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Contribution au développement d’un lecteur RFID sans puce basé sur I’approche
ultra large bande impulsionnelle.

Mots-clés: Radio Frequency Identification (RFID), Chipless, Ulta-Wideband (UWB), Reader,
Radar
Résumé: La technologie d’identification radiofréquence (RFID) est aujourd’hui une

technologie mature qui est amenée a remplacer le code a barre dans un futur proche. Au milieu de
toutes les familles de RFID, la technologie RFID sans puce Ultra Large Bande (ULB) est devenue
un sujet incontournable. Au cours de cette thése, nous avons contribué au développement d’'un
lecteur de tag RFID sans puce ULB en nous basant sur une approche impulsionnelle.

Deux prototypes de lecteur ont été développés en suivant les limitations d’émissions de la
technologie ULB imposées par les normes. Le premier lecteur a permis principalement de valider le
principe de la lecture de tags RFID sans puce en utilisant le temps équivalent. Une deuxiéme
version du lecteur plus aboutis a ensuite été développée. En effet, la précision de lecture a été
optimisée grace a la réduction du bruit d’échantillonnage. Le temps de lecture ainsi que le colt du
lecteur ont aussi été des parameétres clés qui ont été drastiquement réduits. Pour cela, un
générateur d’'impulsion faible bruit bas codt ainsi que des antennes ULB et des cartes de front-end
RF ont été congus et optimisés. Enfin, une technique de lecture des tags basée sur la diversité en
polarisation est proposée et validée en pratique. L’objectif étant de permettre la lecture de tag
dépolarisant indépendamment de leur orientation. Ce point est un aspect trés important pour le
développement futur de la technologie RFID sans puce car cela Ieve des contraintes sur la
conception des tags.

Contribution to the development of UWB chipless RFID reader based on IR-UWB

approach.
Keywords: Radio Frequency Identification (RFID), Chipless, Ulta-Wideband (UWB), Reader,
Radar
Abstract : The RFID technology is in full development, and is intended to compete

with optical barcodes for traceability in the next future. Between all the RFID families, the UWB
chipless RFID technology is a major topic nowadays. This work of thesis is focused on the
development of UWB chipless RFID readers based on IR-UWB approach.

The international regulations that limit the UWB emission are taken into consideration, and two
reader prototypes have been developed. The first was used as proof of concept. The second
version represents a full optimized reader in all the key aspects. Between them there are the
reading precision, through sampling noise reduction, the reading time, and cost effectiveness. As
part of the development of the readers, a low noise and low cost UWB pulse generator prototype
was realized, along with UWB antennas and RF front-end boards. As prospective, a reading
technique based on polarization diversity is shown with the aim of reading cross-polarized chipless
tags independently from their orientation. This approach is valuable because does not give any
constraint at the tag design level.

Laboratoire de Conception et d’Intégration des Systémes (LCIS) — Grenoble-INP

50, rue Barthélémy de Laffemas, 26902 VALENCE Cedex 9, France
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Introduction

The advent of smartphone and its diffusion have revolutionized the life of billions of people
in the last decade. The smartphone combines the advantages of a Personal Computer (PC)
with those of a mobile phone. A mobile phone gives you the opportunity to be connected with
computers and users, exploiting the public telephone network, using a low power portable
device. The PC allows for high computational capability as a result of its dedicated hardware
combined with software suites. Today these devices are evolving toward a major connectivity
to meet the incessant growing request of exchange of information. The increase of mobility in
the era of globalization, and the continuous technologic development are changing our life at
hectic pace. The home automation, the autonomy transportation, the robotic, and technology
in general need a strong interchange of information where people and machines are all

connected together, in a global net that is generally addressed as Internet of Things (IoT).

The loT uses different technologies involved in Personal Area Network (PAN) wireless
communications. Between them: Bluetooth, WIFI, Radio Frequency Identification (RFID),
infrared, Ultra-Wideband (UWB), bar-code reading capability, and more. This thesis is
focused on the RFID, which is a technique where a reader is able to catch information from a
passive transceiver using the Radio Frequency (RF) spectrum. The great potentiality of this

technology lies on the possibility to have a totally passive tag (transponder).

The massive use of RFID started in the nineties, and up to date, there are diverse kinds of
RFID tags that are working at different RF bandwidths. All are in accordance with industrial
standards, national and international regulations. The RFID tags incorporate intelligence,
they are able to execute hand-shaking protocols, elaborate information, and can be
interconnected with sensors. Consequently, RFID tags can be used as part of Wireless

Sensor Networks (WSNs). The major use of RFID technology is in the identification of goods
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with tracking and tracing ability, in smart logistic, access control, and recently have being

incorporated in credit cards.

In the other hand, the most worldwide spread identification technology is still the barcode,
where the labels are printed directly on objects or on paper substrate, and are read with
optic technique. The barcode was conceived in 1948 from two students of the University of
Drexel, Norman Joseph Woodland and Bernard Silver, and its diffusion started only in 1974
by reason of recent optical technology improvements. The barcode labels may be mono or
bi-dimensional with many different symbologies. The chipless RFID is born to play an
intermediate role between barcode and classical RFID. It is based on the interrogation of a
label (tag) with UWB signals, and the subsequent decoding of the tag Identification (ID)
based on its Radar Cross Section (RCS) signature. The tags are totally passive and do not
present any electronic device attached on its surface, therefore they do not have intelligence
or non-linear modulation ability. Thereby, the tags are expected to be printed on paper

substrate with metallic ink.

Chipless RFID technology can be placed in-between barcode and classical RFID, where it
takes in minor part the advantages of both to be used in industry. Because directly printable
on paper, the chipless RFID tags may have a realization cost comparable with barcode
labels, and with the use of RF they can be read in a no ling-of-sight condiction. At present
there is not a real use of chipless RFID technology in industry apart from Surface Acustic
Wave (SAW) devices. However the SAW tags are printed on piezoelectric substrate and they
are costly compared to paper, hence they may not be seen as a potential real alternative to
barcode. Apart from SAW, the chipless RFID is a young technology born at the beginning of
the new century where was first published in 2002 by Richard Ribon Fletcher with its PhD

dissertation, at Massachusetts Institute of Technology.

There is an increasing of interest on chipless RFID, and many researchers are redirecting
their studies toward this technology. Up to date there is a prominent request in the direction
of increasing chipless RFID tag coding capacity, which is hardily higher than 40 bits. Not less
important ameliorations are demanded from the reader point of view. The chipless RFID
technology needs a reader which is cheap, compliant with UWB regulation, small in size, and
preferable integrated inside a smartphone such as for the others PAN communications

techniques starting from barcode. The aim of this thesis is to improve the UWB chipless
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RFID reader technology. The duration of the thesis was of three years, and all the

aspects involving the design of a reader for chipless RFID are given in this manuscript.

The chapter 1 of this manuscript is an introduction of RFID technology more focusing in all
the aspects concerning the chipless RFID. The different characteristics of RFID, barcode,
and chipless RFID are discussed. The principle of operation of UWB chipless tags are given

in detail, along with their reading techniques.

The chapter 2 presents the state of the art concerning UWB chipless RFID reader. All the
proposed readers in literature are based on Frequency-Modulated Continuous-Wave
(FMCW) and Stepped-Frequency Continuous-Wave (SFCW) approaches. These
technologies are compared with Impulse-Radio UWB (IR-UWB) in terms of UWB regulations,

and reading time.

The chapter 3 introduces the first designed IR-UWB chipless RFID reader during the
thesis. It is based on equivalent time approach to reduce its realization cost, while

maintaining high acquisition performance.

A second reader version was developed and is presented in chapter 4. The objective was
to obtain a lower reading time and sampling noise. After a theoretical introduction to
sampling noise and quantization noise, the reader hardware architecture is deeply exposed.
Compared to the version in chapter 3, it also allows for flexibility in terms of equivalent

sampling rate, acquisition frame length and position.

The chapter 5 discusses the design of a tunable low jitter UWB pulse generator, and of
UWB planar antennas. The pulse generator could be used with the proposed readers as
emission stage and radiative elements to decrease the reader realization cost. Simulation

results along with characterizations are shown.

The chapter 6 presents a novel reading technique based on polarization diversity. This
approach may be used to read cross-polarization based tags (i.e. chipless tags known to be
robust in term of detection in real environment) independently from their orientation. After a
theoretical introduction, the approach is validated first with test equipment, and after with the

updated reader presented in chapter 4.
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Introduction to Chipless RFID Technology

1. Introduction

In this chapter the Chipless Radio Frequency Identification (RFID) technology is
introduced. After a brief discussion of classical RFID systems, the chapter is focusing on the
chipless RFID. A comparison of these two technologies with barcode is given. This thesis
work is focusing on the reader part of the chipless technology that interests the Ultra-
wideband (UWB). Thus, the principle of operation of UWB chipless tags will be given more in

detail. The chapter is organized as follows:

e Section 2 does a general introduction to RFID technology, and its main features

are compared with barcode.

e Section 3 presents the chipless RFID technology in UWB. The principle of work of

time-coded and frequency-coded tags is given.

e Section 4 draws the conclusion of the chapter.

2. Introduction to RFID

2.1 Introduction

The RFID is among the most widespread technologies concerning the identification of
objects and animals (humans are in this category). It is practice to date the origin of the RFID
technology in 1945, with the well-known Léon Theremin espionage equipment to retrieve the
conversation inside the office of the US ambassador in Moscow. The thing was totally
passive and able to modulate its backscattered signal, once illuminated by an external
electromagnetic source, according to the acoustic waves produced inside the ambassador

office. Today a RFID system retains the same principle of work except for the absence of the
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modulating acoustic waves, which is substituted with the smartness of an Application

Specific Integrated Circuit (ASIC) that performs the modulation.

During its long evolution, RFID systems have been evolving towards numerous directions,
due to the lack of standardization for many years, and the huge number of distinct application
requirements. Up to date the most employed RFID systems may be classified according to
their frequency band as: Low Frequency (LF), High Frequency (HF), Ultra High Frequency
(UHF), and Super High Frequency (SHF). Apart from LF, the others use the unlicensed
Industrial, Scientific and Medical (ISM) bands.

2.2 Passive, semi-passive and active transponder

Essentially a RFID system is composed of a reader, and a bunch of transponders inside
the reading volume. The transponder may be passive, semi-passive or active. A passive
transponder does not have a battery. Its chip is energized by harvesting from the reader
transmission Electromagnetic (EM) wave, i.e. reader interrogating signal. For the most of
passive transponder the transmission of information is performed in a passive way. Once
energized, the chip is able to vary the load impedance connected to its antenna, generally
between two different values. It modulates the amplitude of the impinging reader signal
(down-link), which is backscattered toward the reader (up-link) ensuring the communication

between the two actors. This is called load modulation and is summarized in figure 1.1.

Energy

=
Clock -
ID: FFAO Reader - Dula g G
Book “1 fflJ CHIP
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[}
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Figure 1.1. Schematic of a RFID system, the reader interrogates the transponder providing energy to
wake up the ASIC (Chip), clock for synchronization purposes, and data as request code (down-link).
After, the chip replies modulating the antenna load impedance between two values, providing a
backscattering modulation to the reader (up-link).
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Usually the reader adopts either an Amplitude Shift Keying (ASK) or a Frequency Shift
Keying (FSK) modulation with a dual objective. First, to optimize the bandwidth available
according to international regulations, and second, to retain the transponder chip well
energized to accomplish the communication. Conversely the transponder can respond
modulating the amplitude and the phase of the reflected carrier wave by changing the chip
impedance between two states. It can adopt modulation schemes with subcarrier generation
such as Binary Phase Shift Keying (PSK), Amplitude Shift Keygen (ASK), and Frequency
Shift Keying (FSK). These schemes have a robust implementation at the expense of a
reduced communication throughput. In a direct modulation scheme, each bit is associated
with one reflecting carrier wave amplitude variation with a fixed bit period. It ensures the

fastest communication at the expense of low noise immunity [MIC 02].

According to figure 1.1, the transponder chip presents an analog part involved directly in
the communication, and a mixed part represented by a microcontroller. The analog part is
formed of a modulator and demodulator (modem), a voltage rectifier to harvest the energy
from the carrier wave, and a voltage regulator to provide the correct voltage to the chip. The
digital part is a hard-core microcontroller that may embed memories, Inter-Integrated Circuit
(IC2) and Serial Peripheral Interface (SPI), and analog sensor interfaces. The read-range of
a passive UHF transponder is lower than 10 m (short range), and limited by the harvester
efficiency that is around 20% [LE 008].

A semi-passive or active transponder is equipped with a battery to provide energy at the
chip, and eventually at peripherals. The communication retains the load modulation scheme,
while the part of the chip in charge of the modulation is energized directly from the battery.
The transponder can be waked up, in a cooperative way, from the battery and the harvested
reader interrogating signal. Thus, the transponder is read at distances up to 100 m for a UHF
semi-passive transponder (moderate range). An active transponder has a Radiofrequency
(RF) transmitter block used to communicate with readers, and also with other transponders.

Its read-range is of several hundred of meters (long range) [DOB 12].

The RFID is a narrowband technology regulated in Europe by the European
Telecommunications Standards Institute (ETSI), and by the Federal Communications
Commission (FCC) in the United States of America (USA). The LF RFID applications and
standards use mostly the frequencies of 125 kHz and 134 kHz, while the HF the 6.78 MHz



8 Introduction to Chipless RFID Technology

and 13.56 MHz. The UHF interests 433.92 MHz and 869 MHz in Europe (915 MHz in USA),
and 2.45 GHz, while the SHF is for 5.8 GHz. Several standards have been proposed from
the physical to the software application level, where some are international as ISO/IEC, and
others are proprietary. The standardization helps the manufacturer to realize product with
high level of interoperability. For instance, the 1ISO 18000 series is taking care of the air
interface protocol (frequency, data modulation, ...) for systems, to be used to track goods in
the supply chain for RFID, in all the aforementioned frequency bands [VIOL 05]. Some of the
currently used standards are shown in figure 1.2 [SAT 12,DOB 05].
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Figure 1.2. A reduced collection of RFID standard. From international organizations (ISO, GS1), to
private enterprises, such as Sony.

2.3 RFID vs barcode

As a result of its minimal label cost, the barcode technology is more employed than RFID
in item identification. Nowadays the realization cost of a barcode label is orders of magnitude
lower than a passive RFID transponder. A barcode can be printed on paper substrate with
not-conductive ink because based on optic reflection. Due to the use of RF, a conductive ink
is needed in RFID to generate surface currents. It is used in HF RFID to print out the antenna
in label tag (transponder) for transport ticketing. It is also a subject of study for passive UHF
tags for tracking item applications and for wearable electronics [BJO 16- RIZ 16]. The
conductive ink is more expensive than the not-conductive ink; hence a RFID tag cannot
compete with barcode label in term of cost, where the cost of the chip can be prominent. The
cost of a RFID transponder is varying depending on its characteristics. It ranges from few

tens of euro-cents for inlay EPC GEN2 tags, to hundreds of euros for sophisticated long life
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active transponders. A barcode label may worth less than 0.5 euro-cents, even lesser if the

barcode is directly printed on items.

A barcode label substrate may be composed of almost each type of solid material, and the
label color has to be as much pale as possible. It is common to print the barcode motive out
directly on item surface to save from substrate cost. For a printed UHF RFID transponder,
the substrate can affect considerably the reading performance. Thus, it is hardly possible to
print the transponder antenna directly on not-characterized tracking items. The relative

permittivity of the substrate may vary the antenna operating frequency.

With the exception of cost, the RFID technology offers many advantages compared with
barcode. It is smart (chip), has a higher read-range, and data bit capacity. It does not need a
direct-line-of-sign to be read thanks to the use of RF, as so the transponder can be hided

and made not visible. It may also work in harsh environment and be water-proof.

3. Chipless RFID

3.1 Principle of operation

The chipless RFID technology is born at the beginning of the new century, and is dated
with the Richard Ribon Fletcher PhD dissertation published in 2002 [FLE 02]. After in 2005,
Michael Pettus patented a chipless RFID system, where the tag was composed of a
multitude of RF antennas, each providing different orientation and phase characteristics as
so to encode the tag identification (ID). In this system the reader scans an area, and using
radar imaging techniques, can retrieve the tag information [PET 05]. Since then, the chipless
technology is gaining a continuous growth of interest world-wide, most from university. It is a
technique of identification where the tag does not have any electronic component attached

on its surface and relays on its EM property for the identification.

A chipless RFID reading system is shown in figure 1.3. The tag is commonly composed of
a pattern (like in barcode) made of conductive material, created upon a substrate with
etching or printing technique. The principle of work is similar to that of a radar application
where non Radar Cross Section (RCS) modulation is expected. Contrarily to RFID, the
reader transmits a wide-band signal to the environment, and the tag backscattered signal is

measured and analyzed, in time and frequency domain, to retrieve the desired information.
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The total absence of a chip denied the opportunity of any signal modulation therefore the
chipless RFID technology is not compatible with narrow band identification utilizations such

as classic RFID, and needs to be wideband.

A chipless RFID tag can be seen has a passive filter, where the information is coded
based on its impulsive response: larger available bandwidth means higher coding capacity. A
chipless RFID system needs to comply with (UWB) regulations in the band 3.1-10.6 GHz.
The UWB at bigger frequency is reserved for different applications. The chipless technology
is developing also in extremely high frequency [POP 16] and terahertz [HAM 12], where a
sort of two dimensional imaging (2-D) encoding technique may be employed. Anyway, these

latter two frequency bands are not subject of study in this thesis.

Tx antenna

PC

[Ty FEAD. ..
Book

8 [(—E]

Rx antenna
Chipless RFID tag

Figure 1.3. Schematic of a chipless RFID system.The reader interrogates the transponder with a
UWB signal, then the backscattered signal from the tag is analyzed to retrieve the tag ID.

3.2 Chipless RFID in-between RFID and Barcode

The chipless RFID technology may be located between the conventional RFID and the
barcode. The absence of electronic devices with their package may represent a significant
abatement of tag realization cost. Thus, a chipless RFID tag may be cheaper than a RFID
tag, and perhaps comparable with a barcode [VEN 13a]. Up to date the cost comparison is a
hard topic. Despite the absence of electronic devices the label pattern may have a total
surface area larger than a passive UHF RFID tag on a costly substrate. Thus most of
chipless tag prototypes have a realization cost higher than UHF RFID tag [PRE 10].
However, it is possible to find in literature miniaturized single layer chipless RFID tags for
UWB compatible with ultra-low cost realization techniques. For instance, in [VEN 13a],

chipless tags printed with conductive ink, using flexography, are presented. In [VEN 12], the
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authors present a miniaturized chipless RFID tag of 2 cm x 2 cm, with 10 bits. The tag was
realized on a rigid FR-4 substrate with etching technique, and was read with expensive

laboratory equipment.

In comparison with barcode, a chipless RFID tag adds the opportunity to be read without
direct line-of-sign. This is a strong advantage because the tag may be hided and read
through objects. It opens to a plenty of applications for chipless RFID where barcode may not
be used, such as discretion for luxury package and security. Contrarily to barcode, a chipless
RFID tag may offer sensor capabilities [TED 13]. In [FEN 15] the authors present a printed
chipless RFID tag on paper substrate designed as humidity sensor, with interdigital capacitor
implementation. In [SCH 14] a time domain coded chipless temperature sensor was
proposed. It was realized with screen-printing technology on a substrate of Allumina, with a
central frequency of 7 GHz, and a -10 dB bandwidth of 2 GHz.

The chipless read-range is often considered higher than barcode, and absolutely lower
than passive UHF RFID tags. This may be debatable, in fact for the chipless RFID tag the
read range is also correlated with its coding capacity in terms of bits number. Some chipless
RFID tags, based on time-domain reflectometry (TDR), may have a read-range over 1 m, but
with a scarce number of bits, usually lower than 10. Most of the time, they are realized on
high cost and RF performing substrate [RAM 11]. Higher bit capacity chipless RFID tags

have a reduced read-range in order of few tens of centimiters.

The read-range depends not only on the tag characteristics but also on the reader
performance, and its power emission (UWB regulations). In literature are often claimed read-
range, bit capacity, and in general chipless RFID tag with high performance, but using
expensive laboratory equipment as reader, in anechoic environment, and slighting taking into

consideration the UWB regulations.

Multipath effects are present in chipless RFID, and they may affect the reading capability.
Conversely, in barcode, the interrogating optical reader signal can be well focused on the
tag, that allows for reducing multipath effects. In addition, a barcode label needs to be read
with direct line-of-sign, as so the reading optic signal cannot go behind the label, and
eventual reflective perturbing signals are not present. In literature is common to find tables
that compare barcode, chipless RFID, and UHF RFID in terms of tag performances and

realization cost [PER 14]. Almost all of them give the best place for all the parameters,
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except for tag realization cost, to UHF RFID. Then chipless RFID outdo barcode in reading
range, with comparable realization cost, and lower bit capacity. From our experience in the
field, up to date the battle between barcode and chipless RFID for reading performances did
not give a net vanquisher. For tag realization cost, the barcode is today the winner, but the

match between passive UHF RFID tag and chipless RFID tag is still open.

3.3. UWB chipless RFID

The chipless RFID technology has to comply with international regulations as all electronic
communication systems. A chipless RFID system works with UWB because the tag bit-
capacity increases with the frequency bandwidth. The UWB technology is referred to
systems which employ large band and low power to exchange or retrieve information. The
American FCC regulation concerning UWB is in Part 15 of Title 47 [FCC 17], and grants the
band 3.1 - 10.6 GHz for communication systems in indoor applications such as chipless
RFID. The ETSI regulation, in terms of UWB systems, is stricter compared with FCC. It
allows for the same band of FCC, but with lower power between the band 6 — 8.5 GHz [ETS
04 - ETS 10]. This work of thesis is concerning the readers for UWB chipless RFID tags that

may be classified in time-coded and frequency-coded based tags.
3.3.1 UWB time-coded chipless RFID tag

An UWB time-coded chipless RFID tag, in its most simple representation, is composed of
one UWB antenna connected to a transmission line, along which some impedance
mismatchings are created. A schematic example of a 4 reflections based tag is shown in
figure 1.4 (a). Once interrogated with a UWB reader, the tag reflected signal may be
analyzed in time domain, and the delays between the different reflections can be estimated.
The values of these delays encode the tag information. The tag response in time is
composed of a tag structural mode and an antenna or tag mode. The former is due to the
specular reflection of the tag assemblage. The latter is the tag behavior where the antenna is
transferring energy to the transmission line, and all the reflections due to impedance
mismatchings occur. The antenna (tag) mode is the essential information in chipless
technology, and is exploited in copious manner with signal processing. In case of time-coded
chipless tag, the structural mode is also useful. It gives information about the tag distance,
and also is exploited to calculate the relative delays of the reflections to decode the tag ID.
An example of encoding technique is shown in figure 1.4 (b), corresponding to the tag in (a).

The time domain is divided in 4 areas, where each is referred to one reflection of the 4 that
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compose the tag mode. Based on the position of the reflection inside the area, a different
binary code is assigned. In the figure the tag ID is 01001110, that correspond to 8 bits of
information.
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Figure 1.4. (a) Exemplification of a UWB chipless RFID tag based on a time-coded approach. The tag
has 4 impedance mismatchings (Z;) that originate 4 main reflections toward the reader. (b) The tag
information is encoded with the temporal distances between the structural mode, and the various
reflections in the antenna (tag) mode.

The figure 1.4 is overly simplified because the impedances Z, generate multiple-
reflections. For instance, the first reflected signal by Z,, before reaching the antenna, will be
in part reflected back by the impedance Z4, and so on. These effects will create disturbances
in the reader receiving signal, and the low energy reflected signals will be decoded with more
difficulty.

The major drawback of a time-coded tag is represented by the transmission line length
that may be substantial. Considering a Gaussian monocycle interrogating signal with a pulse
full-width of about 500 ps, then the minimum registered distance between reflections in the

tag response should be of at least 500 ps. It corresponds to 250 ps transmission line delay
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between two impedances (2 ways). If the tag transmission line has a relative permittivity €, of

around 4.4 (FR-4), then the wave speed inside the line v is approximately,

— Yo
VL= [1.1]
Where v, is the speed of light in a vacuum environment, which was estimated at about
3x10® m/s. In such configuration, v, is of about 1.43x10® m/s, and multiplying it by 250 ps
returns to a minimum distance between two reflectors of 3.5 cm. Hence, a UWB time-coded
chipless RFID tag may have a significant dimension. It can be reduced using less number of

reflective elements (lower bit-capacity), higher permittivity materials, and bending techniques.

In a chipless RFID tag, all the impedances Z; have to be realized with layout techniques
(Chipless). To reduce as much as possible the loss of the transmission line, the impedance
elements Z; should have zero resistivity. This leads to the realization of pure imaginary
discontinuities. However they are known to be narrow band in its simpler realization (stub).
Consequently in literature is possible to find UWB time-coded chipless RFID tags which are
not really chipless, because the impedances are realized with discrete components [ZHA 06-
SCH 09].

The use of Surface Acoustic Wave (SAW) technology is not recent, and in electronics is
employed in a variety of applications, such as filters design, oscillators, and sensors. They
are based on acoustic waves instead of electromagnetic waves, which have a speed in free
space of about 10° times lower than the speed of light. This feature can be exploited to
create much smaller RF devices. A SAW component needs two Interdigitated Transducer
(IDT), and a piezoelectric substrate that can transduce between electrical and mechanical
energy. Time-coded chipless RFID SAW tags are a reality nowadays, and are produced by
numerous enterprises. These tags are working in the ISM band at 2.45 GHz (narrow band).
The bit capacity may exceed 128 bits with a tag dimension of about 10 mm for side not
considering the antenna [HAR 02]. The major drawback of a SAW tag is the realization cost
caused by the need of piezoelectric substrates, and also by the use of etching techniques for
metallic layer deposition. It may not represent a competitor neither for barcode, nor for UHF

RFID passive technology.

In 2008 a patent about the use of cellulose substrate to propagate acoustic wave was
deposited [KIM 08]. The tag was characterized by the presence of an antenna, a SAW based

IDT, and a plurality of reflectors for reflecting the surface acoustic wave. All was mounted on
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cellulose substrate that would help to reduce the tag substrate cost. However other

challenges need to be faced, such as the printability of the tag and the immunity against

environmental condition.
3.3.1.1 Single line discontinuity UWB time-coded chipless RFID tag

A UWB time-coded chipless RFID tag with only one discontinuity line can be readily
designed. It needs to have either a zero impedance (short circuit) or infinitive impedance
(open circuit) to reflect as much energy as possible in the direction of the antenna. It is
simple to realize a large band open circuit with layout technique, while for a short circuit it
may depend from the transmission line technology. In microstrip a short circuit needs a via,
while for coplanar it does not. This approach pays in terms of coding capacity, but gains in
read-range, and dimensions. The principle schematic of a single reflector UWB time-coded

chipless RFID tag, and a reading process with a bi-static reader, is shown In figure 1.5.
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Figure 1.5. Exempilification of an UWB chipless RFID tag based on a time-coded approach using
only one line discontinuity (open circuit load). A bi-static UWB chipless RFID reader is used.

In case of bi-static configuration the coupling between the two reader antennas is reduced
(green dashed line on figure 1.5) compared to mono-static configuration. However it is
omnipresence in short-range radar based applications such as chipless. If the coupling of the
reader antennas and the tag are not influencing each other, the coupling effect can be

removed from one tag identification process in post-processing. Two measurements are
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necessary, one without the tag and subsequently another one with the tag (background
subtraction [RAM 11]).

A typical bi-static co-polarization measurement results, of a time-coded chipless tag at
several distances up to 2 m in practical environment [RAM 12], is shown in Figure 1.6. It
uses known detection methods (background subtraction and Continuous Wavelet Transform
(CWT)) [LAZ 11]. As it can be observed, both the structural and antenna (tag) modes can be
detected. The tag layout along with its measured and simulated reflection coefficient is
shown in Figure 1.7. The tag consists of a microstrip-fed UWB monopole [WHY 08]
fabricated on Rogers RO4003C substrate.

1
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Figure 1.6. Normalized result measurement after background subtraction (top) and CWT, for the
monopole tag at several tag-reader distances in practical environment. Original figure in [RAM 12].

The obtained read range of 2 m is remarkable, and also the tag reduced dimension of 5.3
cm x 4.3 cm makes it smaller than a credit card size, which is of 8.560 cm x 5.398 cm
according to [ISO/IEC 7810 ID-1]. The tag information capability depends also from the
reader performances and post processing power. A value lower than 10 bits is reasonable,
hence, this kind of UWB chipless RFID tag is more suitable for sensing and localization
applications rather than identification [RAM 11, RAM 13].
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Figure 1.7. Layout of the microstrip-fed UWB monopole tag with dimensions in millimeters, and its
measured and simulated tag reflection coefficient. Original figure in [RAM 12].

3.3.2 UWB frequency-coded chipless RFID tag

A UWB frequency-coded chipless RFID tag uses an approach based on its spectral
response to encode information. The tag geometry is modified to account for specific
amplitude and phase characteristics over the frequency band of interest. A well-known
structure of such tag is composed of two UWB antennas (one for transmission and the other
for reception), and between them a passive filter realized with distributed elements as shown

in figure 1.8 (a).

If the passive distributed filter of figure 1.8 is considered lossless, part of its input signal
will be reflected, and part transmitted to the other antenna. The antennas are linear polarized
with a cross-polarization configuration (in perpendicular direction). If a reading approach
similar to figure 1.5 (UWB bi-static) is used to read the tag, the reader antennas have to be
lined up with the tag antennas, to read successfully the tag. The cross-polarization
configuration allows for measuring only the part of the UWB reader interrogating signal that

crosses the tag filter, and therefore the part of the signal where is encoded the tag ID.

In figure 1.8(a) are represented two examples of passive filters compatible with microstrip
technology. One based on notch spiral resonators, and the other one on parallel open circuit
stubs. The first solution applied to chipless technology was proposed in [PRE 09]. The spiral
filters were placed along with the microstrip line, each resonator introduced a diverse band-
stop resonance. It was designed in the band 3.1 - 7 GHz, and realized in Taconic TLX-0 with

dimensions of 8.8 cm x 6.5 cm. The information is encoded in the amplitude part of the
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spectrum reaching 35 bit of information. Varying the dimension of the spirals their first mode

resonant frequency will change accordingly, as so the filter characteristics.

In [NIJ 12] the solution represented in figure 1.8 (a) using parallel open circuit stubs was
proposed. The tag has a limited 8 bit capacity, and the coding is yet trusted on spectrum
amplitude. The antennas are two cross-polarized monopoles, and the tag measures 5.0 cm x
3.0 cm not considering the antennas. The bandwidth of interest is between 2 - 4 GHz and the
substrate is high performance from Rogers. In [NAI 16] the authors presented a UWB
frequency domain chipless RFID tag where only the filter section was implemented and
characterized with laboratory equipment. Instead of focusing on the amplitude of the
response, they took care of the phase through the group delay. The filter was composed of
cascaded commensurate C-sections which length determines the frequency with higher
group delay variation. To retain a small filter dimension, a folding approach is proposed. As
yet, the proposed architecture of a UWB frequency-coded chipless RFID tag presents a
discrete bit capacity of around 40 bits. On the other side, it expects a reader in bi-static
configuration, with two cross-polarized antennas, and the tag needs to be aligned with the

reader antennas for maximum performance.
3.3.2.1. Join antennas and filter

The frequency-coded chipless RFID tags proposed in [PRE 09 - NIJ 12] are based on
spectrum amplitude modulation, using a set of independent notch filters, in an
absence/presence encoding sort (see figure figure 1.8). In [TED 12] an exhaustive overview

of UWB chipless encoding technique is given.

Using the RF Encoding Particle (REP) approach introduced in [PER 14, VEN 16], it is
possible to obtain the requested spectrum amplitude modulation of the tag, in a smaller
structure [VEN 11- VEN 12]. This structure is composed of several resonant scatterers
(particles), in which the two antennas and the filter are enclosed. For instance the tag
proposed in [NIJ 12], which is composed of parallel open circuit stubs used as Band-Stop
Filter (BSF), can be translated in an equivalent tag based on REP approach. It is shown in

figure 1.9 where for simplicity only three resonators of [NIJ 12] are shown.
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Figure 1.8. Schematic of a frequency-coded UWB chipless RFID tag based on cross-polarization.
Two examples of passive distributed filters are shown, one based on spiral resonator [PRE 09], and
the other on parallel open circuit stubs [NIJ 12].

The REP approach is a complex subject, form a theoretical point of view, one interest is
that a REP chipless tag can be seen like a radar target. The specificity here is that the tag
(target) is designed to have a known number of resonant frequencies. From the Singularity
Expansing Method these frequencies, which are related to the tag mode, are independent
from the reading method. Thus, they can be used to encode the information [BAU 91], [REZ
13].

The study of the behavior of a loaded antenna, constructed with linear reciprocal
materials, is fundamental to better understand the complexity of REP from both, analytical

and physical approach. In [GRE 63] the author presents a study about the prediction of the
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backscattering property of a loaded antenna with some minimal measurements. Once exited
with an impinging electromagnetic field, two different scattering processes occur, one load
independent and the other fully dependent. As previously explained, the first is due to the
immediate reflection that occurs on the metallic part of the antenna, through the formation of
surface currents (structural mode scattering). Instead the second is concerning the radiative
property of the antenna connected at that specific load (antenna mode scattering). This can
be seen as the property of the antenna to convey the incoming electromagnetic field towards
the load, which is responsible of its dissipation. The tag of figure 1.9 with REP approach is
composed of three scatterers. Each scatterer has its structural and antenna (tag) mode

scattering, and then can be seen as an antenna connected to a complex load.
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Figure 1.9. Representation of a UWB frequency coded tag based on microstrip with two UWB disc
monopole antennas, and three parallel open circuit stubs similar to [NIJ 12]. The tag can be realized
with three resonant scatterers using the REP approach, with similar performance than the original tag.

One of the first use of the REP approach on chipless RFID was in [JAL 05]. The authors
realized a barcode type chipless tag composed of 5 scatterers. Each scatterer was
considered as a short circuited dipole antenna and not yet strictly speaking as REP scatterer,
the concept was introduced later [PER 4]. Each scatterer was composed of a strip with
different length, in microstrip technology. It was designed in the bandwidth 5.4 - 6 GHz on
Taconics TLY-5, and shown a 5 bit capacity, and a read range of tens of centimeters. The
measurement was performed with a Vector Network Analyzer (VNA) in co-polarization, and

shows a band rejection effect of the tag at the strip first resonance frequency (M/2). This was
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due to the destructive effect between the scatterer structural mode and the antenna (tag)

mode.

Since [JAL 05] remarkable progresses have occurred on this approach for chipless, and
many works are publishing by worldwide laboratories. The bit capacity of this kind of tag has
been increased using more elaborated scattering particles, with magnitude and also phase
coding information, and using mainly cross-polarization reading approach with a more
elaborate post processing treatment. In [VEN 11] a tag based on C-like resonators
(scatterers) is presented, it was realized on one metallic layer in a low cost FR-4 substrate
with permittivity of 4.6. Using a coding based on frequency resonant position and phase
characteristic of C-like resonators, the coding capacity was increased up to 22.9 bits, with a
tag size of 2 cm x 4 cm, where the tag bandwidth was 2-7 GHz. The use of only one layer
represents a significant reduction of the tag development cost, with the possibility to realize

the tag by using printing techniques.

The reading process in anechoic chamber and in cross-polarization of a depolarizing REP
tag introduced in [VEN 13b], is shown in figure 1.10 (a). The tag was realized in Roger
R04003 with a ground plane, and was based on eight resonators composed each of five
coupled dipoles in short circuit with the first resonant mode in between the band 3-7 GHz.
The Agilent N9918A was used as VNA with 0 dBm of emission power. The dual access
Satimo QH2000 was employed, and the tag was placed at 15 cm. The detection process
used was the background subtraction. The measurement results are shown in figure 1.10 (b),
where the eight resonant frequencies correspond to the visible eight peaks. The coding is

based on the position of the resonances.
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Figure 1.10. Measurement in cross-polarization of the frequency-coded UWB REP chipless RFID tag
proposed in [VEN 13b], inside an anechoic chamber. (a) Photo of the test bench and the measured
tag. The Agilent N9918A was used to measure the S-parameter (S21), with an averaging factor of 10.
The tag was placed at 15 cm from the dual-access dual polarization Satimo QH2000 antenna. In (b)
the tag response where the positions of the eight resonant frequencies are underlined (read circles).

4. Conclusion

In this chapter the chipless RFID technology that interests the UWB was introduced. The
chipless may be placed in-between the more advanced RFID and the barcode. It may
represent a cheaper identification solution than RFID preserving the not direct-line-of-sign in
reading process, and the possibility to embed sensor capabilities. These two characteristics
represent significant advantages compared to barcode. On the other side a UWB chipless
tag, in comparison with barcode, has lower bit capacity, lower multipath immunity, and higher
realization cost. The latter is most due to the cost of conductive ink in case of printable tags.
A UWB chipless tag may be classified in time-coded and frequency-coded, where the letter

uses the REP technology to reduce its dimension.

The chipless RFID technology is based on a radar approach, where the backscattering
energy from an object through its RCS, is the heart of all the radar applications. Thus, the
performance of the reader has an important impact on the reading capability. Parameters
such as: the read range, the impact of different tag orientations, and tag bit capacity, are
strongly dependent on the reader. In the next chapter, the state of the art of chipless reading

technology is reviewed.
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UWB Chipless RFID Reader: State of the Art

1. Introduction

In the chapter 1 the chipless RFID technology that involves the UWB was introduced. Its
main peculiarities, compared with classical RFID and barcode, were underlined. The aim of
this thesis is the development of a low cost reader for UWB chipless RFID tags, which is
compliant with international regulations with a reduced reading time. This chapter introduces

the current state of the art for chipless readers involving the UWB between 3.1 — 10.6 GHz.

All the proposed readers in literature are based on frequency domain with either a
Stepped-Frequency Continuous Wave (SFCW) or a Frequency-Modulated Continuous-Wave
(FMCW) approach. Both provide a transmitting signal sweeping in between the tag
bandwidth to retrieve the desired information. A SFCW reader has a higher sweep time
compared with a FMCW where the transmitted CW instantaneous frequency is varying with a
stair case function as shown in figure 2.1(a). The transmitting and receiving instantaneous
frequency, respectively f(Tx) and f(Rx), have a small offset and no beat frequency is
generated. This approach is also used in commercial Vector Network Analyzer (VNA) and is
suitable to read both frequency-based and time-based chipless RFID tag. A FMCW approach
is typically used in radar application where a beat frequency is generated due to the offset Af
between f(Tx) and f(Rx) as shown in figure 2.1(b). This approach allows for a reduced
sweep time compared with SFCW and both RFID chipless tags topology can be read.
However the reading of a frequency-coded tag with FMCW is low accurate and requires a

complex post processing algorithm that may involve the Hilbert transform.
The chapter is organized as follows:

e Section 2 introduces two SFCW reader architectures characterized by two mixers

in reception, and an IQ demodulation scheme.
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e Section 3 details the readers based on FMCW architecture and their capability of

reading frequency-based tags is demonstrated.

e Section 4 introduces a reading technique based on Impulse-Radio UWB (IR-UWB)
as shown in figure 2.1(c). It represents a time domain approach, and up to date no
IR-UWB chipless RFID readers are available in literature. A comparison between
SFCW, FMCW and IR-UWB architectures, in relation with UWB regulations, is
given. Finally a link-budget involving the three different approaches with a typical

frequency-coded tag as target is proposed

e Section 5 draws the conclusion of the chapter.
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Figure 2.1. (a) Transmitting and receiving signals of a UWB chipless RFID reader based on
SFCW. It shown a high sweep time and is ideal to read frequency-coded chipless tag. (b)
Transmitting and receiving signals of a UWB chipless RFID reader based on FMCW. It has a
reduced sweep time and is most employed to read time-based chipless tag. (c) Transmitting
signal of a UWB chipless RFID reader based on IR-UWB approach.

2. SFCW approach

A block schematic of a bi-static SFCW reader is shown in figure 2.2. In transmission a
Phase Locked Loop (PLL) is used to generate the CW interrogating signal whose
instantaneous frequency f(Tx) is controlled by the digital and control unit. In the receiving
front-end is used an 1/Q demodulation scheme to recover the amplitude and phase difference
between the reader transmitting and receiving signal. The generation of a beat frequency is

not needed with this solution, and the sweep time of the PLL can be as long as desired. In
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any case the sweep time must not be excessively long to avoid unbearable reading time.
With this approach is possible to characterize the impulsive response of the tag in the band

of interest, and thus decode both chipless RFID tag topologies.
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Figure 2.2. UWB chipless RFID reader based on FMCW approach and I/Q demodulation. Thanks to
the use of two mixers, a beat frequency is not required.

A reader for UWB chipless RFID tags based on SFCW implementation was proposed in
[PRE 10]. It was designed to work between 5 and 9 GHz, and a wideband Yttrium Iron
Garnet sphere (YIG) Voltage Controlled Oscillator (VCO) was used in transmission. The
reader schematic is based on a heterodyne configuration with the generation of an
Intermediate Frequency (IF) signal to reduce the effect of flicker noise. The reader block

schematic is shown in figure 2.3.

The two outputs of the low-pass filters (LPF), ¥; and Y,, go through the AD8302 from
Analog Devices. It is a gain-phase detector, which is able to measure the phase and
amplitude difference between two signals. Considering that the amplitude of Y, depends also
from the amplitude of the tag response, an IF amplifier was needed after the LPF. This to
compensate for the higher power present at the output of the coupler, compared with the
input signal of the reader, where the tag response is present. The reader bandwidth was
between 5 - 9 GHz, and its hardware cost, not including the antennas, was of 4500 € (2010).
It was tested in anechoic environment with an 8 bit frequency-coded tag at few tens of

centimeters. The emitted VCO output power was of 16 dBm.
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Figure 2.3. Schematic of the UWB chipless RFID reader presented in [PRE 10].It is based on SFCW
approach with a heterodyne configuration. The use of a heterodyne configuration helps to reduce the
flicker noise effects due to the active devices.

3. FMCW approach

In this section, the main FMCW UWB chipless RFID readers proposed in literature are
introduced. The proposed readers were designed around specific tag’s families, from
frequency-coded in [KOS 12] to time-coded in [POP 16]. Both readers have the same

architecture, with the use of different components that grant for diverse reader performance.

In a FMCW approach the instantaneous frequency of the transmitting and receiving signal
have an offset Af which is proportional to the distance of the tag. This generate a beat signal
in reception where is encoded the tag ID as demonstrated in the next sub-section 3.1.1.
[CHA 00].

3.1. Frequency-coded tag reader

In [KOS 12], the authors proposed a UWB chipless RFID reader based on chirp signal
interrogation. This reader was optimized for frequency-coded tags, and its hardware
architecture may be considered invariant with respect to a bi-static UWB FMCW radar. A
photo of the proposed reader with the tag used as proof of concept, and its schematic
representation, are shown in figure 2.4. The reader is composed of two boards, one for the
digital processing and the other one, on top, for the analog circuitry. The analog board was
realized on Taconic TLX-0 which has a relative permittivity of 2.45, and a thickness of 0.5
mm. The reader works in the bandwidth 4 - 8 GHz, and is used with two UWB monopole

antennas, with a bandwidth of 3.6 - 7 GHz. The tag was a frequency coded with 9 bits having



2. UWB Chipless RFID Reader: State of the Art 29

two cross-polarized UWB antennas, and spiral resonators as notch filters. The coding

technique was based on a presence/absence approach.

Chapless tag

Antennas

Spiral
resonators

(LimAk]-
RS232)

(b}

Figure 2.4. (a) UWB chipless RFID reader proposed in [KOS 12] with a photo of the frequency-coded
tag used as proof of concept. (b) Architecture of the reader, it presents the same hardware structure of
a FMCW radar in bi-static configuration.

3.1.1. Limitation on reading frequency-coded tag

To stress the limitations of a UWB FMCW chipless RFID reader to read frequency-coded
tag an analytical analysis is proposed. The equations are partially based on [KOS 12], and
[CHA 00]. The tag is supposed to be interrogated with a linear frequency modulated signal as
shown in figure 2.1(b). The interrogation starts at t = 0 s from the minimum frequency of the
VCO, called f,, to the maximum frequency equals to f, + BW. The VCO is modulated with a

saw tooth signal of repetition frequency f,,. The transmitting signal (VCO output) X, (t) toward

the tag can be approximated with the equation [2.1].

X, (t) = cos(2 [, (fy + BWft')dt") [2.1]

For simplicity the four antennas, two of the reader and two of the tag, are considered as
ideal irradiators where the signal is only attenuated. T, is the time that the VCO output

signal takes to travel all the way to the RF input of the receiving mixer crossing the tag, the

antennas, the RF cables, the PCB components, and the free space. This signal will be varied
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in amplitude, TM(f), and in phase, TO(f), according with the tag transfer function. The
objective of the reading process is to obtain the amplitude TM(f), and the phase, To(f) of
the transfer function of the tag. In the proposing case of study, the instant frequency of X,(t)
is not constant as for CW, and therefore in first approximation, TM(f) and T6(f) may be

inserted in the time domain expression of the equation [2.1] resulting in the equation [2.2].
Y, (€) = TM(f)cos (2m [P (fy + BW fyt )dt' — TO(F)) [2.2]

Y,(t) is the signal at the RF input of the mixer, and f' represents approximately the
instantaneous frequency of the transmitting signal at the time t — T,4.,. The output of the

mixer after the LPF can be expressed as:

Yape(t) = TM(f%)cos ((Zn [5Cfo + BWfpt)) e’ — 2 [{7TPR(fy + BWfyt")de' -

Te(fi)) = TM(f")cos <(21‘[ S o + BW o)) dt' = Te(fi)>

=TM(f%)cos <(2n(foTpath + w + prpathBWt> - Te(fi)) ~
TM(f%)cos (27 (foTpaen + fyTpaenBWE) = TO(F1)) [2.3]

The instantaneous frequency of the transmitting signals is known and equals to f, +
BWf,t (from equation [2.1]). Once Y,,.(t) is digitalized, it is possible to obtain the two
components TM(f*) and TO(f"), using the Hilbert transform. The possibility to obtain the two
information separately, is due to the generation of the beat frequency f, Ty,q:n BW equals to Af
of figure 2.1(b). The equation [2.3] is the results of many approximations. The influence of

the antennas, and the coupling and the echoes from the environment, were not considered.
3.1.2. Influence of the VCO sweep time on the reading performance

The accuracy that can be reached using a FMCW reader depends also from the product
BWf,. A small value means that the chirp interrogating signal is sweeping slowly around the

tag bandwidth. The tag output will reach its stable state according to the input instantaneous
frequency. On the other side, the beat signal frequency (f,Tpacn BW) Will be excessively

small, making complex the estimation of the amplitude, and the phase components
(TM(f"), TO(f)) separately.

Increasing BW f,, means a VCO with a higher input bandwidth so a reduced sweep time.
The beat frequency (f,Tpq:nBW) Will be increased, and the application of the Hilbert

transform more effective. However the approximation made in the time domain, with the
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introduction of the components TM(f') and TO(f"), will not worth anymore. Thus, the
measured signals TM (') and TO(f") will be a kind of mean in a bigger bandwidth, and they
will not be referred to the precise instantaneous input frequency resulting in a less accurate

estimation of the tag spectral characteristic.
3.1.3. Simulation result

This sub-section shows the effect of a variable sweep-time on the reading accuracy of a
frequency-coded tag. A Matlab Simulink model of a FMCW UWB chipless RFID reader is
shown in figure 2.5. It was used to read a tag based on one resonator in cross-polarization.
All the components are ideal, and the attenuations of the reader cables, the antennas, the
free space loss and the tag antennas were not taken into consideration. The propagation
delay between the VCO output in transmission and the mixer RF input in reception, were
modelled with two ideal transport delay blocks. The tag was interrogated with a CW signal
whose instantaneous frequency was varying linearly between 2 and 6 GHz, with a saw tooth
modulating signal. Different simulations were performed varying the sweep time (1/f,)
between 100 ns and 100 us, where the BW was fixed at 4 GHz according to [KOS 12]. The
tag resonator was modelled with a RLC series circuit terminated with a 50 Q load. Its
resonant frequency was at 4 GHz with a quality factor of 100 that is consistent with REP

based resonant particles [VEN 16].
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Figure 2.5. Matlab Simulink model of a FMCW UWSB chipless RFID reader. The tag is a solely
scatterer based on REP principle, and represented with its transfer function. The delay introduced by
the cables and the devices are represented with the two transport delay blocks. The transfer function

of the tag is the tag mode response of a resonator at the frequency of 4 GHz with a quality factor of

100.
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The simulation results of the model of figure 2.5 are shown in figure 2.6 for a sweep time
of 100 ns, 1 us, and 10 us. The modules of the analytical receiving signal obtained with the
Hilbert transform is shown in figure 2.6 (a). All the curves were normalized with respect to the
most favorable sweep time of 10 pys. The normalized module of the transfer function of the

tag is shown in green dotted line on the figure.
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Figure 2.6. Simulation results of the model in figure 2.5 for the sweep time of 100 ns, 1 us, and 10 us.
(a) Module of the analytical receiving signal obtained with the Hilbert transform. All the curves were
normalized with respect to the more favorable case represented by the bigger sweep time of 10 us. In
the figure in green dotted line is also shown the normalized module of the transfer function of the tag.
(b) The normalized three sweep time cases of (a).

From figure 2.6 (a) the module of the analytical signal, obtained with the Hilbert transform,

matched perfectly the response of the tag for a sweep time of 10 ys. At a shorter sweep time
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corresponds a smaller energized signal [KEY 16], as shown in figure 2.6 (a). The three
sweep time cases normalized results are shown in figure 2.6 (b). From simulation, the phase
variation TA(f!) introduced by the transfer function, was excessively small to be effectively
detected. In equation [2.3], TO(f") represents a phase variation corresponding to the high
frequency chirp interrogating signal, and not to the smaller beat frequency f,Tyq:nBW. In
case the tag has the information coded only with the tag phase characteristics, a shorter
sweep time is advisable to increase the beat frequency, otherwise a compromise needs to be
found.

3.1.4. Conclusion

From [KOS 12] and the proposed simulation model, a frequency-coded tag may be read
with a reader architecture close to a FMCW radar. The sweep time of the transmitting VCO
plays a fundamental role to retrieve the tag transfer function characteristics (TM(fi), TO(fY)).
A short sweep time allows for a better implementation of the Hilbert transform, and the
retrieve of tag phase characteristics T8(f"). However, it shows lower analytic module signal

amplitude as shown in figure 2.6 (b). A long sweep time produces a small beat frequency
foTpatn BW, hence the estimation of TO(f") is more difficult, but it allows for a higher analytic

module signal amplitude, and thus a better TM(f") estimation.

In the sub-next section will be demonstrated how the reading of a time-coded tag using a

FMCW approach is easier than a frequency-coded tag, and less error-prone.

3.2. Time-coded tag
3.2.1. Time-coded tag as collection of steady targets

A time-based UWB chipless RFID tag may be seen as a different number of steady
targets located in the direction of the reader [GIR 13]. This implies the absence of any
Doppler effects that may complicate the reading. For simplicity, a time-coded tag with only
one reflector is considered. It may be seen as two ideal targets, the closer responsible for the
tag structural mode, and the farer for the antenna (tag) mode. If the two targets are not
influencing each other during a reading process, then the equation [2.3] can be applied at
each of them independently, giving the equation [2.4] for the tag structural mode, and

equation [2.5] for the antenna (tag) mode.

Yapc(8) = TMg(f?)cos ((2n(foTpacn—s + fyTpatn-sBWE ) = TOS(F)) [2.4]
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Yapc (€)= TMy(f?)cos ((2n(foTparn-r + foTpaen-rBWE ) = T07(f)) [2.5]

TMs(f") and TOs(f") are referred to the reflective characteristic of the tag structural
mode, and TM;(f') with TOr(f") for that of the antenna (tag) mode. Because the tag is
approximated with two ideal reflective targets, the aforementioned parameters may be
considered invariant with frequency. Tyqn-s and T,qn—r are the total propagation delay
between the VCO output and the mixer RF input, respectively for the signal reflected back

from the structural mode, and for the antenna (tag) mode.

In a time-based tag the information is coded on the timing distances between the different
targets, and from equations [2.4]-[2.5], it may be retrieved measuring the difference between
the two beat frequencies f,T,qtn-sBW for the structural mode, and  f,,Tpqcn-rBW for the
antenna (tag) mode. The difference between T,gp-r and Tpe-s depends on the
propagation delay between the two targets. A time based UWB chipless RFID tag is

supposed to have resolution in the orders of ns, it brings to a frequency difference of:

fairr = f[pBWlns [2.6]

From equation [2.6], the difference between the two beat frequency depends linearly from
the bandwidth of the reader BW, and from the sweep time with f,. A fast FMCW with a high
bandwidth will read the time-based tag with a better timing resolution increasing the tag bit
capacity. The reader proposed in [KOS 12] and analyzed in this section may be used to read
time-based tags, where the Hilbert transform is substituted with a spectral analysis of the

ADC output to retrieve the distances between all the generated beat frequencies.
3.2.2. Low cost solution

The lack of interest in retrieving the transfer function of a time-based tag with TM(f*) and
TO(f"), opens for a low cost reader design reducing the band of interest BW. This principle
was exploited in [POP 16], where a low-cost FMCW reader for time-based tags is proposed.
The reader block schematic and a photo of its RF front-end are shown in figure 2.7. The
transmitting signal is generated by a VCO whose frequency is stabilized with a fractional
synthesizer PLL. As a result of the VCO (10 dBm) high power output, and the gain of the
transmitting and receiving antennas (20 dBi), the reader does not need an output power
amplifier. The demodulating block is composed of a mixer and a LPF, with a coupler realized

directly on layout. The tag, also shown in figure 2.7, has been optimized to work in co-
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polarization, where the reading was performed in an anechoic chamber at a distance of 50

cm. The hardware implementation without the antennas was around 250 € in 2016.

() (h)

Figure 2.7. (a) Analog board photograph of the UWB chipless RFID reader proposed in [POP 16] and
its architecture. It is similar to [KOS 12]. Its lower cost is due to its limited bandwidth. (b) The time
coded tag is composed of four scatterers with stub loads.

The tag was realized on Rogers RT/duroid 6006 substrate and presents four scatterers
realized with parallel stubs. The tag dimensions are prominent and of about 23.7 cm x
8.2 cm. The measurement process in [POP 16] uses a calibration tag to remove multiple
reflections outside that of the tag reflectors. The tag was successfully tested, whereas no

results in practical environment are reported.

The cost of the VCO can be a strong handicap towards the design of a wideband reader.
In [POP 16] it has a limited bandwidth of 1.25 GHz centered at 7.825 GHz representing an
inexpensive solution. The PLL Analog Devices HMC703LP4E is provided with a frequency
sweep mode, and is used to control the VCO Analog Devices HMC508LP5E in feedback
loop. The VCO has two outputs, one is the higher frequency called RF output, and the other
one is at half frequency, and is connected with the PLL to form the loop. In reception after the

usual LPF, the microcontroller STM32F407 from STMicroelectronis provides the digital
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conversion. This solution is the solely designed around time-coded tag on literature, and

represents the cheapest UWB chipless RFID reader currently available.
4. SFCW-FMCW vs IR-UWB

4.1. Introduction

A UWB chipless RFID reader based on IR-UWB uses sub-nanoseconds UWB pulses to
characterize the tag and therefore represents a time based solution as shown in figure 2.1. A
schematic of an IR-UWB UWB chipless reading system, which employs laboratory
equipment, is shown in figure 2.8. A pulse generator triggers the Digital Signal Oscilloscope
(DSO), and transmits a sub-nanosecond UWB pulse towards the tag. Then the DSO
measures the backscattered signal from the environment, in a bi-static configuration. In
alternative, a diplexer can be used to obtain a mono-static reader. The IR-UWB configuration
helps to send an interrogating signal with the maximum instantaneous power compared with

SFCW and FMCW, which interrogates the tag for a longer period of time.
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Figure 2.8. Bi-static chipless reading system based on IR-UWB approach consisting of laboratory
equipment. A pulse generator, which triggers the Digital Signal Oscilloscope (DSO), sends a sub-
nanosecond UWB signal toward the tag, and then the DSO measures the backscattered signal from
the environment.

An IR-UWB approach shows a reduced reading time due to the absence of a sweep in
frequency domain. The sweep time of a frequency domain solution is directly proportional to
the bandwidth of the reader. In [KOS 12] it is equal to 500 ms, and for an estimation of a row
reading time, all the post processing treatment, and an eventual data transfer to a central unit
should be added. Moreover, if a sweep averaging process is used, the reading time could

reach several tens of seconds. In [POP 16], the sweep time is limited to 10 ms, however its
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bandwidth is of only 1.25 GHz as so the proposed reader may hardly be employed to read

high bit capacity tags (frequency-coded tag).

4.2. UWB regulations

In 2002 the FCC issued its first radio-regulation for UWB [FCC 17], subsequently Europe
followed with the ETSI [ETS 04-ETS 10]. The UWB is an unlicensed bandwidth and therefore
free to be used. It is characterized by low power transmission, where the limitations depend

on the applications.

Both FCC and ETSI define limits for the maximum average power spectral density, and
the maximum peak power. The maximum peak power is defined over a bandwidth of 50 MHz
around the maximum measured average spectral density. The latter is measured with a
resolution of 1 MHz. The FCC and ETSI masks for the maximum peak power and maximum
average power spectral densities are shown in figure 2.9. An IR-UWB reader has a higher
instantaneous transmitted power than a frequency domain reader. Thus, the maximum peak
power mask represents the major constraint for the IR-UWB solution, while is the maximum

average power mask for SFCW and FMCW readers.
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Figure 2.9. FCC and ETSI mask for communication application with the respective most favorable
case. a) Maximum average power. b) Maximum peak power.

4.3. Link budget

A study of the link budget in the case of a chipless RFID systems taking into account the

regulations is proposed. The equation [2.7] is the radar equation (Friis), where G is the gain
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of the transmitting antenna, Gy is the gain of the receiving antenna, ¢ is the RCS of the tag
for that frequency, 1 is the wave length of the carrier frequency, R is the distance of the tag,

Py is the transmitting reader power, and finally P the reader receiving power.

PrGrGgrA?
PR =
(4m)3R*

[2.7]

For a frequency domain reader, the frequency of the carrier is sweeping between a
minimum and a maximum value. Thus, the receiving power from the reader is also sweeping
in frequency during the same period of time depending on the period of the modulating
signal. The maximum average power between 3.1-10.6 GHz, for the most favorable case, is
of -41.3 dBm/MHz as shown in figure 2.9 (a). It is equivalent to the instantaneous power
transmitted by the reader in case its sweep time is bigger than the sweep time of the Signal
Analyzer (SA) used to check the compliant with the maximum average power mask. From
regulations, the sweep time of the SA is maximized by 1 ms/ MHz. If the reader has a shorter
sweep time, it may have a maximum average power higher than -41.3 dBm/MHz.
Substituting -41.3 dBm/MHz to P;G the equation [2.8] shown in dB, is obtained.

GrA?

Pp = —413 dBm + 10l0g10(;, 555

o) [2.8]

In case of IR-UWB approach the reader transmits all the energy of its UWB pulse
concentrated in a small fraction of time, while in a frequency domain reader it is distributed in
time. Thereby the equation [2.7] can be integrated around the band of interest, which is the
frequency resolution of the IR-UWB reader (RBW), giving the equation [2.9].

_ GrA* f]{; PrGrdf
R (4m)3R*

[2.9]

In equation [2.9], the product P;G; needs to be defined according with the masks. For an
IR-UWB approach, the most restrictive mask is the maximum peak power, which in the worst

case is of -34 dBm/MHz according to equation [2.10].

RBW New

Peackmp(RBWyew) = Peack(RBWsoyp,) + 20l0g10(F57, 000

[2.10]

Where Peack(RBWsgyp,) is the maximum of peak power in figure 2.9 (0 dBm/(50 MHz)),

and ZOIoglo(iiV;":;) is the scale factor to express Peack(RBWgouu,) for the new resolution

of 1 MHz. The equation [2.9] may be expressed in dB as shown in equation [2.11].
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GrA?
(4m)3R*

Pr(dBm) = =34 dBm + 10log10(f, — f, (MHZz)) + 10log10(

o) [2.11]

Comparing the results of equations [2.8] (SFCW-FMCW) and [2.11] (IR-UWB), the case
of IR-UWB appears more favorable, especially for time-coded tags where the specitral
characteristics of the tag are not concerned, and then f;,, — f, may be as big as possible. As
example, if a frequency-coded tag is measured with a frequency resolution of 50 MHz, the
equation [2.11] (IR-UWB) becomes,

GrA?

Pq = 17 dBm + 10log10(; %5

o) [2.12]

Comparing the equation [2.8] and [2.12], the case of IR-UWB shows a receiving power Py
of about 24 dB bigger than the case of frequency domain. To increase P the reader should
have a short sweep time, which is the case for a FMCW reader. This will decrease the
measured maximum mean PSD over the specified interval of time for 1 MHz (1 ms for FCC,
1 us -1 ms for ETSI). However a FMCW approach shows difficulties to read frequency-coded
tag as demonstrated in section 3. Other ways of increasing the transmit power to the tag are
compression power methods such as pulsed frequency modulation (PFM) that have never

being proposed for chipless RFID reader.

Compared with IR-UWB a frequency domain reader has a lower input noise bandwidth
due to the presence of the IF filter, it will result in a reader with higher sensitivity that may
compensate for the lower receiving Pz. A reader based on IR-UWB has a higher noise

bandwidth due to its wide-band receiver, which is translated into high sampling noise.

Numerous works in literature exploit the IR-UWB advantages for chipless applications.
They use commercial IR-UWB radar to perform reading of time-coded tags. In [RAM 16], a
Time Domain PulsON P400 MRM was used to read a time-coded UWB chipless RFID tag
with a read range in practical environment 5 m. In case of all the frequency domain reader
proposed in literature, the read range was lower than 1 m with measurement in anechoic
environment. The only reader tested in practical environment was [KOS 12] at a distance of
10 mm. In [RAM 11], the Geozondas GZ6EVK IR-UWB radar evaluation kit, composed of the
GZ6E sampler converter and the impulse generator GZ1120ME-50EV, was employed to
read time coded tag at 50 cm in practical environment. In [RAM 12], a Novelda NVA610
evaluation kit IR-UWB radar was used in bistatic configuration with two tapered slot Vivaldi

antennas. It was able to read a time-coded tag in practical environment at a distance of 130
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cm. As analytically demonstrated, a reader based on IR-UWB is preferable than a frequency
domain reader when the UWB regulations are taken into consideration. It shows bigger
power in reception, and reduced reading time. If the UWB regulations are not taken into

account, the study of link-budget does not worth anymore.

4.4. Conclusion

A FMCW solution with reduced sweep time found not only hardware difficulty, because of
the UWB VCO limited speed, but also from the tag characteristics. Indeed a frequency-coded
tag implemented with REP technique, is no more than a bunch of parallel passive filters. If
the sweep in frequency is excessively fast, then they will not have the time to charge
themselves and reach the stable state, and the response will be lower in amplitude. This was
demonstrated in [KEY 16]. A SFCW reader may be used to read both, time and frequency-
based tag where the reduced P, may be compensated by higher sensitivity compared with
IR-UWB. On the other side the high sweep time will translate in high reading time especially
in presence of sweep averaging [KOS 12]. An IR-UWB architecture is preferable to design a
UWB Chipless RFID reader compliant with international regulations, and which is capable to
read both, time-coded and frequency-coded tags. It has higher P, and a reduced reading
time for the absence of any frequency sweeping in transmission that makes it ideal for a real
time application. The hardware design of an IR-UWB reader has to be optimized to reduce its

sampling noise (high input noise bandwidth).

5. Conclusion

In this chapter the state of the art of UWB chipless RFID readers has been reviewed. The
totalities of the proposed solution are based on SFCW [PRE 10] or FMCW [KOS 12 - POP
16] and their main characteristics shown in table 2.1. Both frequency domain approaches are
able to read time-coded and frequency-coded tags, with their main characteristics shown in
table 2.1. The SFCW solution provides better reading for frequency-coded tags while the
FMCW is ideal for time-coded tags and low cost reader design. The tag reading time

exceeds readily 1 s depending on the VCO sweep time and averaging.

The IR-UWB architecture has been introduced, it grants for faster reading because no
sweep frequency process in transmission is needed. The international UWB regulations have
been introduced, and based on that a link-budget was proposed. It took into consideration

both, frequency domain and IR-UWB reader approach, where the IR-UWB shown higher
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receiving power. However its hardware architecture has to be optimized to reduce the

sampling noise.

SFCW FMCW

[PRE 10] [KOS 12] [POP 16]
VCO Sweep time No info
Bandwidth (GHz) 5-9 4-8 1.25

Components cost
estimated (€)

4,500 650 250

Table 2.1. Main characteristics of major UWB chipless RFID readers presented in literature, all the
readers are based on frequency approach. The cost estimation is not considering the antennas used
for the shown measurement results.

In the next chapter will be discussed the first reader version designed during the thesis

period. Since the results of this chapter, it was designed around the IR-UWB approach.
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IR-UWB Chipless RFID Reader Design

1. Introduction

In this chapter is presented the first version of the IR-UWB Chipless RFID reader
designed during the first part of the thesis. It is a fully working reader, and the first custom
published chipless RFID reader based on IR-UWB approach. The chapter is organized as

follow:

e Section 2 introduces an IR-UWB reader system based on test equipment and used
to read frequency-coded UWB chipless RFID tags. It is a real time system with a

realization cost and overall dimensions not suitable for a commercial solution.

e Section 3 introduces the sequential equivalent time principle, which helps to
design low cost electronic systems. Thus, all the proposed designed readers on

this thesis are based on sequential equivalent time.

e Section 4 shows the first fully working reader developed before the beginning of

the thesis.

e Section 5 describes the hardware architecture of the integrated reader version
designed during the first part of the thesis. It shows a substantial retail cost
reduction on its hardware components, and better performance. The reader
characterization stressed possible ameliorations in the design for a more

performing reader.

e Section 6 shows some frequency-coded tag measurement with the reader

introduced in section 5.

e Section 7 draws the conclusion of the chapter.
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2. IR-UWB reading system based on test equipment

The IR-UWB approach has been introduced in the second chapter. The transmitting signal
is a sub-nanosecond UWB pulse that may be used to read both, time-coded and frequency-

coded tags.

The reading scenario of a UWB chipless RFID tag is shown in figure 3.1 (a). The reader is

composed of a pulse generator, a device to measure the tag response in time domain such
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Figure 3.1. Bi-static chipless reading system based on IR-UWB approach, and composed of test
equipment. (a) Schematic of the actual reading system employed. The reading was performed in
cross-polarization using the dual access Satimo QH2000 antenna. (b) Photo of the test bench in
anechoic chamber. The tag was the depolarizing REP tag introduced in [VEN 13], and already
presented in chapter 1. It was placed at 15 cm from the antenna.



3. IR-UWB Chipless RFID Reader Design 45

as a DSO, and a PC that may be used as control and post processing unit. A Low Noise
Amplifier (LNA) can be connected at the input of the DSO. The pulse generator triggers the
DSO during the acquisitions. The corresponding test bench used to read chipless tags is
shown in figure 3.1(b). The DSO was the Agilent 912004A, which features an analog
bandwidth of 12 GHz, and a sampling rate of 40 GSa/s. The pulse generator was the
Picosecond 3500D, it produces pulses with 65 ps of Full Width at Half Maximum (FWHM),
and amplitude of 8 V on a 50 Q load. The tag was the depolarizing REP tag introduced in
[VEN 13], and already presented in chapter 1. The tag was placed at 15 cm from the end
(the closer point to the tag) of the dual access Satimo QH2000 antenna. The measurements
were performed in anechoic chamber to reduce has much as possible external EM
disturbances. The PC was connected to the UWB slave port of the DSO, where a Graphical
User Interface (GUI) was developed and described in Appendix I to control the DSO.

The tag was read in cross-polarization configuration as shown in figure 3.1 (a), and read
with the background subtraction technique introduced in chapter 1. The latter consists in two
measurements, one with the tag (tag measurement), and another without the tag
(background measurement). After in post processing, a subtraction between the two results
in time domain is performed to isolate the tag contribution from the measured signals. The
measurement with the tag is shown in figure 3.2 (a), and the subtraction result is shown in
figure 3.2 (b). The tag contribution is the less powerful part of the signal, while the most
significant one it is represented by the direct coupling between the antenna ports (even if
they are characterized by an isolation of around 40 dB). It represents the leakage of the
presenting reading system, and is shown in figure 3.1 (a) with the dashed green line. To
retrieve the tag ID, it is sufficient to analyze the signal of figure 3.2 (b) in frequency domain,

and the correct frequency resonant positions (peak in spectrum) as shown in figure 3.2 (c).

3. Sequential equivalent time approach

The reading system shown in figure 3.1 is a real time implementation, thanks to the DSO
high sampling rate of 40 Sa/s. The objective of this thesis is the design of a reader which is
also low cost, therefore an equivalent time reading approach has to be used. In a sequential
equivalent time approach, the reader transmits the same interrogating signal towards the tag,
at intervals corresponding to the Pulse Repetition Frequency (PRF) period. Subsequently,

the reader samples only few points of each backscattered signal from the tag to reconstruct
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the entire signal. This is possible as long as the reading scenario is stationary between the
different interrogations. Note also that a measurement is composed of many contributions,
such as the response from the tag, the environmental contribution and the coupling between
the antennas (leakage). This procedure is performed with a much lower sampling frequency
than the one required in a real time approach, which follows the Nyquist-Shannon sampling

theorem.
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Figure 3.2. Measurement results in time domain of the test bench presented in figure 3.1. (a) Tag
measurement where the tag contribution and antenna leakage are part of the signal. (b) Background
subtraction measurement to isolate the tag contribution from antenna leakage. (c) Frequency analysis

of tag contribution (b); in read dotted circles, the position of the eight tag resonant frequencies (ID).

The sequential equivalent time algorithm is summarized in figure 3.3, where the left-side
shows the sampling process, whereas the right-side the subsequent tag response
reconstruction. Between the distinct acquisitions, the sampling clock is shifted of few
picoseconds AT, to take all the points corresponding to the measuring signal. Each
acquisition starts after a trigger event, which is usually generated by the reader control unit or
pulse generator. Finally, in the reconstruction process, all the samples in the reader memory

are rearranged together to retrieve the measuring signal. The equivalent sampling frequency
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of the system is therefore 1/ AT. With this approach the reader can emulate a high speed
sampling system, such that in figure 3.1. The reading procedure can be executed with an
averaging by repeating the tag interrogation sequence. It is useful to improve the Signal-to-
Noise Ratio (SNR), and to avoid outside disturbances from other EM signals [VEN 14]. In the

next section the IR-UWB reader designed before the beginning of the thesis is presented.
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Figure 3.3. Sequential equivalent time principle. The signal of interest (Rx impulse), is sampled with a
low sampling frequency (Sampling clock), that does not respect the Nyquist-Shannon theorem. As so,
only few points of the response of the tag are acquired. Different pulses are sent to the tag, and for
each response the sampling clock is shifted with steps of few picoseconds, AT. The synchronization is
entrusted on a trigger event.

4. Reader developed previous the start of the thesis

The thesis started in February 2014, and before that a first fully working reader version
was developed during the two years of the project called Gravit, which kick-off was in
December 2010. In this section is first detailed the schematic of the prototype, and after it will
be put in relation with the figure 3.3 to explain the hardware implementation of the sequential

equivalent time algorithm.
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4.1 Schematic

The retail cost of the evaluation boards and hardware components that compose the
reader prototype was of about 5,638 € after tax (see table 3.1), where the antennas are not
considered. The block diagram of the reader is shown in figure 3.4. The hardware was
conceived for a bi-static implementation to reduce the leakage between the transmitting and
receiving hardware parts. The pulse generator is triggered by the digital section, and its
output is directly connected with the transmitting UWB antenna. In reception the RF front-end
is made of a LNA in series with a sample and hold amplifier, hereafter just called S/H
amplifier, and afterword an Analog to Digital Converter (ADC), whose output is connected

with the digital section.
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Figure 3.4. Architecture of the fully-working designed reader during the project Gravit. It has a bi-static
configuration, and it is composed of three parts: an UWB pulse generator, a digital section, and the
receiving RF front-end.

A photo of the reader is show in figure 3.5. The LNA was the Miteq AMF-4D-00101200-
34-13P, it has a gain of 40 dB, and a bandwidth of 0.1 — 12 GHz. The maximum noise figure
is of 3.4 dB and the minimum output 1 dB compression point is of 13 dBm. It needs a supply
voltage of 15 V and 325 mA of current. The S/H amplifier was the Inphi 1321TH on its
evaluation board; it has an input bandwidth of 0 - 13 GHz, and a maximum sampling clock of
2 GSal/s. The differential output of the S/H amplifier was connected to the analog input of a
home designed four layers board, on FR-4 substrate that is part of the reader RF front-end.

Its main components are the ADC, and the delay generator.
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The ADC was the low cost AD9215 from Analog Devices, it has a vertical resolution of 10
bits. The ADC input is supposed differential and may be 1 or 2 V,_p. It shows an input
bandwidth of 300 MHz and a maximum sampling clock of 80 MSa/s. The delay generator
was implemented with two chips (MC100EP196 from ON Semiconductor) connected in
series, where each has an input digital bus of 10 lines to set up the internal delay. They are
able to delay a 50 % duty cycle clock signal between 2.4 ns and 12.4 ns, with a minimum
step AT of 10 ps (see figure 3.3). The sampling clock period of the reader is of about 15 ns

(67 MHz), therefore the use of two chips was indispensable.
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Figure 3.5. Photo of the fully-working designed reader during the project Gravit. The pulse generator
was the HL9200 from Hyperlabs. The digital section was enclosed in a Xilinx SP601 evaluation board
for the FPGA Spartan 6 XC6SLX16. The four layers RF front-end board was realized on FR-4
substrate. The LNA is the Miteq AMF-4D-00101200-34-13P. The sampling and holding amplifier was
the Inphi 1321TH on its evaluation board.

The digital section was enclosed in a Xilinx SP601 evaluation board for a FPGA Spartan 6
XC6SLX16. The pulse generator was the HL9200 from Hyperlabs. It can generate a wide-
spectrum pulse in the frequency domain extended into UWB. The generated pulse has a rise

and fall time of 50 ps, a pulse width of 70 ps, and an amplitude of 2 V on a 50 Q load with a
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random jitter of 3 ps Root-Mean-Square (RMS). The required supply voltage is of 9 V, with a

current consumption of 200 mA.

4.2 Implementation of the sequential equivalent time principle

The aim of the reader was to perform UWB chipless RFID tag measurement according to
the sequential equivalent time principle summarized in figure 3.3. The FPGA is the controller
of the acquisition, it triggers the pulse generator, sets up the value of the delay generator,
and memorizes the ADC output. It is controlled by a PC, with a Matlab program in Windows
environment, which selects the averaging and retrieves the measured signal in time domain.
At the delay generator resolution of 10 ps (AT) corresponds an equivalent sampling clock of
100 GSals (1/ AT). The S/H amplifier is able to sample an UWB input signal and output a
constant signal for an entire sampling clock period. It gives the time to the ADC to convert
the S/H amplifier output in digital symbols. The trigger event of the pulse generator is
synchronized with the sampling clock of the S/H amplifier, at the input of the delay generator.
It means that during the acquisition process the delay generator internal delay is varying with
step of AT, as shown in figure 3.3, to accomplish with the sequential equivalent time
principle. Indeed the delay between the pulse generator trigger event and the S/H amplifier
sampling clock, have to vary with step of AT.

The application software for the PC was written in Matlab, and is based on different scripts
called by the Graphical User Interface (GUI). It expects the execution of a tag measurement
according with the background subtraction technique. The GUI was designed to read the
frequency coded tag presented in [VEN 13], based on coupled short-dipoles with REP and
cross-polarization approach shown in figure 3.1. The tag was characterized in chapter 1
section 3, and shown in figure 1.10. The Matlab program uses a Fast Fourier Transform
(FFT) approach to retrieve the tag ID. The Matlab GUI is described more in detail in
Appendix II.

This first fully working reader version demonstrated the feasibility of the project, where no
optimizations were taken into account. Reading of tag with the same antenna Satimo
QH2000 were accomplished, and the reader was able to decode the tag information until 5
GHz, which corresponds to the first four resonant frequencies over eight. In table 3.1 are

shown the main characteristics of the reader.



3. IR-UWB Chipless RFID Reader Design 51

Reader retail cost after tax

Component Retail Cost after tax (2013)
LNA (Miteq AMF-4D-00101200-34-13P)
S/H amplifier (Inphi 1321TH E.B.)
Realized board components
Digital board (Xilinx SP601 E.B.)
Pulse generator (Hyperlabs HL.9200)
Total cost
Reading performance
PRF | 1.04 MHz

Input bandwidth 0.1-12 GHz

Acquisition frame duration 120 ns

Frame position ‘ Fixed

Equivalent sampling period (AT) 10 ps

Averaging ‘ [1-128]

Reading time ‘ ~12.3 s + Averaging factor x 0.5 s

S/H Amplifier sampling clock period jitter 13.22 ps RMS (115.67 ps p-p) over 1k cycles

Table 3.1. Components retail cost after tax of the fully working designed reader during the project
Gravit (not considering the antenna), and performance specification.

The reader most expensive components is the LNA with its 2,619 €, after the S/H amplifier
and the pulse generator. The reader input bandwidth is between 0.1 and 12 GHz, and the
PRF of 1.04 MHz. The acquisition frame position is fixed, and the acquisition equivalent
sampling period of 10 ps (AT). The reading time is of 12.3 s plus 0.5 s multiplied for the

averaging factor, which maximum is of 128.

From figure 3.3, if the sampling clock is affected by random jitter, the acquisition will be
affected by sampling noise. The power of the generated sampling noise increases with the
reading signal frequency [GEN 08], therefore its reduction in UWB chipless RFID reader is
essential. From table 3.1, the reader S/H amplifier sampling clock has a random period jitter
over 1,000 cycles of 13.22 ps as standard deviation (RMS), and a maximum peak to peak of
115.67 ps. The first reader version realized in this thesis is described in the rest of the
chapter.



52 IR-UWB Chipless RFID Reader Design

5. Integrated reader designed

In this section the first reader designed during the thesis is presented. It is composed of
three main parts: an RF front-end board, the same Xilinx SP601 evaluation board for the
digital section, and the same pulse generator for the emission part. The reader has identical
frame length, equivalent sampling period (AT), and maximum averaging factor as the
previous version (see table 3.1). The main ameliorations are represented by the reduction of
the reader realization cost, and the improvement of the reading acquisition. The former was
obtained with the integration of a low cost LNA and the S/H amplifier on a unique RF Front-
end board. A significant work has been done on the S/H amplifier and ADC connections, and

a substantial reduction of sampling clock random period jitter has been obtained.

5.1 Hardware architecture

The reader block schematic is shown in figure 3.6, and is invariant with respect to the
previous reader version (see figure 3.4). The reader sampling clock was of 67 MHz and the
PRF of about 1 MHz. Comparing the figure 3.5 with figure 3.6 the new version is a more
integrated solution, this in order to reduce the reader realization cost and overall reader

dimensions.
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Figure 3.6. Photograph of the reader. The pulse generator was the HL9200 from Hyperlabs. The
digital section is enclosed in a Xilinx SP601 evaluation board for the FPGA Spartan 6 XC6SLX16. The
four layers RF front-end board is realized on FR-4 substrate.
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The more performing LNA Miteq AMF-4D-00101200-34-13P was substituted with the
HMC754LP4E from Analog Devices. It works in the band 1-11 GHz, and has a gain of 16.5
dB at 6 GHz and of 14 dB at 4 GHz. The noise figure is of 1.5 dB at 4 GHz, and the output
compression point is of 18 dBm between 1 to 6 GHz. The AMF-4D-00101200-34-13P costs
about 2,619 € (2013), whereas the HMC754LP4E cost is retained inside the 100 € limit. The
component integration work was carefully executed to improve as much as possible the
reader SNR. This consisted in the use of different components, such as the driver AD4930,
the optimization of the RF front-end schematic and layout, and a better implementation of the

reader FPGA architecture.

The RF reader front-end board has two SMA connectors, one for triggering the pulse
generator, and the other as input for the external UWB receiving antenna. A more detailed
photograph of the RF front-end is shown in figure 3.7. The board was realized on four layers

with FR-4 substrate, and measures 88 mm x 70 mm (L x H).
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Figure 3.7. Photograph of the realized RF front-end of the reader in figure 3.6. It is a 4 layers board on
a FR4 substrate and measures 88 mm x 70 mm (L x H).

According to the previous reader version, the delay generator was realized with two
MC100EP196 chips connected in series. The input of the first chip is the sampling clock to
be delayed (see figure 3.4), and is sourced directly from the FPGA. For both chips the digital

control bus, for setting up the delay value, is connected with the FPGA. The output sampling
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clock signal of the second chip is connected directly with the sampling clock input of the S/H
amplifier, and with the FPGA (see Figure 3.4). To improve signal common noise rejection,
the sampling clock connection between the FPGA and the delay generator, and that one
between the delay generator and the S/H amplifier are made of balanced signals based on
the digital standard Positive Emitter Coupled Logic (PECL). A converter PECL-TTL was
employed to have trace of the sampling clock at the output of the delay generator inside the
FPGA.

The S/H amplifier input can be an UWB signal, and it is sampled with a sampling clock that in
this case is of only 67 MHz (sampling clock). The S/H amplifier varies its output only at the
sampling clock event that occur each 15 ns (about 1/67 MHz). It gives the time at the
following ADC to convert this low frequency signal, as shown in figure 3.8. The ADC was the
low cost AD9215 from Analog Devices, also used in the previous version, which has a
vertical resolution of 10 bits. The LNA has a single input/output mode, while the input of the
sampler can be driven both in single and differential mode. No balun was employed to
convert the LNA output to differential. Actually it is difficult to find commercial available balun
that can cover all the UWB between 3.1 and 10.6 GHz, and be at the same time cheap and

small in size.
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Figure 3.8. S/H amplifier principle of operation. An UWB input signal (UWB Rx signal) is sampled with
a low frequency clock signal (Sampling clock 67 MHz). Thus, its output (S/H amplifier output) is a
lower frequency content signal.

5.2 S/H amplifier - ADC connection improvement

The proper interconnection between the S/H amplifier and the ADC input was a subject of
study. Its schematic for the previous reader version of figure 3.5 is shown in figure 3.9. The
differential output of the S/H amplifier has an equivalent impedance of 100 Q, and a dynamic
of 1 Vp_p. The input impedance of the ADC has a differential resistance of 7 kQ, and each
pin a capacitance referred to the ground of 2 pF. The ADC input needs to have a common
voltage of about 1.5 V to work at the maximum performance, which represents half of its
analog supply voltage. Thus, the output of the sampler and the input of the ADC must not be

connected directly.
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Figure 3.9. Schematic of the S/H amplifier and ADC interconnection of the first reader version of
figure 3.5. The mismatching at the ADC input pins creates important reflections toward the S/H
amplifier output, as shown with the plotted curves. The S/H amplifier and the ADC were in two

different boards therefore RF coaxial cables were used for their interconnections. The delay between
the S/H ampilifier output and ADC input was of 3.5 ns. The reader sampling clock period was of 15 ns.

From figure 3.9, the S/H amplifier and the ADC were located in two distinct boards,
therefore RF coaxial cables were used for they interconnections. The sampler and the ADC
are AC coupled with two capacitors of 100 nF, and the common voltage of the ADC input is
settled with a voltage divider using two resistances of 1 kQ. This solution is straightforward
but has some inconvenient. The voltage divider connects directly the analog supply pins
(AVDD pin 12/7) with the ADC analog input. It may represent a low impedance path towards
the input of the ADC for the supply noise. The ADC analog input impedance is varying during
the acquisition, depending on its state (sampling or holding state). When in sampling state,
its analog input impedance decreases because the two switches (see figure 3.9) become
closed. It will force output of the sampler to drive the analog input of the ADC. Finally, the
output of the sampler is not closed to a proper differential resistance of 100 Q, creating an
impedance mismatching. Its negative effects are underlined in figure 3.9 with the

measurement of the sampler output on its evaluation board, and the input of the ADC. From
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figure 3.8, the sampler output is expected to be a step signal with interval of about 15 ns,
equals to the reader sampling period (1/67 MHz). Instead in figure 3.9, the signal appears not
constant with higher interval of about 22 ns. This was caused by the reflected signal, at the
aforementioned mismatching, where the two way propagation delay is of about 7 ns (RF
coaxial cables, PCB layout and components). It can be seen as the sum of two equals signal

of the duration of 15 ns (sampling clock), delayed of 7 ns.

In the new reader version the S/H amplifier, and the ADC are on the same RF front—-end
board (figure 3.7). To improve the performance of their interconnection, a driver AD4930
from Analog Devices was used. It is a differential amplifier designed to be interfaced with
ADC from the same maker. The simplified schematic of the implemented solution is shown in
figure 3.10. The driver input pin called V. settles the driver output common mode voltage,

and with the external two resistors called Rf, it is possible to configure a differential gain.

The two capacitors of 10 ps at the output of the S/H amplifier pins, and the two at the ADC
analog inputs pins, are used to improve the AD4930 robustness against instability. The
sampler output is perfectly matched, and does not need to drive the ADC input in sampling
state. The use of the driver also decreases the effect of supply noise at the ADC input [ADA
17]. An evaluation board was realized on FR-4 to study the driver effects on signal
acquisition. It is also shown in figure 3.10, and the dimensions of the board are 110 mm x

100 mm (L x H). In the next section the reader FPGA implementation will be detailed.
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Figure 3.10. Schematic of the S/H amplifier and ADC interconnection in the newer reader version.
The use of the driver AD4930 helped to reduce impedance mismatching, and increases supply noise
rejection. An evaluation board was realized.

5.3. FPGA architecture

The RF front-end is controlled by the digital board SP601 through the FPGA hardware
architecture. An FPGA device gives flexibility and also rapidity, fast dedicated hardware
blocks can be synthetized with VHSIC Hardware Description Language (VHDL) scripts. In
the proposing reader, the FPGA implements a microprocessor based embedded system with
the soft-core Microblaze processor version 8.20.a. It is connected to different peripherals,
some internal at the chip, and other external such as Double Data Rate 2 (DDR2) memory,
Universal Asynchronous Receiver Transmitter (UART), push button, and leds. Between the
internal peripherals there are a clock synthesizer, an interrupt controller, and the most
important, a custom peripheral called Reader_0. The block Reader_0 was described with
VHDL, and is the solely that communicates with the RF front-end. In turn, it is set up by the
microprocessor that gives information about the selected averaging. Inside the Reader_0
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block is also present a First Input First Output (FIFO) memory to acquire the output of the
ADC.

The block schematic of the FPGA embedded system, with the main peripherals of the
digital board SP601 used to implement the reader, is shown in figure 3.11. The Xilinx ISE
Design Suite 13.2 was used to design, simulate, and debag the FPGA architecture. The suite
offers many applications that ease the development process. Between them the ISE Design
Tool that is most indicated to implement custom hardware blocks. The Platform Studio to
create the real microprocessor embedded system, with the addition of all blocks immediately
ready from Xilinx, and Software Development Kit for software development and debugging.
Inside the FPGA Spartan 6 XC5SLX16, the Microblaze is connected with local dual ports
Block Random Access Memory (BRAM) of 32 kB with two fast Local Memory Bus (LMB),
one for data and the other one for instructions, realizing a Harvard memory architecture. Two

LMB-BRAM interface controllers are needed to connect the Microblaze with the local BRAM.

A Processor Local Bus (PLB) 4.6 is used to connect the microprocessor with the rest of
peripherals, at exception of the clock generator. The PLB provides a bus control unit, a
watchdog timer, and separate address, write, and read data path. All the peripherals
connected with the Microblaze are accessed with memory mapped, where the address range

for LMB and PLB must not overlap.

The LEDs 4 bit GPIO (General Purpose Input/Output) is the interface between the PLB
and GPIO to turn on and off 4 leds. They are useful to understand the status of operation of
the reader, and also during software debugging. The RS232 uartlite block is able to connect
a PLB bus interface with an external device equipped with UART. In this project, it was used
to interface the microprocessor with the external PC. The chip CP2103 from Silicon Labs
resides on the SP601 board, and is able to interface the Universal Serial Bus (USB) up to
version 2.0, with a UART device. All the application software on the PC were developed for
the Microsoft operative systems, and work with existing COM port PC applications. The
communication with the PC has a Baud Rate (BR) of 460.800 kb/s, with 8 bits for each data
frame, and without parity bit. The Spartan 6 presents limited resources in term of available
memory, therefore the use of an external memory is somehow necessary. The external
DDR2 of 1 Gb is used as principal memory where the application software resides. The
interface MCB_DDR?2 can connect the DDR2 memory with the PLB bus. This solution is not
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optimal for speed, the PLB is not accounted as fast bus, but for this prototype version of the

reader the optimization of reading time was not a priority.
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Figure 3.11. Block schematic of the FPGA embedded system, with the main peripherals of the digital
board SP601 used to implement the reader. The custom block Reader 0 is the solely that can
communicate with the analog board and trigger the pulse generator.

The Reader_0 is the custom block developed with ISE Design Tool. It communicates directly

with the analog board and also is responsible for triggering the pulse generator. It contains a

FIFO memory, which is directly connected with the output of the ADC, a main control unit,
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some blocks for synchronization purposes, and a PLB slave interface. The Reader 0
memorizes the ADC output, sets up the internal delay of the delay generator chips, and
triggers the pulse generator. A more in depth description of the Reader_0 block is given in

Appendix II1.

The clock generator exploits the Spartan 6 clock resources, as Phase-Locked Loop (PLL)
and Digital Clock Manager (DCM), available inside the Clock Management Tiles (CMTs) to
generate different clock signals for the available interfaces. According to the developed
project, the FPGA external chip clock input was the on board 200 MHz crystal oscillator
SiT9102Al1-243N25E200.00000 from SiTimes. From the 200 MHz input, using the clock
generator block, a 67 MHz clock and two opposite in phase of 600 MHz clocks were created.
The higher were used for the external DDR2 memory and the internal controller MCB_DDR2,
the lower for all the rest of components including the block Reader_0. The interrupt controller
is able to concentrate multiple interrupt inputs into one single interrupt output. It is interfaced
with a PLB slave interface, and presents one output directly connected with the
microprocessor interrupt input. The use of an interrupt controller free up the microprocessor

from pulling operation.

5.4. Reader specification

The costs and performance of the advanced reader are resumed in table 3.2. Respect
with the previous version, it shows a halved retail component cost, from 5,638 € to 2,350 €,
and a halved sampling clock period jitter. The latter was obtained by working on the FPGA
implementation, with proper utilization of internal intellectual property (IP) such as PLL and
delay-locked loop (DLL) [XIL 15a], and with 1/O dedicated resources [XIL 15b]. Also the
connection between the delay generator chips and S/H amplifier were improved using proper
components. Finally the layout design also played an important role. Besides all the
ameliorations provided with this reader version, some issues with signal synchronization
were still present, as for the previous reader version. They are faced in the developments

described in the next chapter.



62 IR-UWB Chipless RFID Reader Design

Reader retail cost after tax

Component Retail Cost after tax (2013*/2014**)
S/H amplifier (Inphi 1321TH E.B.) 800 € **
Realized board components ‘ ~200 € **
Digital board (Xilinx SP601 E.B.) 350 € *
Pulse generator (Hyperlabs HL.9200) 1,000 € *

Total cost | 2350 €

Reading performance
PRF 1 MHz
Input bandwidth | |- 11 GHz

Acquisition frame duration 120 ns

Frame position Fixed

Equivalent sampling period (AT) 10 ps

Averaging [1-128]

Reading time ‘ ~12.3 s + Averaging factor x 0.5 s

S/H Amplifier sampling clock period jitter ‘ 7.34 ps RMS (67.37 ps p-p) over 10k cycles

Table 3.2. Components retail cost after tax of the presenting fully working designed reader (not
considering the antenna) and performance specification.

6. Tag measurement result

The reader described here was tested using the frequency-coded tag introduced in [VEN
13], and shown in figure 3.12. The two tags have different resonant frequency positions in
the bandwidth 3 — 7 GHz. The second tag has the first seven resonant frequencies
respectively shifted of 100 MHz in direction of higher frequency (right), while 200 MHz for the
eighth. The two tags were first measured in turn in an anechoic chamber with the test
equipment of figure 3.1, and after with the proposing reader. The tags were placed at 15 cm
from the antenna on a foam support. The dual-access dual polarization Satimo QH2000
antenna, and the dual measurement procedure (background subtraction) were employed, as
for section 2. The reference measurement system (test equipment) used the pulse generator
HL9200, (the same as in the proposing reader in transmission). In reception, the DSO Agilent

91204A is used as shown in figure 3.1. The measurement bench is shown in figure 3.12.

The measurement results for both test benches in time domain, of the tag 1 and 2, are
shown respectively in figure 3.13 (a) and (b). The measurements were executed with an
averaging factor of 128 for the reader, and of 64 for the DSO. A calibration process was
previously executed to take into account the real delay of the reader delay generator. In fact

it is composed of 2 chips in series and the speculation of a tunable delay at an exact step of
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10 ps (AT) was pretentious. The calibration process was based on a comparison between
known measured signals with the DSO and the reader. The calibration results show a AT

variation between 9 and 11 ps depending on the set up delay of the delay generator.

lag

Feader V1 m

0

Figure 3.12. Measurement bench specified to the antennas-tag configuration where the cross-
polarization principle was used. The two tags were placed in turn at 15 cm of distance, and measured
with a test bench based on a high performance DSO first, and after with the proposing reader.

The measurements of figure 3.13 represent the tag measurement at which the
background measurement was not yet subtracted. The higher voltage contribution at around
1 ns represents the leakage between the antenna ports. It represents the permanent

contribution at the reader measurements.

In figure 3.14 (a) is shown the measurement results in frequency domain of tag 1, and in
(b) of tag 2, after post processing. In case of tag 1 the proposed reader shows correct
measurement for all the resonant frequencies, where the DSO peaks positions coincide with
the reader results. While for tag 2, the reader did not decode correctly the information carried
on by the sixth and seventh peak. It is worth to note that even if the DSO located correctly
the position of these two peaks, a decoding uncertainty is introduced due to the presence of

a closer resonance with considerable power.
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The obstruction of reading the higher frequency resonances from both test benches could
have been outdid reducing the tag distance of few centimeters. In addition, the pulse
generator Hyperlabs HL9200 has lower power at higher frequencies as shown in figure 3.15
(b) where the PRF was of 1 MHz. Its response in time domain on a 50 Q load is shown in
figure 3.15 (a).
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Figure 3.13. Measurement results in time domain of chipless tag responses (the corresponding
measurement bench is shown Fig. 3.13). The DSO measurements were executed with an averaging
of 64. The proposing reader measurements were executed with an averaging of 128. (a) Tag 1. (b)
Tag 2.
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7. Conclusion

In this chapter a chipless RFID reader based on IR-UWB approach was presented. It
exploits the flexibility of a FPGA with its evaluation board to reduce the reader hardware
complexity design. It has a reading time in order of several seconds, strongly depending on
the averaging factor. The reader was validated in anechoic chamber with measurements of

two frequency coded tags at a distance of 15 cm.

The acquisition suffers from synchronization issues inside the FPGA, which will be faced
in the next chapter with the presentation of a second reader version. Several aspects will be
optimized such as the reading flexibility (acquisition frame duration, frame position,
equivalent sampling period AT, averaging), the reading time, and the sampling clock period
jitter. The latter aspect is one the main characteristics that needs to be optimized to improve

the reading performance.
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Optimized IR-UWB Chipless RFID Reader

1. Introduction

In this chapter an optimized IR-UWB Chipless RFID reader is presented. Compared with
the reader version of the previous chapter, its major progresses are represented by the
reduction of the reading time, with a factor of around 1,000, and the reduction of sampling
noise. It also offers flexibility in term of reading settings, such as acquisition frame position,

length, and equivalent sampling rate.

In the first part, a theoretical introduction to sampling noise and quantization noise is
given. In the second part, the reader hardware architecture is described more in detail,
focusing on the characteristics that improved the reader performance. To facilitate the
understanding of the chapter, some particular hardware and software aspects are in
Appendix. Finally, measurements of chipless tags in practical environment are shown. The

chapter is organized as follow:

e Section 2 does a theoretical introduction at the ADC sampling and quantization

noise.

e Section 3 presents the hardware architecture of the reader, and the reduction of its

sampling noise compared with the reader version of chapter 3 is demonstrated.

e Section 4 describes the reader FPGA architecture focusing on the techniques
employed to reduce the reader reading time, and to resolve the synchronization

issues shown in chapter 3.
e Section 5 gives the specifics of the reader.

e Section 6 presents the realized reader power supply board
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e Section 7 shows some frequency-coded tag measurements.

e Section 8 compares the reading accuracy of a frequency based reader, with an IR-

UWB based reader supposed affected by different levels of jitter.

e Section 9 draws the conclusion of the chapter

2. ADC noise theory

The reader proposed in chapter 3 has an AD conversion block composed of a UWB S/H
amplifier followed by a driver and a low cost ADC. The AD conversion block may be seen as
a unique ADC presenting at its input an UWB signal. The ADC block of a UWB chipless
RFID reader may either have a low frequency signal as input in the case a frequency based

approach (see chapter 2) or an UWB signal for the IR-UWB approach.

All the analog to digital conversion processes degrade the SNR ratio at its input. There
are different sources of noise that may play a major or a minor role, depending of the ADC
characteristics and also of the input signal in terms of voltage range and frequency contents.
An ADC can be seen as a S/H amplifier in series with a quantizer as shown in figure 4.1. The
S/H amplifier is responsible of the sampling in time domain of the analog input and it is
ideally composed of a switch controlled by a clock, and a capacitor to follow the input signal
voltage. The switch commutes according to the clock events, rising and falling edges. It
closes when falling events occur, and opens with rising events. When the switch is closed,
the capacitor follows the analog input signal. At the rising clock event (sampling), the switch
opens and the capacitor is in memory state. The tension of the capacitor is constant (holding)
until the switch is closed again. During the memory state (holding), the capacitor value is
converted in digital symbols by the quantizer, which input/output characteristic can be

represented with a stare case function (see figure 4.1).
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Figure 4.1. ADC block schematic. It is composed of a S/H amplifier in series with a quantizer. The
former is responsible of the sampling noise, and the latter of the quantization noise.

The output of the ADC has a SNR lower compared to its input. It is most due to the error
introduced by the sampling and quantization processes. The sampling process adds
sampling noise, which is correlated with the jitter of the sampling clock and the ADC aperture
time uncertainty. The quantization process presents a quantizer with a non-linear
input/output characteristic, and therefore introduces higher order noise referred with the term
quantization noise. In case of frequency based chipless RFID reader, the useful ADC input
signal is almost DC and the SNR is most influenced by the quantization effects. An ideal

ADC with a staircase quantizer has a maximum SNR output limited to,

SNR (dB) = 6.02N,pc + 1.76 dB, [4.1]

where Nypc is the resolution (number of bit) of the ADC. The equation [4.1] assumes: a
sinusoidal input signal with an excursion equal to the full-scale ADC input, the ADC clock and
the sinusoidal input period with an irrational ratio, and the clock frequency around the Nyquist
rate [BEN 48]. The SNR of an ADC can be improved by increasing N, (equation [4.1]), and
by exploiting techniques such as oversampling and digital filter implementations. In the case
of the UWB chipless RFID based on IR-UWB, the ADC input signal is wideband and
composed of the coupling between the transmitting and the receiving antennas, and the
structural and the antenna (tag) mode. The tag ID is in the tag mode frame for a frequency-
coded tag, which is the least powerful part of the ADC input signal. Thus, to reduce the
quantization noise referred to the antenna (tag) mode, it is important to select an ADC with a
large number of bits and to amplify the antenna (tag) mode ideally to match it with the ADC

input full scale range.
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The sampling noise depends from the ADC hardware characteristics, the ADC sampling
clock jitter, and the ADC input frequency contents. If the input of the ADC is a low frequency
signal, then the sampling noise may be negligible. This is the case of the frequency based
chipless reader. For an IR-UWB chipless reader approach, the sampling noise can be
important because the ADC input is not a low frequency signal anymore. For simplicity, we

consider a sinusoidal ADC input, which is the result of the following stationary process,

Where ¢ is a random variable uniformly distributed between [-r, w]. This process is
parametric, stationary and ergodic. Once went through the S/H amplifier of the ADC (see

figure 4.1), the process becomes,

V(k) = sin(w(Tk + ) + ¢). [4.3]

Where T is the sampling clock period, and from the central limit theorem, y is a Gaussian
random variable with zero-mean, and k is integer. It takes into account the jitter noise of the
ADC clock combined with the ADC aperture uncertainty, which generally has the minimum

influence. The error N (k) introduced by the y can be approximated with,
N(k) = cos(w(Tk) + ¢)wy. [4.4]

This process is stationary, indeed the two random variables ¢ and y are independent, and
can be easily demonstrated that their mean values and autocorrelation is invariant with
respect to timing translations. The ratio between the power of the processes in equation [4.4]

and in equation [4.3] is equal to,

SNR = —10logo(w?a?). [4.5]

Where ¢? is the variance of y, which may be approximated with the variance of the
sampling clock jitter. From equation [4.5], the SNR decays 20dB/dec compared with the input
signal frequency. In case of the UWB input signal (IR-UWB chipless reader), the SNR has

been calculated in [SMI 17] and is equal to,
SNR = —10logyo (41202 (fZ + 22). [4.6]

Where f, is the central frequency of the UWB input signal and BW s its -3dB bandwidth.
In case f, > 10 BW the bandwidth of the signal can be neglected.
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Only the jitter of the ADC sampling clock has been considered in this analysis. In case of
an IR-UWB chipless reader, the pulse generator is triggered by a signal, such as a low
frequency clock, which is also affected by a jitter. If its jitter is uncorrelated with that one of
the ADC sampling clock, then its variance can be summed to ¢?. This is the case of the

reader presented in the last chapter and the current presenting optimized version.

In the last reader version presented in chapter 3, the estimated sampling clock period jitter
standard deviation was of about 7.34 ps, while the reader input bandwidth between 1 and
11 GHz. Substituting these values into equation [4.6], we obtain a SNR of 10 dB. With
respect to the first reader version realized before the kick-off of this thesis, the sampling
clock jitter was even bigger and of about 13.22 ps. This standard deviation gives a SNR of
about 5 dB, note that at this jitter should be added the one of the pulse generator trigger,

resulting in an even worst SNR result.

The averaging process helps to increase the SNR but at the expense of a higher reading
time. Much care was spent in the design of the presenting optimized reader to ensure an
ultra-low jitter. It may be considered as a cheap manner of improving the reader
performance. Indeed, the jitter that affects a signal is directly correlated with the signal
integrity. It is caused by different sources of noise: power supply variations, thermal noise,
interference between nearby circuits, and loading mismatching [MIT 09]. Thereby, the
hardware architecture, the layout of the RF front-end acquisition board and the selection of
the components may be optimized without an increasing of reader components cost. For the
frequency based chipless reader, the error induced by the ADC can be neglected, on the
other hand the VCO phase noise reduces the overall reader performance, decreasing its

reading frequency resolution.

The presenting reader is introduced in the next section, and the RF front-end board
schematic is described along with the solutions employed to reduce the jitter of the S/H
amplifier sampling clock, and the jitter of the pulse generator input trigger.
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3. Reduced reader jitter: implemented hardware solution

According to equation [4.5], the sampling noise reduction is fundamental to simplify the
reading of the tags information at higher frequencies. In this case, a lower reader averaging

factor may be used to read the tags to reduce the reading time.

The block schematic of the proposing optimized reader is shown in figure 4.2 and its
photograph in figure 4.3. The schematic shows two clocks, one of 73.333 MHz and the other
one of 125 MHz. The 125 MHz clock is used as sampling clock for the S/H Amplifier and also
as one input of the ultra-low jitter AND gate. To avoid triggering the pulse generator
continuously, the other input of the AND is connected to the FPGA in a clock gating
configuration. As it can be seen on figure 4.3, the re-designed RF front-end board holds both
the 125 MHz clock generator and the AND gate. The FPGA clock was increased from the 67
MHz to 73.333 MHz to speed up the UART communication with the PC as shortly explained

in the sub-section 4.1.1.
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Figure 4.2. Architecture of the optimized reader. It has a bi-static configuration and it is composed of
three parts: an UWB pulse generator, a digital section, and the receiving RF front-end.
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Figure 4.3. Photograph of the optimized reader. The pulse generator was the HL9200 from Hyperlabs.
The digital section is enclosed in a Xilinx SP601 evaluation board for the FPGA Spartan 6 XC6SLX16.
The RF front-end board is four layers on FR-4 substrate.

A photograph of the RF front-end board is shown in figure 4.4 (a), where the main
components are underlined. It is a 4 layers board made on a low cost FR4 substrate. Its
dimensions are 70 mm x 70 mm. The 125 MHz clock generator is the NBXDPA019 from ON
Semiconductor. It is compatible with the PECL digital standard and has a period jitter
standard deviation of 2 ps measured over 10 k cycles. The buffer is the CDCLVP2104 eight
LVPECL outputs from Texas Instruments. The AND gate is the MC10EP05 from ON
Semiconductor, and it has an ultra-low jitter component compatible with both, PECL and
NECL (Negative ECL). It has a random clock jitter with a standard deviation of 0.2 ps
measured between 1 GHz and 3 GHz state rate variation. The delay generator is the
MC100EP196 used also in the first reader version but in a more efficient package, the
32QFN (32 Quad Flat No-leads) instead of the 32LQFP (32 Low profile Quad Flat Package).
Because of the new sampling clock of 125 MHz only one chip is needed as delay generator.
A single delay generator chip has an internal delay dynamic variation of 10 ns, which is
sufficient to cover the 8 ns period of the 125 MHz sampling clock.
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Figure 4.4. (a) Photograph of the realized analog RF front-end of the optimized reader. Itis a 4 layers
board on a FR4 substrate, and measures 70 mm x 70 mm. (b) Implemented schematic of the RF
front-end board, and AND gate operation.
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The pulse generator trigger input is not compatible with ECL standards, hence a PECL-TTL
converter chip was employed after the output of the AND gate. In reception, the LNA
(HMC753LP4E) and the S/H amplifier (1321TH) are the same as for the previous reader
version, while the ADC is the ADS58B19 from Texas Instruments. It has 9 bit of resolution
over 1.5 Vpp. It does not need a driver to be interface with the sampler outputs because its
differential inputs front-end is composed of two analog buffers, and the common mode
voltage is provided directly by the ADC. Thus, the two pins of the sampler output are
connected with a resistor of 100 Q for impedance matching, and are AC coupled with the
ADC inputs.

The selected FPGA is low cost and is not designed to provide signals with an extremely
low jitter. Moreover the connection between the SP601 evaluation board (digital section) and
the designed RF board is made with a VITA 57.1 FMC-LPC connector (see figure 4.3). It is
not optimized for RF signal integrity and therefore all those signals generated inside the
FPGA, and travelling toward the RF front-end board, have an excessive jitter. This was the
case for the previous reader version (chapter 3), with the pulse generator trigger and the S/H
amplifier sampling clock signals. In the proposing optimized reader, those two signals are low
jitter. This because they are generated directly on the RF front-end board using the 125 MHz
clock and the AND gate. The AND gate output is the pulse generator trigger, whereas its
input are a high jitter FPGA output called IN 1, and the low jitter 125 MHz clock called IN 2.
The two inputs provide a clock gating configuration. To keep a low jitter AND gate output, it is
sufficient to assure the IN 7 events (rising and falling edges) when the low jitter IN 2 is stable

at 0, as shown in figure 4.4.

The sampling clock period jitter of the S/H amplifier was measured as for the previous
reader versions. It has a random period jitter over 1,000 cycles, with 2.45 ps of standard
deviation (RMS), and a maximum peak-to-peak of 16.31 ps. It represents a huge
improvement compared to the reader versions on chapter 3 (7.34 ps RMS, p-p 67.37 ps).
Applying again the equation [4.6] as in paragraph 4.2, at the lower jitter standard deviation of
2.45 ps, a SNR of about 20 dB is obtained. This represents a huge improvement compared
with the others reader versions. It was of 10 dB for the reader presented in chapter 3, and 5
dB for the reader version made before the beginning of the thesis. In the next section the

reduction of reader sampling noise is demonstrated.
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3.1 Temporal characterization of reader RF front-end

To stress the reduction of reader sampling noise, the reader pulse generator output was
measured without any averaging, with the previous reader version (chapter three) and with
the optimized version. The measurement results for the previous reader version are show in
figure 4.5 (a), and in figure 4.5 (b) for the optimized version. Between the pulse output and
the RF reader input some attenuators were interposed to avoid the reader front-end
saturation. The same measurement performed with the high performance DSO Agilent
91204A is shown in red. The measurement in figure 4.5 (a) demonstrates a higher sampling
noise than the figure 4.5 (b), especially in the pulse rise and fall edges (higher slew-rate).

This is due to the jitter of the S/H sampling clock, and that of the pulse generator trigger

input.
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Figure 4.5. Direct measurement of the pulse generator HL9200 from Hyperlabs, without averaging
with reader and the real time DSO Agilent 91204A. (a) Measurement with the reader version
presented in the chapter 3. (b) Measurement with the presenting reader (low jitter). The higher
sampling noise of (a) is evident, especially where the pulse has the higher slew-rate.
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The sampling noise of figure 4.5 (b) is imperceptible, whereas both versions suffers from
synchronization problems during the acquisition. This is shown on the figure plots with black
circles, where some acquired points are referred to different timing positions. This kind of
problem has been a constant in all prototypes devised so far, and it has been solved working

around the FPGA implementation as shown in the next section.

The new architecture of the FPGA will be shown in the next section. The problem of
synchronization and the reducing of reading time are correlated with the FPGA internal
implementation. The solutions adopted are carefully explained, while particular technical

discussions are in Appendix.

4. FPGA architecture

The block schematic of the FPGA embedded system is shown in figure 4.6. Compared
with the previous designed reader (Chapter 3), the new version makes use of an external
flash memory. The embedded microprocessor system is composed of the Microblaze 8.20a
microprocessor connected with an internal BRAM of 32 kB with LMB bus in a Harvard
architecture. The PLB bus is used to connect all the other peripherals: the 4 leds GPIO
controller, the interrupt controller, the RS232 uartlite controller to transfer information
between the reader and the PC, the serial peripheral interface (SPI) for the external flash
memory, the external DDR2 memory controller, and finally the Reader_0 custom peripheral
to control the reader acquisition. A considerable work has been spent for the optimization of
the FPGA architecture, most for the custom block Reader_0 to eliminate synchronization

problems during the acquisitions and to reduce the reading time.

The external flash memory allowed for a FPGA self-configuration at the reader start-up.
With the previous reader version, the user has to download the bitstream into the FPGA at

each start-up. The detail of the use made of the external flash memory is in Appendix IV.

4.1. Reducing reading time

In this reader version the reading time was optimized working around the different aspect of
the FPGA implementation. A work has been done around the UART connection to the PC,

and the algorithm used to code the reader data to be transferred to the PC was optimized. In
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addition low level C functions were employed, and the architecture of the Reader_0 custom

peripheral updated with hardware averaging calculation.
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Figure 4.6. Block schematic of the FPGA embedded system: with the main peripherals of the digital

board SP601 used to implement the reader. The custom block Reader_0 is the solely that may
communicate with the analog board, and trigger the pulse generator with the clock gating

configuration.
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4.1.1 UART optimization

The UART of the first reader version had a BR of 460.800 kb/s. In the new reader version,
the BR was first increased from 460.800 to 921.600 kb/s. This modification speeded up the

communication but put more constraint on the FPGA internal clock.

From the RS232 uartlite data sheet [XIL 17a], the UART sampling clock is attained using
an integer counter at the master clock, therefore compared to the aim of 14.746 MHz
(921.600 kb/s x 16), an error is introduced. An UART device may support a sampling clock
error in between 15 % [XIL 17a]. In case of first reader version, the master clock was exactly
66.67 MHz instead of 67 MHz. The objective UART sampling clock was of 7.3728 MHz
(460.800 kb/s x 16) but the real UART sampling clock was of 7.408 MHz (66.67 MHz / 9)
with an error of only 0.48 % ((7.408-7.3728)/ 7.3728), which is inside the +5 % limit. If the
same master clock is applied to the bigger BR of 921.600 kb/s, the UART sampling clock will
be of 13.334 MHz (66.67 MHz / 5), with an error of 6.1 % ((13.334-14.746) / 14.746) outside
the limits of £5 %. Working with the clock wizard of the Xilinx Platform Studio software, a new
Master clock of 73.333 MHz was synthetized. This helps to reduce the error from 6.1 % to
only 0.54 % ((14.666-14.746) / 14.746), without violating the clock tolerance of the
microprocessor (Microblaze 8.20a), and the attached peripherals. The use of a BR of
921.600 kb/s for the UART, instead of 460.800 kb/s, allows reducing the transfer data time to

the main PC of a factor of 2 with respect the first reader version.
4.1.2 Transfer data to PC algorithm optimization

In the first reader version (chapter 3), the ADC output resolution was of 10 bits, and a
complete acquisition frame, even with averaging, was composed of samples of 10 bits.
Inside the application software that was written in C, the acquired frame was represented
with the vector pulsefi]. For each word of 10 bits of pulsefi], a maximum of 6 bytes was
transmitted to the PC using the function xil_printf from C Xilinx library. The American
Standard Code for Information Interchange (ASCIlI) was used as character encoding

standard. The chunk of code of the application software in charge of it was:
for(i = 0; i < num_rcvd; i++)

xil_printf("%d\r\n", pulse[i]);

Where num_rcvd was the length of the vector pulse, which is equal to the number of

acquired points inside the reader acquisition frame. At 10 bits (ADC resolution) corresponds
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an integer number between 0 and 21° — 1 (0-1023). Each can be represented in ASCII with a
number of bytes in between 1 (0-9) to 4 (1000-1023), where each byte represents a digit.
Each element of the vector pulse is the results of an averaging process. However, because
they are integer, they do not have a fractional part, and therefore are still being representable
with maximum 4 bytes in ASCII [MIC 17].

The argument of the function xil_printf has also the two ASCIl characters \r \n,
representing respectively carriage return and newline. These two characters were used to
simplify the code development in C for the FPGA, and in Matlab for the PC. In fact each
element of the pulse vector was represented with a variable number of bytes (between 1 and
4) hence, a sort of ASCII character, to inform the Matlab code about the bytes number for
each pulse element, was needed. In the new reader version, each element of pulse vector
was represented with the same number of bytes, as so the two ASCII characters \r \n were
no more indispensable. The ADC has 9 bits instead of 10 bits, therefore the ADC output is
between 0 and 511 (2° — 1).

In the new reader version each pulse vector element (0 - 511) was sent using only two
ASCII characters. The pulse element was represented with 9 bits, therefore the first ASCII
character was in charge of the 6 bits from position 5 to 0, while the second character the last
three bits from 8 to 6. Finally the two characters (bytes) were manipulating to avoid
transmitting one of the 33 special ASCII characters, which are represented with the bytes

with decimal value from 0 to 32.

To transmit the bytes to the PC the function XUartLite_Send was used, which is provided
with the RS232 UART component driver. It is a function at a lower level compared with
xil_printf, and so potentially faster. The XUartLite _Send function has three arguments, the
pointer to the RS232 UART component instance, a pointer to the buffer of data to be
transmitted, and finally the number of bytes being sent. This function transmits the specified
buffer of data using the UART in either polled or interrupt driven mode. Because it is not a
blocking function, it will return before the data has been sent by the UART [XIL 17b] and a
sort of timing interval between each called of the function is needed. The function has been

used with 8 as third argument because resulting in a faster vector transmission.
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4.1.3 Hardware averaging implementation

In the previous version, the averaging process was implemented by software. Considering
an averaging factor of N, for each of the N acquisitions, the content of the Reader_0 internal
FIFO memory was transferred to the external DDR2 memory, and finally the microprocessor
(Microblaze) was used to perform the averaging. The whole process took different seconds,
where only the transfer process of the data from the Reader 0 internal FIFO to the DDR2

counts for 140 ms at each acquisition.

In the newer reader version, a hardware averaging was implemented directly inside the
Reader_0 block. The content of Reader_0 memory is transferred to the DDR2 only one time,
which is at the end of the acquisition, and no averaging process is required by the

microprocessor (Microblaze 8.20a).

The Reader_0 block developed represents a big custom peripheral with its 387 slices over
2278 available, and 8 BRAM (18 kb each) blocks over 32 available. For mater of comparison
the microprocessor Microblaze 8.20a, also implemented in the FPGA chip, counts for 882
slices, with the optional Barrel Shifter, integer multiplier, enabling optional Machine Status
Register Instructions (MSRI), and pattern comparator. The same peripheral of the first reader
version occupied 163 slices, which are less than half slices of the actual peripheral (387). To
realize the Reader_0 block, the tool ISE Project Navigator within the Xilinx ISE design Suite
13.2 was employed. It allows for simulation at all the implementation levels, from behavioral
to post place and route, and provides a schematic editor quite useful for a complex design.
The Reader_0 custom block of the FPGA hardware implementation (see figure 4.8) is
composed of a User Logic unit, and a PLB slave interface as for the previous reader version.
The User Logic was realized with a hierarchical strategy and is composed of 10 main blocks.

A more comprehensive description of the User Logic block is in Appendix V.

To speed up the reading process, the User Logic is composed of three FIFO memories,
conversely in the first reader version there was only one. They are:
FIFO_FAST_SAMPLE_PACKAGE, FIFO_FRAME_PACKAGE, and
FIFO_STORAGE_PACKAGE. The first is a small memory of 32 words of 9 bits, connected
directly with the ADC output. The second is capable of 4 k words, while the latter shows the
same capacity of 4 k but with words of 20 bits. The use of three memories allows for a fast

hardware averaging implementation, and assures a simpler Xilinx bitstream generation.



84  Optimized IR-UWB Chipless RFID Reader

FIFO FRAME PACKAGE FIFO STORAGE PACKAGE
DOUT FE(S:O— — DIN FET{19:00  DOUT FT{19:0) =
RD CLE FI WH LK F5T ol CLE EST
I i f TN
ALL PACKAGE
+
DELAY

PIPO. REGISTER PACKAGE

Figure 4.7. Description of the fast averaging principle. The content of FIFO_FRAME_PACKAGE is
added to that of FIFO_STORAGE_PACKAGE N times, where N is the averaging factor. After the
FIFO_STORAGE_PACKAGE is downloaded selecting the correct 9 bits over the 20 bits output
depending on N, in a shifting position based division.

The part of the User Logic that takes care of the hardware averaging is shown in figure
4.7. The third memory FIFO_STORAGE_PACKAGE is used in collaboration with the
ALU_PACKAGE and PIPO_REGISTER_PACKAGE. For an averaging of N, with N>1, first a
tag response measurement is executed and memorized in the FIFO_FRAME_PACKAGE,
after its content is transferred to the FIFO_STORAGE_PACKAGE as it is. Then for the N-1
remaining acquisitions, the content of FIFO_FRAME_PACKAGE is added to the content of
FIFO_STORAGE_PACKAGE and together memorized in FIFO_STORAGE_PACKAGE.
Therefore the FIFO_STORAGE_PACKAGE is at the same time read and written.

The PIPO_REGISTER_PACKAGE is a Parallel Input Parallel Output (PIPO) register [XIL
11a]. It is used as delay block, to compensate for the initial latency between reading and
writing processes of the FIFO_STORAGE_PACKAGE, when executed simultaneously [XIL
11b]. The FIFO_STORAGE_PACKAGE memory accounts for words of 20 bits, while of 9 bits
for the other two memories. This because during a measurement process, with a predefined
averaging of N, each word of FIFO_STORAGE_PACKAGE contains the summation of N
words of 9 bits. Thus, the maximum averaging factor depends from the length of
FIFO_STORAGE_PACKAGE words. In binary representation, the multiplication of a number
for 2 and division for 2 corresponds respectively to its shifting towards the left and the right of
one position. The maximum possible averaging factor is therefore equal to 2048 ((22°79)),

limited in practice to 512 by software, and restricted to be a power of 2. For instance, if the
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averaging factor is of 16, which is equal to 2% from each FIFO_STORAGE_PACKAGE
world, the 9 bits representing the averaged measurement to transfer to the PC are that from

position 4 to 13 (4- 9+4). For more details refer to Appendix V.
4.1.4 Conclusion

The reading time of the presenting reader version accounts for a reducing factor of about
1,000 compared to the previous version. As a result of the flexibility of the proposing reader,
the reading time depends from the chosen parameters. The minimum reader time was of

about 6 ms without averaging, and of about 50 ms with an averaging of 64.

4.2. Solving acquisition synchronization problems

The connection between the main components of the reader RF front-end board, and the
custom block Reader_0 inside the FPGA chip (Spartan 6) is shown in figure 4.8. Compared
with the first reader version, it shows a more complex schematic (Appendix III), where two
clocks are involved, the master clock inside the FPGA at 73.333 MHz, and the clock of 125

MHz generated from the analog board (RF front-end).

The clock of the ADC is not required to be low jitter because, besides the trigger of the
pulse generator, the reader sampling noise depends solely from the clock of the S/H
amplifier, as demonstrated in the section 3. The output of the S/H amplifier is a constant
value for a complete clock period, as so the fluctuations of the ADC sampling event caused
by the jitter do not create error in the acquired signal. From figure 4.8 the Reader_0 block is
composed of a PLB slave interface and a User Logic, where the first allows the
communication between the User Logic, and all the others peripherals connected with the
same PLB bus. The output of the delay generator was connected with the S/H amplifier, as
sampling clock, and also with the FPGA through the User Block. The connection with the
FPGA was conceived to simplify the design. But finally the User Block was optimized to
avoid the use of this signal as underlined in figure 4.8. This optimization may reduce the
sampling noise in a future reader version because the buffer at the output of the delay
generator won’t be needed anymore. It also will reduce the reader realization cost, for the
absence of the buffer and also of the digital standard converter PECL-TTL chip. The use of

the digital standard converter was essential to increase the dynamic excursion of the signals
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crossing the VITA 57.1 FMC-LPC connector to reach the FPGA. The connector is not

conceived for high frequency signals, and at 125 MHz they are plenty attenuated.
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Figure 4.8. Connection between the main components of the reader RF front-end board, and the
custom block Reader_0 inside the Spartan 6 FPGA chip. Compared with the first reader version, it
presents many synchronization issues tackled to improve the tag reading quality.

Contrarily to the previous

reader version (chapter 3),

many

constrains about

synchronization of different signals have been added to the new one to improve the reader

performance. According to figure 4.4 (b), a precise temporal relation exists between the two
AND gate inputs, IN 7 and IN 2, as seen in sub-section 4.3. From figure 4.8 the ADC has the
clock sourced by the FPGA, and ideally can sample its analog inputs only when the S/H
amplifier output is stable. The ADC output (DATA_IN_FROM_ADC_PCB_IN(8:0)) has to be

memorized inside the User Logic memory with a proper clock. As shown in figure 4.5, all

these synchronization issues degrade the reader acquisition if not accurately handled.



4. Optimized IR-UWB Chipless RFID Reader 87

The cooperation between the digital board (Xilinx SP601) and the RF front-end is notable
and the design of the User Logic become quite complex. In addition the delay of the different
signals connecting the FPGA with the RF front-end is not characterized caused by the use of
a commercial digital board (SP601). However the FPGA provides different resources to help

the resolution of synchronization issues such those in this project.

The ADC sampling clock is sourced by the FPGA, and is obtained from the sampling clock
of the S/H amplifier before being delayed by the delay generator (see figure 4.8). During an
acquisition, the dynamic internal delay of the delay generator is varying with minimum steps
of 10 ps (AT) to cover the sampling clock period that is of 8 ns (1/125 MHz). Thus, the
sampling clock signals of the ADC and of the S/H amplifier have a variable relation of phase
during the acquisition. If an acquisition process is supposed, where at the beginning the two
clocks are out of phase as shown in figure 4.9 (a), their phase relationship will be modified
during the acquisition at each update of the internal delay of the delay generator. As shown
in figure 4.9 (b) and (c), for a certain delay generator range values, the two clock rising edges
of the ADC and of the S/H amplifier are close, it may result in an ADC not optimal operation

acquisition.

Considering the case shown in figure 4.9 (b), where the S/H amplifier sampling clock
rising edge happens before that one of the ADC. The output of the S/H amplifier may be
considered a step signal. If the two rising edges are excessively close in time, the ADC
limited analog input bandwidth cannot follow the sudden S/H amplifier output variation at the
sampling clock rising edge event. In this case, an analog ADC data setup time can be
defined. The equation [4.7] is the classical step response relationship between filter output
rise time (10/90 %) and bandwidth [DEL 98],

, . 0.35
R == 4.
Lse time Bandwidth [4.7]

The ADC input analog bandwidth is of 550 MHz. Therefore from equation [4.7] the analog

setup time should be of at least 0.63 ns.

The ADC samples its analog input at the clock rising edge with an aperture delay of
about 0.8 ns. This can be translated in a sort of ADC analog data hold time around the ADC
clock rising edge, which must not be violated. From the ADC specifications, the

recommended analog hold time is of 1.2 ns. The S/H amplifier is able to actualize its output
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at each rising edge of its sampling clock, with an aperture delay of only 55 ps. Therefore the
S/H amplifier sampling clock rising edge, if subsequent at the ADC sampling clock rising

edge, has to respect the ADC analog hold time, as shown in figure 4.9 (c).
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Figure 4.9. The ADC sampling clock (blue lines), and the S/H amplifier sampling clock (orange lines),
have a variable relation of phase during the acquisition process. (a) At the beginning of the reader
acquisition the two clocks are out of phase. (b) The S/H amplifier sampling clock event is still
anticipating the ADC sampling clock event, but they are closer in time and the ADC analog setup time
may be violated. (c) The S/H amplifier sampling clock event is subsequent with respect the ADC
sampling clock event. They two events are close and the ADC analog hold time may be violated.

In the FPGA User Logic implementation, the required dynamic delay of the delay
generator (0-8 ns) was divided in three sub-frames: 0 ns - 2.55 ns, 2.55 ns - 6.4 ns, and 6.4
ns - 8 ns. From figure 4.10 (a), at the beginning of the first sub-frame, the ADC clock and S/H
amplifier clock were out of phase. After, varying the dynamic delay towards 2.55 ns, their
phase relationship changes according to the figure 4.10 (a). To attain their first phase

relationship, the FPGA internal PLL utilities where exploited [XIL 15a]. In the first sub-frame,
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the minimum analog ADC setup time was of 1.45 ns, and the hold time of 4 ns. It does not
violate the ADC setup and hold time just defined (0.63 ns, 1.2 ns).

For the second sub-frame of the dynamic delay of the delay generator (2.55 ns - 6.4 ns),
the ADC sampling clock phase was varied of 180 deg using the same PLL, as shown in
figure figure 4.10 (b). The minimum analog setup time was of 1.6 ns, and 2.55 ns for the hold
time. For the last sub-frame 6.4 ns - 8 ns, shown in figure figure 4.10 (c), the ADC clock was
phase shifted again of 180 deg, and the minimum ADC analog setup time and hold time were

respectively 4 ns and 2.4 ns.

The division of the dynamic delay generator frame in three sub-frames, with the variation
of the ADC sampling clock phase at step of 180 deg, assured lower SNR and reduced
synchronization problems. The others synchronization problems were faced in the User
Logic block design. The internal memorization of the ADC output was optimized with an
IODELAY?2 block inside the FPGA, which provides a variable delay generator with step of
about 40 ps [XIL 15b]. It was used to properly delay the ADC outputs signal to respect the

corresponding User Logic FIFO setup and hold time.

The temporal relation needed between the two AND gate inputs, IN 7 and IN 2, was
detailed in section 3 and shown in figure 4.4 (b). To properly gating the on RF front-end
board clock generator, for each trigger event, the FPGA IN 1 signal is high (1) for 1 clock
cycle that corresponds to a duration of 8 ns. Playing with simple logic gate implementations,
its output can be delayed of 4 ns corresponding to a half clock cycle (180 deg), to best fit the
low jitter clock (125 MHz) gating requirement of figure 4.4 (b). In the next section the same
experiments of section 3.1 was executed, as to show the resolution of the reader

synchronization problems during the acquisition.

4.3 Demonstration of the resolution of synchronization problems

The same pulse output measurement on figure 4.5 was executed and the results are
shown in figure 4.11. The figure compared the reading performed with the presenting reader
version, before and after the resolution of the synchronization issues faced in this paragraph,
respectively in figure 11 (a) and figure 11 (b). The measurement with the optimized User
Logic on figure 11 (b) does not show any synchronization issue, contrarily to the figure 11 (a)

(points with black circles).
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Figure 4.10. Progress of the ADC sampling clock, and of the S/H amplifier sampling clock during a
reader acquisition process. (a) Progression for the delay generator dynamic delay between 0 and 2.55
ns. (b) Delay generator dynamic delay between 2.55 and 6.4 ns. (c) Delay generator dynamic delay
between 6.4 and 8 ns.
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Figure 4.11. Direct measurement of the pulse generator HL9200 from Hyperlabs without averaging
with reader and the real time DSO Agilent 91204A. (a) Measurement with the presenting reader before
handling the synchronization issues (black circles). (b) Measurement with the synchronization issues
solved.

5. Reader specification

The reader costs and performance are resumed in table 4.1. Respect with the previous
version (table 3.2 chapter 3), it shows a limited reduction of retail cost, from 2,350 € to 2,306
€. Noted that the price of the Xilinx SP601 evaluation board has increased since 2014 of 70
€. The S/H amplifier sampling clock period jitter has a variance reduced of three times. The
reader shows flexibility in terms of acquisition frame position, length, and equivalent sampling
period (AT). This flexibility was obtained working around the FPGA Reader_0 block

architecture, and the FPGA application software.

The averaging factor is variable between 1 and 512, with power of 2. The reading time

depends from the chosen acquisition parameters but the minimum is of around 6 ms, while



92  Optimized IR-UWB Chipless RFID Reader

the maximum of around 500 ms. Finally, the reader shows a sensitivity of -60 dBm, this
figure can be improved using an ADC with a better resolution at the expense of higher reader

cost.

The Matlab application software for the PC is described in Appendix VI. It uses the Short
Time Fourier Transform (STFT) algorithm, where in [RAM 16] the STFT for REP based UWB
frequency-coded chipless RFID tags is studied.

Reader retail cost after tax

Component Retail Cost after tax (2013*/2017%*%*)
RF Front-end board components 886 € **
Digital board (Xilinx SP601 E.B.) 420 € **
Pulse generator (Hyperlabs HL9200) 1,000 € *
Total cost 2,306 €

Reading performance
PRF 1 MHz

Input bandwidth 1-11GHz

Acquisition frame duration ‘ 8 ns — 256 ns / step of 8 ns

Frame position ‘ Variable

Equivalent sampling period (AT) ‘ 10/20/30/40 ps

Averaging [1 —512] (Power of 2)

Reading time ‘ from 6 ms to 500 ms

S/H Amplifier sampling clock period jitter ‘ 2.45 ps RMS (16.31 ps p-p) over 1k cycles

Reader sensitivity -60 dBm

Table 4.1. Components retail cost after tax of the presenting optimized designed reader (not
considering the antenna), and performance specification.

6. Reader power supply board

The reader RF-front end board and pulse generator required diverse power supply points.
The FGPA development board provides power pins on the VITA 57.1 FMC-LPC connector.
The most useful for reader requirements are the 12 V pins with maximum current of 1 A, the
3.3 V with 3 A, and finally the 2.5 V with 2 A. The required supply voltage for the RF front-
end board are 3.3 V for the majority of components, 1.8 V for the ADC, 5 V for the LNA and
S/H amplifier, -5.2 V for the S/H amplifier. Finally 9 V is required by the pulse generator
HL9200 from Hyperlabs. The 3.3 V was taken directly from the corresponding pins on VITA
connector, while the others extracted from the 12 V pins with a developed board. A

photograph of the alimentation card mounted on top of the RF front-end is shown in figure
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4.12. It is a 2 layer board on a low cost FR4 substrate, the bottom layer is a ground plane
without signal traces to reduce interference with the underneath analog board. The board

schematic is shown in Appendix VII.

-
RF-front end

Figure 4.12. Alimentation board of the reader mounted in top of the RF front-end board.

7. Reader tag measurement

The reader was tested with intensive tag measurements. For comparison, the same UWB
frequency-coded tags, used to test the first reader version in chapter 3 section 6, were

employed to test this optimized reader.

The measurements were performed with the reader and the DSO at about 15 cm from the
tag. In figure 4.13 is shown a photograph of the measurement bench for the reader case. It
consists of a typical office scenario with metallic cabinets, chairs, tables and computers. The
Satimo QH2000 dual-access dual-polarization antenna is connected to the reader to have a
cross-polarization reading scheme. In reception, the UWB filter Mini-circuits VHF-3100+ was
placed to eliminate the out of band noise such as the Wi-Fi at 2.4 GHz. In fact in a real time
approach, even with averaging, the out-of-band signals may be filtered by software. In an
equivalent time approach, this is not possible and the out-of-band signals may add noise in
the frequency band of interest. To clarify this point, it is useful to recall that in this approach,
the sampling frequency is very low and of 125 MHz. It does not respect the Nyquist—
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Shannon theorem when used to acquire UWB signals that are in the band 3.1 — 10.6 GHz.
Therefore for each acquisition, the out of band noise is replicated inside the band of interest.
The averaging factor helps to reduce this noise, but because of the low power response of
the tags, it is still important. For the DSO, the same setup was employed using the same
pulse generator HL9200 from Hyperlabs and the antenna Satimo QH2000. From the figure
4.13, the tag was placed on top of a square wood of few millimeters of thickness with the
antenna below. This setup creates a successfully reading process in non ling-of-sight

condition, which cannot be possible with barcode technology.

Pulse
Oienerator

Adim,
Card

o8 RIF-Front
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Figure 4.13. Measurement bench for UWB frequency-coded tags in practical environment for the
reader and DSO in a non ling-of-sight condition.

The measurement results using the STFT algorithm described in [RAM 16] are shown in
figure 4.14. The eight resonant frequencies are matching for both tags between DSO and

reader. The tags can be decoded without any error.
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Figure 4.14. Measurement results of two UWB frequency-coded tags, with reader in black and DSO
in read. In (a) the results for the first tag and in (b) for the second one, in both cases the curves
indicate the same resonant frequencies as expected.

The reader was shown in the Drupa 2016 event, in Dusseldorf Germany from 16 June to

25 June, which is a global showroom for printing technologies, and accredited as the biggest

showroom in the word. The reader worked without interruptions for 10 hours a day reading

printed single layer Powercoat PW230 paper substrate frequency-coded tags. A reader box

were designed with the open access FreeCAD software, and realized with a 3D printing

machine. A photograph of the reader within its box during the Drupa 2016 is shown in figure
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4.15. In the next section the frequency based and the IR-UWB approaches will be studied in

terms of reading tag accuracy, where the impact of the jitter for an IR-UWB is underlined.

Figure 4.15. Photograph of the reader within its designed box at the Drupa 2016 event in Diisseldorf
(Germany).

8. Frequency based reader vs IR-UWB with different jitter level

In the first two chapters the two frequency based reader approaches, SFCW and FMCW,
used in literature for UWB chipless applications have been introduced. A frequency based
approach gives the possibility to perform more accurate measurement compared to an IR-
UWB solution. This is because of the higher dynamic range (sensitivity) that can be obtained
with such solution. The interrogating signal is sweeping around the frequency band of the
tag, where the sweep time is defined at the reader level. Conversely in IR-UWB systems, the
interrogating signal is a short pulse in the UWB band, and the tag response lasts notably for
only few nanoseconds (around 12 ns) [RAM 16]. Because of the short duration of the tag
response, and its amplitude envelope, an IR-UWB can perform tag reading with a limited
frequency resolution compared to a frequency based reader. Also, an IR-UWB system is
affected by sampling clock jitter and higher input noise bandwidth. According with equation
[4.5], the sampling clock jitter impact is more significant at higher frequency, where at small
unwanted timing translations of the sampling clock event correspond higher phase variation

of the acquiring signal. On the other side, an IR-UWB approach is easier compatible with
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UWB regulations as shown in chapter 2, and has a reduced reading time. For instance, the
reader presented in this chapter can have a reading time as low as 6 ms, with an input
bandwidth between 1 to 10 GHz.

An equivalent time reading system with different parameters has been emulated in
Matlab, and the results are shown in figure 4.16. An ideal tag mode response, where the tag
is supposed to have eight resonances between 3.2 and 6.7 GHz, has been emulated. The
resonators were supposed with an infinitive quality factor. Two different tag response
durations (100 ns and 12 ns) have been considered. In case of 12 ns, the reading system
was supposed to be affected by a jitter of 0, 7.34, and 40 ps respectively. The 7.34 ps jitter is
the jitter of reader in chapter 3, while the 40 ps jitter corresponds to the jitter of the IR-UWB
radar for through-wall application introduced in [LIU 13]. Analyzing the effect of the two
different signal durations without jitter, the larger one allows for a better reading frequency
resolution. It may be translated in the possibility of developing tags with smaller inter-

distance between resonances, and therefore higher bit capacity.
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Figure 4.16. Emulation of the frequency response of a chipless tag read with a frequency based
approach, and with an IR-UWB reader working in equivalent time. The IR-UWB reader is affected by
0, 7.34, and 40 ps of jitter. The tag with longer response (100 ns) corresponds to a FMCW approach,

where an IF bandwidth in the order of kHz can be obtained. The shorter tag response (12 ns)
corresponds to the case of an IR-UWB approach.

The larger duration corresponds to the case of a frequency based interrogation, where the IF

bandwidth can be in orders of kHz. The effect of the jitter variation for the smaller response
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duration has also been studied. It represents a real tag signal response in the case of an IR-
UWB based interrogation system. The jitter augmentation affects the reading capability as
shown in the figure, where the distance between the main lobs of the tag’s response (which
are located around the tag frequency resonances), and the secondary lobs is smaller.
Moreover, the peak apexes corresponding to these main lobs decrease with frequency, and

also their frequency value and bandwidth vary especially at high frequency.

A chipless tag acquisition with different reading systems, which are based on SFCW and
IR-UWB with different performance in terms of jitter, is shown in Figure 4.17. The frequency-
domain chipless tag employed presents eight resonances between 3 and 7 GHz, and is the
same used to characterize the readers so far. All the measurements were performed in an

anechoic chamber to reduce as much as possible the noise distinct from the jitter system.
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Figure 4.17. A chipless tag acquisition with different reading systems, which are based on SFCW and
IR-UWB with different performance in terms of jitter. The VNA N5222A from Keysight emulates a
SFCW based reader, while the first reader version (Chapter 3) and the second version used to show
jitter effects.

The measurement with the VNA N5222A from Keysight emulates a chipless reader based

on SFCW. It is a costly test equipment with performance greatly superior at all the presented



4. Optimized IR-UWB Chipless RFID Reader 99

frequency based chipless reader in literature as for [KOS 12 - POP 16 - PRE 10]. The DSO
91204A measurement was performed with the Hyperlabs HL9200 pulse generator in an IR-
UWB configuration. With Reader V1 is indicated the reader version presented in the chapter

3, while with Reader V2 is indicated the presenting optimized reader.

As expected, the measurement with the VNA presents the best performance and with the
higher frequency resolution. In addition, compared to the other measurements (IR-UWB
configurations), all the peaks present a comparable power response. This is due to the
approach, in case of IR-UWB, the pulse generator frequency response is not flat for all the
UWB band. Nevertheless, the measurement performed with the reader V2 and the DSO are
similar and fully successful. Finally the first reader version reader V1, which has the larger
jitter of 7.34 ps, presents the worst reading performance. It was not possible to read correctly
the resonance positions at high frequency, and the others present shift in frequency of few
MHz. This drop of performance is mostly due to the effect of system jitter, but also for the
noise generated by the inefficient application of the equivalent time algorithm, due to
synchronization issues. It can add noise in the entire tag’s bandwidth, and its negative effects

are more important at higher frequencies where the tag response has lower amplitude.

These experiments have been performed without taking into account the UWB
regulations, which as shown in chapter 2, affect more frequency based readers than IR-
UWB.

9. Conclusion

An optimized UWB chipless RFID reader version has been introduced. It was designed to
reduce its sampling noise, with improvement at RF hardware and software level. The design
of the Xilinx embedded systems was carefully optimized not limited at the reduction of the
sampling noise, but also to reduce massively the reading time. The reader is fully
configurable in terms of acquisition resolution (equivalent sampling rate), frame duration, and
position. The reading time is on the order of few ms depending on chosen parameters. The
reader sensitivity was of about -60 dB; this figure is more limited by the ADC resolutions
which can be increased using a different model. The reader components cost is estimated at

2,306 € after tax and referred to retail prices. A reduction of about 20/30 % is feasible in an
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industrial production. The reader performances and characteristics have been resumed with
the table 4.1.

To reduce the reader component cost a pulse generator has been designed, realized and
characterized. It is presented in the next chapter, and potentially it can have a retail
components cost of about 200 €, which is 5 times lower that the cost of the actual reader
pulse generator. As prospective, we are actually working on a more integrated reader
version, where the RF front-end, the new pulse generator, and the used components of the
SP601 Xilinx evaluation board are in the same board. This should free up the estimated cost
from the Xilinx evaluation board, which is of about 420 €, where the employed components
have a total cost of about 50 €. The use of a higher performance substrate than FR4 at
higher frequencies will also increase the reader capability. A total components retail cost of
1,000 € is feasible. Finally, the design of a low cost UWB antenna is also presented in the
next chapter. This was realized to be used in prospective with the new reader version we are
currently developing, as so to propose a complete low cost IR-UWB chipless RFID reader

solution.
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UWB Pulse Generator & Antenna design

1. Introduction

In this chapter the design, realization, and characterization of an UWB pulse generator
and a planar UWB antenna is described. The pulse generator was designed to have low jitter
and to be low cost, where high performance discrete digital Commercial Off-the-Shelf
(COTS) components were employed for its realization. The designed UWB antenna was a
planar Vivaldi in the bandwidth 3 — 10 GHz. Both devices have been designed and
simulated, the pulse generator with Ansys Electromagnetic suite 17.0, and the antenna with

CST Studio Suite 2014. The chapter is organized as follow:

e Section 2 presents the designed pulse generator with simulation and

measurement result.

o Section 3 shows the measurement of frequency-coded tags with the designed
pulse generator. The pulse generator is also used as emission stage of the

optimized reader prototype presented in the chapter 4 to read the same tags.
e Section 4 presents the designed UWB antenna.

e Section 5 draws the conclusion of the chapter.

2. UWB pulse generator design

The optimized reader version presented in chapter 4 uses a commercial pulse generator
in the emission stage. Currently the HL9200 from Hyperlabs is obsolete and substituted by
the newer version HL9201. It presents similar performance than the predecessor, with a
retail cost of 1.295 $. This section presents a home designed fully tunable baseband UWB

pulse generator realized with COTS components. It is intended to be low cost and with low
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jitter. It is made of high speed logic gates and comparators, and it is compliant with current
mode logic (CML) digital standard. The pulse emitted power and bandwidth are tunable
showing high flexibility. This advantage simplifies the design of the downstream shaping
network to be compliant with international UWB regulations. A differential output with a very

low jitter is demonstrated.

2.1. Introduction to pulse generator UWB design

UWB technology is exploited in a variety of applications, from radar for tracking and
localization, to short pulse communication [rFon 04]. An UWB radar transmits a train of UWB
pulses in the direction of a target, and then measures the backscattered signals. These
sources of information are used to recover the target position and shape. For short pulse
communication applications, time or frequency-division multiplexing algorithms are used.
Both are real-time implementation [Fon 04], and usually adopt diode based receivers, such
as a frequency converter, to recover the data in baseband. Because of the receiver
characteristics, a high reproducibility of the transmitting UWB pulse is not required.
Therefore, a time-gated oscillator is generally employed as UWB pulse generator. Besides
pulse position modulation (PPM), it is possible to use pulse amplitude modulation (PAM)
where the pulse generator output amplitude is attenuated depending on the transmitting

binary code [moo 12].

In order to reduce the fabrication costs, most of UWB radars are based on equivalent-time
algorithm that permits to achieve effective time resolution in order of few picoseconds [wan
12]. With this approach, the reproducibility of the UWB transmitting pulse is a key parameter,
and therefore the pulse generator cannot be a simple time-gated oscillator. A baseband
UWB pulse generator, hereafter B-UWB-PG, needs to be employed. It is capable of
generating a Gaussian pulse that can after be derived in time domain, of different orders,
with a dedicated downstream circuit, depending on the project requirement. This circuit can

be formed of only the antenna as a result of its time derivative property [sHa 05].

According to the application, B-UWB-PGs differ in characteristics [anc 08]. Most are
designed with step recovery diode (SRD) and bipolar transistors driven in avalanche mode to
generate Gaussian baseband pulse [x1E 06]. Due to the voltage and frequency output
characteristics, SRD solution is the most widespread in a variety of applications, from UWB

communications to systems characterization [oaw 11- .15 12]. The pulse is sub-nanosecond
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with high slew rate, i.e. low pulse rise and fall time. The B-UWB-PG is composed of two
different circuits in series, a driver and a pulser [aEw 84]. The driver is able to generate a
pulse waveform with a duration of several hundred of nanosecond. The pulser exploits the
junction impedance transition of the diode to generate the UWB pulse. This solution can
provide a pulse repetition frequency (PRF) in the order of few MHz. The bipolar transistor
driven in avalanche mode solution [anG 07] provides a high voltage output pulse at the
expense of a limited PRF, and the requirement of a high voltage supply (around 200 V). It is

ideal for long distance radar utilizations.

In [kuE 14], the reproducibility of a step recovery diode (SDR) based pulse generator
output is studied through its jitter modeling. It shows how defects in the pulse reproducibility
negatively affect more equivalent time sampler systems rather than real time. The random
jitter of the complete device (which represents the statistical variation of its propagation
delay) increases rapidly most due to the shot noise of the diode. The statistical jitter standard
deviation can be in the order of tens of ps [kaE 14]. The UWB chipless RFID systems are
suitable for equivalent time receivers thanks to their stationary nature. Thus, the pulse
generator is expected low jitter, and also low cost [car 15- PER 14]. It ensures an affordable

and reliable reader.

It is also possible to design a B-UWB-PG with logic gates where wideband glitches are
created. Almost all of them are integrated solution [REg 13- LEE 14] based on sharped
trigger input signals, with limited flexibility in terms of pulse-width and amplitude, with single

ended output.

in [scu o05] is proposed a UWB pulse generator realized with COTS components. Its
architecture is based on an inverter and one OR gate, its maximum PRF is of about 100
MHz, the pulse-width is fixed at 500 ps, and it does not have any flexibility in terms of pulse-
width and output amplitude. Therefore, the design of the pulse shaping network, to be
compliant with international regulations, may be cumbersome. The regulations limit the UWB
power emitted according to FCC and ETSI [eTs 17- rcc 16]. Finally, because of its high
pulse-width, the signal energy at higher frequency can be excessively low for applications
such as UWB Chipless RFID.

To overcome these limitations, a B-UWB-PG made of high frequency discrete logic, is

proposed. Indeed nowadays, commercial discrete digital devices with clock frequencies over
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10 GHz, are available for applications such as RF test-equipment, and serial data
transmission. The proposed solution does not require any input trigger with a sharp rising
edge. This feature is a relevant advantage in practical applications, because it can be
integrated with low-speed transistor-transistor logic (TTL) and complementary metal-oxide
semiconductor (CMOS) technologies based system. It also presents a tunable pulse-width
and amplitude feature, which may be exploited to reduce the complexity of the downstream
circuit design. The circuit was intentionally designed with COTS components to be easily
reproduced and customized around diverse projects requirements. This unloads for an

eventual ASIC design which is generally expensive and timing consuming.

2.2. B-UWB-PG architecture

The figure 5.1 shows the schematic of the proposed device. It is mainly composed of two
high performance comparators, A and B, a variable delay generator, and an AND gate.
According to CML standard, the connections between these devices are balanced. The
connection between the comparator A and the IN 71 input of the AND gate has a tunable
length by soldering 0402 0 Q surface-mount resistors. It is possible to add three different
additional transmission lengths, called A1-A2-A3, where A2 = 2A1, and A3 = 2A2 with A1
equal to 16 mm. The positive input of A and the negative input of B are connected with the

trigger input, and the others two inputs with the positive threshold voltage VT.

When the trigger input voltage crosses the threshold, the two comparators switch
simultaneously in opposite digital directions. If the trigger input is at 0, i.e. lower than the
threshold, the output of A is 0, and of B is 1,. Therefore, the output of the AND gate is 0.
When the trigger crosses VT during its rising edge, the output of A will go to 7, and that of B
to 0.. However, the inputs of the AND gate do not switch simultaneously. The time employed
of the signals to go from the output pins of the corresponding comparator to the input pins of
the AND gate, depends between the others; from the fixed delay blocks length A7-A2-A3 for
IN1 if employed, and from the delay generator for IN2. The modification of these parameters
lets the two inputs of the AND gate having the same logical value 17, for a tunable and short
period of time. It produces a glitch at the gate output, which is the generated pulse. The AND
gate presents a pin called VR that is able to modulate continuously output amplitude. Its
absolute amplitude variation was experimentally found between 0.6 V with the minimum at
0.03 V for VR equals -1.2 V, and the maximum for VR equals 0.4 V.
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The evaluation board of the proposed pulse generator is shown in figure 5.2. Its size is 8.5

cm x 7 cm, and it is a 4 layers board manufactured on low-cost FR4 substrate.
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Figure 5.1. B-UWB-PG principle schematic. After a trigger event (rising edge), the comparator A
switches from 0, to 1,, the comparator B from 1, to 0,. Tuning the delay generator the AND gate has
its two inputs with the same logical value 1 for a short period of time. It creates a glitch, i.e. a
baseband UWB pulse.

The selected comparator was the HMCG75LP3E from Analog Devices, which can outputs
a signal with rise and fall times of 27 ps and 18 ps respectively. It presents a deterministic
jitter of 2 ps, a random jitter standard deviation of only 0.2 ps, and a balance output
compatible with the CML digital standard. The delay generator is the Analog Devices
HMC856LC5 with a rise and fall time respectively of 20 ps and 18 ps. It is compatible with
the CML standard and presents a balance input and output. Its propagation delay is of 255
ps with an additional digitally controlled delay ranging from 0 to 93 ps, with 3 ps of resolution.
The AND gate is the Analog Devices HMC722LCRC, its output rise and fall time is of 19 ps
and 18 ps. It has a deterministic jitter of 2 ps and a random jitter of 0.2 ps. All the
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components were chosen for their performance in terms of jitter and output rise and fall time

(high slew-rate).
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Figure 5.2. B-UWB-PG evaluation board. This 4-layer FR4 PCB presents three different external
power voltage values, 3 V,-3 V and -3.3 V. Through a jumper, the trigger could be external or
entrusted on a push button. The delay of the delay generator is imposed by five jumpers. The output is
balance and once DC coupled, it is capable to generate two differential output pulses. The pin called
VR is used to modulate the output amplitude.

The balanced interconnections are realized with differential parallel grounded coplanar
waveguide (GCPW) transmission lines. The glitch signal, i.e. the output of the B-UWB-PG, is
required to have high slew rate and pulse-width in the order of tens of picoseconds, this to
ensure large -10 dB bandwidth over UWB (3.1-10.6 GHz). The retail cost after tax of the
main pulse generator components is shown in table 5.1. The total cost with the delay
generator is of about 381 €. The delay generator is the most expensive component, and
worth 184 €. If the fine variable output pulse-width tuning characteristic is not needed, its use
is not indispensable. Thus, a lower price pulse generator with a retail cost after tax of the

main components of 200 € may be designed.
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Pulse generator retail cost after tax

Component Retail Cost after tax (2017 (Digikey))
Comparator HMC675LP3E

Delay generator (HMC856L.CS5)

AND gate (HMC722LCRC)
Total cost with delay generator

Total cost without delay generator ‘

Table 5.1. Components retail cost after tax of the presenting pulse generator.

Playing with the blocks A1-A2-A3 for the connection between comparator A and AND
gate, and also with the delay generator, it is possible to obtain a pulse with a Full Width at
Half Maximum (FWHM) (pulse-width) ranging from 325 ps to 60 ps with resolution as low as
3 ps. The delay added with the blocks A7-A2-A3 is respectively of about 100 ps, 200 ps, and
400 ps. The PRF is limited only from the pulse-width and the input bandwidth of the
comparator. The latter has an input bandwidth of 10 GHz, while the maximum pulse-width is

of 325 ps. In case the input trigger has a duty-cycle of 50 % then the PRF is approximately,

. 1
PRF = mm(lO GHz, m)), [51]

where PW is the pulse-width. For PW equals to 325 ps the PRF is of 1.53 GHz, while for
PW equals to 60 ps the PRF is of 8.3 GHz. The limit expressed from the equation [5.1] may

be increased having a trigger signal with higher duty-cycle.

2.3. B-UWB-PG simulation model
2.3.1. Block description

In figure 5.1 is shown the simulation model of the pulse generator prototype realized using
Ansys Electromagnetic suite 17.0. The output of the two high performance comparators was
emulated using two eye sources. They are capable of transmitting two trains of pulses, with
rise and fall time equal to the comparator specification. Moreover a source of jitter with
Gaussian PDF has been added. The chosen standard deviation of 2 ps is higher than the
value reported in the data sheet of the comparators. This choice can be justified thinking of
real applications, where many factors such as environmental conditions, impedance
mismatching, and crosstalk, may increase the effective jitter of the electronics devices [m1T

09].
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The transmission lines between the comparators output and the AND inputs were
modeled with TRLK blocks. They are transmission line where all the fundamental parameters
are supposed not dispersive. A variable takes into consideration the different lengths of
blocks A71-A2-A3, and was implemented with the TRLK called ¢. The TRLK of 53.04 mm,
called d, takes into account the length of the lines which connects the comparator A, and the
corresponding AND gate input, after the blocks A7-A2-A3. The connection between the
output of B and input of the delay generator is represented with the TRLK block called e,
which has a length of 12.23 mm. The TRLK block called g of 35.5 mm for the connection
between the output of delay generator and the other input of AND gate. Another variable
counts for the delay generator propagation and tunable delay, and was implemented using a
TD block, which is an ideal transmission line defined through its impedance characteristics

and its time delay.

The AND gate was modeled using a simple ideal threshold model written in Verilog-AMS,
where AMS is for Analog and Mixed Signal Extension. Three 50 Q resistors for input and
output impedances, and finally a 5th order Gaussian low pass filter with bandwidth of 10.84
GHz. This figure was obtained exploiting the well-known relationship between filter output
rise time at ideal step input, and filter bandwidth reported in chapter four equation [4.7] [DEL
98]. The output rise time was the one of the AND gate data sheet, multiplied for an empiric
factor of 1.6 to be converted from 20-80 % to 10-90%. In figure 5.2, Z0 represent an ideal 50
Q load. The AND gate output jitter was added in post processing using Matlab, with a
Gaussian PDF with 2 ps standard deviation from the Ansys transient simulation issue. For
simplicity all the connections between the different components were single instead of

balanced.

In figure 5.3 is shown the eye diagram of the simulation model output tuning the variable
that models the delay generator. The color bar represents the vertical histogram results of
the eye diagram in logarithmic scale. It was realized over 300 of pulse realizations with
Matlab. The TRLK called ¢ was fixed at 32 mm (A2) while the variable representing the delay
generator was varying between the discrete values of: 279 ps (255 ps + 24 ps), 285 ps (255
ps + 30 ps), 300 ps (255 ps + 45 ps), 315 ps (255 ps + 60 ps), and 348 ps (255 ps + 93 ps).
The smaller pulse-width of figure 5.3 of about 30 ps corresponds to the minimum delay
imposed of 279 ps, and the bigger pulse-width of about 100 ps for the maximum delay of 348
ps. In the simulation model, the effect of the output amplitude variation using the pin VR was

implemented, but not reported because it only varies linearly the output amplitude without
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affecting the system performance. From figure 5.3 for the signals with a pulse-width under 50

ps, the amplitude also decreases.
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Figure 5.3. Eye diagram of the simulation model in figure 5.2 obtained tuning the variable which
models the delay generator. It was realized over 300 of pulse realizations, where the jitter of the AND
gate output was added from the Ansys transient simulation results, in post processing with Matlab.

2.3.2. Noise rejection

The use of high performance comparators in terms of low rise and fall time is
indispensable in practical applications. This because the digital logic devices employed do
not have hysteresis capability. Therefore, their input-output characteristic is a static non-
linear function, where the dynamic effect is only due to parasitic components. The proposed
prototype is designed to be integrated with onset UWB systems, where it may share the
same PCB with other blocks of circuit. The proposing prototype is composed of transmission
lines with a length in the order of few centimeters between the comparators output and the
AND gate input. Thus it may suffer from crosstalk effects. At that scope different simulations

have been performed making use of the model in Fig. 5.2.

The crosstalk effects have been emulated with two sinusoid voltage generator called Vup
and Vdown. They were inserted at the output of the two eye sources that simulate the output
of the two comparators. The amplitude of the Vup and Vdown were fixed at 40 mV, while the
frequency was varied from few GHz to tens of GHz. The B-UWB-PG was simulated with a
fixed configuration, corresponding to a pulse-width of approximately 90 ps. the simulation

was carried out acting on the eye sources rise and fall time. First they were settled to 27 and
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18 ps corresponding with the characteristics of the two actual comparators employed. The
corresponding simulation results are shown in Fig 5.4 (a). Then the eye sources rise and fall
time have been settled to 1 ns, which can correspond to a rise and fall time of TTL and
CMOS devices. The corresponding simulation results are shown in Fig. 5.4 (b). In case of the
lower rise and fall time (27/18 ps) (Fig. 5.4 (a)) a high rejection at crosstalk effect is
demonstrated. In case of higher rise and fall time (1 ns) the B-UWB-PG output has an
increased jitter due to the crosstalk for the lower frequency values of Vup and Vdown. On the
contrary for higher frequency values, the B-UWB-PG output distortion is prominent. Thus, the
simulation results validate the use of high performance comparators with low output rise and
fall time ((27/18 ps)).
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Figure 5.4. Simulation of crosstalk effect on the proposed B-UWB-PG. (a) Simulated eye diagrams of
the B-UWB-PG output in case eye sources rise and fall time of 27 ps and 18 ps respectively. They
correspond to the output rise and fall time of the actual comparators used for the design of the B-
UWB-PG. The B-UWB-PG was simulated with a fixed configuration, corresponding to a pulse-width of
approximately 90 ps. (b) Simulated eye diagrams of the B-UWB-PG output in case of eye sources
with rise and fall time of 1 ns, which can correspond to a rise and fall time of either a TTL or a CMOS
device.

2.4. Measurement results

2.4.1. B-UWB-PG output characterization

As the B-UWB-PG presents a balanced output, two pulses with inverted polarity can be
generated. According to the CML digital standard, the DC component of the two output pins
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differs. It is of 0 V for the negative single output and -0.4 V for the positive output, when no
pulse is created. However, it is possible to force the DC component of both pins at 0 V once

AC coupled to ground.

Measurement of the positive and the negative output voltages of the proposed pulse
generator, with different FWHM with VR equals 0 V, are shown respectively in figure 5.5 (a),
and figure 5.5 (b). The variation of pulse amplitude with pulse-width is starting from FWHM of
around 90 ps, while it was of 50 ps from simulation results of figure 5.3. This can due to

filtering effect at higher frequency of the realized PCB.
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Figure 5.5. Single output of the B-UWB-PG evaluation board measured for different delay generator
configuration, and transmission line length (A1-A2-A3) with VR equals to 0 V. In (a) and (b)
respectively the measured of the positive and negative balanced output of the AND gate, both referred
to ground.

The corresponding PSD over MHz of the positive output voltage (figure 5.5 (a)) is shown
in figure 5.6. It was estimated with Matlab supposing a PRF of 1 MHz, which is that of the
optimized reader of chapter 4. Its absolute values can be increased of a maximum of 2.5 dB
varying VR from 0 to the maximum value of 0.4 V. As expected, the maximum response is at
0 Hz, independently from the pulse-width [caa 07]. The -10 dB bandwidth for the 60 ps is of
about 10 GHz. To modulate the position of peaks and the valleys along with the frequency

range, it is essential to derivate in time the response of the pulse generator

From figure 5.5 the shape of the pulses can be approximated with a rectangular function
for bigger FWHM, while Gaussian for smaller FWHM. The module of the spectrum of a
rectangle of width AT and amplitude A is,
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IG(f)| = |AATsinc(nfAT)|, [5.2]

and its -10dB bandwidth is approximately
0.73
f-10a8 = [5.3]

From figure 5.5 (a) the bigger pulse FWHM is of 325 ps, and according to equation [5.3], it
should have a -10 dB bandwidth of 2.25 GHz, instead the measured is smaller and of 2.2
GHz. The error respect to 2.25 GHz is of only 2.2%, which validate the rectangular pulse
assumption. The narrower pulse shapes can be approximated with Gaussian pulses with the

expression,

t.Z
V() = e(25?) [5.4]

_4
V2mo?
where A is the maximum of the pulse, and o is the shape factor (standard deviation). For

simplicity we suppose the curve centered in 0 s. The module of its spectrum is,

_ | g (-ELD5

6C] = |4e<5) [5.5]
and its -10dB bandwidth is,

f-10aB = % [5.6]
For Gaussian pulse the relationship between FWHM and shape factor is,

FWHM = 2\2In20 ~ 2.35480. [5.7]
Therefore combining equations [5.6] and [5.7] we obtain,

f-10a8 = %- [5.8]

From figure 5.5 (a) the minimum FWHM is of about 60 ps. Using the equation [5.8] its -10
dB bandwidth should be of about 9.48 GHz. The measured value differs of only 5.5 % and is
of about 10.2 GHz. It can be demonstrated that this error is due to the ringing effect
underlined in figure 5.5 (a). For the case of FWHM equals 92 ps, from equation [5.8] the -10
dB bandwidth should be of 6.18 GHz but it is of 6 GHz. This small difference is reduced

respect to the previous case due to the almost absence of pulse ringing [M1T 09].
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In figure 5.7 is shown the measurement results for the negative (black dashed lines) and

positive (red lines) outputs of the proposed B-UWB-PG, for two FWHM configurations,

respectively of 235 ps and 126 ps varying linearly the voltage applied to the pin VR from 0.4

V and -1.2 V. The figure 5.7 shows a dynamic variation for each port from 0.6 V to 0.03 V.
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Figure 5.6. Calculated PSD/MHz with a PRF of 1 MHz of the signals plotted in figure 5.5 (a) with a

PRF of 1 MHz.
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Figure 5.7. measurement results for the negative (black dashed curves) and positive (red curves)
outputs of the proposed B-UWB-PG, for two FWHM configurations, respectively of 235 ps and 126 ps
varying linearly the tension applied to the pin VR from 04 V to -1.2 V.
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2.4.2. B-UWB-PG jitter characterization

The jitter of the pulse generator was measured using the bench shown in figure 5.8 (a). It
is composed of the DSO Agilent DSO91204A (with 12 GHz bandwidth and 40 GSa/s
sampling rate), the Agilent 1134A high performance probe, and an arbitrary function
generator (AFG) AFG3102C from Tektronix.

The AFG is used to trigger the pulse generator using a periodic square signal of 1 MHz
(PRF). The probe is placed at the input of the comparator A, and used as a trigger for the
DSO, which is connected to the pulse generator outputs. The eye diagram for a pulse with a
FWHM of around 60 ps over 1 k pulses is shown in figure 5.8 (b). The pulse-width duration
presents a standard deviation of 1.6 ps and peak-to-peak of 8.33 ps. The fall and rise time
(20-80%) standard deviation is of 1 ps and 0.8 ps respectively. These values are in
accordance with the jitter specifications of the high performance components employed. In
order to compare with a commercial solution, the jitter standard deviation of the commercial
solution HL9200 from Hyperlabs, employed as transmitting stage of the readers in chapters 3
and 4, is from datasheet of 3 ps. The presenting solution shows the lower jitter results, and

with a more performing RF board substrate it would further decrease.
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Figure 5.8. Deterministic period jitter measurement with eye diagram using the 12 GHz Agilent
DS091204A, and the 7 GHz Agilent 1134A probe as trigger reference for the oscilloscope. (a) Test
bench. (b) Measurement results.
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2.5. Output stage consideration
2.5.1. Output power enhancement

The maximum PSD/MHz of each single B-UWB-PG output, with VR equal to 0 V, is
ranging from -59 dBm/MHz to -80 dBm/MHz (see figure 5.6), for a pulse-width of 325 ps and
60 ps respectively. This low level of power is due to the low duty cycle used, i.e. low PRF.
Increasing the PRF will results in a higher PSD/MHz. To increase the output power, the low
cost Analog Devices HMC788 gain block amplifier was used as a final stage of the proposed
B-UWB-PG. It is characterized by an operative band from DC to 10 GHz, a gain of 14 dB, an
input compression point of 6 dBm, and a noise figure (NF) of 7 dB. An evaluation board for
the amplifier was fabricated on the same FR4 substrate of the pulse generator. The
measurement test bench is shown in figure 5.9 where the amplifier is connected in cascade
with one output of the B-UWB-PG. The measured output voltage is shown in figure 5.10 (a),
while its estimated PSD/MHz is in figure 5.10 (b). The proposed solution shows an output
amplitude ranging from 1.1 V to 2.3 V with VR yet equals to 0 V. Comparing the same results

without the output amplifier, the — 10 dB level of the pulses decreases. It was caused in

majority by the negative decay of the gain of the amplifier with frequency.

 AFGA02C
| (Tnggzer)

Figure 5.9. Measurement setup of a single output of the B-UWB-PG amplified with the evaluation
board for the HMC788 gain block amplifier.

2.5.2. UWB shaping network

In order to be compliant with FCC regulation in terms of power mask, the output of the
proposed B-UWB-PG needs to be shaped [rcc 16]. In the regulation, the reported value of
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PSD/MHz is a measure of EIRP, and therefore the characteristics of the transmitting antenna
have to be taken into account. Outside of the 3.1-10.6 GHz band, the allowed PSD is strictly
limited, especially between 1 and 2 GHz. The UWB antenna itself can be used to shape the

pulse [Tam 12], or the antenna in combination with a band pass filter [ven 05].
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Figure 5.10. Measurement results of the B-UWB-PG with the gain block amplifier (see figure 5.9) in
time (a). (b) Calculated PSD/MHz with a PRF of 1 MHz.

Typically a monocycle pulse, which is the result of a first derivation of a Gaussian pulse, is
used at the transmitting port of commercial radars, such as the Novelda NVA-R640 kit. The
corresponding maximum PSD is not located at zero frequency. By combining the balanced
outputs of the proposed B-UWB-PG pulse generator, it is possible to generate a monocycle
Gaussian pulse. In this way the B-UWB-PG can be used with most commercial UWB

antennas while respecting regulation.

Figure 5.11 (a) shows a schematic of the combination process. The monocyle is obtained
by doing the summation of two Gaussian pulses: one positive and one negative, where the
latter being slightly delayed in time. The wideband combiner Mini-Circuits ZFRSC-123 was
used to perform the summation. The time shift between the two pulses was done using two
cables with two different overall lengths; in this case a 21 mm coaxial connector which adds
a small delay to the bottom chain (see figure 5.11 (b)). In order to compensate the insertion
loss of the combiner, which is of about 10 dB, the same HMC788 amplifier was employed as

a final amplification stage. The results are in blue, compared with the NVA-R640 commercial
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radar pulse output in black dashed in figure 5.12. The PRF was increased to 48 MHz, which
corresponds to that one of the Novelda NVA-R640 kit. Both responses are similar, showing
that the B-UWB-PG can be easily tuned to provide a monocycle pulse. In case of our
prototype, the pin VR was at 0 V and therefore the output amplitude could be yet increased
using the maximum value of 0.4 V. The higher power levels of figure 5.12, compared with
figure 5.10 (b), is due to the higher PRF.

The wideband combiner Mini-Circuits ZFRSC-123 has a high insertion loss due to its large
band, from DC to 12 GHz. With a lower insertion loss combiner, and using 0.4 V for VR, it
would be possible to eliminate the final amplifier. In figure 5.12 is also shown, in red dash dot
line the distinct single outputs measurement from the B-UWB-PG, called OUTP and OUTN
from figure 5.11 (a), executed with VR equals to 0.4 V. They were summed in post
processing with a delay of 14 ps, and finally attenuated of 3dB to emulate an ideal -3 dB

insertion loss combiner. The signal in time and frequency presents almost the same trend as
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the case with the amplifier (blue line).
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Figure 5.11. (a) Schematic and (b) photograph of the monocycle pulse generator obtained from the
combination of the balanced outputs of the proposed B-UWB-PG, using a power combiner, and a
short delay line.
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As final example, the same configuration of figure 5.11 was used, where the combiner
was substituted with the Mini-Circuits ZFSC-2-9G+ band pass combiner. The filtering effect
of the new combiner is clearly visible in figure 5.13 (a). The estimated PSD/MHz is shown in
Figure 5.13 (b), where the gain of the Satimo QH2000 was taken into account for the EIRP
estimation. The PRF was of 1 MHz, and the FCC average power mask for indoor
applications is also shown on the figure. As it can be observed, the final emitted pulse is fully

compliant with regulation. Moreover the output power could also be further increased.
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Figure 5.12. In blue measurement of the proposed pulse generator with the wideband combiner
ZFRSC-123 from Mini-Circuit and the HMC788 amplifier (see figure 5.11) with VR equal to 0 V. In red
dash dot line, the distinct single output measurement from the B-UWB-PG, called OUTP and OUTN
from figure 5.11 (a), and summed in post processing with a delay of 14 ps executed with VR equal to
0.4 V. Finally in black dashed the Novelda NVA-R640 development kit pulse output. (a) Signal in time
domain. (b) Calculated signal in frequency domain (PSD/MHz), where the PRF was that one of the
Novelda NVA-R640 and corresponding to 48 MHz.
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Figure 5.13. (a) Measurement in time domain of the setup of figure 5.11 (b) with the ZFSC-2-9G+
band pass combiner. (b) Calculated PSD/MHz with a PRF of 1 MHz taking into account the gain of the
Satimo QH2000 antenna, and FCC average power mask for UWB indoor applications.

2.6. Conclusion

This section has presented a potentially low jitter fully tunable baseband pulse generator
for real and equivalent-time UWB applications. COTS components and low-cost FR4
substrate has been used. The generator is based on high frequency logic gates and two
comparators. It can be triggered by a low-frequency TTL-CMOS digital signal. A delay
generator and variable length transmission lines permit to tune the pulse-width from 325 ps
to 60 ps. A pin on the AND gate allow for amplitude modulation. The measured random
period jitter over 1 k cycles is in the order of 2 ps. The generator outputs two pulses that can
be combined to create a commonly used monocycle pulse. The proposed solution is flexible
and permits to design a shaping network with COTS components to respect regulations. The
use of COTS component is a big advantage compared to integrated solution, because its
implementation, modification, and redesign is easier and low-cost. Also, it may be integrated
in large onset UWB system. The actual design can be improved using digitally controlled RF
switches instead of 0 Q resistors to select between A7-A2-A3. A bigger permittivity substrate,
with better performance at higher frequency, can be used to reduce the B-UWB-PG
dimensions and jitter. The presenting solution has a lower jitter than the commercial HL9200

solutions, and from figure 5.12 and figure 5.13, it may easily respect the UWB regulations.

This pulse generator solution can be used as an emitted stage of the two readers
presented in the chapter 3 and 4. It will decrease the reader realization cost and the system

jitter. The PRF of the pulse affects the resulting PSD/MHz, and the readers of chapter 3 and
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4 have a PRF of only 1 MHz. Note that, this will results in a lower PSD/MHz for UWB
regulations, and therefore a further amplification stage may be added at the output of the

pulse generator.

In the next section, the designed pulse generator will be used first to read chipless tag,
with the high performance DSO in the reception stage, and after with the reader presented in

chapter 4.

3 UWB pulse generator frequency-coded tag measurement

The designed B-UWB-PG was tested to read the REP frequency-coded tag introduced in
[VEN 13], and used along with the entire manuscript to validate the different presented

reader prototypes.

The B-UWB-PG was tested with two different configurations. The first exploits a single
output port of the B-UWB-PG with the HMC788 gain block amplifier as final stage. It is shown
in figure 5.14 and was discussed in sub-section 2.5.1. The second configuration was
discussed in sub-section 2.5.2. It makes the use of the wideband combiner ZFRSC-123 from
Mini-Circuits to combines the two single outputs of the B-UWB-PG to create a monocycle.

The HMC788 was employed as a final amplifier to compensate the combiner insertion loss.

The B-UWB-PG was first tested with the high performance DSO, and after with the

optimized reader version discussed in chapter 4.

3.1 Pulse generator measurement result

The B-UWB-PG was connected as the emission stage of an IR-UWB reader based with
test equipment. The DSO Agilent DSO91204A was in reception, while the antenna was the
dual access Satimo QH2000 with the tag placed at 10 cm. The bench is shown in figure 5.14.
The B-UWB-PG was configured with a single output amplified with the HMC788, and with a
FWHM of about 90 ps as shown in figure 5.10. The DSO was settled with an averaging of 64,
and the B-UWB-PG was triggered with the AFG AFG3102C. The measurement results are
shown in figure 5.15. All the measured tag frequency peaks, which correspond to the first

mode resonant frequencies of the tags, are in the correct positions.
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The same B-UWB-PG configuration was tested with the optimized reader version
presented in chapter 4, it was used in place of the DSO. Because the reader was designed
around the HL9200 that has higher output power, in the reader reception was connected the
LNA Mini-Circuits TVA-82-213A+ with one attenuator of 18 dB. The external LNA decreases
the ADC quantization noise (chapter 4 section 2), resulting in higher reader ADC equivalent
bits number. The LNA has a typical gain of 25 dB between 0.8 and 21 GHz, adding the
attenuator, the corresponding gain is reduce to 7 dB but enough to retrieve the tag ID. To
avoid using this external preamplifier, it is sufficient to increase the number of ADC bits
(currently they are 9 over 1.5 V), or to use the same driver employed in the reader version
of chapter 3 to add gain at the output of the S/H amplifier. The corresponding bench is shown
in figure 5.16, where the reader was settled with the maximum averaging of 512. The
corresponding measurement results are shown in figure 5.17. All the tag frequency peaks
are in the expected position (resonant frequencies). Less accurate are the results concerning
the last peak, it was due to the use of the external preamplifier, and the pulse generator

spectrum that shows attenuation at higher frequencies.

- AFG3102C
s (Trigger)

HMCTRS

B-UWB-1G

Figure 5.14. Bench of tag measurement in practical environment with the DSO DSO91204A in
reception. The function generator AFG3102C was used as trigger for the B-UWB-PG. One single
output of the B-UWB-PG was used as emission stage, along with the block gain amplifier HMC788.
The B-UWB-PG was settled for a FWHM of about 90 ps as shown in figure 5.10. The tag was placed
at 10 cm from the dual access antenna, SatimoQH2000. The measurement is in cross-polarization
and the DSO averaging was of 64.



5. UWB Pulse Generator & Antenna design 125

' - ' | | |
[ [
S0 | | I I |
! |
100k |

=150

nommalized imtegrated STFT (dB)

s
2

Freguency (GHz)

Figure 5.15. Tag measurement result of bench on figure 5.14. All the tag frequency peaks are in the
expected position (resonant frequencies).
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Figure 5.16. Bench of tag measurement in practical environment with the optimized reader of chapter
4 in reception. In reception the LNA Mini-Circuits TVA-82-213A+ with one attenuator of 18 dB, were
interposed between the reader RF input and one port of the antenna. One single output of the B-UWB-
PG was used as emission stage, along with the block gain amplifier HMC788. The B-UWB-PG as
settled for a FWHM of about 90 ps as shown in figure 5.10. The tag was placed at 10 cm from the dual
access antenna, SatimoQH2000. The measurement is in cross-polarization and the reader averaging
was of 512.
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Figure 5.17. Tag measurement result of bench on figure 5.16. All the tag frequency peaks are in the
expected position (resonant frequencies). The high frequency peak apexes are less accurate. It was
due to the use of an external preamplifier, and the pulse generator spectrum that shows attenuation at
higher frequencies.

The second configuration for the B-UWB-PG was based on the monocycle creation shown
in figure 5.12. The same measurements with the DSO and the optimized reader of chapter 4
were performed. Respect to the bench of figure 5.14 and 5.16 the only difference was the B-
UWB-PG configuration, therefore they are not shown. The measurement results are in figure

5.18. Both DSO and reader approach show correct reading results.
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Figure 5.18. Tag measurement result with second B-UWB-PG configuration. All the tag frequency
peaks are in the expected position (resonant frequencies)

3.2 Conclusion

This section has presented the potentiality of the designed B-UWB-PG as emission stage
of an UWB chipless RFID reader based on IR-UWB approach. The measurements were
performed in turn with a high performance DSO and the optimized reader of chapter 4 in
reception in a practical environment. The two reading systems were able to read the tag
introduced in [VEN 13], where the reader needed an external preamplifier of only 7 dB of
gain to reduce the reader ADC quantization noise. Either the use of an ADC with higher
resolution (bit quantity), or the use of a driver with a settled gain between the reader S/H
amplifier and the analog ADC input, will free up the reader by the use of the external

preamplifier.

4 UWB antenna design

The readers presented in chapter 3 and 4 use commercial ultra large-band antenna, such
as the Satimo QH2000. It is an open boundary quad-ridge horns antenna, working between
the bandwidth 2 — 32 GHz, with a boresight gain between 10 and 14 dBi in the UWB 3.1 —
10.6 GHz. The price of this type of antenna is of around 6 k€. For the deployment of chipless
technology, the reader should be low cost. A printed antenna may represent a good

candidate, where the feeding network should be simple to realize. An unbalanced antenna
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access point, such as an SMA connector, is preferable because compatible with microstrip

technology often used in PCB layout.

Many different antennas can be used at the scope. First a selection based on the
polarization has to be done. Because the cross-polarization principle is used, the reader
should be equipped with two linear polarized antennas, placed in cross-configuration
attaining to decrease the coupling as much as possible. In a UWB chipless RFID system, the
read range is limited and since the low power signal reflected back from the tag, and its liner
behavior, the receiving antennas should have a high gain to maximize the link-budget
(equation [2.7] in chapter 2). The transmitting antenna may have a more isotropic character,
this because both regulations, FCC and ETSI [rcc 16- ETs 17], discriminated maximum
emitted power with the EIRP. On the other side a lower gain may generate a higher antennas
coupling (leakage), hence both antennas for transmission and reception are preferable

having high gain.

Between all the planar printed UWB linear polarized antennas, the most employed are the
monopole, dipole, Bow-Tie, Log-Periodic, and Vivaldi. The monopole and dipole antennas
have a low gain that is hardly higher than 5 dBi in all the band of interest (3.1 — 10.6 GHz)
[RAM 16]. The Bow-Tie is composed of two triangular metal sheets, fed with classical
aperture coupling technique employing a broad band stub. It has a quasi-omnidirectional
radiation pattern along the H-plane, and therefore a limited gain [WIE 09]. The Log-Periodic
antenna has high bandwidth. It is a multi-resonant antenna, and therefore has a variable
group delay over its bandwidth. This makes reading time-based tags difficult because the
antennas tends to spread out the transmitting or receiving UWB pulse, creating ringing
effects [WIE 09]. The Vivaldi antenna is a frequency independent antenna, therefore has

reduced ringing effects. It has high gain and bandwidth, and is easy to be realized.

A Vivaldi antenna was fabricated on a high performance laminate Rogers R03003 0.76
mm substrate, which at 10 GHz has a relatively dielectric constant of 3, and a dissipation
factor tan & of 0.0010. For the design, CST Studio Suite 2014 was used. The antenna has a
balance radiative structure on the bottom formed of an exponential tapered slot line, and an
unbalanced fed structure based on microstrip. According to figure 5.19, their coupling
arrangement is composed of the radial stub on top layer, coupled with the circular cavity on
the bottom. In table 5.2 are shown the corresponding design dimensions, and in figure 5.19

the CST design. The exponential tapered slot line has been modified during design to reduce
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the overall antenna dimension, therefore its profile does not obey with the well-known

equations reported in [KAH 15].

52.5 mm

Figure 5.19. Realized Vivaldi antenna.

0.304m 0.885m
rad rad

0.42 mm 0.70 mm 8.92 mm 7.48 mm 1.89 mm 6.52 mm 3.67 mm

Table 5.2. Corresponding dimensions of figure 5.19.

A photograph of the realized antenna, and the measurement of its reflection coefficient
are shown respectively in In figure 5.20 (a) and In figure 5.20 (b). The reflection coefficient is
lower than -10 dB in the entire tested band 3.1 — 10 GHz. In figure 5.21 is shown the
simulated far field gain at 5.5 GHz where its maximum is of 7.33 dBi. In figure 5.21 (a) the
polar chart in the E-plane is represented. It shows an aperture of 49°, and a side lobe level of
-8.9 dB. In figure 5.21 (b) the polar chart in the H-plane, it shows an aperture of 92°, and a
side lobe level of -7 dB.
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Figure 5.20. Photograph and reflection coefficient measurement of the realized UWB Vivaldi antenna
whose design is in figure 5.19.
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Figure 5.21. Simulated far field gain at 5.5 GHz of the antenna in figure 5.19. (a) Polar chart of the
gain in the E-plane. (b) Polar chart of the gain in the H-plane.

5. Conclusion

The design, realization, and characterization of a low jitter UWB pulse generator was
depicted in the section 5.2. It is based on COTS components, and represents a low cost
solution. Its main components retail cost after tax varying from 384 € to about 197 €. The
more expensive solution provides a fine tuning of the output pulse-width, which is not
possible for the latter that misses the delay generator chip. A prototype of the more
expensive solution was realized on FR4 and characterized. It shows a low random jitter of
2 ps of standard deviation over 1,000 cycles. To be compliant with UWB regulations, some

shaping network configurations have been proposed. Its design has been facilitated
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exploiting the pulse generator flexibility. It may be used as the emitter stage of the UWB

chipless RFID readers designed in chapter 3 and 4, as demonstrated in section 3.

A planar Vivaldi UWB antenna have been realized and described in section 4. It shows a
reflection coefficient lower than —10 dB in the entire band 3 — 10 GHz. It was designed to

have an unbalanced alimentation structure as so to be used with the proposed readers.

In the next chapter, the problem of reading UWB chipless RFID tags, independently from
their orientation, is faced. A technique based on polarization diversity is proposed. A reading
system based on test equipment was realized as proof of concept, and after the same

principle was applied to the reader presented in chapter 4.
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UWB Chipless RFID Reading System Independent of
Tag Orientation

1. Introduction

The UWB chipless RFID tags need to be aligned with the reader antennas, in order to
maximize the reading capability, when a cross-polarization approach is used. The reading is
therefore tag orientation dependent. In this chapter is proposed a reading technique, based
on polarization diversity from the reader part, to obtain a reading which is instead
independent of the tag orientation maintaining a cross-polarization configuration. In the first
part of the chapter some measurements of chipless RFID tags with state of the art test
equipment are shown. After, to read tags independently from their orientation, a modified
version of the optimized reader presented in chapter 4 is detailed. The chapter is organized

as follows:

e Section 2 introduces the problems of tags reading whatever their orientation from a

theoretical prospect.

e Section 3 presents the potentiality of a 4 ports state of the art VNA to perform
balanced measurement. The proposing reading technique is introduced and
balanced measurements are done with the VNA to read the tags whatever their

orientation, in a practical environment.

e Section 4 demonstrates the feasibility of the proposing technique, with a reduced

number of measurements (only two), to be used in practical applications.

e Section 5 shows the proposing method applied to the optimized reader of chapter
4, with the addition of some external hardware components. Measurements of tags

in practical environment are shown.
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e Section 6 draws the conclusion of the chapter.

2. Theory of operation

One of the major drawbacks of UWB chipless RFID systems is the polarization
dependence. Most of the proposed tags in literature have to be specifically oriented with the
reader, working in linear polarization, and using high directive antennas to maximize the
read-range [PER 14]. The tags are isotropic and have, as well as the reader, some discrete
directions of maximum radiation. Thus, the tags must be correctly oriented with the reader to
maximize the reading. To attain a UWB Chipless RFID system independent from mutual
orientation, a dedicated work may involve either the reader or the tag design. Chipless UWB
tags with circularly-polarized antennas [SHEN 12], or tags independent of polarization [VEN
12], have been proposed but they do not have the robust detection advantages of working in

cross-polarization [VEN 13].

A typical scenario of a tag reading process is shown in figure 6.1. The tag is read in a
cross-polarization configuration, and therefore the E-planes of the reader transmitting and
receiving antennas are orthogonal, as shown in the figure. The tag is supposed to be aligned
with the reader antennas in the direction of maximum backscattering RCS. Then, the tag can
be interrogated with different reader antenna orientations, defined by the angle a;, to
characterize the response of the tag. a; is defined in figure 6.1. It is the angle of the intersect
between the reader transmitting antenna E-plane, and the Cartesian coordinate system (x,y)
defined in the tag plane. A variation of a; corresponds to a rotation of the reader antennas.
The tag position is defined with B, which is the angle between the x axis and the tag direction.
This direction is defined by the straight line parallel to its longer size, and crossing the origin
of the Cartesian coordinate system (x,y). The tag on figure 6.1 is the cross-polarized tag
presented in [VEN 13], and used to characterize the different reader prototypes in this

manuscript.

A model of the tag was realized in CST Studio Suite, and simulated varying a; between 0
and 90 deg. For simplicity the tag was placed with B equals to 0 deg as shown in figure 6.2.
The tag response is shown in figure 6.3, the positions of the eight tag resonant frequencies
versus the angle are underlined with gray dashed lines. The STFT algorithm was employed,
in post processing with Matlab, to remove the tag structural mode contribution from the

simulated tag response [RAM 16]. The tag shows a symmetric response around 45 deg: the



6. UWB Chipless RFID Reading System Independent of Tag Orientation 137

tag maximum response is for a; of 0 and 90 deg, and the minimum for a, of 45 deg. The tag
ID was correctly retrieved with a; between 0 and 35 deg, which results are similar to «;
between 55 and 90 deg. For the others directions around 45 deg, the reading was difficult
because the tag response amplitude is several dB reduced respect to the more favorable

cases (0 and 90 deg).

The simulation performed covers an «; variation in the first, and the third quadrants of the
x,y Cartesian coordinate system (the angle range 0 — 90 deg is equivalent to the range 180 —
270 deg). The behavior of the tag for the second and fourth quadrants, which is with a;
between 90 and 180 deg (equivalent to 270 — 360 deg) gives about the same results due to
the tag shape. Thus, the response of a cross-polarized tag is periodic with period of 90 deg.

This has been demonstrated in literature, and will be formalized in the section 4.

TAG CHET model
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Figure 6.1. Scenario of a tag reading in cross-polarization configuration, varying the direction of
interrogation (ar). ar. is the angle of the intersect between the reader transmitting antenna E-plane,
and the Cartesian coordinate system (x,y) defined in the tag plane. A variation of a, corresponds to a
rotation of the reader antennas. The tag position is defined with B, which is the angle between the x

axis and the tag direction. This direction is defined by the straight green line parallel to its longer sizer,
and crossing the origin of the Cartesian coordinate system (x,y)
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Figure 6.2. Scenario of a reading of a tag in cross-polarization configuration, varying the direction of
interrogation (a.) with the tag position B equals 0 deg. A CST Studio Suite model of the tag was
realized and simulated varying a, between 0 and 90 deg. The tag was the cross-polarized tag
presented in [VEN 13]. It is characterized by eight resonant frequencies in the bandwidth 3 - 7 GHz.

As have been shown, typically cross-polarized tags have two preferential reading
directions [VEN 12] that maximize the antenna (tag) mode cross-polarization RCS, and allow
recovering the tag ID in best condition. They are orthogonal and therefore 90 deg distant,
and from figure 6.2 and 6.3, they correspond to the case of a; equals B £ n 90 deg, with n
integer. Between them exists two perpendicular directions of minimum tag response as
shown in figure 6.4. When B is 0 deg, they are located in «; equals 45 and 135 deg (B + n 45
deg, with n odd integer). The aim of this thesis is improving the state of the art of UNB
chipless RFID reader technology, therefore the orientation problem has been studied in that

prospect. The goal is to show a reader that is able to electrically rotate its interrogating



6. UWB Chipless RFID Reading System Independent of Tag Orientation 139

signal, varying a,, while always receiving in the perpendicular direction (i.e., the reading is

always in cross-polarization).
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Figure 6.3. Simulation result of the scenario shown in figure 6.1 with tag placed at 8 equals to 0 deg.
The STFT algorithm was employed in post processing with Matlab to remove the tag structural mode
contribution from the simulated tag response. The tag has a symmetrical behavior around the
minimum response of a, equals to 45 deg. The maximum is at 0 and 90 deg. In gray dashed lines the
retrieved position of the eight resonant frequencies.
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Figure 6.4. Directions of tag maximum and minimum response for cross polarization reading.

To read the tag independently from its orientation, one can either sweep either in the
interval [0 - 90] deg or in [90 - 180] deg, due to tag response symmetry as shown in figure
6.5. This assures the reading of the tag in the best condition for at least one value of «;,
maximizing the antenna (tag) mode cross-polarization RCS. For simplicity the chapter is
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focusing on the interval [0 - 90] deg. This approach has been demonstrated with the use of
the 4 ports Agilent VNA N5222A, in balanced measurement configuration. The next section

introduces the VNA balanced measurement principle of operation.
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Figure 6.5. A reading process with a, varying in the interval [0 - 90] deg corresponds to a sweep in the
first and third quadrants of the Cartesian coordinate system (x,y). Whatever the position of the tag, at
least for one time, the tag is interrogated along with one of its two preferential reading directions.

3. VNA balanced measurement

3.1. Variation of the transmitting signal direction a,

The N5222A VNA is equipped with four physical ports, and it has the possibility to perform
balanced measurements in true-mode (real balanced signals) [PNA 16]. The VNA four ports
are grouped in two logic ports 1 and 2, where the first is composed of the physical ports 1
and 3, while the logic port 2 with the physical ports 2 and 4, as shown in figure 6.6. The
signals at the two logic ports have a common and differential component, which may be
defined respectively as in equation [6.1] and [6.2] for the logic port 1, and as in equation [6.3]
and [6.4] for the logic port 2.

Vi+V-
Vip1i—common = % [6.1]
Vi-V-
Vip1-piff = 12 : [6.2]
Vo +V,
Vip2—common = % [6.3]

Vo=V,
VLPZ—Diff = 22 * [6.4]
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Figure 6.6. Organization of the VNA physical 4 ports in a balanced measurement configuration. They
are arranged with two logic ports, and each associated at two physical ports. The logic port 1 at the
physical ports 1 and 3, whereas the logic port 2 with the physical ports 2 and 4.

It is possible to do common to common (c-¢c), common to differential (d-c), differential to
differential (d-d), and finally differential to common (c-d) S-parameter measurements, from
logic port 2 to logic port 1 and vice-versa, where C stand for common and d for differential. A
balanced signal, that has a null differential component, is composed of two signals with equal
amplitude and phase (equations [6.2], [6.4]). While if the common component is null, the two
signals are equal in amplitude and opposite in phase (equation [6.1],[6.3]). Besides balanced
to balanced measurement it is possible to perform single to balanced and balanced to single
measurement. From figure 6.6, the only difference is that one of the two logic ports is
composed of only one physical port. Compared to balanced to balanced, the others have

some limitations in true more as shortly explained.

The Satimo QH2000 is a dual access antenna, and therefore can be connected to one of
the two logic ports once in balanced configuration. The antenna connected with the logic port
2 (physical ports 2 and 4) is shown in figure 6.7. Each antenna components, vertical and
horizontal, will transmit a linear polarized EM signal along with the respective E-planes. The
resulting signal towards the tag will be the vector sum between the two linear polarized
signals, as shown in figure 6.7. To avoid an interrogating signal with elliptical polarization, the
two exiting components of the antenna, V4 and V, have to be in phase or out of phase. If the
exiting signals of the logic port 2 are common signals, then the two components have the

same phase. Therefore, the interrogating signal will be a linear polarized one in the first and
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third quadrants of the Cartesian coordinate system (x,y) (see figure 6.7). The transmitting
angle a; will be equal to 45 deg because the two components have also the same amplitude.
In case the transmitting signal is differential, their two components will be out of phase, and
a; will be equal to 135 deg. As previously said at the end of last section, the selected interval
of variation of a; to interrogate the tag was in between [0 - 90] deg. So to vary a; in that
interval, keeping a linear polarized transmitting signal, the amplitude of the two components

V, and V, need to be varied, while keeping the same phase.
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Figure 6.7. Connection between the VNA and one dual access antenna. Using the logic port 2 of the
VNA in transmission with a balanced configuration, the transmitting signal toward the tag will be the
vector sum of the two linear polarized signals, in the two orthogonal E-planes of the antenna.

The VNA allows for setting a power offset between the two signals V, and V, of a
balanced port, maintaining the same phase relationship. The user can select the amount of
power offset, whereas the sum of the transmitted power of the two single ports will be
unvaried. Thus, it is possible to vary a, in transmission inside the interval [0 - 90] deg. In
more general application, this option is used to compensate from cables and PCB layout
mismatching when measuring a chip characteristic as Common Mode Rejection Ratio

(CMRR) of operational amplifier. The power offset between the two signals V, and V,is,
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V,
Posssec = 2010g10G1). [6.5]

The angle a; depends from the amplitude of the two electric fields along the two E-planes
of the antenna, Etx_v, and Etx_h. These electric field amplitudes are directly proportional to

the amplitude of V, and V4. Thus, a; can be expressed with,

ap = arctan(%). [6.6]

Combining the equation [6.5] and [6.6], the relation between the power offset of the two

signals V, and V,, and the transmitting signal direction «; is,

Poffset
a, = arctan| 10" 20 | [6.7]

Table 6.1 shows some discrete values obtained with the aforementioned equation. As it
can be observed, a power offset between +/- 15 dB is enough to cover almost all of the range
[0 - 90] deg.

Relation between ay and P ¢,

a.(deg) 90 80 70 60 45 30 20 10 0
Pofrser(dB) © 15 8.8 4.7 0 -4.7 -8.8 -15 -0

Table 6.1. Relation between ar and P, Using the equation [6.7].

It is possible to make common to single (s-c) S-parameter measurement from logic port 2
to logic port 1, i.e. Ssc12. The transmitting balanced logic port 2 is composed of the two
physical ports 2 and 4. The receiving logic port 1 is single and composed of only the physical
port 1. In this manner, the transmitted balanced signal (logic port 2) has a differential
component equals 0, and presents only a common component. This means that the two
exiting signals of the transmitting antenna, V, and V, are in phase and equal in amplitude.
Their power offset is 0 dB, and according to table 6.1, the transmitted linear-polarized signal
has an angle a; of 45 deg. Then it is possible to vary the power offset between the two

components according to table 6.1 to modify «;.

The true mode needs to be selected because otherwise the VNA will emulate only a
balanced measurement. The VNA will perform only single to single measurements on the

three physical ports 2, 4, and 1. Finally the VNA will arrange the results to retrieve the results
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as for a real balanced measurement. Thereby, the true mode option is required for these

experiments.

Another VNA option that has to be selected is called offset as fixture. It will not take into
account, or more exactly compensate, the imposed power offset on the balanced logic ports,
in post processing to retrieve the measurement result. Indeed, varying the power offset
according to table 6.1 of the transmitting signal of the logic port 2, will create two signals V,
and V, with same phase but different amplitude. The resulting transmitting signal toward the
tag will be still linear polarized, but from equations [6.3] and [6.4], a differential component
will be created besides the common one. The VNA is settled with common to single analysis,
therefore it will make calculation only on the common component of the transmitting signal,
expressed with equation [6.3], to give the measurement result. When the option offset as
fixture is selected, the VNA will not take into account the imposed power offset variation from
calculation, and the transmitting signal is considered as pure common in calculation. Indeed,
independently from the selected power offset, the transmitting balanced signal has the same

power.

The variation of the transmitting signal between the angle «; equals 10 deg and 80 deg,
which corresponds to a power offset variation P, ¢, from -15 dB to 15 dB (table 6.1), was
validated in anechoic environment. The bench of the validation measurement process is
shown in figure 6.8. One Satimo QH2000 antenna in transmission is connected to the
balanced logic port 2 of the VNA, corresponding to the physical ports 2 and 4, and the other
is connected to the VNA logical port 1 (physical port 1 only). This second antenna can be
considered as a linear polarized probe in reception, where only one of the two “Vivaldi’
antennas forming the QH2000 is connected to the VNA, and the other connected to a 50 Q
SMA load. The rotation of the probe antenna (receiving antenna) was executed with an
electrical engine, and the two antennas were distant approximately 25 cm to recreate a

typical UWB chipless RFID reading range.

The measurement results of the bench shown in figure 6.8 are in figure 6.9. In (a) the
power offset equals to 15 dB that corresponds to an angle a; equals to 80 deg. In (b) the
power offset was 0 dB corresponding to an angle a; equals to 45 deg, and in (c) a power
offset of 15 dB corresponding to an angle «; equals to 10 deg. These theoretical figures are

validated with the corresponding measurements in figure 6.9.
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Figure 6.8. Validation of the transmission Ssc12 balanced measurement in anechoic environment. A
power offset P, s s is used in transmission (logic port 2) to turn the Tx linearly-polarized signal with

the VNA option power offset as fixture. One Vivaldi component of the Satimo QH2000 antenna is used
as a probe in reception (single port 1), and it is rotated mechanically to analyze the characteristics of
the transmitted signal.

3.2. Isolating the cross-polarized component in reception

In reception, the cross-component (related to the polarization of the transmitting signal) of
the receiving signal, from the tag, needs to be measured. It corresponds at the EM field
component with an angle equals to a; plus 90 deg. The receiving antenna may be another
dual access device connected to the physical ports 1 and 3. Then, it is possible to extract the
tag contribution at a; plus 90 deg (cross-polarization) from the signal measured at the two
ports of the antenna. To do that, the clockwise system of reference rotation matrix can be

applied at these two components to obtain the response in the wanted direction.

The measurement setup of a reading system using a 4 ports VNA Agilent N5222A, and
two dual-access Satimo QH2000 wideband antennas, is shown Figure 6.10 (a). One antenna
is used in transmission, and the other in reception. Ports 2 and 4 of VNA are connected to
the transmitting antenna (Tx antenna), while ports 1 and 3 are connected with the receiving
antenna (Rx antenna). From the figure, the transmitting and receiving antennas have the
same orientation, hence, the rotation matrix has to be applied to an angle equal to «a;, and it

is,
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(Vo) = (Coxt@) —sintan) 1) [6.5]

Veo sin(a;)  cos(ag)

V; and V5 are respectively the receiving signals on the VNA physical ports 1 and 3, which
are connected to the vertical and horizontal component of the receiving antenna. Vs is the
part of the receiving signal along with the wanted direction at a; + 90 deg. V,, represents the

response along with the direction defined by a;. From equation [6.8] V¢oss IS,

Vcross = cos(a;)V; — sin(a;) V5. [6.9]
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Figure 6.9. Validation of the transmission Ssc12 balanced measurement for power offsets of (a) 15
dB, corresponding to 80 deg, (b) 0 dB, corresponding to 45 deg, and (c) -15 dB, corresponding to 10
deg. The scale is semi-logarithm on the left side 2-d plots, and linear on the right side.

3.3. Measurements of cross-polarized tag

To measure the two components of the receiving antenna, as shown in figure 6.10 (a), the
simplest way would be to set up the VNA with two common to single measurements Ssc12.
The single logic port 1 is the physical port 1, for one measurement, and the physical port 3
for the other. Unfortunately this is not possible in a true mode approach. So another option
provides the execution of one common to common (Scc12) and one common to differential
(Sdc12) measurement. In reception, the logic port 1 is composed of the two physical ports 1

and 3, and is treated as a balanced port. The measurement in reception of the common and
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differential components, of the balanced receiving signal, correspond to the two signals of
equation [6.1] and [6.2]. From figure 6.10 (b), it is equivalent to a rotation of 45 deg, of the
receiving Cartesian coordinate system (x,y). Finally the rotation matrix of equation [6.8] has
to be modified as in equation [6.10], to take into account the rotation of 45 deg (see figure
6.10 (b)) already done, and applied to the measured signals V;p1_common, @nd Vip1_pify.

(chss) _ (cos(at —45) —sin(a; — 45)) (VLPl—Common) (6.10]
Voo sin(a, — 45) cos(a, — 45) Vipi-pifr /' '
The V,,.,ss becomes,

Vcross = cos(a; — 45)Vyp1—-common — Sin(@; — 45) Vi p1_piss. [6.11]
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Figure 6.10. (a) Measurement setup of a reading system using a 4 ports VNA Agilent N5222A, and
two dual-access Satimo QH2000 wideband antennas. One antenna is used for transmission, and the
other for reception. (b) Antennas configuration, where the receiving signal is measured on its common

and differential components (V,p1_common, Vir1-piff)-

This approach was validated in practical environment, where the bench is presented in the
figure 6.10 (a). The tag was placed at different orientations (), and for each the transmitting
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signal direction was modified to retrieve the tag position (a; equals B). The power offset
(Pofsser) in transmission was selected according to table 6.1. The measurement results are
shown in figure 6.11. The STFT approach was used, and the results are normalized. The tag
orientation B was varied with the discrete positions: 0, 30, 45, and 90 deg. The tag was

correctly decoded for each of its positions.
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Figure 6.11. Measurement of the cross-polarized tag presented in [VEN 13], for different orientations

(B), referred to the bench of figure 6.10. The VNA was settled with two measurements (Scc12), and

(Sdc12). The angle «a, is varying in transmission to retrieve the tag position 3, and used the equation
[6.11] to retrieve the cross-polarized tag response.

The proposed approach expects the variation of a in the range [0 - 90] deg, which is
controlled by the power offset (P,frs:) between the two physical ports 2, and 4, of the
transmitting logic port 2. As demonstrated in the next section, in a practical approach, the
backscattered signal from the tag needs to be evaluated only for two orientations a; (one
distant of 45 deg from the other) to retrieve the tag ID, independently from its orientation. A
GUI software in Matlab, presented in Appendix 8, has been realized to perform balanced

measurement.
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4. Tag measurements using the VNA - a simplified approach

4.1. Practical approach

The variation of antenna (tag) mode cross-polarization RCS of a tag versus the angle of
observation (transmitting signal direction) has been characterized in [RAN 17], and simulated
in the first section of this chapter, where the results are shown in figure 6.3. The tag mode
cross-polarized RCS is a function of the difference between B and a; , and may be

expressed with equation [6.12].

ol = (1~ 2sin?(B — a))|? [6.12]

OCROSS

0q,-p 1S the actual RCS in that condition of measurement, and o¢goss is the RCS in the best
case, which is when a; equals B +n 90 deg, with n integer. The domain of the function is
defined by g — a;. The transmitting angle a; was chosen varying between 0 and 90 deg.
The function is periodic of 90 deg, and plotted in figure 6.12 (a) in linear scale, and in figure
6.12 (b) in semi-logarithmic scale. The variation of the function amplitude around their

maximums is of 6 dB in the range +30 deg. Outside this range, the o,,_z decreases quickly

with a theoretical dynamic variation of « dB when the variation is of + 45 deg.

From the equation [6.12], represented in semi-logarithmic scale, for any two points in the
function domain distant of 45 deg, at least one of the two will be inside the favorable range of
122.5 deg around one of the maximums of the function. It corresponds to a maximum RCS
variation of 3 dB respect to the maximum o.zoss, Which allows to retrieve the tag ID without
ambiguity. Because the tag position B is fixed, then selecting two points 45 deg distant
means varying the transmitting interrogating angle «; of 45 deg. Thus, the proposed
approach presented in the last section may be used. In such as case, only two variations of
a; will be imposed to retrieve the tag response (ID) whatever its orientation. The solely
constraints are: 1) the two a, have to be 45 deg distant, 2) from the two measurement
results, a simple criterion has to be applied to select which of the two contains the tag
information (ID). For instance, in figure 6.13 is shown the measurements of one tag using the
two angles a; equal to 0 deg and 45 deg. The tag is placed at the discrete positions § equal
to 0 deg and 45 deg. In (a) is shown the measurement results for the transmitting angle a;
equal to 0 deg. When the tag is on horizontal position (8 = 0 deg), the measurement is fully

successful, while when at 45 deg, the results are inconsistent with the presence of significant
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secondary lobs around some of the tag resonances. This is because 8 — a; is equal to 45
deg that represents one minimum of the equation [6.12] (see figure 6.12). Instead, in figure

6.13 (b) is shown the measurement results varying a; to 45 deg, and the previous case of

failure becomes a fully successful reading.
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Figure 6.12. Representation of equation [6.12] in linear (a) and semi-logarithm (b) scale. A variation of
0q,-p in the range 30 deg, around one maximum of the function, assures a cross-polarized RCS

dynamic variation of 6 dB.

In figure 6.14 is shown the normalized measurement using the STFT of a cross-polarized
tag, for different tag positions, with a fixed a; equal to 0 deg. Note that for sake of clarity, i.e.
to ease the comparison, all the signals have been normalized. In exchange, we lose in Fig.
6.14 the information on the RCS amplitude dependency with the orientation that we can
retrieve in figure 6.12. The test bench is that of figure 6.10 (a). The tag position g was varying
between 0, 15, 30, and 45 deg. The reading was successfully when g — a, was in between
30 deg. It corresponds to the case of § equals 0, 15 and 30 deg. As expected the best result
is for B equals to a; (8 — a; = 0), which corresponds to one maximum of equation [6.12]. This

result validates the assumption that the tag can be read even though not perfectly oriented
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with the antenna of the reader, i.e. in a certain range around the maximums of the equation

[6.12]. In this case, it was read at a distance of 30 deg from the maximum.
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Figure 6.13. Reading of a tag using electrical rotation principle based on two discrete transmitting
angles. (a) Tag measurement results with a, equals to 0 deg, the tag position corresponds to f =0
deg and B =45 deg. (b) Tag measurement result varying just a, to 45 deg.
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The two measurements are needed to read the tag independently from its orientation as
demonstrated with figure 6.13 and 6.14. In the next section, this approach is applied to the
optimized reader discussed in the chapter 4. A criterion of selection is given to select which

of the two measurements has to be used to retrieve the tag ID.

at = 0 deg

Normalized integrated STET (dB)

Frequency (CiHz)

Figure 6.14. Normalized measurement using STFT of a cross-polarized tag, for different tag positions
with a fixed a, equals to 0 deg. The bench is that on figure 6.10 (a). The tag position § was varying
between 0, 15, 30, and 45 deg. The reading was successful for all the values of 8, except that for 45
deg (minimum of equation [6.12]).

5. Optimized reader approach

The chipless reader version, presented in chapter 4, may be modified to be able to turn
towards the tag the linear polarized interrogating signal as for the VNA. It has to perform two
measurements with a; varying of 45 deg, according to last section result. The proposing
reader is shown in figure 6.15. It is composed of the central block with the addition of other
components. The transmission part is composed of the pulse generator Hyperlabs HL9200,
followed by the wideband splitter ZN2PD-63+ from Mini-Circuits. One of its outputs is directly
connected with the port allowing for horizontal polarization of the Satimo QH2000 antenna.
The other splitter output is connected to a wideband switch, with one output closed to a 50 Q

load, and the other to the second port of the same transmitting antenna allowing for vertical
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polarization. In reception another dual polarized antenna is connected to a switch, followed
by the HPF Mini-Circuit VHF-3100+, and a LNA Mini-Circuits TVA-82-213A+. Both the
transmission and reception chains are connected to the optimized reader of chapter 4, which
is composed of the Xilinx FPGA evaluation board SP601, the designed RF-front end, and the

alimentation board.

Conf Lt = 0%:SwatchTx = A:Swalch Bx
Conf 2jat =45 5wichlx=H
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Splitter  ImpGen
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Figure 6.15. Optimized reader of chapter 4, modified to perform measurement with a, in two discrete
positions (0 & 45 deg), to retrieve the tag ID independently from its orientation. (a) Reader
architecture, (b) measurement bench in real environment, (c) zoom on antennas and tag positions.

In transmission the reader is able to send a linear polarized signal with a; equals 0 deg
and 45 deg, respectively for the configurations called Conf. 1 and Conf. 2 (see figure 6.15).
In reception, by changing the position of the switch between R, and Ry, the tag response in
the two orthogonal directions can be measured in turn. Finally, with post processing it is
possible to isolate the cross component depending on the imposed transmitting angle «a;. For
a; equals 0 deg (Conf. 1), the reader needs to measure only the vertical contribution of tag
response, as so the switch in reception chain is set in position Rgz. For at equals 45 deg
(Conf. 2) both orthogonal components need to be measured (postion R, and thereafter Rp).
After to isolate the electrical field contribution in cross direction (a; + 90 deg), as describe by

equation [6.9], it is sufficient to substrate the horizontal contribution to the vertical.
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The reader has an external LNA to compensate from multiple attenuating factors. First the
use of a splitter in transmission reduces the transmitted power as low as 3 dB in case of
Conf. 1 (a; = 0 deg). In case of Conf. 2 (a; = 45 deg) the limitation are in reception, because
the tag response in cross, (a; + 90 deg) with a, equals to 45 deg is measured in turn through
its projections along with the two receiving antenna components, and therefore attenuated
each of 3 dB. Thus, the effective ADC number of bits used may decrease, as shown in
chapter 4 (section 2), increasing the quantization noise. The second attenuating factor is the
use of two distinct dual access antennas instead of only one, as for classical reading
technique. With only one antenna, the tag can be well aligned with the tag, while with two it is
more difficult and less effective especially when the distance of the tag is varying. Moreover
the antennas are designed to work from 2 GHz and therefore are larger than required for
UWB applications (3.1 — 10.6 GHz).

Figure 6.16 shows measurements performed in practical environment with the reader in
Conf. 1 (a; = 0 deg), where the tag position B is gradually varied from best case, 8 equals 0
deg, to worst case B equals 45 deg. The setup is shown in figure 6.15 (b), where the tag was
placed at 20 cm from the antennas as shown in figure 6.15 (c). First an empty measurement
without the tag was performed, then a second with the tag. As predicted, the reader was able
to read the tag just with B ranging from 0 to 30 deg. At 45 deg, the reading was incorrect
because the useful signal level was excessively low. To read the tag in this last orientation,
the Conf. 2 needs to be used (a; = 45 deg).

Figure 6.17 shows the measurement of a tag placed at 45 deg (B) using the two
configurations, respectively in blue dashed line for the Conf. 1, and in red straight line for the
Conf. 2. As expected the Conf. 2, which match the position of the tag, shows the best
reading (a; = 45 deg). In Conf. 1 only the first resonance is in the correct position, while for
Conf. 2 almost all the resonance positions are correctly placed. The second resonance (to a
lesser extent the third resonance) is shifted of few tens of MHz also in Conf. 2. This
measurement deviation is due to many factors which could be improved. Besides those
already exposed, important contributions come from the antennas adaptation, which is above
-10 dB until 4 GHz. Finally the reader prototype is composed of a numerous of distinct

devices some of them on FR-4 sbustrate.
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Figure 6.16. Normalized Measurement results of bench in figure 6.15 (b) in practical environment. The
tag was oriented in different directions, from  equals to 0 to 45 deg using Conf. 1 (a; = 0 deg).

As demonstrated in this chapter, the reading in both configurations (Conf. 1 and Conf. 2)
may guarantee a correct tag reading independently from the tag orientation. However, a
criterion is needed to select which measured response is the correct one. From figure 6.16,
in some cases it is possible to discriminate the correct reading between the two
configurations only if the expected number of peaks (resonant frequencies), in the given
frequency range, is already known. In a more general case, a criterion of selection is needed.
One may keep the last peak position fixed as criterion, and use the others to encode the tag
ID. Yet, it reduces the tag coding capacity, and it does not prevent the situation where both
configurations (Conf. 1 and Conf. 2) give a correct position of the last peak. The suggested
approach is to discriminate the two signals based on tag signal maximum power. In figure
6.17 is shown the response of the tag of figure 6.16 in time domain. For clarity, the signal in
time has been cut at 8 ns. In the first 2 ns is present the tag structural mode, and after the
antenna (tag) mode where the signal contains the coding information. The tag structural
mode was removed with the application of the STFT. The power of the structural mode in

Conf. 2 (correct reading) is higher than that in Conf. 1. Anyway it is risky to use this power
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difference as criterion because it can vary based on the item at which the tag is attached.
Thus, a discrimination based on the antenna (tag) mode is more appropriate. The selected
measurement, to be used to decode the tag ID, will be the more powerful one inside the tag
mode frame [MAN 15]. This algorithm frees the tag designer from any additional constraints
from the reader part.

Reader Conf 1l al= 0

Normalized integrated STFT (dB)

4.5 5 55 6 65
Frequency (GHz)

Figure 6.17. Tag placed at B equal to 45 deg and read with both reader configurations. The
measurement was executed in practical environment, and the setup is shown in figure 6.15 (b).
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Figure 6.18. Response in time domain of the measurement of figure 6.17. The tag was placed at 8
equals 45 deg, and interrogated with both reader configurations (conf. 1, conf. 2).

6. Conclusion

This chapter has proposed a reading system for the UWB chipless RFID technology,
which is independent from the orientation of the tag. It is an original approach because,
conversely to the others RFID systems, it is not based on circular polarized antennas, and
the reading is specific to chipless tags that are designed based on the cross-polarization

principle.

The concept for electrically changing the reader antenna polarization has been presented,
and validated in an anechoic environment. Measurements of a chipless tag at different
polarization orientations show that the tag can be read with a fixed antenna, while keeping
cross-polarization configuration. The first reader system was based on a state of the art 4
ports VNA, and its capability to perform balance measurement have been exploited. After a
second reader realized based on the hardware implementation of chapter 4 was proposed. It
is able to perform measurement at two discreet positions, which are enough to retrieve
correctly the tag ID. A criterion for discriminate which of the two measurements performed
has to be used to recover the ID was introduced. This reader does not give any constraint to

the designer on the tag shape or even the encoding approach to be used. In prospective to
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improve the reader performance a dedicated work on the antennas part is needed. This with
the aim of reducing their dimensions in order to be better aligned with the tag. In addition, a

work in component integration and the use of an ADC with a better resolution is expected.
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General Conclusion and Prospective

General conclusion

A summary of the investigation of UWB chipless RFID reader technology is presented
here. After an introduction of the chipless RFID technology in the chapter 1, a study of the
state of the art focused on the reader part has been shown in chapter 2. In literature, all the
reader solutions are based on frequency domain approach (SFCW/FMCW), and therefore
may ensure accurate reading at the expense of excessive reading time, in the order of tens
of seconds. A comparison with IR-UWB is also given in the chapter 2, and a link-budget
taking into account the UWB regulations is proposed. The IR-UWB approach ensures higher
receiving power than frequency domain reader when the UWB regulations are taken into
account. However it has higher input noise bandwidth, due to the characteristics of the
receiver, and then the hardware has to be optimized to reduce its sampling noise. The IR-
UWB permits a reduced reading time and a real time reader may be realized. For these
reasons the IR-UWB approach was selected to design all the readers presented in this

manuscript.

Previous the beginning of the thesis, a first prototype of an IR-UWB chipless RFID reader
was developed, and presented in the chapter 3. It was completely operative and designed as
proof of concept. The reader development has been founded with the project Gravit, which
started in December 2010 and terminated in 2012. After that some intern students have been
involved in its amelioration until the beginning of the current thesis in February 2014. The
majority part of the chapter 3 is focused on the presentation of the first reader version
designed during this thesis. It shows a more integrated hardware solution with higher
performance in term of acquisition accuracy. The retail cost after tax of the reader

components was halved respect to the previous reader version, and of about 2,350 € not
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considering the antennas. The introduced reader has a reduced sampling noise as a result of

the exploitation of the FPGA Spartan 6 internal facilities, and an advanced hardware design.

An optimized reader version is presented in chapter 4. It was designed to reduce further
the reader sampling noise to significantly improve the reading performance. In fact,
persistent hardware architecture can be optimized with ameliorations in the board layout, in
the FPGA design, and with the use of few low cost passive components. The reader shows a
sampling clock period jitter, which is correlated with the sampling noise, of only 2.45 ps of
standard deviation, and a peak to peak of 16.31 ps over 1,000 cycles. The reader input
sensitivity is of -60 dBm, and the reader was optimized also in terms of flexibility and reading
time. The sensitivity could be improved using a higher ADC resolution after the S/H amplifier

(number of bits).

The reader flexibility is at the level of the acquisition window time. It can be customized in
term of position, length, and equivalent sampling period. The reading time was varying,
depending on acquisition parameters, with a minimum of 6 ms for one measurement without
averaging, to 0.5 s for the maximum averaging of 512. It is a huge improvement respect to all
the readers presented in literature, but also compared to the previous reader version
(chapter 3). The reader was shown in the Drupa 2016 event, in Disseldorf Germany from 16
June to 25 June, which is a global showroom for printing technologies, and accredited as the
largest showroom in the word. To show the chipless RFID technology to the attendees, the
reader has being used without interruptions for 10 hours a day reading printed single layer
Powercoat PW230 paper substrate frequency-coded tags. The reader cost estimation was

close to the previous version of around 2,306 €.

The design of a low jitter UWB pulse generator was described in the first part of chapter 5.
It was realized on low cost substrate and based on COTS components. The pulse generator
was simulated and its emission was characterized based on FCC mask, and also compared
with commercial available solutions. Its random jitter is of only 2 ps of standard deviation,
over 1,000 cycles. The pulse generator has been used to read frequency-coded tags in
practical environment. It could be used as the emission stage of the optimized reader
presented in chapter 4. In prospective, it will reduce the reader price from 2,306 € to
something around 1503 €, for a version without output pulse width fine tuning, or 1699 € with
fine tuning. The design of a UWB planar Vivaldi antenna is also proposed in the chapter 4. It

has a -10dB bandwidth between 3 and 10 GHz (measured), and a maximum gain of 7.33 dBi
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at 5.5 GHz (simulated). This antenna could also be employed as radiative parts of the

optimized reader version (chapter 4).

Depolarizing based chipless RFID tags are a robust solution compatible with readings in a
practical environment. These tags also carry on a significant quantity of information, in some
cases of about 40 bits. The major inconvenient of depolarizing based chipless RFID tags is
their inner dependency on orientation. Therefore the tags have to be aligned with the reader
antennas to ensure correct identification. A solution of this issue was proposed in the chapter
6 with a novel reading approach. Measurements of a chipless tag at different orientations
have been done, and the results shown for the first time that the tag can be read with fixed
antennas, while keeping a cross-polarization reading configuration. The concept was first
verified with state of the art test equipment. A 4 ports VNA, and its capability to perform
balanced measurements, has been used. After, the optimized reader presented in chapter 4
was adapted to use the proposed technique. It is able to perform measurement at two
discreet positions, which are enough to retrieve correctly the tag ID whatever its orientation.
A criterion was introduced to discriminate which of the two performed measurements has to
be used to recover the tag ID. This reading technique does not give any constraint to the tag

design.

Prospective

The thesis results show that the design of a low cost (compared to laboratory equipment)
UWB chipless RFID reader based on IR-UWB technology is feasible. It can be a real time
device and easily compliant with UWB regulations. All the proposed prototypes have been
realized with COTS components. It gives the opportunity to optimize the reader performance
using new components on the market. The use of COTS components may also be exploited
to add functionalities, such as the reading independent on tag orientation shown in chapter 6.
Finally, the realization of an ASIC, that integrates the analog part of the reader, may open to
integrated solutions in mobile devices such as the smartphone. The problem of energy

consumption should be faced.

The reader components cost was estimated at 1.503 € after tax and referred to retail
price, with the use of the proposed pulse generator (no pulse width fine tuning), and the

UWB antennas proposed in the chapter 5. A reduction of about 20/30 % is feasible in an
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industrial production. As prospective, actually we are working on an integrated version,
where the RF front-end, the new pulse generator, and the used components of the SP601
Xilinx evaluation board are integrated in the same board. This will free up the estimated cost
from the Xilinx evaluation board, which is of about 432 € where the used components have a
total cost of about 50 €. The new reader version may have a retail components cost, after
tax, of about 1,121 €. With a reduction of 30 % it could be reduced at 785 €. The use of a
lower loss substrate than FR4 at higher frequencies will also increase the reader acquisition

performance.
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Appendix 1

Matlab GUI acquisition software for Agilent
DS0O91204A

To facilitate the use of the high performance DSO Agilent 91204A, a GUI has been
developed in Matlab environment. It was used for the debugging of all the electronics cards
realized during the work of the thesis, and also to read UWB chipless tags in an IR-UWB

configuration.

A screenshot of the Matlab GUI is shown in figure A.1, it is divided in four rows, each
referred to a different acquisition channel of the DSO, and all sharing the same
characteristics. A radio button let's select between measurement with or without trigger. A
measurement without trigger means that the GUI transfers to the PC the actual signal on the
memory of the DSO, for that particular channel. If the measurement with trigger is selected,
the DSO will start a new acquisition, and will transfer to the PC the data referred to the

selected channel. Finally, a button lets acquires at the same time the data of all the channels.

To use the Matlab environment to communicate with the DSO, the Instrument Control
Toolbox needs to be installed on the PC. It contains a library of functions that can make use
of the Agilent IO Libraries Suite. It is a collection of libraries and software utilities to enable
the communication with the DSO. Between the others it contains The Virtual Instrument
Software Architecture (VISA) libraries that are used by the developed Matlab GUI.

To established the communication with the DSO the following lines of code are used,

% Create the Visa object v for the DSO, using the USB interface
v=visa('agilent’, 'USB0::0x0957::0x9002::MY51050102::0::INSTR");
% Remove data from the input buffer of the object v

flushinput(v)

% Allocate the object v input buffer

v.InputBufferSize=buffersize;
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% Opening the communication with the DSO
fopen(v);
% Define a time out of 10 seconds

v.Timeout=10;

To query for data of a precise channel with trigger the next lines of code are used. If the measurement
is without trigger, it is sufficient to comment the first line of this code.

% Single trigger section

fprintf(v,"SINGLE');

% Select the Channel Chan
fprintf(v,"WAVEFORM:SOURCE CHAN');

% Define the waveform format in byte
fprintf(v,"WAVEFORM:FORMAT BYTE');

% Query for channel vertical increment and origin
yinc=str2double(query(v,"WAVEFORM:YINC?"));
yor=str2double(query(v,"WAVEFORM:YOR?"));
% Query for channel horizontal (time) increment and origin
xinc=str2double(query(v,"WAVEFORM:XINC?"));
xor=str2double(query(v,"WAVEFORM:XOR?"));
% Query for channel measurement
fprintf(v,"WAVEFORM:DATA?")

% Save measurement in variable y

y = binblockread(v,'int8');

fread(v);

The lines of code to close the communication are the following,
% Clear object v

clrdevice(v);

% Close the communication with object v
fclose(v);

% Remove object v

delete(v);
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Figure A.1. Matlab GUI realized to acquire the Aglient 91204A DSO measuring data. It can
save the data from all the four channels of the DSO.
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Appendix 2

PC application software for first reader version in
chapter 3

The first IR-UWB reader version, designed previous the beginning of the thesis, came with
a dedicated application software for the PC. It was written in Matlab, and is based on
different scripts that are called by the GUI shown in figure A.2. It expects the execution of a
tag measurement according with the simple two measurements background subtraction
procedure (tag and background measurements), without a calibrating tag. The GUI was
designed to read the frequency coded tags presented in [VEN 13], which are based on
coupled short-dipoles with REP and cross-polarization approach. They have been presented
in chapter 1 section 3, and used along with the entire manuscript to characterize the

performance of the designed readers. A photograph of the tag is also shown in figure A.2.

The GUI has two main columns, where the first controls the acquisition from the reader,
and the second is in charge of post processing, and tag ID retrieving. On the top left to open
the communication with the COM port of the reader, and to select the averaging factor. Once
started the acquisition with the Measure command, the reader executes the reading process
and transfers the results to the GUI, which will show it in time domain in the corresponding

first window.

In the Files section, it is possible to memorize the acquired measurement pushing on the
relative save button. The GUI requires two measurements in data base, the tag and

background measurement to perform the post processing.

The RCS calculator section defines the timing window inside the frame of acquisition of
120 ns, where the tag decoding should be executed. The identifier section gives the
possibility to correlate the response of the tag with the response of an ideal resonator, which
is emulated in amplitude with a Gaussian function. Finally on the bottom, once retrieved the
resonant frequencies of the measured tag, their position is compared with a data base, and

the tag ID is given. According to the chapter 1 section 3, the backscattering measurement is
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used only to characterize the coupling of the reader antennas (leakage). It is convenient to
perform this calibration only one time in a practical application. Thereby the GUI is able to
automatize the reading process in a loop execution of tag reading with the button Read, and

selecting the checkbox Loop.
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Figure A.2. GUI realized in Matlab to read the tags shown in the figure, with the reader realized
previous the beginning of the thesis. The tag was of the same family presented in [VEN 13], and used
along with the entire manuscript to characterize the performance of the designed readers.

2.1. PC - reader communication

The reader communicates with the PC using a USB port, where a UART is emulated.
Inside the Xilinx SP601 FPGA evaluation board there is a CP2103GM chip from Silicon Labs,
which is a USB-to-UART chip. It is connected with the FPGA from the UART side, and with
the PC from the USB side. The Matlab GUI uses the Windows COM library to communicate
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with the established COM connection with the reader. The GUI creates a serial port object

called s with the following function,
s = serial(port,'BaudRate’, 460800, TimeOut', 80,'InputBuffer', 16384);

The BR is of 460.800 kb and the serial time-out is of 80 s, the latter covers the maximum
time needed by the reader to complete an acquisition once received the command from the

PC. For the maximum averaging of 128, it is of about 64 s.

The Matlab function in charge of communicating with the reader is called
getRadarFrame(~,~). The chunk of code that queries the reader for a reading process, and
retrieves the reader measured data, is the following.

% Get the averaging factor written in the corresponding editing box

avg = str2double(get(data.RadarAvg,'String'));

% Convert the averaging factor from double to string

str = sprintf('G%03d', avg);

% Transmit the command to the reader

fprintf(s, str);

% Receiving the information about the number of acquired points from the reader

numSamples = str2double(fgetl(s))

% Reading from the reader

Tampon = zeros(1, numSamples);

fori=1:numSamples

Tampon(i) = str2double(fgetl(s))-512;

end



7. Appendix 173

Appendix 3

Reader chapter 3 - FPGA Reader_0 block description

The block schematic of the custom Reader 0 block, implemented on the first reader
prototype designed during the thesis, is shown in figure A.3. To simplify the comprehension
of its operation, it is shown interfaced with the main components of the reader. It is
composed of a User Block and a PLB slave interface. The former is the solely block that
interacts with the reader analog board, it communicates with the FPGA microprocessor

(microblaze 8.20a) through the PLB bus using the PLB slave interface.

3.1. User Logic description

The User Block contains a FIFO memory, which is directly connected with the output of
the ADC, a main control unit and some blocks for synchronization purpose. The clock (called
Master Clock) at 67 MHz is the temporization signal for the PLB bus and all the peripherals
at which it is connected. From figure A.3 the input clock of the delay generator, in the reader
RF front-end board, is the master clock, while its output is delayed depending on the
Frame_Step(10:0) output of the control unit block. To accomplish with the equivalent time
algorithm, the pulse generator is triggered by the Control Unit using as timing reference the
master CLK, which is not delayed. The output of the delay generator is the sampling clock of
the S/H amplifier. Thereby the trigger for the pulse generator and the sampling clock are
dynamically delayed during the acquisition, depending on the Frame_Step(10:0) value. A
copy of the sampling clock is an input for the Reader_0 custom peripheral, and is used as

write clock for the FIFO memory.

The User Logic was written in VHDL using the Xilinx ISE design tool of the Xilinx ISE
Design Suite 13.2. It was simulated before been integrated within the complete FPGA
embedded system. The FIFO capacity is of 16 k words of 10 bits each, which represents the
resolution of the ADC.
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Figure A.3. Block schematic of the Reader 0 PLB peripheral inside the FPGA of the reader presented

in chapter 3. Its connections with the reader RF front-end board, and the trigger of the pulse

generator, are also shown.
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The reader acquisition starts when the input strobe of the control unit block is at 1,. After,
the control unit sets up the Frame_Step(10:0) signal to 0,4, and transmits a trigger event to
the pulse generator. The FIFO_enabling block waits for some master clock cycles before
allowing the memorization of the ADC output inside the FIFO. This interval of time between
triggering the pulse generator, and FIFO write enabling, settles the reader acquisition frame
position which is fixed. After the FIFO remains in writing state for all the duration of the
acquisition frame, this is of about 120 ns (eight master clock periods). At 120 ns corresponds
eight points of the tag response sampled by the S/H amplifier, one each sampling clock
period (=15 ns). Once finished the acquisition from the FIFO, the Control _Unit updates the
Frame_Step(10:0) by adding 1,,, and restarts with the same acquisition procedure until the
Frame_Step(10:0) value is equal to 1499, ((15 ns / 10 ps) -1). Finally, the Control_Unit
infers the Stop_OUT signal at 1, to inform the microprocessor. For each Frame_Step(10:0)
increment, the total internal dynamic delay of the delay generator chips, is increased of 10
ps. A partial chronogram of the reader acquisition is shown in figure A.4. It is focused from
the trigger event of the delay generator, to the memorization of the eight samples inside the

User Logic FIFO memory for one value of Frame_Step(10:0).

3.2. Microprocessor application software

The microprocessor can communicate with the Reader_0 block only through the
registers of the Reader_0 PLB slave interface. The FIFO output data, the full and empty
flags, and the Stop_OUT of the Control Unit are connected with one register of the PLB slave
interface. In parallel, the Strobe IN signal and the FIFO_RD_EN_IN are connected with
another register of the same PLB slave interface. The FIFO_RD_EN_IN signal enables the

reading process from the FIFO memory by the microprocessor.

At the end of the acquisition, the microprocessor downloads the FIFO content using the
registers of the Reader_0 PLB slave interface. The microprocessor application program was
written in C, and developed with Xilinx Software Development Kit. It uses the libraries with
the driver for the FPGA internal blocks, and libraries of common C functions, such as the
input output standard library stdio. A driver for the block Reader_0 was developed; it is based
on a couple of simple functions able to access the registers of the PLB slave interface to

communicate with the User Logic.
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Figure A.4. Partial chronogram of the reader acquisition. The control_unit of the User Logic triggers
the pulse generator, after N clock cycles, the FIFO memory is enabled to acquire eight samples (ADC
output) of the reader measuring signal.

The driver for the Reader_0 was essential to start the acquisition from the User Logic, and
also to empty out its internal FIFO at the end of the acquisition. It corresponds to retrieve the
reader measured signal. The microprocessor application software starts testing internal and
external peripherals, and enabling the microprocessor interrupts. Afterwards the
microprocessor waits for the PC, through the UART, to have information about the required
averaging factor essential to start the reading process. For an averaging of N, the User Logic
executes for N times one row acquisition, and for each the microprocessor empties out the
User Logic internal FIFO. All the data are transferred to one different column of a predefined
matrix, inside the external DDR2 memory. Finally, the application performs the averaging of

all the N columns row to row, and transfers the result to the PC with the UART.
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3.3. Synchronization problems

From figure A.3 the Reader 0 block presents two clock signal, one is the master clock,
and the other is the ADC and S/H amplifier sampling clock, which is represented in blue line
inside the FPGA. The two clocks are progressively delayed depending on the delay of the
delay block chips imposed by Frame_Step(10:0). Working with two clocks with a not constant
delay inside a digital architecture, such as an FPGA implementation, creates problems of
synchronization and is metastability prone. In case of the reader custom peripheral
Reader_0, the synchronization was affecting the FIFO memory operation. The acquisition of
some points was shifted of one clock cycle going out of the predefined acquisition frame.
This can be understood considering that the FIFO WR_enable signal is referred to master
clock, and the FIFO WR_CLK to the sampling clock. Thus, the FIFO WR_enable may not
respect the setup time relatively to the FIFO WR_CLK, when going to 1,.

The block FIFO_Enabling has the signal Frame_Step(10:0) as input, therefore this block
knows the dynamic delay imposed inside the external delay generator chips. Inside of this
block a VHDL code was used either to anticipate or to postpone the rising edge of the FIFO
WR_enable signal (0, to 1), with a resolution of half clock period. This procedure was
executed for the values of Frame_Step(10:0) where a FIFO setup or hold time violation were
noted. Unfortunately this solution may create some errors because the real delay between
the master clock and the sampling clock cannot be characterized. Indeed the delay of a
signal inside the FPGA may vary during the time, depending on the temperature of the chip.
This imply that, the related clock events for the S/H amplifier, the ADC, and that of the FIFO
WR_CLK should be in optimal positions to not affect the acquisition quality for eventual
FPGA temperature gradients. This problem was faced in the second version of the reader

presented in the chapter 4.
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Appendix 4

External Flash

In figure A.5 is shown the block schematic of the FPGA embedded system of the reader
presented in chapter 4. It has the W25Q64BV from Winbond as external Flash memory. Its
capacity is of 64 Mb organized in 32,768 programmable pages of 256 bytes each. It has a
Serial Peripheral Interface (SPI), which in this case is used to communicate with the FPGA.

A dedicated FPGA internal controller communicates with the memory.

The FPGA Spartan 6 is a volatile device, as so it needs to be configured when it is
powered up. The Spartan 6 hardware architecture is defined through its CMOS configuration
laches (CCLs) memory, and different configuration modes are available. In the reader
presented in chapter 3, all the FPGA configuration process, from CCLs to the download of
the microprocessor application software inside the external DDR2 memory, was executed
using the JTAG. Each time a user wanted to work with the reader, he had to use the Impact
software from the Xilinx ISE Design Suite to program the FPGA (CCLs plus DDR2). This
process is tedious because the downloading can take different seconds. The Flash memory
is a not-volatile memory, and therefore can maintain the bitstream in its internal memory cells
even though the power is off. The reader of chapter 4 was configured with the Master Serial/

SPI configuration mode x4 [XIL 17] using the Flash.

The FPGA bitstream, besides the hardware description data to be stored inside the FPGA
CCLs memory, contains the microprocessor application software to be stored inside the
FPGA BRAM. This is shown in figure A.6 (a), where the FPGA is not powered. At the FPGA
power on, the device can be self-programmed, populating its CCLs memory and BRAM,
using the selected Master Serial/ SPI configuration mode x4, as shown in figure A.6 (b). In
case of the all the designed readers, the application software could not be fit inside the

internal BRAM, and must reside in the external DDR2.



7. Appendix 179

XKilink 5P601 Evaluation Board

Spartan 6 XCASLX16-205G324

LMB-BREAM

Dl Port BRAM

LMB-BRAM

Microbliee V8.20.a

— DLMB

DPLE

ILMEB

IPLE

Clock Generaior

LEDs_ 3hits GPIO

SPLE

Iiiterript Costroller

SPLE

RE232 isirtlite

SPLB

MCB DDR2

SPLE DDR2

SP1 Controller

CP2103
Seral to USB -
DOR2

EDEl16ACBEG 1Gb

sPLB

SPIx4
WISOOBEYSFIG

Reader 0

SPLB

VITA 571 FMOC-LPC

Reader Analog Board

External Flash
TTHETIOrY

Hyperlabs HL9200

Figure A.5. Block schematic of the FPGA embedded system: with the main peripherals of the digital
board SP601 used to implement the reader in the chapter 3. The custom block Reader 0 is the solely
that may communicate with the analog board and trigger the pulse generator.

The Spartan 6 SPI interface for FPGA configuration purpose is only able to transfer data
from the external Flash to the internal FPGA CCLs and BRAM. To download the application

software from the Flash to the DDR2, a dedicated microprocessor software application is
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needed. Thus, two microprocessor software applications were developed in C, using the
Xilinx Software Development Kit. One was the bootloader that was used exclusively to
transfer the other application software from the Flash to the DDR2. This application software
is small in size, and must reside inside the BRAM of the FPGA, as so it was merged with the
data for the CCLs forming one bitstream file. The main microprocessor application software
for reading tags was splitted into two files, one for its vector section and the other one for the
rest section. After they were downloaded in the Flash at non-contiguous memory addresses

compared with the bitstream, this is shown in figure A.7 (a).
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Figure A.6. (a) Xilinx SP601 evaluation Board not powered up, with the bitstream, containing the
hardware description and the microprocessor application software, on the external Flash memory. (b)
At power up, the CCLs memory copies the part of the bitstream with hardware description, and the
remaining part which is the microprocessor application software, is copied to the FPGA internal
BRAM.

The bootloader was written using the SPI protocol described in the Motorola M68HC11
data sheet [NXP 17], where the two Flash starting memory addresses, used for the
microprocessor applications software files, were noted at the bootloader application. From
figure A.7 (a), when the reader is off (no power), the microprocessor application software
(vector section plus reset section), and the bitstream (Hardware description plus the
bootloader) resides only in the Flash memory. At FPGA power up, first the FPGA CCLs
gates are populated with the part of the bitstream that take care of the hardware description.

After the rest of the bitstream, which contains the bootloader, is copied inside the FPGA
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BRAM. This is show in figure A.7 (b). Finally the bootloader starts to copy the microprocessor
application software (vector section plus reset section) from the Flash to the external DDR2,

as shown in figure A.7 (c).

The Impact software tool from Xilinx ISE Design Suite was used to load the flash. It needs
first to create a Programmable Read Only Memory (PROM) file, and after it may use the
JTAG, which can access directly the FPGA SPI interface, to write inside the Flash. The
PROM file was created according to the standard Intel MCS-86 Hexadecimal Object (MCS).
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Figure A.7. (a) Xilinx SP601 evaluation Board not powerd up, with the bitstream and the
microprocessor application software on the external Flash memory. (b) First self-programming phase
at power up, the CCLs memory copies the part of the bitstream with hardware description, and the rest
(bootloader) is copied to the FPGA internal BRAM. (c) Second phase of the FPGA self-programming.
The bootloader copies the main microprocessor program from the Flash to the external DDR2.
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Appendix 5

User Logic Reader chapter 4

The Reader_ 0 User Block is composed of three main control units called
ADC_CONTROLLER, DELAY BLOCK, and ACQUISITION_CU_MG, which are shown in figure
A.8. Each of these three main control units can be activated independently from the input
PLB slave interface registers. Once completed their operation, they can inform the
microprocessor (microblaze v8.20a) with an interrupt request, using the signal
CUSTOM_IP_PLB_INTERRUPT_OUT, and also using the output PLB slave interface registers.

The ADC_CONTROLLER is in charge of setting the external ADC gain in the RF front-end
board. The ADC output signals, called DATA_IN_FROM_ADC_PCB_IN(8:0), is memorized
inside the smaller FIFO memory called FIFO_FAST_SAMPLE_PACKAGE, when required. Its
capacity is of only 32 words of 9 bits (ADC bit capacity). The block DELAY_BLOCK delays the
ADC output signals to be effectively memorized in the small memory, without violating FIFO
setup and hold time. Finally, the ACQUISITION_CU_MG is in charge of the acquisition
exploiting all the others blocks. In the next three sub-sections each control unit operation are
described, starting from the ADC_CONTROLLER.

5.1. ADC_CONTROLLER

The reader ADC (ADS58B19) has a low speed serial communication interface, which is
able to customize the converter operational characteristics. The ADC_CONTROLLER block
inside User Block communicates with the ADC, through this serial interface, to set up the
ADC internal gain to 3.5 dB. The PLL_PACKAGE exploits the Spartan 6 clock resources [XIL
15a], and embeds a PLL, which input is the 125 MHz clock generated inside the RF front-
end, before be delayed by the delay generator (CLK_IN_125 BEFORE_DEL _GEN_PCB_IN).
The PLL is used to clean up its input signal, to generate two out of phase clocks of 125 MHz,
to provide the low frequency clock for the serial communication with the external ADC (about

5 MHz), and finally for synchronization purposes.
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Figure A.8. Block schematic of the top User Logic block of Reader_0. It set up the ADC internal gain
to 3.5 dB using a low speed (5 MHz) serial peripheral. It delays the ADC output signals before
reaching the FIFO_FAST_SAMPLE PACKAGE memory, and finally performs the real acquisition
ruled by the ACQUISITION_CU_MG block.

5.2. DELAY_BLOCK

In order to respect the FIFO_FAST_SAMPLE_PACKAGE memory setup and hold time, the
data output of the ADC (DATA_IN_FROM_ADC(8:0)) are properly delayed with the
DELAY BLOCK block in writing operation. Internally at the block is implemented an /ODELAY2
capable of a variable delay generator with step of about 40 ps [XIL 15b]. The input signal
DELAY _SET _PLB REG _IN(6:0) is used to settle the correct delay quantity, and the signal
STOP_DEL_SET_INTER_CONTROL to inform when the delay is properly resolved.

To obtain the correct value of the delay with DELAY SET_PLB REG_IN(6:0), was sufficient
to test the reader with known signals and check the reading results. Thus, the calibration

process was executed only one time during reader debagging.

5.3. ACQUISITION_CU_MG

The control unit of the sequential equivalent time algorithm during the reader acquisition
process is the ACQUISITION_CU_MG. The simplified execution of the ACQUISITION_CU_MG
block may be synthetize with the flow chart of figure A.9. It is put in relation with the
equivalent time algorithm shown also in figure 3.3 of chapter 3, and executes the following

operations:
1. It reset all the memories and start the acquisition

2. It sets the delay of the delay generator external chip with the signal
SET_DELAY_PCB_OUT(9:0). After it triggers the pulse generator using the block
DELAY TRIGGER_ADJ, and finally acquire few points of the ADC output, which are
memorized in FIFO_FAST_SAMPLE _PACKAGE.

3. It transfers the content of the FIFO_FAST_SAMPLE PACKAGE to the bigger
FIFO_FRAME PACKAGE.

4. It updates the delay generator external chip (current delay plus AT), and restarts

from point 2 if the delay is different from the S/H amplifier sampling period of 8 ns -
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AT. Differently, the sequential equivalent time algorithm is accomplished, and the
reader measured signal is in the memory FIFO_FRAME _PACKAGE. After it
performs the fast hardware averaging algorithm explained in chapter 4 sub-section
4.1.3. If the number of executed acquisitions is equal to the reader averaging
factor, it informs the microprocessor with an interrupt, otherwise it starts a new

acquisition from 1.
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Figure A.9. Simplified flow-chart of the ACQUISITION_CU_MG control unit. It is put in relation with
the equivalent time algorithm shown also in figure 3.3 of chapter 3.

The ACQUISITION_CU_MG block schematic is shown in figure A.10, it is composed of a
control unit INTERNAL_CU that takes care of all the others blocks, each performing one

independent operation.
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The SET_DELAY _GENERATOR is in charge of varying the dynamic delay of the delay
generator chip on the RF front-end board. The SAMPLING_ACQUISITION block controls the
acquisition of the ADC output to the smaller FIFO_FAST_SAMPLE _PACKAGE memory. The
block TRASFER_TO_FIFO_FRAME transfers the content of the
FIFO_FAST_SAMPLE PACKAGE to the bigger FIFO_FRAME _PACKAGE. Finally, the
PERFORM_AVERAGING block executes the fast hardware averaging algorithm explained in
chapter 4. It is accomplished with the memories FIFO_FRAME PACKAGE and
FIFO_STORAGE_PACKAGE, the ALU_PACKAGE, and finally with the
PIPO_REGISTER_PACKAGE.
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Figure A.10. The ACQUISITION_CU_MG block schematic. It is composed of a control unit
INTERNAL_CU that takes care of all the others blocks, each performing one independent operation
during the reader measurement process.
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Appendix 6

Matlab GUI reader chapter 4

The Matlab GUI for the reader proposed in chapter 4 is shown in figure A.11. It presents
the same tag post-processing treatment of the GUI for the reader in chapter 3, with the
addition of the STFT shown with spectrogram utility. In [RAM 16] the STFT for REP based
UWB frequency-coded chipless RFID tags is studied. According to [RAM 16] the
spectrogram was integrated in time domain between start point integration and stop point
integration. The STFT window was rectangular and its duration settled with DURATION SUB-
WINDOW. As a result of the reader performance and post processing STFT implementation,
the background measurement may sometimes be omitted, and therefore two pop-up menu of

the matlab GUI lets to select for it.
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Figure A.11. Reader Matlab GUI of chapter 4. With respect to the GUI for the reader version
developed before the starting of the thesis, it infroduces the STFT analysis.
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Appendix 7

Schematic power supply board reader chapter 4

In figure A.12 is shown the schematic of the power supply board realized for the reader
presented in chapter 4. It generates the required voltage values for the RF front-end from the
two 12 V pins available on the Xilinx FPGA evaluation board SP601.
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Figure A.12. Power supply board schematic of the reader on chapter 4.
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Appendix 8

Matlab GUI acquisition software for VNA N5222A
performing balanced measurement

To simplify the use of the VNA N5222A, when performing balanced measurement, a user
friendly GUI in Matlab has been realized. It is interactive and changes items visibility based
on the current connection state. A console is used to inform the user about the measurement
evolution. The GUI at the software initialization is shown in figure A.13 (a). It expects the
selection of one or both balanced measurements Scd21 and Scc21, in true-mode or not.
After the software is in communication with the VNA, the GUI changes its appearance as

shown in figure A.13 (b).

The power and/or the phase between the signals of the two physical ports 2 and 4 of logic
port 2 may be varied. The power variation range is retained between +15 dB to avoid
possible VNA error message. The option offset as fixture is also selectable. Varying the
power offset in true-mode corresponds to a variation of a; between the range [10 - 80] deg
as shown in chapter 6 table 6.1. Finally the GUI allows for an internal averaging of the
measured results beside that one of the VNA. It consists on performing several queries of

measurement process at the VNA.

To use the Matlab environment to communicate with the VNA, the Intrument Control
Toolbox needs to be installed on the PC. It contains a library of functions that can exploit the
Agilent IO Libraries Suite, which is a collection of libraries and utility software to enable the
communication with the instrument. Between the others it contains the VISA libraries that

were used by the developed Matlab GUI.

To established the communication with the VNA the following lines of code are used,

% Create the Visa object obj1 for the VNA, using the USB interface
obj1 = visa('AGILENT', 'USB0::0x0957::0x0118::MY51421171::0::INSTR');

% Set input buffer size for largest possible read of 32001 points in float32 (32001*4*2)
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set(obj1,'InputBufferSize’, 260000);

% Opening the communication with the VNA
fopen(obj1);

% Active continuously trigger system
fwrite(obj1, 'INIT:CONT ON');

% Single precision floating points (32 bit)
fwrite(obj1, 'FORM REAL, 32');

% Byte orders (LSB first — little-endian)
fwrite(obj1, 'FORM:BORD SWAP");

%Delete all measurements on VNA (clean the VNA)
fprintf(obj1, 'CALC:PAR:DEL:ALL');

To set up a differential measurement the following code is used. It refers the case of Scc21, for Sdc21
a similar code can be used.

%Define one measurement
fwrite(obj1,'CALC:PAR:DEF:EXT "MYSCC12","S11");
%Select the measurement just created
fwrite(obj1,'"CALC:PAR:SEL "MYSCC12");
% Set balanced parameters ON
fwrite(obj1,'"CALC:FSIM:BAL:PAR:STAT ON');
% Set balanced transformation to BBAL (balance to balance )
fwrite(obj1,'"CALC:FSIM:BAL:DEV BBAL');
% Allow for variable phase offset between physical ports of the same logic port
fwrite(obj1,'"CALC:FSIM:BAL:FIXT:OFFS:PHAS OFF')
% Allow for variable power offset between physical ports of the same logic port
fwrite(obj1,'CALC:FSIM:BAL:FIXT:OFFS:POW OFF");
% Define balanced measurement to SCC12
fwrite(obj1,'CALC:FSIM:BAL:PAR:BBAL:DEF SCC12");
% Display trace
fwrite(obj1,'DISP:WIND1: TRAC1:FEED "MYSCC12");
if(TRUEMODE)
% Enable true mode measurement
fwrite(obj1,'CALC:FSIM:BAL:STIM:MODE TM'");
else
fwrite(obj1,'CALC:FSIM:BAL:STIM:MODE SE'); % Single-Ended stimulus

end;
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To vary the power offset or the phase offset on the balance port 2:

fprintf(obj1,'CALC:FSIM:BAL:BPOR2:0FFS:PHAS %g',phase_i);

fprintf(obj1,'CALC:FSIM:BAL:BPOR2:0OFFS:POW %g',power_t);
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Figure A.13. Matlab GUI realized to acquire the Agilent N5222A VNA measuring data in balanced

mode.(a) GUI that appears at software initialization before selecting the wanted measurements

(Sdc12-Scc12) and before be connected with the VNA. (b) GUI after the selection of measurement
and connection. It is interactive and change items visibility based on the current connection state. A
console is used to inform the user about the measurement evolution.
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