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Abstract

Motivated by applications ranging from XML processing to runtime veriication of pro-
grams, many logics on data trees and data streams have been developed in the literature. hese
ofer diferent trade-ofs between expressiveness and computational complexity; their satisi-
ability problem has oten non-elementary complexity or is even undecidable. Moreover, their
study through model-theoretic or automata-theoretic approaches can be computationally im-
practical or lacking modularity.

In a irst part, we investigate the use of proof systems as a modular way to solve the
satisiability problem of data logics on linear structures. For each logic we consider, we develop
a sound and complete hypersequent calculus and describe an optimal proof search strategy
yielding an NP decision procedure. In particular, we exhibit an NP-complete fragment of the
tense logic over data ordinals—the full logic being undecidable—, which is exactly as expressive
as the two-variable fragment of the irst-order logic on data ordinals.

In a second part, we run an empirical study of the main decidable XPath-like logics pro-
posed in the literature. We present a benchmark we developed to that end, and examine how
these logics could be extended to capture more real-world queries without impacting the com-
plexity of their satisiability problem. Finally, we discuss the results we gathered from our
benchmark, and identify which new features should be supported in order to increase the
practical coverage of these logics.
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CHAPTER 1

Introduction

Trees and linear structures are widely studied in Computer Science, as they can abstract
various situations where a hierarchy or an order exist between objects. In such structures,
every position oten carries a label from a inite alphabet, but it is sometimes necessary to also
work with data from an ininite domain, such as the set of integers or the set of strings over a
inite alphabet.

1.1. Structures with Data

When working with databases, one typically needs to work with an ininite domain. he
most standard model is the relational model introduced by Codd [1970], where relations be-
tween data are represented as tables—as illustrated in Figure 1.1—and for which query lan-
guages such as SQL have been designed to extract information from them. To date, this model
is still used in countless applications.

Title Author Year
Harry Poter and the Philosopher’s Stone J.K. Rowling 1997

A Game of hrones George R.R. Martin 1996
he Da Vinci Code Dan Brown 2003

...

F९७ॻॸ५ 1.1. Example of relational database.

On the other hand, semi-structured data do not obey this formalism and rather focus on
the hierarchies or relationships between data. Many shapes of semi-structured data have been
studied, such as data graphs, data trees, or data words. In this thesis, we focus on trees and
words with data.

1.1.1. Data Trees. he eXtended Markup Language (XML), introduced in the late 1990s
by xml [2008], represents data in a hierarchical way. XML documents are the standard format
to share data over the Internet, and consist of text iles that are both human- and machine-
readable. hey can also be used as databases, for instance in the eXist-db1 project.

he underlying structure of such documents is a data tree, which is a inite tree where
every position is labelled by a leter from a inite alphabet and carries a data value from some
ininite domain such as the set of strings. For example, the XML document from Figure 1.2 can
be represented as shown in Figure 1.3. Data trees are formally deined in Section 6.2.1, and
their link to XML documents is discussed in Section 6.2.6.

1https://github.com/eXist-db

1

https://github.com/eXist-db


2 1. INTRODUCTION

<library>
<book title="Harry Potter and the Philosopher's Stone"

author="J.K. Rowling" year="1997"/>
<book title="A Game of Thrones"

author="George R.R. Martin" year="1996"/>
<book title="The Da Vinci Code"

author="Dan Brown" year="2003"/>
...

</library>

F९७ॻॸ५ 1.2. Example of an XML document.

library

book

@year

2003

@author

Dan Brown

@title

he Da Vinci Code

book

@year

1996

@author

George R.R. Martin

@title

A Game of hrones

book

@year

1997

@author

J.K. Rowling

@title

Harry Poter
and the

Philosopher’s Stone

…

F९७ॻॸ५ 1.3. Representation of the XML document from Figure 1.2 as a data tree.

Just as for relational databases, one might want to extract informations from such docu-
ments. he XPath language [xpa, 1999, 2014] is arguably the most popular querying language
for selecting elements in XML documents. It is embedded in the XML processing languages
XSLT [xsl, 2017] and Xuery [xqu, 2014a], and widely used in general-purpose languages like
Java or C# through third-party libraries. An XPath query can navigate inside the tree structure
of an XML document, and perform some tests on data to extract parts of the document.

Eॾ१ॳॶॲ५ 1.1. he following informations can be extracted from the tree of Figure 1.3 by
some XPath queries, as we will see in Section 1.2:

(1) Is there a book titled “A Game of hrones”?
(2) Who is its author?
(3) Which books are writen by the same author as “A Game of hrones”?
(4) Are there two books writen by the same author?

1.1.2. DataWords and Ordinals. Many applications can generate data streams, such as
traces of a program’s execution [e.g. Grigore et al., 2013], system logs [e.g. Bollig, 2011], XML
streams [e.g. Gauwin et al., 2011], or detecting intrusions [e.g. Goubault-Larrecq and Olivain,
2014], whichmotivated the study of data words and dataω-words in order to be able to formally
reason about such streams. Being able to work with ordinals bigger than ω can also be highly
convenient. For instance, Godefroid and Wolper [1994] rely on such ordinals to do model
checking of the concurrent execution of n events while avoiding the cost of exploring the n!
interleavings of these events. Demri and Nowak [2007] also use such ordinals to model Zeno
behaviours of physical systems.
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(b, 1)(r, 1)(b, 2)(r, 2)(w, 1)(w, 2)(e, 2)(e, 1)(s, 0)(b, 3)(r, 3)(e, 3)(s, 0)

F९७ॻॸ५ 1.4. A data word representing the logs of concurrent processes.

Eॾ१ॳॶॲ५ 1.2. Consider a system where multiple processes could be editing the same ile
on some server. Wewould like to verify some properties about their concurrent execution. he
log of their execution can be represented as a data word, the datum being an integer identifying
the process, and the label representing their action: b for the beginning of a process, e for its
ending, and r (resp. w) when a process reads (resp. writes) the ile. In addition, some other
process could sometimes shutdown the server (s). An example of such a log is given in
Figure 1.4. On such a data word, we could want to verify various properties:

(1) Every process eventually terminates: for every position labelled by b, there is a later
position with the same datum and labelled by e.

(2) More generally, we could want that for every datum, the corresponding subword
belongs to s∗ + b(r + w)∗e, i.e. every process does not do anything ater it stops or
before it starts.

(3) No process is interrupted by a shutdown: for every position labelled by b, there is no
position labelled by s before its corresponding e.

(4) For every position labelled byw, there exists a previous position labelled by rwith the
same datum such that there is not a position in between labelled by w and carrying
a diferent datum.

On the data word from Figure 1.4, all the conditions but the last one are respected.

1.2. Data Logics

1.2.1. he Satisiability Problem. Alongside the evaluation of the set of elements se-
lected in a document [e.g. Arroyuelo et al., 2015; Benedikt and Koch, 2009; Bojańczyk and
Parys, 2011; Gotlob et al., 2005], the main computational problem associated with a query
is the satisiability problem: that is, given an XPath query, whether there is an XML docu-
ment from which it will select some information. he study of XPath have been abstracted by
various logics on trees or data trees, and this motivated the investigation of the satisiability
problem of such logics, which is the problem of determining if there exists a model of a given
formula from the logic at hand.

S१ॺ९ॹ६९१२९ॲ९ॺॿ Pॸॵ२ॲ५ॳ
Fixed: A logic L.
Input: A formula ϕ from L.
uestion: Is there a model M and a position w of M such that M, w |= ϕ?

Studying this kind of property leads to practical optimisations, for instance by detecting
dead code inside a program. his problem can even be looked at more precisely, when a
Document Type Deinition (DTD) can be provided, specifying the shape of the data trees at
hand in a speciic project.
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S१ॺ९ॹ६९१२९ॲ९ॺॿ Pॸॵ२ॲ५ॳ ॳॵ४ॻॲॵ DTD
Fixed: A logic L.
Input: A formula ϕ from L and a DTD D.
uestion: Is there a model M ∈ D and a position w of M such that M, w |= ϕ?

For example, when doing query evaluation Groppe and Groppe [2006] irst verify whether
a query is satisiable modulo a XML Schema Deinition (XSD)—similar to a DTD—, and prevent
its execution if it is not.

Other variations of the satisiability problem have been studied, such as the equivalence
problem—where the question is whether two formulæ have exactly the same models—, or the
entailment problem—where the question is whether one formula implies the other.

Eq९ॼ१ॲ५ॴ३५ Pॸॵ२ॲ५ॳ
Fixed: A logic L.
Input: Two formulæ ϕ1 and ϕ2 from L.
uestion: For every model M and every position w of M, M, w |= ϕ1 if, and only if,

M, w |= ϕ2?

hese problems are closely linked to the satisiability problem when the studied logic is
closed under Boolean operators, and have also many applications. For example, when opti-
mising queries or when updating every query of a project ater changing the global structure
of a database, it is natural to check if the modiications applied did not break anything by
testing if the new queries are satisiable. Furthermore, solving such problems can also involve
rewriting techniques puting the input under a simpler form which could a priori also been
evaluated faster, leading in turn to automatic optimisation of queries, as shown by Genevès
and Vion-Dury [2004].

Similarly, the example from Section 1.1.2 illustrates what properties of data words one
might want to express. For instance, we could write down formulæ corresponding to the prop-
erties at stake, and then check if they are satisiable, i.e., if there is a data-word—abstracting
some logs that could happen in practice—satisfying the formulæ. If the logic at hand is expres-
sive enough—which is the case for many of them—we could theoretically encode the whole
program in the logic as well. his would allow to do static analysis of programs, that is check-
ing some features of the program without running it. However, writing a formula describing
an entire program could prove too costly in practice, hence the most common application is
model checking, which is similar to the satisiability problem modulo DTD for XPath queries:
given a description of the models of the problem at hand, we want to check whether some
properties can be satisied.

All these examples of applications motivate the wide study of the satisiability problem of
various data logics.

1.2.2. Data Logics. Data logics feature both a way to navigate inside a structure, and a
way to compare data held at diferent positions.
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1.2.2.1. Data Trees. he backbone of XPath is the Propositional Dynamic Logic on trees
introduced by Afanasiev et al. [2005]. It allows to navigate inside a data tree in many diferent
ways: from the current position, one can navigate to a child, a parent, the next or previous
sibling, or use the transitive closure of one these axes. It can also perform data tests against
a constant, by testing whether a path can lead to a position in the data tree with a datum
matching the constant. Besides, more complex data joins can be done, where we can test
whether two paths can lead to nodes with (non)-equal data.

Eॾ१ॳॶॲ५ 1.3. For instance, the following XPath queries correspond to the properties from
Example 1.1:

(1) For the irst property, starting from the root of the data tree, the following query
irst tests that the starting node is labelled ‘library’, then navigates to a child that
must satisfy what is writen between brackets: it must be labelled ‘book’ and have an
atribute @title matching ‘A Game of Thrones.’

self::library/child::∗[book and @title = ‘A Game of Thrones’]
(2) Furthermore, we can select its @author atribute: the following query will return

‘George R.R. Martin’:
self::library/child::∗[book and @title = ‘A Game of Thrones’]/@author

(3) Our third query must involve more complex data tests, where non-trivial paths are
employed:

self::library/child::∗[book and @author =
parent::∗/child::∗[book and @title = ‘A Game of Thrones’]/@author

]/@title
his query selects books where the @author atribute matches the result of the pre-
vious query (the navigational step parent::∗ allows to go back to the node ‘library’),
and returns the @title atributes of every selected book. In other words, it returns
the titles of all the books writen by the author of ‘A Game of Thrones.’

(4) For the last property, we check if two books have the same authors, with one appear-
ing strictly ater the other for the order among siblings (this is to make sure that the
two books are indeed distinct):

self::library/child::book[@author = following-sibling::book/@author]
When data joins and navigations in every direction are available, the satisiability problem

is undecidable for XPath queries, though various decidable fragments of XPath have been stud-
ied. he irst two queries from Example 1.3 belong to Downward XPath—where data joins and
only downward navigation (child and descendant) are allowed—, while the third one belongs
to Vertical XPath—where upward navigation (parent and ancestor) are also allowed—, and
the last one belongs to Forward XPath—which enriches Downward XPath with the following-
sibling axis. All these fragments are discussed more thoroughly in Section 1.2.3, and will be
the subject of a survey in Part 2.

Another natural approach is the First Order Logic as it is the bedrock of the language
SQL—widely used to query relational databases. In that sense, Bojańczyk et al. [2009] thor-
oughly study the First Order Logic on data trees. his logic is equipped with binary predicates
indicating if two variables x and y are representing nodes such that:
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• y is a child of x: E↓(x, y).
• y is the next sibling of x: E→(x, y).
• x and y have the same datum: x ∼ y.

However it is necessary to consider the two variable fragment to get a decidable logic; and
adding the transitive closure of E↓ and E→ makes the satisiability problem harder. In this
fragment, Property 4 from Example 1.1 can also be expressed. But since only two variables
can be used at once, data joins are oten expressed in the following fashion:

∃x. library(x) ∧ ∀y. ¬E↓(y, x)

∧ ∃y. E↓(x, y) ∧ book(y)
∧ ∃x. E↓(y, x) ∧@author(x)
∧ ∃y. ¬(x = y) ∧ x ∼ y ∧@author(y)
∧ ∃x. E↓(x, y) ∧ book(x)
∧ ∃y. E↓(y, x) ∧ library(y) ∧ ∀x. ¬E↓(x, y)

his formula starts by following a irst path from the root, then jumps to a node with matching
datum thanks to the∼ operator, and inally follows the second path backwards until it reaches
the root again. Remark that we usually cannot check that we reached again the starting node
at the end—as this information has been lost during the navigation—but we can always check
whether a node is the root. Hence, typically only data joins with one path involving the root
can be translated in this logic.

1.2.2.2. Data Words. he First Order Logic on data words has also been investigated, by
Bojańczyk et al. [2011], where the +1 operator points to the next position, and the order
relation < allows to specify the relative positions between two variables. As for data trees,
only the two variable fragment is decidable. For instance, Property 1 from Example 1.2 can be
expressed by the formula

∀x. (b(x)⇒ ∃y. e(y) ∧ x < y ∧ x ∼ y).

However, Property 3 does not seem expressible with only two variables, as we need to specify
that the desired e position is between the b and s at hand.

Various other logics have been extended with a way to work with data. Linear Temporal
Logic introduced by Pnueli [1977] is the base of the Logic of Repeating Values [Demri et al.,
2012, 2016], and of Freeze LTL [Demri and Lazić, 2009; Figueira and Segouin, 2009; Lazić, 2011]
which uses the freeze quantiiers introduced by Alur and Henzinger [1994]. XPath can also
be seen as a logic on data words when working with the horizontal axes only [Figueira and
Segouin, 2009], since we are working with unranked trees. In these logics, the G modality
expresses that something holds in every future position, and the dual Fmodality expresses the
existence of a future position where some property is true. In addition, the ↓r operator stores
the datum of the current position in the register r, and the atom ↑r allows to test later in the
formula if the current position carries the datum stored in r.

Eॾ१ॳॶॲ५ 1.4. For instance, Property 1 from Example 1.2 can be expressed using freeze
quantiiers and tense logic by:

G (b⇒ ↓rF (e ∧ ↑r)).
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Furthermore, Property 3 can be expressed by:

G (b⇒ ↓rG (s⇒ ¬F (e ∧ ↑r))).

Moreover, some fragments of XPath have also been studied over data words [Figueira,
2012b; Figueira and Segouin, 2009]. Finally, the case of ininite data words has also been
considered, for instance by Lazić [2011] for freeze LTL, or by Colcombet and Manuel [2014]
concerning Fixpoint Logic on data words extending the modal µ-calculus.

1.2.2.3. Techniques. Many approaches have been developed to solve the satisiability prob-
lem of the considered logics. Regarding tree logics, some proof-theoretic techniques are some-
times used, for instance by Afanasiev et al. [2005]; ten Cate and Lutz [2009] for data-free logics,
or Abriola et al. [2017a] for data logics, where an axiomatisation of a logic is described, which
can lead to rewriting systems for query optimisation.

A diferent—model-theoretic—approach is used for instance by Figueira [2012a], where the
shape and size of models of the downward fragment of XPath are studied, to then search for a
small model of a given query. However, this approach does not yield any efective algorithm,
as the corresponding decision procedure consists of guessing a potential model of a given
shape and test if it is actually a model of the input.

he most common approach relies on automata-theoretic techniques—both for the data-
free case and for data logics—usually by building an enriched automaton recognising the mod-
els of a given formula and testing it for emptiness.

For instance, Vardi and Wolper [1986] capture the linear time Propositional Temporal
Logic with Büchi automata; and various tree automata are used to study branching logics
[Calvanese et al., 2009; ten Cate and Segouin, 2008; Vardi, 1998].

Concerning data logics, a data-automaton from Bojańczyk et al. [2011] consists of a leter-
to-leter transducer A and a inite automaton B. he transducer Amust be run irst on the in-
put data word—checking global properties—, thenB must accept every subword of the output
ofA induced by a datum—thus checking local properties for each datum. his idea of checking
both global and datum-speciic properties of a data word is also present in the class memory au-
tomata introduced by Björklund and Schwentick [2010], which are expressively equivalent to
data-automata. Another type of automaton to work with data words are the register-automata
introduced by Kaminski and Francez [1994], where a constant number of registers can store
data values encountered somewhere in the input, which can then be compared to the datum
carried by another position of the data word visited later in the run. his type of automata
is used for instance by Demri and Lazić [2009] with alternation to study freeze LTL, or to
investigate various fragments of XPath [Figueira, 2012b; Figueira and Segouin, 2009, 2017].

Even though their techniques are similar, the automata used for one speciic logic are oten
ad hoc for that logic, thus this approach is not really modular: each diferent logic requires a
tailored automaton model. Furthermore, such an approach may not easily lead to an optimal
procedure when studying fragments of smaller complexity for a given logic, as we will discuss
in Section 2.1. In order to avoid these downsides, we investigate in Part 1 how proof systems
could lead to algorithms of optimal complexity for such logics.

1.2.3. Fragments and Complexity. Data logics are the natural product of adding a way
to compare data stored at diferent positions of a model to some decidable navigational logics
working on the same models, but the newly obtained logics are oten undecidable. In that
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F९७ॻॸ५ 1.5. Inclusions and complexities of some logics over linear structures.

sense, various fragments of these logics have been studied, restricting the expressivity on the
navigational side to get back the decidability of the satisiability problem.

In the case of linear structures, the Linear Time Logic—which is PSPACE-complete [Sistla
and Clarke, 1985], both with only future-looking modalities or with past modalities as well—
have been extended bymultiple logics toworkwith data. hese fragments are presented below,
and the complexities and inclusions between them are illustrated in Figure 1.5.

• he Logic of Repeating Values (LRV) [Demri et al., 2016], which is evaluated on lin-
ear structures with multiple atributes (when working with only one atribute, these
structures coincide with data words). he logic is able to navigate to a future position
with an atribute equal (resp. diferent) to an atribute of the current position. Demri
et al. [2016] shows that the satisiability problem of LRV is 2EXPSPACE-complete, and
also consider its extended version where such navigation can also be done to the past
(PLRV), for which the satisiability problem is shown to be equivalent to the reach-
ability problem in VASS, which is currently known to be TOWER-hard [Czerwiński
et al., 2019] and in ACKERMANN [Leroux and Schmitz, 2019].
• Freeze LTL (LTL↓) [Demri and Lazić, 2009], which extends LTL by freeze quantiiers

à la Alur and Henzinger [1994] and is evaluated on data words. he logic can store
the datum of the current position in a register, navigates inside the structure as in
LTL, and test whether the datum of the current position matches the one stored
in a register. Its satisiability problem is undecidable when at least two registers
are allowed. When restricted with only one register (LTL↓1), its satisiability prob-
lem becomes ACKERMANN-complete,2 but remains undecidable when extended with

2When working with ininite data words, LTL↓
1 becomes undecidable, whereas the complexities of the other

logics do not change.
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F९७ॻॸ५ 1.6. Inclusions and complexities of some fragments of XPath.

past navigation (PLTL↓1). hese fragments contain the corresponding Logic of Re-
peating Values when restricting it with only one atribute. Moreover, LTL↓1 sub-
sumes the XPath on words fragment XPath(→+,=) [Figueira and Segouin, 2009],
which features data joins and can only navigate along the following-sibling
axis, and PLTL↓1 contains the corresponding XPath(←+,→+,=) fragment with the
preceding-sibling axis added.
• PLRV is also contained in BD-LTL from Kara et al. [2010], which is itself contained

in the bounded-reversal alternation-free fragment of the µ-calculus from Colcombet
and Manuel [2014]—denoted by BRAFµ on Figure 1.5.

he two variable fragment of the First Order Logic over data words has also been studied,
with various signatures ranging among <, +1 and ∼. All of them are NEXP-complete [Bo-
jańczyk et al., 2011; Etessami et al., 2002], except for FO2(<,+1,∼)which is equivalent to the
reachability problem in VASS [Bojańczyk et al., 2011]. For comparison, the least expressive
fragment, FO2(<), is equally expressive to the Tense Logic with past navigation [Etessami
et al., 2002] (as denoted by the double edge on Figure 1.5), which is the fragment of LTL with
past with only the G and H modalities (and their dual F and P), and for which the satisia-
bility problem is NP-complete [Ono and Nakamura, 1980]; and the most expressive fragment,
FO2(<,+1,∼), is subsumed by the µ-calculus fragment from Colcombet and Manuel [2014].

Concerning XPath on trees, the complexities and relations between various fragments is
summed up in Figure 1.6. he data-free fragment named XPath Core 1.0—containing nav-
igation in every direction—is EXP-complete, while Data-XPath is undecidable. Here again
decidability can be recovered by restricting the navigation allowed:

• Downward-XPath, where only navigation to a child or a descendant is possible, is
EXP-complete [Figueira, 2012a].
• Forward-XPath, extending Downward-XPath with navigation to following-siblings,

is decidable but ACKERMANN-hard [Figueira, 2012b; Figueira and Segouin, 2009].
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• Vertical-XPath, extending Downward-XPath with converse navigation to the par-
ent or an ancestor, is decidable but ACKERMANN-hard [Figueira and Segouin, 2009,
2017].

Other fragments of XPath have been studied. Jurdziński and Lazić [2007] developed a modal
µ-calculus which is subsumed by ForwardXPath. he Core 2.0 fragment of XPath extends its
1.0 version, in particular by adding a way to test whether the nodes selected by two queries
are the same; ten Cate and Lutz [2009] proved that this fragment is TOWER-complete. It is
contained in NonMixing-XPath introduced by Czerwinski et al. [2017], where a query cannot
mix equality tests and inequality tests between data, which contains XPath Core 2.0 and is
still TOWER-complete. Bojańczyk et al. [2009] also investigate a fragment of XPath containing
Core 1.0 that can be encoded in EMSO2, which is TOWER-hard and for which decidability
is open. On the other hand, removing negation from Data-XPath leads to an NP-complete
fragment, as shown in Geerts and Fan [2005]. his illustrates that there is a trade-of to be
made between expressivity and complexity when choosing a decidable fragment that will it
best one’s needs. he concrete relevance of these fragments will be investigated in Part 2.

1.3. Contributions

As shown in the previous section, many logics on data words and data trees have been
developed. In each case, their satisiability problem has been studied. However, for most of
them, this problem is either undecidable or non elementary, and the ones of lowest complexity
are also the lowest in expressivity. It is natural to investigate this trade-of in a real-world
seting, and look for other ways to increase the practical coverage of a logic without increasing
its complexity.

Moreover, we saw that the study of these logics involvedmany diferent techniques, which
were not always very modular: it can be diicult to adapt the techniques from one logic to an-
other closely related logic. One may wonder whether proof-theoretic techniques could avoid
this problem.

Answering these questions, the contributions of this thesis are divided in two parts.

1.3.1. Efective Proof Systems. First, we develop techniques to solve the validity problem—
dual of the satisiability problem—of some modal and data logics on linear structures via proof
systems.

V१ॲ९४९ॺॿ Pॸॵ२ॲ५ॳ
Fixed: A logic L.
Input: A formula ϕ from L.
uestion: For all models M and for all positions w of M, does M, w |= ϕ?

One of the most famous kinds of proof systems is the sequent calculus [Gentzen, 1935], but
such proof systems are oten not expressive enough to capture modal logics especially with
converse navigation. herefore, we turn towards hypersequents—one of the various extensions
of sequents—inspired by how Indrzejczak [2016] handled the future and past navigation inside
linear structures.

he main beneit from using proof systems is modularity: instead of providing an ad hoc
calculus for a given logic, we developed a proof system that can be easily enriched to capture
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various logics, and resulting in sound and complete calculi for each of them. Moreover, we
focused on having a proof strategy of optimal complexity in every logic we studied. More
precisely:

• In Chapter 3, we investigate Kt4.3, the tense logic over linear frames, and provide
a sound and complete hypersequent calculus with optimal coNP proof search. his
chapter corresponds to the work from Baelde et al. [2018a]. However, several im-
provements have been made in later works and have been incorporated in this chap-
ter.
• In Chapter 4, we enrich the work of Chapter 3 to provide a sound and complete proof

system when working over ordinals, i.e. well-founded structures. his hypersequent
calculus also has optimal coNP proof search, and can be easily adapted to work with
a given order-type. his chapter is an updated version of the work from Baelde et al.
[2018b].
• In Chapter 5, we extend the previous proof system to work with freeze LTL [Demri

and Lazić, 2009]. As this logic is undecidable, we exhibit a decidable fragment—
equivalent to FO2(<,∼)—for which our hypersequent calculus is sound and com-
plete, and we present a proof strategy of optimal coNP complexity. his chapter cor-
responds to the work from Lick [2019].

his last proof system for logics on data ordinals could serve as a stepping stone for the
study of more complex logics, such as fragments of XPath. In order to go further than the work
of Baelde et al. [2016], we need to handle bidirectional modalities, which we did in the case
of linear structures. Moreover, our work could be used to handle XPath navigation between
siblings. However, our proof systems beneit good algorithmic properties—proof search is in
coNP—, that will be lost when working with more complex logics.

1.3.2. XPath in the Real World. As shown on Figure 1.6, many decidable fragments
of XPath have been studied, with various complexities and expressiveness. he goal of the
second part is to investigate the practical relevance of these fragments developed for the study
of XPath, and to examine what kind of extension could be reasonably made to a fragment in
order to improve its coverage without impacting the complexity of its satisiability problem.

• To that end, we developed a benchmark [Baelde et al., 2019b] by parsing XPath
queries [Baelde et al., 2019c] from many open source projects and outputing their
Abstract Syntax Trees (AST) in an XML document. We then wrote Relax NG schemas
accepting the AST of the queries belonging to a given fragment, for each fragment
and its extensions, and wemeasured which fragments captured the most queries. he
development of these tools is presented in Chapter 6.
• In Chapter 7, we present in more detail the XPath fragment we considered, and pro-

vide the irst results from our benchmark.
• In Chapter 8, we investigate what extensions can be made to these fragments without

afecting the complexity of the satisiability problem. We provide both positive and
negative answers, and present the inal results of our benchmark for the extended
fragments.

his survey allowed to identify which fragments and which extensions should be the focus of
future works about XPath. his part corresponds to the work from Baelde et al. [2019a].
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2.1. Introduction

Solving Satisiability. Some of the algorithmic results for the logics mentioned in Chap-
ter 1 have been obtained via model-theoretic techniques (see S1.2.2.3), by showing that if a
formula has a model, then it has a ‘small’ one, and it is actually possible to proceed similarly
for the logics that we will study in this part. However, as the resulting algorithms consist
essentially in guessing a model, they are impractical as they are unlikely to avoid the (high)
worst case complexity of the problem. In the case of the full linear temporal logic, this has
motivated the use of automata-theoretic techniques [Bruyère and Carton, 2007; Demri and Ra-
binovich, 2010; Rohde, 1997; Vardi and Wolper, 1986], typically by building an automaton of
at most exponential-size recognising the set of models of the formula: checking the language
non-emptiness of the automaton can then be performed on-the-ly in PSPACE and can rely in
practice on a rich algorithmic toolset. However, this approach may lack modularity since the
automata used to study a given logic are usually ad hoc objects speciically designed for the
logic at hand. Moreover, the tense logic [Blackburn et al., 2001; Cocchiarella, 1965]—presented
in Section 2.4—is an NP-complete sublogic of LTL; and it is not immediate how to tailor the
approach of Vardi [1998] and Demri and Rabinovich [2010] to recover an optimal NP upper
bound, because the automata for tense logic may require exponential-size. Finally, if one’s
interest is to check that a formula ϕ is valid, neither the model-theoretic nor the automata-
theoretic approach yields a ‘natural’ certiicate that could be checked by simple independent
means.

Proof heoretic Approach. All these considerations motivate our use of proof-theoretic tech-
niques. In their simplest form, those can be Hilbert-style axiomatisations which, in the context
of modal logic, allow to characterise valid formulæ in a way that is modular with respect to

15
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the considered classes of models. However, these systems are not directly amenable to auto-
mated reasoning, which is rather achieved throughmore structured proof systems, the seminal
example being Gentzen’s sequent calculus.

Sequent Calculi. Our own interest in (enriched) sequent calculi, compared to e.g. axiomati-
sations, is that their associated proof-search procedures oten yield decidability and even com-
plexity results for the satisiability and validity problems. Moreover, contrary for instance to
automata-theoretic approaches, they are also modular, allowing them to be easily adapted to
handle extensions or fragments of the logic at hand. Furthermore, their calculus rules can oten
be obtained from the axiomatisation of the logic. Finally, such proof systems take advantage
of the link between syntax and semantics to reason only with syntactic objects.

However, basic sequent calculi are oten ill-suited formodal logics, as wewill see at the end
on this chapter: the class of frames underlying the logic is typically diicult to capture. here-
fore, more expressive variants of the sequent calculus have been developed, such as labelled se-
quents [Negri, 2005], display calculus [Belnap, 1982; Kracht, 1996], nested sequents [Brünnler,
2009; Kashima, 1994; Lellmann, 2015; Poggiolesi, 2009a,b], linear nested sequents [Lellmann,
2015] or hypersequents [Avron, 1991; Indrzejczak, 2012, 2015, 2016, 2017; Kurokawa, 2014].
hese enriched formalisms remain quite modular and sustain extensions simply by adding a
few rules. hey can be exploited to provide optimal complexity solutions to the validity prob-
lem directly by proof search [Baelde et al., 2016; Das and Pous, 2017; Kanovich, 1991; Lincoln
et al., 1992], which may sometimes avoid the worst-case complexity of the problem and rely
in practice on various heuristics. Finally, this approach obviously yields a proof of validity as
a certiicate in case of success.

Contents. In this chapter, we illustrate our approach on some simple logics. In Section 2.4,
we introduce the Tense Logic that will be at the heart of the logics studied in this part. he
design of an efective proof system for this logic and its classical extensions will be the focus
of Chapter 3. In Chapter 4, we show how to extend this calculus when working with the
Tense Logic over ordinals, while still having proof search of optimal complexity. Finally, in
Chapter 5, we extend the logic from Chapter 4 with freeze quantiiers à la Alur and Henzinger
[1994]—as done by Demri and Lazić [2009] for LTL—, and provide new calculus rules to handle
them. We then exhibit a decidable fragment of the obtained logic, along with a proof strategy
leading again to a proof search algorithm of optimal coNP complexity.

2.2. Propositional Logic

We start by recalling the syntax and semantics of the Propositional Logic, and by present-
ing a sequent calculus à la Gentzen [1935] for that logic.

2.2.1. Syntax. Let Φ be a countable set of propositional variables. he Propositional Logic
has the following syntax:

ϕ ::= ⊥ | p | ϕ ⊃ ϕ (where p ∈ Φ)

he symbol⊃ represents the logical implication. Along with⊥ (falsum), it can express the
other Boolean connectives:

⊤ = ⊥ ⊃ ⊥, ¬ϕ = ϕ ⊃ ⊥, ϕ ∨ ψ = (ϕ ⊃ ⊥) ⊃ ψ, ϕ ∧ ψ = (ϕ ⊃ (ψ ⊃ ⊥)) ⊃ ⊥.



2.2. PROPOSITIONAL LOGIC 17

2.2.2. Semantics. A valuation is a function V : Φ→ {0, 1}mapping each variable from
Φ to a Boolean. Given such a function, we deine the satisfaction relation V |= ϕ, where ϕ is a
formula, by structural induction on ϕ:

V 6|= ⊥
V |= p if V (p) = 1

V |= ϕ ⊃ ψ if if V |= ϕ then V |= ψ

2.2.3. Sequent Calculus. he propositional satisiability problem (SAT) has been the
irst problem to be proved NP-complete [Cook, 1971]. his problem, along with its dual valid-
ity problem, have been thoroughly studied, as the development of eicient and scalable SAT
solvers in the last decade illustrates [Malik and Zhang, 2009]—this is oten referenced as the
“SAT revolution” [Vardi, 2014]. To that end, many proof-theoretic approaches have been de-
signed. One of the most famous proof systems is the sequent calculus. It manipulates sequents,
which are syntactic objects containing formulæ, and on which some rules can be applied.

D५६९ॴ९ॺ९ॵॴ 2.1. A sequent (denoted S) is a pair of two inite sets of formulæ, writen
Γ ⊢ ∆. It is satisied by a valuation V if, whenever all the formulæ of Γ are satisied, at least
one formula of ∆ if also satisied. In that case, we write V |= Γ ⊢ ∆.

Following that deinition, a sequent is valid when any valuation satisies it.
here exist many versions of sequent calculi for the Propositional Logic, and we consider

here a cut-free and weakening-free system, as it contains only few rules and is well adapted to
proof search. he rules of this sequent calculus are presented in Figure 2.1.

ϕ,Γ ⊢ ∆, ϕ
(ax)

Γ,⊥ ⊢ ∆
(⊥)

ϕ ⊃ ψ,Γ ⊢ ∆, ϕ ϕ ⊃ ψ, ψ,Γ ⊢ ∆

ϕ ⊃ ψ,Γ ⊢ ∆
(⊃ ⊢)

ϕ,Γ ⊢ ∆, ψ, ϕ ⊃ ψ

Γ ⊢ ∆, ϕ ⊃ ψ
(⊢ ⊃)

F९७ॻॸ५ 2.1. he rules of the propositional sequent calculus.

A rule from Figure 2.1 allows to derive a sequent conclusion from a inite number of
premises. Every rule has an active formula in its conclusion. In every example, such formulæ
will be displayed in orange. A sequent S is provable if it has a derivation in the system from
Figure 2.1, i.e., if there exists a inite proof tree such that:

• the root of the tree is S;
• every internal node of the tree is a sequent whose children correspond to premises

of a rule that can be applied on that sequent;
• every leaf is closed by either (ax) or (⊥).

Eॾ१ॳॶॲ५ 2.2 (Peirce’s Law). For instance, the formula ϕ = ((p ⊃ q) ⊃ p) ⊃ p is provable,
as shown in Figure 2.2.
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(p ⊃ q) ⊃ p, p ⊢ p, ϕ, q, p ⊃ q
(ax)

(p ⊃ q) ⊃ p ⊢ p, ϕ, p ⊃ q
(⊢ ⊃)

(p ⊃ q) ⊃ p, p ⊢ p, ϕ
(ax)

(p ⊃ q) ⊃ p ⊢ p, ϕ
(⊃ ⊢)

⊢ ((p ⊃ q) ⊃ p) ⊃ p
(⊢ ⊃)

F९७ॻॸ५ 2.2. Proof of Peirce’s Law from Example 2.2 in the sequent calculus
from Figure 2.1.

Eॾ१ॳॶॲ५ 2.3. Other rules are classically used to handle the other Boolean connectives.
For instance, the following rule can be applied on a disjunction on the let-hand side of the
turnstile:

Γ, ϕ ⊢ ∆ Γ, ψ ⊢ ∆

Γ, ϕ ∨ ψ ⊢ ∆
(∨ ⊢)

his rule is admissible in our calculus, as it corresponds to the following inference on the
formula (ϕ ⊃ ⊥) ⊃ ψ (where some useless formulæ has been discarded):

Γ, ϕ ⊢ ∆

Γ ⊢ ϕ ⊃ ⊥,∆
(⊢ ⊃)

Γ, ψ ⊢ ∆

Γ, (ϕ ⊃ ⊥) ⊃ ψ ⊢ ∆
(⊃ ⊢)

2.2.4. Soundness and Completeness. he main natural question about a proof system
is the link between provable objects and valid objects. We say that a sequent calculus is sound
with respect to a logic L if all provable sequents are valid in L; and that it is complete with
respect to L if all L-valid sequents are provable.

he completeness of a proof system can be established in various ways. Depending on how
it is proved, some algorithmic results can be derived. For instance, the following properties
suice to prove the completeness of our sequent calculus:
inite branch: there is a proof strategy ensuring that any proof atempt will generate a inite

partial proof tree, in which some leaves may be unjustiied but on which the proof
strategy does not allow any additional derivation steps. Such sequents on which the
proof strategy is stuck are called failure sequents.

failure: all failure sequents are invalid.
invertibility: all the rules are invertible, i.e., for any instance of a deduction rule where the

conclusion hypersequent is valid, all premisses are also valid.
he inite branch property ensures that proof search always terminates, andwill reach a failure
sequent in initely many steps if the input is not provable. In such a case, the failure property
establishes that the proof search actually reached an invalid sequent, and the invertibility
property allows to deduce that every sequent along that branch of the partial proof tree are
invalid; hence, in particular, that the input—at the root—is invalid. Moreover, the inite branch
property can be reined to obtain efective complexity bounds from this proof of completeness.

For instance, a trivial proof strategy for the sequent calculus from Figure 2.1 is to forbid a
rule application if one of the premises would be equal to its conclusion. For this proof strategy,
all branches of a proof atempt are of polynomial length because the calculus has the subfor-
mula property. Since the invertibility property ensures no backtracking is needed during proof
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search, this gives an optimal coNP proof search algorithm for solving the propositional validity
problem.

Eॾ१ॳॶॲ५ 2.4. For instance, the formula (p ⊃ q) ⊃ q is not provable in our sequent calculus.
Proof search on this formula will lead to this partial proof tree, reaching the failure sequent
p ⊃ q ⊢ p, q, (p ⊃ q) ⊃ q. When reaching such a failure sequent, a counter-model is simply
obtained by taking the valuation where an atom is true if it appears on the let-hand side of the
turnstile, and false otherwise. In that case, the valuation V (p) = V (q) = 0 is a counter-model
of the failure sequent, and therefore of the original formula by invertibility.

p ⊃ q ⊢ p, q, (p ⊃ q) ⊃ q p ⊃ q, q ⊢ q, (p ⊃ q) ⊃ q
(ax)

p ⊃ q ⊢ q, (p ⊃ q) ⊃ q
(⊃ ⊢)

⊢ (p ⊃ q) ⊃ q
(⊢ ⊃)

We will follow the same approach to prove completeness of the other proof systems pre-
sented in this part, as it will also justify that the provided proof strategies entail optimal proof
search algorithms.

2.3. Future Looking Logic on Linear Frames

Modal logics are expressive and intuitive languages for describing properties of relational
structures. Accordingly, when investigating properties of linear frames, it is oten quite useful
to express them using a tense logic [Prior, 1957] able to reason on temporal lows. For instance,
LTL [Pnueli, 1977; Sistla and Clarke, 1985] and CTL [Clarke and Emerson, 1981] extend tense
logic and are widely used for verifying computer programs.

In such a logic, the Propositional Logic is extended with modal operators. hen, a modal
formula is not evaluated against just a valuation, but against a relational structure in which
modalities allow to navigate. Such a model is called a Kripke structure, consisting of a set of
worlds, each having its own valuation, and relations between these worlds associated with the
diferent modalities of our logic.

For instance, the modal logic K4.3 works on linear structures, and has a modality G quan-
tifying over future worlds.

2.3.1. Syntax. More precisely, the syntax of Propositional Logic is extended as follows:

ϕ ::= ⊥ | p | ϕ ⊃ ϕ | Gϕ (where p ∈ Φ)

Formulæ Gϕ are called modal formulæ. Intuitively, Gϕ expresses that ϕ holds ‘globally’ in
all future worlds reachable from the current one. Moreover, we deine, as is common, Fϕ =
¬G¬ϕ expressing that ϕ will hold ‘in the future.’

2.3.2. Semantics. A frame is a pair F = (W,R), where W is a set of worlds, and R ⊆
W×W is a binary relation overW . AKripke structure is a pairM = (F, V ), whereF = (W,R)
is a frame, and V : Φ → 2W is a valuation function. Given such a structure, we deine the
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satisfaction relationM, w |= ϕ, wherew ∈W and ϕ is a formula, by structural induction on ϕ:
M, w 6|= ⊥
M, w |= p if w ∈ V (p)

M, w |= ϕ ⊃ ψ if if M, w |= ϕ then M, w |= ψ
M, w |= Gϕ if ∀w′ ∈W such that wR w′, M, w′ |= ϕ

When M, w |= ϕ, we say that (M, w) is a model of ϕ.
A formula that is satisied in all worlds of all structures is said to be valid. In this part, we

shall not consider the validity problem in general, but only in restricted classes of structures.
Namely, we will consider the logic of linear frames, i.e., the formulæ that hold in all structures
whose accessibility relation is transitive and non-branching.

his logic can be deined axiomatically, as the set of theorems generated by necessitation,
modus ponens and substitution from classical tautologies and the axioms [Blackburn et al.,
2001, p. 195]:

G (p ⊃ q) ⊃ (G p ⊃ G q) (K)
F F p ⊃ F p (4)

F p ∧ F q ⊃ F (p ∧ F q) ∨ F (p ∧ q) ∨ F (q ∧ F p) (.3)
he irst axiom K is simply the Kripke schema. he next axiom, dubbed 4, corresponds

to the transitivity ofR. More precisely, canonical models of 4 are transitive [Blackburn et al.,
2001]. Similarly, canonical models of the trichotomy axiom .3 have accessibility relationships
that are non-branching to the right.

2.3.3. Sequent Calculus. he propositional sequent calculus from Figure 2.1 can be ex-
tended with the rule from Figure 2.3 dealing with G formulæ. In this rule, Γ,Γ′,∆ are sets of
formulæ, and G [Γ] = {Gϕ | ϕ ∈ Γ}.

(

Γ,G [Γ] ⊢ (ϕi)i∈I , (Gϕj)j /∈I

)

∅6=I⊆{1,...,n}

G [Γ],Γ′ ⊢ Gϕ1, . . . ,Gϕn,∆
(G)

F९७ॻॸ५ 2.3. he modal rule extending our sequent calculus.

To beter understand this rule, let us convert the axiom .3 with G modalities:
G (p ∨ G q) ∧ G (p ∨ q) ∧ G (q ∨ G p) ⊃ G p ∨ G q.

Soundness. Generalized to n propositional variables, we obtain something of the shape of
the rule from Figure 2.3. Intuitively, whenworkingwith the propositional rules from Figure 2.1,
the proof search is working on a ixedworld inside a structure, andwhen using the rule (G), the
proof search jumps to a future world of the structure. Hence, since our models are transitive,
the premises can keep modal formulæ from G [Γ] on the let-hand side of the turnstile, as well
as their subformulæ from Γ, because all these formulæ can be assumed in a future position
if formulæ from G [Γ] were assumed on the current position. Moreover, non-modal formulæ
from Γ′ and ∆ must be discarded, as we have no information about whether they hold in the
future. here is no need to remember these formulæ since this logic cannot go back to the past.
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p ⊢ p
(ax)

G q ⊢ G q
(ax)

p ∨ G q ⊢ p,G q
(∨ ⊢)

p ⊢ p
(ax)

q ⊢ q
(ax)

p ∨ q ⊢ p, q
(∨ ⊢)

q ⊢ q
(ax)

G p ⊢ G p
(ax)

q ∨ G p ⊢ G p, q
(∨ ⊢)

G (p ∨ G q),G (p ∨ q),G (q ∨ G p) ⊢ G p,G q
(G)

....
⊢ G (p ∨ G q) ∧ G (p ∨ q) ∧ G (q ∨ G p) ⊃ G p ∨ G q

F९७ॻॸ५ 2.4. Proof of the axiom .3 in our calculus.

Finally, since our models are non-branching to the right and transitive, the rule must consider
all the possible orders in which the formulæ ϕi will be realized in the future.

Eॾ१ॳॶॲ५ 2.5. he axiom .3 can be proved in our calculus, as shown in Figure 2.4. he irst
propositional steps are omited, useless formulæ are discarded for beter readability, and the
admissible rule (∨ ⊢) from Example 2.3 is used to deal will disjunctions on the let-hand side
of a sequent.

Since the rule (G) can discard some formulæ, a natural proof search strategy is to only use it
as a last resort: we only apply this rule if no other rule can be applied, and in such an instance
we always take Γ′ and ∆ as small as possible, in order to not discard any modal formula.
Following this strategy, our proof system still enjoys the invertibility property. Moreover,
it also enjoys a inite branch property: the branches of a proof search can be polynomially
bounded by the size of the input, since the premises of the new rule (G) only have subformulæ
from its conclusion, and at least one formula of the form Gϕ on the right-hand side of the
turnstile is unboxed. Finally, it has the failure property since a counter-model can be extracted
from any failure branch: along such a branch, our strategy ensures that any time the rule (G)
is applied, its conclusion is saturated for non modal formulæ. hus, the counter-model we
construct will have a world for every conclusion sequent of a (G) rule applied in the failure
branch, with those worlds ordered as their corresponding sequents appear along the branch,
and the valuation for every world can be constructed as for the propositional calculus.

Hence, this extended sequent calculus is sound and complete with respect to the logic
K4.3 [Lick, 2016], and with coNP proof search.

his illustrates how proof systems are modular: we obtained a new sequent calculus sim-
ply by adding a rule to the previous one, which was designed for a smaller logic.

2.4. Tense Logic on Linear Frames

Wenow focus onKt4.3 [Blackburn et al., 2001; Cocchiarella, 1965], the tense logic of linear
frames, which also have a symmetrical H modality to express what holds in the past. Even
though it is less expressive than LTL, according to Sistla and Clarke [1985], a large number
of LTL formulæ fall into Kt4.3 in practice. he former sequent calculus seems unit to work
with this extended logic, as we cannot just forget some information about the current world
any more when jumping to the future: we might need this information later during the proof
search when dealing with a past formula. Somewhat surprisingly for the logic lying at the
heart of LTL with past modalities—which is largely studied in veriication [Laroussinie et al.,
2002; Lichtenstein et al., 1985]—, to the best of our knowledge, a sound and complete sequent-
style calculus forKt4.3was recently proposed by Indrzejczak [2016], for which cut elimination
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has been proved by Indrzejczak [2017]. his is an ordered hypersequent calculus, where the
structure of the hypersequents relects the linear structure of Kt4.3 frames. However, this
calculus does not yield a proof-search algorithm, even though Kt4.3 satisiability is known to
be decidable and even NP-complete [Ono and Nakamura, 1980, see Section 2.4.6].

In this section, we present Indrzejczak’s calculus, and discuss what forbids us from obtain-
ing an efective proof search algorithm. We start by recalling the deinition of Kt4.3.

2.4.1. Modal Logic on Weak Total Orders. We now consider tense logics with two
unary temporal operators, over a set Φ of propositional variables, with the following syntax:

ϕ ::= ⊥ | p | ϕ ⊃ ϕ | Gϕ | Hϕ (where p ∈ Φ)

A new type of modal formulæ of the form Hϕ is now available. Intuitively, just like Gϕ
expresses that ϕ holds ‘globally’ in all future worlds reachable from the current one, Hϕ ex-
presses that ϕ holds ‘historically’ in all past worlds from which the current world is accessible.
Moreover, similarly to Fϕ = ¬G¬ϕ expressing that ϕ will hold ‘in the future’, we deine
Pϕ = ¬H¬ϕ expressing that ϕ was true ‘in the past.’

2.4.2. Semantics. As in Section 2.3, our formulæ shall be evaluated on Kripke structures.
A frame is a pair F = (W,≾), whereW is a set of worlds, and≾ ⊆W ×W is a binary relation
over W . A structure is a pair M = (F, V ), where F = (W,≾) is a frame, and V : Φ → 2W

is a valuation function. Given such a structure, we deine the satisfaction relation M, w |= ϕ,
where w ∈W and ϕ is a formula, by structural induction on ϕ:

M, w 6|= ⊥
M, w |= p if w ∈ V (p)

M, w |= ϕ ⊃ ψ if M, w |= ϕ implies M, w |= ψ
M, w |= Gϕ if ∀w′ ∈W such that w ≾ w′, M, w′ |= ϕ
M, w |= Hϕ if ∀w′ ∈W such that w′ ≾ w, M, w′ |= ϕ

When M, w |= ϕ, we say that (M, w) is a model of ϕ.
A formula that is satisied in all worlds of all structures is said to be valid. As in the previous

section, we shall not consider the validity problem in general, but only over weak total orders,
i.e., the formulæ that hold in all structures whose accessibility relation≾ is transitive and total.
As forK4.3, this logic can be deined axiomatically, as shown next. Later in Chapter 3, we will
study further restrictions of the logic.
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2.4.3. Axiomatisation. he logic Kt4.3 is deined as the set of theorems generated by
necessitation, modus ponens and substitution from classical tautologies and the axioms [Black-
burn et al., 2001, p. 207]:

G (p ⊃ q) ⊃ (G p ⊃ G q) (Kr)
H (p ⊃ q) ⊃ (H p ⊃ H q) (Kℓ)

p ⊃ GP p (tr)
p ⊃ HF p (tℓ)

F F p ⊃ F p (4)
F p ∧ F q ⊃ F (p ∧ F q) ∨ F (p ∧ q) ∨ F (q ∧ F p) (.3r)
P p ∧ P q ⊃ P (p ∧ P q) ∨ P (p ∧ q) ∨ P (q ∧ P p) (.3ℓ)

he irst two axioms are simply the Kripke schema, given for each modality. Next we
ind the (t) axioms, which are obviously satisied in our seting since the two modalities are
converses of each other.1 Similarly to K4.3, (4) corresponds to the transitivity of ≾; and the
canonical models of the trichotomy axioms .3 have accessibility relationships that are non-
branching to the let and to the right. Altogether, this implies the following completeness
result:

F१३ॺ 2.6 ([Blackburn et al., 2001, p. 222]). A formula is a theorem of Kt4.3 if it is valid in
all structures whose relation is transitive and total, i.e., in weak total orders.

he logic Kt4.3 is perhaps beter known for being complete with respect to the class of
strict total orders [Blackburn et al., 2001, hm. 4.56]. As we will see later, the hypersequent
calculus from Indrzejczak [2016] focuses on this characterisation.

2.4.4. First-Order Logic with Two Variables. he logic Kt4.3 has been shown to be
exactly as expressive as the two-variable fragment of irst-order logic over linear orders by
Manuel and Sreejith [2016]. We recall this result in this section.

2.4.4.1. Syntax and Semantics. We consider irst-order formulæwith two variables x and y
over the signature (=, <, (p)p∈Φ) where = and < are binary relational symbols and each p is
a unary relational symbol:

ψ ::= z = z′ | z < z′ | p(z) | ⊥ | ψ ⊃ ψ | ∀z.ψ (irst-order formulæ)

where z, z′ range over {x, y} and p over Φ. We call this logic FO2(<).
We interpret our formulæ over structures M = (W,<, V ) where = is interpreted as the

equality over W , < as the strict total ordering of W , and each p as V (p) for the valuation
V : Φ→ 2W .

1In a standard bi-modal seting, we would have two a priori unrelated relations. he t axioms would then
force the two relations to be converses of each other in canonical models.
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hat is, we say thatM satisiesψ under an assignment σ : {x, y} →W , writenM, σ |= ψ,
in the following inductive cases:

M, σ 6|= ⊥
M, σ |= z = z′ if σ(z) = σ(z′)

M, σ |= z < z′ if σ(z) < σ(z′)

M, σ |= p(z) if σ(z) ∈ V (p)

M, σ |= ψ ⊃ ψ′ if M, σ |= ψ implies M, σ |= ψ′

M, σ |= ∃z.ψ if ∃w ∈W, M, σ[w/z] |= ψ

where σ[w/z] is the updated assignment mapping z to w and the remaining variable z′ ∈
{x, y} \ {z} to σ(z′).

2.4.4.2. Equivalence with Kt4.3. Given an FO2(<) formula ϕ(z) with one free variable z,
Etessami et al. [2002] show how to construct a Kt4.3 formula ϕ′ such that, for all strict totally
ordered structures M = (W,<, V ), M, [w/z] |= ϕ if and only if M, w |= ϕ′, where [w/z] is
the variable assignment mapping z to w.

F१३ॺ 2.7 ([Etessami et al., 2002, hm. 2]). Every FO2(<) formula ϕ(x) can be converted to
an equivalent Kt4.3 formula ϕ′ with |ϕ′| ∈ 2poly(|φ|).

Pॸॵॵ६. We briely recall how the proof works. he proof from Etessami et al. [2002]
consist irst in puting ϕ(x) in Scot normal form, and then constructing its translation by
structural induction. Ater multiples steps—involving an exponential blow-up—, they obtain
the following formula equivalent to ϕ(x):

∨

γ̄∈{⊤,⊥}s

(

∧

i<s

(ξi(x)↔ γi) ∧
∨

τ∈Υ

∃y . (τ(x, y) ∧ βτ (y, γ̄))

)

where each of the ξi have a quantiier depth strictly lower than ϕ (hence can be translated
by induction hypothesis), and where τ(x, y) is what they call an order type, and expresses
which relations hold between x and y. By βτ , we denote the formula β where every atomic
order formula have been replaced by either ⊤ or ⊥, according to τ . At this point, assuming
by induction hypothesis that ψ′ is the translation of some formula ψ(x), we need to provide a
translation to a formula of the form ∃y(τ(x, y)∧ψ(y)). hey consider threemutually exclusive
cases of such τ(x, y) in the following table, where τ〈ψ〉 denotes the translation of ∃y(τ(x, y)∧
ψ(y)):

τ(x, y) τ〈ψ〉
x = y ψ′

x < y Fψ′

y < x Pψ′

□

Although the proof of Etessami et al. [2002, hm. 2] is given for the case of the strict total
orderω—i.e., forω-words over the alphabet 2Φ—, it actually does not rely on this speciic frame
and applies similarly to arbitrary strict total orders.
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Hence, developing an optimal NP procedure for the satisiability problem of Kt4.3 will
also lead to an optimal NEXP procedure for the satisiability problem of FO2(<). his will be
developed in Section 3.4.

2.4.5. A First Proof System for Kt4.3. Indrzejczak [2016] proposed a sound and com-
plete calculus for Kt4.3 using the framework of ordered hypersequents (aka. linear nested
sequents [Lellmann, 2015]): his calculus works with lists of sequents rather than the usual
multisets of sequents of hypersequent calculi. If s1, · · · , sn are sequents, we write s1 ; · · · ; sn
to denote the hypersequent consisting of the ordered list of s1, · · · , sn. he semantics of a
sequent remains the same, and the semantics of ordered hypersequents relies on a mapping
from ordered sequents to worlds that are ordered accordingly.

D५६९ॴ९ॺ९ॵॴ 2.8 ([Indrzejczak, 2016, Def. 5.1]). For anyKt4.3-modelM and hypersequent
H = s1 ; · · · ; sn, we say that M is a model ofH (writen M |= H) if for all worlds t1, · · · , tn
of M, if t1 ≾ t2 ≾ · · · ≾ tn, then there exists i ≤ n such that M, ti |= si.

Following that deinition, a hypersequent H is valid if it is satisied by every model. his
extension allows for a natural calculus, enjoying the subformula property and extending nicely
to accommodate semantic restrictions such as unboundedness and density.

he calculus rules from Indrzejczak [2016] are presented in Figures 2.5 and 2.6.

H1 ; Γ, ϕ ⊢ ϕ,∆ ;H2
(ax)

H1 ; Γ, ϕ ⊢ ψ,∆ ;H2

H1 ; Γ ⊢ ϕ ⊃ ψ,∆ ;H2
(⊢ ⊃)

H1 ; Γ ⊢ ϕ,∆ ;H2 H1 ; Γ, ψ ⊢ ∆ ;H2

H1 ; Γ, ϕ ⊃ ψ ⊢ ∆ ;H2
(⊃ ⊢)

F९७ॻॸ५ 2.5. Propositional Rules from Indrzejczak [2016].

H ; Γ ⊢ ∆; ⊢ ϕ

H ; Γ ⊢ Gϕ,∆
(⊢ G )

H1 ; Γ ⊢ ∆ ; · · · ; Π, ϕ ⊢ Σ ;H2

H1 ; Γ,Gϕ ⊢ ∆ ; · · · ; Π ⊢ Σ ;H2
(G ⊢)

⊢ ϕ ; Γ ⊢ ∆ ;H

Γ ⊢ Hϕ,∆ ;H
(⊢ H )

H1 ; Π, ϕ ⊢ Σ ; · · · ; Γ ⊢ ∆ ;H2

H1 ; Π ⊢ Σ ; · · · ; Γ,Hϕ ⊢ ∆ ;H2
(H ⊢)

H1 ; Γ ⊢ ∆; ⊢ ϕ ; Π ⊢ Σ ;H2 H1 ; Γ ⊢ ∆ ; Π ⊢ ϕ,Σ ;H2 H1 ; Γ ⊢ ∆ ; Π ⊢ Gϕ,Σ ;H2

H1 ; Γ ⊢ Gϕ,∆ ; Π ⊢ Σ ;H2
(⊢ G ′)

H1 ; Π ⊢ Σ; ⊢ ϕ ; Γ ⊢ ∆ ;H2 H1 ; Π ⊢ ϕ,Σ ; Γ ⊢ ∆ ;H2 H1 ; Π ⊢ Hϕ,Σ ; Γ ⊢ ∆ ;H2

H1 ; Π ⊢ Σ ; Γ ⊢ Hϕ,∆ ;H2
(⊢ H ′)

F९७ॻॸ५ 2.6. Modal Rules from Indrzejczak [2016].

For example, the calculus of Indrzejczak [2016] allows the following inference:
Γ ⊢ ∆; ⊢ ϕ

Γ ⊢ ∆,Gϕ
(⊢ G )
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It expresses that, if w 6|= Gϕ for an arbitrary world w, there must be a w ≾ w′ such that
w′ 6|= ϕ. In general, (⊢ G ′) may require several premises, but in this particular case just one
premise with a new cell suices.

A proof search in this calculus on an invalid hypersequent will, in a sense, try to build
a bigger hypersequent representing a counter-model of the input. he hypersequents from
Indrzejczak [2016] are well suited to represent strict total orders, but focusing on this charac-
terisation is counterproductive for our purposes. As a simple illustration of when weak total
orders could be beneicial, note that some formulæ admit inite weak total orders as models
but only ininite strict total orders.

Eॾ१ॳॶॲ५ 2.9. It is the case, for example, of (GF⊤) ∧ (F⊤), which admits a single-world
model that is a weak total order. he dual sequent, G¬G⊥ ⊢ G⊥, has inite counter-models
with a weak total order, but no inite counter-models with a strict total order (a counter-model
of this sequent must be unbounded to the right). When trying to prove this sequent with the
calculus of Indrzejczak [2016], the proof search strategy underlying its completeness argument
unfolds the following ininite derivation, by alternating the right and let introduction rules
for G (with implicit uses of the let rules for ¬), as it is the only way to create an unbounded
counter-model with a strict total order.

...
G¬G⊥ ⊢ G⊥ ; ⊢ G⊥,⊥ ; ⊢ ⊥

G¬G⊥ ⊢ G⊥; ⊢ G⊥,⊥
G¬G⊥ ⊢ G⊥; ⊢ ⊥

G¬G⊥ ⊢ G⊥
Principal formulas shown in orange,
useless formulas in gray.

he calculus from Indrzejczak [2016] presented in this part enjoys cut elimination, as
shown in Indrzejczak [2017]. his enables another type of proof of completeness: one only
needs to prove the axioms of the logic in the proof system. However, such a proof of com-
pleteness does not provide any efective proof search algorithm, as opposed to the approach
presented in Section 2.2.4. As a result, we will not consider cut elimination for the proof sys-
tems presented in this part, as our eforts are driven by algorithmic purposes.

2.4.6. Finite Model Property. he use of weak total orders is instrumental in order to
derive decidability and complexity results, as it allows the logic to enjoy a inite model property.
his result has been established by Ono and Nakamura [1980], not only for Kt4.3 but also for
all logics considered in Chapter 3. Finite models are obtained by using a iltration [Blackburn
et al., 2001, Def. 2.36] on a structure to obtain a inite structure of the same ‘shape.’ he relevant
iltration in this case is called the Lemmon iltration.

D५६९ॴ९ॺ९ॵॴ 2.10 (Lemmon Filtration). Let M = (W,≾, V ) be a Kripke structure. Let Ψ
be a set of Kt4.3 formulæ closed under taking subformulæ. We deine a binary relation ≡ on
W by:

w ≡ w′ if ∀ψ ∈ Ψ, M, w |= ψ ⇐⇒ M, w′ |= ψ
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he relation≡ is an equivalence relation, and we note [w] the equivalence class of a world
w ∈W . Note that, ifΨ is inite, then≡ has inite index. Moreover, ifw ≡ w′, then ∀p ∈ Φ∩Ψ,
w ∈ V (p) ⇐⇒ w′ ∈ V (p). Hence, we can deine the Lemmon iltration of M by Ψ as
M† = (W †,≾†, V †) such that:

W † =W/≡ V †(p) = V (p)/≡

[w] ≾† [w′] if
{

∀Gψ ∈ Ψ, if M, w |= Gψ then M, w′ |= Gψ and M, w′ |= ψ
∀Hψ ∈ Ψ, if M, w′ |= Hψ then M, w |= Hψ and M, w |= ψ

F१३ॺ 2.11 ([Ono and Nakamura, 1980, hm. 3]). Let M = (W,≾, V ) be a weak total order
and Ψ a set of Kt4.3 formulæ closed under taking subformulæ, and let M† = (W †,≾†, V †) be
the Lemmon iltration of M by Ψ. hen

(i) [w] ≾† [w′] if w ≾ w′,
(ii) ≾† is transitive and linear,
(iii) ≾† is unbounded to the right (resp. let) if ≾ is unbounded to the right (resp. let), and
(iv) ≾† is dense if ≾ is dense.

WhenΨ is the inite set of subformulæ of a given formulaϕ, this iltration produces a inite
model from any model of ϕ. Moreover, once a inite model is constructed for a satisiable
formula ϕ, we can also transform it into a small model of polynomial size in |ϕ| by only
keeping extremal positions realising modal subformulæ of ϕ. his last step establishes the
NP-completeness of the satisiability problem for Kt4.3.

F१३ॺ 2.12 ([Blackburn et al., 2001, p. 379]). Kt4.3 has an NP-complete satisiability problem.

In the next chapter, we show how tomodify Indrzejczak’s proof system tomake it leverage
weak total orders, and thus take advantage of these model-theoretic results. In the hyperse-
quent calculus we obtain, proof search branches can be polynomially bounded, which leads to
an optimal coNP algorithm solving the validity problem of tense logic. In Chapter 4, we enrich
our calculus to work with ordinals while still enjoying a coNP proof search. In Chapter 5, we
enrich it further to work with data ordinals and freeze quantiiers. he logic we consider in
this last chapter is undecidable, but we exhibit a fragment for which proof search is in coNP
in our calculus, and which is expressively equivalent to FO2(<,∼) (see Section 5.6).
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3.1. Introduction

As discussed in Section 2.4.5, Indrzejczak [2016] proposed a complete calculus for Kt4.3
using the framework of ordered hypersequents. Unfortunately, Indrzejczak’s completeness ar-
gument is quite complex, and does not yield a decision procedure. he argument is Hintikka-
style: if a careful exhaustive proof search fails in his calculus, then some failed proof-search
branch yields a counter-model of the conclusion hypersequent. In Indrzejczak’s calculus, that
failure branch may be ininite, in which case the extracted counter-model is obtained as a limit,
and is itself ininite. he issue here is that ordered hypersequents correspond to strictly ordered
linear frames, which are arguably not the most adequate structures for the logic. Although
every satisiableKt4.3 formula has a model whose underling frame is a strict total order, there
are examples of invalid formulæ (like the formula from Example 2.9), whose strictly ordered
counter-models are all ininite. On such invalid instances, the hypersequent calculus of Indrze-
jczak [2016] yields a proof tree with some ininite failure branches, thus proof-search does not
terminate. Instead, we should try to focus onweak total orders, whichwould be enough thanks
to Fact 2.6.

29
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he decidability of the satisiability problem ofKt4.3 comes from its inite model property,
shown by Ono and Nakamura [1980, hm. 3]. But this property can only be obtained when
working with weak total orders, i.e. allowing some worlds of the models to be equivalent for
the order relation. Such groups of nodes are commonly called ‘clusters.’ Note that the logic
itself is not able to distinguish between a weakly ordered frame and any of its ‘bulldozed’ strict
orders [Blackburn et al., 2001, hm. 4.56].

In this chapter, we capture the syntactic aspects of these model-theoretic results. In Sec-
tion 3.2, we showhow to enhance the hypersequent calculus of Indrzejczak [2016] by capturing
themodel-theoretic ideas in hypersequents with clusters and annotations. his leads to a sound
and complete proof system where proof search always terminates, furthermore with a coNP
complexity—which is optimal for the validity problem. Moreover, this proof system is also
modular: we consider some classical extensions ofKt4.3 in Section 3.3, and provide new rules
for our hypersequent calculus to handle these extensions; extended with these new rules, our
proof system also yield an optimal coNP proof search for the corresponding extension ofKt4.3.
Finally, Manuel and Sreejith [2016] have recently shown that validity in irst-order logic with
two variables over strict total orders is in coNEXP. In Section 3.4, we derive the same statement
from our results and extend it further to dense linear orders, by irst converting the irst-order
formulæ into equivalent exponential-sizedKt4.3 formulæ as recalled in Section 2.4.4 [Etessami
et al., 2002].

3.2. Hypersequents with Clusters

3.2.1. Weak Total Orders. Our key insight is that capturing some aspects of weak total
orders in our calculus could be beneicial. he choice of the symbol ≾ for our frames’ accessi-
bility relations is in line with our focus on weak total orders. When working on such orders,
it is useful to deine x ≺ y when x ≾ y but not y ≾ x. Note that ≺ may not be a strict total
order: it is transitive but not necessarily total.

In that spirit, our proof systemwill manipulate another kind of formulæ called annotations
in order to guide proof search. hey consist of G or H formulæ writen between parentheses
and in violet, and their semantics relies on the relation ≺:

M, w |= (Gϕ) if ∀w′ ∈W such that w ≺ w′, M, w′ |= ϕ
M, w |= (Hϕ) if ∀w′ ∈W such that w′ ≺ w, M, w′ |= ϕ

It should be noted that the semantics of an annotation formula cannot be expressed otherwise
in the original logic, since a model with clusters can be transformed to a bisimilar clusters-free
model by ‘bulldozing’ its clusters, i.e. by replacing every cluster by an ininite strictly-ordered
repetition of its worlds.

3.2.2. Finite Models and Hypersequents with Clusters. When a formula requires its
strict total order models to be ininite, it is actually just forcing a inite number of conig-
urations to be repeated ad ininitum. When working with weak total orders, such ininite
sequences can be shrunk to a inite number of worlds—called a cluster—that are equivalent for
the order relation, i.e. where w ≾ w′ and w′ ≾ w (noted w ∼ w′) for all w,w′ in the cluster.
his is the reason why working with weak total orders allows our logic to enjoy a inite model
property.
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his insight leads us to consider ordered hypersequents with syntactic clusters, correspond-
ing semantically to clusters inside a weak total order. his is where annotations become useful,
as they can express what holds ater the current cluster. At irst glance, this seems to only com-
plicate the calculus as it only creates more premises (and indeed some rules in our calculus
have a large number of premises); but it will allow us to design a simple proof search strategy
allowing us to bound failure branches. For example, as explained in Chapter 2, Indrzejczak
[2016] allows the following inference:

Γ ⊢ ∆; ⊢ ϕ

Γ ⊢ ∆,Gϕ

his inference would be modiied as follows:
Γ ⊢ ∆ ; (Gϕ) ⊢ ϕ Γ ⊢ ∆ ; {(Gϕ) ⊢ ϕ}

Γ ⊢ ∆,Gϕ

It still expresses that, if w 6|= Gϕ for an arbitrary world w, there must be a w ≾ w′ such that
w′ 6|= ϕ, but it now needs to consider two cases, corresponding to whether w′ belongs to a
cluster (right premise) or not (let premise). Moreover, we can assume that w′ is a rightmost
world such thatw′ 6|= ϕ, meaning that we can assume thatϕ holds everywhere ater the current
cluster (if any). his exactly corresponds to assuming the annotation (Gϕ) holds at w′.

Viewing our hypersequent calculus as a search for counter-models, this corresponds to re-
stricting this search for ‘extremal’ counter-models only. With this in place, we inally obtain
a calculus where failure branches are inite. his allows for an elementary completeness argu-
ment, extracting inite weakly ordered counter-models from failure branches. his also allows
to prove back the inite model property from Ono and Nakamura [1980, hm. 4]. Another
consequence is that proof search in our calculus directly yields an optimal coNP procedure for
validity.

3.2.3. Deinitions and Basic Meta-heory. We shall now formally describe our calcu-
lus. We irst deine hypersequents with clusters and their semantics in terms of embeddings
into weak total orders. We then present our system of deduction rules.

3.2.3.1. Annotated Hypersequents with Clusters. For the rest of this part, a hypersequent is
a list of cells, each cell being either a sequent or a list of sequents called a (syntactic) cluster.
We shall use the following abstract syntax, where both operators ‘;’ and ‘‖’ are associative
with unit ‘•’:

H ::= C | H ;H (hypersequents)

C ::= • | S | {Cl} (cells)

Cl ::= S | Cl ‖ Cl (cluster contents)

Note that this deinition allows for empty cells and hypersequents ‘•’, but these notational
conveniences will never arise in actual proofs—and should not be confused with the empty
sequent ‘⊢’. he main feature of hypersequents with clusters is that their structures are weak
total orders. he order of cells in a hypersequent is relevant, as it yields a strict ordering in
the semantics. he order of sequents inside a cluster is semantically irrelevant; nevertheless,
assuming an ordering as part of the syntactic structure of clusters is sometimes useful, as in
the upcoming deinition.
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· · · ; Γ1 ⊢ ∆1 ; {Γ2 ⊢ ∆2} ; · · · ; {Γn ⊢ ∆n ‖ Γn+1 ⊢ ∆n+1 ‖ · · · } ; · · ·

µ µ
µ

µ
µ

µ

µ

F९७ॻॸ५ 3.1. Embedding of a hypersequent in a weak total order.

3.2.3.2. Underlying Frames and Embeddings. We now introduce notations that allow to
describe the relative positions between two sequents inside a hypersequent.

D५६९ॴ९ॺ९ॵॴ 3.1 (partial order of a hypersequent). Let H be a hypersequent containing n
sequents, counting both the sequents found directly in its cells and those in its clusters. In this
context, any i ∈ [1;n] is called a position of H , and we write H(i) for the i-th sequent of H .
We deine a partial order≾ on the positions ofH by seting i ≾ j if and only if either the i-th
and j-th sequents are in the same cluster, or the i-th sequent is in a cell that lies strictly to the
let of the cell of the j-th sequent. We write i ≺ j when i ≾ j but j 6≾ i, i.e. j lies strictly to
the right of i in H . We write i ∼ j when i ≾ j ≾ i. Finally, the domain of H is deined as
dom(H) = ([1;n],≾); note that empty cells are ignored in dom(H).

he domain of a hypersequent is actually a Kt4.3-model. hus, in this chapter, we may
also call it the underlying frame of H .

D५६९ॴ९ॺ९ॵॴ 3.2. Let F = (W,≾) and F′ = (W ′,≾′) be two frames. We say that µ :W →
W ′ is an embedding of F into F′ if, for all (w1, w2) ∈W

2,
• w1 ≾ w2 implies µ(w1) ≾

′ µ(w2) and
• µ(w1) ∼

′ µ(w2) implies w1 ∼ w2.
In that case, we write F →֒µ F′. We simply write H →֒µ F′ when dom(H) →֒µ F′.

An example embedding is shown in Figure 3.1. Note that µ(i) cannot be relexive when i
is not. Likewise, positions from distinct cells cannot be embedded into worlds of a same clus-
ter. By contrast, distinct positions belonging to the same cluster may be mapped to the same
(relexive) world.

D५६९ॴ९ॺ९ॵॴ 3.3 (semantics). LetM = (F, V ) be a structure. Given an embeddingH →֒µ F,
we say that (M, µ) is a model of a hypersequent H , writen M, µ |= H , when there exists a
position i ofH such thatM, µ(i) |= H(i). We say that a hypersequent is valid if for any weak
total order M = (F, V ) and any embedding H →֒µ F, we have M, µ |= H .

Conversely, We say that M is a counter-model of H if there exists an embedding µ such
that H →֒µ F and for every position w of H , M, µ(w) 6|= H(w) holds. In that case, we write
M 6|= H , or even M, µ 6|= H if we want to specify the embedding µ.

3.2.3.3. Link with Validity of a Formula. When testing for the validity of the hypersequent
⊢ ϕ, we are a priori only testing whether ϕ holds in everyKt4.3-model, in every position that
is not in a cluster. However, when wanting to test for the validity of the formula ϕ, testing
also for the validity of {⊢ ϕ} is unnecessary, as the following result shows.

Pॸॵॶॵॹ९ॺ९ॵॴ 3.4. If a formula ϕ has a counter-model (M, w), then it has a counter-model
(M′, w′) such that w′ 6∼ w′.
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w

C
M

w1 w′ w2

C1 C2
M′

F९७ॻॸ५ 3.2. Duplication of the cluster in the proof of Proposition 3.4.

Pॸॵॵ६. If w 6∼ w, then we can take M′ = M and w′ = w. Else, we can duplicate the
cluster containing w, and puting a copy w′ of w in between, as shown in Figure 3.2.

Formally, let C = {x ∈ W | x ∼ w} be the cluster containing w. We deine a modiied
model M′ = (W ′,≾′, V ′) featuring two copies of C and another copy of w as follows:

W ′ = (W \ C) ∪ {(x, b) | x ∈ C, b ∈ {0, 1}} ∪ {w′}

V ′(x) = V (x) ∀x ∈W \ C

V ′(w′) = V (w)

V ′((x, b)) = V (x) ∀(x, b) ∈ C × {0, 1}

(x, b) ≾′ (x′, b) ∀(x, x′, b) ∈ C2 × {0, 1}

(x, 0) ≾′ (x′, 1) ∀(x, x′) ∈ C2

(x, 0) ≾′ w′ ∀x ∈ C

w′ ≾′ (x, 1) ∀x ∈ C

x ≾′ (x′, b) whenever x ≾ x′

(x, b) ≾′ x′ whenever x ≾ x′

x ≾′ x′ whenever x ≾ x′

We now have a Kt4.3-model M′ with a cluster-free world w′. Moreover, it is easy to see that
(M, w) and (M′, w′) are bisimilar [Blackburn et al., 2001, hm. 2.20]. Hence, since M, w 6|= ϕ,
we have M′, w′ 6|= ϕ. So (M′, w′) is a counter-model of ϕ. □

Hence, a formula ϕ is valid if and only if the hypersequent ⊢ ϕ is valid.

3.2.4. Proof System. We now present our hypersequent calculus. he rules are given in
Figures 3.3 to 3.5, making use of a few notations.

H [ϕ,Γ ⊢ ∆, ϕ]
(ax)

H [ϕ ⊃ ψ,Γ ⊢ ∆, ϕ] H [ϕ ⊃ ψ, ψ,Γ ⊢ ∆]

H [ϕ ⊃ ψ,Γ ⊢ ∆]
(⊃ ⊢)

H [Γ,⊥ ⊢ ∆]
(⊥)

H [ϕ,Γ ⊢ ∆, ψ, ϕ ⊃ ψ]

H [Γ ⊢ ∆, ϕ ⊃ ψ]
(⊢ ⊃)

F९७ॻॸ५ 3.3. Propositional rules of the hypersequent calculus with clusters.
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H [Gϕ,Γ ⊢ ∆] [ϕ,Gϕ,Π ⊢ Σ]

H [Gϕ,Γ ⊢ ∆] [Π ⊢ Σ]
(G⊢)

H1;
{

Cl• ‖ ϕ,Gϕ,Γ ⊢ ∆ ‖ Cl′•
}

;H2

H1;
{

Cl• ‖ Gϕ,Γ ⊢ ∆ ‖ Cl′•
}

;H2

({G⊢})

H [ϕ,Hϕ,Π ⊢ Σ] [Hϕ,Γ ⊢ ∆]

H [Π ⊢ Σ] [Hϕ,Γ ⊢ ∆]
(H⊢)

H1;
{

Cl• ‖ ϕ,Hϕ,Γ ⊢ ∆ ‖ Cl′•
}

;H2

H1;
{

Cl• ‖ Hϕ,Γ ⊢ ∆ ‖ Cl′•
}

;H2

({H⊢})

H1 ; C [Γ ⊢ ∆,Gϕ] ; (Gϕ) ⊢ ϕ ; C ′ ;H2

H1 ; C [Γ ⊢ ∆,Gϕ] ; {(Gϕ) ⊢ ϕ} ; C ′ ;H2

H1 ; C [Γ ⊢ ∆,Gϕ ‖ (Gϕ) ⊢ ϕ] ; C ′ ;H2 if C 6= ⋆

H1 ; C [Γ ⊢ ∆,Gϕ] ; C ′ ⋉ (⊢ Gϕ) ;H2 if C ′ 6= •
H1 ; C [Γ ⊢ ∆,Gϕ] ; C ′ ⋉ ((Gϕ) ⊢ ϕ) ;H2 if C ′ 6= • and C ′ 6= {Cl}

H1 ; C [Γ ⊢ ∆,Gϕ] ; C ′ ;H2
(⊢G)

H2 ; C
′ ; (Hϕ) ⊢ ϕ ; C [Γ ⊢ ∆,Hϕ] ;H1

H2 ; C
′ ; {(Hϕ) ⊢ ϕ} ; C [Γ ⊢ ∆,Hϕ] ;H1

H2 ; C
′ ; C [Γ ⊢ ∆,Hϕ ‖ (Hϕ) ⊢ ϕ] ;H1 if C 6= ⋆

H2 ; C
′ ⋉ (⊢ Hϕ) ; C [Γ ⊢ ∆,Hϕ] ;H1 if C ′ 6= •

H2 ; C
′ ⋉ ((Hϕ) ⊢ ϕ) ; C [Γ ⊢ ∆,Hϕ] ;H1 if C ′ 6= • and C ′ 6= {Cl}

H2 ; C
′ ; C [Γ ⊢ ∆,Hϕ] ;H1

(⊢H)

F९७ॻॸ५ 3.4. Modal rules of the hypersequent calculus with clusters.

First, we use hypersequents with holes. One-placeholder hypersequents, cells, and clusters
are deined by the syntax:

H [] ::= H ; C [] ;H C [] ::= ⋆ | { Cl[] }

Cl[] ::= Cl• ‖ ⋆ ‖ Cl• Cl• ::= • | Cl

Two-placeholder cells and hypersequents have two holes identiied by ⋆1 and ⋆2:

H [] [] ::= H ; C [] [] ;H | H[⋆1] ;H[⋆2]

C [] [] ::= { Cl[⋆1] ‖ Cl[⋆2] } | { Cl[⋆2] ‖ Cl[⋆1] }

As usual, C [S] (resp. C [Cl]) denotes the same cell with S (resp. Cl) substituted for ⋆; two-
placeholder cells and hypersequents with holes behave similarly. In terms of the frames un-
derlying hypersequents with two holes, observe that the positions i and j associated resp. to
⋆1 and ⋆2 are such that i ≾ j.

In addition, we use a convenient notation for enriching a sequent: if S is a sequent Γ ⊢ ∆,
then S ⋉ (Γ′ ⊢ ∆′) is the sequent Γ,Γ′ ⊢ ∆,∆′. Moreover, we sometimes need to enrich
an arbitrary sequent of a cluster C with a sequent S; then C ⋉ S denotes the cluster with its
letmost sequent enriched.

Ater the usual propositional rules of Figure 3.3, which operate locally on a sequent, we
give in Figure 3.4 the introduction rules for modalities. he let introduction rules are symmet-
ric for our two modalities. he irst two, (G⊢) and ({G⊢}), express that if Gϕ holds at some
position, then Gϕ and ϕ must also hold at a position to its right in the underlying frame.



3.2. HYPERSEQUENTS WITH CLUSTERS 35

H1 [(Gϕ),Γ ⊢ ∆] ;H2 [ϕ,Gϕ,Π ⊢ Σ]

H1 [(Gϕ),Γ ⊢ ∆] ;H2 [Π ⊢ Σ]
((G))

H1 [ϕ,Hϕ,Γ ⊢ ∆] ;H2 [(Hϕ),Π ⊢ Σ]

H1 [Γ ⊢ ∆] ;H2 [(Hϕ),Π ⊢ Σ]
((H))

F९७ॻॸ५ 3.5. Annotation rules of the hypersequent calculus with clusters.

Regarding the right introduction rules for modalities, let us start with the particular case
where these modalities occur in extremal cells. In rule (⊢G), we introduce a formula Gϕ to
the right of a principal sequent that is in the rightmost cell of the hypersequent. he premises
cover all the ways in which a world could occur to the right of (the embedding of) the principal
sequent:

• We always have to consider a possible new cell strictly further to the right.
• Alternatively, if C 6= ⋆, the active sequent belongs to a cluster and we need the last

premise when ϕ is falsiied in an arbitrary world of that cluster.
In any case, the subformula ϕ comes alongside the annotation (Gϕ) on the let-hand side of
the sequent. Intuitively, this corresponds to assuming that the position at hand is a right-most
position where we need to prove ϕ, as the annotation assumes that ϕ holds in every strict
future position. Rule (⊢H) is, as expected, symmetric. he cases where the active sequent is
not extremal follow the same idea but have extra premises corresponding to the case where ϕ
is falsiied in the next cell C ′ or beyond.

Finally, the annotations rules from Figure 3.5 are similar to the let modal rules, but do not
allow to send the subformula in the same syntactic cluster as the active formula.

Note that our rules are formulated in an invertible style, keeping the principal formula
in the premises. his eases the proof of completeness, where proof search induces a form of
saturation. he following weakening rules are admissible in our system, and we shall use them
implicitly in examples to avoid carrying around useless formulæ:

H [Γ ⊢ ∆]

H [Γ, ϕ ⊢ ∆]
(weak ⊢)

H [Γ ⊢ ∆]

H [Γ ⊢ ϕ,∆]
(⊢ weak)

We prove invertibility with respect to Deinition 3.3.

L५ॳॳ१ 3.5 (invertibility). For any instance of a deduction rule where the conclusion hyper-
sequent is valid, all premisses are also valid.

Pॸॵॵ६ ॹॱ५ॺ३८. Considering a rule instance with a counter-model (M, µ) of a premiseH ,
we build a counter-model (M, µ′) of the conclusionH ′. Depending on the rule that is applied,
H andH ′ will either have exactly the same structure, orH will have a new cell. Accordingly,
we take µ′ to be the restriction of µ to the positions of H ′ (and adapt it accordingly for the
positions that have been shited). It is indeed a proper embedding of H ′ into M. It is then
easy to see that (M, µ′) is a counter-model ofH ′, since any sequentH ′(i) is contained in the
corresponding sequent H(j): M, µ(j) 6|= H(j) implies M, µ′(i) 6|= H ′(i). □

Eॾ१ॳॶॲ५ 3.6. We provide on the next page a proof of the hypersequent {H p,G p, p ⊢
GH p} in our system. At each inference, the principal formula is indicated in orange and
weakenings are implicit.



P P ′

p, (H p) ⊢ p ; {H p,G p, p ⊢ ‖(GH p) ⊢}
(ax)

(H p) ⊢ p ; {H p,G p, p ⊢ ‖(GH p) ⊢}
(H⊢)

{p, (H p) ⊢ p} ; {H p,G p, p ⊢ ‖(GH p) ⊢}
(ax)

{(H p) ⊢ p} ; {H p,G p, p ⊢ ‖(GH p) ⊢}
(H⊢)

{H p,G p, p ⊢ ‖(GH p) ⊢‖ p, (H p) ⊢ p}
(ax)

{H p,G p, p ⊢ ‖(GH p) ⊢‖ (H p) ⊢ p}
(G⊢)

{H p,G p, p ⊢ ‖(GH p) ⊢ H p}
(⊢H)

{H p,G p, p ⊢ GH p}
(⊢G)

where P is:

{H p,G p, p ⊢} ; p, (H p) ⊢ p ; (GH p) ⊢
(ax)

{H p,G p, p ⊢} ; (H p) ⊢ p ; (GH p) ⊢
(G⊢)

{H p,G p, p ⊢} ; {p, (H p) ⊢ p} ; (GH p) ⊢
(ax)

{H p,G p, p ⊢} ; {(H p) ⊢ p} ; (GH p) ⊢
(G⊢)

{H p,G p, p ⊢ H p} ; (GH p) ⊢
(ax)

{H p,G p, p ⊢} ; (GH p) ⊢ H p
(⊢H)

and where P ′ is:

{H p,G p, p ⊢} ; p, (H p) ⊢ p ; {(GH p) ⊢}
(ax)

{H p,G p, p ⊢} ; (H p) ⊢ p ; {(GH p) ⊢}
(G⊢)

{H p,G p, p ⊢} ; {p, (H p) ⊢ p} ; {(GH p) ⊢}
(ax)

{H p,G p, p ⊢} ; {(H p) ⊢ p} ; {(GH p) ⊢}
(G⊢)

{H p,G p, p ⊢} ; {(GH p) ⊢‖ p, (H p) ⊢ p}
(ax)

{H p,G p, p ⊢} ; {(GH p) ⊢‖ (H p) ⊢ p}
(G⊢)

{H p,G p, p ⊢ H p} ; {(GH p) ⊢}
(ax)

{H p,G p, p ⊢} ; {(GH p) ⊢ H p}
(⊢H)
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3.2.5. Soundness. We now show the soundness of our calculus.

L५ॳॳ१ 3.7 (soundness). All the rules of our hypersequent calculus with clusters are sound:
if the premises of a rule instance are valid, then so is its conclusion.

Pॸॵॵ६. We prove the contrapositive. Considering a rule instance whose conclusion H
admits a counter-model (M, µ), we show that one of its premises also admits a counter-model
(M, µ′). Because of Fact 2.11, we can assume that M is inite.

he cases of propositional rules are simple, and we focus on the other rules.
We irst consider the case of rule (⊢G), applied on a principal sequent Γ ⊢ ∆,Gϕ at

position i in H . Since M, µ(i) 6|= Gϕ, there exists w′ such that µ(i) ≾ w′ and M, w′ |= ¬ϕ.
Since M is inite we can take w′ to be a rightmost world invalidating ϕ, i.e., such that there is
no w′ ≺ w′′ such that w′′ |= ¬ϕ.

• We irst consider the case where µ(i) and w′ are two worlds (distinct or not) of the
same cluster. Because of the last condition of Deinition 3.2, i must be in a cluster in
the underlying frame ofH , soC 6= ⋆ and the premiseH1;C [Γ ⊢ ∆,Gϕ ‖ (Gϕ) ⊢ ϕ];
C ′ ;H2 is available. We extend µ into µ′, mapping the new sequent, at position i+1,
to the world w′: µ′(k) = µ(k) for all k ≤ i, µ′(i+1) = w′, and µ′(k+1) = µ(k) for
all k > i. hen (M, µ′) is a counter-model of the premise. In particular, the annota-
tion (Gϕ) at position i+ 1 is respected, as we have chosen µ′(i+ 1) = w′ such that
for any µ′(i+ 1) ≺ w′′, w′′ |= ϕ.
• Otherwise, µ(i) ≺ w′. Let j be the irst position in the cellC ′. Ifw′ ≺ µ(j), we obtain

a counter-model of either the premise H1 ; C [Γ ⊢ ∆,Gϕ] ; (Gϕ) ⊢ ϕ ; C ′ ;H2 or
the premiseH1 ;C [Γ ⊢ ∆,Gϕ] ; {(Gϕ) ⊢ ϕ} ;C ′ ;H2 (depending on whether w′ is
in a cluster) by adapting µ into an embedding µ′ that assigns w′ to the new position.
If µ(j) ≾ w′ then we have a counter-model of the fourth premiseH1 ;C [Γ ⊢ ∆,Gϕ];
C ′⋉ (⊢ Gϕ) ;H2, with the same embedding µ. Otherwise, µ(j) = w′ and µ(j) is not
relexive, hence the last premise is available, namelyH1;C [Γ ⊢ ∆,Gϕ];C ′⋉((Gϕ) ⊢
ϕ) ;H2. Our counter-model (M, µ) is a counter-model of that premise.

We now consider the case of rule (G⊢) applied on two positions i ≺ j inH . Since (M, µ)
is a counter-model ofH , then Gϕ holds at µ(i), so ϕ and Gϕ both hold at µ(j). he cases of
({G⊢}) and ((G)) are similar.

Finally, the cases of the past rules are analogous. □

3.2.6. Completeness and Complexity. We now turn to establishing completeness for
our calculus, and to showing that proof search yields an optimal coNP procedure for deciding
Kt4.3 validity. hese results follow from two properties of our calculus: deduction rules are
invertible wrt. the semantics (recall Lemma 3.5), and proof search branches are polynomially
bounded (as shown next in Lemma 3.11).

We start by identifying a shape of hypersequents that can always be proved.

L५ॳॳ१ 3.8. If a hypersequent H satisies one of these conditions, then H is provable.
(a) here exists a formula ϕ, and two positions i ≺ j of H such that H(i) and H(j) both

contain the sequent (Gϕ) ⊢ ϕ.
(b) here exists a formula ϕ, and two positions i ≺ j of H such that H(i) and H(j) both

contain the sequent (Hϕ) ⊢ ϕ.
In such a case, we say that H is immediately provable.
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Pॸॵॵ६. For each case, we show how to proveH .
(a) Such a hypersequent can be proved as follows:

H1 [Γ, (Gϕ) ⊢ ϕ,∆] ;H2 [Γ
′, (Gϕ),Gϕ,ϕ ⊢ ϕ,∆′]

(ax)

H1 [Γ, (Gϕ) ⊢ ϕ,∆] ;H2 [Γ
′, (Gϕ) ⊢ ϕ,∆′]

((G))

(b) his case is similar, roles of i and j being reverted, and using ((H)) instead of ((G)):

H1 [Γ, (Hϕ), ϕ ⊢ ϕ,∆] ;H2 [Γ
′, (Hϕ) ⊢ ϕ,∆′]

(ax)

H1 [Γ, (Hϕ) ⊢ ϕ,∆] ;H2 [Γ
′, (Hϕ) ⊢ ϕ,∆′]

((H))
□

During proof search, it is usual to require that the conclusion hypersequent of any rule
application difers from all of the premisses of that rule. his amounts to forbidding useless
proof search steps: no informationwould be gained from applying such a rule. For our calculus,
we forbid another case, as no information is gained when a new sequent is created inside a
cluster already containing another sequent with the same information.

D५६९ॴ९ॺ९ॵॴ 3.9. We call partial proof a inite derivation tree whose internal nodes cor-
respond to rule applications, but whose leaves may be unjustiied hypersequents, and that
satisies two conditions:

(a) no rule application should be such that, if H is the conclusion hypersequent,
(i) one of the premises is also H , or
(ii) the rule being applied is (⊢G) on a formulaGϕ at position i such that there exists

j ∼ i such that H(j) contains (Gϕ) ⊢ ϕ, or
(iii) the rule being applied is (⊢H) on a formulaHϕ at position i such that there exists

j ∼ i such that H(j) contains (Hϕ) ⊢ ϕ.
(b) immediately provable hypersequents must be proven immediately as sketched in the

proof of Lemma 3.8.
Finally, we call failure hypersequent a hypersequent on which any rule application would not
respect condition (a).

Pॸॵॶॵॹ९ॺ९ॵॴ 3.10. Any failure hypersequent has a counter-model.

Pॸॵॵ६. Let H be a failure hypersequent, and let F = (W,≾) be the underlying frame of
H . Let V : Φ→ 2W be the valuation deined for all p ∈ Φ by

V (p) = {i ∈W | p appears on the let-hand side of H(i)} .

Finally, let M = (F, V ). We shall establish that (M, µ) is a counter-model of H , where µ is
the identity embeddingH →֒µ F. More precisely, we prove by structural induction on ϕ that,
for every position i of H :

• If ϕ appears on the let of the turnstile in H(i), then M, i |= ϕ.
• If ϕ appears on the right of the turnstile in H(i), then M, i 6|= ϕ.

We reason by case analysis on ϕ.
• Case ϕ = ⊥: ⊥ never appears on the let-hand side of a sequent of H since the rule
(⊥) cannot be applied, and M, i 6|= ⊥ always holds.
• Case ϕ = p ∈ Φ: immediate by deinition of V and since the rule (ax) cannot be

applied on H .
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• Case ϕ = ϕ1 ⊃ ϕ2:
– If ϕ appears on the let-hand side of H(i) for some i, then, since the rule (⊃ ⊢)

cannot be applied on H , either ϕ2 appears on the let-hand side of H(i), or
ϕ1 appears on the right-hand side of H(i). So, by induction hypothesis, either
M, i |= ϕ2 or M, i 6|= ϕ1. Either way,M, i |= ϕ1 ⊃ ϕ2.

– If ϕ appears on the right-hand side ofH(i) for some i, then, since the rule (⊢ ⊃)
cannot be applied on H , H(i) contains the sequent ϕ1 ⊢ ϕ2. So, by induction
hypothesis, M, i |= ϕ1 and M, i 6|= ϕ2, so M, i 6|= ϕ1 ⊃ ϕ2.

• Case ϕ = Gϕ′:
– If Gϕ′ appears on the let-hand side of a sequent H(i), then, since rules (G⊢)

and ({G⊢}) cannot be applied on H , ϕ′ appears on the let-hand side of every
sequent H(j) such that i ≾ j. By induction hypothesis, M, j |= ϕ′ for all i ≾ j.
Hence M, i |= Gϕ′.

– We now consider the case where Gϕ′ appears on the right-hand side of H(i).
Let us irst assume that there does not exist any i ≺ j such that Gϕ′ appears on
the right-hand side of H(j).
∗ If (⊢G) does not apply on ϕ because of case (i) of condition (a), it cannot be

because of the fourth premise by the previous assumption, so an annotation
(Gϕ′) must appear at some position j in H on the let-hand side of the
turnstile, along with ϕ′ on its right-hand side, with i ≾ j. By induction
hypothesis, M, j 6|= ϕ′, thus M, i 6|= Gϕ′.
∗ If (⊢G) does not apply on ψ because of case (ii) of condition (a), there exists
j ∼ i such thatH(j) contains (Gϕ) ⊢ ϕ, and we can conclude in the same
way we did above for case (i).

Now, if there exists a position i ≺ j such that Gϕ′ appears on the right-hand
side of H(j), we can choose j to be a right-most such position. And since we
just proved that M, j 6|= Gϕ′, then we indeed have M, i 6|= Gϕ′.

• he case ϕ = Hϕ′ is symmetric.
• Annotations (Gϕ′) or (Hϕ′) can only appear to the let of the turnstile, and their

cases are analogous to the ones of Gϕ′ or Hϕ′. □

In general, proof search may diverge by expanding partial proofs ininitely, or require
backtracking due to (inite) choices in rule applications.

Lemma 3.5 shows that backtracking is not necessary. We now turn to establishing that
proof search terminates, and always produces branches of polynomial length. For a hyperse-
quent H , let len(H) be its number of sequents (i.e., the size of dom(H)), and |H| the number
of distinct subformulæ occurring in H .

L५ॳॳ१ 3.11 (small branch property). For any partial proof of a hypersequentH , any branch
of the proof is of length at most 2(|H|+ len(H) + 1) · |H|.

Pॸॵॵ६. LetH be a hypersequent,P a partial proof of it, andB a branch ofP . Remark that
the number of positions in hypersequents of β is bounded by |H|+len(H)+1: we have at most
len(H) positions initially, and a new position may only be created once per modal formula
among at most |H| formulæ plus possibly onemore (overall) to create an immediately provable
hypersequent. his is because a second cell created by (⊢H) on the same Hϕ or by (⊢G) on
the same Gϕ would belong to an immediately provable sequent, and because conditions (ii)
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and (iii) prevent the same annotation from appearing twice inside the same cluster. Any rule
application adds some subformulæ among |H| to the let or to the right of the turnstile at a
position among |H|+ len(H) + 1, hence with 2(|H|+ len(H) + 1) · |H| choices. hus B is
of length at most 2(|H|+ len(H) + 1) · |H|. □

Lemma 3.11 shows that divergence cannot happen with our calculus, regardless of the way
rules are applied. Hence, proof search in our calculus simply consists in expanding one proof
atempt, either reaching a complete proof or obtaining a partial proof with at least one open
leaf that cannot be derived by any rule application. Moreover, along with Proposition 3.10
we can recover the small model property from Blackburn et al. [2001, p. 379]: any satisiable
formula has a model of polynomial size.

Eॾ१ॳॶॲ५ 3.12. For instance, Example 2.9 considered the hypersequent G¬G⊥ ⊢ G⊥,
which has inite counter-models with a weak total order, but no inite counter-models with
a strict total order (a counter-model of this sequent must be unbounded to the right). When
trying to prove this sequent with the calculus of Indrzejczak [2016], the proof search was
unfolding an ininite derivation.

In our calculus, a derivation of that same hypersequent would necessarily contain several
branches. he analogue of the one shown above can be closed thanks to the annotations:

. . .

G¬G⊥ ⊢ G⊥ ; (G⊥) ⊢ G⊥,⊥ ; (G⊥),⊥ ⊢ ⊥
(ax)

G¬G⊥ ⊢ G⊥ ; (G⊥) ⊢ G⊥,⊥ ; (G⊥) ⊢ ⊥
((G))

G¬G⊥ ⊢ G⊥ ; (G⊥) ⊢ G⊥,⊥
(⊢G)

G¬G⊥ ⊢ G⊥ ; (G⊥) ⊢ ⊥
(G⊢)

. . .

G¬G⊥ ⊢ G⊥
(⊢G)

However, the following branch will lead to a failure hypersequent:

. . .

G¬G⊥ ⊢ G⊥ ; {(G⊥) ⊢ G⊥,⊥}
G¬G⊥ ⊢ G⊥ ; {(G⊥) ⊢ ⊥}

(G⊢)
. . .

G¬G⊥ ⊢ G⊥
(⊢G)

On this last hypersequent, applying (⊢G) on the orange formulaG⊥would create the premise
G¬G⊥ ⊢ G⊥ ; {(G⊥) ⊢ G⊥,⊥ ‖ (G⊥) ⊢ ⊥}

which is not allowed by our proof strategy: any other rule would have the same hypersequent
as a premise.

In other words, it is a inite failure branch. As shown in Proposition 3.10, we can extract
from it a inite counter-model featuring a relexive world.

We can inally establish our completeness result.

T८५ॵॸ५ॳ 3.13 (completeness). Our hypersequent calculus with clusters is complete: every
valid hypersequent H has a proof.

Pॸॵॵ६. Assume that a hypersequent H is not provable. Consider a partial proof P of H
that cannot be expanded any more. Such a partial proof is inite by Lemma 3.11; and at least
one of its leaves is a failure hypersequent (or else P would be a proof of H). Moreover, this
failure hypersequent has a counter-model by Proposition 3.10. Finally, by Lemma 3.5, the rules
of our calculus are invertible so H also has a counter-model. □
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We conclude by showing that proof search has an optimal complexity.

Pॸॵॶॵॹ९ॺ९ॵॴ 3.14. Proof search in our hypersequent calculus is in coNP.

Pॸॵॵ६. Proof search can be implemented in an alternating Turing machine maintaining
the current hypersequent on its tape, where existential states choose which rule to apply to
which principal sequent(s) and formula, and universal states choose a premise of the rule. By
Lemma 3.11, the computation branches are of length bounded by a polynomial. By Lemma 3.5,
the non-deterministic choices in existential states can be replaced by arbitrary deterministic
choices, thus this Turing machine has only universal states, hence is in coNP. □

3.3. Extensions

he logicKt4.3 can be extended by additional axioms to further restrict the class of frames.
We consider here two examples of such extensions also considered by Indrzejczak [2016]: den-
sity and unboundedness. For each extension, we show that our calculus can be adapted by
adding new rules corresponding to the new axioms, and yields the same coNP upper bound.
hese new rules are rather diferent from Indrzejczak’s, and exploit our use of hypersequents
with clusters. Together, these rules extend our calculus into a sound and complete proof sys-
tem with a coNP proof search algorithm for KtQ, the logic of dense unbounded linear frames,
consisting of Kt4.3 with both extensions.

Density. A frame F = (W,≾) is dense if ∀(x, y) ∈ W 2, if x ≾ y then ∃z ∈ W such that
x ≾ z ≾ y. Density is axiomatised by adding the following axiom:

F p ⊃ F F p (Den)

his new logic also has a inite model property as well as a small model property [Ono
and Nakamura, 1980]. Moreover, a inite weak total order is dense if and only if it never has
two consecutive worlds that are not in clusters. his last property leads to the following new
rule for our calculus to handle density:

H [S1 ; {⊢} ; S2]

H [S1 ; S2]
(den)

Pॸॵॶॵॹ९ॺ९ॵॴ 3.15. Adding (den) to our calculus yields a sound and complete proof system
for Kt4.3 ∪ (Den), where proof search is in coNP.

Pॸॵॵ६. Our rule is obviously sound, as it closely relects the shape of dense inite weak
total orders: if the conclusion of this rule has a dense counter-model, the embedding must map
S1 and S2 to two positions that are not in a cluster, hence there must be a cluster in between. It
is also invertible, since the underlying frame of the conclusion of the rule is always a subframe
of its premises. Hence Lemma 3.7 and Lemma 3.5 still hold.

To obtain that proof search is in coNP, it suices to check that Lemma 3.11 carries over to
our extension. his is true because the rule (den) can only be applied on two consecutive non-
cluster cells, and whenever the rule (den) is applied on such a bad occurrence, this occurrence
is no longer present in the premises. Hence, every time the rule (den) is applied, we reduce at
least by one the number of bad occurrences, so we can only apply the rule (den) a inite number
of times between applications of other rules creating new cells such as (⊢G) and (⊢H). Finally,
since new cells can only be created polynomialy many times by those other rules thanks to our
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initial strategy, the new rule (den) can, in the end, only be applied polynomialy many times
along a branch. So the branches of our proof tree are still polynomial.

Finally, completeness is obtained as in heorem 3.13. It only remains to show that the
underlying frame of a failure hypersequent is dense. Indeed, if its underlying frame was not
dense, we could apply the rule (den) which would contradict the fact that no rules can be
applied any more on this hypersequent. □

Unboundedness. A frame F = (W,≾) is unbounded to the right if ∀x ∈W, ∃y ∈ W such
that x ≾ y. Symmetrically, a frame F = (W,≾) is unbounded to the let if ∀x ∈W, ∃y ∈W
such that y ≾ x. hese frame properties can be axiomatised by adding the following axiom(s):

G p ⊃ F p (Dr)
H p ⊃ P p (Dℓ)

he logics we obtain when adding these axioms still have a inite model property and a small
model property [Ono and Nakamura, 1980]. Moreover, a inite weak total order is unbounded
to the right (resp. let) if and only if its rightmost (resp. letmost) world is in a cluster. his
leads to the following new rules for our calculus to handle unboundedness:

H ; S ; {⊢}

H ; S
(Dr)

{⊢} ; S ;H

S ;H
(Dℓ)

Pॸॵॶॵॹ९ॺ९ॵॴ 3.16. Adding (Dr) (resp. (Dℓ)) yields a sound and complete proof system for
Kt4.3 ∪ (Dr) (resp. Kt4.3 ∪ (Dℓ)), where proof search is in coNP.

Pॸॵॵ६. It is easy to check that rule (Dr) is sound, as it relects the shape of right-unbounded
inite weak total orders. It is also invertible, since the underlying frame of the conclusion of
the rule is always a subframe of its premises. Hence Lemma 3.7 and Lemma 3.5 still hold.

To obtain that proof search is in coNP, it suices to check that Lemma 3.11 carries over to
our extension. his is true because the rule (Dr) can only be applied when the last cell of the
hypersequent is not a cluster, and whenever the rule (Dr) is applied, the last cell of its premises
is always a cluster. Hence, the rule (Dr) can only be applied once between applications of other
rules creating new cells such as (⊢G) and (⊢H). Finally, since new cells can only be created
polynomially many times by those other rules thanks to our initial strategy, the new rule (Dr)
can, in the end, only be applied polynomially many times along a branch. So the branches of
our proof tree are still polynomial.

Finally, completeness is obtained as in heorem 3.13. It only remains to show that the
underlying frame of a failure hypersequent is unbounded to the right. Indeed, if its underlying
frame was not unbounded to the right, we could apply the rule (Dr) which would contradict
the fact that no rules can be applied any more on this hypersequent. □

One can see that all rules can be taken together to form a sound and complete calculus
for KtQ, with coNP proof search. Note that the rules proposed in this section difer from the
ones proposed by Indrzejczak for density and unboundedness [Indrzejczak, 2016]. hese rules
would be sound but would break our polynomial bound on the length of proof branches.
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3.4. First-Order Logic with Two Variables

We show here a coNEXP upper bound on the complexity of validity in the two-variable
fragment of irst-order logic over linear orders, re-proving and extending recent results by
Manuel and Sreejith [2016].

hanks to the translation result from Fact 2.7, we have therefore the following, where the
NEXP upper bounds in items (i–iii) were already shown byManuel and Sreejith [2016,hm. 15]
using automata-based techniques. Let us reiterate that the complexity bounds on the satisi-
ability problem for the modal logics in question were already known [Ono and Nakamura,
1980], so the interest here lies in the use of proof search in our hypersequent proof system
rather than a brutal enumeration of all potential models up to some bound.

T८५ॵॸ५ॳ 3.17. he following problems are in NEXP: satisiability of FO2(<) over (i) arbi-
trary strict total orders, (ii) countable strict total orders, (iii) scatered strict total orders, and
(iv) dense strict total orders.

Pॸॵॵ६. Regarding (i), given an FO2(<) formula ψ, we irst turn it into the equisatisiable
formula ∃y.ψ with one free variable x. Fact 2.7 then allows to construct a Kt4.3 formula ϕ of
exponential size, which is equisatisiable over strict total orders. By Fact 2.6, it is also equisat-
isiable over weak total orders, and heorem 3.14 shows that satisiability can be checked in
non-deterministic polynomial time in |ϕ|, hence in NEXP overall.

Regarding (ii) and (iii), by Ono and Nakamura [1980, hm. 3], the above-constructed ϕ is
satisiable over weak total orders if and only if it is satisiable over inite weak total orders. he
bulldozing construction used to prove Fact 2.6 (see Blackburn et al. [2001, hm. 4.56]) consists
essentially in turning each cluster into a direct product ω∗ · ω (i.e., a copy of Z), which shows
that ϕ is satisiable over inite weak total orders if and only if it is satisiable over countable
scatered strict total orders.

Finally, regarding (iv), by adapting Blackburn et al. [2001, theorems 4.41 and 4.56] to bull-
doze clusters over Q rather than Z, ψ is satisiable over dense strict total orders if and only if
the above-constructed ϕ is satisiable over dense weak total orders as a Kt4.∪ (Den) formula.
By Proposition 3.15, the later can be checked in non-deterministic polynomial time in |ϕ|,
hence in NEXP overall. □

3.5. Discussion

Wehave designed a sound and complete hypersequent calculus with clusters for themodal
logic Kt4.3 of linear temporal frames. he proof system takes advantage of the inite model
property of our logic in the presence of clusters to bound the length of branches during a
proof search, which yields a proof search with optimal coNP complexity for the validity prob-
lem. Moreover, the approach is modular, as these results remain true when extending the
proof system to handle density and unboundedness, yielding a sound and complete system for
KtQ with the same complexity, and a sound and complete system for FO2(<) with coNEXP
upper bounds. his coNEXP upper bound itself is hardly surprising, but from a proof-theoretic
perspective, the two-variable fragment of irst-order logic is an unusual beast—eigenvariables
must be avoided—, hence our solution through a proof system for a modal logic is arguably a
natural one.

he system presented in this chapter is an improved version of the calculus from Baelde
et al. [2018a] in which we introduced the notions of clusters and annotations. hese were
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inspired by the small model property of Kt4.3 Ono and Nakamura [1980], and were more
of an ad hoc way to implement model theoretic insights inside our proof system, whereas
annotations are now seen as a new type of formulæ. his shit of perspective, together with
the addition of rule ((G)), allows to get rid of the somewhat awkward use of diferent semantics
for the soundness and completeness of the calculus from Baelde et al. [2018a]. It also frees the
proof-theoretic development from the small model property; in fact, proof theory then allows
to derive the small model property just as precisely.

In the next chapter, we investigate well-founded models, by adding the Gödel-Löb axiom
to our logic. he models we will be working with are ordinals, and the newly obtained logic
does not enjoy a inite model property. Nonetheless, we show how our hypersequent calculus
can be extended to be sound and complete with respect to the tense logic over ordinals.
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4.1. Introduction

We now focus on well-founded models. Linear temporal logic has become a staple speci-
ication language in veriication since its introduction by Pnueli [1977]. In its most common
form, the logic features an ‘until’ temporal modality and ranges over linear time lows of or-
der type ω, i.e. over ininite words, where it enjoys a PSPACE-complete satisiability prob-
lem [Sistla and Clarke, 1985]. A large number of variants with the same complexity has
been motivated and introduced in the literature, notably temporal logics with past modali-
ties [Laroussinie et al., 2002; Lichtenstein et al., 1985], ranging over arbitrary ordinals [Demri
and Rabinovich, 2010; Rohde, 1997], or even—with the Stavi modalities added—over arbitrary
linear time lows [Cristau, 2009; Rabinovich, 2012].

Linear temporal logic inds its roots in Prior’s tense logic [Cocchiarella, 1965; Prior, 1957],
which only featured the strict ‘past’ P and ‘future’ G modalities. his set of modalities is still
interesting in its own right, as it is suicient for many modelling tasks [Sistla and Zuck, 1993],
and is known to lead to a slightly easier NP-complete satisiability problem both over ω [Sistla
and Clarke, 1985] and over arbitrary linear time lows [Ono andNakamura, 1980]. While linear
tense logic is less expressive than FO(<), the irst-order logic over linear orders with unary
predicates, it has nevertheless nice characterisations as it captures instead its two-variable
fragment FO2(<) [Etessami et al., 2002].

In this chapter, we investigate tense logic over well-founded linear time lows, i.e. over
ordinals, which can be denoted as KtLℓ.3 in the taxonomy of modal logics from Blackburn
et al. [2001]. We show in particular that

45
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(1) the satisiability problem for KtLℓ.3 over the class of ordinals is NP-complete, and
that

(2) a formula ϕ of KtLℓ.3 has a well-founded linear model if and only if it has a model
of order type α for some α < ω · (|ϕ| + 1); this should be contrasted with the cor-
responding ω|φ|+2 bound proven by Demri and Rabinovich [2010, Cor. 3.3] for linear
temporal logic.

hese two results are however just byproducts of our main contribution, which is a sound
and complete proof system for KtLℓ.3 in which proof search runs in coNP. he hypersequent
calculus presented in this chapter is obtained as a natural extension of our proof system for
Kt4.3 introduced in the previous chapter. he semantics of hypersequents has been adapted
to now work with ordinals; and the rule (⊢H) has been modiied using additional insights
from Avron’s sequent calculus for KL [Avron, 1984]. his is satisfying since KtLℓ.3 is simply
obtained fromKt4.3—the tense logic of arbitrary linear time lows—by adding well-foundation
to the let, i.e. towards the past (see Section 4.2), and completes the picture as KtQ the tense
logic of dense linear time lows was also handled in Chapter 3.

Furthermore, our proof system is easily shown in Section 4.5 to also address the more
precise problems of validity over all the well-founded linear time lows

• of order type β < α for a given α, and
• of order type exactly α < ω2.

Such a result seems out of reach of axiomatisations, and yields for instance a coNP decision
procedure for validity over ω-words.

4.2. Tense Logic over Ordinals

4.2.1. Syntax. Our tense logic still has the same syntax, recalled below, the diference
being the shape of the models we consider.

ϕ ::= ⊥ | p | ϕ ⊃ ϕ | Gϕ | Hϕ (where p ∈ Φ)

Moreover, in order to guide the proof search, our calculus will still have to manipulate
a diferent kind of future formulæ called annotations: these formulæ will be writen (Gϕ),
where Gϕ is a future modal formula, and will express that Gϕ holds starting from a speciic
later position. Remark that, as opposed to Chapter 3, we do not need past annotations any
more, as the proof search will instead be guided by the well-foundedness of the models.

4.2.2. Ordinal Semantics. In the case of KtLℓ.3, our formulæ shall be evaluated on
Kripke structures M = (α, V ), where α is an ordinal and V : Φ→ ℘(α) is a valuation of the
propositional variables. Recall that an ordinalα is seen set-theoretically as {β ∈ Ord | β < α}.
An ordinal is either 0 (the empty linear order), a limit ordinal λ (such that for all β < λ there
exists γ with β < γ < λ), or a successor ordinal α+ 1.

Given a structure M = (α, V ), we deine the satisfaction relation M, β |=(θ) ϕ, where
β < α, θ < α and ϕ is a formula, by structural induction on ϕ. Notice that θ is only used for
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the annotations.
M, β 6|=(θ) ⊥

M, β |=(θ) p if β ∈ V (p)

M, β |=(θ) ϕ ⊃ ψ if M, β |=(θ) ϕ implies M, β |=(θ) ψ

M, β |=(θ) Gϕ if M, γ |=(θ) ϕ for all γ such that β < γ

M, β |=(θ) Hϕ if M, γ |=(θ) ϕ for all γ such that γ < β

M, β |=(θ) (Gϕ) if β < θ, and M, γ |=(θ) ϕ for all γ such that θ ≤ γ < α

WhenM, β |=(θ) ϕ, we say that (M, β) is amodel of ϕ. Remark that, since annotations cannot
appear as subformulæ, we have M, β |=(θ) ϕ if and only if M, β |=(θ′) ϕ for any θ′, when ϕ
is not an annotation. In practice, when working with a formula (Gϕ), θ will correspond to a
world to which the next cell is mapped, which will be either β + ω or β + 1, depending on
whether (Gϕ) appears in a syntactic cluster or just a lone sequent.

Eॾ१ॳॶॲ५ 4.1. he satisiable formulæ ofKtLℓ.3 are strictly contained in the set of formulæ
satisiable in Kt4.3, i.e. over arbitrary linear orders. For instance, the formula ϕ0 = P p ∧
H (p ⊃ P p) is satisiable in Kt4.3 but not in KtLℓ.3, because all its models must contain an
ininite decreasing sequence of worlds where p is true. Moreover, KtLℓ.3 can force models
to be of order type greater than ω: for instance, the formula ϕ1 = G (p ⊃ F p) ∧ G (¬p ⊃
F¬p) ∧ F¬p ∧ F (p ∧ G p) forces to have a irst ininite sequence of worlds not satisfying p,
followed by a second ininite sequence of worlds satisfying p, and all its models (α, V ) must
have α ≥ ω · 2. Its smallest model is presented in Figure 4.1.

0 1 2 3 ω ω + 1 ω + 2 ω + 3 ω · 2

¬p ¬p ¬p p p p
· · · · · ·

F९७ॻॸ५ 4.1. Minimal model of formula ϕ1 from Example 4.1.

Following the spirit of ϕ1, and using more propositional variables, it is actually possible
to write a formula forcing its models to be of order type at least ω · k + m, for any k,m.
However, our logic cannot express ordinals larger or equal to ω2. his result comes from a
small model property that can be deduced from the proof of completeness of our calculus (see
Proposition 4.15).

4.3. Axiomatisation

For reference, the logic KtLℓ.3 can also be deined as the set of theorems generated by
necessitation, modus ponens and substitution from classical tautologies and the axioms from
Kt4.3 (cf. Section 2.4.3), along with the following axiom:

H (Hφ ⊃ φ) ⊃ Hφ (Lℓ)

his last axiom (Lℓ), dubbed axiom of Gödel-Löb, ensures that the models are transitive
and well-founded to the let.
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4.4. Hypersequents with Clusters

We still use hypersequents with clusters presented in Section 3.2, but we adapt their se-
mantics to work with ordinals.

4.4.1. Semantics. A sequent (denoted S) is still a pair of two inite sets of formulæ, writ-
ten Γ ⊢ ∆. It is satisied by worlds β and θ of a structureM if the conjunction of the formulæ
of Γ implies the disjunction of the formulæ of ∆. In that case, we write M, β |=(θ) Γ ⊢ ∆.

he semantics of an ordered hypersequent with clusters relies on a new notion of embed-
ding which we deine next, building on a view of hypersequents as partially ordered structures.

While a hypersequent is syntactically a inite partial order, its semantics will refer to a
linear well-founded order, obtained by ‘bulldozing’ its clusters into copies of ω. he resulting
order type is the object of the next deinition.

D५६९ॴ९ॺ९ॵॴ 4.2 (order type). Let H be a hypersequent. We deine its order type o(H) by
induction on its structure: for cells, o(•) = 0, o(S) = 1, and o({Cl}) = ω, and for hyperse-
quents, o(H1 ; H2) = o(H1) + o(H2). hus, o(H) = ω · k + m where k is the number of
clusters in H andm the number of non-empty cells to the right of the rightmost cluster.

D५६९ॴ९ॺ९ॵॴ 4.3 (embedding). Let H be an annotated hypersequent and α an ordinal. We
say that µ : dom(H)→ α+ 1 \ {0} is an embedding of H into α, writen H →֒µ α, if:

• for all i, j ∈ dom(H), i ≺ j implies µ(i) < µ(j) and i ∼ j implies µ(i) = µ(j); and
• for all i ∈ dom(H), i is in a cluster if and only if µ(i) is a limit ordinal.

Observe that, if H →֒µ α, then o(H) < α+ 1.

D५६९ॴ९ॺ९ॵॴ 4.4 (semantics). A structureM is amodel of a hypersequentH if there exists
an embedding M →֒µ H , a position i of H , and an ordinal β < µ(i) such that, for all γ such
that β ≤ γ < µ(i), we have M, γ |=(µ(i)) H(i). In that case, we write M, µ |= H .

Following this deinition, we say that a hypersequent is valid if for any M = (α, V ) and
any embedding H →֒µ M, M, µ |= H . A formula ϕ is valid in the usual sense (i.e., satisied
in every world of every ordinal structure) if and only if the hypersequent ⊢ ϕ is valid in our
sense.

If a hypersequentH is not valid, then it has a counter-model, that is a structureM = (α, V )
and an embeddingH →֒µ M such that for every i ∈ dom(H), for every β < µ(i), there exists
γ with β ≤ γ < µ(i) such that M, γ 6|=(µ(i)) H(i). For the positions i ∈ dom(H) that are not
in clusters, µ(i) is a successor ordinal γ+1 and this amounts to asking thatM, γ 6|=(γ+1) H(i).
When i is in a cluster, the condition implies the existence of an ininite increasing sequence
(γj)j of ordinals with limit µ(i) = supj γj , such that M, γj 6|=(µ(i)) H(i) for all j.

4.4.2. Proof System. We now present our proof system forKtLℓ.3, calledHKtLℓ.3. he
rules of this system consist of the rules of Chapter 3, presented in Figures 3.3 to 3.5, where the
rule (⊢H) is replaced by the one presented in Figure 4.2. Since this new rule does not introduce
past annotations any more, we also get rid of the rule ((H)).

he new rule (⊢H) works in the same spirit as the one from Figure 3.4, but does not rely
on the syntactic clusters any more, as our models are now well-founded: these clusters now
represent a substructure of order type ω and are only useful to deal with future modalities.
Moreover, since the new rule (⊢H) never unboxes a formula inside a cluster, it does not need
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H2 ; C
′ ; Hϕ ⊢ ϕ ; C [Γ ⊢ ∆,Hϕ] ;H1

H2 ; C
′ ⋉ (⊢ Hϕ) ; C [Γ ⊢ ∆,Hϕ] ;H1 if C ′ 6= •

H2 ; C
′ ⋉ (Hϕ ⊢ ϕ) ; C [Γ ⊢ ∆,Hϕ] ;H1 if C ′ 6= • and C ′ 6= {Cl}

H2 ; C
′ ; C [Γ ⊢ ∆,Hϕ] ;H1

(⊢H)

F९७ॻॸ५ 4.2. New rule (⊢H) of HKtLℓ.3. we allow C ′ = • only when H2 = •.

the use of past annotations any more, since (Hϕ) andHϕ both have the same semantics when
appearing in lone sequents.

Eॾ१ॳॶॲ५ 4.5. he way annotations are handled difers from Baelde et al. [2018b]. As a
result, the annotation rules from Baelde et al. [2018b] are subsumed by the version of the
rule ((G)) presented in Figure 3.5. For instance, if H has a position i that is not in a cluster
such that H(i) contains (Gϕ) ⊢ Gϕ, the branch can be immediately closed by some rule
from Baelde et al. [2018b]. Let us show that such an H is provable by HKtLℓ.3. First of all,
since (Gϕ) ∈ H(i), then either H(i) contains (Gϕ) ⊢ ϕ, or there exist j ≺ i such that H(j)
contains it. hen:

• If (⊢G) cannot be applied onGϕ, it is either becauseH(i+1) contains (Gϕ) ⊢ ϕ, and
then H is immediately provable, or because Gϕ also appears on the right-hand side
ofH(i+1), and the same formula can also be sent on its let-hand side (if not already
present) by applying ((G)) on the annotation (Gϕ), and then (ax) can be used.
• Else, we apply (⊢G) on Gϕ. All premises are immediately provable, except for the

premise sending Gϕ on the right-hand side of H(i + 1) which can be proved as in
the previous case.

he rules of HKtLℓ.3 are still designed to be invertible: by keeping in premises all the
formulæ from the conclusion, we ensure that validity is never lost by applying a rule; this will
be shown formally in Proposition 4.9. In practice, keeping all formulæ can be unnecessarily
heavy. Fortunately, the rules (weak ⊢) and (⊢ weak) from Section 3.2 are still admissible.

Eॾ१ॳॶॲ५ 4.6. he formula ϕ0 = P p ∧ H (p ⊃ P p) from Example 4.1 is not satisiable in
KtLℓ.3, so the dual sequent S0 = H (p ⊃ (H (p ⊃ ⊥) ⊃ ⊥)) ⊢ H (p ⊃ ⊥) is valid. Here
is indeed a proof tree, with implicit uses of propositional and weakening rules, and principal
formulæ shown in orange.

H (p ⊃ ⊥), p ⊢ p ; S0
(ax)

H (p ⊃ ⊥), p ⊢ H (p ⊃ ⊥) ; S0
(ax)

p ⊃ (H (p ⊃ ⊥) ⊃ ⊥),H (p ⊃ ⊥), p ⊢ ; S0
(⊃ ⊢)

H (p ⊃ ⊥), p ⊢ ; H (p ⊃ (H (p ⊃ ⊥) ⊃ ⊥)) ⊢ H (p ⊃ ⊥)
(H⊢)

H (p ⊃ (H (p ⊃ ⊥) ⊃ ⊥)) ⊢ H (p ⊃ ⊥)
(⊢H)

Eॾ१ॳॶॲ५ 4.7. Sinceϕ1 = G (p ⊃ F p)∧G (¬p ⊃ F¬p)∧F¬p∧F (p∧G p) from Example 4.1
is satisiable, its dual sequent S1 = G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ⊢ G p,Gϕ where
ϕ = p ⊃ ⊥ ∨ (G p ⊃ ⊥) is invalid, although with no counter-models below ω · 2.

In our calculus, proof search for S1 will succeed on branches not considering at least two
clusters; we show below in Figure 4.3 one such branch (with implicit uses of propositional and
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weakening rules, and principal formulæ shown in orange). Its top-right sequent can be proved
as explained in Example 4.5.

. . .

. . .

S1 ; (G p), p ⊢ p ; {(Gϕ),G p, p ⊢}
(ax)

S1 ; (G p) ⊢ p,G p ; {(Gϕ),G p, p ⊢}
S1 ; (G p),G p ⊃ p ⊢ p ; {(Gϕ),G p, p ⊢}

(⊃ ⊢)

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ⊢ G p,Gϕ ; (G p) ⊢ p ; {(Gϕ),G p, p ⊢}
(G⊢)

. . .

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ⊢ G p,Gϕ ; {(Gϕ),G p, p ⊢}
(⊢G)

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ⊢ G p,G (p ⊃ ⊥ ∨ (G p ⊃ ⊥))
(⊢G)

F९७ॻॸ५ 4.3. In a proof of S1 (Example 4.7) branches with a non-cluster cell
for (G p) are provable. On this branch, the top-right sequent can be proved as
explained in Example 4.5.

However, proof search will fail on the branch shown in Figure 4.4, which corresponds to
the counter-model described in Section 4.2.

. . .

. . .

. . .

S1 ; {(G p) ⊢ G p, p} ; {(Gϕ),G p, p ⊢∥ (G (p ⊃ ⊥)), p ⊢ G (p ⊃ ⊥)}

S1 ; {(G p) ⊢ G p, p} ; {(Gϕ),G p, p ⊢∥ (G (p ⊃ ⊥)), p, p ⊃ (G (p ⊃ ⊥) ⊃ ⊥) ⊢}
(⊃ ⊢)

S1 ; {(G p) ⊢ G p, p} ; {(Gϕ),G p, p ⊢∥ (G (p ⊃ ⊥)), p ⊢}
(G⊢)

. . .

S1 ; {(G p) ⊢ G p, p} ; {(Gϕ),G p, p ⊢ G (p ⊃ ⊥)}
(⊢G)

S1 ; {G p ⊃ p, (G p) ⊢ p} ; {p ⊃ (G (p ⊃ ⊥) ⊃ ⊥), (Gϕ),G p, p ⊢}
(⊃ ⊢)× 2

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ⊢ G p,Gϕ ; {(G p) ⊢ p} ; {(Gϕ),G p, p ⊢}
(G⊢)× 2

. . .

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ⊢ G p,Gϕ ; {(Gϕ),G p, p ⊢}
(⊢G)

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ⊢ G p,G (p ⊃ ⊥ ∨ (G p ⊃ ⊥))
(⊢G)

F९७ॻॸ५ 4.4. A failed branch in the proof of S1 (Example 4.7).

4.4.3. Soundness.

Pॸॵॶॵॹ९ॺ९ॵॴ 4.8. he rules ofHKtLℓ.3 are sound: if the premises of a rule instance are valid,
then so is its conclusion.

Even though most of the rules are the same, the semantics of hypersequents have evolved
since last chapter, and we provide a new proof for the modal rules.

Pॸॵॵ६. We show the contrapositive: considering an application of a rule with a conclu-
sion hypersequent H and a counter-model (M, µ) of H with M = (α, V ) and H →֒µ α an
embedding, we provide a counter-model of one of the premises (or a contradiction when there
is no premise).

Since we will oten have to extend an embedding with a value for a new position, we
deine µ + (i 7→ α) as the mapping µ′ such that µ′(i) = α, µ′(k) = µ(k) for k < i and
µ′(k + 1) = µ(k) for k ≥ i in the domain of µ.

he case of propositional rules (Figure 3.3) is immediate: he usual reasoning applies to
the principal sequent, and the same embedding is used to obtain a counter-model of one of the
premises.

Next we turn to the modal rules of Figure 3.4:
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• Consider the case of (G⊢), applied with Gϕ,Γ ⊢ ∆ at position i and Π ⊢ Σ at
position j such that i ≾ j. Remark that the rule ensures that i 6= j, but we do not
need this assumption to justify it. We show that (M, µ) is a counter-model of the
premise H ′, concentrating on the only diference with H , at position j. For clarity
we distinguish two cases:
– When i ≺ j, we also have µ(i) < µ(j). Since (M, µ) is a counter-model of H ,

by taking an arbitrary βi < µ(i) we obtain γi such that βi ≤ γi < µ(i) such
that M, γi 6|=(µ(i)) H(i). In particular, M, γi |=(µ(i)) Gϕ. Now, considering an
arbitrary β < µ(j)we need to exhibit γ such that β ≤ γ < µ(j) andM, γ 6|=(µ(j))
H ′(j). By taking βj = max(β, µ(i)) < µ(j) we obtain γj such that βj ≤ γj <

µ(j) and M, γj 6|=(µ(j)) H(j). Furthermore, since γi < µ(i) ≤ βj ≤ γj and
M, γi |=(µ(i)) Gϕ, we also have M, γj |=(µ(j)) ϕ and M, γj |=(µ(j)) Gϕ, hence
M, γj 6|=(µ(j)) H ′(j).

– When i ∼ j we have that µ(i) = µ(j) and it is a limit ordinal because we are
considering positions in a cluster. Consider an arbitrary β < µ(i). here exists γi
such that β ≤ γi < µ(i) and M, γi 6|=(µ(i)) H(i). Because µ(i) is a limit ordinal,
γi + 1 < µ(i) = µ(j). Again, there exists γj such that γi + 1 ≤ γj < µ(j) and
M, γj 6|=(µ(j)) H(j). But, since γi < γj we also have that γj satisies ϕ and Gϕ,
hence M, γj 6|=(µ(j)) H ′(j).

• he case of rule ({G⊢}) is covered by the second part of the previous argument, by
taking i = j. Indeed, we have i ∼ i when ({G⊢}) applies at position i.
• Consider now an application of rule (H⊢) withΠ ⊢ Σ at position i andHϕ,Γ ⊢ ∆ at
j. We have i ≾ j, hence µ(i) ≤ µ(j). Consider an arbitrary β < µ(i). here exists γi
such that β ≤ γi < µ(i) andM, γi 6|=(µ(i)) H(i). We claim, as before, that there exists
γj such that γi < γj < µ(j) and M, γj 6|=(µ(j)) H(j). Indeed, if µ(i) < µ(j) then
there exists γj with µ(i) ≤ γj < µ(j) that falsiiesH(j). Otherwise µ(i) = µ(j) but
then this must be a limit ordinal and, by considering γi+1 < µ(i) = µ(j) we obtain
γi < γj < µ(j) that invalidates H(j). Having M, γj 6|=(µ(j)) H(j), we also have
M, γj |=(µ(j)) Hϕ. hus γi satisies ϕ and Hϕ, and M, γi 6|=(µ(i)) H ′(i) as needed.
• he case of ({H⊢}) is covered by the previous argument.
• Consider an application of (⊢G) with Γ ⊢ ∆,Gϕ at position i. For any βi < µ(i)

there exists γi withβi ≤ γi < µ(i) such thatM, γi 6|=(µ(i)) H(i), and thusM, γi 6|=(µ(i))
Gϕ. Hence there also exists γ′i with γi < γ′i < α such that M, γ′i 6|=(θ) ϕ for any θ.
Let γ be the least ordinal that is strictly larger than all such γ′i. We have that µ(i) ≤ γ.

We now distinguish several cases regarding γ. When C ′;H2 is not empty let j
be the irst position of the conclusion hypersequent that is in C ′.
– If µ(i) = γ, then µ(i) must be a limit ordinal (for every βi < µ(i), we can ind
βi < γ′i < γ = µ(i)). Hence C 6= ⋆ and the third premise H ′

3 is available. We
construct a counter-model (M, µ′) for it by taking µ′ = µ + (k 7→ γ), where
k = i + 1 is the new position in H ′

3. Indeed, we have that for any β′ < µ′(k)

there exists γ′ with β′ ≤ γ′ < µ′(k) and M, γ′ 6|=(µ′(k)) ϕ (the inequality can
even be made strict). Moreover, M, γ′ |=(µ′(k)) (Gϕ) by deinition of γ = µ′(k):
there cannot be any λ ≥ γ such that M, λ 6|=(γ) ϕ.
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– If C ′ ; H2 is empty, or γ < µ(j), we conclude by observing that (M, µ′) is a
counter-model of one of the irst two premises with µ′ = µ+ (k 7→ γ) where k
is the position of the new cell in these premises. We check that µ′ is monotone,
because µ(i) < γ, and γ < µ(j) when it is deined. If γ is a successor ordinal,
(M, µ′) is a counter-model of the irst premise simply because the predecessor
of γ invalidates ϕ and satisies (Gϕ); both hold by construction. If γ is a limit
ordinal we have a counter-model (M, µ′) of the second premise: we do have that
for any β′ < µ′(k) there exists γ′ with β′ ≤ γ′ < µ′(k) that invalidates ϕ, and
(Gϕ) is satisied by construction.

– Otherwise µ(j) ≤ γ.
∗ If µ(j) < γ, we obtain a counter-model (M, µ) of the fourth premise H ′

4.
We check it for the only position whose sequent has changed between H
and H ′

4, that is position j. Take any βj < µ(j). We know that there
exists γj with βj ≤ γj < µ(j) such that M, γj 6|=(µ(j)) H(j). But, since
γj < µ(j) < γ, there exists γ′ such that γj < γ′ < γ and M, γ′ 6|=(µ(j)) ϕ.
hus M, γj 6|=(µ(j)) Gϕ, and M, γj 6|=(µ(j)) H ′

4(j).
∗ If µ(j) = γ and is a limit ordinal, we also obtain a counter-model (M, µ)

of the fourth premise. his time, for any βj < µ(j), we know that there
exists γj with βj ≤ γj < µ(j) such that M, γj 6|=(µ(j)) H(j). But, since
γj < γ and γ is a limit ordinal, there still exists γ′ such that γj < γ′ < γ

and M, γ′ 6|=(µ(j)) ϕ. hus M, γj 6|=(µ(j)) Gϕ, and M, γj 6|=(µ(j)) H ′
4(j).

∗ Finally, if µ(j) = γ and is not a limit ordinal, then the position j is not in
a cluster, so the ith premise is available. We claim that it admits (M, µ)
as a counter-model. Let θ be the predecessor of γ = θ + 1, which satisies
M, θ 6|=(µ(j)) ϕ by deinition of γ. Since (M, µ) is a counter-model of H
we also have M, θ 6|=(µ(j)) H(j). his allows us to conclude, together with
the fact that, as before, the new annotation (Gϕ) is satisied by deinition
of γ (there cannot be any λ ≥ γ such that M, λ 6|=(γ) ϕ).

• We now consider an application of rule (⊢H) with Γ ⊢ ∆,Hϕ at position i. Let j be
the irst position of C ′, if it exists. For any βi < µ(i) there exists γi with βi ≤ γi <

µ(i) that invalidatesH(i), thus there exists γ′i < γi < µ(i) such thatM, γ′i 6|=(µ(i)) ϕ.
Let γ be the successor of the least ordinal among all such γ′i. We have γ < µ(i).
– If H2;C

′ is empty, or µ(j) < γ, then (M, µ′) is a counter-model of the irst
premise with µ′ = µ + (k 7→ γ) where k is the new position in that premise.
We do have that the predecessor of γ satisies Hϕ (by minimality) but not ϕ (by
deinition).

– If µ(j) = γ then C ′ cannot be a cluster, because γ is a successor. In that case
(M, µ) directly yields a counter-model of the third premise.

– Otherwise γ < µ(j) and (M, µ) is a counter-model of the second premise.

We now consider the case of the future annotation rule from Figure 3.5. Consider an
application of ((G)) with (Gϕ),Γ ⊢ ∆ at position i and Π ⊢ Σ at position j, with i ≺ j.
Because of the annotation (Gϕ) we have that, for all λ ≥ µ(i), M, λ |=(µ(i)) ϕ. Hence (M, µ)
is a counter-model of the premise. □
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H a, a ⊢ a ; H b ⊢ b ; H a ⊢ a ; ⊢ H a,H b
(ax)

H a ⊢ a ; H b ⊢ b ; H a ⊢ a ; ⊢ H a,H b
(H⊢)

b,H a ⊢ a ; H b ⊢ b,H a ; ⊢ H a,H b

H a ⊢ a ; H b ⊢ b,H a ; ⊢ H a,H b
(H⊢)

· · ·

H a ⊢ a ; H b ⊢ b ; ⊢ H a,H b · · ·
(⊢H)

H a ⊢ a ; ⊢ H a,H b
(⊢H)

⊢ H a,H b
(⊢H)

F९७ॻॸ५ 4.5. Proof search with a failure hypersequent and an immediately
provable hypersequent.

4.4.4. Completeness and Complexity. As in Chapter 3, completeness is a by-product
of the very simple proof-search behaviour of our calculus. As we shall see, all the rules are
invertible and proof search branches are polynomially bounded, as long as obvious pitfalls are
avoided in the search strategy. hus it is useless to backtrack during proof-search. Moreover,
proof atempts result in inite (polynomial depth) partial proofs, whose unjustiied leaves yield
counter-models that amount (by invertibility) to counter-models of the conclusion. Hence the
completeness of our calculus. We detail this argument below, and its corollary: proof-search
yields an optimal coNP procedure for validity.

Pॸॵॶॵॹ९ॺ९ॵॴ 4.9 (invertibility). In any rule instance, if a premise has a counter-model, then
so does its conclusion.

Pॸॵॵ६. Considering a rule instance with a counter-model (M, µ) of a premiseH , we build
a counter-model (M, µ′) of the conclusionH ′. Just as in the proof of Lemma 3.5, we show that
for any position i of H ′, for any β, M, β 6|=(µ(j)) H(j) implies M, β 6|=(µ′(i)) H ′(i), where j is
the corresponding position in H . □

As in Chapter 3, we use a notion of immediately provable hypersequents. his deinition
is updated to take into account the diferent behaviour of past navigation.

L५ॳॳ१ 4.10. If a hypersequent H satisies one of these conditions, then H is provable.
(a) here exists a formula ϕ, and two positions i ≺ j of H such that H(i) and H(j) both

contain the sequent (Gϕ) ⊢ ϕ.
(b) here exists a formula ϕ, and two positions i ≺ j of H such that H(i) and H(j) both

contain the sequent Hϕ ⊢ ϕ.
In such a case, we say that H is immediately provable.

Pॸॵॵ६. For every case, we show how to proveH .
(a) As in Lemma 3.8, such a hypersequent can still be proved as follows:

H1 [Γ, (Gϕ) ⊢ ϕ,∆] ;H2 [Γ
′, (Gϕ),Gϕ,ϕ ⊢ ϕ,∆′]

(ax)

H1 [Γ, (Gϕ) ⊢ ϕ,∆] ;H2 [Γ
′, (Gϕ) ⊢ ϕ,∆′]

((G))

(b) his case is similar to Lemma 3.8, but uses (⊢H) instead of ((H)) as no past annotations
are involved any more:

H1 [Γ,Hϕ,ϕ ⊢ ϕ,∆] ;H2 [Γ
′,Hϕ ⊢ ϕ,∆′]

(ax)

H1 [Γ,Hϕ ⊢ ϕ,∆] ;H2 [Γ
′,Hϕ ⊢ ϕ,∆′]

(⊢H)
□
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We characterise next the proof atempts that we consider for proof search, and show how
to extract counter-models when such atempts fail. We still use the notions of partial proof
and failure hypersequent from Deinition 3.9, but condition (iii) can now be ignored since no
past annotations are involved any more. We show next that failure hypersequents are still
invalid.

Pॸॵॶॵॹ९ॺ९ॵॴ 4.11. Any failure hypersequent H has a counter-model.

Pॸॵॵ६. Let α = o(H). We deine µ : dom(H)→ α+ 1 \ {0} as follows:
µ(i) = m if i is them-th cell of H

and appears before its irst cluster;
µ(i) = ω · k if i belongs to the k-th cluster of H ;
µ(i) = ω · k +m if i is them-th cell appearing between

the k-th and the next cluster (if any).
Now let pos : α→ dom(H) be a function such that:
(a) ∀β < β′ < α, pos(β) ≾ pos(β′)
(b) ∀β < α, ∀i ∈ dom(H), β < µ(i)⇔ (pos(β) ≾ i or pos(β) = i)
(c) ∀β < α, ∀i ∈ dom(H), pos(β) ≾ i⇒ ∃β < γ < µ(i), i = pos(γ)
here always exists one such function. Its choice is quite constrained due to the deinitions
of α and µ. Positions i that are not in a cluster will be such that i = pos(β) for a single β,
typically the predecessor of µ(i). A position i appearing in a cluster must correspond to an
ininite sequence of ordinals of limit µ(i), so that for all i ∼ j and β, if pos(β) = i then
there exists γ with β < γ < µ(i) = µ(j) such that pos(γ) = j; informally, this ensures that
positions i and j inside a cluster are ‘ininitely interleaved’ within µ(i) = µ(j).

We inally deine a valuation V : Φ→ ℘(α) by
V (p) = {β < α | ∃Γ,∆ . H(pos(β)) = (p,Γ ⊢ ∆)}

and let M = (α, V ). We now claim that M, γ 6|=(µ(pos(γ))) H(pos(γ)) for all γ < α: we prove
by induction on ψ that, if ψ appears in the let-hand (resp. right-hand) side of the turnstile in
H(pos(γ)), then M, γ |=(µ(pos(γ))) ψ (resp. M, γ 6|=(µ(pos(γ))) ψ).

• If ψ is an atom p ∈ V the results follow by deinition of V , and because (ax) does not
apply to H . he propositional cases are obtained by induction hypothesis, because
the corresponding rules of Figure 3.3 have already been applied.
• Assume that ψ = (Gϕ) appears on the let-hand side of the turnstile in H(pos(γ))

(an annotation cannot appear on the right-hand side). hen, because ((G)) does not
apply, ϕ appears on the let-hand side of H(i) for any i such that pos(γ) ≺ i, so
M, γ′ |=(θ) ϕ for every γ′ ≥ µ(pos(γ)) and for any θ, hence M, γ |=(µ(pos(γ))) (Gϕ).
• he cases of modal formulæ on the let-hand side are similar, we only detail that of H.

If ψ = Hϕ occurs on the let-hand side ofH(pos(γ)) then by (H⊢) and ({H⊢}), the
formula ϕ must occur on the let-hand side of any H(i) with i ≾ pos(γ). Moreover,
for all γ′ < γ, we have pos(γ′) ≾ pos(γ) by (a), so M, γ′ |=(µ(pos(γ′))) ϕ, and thus
M, γ |=(µ(pos(γ))) ψ.
• Assume thatψ = Hϕ occurs on the right ofH(pos(γ)). We prove by a sub-induction

on pos(γ) that M, γ 6|=(µ(pos(γ))) Hϕ. Since (⊢H) does not apply, and since the irst
premise necessarily difers from the conclusion, it must be that there is a cell C ′
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preceding the cell that contains pos(γ), and that the last two premises (if available)
would coincide with H . Let i be the irst position in C ′. Take an arbitrary λ < µ(i)
such that pos(λ) = i (such a λ always exists, thanks to (b) and (c) instantiated with
β = 0). Since i ≺ pos(γ) it must be that λ < γ. As noted above, we have either that
Hϕ belongs to the right-hand side ofH(i), or that ϕ belongs to its let-hand side. In
the irst case, we obtainM, λ 6|=(µ(pos(λ))) Hϕ by induction hypothesis on i < pos(γ).
In the second case we directly haveM, λ 6|=(µ(pos(λ))) ϕ. We conclude either way that
M, γ 6|=(µ(pos(γ))) Hϕ.
• Assume inally that ψ = Gϕ occurs on the right-hand side of H(pos(γ)). Let us

irst assume that there does not exist any i ≻ pos(γ) such that Gϕ appears on the
right-hand side of H(i).
– If (⊢G) does not apply on ψ because of case (i) of condition (a), it cannot be be-

cause of the fourth premise by the previous assumption, so an annotation (Gϕ)
must appear at some position i inH on the let-hand side of the turnstile, along
with ϕ on its right-hand side. By rule ((G)) we must have pos(γ) ≾ i (or else
(ax) could by applied). By (c), there exists γ′ > γ such that i = pos(γ′). We then
have M, γ′ 6|=(µ(pos(γ′))) ϕ, thus M, γ 6|=(µ(pos(γ))) Gϕ.

– If (⊢G) does not apply on ψ because of case (ii) of condition (a), there exists
i ∼ pos(γ) such that H(i) contains (Gϕ) ⊢ ϕ, and we can conclude the same
way we did above for case (i).

Now, if there exists a position i ≻ pos(γ) such that Gϕ appears on the right-hand
side of H(i), since we just proved that M, γ′ 6|=(µ(i)) Gϕ for any γ′ with pos(γ′) = i

(in particular, γ′ > γ), then we indeed have M, γ 6|=(µ(pos(γ))) Gϕ.
We can check that H →֒µ α: the conditions of Deinition 4.3 hold by construction.
Finally, (M, µ) is a counter-model of H . Indeed, for all i ∈ dom(H) and β < µ(i) there

exists γ with β ≤ γ < µ(i) such that pos(γ) = i, and hence M, γ 6|=(µ(i)) H(i): if pos(β) = i,
we can take γ = β, else (b) enforces pos(β) ≾ i, and (c) provides one such γ. □

We now turn to establishing that proof search terminates, and always produces branches
of polynomial length. he precise bound is the same as obtained in Lemma 3.11, and the proof
works exactly the same.

L५ॳॳ१ 4.12 (small branch property). For any partial proof of a hypersequentH , any branch
of the proof is of length at most 2(|H|+ len(H) + 1) · |H|.

We conclude that HKtLℓ.3 is complete, and also enjoys optimal complexity proof search.
T८५ॵॸ५ॳ 4.13 (completeness). Every valid hypersequent H has a proof in HKtLℓ.3.

Pॸॵॵ६. Assume thatH is not provable. Consider a partial proof P ofH that cannot be ex-
panded any more: its unjustiied leaves are failure hypersequents. Such a partial proof exists
by Lemma 4.12. Any unjustiied leaf of that partial proof has a counter-model by Proposi-
tion 4.11, and by invertibility shown in Proposition 4.9 it is also a counter-model of H . □

Pॸॵॶॵॹ९ॺ९ॵॴ 4.14. Proof search in HKtLℓ.3 is in coNP.

Pॸॵॵ६. Proof search can be implemented in an alternating Turing machine maintaining
the current hypersequent on its tape, where existential states choose which rule to apply (and
how) and universal states choose a premise of the rule. By Lemma 4.12, the computation
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branches are of length bounded by a polynomial. By Proposition 4.9, the non-deterministic
choices in existential states can be replaced by arbitrary deterministic choices, thus the result-
ing Turing machine has only universal states, hence is in coNP. □

4.5. Logic on Given Ordinals

We have designed a proof system that is sound and complete for KtLℓ.3, and enjoys opti-
mal complexity proof search. We now show that this system can easily be enriched to obtain
decision procedures not only for tense logic over arbitrary ordinals, but also for tense logic
over speciic ordinals. We irst observe that the logic can only distinguish ordinals up to ω2,
which should be contrasted with Demri and Rabinovich [2010]. hen we show how to capture
validity over ordinals below some ω · k+m, and inally how to reason over a speciic ordinal
of this form.

Pॸॵॶॵॹ९ॺ९ॵॴ 4.15 (small model property). If a hypersequent H has a counter-model, then
it has a counter-model of order type α ≤ ω · (|H|+ len(H)).

Pॸॵॵ६. his is a corollary ofheorem 4.13. By the proof of Lemma 4.12, the hypersequents
in a failure hypersequent—which are not immediately provable—have at most |H| + len(H)
non-empty cells. he counter-model extracted in Proposition 4.11 from a failure hypersequent
H ′ is over o(H ′) ≤ ω · (|H| + len(H)). A counter-model for H is then obtained by Proposi-
tion 4.9, with a diferent embedding but the same structure. □

In particular, for a formula ϕ, the hypersequent H = ⊢ ϕ has |H| = |ϕ| and len(H) = 1,
hence the ω · (|ϕ|+ 1) bound announced in Section 4.1.

Next we observe that we can easily enrich our calculus to obtain a proof system for tense
logic over ordinals below a certain type α.

Pॸॵॶॵॹ९ॺ९ॵॴ 4.16. Let α be an ordinal. he proof systemHKtLℓ.3 enriched with the follow-
ing axiom is sound and complete for tense logic over ordinals β < α:

H
(ordα) if o(H) ≥ α

Pॸॵॵ६. he soundness argument for the rules of HKtLℓ.3 (Proposition 4.8) carries over
to the restricted semantics, since the underlying structure (and ordinal) is never modiied in
the argument. Conversely, the completeness argument of heorem 4.13 can be strengthened
because, thanks to the new rule, we can guarantee that any failure hypersequent H is such
that o(H) < α, hence the extracted counter-model is also below this bound. □

Eॾ१ॳॶॲ५ 4.17. When extendingHKtLℓ.3 to check for validity below ω, the failing branch
of Figure 4.4 can be completed, as well as the other failing branches since they all involve
hypersequents of order type ω · 2, and S1 becomes provable.

We inally show how to capture validity at a ixed ordinal α < ω2. he basic idea is to
start with a hypersequent H such that o(H) = α = ω · k + m for some inite k and m,
and take rule (ordα) to forbid larger ordinals. he only catch is that we should check that the
formula of interest is valid in all possible positions. Let us write {⊢}k for {⊢}; · · · ; {⊢} with
k clusters containing the empty sequent, and (⊢)m for ⊢; · · · ;⊢ with m cells containing the
empty sequent.



4.5. LOGIC ON GIVEN ORDINALS 57

Pॸॵॶॵॹ९ॺ९ॵॴ 4.18. he formulaϕ is valid in all structures of order type exactly α = ω ·k+m
if and only if HKtLℓ.3 extended with (ordα) proves all hypersequents of the form

{⊢}k1 ; ⊢ ϕ ; {⊢}k2 ; (⊢)m and {⊢}k ; (⊢)m1 ; ⊢ ϕ ; (⊢)m2

where k1 + k2 = k, k2 > 0 and m1 + m2 = m − 1. In other words, one must consider all
hypersequents H containing one sequent ⊢ ϕ and otherwise only empty sequents, and such that
o(H) = ω · k +m.

For instance, when k = m = 0, ϕ vacuously holds in all worlds of (0, V ). When k = 0
andm = 1we are checking ⊢ ϕ only, and (ordα) closes any branch where a new cell is created,
rendering modal formulæ trivially true. When k = 1 andm = 0 we are checking ⊢ ϕ ; {⊢}.

Pॸॵॵ६. If ϕ holds in all worlds of all structures of the form (α, V ) for some V , the hy-
persequents are valid and thus provable in HKtLℓ.3 with (ordα). We prove the converse by
contradiction. Assume that all the hypersequents hold and M, β 6|= ϕ for some M = (α, V )
and β < α. If ω · k1 ≤ β < ω · (k1 +1) with k1 +1 ≤ k we can build an embedding to obtain
a counter-model of the irst kind of sequent. Otherwise, ω · k ≤ β < ω · k+m and we derive
a counter-model of the second kind of sequent. □

Eॾ१ॳॶॲ५ 4.19. Consider the formula Gϕ for ϕ = G⊥ ⊃ ⊥. We cannot prove Gϕ in
general, since this formula is not satisied over inite ordinals, as witnessed by the following
partial proof and its failure hypersequent (in the let branch) corresponding to a counter-model
over the ordinal 2:

⊢ Gϕ ; (Gϕ),G⊥ ⊢ ⊥, ϕ
⊢ Gϕ ; (Gϕ) ⊢ ϕ

(⊢ ⊃)

⊢ Gϕ ; {(Gϕ),G⊥,⊥ ⊢ ⊥, ϕ}
(⊥)

⊢ Gϕ ; {(Gϕ),G⊥ ⊢ ⊥, ϕ}
({G⊢})

⊢ Gϕ ; {(Gϕ) ⊢ ϕ}
(⊢ ⊃)

⊢ Gϕ
(⊢G)

According to Proposition 4.18, over α = ω, i.e., k = 1 and m = 0, we need to prove
⊢ Gϕ ; {⊢} in HKtLℓ.3 extended with (ordω), for which the presence of the cluster will be
crucial. he extra rule (ordω) is actually not necessary in this case, but simpliies the proof.
We start with an application of (⊢G), this time with three premises:

⊢ Gϕ ; (Gϕ) ⊢ ϕ ; { ⊢ } ⊢ Gϕ ; {(Gϕ) ⊢ ϕ} ; { ⊢ } ⊢ Gϕ ; { ⊢ Gϕ}
⊢ Gϕ ; { ⊢ }

(⊢G)

he irst premise is derived as follows:

⊢ Gϕ ; (Gϕ),G⊥ ⊢ ⊥, ϕ ; {⊥ ⊢ }
(⊥)

⊢ Gϕ ; (Gϕ),G⊥ ⊢ ⊥, ϕ ; { ⊢ }
(G⊢)

⊢ Gϕ ; (Gϕ) ⊢ ϕ ; { ⊢ }
(⊢ ⊃)

he middle premise can simply be discharged by (ordω). For the last premise, we use (⊢G)
inside the cluster, which yields three premises: ⊢ Gϕ ; { ⊢ Gϕ} ; (Gϕ) ⊢ ϕ and ⊢ Gϕ ;
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{ ⊢ Gϕ} ; {(Gϕ) ⊢ ϕ} are discharged by (ordω), while the last one is derived as follows:

⊢ Gϕ ; {(Gϕ),⊥ ⊢ Gϕ ‖ G⊥ ⊢ ⊥, ϕ}
(⊥)

⊢ Gϕ ; {(Gϕ) ⊢ Gϕ ‖ G⊥ ⊢ ⊥, ϕ}
(G⊢)

⊢ Gϕ ; {(Gϕ) ⊢ Gϕ ‖ ⊢ ϕ}
(⊢ ⊃)

4.6. Related Work and Conclusion

We have designed the irst proof system for KtLℓ.3, i.e. tense logic over ordinals. hanks
to ordered hypersequents from Indrzejczak [2016], enriched with clusters and annotations as
in Chapter 3, our system enjoys optimal complexity proof search, allows to derive small model
properties, and can be extended into a proof system for variants of the logic over bounded or
ixed ordinals.

Our (⊢H) rule is broadly related to the rule that Avron [1984] uses in his system for KL.
Unlike Avron, we cannot work with standard sequents due to the presence of converse modal-
ities. In turn, this allows us to consider a somewhat simpler right introduction rule for H,
which does not have to take into account HΓ antecedents as they will remain available in the
principal cell when a new one is created.

Finally, using the exponential translation of FO2(<) into tense logic recalled in Section 2.4.4
[Etessami et al., 2002, hm. 2], our results yield an optimal NEXP upper bound for satisiability
of the former over ordinals, which was already known fromOto [2001]. But more importantly
they yield a proof system for FO2(<) over ordinals, which would be challenging to construct
directly, because eigenvariables cannot be handled in the usual fashion.

A natural next step would be to consider data words, ininite or not, which is the topic of
the next chapter.
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5.1. Introduction

Many applications can generate data streams, such as traces of a program’s execution
[Grigore et al., 2013], system logs [Bollig, 2011], or XML streams [Gauwin et al., 2011], which
motivated the introduction of several data logics able to formally reason about such streams.

One of the irst such logic is quite naturally the First Order Logic on data words, where
a binary predicate allows to test whether two positions carry the same datum; however it is
necessary to consider the two variable fragment [Bojańczyk et al., 2011] to get a decidable
logic. Various other logics have been extended with a way to work with data. Pnueli’s Linear
Temporal Logic [Pnueli, 1977] is the base of the Logic of Repeated Values [Demri et al., 2012,
2016], and of Freeze LTL [Demri and Lazić, 2009; Figueira and Segouin, 2009; Lazić, 2011]
which uses the freeze quantiiers introduced by Alur and Henzinger [Alur and Henzinger,
1994], the modal µ-calculus is extended by the Fixpoint Logic on data words [Colcombet and
Manuel, 2014], and PDL [Fischer and Ladner, 1979] is the backbone of XPath [Figueira, 2012a,b;
Figueira and Segouin, 2009, 2017], which allows to work either with data words or data trees.

However, as for the First Order Logic, such data logics are oten undecidable, and with
fragments of high complexity: the decidable fragments of freeze LTL proposed in [Demri
and Lazić, 2009; Figueira and Segouin, 2009] and various fragments of XPath [Figueira, 2012b;
Figueira and Segouin, 2009, 2017] are not primitive recursive, and the fragment from [Figueira,
2012a] is EXP-complete. Furthermore, not many of these works have considered the case of
ininite words [Bojańczyk et al., 2011; Bollig, 2011; Colcombet and Manuel, 2014; Lazić, 2011],
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even though it is the natural way to model system logs or XML streams. Moreover, working
more generally with data ordinals insteadwould allow to study such problemsmore accurately.

In this chapter, we investigate the freeze tense logic over ordinals, which we call K↓
tLℓ.3,

and which combines freeze quantiiers [Alur andHenzinger, 1994; Demri and Lazić, 2009] with
the logicKtLℓ.3 introduced in the previous chapter. his logic is known to be undecidable even
with only one register, as the corresponding logic over inite words [Demri and Lazić, 2009],
and even when considering only ‘simple’ formulæ [Figueira and Segouin, 2009] where the use
of that single register is restricted. In Section 5.4, we present a decidable fragment of K↓

tLℓ.3,
dubbedKd

t Lℓ.3, in which the use of registers are even more restricted than in ‘simple’ formulæ
from Figueira and Segouin [2009]. his fragment is quite natural, as it is exactly as expressive
as the two-variable fragment of irst-order logic over data ordinals from Bojańczyk et al. [2011]
(cf. Section 5.6). We show in particular that

(1) the satisiability problem for Kd
t Lℓ.3 over the class of ordinals is NP-complete, and

that
(2) a formula ϕ ofKd

t Lℓ.3 has a well-founded linear model if and only if it has a model of
order type α for some α < ω · (4 · |ϕ|2 + |ϕ|+2); this should be contrasted with the
corresponding ω · (|ϕ| + 1) bound proven in Chapter 4 for the underlying data-free
logic KtLℓ.3.

hese two results are however just by-products of our main contribution, which is a sound
and complete proof system for Kd

t Lℓ.3 in which proof search runs in coNP.
Our proof system for Kd

t Lℓ.3 is obtained as a natural extension of the previous chapter’s
proof system for KtLℓ.3, using additional rules to deal with registers, and strategy to make
sure that proof search always produces proof atempts of polynomial depth. his is satisfying
since Kd

t Lℓ.3 is a fragment of K↓
tLℓ.3, which is simply obtained from KtLℓ.3—the tense logic

over ordinals—by adding freeze quantiiers. Conceptually, re-using the framework required to
slightly adapt it to work with data ordinals.

Furthermore, the results of Section 4.5 still apply to HKd
t Lℓ.3: our proof system is easily

shown in Section 5.5 to also address the more precise problems of validity over all the data
ordinals

• of order type β < α for a given α, and
• of order type exactly α < ω2.

Such a result seems out of reach for axiomatisations, and yields for instance a coNP decision
procedure for validity over ininite data words.

5.2. Freeze Tense Logic over Ordinals

We present the freeze tense logic over ordinals, combining the Tense Logic over ordinals
from Chapter 4 and freeze quantiiers.

5.2.1. Syntax. Our logic, calledK↓
tLℓ.3, features the same two unary temporal operators

from tense logic, and countably many freeze operators, over a countable setΦ of propositional
variables, with the following syntax:

ϕ ::= ⊥ | p | ϕ ⊃ ϕ | Gϕ | Hϕ | ↓rϕ | ↑r (where p ∈ Φ and r ∈ N)
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Formulæ ↓rϕ are called freeze formulæ, and atoms ↑r are called thaw formulæ. Intuitively,
given a register r, ↓rϕ stores the datum of the current world in the register r, and evaluates ϕ,
and ↑r tests if the current world has the same datum as the one stored in the register r. Any
occurrence of a thaw ↑r within the scope of a freeze quantiier ↓r is bound by it; otherwise,
that thaw is free.

Furthermore, in order to guide the proof search, our calculus will still rely on future anno-
tations of the form (Gϕ).

5.2.2. DataOrdinal Semantics. In the case ofK↓
tLℓ.3, our formulæ shall be evaluated on

data ordinals, which are tuples (α, δ)with α an ordinal and δ a function mapping each element
from α to a datum from an ininite1 domain D. Models of our logic are Kripke structures M =
(F, V, ν), where the frame F = (α, δ) is a data ordinal, V : Φ → ℘(α) is a valuation of the
propositional variables, and ν is a inite partial map fromN toD called a register valuation. he
domain of such a ν must contain all the free registers that appear in the formulæ it evaluates.

Given a structure M = ((α, δ), V ) and a register valuation ν, we deine the satisfaction
relation M, β |=(θ)ν ϕ, where β < α, θ < α and ϕ is a formula, by structural induction on ϕ.
Ordinals β and θ play the same roles as in the previous chapter, and ν is only involved in the
semantics of freeze formulæ.

M, β 6|=(θ)ν ⊥

M, β |=(θ)ν p if β ∈ V (p)

M, β |=(θ)ν ϕ ⊃ ψ if M, β |=(θ)ν ϕ implies M, β |=(θ)ν ψ

M, β |=(θ)ν Gϕ if M, γ |=(θ)ν ϕ for all γ such that β < γ

M, β |=(θ)ν Hϕ if M, γ |=(θ)ν ϕ for all γ such that γ < β

M, β |=(θ)ν ↓rϕ if M, β |=(θ)ν[r 7→δ(β)] ϕ

M, β |=(θ)ν ↑r if δ(β) = ν(r)

M, β |=(θ)ν (Gϕ) if β < θ, and M, γ |=(θ)ν ϕ for all γ such that θ ≤ γ < α

When M, β |=(θ)ν ϕ, we say that (M, ν, β, (θ)) is a model of ϕ. As in Chapter 4, since annota-
tions cannot appear as subformulæ, we have M, β |=(θ)ν ϕ if and only if M, β |=(θ

′)
ν ϕ for any

θ′, when ϕ is not an annotation.
Moreover, we note [x/y](ϕ) for the formula ϕwhere every free occurrence of the register

y is replaced by the register x. More formally, we deine it by structural induction as follows:

[x/y](⊥) = ⊥ [x/y](p) = p

[x/y](Gϕ) = G [x/y](ϕ) [x/y](Hϕ) = H [x/y](ϕ)

[x/y]((Gϕ)) = (G [x/y](ϕ)) [x/y](ϕ1 ⊃ ϕ2) = [x/y](ϕ1) ⊃ [x/y](ϕ2)

[x/y](↑r) = ↑r if r 6= y [x/y](↑y) = ↑x

1Since we will only be able to perform equality tests between data values, we can assume that D is countable.
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[x/y](↓rϕ) = ↓r[x/y](ϕ) if r 6= y and r 6= x

[x/y](↓xϕ) = ↓r[x/y]([r/x](ϕ)) where r is fresh
[x/y](↓yϕ) = ↓yϕ

hen, the following substitution lemma holds:

L५ॳॳ१ 5.1. For every formula ϕ, and every model (M, ν, β, (θ)) of ϕ:

• if ν(x) = ν(y), then M, β |=(θ)ν [x/y](ϕ).
• if no free occurrence of ↑x appears in ϕ, then M, β |=(θ)ν[x 7→ν(y)] [x/y](ϕ).

Even though the underlying data-free logicKtLℓ.3 cannot express that a model is of order
type at least ω2 (cf. Proposition 4.15), this can be done with K↓

tLℓ.3, even without using any
propositional variable, as shown in the next example.

Eॾ१ॳॶॲ५ 5.2. Let ϕ1 = G (↓rF ↑r), ϕ2 = G (↓rF¬↑r), and ϕ3 = G (↓rG (F ↑r ⊃ ↑r)).
hen, ϕ = F⊤ ∧ ϕ1 ∧ ϕ2 ∧ ϕ3 is satisiable, and any model of ϕ is of order type at least ω2.

Because of F⊤, the other formulæ do not quantify over an empty set of future positions:
there exists at least a future β1. ϕ1 forces that every datum appears ininitely many times, and
ϕ3 forces that every such ininite sequence of positions carrying the same datum is continuous
(two such sequences for two diferent data cannot be interleaved). Hence, a smallest model of
ϕ starts with ω positions carrying d1 = δ(β1). Finally, ϕ2 forces the existence of β2 carrying
a datum d2 such that d1 6= d2. Because of ϕ3, such a β2 must be ater that irst ω carrying d1;
and because of ϕ2 we must have a second ω carrying the datum d2 at each position. Now, ϕ2

forces the existence of β3 carrying d3 diferent from d1 and d2, we a third ω carrying d3 must
exist. In the end, by repeating this reasoning, a smallest model of ϕ must possess ω positions
carrying the datum d, for ininitely many d ∈ D, so is of size at least ω2.

Moreover, ϕ is indeed satisied by a model of size ω2, where the ith ω carries di, for an
enumeration (di)i∈N of D.

5.3. Hypersequents with Clusters

We still use the same hypersequents as before, but we now need to generalise their seman-
tics to work with data ordinals.

In Section 5.3.2, we present new rules to add to HKtLℓ.3 to handle freeze formulæ. he
newly obtained calculus, dubbed HKd

t Lℓ.3, is sound for for K↓
tLℓ.3, as we will show in Sec-

tion 5.3.3. However, sinceK↓
tLℓ.3 is undecidable, our usual proof of completeness cannot work

for the whole logic. In Section 5.4, we focus on a decidable fragment ofK↓
tLℓ.3, dubbedKd

t Lℓ.3,
and prove that our calculus is complete for that fragment, and has a proof strategy of optimal
complexity.

5.3.1. Semantics. As expected, a sequent of the form Γ ⊢ ∆ is satisied by worlds β and
θ of a structure M if there exists a register valuation ν such that M, β |=(θ)ν

∧

Γ ⊃
∨

∆. We
still use the same notions of embedding, partial order and order type of an hypersequent.

D५६९ॴ९ॺ९ॵॴ 5.3 (semantics). A structureM is amodel of a hypersequentH if there exists
a register valuation ν, an embedding M →֒µ H , and a position i of H such that for all d ∈ D
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H [Γ, ↓rϕ, ↑x, [x/r](ϕ) ⊢ ∆] if ∀y ∈ N, ↑y /∈ Γ, with x fresh
H [Γ, ↓rϕ, [x/r](ϕ) ⊢ ∆] if ↑x is the only thaw atom in Γ

H [Γ, ↓rϕ ⊢ ∆]
(↓ ⊢)

H [Γ, ↑x ⊢ [x/r](ϕ), ↓rϕ,∆] if ∀y ∈ N, ↑y /∈ Γ, with x fresh
H [Γ ⊢ [x/r](ϕ), ↓rϕ,∆] if ↑x is the only thaw atom in Γ

H [Γ ⊢ ↓rϕ,∆]
(⊢ ↓)

[x/y](H [↑x,Γ ⊢ ∆])

H
[

↑x, ↑y,Γ ⊢ ∆
] (↑ ⊢)

F९७ॻॸ५ 5.1. Freeze, and thaw rules of HKd
t Lℓ.3. By fresh, we mean that x

does not appear as a free register anywhere in the conclusion.

there exists an ordinal βd < µ(i) such that for all γ such that βd ≤ γ < µ(i) and δ(γ) = d,
we have M, γ |=(µ(i))ν H(i). In that case, we write M, ν, µ |= H .

Following this deinition, we say that a hypersequent is valid if for any M = ((α, δ), V ),
any embedding H →֒µ M and any register valuation ν, M, ν, µ |= H . A formula ϕ is valid
in the usual sense (i.e., satisied in every world of every ordinal structure) if and only if the
hypersequent ⊢ ϕ is valid in our sense.

If a hypersequent H is not valid, then it has a counter-model, that is a structure M =
((α, δ), V ), an embeddingH →֒µ M and a register valuation ν such that for every i ∈ dom(H)
there exists di ∈ D such that for every β < µ(i), there exists γ with β ≤ γ < µ(i) and
δ(γ) = di such that M, γ 6|=(µ(i))ν H(i). For the positions i ∈ dom(H) that are not in clusters,
µ(i) is a successor ordinal γ + 1 and this amounts to asking that M, γ 6|=(γ+1)

ν H(i). When i
is in a cluster, the condition implies the existence of an ininite increasing sequence (γj)j of
ordinals carrying the same datum, and with limit µ(i) = supj γj , such thatM, γj 6|=

(µ(i))
ν H(i)

for all j.

5.3.2. Proof System. We now present our proof system for K↓
tLℓ.3, called HKd

t Lℓ.3. It
contains the rules fromHKtLℓ.3 (see Figures 3.3 to 3.5 and 4.2), to which we add the rules from
Figure 5.1 to now handle freeze formulæ. In these rules, [x/y](H) stands for the hypersequent
H where the operator [x/y] has been applied to every formula.

he rule (↑ ⊢) uniies two registers when they must contain the same datum, and is helpful
to bound the number of registers appearing in the proof search. he rules (↓ ⊢) and (⊢ ↓) both
handle the freeze quantiier ↓r by adding a version of ϕ where r has been replaced by either
an already used register matching the current datum if any, or a fresh one otherwise.

Our rules are still invertible: validity is never lost by applying a rule; this will be shown
formally in Proposition 5.5. Moreover, the rules (weak ⊢) and (⊢ weak) are still admissible.
his may not seem obvious since the new rules (↓ ⊢) and (⊢ ↓) require some speciic checks.
To prove this claim, once the original proof system is proven complete, one could just prove
that the weakening rules are sound. Nonetheless, we will sometimes omit formulæ when they
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do not play any role to lighten some examples. Every time we do so, the exact same proof
could be derived without omiting any formulæ.

5.3.3. Soundness.
Pॸॵॶॵॹ९ॺ९ॵॴ 5.4. he rules of HKd

t Lℓ.3 are sound: if the premises of a rule instance are
valid, then so is its conclusion.

Pॸॵॵ६. We show the contrapositive: considering an application of a rulewith a conclusion
hypersequent H and a counter-model (M, ν, µ) of H with M = (α, V ) and H →֒µ α an
embedding, we provide a counter-model of one of the premises (or a contradiction when there
is no premise).

he cases of the rules from Chapter 4 work exactly the same, so only the new rules from
Figure 5.1 need to be considered:

• Consider an application of (↓ ⊢) withH(i) = Γ, ↓rϕ ⊢ ∆. If there exists ↑x ∈ Γ, then
(M, ν, µ) is also a counter-model of the premise. Else, since (M, ν, µ) is a counter-
model of H , there exists di ∈ D such that for all β < µ(i) there exists γ such that
β ≤ γ < µ(i), δ(γ) = di, and M, γ 6|=(µ(i))ν H(i). In particular, M, γ |=(µ(i))ν ↓rϕ,
so M, γ |=(µ(i))ν[r 7→di]

↑r ∧ ϕ. Let us take ν ′ = ν[x 7→ di]. Since x is chosen fresh,
it is also the case that M, γ 6|=(µ(i))ν′ H(i); and by the second case of Lemma 5.1,
M, γ |=(µ(i))ν′ ↑x ∧ [x/r](ϕ). Hence, (M, ν ′, µ) is a counter-model of the premise.
• he case of (⊢ ↓) is similar.
• Consider the application of (↑ ⊢) with H(i) = ↑x, ↑y,Γ ⊢ ∆. Since there exists γ

such that M, γ |=(µ(i))ν ↑x and M, γ |=(µ(i))ν ↑y , then ν(x) = ν(y) = δ(γ). Hence, by
the irst case of Lemma 5.1, (M, ν, µ) is a counter-model of the premise. □

Pॸॵॶॵॹ९ॺ९ॵॴ 5.5 (invertibility). In any rule instance, if a premise has a counter-model, then
so does its conclusion.

Pॸॵॵ६. Considering a rule instance with a counter-model (M, ν, µ) of a premise H , we
build a counter-model (M, ν ′, µ′) of the conclusionH ′. Just like for Lemma 3.5, we construct
a proper embedding µ′ ofH ′ into M. Moreover, except for the rule (↑ ⊢), all the free ↑r ofH ′

are also free registers of H , so taking ν ′ = ν suices in these cases. For the case of (↑ ⊢), H ′

must have two formulæ ↑x and ↑y on the let-hand side of some sequent such that ↑y is not
a subformula of H , and we can take ν ′ = ν[y 7→ ν(x)]. It is then easy to see that (M, ν ′, µ′)
is a counter-model of H ′, since any sequent H ′(i) is contained in the corresponding sequent
H(j) (up to some register renaming for the rule (↑ ⊢)): for any β, M, β 6|=(µ(j))ν H(j) implies
M, β 6|=(µ

′(i))
ν′ H ′(i). □

As we have seen multiple times in this part, invertibility can be useful to prove complete-
ness if we can prove that proof search always terminates. However,K↓

tLℓ.3 being undecidable,
we now investigate a decidable fragment for whichHKd

t Lℓ.3 is complete and has a proof strat-
egy of optimal complexity.

5.4. Restricted Logic and Completeness

he previous logic is known to be undecidable, even with only one register [Demri and
Lazić, 2009] and some restrictions regarding the use of that register [Figueira and Segouin,
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2009]. Here, we consider another restriction of the logic, and prove that our calculus is com-
plete for that fragment, with proof search in coNP.

5.4.1. Restricted Syntax. We consider the following fragment of K↓
tLℓ.3, that we call

Kd
t Lℓ.3:

ϕ ::= ⊥ | p | ϕ ⊃ ϕ | Gϕ | Hϕ

| ↓rG (↑r ⊃ ϕ) | ↓rG (¬↑r ⊃ ϕ)

| ↓rH (↑r ⊃ ϕ) | ↓rH (¬↑r ⊃ ϕ) (where p ∈ Φ and r ∈ N)
Because the use of registers is restricted to such speciic formulæ, we deine the following

syntactic sugar:
G=r ϕ = G (↑r ⊃ ϕ) G 6=r ϕ = G (¬↑r ⊃ ϕ)

H=r ϕ = H (↑r ⊃ ϕ) H6=r ϕ = H (¬↑r ⊃ ϕ)

Intuitively, G=r ϕ (resp. G 6=r ϕ) expresses the fact that ϕ holds in every future position
with the same (resp. a diferent) datum as the one stored in the register r; and H=r ϕ, H6=r ϕ

express the same for past positions. Moreover, since a negation before a freeze quantiier
can be moved inside its scope, e.g. ¬↓rG 6=r ¬ϕ ≡ ↓r¬G 6=r ¬ϕ, we can also deine their dual
diamond modalities, e.g. F6=r ϕ = ¬G 6=r ¬ϕ. Formulæ of the form ↓rG=r ϕ (resp. ↓rG 6=r ϕ)
corresponds to formulæ denoted □ =ϕ (resp. □ 6=ϕ) from Baelde et al. [2016], which works
over data trees.

Eॾ१ॳॶॲ५ 5.6. he formula from Example 5.2, forcing its models to have order type at least
ω2, does not belong to this fragment. Furthermore, there is no equivalent formula belonging
to Kd

t Lℓ.3, as we will show later that satisiable formulæ from this fragment always have a
model of order type strictly below ω2.

From now on, we only consider formulæ from Kd
t Lℓ.3.

5.4.2. Completeness and Complexity. As in the other chapters of this part, complete-
ness is a by-product of a rather simple proof-search strategy. As already stated in Proposi-
tion 5.5, all the rules are invertible; and as we shall see, our strategy only produces proof
trees with branches that are polynomially bounded for the restricted logic, as it will avoid any
pitfall that could happen. hus it is unnecessary to backtrack during proof-search. Moreover,
proof atempts result in inite (polynomial depth) partial proofs, whose unjustiied leaves yield
counter-models that amount (by invertibility) to counter-models of the conclusion. Hence the
completeness of our calculus. We detail this argument below, and its corollary: proof-search
yields an optimal coNP procedure for validity.

We characterise next the proof atempts that we consider for proof search, and show how
to extract counter-models when such atempts fail. Our strategy is unchanged for formulæ
that belong to KtLℓ.3, but freeze formulæ must be handled more carefully.

L५ॳॳ१ 5.7. If a hypersequent H satisies one of these conditions, then H is provable.
(a) here exists a formula ϕ, and two positions i ≺ j of H such that H(i) and H(j) both

contain the sequent (Gϕ) ⊢ ϕ.
(b) here exists a formula ϕ, and two positions i ≺ j of H such that H(i) and H(j) both

contain the sequent Hϕ ⊢ ϕ.
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(c) here exists a formula ϕ, three positions i ≺ j ≺ k ofH , and three registers x, y, z ∈ N

such that:
• H(i) contains (G 6=x ϕ) ⊢ ¬↑x ⊃ ϕ.
• H(j) contains (G 6=y ϕ) ⊢ ¬↑y ⊃ ϕ.
• H(k) contains (G 6=z ϕ) ⊢ ¬↑z ⊃ ϕ.

(d) here exists a formula ϕ, three positions i ≺ j ≺ k ofH , and three registers x, y, z ∈ N

such that:
• H(i) contains H6=x ϕ ⊢ ¬↑x ⊃ ϕ.
• H(j) contains H6=y ϕ ⊢ ¬↑y ⊃ ϕ.
• H(k) contains H 6=z ϕ ⊢ ¬↑z ⊃ ϕ.

In such a case, we say that H is immediately provable.

Pॸॵॵ६. Cases (a) and (b) work as in Lemma 4.10. We handle here the new cases.
(c) Let us irst establish the following: if there is a formula ϕ and a register r such that a

sequent of H contains ¬↑r ⊃ ϕ ⊢ ϕ, then we can make ↑r appears on the let-hand
side of this sequent:

H [Γ, ϕ ⊢ ϕ,∆]
(ax)

H [Γ,¬↑r ⊃ ϕ, ↑r ⊢ ϕ,∆]

H [Γ,¬↑r ⊃ ϕ ⊢ ¬↑r, ϕ,∆]

H [Γ,¬↑r ⊃ ϕ ⊢ ϕ,∆]
(⊃ ⊢)

We now sketch in Figure 5.2 how to prove a hypersequent satisfying condition (c). In
order to make the igure more readable, we omit other formulæ that could appear at
positions i, j or k. he proof would work the same in presence of additional formulæ.
he omited steps correspond to the ones described above, for registers x and y. he
last hypersequent satisies condition (a), hence it is provable.

(d) his case is similar to (c), with the roles of positions i and k reverted (as well as roles
of registers x and z), and using (⊢H) instead of ((G)); and reducing to an instance
of (b). □

[x/y](H1) [(G6=x ϕ) ⊢ ¬↑x ⊃ ϕ] ; [x/y](H2) [(G 6=x ϕ) ⊢ ¬↑x ⊃ ϕ] ; [x/y](H3) [(G 6=z ϕ), ↑x,¬↑z ⊢ ϕ]

H1 [(G 6=x ϕ) ⊢ ¬↑x ⊃ ϕ] ;H2

[

(G6=y ϕ) ⊢ ¬↑y ⊃ ϕ
]

;H3

[

(G 6=z ϕ), ↑x, ↑y,¬↑z ⊢ ϕ
] (↑ ⊢)

....
H1 [(G 6=x ϕ) ⊢ ¬↑x ⊃ ϕ] ;H2

[

(G 6=y ϕ) ⊢ ¬↑y ⊃ ϕ
]

;H3

[

(G 6=x ϕ), (G6=y ϕ), (G6=z ϕ),¬↑x ⊃ ϕ,¬↑y ⊃ ϕ,¬↑z ⊢ ϕ
]

H1 [(G6=x ϕ) ⊢ ¬↑x ⊃ ϕ] ;H2

[

(G 6=y ϕ) ⊢ ¬↑y ⊃ ϕ
]

;H3

[

(G 6=x ϕ), (G 6=y ϕ), (G 6=z ϕ),¬↑x ⊃ ϕ,¬↑y ⊃ ϕ ⊢ ¬↑z ⊃ ϕ
] (⊢ ⊃)

H1 [(G 6=x ϕ) ⊢ ¬↑x ⊃ ϕ] ;H2

[

(G 6=y ϕ) ⊢ ¬↑y ⊃ ϕ
]

;H3 [(G6=x ϕ), (G 6=z ϕ),¬↑x ⊃ ϕ ⊢ ¬↑z ⊃ ϕ]
((G))

H1 [(G6=x ϕ) ⊢ ¬↑x ⊃ ϕ] ;H2

[

(G 6=y ϕ) ⊢ ¬↑y ⊃ ϕ
]

;H3 [(G 6=z ϕ) ⊢ ¬↑z ⊃ ϕ]
((G))

F९७ॻॸ५ 5.2. Proof tree sketch for a hypersequent satisfying condition (c).

he intuition behind (d) is the following: if there exists γ where H6=z ϕ holds, and γ′ < γ

where H6=y ϕ holds, and if y and z stores diferent data, then ϕ holds in every past position
of γ′ (at any position, either ¬↑z or ¬↑y holds) and thus any H6=x ϕ holds in the past. he
intuition behind (c) is similar. his reasoning fails if y and z store the same datum, but we can
always assume otherwise during proof search unless when ↑y and ↑z appear on the let-hand
side of the same sequent, and in this case we should apply (↑ ⊢) in priority.
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We characterise next the proof atempts that we consider for proof search, and show how
to extract counter-models when such atempts fail.

D५६९ॴ९ॺ९ॵॴ 5.8. We call partial proof a inite derivation tree whose internal nodes cor-
respond to rule applications, but whose leaves may be unjustiied hypersequents, and that
satisies three conditions:

(a) No rule application should be such that, if H is the conclusion hypersequent,
(i) one of the premises is also H , or
(ii) the rule being applied is (⊢G) on a formulaGϕ at position i such that there exists

j ∼ i such that H(j) contains (Gϕ) ⊢ ϕ, or
(iii) the rule being applied is (⊢G) on a formula G (¬↑x ⊃ ϕ) at position i such that

there exists j ∼ i and y 6= x such thatH(j) contains
(

G (¬↑y ⊃ ϕ)
)

⊢ ¬↑y ⊃ ϕ
and does not contain ↑x on its let-hand side.

(b) Immediately provable hypersequents must be proven immediately as described in the
proof of Lemma 5.7.

(c) Else, if the rule (↑ ⊢) is applicable, or if the rule (⊢ ⊃) is applicable on a formula of
the form ↑x ⊃ ϕ, then the other rules cannot be applied.

Finally, we call failure hypersequent a hypersequent on which any rule application would not
respect condition (a).

he second part of condition (c) is there to optimise the use of its irst part, which in turn
is there to bound the number of registers our calculus manipulates during a proof search. As
in the previous chapters, conditions (a) and (b) amount to a simple proof search strategy that
avoids loops, and addresses especially loops arising from repeated applications of (⊢H) or (⊢G),
in branches where several new cells are created for the same modal formula (up to maybe a
diferent register): this results either in immediately provable hypersequents from Lemma 5.7,
or failure hypersequents on which the proof strategy is stuck and for which we prove next
that we can always construct a counter-model.

Pॸॵॶॵॹ९ॺ९ॵॴ 5.9. Any failure hypersequent H has a counter-model.

Pॸॵॵ६. he proof works as in Proposition 4.11, but we now need to also handle data. Let
α = o(H). We still deine µ : dom(H)→ α+ 1 \ {0} as follows:

µ(i) = m if i is them-th cell of H
and appears before its irst cluster;

µ(i) = ω · k if i belongs to the k-th cluster of H ;
µ(i) = ω · k +m if i is them-th cell appearing between

the k-th and the next cluster (if any).
Moreover, we still manipulate a function pos : α→ dom(H) such that:
(a) ∀β < β′ < α, pos(β) ≾ pos(β′)
(b) ∀β < α, ∀i ∈ dom(H), β < µ(i)⇔ (pos(β) ≾ i or pos(β) = i)
(c) ∀β < α, ∀i ∈ dom(H), pos(β) ≾ i⇒ ∃β < γ < µ(i), i = pos(γ)

In addition, we now deine the data assignment δ of α. Since the rule (↑ ⊢) cannot be
applied on H , each position of H must have at most one atomic formula of the form ↑r on
its let-hand side. For each position i of H , we choose a datum di ∈ D with the following
constraints:
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• If H(i) and H(j) have the same atomic ↑r on their let-hand side, then di = dj ;
• Else, di 6= dj .

We can now deine δ by δ(β) = dpos(β), for all β < α. From this, we ix a fresh datum d⊥
diferent from all the di, and we can deine a register valuation ν deined for every free register
that appears in H by:

• ν(r) = di if ↑r appears on the let-hand side of H(i),
• ν(r) = d⊥ otherwise.

Finally, we still deine the valuation V : Φ→ ℘(α) by
V (p) = {β < α | ∃Γ,∆ . H(pos(β)) = (p,Γ ⊢ ∆)}.

LetM = ((α, δ), V ). We now claim thatM, γ 6|=(µ(pos(γ)))ν H(pos(γ)) for all γ < α: we prove
by induction on ψ that, if ψ appears in the let-hand (resp. right-hand) side of the turnstile in
H(pos(γ)), then M, γ |=(µ(pos(γ)))ν ψ (resp. M, γ 6|=(µ(pos(γ)))ν ψ).

• If ψ is a thaw atom ↑r , then:
– Ifψ appears on the let-hand side of the turnstile, the results follows by deinition

of ν.
– If ψ appears on the right-hand side of the turnstile at position i, then either ψ

also appears on the let-hand side of some position j, and i 6= j because (ax) does
not apply, so ν(r) = dj 6= di; or ψ never appears on the let-hand side of some
sequent of H and ν(r) = d⊥ 6= di. Either way, M, γ 6|=(µ(i))ν ↑r for γ such that
pos(γ) = i.

• Because (↓ ⊢) and (⊢ ↓) do not apply on H , there is no formula of the form ↓rψ′

anywhere in H for which (↓ ⊢) or (⊢ ↓) has not been applied (such rules could also
be prevented by having two formulæ ↑x and ↑y on the let-hand side of a sequent, but
this cannot happen here since (↑ ⊢) does not apply). his means that every such ↓rψ′

appears along with [x/r](ψ′) on the same side of the turnstile, and ↑x on the let-hand
side of the turnstile, for some x. Let us assume that ↓rψ′ and [x/r](ψ′) appear on the
right-hand side of H(pos(γ)) (the other case is similar). By induction hypothesis,
M, γ |=(µ(pos(γ)))ν ↑x and M, γ 6|=(µ(pos(γ)))ν [x/r](ψ′), hence M, γ 6|=(µ(pos(γ)))ν ↓rψ

′.
All the other casesworks exactly as in Proposition 4.11, since these cases do notmanipulate

data, and we can check that H →֒µ α: the conditions of Deinition 4.3 hold by construction.
Finally, (M, ν, µ) is a counter-model ofH . Indeed, for all i ∈ dom(H) and β < µ(i) there

exists γ with β ≤ γ < µ(i) such that pos(γ) = i, and hence M, γ 6|=(µ(i))ν H(i): if pos(β) = i,
we can take γ = β, else (b) enforces pos(β) ≾ i, and (c) provides one such γ. □

We now turn to establishing that proof search terminates, and always produces branches
of polynomial length. For a hypersequent H , let len(H) be its number of sequents (i.e., the
size of dom(H)), and |H| the number of distinct subformulæ occurring in H .

L५ॳॳ१ 5.10 (small branch property). For any partial proof of a hypersequentH , any branch
of the proof is of length at most 2 · |H| ·(4 · |H|+ len(H)) ·((4 · |H|+ len(H)) · |H|+ len(H)+1).

Pॸॵॵ६. Let H be a hypersequent, P a partial proof of it, and B a branch of P . We note
ΦH the set of subformulæ of H . Remark that all the formulæ that appear in B belongs to
ΦH , up to the renaming of some registers that appear in B. We have to be careful about the
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following: each creation of a new position alongB could lead to the creation of a new register
later inB, which in turn could create a new renamed copy of some formula ofΦH , which then
could lead to the creation of another position. We must make sure that such a process cannot
go ad ininitum. Let us irst establish that the number of free registers in hypersequents of
B is bounded by 4 · |H| + len(H). Because we always unify registers with (↑ ⊢) as soon as
possible in B (condition (c) of being a partial proof), and because the only way to introduce
new registers is via rules (↓ ⊢) and (⊢ ↓) when no thaw appear on the let-hand side, we always
have less free registers than positions. We have at most len(H) positions initially; andwemust
now bound the creations of positions that can efectively lead to the creation of a new register
later in B (new positions can only be created by rules (⊢H) and (⊢G)):

• For anyHϕ among the subformulæ ofB that do not contain a free register (so among
|H| formulæ), a new position can only be created once without creating an immedi-
ately provable hypersequent (condition (b) from Lemma 5.7).
• For any Gϕ among the subformulæ of B that do not contain a free register, a new

position can only be created once in the same cluster (because of case (ii) of condi-
tion (a)). A second position cannot be created elsewhere either without creating an
immediately provable hypersequent (condition (a) from Lemma 5.7).
• For any ↓rH 6=r ϕ ∈ ΦH , many formulæ of the form H 6=x ϕ could appear along B

(as many as free registers), and they could all lead to the creation of a new position.
However, only 2 such positions can be created along B (each time for a diferent x)
without creating an immediately provable hypersequent.
• Similarly, for any ↓rG 6=r ϕ ∈ ΦH , many formulæ of the form G 6=x ϕ could appear

along B. Let us prove that a new position can only be created at most 4 times by
such formulæ (each time for a diferent x) without creating an immediately provable
hypersequent (the worst case being two diferent clusters, both containing two such
sequents). First of all, we cannot create 3 such positions with i ≺ j ≺ k without
creating an immediately provable hypersequent, so the worst case indeed involve at
most two clusters. Moreover, we cannot create more than two such positions in the
same cluster. Let us look at the evolution of such a cluster along B. A irst position i
is created for a formula G 6=x ϕ, and a second position j ∼ i could be created later for
a formulaG6=y ϕ (with y 6= x) only if the ith position of the current hypersequent has
↑y on its let-hand side. But then, a third creation of such a position (for a formula
G 6=z ϕ, with z 6= y) will be prevented since j is an instance of (iii) (the jth position
of the current hypersequent cannot contain ↑z on its let-hand side, since it already
contains ↑y and we always unify registers as soon as possible).
• One more (overall) position could be created, leading to an immediately provable hy-

persequent. In such a case, a new register will not be created since the hypersequent
as to be proved immediately as sketched in the proof of Lemma 5.7.
• Because of condition (c), whenever a new cell is created by a formulaH=x ϕ orG=x ϕ,
↑x will appear on its let-hand side from the next step inB. Hence, such new cells will
not lead to new registers, and the number of registers is bounded by 4 · |H|+ len(H).
Moreover, at most one such cell can be created for every ϕ (among |H| formulæ), and
every register appearing in B, i.e. (4 · |H|+ len(H)) · |H| in total.

his also proves that the number of positions of hypersequents in B is at most (4 · |H| +
len(H)) · |H| + len(H) + 1. Now, any other rule application adds some subformulæ among
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(4 · |H|+ len(H)) · |H| to the let or to the right of the turnstile at a position among (4 · |H|+
len(H)) · |H| + len(H) + 1, hence with 2 · (4 · |H| + len(H)) · |H| · ((4 · |H| + len(H)) ·
|H|+ len(H)+ 1) choices. hus B is of length at most 2 · |H| · (4 · |H|+ len(H)) · ((4 · |H|+
len(H)) · |H|+ len(H) + 1). □

Eॾ१ॳॶॲ५ 5.11. If we did not follow our strategy, a bad case such as described at the
beginning of the previous proof could happen on the hypersequent H = ⊢ ; ϕ ⊢ with
ϕ = H (¬↓rH=r ⊥). In practice, ϕ can send the subformula ↓rH=r ⊥ on the right-hand side
of any past position by using (H⊢) and then handling the negation. A proof ofH will start as
follows:

H=x⊥ ⊢ ↑x ⊃ ⊥ ; ϕ, ↑x ⊢ H=x⊥, ↓rH=r ⊥ ; ϕ ⊢

ϕ, ↑x ⊢ H=x⊥, ↓rH=r ⊥ ; ϕ ⊢
(⊢H)

ϕ ⊢ ↓rH=r ⊥ ; ϕ ⊢
(⊢ ↓)

⊢ ; ϕ ⊢

Our strategy would now force to handle the formula ↑x ⊃ ⊥. If we do not respect that, and
instead send ↓rH=r ⊥ on the right-hand side of the letmost position and apply (⊢ ↓) again, a
new register y would be created, along with the formula H=y ⊥, which in turn will create a
new position more in the past when applying (⊢H). If we never deal with a formula of the form
↑x ⊃ ⊥, this process could go on ad ininitum, alternating between creating a new register
and creating a new position. However, if we respect our strategy, the proof search will reach
an immediately provable hypersequent ater creating a fourth position. It is not surprising,
since we can prove that a counter-model of H should be such that every datum appearing in
the past does so ininitely many times, which is impossible as our models are well-founded.

We now conclude that HKd
t Lℓ.3 is complete for Kd

t Lℓ.3, and also enjoys proof search of
optimal complexity.

T८५ॵॸ५ॳ 5.12 (completeness). Every valid hypersequent H has a proof in HKd
t Lℓ.3.

Pॸॵॵ६. Assume thatH is not provable. Consider a partial proof P ofH that cannot be ex-
panded any more: its unjustiied leaves are failure hypersequents. Such a partial proof exists
by Lemma 5.10. Any unjustiied leaf of that partial proof has a counter-model by Proposi-
tion 5.9, and by invertibility shown in Proposition 5.5 it is also a counter-model of H . □

Pॸॵॶॵॹ९ॺ९ॵॴ 5.13. Proof search in HKd
t Lℓ.3 is in coNP.

Pॸॵॵ६. Proof search can still be implemented in an alternating Turing machine main-
taining the current hypersequent on its tape, where existential states choose which rule to
apply (and how) and universal states choose a premise of the rule. By Lemma 5.10, the
computation branches are of length bounded by a polynomial. By Proposition 5.5, the non-
deterministic choices in existential states can be replaced by arbitrary deterministic choices;
and by Lemma 5.1, the choice of a fresh x by any application of (↓ ⊢) or (⊢ ↓) does not mater
(e.g., x can be taken as the next unused integer), thus the resulting Turing machine has only
universal states, hence is in coNP. □

5.5. Restricted Logic on Given Ordinals

We have designed a proof system that is sound and complete for Kd
t Lℓ.3, and enjoys opti-

mal complexity proof search. We now observe that the logic can only distinguish ordinals up
to ω2, as the underlying data-free logic (Section 4.5).
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Pॸॵॶॵॹ९ॺ९ॵॴ 5.14 (small model property). If a hypersequent H has a counter-model, then
it has a counter-model of order type α < ω · ((4|H|+ len(H))|H|+ len(H) + 1).

Pॸॵॵ६. his is a corollary of heorem 5.12. By the proof of Lemma 5.10, the hyperse-
quents in a failure hypersequent—which are not immediately provable—have at most (4|H|+
len(H))|H|+len(H)+1 non-empty sequents. he counter-model extracted in Proposition 5.9
from a failure hypersequent H ′ is over o(H ′) < ω · ((4|H| + len(H))|H| + len(H) + 1). A
counter-model for H is then obtained by Proposition 5.5, with a diferent embedding but the
same structure. □

In particular, for a formula ϕ, the hypersequent H = ⊢ ϕ has |H| = |ϕ| and len(H) = 1,
hence the ω · (4 · |ϕ|2 + |ϕ|+ 2) bound announced in the introduction.

Finally, as in Chapter 4, a free outcome of our approach is that this system can still easily
be enriched—exactly as in Section 4.5—to obtain decision procedures not only for tense data
logic over arbitrary ordinals, but also to capture validity over ordinals below some ω · k +m,
or to reason over a speciic ordinal of this form.

5.6. First-Order Logic with Two Variables

In this section, we show that Kd
t Lℓ.3 is exactly as expressive as the two-variable fragment

of irst-order logic over data ordinals from Bojańczyk et al. [2011].

5.6.1. Syntax and Semantics. We consider irst-order formulæ with two variables x
and y over the signature (=,∼, <, (p)p∈Φ) where =, < and ∼ are binary relational symbols
and each p is a unary relational symbol:

ψ ::= z = z′ | z < z′ | z ∼ z′ | p(z) | ⊥ | ψ ⊃ ψ | ∀z.ψ (irst-order formulæ)

where z, z′ range over {x, y} and p over Φ. We call this logic FO2(∼, <).
We interpret our formulæ over structures M = ((α, δ), V ) where = is interpreted as the

equality over α, < as the canonical strict total ordering of α, ∼ as the equality with respect to
δ, and each p as V (p) for the valuation V : Φ→ 2W .

hat is, we say thatM satisies ψ under an assignment σ : {x, y} → α, writenM, σ |= ψ,
in the following inductive cases:

M, σ 6|= ⊥
M, σ |= z = z′ if σ(z) = σ(z′)

M, σ |= z < z′ if σ(z) < σ(z′)

M, σ |= z ∼ z′ if δ(σ(z)) = δ(σ(z′))

M, σ |= p(z) if σ(z) ∈ V (p)

M, σ |= ψ ⊃ ψ′ if M, σ |= ψ implies M, σ |= ψ′

M, σ |= ∃z.ψ if ∃w ∈W, M, σ[w/z] |= ψ

where σ[w/z] is the updated assignment mapping z to w and the remaining variable z′ ∈
{x, y} \ {z} to σ(z′).
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5.6.2. Equivalence with Kd
t Lℓ.3. Given an FO2(∼, <) formula ψ(z) with one free vari-

able z, we show how to construct a Kd
t Lℓ.3 formula ϕ such that, for all data ordinals M =

((α, δ), V ), M, [w/z] |= ψ if and only if M, w |= ϕ, where [w/z] is the variable assignment
mapping z to w.

T८५ॵॸ५ॳ 5.15. Every FO2(∼, <) formula ϕ(x) can be converted to an equivalent Kd
t Lℓ.3

formula ϕ′ with |ϕ′| ∈ 2poly(|φ|).

Pॸॵॵ६. he proof works the same as in Etessami et al. [2002] for FO2(<), which is recalled
in Fact 2.7. We sketch how to adapt it for data ordinals.

Ater puting ϕ in Scot normal form—as in Etessami et al. [2002]—we construct a trans-
lation by structural induction. At this point, assuming by induction hypothesis that ψ′ is the
translation of some formula ψ(x), we need to provide translation to a formula of the form
∃y(τ(x, y) ∧ ψ(y)), where τ is what we call a data order type, and expresses which relations
hold between x and y (in Etessami et al. [2002], τ(x, y) is called an order type and expresses
which order relation holds between x and y). We consider 9 mutually exclusive cases of such
τ(x, y) in the following table, where τ〈ψ〉 denotes the translation of ∃y(τ(x, y) ∧ ψ(y)):

τ(x, y) τ〈ψ〉
x = y ψ′

x ∼ y ψ′ ∨ ↓rF=r ψ
′ ∨ ↓rP=r ψ

′

¬(x ∼ y) ↓rF6=r ψ
′ ∨ ↓rP6=r ψ

′

x < y Fψ′

x < y ∧ x ∼ y ↓rF=r ψ
′

x < y ∧ ¬(x ∼ y) ↓rF 6=r ψ
′

y < x Pψ′

y < x ∧ x ∼ y ↓rP=r ψ
′

y < x ∧ ¬(x ∼ y) ↓rP 6=r ψ
′

Any other τ(x, y) can be reduced to either these cases, or trivially to ⊥ or ⊤. □

Conversely, Kd
t Lℓ.3 formulæ can be easily translated into FO2(∼, <) formulæ. Hence,

Kd
t Lℓ.3 and FO2(∼, <) are equally expressive.

hus, as in the previous chapters, our results yield an optimal NEXP upper bound for the
satisiability of FO2(∼, <).

5.7. Related Work and Conclusion

We have investigated K↓
tLℓ.3—the freeze tense logic over ordinals—and proposed a decid-

able fragment, namely Kd
t Lℓ.3, for which we designed a sound and complete proof system.

his fragment is equally expressive as FO2(∼, <) from Bojańczyk et al. [2011]. It is also a
fragment of the Logic of Repeating Values (LRV) from Demri et al. [2016], even though for-
mulæ of the form ↓rH=r ϕ and ↓rH 6=r ϕ can only be encoded in the enriched version of their
logic with past modalities (PLRV), for which the satisiability problem is equivalent to the
problem of reachability in VASS, which is TOWER-hard [Czerwiński et al., 2019], and with an
ACKERMANN complexity upper bound [Leroux and Schmitz, 2019]. However, the satisiability
problem of Kd

t Lℓ.3 has a smaller complexity (NP), as established by our proof system.
hanks to Indrzejczak’s ordered hypersequents[Indrzejczak, 2016], enriched with clusters

and annotations as in Chapters 3 and 4, our system enjoys optimal coNP proof search, allows
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to derive small model properties, and can be extended into a proof system for variants of the
logic over bounded or ixed data ordinals. he main contribution of this chapter is the ability
to maintain the small branch property of the calculus with the addition of data registers.
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6.1. Introduction

he satisiability of XPath queries has been widely studied, as this abstract question actu-
ally allows to answer several questions on the reliability and performance of a query. Unfortu-
nately, the satisiability problem is in general undecidable, andmost of the decidable fragments
are intractable. For instance, the pure navigational fragment CoreXPath 1.0 is EXP-complete
already when only using the child axis [Afanasiev et al., 2005; Benedikt et al., 2008; Neven
and Schwentick, 2006]. hus, most of the literature on the topic is of a theoretical nature [e.g.
Abriola et al., 2017b; Baelde et al., 2016; Bojańczyk et al., 2009; Figueira, 2012a,b, 2013; Figueira
and Segouin, 2017; Geerts and Fan, 2005; Jurdziński and Lazić, 2011], and focuses on decid-
ability and complexity questions in variants of CoreXPath 1.0 that allow either limited forms
of data joins or restricted navigation with full data joins.

However, handling data joins may not necessarily imply much more coverage in prac-
tice, as they are not the only source of diiculty in XPath: many real-life XPath queries
perform calls to a standard library of functions [xfu, 2014]—including arithmetic and string-
manipulating functions—that also lead to undecidable satisiability.

Also, XPath 1.0 dates back to 1999; the more recent versions 2.0 and 3.0 feature path inter-
sections, for loops, etc. [ten Cate and Lutz, 2009]. As it evolves in pace with Xuery, XPath

77
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includes more and more general programming constructs, and is arguably not just a domain-
speciic language for path navigation—quite tellingly, we shall see that, among the real-world
queries we gathered, only half of them used navigation.

In this part, we evaluate the practical coverage of XPath fragments proposed in the theo-
retical literature by measuring how many real-world queries are captured by these fragments.
he irst step to this end, presented in Chapter 6, is the compilation of a benchmark of 21,141
real-world XPath queries, which are extracted from XSLT or Xuery open-source projects. As
described in Section 6.3, each XPath query is parsed by our benchmark and an XML syntax
tree representation is output in XueryX [xqu, 2014b]. he tools and the resulting benchmark
are available from Baelde et al. [2019b,c] under open source licenses.

We then try to test the queries in our benchmark against the syntax allowed in theoretical
works on XPath satisiability, namely by writing Relax NG speciications for PositiveXPath
[Geerts and Fan, 2005; Hidders, 2004], CoreXPath 1.0 [Gotlob and Koch, 2002], CoreXPath 2.0
[ten Cate and Lutz, 2009], fragments of DataXPath [Figueira, 2012a,b; Figueira and Segouin,
2017], and fragments of XPath that can be interpreted in EMSO2 [Bojańczyk et al., 2009] or
using non-mixing MSO constraints [Czerwinski et al., 2017] (see Chapter 7).

Naturally, the syntax deined in these works is simpliied and was never meant to be used
directly against concrete XPath inputs, while we need a concrete syntax for each one of these
fragments in order to implement it in Relax NG, as our benchmark contains real XPath queries.
As a result, a naive implementation of the syntactic fragments from the literature does not
lead to a good coverage (see Section 7.3). hus, we investigate in Chapter 8 which XPath
features can be ‘reasonably’ handled in these fragments without losing decidable satisiability
nor hampering its complexity. To that end, in Section 6.2 we provide an agreeable semantics
for a substantial subset of XPath 3.0.

In Chapter 8, we propose six extensions of the original fragments and evaluate their cover-
age on the benchmark. hese extensions are root navigation, free variables, data tests against
constants, positive data joins, and restricted calls to the functions last() and id(). Just as
interestingly, we exhibit several cases where these extensions cannot be handled.

We analyse our experimental results in Section 8.5, notably concluding that higher cov-
erage tends to be obtained through basic extensions rather than by using complex academic
fragments. We also identify increased function support as a promising direction for improved
practical satisiability checking, with an especially high potential for XPath queries from XSLT
sources. We conclude in Section 8.6.

6.2. XPath 3.0

heXPath 3.0 speciication is arguably too complex to be reasoned about directly. Wework
instead with a well-deined sub-language, designed to capture accurately the constructions
we witnessed in the benchmark. In order to be compatible with the semantics in the XPath
literature, we provide a semantics on data trees, but in Section 6.2.6 we show how to capture
the actual XPath semantics on XML documents.

6.2.1. Data Trees. Our models are an abstraction of XML DOM trees called data trees,
which are inite trees where each node carries both a label from a inite alphabet Σ and a
datum from an ininite countable domain D equipped with an order <.
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n

lang o

id text

t

ref lang text c

text

en

23 John Doe 23 fr John

Doe

Doe

John Doe John Doe

John DoeJohn Doe

F९७ॻॸ५ 6.1. A data tree; labels from Σ are shown in the nodes, data from D in
violet next to them.

Formally, a data tree is a inite rooted ordered unranked tree with labels in Σ × D: it is
a pair t = (ℓ, δ) of functions ℓ:N → Σ, δ:N → D with a common non-empty inite set
of nodes N ⊆ N∗ as domain; N must be preix-closed (if p · i ∈ N for some p ∈ N∗ and
i ∈ N, then p ∈ N ) and predecessor-closed (if p · (i + 1) ∈ N for some p ∈ N∗ and i ∈ N,
then p · i ∈ N ); in particular it contains a root node ε. Nodes in N , being inite sequences
of natural numbers, are totally ordered by the lexicographic ordering, which is known in this
context as the document order and denoted by≪. Figure 6.1 displays an example of a data tree.
When working with irst-order or monadic second-order logic, a data tree is seen as a inite
relational structure (N, ↓,→,∼, (Pa)a∈Σ, (Pd)d∈D) where

→ = {(p · i, p · (i+ 1)) ∈ N2 | p ∈ N∗, i ∈ N} ,

↓ = {(p, p · i) ∈ N2 | p∈N∗, i∈N} , Pa = {p ∈ N | ℓ(p)=a},

∼ = {(p, p′) ∈ N2 | δ(p) = δ(p′)} , Pd = {p ∈ N | δ(p)=d}

denote respectively the child relation, the next-sibling relation, data equivalence, and the la-
belling and data predicates.

6.2.2. Syntax. While our implementation works with concrete syntax (see e.g. the exam-
ple in Example 6.4), for the sake of readability we use an abstract syntax throughout this part.
It is nevertheless fully compatible with XPath 3.0: all the examples in this part are writen in
actual XPath.

Let X be a countable ininite set of variables, and F be a ranked alphabet of function
names; we denote byFn its subset of symbols with arityn. As usual, our language hasmultiple
sorts: axes denote directions in the data tree, with abstract syntax

α ::= self | child | descendant | following-sibling
| parent | ancestor | preceding-sibling

path expressions describe binary relations between the nodes in a data tree, with abstract syntax

π ::= α::∗ | /π | π/π | π[ϕ] | π union π | f(π1, . . . , πn)

| $x |let $x := π return π |for $x in π return π
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JselfKA = {(p, p) | p ∈ N2}

JchildKA = ↓ JparentKA = ↓-1

Jfollowing-siblingKA =→+ JancestorKA = (↓-1)+

Jpreceding-siblingKA = (→-1)+ JdescendantKA = ↓+

F९७ॻॸ५ 6.2. he semantics of XPath axes.

where $x ranges over X , n over N, and f over Fn, while node expressions describe sets of
nodes, with abstract syntax

ϕ ::= π | a | false() | not(ϕ) | ϕ or ϕ | π is π | π△ π | π△+ d

where a ranges overΣ, d overD,△ over {eq,ne} and△+ over {eq,ne,le,lt,ge,gt}. Note
that only eq and ne are allowed when comparing paths, while the ordered structure of D is
only available when comparing a path and a data constant: none of the fragments we consider
is known to allow the richer path comparisons. We provide a detailed breakdown of howmany
queries from our benchmark use each one of these syntactic constructs in Section 6.3.4.

6.2.3. Data Tree Semantics. For a ixed data tree of domain N , we give in Figures 6.2
and 6.3 the semantics of axes JαKA, path and node expressions JπKνP and JϕKνN. he semantics
is relative to a current variable valuation ν:X → 2N . he semantics of node expressions are
sets of nodes of N , while those of axes and path expression are sets of pairs of nodes.

In order to interpret functions, each function symbol f from Fn comes with a semantics
JfKF : (2

N )n → 2N . For instance, false() and not() are technically XPath functions, with
semantics JfalseKF = ∅ and JnotKF (S) = N \S for all S ⊆ N . Likewise, we interpret each
comparison operator △+ as a data relation △+∼ ⊆ D × D: eq

∼ is the equality = over D, and ne
∼

the disequality 6=, lt
∼ the strict order <, etc. For binary relations R,R′, we employ relational

compositions R # R′ = {(p, p′′) | ∃p′.(p, p′) ∈ R ∧ (p′, p′′) ∈ R′}, transitive closures R+,
converses R-1 = {(p′, p) | (p, p′) ∈ R}, and images R(p) = {p′ | (p, p′) ∈ R}.

Beware that the semantics of a path expression π changes when seen as a node expression.
In particular, a variable $x is a path expression, and when seen as a node formula, J$xKνN = N

unless ν($x) = ∅. XPath provides two quantiiers: for expressions bind singleton node sets,
while let expressions bind node sets.

Eॾ१ॳॶॲ५ 6.1. Evaluating the query
for $x in child::∗[o or t] return $x[self::∗ eq $x/child::∗]

at the root of the data tree in Figure 6.1 binds $x to each of the two children nodes labelled o
or t in succession, and returns the o node. Evaluating

let $x := child::∗[o or t] return $x[self::∗ eq $x/child::∗]

at the root binds $x to the set containing both o and t, and returns both of them.

Our semantics is in line with the ones found in the literature. However, we note that
it slightly difers from the actual XPath semantics. In particular, we only account for pure
functions acting on paths, while functions from XPath’s large standard library [xfu, 2014]
may be polymorphic and have side-efects—two features that are anyway out of the reach of
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Jα :: ∗KνP = JαKA

J/πKνP = N × JπKνP(ε)

Jπ/π′KνP = JπKνP # Jπ′KνP

Jπ[ϕ]KνP = JπKνP ∩ (N × JϕKνN)

Jπ union π′KνP = JπKνP ∪ Jπ′KνP

Jf(π1, . . . , πn)K
ν
P = {(p, JfKF (Jπ1K

ν
P(p), . . . , JπnKνP(p))) | p ∈ N}

J$xKνP = N × ν($x)

Jlet $x := π return π′KνP = {(p, Jπ′K
ν[$x7→JπKνP (p)]
P (p)) | p ∈ N}

Jfor $x in π return π′KνP = {(p, p′′) ∈ Jπ′K
ν[$x 7→{p′}]
P | p′ ∈ JπKνP(p)}

JπKνN = {p ∈ N | ∃p′ ∈ JπKνP(p)}

JaKνN = Pa

Jfalse()KνN = ∅

Jnot(ϕ)KνN = N \ JϕKνN

Jϕ or ϕ′KνN = JϕKνN ∪ Jϕ′KνN

Jπ is π′KνN = {p ∈ N | ∃p′ . {p′} = JπKνP(p) = Jπ′KνP(p)}

Jπ△+ dKνN = {p ∈ N | ∃p′ ∈ JπKνP(p) . δ(p
′) △

+

∼ d}

Jπ△ π′KνN = {p ∈ N | ∃p′, p′′ . p′ ∈ JπKνP(p)

∧ p′′ ∈ Jπ′KνP(p) ∧ δ(p
′) △∼ δ(p

′′)}

F९७ॻॸ५ 6.3. he semantics of XPath path expressions and node expressions.

the current decidable fragments. Also, variables in XPath are bound to ordered collections of
nodes and data values, while we only consider sets of nodes. his simpler semantics is not
restrictive for our purposes, as discussed further in Section 6.2.6.

6.2.4. he Satisiability Problem. In this part, we focus on the satisiability problem:
given a node expression ϕ, does there exist a data tree t such that t |= ϕ? As path expressions
are also node expressions, this also captures the satisiability of path expressions. In presence
of a DTD, the data tree t should additionally belong to the DTD’s language.

R५ॳ१ॸॱ 6.2. A related problem is query containment: for node expressions ϕ and ϕ′, we
say that ϕ is contained in ϕ′ if, for all data trees and all variable valuations ν, JϕKνN ⊆ Jϕ′KνN.
his is equivalent to asking the unsatisiability of ϕ and not(ϕ′), so it reduces to the satisia-
bility problem when negation is allowed—which will not always be our case. he problem of
path containment asks the same question for path expressions π and π′, and is not captured
by satisiability. Furthermore, one might also consider variants of these problems where we
ask instead whether for all data trees and variable valuations ν and ν ′, JϕKνN ⊆ Jϕ′Kν

′

N , which
leads to rather diferent complexities [Neven and Schwentick, 2006].
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6.2.5. Syntactic Sugar. XPath comes with some handy syntactic sugar.
6.2.5.1. XPath 1.0 Sugar. Beside standard deinitions like true() = not(false()) or

ϕ and ϕ′ = not(not(ϕ) or not(ϕ′)), we may use . = self::∗ for referring to the cur-
rent point of focus, .. = parent::∗ for its parent, α::a = α::∗[a] for testing the label found
ater an axis step, and a single label a as a path formula for child::a.

he syntax also features more axes:
descendant-or-self::∗ = descendant::∗ union self::∗

ancestor-or-self::∗ = ancestor::∗ union self::∗

following::∗ = ancestor-or-self::∗/following-sibling::∗/
descendant-or-self::∗

preceding::∗ = ancestor-or-self::∗/preceding-sibling::∗/
descendant-or-self::∗.

he shorthand π//π′ stands for π/descendant-or-self::∗/π′, and //π is deined simi-
larly by /descendant-or-self::∗/π. Conditional node expressions, while only available
in XPath 2.0 and later, are also easily handled: if (ϕ) then ϕ′ else ϕ′′ = (ϕ and ϕ′) or
(not(ϕ) and ϕ′′).

6.2.5.2. XPath 2.0 Sugar. As shown by ten Cate and Lutz [2009], path intersection and
complementation as introduced in XPath 2.0 can be expressed using for loops: π intersect
π′ is deined by

for $x in π return for $y in π′ return $x[$x is $y] (6.1)
and π except π′ by

for $x in π return .[not(π′[. is $x])]/$x (6.2)
Similarly, node quantiication some $x in π satisfies ϕ can be expressed using

for $x in π return .[ϕ] (6.3)
and every $x in π satisfies ϕ is deined dually. By irst deining the non-standard
future(ϕ) = (following::∗ union descendant::∗)[ϕ] and singleton(π) = π and not(π
intersect π/future(true())), then we can also express standard node comparisons π ≪ π′

with
singleton(π) and singleton(π′) and π′ intersect (π/future(true())) (6.4)

In XPath, a path expression can select the last (according to the document order) node
among those selected by a pathπ. his oten appears as a predicateπ[last()] orπ[position()
= last()] that calls the nullary last() function [xfu, 2014]. However, this syntax cannot be
handled with our simpliied semantics—and is a bit problematic—, thus we shall only consider
the one-argument version of last() [xfu, 2014], with semantics JlastKF (S) = max≪(S) for
any S ⊆ N . hen last(π) can be expressed in XPath 2.0 by

π except (π/ancestor::∗ union preceding::∗) (6.5)

Eॾ१ॳॶॲ५ 6.3. In the data tree of Figure 6.1, when evaluated at the c node, the path
last(ancestor-or-self::∗/child::lang)

returns the lang node with data value ‘fr.’
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We will discuss the last() function further in Section 8.3.2.

6.2.6. XML Semantics. he XPath data model [xpd, 2014] speciies that nodes can fall
into several categories, with multiple types and accessors. In data trees, there are only nodes,
and two accessors ℓ and δ. Nevertheless, a large part of the XPath data model can be handled.

6.2.6.1. Data Tree of an XML Document. Elements, atributes, text nodes, and comments
can all be encoded using distinguished labels: we let Σ = E ⊎ A ⊎ {text, comment} where E
is the set of element labels and A of atribute labels.

We see all the values as belonging toD. he data inD associated with atribute nodes, text
nodes, and comment nodes is their string value; for an element node, it is the concatenation of
the string values of all its element and text children. he followingXML document corresponds
to the data tree of Figure 6.1:

<n lang=”en”>
<o id=”23”>John Doe</o>
<t ref=”23” lang=”fr ”>John <c>Doe</c></t>

</n>

6.2.6.2. XML-Speciic Syntax. When considering XML documents rather than data trees
as models, some additional features of XPath become meaningful. We enrich the syntax with
the axis

α ::= · · · | attribute

and ive node tests
τ ::= attribute() | comment() | element() | text()

ϕ ::= · · · | τ

π ::= · · · | α::node()

meant to select the appropriate node category, and new syntactic sugar: α::τ = α::node()[τ ]
and @a = attribute::∗[a] for a ∈ A.

6.2.6.3. Interpretation into Data Trees. Given an XPath node expressionϕwith the XML se-
mantics of xpa [2014], we interpret it as an XPath node expression ⌜ϕ⌝ and not(//.[notxml])
that uses the data tree semantics of Section 6.2.3.

he irst conjunct ⌜ϕ⌝ is deined by induction on ϕ; the case of node tests τ is straightfor-
ward:

⌜attribute()⌝ = ora∈A a ⌜comment()⌝ = comment

⌜element()⌝ = ore∈E e ⌜text()⌝ = text

he semantics of atomic steps is modiied to only visit element nodes, except when using
the attribute axis or the node() test, and to forbid horizontal axes in atribute nodes:
⌜α::node()⌝ = α::∗, while ⌜α::∗⌝ is deined as child::∗[ora∈A a] if α = attribute, as
α::∗[ore∈E e] if α = parent or α = ancestor, and as .[not(ora∈A a)]/α::∗[ore∈E e] for
all the other axes. he remaining cases of the induction are by identity homomorphism.

he second conjunct not(//.[notxml]) ensures that the data tree is indeed the encoding
of an XML document, by forbidding the node expression notxml everywhere in the tree. We



84 6. REAL-WORLD XPATH

deine it by irst ensuring that atribute, comments, and text nodes are leaves:
(comment or text or ora∈A a) and child::∗ (6.6)

Note that this does not enforce the XML standard of having at most one a-labelled atribute for
every element. his might actually be desirable, for instance for handling set-valued atributes,
like the class ones in HTML 5. But it can be otherwise remedied with a disjunction with (6.7):

· · · or ora∈A(for $x in child::a return

for $y in child::a return .[not($x is $y)]) (6.7)
In case we are working with a fragment without for and is, but with data joins, (6.8) ensures
instead that all the a-labelled atributes share the same data

· · · or ora∈A(child::a ne child::a) (6.8)
We might want to ensure that identiiers are unique. To simplify maters, let us assume that
all the unique identiiers use the atribute name id ∈ A; then we add

· · · or
(

id and (. eq future(id))
)

(6.9)
Finally, we should also ensure that data values are consistent throughout the tree. Remember
that the value of an element node should be the concatenation of the values of its element
and text children. here is no way to do this without access to string-processing functions,
so the XML semantics and data tree semantics do not quite coincide. Most of the literature
accordingly restricts data joins π△ π′ and data tests π△+ d to paths ending with an atribute
step: only π/@a△ π′/@a′ and π/@a△+ d are allowed in their syntax. We do not enforce
this restriction in our concrete syntax speciications, but the efect is limited: there are only
381 occurrences in the benchmark of a data test π△+ d where π is neither a function call nor
a variable and does not end with an atribute step.

6.3. A Real-World Benchmark

We explain here the technical aspects of the construction of a benchmark of 21,141 queries:
the parserwe developed to this end (Section 6.3.1), the sourceswe employed (Section 6.3.2), and
the way we processed the benchmark to check whether a given query belongs to a syntactic
XPath fragment (Section 6.3.3). We inish the section by mentioning the limitations of the
current benchmark.

6.3.1. Parser. We have slightly modiied the W3C parser for Xuery 3.0 from https:
//www.w3.org/2013/01/qt-applets/, which is (almost) a superset of XPath 3.0, so that
we can also use it for XPath queries extracted from XSLT documents. his parser uses a
grammar automatically extracted from the language speciication, so we are conident in its
results. Our implementation

(1) extracts XPath queries fromXuery iles, by selecting ‘maximal XPath subtrees’ from
the Xuery syntax tree, and

(2) outputs syntax trees in the XML format XueryX [xqu, 2014b]; this is what we pro-
cess to determine to which XPath fragments each query belongs.

Duplicate queries within each source are removed.

Eॾ१ॳॶॲ५ 6.4. Here is an Xuery snippet from the ile functx.xqy of HisTEI:

https://www.w3.org/2013/01/qt-applets/
https://www.w3.org/2013/01/qt-applets/
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module namespace functx = ”htp://www.functx.com” ;
declare function functx: id−from−element

( $element as element()? ) as xs : string ? {
data (( $element/@∗[id (.) is ..])[1])

} ;

he parser identiies ‘data (( $element/@∗[id (.) is ..])[1])’ as an XPath query inside this pro-
gram, and returns the information from Figure 6.4 (note the normalisation of some of the
syntactic sugar, like ‘@∗’ and ‘ .. ’), including the syntax tree in XueryX format [xqu, 2014b]
inside the <ast> element.

his syntax tree in XueryX format can be validated against XML Schemas or Relax NG
syntactic speciications in order to check whether it its in some XPath fragments.

6.3.2. Sources. hreeXSLT and twenty-iveXuery sources have been chosen by search-
ing through open source GitHub projects containing XSLT or Xuery iles, selecting the most
popular projects from which we could extract at least 50 queries. We also added one large
project not hosted on GitHub, namely DocBook XSL.

he XSLT projects aim to translate enriched text documents between diferent formats.
heXuery projects we include aremost oten libraries. he detailed composition is presented
in Table 6.1, along with some coverage data discussed in Section 6.3.3. We make no formal
claim about the coverage of the benchmark, as it is certainly biased by the restriction to XSLT
and Xuery sources. We rather see it as a irst open-source release, which could be later
enriched by adding XPath queries embedded in other programming languages (e.g., Python,
Perl, ECMAScript).

6.3.3. Properties of the Benchmark.
Standard Coverage. We exploit this benchmark by validating the syntax trees in XueryX

format against Relax NG [rel, 2002] speciications. Table 6.1 presents the number of queries
that fall within the scope of the threemajor revisions of the XPath standard (queries are unique
as strings, per source). We can observe that the queries extracted from XSLT iles are nearly
all XPath 1.0 queries, which contrasts with queries extracted from Xuery sources, which rely
more oten on advanced XPath features from XPath 2.0 and XPath 3.0.1

Note that the coverage of XPath 1.0, 2.0, and 3.0 given in Table 6.1 does not restrict func-
tion calls to the standard library [xfu, 2014]. he next column ‘XPath 3.0 std’ shows the cov-
erage of XPath 3.0 when restricted to standard functions. We see here an essential limitation
of analysing XPath queries in isolation, without support for non-standard functions, and in
particular for user-deined functions: more than half of the queries extracted from Xuery
documents are beyond the scope of our analyses.

he last column ‘Core 2.0 extended’ show the coverage of our extended version of the
XPath fragment Core 2.0. he original fragment is presented in Chapter 7, and our extensions
are presented in Chapter 8.

Functions. We show in Figure 6.5 the number of occurrences for each of the 400 most fre-
quently occurring functions (among 1,600) and the associated accumulated percentage of the
total number of function calls. Darker dots correspond to standard XPath functions, and the

1he output XueryX representations of a handful of queries do not validate against XPath 3.0, due to out-of-
bounds constant numerals; this is a very marginal efect.
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<?xml version=”1.0”?>
<benchmark>
<xpath column=”45” ilename=”benchmark/example−histei.xqy” line=”4”>

<query>data(($element/ atribute:: ∗[( id (.) is parent::node ())])[1]) </query>
<ast size=”30”>

<xqx:functionCallExpr xmlns:xqx=”htp: //www.w3.org/2005/XueryX”>
<xqx:functionName>data</xqx:functionName>
<xqx:arguments>

<xqx:pathExpr>
<xqx:stepExpr>

< xqx:ilterExpr >
<xqx:sequenceExpr>

<xqx:pathExpr>
<xqx:stepExpr>

< xqx:ilterExpr >
<xqx:varRef>

<xqx:name>element</xqx:name>
</xqx:varRef>

</ xqx:ilterExpr >
</xqx:stepExpr>
<xqx:stepExpr>

<xqx:xpathAxis> atribute </xqx:xpathAxis>
<xqx:Wildcard/>
< xqx:predicates >

<xqx:isOp>
<xqx:irstOperand>

<xqx:functionCallExpr>
<xqx:functionName>id</xqx:functionName>
<xqx:arguments>

<xqx:contextItemExpr/>
</xqx:arguments>

</ xqx:functionCallExpr>
</ xqx:irstOperand>
<xqx:secondOperand>

<xqx:pathExpr>
<xqx:stepExpr>

<xqx:xpathAxis>parent</xqx:xpathAxis>
<xqx:anyKindTest/>

</xqx:stepExpr>
</xqx:pathExpr>

</xqx:secondOperand>
</xqx:isOp>

</ xqx:predicates >
</xqx:stepExpr>

</xqx:pathExpr>
</xqx:sequenceExpr>

</ xqx:ilterExpr >
< xqx:predicates >

<xqx:integerConstantExpr>
<xqx:value>1</xqx:value>

</xqx:integerConstantExpr>
</ xqx:predicates >

</xqx:stepExpr>
</xqx:pathExpr>

</xqx:arguments>
</ xqx:functionCallExpr>

</ast>
</xpath>
</benchmark>

F९७ॻॸ५ 6.4. Example of output from our parser.
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T१२ॲ५ 6.1. he benchmark’s list of sources.

Source ueries Coverage
XPath 1.0 XPath 2.0 XPath 3.0 XPath 3.0 Core 2.0

std extended

DocBook 7,620 100.0% 100.0% 100.0% 95.6% 79.3%
http://docbook.sourceforge.net/

TEIXSL 6,303 96.4% 100.0% 100.0% 86.1% 70.8%
https://github.com/TEIC/Stylesheets

HTMLBook 752 100.0% 100.0% 100.0% 92.0% 66.4%
https://github.com/oreillymedia/HTMLBook

Total (XSLT) 14,675 98.4% 100.0% 100.0% 91.3% 75.0%

Xuery parser 1,659 83.1% 85.2% 99.9% 15.7% 12.6%
https://github.com/jpcs/xqueryparser.xq

eXist-db 1,151 76.7% 88.0% 100.0% 64.8% 33.1%
https://github.com/eXist-db

HisTEI 483 74.7% 97.5% 100.0% 62.5% 30.2%
https://github.com/odaata/HisTEI

transform.xq 365 64.3% 70.4% 99.7% 45.7% 20.5%
https://github.com/jpcs/transform.xq

ml-enrich 302 74.1% 96.3% 100.0% 55.2% 39.4%
https://github.com/freshie/ml-enrich

xquerydoc 269 87.3% 98.8% 100.0% 52.7% 28.9%
https://github.com/xquery/xquerydoc

openinfoman 261 65.1% 96.1% 100.0% 47.8% 26.8%
https://github.com/openhie/openinfoman

Oxford Dict API 207 85.5% 97.5% 100.0% 57.4% 55.5%
https://github.com/AdamSteffanick/od-api-xquery

MarkLogic Commons 196 70.9% 93.8% 97.4% 45.4% 24.4%
https://github.com/marklogic/commons

datascience 184 77.1% 91.8% 100.0% 40.7% 21.1%
https://github.com/adamfowleruk/datascience

Link Management BaseX 154 72.0% 96.7% 100.0% 73.3% 36.3%
https://github.com/dita-for-small-teams/dfst-linkmgmt-basex/

Semantic Web 149 86.5% 93.9% 100.0% 81.2% 51.0%
https://github.com/HeardLibrary/semantic-web/

eXist annotation store 133 80.4% 86.4% 100.0% 64.6% 48.8%
https://github.com/telic/exist-annotation-store/

xqtest 130 70.0% 99.2% 100.0% 46.9% 38.4%
https://github.com/irinc/xqtest/

data.xq 119 32.7% 33.6% 100.0% 34.4% 16.8%
https://github.com/jpcs/data.xq/

graphxq 92 73.9% 78.2% 100.0% 76.0% 47.8%
https://github.com/apb2006/graphxq/

ml-invoker 92 89.1% 89.1% 100.0% 36.9% 32.6%
https://github.com/fgeorges/ml-invoker/

treedown 92 94.5% 97.8% 100.0% 80.4% 59.7%
https://github.com/biblicalhumanities/treedown/

XQJSON 90 74.4% 100.0% 100.0% 67.7% 55.5%
https://github.com/joewiz/xqjson/

fots BaseX 73 65.7% 71.2% 100.0% 63.0% 28.7%
https://github.com/LeoWoerteler/fots-basex/

GPXuery 57 73.6% 98.2% 100.0% 64.9% 29.8%
https://github.com/dret/GPXQuery/

rbtree.qx 57 22.8% 28.0% 100.0% 24.5% 0%
https://github.com/jpcs/rbtree.xq/

xquery-libs 53 79.2% 88.6% 100.0% 60.3% 49.0%
https://github.com/adamretter/xquery-libs/

Guid-O-Matic 51 84.3% 96.0% 100.0% 56.8% 41.1%
https://github.com/baskaufs/guid-o-matic/

functional.xq 47 12.7% 14.8% 100.0% 21.2% 2.1%
https://github.com/jpcs/functional.xq/

Total (Xuery) 6,466 76.1% 87.4% 99.8% 46.7% 28.0%

Total 21,141 91.6% 96.1% 99.9% 77.7% 60.6%

darker line corresponds to the accumulated percentage achieved by these standard functions.
Arithmetic operations do not igure here as they are classiied syntactically as operators in
XPath. hey occur more than the tenth most frequent function.

http://docbook.sourceforge.net/
https://github.com/TEIC/Stylesheets
https://github.com/oreillymedia/HTMLBook
https://github.com/jpcs/xqueryparser.xq
https://github.com/eXist-db
https://github.com/odaata/HisTEI
https://github.com/jpcs/transform.xq
https://github.com/freshie/ml-enrich
https://github.com/xquery/xquerydoc
https://github.com/openhie/openinfoman
https://github.com/AdamSteffanick/od-api-xquery
https://github.com/marklogic/commons
https://github.com/adamfowleruk/datascience
https://github.com/dita-for-small-teams/dfst-linkmgmt-basex/
https://github.com/HeardLibrary/semantic-web/
https://github.com/telic/exist-annotation-store/
https://github.com/irinc/xqtest/
https://github.com/jpcs/data.xq/
https://github.com/apb2006/graphxq/
https://github.com/fgeorges/ml-invoker/
https://github.com/biblicalhumanities/treedown/
https://github.com/joewiz/xqjson/
https://github.com/LeoWoerteler/fots-basex/
https://github.com/dret/GPXQuery/
https://github.com/jpcs/rbtree.xq/
https://github.com/adamretter/xquery-libs/
https://github.com/baskaufs/guid-o-matic/
https://github.com/jpcs/functional.xq/
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F९७ॻॸ५ 6.5. Occurrences of function calls.

he standard functions only represent 57.23% of the function calls in the benchmark. his
is mostly due to queries from Xuery sources, which routinely use functions deined in the
surrounding Xuery programs: when restricting to these sources, standard XPath functions
represent 42.93% of the function calls. By contrast, when restricting to XSLT sources, we ind
only 210 functions and standard XPath functions represent 76.32% of the calls. Moreover, still
within XSLT sources, the 16 functions with more than 100 occurrences each all belong to the
XSLT or XPath standard, and account for 78.35% of the occurrences of function calls. In the
XSLT sources, there are 4,650 queries (31.69%) performing at least one function call, roughly
as many as the 4,556 queries (70.46%) found in the Xuery sources.
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F९७ॻॸ५ 6.6. Distribution of query sizes.

Size. Figure 6.6 shows the distribution of query sizes, deined as the number of nodes in
their syntax trees. As might be expected, a majority of the queries have size at most 13, but
there are nevertheless 256 queries of size 100 or more.

6.3.4. Benchmark Occurrences. Table 6.2 shows the number of queries that use each
speciic axis, irst for each type of source, and then globally; attribute and child are the
most prominent axes.

Tables 6.3 and 6.4 show, for each syntactic construct, the number of queries that use it.
Table 6.3 focuses on constructs from our restricted syntax, while Table 6.4 presents XPath
constructs not supported by our abstract syntax. he diference between XSLT and Xuery
sources is marked, with ‘advanced’ or unsupported constructs (let, for, map, etc.) used
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T१२ॲ५ 6.2. Number of queries using each axis.

Axis XSLT Xuery Total
ancestor(-or-self) 753 (5.1%) 27 (0.4%) 780 (3.6%)
attribute 3,048(20.7%) 578 (8.8%) 3,626(17.1%)
child 5,479(37.3%) 1,122(17.2%) 6,601(31.1%)
descendant(-or-self) 488 (3.3%) 288 (4.4%) 776 (3.6%)
following 18 (0.1%) 2 (0.0%) 20 (0.0%)
following-sibling 223 (1.5%) 18 (0.2%) 241 (1.1%)
namespace 10 (0.0%) 0 (0.0%) 10 (0.0%)
parent 522 (3.5%) 56 (0.8%) 578 (2.7%)
preceding 49 (0.3%) 3 (0.0%) 52 (0.2%)
preceding-sibling 237 (1.6%) 13 (0.2%) 250 (1.1%)
self 557 (3.7%) 16 (0.2%) 573 (2.7%)
All axes 8,351(56.8%) 1,501(23.0%) 9,852(46.5%)

T१२ॲ५ 6.3. Number of queries using each construct.

Syntactic construct XSLT Xuery Total
α::∗ 8,351(56.8%) 1,501(23.0%) 9,852(46.5%)
/π 233 (1.5%) 39 (0.6%) 272 (1.2%)
π/π 3,355(22.8%) 1,499(23.0%) 4,854(22.9%)
π[ϕ] 2,415(16.4%) 1,070(16.4%) 3,485(16.4%)
π union π 1,155 (7.8%) 42 (0.6%) 1,197 (5.6%)
f(π1, . . . , πn) 4,650(31.6%) 4,555(70.0%) 9,205(43.4%)
$x 6,896(46.9%) 5,580(85.8%) 12,476(58.9%)
let $x := π return π 0 (0.0%) 405 (6.2%) 405 (1.9%)
for $x in π return π 5 (0.0%) 164 (2.5%) 169 (0.7%)
ϕ or ϕ, ϕ and ϕ 1,818(12.3%) 234 (3.6%) 2,052 (9.6%)
π is π 1 (0.0%) 12 (0.1%) 13 (0.0%)
π△ π 545 (3.7%) 308 (4.7%) 853 (4.0%)
π△+ d 4,029(27.4%) 762(11.7%) 4,791(22.6%)

almost only in Xuery, and navigation and data tests against constants used signiicantly
more in XSLT.

6.3.5. Limitations. he benchmark is made of uncurated data, thus no distinction is
made between tiny XPath queries and more interesting ones. For instance, only 9,852 of the
queries in the benchmark use at least one axis step. Also, as seen in Table 6.1, the numbers
of queries from the various sources are not balanced, which means that results on the whole
benchmark might not be very telling, and that one should distinguish the XSLT sources from
the Xuery ones. Finally, the benchmark was compiled speciically for investigating the cov-
erage of syntactic fragments of XPath. It is currently not really suitable for other ends:
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T१२ॲ५ 6.4. Number of queries using unsupported syntactic constructs.

Unsupported construct XSLT Xuery Total
simple map 0(0.0%) 44(0.6%) 44(0.2%)
dynamic function invocation 0(0.0%) 170(2.6%) 170(0.8%)
inline function 0(0.0%) 126(1.9%) 126(0.5%)
named function 0(0.0%) 31(0.4%) 31(0.1%)
range sequence 11(0.0%) 54(0.8%) 65(0.3%)
instance of 0(0.0%) 35(0.5%) 35(0.1%)
processing instruction 120(0.8%) 9(0.1%) 129(0.6%)
cast-related expressions 19(0.1%) 6(0.0%) 25(0.1%)

XPath satisiability: in both XSLT and Xuery iles, no schema information on the XML to
be processed is available. Furthermore, it seems likely thatmost queries are satisiable—
quite possibly all of them.

XPath evaluation: similarly, the benchmark does not provide examples of input XML docu-
ments on which the XSLT or Xuery should be evaluated.

he irst limitation could be lited by inspecting each source and manually adding the relevant
schema when it can be identiied.

6.3.6. Related Work. Regarding XPath and Xuery, the previous works [e.g. Afanasiev
and Marx, 2008; Franceschet, 2005; Schmidt et al., 2002] on benchmarks focus on evaluating
the performance of processors. For instance, Franceschet [2005] comprises two collections of
queries: functional queries (XPathMark-FT) check the functional correctness of XPath proces-
sors, while performance queries (XPathMark-PT) allow to evaluate the performance of query
evaluation in XPath processors. hese benchmarks are synthetic and of limited size, and ac-
companied with XML documents against which they should be evaluated. Compared to these
works, we carry a large scale analysis of real-world queries, and analyse them with respect
to the satisiability problem rather than the evaluation problem. We did not include these
synthetic benchmarks in our analysis, as we focus on real-world queries.

Several large scale studies of real-world SPARQL queries harvest from semanticweb search
logs [Bonifati et al., 2017; Picalausa and Vansummeren, 2011]. hanks to the availability of
SPARQL logs, the latest one [Bonifati et al., 2017] includes over 50 million unique queries and
carries out detailed analyses of query features that are relevant to their evaluation, including
whether the queries belong to speciic SPARQL fragments. While we did not focus on XPath
fragments for which evaluation would be more eicient, our benchmark could certainly be
exploited in this direction.
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7.1. Introduction

We now present the fragments with decidable satisiability and containment we have con-
sidered in our experiments. As there is such an abundant literature on the topic [e.g. Benedikt
and Koch, 2009; Benedikt et al., 2008; ten Cate and Lutz, 2009; Figueira, 2012a,b, 2013; Figueira
and Segouin, 2017; Gotlob and Koch, 2002; Jurdziński and Lazić, 2011; Neven and Schwentick,
2006; Schwentick, 2004], this is clearly an incomplete sample, but we think it is representative
of the main lines of investigation.

he fragments we consider in our experiments and their inclusions are shown in Figure 7.1,
along with the complexity of satisiability in each fragment. Regarding complexity, we use
the DAG-size of the input expression, where isomorphic sub-expressions are shared. Note
that Figure 7.1 reports the complexity for the original logics, thus for EMSO2 and non-mixing
MSO constraints, the complexity of the XPath fragments we translate into the logics might be
lower.

7.2. Decidable XPath Fragments

7.2.1. Positive XPath. Some of the earliest-studied fragments of XPath are based on tree
paterns [Hidders, 2004]. Geerts and Fan [2005,hm. 4] show that the following PositiveXPath
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F९७ॻॸ५ 7.1. Inclusions and complexities of the fragments of Chapter 7.

fragment has an NP-complete satisiability problem, even in presence of a DTD,

π ::= α::∗ | π/π | π[ϕ] | π union π | π intersect π

ϕ ::= π | a | false() | true() | ϕ or ϕ | ϕ and ϕ | π△ π

where a ranges over Σ and△ over {eq,ne}. his fragment has a semantics-preserving trans-
lation into the existential positive fragment of irst-order logic over the relational signature
(↓, ↓∗,→,→∗, (Pa)a∈Σ,∼, 6∼).

7.2.2. Core XPath 1.0. A landmark fragment is the language of Gotlob and Koch [2002],
known in the literature as ‘CoreXPath’. his language is akin to propositional dynamic logic
on trees [Afanasiev et al., 2005], and is deined by the abstract syntax

π ::= α::∗ | π/π | π[ϕ] | π union π

ϕ ::= π | a | false() | not(ϕ) | ϕ or ϕ

where a ranges overΣ. We recall here the usual standard translation of CoreXPath expressions
into irst-order formulæ [see, e.g., Afanasiev et al., 2005; Marx, 2005]:

STx,y(α::∗) = x JαKA y

STx,y(π/π
′) = ∃z . STx,z(π) ∧ STz,y(π

′) (z fresh)
STx,y(π[ϕ]) = STx,y(π) ∧ STy(ϕ)

STx,y(π union π′) = STx,y(π) ∨ STx,y(π
′)

STx(π) = ∃y . STx,y(π) (y fresh)
STx(a) = a(x)

STx(false()) = ⊥

STx(not(ϕ)) = ¬STx(ϕ)

STx(ϕ or ϕ) = STx(ϕ) ∨ STx(ϕ
′)
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Furthermore, CoreXPath is known to be expressively equivalent to the two variable frag-
ment of the irst order logic on trees [Marx and De Rijke, 2005].

CoreXPath has an EXP-complete satisiability problem, also in presence of a DTD. To the
best of our knowledge, this is the only fragment in this section for which an implementation
of a satisiability procedure exists [Genevès et al., 2015].

7.2.3. Core XPath 2.0. he main feature of XPath 2.0 was the introduction of for loops.
Having for loops further enriches XPath with variable quantiication, and provides a signii-
cant jump in expressiveness (see S6.2.5.2). enTEN Cate and Lutz [2009] study the extension of
CoreXPath with

π ::= · · · | $x | for $x in π return π

ϕ ::= · · · | $x is $y | . is $x

where $x and $y range over X ; we call the resulting fragment CoreXPath 2.0. he syntax of
node identity tests in ten Cate and Lutz [2009] is slightly more restrictive than ours, but this
can be ixed by deining π is π′ as a shorthand for

singleton(π) and singleton(π′) and for $x in π return

for $y in π′ return .[$x is $y] (7.1)

A deeper diference lies in the semantics of variables: ten Cate and Lutz [2009] assume that
valuations map to single nodes. his does not make any diference regarding bound variables,
since in CoreXPath 2.0 they must be bound by a for expression, but it does make one for
free variables. his is not an issue, since the decision procedure for CoreXPath 2.0 can handle
those.

Indeed, satisiability in CoreXPath 2.0 is decidable in time bounded by a tower of expo-
nentials, whose height depends on the size of the expression. his is seen by reducing the
problem to satisiability in MSO(↓,→, (Pa)a∈Σ), using the standard translation of CoreXPath
expressions into MSO formulæ recalled in Section 7.2.2; due to the presence of variables, this
translation must be reined with a mapping τ from XPath variables to irst-order variables,
allowing to write

STτ
x,y($z) = (y = τ($z))

STτ
x,y(for $z in π return π′) = ∃z . STτ

x,z(π) ∧ STτ [$z7→z]
x,y (π′) (z fresh)

STτ
x($y is $z) = (τ($y) = τ($z))

STτ
x(. is $z) = (x = τ($z))

he resulting TOWER complexity upper bound is tight [ten Cate and Lutz, 2009,hm. 31]. hus
our free XPath variables translate directly into free second-order variables in
MSO(↓,→, (Pa)a∈Σ).

7.2.4. Data XPath. A well-studied XPath fragment with the ability to test data equality
and disequality is DataXPath [Geerts and Fan, 2005]. It is obtained by adding joins to the
syntax of CoreXPath as follows, where△ ranges over {eq,ne}:

ϕ ::= · · · | π△ π
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Although DataXPath satisiability is undecidable [Geerts and Fan, 2005], restricting the
navigational power restores decidability [Figueira, 2018]. he irst decidable fragment we
consider is VerticalXPath, shown decidable by Figueira and Segouin [2017, hm. 2.1], which
restricts the syntax of DataXPath to only allow vertical navigation:

α ::= self | child | descendant | parent | ancestor

Another decidable fragment is ForwardXPath, shown decidable by Figueira [2012b, hm. 6.4],
where navigation is restricted to forward axes only:

α ::= self | child | descendant | following-sibling

We also consider DownwardXPath [Figueira, 2012a, hm. 6.4], the intersection of Vertical-
XPath and ForwardXPath, where only downward navigation is allowed:

α ::= self | child | descendant

As seen in Figure 7.1, the complexity of the satisiability problem in these three fragments
varies considerably: DownwardXPath is EXP-complete, but VerticalXPath and ForwardXPath
are ACKERMANN-hard [Figueira and Segouin, 2009]. It is also notable that satisiability of
DownwardXPath also becomesACKERMANN-hard in presence of DTDs [Figueira and Segouin,
2009].

7.2.5. Existential MSO2. Bojańczyk, Muscholl, Schwentick, and Segouin [2009] investi-
gate the satisiability of formulæ of the form ∃X1 · · · ∃Xn . ψ, whereX1, . . . , Xn are monadic
second-order variables and ψ is a irst-order formula in the two-variable fragment over either

• the signature (↓,→, (Pa)a∈Σ,∼), which they denote by EMSO2(∼,+1), or
• the signature (↓, ↓+→,→+, (Pa)a∈Σ,∼), which they denote by EMSO2(∼, <,+1).

In the irst instance, they prove the decidability of satisiability in 3-NEXP [Bojańczyk et al.,
2009, hm. 3.1], while the best known lower bound is NEXP-hardness, which holds already
for irst-order logic with two variables FO2(↓, (Pa)a∈Σ) [Benaim et al., 2016, hm. 5.1]. In
the second instance, decidability is open, and equivalent to the reachability problem in an
extension of branching vector addition systems [Jacquemard et al., 2016], with a TOWER lower
bound [Lazić and Schmitz, 2015].

hese results can be exploited for a fragment EMSO2XPath of DataXPath: Bojańczyk et al.
[2009, hm. 6.1] allow the following restricted joins in CoreXPath

π ::= · · · | π△ /π | .△ α::∗[ϕ]

where△ ranges over {eq,ne}. When the above π, π′, and α are restricted to using the axes
self, child, and parent, this can be translated into EMSO2(∼,+1), and the general form
into EMSO2(∼, <,+1).1 In spite of the unknown decidability status of EMSO2(∼, <,+1), we
have run our benchmarks against the full logic.

1Bojańczyk et al. [2009] actually also allow joins of the form @a△ α::∗/@b, but this is subject to a semantic
condition.
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7.2.6. Non-Mixing MSO Constraints. In [Czerwinski et al., 2017], Czerwinski, David,
Murlak, and Parys deine MSO constraints as formulæ of the form ψ(x̄) =⇒ η∼(x̄) ∧ η 6∼(x̄),
where ψ is an MSO formula over the signature (↓,→, (Pa)a∈Σ) with the irst-order variables
x̄ as its free variables, and η∼ and η 6∼ are positive Boolean combinations of atoms, over the
respective signatures (∼, (Pd)d∈D) and ( 6∼, (¬Pd)d∈D). Hence data tests and data joins are
permited, as long as they are not mixed. Satisiability is called ‘consistency’ in this context,
and is decidable [Czerwinski et al., 2017, hm. 4]; beter complexities are achievable when
restricting ψ to conjunctive queries.

To quote Czerwinski et al. [2017], their ‘results imply decidability… of the containment
problem in the presence of a schema for unions of XPath queries without negation, where each
query uses either equality or inequality, but never both.’ Here is indeed a NonMixingXPath
fragment of XPath, which can be translated to MSO constraints:

ϕc ::= ϕeq | ϕne | ϕc or ϕc

where△-expressions, for△ in {eq,ne}, are deined by
π△ ::= α::∗ | π△/π△ | π△[ϕ△] | π△ union π△

ϕ△ ::= true() | false() | π△ | ϕ | ϕ△ or ϕ△ | ϕ△ and ϕ△

| π△ △ π△ | π△ △ d

where ϕ is any CoreXPath 2.0 node expression. As this fragment embeds CoreXPath 2.0, its
satisiability problem is TOWER-hard, which matches the upper bound for MSO constraints
[Czerwinski et al., 2017].

We now show how to translate a formula from this XPath fragment to a formula of the
fragment of Czerwinski et al. [2017], that is a formula of the form

∨

i(∃x̄i . αi(x̄i) ∧ η
i
△(x̄i)),

where the αi are MSO formulæ and ηi△ positive Boolean combinations of△ tests. he general
idea of this translation is to irst describe the tree structure of a tree satisfying the query
(by using enough variables), which will provide the formulæ αi, and then state all the data
constraints that should hold between these variables, which will yield the formulæ ηi△.

he translation extends the standard translation for CoreXPath 2.0 with a top-level trans-
lation for△-expressions:

STx(π△ △ π′△) = ∃y∃z . STx,y(π△) ∧ STx,z(π
′
△) ∧ y△ z (y, z fresh)

Since this last case must occur positively, we will always be able to extract the atoms of the
form y△ z and regroup them in a formula η△.

7.3. Baseline Benchmark Results

We have implemented the fragments of this section as Relax NG schemas (see the iles
relaxng/xpath-FRAGMENT-orig.rnc in the distribution). In each case we included obvi-
ous extensions, such as the syntactic sugars discussed in Section 6.2.5 (in particular, the last()
function is included in CoreXPath 2.0 and NonMixingXPath).

he results of these fragments on the benchmark are presented in Figures 7.2 and 7.3.
he fragments allowing free variables, namely CoreXPath 2.0, EMSO2XPath, and NonMixing-
XPath, have the best baseline coverage. We see here the practical interest of a fragment like
NonMixingXPath with restricted negation but some support for variables, data tests π △ d,
and data joins π △ π. he other fragments have an essentially negligible coverage in the
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Xuery benchmarks (Figure 7.3). he support for unrestricted joins π △ π′ in the fragments
of DataXPath from Section 7.2.4 has a very limited efect, and indeedwe only found 65 relevant
instances in the entire benchmark, i.e. where neither π nor π′ is a variable or a function call.

Of course, the fragments deined in the literature were not meant to be run against con-
crete XPath queries; and the deinitions we picked were somewhat arbitrary—e.g. some papers
would allow root navigation /π in CoreXPath 1.0. Hence, we do not consider these initial re-
sults as very signiicant. We will see in the next chapter that several easy extensions can
be made to our fragments to relect their expressivity more faithfully. he coverage of the
extended versions of the fragments is presented and discussed in Section 8.5.
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8.1. Introduction

In this chapter, we introduce several extensions of the fragments from Chapter 7, while
preserving the decidability and complexity of the corresponding satisiability problems. As
seen in Table 8.1, we consider irst ‘basic’ extensions with considerable impact on the bench-
mark coverage in Sections 8.2.1 to 8.2.3, and then ‘advanced’ ones with smaller impact in Sec-
tions 8.3.1 to 8.3.3.

We use two ways to prove that an extension can be handled: for any expression of the
extended fragment, we either provide an equivalent or an equisatisiable formula in the original
fragment.

D५६९ॴ९ॺ९ॵॴ 8.1. We say that an extension can be expressed in a fragment if, for any node
expression ϕ in the extended syntax, we can compute an equivalent node expression ϕ′ in the
original fragment, i.e. such that for all data trees and valuations ν, JϕKνN = Jϕ′KνN—and similarly
for path expressions. Moreover, we say that the extension can be polynomially encoded if ϕ′

can be computed in polynomial time.

T१२ॲ५ 8.1. Occurrence counts of the syntactic extensions of Chapter 8 in the
entire benchmark.

Basic Advanced
/π $x π△+ d π△ π last() id()

272 12,476 4,791 853 1,203 31

97
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D५६९ॴ९ॺ९ॵॴ 8.2. We say that an extension can be encoded in a fragment if, for any node
expression ϕ in the extended syntax, we can compute an equisatisiable node expression ϕ′

in the original fragment, i.e. such that there exists t with t |= ϕ if and only if there exists t′
with t′ |= ϕ′. Moreover, we say that the extension can be polynomially encoded if ϕ′ can be
computed in polynomial time.

Clearly, an extension that can be (polynomially) expressed can also be (polynomially) en-
coded, but the converse might not hold.

Last of all, the proof techniques employed to show the decidability of satisiability in a
fragment might allow to handle the extension at hand.

8.2. Basic Extensions

8.2.1. /π: Root Navigation. In XPath, navigation to the root is possible through the /π
construct as well as using the nullary root() function [xfu, 2014], with semantics JrootKF =
{ε}.

We naturally allow these features in CoreXPath 1.0 and 2.0 as well as in the NonMixing-
XPath and EMSO2XPath fragments, where navigation to the root is captured by

ancestor-or-self::∗[not(parent::∗)] (8.1)

he same goes for VerticalXPath but not for the two other DataXPath fragments, where
one cannot navigate upwards. It is clear that root navigation is not expressible in these frag-
ments. In fact, it cannot even be encoded in ForwardXPath, since it becomes undecidable when
extended with navigation to the root, as can be seen by adapting the proofs from Figueira and
Segouin [2009].

Pॸॵॶॵॹ९ॺ९ॵॴ 8.3. Satisiability in ForwardXPath extended with root navigation is undecid-
able.

Pॸॵॵ६. his is similar to the proof of Cor. 4 in Figueira and Segouin [2009].
heir hm. 2 shows the ACKERMANN-hardness of the satisiability of simple 1-register

freeze LTL over data words, with strict future temporal modalities (denoted by sLTL↓1(Fs)). As
explained in their Prop. 1, any formula from this fragment of freeze LTL can be translated into
an equivalent XPath formula. In ForwardXPath, we can force the data trees to consist of a
single branch, i.e. to be data words.

As seen in the proof of theirhm. 3, the only reason ForwardXPath is ‘only’ ACKERMANN-
hard instead of undecidable is that, in their construction inhm. 2 of formulæ simulating runs
of Minsky counter machines, one cannot check in ForwardXPath that every decrement was
preceded by a matching increment higher in that tree. But we can check that no matching
increment occurs down that point with

not
(

//.
[

४५३(i) and (. eq .//.[@])
])

(8.2)
and thus the following ensures that any decrement has a matching increment closer to the
root

not
(

//.
[

४५३(i) and not(. eq //.[@])
])

(8.3)

where ४५३(i) and @ are labels in Σ introduced in their construction. □
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We leave open the question whether there is a (polynomial) encoding of root navigation
in DownwardXPath.

Finally, regarding PositiveXPath, Hidders’s original fragment [Hidders, 2004] allowed root
navigation, and his proof of a small model property (showing the satisiability problem to be
in NP) applies mutatis mutandis to the fragment with data joins deined in Section 7.2.1.

8.2.2. $x: Free Variables. he XPath speciication mentions that all variables are essen-
tially second-order. More precisely, a variable is interpreted as an ordered collection of items
which may be nodes or data values. In practice, queries extracted from Xuery or XSLT appli-
cations contain variables that are bound by the host language. hey may be bound to nodes,
node collections, or data values. It is out of the scope of the present work to recover such in-
formation to consider a more speciic satisiability problem. Rather, we interpret all variables
as unordered collections of nodes, as can be seen in our semantics.

In most of our fragments, free variables are admissible. Indeed, any formula ϕ over Σ and
D with a (necessarily inite) set of free variables X ⊆ X can be translated into an equisatisi-
able formulaϕX overΣ×2X andDwith no free variables. Let us write aS for (a, S) ∈ Σ×2X .
he key translation steps are:

($x)X = //.
[

or
a∈Σ, $x∈S⊆2X

aS
]

(a)X = or
a∈Σ, S⊆2X

aS (8.4)

Assuming without loss of generality that the variables bound by constructs such as for or
let do not belong to X , they are not afected by this translation. Given a data tree t = (ℓ, δ)
and a valuation ν:X 7→ N , we deine tν = (ℓν , δ) by ℓν(p) = ℓ(p){$x∈X|p∈ν($x)}. We then
have t, p, ν |= ϕ if and only if tν , p |= ϕX , and similarly for path expressions. Since any data
tree t′ overΣ×2X is of the form tν for some ν, we conclude that ϕ and ϕX are equisatisiable.

Pॸॵॶॵॹ९ॺ९ॵॴ 8.4. Free variables can be encoded in PositiveXPath, CoreXPath 1.0,
CoreXPath 2.0, VerticalXPath, NonMixingXPath, and EMSO2XPath.

Note that although the encoding is exponential, the extension does not actually impact
the complexity of satisiability: in PositiveXPath and CoreXPath 1.0, a polynomial encoding
can be obtained, leveraging a variant of the semantics where multiple propositions may hold
at a node. In VerticalXPath, satisiability is ACKERMANN-hard, so an exponential blow-up will
not have an efect on the worst-case complexity. he decision procedures for the fragments
CoreXPath 2.0, NonMixingXPath, and EMSO2XPath are based on second-order logic, hence
they actually allow XPath variables in their baseline version.

We inally observe that this translation is not available in DownwardXPath and Forward-
XPath, because they cannot express the root path of (8.4). In fact, free variables cannot be
encoded in ForwardXPath; this is similar to Proposition 8.3.

Pॸॵॶॵॹ९ॺ९ॵॴ 8.5. Satisiability in ForwardXPath extended with one free variable is undecid-
able.

Pॸॵॵ६. We reduce the satisiability of ForwardXPath + root() over data trees with a
single branch to the satisiability of ForwardXPath with a single variable, which is therefore
undecidable by Proposition 8.3.

Let $r be the free variable, and let r be a fresh label not found in Σ. We irst ensure that
all the nodes in the valuation of $r have r as label, with the constraint not($r[not(r)]).
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Since we work with data trees consisting of a single branch, there is a lowest node in
ν($r): this is the node selected uniquely by the path expression $r[not(.//r)]. We use it
as our root and perform the entire construction of [Figueira and Segouin, 2009, hm. 3] and
Proposition 8.3 below that node; (8.3) becomes

not
(

$r[not(.//r)]//.
[

४५३(i) and not(. eq //.[@])
])

□

8.2.3. π△+d: Data Tests against Constants. Wenow consider the extensionwith direct
comparisons against constants from D, assuming that < is a dense total order:1

ϕ ::= · · · | π△+ d

where△+ ∈ {eq,ne,le,lt,ge,gt} and d ∈ D.
Going slightly further, we allow comparisons against constant data expressions in our

fragments, where constant expressions are built from constant values and the deterministic
context-insensitive functions of the XPath speciication [xfu, 2014], i.e., function calls that
can be precomputed before testing the query for validity. For instance, @n eq 3 + 1 or
@a = concat(‘foo’,‘bar’) are allowed, but @n eq @m+ 1 and @a = concat(‘foo’,@b) are not.

Pॸॵॶॵॹ९ॺ९ॵॴ 8.6. Data tests can be polynomially encoded in CoreXPath 1.0 and 2.0, Vertical,
Downward, Forward and EMSO2XPath.

We now sketch how any formula over Σ and D featuring comparisons against constants
in a inite subset D ⊆ D can be transformed into an equisatisiable formula over an extended
labelling set Σ × CD . his is similar to the treatment of free variables in Section 8.2.2, but
requires to include data consistency constraints in the encoded formula when the fragment
at hand supports data joins. Crucially, these consistency constraints are mixing, and thus not
available in NonMixingXPath. Regarding PositiveXPath, the small model property [Hidders,
2004, Lem. 1] still holds in the presence of data tests, hence satisiability remains in NP for this
extension.

Consider expressions of any of the considered fragments, extended with data tests against
constants taken in a inite subset D ⊆ D. We assume that (D, <) is dense and unbounded2.
For convenience, we assume without loss of generality that D = {d1, . . . , dn} with di < dj
when i < j.

We irst deine a translation (·)D which maps node and path expressions over Σwith data
tests in D to expressions without data tests but over

ΣD = Σ× CD with CD = {−∞,+∞} ∪D ∪ {(di, di+1) | 1 ≤ i < n}.

As before, compound labels (a, c) ∈ ΣD are writen ac. Intuitively, the extra information will
classify the value x held by a node: either x < d1, or dn < x, or x = di or di < x < di+1 for

1hese assumptions are not met in the actual XPath model where comparisons are undeined between numeric
and arbitrary string values, but this problem can be avoided e.g. when the type of atributes is known from a schema.

2Our argument can easily be adapted to work with the unboundedness assumption: −∞ should simply be
dropped from CD when d1 is minimal, and similarly for +∞ when dn is maximal. For target fragments without
data joins, the density assumption can be dropped if we also remove (di, di+1) from CD when [(di, di+1)] = ∅.
To get rid of density in other fragments, we would need to know when there exists only initely many values in
some [c] for c ∈ CD and could express in XPath that nodes with this comparison tag should not carry more than
this many distinct values. Unfortunately, the later does not seem to be feasible.
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some i. It will be convenient to deine, for any di ∈ D,

C<di
D = {−∞} ∪ {dj | j < i} ∪ {(dj , dj+1) ∈ CD | j < i}.

We give below the key translation steps:

(a)D = or
d∈CD

ad

(π eq d)D = (π)D
[

or
a∈Σ

ad
]

(π ne d)D = (π)D
[

or
a∈Σ

or
c∈CD,c 6=d

ac
]

(π lt d)D = (π)D
[

or
a∈Σ

or
c∈C<d

D

ac
]

he cases of gt, le and ge are similar. he translation is homomorphic w.r.t. all other constructs
including data joins (π△ π′ with△ ∈ {eq,ne}).

8.2.3.1. Equisatisiability for Data-Consistent Trees. Deine for all c ∈ CD its interpretation
[c] ⊆ D in the natural way:
[−∞] = {d ∈ D | d < d1}, [d] = {d}, [(di, di+1)] = {d ∈ D | di < d < di+1}, etc.

Given a data tree t = (ℓ, δ), we deine tD = (ℓD, δ) with ℓD(p) = ℓ(p)c when δ(p) = d ∈
D and c is the unique element of CD such that d ∈ [c]. We say that trees of the form tD are
data-consistent, because their data values respect their comparison tags.

Pॸॵॶॵॹ९ॺ९ॵॴ 8.7. For all ϕ with data tests inD, for all t and p, t, p |= ϕ if tD, p |= ϕD (and
similarly for path expressions).

Pॸॵॵ६. Immediate by induction over expressions. □

8.2.3.2. Equisatisiability. In CoreXPath 1.0 and CoreXPath 2.0, the encoded formula ϕD

is insensitive to data values, hence any model t′ of ϕD can be modiied into a model of the
form tD by changing the data values according to the compound labels. his shows that ϕ and
ϕD are equisatisiable in these fragments.

For the fragmentswith data joins under consideration, i.e.VerticalXPath,DownwardXPath,
and ForwardXPath, we show that ϕ is equisatisiable with the following formula:

(ϕ)D and not
(

or
d∈D, a,b∈Σ

//ad ne //bd
)

and not
(

or
a,b∈Σ

or
c 6=c′∈CD

//ac eq //bc′
)

(8.5)

he above translation is obviously in VerticalXPathwhen (ϕ)D is in that fragment. ForDown-
wardXPath and ForwardXPath, because they cannot visit any node above the initial evaluation
point and do not allow free variables, it is safe to allow expressions of the formnot(//.[not(ϕ)])
and ϕ′ (like (8.5)), meaning that ϕ holds everywhere in the tree and ϕ′ at the point of evalua-
tion. Indeed, this is equivalent in these fragments to not(.//.[not(ϕ)]) and ϕ′.

Assuming that this formula admits a model, we show that it has a model of the form tD ,
i.e. a model in which data values are consistent with compound labels. We use the fact that
modifying the data values of a model in an injective way yields another model, because (ϕ)D
only performs (dis)equality tests on data (through π△ π′ constructs):

• hanks to the extra constraints in our formula we know that, for all d ∈ D, all nodes
with a tag in Σ×{d} have the same value, and that this value is not present in other
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nodes of the tree. hus we can assume without loss of generality that we have a
model t′ such that, for any node n of t′ and d ∈ D, δ(n) = d if ℓ(n) ∈ Σ× {d}.
• Further, there exists a mapping f : D→ D which maps, for any c ∈ CD , data values

occurring in nodes with tagΣ×{c} to distinct data values in [c]. his relies on the fact
that our encoded formula forbids the same data value to occur in nodes with distinct
comparison tags. Moreover, by density of the order, we can take this mapping to be
injective. Applying this data renaming, we obtain a model of (ϕ)D of the form tD ,
hence a model t of ϕ.

It is now clearwhywe could not add data tests inNonMixingXPath: it is not data-insensitive
as CoreXPath fragments, but does not allow the (crucially mixed) axiomatization that was
needed to obtain equisatisiability for data-sensitive fragments. Note that this impossibility is
slightly mitigated by the fact that some data tests are natively available in NonMixingXPath
(in the form π△ △ d).

8.3. Advanced Extensions

8.3.1. π △ π: Positive Data Joins. We observe that most of our fragments can be ex-
tended to allow restricted occurrences of data joins. Intuitively, we allow data joins in po-
sitions that guarantee that the join will be evaluated only once during satisfaction checking,
which allows us to replace it by two tests against a specially chosen data constant. Hence, we
extend any fragment with

π+ ::= π | /π+ | π+/π+ | π+[ϕ+] | π+ union π+ | π+ except π

| π+ intersect π+ | some $x in π+ satisfies ϕ+

ϕ+ ::= ϕ | π+ | ϕ+ or ϕ+ | ϕ+ and ϕ+

| π+ is π+ | π+ △ π+ | π+ △ d

Productions for constructs such as navigation to the root, intersection, node comparison, etc.
should only be considered in fragments where they are allowed. Note that we explicitly in-
clude in the extension several constructs like intersection that could be deined as syntactic
sugar, because treating them as such would result in fewer allowed data joins. We justify this
extension for all relevant fragments: NonMixingXPath does not support the mixing data tests
required in our encoding, and PositiveXPath already supports positive data joins in its baseline
version.

Pॸॵॶॵॹ९ॺ९ॵॴ 8.8. Positive joins are encodable in CoreXPath 1.0, CoreXPath 2.0 and EMSO2-
XPath.

To prove this result, we ix below an ambient fragment among CoreXPath 1.0, Core-
XPath 2.0 and EMSO2XPath. We consider formulasϕ+ of the fragment, extendedwith positive
data joins, and where joins are decorated with distinct marks inM. We shall encode such for-
mulas to ϕ formulas in the fragment without data joins but with data tests against constants,
which we have shown to be admissible. To justify this extension, we design a translation
which associates to any ϕ+ expression an equisatisiable ϕ expression.
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he translation actually works over marked ϕ+ expressions. Given a query ϕ+, we can
annotate each occurrence of a data join with a unique markm from a inite setM. For exam-
ple,

c[@a eq @b[. ne preceding::∗/@b]]

might be annotated usingM = {m,n} as
ψ = c[@a eqm @b[. nen preceding::∗/@b]]

hen, given a valuation α:M→ D, we deine the translation (ϕ+)
α as follows, showing only

the key cases:

(π)α = π

(π+ eqm π′+)
α = π+ eq α(m) and π′+ eq α(m)

(π+ nem π′+)
α = π+ eq α(m) and π′+ ne α(m)

Continuing the previous example with α(m) = d and α(n) = d′, we have:

(ψ)α = c[d eq @a and

d eq @b[. eq d′ and d′ ne preceding::∗/@b]]

Note that this formula is satisiable if d = d′.
Obviously, t, p |= (ϕ+)

α implies t, p |= ϕ+ for any α. Conversely, if t, p |= ϕ+, we show
that there exists α such that t, p |= (ϕ+)

α. Roughly, α is chosen to assign to each m the data
value that made the corresponding join pass. We conclude the argument by observing that
there are only initely (but exponentially) many (ϕ+)

α up to satisiability, hence orα(ϕ+)
α

is well-deined and equisatisiable with ϕ+. We give more details ater the next paragraph.
As for variables, the encoding proposed here is not polynomial, but the added feature does

not bring any complexity jump. We can actually use fragment-speciic encodings that avoid
the explicit constants of (ϕ)α: this can be achieved either by using second-order variables
when available or similarly, in CoreXPath 1.0, thanks to the ability to have multiple proposi-
tional variables satisied at a node in the decision procedure.

L५ॳॳ१ 8.9. For any t, p, ϕ+ and α we have that t, p |= (ϕ+)
α implies t, p |= ϕ+ (and

similarly for path expressions).

Pॸॵॵ६. his follows easily by induction on ϕ+. Consider for instance the case where
ϕ+ = π+ nem π′+, we have t, p, q |= (π+)

α and t, p, q′ |= (π′+)
α with δ(q) ∼ α(m) and

α(m) 6∼ δ(q′). By induction hypothesis we havewe have t, p, q |= π+ and t, p, q′ |= π′+, and the
data has not changed, which allows us to conclude. By construction of the ϕ+ fragment, data
joins can only occur under “positive” constructs, hence all other cases go well. For instance,
consider (in fragment where it is relevant) the case where ϕ+ = π+ except π. We have
t, p, q |= (π+)

α for some q forwhich t, p, q 6|= π. By induction hypothesis, we obtain t, p, q |= π+
which allows us to conclude. □

We did not use the unicity of marks in ϕ+. his comes into play in the next lemma.

L५ॳॳ१ 8.10. For any t, p and ϕ+ such that t, p |= ϕ+, there exists α over the marks of ϕ+

such that t, p |= (ϕ+)
α (and similarly for path expressions).
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Pॸॵॵ६. We proceed again by induction on expressions. Consider the case where ϕ+ =
π1+ △m π2+. We have t, p, q1 |= π1+ and t, p, q2 |= π2+, with δ(q1) and δ(q2) related according
to △. By induction hypotheses we obtain t, p, q1 |= (π1+)

α1 and t, p, q2 |= (π2+)
α2 . Moreover,

α1 and α2 have disjoint domains. We set α = α1 ⊎ α2 ⊎ {m 7→ δ(q1)} and conclude easily
that t, p |= (ϕ+)

α. Other cases are similar. □

L५ॳॳ१ 8.11. Let ϕ+ a marked formula, and letM its set of marks. Given two valuations α
and β inM → DM ∪D(ϕ+), we deine α ≈ β by

(1) for allm,m′ ∈M , α(m) ∼ α(m′) if β(m) ∼ β(m′), and
(2) for allm ∈M , d ∈ D(ϕ+), α(m) ∼ d if β(m) ∼ d.

hen, (ϕ+)
α and (ϕ+)

β are equisatisiable whenever α ≈ β.

Pॸॵॵ६. Assume that α ≈ β. If (ϕ+)
α has a model tα, replacing every occurrence of the

datum α(m) by β(m) for every mark m produces a model tβ of (ϕ+)
β . he tree structure

of tα and tβ are the same, and for every data tests against constants from (ϕ+)
α that hold

somewhere in tα, the corresponding test in (ϕ+)
β holds at exactly the same positions in tβ . □

We are now ready to prove Proposition 8.8.

Pॸॵॵ६ ॵ६ Pॸॵॶॵॹ९ॺ९ॵॴ 8.8. Given an initial query ϕ+ in any of these fragments, there are
ininitely many (ϕ+)

α, but we shall see that only initely many of these formulas is enough
for our purpose.

LetD(ϕ+) be the data values occurring in data tests against constants inϕ+. LetM be the
inite set of marks that occur in ϕ+, and let DM be a subset of D of cardinal |M | and disjoint
from D(ϕ+). We claim that if ϕ+ is satisiable, then there is α with images in DM ∪D(ϕ+)
such that (ϕ+)

α is satisiable. Starting with a model t′ of ϕ+, it suices to take α′ provided
by the previous proposition, transform the model t′ into t by rename values in the image of
α′ and outside the desired range, to obtain a suitable t and α.

Since the relation ≈ from Lemma 8.11 has only initely many equivalence classes, the
formula orα(ϕ+)

α is well-deined and equisatisiable with ϕ+. □

8.3.2. last(): Positional Predicates. he typical use of last() in XPath is through a
positional predicate π[position() = last()] or π[last()] that only keeps the last node in
the document order among all those selected by π. We can also check whether a node is the
ith one for some i > 0 with π[i], or not the last one with π[position() ! = last()] or not
the ith one with π[position() ! = i]. As seen in Table 8.1, these constructions are quite
frequent in the benchmark. Here we discuss the case of last() and its negation, but the other
positional predicates can be handled in a similar fashion.

As explained in S6.2.5.2, this kind of predicates is not supported in our simpliied semantics,
thus we rather focus on the one-argument functions last(π) and notlast(π)—the later is
not a standard function—, with semantics JlastKF (S) = max≪ S and JnotlastKF (S) = S \
{max≪ S} for any S ⊆ N .

Recall from S6.2.5.2 that last() can be expressed natively in CoreXPath 2.0 and thus
in NonMixingXPath. he question here is to which extent it can be handled in the other
fragments.
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8.3.2.1. Negative Results. Our irst result is that in some cases, the last() and notlast()
functions cannot be expressed.

Pॸॵॶॵॹ९ॺ९ॵॴ 8.12. he following path is not expressible in VerticalXPath.

last(ancestor::a)[child::b] (8.6)

If this query could be expressed by a formula ϕ in VerticalXPath, ϕ could be assumed not
to contain any data test, since the evaluation of the query (8.6) on a data tree does not depend
on the tree’s data.

Hence, to study this problem, we can forget about the data in our models, and we will look
at a small fragment of CoreXPath 1.0 containing only the vertical axes, noted VerticalCore-
XPath and deined by the abstract syntax

α ::= child | descendant | parent | ancestor

π ::= α::∗ | π/π | .[ϕ]

ϕ ::= π | a | false() | not(ϕ) | ϕ or ϕ

To study whether the query (8.6) is expressible in this fragment, we will deine and use
data-free bisimulations. his is a completely standard approach for modal logics [Blackburn
et al., 2001] tailored here for VerticalCoreXPath. hese bisimulations can be seen as a variant
of Ehrenfeucht-Fraïssé games for modal logics. Let ℓ, ℓ′ be two labelled treesN → Σ (or XML
documents for which we will ignore the data), let p (resp. p′) be a node from ℓ (resp. ℓ′). Two
players take part in the game, called Spoiler and Duplicator. he game starts with a pebble on
p and a pebble on p′. If those two nodes are not labelled by the same leter, Spoiler wins the
game. A game’s step goes as follows:

(1) Spoiler moves one of the pebbles according to an axis α among child, parent,
descendant, ancestor.

(2) Duplicator must move the other pebble according to the same axis, and on a node
labelled by the same leter than the node chosen by Spoiler. If he cannot make such
a move, Spoiler wins.

his game corresponds to the following bisimulation.

D५६९ॴ९ॺ९ॵॴ 8.13. Let ℓ and ℓ′ be two labelled trees of domainsN andN ′. Let Z⊆ N×N ′.
Z is a bisimulation if, for all p ∈ N, p′ ∈ N ′ if p Z p′, then:
Harmony: p and p′ have the same label,
Zig: for all p ⋆ y, there exists p′ ⋆ y′ such that y Z y′ (for ⋆ ∈ {↓, ↓−1, ↓+, (↓−1)+}), and
Zag: for all p′ ⋆ y′, there exists p ⋆ y such that y Z y′ (for ⋆ ∈ {↓, ↓−1, ↓+, (↓−1)+})

hen, the following result links bisimulations and logical equivalence.

L५ॳॳ१ 8.14. Let ℓ and ℓ′ be two labelled trees, and let p (resp. p′) be a node from ℓ (resp. ℓ′).
If the nodes p and p′ are bisimilar, then p and p′ are logically equivalent for VerticalCoreXPath.

he version of the game restricted to n rounds corresponds to the following deinition of
n-bisimulation.
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D५६९ॴ९ॺ९ॵॴ 8.15. Let ℓ and ℓ′ be two labelled trees. Let (Zi)i≤n be a sequence of relations
between N and N ′. For all j, (Zi)i≤j is a j-bisimulation if, for all p ∈ N, p′ ∈ N ′ if p Zj p

′,
then
Harmony: p and p′ have the same label,
Zig: for all p⋆y, there exists p′⋆y′ such that y Zj−1 y

′ and (Zi)i≤j−1 is a (j−1)-bisimulation
(for ⋆ ∈ {↓, ↓−1, ↓+, (↓−1)+}), and

Zag: for all p′⋆y′, there exists p⋆y such that y Zj−1 y
′ and (Zi)i≤j−1 is a (j−1)-bisimulation

(for ⋆ ∈ {↓, ↓−1, ↓+, (↓−1)+})

In order to get a result linking n-bisimulation and logical equivalence, we must irst deine
the set of formulas using at most n navigational steps.

D५६९ॴ९ॺ९ॵॴ 8.16. We deine a function ns by induction on the formulas of VerticalCore-
XPath:

ns(a) = 0

ns(α::∗) = 1 (where α ∈ {parent,child,ancestor,descendant})
ns(ϕ or ϕ′) = ns(ϕ or ϕ′) = max{ns(ϕ), ns(ϕ′)}

ns(not(ϕ)) = ns(ϕ)

ns(.[ϕ]) = ns(ϕ)

ns(π/π′) = ns(π) + ns(π′)

If ns(ϕ) = n, we say that ϕ has n nested steps. We note VerticalCoreXPathn = {ϕ ∈
VerticalCoreXPath | ns(ϕ) ≤ n}.

D५६९ॴ९ॺ९ॵॴ 8.17. Let ℓ, ℓ′ be two labelled trees, and let p (resp. p′) be a node of ℓ (resp. ℓ′).
We note p ≡n p

′ if p and p′ are logically equivalent for VerticalCoreXPathn.

L५ॳॳ१ 8.18. Let n ≥ 0. Let ℓ and ℓ′ be two labelled trees, let p (resp. p′) be a node of ℓ
(resp. ℓ′), and let (Zi)i≤n be an n-bisimulation between ℓ and ℓ′. If p Zj p

′ for some j ≤ n, then
p ≡j p

′.

Pॸॵॵ६. We prove this lemma by induction on j:
• j = 0: the only formulas are label tests, and 0-bisimulation between two nodes re-

quire that the nodes have the same label. So 0-bisimilar nodes are logically equivalent
for formulas of 0 nested steps.
• Let us assume that p Zj p

′ and that the theorem is true for i-bisimulations with i < j.
First, since p Zj p

′ implies p Zj−1 p
′, then p ≡j−1 p

′ by induction hypothesis. Now,
let us consider a formula ϕ = α::∗/ϕ′ with ⋆ being the relation corresponding to α.
If ϕ is true on p, then there exists p ⋆ y such that ϕ′ is true at y. hen we choose
p′ ⋆ y′ such that y Zj−1 y

′ (such a node exists because (Zi)i≤j is a j-bisimulation).
And now, because ns(ϕ′) = j − 1, by induction hypothesis, ϕ′ is true at y′, so ϕ is
true at p′. Symmetrically, we can prove that if ϕ is true at p′, then it is also true at p.
Now for the case ϕ = .[ϕ′] we study ϕ′ instead, and the Boolean combinations are
handled easily. At the end, we have p ≡j p

′. □

Now, let us assume that the query (8.6) could be expressed by a formula ϕ in VerticalCor-
eXPath. Let n = ns(ϕ). We show in Appendix A.1.1 that there exist a tree ℓn and two nodes
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p, p′ ∈ Nn such that p and p′ are n-bisimilar, but such that p satisies the query (8.6), and p′
does not.

In the end, this result shows that last() cannot be expressed in VerticalXPath nor in
DownwardXPath, even for simple one-step paths. Furthermore, we can show that it cannot
be polynomially encoded in DownwardXPath by adapting the hardness proofs of [Figueira
and Segouin, 2009].

Pॸॵॶॵॹ९ॺ९ॵॴ 8.19. Satisiability in DownwardXPath extended with both the path
last(descendant-or-self::∗) and the path notlast(descendant-or-self::∗) is
ACKERMANN-hard.

Pॸॵॵ६. We adapt the proof of Figueira and Segouin [2009, Cor. 1]. Our aim is to build
our formula so as to ensure that the entire simulation of the incrementing counter machine
is performed along a single branch of the tree—this will be the rightmost branch. We pick a
fresh label ॲ१ॹॺ (which is also used in [Figueira and Segouin, 2009, hm. 2]) and irst require

last(descendant-or-self::∗)[ॲ१ॹॺ] (8.7)

so that the last leaf of the (sub)tree below the point of evaluation, in the document order, is
labelled by ॲ१ॹॺ. We then make sure that no other node in the (sub)tree is not labelled by ॲ१ॹॺ

not(notlast(descendant-or-self::∗)[ॲ१ॹॺ]) (8.8)

We then apply the construction of [Figueira and Segouin, 2009, Prop. 1], but whenever a step
descendant::∗would be used, we replace it bydescendant::∗[descendant-or-self::ॲ१ॹॺ]
to ensure that we only move along the rightmost branch. □

8.3.2.2. Simple Uses of last(). However, we can still look for some uses of last() that
can be reasonably allowed. In particular, the path expressions from the statement of Proposi-
tion 8.19 can be handled in ForwardXPath—or at least in its regular extension [ten Cate, 2006]
with new axes and the Kleene plus and Kleene star operators on paths

α ::= · · · | previous− sibling | next− sibling

π ::= · · · | π+ | π∗

heir semantics are deined by Jprevious− siblingKA = →-1, Jnext− siblingKA =
→, Jπ+KνP = (JπKνP)

+, Jπ∗KνP = (JπKνP)
∗. As far as the computational complexity of sat-

isiability is concerned, this extension comes ‘for free’ in CoreXPath 1.0 [Afanasiev et al.,
2005;Marx, 2005], ForwardXPath [Figueira, 2012b,hm.6.4] (with next-sibling but without
previous-sibling), VerticalXPath [Figueira and Segouin, 2017, hm. 2.1], and Downward-
XPath [Figueira, 2012a, hm. 6.4] (without the new axes). We show in Appendix A.1.2 that
we can handle using this regular extension last(π) and notlast(π) on any one-step path ar-
gument of the form π = α::∗[ϕ]. hey can even be expressed in ConditionalXPath [Marx,
2005]. However, this sometimes requires axes that not available in some of the fragments; for
instance

last(descendant::∗[ϕ]) ≡
(

child::∗
[

descendant-or-self::∗[ϕ] and
not(following-sibling::∗/descendant-or-self::∗[ϕ])
])+

[ϕ and not(descendant::∗[ϕ])]
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database

authors

author

@nationality

British

@birthdate

31/05/1965

@name

J.K. Rowling

@id

1242

library

book

@year

1997

@author

1242

@title

Harry Poter
and the

Philosopher’s Stone

… …

id

F९७ॻॸ५ 8.1. Example of an id jump.

Since this translation require the use of following-sibling::∗, we cannot allow it in the
regular extensions of VerticalXPath and DownwardXPath, but it can be allowed in the regular
extension of ForwardXPath.

We can also handle two-step pathsα1::∗[ϕ1]/α2::∗[ϕ2] inRegularXPath using similar ideas,
but the translation becomes rather complicated in some cases. Moreover, there is no occur-
rence of the use of last() on a path of length three or more in our benchmark, and only a few
queries are using last() on a two-step path. For this reason, we did not further investigate
the possible translation of more complex paths, and we only handle last() and notlast() on
one-step paths in our benchmark (for fragments that cannot use the encoding given in (6.5)).

8.3.3. id(): Jumps. Another interesting XPath feature in the XML document model is
the id/idref mechanism [Benedikt and Koch, 2009; Marx, 2003]. In full generality, this mech-
anism relies on atributes declared as identiiers in the XML schema, but we shall consider a
simpler seting where the @id atribute plays this role. he function id() then takes a path as
argument, and returns the nodes of the document (if any) that have an@id atribute matching
the datum found at the end of the path given as argument.

JidKF (S) = {p | ∃p
′ ∈ S . δ(p′) = δ(J@idKνP(p))}

he function idref() is its inverse. For instance, in Figure 6.1, evaluating id(@ref) at the t
node returns the o node. his feature allows to do complex and precise jumps from one node
to another inside the document.

Eॾ१ॳॶॲ५ 8.20. For instance, on the data tree from Figure 8.1, the query
id(database/library/book[@title = ‘‘HarryPotter...”]/@author)/@name

will jump as shown by the doted arrow and return “J.K. Rowling”.
8.3.3.1. Undecidability. Adding id() jumps makes most of the fragments undecidable, as

soon as we can also use (full) data joins or node tests π is π′. he proof in Appendix A.2
reduces from Post’s correspondence problem.

Pॸॵॶॵॹ९ॺ९ॵॴ 8.21. Satisiability is undecidable in both DownwardXPath and CoreXPath 2.0
extended with id().
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T१२ॲ५ 8.2. Number of new queries captured by the extensions of Section 8.2
in each fragment.

basic π△ π last() id()

Positive 7,653
Core 1.0 7,895 +243 +54
Core 2.0 4,309 +266
Downward 1,993 +12
Vertical 7,974 +25 +0
Forward 2,053 +26
EMSO2 4,760 +241 +11
NonMixing 136

8.3.3.2. Root-level id(). Although we cannot allow arbitrary uses of id(), there might be
some practically relevant ways of handling it. For fragments that allow them, variables and
data joins seem the be a good way to encode the target set of an id() jump, but we must be
able to axiomatise these variables to contain exactly the target nodes. Such an axiomatisation
is possible if we can identify exactly the initial node from which the query has been evaluated.
his can be done if id() appears in a root-level path, in a fragment endowed with data joins
and variables (see Appendix A.2 for details).

π ::= · · · | /πid

πid ::= π | πid/πid | πid union πid | πid[ϕ] | id(πid)

We allow these additions for the only two fragments able to handle simultaneously variables
and data joins: VerticalXPath and EMSO2XPath.

Moreover, in EMSO2XPath we can allow id() jumps not only in root-level paths but also
in top-level paths:

π′ ::= π | πid

Indeed, we can use a second-order variable in the axiomatisation to keep track of the starting
node in the query evaluation (see Appendix A.2 for details).

8.4. Extended Benchmark Results

We have implemented the extensions of this section as Relax NG schemas. he results
on the benchmark are presented in violet in Figures 8.2 and 8.3. Generally, the diferences
observed before still hold but are signiicantly lessened. Strikingly, the extensions even bring
CoreXPath 1.0 above NonMixingXPath: the later only supports non-mixing data tests. It also
diferentiates VerticalXPath from the two other DataXPath fragments, due to its support for
root paths, which in turn allows to support free variables.

Looking at the inluence of each extension separately, Table 8.2 shows that the ‘basic’
extensions of Sections 8.2.1 to 8.2.3 contribute most of the gains, while adding positive joins,
positional predicates, or id() jumps to the basic extensions only brings small improvements.
Regarding positional predicates, we found that many occurrences are of the form last($x),
which is outside the scope of our treatment in Section 8.3.2. Regarding id(), Table 8.1 shows
that there are very few occurrences of id() in the benchmark; one of these examples is shown
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F९७ॻॸ५ 8.2. Coverage of the XSLT sources.
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F९७ॻॸ५ 8.3. Coverage of the Xuery sources.

in Example 6.4. A quick investigation of the usage of the id atribute in the benchmark shows
that developers rather interact with it through variables and data tests.

8.5. Discussion

Figures 8.2 and 8.3 show the coverage of the benchmark: in grey for the baseline fragments
from Figures 7.2 and 7.3 and in violet for their extensions described in Chapter 8; the yellow
‘extras’ are the topic of S8.5.2.2. he combined coverage of the extended fragments on the full
benchmark is of 12,867 queries (60.86%).

Leaving DownwardXPath and ForwardXPath aside, the extended versions of the remain-
ing six fragments have a somewhat similar coverage: for XSLT queries, between 69.16% for
PositiveXPath and 75.03% for CoreXPath 2.0, and for Xuery ones, between 26.35% for Non-
MixingXPath and 28.08% for CoreXPath 2.0. We look more closely at the diferences between
the fragments in Section 8.5.1.
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T१२ॲ५ 8.3. Combined coverage of the extended fragments by query size.

sizes 1–4 5–8 9–12 13–16 17–20 21–24 25–28 29–32 33–36 37–40 41–44 45–48 ≥ 49

queries 5,146 5,661 3,359 1,996 1,330 806 590 503 283 231 117 131 988
coverage 97.9% 58.7% 42.0% 44.2% 54.8% 44.9% 53.0% 42.7% 40.9% 47.6% 35.8% 46.5% 25.7%

T१२ॲ५ 8.4. Diference matrix for the extended fragments. Cell (i, j) shows
the number of queries covered by fragment i but not fragment j.

Positive Core 1.0 Core 2.0 Downward Vertical Forward EMSO2 NonMixing

Positive 0 4 0 6,283 300 6,159 23 331
Core 1.0 889 0 0 6,917 469 6,765 124 681
Core 2.0 942 57 0 6,974 526 6,822 181 689
Downward 251 0 0 0 0 0 12 83
Vertical 746 30 30 6,478 0 6,478 73 671
Forward 279 0 0 152 152 0 26 85
EMSO2 796 12 12 6,817 400 6,679 0 639
NonMixing 584 49 0 6,368 478 6,218 119 0

Obviously, the coverage of XPath queries extracted from Xuery iles is quite poor com-
pared to that of XSLT iles. Among the other factors contributing to the coverage, we see that
the size of the query is (negatively) correlated (Table 8.3). Another correlation is the presence
of at least one axis step, where the combined coverage is of 74.50%, but only 48.79% for queries
without any axis step. he main factor we identify is however the presence of non-standard
or unsupported function calls in the query, which we discuss in Section 8.5.2.

8.5.1. Comparisons Between Fragments. In the case of the extended fragments of
Chapter 8, the inclusions of Figure 7.1 are slightly changed: CoreXPath 2.0 now contains
NonMixingXPath and PositiveXPath is included into CoreXPath 2.0 but disjoint from Non-
MixingXPath.

hese theoretical inclusions are relected in the diference matrix shown in Table 8.4 and
the accompanying chord graph of Figure 8.4. On this graph, a chord between fragments i
and j has thickness proportional to entry (i, j) on its i end, and to entry (j, i) on its j end;
and the colour of the chord is the one of the ‘winning’ value. An interactive version is avail-
able online at http://www.lsv.fr/~schmitz/xpparser/, where clicking on a chord will
provide examples extracted from the benchmark. here are three maximal incomparable frag-
ments, namely CoreXPath 2.0, VerticalXPath, and EMSO2XPath. Among the fragments of
DataXPath, VerticalXPath beneits from the support of most extensions, while—as seen in Ta-
ble 6.2—horizontal navigation is not used very frequently in the benchmark. he coverage
of the extended CoreXPath 2.0 is almost as large as the combined coverage: only 30 queries
from VerticalXPath are not captured by CoreXPath 2.0, and they all contain data joins under a
negation; only 12 queries from EMSO2XPath are not captured, which include 11 queries with
id() plus one of the previous 30.

http://www.lsv.fr/~schmitz/xpparser/
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ward and ForwardXPath.

From a more practical perspective, we think that the extended versions of PositiveXPath
and CoreXPath 1.0 are the most promising ones: satisiability has a more manageable com-
plexity (NP-complete and EXP-complete, resp.), and the coverage is not too far behind Core-
XPath 2.0 (with 942 and 57 fewer queries, resp.). Note that PositiveXPath is nearly included
into CoreXPath 1.0, with only four queries (featuring intersections) not captured by Core-
XPath 1.0.

8.5.2. Supporting Functions. Due to the large number of calls to non-standard func-
tions in the benchmark, the coverage of ‘XPath 3.0 std’ (cf. Table 6.1) is an upper bound on
the achievable coverage. With respect to the number of queries captured by ‘XPath 3.0 std’,



8.6. CONCLUDING REMARKS 113

the combined coverage is 78.33%, and the precise coverage varies between 75.71% for Positive-
XPath and 82.14% forCoreXPath 2.0 in XSLT sources and between 56.30% forNonMixingXPath
and 60.00% for CoreXPath 2.0 in Xuery sources: the later sources are more complex even
when leaving aside their higher reliance on non-standard functions.

A remaining issue is the support of standard functions. For instance, the four functions
that occur the most frequently in the benchmark are in decreasing order count(), concat(),
local-name(), and contains(), and they are all standard; local-name() is supported in
our fragments, but the remaining three are not.

8.5.2.1. Aggregation. CoreXPath 1.0 extended with node expressions count(π)△+ i for
an integer i can be translated into the two-variable fragment of irst-order logic with counting
on trees, which has an EXPSPACE decision procedure [Bednarczyk et al., 2017]. here are 314
occurrences of such expressions out of the 624 occurrences of count() in the benchmark, but
unfortunately not a single query is gained by adding this feature to the extendedCoreXPath 1.0
fragment. Capturing more occurrences of count() requires arithmetic operations, and leads
to an undecidable fragment akin to AggXPath [Benedikt and Koch, 2009].

8.5.2.2. String Processing and Arithmetic. A promising direction for supporting more func-
tions is the move to SMT solvers—even though it might also mean moving to semi-deciding
satisiability. Linear arithmetic is supported by all solvers, while theories comprising string
concatenation, string length, and substring operations are also supported [e.g. Abdulla et al.,
2015; Kiezun et al., 2013; Liang et al., 2016; Trinh et al., 2014; Zheng et al., 2013]. SMT solvers
have already been used in [Benedikt and Cheney, 2010] to check Xuery inputs, using the clas-
sical interval encoding of trees, and the approach could be enriched to cover basic arithmetic
and string support. Furthermore, a custom inite tree theory may be added to SMT solvers for
more eiciency [e.g. Blackburn et al., 1996; Cheney, 2011].

hese considerations lead us to adding support in the extended PositiveXPath for linear
arithmetic, the standard functions concat(), contains(), string-length(), and similar
ones such as ends-with(). We view this fragment as a good candidate for practical satis-
iability checking. At 62.75%, the coverage of this fragment, shown in yellow in Figures 8.2
and 8.3, bests the combined coverage of our other fragments. his translates in particular to
84.77% of the subset of XSLT queries captured by ‘XPath 3.0 std’.

his new fragment is incomparable with the others, with a new combined coverage of
67.40% (83.55% for XSLT sources). If we restrict our atention to the 14,732 queries (69.68%)
that only use not() and the functions supported in this new fragment, the new combined
coverage reaches 96.69% (98.10% for XSLT sources). hus our fragments cover nearly all the
queries that do not use unsupported or non-standard functions, from which we argue that
improved function support is the most promising research avenue in order to gain over the
extended fragments described in this chapter.

8.6. Concluding Remarks

We have designed a benchmarking infrastructure for testing the practical relevance of
XPath fragments, based on the XueryX format and Relax NG schemas. We have used this
benchmark of over 20,000 queries, extracted from the XSLT and Xuery iles of open-source
projects, to evaluate the syntactic coverage of state-of-the-art XPath fragments for which de-
cidability is known (or still open in the case of EMSO2XPath). Concerning the benchmark
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itself, it would of course be interesting to incorporate new sources, to conirm our observa-
tions on a larger scale.

Our analysis shows that, in a hypothetical satisiability checker for XPath, the diferences
between the fragments deined in the theoretical literature are not as important as the dif-
ferences introduced by the front-end translating real XPath inputs to the restricted syntax
on which the decision procedure operates. Among the features that such a front-end should
support, the most impactful ones would be free variables, data tests against constants (and
constant expressions), positive joins, and positional predicates.

According to our benchmark results, such a front-end combined with the decidable frag-
ments from the literature would cover about 70%–75% of the XPath queries found in XSLT
iles. However, due to the high reliance on user-deined or ill-supported functions, this drops
to less than 30% for XPath queries from Xuery iles: full-blown program analysis techniques
seem necessary for Xuery.

As the support of XPath functions is a key factor, a promising approach might be to har-
ness the power of modern SMT solvers to handle string-manipulating functions and linear
arithmetic, which might cover 77.44% of the XPath queries from the XSLT sources.



CHAPTER 9

General Conclusion

Many logics on data words and data trees have been studied in the literature. hese logics
difer in expressivity, and in complexity: their satisiability problems belong to various classes
of complexity, and are oten non-elementary or even undecidable. It is thus non-trivial to
choose among these logics to study practical problems, since a trade-ofmust bemade between
expressivity and complexity. Furthermore, various techniques have been developed to study
these logics, and they oten lack modularity: it can be challenging to adapt the techniques
developed for one logic to study another closely related logic.

his thesis had two objectives. On the one hand, we aimed at developing proof systems for
data logics together with a proof strategy of optimal complexity for the validity problem, as
we hoped such techniques would prove to be more modular. On the other hand, we wanted to
measure to what extent various logics on data trees could capture practical uses of the XPath
query language. We recall our contributions, and make some comments on our work.

Proof Systems. In Part 1, we investigated the design and use of proof systems as a mean
to design efective algorithms solving the validity problem of some modal logics. Our main
objective was to do so for a logic on data words, inite or ininite. However, one of the main
selling points of proof systems is their modularity, and we started by designing a hypersequent
calculus for a data free logic on linear structures: the tense logic Kt4.3.

To do so, in Chapter 3 we improved the hypersequent calculus from Indrzejczak [2016]
by adding clusters and annotations. his allowed our calculus to be beter suited to represent
weak total orders, thus taking advantage of the inite model property of Kt4.3 for this class
of models [Blackburn et al., 2001; Ono and Nakamura, 1980]. In the end, our hypersequent
calculus is sound and complete forKt4.3, and enjoys a simple proof search strategy of optimal
coNP complexity. Moreover, as for the calculus of Indrzejczak [2016], it can be easily enriched
to handle some classical extensions of Kt4.3 such as density or unboundedness while still
having an optimal coNP proof search. his was the irst evidence of the modularity of our
approach.

hen, in Chapter 4, we turned to the study of the tense logic over ordinals KtLℓ.3. Our
main interest for well-founded structures was to capture ω-words, as they are used in many
applications, but it turned out that adapting our calculus for any arbitrary ordinal was not any
harder. Modifying one of our rules as done in Avron [1984] to deal with well-foundedness
lead to a sound and complete proof system forKtLℓ.3, as well as an optimal coNP proof search.
Moreover, our work also lead to a small model property for KtLℓ.3: it cannot express ordinals
larger or equal toω2. Finally,HKtLℓ.3 can be enriched towork over speciic classes of ordinals,
by testing validity only over models of order type smaller than α, for a given α < ω2.

Finally, in Chapter 5, we enriched KtLℓ.3 with freeze quantiiers à la Alur and Henzinger
[1994], similarly to Demri and Lazić [2009], to work over data ordinals. Adding new rules to

115
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our calculus to handle the freeze quantiiers lead to a sound hypersequent calculus (HKd
t Lℓ.3)

for K↓
tLℓ.3. However, K↓

tLℓ.3 being undecidable [Figueira and Segouin, 2009], we provided
a decidable fragment, Kd

t Lℓ.3, for which our calculus is complete and enjoys an optimal coNP
proof search.

his fragment is closely related to the fragment of XPath with data tests and navigation
among siblings XPath(←+,→+,=) from Figueira and Segouin [2009], the main diference
being thatKd

t Lℓ.3 cannot perform nested data tests. Figueira and Segouin [2009] showed that
XPath(←+,→+,=) is undecidable, and that its restriction to the following-sibling axis
only is ACKERMANN-complete. Hence, this restriction allowed us to get a logic of acceptable
complexity.

Furthermore, all these logics are closely related to the two variable fragment of some irst
order logics: Kt4.3 is exactly as expressive as FO2(<) [Etessami et al., 2002], and KtLℓ.3 is
equivalent to the same logic on ordinals. Similarly, we showed that Kd

t Lℓ.3 is equivalent to
the logic FO2(<,∼) from Bojańczyk et al. [2011]. For each case, the translation of a irst
order formula to the corresponding modal logic is exponential, thus giving an optimal coNEXP
algorithm for validity in these logics.

In the end, the modularity of our hypersequent calculus allowed us to adapt it to various
logics, and we believe that such an approach could be carried further. For instance, it would
be interesting to see if our proof system is complete forK↓

tLℓ.3, and if an optimal proof search
can be designed for decidable fragments of bigger complexity. Another interesting challenge
would be the development of similar tools for logics over data trees.

XPath Benchmark. In Part 2, we investigated the practical impact of various theoretical
works in the literature concerning the XPath query language. As the satisiability problem of
XPath is undecidable, many decidable fragments of XPath have been studied, and we designed
a benchmark for testing the practical coverage of these theoretical fragments.

To do so, as described in Chapter 6, we extracted over 20,000 queries from various open-
source projects, and designed schemas for testing the membership of a query to an XPath
fragment. However, these theoretical fragments (presented in Chapter 7) were never meant to
be used for real-world queries, and many of our queries did not belong to any of these baseline
fragments. his lead to an interesting problem: which practical features of XPath can be added
to a theoretical fragment without afecting its complexity?

To that end, in Chapter 8, we investigated six XPath features and determined to which
fragments we could reasonably add them. We also provided some cases where an extension
could not be handled by a fragment, for instance because adding it to the fragment would
make it undecidable.

According to benchmark results, once enrichedwith our extensions, most of the fragments
turned out to capture about the same amount of real-world queries, despite diferent complexi-
ties. Furthermore, when lookingmore closely at queries that are not captured by any fragment,
the limiting factor seems to be the use of functions, user-deined or not. Hence, a possible fu-
ture work would be to investigate the use of SMT solvers to support various XPath functions
by some theoretical fragment, such as string processing functions or arithmetic functions. In
that direction, a good candidate might be PositiveXPath.
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FromWords to Trees. A starting point for our work in Part 1 was a proof system developed
by Baelde et al. [2016] for a PSPACE-complete logic on data trees, contained in Downward-
XPath. Concerning this work, the natural next step would be the support of converse naviga-
tion. However, upward navigation inside a tree structure is trichotomic. Hence, working on
linear structures comes with the same diiculties, and we believe our work could be carried
further to develop proof systems on data trees, for instance towards supporting (fragments of)
VerticalXPath.

Moreover, in both parts, we pointed out NP-complete fragments, which is the best com-
plexity one can possibly hope for when studying the satisiability problem. In particular, we
think that PositiveXPath, one of the fragment that stood out from our benchmark, could be
enriched by string-manipulating functions and linear arithmetic (see S8.5.2.2). his extension
could be handled through oracle calls to an SMT solver, and such techniques have already been
used alongside a proof system [Farooque and Graham-Lengrand, 2013; Rouhling et al., 2015],
which also lead to an implementation [Graham-Lengrand, 2013]. hus, it would be interesting
to design an efective proof system for PositiveXPath and to investigate how it can be enriched
with such oracle calls.





Technical Appendix

A.1. Expressiveness Results on last()

A.1.1. last() is not Expressible in the Vertical Fragment. We prove the following
result, thanks to n-bisimulation techniques presented in S8.3.2.1.

Pॸॵॶॵॹ९ॺ९ॵॴ 8.12. he following path is not expressible in VerticalXPath.

last(ancestor::a)[child::b] (8.6)

Let us assume that the query (8.6) could be expressed by a formula ϕ in VerticalCoreXPath.
Let n = ns(ϕ). Let us show that there exist a tree ℓn and two nodes p, p′ ∈ Nn such that p
and p′ are n-bisimilar, but such that p satisies the query (8.6), and p′ does not.

he tree ℓn and the bisimulations are represented on Figures A.1 and A.2. It only have one
branch, along which many a nodes appear. Half of them have a b child, and the other half are
lones a, i.e. without a b child. hose two types of a nodes are alternating along the branch,
and each of them are separated by a chain of c nodes of length 2n+1: on Figures A.1 and A.2,
a double edge represents a chain of c nodes of length n. Intuitively, this padding of c nodes is
there to make the child and parent relations worthless for Spoiler if he only has n moves
to work with. hen, we repeat this patern enough times to ensure that Spoiler cannot win in
n moves using the transitive relations, if the game starts at two distinct positions that are in
the middle of the branch.

Formally, we deine the tree ℓn as follows:
• We partition its set Nn of nodes into the subsets

– An = {ai | i ∈ [−2n+ 1, 2n− 1]}
– Bn = {b2i+1 | i ∈ [−n, n− 1]}
– Ci

n = {ci,k | k ∈ [−n, n]} for i ∈ [−2n+ 1, 2n− 2]
• he relation ↓ holds between the following nodes:

– a2i+1 ↓ b2i+1, for i ∈ [−n, n− 2]
– ci,k ↓ ci,k−1 for i ∈ [−2n+ 1, 2n− 2] and k ∈ [−n+ 1, n] (the ci,k are forming

a chain of length 2n+ 1)
– b2i+1 ↓ c2i,n and c2i,−n ↓ a2i for i ∈ [−n + 1, n − 1] (the c chains link each b

with the next lone a)
– a2i+2 ↓ c2i+1,n and c2i+1,−n ↓ a2i+1 for i ∈ [−n, n − 2] (the c chains link each

lone a with the next a)
We now describe the bisimulation relations (Zi)i≤n between the nodes of ℓn:
• c−1,0 Zn c0,0 (they are the starting nodes of our n rounds game)
• Duplicator must be able to simulate small moves of Spoiler locally around the starting

nodes:
119
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– ∀i ∈ [1, n], c−1,i Zn−i c0,i
– ∀i ∈ [1, n], c−1,−i Zn−i c0,−i

• Duplicator can simulate bigger moves from Spoiler by doing a shit:
– ∀i ∈ [0, n− 2], a2i Zn−1−i a2i+2

– ∀i ∈ [0, n− 2], a2i+1 Zn−2−i a2i+3

– ∀i ∈ [−n+ 1,−1], a2i Zn+i a2i+2

– ∀i ∈ [−n,−1], a2i+1 Zn+i a2i+3

– ∀i ∈ [0, n− 2], c2i−1,k Zn−1−i c2i+1,k

– ∀i ∈ [0, n− 2], c2i,k Zn−1−i c2i+2,k

– ∀i ∈ [−n+ 1,−1], c2i−1,k Zn+i c2i+1,k

– ∀i ∈ [−n+ 1,−1], c2i,k Zn+i c2i+2,k

• Duplicator can simulate too big moves from Spoiler by using the identity relation:
∀p ∈ Nn, p Zn p

• Finally, every relationmust contain the smaller ones: ∀(p, p′) ∈ N2
n, ∀i < j, if p Zj p

′

then p Zi p
′.

L५ॳॳ१ A.1. (Zi)i≤n is an n-bisimulation.

Pॸॵॵ६. Let us prove by induction on j that (Zi)i≤j is a j-bisimulation.
• j = 0: every nodes in relation forZ0 do have the same labels, soZ0 is a 0-bisimulation.
• Let us assume that (Zi)i≤j is a j-bisimulation for some j < n, and let us prove that
(Zi)i≤j+1 is a (j + 1)-bisimulation. Let p and p′ be two nodes from ℓn such that
p Zj+1 p

′. hen:
(1) By deinition of Zj+1, p and p′ have the same label.
(2) Let ⋆ ∈ {↓−1, ↓, (↓−1)+, ↓+}. We must prove that for every p ⋆ y, there exists

a p′ ⋆ y′ such that y Zj y
′. he cases ⋆ =↓−1 and ⋆ =↓ are easy because we

padded ℓn with long enough c-chains. Let us focus on the case ⋆ = (↓−1)+ (the
case ⋆ =↓+ is similar): let y ∈ Nn such that p(↓−1)+y. Now, if p′(↓−1)+y then
we can take y′ = y and use the identity relation which is contained in Zj . Else,
by choosing y′ above y with the same distance between p and y than between
p′ and y′, we will almost always get a node y′ such that y Zj y

′. he only case
where this won’t work is if p = c−1,k, p′ = c0,k for some k. In that case, if
y is at distance d of p, we will choose y′ at distance d + 2n + 3 of p′ instead.
his is because the distance between bisimilar nodes around the starting points
is smaller than elsewhere in the tree, so this bigger jump is required to close the
gap.

(3) Similarly, we can prove that for every ⋆ ∈ {↓−1, ↓, (↓−1)+, ↓+}, for every p′ ⋆ y′,
there exists a p ⋆ y such that y Zj y

′. □

his contradicts the fact that ϕ was equivalent to the query (8.6), since c−1,0 Zn c0,0 but
only c0,0 satisies the query (8.6). Hence, this query is not expressible in VerticalCoreXPath,
and so it is not expressible in VerticalXPath.
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A.1.2. Expressing last().

A.1.2.1. Expressinglast() in RegularXPath. In this section, we showhow to expresslast(π)
for one-step paths of the form π = α::∗[ϕ]. In some cases, it is easily expressible:

last(parent::∗[ϕ]) ≡ parent::∗[ϕ]

last(self::∗[ϕ]) ≡ self::∗[ϕ]

last(child::∗[ϕ]) ≡ child::∗[ϕ and not(following-sibling::∗[ϕ])]
last(following-sibling::∗[ϕ]) ≡ following-sibling::∗[ϕ and

not(following-sibling::∗[ϕ])]
last(following::∗[ϕ]) ≡ following::∗[ϕ and not(following::∗[ϕ])

and not(descendant::∗[ϕ])]

he other cases can be handled by using RegularXPath:

last(ancestor::∗[ϕ]) ≡ (parent::∗[not(ϕ)])∗/parent::∗[ϕ]

last(descendant::∗[ϕ]) ≡ (child::∗[descendant-or-self::∗[ϕ] and
not(following-sibling::∗/

descendant-or-self::∗[ϕ])])+[ϕ and

not(descendant::∗[ϕ])]

last(preceding-sibling::∗[ϕ]) ≡ (previous-sibling::∗[not(ϕ)])∗/
previous-sibling::∗[ϕ]

last(preceding::∗[ϕ]) ≡ (parent::∗[not((previous-sibling::∗)+/
(child::∗)∗[ϕ])])∗/

(previous-sibling::∗[not((child::∗)∗[ϕ])])+/
(child::∗[descendant-or-self::∗[ϕ] and

not(following-sibling::∗/
descendant-or-self::∗[ϕ])])∗[ϕ and

not(descendant::∗[ϕ])]

Note that the axis previous-sibling used above is not a proper XPath axis, but exists in
RegularXPath. It corresponds to the relation→−1 of our models.

A.1.2.2. Expressing notlast() in Core XPath. In this section, we showhow to express queries
of the form notlast(α::∗[ϕ]) in CoreXPath 1.0.

notlast(parent::∗[ϕ]) ≡ false()

notlast(self::∗[ϕ]) ≡ false()

notlast(child::∗[ϕ]) ≡ child::∗[ϕ and following-sibling::∗[ϕ]]
notlast(following-sibling::∗[ϕ]) ≡ following-sibling::∗[ϕ

and following-sibling::∗[ϕ]]
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notlast(following::∗[ϕ]) ≡ following::∗[ϕ and

(following::∗[ϕ] or descendant::∗[ϕ])]

notlast(ancestor::∗[ϕ]) ≡ ancestor::∗[ϕ]/ancestor::∗[ϕ]

notlast(preceding-sibling::∗[ϕ]) ≡ preceding-sibling::∗[ϕ]/
preceding-sibling::∗[ϕ]

notlast(descendant::∗[ϕ]) ≡ descendant::∗[ϕ and descendant::∗[ϕ]] union

descendant::∗[following-sibling::∗/
descendant-or-self::∗[ϕ]

]/descendant-or-self::∗[ϕ]
notlast(preceding::∗[ϕ]) ≡ preceding::∗[ϕ]/preceding::∗[ϕ] union

preceding::∗[ϕ and descendant::∗[ϕ]]

A.1.3. Expressing position() in Regular XPath. In this section, we show how to
translate predicates of the formα::∗[ϕ][position() = i] in RegularXPath. his query selects
the i-th node for the document order among the nodes that would have been selected by
α::∗[ϕ]. We represent such a predicate by a function posi. We give a translation for posi by
induction on i.

pos1(parent::∗[ϕ]) ≡ parent::∗[ϕ]

pos1(self::∗[ϕ]) ≡ self::∗[ϕ]

pos1(child::∗[ϕ]) ≡ child::∗[ϕ and not(preceding-sibling::∗[ϕ])]
pos1(preceding-sibling::∗[ϕ]) ≡ preceding-sibling::∗[ϕ and

not(preceding-sibling::∗[ϕ])]
pos1(following-sibling::∗[ϕ]) ≡ (next-sibling::∗[not(ϕ)])∗/next-sibling::∗[ϕ]

pos1(ancestor::∗[ϕ]) ≡ ancestor::∗[ϕ and not(ancestor::∗[ϕ])]

pos1(descendant::∗[ϕ]) ≡ (child::∗[ϕ and descendant::∗[ϕ] and

not(preceding-sibling::∗/
descendant-or-self::∗[ϕ])

])∗/child::∗[ϕ and not(preceding-sibling::∗/
descendant-or-self::∗[ϕ])]

pos1(following::∗[ϕ]) ≡ ancestor-or-self::∗[following::∗[ϕ] and
not(parent::∗/following::∗[ϕ])]/

pos1(following-sibling::∗
[descendant-or-self::∗[ϕ]])/

(.[ϕ] union .[not(ϕ)]/pos1(descendant::∗[ϕ]))
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pos1(preceding::∗[ϕ]) ≡ ancestor-or-self::∗[preceding::∗[ϕ] and
not(parent::∗/preceding::∗[ϕ])]/

pos1(preceding-sibling::∗
[descendant-or-self::∗[ϕ]])/

(.[ϕ] union .[not(ϕ)]/pos1(descendant::∗[ϕ]))

posi+1(parent::∗[ϕ]) ≡ false()

posi+1(self::∗[ϕ]) ≡ false()

posi+1(child::∗[ϕ]) ≡ posi(child::∗[ϕ])/pos1(following-sibling::∗[ϕ])
posi+1(following-sibling::∗[ϕ]) ≡ posi(following-sibling::∗[ϕ])/

pos1(following-sibling::∗[ϕ])
posi+1(preceding-sibling::∗[ϕ]) ≡ pos1(preceding-sibling::∗[ϕ and

posi(preceding-sibling::∗[ϕ])])
posi+1(ancestor::∗[ϕ]) ≡ pos1(ancestor::∗[ϕ and

posi(ancestor::∗[ϕ])])

posi+1(descendant::∗[ϕ]) ≡ posi(descendant::∗[ϕ])[descendant::∗[ϕ]]/

pos1(descendant::∗[ϕ]) union

posi(descendant::∗[ϕ])[not(descendant::∗[ϕ])]/

pos1(following::∗[ϕ])

posi+1(following::∗[ϕ]) ≡ posi(following::∗[ϕ])[descendant::∗[ϕ]]/

pos1(descendant::∗[ϕ]) union

posi(following::∗[ϕ])[not(descendant::∗[ϕ])]/

pos1(following::∗[ϕ])

posi+1(preceding::∗[ϕ]) ≡ Πi union .[not(Πi)]/pos1(preceding::∗[ϕ and

posi(preceding::∗[ϕ])])

With :
Πi = union

1≤j≤i
posj(preceding::∗[ϕ])/posi+1−j(descendant::∗[ϕ])

A.2. Decidability Results on id()

A.2.1. Reducing from PCP Using Data Joins. In this section, we show that the satis-
iability problem is undecidable for DownwardXPath+id. his will entail undecidability for
ForwardXPath+id and VerticalXPath+id as well.

Let Σ be an alphabet, and let {(ui, vi) | 0 ≤ i ≤ n} ⊆ (Σ+)2 be a PCP instance over Σ.
We note Σ = {a | a ∈ Σ}, and we give ourselves a fresh symbol # that will mark the start of a
PCP domino. Wewill encode a potential solution to this PCP instance as a branch in a data tree
over Σ ∪ Σ for which the corresponding word will belong to {#uivi | 0 ≤ i ≤ n}+. Remark
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that, unlike a perhaps common mistaken belief, the XML speciication does not force the @id
atributes of a document to be unique. he encoding we present will however force them
to be unique along a branch. Nonetheless, since we are working with the DownwardXPath
fragment, we cannot prevent the models from having other branches, but we will be able
to force all the branches to be identical. Note that our encoding could be simpliied if we
assumed that the @id atributes are unique, as some part of our formulæ would then be
trivially satisied.

Wewill use the id links to move around in this encoding: let w̃ be the word corresponding
to our encoding branch of the tree, and let w (resp. w) be the longest subword of w̃ in Σ (resp.
Σ). Every node wi will have an atribute @succ for which the datum will match the @id
key of the node wi+1, and an atribute @sym for which the datum will match the @id key of
the node wi. he nodes wi will also have atributes @succ and @sym playing similar roles.
Such a word w̃ will be the encoding of a solution of our PCP instance if and only if w = w.

Hence, we need to ind formulas that will force this encoding to be respected. At the end, a
data tree will satisfy this set of formulas if and only if it encodes a solution to our PCP instance.

First, we can force that every node has some atributes @id, @succ and @sym:
Ψ0 := not(//∗[not(@id) or not(@succ) or not(@sym)]

We now force all the branches from the root to be identical:
• the @id keys are unique along a branch:

Ψ1 := not(//∗[@id eq descendant::∗/@id])

• if two nodes share the same @id key, then all their children are labelled by the same
leter:
Ψ2 := and

a 6=b∈Σ∪Σ∪{#}
not(//∗[id(@id)/child::a and id(@id)/child::b])

• if two nodes share the same @id key, then all their children have the same @id key:
Ψ3 := not(//∗[id(@id)/child::∗/@id ne id(@id)/child::∗/@id])

• if two nodes share the same @id key, then they have the same @sym data value and
the same @succ data value:

Ψ4 := not(//∗[(id(@id)/@sym ne id(@id)/@sym)

or (id(@id)/@succ ne id(@id)/@succ)])

• a node has a child if all the nodes sharing its @id key have a child:
Ψ5 := not(//∗[id(@id)[child::∗] and id(@id)[not(child::∗)]])

Now, we can prove the following lemma:

L५ॳॳ१ A.2. Let t be a data tree. hen, t satisies all the Ψi formulas if and only if:
(1) All the nodes of t at the same depth level are identical (same label, same @id,@succ

and @sym values) and have children with the same label and the same @id key.
(2) Two nodes from diferent depth levels do not share the same @id key.

Pॸॵॵ६. It is easy to see that a data tree satisfying the properties 1 and 2 will satisfy the
formulas Ψi. Suppose now that a data tree t satisies the formulas Ψi. We prove that the
properties 1 and 2 are satisied by induction on the depth level:
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# b b a b̄ b̄ # a b ā ā # b b a b̄ b̄ # a b̄ ā ā

@succ @succ @succ
@succ @succ @succ @succ @succ

@succ @succ @succ
@succ

@succ @succ @succ @succ

@sym

@sym

@sym

@sym

@sym

@sym

@sym

@sym

@sym

F९७ॻॸ५ A.3. Example of the encoding of a PCP solution.

• Level depth 0: there is only the root node at this depth level. hanks to the formula
Ψ1, and since the root node appears in every branch of the tree, there is no node
somewhere else in the tree with the same @id key than the root so the property 2 is
satisied. And now, thanks to Ψ2, all its children have the same label, and thanks to
Ψ3, all its children have the same @id key. So the property 1 is also satisied.
• Let us assume that the properties 1 and 2 are satisied down to depth level n, and

let us prove they are also satisied at depth level n + 1. Since the nodes of depth n
satisfy the property 1, then all the nodes of depth n+ 1 have the same label and the
same @id key (they are children from nodes of depth n). hen, thanks to Ψ4, they
also have the same@succ and@sym values, so they are identical. Moreover, thanks
to Ψ2 and Ψ3, all their children have the same label and @id value (because of the
nodes of depth n+1 have the same @id key). So the property 1 is satisied at depth
level n+1. Furthermore, thanks toΨ1, no node above or below a node of depth n+1
(that is, no node from a diferent depth level) share the same @id key than the nodes
of depth n+ 1, so the property 2 is also satisied.

hus, by induction on the depth level, the properties 1 and 2 are satisied everywhere in the
tree. □

his property allows us to only consider non-branching models, as any model will be
logically equivalent to one of its branches for DownwardXPath+id.

Eॾ१ॳॶॲ५ A.3. Let us consider the following PCP instance, where Σ = {a, b}.
(u1, v1) = (a, baa), (u2, v2) = (ab, aa), (u3, v3) = (bba, bb). he sequence (3, 2, 3, 1) is a
solution, and its encoding is represented in Figure A.3.

We start by giving ourselves formulas expressing simple properties.
• his formula checks that the label of the current node is in Σ = {a1, . . . an}:

ϕΣ := self::a1 union . . . union self::an

• Symmetrically, we deine the formula ϕΣ.
• his formula checks that the current node is a marker at the beginning of a group
uivi:

ϕfirst := self::#
• Finally, this formula checks that the current node is the last leter of a group uivi:

ϕlast := not(child::∗) or child::#
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We can now express the marker property of the # symbol:
Φ1 := not(//∗[ϕΣ]/child::#) and not(//#/child::∗[ϕΣ]) and not(//#/#)

Moreover, we can express that a given word appears correctly between markers, some-
where in the tree. Let uivi = ci,0 . . . ci,mi

. We deine the formula ϕi that checks that the
current node is a marker #, followed by leters forming the word uivi, and that this word is
not followed by extra leters:

ϕi := ϕfirst and ./ci,0/ci,1/ . . . /(ci,mi
[ϕlast])

hus, we can express the fact that the word w corresponding to any branch of a model is
in {#uivi | 0 ≤ i ≤ n}+:

Φ2 := /∗[ϕfirst] and not(//∗[ϕfirst and not(ϕ0) and not . . . and not(ϕn)])

hen, we must express the encoding properties about the id links:
• every leter has a successor except the last leter of the longest subwords from Σ

and Σ:
Φ3 := not(//∗[not(@succ) and ((ϕΣ and descendant::∗[ϕΣ]) or

(ϕΣ and descendant::∗[ϕΣ]))]) and

not(//∗[@succ and ((ϕΣ and not(descendant::∗[ϕΣ])) or

(ϕΣ and not(descendant::∗[ϕΣ])))])

• every leter has a @sym atribute:
Φ4 := not(//∗[not(@sym) and not(self::#)])

• id(@succ) is non decreasing:
Φ5 := not(//∗[@succ and not(@succ eq descendant::∗/@id)])

• id(@succ) doesn’t link leters from Σ with leters from Σ:
Φ6 := not(//∗[(ϕΣ and id(@succ)[ϕΣ]) or (ϕΣ and id(@succ)[ϕΣ])])

• id(@succ) doesn’t jump over a leter from the same alphabet:
Φ7 := not(//∗[ϕΣ and @succ eq descendant::∗[ϕΣ]/descendant::∗/@id]) and

not(//∗[ϕΣ and @succ eq descendant::∗[ϕΣ]/descendant::∗/@id])

• id(@sym) links properly a leter to its bar version:
Φ8 := and

a∈Σ
(not(//∗[self::a and not(id(@sym)/self::a)]) and

not(//∗[self::a and not(id(@sym)/self::a)]))

• id(@sym) is an involution:
Φ9 := not(//∗[not(id(sym)/@sym eq @id)])

• compatibility of id(@succ) and id(@sym) (cf. Figure A.4):
Φ10 := not(//∗[@succ and not((id(@succ)/@sym eq id(@sym)/@succ))])

We are now ready to prove our reduction to PCP.
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x

y

y′

∃x′

@succ @sym

@sym @succ

F९७ॻॸ५ A.4. Φ10 expresses the compatibility between id(@succ) and
id(@sym): if x has a successor y, then the symmetric of x must also have
a successor, which is the symmetric of y.

Pॸॵॶॵॹ९ॺ९ॵॴ A.4. An instance of PCP has a solution if and only if its encoding in Down-
wardXPath+id is satisiable.

Pॸॵॵ६. It is easy to check that if the PCP instance has a solution, encoding it as described
above will give us a data tree satisfying all the formulas. Conversely, let us prove that if all
these formulas are satisied by a data tree t, then we can extract a solution of our PCP instance
from t.

First, thanks to lemma A.2, we can assume for the sake of simplicity that t is a non-
branching tree. hen, because t satisies Φ1 and Φ2, the word w̃ of t belongs to {#uivi}+.
Let us call w (resp. w) the longest subword of t in Σ (resp. Σ). Now, thanks to Φ3 every leter
of w and w has a @succ atribute (except their last leter), and thanks to Φ4 every leter of w
and w has a @sym atribute. Moreover, because t satisies Φ5, Φ6 and Φ7, we can prove that
the @succ links are jumping as intended from a leter of w (resp. w) to the next one. his
give us two @succ chains which correspond to w and w. We note x Rsucc y if there is a
@succ link from x to y.

We now need to check the @sym links. hese links are forming a symmetric relation
(thanks to Φ9) that we will denote by Rsym. First, let us consider the beginning of w: let j
be the position in w such that w0 Rsym wj , and let us assume that j > 0. hen, there is a
node wj−1 above in t such that wj−1 Rsucc wj . Now, because of the compatibility property
expressed byΦ10, there should be a node x abovew0 in the tree such thatwj−1 Rsym x Rsucc

w0, which is not possible by deinition of w0. So we have w0 Rsym w0. Now, thanks to the
same compatibility property, we can prove by induction on i that we have wi Rsym wi for
every i.

What could still happen is that w and w are not of the same length. his is also forbidden
byΦ10: letwn−1 be the last leter ofw, and let us assume thatw is of length≥ n (the other case
is symmetric). hen we have wn−1 Rsym wn−1, and now if wn−1 had a successor wn, then
by using Φ10 we could prove that there should be a node x such that wn−1 Rsucc x Rsym wn,
which is not possible by assumption that wn−1 was the last leter of w. So w and w are of the
same length.

Finally, thanks to Φ8 we can prove that for 0 ≤ i < n, (wi) = wi, so t does represent a
solution to our PCP instance. □

his entails the undecidability of the satisiability problem for the following fragments:
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Cॵॸॵॲॲ१ॸॿA.5. he satisiability problem is undecidable forDownwardXPath+id, ForwardX-
Path+id and VerticalXPath+id.

A.2.2. Reducing fromPCPusingNodeTests. heencoding above can be easily adapted
for a restricted version of CoreXPath 2.0 with only the downward axes, by replacing the data
joins by node tests using is. Here is how one can transform the previous formulas to be in
such a fragment:

(1) Since every data value is actually the @id key of a node, every data test of the form
π/@foo eq π′ can be transformed into π/id(@foo)/@id eq π′.

(2) Once all the data joins are of the form π/@id eq π′/@id, we can replace them by
node tests of the form π is π′ (since all the @id keys are unique).

Hence, our undecidability result also holds for CoreXPath 2.0.

Cॵॸॵॲॲ१ॸॿ A.6. he satisiability problem is undecidable for CoreXPath 2.0+id.

A.2.3. Decidable Fragments with id. In this section, we show how we can encode
some uses of id by using variables axiomatised with data joins. Let us recall what uses of id
we allowed in VerticalXPath extended with variables, and EMSO2XPath:

π ::= · · · | /πid

πid ::= π | πid/πid | πid union πid | πid[ϕ] | id(πid)

When an occurrence of id() is applied at the end of an absolute path /Π, it is translated
into a variable $xΠ that will be forced to contain exactly the nodes to which the id() call
would jump, using the following axioms:

• ϕ1($xΠ,Π) := not(/Π[(not(. eq $xΠ/@id)) and . eq // ∗ /@id])
• ϕ2($xΠ,Π) := not($xΠ[not(@id eq /Π)])

Wewill eliminate the id occurrences by using a translation function Tid taking two arguments:
the second one is the query that remains to be translated, and the irst one is a letover path π,
not containing any id() call, that will be used to axiomatise variables $xπ . In the following
translation, whenever a formula denoted $xΠ is used, the corresponding axioms ϕ1($xΠ,Π)
and ϕ2($xΠ,Π) will be added at top level.

Tid(π, π
′/πid) = Tid(π/π

′, πid) (where π’ does not contain any id() call)
Tid(π, πid/π

′
id) = Tid(Tid(π, πid), π

′
id)

Tid(π, id(π
′)) = $xπ/π′

Tid(π, id(πid)) = Tid(ε,id(Tid(π, πid)))

Tid(π, π
′) = π/π′ (where π’ does not contain any id() call)

Tid(π, πid union π′id) = Tid(π, πid) union Tid(π, π
′
id)

Tid(π, π
′[ϕ]) = Tid(π, π

′)[Tid(ε, ϕ)]

Tid(ε, ϕ and ϕ′) = Tid(ε, ϕ) and Tid(ε, ϕ
′)

Tid(ε, ϕ or ϕ′) = Tid(ε, ϕ) or Tid(ε, ϕ
′)

Tid(ε,not(ϕ)) = not(Tid(ε, ϕ))
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We denote by Ax all the axioms that must be added at top level:

Ax(Tid(π, π̃)) =
∧

$xΠ apprearing in Tid(π,π̃)

ϕ1($xΠ,Π) ∧ ϕ2($xΠ,Π)

And we note t, ǫ, nf ⊨Ax Tid(π, π̃) when t, ǫ, nf ⊨ Tid(π, π̃) ∧ Ax(Tid(π, π̃))

Pॸॵॶॵॹ९ॺ९ॵॴ A.7. Let t be a data tree and let nf ∈ N . Let π and π̃ be path formulas in our
fragment extended with id. We have:

t, ǫ, nf ⊨Ax Tid(π, π̃) if t, ǫ, nf ⊨ π/π̃

Pॸॵॵ६. We prove this theorem by induction on the lexicographic order over the number
of occurrences of id() in π̃ and the size of π̃, showing only the non trivial cases:

• case π̃ = πid/π
′
id:

t, ǫ, nf ⊨Ax Tid(π, πid/π
′
id)

⇐⇒ t, ǫ, nf ⊨Ax Tid(Tid(π, πid), π
′
id)

⇐⇒ t, ǫ, nf ⊨Ax Tid(π, πid)/π
′
id

⇐⇒ ∃n ∈ N t, ǫ, n ⊨Ax Tid(π, πid) and t, n, nf ⊨ π′id

⇐⇒ ∃n ∈ N t, ǫ, n ⊨ π/πid and t, n, nf ⊨ π′id

⇐⇒ t, ǫ, nf ⊨ π/πid/π
′
id

• case π̃ = id(πid):

t, ǫ, nf ⊨Ax Tid(π, id(πid))

⇐⇒ t, ǫ, nf ⊨Ax Tid(ε,id(Tid(π, πid)))

⇐⇒ t, ǫ, nf ⊨Ax id(Tid(π, πid))

⇐⇒ ∃nid ∈ N, nf ↓ nid and ∃n′f ∈ N, δ(nid) = δ(n′f ) and t, ǫ, n′f ⊨Ax Tid(π, πid)

⇐⇒ ∃nid ∈ N, nf ↓ nid and ∃n′f ∈ N, δ(nid) = δ(n′f ) and t, ǫ, n′f ⊨ π/πid

⇐⇒ ∃nid ∈ N, nf ↓ nid and ∃n′f ∈ N, δ(nid) = δ(n′f )

and ∃n ∈ N, t, ǫ, n ⊨ π and t, n, n′f ⊨ πid

⇐⇒ ∃n ∈ N t, ǫ, n ⊨ π and t, n, nf ⊨ id(πid)

⇐⇒ t, ǫ, nf ⊨ π/id(πid)

• case π̃ = id(π′) (with no occurrence of id() in π′):

t, ǫ, nf ⊨Ax Tid(π, id(π
′))

⇐⇒ t, ǫ, nf ⊨Ax $x

where $x is a fresh variable axiomatised at top level with:
(1) ϕ1 := not(/π/π′[(. eq $x/@id) and . eq // ∗ /@id])
(2) ϕ2 := not($x[not(@id eq /π/π′)])
he formula ϕ1 ensures that J/π/id(π′)KνP ⊆ J$xKνP , and ϕ2 ensures that J$xKνP ⊆
J/π/id(π′)KνP . Hence, the equivalence is true. □
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In addition, for the EMSO2XPath fragment only, we can handle paths that do not start
from the root as we can use a second-order variable to remember the starting point. In the
translation of a query in an EMSO2 formula, if the initial node is denoted by a irst-order
variable x, we can axiomatise a second-order variable Xstart as follows:

x ∈ Xstart ∧ ∀y, y ∈ Xstart ⇒ y = x

hen, if an id() is used in a non-rooted path, we can handle it by adapting the previous
axiomatisation and testing for Xstart instead of testing for the root:

(1) not($Xstart/Π[(not(. eq $xΠ/@id)) and . eq // ∗ /@id])
(2) not($xΠ[not(@id eq $Xstart/Π)])

But we must be careful not to allow such occurrences of id() in a node expression, as the
ExampleA.8 shows. In that sense, wemust provide our grammarwith a new starting symbolπ′
that can either be a path π as deined previously, or a non-rooted path πid using id():

π′ ::= π | πid

Eॾ१ॳॶॲ५ A.8. he formula /child::a/id(@x) will be translated to $x by our standard
translation, or could also be translated to /child::a/$x if we want to simulate the path it
follows more accurately, where the variable $x axiomatised by:

(1) not(/child::a/@x[not(. eq $x/@id) and . eq // ∗ /@id])
(2) not($x[not(@id eq /child::a/@x)])

However, even though the translation will select the same nodes as the original query, the
variable $x will do a global jump directly to all the results, no mater what the current node
is (cf. Figure A.5). Because of this, we cannot allow the use of id in a test: a test of the form
[id(@x)] will be satisied if a jump id(@x) can be done from the current node, but a test of
the form [$x] will be satisied if the variable $x is not empty, no mater what the current node
is (cf. Figure A.6).

r

a

@x = 123

a

@x = 456

b

@id = 123

b

@id = 456

F९७ॻॸ५ A.5. he paths followed by the query /child::a/id(@x) in yellow,
and by the query /child::a/$x in violet.
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r

a

@x = 123

a

@x = 456

b

@id = 123

F९७ॻॸ५ A.6. Counter example of a path formula using a non-rooted id in a
node test for which our translation would fail. he query /child::a[id(@x)]
would only select the letmost child of the root, but the query /child::a[$x]
with $x axiomatised as above would select all the children labelled by a, since
$x would be non empty.
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Titre: Logiques de requêtes à la XPath : systèmes de preuve et pertinence pratique
Mots clés: logique, satisiabilité, systèmes de preuve, hyperséquent, amas, ordinaux, mot de données, arbre
de donnée, jeu de tests, XPath

Résumé: Motivées par de nombreuses applications
allant du traitement XML à la vériication d’exécution
de programmes, de nombreuses logiques sur les ar-
bres de données et les lux de données ont été dévelop-
pées dans la litérature. Celles-ci ofrent divers
compromis entre expressivité et complexité algorith-
mique ; leur problème de satisiabilité a souvent une
complexité non élémentaire ou peut même être indé-
cidable. De plus, leur étude à travers des approches de
théories desmodèles ou de théorie des automates peu-
vent être algorithmiquement impraticables ou man-
quer de modularité.
Dans une première partie, nous étudions l’utilisation
de systèmes de preuve comme un moyen modu-
laire de résoudre le problème de satisiabilité des
données logiques sur des structures linéaires. Pour
chaque logique considérée, nous développons un cal-
cul d’hyperséquents correct et complet et décrivons

une stratégie de recherche de preuve optimale don-
nant une procédure de décision NP. En partic-
ulier, nous présentons un fragment NP-complet de
la logique temporelle sur les ordinaux avec données,
la logique complète étant indécidable, qui est exacte-
ment aussi expressif que le fragment à deux variables
de la logique du premier ordre sur les ordinaux avec
données.
Dans une deuxième partie, nous menons une étude
empirique des principales logiques à la XPath décid-
ables proposées dans la litérature. Nous présentons
un jeu de tests que nous avons développé à cete
in et examinons comment ces logiques pourraient
être étendues pour capturer davantage de requêtes du
monde réel sans afecter la complexité de leur prob-
lème de satisiabilité. Enin, nous analysons les ré-
sultats que nous avons recueillis à partir de notre jeu
de tests et identiions les nouvelles fonctionnalités à
prendre en charge ain d’accroître la couverture pra-
tique de ces logiques.

Title: XPath-like uery Logics: Proof Systems and Real-World Applicability
Keywords: logic, satisiability, proof system, hypersequent, cluster, ordinal, data word, data tree, benchmark,
XPath

Abstract: Motivated by applications ranging from
XML processing to runtime veriication of programs,
many logics on data trees and data streams have
been developed in the literature. hese ofer difer-
ent trade-ofs between expressiveness and computa-
tional complexity; their satisiability problem has of-
ten non-elementary complexity or is even undecid-
able. Moreover, their study through model-theoretic
or automata-theoretic approaches can be computa-
tionally impractical or lacking modularity.
In a irst part, we investigate the use of proof systems
as a modular way to solve the satisiability problem of
data logics on linear structures. For each logic we con-
sider, we develop a sound and complete hypersequent
calculus and describe an optimal proof search strat-
egy yielding an NP decision procedure. In particular,

we exhibit anNP-complete fragment of the tense logic
over data ordinals—the full logic being undecidable—
, which is exactly as expressive as the two-variable
fragment of the irst-order logic on data ordinals.
In a second part, we run an empirical study of the
main decidable XPath-like logics proposed in the liter-
ature. We present a benchmark we developed to that
end, and examine how these logics could be extended
to capture more real-world queries without impact-
ing the complexity of their satisiability problem. Fi-
nally, we discuss the results we gathered from our
benchmark, and identify which new features should
be supported in order to increase the practical cover-
age of these logics.
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