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Titre Modélisation réduite et propagation d’incertitudes pour les réseaux
d’alimentation en eau potable.

Résumé Les réseaux de distribution d’eau consistent en de grandes infras-
tructures réparties dans l’espace qui assurent la distribution d’eau potable en
quantité et en qualité suffisantes. Les modèles mathématiques de ces systèmes
sont caractérisés par un grand nombre de variables d’état et de paramètres
dont la plupart sont incertains. Les temps de calcul peuvent s’avérer con-
séquents pour les réseaux de taille importante et la propagation d’incertitude
par des méthodes de Monte Carlo. Par conséquent, les deux principaux objec-
tifs de cette thèse sont l’étude des techniques de modélisation à ordre réduit par
projection ainsi que la propagation spectrale des incertitudes des paramètres.

La thèse donne tout d’abord un aperçu des méthodes mathématiques util-
isées. Ensuite, les équations permanentes des réseaux hydrauliques sont présen-
tées et une nouvelle méthode de calcul des sensibilités est dérivée sur la base
de la méthode adjointe. Les objectifs spécifiques du développement de mod-
èles d’ordre réduit sont l’application de méthodes basées sur la projection,
le développement de stratégies d’échantillonnage adaptatives plus efficaces et
l’utilisation de méthodes d’hyper-réduction pour l’évaluation rapide des ter-
mes résiduels non linéaires. Pour la propagation des incertitudes, des méth-
odes spectrales sont introduites dans le modèle hydraulique et un modèle hy-
draulique intrusif est formulé. Dans le but d’une analyse plus efficace des
incertitudes des paramètres, la propagation spectrale est ensuite évaluée sur
la base du modèle réduit.

Les résultats montrent que les modèles d’ordre réduit basés sur des projec-
tions offrent un avantage considérable par rapport à l’effort de calcul. Bien que
l’utilisation de l’échantillonnage adaptatif permette une utilisation plus efficace
des états système pré-calculés, l’utilisation de méthodes d’hyper-réduction n’a
pas permis d’améliorer la charge de calcul. La propagation des incertitudes des
paramètres sur la base des méthodes spectrales est comparable aux simulations
de Monte Carlo en termes de précision, tout en réduisant considérablement
l’effort de calcul.

Mots-clés Modèles d’ingénierie, Réseaux de distribution d’eau, Modèle d’ordre
réduit, Méthodes basées sur la projection, Quantification d’incertitude, Développe-
ment de chaos polynomial.
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Title Reduced Order Modelling and Uncertainty Propagation Applied to
Water Distribution Networks

Abstract Water distribution systems are large, spatially distributed infras-
tructures that ensure the distribution of potable water of sufficient quantity
and quality. Mathematical models of these systems are characterized by a large
number of state variables and parameter. Two major challenges are given by
the time constraints for the solution and the uncertain character of the model
parameters. The main objectives of this thesis are thus the investigation of
projection based reduced order modelling techniques for the time efficient so-
lution of the hydraulic system as well as the spectral propagation of parameter
uncertainties for the improved quantification of uncertainties.

The thesis gives an overview of the mathematical methods that are being
used. This is followed by the definition and discussion of the hydraulic net-
work model, for which a new method for the derivation of the sensitivities is
presented based on the adjoint method. The specific objectives for the develop-
ment of reduced order models are the application of projection based methods,
the development of more efficient adaptive sampling strategies and the use of
hyper-reduction methods for the fast evaluation of non-linear residual terms.
For the propagation of uncertainties spectral methods are introduced to the
hydraulic model and an intrusive hydraulic model is formulated. With the ob-
jective of a more efficient analysis of the parameter uncertainties, the spectral
propagation is then evaluated on the basis of the reduced model.

The results show that projection based reduced order models give a con-
siderable benefit with respect to the computational effort. While the use of
adaptive sampling resulted in a more efficient use of pre-calculated system
states, the use of hyper-reduction methods could not improve the computa-
tional burden and has to be explored further. The propagation of the param-
eter uncertainties on the basis of the spectral methods is shown to be compa-
rable to Monte Carlo simulations in accuracy, while significantly reducing the
computational effort.

Keywords Engineering models, Water distribution networks, Reduced or-
der model, Projection based methods, Uncertainty quantification, Polynomial
chaos expansion.
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Résumé

Les réseaux de distribution d’eau sont des infrastructures essentielles, répar-
ties dans l’espace, qui fournissent de l’eau potable en quantité, qualité et
pression appropriées à la population des villes et des villages du monde en-
tier. Ces systèmes sont complets en ce sens qu’ils traitent de la collecte, du
traitement, du stockage, de la distribution et de l’évacuation de l’eau. La pre-
mière étape consiste à recueillir l’eau brute à partir d’eaux souterraines ou de
sources d’eau de surface comme les rivières et les réservoirs d’eau naturels. Au
cours du traitement, les composants indésirables sont éliminés de l’eau, dans
le but d’assurer une utilisation économique en tant qu’eau potable ou dans
le cadre d’utilisations industrielles et médicales. Cette étape est consomma-
trice d’énergie et comprend de nombreuses étapes qui dépendent des sources
d’eau brute disponibles et de la qualité de l’eau souhaitée. Le stockage et la
distribution de l’eau traitée sont assurés par le réseau de distribution d’eau.
Ses éléments clés sont le réseau de distribution, les stations de pompage et
les réservoirs d’eau. Le réseau de distribution est un réseau de canalisations
distribué dans l’espace et généralement en boucle haute qui relie les consom-
mateurs à la station d’épuration et fournit les moyens de distribution de l’eau
potable. Les stations de pompage et les réservoirs d’eau fournissent la hau-
teur manométrique nécessaire pour assurer un service fiable sur l’ensemble du
réseau. Pour un fonctionnement efficace et économique du réseau, un certain
nombre d’appareils supplémentaires de régulation de débit et de pression sont
installés à des endroits stratégiques. L’étape finale ferme le cycle de l’eau, en
collectant les eaux usées et en les acheminant vers une station de traitement
des eaux usées.

L’exploitation pratique des réseaux de distribution d’eau est régie par de
nombreuses conditions limites et exigences. Il s’agit notamment de la sat-
isfaction des consommateurs, de la gestion de ressources naturelles limitées,
de l’entretien technique et des coûts d’exploitation. L’utilisation de modèles
mathématiques pour évaluer l’état hydraulique du réseau est un élément clé
de la gestion d’un réseau de distribution d’eau et fournit des informations es-
sentielles aux décideurs. Ces modèles sont formulés au moyen de systèmes
d’équations non linéaires caractérisés par un grand nombre de paramètres,
dont certains sont donnés par la consommation d’eau nodale, le diamètre et la
rugosité des conduites.
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Motivation

Deux des principaux problèmes que pose aujourd’hui le modèle de réseau d’un
réseau de distribution d’eau sont l’effort de calcul nécessaire pour résoudre les
équations du réseau et l’incertitude inhérente aux paramètres du modèle.

La modélisation des réseaux de distribution de villes comme Strasbourg,
Berlin ou Paris conduit à la formulation de grands systèmes d’équations non
linéaires. L’évaluation de ces modèles peut prendre un temps considérable
allant de quelques minutes à plusieurs heures. Bien que cela ne soit pas prob-
lématique en soi, cela peut devenir prohibitif dans le contexte d’opérations
plus complexes. De nombreuses applications pratiques comme la concep-
tion optimale d’un réseau, l’estimation de paramètres ou la quantification de
l’incertitude nécessitent l’évaluation répétée des équations hydrauliques qui
peuvent devenir prohibitives sur le plan informatique. D’autres applications
comme la simulation en ligne et l’identification en ligne des sources nécessi-
tent une vitesse d’évaluation en temps réel ou presque, ce qui peut ne pas être
réalisable avec un modèle haute fidélité. La modélisation à ordre réduit est
une méthode conçue pour alléger la charge de calcul des modèles de simulation
numérique. L’idée fondamentale est de construire un modèle de substitution
avec un nombre drastiquement réduit de degrés de liberté, qui se rapproche
du vecteur d’état complet. Ce modèle de commande réduite doit répondre
à trois exigences majeures: Premièrement, l’erreur de l’approximation doit
être raisonnable par rapport au modèle à ordre complet. Deuxièmement, il
doit conserver les caractéristiques et les propriétés du modèle d’ordre com-
plet. Troisièmement, le temps de calcul doit être nettement inférieur à celui
du modèle d’ordre complet.

La quantification de la variabilité de l’état d’un modèle hydraulique, intro-
duite par l’incertitude de ses paramètres, est une tâche importante qui peut
grandement bénéficier d’une modélisation à ordre réduit. Jusqu’à présent,
l’état hydraulique d’un réseau de distribution d’eau était généralement cal-
culé à l’aide d’un modèle déterministe. Cependant, les équations contien-
nent de nombreuses sources d’incertitudes, dont certaines sont données par
les incertitudes des paramètres, la variabilité des paramètres ou l’incertitude
structurelle qui découlent des simplifications des modèles et des imprécisions
algorithmiques. Le modèle mathématique d’un système de distribution d’eau
contient un grand nombre de paramètres, dont la plupart ne sont pas connus
exactement. La figure 1 illustre les trois principales sources d’incertitude des
paramètres : Les exigences du consommateur, la rugosité et le diamètre effectif
du tube. La variabilité de ces paramètres peut être définie plus précisément
par le processus stochastique sur lequel ils sont basés. Bien que la demande
des consommateurs présente une incertitude aléatoire inhérente et fluctue avec
une fréquence élevée, d’autres paramètres comme le diamètre ou la rugosité de
la conduite subissent des changements en raison du processus de vieillissement.

2 Mathias BRAUN





tification des incertitudes dans le modèle hydraulique des réseaux de distribu-
tion d’eau. Ce faisant, l’utilisation de méta-modèles déterministes basés sur la
décomposition orthogonale appropriée et de méta-modèles stochastiques basés
sur l’expansion du chaos polynomial sont étudiés et évalués pour leur capacité
à réduire le coût de calcul. Les objectifs spécifiques du méta-modèle détermin-
iste sont:

• L’application et la comparaison des techniques d’interpolation et de pro-
jection basées sur la modélisation à ordre réduit,

• Élaboration d’une stratégie d’échantillonnage adaptative pour la con-
struction à base réduite,

• Évaluation des méthodes d’hyperréduction pour les termes résiduels non
linéaires,

et pour la propagation de l’incertitude à l’aide du méta-modèle stochastique,
les objectifs spécifiques sont :

• L’application et la comparaison de FOSM, des simulations de Monte
Carlo et des méthodes spectrales au modèle hydraulique,

• Élément Analyse des sensibilités hydrauliques basée sur la méthode ad-
jointe,

• Le développement d’un modèle stochastique intrusif.

La structure de la thèse est la suivante :

Chapitre 1 : Base mathématique

Le chapitre présente les outils mathématiques de base qui sont utilisés tout au
long de la thèse dans l’ordre thématique. Tout d’abord, une brève introduc-
tion est donnée à la théorie des graphes. Ceci est pertinent dans le processus
de modélisation hydraulique des réseaux de distribution d’eau, la réduction
hiérarchique de ces modèles et la triangulation Delaunay. La méthode adjointe
est présentée comme un outil pratique pour la détermination des dérivées du
système au chapitre 2. L’UDS est présentée comme l’une des méthodes permet-
tant d’obtenir une base orthogonale appropriée pour les méthodes de réduction
du modèle de projection utilisées au chapitre 3 et la triangulation de Delau-
nay constitue la pierre angulaire de la stratégie d’échantillonnage adaptatif.
Enfin, pour l’utilisation dans le chapitre 4, quelques définitions de base pour
les statistiques sont introduites avec le cadre des polynômes orthogonaux pour
leur utilisation dans l’expansion du chaos polynomial.
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Résumé

Chapitre 2 : Synthèse du modèle

Ce chapitre présente le modèle général du réseau hydraulique. La section 2.1
présente le paradigme de la modélisation axée sur la demande. Il contient
la présentation de la perte de charge induite par frottement, la formulation
des équations hydrauliques statiques et la formulation de la matrice de sen-
sibilité. La section 2.2 présente ensuite le paradigme de la modélisation axée
sur la pression, avec l’introduction de la relation pression-débit et la formu-
lation des équations hydrauliques modifiées. Les capacités des paradigmes de
modélisation axés sur la demande et sur la pression pour la modélisation des
réseaux déficients sont examinées à la section 2.3. Le chapitre se termine par
la présentation des graphiques des réseaux d’exemples utilisés tout au long de
la thèse.

Chapitre 3 : Modélisation à ordre réduit

Une catégorisation des techniques courantes de modélisation d’ordre réduit est
présentée avec des méthodes basées sur l’interpolation, des méthodes basées
sur la projection et des modèles hiérarchiques. Suit la définition d’une procé-
dure de validation commune sur la base de l’erreur d’approximation et de
l’erreur de projection dans la section 3.4. Pour l’application aux modèles de
réseaux hydrauliques, les méthodes basées sur l’interpolation et la projection
sont présentées plus en détail. La section 3.1 présente les modèles classiques
d’interpolation de surface de réponse et les modèles d’interpolation basés sur
les fonctions de base radiale. Pour les méthodes basées sur la projection, la
section 3.2 se concentre sur l’introduction de la décomposition orthogonale
correcte basée sur la SVD. De plus, les équations du modèle hydraulique ré-
duit sont dérivées pour les équations de débit de tête et de débit en boucle,
ainsi que la forme projetée pour l’évaluation directe de la matrice jacobienne.
Enfin, il introduit l’utilisation d’une base réduite globale et locale. La sec-
tion 3.3 introduit l’application de la méthode d’interpolation empirique pour
l’application dans les équations hydrauliques, suivie par l’introduction d’une
stratégie d’échantillonnage adaptative basée sur les erreurs de projection dans
la section 3.5.

Chapitre 4 : Quantification de l’incertitude

Le chapitre traite de la propagation des incertitudes des paramètres à l’aide de
modèles mathématiques. Il donne d’abord une caractérisation des approches
de propagation de base avec les méthodes de perturbation, d’échantillonnage
ou de collocation stochastique et les méthodes spectrales stochastiques. Dans
la section 4.1 la méthode de perturbation et la simulation de Monte Carlo sont
présentées plus en détail, suivies de l’introduction de l’expansion du chaos
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polynomial dans la section 4.2. La section se poursuit sur la formulation des
équations spectrales stochastiques pour le modèle hydraulique.

Chapitre 5 : Quantification efficace de l’incertitude

Dans ce chapitre, l’application combinée des techniques de modélisation d’ordre
réduit et de propagation de l’incertitude spectrale est évaluée sur l’exemple
d’un réseau de distribution d’eau réaliste avec un espace paramètre bidimen-
sionnel.
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Introduction

Water distribution systems are critical, spatially distributed infrastructures
that supply potable water of proper quantity, quality and pressure to the pop-
ulation of cities and towns all over the world. These systems are comprehensive
in a sense that they deal with the collection, treatment, storage, distribution
and disposal of water. The first step raw water is collected from groundwa-
ter or surface water sources like rivers and natural water reservoirs. During
treatment unwanted constituents are removed from the water, with the objec-
tive to ensure the save use as drinking water or in the context of industrial
and medical uses. This step is energy consuming and includes numerous steps
that depend on the available raw water sources and the desired water quality.
Storage and distribution of the treated water is provided through the water
distribution system. Its key elements are the distribution network, pumping
stations and water tanks. The distribution network is a spatially distributed
and usually highly looped system of pipes that connects the consumers to the
treatment plant and provides the means for the distribution of potable wa-
ter. Pumping stations and water tanks provide the necessary pressure head
to ensure the reliable service throughout the network. For an efficient and
economic operation of the network a number of additional appliances for flow
and pressure control are installed at strategic positions. The final step closes
the water cycle, by collecting waste water and transporting it to a waste water
treatment plant.

The practical operation of water distribution networks is driven by numer-
ous boundary conditions and requirements. Some of those are the consumer
satisfaction, the management of limited natural resources, technical mainte-
nance and operational cost. The use of mathematical models to evaluate the
hydraulic state of the network is a key element in managing a water distri-
bution system and provides crucial information to decision makers. These
models are formulated through systems of non-linear equations that are char-
acterized by a big number of parameters, some of which are given by nodal
water consumption, pipe diameters and pipe roughnesses.
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Motivation

Two of the major problems in dealing with the network model of a water
distribution system today are coping with the computational effort for the
solution of the network equations and dealing with the inherent uncertainty in
the model parameters.

Modelling the distribution networks of cities like Strasbourg, Berlin or Paris
leads to the formulation of large systems of non-linear equations. The eval-
uation of such models can take a considerable amount of time ranging from
several minutes to hours. While this by itself is not problematic, it can be-
come prohibitively expensive in the context of more complex operations. Many
practical applications like optimal network design, parameter estimation or un-
certainty quantification require the repeated evaluation of the hydraulic equa-
tions which may become computationally prohibitive. Other applications like
on-line simulation and on-line source identification require real-time or close
to real-time evaluation speed which may not be achievable with a high fidelity
model. Reduced order modelling is a method designed to alleviate the com-
putational burden of numerical simulation models. The fundamental idea is
to build a surrogate model with a drastically reduced number of degrees of
freedom, that approximates the full state vector. Such a reduced order model
has to fulfil three major requirements: First, the error of the approximation
has to be reasonable, in comparison to the full order model. Second, it has to
conserve the characteristics and properties of the full order model. Third, the
calculation time has to be significantly lower than for the full order model.

Quantifying the variability in the state of a hydraulic model, introduced
through uncertainties in its parameters is an important task that can greatly
benefit from reduced order modelling. To date, the hydraulic state of a wa-
ter distribution network is commonly calculated using a deterministic model.
However, these contain numerous sources for uncertainties, some of which are
given by parameter uncertainties, parameter variability or structural uncer-
tainty that stem from model simplifications and algorithmic inaccuracies. The
mathematical model of a water distribution system contains a huge number
of parameters, most of which are not known exactly. Figure 1 illustrates the
three most important sources for parameter uncertainties: The consumer de-
mands, pipe roughness and the effective pipe diameter. The variability in these
parameters can be defined more precisely through the stochastic process they
are based on. While the consumer based demand has an inherent aleatory
uncertainty and fluctuates with a high frequency, other parameters like the
pipe diameter or the roughness undergo changes due to the ageing process.
The objective of the uncertainty quantification is to evaluate the effect of pa-
rameter uncertainties on the hydraulic state, in order to provide a measure of
reliability. This evaluation is achieved through the propagation of the param-
eter uncertainties using the mathematical model. Stochastic meta-models are
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one of the most important tools in this process.
Employing the use of a deterministic surrogate model in combination with

a stochastic meta model has the potential to be a huge benefit in such appli-
cations and will thus be the focus of the presented work.

State of the Art

The classical demand driven hydraulic model describes a looped water distri-
bution network by one dimensional flow based on the first and second Kirchhoff
laws. In this demand-driven model (DDM), nodal demands and the head po-
tential at a selection of resource nodes are given as boundary conditions. One
way to solve the resulting system of equations is given by the Hardy-Cross
algorithm [Cross, 1936]. It is defined as a relaxed Newton method that solves
the equations successively for each loop. With the advent of personal com-
puters more complex solution algorithms have been applied with trust-region
Newton algorithms or the global gradient algorithm introduced by Todini et
Pilati [1988]. However, with the introduction of complex pressure and flow
regulation devices the convergence of the hydraulic solver is not guaranteed.
The use of variational methods by authors like Birkhoff [1963], Collins [1978]
and Carpentier et Cohen [1993] lead to the formulation of the primal and dual
models. This model is more robust in the presence of hydraulic appliances and
allows for the solution through the use of sophisticated optimization methods.

Originally being developed for planning and sizing of water distribution
networks the applications have since been extended to areas like sensor place-
ment, leakage reduction, water security and on-line system management. This
introduces more complex requirements to the hydraulic model. Issues, like
modelling networks that lose their connectivity due to operational boundary
conditions or the ill conditioned non-linear flow/tension problem under zero-
flow conditions, demonstrate the need for more robust models. In dealing
with zero-flow several changes have been proposed to improve demand driven
modelling. Elhay et Simpson [2011] present a regularization approach that
introduces small flow rates for a more robust solution of the hydraulic equa-
tions. Another possibility, presented by Elhay et al. [2014] is the application
of loop method solution algorithms that are not as vulnerable to zero-flows
as classical solution methods. The introduction of pressure driven modelling
(PDM) provides an efficient tool for calculating the hydraulic state in dis-
connected or pressure deficient networks. Based on the fact first voiced by
Wagner et al. [1988] that outflow at demand nodes is not a fixed, but rather
a pressure dependent boundary condition, a number of approaches have been
developed. Several authors introduced functions called pressure outflow rela-
tionships (PORs) to determine the actual flow based on the available pressure.
Early approaches like Bhave [1981] use these PORs in an iterative approach to
solve a series of DDM problems while adjusting the demands to be compatible
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with the pressure. Piller et Van Zyl [2007] presented a mathematical formu-
lation of the pressure-driven model that does not rely on the definition of any
head flow relationships. Instead, the authors use modified mass-balance con-
straints at consumption nodes to allow reduced demands in case the pressure
is insufficient Elhay et al. [2015].

Reduced order modelling in water distribution networks can take a number
of different forms. Depending on the level of information that is required for a
particular application water distribution networks or parts thereof can be mod-
elled by Computational Fluid Dynamics (CFD) using the Navier-Stokes equa-
tions. This is often the case in water quality problems, especially in questions
of mixing behavior at pipe junctions [Gilbert et al., 2017; van Bloemen Waan-
ders et al., 2005]. However, the evaluation of a complete network in this level
of detail is infeasible. For this reason in most of the applications a simplified
physical model is used that employs a one-dimensional flow model along dis-
crete pipe elements and can be described using the mass and energy balance
of the Kirchhoff laws Cross [1936]; Walski et al. [2001].

The need for more efficient evaluation of the hydraulic equations has in-
spired numerous publications with the objective to decrease the computational
effort or increase the computational performance. These methods can gener-
ally be described as conservative or non-conservative, depending on the fact if
information is lost in the process. Some of the most promising and used ap-
proaches are the network skeletonization, the development of non-linear alge-
braic surrogate models or graph decomposition. Network skeletonization is the
process of selecting only parts of a network for inclusion in the reduced model
that have significant effect on the behavior of the system [Walski et al., 2003].
This process was introduced by Eggener et Polkowski [1976] who tested the
sensitivity of model results to the systematic removal of pipes and found that,
under normal conditions, removing large numbers of pipes did not significantly
effect the pressure. The investigation of the rules for model skeletonization has
been published by Hamberg et Shamir [1988a,b]. In general this method does
not exclude the data, but agglomerates the data from deleted elements in the
reduced model. The construction of non-linear algebraic approximation mod-
els linearises the hydraulic model in a defined working state. For this state,
the known non-linear relations are then rebuild through the use of algebraic
equations [Ulanicki et al., 1996]. Graph decomposition methods use the in-
trinsic properties of the network graph in order to divide linear and non-linear
components in the system equations for a more efficient solution [Deuerlein,
2008]. This can be achieved through the decomposition of the network into
the forest graph governed by a linear set of equations and the non-linear grid.
Further improvements can be made through the formulation of super nodes,
that reduce the graph complexity [Deuerlein et al., 2012b]. While the skele-
tonization and the use of non-linear algebraic models allow for the loss of a
certain degree of information, the graph decomposition permits the complete
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reconstruction of the full order state vector.
The use of reduced order models is a well studied topic in the context of

CFD [Benner et al., 2013]. Projection based modelling techniques that are
based on the singular value decomposition (SVD) have found application in
many problems, with one of the most popular representatives being the Proper
Orthogonal Decomposition (POD) [Antoulas, 2005]. Building a reduced order
approximation of a parametric system, uses a database of pre-sampled snap-
shots that gives an appropriate representation of the system behaviour. This
snapshot database is then used to formulate a set of orthogonal basis vectors.
Projecting the high-fidelity model on this basis allows to formulate a reduced
order model. Common methods are the Galerkin and the Petrov-Galerkin
projection. Especially the preservation of physical model properties due to the
projection of the full order system gives the POD an advantage over purely
data-driven methods [Carlberg et al., 2015]. As projection based methods are
strongly influenced by the quality of the snapshot database, the use of efficient
sampling techniques can greatly influence the accuracy of the resulting model.
Popular approaches use a greedy algorithm for the selection of efficient parame-
ter samples [Haasdonk et Ohlberger, 2008] or residual based centroidal voronoi
tessellation (CVT) [Lombardi et al., 2009]. The further use of hyper reduction
techniques, like the empirical interpolation method (EIM) introduced by Chat-
urantabut et Sorensen [2010], greatly improve the computational efficiency of
projection based reduced order models in a non-linear context.

Analysing uncertainties is generally divided into the quantification and the
propagation of parameter uncertainties. The inherent uncertainties in wa-
ter distribution systems are well documented and numerous approaches have
been undertaken in order to find an appropriate description. The underlying
aleatory variability of the nodal demand on the scale of minutes, hours and
days or even on monthly and annual time-scales is discussed by Herrera et al.
[2010] and Buchberger et Wells [1996]. Further, a number of modelling as-
sumptions introduce epistemic errors to the demand. This includes the nodal
agglomeration of demands that occur distributed along a pipe [Walski et al.,
2003] or due to simplification of the network graph [Perelman et al., 2008] and
unrealistic demands due to model deficiencies [Braun et al., 2017]. Pipe diam-
eter and roughness are influenced by corrosive processes and will change over
time Boulos et Karney [2004]. For fast changing parameters like the nodal
demand there exist models that try to predict the value for the next time
step. This may be achieved either by data driven models Herrera et al. [2010];
Braun et al. [2014] or physical models that simulate the stochastic nature of
consumers Blokker et Van der Schee [2006]. An efficient way to reduce the pa-
rameter uncertainties is through the application of calibration methods. The
goal is, to try to identify a set of parameters that give the best fit between mea-
sured and simulated data. The majority of calibration algorithms are based
on optimization and least-squares approaches Savic et al. [2009]; Piller et al.
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[2010].
The most popular approach for deriving information on the probability

distribution of the parameters uses the Gauss-linear First Order Second Mo-
ment (FOSM) method, which is limited to linear systems with Gaussian error
or in the case of non-linear systems to small errors. An alternative approach
that takes full account of the model non-linearities is presented by Kapelan
et al. [2007]. They use a shuffled complex evolution metropolis (SCEM-UA)
algorithm in order to solve the inverse problem by the means of a Bayesian
approach which results in a more realistic estimate for the probability distribu-
tion. Given an accurate description of the input uncertainties, the influence on
the QoIs is determined through their propagation using the hydraulic model.
Popular approaches are perturbation methods like the FOSM that use the sen-
sitivity of the network model Razavi et Gupta [2015]; Lu et Vesselinov [2015]
and Monte Carlo simulation Lansey [1997]. Several applications have shown
that taking parameter uncertainties into account may have significant influence
on the results. For example Pasha et Lansey [2010] investigate the effect of
parameter uncertainties on water quality using the Monte Carlo method and
Perelman et al. [2013] investigate the influence of uncertainties in the context of
least-cost design for water distribution networks. While perturbation methods
are computationally very efficient, the FOSM propagates errors only linearly.
This may be sufficient for models with small non-linear effects or uncertainties
with a small variances. For more general cases the Monte Carlo simulation is
commonly used. The interest of spectral propagation methods lays in the im-
proved convergence behaviour compared to the Monte Carlo approach, while
preserving the non-linear system behaviour.

Objective and Outline of the Thesis

With the large number of state variable and through the presence of the big
number of uncertain parameters in the hydraulic model of a water distribution
network poses two major questions. First, how do the parameter uncertainties
influence the system state and second, how to determine it in an computation-
ally efficient way.

To answer these questions, the main objective of this thesis is the develop-
ment and application of tools for the efficient propagation and quantification of
uncertainties in the hydraulic model of water distribution networks. In doing
so, the use of deterministic meta-modelling approaches based on the Proper
Orthogonal Decomposition and stochastic meta-modelling approaches based
on the Polynomial Chaos Expansion are investigated and evaluated for their
capacity to reduce the computational cost. The specific objectives for the
deterministic meta-model they are:

• The application and comparison of interpolation and projection based
reduced order modelling techniques,
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• Development of an adaptive sampling strategy for reduced basis con-
struction,

• Evaluation of hyper-reduction methods for non-linear residual terms,

and for the uncertainty propagation using the stochastic meta-model the spe-
cific aims are:

• The application and comparison of FOSM, Monte Carlo simulations and
spectral methods to the hydraulic model,

• Analysis of hydraulic sensitivities based on the adjoint method,

• The development of an intrusive stochastic model.

The structure of the thesis is as follows:

Chapter 1: Mathematical Basis

The chapter introduces the basic mathematical tools that are used through-
out the thesis in topical order. First, a short introduction is given for graph
theory. This is relevant in the hydraulic modelling process for water distri-
bution networks, the hierarchical reduction of these models and the Delaunay
triangulation. The adjoint method is presented as a convenient tool for the
determination of the system derivatives in Chapter 2. The SVD is introduced
as one possible method to obtain a suitable orthogonal basis for the projection
based model reduction methods used in Chapter 3 and the Delaunay triangula-
tion builds the corner stone of the adaptive sampling strategy. Finally, for the
use in Chapter 4 some basic definitions for statistics are introduced together
with the framework of orthogonal polynomials for their use in the polynomial
chaos expansion.

Chapter 2: Model Synthesis

The chapter introduces the general hydraulic network model. Section 2.1 intro-
duces the demand-driven modelling paradigm. This contains the presentation
of the friction induced head-loss, the formulation of the static hydraulic equa-
tions and the formulation of the sensitivity matrix. This is followed by the
presentation of the pressure-driven modelling paradigm in Section 2.2, with
the introduction of the pressure-outflow relationship and the formulation of
the altered hydraulic equations. The capabilities of both the demand-driven
and pressure-driven modelling paradigms for modelling deficient networks are
discussed in Section 2.3. The chapter closes with the presentation of the graphs
for the example networks that are used throughout the thesis.

13



Chapter 3: Reduced Order Modelling

A categorization of common reduced order modelling techniques is presented
with interpolation based methods, projection based methods and hierarchical
models. This is followed by the definition of a common validation procedure on
the basis of the approximation error and the projection error in Section 3.4. For
the application to the hydraulic network models, the interpolation based and
projection based methods are introduced in further detail. Section 3.1 intro-
duces classical response surface interpolation models and interpolation models
based on the radial basis functions. For the projection based methods Section
3.2 concentrates on the introduction of the SVD based proper orthogonal de-
composition. Further, the reduced hydraulic model equations are derived for
the head-flow and the loop-flow equations, together with the projected form
for the direct evaluation of the Jacobian matrix. Finally it introduces the use
of global and local reduced basis. Section 3.3 introduces the application of the
empirical interpolation method for the application in the hydraulic equations,
followed by the introduction of an adaptive projection error based sampling
strategy in Section 3.5.

Chapter 4: Uncertainty Quantification

The chapter deals with the propagation of parameter uncertainties using math-
ematical models. It first gives a characterization of the basic propagation ap-
proaches with the perturbation methods, sampling or stochastic collocation
methods and the stochastic spectral methods. In Section 4.1 the perturbation
method and the Monte Carlo simulation are presented in more detail followed
by the introduction of the polynomial chaos expansion in Section 4.2. The sec-
tion continues to discuss the formulation of the stochastic spectral equations
for the hydraulic model.

Chapter 5: Efficient Uncertainty Quantification

In this chapter the combined application of reduced order modelling techniques
and spectral uncertainty propagation is evaluated on the example of a realistic
water distribution network with a two dimensional parameter-space.

Related Publications

Much of the work and results presented in this thesis has been published in
scientific peer-reviewed journals. A full list of the publications is given in the
following:

• Braun, M., Piller, O., Deuerlein, J. and Mortazavi, I., "Limitations of
Demand- and Pressure-Driven Modelling for Large Deficient Networks,"
Drinking Water Engineering and Science, No.10(2), pp.93-98, 2017.
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• Braun, M., Piller, O., Deuerlein, J., Mortazavi, I. and Iollo, A., "A
Spectral Approach to Uncertainty Quantification in Water Distribution
Networks," Journal of Water Resources Planning and Management, ac-
cepted.

• Braun, M., Piller, O., Deuerlein, J., Mortazavi, I. and Iollo, A., "Uncer-
tainty Quantification of Water Age in Water Supply Systems by use of
Spectral Propagation," Journal of Hydroinformatics, accepted.

• Braun, M., Piller, O., Iollo, A. and Mortazavi, I., "Use of Projection
Based Reduced Order Models for Hydraulic State Estimation," Journal
of Hydroinformatics, in preparation.
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Chapter 1

Mathematical Basis

Motivation: The presentation of the main mathematical tools that are
used in the thesis.
Principal Elements:

• Graph theory

• Adjoint method

• Singular value decomposition

• Delaunay triangulation

• Statistics

• Orthogonal polynomials

This chapter introduces the necessary basis for the mathematical methods
that are used in this thesis in topical order. First, a short introduction is
given for graph theory for the application in the hydraulic modelling process
of water distribution networks. Graph theory is also relevant in the context of
the hierarchical model reduction and the Delaunay triangulation. The adjoint
method is presented as a convenient tool for the determination of a systems
sensitivity to parameters. The SVD is introduced as one possible method to
obtain a suitable orthogonal basis for the projection based model reduction
methods and the Delaunay triangulation is used for the adaptive sampling
strategy. The chapter closes with some basic definitions for statistics and the
framework of orthogonal polynomials for their use in the polynomial chaos
expansion.

1.1 Graph Theory

Graph theory is a field of discrete mathematics that was first introduced by
Leonard Euler in 1736 during his work on the Seven Bridges of Königsberg
problem. Since then it has found use in numerous scientific applications, en-
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1.1. Graph Theory

compassing computer science, physics, mathematics and engineering among
others.

A graph G is made up of a finite set of vertices or nodes V = {vi} , i ∈
1, . . . , nj and a set of edges or links E = {ej} , j ∈ 1, . . . , np. Each edge
is a pair of unordered vertices ej = (vi, vk) that is determined by a mapping
H : E 7→ V × V . The graph is then defined by the triple G = (V,E,H). In
contrast to an undirected graph G a directed graph or digraph D as the one
shown in Figure 1.1 defines an edge as an ordered pair with a starting and an
ending vertex.

v1
v2

v3
v4

v5

v6
v7

v8

v9

v10

v11

v12

v13

v14

v15
v16

v17

v18

v19

v20

v21

v22v23

Figure 1.1: Example digraph D.

For a given digraph D = (V,E,H) one way to describe its structure is
defined by the incidence matrix. The incidence matrix A ∈ Mnj×np defines
the relation between vertices and edges, where its elements are defined as

Ai,j =







−1 , if edge j ends at vertex i

0 , if edge j is not connected to vertex i

+1 , if edge j starts vertex i.

for i = 1, 2, · · · , nj and j = 1, 2, · · · , np. Due to the fact that a graph usually
contains more edges than vertices the (nj×np) matrix generally is not square.

Given a graph D a sub-graph D′ is defined by the sub-sets V (D′) and
E(D′) such that V (D) ⊆ V (D′) and E(D) ⊆ E(D′). Some links or sub-
graphs contained in the graph D have a special location or structure that is
linked with certain properties.

A bridge is defined as a link that connects two parts of a graph. If the
link is deleted the graph is divided into two independent parts. Based on this
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and the size of the parameter vector nv is bigger than the size of the objective
vector no. A usual objective in numerical methods is the evaluation of the
derivative dpf .

One possible approach to the derivation of the adjoint equation is through
the formulation of the Lagrangian

L (x,p,λ) ≡ f (x)− λTg (x,p) , (1.2)

with a vector of Lagrangian multipliers λ. The Lagrangian is equivalent to
the response function f for arbitrary values of λ, as the residual function g is
equal to zero on the whole domain.

Considering the chain rule, the derivative of f with respect to the parameter
vector p can be expressed as

df (x)
dp

=
dL
dp

=
∂f

∂x

dx
dp

+
dλT

dp
g + λT

(
∂g

∂x

dx
dp

+
∂g

∂p

)

. (1.3)

As g = 0 the second term on the right-hand side can be omitted, resulting in

dL
dp

=
∂f

∂x

dx
dp

+ λT

(
∂g

∂x

dx
dp

+
∂g

∂p

)

. (1.4)

By reordering (1.4) the derivative of f with respect to the parameters can be
isolated

dL
dp

=

(
∂f

∂x
+ λT ∂g

∂x

)
dx
dp

+ λT ∂g

∂p
. (1.5)

Choosing the Lagrangian multipliers λ in a way that

∂f

∂x
+ λT ∂g

∂x
= 0, (1.6)

allows to express the derivative of f with respect to p as

df
dp

= λT ∂g

∂p
, (1.7)

which is computationally more efficient in cases where the number of param-
eters is lower than the degrees of freedom in the forward system [Marchuk,
2013].

1.3 Singular Value Decomposition

The Singular Value Decomposition is often cited as one of the most important
matrix decompositions in the field of applied mathematics [Stewart, 2000]. In
linear algebra, it is used to determine a factorization of real and complex matri-
ces. Its uses range from applications in signal processing to the calculation of
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1.3. Singular Value Decomposition

the pseudo-inverse of a matrix and it is closely tied to the principal component
analysis (PCA) and the Karhunen–Loève transform (KLT).

For a given matrix A ∈ Cn×m, n ≤ m the square roots of the eigenvalues of
AAT are given by the ordered non-negative numbers σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.
There also exist two unitary matrices U ∈ Cn×n and V ∈ Cm×m with UUT =
In and VVT = Im, where Ik defines a k × k identity matrix. From this it is
possible to express matrix A as

A = UΣVT , (1.8)

where the diagonal of the n×m matrix Σ contains the ordered singular values
Σii = σi, i = 1, . . . , n and all other entries are equal to zero. The columns of
matrix U are also termed the left singular vectors, whereas the columns of V
are called the right singular vectors.

Properties of the SVD

The matrices U, V and Σ given by the SVD as stated in (1.8) can be repre-
sented in a block structure, under the condition that σr > 0 and σr+1 = 0:

U = [U1U2] , Σ =

(
Σ1 0

0 Σ2

)

and V = [V1V2] , (1.9)

where

Σ1 =






σ1
. . .

σr




 > 0 and Σ2 = 0.

Other than the orthogonality of the matrices U and V, three of the most
important derived properties as mentioned by Antoulas [2005] are stated in the
following. First, the matrix has the rank (A) = r. Second, it can be expressed
in the form of the dyadic decomposition:

A = σ1u1v
T
1 + σ2u2v

T
2 · · ·+ σrurv

T
r , (1.10)

using the left and right eigenvectors. And third, the Frobenius norm of the
matrix A is defined as:

||A||F = 2

√

σ2
1 + · · ·+ σ2

r . (1.11)

Based on the matrix rank and the dyadic product it is possible to formulate
a short form of the matrix A, given as

A = U1Σ1V
T
1 , (1.12)

without the loss of information.
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SVD based approximation

One of the most frequent uses for the SVD is the construction of low-rank
matrix approximations. Given a matrix A ∈ Cn×m, rank A = r ≤ n ≤ m it is
possible to find a low rank approximation X ∈ Cn×m, rank X = k < r. One
such approximation X∗ that is based on the SVD can be obtained through the
truncation of (1.10)

X∗ = σ1u1v
T
1 + σ2u2v

T
2 · · ·+ σkukv

T
k (1.13)

which contains the first k terms of the dyadic product. It is possible to show
that for a general approximation X the error X∗ is minimal with respect to
the Frobenius norm.

||A−X||2 ≤ ||A−X∗||2 (1.14)

The sum of the normalized singular values that are not included in the con-
struction of X∗ can be used as a conservative estimate for the approximation
error.

1.4 Delaunay Triangulation

Given a set of points a triangulation constructs a grid of triangles for the
convex hull of the set. Let V be a set of n ≥ 3 vertices and assume that
none of these vertices are co-linear. There exists a set E of ( n

2 ) possible edges
between the vertices. Two of the edges ei, ej ∈ E for ei 6= ej intersect properly,
if they intersect in a point other than one of the vertices. A triangulation of
the point set V is then defined as a graph T (V,E ′), where E ′ is a subset of
E such that none of the edges in E ′ intersect properly. For the point set V
there exist a number of different triangulations and algorithms to construct
them. Simple methods like the scan triangulation do not demand any special
properties of the final graph and are random to a certain degree. In contrast
to this approach, there exist triangulations that are design to optimize certain
properties.

The Delaunay triangulation is defined as the maximum angle or angle opti-
mal triangulation Delaunay [1934]. Given the triangulation T the angle vector
Γ (T ) = (γ1, γ2, . . . , γ3m) contains the angles of all the triangles, ordered from
smallest to largest. The angle vector Γ (T ) is said to be bigger than Γ (T ′) if
there exists an index i for which γj = γ′j for j = 1, . . . , i − 1 and γj > γ′j for
j = i, . . . , 3m. Following this definition, the angle optimal triangulation has
the biggest angle vector. This angle optimality is closely related to the empty
circle property, which gives a geometric interpretation for the construction
of a valid Delaunay triangulation. Given the four point set V in Figure 1.4,
the circumcircles of the triangles for the valid Delaunay triangulation in Fig-
ure 1.4a do not contain any other points, as opposed to the invalid Delaunay
triangulation in Figure 1.4b.
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of algorithms. One popular method is called the Lawson flip algorithm. Given
a point set P it is performed in two basic steps.

1. Compute a general triangulation of V (fo example, the scan triangula-
tion).

2. While there exists an invalid sub-triangulation of four convex points with
respect to the empty circle property demonstrated in Figure 1.4, replace
the sub-triangulation by the valid one.

Given be a set V ⊆ R2 of n points and a general triangulation T . The
iterative Lawson flip algorithm needs O (n2) flips for the worst case scenario
[Lawson, 1972]. Shamos et Hoey [1975] introduced an O (n log n) algorithm
for the creation of the Voronoi diagram on the same point set, which can be
converted to the Delaunay triangulation in an additional O (n) steps. With the
presentation of an algorithm that uses a divide-and-conquer approach Lee et
Schachter [1980] introduced a direct approach for the creation of the Delaunay
triangulation that runs in O (n log n) time, which is asymptotically optimal.

1.5 Statistics

this section gives a short introduction to the most important concepts from
statistics and probability theory that are used in the scope of this thesis.

1.5.1 Random variables

Measurement theory defines a random variable by the triple (Ω,F , P ) con-
taining the sample space Ω, the σ-field or σ-algebra F and the probability
measure P . The sample space Ω of an experiment is defined as the set of all
possible outcomes Ω = {ω}, where ω is one specific outcome. The σ-algebra
F is a subset of the sample space that contains all relevant events. In this
context an event may be defined as a set of outcomes, including the empty set
∅ and all combinations of other events in the σ-field. Probability is a concept
to measure the likelihood of occurrence for a certain event P : F → [0, 1].
It has to satisfy the definitions P (∅) = 0, P (Ω) = 1 and if Ai and Aj ∈ F
and Ai ∩ Aj = ∅, P (

⋃∞
i=1Ai) =

∑∞
i=1 P (Ai). On this basis a random variable

X = X(ω) assigns a number to each outcome ω of a random experiment with
a quantifiable probability. Based on the nature of the experiment the sample
space may be defined by a discrete set of abstract outcomes like in a coin toss
or as in the parameters of a water distribution network by a continuous range
of values which can be used directly as the random variable.

There are a number of different ways for characterizing random variables.
A common tool is the distribution as a function of the random variable. Also
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1.5. Statistics

known as the cumulative distribution function (CDF) is defined as FX → [0, 1]
by

FX(x) = P {ω ∈ Ω | X (ω) ≤ x} (1.15)

and describes the probability that a realization of the random variable has a
value lower than x. An illustrative derivation of the CDF is the probability
density function (PDF) defined by fX(x) which describes directly the proba-
bility of a certain realization. The PDF and the CDF are linked by the integral

FX(x) =

∫ x

−∞

fX (t) dt. (1.16)

1.5.2 Evaluation of uncertainties

The uncertainty in a systems quantities of interest (QoI) can be expressed in a
number of different ways. This includes the stochastic moments that contain
important information on the probability distribution, probability intervals
and the probability density function. This section introduces the definition
of the stochastic moments and common approaches for the calculation and
estimation of the PDF.

Stochastic moments: In many applications the probability distribution of
random variable is characterized by a number of derived parameters called
stochastic moments. The 1-st moment of a distribution is defined by

µ1 = E [|X|] =
∫ ∞

−∞

xfX(x)dx. (1.17)

It is also known as the mean and gives the balance point of the distribution.
With the use of the first moment it is possible to define the k-th central moment
as:

σk = E
[
|X − µ1|k

]
=

∫ ∞

−∞

(x− µ1)
kfX(x)dx. (1.18)

The central moments give a characterization for the shape of a distribution.
For simple distributions a good characterization may be given by the mean and
the second to fourth central moments also known as the variance, skewness and
kurtosis.

Marginal distribution: One is often interested in the marginal density distri-
bution of a QoI. The marginal distribution can be interpreted as a projection
of the multivariate distribution on one of the output variables. This allows
for a more comprehensible evaluation, however additional information like the
covariance is lost in this representation. The marginal density is defined as

fXj
(xj) =

∫

Dx
∼j

fX(y∼j)dy∼j (1.19)
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with the simplified notation y∼j = (y1, . . . , yj−1, yj+1, . . . , yM)T . Their spec-
tral representation of the integral may be formulated using the PCE and the
marginal of a QoI in a M dimensional parameter space is given by

xN(Zj) =

∫

Dx
∼j

N∑

k=0

xkΨk(Z)dZ∼j. (1.20)

In general this integral is evaluated using the Monte Carlo algorithm by sam-
pling the multivariate basic random variable Z∼j.

Estimation of the probability density and marginal probability density func-
tion: The uncertainty propagation gives a characterization for the result ran-
dom variables that allows for further evaluation and the estimation of the
confidence intervals. One of the most common ways to visualize sampling
data, which is generated by Monte Carlo type algorithms or from the Polyno-
mial Chaos Expansion, is a histogram. In a histogram, the parameter domain
x is divided into n equidistant sections and the density for each section is
approximated by

f̃(x) =
1

n

Number of xj in same section as x
Width of section

(1.21)

Kernel Density Estimation: A more general approach is the kernel density
estimation (KDE). It achieves a smooth and continuous approximation for the
probability density function based on a chosen kernel function K

f̃(x) =
1

Mh

M∑

i=1

K

(
x− xi
h

)

. (1.22)

Here M is the sample size and h > 0 is a smoothing parameter. The
choice of the kernel function greatly influences the final result. One of the
most common examples is the KDE with a Gaussian kernel function.

Pearson distributions: A theoretic way for the reconstruction of a probabil-
ity density function that does not depend on sampling is given by the Pearson
distributions. The Pearson distributions are a set of five functions that, based
on the first four moments of a random variable, give a direct expression for the
probability density function. Although this approach works quite well for ran-
dom variables that have been modelled on a one dimensional parameter space,
the application to more complex distribution of a random variable modelled
on a two dimensional parameter space fails to give an accurate description of
the real probability distribution.

Interval Estimation: The objective of an interval estimate is to determine
the values fL and fR that bound the location of the true value fL ≤ f ≤ fR.
The estimate is based on a set of realizations f = [f1, . . . , fM ] of the random
variable and the interval [fL, fR] is called an interval estimator. A confidence
interval is the combination of an interval estimator and a confidence coefficient
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α. The confidence coefficient can be interpreted as the probability that the
interval estimator contains the true value f . The (1 − α) × 100% confidence
interval for [fL, fR] is defined such that for all f ∈ F,

P [fL(X) ≤ f ] = 1− α

2
and P [fR(X) ≤ f ] =

α

2
. (1.23)

1.6 Orthogonal Polynomials

A general polynomial of the order n is defined by Qn (x) as

Qn (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0. (1.24)

Systems of polynomials are defined by sets of polynomials {Qn (x) , n ∈ N0},
N0 being the set of non-negative integers including 0. The set is called orthog-
onal if the polynomials are defined in a way, such that

∫

I

Qn (x)Qm (x) ρ (x) dx = γnδnm (1.25)

applies, using a real positive measure ρ on the support interval I. Here, δnm
is defined as the Kronecker Delta

δnm =

{

0 if n 6= m,

1 if n = m.
(1.26)

The normalization constant γn of the polynomial Qn is defined by the integral

γn =

∫

I

Qn (x)Qn (x) ρ (x) dx, (1.27)

using the measure ρ. These constants can be used to define an orthonormal
set of polynomials with Q̃n (x) = Qn (x) /

√
γn. Through the definition of a

weighted inner product with the continuous for

〈u, v〉ρ =
∫

I

u (x) v (x) ρ (x) dx (1.28)

and the discrete form

〈u, v〉ρ =
∑

i

u (xi) v (xi) ρi (1.29)

the aforementioned orthogonality condition may be expressed as

〈Qn, Qm〉ρ = γnδnm (1.30)
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and the normalization constant as

γn = 〈Qn, Qn〉ρ = ||Qn||2. (1.31)

The components {Qn (x)} of a set of orthogonal polynomials can be created
from the three-term recurrence relation defined in Favard’s theorem [Chihara,
2011]. Favard’s theorem states that, given a sequence of real numbers an, bn
and cn, the subsequent orthogonal polynomial Qn+1 in the set is defined as

Qn+1 (x) = (anx+ bn)Qn (x)− cnQn−1 (x) , (1.32)

starting with Q0 (x) = 1 and Q−1 (x) = 0. An attempt to order the orthogonal
polynomials into an hierarchical structure was published by Askey et Wilson
[1985] in the from of the Askey scheme.

1.6.1 Polynomial Projection

For a linear space of polynomials with a maximum degree of n

Pn = span
{
xk : k = 0, 1, . . . , n

}
, (1.33)

classical approximation theory, based on the Weierstrass theorem states that,
for any function f ∈ C0 (I) defined on an interval I, there exists a polynomial
Pn (x) with sufficiently high degree n such that

|f (x)− Pn (x) | < ǫ for a ≤ x ≤ b, (1.34)

for any error bound ǫ > 0. More detail and the formal proof of the theorem are
given by Cheney [1966]. From this theorem, the best approximation problem
for a function f in the nth-degree polynomial Φn (f) can be formulated as:

lim
n→∞

||f − Φn (f) ||L2
ρ
= 0. (1.35)

Polynomial projection is an efficient way to address the best approximation
problem. Formulating it in a way that is not limited to bounded intervals, a
positive weight function ρ (x) , x ∈ I is introduced, on the weighted L2 space

L2
ρ(I) ,

{

v : I → R

∣
∣
∣
∣

∫

I

v2 (x) ρ (x) dx <∞
}

. (1.36)

On this L2 space a weighted inner product is defined as

〈u, v〉L2
ρ(I)

=

∫

I

u (x) v (x) ρ (x) dx, (1.37)

and the norm

||u||L2
ρ(I)

=

(∫

I

u2 (x) ρ (x) dx

)1/2

. (1.38)

The use of orthogonal polynomials allows for an efficient evaluation.
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1.6.2 Quadrature Formulas

The numerical evaluation of integrals through numerical quadrature rules is a
widely used approach that is extremely efficient when dealing with orthogonal
polynomials.

Given be the integral

I [f ] ,

∫

I

f (x)w (x) dx, (1.39)

for the product of a function f (x) and a weight function w (x). A discrete
integration formula with k ≥ 1 can be defined

U q ,

k∑

i=1

f
(
x(i)
)
w(i), (1.40)

where x(i) are a set of points on the interval I = [a, b] and w(i) are the according
values of the weighting function for i = 1, . . . , k. It is possible to determine a
set of parameters {x(i), w(i)} such that U q ≈ I [f ].

∫

I

f (x)w (x) dx ≈
k∑

i=1

f
(

z
(N)
i

)

w
(n)
i (1.41)

The approximation of the integral in (1.41) becomes an equality if the function
f (x) is a polynomial of the degree 2N − 1 or higher, which is demonstrated in
the formal proof by Xiu [2010].

1.7 Conclusion

The chapter presented the basic mathematical tools that are used throughout
the thesis. They are introduced in topical order. Section 1.1 gives a short intro-
duction on graph theory, which is relevant in the hydraulic modelling process
for water distribution networks, the hierarchical reduction of these models, as
well as the Delaunay triangulation. The adjoint method is introduced in Sec-
tion 1.2 as a convenient tool for the determination of the system derivatives
with respect to model parameters in Chapter 2. For the development of the
projection based model reduction methods used in Chapter 3 the SVD is in-
troduced as one possible method to obtain a suitable orthogonal basis. As a
corner stone of the adaptive sampling strategy the Delaunay triangulation is
introduced in Section 1.4. Finally, for the use in Chapter 4 some basic defini-
tions for statistics are introduced in Section 1.5 together with the framework
of orthogonal polynomials for their use in the polynomial chaos expansion in
1.6.1.
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Chapter 2

Model synthesis

Motivation: Presentation of the mathematical models that are the sub-
ject of the thesis.
Principal Elements:

• Demand-driven hydraulic model

• Derivation of sensitivities with the adjoint method

• Pressure-driven hydraulic model

• Discussion of model error sources

Calculating the flow in hydraulic networks has a long history starting with
the work presented by Cross [1936]. Today more than ever it is an important
component in managing the distribution of potable water. Originally being
developed for planning and sizing of water distribution networks (WDNs) the
applications have since been extended to areas like sensor placement, leakage
reduction, water security and on-line system management.

In Section 2.1 the classic hydraulic equations are derived for the demand
driven modelling approach. This approach models the outflows at demand
nodes as fixed boundary conditions. The section further demonstrates the
derivation of the parameter sensitivities by use of the adjoint method and
presents two important alternatives to the classical Kirchhoff formulation of
the head-flow model. Section 2.2 introduces the pressure-driven modelling
paradigm. Modelling deficient hydraulic networks in the presence of extreme
events, like considerable technical accidents or natural disasters requires more
robust modelling approach, with relaxed boundary conditions for pressure de-
pendent demands. A discussion of the deficiencies in these models under cer-
tain circumstances follows in Section 2.3 and the chapter closes with the in-
troduction of the three example networks in Section 2.4, that are used for the
development and validation of the methods introduced in Chapters 3 and 4.
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2.1 Hydraulic Network Modelling

A water distribution system is made up of a network of conduits, reservoirs and
hydraulic appliances like pumps, valves and other flow andpressure regulating
devices. The topology of a network is usually known to a certain degree and
is described by Geographic Information Systems (GIS) in the form of a graph.
The graph contains a number of np links or pipes, nj free junction nodes or
junctions and nr resource nodes that encode the topological information like
pipe lengths and diameters or nodal elevation. The degree of freedom for the
system is given by the number of links np and the number of free junction
nodes nj. It follows, that the state of the hydraulic model is described in its
entirety by the state vector x =

[
qT ;hT

]T
containing the vector of flow rates

along the links q and the vector of piezometric heads at the free junction nodes
h.

In hydraulics, the use of the piezometric head h is an functional alternative
of describing the nodal potential in the system. It is defined as an equivalent
height of the fluid column in h[mH2O]

h =
p

ρg
+ z, (2.1)

with the pressure p[Pa], the gravitational constant g[m/s2], the density of the
fluid ρ[kg/m3] and the junction elevation z[m].

2.1.1 Head-Loss

As fluids flow through a pipe they experience a loss in hydraulic head due
to friction. These friction losses are caused by the shear stress between the
stationary pipe wall and the fluid. They depend on the conditions of the flow
as well as the properties of the system.

The condition of the flow along a pipe is generally characterized by the
Reynolds number Re, which is defined as

Re =
ρvD

µ
=
ρqD

µA
. (2.2)

Here,the hydraulic diameter of the pipeD[m], the volumetric flow rate q[m3/s],
the pipe cross-sectional area A[m2], mean velocity of the fluid v[m/s] and the
dynamic viscosity of the fluid µ[Pa · s]. The flow is considered to be laminar
for Re < 2300, transitional for 2300 < Re < 4000 and turbulent if Re > 4000.
A reliable quantity for the characterization of the system properties is given
by the relative roughness ǫ/D, with the average roughness parameter ǫ [mm]
that depends on the material and the age of the pipe wall.

Popular methods for the evaluation of the head-loss are introduced in the
following with the Darcy-Weisbach equation and the Hazen-Williams equation.
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Darcy-Weisbach

The Darcy-Weisbach equation is valid for steady state flow of an incompressible
fluid. The head-loss is calculated as

∆hDW = λ
L

D

v2

2g
, (2.3)

with the friction factor λ and the pipe length L[m].
In general the pipe friction factor λ depends of the Reynolds number Re

and the relative pipe roughness ǫ/D. Based on the flow regime its dependency
on these factors changes, as shown in Table 2.1. This shows that, while laminar

Table 2.1: Dependency of the friction coefficient on the flow regime.

Flow regime Dependency
laminar λ = f (Re)
laminar-turbulent transition λ = f (Re, ǫ/D)
turbulent λ = f (ǫ/D)

flow is dominated by the viscous forces, for turbulent flows the wall shear stress
is the main source of friction losses.

Common ways to determine the friction factor are the use of the Moody
diagram or its approximation through the Colebrook equation.

Moody Diagram

The Moody diagram, introduced by Moody [1944], is an empirical chart that
provides a method for finding the Darcy-Weisbach friction factor. As Figure
2.1 shows, the friction factor can in general be expressed as a function of the
Reynolds number Re and the relative pipe roughness ǫ/D. The three afore
mentioned regions for laminar, transitional and complete turbulent flow can
be identified in the Moody diagram.

For laminar flow rates the friction coefficient can be evaluated according to
the Hagen-Poiseuille equation

λ =
64

Re
. (2.4)

According to Trüeb [1961] the transition from laminar to turbulent flow occurs
above Reynolds number of Re = 2320, completely developed turbulent flows
are usually reached at Reynolds number between Re = 6000 and Re = 10000
or even more for hydraulically smooth pipes.

Colebrook

In an attempt to find a closed formulation for the friction coefficient, Colebrook
et al. [1939] combined the previously known definitions of the friction coefficient
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2.1. Hydraulic Network Modelling

Figure 2.1: Moody diagram. [Beck et Collins, 2008]

for hydraulically smooth pipes

1√
λ
= 2 log10Re

√
λ− 0.8 (2.5)

and hydraulically rough pipes

1√
λ
= −2 log10

( ǫ

D

)

+ 1.14 (2.6)

by Prandtl [1961] and Nikuradse [1933]. This leads to the formulation of
Equation 2.7 for the friction factor, that closes the gap between smooth and
rough pipes.

1√
λ
= −2 log10

(
2.51

Re
√
λ
+

ǫ

3.71D

)

(2.7)

The friction factor is defined implicitly which means that the solution of Equa-
tion 2.7 is usually performed iteratively. A popular approach in numerical
simulation environments like Porteau and EPANet is the use of explicit ap-
proximations to the Colebrook equation.

Hazen-Williams

While the Darcy-Weisbach equation in conjunction with the Moody diagram
and the Prandtl-Colebrook formula is considered to be the most accurate de-
scription for the head-loss due to pipe friction, the implicit definition of the
friction coefficient is inconvenient for its numerical evaluation.

34 Mathias BRAUN



2. Model synthesis

The Hazen-Williams equation is an empirical formula for the calculation
of the head-loss that is frequently used in the hydraulic modelling of water
distribution networks. It is defined as:

∆hHW = 10.69
Lq1.852

D4.87C1.852
, (2.8)

where L[m] is length of the pipe, D[m] the pipe diameter, q[m3/s] the flow
rate, and C Hazen-Williams coefficient. The Hazen-Williams coefficient char-
acterizes the roughness of a pipe and can as such be derived from the roughness
ǫ according to existing tables. For older pipes this method is inaccurate due
to degradation of the material, which means that the coefficient has to be
estimated or determined through calibration.

Quadratic Approximation

In some mathematical applications the aforementioned calculation methods
for the head-loss are not feasible. The Darcy-Weisbach equation, for example
is not continuously differentiable for the transition between laminar and tur-
bulent flow regime and the iterative determination of the friction coefficient
is inefficient. On the other hand, the derivative of the Hazen-Williams equa-
tion is equal to zero under zero flow conditions. Using these formulations in
the context of optimization problems or for the derivation of the stochastic
hydraulic equations is infeasible or even impossible.

In order to address this problem Pecci et al. [2017] evaluated the use of
quadratic head-loss formulation

∆h = aq + sign(q)bq2, (2.9)

which attempts to approximate the Hazen-Williams head-loss formula over a
predefined region in the flow-rate q by minimizing the absolute or the relative
errors. The authors show, that for the approximation of the head-loss function
in a reasonable range of flow rates the relative error is less than 1%.

2.1.2 Hydraulic Equations

The formulation of the hydraulic equations follows suit to the construction of
lumped electrical circuit models with the first and second Kirchhoff laws.

Continuity

The principle of conservation of mass states, that the change in mass over time
t enclosed in a control volume Ω has to be equal to the mass flow through the
surface of the control volume ∂Ω:

∫

Ω

∂ρ

∂t
dV +

∫

∂Ω

ρvdA = 0. (2.10)
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Here ρ stands for the density and v for the local velocity. In the case of
stationary flow for an incompressible fluid the first term of Equation 2.10 is
equal to zero, as ρ = const. For the flow along a pipe with the cross-sections
A1 at its inflow and A2 at its outflow the equation simplifies to

v1A1 − v2A2 = q1 − q2 = 0. (2.11)

For the modelling of pipe junctions in distribution network models the conti-
nuity at a node i can be expressed as

deg(i)
∑

j

ai,jqi,j − di = 0, i = 1, . . . , nj. (2.12)

Here, deg (i) is the number of pipes entering node i, ai,j is the coefficient from
the incidence matrix specifying the defined direction of the pipe, qi,j is the flow
through pipe j exiting node i and di is the outflow at node i that can be seen
as a source term. In the hydraulic models there exist two types of nodes. At
junction or consumption nodes the inflow and outflow d is modelled as a fixed
boundary condition and the hydraulic head is one of the degrees of freedom
in the system. For resource nodes it is the inverse, as the pressure head is a
boundary condition and the inflow and outflow dr is determined during the
solution of the equations. According to this, the transpose of the incidence
matrix can be partitioned as [A|Ar]

T , with Ar encoding the fixed potential
nodes. Following Kirchhoffs current law and using the incidence matrix, the
continuity for the hydraulic model can be expressed as

Aq+ d = 0. (2.13)

In the general case of looped networks, the number of pipes nl is higher than
the number of nodes nn. In this case Equation 2.13 is underdetermined.

Compatibility

In order to find a unique solution to Equation 2.13, further conditions are
needed. Following Kirchhoffs second law, this is done through the introduction
of the energy equation or compatibility equation

∆h(r,q)−ATh−AT
r hr = 0. (2.14)

It includes the nodal heads at the fixed potential nodes hr ∈ R
nr and junction

nodes h ∈ R
nj, setting them into relation through the head-loss ∆h, which is

a function of the flow rate vector q ∈ R
np and the resistance vector r ∈ R

np.
In other words the compatibility states that the potential difference in the
starting and the end node has to be equal to the losses experienced along the
pipe.
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Steady State Hydraulic Solution

The resulting formulation of the steady state hydraulic equations is given as
follows:

Aq+d = 0

∆h(r,q)−ATh−AT
r hr = 0

∆h : Rnp × R
np → R

np

(r,q) 7→ ∆h(r,q).

. (2.15)

The system contains a linear part for the determination of the flow rates q and
a non-linear part through the inclusion of the head-loss function ∆h.

In the discussion of the graph theory in Section 1.1 it has been shown that
the network graph can be decomposed into grid and forest. Calculation of the
forest can be performed very efficiently through the solution of a linear system

Afqf + df = 0, (2.16)

which possesses a unique solution in that case. Knowledge of the flow rates
allows for the direct evaluation of the head-loss function ∆h, which allows to
calculate of the nodal heads hf according to the linear system

hf = Af
−T
(
∆h−Af

Thf

)
. (2.17)

The concept of graph decomposition, for a more efficient solution of the
hydraulic system, has been extended even further by Deuerlein [2008].

2.1.3 Sensitivity

In many applications knowledge of the sensitivities for the hydraulic equations
comes with a benefit. One way to determine the sensitivity of the hydraulic
state vector x with respect to the model parameters p is through the adjoint
method. To this end, the response function is defined as the state vector

f (x,p) =

(
q (p)
h (p)

)

. (2.18)

The linearised form of the residual function is given as:

g (x,p) =

(
D −AT

A 0

)(
q (p)
h (p)

)

+

(
−AT

r hr

d

)

= 0. (2.19)

Here, D (q, α) is the diagonal Jacobian matrix containing the derivatives of
the head-loss ∆h(r,q) with respect to the flow rate q and α is the exponent
of the flow for the chosen head-loss formula. In the following the constant
−AT

r hr is expressed as e.
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Based on these definition the Lagrangian is be formulated as

L =

(
q

h

)

+

〈

λ,

(
D −AT

A 0

)(
q

h

)

+

(
e

d

)〉

, (2.20)

which can be reordered as

L = λT

(
e

d

)

+

(

I+ λT

(
D −AT

A 0

))(
q

h

)

. (2.21)

In order to avoid explicit dependency of the derivatives on the state vector in
Equation 2.21, suppose that

I+ λT

(
D −AT

A 0

)

= 0. (2.22)

From this the Lagrangian multipliers can be calculated as:

λ =

(
−D −AT

A 0

)−1

. (2.23)

Since it is a diagonal matrix, the transposed of D = DT .
With the use of the Schur complement the inverse matrix in Equation 2.23

can be expressed as

(

−D−1 −D−1AT
(
AD−1AT

)−1
AD−1 −D−1AT

(
AD−1AT

)−1

(
AD−1AT

)−1
AD−1 −

(
AD−1AT

)−1

)

. (2.24)

From Equation 1.7 a direct formulation of the sensitivity can then be given as

Sd =
∂L
∂d

=

(
∂q
∂d
∂h
∂d

)

=

(

−D−1AT
(
AD−1AT

)−1

−
(
AD−1AT

)−1

)

, (2.25)

for the derivative with respect to the demand. A similar formulation for the
sensitivities with respect to the pipe resistance is given as

Sr =
∂L
∂r

=

(
∂q
∂r
∂h
∂r

)

=

( (
AD−1AT

)−1
AD−1B

D−1AT
(
AD−1AT

)−1
AD−1B−D−1B

)

, (2.26)

Where the matrix B is the diagonal Jacobian matrix for the derivatives of
the head-loss ∆h(r,q) with respect to the roughness r. These results are in
agreement with the derivation of the sensitivities using the forward procedure
given by Piller et al. [2016].
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2.1.4 Alternative Formulations

Apart from the full problem formulation in flow rates q and heads h, a number
of alternative representations for the hydraulic state can be conceived that
allow for the reconstruction of the full state vector. One possible form of the
state vector is given by the flow rate vector xf = q, which is closely tied to
the description in the head-loss vector xhl = ∆h and the reduced loop-flow
vector xlf = qc. A second possibility is the description of the hydraulic state
through the nodal heads xh = h, which is more compact than xf .

Some of these unique state vectors are linked to a specific formulation of
the hydraulic equations, the most important of which are introduced in the
following. A more complete discussion of the alternative can be found in Piller
[1995].

Flow Description

The loop-flow description uses the orthogonality of the loop matrix CTA = 0

introduced in Section 1.1. Going from the second Kirchoff law in Equation
2.14, it is possible to eliminate the head from the system

C∆h(r,q)−CAT
r hr = 0. (2.27)

The flow based problem description is thus given as

Aq+ d = 0

C∆h(r,q)−CAT
r hr = 0.

(2.28)

The head can be reconstructed from the linear system (2.14) as

h =
(
AAT

)−1 (
∆h(r,q)−AT

r hr

)
. (2.29)

Loop-Flow Description

From the flow description it is possible to reach a reduced form with a minimal
number of components for the state vector. The flow rate in all of the pipes
for a network is actually determined by a reduced number of np − nj flow
rates. These flow rates are also termed the loop-flow rates qc. A physical
interpretation of this representation is that the total flow distribution in a
network can be seen as the superposition of flows around each loop. The
complete flow state q can be calculated from the flow in the network tree
structure qd and the loop-flow rates qc.

q = CTqc + qd. (2.30)

Here, the flows qd are linked to the nodal demands and can be evaluated as

qd =

[
A−1

S d

0

]

, (2.31)
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where AS is the part of the incidence matrix describing the networks spanning
tree.

With qc the full flow rate vector q can be determined from (2.30). From
this the head-loss can be calculated for the evaluation of the (2.27). The head
can once again be reconstructed from Equation 2.29. Due to its description in
a minimal number of degrees of freedom and the sparse structure of matrix C,
the solution of this system can be performed very efficiently.

2.2 Pressure Driven Modelling

In the case of pressure dependent demand, experience has shown that under
certain conditions the Demand Driven Model can lead to non-physical solu-
tions with negative pressures. This is the case in pressure deficient networks
where, under realistic conditions, the requested outflow at a demand node
cannot be met. From hydrostatics it is known that the maximum flow volume
depends on the difference between the nodal and the atmospheric pressure. To
take this into account the Pressure Driven Modelling approach loosens up the
demand boundary conditions and the fixed consumption is replaced by the set
of inequality conditions 0 ≤ c ≤ d. They state that the actual discharge at
the node lays in between zero and the desired service demand based on the
state of the network. By far the most popular approach to close the pressure
dependent formulation is the introduction of a pressure outflow relation c(h)
that quantifies discharges based on the present head.

2.2.1 Pressure Outflow Relationship

The selection of the pressure outflow relation is a design choice made for the
model. One of the first publications on the topic by Bhave [1981] uses the
Heaviside function as pressure outflow relation. This means that for a head
lower than the minimum head there is no supply and above the full demand
is met. Elhay et al. [2015] give a overview of different modelling choices. In
general the flow-rate q is assumed to be proportional to a power n of the nodal
pressure head. Van Zyl et Clayton [2007] and Cheung et al. [2005] estimate
the value of the exponent to lie in an interval of n ∈ [0.5, 2.79]. Alternatives to
these models are given by the cubic consumption function defined by Fujiwara
et Ganesharajah [1993], the exponential consumption function presented by
Tanyimboh et Templeman [2004] and the Regularized Wagner function given
in Piller [1995].

For the work presented in this thesis, the pressure outflow relation intro-
duced by Wagner et al. [1988] is chosen as it is derived directly from the
energy conservation law for the free flow boundary condition in hydrostatics.
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This leads to the function:

c(h) =







0 , if h ≤ hm
(

h−hm

hs−hm

) 1

2

d , if hm < h < hs

d , if hs ≤ h.

(2.32)

This equation complies with the inequality conditions and is based on a phys-
ical model for the outflow. In (2.32) h is the calculated head. The minimum
head necessary is given by hm. In general the minimum head is defined by the
nodal elevation and depends on the specific characteristics of the connected
consumers. The required head for servicing the full requested demand is de-
fined by hs.

In the case of pressure dependent leakage for pipe ruptures Schwaller et
Van Zyl [2014] describes a concept called Fixed and Varied Area Discharge
(FAVAD) which defines an orifice function as follows.

c (h) = Cd

√

2g
(
A0h

0.5 +mh1.5
)

(2.33)

Here Cd is a discharge coefficient, g the gravitational constant, A0 is the area of
the opening if no head i present and m is a linear value describing the growth in
surface area. In contrast to the demand emitter function, this orifice function
not only defines the discharge based on the pressure but also the change in
surface for the rupture due to the elasticity of materials and the pressure.

2.2.2 Pressure Driven Problem Description

Using a general pressure outflow relationship a modified set of Kirchhoff’s
equations has been published by Piller et al. [2003].

Aq+ c(h) = 0

∆h(r,q)−ATh−AT
r hr = 0.

(2.34)

While the pressure driven problem formulation gives a more realistic result,
especially in modelling water distribution networks with low pressure zones, it
is no longer possible to solve with a loop flow method. However, Piller et al.
[2016] managed to provide a direct formulation for the systems sensitivities,
with respect to the pressure outflow relation. The inclusion of the POR ac-
cording to Equation 2.34 usually leads to an iterative solution process, that is
computationally more demanding than the simple solution of a non-linear sys-
tem. In order to improve the solver efficiency, Piller et al. [2003] also introduce
the variational pressure driven equations of the hydraulic system through the
dual Content and Co-Content formulations. This allows for the direct solution
of the problem through an optimization approach.
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2.3 Model Deficiencies

From literature the notion of deficient networks can take a number of different
definitions. These definitions may be divided into model, mathematical and
physical deficiencies. Model deficiencies are errors in the creation, conversion
or transfer of the network graph. A mathematical deficiency can be defined
as a maximal connected network where, due to some boundary condition the
set of feasible solutions is reduced to the empty set or the solution is not
unique. In contrast to mathematical deficiencies, in the case of a hydraulic
deficiency a unique solution exists, but it is physically incorrect. With respect
to the demand-driven and the pressure-driven modelling paradigms different
phenomena have to be classified as deficient. In the following a number of
reoccurring deficiency phenomena are presented and evaluated with respect to
demand and pressure driven modelling.

Conflicting boundary conditions

The first scenario is given if the boundary conditions are in conflict for certain
parts of the network. This occurs if flow regulating devices are incorporated
into the model and introduce additional boundary conditions to the mathe-
matical model. In unfortunate cases these additional boundary conditions may
conflict with the demand request of the consumption nodes. Simply put, the
controlled flow entering a region of the network is not satisfying the required
demand. For the optimization problem formulated on the variational content
and co-content models for the demand-driven model defined in Carpentier et al.
[1985], this reduces the set of feasible solutions to zero, as demonstrated by
Deuerlein et al. [2012a]. The publication also suggests an algorithm to deter-
mine if a feasible solution exists for the particular scenario. Looking at the
pressure dependent calculation of the same system, it can be shown that by
loosening the demand boundary conditions the system becomes solvable again,
but the consumers will be supplied with a reduced flow.

Ambiguous boundary conditions

Another example for a mathematical deficiency is given if the boundary con-
dition allow for an infinite number of solutions. Gorev et al. [2016] describe
a scenario where two flow control valves (FCV) are installed in series. Here
the two FCVs create a combined head-loss, but due to the ambiguous nature
of this problem it is not possible to determine which of the two FCVs con-
tributes how much. This phenomenon is neither addressed by DDM nor by
PDM approaches.
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Pipe rupture

In respect to resilience, phenomena like pipe-rupture or -bursts are of special
interest. In this cases the massive water loss dominates the flow in the network.
Recent research has shown that the fixed and varied area discharge (FAVAD)
model as described in (2.33) provides a good description of leakage behavior
for elastic materials Van Zyl et al. [2011]. Due to the pressure dependent
nature of the phenomenon, in demand driven modelling it is not possible to
adequately handle the problem. In contrast, there have been a number of
successful applications to in the PDM framework.

High lying nodes / vapour pressure

The fourth scenario is correlated with the occurrence of low pressure zones
in the network. This may for instance be triggered by a pipe burst and the
subsequent pressure loss. If the pressure drops below a certain value water
starts to change the phase. In general this can be described in three stages.
First water starts to boil and form vapour bubbles that are distributed in
the water column. In the second stage both phases start to separate and a
stratified flow forms in the pipe. For extreme cases in the third stage water
has completely changed phase and the pipe is filled by vapour. For modelling
purpose this complex behavior is simplified by defining that with reaching the
vapour pressure water instantly changes phase and the hydraulic connection
between two nodes is severed. Looking at current demand and pressure driven
models this behavior is not taken into account. In the case of zero or nega-
tive pressure, software packages like Porteau and EPANet will give a warning
notifying the user that pressure dropped below zero, but the hydraulic con-
nection is still intact and disconnected network parts will still be supplied. A
conceptually simple way to solve this problem in the PDM framework may be
implemented an iterative approach that analyses the pressure and deletes all
links connected to the deficient node. A different approach has been proposed
by Piller et Van Zyl [2009]. They introduce an additional constraint to the
optimization formulation that reduces the flow on deficient pipes to zero.

2.4 Network Models

The network graph gives a natural interpretation of the network structure,
where pipes are represented by the edges and the pipe junctions are repre-
sented by the vertices. The mathematical description of this graph is given
by the incidence matrix A ∈ Mnj×np . For the application of the methods de-
veloped in this thesis, in the following three basic water distribution networks
are introduced. Each of the networks is designed or chosen due to a special
attribute, which is further elaborated in the subsequent sections.
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complexity of the model can be greatly reduced to a total number of 3 degrees
of freedom. Through the addition of the loop, the flow cannot be solved solely

Figure 2.3: Highly aggregated realistic water distribution network.

through the solution of the continuity equation. This means that the hydraulic
problem also becomes non-linear in the flow vector q.

2.4.3 Realistic Network Model

In order to validate the methods developed in this thesis, a full size model of
a realistic water distribution network is needed. This network model was pro-
vided by Veolia Eau d’Île-de-France (VEDIF) through the ResiWater project
[ResiWater, 2019] and is depicted in Figure 2.4. It contains part of a network
from the Paris region and consists of a total number of 2,175 pipes and 1,822
nodes, resulting in nearly 4,000 degrees of freedom for the head-flow formula-
tion. Inside the highly looped region lays one reservoir. Once again, applying
the loop-flow formulation massively reduces the networks degrees of freedom
to a total number of 348. The model defined two consumer types with an in-
dustrial and a domestic demand patterns which are evaluated during the peak
demand phase.
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Figure 2.4: Realistic water distribution network from the Paris region, consists
of a total number of 2,175 pipes, 1,822 nodes and one reservoir (indicated by
the blue square).

2.5 Conclusion

This chapter discussed the major aspects of the hydraulic network model,
which is the subject of the studies presented in this thesis. In Section 2.1 the
demand-driven modelling paradigm is introduced. This contains the presenta-
tion of the friction induced head-loss, the formulation of the static hydraulic
equations and the formulation of the sensitivity matrix based on the adjoint
method. This is followed by the presentation of the pressure-driven modelling
paradigm in Section 2.2, with the introduction of the pressure-outflow rela-
tionship and the formulation of the altered hydraulic equations. The capabil-
ities of both, the demand-driven and pressure-driven modelling paradigms for
modelling deficient networks are discussed in Section 2.3. The chapter closes
with the presentation of the graphs for the example networks that are used
throughout the thesis.
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Chapter 3

Reduced Order Modelling

Motivation: Dimensional reduction for the more efficient evaluation of
the hydraulic model.
Principal Elements:

• Interpolation based reduced order modelling techniques

• Projection based reduced order modelling techniques

• Empirical interpolation hyper reduction

• Adaptive parameter sampling

Conclusions:

• Interpolation based methods are inefficient in the use of pre-
calculated system states.

• Projection based methods are efficient in the use of pre-calculated
system states, but inefficient in the evaluation of the non-linear
residuals.

• The empirical interpolation method for the efficient evaluation of
the non-linear residuals tends to be unstable without further mea-
sures.

• Adaptively sampled models use fewer sampling points to reach the
accuracy of a Cartesian sampled model.

The process of modelling parametric, spatially distributed systems leads,
in its most general case, to the formulation of a non-linear system of equa-
tions with a considerable number of unknowns. In the case of partial differen-
tial equations this is achieved through the application of spacial discretization
methods like the finite element method , finite difference method or the finite
volume method [Chung, 2010]. For the discretization of a water distribu-
tion network model a system of non-linear equations is formulated based on a
lumped component model that models pipes as discrete elements as described
in Chapter 2. The solution of these systems of equations can take somewhere
from seconds up to hours. As many practical applications impose certain limi-
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tations with respect to the evaluation time, the use of such models may become
computationally prohibitive. This is especially the case for methods that either
require a big number of evaluations, like optimization, Bayesian parameter es-
timation or uncertainty quantification, or cases where evaluation times have
to be short, like real-time capable for applications. In order to mediate the
computational effort for such applications reduced order models (ROM) can
be used to formulate a surrogate system that, compared to the high-fidelity
model, uses a greatly reduced number of variables and thus accelerating the
solution process of the non-linear solver [Antoulas, 2005].

Smith [2013] states that these surrogate models can be roughly categorized
in three classes given by interpolation or regression-based, projection-based
and hierarchical models.

• Interpolation based models: These treat the high-fidelity model as a
black box that is used to create data samples. The surrogate is then cre-
ated using data driven techniques like for example radial basis functions,
Gaussian process modelling or Artificial Neural Networks. This purely
data-driven approach implies that the method is non-intrusive, however
it is strongly dependent on the sampling of the parameter space [Baur
et al., 2011].

• Projection based models: This approach is what is usually referred to as
reduced order models. They are constructed by projecting the system
states onto a low-order subspace. Examples for this are given by eigen-
function expansion as it is used in modal analysis of dynamic systems
or the proper orthogonal decomposition [Benner et al., 2013; Antoulas,
2005]. In contrast to purely data-driven methods these projection-based
approaches retain valuable information from the equations of the prob-
lem formulation through the projection.

• Hierarchical models: This third group of surrogate models usually use
efficient grid techniques in spatially distributed systems, a simplified
physical model or linearisation based approaches [Walski et al., 2003;
Deuerlein, 2008; Ulanicki et al., 1996; Paluszczyszyn et al., 2013].

The use of these methods is commonplace in numerical engineering prob-
lems and have proven their benefit in countless applications. Objective of
the work presented in this chapter is to apply reduced order methods to the
hydraulic water distribution network model and investigate if similar improve-
ments on computational efficiency can be achieved with acceptable accuracy.
In Section 3.4 the error metrics and the general validation procedure are de-
scribed for the head-flow and the loop-flow formulation of the hydraulic system.
Further, it describes the different styles of error plots that are used in the sub-
sequent evaluation of the reduced order models. Section 3.2 then introduces
the concept of the proper orthogonal decomposition, defines the reduced model
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in head-flow and loop-flow description. Special treatment for a more efficient
evaluation of the non-linearities introduced by the head-loss function is dis-
cussed in Section 3.3 by introducing the empirical interpolation method. Sec-
tion 3.5 discusses the influence of the sampling strategy on the reduced order
model and introduces an adaptive sampling strategy, that selects parameter
combinations for the snapshot simulations based on the leave-one-out error.
Finally, in Section 3.6, the methods are evaluated through the application to
the medium sized test network that was introduced in Section 2.4.

3.1 Interpolation-Based Models

For the regression and interpolation approach to the construction of a surrogate
model the high-fidelity model is assumed to be a black box system y = f(x).
This system is evaluated at M realizations of the parameter vector x:

ym = f(xm) , m = 1, . . . ,M. (3.1)

The resulting sample data (xm, ym) is then used to create an emulator f̃(x)
that approximates the full model f(x) with a certain accuracy, making this a
purely data-driven approach.

Algebraic interpolation methods can use a big assortment of algebraic func-
tions for the construction of the meta-model. In its easiest form this describes
the linear interpolation. However, depending on the problem orthogonal poly-
nomials [Xiu, 2010] or Lagrangian interpolating polynomials are used for piece-
wise interpolations. Kernel based interpolation methods like the radial basis
interpolation or Gaussian process modelling, also known as Kriging, are a pop-
ular alternative to these algebraic interpolation methods, that are well suited
for irregular grid applications.

In general, the quality of such a meta-model depends in large parts on the
appropriate sampling of the parameter space. Popular strategies include the
Monte Carlo and Latin Hypercube sampling as well as sparse grid techniques.
A particular method that is used in this thesis is the adaptive error driven
sampling strategy detailed in section 3.5.

In the following, a closer look is taken at the construction of response
surface models and the radial basis interpolation.

3.1.1 Response Surface Models

The construction of polynomial response surface models can be formulated as
a linear regression problem. For a bi-linear estimator the polynomial form is
given as

f (x, a) ≈ a0 +
k∑

i=1

aixi +
k∑

i=1

k∑

j>i

aijxixj, (3.2)
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with the state vector x = [x1, . . . , xk] and the unknown parameter vector a.
For the example of a two-dimensional rectilinear grid, the coefficient vec-

tor a is determined from the four neighbouring points
[
P11 P12 P21 P22

]T
,

posing the linear system of equations:







1 x
(1)
1 x

(1)
2 x

(1)
1 x

(1)
2

1 x
(1)
1 x

(2)
2 x

(1)
1 x

(2)
2

1 x
(2)
1 x

(1)
2 x

(2)
1 x

(1)
2

1 x
(2)
1 x

(2)
2 x

(2)
1 x

(2)
2








︸ ︷︷ ︸

X







a0
a1
a2
a3






=







f (P11)
f (P12)
f (P21)
f (P22)







︸ ︷︷ ︸
ym

, (3.3)

with the design matrix X and the sample vector ym.
Given that the size of the sample vector is at least equal to the size of the

parameter vector and the matrix
[
XTX

]
is invertible, linear regression theory

allows to determine the parameter vector as

a =
[
XTX

]−1
XTym. (3.4)

Bi-linear interpolation models are popular surrogates as they include low or-
der non-linearities, making them more efficient than pure linear interpolation.
However, the approach can easily be extended using higher order polynomial
terms.

3.1.2 Radial Basis Interpolation

The use of Radial Basis Functions (RBF) for the construction of an interpola-
tion meta-model is an alternative approach to the polynomials basis expansion.
It can be expressed as

f̃(x) =
M∑

m=1

fmΨm(x) + P (x), (3.5)

where Ψm(x) = ψ (||xm − x||) give the radial basis function, fm are the weights
and P (x) is a bias function.

The radial basis functions are real valued kernel functions whose value
depends on the Euclidean distance of x from its origin xm. Common choices
for Ψ are:

Ψ(rm)i =







erm/2ǫ2i , Gaussian
√

1 + (ǫir)
2 , Multiquadric

1√
1+(ǫir)

2
, Inverse multiquadric

rkm , Polyharmonic spline.

rkmln (rm)

(3.6)
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where ǫ are the shape parameters and rm = ||xm − x|| is the radial distance.
The value of the shape parameter influences the area of effect for each kernel
function and has to be chosen carefully as it influences the fitting quality of
the RBF to the sample data.

The coefficients fm are determined on the basis of the interpolation condi-
tion

f̃(xm, a0) = ym, m = 1, . . . ,M,

sufficing the constraint
M∑

m=1

fm = 0,

due to the inclusion of the bias function P (x).
The radial basis interpolation function can thus be expressed as

f̃(x, a0) = a0 +ΨT (x) Φ−1 [ys − a01] , (3.7)

where a0 =
[
1TΦ−11

]−1
1TΦ−1ys and Φmk = Ψk (x

m) = ψ (||xm − x||).
The interpolation with Radial Basis Functions is especially well suited for

functions that depend on a multivariate parameter space and are defined by
a large number of data points that are scattered in the domain. While Smith
[2013] states that the basic formulation of the RBF interpolation and the
Gaussian process regression is essentially the same, he points out that the
RBF approach does not include a definition for the uncertainty bounds in the
model.

3.2 Projection Based Methods

The proper orthogonal decomposition is a popular method for the approxima-
tion of general stationary and dynamic systems. Given be an ensemble of states
x in Rn, where n is the number of state variables, of a system parametrized in
the parameter-space P . The POD seeks to approximate the full state vector
with one in a lower-dimensional space Rk, with k < n. In order to do so, the
original system is reduced by projecting it on the lower-dimensional space via
the Galerkin or Petrov-Galerkin method. The subsequent problem is then to
determine how well the reduced state approximates the original one for states
that are not included in the ensemble.

3.2.1 Proper Orthogonal Decomposition

Given the state vector x (µ) ∈ Rn of the problem as a function of the parameter
vector µ, a finite set of samples x (µi) for µ = µ1, . . .µN can be evaluated.
Collecting the resulting data in matrix form leads to the snapshot database

X =
[
x (µ1) · · · x (µN)

]
∈ R

n×N . (3.8)
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Given the snapshot matrix X a set of orthonormal basis vectors uj ∈ Rn

can be constructed in a way that its entries may be expressed as a linear
combination

xi =
n∑

j=1

γjiuj. (3.9)

The snapshot matrix can thus be expressed as

[
x1 · · · xN

]

︸ ︷︷ ︸

X

=
[
u1 · · · un

]

︸ ︷︷ ︸

U

Γ
︷ ︸︸ ︷





γ11 · · · γ1N
...

. . .
...

γn1 · · · γnN




, UTU = In (3.10)

using a coefficient matrix Γ. The vectors ui are usually referred to as the
empirical eigenfunctions and may be interpreted as the principal directions of
the data set X. Further, it is required that the truncated reconstruction of the
snapshots using a reduced number k of empirical eigenfunctions

[
x̃1 · · · x̃N

]

︸ ︷︷ ︸

X̃

=
[
ũ1 · · · ũn

]

︸ ︷︷ ︸

Ũ






γ11 · · · γ1N
...

. . .
...

γk1 · · · γkN




 , k < n (3.11)

approximates the set X optimally. Optimality is usually defined through the
minimization of the Frobenius norm on the approximation error ‖X− X̃‖2.

A solution to this problem is given by the singular value decomposition of
X = UΣVT . The columns of U define the empirical eigenfunctions and the
coefficient matrix is given as Γ = ΣVT [Antoulas, 2005].

As the POD is working with the collected data in the snapshot matrix, it is
important to have a sufficiently rich basis in the sense that it is able to represent
the system behaviour with sufficient accuracy. A closely related topic that is
still subject to research are sampling strategies that assure the construction of a
good data set. Current approaches are often inspired by Design of Experiments
(DoE) as well as Monte Carlo sampling, sparse grid sampling. Section 3.5
further discusses the topic and introduces a greedy algorithm that chooses
parameter combination based on a maximal error estimate on the leave-one-
out projection error.

3.2.2 Galerkin Projection

One of the most popular methods to create a reduced order model is the
Galerkin projection. The Galerkin approach projects the system on the same
reduced basis that is used in the low order approximation in order to formulate
a reduced system. The benefit over reduction methods that do not include a
projection of the original system is that it preserves the problem structure [Lall
et al., 2003; Carlberg et al., 2015]
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Reduced Head-Flow Model

Based on the truncated basis Φ it is possible to formulate a reduced order
system. One of the most popular model reduction techniques is the Galerkin
projection.

In Chapter 2 the hydraulic model has been defined in the form of the
head-flow equations (2.15), for which the state vector is given as

xhf =

[
q

h

]

.

Using the reduced basis Φhf the approximation x̃hf of the high-fidelity state
vector xhf is expressed as

[
q̃

h̃

]

︸︷︷︸

x̃hf

=

[
Φq

Φh

]

︸ ︷︷ ︸

Φhf

x̂ (3.12)

with the reduced state vector x̂ ∈ Rk. Starting from (2.15)

[
A 0

0 −AT

] [
q

h

]

+

[
Kµ

∆h(r,q)−AT
f hf

]

= 0,

the state vector xhf is replaced with the reduced order approximation x̂

[
A 0

0 −AT

]

Φhf x̂+

[
Kµ

∆h(r,Φqx̂)−AT
f hf

]

= 0. (3.13)

Projecting the system on the reduced basis Φhf gives the residual function of
the reduced order model in the head-flow formulation

r̂hf (x̂,µ) = ΦT
hf

[
A 0

0 −AT

]

Φhf x̂+ΦT
hf

[
Kµ

∆h(r,Φqx̂)−AT
f hf

]

. (3.14)

The Jacobian matrix is derived as

Ĵhf = ΦT
hf

[
A 0

0 −AT

]

Φhf +ΦT
hf

[
0

DΦq

]

, (3.15)

where D is a diagonal matrix containing the derivatives of the head-loss func-
tion with respect to the full state vector x. The equation can be summarized
to

Ĵhf = ΦT
hf

[
A 0

D −AT

]

Φhf . (3.16)
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Reduced Loop-Flow Model

In contrast to the head-flow model the state of the loop-flow equations (2.27)
is defined in the loop-flow vector

xlf = qc,

that may be approximated using a reduced basis Φlf derived from a snapshot
database in the loop-flow state

x̃lf = Φlf x̂. (3.17)

Replacing this in (2.27)

C∆h(r,CTqc + qd (µ))−CAT
f hf = 0

gives the approximation

C∆h(r,CTΦlf x̂+ qd (µ))−CAT
f hf = 0 (3.18)

The residuals of the reduced Galerkin system is then derived through the
projection

r̂hf (x̂,µ) = ΦT
lfC∆h(r,CTΦlf x̂+ qd (µ))−ΦT

lfCAT
f hf . (3.19)

Using the chain rule
dr̂hf

dx̂
=

dr̂hf

dq

dq

dqc

dqc

dx̂
, (3.20)

with

dr̂hf

dq
= ΦT

lfCD,

dq

dqc

= CT ,

dqc

dx̂
= Φlf ,

the Jacobian matrix is given as

Ĵhf = ΦT
lfCDCTΦlf . (3.21)

3.2.3 Global and Local Reduced Basis

For parametrized reduced order models, a reduced basis Φ for the parameter µ
has to be created. This parameter is defined on a single domain Ω ⊂ Rd. For a
global reduced basis a single basis matrix is computed over the range of param-
eters. The concatenation approach creates the global basis from the ensemble
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of simulations in the parameter-space via the SVD or Krylov subspace methods
[Liesen et Strakos, 2013]. Alternative methods use a bi-linearization approach
to approximate the reduced system matrix as a affine function of the parame-
ter [Benner et Breiten, 2011]. However, recently a number of approaches have
been suggested that subdivide the domain Ω and create a reduced basis for
each of the sub-domains [Amsallem et Haasdonk, 2016; Haasdonk et al., 2010;
Maday et Stamm, 2013]. In contrast to the construction of one fixed global
basis, a number of local basis is constructed. Numerous publications discuss
the interpolation of these local basis on the parameter-space for the further
improvement of the reduced basis [Amsallem et Farhat, 2008; Degroote et al.,
2010; Lohmann et Eid, 2007].

3.3 Empirical Interpolation Method

Section 3.2.2 has shown how to effectively reduce the system in the state vari-
ables and its application to the hydraulic network model in Section 3.6.2 shows
to give accurate results for a sensible choice of parameters and a significant
reduction in the computational effort. One of the main factors leading to the
reduced evaluation time was the reduced number in function evaluation. This
reduction is for one due to a lower number of solver iterations and the faster
convergence of the reduced system, but mainly due to the reduced number of
function evaluations during the calculation of the Jacobian matrix. However,
the evaluation of the non-linear residual function still has to be performed in
the dimension of the high-fidelity model.

Hyper-reduction methods like the empirical interpolation method are de-
signed to create a surrogate model for the non-linear function, significantly
reducing the computational effort in each function evaluation. The applica-
tion of the EIM to the POD model of a system of non-linear ordinary differen-
tial equations by Chaturantabut et Sorensen [2010] showed to greatly reduce
the problem dimension with negligible error over long term integration. Sim-
ilar reductions could be shown by Fritzen et al. [2018], who applied the EIM
to the FEM model of heat transfer problem and compare it to other hyper-
reduction approaches and Peherstorfer et al. [2014] present an extension of the
EIM, that introduces a localized EIM approach for further improvement of the
performance in a reduced reacting flow model.

The EIM is a sampling based interpolation approach. Given a snapshot
database, that samples the solution space of a non-linear function in an ap-
propriate manner, it creates a collateral reduced basis V = [Ξ1, . . . ,ΞM ] with
the orthogonal basis vectors Ξi. Using this basis and the evaluation of the
non-linear function at a number of support points the full non-linear result
vector is approximated through interpolation. The method can be used to
approximate either the non-linear part of residual function equation as shown
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in Chaturantabut et Sorensen [2009] or the residual function as a whole.
Given be the non-linear function f of a set of arguments τ = {x,µ} con-

taining parameters µ and the state vector x.

f (τ ) = f (x,µ) (3.22)

Based on a selection of realisations for the parameter vector τ a snapshot
database Yf is created from which an orthogonal basis V is determined, for
example by use of the singular value decomposition. The orthogonal basis
allows for the construction of a truncated basis Vm by selecting the first m
eigenvectors from V. The selection of m influences directly the efficiency of
the reduction and the accuracy of the interpolation and is used as a design
variable for the rest of this section. Using the reduced basis Vm the full non-
linear function can be approximated through

f (τ ) ≈ Vmc (τ ) (3.23)

with the coefficient vector c ∈ Rm×1. As this system is overdetermined, the
full solution can be determined from the evaluation of a reduced number of
m equations. These equations are selected by the selection matrix P ∈ Rn×m

with the dimension of the full function n and the number of evaluation points
m. P contains m unit vectors ei =

[
0 . . . 1 . . . 0

]T ∈ Rn×1.

P =
[
e1 e2 . . . em

]
(3.24)

With the construction of matrix P a number of m equations are selected from
(3.23)

PT f (τ ) = PTVmc (τ ) (3.25)

and if PTV is invertible the coefficient vector c (τ ) can be evaluated as

c (τ ) =
(
PTVm

)−1
PT f (τ ) . (3.26)

The full non-linear vector f̂ (τ ) is now determined by replacing c (τ ) in (3.23)
with (3.26)

f̂ (τ ) = Vmc (τ ) = Vm

(
PTVm

)−1
PT f (τ ) = Wmf (τ ) . (3.27)

The fact that Vm and P are constant matrices that are determined during the
off-line step of the EIM allows for the definition of the interpolation matrix
Wm. The interpolation matrix W has rank m. In the calculation of the
interpolation this allows to use a reduced Rn×m matrix that eliminates the
zero columns and that uses only m values that have to be evaluated by the
original function f .

The EIM algorithm is divided into an off-line and an on-line phase. During
the off-line phase, described in Algorithm 1, the selection matrix P is deter-
mined and the interpolation points O are chosen. The interpolation points are
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chosen by a greedy algorithm that minimizes the interpolation error on the
snapshot database.

Data: reduced basis vectors vk from SVD of the snapshot database Yf

Result: selection matrix P, index set O := {i1, . . . im}
set P0 = [], V0 = [], O0 := ∅ ; // initialization

for j ← 1 to m do
V0 ← [v1, . . . ,vj] ; // truncated basis

ǫj ← (I−Wj−1)vj ; // interpolate function

ij ← arg maxi∈{1,...,n}| (ǫj)i | ; // maximum of error

Pj ←
[
Pj−1, ǫij

]
; // add point to selection

end
set P := Pm,O := Om.

Algorithm 1: Empirical interpolation method off-line phase

In the on-line step the non-linear input function is evaluated at the m inter-
polation points defined by the index set O and the estimate for the full vector
is calculated based on (3.27).

Hydraulic Model Implementation

For the application of the EIM to the hydraulic model, the non-linear function
f (τ ) can be either defined as the residual function r or the head-loss function
∆h. While a successful implementation of the EIM to the residual function
is the more efficient approach from a computational point of view, the appli-
cation to the head-loss function offers a certain adaptability to the different
formulations introduced in section 2.1.1. In both cases, the set of arguments τ
is defined by the hydraulic state vector x and the parameter vector µ, which
can contain variables like the nodal demands and pipe roughnesses.

Including the state vector as dimensions for the parameter space makes
complete sampling problem infeasible by any stretch of imagination, as even
small reduced order models need at a bare minimum around 20 degrees of
freedom. A solution to this problem proposed by Fritzen et al. [2018] is to
reduce the samples of the state space to those points that are used during the
iterative solution process of the reduced Galerkin system during the sampling
of the parameter space for the POD. Given that the reduced order model based
on the EIM uses a solver trajectory close to the ones captured in the sampling
space, this approach gives an accurate basis for the approximation.

3.4 Model Validation

In the development of any model the validation process plays a key role. Smith
[2013] defines validation as the process of determining the accuracy with which
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mathematical models quantify the physical processes of interest. In the context
of this chapter the physical process is assumed to be modelled with sufficient
accuracy by the hydraulic equations defined in Chapter 2 and the objective
of the validation is to determine if the reduced order model approximates the
high-fidelity solution with sufficient accuracy to satisfy the analysis objectives.
In order to ensure this, the following section defines a repeatable process for
the estimation of the approximation error in the hydraulic state vector on the
parameter-space.

3.4.1 Error Definition

Depending on the choice for the meta-modelling approach, it is possible to
define types of errors that allow to evaluate different aspects of the surrogate
model. While the approximation error is used to assess the accuracy of the
reduced order model, the projection error evaluates the quality of the reduced
basis for projection based methods.

Approximation Error

In order to evaluate the approximation quality of a reduced order model an
error measure has to be defined on the state vector. The simplest definition of
the approximation error is given as

ǫa = ||xexact − xapprox|| (3.28)

However, the definition of this error measure is directly dependent on the choice
of the system equations and the physical units that are used in the evaluation.
As described in Chapter 2 the hydraulic state of a water distribution network
can be described in head-flow (2.15) or the loop-flow (2.27) domain. While the
head-flow formulation gives a complete description of the system state in the
flow rates q [m3/s] and the piezometric heads h [mH2O], the difference in their
units requires to use a relative error measure.

ǫn =
||xexact − xapprox||

||xexact||
(3.29)

Further complexity is introduced through the possibility that the state of sev-
eral elements in the network, depending on the combination of the input pa-
rameters, may have zero or close to zero values. In this case, normalizing the
error using (3.29) may exaggerate the error of certain elements. An effective
measure to counteract this, is the introduction of a constant c that is added to
the denominator of the relative error definition which leads to the formulation
of robust normalized error:

ǫrn =
||xexact − xapprox||
||xexact||+ c

(3.30)

58 Mathias BRAUN



3. Reduced Order Modelling

The state for the loop-flow formulation is defined by the loop-flow vector
qc [m

3/s]. In contrast to the head-flow formulation this description uses a
reduced number of degrees of freedom and a single unit of measurement. Given
(2.29) and (2.30) the flow and head vectors are a set of derived variables. The
evaluation of errors in the loop-flow formulation of the hydraulic problem is
straight forward in comparison. As the state vector in (2.27) is only defined
in loop-flow rates there is no added complexity for the evaluation of the state
error in two different units. Further, the residuals of (2.27) are the sum of the
head-loss over the network loops. This means that the unit of the residuals
is directly given as [mH2O] for which an error tolerance of ǫh = O (10−2) is
acceptable. For the tolerance in the flow rates this translates to an error
tolerance of ǫq = O (10−3) in l/s or ǫq = O (10−6) in m3/s. Such a strong
definition of the tolerance implies that an evaluation of relative errors like for
the head-flow formulation is not necessary.

Projection Error

For projection based reduced order modelling techniques it is possible to eval-
uate the quality of the snapshot database and the reduced basis through the
projection error ǫp. The projection error is a way to evaluate the fidelity of
the sample data and the reduced basis that has been constructed from it. As
described in Section 3.2 the basis for a reduced model is constructed by ap-
plying the SVD to the snapshot database X and selecting a truncated basis
Φ from the left singular vector matrix U and the solution in the reduced sys-
tem (3.9) is expressed by a linear combination of the reduced basis vectors.
Projecting the solution for the state vector xhf from the high-fidelity model
onto the reduced basis Φ results in the coefficient vector γ of the best possible
approximation in that particular truncated basis.

γ = ΦTxhf (3.31)

Using these coefficients, the best approximation on Φ can be written as

xp = Φγ = ΦΦTxhf . (3.32)

On the basis of this projected solution the projection error can be calculated
as

ǫp =
(
I−ΦΦT

)
xhf . (3.33)

The projection error is strongly influenced by the number of eigenvectors
that has been chosen for the reduced basis. A higher number of singular vectors
will lead to a reduced projection error, as the columns of Φ are orthonormal
vectors. This means that the product ΦΦT will converge to the identity matrix
and the projection error is converging to zero. However, from the point of
reduced order modelling this is not desirable as the higher eigenvectors contain
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a low amount of information and can basically be considered as noise. The
selection of the size of the reduced basis is part of the design process. A good
indicator for the dimension of truncated basis are the normalized singular
values, that show the relative amount of signal energy that is contained in
each eigenvector.

Error Metrics

As the solution of the hydraulic equations is expressed in a vector valued vari-
able, it is preferable to evaluate the error on the basis of an error metric. Two
of the most common error metrics for continuous or vector valued quantities
are the mean absolute error (MAE) and the root mean squares error (RMSE).
The MAE is defined as a linear score function, that is closely related to the
L1-norm. It expresses the average magnitude of the errors with equal weights.

MAE =

∑n
i=1 |ǫi|
n

(3.34)

The RMSE is a quadratic scoring rule for measuring the average error magni-
tude. In contrast to le MAE it is closely related to the L2-norm or the sum of
squares.

RMSE =

√∑n
i=1(ǫi)

2

n
. (3.35)

While both metrics express the average error in the units of the input variable
they offer different interpretations of the error. While the MAE weighs all
errors equally, the RMSE puts higher weight on bigger errors and is closely
related to the signal energy.

Due to the specific distribution of errors in the case of the reduced order
hydraulic model, the evaluation on the basis of a L2-norm has been chosen
over the L1-norm. The error between the high-fidelity state vector and its
reconstruction from the reduced state vector usually contains a large number
of states that are approximated with reasonable accuracy and a relatively small
number of states with high deviations. Choosing the RMSE over the MAE
gives a higher weight to the actual deviation between the full order model and
its low order estimate.

3.4.2 Validation Procedure

For the model validation scheme the approximation error between the full
order model and the surrogate is evaluated on a set of random parameter
vectors P = {µ1, . . . ,µm} that are sampled from the parameter space P , using
the RMSE. The samples are taken from a multivariate uniform distribution
U (µmin,µmax). In the following, the parameter set P will also be referred
to as the validation points or the validation set. In order to be repeatable
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and comparable over all surrogate models, the sample is drawn using a pseudo
random number generator with a common seed.

The number of evaluation points that are chosen for the validation has a
significant influence on the performance and the accuracy of the procedure.
Choosing too few points leads to a wrong error estimate, while choosing too
many increases the computational effort without improving its accuracy. To
answer the question for the appropriate size of the validation set, its influence
on a number of models has been investigated and the results are shown in
Figure 3.1. The evaluation is based on the realistic network model defined
in section 2.4.3 and the surrogates for the evaluation are based on the three
Cartesian refinements of the snapshot matrix with 121, 441 and 1681 elements
taken from a parameter space spanned by the two defined demand patterns.
Three refinements of the reduced model are then evaluated with reduced basis
that contain 10, 40 and 120 degrees of freedom. On the y-axis the average

Figure 3.1: Approximation error convergence for 9 reduced order mod-
els as a function of the validation set size. The surrogates are based
on three realizations for the Cartesian sampling of the snapshot matrix
nsamples = [121, 441, 1681] and with three different degrees of freedom nmodes =
[10, 40, 120].
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RMSE is plotted as a function of the number of validation point on the x-
axis. The figure shows the development of the of the error with the addition
of further validation points. It is obvious that both, the sample size and the
degrees of freedom in the model influence the convergence of the error plots.
Disregarding the actual error value, it seems that in most cases the average
RMSE starts to converge between 50 and 100 validation points. Based on this
result the size of the validation set is fixed to 100 points.

3.5 Adaptive Parameter Sampling

The selection of simulation points in the parameter-space is a crucial task
in sampling based reduced order models. In the application of interpolation
methods they are used as support points at which the interpolation condi-
tions hold and for the POD they define the snapshots from which the reduced
basis is calculated. Both cases demand a sufficiently rich and detailed data
set. For problems with few parameters simple structured or random sampling
methods like Cartesian grids or Monte Carlo sampling are feasible approaches.
However, with raising numbers of parameters these methods become computa-
tionally expensive as the number of sampling points grows exponentially with
the dimension d of the parameter-space. Further, the use of such methods
may result in either over- or under sampling of the domain in certain regions.
Although the dimensional effect can be mitigated through the use of advanced
sampling strategies, like sparse grid sampling and latin hypercube sampling,
for dimensions d > 10 the sampling starts to becomes infeasible [Benner et al.,
2013]. In such cases more advanced and problem-aware adaptive sampling
methods have to be applied.

One possible approach is the application of greedy sampling strategies.
Given a reduced order, a parameter value is determined for which the ap-
proximation error is maximal. This parameter is then selected as new sam-
pling point. The method has been introduced to reduced basis methods by
Prud’Homme et al. [2002] and has been applied in the context of POD mod-
elling [Bui-Thanh et al., 2008; Haasdonk et Ohlberger, 2008; Benner et al.,
2015a] and rational interpolation methods [Druskin et al., 2010]. Another ap-
proach, proposed by Bond et Daniel [2007] uses the local sensitivities of the
state vector with respect to the parameters in order to judge if a change in
parameters will result in a state that can not be represented with acceptable
accuracy in the current reduced basis. State changes are modelled on the basis
of a first-order Taylor series expansion for small changes in the parameter on
each sampling point and the sensitivities are obtained through solving a sparse
linear system. Other methods like the one presented by Borggaard et al. [2014],
combine adaptive sampling strategies with basis interpolation for parametric
reduced order models. Based on the discretization of the parameter-space
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with the centroidal voronoi tessellation used by Du et al. [1999] and Burkardt
et al. [2006], Lombardi et al. [2009] introduced an adaptive greedy sampling
algorithm on the basis of the residual function.

The here proposed algorithm uses a greedy algorithm on the basis of the De-
launay triangulation of the parameter-space using the Leave-One-Out (LOO)
errors. Given be the set of parameters P = {µ1, . . . ,µN}, on the parameter-
space P . The leave-one-out error ǫLOO (µi) in each point i = 1, . . . , N is
calculated from a reduced parameter set Pi = {µ1, . . . ,µi−1,µi+1, . . . ,µN},
where the i-th element has been removed. Given a reduced order model

Â (µ) x̂ (µ) + B̂ (µ) = 0 (3.36)

constructed on the parameter set Pi, with the objective function

y (x̂,µ) = Ĉ (µ) x̂ (µ) , (3.37)

the objective function yi for the missing parameter µi is estimated and the
leave-one-out error is defined as

ǫLOO (µi) = ||yi − ŷi||L2
. (3.38)

Using the Delaunay point set triangulation this allows to calculate the weighted
LOO error ǫLOO (ti) over the vertices v for each triangle ti ∈ T, as

ǫLOO (ti) =
A(ti)

3

3∑

j=1

ti(vj). (3.39)

In the application to the hydraulic model the objective function y (x,µ) is
given by the head-loss function ∆h (q (µ)). The greedy approach selects the
triangle with the biggest weighted error

t̂ = arg max
ti

(ǫLOO (ti)) , (3.40)

from which the next parameter combination for sampling µN+1 is chosen as
its weighted centroid

µN+1 =
1

ǫLOOsum

3∑

j=1

ǫLOOi
µi. (3.41)

In two dimensions the final model-aware adaptive algorithm can be de-
scribed as follows:

1. Create a set of parameters P = {µi}ki=1 from the parameter space P .

2. Calculate the set of leave-one-out errors ǫLOO (µi) for each parameter
combination in the set P.
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3. Create the Delaunay point set triangulation T on the parameter point
set P.

4. For each triangle i in T, calculate the mean error weighed leave-one-out
error ǫLOO (ti).

5. Add weighted centroid of the triangle with the biggest error ǫLOO (ti) to
the parameter set P.

6. Perform the high-fidelity simulation for the added parameter combina-
tion to the snapshot database.

7. If the error is bigger than the tolerance, restart from step 2.

The algorithm can be extended to higher dimensions without loss of generality.
In its practical application the performance of this algorithm can be influ-

enced by a number of parameters. Some of the most important are the choice
of the starting discretization, the error measure on which the LOO error is
based and the reduced model used for its evaluation.

3.6 Evaluation on the medium size network

The objective of the case studies presented in this section is to apply the
previously introduced reduced order modelling techniques on the medium size
network depicted in Figure 2.4 and evaluate the results on their accuracy
and performance. With respect to these two aspects, a focus will be set on
investigating the influence of the parameters for each method. As detailed
in Section 2.4, the network contains nearly 4000 elements in the head-flow
formulation. Expressing the system in the more efficient loop-flow formulation
from (2.27) already reduces the number of degrees of freedom to 348. The
model is evaluated during the peak demand hour under steady state conditions.
The consumption at the demand nodes is parametrized with a two-dimensional
parameter-space. These two parameters are chosen to be two dimension-less
demand multipliers µ = {m1,m2}, corresponding to the demand patterns
defined in the model. They are applied to two groups of demand nodes in
the entire network through the base-demand matrix K. The evaluation of the
model errors follows Section 3.4.1. and a general threshold for the acceptable
model error is defined at a mean RMSE of 10−2 [mH2O] following the description
in Section 3.4. The error threshold is chosen on the basis of the solver tolerance
of the hydraulic equations. However, it has to be mentioned that this value
is theoretical in nature, as the measurement accuracy in practical applications
in more in the interval of 0.1 [mH2O] to 1 [mH2O]. In effect, this allows for the
use of less accurate and more efficient reduced models in such cases.
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In the first study, the application of interpolation meta-models is inves-
tigated. The second study evaluates the application of the POD and the
Galerkin projection to the system. The third study shows the implementation
of the EIM in order to reduce the computational cost of the non-linear term in
the residual function. A final study is presented that investigates the benefits
of the adaptive sampling strategy.

The Cartesian discretisations of the parameter-space used throughout this
chapter use a, equidistant division for each parameter starting with 11 points
and roughly doubling with each increase to 21 points, 41 points and so on.
This approach allows to reuse sampling points from previous discretisations
and helps to ease the computational effort.

3.6.1 Evaluating Interpolation

The interest of using interpolation and regression methods for the construction
of a meta-model clearly lies in its easy implementation and fast evaluation. In
order to evaluate the possible performance, a selection of interpolation methods
are tested on the regular Cartesian samplings of the parameter space. Figure
3.2 shows the average RMSE for the simple linear, bi-linear, bi-cubic and radial
basis function interpolation using a cubic element, together with the error
threshold. The approximation error is given as a function of the resolution in
the snapshot database.

Figure 3.2: Average RMSE in the validation set as a function of the snapshot
database size using linear, bi-linear, bi-cubic and RBF interpolation with a
cubic element.

The linear interpolation applied in this case uses the three closest neigh-
bouring points in the parameter-space as support. It is at the same time
the fastest, but also the most inaccurate approximation. In comparison the
bi-linear interpolation is able to reduce the average RMSE by an order of
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magnitude, especially for higher amounts of snapshots. This increase in accu-
racy can be explained by the addition of the quadratic interdependency to the
regression polynomial. A similar improvement can be observed with the appli-
cation of the bi-cubic interpolation. The use of more complex spline elements
for the interpolation was tested, however, the improvement over the bi-cubic
interpolation was marginal and is not visualized here. Figure 3.2 also shows
that the RBF interpolation on the basis of the cubic elements gives nearly the
same result as the bi-cubic approach. Testing the interpolation with the most
popular RBF elements shows that the cubic element gives the most accurate
results.

While the bi-linear and bi-cubic interpolation are well suited for th use
with data on a regular grid like the basic Cartesian discretizations, the RBF
interpolation is also capable to interpolate data on an irregular grid, like the
one created using the adaptive sampling of the parameter-space in Section 3.5.
This benefit comes at a certain cost, as an additional preprocessing step is
added with the fitting process for the RBF kernels.

In general it can be shown, as expected, that the accuracy of all interpo-
lation methods increases and the average RMSE converges with an increasing
number of sampling points. Especially the bi-cubic and the RBF interpolation
with the cubic elements give an error that is usable in practice. However, at
sample size of O(104) and O(105) for a two-dimensional parameter-space it is
obvious that the extension of the approach to higher-dimensional applications
would become infeasible from a computational point of view.

3.6.2 Evaluating POD

In this study the POD method is applied to the hydraulic network equations.
The derivation of the reduced Galerkin system is described in Section 3.2. The
section is divided into the application of the POD with a global and a local
reduced basis. Both cases investigate the influence of the resolution in the
Cartesian parameter-space samplings and the order of dimensional reduction
in the reduced model on the approximation accuracy and improvement of
computational time.

Global Basis

In the first step, the global reduced basis is constructed for each of the Carte-
sian samplings. Figure 3.3 shows the ordered, normalized singular values on
the y-axis for each discretization (121, 441, 1681 and 6561 samples) taken from
the SVD on the snapshot database. As the high-fidelity model has a number
of 348 degrees of freedom, this is the maximum index for all singular value
plots except the one with 121 samples. For the snapshot matrix with 121
high-fidelity simulations, a sharp drop in the singular values can be observed
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Figure 3.3: Normalized singular values for Cartesian samplings of the
parameter-space P with 121, 441, 1681 and 6561 high-fidelity simulations.

for elements higher than 70. This behaviour is not replicated for the more
detailed discretizations, suggesting that this is due to a poor fidelity of the
snapshot database. Figure 3.3 clearly shows that for all the more detailed
samplings the singular values converge relatively slowly to zero. However, no
sharp drop in the singular values can be observed. Further, with the addition
of more discretization points to the snapshot database, the singular values
decline more and more slowly. For the samplings with 25921 and 103041 no
observable improvement could be achieved, so they are not included in Figure
3.3. The fact that for most of the samplings no sharp drop in the singular
values is observable means that it is not possible to have a definite estimate
for the maximum number of modes that should be used in the reduced model.
It follows then that for the subsequent investigations the degrees of freedom in
the reduced model are also treated as a parameter that has to be investigated.

The results of the basic evaluation in the global reduced basis and the
global reduced model are depicted in Figure 3.4. It shows the average RMSE
as a function of the number of the reduced degrees of freedom, evaluated on
the validation set. While the full lines represent the error in the reduced
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order model evaluated through the approximation error, the dashed lines show
projection error, giving the error of the theoretically best approximation that
is achievable with the given reduced basis. The threshold for the acceptable
approximation error is represented by the gray, dashed line.

Figure 3.4: Average root mean square error for the approximation error and
the projection error in the validation points as a function of the degrees of
freedom in the global reduced order model and for different Cartesian sampled
snapshot databases.

As the plot of the singular values already suggested, the reduced model with
the 121 element snapshot matrix lacks the fidelity to approximate the full order
model with any accuracy. This becomes apparent twofold, in the stagnating
projection error and the error of the reduced order model that is not converging
for higher degrees of freedom. For the reduced order models based on a more
refined sampling, the projection error and the approximation error behave
roughly in the same manner. As expected, the projection error acts as a lower
bound for the approximation error, but the reduced order models based on
the Galerkin projection stay within a reasonable margin to it. Adding further
sampling points to the snapshot database helps to improve the accuracy of the
reduced order model significantly. The effect of the additional data becomes
especially apparent for the reduced models with degrees of freedom higher
than 20. However, the effect seems to converge as the improvement for the
accuracy between the database with 1681 and the one with 6561 elements does
not represent the increase in computational effort in the off-line phase.

Having established, that the reduced order models on a global basis can
approximate the high-fidelity model with acceptable accuracy, a closer look
is cast on the benefit in computational effort. To answer this question and
explain the results additional information from the solution process has to be
reviewed. Figure 3.5 shows the average relative solution time of the reduced
order model compared to the high-fidelity model as a function of the number
of modes. While all of the observed models are computationally more efficient
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Figure 3.5: Average relative number of iterations for the solution of the global
reduced order model in the validation points as a function of the degrees of
freedom and for different Cartesian sampled snapshot databases.

than the full order model, there is a big difference in the computation time with
respect to the reduction in the degrees of freedom. The observed reduction in
computational time is the same for the models with 10, 20 and 40 modes. For
higher mode numbers the curves diverge. The number of function evaluations is
closely related to the computational time. Figure 3.6 gives the average relative
number of function evaluations, that have been performed by the non-linear
solver. Comparing this plot to the average relative evaluation time the strong
correlation is apparent. This is an expected result, as the main computational

Figure 3.6: Average relative number of iterations for the solution of the global
reduced order model in the validation points as a function of the degrees of
freedom and for different Cartesian sampled snapshot databases.

effort in the solution of a non-linear system of equations lays in the evaluation of
the residual function. Most of these evaluations are linked with the numerical
calculation of the Jacobian matrix. Due to the dimensional reduction in the
hydraulic model, the number of elements in the Jacobian matrix is greatly
reduced, making its evaluation far more efficient. The average relative number
of iterations of the non-linear solution process is shown in Figure 3.7. Once
again the results are the same for lower degrees of freedom. However, for higher
degrees of freedom the reduced order models that are based on a more sparse
snapshot database need more iterations to converge. This explains very well
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Figure 3.7: Average relative number of iterations for the solution of the global
reduced order model in the validation points as a function of the degrees of
freedom and for different Cartesian sampled snapshot databases.

the difference in evaluation time for models with a higher number of modes.
In contrast to the relative average time and the average relative number of
function evaluations, the reduction in solver iterations is relatively low.

From the average RMSE plot in Figure 3.4 it can be concluded that the
reduced model with 40 degrees of freedom on the 1681 snapshot database has
an acceptable error. For this model the computational time has been reduced
to only 10% of the high-fidelity model.

Local Basis

While the global POD creates one reduced basis that is applied on the whole
parameter-space, the local POD creates a number of individual local reduced
basis. This local basis is constructed using a selection of snapshots that are
closest to the parameter that is approximated. The definition of distance can
take a number of forms, as it may be defined either on the parameter or the
solution space and use different definitions for the distance. For the following
study, the distance is defined by an Euclidean norm on the parameter-space.
The local reduced basis for a reduced order model with k degrees of freedom is
created using a snapshot database containing the state vectors of the k closest
parameter combinations.

In Figure 3.8 the average RMSE of the approximation error and the pro-
jection error is shown as a function of the number of modes in the reduced
local model for a selection of Cartesian samplings of the parameter space. The
projection error for the reduced model based on 121 evaluations of the full
order model shows that the snapshot database does not have the fidelity to
approximate the hydraulic state. The figure shows that it is possible to con-
struct a model with 80 degrees of freedom on the 1681 snapshot database that
satisfies the error constraint of 10−2[mH2O], for the use of the local surrogate
model in a hydraulic application. For the further discussion on the compu-
tational efficiency of the local reduced model, additional information on the
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Figure 3.8: Average root mean square error for the reduced order model and the
projection of the high-fidelity solution onto the reduced basis in the validation
points as a function of the degrees of freedom in the local reduced order model
and for different Cartesian sampled snapshot databases.

solver performance is presented in the following plots. In Figure 3.9 the average
relative evaluation time for the a particular reduced order model compared to
the high-fidelity model is depicted as a function of the systems reduced order.
Once again, a significant increase for the computational time can be observed

Figure 3.9: Average relative evaluation time for the solution of the local reduced
order model in the validation points as a function of the degrees of freedom
and for different Cartesian sampled snapshot databases.

with the increases in the modelled degrees of freedom, proving the benefit of
the dimensional reduction on the basis of a local model. Figure 3.10 shows the
average relative number of function evaluations during the solution of the local
reduced order model as a function of the degrees of freedom. As before, the
strong correlation between the computational time and the number of function
evaluations confirms that the evaluations of the residual function is responsi-
ble for the bulk of the computational effort. For the average relative number
of iteration in Figure 3.11 it can be seen that the local reduced model stays
within a 10% margin around the high-fidelity model.
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Figure 3.10: Average relative number of function evaluations for the solution
of the local reduced order model in the validation points as a function of the
degrees of freedom and for different Cartesian sampled snapshot databases.

Figure 3.11: Average relative number of iterations for the solution of the local
reduced order model in the validation points as a function of the degrees of
freedom and for different Cartesian sampled snapshot databases.

In general the viability of the local reduced modal has been demonstrated
in this section. However, the application of the method in the presented study
is flawed in two points. First, due to the local construction of the snapshot
database, the construction of the reduced basis has to be performed during the
on-line step, adding to the computational effort mainly through the application
of the SVD that has not been taken into account here. This could be improved
through the definition of predefined sub-domains as proposed by Amsallem et
Haasdonk [2016]; Haasdonk et Ohlberger [2008] or Maday et Stamm [2013].
Second, by selecting the same number of elements for the snapshot database as
for the degrees of freedom, the normalized singular values of the higher modes
are not significant and information that can be discarded as noise. This can be
interpreted as the effective degree of freedoms being lower than the size of the
reduced basis. A solution for this problem is to build the reduced basis from
a database that contains more snapshots than degrees of freedom and ensure
to contain at least k significant modes. The additional computational effort of
this approach would be mitigated through the use of predefined sub-domains
by making it an off-line step.
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Comparing Global and Local POD

Having shown that both the global and the local approach to the construction
of a reduced basis and a reduced order model can result in a viable model
for the use in hydraulic applications, the objective of this paragraph compares
their performance. Figure 3.12 shows the results for the accuracy of the global
and the local reduced order models as a function of the model complexity
and the resolution of the parameter-space. The general observations of the

Figure 3.12: Average root mean square error for the reduced order model
and the projection of the high-fidelity solution onto the reduced basis in the
validation points as a function of the degrees of freedom in the local reduced
order model and for different Cartesian sampled snapshot databases.

reduced order model on local basis are the same as for the use of a global
basis, as the use of a more detailed sampling of the parameter space and
higher degrees of freedom improve the model. But, although both approaches
converge for a higher number of modes, the convergence rate of the global
model is significantly better. For the very low order models with mode numbers
between 10 and 40, modelled on the 1681 snapshot database, the local model
has an advantage over the global model. However, the lowest order model with
an error below the threshold is the global model with 40 modes modelled on
the 1681 snapshot database.

Comparing the projection error of both methods in Figures 3.4 and 3.8,
one can observe, that the difference between the approximation error and the
projection error of the local approach is significantly bigger than for the global
model. A possible explanation for this may be the inclusion of non-significant
modes for the local model, that has been discussed previously.

For the computational time and the number of function evaluations, both
models show a significant increase with the increases in the modelled degrees
of freedom. However, no substantial improvement of the local model over
the global model can be seen, despite the convergence issues of the global
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model for higher mode numbers. Comparing the average relative number of
iterations in Figures 3.11 and 3.7 a clear benefit for the global model can be
identified. While the local model stays within a ±10% margin around the full
order model, the global model has consistently lower iteration numbers for the
model created on the 1681 element snapshot database.

In conclusion, in this study, the global approach gives a more accurate
reduced model paired with a higher computational efficiency. However, as in-
dicated previously, improvements to the local approach are possible and might
change this assessment.

As a side note, the results for both, the global and the local reduced order
model, have been obtained under the condition that the direct evaluation of the
Jacobian matrix is not possible and it has to be obtained through numerical
differentiation. As the main factor in the reduction of the computational effort
has been identified as the reduced number of function evaluations during the
numerical evaluation of the Jacobian matrix, this benefit does not hold with
the same significance in cases where its direct evaluation is possible. While
this assumption is not always the best interest for an efficient solution of the
hydraulic system, there exist practical applications where the use of the nu-
merical Jacobian is inevitable. One example is the use of the Darcy-Weisbach
formulation for the head-loss function, as it is not continuously differentiable
at all points.

3.6.3 Evaluating EIM

The application in the previous section has successfully shown, that the dimen-
sional reduction in the state vector can be used to reduce the computational
time. This reduction is mainly due to the reduced number of function evalua-
tions in the calculation of the Jacobian matrix. In contrast, the focus of this
section is on the reduction of the computational cost for each single function
evaluation through interpolation methods. This study applies the Empirical
Interpolation Method, introduced in Section 3.3 to the non-linear head-loss
function, in order to speed up the evaluation of the function residuals.

As the EIM is a sampling based method, in a first step, the parameter-
space is sampled by Cartesian grids of increasing resolutions in order to build
a reduced basis in the head-loss domain. Figure 3.13 shows the normalized
singular values for the three ensemble of 441, 1681 and 6561 snapshots. For
the 441 snapshot matrix their value drops below 10−8 around mode 150 and
modes higher than 700 can effectively be discarded as noise. For the more
detailed samplings with the 1681 and the 6561 snapshot matrix the singular
values drop below 10−8 for modes higher than 200. While for the 1681 snapshot
database modes above 700 can be considered as noise, this threshold lays at
950 modes for the 6561 snapshot database. Similar results can be observed for
more detailed samplings that are not presented here.
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Figure 3.13: Normalized singular values for the reduced basis built on the 441,
1681 and 6561 snapshot database in the head-loss domain.

The evaluation of the interpolation models built on these reduced basis is
visualized in Figure 3.14. It shows the approximation and the projection error
of the EIM of the head-loss in the final states of the solution for the validation
set. From the projection error of the 441 element discretization it becomes
apparent, that this model does not contain enough information to approximate
the non-linear function with any accuracy. The models on the more detailed
sampling databases behave relatively similar to each other. All three models
produce an acceptable approximation error for the use of more than 200 modes.
This observation is in line with the results from the normalized singular values
that drop below 10−8 around singular value 200. While the projection error
suggests a slightly better performance for the bigger snapshot databases, this
effect can only be seen in part for the interpolation results.

Attempts to solve the reduced order model using these interpolation models
did not lead to satisfactory results, as the non-linear solver does not converge.
Projecting the head-loss vectors taken during the solution steps of the reduced
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Figure 3.14: Projection and empirical interpolation of the head-loss function
in the converged solution of the hydraulic system.

model without application of the interpolation method onto the reduced basis
in Figure 3.15 shows that these states can not be approximated with any
accuracy. This is easily explained by the fact that the reduced state vector has

Figure 3.15: Projection of the head-loss function onto the reduced basis in the
solver steps of the hydraulic system equations.

to be treated as a parameter during the solution process, which means that
the parameter space for the head-loss database has to be extended. Adding
the reduced state vector to the parameter-space would increase the dimension
of the application to a size that would make the sampling problem intractable.
As an alternative, Fritzen et al. [2018] proposed to add a reduced selection of
realizations in the parameter-space, given by the reduced state vectors that are
used during the solution process during sampling the snapshot database. The
basic idea is, that the reduced solver for non-sampled parameters µ follows a
similar trajectory that lies within a reasonable neighbourhood of this extended
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snapshot database.
Including the sampling in the reduced state vector in this way, increases

the snapshot database for the sampling in 1681 parameter combinations to a
total number of 36411 snapshots. In Figure 3.16 the normalized singular values
for the SVD of this extended snapshot database are visualized. Compared to

Figure 3.16: Ordered normalized singular values for the sampling of the ex-
tended snapshot database that includes the solver trajectory.

the previous samplings in the final state it is apparent, that the information
content increases considerably, as the normalized singular values drop below
10−8 around the 900-th singular value compared to the 300-th in the previous
attempt.

In order to validate this extended approach, the approximation error of the
interpolation and the projection error on the reduced basis for the head-loss
are evaluated for all the steps during the solution process. Figure 3.17 shows
the results for the 1681 element discretizition in the parameter-space of the
demand multipliers and the basis built on the according 36411 element sam-
pling matrix. The solutions of the validation set are projected on the extended
reduced basis, together with the intermediate steps from the non-linear solver.
It can be seen that, for an interpolation of the full head-loss function with ac-
ceptable accuracy, about 1000 modes are needed. This implies the evaluation
of the original head-loss function in 1000 support points. The time threshold
in Figure 3.17 indicates the number of modes that could maximally be used
before the matrix vector multiplication in the EIM becomes computationally
more demanding than the direct evaluation of the full head-loss function. The
indicated time threshold is a conservative estimate, as the computational ef-
fort for the evaluation of the support points in the head-loss function is not
included for its calculation.

Attempts to solve the reduced order model based on this refined interpo-
lation of the head-loss function, despite the lack of savings in computational
effort, still did not result on a converging solution. Following the residuals and
the projection error of the head-loss function during the solution process shows
that residuals become unstable after some initial steps and that the projec-
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Figure 3.17: Projection of the head-loss function in the solver steps, using an
extended snapshot matrix.

tion error increases continually. A possible interpretation of this observation
is that, while the error of the non-linear function is acceptable, the solver is
running out of the pre-sampled region where the interpolation of the head-loss
function becomes increasingly inaccurate, leading to the diverging residuals.
Attempts for a more stable solution method could be done by reformulating
the reduced model as a constrained optimization problem that limits the de-
cision values to the pre-sampled region. However, this approach would not
improve the computational efficiency. Other strategies that could be followed
in future applications, would be the inclusion of information on the deriva-
tive with respect to the reduced variables or the preconditioning of the sample
data.

3.6.4 Evaluating Adaptive Sampling Strategy

The previous studies on the performance of reduced order models have been
performed using Cartesian grid parameter-space discretization of increasing
resolution. Objective of the study presented in this section is the investigation
of the adaptive sampling strategy introduced in Section 3.5 and the evaluation
of its influence on the performance and accuracy of the hydraulic reduced order
model. The focus of this investigation is on the choices for the implementation
details. As mentioned in the introduction of the adaptive sampling algorithm,
the main factors in its application are given by the choice of the starting
discretization, the model used in the estimation of the LOO errors and the
model used for the reconstruction. The quality of the adaptive sampling is
mainly evaluated through the average RMSE in the state vectors, but also in
the evaluation of the triangulation of the parameter-space.

In Figure 3.18 two possible Cartesian starting discretizations for the two-
dimensional parameter-space are shown. The grid in Figure 3.18a uses 121
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(a) Cartesian starting grid discretization
with 121 sampling points.

(b) Cartesian starting grid discretization
with 441 sampling points.

Figure 3.18: Delaunay starting triangulations for Cartesian grid discretizations
of the parameter-space P .

points and Figure 3.18b shows the 441 point grid. While it would be preferable
to let the adaptive sampler choose as many points as possible, starting from a
minimal sample of 4 elements, simulations have shown that the algorithm can
ignore certain regions of the parameter-space.

The LOO errors are evaluated on the basis of the projection errors in the
head-loss function. As discussed previously, the head-loss error is a convenient
indicator for the quality of an approximation. Using the projection error over
the approximation error greatly speeds up the calculation of the LOO error, as
it is evaluated through vector-matrix multiplications and the time consuming
evaluation of the non-linear reduced order system can be evaded. Further, as
the previous applications have shown, it still provides a decent surrogate for
the approximation error.

In the following the adaptive sampling strategy is discussed on the basis
of a global and a local reduced basis, followed by the discussion on the use of
global and local reduced order models on the adaptive snapshot databases.

Global Adaptive Sampling

Starting from the 121 element discretization in Figure 3.18a, Figure 3.19 shows
the development of the average RMSE in the leave-one-out projection error
using a global reduced basis with 80 modes and one with 120 modes. The
sampling approach based on the 80 mode reduced basis manages to reduce
the LOO error below 10−2 [mH2O]. However, the error converges and is not
reduced for the addition of sampling point above Nsamples = 200. While the
adaptive sampling on the 120 mode reduced basis can reduce the LOO error
further than the 80 mode approach, converges as well and does not improve
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Figure 3.19: Average leave-one-out error development as a function of the
snapshot database sample size for the adaptive sampling strategy with a global
80 mode and a global 120 mode reduced basis.

for the addition of sampling points over Nsamples = 300.
In Figure 3.20 the triangulation of the adaptive sampling method are shown

for both, the 80 mode and the 120 mode global basis. Both triangulations show

(a) 441 element triangulation using a 80

mode global reduced basis.
(b) 441 element triangulation using a 120

mode global reduced basis.

Figure 3.20: Triangulation of the global adaptive sampling strategy starting
from a 121 element Cartesian grid.

a similar characteristic, as the sampling algorithm mainly refines the grid for
higher values of the demand multipliers. In contrast, the region with demand
multipliers m1,m2 < 5 the initial discretization has barely been improved at
all.

A possible explanation for this behaviour is that the reduced basis is con-
structed in a way that it allows a comparably good representation of the states
for lower demand multipliers, leading the algorithm to favour sampling points
with higher demand multipliers. This result suggests that the use of local
basis may improve the performance of the adaptive sampling algorithm, as it
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prevents the reduced basis to represent only parts of the parameter space.
Figure 3.21 shows the result of the model validation based on the set of

random validation points. The approximation error and the projection error
of the adaptive sampling using the 80 mode and the 120 mode reduced basis
are compared to the Cartesian grid as a benchmark. All of the snapshot
databases use the same number of 441 samples in order to be comparable. It

Figure 3.21: Average RMSE approximation and projection error on the valida-
tion set as a function of the size of the reduced model for Cartesian sampling
and the 80 mode and 120 mode adaptive sampling strategy.

is obvious that the adaptive sampling approach used with a global basis is not
able to improve the results of the reduced model compared to the Cartesian
benchmark. This bad performance of the projection error suggests that this is
mainly a problem caused by the reduced basis. The difference between the two
global samplings in both, the approximation error and the projection error is
marginal.

Local Adaptive Sampling

The global adaptive sampling strategy has been shown to under-sample the
region of lower demand multipliers and to stagnate in the LOO error for sample
sizes over Nsamples = 300. In order to improve on this result the global reduced
basis is replaced by local basis that more closely represent the current point
based on the samples in its vicinity. As for the global approach the starting
discretisation is chosen as the 121 element Cartesian grid and the LOO error
is evaluated on the basis of the RMSE projection error. Figure 3.22 shows
the development of the LOO error as a function of the size of the snapshot
database. Comparing this figure to the development of the global sampling
approach in Figure 3.19 two observations can be made. First, the mean error
for the local approach is much higher for a small number of samples and second,
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Figure 3.22: Average leave-one-out error development as a function of the
snapshot database sample size for the adaptive sampling strategy with a local
10 mode reduced basis.

the mean error is reduced continually, even for the addition of samples for a
sample database size well over Nsamples = 300.

The according triangulations are depicted in Figure 3.23 for 441 samples
and for 1681 samples. For both triangulations regions with a higher and a

(a) 441 element triangulation (b) 1681 element triangulation.

Figure 3.23: Triangulation of adaptive sampling strategy with a local 10 mode
reduced basis starting from a 121 element Cartesian grid.

lower sample density can be identified. However, compared to the triangulation
of the global approach, there is no region that is completely ignored by the
algorithm.

Looking at the evaluation of the errors on the validation set the improved
quality of the selected sampling point is apparent. Figure 3.24 shows the ap-
proximation error of local reduced models on the adaptive sampling based on a
reduced order model with 80 degrees of freedom, compared to equivalent Carte-
sian samplings. For the 441 element samplings the adaptive approach performs
better than the Cartesian sampling independent of the chosen model. How-
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Figure 3.24: Average root mean square error for the reduced order model in
the validation points as a function of the degrees of freedom, calculated on
a Cartesian and adaptive snapshot database using a 80 mode reduced order
model.

ever, for models with a higher number of degrees of freedom this performance
benefit increases significantly. Similar results can be observed for the local
adaptive 1681 element sampling. Although the model performs nearly on the
same level as the 441 element sampling, with an increased amount of degrees
of freedom it performs considerably better. In comparison with the equiva-
lent Cartesian model the adaptive approach cannot compete for small mode
numbers, but for degrees of freedom above 40 the improvement is significant.

The effect of an increased number of 120 modes for the local reduced basis
in the adaptive sampling is visualized in Figure 3.25. This change influences

Figure 3.25: Average root mean square error for the reduced order model in
the validation points as a function of the degrees of freedom, calculated on
a Cartesian and adaptive snapshot database using a 120 mode reduced order
model.
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the accuracy in two ways. On the one hand, for a low number of degrees of
freedom the reduced models on the adaptive sampling perform worse than the
Cartesian equivalents. On the other hand, they perform significantly better
for a higher number of degrees of freedom.

An observation that has been made in the application of the POD to the
hydraulic model in Section 3.6.2 is, that the global reduced model performed
better in the estimation of the full hydraulic state. In order to investigate if this
effect holds true for the adaptive sampling approach, a global reduced model
was applied to the local adaptive sampling. The results in the validations set is
shown in Figure 3.26 for the 80 mode adaptive sampling. Based on the average

Figure 3.26: Average root mean square error for a global and a local reduced
order model in the validation points as a function of the degrees of freedom,
calculated on a local adaptive snapshot database using a 80 mode reduced
order model and compared to a Cartesian sampling.

RMSE the previous findings can also be confirmed for the adaptive sampling,
as the accuracy of the local model is better for lower mode numbers and worse
for higher mode numbers.

The global approach to the adaptive sampling shows to be limited in its
application, as well as its performance. Due to the fact that the addition of a
new sampling point influences the global reduced basis, the leave-one-out error
estimation has to be re-evaluated for all of the parameter sampling point. In
effect the computational burden increases with each addition of a sampling
point. Although this could be mitigated in part by the use of the projec-
tion error the approach becomes infeasible for more detailed discretizations.
Further, it has been shown that the LOO error stagnates above 300 samples,
suggesting that the further addition of sampling points does not improve the
reduced basis created from it. Using a local reduced basis during the adaptive
sampling phase greatly improves the computational effort, as the evaluation
of the leave-one-out error can be limited to the samples in the direct vicinity
of the new sample. The accuracy of reduced models created from the local
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sampling show to be significantly better than the equivalent Cartesian dis-
cretizations especially for models that use a similar number in the reduced
model as for the sampling process. Finally, it could also be shown that the use
of a global reduced model on a locally sampled snapshot database performs
significantly better for models that are sufficiently accurate to substitute the
full order model.

3.7 Conclusion

This section introduces advanced, sampling based, deterministic meta-modelling
techniques for the application in the hydraulic modelling framework. Section
3.2 introduces the proper orthogonal decomposition for the dimensional re-
duction of stationary, parametric systems and demonstrates its application to
formulate the reduced hydraulic system equations through the Galerkin pro-
jection in Section 3.2.2. Reduced models in the state equations, as well as a
reduced formulation of the Jacobian matrix are developed for both, the head-
flow and the loop-flow formulation. This is followed by a short review on the
use of global and local reduced basis in Section 3.2.3. Section 3.3 introduces
the empirical interpolation method as a hyper-reduction approach for the non-
linear residual function, for the more efficient solution of the hydraulic system.
As the quality of sampling based model reduction techniques is inherently de-
pendent on the fidelity of the parameter space discretization, Section 3.5 dis-
cusses the use of adaptive sampling techniques in the literature, followed by the
introduction of an adaptive, sequential sampling method, that uses a greedy
algorithm on the Delaunay triangulation of the discretized parameter-space to
select the centroid of the biggest error triangle as a subsequent sampling point,
based on the leave-one-out projection error.

Section 3.6 applies the previously introduced meta-modelling techniques to
the medium sized network model, in order to validate their performance based
on the validation procedure introduced in Section 3.4.

In a first step the application of interpolation and regression based meth-
ods are evaluated. For these reduced order models it can be concluded, that
models of sufficient accuracy can be formulated using the bi-cubic interpola-
tion for data on a regular grid or the cubic radial basis function interpolation
for irregular grids. While the approaches are easy to implement and time ef-
ficient in the evaluation, it takes a copious amount of pre-simulated data for
the interpolation approach to reach this level of accuracy, making the meth-
ods infeasible for the application, especially in cases with higher dimensional
parameter-spaces.

The application of global and local projection-based reduced order mod-
elling techniques to the hydraulic network model is investigated in Section
3.6.2. Results for the global reduced order model are encouraging as they
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admit the construction of an accurate surrogate model that only uses about
10− 20% of the degrees of freedom compared to the high-fidelity model. Fol-
lowing in suit with this dimensional reduction of the hydraulic system, is a
reduction in computational time of up to 90%, depending on the choice of
evaluation for the Jacobian matrix. While the local reduced order model can
achieve similar accuracy and performance as the global approach, it does not
achieve the same degree of dimensional reduction. However, the construction
method used for the creation of the local reduced basis puts the approach at
a disadvantage. Limiting the number of snapshots to the models degrees of
freedom, does not result in the construction of an efficient basis. This can
be concluded from the SVD of the local snapshot database that contains a
small number of insignificant singular values. Two suggestions to improve the
local approach are thus the addition of local parameter combinations to the
local snapshot matrix, until all of the local modes are significant and the use of
pre-calculated local basis for a number of sub-domains in the parameter-space.

Following the dimensional reduction of the hydraulic problem, the sampling
based empirical interpolation method is applied as a hyper-reduction approach
to increase the computational efficiency in the evaluation of the non-linear
elements. However, the analysis of the SVD on the sampling database shows a
slow convergence in the singular values suggesting that the use of a high number
of modes might be necessary for an accurate approximation. Evaluation of
the interpolation method shows that it is possible to approximate the non-
linear function within appropriate accuracy, giving a projection error below
10−2[mH2O] in the validation set. Yet, the method needs around 1000 support
points to interpolate the full vector of about 2000 values, which does not offer
any increase in computational efficiency. Further, the attempt to solve the
reduced system based on the EIM did not converge. Based on the analysis
of the application, a number of suggestions for the future improvement of the
approach can be made.

As the main reason for the convergence problem seems to be linked to inac-
curacies in the evaluation of the Jacobian matrix, that leads the solver trajec-
tory out of the pre-sampled region in the reduced state vector, two conceivable
improvements are the addition of derivative information to the interpolation
method and the reformulation of the reduced hydraulic model as a constrained
optimization problem

minimize
x̂

||r̂ (x̂,µ) ||2

subject to {x̂|(1− δ)min x̂ � x̂ � (1 + δ)max x̂}
(3.42)

where the state vector is limited to the sampled region with a certain margin
through the inequality constraints. While this could assure the validity of the
interpolation basis and lead to an appropriate approximation, this approach
will most certainly not result in a performance gain for the evaluation of the
reduced system.
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Further improvement of the computational efficiency for the EIM can be
achieved through the reduction in the evaluated support points. The use of
pre-conditioning methods is used with benefit in numerous applications like
optimization and eigenvalue problems. Applying these methods in the con-
struction of the reduced EIM basis could improve the evaluation efficiency to
a viable degree.

The final application in Section 3.6.4 evaluates the benefit of the adaptive
sequential sampling approach to the medium size hydraulic model. The sam-
pling algorithm is evaluated on the basis of a global and a local reduced basis.
In general, the use of the projection error for the evaluation of the leave-one-
out error is far more efficient, as it does not include the solution of a non-linear
system of equations like the evaluation of the approximation error and the pre-
vious applications for the POD and the EIM have shown the projection error
to be a good surrogate for it. While the global approach converges relatively
quick in the average RMSE of the LOO error, the quality of the sampling
grid is impractical for the application of a reduced model. The most likely
explanation is, that the global reduced basis is well adapted for a region of
the model and additional points that are put in the regions of insufficient ap-
proximation are not used in the basis construction. This indicates that the
use of a local sampling basis might improve the results. Applying the local
adaptive sampling method proves that the existence of such a local optimum is
no issue. Although the local approach converges slowly in the average RMSE,
compared to the global method, the quality of the triangulation is much bet-
ter and the reduced models built on it are accurate enough for the use as a
surrogate surpassing the Cartesian benchmark samplings. Further, the local
sampling approach is more efficient than the global approach. As the addition
of a new sampling point potentially chances the reduced basis, the LOO error
for the global model has to be evaluated in all of the sampling points for each
added sample. As the local basis is built on the samples in its proximity, the
recalculation of the LOO errors is limited to the points in the vicinity of the
new parameter combination.

For the construction of reduced order models on the adaptively sampled
database two observations can be made. First, the reduced models seem to
perform better if they use a similar number of degrees of freedom as the reduced
basis that was used in the sampling process. Second, the global reduced model
gave better results than the local one. However, as explained for the application
of the POD this is most probably due to the problem in the construction of
the local reduced model.

Choosing the parameters for a reduced order model always involves a com-
promise between performance and accuracy, as well as the computational effort
for the off-line and on-line procedures. For the model developed in this chap-
ter, the error threshold is well defined as O (10−2) [mH2O]. From this it can be
concluded that the reduced model built from the adaptively and locally sam-
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pled 1681 sample snapshot database performs exceptionally well for a reduced
order of 60 degrees of freedom. If the focus is shifted to a lower number of 441
samples, an accurate reduced order model can be constructed using a reduced
number of 100 degrees of freedom.
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Chapter 4

Uncertainty Quantification

Motivation: Quantification and propagation of parameter uncertainties
in the hydraulic model.
Principal Elements:

• Classical methods in uncertainty quantification

• Intrusive polynomial chaos expansion

• Non-intrusive polynomial chaos expansion

Conclusions:

• Intrusive polynomial chaos expansion evaluates directly the coef-
ficients of the stochastic expansion from the stochastic system of
equations that has to be formulated.

• Non-intrusive polynomial chaos expansion can directly use the de-
terministic equations and is easily adaptable.

• Non-intrusive spectral projection is more efficient than the Monte
Carlo method in the use of collocation points.

• The polynomial chaos expansion is comparable to the Monte Carlo
capable to capture non-linear effects.

Central part of Uncertainty Analysis is the propagation of errors and un-
certainties by means of the mathematical model. To do so, a multitude of
algorithms are available that have been tested and proven in numerous large
scale applications like weather and climate models, hydrology, biology and the
design of nuclear reactors Smith [2013]. It is possible to classify the major-
ity of these methods as one of three groups. The perturbation or sensitivity
methods, the sampling methods and the spectral methods.

• Perturbation Methods: These methods calculate the moments for the
distribution of the quantity of interest directly from the system equations
by means of a truncated Taylor expansion. Typically, the expansions
employed are limited to first- or second-order expansions. This limits
their accuracy for highly non-linear models [Cacuci et al., 2005].
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• Sampling Methods: With Monte Carlo Simulations as one of the most
prominent representatives for this group, sampling methods are often ap-
plied for the propagation of uncertainties in non-linear models. Although,
in general, implementation of the method is a straightforward task, it is
computationally expensive, as the variance of the mean estimate con-
verges with a rate of 1/

√
M , where M is the number of simulations [Xiu,

2010; Fishman, 2013].

• Stochastic Spectral Methods: The objective of the polynomial chaos
expansion is to calculate an approximation for random variables in a
mathematical model. This truncated series uses orthogonal polynomials
with increasing frequency as a basis. Utilizing the smoothness of these
polynomials leads to an efficient convergence behavior [Xiu, 2010; Smith,
2013].

In reality, some methods are not strictly limited to one of these groups. For
example, the non-intrusive spectral projection (NISP) is a spectral method
that uses a sampling approach for the calculation of its coefficients [Le Maître
et Knio, 2010; Smith, 2013].

Section 4.1 introduces classical approaches to the formulation of stochas-
tical systems. In Section 4.2 the polynomial chaos expansion (PCE) is in-
troduced and the stochastic hydraulic system is derived using intrusive and
non-intrusive projection methods. A number of use cases are presented in Sec-
tion 4.3 that analyse the influence of parameter uncertainties on the hydraulic
state vector and the performance of the PCE compared to the state of the art
methods.

4.1 Classical Uncertainty Quantification

Two of the most prominent methods in the formulation of stochastic systems
and uncertainty quantification are stochastic moment approximation methods
like the perturbation method and stochastic collocation methods like Monte
Carlo simulation. Both approaches are introduced in this section and discussed
with regard to their application to the hydraulic model.

4.1.1 Perturbation Methods

Perturbation methods treat the random part of the solution as perturbation
around the mean value. These perturbations are generally assumed to be small,
to guaranty accurate results. As a result, standard deviations are required to
be small. The First Order Second Moment method models the uncertain pa-
rameters symmetrical about their nominal value, which in case of an uncertain
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demand would be d̄i and r̄i for an uncertain roughness. The perturbed param-
eters can then be represented by the generalized vector

P = p̄+ δP =
[
d̄1 + δD1, . . . , d̄nd + δDnd, r̄1 + δR1, . . . , r̄np + δRnp

]T
. (4.1)

Here, p̄ is taken as the expected value of the parameters and δP is a random
perturbation or uncertainty on P. To propagate the parameter perturbation
the QoI X is developed in a Taylor expansion as a function of the perturbed
parameters P:

X = x(P) = x (p̄+ δP) ≈ x (p̄) + SδP. (4.2)

where S is the sensitivity matrix evaluated at the mean value p̄ of the random
variable. For this first order expansion the expected value of the QoI can be
calculated by

µX = E [X] = x(p̄) (4.3)

Using the Taylor expansion of the random parameter in (4.2) the variance can
be determined as:

ΣX = E

[

(X− µX)(X− µX)
T
]

= E
[
SδPδPTST

]
= SΣPS

T . (4.4)

where ΣP denotes the covariance matrix of the parameters Cacuci et al. [2005].
The application of the FOSM to the hydraulic model of a water distribution
network is especially efficient, as there exists the formulation for the direct
evaluation of the sensitivity matrix presented in Section 2.1.3.

Using a first order Taylor approximation limits the method to the estima-
tion of the second moment. If quadratic terms are also taken into account a full
second order sixth moment approach would be possible [Kriegesmann, 2012].
However, practical applications are usually limited to incomplete second order
approaches like the second order third moment method [Hong et al., 1999].

4.1.2 Monte Carlo

Stochastic collocation methods like Monte Carlo simulations (MCS) use ran-
dom samples in order to obtain a stochastic approximation for the mean and
variance of random variables. In uncertainty quantification applications it is
used to repeatedly evaluate the deterministic system equations for a random
sample of the uncertain parameter with the objective to obtain an approxi-
mate representation of the PDF of the QoIs. Monte Carlo methods are very
popular due to their straightforward implementation of the general procedure.
In the first step, random samples are generated from the parameter space
P(i) = (p

(i)
1 , . . . , p

(i)
k )T , i = 1, . . . ,M according to their respective distributions.

This step makes heavy use of random number generation algorithms like the
ones described in Section 3.2. In the second step the deterministic system is
evaluated for each sample i = 1, . . . ,M from the parameter space P to obtain
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the solution ensemble X =
{
x(1) . . . x(M)

}
. In the last step the solution ensem-

ble is used to evaluate the solution statistics defined in Section 3.1 where the
mean is approximated by the sample average

E[X] ≈ µ̂X =
1

M

M∑

i=1

x(i) (4.5)

and the sample variance as

E[(X − µX)
2] ≈ σ̂2

X =
1

M − 1

M∑

i=1

(x(i) − µ̂X)
2 (4.6)

The Monte Carlo method is supported by two basic statistical principles: The
Law of Large Numbers (LLN) and the Central Limit Theorem (CLT). The
Law of Large Numbers states that, if the samples are independent and iden-
tically distributed (i.i.d.), the sample average µ̂X will converge to the true
mean in the limit of M →∞. This also holds for the sample variance σ̂2

X and
higher moments. Although the LLN guarantees the convergence of the MCS
it does not evaluate the accuracy of the approximation. To do so the CLT
has to be applied. Under the condition that the sample size justifies the LLN
and the solution ensemble is i.i.d., the Central Limit Theorem states that the
sample distribution of the sample average converges to a Gaussian distribution
N (E [X] , (σ2

X)/M), with a standard deviation of σX/
√
M and σX as the stan-

dard deviation of the true solution. This relation justifies the concept that the
MCS converges proportional to the inverse of the square root of the sample
size. It is obvious that the MCS can be easily generalized to more complex
and even high dimensional applications, but due to its slow convergence with
1/
√
M it is prone to suffer from the curse of dimensionality [Xiu, 2010].

Pseudo random sampling methods are often used to make stochastic collo-
cation methods more efficient. This is achieved through the faster convergence
in the stochastic moments for the sampled distribution. Popular choices are
low-discrepancy sampling methods like the Halton sequence or the Hammer-
sley point set [Halton, 1964; Hammersley, 1960; Wong et al., 1997]. Looking
at applications with multivariate input parameter-spaces experimental design
based on the Latin Hypercube Sampling (LHS) is a popular approach [McKay
et al., 1979]. The LHS is a stratified Monte Carlo sampling method. Gen-
erating M samples for a k-dimensional input parameter p = [p1, . . . , pk], the
domain of the multivariate distribution is divided into M sub-domains of equal
probability 1/M . For each sub-domain a parameter is selected randomly, on
the basis of the probability density of the interval. The components of the M
parameter vectors p(i) are then combined at random resulting in the sample
vector P =

[
p(1), . . . ,p(M)

]
. The hypercube created from this procedure is

made up of Nk sub-domains or cells.
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4.2 Polynomial Chaos Expansion

The idea of the polynomial chaos expansion is to create a stochastic series ex-
pansion as a function of a basic random variable, using an orthogonal polyno-
mial basis. This basic random variable, often also called the germ distribution
is closely related to the choice of the polynomial basis functions.

If Z is a vector of independent and identically distributed random variables
on Ω, then a scalar random variable X : Ω → R can be represented by the
infinite expansion

x (Z) =
∞∑

k=0

xkΨk (Z) , (4.7)

where x is a function of the random variable Z and Ψk are the orthogonal
polynomials. In practical applications, a truncated expansion with a total
number of N + 1 elements is used to approximate random variables

xN (Z) =
N∑

k=0

xkΨk (Z) . (4.8)

The number of terms in this finite polynomial chaos expansion is dependent
on the dimension of the parameter space n and the order of the expansion l.
It is calculated as:

N + 1 =
(n+ l)!

n!l!
. (4.9)

Polynomial chaos expansion as introduced by Wiener [1938] uses orthogonal
Hermite polynomials to model arbitrarily distributed random variables based
on a Gaussian distribution. Xiu et Karniadakis [2002] generalized the method
to the use of a wider variety of random processes by introducing broader classes
of polynomials defined by the Askey scheme Xiu [2010]. Table 4.1 shows the
link between the probability distribution of the random variable Z and the set
of orthogonal polynomials that are used as polynomial basis.

Two of the most important probability distributions in engineering appli-
cations are given by the uniform distribution and the normal distribution.
Figures 4.1 and 4.2 the first 5 elements are illustrated for the Legendre poly-
nomials and the Hermite polynomials.

The probability distribution function FZ and the orthogonal polynomial
basis are linked through the weighted inner product. For each choice of poly-
nomials Ψ(z)k a weighted inner product L2 (Ω) is defined as

〈Ψi,Ψj〉 =
∫

Ψ(z)i Ψ(z)j dFZ (z) = δij||Ψi||L2
ρ
. (4.10)

The first step in any application of the polynomial chaos expansion is the
projection of the known random input parameters P on the chosen polynomial
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Distribution of Z gPC basis polynomials Support
Continuous Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)
Beta Jacobi [a, b]
Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, . . . , N}
Binomial Krawtchouk {0, 1, . . . , N}
Negative Binomial Meixner {0, 1, . . . , N}
Hypergeometric Hahn {0, 1, . . . , N}

Table 4.1: Correspondence between the type of generalized polynomial chaos
and their underlying random variables [Xiu, 2010].

Figure 4.1: First five Legendre polynomials as a function of the uniform germ
distribution Z ∼ U (−1, 1).

basis. The coefficients PN of their truncated PC expansion

pN (Z) =
N∑

k=0

pkΨk (Z) (4.11)

are calculated using the definition in (4.10)

pk =
〈P,Ψk〉
〈Ψk,Ψk〉

. (4.12)

The existence and convergence of this projection follows from the classical
approximation theory.

In practice there exist two ways to perform the projection called the strong
and the weak approximation. The strong approximation applies in cases where
the parameter is explicitly known as a function P of the basis random variable
Z. For that case the evaluation of (4.12) can be done straightforward by the
integral

pk =
1

||Ψk||L2
ρ

∫

Ω

P (z)Ψk (z) fZ (z) dz (4.13)
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Figure 4.2: First five Hermite polynomials as a function of the normal germ
distribution X ∼ N (0, 1).

Such a case is for example given by a random variable P ∼ N (µ, σ), which is
defined as P (Z) = µ+σZ. Usually the direct definition of the random param-
eter is not known. Instead the parameter is characterized by its probability
distribution function FP (p) = P (P ≤ p). For such cases a weak approxima-
tion is performed. In contrast to the strong approximation a convergence of
the weak approximation is not guaranteed. Instead it converges in probability.
With FP : IP → [0, 1] and FZ : IZ → [0, 1] mapping the random variables P
and Z to a uniform distribution in [0, 1], (4.13) may be rewritten. Assume that
U = FP (P ) = FZ (Z), the random variables may be expressed as P = F−1

P (U)
and Z = F−1

Z (U) respectively. This allows to give P = F−1
P (FZ (Z)) as a func-

tion of Z, which results in

pk =
1

||Ψk||L2
ρ

∫

Ω

F−1
P (FZ (z))Ψk (z) fZ (z) dz (4.14)

For multivariate random variables the inversion of the probability density func-
tion is generally not possible. This means that multivariate input parametriza-
tions usually use the tensorization of univariate random variables

p (Z) =
n∏

i=1

p (Zi) . (4.15)

However, this way of modelling demands for the random parameters to be
independent. As (4.9) shows, the use of a multivariate input parameter-space
dramatically increases the size for the finite PCE. Especially the addition of
high dimensional interdependencies in the input parameters increase the num-
ber of terms in the expansion, many of which can have small or close to zero
coefficients. This makes the approach computationally expensive for intrusive
and non-intrusive methods alike. Blatman et Sudret [2011] address this prob-
lem through the use of a sparse polynomial chaos expansion that eliminates
not significant elements. They introduce a truncation strategy that reduces
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the expansion complexity based on hyperbolic index sets and an adaptive algo-
rithm based on Least Angle Regression (LAR) in order to detect the significant
PCE coefficients.

Evaluation of the coefficients for the quantities of interest can be performed
in an intrusive or a non-intrusive manner. The intrusive approach formulates
an extended stochastic system in the coefficients of the PCE which allows for
the direct evaluation without any need to sample the initial system, whereas
the non-intrusive methods evaluate the original deterministic system in order
to approximate the coefficients.

4.2.1 Intrusive stochastic hydraulic model

Due to the direct numerical evaluation of the stochastic expansion of the quan-
tities of interest, an intrusive stochastic model may have considerable benefits
compared to stochastic collocation methods like Monte Carlo and non-intrusive
spectral projection based on the repeated evaluation of the deterministic sys-
tem. With this in mind, this section presents the basic steps for the develop-
ment of the intrusive stochastic hydraulic model.

In applying the intrusive PCE to the hydraulic equations all uncertain
parameters d and r are replaced by the polynomial series expansion of the
order N + 1, following (4.12).

dN (Z) =
N∑

k=0

dkΨk (Z)

rN (Z) =
N∑

k=0

rkΨk (Z)

The uncertain hydraulic state vectors q and h are then replaced by their
expansions

qN (Z) =
N∑

k=0

qkΨk (Z)

hN (Z) =
N∑

k=0

hkΨk (Z)

with the unknown coefficients qk and hk. Replacing these expansions in (2.13)
and (2.14) gives the stochastic system of equations:

AqN + dN = 0

∆h(rN ,qN)−AThN −AT
f hf = 0

(4.16)
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Projecting this approximation onto the N + 1 polynomial basis functions Ψk

leads to an augmented system of equations which contains N + 1 times the
number of equations as the original system.

〈AqN + dN ,Ψk〉 = 0
〈
∆h(rN ,qN)−AThN −AT

f hf ,Ψk

〉
= 0

(4.17)

The formulation of such a system of equations allows to directly evaluate the
coefficients for the expansion of the QoIs. However, the direct evaluation of
(4.17) is not possible as the head-loss function ∆h is a non-polynomial function.
The treatment of this term is further discussed in the Section 4.2.3.

4.2.2 Non-Intrusive Spectral Projection

Determining the coefficients of the polynomial chaos expansion for the hy-
draulic state vector x, using the non-intrusive approach can be done in a num-
ber of different ways. Smith [2013] divides them into collocation methods and
discrete projection methods. One thing all of these methods have in common
is, that they use a set of realizations from the deterministic model and can be
used in combination with existing, deterministic models or software solutions.

The general approach for the non-intrusive collocation can be described
in two steps. First, based on a set of M collocation points {Zm}Mm=1 from
the germ distribution, an ensemble of solutions X =

[
x(p(Z1)), . . . , x(p(ZM))

]

is calculated for the set of parameters {p(Zm)}Mm=1, using the deterministic
system. Second, the coefficients for the polynomial series expansion

x(p(Zm)) = xK(p(Zm)) (4.18)

are estimated using linear regression, K indicating the polynomial expansion
order. For a general orthogonal basis polynomial this leads to the matrix
system:






Ψ0(Z
1) . . . ΨN(Z

1)
...

. . .
...

Ψ0(Z
M) . . . ΨN(Z

M)











x0
...
xN




 =






x(p(Z1))
...

x(p(ZM))




 . (4.19)

Given that this system is well conditioned and the system is not under-determined,
the system can be solved in a least squares sense through the inversion of the
matrix on the left hand side of (4.19).

The set of collocation points {Zm}Mm=1 can be created using either stochastic
methods like Monte Carlo sampling or deterministic methods like sparse grid
sampling. Further, detail on the efficient placement of collocation points is
given by Xiu [2010] or Smith [2013].
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4.2.3 Pseudo-Spectral Head-Loss Function

In the development of an intrusive stochastic formulation of the hydraulic
system equations, the treatment of the non-polynomial head-loss function is
one of the most complicated tasks.

One possibility is to replace the head-loss function by a Taylor approxima-
tion, which gives it polynomial form and is thus easily treatable as a polynomial
non-linearity following Le Maître et Knio [2010]. However, the approximation
of the head-loss function through the Taylor expansion is limited and has to be
performed at a minimum for the third order if non-linear effects are supposed
to be captured.

A more accurate approximation of the head-loss function, that has proven
to closely approximate the Hazen-Williams as well as the Darcy-Weisbach
equation is given in (2.9) by Pecci et al. [2017]. Starting from this quadratic
approximation and replacing the sign function in the quadratic term by the
product q|q| a stochastic approximation of the head-loss function can be for-
mulated as:

∆h (q (Z)) = aq (Z) + b|q| (Z) q (Z) . (4.20)

This formulation is still not polynomial as it uses the Absolute value function,
but following Le Maître et Knio [2010] the spectral coefficients of the absolute
value function are defined through the spectral product:

|q| (Z) |q| (Z) = q2 (Z) . (4.21)

Using the Galerkin product, a set of non-linear equations can be formulated
for the expansion coefficients of |q| (Z)






∑P
j=0Cj00|q|j . . .

∑P
j=0CjP0|q|j

...
. . .

...
∑P

j=0Cj0P |q|j . . .
∑P

j=0CjPP |q|j











|q|0
...
|q|P




 =






q20
...
q2P




 , (4.22)

with the coefficients Cijk calculated as

Cijk =
〈Ψi,Ψj,Ψk〉
〈ΨkΨk〉

. (4.23)

The system can be solved using a non-linear standard solver. Once the coef-
ficients for the stochastic expansion of the absolute value function are deter-
mined, the calculation of the coefficients for the stochastic head-loss function
is straight forward and it can be replaced in (4.17).

Figure 4.3 shows the pseudo spectral approximation of the absolute value
function based on the Hermite polynomial for a flow rate that is normally
distributed as q ∼ N (0, 1). Due to the lack of differentiability in the abso-
lute value function, the Hermite polynomials have a problem approximating it
around the mean value.
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Figure 4.3: Pseudo-spectral approximation of the absolute value function of
a flow variable distributed as q ∼ N (0, 1) for different orders P of Hermite
polynomials.

With the coefficients of the absolute value function, the pseudo-spectral
projection of the non-linear term in the spectral head-loss function can be
evaluated. The results are shown in Figure 4.4. Two observations can be

Figure 4.4: Pseudo-spectral approximation of the quadratic term in the head-
loss function of a flow variable distributed as q ∼ N (0, 1) for different orders
P of Hermite polynomials.

made in this case. First, the error that is introduced by the lack of differ-
entiability in the absolute value is not significant as the multiplication with
the flow smooths over the region around the mean value. Second, while the
anti-symmetric approximation around the mean value is reasonably accurate,
the approximation gets inaccurate for big Z values.

Looking at a random flow variable that is distributed as q ∼ N (1, 0.5)
in Figure 4.5, shows the same inaccuracy for the approximation of the non-
differentiable part in the absolute value function. In Figure 4.6 the same
smoothing effect can be observed for the expansion of the non-linear head-loss
term.

This pseudo-spectral approximation of the head-loss function seems promis-
ing for the application in an intrusive stochastic hydraulic system. One issue
however, is the calculation of the coefficients. As the head-loss is a function of

99



4.3. Applications

Figure 4.5: Pseudo-spectral approximation of the absolute value function of
a flow variable distributed as q ∼ N (1, 0.5) for different orders P of Hermite
polynomials.

Figure 4.6: Pseudo-spectral approximation of the quadratic term in the head-
loss function of a flow variable distributed as q ∼ N (1, 0.5) for different orders
P of Hermite polynomials.

the stochastic state variable, the expansion coefficients have to be calculated
repeatedly for each element of the flow rate vector during the evaluation of the
stochastic system. This poses a considerable computational effort, especially
as the solution of the non-linear system (4.22) often depends on a good choice
for the initial value.

4.3 Applications

In this section three use cases are presented that have been designed with spe-
cific objectives. The first application is mainly used for the validation of the
implementation for the polynomial chaos expansion. The tree shaped graph
of the network guarantees good results for the FOSM, as the flow rates are
determined through a set of linear equations. In the second use case the ap-
plication to the pressure driven model is investigated. The introduction of
the pressure-outflow relation introduces highly non-linear behaviour to the hy-
draulic system in order to challenge the polynomial chaos expansion. The third
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application is used to challenge the PCE through the use of a six dimensional
parameter-space on the demand driven hydraulic model.

4.3.1 Illustrative Model

The illustrative model is used for the first implementation and validation of
both, the intrusive and non-intrusive PCE algorithms. The topology of the tree
shaped network graph is shown in Figure 2.2. The tree structure is convenient,
as the flow rates are calculated by a determined set of linear equations in this
case, which facilitates the validation process. However, the application can
be extended to more complex use cases with looped networks without any
changes. The parameters of the mathematical model have been introduced in
Section 2.1 and are given by the incidence matrix A, the demand vector d,
the friction vector r and the fixed head potential vector hf . The quantities of
interest are the flow rate vector q and the head vector h.

Scenario

The case presented in this scenario introduces a system with a single uncertain
parameter. This parameter is defined by the demand multiplier at node 10,
which is the end point of one of the branches in the network depicted in Figure
2.2. The parameter uncertainty is modelled as Gaussian random variables
N ∼ (1, 0.3). This way the mean of the demand flow rate, which is defined as
the base demand times the demand multiplier, has its mean at the base demand
and is highly unlikely to become negative. A total number of Nsamples = 1e5
samples are generated using Latin Hypercube Sampling in order to ensure
an error of approximately e = 0.1% for the Monte Carlo simulation. The
generated distribution is shown in Figure 4.7

Figure 4.7: Parameter uncertainties for demand Z ∼ N (1, 0.3).
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Results

This section compares the results from the Monte Carlo simulation, first order
perturbation method and the PCE. The results for the quantities of interest
are illustrated by the flow rate through pipe 5 and the head at node 5. These
elements are representative for the results in the rest of the network.

Figure 4.8 shows the resulting probability distribution for the flow rate
through link 5. The abscissa gives the flow rate q5 in l/s and the ordinate
quantifies its probability P (q5). The result of the Monte Carlo simulation
uses the full sample size of Nmc = 1e5 evaluations and is given by the his-
togram. The yellow curve gives the result from the First Order Second Moment
method, which calculates the mean and the variance and is approximated as
a Gaussian distribution. Finally the red curve shows the result of a first order
PC expansion, which has been evaluated using a sample size of Npce = 1e2.
All three methods are in good agreement for the quantification of uncertainty
in the flow rate q5 . Information on the convergence behavior of the Monte

Figure 4.8: Estimated probability density function for the flow rate through
link 5 using FOSM, MCS and a 1st-order PCE.

Carlo method and the polynomial chaos expansion is given in Figure 4.9 for
the mean estimated value and in Figure 4.10 for the variance. The graphs
show the estimated mean and standard deviation as a function of the number
of samples that have been used for the evaluation. A logarithmic scale is used
for the abscissa.

Figure 4.11 shows the results for the head h5 in mH2O at node 5 on the
left hand side and is again completed by the convergence plots in mean and
standard deviation on the right hand side. For the FOSM method the estimate
probability density function is once again chosen to be Gaussian. However, in
this case the approximation is not as accurate as the results from both the
Monte Carlo simulations and the fourth order PCE that give a non-symmetric
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Figure 4.9: Convergence of mean estimated flow rate through link 5 using MCS
and a 1st-order PCE.

Figure 4.10: Convergence of estimated standard deviation for the flow rate
through link 5 using MCS and a 1st-order PCE.

distribution that is skewed in the direction of lower heads.
Taking a close look at the methods used for quantifying the uncertainties

and the structure of the model they have been applied to, it is possible to
explain the difference in performance shown by Figures 4.8 and 4.11. In the
special case of the hydraulic model defined in Section 2.4.1 the flow rates can
be calculated by the set of linear equations in (2.13) due to the tree structure
of the network. From this it follows for one that the FOSM method uses a
first order or linear approximation of the random variable for the calculation
of the first and second moment. Similar to this it can be shown that for a
Gauss-Hermite PCE any Gaussian distribution can be described exactly by a
first order expansion with the coefficient u0 as mean value and u1 as standard
deviation. In conclusion it can be argued that both methods give the exact
result in this special case and the result is confirmed by the Monte Carlo
simulation.

As introduced in Section 2.1.1 the head is strongly influenced by the non-
linear head-loss function. That explains in part the different results in Figure
4.11. Once again the Monte Carlo simulation with the full sample size Nmc =
1e5 gives the result for validation. The FOSM method produces a Gaussian
distribution that is based on the sensitivity of the system and is not able to
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Figure 4.11: Estimated probability density function for the head at node 5
using FOSM, MCS and a 8th-order PCE.

capture the asymmetry of the probability distribution. Figure 4.11 shows a
good fit in the central part even for a substantial variance in the demand.
Major problems in the description are limited to the distribution tails. In
contrast, a PCE of the order four is capable to give an accurate description of
the head probability distribution that is in agreement with the Monte Carlo
simulation. For the convergence in both the mean value in Figure 4.12 and
the variance in Figure 4.13 similar results can be observed as for the flow rate.
While the PCE converges already for a few hundred samples, the MC method
needs more than Nmc = 1e4 samples to achieve similar precision.

Figure 4.12: Convergence of estimated mean value for the head at node 5 using
MCS and a 8th-order PCE

Discussion

Monte Carlo versus Non-Intrusive Spectral Projection: Looking at the fact
that both the Monte Carlo simulation and the non-intrusive spectral projection
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Figure 4.13: Convergence of estimated standard deviation for the head at node
5 using MCS and a 8th-order PCE.

Galerkin Non-Intrusive Spectral Projection
2nd-order Taylor 5 Samples 10 Samples
q5 h5 q5 h5 q5 h5

u0 21 845.2393 21 845.2393 21 844.8645
u1 10 -80.6156 10 -80.6156 10 -80.2202
u2 0 -15.0044 1e-8 -15.0044 3e-13 -15.7426
u3 0 -3e-18 1e-9 0.4011 2e-13 0.5413
u4 0 0 1e-11 -0.0202 2e-15 -0.1009

Table 4.2: Calculated coefficients for the polynomial chaos expansion using
the intrusive Galerkin projection and the non-intrusive matrix inversion ap-
proaches for the flow rate through pipe 5 q5 and the head at node 5 h5.

may be classified as sampling methods one may ask why the application of the
polynomial chaos expansion is beneficial. From literature the answer to this
question lays in the fact that PC methods use the smoothness of the orthogonal
basis polynomials and in effect have a superior convergence behavior Smith
[2013]. This is illustrated in the convergence plots for the mean and standard
deviation in Figures 4.9 and 4.10, as well as Figures 4.12 and 4.13. For a low
dimensional problem as the one discussed in this scenario a very small number
of points is sufficient to get a good estimation of the PCE coefficients, while the
Monte Carlo method with pseudo-random LHS needs more than 1e4 samples
to give comparable accuracy.

Intrusive versus Non-Intrusive Methods: As introduced in Section 4.2 there
exist two basic approaches to calculate the expansion coefficients with the in-
trusive and non-intrusive methods. For the application of the PCE in this
thesis both have been tested and the results are shown in Table 4.2. The coef-
ficients for the Galerkin approach have been obtained by using a second order
Taylor expansion for approximating the non-linear head-loss function. For the
non-intrusive matrix inversion, the coefficients have been calculated using sam-
ple sizes of 5 and 10 . The table shows that the coefficients u0 to u2 calculated
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by the Galerkin projection are in good agreement with the NISP calculations.
Coefficients of an order higher than the expansion of the head-loss function
are effectively zero, suggesting that in future applications the expansion or-
der should match that of the PCE. The coefficients from the NISP results no
major difference can be identified between the calculations based on 5 and 10
samples underlining the efficiency of the stochastic collocation approach. How-
ever, under the circumstances of the example it is probable that the 10 sample
NISP is more accurate due to the higher number of collocation points and
with respect to the second order approximation of the head-loss function for
the Galerkin projection. Applying the intrusive approach is challenging since
the newly created set of equations changes for the addition of new, uncertain
input parameter or with a change in the expansion order. This means it is
not easily adaptable to new network models. The adaptation of non-intrusive
methods to higher order expansions and a bigger parameter space on the other
hand is relatively easy. This makes the non-intrusive approach more flexible.
Further, the non-intrusive method does not require the approximation of the
non polynomial head loss term in the system equations, which means that it
contains the correct non-linear behavior. In conclusion, it can be stated that
in small applications like the one presented in this article the matrix inversion
is the better approach due to the flexible application and efficient sampling.

Evaluating the Expansion Order: An important task for any application of
an expansion approach is the evaluation of accuracy for the chosen development
order. Since it is not possible to do so a priori this section shows the measures
that have been taken based on the estimated coefficients. In a first iteration,
the expansion order is chosen due to experience. Based on the evaluation, it
has to be adapted. The appropriate expansion order depends on factors like the
non-linear properties of the modeled system and the desired accuracy for the
application. Similar to other examples from polynomial approximation theory,
it is assumed that the expansion converges to the true solution and that the
theoretical infinite series may be represented by a truncated series of order N .
From this it follows that coefficient values of higher order polynomials should
be small and go to zero. As can be seen in Table 4.2 the coefficients decrease
with order of the expansion and approach zero for higher orders, which justifies
the series truncation.

4.3.2 Strong Non-Linearities

In order to evaluate the polynomial chaos expansions capability to capture
highly non-linear effects in a model, this use case applies it to the pressure
driven model of the small looped network shown in Figure 2.3. The network
contains 9 consumer nodes, 12 links and 3 reservoirs.
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Scenario

The one-dimensional parameter-space for the uncertain parameter is given by
a demand multiplier. This demand multiplier is applied to the base demand,
defined on a subset of the free nodes. The quantities of interest are the flow
rates at the pipes and the nodal heads. The system is modelled using the
demand driven and the pressure driven paradigm in order to investigate the
influence on the QoIs. The pressure outflow relation is modelled by the classical
Wagner function.

Results

Figure 4.14 shows the estimated probability density function for the flow rate
through one of the pipes in the network loop. The non-intrusive PCE uses
a polynomial of the order 12 and a sample size of 100 realizations, while the
Monte Carlo simulation is based on an ensemble of 1e4 samples. The upper
plot shows the result for the demand driven approach, whereas the lower plot
gives the result of the pressure driven model. The results show that PDF

Figure 4.14: Estimated probability density for the flow rate through the pipe
2 in the small network loop, using Monte Carlo simulation and a 12th order
PCE on the DDM and PDM approach.

based on the DDM is given by a slightly skewed, bell shaped distribution. In
contrast, both distributions generated from the PDM clearly show a second
peak and an abrupt cut-off for higher flow rates.
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Looking at the results for the nodal pressure in the looped network part
in Figure 4.15, similar observations can be made. While the head distribution

Figure 4.15: Estimated probability density for the head at node 7 in the net-
work loop of the small model, using Monte Carlo simulation and a 12th order
PCE on the DDM and PDM approach.

based on the DDM is clearly skewed in the direction of lower heads, the PDM
once again introduces a second peak to the distribution and the cut-off to lower
heads.

Discussion

The presented results show the benefit of the Monte Carlo simulation and
the polynomial chaos expansion over perturbation methods like the first order
second moment and second order third moment methods. Both the MC and
PCE are able to capture the second peak in the distribution introduced by the
PDM. Comparing the performance of the two approaches, the PCE shows to
use the data more efficiently as it uses a much lower number of simulations to
produce results comparable to the MC simulation.

Looking at the results from a hydraulic point of view, the significance of
combining the PDM and the uncertainty propagation is apparent. The cut-
off in the flow rate and the head distribution can be easily explained by the
inclusion of the pressure-outflow relation introduced in Section 2.2. With rising
demand or outflow at a consumption node, higher pressures are necessary.
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While the shift of the main peak of the flow distribution in Figure 4.14 can
be explained by the reduced outflow for hm ≤ h ≤ hs in the Wagner function
(2.32), the outflow is reduced to zero for insufficient pressure. This effect also
creates the second peak, which agglomerates the states of higher demands that
cannot be served to the maximum possible outflow. At the lower end of the
flow PDF no changes can be observed, since the POR does not act in this
region.

The effect of the POR can also be observed in the probability distribution
of the head in the looped part of the network. While the DDM produces a
distribution with a long tail in the direction of lower heads, the distribution
from the PDM has a lower limit given by the minimum service pressure defined
in the Wagner function. This, in turn, generates the second peak for the
cumulated lower head cases.

4.3.3 High Dimensional Parameter-Space

In this use case the scenario is extended with respect to the network size as
well as in the dimension of the parameter space. First, the subject network
is defined by a realistic model that has been supplied by VEDIF through the
ResiWater project. This network contains 2,175 pipes, 1,822 nodes and one
reservoir in the highly looped region. Its topology is illustrated in Figure
4.16. Second, parameter uncertainties are defined by a 12 dimensional model
in demand flow rates and pipe roughness.

Scenario

For the scenario, the network is divided into the 6 different regions using
the k-means algorithm. The regions are illustrated in Figure 4.16. For each
of the regions an uncertain demand multiplier is applied to the nodes with
their respective base demand and roughness multiplier is applied to the design
roughness of each pipe taken from the network model. This ensures that the
mean value of the uncertain parameters is close to that of the deterministic
model. All of the 12 parameters are independent and normally distributed
random variables. The demand multipliers are defined as N ∼ (2, 0.6) in order
to peak demand period flow rates and avoid negative demands in the model.
The roughnesses are chosen as N ∼ (2, 0.3) in order to simulate the ageing
process of the pipes, as the mean roughness is expected to rise with age and it
is unlikely to be lower than the design value. The parameter space has been
chosen to be based on Gaussian distributions to make the results comparable to
similar studies; however, using the PCE the design of more complex parameter
spaces with multiple different probability distributions is possible without the
loss of generality. Samples from the 12 dimensional distribution are created
using a Latin Hypercube Sampler. In order to ensure a very low estimated
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Figure 4.16: Clusters for parameter uncertainties in the medium size network.

error of e = 0.1% for the Monte Carlo simulation a maximum sample size of
Nsamples = 1e5 has been generated. Figure 4.17 shows the realizations for one
of the demand multipliers and one of the roughness multipliers. The hydraulic
system is modelled using the demand driven approach.

Results

As for the illustrative example the results are presented by the probability
density function, which is tested for normality using the Pearson χ2-test and
the convergence plots in mean and standard deviation. Since it has been
shown previously that the first order perturbation method is inadequate for the
propagation of non-linear effects and the application to the network is expected
to have non-linear effects due to the looped structure of the network, the results
are limited to the Monte Carlo simulation and the PCE and the use of the non-
intrusive PCE method. For the Monte Carlo simulation represented by the
histogram the full sample size of Nmc = 1e5 has been used. In comparison, the
PCE with the NISP approach has been developed on the basis of a total number
of Npce = 5e2 evaluations of the full hydraulic system in order to calculate
the coefficients for a 6th order expansion. The kernel density estimation uses
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Figure 4.17: Exemplary parameter uncertainties for demand multiplier
Z1,...,6 ∼ N (2, 0.6) and roughness multiplier Z7,...,12 ∼ N (2, 0.3).

Nkde = 1e5 evaluations of the resulting meta-model, which is computationally
insignificant.

Figure 4.18 shows the estimated probability distribution of the flow rate
through one of the pipes in the highly looped section of the network that is
located next to the reservoir. In the χ2-test it is confirmed that the flow rate is
distributed normally. The location of the pipe suggests that the demand flows
from the all over the network are collected at this location which explains the
high flow rates and the Gaussian distribution.

For the convergence it can be seen that the PCE is able to give a very
accurate estimate in mean (Figure 4.19) and variance (Figure 4.20) of the
flow, even for small sample sized, while the Monte Carlo simulation starts
converging after a number of 1e4 samples. This fast convergence of the PCE
could also be observed for the flow rate in the illustrative model and can be
explained by the linear behaviour that is easily approximated by a second order
PCE.

In Figure 4.21 the flow is illustrated for one of the pipes in the highly looped
area with a medium distance from the reservoir. The distribution is slightly
skewed. This is confirmed by the rejection of the null hypothesis in the χ2-
test. For the mean in Figure 4.22 and especially the variance in Figure 4.23 it
can be seen, that convergence for the PCE is reached with about 1e3 samples.
Although the flow rate distribution in this part of the network is clearly non-
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Figure 4.18: Estimated probability density function for flow rate in looped
network area close to the reservoir using Monte Carlo simulations and a 6th-
order PCE.

Figure 4.19: Estimated probability density function for flow rate in looped
network area close to the reservoir using Monte Carlo simulations and a 6th-
order PCE. Comparison of convergence in mean and variance as a function of
sample size.

Gaussian, in the same part of the network also contains pipes with similar
characteristics where the flow rates were classified as normally distributed.

Figure 4.24 shows the probability distribution for the head at one of the
nodes in the looped region of the network. In contrast to the flow rate distri-
bution, which can be linear or non-linear at different positions in the network,
this result is very characteristic for the head distributions all over the net-
work. The form of the distribution can likely be explained from the head-loss
function that is approximately quadratically dependent on the flow rate. For
a normally distributed flow rate this leads to χ2 distribution of the head-loss
and the 1− χ2 characteristic in the remaining head.

The convergence in mean head illustrated in Figure 4.25 and head variance
depicted in Figure 4.26, once again shows that the PCE stabilizes around
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Figure 4.20: Estimated probability density function for flow rate in looped
network area close to the reservoir using Monte Carlo simulations and a 6th-
order PCE. Comparison of convergence in mean and variance as a function of
sample size.

nsamples = 1e3 while the Monte Carlo simulation needs more than 1e4 samples.
As before for it can be seen that for non-Gaussian distributions the PCE needs
considerably more samples than for close to Gaussian distributions.

Discussion

In the Flow rates few generalizations can be made from the results of the
high dimensional scenario. For one it can be seen that flow rates close to the
reservoir follow a Gaussian distribution. This is most likely due to the effect
of demand agglomeration. As the network is supplied by a single reservoir all
demands have to flow through these pipes. In contrast, for arbitrary pipes
that are part of the loop structure in the network it is not possible to give
any sort of generalization. There results show some flow rate distributions
that are classified as Gaussian and others as non-Gaussian by the χ2-test with
no apparent difference to the topological position. However, the results from
the illustrative network example has some added relevance, as it describes the
behavior of the tree structures in the network.

For the head on the other hand, it can be seen that the distribution gen-
erally has a characteristic form similar to the one shown in Figure 4.24. As
stated before, this form can be directly explained by the close to quadratic
relation in the head-loss formula which leads to a χ2 distribution. Similar
results have been reported for a study by Piller et al. [2003] who introduced
a stochastic consumer model based on a binomial distribution and propagate
the uncertainties using MCS and the FOSM. In contrast, Hwang et al. [2017]
report that nodal heads behave more linearly for looped network. This dif-
ference in results might be explained by the topology of the network and the
fact that distribution networks in North America are over-sized, compared to
their European counterparts. This would lead to laminar flow and in turn the
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Figure 4.21: Estimated probability density function for flow rate in looped
network area using Monte Carlo simulations and a 6th-order PCE. Comparison
of convergence in mean and variance as a function of sample size.

Figure 4.22: Estimated probability density function for flow rate in looped
network area using Monte Carlo simulations and a 6th-order PCE. Comparison
of convergence in mean and variance as a function of sample size.

head-loss function would become linear. In that case a normally distributed
probability density function for the head would be a logical conclusion.

For the application of the PCE with the high dimensional parameter space
a number of issues have to be mentioned. First, for an efficient evaluation of the
Monte Carlo approach the samples have been generated using Latin Hypercube
sampling. While this makes the MCS more efficient, this benefit is not limited
to the method as the PCE collocation approach profits from this in the same
way. Second, Section 4.2.2 shows that the coefficients are estimated based on
the linear regression (4.19). The calculation of the coefficients involves the
inversion of a M×N matrix, where M is the number of collocation points and
N is the number of coefficients in the meta-model. This matrix inversion can
become very demanding or even prohibitive for memory resources in cases of
huge sample sizes or a very big number of coefficients. This is not the case for
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Figure 4.23: Estimated probability density function for flow rate in looped
network area using Monte Carlo simulations and a 6th-order PCE. Comparison
of convergence in mean and variance as a function of sample size.

Figure 4.24: Estimated probability density function for head in looped net-
work area using Monte Carlo simulations and a 6th-order PCE. Comparison of
convergence in mean and variance as a function of sample size.

the intrusive PCE approach. However, as stated in Le Maître et Knio [2010]
the development of special solvers is necessary for such applications.

4.4 Conclusion

The objective of this chapter is the introduction of sophisticated propagation
methods for uncertain parameters to the hydraulic equations.

Section 4.1 gives an overview on current state of the art methods in uncer-
tainty analysis.

In Section 4.2 the polynomial chaos expansion is introduced as a novel ap-
proach for the propagation of parameter uncertainties in non-linear models.
For the intrusive application of the PCE, the derivation of the stochastic hy-
draulic equations is presented on the basis of the Galerkin projection, together
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Figure 4.25: Estimated probability density function for head in looped net-
work area using Monte Carlo simulations and a 6th-order PCE. Comparison of
convergence in mean and variance as a function of sample size.

Figure 4.26: Estimated probability density function for head in looped net-
work area using Monte Carlo simulations and a 6th-order PCE. Comparison of
convergence in mean and variance as a function of sample size.

with the derivation of a pseudo-spectral formulation for the non-polynomial
head-loss function. This is followed by a discussion on the application of the
non-intrusive spectral projection, which permits the use of the PCE an the
basis of deterministic legacy code.

Section 4.3 applies the PCE to a selection of challenging use cases in or-
der to evaluate its performance to traditional methods. The application of
intrusive and non-intrusive Polynomial Chaos expansion methods to the hy-
draulic models has shown that it is capable to capture non-linearities in the
quantities of interest with comparable accuracy to Monte Carlo simulations.
But, in comparison to these classical Monte Carlo simulations the Polynomial
Chaos expansion is by far computationally more efficient. In the application
of the intrusive Galerkin projection, the reformulation of the system equations
for the calculation of the expansion coefficients together with the necessary
approximation of the non-polynomial head-loss function has been found to be
challenging. Especially since this new set of equations is only applicable to
one specific instance of the parameter space. The application of non-intrusive
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methods has proven to be more generic. It allows for an easy adaptation to new
input parameters and deals with non-polynomial elements directly through the
sampling of parameter space.

The application of the PCE to the highly non-linear PDM model particu-
larly demonstrates the benefit of the method over the perturbation methods.
Based on a relatively small sample size, the method is able to capture the
second peak in the probability distribution and the hard cut-off introduced by
the pressure outflow relation.

In the application to high dimensional parameter spaces experience has
shown, that the PCE profits from efficient sampling strategies in the way as
the MCS. However, in the fitting of the meta-model current implementations
have too calculate the inverse of a matrix whose size is determined by the
number samples times the number of elements in the polynomial expansion.
Due to this, system memory becomes a limiting factor in practical applications.

Applying the first order second moment method to the hydraulic equations
has been shown to be limited since it is not possible to capture non-linear ef-
fects. But, due to the direct formulation of the sensitivities and highly efficient
calculation of the covariance matrix, this method may still be relevant in cases
with high dimensional input spaces and concentrated variance in the uncertain
parameters.

For all the use cases, it is assumed that the product from the number of
nodal consumers and the probability of consuming is greater than 5 so that
the normal distribution approximation holds. However, the framework of the
generalized polynomial chaos expansion also allows to model parameter uncer-
tainties that follow distributions like the Binomial and the Poisson distribution
which should be tested in the future.

While a large part of the evaluations in this section are based on Matlab
code that was created during this thesis, some software solutions, that offer
applications for the PCE, have been evaluated. First, there exists a NISP tool-
box for the scientific calculation environment SciLab. However, this toolbox is
not actively supported and incompatible with the current version. At the ETH
Zurich the reliability toolbox UQLab is developed. While some parts of the
package are open source, the core of the application is closed off and licensed.
The software Dakota developed by Sandia National Laboratories gives a broad
platform for parameter study based methods like optimization and uncertainty
quantification. Applications can be implemented either through script based
coupling of Dakota and the computational model or directly through the open
C++ code. The open source project OpenTURNS has not been investigated
further, but it seems to be supported by an active community.
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Chapter 5

Efficient Uncertainty Propagation

Motivation: Combined application of deterministic and stochastic meta
models for the efficient propagation of parameter uncertainties.
Principal Elements:

• Projection based reduced order models

• Non-intrusive polynomial chaos expansion

Conclusions:

• Combined application brings massive gains in computational effi-
ciency.

• Small sample sizes in the snapshot database limit the attainable
accuracy of the reduced model.

• Degrees of freedom in the reduced order model can be seen as design
parameters for the attainable accuracy.

With the successful development of the reduced order model for the hy-
draulic systems in Chapters 3 and the encouraging results from the spectral
uncertainty quantification in Chapter 4, the next logical step is the combined
application of the deterministic and the stochastic meta models. To do so,
this chapter applies the efficient uncertainty propagation to one of the model
networks. The results of the uncertainty quantification based on the reduced
order model is evaluated with respect to its accuracy and the benefits in com-
putational cost and compared to more conventional approaches.

5.1 Realistic Network Model

Subject for the combined validation of the efficient uncertainty propagation is
the realistic network model from the Paris region, introduced in Section 2.4.
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5.1. Realistic Network Model

5.1.1 Scenario

The scenario is defined similar to the use case discussed in the development of
the reduced order model in Chapter 3. It is based on the loop-flow formulation
of the demand-driven hydraulic equations. As such the quantities of interest
are given by the state description in the loop-flow vector qc.

The two-dimensional parameter-space for the parameter uncertainties is
defined in the demand-multipliers using a bivariate normal distribution. They
are applied globally to the demand nodes in the complete network through
the selection matrix K. The reduced model is constructed using the same
parameter-space as the parameter uncertainties. In the application it is im-
portant to ensure that the samples from the parameter distribution is confined
to the pre-sampled region in the reduced model, otherwise inaccuracies could
be introduced due to extrapolation.

The main interest in contrast to the studies in Chapter 4 is used of the
reduced order model for the evaluation of the stochastic collocation points. As
it has been discussed for the application of the reduced order model, two of the
most important factors influencing its accuracy and performance are given by
the models degrees of freedom and the refinement of the snapshot database.
These two factors and their influence on the probability distribution in the
QoIs will be investigated in the following sections.

5.1.2 Results

Figure 5.1 shows the histogram for the conventional validation procedure using
a full scale Monte Carlo sampling with a total number of nMC = 104 samples
on the high-fidelity model. In comparison the kernel density estimation is
illustrated for a 12th order polynomial chaos expansion is shown. The PCE
only uses a tenth of the full scale evaluations, with nPCE = 103. While the
PCE is able to capture the non-linear behaviour in the distribution, a certain
amount of smoothing is apparent. This is also expressed in the difference for
the mean values in the MC and PCE distributions.

The results for the application of the reduced order model for the propaga-
tion of the parameter uncertainties is shown in Figures 5.2 and 5.3. Both mod-
els used in the estimation of the probability density function are constructed
on the basis of the adaptively sampled, 1681 element snapshot database.

Figure 5.2 illustrates the estimate for the probability density function using
a reduced order model with a total number of 10 degrees of freedom. It is
obvious, that the application of this low order approximation to the hydraulic
model is not at all capable to capture the complex structure of the PDF shown
in Figure 5.1. However, it does shows to be accurate in some of the main
probability measures like the mean, variance and the confidence intervals in
the tails of the distribution.
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Figure 5.1: MC and PCE estimates of the probability density function for the
loop flow, using the high fidelity model.

Increasing the degrees of freedom for the reduced order model clearly in-
creases the models capability to capture the intrinsic non-linear effects. The
estimated probability density function for the loop-flow in Figure 5.3 is based
on a reduced order model with a total number of 40 degrees of freedom. While
a considerable amount of smoothing is visible compared to the full order model
in Figure 5.1, the model behaviour is approximated much more closely.

Figure 5.4 shows the relative computational effort as a function of the
complexity for the reduced order model in its degrees of freedom. The base
line in all cases is given by the computational effort for the full scale Monte
Carlo simulation using the high fidelity-model. The figure contains the blue
line that visualizes the direct reduction in computational effort due to the
performance gain in the evaluation of the reduced order model. For the range
of models analysed in this section, this benefit can be quantified by a 40%
to 50% reduction. The second line visualizes the reduction achieved in the
combined application of the deterministic and stochastic meta model, which
is in the range of 90% to 95%.

In the context of the results presented in the construction of the reduced
order model in Chapter 3 it has to be mentioned that during these calculations
the Jacobian matrix was evaluated through the direct formulation given in
(3.21) as opposed to numerical differentiation.

On the influence of the fidelity of the snapshot database pretty similar
observations could be made to the influence of the model complexity. For the
use of a sufficiently big snapshot database, which in the context of this study
is the case for the adaptive sampling with more than 441 elements, no bigger
limitations of the model could be observed, if a sufficient number of modes are
used. However, for the use of a small snapshot database, like the basic 121
element Cartesian sampling introduced in Chapter 3, the achievable accuracy
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Figure 5.2: MC and PCE estimates of the probability density function for the
loop flow, using the reduced 10 mode model and the 1681 element adaptive
sampling.

in the probability density function is limited to that comparable to a 10 degrees
of freedom model, even if higher numbers of modes are used.

5.1.3 Discussion

Comparing the results from the random sampling based on the full model to the
results of the reduced order model, shows that the reduced model gives a good
approximation of the system. The results of the full scale validation reproduce
the experience from the spectral propagation of uncertainties in Chapter 4,
namely the faster convergence of the spectral approximation compared to the
Monte Carlo simulation for a greatly reduced number of stochastic collocation
points. This also translates into a reduction in computational effort.

With respect to this, the main focus of the study is on the influence of
the reduced order model and the effect of the discretization in the parameter-
space. For the effect of the degrees of freedom in the reduced order model the
results of the study illustrate strikingly how, with the reduction of fidelity, the
estimate for the probability density function of the loop-flow approaches more
and more that of a linear system. Looking at the influence of the sampling in
the parameter-space, similar behaviour could be reproduced for the reduction
of sampling points in the snapshot matrix. The most obvious interpretation
of this behaviour, with respect to the model complexity, is that the first POD
mode can be seen as the normal or mean state in the loop-flow vector and the
addition of further degrees of freedom models the non-linear modes for a better
approximation of the high fidelity system. This interpretation is also in line
with the effect of the sparsely sampled parameter-space, where the inclusion
of the higher modes does not improve the results due to the lack of these
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Figure 5.3: MC and PCE estimates of the probability density function for the
loop flow, using the reduced 40 mode model and the 1681 element adaptive
sampling.

higher modes in the snapshot matrix. However, although the full non-linear
behaviour is not reproduced for the low order or sparsely sampled models, this
does not discard the use of these models. An interesting observation that has
been made is, that these models produce good results with respect to mean
values, variance and the description of the distribution tails with the confidence
interval.

While all these effects shown in the chapter on reduced order modelling
could be reproduced in the context of the uncertainty propagation, the stochas-
tic sampling seems to be more forgiving with respect to the model accuracy.
A possible explanation for this observed behaviour is, that the parameter un-
certainties are normally distributed around the centre of the parameter-space.
The inaccuracies in the reduced order model are especially high for lower values
of the demand multipliers. These errors are mitigated by the fact that these
regions are not sampled as densely for the creation of the stochastic surrogate
model.

5.1.4 Conclusion

This chapter successfully shows the improved benefit of the combined appli-
cation for the reduced order model and the polynomial chaos expansion in
the uncertainty propagation framework. While the separate benefits for each
methods could be confirmed once more, their combination proves to be far
superior and to greatly reduced the computational effort.

However, in the context of practical applications a number of consideration
have to made. The massive gain in computational performance during the on-
line step is very attractive for the use with parametrised models. Further, the
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Figure 5.4: Relative computational effort for the reduced order model MC
sampling and the 12th order PCE.

observed mitigation of the approximation errors in the reduced order model
allows for the use of more time efficient models with a lower number of degrees
of freedom. Some aspects of the application that have to be addressed during
the model creation are the lack of an a priori error estimation. As a result it
has to be seen as an iterative process where a deliberate choice of the model
parameters has to be made. The development of such a priori error estimators
is part of the current development and would greatly increase the efficiency
during the application of these methods.

In conclusion the choice of the model parameters is closely tied to the re-
quired level of detail. If the main interest is to describe the resulting distribu-
tion in the first and second moment or the confidence intervals, the use of a low
order model on a sparsely sampled parameter-space leads to a highly efficient
propagation of the uncertainties. In the case of more detailed applications,
for example in the context of a Bayesian framework, a more complex reduced
model can offer an sizeable reduction in computational effort while creating
a close approximation of the true probability distribution for the quantity of
interest.
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Work

• In Chapter 1 the basic mathematical tools that are used throughout the
thesis are introduced in topical order. First, a short introduction is given
for graph theory. This is relevant in the hydraulic modelling process for
water distribution networks, the hierarchical reduction of these models
and the Delaunay triangulation. The adjoint method is presented as a
convenient tool for the determination of the system derivatives in Chap-
ter 2. The SVD is introduced as one possible method to obtain a suitable
orthogonal basis for the projection based model reduction methods used
in Chapter 3 and the Delaunay triangulation builds the corner stone of
the adaptive sampling strategy. Finally, for the use in Chapter 4 some
basic definitions for statistics are introduced together with the frame-
work of orthogonal polynomials for their use in the polynomial chaos
expansion.

• Chapter 2 deals with the hydraulic network model in general. Section
2.1 introduces the demand-driven modelling paradigm. This contains
the presentation of the friction induced head-loss, the formulation of the
static hydraulic equations and the formulation of the sensitivity matrix.
This is followed by the presentation of the pressure-driven modelling
paradigm in Section 2.2, with the introduction of the pressure-outflow
relationship and the formulation of the altered hydraulic equations. The
capabilities of both the demand-driven and pressure-driven modelling
paradigms for modelling deficient networks are discussed in Section 2.3.
The chapter closes with the presentation of the graphs for the example
networks that are used throughout the thesis.

• In Chapter 3 a categorization of common reduced order modelling tech-
niques is presented with interpolation based methods, projection based
methods and hierarchical models. This is followed by the definition of
a common validation procedure on the basis of the approximation er-
ror and the projection error in Section 3.4. For the application to the
hydraulic network models, the interpolation based and projection based
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methods are introduced in further detail. Section 3.1 introduces classical
response surface interpolation models and interpolation models based on
the radial basis functions. For the projection based methods Section 3.2
concentrates on the introduction of the SVD based proper orthogonal
decomposition. Further, the reduced hydraulic model equations are de-
rived for the head-flow and the loop-flow equations, together with the
projected form for the direct evaluation of the Jacobian matrix. Finally
it introduces the use of global and local reduced basis. Section 3.3 in-
troduces the application of the empirical interpolation method for the
application in the hydraulic equations, followed by the introduction of
an adaptive projection error based sampling strategy in Section 3.5.

• Chapter 4 deals with the propagation of parameter uncertainties using
mathematical models. It first gives a characterization of the basic propa-
gation approaches with the perturbation methods, sampling or stochastic
collocation methods and the stochastic spectral methods. In Section 4.1
the perturbation method and the Monte Carlo simulation are presented
in more detail followed by the introduction of the polynomial chaos ex-
pansion in Section 4.2. The section continues to discuss the formulation
of the stochastic spectral equations for the hydraulic model.

• Chapter 5 evaluates the combined application of reduced order modelling
techniques and spectral uncertainty propagation on the example of a
realistic water distribution network with a two dimensional parameter-
space.

Findings & Contributions

• In Chapter 2 a new approach to the derivation of the hydraulic sensitiv-
ities through the use of the adjoint method is presented, in contrast to
the direct formulation reach through the differentiation of the hydraulic
equations. The new way to derive the hydraulic sensitivities through the
use of the adjoint method gives an alternative to the conventional direct
formulation reach through the differentiation of the hydraulic equations.

• Chapter 3 shows for the first time an application of the projection based
POD method to the hydraulic equations of a water distribution network.
It compares the accuracy and computational efficiency of interpolation
based and projection based methods for the application in a realistic net-
work model. Further, a new projection error based adaptive sampling
strategy is introduced. For an even more efficient evaluation of the hy-
draulic system the empirical interpolation methods is applied for the first
time in the hydraulic modelling framework to decrease the computational
effort for the non-linear residual function.
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• It shows, that both the interpolation based and the projection based re-
duced order modelling approach can produce a meta-model of sufficient
accuracy in the approximation error. However, convergence in the inter-
polation model comes at the price of a high number of evaluations in the
high-fidelity model. This makes its use limited, as higher dimensional
applications are computationally prohibitive. The POD is much more
efficient in this perspective as it keeps the physical information from the
hydraulic equations through the Galerkin projection. This makes it more
efficient from a sampling point of view. Further, the possible dimensional
reduction in the systems degrees of freedom results in an increased per-
formance for solving the non-linear set of equations. Depending on the
fact if the Jacobian matrix is evaluated by its direct formulation or nu-
merically the computational time is reduced by 50− 90%.

• Even though the pure application of the POD results in such a speed up,
the main computational effort lays in the evaluation of the non-linear
residual function. The application of hyper reduction techniques like
the empirical interpolation method to the non-linear head-loss function
is supposed to greatly reduce this factor. However, the experience in
this thesis is, that the parameter-space of the head-loss function is too
complex for the application of sampling based methods, as the reduced
system state vector has to be added to it, making the problem intractable.
While the approximation and projection errors could be brought to an
acceptable level, there is no gain in computational efficiency and the
solver for the reduced system on basis of the EIM does not converge,
most probably due to the solver stepping out of the region that was
pre-sampled during the off-line step.

• The application of the adaptive sampling strategy shows that choosing
the sampling points based on the leave-one-out error greatly improves the
result of the reduced order model. It could also be shown that the use
of the projection error and a local basis in the sampling strategy greatly
increases its performance, as the calculation of the projection is very
efficient and the formulation of a local basis limits the number of points
influenced by a new sample. Comparing the use of global and local basis,
the applications in this thesis have shown the global approach to be more
efficient. However, as the number of significant modes created from the
local basis is usually lower than the number of degrees of freedom, this
is more a sign that the construction of the local basis is inefficient.

• Chapter 4 uses for the first time a spectral series expansion method for
the propagation of uncertainties in the context of the hydraulic water
distribution network model. Further, a full formulation of the intrusive
stochastic hydraulic equations is derived. Finally, a new spectral for-
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mulation of the non-polynomial head-loss function is derived using the
pseudo-spectral projection.

• Comparing the Monte Carlo simulation to the non-intrusive spectral pro-
jection, while they are both stochastic collocation methods, the PCE
uses the samples more efficient and can use the smoothness of the or-
thogonal basis functions in order to converge much faster. Analysing the
results of the intrusive and the non-intrusive approach, they are both in
good agreement. However, the application of the intrusive formulation is
not easily adaptable to changes in the parameter-space or in the expan-
sion order. This makes the non-intrusive approach much more versatile,
as it allows for the use of legacy code and the easy adaptation of the
spectral expansion. Determining the appropriate expansion order of the
PCE is an iterative process. As currently there exists no a priori error
estimation, the suitability of a selected PCE is commonly evaluated a
posteriori. This is usually performed as a post processing step, through
the evaluation of the convergence in the PCE coefficients.

• In the context of an application with strongly non-linear effects like the
PDM model, the PCE manages to capture the non-linear effect on the
PDF of the QoIs, in contrast to the FOSM. The results are comparable
to those of the MC simulation and it uses less collocation points in the
process. However, compared to the MC simulation, the use of the con-
tinuous polynomials has a problem in approximating the hard cut-off in
the head and flow distributions, which can be explained by the Gibbs
phenomenon.

• For the application in the context of a 12-dimensional parameter-space
similar observations could be made. In order to alleviate the computa-
tional burden Latin Hypercube sampling was used for the sample cre-
ation. Both the MC and the PCE profit from this method. Analysing
large scale applications the non-intrusive calculation of the expansion
coefficients may become computationally prohibitive, as it performs a
matrix inversion. LHS and least angle regression models are ways to
mitigate the problem, however in cases where this is insufficient the use
of an intrusive model may be the last resort. However, the use of such a
model may necessitate the development and use of special solvers.

• The application proves the potential of the combined application of a
deterministic and a stochastic meta-model.

• As a conclusion, it could be shown that the number of degrees of free-
dom chosen in the reduced order model is one of the main factors for the
accuracy of the resulting probability density function, together with the
refinement of the snapshot matrix. For models built on a small sample
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of snapshots, the reachable accuracy is limited even with the inclusion
of a high number of degrees of freedom in the reduced model, as the re-
duced basis does not contain enough information. For a sufficiently dense
sampled parameter-space, the models degrees of freedom can be used to
recreate the distribution of the high-fidelity model with varying accuracy.
For most of these approximations to the PDF there is a good approx-
imation in the first two stochastic moments, as well as the confidence
intervals. This means that, depending on the application, the required
model complexity may be even lower than what has been deemed a suit-
able approximation in the context of this thesis. A general effect that
has also been observed is, that the nature of the stochastic application
in the stochastic collocation process strongly mitigates the errors of the
reduced order model especially in the region of lower demand multipliers.

Future Work

• The discussion on the deficient networks shows that in the future, further
effort has to be put in the development of better hydraulic models, as for
current models there exist numerous extreme scenarios for which they
fail to produce reliable results.

• Although the main application of the reduced order modelling techniques
was successful, there remain some questions that have to be studied fur-
ther in the future. This concerns for one the application of the framework
to higher dimensional problems. Applications of the reduced model in
this thesis were limited to two dimensions, mainly to facilitate the valida-
tion and analysis process. However, real life applications like optimiza-
tion or uncertainty quantification generally use a much higher number of
parameters. In those frameworks the scalability of these methods has to
be evaluated. The second focus lays on the application of the EIM. While
the application of the methods was not met with success in this thesis,
there exist a number of approaches that can improve its performance.
One possibility could be the reformulation of the hydraulic problem in
an optimization framework. This way it would be ensured that the solver
does not leave the pre-sampled region. A second possibility is the inclu-
sion of the derivatives into the interpolation method, that could help
the solver to converge. A third approach is the use of a pre-conditioner
to make the problem more suitable for the numerical solution process.
Finally, as the construction of the local reduced basis has been shown to
lack in fidelity, the selection process for the local snapshot matrix has to
be adapted to give a more accurate basis.

• One of the main problems in the application of the polynomial chaos
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expansion is the lack of an a priori error estimate. The availability of
such an error measure would greatly improve the use of the PCE in
practical applications. This means that finding a suitable model may
require a number of iteration. Further, even though the method is more
efficient in the use of stochastic collocation points than the Monte Carlo
simulation, the application to high-dimensional problems will become
computationally infeasible. This may at best be mitigated through the
application of the intrusive stochastic model, as in this case the size of
the system of equations may increase and become hard to solve standard
solution methods.

• While the test application was limited to a case where the Jacobian ma-
trix was evaluated using the direct formulation, applying it in the context
of the numerical Jacobian may further improve the computational benefit
from around 93−95% to about 99% or even more. Further improvement
of the efficient propagation of uncertainties is directly influenced by the
reduced order modelling and the polynomial chaos expansion. from this
it can be concluded that the possible improvements to these methods also
benefit the combined application. A second path, that has not been fol-
lowed in this thesis, is the combination of the reduced order model with
the intrusive spectral projection. Formulating the stochastic equations
of a big deterministic model may lead to a massive system of equations.
The size of such a stochastic system may greatly benefit from the re-
duced number of degrees of freedom given by a projection based reduced
hydraulic model.
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