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Learning Representations of Speech from the Raw Waveform

by

Neil Zeghidour

Abstract

While deep neural networks are now used in almost every component of a speech
recognition system, from acoustic to language modeling, the input to such systems
are still fixed, handcrafted, spectral features such as mel-filterbanks. This contrasts
with computer vision, in which a deep neural network is now trained on raw pixels.
Mel-filterbanks contain valuable and documented prior knowledge from human au-
ditory perception as well as signal processing, and are the input to state-of-the-art
speech recognition systems that are now on par with human performance in certain
conditions. However, mel-filterbanks, as any fixed representation, are inherently lim-
ited by the fact that they are not fine-tuned for the task at hand. We hypothesize that
learning the low-level representation of speech with the rest of the model, rather than
using fixed features, could push the state-of-the art even further. We first explore a
weakly-supervised setting and show that a single neural network can learn to separate
phonetic information and speaker identity from mel-filterbanks or the raw waveform,
and that these representations are robust across languages. Moreover, learning from
the raw waveform provides significantly better speaker embeddings than learning from
mel-filterbanks. These encouraging results lead us to develop a learnable alternative
to mel-filterbanks, that can be directly used in replacement of these features. In the
second part of this thesis we introduce Time-Domain filterbanks, a lightweight neural
network that takes the waveform as input, can be initialized as an approximation
of mel-filterbanks, and then learned with the rest of the neural architecture. Across
extensive and systematic experiments, we show that Time-Domain filterbanks con-
sistently outperform mel-filterbanks and can be integrated into a new state-of-the-art
speech recognition system, trained directly from the raw audio signal. Fixed speech
features being also used for non-linguistic classification tasks for which they are even
less optimal, we perform dysarthria detection from the waveform with Time-Domain
filterbanks and show that it significantly improves over mel-filterbanks or low-level
descriptors. Finally, we discuss how our contributions fall within a broader shift
towards fully learnable audio understanding systems.
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Résumé

Bien que les réseaux de neurones soient à présent utilisés dans la quasi-totalité des
composants d’un système de reconnaissance de la parole, du modèle acoustique au
modèle de langue, l’entrée de ces systèmes reste une représentation analytique et fixée
de la parole dans le domaine temps-fréquence, telle que les mel-filterbanks. Cela se
distingue de la vision par ordinateur, un domaine où les réseaux de neurones prennent
en entrée les pixels bruts. Les mel-filterbanks sont le produit d’une connaissance pré-
cieuse et documentée du système auditif humain, ainsi que du traitement du signal,
et sont utilisées dans les systèmes de reconnaissance de la parole les plus en pointe,
systèmes qui rivalisent désormais avec les humains dans certaines conditions. Cepen-
dant, les mel-filterbanks, comme toute représentation fixée, sont fondamentalement
limitées par le fait qu’elles ne soient pas affinées par apprentissage pour la tâche con-
sidérée. Nous formulons l’hypothèse qu’apprendre ces représentations de bas niveau
de la parole, coinjontement avec le modèle, permettrait de faire avancer davantage
l’état de l’art. Nous explorons tout d’abord des approches d’apprentissage faiblement
supervisé et montrons que nous pouvons entraîner un unique réseau de neurones à
séparer l’information phonétique de celle du locuteur à partir de descripteurs spec-
traux ou du signal brut et que ces représentations se transfèrent à travers les langues.
De plus, apprendre à partir du signal brut produit des représentations du locuteur
significativement meilleures que celles d’un modèle entraîné sur des mel-filterbanks.
Ces résultats encourageants nous mènent par la suite à développer une alternative
aux mel-filterbanks qui peut être entraînée à partir des données. Dans la seconde
partie de cette thèse, nous proposons les Time-Domain filterbanks, une architecture
neuronale légère prenant en entrée la forme d’onde, dont on peut initialiser les poids
pour répliquer les mel-filterbanks et qui peut, par la suite, être entraînée par rétro-
propagation avec le reste du réseau de neurones. Au cours d’expériences systématiques
et approfondies, nous montrons que les Time-Domain filterbanks surclassent systé-
matiquement les mel-filterbanks, et peuvent être intégrées dans le premier système de
reconnaissance de la parole purement convolutif et entraîné à partir du signal brut,
qui constitue actuellement un nouvel état de l’art. Les descripteurs fixes étant égale-
ment utilisés pour des tâches de classification non-linguistique, pour lesquelles elles
sont d’autant moins optimales, nous entraînons un système de détection de dysarthrie
à partir du signal brut, qui surclasse significativement un système équivalent entraîné
sur des mel-filterbanks ou sur des descripteurs de bas niveau. Enfin, nous concluons
cette thèse en expliquant en quoi nos contributions s’inscrivent dans une transition
plus large vers des systèmes de compréhension du son qui pourront être appris de
bout en bout.
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Chapter 0

Organization of the thesis

This thesis is organized in three parts. Part I is an introduction, while the contribu-

tions of this thesis are split between Parts II and III.

In Part I, we first present a brief summary of recent advances in speech recognition,

and show how deep learning methods have progressively been integrated into every

step of speech recognition systems, except for the features, that still remain fixed,

handcrafted descriptors, in particular mel-filterbanks. Through a detailed description

of the mel-filterbanks computation, we expose how these features include valuable

prior knowledge that comes at the cost of inherent and undesirable biases. This

motivates the goal of this thesis: replacing handcrafted speech features by a learnable

frontend, that is trained with the rest of the model for the task at hand. We then give

an overview of the previous work on speech recognition from the waveform, as well as

our contributions on that topic. Beyond the purely linguistic content, a speech signal

conveys a lot of information about its speaker (identity, age, emotion, etc.), called the

paralanguage. Observing that paralinguistic classification systems of speech also use

hardcoded features, we present the related work and our own contributions in training

paralinguistic classifiers from raw speech. Finally, we describe one of the current

challenges for speech technologies, low-resource languages, and present the existing

work as well as our contributions in improving weakly-supervised and unsupervised

speech modelling systems by enriching or learning their input representations.

The relative order of Parts II and III does not follow this order, but rather a
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chronological one.

Part II adresses weakly-supervised and unsupervised learning of phonetic and

speaker embeddings, from different type of features, and from the raw waveform.

This was the first topic of this thesis.

Chapter 2 gives a preliminary background on evaluating embeddings of speech for

a particular application (phonetic modelling, speaker modelling), as well as methods

to learn such representations in a weakly-supervised or unsupervised way.

Chapter 3 investigates the impact of replacing mel-filterbanks by a richer scatter-

ing transform in a weakly-supervised phonetic modelling system.

In Chapter 4, we train a single model to separate the phonetic information and

speaker characteristics from the speech signal, introducing incidentally our first mod-

els trained on the waveform.

The encouraging results on the quality of speaker embeddings trained from the

waveform in Chapter 4 are however dampenened by the structural differences between

mel-filterbanks and the proposed neural alternative, which leads us to develop a

learnable alternative that can be compared to mel-filterbanks in controlled settings:

the Time-Domain filterbanks.

Part III introduces Time-Domain filterbanks and shows results on speech recog-

nition and paralinguistic classification. We also released a Pytorch implementation

of Time-Domain filterbanks1.

Chapter 5 describes the architecture of Time-Domain filterbanks, and presents

results on a small-scale phonetic recognition task.

Chapter 6 proposes a improved version of Time-Domain filterbanks compared to

the previous chapter, and also experiments with a previously proposed learnable fron-

tend. We show on a large-vocabulary speech recognition task on the Wall Street Jour-

nal dataset, that Time-Domain filterbanks consistently outperform mel-filterbanks in

equivalent conditions.

Chapter 7 introduces the first fully convolutional speech recognition system, using

convolutional layers from the waveform up to the word transcription. Experiments

1https://github.com/facebookresearch/tdfbanks
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on Wall Street Journal and Librispeech show state-of-the-art performance among

end-to-end systems on both datasets.

In Chapter 8, we finally address paralinguistic classification. We apply our learn-

able frontend to a paralinguistic task, dysarthria detection, and show that our ap-

proach significantly outperforms both mel-filterbanks and low-level descriptors.

The discussion then summarizes the contributions and findings of this thesis, and

addresses the questions that are still open.

The Appendix is composed of publications outside of the scope of this thesis,

presented as is.

Appendix A introduces an auto-encoder of images that is trained to reconstruct

images by disentangling the salient information of the image and the values of at-

tributes directly in the latent space. As a result, after training, our model can gener-

ate different realistic versions of an input image by varying the attribute values, like

changing the facial expression of a portrait, or updating the color of some objects.

Appendix B faces the challenge of neural music synthesis. We propose SING, a

lightweight neural audio synthesizer for the original task of generating musical notes

given desired instrument, pitch and velocity. SING can generate any note of more

than 1,000 instruments, with a better quality than the previous state-of-the-art (as

judged by human evaluators), and a generation speed which is 2,500 times faster.
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Introduction
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Chapter 1

Learning recognition and

classification systems from raw speech

1.1 Towards end-to-end speech recognition

Automatic Speech Recognition (ASR), the task of transcribing a speech utterance au-

tomatically, has been historically performed using fixed, handcrafted speech features

as input, the most standard pipeline being the MFCCs, for Mel-Frequency Cepstral

Coefficients [Davis and Mermelstein, 1980]. Statistical speech recognition has relied

on Hidden Markov Models (HMM) since its early days [Baker, 1975, Jelinek, 1976,

Levinson et al., 1983, Rabiner, 1989], in particular GMM-HMM that use Gaussian

Mixtures to model the speech features distribution [Juang et al., 1986]. A big shift

ASR was brought with the use of deep neural networks as acoustic models.

After a GMM-HMM has been trained on a speech dataset, the Viterbi algorithm

[Viterbi, 1967] is used to assign the most likely hidden state to each feature frame

in the data. This hidden state can then be used as a label to train a deep neural

network from the speech features. During inference, a neural language model can

be combined with the acoustic model to improve the decoding [Mikolov et al., 2010].

The use of deep acoustic models critically improved the performance of automatic

speech recognition systems [Hinton et al., 2012a], as seen in Figure 1-1, and these so

called “DNN-HMM” (Deep Neural Network - Hidden Markov Model) systems are still
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Figure 1-1: Evolution of performance on the TIMIT dataset along years, measured
in Phone Error Rate (PER) and based on the performance reported in (chronological
order) [Graves et al., 2013, Ming and Smith, 1998, Mohamed et al., 2009, Tóth, 2014].
The inflexion point in 2009 corresponds to the emergence of deep acoustic models.

the current state-of-the-art on almost every benchmark [Chan and Lane, 2015, Han

et al., 2017, Povey et al., 2018, Tóth, 2015]. So called “connectionist” approaches had

proposed using neural networks for speech recognition for decades [Bedworth et al.,

1989, Bottou et al., 1989, Huckvale, 1990, Rabiner, 1989, Renals et al., 1994, Waibel

et al., 1989], however it is not until the late 00’s that they toppled Gaussian Mixtures.

Despite their unmatched performance, DNN-HMM systems have the drawback of

requiring complex training and evaluation schemes: predicting (context-dependent)

phone states requires using a pronunciation dictionary, a GMM-HMM needs to be

trained to provide a deep acoustic model with forced-aligned labels, and decoding a

sentence needs constructing a complex lattice with weighted finite-state transducers

[Mohri et al., 2002]. This motivated the second big shift in ASR, with the emergence

of end-to-end training. In this context, a deep neural network can be directly trained

to predict the sequence of phonemes [Graves et al., 2013], graphemes [Amodei et al.,

2015], or word pieces [Rao et al., 2017] from speech features. This removes the need

for a forced-alignment obtained from training an GMM-HMM beforehand. Moreover,

in the case of grapheme prediction, it also removes the need for a pronunciation dic-

tionary, and with the addition of a special “space” character, the system can even

output words directly. The first end-to-end systems relied on a new loss function,

CTC for Connectionist Temporal Classification [Graves et al., 2006], which does not
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require an alignment (even though a sentence-level alignment is usually used). This

has allowed training ASR systems in one step instead of using the two-step schedule

of DNN-HMM systems [Graves et al., 2013], and has since then been implemented in

systems that are competitive with the state-of-the-art [Amodei et al., 2015, Hannun

et al., 2014, Miao et al., 2015], as well as into production [Battenberg et al., 2017].

A drawback of CTC is its conditional independence assumption: conditioned on the

output of the acoustic model, the probability of a character is independent from the

previous predictions. This makes training and inference tractable, but this assump-

tion may be too strong. Alternatives to CTC have been proposed to deal with this

problem, like the AutoSeg loss [Collobert et al., 2016] which adds a transition matrix

between output characters and can be seen as a Markovian CTC, or GramCTC which

learns the set of basic units during the optimization process [Liu et al., 2017b].

A second trend in end-to-end ASR then solved this problem altogether by replacing

neural networks trained with CTC by sequence-to-sequence [Sutskever et al., 2014]

models, which are Recurrent Neural Networks (RNNs) that take as input the sequence

of feature frames and generate the output characters one by one, the conditional

dependence being modeled by the internal state of the decoder [Chan et al., 2015,

Chorowski et al., 2015]. In that case, the loss function is simply a cross-entropy

between the prediction and the corresponding ground truth character, and inference

is performed via a beam search. This is currently the biggest trend in end-to-end

speech recognition, and the gap in performance with CTC or DNN-HMMs keeps

reducing [Chiu et al., 2018].

Hence, speech recognition has progressively shifted towards more end-to-end sys-

tems, concurrently with other fields of application such as natural language processing

[Collobert et al., 2011] or computer vision [Krizhevsky et al., 2012]. However, one

can notice that along the recent history of ASR, from GMM-HMMs to sequence-to-

sequence systems, one component has remain almost unchanged: the use of hardcoded

input representations of the speech signal, instead of the speech signal itself. Indeed,

all the ASR systems mentioned so far have been trained on hardcoded features such

as mel-filterbanks, MFCC, or spectrograms. Thus, the so-called “end-to-end” ASR
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systems still need a separate feature extraction, which is not integrated into the model.

Deep neural networks changed the landscape of computer vision by allowing to

train an image classifier from raw pixels [Krizhevsky et al., 2012, LeCun et al., 1998],

instead of training it on hardcoded features [Bay et al., 2008, Lowe, 1999, Perronnin

et al., 2010]. A convolutional neural network trained directly on the raw pixels would

jointly learn all levels of representation (from low-level signal processing to high-level

modeling of shapes and structures) using backpropagation, exhibiting similarities with

the hierarchical processing of images that is performed in the visual cortex [Fukushima

and Miyake, 1982, Hubel and Wiesel, 1962, Zeiler and Fergus, 2014].

Even though convolutional neural networks have a long history [LeCun et al.,

1989, Waibel et al., 1989], their mainstream use was triggered by the unprecedented

performance of AlexNet [Krizhevsky et al., 2012] in the 2012 ImageNet challenge, a

deep convolutional network that reported a top-5 test error of 15.3%, outperforming

by more than 10% absolute the second entry, which used hardcoded features and

shallow classifiers. This performance was allowed, mainly, by three factors:

∙ Exploiting GPUs for an efficient training of deep and otherwise prohibitive

architectures [Krizhevsky et al., 2012],

∙ Advances in deep learning techniques, including the use of ReLUs and dropout

[Hinton et al., 2012b, Nair and Hinton, 2010],

∙ Access to large databases, such as ImageNet [Deng et al., 2009].

Since then, every recognition task in computer vision (classification, detection,

segmentation) has switched to convolutional neural networks trained directly from

the raw pixels [Farabet et al., 2013, Girshick et al., 2014]. An important observation

is that the three key factors mentioned above are also valid for speech recognition:

large, public training datasets are available [Panayotov et al., 2015], and both GPU

computing and deep neural network architectures have been exploited for speech

recognition for at least as long as they have been for computer vision [Hinton et al.,

2012a, Waibel et al., 1989].
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Figure 1-2: Computational steps that produce mel-filterbanks and MFCC features.

This observation motivates the main goal of this thesis: training neural networks

from raw speech for recognition and classification. In the next section we describe the

computation of mel-filterbanks and MFCC step by step, and show how each operation

in this pipeline is inspired from prior knowledge of the auditory perception, but also

how this prior knowledge can create a bias that could be corrected by making these

operations learnable for the task. Then we present the existing literature on speech

recognition from the waveform, as well as our contributions on that topic. Then we

show how non-linguistic classification from speech is also typically performed from

handcrafted features. We present the current literature on non-linguistic classification

from the waveform, and our contributions to this question. Finally, we describe a

current challenge for speech recognition: weakly-supervised learning for low-resource

languages. We describe how weakly-supervised learning has become a necessity for

the speech community, and how such weakly-supervised models can also benefit from

better and learnt frontends.

1.2 Prior knowledge and biases in speech features

Speech recognition in humans shows an exceptional robustness to noise, changes in

speaking style, loudness or speech rate. For this reason, the design of speech features

is based on the premise that taking inspiration from the human auditory system will

allow developing performing and robust ASR [Morgan et al., 2004]. This is why speech

features have been designed to replicate low-level processing of speech that happens

in the human inner ear. In this section, we detail the different steps that compose the
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Figure 1-3: Power spectrum of a sentence from the TIMIT dataset, before and after
pre-emphasis.

computation of mel-filterbanks and MFCCs, summarized in Figure 1-2, and we show

how almost every of these steps is inspired from prior knowledge about human speech

perception and production, but also how this prior knowledge can cause negative bias

as there is no certainty that the chosen parameters are optimal.

1.2.1 Pre-emphasis

The speech signal often carries more power in low frequencies than in higher frequen-

cies. Moreover, speech can be contaminated by low frequency noise like DC offset or

microphone pops, of which the relative energy compared to the rest of the spectrum

could be attenuated. Pre-emphasis is a convolution with a first-order high-pass filter,

applied to the waveform 𝑥[𝑛] to balance the energy along the spectrum:

𝑦[𝑛] = 𝑥[𝑛] − 𝛼 * 𝑥[𝑛− 1], 0.9 ≤ 𝛼 < 1. (1.1)

Figure 1-3 shows the power spectrum of a sentence of TIMIT, before and after pre-

emphasis. One can notice that the distribution of energy is spread over the frequency
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Figure 1-4: Several window functions, including triangular, Hann, Hamming, and
Blackman.

axis by the pre-emphasis operation. When using spectral features, rebalancing energy

along frequencies corresponds to a feature scaling, which can be critical when training

a classifier or clustering algorithm on these coefficients. The 𝛼 parameter controls how

much energy is transferred to higher frequencies (the higher the alpha the more energy

there will be in high frequencies) and the optimal value will differ depending on the

recording conditions, the task, and so on. This thus required cross-validating the

value of 𝛼, to reach the standard value of 0.97 in ASR. However we could expect a

benefit from learning this parameter for the task at hand.

1.2.2 Windowing

Spectrograms are time-frequency representations of 1-dimensional signals, represent-

ing the energy along frequency bands and time steps. Spectrograms can not model

non-stationary information inside the speech segment they are computed from, hence

they are typically extracted from small overlapping speech windows in which we can

make the rough assumption that the signal is stationary. Computing the Short-Term

Fourier Transform (STFT) of a signal on a rectangular window (a simple cut of the

speech signal in segments) will often lead to artifacts along the frequency axis (known
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as spectral leakage) due to discontinuities at borders. To alleviate this problem, a

window function is typically used. A window function is a multiplicative mask ap-

plied on each speech segment, of which the main characteristic is to have shrinking

amplitude at its boundaries. Popular window functions are the Hamming window:

𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑛) = 0.54 − 0.46 cos(
2𝜋𝑛

𝑁 − 1
), (1.2)

with 𝑁 the window size, and the Hann window:

𝐻𝑎𝑛𝑛(𝑛) = 0.5(1 − cos(
2𝜋𝑛

𝑁 − 1
)). (1.3)

One can notice that they only differ by the coefficient in the convex combination

of the constant and the cosine function. The choice of the window function is likely

to impact the performance, and the Librosa library [McFee et al., 2015] offers more

than 20 different window functions to compute the STFT. Some of them are plotted

in Figure 1-4. As for the pre-emphasis parameter, choosing among several window

functions could be replaced by learning the appropriate one for the task at hand.

1.2.3 The mel scale

Given a waveform 𝑥 sampled at 𝑓𝑠 Hz, its spectrogram is a 𝐷 *𝑇 matrix, with 𝐷 the

number of frequency bins, linearly spaced between 0 and 𝑓𝑠/2 Hz. A 𝑚𝑒𝑙 function is

used to map this linear scaled spectrogram to a new one, the mel scale, that is roughly

linear below 1000Hz and logarithmic above. This scale warping can be implemented

with the following function, proposed by O’shaughnessy [1987]:

𝑀𝑒𝑙(𝑓) = 1127 log(1 +
𝑓

700
) (1.4)

A bank of 𝐹 mel-filters is derived by linearly spacing 𝐹 +1 points on the mel-scale

between 0 and 𝑀𝑒𝑙(𝑓𝑠/2), that are then mapped back to the original frequency scale,

and will define the support of 𝐹 triangular filters. Figure 1-5 shows the standard

mel-filters from the HTK toolkit [Young et al., 2002]. The mel scale is probably the
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Figure 1-5: 40 mel-filters.

most popular and most standard transformation of spectrograms for speech classi-

fication or recognition, as it provides better features in most settings than a linear

spectrogram. However, we can question its optimality. First, there is not only one

mel scale but several, for example the implementation of Slaney [1998] that directly

uses linearly spaced filters under 1000Hz and logarithmically above. Moreover, the

mel scale is defined as a warping function of the frequencies, as in Equation 1.4. This

function is one of many functions proposed for the mel scale since its creation [Fant,

1968, Koening, 1949, Lindsay and Norman, 2013, Makhoul and Cosell, 1976, Stevens

and Volkmann, 1940]. These functions are essentially derived of a psychoacoustics ex-

periment reported by Stevens and Volkmann [1940]. In this experiment, 10 observers

are given an electric keyboard with 5 keys corresponding to 5 pure tones, and fixed

lowest/highest pitch keys. Then, they have to adjust knobs controlling the tone of

each key until the pitch distance between each pair of adjacent keys appears equal

to their ear. This yields a few values for the mapping of the frequency scale to the

mel scale, from which a continuous function such as the one in Equation 1.4 can be

derived.

Umesh et al. [1999] show that many functional forms can be fitted to these discrete

measurements with very good error, i.e. better than standard formulas as in Equation

1.4. Moreover, Greenwood, a student of Stevens, showed many decades later that

there was a bias in the mel scale, as a different scale would be obtained from the same

psychoacoustic experiments if the subjects were to listen to the tones in a descending

order, rather than ascending [Greenwood, 1997]. It led him to question the validity
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of the standard mel scale, which was already in 1940 proposed as a revision of a first

mel scale derived a few years before by Stevens et al. [1937]. This brief historical

recap of the mel scale is intended to expose its inherent flaws, as a model of human

perception of pitch, but all the more as an inductive bias in machine learning systems

trained to process speech:

∙ The mel scale is a psychological scale meant to map a perceived, subjective

aspect of a sound (its pitch) to a quantity that can be measured by instruments

(its frequency). As a subjective scale it is based on human judgments and is

inherently biased by the experimental design.

∙ Even if the experiments were free of any flaw, deriving more mel-filters than the

number of discrete measurements made on humans requires fitting a continuous

function, which will also lead to errors.

∙ Finally, in the context of automatic speech recognition and more widely auto-

matic audio understanding, there is no guarantee that using the mel scale is

optimal.

1.2.4 Compressing the dynamic range

A speech spectrogram can show a huge interval of variation (called the dynamic

range). Human perception to loudness has been shown to be logarithmic [Fechner,

1966] or exponential with an exponent < 1 [Stevens, 1957], similarly to the way we

perceive variations of pitch. This is why linearly scaled spectrograms are typically

passed through a compression function to map the dynamic range to a perceptual

scale. We typically use a logarithm function 𝑥 → log(𝑥+ 𝜖), with 𝜖 a small correction

term to avoid numerical issues. Even though this function is the most standard one,

other compression functions have been preferred in certain settings, such as cubic

root compression [Lyons and Paliwal, 2008] or even 10th root [Schlüter et al., 2007].

This shows that, as well as for the mel-scale, there is no absolute consensus on the

proper compression function to use. Moreover, again similarly to the mel-scale, even
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Figure 1-6: Mel-filterbanks before and after log compression.

though these compression functions are linked to human measurements and provide

good models of auditory perception, there is no guarantee that they would be optimal

as part of a learning system.

1.2.5 From mel-filterbanks to MFCC: the cepstrum and its

derivatives

Cascading the transformations described above yields mel-filterbanks coefficients.

Computing MFCC features consists in adding a final computational step to this

pipeline: a Discrete Cosine Transform (DCT), or an Inverse Short-Term Fourier

Transform (ISTFT). A motivation for this operation comes from a source-filter model

of speech production introduced by Fant [1970], in which speech is modeled as a

convolution between a glottal excitation 𝑒[𝑛] (the source), and a vocal tract re-

sponse 𝑣[𝑛] (the filter). As the response of the vocal tract characterizes the pho-

netic content which is produced, while the glottal pulse is linked to the pitch, we

could extract good features for phonetic discriminability by “deconvolving” these two

components. In the Fourier domain, this convolution becomes a product. After
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the log compression, source and filter are summed as the log spectrogram computes

𝜔 → log(|𝐸[𝜔]|2) + log(|𝑉 [𝜔]|2). Considering that the formants described by 𝑉 vary

slowly, while the fundamental frequency and its harmonics modeled in 𝐸 have faster

variations, a cepstrum is obtained by computing a DCT or an ISTFT of the log spec-

trogram (here we do not consider the windowing and the mel filtering, for simplicity).

The first coefficients correspond to the slow variations of this log spectrogram, the

vocal tract, this is why the first 12 coefficients are typically extracted. They are con-

catenated with a log energy of the speech segment, as well as first- and second-order

derivatives, to yield 39 coefficients. While both DCT and ISTFT are consistent with

the source-filter model, the DCT has historically been preferred, as it yields decorre-

lated coefficients. The main reason is that it provided a significant advantage in terms

of computational complexity when using GMM-HMM models on top of MFCC, as

decorrelated features allow using diagonal covariance matrices in the GMM, reducing

the number of learnable parameters from a quadratic function of the dimension of

the features to a linear one.

The source-filter model of speech production described above has been validated

by the extensive use of MFCC as a model of the vocal tract for speech synthesis

[Airaksinen, 2012, Maia et al., 2007, Yoshimura et al., 2001, Zen et al., 2007], passed

as input to a vocoder, along with an estimation of the fundamental frequency. Inter-

estingly enough, the source-filter model was at first used to motivate the extraction

of the source, i.e. the fundamental frequency or pitch [Noll, 1967, Noll and Schroeder,

1964], before focusing on the extraction of the vocal tract filter, in speech synthesis

but also in speech recognition [Davis and Mermelstein, 1980]. However, using the

DCT with hardcoded hyperparameters (e.g. 12 first coefficients), is also a strong

inductive bias that is likely to be suboptimal for some tasks. In particular, the vocal

tract fully characterizes the phonetic content in English but not in tonal languages

(like Mandarin) in which the pitch modifies a phoneme’s identity and its linguistic

meaning. This is why learning which part of the cepstrum is relevant could improve

the performance in such situations compared to using the first 12 DCT coefficients.

Moreover, the source-filter model proposed above is simplistic as it does not take into
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account the window function and the mel-filtering, which will impact the cepstrum

in several ways (see section 6.6 of [O’shaughnessy, 1987]). First- and second order

derivatives were used to incorporate information about the surrounding dynamics in

a single feature vector modeled by a GMM. However, we can also question the sense

of using such features as input to a deep acoustic model that can, regardless of being

convolutional or recurrent, model long term dependencies (a single convolutional fil-

ter can model first-order derivatives, a second convolutional layer with one filter can

model second-order derivatives).

1.2.6 Mean-variance normalization

The last step of the standard mel-filterbanks extraction pipeline is a mean-variance

normalization of the coefficients, per channel. The statistics can be integrated on

the entire training set, or per sequence. Even when normalizing per sequence, the

statistics will change depending on whether the features are computed on a sentence’s

segment (e.g. when using alignments from an HMM and predicting a phonetic state)

or on the full sentence (which is the case in an end-to-end setting). In offline settings,

and when the recording quality is relatively constant, statistics can be aggregated on

an arbitrary long period. However, when speech recognition has to be performed in an

online fashion, or when the signal is contaminated by intermittent noise, it becomes

necessary to aggregate statistics on short segments, using either a fixed window [Viikki

and Laurila, 1998] or an exponential moving average of the statistics [Viikki et al.,

1998]. There are other, more sophisticated, normalization schemes such as histogram

equalization (to match the distribution of feature vectors between training and test

data) [Hilger and Ney, 2006], short-time gaussianization [Xiang et al., 2002], and many

others [Alam et al., 2011, Fredes et al., 2017, Kang et al., 2016, Kumar, 2015]. This

diversity of normalization schemes, and the fact that they are task dependent, as for

the other components of the mel-filterbanks computation, also lead to an inclination

to shift towards normalizations that could be integrated into a learnable architecture.

Some of the normalizations mentioned above involve some kind of training procedure,

however they are trained separately from the classifier, rather than being optimized
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for the final task.

In this section, we have explained how the different computational steps that

compose the mel-filterbanks or MFCCs are motivated by analogies with auditory

processing, or signal processing arguments, but also how they are inherently limited

and could benefit from learning their parameters from the data. In the next section

we describe previous work on training deep neural networks from the raw signal for

speech recognition.

1.3 Speech recognition from the raw waveform

1.3.1 Related work

To the best of our knowledge, the first attempt at training a deep neural network from

the raw waveform for speech recognition is [Jaitly and Hinton, 2011] in which Jaitly

and Hinton train a Restricted Boltzmann machine (RBM) as a generative model

of small speech segments. After training, the hidden state of this RBM is used to

build features that are given as input to a phone classifier, the label being derived

from a forced-alignment. This performed better than previous literature when greatly

increasing the feature rate (compared to the standard rate of 10ms in speech features),

but underperformed an equivalent model trained on mel-filterbanks. Note also that

the feature extraction and the classification network were not trained jointly.

Then, Palaz et al. [2013b] proposed the first phone and speech recognizers trained

directly from the waveform. These models were still based on an hybrid DNN-HMM

system (or HMM-CRF for [Palaz et al., 2013b]), the acoustic model being trained

to predict either phone classes (for phone recognition), or context-dependent phone

states [Palaz et al., 2015]. When trained on the waveform, MFCCs (the baseline

features) would be replaced by several blocks involving a convolutional layer, a max-

pooling layer and an hyperbolic tangent. In [Palaz et al., 2013b], this approach does

not reach the performance of the baseline trained on MFCCs. On the other hand

when performing large vocabulary speech recognition, Palaz et al. [2015], authors find
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that with a similar overall number of parameters, a CNN trained on the waveform

outperforms a fully-connected network trained on MFCC. However, it is hard to relate

one architecture to the other as CNNs are structurally more parameter efficient than

fully connected networks. When comparing equivalent architectures on MFCC or

the raw speech (feed-forward networks with rectified linear units), Tüske et al. [2014]

found the model trained on the raw waveform to considerably underperform models

trained on features.

In the previous works mentioned so far, the analogy between the computations

made in speech features and the ones made inside their neural alternatives (RBMs,

CNNs or DNNs with ReLU or hyperbolic tangent) is not clear. This motivated the

concomitant work by Hoshen et al. [2015] and Sainath et al. [2015a], who introduced

a learnable frontend inspired from the computation of speech features: a convolution

initialized with gammatone filters is followed by a rectified linear unit a max-pooling

and a log-compression. The choice of mimicking gammatone features [Schlüter et al.,

2007], comes from the fact that the mel-filtering involved in the computation of mel-

filterbanks and MFCCs is performed in the frequency domain, while gammatone

features are computed in time domain. Hoshen et al. [2015] first use this learnable

frontend in a single channel context where it underperforms mel-filterbanks. Inter-

estingly, they show that incorporating a log compression inside the neural network

significantly improves the performance, which shows the benefits of taking an auditory

perspective not only to handcraft speech features, but also when designing a learnable

frontend. In a second experiment, this frontend is shown to improve the Word Error

Rate (WER) over mel-filterbanks in a noisy multi-channel setting, when no beam-

forming is performed before the computation of the handcrafted features. This shows

that the implicit beamforming learned by the first convolutional layer outperforms a

naive stack of the different channels, however using a delay-sum beamforming before

computing mel-filterbanks yields the best performance overall.

Sainath et al. [2015a] apply the same frontend to large vocabulary speech recogni-

tion on a very large dataset (up to 40,000 hours of speech), and show that with enough

data, and depending on the structure of the acoustic model, the learnable frontend
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can match the performance of mel-filterbanks. As a conclusion, taking inspiration

from the computation of the speech features seemed to be a promising avenue to

design a neural alternative that would outperform it.

A common characteristic of the different approaches described in this section

is that they integrate the feature extraction into a neural network trained to pre-

dict phone classes or (context-dependent) phone states, and thus rely on a forced-

alignment provided by an GMM-HMM. Palaz et al. [2013a], besides their work on

DNN-HMM described above, have also experimented with training end-to-end phone

recognition systems from the raw waveform. They show that a CNN trained jointly

with a CRF and taking raw speech as input can match the performance of an DNN-

HMM system trained on MFCCs, however requiring 4 times more parameters in the

overall model. More recently, another end-to-end approach was proposed by Tjandra

et al. [2017a], based on the sequence-to-sequence framework, and taking inspiration

from speech features. An encoder-decoder is trained to generate a sequence of char-

acter from the waveform. This model diverging when trained from scratch, 9 layers of

convolutions (including Network-in-Network layers [Lin et al., 2013]) are pre-trained

to reconstruct mel-filterbanks and then plugged below the encoder-decoder and fine-

tuned jointly with it, yielding a better performance than speech features.

The conclusions of this pre-existing literature are threefold:

∙ Mel-filterbanks and MFCCs are very strong baselines, which explains why they

are still used in state-of-the-art systems, and improving the performance by

replacing these handcrafted features by neural network layers is not trivial.

∙ Taking inspiration from the computation of speech features to design a learnable

frontend (convolutional layers, non-linearity, log compression) has led to most

successes so far.

∙ Most of this work has been performed in the hybrid DNN-HMM setting, and

the integration of a learnable frontend into an end-to-end speech recognition

system is still an open question, as the necessary pre-training of Tjandra et al.

[2017a] suggests that it can be hard to train.
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1.3.2 Contributions

The cornerstone contribution of the Part III of this thesis is Time-Domain filterbanks:

a lightweight neural network that can be used directly as an alternative to speech

features, can be initialized as an approximation of mel-filterbanks, and then learnt

with the rest of the architecture. We took a perspective on previously proposed

learnable frontends to develop Time-Domain Filterbanks:

∙ Time-Domain filterbanks share the same structure (number of filters, window

size, window stride) as mel-filterbanks. This allows comparing it to the speech

features with an identical acoustic model and in equivalent conditions (number

of parameters, training scheme). Indeed, when the neural alternative to speech

features is composed of many layers [Ghahremani et al., 2016, Palaz et al., 2013b,

2015, Tjandra et al., 2017a], the comparison between the fixed baseline and the

learnt frontend is hindered by a confounding factor which is the capacity of the

neural network. If we want to evaluate what we can gain just from learning the

low-level processing instead of keeping it fixed, we should provide a frontend

that roughly involves the same number of operations as the speech features, as

in [Hoshen et al., 2015, Sainath et al., 2015a].

∙ In order for Time-Domain filterbanks to be adopted by the community, we want

to develop them such that they outperform speech features, in particular the

ones that have been the most competitive when training deep acoustic models:

mel-filterbanks [Hinton et al., 2012a], rather than MFCC [Ghahremani et al.,

2016, Palaz et al., 2013b, 2015]. Moreover, we want the gain in performance

to be consistent over acoustic model architectures and datasets. If the relative

performance between the fixed features and the learnable frontend depends on

the acoustic model [Sainath et al., 2015a], or the recording conditions [Hoshen

et al., 2015], then the frontend is less likely to become a standard replacement.

∙ Since the most promising models were taking inspiration from the computation

of speech features, whether it’s using convolutional filtering [Palaz et al., 2013b],
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gammatone initialization [Hoshen et al., 2015, Sainath et al., 2015a] or log com-

pression [Ghahremani et al., 2016], we also choose this direction. Based on the

observation mentioned in the previous section that mel-filterbanks are the best

performing speech features with recent ASR systems, rather than mimicking

the computation of gammatones, we design Time-Domain filterbanks such that

they offer the same expressivity as mel-filterbanks and can be initialized as an

approximation of these features.

∙ Approximating mel-filterbanks could be obtained by pre-training a convolu-

tional network to reconstruct the mel-filterbanks as in [Tjandra et al., 2017a].

However, we show that with the proper neural network design, as well as a

particular initialization, we can approximate mel-filterbanks with only two con-

volutional layers (rather than 9 as in [Tjandra et al., 2017a]), and without any

pre-training.

In Chapter 5, we introduce the Time-Domain filterbanks. We use a time-domain

approximation of mel-filterbanks proposed by Andén and Mallat [2014], the scattering

transform, and implement it as a neural network. We also show how we can initialize

its weights to replicate the mel-filterbanks, and then let the layers be learnt jointly

with the rest of the neural architecture for the task at hand. We are particularly in-

terested in end-to-end speech recognition, as it is the most active and promising line

of work in ASR. To give a proof of concept of our approach, we perform phone recog-

nition experiments on TIMIT, in an end-to-end setting. We show that for several

architectures, models trained on Time-Domain filterbanks consistently outperform

their counterparts trained on comparable mel-filterbanks. Moreover, we get our best

performance by learning all frontend steps, including a learnable pre-emphasis layer.

We report a Phone Error Rate (PER) which is state-of-the-art among models trained

on the waveform, and competitive with the literature trained on mel-filterbanks. Fi-

nally, we study the filters obtained at convergence, to understand what characteristics

they display that distinguish them from the initialization. We observe that the fil-

ters have an asymmetric impulse response, unlike the wavelets used to initialize the
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weights of the first convolutional layer.

In Chapter 6, we scale from phone recognition experiments on TIMIT [Garo-

folo et al., 1993] (4 hours) to large vocabulary speech recognition on Wall Street

Journal [Paul and Baker, 1992] (80 hours). In this chapter, we build on two alter-

natives for trainable replacements of mel-filterbanks that use a convolutional archi-

tecture. The first one is Time-Domain filterbanks, the second one is the frontend

of Hoshen et al. [2015] and Sainath et al. [2015a], inspired from gammatone fea-

tures. We propose two modifications to these architectures and systematically com-

pare them to mel-filterbanks, on the Wall Street Journal dataset. The first modifica-

tion is the addition of an instance normalization layer, which greatly improves on the

gammatone-based trainable filterbanks and speeds up the training of Time-Domain

filterbanks. The second one relates to the low-pass filter used in these approaches.

These modifications consistently improve performances for both approaches. In par-

ticular, while the gammatone-based frontend as proposed by Hoshen et al. [2015] and

Sainath et al. [2015a] significantly underperforms Time-Domain filterbanks and mel-

filterbanks, modifying it with components inspired from Time-Domain filterbanks

improves its performance such that the two frontends become comparable. More-

over, our modifications remove the need for a careful initialization of Time-Domain

filterbanks. In particular, we show a consistent improvement in Word Error Rate

(WER) of the trainable frontends relatively to comparable mel-filterbanks. This is

the first time end-to-end models trained from the raw signal significantly outperform

mel-filterbanks on a large vocabulary task under clean recording conditions.

In Chapter 7, we introduce the first fully convolutional speech recognition system.

Current state-of-the-art speech recognition systems build on recurrent neural networks

for acoustic and/or language modeling. In previous chapters (5 and 6) we combine a

convolutional frontend (Time-Domain filterbanks) and a convolutional acoustic model

from the raw waveform to predict letters. However, during inference, a word-level n-

gram language model is used to improve the quality of the transcription. In this

chapter, we present an alternative approach based solely on convolutional neural

networks, leveraging recent advances in language modeling: instead of an n-gram, an
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external convolutional language model is used to decode words, providing the first

fully convolutional ASR system. On Wall Street Journal, our model matches the

current DNN-HMM state-of-the-art, and is the current best end-to-end system. On

Librispeech, we also report state-of-the-art performance among end-to-end models,

including Deep Speech 2 trained with 12 times more acoustic data and significantly

more linguistic data.

Overall, Part III introduces a new learnable frontend for ASR, which consistently

outperforms its mel-filterbanks counterpart and is integrated in the first state-of-the-

art system that does not use speech features. This leads us to extend this approach

beyond speech recognition and consider other tasks. Indeed, even though our results

show that mel-filterbanks are suboptimal for speech recognition, as hypothesized in

Section 1.2, they have been tuned for speech recognition and therefore are biased in

favor of this task. However, they are used in a wide variety of tasks that take speech

as input, or more generally audio signals, tasks for which they are even less optimal

than for speech recognition. These tasks are thus a promising avenue for learnable

audio frontends.

1.4 Paralinguistic classification from the raw wave-

form

1.4.1 Related work

Paralanguage is the information conveyed by the speech signal and that does not relate

to its phonetic content. A speech signal not only carries information about its lin-

guistic content, but also about the speaker’s identity, their intention, their emotional

state, possible pathologies or speech impediments, as well as other physiological or

anatomical characteristics (e.g. age, gender, stature). Automatic paralinguistic clas-

sification is an open scientific problem, with a very wide range of applications, and is

getting more and more attention [Schuller et al., 2013a].

Automatic speaker identification has been an active field of research for decades
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[Dehak et al., 2011, Kersta, 1962, Tosi et al., 1972], with applications in biometric

identification and authentication, forensics, and personal assistants. Machine learning

has also been used to predict other inherent or long term traits of a speaker, including

their gender [Schuller et al., 2010], nativeness [Omar and Pelecanos, 2010] or likability

[Weiss and Burkhardt, 2010].

There has also been interest in predicting short term characteristics of a speaker

such as their emotional state [Nicholson et al., 2000], level of confidence [Pon-Barry,

2008], whether they are lying or telling the truth [Hirschberg et al., 2005], or if they are

being sincere or sarcastic [Tepperman et al., 2006], which have a lot of applications,

in particular for interactions with artificial agents and assistants.

Extracting information about a person from speech has also sparked the interest

of the medical community. Indeed, a person’s speech could be used for diagnosing

or monitoring pathologies including Parkinson [Sapir et al., 2010], Huntington [Perez

et al., 2018], or autism [Schuller et al., 2013b] and language development delays [Oller

et al., 2010].

Like speech recognition, the field of paralinguistic classification has recently moved

from composite pipelines to more end-to-end approaches, based on deep architectures

[Schuller et al., 2018]. However, again similarly to speech recognition, these deep

neural networks are still typically trained on handcrafted features. This includes

mel-filterbanks or MFCCs described earlier, but also so called Low Level Descrip-

tors (LLDs) [Eyben et al., 2010, Schuller et al., 2013b], that combine various signal

processing extractions from the signal (e.g. energy, pitch estimation) as well as their

derivatives and other various statistics [Eyben, 2015]. Table 1.1 shows a few of these

features, however in recent work, by extracting many descriptors as well as several

“functionals” for each of them (e.g. derivatives, mean, standard deviation, percentiles,

linear regression coefficients), the number of features used to represent a small speech

segment can be more than 6000 [Schuller et al., 2017]. These low level descriptors

have been designed to model a wide variety of phonetic and paralinguistic patterns.

Training a classifier on top of these representations will imply performing a feature

selection for the task at hand, as the same sets of features are typically used for all
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Feature Audio Feature Audio
index Descriptor index Descriptor

1 Attack 17 Spectral Slope
2 Decay 18 Spectral Decrease
3 Log-Attack Time 19 Spectral Rolloff
4 Attack Slope 20 Spectrotemporal Variation
5 Decrease Slope 21 Frame Energy
6 Temporal centroid 22 Spectral Flatness
7 Effective Duration 23 Spectral Crest
8 Frequency of Energy Modulation 24 Harmonic Energy
9 Amplitude Energy Modulation 25 Noise Energy
10 RMS-Energy Envelope 26 Noisiness
11 Autocorrelation-12 coefficients 27 Fundamental Frequency
12 Zero Crossing Rate 28 Inharmonicity
13 Spectral Centroid 29 Tristimulus
14 Spectral Spread 30 Harmonic Spectral Deviation
15 Spectral Skewness 31 Odd to Even Harmonic Ratio
16 Spectral Kurtosis 32 Hammarberg Index

Table 1.1: A set of Low Level Descriptors (LLDs) of speech, typically used for par-
alinguistic classification.

paralinguistic tasks, despite their fundamental differences in nature. Still, despite the

variety of these descriptors, if useful information has been discarded in their com-

putation, the classifier will not be able to retrieve it, even though it was present in

the raw speech signal. Hence, low level descriptors also exhibit the flaws that we

described in Section 1.2 for mel-filterbanks and MFCCs, in terms of suboptimality.

Spectral or cepstral features are also used in paralinguistic classification, how-

ever the biases that we emphasized in the case of speech recognition are even more

harmful for paralinguistic classification. Indeed, taking inspiration from the auditory

perception is relevant for speech recognition, as speech is produced to be intelligi-

ble for the human ear. On the other hand, for many paralinguistic tasks, including

physical traits classification (age, anatomy, pathologies), there is no reason a priori

for the human auditory system to be particularly performing. Moreover, the many

hyperparameters of mel-filterbanks and MFCCs (e.g. the pre-emphasis parameter or

the compression function) have been selected along the years to maximize the perfor-
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mance of speech recognition, and are thus biased in favor of that task, possibly at the

expense of paralinguistic classification. So, as for speech recognition, or even more,

we could expect a gain in performance when learning jointly the feature extraction

with the classification system.

Training paralinguistic classification systems from the raw waveform has been

explored recently, in particular for emotion recognition [Sarma et al., 2018, Trigeor-

gis et al., 2016], speaker [Muckenhirn et al., 2018] and gender [Kabil et al., 2018].

Moreover, the 2017 edition of the popular Interspeech Computational Paralinguistics

Challenge [Schuller et al., 2017] included for the first time among its baselines, besides

traditional models trained on LLDs, deep neural networks trained directly on the raw

waveform. This shows the growing interest of the community for this question.

A particular line of work in audio classification still exploits mel-filterbanks or

spectrograms, but learns their compression and normalization components. Wang

et al. [2017] introduce a new layer, the Per Channel Energy Normalization (PCEN).

This module learns a compression function, as well as the range of the normaliza-

tion, independently for every channel, inside a neural network. By learning it on

top of mel-filterbanks (deprived of log compression or normalization) jointly with a

keyword spotting model, they improve the performance of their system compared to

standard mel-filterbanks. It has since then been used in noisy ASR [Battenberg et al.,

2017], bird vocalization classification [Lostanlen et al., 2019] and audio event analysis

[Lostanlen et al., 2019].

1.4.2 Contributions

In Chapter 8, motivated by the consistent results in ASR, we apply Time-Domain

filterbanks to a paralinguistic task: dysarthria detection. We also use this task as

a testbed for a new modification brought to Time-Domain filterbanks. Until this

chapter, our learnable frontend replaces the pre-emphasis, spectral filtering, and win-

dowing by learnable components, however two of its components remain fixed during

training: the log compression and the mean-variance normalization. This limits the

performance of our systems, as we described in Section 1.2 how the choice of the com-
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pression function and the type of normalization will induce as much bias as the other

components. This is why, in these final experiments, we aim to also replace these op-

erations by learnable neural layers. We combine Time-Domain filterbanks and PCEN

for dysarthria detection from sentence-level audio recordings, and propose a neural

network that can learn a filterbank, a normalization factor and a compression power

from the raw speech, jointly with the rest of the architecture.

Starting from a strong attention-based baseline on which mel-filterbanks outper-

form standard LLDs, we show that learning the filters or the normalization and com-

pression improves over fixed features by 10% absolute accuracy. We also observe a

gain over LLDs by learning jointly the feature extraction, the normalization, and the

compression factor with the architecture. This constitutes a first attempt at learning

jointly all these operations from raw audio for a speech classification task.

1.5 Weakly-supervised speech modelling from the raw

waveform

1.5.1 Related work

As illustrated in Figure 1-1, the performance of speech recognition systems has con-

siderably improved over the last two decades, such that it now gets close to the

performance of human listeners in certain conditions [Saon et al., 2017, Xiong et al.,

2016]. These conditions are mostly: English speech, spoken with a North-American

accent, recorded in relatively clean conditions (no noise, telephone recording), without

speech impediment. However, when these conditions are not met, the performance of

current speech recognition systems significantly degrades [Amodei et al., 2015, Barker

et al., 2013, 2015].

Figure 1-7, shows the evolution of the validation Word Error Rate (WER) of the

Deep Speech 2 speech recognition system [Amodei et al., 2015], as the size of the

training data grows. We can observe that, even though there are diminishing returns

in high-resource regimes, scaling from 120 hours of training data to 12,000 reduces the
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Figure 1-7: Word Error Rate (%) of Deep Speech 2 [Amodei et al., 2015] on a
validation set, against the quantity of training data.

Word Error Rate from 30% to less than 9%. In that paper, Amodei et al. also report

very good performance in Mandarin, for which 9,400 hours of training data are used,

a language that is very different in nature from English, as it is tonal and uses an

ideographic writing system. Hence, more than inherent differences between languages

and the challenges they induce for acoustic modelling (tonal vs non-tonal languages)

or language modelling (size of vocabulary, ideographic vs segmental writing systems),

we can hypothesize that the main explanatory factor for the performance of speech

technology in a language, is the availability of annotated data. Even in English, the

significant difference in performance between accents (e.g. 3x higher WER in English

with an Indian accent than with a North-American accent) can be explained by the

dominance of North-American speakers in speech datasets.

Hence, collecting speech recordings and their transcription is the key to develop-

ing speech recognition systems. However, this process is expensive, and needs expert

knowledge (from linguists or at least native speakers) to annotate recorded speech

sequences. End-to-end speech recognition, as explained in Section 1.1, has allowed

training speech recognition models to predict characters (graphemes), and by doing

so reduced the dependency of ASR on linguistic expertise (phonetic annotations, pro-

nunciation dictionaries). However, such models remain heavily dependent on huge

amounts of character transcriptions extracted from speech recordings (e.g. Deep-

Speech 2 is an end-to-end model). Moreover, when an external language model is
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used to improve the quality of a speech recognition system, it usually needs to be

trained on huge amounts of data. Text data is cheap to obtain in many languages,

however the best language models are trained on up to billion words1, an amount that

could arduously be collected for most languages. Thus, extending a speech recogni-

tion system to a new language is expensive, and needs qualified workforce as well as

vast corpora of textual data. This makes scaling to thousands of languages one of the

current biggest challenges in speech technology, and may explain why the range of

supported languages in assistants ranges from 3 for Amazon’s Alexa to 20 in Apple’s

Siri 2. These covered languages can be qualified as “high-resource languages”, while

we will refer to languages for which some or all resources mentioned above are lacking

as “low-resource languages".

A way to face the challenge of low-resource languages is to develop algorithms that

are less dependent on large, finely annotated datasets. This motivated the recent line

of work on weakly-supervised and unsupervised speech recognition [Dunbar et al.,

2017, Jansen et al., 2013, Versteegh et al., 2015]. These contributions generally fall

in one the three following paradigms:

∙ Transfer learning, as a way to exploit the data available for high-resource lan-

guages to improve the performance in low-resource languages or rare accents

[Toshniwal et al., 2018],

∙ Weakly-supervised learning, in which exhaustive and fined-grained transcrip-

tions of sentences are replaced by coarse [Synnaeve et al., 2014], synthetic [Jia

et al., 2018], or incomplete [Palaz et al., 2016] annotations,

∙ Unaligned supervision, in which one can leverage unrelated speech and text

corpora, which is cheap as both speech and text data are easily collected inde-

pendently. Inspired from recent successes in unsupervised machine translation

[Artetxe et al., 2017, Conneau et al., 2017, Lample et al., 2018], Chung et al.

[2018] have proposed aligning independent corpora of speech and text to train

1https://catalog.ldc.upenn.edu/LDC2003T05
2https://www.globalme.net/blog/language-support-voice-assistants-compared
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word classifiers in an unsupervised setting.

An even more challenging problem is the case of languages without orthography,

or unwritten dialects. Out of approximately 7,000 languages, more then 3,000 do not

have a standard orthographic system 3. This means that there is either no unique

transcription for each word, or even no alphabet at all. For example, if a dataset

were to be collected for Swiss German, there would be many variations in the way

different annotators would transcribe the same word. This prevents training a stan-

dard speech recognition system (as the target of the learning system is ambiguous),

or even computing a Word Error Rate. As speech recognition is in many cases, as

in assistants, a preliminary step to natural language understanding, there has been

work on bypassing it in the case of unwritten languages to map directly the speech

stream to the semantics of the sentence [Dredze et al., 2010,?, Liu et al., 2017a], or a

translated transcription [Bérard et al., 2016] that can then be processed by a natural

language understanding algorithm in the target language.

The “zero resource” [Dunbar et al., 2017, Versteegh et al., 2015] setting refers to

this extreme case in which we can not access standardized written corpora, and can

only rely on untranscribed speech segments. In this case, a task that can be adressed

is to discover the phonetic inventory of the language, as both written and unwritten

languages are characterized by one. To that end, a particular line of work exploits an

auxiliary supervision which consists in chunks of speech (typically corresponding to

words) that are labeled as being identical or different [Synnaeve et al., 2014], and from

which we want to discover phonetic categories. This weak supervision is interesting

as it can be obtained “for free”, as the output of an unsupervised algorithm. Indeed,

there has been some success on training unsupervised algorithms to match chunks of

speech supposedly containing the same phonetic content, whether its words, parts of

words, or phrases [Park and Glass, 2008]. By combining unsupervised spoken term

discovery, and weakly-supervised learning from the found segments, one can learn

phonetic categories in a fully unsupervised way [Thiollière et al., 2015].

3https://www.ethnologue.com/enterprise-faq/how-many-languages-world-are-unwritten-0

53

https://www.ethnologue.com/enterprise-faq/how-many-languages-world-are-unwritten-0


1.5.2 Contributions

In the Part II of this thesis, we build on top of previous work on weakly-supervised

acoustic modeling, in which we are provided with pairs of words that are either the

same, or different, and use them to train a Siamese network [Bromley et al., 1993]

to produce phonetically discriminative embeddings [Synnaeve et al., 2014]. We use

this setting to experiment how weakly-supervised and unsupervised speech modelling

can also benefit from replacing mel-filterbanks, either by a richer deep scattering

spectrum, or by convolutional layers on the raw waveform.

Chapter 2 details some technical background, including the ABX evaluation of

speech representations [Schatz et al., 2013], and the ABnet architecture proposed by

Synnaeve et al. [2014].

In Chapter 3, we investigate the role of the input features, and in particular we

test whether mel-filterbanks could be replaced by inherently richer representations

derived from a deep scattering spectrum. We train a Siamese network using lexical

side information similar to a well-performing architecture used in the Zero Resource

Speech Challenge (2015) [Versteegh et al., 2015], and show a substantial improve-

ment when the mel-filterbanks are replaced by scattering features. This shows that

unsupervised and weakly-supervised approaches can benefit from richer features than

mel-filterbanks.

These findings lead us to also experiment with training from the raw waveform in

a weakly-supervised setting. Recent work [Synnaeve and Dupoux, 2014] has demon-

strated, on small datasets, the feasibility of jointly learning specialized speaker and

phone embeddings, using ABnets. In Chapter 4, we scale up these architectures to

the 360 hours of the Librispeech corpus by implementing a sampling method to ef-

ficiently select pairs of words from the dataset and improving the loss function. We

also compare the standard siamese networks fed with same (AA) or different (AB)

pairs, to a ’triamese’ network fed with AAB triplets. Finally, we also experiment with

architectures trained directly from raw speech. We use ABX discrimination tasks to

evaluate the discriminability and invariance properties of the obtained joined embed-
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dings, and compare these results with mono-embeddings architectures. We find that

the joined embeddings architectures succeed in effectively disentangling speaker from

phoneme information, with around 10% errors for the matching tasks and embed-

dings (speaker task on speaker embeddings, and phone task on phone embedding)

and near chance for the mismatched task. Furthermore, the results carry over to out-

of-domain datasets, including a low-resource language (Xitsonga), even matching the

best results obtained with similar weakly supervised techniques trained in-domain.

Finally, models trained on the waveform provide significantly better speaker embed-

dings, suggesting that speaker identification is yet another task that can benefit from

learnable frontends.
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Part II

Weakly-supervised Learning of

Speech Representations
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Chapter 2

Learning phonetic and speaker

representations from pairs of words

2.1 Top-down learning of phonetic categories

Unsupervised speech recognition is the task of training a system on unlabeled speech

sequences, such that it can output the word transcription of a new sequence at test

time. Even if no transcription is given during training, generating a word-level tran-

scription would at least require a lexicon, which is not possible for poorly documented

or unwritten languages for example. However, every language can be transcribed pho-

netically as long as a phonetic inventory has been collected for this language. This

is why, in this part, we consider the task of learning phonetic categories in an unsu-

pervised fashion. More precisely, given untranscribed speech utterances, we want to

train a system that learns a representation of the original speech signal that sepa-

rates phonetic categories, i.e. a representation space in which utterances of the same

phoneme are close to each other, while utterances of different phonemes are far from

each other. We call such a representation a ”phonetic embedding”. Projecting a speech

utterance into such a space would allow an unsupervised clustering algorithm, such

as K-Means [Lloyd, 1982] to find phonetic categories, such that the speech segment

can be transcribed into phonemes.
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Rather than training an unsupervised algorithm to directly discover phonetic

classes from a speech corpus [Badino et al., 2015, Chen et al., 2015], we adopt a top-

down strategy in which we exploit word-level auxiliary supervision (same or different

word) to learn phonetic embeddings. The motivation for adopting this top-down ap-

proach comes from the fact that the lexicon is typically quite sparse in phonetic space.

As a result, two randomly selected words will mismatch in most of their phonemes.

This makes lexical clustering an easier task than phoneme clustering, and we can train

unsupervised “spoken term discovery” algorithms to find repeated words or pseudo-

words in unlabeled speech sequences [Kamper et al., 2015a, Park and Glass, 2008]. We

can use the output of such algorithms as pseudo-labels (same/different word) to learn

phonetically discriminative representations [Renshaw et al., 2015, Thiollière et al.,

2015]. Thus, this top-down setting, originally weakly-supervised, can be reformu-

lated as a fully unsupervised approach. This is consistent with the cognitive science

literature, in which previous work has supported the theory of top-down phonological

acquisition, that is, building an early proto-lexicon helps infants refining phoneme

categories [Feldman et al., 2013, Martin et al., 2013, Swingley, 2009].

In this part we build on top of a model proposed by Synnaeve et al. [2014], where

a Siamese network is trained from pairs of words labelled as “same word” or “different

words”, to learn phonetic embeddings from speech features. This work explores the

feasability of exploiting word-level alignment in a top-down fashion, and thus uses

ground truth word annotations, rather than pseudo-labels derived from a spoken term

discovery algorithm. However, in Chapter 3, we also experiment with pairs produced

by a spoken term discovery algorithm, in a fully unsupervised setting.

In the following sections, we describe how we evaluate the phonetic discriminability

of learnt embeddings, as well as the ABnets, a particular type of Siamese network

introduced by Synnaeve et al. [2014] and used throughout this part.
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(a) Within-speaker ABX task. (b) Across-speaker ABX task

Figure 2-1: Visualization of a within and across-speaker ABX tasks from the minimal
pair (“beg”, “bag”).

2.2 Evaluating speech representations: triphone ABX

tasks

A standard way of evaluating features is to train a supervised classifier and compare

the classification performance to the performance we would get with a similar clas-

sifier trained on other features. However, supervised classifiers can compensate for

properties of the features that would constitute considerable flaws in an unsupervised

setting (e.g. poor scaling, uninformative dimensions). Hence, supervised classifica-

tion performance obtained on features is not a reliable indicator of the performance

of these features in an unsupervised setting, in particular for the application of clus-

tering algorithms. We thus need to find an evaluation protocol that operates directly

in the representation space, and evaluates the desired properties of a phonetic em-

bedding. In particular, we want a representation of speech in which some distance

function (e.g. Euclidean, cosine), correlates maximally with the phonetic information

(utterances of the same phoneme are close to each other, and conversely), while be-

ing robust to irrelevant factors (speaker identity or channel effect should not impact

the representation). These properties would allow using this representation as pho-

netic pseudo-labels in downstream tasks (including speech recognition). We do so by

subjecting the learnt embeddings to ABX tasks [Schatz et al., 2013, Schatz, 2016].
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An ABX task consists in presenting three stimuli 𝐴, 𝐵 and 𝑋, with 𝐴 and 𝐵

belonging to different categories and 𝑋 matching the category of either 𝐴 or 𝐵, let us

assume in this example that 𝑋 belongs to the same category as 𝐴. Distances 𝐷(𝐴,𝑋)

and 𝐷(𝐵,𝑋) are computed in the embedding space and compared. If 𝐷(𝐴,𝑋) >

𝐷(𝐵,𝑋) then the score is 1 (error), else it is 0 (success). Note that 𝐷 can be an

actual distance (e.g. euclidean distance) or not (e.g. cosine distance, kl-divergence).

The experiments in this part are evaluated with a particular type of ABX task,

adapted for speech, the triphone minimal-pair ABX task [Schatz et al., 2013]. A

minimal pair is a pair of sounds, each composed of three phonemes, that only differ by

their central phoneme (“beg” vs “bag”). We choose minimal pairs as they are the “worst

case” kind of triphones, and being able to discriminate them would imply being able to

discriminate between any triphones. A and X are two different utterances of the same

triphone, while B would is an utterance of another triphone that only differs from A

and X by its central phoneme. A desirable characteristic of a phonetic representation

is its robustness to changes of speaker. In order to include this variability in our

evaluation, we choose the utterances of these triphones such that A and X are spoken

by different speakers, while B is pronounced by the same speaker as A. In this setting,

observing 𝐷(𝐴,𝑋) < 𝐷(𝐵,𝑋) means that the embedding space in which we compute

𝐷 favors phonetic discriminability over speaker discriminability. We can also perform

this task within-speaker, when A, B, and X are all produced by the same speaker.

Figure 2-1 shows a visualization of the within and across speaker ABX tasks.

A global score is obtained by averaging ABX errors over all relevant triplets that

can be found in the corpus on which we evaluate the representation. We obtain an er-

ror between 0% and 50% (the chance level), a low error characterizing a representation

in which phonetic categories are well separated from each other. In a representation

space that yields a 0% ABX error, a point is closer to any point of the same class

than it is to any point of another class.
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Figure 2-2: The ABnet architecture.

2.3 ABnets

Siamese networks are neural architectures that were first introduced for written signa-

ture verification [Bromley et al., 1993]. The main intuition behind these architectures

is that given an abstract notion of similarity on the data we can use pairwise relations

between samples to learn a representation where the distance between the embeddings

of objects will reflect the abstract similarity between these objects. In other words,

we want to learn a mapping 𝜇(𝑋) such that for a certain similarity function 𝐷 in

the embedding space we have 𝐷(𝜇(𝑋1), 𝜇(𝑋2)) small if 𝑋1 and 𝑋2 are same objects,

and large if they are different. Because of this architecture, the supervision required

by a Siamese network consists of pairs of samples that are labeled same or different,

rather than labels for individual samples.

The ABnet is composed of two copies of the same network, each copy being fed

with one of the elements of a pair of input samples. These identical networks project

the samples into the embedding space, through several hidden layers. A measure of

similarity or distance is then computed between the two pairs depending on their

relation label (same or different), and this loss function is propagated evenly in the

two copies. Figure 2-2 shows a Siamese network.

61



An ABnet is a particular case of Siamese neural network. It uses pairs of words

to learn a representation of phones. Once words are paired, the feature frames that

constitute them are aligned with Dynamic Time Warping (DTW) [Sakoe and Chiba,

1978] and the paired feature frames are fed to the ABnet. As mentioned in Section

2.1, these pairs can either be extracted using ground-truth annotations, or from the

output of an unsupervised spoken term discovery algorithm.
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Chapter 3

A deep scattering spectrum - deep

siamese network pipeline for

unsupervised acoustic modelling

This chapter is based on the material from A Deep Scattering Spectrum - Deep Siamese

Network Pipeline for Unsupervised Acoustic Modelling [Zeghidour et al., 2016b], accepted

for oral presentation at ICASSP 2016 and a joint work with Gabriel Synnaeve, Maarten

Versteegh and Emmanuel Dupoux. This work was done during my master internship at ENS

under the supervision of Emmanuel Dupoux.

3.1 Introduction

Synnaeve et al. [2014] train shallow and deep ABnets on word pairs extracted from the

TIMIT dataset (American English) [Garofolo et al., 1993]. The resulting models are eval-

uated on an ABX minimal pair discrimination task and show a phonetic discriminability

which is much better than the original mel-filterbanks they are trained on, and close to

supervised baselines that are trained using phonetic-level annotations.

However, regardless of the representation power of the ABnets, i.e. their depth and struc-

ture, their performance remains inherently limited by the amount of information available

in their input representation. Fine-grained frequency information is lost in the computation

of mel-filterbanks, mainly when averaging the spectrogram over the filters, and this loss of
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information puts an upper bound on the final performance of classifiers that are trained on

these features, if this fine-grained information is relevant. Training from the raw waveform

would address this problem, however training a deep neural network from raw speech comes

with challenges and adjustments that will be brought up in Chapter 4, and then deeply

studied in Part III. Here, and as a preliminary study, we strike a middle ground by replacing

the filterbanks by a deep scattering spectrum [Andén and Mallat, 2014], a representation

that has many of the desirable properties of mel-filterbanks, i.e. it is stable to deformation

and local translation, while retaining more information.

In this chapter, we show that both in a weakly supervised setting with gold word-level

annotations on the TIMIT corpus and in a purely unsupervised setting on the Buckeye

(American English) and NCHLT (Xitsonga) corpora, combining the scattering spectrum

and the ABnet significantly improves the learnt representation, as evaluated with ABX

errors, compared to identical ABnets trained on mel-filterbanks. Our best system even

outperforms supervised GMM-HMM posteriorgrams trained with phonetic labels.

In the following sections, we first describe the baseline model used in [Synnaeve et al.,

2014]. Then we explain how a deep scattering spectrum can be computed to retrieve the

information that is lost in the computation of mel-filterbanks. We then present our exper-

imental protocol and the results both in a weakly-supervised and an unsupervised setting.

Finally, we summarize our findings and discuss how it leads us to training models directly

from raw speech in Chapter 4.

3.2 Baseline system

The base system is the model of Synnaeve et al. [2014] a Siamese network trained on pairs of

words. The pairs labeled as “same” are extracted from the ground-truth annotations. The

“different” pairs are sampled randomly. Even if there is a risk of false negatives i.e. labeling

frames as “different” while they actually have the same phonetic content, this probability

is relatively low due to the distribution of the 39 phonemes inside the English language.

40 mel-filterbanks are computed from the original speech signal. Frames corresponding to

each utterance of the pair are aligned with a Dynamic Time Warping [Sakoe and Chiba,

1978] and the resulting pairs of frames are padded with 3 context frames on each side. The

resulting 7 frames are given as input to each entry of the Siamese network, respectively 𝑥
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and 𝑥′. The Siamese network is given the triplet (𝑥, 𝑥′, 𝑦) where 𝑦 ∈ {0, 1} is 1 if 𝑥 and 𝑥′

are stacks of frames extracted from words labeled as “same”, and 0 otherwise. Given inputs

𝑥 and 𝑥′, the network outputs respectively the embeddings e(𝑥) = e and e(𝑥′) = e′ ∈ 𝑅𝑑.

The similarity between embeddings is measured by their cosine cos(e, e′) = e.e′
||e||2||e′||2 , and

the network is trained to minimize the following loss function:

ℓ(e, e′, 𝑦) =

⎧
⎪⎨
⎪⎩
− cos

(︀
e, e′

)︀
if 𝑦 = 1

cos(e, e′)2 if 𝑦 = 0

, (3.1)

Hence, when two inputs are "same", we maximize their cosine similarity. However, when

they are "different", we minimize the squared cosine similarity, as suggested by Synnaeve

et al. [2014]. They justify this approach by the fact that minimizing the cosine similar-

ity would draw the embeddings towards anti-colinearity, which is harder to achieve than

orthogonality (which is reached when minimizing the squared cosine), and often leads to

divergence. We also adopt this loss function as we want to compare the performance of

different speech features, without confounding factors such as changes in the architecture,

the loss function, or the optimization algorithm. However, in Chapter 4, we show that

minimizing the cosine similarity down to a margin hyperparameter solves the convergence

problem.

3.3 Scattering transform

For a signal 𝑥, and using the notation of Andén and Mallat [2014], we define the following

wavelet transform𝑊𝑥 as a convolution with a low-pass filter 𝜑 and higher frequency complex

analytic wavelets 𝜓𝜆1 :

𝑊𝑥 = (𝑥 ⋆ 𝜑(𝑡), 𝑥 ⋆ 𝜓𝜆1(𝑡))𝑡∈𝑅,𝜆1∈Λ1 (3.2)

We apply a modulus operator to the wavelets coefficients to remove the phase and extract

Hilbert envelopes at different resolutions:

|𝑊 |𝑥 =
(︁
𝑥 ⋆ 𝜑(𝑡) , |𝑥 ⋆ 𝜓𝜆1(𝑡)|

)︁
𝑡∈𝑅,𝜆1∈Λ1

(3.3)
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𝑆0𝑥 = 𝑥 ⋆ 𝜑(𝑡) is locally invariant to translation thanks to the time averaging 𝜑. This time-

averaging loses the high frequency information, which is retrieved in the wavelet modulus

coefficients |𝑥 ⋆ 𝜓𝜆1 | . However, these wavelet modulus coefficients are not invariant to

translation, and as for 𝑆0 a local translation invariance is obtained by a time averaging,

which defines a first layer of scattering coefficients:

𝑆1𝑥(𝑡, 𝜆1) = |𝑥 ⋆ 𝜓𝜆1 | * 𝜑(𝑡) (3.4)

Andén and Mallat [2014] show that if the wavelets 𝜓𝜆1 have the same frequency reso-

lution as the standard mel-filters, then the 𝑆1𝑥 coefficients approximate the mel-filterbanks

coefficients. They also use this characterization to explain how mel-filterbanks are provably

stable to deformations of the signal (time-warping), which is interesting as they justify the

design choices of mel-filterbanks with mathematical arguments, rather than psychoacoustics.

Incidentally, this approximation of mel-filterbanks will be the key to designing Time-Domain

filterbanks in Chapter 5, however we are here interested in deriving richer fixed features from

mel-filterbanks, rather than a learnable architecture. Andén and Mallat explain that, unlike

with the standard mel-filterbanks computation, we here have a strategy to recover the lost

information, by passing the wavelet modulus coefficients |𝑥 ⋆ 𝜓𝜆1 | (taken before averaging)

through a bank of higher frequency wavelets 𝜓𝜆2 :

|𝑊2| |𝑥 ⋆ 𝜓𝜆1 | =
(︁
|𝑥 ⋆ 𝜓𝜆1 | ⋆ 𝜑 , ||𝑥 ⋆ 𝜓𝜆1 | ⋆ 𝜓𝜆2 |

)︁
𝜆2∈Λ2

(3.5)

This second layer of wavelet modulus coefficients is still not invariant to translation,

hence we average these coefficients with a low-pass filter 𝜑 to derive a second layer of

scattering coefficients:

𝑆2𝑥(𝑡, 𝜆1, 𝜆2) = ||𝑥 ⋆ 𝜓𝜆1 | ⋆ 𝜓𝜆2 | ⋆ 𝜑(𝑡) (3.6)

Repeating these successive steps of computing invariant features and retrieving lost in-

formation leads to the scattering spectrum, as seen in Fig. 3-1, however speech signals are

almost entirely characterized by the first two layers of the spectrum, that is why a two layers

spectrum is typically used for speech representation. By concatenating the coefficients of

each layer 𝑆0, 𝑆1 and 𝑆2 we obtain a representation which is stable to deformations, while

keeping more fine-grained information than the mel-filterbanks coefficients.
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Figure 3-1: A deep scattering spectrum with two layers.

3.4 Experiments

In the following experiments, we replace mel-filterbanks by a two-layer scattering spectrum

computed with a 16 ms lowpass filter, with normalized second order coefficients and log-

frequency scattering [Andén and Mallat, 2014]. The features are computed with the ScatNet

toolbox [Andén and Mallat, 2014]. We train our models in the same conditions as Synnaeve

et al. [2014], using Adadelta [Zeiler, 2012] and early stopping. We use word-level transcrip-

tions for training, and phone-level transcriptions for ABX evaluations.

3.4.1 Weakly-supervised phonetic representation learning

The TIMIT dataset [Garofolo et al., 1993] is a corpus of clean read speech containing a set of

10 sentences read by 630 speakers of eight major dialects of American English. All the words

of more than 5 characters that are repeated in the corpus are extracted and matched as pairs

of “same”. This yields 62,625 pairs of same words represented as time bounding-boxes in the

signal. We extract the scattering features within these boxes and align them with Dynamic

67



Model English Xitsonga
within across within across

Baseline (MFCC) 15.6 28.1 19.1 33.8
Topline (Supervised) 12.1 16.0 3.5 4.5

FbanksABnet [Thiollière et al., 2015] 12.0 17.9 11.7 16.6
Deep ScatABnet 11.3 17.1 12.5 16.2
Shallow ScatABnet 11.0 17.0 12.0 15.8
DPGMM [Chen et al., 2015] 10.8 16.3 9.6 17.2

Table 3.1: ABX error (as percentages) on the ZeroSpeech 2015 datasets (English,
Xitsonga) for the ABX within- and across-speaker tasks. The best scores for each
condition are in bold.

Time Warping (DTW), yielding 6.77M feature frames. The pairs of “different” objects are

not aligned with DTW but just aligned on the shortest one. For evaluation, we use the 39

phoneme set of Lee and Hon [1988].

Fig. 3-2 shows ABX errors on the across-speaker task. The distances used for the ABX

tasks are the cosine distance for the raw features, and the symmetric KL-divergence for all

trained models. “Shallow” models have one hidden layer while “Deep” models have three. All

hidden layers have 200 hidden units, and the final embedding has a dimension of 100. Even

though raw scattering features do not yield a better ABX error than mel-filterbanks, their use

as an input representation leads to a substantial improvement after training an ABnet, with

a best error of 9.8% against 11.8% for the best ABnet trained on mel-filterbanks. Our best

Scattering-ABnet model even gives a better ABX score than the HMM-GMM posteriorgrams

(11%), very close to the output of the deep supervised network (9.6%). In fact, changing

the input representation of the Shallow ABnet from mel-filterbanks to scattering coefficients

has an impact on the ABX error (from 12.4% to 10.2%) that is 3.7 times higher than adding

hidden layers to get a Deep ABnet (from 12.4% to 11.8%).

3.4.2 Unsupervised phone representation learning on Buckeye

and NCHLT

In this experiment we run our model under the conditions of the Zero Resource Speech

Challenge 2015 [Versteegh et al., 2015]. One of the tasks in this challenge was unsupervised

acoustic modeling. The challenge provided two datasets (a subset of the Buckeye Corpus
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Figure 3-2: From left to right: Across-speaker ABX error on TIMIT (as percentages),
measured on raw features (yellow bars), best ABnet models trained on mel-filterbanks
(purple bars), best ABnet models trained on scattering spectrum (blue bars), and
outputs of three supervised systems (red bars) from [Synnaeve et al., 2014].

of conversational English [Pitt et al., 2007] and a subset of the NCHLT corpus of Xitsonga

[Vries et al., 2014]) as well as baseline and topline ABX scores for both datasets, both

for within- and across-speakers. The baselines provided by the challenge are MFCCs, the

toplines are supervised HMM-HMM posteriorgrams. In the spirit of the challenge, we extract

the pairs of speech segments used for training our model in an unsupervised manner. That

is, rather than taking matching words from the gold transcription, we extract them from the

signal by an unsupervised spoken term discovery (STD) algorithm [Jansen and Van Durme,

2011]. This algorithm discovered 3149 pairs of similar segments of speech from the English

corpus and 1782 pairs from the Xitsonga corpus, 50% being used for training and 50%

for early stopping. These pairs form the “same” input to the ABnet. Like in our weakly-

supervised experiments, the “different” input is composed of randomly matched segments of

speech. Here, the “Deep” ScatABnet architecture consists of 2 layers of 500 nodes, with a

sigmoid activation function, exactly as in a previously published study using an ABnet with

filterbanks [Thiollière et al., 2015]. The “Shallow” one has only one hidden layer.
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In Table 3.1, we compare our model against the challenge baselines (MFCC) and toplines

(supervised HMM-GMM posteriorgrams) and also against the best performing system sub-

mitted to the challenge [Chen et al., 2015], a DPGMM system that takes as input speaker-

normalized MFCCs. We observe that both ABnet variants perform better than the base-

line. For English within-speaker, both systems actually outperform the supervised topline.

ScatABnet has lower error scores than the FbanksABnet on all conditions except Xitsonga

within-speaker. The table further shows that ScatABnet is competitive with the state of

the art system of [Chen et al., 2015], in one case, across-speaker for Xitsonga, producing

the lowest ABX error. These performances are remarkable given that the number of pairs

on which the ABnet is trained is much lower than for the TIMIT. This low number of

pairs can also explain why here a shallow architecture with fewer parameters gives a higher

performance than a deep one.

3.5 Conclusion

This chapter shows that feeding rich input representations to a weakly-supervised acoustic

model offers a significant leverage in terms of phonetic discriminability. The experiments on

TIMIT in section 3.4.1 show that switching from standard mel-filterbanks to the scattering

spectrum yields a substantial gain (about 17% in relative error rate), a higher gain than

switching from a shallow to a deep network. This shows that in acoustic representation

learning, putting more emphasis on the input representation might give a larger perfor-

mance increase than improving the learning architecture. These results suggest that deep

architectures that are trained on standard mel-filterbanks may not be exploited to their full

potential, as previously shown in a supervised setting by Peddinti et al. [2014]. However,

there is no guarantee that the alternative that we use, the deep scattering spectrum, is

itself optimal. These findings, associated to the arguments developed in Section 1.2 on the

suboptimality of fixed features, support the idea of removing speech features from acoustic

models: if we observe that we can significantly outperform mel-filterbanks, then we should

replace them, and rather by a learnable architecture than by other speech features. This

motivates the next chapter, in which we train weakly-supervised systems directly from the

waveform.
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Chapter 4

Disentangling speaker and phonetic

information from the raw waveform

This chapter is partly based on the material from Joint Learning and Speaker and Phonetic

Similarities with Siamese Networks [Zeghidour et al., 2016a], accepted for oral presentation

at Interspeech 2016 and a joint work with Gabriel Synnaeve, Nicolas Usunier and Emmanuel

Dupoux. Experiments with models trained on the waveform were performed at the same

period and are published for the first time in this manuscript.

4.1 Introduction

As described in Section 1.4, the speech signal carries a lot of information beyond the lin-

guistic content, and in this Chapter we make the rough assumption that a speech signal is

essentially the "entanglement" of the linguistic content and the intrinsic speaker character-

istics (we do not consider other sources of variations such as channel effect, or prosody).

Automatic Speech Recognition (ASR) consists in extracting linguistic information from the

speech features, independently of the identity of the speaker, conditions of recording, and

other irrelevant information. On the other hand, speaker identification requires extracting

information from the signal that characterizes the speaker regardless of the content of their

production. Hence, if we see the speech signal as the combination of orthogonal informa-

tions (linguistic content, speaker identity, noise, etc.) present in the input features, we can

observe that performing any speech classification task relies on extracting one of these infor-
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mations and removing the others. A limitation of this approach is that it requires individual

training pipeline for each task, each pipeline extracting its relevant information from the

same speech features. However, we can overcome this limitation with multi-task learning

[Caruana, 1998]. Indeed, since the speech features are shared across all tasks, instead of

learning separately to perform each task at the expense of all the others, we propose to

learn multiple tasks at the same time from these shared speech features, a process that can

be described as "disentangling" speaker identity and phonetic content.

In a weakly-supervised setting, we want to learn both phonetic and speaker represen-

tations from pairs or triplets of word-level utterances, labelled as being the same word or

different ones, and being spoken by the same person or different ones. Taking inspiration

from the approach detailed in Chapter 2, we use Siamese networks that we train with either

a contrastive loss on pairs of words, or a ranking loss on triplets of words. A natural choice

for input features to such models is mel-filterbanks since, as shown in Section 1.4, they are

used in a wide range of linguistic or paralinguistic tasks (e.g. speech recognition, speaker

recognition, emotion recognition). However, we are also interested in learning phonetic and

speaker representations from the raw speech signal. In Section 1.2, we showed that even

though mel-filterbanks are linked to human perception and should efficiently code informa-

tion for a wide range of tasks (speech recognition, speaker recognition), the tuning of their

many hyperparameters have most likely been tuned for speech recognition. If such a bias

exists in speech features, that would favor speech recognition at the expense of performance

for other tasks, we can expect speaker recognition to benefit from learning its own features

from the raw waveform. This motivates the use of convolutional networks on the speech

signal, which consists in replacing the speech features computation usually performed in the

frequency-domain by real-valued convolutions in the time-domain.

We show that we can effectively train a single model to disentangle phonetic and speaker

informations on an large scale English dataset, Librispeech [Panayotov et al., 2015], either

from mel-filterbanks or from the waveform. We show that this disentanglement can general-

ize out-of-domain, to another English dataset (TIMIT) and even to a low-resource language,

Xitsonga, spoken mostly in South Africa and Mozambique. Finally we show that both joint

learning and training from the raw waveform benefit the speaker modelling task, and we

perform an analysis of our networks to understand how the joint modelling is learned within

the hidden layers.
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In the remainder of this chapter, we first discuss in more details the related work on

multi-task learning and triplet losses in Section 4.2. We then present the models in Section

4.3. Experimental results are shown in Section 4.4 and a detailed analysis of the hidden

layers of our networks is provided in Section 4.5.

4.2 Related work

Given several tasks to perform on the same input data, instead of using one model per

task, one can share parameters between models and tasks with the hypothesis that learning

multiple tasks at the same time might improve the overall performance on each of the tasks

[Caruana, 1998]. In a fully supervised setting, with annotated speech sequences that are

also labelled with the identity of the speaker, multi-task learning has previously been used

to improve the quality of ASR with an auxiliary speaker classification task [Pironkov et al.,

2016], or such that each of both tasks (ASR and speaker identification) would benefit the

other [Tang et al., 2016]. Performing both phonetic and speaker modelling in a weakly-

supervised setting has been previously explored by Synnaeve and Dupoux [2014], on a small

dataset. Here, we expand on this previous work in several ways. First, we scale up the

architecture to deal with a considerably larger dataset [Panayotov et al., 2015]. Secondly,

we improve on the loss function by adding a margin and investigating a triplet-based loss

function as in [Kamper et al., 2015b]. We also use different types of input representations

(either mel-filterbanks or the raw waveform) and measure the impact of this design choice on

both phonetic and speaker modelling tasks. Finally we present out-of-domain experiments

that show that the discriminability and invariance properties generalize to another English

dataset and even another language.

While the main concept underlying Siamese networks is that signals of the same class

should be close in the embedding space, and signals of different classes should be far in the

embedding space, most classification or clustering algorithms do not require a particular

level of absolute similarity between signals of the same classes. Rather, the classification of

clustering accuracy depends on how similar signals of the same class are relatively to the

similarity between signals of different classes. Thus, instead of considering a pair of signals,

one can consider a triplet of signals, two belonging to the same category and one belonging

to a different category. Ranking the similarity between the signals sharing the same category
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and the signals of different categories allows computing a score that can be used to learn a

representation that is discriminative for the task at hand. In speech applications, this has

been previously used for acoustic modelling [Kamper et al., 2015b], and speaker modelling

[Bredin, 2016].

4.3 Model

4.3.1 Input representations

Instead of forcing the network to encode the input into specific sub-word units (phonemes,

diphones, triphones), we use the weakly supervised technique introduced in Chapter 2 which

only specifies whether input sequences are utterances of same or different words, and if they

are pronounced by same or different speakers, and let the network figure out by itself what

are the most appropriate sub-word units. As detailed in Section 4.3.2, we evaluate the

linguistic branch of our models in terms of phonetic discriminability of the embeddings that

they learn and hence expect the networks to learn phone level representations even though

only word level alignment is available as a ground truth information.

In the MEL setting, we represent the speech signal with mel-filterbanks frames with a

window size of 25ms and a shift of 10ms. The networks learn phonetic and/or speaker

embeddings of sub-words units, provided an input defined as a stack of 7 or 15 of successive

filterbank frames, representing respectively a context of 70 and 150ms.

In the WAV setting, we train our architectures on the raw speech signal, sampled at

16kHz. A natural way of dealing with the raw waveform in a speech processing setting

is to use convolutional neural networks. It allows learning several filters in the first layer,

in an analogous way to hand-engineered filters that are used in standard speech features

(mel-filterbanks, gammatone filters). In that setting, the networks learn phonetic and/or

speaker embeddings of sub-words units, provided an input defined as a waveform segment

representing an utterance of a particular word.

For training, we use annotations at the word level, but also the speaker identity. In the

MEL setting, and in order to exploit pairs of identical words (same or different speakers), the

two utterances are first realigned at the frame level using Dynamic Time Warping (DTW)

[Sakoe and Chiba, 1978]. Sliding windows of stacked frames are then presented to the
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Discriminability A B X
Phonetic /beg/ 𝑠𝑝1 /bag/ 𝑠𝑝1 /beg/ 𝑠𝑝2
Speaker /beg/ 𝑠𝑝1 /beg/ 𝑠𝑝2 /bag/ 𝑠𝑝1

Table 4.1: Examples of A, B and X for both phonetic and speaker discriminability
tasks. "𝑠𝑝𝑖" stands for speaker number 𝑖.

two entries of the siamese network. Dissimilar pairs are simply aligned along the diagonal.

In the WAV setting, we face the additional difficulty that a DTW-type alignment on the

raw waveform is less trivial than on standard speech features such as mel-filterbanks or

MFCC. With an euclidean distance or a cosine distance, the DTW algorithm is linear in

the number of dimensions and quadratic in the length of the sequences. This is acceptable

when using features with a standard window stride (10ms), an utterance being represented

by no more than a few hundreds frames. In the case of the waveform, the length of an

utterance has an order of magnitude of thousands of values, making the cost of a DTW

computation prohibitive. Moreover, an alignment obtained from a speech waveform would

be an alignment on amplitude and would thus not be relevant for a speech modelling task,

since linguistic content is characterized by the frequency information. This is why, in the

WAV setting, instead of training our system on pre-aligned segments of waveform, we first

align word utterances on mel-filterbanks, and then use the obtained path to align the output

frames of the convolutional network that receives the full word waveform as entry. Figure

4-1 illustrates this architecture.

4.3.2 Discriminability and invariance

The objective of our training scheme is to "disentangle" phonetic content and speaker iden-

tity into separate representations. We want the phonetic embedding to show a good dis-

criminability of phonetic classes and the speaker embedding to show a good discriminability

of speaker classes. On the other hand, since we want to learn separate representations, all

information related to speaker identity and independent from phonetic classes should be

removed from the phonetic embedding, and conversely for the speaker embedding. This

means that a speaker classification task performed on the phonetic embedding or a phonetic

classification task on the speaker embedding should be as close as possible from chance level.

This is what we refer to as invariance.
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To evaluate the discriminability, but also the invariance properties of the embeddings

learned by the system, we perform additional ABX discrimination tasks to the ones described

in the previous chapters. In our experiments, A, B and X are triphones that may only differ

by their central phoneme. When evaluating phonetic discriminability, A and B share the

same speaker while their central phoneme is different, and X matches A on its phonetic

content but is pronounced by a different speaker (the "across speaker" setting described in

Chapter 2). Since we also want to evaluate speaker discriminability, we also use "across

phoneme" ABX tasks. Switching B and X provides a speaker discriminability task across

phonemes. Table 4.1 shows examples for both tasks.

Precisely, each triphone is represented as a stack of frames in the embedding space, and

the distance between triphones is computed as the sum of the cosine distances between

aligned frames after DTW. An ABX task is then performed per triplet and we show the

average error over all triplets that can be found in the data.

We expect a phonetic embedding to show phonetic discriminability, which is character-

ized by a low ABX error rate on the phone across speaker task, and to show invariance to

speaker identity, which is characterized by an ABX error as close as possible from 50% on

the speaker across phone task. Conversely, better speaker embeddings have lower speaker

across phone error rate, and a high phone across speaker error.

4.3.3 Multi-task siamese network

A single-task siamese architecture is trained using labeled pairs (𝑥, 𝑥′, 𝑦𝑝ℎ𝑛, 𝑦𝑠𝑝𝑘) where 𝑥

and 𝑥′ are two input speech segments, 𝑦𝑝ℎ𝑛 ∈ {0, 1} is 1 if 𝑥 and 𝑥′ are phonetically similar

and 𝑦𝑠𝑝𝑘 ∈ {0, 1} is 1 if 𝑥 and 𝑥′ are said by the same speaker. Given 𝑥, the network outputs

an embedding e(𝑥) ∈ 𝑅𝑑.

As in Chapter 3, Siamese networks are trained using a loss function defined on pairs

which, given any two embeddings e, e′ in 𝑅𝑑 and a label 𝑦 ∈ {0, 1}, enforces that e should

be close to e′ if 𝑦 = 1, while the two embeddings should be far away if 𝑦 = 0. However, in

the case where 𝑦 = 0 we replace the cos2 function by a cosine with margin. The pairwise
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Figure 4-1: A multi-ouput siamese network in the WAV setting. All parameters of
each of the two branches at a given depth are shared.

loss function we use is

ℓ𝛾(e, e′, 𝑦) =

⎧
⎪⎨
⎪⎩
− cos

(︀
e, e′

)︀
if 𝑦 = 1

max(0, cos(e, e′)− 𝛾) if 𝑦 = 0

, (4.1)

where 𝛾 is a margin hyperparameter. Hence, when two inputs have a "same" label, this loss

enforces co-linearity of their embeddings. Conversely, if the inputs are "different", the loss

enforces that their cosine similarity is lower than 𝛾. Providing the loss function with 𝑦𝑝ℎ𝑛 as

a label allows learning a phonetic embedding, while using 𝑦𝑠𝑝𝑘 allows learning a speaker em-

bedding. Hence the loss function for a phonetic modelling siamese network is ℓ𝛾(e, e′, 𝑦𝑝ℎ𝑛)

while the loss used to train a speaker modelling siamese network is ℓ𝛾(e, e′, 𝑦𝑠𝑝𝑘). When

learning multiple embeddings, we may have different margin parameters 𝛾𝑝ℎ𝑛 and 𝛾𝑠𝑝𝑘 for

phonetic and speaker embeddings respectively. The loss of the multi-output network is then

𝐿(𝑥, 𝑥′, 𝑦𝑝ℎ𝑛, 𝑦𝑠𝑝𝑘) = ℓ𝛾𝑝ℎ𝑛(e𝑝ℎ𝑛(𝑥), e𝑝ℎ𝑛(𝑥′), 𝑦𝑝ℎ𝑛) (4.2)

+ ℓ𝛾𝑠𝑝𝑘(e𝑠𝑝𝑘(𝑥), e𝑠𝑝𝑘(𝑥′), 𝑦𝑠𝑝𝑘) . (4.3)
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Figure 4-2: A multi-ouput triamese network in the MEL setting. All parameters of
each of the three branches at a given depth are shared.

The absence of weighting factors in the summation of the phonetic and speaker loss means

that we give an equal importance to each of the task. A multi-output siamese network is

shown in Fig. 4-1.

4.3.4 Multi-task triamese network

The triamese network uses a triplet-based loss function [Bredin, 2016, Chechik et al., 2010,

Kamper et al., 2015b, Van Der Maaten and Weinberger, 2012]. The model has the same

architecture as before, but now the data takes the form (𝑥11, 𝑥
2
1, 𝑥

1
2) where (𝑥11, 𝑥

2
1) are speech

segments with similar phonetic content from two different speakers, and (𝑥11, 𝑥
1
2) are segments

from two different words said by the same speaker.

A triplet loss enforces constraints on relative similarities between pairs. For phonetic

embeddings e𝑝ℎ𝑛, two utterances of the same word pronounced by different speakers (𝑥11, 𝑥21)

should be more similar than utterances of different words pronounced by the same speaker

(𝑥11, 𝑥12). The rule is inverted for speaker embeddings: two different words pronounced by

the same speaker should be closer in embedding space than two utterances of the same
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word pronounced by different speakers. This setting is not exhaustive regarding the types

of triplets we could use to learn our tasks. For instance, a triplet of the type (𝑥21, 𝑥
2
1, 𝑥

1
2)

could be used to learn both embeddings by making (𝑥21, 𝑥21) closer than (𝑥21, 𝑥12) for both

tasks. However, since 𝑥21 and 𝑥12 are different regarding both factors of variation, this task

is simpler than the previous one. In a context in which we would have to select triplets in

a vast quantity of possible ones, focusing solely on the hardest triplets, and thus the most

informative ones, is an efficient solution that we choose to adopt. Formally, the triplet loss

is defined for any three embeddings e, e′, e′′ as:

ℓ̃𝛾(e, e
′, e′′) = max

(︀
0, 𝛾 − cos(e, e′) + cos(e, e′′)

)︀
.

The losses for each embeddings are then:

ℓ̃𝑝ℎ𝑛(𝑥11, 𝑥
2
1, 𝑥

1
2) = ℓ̃𝛾𝑝ℎ𝑛

(︀
e𝑝ℎ𝑛(𝑥11), e

𝑝ℎ𝑛(𝑥21), e
𝑝ℎ𝑛(𝑥12)

)︀
,

ℓ̃𝑠𝑝𝑘(𝑥11, 𝑥
2
1, 𝑥

1
2) = ℓ̃𝛾𝑠𝑝𝑘

(︀
e𝑠𝑝𝑘(𝑥11), e

𝑠𝑝𝑘(𝑥12), e
𝑠𝑝𝑘(𝑥21)

)︀
.

For the multi-output network, the final loss is ℓ̃𝑝ℎ𝑛+ ℓ̃𝑠𝑝𝑘. A multi-output triamese is shown

in Fig. 4-2.

4.4 Experimental setup

We train both siamese and triamese networks for three types of task (joint learning, phonetic

modelling only, speaker modelling only), resulting in six different training schemes.

The neural networks are trained on the 360 hours of read speech (920 speakers) consti-

tuting the train_clean_360 subset of the Librispeech dataset [Panayotov et al., 2015]. We

obtained the word-level annotations by force-aligning a state-of-the-art HMM-DNN [Panay-

otov et al., 2015] with transcriptions at the phone level, and then segmented the speech

utterances at word boundaries.

In the MEL setting, after preliminary experiments, we focused on a fully connected deep

neural net architecture with four hidden layers with 1000 units and a final embedding layer

of size 𝑑 = 100. We used as the activation function the RReLU non-linearity [Xu et al.,

2015] at each layer (ReLUs exhibited similar performances).
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Figure 4-3: Our convolutional architecture trained on the waveform. The part sur-
rounded by the dashed rectangle is repeated 1, 2 and 3 times respectively for the
Small, Medium and Big architectures.

In the WAV setting, we used convolutional architectures composed of three types of layers:

1-d convolutions, max-pooling and ReLU. We trained three types of networks, that differ

by their depth and their total spread (the time context that is used to generate an output

frame). In the remainder of this chapter these networks are referred as Small, Medium, and

Big, and their respective depth and spread parameters are as follows:

∙ Small: 5 convolutional layers, spread of 57ms

∙ Medium: 7 convolutional layers, spread of 127ms

∙ Big: 9 convolutional layers, spread of 267ms

These three architectures have the same structure for their input and output layers, they

only differ by the central layers. A visualization of these architectures, with their detailed

structure, can be seen in Fig. 4-3.

In the MEL setting, we use Adadelta [Zeiler, 2012] with interpolation parameter 0.9 and

epsilon 10−6 to train the siamese architecture, whereas plain stochastic gradient descent

(SGD) performs slightly better for the triamese model. In the WAV setting, we only use

SGD as our optimization algorithm. In both MEL and WAV settings, the learning rate for

SGD starts at 0.01 and is halved when the error on the development set stops decreasing

(with a minimum of 10−6). In the MEL setting, the margin parameters (𝛾𝑝ℎ𝑛 and 𝛾𝑠𝑝𝑘), the

weight decay, and the number of frames in an input stack are respectively chosen among

{0.15, 0.5, 0.85}, {0, 0.001} and {7, 15}. In the WAV setting, we do not use weight decay,

80



and since the results of MEL suggested that a margin of 0.15 was significantly worse we

only cross-validate the margin hyperparameters (𝛾𝑝ℎ𝑛 and 𝛾𝑠𝑝𝑘) among {0.5, 0.85}. We use

the dev_clean split of the dataset for early stopping and cross-validation of the margin

hyperparameters.

4.4.1 Evaluation setups

In-domain evaluation

Evaluations on the Librispeech dataset are computed on the test_clean subset. We use

annotations at the phoneme level from the forced alignment to extract all relevant triplets

from the test set. We then subsample randomly 10% of the triplets to get 600k ABX triplets

for the evaluation, from 40 speakers.

Out-of-domain evaluation

In order to evaluate the robustness of the learned representation across datasets and lan-

guages, we also perform two sets of out-of-domain experiments. First, we evaluate our

embeddings on the training set of the TIMIT dataset [Garofolo et al., 1993]. We extract all

triplets from the train set of the standard train/dev/test split. We then subsample randomly

10% of these triplets, and obtain 1.87m ABX triplets total, with 462 speakers.

We also evaluate out-of-domain performance across languages by testing our embeddings

on the Xitsonga dialect, on a subset of the NCHLT corpus [Vries et al., 2014]. This corpus

was used in the zerospeech 2015 challenge [Versteegh et al., 2015], and we will compare our

method to the best in-domain unsupervised system. The corpus used for evaluation contains

240k ABX triplets, for 24 speakers.

4.4.2 In-Domain Results

We present the ABX error rate of phone and/or speaker embeddings, each one on both

phone across speaker and speaker across phone task. Table 4.2 reports ABX error rates on

Librispeech on the speech features. The evaluation tasks are either ABX on phones across

speakers (phn) or ABX on speakers across phones (spk). “Siamese” and “Triamese” are

followed by the number of frames in an input stack. “Single” means that the phonetic and
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phone embed. speaker embed.
model task phn spk phn spk
MEL7 - 24.5 32.9 24.5 32.9
Siamese7 single 10.9 46.0 46.4 23.9

double 10.5 45.9 45.4 9.3
Siamese15 single 9.7 47.1 45.8 12.4

double 10.2 46.6 45.3 8.7
Triamese7 single 10.0 46.0 45.0 10.0

double 11.5 45.0 45.7 9.4
Triamese15 single 9.8 46.9 44.6 9.4

double 10.7 46.2 44.7 8.1

Table 4.2: In-domain ABX error rates (%) in the MEL setting.

speaker embeddings were trained separately in single output networks, whereas “double”

refers to a multi-task network. As a baseline, we also report the ABX errors on stacks of 7

mel-filterbanks frames, referred as MEL7, which were shown to give good results on TIMIT

in Chapter 3. In that case, the raw stack of mel-filterbanks is used both as direct phonetic

and speaker embeddings. Table 4.3 reports ABX error rates on Librispeech of models trained

on the raw waveform. The notations are the same, except that “small”, “medium”, and “big”

refer to the depth of the convolutional network.

In the MEL setting, and for all networks, the phone and speaker tasks show high discrim-

inability on their respective embeddings with an error rate around 10% (best score, respec-

tively of 9.7% and 8.7%). At the same time, the scores on the mismatched embeddings (pho-

netic embedding for a speaker task and speaker embedding for a phonetic task) are within

7% of the chance level. This means that the embeddings have learned to be discriminative

for their relevant task but also not to code the irrelevant one. This contrasts with the MEL7

input representations that encode both dimensions, as they are low-level features intended

to replicate perceptual representations for both speech and speaker recognition. Moreover,

even though comparisons are limited because the datasets are different, we achieve here a

level of disentanglement that was not reached by Synnaeve and Dupoux [2014], in which

phonetic embeddings had phonetic discriminability close to the mel-filterbanks (30.4% and

34.1% error respectively), and were less speaker-invariant than mel-filterbanks (30.8% and

38% error respectively).

In addition, we can see that the double embedding architectures do roughly as well as the

single ones, even though the former have to share most of the network’s weights for the two
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phone embed. speaker embed.
model network type task phn spk phn spk
MEL7 - - 24.5 32.9 24.5 32.9
Siamese small single 15.7 44.1 44.9 19.1

double 15.9 44 43.8 15.1
medium single 14 46.8 45.1 13.6

double 14.5 46.5 44.7 10.1
big single 19.8 48.1 45.1 10.1

double 20.5 48.2 44.7 7
Triamese small single 14 44.6 45.5 7.3

double 14.7 43.5 45.8 6.7
medium single 14.1 46.6 45.2 6.5

double 15.6 45.4 45.5 6
big single 20.4 47.7 44.9 6.3

double 22.3 46.8 45 5.6

Table 4.3: In-domain ABX error rates (%) in the WAV setting.

competing tasks. The speaker embedding (tested on the speaker task) seems to consistently

benefit from the double training regime compared to a network trained only on a single

task, these gains ranging from 0.6% to 14.5% (absolute). The phone tasks, in contrast, are

less consistently affected, some architectures showing a small gain and most others a small

cost. Finally, while there is no strong difference between the performance of a Siamese and

a Triamese network on the same task, the latter seems to bring some improvement to the

quality of speaker embeddings

In the WAV setting, the performance is more task-dependent. For the phonetic task,

depth helps from Small to Medium but then degrades as the architectures get deeper. As in

the MEL setting, we also observe a small increase in ABX error when comparing a single-task

architecture with its multi-task equivalent. The lowest ABX error is at 14%, which is signifi-

cantly worse than the best phonetic embedding of the MEL setting (9.7%). This corroborates

the observation made in Section 1.3 that mel-filterbanks are a very strong baseline for speech

recognition. On the other hand, the quality of speaker embeddings consistently improves

with depth, and still benefits of multi-task learning and using a Triamese architecture. The

best models show a performance that is significantly higher than the best MEL model, with

5.6% error against 8.1%. It is not trivial to compare the architectures between the WAV

and the MEL Settings, as one is fully connected and the other is convolutional, but in terms

of number of parameters and the time duration used to model a speaker, Table 4.4 shows
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model nb parameters spread (ms) ABX error (%)
Best 3.39M 267 5.6
Best small 2.27M 57 6.7
Best MEL 3.38M 165 8.1

Table 4.4: Number of parameters, size of time context (in miliseconds) and speaker
across phone ABX error (%) for the best model from the WAV setting, the best Small
model and the best model from the MEL setting.

phone embed. speaker embed.
model phn spk phn spk

Language: English (TIMIT)
MEL7 20.5 39.7 20.5 39.7
DNN supervised 9.2
Best ScatABnet 9.8
Tri15 (double) 10.3 47.9 43.4 14.2
Tri15 (single) 9.2 48.7
Best wav overall 12.7 45.9 38.4 25.8
Best wav phone 13.5 47.5

Language: Xitsonga (NCHLT)
MEL7 30.1 25.8 30.1 25.8
Best ScatABnet 15.8
Tri15 (double) 15.4 41.6 44.7 14.3
Tri15 (single) 15.5 42.6
Best wav overall 20.5 38.1 42.5 12
Best wav phone 20.2 42.1

Table 4.5: Out-of-domain ABX error rates (%) in the MEL and WAV settings.

that even with a spread that is three times lower and a number of parameters that is 33%

lower, a WAV model still performs significantly better than the best MEL model on the speaker

modelling task, with an ABX error of 6.7% against 8.1%.

4.4.3 Out-of-domain results

Table 4.5 reports out-of-domain ABX results on a different dataset in English (TIMIT)

and on a different language, Xitsonga. The results for Tri15 are obtained from extracting

output embeddings from a (single or double) Triamese neural network previously trained

on Librispeech. MEL7 is an untrained stacked filterbank baseline, and ScatABnet is the

best model from Chapter 3, either state-of-the art model for a weakly supervised siamese

architecture trained on the TIMIT or an unsupervised architecture trained on the Xitsonga
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dataset (respectively) using a deep scattering spectrum as input. For TIMIT, the DNN

“topline” is the output of a supervised neural network trained as a phone classifier on the

TIMIT train set [Synnaeve et al., 2014]. For reference, we show the same MEL7 baseline as

in the in-domain experiments.

In the MEL setting, models trained on Librispeech generalize well to TIMIT, showing that

the robustness of the representations. For both phonetic and speaker modelling tasks, the

models keep very good levels of discriminability and invariance on this new dataset. This is

particularly remarkable for the speaker modelling task, since the TIMIT train set contains

462 speakers, while there were only 40 speakers in the in-domain evaluation. Moreover,

models trained on English (Librispeech) generalize to Xitsonga, a language typologically

unrelated to English, containing a large array of consonants (54) including some click conso-

nants and a contrast between breathy and modal voiced consonants which is totally absent

in English. Third, these out-of-domain models happen to beat the previous in-domain state-

of-the-art that used a similar training scheme in terms of architectures and loss function.

On TIMIT, the single output triamese network trained on pairs of words has a phone across

speaker ABX of 9.2%, which is equivalent to the in-domain supervised phone classifier DNN.

In the WAV setting, we can observe that the transfer to another dataset does not exacer-

bate the gap in performance for the phonetic task, when compared to the MEL architectures.

The architectures trained on the waveform seem to generalize as well as the architectures

trained on features, showing an ABX error on TIMIT that is lower than the error on the

in-domain test-set. However, the speaker modelling task is considerably more impacted by

the transfer, and the WAV architecture shows a far poorer transfer than the MEL architecture

(25.8% ABX error, compared to 14.2%), even though the WAV models perform significantly

better on the speaker task in-domain.

When testing WAV architectures on Xitsonga, we can see that the results on the phonetic

task are coherent with the gap in performance we observed with the MEL architectures on both

Librispeech and TIMIT. However, we can observe that the architecture of the WAV setting

generalizes significantly better to the Xitsonga than the best performing architecture of the

MEL setting.
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Figure 4-4: Visualizations of what layers code through the network. The left barchart
is a phonetic modelling network, the middle barchart is a speaker modelling network,
and the right one is a multi-task network. In blue are units that code for the phonetic
information, in yellow, the speaker information, in green the units that code for both,
and in black the units that code for none.

4.5 Detailed analysis of discriminability and invari-

ance in the networks

In order to get a better understanding of what kind of information is encoded throughout

our convolutional networks trained on the waveform, we perform an ANOVA (analysis of

variance) [Fisher, 1925]. For each unit of each convolutional layer in our network, we com-

pute both its intra-class and inter-class variability along all sentences from the test set, for

both phonetic and speaker modelling. For instance, for the phonetic task, the intra-class

variability of a unit refers to the variance of its activations along all utterances of a same

phoneme. Its inter-class variability is computed as the variance of its intra-class means along

all phonetic classes. Taking the ratio of the inter-class variance and the intra-class variance

gives a score that indicates how much a unit codes for a particular task. The higher the

score, the more the unit reacts to a change of class for that task. Our boundaries to decide

for which task(s) a unit codes are defined as the median score for all units over all layers,

for each task. Then, for a given unit, if phonetic and speaker scores are respectively above

the phonetic and speaker median, the unit codes for both task. If only the phonetic score is

above its median, the unit codes for the phone, and conversely for the speaker. Finally, if

both scores are below the median, the unit is considered as coding for nothing.

Fig. 4-4 shows the results of this analysis on three networks trained in the WAV setting:

the first one is our best single-task architecture for the phonetic modelling, the second one

is the best single-task architecture for the speaker modelling, and finally the last one is
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the best multi-task architecture (in the sense that the average of its phonetic and speaker

ABX errors is the lowest). The various statistics (intra-class and inter-class variability) are

computed across these three architectures jointly. First, we can see that in each of the three

architectures, the first layer codes for nothing. We can interpret it in the sense that the

waveform is such a raw representation of speech that the first layer of the network might

systematically perform low-level processing that can not directly be linked to speech or

speaker modelling. In higher layers, differences between models emerge. For the single-

task phonetic network, we can see that the speaker information is removed as soon as the

second layer, and the final output almost purely models phonetic classes. On the other

hand, single-task speaker network keeps phonetic information up to several layers and then

outputs an embedding that purely encodes speaker information (100 units out of 100). This

asymmetry between tasks can be related to the successful use of posteriors from neural

networks trained for ASR to compute i-vectors for speaker identification [Lei et al., 2014,

Sadjadi et al., 2016]. As i-vectors are used to model a speaker by shifts in phonetic classes, it

is possible that our neural network learns speaker representations from phonetic information.

This can explain why multi-task learning benefits the speaker modelling task and does not

benefit the phonetic modelling task: phonetic features are useful for learning good speaker

representations, while the usefulness of speaker related information for phonetic modelling is

less obvious according to our analysis. Finally, the analysis of the multi-task network shows

that as we go deeper, the layers model both tasks more and more, and that both output

embeddings are very pure for their task.

4.6 Conclusion

We have demonstrated that a siamese or triamese architecture, together with a weak super-

vision using only same-different information regarding word and speaker identity can learn

embeddings that are very selective in one dimension and invariant in the other: indeed, our

best embeddings showed around a 6 − 10% error rate in one task and near chance in the

other. Moreover, we showed that it was possible to learn these two orthogonal embeddings

from one network, and without speech features, thereby demonstrating effective disentan-

glement of phoneme and speaker information from the raw waveform. Finally, we showed

that these disentangling networks could generalize to out-of-domain datasets (a different
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English dataset, and a different, under-resourced, language), even beating the in-domain

state-of-the-art. This shows that transfer learning is a promising avenue for exploiting data

from high-resource languages to benefit low-resource ones.

In detail, the multi-task networks differed somewhat from the single-task ones. In par-

ticular, whereas the speaker task benefited consistently from the joint training, this was not

the case for the phone task. A thorough ANOVA study on our trained systems showed

that a model trained for speaker modelling observed would model the phonetic content up

to high-level layers, while a model trained for phonetic modelling would remove speaker

information in early layers. Both the ABX errors and the ANOVA corroborate the previ-

ous observation that speaker identification systems improve their performance by using side

phonetic/linguistic information while the benefit of adding speaker information to state of

the art ASR has been more elusive.

We also compared models trained on the waveform and on mel-filterbanks. We observed

that even though models trained on the waveform produced significantly worse phonetic

embeddings, they were particularly adapted to speaker modelling, yielding excellent em-

beddings even with a context size as small as 57ms, while speaker verification systems are

typically trained on segments of hundreds to thousands of miliseconds. Adding a weight-

ing factor to the speaker loss, relatively to the phonetic loss, could rebalance the overall

performance of the system over the two tasks, and improve the phonetic discriminability

of the learnt representation. Our findings are consistent with the hypothesis we formu-

lated in Section 1.4: mel-filterbanks are likely biased in favor of speech recognition rather

than paralinguistic tasks (including speaker identification). This is also supported by the

higher phonetic discriminability of the MEL7 baseline (24.5%) than speaker discriminability

(32.9%).

However, these experiments lack the sufficient rigor to make a definitive conclusion on

which input representation, of the waveform or the mel-filterbanks, is more adapted to one

task or the other. Indeed, even though we control for the number of parameters in our neural

networks, their architectures (convolutional or fully connected, choice of activation function,

number of layers, etc.) are too different to guarantee that the differences in performance

between the WAV and MEL settings are only due to the input representation, or are artifacts

of the aforementioned confounding factors. This uncertainty also holds for the experiments

of Chapter 3, as the higher dimension of the deep scattering spectrum (relatively to mel-
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filterbanks) naturally increases the expressivity of the Siamese network trained on top of this

representation. Finally, we are not satisfied with the gap in quality of phoneme embeddings

between the WAV and MEL settings, and will thus explore furthermore speech recognition from

the raw waveform in the next sections.
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Part III

Learning the speech front-end for

speech recognition and paralinguistic

tasks
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I would ask, why use the Mel scale now, since

it appears to be biased? If anyone wants a

Mel scale they should do it over, controlling

carefully for order bias and using plenty of

subjects − more than in the past − and

using both musicians and non-musicians to

search for any differences in performance that

may be governed by musician/non-musician

differences or subject differences generally.

Donald D. Greenwood
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Chapter 5

Time-Domain filterbanks: a learnable

frontend of speech

This chapter is based on Learning Filterbanks from Raw Speech for Phone Recognition [Zeghi-

dour et al., 2017], accepted for poster presentation at ICASSP 2018, and a joint work

with Nicolas Usunier, Iasonas Kokkinos, Thomas Schatz, Gabriel Synnaeve and Emmanuel

Dupoux.

5.1 Introduction

In Chapter 3, we conducted a comparative study of speech features on phonetic modelling

and showed that this design choice had a significant impact on the performance of the final

system. To circumvent this selection step, as well as inherent limitations of fixed features

exposed in Section 1.2, we then decided to experiments with models that can learn their

low-level representations directly from the raw waveform, jointly with the main architecture.

These encouraging results lead us to keep exploring the idea of replacing mel-filterbanks by

neural layers, however the limitations of the models and experimental protocol developed

in Chapter 4 also incite us to add more constraints to our learnable alternative. First, it

should have an equivalent structure to mel-filterbanks (number of filters, capacity, context

size, context stride) in order to compare the learnt and fixed approaches without any con-

founding factor. Moreover, the gap in quality between phonetic embeddings learned from

mel-filterbanks or the waveform suggests that we should carefully study the computation of
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mel-filterbanks to guarantee that their essential components are integrated into our neural

frontend. These two insights drive the design of our learnable architecture, the Time-Domain

filterbanks, that we introduce in this Chapter.

Sharing this idea of taking inspiration from the computation of mel-filterbanks, Tjandra

et al. [2017a] pre-train 9 layers of convolutions (including Network-in-Network layers [Lin

et al., 2013]) to reconstruct mel-filterbanks, and then use them as the lower layers of an end-

to-end sequence-to-sequence system. This allows outperforming mel-filterbanks on a speech

recognition task, however these experiments suffer from the same confounding factors as our

experiments in Chapter 4. Indeed, even though these layers of convolutions are pre-trained

to reconstruct mel-filterbanks, they are then fine-tuned with the rest of the network, to which

they add a lot of capacity. This explains how this approach outperforms mel-filterbanks, as

mel-filterbanks involve way fewer operations than these convolutional layers.

We also focus on mel-filterbanks because they are the front-end of state-of-the-art phone

[Tóth, 2015] and speech [Han et al., 2017, Xiong et al., 2016] recognition systems. As

in Chapter 3, we build on [Andén and Mallat, 2014]. However, in that Part we are not

interested in the derivation of a deep scattering spectrum, but rather on the first-order

scattering transform. Indeed, in Section 3.3, we briefly mention that a scattering transform

approximates mel-filterbanks in time-domain when it is defined with an appropriate bank of

filters. By constructing a neural network that computes a scattering transform, the Time-

Domain filterbanks, we adress all the aforementioned limitations of our previous approach.

First, a scattering transform moves the standard computation of mel-filterbanks to the

time-domain, and thus works directly on the waveform. Moreover, as shown in the next

Section, the number of operations, as well as the structure of a scattering transform is

equivalent to mel-filterbanks, which addresses the capacity problem. Finally, initializing our

neural layers with an actual scattering transform allows us to approximate mel-filterbanks

before training, while being able to fine-tune the frontend during training. This leads us to

study an architecture using a convolutional layer with complex-valued weights, followed by a

modulus operator and a low-pass filter. In contrast to [Tjandra et al., 2017a], Time-Domain

filterbanks are a lightweight architecture that serves as a plug-in, learnable replacement to

mel-filterbanks in deep neural networks. Moreover, we avoid pretraining by initializing the

complex convolution weights with Gabor wavelets whose center frequency and bandwidth

match those of mel-filterbanks.
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Figure 5-1: Frequency response of filters, and output of mel-filterbanks and their
time-domain approximation on a sentence of TIMIT.

In the next Section, we derive the Time-Domain filterbanks, in terms of network archi-

tecture, filters specifications, and choice of initialization. Based on the observation, made

in sections 1.2 and 1.3, that Automatic Speech Recognition (ASR) could benefit from learn-

ing from the waveform, we perform phone recognition experiments on TIMIT as a proof of

concept for Time-Domain filterbanks. We show that given competitive end-to-end models

trained with mel-filterbanks as inputs, training the same systems but just replacing the

mel-filterbanks with the learnable architecture leads to performances that are consistently

better than when using mel-filterbanks.

5.2 Time-Domain filterbanks

We present the standard mel-filterbanks and their practical implementation. We then de-

scribe a learnable replacement of mel-filterbanks that uses only convolution operations in

time domain, and how to set the weights to reproduce mel-filterbanks.
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5.2.1 Mel-filterbanks computation

Given an input signal 𝑥, mel-filterbanks are computed by first taking the short-time Fourier

transform (STFT) of 𝑥 followed by taking averages in the frequency domain according to

triangular filters with centered frequency and bandwidth that increase linearly in log-scale.

More formally, let 𝜑 be a Hann window of width 𝑠 and (𝜓𝑛)𝑛=1..𝑁 be 𝑁 filters whose squared

frequency response are triangles centered on (𝜂𝑛)𝑛=1..𝑁 with full width at half maximum

(FWHM) (𝑤𝑛)𝑛=1..𝑁 . Denoting by 𝑥𝑡 : 𝑢 ↦→ 𝑥(𝑢)𝜑(𝑡 − 𝑢) the windowed signal at time

step 𝑡, and 𝑓 the Fourier transform of function 𝑓 , the filterbank is the set of 𝑁 functions

(𝑡 ↦→𝑀𝑥(𝑡, 𝑛))𝑛=1..𝑁 :

𝑀𝑥(𝑡, 𝑛) =
1

2𝜋

∫︁
|�̂�𝑡(𝜔)|2|𝜓𝑛(𝜔)|2𝑑𝜔 , (5.1)

One can observe that this formula does not include the log-compression. This is due to

the fact that we can simply include a log non-linearity of our learnable frontend to replicate

it, so there is no need of approximating this operation.

5.2.2 Approximating mel-filterbanks with convolutions in time

Andén and Mallat [2014] show that these standard mel-filterbanks computed in the frequency

domain can be approximated with a first order scattering transform (see Section II of [Andén

and Mallat, 2014] for a proof):

𝑀𝑥(𝑡, 𝑛) ≈ |𝑥 * 𝜙𝑛|2 * |𝜑|2(𝑡). (5.2)

where 𝜙𝑛 is a wavelet that approximates the 𝑛-th triangular filter in frequency, i.e. |𝜙𝑛|2 ≈
|𝜓𝑛|2, while 𝜑(𝑡) is the Hann window also used for the mel-filterbanks. The approximation

is valid when the time support of 𝜙𝑛 is smaller than that of 𝜑.

As described in Section 3.3, this approximation is the foundation of the deep scatter-

ing spectrum [Andén and Mallat, 2014], which cascades scattering transforms to retrieve

information that is lost in the mel-filterbanks. However, in this part, we do not use the

deep scattering spectrum. Rather, first-order scattering coefficients provide us with both a

design for the first layers of the network architecture to operate on the waveform, and an

initialization that approximates mel-filterbanks.
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Given the mel-filterbanks center frequencies (𝜂𝑛)𝑛=1..𝑁 and FWHM (𝑤𝑛)𝑛=1..𝑁 , we use

(5.2) to approximate mel-filterbanks with Gabor wavelets:

𝜙𝑛(𝑡) ∝ 𝑒−2𝜋𝑖𝜉𝑛𝑡 1√
2𝜋𝜎𝑛

𝑒
− 𝑡2

2𝜎2
𝑛 . (5.3)

Each 𝜙𝑛 is a Gaussian 𝒩 (0, 𝜎𝑛) modulated by a sinusoid of frequency 𝜉𝑛. In the Fourier

domain this product becomes a convolution between a Gaussian 𝒩 (0, 𝜎−1
𝑛 ) and a Dirac in

𝜉𝑛, which yields a Gaussian 𝒩 (𝜉𝑛, 𝜎
−1
𝑛 ). We can thus choose 𝜉𝑛 and 𝜎𝑛 such that the fre-

quency response of the Gabor 𝜙𝑛 matches the corresponding mel-filterbank (approximating

a triangular response by a Gaussian one). Since 𝜙𝑛 is centered in 𝜉𝑛, and we want it to

match a mel-filter centered in 𝜂𝑛, we simply choose 𝜉𝑛 = 𝜂𝑛. Similarly, we want to set the

width parameter 𝜎𝑛 of the Gabor wavelet to match the desired FWHM 𝑤𝑛. The FWHM

of a Gaussian 𝒩 (𝜉𝑛, 𝜎
−1
𝑛 ) is equal to 2

√
2 log 2𝜎−1

𝑛 , so to have 2
√
2 log 2𝜎−1

𝑛 = 𝑤𝑛, we take

𝜎𝑛 = 2
√
2 log 2
𝑤𝑛

.

Each 𝜙𝑛 is then normalized to have the same energy as 𝜓𝑛. Figure 5-1 (a) shows in

frequency-domain the triangular averaging operators of usual mel-filterbanks and the corre-

sponding Gabor wavelets. Figures 5-1 (b) and (c) compare the 40-dimensional spectrograms

of the mel-filterbanks and the Gabor wavelet approximation on a random sentence of the

TIMIT corpus after mean-variance normalization, showing that the spectrograms are simi-

lar.

Mel-filterbanks specification. The standard setting in speech recognition is to start from

the waveform sampled at 16kHz and represented as 16-bit signed integers. The STFT is

computed with 512 frequency bins using Hann windows of width 25ms, and decimation is

applied by taking the STFT every 10ms. There are 𝑁 = 40 filters, with center frequencies

(𝜂𝑛)𝑛=1..𝑁 that span the range 64𝐻𝑧 − 8000𝐻𝑧 by being equally spaced on a mel-scale.

The final features are the log(max(𝑀𝑥(𝑡, 𝑛), 1)). In practice, the STFT is applied to the

raw signal after a pre-emphasis with parameter 0.97, and coefficients have mean-variance

normalization per utterance.

Learnable architecture specification. The time-domain convolutional architecture is

summarized in Table 5.1. With a waveform sampled at 16kHz, a Hann window is a con-

volution operator with a span of 𝑊 = 400 samples (25ms). Since the energy of the Gabor

wavelets approximating standard mel-filterbanks has a time spread smaller than the Hann
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Layer type Input size Output size Width Stride

Conv. 1 80 400 1
L2-Pooling 80 40 - -
Square - - - -
Grouped conv. 40 40 400 160
Absolute value - - - -
Add 1, Log - - - -

Table 5.1: Details of the layers for the Time-Domain filterbanks.

window, the complex wavelet+modulus operations |𝑥 * 𝜙𝑛|2 are implemented as a convo-

lutional layer taking the raw wav as input, with a width 𝑊 = 400 and 2𝑁 = 80 filters

(40 filters for the real and imaginary parts respectively). This layer is on the top row of

Table 5.1. The modulus operator is implemented with “feature L2 pooling”, a layer taking

an input 𝑧 of size 2𝑁 and outputs 𝑧′ of size 𝑁 such that 𝑧′𝑘 =
√︁
𝑧22𝑘−1 + 𝑧22𝑘. The windowing

layer (third row of Table 5.1) is a grouped convolution, meaning that each output filter only

sees the input filter with the same index. The decimation of 10ms is implemented in the

stride of 160 of this layer. Notice that to approximate the mel-filterbanks, the square of the

Hann window is used and biases in both convolutional layers are set to zero. We keep them

to zero during training. We add a log compression to the output of the grouped convolution

after adding 1 to its absolute value since we do not have positivity constraints on the weights

when learning. Contrarily to the mel-filterbanks, there is no mean-variance normalization

after the convolutions, but on the waveform. In the default implementation of the Time-

Domain filterbanks, we do not apply pre-emphasis. However, in our last experiment, we

add a convolutional layer below the Time-Domain filterbanks, with width 2 and stride 1,

initialized with the pre-emphasis parameters, as another learnable component.

5.3 Experiments

5.3.1 Setting

We perform phone recognition experiments on TIMIT [Garofolo et al., 1993] using the

standard train/dev/test split. We train and evaluate our models with 39 phonemes, following

the protocol of Lee and Hon [1988]. We experiment with three architectures. The first one
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Learning mode Dev PER Test PER

mel-filterbanks 17.8 20.6

Fixed 18.3 21.8
Learn-all 17.4 20.6
Learn-filterbank 17.3 20.3
Randinit 29.2 31.7

Table 5.2: PER of the CNN-5L-ReLU-do0.7 model trained on mel-filterbanks and
different learning setups of Time-Domain filterbanks.

consists of 5 layers of convolution of width 5 and 1000 feature maps, with ReLU activation

functions, and a dropout [Hinton et al., 2012b] of 0.5 on every layer but the input and output

ones. The second model has the same architecture but a dropout of 0.7 is used. The third

model has 8 layers of convolution, PReLU [He et al., 2015] nonlinearities and a dropout of 0.7.

All our models are trained end-to-end to predict the full phonetic transcription at once, with

the Autoseg criterion [Collobert et al., 2016], using stochastic gradient descent. We compare

all models using either the baseline mel-filterbanks as input or our learnable Time-Domain

filterbanks front-end. We perform the same grid-search for both mel-filterbanks baselines and

models trained on Time-Domain filterbanks, using learning rates in (0.0003, 0.003) for the

model and learning rates in (0.03, 0.003) for the Autoseg criterion, training every model for

2000 epochs. We use the standard dev set for early stopping and hyperparameter selection.

5.3.2 Different types of Time-Domain filterbanks

Throughout our experiments, we tried four different settings for the Time-Domain filterbanks

layers:

∙ Fixed: Initialize the layers to match mel-filterbanks and keep their parameters fixed

when training the model

∙ Learn-all: Initialize the layers and let the filterbank and the averaging be learned

jointly with the model

∙ Learn-filterbank: Start from the initialization and only learn the filterbank with the

model, keeping the averaging fixed to a squared Hann window

∙ Randinit: Initialize the layers randomly and learn them with the network
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Model Input Dev PER Test PER

Hybrid HMM/CNN + Maxout [Tóth, 2015] mel + ∆ + ∆∆ 13.3 16.5
Wavenet [Van Den Oord et al., 2016] wav - 18.8

CNN + CRF on raw speech [Palaz et al., 2013a] wav - 29.2
CNN-Conv2D-10L-Maxout [Zhang et al., 2017] mel 16.7 18.2
Attention-based model [Chorowski et al., 2015] mel + ∆ + ∆∆ 15.8 17.6
LSTM + Segmental CRF [Lu et al., 2016] mel + ∆ + ∆∆ - 18.9
LSTM + Segmental CRF [Lu et al., 2016] MFCC + LDA/MLLT/MLLR - 17.3

CNN-5L-ReLU-do0.5 mel 18.4 20.8
CNN-5L-ReLU-do0.5 + TD-filterbanks wav 18.2 20.4

CNN-5L-ReLU-do0.7 mel 17.8 20.6
CNN-5L-ReLU-do0.7 + TD-filterbanks wav 17.3 20.3

CNN-8L-PReLU-do0.7 mel 16.2 18.1
CNN-8L-PReLU-do0.7 + TD-filterbanks wav 15.6 18.1
CNN-8L-PReLU-do0.7 + TD-filterbanks + preemp wav 15.6 18.0

Table 5.3: PER (Phone Error Rate) on TIMIT, in percentages. “mel” stands for mel-
filterbanks, while “TD-filterbanks” stands for Time-Domain filterbanks. All models
but [Tóth, 2015] and [Van Den Oord et al., 2016] are trained in an end-to-end fashion.

Table 5.2 shows comparative performance of an identical architecture trained on the four

types of Time-Domain filterbanks. We can observe that training on fixed layers moderately

worsens the performance, we hypothesize that this is due to the absence of mean-variance

normalization on top of Time-Domain filterbanks as is performed on mel-filterbanks (we will

integrate this normalization to our learnable frontend in Chapter 6). A striking observation

is that a model trained on Time-Domain filterbanks initialized randomly performs consid-

erably worse than all other models. This shows the importance of the Gabor initialization.

Finally, we observe better results when learning the filterbank only compared to learning the

filterbank and the averaging but depending on the architecture it was not clear which one

performs better. Moreover, when learning both complex filters and averaging, we observe

that the learned averaging filters are almost identical to their initialization. Thus, in the

following experiments, we choose to use the Learn-filterbank mode for the Time-Domain

filterbanks.

5.3.3 Results

We report PER on the standard dev and test sets of TIMIT. For each architecture, we can

observe that the model trained on Time-Domain filterbanks systematically outperforms the

equivalent model trained on mel-filterbanks, even though we constrained our Time-Domain
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filterbanks such that they are comparable to the mel-filterbanks (number of filters, window

size, window stride). This shows that by only learning a new bank of 40 filters, we can

outperform the mel-filterbanks for phone recognition. This gain in performance is obtained

at a minimal cost in terms of number of parameters: even for the smallest architecture,

the increase in number of parameters in switching from mel-filterbanks to Time-Domain

filterbanks is 0.31%. We also compare to baselines from the literature. One baseline trained

on the waveform gets a PER of 29.1% on the test set, which is in a range 8.8% − 11.1%

absolute above our models trained on the waveform. The Wavenet architecture, also trained

on the waveform, yields a PER of 18.8, which is higher than our best models despite the fact

that it uses the phonetic alignment from an HMM, and an auxiliary prediction loss. Our best

model on the waveform also outperforms a 2-dimensional CNN trained on mel-filterbanks

and an LSTM trained on mel-filterbanks with derivatives.

5.4 Adding a learnable pre-emphasis layer

As described in Section 1.2.1, the first step in the computation of mel-filterbanks is typically

the application of a pre-emphasis layer to the raw signal. Pre-emphasis is a convolution with

a first-order high-pass filter of the form 𝑦[𝑛] = 𝑥[𝑛] − 𝛼𝑥[𝑛 − 1], with 𝛼 typically equal to

0.97. This operation can be performed by a convolutional layer of kernel size 2 and stride

1, that can be plugged below time-domain filterbanks, initialized with weights [−0.97 1],

then learned with the network. By adding this learnable pre-emphasis layer below the Time-

Domain filterbanks, and learning it jointly with the complex convolution, the lowpass filter,

and the rest of the acoustic model we reach 18% PER on the test set.

5.5 Analysis of learnt filters

We analyze filters learned by the first layer of the CNN-8L-PReLU-do0.7 + Time-Domain

filterbanks model. Examples of learned filters are shown in Figure 5-2. The magnitude of

the frequency response for each of the 40 filters is plotted in Figure 5-3. Overall, the filters

tend to be well localized in time and frequency, and a number of filters became asymmetric

during the learning process, with a sharp attack and slow decay of the impulse response.

This is a type of asymmetry also found in human and animal auditory filters estimated from
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Figure 5-2: Examples of learnt filters. Filters’ real parts in blue; imaginary part in
red.

behavioral and physiological data [Smith and Lewicki, 2006]. In Figure 5-3, we further see

that the initial mel-scale of frequency is mostly preserved, but that a lot of variability in the

filter bandwidths is introduced.

A prominent question is whether the analyticity of the initial filterbank is preserved

throughout the learning process even though nothing in our optimization method is biased

towards keeping filters analytic. A positive answer would suggest that complex filters in

their full generality are not necessary to obtain the increase in performance we observed.

This would be especially interesting because, unlike arbitrary complex filters, analytic filters

have a simple interpretation in terms of real-domain signal processing: taking the squared

modulus of the convolution of a real signal with an analytic filter performs a sub-band

Hilbert envelope extraction [Flanagan, 1980].

A signal is analytic if and only if it has no energy in the negative frequencies. Accordingly,

we see in Figure 5-3 that there is zero energy in this region for the initialization filterbank.

After learning, a moderate amount of energy appears in the negative frequency region for

certain filters. To quantify this, we computed for each filter the ratio 𝑟𝑎 between the energy

in negative versus positive frequency components 1. This ratio is 0 for a perfectly analytic

filter and 1 for a purely real filter. We find an average 𝑟𝑎 for all learned filters of .26.

1Our model cannot identify if a given filter plays the role of the real or imaginary part in the
associated complex filter. We chose the assignment yielding the smallest 𝑟𝑎.
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Figure 5-3: Heat-map of the magnitude of the frequency response for initialization
filters (left) and learned filters (right).

Filters with significant energy in negative frequencies are mostly filters with an intermediate

preferred frequency (between 1000Hz and 3000Hz) and their negative frequency spectrum

appears to be essentially a down-scaled version of their positive frequency spectrum.

5.6 Conclusion

In this chapter, we introduced Time-Domain filterbanks, a lightweight architecture which, at

initialization, approximates the computation of mel-filterbanks and can then be fine-tuned

with an end-to-end phone recognition system. With a number of parameters comparable

to standard mel-filterbanks, a Time-Domain filterbanks front-end is consistently better in

our experiments. Learning all linear operations in the mel-filterbanks derivation, from pre-

emphasis up-to averaging provides the best model. However, phonetic recognition on TIMIT

could be labeled as a “toy” task, and we are yet to show the performance of Time-Domain

filterbanks on a real speech recognition task. Moreover, we would like to benchmark our

learnable frontend against other models from the literature. This is why in Chapter 6, we

perform large scale experiments with Time-Domain filterbanks to test if a new state-of-the-

art can be achieved by training from the waveform.
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Chapter 6

End-to-End Speech Recognition from

the Raw Waveform

This chapter is based on End-to-end Speech Recognition from the Raw Waveform [Zeghidour

et al., 2018a], accepted for poster presentation at Interspeech 2018, and a joint work with

Nicolas Usunier, Gabriel Synnaeve, Ronan Collobert and Emmanuel Dupoux.

6.1 Introduction

In the previous chapter, we showed promising results on a phone recognition task on TIMIT.

However, TIMIT is a small dataset and its test set only contains 192 sequences. This

dampens the significance of the differences in performance that we observe. Moreover, and

as explained in Section 1.3, models trained on the raw waveform have not been proven to

improve on speech features on large-scale, end-to-end speech recognition in clean recording

conditions on English – admittedly one of the tasks for which mel-filterbanks have been the

most extensively tuned. This is why we are interested in performing experiments at a larger

scale.

Hoshen et al. [2015] and Sainath et al. [2015a] proposed a learnable frontend inspired

by gammatone filterbanks [Schlüter et al., 2007], which achieved similar or better results

than comparable mel-filterbanks on multichannel speech recognition and on far-field/noisy

recording conditions. Noticing the analogies between the model proposed by Hoshen et al.

[2015] and Sainath et al. [2015a] (that we will refer to as “gammatone-based frontend” to
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avoid any confusion with fixed gammatone filterbanks), we present a systematic comparison

of these two learnable frontends, and evaluate them against mel-filterbanks within an end-

to-end training pipeline on the Wall Street Journal dataset. Our main contributions and

results are the following:

1. A mean-variance normalization layer on top of the log nonlinearity of learnable filter-

banks appears to be critical for the efficient learning of the gammatone-based archi-

tecture, and makes the training of Time-Domain filterbanks faster;

2. The low-pass filter previously used in the Time-Domain filterbanks stabilizes the train-

ing of the gammatone-based frontend, compared to the max-pooling that was origi-

nally proposed by Hoshen et al. [2015] and Sainath et al. [2015a];

3. For Time-Domain filterbanks, keeping the low-pass filter fixed during training allows

to efficiently learn the filters from a random initialization, whereas the results of

Chapter 5 with random initialization of both the filters and the low-pass filter showed

poor performances compared to a suitable initialization;

4. With these modifications, both frontends improve against the mel-filterbanks baseline

on Word Error Rate on the Wall Street Journal dataset, in similar conditions (same

number of filters, same end-to-end training convolutional architecture). This is the

first time learnable filterbanks improve against a strong mel-filterbanks baseline on a

large vocabulary, speech recognition task under clean recording conditions.

The next section describes the learnable frontend architectures. Then, we present the

end-to-end convolutional architecture used to perform the comparisons, and analyze the

results of our comparative studies.

6.2 Time-Domain filterbanks and gammatone-based

frontend

In this chapter we compare Time-Domain filterbanks to the gammatone-based frontend from

Hoshen et al. [2015] and Sainath et al. [2015a]. They are described side-by-side in Table 6.1.

These two frontends can be used as a direct replacement for mel-filterbanks in any

learning pipeline: they are convolutional architectures that take the raw waveform as input
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td-filterbanks gammatone-based

Conv 1-80-400-1 1-40-400-1
(#in-#out-width-stride)

non-linearity sq. L2-Pooling ReLU
low-pass filter sq. Hann max-pooling
(wdth=400, strd=160) or sq. Hann
log-compression log(1+abs(.)) log(0.01+abs(.))

normalization mean-var. per-channel per-sentence

Table 6.1: Architectures of the two trainable filterbanks. Values of width and strides
are given to match the standard settings of mel-filterbanks for waveform sampled
at 16kHz. The convolution for the scattering-based architecture uses 80-real val-
ued output channels and squared L2-pooling on the feature dimension to emulate a
complex-valued convolution with 40 filters followed by a squared modulus operator.
Thus, after the nonlinearity, both architectures have 40 filters. In Chapter 5, we use
1 to prevent log(0) and Hoshen et al. [2015] and Sainath et al. [2015a] use 0.01. We
kept the values initially used by the authors of the respective contributions and did
not try alternatives. We believe it has little impact on the final performance.

and output 40 channels every 10ms. In both cases, they can directly be compared with

standard mel-filterbanks, simply by changing the features stage of a neural-network-based

acoustic model. The filters are then nothing more than an additional layer to the neural

network and are learnt by backpropagation with the rest of the acoustic model.

In both architectures, a convolutional layer with window length 25ms (to match the

standard frame size used in mel-filterbanks) is applied with a stride of 1 sample, and is

followed by a nonlinearity to give 40 output channels for each sample. Then, a pooling

operator of width 25ms with a stride of 10ms performs low-pass filtering and decimation.

Finally, a log non-linearity reproduces the dynamic range compression of mel-filterbanks.

The parameters to be learnt are the convolution filters, and possibly the weights of the

low-pass filters.

The two architectures differ by the choices of each layer of computation. Time-Domain

filterbanks use 40 complex-valued filters with a square modulus operator as non-linearity.

Low-pass filtering is then performed by multiplying each output channel by a squared Hann

window so that, when using suitable Gabor wavelets as convolution filters, the architecture

closely approximates mel-filterbanks computed on the power spectrum. Hoshen et al. and

Sainath et al. use 40 real-valued filters with ReLU non-linearity, and rely on gammatones
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as filter values to approximate mel-filterbanks [Hoshen et al., 2015, Sainath et al., 2015a].

In their work, they use a max-pooling operator for low-pass filtering.

The number of filters (40), the convolution and pooling width of 25ms, as well as the

decimation of 10ms are not necessarily the optimal parameters of either trainable archi-

tecture, but these are the standard settings of mel-filterbanks (and likely the best settings

for these features on standard speech recognition datasets). We keep these values fixed for

the trainable architectures, so that the comparison to mel-filterbanks is carried out in the

setting most favorable for the non-learnable baseline.

In the next subsections, we describe the improvements we propose for these architectures:

the low-pass filter and the addition of instance normalization.

6.2.1 Low-pass filtering

Time-Domain filterbanks use a squared Hann window per channel as a low-pass filter,

whereas the original papers describing the gammatone-based frontend used a max-pooling.

To make sure the low-pass filter is not responsible for notable differences between the two

approaches we experiment with the squared Hann window on both architectures. For both

architectures, we also propose to keep this low-pass filter fixed when learning the convolu-

tion filter weights from a random initialization, a setting that was not explored in Chapter

5, in which we also randomly initialized the second convolutional layer of Time-Domain

filterbanks.

6.2.2 Instance normalization

More importantly, we noticed that a per-channel per-sentence mean-variance normalization

after log-compression is important for the baseline mel-filterbanks. Consequently, we propose

to add a mean-variance normalization layer on both trainable architectures, performed for

each of the 40 channels independently on each sentence. Coincidently, this corresponds to

an instance normalization layer [Ulyanov et al., 2016], which has been shown to stabilize

training in other deep learning contexts.
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Figure 6-1: Training Letter Error Rate (LER) for the same acoustic model trained ei-
ther on the gammatone-based frontend (left) or the Time-Domain filterbanks (right),
with and without instance normalization.

6.3 Experimental setup

The experiments compare different versions of the learnable frontends against mel-filterbanks,

on a single deep convolutional network architecture for the acoustic model. The experiments

are carried out on the open vocabulary task of the Wall Street Journal dataset [Paul and

Baker, 1992], using the subset si284 for training, nov93-dev for validation, and nov92-eval

for testing. Training is performed end-to-end on letters. We evaluate in both Letter and

Word Error Rates. All our experiments use the open source code of wav2letter [Collobert

et al., 2016]. In the next subsections, we describe the model, the different variants we tested

and the hyperparameters.

6.3.1 Acoustic model

Taking either mel-filterbanks or a learnable frontend as input, the acoustic model is a con-

volutional network with gated linear units (GLU) [Dauphin et al., 2017] trained to predict

sequences of letters with the ASG loss function [Collobert et al., 2016], following Liptchinsky

et al. [2017]. The model is a smaller version of the convolutional network used by Liptchin-

sky et al. [2017] since they train on the larger LibriSpeech dataset. Using the syntax C-input

channels-output channels-width, the architecture we use has the structure C-40-200-13/C-

100-200-3/C-100-200-4/C-100-250-5/C-125-250-6/C-125-300-7/C-150-350-8/C-175-400-9/
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C-200-450-10/C-225-500-11/C-250-500-12/C-250-500-13/C-250-600-14/C-300-600-15/C-300-

750-21/C-375-1000-1. All convolutions have stride 1. The number of input channels of the

𝑛+1th convolution is half the size of the output of the 𝑛-th convolution because of the GLU.

There are GLU layers with a dropout [Hinton et al., 2012b] of 0.25 after each convolution

layer. There is an additional linear layer to predict the final letter probabilities. When

predicting letters, the training and decoding are performed as in [Liptchinsky et al., 2017].

When predicting words, we use a 4-gram language model trained on the standard LM data

of WSJ [Paul and Baker, 1992] and perform beam search decoding, as in [Liptchinsky et al.,

2017].

6.3.2 Variants

We compare the two architectures of learnable frontends along different axes: how to initial-

ize the convolutions of the learnable frontend, the low-pass filter, and instance normalization.

Time-domain filterbanks

Initialization of the convolution weights random (rand), or Gabor filters (scatt) as de-

scribed in Section 5.2.2;

Low-pass filter the squared Hann window (Hann-fixed), or a low-pass filter of same width

and stride initialized with the weights of the squared Hann window but the weights

are then learnt by backpropagation (Hann-learnt).

Gammatone-based frontend

Initialization of the convolution weights random (rand), or with gammatone filters

(gamm) that match the impulse response of a reference open source implementation

of gammatones [gam];

Low-pass filter max-pooling as in [Hoshen et al., 2015], or the squared Hann window

(Hann-fixed).
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6.3.3 Hyperparameters and training

For models trained on the raw waveform, the signal was first normalized with mean-variance

normalization by sequence. The network is trained with stochastic gradient descent and

weight normalization [Salimans and Kingma, 2016] for all convolutional layers except the

front-ends. First, 80 epochs are performed with a learning rate of 1.4, then training is re-

sumed for 80 additional epochs with a learning rate of 0.1. These hyperparameters were

chosen from preliminary experiments as they seemed to work well for all architectures. Ad-

ditional hyperparameters are the momentum and the learning rate for the training criterion,

respectively chosen in {0, 0.9} and {0.001, 0.0001} [Collobert et al., 2016, Liptchinsky et al.,

2017].

For Letter Error Rate (LER) evaluations, the hyperparameters are selected using the

LER on the validation set, validating every epoch. For Word Error Rate (WER) evaluations,

the hyperparameters are chosen on the validation set using the WER, validating every

10 epochs. The model selected on LER is also included for validation. The additional

hyperparameters are the weight of the language model and the weight of word insertion

penalty (see [Liptchinsky et al., 2017] for details). We set them between 5 and 8 by steps

of 0.5, and between −2 and 0.5 by steps of 0.1, respectively. For hyperparameter selection,

the beam size of the decoder is set to 2, 500; the final performances are computed with the

selected hyperparameters but using a beam size of 25, 000.

6.4 Experiments

6.4.1 Baseline results

Table 8.2 contains our results together with end-to-end baselines from the literature. [Chan

and Lane, 2015] is the current state-of-the-art on this dataset. It is an HMM-based system

which uses a combination of convolutional, recurrent and fully connected layers, as well as

speaker adaptation, and reaches 3.5% WER on nov92-eval. [Amodei et al., 2015] is state-

of-the-art among end-to-end models (trained without alignment); it is given as a topline

but uses much more training data (∼ 12, 000ℎ of speech) so the results are not comparable.

[Chorowski and Jaitly, 2016, Graves and Jaitly, 2014, Kim et al., 2017, Miao et al., 2015] are

representative results in terms of WER and LER from the literature of end-to-end models
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model
nov93-dev nov92-eval

LER WER LER WER

SOTA – SPEECH FEATURES

CNN-DNN-BLSTM-HMM [Chan and Lane, 2015] - 6.6 - 3.5
Deep Speech 2 [Amodei et al., 2015] − − − 3.6
– (+ additional data)
RNN-WER - tri. LM [Graves and Jaitly, 2014] − − − 8.2
RNN - WSFT decoding [Miao et al., 2015] − − − 7.3
Seq2Seq + tri. LM [Chorowski and Jaitly, 2016] − 9.7 − 6.7
Multi-task CTC/att [Kim et al., 2017] 11.3 − 7.3 −
Att + RL [Tjandra et al., 2017b] − − 6.1

SOTA – WAVEFORM

Seq2Seq + mel pretraining [Tjandra et al., 2017a] − − 6.5 −
gamm (learnt)/gamm/max-pool 8.9 12.9 6.4 8.8
– (without inst. norm.)

frontend filter init lowpass
nov93-dev nov92-eval

LER WER LER WER

mel-filterbanks 6.9 9.5 4.9 6.6

gamm
(learnt)

gamm Hann-fixed 6.9 9.1 4.9 5.9
max-pool 7.2 9.3 4.9 6.0

rand Hann-fixed 7 8.9 4.9 5.9
max-pool 7.2 9.2 5.1 6.3

scatt
(learnt)

scatt Hann-fixed 6.7 8.3 4.6 6.1
Hann-learnt 6.7 8.9 4.5 6.3

rand Hann-fixed 6.8 8.5 4.7 5.7
Hann-learnt 6.9 8.9 4.9 5.8

Table 6.2: Results (%) on the open vocabulary task of the WSJ dataset. (i) SOTA –
speech features: for state-of-the-art and representative baselines using speech features
(mel-filterbanks, spectrograms or MFCC), (ii) SOTA-waveform: state-of-the-art from
the raw waveform, including our own implementation of vanilla gammatone-based
frontend without instance normalization, and (iii) our baseline and the different vari-
ants of the learnable frontends (with instance normalization) studied in this chapter.

trained on speech features from 2014-2017, in chronological order. [Tjandra et al., 2017b]

and [Tjandra et al., 2017a] were the current state-of-the-art in LER on speech features and

from the waveform respectively, at time of publication of [Zeghidour et al., 2018a]. These

comparisons validate our baseline model trained on mel-filterbanks as a strong baseline in

light of recent results, as it outperforms the state-of-the-art in LER by a significant margin

(4.9% for our best model vs 6.1% for [Tjandra et al., 2017b]), and achieves a test WER of

6.6%, better than all other end-to-end baselines ([Zhou et al., 2018] and [Ghahremani et al.,

2016] report WER that are below our 6.6% but are on easier closed vocabulary tasks).
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6.4.2 Instance normalization

As described in Section 6.2.2, we evaluate the integration of instance normalization after the

log-compression into the learnable frontends which was not used in previous work [Ghahre-

mani et al., 2016, Hoshen et al., 2015, Sainath et al., 2015a] not in our TIMIT experiments

in Chapter 5, but is used in our mel-filterbanks baseline. Figure 6-1 shows training LER as

a function of the number of epochs for scattering-based and gammatone-based filterbanks

models, with and without instance normalization. We can see that this normalization dras-

tically improves the training stability of the gammatone-based model, while it moderately

improves the Time-Domain filterbanks model. We observed a positive impact of instance

normalization in all settings, and so only report as a reference the results of our implemen-

tation of a vanilla gammatone-based trainable filterbanks followingHoshen et al. [2015] and

Sainath et al. [2015a]. Comparing gammatone (learnt)/gamm/max-pool without instance

norm (under SOTA – waveform) to the results of gammatone (learnt)/gamm/max-pool in

Table 8.2, we see a significant improvements of both LER and WER due to instance nor-

malization, with an absolute reduction in LER and WER of 1.5% and 2.8% respectively.

6.4.3 Impact of the low-pass filter

For low-pass filtering, we first compare the Hann-fixed setting to max-pooling for gammatone-

based filterbanks (as max-pooling was previously used by Hoshen et al. [2015] and Sainath

et al. [2015a]), and to Hann-learnt for Time-Domain filterbanks, all with instance normal-

ization. The tendency is that the Hann-fixed setting consistently improves the results in

LER and WER of both learnable frontends. More importantly, using either an Hann-fixed

or Hann-learnt filter when learning Time-Domain filterbanks from a random initialization

removes the gap in performance with the Gabor wavelet initialization that was observed

in Chapter 5, where the lowpass filter was also initialized randomly. This is an important

result since carefully initializing the convolutional filters is both technically non-trivial, and

also relies on the prior knowledge of mel-filterbanks. We believe the ability to use random

initialization is an important first step for more extensive tuning of learnable frontends (e.g.,

trying different numbers of filters, decimation or convolution width).

Compared to the literature, replacing the max-pooling by a low-pass filter and adding

an instance normalization layer leads to a 23% relative improvement in LER and a 33%
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model pre-emp
nov93-dev nov92-eval
LER WER LER WER

gamm
(learnt)

no pre-emp 6.9 9.1 4.9 5.9
pre-emp 6.8 9 4.7 5.7

scatt
(learnt)

no pre-emp 6.7 8.3 4.6 6.1
pre-emp 6.5 8.7 4.5 5.7

Table 6.3: Comparison of models trained with or without a learnable pre-emphasis
layer. All models are initialized either with the scattering or gammatone initialization,
and the pooling function is a fixed squared Hann window.

relative improvement in WER on nov92-eval on the gammatone-based fronted, a significant

improvement compared to the existing approach of Hoshen et al. [2015] and Sainath et al.

[2015a]. Our models trained on the waveform also exhibit a gain in performance in LER of

22−31% relative compared to the state-of-the-art end-to-end model trained on the waveform

with its first 9 layers being pre-trained for mel-filterbanks reconstruction [Tjandra et al.,

2017a], and outperform various end-to-end models trained on speech features, both in LER

[Kim et al., 2017, Tjandra et al., 2017b] and WER [Chorowski and Jaitly, 2016, Graves and

Jaitly, 2014, Miao et al., 2015].

6.4.4 Learnable frontends vs mel-filterbanks

Comparing both learnable frontends with instance normalization to the mel-filterbanks base-

line, we observe that the performances of the Hann-fixed settings and of the mel-filterbanks

are comparable in terms of LER. However, we observe a consistent improvement in terms of

WER of all learnable frontends. To the best of our knowledge, this is the first time a signifi-

cant improvement in terms of WER relatively to comparable mel-filterbanks has been shown

on a large vocabulary task under clean recording conditions. Some improvements on the

clean test of the Switchboard dataset have previously been observed by Ghahremani et al.

[2016], but their comparison point is MFCC rather than mel-filterbanks and the number of

filters of the trainable architecture differs from their MFCC baseline.
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6.4.5 Adding a learnable pre-emphasis layer

As in Section 5.4, we also experiment with a learnable pre-emphasis layer integrated into

the Time-Domain filterbanks. In Table 6.3, we compare the performance of identical models

(all using a fixed Hann window, and a gammatone or Gabor initialization) with and without

pre-emphasis. We observe a gain on both LER and WER (except on nov93-dev WER/scatt)

when learning a pre-emphasis with the rest of the frontend.

6.5 Conclusion

In this chapter, we presented a systematic comparison of Time-Domain filterbanks and a

previously proposed gammatone-based frontend, which clarifies good practices and identifies

better architectures to learn from raw speech. Our results show that adding an instance

normalization layer on top of the learnable frontend is critical for learning gammatone-

based architectures, and speeds up learning of acoustic models trained on Time-Domain

filterbanks. Second, the use of a fixed squared Hann window as low-pass filter is critical to

train Time-Domain filterbanks from a random initialization of the filters, and improves on

max-pooling for the gammatone-based frontend. With these two improvements, we observe

a consistent reduction of WER against comparable mel-filterbanks on the open vocabulary

task of the WSJ dataset, in the setting of speech recognition under clean recording condition

– most likely the setting on which mel-filterbanks have been the most heavily tuned. In the

next Chapter, we show that we can substantially improve furthermore by combining our

current approach with a convolutional language model.
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Chapter 7

Fully Convolutional Speech

Recognition

This chapter is based on the material of Fully Convolutional Speech Recognition [Zeghidour

et al., 2018b], an arxiv preprint and a joint work with Qiantong Xu (equal contribution),

Vitaliy Liptchinsky, Nicolas Usunier, Gabriel Synnaeve and Ronan Collobert.

7.1 Introduction

Recent work on convolutional neural network architectures showed that they are competitive

with recurrent architectures even on tasks where modeling long-range dependencies is criti-

cal, such as language modeling [Dauphin et al., 2017], machine translation [Gehring et al.,

2017a,b] and speech synthesis [Van Den Oord et al., 2016]. In end-to-end speech recognition

however, recurrent architectures are still prevalent for acoustic and/or language modeling

[Amodei et al., 2015, Chan et al., 2015, Graves and Jaitly, 2014, Mikolov et al., 2010, Zeyer

et al., 2018].

There is a history of using convolutional networks in speech recognition, but only as

part of an otherwise more traditional pipeline. They have been first introduced as TDNNs

to predict phoneme classes [Waibel et al., 1989], and later to generate HMM posteriorgrams

[Abdel-Hamid et al., 2014]. They have more recently been used in end-to-end frameworks,

but only in combination with recurrent layers [Amodei et al., 2015], or n-gram language

models [Liptchinsky et al., 2017] (see Chapter 6), or for phone recognition [Zhang et al.,
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2017] (see Chapter 5). Nonetheless, as we showed in Section 1.3 and Chapter 6, convolutional

architectures are prevalent when learning from the raw waveform, because they naturally

model the computation of standard features such as mel-filterbanks. Given the evidence

that they are also suitable on long-range dependency tasks, we expect convolutional neural

networks to be competitive at all levels of the speech recognition pipeline.

In this chapter, we present a fully convolutional approach to end-to-end speech recogni-

tion. Building on Time-Domain filterbanks and convolutional acoustic models described in

Chapter 6, and convolutional language models [Dauphin et al., 2017], this chapter has four

main contributions:

∙ We present the first application of convolutional language models to speech recogni-

tion. They yield significant improvements over 4-gram language models on both Wall

Street Journal (WSJ) and Librispeech datasets.

∙ We show that fully convolutional approaches are competitive with approaches based

on recurrent neural networks. In particular, on Librispeech, we improve by more than

2% absolute Word Error Rate the results of DeepSpeech 2 [Amodei et al., 2015] and

of the best sequence-to-sequence model [Zeyer et al., 2018].

∙ We present the first state-of-the-art results (among end-to-end systems) on a large,

publicly available dataset (Librispeech) that use end-to-end learning from the raw

waveform. On WSJ, we significantly improve over the best previous results presented

in Chapter 6 and match the current state-of-the-art, a DNN-HMM system.

∙ On Librispeech, learning the frontend has a larger impact in noisy than in clean record-

ing conditions. These results corroborate previous observations on the VoiceSearch

dataset [Hoshen et al., 2015, Sainath et al., 2015a], and give additional evidence that

mel-filterbanks are suboptimal in the noisy setting.

7.2 Model

Our approach, described in this section, is illustrated in Fig. 7-1.
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Figure 7-1: Overview of the fully convolutional architecture.

7.2.1 Convolutional Frontend: Time-Domain filterbanks

Following the systematic comparison made in Chapter 6, we consider the best architecture,

Time-Domain filterbanks with learnable pre-emphasis. The learnable frontend contains first

a convolution of width 2 that emulates the pre-emphasis step used in mel-filterbanks. It is

followed by a complex convolution of width 25 ms and 𝑘 filters. After taking the squared

absolute value, a low-pass filter of width 25 ms and stride 10 ms performs decimation. The

frontend finally applies a log-compression and a per-channel mean-variance normalization

(equivalent to an instance normalization layer [Ulyanov et al., 2016]). The low-pass filter is

kept constant to a squared Hann window, and the complex convolutional layer is initialized

randomly. In addition to the 𝑘 = 40 filters used in Chapter 6, we also experiment with 𝑘 = 80

filters. Notice that since the stride is the same as for mel-filterbanks, acoustic models on

top of the learnable frontends can also be applied to mel-filterbanks, simply modifying the

number of input channels if 𝑘 ̸= 40.

7.2.2 Convolutional Acoustic Model

The acoustic model is a convolutional neural network with gated linear units [Dauphin et al.,

2017], which is fed with the output of the learnable frontend. Following [Liptchinsky et al.,

2017] and Chapter 7, the networks use a growing number of channels, and dropout [Hinton

et al., 2012b] for regularization. These acoustic models are trained to predict letters directly

with the Auto Segmentation Criterion (ASG) [Collobert et al., 2016]. The only differences

between the WSJ and Librispeech models are their depth, the number of feature maps per

layer, the receptive field and the amount of dropout.

119



7.2.3 Convolutional Language Model

The convolutional language model (LM) is the GCNN-14B from [Dauphin et al., 2017],

which achieved competitive results on several language modeling benchmarks, and operates

at the word level. The network contains 14 convolutional residual blocks [He et al., 2016]

with a growing number of channels, and uses gated linear units as activation function.

The language model is used to score candidate transcriptions in addition to the acoustic

model in the beam search decoder described in the next section. Compared to n-gram LMs,

convolutional LMs allow for much larger context sizes. Our detailed experiments in Setion

7.4.2 study the effect of context size on the final speech recognition performance.

7.2.4 Beam-search decoder

We use the beam-search decoder presented in [Liptchinsky et al., 2017] to generate word se-

quences given the output from our acoustic model. The decoder finds the word transcription

𝑊 to maximize:

AM (𝑊 ) + 𝛼 𝑙𝑜𝑔 𝑃𝑙𝑚(𝑊 ) + 𝛽|𝑊 | − 𝛾|{𝑖|𝜋𝑖 = ⟨𝑠𝑖𝑙⟩}|,

where 𝜋𝑖 is the value for the 𝑖th frame in the path leading to 𝑊 and AM (𝑊 ) is the (un-

normalized) acoustic model score of the transcription 𝑊 . The hyperparameters 𝛼, 𝛽, 𝛾 ≥ 0

respectively control the weight of the language model, the word insertion reward, and the

silence insertion penalty. Other parameters are the beam size and the beam score, a thresh-

old under which candidates are discarded even if the beam is not full. These are chosen

according to a trade-off between (near-)optimality of the search and computational cost.

7.3 Experiments

We evaluate our approach on the large vocabulary task of the Wall Street Journal (WSJ)

dataset [Paul and Baker, 1992], which contains 80 hours of clean read speech, and Librispeech

[Panayotov et al., 2015], which contains 1000 hours with separate train/dev/test splits for

clean and noisy speech. Each dataset comes with official textual data to train language

models, which contain 37 million tokens for WSJ, 800 million tokens for Librispeech. Our

language models are trained separately for each dataset on the official text data only. These
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datasets were chosen to study the impact of the different components of our system at

different scales of training data and in different recording conditions.

The models are evaluated in Word Error Rate (WER). Our experiments use the open

source codes of wav2letter1 for the acoustic model, and fairseq2 for the language model.

More details on the experimental setup are given below.

Baseline Our baseline for each dataset follows [Liptchinsky et al., 2017]. It uses the

same convolutional acoustic model as our approach but a mel-filterbanks frontend and a

4-gram language model.

Training/test splits On WSJ, models are trained on si284. nov93dev is used for

validation and nov92 for test. On Librispeech, we train on the concatenation of train-clean

and train-other. The validation set is dev-clean when testing on test-clean, and dev-other

when testing on test-other.

Acoustic model architecture The architecture for the convolutional acoustic model is

the "high dropout" model from Liptchinsky et al. [2017] for Librispeech, which has 19 layers

in addition to the frontend (mel-filterbanks for the baseline, or the learnable frontend for

our approach). On WSJ, we use the lighter version used in Chapter 6, which has 17 layers.

Dropout is applied at each layer after the frontend, following Chapter 6. The learnable

frontend uses 40 or 80 filters.

Language model architecture As described in Section 7.2.3, we use the GCNN-

14B model of Dauphin et al. [2017] with dropout at each convolutional and linear layer on

both WSJ and Librispeech. We keep all the words (162K) in WSJ training corpus. For

Librispeech, we only use the most frequent 200K tokens (out of 900K).

Hyperparameter tuning The acoustic models are trained following the experimental

setup of Chapter 6, using SGD with a decreasing learning rate, weight normalization and

gradient clipping at 0.2 and a momentum of 0.9. The language models are trained with

Nesterov accelerated gradient [Sutskever et al., 2013]. Following [Dauphin et al., 2017], we

also use weight normalization and gradient clipping.

The parameters of the beam search (see Section 7.2.4) 𝛼, 𝛽 and 𝛾 are tuned on the

validation set with a beam size of 2500 and a beam score of 26 for efficiency. Once 𝛼, 𝛽, 𝛾

are chosen, the test WER is computed with a beam size of 3000 and a beam score of 50.

1https://github.com/facebookresearch/wav2letter
2https://github.com/facebookresearch/fairseq
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Model nov93 nov92

E2E Lattice-free MMI [Hadian et al., 2018] - 4.1
(data augmentation)
CNN-DNN-BLSTM-HMM [Chan and Lane, 2015] 6.6 3.5
(speaker adaptation, 3k acoustic states)
DeepSpeech 2 [Amodei et al., 2015] 5 3.6
(12k training hours AM, common crawl LM)

Frontend LM nov93 nov92

mel-filterbanks 4-gram 9.5 6.6

mel-filterbanks ConvLM 7.5 4.1
Time-Domain filterbanks (40 filters) ConvLM 7.1 4.0
Time-Domain filterbanks (80 filters) ConvLM 6.8 3.5

Table 7.1: WER (%) on the open vocabulary task of WSJ.

7.4 Results

7.4.1 Word Error Rate results

Wall Street Journal dataset

Table 7.1 shows Word Error Rates (WER) on WSJ for the current state-of-the-art and our

models. The current best model trained on this dataset is an HMM-based system which

uses a combination of convolutional, recurrent and fully connected layers, as well as speaker

adaptation, and reaches 3.5% WER on nov92. DeepSpeech 2 shows a WER of 3.6% but uses

150 times more training data for the acoustic model and huge text datasets for LM training.

Finally, the state-of-the-art among end-to-end systems trained only on WSJ, and hence the

most comparable to our system, at time of publication of [Zeghidour et al., 2018b], uses

lattice-free MMI on augmented data (with speed perturbation) and gets 4.1% WER. Our

baseline system, trained on mel-filterbanks, and decoded with a n-gram language model has

a 5.6% WER. Replacing the n-gram LM by a convolutional one reduces the WER to 4.1% ,

and puts our model on par with the current best end-to-end system. Replacing the speech

features by Time-Domain filterbanks finally reduces the WER to 4.0% and then to 3.5%

when doubling the number of learnable filters, improving over DeepSpeech 2 and matching

the performance of the best DNN-HMM system.
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Model dev-clean dev-other test-clean test-other

CAPIO (Single) [Han et al., 2017] 3.02 8.28 3.56 8.58
(speaker adapt., pronunciation lexicon)
CAPIO (Ensemble) [Han et al., 2017] 2.68 7.56 3.19 7.64
(Combination of 8 systems)
DeepSpeech 2 [Amodei et al., 2015] - - 5.83 12.69
(12k training hours AM, common crawl LM)
Sequence-to-sequence [Zeyer et al., 2018] 3.54 11.52 3.82 12.76

Frontend LM dev-clean dev-other test-clean test-other

mel-filterbanks 4-gram 4.26 13.80 4.82 14.54

mel-filterbanks ConvLM 3.13 10.61 3.45 11.92
Time-Domain filterbanks (40 filters) ConvLM 3.16 10.05 3.44 11.24
Time-Domain filterbanks (80 filters) ConvLM 3.08 9.94 3.26 10.47

Table 7.2: WER (%) on Librispeech.

Librispeech dataset

Table 7.2 reports WER on the Librispeech dataset. The CAPIO [Han et al., 2017] ensemble

model combines the lattices from 8 individual DNN-HMM systems (using both convolutional

and LSTM layers), and is the current state-of-the-art on Librispeech. CAPIO (single) is the

best individual system, selected either on dev-clean or dev-other. The sequence-to-sequence

baseline is an encoder-decoder with attention and a BPE-level [Sennrich et al., 2015] LM,

and currently the best end-to-end system on this dataset. We can observe that our fully

convolutional model improves over CAPIO (Single) on the clean part, and is the current

best end-to-end system on test-other with an improvement of 2.3% absolute (18% relative).

Our system also outperforms DeepSpeech 2 on both test sets by a significant margin. An

interesting observation is the impact of each convolutional block. While replacing the 4-

gram LM by a convolutional LM improves similarly on the clean and noisier parts, learning

the speech frontend gives similar performance on the clean part but significantly improves

the performance on noisier, harder utterances, a finding that is consistent with previous

literature [Hoshen et al., 2015]. Again, when doubling the number of Time-Domain filter-

banks, we furthermore widen the gap with the mel-filterbanks baseline and the previous

state-of-the-art, both on test-clean and test-other.
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Figure 7-2: Evolution of WER (%) on Librispeech with the perplexity of the language
model.

7.4.2 Analysis of the convolutional language model

Since our model uses convolutional language models for speech recognition systems for the

first time, we present additional studies of the language model in isolation. These exper-

iments use our best language model on Librispeech, and evaluations in WER are carried

out using the baseline system trained on mel-filterbanks. The decoder parameters are tuned

using the grid search described in Section 7.3, a beam size is fixed to 2500 and a beam score

to 30.

Correlation between perplexity and WER Figure 7-2 shows the correlation between

perplexity and WER as the training progresses. As perplexity decreases, the WER on both

dev-clean and dev-other also decreases following the same trend. It illustrates that perplexity

on the linguistic data is a good surrogate of the final performance of the speech recognition

pipeline, as previously shown by Klakow and Peters [2002]. Architectural choices or hyper-

parameter tuning can thus be carried out mostly using perplexity alone.
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Model Context WER

Type Length dev-clean dev-other

4-gram 3 4.26 13.80

ConvLM 3 4.11 13.17
ConvLM 9 3.34 11.29
ConvLM 19 3.27 11.06
ConvLM 29 3.25 11.09
ConvLM 39 3.24 11.07
ConvLM 49 3.24 11.08

Table 7.3: Evolution of WER (%) on Librispeech with the context size of the language
model.

Influence of context size By limiting the context passed into the LM from the decoder,

Table 7.3 reports WER obtained for context sizes ranging from 3 (comparable to the n-gram

baseline) to 50 for our best language model. The WER decreases monotonically until a

context size of about 20, and then almost stays still. We observe that the convolutional

LM already improves on the n-gram model even with the same context size. Increasing the

context gives a significant boost in performance, with the major gains obtained between a

context of 3 to 9 (−1.9% absolute WER).

7.5 Conclusion

We introduced the first fully convolutional pipeline for speech recognition, that can directly

process the raw waveform and shows state-of-the art performance on Wall Street Journal and

on Librispeech among end-to-end systems. This first attempt at exploiting convolutional

language models in speech recognition shows significant improvement over a 4-gram lan-

guage model on both datasets. Replacing mel-filterbanks by Time-Domain filterbanks gives

additional gains in performance, that appear to be more prevalent on noisy data. Finally,

we see a significant improvement from doubling the number of learnable filters.
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Chapter 8

Learning to Detect Dysarthria from

Raw Speech

This chapter is based on Learning to detect dysarthria from raw speech [Millet and Zeghidour,

2018], accepted for oral presentation at ICASSP 2019, and a joint work with Juliette Millet

during her master internship at ENS under my supervision.

8.1 Introduction

In Chapters 5, 6, 7, we started from small scale systematic studies that compared mel-

filterbanks and Time-Domain filterbanks, to the first state-of-the-art speech recognition

system on Wall Street Journal and Librispeech that does not use speech features. The ob-

servation that Time-Domain filterbanks consistently outperform mel-filterbanks in a task

for which they have been tuned, speech recognition, motivates extending their use to other

tasks that use hardcoded features. In Section 1.4, we explained how paralinguistic classifi-

cation systems, which recognize other characteristics from speech than its linguistic content,

also use fixed, handcrafted features, such as mel-filterbanks or MFCCs, and/or low-level

informations [Eyben et al., 2010], such as zero-crossing rate or harmonics-to-noise ratio (the

number of descriptors can be as high as 6000 for a small speech segment [Schuller et al.,

2017]). Training a classifier from these fixed coefficients requires performing a feature se-

lection step, which has the limitation that it cannot retrieve useful information that would

have been lost in the feature computation. Moreover, and as explained in Section 1.4, mel-
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Figure 8-1: Computational steps that produce mel-filterbanks and MFCC features.
In Green are the operations that are learnable (or to which an equivalent is learnable)
in Time-Domain filterbanks. Red boxes are the operations that remain fixed during
training.

filterbanks or MFCCs have been designed to mimic characteristics of human perception of

speech. This is justified for speech recognition, since the human auditory system is robust

to many sources of variability in the speech signal (constant or impulsive noise, speaking

style and accent, room reverberation, etc.) [Morgan et al., 2004] that are challenging for

automatic speech recognition. However, this observation also questions the appropriate-

ness of using such features in tasks for which there is no proven performance of the human

auditory system, and for which we could expect a system trained solely for this task to

perform better. Among such tasks, there is a growing interest in automatically extracting

information from speech for health care [Johnson et al., 2014, Little et al., 2009, Schuller

et al., 2013b]. In this chapter, we propose to address one of these tasks: the detection of

dysarthria from speech recordings. Rather than adopting a feature-driven approach that

would require testing various combinations of fixed features, or training a model that would

suffer from the biases of mel-filterbanks, we implement a system that can directly process

raw speech and learn relevant features jointly with the dysarthria classifier, such that they

are optimal for the task.

The TORGO database [Rudzicz et al., 2012] is a collection of annotated speech record-

ings and articulatory measurements from speakers with cerebral palsy (CP) or amyotrophic

lateral sclerosis (ALS), as well as control patients. These pathologies are the cause of a motor

speech disorder called dysarthria, which impedes the articulation and reduces the intelligi-

bility of the speech that is produced. Mengistu and Rudzicz [2011a,b] and Kim et al. [2013]

have used this database to provide speech recognition systems with robustness to dysarthria.

[Kim et al., 2015] trains various linear classifiers on TORGO and the NKI CCRT corpus
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[Clapham et al., 2012] to detect dysarthria. More recently, Bhat et al. [2017] have trained

fully connected neural networks to classify the severity of the disease, using TORGO and the

UASPEECH [Kim et al., 2008] database. All these models are trained on standard low-level

features [Schuller et al., 2013b]. In this work we show that dysarthria detection benefits

significantly from learning directly from the raw waveform with Time-Domain filterbanks.

Figure 8-1 shows the mel-filterbanks computation pipeline presented in Part I, and those

of its components that we have made learnable so far. Time-Domain filterbanks allow re-

placing the pre-emphasis, windowing, and frequency filtering of mel-filterbanks by learnable

components that all operate in the time-domain. The output of these operations is then

passed through a log compression, and a mean-variance normalization (using an instance

normalization [Ulyanov et al., 2016]), that remain fixed during training. However, as ex-

plained in Sections 1.2.4, various compression functions including logarithm, cubic root, or

10𝑡ℎ root have been previously showed to perform better depending on the task (see Table

2 of [Schlüter et al., 2007]). In Section 1.2.6, we described how the choice of the type of

normalization to apply to input features is also not trivial, and is task dependent. As we

observed improvements in previous chapters by replacing the presumably biased linear op-

erations of mel-filterbanks by learnable convolutional layer, we could thus also expect a gain

from additionally learning a compression function and a normalization.

Wang et al. [2017] introduce a computational block, the Per Channel Energy Normaliza-

tion (PCEN) that can learn a compression and a normalization factor per channel, and can

be integrated into a neural network on top of speech features. It has been used in production

ASR systems on fixed spectrograms [Battenberg et al., 2017], or bird vocalization and audio

event classification from mel-filterbanks [Lostanlen et al., 2019]. This chapter presents a

first tentative at learning jointly the PCEN with a learnable frontend.

In this chapter, we start from an attention-based model on mel-filterbanks, which already

outperforms an equivalent model trained on low-level descriptors (LLDs). Our experiments

show that by training a PCEN block on top of mel-filterbanks or replacing them by Time-

Domain filterbanks, we get a gain in accuracy around 10% in absolute when training an

identical neural network for dysarthria detection. Finally, by combining Time-Domain filter-

banks and PCEN we propose the first fully learnable audio frontend, that can learn features,

compression and normalization jointly with a neural network using backpropagation.
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8.2 Model

8.2.1 Time-Domain filterbanks

As the first step of our computational pipeline, we use Time-Domain filterbanks (see 5 for a

detailed description), As in Chapter 7, we choose the best performing system from Chapter

6, Time-Domain filterbanks with learnable pre-emphasis. However, the mel-filterbanks that

we use for this task have different number of filters than for speech recognition. The learnable

front-end contains first a learnable pre-emphasis layer, followed by a complex convolution of

width 25ms and 64 filters. After taking the squared absolute value, a low-pass filter of width

25ms and stride 10ms performs decimation. The second convolution layer is kept fixed as

a squared Hann window to perform lowpass filtering, and we use the Gabor initialization

described in Section 5.2.2, due to the small size of the dataset. When used in combination

with PCEN, we remove the log compression and instance normalization from the Time-

Domain filterbanks architecture, as these operations will be learned by PCEN.

8.2.2 Per Channel Energy Normalization

Per Channel Energy Normalization (PCEN) is a learnable component introduced by Wang

et al. [2017] which computes parametrized normalization and compression. It replaces the

log-compression and the mean-variance normalization. With 𝐸(𝑡, 𝑓) the value of the feature

𝑓 at time 𝑡, the computation of PCEN is:

𝑃𝐶𝐸𝑁(𝑡, 𝑓) = (
𝐸(𝑡, 𝑓)

(𝜖+𝑀(𝑡, 𝑓))𝛼
+ 𝛿)𝑟 − 𝛿𝑟.

𝑀(𝑡, 𝑓) is an exponential moving average of 𝐸(·, 𝑓) along the time axis, defined as:

𝑀(𝑡, 𝑓) = (1− 𝑠)𝑀(𝑡− 1, 𝑓) + 𝑠𝐸(𝑡, 𝑓).

In our experiments, 𝐸 is either the mel-filterbanks, or the output of Time-Domain filter-

banks. 𝛼 controls the strength of the normalization, the exponent 𝑟 (typically in [0, 1])

defines the slope of the compression curve, 𝑠 sets the spread of the moving average, and 𝜖 is

a small scalar used to avoid division by zero. By backpropagation, we learn 𝛼, 𝑟, and 𝛿 with

the rest of the model to learn a compression and normalization that fit the task at hand.
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Figure 8-2: Proposed pipeline that learns jointly the feature extraction, the compres-
sion, the normalization and the classifier.

8.2.3 LSTM and Attention model

The output of the learnable frontend is fed to an attention-based model [Bahdanau et al.,

2014], that contains one LSTM layer of hidden size 60 followed by an attention mechanism,

inspired by Hsiao and Chen [2018]. The attention mechanism consists of two fully connected

layers, of 50 and 1 unit respectively, and a softmax layer, that are applied to each output of

the LSTM. The vector obtained is used to weight a linear combination of the LSTM outputs,

that goes through another fully connected layer of size the number of labels considered. The

detailed architecture is shown in Figure 8-2. In [Hsiao and Chen, 2018], this model reaches

state-of-the-art performance when trained for emotion recognition on mel-filterbanks, which

motivated using it for the paralinguistic task of dysarthria detection.

8.3 Experimental setup

We carry experiments on the TORGO database [Rudzicz et al., 2008]. It consists of sound

recordings, sampled at 16kHz, from speakers with either cerebral palsy or amyotrophic lateral
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Training Validation Test

FC02, F03 (VL), MC02, FC01, FC03, F04 (VL),
F01 (L), MC04, M03 (VL), M01 (M) MC01, M05 (L),
MC03, M02 (M) M04 (M)

3182 C, 1382 D 950 C, 802 D 2103 C, 997 D

Table 8.1: Speakers and number of recordings per set, the severity of each person is
indicated after their ID: VL is Very Low, L is Low, and M is Medium. The bottom
line shows the total number of Control (C) and Dysarthric (D) utterances per set.

sclerosis, which are two of the prevalent causes of dysarthria. Similar data for a control set

of subjects is also available. Along with sound recordings, TORGO contains 3D articulatory

features that we did not use.

There are five groups of people: the control group not affected by the disease, and

4 other groups of affected people, classified by the severity of the disease. Each person

recorded has a code name, F is for female, M is for male, while C is for control, followed by

an identification number. A random split of the database would result in similar speakers

in training, validation, and test sets, that could reduce the task to a speaker identification

task. To avoid this confounding factor, we split the database to have a good repartition of

the different severities among the training, validation and test set, while having no common

speakers between the different sets (see Table 8.1 for the detailed split).

After studying the database we decided to pad the recordings so they all last 2.5𝑠. We

extract low level descriptors (LLDs) from it to have a first baseline. We use the OpenSmile

toolkit [Eyben et al., 2010], with the configuration of the Interspeech 2009 Emotion Challenge

[Schuller et al., 2009]. For each 25𝑚𝑠 window of the recordings (strided by 10𝑚𝑠), 32 features

are extracted (12 MFCCs, root mean square energy, zero-crossing rate, harmonics-to-noise

ratio, 𝐹0 and their Δ).

Our second baseline takes as input mel-filterbanks. We pre-emphase the sound signals

with a factor of 0.97. 64 mel-filterbanks are computed every 25ms with a stride of 10ms and

passed through a log-compression. To evaluate Time-Domain filterbanks in a comparable

setting, we design them with the same number of filters, window size and stride.

For the PCEN layer, we take 𝜖 = 10−6 and 𝑠 = 0.5, both fixed. We initialize 𝑟, 𝛼 and

𝛿 at 0.5, 0.98 and 2.0 respectively. During training, we constrain 𝑟 to be non-negative. All
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Input data UAR % val. UAR % test

LLDs 64.8 ± 1.2 65.5 ± 3.6
mel-filterbanks 79.9 ± 6.3 72.4 ± 3.0

mel-filterbanks + mvn 63.5 ± 1.7 70.3 ± 2.9
mel-filterbanks + PCEN 76.0 ± 6.1 79.7 ± 3.8
Time-Domain filterbanks 93.7 ± 1.2 82.4 ± 0.4

Table 8.2: UAR (%) of the attention-based model trained over different features
or learnable frontends. The UAR is averaged over 3 runs and we report standard
deviations.

models are trained with SGD with momentum (0.98) and batch size 1, with a learning rate

of 0.001.

We use the Unweighted Average Recall (UAR) to evaluate our results. The UAR of

a model is the mean of its accuracy for each label. It is a more informative metric when

dealing with highly unbalanced datasets than the accuracy, since it is reweighting the results

depending on the size of each class. It has been widely used in unbalanced settings such

as the Emotion Recognition challenge [Schuller et al., 2009]. We use the validation set for

hyperparameter selection and early stopping.

8.4 Results

Table 8.2 shows the UAR on the validation and test sets. All the results are the mean UAR

obtained over three runs with different random initialization. We do not compare them

to previously published results [Bhat et al., 2017, Kim et al., 2015] as they use additional

data and/or perform a different task. The attention based-model trained on LLDs features

reaches an accuracy of 66% and is our baseline system. Replacing LLDs by mel-filterbanks

improves the performance by 6% in absolute. Adding a fixed mean-variance normalization

step (mvn) brings the models to over-fitting, and thus the UAR decreases of 2%. How-

ever, we observe that replacing the fixed log-compression and mean-variance normalization

step by a learnable PCEN layer improves the UAR of the models of 7% compared to the

unnormalized mel-filterbanks. Moreover, an even bigger increase is noticed when replac-

ing mel-filterbanks by equivalent Time-Domain filterbanks (10% in absolute). In this case,
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(a) Center frequency of learnt filters (b) Learnt compression exponents

Figure 8-3: Detailed analysis of filters and compression function learned by the model.
Left shows the new scales obtained by three independent models using TD-filterbanks,
compared to mel scale. The center frequency is the frequency for which a filter is
maximum. Right shows an approximation of the compression exponents obtained for
the PCEN layer learned on mel-filterbanks.

Time-Domain filterbanks are trained with a log-compression and no normalization. We

can emphasize the fact that using the Time-Domain filterbanks also leads to a more stable

learning process, as the standard deviation along different runs is considerably lower.

When studying the new scale learned by the TD-filterbanks (see Figure 8-3) (left)) we

notice that the filters tend to focus around 2000𝐻𝑧 and 6500𝐻𝑧, which suggests that either

those frequencies are crucial to identify dysarthria, or the model might exploit a bias in the

dataset. Regardless, this illustrates why a non-linguistic classification task can benefit from

learning its filter bank. Indeed, mel-filterbanks are very imprecise around 6500𝐻𝑧, and if a

fine discriminative pattern were to be present in that region of the spectrum, mel-filterbanks

would lose that information. However, Time-Domain filterbanks can learn to locate several,

precise filters in any part of the spectrum. Similarly, in Figure 8-3 (right) we observe that

the compression factor learned by PCEN varies between channels, unlike a log-compression

which is applied equivalently to all channels.

8.4.1 Fully learnable frontend

As we observe independent gains from either learning the features or learning the compression-

normalization, we explore in our final experiments learning jointly all these operations. We
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Input data UAR % val. UAR % test

Time-Domain filterbanks + PCEN 72.3 ± 1.5 74.8 ± 1.1

Time-Domain filterbanks + PCEN only r 74.6 ± 2.9 76.4 ± 1.8

Time-Domain filterbanks + PCEN only 𝛼 66.6 ± 1.4 63.3 ± 8.2

Table 8.3: UAR (%) of the attention-based model trained over different fully learnable
frontends. “Only r” means that only the compression factor of PCEN is learned, while
“only” 𝛼” refers to the setting in which we only learn the normalization strength.
When not specified, both components are learned. The UAR is averaged over 3 runs
and standard deviations are reported.

remove the log-compression step of Time-Domain filterbanks and replace it by a PCEN

layer. We use three settings: one for which 𝑟, 𝛼 and 𝛿 are learned, the second one with

only 𝑟 (compression factor) learned, and finally the last one for which only 𝛼 (normalization

strength) is learned. If a parameter is not learned, it is fixed to its initial value (specified

in Section 8.3). Table 8.3 shows that learning only the normalization exponent gives worse

results than the models trained on LLDs. However, we notice that the model learning 𝑟, 𝛼

and 𝛿, and the one only learning 𝑟 match the models using mel-filterbanks.

8.5 Conclusion

In this Chapter, and after positive results in speech recognition, we have shown that a

paralinguistic task, dysarthria detection, also benefits significantly of learning the frontend

with Time-Domain filterbanks. Moreover, we have proposed a fully learnable audio frontend,

combining Time-Domain filterbanks and Per Channel Energy Normalization. It is the first

time that a model is developed with the ability to learn the extraction, compression and

normalization of the features from the raw waveform, jointly with a classifier. Learning only

the Time-Domain filterbanks or the PCEN parameters gives better results than learning

them jointly, but learning both still gives similar to better performance than using fixed

features, which constitutes a proof of concept for fully learnable audio frontends.
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Chapter 9

Conclusion

9.1 Summary of the contributions

Deep neural networks have changed the landscape of machine learning, from computer vi-

sion to reinforcement learning, natural language processing and speech recognition. The

paradigm of deep learning has consistently been to replace formerly composite systems by

end-to-end architectures, trained from the rawest form of the data up to the final target

by backpropagation. In the case of speech recognition, acoustic models and then language

models have been replaced by deep architectures, and the two-step training scheme of hy-

brid HMM-DNNs is now being outperformed by end-to-end training. However, along all

this recent history of speech recognition, hardcoded speech features, mel-filterbanks in par-

ticular, have still not been made obsolete by learnable alternatives and remain a systematic

component of state-of-the-art systems, both in recognition and paralinguistic classification.

The original topic of this thesis was the development of weakly-supervised and unsu-

pervised algorithms for speech recognition. After preliminary studies in which we showed

that weakly-supervised and unsupervised phonetic modelling could significantly benefit from

using a richer deep scattering spectrum rather than mel-filterbanks, adressing the statu quo

of using mel-filterbanks as input features became the central question of this thesis. Rather

than exploring the space of exising fixed features, we decided to remove them and train

directly deep neural networks from the raw waveform. We showed that we could disentan-

gle speaker and phonetic information from the raw waveform with a single neural network,

into embeddings that would generalize to other datasets or languages. We also showed that
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learning from the waveform significantly improved the quality of speaker embeddings.

However, these first results on training models from the raw waveform were dampened

by their poor performance on phonetic modelling, and by the difficulty to conduct fair

and controlled experiments to compare against mel-filterbanks. Moreover, our exploration

of architectures was mildly inspired, and lacked intuition on what was appropriate and

important when training on the waveform. These observations led us to design a specific

frontend, that can be plugged any neural architecture processing audio, rather than designing

homogeneous neural networks from the waveform to the last layer, as we did previously.

We introduced Time-Domain filterbanks, a lightweight neural architecture that processes

raw speech, can be initialized as an approximation of mel-filterbanks, and then be trained

jointly with any architecture. As the question of learning the frontend is orthogonal to

the challenge of weakly-supervised learning, we decided to validate our approach on the

most mainstream task that uses speech features: supervised speech recognition. Then, via

extensive systematic studies and successive improvements, we showed that Time-Domain

filterbanks consistently outperform mel-filterbanks in equivalent conditions (same acoustic

model, number of filters, window size, window stride), as well as a previously proposed

approach [Hoshen et al., 2015, Sainath et al., 2015a]. This is a noticeable achievement,

as all our models (architecture, hyperparameters) were cross-validated on mel-filterbanks,

and trained “as is” on Time-Domain filterbanks. This is the first time such a consistent

improvement is observed. Finally, we integrated Time-Domain filterbanks into the first

fully convolutional speech recognition system, which is currently the state-of-the-art among

end-to-end system on both Wall Street Journal and Librispeech datasets.

These consistent results in speech recognition then led us to extend our approach to

a paralinguistic classification, dysarthria detection from speech. We showed that Time-

Domain filterbanks significantly outperform low-level descriptors and mel-filterbanks. We

also used this task as a test bed to experiment with the first fully learnable frontend, that

can learn jointly the feature extraction, a compression function, and a normalization.

138



9.2 Towards fully learnable audio understanding

systems

So far, we have applied Time-Domain filterbanks to two tasks: speech recognition, and

dysarthria detection. However, and as explained in Section 1.4, these are only few of a

virtually unlimited number of classification tasks taking speech as input (see the Interspeech

Computational Paralinguistics Challenge which introduces new tasks every year1), and still

relying on fixed, handcrafted features (mel-filterbanks, MFCCs, or low-level descriptors).

Comparing the relative improvement of Time-Domain filterbanks over mel-filterbanks for

speech recognition and dysarthria detection is hard due to many confounding factors (task,

performance of the baseline system, hyperparameter exploration), however the latter seems

to benefit the most from learning the frontend rather than using fixed features. This is

encouraging, as it confirms the intuition substantiated in 1.4 that paralinguistic tasks may

benefit even more from learning from the raw waveform than speech recognition, for which

mel-filterbanks have been tuned.

A rationale behind using Time-Domain filterbanks for dysarthria detection was that,

since mel-filterbanks have been designed to mimick the human perception, they are un-

doubtedly suboptimal for tasks for which the human ear is not particularly tuned. This

likely holds for many paralinguistics tasks, but maybe even more for non-speech audio clas-

sification tasks. Indeed, there has been a consistent use of mel-filterbanks for tasks such as

audio event classification [Kons and Toledo-Ronen, 2013, Lim et al., 2016] (see the leader-

board of the DCASE2018 challenge2), birds vocalization detection [Lostanlen et al., 2018,

Salamon et al., 2017], or whale call classification [Pace et al., 2010, Xian et al., 2015]. Mel-

filterbanks are based on the premise that since our ear is less sensitive to variations in high

frequencies than in low frequencies, we should have more precise descriptors for lower fre-

quencies. This is valid for speech recognition, as speech production is meant to be intelligible

to the human ear, and as such is adapted to its perceptual scale. Conversely, during the

first year of their development, an infant will lose the ability to perceive phonetic contrasts

that do not exist in their native language [Aslin, 1980].

A good illustration of the adaptation of perception to production is the case of Australian

1http://www.compare.openaudio.eu/
2http://dcase.community/challenge2018/task-acoustic-scene-classification-results-a
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Aboriginals. Middle-ear infection has a very high prevalence in this population, leading to

a hearing loss in up to 70% of the population [Coates et al., 2002], which affects their

perception of the lower (below 500Hz) and upper (above 4000Hz) frequencies. Butcher

et al. [2003] explain that this widespread hearing loss is a likely explanation for a linguistic

phenomenon observed in Australian Aboriginal languages: a phonemic inventory which is

unusually concentrated in the middle frequencies. This illustrates how speech production

adapts to the limits of speech perception.

On the other hand, many informations conveyed by speech are not controlled to be intel-

ligible to the ear, and as such would be poorly modelled by mel-filterbanks that mimick the

auditory perception. In particular, any task that would need precise discrimination in high

frequencies would suffer from using mel-filterbanks. A striking illustration of this limitation,

made in section 8.4, is that dysarthria detection seems to rely on patterns in high frequen-

cies (around 6500𝐻𝑧), a region of the spectrum where mel-filterbanks are very imprecise.

One could learn an adapted filter bank from linear-scale spectrograms [Sainath et al., 2013],

however spectrograms compute a convolution (with sinusoids) and a non-linearity (a squared

modulus) that might was well be integrated into a neural network. This is why we think

that Time-Domain filterbanks could also show improvements on many tasks that still use

hardcoded features. Moreover, the Per Channel Energy Normalization (PCEN) [Wang et al.,

2017] presented in section 8.2, has previously brought considerable improvements (over log

compression and mean normalization) to aforementioned tasks, in particular bird vocaliza-

tion detection, acoustic event classification, and scene classification [Lostanlen et al., 2019],

as well as whale call classification3. Combining Time-Domain filterbanks and Per Channel

Energy Normalization (or an equivalent) is still an open question, and we believe that if

can combine both approaches into a fully learnable frontend, paralinguistic and non-speech

tasks, or audio tasks in general, could be greatly improved. Some settings also imply pre-

processing of the raw audio, before or jointly with the feature extraction, such as speech

enhancement, source separation, or multi-channel beamforming. There has been previous

attempts at integrating each of these steps into a neural architecture [Ochiai et al., 2017,

Sainath et al., 2015b, Seki et al., 2018], however we are yet to see all of these operations, as

well as feature extraction, compression and normalization being trained jointly for the task

at hand.

3https://ai.googleblog.com/2018/10/acoustic-detection-of-humpback-whales.html
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Task Speech recognition Music classification Birds vocalization detection
[Young et al., 2002] [Van den Oord et al., 2013] [Lostanlen et al., 2018]

Number of filters 40 128 40
Window size (ms) 25 23 12

Window stride (ms) 10 11.5 1.5

Table 9.1: Preferred hyperparameters of mel-filterbanks for three audio tasks.

9.3 Rethinking Time-Domain filterbanks: how much

structure do we need?

Let us assume that we could integrate the beamforming, filtering, compression and nor-

malization into a learnable frontend. This would allow learning all its steps, however its

structure would still need to be defined beforehand. In particular, the structure of Time-

Domain filterbanks contains several critical choices: the number and order of linear and

non-linear layers, the choice of non-linearities, and the number of filters, window size, and

window stride of each convolutional layer. As explained in Section 5.1, we chose these hy-

perparameters to match the standard 40 melfilterbanks, computed on 25ms windows, and

strided by 10ms. The first motivation was that taking inspiration from the prominent speech

features to design a learnable alternative was a promising avenue to finally outperform them.

Furthermore, some hyperparameters, in particular the window size and stride (as well as the

number of filters in chapters 5 and 6) were not explored beyond the standard parameters

of mel-filterbanks to allow for fair comparisons and ablation studies. This also justifies why

until Chapter 8, we only used a log-compression and did not learn the (optional) parameters

of instance normalization that can be trained to modify the mean-variance normalization.

Observing that in equivalent conditions, Time-Domain filterbanks consistently outperform

their mel-filterbanks counterpart, we could then relax this constraint and explore more freely

the space of architectures. In Chapter 7, we obtained our best results by doubling the num-

ber of filters compared to standard mel-filterbanks. This calls our current approach into

question. We can draw a spectrum on the amount of structure and prior knowledge that

are put into the audio frontend. On one end of this spectrum lie fixed, handcrafted speech

features, based on psychoacoustics, signal processing and experimental knowledge. On the

other end lie models that use generic neural network layers as a frontend [Hinton et al.,

2012a, Palaz et al., 2013b].
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We decided to strike a middle-ground by removing the bias in the parameters (by learn-

ing the convolutional weights, and optionally the compression and normalization), while

putting a lot of prior knowledge into the structure of our neural network (pre-emphasis,

complex convolutions and their size, squared modulus, low-pass filter and its stride, com-

pression, normalization). In particular, assuming that we want to compute 𝑁 filters on a

window of size 𝑤 and stride 𝑠, we hypothesized that we could reduce the bias of our system

by learning these filters rather than using a mel-scale. However, choosing 𝑁 , 𝑤 and 𝑠 could

already induce a negative bias in our model. Table 9.1 shows preferred values for these hy-

perparameters for three tasks: speech recognition, music classification, and bird vocalization

detection. It appears clearly that these hyperparameters are also task-dependent, and the

same rationale that led us to learn the parameters of the frontend could also justify learning

its structure. This would be the extreme end of a data-driven design of a frontend, rather

than putting inductive bias from prior knowledge. This challenge can be addressed from the

point of view of neural architecture search [Xie and Yuille, 2017, Zoph and Le, 2016], which

applications to audio only amount (to the best of our knowledge) to first results on speech

classification [Véniat et al., 2018, Wang et al., 2018, Zhang et al., 2018]. Moreover, all these

few approaches use fixed mel-filterbanks, MFCCs or low-level descriptors, which leaves the

question of frontend architecture search completely unexplored.

A radically opposite approach has been to put a lot of structure into a learnable frontend,

to parametrize it with very few parameters, at the expense of a reduced expressivity. In

particular, recent work has explored learning 𝑠𝑖𝑛𝑐 functions [Ravanelli and Bengio, 2018]

or spline wavelets [Balestriero et al., 2018] in the first layer. By constraining the class of

filters the model can learn, it has been shown to learn efficiently with a fast convergence.

We could have constrained Time-Domain filterbanks to explicitly learn analytic wavelets in

the first layer, but we decided to use the Gabor wavelets only to initialize the weights, and

then learn these weights like any other convolutional layer in the network.

We do not have a definitive answer to the question of finding the proper amount of

structure constraints and prior knowledge to put into the design of a learnable frontend.

A very constrained parametrization simplifies the optimization and can help in low-data

regimes. However, we hypothesize that with the constant improvement in deep learning

optimization techniques, as well as always bigger datasets, the horizon of learnable frontends

will lie in always more data-driven approaches.
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Appendix A

Fader Networks:Manipulating Images

by Sliding Attributes

This appendix shows Fader Networks: Manipulating Images by Sliding Attributes Lample

et al. [2017], a paper accepted for poster presentation at NIPS 2017, and a joint work with

Guillaume Lample, Nicolas Usunier, Antoine Bordes, Ludovic Denoyer and Marc’Aurelio

Ranzato.
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Fader Networks:
Manipulating Images by Sliding Attributes

Guillaume Lample1,2 , Neil Zeghidour1,3 , Nicolas Usunier1 ,
Antoine Bordes1 , Ludovic Denoyer2 , Marc’Aurelio Ranzato1

{gl,neilz,usunier,abordes,ranzato}@fb.com
ludovic.denoyer@lip6.fr

Abstract

This paper introduces a new encoder-decoder architecture that is trained to re-
construct images by disentangling the salient information of the image and the
values of attributes directly in the latent space. As a result, after training, our
model can generate different realistic versions of an input image by varying the
attribute values. By using continuous attribute values, we can choose how much a
specific attribute is perceivable in the generated image. This property could allow
for applications where users can modify an image using sliding knobs, like faders
on a mixing console, to change the facial expression of a portrait, or to update
the color of some objects. Compared to the state-of-the-art which mostly relies
on training adversarial networks in pixel space by altering attribute values at train
time, our approach results in much simpler training schemes and nicely scales to
multiple attributes. We present evidence that our model can significantly change
the perceived value of the attributes while preserving the naturalness of images.

1 Introduction

We are interested in the problem of manipulating natural images by controlling some attributes of
interest. For example, given a photograph of the face of a person described by their gender, age, and
expression, we want to generate a realistic version of this same person looking older or happier, or an
image of a hypothetical twin of the opposite gender. This task and the related problem of unsupervised
domain transfer recently received a lot of interest [17, 24, 9, 26, 21, 23], as a case study for conditional
generative models but also for applications like automatic image edition. The key challenge is that
the transformations are ill-defined and training is unsupervised: the training set contains images
annotated with the attributes of interest, but there is no example of the transformation: In many cases
such as the “gender swapping” example above, there are no pairs of images representing the same
person as a male or as a female. In other cases, collecting examples requires a costly annotation
process, like taking pictures of the same person with and without glasses.

Our approach relies on an encoder-decoder architecture where, given an input image x with its
attributes y, the encoder maps x to a latent representation z, and the decoder is trained to reconstruct
x given (z, y). At inference time, a test image is encoded in the latent space, and the user chooses
the attribute values y that are fed to the decoder. Even with binary attribute values at train time,
each attribute can be considered as a continuous variable during inference to control how much it is
perceived in the final image. We call our architecture Fader Networks, in analogy to the sliders of an
audio mixing console, since the user can choose how much of each attribute they want to incorporate.

1Facebook AI Research
2Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6
3LSCP, ENS, EHESS, CNRS, PSL Research University, INRIA
Code available at https://github.com/facebookresearch/FaderNetworks

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Figure 1: Interpolation between different attributes (Zoom in for better resolution). Each line shows
reconstructions of the same face with different attribute values, where each attribute is controlled as a
continuous variable. It is then possible to make an old person look older or younger, a man look more
manly or to imagine his female version. Left images are the originals.

The fundamental feature of our approach is to constrain the latent space to be invariant to the attributes
of interest. Concretely, it means that the distribution over images of the latent representations should
be identical for all possible attribute values. This invariance is obtained by using a procedure similar
to domain-adversarial training (see e.g., [20, 6, 14]). In this process, a classifier learns to predict the
attributes y given the latent representation z during training while the encoder-decoder is trained
based on two objectives at the same time. The first objective is the reconstruction error of the decoder,
i.e., the latent representation z must contain enough information to allow for the reconstruction of the
input. The second objective consists in fooling the attribute classifier, i.e., the latent representation
must prevent it from predicting the correct attribute values. In this model, achieving invariance is a
means to filter out, or hide, the properties of the image that are related to the attributes of interest.
A single latent representation thus corresponds to different images that share a common structure
but with different attribute values. The reconstruction objective then forces the decoder to use the
attribute values to choose, from the latent representation, the intended image.

Our motivation is to learn a disentangled latent space in which we have explicit control on some
attributes of interest, without supervision of the intended result of modifying attribute values. With
a similar motivation, several approaches have been tested on the same tasks [17, 24], on related
image-to-image translation problems [9, 26], or for more specific applications like the creation of
parametrized avatars [23]. In addition to a reconstruction loss, the vast majority of these works rely
on adversarial training in pixel space, which compares during training images generated with an
intentional change of attributes from genuine images for the target attribute values. Our approach is
different both because we use adversarial training for the latent space instead of the output, but also
because adversarial training aims at learning invariance to attributes. The assumption underlying our
work is that a high fidelity to the input image is less conflicting with the invariance criterion, than
with a criterion that forces the hallucinated image to match images from the training set.

As a consequence of this principle, our approach results in much simpler training pipelines than those
based on adversarial training in pixel space, and is readily amenable to controlling multiple attributes,
by adding new output variables to the discriminator of the latent space. As shown in Figure 1 on test
images from the CelebA dataset [13], our model can make subtle changes to portraits that end up
sufficient to alter the perceived value of attributes while preserving the natural aspect of the image
and the identity of the person. Our experiments show that our model outperforms previous methods
based on adversarial training on the decoders’ output like [17] in terms of both reconstruction loss
and generation quality as measured by human subjects. We believe this disentanglement approach is
a serious competitor to the widespread adversarial losses on the decoder output for such tasks.

In the remainder of the paper, we discuss in more details the related work in Section 2. We then
present the training procedure in Section 3 before describing the network architecture and the
implementation in Section 4. Experimental results are shown in Section 5.
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2 Related work

There is substantial literature on attribute-based and/or conditional image generation that can be split
in terms of required supervision, with three different levels. At one extreme are fully supervised
approaches developed to model known transformations, where examples take the form of (input,
transformation, result of the transformation). In that case, the model needs to learn the desired
transformation. This setting was previously explored to learn affine transformations [8], 3D rotations
[25], lighting variations [11] and 2D video game animations [19]. The methods developed in these
works however rely on the supervised setting, and thus cannot be applied in our setup.

At the other extreme of the supervision spectrum lie fully unsupervised methods that aim at learning
deep neural networks that disentangle the factors of variations in the data, without specification of
the attributes. Example methods are InfoGAN [4], or the predictability minimization framework
proposed in [20]. The neural photo editor [3] disentangles factors of variations in natural images for
image edition. This setting is considerably harder than the one we consider, and it may be difficult
with these methods to automatically discover high-level concepts such as gender or age.

Our work lies in between the two previous settings. It is related to information as in [15]. Methods
developed for unsupervised domain transfer [9, 26, 21, 23] can also be applied in our case: given
two different domains of images such as “drawings” and “photograph”, one wants to map an image
from one domain to the other without supervision; in our case, a domain would correspond to an
attribute value. The mappings are trained using adversarial training in pixel space as mentioned in
the introduction, using separate encoders and/or decoders per domain, and thus do not scale well to
multiple attributes. In this line of work but more specifically considering the problem of modifying
attributes, the Invertible conditional GAN [17] first trains a GAN conditioned on the attribute values,
and in a second step learns to map input images to the latent space of the GAN, hence the name of
invertible GANs. It is used as a baseline in our experiments. Antipov et al. [1] use a pre-trained face
recognition system instead of a conditional GAN to learn the latent space, and only focuses on the
age attribute. The attribute-to-image approach [24] is a variational auto-encoder that disentangles
foreground and background to generate images using attribute values only. Conditional generation is
performed by inferring the latent state given the correct attributes and then changing the attributes.

Additionally, our work is related to work on learning invariant latent spaces using adversarial training
in domain adaptation [6], fair classification [5] and robust inference [14]. The training criterion
we use for enforcing invariance is similar to the one used in those works, the difference is that the
end-goal of these works is only to filter out nuisance variables or sensitive information. In our case,
we learn generative models, and invariance is used as a means to force the decoder to use attribute
information in its reconstruction.

Finally, for the application of automatically modifying faces using attributes, the feature interpolation
approach of [22] presents a means to generate alterations of images based on attributes using a
pre-trained network on ImageNet. While their approach is interesting from an application perspective,
their inference is costly and since it relies on pre-trained models, cannot naturally incorporate factors
or attributes that have not been foreseen during the pre-training.

3 Fader Networks

Let X be an image domain and Y the set of possible attributes associated with images in X , where
in the case of people’s faces typical attributes are glasses/no glasses, man/woman, young/old. For
simplicity, we consider here the case where attributes are binary, but our approach could be extended
to categorical attributes. In that setting, Y = {0, 1}n, where n is the number of attributes. We have a
training set D = {(x1, y1), ..., (xm, ym)}, of m pairs (image, attribute) (xi ∈ X , yi ∈ Y). The end
goal is to learn from D a model that will generate, for any attribute vector y′, a version of an input
image x whose attribute values correspond to y′.

Encoder-decoder architecture Our model, described in Figure 2, is based on an encoder-decoder
architecture with domain-adversarial training on the latent space. The encoder Eθenc : X → RN is a
convolutional neural network with parameters θenc that maps an input image to its N -dimensional
latent representation Eθenc

(x). The decoderDθdec
: (RN ,Y)→ X is a deconvolutional network with

parameters θdec that produces a new version of the input image given its latent representationEθenc(x)
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and any attribute vector y′. When the context is clear, we simply use D and E to denote Dθdec and
Eθenc . The precise architectures of the neural networks are described in Section 4. The auto-encoding
loss associated to this architecture is a classical mean squared error (MSE) that measures the quality
of the reconstruction of a training input x given its true attribute vector y:

LAE(θenc, θdec) =
1

m

∑

(x,y)∈D

∥∥Dθdec

(
Eθenc(x), y

)
− x
∥∥2
2

The exact choice of the reconstruction loss is not fundamental in our approach, and adversarial losses
such as PatchGAN [12] could be used in addition to the MSE at this stage to obtain better textures or
sharper images, as in [9]. Using a mean absolute or mean squared error is still necessary to ensure
that the reconstruction matches the original image.

Ideally, modifying y in D(E(x), y) would generate images with different perceived attributes, but
similar to x in every other aspect. However, without additional constraints, the decoder learns to
ignore the attributes, and modifying y at test time has no effect.

Learning attribute-invariant latent representations To avoid this behavior, our approach is to
learn latent representations that are invariant with respect to the attributes. By invariance, we mean
that given two versions of a same object x and x′ that are the same up to their attribute values, for
instance two images of the same person with and without glasses, the two latent representations
E(x) and E(x′) should be the same. When such an invariance is satisfied, the decoder must use the
attribute to reconstruct the original image. Since the training set does not contain different versions
of the same image, this constraint cannot be trivially added in the loss.

We hence propose to incorporate this constraint by doing adversarial training on the latent space.
This idea is inspired by the work on predictability minimization [20] and adversarial training for
domain adaptation [6, 14] where the objective is also to learn an invariant latent representation using
an adversarial formulation of the learning objective. To that end, an additional neural network called
the discriminator is trained to identify the true attributes y of a training pair (x, y) given E(x). The
invariance is obtained by learning the encoder E such that the discriminator is unable to identify the
right attributes. As in GANs [7], this corresponds to a two-player game where the discriminator aims
at maximizing its ability to identify attributes, and E aims at preventing it to be a good discriminator.
The exact structure of our discriminator is described in Section 4.

Discriminator objective The discriminator outputs probabilities of an attribute vector
Pθdis

(y|E(x)), where θdis are the discriminator’s parameters. Using the subscript k to refer to

the k-th attribute, we have logPθdis
(y|E(x)) =

n∑
k=1

logPθdis,k(yk|E(x)). Since the objective of the

discriminator is to predict the attributes of the input image given its latent representation, its loss
depends on the current state of the encoder and is written as:

Ldis(θdis|θenc) = −
1

m

∑

(x,y)∈D
logPθdis

(
y
∣∣Eθenc

(x)
)

(1)

Adversarial objective The objective of the encoder is now to compute a latent representation that
optimizes two objectives. First, the decoder should be able to reconstruct x given E(x) and y, and
at the same time the discriminator should not be able to predict y given E(x). We consider that a
mistake is made when the discriminator predicts 1 − yk for attribute k. Given the discriminator’s
parameters, the complete loss of the encoder-decoder architecture is then:

L(θenc, θdec|θdis) =
1

m

∑

(x,y)∈D

∥∥Dθdec

(
Eθenc(x), y

)
− x
∥∥2
2
− λE logPθdis

(1− y|Eθenc(x)) , (2)

where λE > 0 controls the trade-off between the quality of the reconstruction and the invariance
of the latent representations. Large values of λE will restrain the amount of information about x
contained in E(x), and result in blurry images, while low values limit the decoder’s dependency on
the latent code y and will result in poor effects when altering attributes.
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Figure 2: Main architecture. An (image, attribute) pair (x, y) is given as input. The encoder maps x
to the latent representation z; the discriminator is trained to predict y given z whereas the encoder
is trained to make it impossible for the discriminator to predict y given z only. The decoder should
reconstruct x given (z, y). At test time, the discriminator is discarded and the model can generate
different versions of x when fed with different attribute values.

Learning algorithm Overall, given the current state of the encoder, the optimal discriminator
parameters satisfy θ∗dis(θenc) ∈ argminθdis

Ldis(θdis|θenc). If we ignore problems related to multiple
(and local) minima, the overall objective function is

θ∗enc, θ
∗
dec = argmin

θenc,θdec

L(θenc, θdec|θ∗dis(θenc)) .

In practice, it is unreasonable to solve for θ∗dis(θenc) at each update of θenc. Following the practice of
adversarial training for deep networks, we use stochastic gradient updates for all parameters, consid-
ering the current value of θdis as an approximation for θ∗dis(θenc). Given a training example (x, y), let
us denote Ldis

(
θdis
∣∣θenc, x, y

)
the auto-encoder loss restricted to (x, y) and L

(
θenc, θdec

∣∣θdis, x, y
)

the corresponding discriminator loss. The update at time t given the current parameters θ(t)dis, θ
(t)
enc,

and θ(t)dec and the training example (x(t), y(t)) is:

θ
(t+1)
dis = θ

(t)
dis − η∇θdis

Ldis

(
θ
(t)
dis

∣∣θ(t)enc, x
(t), y(t)

)

[θ(t+1)
enc , θ

(t+1)
dec ] = [θ(t)enc, θ

(t)
dec]− η∇θenc,θdecL

(
θ(t)enc, θ

(t)
dec

∣∣θ(t+1)
dis , x(t), y(t)

)
.

The details of training and models are given in the next section.

4 Implementation

We adapt the architecture of our network from [9]. Let Ck be a Convolution-BatchNorm-ReLU layer
with k filters. Convolutions use kernel of size 4× 4, with a stride of 2, and a padding of 1, so that
each layer of the encoder divides the size of its input by 2. We use leaky-ReLUs with a slope of 0.2
in the encoder, and simple ReLUs in the decoder.

The encoder consists of the following 7 layers:

C16 − C32 − C64 − C128 − C256 − C512 − C512

Input images have a size of 256× 256. As a result, the latent representation of an image consists of
512 feature maps of size 2× 2. In our experiments, using 6 layers gave us similar results, while 8
layers significantly decreased the performance, even when using more feature maps in the latent state.

To provide the decoder with image attributes, we append the latent code to each layer given as input to
the decoder, where the latent code of an image is the concatenation of the one-hot vectors representing
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Model Naturalness Accuracy
Mouth Smile Glasses Mouth Smile Glasses

Real Image 92.6 87.0 88.6 89.0 88.3 97.6
IcGAN AE 22.7 21.7 14.8 88.1 91.7 86.2

IcGAN Swap 11.4 22.9 9.6 10.1 9.9 47.5
FadNet AE 88.4 75.2 78.8 91.8 90.1 94.5

FadNet Swap 79.0 31.4 45.3 66.2 97.1 76.6

Table 1: Perceptual evaluation of naturalness and swap accuracy for each model. The naturalness
score is the percentage of images that were labeled as “real” by human evaluators to the question “Is
this image a real photograph or a fake generated by a graphics engine?”. The accuracy score is the
classification accuracy by human evaluators on the values of each attribute.

the values of its attributes (binary attributes are represented as [1, 0] and [0, 1]). We append the latent
code as additional constant input channels for all the convolutions of the decoder. Denoting by n the
number of attributes, (hence a code of size 2n), the decoder is symmetric to the encoder, but uses
transposed convolutions for the up-sampling:

C512+2n − C512+2n − C256+2n − C128+2n − C64+2n − C32+2n − C16+2n .

The discriminator is a C512 layer followed by a fully-connected neural network of two layers of size
512 and n repsectively.

Dropout We found it extremely beneficial to add dropout in our discriminator. We set the dropout
rate to 0.3 in all our experiments. Following [9], we also tried to add dropout in the first layers of the
decoder, but in our experiments, this turned out to significantly decrease the performance.

Discriminator cost scheduling Similarly to [2], we use a variable weight for the discriminator loss
coefficient λE . We initially set λE to 0 and the model is trained like a normal auto-encoder. Then,
λE is linearly increased to 0.0001 over the first 500, 000 iterations to slowly encourage the model
to produce invariant representations. This scheduling turned out to be critical in our experiments.
Without it, we observed that the encoder was too affected by the loss coming from the discriminator,
even for low values of λE .

Model selection Model selection was first performed automatically using two criteria. First, we
used the reconstruction error on original images as measured by the MSE. Second, we also want the
model to properly swap the attributes of an image. For this second criterion, we train a classifier
to predict image attributes. At the end of each epoch, we swap the attributes of each image in the
validation set and measure how well the classifier performs on the decoded images. These two
metrics were used to filter out potentially good models. The final model was selected based on human
evaluation on images from the train set reconstructed with swapped attributes.

5 Experiments

5.1 Experiments on the celebA dataset

Experimental setup We first present experiments on the celebA dataset [13], which contains
200, 000 images of celebrity of shape 178× 218 annotated with 40 attributes. We used the standard
training, validation and test split. All pictures presented in the paper or used for evaluation have been
taken from the test set. For pre-processing, we cropped images to 178× 178, and resized them to
256× 256, which is the resolution used in all figures of the paper. Image values were normalized
to [−1, 1]. All models were trained with Adam [10], using a learning rate of 0.002, β1 = 0.5, and a
batch size of 32. We performed data augmentation by flipping horizontally images with a probability
0.5 at each iteration. As model baseline, we used IcGAN [17] with the model provided by the authors
and trained on the same dataset. 4

4https://github.com/Guim3/IcGAN
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Figure 3: Swapping the attributes of different faces. Zoom in for better resolution.

Qualitative evaluation Figure 3 shows examples of images generated when swapping different
attributes: the generated images have a high visual quality and clearly handle the attribute value
changes, for example by adding realistic glasses to the different faces. These generated images
confirm that the latent representation learned by Fader Networks is both invariant to the attribute
values, but also captures the information needed to generate any version of a face, for any attribute
value. Indeed, when looking at the shape of the generated glasses, different glasses shapes and colors
have been integrated into the original face depending on the face: our model is not only adding
“generic” glasses to all faces, but generates plausible glasses depending on the input.

Quantitative evaluation protocol We performed a quantitative evaluation of Fader Networks on
Mechanical Turk, using IcGAN as a baseline. We chose the three attributes Mouth (Open/Close),
Smile (With/Without) and Glasses (With/Without) as they were attributes in common between IcGAN
and our model. We evaluated two different aspects of the generated images: the naturalness, that
measures the quality of generated images, and the accuracy, that measures how well swapping an
attribute value is reflected in the generation. Both measures are necessary to assess that we generate
natural images, and that the swap is effective. We compare: REAL IMAGE , that provides original
images without transformation, FADNET AE and ICGAN AE , that reconstruct original images
without attribute alteration, and FADNET SWAP and ICGAN SWAP , that generate images with one
swapped attribute, e.g., With Glasses→Without Glasses. Before being submitted to Mechanical Turk,
all images were cropped and resized following the same processing than IcGAN. As a result, output
images were displayed in 64× 64 resolution, also preventing Workers from basing their judgment on
the sharpness of presented images exclusively.

Technically, we should also assess that the identity of a person is preserved when swapping attributes.
This seemed to be a problem for GAN-based methods, but the reconstruction quality of our model is
very good (RMSE on test of 0.0009, to be compared to 0.028 for IcGAN), and we did not observe
this issue. Therefore, we did not evaluate this aspect.

For naturalness, the first 500 images from the test set such that there are 250 images for each attribute
value were shown to Mechanical Turk Workers, 100 for each of the 5 different models presented
above. For each image, we asked whether the image seems natural or generated. The description
given to the Workers to understand their task showed 4 examples of real images, and 4 examples of
fake images (1 FADNET AE , 1 FADNET SWAP , 1 ICGAN AE , 1 ICGAN SWAP ).

The accuracy of each model on each attribute was evaluated in a different classification task, resulting
in a total of 15 experiments. For example, the FadNet/Glasses experiment consisted in asking
Workers whether people with glasses being added by FADNET SWAP effectively possess glasses,
and vice-versa. This allows us to evaluate how perceptible the swaps are to the human eye. In each
experiment, 100 images were shown (50 images per class, in the order they appear in the test set).

In both quantitative evaluations, each experiment was performed by 10 Workers, resulting in 5, 000
samples per experiment for naturalness, and 1, 000 samples per classification experiment on swapped
attributes. The results on both tasks are shown in Table 1.
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Figure 4: (Zoom in for better resolution.) Examples of multi-attribute swap (Gender / Opened eyes /
Eye glasses) performed by the same model. Left images are the originals.

Quantitative results In the naturalness experiments, only around 90% of real images were classi-
fied as “real” by the Workers, indicating the high level of requirement to generate natural images. Our
model obtained high naturalness accuracies when reconstructing images without swapping attributes:
88.4%, 75.2% and 78.8%, compared to IcGAN reconstructions whose accuracy does not exceed 23%,
whether it be for reconstructed or swapped images. For the swap, FADNET SWAP still consistently
outperforms ICGAN SWAP by a large margin. However, the naturalness accuracy varies a lot based
on the swapped attribute: from 79.0% for the opening of the mouth, down to 31.4% for the smile.

Classification experiments show that reconstructions with FADNET AE and ICGAN AE have very
high classification scores, and are even on par with real images on both Mouth and Smile. FADNET
SWAP obtains an accuracy of 66.2% for the mouth, 76.6% for the glasses and 97.1% for the smile,
indicating that our model can swap these attributes with a very high efficiency. On the other hand,
with accuracies of 10.1%, 47.5% and 9.9% on these same attributes, ICGAN SWAP does not seem
able to generate convincing swaps.

Multi-attributes swapping We present qualitative results for the ability of our model to swap
multiple attributes at once in Figure 4, by jointly modifying the gender, open eyes and glasses
attributes. Even in this more difficult setting, our model can generate convincing images with multiple
swaps.

5.2 Experiments on Flowers dataset

We performed additional experiments on the Oxford-102 dataset, which contains about 9, 000 images
of flowers classified into 102 categories [16]. Since the dataset does not contain other labels than the
flower categories, we built a list of color attributes from the flower captions provided by [18]. Each
flower is provided with 10 different captions. For a given color, we gave a flower the associated color
attribute, if that color appears in at least 5 out of the 10 different captions. Although being naive, this
approach was enough to create accurate labels. We resized images to 64× 64. Figure 5 represents
reconstructed flowers with different values of the “pink” attribute. We can observe that the color of
the flower changes in the desired direction, while keeping the background cleanly unchanged.

Figure 5: Examples of reconstructed flowers with different values of the pink attribute. First row
images are the originals. Increasing the value of that attribute will turn flower colors into pink, while
decreasing it in images with originally pink flowers will make them turn yellow or orange.
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6 Conclusion

We presented a new approach to generate variations of images by changing attribute values. The
approach is based on enforcing the invariance of the latent space w.r.t. the attributes. A key advantage
of our method compared to many recent models [26, 9] is that it generates realistic images of high
resolution without needing to apply a GAN to the decoder output. As a result, it could easily be
extended to other domains like speech, or text, where the backpropagation through the decoder can
be really challenging because of the non-differentiable text generation process for instance. However,
methods commonly used in vision to assess the visual quality of the generated images, like PatchGAN,
could totally be applied on top of our model.
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Appendix B

SING: Symbol-to-Instrument Neural

Generator

This appendix shows SING: Symbol-to-Instrument Neural Generator Défossez et al. [2018],

a paper accepted for poster presentation at NeurIPS 2018 (formerly NIPS), and a joint work

with Alexandre Défossez, Nicolas Usunier, Léon Bottou and Francis Bach.
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Abstract

Recent progress in deep learning for audio synthesis opens the way to models that
directly produce the waveform, shifting away from the traditional paradigm of
relying on vocoders or MIDI synthesizers for speech or music generation. Despite
their successes, current state-of-the-art neural audio synthesizers such as WaveNet
and SampleRNN [24, 17] suffer from prohibitive training and inference times
because they are based on autoregressive models that generate audio samples one
at a time at a rate of 16kHz. In this work, we study the more computationally
efficient alternative of generating the waveform frame-by-frame with large strides.
We present SING, a lightweight neural audio synthesizer for the original task of
generating musical notes given desired instrument, pitch and velocity. Our model
is trained end-to-end to generate notes from nearly 1000 instruments with a single
decoder, thanks to a new loss function that minimizes the distances between the
log spectrograms of the generated and target waveforms. On the generalization
task of synthesizing notes for pairs of pitch and instrument not seen during training,
SING produces audio with significantly improved perceptual quality compared to a
state-of-the-art autoencoder based on WaveNet [4] as measured by a Mean Opinion
Score (MOS), and is about 32 times faster for training and 2, 500 times faster for
inference.

1 Introduction

The recent progress in deep learning for sequence generation has led to the emergence of audio
synthesis systems that directly generate the waveform, reaching state-of-the-art perceptual quality in
speech synthesis, and promising results for music generation. This represents a shift of paradigm with
respect to approaches that generate sequences of parameters to vocoders in text-to-speech systems
[21, 23, 19], or MIDI partition in music generation [8, 3, 10]. A commonality between the state-of-
the-art neural audio synthesis models is the use of discretized sample values, so that an audio sample
is predicted by a categorical distribution trained with a classification loss [24, 17, 18, 14]. Another
significant commonality is the use of autoregressive models that generate samples one-by-one, which
leads to prohibitive training and inference times [24, 17], or requires specialized implementations and
low-level code optimizations to run in real time [14]. An exception is parallel WaveNet [18] which
generates a sequence with a fully convolutional network for faster inference. However, the parallel
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approach is trained to reproduce the output of a standard WaveNet, which means that faster inference
comes at the cost of increased training time.

In this paper, we study an alternative to both the modeling of audio samples as a categorical distribution
and the autoregressive approach. We propose to generate the waveform for entire audio frames of
1024 samples at a time with a large stride, and model audio samples as continuous values. We
develop and evaluate this method on the challenging task of generating musical notes based on
the desired instrument, pitch, and velocity, using the large-scale NSynth dataset [4]. We obtain a
lightweight synthesizer of musical notes composed of a 3-layer RNN with LSTM cells [12] that
produces embeddings of audio frames given the desired instrument, pitch, velocity1 and time index.
These embeddings are decoded by a single four-layer convolutional network to generate notes from
nearly 1000 instruments, 65 pitches per instrument on average and 5 velocities.

The successful end-to-end training of the synthesizer relies on two ingredients:

• A new loss function which we call the spectral loss, which computes the 1-norm between the log
power spectrograms of the waveform generated by the model and the target waveform, where the
power spectrograms are obtained by the short-time Fourier transform (STFT).
Log power spectrograms are interesting both because they are related to human perception [6], but
more importantly because the entire loss is invariant to the original phase of the signal, which can
be arbitrary without audible differences.

• Initialization with a pre-trained autoencoder: a purely convolutional autoencoder architecture on
raw waveforms is first trained with the spectral loss. The LSTM is then initialized to reproduce the
embeddings given by the encoder, using mean squared error. After initialization, the LSTM and
the decoder are fine-tuned together, backpropagating through the spectral loss.

We evaluate our synthesizer on a new task of pitch completion: generating notes for pitches not seen
during training. We perform perceptual experiments with human evaluators to aggregate a Mean
Opinion Score (MOS) that characterizes the naturalness and appealing of the generated sounds. We
also perform ABX tests to measure the relative similarity of the synthesizer’s ability to effectively
produce a new pitch for a given instrument, see Section 5.3.2. We use a state-of-the-art autoencoder
of musical notes based on WaveNet [4] as a baseline neural audio synthesis system. Our synthesizer
achieves higher perceptual quality than Wavenet-based autoencoder in terms of MOS and similarity
to the ground-truth while being about 32 times faster during training and 2, 500 times for generation.

2 Related Work

A large body of work in machine learning for audio synthesis focuses on generating parameters for
vocoders in speech processing [21, 23, 19] or musical instrument synthesizers in automatic music
composition [8, 3, 10]. Our goal is to learn the synthesizers for musical instruments, so we focus
here on methods that generate sound without calling such synthesizers.

A first type of approaches model power spectrograms given by the STFT [4, 9, 25], and generate
the waveform through a post-processing that is not part of the training using a phase reconstruction
algorithm such as the Griffin-Lim algorithm [7]. The advantage is to focus on a distance between high-
level representations that is more relevant perceptually than a regression on the waveform. However,
using Griffin-Lim means that the training is not end to end. Indeed the predicted spectrograms may
not come from a real signal. In that case, Griffin-Lim performs an orthogonal projection onto the set
of valid spectrograms that is not accounted for during training. Notice that our approach with the
spectral loss is different: our models directly predict waveforms rather than spectrograms and the
spectral loss computes log power spectrograms of these predicted waveforms.

The current state-of-the-art in neural audio synthesis is to generate directly the waveform [24, 17, 19].
Individual audio samples are modeled with a categorical distribution trained with a multiclass cross-
entropy loss. Quantization of the 16 bit audio is performed (either linear [17] or with a µ-law
companding [24]) to map to a few hundred bins to improve scalability. The generation is still
extremely costly; distillation [11] to a faster model has been proposed to reduce inference time at the
expense of an even larger training time [18]. The recent proposal of [14] partly solves the issue with

1Quoting [4]: "MIDI velocity is similar to volume control and they have a direct relationship. For physical
intuition, higher velocity corresponds to pressing a piano key harder."
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a small loss in accuracy, but it requires heavy low-level code optimization. In contrast, our approach
trains and generate waveforms comparably fast with a PyTorch2 implementation. Our approach is
different since we model the waveform as a continuous signal and use the spectral loss between
generated and target waveforms and model audio frames of 1024 samples, rather than performing
classification on individual samples. The spectral loss we introduce is also different from the power
loss regularization of [18], even though both are based on the STFT of the generated and target
waveforms. In [18], the primary loss is the classification of individual samples, and their power loss
is used to equalize the average amplitude of frequencies over time. Thus the power loss cannot be
used alone to learn to reconstruct the waveform.

Works on neural audio synthesis conditioned on symbolic inputs were developed mostly for text-
to-speech synthesis [24, 17, 25]. Experiments on generation of musical tracks based on desired
properties were described in [24], but no systematic evaluation has been published. The model of [4],
which we use as baseline in our experiments on perceptual quality, is an autoencoder of musical
notes based on WaveNet [24] that compresses the signal to generate high-level representations that
transfer to music classification tasks, but contrarily to our synthesizer, it cannot be used to generate
waveforms from desired properties of the instrument, pitch and velocity without some input signal.

The minimization by gradient descent of an objective function based on the power spectrogram has
already been applied to the transformation of a white noise waveform into a specific sound texture [2].
However, to the best of our knowledge, such objective functions have not been used in the context of
neural audio synthesis.

3 The spectral loss for waveform synthesis

Previous work in audio synthesis on the waveform focused on classification losses [17, 24, 4].
However, their computational cost needs to be mitigated by quantization, which inherently limits the
resolution of the predictions, and ultimately increasing the number of classes is likely necessary to
achieve the optimal accuracy. Our approach directly predicts a single continuous value for each audio
sample, and computes distances between waveforms in the domain of power spectra to be invariant
to the original phase of the signal. As a baseline, we also consider computing distances between
waveforms using plain mean square error (MSE).

3.1 Mean square regression on the waveform

The simplest way of measuring the distance between a reconstructed signal x̂ and the reference x is
to compute the MSE on the waveform directly, that is taking the Euclidean norm between x and x̂,

Lwav (x, x̂) := ‖x− x̂‖2 . (3.1)

The MSE is most likely not suited as a perceptual distance between waveforms because it is extremely
sensitive to a small shift in the signal. Yet, we observed that it was sufficient to learn an autoencoder
and use it as a baseline.

3.2 Spectral loss

As an alternative to the MSE on the waveform, we suggest taking the Short Term Fourier Transform
(STFT) of both x and x̂ and compare their absolute values in log scale. We first compute the log
spectrogram

l(x) := log
(
ε+ |STFT [x]|2

)
. (3.2)

The STFT decomposes the original signal x in successive frames of 1024 time steps with a stride
of 256 so that a frame overlaps at 75% with the next one. The output for a single frame is given by
513 complex numbers, each representing a specific frequency range. Taking the point-wise absolute
values of those numbers represents how much energy is present in a specific frequency range. We
observed that our models generated higher quality sounds when trained using a log scale of those
coefficients. Previous work has come to the same conclusion [4]. We observed that many entries

2https://pytorch.org/
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of the spectrograms are close to zero and that small errors on those parts can add up to form noisy
artifacts. In order to favor sparsity in the spectrogram, we use the ‖·‖1 norm instead of the MSE,

Lstft,1 (x, x̂) := ‖l(x)− l(x̂)‖1 . (3.3)

The value of ε controls the trade-off between accurately representing low energy and high energy
coefficients in the spectrogram. We found that ε = 1 gave the best subjective reconstruction quality.

The STFT is a (complex) convolution operator on the waveform and the squared absolute value
of the Fourier coefficients makes the power spectrum differentiable with respect to the generated
waveform. Since the generated waveform is itself a differentiable function of the parameters (up
to the non-differentiability points of activation functions such as ReLU), the spectral loss (3.3) can
be minimized by standard backpropagation. Even though we only consider this spectral loss in our
experiments, alternatives to the STFT such as the Wavelet transform also define differentiable loss
for suitable wavelets.

3.2.1 Non unicity of the waveform representation

To illustrate the importance of the spectral loss instead of a waveform loss, let us now consider a
problem that arises when generating notes in the test set. Let us assume one of the instrument is a
pure sinuoide. For a given pitch at a frequency f , the audio signal is xi = sin(2πi f

16000 + φ). Our
perception of the signal is not affected by the choice of φ ∈ [0, 2π[, and the power spectrogram of
x is also unaltered. When recording an acoustic instrument, the value of φ depends on any number
of variables characterizing the physical system that generated the sound and there is no guarantee
that φ stays constant when playing the same note again. For a synthetic sound, φ also depends on
implementation details of the software generating the sound.

For a sound that is not in the training set and as far as the model is concerned, φ is a random variable
that can take any value in the range [0, 2π[. As a result, x0 is unpredictable in the range [−1, 1], and
the mean square error between the generated signal and the ground truth is uninformative. Even
on the training dataset, the model has to use extra resources to remember the value of φ for each
pitch. We believe that this phenomenon is the reason why training the synthesizer using the MSE on
the waveform leads to worse reconstruction performance, even though this loss is sufficient in the
context of auto-encoding (see Section 5.2). The spectral loss solves this issue since the model is free
to choose a single canonical value for φ.

However, one should note that the spectral loss is permissive, in the sense that it does not penalize
phase inconsitencies of the complex phase across the different frames of the STFT, which lead to
potential artifacts. In practice, we obtain state of the art results (see Section 5) and we conjecture that
thanks to the frame overlap in the STFT, the solution that minimizes the spectral loss will often be
phase consistent, which is why Griffin-Lim works resonably well despite sharing the same limitation.

4 Model

In this section we introduce the SING architecture. It is composed of two parts: a LSTM based
sequence generator whose output is plugged to a decoder that transforms it into a waveform. The
model is trained to recover a waveform x sampled at 16,000 Hz from the training set based on the
one-hot encoded instrument I , pitch P and velocity V . The whole architecture is summarized in
Figure 1.

4.1 LSTM sequence generator

The sequence generator is composed of a 3-layer recurrent neural network with LSTM cells and
1024 hidden units each. Given an example with velocity V , instrument I and pitch P , we obtain
3 embeddings (uV , vI , wP ) ∈ R2 × R16 × R8 from look-up tables that are trained along with the
model. Furthermore, the model is provided at each time step with an extra embedding zT ∈ R4

where T is the current time step [22, 5], also obtained from a look-up table that is trained jointly. The
input of the LSTM is the concatenation of those four vectors (uV , vI , wP , zT ). Although we first
experimented with an autoregressive model where the previous output was concatenated with those
embeddings, we achieved much better performance and faster training by feeding the LSTM with
only on the 4 vectors (uV , vI , wP , zT ) at each time step. Given those inputs, the recurrent network
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h0 := 0

(uV , vI , wP , z1)

s1(V IP )

(uV , vI , wP , z2)

h1

s2(V IP )

(uV , vI , wP , z3)

h2

s3(V IP )

· · ·

(uV , vI , wP , z265)

h259

s265(V IP )

Convolution K = 9, S = 1, C = 4096, ReLU

Convolution K = 1, S = 1, C = 4096, ReLU

Convolution K = 1, S = 1, C = 4096, ReLU

Conv transpose K = 1024, S = 256, C = 1

Output waveform STFT + log-power

Spectral loss

Figure 1: Summary of the entire architecture of SING. uV , vI , wP , z∗ represent the look-up tables
respectively for the velocity, instrument, pitch and time. h∗ represent the hidden state of the LSTM
and s∗ its output. For convolutional layers, K represents the kernel size, S the stride and C the
number of channels.

generates a sequence ∀1 ≤ T ≤ N, s(V, I, P )T ∈ RD with a linear layer on top of the last hidden
state. In our experiments, we have D = 128 and N = 265.

4.2 Convolutional decoder

The sequence s(V, I, P ) is decoded into a waveform by a convolutional network. The first layer
is a convolution with a kernel size of 9 and a stride of 1 over the sequence s with 4096 channels
followed by a ReLU. The second and third layers are both convolutions with a kernel size of 1 (a.k.a.
1x1 convolution [4]) also followed by a ReLU. The number of channels is kept at 4096. Finally the
last layer is a transposed convolution with a stride of 256 and a kernel size of 1024 that directly
outputs the final waveform corresponding to an audio frame of size 1024. In order to reduce artifacts
generated by the high stride value, we smooth the deconvolution filters by multiplying them with a
squared Hann window. As the stride is one fourth of the kernel size, the squared Hann window has
the property that the sum of its values for a given output position is always equal to 1 [7]. Thus the
final deconvolution can also be seen as an overlap-add method. We pad the examples so that the final
generated audio signal has the right length. Given our parameters, we need s(V, I, P ) to be of length
N = 265 to recover a 4 seconds signal d(s(V, I, P )) ∈ R64,000.

4.3 Training details

All the models are trained on 4 P100 GPUs using Adam [15] with a learning rate of 0.0003 and a
batch size of 256.

Initialization with an autoencoder. We introduce an encoder turning a waveform x into a sequence
e(x) ∈ RN×D. This encoder is almost the mirror of the decoder. It starts with a convolution layer
with a kernel size of 1024, a stride of 256 and 4096 channels followed by a ReLU. Similarly to the
decoder, we smooth its filters using a squared Hann window. Next are two 1x1 convolutions with
4096 channels and ReLU as an activation function. A final 1x1 convolution with no non linearity
turns those 4096 channels into the desired sequence with D channels. We first train the encoder
and decoder together as an auto-encoder on a reconstruction task. We train the auto-encoder for 50
epochs which takes about 12 hours on 4 GPUs.
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LSTM training. Once the auto-encoder has converged, we use the encoder to generate a target
sequence for the LSTM. We use the MSE between the output s(V, I, P ) of the LSTM and the output
e(x) of the encoder, only optimizing the LSTM while keeping the encoder constant. The LSTM is
trained for 50 epochs using truncated backpropagation through time [26] using a sequence length
of 32. This takes about 10 hours on 4 GPUs.

End-to-end fine tuning. We then plug the decoder on top of the LSTM and fine tune them together
in an end-to-end fashion, directly optimizing for the loss on the waveform, either using the MSE
on the waveform or computing the MSE on the log-amplitude spectrograms and back propagating
through the STFT. At that point we stop using truncated back propagation through time and directly
compute the gradient on the entire sequence. We do so for 20 epochs which takes about 8 hours on 4
GPUs. From start to finish, SING takes about 30 hours on 4 GPUs to train.

Although we could have initialized our LSTM and decoder randomly and trained end-to-end, we did
not achieve convergence until we implemented our initialization strategy.

5 Experiments

The source code for SING and a pretrained model are available on our github3. Audio samples are
available on the article webpage4.

5.1 NSynth dataset

The train set from the NSynth dataset [4] is composed of 289,205 audio recordings of instruments,
some synthetic and some acoustic. Each recording is 4 second long at 16,000 Hz and is represented
by a vector xV,I,P ∈ [−1, 1]64,000 indexed by V ∈ {0, 4} representing the velocity of the note,
I ∈ {0, . . . , 1005} representing the instrument, P ∈ {0, . . . , 120} representing the pitch. The range
of pitches available can vary depending on the instrument but for any combination of V, I, P , there is
at most a single recording.

We did not make use of the validation or test set from the original NSynth dataset because the
instruments had no overlap with the training set. Because we use a look-up table for the instrument
embedding, we cannot generate audio for unseen instruments. Instead, we selected for each instrument
10% of the pitches randomly that we moved to a separate test set. Because the pitches are different
for each instrument, our model trains on all pitches but not on all combinations of a pitch and an
instrument. We can then evaluate the ability of our model to generalize to unseen combinations of
instrument and pitch. In the rest of the paper, we refer to this new split of the original train set as the
train and test set.

5.2 Generalization through pitch completion

We report our results in Table 1. We provided both the performance of the complete model as well as
that of the autoencoder used for the initial training of SING. This autoencoder serves as a reference for
the maximum quality the model can achieve if the LSTM were to reconstruct perfectly the sequence
e(x).

Although using the MSE on the waveform works well as far as the autoencoder is concerned, this loss
is hard to optimize for the LSTM. Indeed, the autoencoder has access to the signal it must reconstruct,
so that it can easily choose which representation of the signal to output as explained in Section 3.2.1.
SING must be able to recover that information solely from the embeddings given to it as input. It
manages to learn some of it but there is an important drop in quality. Besides, when switching to the
test set one can see that the MSE on the waveform increases significantly. As the model has never
seen those examples, it has no way of picking the right representation. When using a spectral loss,
SING is free to choose a canonical representation for the signal it has to reconstruct and it does not
have to remember the one that was in the training set. We observe that although we have a drop in
quality between the train and test set, our model is still able to generalize to unseen combinations of
pitch and instrument.

3https://github.com/facebookresearch/SING
4https://research.fb.com/publications/sing-symbol-to-instrument-neural-generator
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Spectral loss Wav MSE
Model training loss train test train test

Autoencoder waveform 0.026 0.028 0.0002 0.0003
SING waveform 0.075 0.084 0.006 0.039
Autoencoder spectral 0.028 0.032 N/A N/A
SING spectral 0.039 0.051 N/A N/A
SING
no time
embedding

spectral 0.050 0.063 N/A N/A

Table 1: Results on the train and test set of the pitch completion task for different models. The first
column specifies the model, either the autoencoder used for the initial training of the LSTM or the
complete SING model with the LSTM and the convolutional decoder. We compare models either
trained with a loss on the waveform (see (3.1)) or on the spectrograms (see (3.3)). Finally we also
trained a model with no temporal embedding.

Figure 2: Example of rainbowgrams from the NSynth dataset and the reconstructions by different
models. Rainbowgrams are defined in [4] as “a CQT spectrogram with intensity of lines proportional
to the log magnitude of the power spectrum and color given by the derivative of the phase”. Time
is represented on the horizontal axis while frequencies are on the vertical one. From left to right:
ground truth, Wavenet-based autoencoder, SING with spectral loss, SING with waveform loss and
SING without the time embedding.

Finally, we tried training a model without the time embedding zT . Theoretically, the LSTM could do
without it by learning to count the number of time steps since the beginning of the sequence. However
we do observe a significant drop in performance when removing this embedding, thus motivating our
choice.

On Figure 2, we represented the rainbowgrams for a particular example from the test set as well as
its reconstruction by the Wavenet-autoencoder, SING trained with the spectral and waveform loss
and SING without time embedding. Rainbowgrams are defined in [4] as “a CQT spectrogram with
intensity of lines proportional to the log magnitude of the power spectrum and color given by the
derivative of the phase”. A different derivative of the phase will lead to audible deformations of the
target signal. Such modification are not penalized by our spectral loss as explained in Section 3.2.1.
Nevertheless, we observe a mostly correct reconstruction of the derivative of the phase using SING.
More examples from the test set, including the rainbowgrams and audio files are available on the
article webpage5.

5.3 Human evaluations

During training, we use several automatic criteria to evaluate and select our models. These criteria
include the MSE on spectrograms, magnitude spectra, or waveform, and other perceptually-motivated
metrics such as the Itakura-Saito divergence [13]. However, the correlation of these metrics with
human perception remains imperfect, this is why we use human judgments as a metric of comparison
between SING and the Wavenet baseline from [4].

5 https://research.fb.com/publications/sing-symbol-to-instrument-neural-generator
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Model MOS Training time (hrs * GPU) Generation speed Compression factor Model size
Ground Truth 3.86 ± 0.24 - - - -

Wavenet 2.85 ± 0.24 3840∗ 0.2 sec/sec 32 948 MB
SING 3.55 ± 0.23 120 512 sec/sec 2133 243 MB

Table 2: Mean Opinion Score (MOS) and computational load of the different models. The training
time is expressed in hours * GPU units, the generation time is expressed as the number of seconds of
audio that can be generated per second of processing time. The compression factor represents the
ratio between the dimensionality of the audio sequences (64, 000 values) and either the latent state of
Wavenet or the input vectors to SING. We also report the size of the models, in MB.
(∗) Time corrected to account for the difference in FLOPs of the GPUs used.

5.3.1 Evaluation of perceptual quality: Mean Opinion Score

The first characteristic that we want to measure from our generated samples is their naturalness:
how good they sound to the human ear. To do so, we perform experiments on Amazon Mechanical
Turk [1] to get a Mean Opinion Score for the ground truth samples, and for the waveforms generated
by SING and the Wavenet baseline. We did not include a Griffin-Lim based baseline as the authors in
[4] concluded to the superiority of their Wavenet autoencoder.

We randomly select 100 examples from our test set. For the Wavenet-autoencoder, we pass these
100 examples through the network and retrieve the output. The latter is a pre-trained model provided
by the authors of [4]6. Notice that all of the 100 samples were used for training of the Wavenet-
autoencoder, while they were not seen during the training of our models. For SING, we feed it the
instrument, pitch and velocity information of each of the 100 samples. Workers are asked to rate
the quality of the samples on a scale from 1 ("Very annoying and objectionable distortion. Totally
silent audio") to 5 ("Imperceptible distortion"). Each of the 300 samples (100 samples per model) is
evaluated by 60 Workers. The quality of the hardware used by Workers being variable, this could
impede the interpretability of the results. Thus, we use the crowdMOS toolkit [20] which detects
and discards inaccurate scores. This toolkit also allows to only keep the evaluations that are made
with headphones (rather than laptop speakers for example), and we choose to do so as good listening
conditions are necessary to ensure the validity of our measures. We report the Mean Opinion Score
for the ground-truth audio and each of the 2 models in Table 2, along with the 95% confidence
interval.

We observe that SING shows a significantly better MOS than the Wavenet-autoencoder baseline
despite a compression factor which is 66 times higher. Moreover, to spotlight the benefits of our
approach compared to the Wavenet baseline, we also report three metrics to quantify the computational
load of the different models. The first metric is the training time, expressed in hours multiplied by
the number of GPUs. The authors of [4], mention that their model trains for 10 days on 32 GPUs,
which amounts to 7680 hours*GPUs. However, the GPUs used are capable of about half the FLOPs
compared to our P100. Therefore, we corrected this value to 3840 hours*GPUs. On the other hand,
SING is trained in 30 hours on four P100, which is 32 times faster than Wavenet. A major drawback
of autoregressive models such as Wavenet is that the generation process is inherently sequential:
generating the sample at time t + 1 takes as input the sample at time t. We timed the generation
using the implementation of the Wavenet-autoencoder provided by the authors, in its fastgen version7

which is significantly faster than the original model. This yields a 22 minutes time to generate a
4-second sample. On a single P100 GPU, Wavenet can generate up to 64 sequences at the same time
before reaching the memory limit, which amounts to 0.2 seconds of audio generated per second. On
the other hand, SING can generate 512 seconds of audio per second of processing time, and is thus
2500 times faster than Wavenet. Finally, SING is also efficient in memory compared to Wavenet, as
the model size in MB is more than 4 times smaller than the baseline.

5.3.2 ABX similarity measure

Besides absolute audio quality of the samples, we also want to ensure that when we condition SING
on a chosen combination of instrument, pitch and velocity, we generate a relevant audio sample. To

6https://github.com/tensorflow/magenta/tree/master/magenta/models/
nsynth

7https://magenta.tensorflow.org/nsynth-fastgen
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do so, we measure how close samples generated by SING are to the ground-truth relatively to the
Wavenet baseline. This measure is made by performing ABX [16] experiments: the Worker is given
a ground-truth sample as a reference. Then, they are presented with the corresponding samples of
SING and Wavenet, in a random order to avoid bias and with the possibility of listening as many
times to the samples as necessary. They are asked to pick the sample which is the closest to the
reference according to their judgment. We perform this experiment on 100 ABX triplets made from
the same data as for the MOS, each triplet being evaluated by 10 Workers. On average over 1000
ABX tests, 69.7% are in favor of SING over Wavenet, which shows a higher similarity between our
generated samples and the target musical notes than Wavenet.

Conclusion

We introduced a simple model architecture, SING, based on LSTM and convolutional layers to
generate waveforms. We achieve state-of-the-art results as measured by human evaluation on the
NSynth dataset for a fraction of the training and generation cost of existing methods. We introduced
a spectral loss on the generated waveform as a way of using time-frequency based metrics without
requiring a post-processing step to recover the phase of a power spectrogram. We experimentally
validated that SING was able to embed music notes into a small dimension vector space where the
pitch, instrument and velocity were disentangled when trained with this spectral loss, as well as
synthesizing pairs of instruments and pitches that were not present in the training set. We believe
SING opens up new opportunities for lightweight quality audio synthesis with potential applications
for speech synthesis and music generation.
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[3] Kemal Ebcioğlu. An expert system for harmonizing four-part chorales. Computer Music
Journal, 12(3):43–51, 1988.

[4] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan,
and Mohammad Norouzi. Neural audio synthesis of musical notes with wavenet autoencoders.
Technical Report 1704.01279, arXiv, 2017.

[5] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017.

[6] JL Goldstein. Auditory nonlinearity. The Journal of the Acoustical Society of America,
41(3):676–699, 1967.

[7] Daniel Griffin and Jae Lim. Signal estimation from modified short-time fourier transform. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 32(2):236–243, 1984.

[8] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. Deepbach: a steerable model for bach
chorales generation. Technical Report 1612.01010, arXiv, 2016.

[9] Albert Haque, Michelle Guo, and Prateek Verma. Conditional end-to-end audio transforms.
Technical Report 1804.00047, arXiv, 2018.

[10] Dorien Herremans. Morpheus: automatic music generation with recurrent pattern constraints
and tension profiles. 2016.

[11] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
Technical Report 1503.02531, arXiv, 2015.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[13] Fumitada Itakura. Analysis synthesis telephony based on the maximum likelihood method. In
The 6th international congress on acoustics, 1968, pages 280–292, 1968.

[14] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward
Lockhart, Florian Stimberg, Aaron van den Oord, Sander Dieleman, and Koray Kavukcuoglu.
Efficient neural audio synthesis. Technical Report 1802.08435, arXiv, 2018.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[16] Neil A Macmillan and C Douglas Creelman. Detection theory: A user’s guide. Psychology
press, 2004.

[17] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo,
Aaron Courville, and Yoshua Bengio. Samplernn: An unconditional end-to-end neural audio
generation model. Technical Report 1612.07837, arXiv, 2016.

[18] Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray
Kavukcuoglu, George van den Driessche, Edward Lockhart, Luis C Cobo, Florian Stimberg,
et al. Parallel wavenet: Fast high-fidelity speech synthesis. Technical Report 1711.10433, arXiv,
2017.

[19] Wei Ping, Kainan Peng, Andrew Gibiansky, S Arik, Ajay Kannan, Sharan Narang, Jonathan
Raiman, and John Miller. Deep voice 3: Scaling text-to-speech with convolutional sequence
learning. In Proc. 6th International Conference on Learning Representations, 2018.

10



[20] Flávio Ribeiro, Dinei Florêncio, Cha Zhang, and Michael Seltzer. Crowdmos: An approach
for crowdsourcing mean opinion score studies. In Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on, pages 2416–2419. IEEE, 2011.

[21] Jose Sotelo, Soroush Mehri, Kundan Kumar, Joao Felipe Santos, Kyle Kastner, Aaron Courville,
and Yoshua Bengio. Char2wav: End-to-end speech synthesis. 2017.

[22] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In
Advances in neural information processing systems, pages 2440–2448, 2015.

[23] Yaniv Taigman, Lior Wolf, Adam Polyak, and Eliya Nachmani. Voice synthesis for in-the-wild
speakers via a phonological loop. Technical Report 1707.06588, arXiv, 2017.

[24] Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. Technical Report 1609.03499, arXiv, 2016.

[25] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, Navdeep Jaitly,
Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. Tacotron: Towards end-to-end
speech synthesis. Technical Report 1703.10135, arXiv, 2017.

[26] Ronald J Williams and David Zipser. Gradient-based learning algorithms for recurrent networks
and their computational complexity. Backpropagation: Theory, architectures, and applications,
1:433–486, 1995.

11



Bibliography

Gammatone-based spectrograms, using gammatone filterbanks or Fourier transform weight-
ings. URL https://github.com/detly/gammatone.

Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and
Dong Yu. Convolutional Neural Networks for Speech Recognition. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, 22:1533–1545, 2014.

Manu Airaksinen. Analysis/synthesis comparison of vocoders utilized in statistical paramet-
ric speech synthesis. Master’s thesis, Aalto University, 2012.

Md. Jahangir Alam, Pierre Ouellet, Patrick Kenny, and Douglas D. O’Shaughnessy. Compar-
ative evaluation of feature normalization techniques for speaker verification. In NOLISP,
2011.

Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catan-
zaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, and others. Deep
speech 2: End-to-end speech recognition in english and mandarin. In arXiv preprint
arXiv:1512.02595, 2015.

Joakim Andén and Stéphane Mallat. Deep Scattering Spectrum. IEEE Transactions on
Signal Processing, 62:4114–4128, 2014.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. Unsupervised neural
machine translation. arXiv preprint arXiv:1710.11041, 2017.

Richard N Aslin. Some developmental processes in speech perception. Child Phonology:
Perception & Production, 1980.

Leonardo Badino, Alessio Mereta, and Lorenzo Rosasco. Discovering discrete subword units
with binarized autoencoders and hidden-markov-model encoders. In INTERSPEECH,
2015.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR, abs/1409.0473, 2014.

James Baker. The dragon system–an overview. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 23(1):24–29, 1975.

Randall Balestriero, Romain Cosentino, Hervé Glotin, and Richard G. Baraniuk. Spline
filters for end-to-end deep learning. In ICML, 2018.

167

https://github.com/detly/gammatone


Jon Barker, Emmanuel Vincent, Ning Ma, Heidi Christensen, and Phil Green. The pascal
chime speech separation and recognition challenge. Computer Speech & Language, 27(3):
621–633, 2013.

Jon Barker, Ricard Marxer, Emmanuel Vincent, and Shinji Watanabe. The third
‘chime’speech separation and recognition challenge: Dataset, task and baselines. In Au-
tomatic Speech Recognition and Understanding (ASRU), 2015 IEEE Workshop on, pages
504–511. IEEE, 2015.

Eric Battenberg, Rewon Child, Adam Coates, Christopher Fougner, Yashesh Gaur, Jiaji
Huang, Heewoo Jun, Ajay Kannan, Markus Kliegl, Atul Kumar, and others. Reducing
Bias in Production Speech Models. arXiv preprint arXiv:1705.04400, 2017.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust features
(surf). Computer vision and image understanding, 110(3):346–359, 2008.

MD Bedworth, L Bottou, JS Bridle, F Fallside, L Flynn, F Fogelman, KM Ponting, and
RW Prager. Comparison of neural and conventional classifiers on a speech recognition
problem. In Artificial Neural Networks, 1989., First IEE International Conference on
(Conf. Publ. No. 313), pages 86–89. IET, 1989.

Alexandre Bérard, Olivier Pietquin, Christophe Servan, and Laurent Besacier. Listen and
translate: A proof of concept for end-to-end speech-to-text translation. arXiv preprint
arXiv:1612.01744, 2016.

C. Bhat, B. Vachhani, and S. K. Kopparapu. Automatic assessment of dysarthria severity
level using audio descriptors. In ICASSP, pages 5070–5074, March 2017. doi: 10.1109/
ICASSP.2017.7953122.

Léon Bottou, F Fogelman Soulié, Pascal Blanchet, and Jean-Sylvain Lienard. Experiments
with time delay networks and dynamic time warping for speaker independent isolated dig-
its recognition. In First European Conference on Speech Communication and Technology,
1989.

Hervé Bredin. TristouNet: Triplet Loss for Speaker Turn Embedding. Acoustics, Speech and
Signal Processing (ICASSP), 2017 IEEE International Conference on, 2016.

Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff Moore,
Eduard Säckinger, and Roopak Shah. Signature verification using a “Siamese” time delay
neural network. International Journal of Pattern Recognition and Artificial Intelligence,
7(04):669–688, 1993.

Andrew Butcher et al. Australian Aboriginal Languages: Consonant Salient Phonologies
and the’place-of-articulation Imperative’. Australian Speech Science and Technology As-
sociation, 2003.

Rich Caruana. Multitask learning. In Learning to learn, pages 95–133. Springer, 1998.

William Chan and Ian Lane. Deep recurrent neural networks for acoustic modelling. arXiv
preprint arXiv:1504.01482, 2015.

168



William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. Listen, Attend and Spell.
CoRR, abs/1508.01211, 2015.

Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. Large scale online learning
of image similarity through ranking. The Journal of Machine Learning Research, 11:
1109–1135, 2010.

Hongjie Chen, Cheung-Chi Leung, Lei Xie, Bin Ma, and Haizhou Li. Parallel inference of
dirichlet process gaussian mixture models for unsupervised acoustic modeling: a feasibility
study. In INTERSPEECH, 2015.

Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick Nguyen,
Zhifeng Chen, Anjuli Kannan, Ron J Weiss, Kanishka Rao, Ekaterina Gonina, et al.
State-of-the-art speech recognition with sequence-to-sequence models. In 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4774–4778. IEEE, 2018.

Jan Chorowski and Navdeep Jaitly. Towards better decoding and language model integration
in sequence to sequence models. arXiv:1612.02695, 2016.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua
Bengio. Attention-based models for speech recognition. In Advances in neural information
processing systems, pages 577–585, 2015.

Yu-An Chung, Wei-Hung Weng, Schrasing Tong, and James Glass. Unsupervised cross-
modal alignment of speech and text embedding spaces. arXiv preprint arXiv:1805.07467,
2018.

Renee Peje Clapham, Lisette van der Molen, R. J. J. H. van Son, Michiel W. M. van den
Brekel, and Frans J. M. Hilgers. NKI-CCRT Corpus - Speech Intelligibility Before and
After Advanced Head and Neck Cancer Treated with Concomitant Chemoradiotherapy.
In LREC, 2012.

Harvey L Coates, Peter S Morris, Amanda J Leach, and Sophie Couzos. Otitis media in
aboriginal children: tackling a major health problem. The Medical Journal of Australia,
177(4):177–178, 2002.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537, 2011.

Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve. Wav2letter: an end-to-end
convnet-based speech recognition system. arXiv preprint arXiv:1609.03193, 2016.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé
Jégou. Word translation without parallel data. CoRR, abs/1710.04087, 2017.

Yann Dauphin, Angela Fan, Michael Auli, and David Grangier. Language Modeling with
Gated Convolutional Networks. In ICML, 2017.

169



Steven Davis and Paul Mermelstein. Comparison of parametric representations for monosyl-
labic word recognition in continuously spoken sentences. IEEE transactions on acoustics,
speech, and signal processing, 28(4):357–366, 1980.

Alexandre Défossez, Neil Zeghidour, Nicolas Usunier, Léon Bottou, and Francis Bach. Sing:
Symbol-to-instrument neural generator. In Advances in Neural Information Processing
Systems, pages 9055–9065, 2018.

Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet. Front-
end factor analysis for speaker verification. IEEE Transactions on Audio, Speech, and
Language Processing, 19(4):788–798, 2011.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 248–255. Ieee, 2009.

Mark Dredze, Aren Jansen, Glen Coppersmith, and Ken Ward Church. Nlp on spoken
documents without asr. In EMNLP, 2010.

Ewan Dunbar, Xuan Nga Cao, Juan Benjumea, Julien Karadayi, Mathieu Bernard, Lau-
rent Besacier, Xavier Anguera, and Emmanuel Dupoux. The zero resource speech chal-
lenge 2017. In Automatic Speech Recognition and Understanding Workshop (ASRU), 2017
IEEE, pages 323–330. IEEE, 2017.

Florian Eyben. Real-time speech and music classification by large audio feature space ex-
traction. Springer, 2015.

Florian Eyben, Martin Wöllmer, and Björn W. Schuller. Opensmile: the munich versatile
and fast open-source audio feature extractor. In ACM Multimedia, 2010.

Gunnar Fant. Analysis and synthesis of speech processes. Manual of phonetics, 2:173–277,
1968.

Gunnar Fant. Acoustic theory of speech production: with calculations based on X-ray studies
of Russian articulations. Number 2. Walter de Gruyter, 1970.

Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning hierar-
chical features for scene labeling. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1915–1929, 2013.

Gustav Fechner. Elements of psychophysics. vol. i. 1966.

Naomi H Feldman, Emily B Myers, Katherine S White, Thomas L Griffiths, and James L
Morgan. Word-level information influences phonetic learning in adults and infants. Cog-
nition, 127(3):427–438, 2013.

Ronald Aylmer Fisher. Statistical methods for research workers. In Statistical methods for
research workers. 1925.

JL Flanagan. Parametric coding of speech spectra. The Journal of the Acoustical Society of
America, 68(2):412–419, 1980.

170



Josué Fredes, José Novoa, Simon King, Richard M. Stern, and Néstor Becerra Yoma. Locally
normalized filter banks applied to deep neural-network-based robust speech recognition.
IEEE Signal Processing Letters, 24:377–381, 2017.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition. In Competition and cooperation in neural
nets, pages 267–285. Springer, 1982.

John S Garofolo, Lori F Lamel, William M Fisher, Jonathan G Fiscus, David S Pallett,
Nancy L Dahlgren, and Victor Zue. TIMIT acoustic-phonetic continuous speech corpus.
Linguistic data consortium, 10(5):0, 1993.

Jonas Gehring, Michael Auli, David Grangier, and Yann Dauphin. A Convolutional Encoder
Model for Neural Machine Translation. In ACL, 2017a.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann Dauphin. Convolu-
tional Sequence to Sequence Learning. In ICML, 2017b.

Pegah Ghahremani, Vimal Manohar, Daniel Povey, and Sanjeev Khudanpur. Acoustic Mod-
elling from the Signal Domain Using CNNs. 2016.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587, 2014.

Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent
neural networks. In International Conference on Machine Learning, pages 1764–1772,
2014.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist
temporal classification: labelling unsegmented sequence data with recurrent neural net-
works. In Proceedings of the 23rd international conference on Machine learning, pages
369–376. ACM, 2006.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on, pages 6645–6649. IEEE, 2013.

Dr. D. Greenwood. The mel scale’s disqualifying bias and a consistency of pitch-difference
equisections in 1956 with equal cochlear distances and equal frequency ratios. Hearing
research, 103 1-2:199–224, 1997.

Hossein Hadian, Hossein Sameti, Daniel Povey, and Sanjeev Khudanpur. End-to-end Speech
Recognition Using Lattice-free MMI. In Interspeech, 2018.

Kyu J Han, Akshay Chandrashekaran, Jungsuk Kim, and Ian Lane. The CAPIO 2017
Conversational Speech Recognition System. In arXiv preprint arXiv:1801.00059, 2017.

Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen,
Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y. Ng.
Deep Speech: Scaling up end-to-end speech recognition. arXiv:1412.5567, 2014.

171



Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In CVPR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of CVPR, 2016.

Florian Hilger and Hermann Ney. Quantile based histogram equalization for noise robust
large vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language
Processing, 14:845–854, 2006.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, and others.
Deep neural networks for acoustic modeling in speech recognition: The shared views of
four research groups. Signal Processing Magazine, IEEE, 29(6):82–97, 2012a.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature de-
tectors. arXiv preprint arXiv:1207.0580, 2012b.

Julia Hirschberg, Stefan Benus, Jason M Brenier, Frank Enos, Sarah Friedman, Sarah
Gilman, Cynthia Girand, Martin Graciarena, Andreas Kathol, Laura Michaelis, et al.
Distinguishing deceptive from non-deceptive speech. In Ninth European Conference on
Speech Communication and Technology, 2005.

Yedid Hoshen, Ron J Weiss, and Kevin W Wilson. Speech acoustic modeling from raw
multichannel waveforms. In Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, pages 4624–4628. IEEE, 2015.

P. Hsiao and C. Chen. Effective Attention Mechanism in Dynamic Models for Speech Emo-
tion Recognition. In ICASSP, pages 2526–2530, April 2018. doi: 10.1109/ICASSP.2018.
8461431.

David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–154, 1962.

Mark Huckvale. Exploiting speech knowledge in neural nets for recognition. Speech Com-
munication, 9:1–13, 1990.

Navdeep Jaitly and Geoffrey E. Hinton. Learning a better representation of speech sound-
waves using restricted boltzmann machines. 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5884–5887, 2011.

A. Jansen and B. Van Durme. Efficient spoken term discovery using randomized algorithms.
In Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on,
pages 401–406. IEEE, 2011.

A. Jansen, E. Dupoux, S. Goldwater, M. Johnson, S. Khudanpur, K. Church, N. Feldman,
H. Hermansky, F. Metze, R. Rose, and others. A summary of the 2012 JH CLSP Work-
shop on zero resource speech technologies and models of early language acquisition. In
Proceedings of ICASSP 2013, 2013.

172



Frederick Jelinek. Continuous speech recognition by statistical methods. Proceedings of the
IEEE, 64(4):532–556, 1976.

Ye Jia, Melvin Johnson, Wolfgang Macherey, Ron J Weiss, Yuan Cao, Chung-Cheng Chiu,
Naveen Ari, Stella Laurenzo, and Yonghui Wu. Leveraging weakly supervised data to
improve end-to-end speech-to-text translation. arXiv preprint arXiv:1811.02050, 2018.

Maree Johnson, Samuel Lapkin, Vanessa Long, Paula Sanchez, Hanna Suominen, Jim Basi-
lakis, and Linda Dawson. A systematic review of speech recognition technology in health
care. In BMC Med. Inf. & Decision Making, 2014.

Bing-Hwang Juang, Stephene Levinson, and M Sondhi. Maximum likelihood estimation
for multivariate mixture observations of markov chains (corresp.). IEEE Transactions on
Information Theory, 32(2):307–309, 1986.

Selen Hande Kabil, Hannah Muckenhirn, and Mathew Magimai-Doss. On learning to identify
genders from raw speech signal using cnns. In Interspeech, 2018.

Herman Kamper, Aren Jansen, and Sharon Goldwater. Fully unsupervised small-vocabulary
speech recognition using a segmental bayesian model. In INTERSPEECH, 2015a.

Herman Kamper, Weiran Wang, and Karen Livescu. Deep convolutional acoustic word
embeddings using word-pair side information. arXiv preprint arXiv:1510.01032, 2015b.

Tae Gyoon Kang, Kang Hyun Lee, Woo Hyun Kang, Soo Hyun Bae, and Nam Soo Kim. Dnn-
based voice activity detection with local feature shift technique. 2016 Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference (APSIPA), pages
1–4, 2016.

L G Kersta. Voiceprint identification. Nature, 196:1253–1257, 1962.

Heejin Kim, Mark Hasegawa-Johnson, Adrienne Perlman, Jon Gunderson, Thomas S.
Huang, Kenneth Watkin, and Simone Frame. Dysarthric speech database for universal
access research. In INTERSPEECH, 2008.

Jangwon Kim, Naveen Kumar, Andreas Tsiartas, Ming Li, and Shrikanth S. Narayanan.
Automatic intelligibility classification of sentence-level pathological speech. Computer
Speech & Language, 29(1):132 – 144, 2015. ISSN 0885-2308. doi: https://doi.org/10.
1016/j.csl.2014.02.001. URL http://www.sciencedirect.com/science/article/pii/
S088523081400014X.

Myungjong Kim, J Yoo, and H Kim. Dysarthric speech recognition using dysarthria-severity-
dependent and speaker-adaptive models. In Proceedings of the Annual Conference of
the International Speech Communication Association, INTERSPEECH, pages 3622–3626,
2013.

Suyoun Kim, Takaaki Hori, and Shinji Watanabe. Joint CTC-attention based end-to-end
speech recognition using multi-task learning. In Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on, pages 4835–4839. IEEE, 2017.

Dietrich Klakow and Jochen Peters. Testing the correlation of word error rate and perplexity.
Speech Communication, 38(1-2):19–28, 2002.

173

http://www.sciencedirect.com/science/article/pii/S088523081400014X
http://www.sciencedirect.com/science/article/pii/S088523081400014X


W Koening. A new frequency scale for acoustic measurements. Bell Lab Rec., pages 299–301,
1949.

Zvi Kons and Orith Toledo-Ronen. Audio event classification using deep neural networks.
In INTERSPEECH, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012.

D. S. Pavan Kumar. Feature normalisation for robust speech recognition. CoRR,
abs/1507.04019, 2015.

Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic Denoyer, and
Marc’Aurelio Ranzato. Fader networks: Manipulating images by sliding attributes. In
NIPS, 2017.

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio
Ranzato. Phrase-based & neural unsupervised machine translation. arXiv preprint
arXiv:1804.07755, 2018.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code
recognition. Neural computation, 1(4):541–551, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Kai-Fu Lee and Hsiao-Wuen Hon. Speaker-independent phone recognition using hidden
markov models. IEEE Trans. Acoustics, Speech, and Signal Processing, 37:1641–1648,
1988.

Yun Lei, Nicolas Scheffer, Luciana Ferrer, and Mitchell McLaren. A novel scheme for speaker
recognition using a phonetically-aware deep neural network. In Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 1695–1699.
IEEE, 2014.

Stephen E Levinson, Lawrence R Rabiner, and Man Mohan Sondhi. An introduction to
the application of the theory of probabilistic functions of a markov process to automatic
speech recognition. Bell System Technical Journal, 62(4):1035–1074, 1983.

Minkyu Lim, Donghyun Lee, Hosung Park, Unsang Park, and Ji-Hwan Kim. Audio event
classification using deep neural networks. 2016.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

Peter H Lindsay and Donald A Norman. Human information processing: An introduction
to psychology. Academic press, 2013.

Vitaliy Liptchinsky, Gabriel Synnaeve, and Ronan Collobert. Letter-Based Speech Recogni-
tion with Gated ConvNets. CoRR, abs/1712.09444, 2017. URL http://arxiv.org/abs/
1712.09444.

174

http://arxiv.org/abs/1712.09444
http://arxiv.org/abs/1712.09444


Max A. Little, Patrick E. McSharry, Eric J. Hunter, Jennifer L. Spielman, and Lorraine O.
Ramig. Suitability of Dysphonia Measurements for Telemonitoring of Parkinson’s Disease.
IEEE Transactions on Biomedical Engineering, 56:1015–1022, 2009.

Chunxi Liu, Jan Trmal, Matthew Wiesner, Craig Harman, and Sanjeev Khudanpur. Topic
identification for speech without asr. In INTERSPEECH, 2017a.

Hairong Liu, Zhenyao Zhu, Xiangang Li, and Sanjeev Satheesh. Gram-ctc: Auto-
matic unit selection and target decomposition for sequence labelling. arXiv preprint
arXiv:1703.00096, 2017b.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

Vincent Lostanlen, Justin Salamon, Andrew Farnsworth, Steve Kelling, and Juan Pablo
Bello. Birdvox-full-night: A dataset and benchmark for avian flight call detection. In 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 266–270. IEEE, 2018.

Vincent Lostanlen, Justin Salamon, Mark Brozier Cartwright, Brian McFee, Andrew
Farnsworth, Steve Kelling, and Juan Pablo Bello. Per-channel energy normalization:
Why and how. IEEE Signal Processing Letters, 26:39–43, 2019.

David G Lowe. Object recognition from local scale-invariant features. In Computer vision,
1999. The proceedings of the seventh IEEE international conference on, volume 2, pages
1150–1157. Ieee, 1999.

Liang Lu, Lingpeng Kong, Chris Dyer, Noah A Smith, and Steve Renals. Segmental recurrent
neural networks for end-to-end speech recognition. arXiv preprint arXiv:1603.00223, 2016.

James G. Lyons and Kuldip K. Paliwal. Effect of compressing the dynamic range of the
power spectrum in modulation filtering based speech enhancement. In INTERSPEECH,
2008.

Ranniery Maia, Tomoki Toda, Heiga Zen, Yoshihiko Nankaku, and Keiichi Tokuda. An
excitation model for hmm-based speech synthesis based on residual modeling. In SSW,
2007.

John Makhoul and Lynn Cosell. Lpcw: An lpc vocoder with linear predictive spectral
warping. In Acoustics, Speech, and Signal Processing, IEEE International Conference on
ICASSP’76., volume 1, pages 466–469. IEEE, 1976.

Andrew Martin, Sharon Peperkamp, and Emmanuel Dupoux. Learning phonemes with a
proto-lexicon. Cognitive science, 37 1:103–24, 2013.

Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg,
and Oriol Nieto. librosa: Audio and music signal analysis in python. In Proceedings of
the 14th python in science conference, pages 18–25, 2015.

Kinfe Mengistu and Frank Rudzicz. Adapting acoustic and lexical models to dysarthric
speech. In ICASSP, pages 4924–4927, 2011a.

175



Kinfe Mengistu and Frank Rudzicz. Comparing Humans and Automatic Speech Recognition
Systems in Recognizing Dysarthric Speech. volume 6657, pages 291–300, 2011b.

Yajie Miao, Mohammad Gowayyed, and Florian Metze. EESEN: End-to-end speech recogni-
tion using deep RNN models and WFST-based decoding. In Automatic Speech Recognition
and Understanding Workshop (ASRU), 2015.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur.
Recurrent neural network based language model. In INTERSPEECH, 2010.

J. Millet and Neil Zeghidour. Learning to detect dysarthria from raw speech. CoRR,
abs/1811.11101, 2018.

Ji Ming and F Jack Smith. Improved phone recognition using bayesian triphone models. In
Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International
Conference on, volume 1, pages 409–412. IEEE, 1998.

Abdel-rahman Mohamed, George Dahl, and Geoffrey Hinton. Deep belief networks for
phone recognition. In Nips workshop on deep learning for speech recognition and related
applications, volume 1, page 39. Vancouver, Canada, 2009.

Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state transducers in
speech recognition. Computer Speech & Language, 16(1):69–88, 2002.

Nelson Morgan, Hervé Bourlard, and Hynek Hermansky. Automatic speech recognition:
An auditory perspective. In Speech processing in the auditory system, pages 309–338.
Springer, 2004.

Hannah Muckenhirn, Mathew Magimai-Doss, and Sébastien Marcel. Towards directly mod-
eling raw speech signal for speaker verification using cnns. 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 4884–4888, 2018.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning (ICML-
10), pages 807–814, 2010.

Joy Nicholson, Kazuhiko Takahashi, and Ryohei Nakatsu. Emotion recognition in speech
using neural networks. Neural computing & applications, 9(4):290–296, 2000.

A Michael Noll. Cepstrum pitch determination. The journal of the acoustical society of
America, 41(2):293–309, 1967.

A Michael Noll and Manfred R Schroeder. Short-time “cepstrum” pitch detection. The
Journal of the Acoustical Society of America, 36(5):1030–1030, 1964.

Tsubasa Ochiai, Shinji Watanabe, Takaaki Hori, and John R. Hershey. Multichannel end-
to-end speech recognition. In ICML, 2017.

D. Kimbrough Oller, P. Niyogi, Sharmistha S. Gray, Jeffrey A. Richards, Jill Gilkerson,
Daoyi Xu, Umit Yapanel, and Steven F Warren. Automated vocal analysis of naturalistic
recordings from children with autism, language delay, and typical development. Proceed-
ings of the National Academy of Sciences of the United States of America, 107 30:13354–9,
2010.

176



Mohamed Kamal Omar and Jason W. Pelecanos. A novel approach to detecting non-native
speakers and their native language. 2010 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 4398–4401, 2010.

Douglas O’shaughnessy. Speech communication: human and machine. Universities press,
1987.

Federica Pace, Frederic Benard, Herve Glotin, Olivier Adam, and Paul White. Subunit
definition and analysis for humpback whale call classification. Applied Acoustics, 71(11):
1107–1112, 2010.

Dimitri Palaz, Ronan Collobert, and Mathew Magimai-Doss. End-to-end phoneme sequence
recognition using convolutional neural networks. CoRR, abs/1312.2137, 2013a.

Dimitri Palaz, Ronan Collobert, and Mathew Magimai-Doss. Estimating phoneme class
conditional probabilities from raw speech signal using convolutional neural networks. In
INTERSPEECH, 2013b.

Dimitri Palaz, Mathew Magimai Doss, and Ronan Collobert. Convolutional neural networks-
based continuous speech recognition using raw speech signal. In Acoustics, Speech and
Signal Processing (ICASSP), 2015 IEEE International Conference on, pages 4295–4299.
IEEE, 2015.

Dimitri Palaz, Gabriel Synnaeve, and Ronan Collobert. Jointly Learning to Locate and
Classify Words Using Convolutional Networks. 2016.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an
ASR corpus based on public domain audio books. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2015 IEEE International Conference on, pages 5206–5210. IEEE, 2015.

Alex S Park and James R Glass. Unsupervised pattern discovery in speech. Audio, Speech,
and Language Processing, IEEE Transactions on, 16(1):186–197, 2008.

Douglas B Paul and Janet M Baker. The design for the Wall Street Journal-based CSR
corpus. In Proceedings of the workshop on Speech and Natural Language, pages 357–362.
Association for Computational Linguistics, 1992.

V. Peddinti, T. Sainath, S. Maymon, B. Ramabhadran, D. Nahamoo, and V. Goel. Deep
scattering spectrum with deep neural networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pages 210–214. IEEE, 2014.

Matthew Perez, Wenyu Jin, Duc Le, Noelle Carlozzi, Praveen Dayalu, Angela Roberts, and
Emily Mower Provost. Classification of huntington disease using acoustic and lexical
features. In Interspeech, 2018.

Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for
large-scale image classification. In European conference on computer vision, pages 143–
156. Springer, 2010.

Gueorgui Pironkov, Stéphane Dupont, and Thierry Dutoit. Speaker-aware long short-term
memory multi-task learning for speech recognition. In Signal Processing Conference (EU-
SIPCO), 2016 24th European, pages 1911–1915. IEEE, 2016.

177



M.A. Pitt, L. Dilley, K. Johnson, S. Kiesling, W. Raymond, E. Hume, and E. Fosler-
Lussier. Buckeye Corpus of Conversational Speech (2nd release). Columbus, OH:
Department of Psychology, Ohio State University (Distributor), 2007. Published:
www.buckeyecorpus.osu.edu.

Heather Pon-Barry. Prosodic manifestations of confidence and uncertainty in spoken lan-
guage. In INTERSPEECH, 2008.

Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan Xu, Mahsa Yarmohammadi,
and Sanjeev Khudanpur. Semi-orthogonal low-rank matrix factorization for deep neural
networks. In Interspeech, 2018.

Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar. Exploring architectures, data and units
for streaming end-to-end speech recognition with rnn-transducer. In 2017 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), pages 193–199. IEEE, 2017.

Mirco Ravanelli and Yoshua Bengio. Speaker recognition from raw waveform with sincnet.
arXiv preprint arXiv:1808.00158, 2018.

Steve Renals, Nelson Morgan, Hervé Bourlard, Michael Cohen, and Horacio Franco. Con-
nectionist probability estimators in hmm speech recognition. IEEE Trans. Speech and
Audio Processing, 2:161–174, 1994.

Daniel Renshaw, Herman Kamper, Aren Jansen, and Sharon Goldwater. A comparison of
neural network methods for unsupervised representation learning on the zero resource
speech challenge. In INTERSPEECH, 2015.

Frank Rudzicz, Pascal Van Lieshout, Graeme Hirst, Gerald Penn, Fraser Shein, and Talya
Wolff. Towards a Comparative Database of Dysarthric Articulation. In Proceedings of
ISSP, 2008.

Frank Rudzicz, Aravind Kumar Namasivayam, and Talya Wolff. The TORGO database
of acoustic and articulatory speech from speakers with dysarthria. Language Re-
sources and Evaluation, 46(4):523–541, December 2012. ISSN 1574-0218. doi: 10.1007/
s10579-011-9145-0. URL https://doi.org/10.1007/s10579-011-9145-0.

Seyed Omid Sadjadi, Sriram Ganapathy, and Jason W Pelecanos. The IBM 2016 speaker
recognition system. arXiv preprint arXiv:1602.07291, 2016.

Tara N Sainath, Brian Kingsbury, Abdel-rahman Mohamed, and Bhuvana Ramabhadran.
Learning filter banks within a deep neural network framework. In ASRU, pages 297–302.
IEEE, 2013.

Tara N Sainath, Ron J Weiss, Andrew Senior, Kevin W Wilson, and Oriol Vinyals. Learning
the speech front-end with raw waveform CLDNNs. In Sixteenth Annual Conference of the
International Speech Communication Association, 2015a.

178

https://doi.org/10.1007/s10579-011-9145-0


Tara N. Sainath, Ron J. Weiss, Kevin W. Wilson, Arun Narayanan, Michiel Bacchiani, and
Andrew W. Senior. Speaker location and microphone spacing invariant acoustic modeling
from raw multichannel waveforms. 2015 IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU), pages 30–36, 2015b.

H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26(1):43–49,
1978.

Justin Salamon, Juan Pablo Bello, Andrew Farnsworth, and Steve Kelling. Fusing shallow
and deep learning for bioacoustic bird species classification. 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 141–145, 2017.

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameteriza-
tion to accelerate training of deep neural networks. In Advances in Neural Information
Processing Systems, pages 901–909, 2016.

George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas, Dimitrios
Dimitriadis, Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny, Lynn-Li Lim, and
others. English conversational telephone speech recognition by humans and machines.
arXiv preprint arXiv:1703.02136, 2017.

Shimon Sapir, Lorraine O. Ramig, Jennifer L. Spielman, and Cynthia Fox. Formant cen-
tralization ratio: a proposal for a new acoustic measure of dysarthric speech. Journal of
speech, language, and hearing research : JSLHR, 53 1:114–25, 2010.

Mousmita Sarma, Pegah Ghahremani, Daniel Povey, Nagendra Kumar Goel, Kandarpa Ku-
mar Sarma, and Najim Dehak. Emotion identification from raw speech signals using dnns.
In Interspeech, 2018.

T. Schatz, V. Peddinti, F. Bach, A. Jansen, H. Hermansky, and E. Dupoux. Evaluat-
ing speech features with the minimal-pair abx task: Analysis of the classical mfc/plp
pipeline. In INTERSPEECH 2013: 14th Annual Conference of the International Speech
Communication Association, pages 1–5, 2013.

Thomas Schatz. ABX-discriminability measures and applications. PhD thesis, Université
Paris 6 (UPMC), 2016.

Ralf Schlüter, Ilja Bezrukov, Hermann Wagner, and Hermann Ney. Gammatone features
and feature combination for large vocabulary speech recognition. 2007 IEEE International
Conference on Acoustics, Speech and Signal Processing - ICASSP ’07, 4:IV–649–IV–652,
2007.

Björn Schuller, Stefan Steidl, Anton Batliner, Felix Burkhardt, Laurence Devillers, Christian
MüLler, and Shrikanth Narayanan. Paralinguistics in speech and language—state-of-the-
art and the challenge. Computer Speech & Language, 27(1):4–39, 2013a.

Björn Schuller, Stefan Steidl, Anton Batliner, Alessandro Vinciarelli, Klaus Scherer, Fabien
Ringeval, Mohamed Chetouani, Felix Weninger, Florian Eyben, Erik Marchi, et al. The
interspeech 2013 computational paralinguistics challenge: social signals, conflict, emotion,
autism. In Proceedings INTERSPEECH 2013, 14th Annual Conference of the Interna-
tional Speech Communication Association, Lyon, France, 2013b.

179



Björn W. Schuller, Stefan Steidl, Anton Batliner, Felix Burkhardt, Laurence Devillers, Chris-
tian A. Müller, and Shrikanth Narayanan. The interspeech 2010 paralinguistic challenge.
In INTERSPEECH, 2010.

Björn W. Schuller, Stefan Steidl, Anton Batliner, Elika Bergelson, Jarek Krajewski,
Christoph Janott, Andrei Amatuni, Marisa Casillas, Amanda Seidl, Melanie Soderstrom,
Anne S. Warlaumont, Guillermo Hidalgo, Sebastian Schnieder, Clemens Heiser, Winfried
Hohenhorst, Michael Herzog, Maximilian Schmitt, Kun Qian, Yue Zhang, George Trige-
orgis, Panagiotis Tzirakis, and Stefanos P. Zafeiriou. The interspeech 2017 computational
paralinguistics challenge: Addressee, cold & snoring. In INTERSPEECH, 2017.

Björn W. Schuller, Yue Zhang, and Felix Weninger. Three recent trends in paralinguistics
on the way to omniscient machine intelligence. Journal on Multimodal User Interfaces,
12:273–283, 2018.

Björn Schuller, Stefan Steidl, and Anton Batliner. The Interspeech 2009 Emotion Challenge.
In Proc. Interspeech, pages 312–315, 2009.

Hiroshi Seki, Takaaki Hori, Shinji Watanabe, Jonathan Le Roux, and John R Her-
shey. A purely end-to-end system for multi-speaker speech recognition. arXiv preprint
arXiv:1805.05826, 2018.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. arXiv preprint arXiv:1508.07909, 2015.

Malcolm Slaney. Auditory toolbox. Interval Research Corporation, Tech. Rep, 10:1998, 1998.

Evan C Smith and Michael S Lewicki. Efficient auditory coding. Nature, 439(7079):978–982,
2006.

S Smith Stevens. On the psychophysical law. Psychological review, 64 3:153–81, 1957.

Stanley S Stevens and John Volkmann. The relation of pitch to frequency: A revised scale.
The American Journal of Psychology, 53(3):329–353, 1940.

Stanley Smith Stevens, John Volkmann, and Edwin B Newman. A scale for the measurement
of the psychological magnitude pitch. The Journal of the Acoustical Society of America,
8(3):185–190, 1937.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International conference on machine
learning, pages 1139–1147, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

Daniel Swingley. Contributions of infant word learning to language development. Philosoph-
ical transactions of the Royal Society of London. Series B, Biological sciences, 364 1536:
3617–32, 2009.

Gabriel Synnaeve and Emmanuel Dupoux. Weakly Supervised Multi-Embeddings Learning
of Acoustic Models. In ICLR, 2014.

180



Gabriel Synnaeve, Thomas Schatz, and Emmanuel Dupoux. Phonetics Embedding Learning
with Side Information. In IEEE Spoken Language Technology Workshop. IEEE, 2014.

Zhiyuan Tang, Lantian Li, and Dong Wang. Multi-task recurrent model for speech and
speaker recognition. arXiv preprint arXiv:1603.09643, 2016.

Joseph Tepperman, David Traum, and Shrikanth Narayanan. " yeah right": Sarcasm recog-
nition for spoken dialogue systems. In Ninth International Conference on Spoken Language
Processing, 2006.

R. Thiollière, E. Dunbar, G. Synnaeve, M. Versteegh, and E. Dupoux. A Hybrid Dynamic
Time Warping-Deep Neural Network Architecture for Unsupervised Acoustic Modeling.
In Sixteenth Annual Conference of the International Speech Communication Association,
2015.

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Attention-based Wav2text with
Feature Transfer Learning. arXiv preprint arXiv:1709.07814, 2017a.

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Sequence-to-Sequence ASR Opti-
mization via Reinforcement Learning. arXiv preprint arXiv:1710.10774, 2017b.

Shubham Toshniwal, Tara N Sainath, Ron J Weiss, Bo Li, Pedro Moreno, Eugene We-
instein, and Kanishka Rao. Multilingual speech recognition with a single end-to-end
model. In 2018 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 4904–4908. IEEE, 2018.

Oscar Tosi, Herbert Oyer, William Lashbrook, Charles Pedrey, Julie Nicol, and Ernest Nash.
Experiment on voice identification. The Journal of the Acoustical Society of America, 51
(6B):2030–2043, 1972.

László Tóth. Combining time-and frequency-domain convolution in convolutional neural
network-based phone recognition. In Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on, pages 190–194. IEEE, 2014.

George Trigeorgis, Fabien Ringeval, Raymond Brueckner, Erik Marchi, Mihalis A. Nicolaou,
Björn W. Schuller, and Stefanos Zafeiriou. Adieu features? End-to-end speech emotion
recognition using a deep convolutional recurrent network. ICASSP, pages 5200–5204,
2016.

László Tóth. Phone recognition with hierarchical convolutional deep maxout networks.
EURASIP Journal on Audio, Speech, and Music Processing, 2015(1):25, 2015.

Zoltán Tüske, Pavel Golik, Ralf Schlüter, and Hermann Ney. Acoustic modeling with deep
neural networks using raw time signal for LVCSR. In Interspeech, 2014.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance Normalization: The
Missing Ingredient for Fast Stylization. arXiv preprint arXiv:1607.08022, 2016.

Srinivasan Umesh, Leon Cohen, and D Nelson. Fitting the mel scale. In Acoustics, Speech,
and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on, vol-
ume 1, pages 217–220. IEEE, 1999.

181



Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based
music recommendation. In Advances in neural information processing systems, pages
2643–2651, 2013.

Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A gener-
ative model for raw audio. Technical Report 1609.03499, arXiv, 2016.

Laurens Van Der Maaten and Kilian Weinberger. Stochastic triplet embedding. In Machine
Learning for Signal Processing (MLSP), 2012 IEEE International Workshop on, pages
1–6. IEEE, 2012.

Tom Véniat, Olivier Schwander, and Ludovic Denoyer. Stochastic adaptive neural architec-
ture search for keyword spotting. arXiv preprint arXiv:1811.06753, 2018.

Maarten Versteegh, Roland Thiolliere, Thomas Schatz, Xuan Nga Cao, Xavier Anguera,
Aren Jansen, and Emmanuel Dupoux. The zero resource speech challenge 2015. In Proc.
of Interspeech, 2015.

Olli Viikki and Kari Laurila. Cepstral domain segmental feature vector normalization for
noise robust speech recognition. Speech Communication, 25(1-3):133–147, 1998.

Olli Viikki, David Bye, and Kari Laurila. A recursive feature vector normalization approach
for robust speech recognition in noise. In ICASSP, 1998.

Andrew Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE transactions on Information Theory, 13(2):260–269, 1967.

N. J. de Vries, M. H. Davel, J. Badenhorst, W. D. Basson, F. de Wet, E. Barnard, and A. de
Waal. A smartphone-based ASR data collection tool for under-resourced languages. Speech
Communication, 56:119–131, 2014.

Alexander H. Waibel, Toshiyuki Hanazawa, Geoffrey E. Hinton, Kiyohiro Shikano, and
Kevin J. Lang. Phoneme recognition using time-delay neural networks. IEEE Trans.
Acoustics, Speech, and Signal Processing, 37:328–339, 1989.

Yu-Hsuan Wang, Hung yi Lee, and Lin-Shan Lee. Segmental audio word2vec: Representing
utterances as sequences of vectors with applications in spoken term detection. 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
6269–6273, 2018.

Yuxuan Wang, Pascal Getreuer, Thad Hughes, Richard F Lyon, and Rif A Saurous. Train-
able frontend for robust and far-field keyword spotting. In ICASSP, pages 5670–5674.
IEEE, 2017.

Benjamin Weiss and Felix Burkhardt. Voice attributes affecting likability perception. In
INTERSPEECH, 2010.

Yin Xian, Andrew Thompson, Qiang Qiu, Loren Nolte, Douglas Nowacek, Jianfeng Lu, and
Robert Calderbank. Classification of whale vocalizations using the weyl transform. In
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference
on, pages 773–777. IEEE, 2015.

182



Bing Xiang, Upendra V. Chaudhari, Jirí Navrátil, Ganesh N. Ramaswamy, and Ramesh A.
Gopinath. Short-time gaussianization for robust speaker verification. 2002 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, 1:I–681–I–684, 2002.

Lingxi Xie and Alan Yuille. Genetic cnn. In 2017 IEEE International Conference on Com-
puter Vision (ICCV), pages 1388–1397. IEEE, 2017.

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas Stol-
cke, Dong Yu, and Geoffrey Zweig. Achieving human parity in conversational speech
recognition. arXiv preprint arXiv:1610.05256, 2016.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activa-
tions in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Takayoshi Yoshimura, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi, and Tadashi
Kitamura. Mixed excitation for hmm-based speech synthesis. In INTERSPEECH, 2001.

Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Kershaw, Xunying Liu,
Gareth Moore, Julian Odell, Dave Ollason, Dan Povey, et al. The htk book. Cambridge
university engineering department, 3:175, 2002.

Neil Zeghidour, Gabriel Synnaeve, Nicolas Usunier, and Emmanuel Dupoux. Joint learning
of speaker and phonetic similarities with siamese networks. In INTERSPEECH, 2016a.

Neil Zeghidour, Gabriel Synnaeve, Maarten Versteegh, and Emmanuel Dupoux. A Deep
Scattering Spectrum-Deep Siamese Network Pipeline for Unsupervised Acoustic Modeling.
In ICASSP, 2016b.

Neil Zeghidour, Nicolas Usunier, Iasonas Kokkinos, Thomas Schatz, Gabriel Synnaeve, and
Emmanuel Dupoux. Learning Filterbanks from Raw Speech for Phone Recognition. arXiv
preprint arXiv:1711.01161, 2017.

Neil Zeghidour, Nicolas Usunier, Gabriel Synnaeve, Ronan Collobert, and Emmanuel
Dupoux. End-to-End Speech Recognition from the Raw Waveform. In Interspeech, 2018a.

Neil Zeghidour, Qiantong Xu, Vitaliy Liptchinsky, Nicolas Usunier, Gabriel Synnaeve,
and Ronan Collobert. Fully convolutional speech recognition. arXiv preprint
arXiv:1812.06864, 2018b.

Matthew D Zeiler. ADADELTA: An adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In ECCV. Springer, 2014.

Heiga Zen, Tomoki Toda, Masaru Nakamura, and Keiichi Tokuda. Details of the nitech
hmm-based speech synthesis system for the blizzard challenge 2005. IEICE Transactions,
90-D:325–333, 2007.

Albert Zeyer, Kazuki Irie, Ralf Schlüter, and Hermann Ney. Improved training of end-to-end
attention models for speech recognition. arXiv preprint arXiv:1805.03294, 2018.

183



Ying Zhang, Mohammad Pezeshki, Philémon Brakel, Saizheng Zhang, Cesar Laurent Yoshua
Bengio, and Aaron Courville. Towards end-to-end speech recognition with deep convolu-
tional neural networks. In arXiv preprint arXiv:1701.02720, 2017.

Zixing Zhang, Jing Han, Kun Qian, and Björn W. Schuller. Evolving learning for analysing
mood-related infant vocalisation. In Interspeech, 2018.

Yingbo Zhou, Caiming Xiong, and Richard Socher. Improving End-to-End Speech Recog-
nition with Policy Learning. In International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

184





Résumé

Bien que les réseaux de neurones soient à présent utilisés dans la

quasi-totalité des composants d’un système de reconnaissance de

la parole, du modèle acoustique au modèle de langue, l’entrée de

ces systèmes reste une représentation analytique et fixée de la pa-

role dans le domaine temps-fréquence, telle que les mel-filterbanks.

Cela se distingue de la vision par ordinateur, un domaine où les

réseaux de neurones prennent en entrée les pixels bruts. Les mel-

filterbanks sont le produit d’une connaissance précieuse et documen-

tée du système auditif humain, ainsi que du traitement du signal, et

sont utilisées dans les systèmes de reconnaissance de la parole les

plus en pointe, systèmes qui rivalisent désormais avec les humains

dans certaines conditions. Cependant, les mel-filterbanks, comme

toute représentation fixée, sont fondamentalement limitées par le fait

qu’elles ne soient pas affinées par apprentissage pour la tâche consid-

érée. Nous formulons l’hypothèse qu’apprendre ces représentations

de bas niveau de la parole, coinjontement avec le modèle, permet-

trait de faire avancer davantage l’état de l’art. Nous explorons tout

d’abord des approches d’apprentissage faiblement supervisé et mon-

trons que nous pouvons entraîner un unique réseau de neurones à

séparer l’information phonétique de celle du locuteur à partir de de-

scripteurs spectraux ou du signal brut et que ces représentations se

transfèrent à travers les langues. De plus, apprendre à partir du

signal brut produit des représentations du locuteur significativement

meilleures que celles d’un modèle entraîné sur des mel-filterbanks.

Ces résultats encourageants nous mènent par la suite à développer

une alternative aux mel-filterbanks qui peut être entraînée à partir des

données. Dans la seconde partie de cette thèse, nous proposons les

Time-Domain filterbanks, une architecture neuronale légère prenant

en entrée la forme d’onde, dont on peut initialiser les poids pour répli-

quer les mel-filterbanks et qui peut, par la suite, être entraînée par

rétro-propagation avec le reste du réseau de neurones. Au cours

d’expériences systématiques et approfondies, nous montrons que

les Time-Domain filterbanks surclassent systématiquement les mel-

filterbanks, et peuvent être intégrées dans le premier système de re-

connaissance de la parole purement convolutif et entraîné à partir du

signal brut, qui constitue actuellement un nouvel état de l’art. Les

descripteurs fixes étant également utilisés pour des tâches de clas-

sification non-linguistique, pour lesquelles elles sont d’autant moins

optimales, nous entraînons un système de détection de dysarthrie à

partir du signal brut, qui surclasse significativement un système équiv-

alent entraîné sur des mel-filterbanks ou sur des descripteurs de bas

niveau. Enfin, nous concluons cette thèse en expliquant en quoi nos

contributions s’inscrivent dans une transition plus large vers des sys-

tèmes de compréhension du son qui pourront être appris de bout en

bout.

Mots Clés

reconnaissance de la parole, signal audio, appren-

tissage profond, réseau de neurones

Abstract

While deep neural networks are now used in almost every component

of a speech recognition system, from acoustic to language modeling,

the input to such systems are still fixed, handcrafted, spectral features

such as mel-filterbanks. This contrasts with computer vision, in which

a deep neural network is now trained on raw pixels. Mel-filterbanks

contain valuable and documented prior knowledge from human au-

ditory perception as well as signal processing, and are the input to

state-of-the-art speech recognition systems that are now on par with

human performance in certain conditions. However, mel-filterbanks,

as any fixed representation, are inherently limited by the fact that they

are not fine-tuned for the task at hand. We hypothesize that learn-

ing the low-level representation of speech with the rest of the model,

rather than using fixed features, could push the state-of-the art even

further. We first explore a weakly-supervised setting and show that a

single neural network can learn to separate phonetic information and

speaker identity from mel-filterbanks or the raw waveform, and that

these representations are robust across languages. Moreover, learn-

ing from the raw waveform provides significantly better speaker em-

beddings than learning from mel-filterbanks. These encouraging re-

sults lead us to develop a learnable alternative to mel-filterbanks, that

can be directly used in replacement of these features. In the second

part of this thesis we introduce Time-Domain filterbanks, a lightweight

neural network that takes the waveform as input, can be initialized as

an approximation of mel-filterbanks, and then learned with the rest of

the neural architecture. Across extensive and systematic experiments,

we show that Time-Domain filterbanks consistently outperform mel-

filterbanks and can be integrated into a new state-of-the-art speech

recognition system, trained directly from the raw audio signal. Fixed

speech features being also used for non-linguistic classification tasks

for which they are even less optimal, we perform dysarthria detec-

tion from the waveform with Time-Domain filterbanks and show that

it significantly improves over mel-filterbanks or low-level descriptors.

Finally, we discuss how our contributions fall within a broader shift to-

wards fully learnable audio understanding systems.
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