

TEM observations of Avh195-expressing Chlamydomonas cells also revealed massive accumulations 

of starch granules in chloroplasts, when compared to the WT (Figure 3.17 A), suggesting that Avh195 

also influences starch metabolism. 

Starch accumulation is considered as a major feature of photosynthetic organisms [32]. This form 

of sugar storage is synthesized during the day and degraded through respiration at night. Autophagy 

was shown to participate in starch degradation at night in plants, and starch accumulation was 

shown to be a consequence of autophagy inhibition both in Arabidopsis atg mutants and in plants 

treated with 3-methyladenine, an autophagy inhibitor [159]. In addition, high doses of rapamycin 

were recently shown to lead to an accumulation of starch during the light stage of the diurnal cycle 

[215]. 

We investigated the apparent starch accumulation by counting the number of starch granules per 

cell in the WT and the transgenic lines at 4 and 8 hours after the onset of the light period. We 

observed that the average number of granules per cell was higher in Avh195-expressing cells, 

reaching about 2 to 3-fold the amount determined in cells from WT cultures at time point 8h  

(Figure 3.18 A). In addition, we observed that rapamycin treatment did not significantly affect the 

number of starch granules (Figure 3.18 A).  

This global starch accumulation might result from either enhanced starch synthesis or reduced 

starch degradation, or both. We thus assessed the relative mRNA level encoding of a subset of 

enzymes involved in both branches of starch metabolism. The targeted genes relevant to starch 

synthesis were STA2, which encodes GBSSI, the starch granule bound isoform of starch synthase, 

which is responsible of the synthesis of the minor amylose in Chlamydomonas [220] and PGM1 

encoding phosphoglucomutase, an enzyme that constitutes the first committed step of starch 

biosynthesis [221] and whose expression was found to be associated with over-accumulation of 

starch in Chlamydomonas [222]. Concerning starch degradation, we analyzed the expression of 

alpha-amylase 1 (AMYA1) a key enzyme involved in degradation of storage starch granule that was 

found to be downregulated in high-starch mutants of Chlamydomonas, and α-Glucan, water 

dikinase 1 (GWD1) a phosphorylating enzyme that promotes remobilization of starch from granules 

in plants [223].  

For the analysis of transcript levels, synchronized cells from the WT and from lines expressing 

Avh195 were harvested 4h and 8h after onset of the light period. Expression of genes related to 

starch biosynthesis was overall increased in transformant strains (Figure 3.18 B). When compared 
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to the WT, transcript levels of PGM1 were higher in cells from the three transgenic lines at 4h after 

the onset of the light period, and higher for two out of three transformants at 8 h. Concerning STA2, 

expression was higher for two out of three transformants at 4h but not significantly increased at 8 

h. On the other hand, expression of genes related to degradation of starch was moderately 

decreased compared to the WT (Figure 3.18 B). mRNA levels were significantly lower at 4h and 8h 

for both AMYA1 and GWD1 in cells from the transgenic line N15, whereas statistical significance was 

not reached for the two other strains, with the only exception of transcript levels of AMYA1 in N26 

cultures at time point 8h. 

 

Taken together, these results show that overexpression of Avh195 leads to starch accumulation in 

Chlamydomonas reinhardtii, and that this phenotype likely results from a combination of an 

increase in starch biosynthesis and a slight decrease in starch degradation. 
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Figure 3.18: C. reinhardtii Avh195 transformants starch metabolism perturbation. 

A. Chlamydomonas transformants expressing Avh195 accumulate starch grains to significantly higher amounts 
than the WT, independent of rapamycin treatment. The number of starch grains was determined on 
micrographs from 5 independent TEM sections representing each 10-12 untreated cells, or cells that were 
treated for 8h with rapamycin (Ra). Shown are means (+/- SE) from n=50 cells per line and treatment. The 
asterisks indicate significant differences with p<0.05, as determined by Student’s t-test. 

B. Expression of genes encoding the enzymes phosphoglycerate mutase 1 (PGM1) and starch synthase 2 (STA2) 
involved in starch synthesis, and alpha-amylase 1 (AMYA1) and alpha-glucan, water dikinase 1 (GWD1) required 
for starch degradation, was analyzed by RT-qPCR with cell samples collected at 4h and 8h after onset of the 
light period. Data were normalized with the constitutive C. reinhardtii genes Cre02.g106550, Cre04.g227350, 
and Cre05.g232750, and analyzed using the ∆∆Ct method, with wild-type expression as the reference. Shown 
are means (±SD) from 3 biological replicates. * indicates significant differences with p ≤ 0.05, according to 
Student’s t-test. 
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Avh195 moderately alters the accumulation of ATG8.  

To further explore the Avh195-induced effects on Chlamydomonas autophagy, we analyzed 

whether the deceleration of autophagic flux observed in transgenic lines results from a 

transcriptional deregulation of the core machinery. We selected three genes associated to different 

steps of the process: ATG6, which participates in the early vesicle nucleation step [224], ATG8, 

because of its interaction with Avh195, and the SNARE Vti1, which mediates autophagosome 

docking and fusion to the vacuole, and therefore may reflect late steps of autophagy [225]. 

Compared to the WT, two out of three transformant lines display a slight but significant decrease in 

levels of ATG6 transcripts, whereas all of them show increased levels of VTI1 mRNA accumulation 

(Figure 3.19 A). This increase in mRNA levels was also observed for ATG8 in all three Avh195-

overexpressing lines (Figure 3.19 B).  

To verify if this accumulation in ATG8 transcripts reflects increased synthesis of ATG8 protein, we 

performed immunodetection of ATG8 in cells from the WT and the transgenic lines (Figure 3.19 B). 

Measurement of spot densities indicate 2.5-, 1.7-, and 2.5-fold increases of ATG8 protein levels in 

cells from lines N15, N26, and C40, respectively, when compared to the WT. We were not able to 

detect accumulation of lipidated ATG8, which has been widely used to monitor autophagy in a range 

of organisms. This post-translational modification is indicative of the covalent binding of ATG8 to  

phosphatidylethanolamine (PE), which is required to fulfil its function, and which can be 

experimentally monitored as the accumulation of a lower apparent molecular mass on SDS PAGE, 

corresponding to ATG8-PE [214,226] 

Taken together those results indicate that the overexpression of Avh195 in C. reinhardtii has slight 

impacts on the transcriptional regulation of autophagy-related genes, and on the accumulation 

of ATG8. 

 

 

 



 [CHAPTER 3 - RESULTS 

   

  
 81 

 

 

Figure 3.19: Overexpression of Avh195 in C. reinhardtii only moderately changes the accumulation of autophagy-
related gene transcripts and of ATG8 protein. 

A. RT-qPCR analysis of transcripts encoding ATG6, a protein of the membrane-associated PI3K complex, and VTI1, 
a SNARE protein involved in autophagosome fusion with the vacuole, in transgenic C. reinhardtii. ATG6 
transcripts (left) show a rather reduced accumulation in the Avh195-overexpressing lines, N15 and N26, but 
not in line C40. Transcripts encoding VTI accumulate to slight but significantly higher extents in all 3 transgenic 
lines.  

B. RT-qPCR analysis of transcripts encoding ATG8 (left) and immunoblot analysis of ATG protein accumulation 
(right) in transgenic C. reinhardtii. ATG8 mRNA accumulates weakly, but to significantly higher amounts in all 
transgenic lines. This is reflected by moderately increased ATG8 protein accumulation in the Avh195-
overexpressing lines. An antibody directed against histone H3 was used as loading control. Measurements of 
spot densities indicate 2.5-, 1.7-, and 2.5-fold increases of ATg8 accumulation in lines N15, N26, and C40, 
respectively, when compared to the wild-type line DW. 

RT-qPCR data were normalized with the constitutive C. reinhardtii genes Cre02.g106550, Cre04.g227350 and 
Cre05.g232750 [210], and analyzed using the ∆∆Ct method, with wild-type expression (line DW) as the reference. 
Shown are means +/- SD from 3 biological replicates. * indicates significant differences with p ≤ 0.05, according to 
Student’s t-test. 
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The results presented in this part of the work show that overexpression of Avh195 in C. reinhardtii 

does not affect cell physiology and fitness but leads to a slowdown of the autophagic flux. This effect 

of Avh195 is not related to a loss in responsiveness of cells to autophagic stimuli (here represented 

by inhibition of TOR signaling pathway), but rather affects autophagosome formation and 

subsequent degradation steps. This leads to the observed delay in the coalescence of vacuoles and 

the long-lasting accumulation of cellular debris within the central vacuole. The effect of Avh195 also 

correlates with an accumulation of starch granules, which appears mainly related to a stimulation 

of biosynthesis. Furthermore, Avh195 only moderately impacts the transcription of autophagy-

related genes and the accumulation of ATG8 protein. 

 

Taken together, our results indicate that Avh195 acts as transient restrainer of autophagic flux, 

rather than an inhibitor of autophagy.  
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3.4 Role of Avh195 during the host-pathogen interaction 

To elucidate the role of Avh195 in the plant-pathogen interaction, we generated transgenic 

Arabidopsis lines (ecotype Col-0) harboring the Avh195 coding region under the control of the 

constitutive Cauliflower Mosaic Virus (CaMV) 35S promoter. We selected 2 independent transgenic 

lines (Avh195-OE6 and Avh195-OE9) that accumulate significant amounts of Avh195 transcripts 

(Figure 3.20).  

 

 

Figure 3.20: Expression levels of Avh195 in two independent transgenic A. thaliana lines 

The expression of Avh195 in plants from the WT and 2 transgenic lines was analyzed by RT-qPCR. Data were normalized 
with transcripts from the constitutive Arabidopsis gene At5g11770. Shown are the means (+/-SD) from 2 replicates. 

 

3.4.1 Avh195 increases plant susceptibility to P. parasitica infection 

The two lines were used to evaluate whether overexpression of Avh195 has direct consequences on 

pathogen development. Seeds from homozygous transgenic lines and from the WT were inoculated 

with zoospores from P. parasitica. The development of the oomycete within plant tissues, and the 

evolution of different stages of the P. parasitica infection cycle were determined by RT-qPCR using 

samples of infected plants that were collected 10h, 20h, 30h, 48h, 96h, and 144h after inoculation. 

For evaluating oomycete growth, we evaluated the expression of the P. parasitica gene WS41, which 

is widely accepted as being constitutively expressed during plant infection [44,227], and correlated 

the levels of transcript accumulation with the evolution of oomycete biomass. Transcripts of WS41 

became clearly detectable at 48hpi and accumulated to significantly higher levels in the two 
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transgenic lines, when compared to the WT (Figure 3.21 A). The differences in biomass increase 

between the transgenic lines and the WT were still detected at 144hpi. We thus concluded that 

plants expressing Avh195 were significantly more susceptible to P. parasitica than WT plants. 

3.4.2 Avh195 does not repress plant defenses 

To analyze whether this increased susceptibility results from an Avh195-mediated repression of 

plant defense responses, we evaluated the expression profiles of genes encoding Pathogenesis-

Related protein 1 (PR1), a salicylic acid (SA) responsive gene that is associated with responses to 

biotrophic pathogens, and encoding the plant defensin PDF1.2 which is regulated by ethylene and 

jasmonate signaling and is thus associated with responses to necrotrophs [228].  

The RT-qPCR experiments revealed that the amounts of transcripts of both genes were not reduced 

in the transgenic lines (Figure 3.21 B). The analysis furthermore indicated that PR1 expression 

follows a biphasic curve in both transformants, with a first discrete peak occurring at 10hpi, followed 

by a second wave of expression reaching a maximum at 30hpi (Figure 3.21 B left panel) By contrast, 

PR1 was expressed in the WT with a single peak occurring at 48h. We also noted that the expression 

level of PR1 dropped more rapidly in plants expressing Avh195 than in the WT. A similar situation 

was observed when we compared the expression of PDF1.2 between the transgenic lines and the 

WT. Here, too, expression showed a biphasic profile in the transgenic lines with a first peak of PDF1.2 

transcripts accumulating at 10hpi. A second wave of expression in the infected transgenic lines was 

reflected by a strong accumulation of PDF1.2 transcripts at 30 to 48hpi, preceding and exceeding 

the highest levels of expression in the WT occurring at 48h (Figure 3.21 B right panel). 

Upon infection, plants overexpressing Avh195 thus exhibit an acceleration and, in the case of 

PDF1.2, an intensification of defense responses, rather than a repression. This indicates that the 

increased susceptibility to P. parasitica of the transgenic lines is not related to an Avh195-

triggered impairment of defense responses. 
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Figure 3.21: Avh195 promotes infection and changes the timely onset of plant defense responses. 

Plants from the wild-type and from the transgenic Arabidopsis lines Avh-OE6 and Avh-OE9 were inoculated with  
P. parasitica zoospores and harvested at different time points after inoculation. RNA extracted from the samples were 
analyzed by RT-qPCR for the expression of marker genes allowing to analyze the development of oomycete biomass (A), 
the onset of plant defense responses (B). 

A. Oomycete biomass within plant tissues was determined by quantifying the accumulation of transcripts from 
the constitutively expressed P. parasitica gene WS41. RT-qPCR data were normalized with transcripts from 
both a constitutively expressed P. parasitica gene encoding a ubiquitin conjugating enzyme (UBC) and the 
constitutive Arabidopsis gene At5g11770 encoding an NADH-Ubiquinone Oxidoreductase. 

B. The onset of plant defenses responses was assessed by determining the amounts of transcripts from the  
SA-dependent PR1 gene, and from the JA- and ethylene-dependent PDF1.2 gene, which are markers for 
defense responses against biotrophic and necrotrophic pathogens, respectively. RT-qPCR data were 
normalized with transcripts from the constitutive Arabidopsis gene At5g11770.  

Shown in A-B are the means (+/-SD) from 3 replicates. Asterisks indicate significant differences with p ≤ 0.05, 
according to Student’s t-test. 

 

 
  



CHAPTER 3 - RESULTS [ 

   

  
86  

 

3.4.3 Avh195 promotes necrotrophy 

To determine whether increased susceptibility of the transgenic plants results from changes in the 

P. parasitica life-cycle, we estimated the relative expression of Phytophthora genes that 

characterize the states of biotrophy, necrotrophy, and sporulation. Biotrophic and necrotrophic 

pathogen development were assessed by analyzing the expression of HMP1 and NPP1, respectively 

(as described in Section 3.1.1). Sporulation of the oomycete was quantified via the expression of the 

P. parasitica ortholog of the sporulation-specific CDC14 gene encoding a cyclin-dependent kinase 

that regulates the cell cycle, specifically expressed during sporulation [229]. 

Expression of HMP1 in the WT followed the previously observed transient profile, with maximum 

transcript accumulations at 10hpi, and constant decline afterwards. At this time point, HMP1 

expression was lower in both transgenic lines, which instead accumulated significantly higher 

amounts of transcripts during a second wave of expression at 48hpi (Figure 3.22). By contrast, the 

expression of NPP1 was accelerated in both transgenic lines, with transcripts starting to accumulate 

between 10 and 20hpi. In the WT, NPP1 expression became detectable at 30hpi. Furthermore, the 

amounts of NPP1 transcripts were significantly increased in plants from both transgenic lines, when 

compared to the WT, accumulating to maximum amounts between 30 and 48hpi and then declining 

continuously (Figure 3.22). Surprisingly, expression of the sporulation-associated CDC14 gene was 

markedly decreased in plants expressing Avh195, when compared to the WT, at the later stages of 

infection between 96 and 144hpi (Figure 3.22). These experiments thus suggested that P. parasitica 

entered earlier the necrotrophic stage of infection in Avh195-expressing plants, and that this step 

of the life cycle was extended before the pathogen initiates reproduction. The correlation between 

an increased and accelerated expression in the transgenic lines of both NPP1 by P. parasitica, and 

of PDF1.2 by plants insinuates that Avh195 promotes necrotrophy. If this is true, Avh195 

overexpressing lines should be more susceptible to infection with necrotrophic pathogens and more 

resistant to biotrophs.  
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Figure 3.22: Expression of Avh195 in A. thaliana changes the timely onset of oomycete life style. 

Plants from the wild-type and from the transgenic Arabidopsis lines Avh-OE6 and Avh-OE9 were inoculated with  
P. parasitica zoospores and harvested at different time points after inoculation. RNA extracted from the samples were 
analyzed by RT-qPCR for the expression of marker genes encoding Haustorium-specific Membrane Protein 1 (HMP1), 
Necrosis-inducing Phytophthora Protein 1, and the protein phosphatase CDC14, which represent marker genes for 
biotrophic growth, necrotrophy, and sporulation, respectively of P. parasitica. RT-qPCR data were normalized with 
transcripts from the constitutive Phytophthora genes WS41 and UBC. Shown are the means (+/-SD) from 3 replicates. 
Asterisks indicate significant differences with p ≤ 0.05, according to Student’s t-test. 
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We thus inoculated plants from the transgenic lines and from the WT with the obligate, biotrophic 

pathogen, Hyaloperonospora arabidopsidis (Hpa). To estimate the infection success, we determined 

the amount of asexual conidiospores that are produced at the end of the infection cycle. Sporulation 

rates were significantly higher in plants from the transgenic lines, when compared to the WT, thus 

indicating that Avh195 confers the plants with increased susceptibility to the biotrophic pathogen, 

rather than with increased resistance (Figure 3.23).  

 

 

Figure 3.23: Overexpression of Avh195 in A. thaliana promotes susceptibility to biotrophic H. arabidopsidis. 

Conidiospore production on wild-type (WT) Arabidopsis, and on 2 independent Avh195-overexpressing lines. The 
amount of conidiospores per mg fresh weight (FW) increased at least 3-fold in the transgenic lines, when compared to 
WT Arabidopsis. The bars represent mean values +/- SE for 20 samples. Statistically significant differences with p ≤ 0.001 
were determined by Student’s t-test and are indicated with an *. The graph shows a representative experiment among 
3 repetitions. 

 

The data from the transgenic approach taken together show that the Avh195 effector promotes 

infection by oomycete pathogens, which have either a biotrophic or a hemi-biotrophic lifestyle.  

To bring the Avh195-mediated early switch to necrotrophy in line with increased susceptibility to a 

pure biotroph, we suggest that the effector ameliorates the biotrophic stage of P. parasitica 

immediately after penetration. This might improve the early establishment of the pathogen in plant 

tissues and accelerate its development, which reflects as a faster switch to necrotrophic growth.  

WT 
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3.5 Trans-kingdom activity of Avh195 

3.5.1 Avh195 induces accumulation of acidic compartments in HeLa cells. 

During the setup of this work, besides the transient and stable transformations of plants and algae, 

we developed an additional approach that aimed at producing Avh195 protein for the exogenous 

application to cells from different model systems. We set up two different heterologous expression 

systems for the production of recombinant Avh195. The first one is Escherichia coli, for a rapid high-

yield production and the second is Pichia pastoris to conserve post-translational modifications, such 

as glycosylation.  

In both cases, yields were low. The recombinant proteins were poorly soluble in aqueous buffer, a 

finding that we could explain later by the membrane association of the effector (Section 3.2 of this 

Chapter). In addition, purification of the protein was not fully efficient or resulted in precipitation 

of the sample. Quantities and quality of the obtained protein were thus low, and we decided to 

abandon the approach for large scale analyses. 

However, we obtained small quantities of soluble His-tagged Avh195 (Avh195-His) produced in E. 

Coli, which we used to perform qualitative assays on mammalian cultured cells in collaboration with 

the laboratory TOXALIM (INRA). We decided to perform our tests on HeLa cells, an immortalized 

human cell line, which was derived from cervical cancer cells that were taken from Henrietta Lacks 

in 1951. Those cells have an intact and well-defined autophagy pathway and are frequently used for 

studying autophagy and cell death. Since animal models are better explored than photosynthetic 

organisms for all mechanistic connections that exist between autophagy and PCD, and because 

numerous tools and assays are available to exploit the system [230], we considered this model as 

an alternative to validate the function of Avh195. Moreover, the analysis of autophagy perturbation 

of a non-photosynthetic organism, would further confirm the generality of the effector, which 

already demonstrated the ability to bind ATG8 proteins from both Chlamydomonas and Arabidopsis 

models. 

To analyze the effect of recombinant purified Avh195-His on HeLa cells, we applied different doses 

of the protein on cultures of the human cell line. We first observed the uptake of Avh195 by HeLa 

cells over time. As shown in Figure 3.24, Avh195 accumulates mainly in the cytoplasm in a time-

dependent manner, as shown by the immunofluorescence assay directed against the His tag. The 

observation of cells at 24h after the treatment with Avh195 also revealed that the protein induces 
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the formation of numerous refringent vesicles, readily visible under light microscopy (Figure 3.25). 

The aspect of those vesicles closely resembles the structures that accumulate in cells following 

treatment with chloroquine, a prototypical inhibitor of the fusion between autophagosomes and 

lysosomes leading to the accumulation of autophagic vesicles [231]. 

To characterize the nature of these structures, we used LysoSensor® DND189 to monitor the 

number of acidic compartments after Avh195 treatment. The number and the size of Lysotracker-

positive structures were increased after Avh195 treatment in a dose-dependent manner. The effect 

of Avh195 on acidic vacuole accumulation was weaker than chloroquine but occurred in the same 

range of concentrations (Figure 3.26). 

These results indicate that Avh195 induces accumulation of acidic compartment in HeLa cells, 

reflecting the activity of the autophagic flux inhibitor chloroquine. 

  



 [CHAPTER 3 - RESULTS 

   

  
 91 

 

 

 

 

Figure 3.24: Exogenous Avh195 is taken up by mammalian cells. 

HeLa cells were exposed to 10 ng/L of Avh195-His protein. At the indicated time, cells were fixed and processed for 
indirect immunofluorescence analysis for the detection of Avh195 using anti-His antibody (green) and nuclei (Hoechst 
33342, blue). Images were acquired with an inverted fluorescence microscope (Nikon®) equipped with a CCD camera 
(ORCA ER®, Hamamatsu Photonics), at 20× magnification.  

 

Control + Avh195-His 10 ng/µl 

2 h 4 h 

6 h 18 h 
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Figure 3.25: Morphological modifications induced by Avh195 treatments. 

Phase contrast images of HeLa cells exposed for 24h to 25μM Chloroquine (CQ), an inhibitor of autophagy or 50 and 

100ng/L of Avh195-His purified protein. The arrow points cells presenting accumulation of refringent vesicles 
(granularity in the body of the cell) that are typically observed upon autophagy inhibition with Chloroquine. Cell 
morphology was examined under a light microscope (Nikon®) equipped with a CCD camera (ORCA ER®, Hamamatsu 
Photonics), at 20× magnification. 
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Figure 3.26: Exogenous Avh195 increases the accumulation of acidic vesicles. 

HeLa cells were exposed to increased concentration of purified Avh195 (from 0.1 to 10 ng/L) or 25 M of Chloroquine 
(CQ) used for positive control for 24 h. Cells were then incubated with LysoSensor DND189 (green) and Hoechst 33342 
(blue) for the detection of acidic vesicles and nuclei, respectively. Images were acquired with an inverted fluorescence 
microscope (Nikon®) equipped with a CCD camera (ORCA ER®, Hamamatsu Photonics), at 20× magnification.  
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3.5.2 Heterologous expression of Avh195 is cytotoxic for HeLa cells 

To further elucidate the effect of Avh195 on the autophagic process, we decided to express a fusion 

protein of Avh195 coupled through its N- or C-terminus to green fluorescent protein (GFP) in HeLa 

cells. Under normal culture conditions, WT HeLa cells display an epithelial-like morphology, namely 

by forming a monolayer of polygonal adherent cells (Figure 3.27 A). Upon transfection with Avh195 

overexpression vectors we observed a high cytotoxicity phenomenon, when compared to Mock 

treatments (Lipofectamine® 2000) or upon empty vectors transfections (Figure 3.27 A). This toxicity 

was reflected by phenotype alterations of the Avh195-expressing cells. Cells displaying the GFP 

signal of the Avh195 construct were spheroid and shrunken ((Figure 3.27 A, arrows and B). This 

phenotype eventually evolves to apoptosis-like cell death (Figure 3.27 A, arrowheads). Because of 

the cytotoxic effect of Avh195 on HeLa cells, it was impossible to perform molecular and biochemical 

assays to characterize the impacts of Avh195 on the autophagic process. We thus withdraw these 

analyses from the project. 

However, the assays that we performed with HeLa cells further support the results that we obtained 

on Chlamydomonas reinhardtii. Here, Avh195 seems to interfere with autophagic flux like 

chloroquine, thus leading to the accumulation of autophagic vesicles. The toxic effects we observed 

with HeLa cells might reflect the lethal effects we observed upon heat-shock-induced 

overaccumulation of Avh195 in Chlamydomonas transgenic cells 

. 

To our knowledge, this work on the whole represents the first demonstration that an effector 

from a plant pathogen can provoke physiological alterations in cells from organisms, which are 

evolutionary as distant as plants, mammals, and algae, by targeting non-specifically conserved 

components of the autophagy machinery. 
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Figure 3.27: Morphological effect of Avh195 transfection. 

A. Phase contrast images of HeLa cells transfected with vector encoding Avh195 tagged with green fluorescent 
protein (GFP) on the N-terminal (pcDNA-DEST53 constructs) or C-terminal (pcDNA-DEST47 constructs) as well 
as the corresponding empty vectors, using Lipofectamine® 2000. Control and Mock (upper lane) represent cells 
not exposed or exposed to Lipofectamine® 2000 alone respectively. Arrows indicate detached cells presenting 
spheroid and shrinked phenotype while arrowheads indicate apoptotic cells presenting membrane blebs. 

B. Phase contrast (PC), Fluorescence (GFP) and merged images of HeLa cells transfected with Avh195-GFP 
encoding plasmid (pcDNA-DEST 47-Avh195-GFP) using Lipofectamine® 2000, 48 hours post-transfection. Cells 
expressing the foreign gene display green fluorescence and an altered phenotype.
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 Discussion 

This PhD work consisted in the molecular and functional characterization of a secreted effector 

protein from the plant pathogen Phytophthora parasitica, which takes part in the determination of 

the outcome of infection. We show in different photosynthetic systems that the P. parasitica 

Avh195 effector interferes with autophagy through interaction with ATG8. The effector thus slows 

down autophagic flux to favor pathogen development within host tissues.  

As described in the introduction, the endomembrane system is composed of a set of membranous 

structures and organelles that form a functional unit dedicated to the trafficking of material through 

different compartments of the cells. In plants, this complex network emerged as essential for 

exchanges between plant and pathogens [232]. Numerous studies have shown that it is involved in 

endocytosis and signaling of immune receptors, the exocytosis of defense molecules, the 

relocalisation of proteins between different cellular compartments as well as their recycling. Given 

its importance for plant immunity, pathogens have evolved strategies to hijack the endomembrane 

system for the success of infection. One of the emerging targets is autophagy, a critical process in 

cell survival and homeostasis. During plant-pathogen interactions, autophagy enhances the survival 

of plant cells by degradation of damaged and toxic materials, and has an antimicrobial role, ensuring 

the degradation of pathogen-derived molecules [100].  

During the last years, the effector protein PexRD54 from the oomycete Phytophthora infestans has 

been described as a perturbator of autophagy and endomembrane trafficking [89]. This protein is 

an RxLR effector, a typical class of secreted molecules that is translocated to the host cytoplasm 

during infection. The described interference of PexRD54 with autophagy in the host, represents the 

first report for such activity among this class of effectors. As described in the introduction PexRD54 

is an interactant of ATG8CL, one of the nine members of the ATG8 family in potato (S. tuberosum). 

During infection, the autophagosomes labelled with ATG8CL are loaded with defense-related 

molecules, thanks to the cargo receptor Joka2, and are diverted towards the pathogen interface to 

restrict its growth. The binding of PexRD54 with ATG8CL not only disrupts the binding of Joka2, 

preventing the loading of antimicrobial autophagosomes, but also stimulates the formation of 

autophagosomes, thus providing membrane for the biogenesis of the EHM [89,188].  
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The RxLR effector presented in this work, Avh195, was initially identified as a potential perturbator 

of autophagy due to the presence of five ATG8-interacting motifs in the effector domain of the 

protein.  

To test the actual existence of an interaction between Avh195 and ATG8, and to analyze effector 

activity, we developed the microalga Chlamydomonas reinhardtii as a model. The choice of this 

organism was initially driven by the genetic background of the microalga: the sequencing of nuclear 

and chloroplast genomes has been completed and annotated, revealing conservation of many genes 

of the photosynthetic lineage [200]. Chlamydomonas possesses most of the genes encoding the ATG 

core machinery, which are, unlike the situation in plants, single copy genes with conserved function 

in the microalga [143]. Phylogenetic analysis of the ATG8 gene family in Arabidopsis thaliana 

revealed the presence of 9 members, which diverge into three clades and differentiated in function 

and regulation. CrATG8 was identified as closely related to members of clades I and II, thus 

potentially representing 7 out of 9 members of Arabidopsis ATG8 gene family. This simplification 

has permitted to setup several techniques that collectively demonstrated the colocalization of 

Avh195 with the membrane-bound pool of ATG8, and the existence of an interaction between the 

two proteins. Interestingly, this interaction was not only confirmed for two members of Arabidopsis 

ATG8 gene family belonging to the clades I (ATG8D) and II (ATG8G), the most closely related to 

CrATG8, but also for ATG8H, a divergent paralog belonging to clade III. This result, besides validating 

the use of a simplified model organism, also indicates that the action of Avh195 is generalist since 

it targets multiple isoforms of ATG8. This result contrasts with the specificity of PexRD54: this 

effector binds the isoform ATG8CL, but not ATG8IL, another member of the protein family. 

In addition to the single-gene status of ATG8, Chlamydomonas was retained as a heterologous 

system for functional analyses aiming to decipher the precise mechanism underlying the modulation 

of autophagy. Indeed, one of the advantages of this microalga is that foreign genes can be stably 

introduced in its genomes [233]: in our case we introduced Avh195 in Chlamydomonas nuclear 

genome to obtain constitutive overexpression of the effector. Since Chlamydomonas is amenable 

to flow cytometry without any preliminary treatment, maintaining the integrity of the organism, 

one can control whether effector expression in the cells has aberrant effects, before proceeding to 

further analyses. In Chlamydomonas expressing Avh195, we did not observe modifications other 

than the perturbation of autophagic flux and the accumulation of starch granules.  
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Chlamydomonas presents several other advantages to decipher effector biology, beyond 

autophagy-related studies. The synchronization of cultures is easily achieved by alternate light and 

dark periods, with two to three generations in a 24-hour period [209]. This synchronization 

generates homogeneous biological material, ensuring reliable monitoring for time-course studies. 

For the analysis of perturbation of autophagy by Avh195 we choose to activate the machinery via 

inhibition of TOR signaling pathway. Several studies have demonstrated a conservation of the TOR 

complex in the alga, as well as the sensitivity of this complex to the macrolide rapamycin, a well-

known inhibitor of TOR kinase [204,214]. The action of rapamycin relies on a conserved protein, 

FKBP12, which mediates the inhibitory effect of the drug on TOR kinase. Despite conservation, 

FKBP12 is unable to form a stable complex with rapamycin in higher plants, such as A. thaliana and 

N. benthamiana, that are indeed insensitive to treatment with this drug [234].  

Molecular analyses of the transgenic Chlamydomonas lines revealed accumulation of ATG gene 

transcripts and of ATG8, as revealed in western blot experiments. The accumulation of ATG8 might 

be considered as a marker of autophagy induction. However, it may also reflect defect impaired 

completion of autophagy, through a defect in vacuolar degradation [235]. 

The different results obtained in the present study show that autophagy is impaired, although 

transiently, in Chlamydomonas. TEM analyses revealed the presence of smaller vesicles in 

transformants, when compared to WT cells. In addition, transformants display a delayed autophagy 

progression upon rapamycin treatment and accumulate cellular debris similarly to what is observed 

in Chlamydomonas cells treated with concanamycin A, an inhibitor of autophagic flux [219]. 

However, this effect appears to be transient since long-term observation of Avh195-overexpressing 

cells upon autophagy induction reveals that the signs of inhibition are partially relieved at the latter 

time point analyzed. 

Besides, we noted an accumulation of starch in transformants, illustrated by an increase in starch 

granules per cell. A study conducted with Arabidopsis thaliana showed that ATG genes undergo a 

transcriptional regulation within 4h from onset of darkness. A mutation of ATG genes, or an 

inhibition of autophagy by the application of 3-methyladenine (3-MA) leads to starch accumulation 

[159]. The autophagic machinery thus appears complementary to the classic degradation of starch 

that occurs in the chloroplasts, therefore the accumulation of starch observed in Chlamydomonas 

would further indicate a negative modulation of autophagy. 
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Taken together, our observations on Chlamydomonas allowed to define a function for Avh195 on 

the autophagic machinery. Moreover, to our knowledge, this work provides the first report that an 

oomycete effector is active in a non-plant, but photosynthetic organism, making Chlamydomonas a 

promising model for further effector studies. The only other trans-kingdom activity has been shown 

for a CRN effector of the legume root pathogen Aphanomyces euteiches. This effector has been 

successfully expressed in Xenopus laevis embryos, where it triggers aberrant developmental 

modifications [236]. 

However, Chlamydomonas was not the sole heterologous system used in this work. To examine 

whether the activity of Avh195 is generalist and can target ATG8 proteins derived from 

phylogenetically distant organisms, we screened the properties of the effector on the mammalian 

HeLa cell line. This second model was chosen for the possibility to modulate and analyze each step 

of the autophagic flux thanks to a multitude of tools allowing detection and quantitation of 

autophagy and cell death [237]. Particularly with regard to cell death and apoptosis, HeLa cells 

represent a complement to Chlamydomonas: similar to higher green organisms, the description of 

hallmarks of programmed cell death are controversial and the existence of such mechanisms is still 

debated [238]. Although our work on HeLa cells was not much developed due to lethal effects of 

the effector, the obtained results supported our observations with Chlamydomonas. The application 

of recombinant Avh195 on HeLa cells promoted the accumulation of autophagosomes, similarly to 

late inhibition of autophagic flux by the drug Chloroquine, which prevents the fusion of 

autophagosomes with lysosomes and their acidification. Speculating that this result is once more 

provoked by the interaction between Avh195 and ATG8, this would strengthen the finding that the 

effector is able to bind ATG8 universally, regardless of the organism of origin. In mammals, ATG8 

has evolved into a gene family composed by 6 members (LC3A, LC3B, LC3C, GABARAP, GABARAPL1, 

and GABARAPL2) that differentiated in function [239]. Interestingly, the abolition of all members of 

the LC3/GABARAP family does not impair autophagy in HeLa cells but rather results in a lower size 

and rate of autophagosome formation [240]. It is tempting to suppose that the effect of Avh195 

observed in algae (namely the delay in vacuole coalescence) could be provoked by a (transient?) 

impairment of ATG8 action at the crescent autophagosome. 

Despite the important contributions of the two heterologous model systems to the development of 

this work we have to take into account that they only represent a support for studies in planta. First, 

mammalian cells are phylogenetically distant from the plant lineage and even though organisms 
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belonging to those phyletic groups share some basic molecular machineries, transpositions of 

results from one model to the other must be made with caution. Second, Chlamydomonas cells 

were exploited for their convenience from a technical and methodological point of view but the 

reduced complexity of this model does not take into account the multifaceted aspects that 

autophagy covers in higher, multicellular organism, such as plants. 

For this reason, a second important part of the work was carried out on plants, in order to observe 

the action of the effector in a natural context.  

Cell death is the final stage of the HR, which is activated in plants upon the recognition of an invading 

pathogen, to limit its growth at the site of penetration [241]. Even though the mechanism by which 

autophagy promotes a confined HR remains unclear, many studies on ATG mutants have shown that 

autophagic functions are essential for the initiation of this response [178,242]. A particular role for 

autophagy was shown in the delimitation of cell death, as ATG6 mutants are unable to restrict 

spreading of the HR induced by viral and bacterial pathogens [178,242]. However, other studies 

rather revealed a “pro-death” function of autophagy in the execution of HR triggered by avirulent 

pathogens in Arabidopsis [180]. 

Slight modulations of this fine-tuned machinery might thus have consequences for the success or 

the failure of infection. The analysis of Avh195 by transient overexpression in tobacco revealed that 

this effector does not induce cell death, conversely it is able to delay the development of symptoms 

related to cryptogein-induced HR-PCD. The transient nature of this effect is consistent with the 

transient effects of Avh195 on autophagy that we observed in Chlamydomonas. Modulations of host 

autophagy by Avh195 are thus subtle and do not interfere with vital parameters of the plant cells, 

but lead to a visible delay in the execution of HR. Moreover, we observed that Avh195 requires one 

or more AIMs for slowing down the progression of cryptogein-mediated cell death, as this activity 

is almost abolished in an effector, in which 3 of the 5 AIMs were mutated. 

P. parasitica is a hemibiotrophic pathogen, which maintains host cells alive as a biotroph, before 

switching into a necrotrophic lifestyle. With regard to the function of Avh195 during infection we 

analyzed the mRNA level of the effector during P. parastica infection. In two different pathosystems 

(A. thaliana and S. lycopersicum) we determined that the transcript is specifically accumulated 

during the biotrophic step of the P. parasitica infection cycle, indicating that the effector either 

promotes biotrophy, or prepares the switch to necrotrophy.  
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Several studies show that the plant autophagic machinery confers resistance to infection: as 

mentioned above, it can lead to the degradation of pathogen-derived molecules and also participate 

In the delivery of defense-related molecules at the pathogen interface [176,185,188]. Conversely, 

the manipulation of host autophagy by plant pathogens frequently aims at repressing plant defense 

responses [89,243].  

In this work we showed that Avh195 thus does not act as a suppressor of defenses, but rather as an 

accelerator of infection. In Avh195-expressing transgenic Arabidopsis, the defense responses 

towards biotrophic and necrotrophic pathogens are activated, and occur earlier during the infection 

cycle than in the WT. During the interaction with Arabidopsis, the biotrophic phase of P. parasitica 

allows the oomycete to successfully establish in the root cortex and to reach the central cylinder, 

before setting up necrotrophic, invasive growth, and infecting the aerial parts of the plant [31]. The 

equilibrium between initial establishment within plant tissues and the development of biomass 

during invasive growth eventually determines the success of the oomycete life cycle. Avh195 is 

expressed during biotrophic growth only, where the effector slows down the development of 

hypersensitive cell death (a plant response to biotrophs).  

Taken together, we can hypothesize that Avh195 acts during the biotrophic stage with two 

mechanisms. First, the transient inhibition of autophagy might slow down the autophagic 

degradation of pathogen-derived molecules and promote the establishment of the oomycete in 

plant tissues during the early stages of infection. Moreover, we suggest that Avh195 decelerates the 

pro-death function of the mechanism, and thus promotes biotrophy. This interpretation would be 

in line with the observation that the obligate biotrophic oomycete pathogen Hpa develops better in 

Avh195-expressing Arabidopsis, than in the WT. The observed earlier and intensified switch of P. 

parasitica to necrotrophy in the presence of Avh195 would then reflect a better biotrophic 

establishment and an acceleration of the life cycle.  

Eventually, the transient action of Avh195 is relieved upon the switch to necrotrophy, when there 

is no more need for the pathogen to interfere with the HR.  

The reduced sporulation rate at the end of the infection cycle observed for transgenic Arabidopsis 

expressing Avh195 may in turn reflect an improved nutrition of the pathogen: Phytophthora species 

may initiate their asexual reproduction following various environmental changes, among which 

nutrient limitation [33]. The prolonged increase in oomycete biomass and the simultaneously 

reduced sporulation rate in the presence of Avh195 may indicate that transgenic Arabidopsis plants 
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sustain nutrient supply to the pathogen longer than the WT. Sustained nutrient supply might also 

be a consequence of the Avh195-mediated interference with autophagic flux in the transgenic lines.
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Conclusions and Perspectives 
One of the keys of the success of plant parasitic oomycetes resides in the huge arsenal of molecules 

released during infection that participate in the complex crosstalk between the host and the 

pathogen. The numerous studies performed on effectors from the RxLR class revealed that part of 

such success is due to the rapid evolution of novel molecules developed by the pathogen to 

manipulate host plant defenses and metabolism. Autophagy is a process that potentially conjugates 

both aspects, and it appears to be targeted by different classes of plant pathogens, including 

oomycetes. 

This work has contributed to the discovery of an RxLR effector from P. parasitica acting as an 

autophagy inhibitor, and uncovered a transient mode of action, which has never been described 

before. This finding reveals that the effector-mediated modulation of host cells is far more complex 

and fine-tuned than previously thought and surely opens new lines of research.  

The development of new methodologies and model systems, such as the microalga Chlamydomonas 

reinhardtii presented in this work, will hopefully facilitate the study of RxLR effectors and the 

complex mechanisms of modulation of the host machinery. Here, this photosynthetic organism 

allowed the characterization of Avh195-dependent autophagy perturbation, through the 

generation of transgenic lines overexpressing the effector. The possibility to perform flow cytometry 

on Chlamydomonas revealed that Avh195 does not alter the physiology and fitness of the cell 

whereas TEM analysis of cells revealed a transitory inhibition of the autophagic flux. Together, our 

results helped comprehension and interpretation of the analysis of function of Avh195 performed 

in planta, such as the transient inhibition of hypersensitive cell death in tobacco and the facilitation 

of necrotrophic growth observed in A. thaliana transgenic lines. However, there are still many 

aspects of this work that will warrant ongoing and future experiments that will complete our 

understanding of the role of Avh195. 

For example, we need to confirm that Avh195-dependent autophagy inhibition also occurs in plants 

and that it is related to the observed phenotypes. During my PhD thesis, we tried to demonstrate 

the impairment of the autophagic flux with a test based on the accumulation of NBR1, an autophagy 

receptor [244]. This receptor accumulates and aggregates when autophagy is inhibited and is 

considered a marker for impaired flux [226] NBR1 has not been identified yet in Chlamydomonas 

[245] and we could not detect a structural homolog of the receptor via immunoblot analysis of algae 
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protein extracts. NBR1 exists in plants, and we obtained an antibody targeting the Arabidopsis 

protein. The antibody will allow us to analyze the turnover of NBR1 in transgenic Arabidopsis 

overexpressing Avh195.  

Going further, this work has collected many indications of autophagy inhibition but so far we did 

not decipher the exact mechanism by which this inhibition occurs. On the basis of the observation 

performed in Chlamydomonas, we can speculate that the inhibition derives from two distinct 

mechanisms. A first one is the perturbation of the biophysical properties of the membranes. The 

binding of Avh195 to ATG8 may interfere with the curvature and closure of phagophores, leading to 

a delayed completion of autophagic vesicles. This analysis could be performed by analyzing the 

accumulation of unclosed membranous structures in both Chlamydomonas and plant cells. An assay 

to observe defects in autophagosome completion has been developed for mammalian cells and 

consists in the visualization of GFP-tagged ATG5 on membranous structures: the closure of the 

phagophore releases ATG5 from the membranes and is indicative of a complete genesis of the 

autophagosome [246]. We might exploit the same methodology in Chlamydomonas and Arabidopsis 

and perform immunofluorescence experiments with antibodies directed against ATG5 to detect 

defects in the completion of autophagic vacuoles. The second mechanism that may contribute to 

autophagy inhibition is the perturbation of cargo catabolism inside the vacuole. Since Avh195 

possesses numerous basic amino acids, it appears possible that the binding between Avh195 and 

ATG8 perturbs acidification of autophagosomes thus leading to defects in the catabolism of cargoes. 

To verify this hypothesis, we might perform enzymatic tests in both Chlamydomonas and 

Arabidopsis plants based on the activity of vacuolar hydrolases. One example could be represented 

by the γ-VPE enzyme, which is usually upregulated during senescence, and which appears to 

participate in vacuolar proteolytic activity during autophagy [144]. 

Throughout this work, we correlated the inhibition of autophagy to the direct binding of Avh195 

with ATG8 via three out of five AIMs that are present in the effector domain of the protein, as 

confirmed by Y2H experiments. However, we are seeking to confirm that the alteration of those 

AIMs disrupts the interaction between the two proteins. Future experiments will be performed by 

producing the abolition of single AIMs as well as all of the five. This will permit the identification of 

important or dispensable sites to warrant the interaction. We will also need to implement additional 

tests to confirm the interaction in planta. One possibility is to get more detail on the subcellular 

localization of the two proteins by confocal imaging of agroinfiltrated tobacco in presence of 
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fluorescent reporters for different subcellular compartments (e.g. FM4-64 tracker for endocytic 

compartments). This approach could be complemented by co-immuno precipitation experiments 

that we sought to perform during my PhD thesis, but which requires optimization to be performed 

on microsomal fractions of protein extracts. In addition, we can consider a bioluminescence 

resonance energy transfer (BRET) based approach: this technique is similar to the fluorescence 

resonance energy transfer that is widely used to detect interaction between proteins, and has been 

successfully used in plants to detect interaction between ATG8 and ATG4 [247]. 

Despite we still lack some confirmations, this work showed that Avh195 has a generalist activity, 

being able to produce phenotypes related to autophagy inhibition in three photosynthetic 

heterologous systems (C. reinhardtii, Tobacco and A. thaliana) and a human cell line. Such 

peculiarity has never been observed for an oomycete effector so far.   

Autophagy inhibition in A. thaliana Avh195 overexpressing lines was deduced by the results 

obtained during interaction with P. parasitica and H. arabidopsidis. On those plants we observed an 

acceleration of the whole infectious cycle and an intensified, prolonged necrosis. As discussed in the 

previous chapter, this could reflect an inhibition of autophagy since it could reduce its pro-death 

function during interaction with biotrophic pathogens which results in improved establishment of 

the pathogen. As a follow-up of this analysis we are going to analyze the influence of Avh195-

overexpression in A. thaliana on the development of a strictly necrotrophic pathogen such as 

Botrytis cinerea. This analysis will help to rule out whether Avh195 promotes biotrophy or also 

conditions necrotrophy.  

Since most of the experiments performed on Arabidopsis transgenic lines were solely based on 

transcriptional analysis, it would be interesting to test whether this corresponds to an actual 

alteration of a specific step, either during biotrophy or necrotrophy, of the infectious cycle of P. 

parasitica. Experiments might be performed by confocal imaging of transgenic plants infected with 

P. parasitica zoospores expressing GFP. A previous work conducted in our laboratory gave a detailed 

cellular description of the different steps of penetration and invasion of the oomycete in plant roots 

over a 30h time course [44].  Shifts in the timing or modifications in the behavior of the pathogen 

would help to determine the step of infection that is favored by Avh195. 

In addition, we might perform the same panel of experiments with transgenic Arabidopsis thaliana 

expressing a hairpin RNAi construct, which would generate host-induced gene silencing (HIGS) of 

Avh195 in Phytophthora parasitica during interaction. Avh195-HIGS plants were generated during 

this PhD thesis, but were not included in the work since they need further steps of selections before 
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their utilization. Experiments conducted on these plants will further elucidate the role of Avh195 

and will in particular allow to determine what consequences effector loss will have for the infectious 

cycle. 

It emerged from experiments on A. thaliana that the activation of plant defenses is not impaired nor 

decreased in Avh195 overexpressing lines. Here again, we obtained this information from a 

transcriptional point of view, but it will be important to confirm the actual accumulation of PR1 and 

PDF1.2 proteins via immunoblotting, as witness of proactive and efficient defense response. To 

further investigate this aspect, we might also envisage the generation of Arabidopsis transgenics 

overexpressing both Avh195 and (GUS or GFP) reporter constructs for the transcriptional activation 

of PR1 and PDF1.2. These transgenic lines will provide a tool to observe in vivo the onset of plant 

defenses during Avh195 overexpression and to detect any perturbation in this response. 

 

A question arising from our findings is why an effector that favors pathogen growth and targets a 

ubiquitous process has such a restricted distribution among Phytophthora species. As presented in 

the introduction, Avh195 was identified only in the genomes of P. parasitica and P. infestans. The 

non-specific binding of Avh195 to ATG8 might be considered as an ancestral character that was 

shaped by co-evolution with the host, leading to diversification [248]. Alternatively, it can represent 

the relatively recent acquisition from the common ancestor of P. infestans and P. parasitica. The 

analysis of the evolutionary history of this effector may help to point out also specific traits of P. 

parasitica lifestyle such as host specificity. In this regard it would be interesting to compare the 

Avh195 paralogs between Phytophthora infestans and P. parasitica for their expression profile, their 

target, and for other characteristics of PpAvh195 such as the transient action on autophagy. A 

comparison between the two species might open the intriguing perspective of understanding how 

a pathogen synchronizes the action of two effectors that target the same process with opposite 

effects. P. infestans PexRD54 [89] and Avh195 differ in sequence and only share the conserved 

characteristics of RxLR effectors and the presence of AIMs. The two effectors also differ in function: 

the first was proposed to promote autophagosome formation while the latter reduces the 

autophagic flux. Moreover, the different isoforms of ATG8 in plants have specific functions and 

regulations: PexRD54 targets autophagosomes specifically labelled by one of those isoforms, which 

were described as defense-related autophagosomes. Conversely Avh195 appears to target the 

machinery without such specificity. The possible competition (or coordination) between the two 

effectors targeting the same process might be analyzed by comparing the expression profiles of 
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Avh195 and PexRD54 during infection, and by characterizing the nature of different 

autophagosomes that may be generated during the plant-pathogen interaction. 

 

However, the complexity of the interaction between effectors potentially targeting autophagy in 

the host is not limited to PexRD54 homologs. A master thesis project carried out in the laboratory 

(R. Hassanaly) revealed that Avh195 is not encoded by a single gene but is part of an expanded gene 

family composed of 8 (+2) members. Alignment of the ten sequences revealed an organization in 4 

clades with an estimated sequence identity among members ranging from 45.7% from 97.6%. Only 

two of the analyzed sequences did not display all typical features of RxLR effectors (namely a signal 

peptide and the RxLR motif) but all isoforms contain 2 to 5 AIMs. Some of the AIMs appeared to be 

shared among the different isoforms whereas others were clade-specific (clades II and III). The 

expression profile of these genes was analyzed during P. parasitica infection in N. tabacum, revealing 

that Avh195 isoforms are differentially expressed throughout the infection cycle. Genes belonging 

to clade I (including the isoform of Avh195 presented in this work) are expressed during biotrophy 

whereas members of clades II and III are expressed in a second wave during necrotrophy. 

Interestingly, the analysis of HR upon agroinfiltration in tobacco revealed that another isoform of 

Avh195 belonging to the same clade is able to attenuate cell death. 

The diversification of Avh195 in multiple isoform opens even more intriguing speculations. First, a 

correlation between the pattern of expression of clades and the distribution of AIMs was 

determined. We can hypothesize that members of clade I are expressed during biotrophy and inhibit 

autophagy in a general manner. Upon the switch to necrotrophy Clades II and III are expressed and 

their interaction with ATG8 might probably be different, leading to different effects on autophagy. 

Or even, they may target subclasses of autophagosomes that are formed during this stage of 

infection. It might thus be interesting to analyze the ability of members issued from each clade to 

bind different isoforms of ATG8 and to test their ability to either promote or to inhibit HR. A work 

similar to the one presented in this thesis, performed on other isoforms of Avh195, could help 

understanding how the two waves of effectors contribute to P. parasitica pathogenicity.  

 

To conclude, even though this work alone will not lead to direct biotechnological implementations, 

it has surely improved our knowledge of the molecular mechanisms regulating the relationship 

between Phytophthora and the host plant and will contribute to the development of novel 
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strategies to fight oomycete diseases that are still deeply affecting agriculture and natural 

ecosystems. 
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Materials and Methods 

 - Bioinformatic analysis 

The Avh195 protein sequence was analyzed for its amino acid composition and theoretical pI using 

the ProtParam tool implemented at the Expasy Bioinformatics Resources Portal 

(https://www.expasy.org/). The signal peptide was detected using SignalP V.4 at the same portal. 

Avh195 was also examined for the presence of AIMs, otherwise called LIR (LC3-interacting region) 

motifs [192,193]. This was achieved at the iLIR autophagy database hosted at 

https://ilir.warwick.ac.uk. Multiple alignments were conducted using Clustal Omega implemented 

in Seaview V. 4.0 [249]. Phylogenetic trees were constructed using the Maximum Likelihood (ML) 

method based on the LG model with a gamma rate of heterogeneity calculated in Mega 7.0 [250]. 

 - Vector construction 

Plasmids used in this study were constructed based on the Gateway® Technology (Invitrogen®) 

following the instructions of the manufacturer except when otherwise indicated. All primers used 

in this study are listed in Section XV of this chapter. 

- The Avh195 coding sequence and its derived versions (Avh195ΔED, Avh195ΔAIM) were 

cloned without signal peptide from a full-length cDNA clone issued from P. parasitica 149 

(from Spain collected on Lycopersicon esculentum 1975 A2). 

- Avh195ΔED (Avh195 coding sequence deprived of its effector domain) was obtained by 

amplification with specific primers from a vector containing native version of Avh195. 

- Avh195ΔAIM was generated by site-directed mutagenesis of Avh195 using a QuickChange II 

kit (Agilent®) according to the manufacturer's recommendations. Three primer pairs were 

specifically designed to alter one by one a selected AIM by replacement of hydrophobic 

residues of each site by an alanine. 

- Chlamydomonas CrATG8 coding sequence was amplified from cDNA sample issued from 

Chlamydomonas reinhardtii DW15-c2 strain. 

- The coding sequences for Arabidopsis thaliana AtATG8D, AtATG8G and AtATG8H were 

amplified respectively from the Gateway-compatible plasmids G22544, U17226, and G82070 

https://www.expasy.org/
https://ilir.warwick.ac.uk/


MATERIALS AND METHODS [ 

   

  
112  

 

obtained from the Arabidopsis Biological Resource Center (ABRC) at the Ohio State 

University. 

Vectors for in vivo overexpression 
Amplification of target gene was carried out with HF Q5 Taq polimerase (New England Biolabs®) 

using overhanging primers flaked by attB1 and attB2 sites. PCR product were inserted by BP 

recombination into pDONR207 vector to generate Entry clones that subsequently verified by DNA 

sequencing. 

- For transient overexpression in tobacco Avh195 and its derived versions Avh195ΔED and 

Avh195ΔAIM were cloned into the pk7FWG2.0 (Plant systems biology®). Stop was included 

at the end to avoid GFP expression. 

- For in planta co-localization assay Avh195 was cloned into pK7GWF2.0 (Plant systems 

biology®) in-frame to the N-terminal GFP tag. Chlamydomonas reinhardtii ATG8 coding 

sequence was cloned into pk7RWG2.0 (Plant Systems Biology®) in-frame to the N-terminal 

RFP tag.  

- For mbSUS Y2H assay Avh195 was cloned into vector pMetYC-DEST. The Chlamydomonas 

reinhardtii CrATG8 coding sequence and Arabidopsis thaliana AtATG8D, AtATG8G, AtATG8H 

coding sequences were cloned in vector pNX32-DEST. 

- For generation of Arabidopsis thaliana overexpressing lines, Avh195 was cloned into 

pK7GWF2.0 vector (Plant Systems Biology®) with a codon stop to exclude the GFP tag from 

the construction (Plant systems biology®). 

- For overexpression in mammalian cells Avh195 coding sequence was cloned into pcDNA-

DEST vectors (Thermo Fischer®) harboring a CMV promoter and providing fusion of the 

recombinant protein with GFP N-terminal tag (pcDNA-DEST53) or GFP C-terminal tag 

(pcDNA-DEST47). 

All the constructions were firstly cloned in Escherichia coli electrocompetent strains 

ElectroMAX™DH10B™Cells (Invitrogen®). Transformed cells were cultivated in LB medium at 37°C 

on selective medium and the cells issued from the transformation process were tested via PCR for 

the presence of the construct. Plasmid was purified from validated clones with QIAprep Spin 

Miniprep (Qiagen®) and sequenced for validation (GENEWIZ™ - Beckman Genomics®). Verified 

clones were then stocked in LB 15% Glycerol at -80°C for long term conservation. 

https://abrc.osu.edu/
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Transformation and expression of the expression vector in the final host will be described in the 

dedicated sections. 

Vectors for recombinant protein production 
Amplification of Avh195 coding sequence deprived of its signal peptide was carried out with HF Q5 

Taq polimerase (New England Biolabs®) using primers flanked by EcoRI restriction enzymes sites. 

The amplicon was digested with the appropriate restriction enzyme according to manufacturer’s 

instruction (New England Biolabs®) and cloned into vector pET28c (Merk Millipore®) allowing 

inducible expression of gene under control of IPTG. This construct was transformed into BL-21 

electrocompetent cells (New England Biolabs®). Transformed cells were cultivated in LB medium at 

37°C on selective medium and the cells issued from the transformation process were tested via PCR 

for the presence of the construct. Plasmid was purified from validated clones with QIAprep Spin 

Miniprep (Qiagen®) and sequenced for validation (GENEWIZ™ - Beckman Genomics®). Verified 

clones were then stocked in LB 15% Glycerol at -80°C for long term conservation. 
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 - RNA extractions and gene expression analysis 

All RNA extractions were performed according to Laroche-Raynal [251] using PCI/CI method or with 

miRNAeasy kit (Qiagen®). Nucleic acids were pelleted overnight in 2,5 Volumes of EtOH and 

eventually resuspended in DPEC water. After DNAse I treatment (Ambion®), RNA (1µg) was reverse-

transcribed using IScript cDNA synthesis kits (BioRad®) or with Superscript IV RT (invitrogen®).  

.  

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) experiments were 

performed in AriaMX (Agilent®) thermocycler with 5μl of a 1:20 or 1:50 dilution of first-strand cDNA 

and SYBR Green, according to the manufacturer's instructions (Eurogentec®).  

Primer pairs used for specific cDNA amplifications are listed in Section XV. Primers couples were 

designed using Primer3 software (http://frodo.wi.mit.edu) and their specificity was validated by the 

analysis of dissociation curves. Relative quantifications were made with the modified ΔCt method 

employed by the qBase 1.3.5 software. qBase was also used to determine the stability of reference 

genes.  

http://frodo.wi.mit.edu/
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 - SDS-page and Western blot analysis 

All protein samples presented in the work were resuspended in Laemmli loading buffer and loaded 

on a 15% acrilammide/bisacrilammide SDS gel. Electrophoresis was performed until exit of dye 

front. Proteins were transferred on PVDF membrane using Biorad Trans-Blot® Turbo™ apparatus set 

for Mixed molecular weight transfer. Membranes were saturated in TBS (Tris HCl 25mM, NaCl 

140mM, KCl 3mm) 5% milk, incubation of primary and secondary antibody was performed in TBS-

Tween 0,1%, 2% milk, washing steps were performed before each step with TBS-Tween 0,1% 

solution. Eventually the membranes were irrorated with ECL reagent (Pierce®) and several 

exposition times were performed using photographic film and chemical reagents (Kodak®). 

- To detect GFP-antigen membranes were incubated with primary antibody Anti-GFP 

(Chromotek® 3H9) and secondary antibody HRP-conjugated Goat anti-Rat (Chromtek®). 

- To detect Atg8-antigen membranes were incubated with primary antibody Anti-Atg8 (Agrisera® 

AS14 2769) and HRP-conjugated secondary antibody Goat anti-Rabbit (Covalab®). 

- To normalize the loaded sample from Nicotiana tabacum, membranes were probed with 

primary antibody recognizing the photosystem II PsbO (Agrisera® AS14 2769) and HRP-

conjugated secondary antibody Goat anti-Rabbit (Covalab). 

- To normalize the loaded sample from Chlamydomonas reinhardtii, membranes were probed 

with a primary antibody recognizing the histone protein H3 (Agrisera® AS10 710) diluted and 

HRP-conjugated secondary antibody Goat anti-Rabbit (Covalab®). 
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 - Recombinant protein production and purification 

BL-21 electrocompetent cells transformed with plasmid vector pET28c-Avh195-His-tag were 

cultured in 4 ml LB medium at 37°C overnight. 24h later 2ml of the culture were used to seed 1L of 

terrific broth supplemented with kanamycin 30µg/ml and chloramphenicol 34µg/ml with constant 

aeration and agitation, kept at a constant temperature of 37°C. OD600 of the culture was monitored 

over time using a spectrophotometer. Synthesis of protein was induced by addition of 1mm/L IPTG. 

Three hours later the cell culture was collected by centrifugation 6000 rpm for 10 minutes and pellet 

was stored at -20°C.  

One aliquot of the collected cell culture corresponding to about 150 ml was resuspended in 15 ml 

of Tris HCl pH 7.5 20mM and sonicated on ice with an amplitude of 25%, three pulses of 30 seconds 

each. The suspension was then filtered on glass fiber and diluted to a final volume of 30 ml with Tris 

HCl pH 7.5 20mM, NaCl 500mM and imidazole 20mM final concentrations. 

 The sample was purified by affinity chromatography on a 5 ml Ni-Sepharose His-Trap column, 

washed twice and eluted with Tris HCl pH 7.5 20mM, NaCl 500mM and imidazole 500mM final 

concentrations. Eluted sample was then loaded onto a PD10 column and eluted in Tris 20mM pH 

7.5 then concentrated with a centrifugal filter Amicon® Ultra-4 10K (Merk-Millipore®). Protein 

content was determined with Bradford protein assay and sample purity was assessed on SDS page 

followed by silver staining.  

Silver staining of polyacrylamide gels was performed as follows: gel was fixed in a solution of 50% 

methanol 12% acetic acid for 45 minutes, washed in 50% ethanol then dipped in 0.02% 

Na2S2O3·5H2O solution to remove background. Staining was performed in 0.02% AgNo3 0.07% 

Formaldehyde for 20 minutes and bands were revealed in 6% Na2CO3, 0.0004% Na2S2O3·5H2O, 

0.05% Formaldehyde. 
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 - Yeast two-hybrid asssay 

To determine interactions between membrane-associated Avh195 and ATG8, the mating-based split 

ubiquitin system (mbSUS) was used and employed as described [198]. Sequences encoding Avh195 

and AtBi-1 were integrated as baits into pMetYC-DEST and transferred into the haploid Mata yeast 

strain THY.AP4. Sequences encoding CrATG8, AtATG8D, AtATG8G, and AtATG8H were cloned as 

preys into pNX32-DEST and transferred into the haploid Matalpha yeast strain THY.AP5. This strain 

was also transformed for positive and negative control with the prey plasmids, pNubWt-X-gate and 

empty pNX32-DEST, respectively. Mating between THY.AP4 and THY.AP5 transformants, and 

selection of diploids for growth on Synthetic Complete minimum (SC) medium complemented with 

adenine (A) and histidine (H) was performed as described [198]. Physical proximities between baits 

and preys were determined as autotrophic growth of yeast cells (from 108 to 104 cells per spot) at 

30 °C on SC medium in the absence of adenine and histidine. 
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 - Arabidopsis thaliana assays 

Arabidopsis thaliana cultures 
In all this work Arabidopsis lines were from the Colombia genetic background (Col-0, N60000). 

For cultures in non-sterile conditions Arabidopsis thaliana seeds where spread on a mixture of 

ground and sand and then placed 48h at 4°C for stratification. Then pots were placed in a climate 

chamber at with short photoperiod (8h light / 16h dark at 24 °C) for 3 weeks. Next, plants where 

transplanted in individual pot and left to in a climatic chamber at 24 °C with a 16h light /8h dark 

photoperiod until needed or until flowering. 

For in vitro culture Arabidopsis seeds were surface-sterilized in 20% NaClO 80% EtOH, rinsed three 

times with 100% ethanol. Seeds were sown on MS 2/2 (1x Murashige and Skoog (MS) medium 

(Sigma®) supplemented with 2% sucrose (Prolabo®), and 2% agar), cold-stratified for two days and 

then incubated at 21˚C under short-day conditions (8h light / 16h dark). After 6 days, plantlets were 

transferred to 96 well plates containing 30µl of the same medium which was overlaid with 25µl of 

liquid 0.5x MS supplemented with 1% sucrose for 8 days prior experimentations. 

Generation of Arabidopsis thaliana stable genetic transformants 
Arabidopsis plants were transformed with the destination vector pk7FWG2-Avh195 via the floral dip 

method [252]. Briefly, agrobacterium tumefaciens strain GV3101 containing the expression vector 

pK7WG2-Avh195 were cultivated in LB medium with antibiotics at 28°C. When OD = 1 bacteria were 

collected by centrifugation 4000 rpm x 10min and resuspended in transformation mix containing 

MS medium 0.5x, 5% sucrose, and 0,03% Silwett L-77, pH 5.7).  

Arabidopsis inflorescences were inverted and dipped into agrobacterium suspension for 2 min. 

Once drained, plants were placed in a covered container and incubated under constant light for one 

day at 16°C then transferred in a long day room (16 hours light/8 hours dark, 21 °C) to allow 

senescence.  

Seeds of transformed plants were harvested and selected in vitro on MS petri dishes via antibiotic 

selection (Kanamycin 50µg/ml). Transformation-derived plants where then allowed to self-pollinize 

until obtainment of homozygous plants. 

Arabidopsis thaliana – Phytophthora parasitica interaction 
P. parasitica Dastur isolate 310 was initially isolated from tobacco in Australia, and was maintained 

in the Phytophthora collection at INRA, Sophia Antipolis, France. The conditions for Phytophthora 



 [MMATERIALSMATERIALS ET METHODS 

   

  
 119 

 

growth and zoospore production were as previously described [253]: mycelia were cultivated on 

V8-agar medium at 24°C in the dark. To produce zoospores, mycelia were cultivated for 1 week in 

V8 liquid medium at 24°C under continuous light. This material was then macerated and incubated 

for a further 4 days on water supplemented with 2% agar. The zoospores were released by a heat 

shock treatment: incubation at 4°C for 1h followed by incubation at 37°C for 30 min. Water (10 ml) 

was added in between incubations.  

Zoospore suspension containing 103 cells was then used to inoculate 15 days old Arabidopsis 

plantlets grown in sterile conditions. Experiments were carried out in duplicate. At the defined time 

points after infection plantlets were collected and immediately frozen in liquid N2. 

RNA extraction and gene expression analysis 
Frozen Arabidopsis thaliana plantlets (infected or not with P. parasitica) were ground with mortar 

and pestle in N2 until pulverized then transferred to 2 ml test tube. 

RNA extraction and gene expression analysis of A. thaliana - P. parasitica samples was performed 

as described in Section III. Relative expression of the target genes was calculated with the NADH and 

OXA1 genes as references for Arabidopsis [45], WS41 and UBC for P. parasitica [79]. 

Arabidopsis thaliana – Hyaloperonospora arabidopsidis interaction 
Plants from the Col-0 wild-type and the Avh195-overexpressing lines were grown for 7 days in a soil-

sand mixture at 20 °C under short-day conditions (8h light, 16h dark). Cotyledons from a population 

of about 500 plants per line were then spray-inoculated to saturation with Hpa isolate Noco2 

conidiospores at 40,000 spores mL-1. Inoculated plants were kept at 16 °C with a 16h photoperiod, 

first under 100 % relative humidity for 24h, then under 60 % relative humidity for 4 day, before 

relative humidity was increased again to 100 % for 48 hours to promote sporulation. Seven days 

after inoculation, 10 plantlets were repeatedly harvested (20 samples) from each line and placed 

into 20 tubes containing each 1.5mL water. After vortexing, the amount of released spores was 

determined with a hemocytometer and expressed as the amount of spores produced per mg of leaf 

fresh weight. 
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 - Solanum lycopersicum assays 

Seeds of Solanum lycopersicum var. Marmande were surface-sterilized, sown on a mixture of ground 

and sand and placed in a climatic chamber at 24°C with a 16h light/8h dark photoperiod until 

development of 2-3 expanded leaves. Roots were water washed and plants were transferred to 2ml 

test tube containing 1.5ml of COIC medium for 2 days until experimentation. 

Solanum lycopersicum – Phytophthora parasitica interaction 
P. parasitica isolate 709 from France (collected on Lycopersicon esculentum) was cultivated as 

described in 0. A zoospore suspension of x 105 cells/tube was inoculated on roots of S. lycopersicum. 

At the defined time points after infection roots were collected and immediately frozen in N2. 

RNA extraction and gene expression analysis 
RNA extraction and gene expression analysis on S. lycopersicum - P. parasitica samples was 

performed as described in Section III. Relative expression of the target genes was calculated with 

WS21, WS41 and UBC as reference genes for P. parasitica [79]. 
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 - Nicotiana species assays 

Tobacco (Nicotiana tabacum var xanthii and Nicotiana benthamiana) plants were grown on a 

mixture of ground and sand in non-sterile conditions. The pots were placed in a climate chamber at 

with long photoperiod (16h light / 8h dark at 24 °C) for 3-4 weeks as previously described [79]. 

Transient overexpression in tobacco 
Agrobacterium tumefaciens strain GV3101 transformed with the vector constructs of interest was 

grown in LB medium supplemented with 50 mg/ml rifampicin, 20 mg/ml gentamicin and 100 mg/ml 

spectinomycin until OD600 reached 1.0. Then cells were pelleted, resuspended in infiltration buffer 

(10mM MgCl2, 10mM 2-[N-morpholino] ethanesulfonic acid [MES], pH 5.6, 150µM acetosyringone) 

and adjusted to the appropriate optical density, then left 3h at room temperature in the dark before 

infiltration. Mix were prepared just before infiltration. Abaxial side of leaves of N. tabacum or N. 

benthamiana was infiltered using a syringe without needle. 

Cell death assay 
Fully expanded leaves of 3-4 weeks old N. tabacum plants were infiltered with suspensions of A. 

tumefaciens carrying pK7FWG2-Avh195 or its derived version (pK7WGF2-Avh195ΔED; pK7FWG2-

Avh195ΔAIM) and/or Cryptogein (GenBank accession no. Z34459.1) previously cloned into the 

pK7FWG2 vector [79]. Infiltration was performed at a final OD600 = 0.2 for the cell death inducer and 

OD600 = 0.3 for the Avh195 constructs. Evaluation of the necrosis was carried out simultaneously on 

the three infiltration zones (Avh195 + Cryptogein / Avh195ΔED + Cryptogein or Avh195ΔAIM + 

Cryptogein). For each analyzed leaf a first score of 1 was attributed to the infiltrated patch 

presenting the least symptoms. We then compared the symptoms observed in the two neighboring 

patches and gave them a score ranging from 1 to 4 with 1 indicating absence of difference and 4 

greatest difference. 

Avh195 sub-cellular localization via live cell imaging 
Fully expanded leaves of 3-4 weeks old N. benthamiana plants were infiltered with suspensions of 

A. tumefiaciens carrying pK7WGF2-GFP_Avh195 or pK7WGR2-RFP_CrATG8. Leaf patches were 

collected 72h after infiltration and mounted in water/sorbitol 0.8M for live cell imaging. Green and 

red fluorescence conferred by GFP- and RFP-tagged fusion proteins were detected in optical 

sections by confocal laser scanning microscopy on an inverted Zeiss LSM 880 microscope, equipped 

with Argon ion and HeNe lasers as excitation sources. For simultaneous imaging of GFP and RFP, 



MATERIALS AND METHODS [ 

   

  
122  

 

samples were excited at 488 nm for GFP and 561 nm for RFP. Confocal images were processed using 

the Zeiss ZEN 2 software. 

Cell fractioning 
Fully expanded leaves of 3-4 weeks old N. benthamiana plants were infiltered with suspensions of 

A. tumefiaciens carrying pK7FWG2-GFP_Avh195 or pK7RWG2-RFP_CrATG8. Leaf patches were 

collected 72h after infiltration and frozen in liquid nitrogen. 

Frozen samples were crushed by mortar and pestle until pulverized then transferred to 15 ml tube. 

For cell fractioning samples were resuspended in sucrose free microsome extraction buffer (100mM 

Tris HCl pH 7.4; 10mM KCl; 10mM EDTA; 1% Protease inhibitor cocktail; 12% Sucrose). Samples were 

centrifuged at low speed (1500 g x 10min at 4°C). The supernatant was collected, filtered on thin 

sieve to remove any floating leaf fragment then sucrose was added to a final concentration of 12%. 

Samples were centrifuged at 100000 g x 90 minutes at 4°C. At the end of centrifugation, the soluble 

fraction was collected in a new tube whereas the microsomal fraction was washed once in sucrose 

free extraction buffer and resuspended in 1 ml of fresh buffer. 

To help the solubilization of the microsomes, the microsomal fraction samples were sonicated on 

ice intensity 30% with a 10-second pulse 3 times. Samples from both the soluble fraction and 

microsomal fraction were loaded on SDS-page followed by Western blot against GFP, Atg8 and PstO 

were performed as described in Section IV.    
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 - Chlamydomonas reinhardtii assays 

Chlamydomonas reinhardtii cell culture 
Chlamydomonas reinhardtii strain dw15.1 (nit1-305 cw15; mt+) is a cell wall-less strain derivative of 

cw15 and is maintained at the CEA lab. Seed cells were cultivated in 250-ml flasks with 100 ml Tris 

Acetate Phosphate (TAP) medium under 12h /12h, light-dark cycle at 23°C with shaking. 

Transformant cells were maintained on agar plates containing antibiotic selection (Hygromycin B 

7µg/ml). 

In heat shock experiments, liquid cultures of C. reinhardtii in exponential growth were immersed in 

a water shaking bath at 42°C for 40min and subsequently put back at 23°C. 

Where needed, Rapamycin 0.5μM or drug carrier (0,004% EtOH % and 0,001 % Tween) was added 

to liquid cultures at the beginning of light period. 

Generation of Chlamydomonas reinhardtii transformant lines 
Synthetic gene encoding Avh195 was designed using the average codon usage implemented in the 

Codon Usage Database (http://www.kazusa.or.jp/codon). Gene synthesis was performed by 

GeneArt technologies and cloned in pChlamy_3 vector using KpnI and NotI restriction sites (Thermo 

Fisher®). 

Nuclear transformation was performed using the electroporation method as previously described 

[254]. Briefly, the cells of Chlamydomonas reinhardtii WT strain dw15 were grown to 1.0–2.0 × 106 

cells/mL in TAP medium. Subsequently, 2.5 × 106 cells were harvested by centrifugation and 

suspended in 250µl of TAP medium supplemented with 40mM sucrose. Electroporation was 

performed by applying an electric pulse of 0.7 kV at a capacitance of 50 µF (GENE PULSER®, Bio-

Rad), using 400 ng of ScaI-linearized plasmids purified by agarose gel electrophoresis according to 

the manufacturer’s instructions. The transgenic strains were selected directly on TAP/agar plates 

containing hygromycin B (30mg/L), and the plates were incubated under continuous fluorescent 

light (20µMol m−2 s−1) at 25°C. 

Characterization of transformant lines by genotyping 
Genotyping of Avh195-expressing Chlamydomonas reinhardtii was performed on total DNA extracts 

or cDNA samples. PCR analysis were performed on samples with combinations of specific primers.  
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Genomic DNA was extracted from cell pellet (5-6mm) issued of a petri dish culture resuspended in 

200µl of Milliq water. Cells were spun down and then resuspended in 500µl of Chlamydomonas DNA 

extraction buffer (10mM Tris HCl pH 8.8; 10mM NaCl; 10mM EDTA; 1% SDS). DNA extraction was 

performed adding an equal volume of PCI: after vigorous shaking and centrifugation at 12000g x 

10min the aqueous phase is collected and treated with RNAse A 20µg/ml 37°C for 30 min. Then 

sample was extracted twice with an equal volume of PCI and once with CI. Precipitation of DNA was 

performed overnight adding 1,5 Volumes of EtOH 95% and 0,2M NaCl. Eventually sample was 

centrifuged 15000g x 15min at 4°C, pellet is washed in EtOH75% and resuspended in 50µl of Milliq 

water. 

cDNA samples were prepared as described in Section III. 

RNA extraction and gene expression analysis 
Chlamydomonas reinhardtii frozen samples were directly resuspended in Chlamydomonas RNA 

extraction buffer (10mM Tris HCl pH 8.8; 600mM NaCl; 10mM EDTA; 4% SDS). For RNA extraction 5 

ml of culture were collected by centrifugation 4000g x 5min, pelleted cells were frozen in N2 and 

stored at -80°C; RNA was extracted as showed in Section III. 

RT-qPCR experiments were performed as showed in Section III. Relative expression of the target 

genes was calculated with Cre02.g106550, Cre04.g227350 and Cre05.g232750 as reference genes 

[210]. In heat shock experiments the relative expression of the target genes was calculated with 

BTUB and CBLP as reference genes [210]. At least three biological replicates per experiment were 

analyzed. 

Fluorescence staining and Microscopy observation  
In experiments performed using the acidotropic dye Lysotracker® DND-189 (Thermo Fisher®) the 

probe was added to cells at 1µM final concentration. Cells were incubated at 37°C for 30min in the 

dark, rinsed twice in TAP medium and resuspended in a minimal volume then mounted on a glass 

slides for live cell imaging.  

In experiments performed using the live/dead cell staining SYTOX ® Green (Thermo Fisher®) the dye 

was added to 0.5µM final concentration and incubated at room temperature for 15 minutes in the 

dark. Cells were directly spotted on a glass slides for observation.  

For both stainings, cells were analyzed with the epifluorescence microscope AxioimagerZ1 (Zeiss®) 

using GFP44 filter; images were acquired with the camera AxioCam MRm and analyzed with Zeiss 

ZEN 2102 pro® software and Fiji image processing software (https://imagej.net/Fiji). 
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Transmission Electron Microscopy 
The wild type strain and selected transgenic strains were cultured in liquid medium until the 

exponential growth phase (2 x 106 cells/ml) under a 12h light/12h dark cycle. Rapamycin (0.5µM) 

was added at the start of the light period. After 4, 8, 12 and 24 hours of incubation, cells were 

collected, fixed in a mixture of Cacodilate buffer 0.1M and glutarhaldeyde 2.5% and stored at 4°C. 

Cells where then rinsed with buffer and then postfixed in 1% osmium tetroxide in cacodylate buffer 

(0.1M). The final cell pellet was washed in water, dehydrated in acetone, and embedded in epoxy 

resin. Uranium- and lead citrate-contrasted thin sections (80 nm) were analyzed in a JEOL JEM-1400 

120kV transmission electron microscope. Images were acquired with an 11 MegaPixel SIS Morada 

CCD camera (Olympus®). 

Flow cytometry  
The wild type strain and selected transgenic strains were cultured in liquid medium until the 

exponential growth phase under a 12h light/12h dark cycle.  

For the analysis of cell proliferation and cell death a sample of unstained cells for each analyzed 

strain was collected at the beginning of the light period. Then 2 x 106 cells were stained with 7.5µM 

CFSE (Invitrogen®) 20 minutes in the dark with shacking then washed once in TAP medium and 

resuspended in appropriate amount of fresh medium to obtain a final concentration of 2 x 106 

cell/ml. Cells were then treated with drug vehicle or Rapamycin 0.5µM; assessing the beginning of 

the light period as time t=0, samples were taken from cultures at 4, 8, 12 and 24h. Samples where 

counterstained with 4'-6-diamino-2phenylindole (DAPI) (0.05µg/ml final prior to analysis by flow 

cytometry. Flow cytometry analysis is performed on a SP6800 spectral cytometer (SONY 

Biotechnologies®) [255]. Data from single cells were then analyzed with Kaluza software (Beckman 

coulter®).  

Protein extraction and Western blot 
To perform protein extraction of Chlamydomonas 10 ml of culture were collected by centrifugation 

4000g x 5min and quickly frozen in N2. Cell pellet was then resuspended in 250µl of Chlamydomonas 

Protein extraction buffer (10mM Tris HCl pH 7.5; 100mM NaCl; 0.1% EDTA; 0.1% NP-40; 1% Protease 

inhibitor cocktail; 5% Glycerol). Cells were lysed with 2 cycles of freeze at -80°c followed by thawing 

at RT, then centrifuged 16000g x 15min at 4°C. Soluble fraction was collected and total protein 

content was estimated with Bradford protein assay following manufacturer’s instructions. 10µg   of 
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total protein were resuspended in Laemmli buffer; SDS page and Western blot against Atg8 and H3 

were performed as described in Section IV.  

 - HeLa cells assays 

HeLa cell culture and treatments 
HeLa cells were obtained from the American Type Culture Collection (ATCC) and maintained 

according to ATCC instructions. Briefly, HeLa cells were cultured in DMEM with 1% 

penicillin/streptomycin, 1% sodium pyruvate and 10% FBS, in humidified atmosphere at 37°C 

containing 95% CO2 and 5% O2. HeLa were plated at a concentration of 5000 cells/well in 96-well 

plate. 24h later, cells were exposed to 10 ng/L of Avh-195 purified protein (Section V) for the 

indicated time.  

Lysosome detection and immunostaining 
After treatments or transfections, acidic vesicles were labelled with LysoSensor® Green DND-189 

(50 nM) and the nuclear marker Hoechst 33342 (2.5 μg/ml final) at 37 °C. For the detection of 

Avh195, cells were fixed after treatments and Avh195 was detected using a specific primary 

antibody directed against His-Tag. After washing with PBS, secondary antibody coupled to 

AlexaFluor® 488 (Molecular Probes®) was added. Images were acquired with an inverted 

fluorescence microscope (Nikon®) equipped with a CCD camera (ORCA ER®, Hamamatsu Photonics), 

at 20× magnification. 

Transient transfection of HeLa cells 
HeLa cells were used to seed 96-well plates (500000 cells/well). Expression vectors pcDNA-DEST53-

GFP_Avh195 and pcDNA-DEST47-Avh195_GFP and corresponding empty vectors were transfected 

using Lipofectamin ® 2000 at reagent-to-DNA ratios of 3:1 according to the manufacturer conditions. 

After 48h of transfection, cells were observed under a light microscope (Nikon®) equipped with a 

CCD camera (ORCA ER®, Hamamatsu Photonics), at 20× magnification. 

 - Statistical analysis 

All results showed are representative of two to three independent experiments. Statistical 

differences were assessed with Student’s T-test. 
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 - Sequences 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

> Avh195 - full coding sequence 

ATGCGTCTGCCAATCATCGCTTCGTGCAATGCTTACGTACTGCTGCTAGCGGTGTGTATTCTATCGGCCTATGAACAAGAAGCTGTT
GTCGCGCAAAACGCTCAGCGTTGGAGCTCAACTCATTCTGTTGCTGCTGCTGAAACCGGAGATACGTCTGGCAAACGTCTCTTAAGG
TCTGACAGTATTCCGACTGTTGATGCTGAAGAGAGGGCCCTCCCAGGCATGACGAAGCTAACCGAGACGCTTAAGAAATGGATATCC
GCATTGAGAAGCAAACTGAGCAACAAGAAGTTGTGGTGGAACTACCAGAAGCTGGGTAAACAAAAGCTTTCGGACTTAGATATCACC
GGAATGTGGTTGAAAAACGGGAAAAGCTATGATGACATCTTCGACCGCTGGATTCGACTCGATAAGTCACCGAGGCAAGCAGCCAA
AAACTTGCTGAATCATGGTACAACAACGAATGATCTCTACAAGGTCTTGCGGAAGCGTAATATGAACCTGGAAACAATCAGACCGAT
TTGGCGCGAAGTCGGACTGACAGAGTATCAACTTCGTGCCGCTCGTCACGCGGCTAGCGCCTTGTGA 

 

>Avh195 - protein sequence 

MRLPYVLLLAVCIIIASCNALSAYEQEAVVAQNAQRWSSTHSVAAAETGDTSGKRLLRSDSIPTVDAEERALPGMTKLTETLKKWISALRS
KLSNKKLWWNYQKLGKQKLSDLDITGMWLKNGKSYDDIFDRWIRLDKSPRQAAKNLLNHGTTTNDLYKVLRKRNMNLETIRPIWREVG
LTEYQLRAARHAASAL* 

 

>Avh195ΔAIM -  protein sequence without signal peptide 

LSAYEQEAVVAQNAQRWSSTHSVAAAETGDTSGKRLLRSDSIPTVDAEERALPGMTKLTETLKKWISALRSKLSNKKLWWNYQKLGKQ
KLSDLDITGMWLKNGKSADDAFDRAIRADKSPRQAAKNLLNHGTTTNDLYKVLRKRNMNLETIRPIAREAGLTEYQLRAARHAASAL* 

 

>Avh195ΔED -  protein sequence without signal peptide 

LSAYEQEAVVAQNAQRWSSTHSVAAAETGDTSGKRLLRSDSIPTVDAEER* 

 
>Avh195 without signal peptide for heterologous expression in C. reinhardtii 

CTGTCGGCCTACGAACAGGAGGCTGTGGTGGCGCAGAACGCTCAGCGGTGGAGCTCAACTCACTCCGTGGCGGCGGCCGAGACCG
GCGACACCTCTGGCAAGCGCCTCCTCAGGTCCGACTCGATCCCGACCGTCGACGCGGAGGAGCGGGCCCTGCCCGGCATGACGAAG
CTGACCGAGACGCTTAAGAAGTGGATCTCCGCACTGCGGAGCAAGCTGAGCAACAAGAAGCTGTGGTGGAACTACCAGAAGCTGGG
CAAGCAGAAGCTGTCGGACCTGGACATCACCGGCATGTGGCTGAAGAACGGGAAGAGCTACGACGACATCTTCGACCGCTGGATTC
GACTCGACAAGTCGCCCCGCCAGGCGGCCAAAAACTTGCTGAATCACGGCACCACCACGAACGATCTCTACAAGGTGCTGCGCAAGC
GCAACATGAACCTGGAGACCATCCGCCCGATTTGGCGCGAGGTCGGCCTGACAGAGTACCAACTGCGCGCCGCCCGTCACGCGGCC
AGCGCCCTG 

Domain Start End 

Signal peptide 0 60 

RxLR 163 175 

EER 202 211 

Effector domain 212 588 

AIM Site 1 (KSYDDI) 370 387 

AIM Site 2 (DRWIRL) 391 407 

AIM Site 3 (PIWREV) 517 534 
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 - Growth media 

Bacteria 

Luria Bertani Broth (LB) 

Bacto-tryptone 10g 
Yeast extract  5g 
NaCl   10g 
Water   up to 1000ml 
Agar (solid medium) 15g 
 
Terrific Broth (TB) 

Bacto-tryptone     12g 
Yeast extract      24g 
Glycerol      4ml 
Phosphate buffer (HK2PO4 0.72M; H2KPO4 0.17M) 100 ml 
Water       up to 900ml 
 

Yeast 

Synthetic Complete (SC) medium (pH 6.0-6.3) 

Yeast Nitrogen base 1.7g 
(NH4)SO4  5g 
Glucose  20g 
Drop Out mixture 1.5g 
Water   up to 1000ml 
Agar (solid medium) 20g 
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Plant 

Murashige and Skoog (MS) 2/2 

MS   4.4g 
Sucrose  20g 
Water   up to 1000ml 
Agar (solid medium) 20g 
 
 
COÏC nutritive solution 100x 

HNO3 (d=1.33)   31ml 
(NH4)HPO4   14.5g 
MgSO4 7·H2O   12.5g 
Ca(NO3)2 4·H2O  61g 
KNO3    22g 
µCoïc solution   10ml 
EDTA Fe   250ml 
Water   up to 1000ml 
 
 
Stock solutions 

- µCoïc solution 
(NH4)2MoO4  50mg 
H3BO3   1.5g 
MnSO4 7·H2O  2g 
ZnSO4 7·H2O  1g 
CuSO4 5·H2O  250mg 

Water   up to 100ml 
 

- EDTA Fe 
FeSO4 7H2O  5.57g 
Na2EDTA  7.45g 
Water   up to 1000ml 
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Chlamydomonas 

TAP medium 

Beijerink solution  50ml 
Phosphate buffer  1ml 
Hutner’s trace elements 1ml 
Acetic acid   1ml 
Water    up to 1000ml 
Agar (solid medium)  15g 
 

Stock solutions 

- Beijerink solution 
NH4Cl   8g 
MgSO4 7·H2O  2g 
CaCl2 2·H2O  1g 
Water   up to 1000ml 
 

- Phosphate buffer   
HK2PO4  10.6g 
H2KPO4   5.3g 
Water   up to 100 ml 
 

- Hutner’s trace elements 
EDTA disodium salt  50g 
ZnSO4 7·H2O   11.4g 
H3BO3    22g 
MnCl2 4·H2O   5.06g 
CoCl2 6·H2O   1.61g 
CuSO4 5·H2O   1.57g 
(NH4)6Mo7O24 4·H2O  1.1g 
FeSO4 7·H2O    4.99g 
KOH    12g 
Water    up to 1000ml 
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 - Primers 

Vector constructions and verification 
Name Organism Sequence 5'3' Polarity Comment 

attB1_Avh195_F P. parasitica GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACCATGCTATCGGCCTATGAACAA + Gateway cloning 

attB2_Avh195_R P. parasitica GGGGACCACTTTGTACAAGAAAGCTGGGTCTCACAAGGCGCTAGCCGCGTG - Gateway cloning 

attB2_Avh195_ΔEER_R P. parasitica GGGGACCACTTTGTACAAGAAAGCTGGGTCtcaCCTCTCTTCAGCATC - Gateway cloning 

     

195_AIM_S1_mut_F P. parasitica GAAAAACGGGAAAAGCGCTGATGACGCCTTCGACCGCTGG + Site-directed mutagenesis 

195_AIM_S1_mut_R P. parasitica CCAGCGGTCGAAGGCGTCATCAGCGCTTTTCCCGTTTTTC - Site-directed mutagenesis 

195_AIM_S2_mut_F P. parasitica CATCTTCGACCGCGCGATTCGAGCCGATAAGTCACCG + Site-directed mutagenesis 

195_AIM_S2_mut_R P. parasitica CGGTGACTTATCGGCTCGAATCGCGCGGTCGAAGATG - Site-directed mutagenesis 

195_AIM_S3_mut_F P. parasitica CAATCAGACCGATTGCGCGCGAAGCCGGACTGACAGAG + Site-directed mutagenesis 

195_AIM_S3_mut_R P. parasitica CTCTGTCAGTCCGGCTTCGCGCGCAATCGGTCTGATTG - Site-directed mutagenesis 

     

EcoRI_Avh195 noSP _ F P. parasitica GGGGACGAATTCCTATCGGCCTATGAACAAGAAGCT + 
Recombinant protein 

production 

EcoRI_Avh195_R P. parasitica GGGGACGAATTCTCACAAGGCGCTAGCCGCGTG - 
Recombinant protein 

production 

     

attB1_CrATG8_F C. reinhardtii GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACCATGGTTGGCTCCCGACCCCCGAC + Gateway cloning 

attB2_CrATG8_R C. reinhardtii GGGGACCACTTTGTACAAGAAAGCTGGGTCTCACAACGCCAGCTCCTCCACA - Gateway cloning 

     

pChlamy3_intron_F C. reinhardtii TGCTTGCAGATTTGACTTGC + Chlamydomonas genotyping 

pChlamy3_spliced_F C. reinhardtii TAAAATGGCCAGGAGATTCG + Chlamydomonas genotyping 

pChlamy3_RBCS2 3'UTR_R C. reinhardtii TACCGCTTCAGCACTTGAGA - Chlamydomonas genotyping 

pChlamy3_5'UTR_F C. reinhardtii GATAAACCGGCCAGGGGGCC + Chlamydomonas genotyping 

pChlamy3_3'UTR_R C. reinhardtii CAGCAAAAGGTAGGGCGGGC - Chlamydomonas genotyping 

 

 

qPCR 
Name Organism Sequence 5'3' Polarity Comment 

PR1a: At2g14610_F A. thaliana CGGAGCTACGCAGAACAACT + qPCR 

PR1a: At2g14610_R A. thaliana CTCGCTAACCACATGTTCA - qPCR 

PD_F1.2b: At2g26020_F 
A. thaliana 

ACCAACAATGGTGGAAGCAC + qPCR 

PD_F1.2b: At2g26020_R 
A. thaliana 

CACTTGTGAGCTGGGAAGAC - qPCR 

NADH : AT5G11770 _F 
A. thaliana 

GAAGTTGTGCCAATGGAGGT + qPCR 

NADH : AT5G11770 _R A. thaliana CCACCAATGCAAGAAATCCT - qPCR 

Oxa1: AT5G62050 _F A. thaliana AACAGGACTCAGCGATGTTG + qPCR 

Oxa1: AT5G62050_ R A. thaliana TACCTGATCTGCCTCCACCT - qPCR 
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Name Organism Sequence 5'3' Polarity Comment 

qUBC_F1 P. parasitica CCACTTAGAGCACGCTAGGA + qPCR 

qUBC_R1 P. parasitica TACCGACTGTCCTTCGTTCA - qPCR 

qWS21_F1 P. parasitica CTCCAGAACGTGTACATCCG + qPCR 

qWS21_R1 P. parasitica TAGCGCCCTTCTCCTCAG - qPCR 

qWS41_F1 P. parasitica TTCAAGTCCAGTGAGATCGG + qPCR 

qWS41_R1 P. parasitica TTGTGTCTTTGTGTGATGCG - qPCR 

q195_F10 P. parasitica AGGCAAGCAGCCAAAAAC + qPCR 

q195_R10 P. parasitica CGGCACGAAGTTGATACTCTG - qPCR 

q195_F2 P. parasitica CTTCGTGCAATGCTCTATCG + qPCR 

q195_R2 P. parasitica CAGACGTATCTCCGGTTTCAG - qPCR 

qNPP1_F P. parasitica CCCCAAATGAACGTCCTTAC + qPCR 

qNPP1_R P. parasitica TGAACTTGACACCAGCCTTC - qPCR 

qHMP1_F P. parasitica GATCGGTGAGACCATTTTCG + qPCR 

qHMP1_R P. parasitica TGTTGAGGAACGTGTCAAGC - qPCR 

     

qCre195_1_F C. reinhardtii ATCTTCGACCGCTGGATTC + qPCR 

qCre195_1_R C. reinhardtii TGGTCTCCAGGTTCATGTTG - qPCR 

qCre_ATG8 C. reinhardtii CGACATTCAAGCAGGAGCATTCC + qPCR 

qCre_ATG8 C. reinhardtii TCTGCCTTCTCGACAATGACTGG - qPCR 

qCre_VTI_1_2_F C. reinhardtii GGCAAAAGCAGCTTCAGAAC + qPCR 

qCre_VTI_1_2_R C. reinhardtii AAAGTCCGAAGTGGATGACC - qPCR 

qCre_ATG6_F C. reinhardtii TTTGACAACGCGAGCGTGGATG + qPCR 

qCre_ATG6_R C. reinhardtii TGTGACCCAACAGAAGCACCTTG - qPCR 

Cre_AMYA1_F C. reinhardtii TGTCTTGATTTGCGCCAAGG + qPCR 

Cre_AMYA1_R C. reinhardtii GGCCCATTGATTTTGTGGTG - qPCR 

Cre_GWD1_F C. reinhardtii TTGTGTGTGAGGGAGCGAATTG + qPCR 

Cre_GWD1_R C. reinhardtii GCTCCATCAAAATCGACGAAGG - qPCR 

Cre_STA2_F C. reinhardtii CGATGGTTTTGTTGAGGTGCAG + qPCR 

Cre_STA2_R C. reinhardtii ATCGACGGGCACCAAAAATG - qPCR 

Cre_GPM1_F C. reinhardtii CGAGGCGTTTGAGAAAGCAAC + qPCR 

Cre_GPM1_R C. reinhardtii GCGTACAAATCCGCTCAATGC - qPCR 

Cre_ BTUB_F C. reinhardtii CCCCCGCCTGCACTTCTTC + qPCR 

Cre_ BTUB_R C. reinhardtii GTCGGCGGCGCACATCAT - qPCR 

CBLP_F C. reinhardtii GCCACACCGAGTGGGTGTCGTGCG + qPCR 

CBLP_R C. reinhardtii CCTTGCCGCCCGAGGCGCACAGCG - qPCR 

RBCS2_F C. reinhardtii ATACTGCTCTCAAGTGCTGAAGCG + qPCR 

RBCS2_F C. reinhardtii AAAGACTGATCAGCACGAAACGG - qPCR 
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 - Vector constructions 

Plant overexpression vectors 
pK7WGF2-GFP_Avh195 

 

pK7WGR2-RFP_CrATG8 

 

pK7FWG2-Avh195 

 

 

Chlamydomonas overexpression vector 
pChlamy_3-Avh195 
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Yeast mBSUS vectors 
pMetYC-DEST-Avh195 

 

pNX32-DEST-ATG8 

 

 

Recombinant protein production vector 
pET28a-Avh195-His 

 

 

HeLa overexpression vectors 
pcDNA-DEST47-Avh195_GFP 

 

 

pcDNA-DEST53-GFP_Avh195 
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Supplementary Figures 
 

 

Supplementary Figure 1: Representative view of Chlamydomonas cells from the wild-type and transgenic lines 
expressing Avh195, as analyzed by TEM. 

Micrographs show untreated cells, or cells that were incubated with 0.5 µM rapamycin for 4h, 8h, 12h, and 24h. Bars 
represent 10 µm. 
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Supplementary Figure 2: Accumulation of electron-dense, lysosome-like structures in cells from Avh195-expressing 
Chlamydomonas lines that were not treated with rapamycin. 

High resolution TEM micrographs were recorded at different time points after onset of light over a24h-day/night cycle. 
Appearance of the vesicle likely reflects basal autophagic flux within the cells. Bars represent 1 µm. 
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