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Abstract

The responsible mechanisms for anomalous (non-Fickian) hydrodynamic trans-
port can be traced back to the complexity of the medium geometry at the pore-
scale. In this thesis, we investigate the dynamics of pore-scale particle ve-
locities. Using particle tracking simulations performed on a digitized Berea
sandstone sample, we present a detailed analysis of the evolution of the La-
grangian and Eulerian velocity statistics and their dependence on the initial
conditions. The particles experience a complex intermittent temporal velocity
signal along their streamline while their spatial velocity series exhibit regular
fluctuations. The spatial velocity distribution of the particles converges quickly
to the steady-state. These results lead naturally to Markov processes for the
prediction of these velocity series. These processes, together with the tortu-
osity and the velocity correlation distance that are properties of the medium,
allow for the parameterization of a continuous time random walk (CTRW) for
the upscaling of the transport. The model, like any upscaled model, relies on
the definition of a representative elementary volume (REV). We show that an
REV based on the velocity statistics allows defining a pertinent support for
modeling pre-asymptotic to asymptotic hydrodynamic transport at Darcy scale
using, for instance, CTRW, thus overcoming the limitations associated with
the Fickian advection dispersion equation. Finally, we investigate the impact
of pore-scale heterogeneity on a bimolecular reaction and explore a methodol-
ogy for the prediction of the mixing volume and the chemical mass produced.
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Résumé

Les mécanismes responsables du transport hydrodynamique anormal (non-
fickéen) peuvent être rattachés à la complexité de la géométrie du milieu à
l’échelle des pores. Dans cette thèse, nous étudions la dynamique des vitesses
de particules à l’échelle des pores. À l’aide de simulations de suivi de par-
ticules effectuées sur un échantillon numérisé de grès de Berea, nous présen-
tons une analyse détaillée de l’évolution des statististiques de vitesse lagrang-
ienne et eulérienne et de leur dépendance aux conditions initiales. Le long de
leur ligne de courant, les particules voient leur vitesses évoluer temporellement
d’une manière complexe, appelée intermittence, alors que leur série de vitesses
spatiales présente, elle, des fluctuations régulières. La distribution spatiale des
vitesses des particules converge rapidement vers l’état stationnaire. Ces ré-
sultats conduisent à des processus markoviens qui permettent de prédire les
fluctuations de vitesse dans le réseau poral. Ces processus, associés à la tor-
tuosité et à la distance de corrélation de vitesse, permettent de paramétrer un
modèle de marche aléatoire dans le temps (CTRW) et de réaliser le change-
ment d’échelle pour simuler le transport à l’échelle de Darcy. Le modèle,
comme tout modèle issu d’un changement d’échelle, repose sur la définition
d’un volume élémentaire représentatif (VER). Nous montrons qu’un VER basé
sur les statistiques de vitesse permet de définir un support pertinent pour la
modélisation du transport hydrodynamique pré-asymptotique à asymptotique,
et ainsi d’éviter les limitations associées à l’équation d’advection-dispersion
fickéenne. Enfin, nous étudions l’impact de l’hétérogénéité du réseau poral sur
le volume de mélange et la masse du produit d’une réaction bimoléculaire.
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Chapter 1

Introduction

1.1 State of the Art

The prediction and proper understanding of the hydrodynamics of transport in porous me-
dia play an important role in numerous environmental and industrial applications. These
include groundwater (Fu et al., 2014) and soil remediation (Yoshida and Takahashi, 2012;
Rabiet et al., 2009), geothermal energy and petroleum production, nuclear waste disposal
(Ewing et al., 2004), geologic CO2 storage (Szulczewski et al., 2012), and sustainable ex-
ploitation of groundwater (Harvey et al., 2002). Geological and engineered porous media
are characterized by spatial heterogeneity which makes the understanding of flow, trans-
port and reaction processes across scales a challenge. This thesis focuses on upscaling
these processes from the pore to the Darcy scale.

The transport of mass through porous media has traditionally been modeled using
a Fickian transport paradigm that models the impact of pore-scale velocity fluctuations
in terms of hydrodynamic dispersion (Bear, 1972). Thus, Darcy scale transport is de-
scribed by an advection-dispersion equation (ADE) characterized by the average pore ve-
locity and dispersion. This framework predicts that localized solute injections evolve to
a Gaussian-shaped distributions whose second and second-centered moments increase lin-
early with time, breakthrough curves are characterized by inverse Gaussian-shaped distri-
butions, which decay rapidly after the mean solution arrival. However, non-Fickian (also
called anomalous) transport behaviors have been observed in disordered media ranging
from geological media (Berkowitz et al., 2006; Neuman and Tartakovsky, 2009b), to bio-
logical tissues (Guigas and Weiss, 2008), and amorphous semiconductors (Scher and Mon-
troll, 1975). In the case of groundwater, Fickian-breaking features have been observed
across the scales: at the field scale (Sudicky, 1986; Garabedian et al., 1991; Le Borgne
and Gouze, 2008; Boggs et al., 1993) and Darcy scale (Koch and Brady, 1988; Levy and
Berkowitz, 2003), but also at the pore scale (Cortis et al., 2004; de Anna et al., 2013). A

4
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Figure 1.1: Illustrative representation of anomalous transport (blue solid line) vs. Fickian
transport (red dashed line) at five distinct times. (Top): Evolution of the plume; (Bottom):
Vertically-integrated concentration. The solute plume deviates from Fickian behavior with
early breakthrough and late tailing. This is reflected in the non-Gaussian vertically averaged
concentration.

non-exhaustive list of the classical signatures of anomalous transport includes non-linear
scaling of the mean squared displacement, early breakthrough and late tailing of solute,
non-Gaussian features such as tailed plume shapes (see Figure 1.1), and heavy-tailed ar-
rival time distributions (Bouchaud and Georges, 1990; Berkowitz et al., 2006; Neuman and
Tartakovsky, 2009b).

These behaviors, arising from complex mechanisms, render the modeling of transport
in heterogeneous media challenging. At the millimeter scale, flow and transport can be
fully resolved through direct simulations and the mechanisms involved are fully under-
stood. However, obtaining predictions at larger, relevant scales is often much more chal-
lenging. This complexity lies first in the impossibility of obtaining exhaustive knowledge
of cross-scale geometrical features, and second in the absence of sufficiently powerful com-
putational resources for performing flow and transport simulations on very large, resolved
domains. In addition, even in an hypothetical setting where an accurate micron-scale de-
scription of rock architecture for cubic-meters scale would be achievable, such direct sim-
ulations would provide little insight into the actual mechanisms that are responsible for the
large-scale behavior of solute.

Thus, if we wish to model and understand the transport of solutes and particulates such
as contaminants, colloids, or viruses and microbial agents, we must develop a methodology
that correctly accounts for spatial heterogeneity. A further issue is that, in most situations,
the architecture of the medium is not accurately known. This is especially true for sub-
surface flows where obtaining precise information on the geometry of the rock through
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experiments is prohibitively complicated. To tackle these issues, effective parameters such
as permeability or porosity are defined as appropriate averages over a volume. This leads
directly to the concept of a representative elementary volume (REV). The REV is defined
as the minimum volume of a sample over which the measured property of interest becomes
constant and independent of the size of the domain (see, for example, Bear, 2013; Yang
et al., 2015; Whitaker, 1999). It is important to note that the scale at which the REV prop-
erty is defined should be related to the scale at which the information is used. For instance,
permeability defined over a geological formation will differ strongly from that obtained in
the laboratory (Bear, 2013).

The previous considerations lead naturally to the notion of upscaling. One is often
interested in large-scale behavior emerging from small-scale mechanisms; therefore, the
concept behind upscaling techniques is to develop methodologies that predict the behavior
of the transport at the scale of interest, while taking into account in an efficient manner
the subscale complexity. Due on the one hand to the limited information available for
the characterization of geological media, and on the other to the goal of describing large-
scale features efficiently, the upscaling technique may involve the use of probabilistic tools,
with features such as medium heterogeneity being described effectively through statistical
properties.

The traditional Eulerian description of Darcy scale solute transport is given by the
advection-dispersion equation (ADE),

∂

∂ t
φc(xxx, t)+∇ ·φqqqc(xxx, t)−∇ ·φD∇c(xxx, t) = 0, (1.1)

where c(xxx, t) is the solute concentration at position xxx at time t, where φ is the porosity, qqq

is the Darcy velocity, which describes the drift rate of the plume, and D is the dispersion
tensor. For isotropic dispersion, which occurs in particular in homogeneous media, the lat-
ter is diagonal with nonzero elements equal to the dispersion coefficient D, but it may also
account for anisotropic dispersion along the flow and transverse directions (Bear, 1961).
This equation describes mass balance between REVs, with concentration change (the first
term) being impacted by advective flux (second term) and Fickian dispersion (third term).
It is valid at scales much larger than the REV. Since the REV is usually defined for the
porosity, a standard assumption is to consider that this choice of REV holds for advection
and dispersion properties (Whitaker, 1999).

The validity of Fickian dispersion is linked to the central limit theorem. In a Lagrangian
sense, if all solute parcels sample the full velocity heterogeneity of the medium, the result-
ing spreading converges, under certain conditions, to a normal distribution (Dentz et al.,
2004). In practice, however, this convergence may be jeopardized at the scale of interest by
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a number of mechanisms which may undermine the validity of the classical REV defini-
tion. In the presence of preferential flow paths, such as in fractured media, communication
between distant points in space may occur on a short timescale. Conversely, stagnation
zones such as dead-end pore spaces or low-permeability inclusions may lead to anoma-
lously long retention times. Upscaled models typically represent these effects through
nonlocal features. Local models (such as the ADE) allow for local solute exchange only.
In other words, mass transfer described by differential operators, or equivalently to Eu-
lerian numerical models where only nearby nodes communicate. This holds also for the
temporal behavior, in the sense that there is no long-term memory of past plume history.
In contrast, spatially nonlocal models allow for communication between locations sepa-
rated by large distances, while temporally nonlocal models allow for long-range memory
in time (see Figure 1.2 for an example of non-local model). Even in the absence of such
features, the validity of Fick’s law requires a time τD = `2

c/D , where D is the dispersion
coefficient and `c is the characteristic length of the REV. This dispersion timescale repre-
sents the time needed for diffusion to homogenize solute within the REV, so that all the
corresponding heterogeneity is sampled. At times t < τD (called pre-asymptotic times), the
Fickian paradigm typically breaks down because pore-scale variability is not fully sampled
and thus not averaged out. We briefly introduce three of the most commonly used nonlocal
models for predicting transport in heterogeneous media: fractional advection dispersion
equations (fADEs), multi-rate mass transfer (MRMT) and continuous time random walks
(CTRWs). In this thesis, we will focus on continuous time random walk models.

fADEs are generalizations of the ADE allowing for non-local features. Rather than the
short-range temporal or spatial correlations implicit in the ADE, which arise from the con-
ditions of the classical central limit theorem and lead to Gaussian-shaped plumes and reg-
ular derivative operators, fADE models describe long-range correlations through fractional
derivatives. These are integral operators which describe long-range memory or spatial
correlations through heavy-tailed memory or spatial kernels, which reflect the generalized
central limit theorem (Meerschaert and Sikorskii, 2012). This translates into solute being
transported over anomalously large distances over short times (spatial fADEs), retained
for anomalously long times (temporal fADEs), or a combination of both (spatiotemporal
fADEs).

The multi-rate mass transfer (MRMT) approach models non-Fickian transport due to
mass transfer between mobile and immobile continua (Haggerty and Gorelick, 1995; Car-
rera et al., 1998; Geiger et al., 2013). These could describe, for example, mass transfer
between low-permeability inclusions and the highly conductive background in groundwa-
ter flow and mass transfer between fracture and matrix as well as between mobile and
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Figure 1.2: Illustrative example of a non-local, one-dimensional continuous time random
walk. Each row displays the state of the system at a different time. A particle (red) jumps
from a position x at time t1 to arrive at a far location after a short time interval at time t2,
illustrating spatial non-locality. A particle (blue) jumps from a position x at time t1 to arrive
at a nearby location after a long time interval at time t4, illustrating temporal non-locality.

immobile microporosity on the pore scale (Gjetvaj et al., 2015). Using this framework,
complex features of solute retention times may be captured, which reflect themselves in
anomalous transport features of the plume and breakthrough curves as discussed above.

Continuous time random walks (CTRWs) are a generalization of the classical random
walk, first developed by Montroll and Weiss (1965), generalized by Scher and Lax (1973),
and later introduced in hydrogeological modeling, see (Berkowitz et al., 2006) for a review.
The classical random walk approach, due to Einstein (1905) and Smoluchowski (1917),
describes particle trajectories in terms of stochastic recursion relations for the position xxxn

and the time tn after n steps,

xxxn+1 = xxxn + `ηηηn, tn+1 = tn +∆t. (1.2)

During the nth step, particle positions change by a constant distance ` along the vector ηηηn,
and the constant duration of a step is ∆t. Along each spatial dimension, the components
of ηηηn are equal to ±1 independently with probability 1/2. It is important to note that,
while in the original models transported particles were physical entities (such as pollen in
water for classical Brownian motion (Einstein, 1905)), they are now typically employed as
abstract Lagrangian entities representing discretized solute mass (Noetinger et al., 2016).
CTRW models allow for stochastic displacements and jump durations, and generalize this
description as

xxxn+1 = xxxn +ξξξ n, tn+1 = tn + τn, (1.3)
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where the ξξξ n and τn are independent and identically distributed for each step n and sam-
pled from a joint distribution. The CTRW framework thus aims to describe the mecha-
nisms leading to anomalous transport in terms of the statistics of particle displacements
and their (potentially coupled) durations. We note also that fADEs and MRMT models
have been shown to be equivalent to CTRW for certain choices of the joint distribution of
displacement and duration (Schumer et al., 2003; Dentz and Berkowitz, 2003; Benson and
Meerschaert, 2008). A one-dimensional illustrative example of a one-dimensional CTRW
is given in Figure 1.2. For further details on the CTRW framework, the reader is referred
to Section 2.3.

Note that Fickian transport may, however, be recovered at large temporal and spatial
scales. This occurs when particles have experienced the full velocity heterogeneity, and
corresponds to times that are larger than the memory of the initial conditions (Dentz et al.,
2004). To better understand the pore-scale mechanisms (see Figure 1.3) leading to this
phenomenon, many authors have investigated and modeled the Lagrangian velocities ex-
perienced by the solute particles. de Josselin de Jong (1958) and Saffman (1959) were the
first to consider the concept of residence time of particles in the modeling of solute motion.
The models they considered were similar to the CTRW introduced above in the sense that
particle displacements over characteristic distances were coupled to random increments re-
lated to pore-scale velocity distributions. More recently, Meyer and Bijeljic (2016) (at the
pore-scale) and Meyer and Tchelepi (2010) (at the Darcy-scale) studied the temporal La-
grangian velocity series and modeled them with non-linear Langevin equations. However,
the complexity of the temporal behavior of the particles velocities requires the introdution
of velocity dependent parameters to quantify the evolution of the particle velocities. The
need for this level of complexity is tied to the intermittency exhibited by the temporal La-
grangian velocity series: the temporal velocity evolution of a particle exhibits long periods
of low velocity punctuated by short peaks of high velocity (de Anna et al., 2013; Kang
et al., 2014). These behaviors are directly linked to the spatial organization of the veloci-
ties: particles cross high velocity regions rapidly while spending more time in low velocity
areas. This wide range of transit times is at the root of anomalous transport features (Carrel
et al., 2018; Holzner et al., 2015; de Anna et al., 2013). However, Morales et al. (2017)
have shown that spatial velocity series do not display such intermittency and rather exhibit
velocity changes with a regular frequency. The corresponding spatial velocity persistence,
arising from the pore structure of the medium, has lead to the investigation of the spatial
evolution of the Lagrangian velocity statistics in the framework of CTRWs with constant
spatial increments (Dentz et al., 2016). CTRW approaches can naturally represent this type
of behavior with a waiting time distribution that accounts for the spatial correlation scale.
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Figure 1.3: Illustrative representation of some pore-scales mechanisms triggering anoma-
lous transport. A particle (blue) experiences a preferential channel of low tortuosity,
whereas another particle (red) experience a more tortuous pathway. Finally, the last particle
particle (green) is trapped in a region of low velocity and will need a large time to escape.
These mechanisms, together with the heterogeneity of the velocity field they experience,
enhance anomalous transport.

Understanding these phenomena requires an accurate characterization and understanding
of the dynamics of Eulerian and Lagrangian velocity statistics, leading to a series of re-
cent studies (de Anna et al., 2013; Siena et al., 2014; Holzner et al., 2015; Gjetvaj et al.,
2015; Meyer and Bijeljic, 2016; Jin et al., 2016a; Matyka et al., 2016; Morales et al., 2017).
Together with these concepts, it is important to consider the role of the initial velocity dis-
tribution of solute particles. While velocity statistics obtained in numerical simulations and
experiments have often been assumed to be stationary in time, the injection mode and vol-
ume size have been shown to impact the early-time velocity statistics (Morales et al., 2017).
In some cases, the injection velocity distribution largely differs from the steady-state, which
can affect the pre-asymptotic dynamics of the solute velocity distribution. This effect has
been studied for Darcy scale transport in fractured and porous media (Hyman et al., 2015;
Dentz et al., 2016; Kang et al., 2017).

1.2 Open Questions

The understanding and modeling of transport in heterogeneous media have recently seen
significant progress. However, there remain a large number of open issues. Some of the
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key open problems refer to:

1. the relation between temporally- and spatially-sampled pore scale velocities, together
with their connection to the Eulerian statistics;

2. the modeling of spatial velocity series experienced by solute particles;

3. the upscaling of purely advective, pre-asymptotic transport through continuous time
random walks;

4. the definition of a representative elementary volume allowing for the upscaling of
anomalous transport;

5. the impact of pore-scale heterogeneity on the mixing volumes between reactants and
the resulting reactive transport dynamics.

1.3 Objectives

The two Main objectives of this thesis are:

• To understand and characterize the impact of pore-scale velocity heterogeneity on
spreading and mixing of the solute.

• To develop an effective model for the upscaling of transport from the pore to the
Darcy scale.

These two main objectives can be broken down into Specific objectives towards answering
the Open questions. These objectives are:

1. to mathematically relate the equidistantly and isochronously sampled velocity statis-
tics along a particle streamline and to validate the relation via pore-scale direct sim-
ulations on digitized real rock samples;

2. to develop stochastic processes for modeling particle spatial velocity series;

3. to identify the spatial information necessary for the parameterization of CTRW type
upscaling models;

4. to derive a CTRW for the upscaling of purely advective preasymptotic transport;

5. to define a representative elementary volume in terms of the Eulerian and Lagrangian
velocity statistics for the upscaling of anomalous transport;

6. to investigate the behavior of mixing and reaction in media displaying high pore-scale
heterogeneity.
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1.4 Thesis Structure

This thesis is structured in seven chapters, which are summarized below. All the chapters
containing the research performed towards this thesis are presented in the format of scien-
tific publications. Such papers are either published (Chapter 3), submitted to peer reviewed
journals (Chapter 4), or to be submitted (Chapters 5 and 6). These chapters can be read sep-
arately and may therefore contain repeated concepts. Nevertheless, all are interconnected
by the two principal objectives of this thesis, see Section 1.3.

• In Chapter 2, a description of the methodology used in this thesis for flow and trans-
port is provided. First, we detail the image acquisition technique and the successive
steps involved in solving the flow and determining the Eulerian velocity field. Then,
we present the implementation of the different mechanisms of a particle tracking al-
gorithm: the streamline tracing method, the diffusion process, and the computation
of reaction. Finally, we introduce the CTRW framework that will be used for the
upscaling of transport in the following chapters.

• Chapter 3 presents a detailed analysis of the evolution of Lagrangian and Eulerian
statistics and their dependence on the injection condition, with the aim of deriving a
framework for the efficient upscaling of transport from the pore to the Darcy scale.
The study presented here is based on velocity data obtained from computational fluid
dynamics simulations of Stokes flow and advective particle tracking in the three-
dimensional pore structure obtained from high resolution X-ray microtomography of
a Berea sandstone sample. While isochronously sampled velocity series show inter-
mittent behavior, equidistant series vary in a short-correlation pattern. Both statistics
evolve toward stationary states, which are related to the Eulerian velocity statistics.
The equidistantly sampled Lagrangian velocity distribution converges within only a
few pore lengths. These findings indicate that the equidistant velocity series can be
represented by an ergodic Markov process, and a stochastic Markov model for the
equidistant velocity magnitudes captures the evolution of the Lagrangian velocity
statistics. The model is parameterized by the Eulerian velocity distribution and a re-
laxation length scale, which can be related to hydraulic properties and the medium
geometry. These findings lay the foundation for a predictive stochastic approach to
upscale solute dispersion in complex porous media from the pore to the Darcy scale.

• In Chapter 4, we study the upscaling of purely advective pore-scale dispersion in
terms of the Eulerian velocity distribution and advective tortuosity, both flow at-
tributes, and of the average pore length, a medium attribute. The stochastic particle
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motion is modeled as a time domain random walk by equidistant spatial steps ac-
cording to random velocities and thus random transition times. Particle velocities
are modeled as stationary Markov processes, which evolve along streamlines on the
mean pore length. The streamwise motion is projected onto the mean flow direc-
tion according to the tortuosity. The stochastic particle model accurately predicts the
non-Fickian transport dynamics obtained from direct numerical simulations of par-
ticle transport in a three-dimensional digitized Berea sandstone sample. It captures
all features of transport and sheds light on the dependence of the upscaled transport
behavior on the flow distribution and on the initial particle distribution, which are
both critical for the accurate modeling of dispersion from the pre-asymptotic to the
asymptotic regimes.

• In Chapter 5, we define REVs in terms of the statistics of the medium velocity pro-
cess. In order to achieve this, we propose two types of REV definitions that are based
on Eulerian and Lagrangian statistics respectively, which we term velocity REVs (v-
REVs). According to the first definition, a volume is considered an Eulerian velocity
REV if it is sufficiently large for the Eulerian velocity PDF to be constant and not to
evolve anymore with the size of the domain. The second definition is the Lagrangian
counterpart of the first definition. In order for a volume to be a Lagrangian velocity
REV, any initial velocity distribution defined therein must evolve and reach a steady
state before trajectories leave the volume. We then show that, when combined, these
definitions allow for accurate upscaling via the CTRW framework. To illustrate and
test these definitions and their consequences, we use a mm3 sample of a Berea sand-
stone as a potential v-REV candidate. The sample, which is an REV for porosity,
happens to fulfill the Eulerian v-REV definition since the Eulerian velocity distri-
bution converges to the steady state within 1/8 of the total sample size. We also
observe that a randomly selected velocity distribution at the inlet leads to an already
stationary velocity distribution after a distance of about two thirds of the sample,
guaranteeing that the sample is also a Lagrangian REV. Then, we upscale transport
through a one-dimensional CTRW model based on these REV properties. Finally, we
discuss the impact of such REV definitions on the upscaling of both purely advec-
tive and advective-diffusive transport to the Darcy scale through the CTRW transport
description.

• In Chapter 6, we simulate an instantaneous bimolecular reaction, A+B→C, in an
heterogeneous two dimensional porous domain. A particles are injected at the inlet of
the generated medium, while B particles occupy the rest of the domain. The reaction
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occurs at the interface. We first solve the flow, before performing the reactive trans-
port simulations. These simulations are performed with a reactive particle tracking
algorithm that sequentially applies the advective, diffusive, and reactive steps. Si-
multaneously, we discuss the dispersive lamella methodology of Perez et al. (2019b),
which is based on the computation of the width of the mixing front for the prediction
of the overall product mass. We show that this methodology can be extended to com-
plex pore-scale transport systems in heterogeneous porous media. We also discuss
the impact of the porosity experienced by the fluid plume when it is not representa-
tive of the average porosity of the full sample. Lastly, we validate the predictions of
the dispersive lamella methodology against the reactive particle tracking results.

• Chapter 7 presents the main conclusions of the thesis and discusses future work.

• At the end of the document, three Appendix sections present derivations that are not
detailed in the main text and additional material concerning the valorization of this
work.
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Résumé Etendu - Français

La compréhension et la modélisation du transport hydrodynamique de solutés dans les
milieux hétérogènes ont récemment connu des progrès significatifs. Cependant, il reste
un grand nombre de questions en suspens, par exemple, concernant les relations entre
les vitesses (lagrangiennes) du fluide à l’échelle du pore échantillonnées dans le temps et
dans l’espace ainsi que leur lien avec les statistiques eulériennes. Des progrès sont égale-
ment nécessaires pour parvenir à modéliser avec précision le signal spatial des vitesses
des particules de solutés et réaliser le changement d’échelle pour obtenir des modèles
macroscopiques cohérents avec les processus décrits à l’échelle du pore que le système
soit en régime fickéen ou en régime pré-asymptotique (non-fickéen). Dans ce dernier cas,
l’utilisation de modèles basés sur des marcheurs aléatoires permettant de simuler un proces-
sus de type Continuous Time Random Walk (CTRW) semble appropriée. Les modèles de
changement d’échelle reposent cependant sur des paramètres qui sont considérés constant
dans un volume élémentaire représentatif (VER). Définir un VER pour les modèles de type
CTRW est donc nécessaire. Enfin, il est important de comprendre et de quantifier l’impact
de l’hétérogénéité à l’échelle des pores sur le volume de mélange entre les réactifs et donc
sur la dynamique du transport réactif qui en résulte. Dans cette optique, nous aborderons
cette thèse avec deux objectifs principaux. Le premier objectif sera de comprendre et de
caractériser l’impact de l’hétérogénéité des vitesses à l’échelle des pores sur la dispersion
et le mélange du soluté. Le deuxième objectif consistera en développer un modèle efficace
pour la prédiction du transport à l’échelle de Darcy basée sur des informations à l’échelle
du pore.

Ces deux objectifs principaux seront cependant décomposés en objectifs plus spéci-
fiques adressant les interrogations décrites plus haut. Nous nous attacherons premièrement
à relier mathématiquement les statistiques de vitesse échantillonnées de manière équidis-
tante à celles échantillonnées de façon isochrone le long des lignes de courant et à valider
ces relations par simulations directes effectuées à l’échelle du pore sur des échantillons
numérisés de roches réelles. Dans un deuxième temps nous développerons des processus
stochastiques pour la modélisation de l’évolution en espace des vitesses des particules. En-
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suite, nous identifierons les informations spatiales nécessaires au paramétrage du modèle
de changement d’échelle de type CTRW. Nous paramétrerons le modèle CTRW en une
dimension pour la prédiction du transport pré-asymptotique tout d’abord dans un cas pure-
ment advectif. Ensuite, nous définirons un volume élémentaire représentatif en termes des
statistiques de vitesse eulériennes et lagrangiennes pour la prédiction du transport anormal
à plus grandes échelles. Enfin, nous étudierons le comportement du mélange et la quan-
tité de solutés réactifs produite lors d’une réaction simple de type A+B donne C dans les
milieux hétérogènes.

Le document de thèse est structuré de la façon suivante. Après une introduction (chapitre
1) reprenant en détail les éléments de réflexion et les connaissances acquises ainsi que les
objectifs résumés ci-dessus, nous décrivons la méthodologie utilisée pour caractériser et
modéliser l’écoulement et le transport hydrodynamique dans le chapitre 2. Dans un pre-
mier temps, nous détaillons la technique d’acquisition d’images et les étapes successives
permettant le calcul de l’écoulement et la détermination du champ de vitesses eulérien. En-
suite, nous présentons la mise en œuvre de la méthode utilisée pour le suivi de particules:
l’algorithme de traçage, le processus de diffusion et le calcul de la réaction.

Le chapitre 3 présente, dans un premier temps, une analyse détaillée de l’évolution des
statistiques lagrangiennes et eulériennes et de leur dépendance à l’égard des conditions
d’injection dans le but de définir les bases pour, dans un deuxième temps, prédire le trans-
port à l’échelle de Darcy. L’étude présentée ici est basée sur les données de vitesse obtenues
à partir de simulations numériques de la dynamique des fluides de l’écoulement de Stokes et
du suivi de particules dans la structure poreuse tridimensionnelle d’un échantillon de grès
de Berea obtenue à partir d’imagerie microtomographique à haute résolution par rayons
X. Nous observons que les séries de vitesses échantillonnées de manière isochrone mon-
trent un comportement intermittent, les séries équidistantes quant à elles, présentent des
variations plus régulières. Les deux statistiques évoluent cependant vers des états station-
naires, liés aux statistiques de vitesse eulérienne. La distribution des vitesses lagrangiennes
échantillonnées de manière équidistante converge après seulement quelques pores. Ces ré-
sultats indiquent que les vitesses équidistantes peuvent être représentées par un processus
markovien et ergodique. En conséquence, nous démontrons qu’un modèle markovien de
type stochastique est capable de reproduire l’évolution des statistiques de vitesses lagrang-
iennes. Le modèle est paramétré par la distribution des vitesses eulériennes et par une
distance caractéristique de relaxation. Ces informations peuvent être reliées aux propriétés
hydrauliques et à la géométrie du milieu. Ces résultats produisent une base solide pour
construire une approche stochastique prédictive pour la dispersion de soluté de l’échelle du
pore à l’échelle de Darcy dans des milieux poreux complexes.



18 CHAPTER 1. INTRODUCTION

Au chapitre 4, nous modélisons la dispersion de l’échelle des pores à l’échelle de
Darcy dans un cas purement advectif. Nous paramétrons le modèle en termes de distri-
bution des vitesses eulériennes et de tortuosité advective, qui sont des caractéristiques de
l’écoulement, et de la longueur moyenne des pores qui est une caractéristique du milieu. Le
mouvement stochastique des particules est modélisé grâce à une marche aléatoire dans le
temps de type CTRW: les vitesses sont choisies aléatoirement dans une distribution station-
naire et conservées pour une distance constante, cela résulte en des transitions temporelles
également aléatoires. Les vitesses des particules sont modélisées à l’aide de processus
stationnaires markoviens qui évoluent le long des lignes de courant et qui restent corrélés
sur une distance de l’ordre d’un pore. Le déplacement le long des trajectoires est pro-
jeté sur l’axe correspondant à la direction de l’écoulement moyen grâce à la tortuosité du
milieu. Le modèle stochastique de particules prédit avec précision la dynamique du trans-
port non-fickéen (pré-asymptotique) obtenue à partir de simulations numériques directes
de transport de particules dans un échantillon 3D numérisé de grès de Berea. Le mod-
èle reproduit toutes les caractéristiques du transport et met en lumière la dépendance du
comportement du transport sur la distribution eulérienne et sur la distribution initiale des
particules qui sont des attributs essentiels pour la modélisation précise de la dispersion à
des régimes pré-asymptotiques jusqu’au régime asymptotique (fickéen).

Au chapitre 5, nous proposons une définition de volume élémentaire représentatif (VER)
en termes des statistiques des vitesses contenues dans le milieu. Pour y parvenir, nous
proposons deux types de définitions de VER basés respectivement sur les statistiques eu-
lériennes et lagrangiennes. Nous les appelons VERs de vitesse (VERV). Selon la première
définition, un volume est considéré comme un VERV eulérien s’il est suffisamment grand
pour que sa distribution eulérienne des vitesses soit constante et ne puisse plus évoluer en
fonction de la taille du domaine. La deuxième définition est l’homologue lagrangien de
la première définition. Pour qu’un volume soit un VERV lagrangien, toute distribution de
vitesse initiale définie dans ce VERV doit évoluer et atteindre un état stationnaire avant que
les trajectoires n’atteignent la fin du domaine. Nous montrons ensuite que, lorsqu’elles sont
combinées, ces définitions permettent une modélisation à plus grande échelle précise grâce
à des modèles de type CTRW. Pour illustrer et expérimenter ces définitions et leurs con-
séquences, nous utilisons le même échantillon de grès de Berea comme candidat potentiel
de VERV. L’échantillon, qui est un VER pour la porosité, satisfait la définition eulérienne
du VERV car la distribution de vitesse eulérienne converge vers l’état stationnaire après
seulement 1/8 de la taille totale de l’échantillon. Nous observons également qu’une distri-
bution de vitesse sélectionnée aléatoirement à l’entrée du domaine converge vers une distri-
bution de vitesse déjà stationnaire après une distance d’environ deux tiers de l’échantillon.
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Ceci garantit que l’échantillon est également un VERV lagrangien. Nous utilisons alors
un modèle CTRW unidimensionnel basé sur les propriétés de VERV pour prédire le trans-
port hydrodynamique. Enfin, nous discutons l’impact de ces nouvelles définitions sur le
changement d’échelle de problèmes de transport purement advectif et advectif-diffusif à
l’échelle de Darcy.

Au chapitre 6, nous simulons une réaction bimoléculaire instantanée, deux réactifs
A+B réagissent pour produire C, dans un domaine poreux hétérogène en deux dimensions.
Des particules A sont injectées à l’entrée du support généré, tandis que des particules B

occupent le reste du domaine. La réaction se produit à l’interface. Nous résolvons d’abord
l’écoulement, avant de réaliser les simulations de transport réactif. Ces simulations sont
effectuées avec un algorithme de suivi de particules réactif qui effectue de manière séquen-
tielle les étapes d’advection, de diffusion et de réaction. Parallèlement, nous utilisons une
méthodologie appelée dispersion lamellaire qui repose sur le calcul de la largeur du vol-
ume de mélange pour la prédiction de la masse globale de réaction chimique produite. Nous
montrons que cette méthodologie peut être étendue à des systèmes complexes où le trans-
port s’effectue dans des milieux poreux hétérogènes. Nous étudions également l’impact de
la porosité sur les mesures de mélange lorsque le soluté n’échantillonne pas (ou pas encore)
toute la porosité de l’échantillon. Enfin, nous testons les prédictions de cette méthode avec
les résultats d’une modélisation par suivi de particules réactif.

En conclusion, nous avons fourni une analyse complète de la dynamique stochastique
des vitesses de particules de soluté à l’échelle des pores. Ces observations nous ont menés,
premièrement, à développer des processus qui reproduisent l’évolution de la vitesse, et
deuxièmement, à les incorporer dans des modèles de type CTRW pour prédire les résultats
de transport anormal pré-asymptotique à asymptotique. Notre approche de changement
d’échelle s’avère précise, peu coûteuse en matière de ressources de calcul et prédictive
puisqu’elle ne repose pas sur des propriétés de transport, mais plutôt sur des informa-
tions relatives à l’écoulement ou qui concernent la géométrie du milieu. Tout modèle de
changement d’échelle (upscaling) repose sur des volumes-support (VER) sur lesquels les
paramètres sont considérés constants. En conséquence, nous avons défini un volume élé-
mentaire représentatif en termes de statistiques de vitesse qui permet le changemement
d’échelle du transport non-fickéen. Nous avons mis au point une méthodologie permettant
de prendre en compte l’impact de la diffusion sur les variations de vitesses dans le cadre de
la méthodologie CTRW, et étudié les échelles temporelles après lesquelles les comporte-
ment fickéens de transport peuvent être retrouvés. Enfin, nous avons quantifié l’impact de
l’hétérogénéité à l’échelle des pores sur les réactions chimiques et validé avec succès une
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méthode prédictive basée sur des estimations du volume de mélange pour le calcul de la
masse de réaction.
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Chapter 2

Methodology for Flow and Transport

As stated in the introduction section, our study goes through the performance of flow and
transport simulations at pore-scale on both real and artificial medium samples. Therefore,
this section aims at giving a comprehensive overview of image acquisition, flow resolution
and tool development for transport simulations. However, it is important to mention that
for easy readability, most of the technical details of the methodology are not provided in
the current section and are presented in Appendix 8.1.

This chapter is organized in the following minor sections. Section 2.1.1 provides details
of image acquisition. In Section 2.1.2, the steps performed to solve flow and obtain velocity
fields are described. Section 2.2 focuses on the methodology we use for the computation
of the transport. The accurate descriptions of advection, diffusion and reaction processes
are provided in Sections 2.2.1, 2.2.2 and, 2.2.3 respectively. Finally, in Section 2.3 we
introduce the continuous time random walk (CTRW) framework that will be used for the
upscaling of the transport in the following chapters.

2.1 Flow

In this section, the steps required for calculating the velocity fields of the samples under
consideration are presented. First, the 3D and 2D geometries used in this thesis for flow
and transport simulations are described, and some particularities regarding their acquisition
are given. Then, the most important details of the flow solving are provided.

2.1.1 Geometries

In order to perform the flow and transport simulations described in Chapters 3 and 5, a
digitized and segmented Berea sandstone sample extracted from a complete core was se-
lected. The three-dimensional geometry of this sample is displayed in Figure 2.1. The
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details of the image acquisition and the segmentation procedure can be found in Chapter 3
or in Gjetvaj et al. (2015); Puyguiraud et al. (2019a). On the other hand, the flow, conser-
vative transport, and reactive transport simulations studied in Chapter 6 were carried out on
a two-dimensional rectangular domain composed of solid disks. In this case, such geome-
try (displayed in Figure 2.1b), was preferred in order to mimic the porous medium matrix
phase. Details of the 2D rectangular geometry generation can be found in Chapter 6.

Figure 2.1: On the left, three dimensional digitized Berea sandstone sample. The gray
color represents the solid phase while the black denotes the void pore phase. On the right, a
section of the two dimensional artificial geometry. The red disks represents the solid phase
while the blue background symbolizes the void pore phase.

2.1.2 Solving the Flow

The details of the flow simulations on both 3D and 2D cases are available in Sections 3
and 6, respectively. Therefore, to avoid redundancies, just a brief description of the flow
simulations is hereby provided simply to highlight most crucial details.

The 3D digitized Berea sandstone sample and the 2D artificially generated geometry
displayed in Figure 2.1 were fine-meshed with cubes and squares respectively to capture
accurately the pore space. Then we solved the Stokes and continuity equations (that dictate
fluid flows under low Reynolds number) for constant viscosity and density. The system of
equations is solved via a finite-volume scheme implemented in OpenFOAM (Weller et al.,
1998). We prescribed pressure boundary conditions at the inlet and at the outlet of the do-
main and implemented no-slip conditions at the solid-void interfaces and at the remaining
boundaries of the domain. The simulations result in flow fields where the velocity values
are obtained at each interface of the mesh in the normal direction (see Figure 2.2 for an
illustrative example). Once the velocity fields have been obtained, we then need a stream-
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Figure 2.2: Illustrative example of a resolved velocity field on a squared mesh. Granite
color cells represent the solid phase while the white cells denote the pore space. The arrows
represent the velocities obtained from the flow simulation.

line tracing method that tracks particles using the previously calculated Eulerian velocities
at the interfaces. Such method is described in the following section.

2.2 Transport

2.2.1 Advective Particle Tracking

In this section we start by providing a brief overview of the existing particle tracking meth-
ods before going through the details of the algorithm we use in this report in Section 2.2.1.2.

2.2.1.1 Bases

Computing accurately the properties of the transport requires an effective particle tracking
algorithm. Indeed, generating particle path lines and travel-time information through parti-
cle tracking techniques can be extremely handy for the analyses of complex two- and three-
dimensional groundwater flow systems. They are usually based on a previously obtained
(usually through numerical flow simulations) Eulerian velocity field on the geometry of
interest. These particle tracking schemes and methods have been incorporated into formal
solute transport models to mimic the advective mechanism of the transport (Mostaghimi
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et al., 2012; Most et al., 2016; Bijeljic and Blunt, 2006; Bijeljic et al., 2004). They can
also be used to generate streamlines and tracking the solute as an ensemble of particles and
therefore evaluate the advective characteristics of the transport (Kang et al., 2014).

The simplest particle tracking method probably consists in, first computing every par-
ticle’s position velocity component and second, moving the particle to a new location by
adding the displacement in each direction to the original position of the particle. The
displacement in each direction is simply being computed by as ∆x = u∆t where u is the
velocity component and ∆t is a previously elected time step. This can be performed for
every component, resulting in a new location for the particle after time step ∆t. Unques-
tionably, while being conceptually easy to understand, these types of methods rely on a
velocity field completely known and on the capability of the scheme to know the three
velocity components at any of the domain locations. For analytical flow field solution,
the velocity at every point of the field is given and therefore, no further calculations are
required. However, numerical flow field solutions obtained from, for instance, finite dif-
ferences, finite volumes, finite elements or even from their continuous and discontinuous
Galerkin extension, lack some kind of velocity interpolation inside every mesh element.
The type of flow considered can also drastically impact on the choice of velocity interpo-
lation. Numerous approaches exist for each case. For finite differences and volumes in
case of steady flows and regular hexaedron meshing, three of the most used approaches
might be the simple linear interpolation, the multilinear interpolation and the step function
interpolation (see, Pollock, 1988, for example). The idea behind the linear interpolation is
that each velocity component varies linearly with distance between two interfaces of the
mesh in its component direction. The multilinear interpolation acts in a similar way but
assumes that each velocity component is a linear function of the three others’ coordinate
direction. The step function simply assumes that the velocity component is constant within
a cell and changes abruptly at the next interface. These methodologies give valid results for
steady flows computed on squared and cubic meshes. For unstructured quadrilateral and
triangular meshes, extensions have been proposed. Matringe et al. (2005), for example,
developed a streamline technique based on the existence of a stream function. For more
complex methodologies, such as Galerkin and discontinuous Galerkin, other methods exist
(see, for example, Sun et al., 2005). For non-steady flow, researchers have added a linear
temporal dependence to account for the rapidly changing velocity field in transient flows,
see (Suk and Yeh, 2009; Maier and Bürger, 2013).

As discussed in Section 2.1, we elected a finite volume scheme onto a regular hexaedron
mesh for the computation of our steady-state flow. We therefore focused on the simple
linear interpolation (see, for example, Pollock, 1988) that fits our approach and allows for
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an analytical expression for particle trajectory within the cell. We discuss it in detail in the
following section.

2.2.1.2 Streamline Tracing Algorithm

Pollock algorithm The particle tracking method we use in this thesis is based on a mod-
ified version of the Pollock algorithm for pathline reconstruction (Pollock, 1988). In the
current section we summarize the Pollock algorithm and highlight its main limitations. To
sum up, from the finite volume scheme used, a continuity equation can be written in every
cell. In what follows, the six cell faces are referred to as x1, x2, y1, y2, z1 and z2, and the
∆x, ∆y and ∆z represent the length of a cell in the x, y and z directions respectively. Face x1

is the face perpendicular to the x direction at x = x1. Similar definitions hold for the other
five faces. The continuity equation in a cell reads as:

u2−u1

∆x
+

v2− v1

∆y
+

w2−w1

∆z
= 0, (2.1)

where u1 is the velocity component of the face perpendicular to the x-direction at position
x1 and the u2, v1, v2, w1 and w2 velocity components are defined similarly. Such average
velocity components are obtained by dividing the volume flow rate across the face by the
crossectional area of the face. For simplicity, we assume that there is no rate of created or
consumed volume by internal wells or sinks. Then, to compute the streamlines, one needs
a method to obtain the velocity at any point within this mesh cell. We use the simple linear
interpolation introduced earlier to write:

u =
u2−u1

∆x
(x− x1)+u1, (2.2)

v =
v2− v1

∆y
(y− y1)+ v1, (2.3)

w =
w2−w1

∆z
(z− z1)+w1. (2.4)

This linear interpolation produces a continuous velocity vector field within each individual
grid cell that identically satisfies the differential conservation of mass equation everywhere
within the cell. The fact that the velocity vector field within each cell satisfies the differ-
ential mass balance equation is important because it assures that path lines will distribute
water across the flow field in a way that is consistent with the overall movement of water
across the system indicated by the solution of the finite-volume flow equations.

Now, let us consider the movement of a particle through a three-dimensional finite-
difference cell. The rate of change in the particle’s x-component of velocity for instance
as it moves through the cell is given by Equation (2.2). Interestingly, such rate of change
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corresponds to the time derivative of the x-direction trajectory within a cell and can be
rewritten as:

ẋ(t) =
u2−u1

∆x
(x(t)− x1)+u1, (2.5)

which is equal to

ẋ(t) =
u2−u1

∆x
(x(t)− x1 +

u1∆x
u2−u1

), (2.6)

integrating the latter with respect to time gives∫ t

0

ẋ(t)

x(t)− x1 +
u1∆x

u2−u1

dt ′ =
∫ t

0

u2−u1

∆x
dt ′, (2.7)

which is identical to

ln

(
x(t)− x1 +

u1∆x
u2−u1

x0− x1 +
u1∆x

u2−u1

)
=

u2−u1

∆x
t. (2.8)

Finally, solving for x(t) gives the x-component trajectory equation:

x(t) = x1−
u1∆x

u2−u1
+

(
u1∆x

u2−u1
+(xp− x1)

)
e

u2−u1
∆x t . (2.9)

Solving similarly for the y- and z-components gives the following set of equations

x(t) = x1−
u1∆x

u2−u1
+

(
u1∆x

u2−u1
+(xp− x1)

)
e

u2−u1
∆x t , (2.10)

y(t) = y1−
v1∆y

v2− v1
+

(
v1∆y

v2− v1
+(yp− y1)

)
e

v2−v1
∆y t , (2.11)

z(t) = z1−
w1∆z

w2−w1
+

(
u1∆x

w2−w1
+(zp− z1)

)
e

w2−w1
∆z t , (2.12)

which completely describe the trajectory of a particle within a cell given any initial location
(xp,yp,zp). Now that the trajectory equations are known for any time t, the time te needed
for the particle to exit the cell needs to be computed. This can be done by solving this set
of equations for t. However the exit interface for the particle needs first to be identified.
Indeed, if we want to calculate for instance the exit time on the x-axis, we need to know
if the particle will leave the voxel by the left side or by the right side. Using the Pollock
algorithm, there are actually four possible situations. We give details for one of the possible
situations while leaving the rest of them in the appendix, see Section 8.1.1. We start by
considering a situation where velocities are positive on both faces. This is the situation
displayed in Figure 2.3. This case is possibly the simplest of all since it is obvious that the
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Figure 2.3: Mesh cell exhibiting positive velocities in the x-direction.

particle will get out by the right side, through the plane x2. To compute the time needed to
reach this point, we only need to replace x(t) by x2 in Equation (2.10), and solving it for t

we obtain

∆tx =
∆x

u2−u1
ln
(

u2∆x
u1∆x+(u2−u1)(xp− x1)

)
, (2.13)

where ∆tx is the time needed by the particle to get out of the cell by the plane x2. The three
other cases are detailed in Section 8.1.1. After having identified the eventual exit interface
in every direction and computed the times ∆tx, ∆ty, and ∆tz that the particle needs to exit
the cell in the x-, y- or z-direction, respectively, the actual time needed to exit can simply
be computed as

∆t := min{∆tx,∆ty,∆tz}. (2.14)

The exit coordinates can then be obtained by substituting t by ∆t:

xout = x(∆t) = x1−
u1∆x

u2−u1
+

(
u1∆x

u2−u1
+(xp− x1)

)
e

u2−u1
∆x ∆t , (2.15)

yout = y(∆t) = y1−
v1∆y

v2− v1
+

(
v1∆y

v2− v1
+(yp− y1)

)
e

v2−v1
∆y ∆t , (2.16)

zout = z(∆t) = z1−
w1∆z

w2−w1
+

(
u1∆x

w2−w1
+(zp− z1)

)
e

w2−w1
∆z ∆t . (2.17)

With these three equations, we obtain both exit and arrival coordinates in the next cell. We
then have to reiterate the process to get the streamlines (and the velocities) in the entire do-
main. Therefore, the whole process for one particle can be summarized with the following
algorithm.

1- Read starting location.

2- Assign particle to a grid cell.

3- Compute cell face velocity components.
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Figure 2.4: Example of the Pollock algorithm in two dimensions: a particle (blue dot) orig-
inating from location (xp,yp) at time t follows its streamline to reach its cell exit location
(xe,ye) at time te.

4- Determine potential exit faces.

5- Compute cell transit time and determine potential exit face.

6- Determine new cell location.

An illustrative exemple of the Pollock algorithm in a two-dimensional mesh is given in Fig-
ure 2.4. This method allows for the complete reconstruction of any streamline within the
domain given any entry location. It has become standard in field scale streamline based ho-
mogeneous reservoir simulators. However, Mostaghimi et al. (2012) found that for porous
media, the linear interpolation of the method does not account for the no-slip boundary
conditions at the solid-void interfaces. This leads to high discrepancies in low porosity me-
dia such as the materials that we consider. In next section we discuss an extension of this
algorithm that allows for a quadratic velocity interpolation close to the solid boundaries.
This method allows for an accurate velocity interpolation even in the presence of no-slip
boundary conditions.

Extended Pollock Algorithm This algorithm aims at giving an accurate tracing tech-
nique even in the presence of solid boundaries. A classical textbook example to understand
the need for a quadratic interpolation is the Hagen-Poiseuille velocity profile in a pore
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Figure 2.5: Parabolic velocity profile in a throat.

channel, see Figure 2.5. The velocity profile in the direction of the flow x in a channel of
aperture 2r is expressed as

u(y) = u0

[
1−
(y

r

)2
]
, (2.18)

where u0 is the velocity in the middle of the channel. A quadratic interpolation is imposed
in the direction perpendicular to the boundaries to take into account the no-slip boundary
condition at the solid-void interfaces. Mostaghimi et al. (2012) then proposed to extend
the equations to all the boundary situations that can be encountered in a three-dimensional
mesh. A mesh cell is surrounded by 6 other voxels. Considering that a cell can either
be void or solid, there are 26 = 64 different possible situations. As an example, a void
cell could be surrounded by one solid voxel on its left and 5 void voxels at the remaining
locations. In this section we derive the equations for one of these situations. Derivations
of the remaining possibilities can be found in the appendix, see Section 8.1.2. For cells
that are only surrounded by void cells we use the standard Pollock algorithm introduced in
the previous paragraph. When a voxel is surrounded by a solid voxel on its left and 5 void
voxels, see Figure 2.6, we impose a quadratic interpolation in the normal direction to the
rock interface as:

u(x) =
u1

∆x2 (x2− x)2. (2.19)

The velocity interpolation of the two remaining components can be obtained from the zero
divergence criterion

∂u(x,y)
∂x

+
∂v(x,y)

∂y
+

∂w(x,y)
∂ z

= 0, (2.20)
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see appendix, Section 8.1.2.1. We obtain the following quadratic interpolation for the re-
maining velocity components:

v =
2v1

∆x
(x2− x)+

2(v2− v1)

∆x∆y
(x2− x)(y− y1), (2.21)

w =
2w1

∆x
(x2− x)+

2(w2−w1)

∆x∆z
(x2− x)(z− z1). (2.22)

This set of equations, together with Equation (2.19), fulfills the divergence criterion (2.20).
Then, we integrate the equation with respect to time (derivations are available in the ap-
pendix, see Section 8.1.2.1) to obtain the full trajectories:

x(t) = x2−
∆x2(x2− xp)

∆x2 +u1(x2− xp)t
, (2.23)

y(t) = y1−
v1∆y

v2− v1
+

v1∆y+(v2− v1)(yp− y1)

(v2− v1)∆y

(
1+

u1(x2− xp)

∆x2 t
) 2∆x(v2−v1)

u1∆y

− ∆x2

u1(x2− xp)
,

(2.24)

z(t) = z1−
w1∆z

w2−w1
+

w1∆z+(w2−w1)(zp− z1)

(w2−w1)∆z

(
1+

u1(x2− xp)

∆x2 t
) 2∆x(w2−w1)

u1∆z

− ∆x2

u1(x2− xp)
.

(2.25)

Finally, solving these equations for t gives the time of flight of the particle to reach the exit
of the cell as

∆tx =
∆x2

u1

(
1

x2− x1
− 1

x2− xp

)
, (2.26)

∆ty =
∆x2

u1(x2− xp)

(
∆y2v2

v1∆y+(v2− v1)(yp− y1)

) u1∆y
2∆x(v2−v1)

(2.27)

∆tz =
∆x2

u1(x2− xp)

(
∆z2w2

w1∆z+(w2−w1)(wp−w1)

) u1∆z
2∆x(w2−w1)

. (2.28)

The 5 other similar situations (the solid voxel is either on top, below, on the left, behind
or in front of the cell) can be solved by symmetry. The derivation of the 57 other cases (2
solid cells or more) are either derived or explained in the appendix, see Section 8.1.2. In
summary, an analytical solution for any situation can be derived, allowing for an accurate
computation of the particle’s position evolution in time. The algorithm has also the advan-
tage to be fast since, due to its analytical trajectory solution within a cell, it only needs one
step to compute the exit location of the particle. This largely differs from the number of
steps an Euler scheme (or even a higher order scheme such as RK4) would require for a
similar accuracy. The final algorithm can be summarized as follows:
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Figure 2.6: One solid cell is on the right of the voxel.

1- Read starting location.

2- Assign particle to a grid cell.

3- Identify spatial voxel situation and use the right trajectory equation.

4- Determine potential exit faces.

5- Compute cell transit time and determine exit face.

6- Determine new particle location.

This algorithm can be repeated until reaching the end of the domain or the criterion of
choice for the end of the simulation. This tool allows us to compute accurately and ef-
ficiently the advective motion of any particle in the domain. An illustrative example of
the extended Pollock algorithm is displayed in Figure 2.7. In the following, we detail the
methodology to add a diffusive motion to these displacements in order to be able to simulate
any Péclet number transport situation.

2.2.2 Diffusion

To simulate transport simulation under finite Péclet number conditions, one needs to insert
a process to account for the diffusive motion that particles experience. In this section we
discuss how to account for this diffusive displacement through a random walk methodol-
ogy.
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Figure 2.7: Illustrative example of the modified Pollock algorithm. A particle (blue dot)
originating from the bottom left of the mesh follows its streamline through different cell
types. The streamline colours denote the type of cell (and therefore the type of equation to
use) that the particle crosses. The green colour denotes the classical Pollock case while the
others represent 3 of the new situations.
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2.2.2.1 Bases

Accounting for diffusion in conservative and reactive particle tracking transport models is
often done through random walks (Ahlstrom et al., 1977; Ackerer, 1988; Tompson, 1993;
Maier et al., 1998; Mostaghimi et al., 2012). The Langevin equation for the particle motion
is given by (Risken, 1996)

dx
dt

= v[x(t)]+
√

2Dξ (t) (2.29)

with D the diffusion coefficient and ξ a Gaussian white noise with zero mean and the
correlation 〈

ξ (t)ξ (t ′)
〉
= δi jδ (t− t ′), (2.30)

where δi j is the Kronecker delta. For simplicity, we consider d = 1 dimension. Let us
integrate now the trajectory over the time of flight t f that is calculated advectively,

x(t + t f ) = x(t)+∆x f +
√

2D
∫ t+t f

t
ξ (t ′)dt ′, (2.31)

where we denote

∆xξ (t f ) =
√

2D
∫ t+t f

t
ξ (t ′)dt ′. (2.32)

It is also Gaussian distributed (because the sum of Gaussian random variables is again
a Gaussian random variable, or, more generally, the sum of random variables with finite
variance converge towards Gaussian random variable, according to the Central Limit The-
orem).

The mean of ∆xξ (t f ) is zero and its variance is given by〈
∆xξ (t f )

2〉= 2Dt f . (2.33)

Thus, the advective-diffusive displacement during the time t f is given by

x(t + t f ) = x(t)+∆x f +
√

2Dt f η(t), (2.34)

where η is a Gaussian random variable with 0 mean and unit variance.
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Figure 2.8: Illustrative example of a particle starting at location (x(t),y(t)) performing
sequentially the advective and diffusive displacements.

2.2.2.2 Implementation

In order to discuss the results in function of the Péclet number, we implemented diffusion in
our particle tracking code. It is implemented as follows. For every time step each particle
does two jumps, first an advective step and then a diffusion step. The advective step is
performed as described in Section 2.2.1.2, the particle follows its streamline during time
∆t. Knowing this ∆t, the diffusion jump in each direction can then be computed as

∆xdi f f =
√

2∆tDξ1, (2.35)

∆ydi f f =
√

2∆tDξ2, (2.36)

∆zdi f f =
√

2∆tDξ3, (2.37)

where D is the diffusion coefficient, and ξ1, ξ2 and, ξ3 are organized according to a normal
distribution of mean and variance values equal to 0 and 1, respectively. These diffusion
jumps can then be added to the component of the vector position xn as

xn+1 = xn +∆xadv +∆xdi f f , (2.38)

yn+1 = yn +∆yadv +∆ydi f f , (2.39)

zn+1 = zn +∆zadv +∆zdi f f . (2.40)

This allows to add the diffusive motion into our particle tracking algorithm. Figure 2.8
displays an illustrative example of a particle performing sequentially the advective motion
and the diffusive motion. In practice we use an equivalent scheme which we detail in the
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appendix, see Section 8.1.3. The aim is to avoid the cost of generating normal random
numbers. We also discuss there the choice of the time step that now need to be taken
small enough for the scheme to be equivalent to the diffusion equation and also discuss
the boundary conditions that we use at the solid-void interfaces. The Péclet number for a
simulation can be changed by varying either the diffusion coefficient D or by multiplying
the velocity field by a scalar.

2.2.3 Reaction

In this section, we aim to add an irreversible bimolecular reaction A+B→k C to our particle
tracking algorithm. We first briefly discuss in Section 2.2.3.1 the methodologies that exist
before introducing our reactive particle tracking in Section 2.2.3.2.

2.2.3.1 Bases

Most of the existing reactive particle tracking methods (particle tracking coupled with reac-
tion) assume that a A particle and a B particle may react according to some give probability
if the distance that separates them is smaller than some reaction radius r (Schmidt et al.,
2017; Edery et al., 2010). There exist different manners of defining this reaction radius and
this probability of reaction. Edery et al. (2010) forces particles to react whenever there are
within this radius r. However, they rely on physical properties of the medium to make the
reaction radius r representative of the degree of mixing between reactants. Therefore, r has
to be modified in function of the size and of the properties of the medium. Other studies,
based on kernel density estimators (Schmidt et al., 2017) use a time-varying reaction ra-
dius. However, Perez et al. (2019a) state that these models suffer from an overprediction
of the reaction product at late time due to an overly large radius r(t). This is because they
compensate the lack of particles in their simulations by a large reaction radius r. Other
authors (see, for example, Benson and Meerschaert, 2008; Ding et al., 2013) have used
a co-location probability and a conditional probability of reaction to control the number
of reactant pairs. However, their methodology connects the reaction rate to the total ini-
tial number of particles N. This means that changing the number of particles for a given
simulation implies solving a different chemical problem.

Perez et al. (2019a) proposed a reactive particle tracking methodology that they prove
to be equivalent to the advection diffusion reaction equation (ADRE). We use this method
to insert this irreversible bimolecular reaction into our particle tracking algorithm. In next
section we discuss this methodology and summarize its implementation.
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2.2.3.2 Implementation

In our simulations the concentration of each type of agent is expressed in term of num-
ber densities. The Eulerian reactive transport formulation is described by the advection
diffusion reaction equations:

∂cA(x, t)
∂ t

+∇ ·v(x, t)cA(x, t)−D∇
2cA =−kcA(x, t)cB(x, t), (2.41)

∂cB(x, t)
∂ t

+∇ ·v(x, t)cB(x, t)−D∇
2cB =−kcB(x, t)cA(x, t), (2.42)

∂cC(x, t)
∂ t

+∇ ·v(x, t)cC(x, t)−D∇
2cC = kcA(x, t)cB(x, t), (2.43)

where v(x) is the velocity vector at location x, cA(x, t), cB(x, t), and cC(x, t) are the concen-
trations at location x and time t of species A, B, and C respectively. The reaction process
that we implement is equivalent to this system of equations (see, Perez et al., 2019a). The
ADRE reactive transport formulation assumes that its support scale is well-mixed and that
the reaction rate k is smaller than the mass transfer rate (the Damköhler number is smaller
than 1). The use of a Lagrangian particle based model implies that the volume is well-mixed
since the concentration is distributed between all the particles. We chose the reaction ra-
dius to be r =

√
24D∆t since on that scale the mixing can be assumed to be uniform (Perez

et al., 2019a). The reaction is then performed as follows.
At each time step, the position of the particles is updated according to the advection

and the diffusion processes introduced in Sections 2.2.1.2 and 2.2.2.2 respectively. Then
the distances between the A particles and the B particles are computed. We focus on the
point of view of a B particle (see Figure 2.9a for an illustrative example) and denote by
NA(t) the number of A particles that are located in a disk of radius r around the B particle.
Then, the B particle has an equal chance to react with any of the NA(t) particles since we do
not limit the mass transfer inside the support volume. Let pr(∆t) = k∆t

N0∆V be the probability
for a pair of particle to react during the time ∆t with N0 the total number of particles. The
probability for the B particle to survive is then ps(∆t) = 1− pr(∆t). Thus, considering that
the B particle can react with any of the particles NA(t) of the support volume, its probability
of surviving at the time t after a time step ∆t can be expressed as:

Ps(t,∆t) = [1− pr(∆t)]NA(t). (2.44)

Therefore, its reaction probability can simply be computed as

Pr(t,∆t) = 1−Ps(t,∆t) = 1− [1− pr(∆t)]NA(t). (2.45)
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Figure 2.9: (left panel) An A particle (blue dot) and a B particle (orange dot) subsequently
perform their advective (black solid line) and diffusive (red dashed line) jumps before they
collide and react. The orange disk surrounding the B particle indicates its support volume
∆V = πr2 where r is the reaction radius. (right panel) The A and B particles have reacted
with each other to form a C particle injected between the two of them. This particle then
starts following the streamlines of the flow.

Then, in practice, a Bernoulli trial determines if the reaction occurs. In the eventuality it
happens, the B particle and the closest A are removed from the system while a C particle is
placed between the two particles, see Figure 2.9b. The C particle then starts following the
flow.

2.3 Continuous Time Random Walks

The continuous time random walk framework considers particle motion as a random walk
in space and time,

xn+1 = xn +ξn, tn+1 = tn + τn. (2.46)

It is continuous in time in the sense that the particle time is a continuous random variable as
opposed to a discrete time random walk, for which time evolves in discrete steps. Transition
length and time are in general coupled, but independent at subsequent steps. Their joint
distribution is denoted here by ψ(x, t). The marginal distributions in space and time are
denoted by Λ(x) and ψ(t), respectively. The particle distribution p(x, t) in this framework
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is given by

p(x, t) =
t∫

0

dt ′R(x, t ′)
∞∫

t−t ′

dt ′′ψ(t ′′), (2.47)

where R(x, t) denotes the frequency at which particles arrive at the position x at time t, the
second term denotes the probability that a particle’s transition takes longer than t− t ′, or in
other words that the particle stays at site x until time t after it arrived at time t ′. The R(x, t)

satisfies the Chapman-Kolmogorov type equation

R(x, t) = ρ(x)δ (t)+
∫

dx
t∫

0

dt ′ψ(x− x′, t− t ′)R(x′, t ′). (2.48)

It can be read as follows. The probability per time that the particle arrives at (x, t) is
given by the probability that it arrives at (x′, t ′) times the probability to make a transition
to (x, t). The first term on the right side denotes the initial condition ρ(x) = p(x, t = 0).
Equations (2.47) and (2.48) can be combined into a single governing equation for p(x, t)

using Laplace transforms. The Laplace transforms of (2.47) and (2.48) read as

p̂(x,λ ) = R̂(x,λ )
1− ψ̂(λ )

1− ψ̂(λ )
, (2.49)

R̂(x,λ ) = ρ(x)+
∫

dx′ψ̂(x− x′,λ )R̂(x,λ ), (2.50)

respectively. Solving (2.49) for R̂(x,λ ) and inserting the resulting expression into (2.50)
gives

λ p(x,λ ) = ρ(x)+
∫

dx′ ˆK (x− x′,λ )
[
p̂(x′,λ )− p̂(x,λ )

]
, (2.51)

where we defined the memory kernel

ˆK (x,λ ) =
λψ̂(x,λ )
1− ψ̂(λ )

. (2.52)

Inverse Laplace transform of (2.51) gives the generalized master equation

∂ p(x, t)
∂ t

=
∫

dx′
t∫

0

dt ′K (x− x′, t− t ′)
[
p(x′, t ′)− p(x, t ′)

]
. (2.53)

This equation describes the evolution of the particle distribution p(x, t) under memory.
Changes in the particle density at time t (left side) are related to particle densities at much
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earlier times t ′. Transport is in general history dependent. If the space and time increment
are independent and the time increment is distributed exponentially, this means

ψ(x, t) = Λ(x)τ−1
0 exp(−t/τ0), (2.54)

the memory kernel reduces to

K (x, t) = τ
−1
0 Λ(x)δ (t). (2.55)

Thus, the generalized master equation reduces to the local in time master equation

∂ p(x, t)
∂ t

=
∫

dx′τ−1
0 Λ(x− x′

[
p(x′, t ′)− p(x, t ′)

]
. (2.56)

The CTRW framework has been employed to model a wide variety of history-dependent
processes. The underlying physical mechanisms are comprised in the joint distribution
ψ(x, t) of transition lengths and times. In this thesis we extend the CTRW framework
for memory-dependent hydrodynamic transport and the upscaling of anomalous dispersion
from the pore to the Darcy scale.
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Chapter 3

Stochastic Dynamics of Lagrangian
Pore-Scale Velocities in
Three-Dimensional Porous Media

3.1 Introduction

Understanding the dynamics of pore-scale flow and transport is a central issue for the mod-
eling and upscaling of porous media phenomena and processes from the pore to the Darcy
scale such as hydrodynamic dispersion, the filtration of bacteria and colloids and the mix-
ing of dissolved chemicals and reactions between them. The sound upscaling of these
processes and their modeling on the Darcy scale contribute to the understanding of the hy-
drodynamics of porous media and play an important role in environmental and industrial
applications such as groundwater and soil remediation, the assessment of geological gas
and waste storage, geothermal energy and petroleum production.

Pore-scale flow heterogeneity is the cause of hydrodynamic dispersion but also of pre-
asymptotic non-Fickian transport. These phenomena are directly linked to Lagrangian ve-
locity statistics. In fact, dispersion in heterogeneous flows such as turbulent flow and flow
through heterogeneous porous media is quantified in terms of the covariance of Lagrangian
velocities (Taylor, 1921; Dagan, 1987). Pre-asymptotic behaviors such as early and late
solute arrivals compared to Fickian predictions and non-linear scaling of solute dispersion
(Berkowitz and Scher, 2001; Scher et al., 2002; Levy and Berkowitz, 2003; Becker and
Shapiro, 2003; Gouze et al., 2008; de Anna et al., 2013; Kang et al., 2014) can be traced
back to particle retention in low velocity zones and fast transport in regions of high ve-
locities, which give rise to broad distributions of solute residence times. The Fickian limit
may be approached only at time values that are much larger than the largest residence
times (Dentz et al., 2004; Bijeljic and Blunt, 2006). The concept of residence or transi-
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tion times in the modeling of pore-scale particle motion was employed in the pioneering
studies of de Josselin de Jong (1958) and Saffman (1959). The models proposed by these
authors are similar to time-domain and continuous time random walk approaches (Delay
et al., 2005; Painter and Cvetkovic, 2005; Berkowitz et al., 2006; Noetinger et al., 2016) in
that they consider particle motion through transitions over the characteristic pore lengths
characterized by random time increments that depend on the distribution of pore-scale ve-
locities. Recent experimental and numerical studies have shown that the occurrence of
non-Fickian particle dispersion due to long advective residence times is directly linked to
intermittency in the Lagrangian velocity time series (de Anna et al., 2013; Kang et al., 2014;
Holzner et al., 2015; Morales et al., 2017; Carrel et al., 2018). Thus, the understanding of
these phenomena requires a sound characterization and understanding of the dynamics of
Lagrangian and Eulerian pore-scale velocities, which have been the subject of a series of
recent studies (de Anna et al., 2013; Siena et al., 2014; Holzner et al., 2015; Meyer and
Bijeljic, 2016; Morales et al., 2017; Gjetvaj et al., 2015; Jin et al., 2016a; Matyka et al.,
2016).

It is frequently assumed that the velocity statistics obtained in experiments and numer-
ical simulations are stationary, implying that they do not evolve in time. The experimental
particle tracking velocimetry data of Morales et al. (2017) have shown that the distribu-
tion of initial particle velocities can in fact differ from the stationary velocity distribution
depending on the injection volume and injection mode. This means, that the velocity distri-
bution evolves in time, depending on the initial particle placement within the sample. The
dependence of the Lagrangian velocity statistics on the initial particle velocity distribution
was studied by Le Borgne et al. (2007) for Darcy scale flow, by Dentz et al. (2016) in a
theoretical work, and analyzed by Hyman et al. (2015) and Kang et al. (2017) for particle
motion in random fracture networks. Based on experimental particle tracking velocimetry
data from three-dimensional bead packs Morales et al. (2017) analyzed particle velocities
sampled equidistantly along particle trajectories, which removes the intermittency observed
for isochronous velocity series. These authors model the mean and displacement variance
as well as the velocity increment statistics based on a Markov model for equidistant veloci-
ties. The evolution of equidistant velocity series reflects the spatial organization of a steady
flow field in that they vary on the characteristic heterogeneity length scales. Shapiro and
Cvetkovic (1988) and Cvetkovic et al. (1991) proposed to analyze equidistant velocities
as a basis to systematically quantify flow and travel time statistics in heterogeneous media
(see also, Le Borgne et al., 2007; Gotovac et al., 2009).

The presented study is based on pore-scale velocity data obtained for flow in a three-
dimensional Berea sandstone sample, whose structure has been imaged by high resolution
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X-ray microtomography. We systematically quantify the evolution of particles moving
along streamlines both in time (isochronous sampling) and distance (equidistant sampling)
and study the effect of the injection conditions. We provide explicit relations between
the different statistics, discuss the issues of ergodicity and stationarity of the measured
velocity series in time and distance, and the impact of the finiteness of the rock sample
under consideration. The insights gained from this analysis lay the basis for the stochastic
description of the equidistantly sampled velocity series in terms of an ergodic Markov
chain. We consider three different stochastic models and study their capability of predicting
the evolution of the Lagrangian velocity statistics. The impact of diffusion on pore-scale
particle motion is discussed in section 3.5 (see also, Bijeljic and Blunt, 2006; Most et al.,
2016; Dentz et al., 2018).

The paper is organized as follows. Section 3.2 presents the methodology underlying
this study. It details the flow and particle transport equations, summarizes briefly the ac-
quisition and segmentation of the rock sample, and explains the numerical solution method
for the flow and particle tracking problems. Section 3.3 provides a comprehensive analysis
of the statistics of the Lagrangian velocity magnitude both in time and distance. Then, we
discuss the relations among them as well as their evolution toward stationarity. Section 3.4
investigates the capability of Markov models for predicting the stochastic dynamics of La-
grangian velocities. The conclusions on the stochastic description of the spatially sampled
Lagrangian velocity dynamics as an ergodic Markov chain and the implications on the
upscaling of pre-asymptotic hydrodynamic transport are given in Section 3.5.

3.2 Methodology

In this paper, we analyze the statistical properties of Lagrangian velocities for purely ad-
vective transport in pore-scale flows. Pore-scale flow in general is governed by the Navier-
Stokes equation. For the pore-scale flow scenarios under consideration here, the Reynolds
number Re = vc`p/ν , with a characteristic pore velocity vc, a characteristic pore length
`p and the kinematic viscosity ν , is smaller than 1. Thus the pore-scale flow velocity or
Eulerian velocity v(x) can be obtained by solving the Stokes equation

∇
2v(x) =

1
ν

∇p(x), (3.1)

where p(x) is the fluid pressure. Conservation of volume is expressed by ∇ ·v(x) = 0. We
specify constant pressure at the inlet and outlet boundaries and no-slip at the void-solid
boundaries and the remaining domain boundaries. The porous rock sample and numerical
solution of the pore-scale flow problem are described in sections 3.2.1 and 3.2.2.1 below.
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The trajectory x(t,a) of a particle that is initially located at x(t = 0,a) = a is given by
the advection equation

dx(t,a)
dt

= v[x(t,a)]. (3.2)

The Lagrangian velocity in the following is denoted by v(t,a)= v[x(t,a)] and its magnitude
by vt(t,a) = ‖v[x(t,a)]‖. The initial velocity magnitude is denoted by v(t = 0,a) = v0(a).
The Eulerian velocity magnitude is denoted by ve(x) = ‖v[x]‖. The distribution of initial
particle positions is denoted by ρ(a). We consider here two different initial distributions at
the inlet plane at x1 = 0. The uniform distribution spreads particles uniformly in the pore
space, this means

ρ(a) =
IΩ0(a)

V0
, (3.3)

where Ω0 denotes the domain in which particles are injected and V0 its volume. The in-
dicator function IΩ0(a) is equal to 1 if a ∈ Ω0 and 0 otherwise. This injection condition
represents the initial condition of a spatially uniform concentration distribution. The flux-
weighted initial distribution distributes particles weighted by their initial velocity as

ρ(a) =
v0(a)IΩ0(a)∫

Ω0

v0(a)da
. (3.4)

This injection condition represents a constant finite concentration pulse in the injection
plane, such that the number of injected particles is proportional to the local flow velocity.
The numerical particle tracking method is described in Section 3.2.2.2. Before, however,
we discuss the methodology of streamwise velocity sampling for the statistical analysis of
Lagrangian velocity magnitudes.

3.2.1 Rock Sample

The analysis of the velocity field was performed using a volume of 0.95 mm3 cropped into
a digital representation of a Berea sandstone (Upper Berea Sandstone unit, Ohio, USA)
core sample of length 10 mm and diameter 6 mm. The Berea sandstone is a (quarried) sed-
imentary rock composed of well-sorted quartz grains held together by silica-rich cement
displaying intermediate porosity and permeability values as well as intermediate pore-scale
structural heterogeneity (tortuosity, pore-size distribution, etc.) of the pore network com-
pared to standard reservoir rocks, while showing remarkable macroscopic homogeneity.
Because of this, it is a "rock standard" which is widely used as a proxy of mildly hetero-
geneous rock for experimental works by academic and petroleum industry and thus results
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can be easily compared (e.g., Bijeljic et al., 2004, 2011; Gjetvaj et al., 2015). Furthermore,
the characteristics of the pore size distribution compared to both the imagery technique
resolution and the image size limitation for Navier-Stokes simulations make this material
ideal for investigating a mildly heterogeneous natural material. The image was acquired
at the BM5 beamline at the European Synchrotron Radiation Facility (Grenoble, France)
using X-Ray micro-tomography. The 3-D volume was reconstructed from 3495 X-rays pro-
jections using the single distance phase retrieval algorithm (Paganin et al., 2002; Sanchez
et al., 2012). Since the Berea sandstone is a monocrystalline rock, we were able to relate
the grey scale X-ray absorption directly to the porosity and transform the images into bi-
nary images (void and solid) using segmentation processes (Smal et al., 2018). The details
of the data processing can be found in Gjetvaj et al. (2015). The cubic subset of 3003 voxels
was fine-grained (each voxel was divided by 3 in each direction) giving a 9003 voxels of
volume 1.05 µm3. The characteristic pore length is `p = 1.5 ·10−4m.

3.2.2 Numerical Simulations
3.2.2.1 Flow

Details of the flow simulation can be found in Gjetvaj et al. (2015). For completeness, we
summarize them in this section. Generating the computational mesh that discretizes the
geometry usually encounters two main problems. The first one is to create a mesh that is
equivalent to the real digitized images while the second is to make it fine enough to get a
high resolution of the flow field. In order to avoid the smoothing and averaging procedure
that often takes place in the OpenFOAM mesh creation, we use an algorithm that generates
a mesh composed of cubes that fit exactly the voxels of the digitized sample. To obtain a
fine resolution, we divide every 3D cell of the mesh in 27 cubes resulting in a size of 1.05
µm3 for each cell.

Then we compute the single phase pore-scale flow by solving the Stokes and continuity
equations for constant viscosity and density. The equations are solved via a finite volume
scheme using the SIMPLE algorithm of OpenFOAM. This algorithm, based on a pressure-
velocity coupling, solves the Stokes equation iteratively and allows us to obtain steady
state pressure and velocity fields. Convergence is reached when the difference between the
current and the previous step is smaller than a criterion.

Flow is solved by imposing pressure boundary conditions at the inlet and at the outlet.
No-slip conditions are implemented at the interfaces of the solid phase and at the bound-
aries of the domain. We also add 20 layers at the inlet and at the outlet of the domain to
minimize boundary effects. Once convergence is reached, we extract the velocity field. The
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Figure 1: Left panel: numerical cross-section cropped in the Berea sandstone sample used for the
flow simulations. White and black color denotes the pore space and the solid phase, respectively.
Right panel: 3D sample volume with 20 particle streamlines. Dark grey and light grey color de-
notes the pore space and the solid phase, respectively. The color scale of the streamlines denotes
the velocity magnitude; from white for low velocity values to blue for high velocity values. The
streamline colored from black to red is the one for which the space and time velocity series is
reported in Figure 2.
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Figure 3.1: (left panel): Numerical cross-section cropped in the Berea sandstone sample
used for the flow simulations. White and black color denotes the pore space and the solid
phase, respectively. (right panel): 3-D sample volume with 20 particle streamlines. Dark
gray and light gray colors denote the pore space and the solid phase, respectively. The color
scale of the streamlines denotes the velocity magnitude; from white for low velocity values
to blue for high velocity values. The streamline colored from black to red is the one for
which the space and time velocity series is reported in Figure 3.2.

velocity values are obtained at each interface of the voxelized mesh, in the normal direc-
tion. The computed Eulerian mean velocity is 〈ve〉 = 8.05 · 10−4 m/s. The characteristic
pore length and the Eulerian mean velocity define the characteristic time scale τc = `p/〈ve〉.

3.2.2.2 Particle Tracking

The numerical solution of equation (3.2) for the particle trajectories, or, equivalently, stream-
lines of the pore-scale flow field, requires the interpolation of the flow velocities, which are
defined at the faces of the finite volume voxels. Linear interpolation of each velocity com-
ponent between opposing faces is volume preserving, this means ∇ ·u(x) inside each voxel.
Linear interpolation has been used for particle tracking in Darcy scale heterogeneous flow
fields on a routine basis (Pollock, 1988). However, Mostaghimi et al. (2012) found that
the linear interpolation does not respect the no-slip boundary condition at the void-solid
interface. Thus, in the void voxels in contact with the solid voxels these authors replaced
the linear by a quadratic velocity interpolation, which is the implementation employed here
to interpolate velocity values in the void voxels. Particle trajectories are simulated until ex-
iting the physical domain, or reaching a given distance or a given elapsed time (Figure 3.1).
The particle tracking solver probes the velocity statistics using regular sampling in space
or time along the streamline as described in section 3.3.1.
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In order to study particle displacements larger than the longitudinal sample size, par-
ticles are reinjected at the inlet boundary when they leave the flow domain at the out-
let. The reinjection is processed as follows. When a given particle reaches the end of
the domain at x1 = L, its velocity magnitude vL(a) = vt(t,a)|x1(t,a)=L is computed. Then,
the pore space Ωv0 at the inlet plane where the flow velocity magnitude values are v0 =

‖u(x)|x1=0‖ ∈ [vL(a)−∆v,vL(a)+∆v] is identified and the particle is reinjected randomly
in Ωv0 , ∆v ≈ vL(a)

200 . This procedure guarantees continuity of velocity and velocity statis-
tics at reinjection and makes sure that particle velocities do not decorrelate artificially. As
reported in the following the evolution of Lagrangian velocity statistics toward their re-
spective steady state is not affected by reinjection in the sense that there is no noticeable
acceleration due to a potential artificial decorrelation.

3.3 Lagrangian and Eulerian Velocity Statistics

In this section we introduce and discuss the Eulerian and Lagrangian velocity statistics used
to analyze and understand pore-scale particle motion. We define velocity statistics sampled
isochronously and equidistantly along streamlines and the relations between them. We
first give a brief account of the literature on Lagrangian velocities and their use. The con-
cept of isochronously sampled particle velocities was used by Taylor (1921) to quantify
diffusion by continuous movements, more specifically by turbulent motion. A detailed sta-
tistical characterization of isochronous Lagrangian and Eulerian velocities was introduced
by Lumley (1962). Shapiro and Cvetkovic (1988) proposed and analyzed the statistics of
Lagrangian velocities sampled equidistantly along the mean flow direction. Le Borgne
et al. (2007) considered the evolution of the probability density function (PDF) of such
Lagrangian velocities and Gotovac et al. (2009) used them as the basis to analyze flow and
travel time statistics in heterogeneous porous media. Cvetkovic et al. (1991) compared
isochronously and equidistantly sampled Lagrangian velocities for one-dimensional steady
flow, Cvetkovic et al. (2012) for spatiotemporally varying flow. Recently, the statistics
of isochronously sampled Lagrangian velocity were analyzed for pore-scale particle mo-
tion (de Anna et al., 2013; Siena et al., 2014; Kang et al., 2014; Meyer and Bijeljic, 2016),
which are directly related to the particle dispersion (Taylor, 1921; Kubo et al., 1991). Dentz
et al. (2016) and Morales et al. (2017) considered particle velocities sampled equidistantly
along trajectories, which reflects the spatial organization of pore-scale flow. In the follow-
ing we detail different methods to sample velocity statistics and their properties.
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Figure 3.2: Time and space velocity magnitude series of a particle traveling through the
sample. The series are computed following the streamline sampled either in time or in
space. Velocity values sampled at constant time step display intermittency whereas low
and high velocity values last for comparable values of distance corresponding to about one
pore length `p. The characteristic time is τc = `p/〈ve〉.

3.3.1 Streamwise Velocity Sampling

We consider two sampling methods to characterize particle velocities along the stream-
lines: isochronous and equidistant. First, the t(ime)-Lagrangian velocity magnitude or
speed is defined as vt(t,a) ≡ ‖v[x(t,a)]‖. The velocity time series {vt(i∆t,a)}∞

i=0, with
∆t being a constant time increment, is obtained by isochronous sampling along a parti-
cle trajectory. Meyer and Bijeljic (2016) modeled the Lagrangian velocity time series as
Markov processes in order to quantify particle motion in heterogeneous velocity fields. Yet,
isochronous velocity series in steady heterogeneous flow fields have been shown to display
intermittency (de Anna et al., 2013; Kang et al., 2014). Figure 3.2 shows an isochronously
sampled velocity series. It is characterized by long periods of low velocity values and short
peaks of high velocity values. The origin of this intermittent behavior lies in the spatial
organization of the flow.

The steady Eulerian velocity field varies on a length scale of the order of the average
pore length `p. Thus, significant changes of the flow velocity along a trajectory occur at
times `p/v. This explains the temporal persistence of low velocity magnitudes and high
frequency of change of high flow velocities. In order to account for the spatial organization
of the velocity field, we consider particle velocities sampled equidistantly along trajectories
(Dentz et al., 2016; Morales et al., 2017). The travel distance s(t) along a particle trajectory
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is given by

ds(t,a)
dt

= vt(t,a). (3.5)

Performing the variable transform t → s in (3.2) gives the following set of equations de-
scribing the particle trajectory:

dx(s,a)
ds

=
v[x(s,a)]
‖v[x(s,a)]‖ ,

dt(s,a)
ds

=
1

vs(s,a)
. (3.6)

The s-Lagrangian velocity magnitude is defined by vs(s)≡‖v[x(s,a)]‖. The initial speed is
denoted by vs(s = 0,a) = v0(a). The velocity series {vs(i∆s,a)}, with ∆s being a constant
space increment, is obtained by equidistant sampling along particle trajectories. Unlike
for isochronous sampling, here velocities are sampled independently of their magnitude
since this velocity value does not impact the sampling distance. Note that the system of
equations (3.6) describes particle motion as a process in which the particle position is in-
cremented by a constant value and the particle time by a variable transition time. In this
sense it describes a time-domain random walk (Noetinger et al., 2016).

The s-Lagrangian velocity series shown in Figure 3.2 does not display intermittent pat-
terns. The signal seems stationary and is characterized by a characteristic correlation scale
`v. To determine this correlation distance we consider the velocity covariance function for
an injection into the flux, which is defined as

Cv(s) =
1
L

∫ ∫ L

0
ρ(a)

[
vs(s′+ s,a)−µ

][
vs(s′,a)−µ

]
ds′da, (3.7)

where ρ(a) is given by (3.4) and µ is the mean velocity

µ =
1
L

∫ ∫ L

0
ρ(a)vs(s′,a)ds′da. (3.8)

The velocity autocorrelation function Av(s) = Cv(s)/Cv(0) is shown in Figure 3.3. The
correlation length is defined as

`v =

∞∫
0

Av(s)ds. (3.9)

We find that the velocity correlation length `v equals the average pore length, `p = 1.5 ·
10−4m. Note that the sample size is about (6`p)

3 and that the average streamline length is
around 10.5`p which corresponds to an average tortuosity of 1.75.

The first series of Figure 3.2 illustrates the traditional temporal velocity sampling used
for the computation of the velocity PDF. The statistics of the velocity magnitude vt(t,a)
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Figure 3.3: Autocorrelation function of the s-Lagrangian velocity vs(s).

can be characterized by isochronous sampling along a single streamline labeled by a. This
sampling mode defines the streamwise t-Lagrangian velocity PDF P̂(v,T,a)

P̂(v,T,a) =
1
T

∫ T

0
δ [v− vt(t,a)]dt, (3.10)

which in general depends on the sampling time T . In the following, the statistics obtained
by isochronous sampling are marked by a hat. The statistics of the velocity series vs(s,a)
illustrated in the bottom panel of Figure 3.2 is characterized by equidistant sampling,

P(v,L,a) =
1
L

∫ L

0
δ [v− vs(s,a)]ds, (3.11)

where L is the sampling length. The PDF P(v,L,a) is referred to in the following as
streamwise s-Lagrangian velocity PDF. The relation between the streamwise s- and t-
Lagrangian velocity PDFs defined in (3.11) and (3.10) is obtained by the variable change
s→ t according to the map (3.5), which gives

P(v,L,a) =
vT (L)

L
P̂[v,T (L),a], (3.12)

where T (L) is the time that the particle needs to travel the distance L along the streamline
and

T (L) =
L∫

0

ds
vs(s)

. (3.13)
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Figure 3.4: Streamwise t-Lagrangian PDF P̂(v) (full circles), s-Lagrangian PDF P(v)
(open circles) and the flux-weighting relation (3.17) (solid line). PDF = probability density
function.

Thus, the streamwise s- and t-Lagrangian PDFs are linked through flux weighting. This
relation is purely kinematic and holds always. Figure 3.4 illustrates the streamwise s- and
t-Lagrangian statistics as well as the flux-weighting relation for the rock sample under
consideration. The velocity statistics along a single streamline are computed for a distance
of L ≈ 108`p and corresponding duration of T (L) ≈ 9 · 107τc, where τc is the time for a
particle to travel the distance `p by the average Eulerian velocity 〈ve〉.

Therefore, under ergodic conditions, the velocity statistics sampled between an en-
semble of particles and along a single streamline are equivalent. Ergodicity can only be
achieved if first, the sampling distance or sampling time along a streamline is large enough
for the particle to experience the full velocity spectrum, and second, if the ensemble of
particles is large enough to contain the full velocity statistics. The stationary s- and t-
Lagrangian ensemble statistics are defined by

P(v) = lim
V0→∞

1
V0

∫
Ω0

v0(a)
〈v0(a)〉

δ [v− vs(s,a)]da, (3.14)

P̂(v) = lim
V0→∞

1
V0

∫
Ω0

δ [v− vt(t,a)]da, (3.15)

respectively. In practice, the initial volume V0 is of course finite. In order to achieve
ergodicity it needs to be chosen large enough to contain the significant velocity statistics;
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see also Appendix 3.6.1. Thus ergodicity can be expressed as

P(v) = lim
L→∞

P(v,L,a)≡P(v), P̂(v) = lim
T→∞

P̂(v,T,a)≡ P̂(v). (3.16)

Under ergodic conditions, the flux-weighting relation (3.12) implies for the stationary en-
semble statistics

P(v) =
v
〈ve〉

P̂(v), (3.17)

where 〈ve〉 is the mean Eulerian velocity magnitude. We now consider the relation between
the Lagrangian PDFs and the Eulerian velocity PDF sampled over an infinite domain

Pe(v) =
∫

δ [v− ve(x)]dx. (3.18)

The stationary Lagrangian PDF P̂(v) = Pe(v) because of volume conservation as discussed
in section 3.6.3.2. Thus, expression (3.17) implies for the stationary s-Lagrangian PDF

P(v) =
v
〈ve〉

Pe(v). (3.19)

This is a key relationship for the prediction of particle velocity statistics because the Eule-
rian velocity PDF can be determined independently from transport.

A detailed discussion on the relations between s-Lagrangian and t-Lagrangian statis-
tics for finite sampling domains is given in Appendix (3.6.1). There it is shown that the
Lagrangian statistics for the rock sample under consideration are stationary and ergodic.

3.3.2 Evolution of the Lagrangian Velocity Statistics and Stationarity

In the previous sections, we have seen that the s-Lagrangian and t-Lagrangian velocity
statistics evolve asymptotically to different steady state distributions, which are related
through flux weighting according to (3.58). In this section, we study in detail the evolu-
tion of the respective statistics from uniform and flux-weighted initial conditions. Note
that since, the Lagrangian and Eulerian quantities are related through equations (3.48) and
(3.56), studying the Lagrangian statistics evolution includes studying the Eulerian statistics
evolution. In the following we only refer to Lagrangian distributions.

3.3.2.1 Evolution of the s-Lagrangian Velocity Statistics

The s-Lagrangian velocity distribution for an arbitrary initial particle distribution ρ(a) is
defined by

p(v,s) =
∫

δ [v− vs(s,a)]ρ(a)da. (3.20)
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Figure 8: Left panel: Spatial evolution of the ensemble s-Lagrangian PDF P(v, s) from the
(pink open circles) flux-weighted initial particle distribution p0(v) to the (red solid line) steady
s-Lagrangian PDF P(v). Right panel: Spatial evolution of the ensemble s-Lagrangian PDF P(v, s)
from the (navy blue open circles) uniform initial particle distribution p0(v) to the (red solid line)
steady s-Lagrangian PDF P(v). The results were computed using 107 particles.

3.5 Evolution of the Lagrangian Velocity Statistics and Stationarity440

In the previous sections, we have seen that the s-Lagrangian and t-Lagrangian veloc-441

ity statistics evolve asymptotically to di�erent steady state distributions, which are related442

through flux weighting according to (30). In this section, we study in detail the evolution of443

the respective statistics from uniform and flux-weighted initial conditions. Note that since,444

the Lagrangian and Eulerian quantities are related through Equations (20) and (28), studying445

the Lagrangian statistics evolution includes studying the Eulerian statistics evolution. In the446

following we only refer to Lagrangian distributions.447

3.5.1 Evolution of the s-Lagrangian velocity statistics448

The s-Lagrangian velocity distribution for an arbitrary initial particle distribution ⇢(a)449

is defined by450

p(v, s) =
Z
� [v � v

s

(s, a)] ⇢(a)da. (32)451

452

The initial velocity distribution is p0(v) = p(v, t = 0). Clearly, fully stationary conditions453

such that the s-Lagrangian PDF p(v, s) = P(v) at all s, are achieved for the initial condition454

p0(v) = P(v). For the flux-weighted initial distribution (4), we recover expression (15).455

Figure 8 shows the evolution of p(v, s) for the flux-weighted and uniform initial par-456

ticle distributions (4) and (3). The PDF evolves from both initial distributions towards its457

steady state P(v). For the flux-weighted initial particle distribution, p0(v) is skewed towards458

high velocity values compared to p0(v) for the uniform injection with a high probability459

weight at low velocities. For both initial distributions, the steady state P(v) is reached af-460

ter a distance of s ⇡ 7`
c

. We note that the high velocity part of the PDF converges faster to461

the steady state than the low velocity part.462

The initial velocity PDF corresponding to the flux-weighted injection is closer to the463

steady state PDF P(v) than the one corresponding to the uniform injection. This can be un-464

derstood as follows. First, note that the s-Lagrangian PDF P(v, s) is related to the s-Eulerian465

PDF P

e

(v, s) through flux-weighting, see Eq. (20). Let us now assume that the s-Eulerian466

velocity PDF P

e

(v, s) = P

e

(v) is stationary. This implies that467

1
V0

Z

⌦0

�[v � v
e

(x)]dx = 1
V (s)

Z

⌦(s)
�[v � v

e

(x)]dx, (33)468

469
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Figure 3.5: (left panel): Spatial evolution of the ensemble s-Lagrangian PDF P(v,s) from
the flux-weighted initial particle distribution p0(v) (pink open circles) to the steady s-
Lagrangian PDF P(v) (red solid line) at distances s= 0,1/5,2/5,5 `p. (right panel): Spatial
evolution of the ensemble s-Lagrangian PDF P(v,s) from the uniform initial particle distri-
bution p0(v) (navy blue open circles) to the steady s-Lagrangian PDF P(v) (red solid line)
at distances s = 0,4/3,4,8 `p. The results were computed using 107 particles. PDF = prob-
ability density function.

The initial velocity distribution is p0(v) = p(v, t = 0). We consider the uniform and flux-
weighted initial particle distributions (3.3) and (3.4). For an ergodic injection domain
Ω0, p0(v) = Pe(v) for the uniform injection and p0(v) = P(v) is equal to the stationary
s-Lagrangian PDF for the flux-weighted injection. While the injection domain here is not
large enough to be ergodic, the initial distribution under flux-weighted conditions is close
to the stationary s-Lagrangian PDF as shown in Figure 3.5. Figure 3.5 shows the evolution
of p(v,s) for the uniform and flux-weighted initial particle distributions (3.3) and (3.4).
The PDF evolves from both initial distributions toward its steady state P(v). For the flux-
weighted initial particle distribution, p0(v) is skewed toward high velocity values compared
to p0(v) for the uniform injection with a high probability weight at low velocities. For both
initial distributions, the steady state P(v) is reached after a distance of s≈ 7`p. We note that
the high velocity part of the PDF converges faster to the steady state than the low velocity
part.

3.3.2.2 Evolution of the t-Lagrangian Velocity Statistics

The t-Lagrangian velocity PDF for an arbitrary initial particle distribution is defined by

p̂(v, t) =
∫

δ [v− vt(t,a)]ρ(a)da. (3.21)

The initial velocity distribution is p̂0(v) = p̂(v, t = 0), which is identical to the initial s-
Lagrangian velocity PDF p0(v). As in the previous section, we consider the uniform and
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Figure 9: Left panel: Temporal evolution of the ensemble t-Lagrangian PDF P̂(v, t) from the (red
open circles) flux-weighted initial particle distribution p0(v) to the (navy blue solid line) steady t-
Lagrangian PDF P̂(v). Right panel: Temporal evolution of the ensemble t-Lagrangian PDF P̂(v, t)
from the (light blue open circles) uniform initial particle distribution p0(v) to the (navy blue solid
line) steady t-Lagrangian PDF P̂(v). The results were computed using 106 particles.

which means that the statistics contained in the domain ⌦(s) are invariant. This condition470

can be achieved in an ergodic medium if the injection domain is large enough to contain a471

representative part of the heterogeneity spectrum. Then, also the s-Lagrangian P(v, s) =472

P(v) is stationary and given by473

P(v) =
1
V0

Z

⌦0

v0(a)
hv0(a)i �[v � vs (s, a)]da. (34)474

475

Thus, if the injection domain ⌦0 is ergodic, the flux-weighted injection protocol (4) repre-476

sents a steady initial condition for p(v, s). For the sample under consideration, flux-weighting477

the velocities in the injection domain gives an initial velocity PDF p0(v), which is (only)478

relatively close to the steady state PDF P(v) because the injection domain here is not large479

enough to be ergodic.480

3.5.2 Evolution of the t-Lagrangian velocity statistics481

The t-Lagrangian velocity PDF for an arbitrary initial particle distribution is defined by482

p̂(v, t) =
Z
�[v � v

t

(t, a)]⇢(a)da. (35)483

484

The initial velocity distribution is p̂0(v) = p̂(v, t = 0), which is equal to the initial s-485

Lagrangian velocity PDF p0(v). For ⇢(a) given by (3), p̂(v, t) is equal to P̂(v, t) defined486

in (23). The t-Lagrangian p̂(v, t) is related to the s-Lagrangian statistics as487

p̂(v, t) =
1
v

1Z

0

p(v, t, s)ds, (36)488

489

where p(v, t, s) is the joint PDF of velocity v
s

(s, a) and particle time t(s, a),490

p(v, t, s) =
Z
�[v � v

s

(s, a)]�[t � t(s, a)]⇢(a)da, (37)491

492

see Appendix A.3. As outlined in Section 3.4, under stationary conditions the two statistics493

are related by flux-weighting, see Eq. (30).494

Figure 9 shows the evolution of p̂(v, t) for the uniform and flux-weighted initial con-495

ditions (3) and (4). As expected, p̂(v, t) evolves towards the steady state distribution P̂(v)496
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Figure 3.6: (left panel): Temporal evolution of the ensemble t-Lagrangian PDF P̂(v, t)
from the flux-weighted initial particle distribution p0(v) (red open circles) to the steady t-
Lagrangian PDF P̂(v) (navy blue solid line) at times t = 0,5,50,500,104 τc. (right panel):
Temporal evolution of the ensemble t-Lagrangian PDF P̂(v, t) from the uniform initial par-
ticle distribution p0(v) (light blue open circles) to the steady t-Lagrangian PDF P̂(v) (navy
blue solid line) at times t = 0,103,104 τc. The results were computed using 106 particles.
PDF = probability density function.

flux-weighted initial particle distributions (3.3) and (3.4). As pointed out there, p0(v) =

Pe(v), the stationary t-Lagrangian PDF under uniform and p0(v)=P(v) under flux-weighted
injection. The uniform initial condition approximates the stationary distribution, but is not
equal to it because the injection domain is not ergodic, see Figure 3.6. Figure 3.6 shows
the evolution of p̂(v, t) for the uniform and flux-weighted initial conditions (3.3) and (3.4).
As expected, p̂(v, t) evolves toward the steady state distribution P̂(v) from both initial dis-
tributions. The time for convergence toward the steady state is t > 104τc. Since the average
time needed to reach the outlet of the sample is on the order of 6τc we use the reinjection
procedure to keep all particles in the domain. As for the s-Lagrangian statistics, also here,
the high velocity part of p̂(v, t) converges faster than the low velocity part.

3.3.3 Synthesis

In summary, we distinguish between s-Lagrangian statistics, which are sampled equidis-
tantly along particle trajectories, and t-Lagrangian statistics, which are sampled isochronously
along particle trajectories. Moreover, we distinguish velocity PDFs that are sampled along
single streamlines and velocity PDFs that are obtained by sampling from an ensemble of
particles, as well as mixed sampling between particles and along streamlines. We find that
the streamwise and ensemble sampled statistics eventually converge after a given stream-
wise travel distance or streamwise travel time. The convergence of streamwise and ensem-
ble statistics to the same steady state distributions indicates that the underlying velocity
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process is stationary. The steady s- and t-Lagrangian statistics are related by flux-weighting
according to (3.19).

Stationary conditions are achieved for the t-Lagrangian velocity statistics in case of
a uniform injection into an ergodic subdomain Ω0. For the s-Lagrangian statistics this
corresponds to a flux-weighted injection. In the case of ergodic conditions, the s- and t-
Lagrangian steady state statistics P(v) and P̂(v) can be obtained by volumetric sampling
over an ergodic subdomain because of their relations to the Eulerian velocity PDFs (Dentz
et al., 2016). In the following, we model the s-Lagrangian velocity series as a stationary
and ergodic Markov process in order to capture the evolution of the s-Lagrangian velocity
statistics and its dependence on the initial conditions.

3.4 Markov model

We model the s-Lagrangian velocity series vs(s) as a stationary and ergodic Markov pro-
cess. This means that the process vs(s) is fully characterized by the velocity transition prob-
ability r(v,s− s′|v′), which denotes the PDF of vs(s) given that vs(s′) = v′. Both r(v,s|v′)
and p(v,s) satisfy the Chapman-Kolmogorov equation

p(v,s) =
∞∫

0

r(v,s− s′|v′)p(v′,s′)dv′. (3.22)

The steady state distribution is an Eigenfunction of r(v,s|v′),

P(v) =
∞∫

0

r(v,s|v′)P(v′)dv′. (3.23)

Furthermore, the transition probability converges to the steady state distribution in the limit
of s� `p,

lim
s→∞

r(v,s|v′) = P(v). (3.24)

This implies that lims→∞ p(v,s) = P(v), independent of the initial condition p0(v). Note
also that the joint PDF P(v,s− s′,v′) of v and v′ under stationary conditions is given by

p(v,s− s′,v′) = r(v,s− s′|v′)P(v′). (3.25)

Note that Gotovac et al. (2009) studied the statistical properties of the inverse La-
grangian velocity 1/vs(s), which is termed slowness. Evolution equations for the PDF
of slowness can be deduced from the Markov model for vs(s) by variable transformation.



3.4. MARKOV MODEL 61Confidential manuscript submitted to Water Resources Research

10-4 10-3 10-2 10-1 100 101

10-4

10-3

10-2

10-1

100

101

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

(a) ∆s = lp
150

10-4 10-3 10-2 10-1 100 101

10-4

10-3

10-2

10-1

100

101

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

(b) ∆s = lp
3

10-4 10-3 10-2 10-1 100 101

10-4

10-3

10-2

10-1

100

101

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

(c) ∆s = lp

10-4 10-3 10-2 10-1 100 101

10-4

10-3

10-2

10-1

100

101

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

(d) ∆s = 8lp
3

Figure 1: aaaaa

Styyttyty1

Alexandre Puyguiraud1,2, Philippe Gouze2and Marco Dentz1
2

1Spanish National Research Council (IDAEA-CSIC), Groundwater Hydrology Group (GHS), 08034 Barcelona, Spain3
2Géosciences Montpellier, CNRS-Université de Montpellier, Montpellier, France4

Corresponding author: Marco Dentz, marco.dentz@csic.es

–1–

Figure 3.7: Spatial velocity transition matrices computed with 106 particles and respec-
tively with a spatial lag of ∆s = lp

150 , ∆s = lp
3 , ∆s = lp, and 8lp

3 (upper left to lower right).

In the following, we first construct the transition probability empirically from the direct
numerical simulations. This is then used to propagate the s-Lagrangian velocity statistics
from uniform initial conditions. Second, we use a Markov model based on a Bernoulli
process for the persistence of velocities. Third, we employ an Ornstein-Uhlenbeck (OU)
process for vs(s). The simulated results of these Markov models are then compared to the
simulation data presented in the previous sections.

3.4.1 Empirical Transition Probability

In this section, we use empirically computed transition probabilities for the modeling of
velocity series in space. This approach is conceptually similar to the work of Benke and
Painter (2003) and Painter and Cvetkovic (2005) for fractured rock. In order to determine
the velocity transition probability r(v,s− s′|v′), we discretize the velocity interval [v`,vu]

between minimum and maximum velocities v` and vu sampled in the domain into n bins of
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width ∆vi = vi+1− vi, where v` = v1 and vu = vn such that

v j = v1 +
j−1

∑
i=1

∆v j. (3.26)

The empirical transition probability is given by mixed streamwise and ensemble sampling
as

Ti j(∆s) =
1

V0

∫
Ω0

1
L

L∫
0

I(v j ≤ v(s′′+∆s,a)< v j +∆v j)|vi≤v(s′′,a)<vi+∆viρ(a)ds′′da, (3.27)

where I(·) is 1 if its argument is true and 0 otherwise, and ∆s = s− s′. The empirical
transition probability and the conditional probability density r(v,s− s′|v′) are related in
terms of the stationary joint PDF (3.25) as

Ti j(∆s) =

v j+∆v j∫
v j

vi+∆vi∫
vi

p(v,∆s,v′)dvdv′
/ vi+∆vi∫

vi

P(v′)dv′. (3.28)

Note that the empirical determination of the transition probability requires stationary initial
conditions. As the initial velocity distribution p0(v) here is not stationary, as discussed
in the previous section, sampling should start once stationary conditions are achieved at
approximately s = 7`p, see Figure 3.12. In practice, mixed sampling along the trajectories
of lengths s� `p guarantees stationary conditions.

Figure 3.7 shows the transition matrix Ti j(∆s) computed using 106 particle trajectories
for different lags ∆s, and n = 100 logarithmically spaced velocity bins such that vi+1 =

vi exp(1/n). The smaller the ∆s the higher the correlation and the more diagonal is the
matrix. In principle, any ∆s would provide a good estimate for the transition matrix Ti j(∆s)

if the velocity correlation were exponential because in this case, the slope of the correlation
function would equal its value everywhere and it could be uniquely characterized by the
correlation length `p. This is not the case here. Figure 3.3 shows that the correlation
function drops for small distances ∆s� `p faster than for larger distances. This means
that for small ∆s an exponential fit simulates a shorter correlation length that the actual full
correlation function. This implies that a transition matrix determined at short ∆s sees only
this sharp drop and thus underestimates the true correlation. The lag distance ∆s needs to
be large enough such that the correlation information can be sampled. This means here
∆s≥ `p. For estimating the evolution of the s-Lagrangian statistics we choose ∆s = 8`p/3.

Figure 3.8 compares the predictions of the velocity Markov model with the data from
the direct numerical simulations for the uniform injection mode. The Markov model based
on the empirical transition matrix Ti j(∆s) reproduces the full evolution of the s-Lagrangian
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Figure 3.8: Evolution of the ensemble spatial Lagrangian velocity PDF P(v,s) for direct
particle tracking (open circles) and Markov model (solid lines) simulations from the uni-
form initial particle distribution p0(v) (blue) to the steady s-Lagrangian PDF P(v) (red) at
distances s = 0,8/3,16/3,8 `p. The results were respectively computed with 107 and 108

particles for the direct simulation and the model. PDF = probability density function.

velocity statistics p(v,s), which reaches the steady state distribution after the same distance
as the data form the direct numerical simulations. Thus, the evolution of the s-Lagrangian
velocities can be well represented as a Markov process. In the following section, we con-
sider a Bernoulli process as a Markov relaxation model for this evolution.

3.4.2 Bernoulli Process

We model the evolution of the Lagrangian velocity vs(s) by a Bernoulli process such that
after each step of length ∆s the velocity either remains the same as at the previous step with
probability pB(∆s) = exp(−∆s/`c) or changes randomly with probability 1− pB(∆s) ac-
cording to the steady state PDF P(v). The characteristic length scale `c of velocity changes
is determined below. The transition probability r(v,∆s|v′) is given explicitly by (Dentz
et al., 2016)

r(v,∆s|v′) = exp(−∆s/`c)δ (v− v′)+ [1− exp(−∆s/`c)]P(v). (3.29)
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Figure 3.9: Evolution of the mean s-Lagrangian velocity 〈vs(s)〉 (circles) for a uniform
initial distribution and expression (3.33) (solid line) with `c = 2.5`p.

Inserting the latter into the Chapman-Kolmogorov equation (3.22) gives

p(v,s+∆s) = exp(−∆s/`c)p(v,s)+ [1− exp(−∆s/`c)]P(v)
∞∫

0

p(v′,s)dv′. (3.30)

In the limit ∆s→ 0, we obtain the evolution equation (Dentz et al., 2016)

∂ p(v,s)
∂ s

=− 1
`c

[p(v,s)−P(v)] , (3.31)

whose solution for the initial condition p0(v) is

p(v,s) = P(v)+ exp(−s/`c) [p0(v)−P(v)] . (3.32)

Thus, we obtain for the mean velocity 〈vs(s), the explicit analytical expression

〈vs(s)〉= (〈v0〉−〈vs〉)exp(−s/`c)+ 〈vs〉, (3.33)

where 〈v0〉 is the average initial velocity and 〈vs〉 the average s-Lagrangian steady state
velocity. We use this expression to estimate the characteristic length scale from the direct
numerical simulations as shown in Figure 3.9. We find `c = 2.5`p, which is of the order of
the pore length.
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Figure 3.10: Evolution of the ensemble spatial Lagrangian velocity PDF P(v,s) for both
direct particle tracking (open circles) and Bernoulli process (solid lines) simulations from
the uniform initial particle distribution p0(v) (blue) to the steady s-Lagrangian PDF P(v)
(red) for distance s = 0,8/3,10 `p. The results were respectively computed with 107 and
5 ·108 particles for the direct simulation and the model. PDF = probability density function.

Figure 3.10 compares the evolution of p(v,s) obtained from the direct numerical simu-
lations with the prediction (3.32) of the Bernoulli model for uniform injection conditions.
The Bernoulli model converges to the steady state distribution after s ≈ 3`c, but does not
reproduce the velocity PDFs at intermediate distances. Note that the Bernoulli model uses
the same convergence rate `−1

c for all velocities. While this model represents the evolu-
tion of the high velocity part of p(v,s) is relatively well, the low velocity part evolves faster
than the data from the direct numerical simulations. This indicates that the convergence rate
may be velocity dependent. In the next section, we model this behavior with an alternative
Markov model for vs(s).

3.4.3 Ornstein-Uhlenbeck Process

In this section, we consider a velocity Markov model for the evolution of vs(s) that is based
on the Ornstein-Uhlenbeck (OU) process (Gardiner, 2010; Morales et al., 2017),

dw(s)
ds

=−`−1
c w(s)+

√
2`−1

c ξ (s), (3.34)
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Figure 3.11: Evolution of the ensemble spatial Lagrangian velocity PDF P(v,s) for direct
particle tracking (open circles) and Ornstein-Uhlenbeck process (solid lines) simulations
from the uniform initial particle distribution p0(v) (blue) to the steady s-Lagrangian PDF
P(v) (red) at distance s = 0,4/3,4,8,10 `p. The results were respectively computed with
107 and 5 ·108 particles for the direct simulation and the model. PDF = probability density
function.

where ξ (s) is a Gaussian white noise characterized by zero mean, 〈ξ (t)〉= 0 and covariance
〈ξ (s)ξ (s′)〉= δ (s− s′). The angular brackets denote the noise average over all realizations
of ξ (s). The Ornstein-Uhlenbeck process has originally been considered for the modeling
of the stochastic (in time) velocity fluctuations of Brownian particles (Langevin, 1908;
Uhlenbeck and Ornstein, 1930; Risken, 1996), later also for particle velocities in turbulent
flows (Pope, 2000). From a mathematical point of view, the OU model is a stationary
Gaussian Markov process. Its increments are Gaussian random variables. Its distribution
φ(w,s) satisfies the Fokker-Planck equation (Risken, 1996)

∂φ(w,s)
∂ s

− `−1
c

∂wφ(w,s)
∂w

− `−1
c

∂ 2φ(w,s)
∂w2 = 0. (3.35)

It relaxes from any initial distribution φ0(w) to a Gaussian steady state distribution φ(w),
which has zero mean and unit variance for the specific process (3.34). We use this process
here to model the stochastic evolution of the particle velocity vs(s) and the relaxation of
its statistics from any initial distribution p0(v) toward the steady state P(v). This requires
to map vs(s) onto w(s) through their steady state PDFs. This is done through the Smirnov
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transform (Devroye, 1986)

w(s) = Φ
−1(Π[vs(s)])≡M [vs(s)], vs(s) = Π

−1(Φ[w(s)]), (3.36)

where Π(v) and Φ(w) are the cumulative distributions of v(s) and w(s),

Π(v) =
v∫

0

P(v′)dv′, Φ(w) =
w∫
−∞

φ(w′)dw′. (3.37)

The latter is given by Φ(w) = [1+ erf(w/
√

2)]/2. As φ(s) is a unit Gaussian, this map
generates w(s) as the normal score of vs(s). This map guarantees that p(v,s) evolves from
any initial distribution p0(v) toward its steady state P(v) on the relaxation scale `c, which is
set equal to the one determined for the Bernoulli model in the previous section. Note that all
the normal scores w(s) evolve with the same rate `−1

c . Note that the transition probability
rw(w,∆s|w′) is given by the Gaussian distribution (Risken, 1996)

rw(w,∆s|w′) =
exp
(
− [w−w′ exp(−∆s/`c)]

2

2[1−exp(−2∆s/`c)]

)
√

2π [1− exp(−2∆s/`c)]
. (3.38)

The transition probability for the velocity process r(v,∆s|v′) is given in terms of rw(w,∆s|w′)
according to the map (3.36)

r(v,∆s|v′) = rw[M (v),∆s|M (v′)]
dM (v)

dv
, (3.39)

which in general leads to velocity-dependent convergence rates for p(v,s).
The process (3.34) is solved for an ensemble of particles. The initial values w(s = 0) =

w0 are obtained from vs(s = 0) = v0 by the map (3.36) as w0 = Φ−1[Π(v0)], where the
v0 are distributed according to p0(v). Once w0 is obtained, the process (3.34) is solved
numerically using an explicit Euler scheme,

wn+1 = wn− `−1
c wn∆s+

√
2`−1

c ∆sξn, (3.40)

where wn = w(n∆s) and ξn is a Gaussian random variable with 0 mean and unit variance.
The value wn+1 is transformed back to the velocity vs(n∆s) via Eq. (3.36) at every step.
The discretization of scheme (3.40) is chosen such that ∆s≤ `c/10.

Figure 3.11 compares the results of the velocity Markov model based on the OU process
with the data from the direct numerical simulations. The Markov model is capable of
predicting the evolution of p(v,s) in every aspect at small, intermediate and large distances
from the inlet. The velocity dependence of convergence rates in the OU-based Markov
model for vs(s) accurately captures the evolution of p(v,s) for all velocity classes.
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3.4.4 Synthesis

In summary, based on the stationary and ergodic properties of the s-Lagrangian velocity
series, we model their stochastic dynamics as an ergodic Markov chain. We consider three
different Markov models. First, a Markov model based on an empirical transition proba-
bility, which is obtained from conditional equidistant velocity sampling along streamlines.
This model naturally reproduces the evolution of the s-Lagrangian velocity PDF and con-
firms the Markovian nature of the velocity transitions. Second, we consider a Bernoulli
velocity model, which at each step either persists at the velocity of the previous step or
changes to a new velocity, which is randomly sampled from the stationary s-Lagrangian
PDF. This model yields an evolution of the s-Lagrangian PDF from an initial to the sta-
tionary PDF. However, it uses the same convergence rate for all velocity classes, which
does not capture the evolution at small velocities. Third, we consider a velocity transition
model that is based on an OU process for the normal scores of the s-Lagrangian velocities.
This process correctly predicts the full evolution of the s-Lagrangian velocity PDF and is
parameterized by the stationary Lagrangian velocity PDF and a characteristic relaxation
scale `c. The former is related to the Eulerian velocity PDF, a flow attribute; the latter is
of the order of the characteristic pore-length. Thus, this stochastic velocity model can be
parameterized in terms of hydraulic and geometric characteristics of the porous medium.

3.5 Conclusions

We have presented a comprehensive analysis of Lagrangian pore-scale velocity series. Even
though the study is based on velocity data in the three-dimensional pore-structure obtained
from X-ray microtomography of a Berea sandstone sample, the presented methods and
results are valid for particle motion in steady pore-scale flows in general. Our analysis
has revealed the stochastic dynamics of particle velocities and led to the formulation of
a predictive modeling approach for the velocity evolution based on Markov processes for
the streamwise Lagrangian velocities. These results are part of the endeavor of setting up
an upscaling framework for hydrodynamic flow and transport from the pore to the Darcy
scale. The past years have seen a significant increase of experimental and numerical pore-
scale studies along with improved imaging techniques and computational resources. The
presented methods for the statistical analysis of pore-scale velocity data provide new tools
for the interpretation of such experimental and numerical data and their use in the upscaling
of flow and transport.

The evolution of the velocity statistics represents a key feature that needs to be ac-
counted for both in the interpretation of experimental and numerical velocity data and in
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the modeling and upscaling of particle transport. For example in particle tracking and par-
ticle imaging velocimetry, the measured velocity distributions may be dependent on the
initial preparation, this means on the seeding of the injection volume with particles, and
not be representative of the porous sample. Furthermore, data analysis often invokes sta-
tionarity of the measured particle velocities, which in general, however, is not the case and
depends again on the injection condition. Pore-scale velocity variability is at the origin
of hydrodynamic dispersion and other transport phenomena observed on the Darcy scale.
The Kubo formula provides a measure for hydrodynamic dispersion in terms of the time
integral of the t-Lagrangian velocity covariance,

D(t) =
t∫

0

〈v′t(t ′)v′t(t)〉dt ′, (3.41)

where v′t(t) denotes the fluctuation of the t-Lagrangian velocity around its mean. Disper-
sion in general evolves in time and depends on the initial conditions (stationary or non-
stationary) and the time evolution of the velocity statistics. For example, dispersion at
times smaller than the advection time τv is ballistic and given by D(t) = σ2

0 t where σ2
0 is

the variance of the PDF of initial velocities p0(v), which clearly depends on the initial ve-
locity distribution. The asymptotic behavior is determined by the velocity correlation time
and velocity variance, which are related to the intermittent temporal velocity signals. The
tailing of particle breakthrough curves is determined by the occurrence of low velocities
and their spatial persistence. Thus, the retention phenomena also depends on the evolution
of the velocity statistics and the initial preparation of the system. For example, a uniform
initial particle distribution emphasizes more the low end of the velocity spectrum than a
flux-weighted. Thus the corresponding breakthrough curves, or residence time distribu-
tions in a sample may be significantly different depending on the initial conditions.

These behaviors as they evolve in time hold a certain complexity, which is reflected
in the intermittent features of Lagrangian velocity time series. This complexity can be re-
moved by applying a different sampling protocol, namely by sampling equidistantly along
particle trajectories. This streamwise spatial point of view provides a significant simpli-
fication of otherwise complex phenomena and thus opens new possibilities for transport
modeling and upscaling. The formulation of the s-Lagrangian velocity magnitude as an
ergodic Markov chain renders particle motion naturally as a (correlated) continuous time
random walk (Berkowitz et al., 2006; Le Borgne et al., 2008; Dentz et al., 2016) or time-
domain random walk (Benke and Painter, 2003; Painter and Cvetkovic, 2005), because
streamwise particle motion can be modeled in terms of fixed spatial steps ∆s, which take
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the random time τ = ∆s/vs.

sn+1 = sn +∆s, tn+1 = tn + τn. (3.42)

The Markov property of the s-Lagrangian velocity is transferred to the transition times τ

whose distribution evolves in time just like the s-Lagrangian velocity PDF. CTRW formu-
lations that are based on a single transition time distribution ψ(t) are not able to model
the impact of non-stationary initial conditions from the s-Lagrangian point of view, or sta-
tionary initial conditions from a t-Lagrangian point of view. Note that the process (3.42)
describes particle motion along a tortuous streamline. The motion in three-dimensional
Cartesian coordinates can be obtained either by an additional characterization of the direc-
tion vector ωωω(s,a) = v[x(s,a)]/ve[x(s,a)] in equation (3.6) as a stochastic process, or the
projection of the streamwise motion on the mean flow direction in terms of the advective
tortuosity (Koponen et al., 1996; Dentz et al., 2018).

The OU process for the normal scores of the s-Lagrangian velocities correctly predicts
the full evolution of the s-Lagrangian velocity PDF and is parameterized by the stationary
Lagrangian velocity PDF and the characteristic correlation scale. The former is related to
the Eulerian velocity PDF, a flow attribute, the latter is of the order of the characteristic
pore-length. This stochastic velocity model can be parameterized in terms of hydraulic
and geometric characteristics of the porous medium. Thus, it is a predictive model in
the sense that it can be based on the characterization of transport independent quantities,
which is an important step for flow and transport upscaling from the pore to the Darcy scale.
While significant progress has been made (de Anna et al., 2017; Alim et al., 2017; Dentz
et al., 2018), the relation between pore structure and pore velocity distribution still remains
an open issue. In addition to the OU velocity model, we consider a Bernoulli process,
which reproduces the velocity evolution qualitatively, but lacks the correct convergence
rates for low and intermediate velocities. Yet, due to its simplicity, it may serve to obtain
fast qualitative estimates of transport features related to the evolution of particle velocity
statistics. Finally, note that the methodology used here applies to transport in steady flow
through heterogeneous media in general, for which a relaxation of the Lagrangian velocity
statistics toward a steady state can be observed such as Darcy scale fractured and porous
media (Cvetkovic et al., 1996; Le Borgne et al., 2007; Dentz et al., 2016; Kang et al., 2017).

We consider here purely advective particle motion and do not account for the effect
of diffusion on particle motion. Thus, the derived stochastic framework is directly rele-
vant for advection-dominated pore-scale transport. In fact, practically relevant pore-scale
Péclet numbers may range from 10−2 to 106 (Bear, 1972; Bijeljic and Blunt, 2006). In
the presented Markov models, velocity transitions occur essentially with a fixed spatial
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frequency which is given by the inverse velocity correlation length. In the presence of dif-
fusion, velocity transitions can also occur due to particle transitions between streamlines,
a process that is related to a constant frequency in time, namely the inverse diffusion time
over the characteristic velocity length scale. Advective and diffusive velocity transitions
may depend on a local Péclet number. Thus, the derived Markov model provides a basis
to account for the impact of velocity variability and diffusion on hydrodynamic dispersion.
Furthermore, pore-scale flow variability has an impact on processes such as the filtration
of colloidal particles and bacteria (Liang et al., 2018) as well as mixing between dissolved
chemicals (Kree and Villermaux, 2017), while these processes are also affected by other
factors such as volume exclusion and interactions with the solid matrix as well as diffusion,
for example, the derived stochastic model for Lagrangian particle velocities may serve as a
starting point to account systematically for the effect of hydrodynamic variability.

In summary, the fact that the Lagrangian velocity statistics are stationary allows for
the stochastic description of the s-Lagrangian velocity dynamics as an ergodic Markov
chain. This stochastic framework renders particle motion as a correlated continuous time
random walk. The consequences of the stochastic s-Lagrangian velocity dynamics for
the prediction of pre-asymptotic spatial and temporal transport characteristics and their
systematic upscaling are studied elsewhere.

3.6 Appendix

3.6.1 Equidistant and Isochronous Ensemble Statistics

In this section, we discuss the relations between the s- and t-Lagrangian ensemble statistics
for finite sampling domains.

3.6.1.1 Equidistant Sampling: s-Lagrangian Statistics

The ensemble s-Lagrangian velocity PDF is obtained by sampling the velocity magnitude
vs(s,a) at a given streamline distance s in the flux-weighted ensemble of particles com-
prised in the injection domain Ω0

P(v,s) =
1

V0

∫
Ω0

v0(a)
〈v0(a)〉

δ [v− vs(s,a)]da, (3.43)

each particle being weighted by its initial velocity. This PDF can be computed for any
distance s≥ 0 and in general evolves with distance. The mixed s-Lagrangian PDF is defined
by sampling along streamlines and between particles as

Pm(v,L) =
1
L

∫ L

0

1
V0

∫
Ω0

v(a)
〈v(a)〉δ [v− vs(s,a)]dads. (3.44)
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This method samples more statistics than its ensemble and streamwise counterparts since
it integrates over all particles labeled by a and distances s traveled. Under ergodic condi-
tions, sampling along streamlines and ensemble sampling are equivalent. As discussed in
the main text, this can be achieved for sampling distances L and initial volumes V0 large
enough that a representative part of the velocity variability can be experienced. Under these
conditions, the streamwise, ensemble and mixed s-Lagrangian PDFs are identical and in-
dependent of L and a (streamwise) and s (ensemble),

P(v) = P(v) = Pm(v). (3.45)

Figure 3.12 shows the streamwise, ensemble and mixed s-Lagrangian PDFs for L≈ 108`p

in the streamwise case and s = 7`p for the ensemble. The three different PDFs are in very
good agreement, which implies that the reinjection method detailed in Section 3.2.2.2 is
ergodic (convergence of the streamwise PDF), and that stationary conditions are already
attained within the sample size (convergence of the ensemble PDF). The evolution of the
ensemble s-Lagrangian PDF is analyzed in detail in Section 3.3.2. As the different statistics
are identical in steady state, we refer to the steady state distribution as P(v).

3.6.1.2 Equidistant Sampling: s-Eulerian Statistics

The fluid flow map ϕs, defined as

ϕs : a 7→ x(s,a) (3.46)

maps the initial particle position a on the particle position x(s,a) at distance s according
to (3.6). The s-Eulerian velocity PDF is obtained by volumetric sampling of the Eulerian
velocity magnitude ve(x) in the subdomain Ω(s) = ϕs(Ω0) ⊂ Ω f , where Ω f is the flow
domain,

Pe(v,s) =
1

V (s)

∫
Ω(s)

δ [v− ve(x)]dx. (3.47)

The relation between the s-Eulerian velocity PDF Pe(v,s) and the ensemble s-Lagrangian
velocity PDF P(v,s) is obtained by using the map (3.46) in order to transform the integra-
tion variable a→ x in (3.43). Note that the map (3.46) is not volume preserving. Thus
V (s) 6=V (t). In section 3.6.3.1 we show that

P(v,s) =
v

µe(s)
Pe(v,s), (3.48)
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with the s-Eulerian mean velocity µe(s). Equation (3.48) means that the s-Lagrangian and
s-Eulerian velocity PDFs are related through flux weighting. The s-Eulerian mean velocity
µe(s) is

µe(s) =
∞∫

0

Pe(v,s)dv, (3.49)

which in general evolves with distance s. Under ergodic conditions, the s-Eulerian PDF is
stationary and thus independent from s, Pe(v,s) = Pe(v) and µe(s) = 〈ve〉. The Lagrangian
and Eulerian statistics are related by

P(v) =
v
〈ve〉

Pe(v). (3.50)
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Figure 3.12: Comparison between the streamwise P(v) (orange dashed line), ensemble
P(v) (blue circles, computed with 107 particles), and mixed Pm(v) (solid black line, com-
puted with 105 particles) of the s-Lagrangian velocity PDFs. PDF = probability density
function.

3.6.1.3 Isochronous Sampling: t-Lagrangian Statistics

Sampling of the velocity magnitude vt(t,a) between particles gives the ensemble t-Lagrangian
PDF

P̂(v, t) =
1

V0

∫
Ω0

δ [v− vt(t,a)]da, (3.51)
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where Ω0 is the fluid domain in which particles are initially placed, and V0 is its vol-
ume. The mixed t-Lagrangian PDF samples velocity magnitudes both between particles
and along particle trajectories

P̂m(v,T ) =
1

V0

∫
Ω0

1
T

∫ T

0
δ [v− vt(t,a)]dtda. (3.52)

The mixed method is often used for the empirical determination of velocity statistics from
particle tracking velocimetry (PTV) because it yields better statistics than either sampling
along a single trajectory or between particles. Under ergodic conditions, the sampling of
the velocity magnitude along a streamline for a long enough time T is identical to ensemble
sampling for a large enough time t. The sampling time T and initial domain Ω0 need to
be large enough such that the sampled velocity variability is representative. Under these
conditions, P̂(v,T,a) = P̂(v) is independent of a and T and P̂(v, t) = P̂(v) is independent
of the sampling time t such that

P̂(v) = P̂(v) = P̂m(v). (3.53)

Figure 3.13, shows P̂(v,T,a), P̂(v, t,V0) and P̂m(v,T,V0). The three statistics are in good
agreement, which indicates that in the numerical simulations, ergodic conditions are reached.
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Figure 3.13: Comparison of the streamwise P̂(v) (orange dashed line), ensemble P̂(v)
(blue circles, computed with 106 particles) and mixed P̂m(v) (solid black line, computed
with 104 particles) of the t-Lagrangian velocity PDFs.
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3.6.1.4 Isochronous Sampling: t-Eulerian Statistics

The fluid flow map

ϕt : a 7→ x(t,a) (3.54)

maps the initial particle position a on the position x(t,a) at time t. The t-Eulerian velocity
PDF corresponding to P̂t(v, t) is obtained by volumetric sampling of the Eulerian velocity
magnitude ve(x) in the subdomain Ω̂(t) = ϕt(Ω0),

P̂e(v, t) =
1

V0

∫
Ω̂(t)

δ [v− ve(x)]dx. (3.55)

Note that Ω̂(t) is the domain occupied by the particles after time t. Its volume V̂ (t)

equals the initial volume V̂ (t) = V0 because the map (3.54) is volume conserving. The t-
Lagrangian PDF P̂(v, t) can be related to the t-Eulerian PDF P̂e(v, t) by using the map (3.54)
in (3.51) to transform the integration variable from a→ x. Thus we obtain

P̂(v, t)≡ P̂e(v, t), (3.56)

see section 3.6.3.2. Note that the Jacobian of the map ϕt is 1, again because v(x) is volume
conserving. Also note that this is a purely kinematic relation, which is true independently
of the question whether the system is ergodic or not. Under ergodic conditions, (3.53)
and (3.56) imply that the Eulerian statistics are independent of t, P̂e(v, t) = P̂e(v) and

P̂e(v) = P̂(v) = P̂(v). (3.57)

In the following, we refer to the steady state distribution as P̂(v) because the three statistics
are identical in the steady state.

3.6.2 Relations Between Isochronous and Equidistant Statistics

We have seen in (3.57) that the statistics of the isochronously sampled Lagrangian velocity
P̂(v) along a trajectory equals the Eulerian velocity statistics P̂e(v) under ergodic condi-
tions and that the streamwise s- and t- Lagrangian velocity statistics are related through a
flux weighted relation (3.17). Furthermore, under ergodic conditions, we know from (3.45)
that the ensemble equals the streamwise s-Lagrangian PDF, P(v) = P(v), and from (3.53)
that the ensemble is identical to the streamwise t-Lagrangian PDF, P̂(v) = P̂(v). Thus, we
obtain from (3.17) the following relation

P(v) =
v
〈ve〉

P̂(v). (3.58)
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Figure 3.14: Ensemble t-Lagrangian PDF P̂(v) (Full circles, computed with 106 parti-
cles) and s-Lagrangian PDF P(v) (open circles, computed with 107 particles) and the flux-
weighting relation (3.58) (solid line). PDF = probability density function.

Figure 3.14 compares the ensemble t- and s-Lagrangian statistics at t = 9 · 103τc and
s = 7`p. Both statistics are in good agreement with respect to relations (3.17) and (3.58),
which confirms again that ergodic conditions are attained. Furthermore, note that under
ergodic conditions the steady s-Lagrangian PDF P(v) is related to the s-Eulerian PDF by
relation (3.50), while the steady t-Lagrangian is equal to the t-Eulerian PDF, see (3.53).
Thus the s- and t-Eulerian velocity PDFs are identical under ergodic conditions,

Pe(v) = P̂e(v). (3.59)

These relations imply that the t-Lagrangian velocity statistics are stationary for the initial
distribution Pe(v), which corresponds to a uniform injection over an area or volume that
is large enough to be ergodic. The s-Lagrangian statistics are accordingly stationary for a
flux-weighted injection over a large enough injection domain.

Furthermore, we have defined s- and t- Eulerian velocity distributions, which corre-
spond to the respective s- and t-Lagrangian statistics. The Eulerian distributions are ob-
tained by volumetric sampling in the subvolumes Ω(s) and Ω̂(t) which are obtained by
mapping the injection domain Ω0 by the respective flow maps ϕs and ϕt . The s-Lagrangian
and s-Eulerian velocity PDFs are related by flux-weighting according to (3.48), the t-
Eulerian and Lagrangian are identical, see (3.56).
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3.6.3 Relations Between s- and t-Lagrangian Statistics

In the following, we provide some details on the derivation of the relations between s- and
t-Lagrangian statistics reported on in the previous section.

3.6.3.1 Relation Between the s-Eulerian Velocity PDF Pe(v,s) and the Ensemble s-
Lagrangian Velocity PDF P(v,s)

We derive the relation between the s-Eulerian velocity PDF Pe(v) and the ensemble s-
Lagrangian velocity PDF P(v,s). P(v,s) is defined as:

P(v,s) =
1

V0

∫
Ω0

v(a)
〈v(a)〉δ [v− vs(s,a)]da, (3.60)

which is originally defined on the initial injection domain Ω0 and is parameterized through
flux weighting. V0 is the volume of Ω0, and a is the initial position of particle a. We can
derive this definition to any domain Ω(s), which is the domain occupied by the particles
after they have traveled the distance s along their streamline, this is achieved using the map
a→ x(s,a). Doing so we obtain:

P(v,s) =
1

V0

∫
Ω(s)

J(s,a)−1 v(a)
〈v(a)〉δ [v− ve(x(s,a))]dx, (3.61)

where J(s,a) = ‖dx(s,a)/da‖ is the Jacobian of the transformation. It can be determined
as follows. First, we note that its derivative is given by (Batchelor, 2000, p., 75)

d
ds

J(s,a) = J(s,a)∇ ·
(

v[x(s,a)]
vs(s,a)

)
, (3.62)

which can be expanded to

d
ds

J(s,a) =−J(s,a)v[x(s,a)] ·∇vs(s,a)
vs(s,a)2 , (3.63)

where we used that ∇ ·v(x) = 0. We obtain for the derivative of vs(s,a) = ve[x(s,a)] with
respect to s,

dvs(s,a)
ds

=
v[x(s,a)] ·∇vs(s,a)

vs
, (3.64)

where we used (3.6). Thus, Eq. (3.63) reduces to

d
ds

J(s,a) =− 1
vs(s,a)

dvs(s,a)
ds

J(s,a). (3.65)
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Integrating the differential Eq. (3.65) for the initial condition J(s = 0,a) = 1 yields

J(a,s) =
ve(a)

ve[x(s,a)]
. (3.66)

Which leads to

P(v,s) =
1

V0

∫
Ω(s)

v(a)
〈v(a)〉

v(x)
v(a)

δ [v− ve(x(s,a))]dx, (3.67)

P(v,s) =
1

V0

∫
Ω(s)

v(x)
〈v(a)〉δ [v− ve(x(s,a))]dx, (3.68)

and because of the Dirac-delta,

P(v,s) =
1

V0

v
〈v(a)〉

∫
Ω(s)

δ [v− ve(x(s,a))]dx. (3.69)

Furthermore, we have 1
〈v(a)〉 =

V0
〈v(x)〉V (s) , which can be seen as follows. First, we observe

that ∫
Ω0

v(a)
〈v(a)〉da =V0 (3.70)

by definition. Using the transformation a→ x(s;a), we can obtain∫
Ω(s)

J−1 v(a)
〈v(a)〉dx =

∫
Ω(s)

v(x)
v(a)

v(a)
〈v(a)〉dx =

∫
Ω(s)

v(x)
〈v(a)〉dx =V0, (3.71)

which implies that

〈v(a)〉= V (s)
V0

[
1

V (s)

∫
Ω(s)

v(x)dx
]
=

V (s)〈v(x)〉
V0

. (3.72)

Inserting this in Eq. 3.69 gives

P(v,s) =
1

V0

v
〈v(x)〉

V0

V (s)

∫
Ω(s)

δ [v− vs(s,a)]dx =
v

〈v(x)〉Pe(v,s). (3.73)

This shows that the ensemble s-Langrangian velocity PDF is related to the s-Eulerian ve-
locity PDF through flux weighting.

3.6.3.2 Relation Between the t-Eulerian Velocity PDF Pe(v, t) and the Ensemble t-
Lagrangian Velocity PDF P̂(v, t)

Keeping the same spirit we derive the relation between the Eulerian temporal velocity PDF
P̂e(v, t) and the ensemble temporal velocity PDF P̂(v, t). Starting with the definition of
P̂(v, t):

P̂(v, t) =
1

V0

∫
Ω0

δ [v− vt(t,a)]da, (3.74)
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and changing variable according to the map a→ x(t;a) we obtain

P̂(v, t) =
1

V0

∫
Ω(t)

J−1
δ (v− ve[x(t,a)])dx, (3.75)

P̂(v, t) =
1

V0

∫
Ω(t)

δ (v− ve[x(t,a)])dx, (3.76)

because the map is volume conserving and therefore J = 1. And again from volume con-
servation V0 =V (t) which gives for Eq. (3.76)

P̂(v, t) =
1

V (t)

∫
Ω(t)

δ (v− ve[x(t,a)])dx = P̂e(v, t). (3.77)

3.6.3.3 Relation Between the Ensemble s-Lagrangian Velocity PDF P(v,s) and the
Ensemble t-Lagrangian Velocity PDF P̂(v, t)

Then, we can derive the relation between ensemble s-Lagrangian velocity PDF P(v,s) and
the ensemble t-Lagrangian velocity PDF P̂(v, t), starting with the definition of P̂(v, t) we
have:

p̂(v, t) =
∫

Ω0

δ (v− ve[x(t),a)])ρ(a)da, (3.78)

=
∫

Ω0

δ (v− ve[x(s(t),a)])ρ(a)da, (3.79)

since x(t,a) = x(s(t),a). Then we can write it as

p̂(v, t) =
∫ ∫

Ω0

δ [s− s(t,a)]δ [v− ve(x[s(t),a])]ρ(a)dads. (3.80)

And then using the fact that

δ [ f (x)] = ∑
i

1
f ′(xi)

δ (x− xi), (3.81)

we obtain

δ [s− s(t,a)] =
1

ve[x(s;a)]
δ [t− t(s,a)]. (3.82)

Inserting this in Eq. 3.80 leads to

p̂(v, t) =
∫ ∫

Ω0

1
ve[x(s;a)]

δ [t− t(s,a)]]δ [v− ve[x(s,a)]]ρ(a)dads, (3.83)

=
1
v

∫ ∫
Ω0

δ [t− t(s,a)]δ [v− ve[x(s,a)]]ρ(a)dads. (3.84)
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Then, recognizing that the inside integral is actually p(v, t,s) i.e. the joint PDF of time and
velocity in space, we have

p̂(v, t) =
1
v

∫
p(v, t,s)ds, (3.85)

where p(v, t,s) is the joint PDF of velocity vs(s,a) and particle time t(s,a),

p(v, t,s) =
∫

δ [v− vs(s,a)]δ [t− t(s,a)]ρ(a)da. (3.86)
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Chapter 4

Upscaling of Anomalous Pore-Scale
Dispersion

4.1 Introduction

Upscaling hydrodynamic transport is a critical step for modeling solute dispersion in porous
media. Since the pioneering works of de Josselin de Jong (1958) and Saffman (1959),
different approaches have been used for deriving dispersion coefficients and advection-
dispersion models for asymptotic spreading and mixing in heterogeneous media (Bear,
1972; Brenner and Edwards, 1993; Salles et al., 1993; Whitaker, 1999). However, the
asymptotic regime is often not reached for space and time scales relevant at the laboratory
scale, for environmental or industrial applications (Levy and Berkowitz, 2003; Le Borgne
and Gouze, 2008; Moroni et al., 2007), which makes it important to account for pre-
asymptotic transport, which can in general not be characterized by constant hydrody-
namic dispersion, and thus may be termed non-Fickian or anomalous. Non-Fickian pre-
asymptotic dispersion is caused by incomplete mixing on the support scale and thus incom-
plete sampling of the velocity heterogeneity due to spatial heterogeneity, which character-
izes natural systems (Dentz et al., 2000, 2004, 2011b; Berkowitz et al., 2006; Nicolaides
et al., 2010; Wood, 2009; Le Borgne et al., 2011). The conditions under which the behavior
can asymptotically be described by hydrodynamic dispersion and the transition to such a
regime was discussed in Salles et al. (1993), Dentz et al. (2004), and Bijeljic and Blunt
(2006). For systems characterized by large or infinite Péclet numbers, non-Fickian behav-
ior may be related to a broad distribution of velocity values. Recent pore-scale transport
studies (de Anna et al., 2013; Kang et al., 2014; Holzner et al., 2015; Morales et al., 2017;
Carrel et al., 2018) showed that observed intermittency of temporal velocity series along
individual streamlines are closely related to the occurrence of anomalous dispersion.

84
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The quantification of pre-asymptotic dispersion and its causes in the medium and flow
properties is a critical issue for upscaling hydrodynamic transport from the pore to the
Darcy scale. Pre-asymptotic (non-Fickian) dispersion on the pore and Darcy scales have
been modeled by a variety of non-local approaches (Neuman and Tartakovsky, 2009a),
such as the multirate mass transfer (MRMT) approach (Haggerty and Gorelick, 1995; Car-
rera et al., 1998), volume averaging and two-equation formulations for transport (Cherblanc
et al., 2007; Davit et al., 2010; Porta et al., 2013), the continuous time and time-domain ran-
dom walk approaches (Berkowitz and Scher, 1995; Dentz and Berkowitz, 2003; Berkowitz
et al., 2006; Bijeljic and Blunt, 2006; Wright et al., 2019; Sund et al., 2015, 2017; Sher-
man et al., 2019), see also the recent review by Noetinger et al. (2016). A critical step
for implementing these non-local models concerns the relation between the velocity statis-
tics that are controlled by the pore-scale structure, and the macroscopic transport process.
Porta et al. (2015) derived a mobile-immobile model to upscale pore-scale transport ac-
counting for information on the pore space and the pore-scale velocity distributions. Meyer
and Bijeljic (2016) used a Langevin approach to account for the impact of pore-scale ve-
locity heterogeneity on solute dispersion. Due to their central role for transport upscaling
from the pore to the Darcy scale, pore-scale particle velocities and their relation to the flow
velocity and porous medium structure have been the subject of recent research (de Anna
et al., 2013; Siena et al., 2014; Holzner et al., 2015; Morales et al., 2017; Jin et al., 2016b;
Matyka et al., 2016; de Anna et al., 2017; Dentz et al., 2018).

A strategy to systematically upscale (advective) transport from the pore to the Darcy
scale consists in identifying the stochastic dynamics of particle velocities, formalizing the
link between Lagrangian and Eulerian statistics, and relating the flow statistics to statistical
pore-scale properties. Morales et al. (2017) and Puyguiraud et al. (2019a) linked observed
intermittent patterns in the temporal velocity series to the spatial persistence of pore-scale
velocities. These authors showed that velocity series sampled equidistantly along stream-
lines do not exhibit such intermittent patterns and can be represented by a spatial Markov
process. Puyguiraud et al. (2019a) showed for the Berea sandstone sample under con-
sideration in this paper that the spatial velocity series can be represented by an ergodic
and stationary Markov process at the sample scale. This observation implies that upscaled
transport can be understood and modeled in terms of time-domain or continous time ran-
dom walks.

In this paper we use the representation of equidistant particle velocities as a stationary
Markov process to upscale particle motion and solute transport in the framework of time-
domain random walks in terms of the pore-scale velocity distribution and characteristic
length scale. We employ two velocity Markov models of different complexity. The first
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is based on a Bernoulli process for the prediction of the velocity series, the second on
an Ornstein-Uhlenbeck velocity process for the normal scores of velocity (Morales et al.,
2017; Puyguiraud et al., 2019a). The resulting time-domain random walk models are used
to predict breakthrough curves, displacement mean and variance as well as the full spatial
particle distributions or propagators from full three-dimensional flow and particle tracking
simulations for a Berea sandstone sample.

The paper is organized as follows. The methodology we use is detailed in Section 4.2.
We specify the flow equation and the transport equation that are solved, and summarize the
details about the image acquisition, the flow simulation and the particle tracking simula-
tions. Then, we present the stochastic particle model and describe the parameterization of
the velocity process. In Section 4.3, we compare the transport data of the three-dimensional
direct particle tracking simulations to the predictions of the upscaled models for uniform
and flux weighted injection modes. The conclusions are presented in Section 4.4.

4.2 Methodology

In this section, we first present the basic equations for the three-dimensional direct numer-
ical simulation (DNS) of flow and particle motion (particle tracking simulations) at pore
scale. Then, we detail the upscaling methodology in the framework of a stochastic model
and finally, we provide a summary of the numerical methodology.

4.2.1 Flow and Particle Motion

The Navier-Stokes momentum balance equation is classically used to model pore-scale
flow v(x) of an incompressible fluid. At low values of the Reynolds number, the iner-
tial forces are negligible in comparison to the viscous forces and the momentum equation
reduces to, Leal (2007):

∇
2v(x) =

1
ν

∇p(x), (4.1)

where p(x) and ν denote the pressure and the kinematic viscosity of the fluid, respectively.
The associated mass conservation equation is ∇ ·v(x) = 0. The position vector is denoted
by x = (x1,x2,x3)

>. The problem is solved by fixing constant pressure at both the inlet and
outlet boundaries of the sample and no-slip condition at the void-solid interfaces and at the
other physical boundaries of the sample. Details concerning the computations and sample
characteristics are given in section 4.2.3. The magnitude of the Eulerian velocity v(x) in
the following is denoted by ve(x) = ‖v(x)‖. The probability density function (PDF) of
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ve(x) is denoted by pe(v). It can be obtained by spatial sampling over a sampling volume
that is representative of flow variability.

We consider purely advective transport. Thus, the trajectory of a particle originally
located at x(t = 0,a) = a is described by

dx(t,a)
dt

= v[x(t,a)], (4.2)

where v[x(t,a)] is the Lagrangian velocity. Its magnitude is vt(t,a) = ‖v[x(t,a)]‖. The
travel distance s(t,a) along a particle trajectory until time t and the travel time t(s,a) up to
a streamwise distance t(s,a) are given by

ds(t,a)
dt

= vt(t,a),
dt(s,a)

ds
=

1
vs(s,a)

, (4.3a)

where we defined vs(s,a) = vt [t(s),a]. We perform a variable change from time to stream-
wise distance, which renders time as t(s,a) a dependent variable. The transform from
t→ s implies setting dt = ds/vs(s,a) in Eq. (4.2). This gives for the particle position as a
function of distance s the evolution equation

dx̂(s,a)
ds

= ωωω(s,a), ωωω(s,a) =
v[x̂(s,a)]
vs(s,a)

, (4.3b)

where ωωω(s,a) denotes the unit vector in the flow direction, v[x̂(s,a)] is denoted the s(pace)-
Lagrangian velocity (Dentz et al., 2016; Puyguiraud et al., 2019a) because it is the parti-
cle velocity at a given spatial distance s along the particle trajectory, and its magnitude
‖v[x(s,a)]‖ is equal to vs(s,a). We will refer in the following to vs(s) simply as parti-
cle velocity. Equation (4.3) describes the motion of a particle along a given streamline as a
time-domain random walk (Painter and Cvetkovic, 2005; Noetinger et al., 2016) in that par-
ticles perform transitions over a fixed streamwise distance in variable time, which depends
on the local velocity. Particle motion can be solved alternatively by integrating Eq. (4.2) in
time or by integrating the system of equations (4.3) in streamwise distance. The numerical
simulations performed in this paper use the former, the upscaling methodology presented
in the next section uses the latter.

The distribution of initial particle positions is denoted by ρ(a). We consider here two
different initial particle distributions, uniform and flux-weighted, in order to probe the im-
pact of the initial condition on average particle transport. The uniform and flux-weighted
initial distribution read as

ρ(a) =
1

V0
I(a ∈Ω0), ρ(a) =

ve(a)∫
Ω0

dxve(x)
I(a ∈Ω0), (4.4)
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where Ω0 is the injection domain, V0 its volume; I(·) is the indicator function which is 1 if
its argument is true and 0 otherwise.

In the following, we study the transport behavior in terms of breakthrough curves and
spatial particle distributions and subsequently quantify dispersion by analyzing the first
and second displacement moments. The breakthrough curve at a control plane located at
position x1 in the mean flow direction, is defined in terms of the first passage time

τ(x1,a) = min[t|x1(t,a)≥ x1]. (4.5)

where x1(t,a) denotes the position of particle a after time t in mean flow direction. The
breakthrough curve is equal to the PDF of the first passage times,

f (t,x1) =
∫

Ω0

daρ(a)δ [t− τ(x1,a)] . (4.6)

The breakthrough curves contain information on the residence times within the rock sam-
ple or the volume between the inlet and control plane, and the concentration in the effluent
fluid. This information is useful for modeling reactive transport, for instance for appli-
cations to design aquifer decontamination or model laboratory dissolution-precipitation
experiments. Furthermore, we consider the spatial particle distribution, also called propa-
gator, which is defined by

g(x1, t) =
∫

Ω0

daρ(a)δ [x1− x1(t,a)] . (4.7)

This quantity gives information on the dispersion of a solute or particle cloud. Likewise this
information can be used in the modeling of reactive transport and deployment of a reactant
species, as well as for assessment of propagators in NMR imaging of flow and transport in
porous media. The mean displacement and displacement variance are defined by

m1(t) =
∫

Ω0

daρ(a)x1(t,a), (4.8)

σ
2(t) =

∫
Ω0

daρ(a) [x1(t,a)−m1(t)]
2 . (4.9)

They measure the center of mass position and spatial variance of the particle distribution
g(x1, t). The spatial variance is a measure for hydrodynamic dispersion. If its asymptotic
evolution is linear, its growth rate is equal to the hydrodynamic dispersion coefficient.
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4.2.2 Stochastic Model

We formulate a stochastic model for particle motion in the mean flow direction x1 of the
coordinate system based on the stochastic representation of the s-Lagrangian velocity mag-
nitude vs(s,a) as a stationary and ergodic Markov process vs(s) (Puyguiraud et al., 2019a).
The Markov process for vs(s) is characterized by the PDF r(v,s− s′|v′) to make a transi-
tion from v′ = vs(s′) at distance s′ to v = vs(s) at s > s′ and the steady state distribution
ps(v). Both the velocity PDF p(v,s) and the transition PDF r(v,s|v′) satisfy the Chapman-
Kolmogorov equation (Risken, 1996)

p(v,s) =
∞∫

0

r(v,s− s′|v′)p(v′,s′)dv′. (4.10)

The transition probability converges to the steady-state distribution in the limit of s� `c

with `c a characteristic velocity correlation scale,

lim
s→∞

r(v,s|v′) = ps(v). (4.11)

The characteristic correlation scale `c≈ 2.5`p where `p is the characteristic pore length. Eq.
(4.11) implies that the distribution converges to the steady-state PDF P(v) independently
of the initial condition p0(v). The steady state distribution ps(v) is related to the Eulerian
velocity PDF pe(v) through flux weighting (Dentz et al., 2016; Puyguiraud et al., 2019a)

ps(v) =
vpe(v)
〈ve〉

, (4.12)

where 〈ve〉 is the mean Eulerian velocity.
In this framework, the irregular particle motion described by (4.3) is represented by the

stochastic evolution equations

dx̂1(s)
ds

= χ
−1,

dt(s)
ds

=
1

vs(s)
, (4.13a)

where x̂1(s) indicates the position of the particle in the mean flow direction (denoted by the
subscript 1 similarly to Section 4.2.1). Note that the displacement rate ω1(s) in 1-direction
in general fluctuates with s. We represent it here by its average 〈ω1(s)〉= χ−1, where χ is
the advective tortuosity given by (Koponen et al., 1996; Ghanbarian et al., 2013)

χ =
〈ve(x)〉
〈v1(x)〉

. (4.13b)

The advective tortuosity compares the distance s along the streamline with the average lin-
ear distance in the mean flow direction 〈x1(s)〉, see Appendix 4.5.1 for details. It is an
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indicator fort the complexity of the pore space and gives information on advective excur-
sions transverse to the mean flow direction.

The stochastic model (4.13) belongs to the continuous time random walk or time-
domain random walk class of models because the time increment varies between random
walk steps (Noetinger et al., 2016). Different initial particle distributions ρ(a) are in this
framework quantified in terms of the corresponding initial velocity distribution p0(v), this
means in terms of the PDF of velocities ve(x) in the injection domain Ω0,

p0(v) =
1

V0

∫
Ω0

daρ(a)δ [v− ve(a)] . (4.14)

The breakthrough curve f (t,x1) is in this framework given by

f (t,x1) = 〈δ [t− t(x1χ)]〉 , (4.15)

where the angular brackets denote the ensemble average over all particles and t(x1χ) de-
notes the travel time over the streamlines distance s = x1χ . The mean displacement and its
variance are

m1(t) = 〈x̂1[s(t)]〉 , (4.16)

σ
2(t) =

〈
[x̂1[s(t)]−m1(t)]

2
〉
, (4.17)

where s(t) = max [s|t(s)≤ t]. The spatial particle distribution is accordingly given by

g(x1, t) = 〈δ (x1− x̂1[s(t)])〉 . (4.18)

In the following, we briefly review two Markov processes, which model the evolution
of p(v,s) from arbitrary initial conditions, a Bernoulli velocity process (Dentz et al., 2016)
and an Ornstein-Uhlenbeck process (Morales et al., 2017) for the evolution of the normal
scores of velocity.

4.2.2.1 Bernoulli Process

This Markov process for the prediction of the fluid particle velocities is modeled as a
Bernoulli process where the velocity changes after a distance ∆s according to a Bernoulli
trial. This means that the particle velocity vs(s) does not change with probability pB(∆s) =

exp(−∆s/`c) and changes randomly with probability 1− pB(∆s) to a velocity which is sam-
pled from the steady state PDF ps(v). The transition probability r(v,∆s|v′) is then expressed
by (Dentz et al., 2016)

r(v,∆s|v′) = exp(−∆s/`c)δ (v− v′)+ [1− exp(−∆s/`c)]P(v). (4.19)
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The Bernoulli process reproduces qualitatively the evolution of the Lagrangian velocity
statistics, but underestimates the convergence rate of p(v,s) toward its steady state at low
velocities (Puyguiraud et al., 2019a). The Bernoulli process does not account for any ve-
locity dependence of the decorrelation rate and is therefore not capable of capturing the
faster decorrelation of low velocities. Nevertheless, we consider the Bernoulli process as a
possible evolution model for the particle velocities due to its simplicity. In the following,
we refer to this model as Bernoulli model.

4.2.2.2 Ornstein-Uhlenbeck Process

This velocity Markov process considers the evolution of the normal scores

w(s) = Φ
−1 (Π [vs(s)])≡ F [vs(s)], (4.20)

where Φ(w) is the cumulative Gaussian distribution and Π(v) the cumulative steady state
velocity distribution,

Φ(w) =
1+ erf(w/

√
2)

2
, Π(v) =

v∫
0

ps(v′)dv′, (4.21)

where ps(v) is the steady state velocity distribution. The normal scores w(s) follow the
Ornstein-Uhlenbeck process (Gardiner, 2010; Morales et al., 2017)

dw(s)
ds

=−`−1
c w(s)+

√
2`−1

c ξ (s), (4.22)

where ξ (s) is a Gaussian white noise characterized by zero mean 〈ξ (t)〉= 0 and covariance
〈ξ (s)ξ (s′)〉 = δ (s− s′). The Ornstein-Uhlenbeck process is a mean reverting process. In
the absence of the noise terms, w(s) relaxes exponentially fast towards 0. In the presence
of noise, there is a steady state for s� `c, at which w(s) ∼ ξ (s). The transition PDF for
the Ornstein-Uhlenbeck process is given by (Gardiner, 2010)

rw(w,s|w′) =
exp
(
− [w−w′ exp(−s/`c)]

2

2[1−exp(−2s/`c)]

)
√

2π [1− exp(−2s/`c)]
. (4.23)

The velocity values vs(s) are obtained from w(s) at any distance s through the Smirnov
transform (Devroye, 1986)

v(s) = Π
−1(Φ[w(s)])≡ F−1[w(s)]. (4.24)

The velocity transition PDF r(v,s|v′) is thus given by

r(v,s|v′) = rw[F(v),F(v′)]
dF(v)

dv
. (4.25)
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Figure 4.1: Illustration of the subdomain of the Berea sandstone sample under considera-
tion and sample streamlines.

In the following, we refer to this model as the OU model.
The process (4.22) is implemented numerically via an Euler scheme as,

wn+1 = wn− `−1
c wn∆s+

√
2`−1

s ∆sξn, (4.26)

where wn = w(n∆s) and ξn is a Gaussian random variable with 0 mean and unit variance.
Accurate results are obtained using a discretization ∆s≤ `c/10.

4.2.3 Rock Sample, Flow Field and Velocity Statistics

Here we provide a brief summary of the rock sample, numerical methodology and veloc-
ity statistics. Details on the image acquisition and segmentation as well as the flow field
computation can be found in Gjetvaj et al. (2015). Details regarding the particle tracking
computation can be found in Puyguiraud et al. (2019a).

We use a three-dimensional digitized image (9003 voxels) of a sample of a Berea sand-
stone (Upper Berea Sandstone unit, Ohio, USA). Berea sandstone is a sedimentary rock
characterized by medium porosity and permeability values as well as medium pore-scale
structural heterogeneity compared to common reservoir rocks. Because of these average
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properties, its simple composition (quasi pure silica) and its remarkable macroscopic ho-
mogeneity that allows easy comparisons, Berea sandstones are often used as a reservoir
rock standard for experimental/ laboratory works. The image is reconstructed from X-ray
microtomography (Paganin et al., 2002; Sanchez et al., 2012). The material density is
recorded in a raw grey level image, which is is segmented (Smal et al., 2018) in order to
obtain a binary image mapping the solid and the conne porosity. The porosity of the sample
is 0.18. The voxel length is 10−6 m. The average pore length is 1.5 ·10−4 m.

The steady-state Navier-Stokes equations are solved using the SIMPLE method imple-
mented in OpenFOAM (simpleFoam) (Weller et al., 1998) in order to obtain the velocity
components at the center of the voxel surface for the full domain. The mean flow velocity
is aligned with the 1-direction of the coordinate system and given by 〈v1〉= 4.9 ·10−4 m/s.
The characteristic time scale is given by τc = `p/〈v1〉= 3 ·10−1 s. The streamlines starting
at any location in Ω0 are built from the interpolated velocity using quadratic interpolation
at the voxel in contact with the solid and linear interpolation elsewhere (Pollock, 1988;
Mostaghimi et al., 2012). The injection domain Ω0 is a box of an extension of 50 voxels in
mean flow direction and 900 voxels in the directions perpendicular. Figure 4.1 illustrates a
subdomain of the segmented Berea sandstone image and some example trajectories through
the pore-space.

The stochastic models for particle motion described in the previous section require the
knowledge of the velocity correlation length `c, the steady state velocity PDF ps(v) and
the initial velocity PDF p0(v). Puyguiraud et al. (2019a) performed a full statistical anal-
ysis of the velocity statistics of the rock sample under consideration. There, the velocity
correlation length `c is found to be 2.5 times the characteristic pore length `p. The mean
Eulerian velocity magnitude is 〈ve〉 = 8.05 ·10−4 m/s, which give the advective tortuosity
χ = 〈ve〉/〈v1〉= 1.64. The mean s-Lagrangian velocity magnitude is 〈vs〉= 3.4 ·10−3. The
steady state velocity distribution ps(v), the Eulerian velocity distribution pe(v) and the ini-
tial velocity distributions for uniform and flux-weighted injections are shown in Figure 4.2.
All velocity distributions show a strong tailing toward low velocities. For the flux-weighted
injection, the initial velocity PDF p0(v) is close to the steady state PDF ps(v), while for
the uniform injection, p0(v) is close to the Eulerian velocity PDF pe(v) (Puyguiraud et al.,
2019a). The next section studies particle transport through the sample using direct nu-
merical simulations of purely advective particle motion, and its upscaling in terms of the
velocity correlation length `c and velocity PDF ps(v) in the framework of the velocity
Markov models discussed in the previous section.
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Figure 4.2: Probability distribution function of the s-Lagrangian velocity, ps(v) (black
empty circles), the initial velocities for uniform (blue) and flux-weighted (red) injections,
p0(v), and the Eulerian velocity magnitude pe(v) (black full circles).

4.3 Results

We study here the upscaling of the purely advective particle motion in the Berea sandstone
sample discussed in the previous section. Hydrodynamic transport in Berea sandstones is
known to be non-Fickian at the scale of centimeter sized samples (Gjetvaj et al., 2015;
Bijeljic et al., 2011). The direct numerical flow and particle tracking simulations represent
the reference data. The large scale behavior is measured in terms of particle breakthrough
curves at different control planes, the particle displacement variance or dispersion, and
the spatial particle distribution or propagators. These behaviors are then compared to the
ones predicted by the stochastic particle models presented in the previous section, which
quantify the upscaled particle motion.

4.3.1 Breakthrough Curves

The breakthrough curve denotes the residence time distribution of the solute in the do-
main. It may be used to infer the likeliness of chemical reactions to occur, and to assess
the retention or storage potential of the subdomain, for example. Under uniform and ho-
mogeneous flow conditions, the BTC at control plane has an inverse Gaussian shape and
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decays sharply at long times. Under heterogeneous flow conditions breakthrough curves
are characterized by early and late particle arrivals. In the following, we consider BTCs for
flux-weighted and uniform injection conditions and compare them to the predictions of the
upscaled transport models.

4.3.1.1 Flux-Weighted Injection

In this section we use a flux-weighted injection at the inlet for the computation of the
breakthrough curves. The velocity PDF p0(v) at the inlet is close to the stationary PDF
ps(v), see Figure 4.2. This implies that the particle velocities are approximately stationary.
We compare the breakthrough curves of the direct simulation described in Section 4.2.3
to the two CTRW models described in Section 4.2.2. We perform the simulations using
107 particles in the DNS case, while we used 109 for the upscaled models. We compute
arrival times at distances x1 = 6`p which corresponds to the end of the sample, x1 = 36`p,
and x1 = 200`p. To compute the breakthrough curves at distances larger than the sample
size, a particle exiting the sample at the outlet is reinjected at the inlet while conserving the
velocity continuity (Puyguiraud et al., 2019a).

Figure 4.3 displays the breakthrough curves from the DNS and the two stochastic mod-
els. We observe a strong anomalous behavior characterized by early peak arrivals and long
tailing at late times. The late time tails display the power-law t−2 at all distances. The
exponent can be predicted from CTRW theory because it is directly linked to the behavior
of the low velocity part of the steady Lagrangian velocity PDF, see Appendix 4.5.2. The
velocity distribution scales as ps(v) ∝ vβ−1 with β = 1 for the small values of v. This
implies that f (t,x1) ∝ t−2.

The Bernoulli and OU models perform equally well. The early, intermediate, and late
times are well captured even if at the closest control plane the two models do not reproduce
the first arrivals perfectly. The two models give similar results because the injection velocity
PDF is close to the steady-state PDF and therefore the models only need to be able to
preserve this distribution over time, which they are both capable of doing (Puyguiraud
et al., 2019a).

4.3.1.2 Uniform Injection

The results are however different when using a uniform injection as initial condition. Un-
der this condition, the particle velocities are non-stationary. Figure 4.4 displays the break-
through curves computed at the same distances as in the previous section. The late time
slope is very different from the one obtained for the flux-weighted injection. Here, the late
time tailing is governed by the initial velocity distribution p0(v), which at small v scales
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Figure 4.3: Breakthrough curves for a flux weighted injection obtained from the DNS
(circles), the Bernoulli CTRW (dashed line) and OU CTRW (solid line) at planes located
at 6`p, 36`p, and 200`p (from dark blue to red).
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Figure 4.4: Breakthrough curves for uniform injection obtained from the DNS (circles),
the Bernoulli CTRW (dashed line), and the OU CTRW (solid line) at planes located at 6`p,
36`p, and 200`p (from dark blue to red). Inset: Comparison between the uniform and the
flux weighted BTCs for the direct simulation at the plane at 36`p.
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as p0(v) ∝ v−0.8, see Figure 4.2. The initial velocities persist within a distance of about
`c from the inlet. The long time behavior is dominated by strong particle retention in the
vicinity of the inlet and dominated by the transition time over the distance `c,

ψ0(t) =
`c

t2 p0(`c/t) ∝ t−1.2, (4.27)

see also Appendix 4.5.2.
Both, the Bernoulli and OU models provide good predictions of the breakthrough

curves obtained from the DNS. The peak position and width are well captured. Also the
behaviors at intermediate and long times are accurately predicted. Both models give the
correct long time tailing, while the Bernoulli model slightly overestimates the tail com-
pared to the DNS. This can be traced back to the observation that the Bernoulli model
overestimates the persistence of low velocities (Puyguiraud et al., 2019a).

4.3.2 Particle Distribution

In this section we study the evolution of the spatial particle distributions, or propagators
g(x1, t) with focus on the differences in the evolution due to the initial particle distribu-
tion. The propagator at a given time maps the spatial heterogeneity of the velocity field
which controls the spatial distribution of the mass in the system and, for instance, gives
information on the localization of reaction with the solid phase. Thus, together with the
breakthrough curve it allows for a spatio-temporal characterization of the solute distribu-
tion.

Figure 4.5 shows g(x1, t) for uniform and flux-weighted injection conditions at three
different times. In both cases, the particle distributions are asymmetric and characterized
by a leading edge and long spatial tail. These behaviors are caused by the broad distribution
of particle velocities. For the uniform injection, the proportion of particles in low velocity
regions is larger than for the flux-weighted injection. Thus, the tailing at short and inter-
mediate times is stronger in the uniform than in the flux-weighted case. With increasing
time, the spatial distributions lose the memory of the initial condition and assume the same
shape. Note that this is different from the breakthrough curves, whose long time behavior
is dominated by the injection condition.

The OU and Bernoulli models predict the spatial profiles under both injection condi-
tions for times t > τc. For times t < τc, the stochastic models do not capture the trailing tail
in the case of the flux-weighted injection. At times t < τc, the tail of the spatial distribution
in the direct numerical simulation is determined by the velocity components v1(x) < `c/t
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Figure 4.5: Evolution of the DNS (circles), OU model (solid lines), and Bernoulli model
(dashed lines) mean flow direction propagators for (top panel) uniform injection and (bot-
tom panel) flux-weighted injection at times t = 3.5 ·10−1τc (blue), t = 3.5 ·102τc (orange),
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in the mean flow direction, this means by particles that persist in their initial velocity. Thus,
if

p1(v) =
∫

Ω0

daρ(a)δ [v− v1(a)] , (4.28)

is the PDF of the 1-component of the particle velocities in the injection domain, the particle
distribution at early times is obtained through the variable transform x1 = v1t as

g(x1, t) = t−1 p1(x1/t). (4.29)

In the upscaled stochastic particle model, likewise, the tail of the spatial distribution is due
to the particle velocities that persist in their initial velocity. The distance traveled at the
initial velocity here, however, is x1 = χv0t because v0 is the initial velocity magnitude.
Thus, the upscaled particle model predicts for the early time distribution

g(x1, t) = χt−1 p0(χx1/t), (4.30)

where p0(v) is the PDF of the velocity magnitude in the injection domain. The PDFs of
the 1-component and magnitude are in general different, which explains the difference in
the tailing behaviors for small times in the case of flux-weighted injection. For the uniform
injection, the distributions of the 1-component and the absolute value of velocity are similar
in shape, which explains the good match between the stochastic models and the DNS data.
While the stochastic models correctly capture the memory of the injection condition on the
evolution of the spatial distribution, we do not expect them to be valid at short times and
distances, for which the behaviors depend on the local details of the velocity fluctuations.

4.3.3 Dispersion

In this section, we consider the displacement mean and variance. The evolution of the dis-
placement mean is an indicator of t-Lagrangian stationarity, while the displacement vari-
ance gives information on particle dispersion. We have seen in the previous section that
the Bernoulli and OU models perform equally well in the prediction of the spatial profiles.
Thus, here, we compare the DNS data for the displacement mean and variance with the
prediction of the stochastic particle model based on the OU model only.

Figure 4.6 shows the evolution of the mean displacement for uniform and flux-weighted
injection conditions. The early time behavior is in both cases linear and given by 〈v1〉t,
where

〈v1〉=
∞∫
−∞

dvvp1(v) (4.31)
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ment variance in time for both uniform (blue) and flux-weighted (red) injections. The DNS
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is the average over the 1-component of the particle velocities in the injection domain. Thus,
the slope for the flux-weighted injection is larger than for the uniform injection. At t > τc,
the initial linear behavior crosses over to the long time behavior, which is independent
from the injection conditions. For the steady state velocity distribution ps(v) illustrated in
Figure 4.2, for which ps(v) ≈ constant at low velocities, CTRW theory predicts m1(t) ∝

t/ ln(t) (Comolli and Dentz, 2017). This is confirmed by the DNS data. Both the OU
model and the Bernoulli model (not shown) predict the evolution of the mean velocity,
with a slight mismatch at short times for the reasons discussed above.

Figure 4.6 shows the evolution of the displacement variance σ2(t) for uniform and
flux-weighted initial conditions. At early times, the behaviors are ballistic, this means

σ
2(t) = σ

2
v1

t2, (4.32)

where σ2
v1

is the variance of p1(v). As, for the mean, the displacement variance is larger for
the flux-weighted than for the uniform injection. At t > τc, the variance crosses over from
the ballistic toward the asymptotic regime. For t � τc, CTRW theory predicts σ2(t) ∝

t2/ ln(t)3 (Comolli and Dentz, 2017). The behavior is superdiffusive. Both the OU and
Bernoulli (not shown) models predict the evolution of the displacement variance with a
mismatch in the ballistic early time behaviors because the stochastic models are determined
by the statistics of the velocity magnitude.

4.4 Conclusions

Using direct three-dimensional pore-scale simulations of flow and transport in a sample of
Berea sandstone as a reference case, we have shown that the upscaling of pore-scale dis-
persion can be accurately performed using a stochastic approach based on velocity Markov
models for equidistantly sampled particle velocities. The upscaled model is implemented
in the framework of a time-domain or continuous time random walk approach, which de-
scribes particle motion in equidistant spatial steps with random transition times. The pre-
sented modeling approach is predictive in the sense that it depends on the Eulerian velocity
distribution and advective tortuosity, both flow attributes, and the average pore length which
is a medium attribute. It is worth noticing that this dependence allows, in turn, inferring
information on the velocity statistics and pore length from (experimental) observations of
breakthrough curves, spatial particle distributions and/or displacement moments.

Our analysis has shown that the observed transport behaviors are sensitive to the initial
distribution of the tracer particles. Breakthrough curve tailing, for example, can depend
on the initial velocity distribution. Under this condition, the breakthrough curve tail gives
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information on the steady-state velocity distribution in the sample only if the injection do-
main is already representative (large enough) for the initial velocity distribution to be equal
to the stationary PDF, otherwise, the breakthrough curve gives information on the local ve-
locities in the injection domain. Similarly, the spatial particle distribution depends at short
and intermediate times on the injection condition. At late times, however, the memory
of the initial condition diminishes and the shape becomes independent from the injection
condition. This is also reflected in the displacement mean and variance. The early time
behaviors of the displacement mean and variance give information on the velocity mean
and variance in the injection domain. At late times, the displacement mean shows slightly
sublinear behavior, the variance being superlinear, which is due to the tail of the steady state
velocity distribution toward low velocity values. In this sense, the evolution of the moments
can be seen as a scan through the velocity PDF. At short times, it is dominated by the high
and intermediate velocity values, which determine the velocity mean and variance, at long
times by the low velocities. The upscaled stochastic particle models can be conditioned
on the injection condition through the distribution of initial particle velocities and is able
to predict the dependence on the initial condition and full evolution of particle dispersion.
We consider two velocity Markov models, the Bernoulli and Ornstein-Uhlenbeck models,
which both are parameterized by the velocity correlation length and steady s-Lagrangian
velocity PDF. While both models predict the evolution from an initial velocity PDF toward
the steady state, they differ in the convergence rates as discussed in (Puyguiraud et al.,
2019a). Both processes predict the transport behavior and dependence on the initial distri-
bution, which indicates that here the details of the evolution are secondary compared to the
fact that there is an evolution.

The presented analysis and the derived stochastic particle models consider purely ad-
vective transport. Thus, they are directly relevant for transport scenarios characterized by
high Péclet numbers, such as solute transport at high flow rates and passive particles char-
acterized by low diffusion coefficients. The stochastic model is based on a Markov model
for the streamwise particle velocity, this means that velocities are sampled advectively at
a constant frequency in space. The breakthrough curve tailing, for example, is due to the
persistence of low velocities over a constant length scale, the pore length. For finite Péclet
numbers, particle velocities may be decorrelated due to diffusion across streamlines and
low advective transition times may be cut off at the characteristic diffusion time. Thus, we
expect anomalous behavior to persist in an intermediate regime depending on the Péclet
number and to transition towards normal behavior at times larger than the characteristic
pore-scale diffusion time.
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Hydrodynamic dispersion and other pore-scale phenomena have their origins in pore-
scale velocity fluctuations. Thus, the presented upscaled stochastic model and the associ-
ated parameterization can serve as a basis for the systematic quantification of the impact of
pore-scale velocity fluctuations on Darcy scale transport phenomena.

4.5 Appendix

4.5.1 Tortuosity

We derive here the average of the ω1(s,a) along a streamline under ergodic conditions. To
this end, we first note that the position x1(s,a) can be written by integration of (4.3) as

x1(s,a) = s
[

1
s

∫ s

0
ω1(s′,a)ds′

]
. (4.33)

The expression in the square brackets denotes the average of ω1(s,a) along a particle tra-
jectory. At the same time, it denotes the ratio of linear to streamwise distance,

〈ω1(s,a)〉s = lim
s→∞

1
s

∫ s

0
ω1(s′,a)ds′ =

x1(s,a)
s

, (4.34)

where the angular brackets with subscript s denote the streamwise average along a trajec-
tory. The average of ω1(s,a) over an ensemble of particles is defined by

〈ω1(s,a)〉= lim
V0→∞

1
V0

∫
Ω0

v1[x(s,a)]
ve[x(s,a)]

ρ(a)da. (4.35)

We consider a flux-weighted initial condition, see (4.4). Under ergodic conditions, this
initial condition corresponds to the steady state velocity PDF ps(v), which is equal to the
flux-weighted Eulerian velocity PDF. This can be seen by using

ρ(a) =
1

V0

ve(a)
〈ve(x)〉

I(a ∈Ω0), (4.36)

in the limit V0→ ∞. Also, Koponen et al. (1996) pointed out that it is natural for porous
media to consider a flux-weighted average, see also Ghanbarian et al. (2013). Furthermore,
under ergodic conditions, the average over a single particle trajectory is equal to the average
over the initial ensemble of particles and so

〈ω1(s,a)〉s = 〈ω1(s,a)〉=
〈x1(s,a)〉

s
= χ

−1. (4.37)

Using expression (4.36) in (4.35), we obtain

〈ω1(s,a)〉= lim
V0→∞

1
V0

∫
Ω0

v1[x(s,a)]
ve[x(s,a)]

ve(a)
〈ve(x)〉

da. (4.38)
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In order to evaluate this expression, we perform the variable change a→ x(s,a),

〈ω1(s,a)〉= lim
V0→∞

1
V0

∫
Ω(s)

v1[x(s,a)]
ve[x(s,a)]

ve(a)
〈ve(x)〉

J(a,s)−1dx, (4.39)

where J(a,s) is the Jacobian of the transformation. It can be determined by noting that (Batch-
elor, 2000, p. 75)

dJ(a,s)
ds

= J(a,s)∇ · v[x(s,a)]
ve[x(s,a)]

. (4.40)

This differential equation can be integrated by noting that ∇ ·v(x) = 0 and

dve[x(s,a)]
ds

= ∇ve[x(s,a)] ·v[x(s,a)], (4.41)

which follows by using the chain rule and (4.3). Thus, we obtain for the initial condition
J(a,s = 0) = 1 that

J(a,s) =
ve(a)

ve[x(s,a)]
. (4.42)

Inserting this expression into (4.38) gives

〈ω1(s,a)〉= lim
V0→∞

1
V0

∫
Ω(s)

v1(x)
〈ve(a)〉

dx =
〈v1〉
〈ve〉

. (4.43)

This result is consistent with Koponen et al. (1996). This implies that at s� `p, we can set

〈ω1(s,a)〉= χ
−1 =

〈v1〉
〈ve〉

. (4.44)

4.5.2 Continuous Time Random Walk

For transition length of the order of the correlation length `c, subsequent particle velocities
can be considered independent and thus, the space-time particle motion (4.13a) may be
approximated by

xn+1 = xn +
`c

χ
, tn+1 = tn + τn, (4.45)

where xn = x(sn) with sn = n`c. The random transition time τn is given by

τn =
`c

vs(sn)
. (4.46)

The time increments for n > 0 is distributed as

ψ(t) =
`c

t2 ps(`c/t). (4.47)
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For n = 0, the transition time PDF is distributed according to

ψ0(t) =
`c

t2 p0(`c/t). (4.48)

Under steady state conditions, this means for p0(v) = ps(v) and thus ψ0(v) = ψ(v), Equa-
tions (4.45) describe a continuous time random walk as discussed in Berkowitz et al.
(2006). Thus, the asymptotic behavior of the breakthrough curves and displacement mo-
ments can be predicted based on the scalings of the transition time distribution. For
ψ(t) ∝ t−1−β at large times, the breakthrough curves scales as f (t,x1) ∝ t−1−β , the mean
displacement scales as m1(t) ∝ t and the displacement variance as σ2(t) ∝ t3−β . Note that
this scaling for ψ(t) implies that the velocity distribution ps(v) ∝ vβ−1 at small velocities.



a





CHAPTER 5 
 

Is there a 

Representative  

Elementary Volume for 

Anomalous Dispersion? 



a



Chapter 5

Is there a Representative Elementary
Volume for Anomalous Dispersion?

5.1 Introduction

The notion of a representative elementary volume (REV) lies at the heart of macroscopic
(continuum) descriptions for systems that exhibit small scale structural and geometric dis-
order, and phase segregation (solid and void phase, for example), features which are usually
referred to as material heterogeneity. In the frame of continuum approaches, the REV is
associated to a point of the continuous field where average properties, that are supposed to
denote the effective properties of the material, are allocated. For instance the permeability,
from which the average fluid velocity is derived, and the hydrodynamic dispersion coeffi-
cient are critical properties for modeling steady state flow and solute transport, respectively.
The REV corresponds to the (minimum) volume required to evaluate the effective proper-
ties of a heterogeneous material or, in other words, the minimum volume above which the
properties are stationary. This is illustrated in Figure 5.1 for the ratio of void to bulk vol-
ume. Porosity is defined as the constant limit value of the ratio φ` between void and bulk
volume

φ` =
1
V`

∫
Ω`

dxI(x ∈Ω f ), (5.1)

where Ω f denotes the fluid domain, Ω` the bulk volume on a scale `, V` its volume, and I(·)
is the indicator function, which is equal to 1 if its argument is true and 0 otherwise. The
length scale ` at which φ` stabilizes defines the REV scale.

Accordingly, the REV is clearly definable for two extreme cases: 1) unit volume in a
periodic microstructure, and 2) a volume containing a large set of microscale structures
displaying homogeneous and ergodic properties. The existence of the REV relies on the

110
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Figure 5.1: Porosity measured in a cube of increasing side length cube (x-axis) centered in
the middle of the Berea sandstone sample studied in Section 5.2. The side length of the full
sample is 6`p and its porosity is 0.182 (gray dashed line). `p ≈ 1,5 · 10−4 m denotes the
average pore length.

existence of scale separation of spatial medium fluctuations. An REV cannot be defined
for continuously hierarchized heterogeneous media such as fractal materials. The REV is
typically determined from applying this concept to the material microstructure and specifi-
cally to its simplest quantitative notion, which is its porosity. Porosity is easily measurable
at laboratory scale and can also be determined at pore-scale by using imaging methods
such as computed microtomography which allows characterizing the micro-structures over
volumes that are typically larger than the REV. Since the REV can be well-defined for
porosity, it is generally assumed that this definition also implies the existence of transport
relevant parameters such as the specific discharge and the hydrodynamics dispersion coef-
ficients. The former represents the mean pore velocity, the latter quantifies its fluctuations.
The values of these parameters are considered to be well-defined and constant on the REV
scale. Note that assuming the specific discharge constant within the REV implies that the
product of permeability and the pressure gradient is constant. This is implied by the Darcy
equation, which states

q =− k
µ

dP(x1)

dx1
, (5.2)

where k is permeability, P(x1) is pressure and µ dynamic viscosity. The assumption that
the REVs for the porosity and the specific discharge are the same is not evident. The as-
sumption that the REVs for the porosity and for the hydrodynamics dispersion coefficients
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are similar is even less evident because the later encompasses the impact of pore-scale ve-
locity fluctuations. Yet, if this assumption holds, average solute transport can be described
by the advection-dispersion equation (ADE) (Bear, 1972)

φ
∂c(x1, t)

∂ t
+q

∂c(x1, t)
∂x1

−D
∂ 2c(x1, t)

∂x2
1

= 0. (5.3)

This approach described Darcy-scale transport in terms of porosity φ , specific discharge q

and the hydrodynamic dispersion coefficient D .
Experimental (Moroni and Cushman, 2001; Cortis and Berkowitz, 2004; Holzner et al.,

2015; Morales et al., 2017) and numerical (Bijeljic and Blunt, 2006; Bijeljic et al., 2011;
Liu and Kitanidis, 2012; de Anna et al., 2013; Kang et al., 2014; Meyer and Bijeljic, 2016;
Puyguiraud et al., 2019a; Dentz et al., 2018) porescale studies observed deviations from
predictions based on the ADE (5.3). This includes tailing in solute breakthrough curves,
non-linear growth of dispersion and non-Gaussian particle distributions and propagators.
Such behaviors were modeled based on non-local transport approaches such as multirate
mass transfer and continuous time random walks (Berkowitz et al., 2006; Noetinger et al.,
2016) as well as fractional dynamics (Cushman and Moroni, 2001).

In this paper, we investigate the notion of REV for non-Fickian dispersion. In this
study, we scrutinize the assumptions underlying modeling approaches for Fickian and non-
Fickian dispersion and the relation with the notion of the REV. This study is organized as
follows. In Section 5.2.2.1 we discuss the bases of the ADE framework and we include a
critical revision of its limitations. In Section 5.2.2.2 we discuss the framework of continu-
ous time random walk models and investigate what underlying assumptions they are relying
on. This leads us to define, in Section 5.2.3 a Eulerian REV for anomalous transport and to
illustrated its evaluation from computations performed using a digitized volume of a real
rock sample in Section 5.2.5. In Section 5.3.1 we successfully predict the transport on this
sample with a CTRW for purely advective transport while in Section 5.3.2 we elaborate on
the processes to account for once the diffusion is introduced. In Section 5.3.3 we discuss
the convergence to asymptotic dispersion for different Péclet regimes.

5.2 Dispersion Upscaling and the Representative Elemen-
tary Volume

In this section, we consider the assumptions that underlay descriptions of solute dispersion
by advection-dispersion models and continuous time random walks. From these consid-
erations we propose the definition of an REV in terms of the Eulerian flow statistics, and
discuss conditions on the Lagrangian velocity statistics.
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5.2.1 Porescale Flow and Transport

Porescale flow is described here by the Stokes equation

∇
2u(x) =−∇p(x)

µ
, (5.4)

together with incompressibility ∇ ·u(x) = 0. The mean pressure gradient is aligned with
the 1-direction of the coordinate system. We consider here purely advective transport that
can be described by the kinematic equation

dx(t,a)
dt

= v(t,a), (5.5)

where x(t = 0,a) = a and v(t,a) = u[x(t,a)] is the Lagrangian velocity. We disregard here
diffusion and focus on particle advective motion along streamlines as the only mechanism
by which the velocity field can be sampled. The impact of diffusion on the results presented
in the following are discussed below. Equation (5.5) may be transformed into streamlines
coordinates t→ s, where

ds(t)
dt

= v(t), (5.6)

where v(t) = |v(t)|. This gives the equivalent system of equations

dx(s,a)
ds

=
v(s,a)
v(s,a)

,
dt(s,a)

ds
=

1
v(s,a)

. (5.7)

5.2.2 Dispersion

We consider the conditions under which pore-scale velocity fluctuations can be quantified
by the concept of hydrodynamic dispersion and how this relates to the notion of an REV.
Then, we discuss the same questions for continuous time random walk models to upscale
anomalous dispersion.

5.2.2.1 Fickian Dispersion

In order to identify the basic assumption underlying the ADE formulation of Darcy-scale
transport, we consider the Langevin equation equivalent to the ADE (5.3), which is given
by (Gardiner, 2010)

dx(t)
dt

= v1 + v′1(t), (5.8)



114 CHAPTER 5. IS THERE AN REV FOR ANOMALOUS DISPERSION?

where we decomposed the particle velocity v1(t) into its mean v1 and fluctuation v′1(t). The
mean pore velocity is v1 = q/φ . The velocity fluctuation v′1(t) is represented by a stationary
Gaussian random process characterized by 0 mean and the covariance function

〈v′1(t)v′1(t ′)〉= 2Dδ (t− t ′), (5.9)

where D is the hydrodynamic dispersion coefficient and δ (t) is the Dirac Delta. The an-
gular bracket denotes the average over all noise realizations. With these properties of the
velocity fluctuations, Equation (5.8) describes Brownian dynamics.

The representation of the velocity fluctuations as a δ -correlated Gaussian process is
based on several conditions. First, the velocity process needs to be stationary and ergodic.
This means that its mean and variance depend only on the time lag and not on the absolute
time. Second, velocity fluctuations decay exponentially fast on a characteristic correlation
time scale τc. Furthermore, based on the assumption that the velocity distribution has finite
variance, the displacement distribution, which is the sum of random velocity increments,
converges towards a Gaussian distribution as time increases. This is a consequence of the
central limit theorem (Gardiner, 2010) and warrants the modeling of the statistics of v′1(t)

as Gaussian. The correlation model (5.9) is valid at observation times that are much larger
than the correlation scale τc, which can be related to the characteristic advection time over
a characteristic length scale `c,

τc =
`c

v1
. (5.10)

This implies that for time t� τc, particles must have access to the full spectrum of velocity
variability. The Langevin equation (5.8), which is valid at t� τc, thus implies that at each
random walk step, particles can sample the full spectrum of random velocities. Particles
become statistically equal on the time scale τc. This temporal notion can be related to
a spatial REV scale through the length scale `c that is assumed to mark the correlation
time together with the mean velocity v1. Thus, the REV scale is supposed to contain a
representative set of flow velocities that particles can sample with equal probability. This
is discussed further in Section 5.2.3.

5.2.2.2 Anomalous Dispersion

As outlined in the previous section, Brownian dynamics describe dispersion at times that
are much larger than a typical correlation scale τc, which is equal to the transition time over
an average pore length by the mean flow velocity. In order to scrutinize this condition, let
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Figure 5.2: Time series of velocity magnitude of experienced by a particle in the three-
dimensional digitized Berea sandstone sample shown in Figure 5.1. The intermittency is
more visible in the linear plot (top) while the second plot (bottom) gives more information
on the low velocity behavior.

us consider local transition times over characteristic distance `c. According to (5.7), we
can write

τ =

s+`c∫
s

ds′

v(s′)
≈ `c

v
, (5.11)

because v(s′) can be considered approximately constant over the length of a pore (Saffman,
1959). This implies that the persistence time of particles with small velocities may be
much larger than suggested by τc. Indeed, porescale velocity time series have been shown
to display intermittent patterns, this means they are characterized by long periods of small
velocities and rapid fluctuations of large amplitudes (de Anna et al., 2013; Kang et al.,
2014; Morales et al., 2017; Puyguiraud et al., 2019a), see also Figure 5.2. These patterns
are indicative of a broad distribution of characteristic time scales. In fact, if the variance of
τ is infinite, a sizeable amount of particles exhibits persistence times τ � τc. This means,
particles do in general not become statistically equal on τc, which invalidates the central
assumption of the Brownian dynamics approach underlying Fickian dispersion. We will
show below, that this property does not invalidate the existence of an REV.

Particle velocities vary on spatial scales imprinted in the medium structure rather than
on a fixed times scale (Kang et al., 2014; Puyguiraud et al., 2019a). This property is ac-
counted naturally by transport models in terms of continuous and time-domain random
walks (Berkowitz et al., 2006; Painter and Cvetkovic, 2005). In fact, particle motion along
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the mean flow direction in these frameworks can be described by

xn+1 = xn +
`c

χ
, tn+1 = tn +

`c

vn
, (5.12)

where, the particle velocities vn are independent random variables. For n = 0, they are dis-
tributed according to an initial velocity distribution p0(v). For n≥ 1, they are independent
identically distributed according to the flux-weighted Eulerian velocity distribution (Dentz
et al., 2016)

ps(v) =
vpe(v)
〈ve〉

. (5.13)

This means two things. First, at each random walk step particles can sample the full ve-
locity spectrum meaning that they are statistically equal. Second, the Lagrangian velocity
statistics are stationary and ergodic. Particularly, they evolve toward their stationary steady
state distribution on the length scale `c. For these conditions to hold, it is necessary that
particles can sample on the support scale a representative part of the Eulerian velocity dis-
tribution. Thus, in the following, we define criteria for the existence of a velocity REV in
terms of the convergence of the velocity statistics with increasing support scale. Further-
more, we discuss the issue of ergodicity and stationarity.

5.2.3 Representative Elementary Volume

As discussed in the previous section, the representativeness of the velocity statistics sam-
pled in the support volume and the existence of a stationary velocity distribution are key
properties for transport upscaling for both Fickian and non-Fickian dispersion. Thus, for
the support scale to be a transport REV, the velocity statistics need to be representative
of the (stationary) Eulerian velocity statistics in the medium. To exhibit a representative
velocity PDF, a sample must first be an REV for porosity because the Eulerian velocity
distribution is linked to the pore size distribution (de Anna et al., 2017; Dentz et al., 2018)
and thus, an evolving porosity would translate into evolving velocity statistics. If the sam-
ple is an REV for porosity, then the Eulerian velocity statistics may be representative. We
define an REV in terms of the Eulerian velocity PDF in a similar manner as the porosity
REV. A sample is considered an Eulerian REV if it is large enough for the Eulerian velocity
distribution to become stationary. To quantify the evolution of the Eulerian velocity PDF
in function of the support scale, the Eulerian velocity PDF is sampled on growing domains
starting from a small volume in the center of the sample to the full sample volume. The
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spatially sampled PDF of the magnitude of the flow velocity ve(x) = |v(x)| is defined as

p`(v) =
1

φ`V`

∫
Ω`

dxδ [v− ve(x)]I(x ∈Ω f ), (5.14)

where Ω` is the physical domain on which the PDF is computed, and V` and φ` are its
volume and its porosity, respectively. In order to quantify accurately the convergence of
these distributions toward the full sample volume Eulerian PDF pe(v), we define the dis-
tance between p`(v) and pe(v) based on the Kullback-Leibler (KL) divergence (Kullback
and Leibler, 1951) as:

dKL(pe, p`) =
∞∫

0

dvp`(v) ln
[

p`(v)
pe(v)

]
. (5.15)

The Kullback-Leibler divergence has been used to compare evolving PDFs to a reference
distribution, (see for example Bigi, 2003; Robert and Sommeria, 1991; Lindgren et al.,
2004). When dKL = 0 it means that the distributions are identical (see Appendix, Section
8.3 for more details on the KL divergence). Here we consider a threshold value of ε = 10−2

as the criterion for when the support volume can be considered an REV.

5.2.4 Lagrangian Ergodicity

As discussed above, convergence of the Eulerian velocity statistics on the support scale is
not a sufficient condition for the upscaled random walk models discussed above to hold
because these models also assume that particles can sample at each step from the same
stationary Lagrangian velocity PDF, independently from the initial velocity distribution. In
order to illustrate this, let us consider a porous media model consisting of a distribution of
isolated straight capillaries. The support scale may be an REV for the Eulerian velocities.
However, since the flow velocities are constant along streamlines, particles are never able
to sample the full velocity spectrum.

The issue of Lagrangian ergodicity for porescale flow has been studied in detail in
Puyguiraud et al. (2019a) in terms of the evolution of the s-Lagrangian velocity PDF, which
is defined by

p̂s(v,s) =
∫

daρ(a)δ [v− v(s,a)], (5.16)

where ρ(a) is the initial particle distribution. We measure convergence of p̂s(v,s) toward
the steady state ps(v) by the KL divergence dKL(p̂s, ps).
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5.2.5 Berea Sandstone Sample

Here we illustrate the conditions under which anomalous dispersion can be described by
CTRW approaches for a Berea sandstone sample. We first consider the REV definitions in
terms of porosity and Eulerian velocity statistics. Then, we discuss the second condition,
which refers to ergodicity and stationarity of the Lagrangian velocity series.

5.2.5.1 Representative Elementary Volume

In this section we study the concept of the REV in the light of the Eulerian velocity magni-
tude for the Berea sandstone sample illustrated in Figure 5.1 (see also, Puyguiraud et al.,
2019a,b).

We first probe if the sample under consideration is a porosity REV. Figure 5.1 displays
the evolution of the ratio φ` between void and bulk volume computed on a size increasing
domain that starts from a single point in the center of the sample to the total sample volume.
The porosity starts from a value of one since the initial volume is situated in the void space,
it then quickly evolves towards the medium average porosity φ = 0.182 after about 4.5`p.

Since the sample is an REV for porosity, we now investigate the convergence of the
Eulerian velocity statistics with increasing support scale. Figure 5.3a displays the Eulerian
velocity PDFs respectively computed on cubes of volume V = 4 ·10−8VT , V = 1 ·10−6VT ,
V = 10−5VT , V = 0.125VT , and VT , where VT denotes the volume of the full sample. We
observe that the distribution evolves toward the full sample distribution as the volume of the
cube increases. For V = 4 ·10−8VT we only observe a small range of velocities. V = 1 ·10−6

exhibits a distribution that recalls the velocity spectrum sampled in a single pore. The dis-
tribution sampled in V = 10−5VT corresponds to the average of several pore velocity distri-
butions. Finally, despite being 8 times smaller, the volume V = 0.125VT seems to exhibit
the same statistics as VT . To quantify accurately the convergence toward the Eulerian PDF,
we use the aforementioned KL distance between the successive p`(v) and pe(v). The dis-
tance between the full sample velocity PDF and the subsequent growing cubes’ velocity
PDFs is displayed in Figure 5.3b. For small volumes V the distance to the velocity PDF of
full sample is large since the volume only contains a restricted range of the sample velocity
spectrum, the distance then decreases quickly as the evolving distribution approaches the
reference distribution. A distance dKL < 10−2 is reached for a volume V ≈ 0.125VT . In
other words, the limit distribution is attained. This indicates that the sample contains a
Eulerian velocity REV.
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Figure 5.3: (Left) The Eulerian velocity PDF computed on cubes centered in the middle of
the sample of sizes V = 4 ·10−8VT (red solid line), V = 1 ·10−6VT (dark orange solid line),
V = 10−5VT (light orange solid line), V = 0.125VT (light blue solid line) and VT (navy blue
circles). (Right) The KL distance between the full sample Eulerian velocity PDF and the
Eulerian velocity PDFs computed on growing volumes from V = 0 to V =VT . The x-axis
represents the cube side length; the side length of the full sample is 6`p.
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Figure 5.4: (Left) The Lagrangian s-velocity PDF along an ensemble of streamlines mea-
sured at distance x ≈ `p

20 (light blue circles), x ≈ `p (light orange circles), x ≈ 4`p (dark
orange circles) and x = 6`p (red circles. The blue solid line denotes the initial velocity
PDF at x = 0 and the red solid line indicates the steady-state Lagrangian s-velocity PDF.
(Right) The KL distance (orange curve) between the steady-state Lagrangian velocity PDF
and the successive Lagrangian velocity PDFs computed at increasing distances (from x = 0
to x = 6`p) along the mean flow direction.
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5.2.5.2 Lagrangian Ergodicity

We have seen that an REV for the Eulerian velocity magnitude exists. This, however, is
not sufficient for a CTRW based formulation to be valid for the upscaling of transport
as discussed in Section 5.2.2.2. This means that the velocity statistics need to reach the
steady state for distances of the order of the velocity correlation length, which sets another
scale relevant for the definition of a transport REV. A representative part of the velocity
spectrum can be sampled for transitions between REVs. We consider now the convergence
from a given initial velocity distribution toward the steady state. To investigate accurately
this evolution, we injected at the inlet particles in a set velocity range v ∈ [vl,vu] and gave
the same weight to the whole range (see blue solid curve in Figure 5.4a). The resulting
distribution is far from the steady-state distribution. We display the spatial evolution of
this distribution in Figure 5.4a. The distribution quickly evolves to the steady-state and is
representative of ps(v) after x = 5`p.

We investigate quantitatively this convergence by computing the KL divergence be-
tween the steady-state velocity PDF ps(v) and the distributions ps(v,s) computed after
different distances s along the particle streamlines (see, also Puyguiraud et al., 2019a).
Figure 5.4b displays the evolution of the KL distance. Since the distance is computed in
the direction of the streamlines, we projected it onto the mean flow direction using the
full sample tortuosity χ: x = s/χ , where χ is the tortuosity. At small distances the KL
divergence between the evolving PDF and the steady-state is large because the injection
PDF is very different from the steady state distribution, it then evolves quickly to reach a
satisfying threshold dKL[ps(v,s), ps(v)]≤ ε , where ε = 5 ·10−2 after a distance x = 4`p in
the mean flow direction. Despite the fluctuations that we observe at distance x > 4`p, we
consider the convergence to be achieved since the KL distance remains below ε . These
small fluctuations are due to the complexity of the geometry that particles encounter.

Since the sample fulfills the stationarity conditions that we require, it satisfies all the
necessary criteria for the use of CTRW methods. It is characterized by the steady-state
distribution (see, Figure 5.4a, red solid line). Note that stationarity of the particle velocity
statistics is the necesssary condition for particle velocity series to be ergodic as discussed
in Puyguiraud et al. (2019a).
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Figure 5.5: Dispersion in the direction of the mean flow versus normalized time com-
puted using the direct particle tracking simulation (circles) and computed using the one-
dimensional uncorrelated CTRW model (solid line) for uniform (blue) and flux weighted
(red-orange) injection conditions. The theoretical late time scaling t

ln3(t)
is materialized by

the black solid line.

5.3 Implications for Darcy Scale Transport

5.3.1 Purely Advective Transport

In this section, we compare the results obtained for the upscaling of the transport using an
uncorrelated one-dimensional CTRW model with those obtained from the direct particle
tracking simulations performed on the 3D binarized digital sample displayed in the inset of
Figure 5.1. Details of the particle tracking methodology can be found in Puyguiraud et al.
(2019a) and we will just summarize the main features of the calculations: the flow velocity
field was computed by solving the Stokes equation using OpenFOAM, the streamline are
obtained from a reconstruction algorithm based on local velocity interpolation (Mostaghimi
et al., 2012), particles are injected at the sample inlet in a small volume displaying a velocity
distribution p0(v). For the CTRW the initial particle velocity is picked in the initial velocity
distribution p0(v) and the subsequent ones are picked in the steady-state ps(v), the particle
motion and time then follow the set of equations (5.12). From this model definition, one
can understand the need for a REV since the model relies on a steady-state distribution that
parameterize all the particles. Without this REV definition, this type of CTRW would not
be valid. For illustration we consider the dispersion coefficient D(t) in the direction of the
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mean flow, which is defined in terms of the displacement variance as following:

D(t) =
1
2

d
dt

[
〈x(t)2〉−〈x(t)〉2

]
. (5.17)

Figure 5.5 shows the temporal evolution of the dispersion coefficient in the mean flow di-
rection for both uniform and flux weighted boundary conditions. The satisfactory match
between the results of the 3D particle tracking simulations and the 1D CTRW model indi-
cates firstly that the CTRW model is a powerful upscaled model and secondly validate the
concept of the REV for anomalous dispersion. The model matches the theoretical late time
scaling t/ln(t)3 (Comolli and Dentz, 2017). This model allows for an accurate computation
of the transport properties based on the Eulerian velocity distribution, the tortuosity, and
the correlation distance of the sample.

For a stationary initial velocity distribution p0(v) = ps(v), the CTRW framework gives
for the bulk concentration p(x, t) the governing equation

∂ p(x, t)
∂ t

=

t∫
0

dt ′K (t− t ′)
[
p(x− `c/χ, t ′)− p(x, t ′)

]
, (5.18)

where K (t) is defined through its Laplace transform by

ˆK (x,λ ) =
λψ̂(x,λ )
1− ψ̂(λ )

, (5.19)

where ψ̂(x,λ ) is the Laplace transform of the joint distribution of space and time ψ(x,λ ).
The transition time distribution is given by

ψ(t) =
`c

t2 ps(`c/t). (5.20)

First, we notice that p(x, t) = φc(x, t), where φ is porosity and c(x, t) is the concentration
in the fluid phase only. Second Taylor expansion of the right side of (5.18) up to second
order in `c gives for c(x, t)

φ
∂c(x, t)

∂ t
=−

t∫
0

dt ′K (t− t ′)
[
`cφ

χ

∂c(x, t ′)
∂x

− `2
cφ

2χ2
∂ 2c(x, t ′)

∂x2

]
, (5.21)

which describes the evolution of the concentration, see also Appendix 8.2.2.

5.3.2 Advective-Diffusive Transport

The impact of diffusion in particle transitions concerns on one hand the spatial motion,
on the other hand the temporal transitions. Here, we focus on the impact on the temporal
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transitions. Diffusion induces a cut-off in the distribution of transition time because the
maximum transition time over the length `c is τD = `2

c/D. This is incorporated into the
CTRW scheme (5.12) by modeling the transition time τ as the harmonic sum between the
purely advective and purely diffusive transition times

τ =
τDτv

τD + τv
. (5.22)

This definition aims to account for both the advective and diffusive impact. It is a function
of the Péclet number. This definition follows the time domain random walk methodology
for the computation of the transition times (see, for example, Russian et al., 2016). The
definition of the transition times ψ(τ) can then be expressed as

ψ(τ) =
∫

Ps(v)δ
(

t− τDτv

τD + τv

)
dv. (5.23)

In Appendix 8.2.1 we derive

ψ(τ) =
`c

t2 ps

(
`c

τD− t
τDt

)
. (5.24)

The dependence on τD implies a sharp cut-off of the transition time for t > τD because
ps(v) = 0 for v < 0. The governing equation for the bulk particle density is given by (5.21),
where the kernel now is defined in terms of the transition time distribution (5.24). As ψ(t)

has a cut-off for t� τD, all moments exist and Equation (5.21) can be localized in time for
t� τD. Thus, we obtain for c(x, t) = p(x, t)/φ the evolution equation

∂c
∂ t

(x, t) =−q
∂c
∂x

(x, t)+D∗(τD)
∂ 2c
∂x2 (x, t), (5.25)

where the dispersion coefficient D∗ is given by Dentz et al. (2004)

D∗ =
`2

c
〈τ〉
〈τ2〉−〈τ〉2
〈τ〉2 . (5.26)

5.3.3 Direct Consequences for Dispersion and the ADE Framework

We observed in Section 5.3.1 that in a fully advective scenario, the dispersion keeps grow-
ing and exhibits at late times D(t) ≈ t

ln3(t)
scaling. Such observations put in evidence the

non-existence of a time scale τD after which the dispersion stabilizes to an asymptotic value
D∞. Consequently, this proves the lack of a scale at which the ADE (Eq. (5.3)) becomes
valid. Nevertheless, these results were the ones expected due to the lack of diffusion in
our simulation, a diffusion that usually brings a cutoff in the transition time distribution.
Therefore, in the absence of such cutoff, the dispersion keeps growing.
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Figure 5.6: Temporal evolution of the mean flow direction dispersion computed from the
direct particle tracking simulation. We display the fully advective case Pe = ∞ (blue cir-
cles), Pe = 700 (red solid line), and Pe = 40 (black solid line). The black dashed and red
dashed lines represent the stabilization of the dispersion coefficient D predicted by the
CTRW theory after diffusive time τD for Pe = 40, and Pe = 700 respectively.

However, natural Péclet numbers at the pore-scale have been shown to vary between
10−2 and 106 (see Bear, 2013; Bijeljic and Blunt, 2006) evidencing that while there exists
a broad range of high Péclet numbers, the diffusion cannot usually be neglected. In the
presence of diffusion, a cutoff appears in the transition time distribution. The lower the
Péclet number and the earlier this cutoff occurs. This translates directly into a shorter time
τD after which the dispersion converges. To quantify this convergence, we investigate the
temporal evolution of the dispersion in function of the Péclet number. To be able to vary
the Péclet number of our transport simulation, we need to insert a diffusion process in our
particle tracking. Diffusion has often been added to particle tracking algorithms in the form
of a random walk, (see for example, Ahlstrom et al., 1977; Ackerer, 1988; Mostaghimi
et al., 2012). We use a similar methodology, full details can be found in Section 2.2.1.2.
Figure 5.6 displays the evolution of the dispersion for three Péclet cases: Pe = ∞, Pe = 700,
and Pe = 40. With the introduction of diffusion, the ballistic behavior that we observed at
early times for the infinite Péclet case disappears because the diffusion dominates at early
times, it is eventually recovered after the advective time τA. The lower the Péclet number
and the later this behavior appears, if even. After τA the dispersion exhibits a behavior
comparable to the infinite Péclet case because advection dominates the transport on this
time scale. It then reaches the diffusive time τD after which the full heterogeneity has been
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Figure 5.7: Evolution of the asymptotic normalized dispersion coefficient (D/D0) in func-
tion of the Péclet number. The gray dashed line indicates the low Péclet late time disper-
sion behavior D∞ ≈ φ m with m = 2.1. The black solid line represents the dispersion scaling
D ≈ P2

e /(ln(Pe)
3) scaling for high Péclet numbers.

sampled. Then, the dispersion becomes constant. Note that the lower the Péclet number,
the earlier the convergence to the asymptotic dispersion D∞ occurs and the lower its value.
The opposite rises for larger Péclet number cases.

This set of results allows us to investigate the evolution of the dispersion in function of
the Péclet number (see Figure 5.7). We observe similar results to the one observed in the
literature: the dispersion (undimensionalized as D

D0
by the diffusion coefficient) is constant

for small Péclet number (Pe < 0.1) since the molecular diffusion is the only mechanism
of mixing. The diffusion is limited as the solid grains of the medium act as barriers for
particles. This results in a dispersion coefficient lower than 1. Note that at very early time
the dispersion goes like D0 while particle movements have not been impacted yet by the
geometry (Bijeljic et al., 2004). This restricted diffusion is for example described by the
reciprocal value of the product of formation factor and porosity (see, for example, Brigham
et al., 1961; Sahimi, 2011; Bijeljic et al., 2004) or similarly the relation between D and D0

can be written as
D = D0φ

m (5.27)

where φ is the porosity and m is the cementation factor (also called porosity exponent or
cementation exponent, (see, for example, Kadhim et al., 2013)). We obtain m ≈ 2.1 (see
Figure 5.7) which in the range of value obtained by measurements in the literature. The
cementation factor has been reported to vary between 1.3 and 2.5 for most rocks and to be
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Figure 5.8: Average number of pores traveled before reaching asymptotic dispersion in
function of the Péclet number. The black solid line indicates a linear scaling with the
Péclet number at late times.

around 2 for sandstone formation (Attia et al., 2008) while being around 5 for carbonates.
A set of reported results on a few Berea sandstone cores was 1.79− 1.92 (Attia, 2005).
The effect of advection on dispersion starts to be visible for Pe > 0.1, it then progressively
transitions from a slope of D∞/D0 ≈ P0

e to a slope of D∞/D0 ≈ Pe2/ ln(Pe)3 from Pe = 0.1
to Pe = 20 when advection becomes the main mechanism that impacts dispersion. This
asymptotic dispersion coefficient for finite Péclet can be estimated from the evolution of
the transient D(t) for infinite Péclet, which evolves here in time as D(t) ≈ t/ ln(t)3. The
cut-off on the diffusion time stabilizes the dispersion coefficient at time t = τD (see Figure
5.6), which implies that D∞ can be approximated by D∞ ≈ Pe/ ln(Pe)3. This means that
we expect a dependence of D∞/D0 ≈ Pe2/ ln(Pe)3. The data illustrated in Figure 5.7 con-
firm this estimate. To understand on what spatial scales the dispersion stabilizes and the
transport can become Fickian we investigate the average distance particles need to travel to
reach the asymptotic dispersion value. Figure 5.8 displays the average number of pores the
particles have to travel before reaching a constant dispersion. At very low Péclet numbers
(Pe < 0.1), the asymptotic diffusion coefficient is reached after about half of a pore length.
This means that since the diffusion is the leading mechanism, it does not matter which
particular throat the particles are experiencing. The small advective motion is not visible
in the values of the dispersion. At Pe = 1, the advection starts to have an impact and the
particles need to sample a distance of about one pore length. The interesting results happen
for intermediate Péclet (10 < Pe < 100), where the particles need to travel between 100 and
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1000 pores for the dispersion to finally become constant. This means that the particles need
to sample a large part of the heterogeneity before their spread can become constant in time.
At larger Péclet numbers, the diffusion is very small compared to the advection, this leads
to a very large time before a particle be able to sample the full velocity spectrum of the
domain, this leads to a very high number of pores traveled before reaching the asymptotic
value. Note that the number of pores seems to evolve linearly for Pe > 100 (linear scaling
can be see in the black solid line of Figure 5.8). These numbers give insight for the spatial
scales at which the dispersion might converge and therefore on what scale the ADE might
become valid in function of the Péclet number. Note also that we assume here that the rock
geometry exhibits the same pore distribution over distances larger than a thousand pores.
This is of course not true in nature and might lead to even larger distances before the full
heterogeneity can be sampled.

5.4 Conclusions

In this paper we aimed at answering the following question: Is there an REV for anomalous
dispersion? We showed that not only this REV definition exists but that it is also a neces-
sary condition for CTRW and TDRW approaches to work. This REV definition needs to
be set in terms of the Eulerian velocity statistics in order to allow the upscaling of anoma-
lous dispersion through CTRW type models. Precisely, the sample is considered a Eulerian
velocity REV if it is large enough for the Eulerian velocity PDF to be constant when in-
creasing the size of the sample domain. Note that this definition requires that the sample
also be a porosity REV since an evolving porosity would prevent the convergence of the
Eulerian velocity distribution. The REV is then parameterized by this Eulerian velocity
PDF (similarly to a porosity REV being characterized by its mean porosity). However, it
is not sufficient, for CTRW and TDRW to work, Lagrangian velocity series are required to
be stationary processes that relax toward their stationary distribution within a characteristic
length scale.

This means that the samples also needs to fulfill the following criteria: first, a steady-
state velocity distribution for the sample needs to exist since an evolving distribution would
prevent the characterization by a single distribution. This means that observing that a La-
grangian velocity distribution converges to a steady-state PDF constitutes a sufficient con-
dition for the sample to be a Lagrangian v-REV. Also, since the velocity increment process
of a CTRW type models is ergodic by construction, the velocity process inside an REV
needs to be ergodic as well. We then show that, when combined, these criteria allow for
an accurate upscaling via the CTRW framework. The CTRW framework that we described



128 CHAPTER 5. IS THERE AN REV FOR ANOMALOUS DISPERSION?

requires the existence of steady velocity conditions. Furthermore, the CTRW requires an
ergodicity criterion meaning that an ensemble of particle is able to sample the full velocity
spectrum. This specification is guaranteed by the Lagrangian v-REV stationary condition.

To illustrate and experiment these definitions and their consequences, we selected a
Berea sandstone sample as a potential REV candidate. The sample, which is a REV for
porosity, happens to fulfill the Eulerian REV definition since the velocity distribution con-
verges within 1/8 of the total sample size. We also observed that a randomly elected
particle distribution at the inlet leads to a stationary velocity distribution after a distance of
about two thirds of the sample, guaranteeing that the sample is also a Lagrangian v-REV.
After verifying that the ergodicity assumption is fulfilled, we upscaled the hydrodynamic
transport process with a one-dimensional CTRW model based on these v-REV properties.
It relies on the steady-state velocity PDF for its parameterization and captures well the tem-
poral evolution of the dispersion (and other transport properties (Puyguiraud et al., 2019a))
in a purely advective case. This confirms that the velocity distribution contains all the
necessary information for the prediction of the transport.

We then aimed at investigating the connections this methodology brings to Darcy scale
transport through the CTRW framework. By definition, the ADE validity is restricted to
asymptotic dispersion since it cannot account for the velocity fluctuations impact under that
scale. In contrast, CTRW models do not depend on characteristic scales and can therefore
represent reliably scale dependent coefficients such as dispersivity. CTRW models have
been used in the past to capture Darcy scale transport evolution with uncorrelated jumps
(see Section 5.2.2.2). We showed that this type of models also rely on REVs for their
parameterization and that they can predict transport properties such as dispersion.

However, while this methodology is a powerful tool for the prediction of anomalous
transport, the methodology is still limited by several factors. The first one is that it relies on
an accurate knowledge of the velocity distribution inside the considered geometry. While
large progresses have been made toward relating the Eulerian velocity distribution to the
pore geometry (de Anna et al., 2017; Alim et al., 2017; Dentz et al., 2018), it still remains an
open issue. In addition, obtaining an accurate description of the pore space at intermediate
to large scales is also challenging. Another issue that rises is to account for the diffusion
process that cannot in general be neglected. While the velocity distribution contains all the
necessary information for the prediction of the advective transport, diffusion forces mass
exchanges between the streamlines at low and intermediate values of the Péclet number. It
follows that the characterization of the hydrodynamic transport process is more complex.
The advective velocity transition is governed by the a spatial scale engraved in the pore
structure while the diffusive transition happens on a temporal scale. We showed that this
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can be accounted for by introducing a cutoff in the transition time distribution of the CTRW
model. This is similar to the advective-diffusive coupling of time domain random walk
models. This allows for the modeling of transport for any Péclet case and for large times a
evolution equation for the concentration can be recovered.

Any upscaling model relies on stationary properties that are averaged over an REV. We
showed that defining the REV in terms of the velocity statistics allow for the upscaling of
anomalous dispersion with CTRW type models. With the absence of REV, any tentative of
upscaling through this type of model would lead to erroneous results since the parameter
inserted in the model would not be representative of the studied medium.
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Chapter 6

Prediction of Pore-Scale Reaction in
Complex Media

6.1 Introduction

The study of mixing-controlled chemical reactions in the subsurface has recently attracted
significant attention due to its relevance in numerous applications including bioremediation
of the subsurface (Ding et al., 2017; Scow and Hicks, 2005) and geological CO2 sequestra-
tion (Gérard and De Wit, 2009). One of the main complexities in understanding the dynam-
ics of these chemical reactions stems from the fact that natural aquifers are heterogeneous
media at all scales. The geometric heterogeneity causes strong modifications of the flow
and transport dynamics leading to variations of the mixing interfaces between reactants.
Therefore, it alters the chemical reaction behavior. Chemical dynamics in the subsurface
are affected by both the degree and the scale dependence of heterogeneity (Dentz et al.,
2011b). This starts at the pore scale where the geometrical complexity leads to chemical
reaction behavior that does not obey the transport laws established for homogeneous en-
vironments (Dentz et al., 2011b; Meile and Tuncay, 2006; Li et al., 2006; Berkowitz and
Scher, 1997).

Mixing is the fundamental process that brings reactants into contact enabling chemi-
cal reactions. Mixing limits chemical reaction rates by controlling the time necessary to
physically bring reactants into contact in solution, such as fluid-fluid reactions (Jiménez-
Martínez et al., 2017; Jiménez-Martínez et al., 2015; de Anna et al., 2014b; Willingham
et al., 2008; Gramling et al., 2002; Raje and Kapoor, 2000), or in the solid phase, such as
solid-phase reactions (Li et al., 2006; Wintsch et al., 1995). In well-mixed systems, chem-
ical reactions occur at a thermodynamically determined rate. However, well-mixed con-
ditions are unusual under natural conditions. In natural porous media, chemical reactions
are influenced by the medium heterogeneity and the degree of mixing between reactants,
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as a consequence the reaction rates can be significantly less than the ones measured under
well-mixed conditions (de Anna et al., 2014b; Dentz et al., 2011a; Tartakovsky et al., 2009;
Willingham et al., 2008; Gramling et al., 2002; Raje and Kapoor, 2000). Understanding the
role of mixing in reactions and determining an appropriate model of mixing is essential for
the correct characterization and upscaling of chemical reactions in heterogeneous porous
media.

Classical reactive transport models assume complete mixture of reactants at the scale
of the average volume. The advection-dispersion-reaction equation (ADRE) defined as

φ
∂ci(x, t)

∂ t
=−∇ · [qci(x, t)−D∇ci(x, t)]− ri, (6.1)

where φ is porosity, ci is the concentration of reactant i, q is the Darcy velocity, D is
the dispersion tensor, and ri represents the space-time-dependent rate at which a species
i is produced (or eliminated) by the reaction, relies on the assumption that reactants are
well-mixed over the representative elementary volume. Chemical models based on this
assumption tend to overpredict the reactive behavior or the mixing front in the system (Al-
hashmi et al., 2015; Ding et al., 2013; Zhang et al., 2013). Such chemical overprediction
occurs because the ADRE reaction rate is commonly estimated from batch tests under per-
fect mixing conditions (Berkowitz et al., 2016; Dentz et al., 2011b). A series of studies
has focused on proving the validity of the ADRE to predict mixing-limited chemical re-
actions by performing averages (Porta et al., 2012), or using fitting parameters calibrated
from experimental data (Sanchez-Vila et al., 2010). A series of laboratory experiments
(Jiménez-Martínez et al., 2015; de Anna et al., 2014b; Willingham et al., 2008; Gramling
et al., 2002; Raje and Kapoor, 2000) and field studies (Hess et al., 2002; Davis et al., 2000)
has shown that the ADRE overestimates the quantity of reaction occurring by pointing out
that chemical reactions occur locally at the pore scale, where the ADRE ignores incomplete
mixing of reactants.

Recent alternative mathematical models have related the effective reactivity to trans-
port at local scales where the incomplete mixing of the solutes can be taken into account,
this includes particle-based Lagrangian models (Perez et al., 2019b; Alhashmi et al., 2015;
Zhang et al., 2013; Ding et al., 2013; Edery et al., 2009; Benson and Meerschaert, 2008)
and interface deformation models (de Anna et al., 2014a; Borgne et al., 2014). Many of
these methods consist in predicting and quantifying the evolution of the interface between
reacting species. At early times the interface between the two reactants can be described
as an aggregate of complex elongated independent structures called lamellae or diffusive
strips. The lamellar approach (Villermaux, 2012; Ranz, 1979) has been the basis of predic-
tions for mixing and chemical reactions in a variety of flow situations ranging from chaotic
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to turbulent (Lester et al., 2016; Villermaux and Duplat, 2003). However, disregarding the
eventual merging of lamellae due to transverse diffusion provokes incorrect quantifications
of mixing in heterogeneous flows (Perez et al., 2019b). Such discrepancies occur when the
plume begins to sample the vertical flow contrast. To tackle this issue, Perez et al. (2019b)
proposed an effective approach they named dispersive lamella to account for the action of
transverse diffusion in spatially variable flows. They validated this methodology against
analytical solutions and direct reactive particle tracking simulations in a single tube. How-
ever, while this methodology was demonstrated to be accurate in a idealized system, the
precision in porous media where the heterogeneity of the geometry can induce a complex
flow field and therefore a complex deformation of the plume remained to be demonstrated.

To tackle this issue, in this study, we investigate an irreversible instantaneous chemi-
cal reaction of the form A+B→ C at the pore-scale in two bead pack media character-
ized by two different degrees of heterogeneity. This simple bimolecular chemical reaction,
which can be considered as constituent of more complex reactions, is encountered in many
processes, such as the migration of radioactive materials (Van Loon and Glaus, 1997),
metabolic activity of a biofilm (Steefel et al., 2005) or ammonia (Garg et al., 2000). We
use a reactive particle tracking (RPT) model to simulate fluid-fluid reactive transport di-
rectly on the pore space of two different synthetic media (Perez et al., 2019a) to capture
the quantity of reaction occurring. The methods proves itself to be accurate for complex
geometries and its results serve as benchmark for the reaction predictions. We also inves-
tigate the lamella methodology (Perez et al., 2019b) for the computation of the interface
width between the reactant. We validate this predictive methodology against the direct RPT
simulation for heterogeneous flow field situations. These geometries, composed of beads,
were selected in order to have configurations that are suitable for generalization. There-
fore, even though these structures cannot be said to be representative of every medium, the
results apply to more complex structures and to 3D geometries on which the methodology
can be generalized easily.

The paper is organized as follows. In Section 2 we introduce the reactive transport
problem. We detail how the flow is performed, and explain the different steps that occur
during the RPT simulations. Section 3 first discusses the dispersive lamella approach for
the prediction of the global mixing evolution in the system before comparing its predictions
against the results of the RPT model for two different media. Finally, Section 4 presents
the main conclusions of the work.
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6.2 Methodology

In this section we detail each of the steps of the reactive particle tracking algorithm. We dis-
cuss the generation of the geometry, the flow simulation, the streamline tracing algorithm,
and the computation of the reaction.

6.2.1 Geometry Generation

We simulate the motion of the reactive species in two different 2-dimensional synthetic
heterogeneous porous media. The synthetic porous media consist of a random packing
of equally sized circular grains. The representation of granular obstacles in porous me-
dia using circular grains provide several advantages compared to real rock samples. It is
possible, for example, to test simple geometries that make easier the generalization of re-
sults to multiple porous media whereas using experimentally acquired real images might
provide representations with a high degree of arbitrariness. We generate the grains by
selecting randomly their position from a uniform distribution. We avoid overlapping of
grains by rejecting the position of a given grain if it overlaps a grain previously placed.
The algorithm stops when the target porosity is achieved or the maximum number of at-
tempts to place a new grain is exceeded. The binary image of the geometry is composed
of regular pixels that represent either void or solid. The mesh is created from a regular
hexaedron mesh compatible with OpenFOAM and that exactly respects the geometry made
by the pixels of the images. We refine the mesh by dividing each hexaedron by 2 in all
directions. The final mesh cells have a size of 1.25 ×10−6 m in all directions (∆x = ∆y).
This discretization level is selected such that the radius of a grain is divided in 35 cells.
We use this meshing technique to avoid any averaging or smoothing that often occurs in
the course of the standard OpenFOAM meshing procedure (Gjetvaj et al., 2015) and to
have an accurate representation of the solid beads. The dimensions of the first medium are
Lx×Ly = 7.5×10−3m × 2×10−3 m. The grain diameter d = 0.93×10−4m, the average
size of pores Lp = 3.0671×10−5m, and porosity φ = 0.5. The resulting discretization for
the regular grid consists of 6022×1600 cells (corresponding to x and y dimensions respec-
tively) with a porosity φ of 50%. The porosity φ is defined as the ratio between the number
of pore cells to the total number of cells. The resulting geometry is displayed together with
the flow field in the top panel of Figure 6.1.

The second medium is a 7.3×10−3 by 2×10−3m rectangle for a resulting porosity of
50%. The average pore length Lp is 2.625×10−5m. The resulting discretization for the reg-
ular grid consists of 5800×1600 grid (corresponding to x and y dimensions respectively).
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The size of the cells is similar to the first medium cells. To generate this medium, we al-
lowed for a larger distance between grains which results in a wider range of pore throats.
It therefore differs from the former by its larger heterogeneity that forces the creation of
preferential channels. This results in a more heterogeneous flow field (see bottom panel of
Figure 6.1). Note that, in order to minimize boundary effects, twenty layers were added at
the inlet and outlet of both the geometries.

6.2.2 Flow Simulation

In the following we summarize the methodology to solve the flow field (full details for a
3D case are available in Puyguiraud et al. (2019a)). At the pore scale, under low Reynolds
number conditions (Re� 1), the flow is governed by the Stokes equation (Leal, 2007):

∇
2v(x) =

1
µ

∇p(x), (6.2)

where v is the velocity vector, p(x) is the pressure and µ the kinematic viscosity of the
fluid. The equation is solved together with the continuity equation:

∇ ·v(x) = 0, (6.3)

that guarantees the incompressibility of the fluid. We prescribed pressure boundary con-
ditions at the inlet and outlet, and no-slip conditions at the void-solid interfaces and at the
remaining domain boundaries. We then solved the flow with the SIMPLE algorithm (Weller
et al., 1998) implemented in OpenFOAM. After convergence, we extracted the complete
velocity field. This resulted in the mean velocity values being expressed at every interface
of the mesh in the normal direction to the face. Figure 6.1 displays the flow fields inside
the two domains.

6.2.3 Reactive Transport

In this section we discuss the implementation of the advective displacement, diffusive mo-
tion, and reactive step of our particle tracking algorithm. The operators are split in the
sense that we perform sequentially the three steps. The position is first updated as

x(t +∆t) = x(t)+∆xa(∆t)+∆xd(∆t), (6.4)

where x(t) is the vector position of a particle at time t, ∆xa(∆t) and ∆xd(∆t) are the advec-
tive and diffusive displacements, respectively. We then proceed to the reactive step.
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Figure 6.1: (Top) Velocity magnitude field (m s−1) in the first synthetic heterogeneous
porous medium. (Bottom) Velocity magnitude field (m s−1) in the second synthetic hetero-
geneous porous medium.

6.2.3.1 Advective Displacement

We use an extension of the Pollock algorithm (Pollock, 1988; Mostaghimi et al., 2012;
Puyguiraud et al., 2019b) to account for the no-slip boundary conditions. This allows for
an accurate interpolation of pore-scale porous medium velocity. Integrating these veloc-
ity equations gives rise to analytical trajectories expressed as functions of time in every
cell. Thus, every particle position after any given time can be efficiently and accurately
determined. The current location of a particle is then updated as

x(t +∆t) = x(t)+∆xa(∆t), (6.5)

y(t +∆t) = y(t)+∆ya(∆t), (6.6)

where ∆xa(∆t) and ∆ya(∆t) are the x- and y-advective displacements of the particle dur-
ing time ∆t respectively. During the simulation, the position of every particle is updated
accordingly before proceeding to the diffusive motion.

6.2.3.2 Diffusive Motion

The diffusion process in particle tracking algorithms is often implemented through ran-
dom walk methods (Ahlstrom et al., 1977; Ackerer, 1988; Mostaghimi et al., 2012). The
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equivalence of the Eulerian diffusion equation to the Lagrangian Langevin equation for an
ensemble of particles (Risken, 1996)

dx
dt

=
√

2Dξ (t), (6.7)

with D the diffusion coefficient and ξ a Gaussian white noise, allows for the definition of
the diffusive displacements occurring in the x- and y-direction during a time step ∆t as

∆xd(∆t) =
√

2D∆tξ1, (6.8)

∆yd(∆t) =
√

2D∆tξ2, (6.9)

where ξ1, and ξ2 are Gaussian white noises. We follow a similar computation since our
diffusive jumps are computed as

∆xd(∆t) =
√

3
√

2∆tDγ1 =
√

6∆tDγ1, (6.10)

∆yd(∆t) =
√

3
√

2∆tDγ2 =
√

6∆tDγ2, (6.11)

where γ1 and γ2 ↪→ U (−1,1) (uniformly distributed between −1 and 1). The Central
Limit Theorem insures that the sum of the jumps converges toward a Gaussian distribution.
Multiplying by

√
3 gives a variance of 1. This scheme allows for a better control on the

maximum diffusive movement and avoid the costly numerical generation of Gaussian ran-
dom numbers. We implemented reflective boundaries at the solid interface and absorbing
boundaries at inlet and outlet of the domain.

6.2.3.3 Reaction Process

Reaction is simulated following the methodology presented in Perez et al. (2019a). At
each time step, we record the position of each particle as it migrates through the domain
and calculate the distance between a given A particle and a B particle. The probability of
reaction Pr of the B particle in the time interval [t, t +∆t], depends on the number NA [x(t)]
of A particles within the interaction well-mixed support volume ∆V centered at the position
x(t) of the B particle as

Pr = 1− exp [−p(∆t)NA [x(t)]] , (6.12)

where the probability of a single reaction event p(∆t) = k∆t/(N0A∆V ) depends on the
chemistry of the problem characterized by the reaction rate coefficient k, and the initial
total number of A particles present in the domain N0A. The interaction well-mixed support
volume ∆V = πr2 is defined with an effective reaction radius r =

√
24D∆t. The well-mixed

conditions mean that all reactant particles within the interaction radius, or support volume,
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have the same probability of reaction in a time interval ∆t. The selection of r relates to
the characteristic diffusive particle displacement during time ∆t, which is σ(∆t) = 2dD∆t,
where d is the spatial dimension. For r ≤ σ(∆t) the support volume may be considered
well mixed if N0→ ∞. Otherwise, r needs to be larger than σ(∆t) in order to capture the
local degree of mixing at which reaction takes place. The limits and criteria for the choice
of the reaction radius can be found in Perez et al. (2019a). The reaction occurs if Pr is larger
than a random number picked uniformly between 0 and 1. After reacting, the A and B par-
ticles are removed from the system and a particle C is injected in the middle of the A and
B particle locations. The migration of C particles in the domain also follows the transport
rules specified in Equation (6.4). The total molar concentration of A can be expressed from
the number of particles as

mA(t) = m0

∫ NA(x, t)
N0A∆V

dx, (6.13)

where m0 is the initial number of moles that the species A carries, NA [x(t)] is the number of
A particles at location x and time t, N0A is the initial total number of A particles present in
the domain and ∆V is the support volume. Then, the total mass of C particles is calculated
as

mC(t) = m0

∫ NC(x, t)
N0A∆V

dx, (6.14)

where NC(x, t) is the number of C particles at location x and time t.

6.2.3.4 Simulation Setup

Initially, the A species is placed uniformly throughout the pore space between the inlet
plane x = 0.25mm and x = 4.25mm which corresponds to about two thirds of the domain,
and there is no B species in the medium. We use this initial spatial distribution of species
A to numerically simulate a medium that is already filled with a species.

Note that placing reactant A everywhere in the domain increases the simulation com-
putational cost because the transport and reaction equations will be applied to particles
that are near to the outlet of the domain. Particles close to the domain’s exit do not react
since they leave the medium after a very short time. To simulate a continuous injection
the B particles keep being injected at location x = 0.25mm at all time t > 0. We found
that injecting the B particles until the end of the domain slows down the computational
simulation while not impacting the reaction since the particles injected in the last part of
the domain never react during our simulations. This setup results in the A and B particles
interface being located at position 2.5×10−4m at t = 0, which corresponds to the second
column of grains in the geometries. Particles then follow sequentially the advective, diffu-
sive and reactive steps until the end of the simulation. The time step is picked sufficiently
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small to have good accuracy and not to affect the results (see, Perez et al., 2019b). The
simulations were performed using number of particles Np = 6.5× 106 with a mean ve-
locity 〈v〉 = 3.45× 10−4m.s−1, and a the diffusion coefficient D = 4× 10−10m2s−1, for a
resulting Péclet number Pe =

〈v〉Lp
D = 40. An illustrative zoomed snapshot of the running

simulation in the second medium is displayed in Figure 6.2.

Figure 6.2: Illustrative zoomed snapshot of the reactive particle tracking simulation in the
second medium. White particles represent the A reactant already in the medium, the red
particles depict the B reactant entering the domain, and the green dots symbolize the C
species being formed at the interface. The fingering induced by the heterogeneity of the
flow field enhances the mixing between the two reactants and therefore accelerates the
chemical reaction.

The reactive transport scenario is characterized by the dimensionless Péclet and Damköh-
ler numbers. The Péclet number, defined as Pe = Lpv̄/(2D), is the ratio of the characteristic
diffusion time τD = L2

p/(2D) and the advective time in a pore τv = Lp/v̄. We define the
Damköhler number as Da = τv/τr, where τr = 1/(kc0) is the reaction time scale. The
considered reactive transport cases here are characterized by a Pe = 60 and Pe = 40, and
Da = 3× 104 and Da = 3.07× 104, respectively. The specific parameters are detailed in
Table 6.1.
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Parameter Value (medium 1) Value (medium 2)
Mean velocity (m s−1) 4×10−4 3.45×10−4

Diffusion coefficient (m2 s−1) 3×10−10 4×10−10

N0A 3.5×106 3.5×106

Péclet number 60 40

Table 6.1: Transport parameters used in the RPT model.

6.3 The Dispersive Lamella Description of Mixing

6.3.1 Bases

In the Fickian approach the reaction support volume is assumed to be well-mixed. Then, in
this framework, the evolution of the concentrations ci can be described by the advection-
dispersion-reaction equation (6.1). The global reaction behavior can be characterized by
the evolution of the total mass of the reaction product

mC(t) =
∫

cC(x, t)dx. (6.15)

For an instantaneous bimolecular reaction in a nearly homogeneous porous medium,
Gramling et al. (2002) characterized the evolution for the total mass of C from (6.1) as,

mC(t) = c0Lyφ

√
4Dht

π
, (6.16)

where c0 is a characteristic concentration, and Dh is the hydrodynamic dispersion coeffi-
cient that describes the spreading of solutes. It is defined as

Dh = lim
t→∞

σ2
a

2t
. (6.17)

where σ2
a (t) is the apparent variance which is a measure for the dispersion of the interface

and is defined as

σ
2
a (t) =

∫
dx′c0(x′)

∫
dx[x−mx(t)]2g(x, t | y′), (6.18)

mx(t) =
∫

dx′c0(x′)mx(t | y′). (6.19)

The
√

t scaling of the evolution of the product C mass in Eq. (6.16) can be described
in terms of the reaction rate, which is equal to the diffusive mass flux at the interface be-
tween the two reactants. The mass obtained from (6.16) serves as a reference for observed
behaviors in spatially variable flows.
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Figure 6.3: Evolution of the product mass mC(t) for Pe= 60 from the RPT simulation in the
first porous medium (symbols), and from the hydrodynamic dispersion coefficient (black
solid line). The analytical solution overpredicts the product total mass in the medium due
to the assumption of complete mixing between reactants. Note that similar behaviors have
been observed by Gramling et al. (2002).

Figure 6.3 compares the total mass of product calculated from the numerical simula-
tions to the analytical prediction (6.16) for the first medium. The analytical solution over-
predicts the product mass with respect to the numerical simulation by ∼ 27%. This finding
agrees with the observations made in Gramling et al. (2002), where the authors measured
the outflow concentrations of the product formed during a mixing-limited reaction. This
means that the chemical reaction cannot be well quantified by a the reactive transport de-
scription based on the hydrodynamic dispersion. This is because the plume has not sampled
yet the full heterogeneity of the velocity field and thus, does not spread linearly with the
hydrodynamic dispersion yet. Therefore the amount of mixing experienced by the plume
is overestimated when using Dh. In the next section we elaborate on the dispersive lamella
methodology for the measuring of the plume spreading.

6.3.2 Quantification of Mixing

In this section, we present the concept of the dispersive lamella used to quantify the impact
of fluid mixing on chemical reactions. This representation of mixing assumes that solutes
tend to organize into structures that are formed by the repeated action of advection as they
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move through heterogeneous media. These structures, called lamellae, can be seen as a de-
composition of the mixing front into point elements that disperse as a result of the diffusive
sampling of the vertical velocity contrast. This concept of not independent lamellae, called
dispersive lamellae, differs from the stretched lamella model (Bandopadhyay et al., 2017;
Borgne et al., 2014; Le Borgne et al., 2013; Villermaux, 2012; Meunier and Villermaux,
2010; Villermaux and Duplat, 2003; Ranz, 1979) because of the interacting lamellae. The
dispersive lamella approach is based on the concept of effective dispersion and accounts
for the action of transverse diffusion in contrast to the stretched lamella model.

Let us start from a pulse line injection at the inlet of the medium. It is composed
of simultaneous point injections, with initial conditions distribution c0(x). The solute is
initial distributed along a line perpendicular to the mean flow direction,

c(x, t = 0) = c0(x) =
1
Ly

δ (x1). (6.20)

The concentration c(x, t) satisfies the advection-diffusion equation

∂c(x, t)
∂ t

+v(x)∇c(x, t)−D∇
2c(x, t) = 0, (6.21)

which is equivalent to the Langevin equation (6.4). The concentration distribution is repre-
sented in terms of the Green function g(x, t|x′) as

c(x, t) =
1
Ly

∫ Ly

0
dy′g(x, t | y′). (6.22)

The Green function satisfies (6.21) for the initial condition g(x, t = 0|y′) = δ (x)δ (y− y′).
We transform into the coordinate system that moves with the center of mass of the Green
function

x̂ = x−m(t | y′), (6.23)

where
m(t | y′) =

∫
dxxg(x, t | y′). (6.24)

Thus, g(x, t | y′) can be written in terms of ĝ(x̂, t | y′), the Green function in the moving
coordinate system as

g(x, t | y′) = ĝ
[
x−m(t | x′), t | y′

]
. (6.25)

We now approximate ĝ [x̂−m(t | x′), t | y′] as

ĝ(x̂, t | y′)≈ θ(x̂, t | y′)G(ŷ, t | y′), (6.26)

where θ(x̂, t | y′) is the vertically integrated Green function

θ(x̂, t) =
∫ Ly

0
dy ĝ(x̂, t | y′), (6.27)
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and G(ŷ, t | y′) the longitudinally integrated Green function

G(ŷ, t | y′) =
∫

dx̂ ĝ(x̂, t | y′). (6.28)

Both θ(x̂, t | y′) and G(ŷ, t | y′) are approximated as Gaussians,

θ(x̂, t | y′) =
exp
[
−(x̂−x′)2

2σ2
y (t)

]
√

2πσ2
x (t)

, (6.29)

G(ŷ, t | y′) =
exp
[
−(ŷ−y′)2

2σ2
y (t)

]
√

2πσ2
y (t)

, (6.30)

where σ2
x (t) and σ2

y (t) are the effective spatial variances. There are defined by

σ
2
x (t) =

∫
dx′
∫

dx[x−mx(t | y′)]2g(x, t | y′)c0(x′), (6.31)

σ
2
y (t) =

∫
dx′
∫

dx[y−my(t | y′)]2g(x, t | y′)c0(x′). (6.32)

Note the σ2
x (t) is a measure for the effective interface width. The concept of point in-
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Figure 6.4: Evolution of the concentration distribution g(x, t | y′) evolving from a point
injection at y = 3×10−4 m at t = 0.3τv (top) and t = 68τv (bottom) for Pe = 60.

jection is illustrated in Figure 6.4 for the first medium, which shows the evolution of the
Green function g(x, t | y′) at two different times originating from a point source initially
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located at y = 0.45mm. Figure 6.5 shows the vertically and horizontally integrated Green
functions obtained from the numerical simulations. They are of Gaussian shape and are
well approximated by (6.29) and (6.30).
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Figure 6.5: (left) Concentration distribution integrated in the x-direction (red diamonds)
and predicted Gaussian concentration using σx and mx(t | x′) (black solid line). (right)
Concentration distribution integrated in x (red diamonds) and predicted Gaussian concen-
tration using σy and my(t | y′) (black solid line). Both plots correspond to a point injection
at y = 4.5×10−4 m at t = 68τv for Pe = 60 in the first medium, which corresponds to the
second column of grains.

Figures 6.6 and 6.7 show the temporal evolution of apparent variance σ2
a (t) (defined in

Eq (6.18)) and effective variance σ2
e (t) for the two different cases, respectively. The calcu-

lated σ2
a (t) and σ2

e (t) are similar at early times (t < 0.26τv and t < 0.35τv, respectively). In
this temporal regime, we find that the behavior in both variances is similar to 2Dt, which
suggests a diffusion dominated regime. This observation is reflected in the top-left inset
of Figure 6.6 which shows a nearly homogeneous front from the spatial distribution of
particles at t < 0.26τv. The snapshot suggests that the front has not been affected by the
advective heterogeneity yet. For later times (0.26τv < t < 100τv and 0.35τv < t < 100τv,
respectively), the apparent variance σ2

a (t) grows faster than the effective variance σ2
e (t) be-

cause the plume experiences the velocity contrast from the advective field and is therefore
deformed. The advective deformation, or spreading, is responsible for the rapid increase of
σ2

a (t) over σ2
e (t). Note that the impact of advection can be observed in the top-right inset of
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Figure 6.6: Evolution of σ2
e (t) and σ2

a (t) from the RPT numerical simulation for the studied
case characterized by Pe = 60. The gray solid lines indicate the 2Dt (lower) and 2Dht
(upper) behaviors. The insets corresponds to the spatial distribution of the pulse injection
at t = 0.26τv (top-left) and t = 24τv (top-right). The vertical black dashed lines indicate the
times that corresponds to the insets. Dh = hydrodynamic dispersion.

Figure 6.6, where the deformation of the plume is visible. Due to the greater heterogeneity
of the flow field of the second medium, the plume experiences a larger distortions resulting
in an larger overall width.

6.3.3 Reaction Behavior at Pore-Scale

As suggested by our results in Figure 6.3 and the experimental observations in Gramling
et al. (2002), the reactive transport description based on the hydrodynamic dispersion co-
efficient does not quantify properly the chemical reaction. For the initial condition c0, the
concentration of C across the lamella is given by

θC(x̂, t) =
Lyc0

2

[
| x̂ |√
2σ2

e (t)

]
, (6.33)

and the concentration of C at the interface is

cC(x̂, t) =
1
Ly

∫ Ly

0
dy′G(ŷ, t | x′)θC(x̂, t) =

c0

2
erfc

[
| x̂ |√
2σ2

e (t)

]
. (6.34)
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Figure 6.7: Evolution of σ2
e (t) (red solid line) and σ2

a (t) (blue dashed line) from the RPT
numerical simulation for the case of interest (second medium, Pe = 40). The lower and
upper gray solid lines indicate the 2Dt and 2Dht scaling respectively. D = molecular diffu-
sion. Dh = hydrodynamic dispersion.

The total mass of C produced is obtained by integrating Equation (6.34) as

mC(t) = φ

∫ Ly

0
dy
∫

dx
c0

2
erfc

[
| x |√
2σ2

e

]
, (6.35)

which gives

mC(t) = c0Lyφσe(t)

√
2
π
. (6.36)

This expression accounts for the impact of the interface deformation on the overall re-
activity since Lyφσe(t) gives the area of the mixing zone. Figures 6.8 and 6.9 show the
evolution of the C product mass obtained from the RPT model and the estimate (6.36)
from the dispersive lamella approach for the first and second medium, respectively. For
comparison we also display the evolution of the product mass for an interface that would
evolve like the apparent width σ2

a (t). At early times, (t < 0.26τv and t < 0.35τv, respec-
tively) diffusion is the main mechanism driving the reaction, as a result mass predictions
using σ2

a (t) and σ2
e (t) are similar and agree with the solutions estimated from Equation

(6.16) coupled with a constant diffusion coefficient D. At later times (0.26τv < t < 100τv

and 0.35τv < t < 100τv), advection dominates. We find enhanced-mixing behaviors as the
product formation increases rapidly. This occurs due to a greater degree of mixing of re-
actants locally (illustrated in Figure 6.2). In this regime, the dispersive lamella approach
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coupled with σ2
e (t) provides an accurate description of the C product mass evolution. The

increased reaction behavior that we observed occurs preferentially as the reactant particles
sample more of the flow heterogeneity, which increases the width of the interface allowing
for more mixing. We find that the mass prediction based on σ2

a (t) fails to characterize the
evolution of the product mass because it overestimates the reactants interface as discussed
earlier. The greater degree of heterogeneity of the second medium causes the flow to be
more heterogeneous and therefore enhances the mixing. This translates into a larger overall
width at late times. Note that it is well known that mixing is a limiting factor for instan-
taneous reactions (Gramling et al., 2002; Raje and Kapoor, 2000), this behavior is well
captured by our model. The particle number for the RPT needs however to be large enough
to avoid "numerical incomplete mixing" which prevents particles from reacting because of
a too low density. However, results converge with the number of particles.

This methodology is a powerful tool since it allows for an accurate computation of the
C mass produced while not having to perform the reaction. Moreover, the computation of
the effective width does not demand a large amount of particles and therefore requires less
computational power. Note that we used the porosity of the total medium for the computa-
tion of the mass (see Equation (6.36)), however the results might suffer from discrepancies
if the porosity experienced by the plume of particles differs from the actual medium poros-
ity. This is discussed in the next section.
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Figure 6.8: Evolution of the mass mC(t) for Pe = 60 from the RPT simulation (symbols),
from the dispersive lamella parameterized by the apparent variance σ2

a (t) (blue dashed-
line) and the effective variance σ2

e (t) (red line) for the first medium.
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Figure 6.9: Evolution of the mass mC(t) for Pe = 40 from the RPT simulation (symbols),
from the dispersive lamella parameterized by the apparent variance σ2

a (t) (blue dashed-
line) and the effective variance σ2

e (t) (red line) for the second medium.

6.3.4 Porosity Experienced by the Particles

In this section we discuss the impact that the porosity experienced by the particles has on the
reaction mass produced. Our predictive approach uses the porosity of the medium to correct
the mixing volume computed. However, there exist situations where the plume experiences
a porosity that differs from the average porosity of the medium. In this eventuality, this
method leads to an overprediction of the amount of mixing in the case of the porosity
experienced by the plume being smaller that the total porosity or to an underprediction if it
is larger.

To investigate this potential effect, we numerically mimic a situation that can happen
in the laboratory: we place the injection out of the second medium at a location where the
initial plume experiences a porosity φ = 1. We use the setup discussed in Section 6.2.3.4
with the difference that the interface between the A and B particles at t = 0 is originally
located at x = 5×10−5m, which corresponds to the middle of the first empty layers in the
geometry. We display in Figure 6.10 the evolving porosity φ(t) experienced by the plume:
at early times the interface experiences a very high porosity, then the plume porosity starts
decreasing quickly once the first particles reach the first grains, finally the experienced
porosity converges to the medium average porosity 0.53. Note that due to the absence of
grain at the inlet, the porosity seen by the particles is a little larger than the real porosity of
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Figure 6.10: Evolution of the porosity experienced by the plume φ(t) originated from a
line injection at x = 5× 10−5 in the second medium, which corresponds to the middle of
the first empty layers in the geometry.

We then compare the reaction produced by the direct RPT simulations to the mass
predicted using the dispersive lamella parameterized by the average medium porosity. To
highlight the dependence of the prediction on the porosity experienced the plume, we also
computed the dispersive lamella prediction parameterized by this time varying porosity
through Equation (6.36). Figure 6.11 displays the evolution of the mass produced from the
RPT and compare to the two predictions of the dispersive lamella: the first is parameterized
by the porosity of the medium while the second depends on the porosity of the plume. The
former underpredicts the mass created at early times since the porosity that the plume expe-
riences at early times is larger the medium porosity used in Equation (6.36), it then slowly
converges to the correct mass produced. The latter captures accurately the reaction behav-
ior demonstrating the impact of the porosity on the mixing volume. We aim here at giving a
warning for early predictions when the mixing volume porosity is not representative of the
medium porosity. This can lead to an overprediction (or underprediction) of the mixing vol-
ume and thus result in an overprediction (or underprediction) of the mass produced. There
are several situations where this can happen such as the experiment injection we discussed.
This could for example happens in small media where the line injection is too small for the
plume to experience the full medium heterogeneity at early times. This could also happen
at the interface between two media where the porosity experienced by the plume evolves
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Figure 6.11: Evolution of the mass mC(t) for Pe = 40 from the RPT simulation (green
dots), from the dispersive lamella parameterized by the apparent variance σ2

a (t) (blue solid
line) and the effective variance σ2

e (t) (red solid line) and their respective corrections (blue
and red dashed) using the porosity experienced by the plume in time φ(t) for an initial
interface between A and B outside of the domain in the second medium.

from the first medium porosity to the second medium porosity. Therefore, an estimate of
the evolving porosity in time might be handy in these situations.

6.4 Summary and Conclusions

In this paper we simulated a bimolecular reaction transport problem in two dimensions:
a B reactant injected at the inlet reacts while a A reactant occupies the rest of the com-
plex medium. We performed the simulation using a reactive particle tracking algorithm
that performs sequentially the advective, diffusive, and reactive steps. These simulations
allow for the computation of the mass of C produced and are used to validate the dispersive
lamella methodology proposed by Perez et al. (2019b) in heterogeneous media in the pres-
ence of very heterogeneous velocity fields. The original dispersive lamella model predicts
the amount of C mass produced in function of the measured mixing volume of a line in-
jection and was validated in a tube against reactive random walk simulations (Perez et al.,
2019b). We validated these predictions against RPT simulations for heterogeneous bead
pack media. The predictions captures the reaction produced at all times. Moreover, this
methodology can easily be generalized to 3D since the measurement of the mixing front is
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also straightforward in three dimensions.
This method gives powerful tools for the estimate of the reaction mass produced in het-
erogeneous porous media since it allows for its computation based only on the mixing
volume and thus, no reaction computation is required. This reaction computation often
slows down simulations and therefore limits the maximum computational domain size.
This method thus allows for larger computational domains. Therefore, this capability of
simulating larger domains can give bases for the modeling of reactive experiments whose
geometries are usually larger than the numerically simulated domains. The methodology
can also be utilized for the prediction of the chemical mass produced from conservative
transport experiment through the observation of the mixing volume. Note, however, that
if the porosity experienced by the plume is not representative of the average porosity of
the medium the method might lead to inaccuracies. A solution is to consider the porosity
experienced by the plume instead of the full medium porosity for the computation of the
reaction mass.

Note also that since the prediction of the C mass only relies on an approximation of
the effective variance of the front, any upscaling model able to predict this information
would allow for a prediction of the reaction. CTRW models (Puyguiraud et al., 2019b) and
MRMT models (Li et al., 2011) for example, are able to give accurate transport prediction
for example in terms of displacement variance. Modifying these models to compute the
effective σe accurately would provide powerful reactive transport upscaling tools.
This instantaneous bimolecular reaction A+B→ C is a simple reaction and is not rep-
resentative of most chemical reaction happening in the nature. However, any real com-
plex reaction can be split into many simple instantaneous bimolecular reactions of the type
A+B→ C that can be treated one by one. Therefore this methodology is applicable to
any fluid-fluid chemical reaction. The next step for this methodology might be to address a
different type of chemical studies such as fluid-solid reactions.
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Conclusions

7.1 General Conclusions

In this thesis, we have provided a comprehensive analysis of the stochastic dynamics of
pore-scale velocities experienced by solute particles. We quantified the evolution of La-
grangian and Eulerian statistics and showed that the injection conditions drastically impact
the velocity statistics experienced by solute particles. We also derived the relation between
the isochronously and equidistantly sampled velocities. We found that, because of their
fast convergence and pore-architecture-nested properties, studying spatial velocity statis-
tics might be more handy than investigating their temporal counterparts. These observa-
tions lead us to develop processes for the prediction of the spatial velocity evolution. These
processes, based on Markovian properties, capture faithfully the full spatial Lagrangian
velocity distribution evolution. Knowing that these Lagrangian velocity statistics directly
control the displacement of the solute particles, we aimed at relating them to the transport.
To do so, we incorporated these velocity processes into continuous time random walk mod-
els for the prediction of pre-asymptotic to asymptotic anomalous transport. These types of
model fit particularly well our observations since they allow for the mimicking of the spatial
velocity persistence of fluid particles. Our effective upscaling approach proves itself to be
accurate, computationally fast, and predictive in the sense that it does not rely on transport
properties but rather on flow and medium information. It also permits transport predictions
for any injection condition since it allows for a conditioning on the initial velocity distri-
bution of the particles. However, any upscaling model relies on support volumes on which
parameters are considered constant. Consequently, we defined a representative elementary
volume in terms of velocity statistics that allows for the upscaling of anomalous transport.
This definition is intrinsically different from the classical REV definitions in the sense that
the velocity statistics control the transport at all scales. Thus, continuous time domain ran-
dom walk models for the prediction of the transport can be defined through this new REV
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definition. Continuous time domain random walk models at the scale of the velocity statis-
tics based-REV capture both pre-asymptotic and asymptotic transport regime observables.
Yet, the impact of diffusion cannot be modeled explicitly from the property of the velocity
statistics. Advection is a mechanism that causes a velocity decorrelation on a spatial scale.
Conversely, diffusion provokes velocity changes of solute particles on a temporal scale.
We derived a methodology to account for this diffusive impact and to couple these velocity
variations through the time-domain and continuous-time random walk framework. Then,
we elaborated on the temporal scales on which Fickian transport might be recovered. This
gives powerful tools for fast transport predictions based on flow and medium properties
for any Péclet number scenario. After having understood and modeled effectively conser-
vative non-reactive transport at pore-scale in heterogeneous media, we extended the study
to reactive transport. We quantified the impact of the pore-scale heterogeneities on chem-
ical reactions and on mixing. We found out that the heterogeneity of the geometry (and
therefore of the velocity field) enhances the mixing and the reaction rate which display
similar behaviors. Based on the close relationships between mixing and chemical reaction,
we validated a predictive method based on estimates of the mixing volume for the reaction
mass computation. This methodology captures accurately the changes of rate caused by
the heterogeneity of the velocity field. A logical next step would therefore be to develop
a methodology for the computation of the mixing volume from these one dimensional up-
scaling CTRW models. It would then allow for the prediction of transport observables and
chemical reactions from flow and medium properties only.

7.2 Open Questions and Future Work

In this section, we introduce some of the open questions that arise from this thesis:

• The continuous time random walk models we propose rely on the representative
Eulerian distribution of the medium for its transport predictions. While significant
progress has been recently made to relate the pore geometry to velocity distributions,
it still remains an open issue. Our methodology would strongly benefit from these
advances.

• In Chapter 5, we introduced a continuous time random walk that includes a diffusion
process. This models needs to be validated versus direct numerical simulations for
example.

• Particle image velocimetry (PIV) is a powerful tool to sample the Lagrangian veloci-
ties tracer particles experience. Therefore they can be tools to first, provide measured
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velocity distribution input for the continuous time random walk approach and sec-
ond, allow for the validation of the model by comparing transport properties such as
breakthrough curves.

• Pore-scale mechanisms such as clogging can bring temporal variations of the flow
field. Introducing a temporally varying velocity distribution in CTRW type models
could be a solution to account for this changes. A comprehensive analysis of the
impact of clogging on the velocity field would be needed.

• The thesis focuses on the upscaling of transport from the pore- to the Darcy scale
through the stochastic dynamics of the Lagrangian velocity of fluid particles. A next
step might therefore be to investigate the stochastic dynamics of the velocity of fluid
particles in three-dimensional Darcy scale media.

• Finally, here is a possibility that would combine every chapter of this thesis into a
powerful predictive model. In Chapters 3, 4, and 5, we developed effective CTRW
models for the prediction of transport properties, while in Chapter 6, we validated a
model that predicts accurately the reaction mass from mixing volume measurements.
If the CTRW could be improved to not only predict the displacement variance ac-
curately, but also the effective variance (related to the mixing volume, see Chapter
6), this would translate directly into a predictive and effective CTRW model for the
upscaling of chemical reaction.
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Appendix

8.1 Particle Tracking Details

8.1.1 Identification of the Exit Interface
8.1.1.1 Negative Velocities on both Faces

In this case (see Figure 8.1), since the eventual exit would be x1, we solve it the same way
as before, replacing x(t) by x1 in Equation (2.10) and solving for t

∆tx =
∆x

u2−u1
ln
(

u1∆x
u1∆x+(u2−u1)(xp− x1)

)
. (8.1)

8.1.1.2 Positive Velocity on the x1-Face, Negative on the x2-one

In this case (see Figure 8.2), it is obvious that the particle will not be able to leave the cell
on the x axis, that’s why we set

∆tx :=+∞. (8.2)

Figure 8.1: Negative velocities on both faces
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Figure 8.2: Positive velocity on the x1-face, negative on the x2-one.

Figure 8.3: Negative velocity on the x1-face, positive on the x2-one.

8.1.1.3 Negative Velocity on the x1-Face, Positive on the x2-one

This situation (see Figure 8.3) is a slightly more complicated one, we need to identify the
line segment where the velocity sign changes, and judging by the particle’s original place
(to the left of the segment or to the right of it) the exit will be different. In other words

u2−u1

∆x
(x− x1)+u1 > 0 then x > x1−

u1∆x
u2−u1

and so xout := x2, (8.3)

u2−u1

∆x
(x− x1)+u1 < 0 then x < x1−

u1∆x
u2−u1

and so xout := x1, (8.4)

u2−u1

∆x
(x− x1)+u1 = 0 then x = x1−

u1∆x
u2−u1

and so ∆tx =+∞. (8.5)

In the first case, ∆tx is then computed the same way as in the case of the two positive veloc-
ities; in the second situation it is computed the same way as in the case of the two negative
velocities; and finally in the third case, the particle stands at a zero velocity location, which
means that there will be no displacement in the x-direction.

8.1.2 Derivation of the Trajectory Equation in Function of The Spatial
Situation of the Cell

In this section we give the detail of the derivation for the resolution of the trajectory equa-
tions in function of the type of situation encountered. The situations where there are no
solid voxel or only one nearby the considered mesh cell are discussed in the main text, see
Section 2.2.1.2.
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Figure 8.4: One solid cell is on the right of the voxel.

8.1.2.1 One of the Neighboring Voxel is Solid

u(x) =
u1

∆x2 (x2− x)2. (8.6)

To obtain the velocity expression in the y- and z-directions, we consider a two dimensional
case (since the third direction has here no further effect). Then we use the zero divergence
criterion

∂u(x,y)
∂x

+
∂v(x,y)

∂y
= 0, (8.7)

from which we obtain

∂v(x,y)
∂y

=−∂u(x,y)
∂x

=
2u1

∆x2 (x2− x). (8.8)

Integrating with respect to y, we get

v(x,y) =
2u1

∆x2 (x2− x)(y− y1)+ v(x,y1). (8.9)

Since v is a function of (x2− x), we can set v(x,y1) = a(x2− x) with the constant a to be
determined. Besides, we can use the following equality derived from the mass equation

u1

∆x
=

v2− v1

∆y
, (8.10)

and so we obtain

v(x,y) =
2(v2− v1)

∆x∆y
(x2− x)(y− y1)+ v(x,y1). (8.11)

Integrating v(x,y1) between x1 and x2 yields

1
∆x

∫ x2

x1

v(x,y1)dx =
1

∆x

∫ x2

x1

a(x2− x)dx =
1

∆x
a(x2− x1)

2

2
=

a∆x
2

. (8.12)
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However, the flow mean on the y = y1 face is equal to v1:

1
∆x

∫ x2

x1

v(x,y1)dx = v1. (8.13)

We therefore have

1
∆x

∫ x2

x1

v(x,y1)dx = v1 =
a∆x

2
, (8.14)

so

a =
2v1

∆x
, (8.15)

and we finally obtain

v(x,y) =
2(v2− v1)

∆x∆y
(x2− x)(y− y1)+

2v1

∆x
(x2− x). (8.16)

At this point, we obtain the following equations

u =
u1

∆x2 (x2− x)2, (8.17)

v =
2v1

∆x
(x2− x)+

2(v2− v1)

∆x∆y
(x2− x)(y− y1), (8.18)

w =
2w1

∆x
(x2− x)+

2(w2−w1)

∆x∆z
(x2− x)(z− z1). (8.19)

Once solved, they allow us to get the path lines

x(t) = x2−
∆x2(x2− xp)

∆x2 +u1(x2− xp)t
, (8.20)

y(t) = y1−
v1∆y

v2− v1
+

v1∆y+(v2− v1)(yp− y1)

(v2− v1)∆y

(
1+

u1(x2− xp)

∆x2 t
) 2∆x(v2−v1)

u1∆y

, (8.21)

z(t) = z1−
w1∆z

w2−w1
+

w1∆z+(w2−w1)(zp− z1)

(w2−w1)∆z

(
1+

u1(x2− xp)

∆x2 t
) 2∆x(w2−w1)

u1∆z

. (8.22)

The 5 other situations where there is only one solid voxel (either on top, below, on the right,
behind or in front of our cell) can be solved in a symmetrical way.

8.1.2.2 Two of the Neighboring Voxels are Solid

This condition can happen in fifteen cases that can be categorized in two groups: (1) when
the two solid voxels are blocking opposing faces (this can happen in three cases, for the x-,
y- or z-directions), as can be seen Figure 8.5; and (2) when the solid voxels are located on
adjoining faces, which can happen in twelve cases, as shown on Figure 8.6.
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Figure 8.5: There are two solids next to the empty one, and they are on the same axis.

Figure 8.6: There are two solids next to the empty one, blocking two different directions.
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Figure 8.7: Mesh before the refinement.

Figure 8.8: Mesh divided by three.

(1) We start with the first case. We did not develop the equations for those cases because
they can not happen in our simulations. Indeed, since we made a mesh refinement,
those cases have disappeared. This can be seen on Figure 8.7 and 8.8. We however
recall that this mesh refinement is not motivated by the simplification of analytic
developments but by the gain of accuracy on the Navier-Stokes flow computing, see
Chapter 3.2.2.1. And after the mesh refinement, Figure 8.8 : The case of two solid
voxels blocking opposing faces has disappeared. Similar situations can happen in
the cases where 3, 4, 5 or 6 solid voxels are situated nearby the cell, which will be
discussed in Section 8.1.2.3.

(2) The second case can not be avoided by a mesh refinement. We solve it like the others
before. Here we must consider the cases where the solid voxels are on the left and
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below the considered cell. The velocity in the x and y direction are interpolated as

u =
2u2

∆x2∆y
(x− x1)

2(y− y1), (8.23)

v =
2v2

∆y2∆x
(x− x1)(y− y1)

2. (8.24)

We now examine the w equation. In order to obtain it we first used the zero diver-
gence criterion

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0. (8.25)

We then have

∂u
∂x

=
4u2

∆x2∆y
(y− y1)(x− x1), (8.26)

∂v
∂y

=
4v2

∆x∆y2 (y− y1)(x− x1), (8.27)

and

∂w
∂ z

=−∂u
∂x
− ∂v

∂y
=

4
∆x∆y

(
u2

∆x
+

v2

∆y
)(y− y1)(x− x1). (8.28)

Integrating w with respect to z, we obtain

w(x,y,z) =
4

∆x∆y
(

u2

∆x
+

v2

∆y
)(y− y1)(x1− x)(z− z1)+w(x,y,z1). (8.29)

Then we write

w(x,y,z1) = a(x− x1)(y− y1). (8.30)

with a to be determined. However, we know that

w1 =
1

∆x∆y

∫ x2

x1

∫ y2

y1

w(x,y,z1)dydx, (8.31)

=
1

∆x∆y

∫ x2

x1

∫ y2

y1

a(y− y1)(x− x1)dydx, (8.32)

=
1

∆x∆y

∫ x2

x1

a(x− x1)

[
(y− y1)

2

2

]y2

y1

dx, (8.33)

=
a(y2− y1)

2(x2− x1)
2

4∆x∆y
. (8.34)

and finally

w1 =
a∆y∆x

4
, (8.35)
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and

a =
4w1

∆x∆y
. (8.36)

Replacing it in (8.29) we obtain

w(x,y,z) =
4

∆x∆y
(

u2

∆x
+

v2

∆y
)(y− y1)(x1− x)(z− z1)

+
4w1

∆x∆y
(x− x1)(y− y1). (8.37)

And if we use the mass equation
−u2

∆x
+
−v2

∆y
+

w1−w2

∆z
= 0, (8.38)

which is equivalent to
w1−w2

∆z
=

u2

∆x
+

v2

∆y
, (8.39)

we finally obtain

w(x,y,z) =
4(w2−w1)

∆x∆y∆z
(y− y1)(x− x1)(z− z1)

+
4w1

∆x∆y
(x− x1)(y− y1). (8.40)

The three velocity equations are then

u =
2u2

∆x2∆y
(x− x1)

2(y− y1), (8.41)

v =
2v2

∆y2∆x
(x− x1)(y− y1)

2, (8.42)

w =
4w1

∆x∆y
(x− x1)(y− y1)+

4(w2−w1)

∆x∆y∆z
(x− x1)(y− y1)(z− z1), (8.43)

which allows us to get, after resolution

x(t) = x1 +(xp− x1)

[
1− 2(xp− x1)(yp− y1)(u2∆y+ v2∆x)

∆x2∆y2

] −u2∆y
u2∆y+v2∆x

(8.44)

y(t) = y1 +(yp− y1)

[
1− 2(xp− x1)(yp− y1)(u2∆y+ v2∆x)

∆x2∆y2

] −v2∆x
u2∆y+v2∆x

, (8.45)

z(t) = z1 +
w1∆x∆y

u2∆y+ v2∆x
−
[
(

w1∆x∆y
u2∆y+ v2∆x

+ z1− zp)
0.5−

2(xp− x1)(yp− y1)[w1∆x∆y(u2∆y+ v2∆x)+(z1− zp)(u2∆y+ v2∆x)2]
1
2

∆x2∆y2 t
]2
. (8.46)
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Figure 8.9: There are three solids next to the empty one and two of them block the same
direction.

8.1.2.3 Three of the Neighboring Voxels are Solid

This situation can happen in twenty different ways depending on the locations of solid
voxels and can be categorized in two groups. The first group is when two of the three
solid voxels are blocking the same direction (for example both in the x-direction) and the
third one is in another direction. The second group describes the situation where three
surrounding solid voxels are blocking all three coordinate directions, one solid voxel on
the x-, the other one on the y- and the last one on the z-direction face. This condition can
happen in eight different ways.

(1) We start with the first case. As seen before, in the two cells’ case, this situation has
been avoided thanks to a mesh refinement (see Figures 8.7 and 8.8).

(2) Now we consider the case where the three surrounding solid voxels are blocking all
three coordinate directions. We interpolate the velocities as

u =
4u1

∆x2∆y∆z
(x2− x)2(y2− y)(z− z1), (8.47)

v =
4v1

∆x∆y2∆z
(x2− x)(y2− y)2(z− z1), (8.48)

w =
4w2

∆x∆y∆z2 (x− x1)(y− y1)(z− z1)
2, (8.49)
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Figure 8.10: There are three solids near the voxels, each one blocking a different direction.

which allows us to obtain the path lines

x(t) = x2− (x2− xp)e
−4u1(x2−xp)(y2−yp)(zp−z1)

∆x2∆y∆z
t
, (8.50)

y(t) = y2− (y2− yp)e
−4v1(x2−xp)(y2−yp)(zp−z1)

∆x∆y2∆z
t
, (8.51)

z(t) = z1 +(zp− z1)e
4w2(x2−xp)(y2−yp)(zp−z1)

∆x∆y∆z2 t
. (8.52)

And finally, we get the times of flight

∆tx =
∆x2∆y∆z

4u1(x2− xp)(y2− yp)(zp− z1)
ln
(

x2− xp

∆x

)
, (8.53)

∆ty =
∆x∆y2∆z

4v1(x2− xp)(y2− yp)(zp− z1)
ln
(

y2− yp

∆y

)
, (8.54)

∆tz =
∆x∆y∆z2

4w2(x2− xp)(y2− yp)(zp− z1)
ln
(

∆z
zp− z1

)
. (8.55)

8.1.2.4 Four, Five or Six of the Neighboring Voxels are Solid

As we have seen before, the cases four, five and six cells are avoided (see Figure 8.7 and
8.8. Besides that, as soon as we reach five solid voxels, there is no flow at all inside the
cell.

8.1.2.5 Extreme Cases

We denote by extreme cases all the situations that can not be handled by the equations
below (i.e. when a division by zero appears). In these cases, new equations have to be
solved. We do not develop these equations in this report.
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Figure 8.11: There are four solids near the voxel, theses cases can not happen in our simu-
lations.

8.1.3 Diffusion Implementation and Boundary Conditions
8.1.3.1 Computation of the Diffusive Jump

As stated in the main text, see Section 2.2.2.2, the particle diffusive jump during a time step
∆t in each component direction can be computed as

∆xdi f f =
√

2∆tDξ , (8.56)

where ξ ↪→N (0,1). However, Gaussian distributed numbers brings two issues that we
want to avoid. The first one is the cost of generating Gaussian distributed numbers than
can drastically slow down the simulation since many of them have to be generated and that
we therefore want to reduce. The second is to have a better control on the norm of the
diffusive jump. Indeed while the occurrence of numbers n /∈ [−4,4] is very low, a Normal
distribution is technically not bounded and a number out of that range can be generated. It
can causes particles to jump over solid mesh cells. To avoid these issues we compute the
diffusive jump as

∆xdi f f =
√

3
√

2∆tDγ =
√

6∆tDγ, (8.57)

where γ ↪→ U (−1,1) (uniformly distributed between −1 and 1). The Central Limit The-
orem insures that the sum of the jumps converges toward a Gaussian distribution as the
number of jumps grows. Multiplying by a factor of

√
3 insures that the variance is equal to

1. We observe no difference in the results between the two schemes.
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8.1.3.2 Time Step Choice

The time step is chosen small enough so that the maximum possible jump does not bypass
the length of a mesh cell. This choice has for goal to avoid that a particle jump over a solid
cell which is nonphysical and to avoid limit errors. In practice, to satisfy the first condition
the time step has to be chosen as

∆t <
∆x2

6D
, (8.58)

where ∆x is the length of a cell.

8.1.3.3 Boundary Conditions

At the void-solid interfaces of the mesh we implemented reflective boundary conditions for
the diffusive jumps. In practice a particle that would end up in a solid voxel of the domain
is reflected in the normal direction to the jump of the distance it would have traveled in the
solid cell.

Depending on the type of results needed we implemented two types of boundary con-
ditions at the inlet and outlet of the domain. The first condition is an absorbing boundary
condition that causes the particles to get removed from the system when they reach these
locations. The second condition is a reinjection boundary condition that reintroduces the
particles at the inlet when they reach the outlet (or at the outlet when they reach the inlet).
Theses conditions are handy when in the need of running very long simulations (compu-
tation of moments for example). The reinjection location is chosen such that the velocity
difference between the exit and reinjection location is acceptable.
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8.2 Continuous Time Random Walk Derivations

8.2.1 Derivation of the Transition Time Distribution

We consider the following one-dimensional scheme

xn+1 = xn +
`c

χ
, (8.59)

tn+1 = tn + τn, (8.60)

where the transition times τn are defined as

τn =
1

D
`2

c
+ v

`c

=
1

1
τD

+ 1
τv

, (8.61)

which can be seen as the harmonic mean of the advective and diffusive characteristic time.
This definition aims to account for both the advective and diffusive impact. It is a function
of the Péclet number. To highlight this point, we can be rewrite it as

τn =
τv

P−1
e +1

, (8.62)

where Pe is the Péclet number. This definition follows the time domain random walk
methodology for the computation of the transition times. The definition of the transition
times ψ(τ) can be expressed as

ψ(τ) =
∫

Ps(v)δ

(
t− 1

1
τD

+ v
`c

)
dv. (8.63)

Setting f (v) = δ (t− 1
1

τD
+ v

`c
) and using the properties of the δ -Dirac functions, we can write

f (v) =
1

| f ′(v)|δ (v− v0) with f (v0) = 0. (8.64)

Then we have

∣∣ f ′(v)∣∣= ∣∣∣∣∣ 1
`c

1
( 1

τD
+ v

`c
)2

∣∣∣∣∣ (8.65)

and since every term is positive: ∣∣ f ′(v)∣∣= 1
`c

1(
1

τD
+ v

`c

)2 . (8.66)
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In addition, we know that f (v0)≡ δ (t− 1
1

τD
+

v0
`c
) = 0 this gives

t− 1
1
τ
+ v0

`c

= 0. (8.67)

Solving for v0 gives

v0 =
`c

t
− `c

τD
. (8.68)

This allows us to rewrite Equation (8.63) using (8.64) and (8.66) as

ψ(τ) =
∫

Ps(v)

 1
`c

1(
1

τD
+ v

`c

)2


−1

δ

[
v−
(
`c

t
− `cτD

)]
dv. (8.69)

Using the Dirac-δ this gives

ψ(τ) = Ps(v)
(
`c

t
− `c

τD

)
`c

(
1

τD
+

v0

`c

)2

, (8.70)

= Ps(v)
(
`c

t
− `c

τD

)
`c

(
1

τD
+

`c
t − `c

τD

`c

)2

, (8.71)

= Ps(v)
(
`c

t
− `c

τD

)
`c

t2

(
t

τD
+1− t

τD

)2

, (8.72)

= Ps(v)
(
`c

t
− `c

τD

)
`c

t2 . (8.73)

Let us now write the CTRW transport equation

p(x, t) =
∫ t

0
R(x, t ′)

∫
∞

t−t ′
ψ(τ) dτ dt ′, (8.74)

with

R(x, t) =
∫ ∫

R(x− x′, t− t ′)ζ (x− x′)ψ(t− t ′) dt dx′+δ (x)δ (t), (8.75)

where ζ is the distribution of lengths.

8.2.2 Laplace Transformation

Note that transforming to Laplace space, we have

p̂(x,λ ) = R̂(x,λ )
1− ψ̂(λ )

λ
and R̂(x,λ ) = λ p̂(x,λ )

1
1− ψ̂(λ )

, (8.76)
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where the hat denotes Laplace-transformed functions and λ is the Laplace variable. Trans-
forming Eq. (8.75) to the Laplace space we obtain

R̂(x,λ ) = δ (x)+
∫

R̂(x− x′,λ )ζ (x− x′)ψ̂(λ )dx′ (8.77)

Using relation (8.76) we obtain

λ p̂(x,λ )
1

1− ψ̂(λ )
= δ (x)+

∫
p̂(x− x′,λ )

λψ̂(λ )

1− ψ̂(λ )
ζ (x− x′) dx′ (8.78)

Noting that 1
1−ψ̂(λ ) = 1+ ψ̂

1−ψ̂
we can write

λ p̂(x,λ )+
λψ̂(λ )

1− ψ̂(λ )
p̂(x,λ ) = δ (x)+

∫
p̂(x− x′,λ )

λψ̂(λ )

1− ψ̂(λ )
ζ (x− x′) dx′, (8.79)

factorizing by λψ̂(λ )
1−ψ̂(λ ) on the right side, we get

λ p̂(x,λ ) = δ (x)+
∫ [

p̂(x− x′,λ )− p(x,λ )
] λψ̂(λ )

1− ψ̂(λ )
ζ (x− x′) dx′. (8.80)

After integration we obtain

λ p̂(x,λ ) = δ (x)+
[
−−`c

χ

∂

∂x
p̂(x,λ )+

`2
c

2χ

∂ 2

∂x2 p̂(x,λ )
]

λψ̂(λ )

1− ψ̂(λ )
, (8.81)

where λψ̂(λ )
1−ψ̂(λ ) ≡M(λ ) is our memory function.

Inversing back to real time gives

∂ p
∂ t

(x, t) =
∫ t

0
M(t− t ′)

[−`c

χ

∂ p
∂x

(x, t− t ′)+
`2

c
2χ2

∂ 2

∂x2 p(x, t− t ′)
]

dt ′. (8.82)
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8.3 Notes on the Kullback-Leibler Divergence

8.3.1 Bases

Since little details have been given in the main text about the Kullback-Leibler (KL) dis-
tance (Kullback and Leibler, 1951), also called divergence, we elaborate on its use in this
section. The KL divergence is a measure of how similar (or how different) two probability
density functions that are defined on the same event space are. It is classically defined as
(using similar notations to the ones used in Chapter 5)

dKL(p1, p2) =

∞∫
0

dvp2(v) ln
[

p2(v)
p1(v)

]
, (8.83)

where it represents the distance between the distributions p1 and p2. It has been widely
used to compare different distributions, particularly in information theory (see, for ex-
ample, Bigi, 2003; Robert and Sommeria, 1991; Lindgren et al., 2004; Carpineto et al.,
2001). This distance can be seen as a measure of the relative entropy. As the KL distance
decreases (and therefore the relative entropy), the two distributions are more and more
similar, and inversely, the larger dKL(p1, p2) and the more different the PDFs are. Since
dKL(p1, p2) = 0⇔ p1 = p2 by definition of the KL divergence, the two distributions are
considered equivalent once the distance reaches 0. We detail in the following how to ac-
curately compute the KL divergence between two distributions and detail thee edge cases
that may occur.

8.3.2 Using the Kullback-Leibler Divergence as a Distance

Surprisingly, while the KL divergence is often called a distance, it is not. Indeed, it does
not fulfill the symmetry assumptions of classical distances since Equation (8.84) is not
symmetric (dKL(p1, p2) 6= dKL(p2, p1)). To tackle this issue the KL divergence can easily
be symmetrized (see, for example, Bigi, 2003) as

dsKL(p1, p2) =

∞∫
0

dv[p2(v)− p1(v)] ln
[

p2(v)
p1(v)

]
, (8.84)

where dsKL stands for symmetrical Kullback-Leibler. It results in dsKL(p1, p2) being always
equal to dsKL(p2, p1), allowing for its use as a distance.
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8.3.3 Edge Cases

Another details that need to be discussed are the cases where either p1(v) or p2(v) contri-
bution is zero. In the case that p2(v) is zero, the contribution p2(v) ln

[
p2(v)
p1(v)

]
is zero, since

limx→0+ x ln(x) = 0. Inversely, if p1(v) = 0, dsKL(p2, p1) is set to be infinite. This can be
an issue for discrete distributions that have a category (or bin) that is empty (such as our
velocity distributions that have little statistics at early distances for example) since it would
result in an overall distance KL dsKL(p2, p1) = ∞. This can be tackled by introducing a
back-off probability for p2(vi) is vi does not occur. This type of back-off probability to
bypass empty bins and data sparseness issues have been studied and used in statistical lan-
guage modeling and text categorization (see, for example, Mori, 1997; Bigi, 2003). The
distribution can then be modified as

p1(vi) =

{
α p1(vi) if vi occurs in the PDF,
ε otherwise,

where ε is a threshold probability for the empty bins that is chosen to be small. Note that
since ∑

n
i=0 p1(v) has to be equal to 1, the rest of the PDF (non-empty bins) are rescaled by a

value α that reduces the weight of the bins while maintaining the shape of the distribution.
The value α can easily be estimated from

1− ∑
|bi|6=0

α p1(vi) = ∑
|bi|=0

ε, (8.85)

where |bi| denotes the number of occurrences of velocities inside the bin bi. Therefore

∑|bi|6=0 and ∑|bi|=0 represent the sum over the empty and non-empty bins, respectively.
Finally, since the values of the KL distance can vary largely from a comparison be-

tween two distributions to another comparison between two other distributions, it causes
issue when in the need of comparing the speed of two different evolutions (for example in
Chapter 5 when we observe the evolution to a limited distribution in the Eulerian sense and
in the Lagrangian sense). In this case, a solution is to divide the values given by the KL
distance by the KL distance between the target distribution and an empty distribution (i.e.
that contains a probability value of ε in every bin). The normalized Kullback-Leibler then
reads:

dn
sKL(p1, p2) =

dsKL(p1, p2)

dsKL(p1,0)
, (8.86)

where 0 denotes an empty distribution.
In other cases, another possibility of defining a normalized KL divergence is to divide

the KL divergence dsKL(p1, p2) by the initial distribution of velocity p0
1. Where p0

1 corre-
sponds to the first computation on a small volume for the Eulerian distribution for example.
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In that case the normalized KL distance reads as

dn
sKL(pn

1, p2) =
dsKL(pn

1, p2)

dsKL(p0
1, p2)

, (8.87)

where, in this scenario, p0
1 denotes the initial distribution computed on the original volume

V0, p2 is our target distribution and pn
1 is the nth velocity distribution computed on the nth

volume Vn.
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8.4 Scientific Publications and Presentations

8.4.1 Scientific Publications

• Puyguiraud, A., Gouze, P. and Dentz. M. (2019). Stochastic dynamics of Lagrangian
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• Puyguiraud, A., Gouze, P. and Dentz. M. (submitted). Is there a representative
elementary volume for anomalous dispersion?

• Puyguiraud, A., Perez, L. J., Hidalgo J. J. and Dentz. M. (in preparation). Prediction
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Darcy scale: A representative elementary volume for non-Fickian dispersion, EGU,
Vienna, 2019, oral presentation.

• Puyguiraud, A., Gouze, P. and Dentz. M., A representative elementary volume for
non-Fickian transport and continuous time randow walks, AGU, Washington D.C.,
United-States, 2018, oral presentation.

• Perez, L. J., Puyguiraud, A., Hidalgo, J. J., Dentz, M., Mixing-limited Bimolecular
Chemical Reactions Under Flow Heterogeneities at Pore-scale, AGU, Washington
D.C., United-States, 2018, poster presentation.

• Puyguiraud, A., Gouze, P. and Dentz. M., Upscaling of pore scale transport: ergod-
icity and stationarity of Lagrangian velocities and their representation as a Markov
process, CMWR, Saint-Malo, France, 2018, oral presentation.
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• Puyguiraud, A., Gouze, P. and Dentz. M., Stochastic upscaling of porous media
transport: from pore-scale particle tracking simulations to larger scale velocity based
correlated CTRW models, EGU, Vienna, Austria, 2018, oral presentation.

• Puyguiraud, A., Flow and transport in digitized images of real rocks, 3nd Meeting of
Young Researchers from the IDAEA-CSIC, Barcelona, October 2017, oral presenta-
tion.

• Puyguiraud, A., Gouze, P. and Dentz. M., Incorporating pore-scale Berea sandstone
Lagrangian velocity statistics into a Darct-scale transport CTRW model, EGU, Vi-
enna, Austria, 2017, poster presentation.

• Puyguiraud, A., Gouze, P. and Dentz. M., Flow and transport in digitized im-
ages of Berea sandstone: ergodicity, stationarity and upscaling, AGU, New Orleans,
Louisiana, Unites-States, 2017, poster presentation.

• Puyguiraud, A., Gouze, P. and Dentz. M., Statistical analysis of isochrone and
equidistant Lagrangian velocities for Berea sandstone: Ergodicity, Markovianity and
continuous time random walks, Interpore, Rotterdam, The Netherlands, 2017, pitch
presentation.

• Puyguiraud, A., Analyses of pore-scale purely advective transport Lagrangian veloc-
ities, 2nd Meeting of Young Researchers from the IDAEA-CSIC, Barcelona, October
2016, oral presentation.

• Puyguiraud, A., Gouze, P., Dentz. M., Russian, A. and Gjetvaj. F., Modeling of
flow and transport in porous media, 3rd school: Flow and Transport in Porous and
Fractured Media, Development, Protection, Management and Sequestration of Sub-
surface, Cargèse, France, 2016, poster presentation.

a



a
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