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Introduction

Population genetics is the field that studies how different factors influence genetic vari-
ability within and between populations. It is also devoted to the study of ancestry rela-
tionships between genes by the means of “genealogical trees”. As we shall see, these two
questions are related.

In most organisms, genetic information is carried by molecules of deoxyribonucleic
acid (DNA), which is a chain of nucleotides that can be formed of one of four bases:
cytosine (C), guanine (G), adenine (A) or thymine (T). Individuals may carry one or
several DNA molecules or chromosomes. In haploid species each individual carries one
copy of each chromosome, whereas in diploid species, each individual carries two copies
of each chromosome. For example, humans have 23 pairs of chromosomes. The DNA
sequence of an individual is inherited from its parents and constitutes its genotype. The
phenotype of an individual is the set of all its observable characteristics or traits and is
encoded by its genotype. A gene is a portion of DNA that codes for a given protein. Genes,
but also regulatory sequences and other non-coding sequences determine the phenotype of
an individual. We will often use the term locus to refer to a region of the chromosome,
without specifying if it is a gene, a portion of a gene, a regulatory sequence, a single
base... An allele is a version of a locus. Genetic variability is the fact that individuals have
different genotypes i.e. carry different alleles. As we shall see, the linear arrangement of
the different loci in a chromosome has an important effect in the way they are transmitted
from one generation to another, and therefore in genetic variability.

As already mentioned, we are going to study how different factors influence genetic
variability within and between populations. Among these “evolutionary forces” are:

— Mutations, that are changes in the DNA sequence of an individual that occur ran-
domly. Mutation creates new alleles and is the ultimate source of genetic variability.

— Genetic recombination is the mechanism by which an individual can inherit a
chromosome that is a mosaic of two parental chromosomes. Genes that are close to
one another often share the same evolutionary history and are in linkage disequilib-
rium (i.e. the frequency of association of their different alleles is higher or lower than
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10 INTRODUCTION

what would be expected if loci were independent). Recombination breaks up linkage
disequilibrium.

— Population structure, which, from a geneticist’s point of view, is the fact that there
are mating restrictions. For example, in a geographically structured population,
individuals are more likely to reproduce with individuals that live close to them,
which promotes genetic differentiation.

— Migration, that allows gene flow between individuals from different areas and weak-
ens population structure.

— Natural selection, that is the fact that some individuals are better adapted to the
environment, so they have more chances to survive and produce offspring.

— Competition between individuals for resources (and other biological interactions
such as predation, parasitism, etc...).

— Demographic variation: the size of a population has an important effect on genetic
variability: the smaller the population size, the more likely it is that two randomly
chosen individuals have a recent common ancestor.

During my PhD I have studied the effect of three of these forces: recombination, popula-
tion structure and migration. I have used two different models to study how recombination
and migration shuffle genetic diversity.

In the first model, recombination is the only evolutionary force and we look at its effect
on the chromosome of a randomly sampled individual. We consider a model in which,
at time 0 each individual has her unique chromosome painted in a distinct color. By the
blending effect of recombination, the genomes of descending individuals look like mosaics
of colors, where each segment of the same color is called an identical-by-descent (IBD)
segment. The goal of my first project was to characterize this mosaic at equilibrium. For
example, if the leftmost locus is red, we have been able to characterize the distribution of
the amount of red in the mosaic and of the positions of the red segments. The results of
this project are presented in Chapter I and in an article to be submitted .

In Chapter II, I present an application of the results of Chapter I, in which we used
the distribution of IBD block lengths to study hybrid populations.

In the second project, I have studied the effects of geographic structure, migration, mu-
tation and recombination in the genetic composition of a metapopulation. The metapop-
ulation is modelled as a graph where vertices correspond to subpopulations and edges
are associated to migration rates. The idea behind this project was to study speciation:
when two subpopulations accumulate enough genetic differences they may become separate
species. We have been able to characterize the distribution of the genetic distances between
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subpopulations in a low mutation - low migration regime, depending on the geographic
structure, and to show that some geographic configurations can promote speciation. The
results of this project are presented in Chapter III and in an article that is under revision
for Stochastic Processes and their Applications [?].

1 A brief history of population genetics

Mathematical models have played an important role in the study of genetic variation
since the 1930s. John B.S. Haldane, Ronald A. Fisher and Sewall Wright are considered
as the “founding fathers” of population genetics. They developed the first models describ-
ing the evolution of the genetic composition of a population, opening the way for the
development of a fruitful branch of mathematics devoted to the study of refinements and
generalizations of their models. In this section, we explain the historical context in which
population genetics emerged.

1.1 Darwin’s legacy and the study of natural selection

By the end of the 19th century, the concept of evolution was largely accepted by the
scientific community, but the mechanisms of evolution and the supports of heredity re-
mained controversial. In fact Charles Darwin had published his book On the origin of
species in 1859, suggesting that populations evolve over the course of generations through
a process of natural selection. His theory was based on three concepts: variation between
individuals, adaptation to the environment and heredity of traits. But he did not propose
a mechanism for species formation and his theory on inheritance, pangenesis, did not meet
any success [?].

Among Darwin’s successors one of the most famous was his half-cousin Francis Galton,
who was the first to develop a statistical theory of heredity. He was particularly interested
in describing variation in human populations and identifying which human abilities were
hereditary. In 1877, in an article called Typical laws of inheritance, Galton described how,
when crossing peas that produce large seeds, the offspring produce seeds whose size is
closer to the population mean. Galton called this phenomenon “reversion” (although later
he changed the name into regression). He made similar observations in human height
and published the results in an article Regression toward mediocrity in hereditary stature.
Galton would interpret this as meaning that the small variation by which natural selection
was supposed to act according to Darwin could not work because small changes would be
neutralized by regression toward the mean. In other words, evolution had to proceed via
discontinuous steps [?].

Galton is considered as one of the founders of modern statistics and introduced impor-
tant concepts and tools such as correlation studies, linear regression, standard deviation
and the Gaussian law of error. On the other hand he is also considered as the founder



12 INTRODUCTION

of eugenics: he believed that the human species could help direct its future by selectively
breeding individuals who have “desired” traits. This ideology had terrible consequences on
European and American politics in the first half of the 19th century, but this goes beyond
the aims of this introduction.

Galton is also the founder of the “biometric” school, which was devoted to the mathe-
matical description of the effects of natural selection. Galton’s work was continued by his
student Karl Pearson, who also made major contributions to the field of statistics (cor-
relation coefficient, hypothesis testing, p-value, χ2 test, principal component analysis...).
Pearson and his colleague Raphael Weldon expanded statistical reasoning to the study of
inheritance and natural and sexual selection. Unlike Galton, Pearson and Weldon devel-
oped a continuous theory of evolution in which natural selection was supposed to act by
gradual variation. As we will see, this gave rise to an intense debate between biometricians
and geneticists.

1.2 Mendel and the birth of genetics

The history of genetics begins in 1865, with the work of Gregor Mendel. His breeding
experiments on peas allowed him to show that the patterns of inheritance obey simple
statistical rules, with some traits being dominant and others recessive [?]. But his work
was not given any attention by the scientific community. There is evidence that Darwin
was aware of Mendel’s results, but without the concept of mutation, his laws seemed to
imply that traits remain fixed. This could be the reason why Darwin did not pay much
attention to his work. In 1900, De Vries, Correns and von Tschermak rediscovered Mendel’s
laws. In addition, De Vries introduced the concept of mutation, after observing some rare
but brutal changes from one generation to the next. In 1906 William Bateson introduced
the term “genetics” to describe the study of inheritance. The term “gene” was introduced
three years later by Wilhelm Johannsen to describe the units of hereditary information.

Chromosomes had been observed under the microscope by W. Fleming at the end of
the 19th century, but it was not until the 1900s that Theodor Bovery linked chromosomes
and heredity. Walter Sutton was the first to suggest that chromosomes constitute the
physical basis of the Mendelian law of heredity [?]. Thomas H. Morgan and his colleagues
demonstrated the chromosomal theory experimentally. They introduced the idea that a
gene corresponds to a specific region in the chromosome. They proposed the idea that
genetic linkage was related to the distance between genes in a chromosome and suggested
a process of crossing over to explain recombination [?].

However it took several decades to discover the molecular basis of heredity and, at
the time Wright, Fisher and Haldane wrote their theories, the role of DNA had not been
established yet. In fact it was not until the 1940s that the experiments by Oswald Avery and
his colleagues, together with the work of Alfred Hershey and Martha Chase on bacterial
phages, allowed to identify DNA as the hereditary material. In 1944, Erwin Chargaff
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noted that the nucleotide composition of DNA varied across species, but the proportion
of A was always the same as the proportion of T and the proportion of G was equal to
the proportion of C. This realization, together with some important X-ray cristallography
work by Rosalind Franklin and Maurice Wilkins, allowed James Watson and Francis Crick
to discover the double helix structure of DNA in 1953. Some years later, they established
the central dogma of molecular biology, which explains the flow of genetic information,
from DNA to proteins (via RNA) and which allowed to establish that phenotypic variation
arises from changes in the DNA sequence [?, ?].

1.3 The birth of population genetics

At the beginning of the 20th century there was an intense debate between “Mendelians”
(Bateson, De Vries ...) and “Darwinians” (Pearson, Weldon, ...). Part of the controversy
was about the mechanisms of evolution: while the biometricians claimed that species
evolve through the action of natural selection (that acts via small, gradual changes), the
geneticists believed that discontinuous, brutal changes (mutations) were responsible for
evolutionary change and did not believe in natural selection [?]. But there was also a
disagreement on methodology. While Pearson and Weldon wanted to make predictions,
Bateson and the geneticists were more focused on describing the mechanisms of heredity.
Pearson criticized the biologists for not being able to use mathematical techniques, stating
that “before we can accept any cause of a progressive change as a factor we must have not
only shown its plausibility but if possible have demonstrated its quantitative ability”. For
the geneticists, the work of the biometricians was “almost metaphysical speculation as to
the causes of heredity”.

The Mendelian and the biometrician models were eventually reconciled with the de-
velopment of population genetics, thanks to the work of Fisher, Haldane and Wright.
Fisher, who belonged to the same school as Galton and Pearson and who made major
contributions in the field of statistics, e.g. the Monte Carlo method and the maximum
likelihood estimation, is the man who allowed to conciliate the two different points of view
on methodology. For Fisher, values obtained in experiments were no longer considered for
what they were but as representations of a set of possibilities with probabilities attached.
Because experimental results fluctuate, they have to be analyzed by probabilistic meth-
ods. This methodology at hand, Fisher and Haldane developed stochastic models that
assumed Mendelian inheritance and where the combined effect of mutation and selection
produced genetic variation and evolutionary change. Haldane applied statistical analysis
to the study of real examples of natural selection such as the peppered moth. While Fisher
and Haldane studied large populations, Wright was more interested in studying genetic
drift, which is the phenomenon according to which, in a finite population, gene frequen-
cies can evolve by the randomness of births and deaths. One of his major contributions
is the shifting-balance theory to explain species formation by population subdivision (see
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4.4). The theoretical work of these three authors was a critical step towards developing a
unified theory of evolution. The models they developed and their extensions are still used
nowadays and presented in the next section.

2 Classical models in population genetics

2.1 The Wright-Fisher model

This model was developed by Fisher (1930) and Wright (1931). The hypothesis of the
model are the following:

— The population size, N , is constant.

— Individuals are haploid (i.e. each individual carries a single copy of each gene).

— Mating is random.

— The population is panmictic i.e. all individuals are potential partners and there are
no mating restrictions.

— Generations are non-overlapping, i.e. all individuals reproduce and die at the same
time.

Definition 2.1. In the neutral Wright-Fisher model, the individuals from generation t+ 1

choose their unique parent uniformly (and independently) at random from generation t.

Consider a single gene with two alleles a and A. If, at generation t there are k indi-
viduals carrying allele A, we denote by XN

t the proportion of individuals of type A in the
population. If XN

t = k/N , NXN
t+1 follows a binomial distribution of parameters N and

k/N . (XN
t )t∈N is a Markov chain, valued in {0, 1/N, . . . , 1} and that has two absorbing

states, 0 and 1. We say that an allele is fixed when its frequency reaches 1 (otherwise we
say that it is extinct). Let us call τN the absorption time time, i.e.

τN = min{t,XN
t = 0 or XN

t = 1}.

In this model, all individuals of generation 0 have the same probability of being the common
ancestor of all the individuals of generation τN , so we have

P(XN
τN

= 1|XN
0 =

i

N
) =

i

N
.

In words, the probability of fixation of a neutral allele is its initial frequency.

This model is neutral, in the sense that all individuals have the same probability of
being parents of an individual in the next generation, independently of their genotype.
Variation in allele frequency is only due to random sampling. This phenomenon is called
genetic drift.
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We can also consider the case where natural selection confers an advantage to the
individuals that carry allele A with respect to those carrying allele a. In the Wright-Fisher
model with selection, when an individual from generation t+1 chooses her parent in such a
way that each individual of type A from generation t has a probability (1+s)/(N(1+sXt))

of being chosen and each individual of type a a probability 1/(N(1 + sXN
t )). Then, given

XN
t , the number of individuals carrying allele A at generation t + 1 follows a binomial

distribution with parameters N and (1+s)XN
t

(1+sXN
t )

. The ratio between the mean number of
offspring of an individual of type A and of an individual of type a is given by s, which
is called the relative fitness. The concept of fitness was introduced by Haldane, and it
represents the marginal ability to survive and reproduce in a given environment.

When the population size is large, the changes in the genetic frequencies from one
generation to another are small, so it is quite natural to approximate (XN

t )t∈N by a diffusion
process. This concept already appeared in an article by William Feller in 1951 [?]. As XN

t+1

follows a binomial distribution, using Taylor expansions, we have

E(XN
t+1 −XN

t |XN
t = x) = sx(1− x) + o(s)

E((XN
t+1 −XN

t )2|XN
t = x) =

1

N
x(1− x) + o(s). (1)

It can be shown that, if we consider the series of Markov processes (XN
bNtc, N ∈ N), where

XN is the frequency of allele A in a Wright-Fisher model with fitness rate s ≡ sN , that
scales with the population size in such a way that

NsN −→
N→∞

s (2)

and if ∀N ∈ N, XN
0 = x0, then

Proposition 2.2. For all T > 0, (XN
bNtc)N∈N converges in distribution in the Skorokhod

topology D([0, T ],R) to the solution of:{
dXt = sXt(1−Xt)dt+

√
Xt(1−Xt)dBt,

X0 = x0,
(3)

where B is a standard Brownian motion.

See for example [?] (Theorem 2.2, Chapter 10) for a proof of this result.

Remark 2.3. To obtain the diffusion approximation we had to renormalize time (i.e. to
consider XN

bNtc instead of XN
t . We say that in the Wright-Fisher diffusion time is measured

in units of N generations.

Remark 2.4. In the stochastic differential equation (3), the drift term corresponds to
natural selection while the diffusion term corresponds to genetic drift.
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Figure 1 – The Wright-Fisher diffusion. The curves represent the frequency of allele A
as a function of time. In the left-hand side s = 0 and in the right-hand side s = 2. We
simulated 4 trajectories, with X0 = 0.5 and stopped the simulations when absorption was
reached.

From (1) one can see that the mean variation in allelic frequency from one generation
to another only depends on the selection coefficient s while the variance of (XN

t+1 − XN
t )

depends on the inverse of the population size. Hypothesis 2 guarantees that there is a
balance between natural selection and genetic drift. But small populations are more sensitive
to genetic drift. If NsN → 0, the magnitude of genetic drift can overwhelm the effect
of selection resulting in non adaptive evolution (i.e. fixation of alleles is totally random
and does not depend on the fitness value). On the contrary, when the population size is
large and NsN → ∞, the Wright-Fisher model converges to a deterministic model i.e.
(XN
bNtc, N ∈ N) converges to the solution of

X ′(t) = sX(t)(1−X(t)).

The Wright-Fisher diffusion was used for example by Motoo Kimura [?] to compute the
time to fixation of an allele. For the sake of simplicity, we will only present this result for
the neutral case (i.e. when s = 0). Let (Xt, t ≥ 0) solution of (3) and Q its infinitesimal
generator. Let

τ = min{t,Xt = 0 or Xt = 1}

For x ∈ [0, 1], define g(x) = E(τ |X0 = x). It is not hard to prove that

Qg(x) = −1 and g(0) = 0. (4)

By solving this differential equation, it can be shown that

g(x) = −2(x log(x) + (1− x) log(1− x)). (5)
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In addition, as a corollary of Proposition 2.2, it can be shown that

lim
N→∞

E(τN ) = E(τ),

see [?], Corollary 2.4, Chapter 10, for a proof of this result. Consider a population of
size N � 1 where all individuals carry allele a, except one mutant of type A. We have
XN

0 = 1/N � 1. Taking into account the fact that time is measured in units of N
generations, replacing into (5), we get

E(τN ) ' 2

N
×N = 2.

Kimura and Ohta [?] showed that, when the process is conditioned to the fixation of A
(which happens with probability 1/N), then

E(τN |XτN = 1) ' 2× 1

1/N
= 2N.

In words, the time it takes for a neutral allele to be fixed in the population is of the order
of the population size.

Remark 2.5. To model a population of N diploid individuals, where each individual carries
two copies of each chromosome, one can consider a Wright-Fisher model with population
size 2N .

2.2 The Moran model

This model was proposed by Patrick A.P. Moran in 1958. It is a continuous time
analogous to the Wright-Fisher model. The hypothesis are the same as in the Wright-
Fisher model except that the generations are overlapping.

Definition 2.6. In the neutral Moran model, each individual reproduces at rate 1. She
produces an offspring, which is a copy of herself, that replaces a randomly chosen individual
in the population (who dies simultaneously).

Again, consider a single gene with two alleles, A and a. Let Y N
t the fraction of the

population carrying allele A at time t. The reproduction events between individuals of
the same type do not change the genetic composition of the population, so we have the
following transition rates for (Y N

t )
i

N
→ i+ 1

N
at rate N

i

N
(1− i

N
)

i

N
→ i− 1

N
at rate N

i

N
(1− i

N
).

(6)

Remark 2.7. In the Moran model, the total reproduction rate is N , but it takes at least N
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reproduction events to replace the whole population. So one time unit corresponds to one
generation in the Wright-Fisher model.

It is also possible to add selection into this model. Assume allele A is favoured by
natural selection and its relative fitness is s > 0. Then we assume that individuals of type
A reproduce at rate 1 + 2s instead of 1. Then the transition rates become

i

N
→ i+ 1

N
at rate (1 + 2s)N

i

N
(1− i

N
)

i

N
→ i− 1

N
at rate N

i

N
(1− i

N
)

(7)

Time is accelerated by N/2 and we let QN be the infinitesimal generator of the process
(Y N
Nt/2; t ≥ 0). We have

QNf

(
i

N

)
= (1 + 2s)

N

2
N

i

N
(1− i

N
)

(
f

(
i+ 1

N

)
− f

(
i

N

))
+
N

2
N

i

N
(1− i

N
)

(
f

(
i− 1

N

)
− f

(
i

N

))

Again, assume that in the Moran model with population size N , the fitness rate is sN ,
such that NsN −→

N→∞
s. For every function f that is at least twice differentiable in [0, 1],

using Taylor expansions, we have:

QNf(x) = (1 + 2sN )
N2

2
x(1− x)

(
1

N
f ′(x) +

1

2N2
f ′′(x) + o(1/N2)

)
+
N2

2
x(1− x)

(
−1

N
f ′(x) +

1

2N2
f ′′(x) + o(1/N2)

)
−→Qf(x) f ′(x)sx(1− x) +

1

2
f ′′(x)x(1− x)

which is the generator of the diffusion process that corresponds to the solution of (3). As
in the case of the Wright-Fisher model, it can be proved properly that, if Y N = x0, for
T > 0, the sequence of processes (Y N )N≥1 converges in distribution, in the Skorokhod
topology D([0, T ],R) to the solution of (3).

Remark 2.8. In the Wright-Fisher model we had to accelerate time by a factor N to obtain
the convergence to the Wright-Fisher diffusion. In the Moran model we had to accelerate
time by N/2. From a biological point of view, this means that differences in the breeding
structure of a population can lead to differences in the timescale of changes in the population
(see [?], Chapter 3).
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2.3 The Kingman coalescent

Another important line of research in population genetics consists in tracing backwards
in time the ancestry of a population. Instead of looking at how the genetic composition of
the population evolves, we look at how individuals are related to one another, i.e. for each
pair of individuals, we want to know how many generation ago lived their last common
ancestor. The Kingman coalescent was introduced by John F.C. Kingman in 1982 [?]
to describe the genealogy of a panmictic population, of constant size, made of haploid
individuals, where mating is uniformly random.

We start by considering a population of size N . The N -Kingman coalescent is the
process valued in PN , the set of partitions of {1, . . . , N}, such that two lineages are in
the same block at time t if they share a common ancestor at time t. See Figure 2) for a
representation of the N -Kingman coalescent.

Figure 2 – Example of realization of the N -Kingman coalescent (N = 20). Time goes from
bottom to top and each line represents a lineage.

Definition 2.9. (i) The N -Kingman coalescent is the process valued in PN such that Π0

is the partition made of singletons, and each pair of blocks merges (or coalesces) at rate 1.
(ii) The standard Kingman coalescent is the process valued in the partitions of N such

that for each N its restriction to {1, . . . , N} is a N -Kingman coalescent.

Let us now recall two important properties of the Kingman coalescent:

— (Exchangeability). The distribution of the Kingman coalescent is invariant under
finite permutation.

— (Consistency). For L > N , a L-Kingman coalescent restricted to PN is a N -Kingman
coalescent. In particular, if one has a sample of L individuals, and restricts the
genealogical tree relating them to a subsample of N individuals, the genealogical
tree that is obtained is the same in distribution as if one had taken the smaller
sample since the beginning.
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The Kingman coalescent and the neutral Wright-Fisher diffusion (i.e. when s = 0) are
linked, in the sense that the Wright-Fisher diffusion describes the evolution of a population
forwards in time and the Kingman coalescent describes backwards in time the ancestry
relations between the individuals of the same population. Mathematically, we can formalize
this fact by means of a duality relation. Duality is a powerful mathematical tool to obtain
information about one process by studying another process, its dual.

Definition 2.10. Two Markov processes X and Y , with laws X and Y that take values
in E and F respectively are said to be dual with respect to a bounded measurable function
function h on E × F if for all x ∈ E, y ∈ F , t ≥ 0,

EX (h(Xt, y)|X0 = x) = EY(h(x, Yt)|Y0 = y).

Let Nt be the block counting process of the Kingman coalescent. Nt is a pure death

process, where, the transition rate from i to i− 1 is given by
(
i

2

)
. Let (Xt; t ≥ 0) be the

solution of √
xt(1− xt)dBt.

Proposition 2.11 (Duality between the Wright-Fisher diffusion and the Kingman coales-
cent).

E(h(Xt, k)|X0 = x) = E(h(x,Nt)|N0 = k), where h(x, k) = xk.

In the LHS E denotes the expectation with respect to the distribution of the Wright-Fisher
diffusion and in the RHS E denotes the expectation with respect to the distribution of the
Kingman coalescent.

Proof. We consider Q, the infinitesimal generator of the Wright-Fisher diffusion (see (8)).
We have

Qh(x, k) =
1

2
x(1− x)

∂2h

∂x2
(x, k)

=
1

2
(1− x)k(k − 1)xk−1

=

(
n

2

)
(h(x, k − 1)− h(x, k))

= Q̄h(x, k),

where Q̄ is the infinitesimal generator of the Kingman coalescent. In the first line Q acts
on h seen as a function of the first variable (x), whereas in the last line, Q̄ acts on h seen as
a function of the second variable (k). We consider a probability space (Ω,F ,P) in which,
under P, (Nt, t ≥ 0) and (Xt; t ≥ 0) are independent. The previous computation implies
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that

d

ds
E(h(Xs, Nt−s)) = E

(
Qh(Xs, Nt−s)− Q̄h(Xs, Yt−s)

)
= 0,

and the conclusion follows by integrating between 0 and t.

Now consider the Moran model for finite population of size N and the N -Kingman
coalescent.

Proposition 2.12 (Duality between the Moran and the N -Kingman coalescent). For

i ≥ k, define HN (i, k) =

(
i

k

)
/

(
N

k

)
E(HN (NXN

Nt/2, k)|X0 = x) = E(HN (Nx,Nt)|N0 = k).

where in the LHS, E denotes the expectation with respect to the distribution of the Moran
model and in the RHS, E denotes the expectation with respect to the distribution of the
N -Kingman coalescent (backwards in time).

This result can be interpreted as follows: if, at time t, one samples k individuals from
a population of size N , the probability that they are all of type A is the same as the
probability that their ancestors at time 0 were of type A. The proofs of these results can
be found in [?, ?].

3 Multi-locus models and Recombination

3.1 Why are they important?

The models presented above consider the evolution of one single locus. However, what
are transmitted from one generation to another are chromosomes, or blocks of chromo-
somes, so the evolutionary histories of the different loci carried by an individual are not
independent. Generalizing these models from one to 2 (or n) loci is not trivial, as one
needs to take into account genetic recombination.

In fact, during meiosis (which is one of the steps of sexual reproduction), homologous
chromosomes are paired and can exchange fragments by a mechanism called chromosomal
crossover (see Figure 4). Thanks to this recombination mechanism, the offspring can
inherit chromosomes that are either copies of one of the parental chromosomes or mosaics
of the two parental chromosomes. Recombination is a widespread mechanism that is not
only present in sexual organisms. For example, bacteria have their own mechanisms of
gene transfer and homologous recombination that allow them to exchange portions of their
genomes.
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Figure 3 – Duality between the Moran model and the N -Kingman coalescent (N = 6). The
left-hand side represents a realization of the Moran model. Time goes from top to bottom
and an arrow represents a birth event in which the individual that is at the base of the
arrow replaces the individual at the tip of the arrow. In the second panel we show how the
N -Kingman coalescent can be obtained by reversing time. We start from the individuals
in the present population and we follow their ancestral lineage: each time it finds the tip of
an arrow, the lineage jumps to the base of the arrow. Arrows indicate coalescence events.
The right-hand side panel represents the N -Kingman coalescent.

Figure 4 – The left-hand side represents an example of a haploid life cycle. The right-hand
side comes from [?] and represents the mechanism of a crossing-over.
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All these mechanisms are complex and costly. Trying to explain how the recombination
mechanisms emerged and why they are maintained has been an important line of research
in evolutionary biology [?, ?, ?, ?, ?]. If asked why sex and recombination are such
widespread mechanisms, most biologists would say that it increases genetic variability
and hence allows evolution to proceed faster. However, recombination does not allow to
produce new alleles, so the link between genetic variance and recombination is not clear.
In addition, recombination can break up favorable associations between alleles that have
been accumulated by selection (this is known as the “recombination load”).

One of the hypotheses that has been favored to explain the maintenance of recombina-
tion is finite population size and genetic drift [?, ?]. In fact, as it was already pointed out
by Fisher [?] and Muller [?], mutation is rare, so different favorable mutations will tend
to arise in different individuals. In asexual populations, favorable mutations have to be
fixed one by one (see Figure 7), whereas in sexual populations, recombination can bring
them together, so several favorable mutations can be fixed at a time. In addition, in the
absence of recombination, a mutation that arises in an individual that carries deleterious
mutations at other loci will tend to be lost. In contrast, recombination can allow to bring
favorable mutations into good genetic backgrounds and therefore increase the rate of evo-
lution. Finally, in asexual populations there is a substantial probability that all fittest
individuals will eventually acquire a slightly deleterious mutation and therefore go extinct,
so that only “second fittest” individuals survive. The population can therefore accumulate
several deleterious mutations resulting in a global reduction in fitness. This mechanism is
known as Muller’s ratchet [?, ?].

Figure 5 – In an asexual population (A), Favorable mutations must be established sequen-
tially. If allele A is going to be fixed in the population, then any favorable allele that
occur at other loci (B, for instance) can only be fixed if they occur within a genome that
already carries A. (B) Recombination allows favorable mutations at different loci to be
combined: a favorable allele B that occurs with the unfavorable allele a can be fixed if it
can recombine into association with A (red circle). From [?].

But recombination is not only important form an evolutionary point of view. From
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a modeler’s point of view, models that take into account recombination are complex but
can be very powerful. In fact, nowadays with the advent of new generation sequencing
techniques it has become usual to have access to whole genomes. Considering that loci
have evolved independently results in an important loss of statistical power and can lead
to incorrect inferences. Multi-locus models that take into account linkage disequilibrium
have become of particular interest to analyse data. As we shall see in Section 3.5, analysing
recombination patterns can be useful for the detection of selection [?], to study recent de-
mography [?], in candidate gene studies [?] or to analyse data from experimental evolution
[?]. In Chapter II we use recombination patterns to study hybrid populations.

3.2 Two-locus models

In this section we are going to define a multi-locus version of the Wright-Fisher and the
Moran model described in 2.1 and 2.2. We will start by considering the case of two loci.
Locus 1 has two alleles, A1 and A2, and locus 2 has two alleles B1 and B2. The population
size is N , the recombination rate between the two loci is ρN and all the alleles are neutral,
so s = 0 for any genotype. We denote by

XN
11 the frequency of genotype A1B1

XN
12 the frequency of genotype A1B2

XN
21 the frequency of genotype A2B1

XN
22 the frequency of genotype A2B2

Recall, that, at each time t we have

XN
11(t) +XN

12(t) +XN
21(t) +XN

22(t) = 1.

Finally, we denote by XN the vector (XN
11, X

N
12, X

N
21, X

N
22)T .

Definition 3.1. In the Wright-Fisher model with recombination, each individual from gen-
eration t+1 chooses two parents uniformly (and independently) at random from generation
t. With probability 1−ρN , she inherits the alleles at both loci from one of the parents (cho-
sen at random). With probability ρN , she inherits allele at locus 1 from one parent (chosen
at random) and allele at locus 2 from the other parent.

Fix i, j ∈ {1, 2}. Considering the different ways an individual AiBj can be formed, we
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have

E(XN
ij (t+ 1)−XN

ij )(t) | XN (t) = (xii, xij , xji, xjj)
T )

= (1− ρN )xij + ρN (x2
ij + xiixjj + xiixij + xijxjj)− xij

= ρN (xiixjj − xijxji).

In addition, conditional on XN (t) = (xii, xij , xji, xjj), XN (t + 1) follows a multinomial
distribution of parameters N and (xii, xij , xji, xjj), which gives

Var(XN
ij (t+ 1) | XN (t) = (xii, xij , xji, xjj)

T ) =
1

N
xij(1− xij)

∀(i′, j′) 6= (i, j), Cov(XN
ij (t+ 1), XN

i′j′(t+ 1)| XN (t) = (xii, xij , xji, xjj)
T ) = − 1

N
xijxi′j′

Assume that XN
0 = x0 and

NρN −→
N→∞

ρ.

Proposition 3.2. For any T > 0, (XN
bNtc)N∈N converges in distribution (in the Skorokhod

topology D([0, T ],R4) to the solution of{
dXt =ρ(−1, 1, 1,−1)TD(X(t))dt+ σ(X(t))dBt,

X0 = x0.
(8)

where B is a standard Brownian motion in R4. and

D(X) = X1X4 −X2X3,

and σ(X)σ(X)T = M(X) where

∀i, j ∈ {1, 2, 3, 4}, i 6= j, M(X)i,i = Xi(1−Xi)

M(X)i,j = −XiXj .

We let the reader refer to [?] for a formal proof or to [?] for a modern exposition of this
result.

Remark 3.3. D is called the “linkage disequilibrium”. In fact, if XN
1− is the total frequency

of allele A1 (XN
1− = XN

11 + XN
12) and XN

−1 is the total frequency of allele B1 (XN
−1 =

XN
11 +XN

21), we have

D(XN ) = XN
11 − (XN

11 +XN
12)(XN

11 +XN
21)

= XN
11 −XN

1−X
N
−1.
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Linkage disequilibrium is a measure of the non-random association between alleles A1 and
B1. From (8), we have

D(XN (t)) −→
t→∞

0,

but the rate of convergence depends on ρ. Therefore, in a neutral setting, linkage disequi-
librium should decrease with time and with distance in the chromosome. However patterns
of linkage disequilibrium can be affected by many factors such as population subdivision,
demographic bottlenecks or natural selection (see [?] or Section 3.5).

Similarly, we can define a Moran model with recombination in the following way

Definition 3.4. In the Moran model with recombination each individual reproduces at rate
1. She chooses a random partner in the population.

- With probability 1− ρN , the chromosome of the offspring is a copy of one of the two
parents (chosen at random).

- With probability ρN , there is a crossing over between these two loci. The offspring
copies the allele at one locus from one parent and the allele at the other locus from
the other parent.

Define e11 = (1, 0, 0, 0)T , e12 = (0, 1, 0, 0)T , e21 = (0, 0, 1, 0)T , e22 = (0, 0, 0, 1)T .
Again, we accelerate time by N/2 and we assume that

N

2
ρN −→

N→∞
ρ.

Let QN be the infinitesimal generator of the Markov process (XN (Nt/2); t ≥ 0). For any
function f at least twice differentiable, if x = (xij))i,j∈{1,2},

QNf(x) =
N2

2
(1− ρN )

∑
i,j∈{1,2}

∑
k,p∈{1,2}

xijxkp

(
f(x+

1

N
eij −

1

N
ekp)− f(x)

)

+ ρN
N2

2

∑
i,j∈{1,2}

∑
k,p∈{1,2}

xijxkp

(
f(x+

1

N
eip −

1

N
ekj)− f(x)

)

−→
N→∞

ρ
∑

i,j∈{1,2}

∑
k 6=i,p 6=j

(xipxjk − xijxkp)
∂f

∂xij
(x)

+
1

2

∑
(i,j),(k,p)∈{1,2}

xij(1i=k,j=p − xkp)
∂2f

∂xij∂xkp
(x).

where the last equality is obtained by means of Taylor expansions (as in the one-locus
Moran model). The last line corresponds to the generator of the diffusion process defined
in (8). As in the case of the simple Moran model, it can be shown that the sequence
(Y N , N ≥ 1) is tight in D([0, T ],R4)) converges in distribution, in the Skorokhod topology
D([0, T ],R) to the solution of (8).
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3.3 The case of n loci

These two models can be extended to the case of n loci. In this work, we will only
consider single crossing over recombination which means that at each reproduction event, if
recombination takes place, the chromosome of each parent is partitioned into two segments.
The offspring inherits the genetic material to the right of the cutpoint from one parent
and the genetic material from the left of the cutpoint from the other parent. The position
of the cut point is uniformly distributed in the chromosome, so the probability that the
crossing over occurs between two given loci depends on the distance between these two loci
on the chromosome.

The n loci are identified to their positions in a chromosome, which are given by z =

(z1, . . . , zn) ∈ [0, 1] such that z1 = 0 < z2 < . . . < zn = 1.

Definition 3.5. In the Wright-Fisher model with recombination, each individual from gen-
eration t+1 chooses two parents uniformly (and independently) at random from generation
t.

- With probability 1 − ρN there is no recombination and she inherits all the loci from
one of the parents (chosen uniformly at random).

- For i ∈ {2, . . . , n}, with probability ρN (zi−zi−1) the offspring inherits loci z1, . . . , zi−1

from one parent and zi, . . . , zn from the other one.

Definition 3.6. In the Moran model with recombination each individual reproduces at rate
1 and chooses a random partner

- With probability 1 − ρN there is no recombination and the offspring inherits all the
loci from one of the parents (chosen at random).

- For i ∈ {2, . . . , n}, with probability ρN (zi−zi−1) the offspring inherits loci z1, . . . , zi−1

from one parent and zi, . . . , zn from the other one.

The offspring replaces a randomly chosen individual in the population, who simultaneously
dies.

As in the case of two loci, when time is rescaled by N and the recombination rate scales
with the population size in such a way that ρ = limN→∞ ρNN the Wright-Fisher model
with recombination has a diffusive limit. For the Moran model with recombination this
diffusive limit arises when time is rescaled by N/2 and ρ = limN→∞ ρNN/2.

We follow closely [?] and we assume that each locus i has k possible alleles {i1, . . . , ik}.
The set of al possible genotypes is E =

∏n
i=1{i1, . . . , ik}. For each e ∈ E, we denote by xe

the frequency of genotype e in the population. Let S be the set of non-empty subsets of
{1, . . . , n}. For S ∈ S, we denote by xSe , the marginal frequency of the alleles e into S. In
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particular, for ` ∈ {1, . . . , n}, we denote by x≤le (resp. x>le ) the marginal frequency of the
alleles e into {1, . . . , `} (resp. {`+ 1, . . . , n}

x≤le =
∑

j∈E, j|E≤`=e

xj , x≤le =
∑

j∈E, j|E>`=e

xj

where E≤` =
∏
i≤`{i1, . . . , ik} and E>` =

∏
i>`{i1, . . . , ik}. The generator of the Wright-

Fisher diffusion for n recombining loci with k alleles per loci is given by

L =
∑
e∈E

n−1∑
`=1

ρ(z`+1 − z`)(x≤le − x≤le )
∂

∂xe
+
∑
j∈E

xe(1e=k − xj)
∂2

∂xe∂xj

 . (9)

Remark 3.7. In Chapter III, we consider a slightly different version of the Moran model
with recombination, which is more general because we do not assume single crossing-over
recombination. We assume that each individual carries a chromosome of length 1. The
positions of the cutpoints are given by a Poisson Point Process of intensity λdx. The
chromosomes of each of the parents are cut into fragments at these positions . The offspring
inherits each fragment of the chromosome from one of the two parents, chosen uniformly
at random, so the probability of observing a crossing-over at a given cutpoint is 1/2. The
probability that a crossing-over occurs between zi and zj is then given by

ri,j =
1

2
(1− exp(−λ|zi − zj |).

This model is known as the Haldane model. For the purpose of Chapter I, this model is too
complex to handle, and we use the single crossing-over model, which is a good approximation
of this one, if one looks at a portion of chromosome that is small enough so that the
probability of observing more than one crossing over at each reproduction event is negligible.

Remark 3.8. The parameter ρN corresponds to a recombination rate. If we rescale the
positions of the loci in such a way that z̄i = ρNzi, this corresponds to measuring the
chromosome in units of recombination, or “morgans” (this unit was named in honor of
Thomas H. Morgan).

3.4 The Ancestral Recombination Graph and the partitioning process

In the previous section we showed how the genealogy for a single locus can be described
using the Kingman coalescent. In this section, we consider the Ancestral Recombination
Graph (ARG) which follows backwards in time the ancestry of several recombining loci.
The ARG was introduced by Hudson [?] and Griffiths [?, ?]. The idea is to sample n loci
from an individual in the present population and to follow backwards in time the lineages
carrying each of these loci. The dynamics of these lineages are controlled by splitting and
coalescence events.
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We start with considering the Moran model with recombination for a population of
size N and recombination rate ρN . We follow the ancestry of n loci whose positions in are
given by z = (z1, . . . , zn) ⊂ [0, 1], z1 < . . . < zn. The N -ARG for the set of loci z has the
following transition rates:

- Coalescence: Each pair of lineages coalesces at rate (1− ρN )2 2
N +O(ρN/N). For-

wards in time, it corresponds to a birth event in which there is no recombination and
individual i replaces individual j, which happens with probability 1/N (or a birth
event in which individual j replaces individual i, which happens with probability
1/N) .

- Splitting: The lineage carrying zi1 , . . . zik is split into zi1 , . . . , zij and zij+1 , . . . zik
at rate ρN (zij+1 − zij ). Forwards in time this corresponds to a reproduction event
in which the offspring inherits loci zi1 , . . . .zij from one parent and loci zij+1 , . . . zik
from the other parent.

- Events in which two blocks coalesce and the resulting block is split simultaneously
happen at rate O(ρN/N) (and when N is large enough, we can neglect them).

It can readily be seen that, if limN→∞ ρNN/2 = ρ and time is rescaled by N/2, when
N →∞ this process converges to a process, known as the ARG, in which pairs of lineages
coalesce at rate 1 and a block is split between zi and zj at rate ρ|zi − zj |.

Remark 3.9. Similarly, in the Wright- Fisher model with recombination, if we follow
backwards in time the ancestry of a sample of n loci, we have the following transition
probabilities

- At each generation, each pair of lineages coalesces with probability (1 − ρN )2/N .
This corresponds to individuals i and j choosing the same parent (with happens with
probability 1/N2 and there are N possible parents)

- At each generation, the lineage carrying zi1 , . . . zik is split into zi1 , . . . , zij and zij+1 , . . . , zik
with probability ρN (zij+1 − zij ).

- At each generation, the probability that there is more than one coalescence or recom-
bination event is O(ρN/N)

If time is rescaled by N and limN→∞ ρNN = ρ, this process also converges to the ARG.

In a finite population, it can readily be seen from the graphical representation (Figure
6) that the N -ARG is dual to the Moran model with recombination. The ARG (in an
infinite population) is dual to the Wright-Fisher diffusion with recombination. Griffiths et
al. [?] showed that, for S ∈ S, if nS is the number of lineages that carry genetic material
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Figure 6 – Duality between the Moran model and the N - ARG (N = 5, n = 3). The
left panel represents a realization of the Moran model with recombination. On the top we
represented the chromosomes of the different individuals at generation 0, assuming that
each one has her loci painted in a different color (which allows us to distinguish them).
Arrows represent reproduction events. For pure resampling events, the base of the arrow
represents the parent from which the genetic material is inherited, and the arrow points at
the individual that is replaced. For reproduction events with recombination (represented
by two arrows), we indicated on top of each arrow the loci that are inherited from each
parent. In the second panel we show how the N -ARG can be obtained by reversing time.
We sample the 3 loci in an individual in the present population and we follow the ancestral
lineages corresponding to each of her loci. Each time an ancestral lineage finds the tip of an
arrow, it jumps to the base of the arrow. If there are two arrows, the lineage corresponding
to locus i jumps to the base of the arrow labelled i. The right-hand side panel represents the
resulting N -ARG. Red dots represent splitting events and blue dots represent coalescence
events.
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that is ancestral to the loci in S of a randomly sampled individual in the population, the
diffusion process whose generator is defined in (9) is dual to the ARG with duality function

F (x, n) =
∏
S∈S

(xSj )n
S
.

In Chapter I, we extend the ARG to the case of a continuous, possibly infinite chromo-
some. We call this process the R-partitioning process. Let P loc be the set of partitions of
R that are locally finite and right continuous, i.e. such that the blocks of the partition are
disjoint unions of left-closed (right-open) intervals and such that in any compact subset
of R there is only a finite number of these intervals. For any z finite subset of R, for any
π ∈ P loc, the trace of π on z, tz, is the partition of z induced by π. The R-partitioning
process (Πρ

t ; t ≥ 0) is the only càdlàg process valued in P loc such that for any z finite
subset of R, (tz(Π

ρ
t ); t ≥ 0) is a partitioning process at rate ρ for the set of loci z (with the

transition rates described above). In Chapter I, we will study the partitioning process in
the limit ρ → ∞. This corresponds to observing a frame of the chromosome of the order
of 1/(2N) morgans and letting the size of the frame tend to infinity. A similar model was
studied by Wiuf and Hein [?] to address the question of how many genetic ancestors there
are to a contemporary human chromosome.

3.5 Applications: linkage disequilibrium, haplotype blocks and inference

Recombination patterns are of particular interest for analysing data from whole genome
scans. Nowadays it has become feasible to have access to whole DNA sequences of indi-
viduals and models that take into account correlations between loci are needed to analyse
these data. The sequence of a chromosome is called a haplotype. When comparing two
haplotypes from two individuals of a population it is possible to detect blocks of loci that
have been inherited from the same common ancestor. These blocks are called IBD blocks
(“identical-by-descent”). The distribution of the IBD blocks in a chromosome, i.e. the
lengths and the positions of the different segments of the chromosome that are IBD (to a
locus of interest) can be studied using the partitioning process. This is the goal of Chapter
I. This model assumes that the population size is constant and all the loci are neutral.
However, changes in the population size, or natural selection at some loci can alter the
distribution of the sizes of the IBD blocks.

Delimiting IBD blocks from real data is not straightforward. Unlike mutation, recom-
bination events do not always leave a footprint on the DNA sequence. A recombination
event can only be observed if it occurs between two loci where the parents carried different
alleles (so it is possible to determine which fragment has been inherited from which par-
ent). A single-nucleotide polymorphism (SNP) is a variation in a single nucleotide, at a
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specific locus. The higher the density of SNPs the most accurately we can infer IBD blocks
(see Chapter II). Different methods have been developed to infer IBD blocks. Algorithms
such as fastIBD [?] or IBD_Haplo [?] identify long haplotype segments that are shared be-
tween two individuals by a combination of likelihood methods and Hidden Markov Models
(HMM).

The distribution of IBD block lengths can be used to infer the recent demographic
history of populations. Classical methods use mutation patterns to infer past demographic
variation (see e.g. [?] for a review on this topic). But mutation rates are usually too low
to be used to detect fast demographic changes. Ralph and Coop [?] and Ringbauer et al.
[?] used IBD blocks to infer recent migration patterns in European human populations.

Recombination patterns can also be used to detect loci under selection. The idea
behind these methods is that loci that are under selection tend to be fixed rapidly in
a population. During a selective sweep, loci that are close to the locus under selection
tend to be hitchhiked (i.e. the alleles that are in the same haplotype where the beneficial
mutation arose also tend to be fixed, because recombination does not have time to break
up the linkage). Therefore alleles that are under positive selection tend to be located
within long IBD blocks. Some examples of these type of methods are Extended Haplotype
Homozygosity [?] or Runs of Homozygosity [?].

Janzen et al. [?] used the IBD block length distribution to infer the time since admixture
in hybrid populations. The idea is that by comparing the genotypes of the hybrids to those
of the ancestral populations, one can infer which haplotype blocks have been inherited from
each of the ancestral populations. As the blocks are split by recombination, their size tend
to decrease with time (until fixation is reached), so the sizes of the blocks are informative
about the admixture time. But the quality of the inference depends on the density and the
positions of the SNPs (or markers) that segregate between the two ancestral populations.
In [?] the authors had assumed that the markers were regularly spaced and derived a
formula to infer the admixture time from the number of junctions between blocks. In
Chapter II I present some work in collaboration with Thijs Janzen in which I derived a
formula to infer the admixture time using markers that are randomly distributed across
the genome.

Recombination patterns can also be useful to analyse data from experimental evolution.
For example, in the experiment by Teotonio et al. [?], individuals from different subpopu-
lations of C. elegans have been crossed for several generations. By sequencing the offspring
and comparing their haplotypes to those of the ancestral individuals, it is possible to infer
which haplotype blocks have been inherited from each of the ancestral subpopulations.
One of the motivations behind I is to derive a neutral model of the IBD-block distribution
to analyse this type of experiment.
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4 Geographic structure and speciation

In On the origin of species, Darwin called species formation the “mystery of mysteries”.
He was perplexed by the clustering of individuals into discrete species and the absence of
“transitional forms”. When listing the drawbacks of his theory he wrote: “Why is not all
nature in confusion instead of the species being, as we see them, well defined?”.

It is not surprising that since then, the process of speciation has received an enormous
amount of attention from evolutionary biologists. The speciation process is complex and
difficult to understand from a theoretical point of view because there are many factors
controlling the dynamics of speciation (mutation, geographic structure, migration, recom-
bination, natural selection, sexual selection...). Chapter III is devoted to the study of a
particular model of speciation that can be used to understand how the geographic structure
of a population can promote species formation. In this section we will give some biological
background and review some important models of speciation that will allow us to justify
some of the hypotheses made in that chapter.

4.1 Geographic structure and genetic differentiation

Geographic structure is one of the main drivers of within species genetic variability:
if the geographical range is larger than the typical dispersal rate of its individuals, a
species can be structured into different local subpopulations with limited contact. On the
contrary, migration allows the different subpopulations (or demes) to exchange genes and
has an homogenising effect.

One of the first models that was proposed to explain how the geographic structure
promotes genetic variability was Wright’s stepping stone model [?], which was later im-
proved by Kimura [?]. In this model, a population is divided into several demes which can
exchange migrants with their nearest neighbours in Z or Z2. Wright proposed a statistical
theory on how population differentiation should vary as a function of the migration rates
between demes, which was called “Isolation by distance”.

Malécot studied the case of a population in continuous space where individual dispersal
is assumed to be normally distributed [?] . He proposed a formula for the probability P
that two individuals sampled at distance r on the real line have the same allele at a given
locus

P (r)

P (0)
= exp(−r

√
(2µ)/σ),

where µ is the mutation rate and σ is the dispersal coefficient (i.e. the standard deviation
of the dispersal distribution). This formula is known as Malécot’s formula and can be
extended to R2 or R3.
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Samuel Karlin analysed how migration patterns can influence genetic variability in a
metapopulation [?]. A metapopulation is a population that is formed by several demes
connected by migration. The geographic structure of a metapopulation can be modelled by
a graph in which the vertices represent the subpopulations. Two vertices are connected if
the corresponding demes can exchange migrants and each edge is associated to a migration
rate. Using a deterministic model, Karlin studied which geographic configurations promote
genetic variability and speciation: for example he showed that, in the presence of selection,
some geographic structures can promote speciation. This is for example the case of a
metapopulation graph that is clustered, in the sense that it is formed from the union of
several (almost) complete graphs connected by a limited number of edges. In Chapter III,
we showed, using a stochastic model, that, even if the absence of selection, a clustered
geographic structure promotes genetic differentiation which can lead to speciation.

4.2 The biological species concept and reproductive barriers

It is difficult and beyond the scope of this thesis to give a universal definition of a
species. For sexual organisms, one of the most commonly used definitions was given by
Mayr in 1942 [?]:

“Species are groups of actually or potentially interbreeding natural populations, which are
reproductively isolated from other such groups.”

This defines the biological species concept. A more general definition of this concept, based
on evolutionary considerations, was given by de Queiroz in 1998 [?]:

“Species are separately evolving metapopulation lineages ; they form an independent gene
pool and reproductive community that evolves together.”

But there are many other ways to define a species. For example:

- A phenotypic species is a morphologically distinguishable group of individuals.

- A phylogenetic species is a monophyletic group of individuals i.e. a group that consists
of all the descendants of a common ancestor.

- An ecological species is a group of individuals that occupy the same niche, i.e. that
are adapted to a particular set of resources in the environment.

Although all these definitions do not always lead to the same classification, they all have
some advantages and are used in different contexts ([?]). In this work we are going to
consider sexual organisms and adopt the biological species concept, which is one of the
most commonly used in evolutionary biology.

The biological species concept focuses on the capacity of individuals to interbreed,
which means that they can mate and produce viable and fertile offspring. Speciation can
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be seen as the emergence of mechanisms that prevent individuals from different groups to
interbreed. These mechanisms are called reproductive barriers. Among these mechanisms
we can distinguish between:

- Prezygotic barriers, that are mechanisms that prevent fertilization. They include
ecological mechanisms and habitat or behavioural differences that prevent mating.
For example the American toad and the Fowler’s toad are closely related species that
live in the same areas of North America but that are unable to reproduce because
their mating season is different [?]. They also include anatomical differences and
gametic incompatibility. For example, in the Drosophila genus, the differences in the
shape of the genital organs prevent mating between individuals from different species
[?].

- Postzygotic barriers, that are mechanisms that prevent the development of hybrids.
They include embryo inviability, sterility and reduced fitness of hybrids. Mules, that
are hybrids between a donkey and a horse, are a classic example of hybrid sterility.

These mechanisms are controlled genetically and different models have been proposed
to study how these barriers emerge and are maintained.

• The Dobzhansky-Muller model

This model was proposed independently by Dobzhansky [?] and Muller [?]. It involves
two loci in diploid individuals.

The model assumes that, in an ancestral population, all individuals carry the same
genotype AABB. The population is split into two subpopulations and gene flow is in-
terrupted (for example, by a geographic barrier). In the first one, a mutation is fixed in
the first locus and the genotype of the population becomes aaBB. In the second one,
a mutation is fixed in the second locus and the the genotype of the population becomes
AAbb. Fixation is possible because AABb and AaBB heterozygotes are viable and their
fitness is similar to the fitness of the homozygotes. In a cross between two parents from
different subpopulations, the genotype of the offspring would be aAbB. If these hybrids
are non viable, a postzygotic reproductive barrier has emerged.

In this model, speciation may be adaptive or not. a and b can be neutral or each one
may confer a selective advantage in the environment where it emerges. In the second case,
fixation should be faster.

Different biological mechanisms have been proposed for these Dobzhansky-Muller in-
compatibilities. For example, they can involve a maternal and a paternal gene, both
involved in reproduction. One can code for a sperm protein and the other one for an egg
protein, that interact during fertilization. The proteins produced from the derived alleles
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a and b may lack matching, which prevents fertilization (see e.g. [?] for some example in
marine invertebrates). It has also been proposed that Dobzhansky-Muller incompatibilities
can arise by gene duplication. Initially both loci (A and B) code for the same trait but one
may lose its function. If each locus loses its function in one sub-population, hybrids will
lack this trait and may not be viable. Also, this kind of incompatibilities can be caused
by negative epistatic interactions. Epistatic interactions arise when the effect of a gene
depends on the genetic context in which it acts.

However, very few examples of real Dobzhansky-Muller incompatibilities, involving
only two loci have been found in nature and are well characterized. One occurs between
two closely related species of fish, the platyfish, X. maculatus and the swordtail X. helleri
(see e.g. [?, ?, ?]). The first one has spots on the dorsal fin whereas the second one lacks
spots. The spots are produced by a X -linked gene which expression is controlled by a
second locus. While the platyfish has both genes, the swordtail lacks both. Hybrids, which
have the spot producing gene but not the repressor, have large spots which develop into
tumors. Therefore the fitness of the hybrids is reduced.

• The Nei model

Another model for the evolution of reproductive isolation was developed by Nei and
his collaborators [?]. It is a one-locus multi-allelic model of post-zygotic incompatibility.
A locus A which is involved in hybrid sterility or inviability has a series of different alleles
(Ai)i≥1. Homozygotes AiAi and heterozygotes AiAi+1 and AiAi−1 are viable and have the
same fitness. But heterozygotes AiAi+2 and AiAi−2 are lethal or sterile.

In their model, the different alleles are neutral, in the sense that all viable individuals
have the same fitness. The model assumes that in an ancestral population allele Ai is
fixed. The population is split into two subpopulations. By genetic drift, allele Ai+1 can be
fixed in one subpopulation and allele Ai−1 in the other one. The genotype of the hybrids
is Ai+1Ai−1, so they not viable and a reproductive barrier is built.

Models of incompatibilities involving a large number of loci

Some multi-locus generalizations of these models have been studied. Orr [?] and
Gavrilets and Gravner [?] studied how the probability of reproductive isolation depends
on the number of substitutions between two sub-populations. Assume that the ancestral
genotype is abcde which is replaced in one subpopulation by AbcdE and by aBcde in the
second one. The allele E can be incompatible with alleles a and B. More generally, the kth

substitution can be incompatible with k − 1 alleles. If each new derived allele has a prob-
ability p of being incompatible with each locus, the expected number of incompatibilities
between two populations differing at k loci was pk2

2 . They predicted a “snowballing effect”:
if the number of substitutions increases linearly with time, the number of incompatibilities,
increases faster than linearly with time (and therefore the probability that two individuals
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are able to interbreed decreases faster than linearly with time). He also concluded that
speciation should occur more easily if many loci are involved in reproductive barriers: in
a multi-locus systems there are more possible combinations of loci that can give rise to
incompatibilities than in a classical two locus model.

The model we use in Chapter III is a simplified version of this model, proposed by
Yamaguchi and Iwasa in [?]. We will consider a set of ` incompatibility controlling loci.
The genetic distance between two individuals is defined as the number of these loci that
differ between the two. Inspired by this “snowballing effect”, we will assume that there
is a threshold of speciation s and reproductive incompatibility emerges when the genetic
distance becomes higher than the threshold. One of the advantages of this type of approach
is that it takes into account the fact that speciation takes time, and two populations that
are not completely isolated can produce hybrids. Many examples of hybridization between
lineages that had been thought to be separate species have been found in nature, for
example in cichlid fishes [?, ?], warblers [?], fruit flies [?], butterflies [?, ?] and sculpins [?].
Chapter II is devoted to the study of hybrid populations. The idea is to use recombination
patterns to infer the time since admixture.

4.3 Geography and speciation

As we have seen, geographic structure promotes genetic differentiation between sub-
populations. The accumulation of genetic differences between populations may give rise to
reproductive incompatibilities and therefore to the formation of new species. Geographic
structure can play a crucial role in speciation and models of speciation have been classified
depending on the geographical setting.

- Sympatric speciation is the emergence of two or more species from a single ancestral
population, in the same geographic location, without any spatial isolation. One of the
most studied examples of sympatric speciation is that of the clichids, a very diversified
family that lives in the Rift Valley lakes. The plausibility and generality of sympatric
speciation has been a source of controversy amongst evolutionary biologists. In the
2000s Gavrilets [?, ?] derived general conditions for sympatric speciation. It requires
disruptive selection, which occurs when extreme phenotypes have a fitness advantage
over more intermediate phenotypes, and assortative mating, which means that mating
between individuals with similar genotypes is promoted.

- Allopatric speciation is the formation of new species from subpopulations which are
geographically isolated. In the absence of gene flow, each subpopulation accumulates
mutations independently, which promotes the emergence of reproductive barriers.
Local adaptation can accelerate the divergence between the different subpopulations.
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The models of reproductive incompatibilities presented above were introduced in the
context of allopatric speciation.

- Peripatric speciation is a form of allopatric speciation in which a new species is
formed in an isolated, small peripheral subpopulation that is isolated from the main
population.

- Parapatric speciation is an intermediary form of speciation, where subpopulations
are partially isolated but there exists some gene flow between them.

4.4 Fitness landscapes

To visualize the link between fitness, adaptation and speciation one can use the metaphor
of fitness landscapes. The idea was introduced by Wright in 1932 [?]. Fitness land-
scapes represent individual fitness as a function on the genotype space, which is a multi-
dimensional space representing all possible genotypes. An individual is represented as a
point and a population corresponds to a cloud of points. Wright suggested the idea that
adaptive landscapes were “rugged”, with peaks, corresponding to the different species and
valleys corresponding to unfit hybrids. Speciation can be seen as a population moving from
one peak to another. Wright suggested that a small population can move across an adap-
tive valley to the basis of another, maybe higher peak. Then, natural selection will move
the population up to the new peak. Finally, this newly adapted population can expand
its range. This mechanism of speciation is known as the shifting-balance theory. However,
Wright’s argument was only verbal and further theoretical analyses of this model ([?]) have
shown that, although the mechanisms underlying this theory can in principle work, the
conditions are very strict (for example, a really small population size is required).

Within this context, Gavrilets [?] suggested the concept of “holey” adaptive landscapes,
where two reproductively incompatible genotypes can be connected by a chain of intermedi-
ary fit genotypes, forming a “ridge”. This is for example the case in the Dobzhansky-Muller
model where AAbb and aaBB are incompatible and are connected by a chain of fit geno-
types (AABb, AABB, AaBB). Each mutation is neutral, so two reproductively isolated
species can be formed without going through a valley of maladaptation. The resulting
landscape is flat, with a “hole” corresponding to the unfit hybrids aAbB (and all the fit-
ness values are 0 or 1). This idea can be extended to higher dimensional genotype spaces.
Gavrilets and Gravner [?] showed, using percolation theory that, when many loci are in-
volved, typically fit genotypes will be connected by evolutionary ridges. Speciation is seen
as a population diffusing across a ridge by several neutral mutation steps until it stands at
the other side of a hole.

In Chapter III we will consider a model of parapatric speciation, in which a metapopula-
tion is divided into several subpopulations. The geographic structure of the metapopulation
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Figure 7 – The left panel represents a rugged adaptive landscape and the right panel
represents a holey adaptive landscape [?].

is modelled by a weighted oriented graph, where each vertex corresponds to a subpopula-
tion. Each directed edge is associated to a migration rate in each direction. This model is
a generalization of the classical isolation-by-distance model, in the sense that the metapop-
ulation is subdivided into discrete demes, but we can allow migration between any pair of
subpopulations (and not only the nearest neighbours). In addition, we will consider a set
of ` incompatibility controlling loci and assume that neutral mutations for this set of loci
are rarer than in the typical population genetics context. This rare mutation hypothesis
is commonly used when studying speciation, see for example [?] or [?]. The idea behind
this hypothesis is that the incompatibility controlling loci are potentially involved in pre
or post-zygotic reproductive barriers so they must participate in reproduction or in devel-
opment and interact with other genes. For this type of loci, random mutations are very
likely to be deleterious, so they will be washed away by selection at the micro-evolutionary
timescale. This can be visualized using a holey adaptive landscape where neutral muta-
tions along the evolutionary ridge connect the different fit genotypes, but most mutations
make the resulting genotype fall into the “hole”.
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Chapter I

Chromosome Painting

Abstract

We consider a Moran model with recombination in a haploid population of size N . At
each birth event, with probability 1 − ρN the offspring copies one parent’s chromosome,
and with probability ρN she inherits a chromosome that is a mosaic of both parental
chromosomes. We assume that at time 0 each individual has her chromosome painted in a
different color and we study the color partition of the chromosome that is asymptotically
fixed in a large population, when we look at a portion of the chromosome such that
ρ := limN→∞

ρNN
2 → ∞. To do so, we follow backwards in time the ancestry of the

chromosome of a randomly sampled individual. This yields a Markov process valued in
the color partitions of the half-line, that was introduced by [?], in which blocks can merge
and split, called the partitioning process. Its stationary distribution is closely related to
the fixed chromosome in our Moran model with recombination. We are able to provide an
approximation of this stationary distribution when ρ� 1 and an error bound. This allows
us to show that the distribution of the (renormalised) length of the leftmost block of the
partition (i.e. the region of the chromosome that carries the same color as 0) converges to
an exponential distribution. In addition, the geometry of this block can be described in
terms of a Poisson point process with an explicit intensity measure.

1 Introduction

1.1 Motivation: a Moran model with recombination

Genetic recombination is the mechanism by which, in species that reproduce sexually,
an individual can inherit a chromosome that is a mosaic of two parental chromosomes.
Many classical population genetics models ignore recombination and only focus on a single
locus, i.e. a location on the chromosome with a unique evolutionary history. In this
setting, many analytical results are known. For example the time to fixation (i.e. the first
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time at which all individuals carry the same allele) or the fixation probabilities (see for
example [?]). However, understanding the joint evolution of different loci is well known to
be mathematically challenging, as one needs to take into account non-trivial correlations
between loci along the chromosome. For instance, loci that are close to one another are
difficult to recombine, so they often inherit their genetic material from the same parent
and as a consequence, often share a similar evolutionary history. On the contrary, loci that
are far from one another will tend to have different, but not independent, evolutionary
histories.

To visualize the questions that will be addressed in this work, let us imagine that in
the ancestral population, each individual carries a single continuous chromosome painted
in a distinct color. By the blending effect of recombination, after a few generations, the
chromosome of each individual looks like a mosaic of colors, each color corresponding to
the genetic material inherited from a single ancestral individual. Some natural questions
arise: How does the mosaic of colors that is fixed in the population look like? How many
colors are there? If the leftmost locus is red (i.e. is inherited from the individual with red
chromosome in the ancestral population), what is the amount of red in the mosaic and
where are the red loci located? These questions are interesting from a biological point
of view: for example, the number of colors in the mosaic corresponds to the number of
ancestors that have contributed to an extant chromosome. Loci that are of the same color
(i.e., that have been inherited from the same individual in the ancestral population) are
called identical-by-descent (IBD).

It is known that changes in the population size or natural selection can alter the sizes
of the IBD segments: for example genes that are under selection tend to be located within
large IBD segments. This prediction can guide the detection of genes that are under
selection (see for example the methods developed by [?] or [?]). The aim of this article
is to characterize the distribution of the IBD blocks along a chromosome in the absence
of selection or demography. Our results may then be used as predictions under the null
hypothesis, that can serve as a standard to which compare real data, e.g., to infer selection
or demography.

Also, our results may be relevant to the analysis of data obtained in experimental evo-
lution. For example, in the experiment carried out by Teotónio et al. [?], the authors
intercrossed individuals from 16 different subpopulations of the worm C. elegans and let
the population evolve for several generations at controlled population size. Then, each
individual is genotyped, each of its variants is mapped to one of the 16 ancestor subpopu-
lations, so as to get a represention of each DNA sequence of each individual as a partition
of the sequence into 16 colors. Again, our model (or an extension to our model accomo-
dating for the finite number of colors), might be used as a null model whose predictions
can be compared to these real color mosaics.

Sampling the chromosome, seen as a continuous, single-ended strand modelled by the
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positive half-line, of an individual in the present population and tracing backwards in time
the ancestry of every locus yields a process valued in the partitions of R+, called the R-
partitioning process. Here, x ≥ 0 and y ≥ 0 belong to the same block of the R-partitioning
process at time t if the loci at positions x and y on the sampled chromosome shared the
same ancestor t units of time ago.

The R-partitioning process is the continuum analog of the celebrated Ancestral Re-
combination Graph [?, ?, ?]. Before giving a formal description of this object, we start by
showing how it arises naturally from a multi-locus Moran model. The population size is N
and each haploid individual carries a single linear chromosome of length R. At time 0, each
individual has her (unique) chromosome painted in a distinct color (see Figure 1.1). Each
individual reproduces at rate 1, and upon reproduction, the individual chooses a random
partner in the population. Let ρN ∈ (0, 1),

— With probability 1 − ρNR, the offspring copies one parent’s chromosome (chosen
uniformly at random).

— With probability ρNR, a recombination event occurs. We assume single-crossover
recombination which means that each parental chromosome is cut into two fragments.
The position of the cutpoint (i.e. the crossover) is uniformly distributed along the
chromosome (see Figure 1.1). The offspring copies the genetic material to the left of
this point from one parent and the genetic material to the right of this point from
the other parent.

The offspring then replaces a randomly chosen individual in the population. Because of
recombination, at time t each chromosome is a mosaic of colors, each color corresponding
to the genetic material inherited from one individual in the founding generation. (In other
words, loci sharing the same color are IBD.)

Figure I.1 – Moran model model with recombination.

Let us now consider z = (z0, z1, . . . , zn) ∈ [0, R] corresponding to the locations of n+ 1

loci along the chromosome (with z0 < z1 < . . . < zn). Forward in time, the evolution of the
genetic composition of the population can be described in terms of a (n+ 1)-locus Moran
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model with recombination as described in [?, ?]. Backward in time, the genealogy of those
loci (sampled from the same individual) is described in terms of the discrete partitioning
process, introduced by [?], which traces the history of the n + 1 loci under consideration
(see Figure 1.1). More precisely, the discrete partitioning process (associated to z) is a
Markov process valued in the partitions of z = {z0, z1, . . . , zn} such that zi and zj are in
the same block at time t if and only if they inherit their respective genetic material from
the same individual t units of time ago. (In other words, zi and zj are IBD if we look t
units of time in the past). In a population of size N , it can be seen that the dynamics of
the discrete partitioning process are controlled by the following transitions.

— Each pair of blocks coalesces at rate 2/N +O(ρN/N).

— Each block b = {zi1 , . . . , zik} is fragmented into {zi1 , . . . , zij} and {zij+1 , . . . , zik} at
rate ρN (zij+1 − zij ).

— Simultaneous splitting and coalescence events happen at rate O(ρN/N).

The interesting scaling for this process is when time is accelerated by N/2 and the
recombination probability scales with N in such a way that

lim
N→∞

ρNN/2 = ρ, (I.1)

for some ρ > 0. It can readily be seen that the discrete partitioning process in a population
of size N converges in distribution (in the Skorokhod topology) to a process (Γρ,zt ; t ≥ 0),
which is the Markov process with the following transition rates:

— Each pair of blocks coalesces at rate 1.

— Each block b = {zi1 , . . . , zik} is fragmented into {zi1 , . . . , zij} and {zij+1 , . . . , zik} at
rate ρ(zij+1 − zij ).

In the literature, Γρ,z is also referred to as the Ancestral Recombination Graph (ARG)
[?, ?, ?] associated to z (with recombination rate ρ). The following scaling property can
easily be deduced from the description of the transition rates. We assume that at time
0 all loci are sampled in the same individual, i.e. we consider the ARG started from the
coarsest partition. Then

∀R > 0, ΓR,z = Γ1,Rz in distribution. (I.2)

In the following, we are going to consider a high recombination regime, i.e. that ρ is large.
This relation states that this is equivalent to considering that the distances between loci
of interest are large.

1.2 The R-partitioning process

As the goal of this article is to characterize the distribution of the IBD blocks in a
continuous chromosome in an infinite population, we extend the ARG (Γρ,zt ; t ≥ 0) to the
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Figure I.2 – Duality between the Moran model and the discrete partitioning process (N =
5, n = 3). The left panel represents a realization of the Moran model with recombination.
On the top we represented the chromosomes of the different individuals at generation
0, assuming that each one is painted in a different color. Arrows represent reproduction
events. For reproduction events without recombination, the base of the arrow represents the
parent from which the genetic material is inherited, and the arrow points at the individual
that is replaced. For reproduction events with recombination (represented by two arrows),
we indicate on top of each arrow the loci that are inherited from each parent. In the
second panel we show how the discrete partitioning process can be obtained by reverting
time. We sample the 3 loci in an individual in the present population and we follow the
ancestral lineages corresponding to each of her loci. Each time an ancestral lineage finds
the tip of an arrow, it jumps to the base of the arrow. If there are two arrows, the lineage
corresponding to locus i jumps to the base of the arrow labelled i.
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whole positive real line. To do so, we will consider partitions of R+. We call a segment a
maximal set of connected points belonging to the same block of the partition. A partition of
R+ is right-continuous if the segments of the partition are left-closed (right-open) intervals
and the blocks correspond to disjoint unions of such intervals. Let P loc be the set of
partitions of R+ that are right-continuous and locally finite, i.e. such that each compact
subset of R+ contains only a finite number of segments. For any z finite subset of R+, Pz
is the set of partitions of z and tz is the trace of z, i.e. the function P loc → Pz such that
for any π ∈ P loc, tz(π) is the partition of z induced by π. We define F as the σ-field on
P loc generated by

C = {{ω ∈ P loc, tz(ω) = π}, n ∈ N, z = (z0, . . . , zn) ⊂ R+, π ∈ Pz}.

Finally, for any measure µ on a measured space (Ω,A) and any A-measurable function
f , we will denote by f ? µ the pushforward of µ i.e. the measure such that ∀B ∈ A,
f ? µ(B) = µ(f−1(B)).

Theorem 1.1. Let µ0 be a probability measure on (P loc,F). The R-partitioning process
(Πρ

t ; t ≥ 0) started at µ0 is the unique càdlàg stochastic process valued in (P loc,F) such
that for any z, finite subset of R, (tz(Π

ρ
t ); t ≥ 0) is the ARG at rate ρ for the set of loci z

started at tz ? µ0.

The proof of this theorem can be found in Section 2. The goal of this paper is to study
some properties of the invariant measure of the R-partitioning process.

Theorem 1.2. The R-partitioning process (Πρ
t ; t ≥ 0) has a unique invariant probability

measure µρ in (P loc,F). In addition, for any finite subset z of R+,

tz ? µ
ρ = µρ,z

where µρ,z is the unique invariant measure of Γρ,z.

We let the reader refer to Section 3 for proof of this result.

1.3 Approximation of the stationary distribution of the ARG

The ARG with more than two loci is a complex process and some authors have con-
sidered that characterizing its distribution is “computationally not tractable” (see [?]). In
[?] and [?], the authors provided methods to compute the stationary distribution that fail
when considering a large number of loci. Our goal is to provide an approximation of the
stationary distribution of the ARG that is relatively easy to handle, even when we consider
a large number of loci.

One of the main contributions of this paper is an explicit approximation (and an error
bound for it) of the stationary distribution of the ARG (Γρ,zt ; t ≥ 0) when the typical
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distance between the zi’s is large (or equivalently when the rate of recombination ρ is
large).

We fix z = (z0, . . . , zn) ⊂ R. We define

α = min
i 6=j
|zi − zj |

and we assume that α > 0 (or equivalently that the coordinates of z are pairwise distinct).
Let r ∈ {0, . . . , n}, Prz is the set of partitions of z containing n+1−r blocks. In particular,
the only partition in P0

z is π0, the partition made of singletons. We define a “coalescence
scenario of order r” as a sequence of partitions (sk)0≤k≤r such that s0 is the partition made
of singletons and for 1 ≤ k ≤ r, sk is a partition of order k that can be obtained from sk−1

by a single coagulation event. For any partition in π ∈ Prz , S(π) is the set of coalescence
scenarios of order r such that sr = π.

For π ∈ Prz , let b1, . . . , bn+1−r be the blocks of π. We denote by C(π) the cover length
of π defined as:

C(π) :=
∑
i

max
x,y∈bi

|x− y|.

In particular, the cover length of π0 is equal to 0.

Let s = (sk)0≤k≤r be a scenario of coalescence of order r, with 1 ≤ r ≤ n. We define
the energy of s, E(s) as

E(s) :=
r∏
i=1

C(si).

where C(si) is the total rate of fragmentation at state si. Finally, define

∀π ∈ Pz \ P0
z , F (π) :=

∑
S∈S(π)

1

E(S)
. (I.3)

Theorem 1.3. There exists a function

fn : R+
∗ → R+, lim

x→∞
fn(x) = 0,

independent of the choice of z = (z0, . . . , zn) and ρ, such that

∀ρ > 0, ∀k ∈ [n], ∀πk ∈ Pkz ,
∣∣∣∣µρ,z(πk)− 1

ρk
F (πk)

∣∣∣∣ ≤ fn(αρ)
1

ρk
F (πk).

Recall that the RHS goes to 0 either when ρ → ∞ or α → ∞. As already mentioned
(see (I.2)), these two scaling limits are equivalent. We let the reader refer to Section 4 for
a proof of this result.
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1.4 Characterization of the leftmost block of the R-partitioning process

As an application of our approximation of µρ,z, we characterize the geometry of the
leftmost block on a large scale. Motivated by the Moran model and the scaling relation
(I.2), without loss of generality, we study the R-partitioning process at rate 1 restricted to
[0, R].

For any partition π, x ∼π y means x and y are in the same block of π. Let Πeq be the
random partition with law µ1. Let LR(0) be the length of the block containing 0, rescaled
by log(R). More precisely,

LR(0) =
1

log(R)

∫
[0,R]

1{x∼Πeq0}dx.

We define the random measure ϑR[a, b] such that

∀a, b ∈ [0, 1], a ≤ b, ϑR[a, b] =
1

log(R)

∫ Rb

Ra
1{x∼Πeq0}dx

so that ϑR encapsulates the whole information about the positions of the loci that are IBD
to 0 in the logarithmic scale (which will be seen to be the natural scaling for the partitioning
process at equilibrium). In the following ϑR will be considered as a random variable valued
inM([0, 1]), the space of locally finite measures of [0, 1] equipped with the weak topology
(i.e. the coarsest topology making m → 〈m, f〉 continuous for every function f bounded
and continuous). In the following, =⇒ denotes the convergence in distribution.

Theorem 1.4. Consider a Poisson point process P∞ on [0, 1]×R+ with intensity measure

λ(x, y) =
1

x2
exp(−y/x)dxdy

and define the random measure onM([0, 1])

ϑ∞ :=
∑

(xi,yi)∈P∞
yi δxi .

Then

1. ϑR =⇒
R→∞

ϑ∞ in the weak topology.

2. In particular, LR(0) =⇒
R→∞

ε(1) where ε(1) denotes the exponential distribution of
parameter 1.

This result can be interpreted as follows. As R → ∞, there are distinct regions of
genetic material that is IBD to 0, and at the limit, those regions are clustered into points.
The locations of those regions are encapsulated by the xi’s (in the logarithmic scale) – in
other words, at Rxi , there is a cluster of genetic material IBD to 0 – and the coordinate
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yi corresponds the amount of genetic material that is IBD to 0 present in this cluster (see
Figure 1.4). Note that the positions of the segments (in the logarithmic scale) are given
by the Poisson process of intensity (1/x)dx, which is known as “the scale invariant Poisson
Process” (see for example [?]).

We performed some numerical simulations of the partitioning process to illustrate the
second part of Theorem 1.4. Figure 1.4 shows how the length of the cluster covering 0 is
exponentially distributed.

Figure I.3 – Distribution of the length of the leftmost block (R = 5000). The
blue histogram represents the empirical distribution, that was obtained by simulating the
partitioning process, for a chromosome of length R = 5000. The number of replicates is
10000. The red curve is the probability density function of an exponential distribution of
parameter 1. We compared the empirical distribution to an exponential distribution using
a Kolmogorov-Smirnov test, which was positive, with a p-value of 10−4.

1.5 Biological relevance

Recall that a “morgan” is a unit used to measure genetic distance. The distance between
two loci is 1 morgan if the average number of crossovers is 1 per reproduction event. In
other words, in a population of size N , if we consider the discrete partitioning process at
rate 1, two loci zi and zj are at distance 2

N |zi − zj | morgans.
We studied the R-partitioning process at rate 1 restricted to [0, R], which should corre-

spond to a portion (or frame) of the chromosome that is of size R/N morgans (and small
enough so that the single crossing-over approximation is valid). Then, we first let the pop-
ulation size N tend to infinity (in order to get the partitioning process from the underlying
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Figure I.4 – Example of a realization of ϑ∞ and its interpretation. Regions of the chromo-
some (in the log-scale) that are IBD to 0 are represented in red. In the limit, those regions
are clustered into points which can have a complex geometry on a finer scale (see lower
figure). yi is the amount of genetic material IBD to 0 in the region located at Rxi .
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finite population model), and then the size of the frame go to ∞ (in the R-partitioning
process). Note that since we take successive limits (first N → ∞ and then R → ∞), this
gives no clue on how the population size and the size of the observation frame should scale
with one another to ensure that the approximation is correct.

[?] used the same hypothesis. They explained that this approximation should be valid
in human populations, where for example, the size of chromosome 1 is 2.93 morgans and
the effective population size is N = 20000. If one looks at a frame of this chromosome of
length 1 morgan (1/3 of the chromosome), then R = 20000.

1.6 Outline

This paper is organized as follows. In Section 2 we propose a construction of the R-
partitioning process and we prove Theorem 1.1. In Section 3 we show the existence and
uniqueness of a stationary distribution for this process (Theorem 1.2). Finally, Sections 4
and 5 are devoted to the proofs of Theorems 1.3 and 1.4 respectively.

2 The R-partitioning process

2.1 Some preliminary definitions

We start by recalling some definitions that are useful for the rest of the paper and by
clarifying some notation. In the following, we consider partitions of R+ or of subsets of
R+. We call a segment a maximal set of adjacent points belonging to the same block of
the partition. For E = R+ or E ⊂ R+, we say that a partition ω of E is locally finite if
for any compact subset K of E such that K ∩ E 6= ∅, tK∩E(ω) contains a finite number
of segments. We say that a partition is right continuous if the segments of the partition
are left-closed (right-open) intervals (and the blocks correspond to disjoint unions of such
intervals). Note that for a partition that is right continuous, infinite sequences of small
intervals can only accumulate to the left of a point. For a < b ∈ R+, we denote by P loc[a,b]

(resp. P loc) the set of the partitions of [a, b] (resp. R+) that are right continuous and finite
(resp. right continuous and locally finite). We define the σ-field F on P loc generated by

C = {{ω ∈ P loc, tz(ω) = π}, n ∈ N, z = (z0, . . . , zn) ⊂ R+, π ∈ Pz}.

We also need to define a distance d on P loc. To do so, we start by identifying each
partition in P loc to a function from R+ to itself. More precisely, we define a map φ :

P loc → D(R+,R+) such that, for π ∈ P loc, φ(π) is constructed as follows. For each block
B of π and for each x ∈ B, we set φ(π)(x) := min(B). Note that φ is injective and
∀x ∈ R+, φ(π)(x) ≤ x. Also, as π ∈ P loc, φ is càdlàg and has a finite number of jumps in
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any compact set of R+. Now, for any π1, π2 ∈ P loc, define

d(π1, π2) :=

∫ +∞

0
|φ(π1)(x)− φ(π2)(x)| exp(−x)dx.

It can easily be checked that d defines a distance on P loc. For T > 0, we will denote
by D([0, T ],P loc) the Skorokhod space associated to (P loc, d) equipped with the standard
Skorokhod topology. For each partition π ∈ P loc we define a natural ordering on its blocks.
We denote by b0, b1, . . . , bi, . . . the blocks of π indexed in such a way that min(b0) <

min(b1) < . . .

The space P loc is separable under d. Indeed, for n ∈ N∗, let Sn be the set of partitions
in π ∈ P loc such that in π|[0,n[ each block is a finite union of segments whose endpoints
are in [0, n[∩Q and [n,+∞[ is included in a block of π. S = ∪nSn is countable and using
standard methods, it can be shown that given π ∈ P loc and ε > 0, there exists a partition
π′ ∈ S such that d(π, π′) < ε. The space P loc is not complete but we define its completion
P̄ loc.

In the following, we will also consider partitions of Q+. We define P locQ as the set of
locally finite partitions of Q+ that are right continuous (in the sense that if Q+ 3 xn ↓ x ∈
Q+ then xn is in the same segment as x for n large enough) and FQ the σ-field generated
by

CQ = {{ω ∈ PQ, tz(ω) = π}, n ∈ N, z = (z0, . . . , zn) ⊂ Q+, π ∈ Pz}.

2.2 Definition of the R-partitioning process

We start by defining ARG for a finite set of loci [?, ?, ?]. Note that here we only consider
the case of single-crossover recombination. We consider a finite set of loci, whose positions
in the chromosome are given by z ⊂ R+, z = {z0, . . . , zn} (with z0 < z1 < . . . < zn). Let
ρ > 0. Let (Γρ,zt ; t ≥ 0) be the Markov process on (Pz,Fz), with the following transition
rates:

— Coagulation: Consider π1 ∈ Pz and a and b two blocks of π1. Let c = a ∪ b and
π2, the partition obtained by coalescing the blocks a and b into c and letting all the
other blocks unchanged. A transition from π1 to π2 occurs at rate:

q(π1, π2) = 1.

— Fragmentation: Now take π1 ∈ Pz and a a block of π1 containing k elements
zi1 , . . . , zik such that zi1 < . . . < zik . Let j < k. Let b = {zi1 , . . . , zij} and c =

{zij+1 , . . . , zik} and π2, the partition obtained by fragmenting a into b and c. A
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transition from π1 to π2 occurs at rate:

q(π1, π2) = ρ(zij+1 − zij ).

— All these events are independent and all other events have rate 0.

This process is called the ARG at recombination rate ρ, for the set of particles (or loci)
z. It is easily seen that Γρ,zt has a finite state-space and is irreducible. We call µρ,z its
unique invariant probability measure, that will be characterized in Section 4.

We now want to define a process on (P loc,F), called the R-partitioning process so that
for any z finite subset of R+, the trace on z is distributed as the ARG Γρ,z.

We set Πρ,L
0 = π0, π0 ∈ P loc[0,L[. We assume that the blocks of this partition are indexed

with the natural order defined on the previous section. The partitioning process on P loc[0,L[

is generated by a sequence of independent Poisson point processes as follows:

— For all i, j ∈ N, Y i,j is a Poisson point process of intensity 1. For t ∈ Y i,j , at time
t− there is a coagulation event: blocks bi and bj are replaced by bi ∪ bj . If i or j
does not correspond to the index of any block, nothing happens.

— For all i ∈ N, Xi is a Poisson point process on R+ × [0, L[ with intensity ρ dt⊗ dx.
The atoms of Xi correspond to fragmentation events. For (t, x) ∈ Xi, if at time
t−, Πρ,L

t− = π, if bi is a block of π and x ∈ ] min(bi), sup(bi)[, bi is fragmented into two
blocks bi,− and bi,+ such that bi,− = bi∩[0, x[ and bi,+ = bi∩[x, L]. Then Πρ,L

t is equal
to the partition obtained by replacing bi by bi,− and bi,+. If x /∈ ] min(bi), sup(bi)[,
nothing happens.

After each event, blocks are relabelled in such a way that they remain ordered, in the sense
specified above. Recall that, with this construction, the partitions that are formed are
always right continuous. Also the number of blocks of Πρ|[0,L[ is stochastically dominated
by a birth-death process which jumps from n to n + 1 at rate ρLn and from n to n − 1

at rate n(n − 1)/2 with initial condition the number pf blocks in π0, which is known to
remain locally bounded (and even to have +∞ as entrance boundary, see [?]). There is
the same stochastic domination between the two processes for the numbers of jump events
on any fixed time interval. This shows that the number of blocks in Πρ

t |[0,L[ is a.s. locally
bounded and since the number of segments jumps at most by +1 at each event, the number
of segments is also a.s. locally bounded. So a.s. for all t, Πρ,L

t ∈ P loc[0,L[.

Finally, we define the partitioning process in R, as the projective limit of (Πρ,L
t ; t ≥

0)L∈R+ as L → ∞. In fact, by construction, ∀L′ > L, ∀t ≥ 0, Πρ,L′

t |[0,L[ = Πρ,L
t , where

Πρ,L′ |[0,L[ is the natural restriction of Πρ,L′

t to [0, L[.

Proposition 2.1. The R-partitioning process, (Πρ
t ; t ≥ 0) with initial measure π0 is the
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unique càdlàg stochastic process valued in (P loc,F) such that

∀L ≥ 0, (Πρ
t ∩ [0, L]; t ≥ 0) = (Πρ,L

t ; t ≥ 0)

with Π0 = π0. Further for any finite subset z in R+, tz(Πρ) is distributed as Γρ,z, the ARG
with initial condition tz(π0).

Proof. We need to check that, for any T > 0, (Πρ
t ; 0 ≤ t ≤ T ) ∈ D([0, T ],P loc) almost

surely. To do so, we need to prove that with probability 1, for every t ∈ [0, T ], for every
ε > 0, one can find s > 0 such that d(Πρ

t ,Π
ρ
t+s) < ε. Fix ε > 0 and pick L > 0 such that

2 exp(−L)(L+1) < ε. From the Poissonian construction, for any T > 0, the process Πρ|[0,L[

has a finite number of jumps in [0, T ], which happen at times t1, . . . , tn. We choose s > 0

such that |t− s| < mini |ti+1 − ti|. Then Πt|[0,L[ = Πt+s|[0,L[. As φ(Πρ
t |[0,L[) = φ(Πρ

t )|[0,L[,
for any x ∈ [0, L[, φ(Πρ

t )(x) = φ(Πρ
t+s)(x), so

d(Πρ
t ,Π

ρ
t+s) = 0 +

∫ +∞

L
|φ(Πρ

t )(x)− φ(Πρ
t+s)(x)|e−xdx

≤
∫ +∞

L
2x exp(−x)dx = 2 exp(−L)(L+ 1) < ε,

and similarly for left-hand limits. So (Πρ
t ; 0 ≤ t ≤ T ) ∈ D([0, T ],P loc). The fact that

tz(Π
ρ) is distributed as Γρ,z, the ARG with initial condition tz(π0) can be readily seen

from the definition.

In addition, the following proposition can easily be deduced. Note that the second
equality is just a trivial consequence of the first one.

Proposition 2.2 (Consistency). For all z and y, finite subsets of R+ such that y ⊂ z,

Γρ,y = Γρ,z|y,

where Γρ,z|y denotes the restriction of Γρ,z to Py, and

µρ,y = ty ? µ
ρ,z.

We now turn to the proof of the main result of this section, i.e. Theorem 1.1.

Proof of Theorem 1.1. Let (Πt; t ≥ 0) be a càdlàg process in (P loc,F) such that for any z,
finite subset of R,

(tz(Πt); t ≥ 0)
d
= (Γρ,zt ; t ≥ 0)

d
= (tz(Π

ρ
t ); t ≥ 0).
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We denote by {zi}i∈N an enumeration of the rational numbers and for all n ∈ N, we define
zn := {z0, . . . zn}. For every n > 1, we have

tzn(Πρ) = tQ(Πρ)|zn and tzn(Π) = tQ(Π)|zn ,

so we have
(tQ(Πρ

t ); t ≥ 0)
d
= (tQ(Πt); t ≥ 0).

In particular

∀(t1, . . . , tn) ⊂ R+ (tQ(Πρ
t1

), . . . , tQ(Πρ
tn))

d
= (tQ(Πt1), . . . , tQ(Πtn)). (I.4)

Similarly as done p.49, the number of blocks of and number of events undergone by
(tz(Πt); t ∈ [0, T ]) are stochastically dominated, uniformly in z ⊂ Q ∩ [0, L], by those
of a birth-death process which jumps from n to n + 1 at rate ρLn and from n to n − 1

at rate n(n− 1)/2 with initial condition the number of blocks in Π0. This shows that a.s.
for all t ≥ 0, tQ(Πt) ∈ P locQ (and of course tQ(Πρ

t ) ∈ P locQ ). Since the partitions in P loc

(resp. P locQ ) are right-continuous and since Q is dense in R, for every π̄ ∈ P locQ there exists
a unique π ∈ P loc such that tQ(π) = π̄. In other words, the projection map

tQ : (P loc,F)→ (P locQ ,FQ)

is bijective. With a little bit of extra work, one can show that t−1
Q is measurable so, from

(I.4),
∀(t1, . . . , tn) ⊂ R+, (Πρ

t1
, . . . ,Πρ

tn)
d
= (Πt1 , . . . ,Πtn).

This implies that ∀T > 0, (Πt; 0 ≤ t ≤ T )
d
= (Πρ

t ; 0 ≤ t ≤ T ), in the Skorokhod
topology D([0, T ], P̄ loc) (see [?], Theorem 16.6). So (Πρ

t ; t ≥ 0) is the unique process
in D([0, T ], P̄ loc) such that for any z, finite subset of R, (tz(Π

ρ
t ); t ≥ 0) is distributed as

(Γρ,zt ; t ≥ 0). As P loc ⊂ P̄ loc, the theorem is proved.

3 Stationary measure for the R-partitioning process

The goal of this section is to prove Theorem 1.2. The idea of the proof is to consider
the stationary measure of the partitioning process on finite sets of rational numbers. Using
Kolmogorov’s extension theorem we define its unique projective limit in P locQ . Then, using
continuity arguments, we prove that there is a unique extension of this measure to the
partitions of R. Let us now go into more details. We decompose the proof into several
lemmas.

Lemma 3.1. A measure ν is invariant for (Πρ
t ; t ≥ 0) iff for any finite subset z of R+,

ν ◦ t−1
z is invariant for (tz(Π

ρ
t ); t ≥ 0).
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Proof. We obviously only prove the “if” part. We consider a probability measure ν and for
each finite z ⊂ R+, we define νz := ν ◦ t−1

z . We assume that for any subset z ∈ R, νz is
invariant for (tz(Π

ρ
t )). We assume that Πρ

0 = π0 is distributed according to ν. We want to
prove that

∀B ∈ F , ∀t ∈ R+, P(Πρ
t ∈ B) = P(Πρ

0 ∈ B).

As F is the σ-field generated by C, and C is closed under finite intersection, we only need
to prove that for any z finite subset of R+,

∀π ∈ Pz, ∀t ∈ R+, P(tz(Π
ρ
t ) = π) = P(tz(Π

ρ
0) = π).

As νz is invariant for tz(Πρ),

∀π ∈ Pz, P(tz(Π
ρ
t ) = π) = P(tz(Π

ρ
0) = π) = νz(π),

which completes the proof of Lemma 3.1.

Lemma 3.2. There exists a unique probability measure µ̄ρ on (PQ,FQ) charging right
continuous partitions such that, for every finite z ⊂ Q+,

tz ? µ̄
ρ = µρ,z.

Furthermore, µ̄ρ only charges locally finite partitions of Q+ and for every x ∈ Q+,

µ̄ρ(x is the extremity of a segment) = 0.

Proof. From Proposition 2.2, the family (µρ,z; z ⊂ Q+) is consistent in the sense that for
two finite subsets z ⊂ z′ then

tz ? µ
ρ,z′ = µρ,z.

By an application of the Kolmogorov extension theorem, there exists a unique measure µ̄ρ

defined on (PQ,FQ) such that for every finite subset z in Q we have

tz ? µ̄
ρ = µρ,z.

(To see how one can apply Kolmogorov theorem in the context of consistent random par-
titions, we refer the reader to [?], Proposition 2.1.)

We now need to prove that µ̄ρ only charges locally finite partitions of Q+. To do so,
we follow closely [?]. We fix a, b ∈ N, a < b. We want to prove that, if π is a partition of
Q distributed as µ̄ρ, then S[a,b], the number of segments in π|[a,b]∩Q is finite almost surely.
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To do so, we define

∀n ∈ N∗, εn := 2−n,

Xin := 1((a+(i−1)εn)6∼(a+iεn))

zin := (a+ (i− 1)εn, a+ εn) ∈ R2.

In words, Xin = 1 if (i − 1)εn and iεn belong to different segments. Let us compute the
expectation of S[a,b]. Using the monotone convergence theorem we have

E(S[a,b]) = 1 + E( lim
n→∞

b2n(b−a)c∑
i=1

Xin) = 1 + lim
n→∞

b2n(b−a)c∑
i=1

E(Xin)

= 1 + lim
n→∞

b2n(b−a)c∑
i=1

µρ,zin({a+ (i− 1)εn}, {a+ iεn}).

The ARG at rate ρ for the set of loci zin has only two types of transitions: coagulation at
rate 1 and fragmentation at rate ρεn, so

µρ,zin({a+ (i− 1)εn}, a+ {iεn}) =
ρεn

1 + ρεn

which gives

E(S[a,b]) = 1 + lim
n→∞

b2n(b−a)c∑
i=1

ρ2−n

1 + ρεn
= 1 + ρ(b− a).

Then S[a,b] is finite almost surely, which implies that µ̄ρ only charges locally finite partitions
of Q.

For the last statement let x ∈ Q+. By the previous argument,

µ̄ρ(x is the extremity of a segment) = lim
ε↓0

µ̄ρ(x− ε 6∼ x+ ε) = 0,

which completes the proof.

Lemma 3.3. There exists a unique measure µρ on (P loc,F) such that

tQ ? µ
ρ = µ̄ρ,

where µ̄ρ is the measure defined in Lemma 3.2.

Proof. Let P̃ locQ the set of locally finite partitions of Q such that for all x ∈ Q+, x is not
an extremity of a segment of π. Note that here we do not assume that the partitions of Q
are right continuous. From the previous Lemma, µ̄ρ(P̃ locQ ) = 1. Similarly, let P̃ loc be the
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set of elements π of P loc such that for all x ∈ Q+, x is not an extremity of a segment of
π. Since Q is dense in R, it is easy to see that for every π̄ ∈ P̃ locQ there exists a unique
π̃ ∈ P̃ loc such that tQ(π) = π̄. In other words, the projection map

tQ : (P̃ loc,F)→ (P̃ locQ ,FQ)

is bijective. (Note that the condition that there are no rational extremities for the latter
statement to hold, can be understood with the following counterexample. Let π̄ be the
partition of Q+ consisting of the two blocks [0, 1] ∩Q and ]1,+∞) ∩Q. Then there is no
right-continuous partition π ∈ P loc such that tQ(π) = π̄.) With a little bit of extra work,
one can show that t−1

Q is measurable. As already mentioned in the proof of Theorem 1.1,
the projection map

tQ : (P̃ loc,F)→ (P̃ locQ ,FQ)

is bijective and measurable, so the measure µρ defined by

µρ = t−1
Q ?

[
µ̄ρ(· ∩ P̃ locQ )

]
has mass 1 and satisfies

tQ ? µ
ρ = µ̄ρ.

To prove uniqueness, let µ on (P loc,F) such that tQ ? µ = µ̄ρ. Because µ̄ρ only charges
P̃ locQ ,

tQ ? µ = µ̄ρ(· ∩ P̃ locQ ).

Because µ only charges right continuous partitions, µ only charges P̃ loc (i.e., elements
with no rational extrmities). Taking the pushforward of the two members of the previous
equality by t−1

Q , we get

µ(· ∩ P̃ loc) = t−1
Q ? (tQ ? µ) = t−1

Q ?
[
µ̄ρ(· ∩ P̃ locQ )

]
= µρ.

Since µ only charges P̃ loc, µ = µρ.

Proof of Theorem 1.2. We have proved that there exists a unique probability measure µρ

on (P loc,F) such that, for any finite subset z of Q+, tz ? µρ is invariant for (tz(Π
ρ
t ); t ≥ 0)

(by combining Lemmas 3.2 and 3.3). Using Lemma 3.1, we still need to prove that the
same property holds for any finite subset z ⊂ R+. This will be shown by a continuity
argument.

We fix ρ > 0. We denote by Pρ the law of the process (Πρ
t ; t ≥ 0), with initial condition

Πρ
0 with law µρ. We also fix z = (z1, . . . , zn) ⊂ R+. For each z∗ = (z∗1 , . . . , z

∗
n) ⊂ Q+, we

define a function g∗ : Pz∗ → Pz such that, if π is a partition of z∗, g∗(π) is the partition
of z such that for every i, j ∈ [n], zi ∼g∗(π) zj iff z∗i ∼π z∗j . For every t > 0, we define the
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event
A(z∗, t) = {∀s ∈ [0, t], tz(Π

ρ
s) = g∗(tz∗(Π

ρ
s))}.

We want to prove that for every t > 0 and for Fz-measurable bounded function f on
Pz,

Eρ(f(tz(Π
ρ
t ))) = Eρ(f(tz(Π

ρ
0)).

As µρ is a measure on P loc, for every ε > 0 one can find z∗ = (z∗1 , . . . , z
∗
n) ⊂ Q+ such that

Pρ(A(z∗, t){)||f ||∞ < ε/2 and |Eρ(f(g∗(tz∗(Π
ρ
0)), A(z∗, t){)| < ε/2.

Then

Eρ(f(tz(Π
ρ
t ))) = Eρ(f(tz(Π

ρ
t )), A(z∗, t)) + Eρ(f(tz(Π

ρ
t )), A(z∗, t){)

= Eρ(f(g∗(tz∗(Π
ρ
t )), A(z∗, t)) + Eρ(f(tz(Π

ρ
t )), A(z∗, t){).

As z∗ ⊂ Q+, µρ ◦ t−1
z∗ is invariant for tz∗(Π

ρ
t )),

Eρ(f(g∗(tz∗(Π
ρ
t )), A(z∗, t)) = Eρ(f(g∗(tz∗(Π

ρ
0)))− Eρ(f(g∗(tz∗(Π

ρ
0)), A(z∗, t){).

Then,

|Eρ(f(tz(Π
ρ
t )))− Eρ(f(g∗(tz∗(Π

ρ
0)))| ≤ Pρ(A(z∗, t){)||f ||∞

+|Eρ(f(g∗(tz∗(Π
ρ
0)), A(z∗, t){)|

so
|Eρ(f(tz(Π

ρ
t )))− Eρ(f(tz(Π

ρ
0))| < ε,

and the conclusion follows by letting ε→ 0.

To conclude this section, we state an important property of µρ.

Proposition 3.4 (Scaling). Fix ρ > 0. For every λ ∈> 0, define hλ : R → R such that
∀x ∈ R, hλ(x) = λx. Then

hλ ? µ
ρ = µλρ

Similarly, for any z ⊂ R,
hλ ? µ

ρ,z = µλρ,z

Proof. This proposition can easily be deduced from the definition of the ARG and the
scaling (I.2) and the construction of the R-partitioning process given in the previous section.

Without loss of generality, in Section 5, we will consider the partitioning process with
recombination rate ρ = 1.
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4 Proof of Theorem 1.3

Theorem 1.3, provides an approximation of the stationary measure of the discrete
partitioning process when ρ → ∞ or α → ∞, i.e. when recombination is much more
frequent than coalescence. This approximation of µρ,z is easy to handle, and that will be
used in the proof of Theorem 1.4. We start by clarifying some notation that were already
defined in the introduction and by introducing some new notation. In the following, we fix
z = (z0, . . . , zn) a finite subset of R, and we define

α = min
i 6=j
|zi − zj |

and we assume that α > 0 (or equivalently that the coordinates of z are pairwise distinct).

Definition 4.1. We consider the ARG ρ for the set of loci z, Γρ,z. We say that a partition
π ∈ Pz is of order r if it can be obtained from the finest partition (π0 := {z0}, . . . , {zn})
by r successive coagulation events. We denote by Pkz the subset of Pz containing all the
partitions of order k.

For example, for i, j, k, l ∈ {0, . . . , n}:

— π0 = {z0}, . . . , {zn} is the only partition of order 0.

— {z0}, . . . , {zi, zj}, . . . , {zn} is of order 1.

— {z0}, . . . , {zi, zj , zk}, . . . , {zn} is of order 2.

— {z0}, . . . , {zi, zj}, {zk, zl}, . . . , {zn} is also of order 2.

— {z0, z1, . . . , zn} is the only partition of order n.

Note that as the number of blocks decreases by 1 at each coalescence event, in a partition
of order k, there are always n + 1 − k blocks, so this definition is equivalent to the one
given in the Introduction.

Definition 4.2. Let (sk)0≤k≤r be a sequence of r elements of Pz. The sequence (sk) is
called a “(coalescence) scenario of order r” if:

— s0 is the finest partition.

— For 1 ≤ k ≤ r, sk is a partition of order k that can be obtained from sk−1 by a single
coagulation event.

If π is a partition of order r, we denote by S(π) the set of coalescence scenarios of order
r, such that sr = π.

For example, the partition {z0}, . . . , {zi, zj , zk}, . . . , {zn} can be obtained from the
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finest partition with three different scenarios:

{zi}{zj}{zk} . . . → {zi, zj}{zk} . . . → {zi, zj , zk}

{zi}{zj}{zk} . . . → {zi, zk}{zj} . . . → {zi, zj , zk}

{zi}{zj}{zk} . . . → {zk, zj}{zi} . . . → {zi, zj , zk} . . .

For π ∈ Pz, let b1, b2, . . . , bk, . . . be the blocks of π. We denote by C(π) the cover length
of π defined as:

C(π) :=
∑
i

max
x,y∈bi

|x− y|.

In particular, the cover length of π0 is equal to 0.

If π1 and π2 are two partitions in Pz, we define θ(π1, π2) as the transition rate from
π1 to π2 in the finite partitioning process Γ1,z with recombination rate ρ = 1 (and we set
θ(π1, π2) = 0 if the transition is not possible). By definition, in the ARG Γρ,z (with recom-
bination rate ρ), the transition rate from π1 to π2 is θ(π1, π2) if the transition corresponds
to a coagulation event and ρθ(π1, π2) if it is a fragmentation. It can readily be seen that,

∀π ∈ Prz ,
∑

ω∈Pr−1
z

θ(π, ω) = C(π).

In words, when ρ = 1, the total fragmentation rate corresponds to the cover length. For
general values of ρ, the fragmentation rate is the cover length multiplied by ρ.

Also, the total coalescence rate from a partition of order k only depends on n and k
(and not in the values of z0, . . . , zn and ρ) and is given by

∑
ω∈Pr+1

z

θ(π, ω) = γk :=
(n− k)(n− k + 1)

2
,

where γk corresponds to the number of pairs of blocks in a partition of order k.

Definition 4.3. Let s = (sk)0≤k≤r be a scenario of coalescence of order r, with 1 ≤ r ≤ n.
We define the energy of s, E(s) as:

E(s) :=

r∏
i=1

C(si) =

r∏
i=1

∑
π∈Pi−1

z

θ(si, π).

In words, the energy of a scenario corresponds to the product of the successive cover
lengths at each step.

Now we can state the main result of this section, that gives an approximation of µρ,z,
when ρ or α is large. The idea behind this theorem is that, when ρ � 1 or α � 1,
fragmentation events occur much more often than coalescence events. This implies that
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the partition made of singletons is the most likely configuration and the probability of a
partition decreases with its order. Define

∀z ⊂ R+, ∀π ∈ Pz \ {π0}, F (π) :=
∑

S∈S(π)

1

E(S)
. (I.5)

We recall the statement of Theorem 1.3.

Theorem. There exists a function

fn : R+
∗ → R+, lim

x→∞
fn(x) = 0,

independent of the choice of z = (z0, . . . , zn) and ρ, such that

∀ρ > 0, ∀k ∈ [n], ∀πk ∈ Pkz ,
∣∣∣∣µρ,z(πk)− 1

ρk
F (πk)

∣∣∣∣ ≤ fn(αρ)
1

ρk
F (πk).

Before proving Theorem 1.3 we need to prove some technical results. But to give the
reader some intuition on this result, we will start by giving a brief sketch of the proof.
Until further notice, we are going to fix ρ > 0, k ∈ [n], π ∈ Pkz a partition of order k ≥ 1.
We will start by defining some notation.

- t+0 = inf{t > 0, Γρ,zt 6= π0}.

- Tπ = inf{t > 0, Γρ,zt = π}, T0 = inf{t > t+0 , Γρ,zt = π0}.

- Pπ (resp P0) denotes the law of Γρ,z conditioned on the initial condition Γρ,z0 = π

(resp Γρ,z0 = π0).

Recall that the variables defined above depend on z and ρ, but for the sake of clarity this
dependency is not made explicit.

The idea behind the proof of Theorem 1.3 is to use excursion theory and a well known
extension of Blackwell’s renewal theorem [?] that states that

µρ,z(π) =
E0(Y π

1 )

E0(∆0)
, (I.6)

where ∆0 is the time between two renewals at π0 and Y π
1 is the time spent in π during an

excursion out of π0. (More precise definitions of these variables will be given in the proof
of Theorem 1.3).

As we consider that α � 1 or ρ � 1, fragmentation occurs much more often than
coalescence so π0 is the most likely configuration and Γρ,z spends most of the time at π0.
Then E0(∆0) can be approximated by the expectation of the holding time at π0 which is
1/γ0. Also, in this regime, most excursions out of π0 will only visit π at most one time, so
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E0(Y π
1 ) can be approximated by

P0(Tπ < T0)
1

ρC(π)
,

where P0(Tπ < T0) is the probability that π is reached during the excursion out of π0 and
1

ρC(π) is approximately the expectation of the holding time at π when ρC(π) � γk (i.e.
when recombination occurs much more often than coalescence).

The core of the proof is to compute P0(Tπ < T0). (This will be done in Corollary
4.6.)To do so, we will consider Γ̄ρ,z, the embedded chain of the ARG Γρ,z, conditioned on
the initial condition Γ̄ρ,z0 = π0. We call a “direct path” a trajectory that goes from π0 to π
in only k coalescence steps (without recombination events). Indirect paths are trajectories
that are longer and that contain at least a recombination event. As we consider a high
recombination regime, where coalescence occurs much more often than recombination,
direct paths will be much more likely that indirect paths. (This will be formalized in
Lemma 4.5.) So we can approximate P0(Tπ < T0) by the sum of the probabilities of the
direct paths. Then the conclusion will follow by realizing that a direct path corresponds to a
scenario of coalescence and showing that P0(Tπ < T0) can be approximated by C(π)

ρk−1γ0
F (π).

(This will be formalized in Corollary 4.6.) Finally, replacing in (I.6), we find that µρ,z(π)

can be approximated by F (π)
ρk

.

Before turning to the formal proof of Theorem 1.3, we start by proving some technical
results. We consider Γ̄ρ,z, the embedded chain of the ARG Γρ,z. Let P0 denote the law of
Γ̄ρ,z conditioned on Γ̄ρ,z0 = π0 and ∀π′ ∈ Pz, Pπ′ denotes the law of Γ̄ρ,z conditioned on
Γ̄ρ,z0 = π′. We will consider paths that go from π0 to π. A path is defined as follows.

Definition 4.4. For j ∈ N∗, π′, π′′ ∈ Pz, we define:

G(j, π′ → π′′) = {(π(0) = π′, π(1), . . . , π(j−1), π(j) = π′′),

π(1), . . . , π(j−1) ∈ Pz \ {π′, π′′} such that

θ(π(i), π(i+1)) > 0 ∀i ∈ {0, · · · , j − 1}}.

In words, G(j, π′ → π′′) contains every possible path (admissible for the partitioning pro-
cess) that connects π′ to π′′ in j steps.

We are going to consider paths p that go from π0 to π, which have at least k steps (as
π is of order k).

- p is a direct path if p ∈ G(k, π0 → π), i.e., p can only be composed of coalescence
events.

- p is an indirect path if p ∈ G(k + N, π0 → π), N ∈ N∗. Indirect paths contain
at least one recombination event. Note that the parity of the process implies that
G(k + 2N + 1, π0 → π) is empty.
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Lemma 4.5. Fix N ∈ N∗ and a path p in G(k + 2N, π0 → π). There exists a path
p̃ ∈ G(k, π0 → π) such that

P0(p)

P0(p̃)
≤

(
(1 + γ1

ρα)k

αρ

)N
.

Proof of Lemma 4.5. We fix N ∈ N∗ and we start with proving that

∀p ∈ G(k + 2N, π0 → π), ∃ p̃ ∈ G(k + 2(N − 1), π0 → π),

P0(p)

P0(p̃)
≤

(1 + γ1

ρα)k

αρ
. (I.7)

We consider a path p ∈ G(k + 2N, π0 → π) such that

p = (π0, π̄1, . . . , π̄j , π̃j−1, πi1 , πi2 , . . . , π).

where the indices of the π̃, π̄’s coincide with the order of the partition (for instance, in the
transition π̄j → π̃j−1, the order of the partition decreases by one unit, which corresponds
to a fragmentation event). We do not specify the order of πi1 , πi2 , . . . As N ≥ 1 there is at
least one recombination event (π̄j → π̃j−1). The path p can be decomposed into p1 and p2

such that:

p1 ∈ G((j − 1) + 2, π0 → π̃j−1), p1 = (π0, π̄1, . . . , π̄j−1, π̄j , π̃j−1)

p2 ∈ G(k + 2N − (j − 1)− 2, πj−1 → π), p2 = (π̃j−1, πi1 , πi2 , . . . , π).

In words, we decompose p into two paths, p1 that goes from π0 until the first recombination
event and p2 that contains the rest of the path.

The idea now is to find a direct path

p̃1 ∈ G(j − 1, π0 → π̃j−1), p̃1 = (π0, π̃1, . . . , π̃j−1)

such that

P0(p1)

P0(p̃1)
≤ 1

αρ

(
1 +

γ1

ρα

)j−1

≤ 1

αρ

(
1 +

γ1

ρα

)k
.

To do so, consider the fragmentation event that occurs between step j and step j+1 in p
(when transitioning from π̄j to π̃j−1). π̄j contains n+1−j blocks and let (b1, . . . bn−j , b

∗) be
the blocks of π̄j such that b∗ is the block of π̄j that is fragmented during this fragmentation
event and za < zb the two elements of b∗ such that b∗ is fragmented between za and zb (i.e.
such that b∗ is fragmented into b∗a and b∗b where za is the rightmost element in b∗a and zb
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the leftmost element in b∗b). We have

C(π̄j) = C(π̃j−1) + zb − za. (I.8)

Let i∗ ≤ j be the first step of p such that za and zb are in the same block, i.e

i∗ = min
i∈[j]
{i, za ∼π̄i zb}.

We will construct a direct path p̃1 = (π̃0, · · · , π̃j−1) in such a way that

∀ 1 ≤ i < i∗, C(π̃i) ≤ C(π̄i)

if i∗ < j − 1, ∀ i∗ < i ≤ j, C(π̃i−1) ≤ C(π̄i), (I.9)

(Note that the terminal value of p̃1 coincides with the terminal value of p1 and its length is
j−1 instead of j+1).) See Figure 4 for a concrete example. In words, we skip step i∗, and
rearrange the path in such a way that p̃1 is admissible, ends at π̃j−1 and the inequalities
(I.9) are satisfied along the way. Formally, the path p̃1 is constructed as follows :

— If i∗ < j−1, for i ∈ {i∗+1, . . . , j−1}, let (bi1, . . . b
i
n−i, b

i
∗) be the blocks of π̄i, where bi∗

is the one that contains za and zb. The blocks of π̃i−1 are (bi1, . . . , b
i
n−i, b

i
n−i+1, b

i
n−i+2)

such that:

- if z ∈ bi∗ and z ≤ za, z ∈ bin−i+1.

- if z ∈ bi∗ and z ≥ zb, z ∈ bin−i+2.

If i∗ = j − 1 we skip the present step in the construction of p̃.

— If in π̄i∗−1, za is the rightmost element in its block and zb the leftmost element in its
block, then we define (π̃1, . . . , π̃i∗−1) = (π̄1, . . . , π̄i∗−1). With this construction π̃i∗

can be obtained from π̃i∗−1 by a coalescence event, so the path p̃ is admissible for
Γρ,z.

— Else, (π̃1, . . . , π̃i∗−1) are constructed from (π̄1, . . . , π̄i∗−1) in the following way. Let
us denote by ba and bb the blocks of π̄i∗−1 that contain za and zb respectively. For
1 ≤ i ≤ i∗ − 1,

- If the coalescence event between π̄i−1 and π̄i involves two blocks bc and bd such
that in πi∗−1, bc, bd ⊂ ba (resp. bc, bd ⊂ bb) and if bc contains an element that
is smaller than za and bd contains an element is larger than zb, then in the
coalescence step between π̃i−1 and π̃i, bc (resp. bd) coalesces with the block
containing za (resp. zb). (And nothing happens to bd - resp. bc).

- Otherwise the same coalescence event occurs between π̄i−1 and π̄i and between
π̃i−1 and π̃i.
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With this construction π̃i∗ can be obtained from π̃i∗−1 by a coalescence event, and as
a consequence the path p̃ is admissible, in the sense that θ(πi, πi+1) > 0 (see Figure
4 for an example).

Figure I.5 – Example of two paths that go from π0 to π4, for n = 7. Loci in the same
block are of the same color and the black loci corresponds to to loci that are in singleton
blocks. The path on the right corresponds p ∈ G(π0 → π4, 4 + 2) and the path on the left
is p̃ ∈ G(π0 → π4, 4) constructed from π with the method presented above.

First,

P0(p̃1) =
1

γ0ρj−2

j−1∏
i=1

1

C(π̃i) + γi/ρ

P0(p1) =
1

γ0ρj−1

j∏
i=1

1

C(π̄i) + γi/ρ

ρ(zb − za)
ρC(π̄j) + γj

,

From (I.9), if i∗ < j − 1

P0(p1)

P0(p̃1)
=

1

ρ

1

C(π̄i∗) + γi∗

i∗−1∏
i=1

C(π̃i) + γi/ρ

C(π̄i) + γi/ρ

j∏
i=i∗+1

C(π̃i−1) + γi−1/ρ

C(π̄i) + γi/ρ

ρ(zb − za)
ρC(π̄j) + γj

≤ 1

αρ

j∏
i=i∗+1

C(π̄i) + γi−1/ρ

C(π̄i) + γi/ρ
≤ 1

αρ

j∏
i=i∗+1

1 + γi−1

ρC(π̄i)

1 + γi
ρC(π̄i)

≤ 1

αρ

j∏
i=i∗+1

(1 +
γi−1

ρC(π̄i)
) ≤ 1

αρ

(
1 +

γ1

ρα

)k
.

where the second inequality is a consequence of (I.8) and (I.9). The case i∗ = j− 1 follows
along the same lines.
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Let us define

p̃ ∈ G(k + 2, π0 → π), p̃ = (π0, π̃1, . . . , π̃j−1, πi1 , πi2 . . . , π).

Since

P0(p) = P0(p1) Pπ̃j−1(p2), P0(p̃) = P0(p̃1) Pπ̃j−1(p2)

we have

P0(p)

P0(p̃)
=
P0(p1)

P0(p̃1)
≤

(
1 + γ1

ρα

)k
(αρ)

,

which completes the proof of (I.7). Lemma 4.5 then follows by a simple induction on N
using (I.7).

Corollary 4.6. There exists a function

un : R+
∗ → R+, lim

x→∞
un(x) = 0,

independent of the choice of z, π and ρ, such that∣∣∣∣P0(Tπ < T0) − C(π)

ρk−1γ0
F (π)

∣∣∣∣ ≤ un(αR)
C(π)

ρk−1γ0
F (π).

Proof. We have

P0(Tπ < T0) =
∑
N≥k

∑
p∈G(N,π0→π)

P0(p).

As π is of order k, a path from π0 to π has at least k steps. In addition, as the order of
the partition can only increase or decrease by 1 at each step, a path from π0 to π can only
have k + 2N steps, with N ≥ 0, so

P0(Tπ < T0) =
∑

p∈G(k,π0→π)

P0(p) +
∑
N≥1

∑
p∈G(k+2N,π0→π)

P0(p). (I.10)

We start by considering the first term in the right hand side. We consider a path p

such that

p ∈ G(k, π0 → π), p = (π0, π1, . . . , π).
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We have:

P0(p) =
1

γ0

k−1∏
i=1

1

ρC(πi) + γi
.

Recall that

F (π) =
∑

s∈S(π)

k∏
i=1

1

C(si)
.

Further, paths that have k steps are only composed of coalescence events, and therefore
G(k, π0 → π) = S(π). It follows that

∑
p∈G(k,π0→π)

P0(p)− C(π)

ρk−1γ0
F (π) =

1

ρk−1γ0

∑
s∈S(π)

(
k−1∏
i=1

1

C(si) + γi/ρ
−
k−1∏
i=1

1

C(si)

)

and using the fact that γi ≤ γ0,

∑
s∈S(π)

∣∣∣∣∣
k−1∏
i=1

1

C(si) + γi/ρ
−
k−1∏
i=1

1

C(si)

∣∣∣∣∣ =
∑

s∈S(π)

k−1∏
i=1

1

C(si)

(
1−

k−1∏
i=1

1

1 + γi/(ρC(si))

)

≤
∑

s∈S(π)

k−1∏
i=1

1

C(si)

(
1−

(
1

1 + γ0/(ρα)

)k−1
)

≤ C(π)F (π)

(
1− 1

(1 + γ0/(ρα))k−1

)
so ∣∣∣∣∣∣

∑
p∈G(k,π0→π)

P0(p)− C(π)

ρk−1γ0
F (π)

∣∣∣∣∣∣ ≤ C(π)

ρk−1γ0
F (π)

(
1− 1

(1 + γ0/(ρα))k−1

)
. (I.11)

To prove Proposition 4.6, we still need to consider the second term in the right hand
side of (I.10). Using Lemma 4.5, we have∑

N≥1

∑
p∈G(k+2N,π0→π)

P0(p)

≤
∑

p̃∈G(k,π0→π)

P0(p̃)

∑
N≥1

|G(k + 2N, π0 → π)|

(
(1 + γ1

ρα)k

αρ

)N . (I.12)

To compute |G(k + 2N, π0 → π)|, let us recall that, at each step in a path:

— If it corresponds to a coalescence event from a partition of order j there are γj
possibilities, and ∀j ∈ {0, . . . , n} γj ≤ n(n+ 1).

— If it corresponds to a fragmentation event, there are at most (n + 1) blocks in the
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partition and each one contains at most (n+ 1) elements, so that each block can be
fragmented in n different ways.

From there, it can easily be seen that

|G(k + 2N, π0 → π)| ≤ (n(n+ 1))k+2N .

Combining this with (I.12), we have:∑
N≥1

∑
p∈G(k+2N,π0→π)

P0(p)

≤

 ∑
p∈G(k,π0→π)

P0(p)

 (n(n+ 1))k
∑
N≥1

(
n2(n+ 1)2(1 + γ1

ρα)k

αρ

)N
,

which combined with (I.10) and (I.11), gives:∣∣∣∣P0(Tπ < T0)− C(π)

ρk−1γ0
F (π)

∣∣∣∣ ≤ C(π)

ρk−1γ0
F (π)un,k(αρ)

where un,k is a function independent of z and ρ and vanishing at∞. The conclusion follows
by setting un(αρ) = maxk∈[n](u

n,k(αρ)).

Before stating the last technical result that is needed in the proof of Theorem 1.3, we
need to introduce some notation:

- t+π = inf{t > 0, Γρ,zt 6= π}

- Tπ = inf{t > t+π , Γρ,zt = π}, T0 = inf{t > t+π , Γρ,zt = π0}.

Lemma 4.7. For any n ∈ N, there exist two functions gn and hn such that

lim
x→∞

gn(x) = 0, lim
x→∞

hn(x) = 1

independent on the choice of z, π and ρ such that

(i) E0(T0 − t+0 ) ≤ gn(αρ)

(ii) ∀k > 0, ∀π ∈ Pkz , Pπ(T0 < Tπ) ≥ hn(αρ).

Proof. We fix ρ > 0, n ∈ N, z = (z0, . . . , zn), k ∈ [n], π ∈ Pkz .

The idea of the proof is to consider the stochastic process (Xρ,z
t ; t ≥ 0) valued in

{0, . . . , n} and such that ∀t ≥ 0, Xρ,z
t is the order of the partition Γρ,zt . This process is not

Markovian, but it can easily be compared to a Markov process (W ρ,z
t , t ≥ 0) in such a way

that the excursions out of 0 of W ρ,z are longer than those of Xρ,z.
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More precisely, let W ρ,z be the birth-death process in {0, · · · , n} where all the death
rates are equal to ρα and the birth rate at state k is γk (note that γn = 0).

With these transition rates, for any πk ∈ Pkz , the total coalescence rate from πk for the
process Γρ,zt is the same as the birth rate from k for W ρ,z

t . On the other hand, the total
fragmentation rate for Γρ,zt when Γρ,zt = πk is equal to ρC(πk) and is always higher than
the death rate at k for W ρ,z

t . We can find a coupling between W ρ,z and Xρ,z such that the
holding times at 0 of the two process are the same (as the birth rate in 0 for W ρ,z is the
same as the coagulation rate from 0 for Γρ,z). In addition, during an excursion out of 0,
the holding time at k > 0 for Xρ,z is shorter than the holding time at k for W ρ,z and the
embedded chain of Xρ,z jumps more easily to the right than the embedded chain of W ρ,z.

Let us denote by Ē0 the probability with respect to the distribution ofW ρ,z, conditional
to W ρ,z

0 = 0, and define

t̄+0 = inf{t > 0,W ρ,z 6= 0}

T̄0 = inf{t > t̄+0 , W
ρ,z
t = 0}.

By construction, we have

E0(T0 − t+0 ) ≤ Ē0(T̄0 − t̄+0 ).

Finally, Ē0(T̄0 − t̄+0 ) only depends on ρα and n and it can be checked that

Ē0(T̄0 − t̄+0 ) −→
αρ→∞

0

so (i) is verified.

(ii) can be handled by similar methods. Namely, let W̄ ρ,z denote the embedded chain
of W ρ,z

Pπ(T0 < Tπ) ≥ P(W̄ ρ,z
0 = k, W̄ ρ,z

1 = k − 1, . . . , W̄ ρ,z
k = 0)

=

k∏
i=1

ρα

ρα+ γi
≥

n∏
i=1

ρα

ρα+ γi
−→
ρα→∞

1

where the first inequality is obtained by the same argument as in (i). This completes the
proof of Lemma 4.7.

We are now ready to prove the main results of this section.

Proof of Theorem 1.3. We will consider excursions of (Γρ,zt ) out of π0. Let us consider
(Ji)i∈N the renewal times at π0 i.e. the successive jump times of (Γρ,zt ) such that Γρ,zJi = π0
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(and Γρ,zJi− 6= π0). For i ∈ N∗, let us define

∆i
0 := Ji − Ji−1

the time between two renewals at π0. The (∆i
0)i∈N are independent and identically dis-

tributed random variables. Also, for i ∈ N∗, consider

Y π
i :=

∫ Ji

Ji−1

1Γρ,zt =πdt,

which corresponds to the time spent by Γρ,z in π during the ith excursion out of π0. By
standard excursion theory, the Y π

i ’s are independent and identically distributed random
variables.

From the ergodic theorem we have

µρ,z(π) = lim
T→∞

1

T

∫ T

0
1{Γρ,zs =π}ds a.s.

= lim
n→∞

1

Jn

n∑
k=1

∫ Jn

Jn−1

1{Γρ,zs =π}ds a.s..

Since the excursions are independent from one another, using Blackwell’s renewal theorem
[?], and the law of large numbers,

lim
n→∞

n

Jn
=

1

E0(∆1
0)

and lim
n→∞

1

n

n∑
k=1

∫ Jn

Jn−1

1{Γρ,zs =π}ds = E0(Y π
1 ) a.s.,

which easily gives

µρ,z(π) =
E0(Y π

1 )

E0(∆1
0)
.

LetH0 be the holding time at π0 andH the holding time at π. H0 follows an exponential
distribution of parameter γ0. H follows an exponential distribution of parameter (C(π) +

γk). By standard excursion theory,

E(Y π
1 ) = P0(Tπ < T0)

∑
k≥1

kE(H)Pπ(Tπ < T0)k−1Pπ(T0 < Tπ)

= P0(Tπ < T0)
1

(ρC(π) + γk)

1

Pπ(T0 < Tπ)
,

and

E(∆1
0) = E(H0) + E0(T0 − t+0 ) where E(H0) =

1

γ0
.
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Combining this with Corollary 4.6, we have∣∣∣∣ µρ,z(π) − C(π)F (π)

γ0ρk−1

1

(ρC(π) + γk)

1

Pπ(T0 < Tπ)

1

1/γ0 + E0(T0 − t+0 )

∣∣∣∣
≤ un(αρ)

C(π)F (π)

γ0ρk−1

1

(ρC(π) + γk)

1

Pπ(T0 < Tπ)

1

1/γ0 + E0(T0 − t+0 )

≤ un(αρ)
F (π)

ρk
1

1 + γk
ρC(π)

1

Pπ(T0 < Tπ)

1

1 + E0(T0 − t+0 )γ0

so ∣∣∣∣ µρ,z(π) − F (π)

ρk

∣∣∣∣
≤ un(αρ)

F (π)

ρk
1

1 + γk
ρC(π)

1

Pπ(T0 < Tπ)

1

1 + E0(T0 − t+0 )γ0

+

∣∣∣∣ C(π)F (π)

γ0ρk−1

1

(ρC(π) + γk)

1

Pπ(T0 < Tπ)

1

1/γ0 + E0(T0 − t+0 )
− F (π)

ρk

∣∣∣∣
≤ F (π)

ρk

(
un(αρ)

1

Pπ(T0 < Tπ)

1

1 + E0(T0 − t+0 )γ0

+

∣∣∣∣∣ 1 − 1

1 + γk
ρC(π)

1

Pπ(T0 < Tπ)

1

1 + E0(T0 − t+0 )γ0

∣∣∣∣∣
)

and using Lemma 4.7 (and the fact that ρC(π) ≥ ρα), the term between parentheses canneeded??
be bounded by fn(αρ), where fn is independent on the choice of z and ρ and is such that

lim
x→+∞

fn(x) = 0,

which completes the proof of Theorem 1.3.

5 Proof of Theorem 1.4

Thanks to Proposition 3.4 (scaling), in this section we will assume without loss of
generality that ρ = 1 and consider the R-partitioning process restricted to [0, R]. The
strategy of the proof is based on the following lemma. (Note that the second point will
allow us to rephrase the convergence of ϑR in the weak topology in terms of a moment
problem).

Lemma 5.1. (i) For every k-tuple of disjoint intervals {[ai, bi]}ki=1 in [0, 1] and any
k-tuple of integers {ni}ki=1

E

(
k∏
i=1

ϑ∞([ai, bi])
ni

)
=

k∏
i=1

ni! b
ni−1
i (bi − ai).
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(ii) Let {νR}R≥0 be a sequence of random variables inM([0, 1]) that have no atoms and
such that and for every k-tuple of disjoint intervals {[ai, bi]}ki=1 in [0, 1] and any
k-tuple of integers {ni}ki=1

lim
R→∞

E

(
k∏
i=1

νR([ai, bi])
ni

)
=

k∏
i=1

ni! b
ni−1
i (bi − ai).

Then νR =⇒
R→∞

ϑ∞ in the weak topology.

Proof of Lemma 5.1. We start by proving (i). We fix k = 1. We fix a, b ∈ [0, 1], a ≤ b and
we compute M , the moment generating function of ϑ∞([a, b]).

M(t) = E(exp(tϑ∞[a, b]))

= E(exp(t
∑

(xi,yi)∈P∞, xi∈[a,b]

yi)).

M(t) is the Laplace functional of P∞ for f(x, y) = −ty, so it is well known that:

M(t) = exp

(
−
∫

[a,b]×R+

(1− ety)λ(x, y)dxdy

)

= exp

(
−
∫

[a,b]

dx

x

∫
R+

(1− ety) 1

x
e−y/xdy

)

= exp

(∫ b

a

tx

1− tx
dx

x

)
= exp

(
log

(
1− ta
1− tb

))
=

1− ta
1− tb

.

Note that when a = 0, M(t) is the moment generating function of an exponential distri-
bution of parameter 1/b and M (n)(0) = n!bn. When a 6= 0, we use a Taylor expansion of
M(t):

1− ta
1− tb

= (1− ta)
∞∑
n=0

(tb)n

=

∞∑
n=0

(tb)n −
∞∑
n=1

abn−1tn

= 1 +

∞∑
n=1

n! bn−1(b− a)

n!
tn,

so M (n)(0) = n!bn−1(b− a) for n ≥ 1, which implies (i). To prove this result for k > 1, we
use the fact that P∞ is a Poisson point process so that, for any k-tuple of disjoint intervals
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B1, . . . Bk, ϑ∞(B1), . . . , ϑ∞(Bk) are mutually independent.

We now turn to the proof of (ii). Let {νR}R≥0 be a sequence of random variables in
M([0, 1]). Note that for every x ∈ [0, 1], ϑ∞ does not charge x almost surely. From [?]
(Theorem 16.16 page 316), it follows that proving

νR =⇒
R→∞

ϑ∞ in the weak topology

boils down to proving that ∀n ∈ N, for any k-tuple of intervals B1, . . . , Bk

(νR(B1), . . . , νR(Bk)) =⇒
R→∞

(ϑ∞(B1), . . . , ϑ∞(Bk)). (I.13)

To prove (I.13), we use a method of moments. We will apply an extension of Carleman’s
condition for multi-dimensional random variables [?, ?].

Fix n, k ∈ N and for a given k-tuple of disjoint intervals {[ai, bi]}ki=1, define

Mk
n =

k∑
i=1

E(ϑ∞([ai, bi])
n), C =

∞∑
n=1

(Mk
n)−

1
2n .

The condition states that, if C = ∞ (for any choice of k and {[ai, bi]}ki=1 that are not
necessarily disjoint), proving (I.13) is equivalent to proving that for k ∈ N, n1, . . . , nk ∈ Nk

E

(
k∏
i=1

νR([ai, bi])
ni

)
−→
R→∞

E

(
k∏
i=1

ϑ∞([ai, bi])
ni

)
. (I.14)

From (i), we have

Mk
n =

k∑
i=1

n! bn−1
i (bi − ai) ≤ kn!

and since

∞∑
n=1

1

(kn!)
1

2n

≥ 1

k

∞∑
k=1

1

(n!)
1

2n

≥ 1

k

∞∑
k=1

1

n
1
2

=∞

we get C = ∞ and we can apply the extension of Carleman’s condition. We use the fact
that

∀a ≤ b ≤ c, νR[a, c] = νR[a, b] + νR[b, c] and ϑ∞[a, c] = ϑ∞[a, b] + ϑ∞[b, c]

so that (I.14) reduces to the case where the intervals {[ai, bi]}ki=1 are pairwise disjoint. This
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completes the proof of Lemma 5.1.

Since ϑR is absolutely continuous with respect to the Lebesgue measure,

∀a ≤ b ≤ c, ϑR[a, c] = ϑR[a, b] + ϑR[b, c],

so, from Lemma 5.1, the proof of Theorem 1.4 boils down to proving that for every k-tuple
of disjoint intervals {[ai, bi]}ki=1 in [0, 1] and any k-tuple of integers {ni}ki=1

lim
R→∞

E

(
k∏
i=1

ϑR([ai, bi])
ni

)
=

k∏
i=1

ni! b
ni−1
i (bi − ai). (I.15)

The rest of this section will be dedicated to the proof of this asymptotical relation.
We start by fixing k ∈ N, n1, . . . nk ∈ Nk, n = n1 + . . . + nk and {[ai, bi]}ki=1 a k-tuple of
disjoint intervals. Without loss of generality we assume a1 < b1 < a2 . . . < ak < bk. For
any z = (z0, z1, . . . , zn) ⊂ R+ we define c(z) as the coarsest partition of z.

We start by rewriting the right hand side of the equation (I.14):

E

(
k∏
i=1

ϑR([ai, bi])
ni

)

=
1

log(R)n
Eµ1

(∫
[Ra1 ,Rb1 ]n1×...×[Rak ,Rbk ]nk

1{0∼z1∼...∼zn}dz1 . . . dzn

)

=
1

log(R)n

∫
[Ra1 ,Rb1 ]n1×...×[Rak ,Rbk ]nk

µz,1(c(z))dz1 . . . dzn (I.16)

where Eµ1 denotes the expectation with respect to µ1, z0 = 0 and µz,1 is defined as the
invariant measure of the partitioning process for the set of loci z = (z0, · · · , zn) with a
recombination rate equal to 1.

Let us now give some intuition for the rest of the section. Let VR be the volume of the
integration domain above. We have

E

(
k∏
i=1

ϑR([ai, bi])
ni

)
=

VR
log(R)n

EZ
(
µ(z0,Z),1({z0, Z})

)
,

where EZ denotes the expectation with respect to Z = (Z1, . . . , Zn) distributed as a
uniform random variable on [Ra1 , Rb1 ]n1 × . . . × [Rak , Rbk ]nk and where we recall that
µz,1 = tz ? µ. When R � 1, for a “typical” configuration Z, the distances between the
zi’s will be of order R. As ρ = 1, the fragmentation rates correspond to the distances
between the zi’s and are of order R � 1, whereas the coalescence rate is always 1 for
each pair of blocks. In this situation, fragmentation events occur much more often than
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coalescence events, which is the framework of Theorem 1.3. The main idea behind (I.15)
is to approximate the integrand using this theorem.

Let us now go into the details of the proof. We decompose the proof into four steps.
In the following {[ai, bi]}ni=1 will denote a set of disjoint intervals listed in increasing order.

Step 1. Define

CRβ := {z1, . . . , zn ∈ ⊗ni=1[Rai−1, Rbi−1]ni : s.t. if z0 := 0

∀i 6= j ∈ {0, . . . , n}, |zi − zj | ≥ β}

(Note that in the rest of the proof, we will always set z0 = 0.) The aim of this step is to
prove the following proposition.

Proposition 5.2.

∀β > 0, lim
R→∞

1

log(R)n

∫
CRβ

F (c(z))dz1 . . . dzn =

k∏
i=1

ni! b
ni−1
i (bi − ai), (I.17)

where, as defined in Section 4,

F (c(z)) =
∑

s∈S(c(z))

1

E(s)
,

and where E(s) is the product of the successive cover lengths along the coalescence scenario
s.

To see why this Proposition is useful for the proof of (I.15), we let the reader refer to
Steps 2 and 3.

In the following we fix β ≥ 1, and we assume that R is large enough so that ∀i ∈
[k], Rbi−1 > βR−1. Let Σn be the set of permutations of [n]. For σ ∈ Σn define

CRβ,σ := {z1, . . . , zn ∈ CRβ , zσ(1) < . . . . < zσ(n)}.

Recall that, as the intervals {[ai, bi]}ni=1 are disjoint, the zi’s belonging to [aj , bj ] are always
smaller than those belonging to [aj+1, bj+1]. This means that there are only n1! . . . nk!

permutations for which CRβ,σ is non empty. Using the symmetry between the zi’s belonging
to the same interval, we have∫

CRβ

F (c(z)) dz1 . . . dzn =
∑
σ∈Σn

∫
CRβ,σ

F (c(z)) dz1 . . . dzn

= n1! . . . nk!

∫
CRβ,Id

F (c(z)) dz1 . . . dzn,
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where Id is the identity permutation. To prove Proposition 5.2, it remains to show that:

lim
R→∞

1

log(R)n

∫
CRβ,Id

F (c(z))dz1 . . . dzn =
k∏
i=1

bni−1
i (bi − ai). (I.18)

Recall that F involves over coalescence scenarios. The idea now is to consider separately
two different types of scenarios of coalescence.

- SC(c(z)) corresponds to the set of the “contiguous scenarios” i.e. the scenarios where
blocks only coalesce with their neighbouring blocks (i.e where at each step the block
containing zi can only coalesce with the blocks containing zi−1 or zi+1). This is for
example the case of scenarios S1 and S2 in Figure 5.

- S̄C(c(z)) contains all the other scenarios (for example S3 and S4 in Figure 5).

∫
CRβ,Id

F (c(z))dz1 . . . dzn =

∫
CRβ,Id

∑
s∈SC(c(z))

1

E(s)
dz1 . . . dzn

+

∫
CRβ,Id

∑
s∈S̄C(c(z))

1

E(s)
dz1 . . . dzn. (I.19)

The rest of this step is devoted to the computation of each of the terms in the RHS of this
equation.

Step 1.1. The aim of Step 1.1 is to prove the following lemma

Lemma 5.3.

lim
R→∞

1

log(R)n

∫
CRβ,Id

∑
s∈SC(c(z))

1

E(s)
dz1 . . . dzn =

k∏
i=1

bni−1
i (bi − ai).

For each i ∈ [n], we define ui := zi − zi−1. It is not hard to see that each scenario
s = (s1, . . . , sn) ∈ SC(c(z)) is characterized by a unique permutation τ ∈ Σn which specifies
the order of coalescence of the successive contiguous blocks in such a way that

1

E(s)
=

n∏
i=1

1

uτ(1) + . . .+ uτ(n)
.

(see Figure 5 for some examples.) As a consequence, we can index each contiguous scenario
by a permutation, and using the change of variables ui = zi − zi−1, we get

∫
CRβ,Id

∑
s∈SC(c(z))

1

E(s)
dz1 . . . dzn =

∫
UR

∑
τ∈Σn

(
n∏
i=1

duτ(i)

uτ(1) + . . .+ uτ(i)

)
, (I.20)



78 CHAPITRE 1

Type Scenario of coalescence Energy

S1

S1

E(S1) = (z1 − z0)× (z2 − z0)× (z3 − z0)

= u1 × (u1 + u2)× (u1 + u2 + u3)

(τ(1) = 1, τ(2) = 2, τ(3) = 3)

S1

S2

E(S2) = (z1 − z0)× (z1 − z0 + z3 − z2)

×(z3 − z0)

= u1 × (u1 + u3)× (u1 + u3 + u2)

(τ(1) = 1, τ(2) = 3, τ(3) = 2)

S2

S3

E(S3) = (z2 − z0)× (z2 − z0)× (z3 − z0)

= (u1 + u2)× (u1 + u2)

×(u1 + u2 + u3)

S2

S4

E(S4) = (z3 − z0)× (z3 − z0)× (z3 − z0)

= (u1 + u2 + u3)× (u1 + u2 + u3)

×(u1 + u2 + u2)

Figure I.6 – Some examples of coalescence scenarios and their energy. In these examples,
k = 1, b = 1, a1 := a.
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where UR is defined as follows. First, let us define (see also Figure I.7)

wR(1) := max(βR−1, Ra1−1)

WR(1) := Rb1−1

∀2 ≤ i ≤ k,wR(i) := Rai−1 −Rbi−1−1

WR(i) := Rbi−1 −Rai−1−1

∀1 ≤ i ≤ k, LR(i) := Rbi−1 −Rai−1.

Finally, we set n0 := 0. Under the assumption that R is large enough so that ∀i ∈
[k], Rbi−1 > βR−1

UR :={ u1, . . . , un ∈ ⊗ki=1

(
[wR(i),WR(i)]× [βR−1, LR(i)]ni−1

)
:

∀i ∈ [k],

ni∑
j=ni−1+2

uj ≤ LR(i) and
n1+...+ni∑

j=1

uj ≤ Rbi−1}

In fact, by definition of CRβ,Id, ∀j ∈ [n], βR−1 ≤ uj = zj − zj−1. In addition, the LR(i)’s
correspond to the lengths of the different intervals [Rai−1, Rbi−1], so when zj and zj−1 be-
long to the same interval, uj = zj−zj−1 ≤ LR(i) (See Figure I.7). The wR(i)’s correspond
to the distance between two contiguous intervals and the WR(i)’s to the maximal distance
between two points of contiguous intervals. So, when zj and zj−1 belong to different in-
tervals then uj = zj − zj−1 ∈ [wR(i),WR(i)] (See Figure I.7). Finally, the last inequalities
come from the fact that for j ∈ {ni−1 + 1, . . . , ni}, the zi’s belong to the same interval
[ai, bi], so the sum of their distances cannot exceed the length of the interval. In addition,
the distance between z0 and zni cannot exceed Rbi−1.

Figure I.7 – The set UR.

To compute the RHS of (I.20), we start by proving the following Lemma.
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Lemma 5.4. For any τ ∈ Σn, κ > 1, define

KR,κ
τ = {u1, . . . , un ∈ UR, ∀i ∈ [n], uτ(i) > κ

i−1∑
j=1

uτ(j)}

K̄R,κ
τ = UR \KR,κ

τ

We have

(i) ∀κ > 1, lim
R→∞

1

log(R)n

∑
τ∈Σn

∫
K̄R,κ
τ

(
n∏
i=1

duτ(i)

uτ(1) + . . .+ uτ(i)

)
= 0

(ii) lim
κ→∞

lim
R→∞

1

log(R)n

∑
τ∈Σn

∫
KR,κ
τ

(
n∏
i=1

duτ(i)

uτ(1) + . . .+ uτ(i)

)
=

k∏
i=1

bni−1
i (bi − ai).

Remark 5.5. The proof of Lemma 5.4 is rather cumbersome, but the idea behind the proof
is simple. In a nutshell, the idea is that, depending on the positions of the loci (the zi’s),
one scenario is much more likely than the others. More precisely, for any configuration
z ∈ CRβ,Id, there exists a scenario Smin ∈ SC(c(z)) associated to permutation τmin ∈ Σn

such that
uτmin(1) ≤ uτmin(2) ≤ . . . ≤ uτmin(n).

By coalescing the ui’s in the increasing order, the successive cover lengths are minimised.

Proof. We start by proving (i). We fix τ ∈ Σn, κ > 1. We make the following change of
variables. Let us define Ψτ such that for 1 ≤ i ≤ n, (Ψτ (u1, . . . , un))τ(i) = uτ(1)+. . .+uτ(i).
We have ∫

UR

(
n∏
i=1

duτ(i)

uτ(1) + . . .+ uτ(i)

)
=

∫
v∈Ψτ (UR)

dv1 . . . dvn
v1 . . . vn

. (I.21)

In particular, as

∀i ∈ [n], uτ(i) ≤ κ
i−1∑
j=1

uτ(j) ⇔ ∀i ∈ [n], vτ(i) ≤ (1 + κ)vτ(i−1),

we have ∫
K̄R,κ
τ

(
n∏
i=1

duτ(i)

uτ(1) + . . .+ uτ(i)

)
=

∫
V R,κτ

dv1 . . . dvn
v1 . . . vn

where
V R,κ
τ = {v ∈ Ψτ (UR),∃i ∈ [n], vτ(i) ≤ (1 + κ)vτ(i−1)}.

For every i ∈ [n], we define

V R,κ
τ (i) = {v ∈ Ψτ (UR), vτ(i) ≤ (1 + κ)vτ(i−1)}.
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We have

V R,κ
τ =

n⋃
i=1

V R,κ
τ (i).

We fix τ ∈ Σn and i ∈ [n]. The vτ(j)’s are the successive cover lengths at each step of the
scenario S associated to τ , so it can readily be seen that

∀j ∈ [n], vj ∈ [R−1, 1] and vτ(1) < . . . < vτ(n),

which implies that

V R,κ
τ (i) ⊂ {v ∈ [R−1, 1]n, vτ(i−1) < vτ(i) < (1 + κ)vτ(i−1)},

so ∫
V R,κτ (i)

dvτ(1) . . . dvτ(n)

vτ(1) . . . vτ(n)
≤
(∫ 1

R−1

dv

v

)n−2 ∫ 1

R−1

dvτ(i−1)

vτ(i−1)

∫ (1+κ)vτ(i−1)

vτ(i−1)

dvτ(i)

vτ(i)

= log(R)n−2

∫ 1

R−1

dvτ(i−1)

vτ(i−1)
log(1 + κ)

= log(R)n−1 log(1 + κ),

which completes the proof of (i).

We now turn to the proof of (ii). We decompose the proof into four steps.

Step a. Define

XR := ⊗ki=1

(
[wR(i),WR(i)]× [βR−1, LR(i)]ni−1

)
.

Then

1

log(R)n

∫
XR

(
n∏
i=1

dui
ui

)
=

1

log(R)n

k∏
i=1

∫ WR(i)

wR(i)

du

u

(∫ LR(i)

βR−1

du

u

)ni−1

=
1

log(R)n

k∏
i=1

log

(
WR(i)

wR(i)

)
log

(
LR(i)

βR−1

)ni−1

−→
R→∞

k∏
i=1

(bi − ai)bni−1
i . (I.22)

Step b. Next, for every κ > 1 and for every τ ∈ Σn, we define

XR
τ := { u1, . . . , un ∈ XR : uτ(1) ≤ . . . ≤ uτ(n)},

Aκτ := { u1, . . . , un,∀i ∈ [n], uτ(i) > κ

i−1∑
j=1

uτ(j)}.
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XR,κ
τ := XR ∩Aκτ .

By reasoning along the same lines as in the proof of (i), one can show that

lim
R→∞

1

log(R)n

∣∣∣∣∣
∫
XR
τ

(
n∏
i=1

duτ(i)

uτ(i)

)
−
∫
XR,κ
τ

(
n∏
i=1

duτ(i)

uτ(i)

)∣∣∣∣∣ = 0.

From Step 1, we get that for every κ > 1

lim
R→∞

1

log(R)n

∑
τ∈Σn

∫
XR,κ
τ

(
n∏
i=1

duτ(i)

uτ(i)

)
=

k∏
i=1

(bi − ai)bni−1
i (I.23)

Step c. We aim of this step is to prove that for every τ ∈ Σn,

lim
R→∞

1

log(R)n

∫
KR,κ
τ

(
n∏
i=1

duτ(i)

uτ(i)

)
= lim

R→∞

1

log(R)n

∫
XR,κ
τ

(
n∏
i=1

duτ(i)

uτ(i)

)
(I.24)

From the definition of KR,κ
τ , we have

KR,κ
τ = XR,κ

τ ∩ (KR
1 ∩KR

2 )

where

KR
1 :={ u1, . . . , un, ∀i ∈ [k],

ni∑
j=ni−1+2

uj ≤ LR(i) },

KR
2 :={ u1, . . . , un, ∀i ∈ [k]

n1+...+ni∑
j=1

uj ≤ Rbi−1 }.

If

lim
R→∞

1

log(R)n

∣∣∣∣∣
∫
XR,κ
τ ∩KR

1

(
n∏
i=1

duτ(i)

uτ(i)

)
−
∫
XR,κ
τ

(
n∏
i=1

duτ(i)

uτ(i)

)∣∣∣∣∣ = 0 (I.25)

and

lim
R→∞

1

log(R)n

∣∣∣∣∣
∫
XR,κ
τ ∩KR

2

(
n∏
i=1

duτ(i)

uτ(i)

)
−
∫
XR,κ
τ

(
n∏
i=1

duτ(i)

uτ(i)

)∣∣∣∣∣ = 0, (I.26)

then

lim
R→∞

1

log(R)n

∣∣∣∣∣
∫
KR,κ
τ

(
n∏
i=1

duτ(i)

uτ(i)

)
−
∫
XR,κ
τ

(
n∏
i=1

duτ(i)

uτ(i)

)∣∣∣∣∣ = 0. (I.27)

We will only prove (I.25), as (I.26) can be proved along the same lines. To do so, we
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define

Y R,κ
τ :={u1, . . . , un ∈ ⊗ki=1

[wR(i),WR(i)]×

[
βR−1,

LR(i)

1 + 1
κ

]ni−1
 ,

uτ(1) ≤ . . . ≤ uτ(n)}.

so that Y R,κ
τ ⊂ XR

τ . By similar computations as those used in the proof of (i), it can be
shown that

lim
R→∞

1

log(R)n

∫
XR
τ \Y

R,κ
τ

n∏
i=1

duτ(i)

uτ(i)
= 0,

so

lim
R→∞

1

log(R)n

∣∣∣∣∣
∫
XR,κ
τ

n∏
i=1

duτ(i)

uτ(i)
−
∫
Y R,κτ ∩Aκτ

n∏
i=1

duτ(i)

uτ(i)

∣∣∣∣∣ = 0, (I.28)

and

lim
R→∞

1

log(R)n

∣∣∣∣∣
∫
XR,κ
τ ∩KR

1

n∏
i=1

duτ(i)

uτ(i)
−
∫
Y R,κτ ∩Aκτ∩KR

1

n∏
i=1

duτ(i)

uτ(i)

∣∣∣∣∣ = 0 (I.29)

Let us show that
Y R,κ
τ ∩Aκτ ∩KR

1 = Y R,κ
τ ∩Aκτ ,

i.e. that

∀(u1, . . . , un) ∈ Y R,κ
τ ∩Aκτ , ∀i ∈ [k],

ni∑
j=ni−1+2

uj ≤ LR(i).

We fix i ∈ [k] and we define

mi := j ∈ {ni−1 + 2, . . . , ni}, τ−1(j) = max{τ−1(ni−1 + 2), . . . , τ−1(ni)}

As

uτ(mi) > κ

mi−1∑
j=1

uτ(j),

then
ni∑

j=ni−1+2

uj ≤
mi∑
j=1

uτ(j) =

(
1 +

1

κ

)
uτ(mi) ≤

(
1 +

1

κ

)
LR(i)

1 + 1
κ

= LR(i).

Since Y R,κ
τ ∩ Aκτ ∩ KR

1 = Y R,κ
τ ∩ Aκτ , combining (I.28) and (I.29), (I.25) is proved.

Equation (I.26) can be proved along the same lines, so (I.27) is verified.

Step d. Finally, for any τ ∈ Σn, for any u1, . . . , un ∈ KR,κ
τ , we have

∀i ∈ [n], uτ(i) ≤ uτ(1) + . . .+ uτ(i−1) + uτ(i) ≤
(

1 +
1

κ

)
uτ(i),
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which implies that

∑
τ∈Σn

∫
KR,κ
τ

(
n∏
i=1

duτ(i)

uτ(i)

)
≤
∑
τ∈Σn

∫
KR,κ
τ

(
n∏
i=1

duτ(i)

uτ(1) + . . .+ uτ(i)

)

and ∑
τ∈Σn

∫
KR,κ
τ

(
n∏
i=1

duτ(i)

uτ(1) + . . .+ uτ(i)

)
≤ 1

(1 + 1
κ)n

∑
τ∈Σn

∫
KR,κ
τ

(
n∏
i=1

duτ(i)

uτ(i)

)

This, combined with Step b (see (I.23)) and Step c (see (I.24))

k∏
i=1

(bi − ai)bni−1
i ≤ lim

R→∞

1

log(R)n

∑
τ∈Σn

∫
KR,κ
τ

(
n∏
i=1

duτ(i)

uτ(1) + . . .+ uτ(i)

)

≤
∏k
i=1(bi − ai)bni−1

i

(1 + 1
κ)n

,

and the conclusion follows by taking κ→∞.

Proof of Lemma 5.3. From (I.20), we have

lim
R→∞

1

log(R)n

∫
CRβ,Id

∑
s∈SC(c(z))

1

E(s)
dz1 . . . dzn

= lim
R→∞

1

log(R)n

∑
τ∈Σk

∫
UR

n∏
i=1

duτ(i)

uτ(1) + . . .+ uτ(i)

= lim
R→∞

1

log(R)n

∑
τ∈Σk

(∫
KR,κ
τ

n∏
i=1

duτ(i)

uτ(1) + . . .+ uτ(i)
+

∫
K̄R,κ
τ

n∏
i=1

duτ(i)

uτ(1) + . . .+ uτ(i)

)
.

Using Lemma 5.4 and taking κ→∞ in the RHS, we have

lim
R→∞

1

log(R)n

∫
CRβ,Id

∑
s∈SC(c(z))

1

E(s)
dz1 . . . dzn =

k∏
i=1

bni−1
i (bi − ai). (I.30)

Step 1.2. The aim of this step is to compute the second term in the RHS of (I.19).

Lemma 5.6.
lim
R→∞

1

log(R)n

∫
CRβ,Id

∑
S∈S̄C(c(z))

1

E(S)
dz1 . . . dzn = 0.

Proof. We fix z = z0, z1, . . . , zn ∈ CRβ,Id. We start by considering scenarios where blocks
only coalesce with neighbouring blocks, except for one step. In other words, we start by
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considering scenarios in S̄ ′C(c(z)), the set of scenarios that contain one single coalescence
event between two non-neighbouring blocks. For example, S3 in Figure 5 is in S̄ ′C(c(z)).
We consider S′ = (s′0, s

′
1, . . . , s

′
n) ∈ S̄ ′C(c(z)), a scenario of coalescence in which step j > 1,

is the only coalescence event between two non neighbouring blocks. The idea is to compare
S′ with a scenario S ∈ SC(c(z)) and use this scenario to show that

lim
R→∞

1

log(R)n

∫
CRβ,Id

1

E(S′)
dz1 . . . dzn = 0. (I.31)

As already argued each scenario in SC(c(z)) is associated to a permutation τ such that,
at each step i, the cover length increases by uτ(i). The scenario S and the corresponding
permutation τ are constructed as follows (and we let the reader refer to Figure I.8 for an
example, where subfigures (i), . . . , (iv) correspond to each step in the following construc-
tion).

(i) For 0 ≤ i < j, we set si = s′i. Before step j, there are only coalescence events between
neighbouring blocks in S′. τ(1), . . . , τ(j − 1) are constructed in such a way that

∀1 ≤ i < j, C(si) = C(s′i) =

i∑
k=1

uτ(k).

(ii) At step j, in scenario S′ there is a coalescence event between two non neighbouring
blocks, which means that there exists i1 < i2 < . . . < i` such that C(s′j) = C(s′j−1)+

ui1 + . . . + ui` . sj is the partition of order j such that C(sj) = C(sj−1) + ui1 . We
set τ(j) := i1. We have

C(sj) =
i∑

k=1

uτ(k) ≤ C(s′j).

(iii) For j < i ≤ j + `− 1, τ(i) := ii−j , i.e., we add successively ui2 , . . . , ui` . We have

∀j < i ≤ j + `− 1, C(si) ≤ C(s′i).

(iv) For j + ` ≤ i ≤ j, the si’s are constructed as follows. Let ur1 , . . . , urp be the ui’s
that have not been added yet to the cover length of S′ (i.e. the ui’s that are not in
{uτ(1), . . . , uτ(j+`)}), indexed in such a way that in S′, ur1 coalesces before ur2 etc
. . .. Then we set uτ(j+`+i) = uri . In other words, the uri ’s are added to the cover
length in S in the same order as they are added in S′ (see Figure I.8).

With this construction, we have

1

E(S)
=

n∏
i=1

1

uτ(1) + . . .+ uτ(i)
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Figure I.8 – Example of the construction of a scenario S ∈ SC(c(z)) from a scenario
S′ ∈ S̄ ′C(c(z)). The left-hand side corresponds to S′ and the right-hand side to S. Steps
(i) . . . (iv) correspond to the steps in construction of S from S′.
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=
1

vτ(1) . . . vτ(n)
.

where for i ∈ {1, . . . , n}, vτ(i) := Ψτ (UR)τ(i) = uτ(1) + . . . + uτ(i). By construction, we
have

1

E(S′)
≤

(
j−1∏
i=1

1

C(si)

)
1

C(s′j)

 n∏
i=j+1

1

C(si)

 .

Using the fact that

C(s′j) = uτ(1) + . . .+ uτ(j−1) + ui1 + . . .+ ui`

= vτ(j+`),

we have

1

E(S′)
≤=

(
j−1∏
i=1

1

vτ(i)

)
1

vτ(j+`)

 n∏
i=j+1

1

vτ(i)


≤

(
j−1∏
i=1

1

vτ(i)

)
1

vτ(j+1)

 n∏
i=j+1

1

vτ(i)


where the last inequality comes from the fact that vτ(j+1) < . . . < vτ(j)+l. Using the same
change of variables as in (I.21), we have∫

CRβ,Id

1

E(S′)
dz1 . . . dzn =

∫
Ψτ (UR)

dvτ(1) . . . dvτ(n)

vτ(1) . . . vτ(j−1)vτ(j+1)vτ(j+1) . . . vτ(n)

And, from the definition of Ψτ , it can easily be seen that for any τ ∈ Σn

Ψτ (UR) ⊂ Ψ′ = {x1, . . . , xn ∈ [R−1, 1]n, x1 ≤ . . . ≤ xn}

so ∫
CRβ,Id

dz1 . . . dzn
E(S′)

≤
∫

Ψ′

dx1 . . . dxn
x1 . . . xj−1xj+1xj+1 . . . xn

=

∫ 1

R−1

dxn
xn

. . .

∫ xj+2

R−1

dxj+1

x2
j+1

∫ xj+1

R−1

dxj

∫ xj

R−1

dxj−1

xj−1
. . .

∫ x2

R−1

dx1

x1

=

∫ 1

R−1

dxn
xn

. . .

∫ xj+2

R−1

dxj+1

x2
j+1

∫ xj+1

R−1

log(Rxj)
j−1

(j − 1)!
dxj

≤ log(R)j−1

(j − 1)!

∫ 1

R−1

dxn
xn

. . .

∫ xj+2

R−1

xj+1 − 1/R

x2
j+1

dxj+1
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≤ log(R)j−1

∫ 1

R−1

dxn
xn

. . .

∫ xj+2

R−1

dxj+1

xj+1
= log(R)n−1,

which completes the proof of (I.31).

To complete the proof of Lemma 5.6, we are going show that, for every scenario S2 ∈
S̄C(c(z)) with more than one step of coalescence between non-contiguous scenarios, there
exist a scenario S3 ∈ S̄ ′C(c(z)) such that E(S3) ≤ E(S2). We fix S2 = (s2

0, s
2
1, . . . , s

2
n) ∈

S̄C(c(z)), and the idea is to construct S3 = (s3
0, s

3
1, . . . , s

3
n) ∈ S̄ ′C(c(z)) along the same lines

as in Step 1. Let j1 the first step of coalescence between non contiguous blocks in S3 and
j2 the second one.

— For 0 ≤ i < j2, s3
i := s2

i . In words, we copy all the steps, including j1, the first step
of coalescence between non neighbouring blocks.

— Steps (s3
j2
, . . . , s3

n) are obtained from (s2
j2
, . . . , s2

n) in the same way as S′ was obtained
from S in Step 1.

With this construction, S3 ∈ S̄ ′C(c(z)) (there is only one step of coalescence between non
neighbouring blocks, which is j1) and we have ∀i ∈ [n], C(s2

i ) ≤ C(s3
i ), so∫

CRβ,Id

1

E(S2)
dz1 . . . dzn ≤

∫
CRβ,Id

1

E(S3)
dz1 . . . dzn

As S3 ∈ S̄ ′C(c(z)), combining the previous equation with (I.31), for every scenario S ∈
S̄C(c(z)),

lim
R→∞

1

log(R)n

∫
CRβ,Id

1

E(S)
dz1 . . . dzn = 0,

which completes the proof Lemma 5.6.

Proof of Proposition 5.2. This is a direct consequence of Lemmas 5.3 and 5.6 and (I.19).

Step 2. Define

DR
β := {z1, . . . , zn ∈ [Ra1 , Rb1 ]n1 × . . .× [Rak , Rbk ]nk , s.t. if z0 := 0

∀i 6= j ∈ {0, . . . , n}, |zi − zj | ≥ β}

IRβ :=
1

log(R)n

∫
DRβ

µz,1(c(z))dz1 . . . dzn,

Using scaling (see Proposition 3.4) and a change of variables, we have:

IRβ =
Rn

log(R)n

∫
CRβ

µz,R(c(z))dz1 . . . dzn. (I.32)
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Recall that c(z) is a partition of order n, so from Theorem 1.3, we have:∣∣∣∣∣IRβ − 1

log(R)n

∫
CRβ

F (c(z)) dz1 . . . dzn

∣∣∣∣∣ ≤ fn(β)

log(R)n

∫
CRβ

F (c(z)) dz1 . . . dzn

and fn(β) −→
β→∞

0. By taking successive limits, first R → ∞ and then β → ∞, using

Proposition 5.2

lim
β→∞

lim
R→∞

IRβ =
k∏
i=1

ni! b
ni−1
i (bi − ai). (I.33)

Step 3. The aim of this step is to show that we can now approximate E
(∏k

i=1 ϑ
R([ai, bi])

ni
)

by IRβ . In fact, IRβ can be obtained from E
(∏k

i=1 ϑ
R([ai, bi])

ni
)
by removing a small frac-

tion of the integration domain (see (I.16)). More precisely we will show that

Lemma 5.7.

∀β ≥ 1, lim
R→∞

(
E

(
k∏
i=1

ϑR([ai, bi])
ni

)
− IRβ

)
= 0.

Proof. We fix k ∈ N, n1, . . . , nk ∈ N, n = n1 + . . . + nk, a1, . . . ak ∈ [0, 1], b1, . . . , bk ∈
[0, 1], a1 < b1 < a2 < b2 . . . < ak < bk, β ≥ 1.

Let us define

∆̇R
β := {z1, . . . , zn ∈ [Ra1 , Rb1 ]n1 × . . .× [Rak , Rbk ]nk , such that if z0 := 0,

∃ i, j ∈ {0, . . . , n}, |zi − zj | < β}.

We have

E

(
k∏
i=1

ϑR([ai, bi])
ni

)
− IRβ =

1

log(R)n

∫
∆̇R
β

µz,1(c(z)) dz1 . . . dzn.

Lemma 5.7 can be reformulated as follows

lim
R→∞

1

log(R)n

∫
∆̇R
β

µz,1(c(z)) dz1 . . . dzn = 0.

By symmetry, proving this result reduces to proving that

lim
R→∞

1

log(R)n

∫
∆R
β

µz,1(c(z)) dz1 . . . dzn = 0,

where

∆R
β := ∆̇R

β

⋂
{z1, . . . , zn, z0 := 0 < z1 < . . . < zn}.
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Let S be the set of all subsets of [n] containing at most n − 1 elements. For S ∈ S,
define

∆R
β,S = ∆R

β

⋂
{z1, . . . , zn : ∀i ∈ S, |zi − zi−1| ≥ β, ∀i /∈ S, |zi − zi−1| < β}.

in such a way that
∆R
β =

⋃
S∈S

∆R
β,S .

It follows that ∫
∆R
β

µz,1(c(z)) dz1 . . . dzn =
∑
S∈S

∫
∆R
β,S

µz,1(c(z)) dz1 . . . dzn

≤
∑
S∈S

∫
∆R
β,S

µz,1(πS) dz1 . . . dzn

where ∀S ∈ S, πS = {π ∈ Pz, ∀i, j ∈ S, zi ∼π zj} (and where the inequality follows from
the fact that c(z) ∈ πS). We define zS := {zi, i ∈ S}. Proposition 2.2 gives:

µz,1(πS) = µz
S ,1(c(zS)).

Define

∆̄R
β,S := {(zi)i∈S : ∃ (zj)j∈{1,...,n}\S , (z1, . . . , zn) ∈ ∆R

β,S}.

We let the reader convince herself that, for any S ∈ S there exists m1, . . . ,mk ∈ N, m1 +

. . .+mk = |S|, such that ∆̄R
β,S can be rewritten as

∆̄R
β,S = {z̄1, . . . z̄|S| ∈ [Ra1−1, Rb1−1]m1 × . . .× [Rak−1, Rbk−1]mk :

z̄0 := 0 ≤ z̄1 ≤ . . . ≤ z̄|S| and ∀ i, j ∈ S, i 6= j, |z̄i − z̄j | > β}.

This allows us to rewrite the previous inequality as∫
∆R
β

µz,1(c(z)) dz1 . . . dzn ≤
∑
S∈S

∫
∆R
β,S

µz
S ,1(c(zS))dz1 . . . dzi . . .︸ ︷︷ ︸

i∈S

. . . dzj . . .︸ ︷︷ ︸
j 6∈S

=
∑
S∈S

∫
∆̄R
β,S

µz
S ,1(c(z̄))dz̄1 . . . dz̄|S|

∏
j /∈S

∫ zj−1+β

zj−1

dzj


= βn−|S|

∑
S∈S

∫
∆̄R
β,S

µz
S ,1(c(z̄))dz̄1 . . . dz̄|S| (I.34)
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where z̄ = (z̄0, . . . , z̄|S|) and z̄0 = 0. From (I.33), we have

lim
R→∞

1

log(R)|S|

∫
∆̄R
β,S

µz
S ,1(c(z̄))dz̄1 . . . dz̄|S| =

∏
i∈[k], mi 6=0

bmi−1
i (bi − ai).

As |S| < n,

lim
R→∞

1

log(R)n

∑
S∈S

∫
∆̄R
β,S

µz
S ,1(c(z̄))dz̄1 . . . dz̄|S| = 0,

which combined with (I.34) concludes the proof of the Lemma 5.7.

Step 4. Conclusion. Combining (I.33) and with Lemma 5.7 (Step 3), we have proved
that for every k-tuple of disjoint intervals {[ai, bi]}ki=1 and any k-tuple of integers {ni}ki=1

lim
R→∞

E

(
k∏
i=1

ϑR([ai, bi])
ni

)
=

k∏
i=1

ni! b
ni−1
i (bi − ai).

So, using Lemma 5.1, ϑR converges to ϑ∞ in distribution in the weak topology. In partic-
ular, we have

LR(0) = ϑR[0, 1] +
1

log(R)

∫
[0,1]

1{x∼π0}dx

and
1

log(R)

∫
[0,1]

1{x∼π0}dx ≤
1

log(R)
−→
R→∞

0

so, using equation (I.14), we have

∀n ∈ N, lim
R→∞

E(LR(0)n) = lim
R→∞

E(ϑR[0, 1]n) = n!

which are the moments of the exponential distribution of parameter 1. As in the proof of
Lemma 5.1, using Carleman’s condition (for k = 1), this implies that LR(0) converges in
distribution to an exponential distribution of parameter 1.
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Chapter II

Deriving the expected number of
detected haplotype junctions in
hybrid populations

In this chapter, I present some work in progress, in collaboration with Thijs Janzen,
from Carl von Ossietzky University (Oldenburg, Germany). It aims at using the Ancestral
Recombination Graph to study hybridization.

The idea is to consider a hybrid population that emerged from a single hybridiza-
tion event between two ancestral populations P and Q. We assume that, at time 0, the
proportion of individuals from population P is p and the proportion of individuals from
population Q is q = 1− p. The evolution of the hybrid population can be modelled using
a Wright-Fisher model with recombination, which is an analogous in discrete time to the
Moran model with recombination used in Chapter I. Instead of assuming that, at time 0

each individual has her chromosome painted in a distinct color, we assume that there are
only two colors, corresponding to each of the ancestral populations. By the blending effect
of recombination, the chromosomes of the hybrids are mosaics of these two colors. For
instance, in Figure II.1, the blue color indicates that the individual carrying the displayed
chromosome inherited this portion of the chromosome from the blue ancestral subpopula-
tion.

Inferring which fragments of the chromosome have been inherited from each ancestral
subpopulation from genomic data is not straightforward. As the two ancestral populations
are supposed to be closely related species, their genomes are quite similar. Therefore,
one needs to use molecular markers: a marker is a locus that segregates between the two
ancestral populations, i.e. such that each of the ancestral populations carries a different
allele at this locus. If two consecutive markers carry different allelles (i.e. each one carries
the allele associated to one of the subpopulations) we say that we observe a “junction”.

93
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Figure II.1 – The Wright-Fisher model with recombination with two ancestral populations.

Note that the observed number of junctions between markers will depend on the density
and the positions of the markers (see Figure II.2).

In [?], Thijs Janzen and his collaborators derived a formula for the expected number
of observed junctions using equidistant markers. However, in real data the positions of
the markers are not regularly spaced, and their approach did not allow them to take this
into account. Using the partitioning-process, Thijs Janzen and I extended this formula to
the case of markers that are randomly distributed across the genome. In fact, if we have
n markers, whose positions are given by z = (z1, . . . , zn), and we know that the recom-
bination rate is R, we can follow their ancestry backwards in time, using the Ancestral
Recombination Graph. If hybridization occured t generations ago, the probability of ob-
serving a junction between zi and zi+1 corresponds to the probability that these two loci
were carried by different lineages at time t and the two lineages correspond to individuals
from different ancestral populations (which happens with probability 2pq). We derived
a formula for the expected number of junctions as a function of time and compared our
results to simulations and to real data.

Figure II.2 – The number of observed junctions depends on the density of markers and
their positions. Arrows represent markers, and their color indicates to which ancestral
subpopulation they are associated. For the same realization of the Wright-Fisher model
with recombination, the number of observed junctions is different. In the left-hand side,
with 5 markers we observe 4 junctions whereas in the right-hand side, with 4 markers we
only observe 2 junctions.
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1 Introduction

The traditional view where species or lineages accumulate incompatibilities over time
and become reproductively isolated from each other has led to insight into the processes
generating and maintaining biodiversity [?]. This view has proven to be misleading how-
ever, and it has become apparent that lineages do not necessarily only branch, but that
lineages can also come back together [?]. In plants, it has been known for quite some
time that hybridization between lineages can lead to not only viable offspring, but can also
potentially lead to the formation of new lineages, and ultimately, species [?]. It has long
been debated whether this process could also happen in animals, but over the past few
years numerous examples have appeared, including, but not limited to, butterflies [?, ?],
cichlid fishes [?, ?], warblers [?], fruit flies [?] and sculpins [?].

Understanding the time-line of these hybridization events is paramount in obtaining a
full understanding of the process and its impact. Often, hybridization processes occur fast,
on a timescale that is too rapid to accumulate enough mutations. Instead, recombination
processes are sufficiently rapid so as to leave a footprint in genomes undergoing hybridiza-
tion. After admixture of two lineages, contiguous genomic blocks within the genome are
broken down by recombination over time. The delineations between these blocks were
termed “junctions” by Fisher [?, ?], and inheritance of these junctions is similar to that
of point-mutations. Further work on the theory of junctions has shown how junctions
accumulate over time for sib-sib mating [?], self-fertilization [?], alternate parent-offspring
mating [?, ?], a randomly mating population [?], and for sub-structured populations [?, ?].

So far, applying the theory of junctions has shown to be difficult, as it requires extensive
genotyping of the admixed lineage, but also of the parental lineages. With the current
decrease in genotyping costs [?], such analyses are currently coming well within reach,
and frameworks are currently being developed that assist in inferring local ancestry, given
molecular data of parental and admixed lineages (in order to identify the markers of the two
populations). Nevertheless, molecular data always provide an imperfect picture of ancestry
along the genome, and inferring the number of junctions along a genome remains limited by
the number of diagnostic markers available. Currently, the theory of junctions does not take
into account the effect of a limited number of genetic markers, and previous analyses taking
into account the effect of a limited number of markers have had to resort to simulations
[?, ?]. Janzen et al. [?] provided an analytical description of the effect of using evenly
spaced genetic markers, and they find that predictions taking into account this marker effect
differ substantially from more naive predictions not taking this marker effect into account.
Molecular markers are rarely evenly spaced, and it is therefore warranted to extend the
current theory of junctions by including the effect of non-evenly spaced molecular markers
on inferring the number of junctions in a genome, and inference of subsequent properties,
such as the time since admixture. Here we present a new description of the expected
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number of junctions after admixture, given an arbitrary distribution of markers.

2 The expected number of detected junctions

We assume Wright-Fisher dynamics with non-overlapping generations, random mating
and we assume that all individuals are hermaphrodite. Crossovers are assumed to be uni-
formly distributed along the chromosome. We only keep track of one pair of chromosomes,
assuming that the accumulation of junctions between chromosomes is independent of each
other. We assume that hybridization occurred at time 0 between two populations, P and
Q. The proportion of individuals from population P at time 0 is p and the proportion of
individuals of type Q is q = 1− p.

We assume that the length of the chromosome is R morgans and that there are n
molecular markers whose positions , scaled by R, are given by (z1, . . . zn) ∈ [0, 1]. We
consider two markers at sites zi and zi+1 and we define di = di. The question is how many
junctions are interspersed between the two markers. If more than one junction is expected
to be interspersed, the total number of junctions is expected to be underestimated. In fact
if the real number of junctions between the tho markers is 2n+ 1 we will infer 1 junction
and if it is 2n we will observe no junction. The number of junctions depends on Rdi, which
is the distance between the two markers in morgans.

We can solve this through the Ancestral Recombination Graph, which follows back-
wards in time the ancestry of the two sites. There are two possible states (zi+1 ∼ zi+1)

(when both loci are carried by the same lineage) and state (zi 6∼ zi+1) (where each locus
is carried by a different lineage). The transition probabilities for this process are the given
by

(zi ∼ zi+1)→ (zi 6∼ zi+1) with probability Rdi

(zi ∼ zi+1)→ (zi ∼ zi+1) with probability 1−Rdi

(zi 6∼ zi+1)→ (zi ∼ zi+1) with probability
1

2N

(zi 6∼ zi+1)→ (zi 6∼ zi+1) with probability 1− 1

2N
.

Other events (such as simultaneous coalescence and recombination events) have probabil-
ities that are negligible when N is large. This yields the following transition matrix:

M =

[
1 − Rdi Rdi

1
2N

1 − 1
2N

]
.

Let Pt be the probability vector at time t for this Markov chain with two states. (Pt)1 is
the probability that zi ∼ zi+1 at time t and (Pt)2 the probability that zi 6∼ zi+1 at time t.
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We have P0 = (1, 0) (In the present we sample the two loci in the same individual) and

Pt = P0M
t.

We denote by P(Jt(zi, zi+1)) the probability that a junction is observed between zi and
zi+1, if the hybridization event happened t generations ago. We have

P(Jt(zi, zi+1)) = 2pq(Pt)2,

which corresponds to the probability that the two loci were carried by different lineages
t generations ago and the two lineages correspond to individuals from different ancestral
subpopulations. Solving this gives:

P(Jt(zi, zi+1)) = 2pq
2NR

2NR+ 1/di

(
1−

(
1−Rdi −

1

2N

)t)
.

Let E(Jt) be the expected number of observed junctions, we have

E(Jt) =
n−1∑
i=1

P(Jt(zi, zi+1))

=
4pqNR

2NR+ 1/di

n−1∑
i=1

(
1−

(
1−Rdi −

1

2N

)t)
. (II.1)

To infer the admixture time T̄ , given an observed number of junctions Jobs, we have to
solve numerically solve this equation.

If we assume that the n molecular markers are uniformly spaced, i.e. that the distance
between two consecutive markers is always d := 1/n, we get

E(Jt) =

n−1∑
i=1

P(Jt(zi, zi+1))

=
4pqNR(n− 1)

2NR+ n

(
1−

(
1− R

n
− 1

2N

)t)
. (II.2)

In this case, we can easily solve this equation, and the estimated admixture time T̄ given
Jobs is

T̄ =
log(1− Jobs(2NR+n)

4pqRN(n−1) )

log(1− R
n −

1
2N )

.
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Finally, taking t→∞ in (II.2), gives

E(J∞) = 2pqR(n− 1)
2

2NR+ n

which is identical to the expectation of J∞ in [?], obtained from a model forwards in time.

3 Individual Based Simulations

To verify our findings, and validate their correctness, we compare results from indi-
vidual based simulations with our analytical expectations. We perform individual based
simulations as described in Janzen et al. [?], using the package junctions. Briefly, the
simulations employ a Wright-Fisher model with a uniform recombination rate across the
genome. We performed 1000 replicate simulations, and report the mean number of de-
tected junctions across these replicates. Simulations were performed for two population
sizes (N = 100, and N = 1000) and for three different marker densities: n = 100, 1000

and n = 10000. Across all parameter combinations we observe that the mean number of
detected junctions in the simulations is close or identical to the predicted number following
equation (II.1) (Figure II.3).
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Figure II.3 – The mean number of detected junctions for either individual based simulations
(dots) or as predicted by equation (II.1) (lines), for two different population sizes, and three
different marker densities. Across all parameter combinations, results from individual based
simulations are strongly congruent with the analytical predictions.

Alternatively, we can simulate the process of accumulating junctions over time for
a given number of generations, and then try to infer the time spent since the start
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of hybridization. This focuses solely on the final distribution after a given number of
generations. Such a scenario more closely reflects the application of the extended the-
ory of junctions. We simulate 100 replicate simulations with the following parameters:
N = 1000, R = 1, H0 = 0.5, and explore n = [100, 300, 1000, 3000, 10000]. We inferred
the age of the hybrids using three different methods: firstly, we used equation (II.1) (by
numerically solving for t). Secondly, we used the extended junctions framework (more
specifically, the function estimate time in the junctions package), which assumes that
markers are evenly distributed along the chromosome. Lastly, we ignored potentially con-
founding factors due to the used marker distribution, and assumed n = ∞. We find that
with increasing marker number, all three approaches obtain more accurate results (Figure
II.4 and Table 3). Assuming an even marker distribution tends to underestimate the age,
especially for lower marker numbers. When the effect of markers is ignored, the underesti-
mation is even worse. When using Eq. (II.1) , inaccuracies in the age estimate only arise
for extremely low numbers of markers (< 300) (Table 3), which is also associated with an
increase in the variance of the estimate (Figure II.4).

R Random Markers Even Markers No Markers
100 284 108 64
300 202 151 117
1000 200 182 165
3000 198 191 185
10000 200 198 196

Table II.1 – Mean inferred age for 100 simulations ran for 200 generations. Used are three
different methods to infer the age after obtaining the mean number of junctions at the
end of the simulations using n randomly distributed markers: Random markers uses
equation (II.1) to estimate the age, Even Markers uses the Extended theory of junctions
frameworks and No Markers ignores the effect of markers by assuming that there are an
infinite number of markers (n =∞).

Discussion

We have extended the theory of junctions by including the effect of using only a limited,
finite, number of molecular markers to detect the accumulated number of junctions over
time after an admixture event.

Using individual based simulations, we have verified the accuracy of our method, and
have shown how including the distribution of markers on the chromosome improves esti-
mates of admixture time, even when the number of markers is very low (< 1000).

With this new extension to the theory of junctions, we hope to provide future research
with valuable tools to accurately infer the timing of admixture. Code to perform individual
based simulations, and functions to calculate the expected number of junctions, or to
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Figure II.4 – Distribution of inferred ages for 100 simulations ran for t = 200 genera-
tions. Shown are results for n = [100, 300, 1000, 3000, 10.000], and three different inference
methods. See text for explanation of the different methods.

numerically estimate the expected time since admixture has been made available in the
package junctions.



Chapter III

How does geographical distance
translate into genetic distance?

Joint work with Emmanuel Schertzer. Currently
in revision in Stochastic Processes and their Ap-
plications [?].

Abstract

Geographic structure can affect patterns of genetic differentiation and speciation rates.
In this article, we investigate the dynamics of genetic distances in a geographically struc-
tured metapopulation. We model the metapopulation as a weighted directed graph, with
d vertices corresponding to d subpopulations that evolve according to an individual based
model. The dynamics of the genetic distances is then controlled by two types of transitions
-mutation and migration events. We show that, under a rare mutation - rare migration
regime, intra subpopulation diversity can be neglected and our model can be approximated
by a population based model. We show that under a large population - long chromosome
limit, the genetic distance between two subpopulations converges to a deterministic quan-
tity that can asymptotically be expressed in terms of the hitting time between two random
walks in the metapopulation graph. Our result shows that the genetic distance between
two subpopulations does not only depend on the direct migration rates between them but
on the whole metapopulation structure.

1 Introduction

1.1 Genetic distances in structured populations. Speciation

In most species, the geographical range is much larger than the typical dispersal dis-
tance of its individuals. A species is usually structured into several local subpopulations
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with limited genetic contact. Because migration only connects neighbouring populations,
more often than not, populations can only exchange genes indirectly, by reproducing with
one or several intermediary populations. As a consequence, the geographical structure
tends to buffer the homogenising effect of migration, and as such, it is considered to be
one of the main drivers for the persistence of genetic variability within species (see [?] or
[?]).

The aim of this article is to present some analytical results on the genetic composition
of a species emerging from a given geographical structure. The main motivation behind this
work is to study speciation. When two populations accumulate enough genetic differences,
they may become reproductively isolated, and therefore considered as different species. As
the geographic structure of a species is one of the main drivers for the genetic differentiation
between subpopulations, this work should shed light on which are the geographic conditions
under which new species can emerge.

Several authors have studied parapatric speciation, i.e. speciation in the presence of
gene flow between subpopulations, for example [?, ?, ?] and [?, ?]. In their models, some
loci on the chromosome are responsible for reproductive isolation. These loci may be in-
volved in incompatibilities at any level of biological organisation (molecular, physiological,
behavioural etc) and either prevent mating (pre-zygotic incompatibilities) or prevent the
development of hybrids (post-zygotic incompatibilities). The number of segregating loci
increases through the accumulation of mutations, and decreases after each migration event
(creating the opportunity for some gene exchange between the migrants and the host pop-
ulation). When the number of segregating loci between two individuals reaches a certain
threshold, they become reproductively incompatible. For example, Yamaguci and Iwasa
[?, ?] studied the case of a metapopulation containing two homogeneous subpopulations.
The authors studied how the genetic distance, defined as the number of loci differing be-
tween the two subpopulations, evolves through time, using a continuous-time model. When
considering metapopulations with more than two subpopulations, this kind of dynamics
may translate into complex patterns of speciation. One particularly intriguing example
is the case of ring species [?, ?], where two neighbouring subpopulations are too different
to be able to reproduce with one another but can exchange genes indirectly, by repro-
ducing with a series of intermediate subpopulations that form a geographic “ring”. How
these patterns emerge and are maintained is still poorly understood, and we hope that our
analytical result might shed some new light on the subject.

1.2 Population divergence and fitness landscapes

To study speciation by accumulation of genetic differences, we model the evolution of
some loci on the chromosome, that are potentially involved in reproductive incompati-
bilities. To visualise these evolutionary dynamics, Wright [?] suggested the metaphor of
adaptive landscapes. Adaptive landscapes represent individual fitness as a function defined
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on the genotype space, which is a multi-dimensional space representing all possible geno-
types. Wright emphasised the idea of ‘rugged’ adaptive landscapes, with peaks of fitness
representing species and valleys representing unfit hybrids. Speciation, seen as a popula-
tion moving from one peak to another, implies a temporary reduction in fitness, which is
not very likely to occur in large populations, where genetic drift is not important enough
to counterbalance the effect of selection (see [?] for a more detailed discussion). However,
Gavrilets [?] suggested the idea of ‘holey’ adaptive landscapes, where local fitness maxima
can be partitioned into connected sets (called evolutionary ridges). Speciation is therefore
seen as a population diffusing across a ridge, by neutral mutation steps, until it stands at
the other side of a hole. Theoretical models, such as [?], have shown, using percolation
theory, that in high-dimensional genotype spaces, fit genotypes are typically connected by
evolutionary ridges.

Our model (see Section 1.3) is built in this framework. In fact we will assume that,
in large populations, deleterious mutations are washed away by selection at the micro-
evolutionary timescale and describe the evolutionary dynamics for our set of incompatibility
controlling loci as neutral (any genotype on the evolutionary ridge can be accessed by single
mutation neutral steps). This is the idea behind the description of our model in Section
1.3.

Further, we consider that the evolutionary dynamics along the ridge are slow (as random
mutations are very likely to be deleterious, mutations along the evolutionary ridge are
assumed to be rarer than in the typical population genetics framework), which is why we
study our model in a low mutation - low migration regime (see Section 1.4 for more details).
This assumption is commonly made when studying speciation, for example in [?] or [?].

1.3 An individual based model (IBM)

We model the metapopulation as a weighted directed graph with d vertices, correspond-
ing to the different subpopulations. Each directed edge (i, j) is equipped with a migration
rate in each direction. (In particular, if two subpopulations are not connected, we assume
that the migration rates are equal to 0.) We assume the existence of two scaling parame-
ters, γ and ε, that will converge to 0 successively (first γ → 0 and then ε→ 0, see Section
1.4 for more details).

Each subpopulation consists of nεi individuals, i ∈ E := {1, · · · , d}. Each individual
carries a single chromosome of length 1, which contains lε loci of interest (that are involved
in reproductive incompatibilities). We assume that the vector of positions for those loci –
denoted by Lε = {x1, · · · , xlε} – is obtained by throwing lε uniform random variables on
[0, 1]. (The positions are chosen randomly at time 0, but are the same for all individuals
and do not change through time).

Conditioned on Lε, each subpopulation then evolves according to an haploid neutral
Moran model with recombination.
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— Each individual x reproduces at constant rate 1 and chooses a random partner y
(y 6= x). Upon reproduction, their offspring replaces a randomly chosen individual
in the population.

— The new individual inherits a chromosome which is a mixture of the parental chro-
mosomes. Both parental chromosomes are cut into fragments in the following way:
we assume a Poisson Point Process of intensity λ on [0, 1]. Two loci belong to the
same fragment iff there is no atom of the Poisson Point Process between them. For
each fragment, the offspring inherits the fragment of one of the two parents chosen
randomly.

To our Moran model we add two other types of events:

— Mutation occurs at rate bγ,ε per individual, per locus according to an infinite allele
model.

— Migration from subpopulation i to subpopulation j occurs at rate mγ
ij . At each

migration event, one individual migrates from subpopulation i to j, and replaces
one individual chosen uniformly at random in the resident population. (We set
∀i ∈ E, mγ

i,i = 0.)

We define the genetic distance between two individuals x and y as:

δγ,ε(x, y) =
1

lε
#{ k ∈ {1, · · · , lε} : x and y differ at locus k }.

Consider two subpopulations i and j and let {i1, · · · , inεi} the individuals in popula-
tion i and {j1, · · · , jnεj} the individuals in population j. The genetic distance between
subpopulations i and j is defined as follows:

dε,γ(i, j) =

 1

nεi

∑
x∈{i1,··· ,inε

i
}

min
y∈{j1,··· ,jnε

j
}
δγ,ε(x, y)

 ∨
 1

nεj

∑
y∈{j1,··· ,jnε

j
}

min
x∈{i1,··· ,inε

i
}
δγ,ε(x, y)

 .(III.1)

This corresponds to the so-called modified Haussdorff distance between subpopulations, as
introduced by [?]. (This distance has the advantage of averaging over the individuals in
each subpopulation, so introducing a single mutant or migrant would produce a smooth
variation in the genetic distances.)

1.4 Slow mutation–migration and large population - long chromosome
regime.

In this section, we start by describing in more details the slow mutation–migration
regime alluded in Sections 1.2 and 1.3.

It is well known that in the absence of mutation and migration, the neutral Moran
model describing the dynamics at the local level reaches fixation in finite time: the average
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time to fixation for a single locus is of the order of the size of the subpopulation [?, ?] (In
our multi-locus model, it will also depend on the number of loci and on the recombination
rate λ.) Heuristically, if we assume a low mutation - low migration regime, i.e. that

∀i, j ∈ E, 1

bγ,εnεi
,

1

mγ
i,j

� nεj , l
ε � 1, (III.2)

the average time between two migration events (1/mγ
i,j), and the average time between

two successive mutations at a given locus (1/(bγ,εnεj)) are much larger than the average
time to fixation. This ensures that the fixation process is fast compared to the time-scale
of mutation and migration, and, as a result, when looking at a randomly chosen locus,
subpopulations are homogeneous except for short periods of time right after a migration
event or a mutation event. This suggests that if we accelerate time properly, we can neglect
intra-subpopulation diversity and approximate our model by a population based model.

Inspired by these heuristics, we are going to take a low mutation - low migration
regime, by making the mutation and migration rates depend on the scaling parameter γ
in the following way:

mγ
i,j = γMi,j where Mi,j ≥ 0 is a constant

bγ,ε = γε b∞ where b∞ > 0 is a constant.

In a second time, we will make another approximation: we will consider a large pop-
ulation - long chromosome limit. In fact, our second scaling parameter ε, corresponds to
the inverse of a typical subpopulation size. The parameters of the model depend on ε in
the following way (corresponding to the second inequality in (III.2):

nεi = [Ni/ε] where Ni > 0 remains constant as ε→ 0

lε →∞ as ε→ 0

In this article, we are going to take the limits successively: first γ → 0 and then ε→ 0,
in order to be consistent with the informal inequality (III.2). We are now ready to state
the main result of this paper.

Theorem 1.1. For each pair of subpopulations i, j ∈ E, let Si and Sj be two independent
random walks on E starting respectively from i and j and whose transition rate from k to
p is equal to M̃kp := Mpk/Nk, where Nk denotes the (renormalised) population at site k.
Finally, define Dt(i, j) as

∀t ≥ 0, Dt(i, j) = 1 −
∫ t

0
e−2b∞sP(τij ∈ ds) − e−2b∞tP (τij > t) ,

where τij = inf{t ≥ 0 : Si(t) = Sj(t)}.
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If at time 0 the metapopulation is homogeneous (i.e. all the individuals in all subpopu-
lations share the same genotype) then

lim
ε→0

lim
γ→0

(dγ,εt/(γε)(i, j), t ≥ 0) = (Dt(i, j), t ≥ 0) in the sense of finite dimensional

distributions (f.d.d.).

In particular,
lim
t→∞

Dt(i, j) = 1− E(e−2b∞τij ).

This result can be seen as a law of large numbers over the chromosome. Although the
loci are linked (through recombination) and they do not fix independently, when consider-
ing a large number of them, they become decorrelated, regardless of the value of λ. (Note
that the limiting process does not depend on λ.) The model behaves as if infinitely many
loci evolved independently according to a Moran model with inhomogeneous reproduction
rates (see Remark 2.4). The expression of the genetic distances has then a natural ge-
nealogical interpretation. Si and Sj can be interpreted as the ancestral lineages starting
from i and j, and our genetic distance is related to the probability that those lines meet
before experiencing a mutation (or in other words, that i and j are Identical By Descent
(IBD)).

Remark 1.2. In Theorem 1.1, we considered a rather restrictive initial condition. In
Section 5, we give a stronger version of this theorem, which works for a larger range of
initial conditions, but that requires to introduce several notations.

1.5 Consequences of our result

One interesting consequence of our result is that the genetic distance does not coincide
with the classical graph distance, but instead it depends on all possible paths between i and
j in the graph, and all the migration rates (and not only the shortest path and the direct
migration ratesMij andMji), i.e., it does not only depend on the direct gene flow between
i and j but on the whole metapopulation structure. In particular, this suggests that
adding new subpopulations to the graph (which would correspond to colonisation of new
demes), removing any edge (which could correspond to the emergence of a geographical or
reproductive barrier between two subpopulations), or changing any migration rate (which
could correspond to modifying the habitat structure, for example) can potentially modify
the whole genetic structure of the population.

One striking illustration of the previous discussion is presented in Section 6, where we
consider an example where a geographic bottleneck is dramatically amplified in our new
metric. See Figure 1.5 and Theorem 6.1 for a more precise statement. If we consider, as
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(a) Geographic distances

(b) Genetic distances

Figure III.1 – Amplification of a geographic bottleneck in the genetic distance metrics
(small value of c in Theorem 6.1). In this example, the metapopulation is formed of two
complete graphs (all edges are not represented), connected by a single edge (a). If i and
j are connected, Mij = 1/d. In (a) all the edges are the same length. In (b), the genetic
distances between pairs of vertices belonging to the same subgraph are smaller than the
genetic distances between pairs of vertices belonging to different subgraphs.

in [?], that two populations are different species if their genetic distance reaches a certain
threshold, that will mean that this metapopulation structure promotes the emergence of
two different species, each one corresponding to the population in one subgraph. Very
often, parapatric speciation is believed to occur only in the presence of reduced gene flow.
Our example shows that in the presence of a geographic bottleneck, genetic differentiation
is manly driven by the geographical structure of the population, i.e., even if the gene flow
between two neighbouring subpopulations is approximatively identical in the graph, the
genetic distance is dramatically amplified at the bottleneck (see Figure 1.5).

We note that using the hitting time of random walks as a metric on graphs is not new,
and has been a popular tool in graph analysis (see [?] and [?]). For example, the commute
distance, which is the time it takes a random walk to travel from vertex i to j and back, is
commonly used in many fields such as machine learning [?], clustering [?], social network
analysis [?], image processing [?] or drug design [?, ?]. In our case the genetic distance is
given by the Laplace transform of the hitting time between two random walks, which was
already suggested as a metric on graphs by [?]. In that paper the authors claimed that this
metrics preserves the cluster structure of the graph. In the example alluded above (Section
6), we found that our metric reinforces the cluster structure of the metapopulation graph.
In other words, a clustered geographic structure tends to increase genetic differentiation.
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1.6 Discussion and open problems

As already mentioned above, the main result is obtained by: (i) proving that, in a
low mutation - low migration regime (i.e., when γ → 0), subpopulations are monomorphic
most of the time and our individual based model converges to a population based model,
(ii) showing that, under a large population - long chromosome limit (i.e. taking ε → 0),
the genetic distances between subpopulations (for the population based model) converge
to a deterministic process (defined in Theorem 1.1). Taking these two limits successively
gives no clue on how the parameters should be compared to ensure the approximation to
be correct. It would be interesting to take the limits simultaneously but it is technically
challenging (for example we would need to characterise the time to fixation for l loci that
do not fix independently, which is not easy).

As discussed in the previous paragraph, we can only show our results under some rather
drastic constraints: subpopulations are asymptotically monomorphic. More generally, we
believe that Theorem 1.1 should hold under relaxed assumptions, namely when the intra-
subpopulation genetic diversity is low compared to the inter-subpopulation diversity (see
Figure III.2 for an example, where γ = 2e−6 and ε = 5e−3 ). Technically, this would
correspond to the condition that at a typical locus (i.e, a locus chosen uniformly at random)
each subpopulations is monomorphic at that site with high probability (which is in essence
(III.2)). Of course, proving such a result would be much more challenging, but would
presumably correspond to a more realistic situation.

1.7 Outline

In Section 2, we show that in the rare mutation-rare migration regime (i.e. when γ → 0

whereas ε remains constant), the individual based model (IBM) described above converges
to a population based model (PBM) (see Theorem 2.2). This PBM is a generalization of
the model proposed by Yamaguchi and Iwasa [?, ?] in three ways. First, it is an extension
of their model from two to an arbitrary number of subpopulations, which is not trivial from
a mathematical point of view. Second, in [?, ?], the authors only assumed that the migrant
alleles are fixed independently at every locus. Too make the model more realistic, we took
into account genetic linkage, which introduces a non-trivial spatial correlation between loci
(along the chromosome). Finally, we suppose that the loci are distributed randomly along
the chromosome (and not in a regular fashion). Section 2 is interesting on its own since it
provides a theoretical justification of the model proposed in [?, ?].

In Section 3 and 4, we study the PBM in the large population - long chromosome limit
(i.e. when ε → 0). We properly introduce the main tool used to study the population
based model – the genetic partition probability measure – and show an ergodic theorem
related to this process (see Theorem 3.1).

Finally, in Section 5 we prove our main result (Theorem 5.1 which is an extension of
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Figure III.2 – Simulation of the individual based model, for d = 3, N1 = N2 = N3 = 1,
ε = 0.005, γ = 2e−6, lε = 100, λ = 10. The black curve corresponds to Dt(i, j) (see
Theorem 1.1). The blue, green and red curves correspond to the three genetic distances
dε,γt (1, 2), dε,γt (2, 3), dε,γt (1, 3)

Theorem 1.1) by combining the results of the previous sections.
Section 6 proves the result related to the geographical bottleneck alluded in Section 1.5

(see Proposition 6).

2 Approximation by a population based model

We now describe a population based model (PBM) that can be seen as the limit of the
IBM presented above, when γ goes to 0 (whereas ε remains fixed) and time is rescaled by
1/(γε). Consider a metapopulation where the individuals are characterised by a finite set
of loci, whose positions are distributed as lε uniform random variables on [0, 1], and let Lε

the vector of the positions of the loci (as described in Section 1.3 for the IBM). We now
describe the dynamics of the model, conditional on Lε = Lε, with Lε ∈ [0, 1]l

ε .
Before going into the description of our model, we start with a definition. It is well

known that the Moran model reaches fixation in finite time, i.e., after a (random) finite
time, every individual in the population carries the same genetic material, and from that
time on, the system remains trapped in this configuration (see [?, ?]).

Definition 2.1. Consider a single population of size nεj formed by a mutant individual (the
migrant) and nεj−1 residents, that evolves according to a Moran model with recombination
at rate λ (as described in Section 1.3). We define FL

ε,λ
j as the set of loci carrying the

mutant type at fixation. (Note that FL
ε,λ

j is potentially empty.)
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We are now ready to describe our PBM. We represent each subpopulation as a sin-
gle chromosome, which is itself represented by the set of loci Lε. The dynamics of the
population can then be described as follows.

— For every i ∈ E: fix a new mutation in population i at rate b∞lε, the locus being
chosen uniformly at random along the chromosome.

— For every i, j ∈ E and every S ⊆ {1, · · · , lε}: at every locus in S, fix simultaneously
the alleles from population i in population j at rate 1

εMijP
(
FL

ε,λ
j = S

)
.

In the PBM (parametrised by ε), we define the genetic distance between subpopulations
i and j at time t as follows:

dεt(i, j) =
1

lε
#{ k ∈ {1, · · · , lε} : subpopulations i and j differ at locus k at time t }

as opposed to dγ,ε which will refer to the genetic distances in the IBM as described in
Section 1.3 (parametrised by γ and ε). We note that the definition of the genetic distance
in the PBM is consistent with the one in the IBM (see (III.1)) in the sense that if the
subpopulations are homogeneous in the IBM, (III.1) is equal to the RHS of the previous
equation. We are now ready to state the main result of this section.

Theorem 2.2. Assume that, at time 0, the subpopulations in the IBM are homogeneous
and that ∀i, j ∈ E, dγ,ε0 (i, j) = dε0(i, j). Then, for every n ∈ N, ∀ 0 ≤ t1 < · · · < tn,

lim
γ→0

(dγ,εt1/(γε), · · · , d
γ,ε
tn/(γε)

) = (dεt1 , · · · , d
ε
tεn

) in distribution. (III.3)

Proof. Recall that the loci are distributed randomly along the chromosome. In the proof,
we assume that the vector of the positions of the loci Lε is fixed and equal to Lε ∈ [0, 1]l

ε

(and is the same in the IBM and in the PBM). We also consider that IBM and the PBM
start from the same deterministic initial condition. The unconditional extension of the
proof can be easily deduced from there.

We define a coupling between the IBM and a new PBM that is close (in distribution)
to the PBM defined at the beginning of this section. The idea behind the coupling is
that, when time is accelerated by γε, and γ is small, in the IBM, the time to fixation
after a mutation or migration event is short enough so that the population has reached
fixation before the next mutation or migration event takes place. Then, we can decompose
the trajectories of the IBM into periods where the population is homogeneous (and waits
for the next mutation or migration event to take place) and fixation phases (where the
dynamics of the population is described by a Moran model). See Figure III.3 for an
illustration of this concept.

More formally, let us consider (Y γ,ε
t ; t ≥ 0) the process recording the genetic compo-

sition in the IBM (i.e. a matrix containing the sequences of the chromosomes of all the
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Figure III.3 – The curve represents the genetic distance between two subpopulations for
the IBM. The vertical lines represent the decomposition of the trajectories. The fixation
phases are represented in red. Simulation with 3 subpopulations, with 100 individuals on
each, carrying 100 loci, with γ = 0.0001, ∀i, j,Mi,j = 1, b∞ = 1, λ = 5.

individuals in the metapopulation) after rescaling time by γε so that

1. For i ∈ E, mutation events on the subpopulation i occurs according to a Poisson
Point Process (PPP) with intensity measure b∞lεnεidt.

2. For i, j ∈ E, migration events from i to j can be described in terms of a PPP with
intensity measure Mi,j/εdt.

Define Eγ,ε the event that every time a subpopulation is affected by a mutation or a
migration event on the interval [0, T ], the subpopulation is genetically homogeneous when
the event occurs (as in Figure III.3). In other words, there is no overlap between mutation
and migration fixation periods. The time to fixation in our (multi-locus) Moran model
only depends on the number of individuals and the number of loci, so in our model it only
depends on ε (but not on γ). As a consequence, P (Eγ,ε)→ 1 as γ → 0.

Next, let us consider T γ,εt as the Lebesgue measure of

{0 ≤ s ≤ t : ∀i ∈ E pop. i is homogeneous}.

In words, (T γ,εt ; t ≥ 0) is the random clock which is obtained by skipping the fixation period
after a migration or mutation event (i.e. by skipping the red intervals in Figure III.3). By
arguing as in the previous paragraph, as γ → 0, it is not hard to see that (T γ,εt ; t ≥ 0)

converges to the identity in the Skorohod topology on [0, T ] for every T ≥ 0.
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Let us now consider

Zγ,εt = Y γ,ε

(T γ,ε)−1
t

, where (T γ,ε)−1
t = inf{s ≥ 0 : T γ,εs ≥ t}.

By construction, this process defines a PBM in the sense that at every time t, any subpop-
ulation is composed by genetically homogeneous individuals. Further, since (T γ,εt ; t ≥ 0)

converges to the identity and mutation and migration events occur at Poisson times, the
finite dimensional distributions of Zγ,ε are a good approximations of the ones for the IBM.

Let us now show that Zγ,ε (constructed from the IBM) is close in distribution to
the PBM defined at the begining of this section. Conditioned on the event Eγ,ε (whose
probability goes to 1) and on the PPP’s described in 1 and 2 above, the PBM Zγ,ε can be
described as follows. Define p∆t,i to be the probability for a mutant allele (at a given locus
of a given individual) to fix in a population of size nεi , conditioned on the fixation time to
be smaller than ∆t. Then the distribution of the conditioned PBM Zγ,εt can be generated
as follows.

(a) At every mutation time t in subpopulation i ∈ E, choose a locus k uniformly at
random and fix the mutation instantaneously with probability p∆t

γε
,i, where ∆t is the

time between t and the next mutation or migration event (in our new time scale).
We note that if the mutation does not fix, then Zγ,ε is not affected by the mutation
event, and as a consequence “effective mutation” events in Zγ,ε are obtained from the
mutation events in the IBM after thinning each time with their respective probability
p∆t
γε
,i.

(b) At every migration event t on subpopulation j, fix a random set S where S is chosen
according to FL

ε,λ,∆t/γε
j , where ∆t is defined as in the previous point, and where

FL
ε,λ,s

j is the random variable FL
ε,λ

j conditioned on the fixation to occur in a time
smaller smaller than s.

Since fixation occurs in finite time almost surely, and the distribution of the fixation time
only depends on ε, we have

FL
ε,λ,∆t/εγ

j =⇒
γ→0
FL

ε,λ
j , and lim

γ→0
p∆t/εγ,i =

1

nεj

where the RHS of the second limit is the probability of fixation of a mutant allele in the
absence of conditioning.

Putting all the previous observations together, one can easily show that the genetic
distance in Zγ,ε converges (in the finite dimensional distributions sense) to the ones of the
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PBM. In particular, we recover the mutation rate on subpopulation i in the PBM

b∞l
εnεi︸ ︷︷ ︸

rate of mutation in the IBM

× 1

nεi︸︷︷︸
proba of fixation

= b∞l
ε,

which corresponds to the limiting “effective mutation rate” in the PBM Zγ,ε (see (a) above)
as γ → 0. This completes the proof of Theorem 2.2.

We note that Theorem 2.2 could be extended to the case where the subpopulations are
not homogeneous in the IBM at time t = 0. Indeed, arguing as in the proof of Proposition
2.2, if we start with some non-homogeneous initial condition, then each island reaches
fixation before experiencing any mutation or mutation event with very high probability.
In order to get an effcient coupling between the IBM and the PBM, we simply choose the
initial condition of the PBM as the state of IBM after this initial fixation period.

Remark 2.3. Choose a locus k ∈ {1, · · · , lε}. We let the reader convince herself that
in the PBM the genetic composition at a given locus k follows the following Moran-type
dynamics:

(mutation) “Individual” i takes on a new type (or allele) at rate b∞.

(reproduction) “Individual” j inherits its type from “individual” i at rate (1/ε)MijP
(
k ∈ FL

ε,λ
j

)
.

Further, in a neutral one-locus Moran model, the probability of fixation of a single
allele in a resident population of size nεj is equal to its initial frequency, which in our
case is 1/nεj. Thus

1

ε
MijP

(
k ∈ FL

ε,λ
j

)
=

1

ε
Mij/n

ε
j .

This dynamics is not dependent on the position of the locus under consideration.

Remark 2.4. Our model can be seen as a multi-locus Moran model with inhomogeneous
reproduction rates. The main difficulty in analysing this model stems from the fact that
there exists a non trivial correlation between loci. This correlation is induced by the fact that
fixation of migrant alleles can occur simultaneously at several loci during a given migration
event. In turn, the set of fixed alleles during a given migration event is determined by the
local Moran dynamics described in the Introduction.

3 Large population - long chromosome limit

In this Section, we study the PBM described in the Section 2, in the large population
- long chromosome limit. In particular, we study the dynamics of the genetics distances
and we state Theorem 3.1, that together with Theorem 2.2 implies the main result of this
article, namely Theorem 5.1, that is a stronger version of Theorem 1.1 (see Section 5).
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3.1 The genetic partition measure

The main difficulty in dealing with the genetic distance is that it lacks the Markov
property, and as a consequence, it is not directly amenable to analysis. In fact, when
d > 2, a migration event from i to j can potentially have an effect on the genetic distance
between j and another subpopulation k (see Figure III.4 for an example).

Figure III.4 – The three subpopulations (i,j,k) are characterised by a chromosome with
four loci (1,2,3,4), with different alleles (1a, 1b, ...). The three genetic distances
(dε(i, j), dε(i, k), dε(k, j)) are equal to two (before migration). The table shows the new
genetic distances after a migration event from i to j where one locus from i is fixed in
population j. At locus 1, the allelic partition Πε

1(t) is equal to {i}{j, k}, whereas at locus
4, Πε

4(t) = {i, j}{k}.

To circumvent this difficulty, we now introduce an auxiliary process – the genetic par-
tition probability measure – from which one can easily recover the genetic distances (see
(III.5) below), and whose asymptotical dynamics is explicitly characterised in Theorem 3.1
below.

Let Pd the set of partitions of {1, · · · , d}. Let π ∈ Pd and i, j ∈ E. Define Si(π) as the
element of Pd obtained from π by making i a singleton (e.g., S2({1, 2, 3}) = {1, 3}{2}).
Define Iij(π) as the element of Pd obtained from π by displacing j into the block containing
i (e.g., I2,3({1, 3}{2}) = {1}{2, 3}).

At every locus k ∈ {1, · · · , lε} (ordered in increasing order along the chromnosome)
and every time t, the allele composition of the metapopulation induces a partition on E.
More precisely, at locus k, two subpopulations are in the same block of the partition at
time t iff they share the same allele at locus k.

In the following, fix Lε ∈ [0, 1]l
ε , the vector containing the positions of the loci. In the

PBM parametrised by ε, we condition on the loci being located at Lε and for every k ∈
{1, · · · , lε} we let Πε,Lε

k (t), the partition induced at locus k (see Figure III.4). The vector
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Πε,Lε(t) =
(

Πε,Lε

k (t); k ∈ {1, · · · , lε}
)
describes the genetic composition of the population

at time t. According to the description of our dynamics, Πε,Lε(t) is a Markov chain with
the following transition rates:

— (mutation) For every Π ∈ (Pd)l
ε , i ∈ E, k ∈ {1, · · · , lε}, define Ski to be the operator

on (Pd)l
ε such that ∀ Π ∈ (Pd)l

ε

Ski (Π) =

{
Πj ∀j 6= k

Si(Πj) j = k
.

The transition rate of the process from state Π to Ski (Π) is given by b∞.

— (migration from i to j) For every i, j ∈ E, S ⊂ {1, · · · , lε}, define ISij the operator
on (Pd)l

ε such that ∀ Π ∈ (Pd)l
ε

ISij(Π) =

{
Πk ∀k /∈ S

Iij(Πk) ∀k ∈ S
.

The transition rate of the process from Π to ISij(Π) is given by Mij

ε P
(
FL

ε,λ
j = S

)
.

To summarise, for every test function h, the generator of Πε,Lε can be written as

Gε,Lεh(Π) =
1

ε

d∑
i,j=1

Mij

∑
S⊂{1,··· ,lε}

P(FL
ε,λ

j = S) [h(ISij(Π))− h(Π)] +

b∞

d∑
i=1

lε∑
k=1

(
h(Ski (Π))− h(Π)

)
. (III.4)

3.2 Some notation

Let Md denote the space of signed finite measures on Pd. Since Pd is finite, we can
identify elements ofMd as vectors of RBelld , where Belld is the Bell number, which counts
the number of elements in Pd (the number of partitions of d elements). In particular, if π
is a partition of E, and µ ∈Md, then µ(π) will correspond to the measure of the singleton
{π}, or equivalently, to the “πth coordinate” of the vector µ. We define the inner product
< ·, · > as

< ·, · >: Md ×Md → R

m, v →
∑
π∈Pd

m(π)v(π).

For every function f : Pd → Pd, we define the operator ∗ s.t for every m ∈ Md, for every
π ∈ Pd, f ∗ m(π) = m(f−1(π)). In words, f ∗ m is the push-forward measure of m by
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f . Further, we will also consider square matrices indexed by elements in Pd. For such a
matrix K and an element m ∈Md, we define Km(π) :=

∑
π′∈Pd K(π, π′)m(π′).

Define

X : (Pd)l
ε → M(Pd)

Π → 1

lε

∑
k≤lε

δΠk ,

i.e., X(Π) is the empirical measure associated to the “sample” Π1, · · · ,Πlε . In the following,
we define

ξε,L
ε

t := X(Πε,Lε(t))

will be referred to as the (empirical) genetic partition probability measure of the population,
conditional on the lε loci to be located at Lε. We also define

ξεt ≡ ξε,L
ε

t = X(Πε,Lε(t)) where Lε ∼ U([0, 1]l
ε
)

will be referred to as the (empirical) genetic partition probability measure of the population.

The genetic distance between i and j at time t can then be expressed in terms of ξεt as
follows:

dεt(i, j) = 1− ξεt ({π ∈ Pd : i ∼π j)}). (III.5)

In the following, we identify the process (ξεt , t ≥ 0) to a process in the set of the càdlàg
functions from R+ to RBelld , equipped with the standard Skorokhod topology.

3.3 Convergence of the genetic partition probability measure

Following Remark 2.3, for every k ∈ {1, · · · , lε}, the process (Πε,Lε

k (t); t ≥ 0) – the
partition at locus k – obeys the following dynamics:

1. (reproduction event) j is merged in the block containing i at rate Mij
1
εnεj

.

2. (mutation) Individual i takes on a new type at rate b∞.

The generator associated to the allelic partition at locus k is then given by

Gεg(π) =

d∑
i,j=1

Mij
1

εnεj
( g(Iij(π))− g(π) ) + b∞

d∑
i=1

( g(Si(π))− g(π) ) . (III.6)

Recall that the expression of the generator associated to the allelic partition at a given
locus k is independent on the position of locus k and on λ. Also recall that εnεi → Ni, and
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thus

Gεg(π)→ Gg(π) :=
d∑

i,j=1

M̃ji ( g(Iij(π))− g(π) ) + b∞

d∑
i=1

( g(Si(π))− g(π) ) as ε→ 0.

(III.7)
Direct computations yield that tG, the transpose of the matrix G satisfies

∀m ∈Md,
tGm =

d∑
i,j=1

M̃ji(Iij ∗m−m) + b∞

d∑
i=1

(Si ∗m−m) . (III.8)

In the light of (III.7), the following theorem can be interpreted as an ergodic theorem.
We show that the (dynamical) empirical measure constructed from the allelic partitions
along the chromosome converges to the probability measure of a single locus. Although in
the IBM the different loci are linked and do not fix independently (as already mentioned in
Remark 2.4), as the number of loci tends to infinity, they become decorrelated. In the large
population - long chromosome limit, the following result indicates that the model behaves
as if infinitely many loci evolved independently according to the (one-locus) Moran model
with generator G provided in (III.7).

In the following “ =⇒′′ indicates the convergence in distribution. Also, we identify
(ξεt ; t ≥ 0) to a function from R+ to RBelld ; and convergence in the weak topology means
that for every T > 0, the process (ξεt ; t ∈ [0, T ]) converges in the Skorohod topology
D([0, T ],RBelld).

Theorem 3.1 (Ergodic theorem along the chromosome). Assume that ξε0 is deterministic
and there exists a probability measure P 0 ∈Md such that the following convergence holds:

ξε0 −→
ε→0

P 0. (III.9)

Then
(ξεt ; t ≥ 0) =⇒

ε→0
(Pt; t ≥ 0) in the weak topology,

where P solves the forward Kolmogorov equation associated to the aforementioned Moran
model, i.e.,

d

ds
Ps = tGPs

with initial condition P0 = P 0 and where tG denotes the transpose of G (see (III.8)).

4 Proof of Theorem 3.1

The idea behind the proof is to condition on Lε = Lε, and then decompose the Markov
process (< ξε,Lεt , v >; t ≥ 0) into a drift part and a Martingale part. We show that the
drift part converges to the solution of the Kolmogorov equation alluded in Theorem 3.1
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and that the Martingale part vanishes when ε→ 0. The main steps of the computation are
outlined in the next subsection. We leave technical details (tightness and second moment
computations) until the end of the section.

4.1 Main steps of the proof

Fix Lε ∈ [0, 1]l
ε . Recall the definition ofGε,Lε , the generator of the process (Πε,Lε(t); t ≥

0), given in (III.4). Let f : R → R be a Borel bounded function and let v ∈ Md. Let
h(Π) = f(〈X(Π), v〉). Then, it is straightforward to see from (III.4) that

Gε,Lεh(Π) =
1

ε

d∑
i,j=1

Mij Eλ,Lε,j
(
f(
〈
X(ISij(Π)), v

〉
)− f(〈X(Π), v〉)

)
+ b∞l

ε
d∑
i=1

Elε
(
f(
〈
X(SKi (Π)), v

〉
)− f(〈X(Π), v〉)

)
, (III.10)

where in the first line Eλ,Lε,j is the expected value taken with respect to the random
variable S, distributed as FL

ε,λ
j as defined in Definition 2.1. In the second line, Elε is the

expected value is taken with respect to K, distributed as a uniform random variable on
{1, · · · , lε}.

Lemma 4.1. Let v ∈Md, Lε ∈ [0, 1]l
ε , g(Π) := 〈X(Π), v〉. Then Gε,Lεg(Π) =

〈
tGεX(Π), v

〉
where tGε is the transpose of Gε – the generator of the allelic partition at a single locus as
defined in (III.6) – i.e.,

∀m ∈Md,
tGεm =

d∑
i,j=1

Mij
1

εnεi
(Iij ∗m−m) + b∞

d∑
i=1

(Si ∗m−m) . (III.11)

Proof. We define the two following signed measures:

∂SijX(Π) = X(ISij(Π)) − X(Π), ∂Ki X(Π) = X(SKi (Π)) − X(Π). (III.12)

In words, ∂SijX(Π) is the change in the genetic partition measure X(Π) if we merge j in
the block of i at every locus in S, and ∂Ki X(Π) is the change in X(Π) if we single out
element i at locus K. Using those notations, for our particular choice of g, (III.10) writes

Gε,Lεg(Π) =
1

ε

d∑
i,j=1

Mij Eλ,Lε,j
(〈
∂SijX(Π), v

〉)
+ b∞l

ε
d∑
i=1

Elε
(〈
∂Ki X(Π), v

〉)
.

We now show that for every v ∈Md,

Eλ,Lε,j
(〈
∂SijX(Π), v

〉)
=

1

nεj
〈Iij ∗X(Π)−X(Π), v〉 ,
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Elε
(〈
∂Ki X(Π)

〉)
=

1

lε
〈Si ∗X(Π)−X(Π), v〉 . (III.13)

We only prove the first identity. The second one can be shown along the same lines. Again,
we let Πk be the kth coordinate of Π. By definition, the vector ISij(Π) is only modified at
the coordinates belonging to S, and thus

〈
∂SijX(Π), v

〉
=

∑
π∈Pd

v(π)

lε
(
|{k ≤ lε : (ISij(Π))k = π}| − |{k ≤ lε : Πk = π}|

)
=

∑
π∈Pd

v(π)

lε
(
|{k ∈ S : ISij(Πk) = π}| − |{k ∈ S : Πk = π}|

)
.(III.14)

Secondly, for every j ∈ E,

Eλ,Lε,j(|{k ∈ S : Πk = π}|) = Eλ,Lε,j(
∑
k∈S

1{Πk=π}) =
∑
k≤lε

1{Πk=π}Eλ,Lε,j(1{k∈S}).

As S is distributed as FL
ε,λ

j , we can use the fact that P
(
k ∈ FL

ε,λ
j

)
= Mij

1
nεj

(see Remark
2.3), and then

Eλ,Lε,j(|{k ∈ S : Πk = π}|) =
1

nεj
|{k ≤ lε, Πk = π}| = lε

nεj
X(Π)(π). (III.15)

Furthermore, by applying (III.15) for every π′ ∈ I−1
ij (π) and then taking the sum over

every such partitions, we get

Eλ,Lε,j(|{k ∈ S : Iij(Πk) = π}| =
lε

nεj
X(Π)(I−1

ij (π)) =
lε

nεj
Iij ∗X(Π)(π).

This completes the proof of (III.13). From this result, we deduce that

Gε,Lεg(Π) =
1

ε

d∑
i,j=1

Mij
1

nεj
(Iij ∗X(Π)−X(Π)) + b∞

d∑
i=1

(Si ∗X(Π)−X(Π)) .

This completes the proof of Lemma 4.1.

For every Lε ∈ [0, 1]l
ε , for every v ∈Md, define

M ε,Lε,v
t :=

〈
ξε,L

ε

t , v
〉
−
∫ t

0

〈
tGεξε,L

ε

s , v
〉
ds, Bε,Lε,L

ε
,v

t :=

∫ t

0

〈
tGεξε,L

ε

s , v
〉
ds.

Since
〈
ξε,L

ε

t , v
〉
is bounded, the previous result implies thatM ε,Lε,v is a martingale with re-

spect to (FLεt )t≥0, the filtration generated by (Πε,Lε(t); t ≥ 0). Further, the semi-martingale
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ξε,L

ε

t , v
〉
admits the following decomposition:

〈
ξε,L

ε

t , v
〉

= M ε,Lε,v
t + Bε,Lε,v

t .

Lemma 4.2. For every v ∈Md, for every Lε ∈ [0, 1]l
ε,

〈
M ε,Lε,v

〉
t

=

∫ t

0
mε,Lε,v(Πε,Lε(s))ds

with

mε,Lε,v(Π) =
1

ε

d∑
i,j=1

Mij Eλ,Lε,j
(〈
∂SijX(Π), v

〉2
)

+ b∞l
ε

d∑
i=1

Elε
(〈
∂Ki X(Π), v

〉2
)
.

Proof. Let h(Π) = 〈X(Π), v〉2. Then, by (III.10)

Gε,Lεh(Π) =
1

ε

d∑
i,j=1

MijEλ,Lε,j
(〈
X(ISij(Π), v)

〉2 − 〈X(Π), v〉2
)

+ b∞l
ε

d∑
i=1

Elε
(〈
X(SKi (Π)), v

〉2 − 〈X(Π), v〉2
)
.

Since

〈
X(ISij(Π)), v

〉2 − 〈X(Π), v〉2 =
〈
X(ISij(Π))−X(Π), v

〉2
+ 2

〈
X(ISij(Π))−X(Π), v

〉
〈X(Π), v〉〈

X(Ski (Π)), v
〉2
− 〈X(Π), v〉2 =

〈
X(Ski (Π))−X(Π), v

〉2
+ 2

〈
X(Ski (Π))−X(Π), v

〉
〈X(Π), v〉 ,

the previous identities yield

Gε,Lεh(Π) = 2Gε,Lεg(Π) 〈X(Π), v〉 +

1

ε

d∑
i,j=1

MijEλ,Lε,j
(〈
∂SijX(Π), v

〉2
)

+ b∞l
ε

d∑
i=1

Elε
(〈
∂Ki X(Π), v

〉2
)
,

where g(Π) = 〈X(Π), v〉. As a consequence

〈
X(Πε,Lε(t)), v

〉2 − 2

∫ t

0
Gε,Lεg(Πε,Lε(s))

〈
X(Πε,Lε(s)), v

〉
ds

−
∫ t

0

1

ε

d∑
i,j=1

MijEλ,Lε,j
(〈
∂SijX(Πε,Lε(s)), v

〉2
)
ds−

∫ t

0
b∞l

ε
d∑
i=1

Elε
(〈
∂Ki X(Πε,Lε(s)), v

〉2
)
ds
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is a martingale. Further using Itô’s formula, the process

〈
X(Πε,Lε(t)), v

〉2 − 2

∫ t

0
Gε,Lεg(Πε,Lε(s))

〈
X(Πε,Lε(s)), v

〉
ds −

〈
M ε,Lε,v

〉
t

is also a martingale. Combining the two previous results completes the proof of Lemma
4.2.

Proposition 4.3.
lim
ε→0

E( sup
Π∈(Pd)lε

mε,Lε,v(Π)) = 0,

where the expected value is taken with respect to the random variable Lε.

Proposition 4.4. Let T > 0. The family of random variables (ξε; ε > 0) is tight in the
weak topology D([0, T ],RBelld).

We postpone the proof of Propositions 4.3 and 4.4 until Sections 4.2 and 4.3 respectively.

Proof of Theorem 3.1 based on Proposition 4.3 and 4.4. Since (ξε; ε > 0) is tight, we can
always extract a subsequence converging in distribution (for the weak topology) to a lim-
iting random measure process ξ. We will now show that ξ can only be the solution of the
Kolmogorov equation alluded in Theorem 3.1. From (III.11), for every probability measure
m on Pd, for every v ∈Md,

∣∣ 〈tGεm, v〉 ∣∣ ≤ (2
d∑

i,j=1

Mij
1

εnεi
+ 2b∞d)||v||∞, (III.16)

where ||v||∞ := maxπ∈PN v(π). Since as ε → 0, nεiε → Ni, the term between parenthe-
ses also converges, and thus the RHS is uniformly bounded in ε. Finally, the bounded
convergence theorem implies that for every v ∈Md,

E
(
〈ξt, v〉 −

∫ t

0

〈
tGξs, v

〉
ds

)2

= lim
ε→0

E

((
〈ξεt , v〉 −

∫ t

0

〈
tGεξεs, v

〉
ds

)2
)
,

where we used the fact that tGεm → tGm for every m ∈ Md (where G is defined as in
Theorem 3.1). On the other hand, since

E
(
〈ξεt , v〉 −

∫ t

0

〈
tGεξεs, v

〉
ds

)2

= E

(
E

((〈
ξε,L

ε

t , v
〉
−
∫ t

0

〈
tGεξε,L

ε

s , v
〉
ds

)2

| Lε
))

= E(E(
〈
M ε,Lε,v〉

t
| Lε))

= E(E(

∫ t

0
mε,Lε,v(Πε,Lε(s))ds | Lε))

≤ t E( sup
π∈(Pd)lε

mε,Lε,v(Π)).
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Lemma 4.2 and Proposition 4.3 imply that

E
(
〈ξt, v〉 −

∫ t

0

〈
tGξs, v

〉
ds

)2

= 0,

which ends the proof of Theorem 3.1.

Remark 4.5 (Magnitude of the stochastic fluctuations). Lemma 4.1 and the proof Propo-
sition 4.3 entail that:

∀v ∈Md, E(
〈
M ε,Lε,v〉

t
) ≤ ε log(1/ε)C +

1

lε
C ′

where C is a constant. This suggests that the order of magnitude of the fluctuations should
be of the order of max(

√
ε log(1/ε),

√
(1/lε)).

In [?], the authors proposed a diffusion approximation (only for the case of two sub-
populations). Their approximation is based on the simplifying hypothesis that loci are fixed
independently on each other – the number of fixed loci (after each migration event) follows
a binomial distribution–, and the hypothesis that the number of loci l is s.t. l >> 1

ε . They
found that the magnitude of the stochastic fluctuations was

√
ε.

In summary, the previous heuristics suggest that taking into account correlations be-
tween loci increases the magnitude of the stochastic fluctuations.

4.2 Proof of Proposition 4.3

Our first step in proving Proposition 4.3 is to prove the following result.

Lemma 4.6. ∀ i, j ∈ E, ∀λ > 0,

lim
ε→0

1

(lε)2ε
E

(
Eλ,Lε,j(

lε∑
k=1

lε∑
k′=1

1k∈S1k′∈S | Lε)

)
= 0.

Before turning to the proof of this result, we recall the definition of the ancestral
recombination graph (ARG) (see also [?], [?], [?]) for the case of two loci. Fix Lε =

{`1, · · · `lε} the positions of the loci in the chromosome, λ the recombination rate, and
choose two loci k and k′ among the lε loci. In order to compute the probability that for
both loci the allele from the migrant is fixed in the host population – P(k, k′ ∈ FL

ε,λ
j ) – we

follow backwards in time the genealogy of the corresponding alleles carried by a reference
individual in the present population, assuming that a migration event occurred in the past
(sufficiently many generations ago, so that we can assume fixation).
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(a) Moran model with recombination (b) ARG

Figure III.5 – Realisation of Moran model with recombination and the Ancestral Recombi-
nation Graph. In the figures the population size is equal to 5 and lε = 2. Time goes from
top to bottom as indicated by the arrow on the left. In Figure (a) the origins of the arrows
indicate the parents, and the tips of the arrows point to their offspring. The dashed arrow
corresponds to the father and the solid line to the mother. In (b) the blue and pink lines
correspond to the ancestral lineages of two distinct loci belonging to the same chromosome
in the extant population.

More precisely, at locus k, we consider the ancestral lineage of a reference individual
(chosen uniformly at random) in the extant population. We envision this lineage as a
particle moving in {1, · · · , nεj}: time t = 0 corresponds to the present, and the position of
the particle at time t – denoted by AL

ε,λ,j
k (t) – identifies the ancestor of locus k, t units of

time in the past (i.e., at locus k, the reference individual in the extant population inherits
its genetic material from individual AL

ε,λ,j
k (t) at time −t) (see Figure III.5).

The recombination rate between the two loci, k and k′, rL
ε,λ

k,k′ corresponds to the prob-
ability that there at least one Poisson point between `k and `k′ and the two fragments are
inherited from different parents and is given by

rL
ε,λ

k,k′ :=
1

2
(1− exp(−λ|`k − `k′ |)) . (III.17)

ALε,λ,j = (AL
ε,λ,j

k , AL
ε,λ,j

k′ ) defines a 2-dimensional stochastic process on {1, · · · , nεj}.
At time 0, the two particles have the same position (they coincide at a randomly chosen
individual as in Figure III.5) and then evolve according to the following dynamics:

— When both particles are occupying the same location z, the group splits into two at
rate rL

ε,λ
k,k′ (see (III.17)). Forward in time this corresponds to a reproduction event
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where z is replaced by the offspring of x and y. Each individual x reproduces at
rate 1 (chooses a random partner y), and with probability 1/nεj his offspring replaces
individual z. There are nεj possible choices for x. Following (III.17), the probability
that both loci are inherited from different parents is rL

ε,λ
k,k′ , so the rate of fragmentation

for loci k, k′ is given by nεj .
1
nεj
. rL

ε,λ
k,k′ .

— When the two particles are occupying different positions, they jump to the same
position at rate 2/nεj . Forwards in time, this corresponds to a reproduction event
where the individual located at AL

ε,λ,j
k (resp. AL

ε,λ,j
k′ ) replaces the one at AL

ε,λ,j
k′

(resp. AL
ε,λ,j

k ), and the offspring inherits the allele at locus k′ (resp. k) from this
parent. A reproduction event where the individual located at AL

ε,λ,j
k (resp. AL

ε,λ,j
k′ )

replaces the one at AL
ε,λ,j

k′ (resp. AL
ε,λ,j

k ) occurs at rate 2/nεj (as the individual at
AL

ε,λ,j
k –resp. AL

ε,λ,j
k′ – can be the mother or the father); and the probability that

the offspring inherits the locus k′ (resp. k) from this parent is 1/2. The total rate of
coalescence is 2 . 2

nεj
. 1

2 .

Since we assume that the migration event occurred far back in the past, the following
duality relation holds:

P(k, k′ ∈ FL
ε,λ

j ) = lim
t→∞

P
(
AL

ε,λ,j
k (t) = AL

ε,λ,j
k′ (t) = 1

)
. (III.18)

In other words, assuming that the migrant is labelled 1, the set on the RHS corresponds
to the set of loci inheriting their genetic material from the migrant.

Proof of Lemma 4.6. Define (Y Lε,λ,j(t) := 1
AL

ε,λ,j
k (s)=AL

ε,λ,j

k′ (s)
; s ≥ 0). It is easy to see

from the previous description of the dynamics that Y is a Markov chain on {0, 1} with the
following transition rates:

q1,0 = rL
ε,λ

k,k′ , q0,1 =
2

nεj

and further

— conditional on Y Lε,λ,j(t) = 1, the two lineages (AL
ε,λ,j

k (t), AL
ε,λ,j

k′ (t)) occupy a com-
mon position that is distributed as a uniform random variable on {1, · · · , nεj}.

— conditional on Y Lε,λ,j(t) = 0, (AL
ε,λ,j

k (t), AL
ε,λ,j

k′ (t)) are distinct and are distributed
as a two uniformly sampled random variables (without replacement) on {1, · · · , nεj}.

We have:
P(AL

ε,λ,j
k (t) = AL

ε,λ,j
k′ (t) = 1) = P

(
Y Lε,λ,j(t) = 1

) 1

nεj
.

Furthermore, it is straightforward to show that

lim
t→∞

P
(
Y Lε,λ,j(t) = 1

)
=

2

nεj

1

rL
ε,λ

k,k′ + 2
nεj

.
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From (III.18), we get that,

Eλ,Lε,j(
∑

k,k′∈{1,··· ,lε}

1k∈S1k′∈S) = lim
t→∞

∑
k,k′∈{1,··· ,lε}

P(AL
ε,λ,j

k (t) = AL
ε,λ,j

k′ (t) = 1)

=
2

(nεj)
2

∑
k,k′∈{1,··· ,lε}

1
1
2(1− e−λ|`k−`k′ |) + 2

nεj

.

One can then easily check that, ∃ α > 0 such that, for every Lε = {`1, · · · `lε},

Eλ,Lε,j(
∑

k,k′∈{1,··· ,lε}

1k∈S1k′∈S) ≤ 2

(nεj)
2

∑
k,k′∈{1,··· ,lε}

1

α|`k − `k′ |+ 2
nεj

. (III.19)

Thus,

E

(
Eλ,Lε,j(

lε∑
k=1

lε∑
k′=1

1k∈S1k′∈S | Lε)

)
≤ 2

(nεj)
2

∫
[0,1]lε

dx1, · · · dxlε
∑

k,k′∈{1,··· ,lε}

1

α|xk − xk′ |+ 2
nεj

≤ 2

(nεj)
2

∑
k,k′∈{1,··· ,lε}

∫
[0,1]2

dxkdxk′

α|xk − xk′ |+ 2
nεj

.

In addition, using the fact that nεj = [Nj/ε],

1

(lε)2ε
E

(
Eλ,Lε,j(

lε∑
k=1

lε∑
k′=1

1k∈S1k′∈S | Lε)

)

≤ 2ε

(Nj − ε)2

∫
[0,1]2

dtds

α|t− s|+ 2ε/Nj

=
4ε

(Nj − ε)2

∫ 1

0
ds

∫ s

o

dt

α|t− s|+ 2ε/Nj

=
4ε

α(Nj − ε)2

∫ 1

0
log

(
αNj

2ε
s+ 1

)
ds

=
4ε

α(Nj − ε)2

(
(1 +

2ε

αNj
) log

(
αNj

2ε
+ 1

)
− 1

)
−→
ε→0

0.

We are now ready to prove Proposition 4.3.

Proof of Proposition 4.3. Using the definition given in Lemma 4.2,

mε,Lε,v(Π) =
1

ε

d∑
i,j=1

Mij Eλ,Lε,j
(〈
∂SijX(Π), v

〉2
)

+ b∞l
ε

d∑
i=1

Elε
(〈
∂Ki X(Π), v

〉2
)
.

To bound the second term in the RHS, we note that, by definition, Ski (Π) and Π only
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differ in one component, so from the definition of ∂Ki X(Π) (see (III.12)), it is not hard to
see that 〈

∂Ki X(Π), v
〉2 ≤ 4

(lε)2
||v||2∞.

It follows that,

b∞l
ε Elε(

〈
∂Ki X(Π), v

〉2
) ≤ 4b∞

lε
||v||2∞. (III.20)

Since lε →∞ as ε→ 0, this term converges and can be bounded from above, uniformly in
Π and ε ∈ (0, 1). Note that this bound does not depend on the choice of Lε.

For the second term on the RHS, we simply note that expanding 1
εEλ,Lε,j

(〈
∂SijX(Π), v

〉2
)

(see (III.14)), yields a sum of four terms that can be upper bounded by

||v||2∞
(lε)2ε

Eλ,Lε,j(|k ∈ S, Πk ∈ p1| |k ∈ S, Πk ∈ p2|),

where p1 and p2 are alternatively replaced by {π}, I−1
ij (π) with π ∈ Pd. Finally, ∀Lε ∈

[0, 1]l
ε ,

Eλ,Lε,j(|k ∈ S, Πk ∈ p1| |k ∈ S, Πk ∈ p2|)
(lε)2ε

=
1

(lε)2ε
Eλ,Lε,j(

lε∑
k=1

1Πk∈p11k∈S

lε∑
k′=1

1Πk′∈p21k′∈S)

=
1

(lε)2ε

lε∑
k=1

lε∑
k′=1

1Πk∈p11Πk′∈p2Eλ,Lε,j(1k∈S1k′∈S)

≤ 1

(lε)2ε
Eλ,Lε,j(

lε∑
k=1

lε∑
k′=1

1k∈S1k′∈S)

(III.21)

randomising the positions of the loci and using Lemma 4.6 the term on the RHS also
converges and can also be bounded from above, which completes the proof.

4.3 Tightness: Proof of Proposition 4.4

We follow closely [?]. It is sufficient to prove that for every v ∈ Md, the projected
process (〈ξε, v〉 ; ε > 0) is tight. To this end, we use Aldous criterium (see [?]). In the
following, we define

M ε,v
t := 〈ξεt , v〉 −

∫ t

0

〈
tGεξεs, v

〉
ds, Bε,v

t :=

∫ t

0

〈
tGεξεs, v

〉
ds.
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We first note that
sup
t∈[0,T ]

| 〈ξεt , v〉 | ≤ ||v||∞,

which implies that that for every deterministic t ∈ [0, T ], the sequence of random variables
(〈ξεt , v〉 ; ε > 0) is tight. Thus, the first part of Aldous criterium is sastified. Next, let δ > 0,
and take two stopping times τ ε and σε with respect to (F εt )t≥0 the filtration generated by
(Πε,Lε

t , t ≥ 0), such that 0 ≤ τ ε ≤ σε ≤ τ ε + δ ≤ T . Since 〈ξεt , v〉 = M ε,v
t + Bε,v

t , it is
enough to show that the quantities

E (|M ε,v
σε −M

ε,v
τε |) and E (|Bε,v

σε − Bε,v
τε |)

are bounded from above by two functions in δ (uniformly in the choice of τ ε, σε and ε)
going to 0 as δ go to 0. The rest of the proof is dedicated to proving those two inequalities.
We start with the martingale part. First,

E (|M ε,v
σε −M

ε,v
τε |)

2 ≤ E
(

(M ε,v
σε −M

ε,v
τε )

2
)

Recall that ∀Lε ∈ [0, 1]l
ε , M ε,Lε,v is a martingale. Thus, M ε,v is a martingale with respect

to (Gεt )t≥0 = (F εt )t≥0 ∨ σ(Lε), where (F εt )t≥0 is the filtration generated by (Πε,Lε
t ). As

(F εt )t≥0 ⊂ (Gεt )t≥0, τ ε and σε are also stopping times for the filtration (Gεt )t≥0, so that

E (|M ε,v
σε −M

ε,v
τε |)

2 ≤ E
(
E(
(
M ε,Lε,v
σε −M ε,Lε,v

τε

)2
| Lε)

)
≤ E

(
E
(〈
M ε,Lε,v〉

σε
−
〈
M ε,Lε,v〉

τε
| Lε

))
= E

(∫ τε

σε
mε,Lε,v(Πε(s))ds

)
.

where mε,Lε,v(Π) was defined in Lemma 4.2 and where the second line follows from the
fact that τ ε and σε are stopping times for the filtration (Gεt )t≥0. If there exists C1 such
that

sup
Lε∈[0,1]lε

sup
Π∈(Pd)lε

mε,Lε,v(Π) ≤ C1, (III.22)

then,
E (|M ε,v

σε −M
ε,v
τε |) ≤

√
C1

√
δ,

thus showing the desired inequality for the martingale part M ε,v. To prove (III.22), we
recall the definition of mε,Lε,v(Π),

mε,Lε,v(Π) =
1

ε

d∑
i,j=1

Mij Eλ,Lε,j
(〈
∂SijX(Π), v

〉2
)

+ b∞l
ε

d∑
i=1

Elε
(〈
∂Ki X(Π), v

〉2
)
.
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The second term in the RHS can be bounded as in the proof of Proposition 4.3 (see (III.20)).
For the first term in the RHS, we use the bound given by (III.21). We only need to prove

that 1
(lε)2ε

Eλ,Lε,j(
lε∑
k=1

lε∑
k′=1

1k∈S1k′∈S) is bounded. Using (III.19),

1

(lε)2ε
Eλ,Lε,j(

lε∑
k=1

lε∑
k′=1

1k∈S1k′∈S) ≤ 1

(lε)2ε

(lε)2

nεj
−→
ε→0

Nj ,

so (III.22) is proved.

We now turn to the drift part. First, for every Lε ∈ [0, 1]l
ε ,

∣∣∣Bε,Lε,v
σε − Bε,Lε,v

τε

∣∣∣ ≤ ∫ σε

τε
|
〈
tGεX(Πε,Lε(s)), v

〉
|ds.

We already showed in (III.16), that the integrand on the RHS is uniformly bounded in ε.
Thus, there exists C2 such that, for every Lε ∈ [0, 1]l

ε :∣∣∣Bε,Lε,v
σε − Bε,Lε,v

τε

∣∣∣ ≤ δC2.

So,

E (|Bε,v
σε − Bε,v

τε |) = E
(
E
(

(|Bε,Lε,v
σε − Bε,Lε,v

τε |) | Lε
))
≤ δC2.

which is the desired inequality. This completes the proof of Proposition 4.4.

Remark 4.7. Notice that the tightness (and the convergence) does not depend on the
recombination rate. However, for small values of λ, or if Lε is such that the positions
of the loci are all very close to each other, correlations between loci are very high. This
means that, when a migration event takes place, either no locus will be fixed (with high
probability), or almost all loci from the migrant will be fixed. Therefore, if we let λ → 0,
the process of the genetics distances converges to a process that increases continuously (due
to mutation) and has negative jumps (due to migration events). See Figure III.6 for a
numerical simulation.

5 Proof of Theorem 1.1 and more

In this section we state and prove a stronger version of Theorem 1.1 (see Theorem 5.1
below). As in Theorem 1.1, we consider, for each pair of subpopulations i, j ∈ E, Si and
Sj , two independent random walks on E starting respectively from i and j and whose
transition rate from k to p is equal to M̃kp := Mpk/Nk.
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Figure III.6 – Simulation of the individual based model, for d = 2, N1 = N2 = 1, ε = 0.01,
γ = 0.005, lε = 100, λ = 0.5. With this set of parameters, Theorem 1.1, predicts that
the genetic distance at equilibrium should be 0.5. In this simulation, the mean genetic
distance is 0.5.

We assume at time 0, in the IBM, subpopulations are homogeneous and that, the
genetic partition measure of the population (in the associated PBM) is given by ξε0, a
deterministic probability measure in Pd. We also assume that there exists a probability
measure P 0 ∈Md such that the following convergence holds:

ξε0 −→
ε→0

P 0. (III.23)

For every t ≥ 0, define

Dt(i, j) := 1 −
∫ t

0
e−2b∞sP(τij ∈ ds) −

∫
π
e−2b∞tP

(
τij > t, Si(t) ∼π Sj(t)

)
P 0(dπ)

where τij = inf{t ≥ 0 : Si(t) = Sj(t)}.We have the following generalization of of Theorem
1.1.

Theorem 5.1.

lim
ε→0

lim
γ→0

(dγ,εt/(γε)(i, j), t ≥ 0) = (Dt(i, j), t ≥ 0) in the sense of finite dimensional distributions.

In particular,
lim
t→∞

Dt(i, j) = 1− E(e−2b∞τij ).
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Proof. We start by proving that,

(dεt(i, j); t ≥ 0) =⇒
ε→0

(Dt(i, j); t ≥ 0) in the weak topology, (III.24)

where (Dt(i, j); t ≥ 0) is the deterministic process defined in Theorem 1.1.
From equation (III.5) and Theorem 3.1 we get that ∀i, j ∈ E, (dεt(i, j); t ≥ 0) converges

in distribution in the weak topology to (1−Pt(π ∈ Pd, i ∼π j); t ≥ 0). It remains to show
that this expression is identical to the one provided in Theorem 1.1. This is done in a
standard way by using the graphical representation associated to the one-locus Moran
model whose generator is specified by G (defined in (III.7)). It is well known that such a
Moran model is encoded by a graphical representation that is generated by a sequence of
independent Poisson Point Processes as follows:

— (Bi
n, n ≥ 1), with intensity measure b∞dt, that corresponds to mutation events at

site i. At each point (i, Bi
n) we draw a ? in the graphical representation (Figure

III.7(a)).

— (T i,jn , n ≥ 1), with intensity measure M̃jidt, that corresponds to reproduction events,
where j is replaced by i. We draw an arrow from (i, T i,jn ) to (j, T i,jn ) in the graphical
representation to indicate that lineage j inherits the type of lineage i.

(a) Graphical representa-
tion of the Moran model

(b) Genetic partitioning
process

(c) Ancestral lineages

Figure III.7 – Realisation of the genetic partitioning model and its dual. In Figure (b),
colours indicate genetic types (that induce the partitions). In Figure (c), colours represent
the ancestral lineages.

We now give a characterisation of the dual process starting at t. We define (S1
t , S

2
t , · · · , Sdt )

a sequence of piecewise continuous functions [0, t] → E, where ∀i ∈ E, Sit represents the
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ancestral lineage of individual i (sampled at time t). Sit(t) = i and as time proceeds back-
wards, each time Sit encounters the tip of an arrow it jumps to the origin of the arrow. It
is not hard to see that Sit is distributed as a random walk started at i and with transition
rates from k to p equal to M̃kp and that (S1

t , S
2
t , · · · , Sdt ) are distributed as coalescing

random walks running backwards in time, i.e. they are independent when appart and
become perfectly correlated when meeting each other. In Figure III.7(c), S1

t , S
2
t , · · · , Sdt

are represented in different colours.
Let τ tij = inf{s ≥ 0, Sit(t − s) = Sjt (t − s)}. By looking carefully at Figures III.7(b)

and III.7(c), we let the reader convince herself that two individuals i and j have the same
type at time t iff:

(i) τ tij ≤ t and there are no ? in the paths of Sit and S
j
t before τ tij ,or

(ii) τ tij ≥ t and Si(0) ∼π0 S
j(0) and Sit and S

j
t their is no ? in their paths.

From here, it is easy to check that:

Dt(i, j) = 1− Pt({π, i ∼π j)

= 1 −
∫ t

0
e−2b∞sP(τij ∈ ds)ds −

∫
π
e−2b∞tP

(
τij > t, Si(t) ∼π Sj(t)

)
P 0(dπ).

As ∀i, j ∈ E, (Dt(i, j)) is continuous, the fact that (dεt(i, j)) converges in distribution
(in the weak topology) to (Dt(i, j)) (III.24) implies (by the continuous mapping theorem)
that (dεt(i, j)) converges to (Dt(i, j)) in the sense of finite dimensional distributions, as
ε→ 0.

This result, combined with Theorem 2.2, also implies that:

lim
ε→0

lim
γ→0

(dγ,εt/(γε)(i, j), t ≥ 0) = Dt(i, j), t ≥ 0) in the sense of finite dimensional distributions.

The fact that limt→∞Dt(i, j) = 1−E(e−2b∞τij ) is a direct consequence of the definition
of (Dt(i, j); t ≥ 0) and the dominated convergence theorem.

This completes the proof of Theorem 1.1.

6 An example: a population with a geographic bottleneck

Let d ∈ N \ {0}. We let G1 and G2 be two complete graphs of d vertices. We link the
two graphs G1 and G2 by adding an extra edge (v1, v2), where vk, k = 1, 2 is a given vertex
in Gk. We call G the resulting graph. We equip G with the following migration rates: if
i is connected to j, then Mij = 1/d (so that the emigration rate from any vertex i is 1 if
i 6= v1, v2 and 1 + 1

d otherwise). We also assume that Ni = 1, so that M̃ij = 1/d.
We think of G as two well-mixed populations connected by a single geographic bottle-

neck.
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Theorem 6.1. Let c > 0. Let b∞ = c
d . Then for any two neighbours i, j ∈ G

1− E (exp(−2b∞τij)) =

{
c

1+c + o(1) if i, j ∈ G1, or if i, j ∈ G2

1− 1
d + o(1

d) if i = v1 and j = v2.

Proof. We give a brief sketch of the computations since the method is rather standard.
We start with some general considerations. Consider a general meta-population with d̄

subpopulations. Define a(i, j) = E (exp(−2b∞τij)). By conditioning on every possible
move of the two walks on the small time interval [0, dt], it is not hard to show that the
a(i, j)’s satisfy the following system of linear equations: ∀i ∈ {1, · · · , d̄}, a(i, i) = 1 and
∀i, j ∈ {1, · · · , d̄} with i 6= j:

0 =
d̄∑

k=1

(
a(k, j)M̃ik + a(i, k)M̃jk

)
− a(i, j)

 d̄∑
k=1

(M̃ik + M̃kj) + 2b∞

 . (III.25)

Let us now go back to our specific case (in particular d̄ = 2d). We distinguish between
two types of points: the boundary points (either v1 or v2), and the interior points of the
subgraphs G1 and G2 (points that are distinct from v1 and v2). For (i, j), with i 6= j, we
say that (i, j) is of type

— (II) if the vertices belong to the interior of the same subgraph (either G1 or G2).

— (IĪ) if the vertices belong to the interior of distinct subgraphs.

— (IB) if one of the vertex is in the interior of a subgraph, and the other vertex belongs
to the boundary point of the same subgraph.

— (IB̄), (BB̄) are defined analogously.

By symmetry, a(i, j) is invariant in each of those classes of pairs of points. We denote
by a(II) the value of a(i, j) for (i, j) in (II). a(IĪ), a(IB), a(IB̄), a(BB̄) are defined
analogously. From this observation, we can inject those quantities in (III.25): this reduces
the dimension of the linear problem from d̄(d̄−1) to only 5. The system can then be solved
explicitly and straightforward assymptotics yield Theorem 6.1.


