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Learning Representations of Speech from the Raw Waveform by Neil Zeghidour

Abstract

While deep neural networks are now used in almost every component of a speech recognition system, from acoustic to language modeling, the input to such systems are still fixed, handcrafted, spectral features such as mel-filterbanks. This contrasts with computer vision, in which a deep neural network is now trained on raw pixels. Mel-filterbanks contain valuable and documented prior knowledge from human auditory perception as well as signal processing, and are the input to state-of-the-art speech recognition systems that are now on par with human performance in certain conditions. However, mel-filterbanks, as any fixed representation, are inherently limited by the fact that they are not fine-tuned for the task at hand. We hypothesize that learning the low-level representation of speech with the rest of the model, rather than using fixed features, could push the state-of-the art even further. We first explore a weakly-supervised setting and show that a single neural network can learn to separate phonetic information and speaker identity from mel-filterbanks or the raw waveform, and that these representations are robust across languages. Moreover, learning from the raw waveform provides significantly better speaker embeddings than learning from mel-filterbanks. These encouraging results lead us to develop a learnable alternative to mel-filterbanks, that can be directly used in replacement of these features. In the second part of this thesis we introduce Time-Domain filterbanks, a lightweight neural network that takes the waveform as input, can be initialized as an approximation of mel-filterbanks, and then learned with the rest of the neural architecture. Across extensive and systematic experiments, we show that Time-Domain filterbanks consistently outperform mel-filterbanks and can be integrated into a new state-of-the-art speech recognition system, trained directly from the raw audio signal. Fixed speech features being also used for non-linguistic classification tasks for which they are even less optimal, we perform dysarthria detection from the waveform with Time-Domain filterbanks and show that it significantly improves over mel-filterbanks or low-level descriptors. Finally, we discuss how our contributions fall within a broader shift towards fully learnable audio understanding systems.

Résumé

Bien que les réseaux de neurones soient à présent utilisés dans la quasi-totalité des composants d'un système de reconnaissance de la parole, du modèle acoustique au modèle de langue, l'entrée de ces systèmes reste une représentation analytique et fixée de la parole dans le domaine temps-fréquence, telle que les mel-filterbanks. Cela se distingue de la vision par ordinateur, un domaine où les réseaux de neurones prennent en entrée les pixels bruts. Les mel-filterbanks sont le produit d'une connaissance précieuse et documentée du système auditif humain, ainsi que du traitement du signal, et sont utilisées dans les systèmes de reconnaissance de la parole les plus en pointe, systèmes qui rivalisent désormais avec les humains dans certaines conditions. Cependant, les mel-filterbanks, comme toute représentation fixée, sont fondamentalement limitées par le fait qu'elles ne soient pas affinées par apprentissage pour la tâche considérée. Nous formulons l'hypothèse qu'apprendre ces représentations de bas niveau de la parole, coinjontement avec le modèle, permettrait de faire avancer davantage l'état de l'art. Nous explorons tout d'abord des approches d'apprentissage faiblement supervisé et montrons que nous pouvons entraîner un unique réseau de neurones à séparer l'information phonétique de celle du locuteur à partir de descripteurs spectraux ou du signal brut et que ces représentations se transfèrent à travers les langues. De plus, apprendre à partir du signal brut produit des représentations du locuteur significativement meilleures que celles d'un modèle entraîné sur des mel-filterbanks. Ces résultats encourageants nous mènent par la suite à développer une alternative aux mel-filterbanks qui peut être entraînée à partir des données. Dans la seconde partie de cette thèse, nous proposons les Time-Domain filterbanks, une architecture neuronale légère prenant en entrée la forme d'onde, dont on peut initialiser les poids pour répliquer les mel-filterbanks et qui peut, par la suite, être entraînée par rétropropagation avec le reste du réseau de neurones. Au cours d'expériences systématiques et approfondies, nous montrons que les Time-Domain filterbanks surclassent systématiquement les mel-filterbanks, et peuvent être intégrées dans le premier système de reconnaissance de la parole purement convolutif et entraîné à partir du signal brut, qui constitue actuellement un nouvel état de l'art. Les descripteurs fixes étant également utilisés pour des tâches de classification non-linguistique, pour lesquelles elles sont d'autant moins optimales, nous entraînons un système de détection de dysarthrie à partir du signal brut, qui surclasse significativement un système équivalent entraîné sur des mel-filterbanks ou sur des descripteurs de bas niveau. Enfin, nous concluons cette thèse en expliquant en quoi nos contributions s'inscrivent dans une transition plus large vers des systèmes de compréhension du son qui pourront être appris de bout en bout. Tout d'abord, je remercie Emmanuel Dupoux, mon directeur de thèse. C'est lui qui m'a initié et formé à la recherche scientifique, en m'encadrant durant mon stage de master. Il a par la suite joué un rôle déterminant dans la construction du projet de CIFRE, avant de devenir mon directeur de thèse. Sa vaste culture scientifique, sa capacité à prendre du recul bien au-delà des tendances et effets d'annonce, ainsi que son sens de la rigueur m'ont été précieux tout au long de cette thèse. Je le remercie également pour sa bienveillance et l'intérêt profond qu'il porte au devenir de ses étudiants, sa tolérance envers mon organisation approximative et mes disparitions régulières pour travailler seul pendant des périodes parfois étendues, dont il ne m'a jamais tenu rigueur.
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PER (Phone Error Rate

) on TIMIT, in percentages. "mel" stands for mel-filterbanks, while "TD-filterbanks" stands for Time-Domain filterbanks. All models but [START_REF] Tóth | Phone recognition with hierarchical convolutional deep maxout networks[END_REF] and [Van Den Oord et al., 2016] are trained in an end-to-end fashion. . . . . . . . . . . . . . . . . . . 6.1 Architectures of the two trainable filterbanks. Values of width and strides are given to match the standard settings of mel-filterbanks for waveform sampled at 16kHz. The convolution for the scatteringbased architecture uses 80-real valued output channels and squared L2-pooling on the feature dimension to emulate a complex-valued convolution with 40 filters followed by a squared modulus operator. Thus, after the nonlinearity, both architectures have 40 filters. In Chapter 5, we use 1 to prevent log(0) and [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF] and Sainath et al.

[2015a] use 0.01. We kept the values initially used by the authors of the respective contributions and did not try alternatives. We believe it has little impact on the final performance. . . . . . . . . . . . . . . 

Organization of the thesis

This thesis is organized in three parts. Part I is an introduction, while the contributions of this thesis are split between Parts II and III.

In Part I, we first present a brief summary of recent advances in speech recognition, and show how deep learning methods have progressively been integrated into every step of speech recognition systems, except for the features, that still remain fixed, handcrafted descriptors, in particular mel-filterbanks. Through a detailed description of the mel-filterbanks computation, we expose how these features include valuable prior knowledge that comes at the cost of inherent and undesirable biases. This motivates the goal of this thesis: replacing handcrafted speech features by a learnable frontend, that is trained with the rest of the model for the task at hand. We then give an overview of the previous work on speech recognition from the waveform, as well as our contributions on that topic. Beyond the purely linguistic content, a speech signal conveys a lot of information about its speaker (identity, age, emotion, etc.), called the paralanguage. Observing that paralinguistic classification systems of speech also use hardcoded features, we present the related work and our own contributions in training paralinguistic classifiers from raw speech. Finally, we describe one of the current challenges for speech technologies, low-resource languages, and present the existing work as well as our contributions in improving weakly-supervised and unsupervised speech modelling systems by enriching or learning their input representations.

The relative order of Parts II and III does not follow this order, but rather a chronological one.

Part II adresses weakly-supervised and unsupervised learning of phonetic and speaker embeddings, from different type of features, and from the raw waveform. This was the first topic of this thesis.

Chapter 2 gives a preliminary background on evaluating embeddings of speech for a particular application (phonetic modelling, speaker modelling), as well as methods to learn such representations in a weakly-supervised or unsupervised way.

Chapter 3 investigates the impact of replacing mel-filterbanks by a richer scattering transform in a weakly-supervised phonetic modelling system.

In Chapter 4, we train a single model to separate the phonetic information and speaker characteristics from the speech signal, introducing incidentally our first models trained on the waveform.

The encouraging results on the quality of speaker embeddings trained from the waveform in Chapter 4 are however dampenened by the structural differences between mel-filterbanks and the proposed neural alternative, which leads us to develop a learnable alternative that can be compared to mel-filterbanks in controlled settings: Automatic Speech Recognition (ASR), the task of transcribing a speech utterance automatically, has been historically performed using fixed, handcrafted speech features as input, the most standard pipeline being the MFCCs, for Mel-Frequency Cepstral Coefficients [START_REF] Davis | Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[END_REF]. Statistical speech recognition has relied on Hidden Markov Models (HMM) since its early days [START_REF] Baker | The dragon system-an overview[END_REF][START_REF] Jelinek | Continuous speech recognition by statistical methods[END_REF][START_REF] Stephen E Levinson | An introduction to the application of the theory of probabilistic functions of a markov process to automatic speech recognition[END_REF][START_REF] Lawrence R Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF], in particular GMM-HMM that use Gaussian Mixtures to model the speech features distribution [START_REF] Juang | Maximum likelihood estimation for multivariate mixture observations of markov chains (corresp.)[END_REF]. A big shift ASR was brought with the use of deep neural networks as acoustic models.

After a GMM-HMM has been trained on a speech dataset, the Viterbi algorithm [START_REF] Viterbi | Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[END_REF] is used to assign the most likely hidden state to each feature frame in the data. This hidden state can then be used as a label to train a deep neural network from the speech features. During inference, a neural language model can be combined with the acoustic model to improve the decoding [START_REF] Mikolov | Recurrent neural network based language model[END_REF].

The use of deep acoustic models critically improved the performance of automatic speech recognition systems [Hinton et al., 2012a], as seen in Figure 1-1, and these so called "DNN-HMM" (Deep Neural Network -Hidden Markov Model) systems are still Figure 1-1: Evolution of performance on the TIMIT dataset along years, measured in Phone Error Rate (PER) and based on the performance reported in (chronological order) [START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF][START_REF] Ming | Improved phone recognition using bayesian triphone models[END_REF][START_REF] Mohamed | Deep belief networks for phone recognition[END_REF][START_REF] Tóth | Combining time-and frequency-domain convolution in convolutional neural network-based phone recognition[END_REF]. The inflexion point in 2009 corresponds to the emergence of deep acoustic models.

the current state-of-the-art on almost every benchmark [START_REF] Chan | Deep recurrent neural networks for acoustic modelling[END_REF][START_REF] Kyu | The CAPIO 2017 Conversational Speech Recognition System[END_REF], Povey et al., 2018[START_REF] Tóth | Phone recognition with hierarchical convolutional deep maxout networks[END_REF]. So called "connectionist" approaches had proposed using neural networks for speech recognition for decades [START_REF] Md Bedworth | Comparison of neural and conventional classifiers on a speech recognition problem[END_REF], Bottou et al., 1989[START_REF] Huckvale | Exploiting speech knowledge in neural nets for recognition[END_REF][START_REF] Lawrence R Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF][START_REF] Renals | Connectionist probability estimators in hmm speech recognition[END_REF][START_REF] Waibel | Phoneme recognition using time-delay neural networks[END_REF]], however it is not until the late 00's that they toppled Gaussian Mixtures.

Despite their unmatched performance, DNN-HMM systems have the drawback of requiring complex training and evaluation schemes: predicting (context-dependent) phone states requires using a pronunciation dictionary, a GMM-HMM needs to be trained to provide a deep acoustic model with forced-aligned labels, and decoding a sentence needs constructing a complex lattice with weighted finite-state transducers [START_REF] Mohri | Weighted finite-state transducers in speech recognition[END_REF]. This motivated the second big shift in ASR, with the emergence of end-to-end training. In this context, a deep neural network can be directly trained to predict the sequence of phonemes [START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF], graphemes [START_REF] Amodei | Deep speech 2: End-to-end speech recognition in english and mandarin[END_REF], or word pieces [START_REF] Rao | Exploring architectures, data and units for streaming end-to-end speech recognition with rnn-transducer[END_REF] from speech features. This removes the need for a forced-alignment obtained from training an GMM-HMM beforehand. Moreover, in the case of grapheme prediction, it also removes the need for a pronunciation dictionary, and with the addition of a special "space" character, the system can even output words directly. The first end-to-end systems relied on a new loss function, CTC for Connectionist Temporal Classification [START_REF] Graves | Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[END_REF], which does not require an alignment (even though a sentence-level alignment is usually used). This has allowed training ASR systems in one step instead of using the two-step schedule of DNN-HMM systems [START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF], and has since then been implemented in systems that are competitive with the state-of-the-art [START_REF] Amodei | Deep speech 2: End-to-end speech recognition in english and mandarin[END_REF][START_REF] Awni | Deep Speech: Scaling up end-to-end speech recognition[END_REF][START_REF] Miao | EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding[END_REF], as well as into production [START_REF] Battenberg | Reducing Bias in Production Speech Models[END_REF].

A drawback of CTC is its conditional independence assumption: conditioned on the output of the acoustic model, the probability of a character is independent from the previous predictions. This makes training and inference tractable, but this assumption may be too strong. Alternatives to CTC have been proposed to deal with this problem, like the AutoSeg loss [START_REF] Collobert | Wav2letter: an end-to-end convnet-based speech recognition system[END_REF] which adds a transition matrix between output characters and can be seen as a Markovian CTC, or GramCTC which learns the set of basic units during the optimization process [Liu et al., 2017b].

A second trend in end-to-end ASR then solved this problem altogether by replacing neural networks trained with CTC by sequence-to-sequence [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF] models, which are Recurrent Neural Networks (RNNs) that take as input the sequence of feature frames and generate the output characters one by one, the conditional dependence being modeled by the internal state of the decoder [Chan et al., 2015[START_REF] Chorowski | Attention-based models for speech recognition[END_REF]. In that case, the loss function is simply a cross-entropy between the prediction and the corresponding ground truth character, and inference is performed via a beam search. This is currently the biggest trend in end-to-end speech recognition, and the gap in performance with CTC or DNN-HMMs keeps reducing [START_REF] Chiu | State-of-the-art speech recognition with sequence-to-sequence models[END_REF].

Hence, speech recognition has progressively shifted towards more end-to-end systems, concurrently with other fields of application such as natural language processing [START_REF] Collobert | Natural language processing (almost) from scratch[END_REF] or computer vision [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]]. However, one can notice that along the recent history of ASR, from GMM-HMMs to sequence-tosequence systems, one component has remain almost unchanged: the use of hardcoded input representations of the speech signal, instead of the speech signal itself. Indeed, all the ASR systems mentioned so far have been trained on hardcoded features such as mel-filterbanks, MFCC, or spectrograms. Thus, the so-called "end-to-end" ASR systems still need a separate feature extraction, which is not integrated into the model.

Deep neural networks changed the landscape of computer vision by allowing to

train an image classifier from raw pixels [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], instead of training it on hardcoded features [START_REF] Bay | Speeded-up robust features (surf)[END_REF][START_REF] David G Lowe | Object recognition from local scale-invariant features[END_REF][START_REF] Perronnin | Improving the fisher kernel for large-scale image classification[END_REF]. A convolutional neural network trained directly on the raw pixels would jointly learn all levels of representation (from low-level signal processing to high-level modeling of shapes and structures) using backpropagation, exhibiting similarities with the hierarchical processing of images that is performed in the visual cortex [START_REF] Fukushima | Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition[END_REF][START_REF] David | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF][START_REF] Matthew | Visualizing and understanding convolutional networks[END_REF].

Even though convolutional neural networks have a long history [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF][START_REF] Waibel | Phoneme recognition using time-delay neural networks[END_REF], their mainstream use was triggered by the unprecedented performance of AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] in the 2012 ImageNet challenge, a deep convolutional network that reported a top-5 test error of 15.3%, outperforming by more than 10% absolute the second entry, which used hardcoded features and shallow classifiers. This performance was allowed, mainly, by three factors:

• Exploiting GPUs for an efficient training of deep and otherwise prohibitive architectures [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF],

• Advances in deep learning techniques, including the use of ReLUs and dropout [Hinton et al., 2012b, Nair and[START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF],

• Access to large databases, such as ImageNet [START_REF] Deng | Imagenet: A largescale hierarchical image database[END_REF].

Since then, every recognition task in computer vision (classification, detection, segmentation) has switched to convolutional neural networks trained directly from the raw pixels [START_REF] Farabet | Learning hierarchical features for scene labeling[END_REF][START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF]. An important observation is that the three key factors mentioned above are also valid for speech recognition: large, public training datasets are available [START_REF] Panayotov | Librispeech: an ASR corpus based on public domain audio books[END_REF], and both GPU computing and deep neural network architectures have been exploited for speech recognition for at least as long as they have been for computer vision [Hinton et al., 2012a[START_REF] Waibel | Phoneme recognition using time-delay neural networks[END_REF]. This observation motivates the main goal of this thesis: training neural networks from raw speech for recognition and classification. In the next section we describe the computation of mel-filterbanks and MFCC step by step, and show how each operation in this pipeline is inspired from prior knowledge of the auditory perception, but also how this prior knowledge can create a bias that could be corrected by making these operations learnable for the task. Then we present the existing literature on speech recognition from the waveform, as well as our contributions on that topic. Then we show how non-linguistic classification from speech is also typically performed from handcrafted features. We present the current literature on non-linguistic classification from the waveform, and our contributions to this question. Finally, we describe a current challenge for speech recognition: weakly-supervised learning for low-resource languages. We describe how weakly-supervised learning has become a necessity for the speech community, and how such weakly-supervised models can also benefit from better and learnt frontends.

Prior knowledge and biases in speech features

Speech recognition in humans shows an exceptional robustness to noise, changes in speaking style, loudness or speech rate. For this reason, the design of speech features is based on the premise that taking inspiration from the human auditory system will allow developing performing and robust ASR [START_REF] Morgan | Automatic speech recognition: An auditory perspective[END_REF]. This is why speech features have been designed to replicate low-level processing of speech that happens in the human inner ear. In this section, we detail the different steps that compose the computation of mel-filterbanks and MFCCs, summarized in Figure 1-2, and we show how almost every of these steps is inspired from prior knowledge about human speech perception and production, but also how this prior knowledge can cause negative bias as there is no certainty that the chosen parameters are optimal.

Pre-emphasis

The speech signal often carries more power in low frequencies than in higher frequencies. Moreover, speech can be contaminated by low frequency noise like DC offset or microphone pops, of which the relative energy compared to the rest of the spectrum could be attenuated. Pre-emphasis is a convolution with a first-order high-pass filter, applied to the waveform 𝑥[𝑛] to balance the energy along the spectrum:

𝑦[𝑛] = 𝑥[𝑛] -𝛼 * 𝑥[𝑛 -1], 0.9 ≤ 𝛼 < 1.
(1.1)

Figure 1-3 shows the power spectrum of a sentence of TIMIT, before and after preemphasis. One can notice that the distribution of energy is spread over the frequency axis by the pre-emphasis operation. When using spectral features, rebalancing energy along frequencies corresponds to a feature scaling, which can be critical when training a classifier or clustering algorithm on these coefficients. The 𝛼 parameter controls how much energy is transferred to higher frequencies (the higher the alpha the more energy there will be in high frequencies) and the optimal value will differ depending on the recording conditions, the task, and so on. This thus required cross-validating the value of 𝛼, to reach the standard value of 0.97 in ASR. However we could expect a benefit from learning this parameter for the task at hand.

Windowing

Spectrograms are time-frequency representations of 1-dimensional signals, representing the energy along frequency bands and time steps. Spectrograms can not model non-stationary information inside the speech segment they are computed from, hence they are typically extracted from small overlapping speech windows in which we can make the rough assumption that the signal is stationary. Computing the Short-Term Fourier Transform (STFT) of a signal on a rectangular window (a simple cut of the speech signal in segments) will often lead to artifacts along the frequency axis (known as spectral leakage) due to discontinuities at borders. To alleviate this problem, a window function is typically used. A window function is a multiplicative mask applied on each speech segment, of which the main characteristic is to have shrinking amplitude at its boundaries. Popular window functions are the Hamming window:

𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑛) = 0.54 -0.46 cos( 2𝜋𝑛 𝑁 -1 ), (1.2) 
with 𝑁 the window size, and the Hann window:

𝐻𝑎𝑛𝑛(𝑛) = 0.5(1 -cos( 2𝜋𝑛 𝑁 - 1 
)).

(1.3)

One can notice that they only differ by the coefficient in the convex combination of the constant and the cosine function. The choice of the window function is likely to impact the performance, and the Librosa library [START_REF] Mcfee | librosa: Audio and music signal analysis in python[END_REF] offers more than 20 different window functions to compute the STFT. Some of them are plotted in Figure 1-4. As for the pre-emphasis parameter, choosing among several window functions could be replaced by learning the appropriate one for the task at hand.

The mel scale

Given a waveform 𝑥 sampled at 𝑓 𝑠 Hz, its spectrogram is a 𝐷 * 𝑇 matrix, with 𝐷 the number of frequency bins, linearly spaced between 0 and 𝑓 𝑠 /2 Hz. A 𝑚𝑒𝑙 function is used to map this linear scaled spectrogram to a new one, the mel scale, that is roughly linear below 1000Hz and logarithmic above. This scale warping can be implemented with the following function, proposed by O'shaughnessy [1987]:

𝑀 𝑒𝑙(𝑓 ) = 1127 log(1 + 𝑓 700 ) (1.4)
A bank of 𝐹 mel-filters is derived by linearly spacing 𝐹 + 1 points on the mel-scale between 0 and 𝑀 𝑒𝑙(𝑓 𝑠 /2), that are then mapped back to the original frequency scale, and will define the support of 𝐹 triangular filters. Figure 1-5 shows the standard mel-filters from the HTK toolkit [START_REF] Young | The htk book[END_REF]. The mel scale is probably the most popular and most standard transformation of spectrograms for speech classification or recognition, as it provides better features in most settings than a linear spectrogram. However, we can question its optimality. First, there is not only one mel scale but several, for example the implementation of [START_REF] Slaney | Auditory toolbox[END_REF] that directly uses linearly spaced filters under 1000Hz and logarithmically above. Moreover, the mel scale is defined as a warping function of the frequencies, as in Equation 1.4. This function is one of many functions proposed for the mel scale since its creation [START_REF] Fant | Analysis and synthesis of speech processes[END_REF][START_REF] Koening | A new frequency scale for acoustic measurements[END_REF][START_REF] Peter | Human information processing: An introduction to psychology[END_REF][START_REF] Makhoul | Lpcw: An lpc vocoder with linear predictive spectral warping[END_REF][START_REF] Stanley | The relation of pitch to frequency: A revised scale[END_REF]. These functions are essentially derived of a psychoacoustics experiment reported by [START_REF] Stanley | The relation of pitch to frequency: A revised scale[END_REF]. In this experiment, 10 observers are given an electric keyboard with 5 keys corresponding to 5 pure tones, and fixed lowest/highest pitch keys. Then, they have to adjust knobs controlling the tone of each key until the pitch distance between each pair of adjacent keys appears equal to their ear. This yields a few values for the mapping of the frequency scale to the mel scale, from which a continuous function such as the one in Equation 1.4 can be derived. [START_REF] Umesh | Fitting the mel scale[END_REF] show that many functional forms can be fitted to these discrete measurements with very good error, i.e. better than standard formulas as in Equation 1.4. Moreover, Greenwood, a student of Stevens, showed many decades later that there was a bias in the mel scale, as a different scale would be obtained from the same psychoacoustic experiments if the subjects were to listen to the tones in a descending order, rather than ascending [START_REF] Dr | The mel scale's disqualifying bias and a consistency of pitch-difference equisections in 1956 with equal cochlear distances and equal frequency ratios[END_REF]. It led him to question the validity of the standard mel scale, which was already in 1940 proposed as a revision of a first mel scale derived a few years before by [START_REF] Stevens | A scale for the measurement of the psychological magnitude pitch[END_REF]. This brief historical recap of the mel scale is intended to expose its inherent flaws, as a model of human perception of pitch, but all the more as an inductive bias in machine learning systems trained to process speech:

• The mel scale is a psychological scale meant to map a perceived, subjective aspect of a sound (its pitch) to a quantity that can be measured by instruments (its frequency). As a subjective scale it is based on human judgments and is inherently biased by the experimental design.

• Even if the experiments were free of any flaw, deriving more mel-filters than the number of discrete measurements made on humans requires fitting a continuous function, which will also lead to errors.

• Finally, in the context of automatic speech recognition and more widely automatic audio understanding, there is no guarantee that using the mel scale is optimal.

Compressing the dynamic range

A speech spectrogram can show a huge interval of variation (called the dynamic range). Human perception to loudness has been shown to be logarithmic [Fechner, 1966] or exponential with an exponent < 1 [START_REF] Stevens | On the psychophysical law[END_REF], similarly to the way we perceive variations of pitch. This is why linearly scaled spectrograms are typically passed through a compression function to map the dynamic range to a perceptual scale. We typically use a logarithm function 𝑥 → log(𝑥 + 𝜖), with 𝜖 a small correction term to avoid numerical issues. Even though this function is the most standard one, other compression functions have been preferred in certain settings, such as cubic root compression [START_REF] Lyons | Effect of compressing the dynamic range of the power spectrum in modulation filtering based speech enhancement[END_REF] or even 10th root [START_REF] Schlüter | Gammatone features and feature combination for large vocabulary speech recognition[END_REF].

This shows that, as well as for the mel-scale, there is no absolute consensus on the proper compression function to use. Moreover, again similarly to the mel-scale, even though these compression functions are linked to human measurements and provide good models of auditory perception, there is no guarantee that they would be optimal as part of a learning system.

1.2.5 From mel-filterbanks to MFCC: the cepstrum and its derivatives Cascading the transformations described above yields mel-filterbanks coefficients.

Computing MFCC features consists in adding a final computational step to this pipeline: a Discrete Cosine Transform (DCT), or an Inverse Short-Term Fourier Transform (ISTFT). A motivation for this operation comes from a source-filter model of speech production introduced by [START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF], in which speech is modeled as a convolution between a glottal excitation 𝑒[𝑛] (the source), and a vocal tract response 𝑣[𝑛] (the filter). As the response of the vocal tract characterizes the phonetic content which is produced, while the glottal pulse is linked to the pitch, we could extract good features for phonetic discriminability by "deconvolving" these two components. In the Fourier domain, this convolution becomes a product. After the log compression, source and filter are summed as the log spectrogram computes

𝜔 → log(|𝐸[𝜔]| 2 ) + log(|𝑉 [𝜔]| 2 ).
Considering that the formants described by 𝑉 vary slowly, while the fundamental frequency and its harmonics modeled in 𝐸 have faster variations, a cepstrum is obtained by computing a DCT or an ISTFT of the log spectrogram (here we do not consider the windowing and the mel filtering, for simplicity).

The first coefficients correspond to the slow variations of this log spectrogram, the vocal tract, this is why the first 12 coefficients are typically extracted. They are concatenated with a log energy of the speech segment, as well as first-and second-order derivatives, to yield 39 coefficients. While both DCT and ISTFT are consistent with the source-filter model, the DCT has historically been preferred, as it yields decorrelated coefficients. The main reason is that it provided a significant advantage in terms of computational complexity when using GMM-HMM models on top of MFCC, as decorrelated features allow using diagonal covariance matrices in the GMM, reducing the number of learnable parameters from a quadratic function of the dimension of the features to a linear one.

The source-filter model of speech production described above has been validated by the extensive use of MFCC as a model of the vocal tract for speech synthesis [START_REF] Airaksinen | Analysis/synthesis comparison of vocoders utilized in statistical parametric speech synthesis[END_REF][START_REF] Maia | An excitation model for hmm-based speech synthesis based on residual modeling[END_REF][START_REF] Yoshimura | Mixed excitation for hmm-based speech synthesis[END_REF], Zen et al., 2007], passed as input to a vocoder, along with an estimation of the fundamental frequency. Interestingly enough, the source-filter model was at first used to motivate the extraction of the source, i.e. the fundamental frequency or pitch [START_REF] Michael | Cepstrum pitch determination[END_REF][START_REF] Noll | Short-time "cepstrum" pitch detection[END_REF], before focusing on the extraction of the vocal tract filter, in speech synthesis but also in speech recognition [START_REF] Davis | Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[END_REF]. However, using the DCT with hardcoded hyperparameters (e.g. 12 first coefficients), is also a strong inductive bias that is likely to be suboptimal for some tasks. In particular, the vocal tract fully characterizes the phonetic content in English but not in tonal languages (like Mandarin) in which the pitch modifies a phoneme's identity and its linguistic meaning. This is why learning which part of the cepstrum is relevant could improve the performance in such situations compared to using the first 12 DCT coefficients.

Moreover, the source-filter model proposed above is simplistic as it does not take into account the window function and the mel-filtering, which will impact the cepstrum in several ways (see section 6.6 of [O'shaughnessy, 1987]). First-and second order derivatives were used to incorporate information about the surrounding dynamics in a single feature vector modeled by a GMM. However, we can also question the sense of using such features as input to a deep acoustic model that can, regardless of being convolutional or recurrent, model long term dependencies (a single convolutional filter can model first-order derivatives, a second convolutional layer with one filter can model second-order derivatives).

Mean-variance normalization

The last step of the standard mel-filterbanks extraction pipeline is a mean-variance normalization of the coefficients, per channel. The statistics can be integrated on the entire training set, or per sequence. Even when normalizing per sequence, the statistics will change depending on whether the features are computed on a sentence's segment (e.g. when using alignments from an HMM and predicting a phonetic state)

or on the full sentence (which is the case in an end-to-end setting). In offline settings, and when the recording quality is relatively constant, statistics can be aggregated on an arbitrary long period. However, when speech recognition has to be performed in an online fashion, or when the signal is contaminated by intermittent noise, it becomes necessary to aggregate statistics on short segments, using either a fixed window [Viikki and Laurila, 1998] or an exponential moving average of the statistics [Viikki et al., 1998]. There are other, more sophisticated, normalization schemes such as histogram equalization (to match the distribution of feature vectors between training and test data) [START_REF] Hilger | Quantile based histogram equalization for noise robust large vocabulary speech recognition[END_REF]], short-time gaussianization [START_REF] Xiang | Short-time gaussianization for robust speaker verification[END_REF], and many others [START_REF] Md | Comparative evaluation of feature normalization techniques for speaker verification[END_REF][START_REF] Fredes | Locally normalized filter banks applied to deep neural-network-based robust speech recognition[END_REF][START_REF] Tae | Dnnbased voice activity detection with local feature shift technique[END_REF][START_REF] Kumar | Feature normalisation for robust speech recognition[END_REF]. This diversity of normalization schemes, and the fact that they are task dependent, as for the other components of the mel-filterbanks computation, also lead to an inclination to shift towards normalizations that could be integrated into a learnable architecture.

Some of the normalizations mentioned above involve some kind of training procedure, however they are trained separately from the classifier, rather than being optimized for the final task.

In this section, we have explained how the different computational steps that compose the mel-filterbanks or MFCCs are motivated by analogies with auditory processing, or signal processing arguments, but also how they are inherently limited and could benefit from learning their parameters from the data. In the next section we describe previous work on training deep neural networks from the raw signal for speech recognition.

1.3 Speech recognition from the raw waveform

Related work

To the best of our knowledge, the first attempt at training a deep neural network from the raw waveform for speech recognition is [START_REF] Jaitly | Learning a better representation of speech soundwaves using restricted boltzmann machines[END_REF] in which Jaitly and Hinton train a Restricted Boltzmann machine (RBM) as a generative model of small speech segments. After training, the hidden state of this RBM is used to build features that are given as input to a phone classifier, the label being derived from a forced-alignment. This performed better than previous literature when greatly increasing the feature rate (compared to the standard rate of 10ms in speech features),

but underperformed an equivalent model trained on mel-filterbanks. Note also that the feature extraction and the classification network were not trained jointly.

Then, Palaz et al. [2013b] proposed the first phone and speech recognizers trained directly from the waveform. These models were still based on an hybrid DNN-HMM system (or HMM-CRF for [Palaz et al., 2013b]), the acoustic model being trained to predict either phone classes (for phone recognition), or context-dependent phone states [START_REF] Palaz | Convolutional neural networksbased continuous speech recognition using raw speech signal[END_REF]. When trained on the waveform, MFCCs (the baseline features) would be replaced by several blocks involving a convolutional layer, a maxpooling layer and an hyperbolic tangent. In [Palaz et al., 2013b], this approach does not reach the performance of the baseline trained on MFCCs. On the other hand when performing large vocabulary speech recognition, [START_REF] Palaz | Convolutional neural networksbased continuous speech recognition using raw speech signal[END_REF], authors find that with a similar overall number of parameters, a CNN trained on the waveform outperforms a fully-connected network trained on MFCC. However, it is hard to relate one architecture to the other as CNNs are structurally more parameter efficient than fully connected networks. When comparing equivalent architectures on MFCC or the raw speech (feed-forward networks with rectified linear units), [START_REF] Tüske | Acoustic modeling with deep neural networks using raw time signal for LVCSR[END_REF] found the model trained on the raw waveform to considerably underperform models trained on features.

In the previous works mentioned so far, the analogy between the computations made in speech features and the ones made inside their neural alternatives (RBMs, CNNs or DNNs with ReLU or hyperbolic tangent) is not clear. This motivated the concomitant work by [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF] and Sainath et al. [2015a], who introduced a learnable frontend inspired from the computation of speech features: a convolution initialized with gammatone filters is followed by a rectified linear unit a max-pooling and a log-compression. The choice of mimicking gammatone features [START_REF] Schlüter | Gammatone features and feature combination for large vocabulary speech recognition[END_REF], comes from the fact that the mel-filtering involved in the computation of melfilterbanks and MFCCs is performed in the frequency domain, while gammatone features are computed in time domain. [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF] first use this learnable frontend in a single channel context where it underperforms mel-filterbanks. Interestingly, they show that incorporating a log compression inside the neural network significantly improves the performance, which shows the benefits of taking an auditory perspective not only to handcraft speech features, but also when designing a learnable frontend. In a second experiment, this frontend is shown to improve the Word Error Rate (WER) over mel-filterbanks in a noisy multi-channel setting, when no beamforming is performed before the computation of the handcrafted features. This shows that the implicit beamforming learned by the first convolutional layer outperforms a naive stack of the different channels, however using a delay-sum beamforming before computing mel-filterbanks yields the best performance overall. Sainath et al. [2015a] apply the same frontend to large vocabulary speech recognition on a very large dataset (up to 40,000 hours of speech), and show that with enough data, and depending on the structure of the acoustic model, the learnable frontend can match the performance of mel-filterbanks. As a conclusion, taking inspiration from the computation of the speech features seemed to be a promising avenue to design a neural alternative that would outperform it.

A common characteristic of the different approaches described in this section is that they integrate the feature extraction into a neural network trained to predict phone classes or (context-dependent) phone states, and thus rely on a forcedalignment provided by an GMM-HMM. Palaz et al. [2013a], besides their work on DNN-HMM described above, have also experimented with training end-to-end phone recognition systems from the raw waveform. They show that a CNN trained jointly with a CRF and taking raw speech as input can match the performance of an DNN-HMM system trained on MFCCs, however requiring 4 times more parameters in the overall model. More recently, another end-to-end approach was proposed by Tjandra et al. [2017a], based on the sequence-to-sequence framework, and taking inspiration from speech features. An encoder-decoder is trained to generate a sequence of character from the waveform. This model diverging when trained from scratch, 9 layers of convolutions (including Network-in-Network layers [START_REF] Lin | Network in network[END_REF]) are pre-trained to reconstruct mel-filterbanks and then plugged below the encoder-decoder and finetuned jointly with it, yielding a better performance than speech features.

The conclusions of this pre-existing literature are threefold:

• Mel-filterbanks and MFCCs are very strong baselines, which explains why they are still used in state-of-the-art systems, and improving the performance by replacing these handcrafted features by neural network layers is not trivial.

• Taking inspiration from the computation of speech features to design a learnable frontend (convolutional layers, non-linearity, log compression) has led to most successes so far.

• Most of this work has been performed in the hybrid DNN-HMM setting, and the integration of a learnable frontend into an end-to-end speech recognition system is still an open question, as the necessary pre-training of Tjandra et al.

[2017a] suggests that it can be hard to train.

Contributions

The cornerstone contribution of the Part III of this thesis is Time-Domain filterbanks:

a lightweight neural network that can be used directly as an alternative to speech features, can be initialized as an approximation of mel-filterbanks, and then learnt with the rest of the architecture. We took a perspective on previously proposed learnable frontends to develop Time-Domain Filterbanks:

• Time-Domain filterbanks share the same structure (number of filters, window size, window stride) as mel-filterbanks. This allows comparing it to the speech features with an identical acoustic model and in equivalent conditions (number of parameters, training scheme). Indeed, when the neural alternative to speech features is composed of many layers [START_REF] Ghahremani | Acoustic Modelling from the Signal Domain Using CNNs[END_REF], Palaz et al., 2013b, 2015, Tjandra et al., 2017a], the comparison between the fixed baseline and the learnt frontend is hindered by a confounding factor which is the capacity of the neural network. If we want to evaluate what we can gain just from learning the low-level processing instead of keeping it fixed, we should provide a frontend that roughly involves the same number of operations as the speech features, as in [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF], Sainath et al., 2015a].

• In order for Time-Domain filterbanks to be adopted by the community, we want to develop them such that they outperform speech features, in particular the ones that have been the most competitive when training deep acoustic models: mel-filterbanks [Hinton et al., 2012a], rather than MFCC [START_REF] Ghahremani | Acoustic Modelling from the Signal Domain Using CNNs[END_REF], Palaz et al., 2013b, 2015]. Moreover, we want the gain in performance to be consistent over acoustic model architectures and datasets. If the relative performance between the fixed features and the learnable frontend depends on the acoustic model [Sainath et al., 2015a], or the recording conditions [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF], then the frontend is less likely to become a standard replacement.

• Since the most promising models were taking inspiration from the computation of speech features, whether it's using convolutional filtering [Palaz et al., 2013b],

gammatone initialization [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF], Sainath et al., 2015a] or log compression [START_REF] Ghahremani | Acoustic Modelling from the Signal Domain Using CNNs[END_REF], we also choose this direction. Based on the observation mentioned in the previous section that mel-filterbanks are the best performing speech features with recent ASR systems, rather than mimicking the computation of gammatones, we design Time-Domain filterbanks such that they offer the same expressivity as mel-filterbanks and can be initialized as an approximation of these features.

• Approximating mel-filterbanks could be obtained by pre-training a convolutional network to reconstruct the mel-filterbanks as in [Tjandra et al., 2017a].

However, we show that with the proper neural network design, as well as a particular initialization, we can approximate mel-filterbanks with only two convolutional layers (rather than 9 as in [Tjandra et al., 2017a]), and without any pre-training.

In Chapter 5, we introduce the Time-Domain filterbanks. We use a time-domain approximation of mel-filterbanks proposed by [START_REF] Andén | Deep Scattering Spectrum[END_REF], the scattering transform, and implement it as a neural network. We also show how we can initialize its weights to replicate the mel-filterbanks, and then let the layers be learnt jointly with the rest of the neural architecture for the task at hand. We are particularly interested in end-to-end speech recognition, as it is the most active and promising line of work in ASR. To give a proof of concept of our approach, we perform phone recognition experiments on TIMIT, in an end-to-end setting. We show that for several architectures, models trained on Time-Domain filterbanks consistently outperform their counterparts trained on comparable mel-filterbanks. Moreover, we get our best performance by learning all frontend steps, including a learnable pre-emphasis layer.

We report a Phone Error Rate (PER) which is state-of-the-art among models trained on the waveform, and competitive with the literature trained on mel-filterbanks. Finally, we study the filters obtained at convergence, to understand what characteristics they display that distinguish them from the initialization. We observe that the filters have an asymmetric impulse response, unlike the wavelets used to initialize the weights of the first convolutional layer.

In Chapter 6, we scale from phone recognition experiments on TIMIT [START_REF] John S Garofolo | TIMIT acoustic-phonetic continuous speech corpus[END_REF] (4 hours) to large vocabulary speech recognition on Wall Street

Journal [START_REF] Paul | and perform beam search decoding[END_REF] (80 hours). In this chapter, we build on two alternatives for trainable replacements of mel-filterbanks that use a convolutional architecture. The first one is Time-Domain filterbanks, the second one is the frontend of [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF] and Sainath et al. [2015a], inspired from gammatone features. We propose two modifications to these architectures and systematically compare them to mel-filterbanks, on the Wall Street Journal dataset. The first modification is the addition of an instance normalization layer, which greatly improves on the gammatone-based trainable filterbanks and speeds up the training of Time-Domain filterbanks. The second one relates to the low-pass filter used in these approaches.

These modifications consistently improve performances for both approaches. In particular, while the gammatone-based frontend as proposed by [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF] and Sainath et al. [2015a] significantly underperforms Time-Domain filterbanks and melfilterbanks, modifying it with components inspired from Time-Domain filterbanks improves its performance such that the two frontends become comparable. Moreover, our modifications remove the need for a careful initialization of Time-Domain filterbanks. In particular, we show a consistent improvement in Word Error Rate (WER) of the trainable frontends relatively to comparable mel-filterbanks. This is the first time end-to-end models trained from the raw signal significantly outperform mel-filterbanks on a large vocabulary task under clean recording conditions.

In Chapter 7, we introduce the first fully convolutional speech recognition system.

Current state-of-the-art speech recognition systems build on recurrent neural networks for acoustic and/or language modeling. In previous chapters (5 and 6) we combine a convolutional frontend (Time-Domain filterbanks) and a convolutional acoustic model from the raw waveform to predict letters. However, during inference, a word-level ngram language model is used to improve the quality of the transcription. In this chapter, we present an alternative approach based solely on convolutional neural networks, leveraging recent advances in language modeling: instead of an n-gram, an external convolutional language model is used to decode words, providing the first fully convolutional ASR system. On Wall Street Journal, our model matches the current DNN-HMM state-of-the-art, and is the current best end-to-end system. On Librispeech, we also report state-of-the-art performance among end-to-end models, including Deep Speech 2 trained with 12 times more acoustic data and significantly more linguistic data.

Overall, Part III introduces a new learnable frontend for ASR, which consistently outperforms its mel-filterbanks counterpart and is integrated in the first state-of-theart system that does not use speech features. This leads us to extend this approach beyond speech recognition and consider other tasks. Indeed, even though our results

show that mel-filterbanks are suboptimal for speech recognition, as hypothesized in Section 1.2, they have been tuned for speech recognition and therefore are biased in favor of this task. However, they are used in a wide variety of tasks that take speech as input, or more generally audio signals, tasks for which they are even less optimal than for speech recognition. These tasks are thus a promising avenue for learnable audio frontends.

1.4 Paralinguistic classification from the raw waveform

1.4.

Related work

Paralanguage is the information conveyed by the speech signal and that does not relate to its phonetic content. A speech signal not only carries information about its linguistic content, but also about the speaker's identity, their intention, their emotional state, possible pathologies or speech impediments, as well as other physiological or anatomical characteristics (e.g. age, gender, stature). Automatic paralinguistic clas-

sification is an open scientific problem, with a very wide range of applications, and is getting more and more attention [Schuller et al., 2013a].

Automatic speaker identification has been an active field of research for decades [START_REF] Dehak | Frontend factor analysis for speaker verification[END_REF][START_REF] Kersta | Voiceprint identification[END_REF][START_REF] Tosi | Experiment on voice identification[END_REF], with applications in biometric identification and authentication, forensics, and personal assistants. Machine learning has also been used to predict other inherent or long term traits of a speaker, including their gender [Schuller et al., 2010], nativeness [START_REF] Kamal | A novel approach to detecting non-native speakers and their native language[END_REF] or likability [START_REF] Weiss | Voice attributes affecting likability perception[END_REF].

There has also been interest in predicting short term characteristics of a speaker such as their emotional state [START_REF] Nicholson | Emotion recognition in speech using neural networks[END_REF], level of confidence [START_REF] Pon-Barry | Prosodic manifestations of confidence and uncertainty in spoken language[END_REF], whether they are lying or telling the truth [START_REF] Hirschberg | Distinguishing deceptive from non-deceptive speech[END_REF], or if they are being sincere or sarcastic [START_REF] Tepperman | yeah right": Sarcasm recognition for spoken dialogue systems[END_REF], which have a lot of applications, in particular for interactions with artificial agents and assistants.

Extracting information about a person from speech has also sparked the interest of the medical community. Indeed, a person's speech could be used for diagnosing or monitoring pathologies including Parkinson [START_REF] Sapir | Formant centralization ratio: a proposal for a new acoustic measure of dysarthric speech[END_REF], Huntington [START_REF] Perez | Classification of huntington disease using acoustic and lexical features[END_REF], or autism [START_REF] Schuller | The interspeech 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism[END_REF] and language development delays [START_REF] Kimbrough Oller | Automated vocal analysis of naturalistic recordings from children with autism, language delay, and typical development[END_REF].

Like speech recognition, the field of paralinguistic classification has recently moved from composite pipelines to more end-to-end approaches, based on deep architectures [Schuller et al., 2018]. However, again similarly to speech recognition, these deep neural networks are still typically trained on handcrafted features. This includes mel-filterbanks or MFCCs described earlier, but also so called Low Level Descriptors (LLDs) [START_REF] Eyben | Opensmile: the munich versatile and fast open-source audio feature extractor[END_REF][START_REF] Schuller | The interspeech 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism[END_REF], that combine various signal processing extractions from the signal (e.g. energy, pitch estimation) as well as their derivatives and other various statistics [START_REF] Eyben | Real-time speech and music classification by large audio feature space extraction[END_REF]. Table 1.1 shows a few of these features, however in recent work, by extracting many descriptors as well as several "functionals" for each of them (e.g. derivatives, mean, standard deviation, percentiles, linear regression coefficients), the number of features used to represent a small speech segment can be more than 6000 [START_REF] Björn | The interspeech 2017 computational paralinguistics challenge: Addressee, cold & snoring[END_REF] paralinguistic tasks, despite their fundamental differences in nature. Still, despite the variety of these descriptors, if useful information has been discarded in their computation, the classifier will not be able to retrieve it, even though it was present in the raw speech signal. Hence, low level descriptors also exhibit the flaws that we described in Section 1.2 for mel-filterbanks and MFCCs, in terms of suboptimality.

Spectral or cepstral features are also used in paralinguistic classification, however the biases that we emphasized in the case of speech recognition are even more harmful for paralinguistic classification. Indeed, taking inspiration from the auditory perception is relevant for speech recognition, as speech is produced to be intelligible for the human ear. On the other hand, for many paralinguistic tasks, including physical traits classification (age, anatomy, pathologies), there is no reason a priori for the human auditory system to be particularly performing. Moreover, the many hyperparameters of mel-filterbanks and MFCCs (e.g. the pre-emphasis parameter or the compression function) have been selected along the years to maximize the perfor-mance of speech recognition, and are thus biased in favor of that task, possibly at the expense of paralinguistic classification. So, as for speech recognition, or even more, we could expect a gain in performance when learning jointly the feature extraction with the classification system.

Training paralinguistic classification systems from the raw waveform has been explored recently, in particular for emotion recognition [START_REF] Sarma | Emotion identification from raw speech signals using dnns[END_REF][START_REF] Trigeorgis | Adieu features? End-to-end speech emotion recognition using a deep convolutional recurrent network[END_REF], speaker [START_REF] Muckenhirn | Towards directly modeling raw speech signal for speaker verification using cnns[END_REF] and gender [START_REF] Hande Kabil | On learning to identify genders from raw speech signal using cnns[END_REF].

Moreover, the 2017 edition of the popular Interspeech Computational Paralinguistics

Challenge [START_REF] Björn | The interspeech 2017 computational paralinguistics challenge: Addressee, cold & snoring[END_REF] included for the first time among its baselines, besides traditional models trained on LLDs, deep neural networks trained directly on the raw waveform. This shows the growing interest of the community for this question.

A particular line of work in audio classification still exploits mel-filterbanks or spectrograms, but learns their compression and normalization components. Wang et al. [2017] introduce a new layer, the Per Channel Energy Normalization (PCEN).

This module learns a compression function, as well as the range of the normalization, independently for every channel, inside a neural network. By learning it on top of mel-filterbanks (deprived of log compression or normalization) jointly with a keyword spotting model, they improve the performance of their system compared to standard mel-filterbanks. It has since then been used in noisy ASR [START_REF] Battenberg | Reducing Bias in Production Speech Models[END_REF], bird vocalization classification [START_REF] Vincent Lostanlen | Per-channel energy normalization: Why and how[END_REF] and audio event analysis [START_REF] Vincent Lostanlen | Per-channel energy normalization: Why and how[END_REF].

Contributions

In Chapter 8, motivated by the consistent results in ASR, we apply Time-Domain filterbanks to a paralinguistic task: dysarthria detection. We also use this task as a testbed for a new modification brought to Time-Domain filterbanks. Until this chapter, our learnable frontend replaces the pre-emphasis, spectral filtering, and windowing by learnable components, however two of its components remain fixed during training: the log compression and the mean-variance normalization. This limits the performance of our systems, as we described in Section 1.2 how the choice of the com-pression function and the type of normalization will induce as much bias as the other components. This is why, in these final experiments, we aim to also replace these operations by learnable neural layers. We combine Time-Domain filterbanks and PCEN for dysarthria detection from sentence-level audio recordings, and propose a neural network that can learn a filterbank, a normalization factor and a compression power from the raw speech, jointly with the rest of the architecture.

Starting from a strong attention-based baseline on which mel-filterbanks outperform standard LLDs, we show that learning the filters or the normalization and compression improves over fixed features by 10% absolute accuracy. We also observe a gain over LLDs by learning jointly the feature extraction, the normalization, and the compression factor with the architecture. This constitutes a first attempt at learning jointly all these operations from raw audio for a speech classification task.

1.5 Weakly-supervised speech modelling from the raw waveform

Related work

As illustrated in Figure 1-1, the performance of speech recognition systems has considerably improved over the last two decades, such that it now gets close to the performance of human listeners in certain conditions [START_REF] Saon | English conversational telephone speech recognition by humans and machines[END_REF][START_REF] Xiong | Achieving human parity in conversational speech recognition[END_REF]. These conditions are mostly: English speech, spoken with a North-American accent, recorded in relatively clean conditions (no noise, telephone recording), without speech impediment. However, when these conditions are not met, the performance of current speech recognition systems significantly degrades [START_REF] Amodei | Deep speech 2: End-to-end speech recognition in english and mandarin[END_REF][START_REF] Barker | The pascal chime speech separation and recognition challenge[END_REF], 2015]. Word Error Rate from 30% to less than 9%. In that paper, Amodei et al. also report very good performance in Mandarin, for which 9,400 hours of training data are used, a language that is very different in nature from English, as it is tonal and uses an ideographic writing system. Hence, more than inherent differences between languages and the challenges they induce for acoustic modelling (tonal vs non-tonal languages)

or language modelling (size of vocabulary, ideographic vs segmental writing systems), we can hypothesize that the main explanatory factor for the performance of speech technology in a language, is the availability of annotated data. Even in English, the significant difference in performance between accents (e.g. 3x higher WER in English with an Indian accent than with a North-American accent) can be explained by the dominance of North-American speakers in speech datasets.

Hence, collecting speech recordings and their transcription is the key to developing speech recognition systems. However, this process is expensive, and needs expert knowledge (from linguists or at least native speakers) to annotate recorded speech sequences. End-to-end speech recognition, as explained in Section 1.1, has allowed training speech recognition models to predict characters (graphemes), and by doing so reduced the dependency of ASR on linguistic expertise (phonetic annotations, pronunciation dictionaries). However, such models remain heavily dependent on huge amounts of character transcriptions extracted from speech recordings (e.g. Deep-Speech 2 is an end-to-end model). Moreover, when an external language model is used to improve the quality of a speech recognition system, it usually needs to be trained on huge amounts of data. Text data is cheap to obtain in many languages, however the best language models are trained on up to billion words1 , an amount that could arduously be collected for most languages. Thus, extending a speech recognition system to a new language is expensive, and needs qualified workforce as well as vast corpora of textual data. This makes scaling to thousands of languages one of the current biggest challenges in speech technology, and may explain why the range of supported languages in assistants ranges from 3 for Amazon's Alexa to 20 in Apple's Siri2 . These covered languages can be qualified as "high-resource languages", while we will refer to languages for which some or all resources mentioned above are lacking as "low-resource languages".

A way to face the challenge of low-resource languages is to develop algorithms that are less dependent on large, finely annotated datasets. This motivated the recent line of work on weakly-supervised and unsupervised speech recognition [START_REF] Dunbar | The zero resource speech challenge 2017[END_REF], Jansen et al., 2013, Versteegh et al., 2015]. These contributions generally fall in one the three following paradigms:

• Transfer learning, as a way to exploit the data available for high-resource languages to improve the performance in low-resource languages or rare accents [START_REF] Toshniwal | Multilingual speech recognition with a single end-to-end model[END_REF],

• Weakly-supervised learning, in which exhaustive and fined-grained transcriptions of sentences are replaced by coarse [Synnaeve et al., 2014], synthetic [START_REF] Jia | Leveraging weakly supervised data to improve end-to-end speech-to-text translation[END_REF], or incomplete [START_REF] Palaz | Jointly Learning to Locate and Classify Words Using Convolutional Networks[END_REF] annotations,

• Unaligned supervision, in which one can leverage unrelated speech and text corpora, which is cheap as both speech and text data are easily collected independently. Inspired from recent successes in unsupervised machine translation [START_REF] Artetxe | Unsupervised neural machine translation[END_REF][START_REF] Conneau | Word translation without parallel data[END_REF][START_REF] Lample | Phrase-based & neural unsupervised machine translation[END_REF], Chung et al.

[2018] have proposed aligning independent corpora of speech and text to train word classifiers in an unsupervised setting.

An even more challenging problem is the case of languages without orthography, or unwritten dialects. Out of approximately 7,000 languages, more then 3,000 do not have a standard orthographic system3 . This means that there is either no unique transcription for each word, or even no alphabet at all. For example, if a dataset were to be collected for Swiss German, there would be many variations in the way different annotators would transcribe the same word. This prevents training a standard speech recognition system (as the target of the learning system is ambiguous), or even computing a Word Error Rate. As speech recognition is in many cases, as in assistants, a preliminary step to natural language understanding, there has been work on bypassing it in the case of unwritten languages to map directly the speech stream to the semantics of the sentence [START_REF] Dredze | Nlp on spoken documents without asr[END_REF],?, Liu et al., 2017a], or a translated transcription [START_REF] Bérard | Listen and translate: A proof of concept for end-to-end speech-to-text translation[END_REF]] that can then be processed by a natural language understanding algorithm in the target language.

The "zero resource" [START_REF] Dunbar | The zero resource speech challenge 2017[END_REF], Versteegh et al., 2015] setting refers to this extreme case in which we can not access standardized written corpora, and can only rely on untranscribed speech segments. In this case, a task that can be adressed is to discover the phonetic inventory of the language, as both written and unwritten languages are characterized by one. To that end, a particular line of work exploits an auxiliary supervision which consists in chunks of speech (typically corresponding to words) that are labeled as being identical or different [Synnaeve et al., 2014], and from which we want to discover phonetic categories. This weak supervision is interesting as it can be obtained "for free", as the output of an unsupervised algorithm. Indeed, there has been some success on training unsupervised algorithms to match chunks of speech supposedly containing the same phonetic content, whether its words, parts of words, or phrases [START_REF] Park | Unsupervised pattern discovery in speech. Audio, Speech, and Language Processing[END_REF]. By combining unsupervised spoken term discovery, and weakly-supervised learning from the found segments, one can learn phonetic categories in a fully unsupervised way [START_REF] Thiollière | A Hybrid Dynamic Time Warping-Deep Neural Network Architecture for Unsupervised Acoustic Modeling[END_REF].

Contributions

In the Part II of this thesis, we build on top of previous work on weakly-supervised acoustic modeling, in which we are provided with pairs of words that are either the same, or different, and use them to train a Siamese network [START_REF] Bromley | Signature verification using a "Siamese" time delay neural network[END_REF] to produce phonetically discriminative embeddings [Synnaeve et al., 2014]. We use this setting to experiment how weakly-supervised and unsupervised speech modelling can also benefit from replacing mel-filterbanks, either by a richer deep scattering spectrum, or by convolutional layers on the raw waveform.

Chapter 2 details some technical background, including the ABX evaluation of speech representations [START_REF] Schatz | Evaluating speech features with the minimal-pair abx task: Analysis of the classical mfc/plp pipeline[END_REF], and the ABnet architecture proposed by Synnaeve et al. [2014].

In Chapter 3, we investigate the role of the input features, and in particular we test whether mel-filterbanks could be replaced by inherently richer representations derived from a deep scattering spectrum. We train a Siamese network using lexical side information similar to a well-performing architecture used in the Zero Resource Speech Challenge (2015) [START_REF] Versteegh | The zero resource speech challenge 2015[END_REF], and show a substantial improvement when the mel-filterbanks are replaced by scattering features. This shows that unsupervised and weakly-supervised approaches can benefit from richer features than mel-filterbanks.

These findings lead us to also experiment with training from the raw waveform in a weakly-supervised setting. Recent work [Synnaeve and Dupoux, 2014] has demonstrated, on small datasets, the feasibility of jointly learning specialized speaker and phone embeddings, using ABnets. In Chapter 4, we scale up these architectures to the 360 hours of the Librispeech corpus by implementing a sampling method to efficiently select pairs of words from the dataset and improving the loss function. We also compare the standard siamese networks fed with same (AA) or different (AB) pairs, to a 'triamese' network fed with AAB triplets. Finally, we also experiment with architectures trained directly from raw speech. We use ABX discrimination tasks to evaluate the discriminability and invariance properties of the obtained joined embed-dings, and compare these results with mono-embeddings architectures. We find that the joined embeddings architectures succeed in effectively disentangling speaker from phoneme information, with around 10% errors for the matching tasks and embeddings (speaker task on speaker embeddings, and phone task on phone embedding) and near chance for the mismatched task. Furthermore, the results carry over to outof-domain datasets, including a low-resource language (Xitsonga), even matching the best results obtained with similar weakly supervised techniques trained in-domain.

Finally, models trained on the waveform provide significantly better speaker embeddings, suggesting that speaker identification is yet another task that can benefit from learnable frontends.

Part II

Weakly-supervised Learning of

Speech Representations

Chapter 2

Learning phonetic and speaker representations from pairs of words

Top-down learning of phonetic categories

Unsupervised speech recognition is the task of training a system on unlabeled speech sequences, such that it can output the word transcription of a new sequence at test time. Even if no transcription is given during training, generating a word-level transcription would at least require a lexicon, which is not possible for poorly documented or unwritten languages for example. However, every language can be transcribed phonetically as long as a phonetic inventory has been collected for this language. This is why, in this part, we consider the task of learning phonetic categories in an unsupervised fashion. More precisely, given untranscribed speech utterances, we want to train a system that learns a representation of the original speech signal that separates phonetic categories, i.e. a representation space in which utterances of the same phoneme are close to each other, while utterances of different phonemes are far from each other. We call such a representation a "phonetic embedding". Projecting a speech utterance into such a space would allow an unsupervised clustering algorithm, such as K-Means [START_REF] Lloyd | Least squares quantization in pcm[END_REF] to find phonetic categories, such that the speech segment can be transcribed into phonemes.

Rather than training an unsupervised algorithm to directly discover phonetic classes from a speech corpus [START_REF] Badino | Discovering discrete subword units with binarized autoencoders and hidden-markov-model encoders[END_REF], Chen et al., 2015], we adopt a topdown strategy in which we exploit word-level auxiliary supervision (same or different word) to learn phonetic embeddings. The motivation for adopting this top-down approach comes from the fact that the lexicon is typically quite sparse in phonetic space.

As a result, two randomly selected words will mismatch in most of their phonemes.

This makes lexical clustering an easier task than phoneme clustering, and we can train unsupervised "spoken term discovery" algorithms to find repeated words or pseudowords in unlabeled speech sequences [Kamper et al., 2015a, Park and[START_REF] Park | Unsupervised pattern discovery in speech. Audio, Speech, and Language Processing[END_REF]. We can use the output of such algorithms as pseudo-labels (same/different word) to learn phonetically discriminative representations [START_REF] Renshaw | A comparison of neural network methods for unsupervised representation learning on the zero resource speech challenge[END_REF][START_REF] Thiollière | A Hybrid Dynamic Time Warping-Deep Neural Network Architecture for Unsupervised Acoustic Modeling[END_REF]. Thus, this top-down setting, originally weakly-supervised, can be reformulated as a fully unsupervised approach. This is consistent with the cognitive science literature, in which previous work has supported the theory of top-down phonological acquisition, that is, building an early proto-lexicon helps infants refining phoneme categories [Feldman et al., 2013[START_REF] Martin | Learning phonemes with a proto-lexicon[END_REF][START_REF] Swingley | Contributions of infant word learning to language development[END_REF].

In this part we build on top of a model proposed by Synnaeve et al. [2014], where a Siamese network is trained from pairs of words labelled as "same word" or "different words", to learn phonetic embeddings from speech features. This work explores the feasability of exploiting word-level alignment in a top-down fashion, and thus uses ground truth word annotations, rather than pseudo-labels derived from a spoken term discovery algorithm. However, in Chapter 3, we also experiment with pairs produced by a spoken term discovery algorithm, in a fully unsupervised setting.

In the following sections, we describe how we evaluate the phonetic discriminability of learnt embeddings, as well as the ABnets, a particular type of Siamese network introduced by Synnaeve et al. [2014] and used throughout this part. 

Evaluating speech representations: triphone ABX tasks

A standard way of evaluating features is to train a supervised classifier and compare the classification performance to the performance we would get with a similar classifier trained on other features. However, supervised classifiers can compensate for properties of the features that would constitute considerable flaws in an unsupervised setting (e.g. poor scaling, uninformative dimensions). Hence, supervised classification performance obtained on features is not a reliable indicator of the performance of these features in an unsupervised setting, in particular for the application of clustering algorithms. We thus need to find an evaluation protocol that operates directly in the representation space, and evaluates the desired properties of a phonetic embedding. In particular, we want a representation of speech in which some distance function (e.g. Euclidean, cosine), correlates maximally with the phonetic information (utterances of the same phoneme are close to each other, and conversely), while being robust to irrelevant factors (speaker identity or channel effect should not impact the representation). These properties would allow using this representation as phonetic pseudo-labels in downstream tasks (including speech recognition). We do so by subjecting the learnt embeddings to ABX tasks [START_REF] Schatz | Evaluating speech features with the minimal-pair abx task: Analysis of the classical mfc/plp pipeline[END_REF][START_REF] Schatz | ABX-discriminability measures and applications[END_REF]].

An ABX task consists in presenting three stimuli 𝐴, 𝐵 and 𝑋, with 𝐴 and 𝐵 belonging to different categories and 𝑋 matching the category of either 𝐴 or 𝐵, let us assume in this example that 𝑋 belongs to the same category as 𝐴. Distances 𝐷(𝐴, 𝑋)

and 𝐷(𝐵, 𝑋) are computed in the embedding space and compared. If 𝐷(𝐴, 𝑋) > 𝐷(𝐵, 𝑋) then the score is 1 (error), else it is 0 (success). Note that 𝐷 can be an actual distance (e.g. euclidean distance) or not (e.g. cosine distance, kl-divergence).

The experiments in this part are evaluated with a particular type of ABX task, adapted for speech, the triphone minimal-pair ABX task [START_REF] Schatz | Evaluating speech features with the minimal-pair abx task: Analysis of the classical mfc/plp pipeline[END_REF]. A minimal pair is a pair of sounds, each composed of three phonemes, that only differ by their central phoneme ("beg" vs "bag"). We choose minimal pairs as they are the "worst case" kind of triphones, and being able to discriminate them would imply being able to discriminate between any triphones. A and X are two different utterances of the same triphone, while B would is an utterance of another triphone that only differs from A and X by its central phoneme. A desirable characteristic of a phonetic representation is its robustness to changes of speaker. In order to include this variability in our evaluation, we choose the utterances of these triphones such that A and X are spoken by different speakers, while B is pronounced by the same speaker as A. In this setting, observing 𝐷(𝐴, 𝑋) < 𝐷(𝐵, 𝑋) means that the embedding space in which we compute 𝐷 favors phonetic discriminability over speaker discriminability. We can also perform this task within-speaker, when A, B, and X are all produced by the same speaker. A global score is obtained by averaging ABX errors over all relevant triplets that can be found in the corpus on which we evaluate the representation. We obtain an error between 0% and 50% (the chance level), a low error characterizing a representation in which phonetic categories are well separated from each other. In a representation space that yields a 0% ABX error, a point is closer to any point of the same class than it is to any point of another class. 

ABnets

Siamese networks are neural architectures that were first introduced for written signature verification [START_REF] Bromley | Signature verification using a "Siamese" time delay neural network[END_REF]. The main intuition behind these architectures is that given an abstract notion of similarity on the data we can use pairwise relations between samples to learn a representation where the distance between the embeddings of objects will reflect the abstract similarity between these objects. In other words, we want to learn a mapping 𝜇(𝑋) such that for a certain similarity function 𝐷 in the embedding space we have 𝐷(𝜇(𝑋 1 ), 𝜇(𝑋 2 )) small if 𝑋 1 and 𝑋 2 are same objects, and large if they are different. Because of this architecture, the supervision required by a Siamese network consists of pairs of samples that are labeled same or different, rather than labels for individual samples.

The ABnet is composed of two copies of the same network, each copy being fed with one of the elements of a pair of input samples. These identical networks project the samples into the embedding space, through several hidden layers. A measure of similarity or distance is then computed between the two pairs depending on their relation label (same or different), and this loss function is propagated evenly in the two copies. Figure 2-2 shows a Siamese network.

An ABnet is a particular case of Siamese neural network. It uses pairs of words to learn a representation of phones. Once words are paired, the feature frames that constitute them are aligned with Dynamic Time Warping (DTW) [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF] and the paired feature frames are fed to the ABnet. As mentioned in Section 2.1, these pairs can either be extracted using ground-truth annotations, or from the output of an unsupervised spoken term discovery algorithm. 

Introduction

Synnaeve et al. [2014] train shallow and deep ABnets on word pairs extracted from the TIMIT dataset (American English) [START_REF] John S Garofolo | TIMIT acoustic-phonetic continuous speech corpus[END_REF]. The resulting models are evaluated on an ABX minimal pair discrimination task and show a phonetic discriminability which is much better than the original mel-filterbanks they are trained on, and close to supervised baselines that are trained using phonetic-level annotations.

However, regardless of the representation power of the ABnets, i.e. their depth and structure, their performance remains inherently limited by the amount of information available in their input representation. Fine-grained frequency information is lost in the computation of mel-filterbanks, mainly when averaging the spectrogram over the filters, and this loss of information puts an upper bound on the final performance of classifiers that are trained on these features, if this fine-grained information is relevant. Training from the raw waveform would address this problem, however training a deep neural network from raw speech comes with challenges and adjustments that will be brought up in Chapter 4, and then deeply studied in Part III. Here, and as a preliminary study, we strike a middle ground by replacing the filterbanks by a deep scattering spectrum [START_REF] Andén | Deep Scattering Spectrum[END_REF], a representation that has many of the desirable properties of mel-filterbanks, i.e. it is stable to deformation and local translation, while retaining more information.

In this chapter, we show that both in a weakly supervised setting with gold word-level annotations on the TIMIT corpus and in a purely unsupervised setting on the Buckeye (American English) and NCHLT (Xitsonga) corpora, combining the scattering spectrum and the ABnet significantly improves the learnt representation, as evaluated with ABX errors, compared to identical ABnets trained on mel-filterbanks. Our best system even outperforms supervised GMM-HMM posteriorgrams trained with phonetic labels.

In the following sections, we first describe the baseline model used in [Synnaeve et al., 2014]. Then we explain how a deep scattering spectrum can be computed to retrieve the information that is lost in the computation of mel-filterbanks. We then present our experimental protocol and the results both in a weakly-supervised and an unsupervised setting.

Finally, we summarize our findings and discuss how it leads us to training models directly from raw speech in Chapter 4.

Baseline system

The base system is the model of Synnaeve et al. [2014] a Siamese network trained on pairs of words. The pairs labeled as "same" are extracted from the ground-truth annotations. The "different" pairs are sampled randomly. Even if there is a risk of false negatives i.e. labeling frames as "different" while they actually have the same phonetic content, this probability is relatively low due to the distribution of the 39 phonemes inside the English language.

40 mel-filterbanks are computed from the original speech signal. Frames corresponding to each utterance of the pair are aligned with a Dynamic Time Warping [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF] and the resulting pairs of frames are padded with 3 context frames on each side. The resulting 7 frames are given as input to each entry of the Siamese network, respectively 𝑥 and 𝑥 ′ . The Siamese network is given the triplet (𝑥, 𝑥 ′ , 𝑦) where 𝑦 ∈ {0, 1} is 1 if 𝑥 and 𝑥 ′ are stacks of frames extracted from words labeled as "same", and 0 otherwise. Given inputs 𝑥 and 𝑥 ′ , the network outputs respectively the embeddings e(𝑥) = e and e(𝑥 ′ ) = e ′ ∈ 𝑅 𝑑 .

The similarity between embeddings is measured by their cosine cos(e, e ′ ) =

e.e ′ ||e|| 2 ||e ′ || 2 , and the network is trained to minimize the following loss function:

ℓ(e, e ′ , 𝑦) = ⎧ ⎪ ⎨ ⎪ ⎩ -cos (︀ e, e ′ )︀ if 𝑦 = 1 cos(e, e ′ ) 2 if 𝑦 = 0 , (3.1) 
Hence, when two inputs are "same", we maximize their cosine similarity. However, when they are "different", we minimize the squared cosine similarity, as suggested by Synnaeve et al. [2014]. They justify this approach by the fact that minimizing the cosine similarity would draw the embeddings towards anti-colinearity, which is harder to achieve than orthogonality (which is reached when minimizing the squared cosine), and often leads to divergence. We also adopt this loss function as we want to compare the performance of different speech features, without confounding factors such as changes in the architecture, the loss function, or the optimization algorithm. However, in Chapter 4, we show that minimizing the cosine similarity down to a margin hyperparameter solves the convergence problem.

Scattering transform

For a signal 𝑥, and using the notation of [START_REF] Andén | Deep Scattering Spectrum[END_REF], we define the following wavelet transform 𝑊 𝑥 as a convolution with a low-pass filter 𝜑 and higher frequency complex analytic wavelets 𝜓 𝜆 1 :

𝑊 𝑥 = (𝑥 ⋆ 𝜑(𝑡), 𝑥 ⋆ 𝜓 𝜆 1 (𝑡)) 𝑡∈𝑅,𝜆 1 ∈Λ 1 (3.2)
We apply a modulus operator to the wavelets coefficients to remove the phase and extract Hilbert envelopes at different resolutions:

|𝑊 |𝑥 = (︁ 𝑥 ⋆ 𝜑(𝑡) , |𝑥 ⋆ 𝜓 𝜆 1 (𝑡)| )︁ 𝑡∈𝑅,𝜆 1 ∈Λ 1 (3.3)
𝑆 0 𝑥 = 𝑥 ⋆ 𝜑(𝑡) is locally invariant to translation thanks to the time averaging 𝜑. This timeaveraging loses the high frequency information, which is retrieved in the wavelet modulus coefficients |𝑥 ⋆ 𝜓 𝜆 1 | . However, these wavelet modulus coefficients are not invariant to translation, and as for 𝑆 0 a local translation invariance is obtained by a time averaging, which defines a first layer of scattering coefficients:

𝑆 1 𝑥(𝑡, 𝜆 1 ) = |𝑥 ⋆ 𝜓 𝜆 1 | * 𝜑(𝑡) (3.4)
Andén and Mallat [2014] show that if the wavelets 𝜓 𝜆 1 have the same frequency resolution as the standard mel-filters, then the 𝑆 1 𝑥 coefficients approximate the mel-filterbanks coefficients. They also use this characterization to explain how mel-filterbanks are provably stable to deformations of the signal (time-warping), which is interesting as they justify the design choices of mel-filterbanks with mathematical arguments, rather than psychoacoustics.

Incidentally, this approximation of mel-filterbanks will be the key to designing Time-Domain filterbanks in Chapter 5, however we are here interested in deriving richer fixed features from mel-filterbanks, rather than a learnable architecture. Andén and Mallat explain that, unlike with the standard mel-filterbanks computation, we here have a strategy to recover the lost information, by passing the wavelet modulus coefficients |𝑥 ⋆ 𝜓 𝜆 1 | (taken before averaging) through a bank of higher frequency wavelets 𝜓 𝜆 2 :

|𝑊 2 | |𝑥 ⋆ 𝜓 𝜆 1 | = (︁ |𝑥 ⋆ 𝜓 𝜆 1 | ⋆ 𝜑 , ||𝑥 ⋆ 𝜓 𝜆 1 | ⋆ 𝜓 𝜆 2 | )︁ 𝜆 2 ∈Λ 2 (3.5)
This second layer of wavelet modulus coefficients is still not invariant to translation, hence we average these coefficients with a low-pass filter 𝜑 to derive a second layer of scattering coefficients:

𝑆 2 𝑥(𝑡, 𝜆 1 , 𝜆 2 ) = ||𝑥 ⋆ 𝜓 𝜆 1 | ⋆ 𝜓 𝜆 2 | ⋆ 𝜑(𝑡) (3.6)
Repeating these successive steps of computing invariant features and retrieving lost information leads to the scattering spectrum, as seen in Fig. 3-1, however speech signals are almost entirely characterized by the first two layers of the spectrum, that is why a two layers spectrum is typically used for speech representation. By concatenating the coefficients of each layer 𝑆 0 , 𝑆 1 and 𝑆 2 we obtain a representation which is stable to deformations, while keeping more fine-grained information than the mel-filterbanks coefficients. 

Experiments

In the following experiments, we replace mel-filterbanks by a two-layer scattering spectrum computed with a 16 ms lowpass filter, with normalized second order coefficients and logfrequency scattering [START_REF] Andén | Deep Scattering Spectrum[END_REF]. The features are computed with the ScatNet toolbox [START_REF] Andén | Deep Scattering Spectrum[END_REF]. We train our models in the same conditions as Synnaeve et al. [2014], using Adadelta [Zeiler, 2012] and early stopping. We use word-level transcriptions for training, and phone-level transcriptions for ABX evaluations.

Weakly-supervised phonetic representation learning

The TIMIT dataset [START_REF] John S Garofolo | TIMIT acoustic-phonetic continuous speech corpus[END_REF] is a corpus of clean read speech containing a set of 10 sentences read by 630 speakers of eight major dialects of American English. All the words of more than 5 characters that are repeated in the corpus are extracted and matched as pairs of "same". This yields 62,625 pairs of same words represented as time bounding-boxes in the signal. We extract the scattering features within these boxes and align them with Dynamic [START_REF] Lee | Speaker-independent phone recognition using hidden markov models[END_REF].

Fig. 3-2 shows ABX errors on the across-speaker task. The distances used for the ABX tasks are the cosine distance for the raw features, and the symmetric KL-divergence for all trained models. "Shallow" models have one hidden layer while "Deep" models have three. All hidden layers have 200 hidden units, and the final embedding has a dimension of 100. Even though raw scattering features do not yield a better ABX error than mel-filterbanks, their use as an input representation leads to a substantial improvement after training an ABnet, with a best error of 9.8% against 11.8% for the best ABnet trained on mel-filterbanks. Our best Scattering-ABnet model even gives a better ABX score than the HMM-GMM posteriorgrams (11%), very close to the output of the deep supervised network (9.6%). In fact, changing the input representation of the Shallow ABnet from mel-filterbanks to scattering coefficients has an impact on the ABX error (from 12.4% to 10.2%) that is 3.7 times higher than adding hidden layers to get a Deep ABnet (from 12.4% to 11.8%).

Unsupervised phone representation learning on Buckeye and NCHLT

In this experiment we run our model under the conditions of the Zero Resource Speech

Challenge 2015 [START_REF] Versteegh | The zero resource speech challenge 2015[END_REF]. One of the tasks in this challenge was unsupervised acoustic modeling. The challenge provided two datasets (a subset of the Buckeye Corpus of conversational English [START_REF] Pitt | Buckeye Corpus of Conversational Speech (2nd release)[END_REF] and a subset of the NCHLT corpus of Xitsonga [START_REF] De Vries | A smartphone-based ASR data collection tool for under-resourced languages[END_REF]) as well as baseline and topline ABX scores for both datasets, both for within-and across-speakers. The baselines provided by the challenge are MFCCs, the toplines are supervised HMM-HMM posteriorgrams. In the spirit of the challenge, we extract the pairs of speech segments used for training our model in an unsupervised manner. That is, rather than taking matching words from the gold transcription, we extract them from the signal by an unsupervised spoken term discovery (STD) algorithm [START_REF] Jansen | Efficient spoken term discovery using randomized algorithms[END_REF]. This algorithm discovered 3149 pairs of similar segments of speech from the English corpus and 1782 pairs from the Xitsonga corpus, 50% being used for training and 50%

for early stopping. These pairs form the "same" input to the ABnet. Like in our weaklysupervised experiments, the "different" input is composed of randomly matched segments of speech. Here, the "Deep" ScatABnet architecture consists of 2 layers of 500 nodes, with a sigmoid activation function, exactly as in a previously published study using an ABnet with filterbanks [START_REF] Thiollière | A Hybrid Dynamic Time Warping-Deep Neural Network Architecture for Unsupervised Acoustic Modeling[END_REF]. The "Shallow" one has only one hidden layer.

In Table 3.1, we compare our model against the challenge baselines (MFCC) and toplines (supervised HMM-GMM posteriorgrams) and also against the best performing system submitted to the challenge [START_REF] Chen | Parallel inference of dirichlet process gaussian mixture models for unsupervised acoustic modeling: a feasibility study[END_REF]], a DPGMM system that takes as input speakernormalized MFCCs. We observe that both ABnet variants perform better than the baseline. For English within-speaker, both systems actually outperform the supervised topline.

ScatABnet has lower error scores than the FbanksABnet on all conditions except Xitsonga within-speaker. The table further shows that ScatABnet is competitive with the state of the art system of [START_REF] Chen | Parallel inference of dirichlet process gaussian mixture models for unsupervised acoustic modeling: a feasibility study[END_REF], in one case, across-speaker for Xitsonga, producing the lowest ABX error. These performances are remarkable given that the number of pairs on which the ABnet is trained is much lower than for the TIMIT. This low number of pairs can also explain why here a shallow architecture with fewer parameters gives a higher performance than a deep one.

Conclusion

This chapter shows that feeding rich input representations to a weakly-supervised acoustic model offers a significant leverage in terms of phonetic discriminability. The experiments on TIMIT in section 3.4.1 show that switching from standard mel-filterbanks to the scattering spectrum yields a substantial gain (about 17% in relative error rate), a higher gain than switching from a shallow to a deep network. This shows that in acoustic representation learning, putting more emphasis on the input representation might give a larger performance increase than improving the learning architecture. These results suggest that deep architectures that are trained on standard mel-filterbanks may not be exploited to their full potential, as previously shown in a supervised setting by [START_REF] Peddinti | Deep scattering spectrum with deep neural networks[END_REF]. However, there is no guarantee that the alternative that we use, the deep scattering spectrum, is itself optimal. These findings, associated to the arguments developed in Section 1.2 on the suboptimality of fixed features, support the idea of removing speech features from acoustic models: if we observe that we can significantly outperform mel-filterbanks, then we should replace them, and rather by a learnable architecture than by other speech features. This motivates the next chapter, in which we train weakly-supervised systems directly from the waveform.

Chapter 4

Disentangling speaker and phonetic information from the raw waveform

This chapter is partly based on the material from Joint Learning and Speaker and Phonetic

Similarities with Siamese Networks [Zeghidour et al., 2016a], accepted for oral presentation

at Interspeech 2016 and a joint work with Gabriel Synnaeve, Nicolas Usunier and Emmanuel

Dupoux. Experiments with models trained on the waveform were performed at the same period and are published for the first time in this manuscript.

Introduction

As described in Section 1.4, the speech signal carries a lot of information beyond the linguistic content, and in this Chapter we make the rough assumption that a speech signal is essentially the "entanglement" of the linguistic content and the intrinsic speaker characteristics (we do not consider other sources of variations such as channel effect, or prosody).

Automatic Speech Recognition (ASR) consists in extracting linguistic information from the speech features, independently of the identity of the speaker, conditions of recording, and other irrelevant information. On the other hand, speaker identification requires extracting information from the signal that characterizes the speaker regardless of the content of their production. Hence, if we see the speech signal as the combination of orthogonal informations (linguistic content, speaker identity, noise, etc.) present in the input features, we can observe that performing any speech classification task relies on extracting one of these infor-mations and removing the others. A limitation of this approach is that it requires individual training pipeline for each task, each pipeline extracting its relevant information from the same speech features. However, we can overcome this limitation with multi-task learning [START_REF] Caruana | Multitask learning[END_REF]. Indeed, since the speech features are shared across all tasks, instead of learning separately to perform each task at the expense of all the others, we propose to learn multiple tasks at the same time from these shared speech features, a process that can be described as "disentangling" speaker identity and phonetic content.

In a weakly-supervised setting, we want to learn both phonetic and speaker representations from pairs or triplets of word-level utterances, labelled as being the same word or different ones, and being spoken by the same person or different ones. Taking inspiration from the approach detailed in Chapter 2, we use Siamese networks that we train with either a contrastive loss on pairs of words, or a ranking loss on triplets of words. A natural choice for input features to such models is mel-filterbanks since, as shown in Section 1.4, they are used in a wide range of linguistic or paralinguistic tasks (e.g. speech recognition, speaker recognition, emotion recognition). However, we are also interested in learning phonetic and speaker representations from the raw speech signal. In Section 1.2, we showed that even though mel-filterbanks are linked to human perception and should efficiently code information for a wide range of tasks (speech recognition, speaker recognition), the tuning of their many hyperparameters have most likely been tuned for speech recognition. If such a bias exists in speech features, that would favor speech recognition at the expense of performance for other tasks, we can expect speaker recognition to benefit from learning its own features from the raw waveform. This motivates the use of convolutional networks on the speech signal, which consists in replacing the speech features computation usually performed in the frequency-domain by real-valued convolutions in the time-domain.

We show that we can effectively train a single model to disentangle phonetic and speaker informations on an large scale English dataset, Librispeech [START_REF] Panayotov | Librispeech: an ASR corpus based on public domain audio books[END_REF], either from mel-filterbanks or from the waveform. We show that this disentanglement can generalize out-of-domain, to another English dataset (TIMIT) and even to a low-resource language, Xitsonga, spoken mostly in South Africa and Mozambique. Finally we show that both joint learning and training from the raw waveform benefit the speaker modelling task, and we perform an analysis of our networks to understand how the joint modelling is learned within the hidden layers.

In the remainder of this chapter, we first discuss in more details the related work on multi-task learning and triplet losses in Section 4.2. We then present the models in Section 4.3. Experimental results are shown in Section 4.4 and a detailed analysis of the hidden layers of our networks is provided in Section 4.5.

Related work

Given several tasks to perform on the same input data, instead of using one model per task, one can share parameters between models and tasks with the hypothesis that learning multiple tasks at the same time might improve the overall performance on each of the tasks [START_REF] Caruana | Multitask learning[END_REF]. In a fully supervised setting, with annotated speech sequences that are also labelled with the identity of the speaker, multi-task learning has previously been used

to improve the quality of ASR with an auxiliary speaker classification task [START_REF] Pironkov | Speaker-aware long short-term memory multi-task learning for speech recognition[END_REF], or such that each of both tasks (ASR and speaker identification) would benefit the other [START_REF] Tang | Multi-task recurrent model for speech and speaker recognition[END_REF]. Performing both phonetic and speaker modelling in a weaklysupervised setting has been previously explored by Synnaeve and Dupoux [2014], on a small dataset. Here, we expand on this previous work in several ways. First, we scale up the architecture to deal with a considerably larger dataset [START_REF] Panayotov | Librispeech: an ASR corpus based on public domain audio books[END_REF]. Secondly, we improve on the loss function by adding a margin and investigating a triplet-based loss function as in [Kamper et al., 2015b]. We also use different types of input representations (either mel-filterbanks or the raw waveform) and measure the impact of this design choice on both phonetic and speaker modelling tasks. Finally we present out-of-domain experiments that show that the discriminability and invariance properties generalize to another English dataset and even another language. representation that is discriminative for the task at hand. In speech applications, this has been previously used for acoustic modelling [Kamper et al., 2015b], and speaker modelling [START_REF] Bredin | TristouNet: Triplet Loss for Speaker Turn Embedding[END_REF]. In the MEL setting, we represent the speech signal with mel-filterbanks frames with a window size of 25ms and a shift of 10ms. The networks learn phonetic and/or speaker embeddings of sub-words units, provided an input defined as a stack of 7 or 15 of successive filterbank frames, representing respectively a context of 70 and 150ms.

Model

In the WAV setting, we train our architectures on the raw speech signal, sampled at 16kHz. A natural way of dealing with the raw waveform in a speech processing setting is to use convolutional neural networks. It allows learning several filters in the first layer, in an analogous way to hand-engineered filters that are used in standard speech features (mel-filterbanks, gammatone filters). In that setting, the networks learn phonetic and/or speaker embeddings of sub-words units, provided an input defined as a waveform segment representing an utterance of a particular word.

For training, we use annotations at the word level, but also the speaker identity. In the MEL setting, and in order to exploit pairs of identical words (same or different speakers), the two utterances are first realigned at the frame level using Dynamic Time Warping (DTW) [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF]. Sliding windows of stacked frames are then presented to the two entries of the siamese network. Dissimilar pairs are simply aligned along the diagonal.

In the WAV setting, we face the additional difficulty that a DTW-type alignment on the raw waveform is less trivial than on standard speech features such as mel-filterbanks or MFCC. With an euclidean distance or a cosine distance, the DTW algorithm is linear in the number of dimensions and quadratic in the length of the sequences. This is acceptable when using features with a standard window stride (10ms), an utterance being represented by no more than a few hundreds frames. In the case of the waveform, the length of an utterance has an order of magnitude of thousands of values, making the cost of a DTW computation prohibitive. Moreover, an alignment obtained from a speech waveform would be an alignment on amplitude and would thus not be relevant for a speech modelling task, since linguistic content is characterized by the frequency information. This is why, in the WAV setting, instead of training our system on pre-aligned segments of waveform, we first align word utterances on mel-filterbanks, and then use the obtained path to align the output frames of the convolutional network that receives the full word waveform as entry. Figure 4-1 illustrates this architecture.

Discriminability and invariance

The objective of our training scheme is to "disentangle" phonetic content and speaker identity into separate representations. We want the phonetic embedding to show a good discriminability of phonetic classes and the speaker embedding to show a good discriminability of speaker classes. On the other hand, since we want to learn separate representations, all information related to speaker identity and independent from phonetic classes should be removed from the phonetic embedding, and conversely for the speaker embedding. This means that a speaker classification task performed on the phonetic embedding or a phonetic classification task on the speaker embedding should be as close as possible from chance level.

This is what we refer to as invariance.

To evaluate the discriminability, but also the invariance properties of the embeddings learned by the system, we perform additional ABX discrimination tasks to the ones described in the previous chapters. In our experiments, A, B and X are triphones that may only differ by their central phoneme. When evaluating phonetic discriminability, A and B share the same speaker while their central phoneme is different, and X matches A on its phonetic content but is pronounced by a different speaker (the "across speaker" setting described in Chapter 2). Since we also want to evaluate speaker discriminability, we also use "across phoneme" ABX tasks. Switching B and X provides a speaker discriminability task across phonemes. Table 4.1 shows examples for both tasks.

Precisely, each triphone is represented as a stack of frames in the embedding space, and the distance between triphones is computed as the sum of the cosine distances between aligned frames after DTW. An ABX task is then performed per triplet and we show the average error over all triplets that can be found in the data.

We expect a phonetic embedding to show phonetic discriminability, which is characterized by a low ABX error rate on the phone across speaker task, and to show invariance to speaker identity, which is characterized by an ABX error as close as possible from 50% on the speaker across phone task. Conversely, better speaker embeddings have lower speaker across phone error rate, and a high phone across speaker error.

Multi-task siamese network

A single-task siamese architecture is trained using labeled pairs (𝑥, 𝑥 ′ , 𝑦 loss function we use is

ℓ𝛾(e, e ′ , 𝑦) = ⎧ ⎪ ⎨ ⎪ ⎩ -cos (︀ e, e ′ )︀ if 𝑦 = 1 max(0, cos(e, e ′ ) -𝛾) if 𝑦 = 0 , (4.1)
where 𝛾 is a margin hyperparameter. Hence, when two inputs have a "same" label, this loss enforces co-linearity of their embeddings. Conversely, if the inputs are "different", the loss enforces that their cosine similarity is lower than 𝛾. Providing the loss function with 𝑦 𝑝ℎ𝑛 as a label allows learning a phonetic embedding, while using 𝑦 𝑠𝑝𝑘 allows learning a speaker embedding. Hence the loss function for a phonetic modelling siamese network is ℓ𝛾(e, e ′ , 𝑦 𝑝ℎ𝑛 ) while the loss used to train a speaker modelling siamese network is ℓ𝛾(e, e ′ , 𝑦 𝑠𝑝𝑘 ). When learning multiple embeddings, we may have different margin parameters 𝛾 𝑝ℎ𝑛 and 𝛾 𝑠𝑝𝑘 for phonetic and speaker embeddings respectively. The loss of the multi-output network is then 

𝐿(𝑥, 𝑥 ′ , 𝑦 𝑝ℎ𝑛 , 𝑦 𝑠𝑝𝑘 ) = ℓ 𝛾 𝑝ℎ𝑛 (e 𝑝ℎ𝑛 (𝑥), e 𝑝ℎ𝑛 (𝑥 ′ ), 𝑦 𝑝ℎ𝑛 ) (4.2) + ℓ 𝛾 𝑠𝑝𝑘 (e 𝑠𝑝𝑘 (𝑥), e 𝑠𝑝𝑘 (𝑥 ′ ), 𝑦 𝑠𝑝𝑘 ) . (4.3)

Multi-task triamese network

The triamese network uses a triplet-based loss function [START_REF] Bredin | TristouNet: Triplet Loss for Speaker Turn Embedding[END_REF][START_REF] Chechik | Large scale online learning of image similarity through ranking[END_REF], Kamper et al., 2015b[START_REF] Van | Stochastic triplet embedding[END_REF]. The model has the same architecture as before, but now the data takes the form

(𝑥 1 1 , 𝑥 2 1 , 𝑥 1 
2 ) where (𝑥 1 1 , 𝑥 2 1 ) are speech segments with similar phonetic content from two different speakers, and (𝑥 1 1 , 𝑥 1 2 ) are segments from two different words said by the same speaker.

A triplet loss enforces constraints on relative similarities between pairs. For phonetic embeddings e 𝑝ℎ𝑛 , two utterances of the same word pronounced by different speakers (𝑥 1 1 , 𝑥 2 1 ) should be more similar than utterances of different words pronounced by the same speaker

(𝑥 1 1 , 𝑥 1 
2 ). The rule is inverted for speaker embeddings: two different words pronounced by the same speaker should be closer in embedding space than two utterances of the same word pronounced by different speakers. This setting is not exhaustive regarding the types of triplets we could use to learn our tasks. For instance, a triplet of the type (𝑥 2 1 , 𝑥 2 1 , 𝑥 1 2 ) could be used to learn both embeddings by making (𝑥 2 1 , 𝑥 2 1 ) closer than (𝑥 2 1 , 𝑥 1 2 ) for both tasks. However, since 𝑥 2 1 and 𝑥 1 2 are different regarding both factors of variation, this task is simpler than the previous one. In a context in which we would have to select triplets in a vast quantity of possible ones, focusing solely on the hardest triplets, and thus the most informative ones, is an efficient solution that we choose to adopt. Formally, the triplet loss is defined for any three embeddings e, e ′ , e ′′ as:

l𝛾 (e, e ′ , e ′′ ) = max (︀ 0, 𝛾cos(e, e ′ ) + cos(e, e ′′ ) )︀ .

The losses for each embeddings are then:

l𝑝ℎ𝑛 (𝑥 1 1 , 𝑥 2 1 , 𝑥 1 2 ) = l𝛾 𝑝ℎ𝑛 (︀ e 𝑝ℎ𝑛 (𝑥 1 1 
), e 𝑝ℎ𝑛 (𝑥 2 1 ), e 𝑝ℎ𝑛 (𝑥 1 2 )

)︀ ,

l𝑠𝑝𝑘 (𝑥 1 1 , 𝑥 2 1 , 𝑥 1 2 ) = l𝛾 𝑠𝑝𝑘 (︀ e 𝑠𝑝𝑘 (𝑥 1 1 ), e 𝑠𝑝𝑘 (𝑥 1 2 ), e 𝑠𝑝𝑘 (𝑥 2 1 ) 
)︀ .

For the multi-output network, the final loss is l𝑝ℎ𝑛 + l𝑠𝑝𝑘 . A multi-output triamese is shown in Fig. 4-2.

Experimental setup

We train both siamese and triamese networks for three types of task (joint learning, phonetic modelling only, speaker modelling only), resulting in six different training schemes.

The neural networks are trained on the 360 hours of read speech (920 speakers) constituting the train_clean_360 subset of the Librispeech dataset [START_REF] Panayotov | Librispeech: an ASR corpus based on public domain audio books[END_REF]. We obtained the word-level annotations by force-aligning a state-of-the-art HMM-DNN [START_REF] Panayotov | Librispeech: an ASR corpus based on public domain audio books[END_REF] with transcriptions at the phone level, and then segmented the speech utterances at word boundaries.

In the MEL setting, after preliminary experiments, we focused on a fully connected deep neural net architecture with four hidden layers with 1000 units and a final embedding layer of size 𝑑 = 100. We used as the activation function the RReLU non-linearity [START_REF] Xu | Empirical evaluation of rectified activations in convolutional network[END_REF] at each layer (ReLUs exhibited similar performances). In the WAV setting, we used convolutional architectures composed of three types of layers:

1-d convolutions, max-pooling and ReLU. We trained three types of networks, that differ by their depth and their total spread (the time context that is used to generate an output frame). In the remainder of this chapter these networks are referred as Small, Medium, and Big, and their respective depth and spread parameters are as follows:

• Small: 5 convolutional layers, spread of 57ms

• Medium: 7 convolutional layers, spread of 127ms

• Big: 9 convolutional layers, spread of 267ms These three architectures have the same structure for their input and output layers, they only differ by the central layers. A visualization of these architectures, with their detailed structure, can be seen in Fig. 4-3.

In the MEL setting, we use Adadelta [START_REF] Matthew | ADADELTA: An adaptive learning rate method[END_REF] with interpolation parameter 0.9 and epsilon 10 -6 to train the siamese architecture, whereas plain stochastic gradient descent (SGD) performs slightly better for the triamese model. In the WAV setting, we only use SGD as our optimization algorithm. In both MEL and WAV settings, the learning rate for SGD starts at 0.01 and is halved when the error on the development set stops decreasing (with a minimum of 10 -6 ). In the MEL setting, the margin parameters (𝛾 𝑝ℎ𝑛 and 𝛾 𝑠𝑝𝑘 ), the weight decay, and the number of frames in an input stack are respectively chosen among {0.15, 0.5, 0.85}, {0, 0.001} and {7, 15}. In the WAV setting, we do not use weight decay, and since the results of MEL suggested that a margin of 0.15 was significantly worse we only cross-validate the margin hyperparameters (𝛾 𝑝ℎ𝑛 and 𝛾 𝑠𝑝𝑘 ) among {0.5, 0.85}. We use the dev_clean split of the dataset for early stopping and cross-validation of the margin hyperparameters.

Evaluation setups

In-domain evaluation

Evaluations on the Librispeech dataset are computed on the test_clean subset. We use annotations at the phoneme level from the forced alignment to extract all relevant triplets from the test set. We then subsample randomly 10% of the triplets to get 600k ABX triplets for the evaluation, from 40 speakers.

Out-of-domain evaluation

In order to evaluate the robustness of the learned representation across datasets and languages, we also perform two sets of out-of-domain experiments. First, we evaluate our embeddings on the training set of the TIMIT dataset [START_REF] John S Garofolo | TIMIT acoustic-phonetic continuous speech corpus[END_REF]. We extract all triplets from the train set of the standard train/dev/test split. We then subsample randomly 10% of these triplets, and obtain 1.87m ABX triplets total, with 462 speakers.

We also evaluate out-of-domain performance across languages by testing our embeddings on the Xitsonga dialect, on a subset of the NCHLT corpus [START_REF] De Vries | A smartphone-based ASR data collection tool for under-resourced languages[END_REF]. This corpus was used in the zerospeech 2015 challenge [START_REF] Versteegh | The zero resource speech challenge 2015[END_REF], and we will compare our method to the best in-domain unsupervised system. The corpus used for evaluation contains 240k ABX triplets, for 24 speakers.

In-Domain Results

We present the ABX error rate of phone and/or speaker embeddings, each one on both phone across speaker and speaker across phone task. speaker embeddings were trained separately in single output networks, whereas "double" refers to a multi-task network. As a baseline, we also report the ABX errors on stacks of 7 mel-filterbanks frames, referred as MEL7, which were shown to give good results on TIMIT in Chapter 3. In that case, the raw stack of mel-filterbanks is used both as direct phonetic and speaker embeddings. Table 4.3 reports ABX error rates on Librispeech of models trained on the raw waveform. The notations are the same, except that "small", "medium", and "big" refer to the depth of the convolutional network.

In the MEL setting, and for all networks, the phone and speaker tasks show high discriminability on their respective embeddings with an error rate around 10% (best score, respectively of 9.7% and 8.7%). At the same time, the scores on the mismatched embeddings (phonetic embedding for a speaker task and speaker embedding for a phonetic task) are within 7% of the chance level. This means that the embeddings have learned to be discriminative for their relevant task but also not to code the irrelevant one. This contrasts with the MEL7 input representations that encode both dimensions, as they are low-level features intended to replicate perceptual representations for both speech and speaker recognition. Moreover, even though comparisons are limited because the datasets are different, we achieve here a level of disentanglement that was not reached by Synnaeve and Dupoux [2014], in which phonetic embeddings had phonetic discriminability close to the mel-filterbanks (30.4% and 34.1% error respectively), and were less speaker-invariant than mel-filterbanks (30.8% and 38% error respectively).

In addition, we can see that the double embedding architectures do roughly as well as the single ones, even though the former have to share most of the network's weights for the two competing tasks. The speaker embedding (tested on the speaker task) seems to consistently benefit from the double training regime compared to a network trained only on a single task, these gains ranging from 0.6% to 14.5% (absolute). The phone tasks, in contrast, are less consistently affected, some architectures showing a small gain and most others a small cost. Finally, while there is no strong difference between the performance of a Siamese and a Triamese network on the same task, the latter seems to bring some improvement to the quality of speaker embeddings

In the WAV setting, the performance is more task-dependent. For the phonetic task, depth helps from Small to Medium but then degrades as the architectures get deeper. As in the MEL setting, we also observe a small increase in ABX error when comparing a single-task architecture with its multi-task equivalent. The lowest ABX error is at 14%, which is significantly worse than the best phonetic embedding of the MEL setting (9.7%). This corroborates the observation made in Section 1.3 that mel-filterbanks are a very strong baseline for speech recognition. On the other hand, the quality of speaker embeddings consistently improves with depth, and still benefits of multi-task learning and using a Triamese architecture. The best models show a performance that is significantly higher than the best MEL model, with that even with a spread that is three times lower and a number of parameters that is 33% lower, a WAV model still performs significantly better than the best MEL model on the speaker modelling task, with an ABX error of 6.7% against 8.1%. architecture trained on the TIMIT or an unsupervised architecture trained on the Xitsonga dataset (respectively) using a deep scattering spectrum as input. For TIMIT, the DNN "topline" is the output of a supervised neural network trained as a phone classifier on the TIMIT train set [Synnaeve et al., 2014]. For reference, we show the same MEL7 baseline as in the in-domain experiments.

Out-of-domain results

In the MEL setting, models trained on Librispeech generalize well to TIMIT, showing that the robustness of the representations. For both phonetic and speaker modelling tasks, the models keep very good levels of discriminability and invariance on this new dataset. This is particularly remarkable for the speaker modelling task, since the TIMIT train set contains 462 speakers, while there were only 40 speakers in the in-domain evaluation. Moreover, models trained on English (Librispeech) generalize to Xitsonga, a language typologically unrelated to English, containing a large array of consonants (54) including some click consonants and a contrast between breathy and modal voiced consonants which is totally absent in English. Third, these out-of-domain models happen to beat the previous in-domain stateof-the-art that used a similar training scheme in terms of architectures and loss function.

On TIMIT, the single output triamese network trained on pairs of words has a phone across speaker ABX of 9.2%, which is equivalent to the in-domain supervised phone classifier DNN.

In the WAV setting, we can observe that the transfer to another dataset does not exacerbate the gap in performance for the phonetic task, when compared to the MEL architectures.

The architectures trained on the waveform seem to generalize as well as the architectures trained on features, showing an ABX error on TIMIT that is lower than the error on the in-domain test-set. However, the speaker modelling task is considerably more impacted by the transfer, and the WAV architecture shows a far poorer transfer than the MEL architecture (25.8% ABX error, compared to 14.2%), even though the WAV models perform significantly better on the speaker task in-domain.

When testing WAV architectures on Xitsonga, we can see that the results on the phonetic task are coherent with the gap in performance we observed with the MEL architectures on both Librispeech and TIMIT. However, we can observe that the architecture of the WAV setting generalizes significantly better to the Xitsonga than the best performing architecture of the MEL setting. The left barchart is a phonetic modelling network, the middle barchart is a speaker modelling network, and the right one is a multi-task network. In blue are units that code for the phonetic information, in yellow, the speaker information, in green the units that code for both, and in black the units that code for none.

Detailed analysis of discriminability and invariance in the networks

In order to get a better understanding of what kind of information is encoded throughout our convolutional networks trained on the waveform, we perform an ANOVA (analysis of variance) [START_REF] Ronald | Statistical methods for research workers[END_REF]. For each unit of each convolutional layer in our network, we compute both its intra-class and inter-class variability along all sentences from the test set, for both phonetic and speaker modelling. For instance, for the phonetic task, the intra-class variability of a unit refers to the variance of its activations along all utterances of a same phoneme. Its inter-class variability is computed as the variance of its intra-class means along all phonetic classes. Taking the ratio of the inter-class variance and the intra-class variance gives a score that indicates how much a unit codes for a particular task. The higher the score, the more the unit reacts to a change of class for that task. Our boundaries to decide for which task(s) a unit codes are defined as the median score for all units over all layers, for each task. Then, for a given unit, if phonetic and speaker scores are respectively above the phonetic and speaker median, the unit codes for both task. If only the phonetic score is above its median, the unit codes for the phone, and conversely for the speaker. Finally, if both scores are below the median, the unit is considered as coding for nothing. Fig. 4-4 shows the results of this analysis on three networks trained in the WAV setting: the first one is our best single-task architecture for the phonetic modelling, the second one is the best single-task architecture for the speaker modelling, and finally the last one is the best multi-task architecture (in the sense that the average of its phonetic and speaker ABX errors is the lowest). The various statistics (intra-class and inter-class variability) are computed across these three architectures jointly. First, we can see that in each of the three architectures, the first layer codes for nothing. We can interpret it in the sense that the waveform is such a raw representation of speech that the first layer of the network might systematically perform low-level processing that can not directly be linked to speech or speaker modelling. In higher layers, differences between models emerge. For the singletask phonetic network, we can see that the speaker information is removed as soon as the second layer, and the final output almost purely models phonetic classes. On the other hand, single-task speaker network keeps phonetic information up to several layers and then outputs an embedding that purely encodes speaker information (100 units out of 100). This asymmetry between tasks can be related to the successful use of posteriors from neural networks trained for ASR to compute i-vectors for speaker identification [START_REF] Lei | A novel scheme for speaker recognition using a phonetically-aware deep neural network[END_REF][START_REF] Omid Sadjadi | The IBM 2016 speaker recognition system[END_REF]. As i-vectors are used to model a speaker by shifts in phonetic classes, it is possible that our neural network learns speaker representations from phonetic information. This can explain why multi-task learning benefits the speaker modelling task and does not benefit the phonetic modelling task: phonetic features are useful for learning good speaker representations, while the usefulness of speaker related information for phonetic modelling is less obvious according to our analysis. Finally, the analysis of the multi-task network shows that as we go deeper, the layers model both tasks more and more, and that both output embeddings are very pure for their task.

Conclusion

We have demonstrated that a siamese or triamese architecture, together with a weak supervision using only same-different information regarding word and speaker identity can learn embeddings that are very selective in one dimension and invariant in the other: indeed, our best embeddings showed around a 6 -10% error rate in one task and near chance in the other. Moreover, we showed that it was possible to learn these two orthogonal embeddings from one network, and without speech features, thereby demonstrating effective disentanglement of phoneme and speaker information from the raw waveform. Finally, we showed that these disentangling networks could generalize to out-of-domain datasets (a different English dataset, and a different, under-resourced, language), even beating the in-domain state-of-the-art. This shows that transfer learning is a promising avenue for exploiting data from high-resource languages to benefit low-resource ones.

In detail, the multi-task networks differed somewhat from the single-task ones. In particular, whereas the speaker task benefited consistently from the joint training, this was not the case for the phone task. A thorough ANOVA study on our trained systems showed that a model trained for speaker modelling observed would model the phonetic content up to high-level layers, while a model trained for phonetic modelling would remove speaker information in early layers. Both the ABX errors and the ANOVA corroborate the previous observation that speaker identification systems improve their performance by using side phonetic/linguistic information while the benefit of adding speaker information to state of the art ASR has been more elusive.

We also compared models trained on the waveform and on mel-filterbanks. We observed that even though models trained on the waveform produced significantly worse phonetic embeddings, they were particularly adapted to speaker modelling, yielding excellent embeddings even with a context size as small as 57ms, while speaker verification systems are typically trained on segments of hundreds to thousands of miliseconds. Adding a weighting factor to the speaker loss, relatively to the phonetic loss, could rebalance the overall performance of the system over the two tasks, and improve the phonetic discriminability of the learnt representation. Our findings are consistent with the hypothesis we formulated in Section 1.4: mel-filterbanks are likely biased in favor of speech recognition rather than paralinguistic tasks (including speaker identification). This is also supported by the higher phonetic discriminability of the MEL7 baseline (24.5%) than speaker discriminability (32.9%).

However, these experiments lack the sufficient rigor to make a definitive conclusion on which input representation, of the waveform or the mel-filterbanks, is more adapted to one task or the other. Indeed, even though we control for the number of parameters in our neural networks, their architectures (convolutional or fully connected, choice of activation function, number of layers, etc.) are too different to guarantee that the differences in performance between the WAV and MEL settings are only due to the input representation, or are artifacts of the aforementioned confounding factors. This uncertainty also holds for the experiments of Chapter 3, as the higher dimension of the deep scattering spectrum (relatively to mel-filterbanks) naturally increases the expressivity of the Siamese network trained on top of this representation. Finally, we are not satisfied with the gap in quality of phoneme embeddings between the WAV and MEL settings, and will thus explore furthermore speech recognition from the raw waveform in the next sections.

Part III

Learning the speech front-end for speech recognition and paralinguistic tasks 90 I would ask, why use the Mel scale now, since it appears to be biased? If anyone wants a Mel scale they should do it over, controlling carefully for order bias and using plenty of subjectsmore than in the pastand using both musicians and non-musicians to search for any differences in performance that may be governed by musician/non-musician differences or subject differences generally. 

Introduction

In Chapter 3, we conducted a comparative study of speech features on phonetic modelling and showed that this design choice had a significant impact on the performance of the final system. To circumvent this selection step, as well as inherent limitations of fixed features exposed in Section 1.2, we then decided to experiments with models that can learn their low-level representations directly from the raw waveform, jointly with the main architecture.

These encouraging results lead us to keep exploring the idea of replacing mel-filterbanks by neural layers, however the limitations of the models and experimental protocol developed in Chapter 4 also incite us to add more constraints to our learnable alternative. First, it should have an equivalent structure to mel-filterbanks (number of filters, capacity, context size, context stride) in order to compare the learnt and fixed approaches without any confounding factor. Moreover, the gap in quality between phonetic embeddings learned from mel-filterbanks or the waveform suggests that we should carefully study the computation of mel-filterbanks to guarantee that their essential components are integrated into our neural frontend. These two insights drive the design of our learnable architecture, the Time-Domain filterbanks, that we introduce in this Chapter.

Sharing this idea of taking inspiration from the computation of mel-filterbanks, Tjandra et al. [2017a] pre-train 9 layers of convolutions (including Network-in-Network layers [START_REF] Lin | Network in network[END_REF]) to reconstruct mel-filterbanks, and then use them as the lower layers of an endto-end sequence-to-sequence system. This allows outperforming mel-filterbanks on a speech recognition task, however these experiments suffer from the same confounding factors as our experiments in Chapter 4. Indeed, even though these layers of convolutions are pre-trained to reconstruct mel-filterbanks, they are then fine-tuned with the rest of the network, to which they add a lot of capacity. This explains how this approach outperforms mel-filterbanks, as mel-filterbanks involve way fewer operations than these convolutional layers.

We also focus on mel-filterbanks because they are the front-end of state-of-the-art phone [START_REF] Tóth | Phone recognition with hierarchical convolutional deep maxout networks[END_REF] and speech [START_REF] Kyu | The CAPIO 2017 Conversational Speech Recognition System[END_REF][START_REF] Xiong | Achieving human parity in conversational speech recognition[END_REF] recognition systems. As in Chapter 3, we build on [START_REF] Andén | Deep Scattering Spectrum[END_REF]. However, in that Part we are not interested in the derivation of a deep scattering spectrum, but rather on the first-order scattering transform. Indeed, in Section 3.3, we briefly mention that a scattering transform approximates mel-filterbanks in time-domain when it is defined with an appropriate bank of filters. By constructing a neural network that computes a scattering transform, the Time-Domain filterbanks, we adress all the aforementioned limitations of our previous approach.

First, a scattering transform moves the standard computation of mel-filterbanks to the time-domain, and thus works directly on the waveform. Moreover, as shown in the next Section, the number of operations, as well as the structure of a scattering transform is equivalent to mel-filterbanks, which addresses the capacity problem. Finally, initializing our neural layers with an actual scattering transform allows us to approximate mel-filterbanks before training, while being able to fine-tune the frontend during training. This leads us to study an architecture using a convolutional layer with complex-valued weights, followed by a modulus operator and a low-pass filter. In contrast to [Tjandra et al., 2017a], Time-Domain filterbanks are a lightweight architecture that serves as a plug-in, learnable replacement to mel-filterbanks in deep neural networks. Moreover, we avoid pretraining by initializing the complex convolution weights with Gabor wavelets whose center frequency and bandwidth match those of mel-filterbanks. In the next Section, we derive the Time-Domain filterbanks, in terms of network architecture, filters specifications, and choice of initialization. Based on the observation, made in sections 1.2 and 1.3, that Automatic Speech Recognition (ASR) could benefit from learning from the waveform, we perform phone recognition experiments on TIMIT as a proof of concept for Time-Domain filterbanks. We show that given competitive end-to-end models trained with mel-filterbanks as inputs, training the same systems but just replacing the mel-filterbanks with the learnable architecture leads to performances that are consistently better than when using mel-filterbanks.

Time-Domain filterbanks

We present the standard mel-filterbanks and their practical implementation. We then describe a learnable replacement of mel-filterbanks that uses only convolution operations in time domain, and how to set the weights to reproduce mel-filterbanks.

Mel-filterbanks computation

Given an input signal 𝑥, mel-filterbanks are computed by first taking the short-time Fourier transform (STFT) of 𝑥 followed by taking averages in the frequency domain according to triangular filters with centered frequency and bandwidth that increase linearly in log-scale.

More formally, let 𝜑 be a Hann window of width 𝑠 and (𝜓 𝑛 ) 𝑛=1..𝑁 be 𝑁 filters whose squared frequency response are triangles centered on (𝜂 𝑛 ) 𝑛=1..𝑁 with full width at half maximum (FWHM) (𝑤 𝑛 ) 𝑛=1..𝑁 . Denoting by 𝑥 𝑡 : 𝑢 ↦ → 𝑥(𝑢)𝜑(𝑡 -𝑢) the windowed signal at time step 𝑡, and f the Fourier transform of function 𝑓 , the filterbank is the set of 𝑁 functions

(𝑡 ↦ → 𝑀 𝑥(𝑡, 𝑛)) 𝑛=1..𝑁 : 𝑀 𝑥(𝑡, 𝑛) = 1 2𝜋 ∫︁ |x 𝑡 (𝜔)| 2 | ψ𝑛 (𝜔)| 2 𝑑𝜔 , (5.1) 
One can observe that this formula does not include the log-compression. This is due to the fact that we can simply include a log non-linearity of our learnable frontend to replicate it, so there is no need of approximating this operation.

Approximating mel-filterbanks with convolutions in time

Andén and Mallat [2014] show that these standard mel-filterbanks computed in the frequency domain can be approximated with a first order scattering transform (see Section II of [START_REF] Andén | Deep Scattering Spectrum[END_REF] for a proof):

𝑀 𝑥(𝑡, 𝑛) ≈ |𝑥 * 𝜙 𝑛 | 2 * |𝜑| 2 (𝑡). (5.2)
where 𝜙 𝑛 is a wavelet that approximates the 𝑛-th triangular filter in frequency, i.e. | φ𝑛 | 2 ≈ | ψ𝑛 | 2 , while 𝜑(𝑡) is the Hann window also used for the mel-filterbanks. The approximation is valid when the time support of 𝜙 𝑛 is smaller than that of 𝜑.

As described in Section 3.3, this approximation is the foundation of the deep scattering spectrum [START_REF] Andén | Deep Scattering Spectrum[END_REF], which cascades scattering transforms to retrieve information that is lost in the mel-filterbanks. However, in this part, we do not use the deep scattering spectrum. Rather, first-order scattering coefficients provide us with both a design for the first layers of the network architecture to operate on the waveform, and an initialization that approximates mel-filterbanks.

Given the mel-filterbanks center frequencies (𝜂 𝑛 ) 𝑛=1..𝑁 and FWHM (𝑤 𝑛 ) 𝑛=1..𝑁 , we use (5.2) to approximate mel-filterbanks with Gabor wavelets:

𝜙 𝑛 (𝑡) ∝ 𝑒 -2𝜋𝑖𝜉𝑛𝑡 1 √ 2𝜋𝜎 𝑛 𝑒 -𝑡 2 2𝜎 2
𝑛 .

(5.3)

Each 𝜙 𝑛 is a Gaussian 𝒩 (0, 𝜎 𝑛 ) modulated by a sinusoid of frequency 𝜉 𝑛 . In the Fourier domain this product becomes a convolution between a Gaussian 𝒩 (0, 𝜎 -1 𝑛 ) and a Dirac in 𝜉 𝑛 , which yields a Gaussian 𝒩 (𝜉 𝑛 , 𝜎 -1 𝑛 ). We can thus choose 𝜉 𝑛 and 𝜎 𝑛 such that the frequency response of the Gabor 𝜙 𝑛 matches the corresponding mel-filterbank (approximating a triangular response by a Gaussian one). Since 𝜙 𝑛 is centered in 𝜉 𝑛 , and we want it to match a mel-filter centered in 𝜂 𝑛 , we simply choose 𝜉 𝑛 = 𝜂 𝑛 . Similarly, we want to set the width parameter 𝜎 𝑛 of the Gabor wavelet to match the desired FWHM 𝑤 𝑛 . The FWHM

of a Gaussian 𝒩 (𝜉 𝑛 , 𝜎 -1 𝑛 ) is equal to 2 √ 2 log 2𝜎 -1 𝑛 , so to have 2 √ 2 log 2𝜎 -1 𝑛 = 𝑤 𝑛 , we take 𝜎 𝑛 = 2 √ 2 log 2 𝑤𝑛
.

Each 𝜙 𝑛 is then normalized to have the same energy as 𝜓 𝑛 . Mel-filterbanks specification. The standard setting in speech recognition is to start from the waveform sampled at 16kHz and represented as 16-bit signed integers. The STFT is computed with 512 frequency bins using Hann windows of width 25ms, and decimation is applied by taking the STFT every 10ms. There are 𝑁 = 40 filters, with center frequencies (𝜂 𝑛 ) 𝑛=1..𝑁 that span the range 64𝐻𝑧 -8000𝐻𝑧 by being equally spaced on a mel-scale.

The final features are the log(max(𝑀 𝑥(𝑡, 𝑛), 1)). In practice, the STFT is applied to the raw signal after a pre-emphasis with parameter 0.97, and coefficients have mean-variance normalization per utterance. . The windowing layer (third row of Table 5.1) is a grouped convolution, meaning that each output filter only sees the input filter with the same index. The decimation of 10ms is implemented in the stride of 160 of this layer. Notice that to approximate the mel-filterbanks, the square of the Hann window is used and biases in both convolutional layers are set to zero. We keep them to zero during training. We add a log compression to the output of the grouped convolution after adding 1 to its absolute value since we do not have positivity constraints on the weights when learning. Contrarily to the mel-filterbanks, there is no mean-variance normalization after the convolutions, but on the waveform. In the default implementation of the Time-Domain filterbanks, we do not apply pre-emphasis. However, in our last experiment, we add a convolutional layer below the Time-Domain filterbanks, with width 2 and stride 1, initialized with the pre-emphasis parameters, as another learnable component.

Experiments

Setting

We perform phone recognition experiments on TIMIT [Garofolo et al., 1993] using the standard train/dev/test split. We train and evaluate our models with 39 phonemes, following the protocol of [START_REF] Lee | Speaker-independent phone recognition using hidden markov models[END_REF]. We experiment with three architectures. The first one consists of 5 layers of convolution of width 5 and 1000 feature maps, with ReLU activation functions, and a dropout [Hinton et al., 2012b] of 0.5 on every layer but the input and output ones. The second model has the same architecture but a dropout of 0.7 is used. The third model has 8 layers of convolution, PReLU [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF] nonlinearities and a dropout of 0.7.

All our models are trained end-to-end to predict the full phonetic transcription at once, with the Autoseg criterion [START_REF] Collobert | Wav2letter: an end-to-end convnet-based speech recognition system[END_REF], using stochastic gradient descent. We compare all models using either the baseline mel-filterbanks as input or our learnable Time-Domain filterbanks front-end. We perform the same grid-search for both mel-filterbanks baselines and models trained on Time-Domain filterbanks, using learning rates in (0.0003, 0.003) for the model and learning rates in (0.03, 0.003) for the Autoseg criterion, training every model for 2000 epochs. We use the standard dev set for early stopping and hyperparameter selection.

Different types of Time-Domain filterbanks

Throughout our experiments, we tried four different settings for the Time-Domain filterbanks layers:

• Fixed: Initialize the layers to match mel-filterbanks and keep their parameters fixed when training the model

• Learn-all: Initialize the layers and let the filterbank and the averaging be learned jointly with the model [START_REF] Chorowski | Attention-based models for speech recognition[END_REF] mel + ∆ + ∆∆ 15.8 17.6 LSTM + Segmental CRF [START_REF] Lu | Segmental recurrent neural networks for end-to-end speech recognition[END_REF] mel + ∆ + ∆∆ -18.9 LSTM + Segmental CRF [START_REF] Lu | Segmental recurrent neural networks for end-to-end speech recognition[END_REF] [START_REF] Tóth | Phone recognition with hierarchical convolutional deep maxout networks[END_REF] and [Van Den Oord et al., 2016] are trained in an end-to-end fashion.

Table 5.2 shows comparative performance of an identical architecture trained on the four types of Time-Domain filterbanks. We can observe that training on fixed layers moderately worsens the performance, we hypothesize that this is due to the absence of mean-variance normalization on top of Time-Domain filterbanks as is performed on mel-filterbanks (we will integrate this normalization to our learnable frontend in Chapter 6). A striking observation is that a model trained on Time-Domain filterbanks initialized randomly performs considerably worse than all other models. This shows the importance of the Gabor initialization.

Finally, we observe better results when learning the filterbank only compared to learning the filterbank and the averaging but depending on the architecture it was not clear which one performs better. Moreover, when learning both complex filters and averaging, we observe that the learned averaging filters are almost identical to their initialization. Thus, in the following experiments, we choose to use the Learn-filterbank mode for the Time-Domain filterbanks.

Results

We report PER on the standard dev and test sets of TIMIT. For each architecture, we can observe that the model trained on Time-Domain filterbanks systematically outperforms the equivalent model trained on mel-filterbanks, even though we constrained our Time-Domain filterbanks such that they are comparable to the mel-filterbanks (number of filters, window size, window stride). This shows that by only learning a new bank of 40 filters, we can outperform the mel-filterbanks for phone recognition. This gain in performance is obtained at a minimal cost in terms of number of parameters: even for the smallest architecture, the increase in number of parameters in switching from mel-filterbanks to Time-Domain filterbanks is 0.31%. We also compare to baselines from the literature. One baseline trained on the waveform gets a PER of 29.1% on the test set, which is in a range 8.8% -11.1%

absolute above our models trained on the waveform. The Wavenet architecture, also trained on the waveform, yields a PER of 18.8, which is higher than our best models despite the fact that it uses the phonetic alignment from an HMM, and an auxiliary prediction loss. Our best model on the waveform also outperforms a 2-dimensional CNN trained on mel-filterbanks and an LSTM trained on mel-filterbanks with derivatives.

Adding a learnable pre-emphasis layer

As described in Section 1.2.1, the first step in the computation of mel-filterbanks is typically the application of a pre-emphasis layer to the raw signal. Pre-emphasis is a convolution with a first-order high-pass filter of the form 𝑦[𝑛] = 𝑥[𝑛] -𝛼𝑥[𝑛 -1], with 𝛼 typically equal to 0.97. This operation can be performed by a convolutional layer of kernel size 2 and stride 1, that can be plugged below time-domain filterbanks, initialized with weights [-0.97 1],

then learned with the network. By adding this learnable pre-emphasis layer below the Time-Domain filterbanks, and learning it jointly with the complex convolution, the lowpass filter, and the rest of the acoustic model we reach 18% PER on the test set. behavioral and physiological data [START_REF] Evan | Efficient auditory coding[END_REF]. In Figure 5-3, we further see that the initial mel-scale of frequency is mostly preserved, but that a lot of variability in the filter bandwidths is introduced.

Analysis of learnt filters

A prominent question is whether the analyticity of the initial filterbank is preserved throughout the learning process even though nothing in our optimization method is biased towards keeping filters analytic. A positive answer would suggest that complex filters in their full generality are not necessary to obtain the increase in performance we observed.

This would be especially interesting because, unlike arbitrary complex filters, analytic filters have a simple interpretation in terms of real-domain signal processing: taking the squared modulus of the convolution of a real signal with an analytic filter performs a sub-band Hilbert envelope extraction [START_REF] Jl Flanagan | Parametric coding of speech spectra[END_REF].

A signal is analytic if and only if it has no energy in the negative frequencies. Accordingly, we see in Figure 5-3 that there is zero energy in this region for the initialization filterbank.

After learning, a moderate amount of energy appears in the negative frequency region for certain filters. To quantify this, we computed for each filter the ratio 𝑟 𝑎 between the energy in negative versus positive frequency components1 . This ratio is 0 for a perfectly analytic filter and 1 for a purely real filter. We find an average 𝑟 𝑎 for all learned filters of .26. Filters with significant energy in negative frequencies are mostly filters with an intermediate preferred frequency (between 1000Hz and 3000Hz) and their negative frequency spectrum appears to be essentially a down-scaled version of their positive frequency spectrum.

Conclusion

In this chapter, we introduced Time-Domain filterbanks, a lightweight architecture which, at initialization, approximates the computation of mel-filterbanks and can then be fine-tuned with an end-to-end phone recognition system. With a number of parameters comparable to standard mel-filterbanks, a Time-Domain filterbanks front-end is consistently better in our experiments. Learning all linear operations in the mel-filterbanks derivation, from preemphasis up-to averaging provides the best model. However, phonetic recognition on TIMIT could be labeled as a "toy" task, and we are yet to show the performance of Time-Domain filterbanks on a real speech recognition task. Moreover, we would like to benchmark our learnable frontend against other models from the literature. This is why in Chapter 6, we The next section describes the learnable frontend architectures. Then, we present the end-to-end convolutional architecture used to perform the comparisons, and analyze the results of our comparative studies.

Time-Domain filterbanks and gammatone-based frontend

In this chapter we compare Time-Domain filterbanks to the gammatone-based frontend from [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF] and Sainath et al. [2015a]. They are described side-by-side in Table 6.1.

These two frontends can be used as a direct replacement for mel-filterbanks in any learning pipeline: they are convolutional architectures that take the raw waveform as input In both architectures, a convolutional layer with window length 25ms (to match the standard frame size used in mel-filterbanks) is applied with a stride of 1 sample, and is followed by a nonlinearity to give 40 output channels for each sample. Then, a pooling operator of width 25ms with a stride of 10ms performs low-pass filtering and decimation.

Finally, a log non-linearity reproduces the dynamic range compression of mel-filterbanks.

The parameters to be learnt are the convolution filters, and possibly the weights of the low-pass filters.

The two architectures differ by the choices of each layer of computation. Time-Domain filterbanks use 40 complex-valued filters with a square modulus operator as non-linearity.

Low-pass filtering is then performed by multiplying each output channel by a squared Hann window so that, when using suitable Gabor wavelets as convolution filters, the architecture closely approximates mel-filterbanks computed on the power spectrum. as filter values to approximate mel-filterbanks [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF], Sainath et al., 2015a].

In their work, they use a max-pooling operator for low-pass filtering.

The number of filters ( 40), the convolution and pooling width of 25ms, as well as the decimation of 10ms are not necessarily the optimal parameters of either trainable architecture, but these are the standard settings of mel-filterbanks (and likely the best settings for these features on standard speech recognition datasets). We keep these values fixed for the trainable architectures, so that the comparison to mel-filterbanks is carried out in the setting most favorable for the non-learnable baseline.

In the next subsections, we describe the improvements we propose for these architectures:

the low-pass filter and the addition of instance normalization.

Low-pass filtering

Time-Domain filterbanks use a squared Hann window per channel as a low-pass filter, whereas the original papers describing the gammatone-based frontend used a max-pooling.

To make sure the low-pass filter is not responsible for notable differences between the two approaches we experiment with the squared Hann window on both architectures. For both architectures, we also propose to keep this low-pass filter fixed when learning the convolution filter weights from a random initialization, a setting that was not explored in Chapter 5, in which we also randomly initialized the second convolutional layer of Time-Domain filterbanks.

Instance normalization

More importantly, we noticed that a per-channel per-sentence mean-variance normalization after log-compression is important for the baseline mel-filterbanks. Consequently, we propose to add a mean-variance normalization layer on both trainable architectures, performed for each of the 40 channels independently on each sentence. Coincidently, this corresponds to an instance normalization layer [START_REF] Ulyanov | Instance Normalization: The Missing Ingredient for Fast Stylization[END_REF] 

Experimental setup

The experiments compare different versions of the learnable frontends against mel-filterbanks, et al., 2016]. In the next subsections, we describe the model, the different variants we tested and the hyperparameters.

Acoustic model

Taking either mel-filterbanks or a learnable frontend as input, the acoustic model is a convolutional network with gated linear units (GLU) [START_REF] Dauphin | Language Modeling with Gated Convolutional Networks[END_REF] trained to predict sequences of letters with the ASG loss function [START_REF] Collobert | Wav2letter: an end-to-end convnet-based speech recognition system[END_REF], following Liptchinsky 

Hyperparameters and training

For models trained on the raw waveform, the signal was first normalized with mean-variance normalization by sequence. The network is trained with stochastic gradient descent and weight normalization [START_REF] Salimans | Weight normalization: A simple reparameterization to accelerate training of deep neural networks[END_REF] for all convolutional layers except the front-ends. First, 80 epochs are performed with a learning rate of 1.4, then training is resumed for 80 additional epochs with a learning rate of 0.1. These hyperparameters were chosen from preliminary experiments as they seemed to work well for all architectures. Additional hyperparameters are the momentum and the learning rate for the training criterion, respectively chosen in {0, 0.9} and {0.001, 0.0001} [START_REF] Collobert | Wav2letter: an end-to-end convnet-based speech recognition system[END_REF][START_REF] Liptchinsky | Letter-Based Speech Recognition with Gated ConvNets[END_REF].

For Letter Error Rate (LER) evaluations, the hyperparameters are selected using the LER on the validation set, validating every epoch. For Word Error Rate (WER) evaluations, the hyperparameters are chosen on the validation set using the WER, validating every 10 epochs. The model selected on LER is also included for validation. The additional hyperparameters are the weight of the language model and the weight of word insertion penalty (see [START_REF] Liptchinsky | Letter-Based Speech Recognition with Gated ConvNets[END_REF] for details). We set them between 5 and 8 by steps of 0.5, and between -2 and 0.5 by steps of 0.1, respectively. For hyperparameter selection, the beam size of the decoder is set to 2, 500; the final performances are computed with the selected hyperparameters but using a beam size of 25, 000.

Experiments

Baseline results

Table 8.2 contains our results together with end-to-end baselines from the literature. [START_REF] Chan | Deep recurrent neural networks for acoustic modelling[END_REF] is the current state-of-the-art on this dataset. It is an HMM-based system which uses a combination of convolutional, recurrent and fully connected layers, as well as speaker adaptation, and reaches 3.5% WER on nov92-eval. [START_REF] Amodei | Deep speech 2: End-to-end speech recognition in english and mandarin[END_REF] is stateof-the-art among end-to-end models (trained without alignment); it is given as a topline but uses much more training data (∼ 12, 000ℎ of speech) so the results are not comparable.

[ [START_REF] Chorowski | Towards better decoding and language model integration in sequence to sequence models[END_REF][START_REF] Graves | Towards end-to-end speech recognition with recurrent neural networks[END_REF], Kim et al., 2017[START_REF] Miao | EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding[END_REF] RNN-WER -tri. LM [START_REF] Graves | Towards end-to-end speech recognition with recurrent neural networks[END_REF] ---8.2 RNN -WSFT decoding [START_REF] Miao | EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding[END_REF] ---7.3 Seq2Seq + tri. LM [START_REF] Chorowski | Towards better decoding and language model integration in sequence to sequence models[END_REF] -9.7 -6.7 Multi-task CTC/att [START_REF] Kim | Joint CTC-attention based end-to-end speech recognition using multi-task learning[END_REF] 11.3 -7.3 -Att + RL [Tjandra et al., 2017b] --6.1

SOTA -WAVEFORM

Seq2Seq + mel pretraining [Tjandra et al., trained on speech features from 2014-2017, in chronological order. [Tjandra et al., 2017b] and [Tjandra et al., 2017a] were the current state-of-the-art in LER on speech features and from the waveform respectively, at time of publication of [Zeghidour et al., 2018a]. These comparisons validate our baseline model trained on mel-filterbanks as a strong baseline in light of recent results, as it outperforms the state-of-the-art in LER by a significant margin (4.9% for our best model vs 6.1% for [Tjandra et al., 2017b]), and achieves a test WER of 6.6%, better than all other end-to-end baselines [START_REF] Zhou | Improving End-to-End Speech Recognition with Policy Learning[END_REF] and [START_REF] Ghahremani | Acoustic Modelling from the Signal Domain Using CNNs[END_REF] report WER that are below our 6.6% but are on easier closed vocabulary tasks).

Instance normalization

As described in Section 6.2.2, we evaluate the integration of instance normalization after the log-compression into the learnable frontends which was not used in previous work [START_REF] Ghahremani | Acoustic Modelling from the Signal Domain Using CNNs[END_REF][START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF], Sainath et al., 2015a] not in our TIMIT experiments in Chapter 5, but is used in our mel-filterbanks baseline. 8.2, we see a significant improvements of both LER and WER due to instance normalization, with an absolute reduction in LER and WER of 1.5% and 2.8% respectively.

Impact of the low-pass filter

For low-pass filtering, we first compare the Hann-fixed setting to max-pooling for gammatonebased filterbanks (as max-pooling was previously used by [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF]Sainath et al. [2015a]), and to Hann-learnt for Time-Domain filterbanks, all with instance normalization. The tendency is that the Hann-fixed setting consistently improves the results in LER and WER of both learnable frontends. More importantly, using either an Hann-fixed or Hann-learnt filter when learning Time-Domain filterbanks from a random initialization removes the gap in performance with the Gabor wavelet initialization that was observed in Chapter 5, where the lowpass filter was also initialized randomly. This is an important result since carefully initializing the convolutional filters is both technically non-trivial, and also relies on the prior knowledge of mel-filterbanks. We believe the ability to use random initialization is an important first step for more extensive tuning of learnable frontends (e.g., trying different numbers of filters, decimation or convolution width).

Compared to the literature, replacing the max-pooling by a low-pass filter and adding an instance normalization layer leads to a 23% relative improvement in LER and a 33% relative improvement in WER on nov92-eval on the gammatone-based fronted, a significant improvement compared to the existing approach of [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF] and Sainath et al. [2015a]. Our models trained on the waveform also exhibit a gain in performance in LER of 22-31% relative compared to the state-of-the-art end-to-end model trained on the waveform with its first 9 layers being pre-trained for mel-filterbanks reconstruction [Tjandra et al., 2017a], and outperform various end-to-end models trained on speech features, both in LER [START_REF] Kim | Joint CTC-attention based end-to-end speech recognition using multi-task learning[END_REF], Tjandra et al., 2017b] and WER [START_REF] Chorowski | Towards better decoding and language model integration in sequence to sequence models[END_REF][START_REF] Graves | Towards end-to-end speech recognition with recurrent neural networks[END_REF][START_REF] Miao | EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding[END_REF]].

Learnable frontends vs mel-filterbanks

Comparing both learnable frontends with instance normalization to the mel-filterbanks baseline, we observe that the performances of the Hann-fixed settings and of the mel-filterbanks are comparable in terms of LER. However, we observe a consistent improvement in terms of WER of all learnable frontends. To the best of our knowledge, this is the first time a significant improvement in terms of WER relatively to comparable mel-filterbanks has been shown on a large vocabulary task under clean recording conditions. Some improvements on the clean test of the Switchboard dataset have previously been observed by Ghahremani et al.

[2016], but their comparison point is MFCC rather than mel-filterbanks and the number of filters of the trainable architecture differs from their MFCC baseline.

Adding a learnable pre-emphasis layer

As in Section 5.4, we also experiment with a learnable pre-emphasis layer integrated into the Time-Domain filterbanks. In Table 6.3, we compare the performance of identical models (all using a fixed Hann window, and a gammatone or Gabor initialization) with and without pre-emphasis. We observe a gain on both LER and WER (except on nov93-dev WER/scatt) when learning a pre-emphasis with the rest of the frontend.

Conclusion

In -most likely the setting on which mel-filterbanks have been the most heavily tuned. In the next Chapter, we show that we can substantially improve furthermore by combining our current approach with a convolutional language model.
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Chapter 7

Fully Convolutional Speech Recognition

This chapter is based on the material of Fully Convolutional Speech Recognition [Zeghidour et al., 2018b], an arxiv preprint and a joint work with Qiantong Xu (equal contribution), Vitaliy Liptchinsky, Nicolas Usunier, Gabriel Synnaeve and Ronan Collobert.

Introduction

Recent work on convolutional neural network architectures showed that they are competitive with recurrent architectures even on tasks where modeling long-range dependencies is critical, such as language modeling [START_REF] Dauphin | Language Modeling with Gated Convolutional Networks[END_REF], machine translation [Gehring et al., 2017a,b] and speech synthesis [Van Den Oord et al., 2016]. In end-to-end speech recognition however, recurrent architectures are still prevalent for acoustic and/or language modeling [START_REF] Amodei | Deep speech 2: End-to-end speech recognition in english and mandarin[END_REF], Chan et al., 2015[START_REF] Graves | Towards end-to-end speech recognition with recurrent neural networks[END_REF][START_REF] Mikolov | Recurrent neural network based language model[END_REF][START_REF] Zeyer | Improved training of end-to-end attention models for speech recognition[END_REF].

There is a history of using convolutional networks in speech recognition, but only as part of an otherwise more traditional pipeline. They have been first introduced as TDNNs to predict phoneme classes [START_REF] Waibel | Phoneme recognition using time-delay neural networks[END_REF], and later to generate HMM posteriorgrams [START_REF] Abdel-Hamid | Convolutional Neural Networks for Speech Recognition[END_REF]. They have more recently been used in end-to-end frameworks, but only in combination with recurrent layers [START_REF] Amodei | Deep speech 2: End-to-end speech recognition in english and mandarin[END_REF], or n-gram language models [START_REF] Liptchinsky | Letter-Based Speech Recognition with Gated ConvNets[END_REF] (see Chapter 6), or for phone recognition [START_REF] Zhang | Towards end-to-end speech recognition with deep convolutional neural networks[END_REF] (see Chapter 5). Nonetheless, as we showed in Section 1.3 and Chapter 6, convolutional architectures are prevalent when learning from the raw waveform, because they naturally model the computation of standard features such as mel-filterbanks. Given the evidence that they are also suitable on long-range dependency tasks, we expect convolutional neural networks to be competitive at all levels of the speech recognition pipeline.

In this chapter, we present a fully convolutional approach to end-to-end speech recognition. Building on Time-Domain filterbanks and convolutional acoustic models described in Chapter 6, and convolutional language models [START_REF] Dauphin | Language Modeling with Gated Convolutional Networks[END_REF], this chapter has four main contributions:

• We present the first application of convolutional language models to speech recognition. They yield significant improvements over 4-gram language models on both Wall Street Journal (WSJ) and Librispeech datasets.

• We show that fully convolutional approaches are competitive with approaches based on recurrent neural networks. In particular, on Librispeech, we improve by more than 2% absolute Word Error Rate the results of DeepSpeech 2 [START_REF] Amodei | Deep speech 2: End-to-end speech recognition in english and mandarin[END_REF] and of the best sequence-to-sequence model [START_REF] Zeyer | Improved training of end-to-end attention models for speech recognition[END_REF].

• We present the first state-of-the-art results (among end-to-end systems) on a large, publicly available dataset (Librispeech) that use end-to-end learning from the raw waveform. On WSJ, we significantly improve over the best previous results presented in Chapter 6 and match the current state-of-the-art, a DNN-HMM system.

• On Librispeech, learning the frontend has a larger impact in noisy than in clean recording conditions. These results corroborate previous observations on the VoiceSearch dataset [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF], Sainath et al., 2015a], and give additional evidence that mel-filterbanks are suboptimal in the noisy setting.

Model

Our approach, described in this section, is illustrated in Fig. 7-1. 

Convolutional Frontend: Time-Domain filterbanks

Following the systematic comparison made in Chapter 6, we consider the best architecture, Time-Domain filterbanks with learnable pre-emphasis. The learnable frontend contains first a convolution of width 2 that emulates the pre-emphasis step used in mel-filterbanks. It is followed by a complex convolution of width 25 ms and 𝑘 filters. After taking the squared absolute value, a low-pass filter of width 25 ms and stride 10 ms performs decimation. The frontend finally applies a log-compression and a per-channel mean-variance normalization (equivalent to an instance normalization layer [START_REF] Ulyanov | Instance Normalization: The Missing Ingredient for Fast Stylization[END_REF]). The low-pass filter is kept constant to a squared Hann window, and the complex convolutional layer is initialized randomly. In addition to the 𝑘 = 40 filters used in Chapter 6, we also experiment with 𝑘 = 80 filters. Notice that since the stride is the same as for mel-filterbanks, acoustic models on top of the learnable frontends can also be applied to mel-filterbanks, simply modifying the number of input channels if 𝑘 ̸ = 40.

Convolutional Acoustic Model

The acoustic model is a convolutional neural network with gated linear units [START_REF] Dauphin | Language Modeling with Gated Convolutional Networks[END_REF], which is fed with the output of the learnable frontend. Following [START_REF] Liptchinsky | Letter-Based Speech Recognition with Gated ConvNets[END_REF] and Chapter 7, the networks use a growing number of channels, and dropout [Hinton et al., 2012b] for regularization. These acoustic models are trained to predict letters directly with the Auto Segmentation Criterion (ASG) [START_REF] Collobert | Wav2letter: an end-to-end convnet-based speech recognition system[END_REF]. The only differences between the WSJ and Librispeech models are their depth, the number of feature maps per layer, the receptive field and the amount of dropout.

Convolutional Language Model

The convolutional language model (LM) is the GCNN-14B from [START_REF] Dauphin | Language Modeling with Gated Convolutional Networks[END_REF], which achieved competitive results on several language modeling benchmarks, and operates at the word level. The network contains 14 convolutional residual blocks [START_REF] He | Deep residual learning for image recognition[END_REF] with a growing number of channels, and uses gated linear units as activation function.

The language model is used to score candidate transcriptions in addition to the acoustic model in the beam search decoder described in the next section. Compared to n-gram LMs, convolutional LMs allow for much larger context sizes. Our detailed experiments in Setion 7.4.2 study the effect of context size on the final speech recognition performance.

Beam-search decoder

We use the beam-search decoder presented in [START_REF] Liptchinsky | Letter-Based Speech Recognition with Gated ConvNets[END_REF] to generate word sequences given the output from our acoustic model. The decoder finds the word transcription 𝑊 to maximize:

AM (𝑊 ) + 𝛼 𝑙𝑜𝑔 𝑃 𝑙𝑚 (𝑊 ) + 𝛽|𝑊 | -𝛾|{𝑖|𝜋 𝑖 = ⟨𝑠𝑖𝑙⟩}|,
where 𝜋 𝑖 is the value for the 𝑖th frame in the path leading to 𝑊 and AM (𝑊 ) is the (unnormalized) acoustic model score of the transcription 𝑊 . The hyperparameters 𝛼, 𝛽, 𝛾 ≥ 0 respectively control the weight of the language model, the word insertion reward, and the silence insertion penalty. Other parameters are the beam size and the beam score, a threshold under which candidates are discarded even if the beam is not full. These are chosen according to a trade-off between (near-)optimality of the search and computational cost.

Experiments

We evaluate our approach on the large vocabulary task of the Wall Street Journal (WSJ) dataset [START_REF] Paul | and perform beam search decoding[END_REF], which contains 80 hours of clean read speech, and Librispeech [START_REF] Panayotov | Librispeech: an ASR corpus based on public domain audio books[END_REF], which contains 1000 hours with separate train/dev/test splits for clean and noisy speech. Each dataset comes with official textual data to train language models, which contain 37 million tokens for WSJ, 800 million tokens for Librispeech. Our language models are trained separately for each dataset on the official text data only. These datasets were chosen to study the impact of the different components of our system at different scales of training data and in different recording conditions.

The models are evaluated in Word Error Rate (WER). Our experiments use the open source codes of wav2letter1 for the acoustic model, and fairseq2 for the language model. More details on the experimental setup are given below.

Baseline Our baseline for each dataset follows [START_REF] Liptchinsky | Letter-Based Speech Recognition with Gated ConvNets[END_REF]. It uses the same convolutional acoustic model as our approach but a mel-filterbanks frontend and a

4-gram language model.

Training/test splits On WSJ, models are trained on si284. nov93dev is used for validation and nov92 for test. On Librispeech, we train on the concatenation of train-clean and train-other. The validation set is dev-clean when testing on test-clean, and dev-other when testing on test-other.

Acoustic model architecture The architecture for the convolutional acoustic model is the "high dropout" model from [START_REF] Liptchinsky | Letter-Based Speech Recognition with Gated ConvNets[END_REF] for Librispeech, which has 19 layers in addition to the frontend (mel-filterbanks for the baseline, or the learnable frontend for our approach). On WSJ, we use the lighter version used in Chapter 6, which has 17 layers.

Dropout is applied at each layer after the frontend, following Chapter 6. The learnable frontend uses 40 or 80 filters.

Language model architecture As described in Section 7.2.3, we use the GCNN-14B model of [START_REF] Dauphin | Language Modeling with Gated Convolutional Networks[END_REF] with dropout at each convolutional and linear layer on both WSJ and Librispeech. We keep all the words (162K) in WSJ training corpus. For Librispeech, we only use the most frequent 200K tokens (out of 900K).

Hyperparameter tuning The acoustic models are trained following the experimental setup of Chapter 6, using SGD with a decreasing learning rate, weight normalization and gradient clipping at 0.2 and a momentum of 0.9. The language models are trained with Nesterov accelerated gradient [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF]. Following [START_REF] Dauphin | Language Modeling with Gated Convolutional Networks[END_REF], we also use weight normalization and gradient clipping.

The parameters of the beam search (see Section 7.2.4) 𝛼, 𝛽 and 𝛾 are tuned on the validation set with a beam size of 2500 and a beam score of 26 for efficiency. Once 𝛼, 𝛽, 𝛾 are chosen, the test WER is computed with a beam size of 3000 and a beam score of 50.

Model nov93 nov92

E2E Lattice-free MMI [START_REF] Hadian | End-to-end Speech Recognition Using Lattice-free MMI[END_REF] -4.1 (data augmentation) CNN-DNN-BLSTM-HMM [START_REF] Chan | Deep recurrent neural networks for acoustic modelling[END_REF] 

Results

Word Error Rate results

Wall Street Journal dataset Table 7.1 shows Word Error Rates (WER) on WSJ for the current state-of-the-art and our models. The current best model trained on this dataset is an HMM-based system which uses a combination of convolutional, recurrent and fully connected layers, as well as speaker adaptation, and reaches 3.5% WER on nov92. DeepSpeech 2 shows a WER of 3.6% but uses 150 times more training data for the acoustic model and huge text datasets for LM training.

Finally, the state-of-the-art among end-to-end systems trained only on WSJ, and hence the most comparable to our system, at time of publication of [Zeghidour et al., 2018b], uses lattice-free MMI on augmented data (with speed perturbation) and gets 4.1% WER. Our baseline system, trained on mel-filterbanks, and decoded with a n-gram language model has a 5.6% WER. Replacing the n-gram LM by a convolutional one reduces the WER to 4.1% , and puts our model on par with the current best end-to-end system. Replacing the speech features by Time-Domain filterbanks finally reduces the WER to 4.0% and then to 3.5%

when doubling the number of learnable filters, improving over DeepSpeech 2 and matching the performance of the best DNN-HMM system. 

Librispeech dataset

Table 7.2 reports WER on the Librispeech dataset. The CAPIO [Han et al., 2017] ensemble model combines the lattices from 8 individual DNN-HMM systems (using both convolutional and LSTM layers), and is the current state-of-the-art on Librispeech. CAPIO (single) is the best individual system, selected either on dev-clean or dev-other. The sequence-to-sequence baseline is an encoder-decoder with attention and a BPE-level [START_REF] Sennrich | Neural machine translation of rare words with subword units[END_REF]] LM, and currently the best end-to-end system on this dataset. We can observe that our fully convolutional model improves over CAPIO (Single) on the clean part, and is the current best end-to-end system on test-other with an improvement of 2.3% absolute (18% relative).

Our system also outperforms DeepSpeech 2 on both test sets by a significant margin. An interesting observation is the impact of each convolutional block. While replacing the 4gram LM by a convolutional LM improves similarly on the clean and noisier parts, learning the speech frontend gives similar performance on the clean part but significantly improves the performance on noisier, harder utterances, a finding that is consistent with previous literature [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF]. Again, when doubling the number of Time-Domain filterbanks, we furthermore widen the gap with the mel-filterbanks baseline and the previous state-of-the-art, both on test-clean and test-other. 

Analysis of the convolutional language model

Since our model uses convolutional language models for speech recognition systems for the first time, we present additional studies of the language model in isolation. These experiments use our best language model on Librispeech, and evaluations in WER are carried out using the baseline system trained on mel-filterbanks. The decoder parameters are tuned using the grid search described in Section 7.3, a beam size is fixed to 2500 and a beam score to 30.

Correlation between perplexity and WER Figure 7-2 shows the correlation between perplexity and WER as the training progresses. As perplexity decreases, the WER on both dev-clean and dev-other also decreases following the same trend. It illustrates that perplexity on the linguistic data is a good surrogate of the final performance of the speech recognition pipeline, as previously shown by [START_REF] Klakow | Testing the correlation of word error rate and perplexity[END_REF]. Architectural choices or hyperparameter tuning can thus be carried out mostly using perplexity alone. Influence of context size By limiting the context passed into the LM from the decoder, Table 7.3 reports WER obtained for context sizes ranging from 3 (comparable to the n-gram baseline) to 50 for our best language model. The WER decreases monotonically until a context size of about 20, and then almost stays still. We observe that the convolutional LM already improves on the n-gram model even with the same context size. Increasing the context gives a significant boost in performance, with the major gains obtained between a context of 3 to 9 (-1.9% absolute WER).

Conclusion

We introduced the first fully convolutional pipeline for speech recognition, that can directly process the raw waveform and shows state-of-the art performance on Wall Street Journal and on Librispeech among end-to-end systems. This first attempt at exploiting convolutional language models in speech recognition shows significant improvement over a 4-gram language model on both datasets. Replacing mel-filterbanks by Time-Domain filterbanks gives additional gains in performance, that appear to be more prevalent on noisy data. Finally, we see a significant improvement from doubling the number of learnable filters.
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Chapter 8

Learning to Detect Dysarthria from

Raw Speech

This chapter is based on Learning to detect dysarthria from raw speech [START_REF] Millet | Learning to detect dysarthria from raw speech[END_REF], accepted for oral presentation at ICASSP 2019, and a joint work with Juliette Millet during her master internship at ENS under my supervision.

Introduction

In Chapters 5, 6, 7, we started from small scale systematic studies that compared melfilterbanks and Time-Domain filterbanks, to the first state-of-the-art speech recognition system on Wall Street Journal and Librispeech that does not use speech features. The observation that Time-Domain filterbanks consistently outperform mel-filterbanks in a task for which they have been tuned, speech recognition, motivates extending their use to other tasks that use hardcoded features. In Section 1.4, we explained how paralinguistic classification systems, which recognize other characteristics from speech than its linguistic content, also use fixed, handcrafted features, such as mel-filterbanks or MFCCs, and/or low-level informations [START_REF] Eyben | Opensmile: the munich versatile and fast open-source audio feature extractor[END_REF], such as zero-crossing rate or harmonics-to-noise ratio (the number of descriptors can be as high as 6000 for a small speech segment [START_REF] Björn | The interspeech 2017 computational paralinguistics challenge: Addressee, cold & snoring[END_REF]). Training a classifier from these fixed coefficients requires performing a feature selection step, which has the limitation that it cannot retrieve useful information that would have been lost in the feature computation. Moreover, and as explained in Section 1. filterbanks or MFCCs have been designed to mimic characteristics of human perception of speech. This is justified for speech recognition, since the human auditory system is robust to many sources of variability in the speech signal (constant or impulsive noise, speaking style and accent, room reverberation, etc.) [START_REF] Morgan | Automatic speech recognition: An auditory perspective[END_REF] that are challenging for automatic speech recognition. However, this observation also questions the appropriateness of using such features in tasks for which there is no proven performance of the human auditory system, and for which we could expect a system trained solely for this task to perform better. Among such tasks, there is a growing interest in automatically extracting information from speech for health care [START_REF] Johnson | A systematic review of speech recognition technology in health care[END_REF][START_REF] Little | Suitability of Dysphonia Measurements for Telemonitoring of Parkinson's Disease[END_REF][START_REF] Schuller | The interspeech 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism[END_REF]. In this chapter, we propose to address one of these tasks: the detection of dysarthria from speech recordings. Rather than adopting a feature-driven approach that would require testing various combinations of fixed features, or training a model that would suffer from the biases of mel-filterbanks, we implement a system that can directly process raw speech and learn relevant features jointly with the dysarthria classifier, such that they are optimal for the task.

The TORGO database [START_REF] Rudzicz | The TORGO database of acoustic and articulatory speech from speakers with dysarthria[END_REF] is a collection of annotated speech recordings and articulatory measurements from speakers with cerebral palsy (CP) or amyotrophic lateral sclerosis (ALS), as well as control patients. These pathologies are the cause of a motor speech disorder called dysarthria, which impedes the articulation and reduces the intelligibility of the speech that is produced. Mengistu and Rudzicz [2011a,b] and [START_REF] Kim | Dysarthric speech recognition using dysarthria-severitydependent and speaker-adaptive models[END_REF] have used this database to provide speech recognition systems with robustness to dysarthria.

[ [START_REF] Kim | Automatic intelligibility classification of sentence-level pathological speech[END_REF] trains various linear classifiers on TORGO and the NKI CCRT corpus [START_REF] Clapham | NKI-CCRT Corpus -Speech Intelligibility Before and After Advanced Head and Neck Cancer Treated with Concomitant Chemoradiotherapy[END_REF] to detect dysarthria. More recently, [START_REF] Bhat | Automatic assessment of dysarthria severity level using audio descriptors[END_REF] have trained fully connected neural networks to classify the severity of the disease, using TORGO and the UASPEECH [START_REF] Kim | Dysarthric speech database for universal access research[END_REF] database. All these models are trained on standard low-level features [START_REF] Schuller | The interspeech 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism[END_REF]. In this work we show that dysarthria detection benefits significantly from learning directly from the raw waveform with Time-Domain filterbanks.

Figure 8-1 shows the mel-filterbanks computation pipeline presented in Part I, and those of its components that we have made learnable so far. Time-Domain filterbanks allow replacing the pre-emphasis, windowing, and frequency filtering of mel-filterbanks by learnable components that all operate in the time-domain. The output of these operations is then passed through a log compression, and a mean-variance normalization (using an instance normalization [START_REF] Ulyanov | Instance Normalization: The Missing Ingredient for Fast Stylization[END_REF]), that remain fixed during training. However, as explained in Sections 1.2.4, various compression functions including logarithm, cubic root, or 10𝑡ℎ root have been previously showed to perform better depending on the task (see Table 2 of [START_REF] Schlüter | Gammatone features and feature combination for large vocabulary speech recognition[END_REF]). In Section 1.2.6, we described how the choice of the type of normalization to apply to input features is also not trivial, and is task dependent. As we observed improvements in previous chapters by replacing the presumably biased linear operations of mel-filterbanks by learnable convolutional layer, we could thus also expect a gain from additionally learning a compression function and a normalization. Wang et al. [2017] introduce a computational block, the Per Channel Energy Normalization (PCEN) that can learn a compression and a normalization factor per channel, and can be integrated into a neural network on top of speech features. It has been used in production ASR systems on fixed spectrograms [START_REF] Battenberg | Reducing Bias in Production Speech Models[END_REF], or bird vocalization and audio event classification from mel-filterbanks [START_REF] Vincent Lostanlen | Per-channel energy normalization: Why and how[END_REF]. This chapter presents a first tentative at learning jointly the PCEN with a learnable frontend.

In this chapter, we start from an attention-based model on mel-filterbanks, which already outperforms an equivalent model trained on low-level descriptors (LLDs). Our experiments show that by training a PCEN block on top of mel-filterbanks or replacing them by Time-Domain filterbanks, we get a gain in accuracy around 10% in absolute when training an identical neural network for dysarthria detection. Finally, by combining Time-Domain filterbanks and PCEN we propose the first fully learnable audio frontend, that can learn features, compression and normalization jointly with a neural network using backpropagation.

Model

Time-Domain filterbanks

As the first step of our computational pipeline, we use Time-Domain filterbanks (see 5 for a detailed description), As in Chapter 7, we choose the best performing system from Chapter 6, Time-Domain filterbanks with learnable pre-emphasis. However, the mel-filterbanks that we use for this task have different number of filters than for speech recognition. The learnable front-end contains first a learnable pre-emphasis layer, followed by a complex convolution of width 25ms and 64 filters. After taking the squared absolute value, a low-pass filter of width 25ms and stride 10ms performs decimation. The second convolution layer is kept fixed as a squared Hann window to perform lowpass filtering, and we use the Gabor initialization described in Section 5.2.2, due to the small size of the dataset. When used in combination with PCEN, we remove the log compression and instance normalization from the Time-Domain filterbanks architecture, as these operations will be learned by PCEN. 

Per Channel Energy Normalization

𝑃 𝐶𝐸𝑁 (𝑡, 𝑓 ) = ( 𝐸(𝑡, 𝑓 ) (𝜖 + 𝑀 (𝑡, 𝑓 )) 𝛼 + 𝛿) 𝑟 -𝛿 𝑟 .
𝑀 (𝑡, 𝑓 ) is an exponential moving average of 𝐸(•, 𝑓 ) along the time axis, defined as:

𝑀 (𝑡, 𝑓 ) = (1 -𝑠)𝑀 (𝑡 -1, 𝑓 ) + 𝑠𝐸(𝑡, 𝑓 ).
In our experiments, 𝐸 is either the mel-filterbanks, or the output of Time-Domain filterbanks. 𝛼 controls the strength of the normalization, the exponent 𝑟 (typically in [0, 1]) defines the slope of the compression curve, 𝑠 sets the spread of the moving average, and 𝜖 is a small scalar used to avoid division by zero. By backpropagation, we learn 𝛼, 𝑟, and 𝛿 with the rest of the model to learn a compression and normalization that fit the task at hand. 

LSTM and Attention model

The output of the learnable frontend is fed to an attention-based model [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF], that contains one LSTM layer of hidden size 60 followed by an attention mechanism, inspired by [START_REF] Hsiao | Effective Attention Mechanism in Dynamic Models for Speech Emotion Recognition[END_REF]. The attention mechanism consists of two fully connected layers, of 50 and 1 unit respectively, and a softmax layer, that are applied to each output of the LSTM. The vector obtained is used to weight a linear combination of the LSTM outputs, that goes through another fully connected layer of size the number of labels considered. The detailed architecture is shown in Figure 8-2. In [START_REF] Hsiao | Effective Attention Mechanism in Dynamic Models for Speech Emotion Recognition[END_REF], this model reaches state-of-the-art performance when trained for emotion recognition on mel-filterbanks, which motivated using it for the paralinguistic task of dysarthria detection.

Experimental setup

We carry experiments on the TORGO database [START_REF] Rudzicz | Towards a Comparative Database of Dysarthric Articulation[END_REF] sclerosis, which are two of the prevalent causes of dysarthria. Similar data for a control set of subjects is also available. Along with sound recordings, TORGO contains 3D articulatory features that we did not use.

There are five groups of people: the control group not affected by the disease, and 4 other groups of affected people, classified by the severity of the disease. Each person recorded has a code name, F is for female, M is for male, while C is for control, followed by an identification number. A random split of the database would result in similar speakers in training, validation, and test sets, that could reduce the task to a speaker identification task. To avoid this confounding factor, we split the database to have a good repartition of the different severities among the training, validation and test set, while having no common speakers between the different sets (see Table 8.1 for the detailed split).

After studying the database we decided to pad the recordings so they all last 2.5𝑠. We extract low level descriptors (LLDs) from it to have a first baseline. We use the OpenSmile toolkit [START_REF] Eyben | Opensmile: the munich versatile and fast open-source audio feature extractor[END_REF], with the configuration of the Interspeech 2009 Emotion Challenge [START_REF] Schuller | The Interspeech 2009 Emotion Challenge[END_REF]. For each 25𝑚𝑠 window of the recordings (strided by 10𝑚𝑠), 32 features are extracted (12 MFCCs, root mean square energy, zero-crossing rate, harmonics-to-noise ratio, 𝐹 0 and their Δ).

Our second baseline takes as input mel-filterbanks. We pre-emphase the sound signals with a factor of 0.97. 64 mel-filterbanks are computed every 25ms with a stride of 10ms and passed through a log-compression. To evaluate Time-Domain filterbanks in a comparable setting, we design them with the same number of filters, window size and stride.

For the PCEN layer, we take 𝜖 = 10 -6 and 𝑠 = 0.5, both fixed. We initialize 𝑟, 𝛼 and 𝛿 at 0. models are trained with SGD with momentum (0.98) and batch size 1, with a learning rate of 0.001.

We use the Unweighted Average Recall (UAR) to evaluate our results. The UAR of a model is the mean of its accuracy for each label. It is a more informative metric when dealing with highly unbalanced datasets than the accuracy, since it is reweighting the results depending on the size of each class. It has been widely used in unbalanced settings such as the Emotion Recognition challenge [START_REF] Schuller | The Interspeech 2009 Emotion Challenge[END_REF]. We use the validation set for hyperparameter selection and early stopping.

Results

Table 8.2 shows the UAR on the validation and test sets. All the results are the mean UAR obtained over three runs with different random initialization. We do not compare them to previously published results [START_REF] Bhat | Automatic assessment of dysarthria severity level using audio descriptors[END_REF][START_REF] Kim | Automatic intelligibility classification of sentence-level pathological speech[END_REF] as they use additional data and/or perform a different task. The attention based-model trained on LLDs features reaches an accuracy of 66% and is our baseline system. Replacing LLDs by mel-filterbanks improves the performance by 6% in absolute. Adding a fixed mean-variance normalization step (mvn) brings the models to over-fitting, and thus the UAR decreases of 2%. However, we observe that replacing the fixed log-compression and mean-variance normalization step by a learnable PCEN layer improves the UAR of the models of 7% compared to the unnormalized mel-filterbanks. Moreover, an even bigger increase is noticed when replacing mel-filterbanks by equivalent Time-Domain filterbanks (10% in absolute). In this case, Left shows the new scales obtained by three independent models using TD-filterbanks, compared to mel scale. The center frequency is the frequency for which a filter is maximum. Right shows an approximation of the compression exponents obtained for the PCEN layer learned on mel-filterbanks.

Time-Domain filterbanks are trained with a log-compression and no normalization. We can emphasize the fact that using the Time-Domain filterbanks also leads to a more stable learning process, as the standard deviation along different runs is considerably lower.

When studying the new scale learned by the TD-filterbanks (see Figure 8-3) (left)) we notice that the filters tend to focus around 2000𝐻𝑧 and 6500𝐻𝑧, which suggests that either those frequencies are crucial to identify dysarthria, or the model might exploit a bias in the dataset. Regardless, this illustrates why a non-linguistic classification task can benefit from learning its filter bank. Indeed, mel-filterbanks are very imprecise around 6500𝐻𝑧, and if a fine discriminative pattern were to be present in that region of the spectrum, mel-filterbanks would lose that information. However, Time-Domain filterbanks can learn to locate several, precise filters in any part of the spectrum. Similarly, in we observe that the compression factor learned by PCEN varies between channels, unlike a log-compression which is applied equivalently to all channels.

Fully learnable frontend

As we observe independent gains from either learning the features or learning the compressionnormalization, we explore in our final experiments learning jointly all these operations. We and 𝛿, and the one only learning 𝑟 match the models using mel-filterbanks.

Conclusion

In this Chapter, and after positive results in speech recognition, we have shown that a paralinguistic task, dysarthria detection, also benefits significantly of learning the frontend The original topic of this thesis was the development of weakly-supervised and unsupervised algorithms for speech recognition. After preliminary studies in which we showed that weakly-supervised and unsupervised phonetic modelling could significantly benefit from using a richer deep scattering spectrum rather than mel-filterbanks, adressing the statu quo of using mel-filterbanks as input features became the central question of this thesis. Rather than exploring the space of exising fixed features, we decided to remove them and train directly deep neural networks from the raw waveform. We showed that we could disentangle speaker and phonetic information from the raw waveform with a single neural network, into embeddings that would generalize to other datasets or languages. We also showed that learning from the waveform significantly improved the quality of speaker embeddings.

However, these first results on training models from the raw waveform were dampened by their poor performance on phonetic modelling, and by the difficulty to conduct fair and controlled experiments to compare against mel-filterbanks. Moreover, our exploration of architectures was mildly inspired, and lacked intuition on what was appropriate and important when training on the waveform. These observations led us to design a specific frontend, that can be plugged any neural architecture processing audio, rather than designing homogeneous neural networks from the waveform to the last layer, as we did previously.

We introduced Time-Domain filterbanks, a lightweight neural architecture that processes raw speech, can be initialized as an approximation of mel-filterbanks, and then be trained jointly with any architecture. As the question of learning the frontend is orthogonal to the challenge of weakly-supervised learning, we decided to validate our approach on the most mainstream task that uses speech features: supervised speech recognition. Then, via extensive systematic studies and successive improvements, we showed that Time-Domain filterbanks consistently outperform mel-filterbanks in equivalent conditions (same acoustic model, number of filters, window size, window stride), as well as a previously proposed approach [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF], Sainath et al., 2015a]. This is a noticeable achievement, as all our models (architecture, hyperparameters) were cross-validated on mel-filterbanks, and trained "as is" on Time-Domain filterbanks. This is the first time such a consistent improvement is observed. Finally, we integrated Time-Domain filterbanks into the first fully convolutional speech recognition system, which is currently the state-of-the-art among end-to-end system on both Wall Street Journal and Librispeech datasets.

These consistent results in speech recognition then led us to extend our approach to a paralinguistic classification, dysarthria detection from speech. We showed that Time-Domain filterbanks significantly outperform low-level descriptors and mel-filterbanks. We also used this task as a test bed to experiment with the first fully learnable frontend, that can learn jointly the feature extraction, a compression function, and a normalization. Comparing the relative improvement of Time-Domain filterbanks over mel-filterbanks for speech recognition and dysarthria detection is hard due to many confounding factors (task, performance of the baseline system, hyperparameter exploration), however the latter seems to benefit the most from learning the frontend rather than using fixed features. This is encouraging, as it confirms the intuition substantiated in 1.4 that paralinguistic tasks may benefit even more from learning from the raw waveform than speech recognition, for which mel-filterbanks have been tuned.

A rationale behind using Time-Domain filterbanks for dysarthria detection was that, since mel-filterbanks have been designed to mimick the human perception, they are undoubtedly suboptimal for tasks for which the human ear is not particularly tuned. This likely holds for many paralinguistics tasks, but maybe even more for non-speech audio classification tasks. Indeed, there has been a consistent use of mel-filterbanks for tasks such as audio event classification [START_REF] Kons | Audio event classification using deep neural networks[END_REF]Toledo-Ronen, 2013, Lim et al., 2016] (see the leaderboard of the DCASE2018 challenge2 ), birds vocalization detection [START_REF] Vincent Lostanlen | Birdvox-full-night: A dataset and benchmark for avian flight call detection[END_REF][START_REF] Salamon | Fusing shallow and deep learning for bioacoustic bird species classification[END_REF], or whale call classification [START_REF] Pace | Subunit definition and analysis for humpback whale call classification[END_REF][START_REF] Xian | Classification of whale vocalizations using the weyl transform[END_REF]. Melfilterbanks are based on the premise that since our ear is less sensitive to variations in high frequencies than in low frequencies, we should have more precise descriptors for lower frequencies. This is valid for speech recognition, as speech production is meant to be intelligible to the human ear, and as such is adapted to its perceptual scale. Conversely, during the first year of their development, an infant will lose the ability to perceive phonetic contrasts that do not exist in their native language [START_REF] Richard N Aslin | Some developmental processes in speech perception[END_REF].

A good illustration of the adaptation of perception to production is the case of Australian Aboriginals. Middle-ear infection has a very high prevalence in this population, leading to a hearing loss in up to 70% of the population [START_REF] Harvey L Coates | Otitis media in aboriginal children: tackling a major health problem[END_REF], which affects their perception of the lower (below 500Hz) and upper (above 4000Hz) frequencies. [START_REF] Butcher | Australian Aboriginal Languages: Consonant Salient Phonologies and the'place-of-articulation Imperative[END_REF] explain that this widespread hearing loss is a likely explanation for a linguistic phenomenon observed in Australian Aboriginal languages: a phonemic inventory which is unusually concentrated in the middle frequencies. This illustrates how speech production adapts to the limits of speech perception.

On the other hand, many informations conveyed by speech are not controlled to be intelligible to the ear, and as such would be poorly modelled by mel-filterbanks that mimick the auditory perception. In particular, any task that would need precise discrimination in high frequencies would suffer from using mel-filterbanks. A striking illustration of this limitation, made in section 8.4, is that dysarthria detection seems to rely on patterns in high frequencies (around 6500𝐻𝑧), a region of the spectrum where mel-filterbanks are very imprecise.

One could learn an adapted filter bank from linear-scale spectrograms [START_REF] Sainath | Learning filter banks within a deep neural network framework[END_REF],

however spectrograms compute a convolution (with sinusoids) and a non-linearity (a squared modulus) that might was well be integrated into a neural network. This is why we think that Time-Domain filterbanks could also show improvements on many tasks that still use hardcoded features. Moreover, the Per Channel Energy Normalization (PCEN) [Wang et al., 2017] presented in section 8.2, has previously brought considerable improvements (over log compression and mean normalization) to aforementioned tasks, in particular bird vocalization detection, acoustic event classification, and scene classification [START_REF] Vincent Lostanlen | Per-channel energy normalization: Why and how[END_REF],

as well as whale call classification3 . Combining Time-Domain filterbanks and Per Channel Energy Normalization (or an equivalent) is still an open question, and we believe that if can combine both approaches into a fully learnable frontend, paralinguistic and non-speech tasks, or audio tasks in general, could be greatly improved. Some settings also imply preprocessing of the raw audio, before or jointly with the feature extraction, such as speech enhancement, source separation, or multi-channel beamforming. There has been previous attempts at integrating each of these steps into a neural architecture [START_REF] Ochiai | Multichannel endto-end speech recognition[END_REF], Sainath et al., 2015b[START_REF] Seki | A purely end-to-end system for multi-speaker speech recognition[END_REF], however we are yet to see all of these operations, as well as feature extraction, compression and normalization being trained jointly for the task at hand.

Task

Speech recognition Music classification

Birds vocalization detection [START_REF] Young | The htk book[END_REF] [ [START_REF] Van Den Oord | Deep content-based music recommendation[END_REF][START_REF] Vincent Lostanlen | Birdvox-full-night: A dataset and benchmark for avian flight call detection[END_REF] Number Let us assume that we could integrate the beamforming, filtering, compression and normalization into a learnable frontend. This would allow learning all its steps, however its structure would still need to be defined beforehand. In particular, the structure of Time-Domain filterbanks contains several critical choices: the number and order of linear and non-linear layers, the choice of non-linearities, and the number of filters, window size, and window stride of each convolutional layer. As explained in Section 5.1, we chose these hyperparameters to match the standard 40 melfilterbanks, computed on 25ms windows, and strided by 10ms. The first motivation was that taking inspiration from the prominent speech features to design a learnable alternative was a promising avenue to finally outperform them.

Furthermore, some hyperparameters, in particular the window size and stride (as well as the number of filters in chapters 5 and 6) were not explored beyond the standard parameters of mel-filterbanks to allow for fair comparisons and ablation studies. This also justifies why until Chapter 8, we only used a log-compression and did not learn the (optional) parameters of instance normalization that can be trained to modify the mean-variance normalization.

Observing that in equivalent conditions, Time-Domain filterbanks consistently outperform their mel-filterbanks counterpart, we could then relax this constraint and explore more freely the space of architectures. In Chapter 7, we obtained our best results by doubling the number of filters compared to standard mel-filterbanks. This calls our current approach into question. We can draw a spectrum on the amount of structure and prior knowledge that are put into the audio frontend. On one end of this spectrum lie fixed, handcrafted speech features, based on psychoacoustics, signal processing and experimental knowledge. On the other end lie models that use generic neural network layers as a frontend [Hinton et al., 2012a, Palaz et al., 2013b].

Introduction

We are interested in the problem of manipulating natural images by controlling some attributes of interest. For example, given a photograph of the face of a person described by their gender, age, and expression, we want to generate a realistic version of this same person looking older or happier, or an image of a hypothetical twin of the opposite gender. This task and the related problem of unsupervised domain transfer recently received a lot of interest [17,24,9,26,21,23], as a case study for conditional generative models but also for applications like automatic image edition. The key challenge is that the transformations are ill-defined and training is unsupervised: the training set contains images annotated with the attributes of interest, but there is no example of the transformation: In many cases such as the "gender swapping" example above, there are no pairs of images representing the same person as a male or as a female. In other cases, collecting examples requires a costly annotation process, like taking pictures of the same person with and without glasses.

Our approach relies on an encoder-decoder architecture where, given an input image x with its attributes y, the encoder maps x to a latent representation z, and the decoder is trained to reconstruct x given (z, y). At inference time, a test image is encoded in the latent space, and the user chooses the attribute values y that are fed to the decoder. Even with binary attribute values at train time, each attribute can be considered as a continuous variable during inference to control how much it is perceived in the final image. We call our architecture Fader Networks, in analogy to the sliders of an audio mixing console, since the user can choose how much of each attribute they want to incorporate. The fundamental feature of our approach is to constrain the latent space to be invariant to the attributes of interest. Concretely, it means that the distribution over images of the latent representations should be identical for all possible attribute values. This invariance is obtained by using a procedure similar to domain-adversarial training (see e.g., [20,6,14]). In this process, a classifier learns to predict the attributes y given the latent representation z during training while the encoder-decoder is trained based on two objectives at the same time. The first objective is the reconstruction error of the decoder, i.e., the latent representation z must contain enough information to allow for the reconstruction of the input. The second objective consists in fooling the attribute classifier, i.e., the latent representation must prevent it from predicting the correct attribute values. In this model, achieving invariance is a means to filter out, or hide, the properties of the image that are related to the attributes of interest.

A single latent representation thus corresponds to different images that share a common structure but with different attribute values. The reconstruction objective then forces the decoder to use the attribute values to choose, from the latent representation, the intended image.

Our motivation is to learn a disentangled latent space in which we have explicit control on some attributes of interest, without supervision of the intended result of modifying attribute values. With a similar motivation, several approaches have been tested on the same tasks [17,24], on related image-to-image translation problems [9,26], or for more specific applications like the creation of parametrized avatars [23]. In addition to a reconstruction loss, the vast majority of these works rely on adversarial training in pixel space, which compares during training images generated with an intentional change of attributes from genuine images for the target attribute values. Our approach is different both because we use adversarial training for the latent space instead of the output, but also because adversarial training aims at learning invariance to attributes. The assumption underlying our work is that a high fidelity to the input image is less conflicting with the invariance criterion, than with a criterion that forces the hallucinated image to match images from the training set.

As a consequence of this principle, our approach results in much simpler training pipelines than those based on adversarial training in pixel space, and is readily amenable to controlling multiple attributes, by adding new output variables to the discriminator of the latent space. As shown in Figure 1 on test images from the CelebA dataset [13], our model can make subtle changes to portraits that end up sufficient to alter the perceived value of attributes while preserving the natural aspect of the image and the identity of the person. Our experiments show that our model outperforms previous methods based on adversarial training on the decoders' output like [17] in terms of both reconstruction loss and generation quality as measured by human subjects. We believe this disentanglement approach is a serious competitor to the widespread adversarial losses on the decoder output for such tasks.

In the remainder of the paper, we discuss in more details the related work in Section 2. We then present the training procedure in Section 3 before describing the network architecture and the implementation in Section 4. Experimental results are shown in Section 5.

Related work

There is substantial literature on attribute-based and/or conditional image generation that can be split in terms of required supervision, with three different levels. At one extreme are fully supervised approaches developed to model known transformations, where examples take the form of (input, transformation, result of the transformation). In that case, the model needs to learn the desired transformation. This setting was previously explored to learn affine transformations [8], 3D rotations [25], lighting variations [11] and 2D video game animations [19]. The methods developed in these works however rely on the supervised setting, and thus cannot be applied in our setup.

At the other extreme of the supervision spectrum lie fully unsupervised methods that aim at learning deep neural networks that disentangle the factors of variations in the data, without specification of the attributes. Example methods are InfoGAN [4], or the predictability minimization framework proposed in [20]. The neural photo editor [3] disentangles factors of variations in natural images for image edition. This setting is considerably harder than the one we consider, and it may be difficult with these methods to automatically discover high-level concepts such as gender or age.

Our work lies in between the two previous settings. It is related to information as in [15]. Methods developed for unsupervised domain transfer [9,26,21,23] can also be applied in our case: given two different domains of images such as "drawings" and "photograph", one wants to map an image from one domain to the other without supervision; in our case, a domain would correspond to an attribute value. The mappings are trained using adversarial training in pixel space as mentioned in the introduction, using separate encoders and/or decoders per domain, and thus do not scale well to multiple attributes. In this line of work but more specifically considering the problem of modifying attributes, the Invertible conditional GAN [17] first trains a GAN conditioned on the attribute values, and in a second step learns to map input images to the latent space of the GAN, hence the name of invertible GANs. It is used as a baseline in our experiments. Antipov et al. [1] use a pre-trained face recognition system instead of a conditional GAN to learn the latent space, and only focuses on the age attribute. The attribute-to-image approach [24] is a variational auto-encoder that disentangles foreground and background to generate images using attribute values only. Conditional generation is performed by inferring the latent state given the correct attributes and then changing the attributes.

Additionally, our work is related to work on learning invariant latent spaces using adversarial training in domain adaptation [6], fair classification [5] and robust inference [14]. The training criterion we use for enforcing invariance is similar to the one used in those works, the difference is that the end-goal of these works is only to filter out nuisance variables or sensitive information. In our case, we learn generative models, and invariance is used as a means to force the decoder to use attribute information in its reconstruction.

Finally, for the application of automatically modifying faces using attributes, the feature interpolation approach of [22] presents a means to generate alterations of images based on attributes using a pre-trained network on ImageNet. While their approach is interesting from an application perspective, their inference is costly and since it relies on pre-trained models, cannot naturally incorporate factors or attributes that have not been foreseen during the pre-training.

Fader Networks

Let X be an image domain and Y the set of possible attributes associated with images in X , where in the case of people's faces typical attributes are glasses/no glasses, man/woman, young/old. For simplicity, we consider here the case where attributes are binary, but our approach could be extended to categorical attributes. In that setting, Y = {0, 1} n , where n is the number of attributes. We have a training set D = {(x 1 , y 1 ), ..., (x m , y m )}, of m pairs (image, attribute) (x i ∈ X , y i ∈ Y). The end goal is to learn from D a model that will generate, for any attribute vector y , a version of an input image x whose attribute values correspond to y .

Encoder-decoder architecture Our model, described in Figure 2, is based on an encoder-decoder architecture with domain-adversarial training on the latent space. The encoder E θenc : X → R N is a convolutional neural network with parameters θ enc that maps an input image to its N -dimensional latent representation E θenc (x). The decoder D θ dec : (R N , Y) → X is a deconvolutional network with parameters θ dec that produces a new version of the input image given its latent representation E θenc (x)

and any attribute vector y . When the context is clear, we simply use D and E to denote D θ dec and E θenc . The precise architectures of the neural networks are described in Section 4. The auto-encoding loss associated to this architecture is a classical mean squared error (MSE) that measures the quality of the reconstruction of a training input x given its true attribute vector y:

L AE (θ enc , θ dec ) = 1 m (x,y)∈D D θ dec E θenc (x), y -x 2 2
The exact choice of the reconstruction loss is not fundamental in our approach, and adversarial losses such as PatchGAN [12] could be used in addition to the MSE at this stage to obtain better textures or sharper images, as in [9]. Using a mean absolute or mean squared error is still necessary to ensure that the reconstruction matches the original image.

Ideally, modifying y in D(E(x), y) would generate images with different perceived attributes, but similar to x in every other aspect. However, without additional constraints, the decoder learns to ignore the attributes, and modifying y at test time has no effect.

Learning attribute-invariant latent representations To avoid this behavior, our approach is to learn latent representations that are invariant with respect to the attributes. By invariance, we mean that given two versions of a same object x and x that are the same up to their attribute values, for instance two images of the same person with and without glasses, the two latent representations E(x) and E(x ) should be the same. When such an invariance is satisfied, the decoder must use the attribute to reconstruct the original image. Since the training set does not contain different versions of the same image, this constraint cannot be trivially added in the loss.

We hence propose to incorporate this constraint by doing adversarial training on the latent space. This idea is inspired by the work on predictability minimization [20] and adversarial training for domain adaptation [6,14] where the objective is also to learn an invariant latent representation using an adversarial formulation of the learning objective. To that end, an additional neural network called the discriminator is trained to identify the true attributes y of a training pair (x, y) given E(x). The invariance is obtained by learning the encoder E such that the discriminator is unable to identify the right attributes. As in GANs [7], this corresponds to a two-player game where the discriminator aims at maximizing its ability to identify attributes, and E aims at preventing it to be a good discriminator.

The exact structure of our discriminator is described in Section 4.

Discriminator objective

The discriminator outputs probabilities of an attribute vector P θ dis (y|E(x)), where θ dis are the discriminator's parameters. Using the subscript k to refer to the k-th attribute, we have log P θ dis (y|E(x)) = n k=1 log P θ dis ,k (y k |E(x)). Since the objective of the discriminator is to predict the attributes of the input image given its latent representation, its loss depends on the current state of the encoder and is written as:

L dis (θ dis |θ enc ) = - 1 m (x,y)∈D log P θ dis y E θenc (x) (1) 
Adversarial objective The objective of the encoder is now to compute a latent representation that optimizes two objectives. First, the decoder should be able to reconstruct x given E(x) and y, and at the same time the discriminator should not be able to predict y given E(x). We consider that a mistake is made when the discriminator predicts 1y k for attribute k. Given the discriminator's parameters, the complete loss of the encoder-decoder architecture is then:

L(θ enc , θ dec |θ dis ) = 1 m (x,y)∈D D θ dec E θenc (x), y -x 2 2 -λ E log P θ dis (1 -y|E θenc (x)) , (2) 
where λ E > 0 controls the trade-off between the quality of the reconstruction and the invariance of the latent representations. Large values of λ E will restrain the amount of information about x contained in E(x), and result in blurry images, while low values limit the decoder's dependency on the latent code y and will result in poor effects when altering attributes. Learning algorithm Overall, given the current state of the encoder, the optimal discriminator parameters satisfy θ * dis (θ enc ) ∈ argmin θ dis L dis (θ dis |θ enc ). If we ignore problems related to multiple (and local) minima, the overall objective function is

θ * enc , θ * dec = argmin θenc,θ dec L(θ enc , θ dec |θ * dis (θ enc )) .
In practice, it is unreasonable to solve for θ * dis (θ enc ) at each update of θ enc . Following the practice of adversarial training for deep networks, we use stochastic gradient updates for all parameters, considering the current value of θ dis as an approximation for θ * dis (θ enc ). Given a training example (x, y), let us denote L dis θ dis θ enc , x, y the auto-encoder loss restricted to (x, y) and L θ enc , θ dec θ dis , x, y the corresponding discriminator loss. The update at time t given the current parameters θ (t) , y (t) ) is: t) , y (t) .

θ (t+1) dis = θ (t) dis -η∇ θ dis L dis θ (t) dis θ (t) enc , x (t) , y (t) [θ (t+1) enc , θ (t+1) 
dec ] = [θ (t) enc , θ (t) dec ] -η∇ θenc,θ dec L θ (t) enc , θ (t) dec θ (t+1) dis , x ( 
The details of training and models are given in the next section.

Implementation

We adapt the architecture of our network from [9]. Let C k be a Convolution-BatchNorm-ReLU layer with k filters. Convolutions use kernel of size 4 × 4, with a stride of 2, and a padding of 1, so that each layer of the encoder divides the size of its input by 2. We use leaky-ReLUs with a slope of 0.2 in the encoder, and simple ReLUs in the decoder.

The encoder consists of the following 7 layers:

C 16 -C 32 -C 64 -C 128 -C 256 -C 512 -C 512
Input images have a size of 256 × 256. As a result, the latent representation of an image consists of 512 feature maps of size 2 × 2. In our experiments, using 6 layers gave us similar results, while 8 layers significantly decreased the performance, even when using more feature maps in the latent state.

To provide the decoder with image attributes, we append the latent code to each layer given as input to the decoder, where the latent code of an image is the concatenation of the one-hot vectors representing the values of its attributes (binary attributes are represented as [1,0] and [0, 1]). We append the latent code as additional constant input channels for all the convolutions of the decoder. Denoting by n the number of attributes, (hence a code of size 2n), the decoder is symmetric to the encoder, but uses transposed convolutions for the up-sampling:

C 512+2n -C 512+2n -C 256+2n -C 128+2n -C 64+2n -C 32+2n -C 16+2n .
The discriminator is a C 512 layer followed by a fully-connected neural network of two layers of size 512 and n repsectively.

Dropout We found it extremely beneficial to add dropout in our discriminator. We set the dropout rate to 0.3 in all our experiments. Following [9], we also tried to add dropout in the first layers of the decoder, but in our experiments, this turned out to significantly decrease the performance.

Discriminator cost scheduling Similarly to [2], we use a variable weight for the discriminator loss coefficient λ E . We initially set λ E to 0 and the model is trained like a normal auto-encoder. Then, λ E is linearly increased to 0.0001 over the first 500, 000 iterations to slowly encourage the model to produce invariant representations. This scheduling turned out to be critical in our experiments. Without it, we observed that the encoder was too affected by the loss coming from the discriminator, even for low values of λ E .

Model selection Model selection was first performed automatically using two criteria. First, we used the reconstruction error on original images as measured by the MSE. Second, we also want the model to properly swap the attributes of an image. For this second criterion, we train a classifier to predict image attributes. At the end of each epoch, we swap the attributes of each image in the validation set and measure how well the classifier performs on the decoded images. These two metrics were used to filter out potentially good models. The final model was selected based on human evaluation on images from the train set reconstructed with swapped attributes.

Experiments

Experiments on the celebA dataset

Experimental setup We first present experiments on the celebA dataset [13], which contains 200, 000 images of celebrity of shape 178 × 218 annotated with 40 attributes. We used the standard training, validation and test split. All pictures presented in the paper or used for evaluation have been taken from the test set. For pre-processing, we cropped images to 178 × 178, and resized them to 256 × 256, which is the resolution used in all figures of the paper. Image values were normalized to [-1, 1]. All models were trained with Adam [10], using a learning rate of 0.002, β 1 = 0.5, and a batch size of 32. We performed data augmentation by flipping horizontally images with a probability 0.5 at each iteration. As model baseline, we used IcGAN [17] with the model provided by the authors and trained on the same dataset.4 Qualitative evaluation Figure 3 shows examples of images generated when swapping different attributes: the generated images have a high visual quality and clearly handle the attribute value changes, for example by adding realistic glasses to the different faces. These generated images confirm that the latent representation learned by Fader Networks is both invariant to the attribute values, but also captures the information needed to generate any version of a face, for any attribute value. Indeed, when looking at the shape of the generated glasses, different glasses shapes and colors have been integrated into the original face depending on the face: our model is not only adding "generic" glasses to all faces, but generates plausible glasses depending on the input.

Quantitative evaluation protocol We performed a quantitative evaluation of Fader Networks on Mechanical Turk, using IcGAN as a baseline. We chose the three attributes Mouth (Open/Close), Smile (With/Without) and Glasses (With/Without) as they were attributes in common between IcGAN and our model. We evaluated two different aspects of the generated images: the naturalness, that measures the quality of generated images, and the accuracy, that measures how well swapping an attribute value is reflected in the generation. Both measures are necessary to assess that we generate natural images, and that the swap is effective. We compare: REAL IMAGE , that provides original images without transformation, FADNET AE and ICGAN AE , that reconstruct original images without attribute alteration, and FADNET SWAP and ICGAN SWAP , that generate images with one swapped attribute, e.g., With Glasses → Without Glasses. Before being submitted to Mechanical Turk, all images were cropped and resized following the same processing than IcGAN. As a result, output images were displayed in 64 × 64 resolution, also preventing Workers from basing their judgment on the sharpness of presented images exclusively.

Technically, we should also assess that the identity of a person is preserved when swapping attributes. This seemed to be a problem for GAN-based methods, but the reconstruction quality of our model is very good (RMSE on test of 0.0009, to be compared to 0.028 for IcGAN), and we did not observe this issue. Therefore, we did not evaluate this aspect.

For naturalness, the first 500 images from the test set such that there are 250 images for each attribute value were shown to Mechanical Turk Workers, 100 for each of the 5 different models presented above. For each image, we asked whether the image seems natural or generated. The description given to the Workers to understand their task showed 4 examples of real images, and 4 examples of fake images (1 FADNET AE , 1 FADNET SWAP , 1 ICGAN AE , 1 ICGAN SWAP ).

The accuracy of each model on each attribute was evaluated in a different classification task, resulting in a total of 15 experiments. For example, the FadNet/Glasses experiment consisted in asking Workers whether people with glasses being added by FADNET SWAP effectively possess glasses, and vice-versa. This allows us to evaluate how perceptible the swaps are to the human eye. In each experiment, 100 images were shown (50 images per class, in the order they appear in the test set).

In both quantitative evaluations, each experiment was performed by 10 Workers, resulting in 5, 000 samples per experiment for naturalness, and 1, 000 samples per classification experiment on swapped attributes. The results on both tasks are shown in Table 1. Quantitative results In the naturalness experiments, only around 90% of real images were classified as "real" by the Workers, indicating the high level of requirement to generate natural images. Our model obtained high naturalness accuracies when reconstructing images without swapping attributes: 88.4%, 75.2% and 78.8%, compared to IcGAN reconstructions whose accuracy does not exceed 23%, whether it be for reconstructed or swapped images. For the swap, FADNET SWAP still consistently outperforms ICGAN SWAP by a large margin. However, the naturalness accuracy varies a lot based on the swapped attribute: from 79.0% for the opening of the mouth, down to 31.4% for the smile.

Classification experiments show that reconstructions with FADNET AE and ICGAN AE have very high classification scores, and are even on par with real images on both Mouth and Smile. FADNET SWAP obtains an accuracy of 66.2% for the mouth, 76.6% for the glasses and 97.1% for the smile, indicating that our model can swap these attributes with a very high efficiency. On the other hand, with accuracies of 10.1%, 47.5% and 9.9% on these same attributes, ICGAN SWAP does not seem able to generate convincing swaps.

Multi-attributes swapping We present qualitative results for the ability of our model to swap multiple attributes at once in Figure 4, by jointly modifying the gender, open eyes and glasses attributes. Even in this more difficult setting, our model can generate convincing images with multiple swaps.

Experiments on Flowers dataset

We performed additional experiments on the Oxford-102 dataset, which contains about 9, 000 images of flowers classified into 102 categories [16]. Since the dataset does not contain other labels than the flower categories, we built a list of color attributes from the flower captions provided by [18]. Each flower is provided with 10 different captions. For a given color, we gave a flower the associated color attribute, if that color appears in at least 5 out of the 10 different captions. Although being naive, this approach was enough to create accurate labels. We resized images to 64 × 64. Figure 5 represents reconstructed flowers with different values of the "pink" attribute. We can observe that the color of the flower changes in the desired direction, while keeping the background cleanly unchanged. 

Conclusion

We presented a new approach to generate variations of images by changing attribute values. The approach is based on enforcing the invariance of the latent space w.r.t. the attributes. A key advantage of our method compared to many recent models [26,9] is that it generates realistic images of high resolution without needing to apply a GAN to the decoder output. As a result, it could easily be extended to other domains like speech, or text, where the backpropagation through the decoder can be really challenging because of the non-differentiable text generation process for instance. However, methods commonly used in vision to assess the visual quality of the generated images, like PatchGAN, could totally be applied on top of our model.

Introduction

The recent progress in deep learning for sequence generation has led to the emergence of audio synthesis systems that directly generate the waveform, reaching state-of-the-art perceptual quality in speech synthesis, and promising results for music generation. This represents a shift of paradigm with respect to approaches that generate sequences of parameters to vocoders in text-to-speech systems [21,23,19], or MIDI partition in music generation [8,3,10]. A commonality between the state-ofthe-art neural audio synthesis models is the use of discretized sample values, so that an audio sample is predicted by a categorical distribution trained with a classification loss [24,17,18,14]. Another significant commonality is the use of autoregressive models that generate samples one-by-one, which leads to prohibitive training and inference times [24,17], or requires specialized implementations and low-level code optimizations to run in real time [14]. An exception is parallel WaveNet [18] which generates a sequence with a fully convolutional network for faster inference. However, the parallel approach is trained to reproduce the output of a standard WaveNet, which means that faster inference comes at the cost of increased training time.

In this paper, we study an alternative to both the modeling of audio samples as a categorical distribution and the autoregressive approach. We propose to generate the waveform for entire audio frames of 1024 samples at a time with a large stride, and model audio samples as continuous values. We develop and evaluate this method on the challenging task of generating musical notes based on the desired instrument, pitch, and velocity, using the large-scale NSynth dataset [4]. We obtain a lightweight synthesizer of musical notes composed of a 3-layer RNN with LSTM cells [12] that produces embeddings of audio frames given the desired instrument, pitch, velocity1 and time index. These embeddings are decoded by a single four-layer convolutional network to generate notes from nearly 1000 instruments, 65 pitches per instrument on average and 5 velocities.

The successful end-to-end training of the synthesizer relies on two ingredients:

• A new loss function which we call the spectral loss, which computes the 1-norm between the log power spectrograms of the waveform generated by the model and the target waveform, where the power spectrograms are obtained by the short-time Fourier transform (STFT). Log power spectrograms are interesting both because they are related to human perception [6], but more importantly because the entire loss is invariant to the original phase of the signal, which can be arbitrary without audible differences.

• Initialization with a pre-trained autoencoder: a purely convolutional autoencoder architecture on raw waveforms is first trained with the spectral loss. The LSTM is then initialized to reproduce the embeddings given by the encoder, using mean squared error. After initialization, the LSTM and the decoder are fine-tuned together, backpropagating through the spectral loss.

We evaluate our synthesizer on a new task of pitch completion: generating notes for pitches not seen during training. We perform perceptual experiments with human evaluators to aggregate a Mean Opinion Score (MOS) that characterizes the naturalness and appealing of the generated sounds. We also perform ABX tests to measure the relative similarity of the synthesizer's ability to effectively produce a new pitch for a given instrument, see Section 5.3.2. We use a state-of-the-art autoencoder of musical notes based on WaveNet [4] as a baseline neural audio synthesis system. Our synthesizer achieves higher perceptual quality than Wavenet-based autoencoder in terms of MOS and similarity to the ground-truth while being about 32 times faster during training and 2, 500 times for generation.

Related Work

A large body of work in machine learning for audio synthesis focuses on generating parameters for vocoders in speech processing [21,23,19] or musical instrument synthesizers in automatic music composition [8,3,10]. Our goal is to learn the synthesizers for musical instruments, so we focus here on methods that generate sound without calling such synthesizers.

A first type of approaches model power spectrograms given by the STFT [4,9,25], and generate the waveform through a post-processing that is not part of the training using a phase reconstruction algorithm such as the Griffin-Lim algorithm [7]. The advantage is to focus on a distance between highlevel representations that is more relevant perceptually than a regression on the waveform. However, using Griffin-Lim means that the training is not end to end. Indeed the predicted spectrograms may not come from a real signal. In that case, Griffin-Lim performs an orthogonal projection onto the set of valid spectrograms that is not accounted for during training. Notice that our approach with the spectral loss is different: our models directly predict waveforms rather than spectrograms and the spectral loss computes log power spectrograms of these predicted waveforms.

The current state-of-the-art in neural audio synthesis is to generate directly the waveform [24,17,19]. Individual audio samples are modeled with a categorical distribution trained with a multiclass crossentropy loss. Quantization of the 16 bit audio is performed (either linear [17] or with a µ-law companding [24]) to map to a few hundred bins to improve scalability. The generation is still extremely costly; distillation [11] to a faster model has been proposed to reduce inference time at the expense of an even larger training time [18]. The recent proposal of [14] partly solves the issue with a small loss in accuracy, but it requires heavy low-level code optimization. In contrast, our approach trains and generate waveforms comparably fast with a PyTorch2 implementation. Our approach is different since we model the waveform as a continuous signal and use the spectral loss between generated and target waveforms and model audio frames of 1024 samples, rather than performing classification on individual samples. The spectral loss we introduce is also different from the power loss regularization of [18], even though both are based on the STFT of the generated and target waveforms. In [18], the primary loss is the classification of individual samples, and their power loss is used to equalize the average amplitude of frequencies over time. Thus the power loss cannot be used alone to learn to reconstruct the waveform.

Works on neural audio synthesis conditioned on symbolic inputs were developed mostly for textto-speech synthesis [24,17,25]. Experiments on generation of musical tracks based on desired properties were described in [24], but no systematic evaluation has been published. The model of [4], which we use as baseline in our experiments on perceptual quality, is an autoencoder of musical notes based on WaveNet [24] that compresses the signal to generate high-level representations that transfer to music classification tasks, but contrarily to our synthesizer, it cannot be used to generate waveforms from desired properties of the instrument, pitch and velocity without some input signal.

The minimization by gradient descent of an objective function based on the power spectrogram has already been applied to the transformation of a white noise waveform into a specific sound texture [2]. However, to the best of our knowledge, such objective functions have not been used in the context of neural audio synthesis.

3 The spectral loss for waveform synthesis

Previous work in audio synthesis on the waveform focused on classification losses [17,24,4]. However, their computational cost needs to be mitigated by quantization, which inherently limits the resolution of the predictions, and ultimately increasing the number of classes is likely necessary to achieve the optimal accuracy. Our approach directly predicts a single continuous value for each audio sample, and computes distances between waveforms in the domain of power spectra to be invariant to the original phase of the signal. As a baseline, we also consider computing distances between waveforms using plain mean square error (MSE).

Mean square regression on the waveform

The simplest way of measuring the distance between a reconstructed signal x and the reference x is to compute the MSE on the waveform directly, that is taking the Euclidean norm between x and x, L wav (x, x) := xx 2 .

(3.1)

The MSE is most likely not suited as a perceptual distance between waveforms because it is extremely sensitive to a small shift in the signal. Yet, we observed that it was sufficient to learn an autoencoder and use it as a baseline.

Spectral loss

As an alternative to the MSE on the waveform, we suggest taking the Short Term Fourier Transform (STFT) of both x and x and compare their absolute values in log scale. We first compute the log spectrogram l(x) := log + |STFT [x]| 2 .

(3.

2)

The STFT decomposes the original signal x in successive frames of 1024 time steps with a stride of 256 so that a frame overlaps at 75% with the next one. The output for a single frame is given by 513 complex numbers, each representing a specific frequency range. Taking the point-wise absolute values of those numbers represents how much energy is present in a specific frequency range. We observed that our models generated higher quality sounds when trained using a log scale of those coefficients. Previous work has come to the same conclusion [4]. We observed that many entries of the spectrograms are close to zero and that small errors on those parts can add up to form noisy artifacts. In order to favor sparsity in the spectrogram, we use the • 1 norm instead of the MSE, L stft,1 (x, x) := l(x)l(x) 1 .

(3.

3)

The value of controls the trade-off between accurately representing low energy and high energy coefficients in the spectrogram. We found that = 1 gave the best subjective reconstruction quality.

The STFT is a (complex) convolution operator on the waveform and the squared absolute value of the Fourier coefficients makes the power spectrum differentiable with respect to the generated waveform. Since the generated waveform is itself a differentiable function of the parameters (up to the non-differentiability points of activation functions such as ReLU), the spectral loss (3.3) can be minimized by standard backpropagation. Even though we only consider this spectral loss in our experiments, alternatives to the STFT such as the Wavelet transform also define differentiable loss for suitable wavelets.

Non unicity of the waveform representation

To illustrate the importance of the spectral loss instead of a waveform loss, let us now consider a problem that arises when generating notes in the test set. Let us assume one of the instrument is a pure sinuoide. For a given pitch at a frequency f , the audio signal is x i = sin(2πi f 16000 + φ). Our perception of the signal is not affected by the choice of φ ∈ [0, 2π[, and the power spectrogram of x is also unaltered. When recording an acoustic instrument, the value of φ depends on any number of variables characterizing the physical system that generated the sound and there is no guarantee that φ stays constant when playing the same note again. For a synthetic sound, φ also depends on implementation details of the software generating the sound.

For a sound that is not in the training set and as far as the model is concerned, φ is a random variable that can take any value in the range [0, 2π[. As a result, x 0 is unpredictable in the range [-1, 1], and the mean square error between the generated signal and the ground truth is uninformative. Even on the training dataset, the model has to use extra resources to remember the value of φ for each pitch. We believe that this phenomenon is the reason why training the synthesizer using the MSE on the waveform leads to worse reconstruction performance, even though this loss is sufficient in the context of auto-encoding (see Section 5.2). The spectral loss solves this issue since the model is free to choose a single canonical value for φ.

However, one should note that the spectral loss is permissive, in the sense that it does not penalize phase inconsitencies of the complex phase across the different frames of the STFT, which lead to potential artifacts. In practice, we obtain state of the art results (see Section 5) and we conjecture that thanks to the frame overlap in the STFT, the solution that minimizes the spectral loss will often be phase consistent, which is why Griffin-Lim works resonably well despite sharing the same limitation.

Model

In this section we introduce the SING architecture. It is composed of two parts: a LSTM based sequence generator whose output is plugged to a decoder that transforms it into a waveform. The model is trained to recover a waveform x sampled at 16,000 Hz from the training set based on the one-hot encoded instrument I, pitch P and velocity V . The whole architecture is summarized in Figure 1.

LSTM sequence generator

The sequence generator is composed of a 3-layer recurrent neural network with LSTM cells and 1024 hidden units each. Given an example with velocity V , instrument I and pitch P , we obtain 3 embeddings (u V , v I , w P ) ∈ R 2 × R 16 × R 8 from look-up tables that are trained along with the model. Furthermore, the model is provided at each time step with an extra embedding z T ∈ R 4 where T is the current time step [22,5], also obtained from a look-up table that is trained jointly. The input of the LSTM is the concatenation of those four vectors (u V , v I , w P , z T ). Although we first experimented with an autoregressive model where the previous output was concatenated with those embeddings, we achieved much better performance and faster training by feeding the LSTM with only on the 4 vectors (u V , v I , w P , z T ) at each time step. Given those inputs, the recurrent network 

Convolutional decoder

The sequence s(V, I, P ) is decoded into a waveform by a convolutional network. The first layer is a convolution with a kernel size of 9 and a stride of 1 over the sequence s with 4096 channels followed by a ReLU. The second and third layers are both convolutions with a kernel size of 1 (a.k.a. 1x1 convolution [4]) also followed by a ReLU. The number of channels is kept at 4096. Finally the last layer is a transposed convolution with a stride of 256 and a kernel size of 1024 that directly outputs the final waveform corresponding to an audio frame of size 1024. In order to reduce artifacts generated by the high stride value, we smooth the deconvolution filters by multiplying them with a squared Hann window. As the stride is one fourth of the kernel size, the squared Hann window has the property that the sum of its values for a given output position is always equal to 1 [7]. Thus the final deconvolution can also be seen as an overlap-add method. We pad the examples so that the final generated audio signal has the right length. Given our parameters, we need s(V, I, P ) to be of length N = 265 to recover a 4 seconds signal d(s(V, I, P )) ∈ R 64,000 .

Training details

All the models are trained on 4 P100 GPUs using Adam [15] with a learning rate of 0.0003 and a batch size of 256.

Initialization with an autoencoder. We introduce an encoder turning a waveform x into a sequence e(x) ∈ R N ×D . This encoder is almost the mirror of the decoder. It starts with a convolution layer with a kernel size of 1024, a stride of 256 and 4096 channels followed by a ReLU. Similarly to the decoder, we smooth its filters using a squared Hann window. Next are two 1x1 convolutions with 4096 channels and ReLU as an activation function. A final 1x1 convolution with no non linearity turns those 4096 channels into the desired sequence with D channels. We first train the encoder and decoder together as an auto-encoder on a reconstruction task. We train the auto-encoder for 50 epochs which takes about 12 hours on 4 GPUs.

LSTM training. Once the auto-encoder has converged, we use the encoder to generate a target sequence for the LSTM. We use the MSE between the output s(V, I, P ) of the LSTM and the output e(x) of the encoder, only optimizing the LSTM while keeping the encoder constant. The LSTM is trained for 50 epochs using truncated backpropagation through time [26] using a sequence length of 32. This takes about 10 hours on 4 GPUs.

End-to-end fine tuning. We then plug the decoder on top of the LSTM and fine tune them together in an end-to-end fashion, directly optimizing for the loss on the waveform, either using the MSE on the waveform or computing the MSE on the log-amplitude spectrograms and back propagating through the STFT. At that point we stop using truncated back propagation through time and directly compute the gradient on the entire sequence. We do so for 20 epochs which takes about 8 hours on 4 GPUs. From start to finish, SING takes about 30 hours on 4 GPUs to train.

Although we could have initialized our LSTM and decoder randomly and trained end-to-end, we did not achieve convergence until we implemented our initialization strategy.

Experiments

The source code for SING and a pretrained model are available on our github 3 . Audio samples are available on the article webpage4 .

NSynth dataset

The train set from the NSynth dataset [4] is composed of 289,205 audio recordings of instruments, some synthetic and some acoustic. Each recording is 4 second long at 16,000 Hz and is represented by a vector x V,I,P ∈ [-1, 1] 64,000 indexed by V ∈ {0, 4} representing the velocity of the note, I ∈ {0, . . . , 1005} representing the instrument, P ∈ {0, . . . , 120} representing the pitch. The range of pitches available can vary depending on the instrument but for any combination of V, I, P , there is at most a single recording.

We did not make use of the validation or test set from the original NSynth dataset because the instruments had no overlap with the training set. Because we use a look-up table for the instrument embedding, we cannot generate audio for unseen instruments. Instead, we selected for each instrument 10% of the pitches randomly that we moved to a separate test set. Because the pitches are different for each instrument, our model trains on all pitches but not on all combinations of a pitch and an instrument. We can then evaluate the ability of our model to generalize to unseen combinations of instrument and pitch. In the rest of the paper, we refer to this new split of the original train set as the train and test set.

Generalization through pitch completion

We report our results in Table 1. We provided both the performance of the complete model as well as that of the autoencoder used for the initial training of SING. This autoencoder serves as a reference for the maximum quality the model can achieve if the LSTM were to reconstruct perfectly the sequence e(x).

Although using the MSE on the waveform works well as far as the autoencoder is concerned, this loss is hard to optimize for the LSTM. Indeed, the autoencoder has access to the signal it must reconstruct, so that it can easily choose which representation of the signal to output as explained in Section 3.2.1. SING must be able to recover that information solely from the embeddings given to it as input. It manages to learn some of it but there is an important drop in quality. Besides, when switching to the test set one can see that the MSE on the waveform increases significantly. As the model has never seen those examples, it has no way of picking the right representation. When using a spectral loss, SING is free to choose a canonical representation for the signal it has to reconstruct and it does not have to remember the one that was in the training set. We observe that although we have a drop in quality between the train and test set, our model is still able to generalize to unseen combinations of pitch and instrument. 1: Results on the train and test set of the pitch completion task for different models. The first column specifies the model, either the autoencoder used for the initial training of the LSTM or the complete SING model with the LSTM and the convolutional decoder. We compare models either trained with a loss on the waveform (see (3.1)) or on the spectrograms (see (3.3)). Finally we also trained a model with no temporal embedding.

Figure 2: Example of rainbowgrams from the NSynth dataset and the reconstructions by different models. Rainbowgrams are defined in [4] as "a CQT spectrogram with intensity of lines proportional to the log magnitude of the power spectrum and color given by the derivative of the phase". Time is represented on the horizontal axis while frequencies are on the vertical one. From left to right: ground truth, Wavenet-based autoencoder, SING with spectral loss, SING with waveform loss and SING without the time embedding.

Finally, we tried training a model without the time embedding z T . Theoretically, the LSTM could do without it by learning to count the number of time steps since the beginning of the sequence. However we do observe a significant drop in performance when removing this embedding, thus motivating our choice.

On Figure 2, we represented the rainbowgrams for a particular example from the test set as well as its reconstruction by the Wavenet-autoencoder, SING trained with the spectral and waveform loss and SING without time embedding. Rainbowgrams are defined in [4] as "a CQT spectrogram with intensity of lines proportional to the log magnitude of the power spectrum and color given by the derivative of the phase". A different derivative of the phase will lead to audible deformations of the target signal. Such modification are not penalized by our spectral loss as explained in Section 3.2.1. Nevertheless, we observe a mostly correct reconstruction of the derivative of the phase using SING. More examples from the test set, including the rainbowgrams and audio files are available on the article webpage5 .

Human evaluations

During training, we use several automatic criteria to evaluate and select our models. These criteria include the MSE on spectrograms, magnitude spectra, or waveform, and other perceptually-motivated metrics such as the Itakura-Saito divergence [13]. However, the correlation of these metrics with human perception remains imperfect, this is why we use human judgments as a metric of comparison between SING and the Wavenet baseline from [4]. Table 2: Mean Opinion Score (MOS) and computational load of the different models. The training time is expressed in hours * GPU units, the generation time is expressed as the number of seconds of audio that can be generated per second of processing time. The compression factor represents the ratio between the dimensionality of the audio sequences (64, 000 values) and either the latent state of Wavenet or the input vectors to SING. We also report the size of the models, in MB.

( * ) Time corrected to account for the difference in FLOPs of the GPUs used.

Evaluation of perceptual quality: Mean Opinion Score

The first characteristic that we want to measure from our generated samples is their naturalness: how good they sound to the human ear. To do so, we perform experiments on Amazon Mechanical Turk [1] to get a Mean Opinion Score for the ground truth samples, and for the waveforms generated by SING and the Wavenet baseline. We did not include a Griffin-Lim based baseline as the authors in [4] concluded to the superiority of their Wavenet autoencoder.

We randomly select 100 examples from our test set. For the Wavenet-autoencoder, we pass these 100 examples through the network and retrieve the output. The latter is a pre-trained model provided by the authors of [4] 6 . Notice that all of the 100 samples were used for training of the Wavenetautoencoder, while they were not seen during the training of our models. For SING, we feed it the instrument, pitch and velocity information of each of the 100 samples. Workers are asked to rate the quality of the samples on a scale from 1 ("Very annoying and objectionable distortion. Totally silent audio") to 5 ("Imperceptible distortion"). Each of the 300 samples (100 samples per model) is evaluated by 60 Workers. The quality of the hardware used by Workers being variable, this could impede the interpretability of the results. Thus, we use the crowdMOS toolkit [20] which detects and discards inaccurate scores. This toolkit also allows to only keep the evaluations that are made with headphones (rather than laptop speakers for example), and we choose to do so as good listening conditions are necessary to ensure the validity of our measures. We report the Mean Opinion Score for the ground-truth audio and each of the 2 models in Table 2, along with the 95% confidence interval.

We observe that SING shows a significantly better MOS than the Wavenet-autoencoder baseline despite a compression factor which is 66 times higher. Moreover, to spotlight the benefits of our approach compared to the Wavenet baseline, we also report three metrics to quantify the computational load of the different models. The first metric is the training time, expressed in hours multiplied by the number of GPUs. The authors of [4], mention that their model trains for 10 days on 32 GPUs, which amounts to 7680 hours*GPUs. However, the GPUs used are capable of about half the FLOPs compared to our P100. Therefore, we corrected this value to 3840 hours*GPUs. On the other hand, SING is trained in 30 hours on four P100, which is 32 times faster than Wavenet. A major drawback of autoregressive models such as Wavenet is that the generation process is inherently sequential: generating the sample at time t + 1 takes as input the sample at time t. We timed the generation using the implementation of the Wavenet-autoencoder provided by the authors, in its fastgen version 7which is significantly faster than the original model. This yields a 22 minutes time to generate a 4-second sample. On a single P100 GPU, Wavenet can generate up to 64 sequences at the same time before reaching the memory limit, which amounts to 0.2 seconds of audio generated per second. On the other hand, SING can generate 512 seconds of audio per second of processing time, and is thus 2500 times faster than Wavenet. Finally, SING is also efficient in memory compared to Wavenet, as the model size in MB is more than 4 times smaller than the baseline.

ABX similarity measure

Besides absolute audio quality of the samples, we also want to ensure that when we condition SING on a chosen combination of instrument, pitch and velocity, we generate a relevant audio sample. To do so, we measure how close samples generated by SING are to the ground-truth relatively to the Wavenet baseline. This measure is made by performing ABX [16] experiments: the Worker is given a ground-truth sample as a reference. Then, they are presented with the corresponding samples of SING and Wavenet, in a random order to avoid bias and with the possibility of listening as many times to the samples as necessary. They are asked to pick the sample which is the closest to the reference according to their judgment. We perform this experiment on 100 ABX triplets made from the same data as for the MOS, each triplet being evaluated by 10 Workers. On average over 1000 ABX tests, 69.7% are in favor of SING over Wavenet, which shows a higher similarity between our generated samples and the target musical notes than Wavenet.

Conclusion

We introduced a simple model architecture, SING, based on LSTM and convolutional layers to generate waveforms. We achieve state-of-the-art results as measured by human evaluation on the NSynth dataset for a fraction of the training and generation cost of existing methods. We introduced a spectral loss on the generated waveform as a way of using time-frequency based metrics without requiring a post-processing step to recover the phase of a power spectrogram. We experimentally validated that SING was able to embed music notes into a small dimension vector space where the pitch, instrument and velocity were disentangled when trained with this spectral loss, as well as synthesizing pairs of instruments and pitches that were not present in the training set. We believe SING opens up new opportunities for lightweight quality audio synthesis with potential applications for speech synthesis and music generation.
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 1 the Time-Domain filterbanks. Part III introduces Time-Domain filterbanks and shows results on speech recognition and paralinguistic classification. We also released a Pytorch implementation of Time-Domain filterbanks 1 . Chapter 5 describes the architecture of Time-Domain filterbanks, and presents results on a small-scale phonetic recognition task. Chapter 6 proposes a improved version of Time-Domain filterbanks compared to the previous chapter, and also experiments with a previously proposed learnable frontend. We show on a large-vocabulary speech recognition task on the Wall Street Journal dataset, that Time-Domain filterbanks consistently outperform mel-filterbanks in equivalent conditions.Chapter 7 introduces the first fully convolutional speech recognition system, using convolutional layers from the waveform up to the word transcription. Experiments Towards end-to-end speech recognition
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 12 Figure 1-2: Computational steps that produce mel-filterbanks and MFCC features.

Figure 1 - 3 :

 13 Figure 1-3: Power spectrum of a sentence from the TIMIT dataset, before and after pre-emphasis.

Figure 1 - 4 :

 14 Figure 1-4: Several window functions, including triangular, Hann, Hamming, and Blackman.

Figure 1 - 5 :

 15 Figure 1-5: 40 mel-filters.

Figure 1 - 6 :

 16 Figure 1-6: Mel-filterbanks before and after log compression.

Figure 1 - 7 ,Figure 1 - 7 :

 1717 Figure 1-7, shows the evolution of the validation Word Error Rate (WER) of the Deep Speech 2 speech recognition system[START_REF] Amodei | Deep speech 2: End-to-end speech recognition in english and mandarin[END_REF], as the size of the training data grows. We can observe that, even though there are diminishing returns in high-resource regimes, scaling from 120 hours of training data to 12,000 reduces the

Figure 2 - 1 :

 21 Figure 2-1: Visualization of a within and across-speaker ABX tasks from the minimal pair ("beg", "bag").

Figure 2 -

 2 Figure 2-1 shows a visualization of the within and across speaker ABX tasks.

Figure 2 - 2 :

 22 Figure 2-2: The ABnet architecture.

Chapter 3 A

 3 deep scattering spectrum -deep siamese network pipeline for unsupervised acoustic modelling This chapter is based on the material from A Deep Scattering Spectrum -Deep Siamese Network Pipeline for Unsupervised Acoustic Modelling [Zeghidour et al., 2016b], accepted for oral presentation at ICASSP 2016 and a joint work with Gabriel Synnaeve, Maarten Versteegh and Emmanuel Dupoux. This work was done during my master internship at ENS under the supervision of Emmanuel Dupoux.

Figure 3 - 1 :

 31 Figure 3-1: A deep scattering spectrum with two layers.

Figure 3 - 2 :

 32 Figure 3-2: From left to right: Across-speaker ABX error on TIMIT (as percentages), measured on raw features (yellow bars), best ABnet models trained on mel-filterbanks (purple bars), best ABnet models trained on scattering spectrum (blue bars), and outputs of three supervised systems (red bars) from [Synnaeve et al., 2014].

  While the main concept underlying Siamese networks is that signals of the same class should be close in the embedding space, and signals of different classes should be far in the embedding space, most classification or clustering algorithms do not require a particular level of absolute similarity between signals of the same classes. Rather, the classification of clustering accuracy depends on how similar signals of the same class are relatively to the similarity between signals of different classes. Thus, instead of considering a pair of signals, one can consider a triplet of signals, two belonging to the same category and one belonging to a different category. Ranking the similarity between the signals sharing the same category and the signals of different categories allows computing a score that can be used to learn a
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 41 Figure 4-1: A multi-ouput siamese network in the WAV setting. All parameters of each of the two branches at a given depth are shared.

Figure 4 - 2 :

 42 Figure 4-2: A multi-ouput triamese network in the MEL setting. All parameters of each of the three branches at a given depth are shared.

Figure 4 - 3 :

 43 Figure 4-3: Our convolutional architecture trained on the waveform. The part surrounded by the dashed rectangle is repeated 1, 2 and 3 times respectively for the Small, Medium and Big architectures.

Figure 4 - 4 :

 44  Visualizations of what layers code through the network. The left barchart is a phonetic modelling network, the middle barchart is a speaker modelling network, and the right one is a multi-task network. In blue are units that code for the phonetic information, in yellow, the speaker information, in green the units that code for both, and in black the units that code for none.

Donald

  This chapter is based on Learning Filterbanks from Raw Speech for Phone Recognition[START_REF] Zeghidour | Learning Filterbanks from Raw Speech for Phone Recognition[END_REF], accepted for poster presentation at ICASSP 2018, and a joint work with Nicolas Usunier, Iasonas Kokkinos, Thomas Schatz, Gabriel Synnaeve and Emmanuel Dupoux.
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 51 Figure 5-1: Frequency response of filters, and output of mel-filterbanks and their time-domain approximation on a sentence of TIMIT.

Figure 5 -

 5 1 (a) shows in frequency-domain the triangular averaging operators of usual mel-filterbanks and the corresponding Gabor wavelets. Figures 5-1 (b) and (c) compare the 40-dimensional spectrograms of the mel-filterbanks and the Gabor wavelet approximation on a random sentence of the TIMIT corpus after mean-variance normalization, showing that the spectrograms are similar.

Figure 5 - 2 :

 52 Figure 5-2: Examples of learnt filters. Filters' real parts in blue; imaginary part in red.

Figure 5 - 3 :

 53 Figure 5-3: Heat-map of the magnitude of the frequency response for initialization filters (left) and learned filters (right).

  perform large scale experiments with Time-Domain filterbanks to test if a new state-of-theart can be achieved by training from the waveform. 103 avoid any confusion with fixed gammatone filterbanks), we present a systematic comparison of these two learnable frontends, and evaluate them against mel-filterbanks within an endto-end training pipeline on the Wall Street Journal dataset. Our main contributions and results are the following: 1. A mean-variance normalization layer on top of the log nonlinearity of learnable filterbanks appears to be critical for the efficient learning of the gammatone-based architecture, and makes the training of Time-Domain filterbanks faster; 2. The low-pass filter previously used in the Time-Domain filterbanks stabilizes the training of the gammatone-based frontend, compared to the max-pooling that was originally proposed by Hoshen et al. [2015] and Sainath et al. [2015a]; 3. For Time-Domain filterbanks, keeping the low-pass filter fixed during training allows to efficiently learn the filters from a random initialization, whereas the results of Chapter 5 with random initialization of both the filters and the low-pass filter showed poor performances compared to a suitable initialization; 4. With these modifications, both frontends improve against the mel-filterbanks baseline on Word Error Rate on the Wall Street Journal dataset, in similar conditions (same number of filters, same end-to-end training convolutional architecture). This is the first time learnable filterbanks improve against a strong mel-filterbanks baseline on a large vocabulary, speech recognition task under clean recording conditions.

and output 40

 40 channels every 10ms. In both cases, they can directly be compared with standard mel-filterbanks, simply by changing the features stage of a neural-network-based acoustic model. The filters are then nothing more than an additional layer to the neural network and are learnt by backpropagation with the rest of the acoustic model.

Figure 6 - 1 :

 61 Figure 6-1: Training Letter Error Rate (LER) for the same acoustic model trained either on the gammatone-based frontend (left) or the Time-Domain filterbanks (right), with and without instance normalization.

  on a single deep convolutional network architecture for the acoustic model. The experiments are carried out on the open vocabulary task of the Wall Street Journal dataset [Paul and Baker, 1992], using the subset si284 for training, nov93-dev for validation, and nov92-eval for testing. Training is performed end-to-end on letters. We evaluate in both Letter and Word Error Rates. All our experiments use the open source code of wav2letter [Collobert

  et al. [2017]. The model is a smaller version of the convolutional network used by Liptchinsky et al. [2017] since they train on the larger LibriSpeech dataset. Using the syntax C-input channels-output channels-width, the architecture we use has the structure C-40-200-13/C-100-200-3/C-100-200-4/C-100-250-5/C-125-250-6/C-125-300-7/C-150-350-8/C-175-400-9/

Figure 6 -

 6 1 shows training LER as a function of the number of epochs for scattering-based and gammatone-based filterbanks models, with and without instance normalization. We can see that this normalization drastically improves the training stability of the gammatone-based model, while it moderately improves the Time-Domain filterbanks model. We observed a positive impact of instance normalization in all settings, and so only report as a reference the results of our implementation of a vanilla gammatone-based trainable filterbanks followingHoshen et al. [2015] and Sainath et al. [2015a]. Comparing gammatone (learnt)/gamm/max-pool without instance norm (under SOTA -waveform) to the results of gammatone (learnt)/gamm/max-pool in Table

  this chapter, we presented a systematic comparison of Time-Domain filterbanks and a previously proposed gammatone-based frontend, which clarifies good practices and identifies better architectures to learn from raw speech. Our results show that adding an instance normalization layer on top of the learnable frontend is critical for learning gammatonebased architectures, and speeds up learning of acoustic models trained on Time-Domain filterbanks. Second, the use of a fixed squared Hann window as low-pass filter is critical to train Time-Domain filterbanks from a random initialization of the filters, and improves on max-pooling for the gammatone-based frontend. With these two improvements, we observe a consistent reduction of WER against comparable mel-filterbanks on the open vocabulary task of the WSJ dataset, in the setting of speech recognition under clean recording condition
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 71 Figure 7-1: Overview of the fully convolutional architecture.
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 72 Figure 7-2: Evolution of WER (%) on Librispeech with the perplexity of the language model.
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 81 Figure 8-1: Computational steps that produce mel-filterbanks and MFCC features. In Green are the operations that are learnable (or to which an equivalent is learnable) in Time-Domain filterbanks. Red boxes are the operations that remain fixed during training.

Per

  Channel Energy Normalization (PCEN) is a learnable component introduced by Wang et al. [2017] which computes parametrized normalization and compression. It replaces the log-compression and the mean-variance normalization. With 𝐸(𝑡, 𝑓 ) the value of the feature 𝑓 at time 𝑡, the computation of PCEN is:

Figure 8 - 2 :

 82 Figure 8-2: Proposed pipeline that learns jointly the feature extraction, the compression, the normalization and the classifier.

1 :

 1 . It consists of sound recordings, sampled at 16kHz, from speakers with either cerebral palsy or amyotrophic lateral Speakers and number of recordings per set, the severity of each person is indicated after their ID: VL is Very Low, L is Low, and M is Medium. The bottom line shows the total number of Control (C) and Dysarthric (D) utterances per set.

Figure 8 - 3 :

 83 Figure 8-3: Detailed analysis of filters and compression function learned by the model.Left shows the new scales obtained by three independent models using TD-filterbanks, compared to mel scale. The center frequency is the frequency for which a filter is maximum. Right shows an approximation of the compression exponents obtained for the PCEN layer learned on mel-filterbanks.
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 991 with Time-Domain filterbanks. Moreover, we have proposed a fully learnable audio frontend, combining Time-Domain filterbanks and Per Channel Energy Normalization. It is the first time that a model is developed with the ability to learn the extraction, compression and normalization of the features from the raw waveform, jointly with a classifier. Learning only the Time-Domain filterbanks or the PCEN parameters gives better results than learning them jointly, but learning both still gives similar to better performance than using fixed features, which constitutes a proof of concept for fully learnable audio frontends.Chapter Summary of the contributionsDeep neural networks have changed the landscape of machine learning, from computer vision to reinforcement learning, natural language processing and speech recognition. The paradigm of deep learning has consistently been to replace formerly composite systems by end-to-end architectures, trained from the rawest form of the data up to the final target by backpropagation. In the case of speech recognition, acoustic models and then language models have been replaced by deep architectures, and the two-step training scheme of hybrid HMM-DNNs is now being outperformed by end-to-end training. However, along all this recent history of speech recognition, hardcoded speech features, mel-filterbanks in particular, have still not been made obsolete by learnable alternatives and remain a systematic component of state-of-the-art systems, both in recognition and paralinguistic classification.

9. 2

 2 Towards fully learnable audio understanding systemsSo far, we have applied Time-Domain filterbanks to two tasks: speech recognition, and dysarthria detection. However, and as explained in Section 1.4, these are only few of a virtually unlimited number of classification tasks taking speech as input (see the Interspeech Computational Paralinguistics Challenge which introduces new tasks every year 1 ), and still relying on fixed, handcrafted features (mel-filterbanks, MFCCs, or low-level descriptors).

Figure 1 :

 1 Figure 1: Interpolation between different attributes (Zoom in for better resolution). Each line shows reconstructions of the same face with different attribute values, where each attribute is controlled as a continuous variable. It is then possible to make an old person look older or younger, a man look more manly or to imagine his female version. Left images are the originals.

Figure 2 :

 2 Figure 2: Main architecture. An (image, attribute) pair (x, y) is given as input. The encoder maps x to the latent representation z; the discriminator is trained to predict y given z whereas the encoder is trained to make it impossible for the discriminator to predict y given z only. The decoder should reconstruct x given (z, y). At test time, the discriminator is discarded and the model can generate different versions of x when fed with different attribute values.

  and the training example (x

Figure 3 :

 3 Figure 3: Swapping the attributes of different faces. Zoom in for better resolution.

Figure 4 :

 4 Figure 4: (Zoom in for better resolution.) Examples of multi-attribute swap (Gender / Opened eyes / Eye glasses) performed by the same model. Left images are the originals.

Figure 5 :

 5 Figure 5: Examples of reconstructed flowers with different values of the pink attribute. First row images are the originals. Increasing the value of that attribute will turn flower colors into pink, while decreasing it in images with originally pink flowers will make them turn yellow or orange.

1 s 2 2 s 3 Figure 1 :

 12231 Figure1: Summary of the entire architecture of SING. u V , v I , w P , z * represent the look-up tables respectively for the velocity, instrument, pitch and time. h * represent the hidden state of the LSTM and s * its output. For convolutional layers, K represents the kernel size, S the stride and C the number of channels.

Table 3 .

 3 1: ABX error (as percentages) on the ZeroSpeech 2015 datasets (English, Xitsonga) for the ABX within-and across-speaker tasks. The best scores for each condition are in bold.

	Model	English	Xitsonga
		within across within across
	Baseline (MFCC)	15.6	28.1	19.1	33.8
	Topline (Supervised)	12.1	16.0	3.5	4.5
	FbanksABnet [Thiollière et al., 2015]	12.0	17.9	11.7	16.6
	Deep ScatABnet	11.3	17.1	12.5	16.2
	Shallow ScatABnet	11.0	17.0	12.0	15.8
	DPGMM [Chen et al., 2015]	10.8	16.3	9.6	17.2

Time Warping (DTW), yielding 6.77M feature frames. The pairs of "different" objects are not aligned with DTW but just aligned on the shortest one. For evaluation, we use the 39 phoneme set of

  Instead of forcing the network to encode the input into specific sub-word units (phonemes,

	4.3.1 Input representations

diphones, triphones), we use the weakly supervised technique introduced in Chapter 2 which only specifies whether input sequences are utterances of same or different words, and if they are pronounced by same or different speakers, and let the network figure out by itself what

are the most appropriate sub-word units. As detailed in Section 4.3.2, we evaluate the linguistic branch of our models in terms of phonetic discriminability of the embeddings that they learn and hence expect the networks to learn phone level representations even though only word level alignment is available as a ground truth information.

Table 4 .

 4 𝑠𝑝 1 /bag/ 𝑠𝑝 1 /beg/ 𝑠𝑝 2 Speaker /beg/ 𝑠𝑝 1 /beg/ 𝑠𝑝 2 /bag/ 𝑠𝑝 1 1: Examples of A, B and X for both phonetic and speaker discriminability tasks. "𝑠𝑝 𝑖 " stands for speaker number 𝑖.

	Discriminability	A	B	X
	Phonetic	/beg/		

Table 4 .

 4 2 reports ABX error rates onLibrispeech on the speech features. The evaluation tasks are either ABX on phones across speakers (phn) or ABX on speakers across phones (spk). "Siamese" and "Triamese" are followed by the number of frames in an input stack. "Single" means that the phonetic and

			phone embed. speaker embed.
	model	task	phn	spk	phn	spk
	MEL7	-	24.5	32.9	24.5	32.9
	Siamese7	single 10.9	46.0	46.4	23.9
		double 10.5	45.9	45.4	9.3
	Siamese15 single	9.7	47.1	45.8	12.4
		double 10.2	46.6	45.3	8.7
	Triamese7 single 10.0	46.0	45.0	10.0
		double 11.5	45.0	45.7	9.4
	Triamese15 single	9.8	46.9	44.6	9.4
		double 10.7	46.2	44.7	8.1

Table 4 .

 4 2: In-domain ABX error rates (%) in the MEL setting.

Table 4 . 3

 43 

	phone embed. speaker embed.

: In-domain ABX error rates (%) in the WAV setting.

Table 4 .

 4 4: Number of parameters, size of time context (in miliseconds) and speaker across phone ABX error (%) for the best model from the WAV setting, the best Small model and the best model from the MEL setting.

	model	nb parameters spread (ms) ABX error (%)
	Best	3.39M	267		5.6
	Best small	2.27M	57		6.7
	Best MEL	3.38M	165		8.1
			phone embed. speaker embed.
	model		phn	spk	phn	spk
		Language: English (TIMIT)
	MEL7		20.5	39.7	20.5	39.7
	DNN supervised 9.2		
	Best ScatABnet 9.8		
	Tri15 (double)	10.3	47.9	43.4	14.2
	Tri15 (single)	9.2	48.7	
	Best wav overall 12.7	45.9	38.4	25.8
	Best wav phone 13.5	47.5	
		Language: Xitsonga (NCHLT)
	MEL7		30.1	25.8	30.1	25.8
	Best ScatABnet 15.8		
	Tri15 (double)	15.4	41.6	44.7	14.3
	Tri15 (single)	15.5	42.6	
	Best wav overall 20.5	38.1	42.5	12
	Best wav phone 20.2	42.1	

5.6% error against 8.1%. It is not trivial to compare the architectures between the WAV and the MEL Settings, as one is fully connected and the other is convolutional, but in terms of number of parameters and the time duration used to model a speaker,

Table 4.4 shows 

Table 4 . 5

 45 

: Out-of-domain ABX error rates (%) in the MEL and WAV settings.

Table 4

 4 

	.5 reports out-of-domain ABX results on a different dataset in English (TIMIT)
	and on a different language, Xitsonga. The results for Tri15 are obtained from extracting
	output embeddings from a (single or double) Triamese neural network previously trained

on Librispeech. MEL7 is an untrained stacked filterbank baseline, and ScatABnet is the best model from Chapter 3, either state-of-the art model for a weakly supervised siamese

Table 5 .

 5 1: Details of the layers for the Time-Domain filterbanks.window, the complex wavelet+modulus operations |𝑥 * 𝜙 𝑛 | 2 are implemented as a convolutional layer taking the raw wav as input, with a width 𝑊 = 400 and 2𝑁 = 80 filters (40 filters for the real and imaginary parts respectively). This layer is on the top row of

	Layer type	Input size Output size Width Stride
	Conv.	1	80	400	1
	L2-Pooling	80	40	-	-
	Square	-	-	-	-
	Grouped conv.	40	40	400	160
	Absolute value	-	-	-	-
	Add 1, Log	-	-	-	-

Learnable architecture specification. The time-domain convolutional architecture is summarized in Table

5

.1. With a waveform sampled at 16kHz, a Hann window is a convolution operator with a span of 𝑊 = 400 samples (25ms). Since the energy of the Gabor wavelets approximating standard mel-filterbanks has a time spread smaller than the Hann

Table 5 .

 5 1. The modulus operator is implemented with "feature L2 pooling", a layer taking an input 𝑧 of size 2𝑁 and outputs 𝑧 ′ of size 𝑁 such that 𝑧 ′ 𝑘 =

	√︁
	𝑧 2 2𝑘-1 + 𝑧 2 2𝑘

Table 5 . 3
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	]	MFCC + LDA/MLLT/MLLR	-	17.3
	CNN-5L-ReLU-do0.5	mel	18.4	20.8
	CNN-5L-ReLU-do0.5 + TD-filterbanks	wav	18.2	20.4
	CNN-5L-ReLU-do0.7	mel	17.8	20.6
	CNN-5L-ReLU-do0.7 + TD-filterbanks	wav	17.3	20.3
	CNN-8L-PReLU-do0.7	mel	16.2	18.1
	CNN-8L-PReLU-do0.7 + TD-filterbanks	wav	15.6	18.1
	CNN-8L-PReLU-do0.7 + TD-filterbanks + preemp wav	15.6	18.0

: PER (Phone Error Rate) on TIMIT, in percentages. "mel" stands for melfilterbanks, while "TD-filterbanks" stands for Time-Domain filterbanks. All models but

Table 6 .

 6 1: Architectures of the two trainable filterbanks. Values of width and strides are given to match the standard settings of mel-filterbanks for waveform sampled at 16kHz. The convolution for the scattering-based architecture uses 80-real valued output channels and squared L2-pooling on the feature dimension to emulate a complex-valued convolution with 40 filters followed by a squared modulus operator. Thus, after the nonlinearity, both architectures have 40 filters. In Chapter 5, we use 1 to prevent log(0) and[START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF] andSainath et al. [2015a] use 0.01. We kept the values initially used by the authors of the respective contributions and did not try alternatives. We believe it has little impact on the final performance.

		td-filterbanks gammatone-based
	Conv (#in-#out-width-stride)	1-80-400-1	1-40-400-1
	non-linearity	sq. L2-Pooling	ReLU
	low-pass filter (wdth=400, strd=160)	sq. Hann	max-pooling or sq. Hann
	log-compression	log(1+abs(.))	log(0.01+abs(.))
	normalization	mean-var. per-channel per-sentence

Table 6 . 2
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: Results (%) on the open vocabulary task of the WSJ dataset. (i) SOTAspeech features: for state-of-the-art and representative baselines using speech features (mel-filterbanks, spectrograms or MFCC), (ii) SOTA-waveform: state-of-the-art from the raw waveform, including our own implementation of vanilla gammatone-based frontend without instance normalization, and (iii) our baseline and the different variants of the learnable frontends (with instance normalization) studied in this chapter.

Table 6 .

 6 3: Comparison of models trained with or without a learnable pre-emphasis layer. All models are initialized either with the scattering or gammatone initialization, and the pooling function is a fixed squared Hann window.

	model pre-emp	nov93-dev nov92-eval LER WER LER WER
	gamm	no pre-emp 6.9	9.1	4.9	5.9
	(learnt)	pre-emp	6.8	9	4.7	5.7
	scatt	no pre-emp 6.7	8.3	4.6	6.1
	(learnt)	pre-emp	6.5	8.7	4.5	5.7

Table 7 .

 7 1: WER (%) on the open vocabulary task of WSJ.

	6.6	3.5

Table 7 . 2
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	Model		dev-clean dev-other test-clean test-other
	CAPIO (Single) [Han et al., 2017]		3.02	8.28	3.56	8.58
	(speaker adapt., pronunciation lexicon)				
	CAPIO (Ensemble) [Han et al., 2017]	2.68	7.56	3.19	7.64
	(Combination of 8 systems)					
	DeepSpeech 2 [Amodei et al., 2015]		-	-	5.83	12.69
	(12k training hours AM, common crawl LM)				
	Sequence-to-sequence [Zeyer et al., 2018]	3.54	11.52	3.82	12.76
	Frontend	LM	dev-clean dev-other test-clean test-other
	mel-filterbanks	4-gram	4.26	13.80	4.82	14.54
	mel-filterbanks	ConvLM	3.13	10.61	3.45	11.92
	Time-Domain filterbanks (40 filters) ConvLM	3.16	10.05	3.44	11.24
	Time-Domain filterbanks (80 filters) ConvLM	3.08	9.94	3.26	10.47

: WER (%) on Librispeech.

Table 7 .

 7 3: Evolution of WER (%) on Librispeech with the context size of the language model.

	Model Context	WER	
	Type	Length dev-clean dev-other
	4-gram	3	4.26	13.80
	ConvLM	3	4.11	13.17
	ConvLM	9	3.34	11.29
	ConvLM	19	3.27	11.06
	ConvLM	29	3.25	11.09
	ConvLM	39	3.24	11.07
	ConvLM	49	3.24	11.08

Table 8 .

 8 5, 0.98 and 2.0 respectively. During training, we constrain 𝑟 to be non-negative. All 2: UAR (%) of the attention-based model trained over different features or learnable frontends. The UAR is averaged over 3 runs and we report standard deviations.

	Input data	UAR % val. UAR % test
	LLDs mel-filterbanks mel-filterbanks + mvn mel-filterbanks + PCEN Time-Domain filterbanks	64.8 ± 1.2 79.9 ± 6.3 63.5 ± 1.7 76.0 ± 6.1 93.7 ± 1.2	65.5 ± 3.6 72.4 ± 3.0 70.3 ± 2.9 79.7 ± 3.8 82.4 ± 0.4

Table 8 .

 8 3: UAR (%) of the attention-based model trained over different fully learnable frontends. "Only r" means that only the compression factor of PCEN is learned, while "only" 𝛼" refers to the setting in which we only learn the normalization strength. When not specified, both components are learned. The UAR is averaged over 3 runs and standard deviations are reported.remove the log-compression step of Time-Domain filterbanks and replace it by a PCEN layer. We use three settings: one for which 𝑟, 𝛼 and 𝛿 are learned, the second one with only 𝑟 (compression factor) learned, and finally the last one for which only 𝛼 (normalization strength) is learned. If a parameter is not learned, it is fixed to its initial value (specified inSection 8.3). Table8.3 shows that learning only the normalization exponent gives worse results than the models trained on LLDs. However, we notice that the model learning 𝑟, 𝛼

	Time-Domain filterbanks + PCEN Time-Domain filterbanks + PCEN only r Time-Domain filterbanks + PCEN only 𝛼	72.3 ± 1.5 74.6 ± 2.9 66.6 ± 1.4	74.8 ± 1.1 76.4 ± 1.8 63.3 ± 8.2

Table 9 .

 9 1: Preferred hyperparameters of mel-filterbanks for three audio tasks.

	9.3 Rethinking Time-Domain filterbanks: how much
	structure do we need?

Table 1 :

 1 Perceptual evaluation of naturalness and swap accuracy for each model. The naturalness score is the percentage of images that were labeled as "real" by human evaluators to the question "Is this image a real photograph or a fake generated by a graphics engine?". The accuracy score is the classification accuracy by human evaluators on the values of each attribute.

	Model	Naturalness Mouth Smile Glasses Mouth Smile Glasses Accuracy
	Real Image IcGAN AE IcGAN Swap FadNet AE FadNet Swap	92.6 22.7 11.4 88.4 79.0	87.0 21.7 22.9 75.2 31.4	88.6 14.8 9.6 78.8 45.3	89.0 88.1 10.1 91.8 66.2	88.3 91.7 9.9 90.1 97.1	97.6 86.2 47.5 94.5 76.6
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https://www.globalme.net/blog/language-support-voice-assistants-compared

https://www.ethnologue.com/enterprise-faq/how-many-languages-world-are-unwritten-0

Our model cannot identify if a given filter plays the role of the real or imaginary part in the associated complex filter. We chose the assignment yielding the smallest 𝑟 𝑎 .

https://github.com/facebookresearch/wav2letter

https://github.com/facebookresearch/fairseq

http://www.compare.openaudio.eu/

http://dcase.community/challenge2018/task-acoustic-scene-classification-results-a
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Facebook AI Research

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6

LSCP, ENS, EHESS, CNRS, PSL Research University, INRIA Code available at https://github.com/facebookresearch/FaderNetworks 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

https://github.com/Guim3/IcGAN

Quoting [4]: "MIDI velocity is similar to volume control and they have a direct relationship. For physical intuition, higher velocity corresponds to pressing a piano key harder."

https://pytorch.org/

https://github.com/facebookresearch/SING

https://research.fb.com/publications/sing-symbol-to-instrument-neural-generator
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images by disentangling the salient information of the image and the values of attributes directly in the latent space. As a result, after training, our model can generate different realistic versions of an input image by varying the attribute values, like changing the facial expression of a portrait, or updating the color of some objects.

Appendix B faces the challenge of neural music synthesis. We propose SING, a lightweight neural audio synthesizer for the original task of generating musical notes given desired instrument, pitch and velocity. SING can generate any note of more than 1,000 instruments, with a better quality than the previous state-of-the-art (as judged by human evaluators), and a generation speed which is 2,500 times faster.

Chapter 6

End-to-End Speech Recognition from the Raw Waveform This chapter is based on End-to-end Speech Recognition from the Raw Waveform [Zeghidour et al., 2018a], accepted for poster presentation at Interspeech 2018, and a joint work with Nicolas Usunier, Gabriel Synnaeve, Ronan Collobert and Emmanuel Dupoux.

Introduction

In the previous chapter, we showed promising results on a phone recognition task on TIMIT. However, TIMIT is a small dataset and its test set only contains 192 sequences. This dampens the significance of the differences in performance that we observe. Moreover, and as explained in Section 1.3, models trained on the raw waveform have not been proven to improve on speech features on large-scale, end-to-end speech recognition in clean recording conditions on English -admittedly one of the tasks for which mel-filterbanks have been the most extensively tuned. This is why we are interested in performing experiments at a larger scale. [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF] and Sainath et al. [2015a] proposed a learnable frontend inspired by gammatone filterbanks [START_REF] Schlüter | Gammatone features and feature combination for large vocabulary speech recognition[END_REF], which achieved similar or better results than comparable mel-filterbanks on multichannel speech recognition and on far-field/noisy recording conditions. Noticing the analogies between the model proposed by [START_REF] Hoshen | Speech acoustic modeling from raw multichannel waveforms[END_REF] and Sainath et al. [2015a] (that we will refer to as "gammatone-based frontend" to We decided to strike a middle-ground by removing the bias in the parameters (by learning the convolutional weights, and optionally the compression and normalization), while putting a lot of prior knowledge into the structure of our neural network (pre-emphasis, complex convolutions and their size, squared modulus, low-pass filter and its stride, compression, normalization). In particular, assuming that we want to compute 𝑁 filters on a window of size 𝑤 and stride 𝑠, we hypothesized that we could reduce the bias of our system by learning these filters rather than using a mel-scale. However, choosing 𝑁 , 𝑤 and 𝑠 could already induce a negative bias in our model. Table 9.1 shows preferred values for these hyperparameters for three tasks: speech recognition, music classification, and bird vocalization detection. It appears clearly that these hyperparameters are also task-dependent, and the same rationale that led us to learn the parameters of the frontend could also justify learning its structure. This would be the extreme end of a data-driven design of a frontend, rather than putting inductive bias from prior knowledge. This challenge can be addressed from the point of view of neural architecture search [Xie andYuille, 2017, Zoph and[START_REF] Zoph | Neural architecture search with reinforcement learning[END_REF], which applications to audio only amount (to the best of our knowledge) to first results on speech classification [START_REF] Véniat | Stochastic adaptive neural architecture search for keyword spotting[END_REF], Wang et al., 2018, Zhang et al., 2018]. Moreover, all these few approaches use fixed mel-filterbanks, MFCCs or low-level descriptors, which leaves the question of frontend architecture search completely unexplored.

A radically opposite approach has been to put a lot of structure into a learnable frontend, to parametrize it with very few parameters, at the expense of a reduced expressivity. In particular, recent work has explored learning 𝑠𝑖𝑛𝑐 functions [START_REF] Ravanelli | Speaker recognition from raw waveform with sincnet[END_REF] or spline wavelets [START_REF] Balestriero | Spline filters for end-to-end deep learning[END_REF] in the first layer. By constraining the class of filters the model can learn, it has been shown to learn efficiently with a fast convergence.

We could have constrained Time-Domain filterbanks to explicitly learn analytic wavelets in the first layer, but we decided to use the Gabor wavelets only to initialize the weights, and then learn these weights like any other convolutional layer in the network.

We do not have a definitive answer to the question of finding the proper amount of structure constraints and prior knowledge to put into the design of a learnable frontend.

A very constrained parametrization simplifies the optimization and can help in low-data regimes. However, we hypothesize that with the constant improvement in deep learning optimization techniques, as well as always bigger datasets, the horizon of learnable frontends will lie in always more data-driven approaches. Mots Clés reconnaissance de la parole, signal audio, apprentissage profond, réseau de neurones Abstract While deep neural networks are now used in almost every component of a speech recognition system, from acoustic to language modeling, the input to such systems are still fixed, handcrafted, spectral features such as mel-filterbanks. This contrasts with computer vision, in which a deep neural network is now trained on raw pixels. Mel-filterbanks contain valuable and documented prior knowledge from human auditory perception as well as signal processing, and are the input to state-of-the-art speech recognition systems that are now on par with human performance in certain conditions. However, mel-filterbanks, as any fixed representation, are inherently limited by the fact that they are not fine-tuned for the task at hand. We hypothesize that learning the low-level representation of speech with the rest of the model, rather than using fixed features, could push the state-of-the art even further. We first explore a weakly-supervised setting and show that a single neural network can learn to separate phonetic information and speaker identity from mel-filterbanks or the raw waveform, and that these representations are robust across languages. Moreover, learning from the raw waveform provides significantly better speaker embeddings than learning from mel-filterbanks. These encouraging results lead us to develop a learnable alternative to mel-filterbanks, that can be directly used in replacement of these features. In the second part of this thesis we introduce Time-Domain filterbanks, a lightweight neural network that takes the waveform as input, can be initialized as an approximation of mel-filterbanks, and then learned with the rest of the neural architecture. Across extensive and systematic experiments, we show that Time-Domain filterbanks consistently outperform melfilterbanks and can be integrated into a new state-of-the-art speech recognition system, trained directly from the raw audio signal. Fixed speech features being also used for non-linguistic classification tasks for which they are even less optimal, we perform dysarthria detection from the waveform with Time-Domain filterbanks and show that it significantly improves over mel-filterbanks or low-level descriptors.

Finally, we discuss how our contributions fall within a broader shift towards fully learnable audio understanding systems.