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Rogério Gonçalves Dos Santos

Professeur, Universidade de Campinas (FEM) Directeur de thèse
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Abstract

Radiation plays an important role in a broad range of thermal engineering
applications comprising turbulent flows. The growing need for accurate and
reliable numerical simulations to support the design stages of such applications
is the main motivation of this thesis.
Of special interest in this work are the free-shear flows and the fundamental
understanding of how radiation can modify their fluid dynamics and heat trans-
port as well as how their turbulence fluctuations can alter radiative transfer.
The goal of this thesis is to provide high-fidelity data of turbulent free jets
coupled with thermal radiation in order to develop and validate free-shear tur-
bulent models accounting for coupling interactions. To this end, turbulent free
jets are described by direct numerical simulations (DNS) coupled to a recip-
rocal Monte-Carlo method to solve the radiative transfer equation. The spec-
tral dependency of the radiative properties is accounted for with an accurate
Correlated-k method. The numerical study is carried out with state-of-the-art
fidelity to be as representative as possible of an actual jet in a participating
medium. The simulation is optimized in terms of processing time taking ad-
vantage of an acceleration method called Acoustic Speed Reduction and by
injecting artificial turbulence to enhance inlet boundaries.
Two direct simulations of heated jets coupled with thermal radiation are car-
ried out. On the one hand, a heated jet with moderate radiation is simulated.
The analysis of its high-fidelity coupled DNS data has allowed to derive a new
scaling law for the decay of the temperature profile. This scaling accounts
for the effects of modified density due to moderate radiation. Moreover, it al-
lows for distinguishing whether thermal radiation modifies the nature of heat
transfer mechanisms in the jet developed region or not. On the other hand, a
strongly heated free jet is computed in order to quantify the effects of radiation
on mean temperature and velocity fields as well as on second order moments.
In the strongly heated jet, radiation has a significant contribution in the mean
enthalpy balance on both the developing and the developed zones. Then, mean
temperature fields are strongly affected by radiation in the strongly heated
jet. Further analysis of temperature fluctuations through the enthalpy fluctua-
tions balance has shown that the correlation between enthalpy fluctuations and
radiative power fluctuations significantly contributes to the dissipation of the
enthalpy variance. When radiation is taken into account, the molecular dissi-
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pative term nearly decreases by a factor of two. This is because production
decreases with radiation since temperature gradients are smoother, but also
because enthalpy variance is dissipated by radiation.
Besides the coupled DNS data, a RANS solver for variable-density flows coupled
with thermal radiation has been implemented during the course of this thesis.
The goal is to directly quantify the accuracy of the existing turbulent models,
and to identify key parameters for further modeling of coupling interactions.



Résumé

Le rayonnement thermique joue un rôle important dans un large éventail d’appli-
cations de génie comprenant des écoulements turbulents. La motivation prin-
cipale de cette thèse est le besoin croissant de précision et fiabilité dans les
simulations numériques appliqué à ce domaine. Cette thèse s’intéresse tout
particulièrement à la compréhension physique de l’impact du rayonnement sur
la dynamique des fluides et le transfert thermique, ainsi que de l’influence des
fluctuations turbulentes sur le transfert radiatif dans les écoulements à couche
de cisaillement. L’objectif de cette thèse est de fournir des données haute-
fidélités de jets libres turbulents couplés au rayonnement thermique afin de
développer et de valider des modèles turbulents d’écoulements à couche de ci-
saillement prenant en compte les interactions de couplage. À cette fin, les jets
libres turbulents sont décrits par des simulations numériques directes (DNS)
couplées à une méthode de Monte-Carlo réciproque pour résoudre l’équation
de transfert radiatif. La dépendance spectrale des propriétés radiatives est prise
en compte avec la méthode Correlated-k. L’étude numérique est réalisée avec
la plus grande fidélité pour être aussi représentative que possible d’un jet réel
dans un milieu participatif. La simulation est optimisée en termes de temps
de calcul en tirant parti d’une méthode d’accélération (Acoustic Speed Reduc-
tion) et en injectant de la turbulence artificielle pour améliorer les conditions
d’entrée.
Deux simulations directes de jets chauffés couplés au rayonnement sont réal-
isées. D’une part, un jet chauffé avec un rayonnement modéré a été simulé
et l’analyse de ses données DNS couplées a permis de dériver une nouvelle loi
d’échelle pour la décroissance du profil de température. Cette mise à l’échelle
rend compte des effets de la densité modifiée due à un rayonnement modéré. De
plus, cela permet de distinguer si le rayonnement modifie ou non la nature des
mécanismes de transfert thermique dans la région développée du jet. D’autre
part, un jet libre fortement chauffé a été calculé afin de quantifier les effets du
rayonnement sur les champs de température et de vitesse moyens ainsi que sur
les moments de second ordre. Dans le jet fortement chauffé, le rayonnement
joue un rôle important dans le bilan d’enthalpie moyen dans les régions ini-
tiale et développées du jet. Ensuite, les champs de température moyenne sont
fortement affectés par le rayonnement dans le jet fortement chauffé. Une anal-
yse des fluctuations de température dans le bilan des fluctuations d’enthalpie
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a montré que la corrélation entre les fluctuations d’enthalpie et les fluctuations
de puissance radiative contribuent de manière significative à la dissipation de
la variance de l’enthalpie. Lorsque le rayonnement est pris en compte, le terme
de dissipation moléculaire diminue presque d’un facteur deux. En effet, la pro-
duction diminue avec les radiations car les gradients de température sont plus
faibles, mais aussi parce que la variance de l’enthalpie est dissipée par le ray-
onnement. Outre les données DNS couplées, un solver RANS pour les écoule-
ments à densité variable couplé au rayonnement a été développé au cours de
cette thèse. L’objectif était de quantifier directement la précision des modèles
turbulents existants et d’identifier les paramètres clés pour une modélisation
plus poussée des interactions de couplage.



Resumo

A radiação desempenha um papel importante em uma ampla gama de apli-
cações de engenharia térmica inclusive em escoamentos turbulentos. A cres-
cente necessidade de precisão e confiabilidade nas simulações numéricas para
apoiar as etapas de design nesse contexto é a principal motivação da presente
tese. De especial interesse neste trabalho são os escoamentos livres e o en-
tendimento fundamental de como a radiação pode modificar a dinâmica e o
transporte de calor, assim como as flutuações turbulentas destes podem al-
terar a transferência de calor por radiação nesse tipo de escoamentos. Com o
fim de desenvolver e validar modelos para as interações radiação-turbulência, o
objetivo da presente tese é fornecer dados de alta fidelidade de jatos turbulen-
tos livres acoplados à radiação térmica. Assim, os jatos livres turbulentos são
descritos por simulações numéricas diretas (DNS) acopladas a um método de
Monte Carlo recíproco para resolver a equação de transferência radioativa. A
dependência espectral das propriedades radioativas é modelada com o método
Correlated-k. O estudo numérico é realizado com essas ferramentas numéricas
para ser o mais representativo possível de um jato real em um meio participante.
A simulação é otimizada em termos de tempo de processamento aproveitando
um método de aceleração chamado Acustic Speed Reduction e injetando tur-
bulência artificial para melhorar as fronteiras de entrada do escoamento.
Duas simulações diretas de jatos aquecidos acoplados a radiação térmica são
realizadas. Por um lado, um jato aquecido com radiação moderada é simulado.
A análise de seus dados DNS acoplados de alta fidelidade permitiu derivar uma
nova lei de escala para o decaimento do perfil de temperatura. Essa lei de
escala compensa os efeitos na densidade devidos à radiação moderada. Além
disso, permite distinguir se a radiação térmica modifica ou não a natureza dos
mecanismos de transferência de calor na região desenvolvida do jato. Por outro
lado, um jato livre fortemente aquecido é resolvido para quantificar os efeitos
da radiação nos campos médios de temperatura e velocidade, bem como nos
momentos de segunda ordem.
No jato fortemente aquecido, a radiação tem uma contribuição significativa no
balanço de entalpia. EntÃ£o, os campos de temperatura média são fortemente
afetados pela radiação no jato fortemente aquecido. Uma análise mais apro-
fundada das flutuações de temperatura através do balanço de flutuações de
entalpia mostrou que a correlação entre flutuações de entalpia e flutuações de
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potência radiativa contribui significativamente para a dissipação da variança de
entalpia. Quando a radiação é levada em conta, o termo dissipativo molecular
quase diminui por um fator de dois. Isso ocorre porque a produção diminui com
a radiação, já que os gradientes de temperatura são mais suaves, mas também
porque a variança de entalpia é dissipada pela radiação.
Além dos dados do DNS acoplado, um solver RANS para escoamentos de den-
sidade variável acoplado à radiação térmica foi implementado durante o curso
desta tese. O objetivo é quantificar diretamente a precisão dos modelos tur-
bulentos existentes e identificar os principais parâmetros para modelagem das
interações no acoplamento.
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Introduction

Global context of this thesis

World electricity generation has been notoriously growing during the past decades
and is projected to increase by a factor of 1.7 by 2040 according to the Inter-
national Energy Agency (IEA (2018)) as shown in Fig. 1. Embedded in this
growth there is the economic development of emerging markets such as Asia
and Africa. Furthermore, there are the challenges related to fighting climate
change and adapting to its effects.

Figure 1: World electricity generation by technology in the new Policies Scenario
which incorporates existing energy policies as well as an assessment of the results
likely to stem from the implementation of announced policy intentions. Extracted from
IEA (2018)

On November 28, 2018, the European Commission presented its strategic long-
term vision for a climate-neutral future by 2050 (EC (2018)) in line with the
Paris Agreement objective to keep the global temperature increase to well below
2oC and pursue efforts to keep it to 1.5oC (UNFCCC (2019)). As illustrated in
Fig. 2, the strategy includes the long-term objective of cutting greenhouse gas
(GHG) emissions in EU territory by 80-95% below 1990 levels by 2050 as part
of efforts by developed countries to reduce their emissions.
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Figure 2: Greenhouse gas emission trends, projections and targets in the EU. Ex-
tracted from EEA 2015.

Figure 3: Greenhouse gas emissions by sector in the EU in 2015 excluding land use,
land-use change and forestry. Data form EEA 2015, extracted from EP (2018)

Data from the European Environment Agency (EEA (2015)) points out that
the largest source of greenhouse gas emissions from human activities in the
EU comes from energy generation - not restricted to electricity generation - as
presented in Fig. 3 extracted from EP (2018). Given the growth perspectives
on energy demand, and the imperative target of reducing emissions, the ne-
cessity to optimize the existing energy generation systems, as well as
to introduce cleaner ones seems a general agreement since energy generation is
responsible for 78% of emissions.
As reported in IEA (2017), electricity generation represents more than 20% of
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the world final energy consumption. Focusing on the technologies responsible
for such electricity generation, the main prime mover in all power stations in
2012 is the steam turbine (60%) followed by the gas turbine (20%) as shown in
Fig. 4, in which their estimated increased role in electricity generation by 2040
is also indicated.

Figure 4: World electricity generation by prime movers in 2012 and 2040 (trillion
kWh). Extracted from Tanuma (2017)

The efficiency optimization of steam and gas turbines is valuable given their
important role in the electricity generation. In the following subsections a short
description is provided regarding the optimization of these systems with the sole
purpose of highlighting their common features and their link with the present
thesis.

Steam turbine

The ultra-supercritical (USC) steam turbines reach net power generation effi-
ciency over 45% by increasing steam temperature and pressure at the turbine
inlet up to 600 oC and 300 bar, respectively. In contrast, sub-critical steam
power plants do not exceed 40% of efficiency. There are the advanced-USC
steam power plants characterized for temperatures and pressures up to 700 oC
and 350 bar (Tanuma (2017)), respectively, currently under development. To
assist the design and optimization of these modern steam turbines, experimen-
tal analysis and numerical simulations are crucial complementary tools.
Computational fluid dynamics allow for an understanding of the aerodynamics
inside a turbine as shown in Fig. 5(a), from which detailed outputs such as the
entropy generation field, presented in Fig. 5(b), can be obtained identifying
the local lost in performance (Jang et al. (2015)). Some efforts have been done
to numerically assess the performance of steam turbines including the works of
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(a) (b)

Figure 5: (a) Flow mixing at nozzle inlet due to overload valve flow supply (stream-
lines). (b) Entropy contours at the trailing edge plane of the first stage rotor. Extracted
from Jang, Kang, Lee, Kim and Park (2015)

Wróblewski et al. (2009); Wang et al. (2016); Abadi et al. (2017). However,
the modeling of complex systems involving multiple phenomena is still a chal-
lenging problem for engineering and computational science. Despite the fact
that radiation can be the dominant mode of heat transfer, radiation is often
neglected because of the increase in complexity and in time processing. There-
fore, the availability of numerical tools capable of generating high-fidelity data
appears as a crucial challenge to guide the design of modern steam turbines.

Gas turbine

Similarly to the steam turbine, the efficiency in a gas turbine is also improved by
increasing the temperature and pressure at which the turbine operates. Inlet
temperatures between 1200oC and 1600oC and pressure over 30 bar can be
found in gas turbines for power generation reaching efficiencies from 35 up to
40 %.

Figure 6: Flow turbulent structures of an aeronautical gas turbine. Extracted from
Moureau, Domingo, and Vervish (2011)

Great efforts have been undertaken in the numerical simulation of gas turbines.
For example, in the work of Moureau et al. (2011) an aeronautical burner
is fully simulated with a mesh of 2.6 billion cells; results from this study are
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illustrated in Fig. 6. However, significant research is still needed in order to
increase fuel flexibility, to control emissions, to extend the components lifetime
and to boost gas turbine efficiency. Due to the high operation temperature and
pressure, turbulent combustion inside gas turbines may be strongly coupled
with radiation. And, just as in steam turbines, radiation is often neglected in
numerical simulations or approximated by "gray" models or "optically thin"
assumption. Few recent numerical studies of gas turbines Koren et al. (2018);
Ren et al. (2018); Rodrigues et al. (2019) account for radiative heat transfer.
Consequently, the study of accurate numerical tools capable of guiding the
design stages of this kind of systems seems convenient in accordance with the
global context.

Specific context of this thesis

As pointed out in the previous section, radiation can modify the heat trans-
port and the fluid dynamics inside steam and gas turbines, while turbulence
fluctuations can significantly alter the radiative heat transfer. Those interac-
tions are commonly called turbulent-radiation interactions (TRI) which, in a
broad sense, stand for the effects that turbulence causes on radiation and vice-
versa. Detailed reviews of TRI can be found in the works of Coelho (2007),
and Modest and Haworth (2016).
Turbulence effects on radiation arise from fluctuations of temperature and
species concentration. When computing the radiative solution from averaged
quantities in a turbulent participating media, results may significantly differ
from the radiative solution obtained using instantaneous values. In most in-
dustrial applications turbulence is modeled through average or filter operations.
Those operations give rise to two unclosed terms in the radiative transfer equa-
tion (RTE), the correlation between incident radiation and the absorption coef-
ficient, and the correlation between blackbody intensity and the absorption co-
efficient, usually called Absorption TRI and Emission TRI, respectively. Early
experimental studies by Faeth et al. (1987) report that ignoring those correla-
tions can lead to significant errors on mean radiative properties predictions. On
the combustion framework many authors have demonstrated the importance of
TRI. Coelho (2004) and Li and Modest (2003) show that the enhancement of
the radiative heat loss due to turbulent fluctuations in a diffusion flame can
be of the order of 50 %. Significant TRI effects were reported in a premixed
flame by Wu et al. (2005); Wu et al. (2007) using coupled DNS simulations
together with the gray gas assumption. In the nonreactive framework, TRI
effects are minor although they increase along with turbulent fluctuations. The
analyzed nonreactive systems, through uncoupled simulations, include the ho-
mogeneous isotropic turbulence (Kritzstein and Soufiani (1993), da Silva et al.
(2009), Roger et al. (2009); and Roger et al. (2010)), a temporally evolving jet
analyzed in the work of Roger et al. (2011) and the channel flow presented by
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Gupta et al. (2009).
Regarding the effects that radiation causes in turbulence, dynamic coupling
between radiation and turbulence is needed rather than a priori analysis. Inves-
tigations with coupled radiation allow for a fundamental understanding of how
radiation and TRI modify the turbulent structures. Early coupled simulations
using Reynolds average Navier-Stokes (RANS) together with a TRI modeling
include the works of Song and Viskanta (1987) who assumed the optically thin
fluctuation approximation (Kabashnikov and Kmit (1979)) to model TRI in a
combustion chamber; and the computation of a sooty turbulent ethylene-air
diffusion jet flame by Tessé et al. (2004) whose only assumption for the TRI
modeling was that different eddies have uncorrelated properties. Tessé et al.
(2004) found that radiative source terms in the energy balance tend to dissipate
temperature fluctuations.
As an approach towards precise modeling, radiation effects on turbulence have
been studied in the Large Eddy Simulations (LES) context, some coupled stud-
ies in the combustion frame (Poitou et al. (2012); dos Santos et al. (2008);
Berger et al. (2016)) show that radiation homogenizes the spectral distribution
of energy and changes the flame brush structure. Ghosh et al. (2011) studied
the radiation effects on a supersonic channel flow using coupled LES. Using the
Correlated-k (ck) method to account for the spectral dependence of the radia-
tive properties, they observed that effects of radiation counteract the effects of
compressibility. Additionally, in the same work, they also invoked the gray gas
assumption in order to artificially account for larger values of optical thickness.
Through this assumption, they concluded that radiation affects the turbulence
structures in supersonic boundary layers at high optical thickness. Further, a
more recent LES study of Ghosh and Friedrich (2015) discussed the radiation
effects on a turbulent mixing layer for the reactive and the nonreactive cases.
Direct numerical simulations (DNS) of turbulent flow coupled with radiative
heat transfer provide useful data to develop and validate TRI models since all
correlations are directly solved. Those models are eventually applied to more
complex systems. A variety of coupled DNS works together with the gray
gas assumption have been performed on different systems: statistically one-
dimensional premixed (Wu et al. (2005); Wu et al. (2007)) and nonpremixed
(Deshmukh et al. (2008); Deshmukh and Haworth (2009)) flames, turbulent
natural convection between parallel heated plates (Sakurai et al. (2017)) and
nonreactive channel flow (Silvestri et al. (2018)). Despite a fictitious gray gas
gives trends on how turbulence structures behave on the presence of radiation,
it is a poor approximation for radiative properties of a molecular gas in the
majority of applications (Edwards (1976)). Up to now, the only works that
consider coupled DNS while accounting for the spectral absorption coefficient
are performed in channel flows. These works are the studies of Zhang et al.
(2013) and Vicquelin et al. (2014). These studies analyzed a nonreactive tur-
bulent channel flow coupled with a reciprocal Monte Carlo method to account
for the radiative heat transfer. All these works used the ck method to con-
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sider the spectral radiative properties. They observed that radiation decreases
temperature fluctuations and turbulent heat transfer, which strongly modifies
the structure of the boundary layer. Furthermore, they reported that radiation
decreases the thermal production due to opposing behaviors of gas-wall and
gas-gas radiative contributions.
The present thesis analyzes the radiation effects on the turbulent structures of
a heated plane jet, which is a canonical system of free shear flows. As far as
we know, the present set of simulations are the first DNS of a free shear flow
to be fully coupled with a spectral radiative heat transfer solver.

The contribution of this thesis

In the context described above, efficient and accurate tools need to be developed
in order to satisfactorily predict radiation effects on turbulent flows. In this
sense, the goal of the present thesis is to provide high-fidelity data of heated
free jets coupled with thermal radiation in order to:

• (i) quantify not only radiation effects on free jets, but also on the behavior
of turbulent flows in general,

• (ii) have a reference database for the development of free-shear turbulent
models accounting for coupling interactions.

In order to attain these goals, the course of this thesis has lead to the following
contributions:

• An optimized parallel coupling between a radiative Monte-Carlo solver
and a compressible fluid flow DNS solver has been implemented. A sig-
nificant amount of processing time for these high-fidelity coupled simula-
tions has been saved due to an implementation of an acceleration method
called Acoustic Speed Reduction.

• An implementation from scratch of a RANS solver able to handle variable-
density flows and its further coupling with the radiative solver have been
carried out. This implementation together with the high-fidelity DNS
data allows for a direct quantification of the accuracy of the existing
turbulent models as well as an identification of key parameters for further
modeling of coupling interactions.

• Based on the generated DNS data, a new scaling law for the decay of the
temperature profile in the jet centerline is derived. This scaling accounts
for the effects of modified density due to moderate radiation. Moreover,
it allows for distinguishing whether thermal radiation modifies the nature
of heat transfer mechanisms in the jet developed region or not.

• Effects of radiation on mean temperature and velocity fields are quantified
in a strongly heated free jet. Moreover, the effects of radiation in second
order moments are also quantified through the enthalpy variance and
turbulent kinetic energy balances.
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Structure of the manuscript

Part I The theoretical background for coupling convective heat transfer and
radiative energy transfer in turbulent flows is provided. Also, the different
employed numerical codes are presented and discussed.

• Chapter 1. The Navier-Stokes equations are presented and their
numerical resolution is discussed. The YWCx code for direct numer-
ical simulations (DNS) is presented. Moreover, the implementation
and verification of the acoustic speed reduction method used to re-
duce the required computational cost in DNS is detailed.

• Chapter 2. The Reynolds Averaged Navier-Stokes (RANS) equa-
tions for variable-density flows are introduced. Additionally, the im-
plementation of the RANS solver ConDiRa using the Finite Volume
Method and high order schemes is carefully discussed.

• Chapter 3. The Radiative Transfer Equation (RTE) in participat-



Introduction xxiii

ing media is introduced. The use of the Monte-Carlo method and
the Correlated-k method in the Rainer code is described. Finally,
the strategies for coupling Rainer with both the DNS and the RANS
solvers are discussed.

Part II The grounds for high-fidelity coupled simulations are prepared. To
this end, the heated jet is dimensioned in order to observe the phenomena
of interest for this study, while the accuracy and the suitableness of the
uncoupled numerical tools are discussed.

• Chapter 4. The parameters defining a turbulent plane jet are intro-
duced, and the importance of radiative heat transfer as a function of
these parameters is discussed. Then, the jet dimensioning is carried
out through a parametric study using coupled RANS simulations.

• Chapter 5. DNS of the uncoupled isothermal and uncoupled heated
turbulent jets are analyzed and compared with previous results to
discuss the adequacy of the numerical setup.

• Chapter 6. Through standalone Monte-Carlo computations of heated
plane jets, the criteria for the statistical convergence of Rainier is
discussed. Also, the employed Correlated-k model for detailing the
gas radiative properties is verified by comparison with line-by-line
results.

Part III Results for heated free jets coupled with thermal radiation are pre-
sented using both DNS and RANS approaches.

• Chapter 7. DNS results of a heated jet with moderate radiative
heat transfer are presented. This Chapter shows how thermal ra-
diation can modify mean temperature profiles even when thermal
radiation becomes locally negligible in the developed region. A new
scaling law for the decay of the temperature profile is derived which
allows for distinguishing whether thermal radiation modifies the na-
ture of heat transfer mechanisms in the jet developed region or not
while removing the indirect effects of modified density.

• Chapter 8. The effects of thermal radiation in a strongly heated jet
are illustrated through high-fidelity coupled simulations. Besides the
effects of radiation on mean temperature and velocity fields, the en-
thalpy variance and turbulent kinetic energy balances are computed
to assess the effects of radiation in second order moments.

• Chapter 9. A set of comparisons between the RANS results using
the ConDiRa code and the DNS data presented in Chapters 5, 7
and 8 is provided. Taking advantage of the low processing time of
the coupled RANS, the scaling derived in Chapter 7 is checked for
a series of coupled and uncoupled simulations.
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Chapter 1

Numerical approaches for the

Fluid Flow solution

The set of governing equations that describes the fluid flow is introduced
and the three main numerical approaches to solve it are discussed. The
main features of the YWCx code used for the direct simulation are sum-
marized. Special focus is put on the generation of artificial turbulence
which is used to enhance inlet boundaries, as well as the acoustic speed
reduction method used to reduce the required computational cost in direct
numerical simulations.

Contents
1.1 Governing equations for the fluid flow . . . . . . . . 3
1.2 Numerical approaches to solve the Navier-Stokes

equations . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Direct Numerical Simulations using the YWCx . . 6

1.3.1 General numerical tools of YWCx code . . . . . . . 6
1.3.2 Artificial turbulence . . . . . . . . . . . . . . . . . . 7
1.3.3 Acoustic Speed Reduction Method . . . . . . . . . . 7

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 Governing equations for the fluid flow

Turbulence is a three-dimensional phenomenon in its nature, it is time-dependent
and exhibits a random behavior. The governing equations here used to describe
the turbulent flow are the Navier-Stokes equations for a compressible fluid in
which gravitational effects are not considered. These are the continuity equa-
tion, the momentum and energy transport equations, respectively:
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where ⇢, t, uj , p, ⌧ij , et and qi denote density, time, instantaneous velocity,
pressure, stress tensor, total energy and conductive flux vector, respectively.
Prad is the radiative power further discussed in Chapter 3. Assuming Newtonian
fluid, the stress tensor ⌧i,j is defined as

⌧ij = µ
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where µ is the dynamic viscosity and �ij is the Kronecker delta operator. The
conductive flux vector qi writes

qi = �� @T

@xi
, (1.5)

where � and T denote thermal conductivity and temperature, respectively. The
energy transport is defined based on the total energy et, which accounts for the
sum of internal and kinetic energies: et = 1

2uiui + e, where e is the internal
energy. The enthalpy is denoted by h = e + rT where r = R/W , R is the
universal gas constant and W stands for the molar weight of the mixture. To
close the system, the ideal gas equation is here used to compute pressure as
p = ⇢rT .

1.2 Numerical approaches to solve the Navier-Stokes
equations

The main difficulty on numerically solving the system of governing Eqs. (1.1 to
1.3) is the wide range of length and times scales that turbulent flows present.
Figure 1.1 shows the typical energy spectrum function E() of a high Reynolds
number flow as a function of the wavenumber , where  = 2⇡/l is the
wavenumber that corresponds to the turbulent motion with lengthscale l.
The size of the largest turbulent motions 0 is of the order of the charac-
teristic width of the flow, and as shown in the energy spectrum of Fig. 1.1,
these turbulent motions contain most of the kinetic energy. Such large struc-
tures are strongly dependent on the problem conditions; thus, they can be
highly anisotropic. Through the production mechanism, the largest motions
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are responsible to generate the kinetic energy that maintains the turbulence.
Richardson (1922) introduced the energy cascade concept for which the kinetic
energy of the large eddies is gradually transferred to smaller and smaller eddies.
As developed in the work of Kolmogorov (1941), there is a point EI during
this process of transfer at which the directional information of the larger scales
is lost, eddies are then statistically isotropic and present a universal behavior.
The energy is further transferred by inviscid processes to smaller eddies until
a point DI in which viscous effects become significant. The point DI divides
the universal equilibrium range into:

• The inertial subrange (EI <  < DI) in which the spectrum only
depends on the dissipation rate ✏ and it has the universal form of E() =
C✏2/3�5/3, where C is a universal constant.

• The dissipation subrange in which energy is dissipated by the work of
viscosity down to the smallest length scales ⌘ = 2⇡/⌘ associated to the
so-called Kolmogorov lengthscale ⌘.

!

"(!)

!%& !'&

Modeled in RANS

Computed in DNS

Computed in LES Subgrid scale

Energy containing range Universal equilibrium range

Inertial Dissipation

!(

!)*/,

!-!.

Figure 1.1: Energy spectrum function E() of a high Reynolds number flow as a
function of the wavenumber .

In this work, two different approaches which are the Direct Numerical Simula-
tions (DNS) and Reynolds Average Navier-Stokes (RANS) are used to solve the
turbulent flow problem. With Large Eddy Simulations (LES), these numeri-
cal approaches are among the most common techniques to handle this kind of
flows; the use of a specific approach depends on the goals of the simulations,
and it ends up usually being a trade-off between accuracy and computational
cost.
In DNS, three-dimensional and unsteady computations are performed to ex-
plicitly determined all scales of motion without any modeling, as shown in Fig.
1.1. Time and spatial refinements strongly depend on the Reynolds number in
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DNS. Therefore, in order to consider affordable simulations in terms of com-
putational cost, the Reynolds number is usually kept low-to-moderate. DNS is
here used within the thesis objectives of generating a high-fidelity database to
quantify TRI and to set the modeling bases for heated free jets coupled with
thermal radiation. This approach is used in the current study taking advantage
of the in-house code YWCx which is described in the following section.
In contrast with DNS, the RANS models constitutes cheaper simulations in
terms of computational time by solving the governing equations system aver-
aged in time. A set of RANS models has been implemented from scratch in
this work, a detailed description is further provided in Chapter 2 and numerical
results are presented in Chapter 9. The principal motivation of such implemen-
tation is to compare accuracy between RANS models and DNS high-fidelity
data in the context of coupled simulations.
Finally, the LES approach solves the governing equations system after a filter
is applied. The filtered system is representative of the larger turbulent scales;
thus, the effects of smaller and isotropic motions are modeled by the so called
subgrid-scale models. As shown in Fig. 1.1, the cut-off wavenumber c that
forms the filtered system should be greater than the EI which corresponds
to the wavenumber of the smallest energy-containing motions. A Smagorinsky
model for the subgrid-scale effects has been implemented in the frame of the
YWCx code. This implementation opens the way to further coupled simulations
of high Reynolds number jets in larger domain extensions. The implementation
is detailed in Appendix B.

1.3 Direct Numerical Simulations using the YWCx

YWCx is an oriented objected version of the YWC code. Both versions are in-
house codes developed at EM2C laboratory (Coussement (2012),Caudal (2013))
in collaboration with the Aero-Thermo-Mechanic Department of the Université
Libre de Bruxelles. A detailed description of the general numerical tools used
in YWCx and YWC is beyond the scope of this section, instead the main
characteristics of these tools are just highlighted. However, a special focus is
put on the artificial turbulence generation, and the Acoustic Speed Reduction
(ASR) method which have been implemented in YWCx during the development
of this thesis.

1.3.1 General numerical tools of YWCx code

In YWCx, just as in YWC, the compressible Navier-Stokes equations are nu-
merically solved on a structured mesh using high-order centered finite-difference
scheme for the spatial derivatives, and an explicit 4th-order Runge-Kutta method
for the time integration. Such methods follow the work of Kennedy and Car-
penter (1994). In addition, high-order implicit filters, proposed in the work of
Gaitonde and Visbal (1999), are used for stability purposes. The code is par-
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allelized through domain decomposition using the Message Passing Interface
(MPI) Standard Library. Details of the YWC implementation are specified in
the work of Coussement (2012). Additionally, a useful overview of YWC can
be found in Appendix A of the work of Caudal (2013).

1.3.2 Artificial turbulence

A common practice in high-fidelity simulations is to combined mean inlet ve-
locity profiles with synthetic turbulence in order to generate more realistic
fluctuating inlet velocity profiles. In the present work, the Passot and Pouquet
(1987) model is used to create the artificial turbulence.
This technique promotes turbulent instabilities and reduces the computational
domain needed for the turbulence structures to develop. Following the imple-
mentation of Caudal (2013), the Passot Pouquet model defines the turbulent
kinetic energy spectrum E() as

E() = A
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where  is the wavenumber, 0 is the wavenumber associated with the largest
turbulent scales, A is an independent variable of  defined by A = 16n
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u0 stands for the characteristic turbulent velocity and n is the number of dimen-
sions. Defining the auto-correlation integral scale Lc as
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2�n
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, (1.7)

the turbulent kinetic energy spectrum is defined by fixing the auto-correlation
integral scale Lc and the turbulent velocity u0. As an example, three-dimensional
homogeneous and isotropic turbulence (HIT) is generated using the Passot
Pouquet model; the resultant velocity fields are shown in Fig. 1.2.

1.3.3 Acoustic Speed Reduction Method

The YWCx solves the compressible Navier-Stokes equations through a fully-
explicit formulation. Such formulation has a strong benefit for high-performance
computing since no implicit linear system needs to be solved.
When using an explicit formulation, the time step dt is limited by the Courant-
Friedrichs-Lewy (CFL) condition expressed for the Courant number C

dt < Ccritmin
✓

�xi

|ui + c| ,
�xi

|ui � c|

◆
, (1.8)
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(a) (b)

Figure 1.2: Three-dimensional HIT generated using the Passot Pouquet model. (a)
Isosurface of null x-component velocity, and (b) y-component velocity contours.

and by the Fourier number (Fo) condition

dt < Focritmin
✓

�x2
i

µ/⇢

◆
, (1.9)

where �xi is the characteristic cell size on each i direction, Ccrit and Focrit are
the critical stability values for the retained numerical schemes, u is the convec-
tive velocity, and c is the speed of sound. Compressible effects are negligible
for low Mach number cases; thus, the resolution of the acoustic field is unneces-
sary. For such cases, explicit numerical formulations have a notorious tendency
to be poorly efficient in terms of computational cost because of the difference
between convective and sound velocities.
In this context, the so called pseudo-compressibility or artificial compressibility
methods try to reduce the gap between convective and sound velocities with
artificial manipulation of the governing equations. Choi and Merkle (1993)
classified the artificial compressibility methods in:
Pre-conditioning methods in which the time derivatives in the governing

equations are multiplied by a matrix that scales the eigenvalues of the
system to the same order of magnitude. Among the studies that discuss
this family of methods, there are the works of Choi and Merkle (1993);
Darmofal and Schmid (1996); Van Leer et al. (1991); Liu and Liu (1993);
Turkel (1987).

Perturbation methods in which specific terms in the governing equations
are manipulated in order to replace physical acoustic waves by pseudo-
acoustic modes. The works of O’Rourke and Bracco (1979); Ramshaw
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et al. (1985); Wang and Trouvé (2004); Salinas-Vázquez et al. (2013)
address this kind of methods.

A perturbation method called Acoustic Speed Reduction (ASR) presented by
Wang and Trouvé (2004) has been implemented in the YWCx code during
the development of this thesis. The method enlarges the allowed time step
by artificially reducing the sound velocity and increasing the Mach number
while keeping compressible effects negligible. Consequently, the computational
resources needed to achieve statistical convergence are strongly reduced. A
detailed discussion of this method can be found in the work of Wang and Trouvé
(2004). In a more recent study, Salinas-Vázquez et al. (2013) modified the ASR
assuming a value of the heat capacity ratio (�) close to unity in order to reduce
complexity in the numerical treatment. In this work the ASR formulation of
Wang and Trouvé (2004) is retained.
In practice, the ASR method modifies Eq. (1.3) by adding two new terms (Sconv
and Sdiff):
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where Sconv is defined by
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and Sdiff is
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The ASR method reduces the speed of sound by an adjustable factor ↵ accel-
erating the convergence of the solution by this same factor. Two main criteria
can be use to choose the value of this parameter ↵:

1. The reduced sound velocity c0 = c/↵ should keep the Mach number low
to maintain negligible compressible effects.

2. There is no point in increasing ↵ if the time step is already limited by
the Fo condition described above. Thus, the time step determined by
the CFL condition should be of the same order or smaller than the one
determined by the Fo condition.

1.3.3.1 Modified Boundary Conditions

Partially non-reflecting characteristic boundary conditions (Poinsot and Lele
(1992)) are considered in YWCx. Boundary conditions for the modified ASR
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system of equations are derived in Appendix C based on a characteristic anal-
ysis. From this derivation, the time derivatives of the primitive variables are
computed at the boundary following the expressions:
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where the artificial sound velocity c0 is defined as c0 = c/↵ and the speed of
sound is c =

p
�p/⇢. On the one hand, the wave amplitudes Li are computed

from inner nodes in the case of outgoing waves (waves leaving the domain)
using the equations
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where u and x correspond to the velocity and coordinate normals to the bound-
ary, respectively. On the other hand, the wave amplitudes associated with
incoming waves tend to zero (but no necessarily equal to zero) in partially non-
reflecting boundary conditions. The control of incoming waves amplitudes is
done following the work of Coussement et al. (2012).

1.3.3.2 Test case for the ASR formulation

The implementation of the ASR method in YWCx is here tested by reproducing
two test cases. The first test corresponds to a two-dimensional vortex which is
convected downstream, while the second consists in the evolution of a circular
pressure wave.
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Test case: vortex convection

A two-dimensional vortex convected along the x-direction for ↵ = 5 and ↵ = 10
is computed; additionally, the case of ↵ = 1 is also computed as a reference.
The vortex is defined by the following initial fields of pressure and velocity:

p(x, y) = p0exp
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where � is the heat capacity ratio, ⌧ corresponds to the vortex intensity and
is here set to ⌧ = 1, Rc stands for the vortex radius here Rc = 2 · 10�2m ,
uconv is the convection velocity set to uconv = 5m/s and the reference pressure
p0 is here p0 = 1 atm. The initial temperature field is set to 300K. An inlet
condition, defined by u = 5 m/s and v = 0 m/s, is set at the West boundary,
while a constant pressure outlet is set at the East boundary. South and North
boundaries are set to be periodic. The considered grid has 321 ⇥ 161 nodes
along the x and y direction with a constant mesh spacing equal to 10�3 m.
In Figure 1.3, isolines corresponding to the initial fields of pressure, streamwise
velocity u, and cross-section velocity v defining the vortex are shown in Figs.
1.3(a), 1.3(b), and 1.3(c), respectively.

(a) (b) (c)

Figure 1.3: Isolines corresponding to the initial solution of (a) pressure, (b) stream-
wise velocity u, and (c) cross-section velocity v.

In order to test the accuracy of the ASR implementation, the solution for the
pressure and velocity fields are shown in Fig. 1.4 after a simulation correspond-
ing to 1.1 · 10�2s of physical time for ↵ = 1, ↵ = 5, and ↵ = 10.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.4: Solutions after simulating 1.1 ·10�2s of physical time for ↵ = 1 ((a), (b),
and (c)); ↵ = 5 ((d), (e), and (f)); and ↵ = 10 ((g), (h), and (i)). These solutions
are represented by isolines of pressure ((a), (d), and (g)); streamwise velocity u ((b),
(e), and (h)); and cross-section velocity v ((c), (f), and (i)).

When compared to the reference solution computed setting ↵ = 1, the vortex
solutions using both ↵ = 5 and ↵ = 10 are in very good agreement with the
reference solution as shown in Fig. 1.4. The computations corresponding to
↵ = 5 and ↵ = 10 are respectively of the order of 5 and 10 times cheaper
than the reference case; thus, the ASR formulation appears as a useful tool to
compute low Mach numbers flows in a compressible formulation.
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Test case: the two-dimensional pressure wave

A computation of the two-dimensional test case presented in the work of Lodato
et al. (2008) for different values of the accelerator parameter ↵ is here per-
formed. It consists in an initial pressure wave described by the function

p(x, y) = p0
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where p0 = 101325 Pa is the undisturbed pressure, � determines the pressure
wave amplitude (here set to � = 10�4), and Rp is the radius of the wave (here
Rp = 20 · 10�3 m). The contour of the initial pressure wave is shown in Fig.
1.5(a) in which �p = p�p0 and �pref stands for a reference pressure variation,
here the maximum variation is taken as �pref = �p0 = 10.1325 Pa. Likewise,
the initial density distribution is presented in Fig. 1.5(b) in which �⇢ = ⇢�⇢0,
�⇢ref is the maximum initial ⇢ variation, and ⇢0 is the undisturbed density
computed as ⇢0 = p0/(rT0). Temperature is initially set to a constant value of
T0 = 300 K, and null velocities are imposed at the initial time u0 = 0.
A uniform mesh of 161⇥161 nodes with a grid spacing of 10�3 m is used.
Following §1.3.3.1, all boundary conditions are set to partially non-reflecting
outflows.

(a) (b)

Figure 1.5: Pressure wave evolution for (a) ↵ = 1, and (b) ↵ = 10.

First, the evolution in time of the pressure wave at y = 0 is compared for
↵ = 1, ↵ = 5 and ↵ = 10 in Figs. 1.6(a), 1.6(b), and 1.6(c), respectively.
These three Figs. show that ASR method keeps the trends and magnitude
of the pressure wave independent of the ↵ value. However, the pressure wave
reduces its velocity propagation by a factor ↵, the corresponding physical time
of each profile depending on the ↵ value is detailed in Table 1.1. Note, that the
physical time for each sample is proportional to ↵. Then, for the same number
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of iterations, the case ↵ = 10 advances the solution 10 times further in physical
time than the reference case of ↵ = 1.

Table 1.1: Physical time (in seconds) associated to the number of iterations as a
function of ↵ in the pressure wave test case.

Case 0 ite. 50 ite. 100 ite. 150 ite. 200 ite.
↵ = 1 0.0 6.0 · 10�5 1.2 · 10�4 1.8 · 10�4 2.4 · 10�4

↵ = 5 0.0 3.0 · 10�4 6.0 · 10�4 9.0 · 10�4 1.2 · 10�3

↵ = 10 0.0 6.0 · 10�4 1.2 · 10�3 1.8 · 10�3 2.4 · 10�3

Figs. 1.6(d), 1.6(e), and 1.6(f) show respectively the velocity time evolution
at y = 0 for the ↵ = 1, ↵ = 5 and ↵ = 10 cases. In these Figs., �uref

corresponds to the maximum velocity variation of the ↵ = 1 case, which is
�uref = 1.21 · 10�2 m/s. Velocity trends induced by the pressure wave are the
same for all studied values of ↵. However, an increase in the velocity magnitude
is observed. Such increase is proportional to ↵.
The evolution in time of the density variation induced by the pressure wave
at y = 0 is shown in Figs. 1.6(g), 1.6(h), and 1.6(i) for the ↵ = 1, ↵ = 5
and ↵ = 10 cases, respectively. Density trends and magnitude are wrongly
predicted when using the ASR method. These results indicate that density
variations induced by a pressure wave are over-predicted by an ↵2 factor.
Finally, Figs. 1.6(j), 1.6(k), and 1.6(l) present the temperature variation �T =
T �T0 evolution in time at y = 0 for the ↵ = 1, ↵ = 5 and ↵ = 10 cases, respec-
tively. Likewise, �Tref corresponds to the maximum temperature variation for
the ↵ = 1 case, which corresponds to �Tref = 8.05 · 10�3 K. As observed in
Fig. 1.6(k), the maximum temperature variation is of the order of 80 times
�Tref , while in Fig. 1.6(l) this variations is more than 300 times grater than
for the case ↵ = 1.
Results of the pressure wave test case can be summarized in the following:

• Results of the wave propagation velocity scales perfectly with the ↵ factor.
As expected, the modified wave propagation velocity is c0 = c/↵.

• When using the ASR method the pressure wave trends and magnitude
are preserved.

• Results when using the ASR method preserve trends of induced velocity,
while its magnitude increases proportionally to ↵.

• Density and temperature variations induced by pressure waves are over-
predicted by the ASR method. Setting ↵ = 10, an artificial variation of
almost 3 K is observed for a wave with �p = 10.1325 Pa. Thus, ASR is
solely applicable in low Mach numbers flows in which pressure waves are
small enough to induce negligible changes in velocity, temperature and
density.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1.6: Pressure wave time evolution for (a) ↵ = 1, (b) ↵ = 5, and (c) ↵ = 10.
Variation of velocity as a function of time for (d) ↵ = 1, (e) ↵ = 5, and (f) ↵ = 10.
Density variation as a function of time for (g) ↵ = 1, (h) ↵ = 5, and (i) ↵ = 10.
Temperature variation as a function of time for (j) ↵ = 1, (k) ↵ = 5, and (l) ↵ = 10.
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1.4 Conclusions

This Chapter has introduced the governing equations that describes the fluid
flow problem. Moreover, the main numerical approaches to solve these equa-
tions have been discussed. The numerical code YWCx used to solve the set of
governing equations in a DNS approach has been introduced.
Two features developed in the YWCx framework during the course of this
thesis have been detailed: the generation of artificial turbulence in order to
enhance inlet boundaries; and the acoustic speed reduction method used to
reduce the required computational cost in direct numerical simulations. To test
the implementation of the ASR method, two test cases are perfomed. These are
a two-dimensional vortex convection and a two-dimensional pressure wave. The
ASR formulation appears as a useful tool to reduce the required processing time
in compressible formulations. However, ASR is solely applicable in low Mach
numbers flows in which pressure waves are small enough to induce negligible
changes in velocity, temperature and density.
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Modeling of turbulence using

Reynolds Average Navier-Stokes

In this Chapter, theoretical background for an implementation of the
variable-density k � ✏ and k � ! turbulent viscosity models are given.
First, the Reynolds Averaged Navier-Stokes (RANS) and its unclosed
terms are discussed. Then, the ConDiRa (CONvection, DIfusion and
RAdiation) RANS code, developed in this thesis, is introduced. Next,
the numerical discretization of the governing equations following the
Finite Volume Method and high order schemes is detailed. Finally, the
numerical code is verified by comparison with some benchmark problems.
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2.1 Averaging the governing equations

In the majority of engineering applications, we are mostly interested in the mean
characteristics of the flow rather than instantaneous values. In this context,
Reynolds Averaged Navier Stokes (RANS) models save a notorious computa-
tional cost since they directly solve a system of equation for the time averaged
quantities. The time average of a fluctuating quantity f(t) is defined as

hfi =
1

T

Z

T
f(t)dt, (2.1)

where T is the time-averaged period which should be much larger than the
characteristic time of the fluctuations. Fluctuations of f(t) are defined by

f 0 = f � hfi. (2.2)

For variable density flows, it is useful to avoid extra unknowns related to den-
sity correlations by means of the Favre average. The time Favre average of a
fluctuation quantity f(t) is a mass-weighted time average in the form

{f} =
h⇢fi
h⇢i . (2.3)

Likewise, Favre fluctuations are defined as

f 00 = f � {f}. (2.4)

Then, mass, momentum and energy balance equations for mean Favre quanti-
ties are respectively

@h⇢i
@t

+
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@xi
(h⇢i{ui}) = 0, (2.5)
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(2.7)

where cp is assumed constant, gi is the i-component of the acceleration gravity
vector, {�} stands for the thermal conductivity evaluated at {T}, and the
averaged Reynolds stresses h⌧iji are approximated by

h⌧iji = {µ}
✓✓

@{ui}
@xj

+
@{uj}
@xi

◆
� 2

3
�ij
@{uk}
@xk

◆
, (2.8)
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where {µ} is the dynamic viscosity evaluated at {T}.
The numerical resolution of this set of equations is discussed in the following
section.

2.2 Closure approaches to solve the RANS equations

A model is needed to solve the RANS problem defined by Eqs. 2.5 to 2.7 since
the Reynolds stresses {u00

i u
00
j } and the turbulent heat flux {u00

jT
00} are unclosed

terms.

2.2.1 Reynolds stresses closure

The terms {u00
i u

00
j } in Eq. 2.6 are additional unknowns in the well-established

convective-diffusion problem. Thus, extra equations are required to solve the
resulting system. Two main approaches can be distinguished.
On the one hand, the Algebraic Stress Models (ASM) (Naot and Rodi (1982))
and Reynolds Stresses Models (RSM) (Launder et al. (1975)) derive alge-
braic and transport equations, respectively, for each of the six independent
Reynolds stresses (in three dimensions). The main strength of these approaches
is their capability to account for anisotropy of the normal stresses, but several
assumptions for modeling unknown turbulent process (pressure-strain correla-
tions, turbulent diffusion of Reynolds stresses and dissipation) need to be done.
Additionally, the memory and computational cost requirements are relatively
large compared with other Reynolds stresses Closures.
On the other hand, turbulent viscosity models express the Reynolds stresses as
a function of the averaged variables based on the turbulent-viscosity hipotesis,
also called Boussinesq consideration:

h⇢i{u00
i u

00
j } = �µt

✓
@{ui}
@xj

+
@{uj}
@xi

� 2

3
�i,j

@{uk}
@xk

◆
+

2

3
h⇢ik, (2.9)

where k is the turbulent kinetic energy (TKE) expressed as k = 1
2{u002

i }, �ij
is the Kronecker delta operator, and µt is the turbulent viscosity which is an
indicator of the local turbulent state of the flow. Turbulent viscosity models are
further divided by the number of extra equations used to estimated µt, these
are the zero-equation Mixing length model, the one-equation such as Spalart-
Allmaras model (Spalart and Allmaras (1992)), and the two-equations models.
The retained approach in this work is the two-equations models. This family
of models considers two transport equations, one for the TKE (k) and another
for the TKE dissipation ✏ (or a conceptually equivalent variable such as ! or ⌧)
to compute µt. From dimensional analysis, the turbulent viscosity is generally
expressed by

µt = h⇢i Cµfµk1/2l, (2.10)
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in which the local length scale l is obtained as a function of k and ✏ (l / k3/2/✏)
in the k � ✏ model, and as a function of k and ! (l / k1/2/!) in the k � !
model.
During the development of this thesis, five different variations of the two-
equations viscosity models have been implemented. These are the k � ✏ JL
model from Jones and Launder (1972), the k � ✏ LS model from Launder and
Sharma (1974), the k � ✏ HH model from Henkes and Hoogendoorn (1995), the
k � ! WX model from Wilcox et al. (1998) and Wilcox (1994), and the k � !
PD model from Peng and Davidson (1999), these models are described in the
next subsections.

2.2.1.1 k � ✏ turbulent model

The turbulent viscosity and transport equations for k and ✏ are here modeled
following the work of Pérez-Segarra et al. (1995) as

µt = h⇢i Cµfµ
k2

✏̃
, (2.11)
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(2.13)

where Pk stands for the production of turbulent kinetic energy defined as Pk =
�h⇢u00

i u
00
j i@{ui}/@xj , and ✏̃ is a variable described by ✏̃ = ✏�D/⇢. In Eqs. 2.12

and 2.13, gravitational effects are not considered since the focus of this thesis
resides on non-buoyancy flows. All the experimental constants and dumping
function characterizing the k � ✏ JL model from Jones and Launder (1972), the
k � ✏ LS model from Launder and Sharma (1974) and the k � ✏ HH model are
summarized in Tables 2.1, 2.2 and 2.3.

Table 2.1: Constant values for the different k � ✏ models implemented.

Model Cµ C1,✏ C2,✏ �k �✏
HH 0.09 1.44 1.92 1.0 1.3
JL 0.09 1.55 2.0 1.0 1.3
LS 0.09 1.44 1.92 1.0 1.3
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Table 2.2: Dumping functions for the different k � ✏ models implemented.

Model fµ f1 f2
HH 1.0 1.0 1.0

JL exp

 
�2.5

1 + Ret
50

!
1.0 1 � 0.3 exp

�
�Re2t

�

LS exp

 
�3.4

�
1 + Ret

50

�2

!
1.0 1 � 0.3 exp

�
�Re2t

�

Table 2.3: Extra terms expressions for the k � ✏ models implemented.

Model D E
HH 0.0 0.0

JL 2{µ}
 
@(k1/2)

@xj

!2
2{µ}µt

⇢

 
@2ui

@x2
j

!2

LS 2{µ}
 
@(k1/2)

@xj

!2
2{µ}µt

⇢

 
@2ui

@x2
j

!2

In Tables 2.2 and 2.3, Ret is the local turbulent number defined as Ret = h⇢ik2

{µ}✏̃ .

2.2.1.2 k � ! turbulent model

First introduced by Kolmogorov (1942), ! is the rate of energy dissipation per
unit of volume and per unit of time, ! ⌘ ✏/k. In the k �! models, an equation
for ! is used instead of the ✏ equation. Then,

µt = h⇢i Cµfµ
k

!
, (2.14)
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(2.16)

Again the gravitational effects have been neglected in Eqs. 2.15 and 2.16. The
experimental constants and dumping functions for the k � ! WX model from
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Wilcox (1994) and Wilcox et al. (1998), and the k � ! PD model from Peng
and Davidson (1999) are summarized in Tables 2.4 and 2.5.

Table 2.4: Constant values for the two different k � ! models implemented.

Model Cµ Ck C1,! C2,! Cr! �K �!
PD 1 0.09 0.42 0.075 0.75 0.8 1.35
WX 1 0.09 0.56 0.075 0.0 2 2

Table 2.5: Dumping functions for the different k � ! models implemented.

PD WX
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In Tables 2.4 and 2.5, Ret is the local turbulent number defined as Ret = h⇢ik
{µ}! .

2.2.2 Turbulent heat flux closure

In the context of turbulent viscosity models, similar to the Boussinesq consid-
eration (Eq. 2.9), the turbulent heat flux is commonly related to the mean flow
characteristics by the expression

h⇢i{u00
jT

00} = � µt

Prt
@{T}
@xj

, (2.17)

where Prt is the turbulent Prandtl number. Rodi (1993) found through exper-
imental investigation that for most of the cases the turbulent Prandtl number
does not vary significantly along the flow. The value of the Prt is typicaly set
to Prt = 0.9 for boundary layers. However, for free shear layers, Wilcox et al.
(1998) use Prt = 0.5, while Pope (2001) considers the value of Prt = 0.7 in a
plane wake.

2.3 ConDiRa code: methodology for the numerical
solution

ConDiRa (CONvection, DIfusion and RAdiation) is an in-house code developed
in the course of this thesis, mainly during a summer stage conducted by Prof. J.
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Xamán at the Department of Mechanical Engineering of CENIDET (National
Center for Research and Technology Development), Mexico. In the ConDiRa
code, the set of equations defining the RANS problem are discretized using the
finite volume method (FVM) in a structured grid, and solved by an Alternating
Direction Implicit (ADI) method.
FVM consists in integrating each governing equation over small control volumes
(CV) (as the one shown in Fig. 2.1(a)), the ensemble of control volumes define
the computational domain. In the present code, each CV or cell has a node
at its geometrical center, i.e., the mesh is cell-centered. Moreover, the physical
boundaries of the domain are set to match the CV interface as shown in Fig.
2.1(b).

(a)

Boundary

(b)

Figure 2.1: (a) Control volume notation in a structured mesh used for the FVM
discretization. Note that capital letters are used for nodes, while lower case letters are
used for CV interfaces. (b) Details of the cell-centered mesh treatment at the boundary,
a node is place at the physical domain boundary.

2.3.1 Numerical discretization of the governing equations

As proposed in Patankar (1980), in order to facilitate the discretization proce-
dure, all governing equations presented in the previous section can be expressed
in the following general form:
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◆
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Table 2.6 shows the values of the generic variable �, diffusion coefficient � and
source term S to turn Eq. 2.18 into each of the governing equations.
Then, the FVM proceeds by performing a spatially integration in a CV and a
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Table 2.6: Equivalent generic variable �, diffusion coefficient � and source term S
in the general differential equation.

Governing Eq. � � S
Mass 1 0 0

Momentum in xi {ui} {µ} + µt �@hP i
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temporally integration from t to t + �t of the Eq. 2.18 in the form:
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Integrating Eq. 2.19 in the two-dimensional CV presented in Fig. 2.1(a) and
assuming an implicit scheme for the time integration, one can write

(⇢�)P � (⇢�)oP
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�x�y + [(⇢u�)e � (⇢u�)w]�y + [(⇢v�)n � (⇢v�)s]�x =
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)s]�x + S̄�x�y, (2.20)

where (⇢�)oP is the ⇢� value in the previous time step at point P , and S̄ is the
spatial average of S over the CV. Note that the mass fluxes ⇢ui� and diffu-
sives fluxes �@�/@xi are needed at the CV interfaces. An UPWIND scheme is
used to approximate the value of � at the interface, while a 2nd-order centered
finite-difference scheme is used to estimate (@�)/(@xi) at the CV interface. To
determine � at the interface, a linear variation is assumed. Further accuracy
from high order schemes is implemented using the source terms SDC

u via de-
ferred correction as discussed below. Finally, combining Eq. 2.20 with the mass
conservation equation provides an algebraic equation for each variable � in each
node of the mesh as a function of the � values at the neighbor nodes. This alge-
braic equation is called the discretization equation which, in a two-dimensional
domain, can be expressed as

aP�P = aW�W + aE�E + aN�N + aS�S + b, (2.21)

in which the coefficients are described by:
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aE = De + max[�Fe, 0], (2.22a)
aW = Dw + max[Fw, 0], (2.22b)
aN = Dn + max[�Fn, 0], (2.22c)
aS = Ds + max[Fs, 0], (2.22d)

aP = aE + aW + aS + aN + ⇢oP
�x�y

�t
, (2.22e)

b = (⇢�)oP
�x�y

�t
+ S̄�x�y + SDC

u . (2.22f)

where F and D are respectively the convective and diffusive fluxes at the CV
interfaces. Recalling the nomenclature presented in Fig. 2.1(a), these fluxes
are defined by:

Fe = (⇢u�)e�y, Fw = (⇢u�)w�y, Fn = (⇢v�)n�x, Fs = (⇢v�)s�x,

(2.23)
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�ySP
�x. (2.24)

The term SDC
u in Eq. 2.21 has been added as a deferred correction source

term which accounts for the contribution arising from the high-order scheme.
If SDC

u = 0 the discretization of the convective terms is achieved by using an
UPWIND scheme, which is first-order accuracy and it is unconditionally stable.
In this work six different second-order schemes have been implemented in the
general form of the Total Variation Diminishing schemes (TVD). These are (i)
the van Leer scheme (Van Leer (1977)), (ii) van Albada scheme (van Albada
et al. (1982)), (iii) Min-Mod (Roe (1985)), (iv) SUPERBEE (Roe (1985)),
(v) QUICK (Leonard (1988)) and (vi) UMIST (Lien and Leschziner (1994)).
The TVD formulation avoids oscillation during the iterative process since it
prevents instabilities while keeping a high-order of accuracy. Following the
work of Versteeg and Malalasekera (2007), the source term SDC

u is computed
doing
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Figure 2.2

Figure 2.3: Notation for the neighbor nodes of CV used in the derivation of high-order
schemes

Following the notation in Fig. 2.2, the variable r is defined as

r+e =

✓
�P � �W
�E � �P

◆
, r�e =

✓
�EE � �E
�E � �P

◆
, r+w =

✓
�W � �WW

�P � �W

◆
,

r�w =

✓
�E � �P
�P � �W

◆
, r+n =

✓
�P � �S
�N � �P

◆
, r�e =

✓
�NN � �N
�N � �P

◆
,

r+s =

✓
�S � �SS
�P � �S

◆
, r�s =

✓
�N � �P
�P � �S

◆
,

and

↵w =

(
1 if Fw > 0

0 if Fw  0
, ↵e =

(
1 if Fe > 0

0 if Fe  0
,

↵s =

(
1 if Fs > 0

0 if Fs  0
, ↵n =

(
1 if Fn > 0

0 if Fn  0
.

The function  (r) is a flux limiter function that allows to generalize the high-
order schemes solely as a function of  (r). The value of the limiter function
for each scheme is given in Table 2.7.

2.3.2 Momentum transport and mass conservation coupling

In order to deal with the non-linear coupling between mass and momentum
equations, a non-uniform staggered marker-and-cell (MAC) mesh presented in
Fig. 2.4 is used. In the MAC mesh (Harlow and Welch (1965)) the velocity
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Table 2.7: Expressions for the flux limiter function  (r) for each of the second-order
schemes implemented.

High order Scheme  (r)

Van Leer  (r) =
r + |r|
1 + r

Van Albada  (r) =
r + r2

1 + r

Min-Mod  (r) =

(
min(r, 1) if r > 0

0 if r  0
SUPERBEE  (r) = max [0, min(2r, 1), min(r, 2)]

QUICK  (r) = max [0, min(2r, (3 + r)/4, 2)]
UMIST  (r) = max [0, min(2r, (1 + 3r)/4, (3 + r)/4, 2)]

components are calculated at a staggered grid (Figs. 2.4(a) and 2.4(b)), while
the scalar variables (T, ⇢, P, k, ✏, !, ...) are calculated at the main grid (not
staggered) shown in Fig. 2.4(c). The first advantage of using this kind of mesh
is that velocity in the computation of the convective fluxes defined in Eq. 2.23
is directly obtained at the CV interface of the main mesh without interpola-
tion. Second, the computation of the momentum source term �@P/@xi in the
staggered grid does not require interpolation at the CV interface, which leads
to numerical stability and avoids physically unrealistic results.

(a) (b) (c)

Figure 2.4: The three meshes used to couple momentum transport and mass con-
servation. (a) Mesh for the x-component velocity u in which CV are displaced in the
x-direction. (b)Mesh for the y-component velocity v in which CV are displaced in the
y-direction. (c) Main grid where scalars are stored.

The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm
described in the work of Patankar and Spalding (1983) is used in this work to
couple the mass conservation and the momentum transport equation. This
method first consists in guessing a pressure field (p⇤) by which an estimation of
the velocity is computed (u⇤

i ) using the momentum transport equations. Then,
from the mass conservation, a "pressure correction" field (p0) is computed,
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which gives the rectification in pressure needed so that u⇤
i fulfills the mass

conservation equation. Once u⇤
i and p⇤ are corrected, the process is iteratively

repeated until a velocity field that simultaneously fulfills the mass conservation
and momentum transport is obtained.

2.3.3 Variable density and transport properties

When large temperature differences are present in the domain, the computa-
tion of a density field varying over space is needed to accurately predict the
flow dynamics. If the characteristic velocity of the flow is low when compared
with the speed of sound, a low Mach number approximation can be applied.
This approach avoids the need to account for acoustic propagation and still
captures the relevant physics, being that the density is decoupled from the dy-
namic pressure so no acoustics are accounted for. Firstly, the total pressure is
decomposed into the thermodynamic pressure P0 and the dynamic pressure p̃
by the expression

P (x, y, t) = P0 + p̃(x, y, t), (2.29)

in which the thermodynamic pressure is assumed to be equal to the initial
pressure P0 and constant in time. The local density field can be computed
from the ideal gas law as

⇢ =
P0

rT
. (2.30)

For the case of variable properties, the matrices containing the local values of ⇢,
� and µ are computed in every iteration for each temperature field, as shown in
Fig. 2.5 in which a general overview of the code is presented. To interpolate the
properties values at the control volume interfaces, a linear variation between
two neighbor nodes is assumed.

2.3.4 Boundary conditions

Information of each variable � at the boundaries is required in order to solve
the problem. In this work, two kinds of boundary conditions are implemented.
On the one hand, the Direchlet condition is used when a specific value (�a)
is imposed at the boundary. Considering the discretization equation of � in
two-dimensions for a node �P placed at the boundary

aP�P = aW�W + aE�E + aN�N + aS�S + b, (2.31)

a Direchlet condition is obtained by setting

aE = aW = aN = aS = 0, aP = 1 and b = �a. (2.32)
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Start

Initial values: u0, v0, T0, ⇢0, k0 and ✏0

t = t0 + dt

Compute variable properties: µ, � and ⇢

SIMPLE algorithm: u, v and P

Solve transport equation for T , k and ✏

Convergence?

Print results at time t

Steady state?

Stop

Rename: u0 = u,
v0 = v, T0 = T ,
⇢0 = ⇢, k0 = k

and ✏0 = ✏

yes

no

yes

no

Figure 2.5: Structure of the ConDiRa code for the k�✏ model with variable properties.

On the other hand, the Neumann condition is used when a variation (A) of a
variable (�) in a given direction (n) is specified in the form @�

@n = A. Recalling
the nomenclature in Fig. 2.1(a) and assuminig linear variation of �, a Neumann
condition is imposed, for example in the south boundary, as

aE = aW = aS = 0 aP = aN = 1 and b = �A�y. (2.33)
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2.3.5 Numerical solution of the implicit system of equations

The set of algebraic equations resulting from the discretization is solved by an
ADI iterative method (Peaceman and Rachford (1955)). In addition, under-
relaxation parameters have been used in order to minimize the number of iter-
ations required to obtain converged solutions.
When the residuals of the mass balance for every control volume, as well as the
residual values for all other governing equations are sufficiently low, an overall
convergence is achieved. Global residual values for each transport equation are
computed based on Eq. 2.21 using the following quadratic mean

R� =

s X

all CV

[aP�P � (aW�W + aE�E + aN�N + aS�S + b)]2, (2.34)

The iterative process is considered converged when residuals scaled by its initial
value are lower than 10�6 for each variable.

2.3.6 Code verification

In order to verify the numerical code, some benchmark problems are repro-
duced. Firstly, the high-order schemes are verified by reproducing pure convec-
tion in a diagonal flow. Secondly, the results for the laminar natural convection
in steady state using constant properties are compared with the classical solu-
tions of de Vahl Davis and Jones (1983); and Hortmann et al. (1990). Then, the
variable-density laminar solutions with and without variable transport proper-
ties are compared with Le Quéré et al. (2005). Next, the laminar transient
natural convection is compared with the results published in the work of Leal
et al. (2000). Further details of the laminar natural convection solution using
ConDiRa can be found in the Appendix D. Results for the turbulent simulation
of free plane jets are presented in Chapter 9.

2.3.6.1 Pure convection in a diagonal flow

In order to verify the implementation of the high-order schemes, a simple prob-
lem presented in Patankar (1980) and illustrated in fig. 2.6(a) is computed in a
uniform mesh of 121⇥121 nodes. This problem consists in a diagonal flow that
purely convects a passive scalar � through a constant velocity field defined by
u = v = 2 m/s. The boundary conditions for the scalar are � = 100 in the
west and north boundaries, and � = 0 in the east and south boundaries. In
this problem the physical viscosity is set to zero, thus the analytical solution is
known and it is shown in Fig. 2.6(b). Fig. 2.6(b) shows the value of the scalar
� along the diagonal I � J (indicated in Fig. 2.6(a)) for the analitical solu-
tion, the 1st-order UPWIND scheme, as well as for each implemented 2nd-order
scheme.
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Figure 2.6: (a) Definition of the pure convection diagonal flow problem. (b) Com-
parison of the results of � along the diagonal I � J between the analytic solution and
all the implemented schemes.

From Fig. 2.6(b) it can be seen that high-order schemes estimate better the
solution than the UPWIND first order scheme, which presents the largest values
of numerical diffusion. In order to appropriately choose a high-order scheme
for the present simulation, table 2.8 presents a comparison of CPU time and
number of iteration spent to solve the diagonal flow problem for each scheme.

Table 2.8: Comparison of numerical schemes in terms of CPU time and number of
iteration to converge.

UPWIND

Van
Leer

Van
Alba

da

Min-M
od

SUPERBEE

QUICK
UMIST

num. of iter. 275 521 369 308 4465 2756 415
CPU time (s) 1.20 3.95 2.89 2.12 31.63 19.46 3.20

Van Albada scheme is retained since it is the second faster in terms of number
of iteration and CPU time as presented in Table 2.8, while it is the fourth more
accurate as shown in Fig. 2.6(b).

2.3.6.2 Laminar differently heated cavity: steady state with con-
stant properties and Boussinesq approximation

A set of comparisons is performed for the constant properties case of the clas-
sical square cavity problem with differentially heated vertical walls under the
Boussinesq approximation. A sketch of the square cavity with non-slip walls is
presented in Fig. 2.7, in which temperature boundary conditions are indicated.
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Figure 2.7: Sketch of the differently heated cavity with non-slip walls.

In the Boussinesq approximation, density is assumed constant and the source
of motion is modeled by a source term in the momentum equation on the
vertical direction. In Table 2.9, results for steady state regime for Rayleigh
numbers between 103 and 106 are compared with the benchmark solutions of
de Vahl Davis and Jones (1983); Hortmann et al. (1990) for Pr = 0.71. Prandt
and Rayleigh numbers are defined as

Pr =
cpµref

�ref
and Ra = Pr

⇢2refg(Th � Tc)H3

Trefµ2
ref

, (2.35)

where Th and Tc are the temperatures at the hot and cold walls, respectively.
Tref is a reference temperature defined as Tref = (Th + Tc)/2; H is the cav-
ity height and width; and �ref , ⇢ref and µref are, respectively, the thermal
conductivity, density and dynamic viscosity evaluated at Tref . The following
adimensionalized quantities are introduced for the sake of comparison with the
literature results

T ⇤ =
T � Tc

Th � Tc
, x⇤ =

x

H
, y⇤ =

y

H
, u⇤ =

uH

↵0
, v⇤ =

vH

↵0
, and t⇤ = t

↵0

H2
,

(2.36)

where ↵0 is the thermal diffusivity evaluated at the initial time, and the adi-
mensionalized time t⇤ is chosen following the work of Leal et al. (2000).
The selected comparative results are: the maximum horizontal velocity, u⇤

max,
in the vertical mid-plane (x⇤ = 0.5); the maximum vertical velocity, v⇤max, in
the horizontal mid-plane (y⇤ = 0.5); and the maximum, minimum and average
Nusselt number in the hot wall, Numax, Numin, Nu. The local Nusselt num-
ber at the hot wall, Nu(y)|x=0, and the average Nusselt number, Nu|x=0, are
determined as follows:

Nu(y)|x=0 =
H

�ref (Th � Tc)
�(T )||

@T

@x
|x=0|| and Nu|x=0 =

1

H

Z H

0
Nu(y)|x=0dy.
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(2.37)

As shown in Table 2.9, the overall agreement is quite reasonable with a maxi-
mum deviation of 1.99% with respect to de Vahl Davis and Jones (1983) and a
0.22% with respect to Hortmann et al. (1990).

Table 2.9: Comparison between results obtained using the ConDiRa code and some
steady state benchmark results for constant properties and Boussineq approximation.

Ra u⇤
max v⇤max Numax Numin Nu

103
de Vahl Davis and Jones (1983) 3.649 3.697 1.505 0.692 1.118
Hortmann et al. (1990) - - - - -
Present work 3.6450 3.6998 1.5100 0.6935 1.1207

104
de Vahl Davis and Jones (1983) 16.178 19.617 3.528 0.586 2.243
Hortmann et al. (1990) 16.1802 19.6295 3.53087 - 2.24475
Present work 16.1838 19.6296 3.5319 0.5851 2.2452

105
de Vahl Davis and Jones (1983) 34.73 68.59 7.717 0.729 4.519
Hortmann et al. (1990) 34.7399 68.6396 7.72013 - 4.52164
Present work 34.7410 68.6212 7.7242 0.7280 4.5225

106
de Vahl Davis and Jones (1983) 64.63 219.36 17.925 0.989 8.800
Hortmann et al. (1990) 64.8367 220.461 17.536 - 8.82513
Present work 64.8473 220.5518 17.5752 0.9794 8.8300

2.3.6.3 Laminar differently heated cavity: steady state with a non-
Boussinesq approach with and without variable transport
properties

Le Quéré et al. (2005) published a benchmark solution for the variable-density
case with and without variable transport properties. This reference solution is
based on the results of five independent authors, whose methods and procedures
are detailed in Becker et al. (1999); Guide (1997); Becker and Braack (2002);
Vierendeels et al. (1999); Le Quéré et al. (1992). Three tests are available for
the following conditions:
Test 1: Ra = 106, ✏ = 0.6, µ = µ0 and � = �0,
Test 2: Ra = 106, ✏ = 0.6, µ = µ(T ) and � = �(T ),
Test 3: Ra = 107, ✏ = 0.6, µ = µ(T ) and � = �(T ),
where the initial conditions are P0 = 101325 Pa and T0 = 600 K. Viscosity and
thermal conductivity are computed using Sutherland law as

µ(T ) = µ0
✓

T

T 0

◆3/2 T 0 + S

T + S
and �(T ) = µ(T )

�R

(� � 1)Pr
, (2.38)

where T 0 = 273K, S = 110.5K, � = 1.4, R = 287Jkg�1K�1 , µ0 = 1.68 ·
10�5m�1s�1kg and Pr = 0.71. Table 2.10 presents a comparison of the av-
erage Nusselt in the hot wall (Nuh) and the non-dimensional thermodynamic
pressure (P̄ (t)/P0 where P̄ (t) = P0

R
1
T0

dV/
R

1
T dV ) obtained in this present

work with the ones published in Le Quéré et al. (2005). The percentage devia-
tion when comparing with the reference values are shown between parentheses.
The results obtained for the non-Boussinesq approximation are in good agree-
ment with previous solutions since the maximum deviation obtained is 0.129%.
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Table 2.10: Comparison of the present work with steady state benchmark results with
a non-Boussinesq approach.

P̄ (t)/P0 Nuh

Test 1 Quéré et al. (2005) 0.856338 8.85978
Present work 0.8565 (0.019%) 8.8640 (0.048%)

Test 2 Quéré et al. (2005) 0.924487 8.6866
Present work 0.9249 (0.045%) 8.6938 (0.083%)

Test 3 Quéré et al. (2005) 0.92263 16.2410
Present work 0.92224 (0.042%) 16.2619 (0.129%)

2.3.6.4 Laminar differently heated cavity: transient regime with
constant properties and Boussinesq approximation

Results for the unsteady regime are compared with previous publications (Leal
et al. (2000)). Again, the Boussinesq approximation and constant properties
formulation are used. Figures 2.8 and 2.9 show, for different physical times,
non-dimensional temperature and dimensionless vertical velocity component
distributions, respectively, in the cavity mid-plane (y⇤ = 0.5) for Rayleigh
numbers between 103 and 106, Pr = 0.71 and T0 = Tc. In addition, for
the same Rayleigh range, the time evolution of the average Nusselt number
is compared with the same authors in Fig. 2.10. Figures 2.8 to 2.10 show
an excellent agreement, at least, at the graph scale. The expected increasing
oscillations of the average Nusselt number as the Rayleigh number increases
are also well reproduced. A distinguished agreement is achieved between every
average Nusselt number at the end of the transient period and the ones found
in the steady state formulation.

2.3.6.5 Turbulent isothermal plane free jet

The RANS implementation is here tested by solving an isothermal turbulent
plane jet of water vapor discharging into a parallel low speed coflow of water
vapor. The k � ✏ LS turbulent model and Van Albada scheme, both detailed
in this Chapter, are used.
The plane jet is briefly detailed in this section, since an extensive explanation of
the physical problem is further provided in Chapter 4. The turbulent statistics
of a plane jet are two-dimensional. The streamwise direction is x while the
cross-stream coordinate is y. The jet starts to develop at x = 0.
The setup for the present test is summarized in Table 2.11.

Table 2.11: Configuration of the isothermal plane jet.

� [m] U1 [m/s] U2 [m/s] Re P0 [atm]
5 · 10�2 4.176 U1/10 3200 1
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(a) (b)

(c)

Figure 2.8: Comparison of dimensionless temperature in the horizontal mid-plane
for (a) Ra = 103, (b) Ra = 104 and (c) Ra = 105.
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(a) (b)

(c)

Figure 2.9: Comparison of dimensionless vertical velocity in the horizontal mid-plane
for (a) Ra = 103, (b) Ra = 104 and (c) Ra = 105.

(a) (b) (c)

Figure 2.10: Comparison of average Nusselt number in the hot wall over time for
(a) Ra = 103, (b) Ra = 104 and (c) Ra = 105.
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where � is the initial jet width opening, U1 and U2 are the mean inlet velocities
for the jet and the coflow, respectively. P0 stands for the mean pressure; and
Re = ⇢�U0�/µ corresponds to the Reynolds number based on the initial jet
width in which �U0 = U1 � U2. The jet spreading rate y1/2(x) is defined as
the distance from the jet centerline at which the mean velocity corrected by
the coflow velocity is half of the value at the jet centerline.
Mean profiles of the excess streamwise velocity ({Ue} = {u} � U2) and the
cross-stream velocity {v} adimensionalized by the excess centerline velocity
�{Uc} = {Uc} � U2 against y/y1/2 become self-similar, that is, they collapse
onto a single curve as long as the jet is developed. Fig. 2.11(a) and 2.11(b) show
that velocity profiles at x = 25� are in very good agreement with self-similar
profiles from experimental (Gutmark and Wygnanski (1976)) and numerical
(Stanley et al. (2002)) studies.

(a) (b)

Figure 2.11: Self-similar profiles of (a) streamwise and (b) cross-stream velocities of
the isothermal plane jet at x = 25�.

Verification of the results is also performed by comparing the coefficients K1,u,
K2,u, C1,u and C2,u from the linear fitting of the jet growth

y1/2
�

= K1,u

⇣x

�
+ K2,u

⌘
, (2.39)

and the centerline velocity decay
✓

�U0

�{Uc}

◆2

= C1,u

⇣x

�
+ C2,u

⌘
, (2.40)

Figure 2.12(a) presents the results of the growth of the jet half-width y1/2(x)
along the streamwise coordinate. Additionally, the mean excess velocity decay
(�U0/�{Uc})2 along the jet centerline is presented in Fig. 2.12(b). A linear
regression in the zone 10� < x < 25� is shown. Also the experimental results
from the work of Thomas and Chu (1989) are also presented for comparison.
The linear fitting coefficients in the zone 10� < x < 25� are summarized in
Table 2.12 along with some experimental (Jenkins and Goldschmidt (1973);
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(a) (b)

Figure 2.12: Comparison of the present RANS results for an isothermal plane jet
with the experimental work of Thomas and Chu (1989): downstream evolution of (a)
spread rate and (b) velocity decay.

Goldschmidt and Young (1975); Gutmark and Wygnanski (1976); Thomas and
Chu (1989)) and DNS (Stanley et al. (2002)) results. The results of the virtual
origins (K2,u and C2,u) differ among the referred works since they have a strong
dependency on the inflow conditions (Stanley and Sarkar (2000); Klein et al.
(2003)). However, the predicted slope coefficients (K1,u and C1,u) compare
generally well with previous results.

Table 2.12: Comparison of the jet growth rate and the centerline velocity decay rate
at the self-similar region between the current RANS results and some experimental and
numerical reference values.

K1,u K2,u C1,u C2,u

Jenkins and Goldschmidt (1973) 0.088 -4.5 0.160 4.0
Gutmark and Wygnanski (1976) 0.100 -2.00 0.189 -4.72
Goldschmidt and Young (1975) 0.0875 -8.75 0.150 -1.25
Thomas and Chu (1989) 0.110 0.14 0.220 -1.19
Stanley et al. (2002) 0.092 2.63 0.201 1.23
Current RANS results 0.0871 0.5646 0.1629 0.4291

To sum up, results obtained using RANS of cross-section profiles of velocity
shown in Fig. 2.11, and the rates of jet spread and velocity decay compares
reasonable well with previous experimental and numerical works.

2.4 Conclusions

This Chapter details the implementation of the variable-density k�✏ and k�!
turbulent viscosity models in the ConDiRa (CONvection, DIfusion and RAdi-
ation) RANS code.
The numerical discretization of the governing equations has been done following
the Finite Volume Method and using high-order schemes in a Total Variation
Diminishing (TVD) formulation keeping a reasonable accuracy and preventing
instabilities during the iteration process.
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In order to assess the accuracy of the implemented high-order schemes, results
of pure convection in a diagonal flow problem, using a set of different high-order
schemes, are discussed. Then, the laminar convection part of the code and the
energy transport are checked computing natural convection in a square cavity
for a set of conditions. Finally, an isothermal turbulent plane jet of water vapor
discharging into a parallel low speed coflow of water vapor is computed to test
the RANS implementation.





Chapter 3

Thermal Radiation Heat

Transfer

In this Chapter, the fundamental concepts regarding thermal radiative
transfer in participating media are introduced. Moreover, a detail de-
scription of the numerical tools used to solve the radiative problem
is provided. Finally, the methods employed to carry out the couple
DNS/Monte-Carlo and the RANS/Monte-Carlo coupling are described.
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3.1 Introduction to thermal radiation

Thermal radiative transfer is the third mode of heat transfer in addition to
convection and conduction energy transport modes. Thermal radiation occurs
in the form of traveling electromagnetic waves principally in the infrared region.
In contrast with convection and conduction which are described by local energy
balances, radiation is characterized by long distance interactions among the
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entire domain of study. Thus, the whole enclosure needs to be considered
simultaneously in the radiation problem.
The radiation problem is further complicated by its directional and spectral
dependency nature. Then, to describe the radiative heat flux, the spectral ra-
diative intensity I⌫(~x,~s) is defined as the radiative energy flow per unit solid
angle and unit area normal to the direction ~s at a given wavenumber ⌫ and at
point ~x. The equation governing the spectral intensity field inside a medium
that emits, absorbs, and scatters radiation is the so called Radiative Transfer
Equation (RTE). Omitting the time dependency and assuming local thermo-
dynamic equilibrium, the RTE is expressed as

dI⌫(~x,~s)

ds
= +⌫(~x)Ib⌫(~x)| {z }

emission

��⌫(~x)I⌫(~x,~s)| {z }
absorption

+
�⌫(~x)

4⇡

Z

4⇡
I⌫(~x, ~s0)�(~s0,~s)d⌦0

| {z }
scattering

,

(3.1)

which describes the change in intensity by emission, absorption and scattering
along a line of sight into the direction ~s. ⌫ , �⌫ and �⌫ stand respectively
for the absorption, extinction and scattering spectral coefficients. Vector ~s0
represents all possible incoming directions towards position ~x, while �(~s0,~s) is
the scattering phase function that describes the probability that a ray coming
from direction ~s0 confined in the solid angle d⌦0 scatters into the direction ~s.
Finally, Ib⌫ is the equilibrium spectral blackbody emitted intensity given by the
Planck’s law as

Ib⌫ =
2⇡hplanckc20⌫

3

n2
�
ehplanck⌫/kbT ) � 1

� , (3.2)

where hplanck is the Planck’s constant, c0 is the speed of light in vacuum, n is
the refractive index and kb is the Boltzmann’s constant.
Assuming a non-scattering medium, the RTE can be simplified to

dI⌫(~x,~s)

ds
= ⌫(~x) (Ib⌫(~x) � I⌫(~x,~s)) . (3.3)

Once the spectral intensity field is known, the quantity of interest to couple
convection and radiation modes of heat transfer is the volumetric radiative
power Prad, which acts as a source term in the Energy Transport Equation
(Eq. 1.3) defined in Chapter 1. The radiative power is a balance over all the
wavenumber spectrum between the power lost by radiative emission Pe, and
the gained power due to absorption from all incoming directions Pa, that is

Prad =

Z

⌫

✓
⌫

Z

4⇡
I⌫d⌦ � 4⇡⌫Ib⌫

◆
d⌫ =

Z

⌫

✓
⌫

Z

4⇡
I⌫d⌦

◆
d⌫

| {z }
Pa

� 4⇡

Z

⌫
⌫Ib⌫d⌫

| {z }
Pe

.
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(3.4)

To accurately obtain the volumetric radiative power from three-dimensional en-
closures with variable temperature and species concentration fields is a complex
task. The problem is further complicated if the dependency of ⌫ on the tem-
perature, species concentration and wavenumber is taken into account. This is
probably why several numerical models to solve the RTE as well as to account
for detailed radiative properties have been developed during the last decades.
The next section summarized those methods and highlights the main features
of the ones used in this work.

3.2 Numerical methods to solve the radiative prob-
lem

Hardly any analytical solution of the RTE exists except for very simple cases
such as the one-dimensional gray media problem. In the vast majority of re-
search and industrial applications involving thermal radiation, numerical meth-
ods are used to solve the RTE.
The most common numerical methods to handle the RTE include the Spher-
ical Harmonics Approximation (Evans (1998)), Discrete Ordinates (Fiveland
(1984)) and Monte-Carlo (Howell (1998)) methods among others. The interest
of using a specific method is often driven for the particularities of the problem
and normally becomes a trade-off between accuracy and computational cost.
A detailed description of these methods is beyond the scope of this section;
instead, the main characteristics of the two methods employed in this work are
highlighted.
On the one hand, the Monte-Carlo method is used in this work to take ad-
vantage of its capabilities to solve the RTE with detailed spectral radiative
properties with a relatively low additional computational cost. Also, the use
of the Monte-Carlo is justified since it provides a control of the convergence
which determines the statistical error of the solution. Then, the Monte-Carlo
method is employed within the thesis objectives of generating a high-fidelity
database to quantify TRI and to set the modeling bases for free jets coupled
with thermal radiation.
On the other hand, a DOM method has been implemented from scratch during
the developing of this thesis. The principal motivation, just as for the imple-
mentation of the RANS, is to compare accuracy between simplified models and
high-fidelity data. In this sense, the DOM implementation opens the way to
further simulations using simplified radiation models to couple heated jets in
order to quantify its accuracy by comparison with high-fidelity data. The DOM
implementation is verified in Appendix E, further simulations using DOM are
the subject of future works.
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3.2.1 Discrete Ordinates Method

The Discrete Ordinates Method (DOM) uses numerical quadratures in order
to integrate over directions. Then, any function f(~s) dependent on direction ~s
can be integrated over the total solid angle range as

Z

4⇡
f(~s)d⌦ ⇡

MX

k=1

Wkf(⌦k) (3.5)

where M is the total number of discrete directions ⌦k, and Wk corresponds to
the weight associated to each direction. Each specific quadrature defines its own
discrete directions and its associated weight. Thus, the angular discretization
substitutes the RTE for a set of M discrete equations, one for each discrete
direction. Once the RTE is angularly discretized, it is further numerically
integrated over the entire domain by means of a spatial discretization. In
the present work, the finite volume method is used. In order to verify the
implementation of the DOM, the numerical solution of combined heat transfer
by radiation and natural convection in a square cavity filled with an absorbing-
emitting and isotropic scattering medium has been verified with the numerical
works of Yücel et al. (1989); Lari et al. (2011); Moufekkir et al. (2012). More
details of the present DOM implementation and its verification can be found
in Appendix E.

3.2.2 Monte-Carlo Method

The Monte-Carlo method consists in tracing a statistically meaningful number
of photons from their points of emission to their points of absorption. This
family of methods is known to provide benchmark results for the RTE, since
it is suitable for complex radiative properties and the desired accuracy can be
arbitrarily chosen. This method is used in the present work taking advantage
of the in-house code Rainier which is described in the following section.

3.3 General description of the Rainier code

Rainier is an in-house code developed at EM2C laboratory (Zhang (2011);
Refahi (2013); Zhang (2013); Koren (2016); Rodrigues (2018)). The Monte-
Carlo method is optimized by using an Emission-based Reciprocity Method
(ERM). In the ERM, only the bundles leaving a specific node are needed to
estimate the local radiative power at this specific node. It is therefore possible
to estimate the radiative power at one node without performing such estimation
at all other nodes of the domain.
Moreover, a randomized Quasi Monte Carlo (QMC) (Lemieux (2008)) rely-
ing on low-discrepancy Sobol sequences (Joe and Kuo (2008)) that replace the
pseudo-random number generator to accelerate the calculation is already im-
plemented in Rainier (Palluotto et al. (2017)) and it is used in this work.
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Rainier can also handle complex geometries since it uses unstructured meshes.
Its scalability has been tested using up to 1920 processors with excellent re-
sults (Rodrigues (2018)). Despite three-dimensional radiative calculations with
spectral radiative properties are computationally expensive, ERM is an efficient
solver for this problem when compared with other deterministic solvers such as
the Discrete Ordinates Method (DOM).
A description of the ERM used to solve the RTE, along with a brief explanation
of the ck model to account for the detailed radiative properties of water vapor
are provided in the following subsections.

3.3.1 Emission-based Reciprocity Monte-Carlo Method

The quantity of interest is the radiative power at a specific node i, denoted
here as P rad

i . It is computed as the sum of the exchanged radiative power
P exch
i,j between i and all the other cells j of the domain, i.e.,

P rad
i =

X

j

P exch
ij . (3.6)

Following the reciprocity principle, the Emission-based Reciprocity Method
computes P rad

i based on a large sample of rays (Nq) issued form node i ex-
changing energy with all cells (Mn) that the ray crosses before being absorbed
or before it leaves the domain. The expression to compute the volumetric ra-
diative power of a cell i writes:

P rad
i =

P e
i

Nq

NqX

n=1

MnX

m=1


Ib⌫n(Tm)

Ib⌫n(Ti)
� 1

�
⌧⌫n(BFm)↵n,m,⌫n (3.7)

in which:
• Ib⌫ is the spectral blackbody emitted intensity described above in Eq. 3.2.
• P e

i is the emitted power overall the wavenumber ⌫:

P e
i = 4⇡

Z

⌫
⌫Ib⌫(Ti)d⌫, (3.8)

• ↵n,m,⌫n is the spectral absorptivity of the nth ray in the mth cell crossing.
It is defined as

↵n,m,⌫n = 1 � e�⌫(Tm)ln,m (3.9)

where ln,m is the length that ray n goes across within cell m.
• ⌧⌫n(BFm) is the spectral transmissivity associated with a given ray path

from the source point B to the inlet point Fm in cell m. It corresponds
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to 1 in the source point B and its value decays along the ray path due to
absorption following the expression

⌧⌫n(BFm) =
MnY

m=1

(1 � ↵n,m,⌫n), (3.10)

note that, in enclosed domains, it also includes wall reflexions.
The statistical behaviour of the computation is based on three Probability
Density Functions (PDF): two to determine the direction (characterized by
the azimuthal angle � and the polar angle ✓), and another to determine the
wavenumber of the emitted ray, ⌫. Then, for each ray, three pseudo-random
numbers need to be generated for the Monte-Carlo method, or equivalently a
three-dimensional Sobol sequence is built for the randomized QMC. Optimized
versions of the ERM - OERM (Zhang et al. (2012)) and OERM2 (Rodrigues
(2018)) - can be derived by enhancing the PDF associated to the wavenumber.
These optimized methods are both available in Rainier.

3.3.2 Detailed radiative properties

In Rainier, the spectral radiative properties for CO2 and H2O are modeled
by means of the correlated-k (ck) narrow band model (Riviere et al. (1992);
Goody and Yung (1995); Taine and Soufiani (1999)). Such a level of descrip-
tion is deemed very accurate for the targeted coupled simulations compared
to Weighted-Sum-of-Gray-Gases (WSGG) global models or notoriously wrong
gray-gas assumptions. This allows to capture as accurately as possible the
detailed radiative transfer in the coupled simulation of the heated plane jet
mixing.
The ck approach belongs to the more general kind of narrow band models (NB).
In general, these NB models consist in discretizing the spectrum in intervals
small enough such that Ib⌫ can be considered uniform in each narrow band. The
absorption coefficient ⌫ remains however quite dynamic with rapid variations
in the spectral bands. Simply averaging ⌫ yields erroneous results.
The key point of the ck approach is the way it handles the integration over a
narrow band, on each narrow band �⌫, the absorption coefficient is reordered
by increasing values in a monotonic function k(g), where g is a cumulative
distribution function. In the Rainier implmentation, g can be understood as a
dimensionless wavenumber (normalized by �⌫) which takes values form 0 to 1.
And, k goes from the minimal absorption coefficient value inside �⌫ until its
maximum value. Then, k(0) = �⌫

min while k(1) = �⌫
max.

In the ck model, the spectral transmissivity of a homogeneous isothermal gas
layer of thickness l (defined as ⌧⌫ = e�⌫ l) is computed as the averaged trans-
missivity over the band �⌫ by numerical integration over the narrow band.
The ck method implemented in Rainier uses Gaussian quadrature of order 7,
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then the averaged transmissivity over the band �⌫ is computed as

⌧̄�⌫ =
7X

i=1

!ie
�kil, (3.11)

where !i is the quadrature weight, and ki is the reordered absorption coefficient
evaluated at the quadrature point k(gi). Rainier follows the work of Soufiani
and Taine (1997) to compute the reordered absorption coefficients ki. For the
case of pure H2O, which is here the present case, the reordered absorption
coefficients are computed as:

ki =
XH2O p k⇤

i

Q(T ) T
, (3.12)

where XH2O is the molar fraction of XH2O, p is the partial pressure of H2O, T
is the temperature and Q(T ) is a function that depends solely on temperature
described in the work of Gamache et al. (1990). And, k⇤

i are the parameters of
the ck model, the ones used in Rainier are based on updated parameters of Riv-
ière and Soufiani (2012). These parameters are tabulated by 16 temperatures,
5 molar fraction of H2O, 44 narrow bands for H2O with widths varying from
50 cm�1 to 400 cm�1, and 7 Gauss-Lobatto quadrature points per band (gi).
Those parameters are generated for atmospheric pressure and for a tempera-
ture range between 300 and 4000 K. The accuracy of the ck model is further
discussed in Chapter 6.

3.4 Coupling turbulence with thermal radiation

Since turbulence and thermal radiation have strong differences on their nature,
each phenomenon has its own dedicated and optimized solver. The coupling
method is the responsible to exchange the data needed for each solver, it should
avoid instabilities on the solutions, be precise and minimize computer memory
and CPU requirements.
The main difference between the implementation of the couple DNS/Monte-
Carlo with respect to the RANS/Monte-Carlo coupling is that the former uses
parallel coupling, meaning that both codes run simultaneously; while the latter
uses a staggered scheme in which one code runs after the other. The main
characteristics chosen for each coupling method are detailed in the next two
sections.

3.4.1 Coupling thermal radiation with the DNS solver

Memory and time processing requirements should be carefully optimized when
coupling the DNS and Monte-Carlo solvers. In this subsection, a discussion is
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provided regarding the main choices for such a coupling, which are the mesh
for each solver, how data traffic is managed and how the load between parallel
processors is distributed.

3.4.1.1 Fluid flow and Radiation Meshes

A first option is to compute both solvers on the same computational mesh.
Despite the fact that it simplifies the task of coupling, this option does not
take into account the specific requirements of each solver. While the flow field
mesh should be more refined on velocity gradients, the radiative calculation are
mainly sensitive to temperature and composition gradients. In DNS coupled
simulations, the single-mesh option is rather out of reach because of the memory
needed in the RTE solver. While a decomposition domain is performed in the
fluid flow solver, the RTE solver needs information over all the domain to solve
a single mesh node; thus, each processor needs to store the whole mesh.
However, considering separated meshes involves interpolation between them
on each coupling iteration. These interpolations may lead to accumulating
errors which reduces the accuracy of the coupling. Additionally, using two
different meshes requires more CPU time to perform the interpolations and
supplementary computer memory to store the extra mesh.
The retained approach in this study is to define the radiative mesh from the flow
field mesh. On doing that, the radiative mesh cells are compounded of a certain
number of flow field cells, and nodes form the radiative mesh are superposed
to nodes from the flow field grid. That way, the interpolation scheme is very
fast and the difficulties associated with the domain decomposition of the flow
field can be directly managed. The only drawback is that the radiative mesh
is limited to the topology of the flow field mesh. In the work of Zhang et al.
(2013) this same approach is used and a discussion of it can be found in the
study of Badinand and Fransson (2001).

3.4.1.2 Data exchange

All exchanged data between the two codes is handled by a direct Message Pass-
ing Interface (MPI) implementation. This method consists in dividing the total
number of processors among the two codes while an extra processor is reserved
to act as coupler. On each code, a structure master/slaves is implemented in
a way that all communications are handled by MPI commands between the
master of each code and the coupler. An schematic of the direct MPI approach
is detailed on Fig. 3.1. On each couple iteration, the master of the fluid solver
receives the radiative power (Prad) from the coupler, and scatters it on each
processor working in the fluid solver. After Nf iterations, the fluid solver com-
putes a temperature field which needs to be gathered on the master of the fluid
solver in order to be sent to the coupler (on a multi-specie simulation, concen-
tration fields are also necessary). Once the coupler receives the temperature
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field, it is reordered so it can be sent to the radiative solver master. The RTE
solver computes the Prad for this specific temperature field, and is further sent
to the coupler in order to restart the whole process. The main advantage of
the direct MPI coupling method is that all elements on the process of coupling
are controlled and can then be tested and optimized. This method is limited
for the coupler processor which for large meshes can be inefficient. The current
implementation has been carried out ensuring that the time spent on MPI com-
munications (denoted as MPI time in Fig 3.1) is less than 0.5 % of the CPU
time on every processor (except the coupler processor).

Nf iterations of the fluid solver

Receive T

tim
e

1 processor for 
the coupling 

interface

Pr processors for the radiative 
solver

Pf processors for the fluid flow 
simulation

CPU time

Send T
Receive Prad

Send Prad

Receive T
Send T

Receive Prad

Send Prad

Receive Prad

Scatter global vector Prad

Gather global vector T
Send T

Nr iterations of the radiative 
solver

Receive T
Scatter global vector T

Gather global vector Prad

Send Prad

MPI time

Nf iterations of the fluid solver
(Prad = 0)

Gather global vector T
Send T

Nr iterations of the radiative 
solver (initial T)

Gather global vector Prad

Send Prad

Figure 3.1: Scheme for the coupling thermal radiation with the DNS solver using a
parallel coupling method.

3.4.1.3 Synchronization in CPU time

The time step of the fluid flow solver �tf has to be small enough to capture the
acoustic (or pseudo-acoustic) waves crossing the domain without triggering any
numerical instability. However, the radiative power field evolves along with the
temperature field whose typical time scale is one or two orders smaller than the
acoustic one in low-Mach number flows. Then, the radiative power field does
not need to be updated after every fluid flow time step. Instead, it is updated
every ncpl iterations of the fluid flow solver. Consequently, the coupling period
is defined by �tcpl = ncpl�tf . To determine the optimal coupling parameter
ncpl, let us define the Euclidean norm of the difference between the radiative



50 Chapter 3 - Thermal Radiation Heat Transfer

power in an iteration i, set as a reference (P i
rad), with respect to the radiative

power after N iterations (P i+N
rad ), that is

||P i+N
rad � P i

rad||2 =

sX

~x✏D

⇣
P i+N
rad (~x) � P i

rad(~x)
⌘2

, (3.13)

where D is the computational domain. From the evolution of ||P i+N
rad � P i

rad||2
by increasing N , the error of coupling between N time steps of the fluid flow
can be estimated. Then, ncpl can be chosen based on the error estimated by
the Euclidean norm of the difference between P i

rad with respect to P
i+ncpl

rad .
Finally, the number of processors dedicated to each code should be set in order
to minimize the time spent on waiting for MPI communications following the
relations:

Pf w
PtotTf

Tr/ncpl + Tf
and Pr = Ptot � Pf � 1, (3.14)

where Tf and Tr are the cpu time spent by one processor to compute one
iteration on the fluid and the radiative solvers, respectively. Ptot, Pf and Pr

are the total number of processors, and the number of processors dedicated
to the fluid and radiative solvers, respectively. Note that ideal scalability is
assumed in order to derive Eq. (3.14), i.e., Tf and Tr are inversely proportion
to Pf and Pr, respectively.

3.4.2 Coupling thermal radiation with the RANS solver

Two-dimensional RANS computations are light when compared with the three-
dimensional DNS and there is no need for the complexity that a parallel cou-
pling implies. Then, a staggered scheme described in Fig. 3.2 is implemented
to handle the coupling between the thermal radiation and RANS solvers. In
this scheme, a RANS simulation is first carried out imposing a null radiative
power field. Once the RANS steady state solution is converged, the average
temperature field is further read from the Monte-Carlo solver which computes
the corresponding radiative power field. Then, RANS solver computes again
the steady state average temperature field, but this time accounting for the
previously estimated radiative power. This process is repeat until Prad differ-
ences before and after the Monte-Carlo solver are lower than a fixed tolerance
✏. The RANS and Monte-Carlo solvers use exactly the same mesh since this
option provides accuracy and it is affordable in terms of computational cost.
As already explained in Chapter 2, RANS solutions provide only the averaged
flow fields, being that fluctuations of temperature are not solved. Unfortunately,
those fluctuations may affect the radiation field since the emission of radiation
(Ib⌫) and the radiative power are highly non-linear functions of temperature
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Figure 3.2: Scheme for the coupling thermal radiation with the RANS solver using
a coupling staggered method.

and species concentration. The effects that fluctuations of temperature (and
species concentration in a multi-species problem) cause in radiation are com-
monly called turbulent radiation interaction (TRI). A brief description of such
interactions in the RANS framework is provided below.

Turbulence radiation interactions

When solving the radiation problem in the RANS context, the averaged form
of the RTE is actually used, which for a non-scattering medium writes

dhI⌫i
ds

= �h⌫I⌫i + h⌫Ib⌫i. (3.15)

Averaged emission h⌫Ib⌫i and averaged absorption h⌫I⌫i are unclosed terms
since their direct computation from averaged temperature and species concen-
tration values, provided by the RANS solver, are not necessarily equal than
its computation from instantaneous values. The complete expressions for the
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averaged emission and averaged absorption are

h⌫Ib⌫i = h⌫i hIb⌫i + h0⌫I 0b⌫i, (3.16)

h⌫I⌫i = h⌫i hI⌫i + h0⌫I 0⌫i, (3.17)

In this work the global TRI effects on the radiative power P TRI
rad are quantified

as

P TRI
rad = hPradi � Prad(hT i) (3.18)

where hPradi is the averaged radiative power from the coupled simulation and
Prad(hT i) corresponds to the radiative power computed from the averaged tem-
perature field. Likewise, emission and absorption TRI powers are respectively
defined by

P TRI
e = hPei � Pe(hT i), (3.19)

and

P TRI
a = hPai � Pa(hT i), (3.20)

where

Pe(hT i) = 4⇡

Z

⌫
⌫(hT i)Ib⌫(hT i)d⌫. (3.21)

Most of the efforts in TRI modeling are dedicated to model the effects that
fluctuations cause on the emission TRI while absorption TRI is usually not
considered. This approach is supported by early works of Kabashnikov and
Kmit (1979); Kabashnikov (1985) who show that, for moderate optical thick-
nesses, the fluctuations of the radiative intensity are mainly caused by distant
points. Thus, the correlation between the spectral intensity and the local ab-
sorption coefficient is negligible, this consideration is the so-called optically thin
fluctuation approximation (OTFA), that is

h⌫I⌫i ⇡ h⌫i hI⌫i, (3.22)

In that case, emission TRI can be easily accounted for since it fully depends on
local values of temperature, pressure and species concentration. Mignon and
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coworkers (Mignon (1992); Soufiani et al. (1990a); Soufiani et al. (1990b))
proposed an attempt to closed the TRI problem by invoking the OTFA and
assuming negligible radiative property fluctuations, then the averaged RTE
writes:

dhI⌫i
ds

= �h⌫i hI⌫i + h⌫i hIb⌫i, (3.23)

followed by a development of the Plank function in series of order n around hT i
of the form:

Ib⌫(T ) = Ib⌫(hT i + T 0) =
nX

l=0

1

l!
T 0@

lIb⌫
@T l

(hT i). (3.24)

Further extension of the development in Taylor series comprises the work of
Snegirev (2004) who consider that the absorption coefficient depend solely on
temperature and thus can be expressed:

⌫(T ) = ⌫(hT i + T 0) =
nX

l=0

1

l!
T 0@

l⌫
@T l

(hT i). (3.25)

Doing some algebra and neglecting correlations higher than two yields:

h⌫(T )Ib⌫(T )i ⇡ ⌫(hT i)Ib⌫(hT i)
✓

1 + 6
hT 02i
hT i2 + 4

hT 02i
hihT i

@⌫
@T

(hT i)
◆

. (3.26)

Additional equations for the temperature variance are then required to close
this model.
A more exact model to compute the terms h⌫(T )Ib⌫(T )i, and h⌫(T, Yk)i
depending on species concentration is through Probability Density Functions
(PDF). Either using presumed PDF shape models (Gore et al. (1992)) or
transport PDF based methods (Coelho (2012); Coelho (2010); Li and Modest
(2002)), it can be written:

h⌫i =

Z 1

0
⌫ (T (z), Yk(z)) PDF(z)dz, (3.27)

h⌫Ib⌫i =

Z 1

0
⌫ (T (z), Yk(z)) Ib⌫ (T (z)) PDF(z)dz, (3.28)

where z is the mixture fraction which allows the direct determination of the
temperature and the species concentration in the combustion framework. In the
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work of Burns (1999), a number of � PDF functions were studied concluding
that the self-correlation of temperature (hT 4i/hT i4) was weakly sensitive to the
shape of the PDF.
Accounting for absorption TRI is much more complicated since it depends
on the instantaneous solution of the whole domain. Optically thick and high
turbulent flows compromise the validity of the OTFA. Thus, some attempts to
address the modelling of the absorption TRI have been carry out. In the work of
Tessé et al. (2004) the full effects of TRI are accounted for in a turbulent sooty
flame. In order to model absorption and emission TRI a three-dimensional PDF
comprising (i) the reaction progress variable, (ii) the mixture ratio and (iii) the
soot volume fraction is considered together with a photon Monte Carlo Method
to solve the RTE. To generate the joint PDF, they used a Lagrangian method
applied to an a priori solution of the flow using a k-✏ RANS solver. Their
calculations relied on the assumptions that each turbulent structure (based on
the turbulent integral lenght scale) is homogeneous and isothermal, so they can
associate a single PDF on each "turbulent structure" rather than on each node
of the mesh. Such an assumption is an estimation to account for the spatial
correlation of the random variables composing the PDF.
Another approach, presented by Mehta and Modest (2006), for the modeling of
the absorption TRI is based on the idea that in the parts of the spectrum that
are optically thick, the diffusion approximation q⌫,diff = � 1

3⌫
r(4⇡Ib⌫) can be

applied assuming a non-scattering medium in the optically thick limit. In the
other parts of the absorption coefficient, the OTFA is considered. This method
could apply for turbulent sooty flame. However, there are some parts of the
spectrum where the medium is neither optically thin nor in the thick limit.
The works of Coelho (2012); Coelho (2010) present an attempt to model the
absorption TRI in a combustion framework through the mixture fraction (z).
They use a two-dimensional clipped Gaussian joint probability density function
of z and radiation intensity I⌫ of the form:

h⌫I⌫i =

Z 1

0

Z 1

0
⌫ (T (z), Yk(z)) I⌫ PDF(z, I⌫) dzdI⌫ . (3.29)

In order to compute the joint PDF(z, I⌫), two additional equations are needed
to determine the variance of I⌫ and the correlation coefficient between z and
I⌫ .
Additionally, a photon Monte Carlo approach to model absorption and emission
TRI is proposed by Wang et al. (2008). Their approach uses a Particle Monte
Carlo Method (Pope (1985)) to compute a composite PDF in which only species
concentration and enthalpy are treated as random variables. Then, the only
assumption made is that the instantaneous particle field in the PDF method
represents an actual snapshot of the real turbulent flow field. Once the scalar
fields are set, a Photon Monte Carlo (PMC) method able to compute the RTE
in a media represented by particles is used to take into account the TRI effect
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of unresolved fluctuations. The details of such PMC method are detailed in
the work of Wang and Modest (2006) in which different absorption models are
proposed. Further application of this procedure in sooting flames can be found
in the works of Mehta et al. (2010); Mehta et al. (2010).

3.5 Conclusions

In this Chapter the numerical tools used to solve the radiative problem and the
methods employed to carry out the coupling between radiation and convection
have been described.
The retained method to solve the RTE is the emission-based reciprocity Monte-
Carlo (ERM) method. The spectral radiative properties are modeled by means
of the ck model. The Monte-Carlo method is used in this work to take ad-
vantage of its capabilities to solve the RTE with detailed spectral radiative
properties with a relatively low additional computational cost when compared
with deterministic methods such as the Discrete Ordinates Method (DOM).
Also, the use of the Monte-Carlo allows for controlling the computation error
determined as the standard deviation of the Monte-Carlo statistical estimate.
Two coupling procedures are developed in this thesis, which are the coupled
DNS/Monte-Carlo and the RANS/Monte-Carlo. The main difference between
them is that the DNS/Monte-Carlo uses parallel coupling, meaning that both
codes run simultaneously; while the RANS/Monte-Carlo uses a staggered scheme
in which one code runs after the other.
In DNS/Monte-Carlo coupling, the memory and time processing requirements
should be carefully optimized when coupling the solvers. A discussion has been
provided regarding the main choices for such a coupling, which are the mesh
for each solver, how data traffic is managed and how the load between parallel
processors is distributed.
The implementation of the RANS/Monte-Carlo coupling is somewhat simpler.
However, unclosed terms rise when computing the average radiative power from
mean temperature fields, these terms are called emission and abosprtion TRI.
A discussion regarding the modeling of these unclosed terms is provided, which
highlights that most of the efforts in TRI modeling are dedicated to model the
effects that fluctuations cause on the emission TRI; while absorption TRI is
usually not considered due to its dependency on instantaneous solution from
the whole domain.
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The dimensioning of two different heated jets is here performed based
on RANS computations coupled with the Monte-Carlo solver to account
for the radiative heat transfer. The dimensioning envisages to deter-
mine the role of radiation on the energy balance equation. The setup
for the RANS solutions as well as for the radiative solver is detailed.
The influence of the main physical parameters of the jet on the role of
radiation is discussed. Finally, a parametric study of the two desired
jets is presented, and the choice of the retained setups is justified.
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4.1 Introduction

The subject of this Chapter is to determine the setup to achieve two different
desired turbulent plane jets. The choice of these jets is mainly based on the
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contribution of the radiative source term in the enthalpy transport and the
further DNS processing time feasibility of its computation.
On the one hand, we seek to size up a turbulent jet based on values of inlet
temperature found in modern steam turbines. In the present work a temper-
ature of 860 K is choose based on values reported in the works of Jang et al.
(2015); Tanuma (2017). We called this jet the slightly heated jet, which
is prospecting for a modification of the temperature and density fields by the
effects of radiation in the developing region affecting the jet downstream.
On the other hand, a strongly heated jet based on temperatures as high as the
ones found in combustion systems (⇠ 2500 K) is further envisaged. We expect
to find noticeable radiation effects all along the domain in order to analyze
turbulent effects on radiation, as well as radiation effects on turbulence. Such
situation will enable us to give some insight on turbulent radiation interactions
(TRI) in free-shear flows, as well as to guide the developing of TRI models.
Since DNS have large computational cost, the parametric study to find the
setup conditions that best fit the aforementioned heated jets is performed using
RANS technique.

4.2 The physical model: the turbulent plane jet

The present work studies the radiative transfer in a heated turbulent plane jet
of water vapor discharging into a parallel low speed coflow of cold water vapor.
The principal direction of the mean flow is x, the cross-stream coordinate is y,
and z is the spanwise coordinate for which all the statistics are homogeneous.
There is statistical symmetry about the plane y = 0. The flow statistics are
stationary and two-dimensional. Figure 4.1 shows a schematic representation in
which the jet mixes with the surrounding slow coflow, which creates turbulence
and increases the jet thickness.
At the inlet boundary, the jet width opening is defined by the parameter �. The
jet has an initial mean velocity U1 and the mean coflow velocity is U2. The jet
temperature is T1, while the temperature in the coflow is T2.
The corresponding Reynolds number based on the width opening � is defined
by

Re =
⇢(T1)�U0�

µ(T1)
, (4.1)

where �U0 = U1 � U2.
The half width of the jet y1/2(x) displayed in Fig. 4.1 is a mean quantity useful
to describe the jet spreading rate. It is defined as the distance from the jet
centerline at which the mean velocity corrected by the coflow velocity {Ue} is
half of the value at the jet centerline �{Uc(x)}, i.e., {Ue(x, y1/2)} = 1

2�{Uc(x)}.
In the isothermal turbulent plane jet, the local Reynolds number based on y1/2
and �{Uc(x)} grows downstream in the fully turbulent region as x1/2.
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Figure 4.1: Schematic representation of the turbulent structures of a heated plane jet
identified by the Q-criterion.

Experimental studies of the plane jet show that mean turbulent fields can be
divided into two distinct regions along the x direction (Rajaratnam (1976)).
The first region is the initial zone located in the vicinity of the nozzle. In
this region the jet is surrounded by a mixing layer on top and bottom, and
turbulence penetrates inwards toward the centerline of the jet. Until the growth
of these mixing layers does not reach the jet centerline, there is a region called
potential core, unaffected by the turbulence from these shear layers. In the
potential core, the injected hot mixture remains uniform. The length of the
initial zone is strongly affected by the inlet conditions as reported, for example,
by the experimental work of Deo et al. (2007), and the numerical study of
Klein et al. (2003). In the second region, called fully developed, turbulence
has penetrated into the centerline of the jet and the mean streamwise velocity
profile has a rounded shape. In this region, the mean fields of the isothermal
plane jet become self-similar.

4.3 Numerical setup for the parametric study

In this Chapter, the jet described above is computed by means of the RANS
method coupled with a Monte-Carlo solver to account for radiation. Tessé et al.
(2004) show in their work that the radiative source terms in the energy balance
tend to dissipate temperature fluctuations. Therefore, radiation effects relative
to the other terms in the energy balance are expected to differ between a priori
analysis and the coupled ones. This is the reason why, the dimensioning is
performed using RANS fully coupled with the radiative solver. However, the
coupled solution does not consider any TRI model, i.e., the radiative power
field is directly computed from the averaged temperature given by the RANS
solver. For further details in the coupling procedure see Chapter 3.
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4.3.1 Setup for the RANS solution

The governing equations considering a two-dimensional flow for a Newtonian
and slightly compressible fluid in turbulent regime presented in Chapter 2 are
numerically solved using the k�✏ LS turbulent model from Launder and Sharma
(1974). A domain extension of (Lx ⇥ Ly/2) = (13.5� ⇥ 5�) and a non-uniform
mesh, shown in Fig. 4.2, of 141 ⇥ 81 nodes is considered. The turbulent Prandtl
number is set to Prt = 0.6. Numerical discretization of the governing equations
is carried out using the Finite Volume method (FVM) and the Van Albada
scheme (Van Albada et al. (1997)) in a Total Variation Diminishing (TVD)
formulation keeping a high-order of accuracy and preventing instabilities during
the iteration process. A detailed description of the RANS formulation can be
found in Chapter 2.

Lx

Ly/2

x

y

Figure 4.2: Retained non-uniform structured mesh of 141 ⇥ 81 nodes to compute
RANS solutions.

Computation of the transport properties of water vapor is based on the data of
Lemmon et al. (2005). Heat capacity at constant pressure is assumed constant
since it varies less than 6.4% in the considered temperature range, while µ
and � vary around 163 % and 205%, respectively (Lemmon et al. (2005)). A
polynomial regression of order two is then carried out in order to approximate
the dynamic viscosity µ and thermal conductivity � as follows

µ(T ) = a0+a1

✓
T

Tref

◆
+a2

✓
T

Tref

◆2

, and �(T ) = b0+b1

✓
T

Tref

◆
+b2

✓
T

Tref

◆2

,

(4.2)

where T is in Kelvin, Tref is a reference temperature Tref = 400 K, a0 =
�5.9340⇥ 10�6Pa · s, a1 = 1.9303⇥ 10�5Pa · s and a2 = �7.4821⇥ 10�7Pa · s,
b0 = 5.0855⇥10�3W/(m ·K), b1 = 1.5698⇥10�2W/(m ·K) and b2 = 8.5830⇥
10�3W/(m · K).
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4.3.1.1 Boundary conditions

The flow is statistically symmetric in the plane y = 0. Additionally, all the
statistics are homogeneous along the spanwise coordinate z. Thus, as shown
in Fig. 4.3, the mathematical model is solved in a two-dimensional domain,
and only the upper half domain is computed in order to speed up simulations.
Boundary conditions are considered as follows:
West boundary, 0 < y < Ly/2 and x = 0. Inlet velocity and temperature pro-

files are imposed in the west boundary. These profiles are defined using
a hyperbolic function described as

Uin(y) =
U1 + U2

2
+

U1 � U2

2
tanh

✓
�/2 � |y|

2✓

◆
, (4.3)

Tin(y) =
T1 + T2

2
+

T1 � T2

2
tanh

✓
�/2 � |y|

2✓

◆
. (4.4)

with a corresponding shear layer momentum thickness of ✓ = 0.02� based
on previous plane jet studies Stanley et al. (2002). Inlet boundary values
for turbulent variables are calculated through the turbulent intensity I,
which is defined as I = k1/2

in /Uin (here set to I = 0.05). Then, kin(y) =
I2Uin(y)2. The dissipation of the turbulent kinetic energy inlet profile ✏in
is based on the work of Heyerichs and Pollard (1996) defined as ✏in(y) =
Cµkin(y)3/2/(0.03�/2).

East boundary, 0 < y < Ly/2 and x = Lx, is an outflow condition with null
gradients of all variables in the x-direction.

North boundary, y = Ly/2 and 0 < x < Lx, corresponds to a far-field bound-
ary condition, for stability reasons we consider symmetry in the north
boundary and took the care to set this boundary far enough from the jet
to ensure that this approximation has a negligible effect.

South boundary, y = 0 and 0 < x < Lx, corresponds to a symmetry condi-
tion since the mean solution fields are symmetric at y = 0.

A schematic of the boundary conditions is presented in Fig. 4.3.

4.3.2 Setup for the Radiative Solver

The Monte-Carlo method computes the radiative power field from mean tem-
perature solutions obtained using RANS. As detailed in Chapter 3, the ERM
and a randomized Quasi Monte-Carlo relying on low-discrepancy Sobol se-
quences are used to account for the radiative heat transfer. Moreover, the
spectral radiative properties for H2O are modeled by means of the correlated-k
(ck) narrow band model. Turbulence radiative interactions are neglected in this
preliminary study.
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Figure 4.3: Boundary conditions specifications for the heated turbulent plane jet for
RANS computations.

In the spanwise direction, periodic boundaries are set for the radiative solver;
thus, if a ray gets off the domain, for example at the point (x, y, Lz), it will
get in at the point (x, y, 0) with the same propagation direction. All other
boundaries, corresponding to the inflow and outflows, are treated as black-
body at the local temperature of the node located in the boundary, this choice
is further discussed in Chapter 6.
The mesh to compute the radiative solution has the same mesh refinement
than the RANS grid, but the full domain (without the symmetry on y = 0)
is considered. Additionally, since the Monte-Carlo solver is three dimensional,
four nodes in the z-direction are added. Thus, radiative solution is computed
in 282 ⇥ 81 ⇥ 4 grid nodes in the x, y and z directions, respectively, which
corresponds to approximately 9.1 ⇥ 104 nodes.
The radiative simulations are considered converged either when a local error
lower than 1% of the radiative power is achieved or an absolute value of the error
lower than 2 · 103 W/m3 is achieved. The value of 2 · 103 W/m3 corresponds to
approximately 0.5% of the maximum value in magnitude of the radiative power
in the slightly heated jet case. Finally, if these two criteria are not accomplished
at a specific grid point, a maximum of 5⇥104 rays are considered. These criteria
conditions are even more restrictive than further coupled DNS simulations since
the processing time and the mesh size involved in the coupled RANS simulations
are less restrictive.

4.4 DNS Dimensioning of radiative heated jets from
coupled RANS computations

The purpose of the present coupled RANS analysis is to anticipate the role of
radiation in the averaged energy balance before performing Direct Numercial
Simulations. The averaged energy balance in terms of enthalpy can be simplified
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assuming statistically steady state and a low Mach number as
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(4.5)

Without radiation, the main terms for the turbulent plane jet are the mean flow
advection, and the turbulent convective heat flux.Additionally, radiative power
can also have a major contribution depending on the physical parameters of the
heated jet. The main parameters that define the present jet are the opening
width �, the mean inlet velocities for the jet U1 and the coflow U2, as well as its
corresponding temperatures T1 and T2, and the mean pressure P0. Note that
density and Reynolds number are consequently dependent parameters. The
effects of each parameter on the radiation contribution in the energy balance
with respect to the other terms are discussed below.

• Increasing the jet opening width � increases the optical thickness of the
system making the role of radiation more important. But at the same
time, larger � values implies larger Re. However, for the same Re, the
relative effects of radiative transport increase as � increases.

• When increasing the mean inlet jet velocity U1, convective energy trans-
port is strongly increased while there is not a direct impact on radiative
heat transfer. The mean coflow velocity U2 is set to be U2 = U1/10 which
is a similar relation of a previous DNS study of a turbulent plane jet
presented by Stanley et al. (2002).

• The inlet jet temperature T1 has a major influence on the exchanged
radiative power. Moreover, when increasing temperature, the Reynolds
number computed as Re = ⇢(T1)�U0�/µ(T1) rapidly decreases when �U0

and � are kept constant due to a decrease of ⇢ and an increase in µ. Coflow
temperature T2 is set to be the minimal temperature at which water vapor
remains in the gas state.

• Increasing P0 increases the optical thickness, but implies a rise in density
which increases the Reynolds number. Moreover, increasing P0 implies
larger values of T2 to ensure gas state of the water vapor.

The desired heated jets to be simulated correspond to two different applications
with its associated range of temperatures. The jet temperature for the slightly
heated plane jet is set to 860K, while for the strongly heated jet is set to 2500K.
The required CPU time strongly depends on the Re number, which determines
the smallest length and time scales. Moreover, the ratio between the jet opening
width and the jet velocity �/U1 is proportional to the required CPU time. On
the one hand, � defines the length Lx, which is here set to Lx = 10� to observe
self-similarity as reported by previous DNS results of Stanley et al. (2002). On
the other hand, the ratio �/U1 defines the required physical time ⌧ following
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the expression

⌧(U1 + U2)/(2Lx) = f.t.u, (4.6)

where f.t.u stands for the so-called flow time units, for which values greater
than 10 are required in order to obtain a statistically meaningful amount of
data to be averaged.
After performing some tests with the DNS mesh, we found that for � = 0.05
m, velocities greater than 4 m/s conform feasible �/U1 ratios in terms of CPU
processing time at Re = 1500. Moreover, when defining the jet opening width
� = 0.05 m, we also took the care to ensure that the associated cell sizes are
not fully optically thick, since we envisaged radiative heat transfer among a
wide variety of turbulent scales. Figure 4.4 present the spectral transmissivity
of water vapor at 380 K for a cell size of �/50 which follows the same order of
magnitude than previous DNS of turbulent plane jet performed by Stanley et al.
(2002). In this Figure, temperature has been set to 380 K since it presents the
largest optical thickness of the simulated temperature range. From Fig. 4.4,
it can be seen that transmissivity is close to unity all along the wavenumber
spectrum, ensuring radiative heat exchange among turbulent structures. Fur-
ther analysis on the transmissivity of the water vapor for the problem scale is
presented in Chapter 6.

Figure 4.4: Ck model results of the spectral transmissivity of an isothermal and
homogeneous column XH2O = 1 of length l = �/50 = 1 mm at 380 K .

4.4.1 Slightly heated plane jet

Temperature of the slightly heated jet is set to 860K based on inlet temperatures
of modern steam turbines (Jang et al. (2015); Tanuma (2017)). The jet opening
width � is fixed to � = 0.05 m and the inlet pressure is set to 1 atm. Then,
Reynolds number is varied from 750 to 3000 with its associated variation in
the inlet velocity. The performed coupled RANS simulations for the slightly
heated jet are described in Table 4.1.
Figure 4.5 shows the principal components of the energy balance for the Re =
750 case of the slightly heated jet. Given T1, the pressure to achieve U1 = 2.09
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Table 4.1: Setup for the different tested configurations for the slightly heated jet.

Re U1 [m/s] U2 [m/s] T1 [K] T2 [K] P0 [atm] � [m]
750 2.090 0.2090 860 380 1.0 0.05
1500 4.176 0.4176 860 380 1.0 0.05
3000 8.360 0.8360 860 380 1.0 0.05

m/s at this Reynolds number is P0 = 1 atm, which implies a coflow temperature
of T2 = 380 K to ensure gas state of the water vapor. The centerline evolution
of the main terms in Eq. (4.5) is presented in Fig. 4.5(a), which shows that
radiative power is larger than the turbulent convective heat flux almost until
x = 6�. At the inlet section, radiative power is of the same order of magnitude
than the mean flow advection. As envisaged, radiative power has a significant
contribution in the developing region, specially at the jet centerline. Note that
the turbulent term present larger magnitude in cross-section profiles due to
the shear layers developed around the potential core as seen in Fig 4.5(b).
Furthermore, at the developed region, radiative power is around 60% of the
turbulent convective heat flux at the jet centerline and 9% of the mean flow
advection at the jet centerline. Radiative power does not dominate the energy
balance at the developed region (x = 10�), but still its effect is questionably
negligible when compared with the other terms.

(a) (b)

Figure 4.5: Enthalpy balance main components for the slightly heated jet at Re = 750.
(a) Downstream evolution (b) and cross-section profile at x = 10�.

Figure 4.6 shows the energy balance when the Reynolds number is set to
1500. The associated inlet velocity corresponds to U1 = 4.176 m/s. As for
the Re=750, the radiative power has a non-negligible contribution in the jet
centerline at the developing region, since radiative power is larger than the
turbulent convective heat flux until x = 3.35� as shown in Fig. 4.6(a). The
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importance of the radiative power in the developed region (x = 10�) is less
than for the case of Re=750, being that radiative power is 5% of the dominant
mean flow advection at the jet centerline and it is around 30% of the turbulent
convective heat flux at the jet centerline as it can be observed in Fig 4.6(b).

(a) (b)

Figure 4.6: Enthalpy balance main components for the slightly heated jet at Re =
1500. (a) Downstream evolution (b) and cross-section profile at x = 10�.

Finally, the main terms of the energy balance for the case of Re = 3000 and
U1 = 8.36m/s are presented in Fig. 4.7. From Fig. 4.7(a) it can be ob-
served that turbulent convective heat flux rapidly exceeds radiative power be-
fore x = 2� at the jet centerline, which makes questionable that radiative power
contributes indeed in the energy balance at the developing region. Neverthe-
less, as envisaged, radiative power at the developed region (x = 10�) is clearly
negligible when compared with the other terms, since it is around 2% of the
mean flow advection at the jet centerline and it is around 14% of the turbulent
convective heat flux at the jet centerline as shown in Fig 4.7(b).
Based on the analysis varying the Reynolds number presented above, the re-
tained case for the slightly heated jet is the one with Re = 1500. This case
fulfill the envisaged requisites since radiation has a significant contribution in
the energy balance at the developing region, specially at the jet centerline. And,
at the same time, radiation has hardly any effects on the energy balance at the
developed region. Moreover, the computational cost of the coupled DNS with
thermal radiation is affordable for this Reynolds number and for the time scale
�/U1.

4.4.2 Strongly heated plane jet

The water vapor inlet temperature for the strongly heated plane jet is set
to T1 = 2500 K based on temperature values found in combustion systems.
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(a) (b)

Figure 4.7: Enthalpy balance main components for the slightly heated jet at Re =
3000. (a) Downstream evolution (b) and cross-section profile at x = 10�.

Again, the jet opening width � is fixed to � = 0.05 m and the Reynolds number
is varied from 250 to 1000 at P0 = 2.576 atm with its associated variation in
the inlet velocity, while T2 is set to be the minimal temperature at which water
vapor remains in the gas state. The setup of the performed simulations for
dimensioning the strongly heated jet are gathered at table 4.2.

Table 4.2: Setup for the different tested configurations for the strongly heated jet.

Re U1 [m/s] U2 [m/s] T1 [K] T2 [K] P0 [atm]
250 2.090 0.2090 2500 405 2.576
500 4.176 0.4176 2500 405 2.576
1000 8.360 0.8360 2500 405 2.576

Figure 4.8 presents the main terms in the energy balance for the case of Re =
250. Radiative power significantly contributes to the energy balance at the jet
centerline in the range 0 < x < 10� as shown in Fig. 4.8(a). Cross-section
profile of the energy balance at x = 10� presented in Fig. 4.8(b) shows that
radiation is greater than the turbulent convective heat flux in the y�direction
at the jet centerline.
Similarly, the downstream evolution of the energy balance at the jet centerline
presented in Fig. 4.9(a) for the case of Re = 500 shows that radiation signifi-
cantly contributes in the energy balance. However, observing the cross-section
profiles at the developd region in Fig. 4.9(b), it can be observed that the tur-
bulent convective heat flux is larger than for the case of Re = 250, being that
radiation and the turbulent convective heat flux are almost equally at the jet
centerline for x = 10�.
Figure 4.10 shows the energy balance when the Reynolds number is set to 1000.
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(a) (b)

Figure 4.8: Enthalpy balance main components for the strongly heated jet at Re =250.
(a) Downstream evolution and (b) cross-sections profile at x = 10�.

(a) (b)

Figure 4.9: Enthalpy balance main components for the strongly heated jet at Re =500.
(a) Downstream evolution and (b) cross-sections profile at x = 10�.

It can be observed that radiation is still contributing in the energy balance all
along the domain at the jet centerline as shown in Fig. 4.10(a) and even in
the developed region as observed in Fig. 4.10(b). Nevertheless, radiation is
noticeably less important in the energy balance when compared with the two
other cases of the strongly heated jet.
A trade-off between a sufficiently high Reynolds number to ensure turbulent
regime; and at the same time, a significant radiative power term in the energy
balance is the case of Re = 500 based on the results of the coupled RANS
simulations presented above. Then, the retained configuration for the strongly
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(a) (b)

Figure 4.10: Enthalpy balance main components for the strongly heated jet at Re =
1000. (a) Downstream evolution and (b) cross-sections profile at x = 10�.

heated jet is the case of Re = 500.

4.5 Conclusions

A parametric analysis of the main terms in the mean enthalpy balance has
been carried out using the RANS solver coupled with the Mont-Carlo solver to
account for thermal radiation. The dimensioning is based on the contribution
of radiation in the enthalpy balance, as well as on obtaining an affordable
computational cost for the coupled DNS. The retained setup for the slightly
and the strongly heated jets are summarized in Table 4.3.

Table 4.3: Final configurations for the slightly and strongly heated jets.

� [m] U1 [m/s] U2 [m/s] T1 [K] T2 [K] Re P0 [atm]
Slightly heated 5 · 10�2 4.176 U1/10 860 380 1500 1
Strongly heated 5 · 10�2 4.176 U1/10 2500 405 500 2.576

The Reynolds numbers of these jets (500 and 1500) are low compared with
previous DNS studies of turbulent plane jets. For example, Klein et al. (2003)
investigated the influence of the Reynolds number in the range of 1000 to 6000,
and Stanley et al. (2002) simulated the plane jet using a Reynolds number of
3000. However, the retained Reynolds numbers are of the same order of the
experimental study of Lemieux and Oosthuizen (1985), who reported a fully
turbulent plane jet of a Reynolds number of 700. In our study, the Reynolds
number is kept moderate in order to afford the computational cost of a coupled
simulation with thermal radiation while featuring a turbulent flow as further
discussed in Chapters 5, 7 and 8.





Chapter 5

Uncoupled Direct Numerical

Simulations of plane jets

Direct numerical simulations of uncoupled isothermal and heated jets
are analyzed to discuss the adequacy of the DNS numerical setup. First,
the configuration and numerical setup of the simulations are detailed.
Then, first and second orders of velocity are validated by comparison
with previous experimental and numerical studies. For the heated jet
without including radiation, the mean temperature and its fluctuations
are compared with previous works. These uncoupled results demonstrate
the suitableness of the DNS numerical setup.
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5.1 DNS of the uncoupled isothermal plane jet

5.1.1 Introduction

Turbulent jets are one of the most commonly studied turbulent free shear flows.
The fundamental understanding of the jet dynamics is necessary to comprehend
and to predict the transport processes in many industrial applications such as
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combustion, propulsion and environmental flows. Greats efforts have been made
to describe the dynamics of these flows at the developed region where turbulent
statistics are assumed independent of initial conditions and present universal
similarity solutions (Townsend (1956); Rajaratnam (1976); Abramovich (1963);
Pope (2001)).
Early similarity solutions of the velocity field based on local velocity and length
scales for constant-density free shear flows are derived in the work of Townsend
(1956). Following this work, self-similarity on a constant density plane jet was
reported in the experimental studies of Bradbury (1965) and Heskestad (1965)
using hot-wire anemometry. They collected data of mean velocity, turbulent
intensities and shear stresses fields, as well as the turbulent kinetic energy bal-
ance in the developed region. Further experimental work was conducted by
Gutmark and Wygnanski (1976) applying conditional sampling techniques in
order to provide data obtained exclusively within the turbulent zone. Despite
some scatter among these experimental works (Bradbury (1965); Heskestad
(1965); Gutmark and Wygnanski (1976)), data of the velocity field was found
to be self-similar in the developed region when scaled using the classical pa-
rameters of Townsend (1956). More recent experimental works performed by
Deo et al. (2008); Deo et al. (2007) underline the influence of the Reynolds
number and the nozzle-exit geometric profile on self-similar solution of a plane
jet. Accurate data of the constant-density plane jet has also been provided by
numerical investigations including the work of Le Ribault et al. (1999) using
Large Eddy Simulations (LES) and Stanley et al. (2002) through Direct Nu-
merical Simulations (DNS). Both works obtained similarity profiles for mean
velocity and Reynolds stresses. Proceeding with these studies, Klein et al.
(2003) numerically investigated the influence of the Reynolds number and the
inflow conditions in a constant-density plane jet using DNS. A recent study
of Sadeghi et al. (2018) proposes new scaling laws for the higher moments in
constant-density temporally evolving plane jet which were derived using Lie
symmetry analysis.
For the constant-density round jets, the numerical work of Bogey and Bailly
(2009) report reference solutions in the self-preserving region including the tur-
bulence and energy budgets. Further similarity analysis in round jets include
the theoretical and experimental work of Sadeghi et al. (2015) who derived
a similarity law for the turbulent energy structure function; and the work of
Thiesset et al. (2014) who discussed the similarity of the mean kinetic energy
dissipation rate, and pointed out that assuming local isotropy and complete
self-similarity, as well as considering only the production and advection in the
energy budget, the virtual origin in one configuration should be the same inde-
pendently of the flow quantity under consideration.
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5.1.2 Configuration and numerical setup

The isothermal jet of water vapor is defined by the jet width opening (� = 0.05
m), the initial mean velocity (U1 = 4.176 m/s) and the mean coflow velocity
(U2 = U1/10). The simulation is carried out at atmospheric pressure (1 atm)
and at a constant temperature of 610 K. Transport properties of water vapor
are computed using Eq. 4.2. Then, the corresponding Reynolds number based
on the width opening � is

Re =
⇢(T1)�U0�

µ(T1)
= 3200, (5.1)

where �U0 = U1 � U2. The present setup for the isothermal plane jet is
summarized in Table 5.1, a schematic representation of the plane jet has been
already presented in Fig. 4.1.

Table 5.1: Setup configuration of the isothermal turbulent plane jet.

� [m] U1 [m/s] U2 [m/s] T1 [K] T2 [K] Re P0 [atm]
5 · 10�2 4.176 U1/10 610 610 3200 1

5.1.2.1 Numerical tools

As explained in Chapter 1, the governing equations are numerically solved on
a structured mesh using a 4th-order centered finite-difference scheme for the
spatial derivatives and an explicit 4th-order Runge-Kutta method for the time
integration, an overview of such methods can be found in the work of Kennedy
and Carpenter (1994). In addition, an implicit filter of 8th-order proposed in
the work of Gaitonde and Visbal (1999) is used for stability purposes. More
details of the implementation can be found in the work of Coussement (2012).

5.1.2.2 Boundary conditions

Following the study of Poinsot and Lele (1992), the inflow and outflow bound-
aries are formulated as subsonic partially non-reflecting boundary conditions
using the Navier-Stokes Characteristic Boundary Conditions (NSCBC) for the
modified ASR system of equations, as explained in Chapter 1.
Outflow boundary. In the outflow boundaries, atmospheric pressure is en-
forced with a partially reflecting characteristic boundary condition. The pres-
ence of turbulent structures on the outflow boundary bring instabilities in the
solution. When mass is coming into the domain from an outflow boundary, no
physical input values of velocity, pressure and temperature can be possible im-
posed. This issue can eventually lead to divergence, specially during the time
at which the flow is developing. To deal with this issue, a sponge layer is set
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at the near region of the outflow boundary. To this purpose, the fluid viscosity
used to compute the solution µtot is artificially increased by the expression:

µtot =

(
µphysic if 0  x < (x0 � Lµ)

µphysic ·
⇣
1 + Nµ

2

h
1 + tanh

⇣
x�x0
Lµ/2

⌘i⌘
if x � (x0 � Lµ)

(5.2)

where x0 defines the coordinate in which the viscosity patch is centred, Lµ is
half the sponge layer width, and Nµ stands for the value of the artificial patch
as µtot = Nµµphysic. In the present study x0 is set to 11.4h, while Lµ = 0.4h
and Nµ = 200. The resulting value of µtot along the x axis is shown in Fig. 5.1

Figure 5.1: Total viscosity along the jet centerline defining the sponge layer at the
outflow boundary.

Such technique enhance the robustness of the solution by preventing negative
streamwise velocities through dissipation of turbulent kinetic energy.
Inlet boundary: The inlet velocity profile that defines the jet is specified by
the hyperbolic function:

Uin(y) =
U1 + U2

2
+

U1 � U2

2
tanh

✓
�/2 � |y|

2✓

◆
, (5.3)

the shear layer momentum thickness ✓ is set to ✓ = 0.07�. This value has been
chosen following the work of Stanley et al. (2002) to ensure numerical stability.
Low values of the shear layer momentum thickness promote the jet growth but
required more mesh refinement to well describe the velocity gradients in the jet
edge.
The averaged velocity profile at the inlet section is shown in Fig. 5.2(a) where
{Ue} denotes the Favre average velocity excess {Ue} = {U} � U2, and � {Uc}
is the Favre average velocity excess at the jet centreline � {Uc} = {Uc} � U2.
Synthetic turbulence generated using the model of Passot and Pouquet (1987)
is combined with the mean inlet velocity profile at the jet region. This tech-
nique promotes turbulent instabilities and reduces the initial region of the jet.
The Passot Pouquet model defined in §1.3.2 is here used. The kinetic energy
spectrum is defined by fixing the auto-correlation integral scale Lc and the tur-
bulent velocity u0. In the present simulation, these values are set to Lc = �/2
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and u0 = U1/20. Velocity fluctuations have its maximum value at the jet center-
line while are set to zero at the coflow following an hyperbolic profile analogous
to the one of the inlet streamwise velocity. The resultant inlet averaged root-
mean-square (rms) velocity fluctuations are shown in Fig. 5.2(b).

(a) (b)

Figure 5.2: Cross-section profiles of mean (a) streamwise velocity and (b) Reynolds
stresses profiles at the inlet boundary.

5.1.2.3 Computational mesh and domain

The grid is non-uniform in the x and y directions while it is uniform in the
spanwise direction. Computations are performed in a domain extension of
13.5�⇥10�⇥3� in x, y and z directions, respectively, while a domain extension
of 10� ⇥ 10� ⇥ 3� is considered to compute the statistics of the flow. The
spanwise box size is determined from an estimation of the integral length scale
based on the work of Klein et al. (2003). The flow solution is computed
using a structured grid with 566⇥469⇥149 nodes, in the x, y and z directions,
respectively, which corresponds to approximately 39.5 ⇥ 106 nodes.
The grid spacings, relevant for direct numerical simulations, can be anticipated
from the known behavior of turbulent plane jets. Indeed, from the scaling law
for decaying centerline velocity profile from Jenkins and Goldschmidt (1973),
it is possible to estimate Uc(x) for the present inlet values. Estimating the
dimensionless turbulent kinetic energy dissipation ✏⇤ from the previous DNS
results of Stanley et al. (2002), ✏ can be scaled for the present simulation.
Then, the grid spacing along x-axis is set to be locally maximum four times

the local Kolmogorov scale ⌘ ⌘
⇣
(µ/⇢)3

✏

⌘1/4
. The grid spacing along y-axis is

such that the inner region of the jet (y < y1/2(x)) is as much refined as in
the x direction. Finally, the grid spacing along z-axis is uniform and equal to
�z = �/50, which is a close value to the �x and �y averages.

5.1.2.4 The Acoustic Speed Reduction method

The acoustic speed reduction method introduced in Chapter 1 is used setting
↵ = 8. This value of ↵ sets the Courant-Friedrichs-Lewy and Fourier conditions
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within the same order of magnitude for the current simulation.

5.1.3 DNS results of the uncoupled isothermal jet

In order to accelerate convergence of statistical values, all mean quantities have
been averaged in the spanwise direction. In addition, the symmetry plane about
y = 0 is used to double the averaging samples. The statistics are obtained by
averaging the data over approximately ⌧ = 2.4s of physical time. This time
corresponds to approximately 11 flow time units defined as in the work of
Stanley et al. (2002) as ⌧(U1 + U2)/(2Lx) = 11, where Lx is the domain size
in the x direction Lx = 10�.
In the developed region of the isothermal plane jet, the jet half-width y1/2(x)
has a linear relationship with the streamwise coordinate (Rajaratnam (1976)),

y1/2
�

= K1,u

⇣x

�
+ K2,u

⌘
, (5.4)

while the mean streamwise velocity excess at the jet centerline �{Uc} = {Uc}�
U2 is found to vary as x�1/2,

✓
�U0

�{Uc}

◆2

= C1,u

⇣x

�
+ C2,u

⌘
, (5.5)

where �U0 = U1 � U2. The slope coefficients, K1,u and C1,u, in the fully
developed region are known to be universal for the isothermal jet; that is to say
that, for large Reynolds number, they are independent of the jet conditions.
Similarly, properly scaled non-dimensional profiles become self-similar in the
same region.
Figure 5.3(a) presents the results of the growth of the jet half-width y1/2(x),
while the adimensionalized mean excess velocity decay (�U0/�{Uc})2 along the
jet centerline is presented in Fig. 5.3(b). In both figures, the linear regression
in the fully developed region and the experimental results from the work of
Thomas and Chu (1989) are also shown for the sake of comparison. Figure 5.3
shows that both the jet half-width and the mean velocity decay have a linear
dependency on x/� beyond x = 8�, which is the same value reported by Stanley
et al. Stanley et al. (2002). Hence, the coefficients for the linear fitting shown
in Fig. 5.3 are computed using values in the range 8� < x < 10�.
The present results of the linear fitting coefficients in the self-similar zone are
summarized in Table 5.2 along with some experimental (Jenkins and Gold-
schmidt (1973); Goldschmidt and Young (1975); Gutmark and Wygnanski
(1976); Thomas and Chu (1989)) and DNS (Stanley et al. (2002)) results.
The results of the virtual origins (K2,u and C2,u) differ among the referred
works since they have a strong dependency on the inflow conditions (Stanley
and Sarkar (2000); Klein et al. (2003)). On the other hand, the predicted
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(a) (b)

Figure 5.3: Comparison of the present isothermal plane jet results with the experi-
mental work of Thomas and Chu (1989): downstream evolution of (a) spread rate and
(b) velocity decay.

slope coefficients (K1,u and C1,u) compare generally well with previous results,
although C1,u is somewhat lower.

Table 5.2: Comparison of the jet growth rate and the centerline velocity decay rate at
the self-similar region between the current results and some experimental and numerical
reference values.

K1,u K2,u C1,u C2,u

Jenkins and Goldschmidt (1973) 0.088 -4.5 0.160 4.0
Gutmark and Wygnanski (1976) 0.100 -2.00 0.189 -4.72
Goldschmidt and Young (1975) 0.0875 -8.75 0.150 -1.25
Thomas and Chu (1989) 0.110 0.14 0.220 -1.19
Stanley et al. (2002) 0.092 2.63 0.201 1.23
This work 0.088 0.721 0.146 1.181

Mean profiles of the excess streamwise velocity ({Ue} = {u}�U2) and the cross-
stream velocity {v} adimensionalized by �{Uc} = {Uc} � U2 against y/y1/2
become self-similar, that is, they collapse onto a single curve as long as the
jet is developed. Fig. 5.4(a) and 5.4(b) show that velocity profiles at x = 10�
are in good agreement with self-similar profiles from experimental (Gutmark
and Wygnanski (1976)) and numerical (Stanley et al. (2002)) studies. The be-
ginning of the developed zone associated with the self-similarity of streamwise
velocity profiles is considered to begin at x = 8� where profiles of streamwise
velocity collapse onto almost the same curve, as shown in Fig. 5.5. This is the
same value reported by Le Ribault et al. (1999). Likewise, the numerical study
of Stanley et al. (2002) obtained similar values, they found that the streamwise
velocity profiles collapse around x = 10�. Nevertheless, experimental studies
report much larger values, for example, Gutmark and Wygnanski (1976) esti-
mate that self-similarity begins beyond x = 40� while Bradbury (1965) reports
a value of x = 30�. As mentioned earlier, inlet boundary conditions have a
strong influence on the length of the jet potential core. Therefore, the injection
of artificial turbulence in the inlet boundary can modify the beginning of the
self-similar region. Despite the short considered domain length (10�) in the
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streamwise direction which is limited; the good agreement of velocity profiles
with previous self-similar data, and the linear growth of the jet half-width and
the velocity decay indicate that the numerical domain between x = 8� and
x = 10� is inside the developed region of the jet where self-similarity applies
quite satisfactorily.

(a) (b)

Figure 5.4: Self-similar profiles of (a) streamwise and (b) cross-stream velocities of
the isothermal plane jet at x = 10�.

Figure 5.5: Cross-section profiles of streamwise velocity at several distances for the
isothermal jet.

Reynolds stresses in the fully turbulent zone are also expected to become self-
similar when adimensionalized by �{Uc} and plotted against y/y1/2. Figure 5.6
compares the Reynolds stresses results at x = 10� with experimental data
of Thomas and Prakash (1991), Ramaprian and Chandrasekhara (1985) and
Bradbury (1965) as well as numerical results of Stanley et al. (2002). Predicted
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Reynolds stresses profiles are satisfactory although one can notice the spread
of the reported profiles in the literature.

(a) (b)

(c) (d)

Figure 5.6: Self-similar Reynolds stresses profiles of the isothermal plane jet in the
(a) x direction, (b) z direction, (c) y direction; and (d) shear stress at x = 10�.

The general definition of turbulent kinetic energy for a variable density flow
is a Favre average of the mass-weighted fluctuations u00

i , i.e, k = 1
2{u002

i } =
1
2h⇢u

002
i i/h⇢i. Following the work of Chassaing et al. (2013) or Huang et al.

(1995), the transport equation of the turbulent kinetic energy is expressed as
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(5.6)

where the different diffusive fluxes (pressure diffusion, viscous diffusion and
turbulent diffusion) have been gathered in the quantity denoted as T . The
numerical computation of each term in Eq. 5.6 is detailed in Appendix A.
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Since velocity and Reynolds stresses profiles adimensionalized by �{Uc} are
self-similar and independent of Re in the developed region for the isothermal jet,
so are the different terms in the transport equation for turbulent kinetic energy
profiles when they are adimensionalized by the scaling factor y1/2/(�{Uc}3h⇢i).
The dimensionless transport equation of the turbulent kinetic energy is then
expressed as:

D̄k⇤

D̄t
+ O · T ⇤ = P⇤ � ✏⇤ + ⇧⇤, (5.7)

where ⇤ denotes adimensionalized quantities. The budget of the turbulent ki-
netic energy in the self-similiar zone is presented in Fig. 5.7(a), while Figs.
5.7(b) to 5.7(e) show the results of each term in the turbulent kinetic energy
equation compared with experimental data of Terashima et al. (2012) and nu-
merical results of Stanley et al. (2002). The profiles are obtained by averaging
the scaled simulation fields in the range 9� < x < 10�. The pressure-dilatation
term (⇧⇤) has a negligible contribution; in consequence, it is not included in
Fig. 5.7. All trends in the budget are well captured and compare reasonably
good with experimental results, even improving the results from past numerical
simulations.

(a)

(b) (c)

(d) (e)

Figure 5.7: (a) Budget of dimensionless turbulent kinetic energy of the isothermal
plane in the self-similar zone. Components of the turbulent kinetic energy budget: (b)
production, (c) turbulent diffusion, (d) advection and (e) dissipation compared with
experimental data of Terashima, Sakai and Nagata (2012) and numerical results of
Stanley, Sarkar and Mellado (2002).

The two main terms in the energy budget are production and dissipation. Vis-
cous dissipation is almost constant in the core of the jet (y < y1/2) while pro-
duction has a strong peak around y = 0.8y1/2 in agreement with the Reynolds
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stresses presented in Fig. 5.6. The turbulent kinetic energy generated at the
peak of production is advected to the jet centerline through entrainment veloc-
ity while turbulent diffusion spread the turbulent kinetic energy to both the jet
centerline and the jet edge. At the center of the jet, turbulent fluctuations are
maintained solely through advection and turbulent diffusion. The low value of
the unbalance among all terms (—Unbalance, in Fig. 5.7(a)) points out that
the simulation is capturing all the physical mechanism in which turbulence is
produced, dissipated and transported.
A 8th-order filter described in Gaitonde and Visbal (1999) is used in order to
damp high-wavenumber noise enhancing the robustness of the solution. High-
order filters in direct numerical solutions have been used in other studies (Shan
et al. (2005); Gruber et al. (2012); Yoo et al. (2011); Garmann and Visbal
(2014); Castela et al. (2016)). Such an approach is preferred instead of replac-
ing the 4th-order centerered numerical scheme by more dissipative numerical
scheme for all wavelength. The fact that the balance of kinetic energy in Fig.
5.7 satisfactorily closes is already a good indicator that most of the dissipation
can be attributed to the physical viscous dissipation, and not to the numer-
ical dissipation introduced by the retained discretization scheme or filtering.
However, a look at the spectra is also a safe check. Thus, the spectrum of
the isothermal jet along the homogeneous spanwise direction of the streamwise
velocity fluctuations at x = 10� in the jet centerline adimensionalized by the
centerline excess velocity �Uc and the jet half width y1/2 is compared with
the spectra results of a plane jet from Stanley et al. (2002) in Fig. 5.8(a).
Since Stanley et al. (2002) reported temporal spectra and assumed the Taylor
hypothesis to obtain E(k), the fact that their spectra captures wavenumbers
lower than the present spectra corresponds to the choice of the averaged period.
This same Figure shows that the present DNS simulation improves the resolu-
tion of the dissipative region of the spectrum when compared with the results
of Stanley et al. (2002). Moreover, Fig. 5.8(b) shows the dissipation spectra

(scaled by the Kolmogorov length ⌘ ⌘
⇣
(µ/⇢)3

✏

⌘1/4
and velocity u⌘ = (✏⌫)1/4

scales), in which the dive of the profile occurs at a location close to the expected
wavenumber when compared to reference spectra presented in Fig. 5.8(c) from
Pope (2001). Note that the highest wavenumbers of the present dissipation
spectra consistently correspond to the highest wavenumbers of the dissipation
spectra presented in Pope (2001). This is a demonstration that, yet again, the
impact of the high-order filter is negligible on the reported results.

5.2 DNS of the uncoupled heated plane jet

5.2.1 Introduction

Variable-density free shear flows, as opposed to the constant-density ones, have
received less attention despite its broad engineering importance associated with
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(a)

(b) (c)

Figure 5.8: (a) One-dimensional spectrum along the homogeneous spanwise direction
of the centerline longitudinal velocity fluctuations at x = 10� adimensionalized by the
centerline excess velocity �Uc and the jet half-width y1/2. (b) Dissipative spectra scaled

by the Kolmogorov length scale ⌘ ⌘
⇣

(µ/⇢)3

✏

⌘1/4
and velocity scale u⌘ ⌘ (✏⌫)1/4 of the

centerline spanwise velocity fluctuations at x = 10�. (c) Reference dissipation spectrum
showing previous results from several sources (extracted from Pope (2001)).
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the mixing process. For the case of free jets, initial density differences are
typically imposed by jet gas composition or by heating the jet fluid. The
work of Chen and Rodi (1980) showed that when jet and ambient densities
differ significantly self-similarity is not achieved. Nevertheless, for a sufficient
distance downstream, density gradients across the flow decreases and thus the
solution asymptotically approaches self-similarity if scaled by an effective radius
which compensates the effects of density as explained in the work of Thring and
Newby (1953). Richards and Pitts (1993) experimentally investigated variable-
density axisymmetric jets with density ratio between 0.138 and 1.552. They
analyzed data from downstream distances at which the local density ratio of
the jet to ambient fluid approached unity achieving to characterize the self-
similar solution of both mean and fluctuations values of a passive scalar field.
Experimental works of Jenkins and Goldschmidt (1973), Davies et al. (1975)
and Antonia et al. (1983) addressed the variable-density plane jet considering
slightly heated jets with density ratios between 0.8 and 0.9, i.e., temperature
is considered as a passive scalar causing little effects on the evolution of the
flow field. They found similarity profiles of temperature using the classical
scaling law since density gradients were low. All these authors found that the
spreading rate based on temperature is larger than the one based on velocity.
The stability of variable-density plane jets has been experimentally studied by
Yu and Monkewitz (1993) for density ratio between 0.73 and 1, and Raynal
et al. (1996) within a range for the density ratio of 0.14 - 1. They found
that the oscillating regime disappears above a critical value of the density ratio
which increases with the Reynolds number.
In the case of the studied heated jet, one is interested in the turbulent mixing
of the temperature field. Additionally, the associated variable density field can
modify the turbulent transfer of momentum and make the temperature mixing
deviate from the behavior of a passive scalar in a turbulent jet.

5.2.2 Configuration and numerical setup

The current heated jet of water vapor has a very similar configuration than the
isothermal one and uses the same numerical tools. Thus, in this section the
new features introduced by the heated jet are hihglighted and some relevant
aspects of the simulation are recalled. For more details of the configuration and
numerical setup see §5.1.2.
The current setup for the heated jet is detailed in Table 5.3 which corresponds
to the slightly heated jet setup discussed in Chapter 4.

Table 5.3: Setup configuration of the isothermal turbulent plane jet.

� [m] U1 [m/s] U2 [m/s] T1 [K] T2 [K] Re P0 [atm]
5 · 10�2 4.176 U1/10 860 380 1500 1

As for the RANS simulations presented in Chapter 4, the inlet temperature
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profile that defines the heated jet is

Tin(y) =
T1 + T2

2
+

T1 � T2

2
tanh

✓
�/2 � |y|

2✓

◆
. (5.8)

The inlet profile of the Favre average excess temperature defined as {Te} =
{T} � T2 adimensionalized by the Favre average excess temperature at the jet
centerline �{Tc} = {Tc} � T2 is presented in Fig. 5.9(a). Similarly, the mean
density profile at the inlet is shown in Fig. 5.9(b).

(a) (b)

Figure 5.9: Cross-section profiles of mean (a) temperature and (b) density at the
inlet boundary.

Specifications of the boundary conditions and the computation domain for the
heated jet are presented in Fig. 5.10.
The retained mesh for the uncoupled heated jet is anticipated from scaling laws
of both the decaying temperature and velocity reported by Jenkins and Gold-
schmidt (1973). Similar to the isothermal jet, Tc(x) and Uc(x) are predicted for
the present inlet values. Then, estimating the dimensionless turbulent kinetic
energy dissipation ✏⇤ from previous DNS results (Stanley et al. (2002)), ✏ can
be scaled for the present simulation. The local grid spacing along x-axis is set
to be shorter than twice the local Kolmogorov scale. The grid spacing along
y-axis is such that the inner region of the jet (y < y1/2(x)) is as much refined as
in the x direction. Finally, the grid spacing along z-axis is uniform and equal
to �z = �/50, which is a close value to the �x and �y averages.
The paramater ↵ needed to setup the the acoustic speed reduction method is
set to ↵ = 8.

5.2.3 DNS results of the uncoupled heated jet

In this section, the solution of the heated jet is compared with reported experi-
mental data of the slightly heated plane jet and numerical data of the evolution
of a passive scalar field in a plane jet. Mean results of the uncoupled heated jet
are computed by averaging the data over approximately ⌧ = 2.4 s of physical
time, which is equivalent to 11 flow time units.
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Figure 5.10: Schematic representation of boundary conditions in a snapshot of tur-
bulent eddies identified by the Q-criterion coloured by temperature.

Figure 5.11 describes key features of the downstream evolution of mean temper-
ature and compares them with numerical results of Stanley et al. (2002) who
analyzed the evolution of a passive scalar field using a unity Schmidt number,
and with experimental results of a heated plane jet of Browne et al. (1983) who
set an initial excess temperature of �T0 = T1 � T2 = 25 K. Similar to the jet
half-width based on the mean streamwise velocity y1/2, the half-width based on
temperature y1/2,T is the distance from the center of the jet where the corrected
temperature {Te} = {T}�T2 is half the corrected temperature at the jet center
�{Tc} = {Tc}�T2. In Figure 5.11(a), results of the evolution of the half-width
of the jet based on temperature are compared with the numerical results of
Stanley et al. (2002) and the experimental data of Browne et al. (1983). The
results of the current heated jet show a slow initial developing when compared
with the data of Browne et al. (1983) and Stanley et al. (2002) in which the
half-width linear growth appears beyond x = 4� and x = 6�, respectively; while
for the present results linear growth is shown beyond x = 7�. As for the results
of the velocity fields in the isothermal plane jet, the strong dependency of the
initial developing zone on the inflow conditions explains the scatter among the
different works, while the slope of the downstream evolution of y1/2,T compares
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well with previous works. Figure 5.11(b) shows the temperature decay in the
jet centerline in which �T0 = T1 � T2 and �{Tc} = {Tc} � T2. The results
of the temperature decay are in good agreement with the mean scalar decay
of Stanley et al. (2002). Results of the temperature decay of Browne et al.
(1983) have a faster initial developing, probably due to the inflow conditions,
while the decay rate is greater than the decay predicted by both the current
numerical results and the simulation of Stanley et al. (2002).

(a) (b)

Figure 5.11: Downstream evolution of mean temperature field: (a) jet spread based
on temperature and (b) temperature decay along the jet centerline.

In Figure 5.12(a), the Favre averaged temperature corrected by the coflow tem-
perature {Te} = {T}�T2 adimensionalized by �{Tc} = {T}y=0 �T2 is plotted
against y/y1/2,T at x = 10� and compared with experimental results from
Davies et al. (1975) who set an initial excess temperature of �T0 = 14.6 K,
the experimental study of Jenkins and Goldschmidt (1973) that fixed this value
to �T0 = 20.7 K, and the experimental results of Antonia et al. (1983) with
an excess temperature at the inlet section of �T0 = 25 K; while the excess
temperature in the current simulation is �T0 = T1 � T2 = 480 K. Despite the
�T0 disparity among the present work and the values found in the literature,
the dimensionless temperature profile is in good agreement with experimental
results. Additionally, Figure 5.12(b) compares the downstream evolution of the
temperature fluctuations along the jet centerline with experimental results of
Browne et al. (1983), and numerical data of Stanley et al. (2002). Results from
Browne et al. (1983) have a faster initial developing and a higher fluctutions
intensity, this may explain the results of the temperature decay presented in
Fig. 5.11(b). The current results of temperature fluctuations have the same
tendency as previous data, which is a strong growth of the fluctuations at the
end of the initial developing zone followed by a slow decay downstream.
Integrating the x-momentum boundary-layer equation with respect to y, the
momentum flow rate per unit span, defined as

R +1
�1 h⇢u2idy, is constant along

the streamwise direction of the plane jet. Due to the presence of a coflow
stream, this quantity is infinite and is here replaced by

Mx =

Z +1

�1

�
h⇢u2i � ⇢2U

2
2

�
dy, (5.9)
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(a) (b)

Figure 5.12: (a) Dimensionless Favre averaged temperature profiles of the heated
plane jet without including radiation at x = 10�. (b) Downstream evolution of tem-
perature fluctuations at the jet centerline.

Results of the momentum flow rate adimensionalized by its value at the ini-
tial cross-section are presented in Fig. 5.13 for both the isothermal and the
heated jets. Additionally, an horizontal dashed line corresponding to the ideal
behaviour of the jet is included in Fig. 5.13. As expected, the momentum flow
rate is almost constant along the streamwise direction for both cases, i.e., Mx

deviations from the ideal plane jet are less than 1.3%.

Figure 5.13: Evolution of momentum flow rate per unit span along x direction.

(a) (b)

Figure 5.14: Centerline velocity decay against (a) x/� and (b) x/r✏.

As detailed in the work of Foysi et al. (2010), the conservation of momentum
flux in the developed region yields that the ratio between h⇢ci�{Uc}2y1/2 and
⇢0�U2

0 � is constant, where h⇢ci is the mean density at the jet centerline and ⇢0
is the jet density at the exit nozzle. Defining an equivalent jet opening of r✏ =
� (⇢0/h⇢ci), in which the exit nozzle density is considered as ⇢0 = 1

�

R
� ⇢|x=0

dy,



90 Chapter 5 - Uncoupled Direct Numerical Simulations of plane jets

since the density at the exit nozzle is not constant. As reported in the work of
Richards and Pitts (1993), r✏ can be interpreted physically as the width opening
of a hypothetical jet of density h⇢ci with the same initial mass and momentum
fluxes as the jet under consideration. Then, the conservation of momentum
flux can be written as

�{Uc}2y1/2
�U2

0 r✏
⇠ constant, (5.10)

As shown in Fig. 5.14, the velocity decays of the heated and isothermal jets
almost collapse on the same curve when (�U0/{Uc})2 is plotted against x/r✏
(Fig. 5.14(b)), while these curves have a clearly different slope when plotted
against x/� (Fig. 5.14(a)). Note, that the scaled velocity decay of the heated
jet in Fig. 5.14(b) has values beyond x = 10r✏ since r✏ < �.

5.3 Conclusions

The suitableness of the DNS numerical setup has been demonstrated by analyz-
ing in detail uncoupled isothermal and heated jets. First, velocity and Reynolds
stresses profiles of the isothermal plane jet are validated by comparison with
previous experimental and numerical studies. Additionally, the turbulent ki-
netic energy balance of the isothermal jet is checked and each term is compared
with available data. The spectrum of turbulent kinetic energy adimensional-
ized by the large scales of the flow compares very well with previous works of
Stanley et al. (2002); while the dissipation spectra show that the impact of the
high-order filter is negligible on the reported results.
Regarding the heated jet without including radiation, the profile of mean tem-
perature and the downstream evolution of temperature fluctuations are com-
pared with previous experimental works. The constancy of the momentum flow
rate per unit span is checked for the isothermal and heated jets. Moreover, the
scaled velocity decay of the heated and isothermal jets collapses almost onto
the same curve.
The inlet velocity profile is here combined with artificial turbulence to shorten
the domain with a quick destabilization of the potential core to yield a reduced
computational time. Despite the limited extent of the present domain; the
obtained profiles of first and second order moments of velocity fields beyond
x = 8� compare quite well with previous self-similar profiles, and besides,
linearity in the velocity decay rate and the jet half-width growth is observed in
the region 8�  x  10�.
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Accuracy assessment of
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Stand-alone Monte-Carlo computations are here presented in order to
assess the accuracy of the exchanged radiative energy solution. Firstly,
the spectral radiative properties of water vapor computed using the
ck model are validated by comparison with line-by-line (LBL) results.
Then, results varying key parameters of the Monte-Carlo solver are an-
alyzed in order to ensure the accuracy of the radiative power field cal-
culations. The analyzed parameters are the maximum number of rays
issued from a node, the choice of the boundary conditions for the radia-
tive solver, and the effects of considering a coarser mesh for the radia-
tive computations. After that, the transmissivity of the water vapor for
the problem scale is analyzed together with the emitted intensity as a
function of temperature and wavenumber. Finally, the criteria for the
statistical convergence of the Monte-Carlo are discussed for the slightly
and strongly heated jets.
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6.1 Ck accuracy

Detailed spectral data provides the absorption coefficient for up to one mil-
lion wavenumbers. The most detailed radiative calculation consists in solving
the radiative transfer problem for each line in the spectrum followed by inte-
gration over the spectrum, this is the so-called "line-by-line" (LBL) method.
In most of the cases, LBL calculations are too computationally intensive in
coupled three-dimensional simulations. However, such calculations yields high-
resolution computations useful to quantify the accuracy of simplified methods.
Thus, the ck model used to estimate the spectral radiative properties of water
vapor described in Chapter 3 is first validated by comparison with LBL re-
sults presented in the work of Soufiani and Taine (1997) and the LBL database
HITEMP from Rothman et al. (2010) updated by Rivière and Soufiani (2012).
Figure 6.1 compares LBL results from the aforementioned works of the trans-
missivity of an isothermal and homogeneous H2O � N2 (XH2O = 0.5) column
of length l = 0.5 m at a pressure of 1 atm and a temperature of 1000 K, with
the results obtained using the present ck model. For this specific mixture, a
good agreement between the ck and the LBL computations is observed over all
the spectrum.

Figure 6.1: Comparison of ck model results of the spectral transmissivity of an
isothermal and homogeneous column XH2O = 0.5 of length l = 0.5 m at 1000 K
with LBL data from Soufiani and Taine (1997) and HITEMP (2010).

Once a reference test case is validated, the current ck model is compared with
LBL results for representative conditions of the slightly heated jet, involving
temperature between 380 and 860 K. Figures 6.2(a), 6.2(b) and 6.2(c) compare
the transmissivity of a water vapor column of lenght l = 0.05 m at a pressure of
1 atm and temperatures of 860, 620 and 380 K, respectively, between the current
ck model and the LBL database HITEMP Rothman et al. (2010) updated by
Rivière and Soufiani (2012). For the three analyzed temperatures the current
ck model is in very good agreement with LBL results over all the spectrum.



Part II - Numerical setup dimensioning and validation of uncoupled

simulations
93

(a) (b)

(c)

Figure 6.2: Comparison of ck model results of the spectral transmissivity of an
isothermal and homogeneous water vapor (XH2O = 1) column of length l = 0.05
m at a pressure of 1 atm and temperatures of (a) 380 K, (b) 620 and (c) 860 K.

6.2 Effects of increasing the maximum number of rays
issued from a node

The effects of increasing the maximum number of rays issued from a node are
analyzed for the slightly and the strongly heated jets in the framework of the
Emission-based Reciprocity Monte-Carlo Method. To do so, the radiative power
field has been computed for a given instantaneous temperature field setting the
maximum number of rays to 2.5 ⇥ 103 and 5 ⇥ 103 while keeping constant all
other parameters.
Figure 6.3 shows instantaneous slices of the radiative power for the slightly
heated jet when a maximum number of rays of 2.5 ⇥ 103 and 5 ⇥ 103 are set.
Analogously, Fig. 6.4 shows instantaneous slices of the radiative power for
the strongly heated jet. No significant qualitative differences can be observed
between the 2.5 ⇥ 103 and 5 ⇥ 103 cases for both jets.
Additionally, for the slightly heated jet, downstream and cross-section profiles
of the instantaneous radiative power are shown in Fig. 6.5 for a maximum
number of 2.5 ⇥ 103 and 5 ⇥ 103.
Figure 6.6 show again the downstream evolution of the instantaneous radiative
power at the jet centerline, and its cross-section profile at x = 10� for the
strongly heated jet.
From these results, it can be seen that despite some small relative difference can
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(a) (b)

Figure 6.3: Instantaneous radiative power field at z = 0 for the slightly heated jet
when a maximum number of (a) 2.5 ⇥ 103 and (b) 5 ⇥ 103 are issued from each node.

(a) (b)

Figure 6.4: Instantaneous radiative power field at z = 0 for the strongly heated jet
when a maximum number of (a) 2.5 ⇥ 103 and (b) 5 ⇥ 103 are issued from each node.

be observed when varying the maximum number of rays, a maximum number
of 2.5⇥103 rays captures accurately the trends of the radiative power. Hence, a
maximum number of 2.5⇥ 103 rays is retained for the slightly and the strongly
heated jets in order to keep a feasible amount of computational time.

6.3 Accuracy of thermal radiative boundary condi-
tions

Inlet and outflow boundary conditions are not straightforward and need strong
assumptions to close the radiative transfer equation in open boundaries. Phys-
ically, the open boundary conditions would have to let the ray get outside the
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(a) (b)

Figure 6.5: Radiative power results comparison for the slightly heated jet between a
maximum number of 2.5 ⇥ 103 and 5 ⇥ 103 issued from each node. (a) Downstream
evolution of the radiative power and (b) cross-section profiles of radiative power at
x = 10�.

(a) (b)

Figure 6.6: Radiative power results comparison for the strongly heated jet between a
maximum number of 2.5 ⇥ 103 and 5 ⇥ 103 issued from each node. (a) Downstream
evolution of the radiative power and (b) cross-section profiles of radiative power at
x = 10�.

domain without reflexion, while accounting for all the emission corresponding
to the outer infinite extension outside the computational domain. To approach
this behavior, two different boundary conditions have been implemented and a
comparison between them using the Emission-based Reciprocity Monte-Carlo
Method is here presented in order to justify our choice. The first approach
is to set black-body boundary conditions at the local temperature, hereinafter
referred as variable temperature boundary conditions. The second approach
consists in setting black-body boundary condition at the coflow temperature,
hereinafter referred as isothermal boundary conditions.
Figure 6.7 presents instantaneous slices at z = 0 of the radiative power for the
case of isothermal black boundaries for the slightly and the strongly heated
jets in Figs. 6.7(a) and 6.7(b), respectively. Comparing theses fields with
the corresponding radiative power fields using variable temperature boundary
conditions already presented in Fig. 6.3(a) for the slightly heated jet and Fig.
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6.4(a) for the strongly heated jet, it can be seen that the effect of isothermal
boundaries is restricted to the surroundings of the inlet jet region.

(a) (b)

Figure 6.7: Instantaneous radiative power field at z = 0 when isothermal black
boundaries are considered in (a) the slightly heated jet and (b) strongly heated jet.

In order to quantify the effect of the boundary condition choice, Fig. 6.8 shows
the radiative power along the jet centerline for the slightly and the strongly
heated jets. On both cases, the boundary condition specification have a strong
effect at the initial region of the jets. However, such effect is restricted at the
very beginning of the jet. As shown in Fig. 6.9, the effect of the radiative
boundary condition on the cross-section profiles at x = 10� is negligible for
both the slightly and the strongly heated jets.

(a) (b)

Figure 6.8: Radiative power results comparison between variable temperature and
isothermal approaches for the radiative conditions on the open boundaries. Down-
stream evolution of the radiative power for (a) the slightly heated jet and (b) the strongly
heated jet.

In order to avoid the unphysical peak at the surroundings of the inlet jet region,
the variable temperature boundary condition approach for the inlet and outflow
boundaries is retained in this work.
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(a) (b)

Figure 6.9: Radiative power results comparison between variable temperature and
isothermal approaches for the radiative conditions on the open boundaries. Cross-
section profiles of radiative power at x = 10� for (a) the slightly heated jet and (b) the
strongly heated jet.

6.4 Radiative mesh independence study

The effects of considering a coarser mesh for the radiative computations in the
framework of the Emission-based Reciprocity Monte-Carlo Method are ana-
lyzed in this section. The coarser radiative mesh consists in taking one out of
two nodes in each direction from the DNS mesh. In Table 6.1 all the informa-
tion regarding the DNS and radiative meshes for the slightly and the strongly
heated jets is gathered.

Table 6.1: Mesh size for the slightly and the strongly heated jets.

Slightly heated Strongly heated

DNS Mesh Nodes on x ⇥ y ⇥ z 566⇥469⇥149 514 ⇥ 401 ⇥ 121
Total num. nodes 39.5 ⇥ 106 24.9 ⇥ 106

Rad. Mesh Nodes on x ⇥ y ⇥ z 282 ⇥ 235 ⇥ 75 257 ⇥ 201 ⇥ 61
Total num. nodes 4.97 ⇥ 106 3.15 ⇥ 106

In order to assess the independence of the radiative solution from the used mesh,
radiative power fields have been computed for both jets using the aforemen-
tioned DNS and coarser radiative meshes for a given instantaneous temperature
field. Then, a comparison of the instantaneous radiative power downstream
evolution along the jet centerline for both meshes is presented in Fig. 6.10(a)
for the slightly heated jet, while cross-section profiles of instantaneous radia-
tive power at x = 10� computed on both meshes are shown in Fig. 6.10(b).
Analogously, the same comparison for the strongly heated jet is presented in
Fig. 6.11.
From the results presented in Figs. 6.10 and 6.11, it can be seen that despite
some small relative difference between both meshes are observed, the coarse
mesh is able to correctly capture the trends of the radiative power. Also note
that the impact of using a coarser mesh for the radiative solver is more im-
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(a) (b)

Figure 6.10: Radiative power results for the slightly heated jet comparison between the
coarse and refined meshes for the radiative computations. (a) Downstream evolution
of the radiative power and (b) Cross-section profiles of radiative power at x = 10�

(a) (b)

Figure 6.11: Radiative power results for the strongly heated jet comparison between
the coarse and refined meshes for the radiative computations. (a) Downstream evolu-
tion of the radiative power and (b) Cross-section profiles of radiative power at x = 10�

portant for the strongly heated jet. Despite the degradation on accuracy, the
coarse mesh is retained in this study since radiative computations in the DNS
mesh increases by a factor of 8 the required computational memory and the
processing time when compared with the coarse mesh.

6.5 Radiative transfer nature of water vapor under
the studied conditions

The radiative properties of a medium strongly affect the exchanged radiation
and the behavior of TRI effects as explained in the works of Coelho (2007);
Modest and Haworth (2016). In order to characterize the nature of the radiative
transfer in the configuration under study, the spectral transmissivity of water
vapor based on the initial jet width (� = 0.05 m) is computed following Eq.
3.11 using the present ck model for the slightly and strongly heated jets.
Figure 6.12 characterizes the radiative properties of the slightly heated jet by
showing in Fig. 6.12(a) the spectral transmissivity based on the initial jet width
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for the maximum (860 K) and minimum (380 K) temperatures at a pressure of
1 atm. Additionally, the spectral Planck functions for these temperatures are
presented in Fig. 6.12(b) adimensionalized by its maximum value.

(a) (b)

Figure 6.12: For a pressure of 1 atm and the maximum and minimum temperatures
of the slightly heated jet: (a) comparison of the spectral transmissivity of water vapor
based on the initial jet width, and (b) spectral Planck functions adimensionalized by
its maximum value.

Likewise, the spectral transmissivity based on the initial jet width for the max-
imum (2500 K) and minimum (405 K) temperatures at a pressure of 2.87 atm
characterizing the strongly heated jet are presented in Fig. 6.13(a) and the
corresponding dimensionless spectral Planck functions for these temperatures
are plotted in Fig. 6.13(b).

(a) (b)

Figure 6.13: For a pressure of 2.87 atm and the maximum and minimum tempera-
tures of the strongly heated jet: (a) comparison of the spectral transmissivity of water
vapor based on the initial jet width, and (b) spectral Planck functions adimensionalized
by its maximum value.

From Figs. 6.12(a) and 6.13(a), it can be seen that regardless of the tempera-
ture, water vapor tends to be optically thick at low wavenumbers (. 500 1/cm),
and it presents two "peaks" of moderate optical thickness around wavenumbers
of 1500 cm�1 and 3800 cm�1. As temperature increases, these "peaks" of op-
tical thickness decrease; while, as expected, when pressure increases, the trans-
missivity decreases. Additionally, Figs. 6.12(b) and 6.13(b) show that temper-
ature shifts the peaks of emission towards higher wavenumbers and smooths the
Planck function. Then, most of the emitted radiation comes from hot regions of
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the fluid (corresponding to the peaks of 1500 cm�1 and 3800 cm�1). If the rays
emitted in hot regions are not reabsorbed in the vicinity of the emission point,
they are likely to be absorbed in the colder region, being that low temperature
fluid parcels have low transmissivity at those wavenumbers (1500 cm�1 and
3800 cm�1), as shown in Figs. 6.12(a) and 6.13(a).
Note that the radiative properties dependency on wavenumber can be even
stronger than the dependency on temperature for the present temperature
range, which points out the need for an spectral model rather than a gray
gas model to accurately account for radiative heat transfer.

6.6 Monte-Carlo statistical convergence

An interesting feature of the Monte-Carlo method for solving the RTE is that
it provides a local control of the convergence which determines the statistical
error of the solution. In the present simulations, several criteria for considering
the statistical convergence of the radiative simulations are defined. First, if
the relative standard deviation of the local estimated radiative power is lower
than 5 %, the solution is considered converged. However, in regions where this
criterion is not achieved, an absolute value of the standard deviation of the
local estimated radiative power is considered. This value has been chosen to be
approximately 0.5% of the maximum value in magnitude of the radiative power
in the domain. Finally, if these two criteria are not accomplished at a specific
grid point, a maximum of 2.5 ⇥ 103 rays are considered as discussed before in
this Chapter.
For a given instantaneous field of temperature and the convergence criteria
specified above, the local number of rays issued to compute the radiative power
using the Emission-based Reciprocity Monte-Carlo Method is shown in 6.14(a)
for the slightly heated jet; while the relative statistical error of convergence,
computed as the relative standard deviation of the local estimated Prad (here
denoted as Prad rms), is presented in Fig. 6.14(b).
Similarly, the local number of rays to compute the radiative field for the strongly
heated jet, as well as its associated relative standard deviation of the local
estimated radiative power are shown in Figs. 6.15(a) and 6.15(b), respectively.
As it can be seen in Figs. 6.14(a) and 6.15(a), the jet edges are the hardest
regions to converge the radiative power. This is because its radiative power
value is close to zero, which implies large values of relative standard deviation
of the local estimated radiative power. And, at the same time, this region has
a strong radiative heat exchange with inner regions of the jet. Furthermore,
regions with more than 5% of relative standard deviation of the local estimated
radiative power in Figs. 6.14(b) and 6.15(b) correspond to regions with Prad

close to zero that have been assumed converged either due to its absolute stan-
dard deviation of the local estimated radiative power or because the maximum
number of rays issued from a point has been reached.
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(a) (b)

Figure 6.14: Contour fields at z = 0 for the slightly heated jet related to the Monte-
Carlo solution and its convergence. (a) Local number of rays and (b) relative standard
deviation of the local estimated Prad.

(a) (b)

Figure 6.15: Contour fields at z = 0 for the strongly heated jet related to the Monte-
Carlo solution and its convergence. (a) Local number of rays and (b) relative standard
deviation of the local estimated Prad.

6.7 Conclusions

In this Chapter, the accuracy of the Emission-based Reciprocity Monte-Carlo
Method applied to the present configuration is discussed. A clear advantage of
Monte Carlo methods is its inherent estimation of the remaining error, allowing
to control it and attribute the necessary resources. The choices defining the
setup are listed below.

• A maximum number of 2.5 ⇥ 103 rays issued from each node is retained
in order to keep a feasible amount of computational time.

• Black-body boundary conditions at the local temperature are set to model
the open boundaries.

• A coarser mesh to solve the radiative problem consisting in taking one



102Chapter 6 - Accuracy assessment of uncoupled radiative power field

computations

out of two nodes in each direction from the DNS mesh is retained to keep
feasible coupled simulation in terms of computational cost.

• The solutions is considered converged when either the relative standard
deviation of the local estimated radiative power is lower than 5 %, or
the absolute standard deviation of the local estimated radiative power is
lower than the 0.5% of the maximum value in magnitude of the radiative
power in the domain.

Moreover, in this chapter, the ck model used to estimate the spectral radiative
properties of water vapor has been validated by comparison with LBL results
for three different temperatures. And, the nature of the radiative transfer has
been assessed for the slightly and strongly heated jets.
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Chapter 7

Scaling of heated plane jets with

moderate radiative heat transfer

in coupled DNS

The effects of thermal radiation in the slightly heated jet of water vapor
are studied with a direct numerical simulation coupled to a Monte-Carlo
solver. Radiative energy transfer is then accounted for with spectral de-
pendency of the radiative properties described by the Correlated-k (ck)
method. Between the direct impact through modification of the tempera-
ture field by the additional radiative transfer and the indirect one where
the varied flow density changes the turbulent mixing, the present study
is able to clearly identify the second one in the jet developed region by
considering conditions where effects of thermal radiation are moderate.
When using standard jet scaling laws, the different studied cases with-
out radiation and with small-to-moderate radiative heat transfer yield
different profiles even when thermal radiation becomes locally negligible.
By deriving another scaling law for the decay of the temperature profile,
self-similarity is obtained for the different turbulent jets. The results of
this Chapter allow for distinguishing whether thermal radiation modifies
the nature of heat transfer mechanisms in the jet developed region or
not while removing the indirect effects of modified density.
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7.1 Introduction

Radiative heat transfer can modify the jet scaling laws in two ways: first, a
different nature and balance of the different heat transfer mechanisms, and
secondly a variation in density due to the modified temperature field. In order
to fully characterize the first phenomenon of high interest, it is necessary to
establish scaling laws that can distinguish both mechanisms.
The present Chapter aims then at analyzing the scaling laws of turbulent heated
jets without radiation and with moderate radiative transfer to consider mainly
the second mechanism. The results will indeed show that moderate radiation
effects can change the classical jet scaling laws in the fully developed region
although thermal radiation can be locally negligible in this region. Without any
adaptation of the jet scaling laws for variable density, one wrongly concludes
about the modified balance of heat transfers in the studied case. This Chapter
considers then another set of scaling laws and derives a new one for the mean
temperature field in particular to make cases without radiation and with small-
to-moderate radiative effects self-similar. These results allow for a future clear
identification of larger radiation effects of the first kind.
In the considered case of this Chapter, a heated water vapor mixture discharges
into a parallel low-speed coflow of cold water vapor. The numerical study is
carried out with state-of-the-art fidelity to be as representative as possible of an
actual jet in a participating medium. The turbulent jet is described by a direct
numerical simulation (DNS) coupled to a reciprocal Monte-Carlo method to
solve the radiative transfer equation. The spectral dependency of the radiative
properties is accounted for with an accurate Correlated-k (ck) method.

7.2 Configuration

The jet studied in this Chapter corresponds to the slightly heated jet dimension-
alized in Chapter 4 , which is prospecting for a modification of the temperature
and density fields by the effects of radiation in the developing region affecting
the jet downstream. But, at the same time, envisaging negligible radiation
effects in the developed region in order to still achieving nearly self-similarity.
The dimensioning also accounts for a feasible amount of CPU time.
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At the inlet boundary, the jet width opening is set to � = 0.05 m. The jet has an
initial mean velocity U1 = 4.176 m/s and the mean coflow velocity is set to U2 =
U1/10. The jet temperature is fixed to T1 = 860 K, while the temperature in the
coflow is T2 = 380 K, this temperature range has been chosen based on typical
values found in modern steam turbines (Tanuma (2017)). All simulations are
carried out at atmospheric pressure (1 atm).
The corresponding Reynolds number based on the width opening � is

Re =
⇢(T1)�U0�

µ(T1)
= 1500, (7.1)

where �U0 = U1 � U2.
Physical parameters describing the slightly heated jet computed in the present
Chapter are summarized in Table 7.1, a schematic representation of the plane
jet has been already presented in Fig. 4.1.

Table 7.1: Configuration of the slightly heated jet.

� [m] U1 [m/s] U2 [m/s] T1 [K] T2 [K] Re P0 [atm]
5 · 10�2 4.176 U1/10 860 380 1500 1.0

7.3 Numerical setup

7.3.1 Fluid simulation

The current Numerical setup for the fluid simulation is the same than the
one for uncoupled heated jet presented in Chapter 5. Then, numerical tools,
fluid flow boundary conditions, computational mesh, domain size as well as the
parameters for the ASR corresponds to ones retained for the uncoupled heated
jet.

7.3.1.1 Radiation simulation settings

Because the computational cost of the Monte-Carlo method remains large, the
grid to compute the radiative solution fields is based on a coarser mesh than
the DNS one: one out of two points is considered in each direction. Then,
the radiative solution is computed in 282 ⇥ 235 ⇥ 75 grid nodes in the x, y
and z directions, respectively. The effects of considering a coarser mesh for the
radiative computations are analyzed in Chapter 6.
One of the advantages of the retained ERM method is that only the bundles
leaving a specific node are needed to estimate the local radiative power at this
specific node. It is therefore possible to estimate the radiative power at one
node without performing such estimation at all other nodes of the domain. In
order to save computational power, the radiative power is only computed at
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relevant points. The cross-stream coordinate y of these points is restricted to
the range [�4y1/2(x), 4y1/2(x)]. Then, radiative calculations are performed in
a volume that surrounds the jet and follows its growth.
Periodic boundary conditions are set in the spanwise direction: if a ray gets
off the domain, for example at the point (x, y, Lz), it will get in at the point
(x, y, 0) with the same propagation direction. All other boundaries are treated
as black-body at the local temperature of the node located in the boundary,
this choice is discussed in Chapter 6.
An additional advantage of ERM is to allow the Monte-Carlo convergence to be
locally controlled. The present radiative simulations are considered converged
when a local error lower than 5 % of the radiative power is achieved. The
error is characterized in terms of statistical standard deviation of the estimated
quantity of interest. In regions where the mean radiative power is close to 0
and so the relative error is difficult to converge, an absolute value of the error
of 2000 W/m3 is considered to achieve convergence. This value corresponds
to approximately 0.5% of the maximum value in magnitude of the radiative
power in the domain. Finally, if these two criteria are not accomplished at a
specific grid point, a maximum of 2.5 ⇥ 103 rays are considered. The choice of
the convergence criteria are analyzed in Chapter 6.

7.3.2 Determination of the coupling period and computational
load distribution among processors

A parallel coupling between the fluid flow solver and the radiative solver is
used as discussed in Chapter 3. The optimal coupling period ncpl is determined
based on the Euclidean norm of ||P i+N

rad �P i
rad||2 adimensionalized by ||P i

rad||2 =qP
~x✏D

�
P i
rad(~x)

�2 when increasing N . In Figure 7.1, it can be observed that
after 58 iterations the radiative power field changes by around 5%. Because
the radiative solution is considered converged when a local error lower than 5
% of the mean radiative power is achieved, a coupling period corresponding to
ncpl = 58 is retained.
Once the value ncpl is fixed, the number of processors dedicated to each code
should be set in order to minimize the time spent on waiting for MPI communi-
cations as explained in Chapter 3. The present simulation has been performed
with a total of 216 processors. In the case of the coupled slightly heated jet
simulation, 64 processors are attributed to the fluid flow solver while 151 are
assigned to the radiation solver. The one processor left is in charge of the
coupling procedure. The computational time to compute the coupled jet is
approximately 3.5 times greater than the uncoupled simulation.

7.3.3 CPU cost

The statistics are obtained by averaging the data over approximately ⌧ = 1 s
of physical time. This time corresponds to approximately 4.6 flow time units
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Figure 7.1: Euclidean norm of the evolution of the radiative power with respect to a
reference radiative power field.

defined as ⌧(U1+U2)/(2Lx) = 4.6, where Lx is the domain size in the x direction
Lx = 10�. The approximate cpu cost using Intel Xeon CPU E5-2670 v3 24 cores
@ 2.30 GHz is of 150000 h for the uncoupled simulation. The computational
resources to compute the coupled jet are approximately 3.5 times greater than
the uncoupled simulation.

7.4 Radiative power field

A slice of the instantaneous radiative power at z = 0 is presented in Fig. 7.2(a),
while Fig. 7.2(b) shows the averaged radiative power hPradi. Radiative power
is a balance between the power lost by emission and the power gained due to
absorption, thus regions with negative values of Prad are cooling down by the
effect of radiation, while regions with positive values are heating up due to
radiation. As expected, Fig. 7.2 shows that the centerline of the jet, which
is the hottest region of the flow, loses heat by radiation. On the other hand,
thermal radiation energy is further absorbed at colder regions of the jet, tending
to a null radiative power as the distance to the jet centerline increases. In Fig.
7.2(b), the emission dominated region has been delimited from the absorption
dominated region by a solid black line corresponding to the isoline of Prad = 0.
The initial zone in which the jet develops is the most affected region by radia-
tion due to the large temperature gradients. Then, radiative power at the jet
centerline tends to zero downstream. Regarding a cross-section profile of the
jet, a large radiative power is emitted in the centerline, then radiative power
tends to zero in the jet edge while an absorption dominated zone is developed at
the outer region of the jet. In the fully turbulent zone the temperature and its
gradients are lower and the heat transport by radiation decreases significantly.
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(a) (b)

Figure 7.2: (a) Instantaneous radiative power field at z = 0. (b) Mean exchanged
radiative power field, solid black lines delimit the emission dominated region from the
absorption dominated region.

.

7.5 Radiation effects on temperature using classical
adimensionalization

Mean temperature fields are slightly modified by radiation as shown in Figs.
7.3(a) and 7.3(b). Radiation enhances the energy transport specially in the
entrance zone at which large temperature gradients are present. Then, radiation
slightly shortens the temperature potential core and smooths the gradients of
mean temperature. Comparing the temperature rms adimensionalized by the
local Favre averaged temperature shown in Figs. 7.4(a) with Fig. 7.4(b), it can
be seen that the fields are similar. The maximum difference in temperature
fluctuations is approximately 10%.
To characterize the effects of radiation in the heat transport, the averaged
energy balance in terms of enthalpy for the plane jet is analyzed. It can be
simplified assuming statistically steady state and a low mach number as

@ (h⇢i{ui}{h})

@xi| {z }
Mean flow advection

+
@ (h⇢i{u00

i h
00})

@xi| {z }
Turbulent convective heat flux

=
@

@xi

⌧
�
@T

@xi

�

| {z }
Molecular diffusion

+ hPradi .| {z }
Radiative power

(7.2)

The enthalpy balance for both the radiative and non-radiative cases is analyzed
in the developing zone in Fig. 7.5 in which cross-section profiles at x = � of
terms in Eqs. 7.2 are adimensionalized by the factor y1/2/ (�{Uc}Cp�{Tc}h⇢i).
In the developing zone, the transport of enthalpy occurs around the jet edge
for the non-radiative jet (Fig. 7.5(a)); while in the radiative jet, showed in Fig.
7.5(b), a significant enthalpy transport occurs in the jet core due to radiation
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(a) (b)

Figure 7.3: Comparison of temperature fields between the radiative (a) and the non-
radiative (b) heated plane jet. (a) Favre averaged temperature of the heated jet includ-
ing radiation. (b) Favre averaged temperature of the heated jet without radiation.

(a) (b)

Figure 7.4: Comparison of temperature fluctuations fields between the radiative (a)
and the non-radiative (b) heated plane jet. (a) Favre averaged temperature fluctuations
of the heated jet including radiation. (b) Favre averaged temperature fluctuations of
the heated jet without radiation.

and it is compensated by mean flow advection. Mean flow advection and tur-
bulent convective heat flux have opposite effects. However, because turbulence
has not yet penetrated in the jet centerline in the developing zone, turbulent
convective heat flux has null effects in the jet core.
Figure 7.6 shows an analysis of the enthalpy balances in the developed region
(x = 10�). Again, all terms of the balances have been adimensionalized by the
factor y1/2/ (�{Uc}Cp�{Tc}h⇢i). It can be seen that the mean flow advection
and the turbulent convective heat flux term strongly dominate the enthalpy
balance in the studied case. The radiation term in the balance of Eq. 7.2 has a
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(a) (b)

Figure 7.5: Cross-section profiles of the enthalpy budget main terms at x = � for (a)
the non-radiative and (b) the radiative jets.

negligible contribution at the developed zone but it is significant in the devel-
oping zone. This situation is produced due to the lower temperature gradients
involved in the developed zone and the increased turbulent fluctuations in the
developed zone which enhance the turbulent convective heat flux.

(a) (b)

Figure 7.6: Cross-section profiles of the enthalpy budget main terms at x = 10� for
(a) the non-radiative and (b) the radiative jets.

Mean temperature decay which provides a measure of the overall cooling of the
jet is shown in Fig. 7.7(a) where �T0 = T1 � T2 and �{Tc} = {T}y=0 � T2.
Surprisingly, despite the fact that radiation has no effects on the developed
zone, as shown in Fig. 7.6, the mean temperature at the jet centerline decays
faster in the radiative case than in the non-radiative case. Fig. 7.7(a) shows
that the jet half-with based on temperature for the radiative case is slightly
larger than for the non-radiative case. Temperature profiles of the uncoupled
and coupled heated jets, shown in Fig. 7.7(c), collapse almost in the same curve
when the y coordinate is adimensionalized by y1/2,T .
Figure 7.8(a) shows the root-mean-square of temperature fluctuations along
the jet centerline adimensionalized by the local Favre average excess tempera-
ture. While for the non-radiative jet, temperature fluctuations start to develop
beyond x = 4�, in the radiative case, temperature fluctuations start further
downstream and its intensity remains slightly lower than in the non-radiative
jet. Dimensionless cross-section profiles of temperature fluctuations at x = 10�
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(a) (b)

(c)

Figure 7.7: Comparison of mean temperature-related quantities between the radiative
(R) and the non-radiative (NR) jets. (a) Downstream jet spread based on temperature.
(b) Downstream temperature decay along the jet centerline. (c) Cross-section profile of
mean excess temperature adimensionalized by the mean excess centerline temperature
at x = 10�.

are presented in Fig. 7.8(b). Temperature fluctuations almost collapse onto
the same curves with classical adimensionalization although slightly different
trends can be observed.

(a) (b)

Figure 7.8: Comparison of temperature fluctuations-related quantities between the
radiative and the non-radiative plane jet. (a) Downstream evolution of dimensionless
temperature fluctuations along the jet centerline. (b) Cross-section profile of dimen-
sionless temperature fluctuations at x = 10�.
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7.6 A novel adimensionalization for the mean tem-
perature field to correct variable density effects

As observed in Fig. 7.7(a), the classical adimensionalization fails to give the
same slope for the temperature decay between radiative and non-radiative cases
despite the negligible contribution of radiation in the developed region. In
this section, a novel adimensionalization based on approximate conservation of
the convective heat flux is derived in order to collapse the temperature decay
of different heated jets even though developing conditions are different. This
assumption is exact for negligible coflow and radiative effects. It allows here
to correct variable density effects for the investigated cased with moderate
radiative transfer. This adimensionalization can then be used to distinguish
whether radiation changes the dynamic mechanisms in the developed region or
not.
Conservation of the convective heat flux in a free jet can be expressed by the
equation

@

@x

Z +1

�1
h⇢i{u}�{Te}dy = 0, (7.3)

For the new scaling, temperature and density fields are assumed self-similar
in the form �{Te} = �{Tc}fT (⌘) and h⇢i = h⇢cif⇢(⌘). Considering a strong
jet with minor co-flow effects, velocity self-similarity is expressed in the form
{u} = {Uc}fu(⌘). Note that �{Tc}, h⇢ci and {Uc} are respectively temper-
ature, density and velocity scales that depend only on downstream position,
while fT (⌘), f⇢(⌘) and fu(⌘) are distribution functions depending on the di-
mensionless coordinate ⌘ = y/y1/2,T . The choice of a unique length scale, in
this case y1/2,T , implies that self-similarity on temperature, density and veloc-
ity can be described with the same local length scale, which is consistent since
the jet growths are proportional among them. Then, Eq. 7.3 can be written as

h⇢ci{Uc}�{Tc}y1/2,T

Z +1

�1
fT (⌘)f⇢(⌘)fu(⌘)d⌘ = constant, (7.4)

which implies that the product h⇢ci{Uc}�{Tc}y1/2,T is independent of x in the
self-similar region. Then, in this region, the convective heat flux conservation
can be expressed as

h⇢ci{Uc}�{Tc}y1/2,T
⇢0 u0�T0�

= constant. (7.5)

where u0 = 1
�

R
� Uin(y)dy is analogous to ⇢0 defined in Chapter 5

Similar to the derivation of the scaling for the velocity decay in the jet centerline
(Foysi et al. (2010)), it is possible to deduce a scaling for the temperature decay.
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Defining an equivalent heat jet opening characterizing thermal transfer, r✏,T ,
as

r✏,T =
�2

y1/2,T

✓
⇢0

h⇢ci

◆2✓ u0

{Uc}

◆2

, (7.6)

the convective heat flux conservation presented in Eq. (7.5) can be expressed
as

✓
�{Tc}
�T0

◆2 y1/2,T
r✏,T

= constant. (7.7)

Then, similar to Eqs. (5.4) and (5.5), the temperature decay (�T0/�{Tc})2 in
the self-similar region has a linear relationship with the streamwise coordinate
in the form

✓
�T0

�{Tc}

◆2

= Q1,T

✓
x

r✏,T
+ Q2,T

◆
, (7.8)

assuming self-preserving temperature, density and velocity distributions; the
temperature decay of heated jets has a universal behavior in the self-similar
region when adimensionalized by the equivalent heat jet opening introduced in
Eq. 7.6.

7.7 Radiation effects on temperature using the new
scaling

Figure 7.9 shows again the centerline temperature decay and temperature pro-
files of the uncoupled and coupled jets but this time using the equivalent heat
jet opening based on the convective heat flux conservation to scale the results.
Additionally, the linear regressions of the centerline temperature decay in the
fully developed region (8� < x < 10�) is shown in Fig. 7.9(a). In contrast with
Fig. 7.7(a), it can be observed that in Fig. 7.9(a) the temperature decays of the
radiative and the non-radiative jets collapse into almost the same curve present-
ing nearly the same slope when the x-coordinate is scaled by r✏,T . Figure 7.9(b)
shows the collapse of temperature profiles for the radiative and non-radiative
jets at the same x = 9r✏,T which actually corresponds to x = 9.76� for the
non-radiative jet and to x = 9.15� for the radiative jet, although the classical
scaling was already collapsing mean temperature profiles onto almost the same
curve.
In order to quantitatively compare the behavior of the temperature decay be-
tween the radiative and non-radiative jets, results of the linear fitting coeffi-
cients in the self-similar zone (beyond x = 7�) for both the new scaling (using
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(a) (b)

Figure 7.9: Comparison of mean temperature-related quantities between the radia-
tive and the non-radiative jets scaled using r✏,T . (a) Scaled downstream temperature
decay along the jet centerline. (b) Cross-section profile of mean excess temperature
adimensionalized by the mean excess centerline temperature at x = 9r✏,T .

r✏,T in Eq. 7.8) and the classical scaling (using � instead of r✏,T in Eq. 7.8) are
summarized in Table 7.2.
On the one hand, values of Q2,T differ between R and NR cases for both scalings
due to the inclusion of the radiative heat exchange which affects the developing
zone. On the other hand, while Q1,T coefficients are significantly different
(22.2%) when comparing R and NR cases using the classical scaling, they have
a small difference (0.32 %) using the new scaling based on the equivalent heat
jet opening.

Table 7.2: Comparison of decay and spread of temperature fitted coefficients for the
radiative and non-radiative slightly heated jets using scaling based on the convective
heat flux conservation.

Scaling Jet case Q1,T Q2,T

Classic scaling Non-radiative 0.3697 -2.9090
Radiative 0.4517 -3.2460

New scaling Non-radiative 0.2505 1.0962
Radiative 0.2513 1.6099

Temperature fluctuations along the jet centerline for the radiative and non-
radiative jets are shown in Fig. 7.10(a) adimensionalized using r✏,T . The inten-
sity of the temperature fluctuations is first slightly lower for the radiative case
at the developing region in which radiation has a significant impact on the flow.
However, once in the developed region, the intensity of temperature fluctua-
tions at the jet centerline collapses almost into the same value. Additionally,
the collapse of cross-section temperature fluctuation profiles for the radiative
and non-radiative jets at the same x = 9r✏,T is presented in Fig. 7.10(b).
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(a) (b)

Figure 7.10: Comparison of temperature fluctuations-related quantities between the
radiative and the non-radiative plane jets scaled using r✏,T . (a) Downstream evolution
of dimensionless temperature fluctuations along the jet centerline. (b) Cross-section
profile of dimensionless temperature fluctuations at x = 9r✏,T .

7.8 Conclusions

An analysis of the enthalpy balance at the initial zone of the slightly heated
jet shows that radiation has a major contribution of heat transport modify-
ing temperature and density fields. On the other hand, a negligible radiative
contribution is found in the developed region. Thus, for both uncoupled and
coupled heated jets, the nature of heat transfer remain the same, which is here
the turbulent heat transport. However, despite this minor contribution of ra-
diation in the developed region, the classical jet scaling law fails to give the
same temperature decay slope between the radiative and non-radiative cases.
This could wrongly lead to conclude on a modified balance of heat transport
mechanisms in the studied case. In fact, thermal radiation can have two kind of
effects on the temperature profile: a direct one from radiative energy transfer
and an indirect one due to the modified flow density.
The proposed equivalent heat jet opening deduced from the convective heat flux
conservation equation has shown to compensate density differences to collapse
both radiative and non-radiative jets profiles onto the same temperature decay
rate in the developed region. This scaling accounts for the indirect effects of
variable density in cases with radiation. It allows for distinguishing whether
radiation modifies the heat transfer mechanisms in the developed region or not.
In the studied case, it is now clearly identified that it does not.
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DNS of a heated jet of water vapor discharging into a parallel low speed
coflow of cold water vapor is fully coupled with a reciprocal Monte-Carlo
method. The spectral dependency of the radiative properties is accounted
for using the ck method. A strongly heated case in which radiation has
a noticeable impact is considered in this Chapter. The effects of radi-
ation on mean temperature and velocity fields are analyzed. Addition-
ally, temperature fluctuations and Reynolds stresses for the radiative
and non-radiative jets are discussed through the enthalpy variance and
turbulent kinetic balances. Finally, results of the radiative power field
and specific contributions of absorption and emission powers are pre-
sented.
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8.1 Introduction

Radiation can modify the heat transport and the fluid dynamics, while tur-
bulence fluctuations can significantly alter the radiative heat transfer. Sev-
eral works have quantified turbulence effects on radiation (the so-called TRI)
through uncoupled computations and a priori analysis in a variety of config-
urations such as turbulent diffusion jet flames (Coelho (2004)), homogeneous
isotropic turbulence (Kritzstein and Soufiani (1993); da Silva et al. (2009);
Roger et al. (2009); Roger et al. (2010)), and temporally evolving jet (Roger
et al. (2011)).
Coupled simulations solving both fluid dynamics and radiation allow for cap-
turing these interactions, as well as radiation effects on turbulence, although
additional modeling can be necessary depending on the turbulence description.
Early coupled simulations using Reynolds average Navier-Stokes (RANS) in-
clude the studies of diffusion jet flames of Tessé et al. (2004) who pointed out
the important role of soot particles in global radiative loss; and the work of
Li and Modest (2003) in which was found that TRI reduces the total drop in
flame peak temperature caused by radiative heat losses. Additionally, a recent
RANS coupled simulation in a high-pressure gas turbine combustion chamber
was reported by Ren et al. (2018).
In the coupled LES framework, Gupta et al. (2013) characterized contributions
of subfilter-scale fluctuations to TRI in a diffusion flame; Ghosh et al. (2011)
observed that radiation counteract the effects of compressibility in a nonreac-
tive supersonic channel flow; and Poitou et al. (2012) showed how radiation
can change the flame brush structure. Still in the LES formulation, coupled
simulations in complex geometries of combustion chambers include the works
of Jones and Paul (2005), Berger et al. (2016), Koren et al. (2018).
Several coupled DNS works, for which all interactions are fully captured, have
been performed on different systems: statistically 1-dimensional premixed (Wu
et al. (2005); Wu et al. (2007)) and nonpremixed (Deshmukh et al. (2008))
flames; natural convection in a differentially heated cubical cavity (Soucasse
et al. (2016)); and nonreactive channel flow (Zhang et al. (2013); Vicquelin
et al. (2014)); leading to an understanding of the mechanisms in which radiation
modifies turbulence, and a direct quantification of TRI.
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These studies relied on different numerical solvers for the radiative transfer
equation (discrete ordinates (Coelho (2004); Jones and Paul (2005); Ghosh
et al. (2011); Poitou et al. (2012); Berger et al. (2016)), ray tracing (Coelho
(2004); da Silva et al. (2009); Roger et al. (2009); Roger et al. (2010); Roger
et al. (2011); Soucasse et al. (2016)), spherical harmonics (Li and Modest
(2003); Gupta et al. (2009)), and Monte-Carlo (Tessé et al. (2004); Gupta et al.
(2013); Koren et al. (2018); Wu et al. (2005); Wu et al. (2007); Deshmukh
et al. (2008); Zhang et al. (2013); Vicquelin et al. (2014)) methods) and models
for radiative properties (gray gas (Gupta et al. (2009); Jones and Paul (2005);
Wu et al. (2005); Wu et al. (2007); Deshmukh et al. (2008)), SNB-CK and its
variants (Kritzstein and Soufiani (1993); Li and Modest (2003); Coelho (2004);
Ghosh et al. (2011); Poitou et al. (2012); Berger et al. (2016)), Absorption
Distribution Function (Soucasse et al. (2016)), correlated k-distribution (ck)
models (Coelho (2004); da Silva et al. (2009); Roger et al. (2009); Roger et al.
(2010); Roger et al. (2011); Tessé et al. (2004); Koren et al. (2018); Zhang
et al. (2013); Vicquelin et al. (2014)), and Line-by-line computations (Gupta
et al. (2013); Ren et al. (2018)).
All these studies indicate that, when considering heated free shear flows such
as jets, radiation can play an important role on heat transport and may modify
the thermal fields and fluid dynamics in participating medium. Given the
complexity of combustion systems, it is desirable to simplify the problem by
considering non-reactive free shear flows to understand the isolated impact of
radiation in a more canonical configuration without wall interactions. With
the exception of the LES study of Ghosh and Friedrich (2015), most coupled
works addressing free shear flows problems correspond however to combustion
systems.
The effects of thermal radiation in nonreactive turbulent jets deserves then
further investigation. As far as we know, the present set of simulations are the
first DNS of a free shear flow to be fully coupled with a spectral radiative heat
transfer solver.
The present Chapter analyzes the radiation effects on the strongly heated plane
jet, which is a canonical system of free shear flows. The goal is to isolate the
gas-gas radiative contribution to give insight not only on radiation effects on
free jets, but also on the behaviour of turbulent flows in general. The effects of
radiation on first and second orders of velocity and temperature are addressed.
Results of the radiative power field and specific contributions of absorption and
emission powers are presented. Additionally, a quantification of the effects that
turbulence causes on radiation is discussed.

8.2 Configuration

The strongly heated water vapor jet studied in this chapter has been dimension-
alized based on the RANS parametric study presented in Chapter 4. Such study
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determined a CPU feasible turbulent heated jet in which radiative heat transfer
is of the same order than both the turbulent convective flux and the mean flow
advection. The retained inlet velocities (U1, U2) and temperatures (T1, T2)
represented in Fig. 8.1 are specified in Table 8.1. The mean pressure (P0) and
the Reynolds number based on the initial jet width Re = ⇢(T1)�U0�/µ(T1)
(where �U0 = U1 � U2, and ⇢(T1) and µ(T1) stand for density and viscosity
evaluated at T1) are also specified in Table 8.1.

T2
U2

y

x!

Initial zone Fully turbulent zone
T(x,y)

U(x,y)

U1

T1

Figure 8.1: Schematic representation of the turbulent structures of a heated plane jet
identified by the Q-criterion.

Table 8.1: Configuration of the strongly heated jet.

� [m] U1 [m/s] U2 [m/s] T1 [K] T2 [K] Re P0 [atm]
5 · 10�2 4.176 U1/10 2500 405 500 2.576

8.3 Numerical setup

8.3.1 Fluid simulation

8.3.1.1 Inlet boundary conditions

Inlet velocity and temperature profiles are defined using an hyperbolic function
described in Chapter 5 with a corresponding shear layer momentum thickness
of ✓ = 0.02�. The synthetic turbulence described in Chapter 1 is added to the
inlet mean velocity following an hyperbolic profile, the synthetic turbulence
field is fully defined by the parameters Lc = �/2 and u0 = U1/20.
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8.3.1.2 Computational mesh and domain

The grid spacing in the x- and y- axis has been chosen to be the Kolmogorov
scale following the temperature and velocity decays as explained in Chapter 5.
The grid spacing along z-axis is uniform and equal to �z = �/40, which is a
close value to the �x and �y averages.
The flow solution is computed in a domain extension of 13.5�⇥10�⇥3� in x, y
and z directions, respectively, using a structured grid with 514⇥401⇥121 nodes,
in the x, y and z directions, respectively, which corresponds to approximately
24.9⇥106 nodes. The statistics of the flow are computed in a domain extension
of 10� ⇥ 10� ⇥ 3�.

8.3.1.3 The Acoustic Speed Reduction method

The acoustic speed reduction method introduced in Chapter 1 is used with the
value of the factor ↵ set to ↵ = 6.82. This value sets the Courant- Friedrichs-
Lewy and the Fourier conditions within the same order of magnitude for the
current simulation.

8.3.2 Radiation simulation

Emission-based Reciprocity Monte-Carlo method (ERM) and a randomized
Quasi Monte Carlo relying on low-discrepancy Sobol sequences are used to
account for the radiative heat transfer. The spectral radiative properties for
H2O are modeled by means of the correlated-k (ck) narrow band model as
explained in Chapter 3.
As discussed in Chapter 6, the grid to compute the radiative solution field is
based on a coarser mesh than the DNS one: one out of two points is considered
in each direction. Then, the radiative solution is computed in 257 ⇥ 201 ⇥ 61
grid nodes in the x, y and z directions, respectively, which corresponds to
approximately 5 ⇥ 106 nodes.
The current radiative simulations are considered converged either when a local
error lower than 5% of the radiative power is achieved or an absolute value
of the error lower than 5 · 104 W is achieved. The absolute value of the error
corresponds to approximately 0.5% of the maximum value in magnitude of the
radiative power in the domain. Finally, if these two criteria are not accom-
plished at a specific grid point, a maximum of 2.5 ⇥ 103 rays are considered. A
discussion of the accuracy of these parametrs can be found in Chapter 6.

8.3.3 Determination of the coupling period and computational
load distribution among processors

As described in Chapter 3, the optimal coupling parameter ncpl is determined by
the Euclidean norm of the difference between the radiative power in a iteration
i set as a reference P i

rad with respect to the radiative power after N iterations
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P i+N
rad . Figure 8.2 shows the evolution of ||P i+N

rad � P i
rad||2 adimensionalized by

||P i
rad||2 =

qP
~x✏D

�
P i
rad(~x)

�2 when increasing N . From this figure, it can be
observed that after 30 iterations the radiative power field changes by around
5%. Because the radiative solution is considered converged when a local error
lower than 5 % of the mean radiative power is achieved, a coupling period
corresponding to ncpl = 30 is retained.

Figure 8.2: Euclidean norm of the evolution of the radiative power with respect to a
reference radiative power field.

Analogous to §7.3.2, the processors distribution between the fluid and radiative
solvers is done following Eq. 3.14. The present simulation has been performed
with a total of 720 processors. In the case of the strongly heated jet coupled
simulation, 216 processors are attributed to the fluid flow solver while 503 are
assigned to the radiation solver. The one processor left is in charge of the
coupling procedure. The computational time to compute the coupled jet is
approximately 3.3 times greater than the uncoupled simulation.

8.3.4 CPU cost

The statistics are obtained by averaging the data over approximately ⌧ = 1 s
of physical time. This time corresponds to approximately 4.6 flow time units
defined as ⌧(U1 + U2)/(2Lx) = 4.6, where Lx is the domain size in the x
direction Lx = 10�. The approximate total cpu cost of the coupled simulation
using Intel Xeon CPU E5-2670 v3 24 cores @ 2.30 GHz is of 270000 h.
In Table 8.2, the CPU time of the current coupled simulation is compared with
this same simulation without radiation, and the coupled and uncoupled simula-
tions of the slightly heated jet. In Table 8.2, ⌘ corresponds to the Kolmogorov
scale.
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Table 8.2: Comparison of CPU among the different simulation of this work.

Case Re �xi Relative CPU cost
Uncoupled sligthly heated jet 1500 ⇠ 2⌘ 1.0
Coupled sligthly heated jet 1500 ⇠ 2⌘ 3.5
Uncoupled strongly heated jet 500 ⇠ 1⌘ 0.55
Coupled strongly heated jet 500 ⇠ 1⌘ 1.8

8.4 Uncoupled results of the heated jet

Before presenting results of the strongly heated jet coupled with thermal radi-
ation, the uncoupled strongly and slightly heated jets are briefly comapred in
this section.
Figure 8.3(a) shows the cross-section profiles at x = 10� of the streamwise
velocity for the strongly and slightly heated jets, while Fig. 8.3(b) presents
the profiles of mean temperature at this same cross-section. Despite some
discrepancies are observed in the scaled profiles, trends are very similar for
both mean temperature and mean velocity at the developed region.

(a) (b)

Figure 8.3: Comparisons of (a) mean streamwise velocity and (b) mean temperature
profiles at x = 10� between the strongly and slightly heated jets.

The velocity decay shown in Fig. 8.4(a) indicates that temperature differences
strongly impact on the velocity decay. However, when scaled using the equiva-
lent jet opening r✏ the decays have a similiar slope although the strongly heated
jet decay is slightly larger.
A turbulent quantity of high interest is the turbulent Prandtl number Prt which
is generally used to model energy transport in turbulent flows. From the present
DNS data, the value of Prt has been explicitly computed using the following
expression, valid for thin layer flows,

Prt =
�h⇢i{u00v00}

�h⇢i{v00h00}/cp

@{T}/@y

@{u}/@y
, (8.1)

In Figures 8.5(a) and 8.5(b) the downstream evolution of Prt is presented for
the strongly and slightly heated jets for the lines defined by y = y1/2 and
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(a) (b)

Figure 8.4: Comparisons of the (a) velocity decay and (b) scaled velocity decay be-
tween the strongly and slightly heated jets.

(a) (b)

Figure 8.5: Comparison of Prt results computed from DNS data of the strongly and
slightly heated jets along two different lines of equal y1/2: (a) Prt(x, y = y1/2/2), (b)
Prt(x, y = y1/2).

(a) (b)

Figure 8.6: Downstream temperature decay along the jet centerline for the strongly
and slightly heated jets using (a) classical scaling (b) scaling based on convective heat
flux conservation.

y = y1/2/2. As it can be seen in Fig. 8.5, the Prt is significantly larger in the
strongly heated jet.
Centerline temperature decay for the strongly and slightly heated jets is shown
in Fig. 8.6. In accordance with the turbulent Prandt number, a greater decay
rate for the strongly heated jet is observed, since the turbulent Prandt number
corresponds to the ratio between the turbulent diffusion of momentum and the
heat transfer by turbulent diffusion. However, when the new scaled is used
to compensate the density effects of temperature, different slopes are obtained
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for the strongly and slightly heated jets. In the next Chapter, the role of the
new scaling in constant turbulent Prandt number computations using RANS
simulations will be analyzed.

8.5 Radiation effects on temperature fields

When accounting for radiation in the energy transport, the instantaneous tem-
perature fields are significantly modified as shown in Fig. 8.7. Despite there is
not a clear difference in the turbulent structures identified by the Q-criterion,
it can be seen qualitatively that the energy mixing process is enhance by the
presence of radiation.

Figure 8.7: Snapshots of turbulent eddies identified by the Q-criterion colored by
temperature for the heated jet without including radiation, and the heated jet coupled
with the radiative solver.

8.5.1 Mean temperature field

Mean temperature fields are modified by radiation as shown in Fig. 8.8. Radia-
tion enhances the energy transport specially in the entrance zone at which large
temperature gradients are present. Then, radiation shortens the temperature
potential core and smooths the gradients of mean temperature.
Figure 8.9 shows the jet half-width based on temperature y1/2,T adimension-
alized by the initial jet width � for the radiative and the non-radiative cases.
From this figure, it can be observed that the jet starts spreading beyond x = 3�
when radiation is included. On the other hand, for the non-radiative jet, the
jet start spreading afterwards around x = 5�. Such difference is caused by the
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(a) (b)

Figure 8.8: Comparison of Favre averaged temperature fields between (a) the radiative
and the (b) non-radiative heated plane jets.

enhanced energy transport when including radiation effects.

Figure 8.9: Downstream jet spread based on temperature for the radiative and non-
radiative jets.

Excess Favre averaged temperature profiles ({Te} = {T} � T2) of the radiative
and the non-radiative jets are presented in Fig. 8.10 adimensioalized by �{Tc}
at x = 10�. When adimensionalized, temperature profiles of the radiative and
non-radiatice cases are very similar.

Figure 8.10: Comparison of Cross-section profiles of mean excess temperature adi-
mensionalized by the mean excess centerline temperature at x = 10� for the radiative
and non-radiative jets.
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Just as for the slightly heated jet, the radiation role in the heat transport is
assessed by means of the average enthalpy balance. Recalling Eq. 7.2 for a
statistically steady state and a low mach number flow:

@ (h⇢i{ui}{h})

@xi| {z }
Mean flow advection

+
@ (h⇢i{u00

i h
00})

@xi| {z }
Turbulent convective heat flux

=
@

@xi

⌧
�
@T

@xi

�

| {z }
Molecular diffusion

+ hPradi .| {z }
Radiative power

(8.2)

Figure 8.11 presents the cross-section profiles of the terms in Eq. (8.2) at the de-
veloping region (x = �) adimensionalized by the factor y1/2/ (�{Uc}Cp�{Tc}h⇢i).
Figure 8.11(b) shows that radiation has a major contribution in the developing
zone, specially in the jet centerline. Analogous to the slightly heated jet, radi-
ation effects at the jet centerline are compensated by the mean flow advection.

(a) (b)

Figure 8.11: Cross-section profiles of the enthalpy budget main terms at x = � for
(a) the non-radiative and (b) the radiative jets.

Figure 8.12 shows an equivalent analysis at the developed region. Again, all
terms of the balance have been adimensionalized by the factor y1/2/ (�{Uc}Cp�{Tc}h⇢i).

(a) (b)

Figure 8.12: Cross-section profiles of the enthalpy budget main terms at x = 10� for
(a) the non-radiative and (b) the radiative jets.

In contrast with the slightly heated jet, radiation has a noticeable contribution
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for y < y1/2 in the enthalpy balance at the developed region as shown in Fig.
8.12(b).
The temperature in the jet centerline decays faster in the radiative case (R) than
in the non-radiative case (NR) as shown in Fig. 8.13(a), in which �T0 = T1�T2

and �{Tc} = {T}y=0 � T2. The temperature decay provides a measure of the
overall cooling of the jet. As expected, radiation enhances the overall cooling
of the jet since an extra mode of energy transport is included. Additionally, in
Fig. 8.13(b), the streamwise coordinate is scaled based on convective heat flux
conservation using the r✏,T as explained in Chapter 7. A linear fitting of the
form

✓
�T0

�{Tc}

◆2

= Q1,T

✓
x

r✏,T
+ Q2,T

◆
, (8.3)

is included in Fig. 8.13(b) for both cases.

(a) (b)

Figure 8.13: Downstream temperature decay along the strongly heated jet centerline
for the radiative (R) and non-radiative (NR) jets using (a) classical scaling (b) scaling
based on convective heat flux conservation.

Similarly to Table 7.2, results of the linear coefficients using both the classical
and the new scaling are presented in Table 8.3 for the strongly heated jet.

Table 8.3: Comparison of decay and spread of temperature fitted coefficients for the
radiative and non-radiative strongly heated jets using scaling based on the convective
heat flux conservation.

Scaling Jet case Q1,T Q2,T

Classic scaling Non-radiative 0.552 -3.650
Radiative 1.022 -3.218

New scaling Non-radiative 0.3386 0.645
Radiative 0.4867 0.251

As for the slightly heated jet, the temperature decay rate using the classical
scaling is greater for the radiative jet; although a larger relative difference
of 46% is found for the strongly heated case. However, when using the new
scaling in the strongly heated jet with the goal of counteracting the density
effects in the decay rate, Table 8.3 shows that the temperature decay rate using
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the equivalent heat jet opening is significantly different between the radiative
and the non-radiative cases, with a relative difference of 30.4 %. Thus, it is
shown that for strongly heated jets the general scaling based on convective
heat flux conservation for variable-density jets presented in Chapter 7 is no
longer valid when large radiation effects are accounted for. This analysis is in
accordance with the average enthalpy balance in the developed region presented
in Fig. 8.12(b), which states that the nature of the heat transfer is modified by
the inclusion of radiation. Note that when comparing the decay rate without
accounting for radiation for the strongly and heated jets, as done in section 8.4,
a disagreement between them is found.

8.5.2 Fluctuations of enthalpy

Comparing the temperature fluctuations adimensionalized by the local Favre
averaged temperature shown in Figs. 8.14(a) with Fig. 8.14(b), it can be seen
that radiation tends to decrease temperature fluctuations; although similar pat-
terns of the temperature fluctuations field are obtained in spite of the inclusion
of radiation.

(a) (b)

Figure 8.14: Comparison of Favre averaged temperature fluctuations between (a) the
radiative and the (b) non-radiative strongly heated plane jets.

Figure 8.15(a) shows the temperature fluctuations along the jet centerline adi-
mensionalized by the excess Favre average temperature. For both cases, tem-
perature fluctuations start to develop beyond x = 3.5�. However, in the
radiative case, temperature fluctuations intensity remains lower than in the
non-radiative jet. At the developed region (x > 8�), radiation decreases the
temperature fluctuations around 38 % in the jet centerline.
The dimensionless cross-section profiles of temperature fluctuations at x = 10�
are presented in Fig. 8.15(b). In accordance with Fig. 8.15(a), temperature
fluctuations at the jet centerline are lower for the radiative jet. However, tem-
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perature fluctuations are almost equal on both cases beyond y = 1.2y1/2 at the
developed zone when adimensionalized by �{Tc}.

(a) (b)

Figure 8.15: Comparison of temperature fluctuations between the radiative and the
non-radiative jets. (a) Downstream evolution of dimensionless temperature fluctua-
tions along the jet centerline. (b) Cross-section profile of dimensionless temperature
fluctuations at x = 10�.

The effect of radiation on the temperature fluctuations is further analyzed
through the transport equation of Favre averaged enthalpy variance, ⇥ =
1
2{h002}. Following the development in the work of Vicquelin et al. (2014),
for a low-Mach flow, the enthalpy variance transport equation can be expressed
as:
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To enhance convergence when computing the budged of enthalpy variance all
correlations involving fluctuations are expressed as functions of its mean values
as detailed in Appendix A. The molecular diffusion, and Terms I and II are
neglected in the following analysis since they do not contribute significantly in
the present enthalpy fluctuations balance. Then, adimensionalizing all terms
in the enthalpy fluctuations budget by the factor

y1/2
�Uc(Cp�Tc)2 h⇢i , Eq. 8.4
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can be rewritten as

D̄⇥
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⇥ +

⌦
h00P 0

rad
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where ⇤ denotes adimensionalized quantities.

(a) (b)

(c) (d) (e) (f)

Figure 8.16: Budget of dimensionless enthalpy fluctuations of the heated jet in the
developed region. (a) Uncoupled heated jet. (b) Accounting for radiative heat transfer.
Comparison of the components of the enthalpy fluctuations budget: (c) production,
(d) turbulent diffusion, (e) advection and (f) dissipation between the radiative and the
non-radiative jet cases.

The budget of the enthalpy fluctuations for the radiative and non-radiative
jets are presented in Figs. 8.16(b) and 8.16(a), respectively. A comparison
of each term in the balance between both cases is presented in Figs. 8.16(c)
to 8.16(f). As expected, in the non-radiative jet, production and dissipation
terms dominate the budget. However, when radiation is included, a new term
corresponding to the correlation between enthalpy fluctuations and radiative
power fluctuations significantly contributes to an additional dissipation mecha-
nism of enthalpy variance, that is why we called this term radiative dissipation
as in the work of Vicquelin et al. (2014). Despite the fact that the unbalance
terms remain quite small in both budgets; it must be said that for the radiative
case, the budget is not completely close. This may be attributed to numerical
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dissipation introduced in the resolution of the RTE in a coarser mesh. More-
over, note that because of the parallel coupling scheme, the computation of the
radiative dissipation term (term III) is not straightforward and care must be
taken when computing hhPradi, in which both enthalpy and radiative power
fields must correspond to the same physical time.
When radiation is taken into account, production decreases since temperature
gradients are smoother. Due to the decrease in production and the additional
radiative dissipation mechanism, enthalpy variance decreases as shown in Fig.
8.15. Then, because of the acting radiative dissipation mechanism and the
decreased enthalpy variance, the molecular dissipative term nearly decreases
by a factor of two when radiation is considered.

8.6 Radiation effects on velocity fields

Radiation effects on velocity fields are expected to be smaller than in tempera-
ture fields; since effects on velocity are indirectly caused by density and viscosity
changes, while effects on temperature are directly caused by radiation.

8.6.1 Mean velocity field

The downstream growth of the jet half-width y1/2(x) is presented for the ra-
diative and non-radiative cases in Fig. 8.17. For the radiative case, the jet
half-width is shrinking in the developing region. This phenomenon occurs due
to the decrease of temperature potential core size which reduces velocity in this
region and specially at the jet edges. In the present simulation, the jet half-
width for the non-radiative jet remains greater all along the simulated domain.

Figure 8.17: Comparisons of the jet half-width between the radiative (R) and the
non-radiative (NR) cases.

Figure 8.18(a) shows the comparison of the centerline mean excess velocity
decay adimensionalized by �U0 = U1 � U2 between the radiative and the non-
radiative cases. The downstream velocity decay of the radiative case is greater
than the non-radiative case. Nevertheless, when the streamwise coordinate is
scaled by ⇢c/⇢0 in Fig. 8.18(b) as explained in Chapter 5, this behavior is
inversed and the scaled velocity decays rate are significantly different. This dif-
ference shows that radiation and its effects on density can change the dynamics
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of heated jets. Thus, it is shown that for strongly heated jets the general scaling
law of variable-density jets is no longer valid when radiation is accounted for.

(a) (b)

Figure 8.18: Comparisons (a) velocity decay and (b) scaled velocity decay between
the radiative and the non-radiative cases.

The local Reynolds number based on y1/2 defined as Rey1/2
=

h⇢ci�{Uc}2y1/2

µ({Tc}) is
shown in Fig. 8.19. Despite the fact that the mean excess velocity decay is
larger for the radiative case, the local Reynolds number is significantly larger
for the radiative case since h⇢i increases while µ decreases by the effects of
radiation on temperature.

Figure 8.19: Comparisons of local Reynolds number between the radiative and the
non-radiative cases.

Favre averaged velocity profiles at x = 10� are shown in Figure 8.20 for the
radiative and non-radiative cases. The profile trends are similar between both
cases. In a jet, the cross-stream velocity is equivalent to the entrainment veloc-
ity which is significantly greater in the radiative case as observed in Fig. 8.20(b).

8.6.2 Velocity fluctuations

Figure 8.21 shows the Reynolds stresses downstream evolution at the centerline
of the jet adimensionalized by �{Uc}. The Reynolds stresses grow strongly in
the region 4 < x/� < 8, then its growth moderate in the developed region. The
intensity of the Reynolds stresses at the developed region turns to be almost
the same for both cases. This trend was also observed in the mixing layer
studied by Ghosh and Friedrich (2015). Additionally, Fig. 8.22 shows profiles
of the Reynolds stresses at x = 10�, which are not significantly affected by



136Chapter 8 - Physical study of radiation effects in a strongly heated

turbulent jet using Direct Numerical Simulations

(a) (b)

Figure 8.20: Comparisons of (a) streamwise and (b) cross-stream velocities profiles
at x = 10� between the radiative and the non-radiative cases adimensionalized by the
non-radiative mean excess centerline velocity.

radiation. These results indicate that radiation slightly modifies scaled second
order moments of velocity for the present strongly heated jet.

(a) (b) (c)

Figure 8.21: Comparison of dimensionless Reynolds stresses along the jet center-
line in the (a) streamwise, (b) cross-stream and (c) spanwise directions between the
radiative and the non-radiative cases.

(a) (b) (c) (d)

Figure 8.22: Comparisons of the dimensionless Reynolds stresses profiles at x = 10�
in the (a) streamwise, (b) cross-stream and (c) spanwise directions, and (d) Reynolds
shear stress profiles between the radiative and the non-radiative cases.

This point is further investigated by analyzing the transport equation for the
turbulent kinetic energy. The transport equation of the turbulent kinetic en-
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ergy, already presented in Chapter 5 is expressed as
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A detailed explanation of how each term on Eq. (8.6) has been computed to
enhance convergence can be found in Appendix A. Scaling Eq. (8.6) by the
factor y1/2/(�{Uc}3h⇢i), one can write

D̄k⇤

D̄t
+ O · T 0⇤ = P⇤ � ✏⇤ + ⇧⇤, (8.7)

where ⇤ denotes adimensionalized quantities.
The turbulent kinetic energy balance at the developed region for the strongly
heated jet is presented in Fig. 8.23(b) for the radiative jet, and in Fig. 8.23(a)
for the non-radiative jet. Moreover, Figs. 8.23(c) to 8.23(f) show a comparison
of each term in the turbulent kinetic energy equation between the radiative and
non-radiative jets. The profiles are obtained by averaging the scaled simulation
fields in the range 9� < x < 10�. The pressure-dilatation term (⇧⇤) has a neg-
ligible contribution; in consequence, it is not included in Fig. 8.23. Turbulent
kinetic energy balances for the radiative and non-radiative jets are very similar
in magnitude and in trends. As noted with the Reynolds stresses, radiation
slightly modifies the budget of second order moments of velocity through the
indirect effect of the modified fields of density and viscosity.

8.7 Radiative power field

Turbulent structures identified by the Q-criterion, and colored by instantaneous
emitted and absorbed power fields are shown in Fig. 8.24. A region with strong
emission is identified close to the nozzle, while a peak of absorption is located �
downstream from the nozzle, around the jet centerline. As discussed in Chapter
3, radiative power is a balance between emission and absorption. In order to
analyze the exchanged radiation in the mean flow, the averaged radiative power
hPradi is presented in Fig. 8.25. Regions with negative Prad are loosing energy
by the effect of radiation, while regions with positive values are gaining energy
due to radiation. The same behavior as in the slightly heated jet is found,
which is that the centerline of the jet mainly emits thermal radiation and part
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(a) (b)

(c) (d) (e) (f)

Figure 8.23: Budget of dimensionless turbulent kinetic energy of the heated jet in
the developed region: (a) uncoupled heated jet, and (b) accounting for radiative heat
transfer. Comparison of the components of the turbulent kinetic energy budget: (c)
production, (d) turbulent diffusion, (e) advection and (f) dissipation between the ra-
diative and the non-radiative jet cases.

of this radiation is further absorbed at colder regions of the jet. The emission
dominated region has been delimited from the absorption dominated region by
solid black lines corresponding to the isoline of Prad = 0.
Figure 8.27(a) shows the downstream variation of the mean emission and mean
absorption radiative powers along the centerline of the jet, both decrease in
magnitude beyond x = � along with the temperature decay. In the initial re-
gion of the jet, around x < 5�, radiative heat transfer is dominated by emission
power yet the absorption is around 61% of the emitted power at x = 5�. As the
flow evolves downstream, the difference between emitted and absorbed power
decreases. Then, beyond x > 9�, in the fully turbulent region, absorption is
around 80% of the emitted power. The spectral transmissivity based on the
initial jet half-width length and the temperature downstream evolution com-
puted using Eq. 3.11 is shown in Fig. 8.26 by means of the ck method. Since
the optical thickness does not vary significantly downstream, the strong absorp-
tion observed beyond x > 9� is because there is a considerable reabsorption,
i.e., most of the emitted energy is reabsorbed in the immediate vicinity of the
emission point; but also because there is, in some extend, a noticeable absorp-
tion from the emission at the inlet region. The nature of this energy exchange
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Figure 8.24: Snapshots of turbulent eddies identified by the Q-criterion colored by
Pe and Pa.

Figure 8.25: Contour of the mean exchanged radiative power of the strongly heated
jet. A solid black line delimits the emission dominated region from the absorption
dominated region.

has not been characterized in this work and it needs further information to
complete the analysis.
The mean radiative power along the jet centerline, resulting from the difference
between the mean emission and mean absorption radiative powers, is presented
in Fig. 8.27(b). The initial zone is the most affected region by radiation due to
the large radiative power emitted. Then, radiative power at the jet centerline
tends to zero downstream.
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Figure 8.26: Spectral transmissivity of water vapor based on the initial jet half-width
length and the temperature downstream evolution for the strong heated jet conditions.

(a) (b)

Figure 8.27: Downstream evolution along the jet centerline of (a) hPai and hPei,
and (b) hPradi .

The cross-section profiles of mean emission and mean absorption radiative pow-
ers in the initial zone (x = �) are shown in Fig. 8.28(a) in which a maximum
relative difference of around 53% between the emitted and the absorption pow-
ers at the jet centerline is observed. The resulting mean radiative power at
x = � is presented in Fig. 8.28(b). This Figure shows a strong emitted ra-
diative power corresponding to the jet potential core, how the radiative power
tends to zero in the jet edge, and an absorption dominated zone in the outer
region of the jet. In the fully turbulent zone, the temperature and its gradi-
ents are lower and the heat transport by radiation decreases significantly. This
considerable reduction of the radiative power at x = 10� is illustrated in Fig.
8.28(c) which shows that the relative difference between mean emission and ab-
sorption powers is around 17%. These values are reflected in the mean radiative
power cross-section at x = 10� presented in Fig. 8.28(d).
Despite the fact that the mean radiative power decreases significantly down-
stream, its cross-section profiles have similar trends. Having this in mind, an
adimensionalization is proposed in order to characterize the cross-section pro-
files of mean radiative power in the fully developed turbulent region. The
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(a) (b)

(c) (d)

Figure 8.28: Mean emission, mean absorption and mean radiative powers cross-
sections at the initial (x = �) and fully turbulent (x = 10�) regions. (a) hPai and hPei
at x = �, (b) hPradi profile at x = �, (c) hPai and hPei at x = 10�, and (d) hPradi
profile at x = 10�.

adimensionalization is based on the distance from the centerline of the jet at
which the mean radiative power is null y1/2,Prad

(x) and the magnitude of mean
radiative power at the jet centerline hPc,radi. On the one hand, Fig. 8.29(a)
shows how dimensional radiative power profiles versus the cross-stream coor-
dinate adimensionalized by the half-width based on velocity do not collapse
into the same profile and how they decrease in magnitude downstream. On the
other hand, Fig. 8.29(b) shows the adimensionalized radiative power profiles
at x = 8�, x = 9� and x = 10�. This adimensionalization induces reason-
able self-similar profiles of mean radiative power beyond x = 8�. A reason to
observed self-similarity in the radiative power would be due to self-similarity
in the temperature profiles in addition to a strong reabsorption which would
imply that the radiative power is essentially determined by local properties.

8.8 Turbulence effects on radiative heat transfer

An analysis of the effects that turbulence causes on radiation is presented in
this section. These effects arise due to radiation nonlinearities: the average
radiation heat transfer in a fluctuating temperature field may differ from the
one obtained from the averaged temperature. To quantify the turbulence effects
on radiation, a non-coupled Monte-Carlo computation of the radiative heat
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(a) (b)

Figure 8.29: Adimensionalized radiative power profiles at different cross-sections.

transfer from the averaged temperature field Prad (hT i) is compared with the
averaged radiative power from the coupled simulation hPrad (T )i presented in
§8.7.
The downstream evolution of Prad (hT i) and hPrad (T )i at the jet centerline are
presented in Fig. 8.30(a), while in Fig. 8.30(b) the jet centerline differences
between Pe (hT i) and hPe (T )i are shown.

(a) (b)

Figure 8.30: Comparison between average radiative power field and radiative
power from averaged temperature field. (a) Downstream evolution of Prad (hT i) and
hPrad (T )i along the jet centerline and (b) Pe (hT i) and hPe (T )i downstream evolution
along the jet centerline.

In order to quantify the TRI in the radiative power, Fig. 8.31 shows the rela-
tive difference between the radiative heat transfer computed from the averaged
temperature field Prad (hT i) and the averaged radiative power from the cou-
pled simulation hPrad (T )i along the jet centerline. From Fig. 8.31 it can be
observed that TRI, in the emission dominated jet centerline, does not exceed
the relative difference of 10%.
Finally, in Figure 8.32(a) a comparison between cross-section profiles of Prad (hT i)
and hPrad (T )i at x = 10� is presented. Likewise, cross-section profiles of the
averaged emitted and absorption radiative powers, hPei and hPai, as well as
the emitted and absorbed powers from averaged temperature, Pe (hT i) and
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Figure 8.31: Relative difference between < Prad > and Prad(< T >) along the
strongly heated jet centerline.

Pa (hT i), at x = 10�, are shown in Figs. 8.32(b) and 8.32(c), respectively.

(a) (b)

(c)

Figure 8.32: Comparison between average radiative power field and radiative power
from averaged temperature field. (a) Cross-section profile of Prad (hT i) and hPrad (T )i
at x = 10�, (b) cross-section profile of Pe (hT i) and hPe (T )i at x = 10�, and (c)
cross-section profile of Pa (hT i) and hPa (T )i at x = 10�.

According with the TRI results at the jet centerline, shown in Figs. 8.30,
the effects of turbulence on radiation for the case under study are small. A
relative quantification has shown that such effects are lower than 10% at the
jet centerline. However, a closer look at the TRI along cross-section profiles at
the developed region, presented in Fig. 8.32, has shown a difference between
Prad (hT i) and hPrad (T )i. As observed in Fig. 8.32(b), radiative emitted power
is always slightly unpredicted when computed from averaged temperature; while
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absorption is underpredicted at the inner region of the jet, and over predicted
at the outer region when computed from averaged temperature. Thus, the
resultant cross-section profile of Prad TRI shown in Fig. 8.32(a) is correlated
with the abosrption TRI rather than the emisson TRI. The observed small-to-
moderate turbulent effects on radiation under the present configuraton are in
accordance with the literature which stands that for most non-reactive flows the
TRI effects are negligible (Mazumder and Modest (1999); Gupta et al. (2009);
Zhang et al. (2013); Vicquelin et al. (2014); Fraga et al. (2017)).

8.9 Conclusions

In this Chapter, the impact of radiation has been analyzed in a non-reactive
strongly heated jet. When looking at the enthalpy balance at the developed
region, radiation has a noticeable contribution for y < y1/2; thus, the nature
of the heat transfer is modified by the inclusion of radiation. The main effect
on mean temperature is that radiation shortens the temperature potential core
and smooths the gradients of mean temperature. Additionally, it is shown that
for strongly heated jets the general scaling for the temperature decay based on
convective heat flux conservation for variable-density jets presented in Chapter
7 is no longer valid when large radiation effects are accounted for.
Regarding the second order moments of temperature, it is found through the
analysis of the enthalpy variance budget; that when radiation is taken into ac-
count, production decreases since temperature gradients are smoother. Due to
the decrease in production and the additional radiative dissipation mechanism,
enthalpy variance decreases. Then, because of the acting radiative dissipation
mechanism and the decreased enthalpy variance, the molecular dissipative term
nearly decreases by a factor of two when radiation is considered.
Although lower than in mean temperature, a noticeable effect of radiation on
the mean velocity field is found for the current configuration. It has been found
that when accounting for radiation the general scaling law of variable-density
jets is no longer valid; thus, radiation and its effects on density can change the
dynamics of strongly heated jets. However, a slightly effect has been found
in second order moments of velocity by analyzing Reynolds stresses and the
budget of turbulent kinetic energy.
An adimensionalization to characterize the cross-section profiles of mean radia-
tive power in the fully developed turbulent region of the jet has been proposed.
The adimensionalization is based on the distance from the centerline of the jet
at which the mean radiative power is null y1/2,Prad

(x), and the magnitude of
mean radiative power at the jet centerline hPc,radi. It has been found that for
the strongly heated jet under study, profiles of mean radiative power become
reasonable self-similar beyond x = 8�.
Finally, as already pointed out in the literature, the effects of turbulence on
radiation for the nonreactive case under study has found to be small, being that
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the relative difference between the radiative heat transfer computed from the
averaged temperature field Prad (hT i) and the averaged radiative power from
the coupled simulation hPrad (T )i, in the emission dominated jet centerline,
does not exceed the relative difference of 10%.





Chapter 9

Reynolds Average Navier-Stokes

results of free jets

This Chapter presents results using RANS technique of the isothermal
plane jet, the uncoupled heated jet and the heated jet coupled with ther-
mal radiation. These results are compared with the DNS data presented
in Chapters 5, 7 and 8. Once the accuracy of the RANS results is
assessed, uncoupled and coupled computations are analyzed to discuss
the role of the novel scaling based on the convective heat flux conser-
vation taking advantage of the relatively low time processing of RANS
computations.
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9.1 Comparison between RANS solutions and DNS
data

This section assesses the accuracy of RANS computations by comparison with
DNS data previously presented in Chapters 5, 7 and 8.
RANS solutions in the following subsections are computed using the k � ✏ LS
model from Launder and Sharma (1974), second order Van Albada scheme
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(Van Albada et al. (1997)) and variable transport properties as described in
Chapter 4. The turbulent Prandtl number is set to Prt = 0.6. To appropriately
compare the RANS solver with the DNS data, RANS boundary conditions for
k and ✏ are based on results of the DNS simulations.

9.1.1 Results of the isothermal plane jet

The present setup for the isothermal plane jet summarized in Table 9.1 corre-
sponds to the one presented in Chapter 5.

Table 9.1: Setup configuration of the isothermal turbulent plane jet.

� [m] U1 [m/s] U2 [m/s] T1 [K] T2 [K] Re P0 [atm]
5 · 10�2 4.176 U1/10 610 610 3200 1

In order to check the effect of confinement due to the domain size, two RANS
simulations are considered for the isothermal jet:

• A RANS setup with the same domain extend than the DNS domain, i.e.,
(Lx ⇥Ly/2) = (13.5�⇥5�) with 141 ⇥ 81 nodes as in Chapter 4, referred
in this section as RANS-10�.

• Another setup, with the same refinament than in the RANS-10� mesh,
but considering a total extension of (Lx ⇥ Ly/2) = (35� ⇥ 15�) with a
grid of 241 ⇥ 141 nodes, referred in this section as RANS-35�

Figure 9.1 compares the jet half-width growth y1/2, in Fig. 9.1(a), and the
centerline mean excess velocity decay (�U0/�{Uc})2, in Fig. 9.1(b), between
DNS data presented in Chapter 5 and the current RANS results. For the DNS
and the RANS-10�, a linear regression in the fully developed region is plotted.
The coefficients for the linear fitting are computed using values between 8� <
x < 10� for both the RANS and the DNS data. Additionally, results from the
experimental work of Thomas and Chu (1989) are also shown as a reference.
In order to quantify the accuracy of the RANS modeling, Table 9.2 compares
the present RANS results of the linear fitting coefficients of the jet growth and
the velocity decay with the DNS data along with the experimental studies of
Jenkins and Goldschmidt (1973); Goldschmidt and Young (1975); Thomas and
Chu (1989); Gutmark and Wygnanski (1976), and the numerical work of Stanley
et al. (2002). The effect of considering a larger domain are also analyzed in
Table 9.2. The linear fitting coefficients corresponding to the simulation RANS-
35� are computed using values between 8� < x < 10� (as in the DNS and
RANS-10�), but also using values between 10� < x < 25� in order to check
that the fully developed region is reached in the reduced domain.
As observed in Table 9.2, the results of the virtual origins (K2,u and C2,u)
strongly differ among the referred works since they have strong dependency
on the inflow conditions as explained by Klein et al. (2003). Despite RANS
solutions are in good agreement with previous data, there is an effect of con-
finement on the RANS solutions as shown in Table 9.2. Moreover, velocity
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(a)

(b)

Figure 9.1: Comparison of the present isothermal plane jet results with the experi-
mental work of Thomas and Chu (1989): downstream evolution of (a) spread rate and
(b) velocity decay.
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decay rate and the slope of the jet spread are slightly different when fitted be-
tween 8� < x < 10� or between 10� < x < 25�. However, despite the observed
changes in the RANS solutions, predicted slope coefficients (K1,u and C1,u) for
both domain sizes compare reasonable well with the DNS data.

Table 9.2: Comparison of the jet growth and the centerline velocity decay linear fitting
coefficients computed using beyond x = 8� for the RANS and the DNS data, along with
experimental and numerical reference data.

K1,u K2,u C1,u C2,u

Jenkins and Goldschmidt (1973) 0.088 -4.5 0.160 4.0
Gutmark and Wygnanski (1976) 0.100 -2.00 0.189 -4.72
Goldschmidt and Young (1975) 0.0875 -8.75 0.150 -1.25
Thomas and Chu (1989) 0.110 0.14 0.220 -1.19
Stanley et al. (2002) 0.092 2.63 0.201 1.23
DNS results 0.088 0.721 0.146 1.181
RANS 10� 0.080 2.176 0.148 1.365
RANS 35� 8� < x < 10� 0.075 2.465 0.151 1.284
RANS 35� 10� < x < 25� 0.087 0.565 0.163 1.429

Figure 9.2 compares the cross-section profiles at x = 10� of streamwise veloc-
ity, in Fig. 9.2(a), and of cross-stream velocity, in Fig. 9.2(b), between the
present RANS-10� results and the DNS data presented in Chapter 5. More-
over, results from the RANS-35� at x=25�, experimental data by Gutmark
and Wygnanski (1976), and numerical results from Stanley et al. (2002) are
also plotted as a reference. From Fig. 9.2, it can be observed that RANS-10�
roughly describes velocity cross-section profiles when compared with DNS, al-
though general trends are captured. Additionally, RANS-35� is in very good
agreement with DNS data.

(a) (b)

Figure 9.2: Comparison between RANS and DNS results of the self-similar profiles
of (a) streamwise and (b) cross-stream velocities of the isothermal plane jet.
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Figure 9.3 compares the Reynolds stresses of the RANS-10� results with the
DNS data in the developed region at x = 10�. Moreover, results from the
RANS-35� at x=25� are shown. As a reference, data from Thomas and Prakash
(1991), Ramaprian and Chandrasekhara (1985), Bradbury (1965); and Stanley
et al. (2002) are also plotted. Despite normal Reynolds stresses are under-
predicted at the jet centerline for the RANS-10� simulation, RANS results of
Reynolds stresses show good agreement with DNS data.

(a) (b)

(c)

Figure 9.3: Self-similar Reynolds stresses profiles of the isothermal plane jet in the
(a) x direction, (b) y direction; and (c) shear stress at x = 10� and x = 25� for the
RANS-10� and RANS-35� simulations, respectively.

As stated in Chapter 2, the transport equation of the turbulent kinetic energy
in the RANS context is expressed as
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Launder and Sharma (1974).
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When adimensionalized by the scaling factor y1/2/(�{Uc}3h⇢i), the turbulent
kinetic energy balance can be expressed as

D̄k⇤

D̄t
+ O · T ⇤ = P⇤ � ✏⇤, (9.2)

where ⇤ denotes adimensionalized quantities.
Figure 9.4(a) presents the budget of the turbulent kinetic energy in the self-
similiar zone obtained by both the RANS-10� and RANS-35� computations at
two different cross-sections: x = 10� for the RANS-10� simulation and x = 25�
for the RANS-35�. Each term of the budget is modeled following Eq. 9.1.
Additionally, Figs. 9.4(b) to 9.4(e) show a comparison of each term of the
turbulent kinetic energy equation between the DNS data presented in Chapter
5, and the RANS-10� and RANS-35� simulations. For the adopted RANS
model, production and dissipation trends are well captured. However, RANS-
10� results of production and dissipation are slightly lower in magnitude than
DNS data. Despite trends of advection and turbulent diffusion are somehow
correct, RANS-10� results poorly captured its value all along the cross-section
when compared with the DNS data.

(a)

(b) (c)

(d) (e)

Figure 9.4: (a) Budget of dimensionless turbulent kinetic energy of the isothermal jet
at different cross-sections; RANS-10� simulation (solid line) , RANS-35� simulation
(dotted line). Components of the turbulent kinetic energy budget: (b) production, (c)
turbulent diffusion, (d) advection and (e) dissipation compared with DNS results at the
developed region.

9.1.2 Results of the heated jet

The present setup for the heated jet corresponds to the one presented in Chapter
5, its main features are recalled in Table 9.3.
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Table 9.3: Setup configuration of the slightly heated jet.

� [m] U1 [m/s] U2 [m/s] T1 [K] T2 [K] Re P0 [atm]
5 · 10�2 4.176 U1/10 860 380 1500 1

As shown in Figure 9.5, good agreement is found in the cross-section profile of
temperature corrected by the coflow temperature {Te} = {T}�T2 adimension-
alized by �{Tc} between the DNS, and the RANS computed in DNS domain
extend. Therefore, hereinafter this domain size for the RANS simulation is used
to continue the discussion. In Figure 9.5, as a reference, results from Davies
et al. (1975), Jenkins and Goldschmidt (1973) and Antonia et al. (1983) are
also plotted.

Figure 9.5: DNS and RANS dimensionless Favre averaged temperature profiles of
the heated plane jet at x = 10� compared with reference experimental data.

In Figure 9.6, RANS results of the evolution of the half-width of the jet based
on temperature are compared with the DNS results presented in Chapter 5.
Additionally, as a reference, the numerical results of Stanley et al. (2002) and
the experimental data of Browne et al. (1983) are also presented. It is worth to
mention that numerical results of Stanley et al. (2002) are based on a passive
scalar, i.e., the passive scalar has null effects on the flow field. Similarly, Browne
et al. (1983) set an initial excess temperature of �T0 = T1�T2 = 25 K causing
little effects on density. In contrast, the initial excess temperature of the present
simulation is �T0 = 480 K.
RANS initial developing region is shorter than the one from DNS data. How-
ever, the slope of the downstream evolution of y1/2,T computed using RANS is
in good agreement with the DNS data. This is the same behavior found for the
half-width based on velocity in §9.1.1.
Figure 9.7 shows the temperature decay in the jet centerline in which �{Tc} =
{Tc} � T2. As for the velocity decay, RANS results and DNS data slopes have
a very close value.
As explained in Chapter 5, the conservation of momentum flux in the developed
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Figure 9.6: Comparison of the results for the downstream evolution of the jet spread
based on temperature between RANS and DNS.

Figure 9.7: Comparison of the temperature decay along the jet centerline between
RANS and DNS results for the uncoupled slightly heated jet.

region yields

�{Uc}2y1/2
�U2

0 r✏
⇠ constant, (9.3)

where r✏ = � (⇢0/h⇢ci), h⇢ci is the mean density at the jet centerline and ⇢0 is
the mean jet density at the exit nozzle ⇢0 = 1

�

R
�h⇢i|x=0

dy.
Figure 9.8(a) clearly shows that the velocity decay of the isothermal and heated
jets have different slopes. However, when ploted against x/r✏ density effects are
compensated and velocity decays collapse into almost the same curve as shown
in Fig. 9.8(b).

9.1.3 Heated jet coupled with radiative heat transfer

In order to assess the accuracy of the RANS computations coupled with radia-
tive heat transfer, temperature and radiative power fields from RANS solutions
are compared with the DNS data of the slightly and strongly heated coupled
jets obtained in Chapters 7 and 8 , respectively. Setup for these jets are sum-
marized in Table 9.4.
The staggered procedure described in Chapter 3 is used in order to couple
RANS and MC codes. The setup for the Monte-Carlo solver is the same that
the one used for the jet dimensioning presented in §4.3.2. Considering that the
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(a) (b)

Figure 9.8: RANS results of the centerline velocity decay for the isothermal and
heated jets against (a) x/� and (b) x/r✏.

Table 9.4: Configuration of the slightly and strongly heated jets.

� [m] U1 [m/s] T1 [K] T2 [K] Re P0 [atm]
Slightly heated 5 · 10�2 4.176 860 380 1500 1
Strongly heated 5 · 10�2 4.176 2500 405 500 2.576

turbulent effects on radiation are small-to-moderate as shown in Chapter 8, no
TRI model is used to computed the coupled solution, i.e., the radiative power
field is directly computed from the averaged temperature given by the RANS
solver.

9.1.3.1 Slightly heated jet coupled with the Monte-Carlo solver

Before comparing the radiative power between RANS and DNS results, the
temperature decay between both approaches is presented in Fig. 9.9. RANS
results present a shorter potential core and the temperature decay rate is in
good accordance, as for the uncoupled slightly heated jet, which is an expected
result since radiation has a minor effect in the developed region as shown in
Chapter 7.

Figure 9.9: Downstream evolution of temperature decay along the jet centerline be-
tween RANS and DNS results for the coupled slightly heated jet.

In order to compare the mean radiative power between the DNS and the RANS
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solutions, Figure 9.10 shows the contours of hPradi for the coupled slightly
heated jet using both approaches. The radiative power contour shown in Fig.
9.10(a) corresponds to DNS data and it has been already presented in Chapter
7. Figure 9.10(b) shows the radiative power computed by coupling the RANS
code to the Monte-Carlo solver. Despite the predicted temperature potential
core is narrower for the coupled RANS results, the RANS coupled solution of
the slightly heated jet estimates well the radiative power field given reasonably
good trends when compared with the DNS data.

(a) (b)

Figure 9.10: Contour of the mean exchanged radiative power. A solid black line
delimits the emission dominated region from the absorption dominated region. (a)
Coupled DNS data and (b) coupled RANS results.

Figure 9.11 compares the radiative power at the jet centerline between the
DNS data presented in Chapter 7 and the current RANS results. Moderate,
discrepancies are found in Fig. in 9.11, since the fact of neglecting TRI at the
jet centerline has shown little impact on the resultant Prad, those discrepancies
are rather caused by the differences in the computed RANS temperature field.
A greater emitted radiative power is obtained for the RANS results until the
temperature at the jet centerline starts to drop, at around x = 4�. Then,
because the absolute temperature at the jet centerline is lower for the RANS
solution, as shown in Fig. 9.9, the radiative power from the RANS computation
accounts for less emitted radiative power which implies that radiative power is
smaller in magnitude beyond x = 5�.
Figure 9.12 compares the cross-section profiles at x = 10� between the DNS
data presented in Chapter 7 and the current RANS results for the slightly
heated jet. Fig. 9.12 shows that trends of the cross-section profile are reason-
ably well captured by the RANS coupled computations in spite of small differ-
ences are observed. Because the temperature cross-section is reasonably well
predicted by the RANS solver as shown in Fig. 9.5, and because a noticeable
moderate effect was predicted in the cross-section profiles of radiative power at
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Figure 9.11: Comparison of the downstream evolution of the mean radiative power
along the jet centerline between RANS solution and DNS data for the slightly heated
coupled jet.

x = 10� due to TRI effects (although the study refers to the strongly heated
jet); those small differences observed in Fig. 9.12 are caused, in some extend,
to the fact that TRI effects are not considered in this coupled simulations.

Figure 9.12: Comparison of cross-section profiles at x = 10� of the mean radiative
power between RANS solution and DNS data for the slightly heated coupled jet.

9.1.3.2 Strongly heated jet coupled with the Monte-Carlo solver

In contrast with the slightly heated jet, coupled RANS results for the temper-
ature decay rate for the strongly heated case do not match DNS data as shown
in Fig. 9.13. As explained in Chapter 2, the turbulent heat flux in the RANS
framework is closed using an analogy between momentum and heat transfer in
the form

h⇢i{u00
jh

00} = � µt

Prt
@{h}
@xj

(9.4)

where Prt is the turbulent Prandtl number. A common approach is to consider
a constant value for Prt, in this work we set until now Prt = 0.6 following
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Figure 9.13: Comparison of the temperature decay along the jet centerline between
RANS and DNS results for the coupled strongly heated jet using Prt = 0.6.

typical values for a free shear layer (Wilcox et al. (1998) and Pope (2001) ).
However, considering the disagreement of the temperature decay rate between
RANS and DNS data shown in Fig. 9.13, the value of Prt from DNS data has
been explicitly computed using the following expression, valid in thin layers,

Prt =
�h⇢i{u00v00}

�h⇢i{v00h00}/cp

@{T}/@y

@{u}/@y
, (9.5)

for the radiative (R) and non-radiative (NR) strongly heated jets. Figure 9.14
shows numerical results of the turbulent Prandtl number computed from the
DNS data presented in Chapter 8. In Figures 9.14(a) to 9.14(c) the downstream
evolution of Prt for three constant y1/2-lines are plotted, which are respectively
Prt(x, y = y1/2/2), Prt(x, y = y1/2) and Prt(x, y = 3y1/2/2). While turbulent
Prandtl number close to the jet centerline (Fig. 9.14(a)) for the R case has
a close value to the NR case and even lower, in the outer region of the jet
y = 3y1/2/2 (Fig. 9.14(c)) it has significant higher values. The increase in
the turblent Prandt Number due to the effects of radiation has already been
reported in the work of Vicquelin et al. (2014) in wall bounded flows.
In order to quantify the increase in the turbulent Prandtl number due to radi-
ation, the spatial averages of Prt computed in the range 5� < x < 10� for the
iso-y1/2-lines are reported in Table 9.5. As an initial approach, the variation on
the Prandtl number due to the inclusion of radiation is not modeled but, based
on the values presented in Table 9.5, a constant Prt = 0.9 is now set for the
RANS simulation. Then, the temperature decay along the jet centerline using
Prt = 0.9 is presented in Fig. 9.15. The decay rate for the strongly heated jet
computed by RANS is now in agreement with the DNS data.
Figure 9.16 shows the same analysis of the turbuent Prandt number done in Fig.
9.14 but for the DNS results of the slightly heated jet presented in Chapter 7. As
expected, Prt does not vary significantly due to the consideration of radiation
in the slightly heated jet as shown in Fig. 9.16.
Then, following the RANS simulations with Prt = 0.9 , Fig. 9.17 compares
the contours of hPradi for the strongly heated jet between DNS data, in Fig.
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(a) (b)

(c)

Figure 9.14: Comparison of Prt results computed from DNS data of the strongly
heated jet between the radiative (R) and non-radiative (NR) cases along three different
lines of equal y1/2: (a) Prt(x, y = y1/2/2), (b) Prt(x, y = y1/2) and (c) Prt(x, y =
3y1/2/2).

Table 9.5: Turbulent Prandtl number spatially averaged along lines of equal y1/2 for
the Radiative (R) and the Non-radiative (NR) cases of the strongly heated jet.

Case Prt(x, y = y1/2/2) Prt(x, y = y1/2) Prt(x, y = 3y1/2/2)
R 0.5613 0.8249 1.1006
NR 0.7779 0.8811 0.8848

Figure 9.15: Comparison of the temperature decay along the jet centerline between
RANS and DNS results for the coupled strongly heated jet using Prt = 0.9.

9.17(a), and the RANS solution, in Fig. 9.17(b). The coupled RANS solution
estimates reasonably well the radiative power field when compared with the
DNS data of the strongly heated jet.
A comparison of the radiative power downstream evolution at the jet centerline



160 Chapter 9 - Reynolds Average Navier-Stokes results of free jets

(a) (b)

(c)

Figure 9.16: Comparison of Prt results computed from DNS data of the slightly heated
jet between the radiative (R) and non-radiative (NR) cases along three different lines
of equal y1/2: (a) Prt(x, y = y1/2/2), (b) Prt(x, y = y1/2) and (c) Prt(x, y = 3y1/2/2).

(a) (b)

Figure 9.17: Contour of the mean exchanged radiative power. A solid black line
delimits the emission dominated region from the absorption dominated region. (a)
Coupled DNS data and (b) coupled RANS results.

between DNS and RANS results for the strongly heated case is presented in
Fig. 9.18. A good prediction by RANS is found, despite the radiative power
from RANS computation is slightly greater in magnitude all along the jet cen-
terline.
Figure 9.19 compares the cross-section profiles at x = 10� between the DNS
data and the current RANS results. Analogous to Fig. 9.12, radiative power
trends of the cross-section profile at x = 10� are also reasonably well captured
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Figure 9.18: Comparison between RANS solution and DNS data of downstream
evolution of the mean radiative power along the jet centerline for the strongly heated
jet.

in spite of small differences can be observed. Due to the fact that a noticeable
moderate TRI effect was predicted in Chapter 8 in the cross-section profiles
of radiative power at x = 10�; those small differences are caused, in some ex-
tend, to the fact that TRI effects are not considered in this coupled simulation.
Additionally, the differences between the DNS and the RANS solutions of Prad

shown in Fig. 9.19 present similar trends that the ones due to not consider TRI
effects, presented in Fig. 8.32(a). These trends are a slightly over-prediction
in magnitude of the radiative power at the inner region of the jet, and an
over-prediction of the radiative power at the jet outer region.

Figure 9.19: Comparison between RANS solution and DNS data of cross-section
profiles at x = 10� of the mean radiative power for the strongly heated jet.

9.2 Assessing the scaling based on convective heat
flux conservation in the RANS context

Taking advantage of the relatively low time processing of the RANS solutions,
the novel adimensionalization based on convective heat flux conservation pre-
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sented in Chapter 7 is here analyzed for various differently heated jets uncoupled
and coupled with radiative heat transfer. The turbulent Prandtl number is set
to a constant value of Prt = 0.6. The jets used to check the adimensional-
ization are presented in table 9.6, in which initial jet temperature T1 is varied
from 500 to 2500 K and the Reynolds number is changed accordingly to set
U1 = 4.176 m/s, P0 = 1 atm and � = 0.05 m. The coflow is keep for all cases at
temperature T2 = 380K and velocity U2 = 0.1U1. The jet corresponding to the
Run # 1 is expected to have smaller density effects than the slightly heated jet
presented in Chapter 7, while the rest of the jets are expected to increasingly
have stronger effects. Mesh and domain sizes, as well as the Monte-Carlo setup
are the same than the ones used in Chapter 4.

Table 9.6: Main characteristics of the heated jets used to check the adimensionaliza-
tion based on convective heat flux conservation.

Run T1 (K) Re
Run # 1 500 4851
Run # 2 1000 1097
Run # 3 1500 492
Run # 4 2000 287
Run # 5 2500 193

9.2.1 Uncoupled heated jets

Temperature decays of the jets defined in table 9.6 using the classic adimension-
alization are presented in Fig. 9.20. When using the classical adimensionaliza-
tion the temperature decay rate increases along with the initial jet temperature.
As it can be seen in Fig. 9.20 the slopes of the temperature decay clearly have
different values.

Figure 9.20: Downstream evolution of the temperature decay along the jet centerline
using the classical adimensionalization for five different heated jets.

As demonstrated in Chapter 7, the conservation of convective heat flux to-
gether with the self-similar assumption bring to the following expression for
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the temperature decay
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Figure 9.21 shows again the centerline temperature decay of heated jets defined
in Table 9.6, but this time using the equivalent heat jet opening based on the
convective heat flux conservation (r✏,T ) to scale the results. In contrast with
Fig. 9.20, the temperature decays shown in Fig. 9.21 have almost the same
slope for the five tested heated jets.

Figure 9.21: Downstream evolution of the temperature decay along the jet centerline
using the adimensionalization of the equivalent heat jet opening based on the convective
heat flux conservation for five different heated jets.

Fig. 9.21 presents a general temperature decay of heated jets with a constant
turbulent Prandtl number. In order to quantify such behavior, the linear fitting
coefficients (Q1,T and Q2,T ) of the form

✓
�T0

�{Tc}

◆2

= Q1,T

✓
x

r✏,T
+ Q2,T

◆
(9.8)

are summarized in Table 9.6
As expected, the slope coefficients (Q1,T ) have small differences among the com-
puted jets, being that the maxim relative difference is 4.4% (observed between
RUN # 1 and # 3).
The equivalent heat jet opening deduced from the convective heat flux conser-
vation equation has shown to compensate density differences collapsing onto
almost the same slopes and trends the temperature decay at the developed re-
gion. Thus, the equivalent heat jet opening allows to capture the dynamics of
the jet within a general behavior for the five studied jets.
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Table 9.7: Comparison of decay temperature fitted coefficients for five different heated
jets using the convective heat flux conservation adimensionalization.

Run Q1,T Q2,T

Run # 1 0.2309 0.3536
Run # 2 0.2225 1.3040
Run # 3 0.2207 -0.0288
Run # 4 0.2256 -3.5158
Run # 5 0.2239 -6.1638

9.2.2 Coupled heated jets with thermal radiation

Figure 9.22 presents again the temperature decay with the classical adimension-
alization for the heated jets of Table 9.6, but this time radiative heat transfer
has been coupled with the RANS solver. Again the turbulent Prandtl number
is fixed to Prt = 0.6. As it can be seen in Fig. 9.22, when compared with
Fig. 9.20, temperature decay is increased in all cases when radiation is taken
into account. As expected, the increase in the decay rate due the inclusion of
radiation is greater when higher inlet jet temperatures are considered.

Figure 9.22: Downstream evolution of the temperature decay along the jet centerline
using the classical adimensionalization for five different heated jets including radiative
heat transfer.

Figure 9.23 shows the temperature decay adimensionalized by the equivalent
heat jet opening based on the convective heat flux conservation (r✏,T ) of the
heated jets defined in Table 9.6. From Fig. 9.23 it can be seen clearly that the
equivalent heat jet opening adimensionalization fails to collapse temperature
decay into the same curve when radiation is accounted for.
To quantify this difference, linear fitting coefficients (Q1,T and Q2,T ) of Eq. 9.8
from the uncoupled and coupled heated jets are detailed in Table 9.8.
Results for the slope coefficient (Q1,T ) between uncoupled and coupled cases
from the same RUN may differ significantly whether radiation is an important
mode of heat transfer or not. On the one hand, when using the new scaling
in the jet corresponding to the Run # 1, which is expected to have smaller
radiation effects than the slightly heated jet presented in Chapter 7, slope
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Figure 9.23: Downstream evolution of the temperature decay along the jet centerline
using the adimensionalization of the equivalent heat jet opening based on the convective
heat flux conservation for five different heated jets including radiative heat transfer.

Table 9.8: Comparison of decay temperature fitted coefficients using the convective
heat flux conservation based adimensionalization between the uncoupled and coupled
cases for five different heated jets.

Non-radiative Radiative
Run T1 (K) Q1,T Q2,T Q1,T Q2,T

Run # 1 500 0.2309 0.3536 0.2406 0.0885
Run # 2 1000 0.2225 1.3040 0.2696 -0.3425
Run # 3 1500 0.2207 -0.0288 0.3286 -3.3288
Run # 4 2000 0.2256 -3.5158 0.4129 -8.4190
Run # 5 2500 0.2239 -6.1638 0.5151 -14.8560

coefficient (Q1,T ) does not vary significantly and is a close value to the one
found for the slightly heated jet using DNS data (0.2513) in Chapter 7. On
the other hand, the rest of the tested jets (Run #2, #3, #4, #5 ), which are
expected to have stronger radiation effects than the slightly heated jet, present
increasingly different temperature decays rates using the new scaling. Which
shows, as already pointed out in Chapter 8, that for strongly heated jets the
general scaling based on convective heat flux conservation for variable-density
jets is no longer valid when important thermal radiation effects are present.

9.3 Conclusions

This Chapter has presented a comparison between results using RANS and the
DNS data presented in Chapters 5, 7 and 8. Besides, the role of the novel
scaling based on the convective heat flux conservation is also discussed taking
advantage of the relatively low time processing of RANS computations.
For the isothermal jet, RANS predicted slope coefficients of velocity decay
and spread rate compare very well with the DNS data. General trends of
cross-sections profiles of first and second order of velocity are well captured by
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RANS when compared with DNS data, although some discrepancies are found,
especially in the budget of turbulent kinetic energy.
Regarding the heated jet, the RANS results of the y1/2,T slope and temperature
decay rate are in very good agreement with the DNS data setting a Prt = 0.6.
Moreover, temperature RANS cross section-profile has the expected trends.
Given that the turbulent effects on radiation are small-to-moderate as shown in
Chapter 8, no TRI model has been considered to computed the coupled solution.
RANS coupled solution of the slightly heated jet estimates well the radiative
power field given reasonably good trends when compared with the DNS data,
althoguh the predicted temperature potential core is somewhat narrower for
the coupled RANS results.
In contrast with the slightly heated jet, coupled RANS results of the temper-
ature decay rate for the strongly heated case do not match DNS data when
Prt = 0.6 is set. By explicitly computing the turbulent Prandtl number from
DNS data, it has been found that radiation increases Prt for the strongly heated
jet, while no significant variation is found for the slightly heated jet. Once Prt
is set to 0.9, the temperature decay rate for the strongly heated jet computed
by RANS is in very good agreement with the DNS data. Moreover, the radia-
tive power is in reasonable good agreement with the DNS data presented in
Chapter 8.
Taking advantage of the relatively low time processing of the RANS solutions,
the novel equivalent heat jet opening scaling based on the convective heat flux
conservation has proved to compensate density differences collapsing onto al-
most the same slopes and trends the temperature decay at the developed region
of five different uncoupled heated jets. When including radiation, results for the
temperature decay rate differ significantly whether radiation is an important
mode of heat transfer or not.
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Uncoupled Simulations

• Direct numerical simulations of uncoupled isothermal and heated jets have
been suitably computed. The velocity and Reynolds stresses profiles of
the isothermal plane jet have been validated by comparison with previous
experimental and numerical studies. Additionally, the turbulent kinetic
energy balance of the isothermal jet has been checked and each term has
been compared with available data. Regarding the heated jet without
including radiation, the profile of mean temperature and the downstream
evolution of temperature fluctuations have been compared with previous
experimental works. The constancy of the momentum flow rate per unit
span has been checked for the isothermal and heated jets. Moreover, the
scaled velocity decay of the heated and isothermal jets collapses almost
onto the same curve.

• The Acoustic Speed Reduction method has been found to be suitable
for increasing the time step without a significant lost in accuracy in the
current direct numerical simulations. Through an analysis of a pressure
wave for different values of the accelerator paramater ↵, the ASR has been
found to be solely applicable in low Mach numbers flows in which pressure
waves are small enough to induce minor changes in velocity, temperature
and density.

• Results of the Monte-Carlo solver by varying the maximum number of
rays issued from a node, the choice of the boundary conditions for the
radiative solver, and the effects of considering a coarser mesh for the
radiative computations have demonstrated its accuracy in the present jet
simulations. Moreover, the spectral radiative properties of water vapor
computed using the ck model have been validated by comparison with
line-by-line results.

• A RANS solver able to handle variable-density flows has been successfully
implemented using the Finite Volume Method and high order schemes.
On the one hand, RANS results for the isothermal jet have been checked
by comparison with the previously obtained DNS data. The computed
slopes for the downstream evolution of spread rate and velocity decay
from RANS are found to be in accordance with the DNS results. Velocity
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cross-section profiles trends have been well captured by the RANS model.
Additionally, Reynolds stresses have shown good agreement with DNS
data and the trends of the turbulent kinetic energy balance have been
well reproduced by RANS. On the other hand, results for the RANS
heated jet have been compared with the DNS data obtaining satisfactory
results for the mean temperature field.

Coupled Direct Numerical Simulations

A parallel coupling between the radiative Monte-Carlo solver and the fluid flow
DNS solver has been successfully implemented. The coupling period has been
optimized based on the Euclidean norm of the difference between the radiative
power from two consecutive coupling periods.

Slightly heated jet

• An analysis of the enthalpy balance at the initial zone shows that radia-
tion has a major contribution to heat transport, modifying temperature
and density fields. On the other hand, a negligible radiative contribution
is found in the developed region. Thus, for both uncoupled and coupled
slightly heated jets, the nature of heat transfer remain the same, which
is here the turbulent heat transport. However, despite this minor contri-
bution of radiation in the developed region, the classical jet scaling law
fails to give the same temperature decay slope between the radiative and
non-radiative cases. This could wrongly lead to conclude on a modified
balance of heat transport mechanisms in the studied case. In fact, ther-
mal radiation can have two kind of effects on the temperature profile: a
direct one from radiative energy transfer and an indirect one due to the
modified flow density. The proposed equivalent heat jet opening deduced
from the convective heat flux conservation equation has shown to com-
pensate density differences to collapse both radiative and non-radiative
jets profiles onto the same temperature decay rate in the developed re-
gion. This scaling accounts for the indirect effects of variable density in
cases with radiation. It allows for distinguishing whether radiation mod-
ifies the heat transfer mechanisms in the developed region or not. In the
studied slightly heated jet, it is now clearly identified that it does not.

Strongly heated jet

• Radiation has a significant contribution in the mean enthalpy balance on
both the developing and the developed zones. Then, mean temperature
fields are strongly affected by radiation in the strongly heated jet. The
temperature decay rate scaled with the equivalent heat jet opening gives
significantly different results between the radiative and non-radiative jets.
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This difference shows that for strongly heated jets, the general scaling
based on the convective heat flux conservation for variable-density jets
is no longer valid when radiation contribution in the enthalpy balance is
significant in the developed region.

• Further analysis of temperature fluctuations through the enthalpy fluc-
tuations balance has shown that the correlation between enthalpy fluc-
tuations and radiative power fluctuations significantly contributes to the
dissipation of the enthalpy variance. When radiation is taken into ac-
count, the molecular dissipative term nearly decreases by a factor of two.
This is because production decreases with radiation since temperature
gradients are smoother, but also because enthalpy variance is dissipated
by radiation.

• An adimensionalization to characterize the cross-section profiles of mean
radiative power in the fully developed turbulent region of the jet has
been proposed. The adimensionalization is based on the distance from the
centerline of the jet at which the mean radiative power is null y1/2,Prad

(x),
and the magnitude of mean radiative power at the jet centerline hPc,radi.
It has been found that for the strongly heated jet under study, profiles of
mean radiative power become reasonable self-similar beyond x = 8�.

• An analysis of the effects that turbulence causes on radiation has been
performed by comparing the non-coupled Monte-Carlo computation of
the radiative heat transfer from the averaged temperature field Prad (hT i)
with the averaged radiative power from the coupled simulation hPrad (T )i.
It has been found that, for this specific case, such effects do not exceed
10% at the jet centerline.

Coupled Reynolds Average Navier-Stokes Simulations

• The accuracy of the coupled RANS solution in strongly heated jets has
shown to depend on the choice of the turbulent Prandtl number. From
explicit computation in DNS data, the turbulent Prandtl number has
found to increase due to the effects of radiation in free jets.

• Taking advantage of the relatively low time processing of the RANS solu-
tions, the novel equivalent heat jet opening scaling based on the convective
heat flux conservation has proved to compensate density differences col-
lapsing onto almost the same slopes and trends the temperature decay at
the developed region of five different uncoupled heated jets. When includ-
ing radiation, results for the temperature decay rate differ significantly
whether radiation is an important mode of heat transfer or not.
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Perspectives

• The implementation carried out in this work of the Smagorinsky model for
LES, and the DOM to solve the RTE, opens the way to further coupled
simulations of high Reynolds number jets in larger domain extensions.
Moreover, the present results achieved with DNS coupled to a ck model
and Monte-Carlo to describe radiation may serve as a reference case to
compare simplified approaches such as LES for the turbulence model,
or Weighted Sum of Gray Gases (WSGG) and its modern variants for
modeling radiative properties combined with deterministic approaches to
solve the RTE like DOM.

• The turbulent Prandtl number has found to be a key parameter to account
for radiation effects in coupled RANS simulations. In this work, it has
been manually adjusted based on DNS data. The derivation of a model
to automatically adjust the turbulent Prandtl number in coupled RANS
simulation is indeed a promising perspective.

• This works deals with a non-reactive flow in a canonical configuration.
Further effects of radiation while accounting for more complex phenom-
ena such as combustion or soot formation, could give valuable insight on
interactions between turbulence and radiation.

• Using the coupled RANS described in this work, an exploration of cou-
pled cases could be performed to characterize radiation effects in a wider
variety of setups.
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Appendix A

Numerical computation of

second order moments

To enhance convergence when computing the balances of turbulent kinetic en-
ergy and enthalpy fluctuations, all correlations involving fluctuations are ex-
pressed as functions of its mean values. This appendix provides a detailed
description on how the budges have been computed in the present work from
mean variables.

A.1 Turbulent kinetic energy balance

The general definition of turbulent kinetic energy for a variable density flow
is a Favre average of the mass-weighted fluctuations u00

i , i.e, k = 1
2{u002

i } =
1
2h⇢u

002
i i/h⇢i. Following the work of Chassaing, Antonia, Anselmet, Joly, and

Sarkar (2013) or Huang, Coleman, and Bradshaw (1995), the transport equation
of the turbulent kinetic energy is expressed as
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In order to build the energy budget, the terms in Eq. (A.2) have been computed
as follows:
Advection of turbulent kinetic energy, or convection due to the mean flow,
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has been computed as
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The flux of turbulent kinetic energy where the different diffusive fluxes
(pressure diffusion 'D,P , viscous diffusion 'D,visc and turbulent diffusion
'D,turb) have been gathered in the quantity denoted as T 0:
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Turbulent kinetic energy dissipation represents the increase in internal
energy due to the work of the fluctuating velocity gradients, it has been
computed as
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Production , or also called "shear production", express the turbulent kinetic
energy transformed into kinetic energy of the mean flow, it has been
computed as
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Pressure dilatation , also called pressure-fluctuation dilatation correlation,
expressed the transformation of turbulent kinetic energy into internal
energy due to compressible effects, and can be computed as
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A.2 Enthalpy fluctuations balance

The transport equation of Favre averaged enthalpy variance, ⇥ = 1
2{h002}.

Following the development in the work of Vicquelin, Zhang, Gicquel, and Taine
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(2014), for a low-Mach flow, the enthalpy variance transport equation can be
expressed as:
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The terms in Eq. (A.9) are rewritten and gathered in the following quantities
for the numerical computation:
Advection, because the plane jet is statistically stationary, convection due to

the mean flow is computed as
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where {h002} is computed as
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Molecular diffusion has been computed as
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Production has been computed as
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Turbulent diffusion has been calculated as
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Term I has been computed as
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Term II has been calculated as
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Term III has been computed as
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Large eddy simulation

While the larger and more energetic turbulent structures of the flow have strong
dependency on the geometry and the boundary conditions, the smaller scales of
turbulence are nearly isotropic and then somehow more predictable. Large eddy
simulations (LES) try to take advantage of this fact by resolving the largest
turbulent structures and modeling the smaller ones. A model for the Subgrid
scale effects has been implemented in the frame of the YWCx code. This
implementation opens the way to further coupled simulations of high Reynolds
number jets.
To this end, three dimensional and unsteady computations are necessary to
capture the behavior of the most energetic eddies. In order to separate the
larger from the smaller eddies, LES uses a spatial filtering operation.

B.1 Filter operations

The filtered quantity f can be defined as in the work of Pope (2001)

f(x) =

Z
f(x0)F (x-x’)dx’ (B.1)

Typically filter operations are made in spectral space or in physical space. In
our case, we use a box filter in physical space defined by:

F (x) =

(
1/�3 if |xi|  �/2, i = 1, 2, 3

0 otherwise
(B.2)

This filter actually corresponds to an averaging over a cubic box of size � of
the form:

f(x, y, z, t) =
1

�3

Z x0=x+�/2

x0=x��/2

Z y0=y+�/2

y0=y��/2

Z z0=z+�/2

z0=z��/2
f(x0, y0, z0, t)dz0 dy0 dx0



178 Appendix B - Filtered N-S equations

(B.3)

The mass-weighted spatial filter (similar to Favre in RANS) is defined as:

f̃ =
⇢ f

⇢̄
(B.4)

which is useful for simplifying equations of variable density flows, since we can
write:

⇢ f =
⇢̄

⇢̄
⇢ f = ⇢̄f̃ (B.5)

Similarly to the RANS formulation, we can decompose the quantity f as a
resolved part, f̄ , and a unresolved part, f sgs, related to the sub-grid scale flow
motions:

f = f̄ + f sgs (B.6)

B.2 Filtered N-S equations

Filtering the instantaneous N-S equations using the Favre spatial filter opera-
tion defined above, we obtain:
a. Mass. Making use of the relation defined in eq. (B.5) :

@⇢

@t
+
@(⇢ũj)

@xj
= 0, (B.7)

b. Momentum. Again making use of eq. (B.5); adding and subtracting non-
linear terms due to the filtering operation, we have:

@(⇢ũi)

@t
+
@(⇢ũiũj)

@xj
= � @P

@xi
+

@

@xj

2

4⌧̂i,j + ⌧i,j � ⌧̂i,j| {z }
b1

� ⇢ (guiuj � ũiũj)| {z }
b2

3

5

(B.8)

b1. Non linear viscous terms appear since the directly filtered stress
tensor ⌧i,j is not formally equal to ⌧̂i,j which stands for:

⌧̂i,j = µ(T̃ )

✓
2S̃ij � 2

3
�ijS̃kk

◆
. (B.9)

where S̃i,j is the resolved shear stress S̃i,j = 1
2

⇣
@ũi
@xj

+ @ũj

@xi

⌘
. Nev-

ertheless, the works of Vreman, Geurts, and Kuerten (1995); Vreman



Appendix B - Large eddy simulation 179

(1995); Martin, Piomelli, and Candler (2000) show that
@

@xj
(⌧i,j � ⌧̂i,j)

is small or negligible; so we assume here that this terms have a neg-
ligible effect on the filtered momentum transport equation.

b2. Unresolved Reynolds stresses, ⇢ (guiuj � ũiũj) . For the sake of
simplicity, let us define the turbulent stress tensor as:

⌧ ti,j = �⇢ (guiuj � ũiũj) . (B.10)

Then, this term is expressed according the Boussinesq approximation
as:

⌧ ti,j = �⇢
✓
�i,j
3
⌧ tkk � 2⌫t

✓
S̃i,j � �i,j

3
S̃k,k

◆◆
, (B.11)

where ⌧ tkk corresponds to twice the sub-grid scale turbulent kinetic
energy which is absorbed into the filtered pressure P̄ (Poinsot and
Veynante (2005)), leading then to

⌧ ti,j = 2⇢⌫t

✓
S̃i,j � �i,j

3
S̃k,k

◆
(B.12)

and ⌫t is a sub-grid scale viscosity modeled following the Smagorin-
sky model as

⌫t = (Cs�)2
⇣
2S̃i,jS̃i,j

⌘1/2
(B.13)

where Cs is a model constant set to Cs ⇡ 0.2 and the filter size � is
computed from the grid spacing as � = (dx dy dz)1/3.

Then, we can rewrite eq. (B.8) as:

@(⇢ũi)

@t
+
@(⇢ũiũj)

@xj
= � @P

@xi
+

@

@xj

�
⌧̂i,j + ⌧ ti,j

�
(B.14)

c. Energy. Filtering the original equation, and by adding and subtracting
non-linear terms, we have:

@⇢ẽ

@t
+
@ (⇢ũj ẽ)

@xj
= �@pũj

@xj
+
@⌧̃i,j ũi

@xj
(B.15)

+
@

@xj

2

6664
�
@T

@xj| {z }
c1

� ⇢ (fuje � ũj ẽ) � (puj � pũj)| {z }
c2

+ ⌧i,jui � ⌧̃i,j ũi| {z }
c3

3

7775
.

(B.16)
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c1. The molecular heat flux, � @T
@xj

, as suggested by apriori test (Vre-
man, Geurts, and Kuerten (1995); Vreman (1995); Martin, Piomelli,
and Candler (2000)), it is approximated by a simple gradient as-
sumption as � @T

@xj
= � @T̃

@xj
where � = �(T̃ )

c2. Unresolved convected energy, ⇢ (fuje � ũj ẽ) � (puj � pũj) , as in
Garnier, Adams, and Sagaut (2009) this term can be regrouped in
the following form:

⇢ (fuje � ũj ẽ) � (puj � pũj) = cpQj + Ji (B.17)

where Qj = ⇢̄
⇣
gujT � ũj T̃

⌘
which is commonly modeled assuming

that the energy transfered from the resolved scales to the sub-grid
scales is proportional to the gradient of resolved temperature in the
following form:

Qj =
⇢̄⌫t
Prt

@T̃

@xj
. (B.18)

where ⌫t is defined in eq. (B.13), Prt is sub-grid scale Prandtl num-
ber which is set to 0.9. For simplicity, let us define the �t = ⇢̄cp⌫t

Prt
which stands for the sub-grid thermal conductivity or turbulent ther-
mal conductivity. The term Ji corresponds to the turbulent diffusion
and writes (Garnier, Adams, and Sagaut (2009)):

Ji =
1

2

�
⇢̄ûjuiui � ⇢̄ũjguiui

�
=

1

2

�
⇢̄ûjuiui � ⇢̄ũj ũiũi � ⌧ tkk

�
(B.19)

Since our case is placed in the framework of low Mach and Reynolds
numbers, we assume that turbulent diffusion is negligible when com-
pare to internal energy.

c3. Non-linear viscous terms Similarly to the term b1 in eq. (B.8),
the term ⌧i,jui � ⌧̃i,j ũi is small or negligible; so we assume here that
this terms have a negligible effect on the filtered energy transport
equation.

Finally, we can rewrite eq. (B.16) as:

@⇢ẽ

@t
+
@ (⇢ũj ẽ)

@xj
= �@pũj

@xj
+
@⌧̃i,j ũi

@xj
+

@

@xj

"
�
�+ �t

� @T̃

@xj

#
(B.20)

B.2.1 Turbulent kinetic energy of the resolved scales

Before deducing the formulation for the resolved turbulent kinetic energy, let
us defined the time averaging of a filtred time-dependent quantity f̃(t) as

hf̃i =
1

T

Z

T
f̃(t)dt, (B.21)
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where T is the time-averaged period, which should be much larger than the
characteristic time of the fluctuations, such fluctuations are defined by:

f 0 = f̃ � hf̃i. (B.22)

Similarly, we define the time density-weighted averaging or time Favre averaging
as:

{f̃} =
h⇢̄f̃i
h⇢̄i , (B.23)

and its fluctuations as

f 00 = f̃ � {f̃}. (B.24)

For the deduction of the transport equation of the resolved turbulent kinetic
energy we follow the book of Chassaing, Antonia, Anselmet, Joly, and Sarkar
(2013) who developed this equation for the instantaneous quantities, recently
Atoufi, Fathali, and Lessani (2015) developed it for the filtered quantities in a
similar manner as Bogey and Bailly (2009). For this purpose, let us begin with
the non-conservative form of eq. (B.14), using the chain rule and eq. (B.7) we
can write:

⇢
@(ũi)

@t
+ ⇢ũj

@(ũi)

@xj
= � @P

@xi
+

@

@xj

�
⌧̃i,j � ⌧ ti,j

�
(B.25)

multiplying last equation by the Favre fluctuation u00
i defined in B.24, we write:

⇢u00
i
@(ũi)

@t| {z }
A

+ ⇢u00
i ũj

@(ũi)

@xj| {z }
B

= � u00
i
@P

@xi| {z }
C

+ u00
i
@

@xj

�
⌧̃i,j � ⌧ ti,j

�

| {z }
D

(B.26)

Recalling eq. (B.24) and using the chain rule we can expand the term A as:

A = ⇢u00
i
@({ũi} + u00

i )

@t
= ⇢u00

i
@{ũi}
@t

+⇢u00
i
@u00

i

@t
= ⇢u00

i
@{ũi}
@t

+
1

2

@⇢u00
i u

00
i

@t
�u002

i

2

@⇢

@t
(B.27)

After averaging on time yields:

hAi =
1

2

@h⇢u002
i i

@t
+ h�u002

i

2

@⇢

@t
i (B.28)
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Expanding now term B on eq. (B.26) by using again eq. (B.24), we have

B = ⇢u00
i ũj

@({ũi} + u00
i )

@xj
= ⇢u00

i ũj
@{ũi}
@xj| {z }

B.1

+ ⇢u00
i ũj

@u00
i

@xj| {z }
B.2

(B.29)

and so,

B.1 = ⇢u00
i ({ũj} + u00

j )
@{ũi}
@xj

= ⇢u00
i {ũj}

@{ui}
@xj

+ ⇢u00
i u

00
j
@{ũi}
@xj

, (B.30)

B.2 = ⇢ũj
@

@xj

✓
u002
i

2

◆
=

@

@xj

✓
⇢{ũj}

u002
i

2

◆
+

@

@xj

✓
⇢u00

j
u002
i

2

◆
� u002

i

2

@

@xj
(⇢ũj)

(B.31)

Now averaging on time the term B and knowing that h⇢̄u00
i i = 0, yields:

hBi = h⇢u00
i u

00
j i
@{ũi}
@xj

+
@

@xj

✓
h⇢u002

i

2
i{ũj}

◆
+

@

@xj
h⇢u00

j
u002
i

2
i�hu

002
i

2

@

@xj
(⇢ũj)i.

(B.32)

On doing hAi+ hBi we can identify the filtered mass conservation equation and
simplify the sum as:

hAi+hBi =
1

2

@h⇢u002
i i

@t
+h⇢u00

i u
00
j i
@{ũi}
@xj

+
@

@xj

✓
h⇢u002

i

2
i{ũj}

◆
+

@

@xj
h⇢u00

j
u002
i

2
i

(B.33)

Using the relation P = hP̄ i + P 0, term C yields:

hCi = hu00
i i
@hP̄ i
@xi

+ hu00
i
@P 0

@xi
i = hu00

i i
@hP̄ i
@xi

+
@hP 0u00

i i
@xi

� hP 0@u00
i

@xi
i (B.34)

Adding and subtracting hP̄ i@hu
00
i i

@xi
we can rearrenge the term C as:

hCi =
@hP 0u00

i i
@xi

+ hP̄ @u00
i

@xi
i +

@
�
hP̄ ihu00

i i
�

@xi
(B.35)

Finally term D is averaged as

hDi = hu00
i
@⌧̃i,j
@xj

i � hu00
i

@⌧ ti,j
@xj

i =
@hu00

i ⌧̃i,ji
@xj

� h⌧̃i,j
@u00

i

@xj
i � hu00

i

@⌧ ti,j
@xj

i (B.36)
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Then, the equation governing the turbulent kinetic energy of the resolved-scale
fluctuations 1

2h⇢u
002
i i can be expressed as in the work of Atoufi, Fathali, and

Lessani (2015):

1

2

@h⇢u002
i i

@t
+

@

@xj

✓
1

2
h⇢u002

i i{ũj}
◆

| {z }
Mean convection

= � @

@xj
h⇢u00

j
u002
i

2
i

| {z }
Turbulent difusion

� h⇢u00
i u

00
j i
@{ũi}
@xj| {z }

Production
(B.37)

�
@
�
hP̄ ihu00

i i
�

@xi| {z }
Pressure diff.

� @hP 0u00
i i

@xi| {z }
Fluctuating P diff.

+ hP̄ @u00
i

@xi
i

| {z }
Pressure dilatation

+
@hu00

i ⌧̃i,ji
@xj| {z }

Viscous transport

(B.38)

� h⌧̃i,j
@u00

i

@xj
i

| {z }
Viscous dissipation

� hu00
i

@⌧ ti,j
@xj

i
| {z }

Sgs dissipation

(B.39)

We can define the following quantities for the energy budget:
The turbulent kinetic energy of the resolved-scale fluctuations, is ob-

tained through a Favre average of the velocity fluctuations of the resolved
scales: k = 1

2{u002
i } = 1

2h⇢u
002
i i/⇢.

The flux of turbulent kinetic energy can be defined by considering the
following terms:

O ·T 0 =
@

@xj
h⇢u00

j
u002
i

2
i

| {z }
Turbulent difusion

+
@hP 0u00

j i
@xj| {z }

Fluctuating P diff.

� @hu00
i ⌧̃i,ji
@xj| {z }

Viscous transport

+
@
⇣
hP̄ ihu00

j i
⌘

@xj| {z }
Pressure diff.

(B.40)

Turbulent kinetic energy dissipation transformed into internal energy can
be expressed as

✏ = hP̄ @u00
i

@xi
i

| {z }
Pressure dilatation

� h⌧̃i,j
@u00

i

@xj
i

| {z }
Viscous dissipation

� hu00
i

@⌧ ti,j
@xj

i
| {z }

Sgs dissipation

(B.41)

in which the pressure dilatation, also called pressure-fluctuation dilata-
tion correlation, expressed the transformation of turbulent kinetic energy
into internal energy due to compressible effects. The viscous dissipation
represents the increase of internal energy due to the work of the fluctu-
ating velocity gradients. And the sub-grid dissipation corresponds to the
dissipation of the unresolved motions of the fluid.
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density flows

Production , or also called "shear production", expressed the turbuent kinetic
energy transformed into kinietic enegry of the mean flow, it is definde as:

P = h⇢u00
i u

00
j i
@{ui}
@xj

(B.42)

Finally, the transport equation for the turbulent kinetic energy of the resolved
scales can be expressed as:

@ (h⇢̄ik)

@t
+
@ (h⇢̄i{ũi}k)

@xi
+ O · T 0 = P � ✏ (B.43)

B.3 Computation of LES statistical quantities for vari-
able density flows

Solving the set of equation (B.7 - B.16) provides unsteady and spatially-filtered
quantities whereas normally we are interested on average values, to this end we
use time average or Favre average operations. Unfortunately, when computing
averages from filtered values, they are not straightforward to compute since
sub-grid scales have an impact on statistical values.
Considering that filtering average quantities has a negligible effect, i.e the filter
size � is small when compare to the gradient of average quantities:

h⇢̄i ⇡ h⇢i, h⇢̄f̃i = h⇢fi ⇡ h⇢fi, h⇢̄ff2i = h⇢f2i ⇡ h⇢f2i, (B.44)

B.3.1 Velocity variance

Poinsot and Veynante (2005) proposed the computation of the variance of the
velocity component ui from filtered values, as

h⇢i ({uiuj} � {ui}{uj}) ⇡
✓

h⇢̄ũiũji � h⇢̄ũiih⇢̄ũji
h⇢̄i

◆

| {z }
Explicitly resolved by LES

+ h⇢̄ (guiuj � ũiũj)i| {z }
Sub-grid scale variance

,

(B.45)

and using the model for the unresolved Reynolds stresses of eq. (B.12) we have:

h⇢i ({uiuj} � {ui}{uj}) ⇡
✓

h⇢̄ũiũji � h⇢̄ũiih⇢̄ũji
h⇢̄i

◆
+ h⌧ ti,ji (B.46)

then, temperature and velocity variances are discussed below.
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B.3.2 Temperature variance

Regarding the computation of the temperature variance, following the work of
Poinsot and Veynante (2005), we have:

{T 2} � {T}2 ⇡ 1

h⇢i

 
h⇢̄
⇣
eT
⌘2

i � h⇢̄ eT i2

h⇢̄i

!

| {z }
Explicitly resolved by LES

+
1

h⇢ih⇢̄
✓
fT 2 �

⇣
eT
⌘2◆

i
| {z }

Sub-grid scale variance

, (B.47)

which is, up to the moment not explicitly resolved. We can approximate the
SGS temperature fluctuations as a function of the size filter �, the turbulent
Prandtl number Prt and a characteric lenght for the gradient temperature �
by:

1

h⇢ih⇢̄
✓
fT 2 �

⇣
eT
⌘2◆

i = h eT iCm

Prt

�

�
(B.48)

where Cm is a constant set to Cm =
p

2/3 A

⇡K
3/2
0

, being A = 0.44 and K0 = 1.4.
Then, the temperature variance is expressed as :

{T 2} � {T}2 ⇡ 1

h⇢i

 
h⇢̄
⇣
eT
⌘2

i � h⇢̄ eT i2

h⇢̄i

!
+ h eT iCm

Prt

�

�
(B.49)

B.4 Pope Criterion

Large eddy simulations can have a strong dependency on the filter size � uti-
lized to compute the solution. In order to measure the ratio of turbulent kinetic
energy that we are actually resolving to the total kinetic energy, Pope (2004)
proposed a simple methodology based on the measure M(x, t) of the turbulent
resolution:

M(x, t) =
ksgs(x, t)

k(x, t) + ksgs(x, t)
(B.50)

where k(x, t) is the turbulent kinetic energy which can be solved explicitly from
filter variables:

k(x, t) =
1

2
({ũiũi} � {ũi}{ũi}) =

1

2h⇢i

✓
h⇢̄ũiũji � h⇢̄ũiih⇢̄ũji

h⇢̄i

◆
, (B.51)

and ksgs(x, t) stands for the turbulent kinetic energy of the sub-grid scales
which can be expressed as

ksgs(x, t) =
1

2
({guiui} � {ũiũi}) =

1

2h⇢i (h⇢̄guiuii � h⇢̄ũiũii) , (B.52)
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which is no explicitly resolved and thus we need to modeled it in order to com-
pute its value. A known model used, for example, in the work of Coussement,
Gicquel, and Degrez (2012), expresses the ksgs as a function of the turbulent
viscosity ⌫t by:

ksgs(x, t) =
h⌫2t i

(Cm�)2
(B.53)

where Cm is a constant of the model set to Cm =
p

2/3 A

⇡K
3/2
0

, being A = 0.44

and K0 = 1.4.
Having the measure of the turbulent resolution, one can control the level of
resolution through the filter size � = 3

p
�x�y�z, which corresponds to the

mesh spacing. A value of M(x, t) smaller than 0.2 is typically used as a reference
of a well resolved LES, such a value ensures a resolution of 80% of the total
turbulent kinetic energy.



Appendix C

Derivation of Boundary

conditions for the Acoustic

Speed Reduction method

In this Appendix the non-reflecting boundary conditions are derived for a sim-
plified one-dimensional non-viscous form of the modified ASR system. The
term non-reflecting refers to boundary conditions for which compression out-
going waves leave the domain without any kind of reflection. To derive such
conditions, a characteristic analysis following the works of Hedstrom (1979) and
Thompson (1987) is performed to the set of governing equations presented in
the work of Wang and Trouvé (2004). These are the continuity equation, the
momentum and energy transport equations, respectively:

@⇢

@t
+
@(⇢u)

@x
= 0, (C.1)

@u

@t
+ u

@u

@x
+

1

⇢

@p

@x
= 0, (C.2)

p

@t
+ u

@p

@x
+
�p

↵2

@u

@x
= 0, (C.3)

To develop a wave analysis of the ASR system, the governing equations are
expressed in the form:

U
@t

+ A@U
@x

= 0, (C.4)
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where U is the vector of dependent variables defined by

U =

0

@
⇢
u
p

1

A , (C.5)

and A is a square matrix:

A =

0

@
u ⇢ 0
0 u 1/⇢
0 �p/↵2 u

1

A (C.6)

Then, C.4 is expressed in the characteristic form as:

S @U
@t

+ DS @U
@x

= 0 (C.7)

where S is a matrix whose rows are the left eigenvectors of A, and D is the
diagonal matrix defined by

D = SAS�1. (C.8)

To determine the matrix S, the eigenvalues of the matrix A are first computed
following the expression

det(A � �I) = det

2

4

0

@
u ⇢ 0
0 u 1/⇢
0 �p/↵2 u

1

A�

0

@
�1 0 0
0 �2 0
0 0 �3

1

A

3

5 = 0, (C.9)

where I is the identity matrix. Then, from Eq. C.9 the eigenvalues are:

�1 = u � 1

↵

p
�p/⇢, �2 = u, �3 = u +

1

↵

p
�p/⇢, (C.10)

Once the eigenvalues are defined, the three left eigenvectors (li) are determined
by

liA = �ili for i = 1, 2, 3, (C.11)

Then, the matrix S is formed by placing each left eigenvector in each row:

S =

0

@
0 ⇢

↵

p
�p/⇢ �1

1 0 �↵2 ⇢
�p

0 ⇢
↵

p
�p/⇢ 1

1

A (C.12)
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Following Eq. C.8 the diagonal matrix D is defined by

D =

0

@
u � 1

↵

p
�p/⇢ 0 0

0 u 0
0 0 u + 1

↵

p
�p/⇢

1

A (C.13)

Replacing Eqs. C.12 and C.13 in Eq. C.7 gives the characteristic governing
equations wih the ASR modification for a one-dimensional non-viscous fluid

@p

@t
� ⇢

↵

r
�p
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Note that the sound velocty is c =
p
�p/⇢. Likewise, an artificial sound velocity

can be defined as c0 = c/↵. The three eigenvalues �i defined in Eq. C.10
correspond to the velocities of the characteristic waves, and their amplitues Li

are described by
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Finally, identifying the amplitue of the characterisc waves Li in Eqs. C.14 to
C.16 the time derivatives of the primitive variables are computed using the
following expressions:
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(L3 � L1) , (C.22)

All waves amplitudes Li corresponding to outgoing waves are computed at the
boundaries using interior nodes from Eqs. C.17 to C.19 while incoming wave
amplitudes in a perfectly non-reflecting boundary are theoretically zero. How-
ever, when setting perfectly non-reflecting boundary conditions, the problem
might be ill-posed. Therefore, by adjusting the amplitude of the incoming
waves, partially non-reflecting boundaries are imposed following the implemen-
tation of Coussement, Gicquel, Caudal, Fiorina, and Degrez (2012).
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Abstract

This paper aims to study the e↵ects of air variable properties in the transient case of the classical di↵erentially

heated square cavity problem. A SIMPLE algorithm using a low Mach number approximation is applied for coupling

the heat and momentum transport equations, which are discretized by the finite volume method. A fully implicit

scheme is used for time discretization. The numerical code is validated with benchmark results obtaining a maximum

deviation of 0.13% in the average Nusselt number for the non-Boussinesq approach. The temperature and velocity

fields as well as the local Nusselt number are numerically studied for Rayleigh numbers ranging between 104 - 107.

A temperature di↵erence of 720K is considered. We have found that the e↵ects of variable properties are especially

relevant along the flow development period, amongst which the average Nusselt number, for instance, di↵ers up to

roughly 10% with respect to the constant properties case; in contrast, once in steady state regime, such a di↵erence

remains less important and is no longer oscillating, resulting around 2%. An investigation is therefore put forward

covering additional e↵ects under regard of the principle of energy conservation, such as the time evolution of the

total energy and its components for both transient regime and steady state cases. Excepting for the kinetic energy,

the internal, potential and total energies are consistently and significantly higher for the case of variable properties;

a suitable discussion is provided.

Keywords: unsteady natural convection, square cavity, variable properties, low Mach number

approximation.

1. Introduction

Natural convection consists in a heat transport mode in which the fluid motion is spontaneously produced by

its density variation under gravitational field, which is generated by a temperature and/or concentration gradients.

This subject has attracted attention from many researchers due to its extensive engineering applications, such as

cooling electrical and electronic devices [1–3], or natural ventilation in buildings [4–6]. It has been widely treated

either experimentally, analytically or numerically.

The numerical approaches to model natural convective phenomena have been studied for many di↵erent geomet-

rical configurations, such as cylindrical [7–9], triangular [10–12] or hemispherical cavities [13, 14]. Nevertheless, the

most broadly studied case has been the rectangular 2D cavity representing a rectangular parallelepiped section. In

⇤Corresponding author
Email address: roger7@fem.unicamp.br (R.G. Santos)
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Nomenclature

N̄u Average Nusselt number

P̄ thermodynamic average pressure, Pa

p̃ dynamic pressure, Pa

A aspect ratio

cp heat capacity at constant pressure, J ·kg�1·K�1

cv heat capacity at constant volume, J ·kg�1 ·K�1

e total energy per volume unit, J · m�3

Ei internal energy, J · m�1

Ek kinetic energy, J · m�1

Ep gravitational potential energy, J · m�1

Etot total energy, J · m�1

g gravity, g = 9.81 m · s�2

H cavity height and width, m

i internal energy per mass unit, J · kg�1

M Mach number

Nu Nusselt number

P pressure, Pa

Pr Prandtl number

Q heat transfer rate, W · m�1

R gas constant for air, 287 J · (kg · K)�1

Ra Rayleigh number

T temperature, K

t time, s

u horizontal velocity, m · s�1

v vertical velocity, m · s�1

V– volume, m3

x horizontal coordinate, m

y vertical coordinate, m

Greek symbols

↵ thermal di↵usivity, m2 · s�1

⇢̄ average density, kg · m�3

� thermal expansion coe�cient, K�1

✏ non-dimenional temperature di↵erence param-

eter, ✏ = (Th � Tc)/(Th + Tc)

� ratio of specific heats, � = 1.4

� thermal conductivity, W · m�1 · K�1

µ dynamic viscosity, Pa · s

⇢ density, kg · m�3

� kinematic viscosity, m2 · s�1

Superscripts

⇤ dimensionless variable

Subscripts

0 initial value

C constant properties

c cold wall

h hot wall

ref reference value

V variable properties

1983, de Vahl Davis [15] published the first set of benchmark solutions for the case of steady state natural convection

in a square cavity, wherein the two vertical walls are isothermal and the two horizontal walls are adiabatic. Proceed-

ing with these benchmark solutions, many di↵erent numerical approaches have been validated through this problem.

In 1990, Saitoh and Hirose [16] published another benchmark solution, in this case using the finite di↵erence method.

One year later, Hortmann et al. [17] computed this problem by employing the finite volume method and taking

2



advantage of the multi-grid technique and second-order schemes for convection and di↵usions fluxes. More recently,

other methods such as Lattice Boltzman [18] or the integral transform method [19] have been used to resolve this

same problem. A comprehensive review of natural convection in enclosures is found in Bäıri et. al [20], which also

embraces transient regime - however still restricted to incompressible flow.

Compared with the steady state, the transient natural convection has received much less attention in the literature,

in spite of its relevance for a better understanding of this kind of heat transfer mechanism [21]. Among the most

relevant works regarding the transient regime of natural convection in di↵erentially heated enclosures, one can cite

Patterson and Imberger [22], one of the first papers which studied the classical rectangular cavity. They performed

a scale analysis to show that a number of initial flow types are possible, collapsing ultimately onto two basic types

of steady flow. Proceeding with this study, Hyun and Lee [23] examined the e↵ect of Prandtl number finding a

distinct oscillatory behavior when the criterion Ra > Pr4A�4 and Pr � 1 is strongly satisfied. Sai et al. [24] solved

the square cavity problem using the finite element method for Rayleigh numbers between 103 and 106. Christon

et al. [25] presented a benchmark solution for 8:1 di↵erentially heated cavity. A recent review of transient natural

convection flow in enclosures can be found in Hussein et. al [21].

Most of the works regarding natural convection admit the density variation solely as a source term in the mo-

mentum equation through the Boussinesq approximation, considering it constant for the remaining conservation

equations. Nevertheless, there are many applications which can not be modeled through the Boussinesq approxima-

tion due to temperature gradients high enough to invalidate this assumption. In this sense, as an illustrative example

wherein a more accurate modeling may be needed, there is the solar cavity receivers for solar thermal power plants

[26]. Likewise, other examples are industrial furnaces or walls of nuclear reactors with air gaps inside for insulation,

also subjected to high temperature gradients. Indeed, some e↵orts have been done to solve the compressible natural

convection through a non-Boussinesq approach; for example, Quéré et. al [27] published a benchmark solution for

the case of large temperatures di↵erences, where density variation must be taken into account in all equations. In

the literature, one can find several studies regarding the limit of application of the Boussinesq approximation in the

steady state [28–30], where good results are found restricted to small temperature di↵erences between hot and cold

walls and to low Rayleigh numbers.

As another approach toward precise modeling, Sehyun et al. [31] considered the viscosity variation with temper-

ature and found that the local Nusselt numbers for oil resulted 70-80% higher over those for a constant viscosity,

and 40-50% higher in the case of water. Such results were in excellent agreement with corresponding experimental

data [32]. Leal et al. [33] presented results for the transient version of the classical di↵erentially heated square

cavity problem considering both constant and variable fluid properties. They concluded that the e↵ects of variable

properties are significant, especially along the flow development period. More recently, Sun et al. [34] addressed a

study on the non-Boussinesq e↵ects, where they considered double-di↵usive convection.

Despite the literature points out the importance of considering variable properties in the solution of the time

dependent natural convection, according to our knowledge, there is a lack of studies quantifying such e↵ects. There-

fore, the motivation of this study is to quantify and analyze the e↵ects of considering density, viscosity and thermal

conductivity as variable thermophysical properties. The temperature and velocity fields and the Nusselt number

are numerically studied for Rayleigh number between 104 and 107, since most engineering applications reside in
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this range. To explicit such e↵ects on the heat transfer processes, an additional study is conducted concerning the

internal, gravitational potential and kinetic energies.

2. Mathematical and physical model

For a Newtonian fluid, the two-dimensional conservation equations governing the natural convection for the

transient case can be written as follows:
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where viscous dissipation is neglected in Eq. (4) since velocities and viscosity have moderated values (Brinkman

number << 1), and laminar regime is assumed - in accordance with [35] for the covered range of Rayleigh number.

For the Boussinesq approximation the density is assumed constant and the source of motion is modeled by a

source term in the momentum equation on the vertical direction. That leads to an incompressible formulation, which

neglects acoustic e↵ects; moreover, the averaged static pressure remains constant in time. Such approximation is

done by replacing the last term on Eq. (3) by an expression solely dependent on temperature:

(⇢ � ⇢)~g = ⇢0~g�(T � T0). (5)

For the sake of generalization, the following variables are adimensionalized:

T ⇤ =
T � Tc

Th � Tc
, x⇤ =

x

H
, y⇤ =

y

H
, u⇤ =

uH

↵0
, v⇤ =

vH

↵0
, and t⇤ = t

↵0

H2
, (6)

where the adimensionalized time t⇤ is chosen following the work of Leal et al. [33].

Prandt and Rayleigh numbers are defined as

Pr =
cpµref

�ref
and Ra = Pr

⇢2
refg(Th � Tc)H3

Trefµ2
ref

, (7)

where Tref is a reference temperature defined as Tref = (Th + Tc)/2; and �ref , ⇢ref and µref are, respectively, the

thermal conductivity, density and dynamic viscosity evaluated at Tref .

The local Nusselt number at the hot wall, Nu(y)

����
x=0

, and the average Nusselt number, Nu

����
x=0
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as follows:
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2.1. Boundary and initial conditions

Motion on an air parcel initially static is induced by means of a density di↵erence with respect to its neighbor

parcels, which is caused by a temperature di↵erence between the vertical walls of the square cavity, while its both

horizontal walls are imposed adiabatic. Figure 1 describes the physical model of the cavity.

Figure 1: Sketch of the physical model.

A large temperature di↵erence ✏ = 0.6 is set, following typical values of previous studies [27], where ✏ = (Th �

Tc)/(Th + Tc). Thus, for Tref = 600K the maximum temperature di↵erence results 720K. Also setting the Prandtl

and Rayleigh numbers, the problem is completely defined with the following conditions:

Left boundary (x = 0; 0 < y < H) Isothermal non-slip wall:

u = v = 0 and T = Th = Tref (1 + ✏), (9)

Right boundary (x = H; 0 < y < H) Isothermal non-slip wall:

u = v = 0 and T = Tc = Tref (1 � ✏), (10)

Bottom (y = 0) and top (y = H) boundaries. Adiabatic non-slip wall:

u = v = 0 and
@T

@y
= 0, (11)

Initial conditions (t = 0). Stationary flow at spatially uniform temperature T0 and pressure P0, wherein fluid

properties are computed at T0:

u0 = v0 = 0, T0 = Tref = 600K, P0 = 101325Pa, ⇢0 =
P0

R T0
, µ0 = µ(T0) and �0 = �(T0). (12)
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The consideration of the adiabatic boundary conditions aims to reproduce the e↵ects of an ideal insulator, which

result in a simple asymptotic thermal behavior - not reachable in realistic conditions. Despite such a simplicity, this

cavity configuration ends up comprising all features that characterize the natural convection phenomenon; mainly,

it permits to evaluate the impact of considering variable properties through a numerical solution.

2.2. Transport properties of air

The study of the e↵ects of variable properties is performed for the transient natural convection in a square

cavity filled with air (Pr = 0.71) with constant cp = 1004.5J/(kgK). Since air is here approximated as ideal gas, the

viscosity and thermal conductivity are temperature dependent and therefore can be computed using the Sutherland’s

law:

µ(T ) = µ0
✓

T

T 0

◆3/2 T 0 + S

T + S
and �(T ) = µ(T )

�R

(� � 1)Pr
, (13)

where T 0 = 273K, S = 110.5K, � = 1.4, R = 287Jkg�1K�1 , µ0 = 1.68 · 10�5m�1s�1kg and Pr = 0.71. Figure

2 shows how air dynamic viscosity and thermal conductivity tends to increase as temperature increases following

Sutherland’s law.
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Figure 2: Dynamic viscosity and thermal conductivity dependences with temperature.

Either the Prandtl number or the specific heat are assumed constant since for the temperature range here

considered they vary around 10% [36], while the viscosity and the thermal conductivity computed using Eq.13

vary much more significantly, over 160% for the same temperature range.

2.3. Non-Boussinesq approach

For large temperature di↵erences the Boussineq approximation gives inaccurate results. A correlation proposed

by Zhong [30] defines the following limit of validity:

✓0 = 0.0244 Ra0.243, (14)
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where ✓0 = (Th � Tc)/Tc.

The non-Boussinesq approach entails the computation of a density field varying over time and space, leading to a

compressible formulation. Since natural convection deals with low velocities, a low Mach number approximation was

applied in this work. This approach entails a more e�cient algorithm since there is no need to account for acoustic

propagation and still captures the relevant physics. Firstly, the total pressure is decomposed into the thermodynamic

pressure P̄ (t) and the dynamic pressure p̃ by the expression

P (x, y, t) = P̄ (t) + p̃(x, y, t). (15)

Asymptotic analysis [37] shows that P̄ (t)/P0 = O(1) and p̃/P0 = O(M2), where P0 is the initial pressure and M

is the Mach number. Therefore, the local density is calculated from the ideal gas equation using the thermodynamic

pressure and local temperature. This approximation is valid for low Mach numbers. The thermodynamic pressure

is time-dependent, but it is constant in space, as described in [37]. Consequently, the density is decoupled from the

dynamic pressure, so no acoustics are accounted.

In the case of impermeable walls, closed system, the amount of mass is constant over time; considering as well

the fluid as ideal gas and integrating the equation of state over the entire space domain, the thermodynamic pressure

P̄ (t) can be defined as in [27]:

P̄ (t) = P0

R
1
T0

dV–
R

1
T dV–

. (16)

Finally, the local density field can be computed from the ideal gas law as

⇢ =
P̄ (t)

RT
. (17)

The reader is referred to [38] for a comparison of low Mach number models for natural convection problems.

3. Methodology for the numerical solution

In order to solve the governing equations a Fortran code was implemented. The governing equations are discretized

by the finite volume method using a fully implicit scheme for time discretization (Patankar [39] and Versteeg and

Malalasekera [40]). A non-uniform staggered marker-and-cell (MAC) mesh [41] is used, where the velocity components

are calculated at a staggered grid, and the scalar variables are calculated at the main grid (not staggered). Coupling

between mass and momentum conservation equations is carried out using the SIMPLE algorithm (Patankar and

Spalding [42]). An hybrid scheme approximates the convection terms, while a central di↵erence scheme is used for

the di↵usive terms. When the residuals of the mass balance for every control volume, as well as the residual values

for the rest of the governing equations, are su�ciently low, an overall convergence is achieved. Global residual values

for each transport equation are computed using the quadratic mean and considered converged when values lower

than 10�8 are obtained.

For the case of variable properties, the matrices containing the local values of ⇢, � and µ are computed in every

iteration for each temperature field, as shown in Fig. 3. To interpolate the properties values in the control volume

interfaces, a linear variation between the two neighbor nodes was assumed.
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The set of algebraic equations, resulting from the discretization, are solved by an ADI iterative method. In

addition, under-relaxation parameters have been used in order to minimize the number of iterations required to

obtain converged solutions.

Start

Initial values: u0, v0, T0 and ⇢0

t = t0 + dt

Compute variable properties: µ, � and ⇢

Solve SIMPLE algorithm: u, v and P

Solve energy transport equation: T

Convergence?

Print results at time t

Steady state?

Stop

Rename: u0 = u,

v0 = v, T0 = T

and ⇢0 = ⇢

yes

no

yes

no

Figure 3: Flowchart of the algorithm for the case of variable properties.

The grid size and time step independence are achieved after numerous tests taking as reference the average Nusselt

number in the hot wall for Rayleigh numbers between 103 �107. This numerical analysis reveals that higher Rayleigh

numbers demand more refined meshes as well as smaller time steps. Based on the results for Ra = 107, a non-uniform

mesh of 256 x 256 nodes and a non-dimensional time step of 10�4 are selected, for which a maximum deviation of

0.1 % is obtained for the average Nusselt number at the specific time t⇤ = 0.05.

3.1. Verification

In order to verify the numerical code used in the present work, some benchmark problems are reproduced and

compared with the results of the present work. Firstly, the results for the steady state solution using constant

properties and the Boussinesq approximation are compared with some classical solutions [15, 17]. Secondly, the
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compressible solutions with and without variable properties are compared with [27]. Finally, the transient natural

convection is compared with the results published in [33].

Steady state with constant properties and Boussinesq approximation

A set of comparisons is performed under the Boussinesq approximation with constant properties for the classical

square cavity problem with di↵erentially heated vertical walls making use of Eq. (5). In Table 1, results for steady

state regime for Rayleigh numbers between 103 and 106 are compared with the benchmark solutions [15, 17] for

Pr = 0.71. The selected comparative results are: the maximum horizontal velocity, u⇤
max, in the vertical mid-plane

(x⇤ = 0.5); the maximum vertical velocity, v⇤
max, in the horizontal mid-plane (y⇤ = 0.5); and the maximum, minimum

and average Nusselt number in the hot wall, Numax, Numin, Nu. The overall agreement is quite reasonable with a

maximum deviation of 1.99% with respect to [15] and a 0.22% with respect to [17].

Table 1: Comparison of the present work with some steady state benchmark results for constant properties and Boussineq approximation.

Ra u⇤
max v⇤

max Numax Numin Nu

103

De Vahl Davis [15] 3.649 3.697 1.505 0.692 1.118

Hortmann et al. [17] - - - - -

Present work 3.6450 3.6998 1.5100 0.6935 1.1207

104

De Vahl Davis [15] 16.178 19.617 3.528 0.586 2.243

Hortmann et al. [17] 16.1802 19.6295 3.53087 - 2.24475

Present work 16.1838 19.6296 3.5319 0.5851 2.2452

105

De Vahl Davis [15] 34.73 68.59 7.717 0.729 4.519

Hortmann et al. [17] 34.7399 68.6396 7.72013 - 4.52164

Present work 34.7410 68.6212 7.7242 0.7280 4.5225

106

De Vahl Davis [15] 64.63 219.36 17.925 0.989 8.800

Hortmann et al. [17] 64.8367 220.461 17.536 - 8.82513

Present work 64.8473 220.5518 17.5752 0.9794 8.8300

Steady state with a non-Boussinesq approach with and without variable properties

Quéré et al. [27] published a benchmark solution for the compressible case with and without variable properties.

This reference solution is based on the results of five independent authors, whose methods and procedures are detailed

in [43–47]. Three tests are available for the following conditions:

Test 1: Ra = 106, ✏ = 0.6, µ = µ0 and � = �0,

Test 2: Ra = 106, ✏ = 0.6, µ = µ(T ) and � = �(T ),

Test 3: Ra = 107, ✏ = 0.6, µ = µ(T ) and � = �(T ),

where the initial conditions are P0 = 101325 Pa and T0 = 600 K. Viscosity and thermal conductivity are computed

using Sutherland law defined in Eq. (13).
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Table 2 presents a comparison of the average Nusselt in the hot wall (Nuh) and the non-dimensional ther-

modynamic pressure (P̄ (t)/P0) obtained in this present work with the ones published in [27]. The percentage

deviation when comparing with the reference values are shown between parentheses. The results obtained for the

non-Boussinesq approximation are in good agreement with previous solutions since the maximum deviation obtained

is 0.129%.

Table 2: Comparison of the present work with steady state benchmark results with a non-Boussinesq approach.

P̄ (t)/P0 Nuh

Test 1
Quéré et al. [27] 0.856338 8.85978

Present work 0.8565 (0.019%) 8.8640 (0.048%)

Test 2
Quéré et al. [27] 0.924487 8.6866

Present work 0.9249 (0.045%) 8.6938 (0.083%)

Test 3
Quéré et al. [27] 0.92263 16.2410

Present work 0.92224 (0.042%) 16.2619 (0.129%)

Transient regime with constant properties and Boussinesq approximation

To conclude the verification of the code, results for the unsteady regime are compared with previous publications

[33]. Again, the Boussinesq approximation and constant properties formulation are used. Figures 4 and 5 show

non-dimensional temperature and dimensionless vertical velocity component distribution, respectively, in the cavity

mid-plane (y⇤ = 0.5) for Rayleigh numbers between 103 and 106, Pr = 0.71 and T0 = Tc. In addition, for the

same Rayleigh range, the time evolution of the average Nusselt number is compared with the same authors in Fig.

6. Figures 4 to 6 show an excellent agreement, at least, at the graph scale. The expected increasing oscillations

of the average Nusselt number as the Rayleigh number increases are also well reproduced. Results for Ra = 106

are presented yet not compared with previous work since no data could be found for the sake of comparison. A

distinguished agreement is achieved between every average Nusselt number at the end of the transient period and

the ones found in the steady state formulation.
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Figure 4: Comparison of dimensionless temperature in the horizontal mid-plane for (a) Ra = 103, (b) Ra = 104, (c) Ra = 105 and (d)

Ra = 106.
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Figure 5: Comparison of dimensionless vertical velocity in the horizontal mid-plane for (a) Ra = 103, (b) Ra = 104, (c) Ra = 105 and

(d) Ra = 106.
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Figure 6: Comparison of average Nusselt number in the hot wall over time for (a) Ra = 103, (b) Ra = 104, (c) Ra = 105 and (d)

Ra = 106.
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4. Results and discussion

4.1. E↵ects of variable viscosity and thermal conductivity using a non-Boussinesq approach

In order to study the e↵ects of considering variable properties in the transient regime, numerical simulations are

performed for the Rayleigh numbers 104, 105, 106, and 107. The solution for constant and variable properties are

computed using a non-Boussinesq approach for a large temperature di↵erence of ✏ = 0.6 for each Rayleigh number.

Boundary and initial conditions are detailed in Eqs. (9) to (12). In order to attain each Rayleigh number, the cavity

dimension is adapted following Eq. (7). Table 3 in the following shows the resulting dimensions.

Table 3: Cavity dimensions for each Rayleigh number.

Ra H

103 2.63 · 10�2 m

104 5.66 · 10�2 m

105 1.22 · 10�1 m

106 2.63 · 10�1 m

107 5.66 · 10�1 m

The time evolution of the average Nusselt number in the hot wall for constant properties (NuC) and variable

properties (NuV ) are shown in Fig. 7. It can be observed for all investigated Rayleigh numbers, that the Nusselt

number for variable properties is larger than for constant properties in the very first instants of the transient regime.

Nevertheless, such a behavior is inverted at a specific instant of time, which varies with the Rayleigh number, and is

kept that way ever since. Also, the oscillation of the average Nusselts presents a slightly di↵erent behavior between

the cases of constant and variable properties.
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Figure 7: Transient behavior of average Nusselts for constant properties (NuC) and variable properties (NuV ) for (a) Ra = 104, (b)

Ra = 105, (c) Ra = 106 and (d) Ra = 107.

The lower value of the average Nusselt number reached during the transient period Numin, its corresponding

specific instant of time as well as the duration of the transient regime are shown in Table 4 for constant and variable

properties. We consider that the system arrives at the steady state when two consecutive values of the average

Nusselt number di↵ers less than 10�3 %. Note that the local minimum of the average Nusselt numbers shows up

earlier when increasing the Rayleigh number. Comparing the cases of constant and variable properites, it can be

observed that values of Numin vary significantly, while t⇤(Numin) and t⇤steady state are slightly di↵erent.
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Table 4: Minimum Nusselt number reached during the transient period, its corresponding time, and required time to reach the steady

state for Ra numbers between 104 and 107.

Ra 104 105 106 107

Numin

Variable properties 1.4300 2.7758 5.3987 10.2134

Constant properties 1.2906 2.5064 4.8838 9.2549

t⇤(Numin)
Variable properties 0.0451 0.0140 0.0037 0.0012

Constant properties 0.0428 0.0137 0.0037 0.0012

t⇤steady state

Variable properties 0.2776 0.1795 0.1195 0.0789

Constant properties 0.2849 0.1846 0.1223 0.0782

To better compare the Nusselt number between both cases, their ratio NuC
NuV

is shown in Fig. 8 for their corre-

sponding average (NuC

NuV
), minimum (NuC,min

NuV,min
) and maximum (NuC,max

NuV,max
) values in the hot wall over time.
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Figure 8: Ratio of NuC
NuV

for corresponding average, minimum and maximum values of the Nusselt number, along the transient regime,

for (a) Ra = 104, (b) Ra = 105, (c) Ra = 106 and (d) Ra = 107.

Comparing the case of constant and variable properties, it can be seen that transient regime presents larger

di↵erences of Nusselt number than the steady state. Also, it should be noticed that as the Rayleigh increases the

relative di↵erence between average Nusselt numbers observed in the transient regime decreases slightly, while the

relative di↵erence in the steady state behaves in opposite way. Thus, it can be observed that the average Nusselt

deviation in the transient regime is of the order of 10 %, while in the steady state it barely reaches the value of 2 %.

In Figs. 9 and 10 the di↵erences between constant and variable properties are put in evidence for Rayleigh

numbers between 104 and 107. Despite the qualitative di↵erences observed in the isotherms and the isovalue lines

of velocity between the two cases, flow patterns show no significant impact when variable properties are considered.

Those figures also show that for all studied Rayleigh numbers the temperature gradient in the hot wall is higher for

the constant properties case, while it is lower in the cold wall. To quantify the amount of energy crossing the vertical
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Figure 9: Isovalues of horizontal velocity, vertical velocity and temperature for Ra = 104 for constant properties (——) and variable

properties (- - -).
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Figure 10: Isovalues of horizontal velocity, vertical velocity and temperature for Ra = 107 for constant properties (——) and variable

properties (- - -).
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Figure 11: (a) Ratio of Qc
Qh

for constant and variable properties. (b) Ratio of heat fluxes QC
QV

at the hot and at the cold walls.

walls, the heat transfer rate is computed as

Qh =

Z H

0
��(t)

@T

@x

����
x=0

dy and Qc =

Z H

0
��(t)

@T

@x

����
x=H

dy. (18)

Figure 11a shows that heat transfer rate is higher at the cold wall when compared with the hot wall for constant

and variable properties. Note that the ratio Qc

Qh
is higher in the constant property case during the transient period

and, as expected, tends to unity in the steady state. Figure 11b reveals that the heat transfer rate in the hot wall

during the beginning of the transient regime is larger for the variable properties case. On the other hand, once in the

steady state, the heat flux in this wall is larger for the constant properties case. This phenomenon depends on the

transient evolution of the thermal conductivity as well as on the temperature in the surroundings of the hot wall.

20



0.995 0.996 0.997 0.998 0.999 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionless Temperature

y
*

Constant properties
Variable properties
t*=0.01
t*=0.02
t*=0.20

(a)

0.99 0.992 0.994 0.996 0.998 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionless Temperature

y
*

Constant properties
Variable properties
t*=0.005
t*=0.015
t*=0.100

(b)

0.975 0.98 0.985 0.99 0.995 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionless Temperature

y
*

Constant properties
Variable properties
t*=0.002
t*=0.020
t*=0.100

(c)

0.95 0.96 0.97 0.98 0.99 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionless Temperature

y
*

Constant properties
Variable properties
t*=0.002
t*=0.010
t*=0.100

(d)

Figure 12: Local dimensionless temperature distributions in the surroundings of the hot wall at di↵erent instants of times for constant

and variable properties. (a) Ra = 104, (b) Ra = 105, (c) Ra = 106 and (d) Ra = 107.

Because the temperature near the hot wall is larger than Tref , the thermal conductivity presents larger values

for the variable properties case, in accordance with Fig. 2, where the increase is directly proportional. Nevertheless,

the temperature in the surroundings of the hot wall is slightly lower for the constant properties case, as shown in

Fig. 12, which implies a greater temperature gradient. The balance of the contributions of the thermal conductivity

and the temperature gradient in the hot wall determines in which case Qh presents larger values.

Figure 13 shows the local Nusselt number distribution along the hot wall at di↵erent instants of time. It can be

seen that, in the first instants, the Nusselt number for variable properties is greater all along the hot wall. This fact

must be due to larger values of �(T ), since the temperature gradient is grater for the constant properties case, as

shown in Fig. 12. Note that, as time passes, the Nusselt numbers for the constant properties case are larger due

to the greater temperature gradient in the hot wall, since the thermal conductivity remains greater for the variable

properties case.
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Figure 13: Local Nusselt number distributions along the hot wall at di↵erent times for constant and variable properties. (a) Ra = 104,

(a) Ra = 105, (a) Ra = 106 and (a) Ra = 107.

Total energy per unit of volume e is defined as

e = ⇢

✓
1

2
(u2 + v2) + i + g y

◆
, (19)

where i is the specific internal energy per mass unit, 1
2 (u2 + v2) stands for kinetic energy per mass unit and g y for

gravitational potential energy per mass unit.

Since air is considered as ideal gas, its internal energy depends on temperature only. Taking the reference

temperature at 0K, the local value of i can be defined as

i(T ) = cv T, (20)

where cv is the specific heat at constant volume. Recalling the ideal gas approximation: cv = cp � R, with cp being

the specific heat at constant pressure and R the constant for air.
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Integrating e over the space domain, one can obtain the total energy Etot(t) inside the cavity as a function of

time,

Etot(t) =

Z H

0

Z H

0
e(x, y, t) dx dy. (21)

Similarly, to put in evidence the importance of each term, one can obtain the internal energy Ei(t), kinetic enrgy

Ek(t) and gravitational potential energy Ep(t) inside the cavity.

Figure 14a shows the total energy adimensionalized with the initial total energy Etot,0. In agreement with Fig.

11, the total energy decreases faster for the constant property case since the ratio Qc

Qh
is higher all along the transient

regime. This is caused because of the thermal conductivity distribution for the variable properties case (higher values

of �(t) near the hot wall and lower values near the cold wall) despite temperature gradient accounts against this

behavior.
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Figure 14: (a) Total energy Etot, (b) internal energy Ei, (c) kinetic energy Ek and (d) gravitational potential energy Ep undimensioned

by the initial total energy Etot,0 along the transient regime for Ra = 105.

In Fig. 14c, as expected, kinetic energy Ek increases from the initial value with an oscillatory behavior, and
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gravitational potential energy Ep (Fig. 14d)decreases in accordance with the density distribution (low density values

at the top of the cavity and higher values at the bottom). It can also be observed that kinetic energy and gravitational

potential energy are nonessential for the determination of the total energy, even in the transient regime, since Ek is

eight orders of magnitude lower than internal energy (Fig. 14b) while Ep is seven orders lower for Ra = 105.

4.2. Validity of the Boussinesq approximation for transient results in a di↵erentially heated cavity

The limit of application of the Boussinesq approximation has been largely studied for the steady state [28–30, 48].

However, as far as we know, there are no previous works in which the validity of the Boussinesq approximation for the

transient regime had been quantitatively studied in the di↵erentially heated cavity problem. Besides, since variable

properties are more influential for transient regime than for steady state, as demonstrated before, the validity of such

an approximation is more compromised and can be a critical issue in terms of accuracy. Thus, in order to have an

insight of the validity of this approximation, the di↵erences with the non-Boussinesq approach are studied. Viscosity

and thermal conductivity are considered constant since the interest is now focused on density.

Firstly, in Fig. (15b) the maximum di↵erence in the local Nusselt number at the hot wall observed during the

transient regime is plotted as a function of Rayleigh number and dimensionless temperature di↵erence ✏. The results

show that the validity of the Boussinesq approximation is manly a↵ected by the temperature di↵erences between

hot and cold walls, and this is specially true for Rayleigh numbers larger than 5 · 105. For the sake of comparison,

Fig. (15a) shows this same di↵erence once the steady state is reached. As expected, the validity of the Boussinesq

approximation is more restrictive for the transient regime than for steady state.
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Figure 15: Maximum di↵erence for the local Nusselt number at the hot wall as a function of Rayleigh number and dimensionless

temperature di↵erence. (a) Steady state. (b) Maximum peak value reached during transient regime.

Finally, Fig. 16a presents the maximum percentage di↵erence of the local Nusselt number in the hot wall versus

the adimensional temperature di↵erence ✏ for a fixed Nusselt number of 5 · 105 for both transient regime and steady

state cases. Figure 16a reveals an almost linear relation between ✏ and the peak value of the di↵erence for the local

Nusselt number. Moreover, looking at the transient behaviour of this di↵erence for several values of ✏, in Fig. 16b,

one can observed that the peak is clearly reached in the transient regime.
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Figure 16: Maximum di↵erence on the local Nusselt number at the hot wall. (a) Maximum peak value versus ✏. (b) Transient behavior

for several temperature di↵erences.

5. Conclusions

A successful numerical solution for the modeling of transient natural convection with a non-Boussinesq approxi-

mation for variable properties, large temperature di↵erences and di↵erent Rayleigh numbers has been accomplished.

The computational code has been validated against benchmark results for both steady state and transient regime, as

well as the Boussinesq approximation and the non-Boussinesq approach with and without variable properties. The

e↵ects of considering variable viscosity and thermal conductivity in a non-Boussinesq formulation were studied for

an unsteady problem. Additionally, a comparison between the Boussinesq and non-Boussinesq approaches for several

temperature di↵erences was presented.

We have shown that the e↵ects of variable properties are especially relevant along the flow development period,

amongst which the average Nusselt number, for instance, di↵ers up to roughly 10% with respect to the constant

properties case; in contrast, once in steady state regime, such a di↵erence remains less important and is no longer

oscillating, resulting around 2%. The average Nusselt number is greater for the variable properties case in the

beginning of the transient natural convection, while it becomes smaller afterwards, once in the steady state regime.

Also, the temperature gradient aside of the hot wall is greater for the constant properties case. On the other hand,

the thermal conductivity in the same region is larger when variable properties are considered. These two conditions

determine the amount of heat flux delivered by the hot wall, which is considerably larger during the first instants of

the transient period for the variable properties case. Indeed, this heat flux is larger for almost the whole transient

period, in coherence with the Nusselt number behavior. Moreover, the validity of the Boussinesq approximation has

been quantitatively brought to light: it resulted specially more restricted for the transient case, directly proportional

to the temperature di↵erence between hot and cold walls.

When comparing the total energy of the enclosure, the variable properties case prevails progressively along the

whole transient period and remains so once in steady state. An explanation for that may come from the fact that

when taking into account the conductivity variation with temperature, the heat fluxes vary in the direct nonlinear
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proportion - although inversely with the temperature gradient - leading to a resulting increase in the heat income

and, at the same time, to a decrease in the heat outcome. Once again a coherence is found with the Nusselt

number behavior, which enhances to conclude how important is the variable properties consideration for an accurate

numerical modeling for the transient case.

The main application of this work is to support the choice of an specific formulation when modeling natural

convection phenomena. To this end, the accuracy that each specific consideration entails has been evaluated and

discussed.
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Abstract: This paper deals with the numerical solution of combined heat transfer by radiation and natural convection in
a square cavity under normal room conditions, filled with an absorbing-emitting and isotropic scattering medium. The
finite volume method (FVM) has been adopted to solve the governing equations of natural convection. In turn, the discrete
ordinates method (DOM) is applied to solve the radiative transfer equation (RTE), using a Tn6 angular quadrature.
Natural convection and radiative transfer equations are solved simultaneously. The numerical model is validated by
comparison with results taken from literature. In this work, Nusselt number and temperature and velocity fields are
numerically studied for scattering albedos between 0.0 � 1.0 ranging the Rayleigh number and the optical thickness. The
results show that the effects of radiation are greater when the Rayleigh number increases. Similarly, it is shown that the
influence of scattering albedo is stronger for cavities with higher Rayleigh numbers and optical thicknesses.
Keywords: Numerical Simulation, Natural Convection, Radiative Heat Transfer, Finite Volumes, Discrete Ordinates
Method.

1. NOMENCLATURE

cp Specific heat capacity, J · kg�1 · K�1 t Time, s

g gravity, g = 9.81 ms�2 T Temperature, K

H Cavity height and width, m u Horizontal velocity, m · s�1

I Radiative intensity W m�2 sr�1 v Vertical velocity, m · s�1

m Angular direction V Volume, m3

M Number of total angular directions W Quadrature weight of vector director

n Director vector of area x Horizontal coordinate, m

Nu Nusselt number y Vertical coordinate, m

P̄ Thermodynamic average pressure, Pa Greek symbols

Pl Plank number ↵ Thermal diffusivity

Pr Prandt number �̄ Thermal expansion coefficient, K�1

q Heat flux, W m�2 � Extinction coefficient, m�1

r Position vector , m ✏̄ Non-dimenional temperature difference

R Gas constant for air, 287 J · (kg · K)�1 parameter, ✏̄ = (Th � Tc)/(Th + Tc)

Ra Rayleigh number � Surface emissivity



 Absorption coefficient, m�1 m m discrete direction

� Thermal conductivity, W · m�1 · K�1 0 Incident direction

µ Dynamic viscosity, Pa · s Subscripts

µ̄ x- projection of the director vector b Black body

⌦ Director vector c Cold wall

⇢ Density, kg · m�3 Cv Convectivet

� Scattering coefficient, m�1 E East

�̄ Stephan-Boltzman constant h Hot wall

⌧ Optical thickness N North

�̄ Kinematic viscosity, m2 · s�1 o Initial condition

! Scattering albedo, m2 · s�1 P Node

!̄ Intensity interpolation scheme constant ref Reference value

Superscripts Rd Radiative

⇤ Dimensionless variable

2. INTRODUCTION

The phenomenon of natural convection is essential for the functioning of several engineering applications, such
as double-glazed windows, solar collectors, cooling devices for electronic gears, HVAC (heating, ventilation and air-
conditioning) systems, crystal growth in liquids, and fire spreading. Thus, many works about natural convection are
performed. Among many academic studies, natural convection in rectangular cavities filled with air has proved to be an
excellent vehicle in light of both numerical and empirical analyses (Ampofo and Karayiannis (2003); Tian and Karayian-
nis (2000); Salat et al. (2004); Betts and Bokhari (2000); Yin et al. (1978)).

A benchmark study of numerical solutions for natural convection in a two-dimensional closed square cavity filled
with air was done by de Vahl Davis and Jones (1983). They worked on this physical problem by matching the second-
order finite-differences method with the Richardson extrapolation scheme. In his work, Churchill (1983) suggested an
experimental approach - formulations and graphics - to determine the Nusselt number (Nu) at distinct Rayleigh numbers
and situations, according to some empirical and numerical results. Over the last few years, owing to the development of
algorithms more efficient and computers with high processing rates, solutions of the 2-D and 3-D laminar equations have
been solved for values of Ra in wide ranges, as we can see in the works of Upson et al. (1980) and Saitoh and Hirose
(1989).

Many papers that combine radiation and natural convection in closed rectangular cavity with air can be found in the
literature (Sharma et al. (2007); Velusamy et al. (2001); Akiyama and Chong (1997); Behnia et al. (1990)). For example,
Akiyama and Chong (1997) studied the relationship between natural convection and radiation in a square cavity filled
with air. Their results have shown that the surface radiation changes considerably the temperature distribution and the
flow templates, particularly at uppermost Ra. So, the radiative heat transfer represent a high percentage of the overall heat
flux. Furthermore, this part of heat flux improves with the increment of fluid emissivity.

However, works which analyze the phenomena of natural convection and radiation in cavity filled with air consi-
dering participating media are less common, given the high quantity of computational resources required to process it
(Colomer et al. (2004); Fusegi and Farouk (1989); Fiveland (1988)). Tan and Howell (1991) studied combined radia-
tion and natural convection in emitting, absorbing, and isotropically scattering square cavities. By means of the product
integration method, the precise formulation for radiation was established and discretized (Tan (1989b)). The non-linear
successive-over-relaxation iterating scheme for associated radiation and convection-conduction heat transfer problems
was also applied (Tan (1989a)). In 2011, Lari et al. (2011) conducted a study on this specific topic considering the Bous-
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sinesq approximation, steady state, and absorbing-emitting medium with gray gases. The objective of her work was to
investigate the effect of radiation on total heat transfer in a square under standard conditions combined with a low tem-
perature difference. Recently, Moufekkir et al. (2012) used the numerical approach to solve the natural convection and
volumetric radiation in an isotropic scattering medium within a heated square cavity problem using a different version of
the thermal lattice Boltzmann method. In his paper, the finite difference method was combined with the multiple relaxa-
tion time lattice Boltzmann method to work out the mass conservation, the Navier-Stokes and the energy equations. In
turn, the discrete ordinates method was applied to resolve the radiative transfer equation. Done it, he studied the influence
of some important parameters over the heat transfer (for example, scattering albedo, Rayleigh number and Planck number).

The present work determines the overall averaged Nusselt number, as well as, the natural convection and the radiation
averaged Nusselt numbers in the presence of a low temperature difference. The problem of the square enclosure, differen-
tially heated side walls, insulated top and bottom sides, and filled with air - participating medium and grey gas - is solved
for some scattering albedos ranging the Rayleigh number and the optical thickness. The Boussinesq approach is used
even as in the previously cited works. The discrete ordinates method was also applied to deal with the radiative transfer
equation. It was used the assumption of constant properties - thermal conductivity, thermal diffusivity, density, dynamic
and cinematic viscosity. As far as we known, there is not any published work that shows how the radiation contribution
varies for the total heat transfer when ranging the scaterring albedo, the Rayleigh number and the optical thickness in an
incompressible formulation only using the finite volume method to calculate the mass conservation, the Navier-Stokes
and the energy equations.

3. MATHEMATICAL AND PHYSICAL MODEL

The case of study of the present work is a square cavity filled with an absorbing, emitting, and isotropic scattering
gray medium whose horizontal walls are considered adiabatic and the vertical walls have a fixed temperature. The motion
of fluid initially static is induced by a temperature difference between the vertical walls, setting the right and left walls at
Tc and Th respectively, as shown in Fig. 1. All walls are considered black and diffusely reflective.

Figure 1: Skecth of the physical model.

The governing equations for two-dimensional flow, using the Boussinesq approximation, corresponding to mass con-
servation, transport of momentum in both directions and transport of energy are, respectively :
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The term 1
cp

rqRd in Eq. (4) denotes the divergence of the radiative flux which can be calculated with the radiative
intensity field by the expression:

rqRd = 

✓
4⇡Ib(r) �

Z

4�
I(r, ⌦)d⌦

◆
. (5)

To obtain the intensity field to compute the Eq. (5) is necessary to solve the radiative transfer equation (RTE), which
for an absorbing, emitting and isotropic scattering gray medium is determined by:

(⌦r)I(r, ⌦) = ��I(r, ⌦) + Ib(r) � �

4⇡

Z

4�
I(r, ⌦0)d⌦0. (6)

In order to generalize, the dimensionless parameters used are:

T ⇤ =
T � Tc

Th � Tc
, x⇤ =

x

H
, y⇤ =

y

H
, u⇤ =

uH

↵o
, and v⇤ =

vH

↵o
. (7)

The dimensionless temperature difference parameter, Plank, Prandt and Rayleigh numbers are defined as:

✏̄ =
Th � Tc

Th + Tc
, P l =

�ref

4�BT 3
refH

, Pr =
cpµref

�ref
, and Ra =

g�̄(Th � Tc)H3

¯�ref↵ref
. (8)

where Tref is a reference temperature defined as Tref = (Th +Tc)/2; and �ref , ↵ref , ⇢ref , µref and �ref are the thermal
conductivity, thermal diffusivity, density, dynamic and cinematic viscosity evaluated at Tref , respectively, which are con-
sidered spatially constants. For that, the dynamic viscosity and thermal conductivity are calculated using the expressions
as follows called Sutherland’s law:

µ(T ) = µ0
✓

T

T 0

◆3/2 T 0 + C

T + C
(9)

�(T ) = µ(T )
�R

(1 � �)Pr
(10)

At the present work, the used values are µ0 = 1.68x10�5Kg/ms, T 0 = 273K, C = 110, 5 Kg/msK1/2, � = 1.4,
R = 287J/KgK and Pr = 0.71.

The heat transfer through the cavity is characterized by the Nusselt number, which involves the convective and radia-
tive heat transfer effects. The local convective and radiative Nusselt numbers at the hot wall are determined as follows:

Nu(y)Cv

����
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=
H

(Th � Tc)

@T

@x

����
x=0

and Nu(y)Rd

����
x=0

=
qRd H

�ref (Th � Tc)
. (11)

The average Nusselt numbers for convective and radiative effects are expressed as:

NuCv
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Z H
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The overall averaged Nusselt number is determinated by:
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= Nu(y)Cv

����
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+ Nu(y)Rd

����
x=0

and NuT

����
x=0

= NuCv

����
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����
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. (13)

3.1 Boundary and initial conditions

The boundary conditions for the situation described in the Fig. 1 can be modeled as:

Left boundary (x = 0; 0 < y < H) Isothermal, non-slip, impermeable and diffusively reflective black wall:

u = v = 0, Th = Tref (1 + ✏̄) and �h = 1.0. (14)

Right boundary (x = H; 0 < y < H) Isothermal, non-slip, impermeable and diffusively reflective black wall:

u = v = 0 Tc = Tref (1 � ✏̄) and �c = 1.0. (15)
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Bottom (y = 0) and Top (y = H) boundaries. Adiabatic, non-slip, impermeable and diffusively reflective black wall:

u = v = 0, qCv + qRd = 0 and �s = �n = 1.0. (16)

Initial conditions (t = 0). Stationary flow at spatially uniform temperature T0 and pressure P0, wherein fluid properties
are computed at T0:

u0 = v0 = 0, T0 = Tref , P0 = 101325 Pa, ⇢0 =
P0

R T0
, µ0 = µ(T0) and �0 = �(T0). (17)

For opaque walls that emit and reflect diffusely, the boundary conditions for RTE (Eq. 6) are calculated by:

I(rw, ⌦) = �Ib(rw) +
(1 � �w)

⇡

Z

�n·��<0
I(rw, ⌦0) |~n · ⌦0| d⌦0. (18)

4. METHODOLOGY FOR THE NUMERICAL SOLUTION

In order to solve the Naver-Stokes, mass conservation and energy equations (Eq.(1)-(4)), the finite volume method
(FVM) is used for their discretization applying a false transient formulation and using a fully implicit scheme for time
discretization (Patankar (1980), and Versteeg and Malalasekera (2007)). The diffusive term is approximated by using cen-
tral difference scheme while the hybrid scheme is used for the convective term. Due to the equations of conservation of
mass and momentum are strongly coupled, the algorithm SIMPLE is implemented with a non-uniform staggered marker-
and-cell (MAC) mesh, where all scalar quantities are calculated on the main grid while the components of the velocity are
associated to the staggered grid. The properties Cp, ⇢, � and µ are assumed spatially constants and are evaluated at the
reference temperature.

To obtain the source term in Eq.4, corresponding to the radiative flux, the intensity field is solved by RTE, for which the
angular discretization is done by the discrete ordinates method (DOM) as explains Fiveland (1984) using a Tn6 quadrature
as calculated in Thurgood et al. (1995). The FVM is used to make the spatial discretization. Thus, the intensity of the
point P in the m direction can be described as a function of the intensities at the faces of the control volume as:

µ̄m(AEIm
E � AW Im

W ) + �̄m(ANIm
N � ASIm

S ) = ��Im
p Vp + Im

b,pVp +

 
�

4⇡

MX

k=1

WkIk

!
Vp. (19)

The number of variables in the Eq. (19) are reduced using the linear correlation:

Im
p = !̄Im

E + (1 � !̄)Im
W = !̄Im

S + (1 � !̄)Im
N . (20)

where !̄ is a constant between 0.0 � 1.0. Note that !̄ = 1.0 and !̄ = 0.5 denote step and diamond scheme respectively.
From Eq. (20) and Eq. (19), it is obtained the numerical expression used in this work:

Im
p =

|µ̄|�yIm
w + |�̄|�xIm

s + !̄Ib,pVp + !̄

✓
�
4�

MP
k=1

WkIk

◆
Vp

|µ|�y + |�|�x + !̄�Vp
. (21)

To determine the effect of the scattering on the flow, it is introduced the single scattering albedo defined as:

! =
�

� + 
=

�

�̄
. (22)

Note that for a non-scattering medium, !=0.0, while !=1.0 in a non-absorbing medium ( = 0.0).

Similarly, the DOM is used in the boundary conditions for the RTE (Eq.18). The expression to calculate the source
term in the energy equation (Eq.5) at node P which is associated to one control volume of the domain is given by the
expressions used at the model of numerical implementation:

Im
w = �wIb,w +

(1 � �w)

⇡

M �X

k=1

Wk�Ik�

w |⌦0
k| . (23)

rqRd = 

 
4⇡Ib,p �

MX

k=1

WkIk
p

!
. (24)

The set of algebraic equations generated by the discretization of the governing equation of the flow is solved by
an alternating direction implicit (ADI) iterative method. Additionally, under-relaxation parameters have been used to
minimize the number of iterations required to reach the convergence criteria.
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4.1 Grid sensivity and code verifications

The accuracy of the numerical results has been verified through numerous tests based on grid size covering Rayleigh
numbers between 103 � 107. The Table 1 summarizes the results for Ra = 106 and ⌧ = 1.0. The numerical analysis
revealed that higher Rayleigh numbers demand refiner meshes. A non-uniform mesh of 161 x 161 nodes is selected, for
which a maximum deviation of 0.1 % is obtained for the average Nusselt number.

Table 1: Radiative and total averaged Nusselt number for Ra = 106, Pr = 0.717 and ⌧ = 1.0.
61x61 81x81 101x101 121x121 141x141 161x161 181x181 201x201

⌧ = 1.0 NuRd 9.577 9.563 9.557 9.554 9.553 9.528 9.525 9.522
NuT 16.947 16.920 16.910 16.906 16.904 16.864 16.861 16.857

In order to verify the results obtained from the numerical model considering the radiative heat transfer effects, the
Table 2 shows a comparison with values of average Nusselt number at hot wall obtained by Lari et al. (2011) for two
different optical thicknesses and Rayleigh numbers with values of Pr=0.717, scattering albedo ! = 0.0, Th = 310 K,
and Tc = 290 K. It shows a maximum deviation of 1.625%. The Figure 2 corroborates the results of the present work
showing a good compatibility with the streamlines and the isotherms.

Table 2: Comparison of the present work with the results of Lari et al.
Ra = 105 Ra = 106

⌧ = 1.0 Lari et al. 8.367 17.086
Present work 8.231 (1.625 %) 16.864 (1.300 %)

⌧ = 5.0 Lari et al. 6.811 14.514
Present work 6.732 (1.160 %) 14.439 (0.517 %)

(a) (b)
Figure 2: Ra = 106, Th = 310K, Tc = 290K, ⌧ = 1.0 (a) Streamlines. (b) Dimensionless Isotherms lines.

Similarly, the Table 3 shows a comparison with results taken from Moufekkir et al. (2012) and Yucel et al. (1989) for
a cavity with Ra = 5x106, Pr = 0.71, Pl = 0.2, scattering albedo ! = 0 and two different optical thicknesses. The
maximum deviation showed is 1.11%. It can be observed a good agreement of the results of this work with values from
the literature.

Table 3: Comparison of the present work with the results of Moufekkir et al. and Yucel et al.
NuRd NuT

Yucel et al. 31.550 (0.41 %) 39.210 (0.68 %)
⌧ = 1.0 Moufekkir et al. 31.108 (1.00 %) 38.725 (0.57 %)

Present work 31.421 38.945
Yucel et al. 23.640 (1.11 %) 31.760 (0.43 %)

⌧ = 5.0 Moufekkir et al. 23.801 (0.57 %) 31.778 (0.37 %)
Present work 23.936 31.896
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5. Results

For the purpose of keeping the flow in the laminar regime, all tests were made with a Rayleigh number between 104-
� 107 as well as the difference of temperature between vertical walls was established at low enough value to guarantee
that all considerations in the mathematical model are appropriated. To evaluate the effects of the scattering albedo on the
velocity and temperature fields, tests with values between 0.0�1.0 were made too. The Table 4 shows the average Nusselt
number at the hot wall for distinct scattering albedos, two optical thicknesses and two Rayleigh numbers in a cavity filled
with an absorbing, emitting, and isotropic scattering gray medium in which Pr=0.717 and the temperatures at the left and
right walls are Th = 310K and Tc = 290K respectively.

Table 4: Radiative, convective and total average Nusselt number for different values of scattering albedo.
Ra = 104 Ra = 107

NuCv NuRd NuT NuCv NuRd NuT

⌧=1.0 2.2055 1.7892 3.9947 13.1853 21.0650 34.2510
!=0.0 ⌧=5.0 2.2248 0.8334 3.0582 13.7687 16.5181 30.2868

⌧=1.0 2.1722 1.8079 3.9800 13.3762 20.1321 33.5083
!=0.5 ⌧=5.0 2.1310 0.8484 2.9794 13.2159 14.6531 27.8690

⌧=1.0 2.1617 1.8142 3.9759 13.5570 19.6613 33.2183
!=0.7 ⌧=5.0 2.0956 0.8477 2.9433 13.1439 13.2263 26.3702

⌧=1.0 2.1533 1.8195 3.9728 14.1118 18.7775 32.8892
!=1.0 ⌧=5.0 2.1089 0.7768 2.8857 14.2281 8.3179 22.5460
Pure convection 2.2409 0.0 2.2409 16.5924 0.0 16.5924

Table 4 shows that, for the studied cases, the influence of scattering albedo is stronger for a larger Rayleigh number
and higher values of optical thickness. When scattering albedo increases, keeping constant the others parameters of the
flow, the heat transfer decreases. It should be noted that these effects are more pronounced in the radiative heat transfer,
while the convective effects suffer lower variations. For the case of pure convection, the variation of scattering albedo has
not any effect on the flow, because this parameter is directly related to the conditions of the radiative heat transfer.
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Figure 3: Dimensionless horizontal velocity profile at the mid-plane for Ra = 104. (a) ⌧ = 1.0 (b) ⌧ = 5.0

The Figures (3) and (4) show the dimensionless horizontal velocity profile at the mid-plane of the cavity for Ra = 104

and Ra = 107 respectively. They reveal that when the scattering albedo increases, the dimensionless horizontal velocity
profile at the mid-plane declines. Can be observed that , these effect is stronger for a higher Rayleigh number and a lower
optical thickness.
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Figure 4: Dimensionless horizontal velocity profile at the mid-plane for Ra = 107. (a) ⌧ = 1.0 (b) ⌧ = 5.0

6. CONCLUSIONS

The heat transfer by natural convection and radiation in a cavity under normal room conditions filled with an absorbing-
emitting and isotropic scattering gray medium has been studied at present work. The equations of mass conservation,
momentum and transport of energy have been solved by the FVM using the SIMPLE algorithm. The RTE has been dis-
cretized angularly by the DOM and spatially by the FVM to evaluate the source term in the equation of energy associated
with the radiative heat transfer. The code of the present work has been verified by comparison with results of the biblio-
graphy. The heat transfer and the characteristic of the fluid were analyzed for a variation of scattering albedo in a range
from 0.0 to 1.0 at different Rayleigh numbers and optical thicknesses. The next conclusions have been obtained from this
study:

• For a more absorbing medium (a lower scattering albedo) flowing with the same characteristics, the heat transfer
through the cavity is greater.

• The magnitudes of the velocity in a more scattering medium (a higher scattering albedo) are lower.

• The effects of scattering albedo are stronger for a flow with a higher Rayleigh number and a medium with lower
optical thickness.
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Titre : Étude numérique des effets du couplage du rayonnement thermique aux jets turbulents libres de
vapeur d’eau

Mots clés : Jet turbulent; Mise à l’échelle; Simulation numérique directe; Rayonnement; Monte-Carlo.

Résumé : Le rayonnement thermique joue un rôle
important dans un large éventail d’appli- cations de
génie thermique comprenant des écoulements turbu-
lents. La motivation principale de cette thèse est le
besoin croissant de précision et fiabilité dans les si-
mulations numériques appliqué à ce domaine.
Cette thèse s’intéresse tout particulièrement à la
compréhension physique de l’impact du rayonne-
ment thermique sur la dynamique des fluides et
le transfert thermique, ainsi que de l’influence des
fluctuations turbulentes sur le transfert radiatif dans
les écoulements à couche de cisaillement. L’objec-
tif de cette thèse est de fournir des données haute-
fidélités de jets libres turbulents couplés au rayon-
nement thermique afin de développer et de vali-
der des modèles turbulents d’écoulements à couche
de cisaillement prenant en compte les interactions
de couplage. À cette fin, les jets libres turbulents
sont décrits par des simulations numériques directes
(DNS) couplées à une méthode de Monte-Carlo
réciproque pour résoudre l’équation de transfert ra-
diatif. La dépendance spectrale des propriétés radia-
tives est prise en compte avec la méthode Correlated-

k (ck).
Deux simulations directes de jets chauffés couplés
au rayonnement thermique sont réalisées. D’une part,
un jet chauffé avec un rayonnement modéré a été si-
mulé et l’analyse de ses données DNS couplées a
permis de dériver une nouvelle loi d’échelle pour la
décroissance du profil de température. Cette mise à
l’échelle rend compte des effets de la densité modifiée
due à un rayonnement modéré. De plus, cela permet
de distinguer si le rayonnement thermique modifie ou
non la nature des mécanismes de transfert thermique
dans la région développée du jet. D’autre part, un jet
libre fortement chauffé a été calculé afin de quan-
tifier les effets du rayonnement sur les champs de
température et de vitesse moyens ainsi que sur les
moments de second ordre.
Outre les données DNS couplées, un solver RANS
pour les écoulements à densité variable couplé au
rayonnement thermique a été développé au cours de
cette thèse. L’objectif était de quantifier directement la
précision des modèles turbulents existants et d’iden-
tifier les paramètres clés pour une modélisation plus
poussée des interactions de couplage.

Title : Numerical Investigation of the Effects of Coupled Radiative Heat Transfer on Free Turbulent Jets of
Water Vapor

Keywords : Turbulent jet; Scaling; Direct Numerical Simulation; Thermal radiation; Monte-Carlo.

Abstract :
Radiation plays an important role in a broad range of
thermal engineering applications comprising turbulent
flows. The growing need for accurate and reliable nu-
merical simulations to support the design stages of
such applications is the main motivation of this thesis.
Of special interest in this work are the free-shear flows
and the fundamental understanding of how radiation
can modify their fluid dynamics and heat transport as
well as how their turbulence fluctuations can alter ra-
diative transfer. The goal of this thesis is to provide
high-fidelity data of turbulent free jets coupled with
thermal radiation in order to develop and validate free-
shear turbulent models accounting for coupling inter-
actions. To this end, turbulent free jets are described
by direct numerical simulations (DNS) coupled to a
reciprocal Monte-Carlo method to solve the radiative
transfer equation. The spectral dependency of the ra-
diative properties is accounted for with an accurate
Correlated-k (ck) method.

Two direct simulations of heated jets coupled with
thermal radiation are carried out. On the one hand,
a heated jet with moderate radiation is simulated. The
analysis of its high-fidelity coupled DNS data has al-
lowed to derive a new scaling law for the decay of the
temperature profile. This scaling accounts for the ef-
fects of modified density due to moderate radiation.
Moreover, it allows for distinguishing whether thermal
radiation modifies the nature of heat transfer mecha-
nisms in the jet developed region or not. On the other
hand, a strongly heated free jet is computed in order
to quantify the effects of radiation on mean tempe-
rature and velocity fields as well as on second order
moments.
Besides the coupled DNS data, a RANS solver for
variable-density flows coupled with thermal radiation
has been implemented during the course of this the-
sis. The goal is to directly quantify the accuracy of the
existing turbulent models, and to identify key parame-
ters for further modeling of coupling interactions.
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