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A B S T R A C T

The recent advent of high-throughput experimental procedures has opened a new era for
the quantitative study of biological systems. Today, electrophysiology recordings and
calcium imaging allow for the in vivo simultaneous recording of hundreds to thousands
of neurons. In parallel, thanks to automated sequencing procedures, the libraries of
known functional proteins expanded from thousands to millions in just a few years. This
current abundance of biological data opens a new series of challenges for theoreticians.
Accurate and transparent analysis methods are needed to process this massive amount
of raw data into meaningful observables. Concurrently, the simultaneous observation of
a large number of interacting units enables the development and validation of theoretical
models aimed at the mechanistic understanding of the collective behavior of biological
systems. In this manuscript, we propose an approach to both these challenges based on
methods and models from statistical physics.

The first part of this manuscript is dedicated to an introduction to the statistical physics
approach to systems biology, with a particular focus on the interfaces between statistical
physics, Bayesian inference, and systems biology. The intersections between these fields
are presented by following the common thread of the tools and models that have been
applied, during the development of this thesis, to the study of two biological systems: the
navigation-memory task in the hippocampal complex (part II) and the fitness landscape
of co-evolving residues in proteins (part III).

The second part is dedicated to the representation of navigation memory in the hip-
pocampal network. We first introduce a Bayesian population-activity decoder, based
on the adaptive cluster expansion (ACE) of the graphical-Ising inference, aimed at
retrieving the represented cognitive map on fast time scales. We apply the decoder
on CA1 data, showing that it outperforms the current standards in discriminating the
recalled cognitive state, and on in-silico data, to investigate the functional meaning of
the inferred neural couplings. We then apply this method to the investigation of the
flickering phenomenology, i.e., the oscillatory behavior of the cognitive map that was
observed in a recent experiment where contextual cues are abruptly changed to induce
the network instability in the rodent hippocampal region CA3. We present an attractor
model, subject to external and path-integrator inputs, which is shown to accurately
reproduce the oscillating phenomenology of the cognitive map. By the application of
the Ising decoder, we show that a number of novel predictions of the model, concerning
the precision of the positional representation during the instability of the cognitive state,
can be verified by a careful re-analysis of the original data. Finally, we show that the
Ising model inferred from hippocampal recordings can be used to generate population
activities that are coherent with low-dimensional attractors, which have been proposed
as the neural mechanism underlying spatial navigation in the cognitive map.
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In the third part, we employ a statistical-physics model of protein folding, called Lattice
Proteins, to benchmark inference methods aimed at the reconstruction of the local fitness
landscape of a protein from sequence data of homologous proteins. We first show that a
sparse version of the ACE inference, which adapts the sparsity of the inferred interaction
graph to the number of available data, yields superior performances than standard
DCA methods in the common sub-sampled regime. We then frame the inference task
in the context of the bias-variance trade-off, showing that we can optimize its retrieval
performance by choosing the proper subset of the training alignment (MSA). We propose
a procedure, called "focusing," aimed at finding this optimal subset from a given MSA,
opening to applications on real protein datasets.



R E S U M É

L’avènement récent des procédures expérimentales à haut débit a ouvert une nouvelle
ère pour l’étude quantitative des systèmes biologiques. De nos jours, les enregistrements
d’électrophysiologie et l’imagerie du calcium permettent l’enregistrement simultané in
vivo de centaines à des milliers de neurones. Parallèlement, grâce à des procédures de
séquençage automatisées, les bibliothèques de protéines fonctionnelles connues ont été
étendues de milliers à des millions en quelques années seulement. L’abondance actuelle
de données biologiques ouvre une nouvelle série de défis aux théoriciens. Des méthodes
d’analyse précises et transparentes sont nécessaires pour traiter cette quantité massive
de données brutes en observables significatifs. Parallèlement, l’observation simultanée
d’un grand nombre d’unités en interaction permet de développer et de valider des
modèles théoriques visant à la compréhension mécanistique du comportement collectif
des systèmes biologiques. Dans ce manuscrit, nous proposons une approche de ces défis
basée sur des méthodes et des modèles issus de la physique statistique.

La première partie de ce manuscrit est consacrée à une introduction de l’approche des
systèmes biologiques par la physique statistique. Dans cette partie, l’accent est porté sur
l’interface entre la physique statistique, l’inférence bayésienne et les systèmes biologiques.
Les intersections entre ces domaines sont présentées en suivant le fil conducteur des
outils et modèles qui ont été appliqués, lors de cette thèse, à l’étude de deux systèmes
biologiques particuliers : la tâche navigation et mémoire spatiale dans le complexe
hippocampique (partie II) et le paysage adaptatif de coévolution dans les protéines
(partie III).

La deuxième partie est consacrée à la représentation de la mémoire spatiale dans le
réseau hippocampique. Nous introduisons d’abord un décodeur Bayésien d’activité de
population, basé sur l’expansion adaptative de clusters (ACE) de l’inférence d’un modèle
d’Ising sur un graph, visant à récupérer la carte cognitive représentée sur des échelles
de temps rapides. Nous appliquons le décodeur sur des données CA1, montrant qu’il
surpasse les normes actuelles en matière de discrimination de l’état cognitif rappelé, et sur
des données in-silico, pour étudier la signification fonctionnelle des couplages neuronaux
inférés. Nous appliquons ensuite cette méthode à l’étude de la phénoménologie du «
flickering », c’est-à-dire le comportement oscillatoire de la carte cognitive observé lors
d’une expérience récente où les conditions contextuelles sont brusquement modifiées
pour induire l’instabilité du réseau dans la région hippocampique CA3 du rongeur. Nous
présentons un modèle d’attracteur, soumis à des entrées externes et à des intégrateurs
de trajectoire, dont il est démontré qu’il reproduit avec précision la phénoménologie
oscillante de la carte cognitive. Par l’application du décodeur précédent, nous montrons
qu’un certain nombre de nouvelles prédictions du modèle, concernant la précision de la
représentation positionnelle pendant l’instabilité de l’état cognitif, peuvent être vérifiées
par une nouvelle analyse des données originales. Enfin, nous montrons que le modèle
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d’Ising inféré des enregistrements de l’hippocampe peut être utilisé pour générer des
activités de population cohérentes avec les attracteurs de faible dimension, qui ont été
proposés comme mécanisme neuronal sous-jacent à la navigation spatiale dans la carte
cognitive.

Dans la troisième partie, nous employons un modèle de physique statistique du
repliement des protéines, appelé « Lattice Proteins », pour comparer les méthodes
d’inférence visant à reconstruire le paysage adaptatif local d’une protéine à partir des
données de séquence des protéines homologues. Nous montrons d’abord qu’une ver-
sion éparse de l’inférence ACE, qui adapte la rareté du graphique d’interaction inféré
au nombre de données disponibles, donne des performances supérieures à celles des
méthodes DCA standard dans le régime commun sous-échantillonné. Ensuite, dans
le contexte du dilemme biais-variance, nous montrons que nous pouvons optimiser le
rendement de récupération de notre inférence en choisissant le sous-ensemble approprié
de l’alignement des protéines (MSA). Nous proposons une procédure, appelée « focusing
», visant à trouver ce sous-ensemble optimal à partir d’un alignement donné. Cette
procédure pourrait avoir des applications sur des ensembles de protéines réelles.



P U B L I C AT I O N S

This manuscript comprises the research work that I have conducted during the last three
years under the supervision of Simona Cocco and Rémi Monasson at the Laboratoire de
Physique Statistique de l’Ecole Normale Superieure, and includes published as well as
original results.
For what concerns the hippocampus part, Chapters 5 and 6 have been published as
research papers in [1, 2], in collaboration with Karel Ježek from Charles University
(Prague). Some of the early results of Chapter 6 were presented at [3]. Part of the ideas
and results showed in Chapter 4 have been included in [4, 5]. Chapter 7 is a work in
progress at the draft stage [6].
Chapters 9, 10, and 11 present an analysis of inference models applied to the retrieval of
the mutational landscape of a protein from sequence data. While these chapters mostly
cover results obtained on theoretical models, this work was conducted in parallel with a
postdoctoral researcher, Francesca Rizzato, who applied similar analyses to real protein
datasets. The results of this collaboration will be jointly published in two future papers,
now at the draft stage [7, 8].
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Part I
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I N T R I G U I N G S C I E N T I F I C B R A I D





1
B A C K G R O U N D

1.1 statistical physics

Statistical physics, as the name suggests, is the branch of physics that deals with the
statistical analysis of physical phenomena. It finds its roots in the kinetic theory of
thermodynamics, developed mainly by James Clerk Maxwell and Ludwig Boltzmann in
the 19th century, and later significantly contributed to by Willard Gibbs with his seminal
work "Elementary principles in statistical mechanics" [9].

In some sense, statistical physics represents an answer to the analytical intractability of
many-body systems. As proven by the famous work of Henry Poincaré in 1887 [10], a
detailed deterministic description of the motion of three (or more) bodies, interacting
through Newton’s laws of gravitation, is impossible, since the system follows a chaotic
(non-periodic) dynamics in the phase space.

However, some systems, such as gases, crystals, and amorphous solids, display a
limited number of stable macroscopic behaviors, even though they are composed of a
massive amount of interacting bodies (atoms or molecules). This apparent paradox is
elegantly solved by the concept of statistical equilibrium: even though the single molecule
of air follows a chaotic and fast dynamics, endlessly moving at an average speed of
⇠ 400m/s, it is very unlikely (statistically) that a significant number of molecules will
coherently move to the same direction, creating a spontaneous flow of air to one side
of the room. As a result, the ensemble, or gas, is globally static, and the room is always
uniformly filled by breathable air.

Statistical physics (of equilibrium) deals with many-body systems where the number
of interacting units, and the nature of the interaction, is such that the global behavior of
the system displays a limited number of stable equilibrium conditions. In these cases,
one can derive an analytical picture, at the ensemble level, by giving up the microscopic
determinism and introducing uncertainty - therefore statistics - in the theory.

To that end, the conceptual approach of statistical physics is to explain the phenomenol-
ogy of a macroscopic object by deriving a macroscopic theory from the detailed laws that
rule the behavior of its microscopic components.

The power of this approach lies in its generality: for the right set of phenomena, the
global behavior of the ensemble does not depend of the detailed nature of its constitutive
elements. Therefore, for example, the theory developed for the formation of droplets
during liquid-vapor transition [11] can also be used to describe the self-sustained neural
activity that encodes a spatial position in the collective state of a neural population [12].
As we will see in the next chapters, this generality has been leveraged by many (often
successfully) to apply the tools of statistical physics to a wide variety of fields.
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16 background

1.1.1 The Boltzmann approach

One of the pillars of statistical physics is the so-called Boltzmann distribution, which
relates the probability for a system to be in a state to the energy of the state and the
temperature. We will here review the derivation due to Boltzmann himself: the law was
derived to describe the distribution of energy within a gas composed of a large number
of molecules in a thermal bath, and was first given in his paper dated 1877 (see [13] for
an English translation).

Let’s consider an isolated idealized system composed of N interacting particles, each
having kinetic energy ei with i 2 [1, N]. Globally, the total energy E is conserved, but
particles can hit each other and exchange their energy by elastic collisions. Therefore, in
time, the individual values of ei will vary due to the continuous scattering happening
at the microscopic level. The system is described by a chaotic trajectory of the 6N-
dimensional phase space vector

z(t) = (q1(t), . . . , qN(t), p1(t), . . . , pN(t)) ,

where qi(t) and pi(t) are the three-dimensional space position and three-dimensional
momentum of the i-th particle.

Boltzmann started with a simplification: each ei can take only a set of discrete values,
and the exchanges happen accordingly via discrete amounts of an elementary unit e.
Therefore, at any time we have

ei = aie ,

were each a is limited by 0 (below) and by the total energy E = Le (above), and varies with
time due to collisions. This is the equivalent of making a coarse-grained partition of the
phase space into cells of finite size. The variable z(t), therefore, moves within this discrete
(although huge) set of states. Each of this cells is called a microstate. A fundamental
hypothesis is that the system occupies each microstate with equally probability, called the
ergodic hypothesis. Boltzmann then focused on the question of how the energy is distributed
within the system, i.e., how many particles have energy ei = 0, e, 2e and so on. To do so,
he performed a change of variable: instead of considering the microscopic kinetic state
of the whole system z(t), he considered the occupation vector

n = (n0, n1, . . . , nL) ,

where na is the number of molecules that have energy ae. Now, it is clear that the
coordinate change is not bijective, in the sense that each occupation vector corresponds to
a different number of microstates in the phase space. The occupation vector is, therefore,
a macrostate, i.e., a state of the system that corresponds to an entire region of the phase
space. In the ergodic hypothesis, every microstate is equally probable. Therefore we can
compute the relative probability of macrostates by just counting how many microstates
map to each of them, i.e., computing the corresponding phase-space volume. We call this
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number W(n). To compute it, let’s proceed iteratively: given an occupation vector n, we
have, out of N atoms, ✓

N
n0

◆
=

N!
(N � n0)!n0!

ways of choosing n0 molecules to whom assign the energies e = 0. We then are left with
N� n0 molecules, and we choose n1 out of them to pick the molecules with energy e = e,
so we multiply by (N�n0

n1
).

N!
(N � n0)!n0!

(N � n0)!
(N � n0 � n1)!n1!

=
N!

n0!n1!
1

(N � n0 � n1)!
Proceeding this way, we see that the N � n0 � n1 . . . term is simplified at each step, until
the final solution is found

W(n) =
N!

n0!n1! . . . nL!
. (1.1)

Due to the difficulty of treating factorials, we take the logarithm of W(n) instead. With
the Stirling approximation

log N! ' N log N � N (1.2)
we can re-write Eq. 1.1 as

log W(n) ' N log N �Â
a

na log na . (1.3)

The most likely macrostate n⇤ = argmaxn log W(n) is the one that, by virtue of typicality,
dominates the probability when the number of particles N is very large, i.e., P(n =
n⇤) ! 1 when N ! •. We therefore maximize the expression in Eq. 1.3, under two
important constraints: the total sum is equal to N and the total energy is equal to E. We
therefore construct the functional with two Lagrange multipliers

F[n] = log W(n)� g(Â
a

na � N)� b(Â
a

naea � E) (1.4)

Where, for generality, we used ea as the energy of the a-th occupation number. We
then set the functional derivative of F to zero and get the expression of the occupation
probability of the a-th energetic level:

d

dna
F = 0 () na = N

e�bea

Z
(1.5)

Where Z = eg = Âa0 e�bea0 is obtained by imposing the conservation of the number
of particles. By considering the probability of finding a particle with energy ea, i.e.
P(ea) =

n⇤a
N , we find the so-called Boltzmann distribution:

r(ea) =
1
Z

e�bea (1.6)



18 background

1.1.2 Boltzmann entropy and Helmholtz free energy

The meaning of the second multiplier, b, can be derived by combining the computations
above with the classical laws of thermodynamics (see for example [14] for a derivation).
b is the inverse temperature,

b =
1

kT
, (1.7)

where k is called the Boltzmann constant. This constant is found in the famous definition
of the Boltzmann entropy, which is the number of microstates that correspond to a given
macrostate:

S = k log W , (1.8)

which, if we are to consider equations carved on gravestones as important, is a quite
fundamental equation (see Fig.1.1).

Figure 1.1: Boltzmann gravestone in Vienna, with the equation of entropy as a function of the
number of microstates. Historically, this precise form of the equation was given by
Planck in 1902. Picture adapted from Wikipedia.
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If we now consider the Helmholtz free energy F = E� TS and plug our microscopic
definition of entropy and energy we obtain

F = �kTN logZ . (1.9)

Or, for the single particle
f = �kT logZ , (1.10)

where Z = Âa e�bea is the normalization factor that we encountered earlier in the
derivation when we imposed the conservation of the number of particles. Z is called the
partition function. From the Helmholtz free energy F we can retrieve the expected value
of any quantity by differentiating F with respect to its conjugate variable. For example, it
is straightforward to verify that the conjugate variable of the energy of a particle is b:

hei = �
∂ logZ

∂b
= Â

a
ea

e�bea

Z
. (1.11)

1.1.3 The Gibbs approach

As we saw, the argument of Boltzmann relies on counting the configurations of energy
units distributed among N particles (atoms or molecules). In these computations, we
have assumed that these particles are statistically independent, since they only interact
by elastic collisions. This assumption allows for the precise counting of microstates
that leads to the (1.3) and, consequently, to the Boltzmann distribution. However, such
an idealized computation has a limited range of application; in fact, it applies only to
systems mappable to the idealized gas.

In his book of 1902 [9], Gibbs proposed a different approach. He started by the
definition of ensemble, an idealized system composed of a great number of sub-systems.
Each sub-system contains a large number of particles, such that it follows the laws of
thermodynamics, but there is no idealized requirement on the nature of the interactions
between its elementary constituents.

The sub-systems are instead considered as weakly interacting with each other and
thermally coupled, such that heat exchanges can occur. This interaction allows for the
internal energy of each sub-system to fluctuate, such that it can explore all the energetic
levels. The subsystem still conserves the energy, but on average. This idealization is
called the Canonical ensemble. Focusing on a single subsystem, we see that it can be in
several different states s, each of energy Es. Gibbs defined entropy for such system,
which depends on the probability ps of the system being in the state s:

H = �k Â
s

ps log ps (1.12)

He then claimed that the equilibrium energy probability ps is the one that maximizes
the entropy H under the constraint of conserving the energy as an average over the
probability distribution of states. Therefore, in order to find the equilibrium distribution,
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we need to solve a constrained maximization similar to the one we have seen in the
Boltzmann approach. We thus define the functional with two Lagrange multipliers

F[p] = Â
s

ps log ps � g(Â
s

ps � 1)� b(Â
s

psEs � E) (1.13)

By solving for the maxima we re-find the Boltzmann distribution of eq. 1.6.

dF = 0 () ps =
1
Z

e�bEs (1.14)

Where Z is the partition function of the canonical system

Z = Â
states s

e�bEs (1.15)

This time, however, the probability distribution is general for any system that is drawn
from a canonical ensemble, without the need of the independence properties of an
idealized gas. Therefore, once we know the energetic structure Es of an equilibrium
system, be it a solid, a liquid or generally strongly-interacting, we can always write its
Boltzmann distribution.

The Gibbs approach is the foundation of all modern statistical physics. For an analytical
as well as historical discussion on differences and similarities between the two approaches
see for example [15, 16]. As we will see in the next section, the mathematical formalism
of constrained maximization that we used to derive the Boltzmann distribution is the
same that one finds in a particular class of inference problems, following the so-called
maximum-entropy principle.
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1.2 bayesian inference

1.2.1 Extended logic

By ‘inference’ we mean simply: deductive reasoning whenever enough infor-
mation is at hand to permit it; inductive or plausible reasoning when – as
is almost invariably the case in real problems – the necessary information is
not available. But if a problem can be solved by deductive reasoning, proba-
bility theory is not needed for it; thus our topic is the optimal processing of
incomplete information

E.T. Jaynes

This extract appears as a footnote in the introductory part of Jaynes’ book "Probability
theory: the logic of science" [17], and gives a concise yet thorough definition of the
inductive process we call "inference". As Jaynes suggested, in most real problems the
amount of available relevant information is insufficient to find a solution by deductive
reasoning. A scientist, consequently, needs to integrate the available information, fol-
lowing an inductive prescription, in order to reach a possible solution to said problems.
Carried within the mathematical framework of probability theory, this integration process
is called statistical inference.

In the first half of the 19th century, the combined work of R.T. Cox [18] and George
Polya [19] showed that to conduct inference without violating basic logical and con-
sistency assumptions [17], only one possible set of laws can be followed. These laws
stipulate how to update one’s degrees of uncertainty following a set of observations.

Remarkably, this was the set of standard rules of probability theory, originally given by
Bernoulli in his work "Ars conjectandi" [20], and analytically developed by Laplace at
the end of the 18th century. An interesting feature of the Polya-Cox result is that their
prescription contains no reference to "chance" or "randomness", but instead descends by
logical assumptions [17].

This result unified probability theory and statistical inference by defining a common
set of principles, while at the same time reaching greater logical simplicity and widely
expanding the range of possible applications of their mathematical framework.

In light of this logical unification, statistical inference is, in Jaynes’ own words, nothing
but "extended logic", by which problems can be quantitatively analyzed by following the
sole, optimal, inductive prescription that shows consistency with a set of basic logical
assumptions.
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The Cox axioms

Notation Let the "degree of belief in proposition x" be denoted by b(x). The negation
of x (not x) is written x̄ .The degree of belief in a conditional proposition "x, assuming
proposition y to be true" is represented by b(x|y).

Axiom 1 Degrees of belief can be ordered. If b(x) is greater than b(y) and this latter is
greater than b(z) then b(x) is greater than b(z).
=) degree of belief can be mapped onto real numbers

Axiom 2 The degree of belief in a proposition b(x) and the degree of belief in its negation
b(x̄) are related, i.e. there exists a function f such that

b(x) = f [b(x̄)]

Axiom 3 The degree of belief in the joint proposition x, y (read x AND y) is related to the
degree of belief in the conditional proposition x|y and the degree of belief in the proposition
y. In other words, there is a function g such that

b(x, y) = g[b(x|y), b(y)]

Consequence If a set of beliefs satisfy these axioms then they can be mapped onto proba-
bilities satisfying P(TRUE) = 1, P(FALSE) = 0, 0  P(x)  1, and the rules of probability

P(x) = 1� P(x̄) (1.16)
P(x, y) = P(x|y)P(y) (1.17)

(Box adapted from [21])

1.2.2 The Bayes theorem

The starting point of Bayesian probability theory is the "degree of belief" in a proposition
x, which we encode into the probability P(x). This degree can be conditional to the
fact that another proposition y is true, in which case it is mapped onto the conditional
probability P(x|y). As shown in the box above, the probability function P that is derived
from the Cox axioms satisfies the rules of probability theory (Eq.s 1.16 and 1.17). The
fundamental relation of Eq. 1.17, that links the joint probability of two events P(x, y) (x
AND y) to the conditional probability P(x|y), is known as chain rule. From the chain rule
we can easily derive the following relation

P(y|x) =
P(x|y)P(y)

P(x)
(1.18)

The formula in (1.18) is known as the Bayes theorem, named after Reverend Thomas
Bayes, who first provided the equation as a way to update beliefs after new evidence
in his "An Essay towards solving a Problem in the Doctrine of Chances (1763)". Bayes
theorem is the foundation of all Bayesian statistics (also called the subjective view of
probability), where probabilities are seen as degrees of belief (instead of occurrence
frequences of random variables, which is called the frequentist view). The frequentists
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vs. subjectivists is still an ongoing debate between experts of both fields. Quoting David
MacKay [21], we will hereby take for granted that the Bayesian approach makes sense,
and proceed consequently. For a resolute defense of the Bayesian approach, we refer the
reader to Jaynes’ book [17].

1.2.3 Hypothesis testing

One useful application of the Bayes theorem (Eq. 1.18) is the so-called Bayesian hypothesis
testing: say we have two hypotheses for how a certain variable x behaves probabilistically.
In other words, we have two putative probabilistic models Ha = Pa(x) and Hb = Pb(x).
We also have collected a set of B realizations of said variable, which we call the data
D = x1, x2, . . . , xB. Our goal is to decide which of the two hypotheses is more likely to
be true, given the available data.

For this task, it is convenient to name the terms in Eq. 1.18 to explicitly address
observations (the data D) and the model (the hypothesis H). We so define the likelihood of
our hypothesis as the probability of the data given the model P(D|H), namely Pa(D) and
Pb(D) for the two hypotheses; the prior P(H) encodes the information that we have, for
external reasons from the data, on the hypothesis H; the evidence P(D) is the probability
of the data independently of our hypothesis. The combination of these terms expressed
by Eq. 1.18 defines the posterior of our problem, i.e., the degree of belief that we associate
to the hypothesis H given the combination of the data D and our prior information:

P(H|D) =
P(D|H) · P(H)

P(D)
(1.19)

) posterior probability =
likelihood · prior probability

evidence
. (1.20)

The task of choosing between the two hypothesis is therefore reduced to computing the
two posteriors P(Ha|D) and P(Hb|D) and comparing their values. The hypothesis that
maximizes the posterior probability is the one to be chosen as the most likely probabilistic
model to explain the data.

1.2.4 Maximum likelihood and maximum a posteriori

Bayes theorem can be used to retrieve the parameters of a known statistical model given
a set of observations. Say we want to model an N-dimensional variable

x = (x1, . . . , xN)

for which we now know the statistical model, i.e. the probability function that regulates
its behavior, up to a set of M unknown parameters,

Q = (q1, . . . , qM) ,
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which we need to fit to our set of observations. We write this probabilistic model as

P(x|Q)

Where the conditional to Q explicitly expresses the fact that we need to know the value
of these parameters to describe the probability of x. Now say we observe a set of B
realizations of the variable x, i.e. the data D,

D =
n

x1, . . . , xB
o

.

We want to find the most likely values of the parameters Q given the evidence of D. By
use of Bayes theorem, this is straightforward, since we can invert the statistical model to
write the probability for the parameters given the data (what we seek) as a function of
the probability of the data given the parameters (what we have, the statistical model)

P(Q|D) µ P(D|Q)P(Q) , (1.21)

where we ignored the evidence term P(D), since it does not depend on the parameters on
which we are performing the maximization. If the observations of x are i.i.d. samples of
the underlying probability distribution we can decompose the above into

P(Q|D) µ

"
B

’
k=1

P(xk
|Q)

#
P(Q) (1.22)

To work with sums instead of products, it is usually convenient to convert the equation
above to the logarithm formulation

log P(Q|D) µ
B

Â
k=1

log P(xk
|Q) + log P(Q) (1.23)

And our problem is solved by maximizing this posterior probability

Q⇤ = argmax
Q

"
B

Â
k=1

log P(xk
|Q) + log P(Q)

#
(1.24)

Depending on the complexity of the model P(x|Q) this maximization can be taken
analytically, numerically, or via approximate formulas. If we do not specify any prior
information, i.e. we take a flat P(Q), the procedure is called maximum likelihood (ML),
otherwise, if we have external prior information on the parameters that we want to
include, it is called maximum a-posteriori (MAP).

Note from Eq. 1.24 that, in the limit of a very large number of observations, the prior is
irrelevant compared to the data, as common sense suggests. Another important property
of this formalism is that the inclusion of new data is trivial since one only needs to add
one or more terms to the sum.
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1.2.5 The "max-entropy" principle

As we saw in the previous section, the MAP and ML methods can be used to estimate
the most likely parameters Q of a statistical model, P(x|Q), given multiple independent
observations of the variable x.

It is clear that we can use these methods only if we know a priori what family of
distributions P(x) we ought to use as a statistical model for the analyzed problem.
In practical applications, the model is usually given by external information, such as
the underlying physical laws that regulate the analyzed problem or one’s assumptions
regarding the statistics of a process. In this case, we only have few degrees of freedom,
i.e., the parameters Q = (q1, . . . , qM), whose values we can derive by using ML or MAP
on the set of observations.

However, there are cases where we do not know the underlying model, but we still
would like to integrate a set of observations and derive a statistical predictive model. For
example, say that of a sequence of observations {xk} of a variable x we only know the
average value, i.e. x̄ = 1

B Âk xk, and that we would like to make statistical predictions on
the next outcome xB+1.

The problem is: what family of parametric functions should we use if we know nothing
but aggregated information such as means, correlations, and other statistical averages
of our data? In this case, the degrees of freedom are infinite, since there are infinitely
many distributions that display the given average values. The maximum-entropy principle
addresses precisely this question.

The intuitive reasoning that lies behind this principle is that, in performing our
inference procedure, we want to choose the distribution family in the fairest possible way,
i.e., without adding any constraints to the problem that are not directly deducible from
the available data. Following the principle, there is only one family that satisfies this
requirement and is the one that maximizes the Shannon entropy, defined as

H[P] = �
Z

dxP(x) log P(x) (1.25)

or, in the discrete case
H[P] = �Â

i
Pi log Pi , (1.26)

under the constraint of displaying the empirical average values. As an example, let’s
consider a discrete case where our variable x can take only a finite set of values {xi}, each
with probability Pi. The scenario is the one presented above, i.e., the only information we
have is the mean value of a set of observations of the variable, x̄. To find the maximum
entropy distribution we need to solve the constrained maximization by using the Lagrange
multipliers formalism, where we include a multiplier l0 for the normalization constraint
(Âi Pi = 1) and another l1 for the mean value (Âi xiPi = x̄). The constrained maximum
P⇤i is the one that solves

0 =
d

dPi

"
H[P]� l0(Â

i
Pi � 1)� l1(Â

i
xiPi � x̄)

#
. (1.27)
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With basic algebra we find the solution to be

P⇤i =
e�l1xi

Z
, (1.28)

where Z = el0 is a normalization constant, found by applying the normalization con-
straint, i.e.,

Â
i

P⇤i = 1 =) Z = Â
i

e�l1xi . (1.29)

The specific value of l1 is fixed by the constraint on the mean value

Â
i

xiP⇤i = x̄ (1.30)

The original formulation of this principle is due to Jaynes [22] and is based on the
interpretation of the Shannon entropy as the "randomness" of the probability distribution,
or "ignorance" about the realization of the random variable drawn from it. In this view, to
take nothing but the data into account means to maximize our ignorance about the prob-
lem, therefore taking the most "random" possible family of distributions consistent with
observables. The principle has been later derived axiomatically, claiming that no other dis-
tribution family than the one that maximizes the Shannon entropy can be used to perform
inference, based on average values, without contradicting a set of consistency axioms [23].

As mentioned in the first chapter, the Gibbs-Boltzmann distribution for the canonical
ensemble is of the same exponential family of the max-entropy distribution constrained
to reproduce the average value x̄. As argued by E.T. Jaynes [22], the connection between
statistical mechanics and information theory is more than a formal coincidence; it instead
establishes a viewpoint on statistical physics as a theory based on the state of knowledge
of the experimentalist instead of the physical details of the system under consideration.
The interested reader can find a detailed discussion on this connection in the works of
Jaynes, see for example [17, 22, 24].



2
I N T E R S E C T I O N S

During the last decades, the range of application of statistical physics has widened
enormously, extending its influence outside of the boundaries of physics per se. Its
conceptual and mathematical framework has been successfully applied to problems from
chemistry, biology, computer science, ecology, and even social sciences, such as sociology
and economics.

This "foreign" success of statistical physics is at least in part due to its tight relation-
ship with statistics. Through the development of mathematical tools derived from the
statistical analysis of physical phenomena, statistical physics provided researchers with a
framework that is adaptable to a broad category of problems, namely those that involve
a large number of interacting units that give rise to macroscopic collective behaviors.

In this chapter, we will discuss two cases of intersection between statistical physics
and foreign fields, namely Bayesian inference and systems biology. We will try to
explore these vast regions by following a common thread that links to the research work
presented in chapters 5, 6, 7, 10, and 11. The following sections are therefore thought to
be a technical and philosophical introduction to the work presented here, more than an
exhaustive historical overview of the relationship between these diverse scientific areas.
Indeed, this latter would surely deserve a dedicated thesis in the sociology of science to
fairly cover it in its many facets.

As we will see, the application of tools from statistical physics to Bayesian inference has
brought theoretical insights that allowed for the development of performant algorithms
for statistical inference and data analysis. The overlap between statistical physics and
systems biology, instead, is the quantitative top-down modelling approach (i.e., from
mathematical abstraction to observables) that allowed to understand and make novel
quantitative predictions in a wide range of biological systems, from cellular motility to
flocks of birds, from populations of neurons to protein folding.

Finally, the advent of powerful computers and large biological datasets has made
necessary the development of a whole new category of "big data" bottom-up analysis
methods, which are at the intersection between systems biology and Bayesian inference.
Despite the great importance of recent developments in bioinformatics by inference
methods applied to biological data, this intersection will not have a dedicated section.
We will cover an introduction to the inference and data-analysis methods used in the
present work in chapters 4 and 8.1. The interested reader is also referred to the relevant
reviews in the literature [25–27].

27
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2.1 bayesian inference \ statistical physics

An interesting consequence of the close interrelation between statistical physics and
Bayesian statistics is that some of the mathematical effort carried by physicists, in the
everlasting attempt to formalize and explain physical phenomena, can be borrowed to
develop new algorithms for statistical inference and, ultimately, data analysis.

A good example located at this intersection is the problem of retrieving a graph of
interaction, named network inference. The problem, in its generality, could be phrased
as

There is a group of N agents, influencing each other via an interaction matrix
J, and whose activity s = (s1, . . . , sN) we have repeatedly collected as empirical
observations; can we retrieve the interaction structure J from these observations?

This problem has attracted great interest, in the last decades, in the communities
of statistical physics and computer science, since the nature of the agents and the
interaction matrix can vary depending on the specific application. It could represent the
phenomenology of opinion dynamics during a political riot, or the collective behavior of
neurons in a specific brain area, or even the interaction structure of magnetic spins of
atoms in a magnet. In this latter case, a simplified model of magnetic spins that can take
either direction up (s = +1) or direction down (s = �1), is the so-called Ising model in
statistical physics.

2.1.1 The inverse Ising model

The model is named after the physicist Ernst Ising, who invented the formalism in his
doctoral thesis [28], however giving a solution only in the one-dimensional chain case.
Onsager has later given the more involved solution of spins placed on a two-dimensional
lattice in 1944 [29]. These solutions are an example of the so-called direct problem, i.e.,
deriving the value of observables starting from the Hamiltonian formulation of the
problem.

The Hamiltonian formulation is based on the definition of the energy E of the system,
whose state space is the hypercube of all binary vectors s = (s1, . . . , sN) of dimension
N (number of spins). The energy depends on the specific state s through the matrix of
couplings Jij and a set of magnetic fields hi:

E(s) = �
N

Â
i=1

hisi �Â
i<j

Jijsisj . (2.1)

As we saw in the first chapter, in equilibrium conditions the probability of a configuration
s is given by the Boltzmann distribution over its energy

P(s) =
1

Z(h, J)
e(Âi hisi+Âi<j Jij si sj) , (2.2)
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where we conveniently choose the temperature scale such that b = 1. Now, say that
instead of starting from the energy of the system and deriving the behavior of the model,
we observe a set of B configurations, i.e. the data D = {s1, s2, . . . , sB

}, and we want to
retrieve the interaction matrix J and the field vector h. This is called the inverse problem.

Since we know what probability distribution the degrees of freedom of the model are
following, i.e., we know the Boltzmann distribution P(s) in Eq. 2.2, we can apply the
Bayesian framework and retrieve the most likely value of the parameters Q = {J, h}
given the evidence D. We will use the maximum-likelihood method that we described
in the previous section (see Eq. 1.24) since at this point we have no particular reason to
include a prior P(Q) on the values of the parameters.

We proceed by writing the log-likelihood function, that is maximized by the solution:

L(Q) := log P(Q|D) µ
B

Â
k=1

log P(sk
|Q)

=
B

Â
k=1

0

@Â
i

hisk
i + Â

i<j
Jijsk

i sk
j � logZ(h, J)

1

A

= B

0

@Â
i

hi hsiiD + Â
i<j

JijhsisjiD � logZ(h, J)

1

A (2.3)

where the notation hiD indicates the average over the observed data D. Note that we can
interpret the equation (2.3) in terms of physical quantities: the first term is minus the
mean energy estimated from the empirical observations, and the second one is minus the
free energy of the system. Therefore, the log-likelihood has the same form of a entropy,
with a minus sign (see Section 1.1.2). For this reason, in the statistical physics community,
the log-likelihood maximization is also referred to as cross-entropy minimization.

We now apply the condition of maximum likelihood to retrieve the most likely values
of the parameters bQ = bJ, bh = argmaxQ L(Q)

bhi : 0 =
1
B

∂L

∂hi
= hsiiD �

1
Z

∂Z

∂hi
() hsiiD = hsiiP(s) (2.4)

bJij : 0 =
1
B

∂L

∂Jij
=
D

sisj

E

D
�

1
Z

∂Z

∂Jij
()

D
sisj

E

D
=
D

sisj

E

P(s)
(2.5)

The two last terms of (2.4) and (2.5) are called moment-matching conditions, since they
express the requirement that the correlations hsisji and the magnetizations hsii computed
over the probability distribution P(s|bQ) have to be the same of the ones computed on
the empirical data D.

An important remark is that this formalism can be worked out in the exact opposite
direction. Let’s say that we observe the magnetizations and correlations of a set of
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interacting units and that we know that the state-space is the hypercube of binary
vectors of dimension N. If we follow the principle of maximum entropy and we look for
the least biased distribution (maximal in the Shannon entropy) that reproduces said
magnetizations and correlations, we find that the solution is precisely the Ising model.

d

2

4Â
s

P(s) log P(s) + Â
i

li

 

Â
s

P(s) · si � hsiiD

!
+ Â

i<j
lij

 

Â
s

P(s) · sisj � hsisjiD

!3

5 = 0

() P(s) =
1
Z

e(Âi li si+Âi<j lij si sj) (2.6)

Where the moment matching conditions of (2.4) and (2.5) are then imposed to retrieve
the values of the Lagrange multipliers li and lij. The exponential model of (2.6) has a
name and a history in the field of statistics, where is called undirected pairwise graphical
model [30].

2.1.2 Sparsity and regularization

Having defined our task within the Bayesian framework, we are allowed to make and
control assumptions on the value of the inferred parameters, bQ, by encoding them as
prior probabilities P(Q). Several examples in the literature showed how such priors are
useful (and sometimes necessary) to avoid degenerate solutions, reduce overfitting, and
to speed up the convergence of the algorithms [31].

One widely used prior is the so-called `1 regularization, related to the LASSO regression
in statistics, and introduced by [32] in the context of the inverse Ising model. The `1
regularization is an exponential prior probability in minus the `1-norm of the parameter
vector, which penalizes solutions whose sum of absolute values of the inferred parameters
is large:

P`1 (Q) µ exp

 
�l Â

q2Q
|q|

!
. (2.7)

By defining two parameters lh and lJ , that control the strength of the prior over fields
and couplings, respectively, the the log-likelihood (2.3), now log-posterior, of the inverse
Ising problem can be written as

L`1 (Q) = B

0

@Â
i

hihsiiD + Â
i<j

JijhsisjiD � logZ(h, J)

1

A� lh Â
i
|hi|� lJ Â

i<j
|Jij| , (2.8)

where lh,J = O(1) to ensure consistency with the requirement that the posterior is
dominated by the likelihood in the presence of a large number of data. The role of this
prior is to enforce a subset of the parameters to be exactly 0, effectively reducing the
number of inferred parameters. For this reason, it is also referred to as a sparsity prior.
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Another possibility to select solutions with a small absolute value of the inferred
parameters is to assume a Gaussian probability distribution over the `2-norm of the
parameter vector. This results in an additional quadratic penalty term in the log-posterior
and is called `2 regularization. The log-posterior therefore reads:

L`2 (Q) = B

0

@Â
i

hihsiiD + Â
i<j

JijhsisjiD � logZ(h, J)

1

A� lh Â
i
(hi)

2
� lJ Â

i<j
(Jij)

2 (2.9)

This is a necessary hypothesis if one has to deal with under-sampled data where the
natural solution of the inverse problem would retrieve infinitely-negative parameters (for
example, missing data on one single site would lead to hsiiD = 0 and consequently to
a field hi = �•). In this the `2 norm is equivalent but less invasive than the `1 norm,
since it does not enforce a sparse solution. For a detailed discussion on the role of
regularizations in the inverse Ising problem, see [31].

2.1.3 Computational approaches

Having derived the moment-matching conditions (2.4) and (2.5) from the maximum-
likelihood approach, one could be tempted to think of the inverse Ising model as a solved
task. The reality, however, is computationally much more complex.

In fact, the equations (2.4) and (2.5) cannot be solved for the parameters bJij and bhi, due
to the many-body nature of the Ising model. A change in a single parameter Jij, in fact,
will affect multiple correlations hsi0 sj0 i and, vice-versa, a change in a single empirical
correlation hsisjiD would lead to several changes to parameters bJij in the solution of the
inverse problem. Moreover, the inverse Ising inference has been proven to be an NP-hard
problem, i.e., there does not exist (up to now) an algorithm able to solve it in polynomial
time in the number of units N.

The only way to satisfy the matching conditions is, therefore, to proceed via numerical
methods. Luckily, one can prove that the log-likelihood of the Ising model is a concave
function of the parameters, [33], allowing for the application of convex optimization
methods to reach the solution by following the gradient of the log-likelihood in the space
of the parameters. This gradient is defined as

rL = (
∂L

∂h1
, . . . ,

∂L

∂hN
,

∂L

∂J1,2
, . . . ,

∂L

∂J1,N
, . . . ,

∂L

∂JN�1,N
) (2.10)

Where the single terms can be computed from the definition of the log-likelihood (2.3)

1
B

∂L

∂hi
= hsiiD � hsiiP(s) (2.11)

1
B

∂L

∂Jij
= hsisjiD � hsisjiP(s) (2.12)
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To reach the solution, one can proceed by changing the value of the parameters iter-
atively, following the gradient, and checking at each iteration if the moment-matching
condition is satisfied up to a given convergence criterion. For example, in the pseudo-
code below we stop only if each moment is matched up to a precision threshold e

log-likelihood maximization by gradient ascent

loop
for i = 1, . . . , N do

Di  hsiiD � hsiiP(s)
for j = 1, . . . , N do

Dij  hsisjiD � hsisji >P(s)
end for

end for
if (9i : |Di| > e) or (9(ij) : |Dij| > e) then

hi  hi + hhDi
Jij  Jij + hJDij

else
convergence has been reached, break loop

end if
end loop

Where hh and hJ rule the speed of movement in the parameter space, and are called
learning rates. This pseudocode introduces the next problem, that is that for each iteration
of the process we need to compute the averages hsiiP(s) and hsisjiP(s). However, there is
no analytical solution for the direct Ising problem that provides us with a generic closed
form for these average values given a particular choice of couplings J and fields h.

Again, we need a computational approach: one way is to compute the partition
function Z and then numerically estimate its derivatives with respect to Jij and hi, which
give, respectively, the magnetization hsiiP(s) and the correlation hsisjiP(s) of the model.
However there is one major obstacle to this approach, i.e.

The partition function Z(J, h) is the sum of 2N terms, N being the dimensionality
of the problem.

It is clear that, even for a modest analysis of N = 50 interacting units, we can not
afford to enumerate, at each iteration, all the ⇠ 1015 terms that compose the partition
function. For this reason, people from the fields of statistical inference, machine learning,
and physics have worked to develop computational methods that solve the inverse Ising
problem without the need for exactly computing the partition function. We will here
enlist some results of these efforts. For a recent review on the matter see for example [34].
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(a) Boltzmann learning: a popular technique in machine learning [35], it consists in
simulating the system with Monte Carlo methods to estimate, instead of compute,
the averages hiP(s) in (2.11) and (2.12), and proceed by gradient ascent as shown
in the pseudo code. The stationary point of this procedure is proven to be the
correct solution for the inverse Ising problem. This technique avoids the explicit
computation of the partition function, but is still computationally very demanding,
since it requires to simulate the system, at each update of the parameters, for a time
that is long enough to avoid dependence on the initial condition (a requirement
called thermalization). For even a reasonably small number of units (N ⇠ 100) it is
usually impossible to reach convergence in a reasonable time. However, it is safely
employable for smaller systems, and its simplicity has made it one of the most
popular algorithms in the field, widely used in the literature of the last decades for
a great variety of problems.

(b) Mean field: directly inspired by theoretical approximation techniques, this method
is based on the hypothesis of statistical independence of single spins si. This allows
for the factorization of the Boltzmann distribution into P(s) = ’i Pi(si) = ’i

1+µi si
2 ,

where µi = hsiiP is the magnetization of the spin i. If we assume this factorization,
the max-likelihood couplings and fields can be analitically retrieved from the
empirical moments, thanks to equations developed from the Gibbs free energy of
the Ising model (see for example [34] for a derivation). This solution is based on
the definition of the matrix of connected correlations

Cij := hsisjiD � hsiiDhsjiD (2.13)

and reads

bJij = �(C�1)ij i 6= j (2.14)
bhi = atanhhsiiD �Â

j 6=i
J⇤ijhsjiD (2.15)

The mean-field approach has the obvious advantage of being immediately com-
putable (it just requires the inversion of a matrix, that can be done in O(N3)
polynomial time), but its range of validity is limited to those cases in which the
above factorization of P(s) is an appropriate approximation. Its applicability has,
therefore, to be checked case by case. For further reading see for example [33,36,37]

(c) Tree-like graphs: if the connectivity structure defined by the matrix J is tree-like,
i.e. contains no or few interaction loops, the partition function can be computed
in O(N) time [38] by employing the so-called Message-passing or Belief-propagation
methods. These methods have been shown to be exact on tree-like structures, or
when loops are confined to a local scale. It has been showed that the message-
passing methods are equivalent to assuming the Bethe-Peierls approximation [39],
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an analytical tool derived in statistical physics to compute the partition function
and expectation values by solving a set of non-linear equations. For a detailed
exposition of these methods and their applications see [40].

(d) Pseudo likelihood: the algorithm derived by Ravikumar et al. [32] solves the
inverse Ising problem by requiring the knowledge of the full ensemble of observed
patterns {sk

}, instead of the empirical averages hsisjiD and hsiiD. It is based
on an approximation that considers N independent single-spin problems, each
conditioned to the value of the remaining spins

P(si|{sj}j 6=i) =
1
2

2

41 + si tanh

0

@hi + Â
j 6=i

Jijsj

1

A

3

5 (2.16)

By using this expression for the probability of the data given a set of parameters
we can write the log-likelihood function for the i-th row of the matrix J and for the
field hi given a set of B empirical observations {sk

}

L
PL
i = Â

k
log

1
2

2

41 + sk
i tanh

0

@hi + Â
j 6=i

Jijsk
j

1

A

3

5 (2.17)

Whose maximization gives the following equalities for the solution bh,bJ

hsiiD =

*
tanh

0

@bhi + Â
j 6=i

bJijsj

1

A
+

D

(2.18)

hsisjiD =

*
si · tanh

0

@bhi + Â
j 6=i

bJijsj

1

A
+

D

(2.19)

We are therefore left with N minimization problems that can be carried out by
using standard routines such as Newton method or gradient descent.

Importantly, the pseudo-likelihood approximation is proven to be asymptotically
consistent [41], i.e., it retrieves the max-likelihood solution when the number of
data goes to infinite. Note that the complexity class of this algorithm is polynomial
in the number of parameters and in the number of data, i.e., O(BN), therefore is
usually much faster than Boltzmann learning. Differently from other inverse-Ising
algorithms, the PL couplings are generally asymmetric, i.e. bJij 6= bJji.

This algorithm has been widely studied in the field of statistical inference [32, 42],
and has lately gained popularity in the field of bioinformatics, since it has been
shown to provide good results in the problem of reconstructing the 3D structure
and fitness landscape of proteins starting from sequence covariation within the
relevant protein family [43, 44].
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(e) Adaptive cluster expansion: derived by Cocco and Monasson [33, 45–47], the
adaptive cluster expansion (ACE) method is based on the expansion of the cross-
entropy of the inverse problem

S(h, J|D) = � logZ + Â
i

hihsiiD + Â
i<j

JijhsisjiD (2.20)

which, up to a minus sign, equals the log likelihood of the parameters given the
data. The cross-entropy is expanded into several terms, each corresponding to a
cluster of spins of varying size

S(h, J|D) = Â
G2P(N)

SG (2.21)

where P(N) is the power set, i.e., the set containing all possible subsets (unordered),
of the N spins. The algorithm builds an iterative approximation of the cross-entropy
that decomposes the inverse problem into a set of smaller inverse problems of
increasing size. The procedure starts from the single-site and two-sites clusters,
which have an analytical solution and are therefore immediate to solve:

S(h, J|D) = Â
G:|G|<3

SG + DS (2.22)

The method then proceeds iteratively to decompose the remaining DS. It first
solves all the small inverse problems of all included clusters up to size k = 2,
then for each cluster G it computes SG, i.e., its contribution to the cross-entropy,
and checks if it exceeds a chosen threshold q. If it does, the cluster is marked as
significant, and included in the expansion. In the next iteration (k = 3) only clusters
of size three that are composed by significant clusters of size two are considered,
therefore significantly reducing the total number of terms in the expansion. The
procedure continues by lowering down the threshold q and repeating the expansion
until a criterion of convergence (derived from the moment matching conditions) is
reached.

The intuition behind this procedure is that the number of terms in the expansion
is exponentially reduced by excluding, upstream, all the irrelevant clusters. If
a small cluster is irrelevant to the cross-entropy, it is unlikely that a larger one,
derived from it, will be relevant. Since the complexity class of the inverse problem
is exponential, solving a large number of smaller tasks is usually more convenient
than solving a single large inverse problem. Therefore, the convergence of this
algorithm is usually much faster than classical Boltzmann learning [33].

In chapters 3 and 8.1 we will show how the inverse problem can be applied to systems
in neuroscience and bioinformatics, following a recent tradition of successful applications
of this paradigm to biological systems [48–58]. We will predominantly use the ACE
method.
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2.2 statistical physics \ systems biology

The statistical-physics modelling of biological systems is today a widely-used and recog-
nized approach in quantitative biology. But how can a theoretical framework that has
been invented to describe the thermodynamics of inert gases be successfully applied
to biological systems? We will here try to develop our humble point of view on the
matter, which, far from being solved, is still the object of an ongoing debate in science
and philosophy.

2.2.1 Biology is complicated

Biology by definition involves life. The understanding of the underlying principles of
living systems is one of the main and most fascinating challenges of modern science.
However, for a physicist, used to controlled mathematical models of reality, biology
is utterly complicated. Even the most simple biological process that we can imagine is
composed of a large number of diverse parts that interact by following physical, chemical,
and biochemical laws on different scales. Designing a precise and all-encompassing
physical model of such complexity is often a hopeless and possibly pointless task, which
would require an immense number of equations and parameters that can hardly be
interpreted to inspire new insights on the analyzed system.

The only reasonable approach, in this case, seems to be the reduction of the system to
its elementary parts. These can be studied in controlled settings, in order to establish a
detailed understanding of their individual behavior. A complete description of the whole,
hopefully, will naturally emerge from the sum of its parts. This approach is known
as methodological reductionism. The reductionist approach has proven very successful in
understanding the principles that rule the behavior of elementary biological components.
Its palmarés is adorned with the most important scientific discoveries of the last centuries,
ranging from the helix structure of DNA in genetics to the Krebs cycle in biochemistry,
and forms the basis for many of the well-developed topics of modern science.

Starting from the 070s, however, it has been increasingly acknowledged that this
approach is limited when it comes to describing the collective behavior of biological
systems. For example, a more detailed biophysical description of the membrane potential
of neurons does not help to understand how cognitive functions are performed by
the central nervous system, as much as the characterization of human biology will
hardly be sufficient to understand the emergence of societies. Acknowledging the limits
of reductionism has pushed researchers and philosophers to seek a complementary
paradigm, focused more on the emergent behavior than on an accurate description of the
elementary components. The diverse set of efforts that have been carried in the last
decades in this direction goes under the name of "complex systems".



2.2 statistical physics \ systems biology 37

2.2.2 Biology is complex

The label complexity encloses a set of philosophical and scientific approaches that aim to
understand how the interaction between the parts of a system gives rise to its collective
behavior. These systems, composed of many interacting parts, are referred to as complex
systems. It is usually opposed to reductionism in the sense that complex systems can not,
in this view, be understood by individually studying their fundamental components. The
system must instead be observed and studied as a whole, since the origin of its behavior
lies in the interaction structure, and not in the physical nature, of its components.

Although there is no consensus on a precise definition of "complexity", there are some
properties that are widely associated with "complex systems" in the literature [59, 60].
Among these, the one that we think is most relevant for our modelling approach is
emergent behavior.

The classic example of emergent behavior is the collective motion of groups of individ-
uals, such as flocks of birds [61, 62], fish schools [63], or pedestrians that move during an
emergency situation [64]. In all these cases, in line with complexity theory, a detailed
characterization of the motion of an isolated individual is of small use in understanding
the collective one, which instead emerges from the interaction between individuals and
with the external environment.

An important feature of complex systems is that their description can be developed
on several different layers of increasing coarse-grained scale. Starting from the immense
phase-space of the system, we can proceed by considering larger "pixels" on spatial,
temporal, or generally abstract dimensions. The blurring effect of coarse-graining can,
in some cases, average out an underlying chaotic dynamics and allowing for stable and
reproducible patterns on a larger scale. A typical example is the weather conditions: even
if we know that the underlying dynamics is non-linear and chaotic [65], we still can find
patterns and regularities in some macroscopic variables, such as the alternation of wind
velocity, temperature, pressure, and humidity, in time [60]. As we will see below, this
hierarchy of description levels is one of the enabling factors for our modelling approach.

2.2.3 Simple models of complex systems

In the last decades, complexity has become pervasive in every scientific field that deals
with systems composed of many interacting units: examples are economics, systems
biology, sociology, climate science, ecology, and neuroscience. As the attentive reader
might have noticed, this list very much resembles the set of scientific fields that we
mentioned at the beginning of this chapter, where we enumerated some examples of
disciplines that have been quantitatively approached through tools of statistical physics.

Indeed, from the above description of complex system we can see the first touching
point: as it happened with the kinetic theory of gases, we know that the underlying
dynamics is impossible to characterize in detail, but we still observe some regularities in
the global (macroscopic) behavior of a large collections of individuals. The observation
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of these patterns motivates our curiosity, and we would like to understand how these
regularities emerge from the interaction between the parts.

This analogy seems to highlight statistical physics as a possible quantitative approach
to the study of complex systems. However, statistical physics has been invented to model
ideal gases at thermal equilibrium, which is as far as one can get from the concept of
complexity. We will try to clarify this apparent contradiction by some further discussion
on the rationale behind our modelling approach: what we, as physicists, want to model
about these systems, how do we extract relevant observables from our abstraction of
reality and, ultimately, why do we choose this approach, i.e. how this process can push
further the understanding of the underlying mechanisms.

what As mentioned before, our approach to biological systems can not aim at the
mathematical characterization of all the relations between the involved variables. Instead,
we isolate what we think are the most intriguing features of a system, based on our curios-
ity, scientific sensibility, and intuition on how we could approach these phenomenologies
through our quantitative toolset.

Taking a little creative liberty, and in all probability being incautious from a philosoph-
ical point of view, we might define this approach as phenomenological reductionism: instead
of investigating the system by separating it into its fundamental physical constituents,
we separate it into the phenomenological ones, choosing to individually investigate the
behaviors that pose the most interesting (and hopefully treatable) scientific questions.

This coarse-graining approach is not new to physicists. The same idea of neglecting
some degrees of freedom, in order to isolate the relevant variables, is at the basis of many
mathematical models in physics (e.g., the Ising model to describe phase transitions in
magnets). The difference is that, in biological systems, the coarse-graining happens on
a much larger scale. Moreover, the relevant phase space is harder to precisely define,
leading to approximations that are much more difficult to control.

There is a famous quote, from the statistician George Box, that well summarizes this
idea: "Essentially, all models are wrong, but some are useful". In the case of mathematical
modelling of complex biological systems, we know for sure that our models are very
wrong. Hopefully, they can also be of some use in understanding the mechanisms by
which biological systems achieve their rich and fascinating phenomenology.

how Once we conceptually isolated the behavior that we want to understand, the
second step of our approach is to (1) use our trained mathematical intuition to choose
the relevant state space, i.e. what degrees of freedom s = (s1, s2, . . . , sN) we are going
to model, (2) choose the relevant parameters Q = (q1, q2, . . . , qM) that we think are
responsible for the phenomenology we want to investigate (for example the coupling
strength between two terms in the equation, the network matrix of interactions, . . . ),
and (3) define a function that mathematically relates them. This function is called the
Hamiltonian of a system.

H(s, Q) (2.23)
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In analogy with its meaning in physics, where it encodes the energy of the model, the
Hamiltonian here represents the global "stress" or "cost function" of the system. The
state-space vector s will, therefore, evolve in time to minimize this quantity. If we have
reasons to believe that the system explores the energy landscape at equilibrium, subject
to a certain level of noise (modelled by the inverse temperature b), the Hamiltonian
description becomes equivalent to a probabilistic one, thanks to the Boltzmann distribution
(1.6):

P(s) =
1
Z

e�bH(s,Q) (2.24)

This procedure of choosing a subset of relevant degrees of freedom, which also goes
by the name of dimensionality reduction, poses a series of challenging practical tasks [66].
First, among all the possible variables that we might include in the model, we do not
know which are the relevant ones, i.e., the ones that drive the behavior that we want
to reproduce. Second, in practice, we usually can observe only a subset of the relevant
variables. Third, all observations are typically noisy, which becomes critical if we have
a limited amount of data. Some approaches, for example, based on information theory
criteria [66, 67], have been proposed to isolate the most informative degrees of freedom
in an under-sampled system.

why Once we have chosen the degrees of freedom and the parameters that control
their interactions, we need to analyze the Hamiltonian H(s, Q) to get a description of
how the model behaves with respect to the value of its parameters.

As we saw in the first chapter, the kinetic theory of gases is analytically solvable with
paper and pencil, i.e., the tool set accessible to a physicist from the 19th-century. As
for today, the theoretical methods of statistical physics have developed to treat out-of-
equilibrium and even strongly-interacting systems, by exact, approximated or numerical
methods.

By employing these tools, we can get insights on how the values of the parameters,
Q = (q1, q2, . . . , qM), drive the behavior of the model. Sometimes we can use an analytical
approach to derive the phase diagram of the model, i.e., a low-dimensional description that
shows how the system separates into a small number of qualitative behaviors depending
on the values of specific parameters [68, 69]. Other times we might need numerical
simulations, or a combination of analytics and simulations, to get insights on the effect
of parameters on the behavior.

If we are lucky, we will find a region of the parameter space in which our simplified
model reproduces the investigated phenomenology. In this case, we generalize the
observed behavior to an abstract set of mathematical rules, which could in principle be
implemented by entirely different systems. In other words, we achieved a step towards
generalization, satisfying our physicist pursuit for simplification and synthesis.

If we are very lucky, our simplified model will also display some unexpected behavior
that is successively verified by further analysis of the real system. In this fortunate case
our model is not only descriptive, but also predictive. A predictive model provides strong
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support to the hypothesis that the modelled mechanism is factually implemented by the
real system, therefore shedding light on the underlying principles that rule the analyzed
phenomenology.

Overall, the rationale behind our statistical-physics approach to biological systems can
be summarized as: assume a mechanism as the explanation for an observed complex
behavior; design a model that relates some coarse-grained degrees of freedom of the
system with a set of parameters; work out the model to see if our mechanism is descriptive
and, hopefully, predictive for the complex phenomenology of the real system.
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3
B A C K G R O U N D

3.1 navigation and memory in the hippocampus

3.1.1 The hippocampus

The hippocampus is a region of the mammalian brain located in the medial temporal
lobe, part of the so-called limbic system of the brain (Fig. 3.1). All vertebrate species,
including reptiles and birds, have a homologous region. The hippocampus is one of
the brain regions that attracted the most interest from psychologists and neuroscientists,
mostly due to its crucial role in spatial navigation and episodic memory.

The first evidence of an involvement of the hippocampus in memory processes was
observed in the well-known case of the patient H.M., who suffered from severe antero-
grade amnesia after he received a bilateral hippocampal ablation as a treatment for
epilepsy [71]. This first case has since been followed by a substantial number of observa-
tions that confirmed a strong correlation between hippocampal lesions and impairment of
the formation and consolidation of declarative (i.e., involving conscious recall) memories
in human patients [72, 73]. Experiments on monkeys showed that the hippocampus is
crucial for the formation and recall, but not for the storage, of memories [74].

In rodents, the hippocampus has been extensively studied for its role in spatial
navigation and spatial memory, i.e., the process of storing and recalling a cognitive map of
an environment. The term "cognitive map", coined by the American psychologist Edward
Tolman [75], refers to an allocentric representation of the surroundings embedded in a
Euclidean metric, which enables navigation through the cognition of the spatial distances
between locations and objects. Tolman himself gave the first striking evidence for map-
based navigation in rodents in a famous experiment that showed the ability, in rats, of
elaborating shortcuts to a known reward position [76]. The role of the hippocampus
in the formation and retrieval of cognitive maps in rodents has been demonstrated by
numerous experiments typically involving the memorization of spatial locations. One
notable example is the Morris water maze: the rat, who is an able swimmer but dislikes
being in the water, is trained to swim to a hidden platform in a specific location within
a pool of milky water. A healthy animal quickly learns the position of the platform,
showing an average time to goal that sharply decreases with time [77]. Morris and
colleagues compared this performance profile to the one resulting from animals whose
hippocampus had previously been lesioned, showing a significant drop in performance
for the damaged group compared to the control one [78].

43



44 background

Figure 3.1: The limbic system in human and rodent. Main structures of the human and rodent
limbic system. (A) Human brain showing the amygdala (green), bed nucleus of stria
terminalis (BNST, blue), hypothalamus (yellow), and hippocampus (pink). The hip-
pocampus (pink) attaches to the mamillary bodies (orange) through the fimbria-fornix.
Olfactory inputs are received by the olfactory bulbs (MOB, purple). Other structures
include the nucleus accumbens (NuAc), ventral tegmental area (VTA), and the peri-
aqueductal gray (PAG). (B) Similar structures are found in rodents. Figure and caption
adapted from [70]

3.1.2 Place cells

The connection between the hippocampal region and spatial navigation received re-
markable support in 1971 when O’Keefe and Dostrovsky discovered a population of
hippocampal pyramidal cells which fired only when the animal crossed specific regions
within an environment [79]. The sharp firing specificity of these neurons granted them
the name of "place cells", and their spatial receptive fields were named "place fields".

Decades of subsequent research aimed at characterizing place cells properties in
diverse contexts. In a given environment, place fields corresponding to different place
cells are centered around different locations, and the whole population can globally cover
the full surroundings [80, 81]. An essential property of place cells is that their firing
specificity is stable over time, such that after a period of exploration of an environment
the same place fields are observed if the animal is placed in the same settings even
after weeks [82]. Place fields are also resistant to small perturbations and continuous
transformations of external landmarks [83–85]. The specific positioning of place fields
are however flexible and might shift or entirely re-arrange upon drastic changes in
external landmarks and boundaries [84, 86], odors [87], or even abstract variables such as
contextual conditions or the task to be performed [87, 88]. For different environments,
place fields can either re-position in a supposedly random way, a property called "global
remapping" [83, 84, 89, 90], or keep the same spatial positioning and change their mean
firing rate, called "rate remapping" [91]. An example of remapping in CA3 and CA1
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sub-regions of the hippocampus is shown in Fig. 5.1. Thanks to said properties, namely
spatial selectivity, stability over time, and discrimination of different environments, the
place-cells population has been proposed as a suitable candidate for the neurological
basis of the cognitive map [92].

3.1.3 Head-direction cells

Place cells are not the only neurons that display a sharp spatial selectivity in their
firing properties. Soon after the discovery by O’Keefe and Dostrovsky, neurons in the
septal presubiculum were shown to respond to specific orientations of the head of the
animal [95, 96], hence called head-direction cells. Cells responsive to the direction of the
motion have later been discovered in other regions, such as the entorhinal cortex [97], the
anterior and lateral dorsal thalamic nuclei [98], the lateral mammillary nucleus [99], the
retrosplenial cortex [100] and the striatum [101], suggesting that the directional signal
could be computed in brain regions external to the hippocampal formation [102]. Since
HD cells fire allocentrically and depending only on the ongoing direction of the animal
(not on the specific location within the environment) they have been interpreted as the
"compass" used for navigation in the cognitive map [96]. HD cells primarily rely on
external landmarks to represent the motion direction [103], although they are known
to respond to self-motion cues [104] as well as contextual conditions [105] when visual
information is unavailable or unreliable [86].

3.1.4 Grid cells and path integration

Recently, E. and MB. Moser discovered neurons in the medial entorhinal cortex (MEC)
that exhibit an hexagonal, periodic grid-like spatial selectivity, hence denominated grid
cells [85, 106]. Grid cells are characterizable by the period and the orientation of the grid.
The period, or grid spacing, is similar for cells that are nearby in the MEC (a property
called "topography") and increases along the dorsoventral axis of the cortex [107]. A
crucial property of grid cells is that they do not change their mutual relation in different
environments, i.e., the superposition of their firing fields is constant independently on
external conditions, as the firing grids coherently shift and rotate across different familiar
environments [108].

The context-independency of relative spatial encoding of grid cells, in contrast to
the more elaborate variability of place cells, led to their interpretation as a putative
substrate for the representation of a universal metric for navigation [85, 109–111]. A
context-independent metric is necessary to enable path integration, i.e., the process of
updating one’s cognition of self-location based on the estimation of linear and angular
direction and velocity from proprioception and vestibular information, which allows
for navigation in a known environment even in the absence of visual guidance. Also
known as "dead reckoning", path integration is implemented by species from all the
animal reign, such as ants [112], bees [113], spiders [114], birds [115], rodents [116], and
humans [117].
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Figure 3.2: Global remapping and rate remapping. Colour-coded rate maps showing rate remap-
ping and global remapping in six pairs of CA3 place cells (dark blue = 0 Hz; red =
maximum firing rate, as shown on the far left and right of each row). Rats were tested
in boxes with a different colour configuration in a constant location (rate remapping)
or in identical boxes in different locations (A and B) (global remapping). In each panel,
the left column shows rate maps for the condition where the cell had the highest peak
rate (black or white in the rate remapping condition; room A or room B in the global
remapping condition). Peak rates are indicated to the left. The middle column shows
rate maps for the same cells in the condition with a lower peak rate. The scale is the
same as for the left column. The right column contains the same data as the middle,
but the colour maps are now scaled to their own maximum values (indicated to the
right of each map). Note that firing locations remained constant in the rate remapping
condition, whereas the intensities of firing differed strongly. In the global remapping
conditions, both firing locations and firing rates were changed. Figure and caption
from [93], modified from [94].
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3.1.5 What inputs drive the firing of place cells?

The complex response to different modalities of place-cells firing, combined with the
known involvement of the hippocampus in episodic memory, suggests that the sharp
sensitivity of place cells to spatial position might reflect the relevancy of location as an
essential feature, for rodents, of events that are represented and memorized as points
belonging to a more general contextual space.

Over the last decades, a significant amount of research has been carried to probe and
isolate the effect of different sensory modalities on the firing properties of place cells.
As previously mentioned, place cells respond to visual stimuli such as the presence
and orientation of a distal cue [84, 89, 118]. It has been shown that place fields strongly
depend on the positioning of environment boundaries: they get stretched proportionally
to changes in the geometry of the environment, and the positioning of a border in the
middle of the room causes a double place field to emerge at the same relative location
with the original border [119–121]. Neurons that primarily respond to the presence of
borders, called boundary-vector cells, have been identified in the subiculum [122], and have
been proposed as a plausible upstream source of visual information to hippocampal
place cells [123]. Together, these results suggest that visual information is an essential
factor in determining the firing of place cells.

Another critical determinant for the activity of place cells is path integration [124–126],
possibly carried by the grid population in the MEC and projected to the hippocampus via
perforant paths to the dentate gyrus [127–129]. The hippocampal cognitive map, defined
as the set of place field in a known environment, has been shown to be stable in the dark,
providing evidence for self-motion-based navigation in the hippocampal population. An
ingenious tool to isolate path integration from visual information is to create a mismatch
between the two modalities, either by moving a reward site [126], either by virtual-reality
experiments, where the gain of the rotating ball where the rat is walking on can be
controlled with respect to the virtual motion [124, 130]. When external and vestibular
inputs are put into conflict, a significant subpopulation of place cells showed a response
to movement independently on visual cues, while other remained anchored to visual
information, suggesting that the mutual strength of the received path-integrator and
visual inputs might vary from one place cell to the other [130].

A model of a Fourier-like integration of grid cells with different grid spacings to
form a place field was hypothesized as a mechanism for the formation of place cells
selectivity [110, 131–135]. However, as appealing as this model might sound to the
theoreticians’ ear, there is substantial evidence for place fields to be relatively independent
to grid cell firing [129]. For example, place fields appear earlier than stable grid fields
during development [136, 137], and stabilize faster than grid fields [138] during the
exploration of a novel environment. Finally, the disruption of grid fields does not affect
the formation of new place fields in a novel environment [139], or their recall and stability
in a familiar environment [140]. Overall, it is clear that grid cells and place cells jointly
contribute to the navigation task, but the precise nature of their relationship is still
debated [108, 123, 129].



48 background

3.1.6 The "teleportation" experiment

What we described so far concerns the statistical properties of place cells firings, as these
characterizations are usually performed by averaging observations over many sessions of
the same experimental protocol. An interesting question concerns the dynamics of the
cognitive map in the hippocampus, i.e., how the cognitive representation responds, on
short timescales, to a manipulation of the received inputs.

As we saw, different contextual conditions within the same environment might corre-
spond to different cognitive maps, which are recalled to navigate the surroundings under
context-specific conditions [141]. The ability to perform a rapid change of the recalled
cognitive map to differently coordinate the same input information upon variation of the
context, a phenomenon called "dynamic grouping" [142], is an essential cognitive task
for animals living in a complex environment. For example, the sudden appearance of
a predator during foraging should cause a prompt recall of a cognitive representation
that allows for rapid and precise navigation towards escape routes and shelters. The
newly-recalled cognitive state should ignore other information, such as the position of
food, that was of particular importance until the moment just before.

Jezek and colleagues investigated the question of the recall dynamics of different
cognitive maps by the so-called "teleportation" experiment [143]. In the training session,
the rat was let free to explore, in the dark, two boxes (A and B) that are identical in shape
and differ by placement of light cues on the top. By doing that, the animal is supposed
to rely on these light conditions during navigation in the cognitive map. The experiment
was conducted by connecting the two boxes by a long corridor. This way, the animal
was shown to form two separate cognitive maps for the two environments by global
remapping (see Fig. 3.3).

In the test session, the rat was placed to explore one box, say A, and after some
minutes the light conditions were abruptly switched to box B, effectively "teleporting"
the rodent from one box to the other. What Jezek and colleagues found was that the
cognitive map did not immediately switch to the representation corresponding to the
new external conditions. Instead, in the immediate proximity of the light switch, the
cognitive state oscillated between the two maps before reaching a stable representation
after a few seconds (see Fig. 3.4). This oscillatory behavior was interpreted as a sign
of an attractor dynamics taking place in the network of place cells of the hippocampal
subregion CA3, possibly caused by the mismatch of suddenly-changed visual inputs and
a path-integrator input that delays to update its internal representation (e.g., the shift
and rotation observed in [108]).

As we will show in Chapter 6, a theoretical attractor model that incorporates these in-
gredients accurately reproduces the flickering behavior observed in [143]. By application
of a position-independent method for decoding of the cognitive map, which will be the
object of Chapters 4 and 5, we will show that a set of novel predictions of the model,
concerning the precision of self-location during flickering and stable conditions, can be
verified by re-analysis of the original data, adding evidence in support of the attractor
picture.
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cognitive map of environment B cognitive map of environment A

environment B environment A

light cues

Figure 3.3: The teleportation experiment: reference sessions. The rodent is trained, in the dark, to
recognize two boxes that are identical in shape and differ by placement of visual light
cues on the top of the box. The training is conducted such that global remapping occurs
and two separate cognitive maps are formed for the two environments.

cognitive map of environment B

ABRUPT LIGHT SWITCH
(TELEPORTATION)

cognitive map A

cognitive map B

time from teleportation (s)

Figure 3.4: The teleportation experiment: test session. After the abrupt switch of visual context
the internal representation of the environment oscillates between the two training boxes
A and B, identified by analysis of the correlation (represented in red and blue for the
two maps) between the firing activity in a theta bin and the rate vector registered at the
rodent’s position in the two reference sessions. Bottom panel from Jezek et al. [143].
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3.2 memory and attractor neural networks

3.2.1 The Hebbian theory of memory

The mechanism by which the brain forms new memories was first theorized by the
Canadian psychologist Donald Hebb and goes by the name of "Hebbian theory of
learning". The theory is often summarized as "neurons that fire together wire together":
the synaptic strength between two neurons is reinforced if the pre-synaptic and the post-
synaptic neurons are activated simultaneously, e.g., from a common input. In Hebb’s
own words:

Let us assume that the persistence or repetition of a reverberatory activity (or
"trace") tends to induce lasting cellular changes that add to its stability . . . When an
axon of cell A is near enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased. [144]

Since Hebb’s original formulation, many studies have investigated the physiological
basis of synaptic potentiation. The long-lasting strengthening of the synaptic connection
between two neurons is called long-term potentiation, or LTP [145,146]. In the hippocam-
pus, the best-known mechanism that enables LTP is the transduction of electrical signals
into chemical ones that activate the potentiation mechanisms in both the pre-synaptic
and post-synaptic neurons, mediated by the N-methyl-D-aspartate (NDMA) receptor
complex [147]. Selective inactivation of NDMA receptors was shown to significantly
affect the performance of tasks involving spatial memory in rodents, for example in
the Morris water-maze experiment [148], confirming the role of LTP in spatial-memory
consolidation in the hippocampal complex [149–151].

3.2.2 The Hopfield model

In the early 80’s, J. Hopfield formalized Hebb’s visionary intuition in the celebrated
Hopfield model for storage and retrieval of zero-dimensional (i.e., points in the state
space) memories [152]. The idea behind the Hopfield model is that a network of N binary
neurons si 2 {0, 1}, interacting by a matrix Jij via the coupled Hamiltonian

H(s) = �Â
i<j

Jij sisj , (3.1)

can store a set of P random N-binary patterns xxxk = (xk
1, xk

2, . . . , xk
N) in their connection

matrix Jij by following Hebb’s rule of learning, i.e.,

Jij =
1
N

P

Â
k=1

xk
i xk

j . (3.2)
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The network was studied in its dynamical properties, either noiseless (in the original
paper) either by including stochasticity through a non-zero temperature in the Gibbs
measure of the Hamiltonian in Eq. 3.1. The patterns xxxk were shown to be point attractors,
i.e., stable states, of the dynamics of the network, hence achieving their memorization.
Each stable point was shown to correspond to a basin of attraction that leads the activity to
the memorized state, allowing the network to perform pattern completion, a well-known
feature of memory. Despite its simplicity, the Hopfield model attracted considerable
interest from the statistical physics community, since it reproduced non-trivial features of
memory systems and captured essential properties of neurons (e.g., the thresholded linear
sum of the inputs) while still being analytically treatable by tools from the mathematics
of disordered systems. A few years later, Amit and Sompolinsky applied these tools to
characterize the phase diagram of the model, showing that the network can store up to
aN patterns, N being the number of interacting neurons, before affecting the stability
of the system [153]. The seminal book from Amit [153] still represents, at the present
day, an essential milestone in the theory of attractor-based memory models, which goes
under the name of Attractor Neural Network (ANN).

3.2.3 CANN: Continuous-Attractor Neural Network

As we just saw, the memorized states in the Hopfield model are single patterns of
activity separated by energy walls which define the corresponding basins of attraction.
One could be tempted to extend this model to the hippocampal spatial memory of an
environment, by representing each position r = (x, y) as a pattern of activity where the
active neurons are the place cells whose fields are centered in the proximity of r. However,
the self-location within the cognitive map is a continuous variable: the population activity
should be able to seamlessly shift from one represented position r to any nearby location
r + dr. Therefore, such an extension of the Hopfield model should involve correlated
patterns that collectively form a continuous valley, instead of a set of isolated minima,
in the energy space. By doing so, the network activity would be free to move on said
iso-energetic manifold, or chart, that represents a "continuous" attractor of the network
dynamics.

Following the success of the Hopfield model, a significant amount of theoretical work
has been carried to develop and study such continuous extensions of the model. The
ensemble of theoretical efforts carried in this direction by physicists, mathematicians, and
neuroscientists goes by the name of Continuous-Attractor Neural Networks, or CANN.
The underlying idea of CANN applied to the cognitive map in the hippocampus is
that neurons that have overlapping place fields will display a correlated spiking activity
when the rat walks through the overlap region. As a consequence, these neurons will
reinforce their mutual synaptic strength by Hebbian learning. The cognitive map is,
therefore, stored in the connectivity matrix by a connection Jij that is proportional to the
place-field superposition of neuron i and neuron j. The first model based on these ideas
was presented by Tsodyks & Sejnowski [154]. In their model, place fields of N place
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cells si are lined up on a one-dimensional track, each centered at a position xi, and the
connection Jij are set as

Jij = J0 exp

 
�
|xi � xj|

s

!
� J1 (3.3)

Where J1 acts as global inhibition term, necessary to keep a stable global activity. The
dynamics of the resulting spiking network was shown to display a set of attractor states,
each represented as a coherent bump of activity, in the one-dimensional place-field space,
peaked around a different position x (Fig. 3.5, left panel). Such bump was shown to be
free to move along the linear track without the need for high energetic jumps, effectively
reproducing a continuous (1D) attractor state.

The idea of a bump of coherent activity as the neural correlate of self-location in
the cognitive map was soon generalized to two-dimensional and multiple maps by
Samsonovich & McNaughton [155], who proposed a mechanism for path integration
in the attractor network enabled by shifter cells that displace the bump according to
vestibular inputs [109, 155]. The learning rule proposed in [155], as an extension of the
Hopfield model, sets the coupling as a linear sum of the contributions of each single map
m = 1, . . . , M:

Jij =
M

Â
m=1

exp

 
�

||rm
i � rm

j ||
2

s2

!
, (3.4)

where rm
i is the location of the place-field center of the cell i in the map m. When

one cognitive map is retrieved, the activity is organized as a coherent 2D bump on the
corresponding chart, while looking scattered and uninformative on all the other charts
(Fig. 3.5, right panel).

Successive works have further characterized the statistical and dynamical properties of
these attractor models [156–160], for example by computing the number of possible charts
that can be stored in the network [12]. Over the last two decades, the CANN framework
has been been proposed as a model for the stability of several phenomenologies in
different regions of the brain, such as population code in the visual cortex [161,162], motor
control [163, 164], parametric working memory [165, 166], as well as neural integration
in spatial-responsive populations such as head-direction cells [103, 167, 168] and grid
cells [131, 169]. Thanks to accumulating evidence of attractor-like dynamics in various
brain regions [111, 170–172], the CANN framework is today broadly recognized as a
plausible mechanism for stable neural representations at the population level [109, 111].

3.3 outline of the following chapters

In the next chapters, we will apply methods inspired from the the CANN paradigm to
synthetic and real neural hippocampal data.

In Chapter 4, we will test the Ising inference (Section 2.1) as a decoder aimed at re-
trieving which attractor state is expressed from the in-silico activity of a small subsample
of place cells, generated from the multi-charts attractor model of Monasson & Rosay [12].
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Figure 3.5: Bump of activity in attractor models. A one-dimensional continuous attractors of
Tsodyks & Sejnowski. The profile represents the firing rate of all the neurons in the
network in one of the stable attractor state. Each neuron i is labeled by its corre-
sponding place-field center’s position xi . Figure and caption adapted from [154]. B
two-dimensional multi-chart model of Samsonovich & McNaughton: the set of M charts,
composed of the same neural units. Activity that is well localized on one of the charts
(chart 1 in the picture) looks scattered on other charts (2, 3, M). Figure and caption
adapted from [155].

We will then characterize the relationship between the inferred functional couplings and
the "real" ones.

Chapter 5 is dedicated to an application of the Ising decoder to multi-array recordings
in CA1, showing that it outperforms the current standards in discriminating the recalled
cognitive state on short (⇠theta) time scales. Importantly, the Ising decoder does not
need additional information (as the position of the rat) to decode the cognitive map from
neural activity, opening to applications on other brain regions where there is no clear
external correlate for the activity.

In Chapter 6 we will introduce an attractor model for the teleportation experiment of
Jezek et al. [143]. The memory network is subject to external and path-integrator inputs
and accurately reproduces the flickering phenomenology of cognitive maps observed in
the original experiment. The attractor model makes several novel predictions that are
verified by a careful re-analysis of the original data through the application of the Ising
decoder.

Finally, in Chapter 7, we show that a single network model inferred from hippocampal
recordings of two distinct cognitive maps can be used to generate population activities
that are coherent with two separate low-dimensional attractors, suggesting that the
inferred functional connectivity preserves some fundamental structure of the underlying
attractor network.





4
I N F E R R I N G T H E AT T R A C T O R S TAT E F R O M P O P U L AT I O N
A C T I V I T Y: T H E " S U B S A M P L I N G " P R O B L E M

A significant part of this chapter is adapted from [5].

4.1 introduction

The problem of decoding the firing activity of a neural population to retrieve which
cognitive state is internally represented at a given time has a natural application in many
experiments that involve electrophysiology or calcium-imaging simultaneous recording
of several neurons [4]. Spatial memory in the hippocampus provides an example: as
we saw in the previous chapter, a widely-accepted theory for spatial representation
is that during navigation in a specific cognitive map the collective state of the neural
population is organized as a coherent bump of activity on the corresponding chart.
The population activity, therefore, follows a constrained dynamics determined by the
connectivity structure and by the expressed cognitive map, exploring the corresponding
continuous attractor, i.e., a low-dimensional flat manifold of the energy landscape.

As a consequence, the set of neural patterns expressed during the representation of a
specific cognitive map will show statistical properties that are typical of the attractor state
and, consequently, of the recalled cognitive map. In this framework, the decoding problem
can be tackled by learning the statistical properties of each different cognitive state (in
this case, the different cognitive maps) and classifying new observations accordingly,
a problem which is deeply connected to high-dimensional classification in machine
learning. However, in real electrophysiology applications, one typically records O(101�2)
neurons out of the O(104�5) of the neural population that participates to the collective
attractor dynamics. An important question, therefore, concerns the retrievability of these
state-dependent statistics from neural recordings in the case of a strongly-subsampled
population, an issue that we call the subsampling problem.

Hereafter, we describe an attempt to draw a parallel between experimental condi-
tions of multi-array recordings and the theoretical model for spatial memory in the
continuous-attractor neural network (CANN) framework. We first design a Monte Carlo
simulation that mimics an experiment with two memorized environments, referred to as
A and B. We simulate single-environment reference sessions by forcing the activity to
explore local minima corresponding to the memorized environments in a system with
a relatively large number (N = 1, 000) of neurons. We then address the question if a
small, randomly selected, set of neurons (here, Nsam = O(10) out of 1, 000) could provide
enough information to perform the decoding procedure and infer the time course of
the spatial representations from neural activity. As place cells are non-topographical,
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i.e., cells that are physically nearby in the hippocampus can have distant place fields,
recording a spatially located population of cells can be thought of to be equivalent to a
random subsample in the place-field abstract space.

We approach the decoding problem on the test session using Ising and independent
models learned from the two reference sessions and test their decoding capability in a
binary classification problem on a test session composed by samples from both states.
Finally, we investigate the relationship between the real ("microscopic") couplings and
the inferred functional connectivity, showing that this last preserves the spatial correlate
of the microscopic connectivity.

4.2 methods

Monasson-Rosay CANN multi-chart model

The model that we use to generate in-silico neural activity is the one of Monasson
& Rosay [12, 159, 160]. We will here briefly review its principal ingredients. For a
full characterization of the statistical and dynamical properties, as well as the replica
computation of its phase diagram, please refer to the cited literature.

As an extension of the Hopfield model, the model is based on binary neurons. The
N place cells are modeled by binary units si equal to 0 (silent state) or 1 (active state).
These neurons interact together through excitatory couplings Jij. Moreover, they interact
with inhibitory interneurons, whose effect is to maintain the total activity of the place
cells to a fraction f of active cells (global inhibition). We also assume that there is some
stochasticity in the response of the neurons, controlled by a noise parameter T. All
these assumptions come down to considering that the network states are distributed
according to the Gibbs distribution associated to the Hamiltonian of Eq. 3.1, restricted to
configurations of spins s such that

Â
i

si = f N . (4.1)

We want to store L + 1 environments (or charts) in the coupling matrix, indexed by `,
each defined as a random permutation p` of the N neurons’ place fields. This models the
experimentally observed remapping of place fields from one map to the other. With this
definition, an environment is said to be stored when activity patterns localized in this
environment are stable states of the dynamics. In other words, the configurations where
active neurons have neighbouring place fields in this environment are equilibrium states.
To make this possible, we assume a Hebbian prescription for the couplings Jij that is a
straightforward extension of the Hopfield synaptic matrix to the case of quasi-continuous
attractors. This rule is illustrated in Figure 4.2, and is mathematically described as
follows:

• additivity: Jij =
L
Â
`=0

J`ij where the sum runs over all the environments.
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Figure 4.1: Sketch of the phase diagram in the plane of neural noise, T, and number of environments
per neuron, a. Thick solid lines: transitions between phases. Thin dashed lines: stability
region of each phase against fluctuations. Insets show the corresponding activity profiles
in the 2D model (averaged over one round of Monte Carlo simulations after thermal-
ization). In the clump phase we represent the same activity profile in the retrieved
environment (top), and in another stored environment (bottom). Figure and caption
adapted from [158].

• potentiation of excitatory couplings between units that may become active together
when the animal explores the environment:

J`ij =

(
1
N if d`ij  dc

0 if d`ij > dc
, (4.2)

where d`ij is the distance between the place-field centers of i and j in the environment

`; for instance, in dimension D = 1, d`ij =
1
N |p`(i)� p`(j)|.

dc represents the distance over which place fields overlap. In practice, it is chosen so
that, in each environment, each neural cell is coupled to a fraction w of the other cells (its
neighbours); in dimension D = 1 again, we may choose dc = w

2 . The 1
N factor in Eq. 4.2

ensures that the total input received by a cell remains finite as N goes to infinity, a limit
case in which exact calculations become possible [11].

Monasson & Rosay formally characterized the behavior of the model, in this limit case,
as a function of the number of stored charts (aN) and the noise factor T. Importantly,
they showed the existence of a region of the parameters space corresponding to a clump
phase of the system ("CL" in Fig. 4.1) where the activity condensates into a coherent
bump on one of the stored charts. At high noise level (high T), the system is said to be in
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Figure 4.2: Remapping and connectivity rule in the model, illustrated with three units and L + 1 two-
dimensional environments. The place field centers of the units are displayed respectively
in red, blue and green. Thick yellow lines indicate the excitatory couplings between cells
with nearby place fields in each environment. These place fields overlap; here, for the
sake of clarity, only the centers of the place fields are represented.

the paramagnetic phase ("PM" in Fig. 4.1), where no coherent representation is formed
and the population activity is comparable to random. Finally, when the number of stored
maps exceeds a critical capacity (a(T)) the system falls into the spin glass (SG) phase, a
behavior characterized by the presence of many local minima where the effective noise
induced by the competition between maps freezes the activity and no spatial or map
selectivity is achieved.

In the case of a single continuous attractor, the bump behaves as a quasi-particle with
little deformation [159]. This quasi-particle undergoes a pure diffusion with a diffusion
coefficient that can be computed exactly from first principles, i.e., from the knowledge of
microscopic flipping rates of spins in Monte Carlo simulations. The bump can be driven
by imposing an external force on the spins, i.e., by acting on the fields hi of the model
(see Eq. 4.5 below).

In the presence of multiple maps, the disorder in the couplings due to the additive
storage creates an effective free-energy landscape for the bump of activity in the reference
environment. The free-energy barriers scale typically as

p
N, and are correlated over

space lengths of the order of the bump size, see [158]. In one dimension, the bump
therefore effectively undergoes Brownian motion in the Sinai potential, with strongly
activated diffusion. In higher dimension, diffusion is facilitated with respect to the
1D case. In addition to moving in the reference environment, the bump can also
spontaneously jump between maps. A full characterization of the phenomenology of
these spontaneous transitions can be found in [160].
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Sampling and sub-sampling of in-silico activity

We used the model just described to sample generated activity from two cognitive maps,
referred to as A and B. Parameters are carefully chosen such that the clump phase is
maintained: the bump thoroughly explores the environment, and no spontaneous transi-
tions occur. In other words, the system stays in one of the two maps during the whole
simulation; this mimics a single-environment exploration of a rodent during training
sessions, see for example [143]. Two reference sessions are defined using the first half
(5, 000 steps) of each simulation, and a test session is constructed by concatenating the
second halves, for a total of 10, 000 total time steps, see Fig. 4.3. Parameters used in the
following analysis are: T = 0.006, N = 1000, w = 0.05, f = 0.1. Specifically, we conduct
simulations as follows:

• First we define two 1D environments, hereby referred to as A and B, through their
two random place-field permutations, denoted by pA, pB.

• From these two environments, two coupling matrices JM, M 2 {A, B}, are created
using learning prescription described in Eq. 4.2:

JM
ij :=

⇢ 1
N if 1

N
��pM(i)� pM(j)

��  w
2 ,

0 otherwise .
(4.3)

• A unique coupling matrix J is then constructed as point-sum of the two single-
environment matrices: Jij = JA

ij + JB
ij .

• simulations are performed, with n = 104 Monte Carlo steps, each one starting from
an initial neuronal condition localized in one of the two reference environments M.
To maintain the total activity constant, we select, at each algorithm step, one active
spin si = 1 and one silent spin sj = 0. The flip trial is then defined as the joint flip
of these spins.

• an additional small force is added to make the bump exhaustively explore the
one-dimensional map, by an asymmetric term in the energy. This results in a
left-right asymmetry in the Monte Carlo acceptance rule:

DE = Â
k 6=i,j

(Jik � Jjk)sk + AM(i, j) (4.4)

with AM(i, j) being a right-pulling force in the environment M, namely

AM(i, j) :=
A

f N2 ⇥
⇣

pM(i)� pM(j) + NeM(i, j)
⌘

(4.5)

where A controls the magnitude of the pulling force, pM(i) is the position occupied
by the place field of neuron i in environment M, and eM 2 {�1, 0, 1} ensures
periodic boundary conditions.
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We then select a random subset of 33 neurons out of the 1000 used for the simulation.
The activity of these neurons in time are then used to construct two reference session and
one test session, that will be used in the performance assessment of inference models
described in the next section.

Inference of the cognitive state from subsampled activity

The patterns collected in the reference sessions are samples of neural activity constrained
to explore the continuous attractor that corresponds to one memorized cognitive map.
We can, therefore, use these samples to learn two statistical models, one for each map,
that can, in turn, be embedded in a Bayesian framework to classify new patterns from a
test session. Formally, we need to infer a probability density function over the neural
patterns s for each brain state M, P(s|M). These probability distributions can be used to
decode the internal state M given an observation (a neural pattern) s in the test session
by maximizing the log-likelihood

L(M|s) = log P(s|M) . (4.6)

This inference framework relies on the definition of a parametric probability function,
whose parameters are inferred by solving the corresponding inverse problem from reference
data. According to the max-entropy principle, our choice is to use the family of graphical
models [21, 22, 30] as parametric probabilistic functions. Depending on the reference
sample size and the complexity of representations we can invert the Independent model,
which accounts for the different average activations of neurons in different brain states,
or make a step further and include correlations between neuron activities, defining an
Ising model for each state M.

P(s|M) =
exp

⇣
Âi hM

i si + Âi<j JM
ij sisj

⌘

ZM(h, J)
(4.7)

where Z
M is the normalization constant ("partition function"). The core steps of the Ising

decoding procedure are:

Train For each brain state M, (a) collect samples of neural pattern in a known brain
state M (reference session), and compute the frequencies pM

i and pairwise joint
frequencies pM

ij of the recorded neurons; (b) find the Ising model that reproduces
the same quantities on average, i.e. such that hsii = pM

i and hsisji = pM
ij , where

h·i denotes the average over the probability distribution P(s|M). This is a highly
non-trivial computational problem, reviewed in Section 2.1.

Test Given a neural pattern from the test session st, compute the log-likelihood of each
brain state, and decode the internal state as the most likely one

Mt = argmaxM L(M|st) . (4.8)
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(a) Session A (b) Session B (c) Test Session

Figure 4.3: Monte Carlo simulation sessions of our memory model in the case of two 1D environ-
ments (random permutations), denoted by A and B. X-axis: states of the system s(t)
(black dots correspond to active neurons si = 1 and white dots to silent cells, si = 0),
with neurons ordered in increasing order of their place field centers in the A (left part
of columns) or B (right part of columns) permutations. Y-axis: time in MC rounds,
increasing from top to down. The bump is forced to move rightwards with an external
force, see [158]. In columns (a) and (b), the system is initialized with a localized bump of
activity in environments, respectively, A and B. Column (c): Test simulations composed
of the second halves of simulations reported in (a) and (b) used for decoding purposes,
see text. Parameter values: T = 0.006, N = 1000, w = 0.05, f = 0.1.
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This framework, therefore, allows for the decoding of the neural representation from the
observed neural pattern only. The same procedure has been applied to experimental
data from the hippocampus, showing good performance in retrieving the explored
environment from neural activity [1, 2], and to other brain regions, see for instance
[48, 51, 173, 174].

4.3 results

Decoding the cognitive map

As a measure of decoding precision we use the true positive rate (TPR), i.e. the overall
fraction of correctly-classified neural pattern. By applying the Ising and the independent
models to the 10, 000 patterns in the test session we obtain:

Ising model : TPR = 0.928 (4.9)

Independent model : TPR = 0.491

The difference between the two models, shown in Fig. 4.4, is remarkable. The independent
model, in which all couplings are set to zero, accounts only for the average firing rates of
the cells. It shows no decoding capability at all, with a TPR compatible with random
guessing. This difference could be expected from the fact that the localized bump of
activity, which represents the position of the rat within the retrieved a map, moves along
the entire environment during reference sessions. Hence the average activity of all cells
is close to f in both maps. The independent model, which only uses information on
averages to decode the activity, is, therefore, unable to achieve useful discrimination.
Conversely, the Ising model exhibits an impressive performance in the decoding task.
As shown in Fig. 4.4b, the time course of the likelihood difference DL allows us to
decode the spatial representation as a function of time unambiguously. This difference
is also clear from the scatter plot of the likelihoods in the test session, which shows a
well-separated pattern in the plane, contrary to the Independent model (Fig. 4.5).

One natural question is how the performance of the Ising model scales with the number
of subsampled neurons Nsam. If we assume translational invariance of the problem, we
can approximate the TPR with the probability that a pattern generated when the bump is
at a given position, say x = 0, in one of the two maps, say A, is correctly classified by the
Ising model. As a first approximation, let’s assume that every neuron inside the bump,
i.e., positioned in the interval [�N f

2 , N f
2 ], is active. We treat the subsampling problem as

a draw of Nsam i.i.d. random positions in the map. To further simplify the classification
problem, we assume that every time two or more neurons out of the sampled Nsam

fall inside the active bump (i.e., in the interval [�N f
2 , N f

2 ] in map A), the map-specific
coupling terms in the likelihood will give us enough information to decode the map
correctly. Conversely, in the case of only 1 or 0 neurons sampled inside the bump, we
will assume that the guess of the environment is equivalent to random chance.
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(b) Ising model

Figure 4.4: Log-likelihood difference LA(t)� LB(t) along the test session using independent model
and Ising model on the montecarlo test session. The first half of the test session is
sampled from environment A, the second half from environment B.

(a) Independent model (b) Ising model

Figure 4.5: Log-likelihood scatters computed from the Independent (a) and Ising (b) models. Each
dot represents the value of �LA and �LB for each neural configuration st during the
Monte Carlo test session.

Therefore, defining NA
bump the number of neurons in the bump of environment A, we

will assume

TPR(Nsam) =

( 1
2 if NA

bump = 1 or 0

1.0 if NA
bump � 2

= 1�
1
2
· P(NA

bump < 2) (4.10)
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The problem is therefore reduced to the easy computation of the probability of having
NA

bump smaller than 2

P(NA
bump < 2) = (1� f )Nsam + f Nsam(1� f )Nsam�1 , (4.11)

that easily gives the predicted form for the TPR of the Ising model as a function of the
bump width f and the number of sampled neurons:

TPR(Nsam, f ) ' 1�
1
2
(1� f � f · Nsam)(1� f )Nsam�1 . (4.12)

This form has an inflection point at

N⇤sam = 1�
1
f
�

2
log(1� f )

'
1
f

, (4.13)

that gives us a gross estimate of the number of neurons that we should sample, given
the mean activity f , in the absence of noise. As for our case, we know that the noise
is proportional to f 2. We therefore use f̃ = f (1� f ) that gives us the estimation of
N⇤sam ' 11. As shown in Fig. 4.6, this simple theory is well verified by numerical results.
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Figure 4.6: Dependence of Ising TPR from the number of sampled neurons. Numerical esti-
mations for a given Nsam are obtained by performing n different subsamplings and
performing the TPR test on the same reference/test sessions described in text. The
errorbars represent the standard error on the mean obtained on a variable number (from
n = 3 to n = 25) of repetitions, depending on the value of Nsam.

Inferred vs. true couplings

The application of inference routines to a simulated neural network allows us to inves-
tigate the relationship between functional couplings, i.e., the inferred Jij in the inverse
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Ising model, and the real coupling strength, defined in Eq. 4.3. We show in Fig. 4.7
the couplings inferred between the neurons as functions of the distances between their
place-field centers in each map. We observe that:

• Couplings decay very rapidly with the distance, on a typical scale compatible with
both w N and f N, and the width of the bump; Note that w, f have similar values in
the simulations. At long distances, couplings are independent of distance and equal
to a negative value. The presence of many long-range inhibitory couplings, clearly
visible in the histograms of Fig. 4.8, is a natural consequence of the constraint in
Eq. 4.1 on the level of activity.

• The magnitude of coupling at small distances, ⇠ 2� 3 in Fig. 4.7, is much larger
than the one of the ’true’ couplings in the model, equal to J0 = 1

T N = 0.167.
This discrepancy highlights the effective nature of the inferred couplings, which
would coincide with the true couplings only in the limit of perfect spatial sampling
(Nsam = N).
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Figure 4.7: Inferred coupling Jij vs. distance
��pM(i)� pM(j)

�� between the place-field centers of the
corresponding neurons in environment M = A (left) and M = B (right).

To better understand the relationship between the inferred and the real couplings
we can compute the statistical moments of the neurons in the CANN model. As
explained above, by forcing the bump to homogeneously explore the whole space
at an almost-constant speed we cause all neurons to have the same average activity in
both environments:

pA
i = pB

i = f , 8i . (4.14)

In the clump phase of the model, we can also estimate correlations from the joint
probability that two neurons are active. In the large-N limit, the true couplings vanish as
they scale as 1/N. Hence, spins become two-by-two independent in a ground state of the
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(a) Environment A (b) Environment B

Figure 4.8: Relationship between true couplings and inferred couplings. In purple, historgram of
inferred couplings. In red, inferred couplings corresponding to truly connected neurons
in the environment.

Hamiltonian, that is when the bump is centered around a given position x. Conditioned
to x, and defining the position of the place-field center of cell i in map M through

xi =
pM(i)

N
, (4.15)

we have

hsiix = r
�

xi � x
�
, hsjix = r

�
xj � x

�
, hsisjix � hsiixhsjix ⇠

1
N

. (4.16)

In the above expression, we implicitly centered r at x = 0. However, we have to average
over the position x of the bump that moves across the environment (Fig. 4.3). Doing so,
we obtain the pairwise activity, see Eq. 36 and Fig. 12 in [160]:

pM
ij =

Z
dx r

�
xi + x

�
r
�

xj + x
�
8i, j . (4.17)

This effective matrix of pairwise activities, therefore, depends on the map, which explains
why the Ising model, contrary to the Independent model, is map-specific and can
efficiently decode the representation. However, the effective correlation between neurons,
pM

ij � f 2, does not scale as 1
N : the Ising couplings are thus effective interactions, not

simply related to the true couplings in the model. Since this discrepancy follows from
the fact that only a small fraction of neurons is observed and included in the inference,
a scenario that is very frequent in real applications, we expect this statement to hold
also for the functional couplings inferred from real recordings and their physiological,
synaptic counterparts.
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F U N C T I O N A L C O N N E C T I V I T Y M O D E L S F O R D E C O D I N G O F
S PAT I A L R E P R E S E N TAT I O N S F R O M H I P P O C A M PA L C A 1
R E C O R D I N G S

This Chapter was published by myself, S. Cocco, and R. Monasson, in collaboration with
Karel Jezek from Charles University, in [1]. It focuses on an application of the Ising
inference to the task of decoding the represented cognitive map on short time scales
(ranging from ⇠ 10 to ⇠ 1000 ms) from population activity recorded in the hippocampal
region CA1. The Ising decoder is compared to the current standards, which rely on the
similarity between the activity vector and two reference vectors computed at the specific
location of the animal during reference sessions (e.g., used by Jezek et al. [143]). The
Ising model is shown to outperform the other models on all time scales. Crucially, the
Ising decoder relies only on the correlation and average activations observed during
the reference sessions. Therefore, it can decode the cognitive map without the need
of knowing the precise value of an external correlate (in this case, the position of the
animal), opening to applications on other brain regions where there is no obvious physical
correlate of the neural activity. Finally, the proposed decoder is applied to CA1 data from
the teleportation experiment [143], where contextual cues are switched abruptly (hence
the name "teleportation") to trigger an instability of the recalled cognitive map. We report
a long-term instability of the post-teleportation map that persists over all the session.
This long-term effect could not be retrieved with less-performant decoding methods, due
to the low orthogonality of cognitive maps in the CA1 region.

abstract Hippocampus stores spatial representations, or maps, which are recalled
each time a subject is placed in the corresponding environment. Across different envi-
ronments of similar geometry, these representations show strong orthogonality in CA3 of
hippocampus, whereas in the CA1 subfield a considerable overlap between the maps can
be seen. The lower orthogonality decreases reliability of various decoders developed in
an attempt to identify which of the stored maps is active at the moment. Especially, the
problem with decoding emerges with a need to analyze data at high temporal resolution.
Here, we introduce a functional-connectivity-based decoder, which accounts for the
pairwise correlations between the spiking activities of neurons in each map and does not
require any positional information, i.e. any knowledge about place fields. We first show,
on recordings of hippocampal activity in constant environmental conditions, that our
decoder outperforms existing decoding methods in CA1. Our decoder is then applied
to data from teleportation experiments, in which an instantaneous switch between the
environment identity triggers a recall of the corresponding spatial representation. We
test the sensitivity of our approach on the transition dynamics between the respective
memory states (maps). We find that the rate of spontaneous state shifts (flickering) after a
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teleportation event is increased not only within the first few seconds as already reported,
but this instability is sustained across much longer (> 1 min.) periods.

5.1 introduction

Over the recent decades, multi-cell recording techniques have provided insights into
the nature of brain representations and their internal dynamics. While many works
have focused on the input-output transfer functions in primary sensory systems (visual,
olfactory, etc.), understanding functions corresponding to complex representations in
higher cortical circuits is very hard as they are often based on mixed selectivities [175].
In relatively rare cases, such as in the entorhino-hippocampal system, a highly processed
neural activity can be reliably correlated with behavior. The so-called ‘place cells’ in the
CA1 and CA3 of hippocampus exhibit sharp spatially tuned and environment specific
activity [79], see Fig. 5.1. Collective activity of the place–cell population coding for
the environment defines its neural representation, or map. Simultaneous recording of
multiple place-cell activity thus allows one to identify a general memory state of the
network (specific map), as well as to decode the accurate position of the rodent in the
corresponding environment [176].

Recently, [143] have studied the dynamics of transient change between the spatial
maps encoding two different environments in CA3 at high temporal resolution (ca 120
ms time windows). The two environments differed by light cues that could be switched
instantaneously (‘teleportation procedure’), while the animal hippocampal neural activity
was recorded to monitor the course of activation of the proper spatial map. An unstable
state generally emerged for some seconds after the light switch, as both maps started
to flicker back and forth. This phenomenon, called flickering, was identified through
measure of the similarity between the place-cell population activity and its averaged
patterns across both environments, recorded earlier in respective reference sessions.
Typically, a given 120 ms time window activity of the test data strongly correlated with
the average reference activity in one map, and had essentially no correlation with the
reference activity in the other map.

Success of such comparison-based decoding methods reflects the strong orthogonality
of spatial maps in CA3: across two environments, activity of place cells broadly differ in
their mean frequencies and receptive field locations, see Fig. 5.1(b). Hence, simple map
decoders, essentially assuming that cells fire independently of each other, are sufficient
to reliably identify the representation expressed by the animal. In contrast, remapping
between environments (especially of similar geometry) is less orthogonal in CA1 as it
shows higher number of cells firing at corresponding places across rooms, see Fig. 5.1(a).
The population activity vector often correlates well with both concurrent reference
templates, which hinders the use of comparison-based methods for map decoding.

Here we address the challenging goal of map decoding in CA1 by introducing a
probabilistic graphical model for the neural activity configurations in each map. Graphical
models, in which a functional connectivity network accounts for the pairwise correlation
structure between neuronal firing events in the recorded population [21], have been
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Figure 5.1: Hippocampal representations are less orthogonal in CA1 (a) than in CA3 (b). Each
panel shows six firing fields from CA1 (a) and CA3 (b) corresponding to three place
cells (rows) in the recorded neuronal population, computed from 10 min recordings
of the activity during free exploration of environments A and B (same 60 ⇥ 60 cm
square shapes; spatial bins : 3 ⇥ 3 cm). Whereas CA3 coding is highly sparse and
representations are largely orthogonal, CA1 population shows higher amount of cells
active in corresponding locations across the two rooms, with peak rates (color scale)
changing from one environment to the other. The non-orthogonality of environment
representations in CA1 makes identification of the represented map from neural activity
difficult compared to the situation in CA3. CA3 data were taken from [143]. Colorbars
show average firing rate in Hz.

applied to various areas so far [48, 49], e.g. to estimate the information conveyed by [53]
or the activity of [51, 52] retinal ganglion cells in the presence of visual stimuli, to detect
learning-related changes in functional connectivity in the prefrontal cortex [54, 55].

We apply our graphical-model decoder to already published [143] and some new
recordings of the hippocampal activity in CA1, performed within the teleportation
setup of [143]. Our decoder shows very good performances in terms of precision and
statistical properties in CA1. It allows us, in particular, to identify transitions between
spatial representations in CA1 in a statistically robust way. Remarkably, we find that
the frequency of these flickering events is increased even minutes after a teleportation
switch.

It is important to stress that, in contradistinction with previously used map decoders,
ours does not use any position information. It can therefore be applied to decode and
study the dynamics of general brain states with unknown input correlates, the only
working hypothesis being that we dispose of reference sessions to build statistical models
of the corresponding internal states.
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5.2 results

Decoding methods and number of parameters used

We start by presenting map-decoding methods and their performances. For each envi-
ronment, A and B, we have two recorded sessions with constant light cues: the first one,
called reference session, is used to infer the decoder parameters. The second one, called
test session, is used for cross-validation, i.e. to assess the performances of the decoder.
We compare the performances of five different decoders, described in Methods, Section
5.4. Our decoders mainly differ by the fact that they may use or not knowledge of the
rat positions and of the spatial rate maps (place fields). They are also based on simple
comparison methods or on more sophisticated probabilistic frameworks.

Rate-map based decoders require the computation of the rate maps during the reference
session. Knowledge of the position ~x(t) of the rats and of the neural firing rates ri(t)
as a function of time t allows one to build the rate maps, that is, the average firing
rate of each cell i as a function of the rat position ~x, r(m)

i (~x) for environment m = A, B.
The similarities between those reference population activities and the activity measured
during the test sessions may then be used as a simple estimator of the map retrieved by
the rodent. We consider two such comparison-based approaches, called Dot Product and
Pearson [143]. A more sophisticated decoder, called Poisson, consists in assuming that
each place cell i fires with a Poisson process, with average rate r(m)

i (~x) when the rodent
is at position ~x, and in estimating the likelihood of the test spiking activity with this
multiple Poisson process and for maps m = A and B. The posterior distribution for the
(binary) map variable m can then be computed, and we decode the map as the one with
larger posterior probability. Poisson is based on a more solid probabilistic framework
than Dot Product and Pearson, while making use of the same rate maps estimated from
the reference sessions.

Activity-only decoders do not need any information about rat position and place fields.
Those models provide approximate expressions for the probability distribution of popula-
tion neural activity over short time bins, i.e. of binary (silent or active neuron in the time
bin) strings of length N (the number of recorded neurons). The independent-cell model is
the simplest maximum-entropy model [22]; it reproduces the N average activities of the
neuron only. The second model, called Ising in statistical physics, is a graphical model
that, in addition, reproduces the pairwise correlations between the neural activities in a
time bin [22,45,51]. The Ising model requires the inference of pairwise effective couplings
between every two cells, which we have performed with the Adaptive Cluster Expansion
method [45, 177]. Similarly to Poisson, the independent-cell and Ising models provide
estimates of the likelihood of the population activity in a time bin, and can be used to
compute the posterior distribution for the map variable, m, and to decode the retrieved
map through maximization over m.
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As a consequence the numbers of parameters to be learned from the reference sessions
vary a lot with the decoders. For N recorded neurons (38 in one of the data sets studied
here, see Materials) and a discretization of the environment into S (=20⇥ 20 in the present
analysis) spatial bins, the numbers of parameters to be extracted from the reference
sessions are, respectively N = 38 for the independent-cell decoder, 1

2 N(N + 1) = 741
for the Ising decoder, and N ⇥ S = 15, 200 for the Poisson, Pearson, and Dot Product
decoders.

Cross validation of map-decoding methods

Inferred Ising couplings are fingerprints of environment representation in CA1

As a result of rate remapping taking place in CA1 (Fig. 5.1) the populations of active
cells in the two environments are similar. This property can be seen from the comparison
of the inputs {hi} in the Ising models inferred in the reference sessions of the two
environments, see Fig. 5.2. The input hi to place cell i takes similar values across the
environments; its value is indicative of the average firing rate of the cell (Methods, Section
5.4).

Distinction between the neural representations of the environments in CA1 can, how-
ever, be drawn from the correlational structure of firing events in the place-cell population.
Place cells with overlapping firing fields in one environment are indeed more likely to
be simultaneously active during the animal’s exploration, and their activities are thus
correlated. Due to remapping the amplitudes of these correlations are specific to each
environment. The inferred Ising couplings {Jij}, which capture the direct correlation
between cells i, j not mediated by other recorded cells (Methods, Section 5.4), are different
from one environment to the other, as shown in Fig. 5.2.

The set of effective couplings {Jij} is therefore a fingerprint of the environment [178],
which we can exploit to distinguish between maps, i.e. to decode the neural representation.
Note that these effective, functional couplings are not directly related to the physiological
synaptic interactions, which are not accessible from the data.

Pairwise correlations are also environment specific, see Appendix B, Fig. 5.9. However,
inferring effective couplings allows us to score any configuration of the population activity,
that is, to quantitatively assess its similarity with typical activities in each environment,
as shown below. This score is, in practice, given by the Ising probability, see Methods,
Eq. (6.2), and heavily relies on the inferred couplings and inputs. Scoring is not possible
from the knowledge of the mean activity and pairwise correlations.

Comparison of performances of map-decoding methods

We present a systematic study of the performances of map-decoding methods in CA1
within the framework of binary-decoder theory, see Methods, Section 5.4 for a detailed
description. Results are reported in Fig. 5.3.

We plot in Fig. 5.3 (a) the Receiver Operating Characteristic (ROC) curve for the Ising
and Pearson decoders. Briefly speaking, ROC curve shows the value of the True Positive
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Figure 5.2: Comparison of inferred Ising parameters across the two maps. Top: Inputs hi of the
Ising models inferred from reference sessions. Only values greater than �5, correspond-
ing to a firing rate of c.a. 0.05 Hz in the independent-cell model, are shown. Bottom:
Couplings Jij of the Ising models inferred from reference sessions. Dots are colored
with reference to their relative statistical error (due to finite sampling) |J|

DJ : Unreliable

couplings, i.e. such that |J|
DJ < 3 in both maps, are shown in grey (note the presence of

many zero couplings produced by ACE). Couplings that are reliable only in one map are
shown with purple (A) and blue (B) dots. Couplings reliable in both maps are shown in
black. Analysis performed with discretization time bin Dt = 120 ms.

Rate (fractions of time bins in reference session for environment A for which the decoder
rightly decodes map A) as a function of the False Positive Rate (fractions of time bins
in reference session for environment B for which the decoder erroneously recognizes
map A). A random decoder would have equal values for TPR and FPR, and lies on the
diagonal line of the unit square in Fig. 5.3 (a). A perfect decoder would always recognize
map A in environment A and never in environment B, and would thus correspond to
TPR = 1, FPR = 0. Varying the threshold for significance of the decoder changes both
the values of TPR and FPR, with the resulting ROC shown in Fig. 5.3 (a). We observe
that the Ising decoder shows much better performances than the Pearson decoder. An
alternative representation of the decoder performances is given by the Precision-Recall
curve, shown in Fig. 5.3 (b), see Methods, Section 5.4 for definition.

A measure of the accuracy of the decoder is given by the integral of the ROC curve,
called Area Under the Curve (AUC), which ranges from 0.5 for a random decoder to
1 for a perfect decoder. To compare the five decoders we plot in Fig. 5.3 (c) their AUC
values as a function of the elementary time bin Dt, ranging from 10 ms to 1 s. The Ising
model, which takes into account the correlational structure of the population activity, has
higher decoding precision and retrieval capacity than other decoders in CA1 recordings
(Fig. 5.3 (a,b)). As a consequence, in terms of AUC (Fig. 5.3 (c)), Ising is generally the
most performant model, followed by Poisson and lastly by equally-performant Pearson
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Figure 5.3: Performances of spatial representation decoders. ROC (a) and Precision-Recall (b)
curves computed at fixed time scale Dt = 120 ms for a combination of two test sessions
in environments A and B, recorded in CA1. Maps A and B correspond, respectively,
to positive and negative predictions, see Table A.1. The True Positive Rate, also called
Recall, is the number of true positive predictions divided by the total number of positive
events. The False Positive rate is the number of false positive predictions, divided by
the total number of negative events. Precision is defined as the fraction of identified
positive events that are true positives. (c) performances of Ising, Independent-cell, Poisson,
Pearson, and Dot Product decoders (with and without the addition of a continuity prior) as
functions of the discretization time scale Dt, applied to CA1 neural recordings. Full and
dashed curves correspond to predictions, respectively, without and with continuity prior;
in the latter case the correlation C in Eq. (5.13) decays over t0 = 2 time bins (Methods,
Section 5.4 and Fig. 5.5 (a)).

and independent-cell decoders. Dot Product method is the best performant on very short
time scales (< 20 ms), but its performance increases very slowly with the time bin width,
and as a consequence it has the worst performance for Dt > 100 ms.

This behavior has an explanation in terms of sensitivity of the different models to the
average number of active neurons per time bin. Bayesian models, whose predictions do
not depend on the specific position of the rat at each time, rely on information conveyed
by activity alone. As a consequence, when the number of simultaneously active neurons
for each time bin is very small, Bayesian models may be less accurate than decoders that
take into account spatial information, like Dot Product.

As a general feature we observe that the performances of all decoders improve for
larger discretization time scales (Fig. 5.3 (c)). This result does not come from better
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inference of the Ising parameters, as couplings remain remarkably unchanged as Dt
varies, see Appendix C. The increase in performance may be simply understood as
follows. Decoding performances were evaluated from the fraction of time bins in which
the decoded map matched the one of the external environment evoked by the light
conditions. In test sessions with stable external environment for several minutes, it
is natural that merging larger portion of data results in more stable decoded maps,
and, hence, in a larger fraction of correctly decoded maps. Similarly, improvement in
decoding stability is obtained through the introduction of a continuity prior, which
prevents switching back and forth between spatial maps in nearby time bins, see below
for further discussion.

Performance of Ising decoder with number of recorded cells and duration of recording

We further analysed the behavior of the Ising decoder (as the most performant amongst
presented methods) upon varying the number of recorded cells and the duration of
the recording through subsampling the reference session data. As expected, the per-
formance of the Ising decoder improves with the number of neurons and the duration
of the reference data sets, see Fig. 5.4. We observe that fluctuations from subsample to
subsample shrinks as the number of retained neurons increases, an effect that mirrors
the heterogeneity of spatial and environment-related firing properties of single neurons.
A relatively small subsample of the reference session, e.g. of duration ⇠ 1 min, suffices
to compute a good estimate of the average firing rates, yielding performances similar to
the independent model (Fig. 5.3, red curve, Dt = 120 ms).

Map decoding with continuity prior

Map decoding can be combined with a continuity prior that enhances persistence in the
decoded maps over consecutive time bins, see Methods, Section 5.4. The motivation for
the continuity prior is two-fold. First, in situations where the latency between a delivery
of external stimulus and the network state change is the main parameter to be measured
(e.g. after pharmacology treatment, etc.), one needs to search for a single time point of
the state transition. This can be achieved by imposing a strong continuity prior, allowing
for the presence of a single transition between maps along the whole recording session.

Secondly, with moderate continuity prior, dynamical events (such as state transitions)
can be detected with more precision, at the price of discarding events that happen on
time scales shorter than the temporal resolution set by the prior strength. To estimate
this temporal resolution, we compute, for a fixed prior strength K, the correlation C(t)
between decoded maps in two time bins that are t bins apart, see Methods, Eq. (5.13).
This correlation decays exponentially with t, see Fig. 5.5 (a). A persistence ‘time’ t0 can be
computed through an exponential fit of the correlation: t0 is the characteristic number of
bins over which decoded maps are persistent. Its value can be chosen at our convenience
by tuning the prior strength parameter K, see Fig. 5.5 (b) and Methods, Section 5.4.
Hence, we can choose a temporal resolution t0 and exploit the noise-cancelling property
of the continuity prior over larger time scales.
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Figure 5.4: Performance of Ising decoder in subsampled conditions. Top: Performance of Ising
decoder for Dt = 120 ms time bins vs. number n of cells employed in the inference and
decoding routines. For each value of n results are averaged over 10 randomly-chosen
subsamples of cells (among the N = 36 recorded neurons). Bottom: Performance of
the decoder as a function of the fraction of the reference session recording (subsampled
from the total recordings of duration T = 509 and T = 551 seconds). For each duration
considered results were averaged over 3 random subsamples of reference data.

Unless otherwise specified we set in the following the characteristic persistence time
to the small value t0 = 2 time bins. As shown in Fig. 5.3, use of this weak continuity
prior enhances decoding performances with the Ising method. The AUC increases by
about 10%, see Fig. 5.3 (c). For direct comparison, if one instead increases the time-bin
resolution Dt by a factor 2, the increase in AUC is much lower (Fig. 5.3 (c)): for instance,
Ising AUC is equal to 0.90 for Dt = 120 ms and to 0.92 for Dt = 240 ms, while it reaches
0.98 for Dt = 120 ms with a continuity prior such that t0 = 2 time bins. This result shows
that imposing a continuity prior is a more efficient way to reduce statistical errors in the
decoding than considering larger time bins.

The observed increase in performance due to the application of the continuity prior
can be explained from different perspectives. First, as explained in the Methods section
and observed in Fig. 5.5 (a), the overall procedure introduces short-range correlations
(decaying over a tunable time scale) between time bins. The resulting effect is a smoothing
filter, similar to a convolution with a sliding averaging window, which acts as a noise-
cancelling filter, and improves decoding precision. Secondly, the application of the prior
enhances the stability of the decoded maps. This improves the decoding performance
since, as pointed before, the test session is such that light conditions remain stable for
long times (minutes) before the switch.
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Figure 5.5: Continuity prior for map decoding. (a) Correlation (Methods, Eq. (5.13)) between maps
decoded in two time bins as a function of their separation t (measured in units of time
bins), for three values of the prior strength K. Correlations are well fitted by exponential
decaying functions, over a characteristic number of bins t0. (b) Value of t0 as a function
of the prior strength K. (c) Application of the prior on CA1 teleportation session for
different values of prior strength parameter K. Difference in log-probabilities of the
neural activity configurations over time bons t. Ising decoder, with a discretization time
bin Dt = 120 ms.

Transitions between maps in "teleportation" experiment

Brain hippocampal memory circuitry is a dynamic system expressing distinct states of
activity - neural representations of surrounding space - with attractor properties [143,172,
179]. We applied our Ising decoder to dynamically identify those states to CA1 recordings
in the ‘teleportation’ setup introduced in [143], in which the appearance of recording
box is abruptly changed by switching between two familiar light cue settings (A and B,
respectively) while the laboratory rat continuously explores it (Methods, Section 5.4).
This procedure was shown to induce a rapid exchange of corresponding hippocampal
representations in CA3, including periods of instability with spontaneous fast flickering
between them. The CA1 recordings considered here include both data published in [143],
and new recordings, see Methods section. Transitions between the maps were identified
based on activity models of representations A and B, respectively, inferred from reference
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Figure 5.6: Log-probabilities of neural activities around teleportation events. Difference E of the
log-probabilities, Eq. (5.1), computed with the Ising decoder applied to the neural activity
recorded in a teleportation session (a), with light-cue switch from environment B to A
(top) and from A to B (bottom). The light switch is marked with a red line, predictions
higher than 99 percentile value of reference sessions are colored in dark blue, weaker
prediction are colored in light blue. Panel (b) shows the distributions of differences of
log-probabilities in reference sessions. A percentile value q in [0, 100] (normally in the
interval [90, 100]) is defined. We consider a test time bin as significantly decoded as A
only if the log-probability difference E of the activity configuration in the time bin is
higher than the q percentile value of reference session B, and as B only if its value is
lower than the 100� q percentile value of reference session A. The underlying reasoning
is to decode a test time bin as A only if it is very unlikely that it comes from reference
population B, and vice-versa.

recordings in both environments under stable conditions preceding the ‘teleportation
test session’.

To illustrate performance of Ising method in the post-teleportation kinetics of network
state expression, we used four teleportation events recorded in hippocampal CA1 in three
rats. Representative evolution of the difference in log-probabilities E , see Eq. (5.1), of the
neural activities, computed with the models inferred for the two maps from the reference
sessions, is shown before and after two instances of teleportation events in Fig. 5.6(a).
The criterion for accepting given bin as corresponding to representation of environment
A or B, respectively, was set to match 1% error derived from stable reference sessions, see
Fig. 5.6 (b). This ensures that a time bin is identified as A only if there is 99% (or higher)
confidence that this difference in log-probabilities cannot be found in environment B
(and vice-versa) under reference conditions.

Teleportation procedure induces long-term network instability

To characterize the kinetics of network state development, we identified the amount of
time bins expressing a neural representation that was incongruent (non-corresponding)
with the present environment, i.e. coding the environment presented before the telepor-
tation. We estimated the short-term effect within interval of the first 10 seconds, and
a possible long-term effect in the period that begun after 30 seconds after the telepor-
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tation has elapsed. The rates of incongruent bins are shown in Fig. 5.7. The amount
of non-corresponding events per time bin raised from the baseline levels before the
teleportation 0.013 ± 0.002 SEM to 0.046 ± 0.021 measured within the first 10 seconds
after the teleportation (short-post effect). However, this increase was not significant,
probably due to combination of large variability within the short evaluated interval (10
seconds in contrast to order of minutes of baseline state before the teleportation) and
frequent empty bins (no cell active in 40.5% ± 5.8 SEM of all bins).

Interestingly, the rate of flickering remained significantly increased beyond 30 seconds
after the teleportation (0.034 ± 0.021 SEM, F = 19.38, p < 0.01). [143] used temporal
binning that reflected local theta oscillation (6� 11 Hz) in the hippocampal circuitry.
While all the results reported so far were obtained with a fixed, regular binning with a
similar rate (Dt = 120 ms, i.e. about 8 Hz), we decided to re-analyze the teleportation data
in a natural theta binning as done by [143]. We detected the phase of local theta oscillation
based on minimum place-cell activity criterion, and the corresponding timestamps were
used to define the temporal bins. We got the same pattern of results as with fixed
binning (pre = 0.014 ± 0.002 SEM, short post = 0.041 ± 0.030 SEM, p > 0.05; long post
= 0.030 ± 0.005 SEM, F = 6.15, p < 0.05), yielding non-significant increase within the
first 10 seconds and a significant increase after 30 seconds following the teleportation,
respectively.

Last of all, we analyzed once more this teleportation data, this time with the Pearson
correlation-based decoder. Neither in fixed nor theta-based binning this decoder returned
significant differences between the pre teleportation and any of the post (short and long)
teleportation intervals (p > 0.05 in all cases). This finding provides further evidence for
the results depicted in Fig. 5.3, that is, for the better performance of Ising method over
Pearson decoder for hippocampal CA1 data.

Identification of transitions with strong continuity prior

Our network state-decoding procedure with continuity prior can be used to detect
internal state-shifts under predefined criteria. For instance, when the prior strength is
brought to extreme values the decoding procedure discards the fast instability-driven
dynamics and, instead, returns a single state transition time point that reflects the
evolution of log-likelihood values across the continuum of temporal bins. Taking as an
illustration the CA1 teleportation session in Fig. 5.8, we see that the response of network
activity state to the teleportation event is identified with high accuracy. This is a valuable
tool to measure the most probable moment of network remapping even under widely
fluctuating dynamics.



5.2 results 79

pre short post long post

fli
ck

e
rs

 p
e
rc

e
n
ta

g
e

0

0.01

0.02

0.03

0.04

0.05

0.06
∆t =120 ms, 99 percentile flickers
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5.3 discussion

Graphical models for brain state identification in the absence of input correlates.
Methods for decoding spatial representations considered in this work can be divided
in two classes, depending on whether they make use of positional information or not.
Remarkably, the latter methods do not show worse performances than the former ap-
proaches. In CA3, efficient decoding does not require the use of sophisticated probabilistic
models: due to the quasi-orthogonality of maps, the simple independent-cell decoder,
which compares the activity at any time to the average activities in environments A and
B irrespectively of the rat position, shows very good performances [180]. In CA1, the
similarity in the firing fields across environments constrained us to consider a graphical
model, the pairwise Ising model, which not only captures the average activity of the place
cells but also their pairwise correlations. The higher performance of the Ising model,
combined with the lower number of parameters involved in the inference process com-
pared to firing field-based decoding methods, suggests that the correlational structure of
neural firing activities conveys essential information about the internal representation of
memorized environments.

A substantial advantage of this approach is that it can be effectively applied to other
brain regions with much weaker correlation between the local activity and its inputs, e.g.
the prefrontal cortex, or without any known input-output relation. The use of graphical
models does not require any knowledge about the network inputs, as activity states are
identified based on a (high-dimensional) fit of the correlation structure of the spiking
data [49]. The core idea, first put forward in the context of retinal data modeling [51],
is that the model obtained after inference of the functional network is an approximate
(albeit quantitatively accurate, compared to principal-component based approaches [181])
description of the distribution of activities characterizing specifically one brain state.
Provided that we have at our disposal different data sets for well-identified states (here,
the reference sessions) we may later use the inferred model to decode the activity at
any time. This approach has recently been applied to identify transient activation of
memory-related cell assemblies in the rat prefrontal cortex [54, 55]. We expect, owe to
its generality and its applicability to very fast time scales (down to ⇠ 10 msec), further
applications in future. Note that our decoding approach, based on the inference of
effective pairwise couplings, could be extended to higher-order interactions. In the
hypothetical situation of distinguishing between brain states that differ in high-order
statistics, e.g. in the frequencies of 3-cell firing events only, the inference of these high-
order effective interactions would be necessary to obtain an efficient decoder.

Let us also remark that, once the Ising parameters have been inferred from reference
sessions corresponding to the possible states (here, maps), the computation of the log
probability difference E({si,t}) is very fast, as it requires O(N2) operations only. Our
decoder could therefore be applied online, provided the neural activity configuration are
available, e.g. through automatic spike sorting, at any time. One potential issue here is
that fast spike sorting may introduce error in the activity variables, leading to wider and
more overlapping distributions of E , see Fig. 5.6 (b). Maintaining high precision in the
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decoding would still be possible if the confidence threshold q is increased, but at a price
of smaller recall, see Fig. 5.3 (b).

Functional connectivity-based models for map decoding: Ising and other models. The
Ising decoder introduced in this article yields the highest performance on all time scales
Dt in CA1 (Fig. 5.3). While we have here mostly considered the activity vectors as
discretized in regular-spaced time windows of duration Dt, our approach was also easily
extended to process activity in elementary windows in correspondence to Theta cycles.
It would be interesting to pursue the latter analysis to deepen our understanding of the
role of Theta oscillations for the dynamics of transitions [143] in CA1, and to assess the
plausibility of the different transition scenarios (temporary disappearance or coexistence
of both map representations) put forward by theoretical studies [182].

In this regard, repeating the present study with probabilistic models capable of
capturing some aspects of the activation dynamics in recorded spiking sequences, such
as Generalized-Linear Models [183], could be potentially interesting. Contrary to their
Ising model counterparts effective couplings in the GLM approach are not necessarily
symmetric, and may reflect specific ordering in neuron activations. However, some
basic assumptions underlying GLM, such as the Poissonian nature of firing events are
questionable for hippocampal place cell activity [184]. Another potentially interesting
alternative is provided by reverse engineering of networks of Integrate-and-Fire neurons
[185–187], which were already applied to recordings, e.g. of retinal data with tens of
neurons.

Instabilities in hippocampal space representations. In the CA3 area of hippocampus,
patterns of place-cell activity across different environments behave as uncorrelated
network states with attractor properties [172]. Transitions between those hippocampal
activity states were recently studied based on recordings taken during a free exploration
in two environments in an experimental paradigm shown to induce rapid switches [143].
In the present paper we used multiunit recordings from hippocampal area CA1. Both
CA3 and CA1 are parts of the entorhino-hippocampal loop, an essential circuit for
spatial memory and navigation in mammalian brain. Despite being directly connected
in series (CA3 signalling into CA1), they very much differ in their architecture - while
CA3 is organized as a recurrent network with attractor properties, CA1 has a feed
forward structure - and in their connections with other brain areas involved into space
representation [188].

Use of the Ising model allowed us to robustly decode the memory state expressed in
the CA1 network, with temporal resolution high enough to reflect natural time patterning
of activity provided by local theta oscillation (ca. 6-11 Hz). We could track the network
state kinetics following the sensory input switch. In agreement with previous report in
CA3 [143], we detected a high degree of flickering in CA1 following the switch.

Moreover, when analyzing the development of post-teleportation population vector
activity on a long-term scale (20-60 sec), we found sustained network instability in CA1
spanning far beyond the 10 seconds interval reported in [143], see Fig. 5.7. This effect is
statistically significant with the Ising decoder but could not have been discovered with
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simpler, correlation-based methods. The presence of long-term instabtility in CA1 is
rather surprising as the network usually reaches a relative stability within a couple of
seconds after the cue switch [143]. An occasional delayed spontaneous flickering was
described in CA3 as a result of repetitive teleportation within a short time period (every
40-60 seconds) [143]. This suggests prolonged (though rare) flickering effect might be
present in both CA3 and CA1. In our data the persistent instability in CA1 came after
one or two teleportation events on a given day, respectively.

What mechanism can account for this observation? The current view considers the
short term (up-to 10 sec.) instability as a product of teleportation-induced conflict between
a sudden change in the allothetic visual input (another environment presence) and a non-
corresponding idiothetic signaling (no self-motion tracked traversal). Within couple of
seconds the idiothetic input seems to reset as the rate of flickering dramatically decreases
to levels close to the baseline steady state. The fact an occasional flickering is present
longer both in CA3 and CA1 can have more reasons. The autoassociative character of CA3
is capable to store and express stable patterns of activity, but also to associate between
different simultaneously active ensembles in the network. After teleportation, despite
an attractor separation on a theta frame binning has been proved, an occasional overlap
between both representations is present as well. Such brief coactivation of concurrent
maps can eventually lead to their binding by collateral synapses or by detecting and
learning their conjunction by CA1 [189]. Such a linkage could, under appropriately
ambiguous or noisy input (e.g. encountering an odor mark dropped in the concurrent
lighting conditions), eventually lead to a rare completion of the concurrent activity
state. Other, rather speculative, possibility is that the observed activation of the other
representation in CA3 and CA1 could be related to a reflection of past configuration of the
external world, eventually to an expectation of another coming change of environment
identity, so far of unknown mechanisms. Whatever input triggers the long-term flickering,
these transient episodes do not occur during sharp wave/ripple complexes as they
were present during strong theta network oscillation without any apparent increase of
population activity. A further insight that is beyond the scope of this report is necessary
to provide a better understanding of the origin and characteristics of long-term dynamics
of transition between distinct hippocampal network states.
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5.4 methods

Experimental methods

Electrode preparation and surgery. Single unit neuronal activity was recorded in three
adult Long Evans male rats in hippocampal subfields CA1. Rats were implanted with a
“hyperdrive” allowing for an independent positioning of 16 tetrodes organized into an
ellipsoid bundle. Tetrodes were twisted from 17 um insulated platinum-iridium wire (90%
and 10%, respectively, California Fine Wire Company). Impedance of electrode tips was
adjusted by platinum plating to 120 – 250 kOhm (at 1 kHz). Anesthesia was introduced
by placing the rat into a plexiglas chamber with seal top filled with isoflurane vapour.
Then the animal was shaved and placed into the stereotaxic frame and continued the
isoflurane delivery with a face mask. Breathing, heart action and reflexes were monitored
continuously. Hyperdrive was then implanted above the right dorsal hippocampus at
coordinates AP 3.8 mm and ML 3.2 mm relative to bregma. Stainless steel screws and
dental acrylic were used to stabilize the implant on the skull. Two of the screws served
as the hyperdrive ground.

Tetrode position. The tetrodes were slowly approached towards CA1 or to CA3 within
2-3 weeks after the surgery while the rat was resting in a comfortable pot on a pedestal.
To maintain stable recordings, electrodes were not moved at all before and during the
experiment on a given day. The recording reference electrode was positioned in corpus
callosum. Additional reference for EEG was placed in stratum lacunosum moleculare.

Recording procedures. Neural activity was recorded while the rat was behaving in an
apparatus described by [143]. Signal was recorded differentially against the reference
tetrode. Hyperdrive was connected to a multichannel, impedance matching, unity gain
headstage and its output conducted through a 82-channel commutator to a Neuralynx
digital 64 channel data acquisition system. Signal was band-pass filtered at 600 Hz–6
kHz. Unit waveforms above individually set thresholds (45-70 µV) were time-stamped
and digitized at 32 kHz. Position of the light emitting diodes on the headstage was
tracked at 50 Hz to assess the animal’s position. For the purpose of this study only data
from intervals when the rat’s movement speed exceeded 5 cm/sec were used. Broadband
EEG from each tetrode was recorded continuously at 2000 Hz.

Spike sorting and cell classification. Spikes were sorted manually using 3D graphical
cluster-cutting software (SpikeSort, Neuralynx) The feature space consisted of three-
dimensional projections of multidimensional waveform amplitudes and energies. Au-
tocorrelation and crosscorrelation functions were used as additional separation tools.
Putative pyramidal cells were distinguished from putative interneurons by average rate,
spike width and occasional complex spikes.

Histology. After the experiment was finished, the rat was overdosed with a barbiturate
and was perfused intracardially with saline followed by 4 % formaldehyde. Brain coronal
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sections (30 µm) were stained with cresyl violet. Traces of all 14 tetrode locations were
identified. Each tip location was considered as the place in the section before the tissue
damage became negligible. Only recordings from tetrodes with their tips in CA1 were
used in this study.

Behavioral procedure. Animals were first pre-trained according to the procedure de-
scribed in [143]. Briefly speaking, the apparatus consisted of two identical black plastic
boxes (60 ⇥ 60 cm, 50 cm in height). The two environments differed only by sets of
light cues, one placed on the upper rim of the box, the second was positioned under the
semi-transparent floor with an additional cue on one wall, respectively. There were no
other visual cues present as the experiment was otherwise carried in darkness provided
by surrounding light-proof curtains. The training consisted of four phases. Initially, the
two boxes were connected with an alley so the rat could freely explore both of them
within three 20 min. sessions for 3 days. In the second phase, after the first 20 min.
session, the alley was removed and the animal was placed into box A or B, respectively,
in a quasi-random manner so that it received two 10 min. sessions in each of them,
respectively. The next day the rat received two 10 min. sessions in each environment as
the day before. Then we removed the double maze and replaced it with a single box
equipped with both sets of lights that was presented at the original locations with just one
cue set switched on at the given session. The rat was given another two 10 min. sessions
in each environment that day. Finally, the next day, after two sessions in the original
locations, the box was presented in a central location. Again, the animal was presented
another two 10 min sessions in each environment, respectively, in a quasi-random order.
In all stages, the running sessions were separated by a 20 min. break in the resting pot.
On the test day, both environments were presented in two “reference” recording sessions
(10 min each). After a 20 minutes break, the test session begun. The animal was inserted
to the box with one set of lights on, and the lights were switched between the both sets
after couple of minutes of recording.

Data structure

Cross validation of environment decoding methods. For the validation of environment
decoding methods (Section 5.2) a total amount of four recording sessions were used.
Two of them, one in the environment A and one in the environment B, called reference
sessions, were used to infer activity models and reference statistics. The other two
(again one in environment A and one in environment B) have then been used as test
sessions, i.e. to assess the performance of our method for decoding which environment
is internally-represented by the rodent.

Teleportation sessions. In the post-teleportation analysis shown in section 5.2 we used
recordings from three experiments performed in three different animals (one of them was
already used in the original [143] study). Each data set included two reference sessions
for both environments and one or two teleportation sessions, each containing one single
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light switch. The switch between light cues was in total performed four times (direction
balanced, A to B or vice versa), and the activity was recorded for some minutes before
and after the teleportation.

Map decoding methods

We consider two classes of decoders: Rate-map based decoders, which expressly use the
knowledge of place fields and the rat trajectory as an input, and Activity-only decoders
that do not rely on any information about the correspondence between position and
neural firing. Throughout this section neural activities are binned with time resolution
Dt; we define the number of spikes of neuron i in time bin t, ni,t, and the binary activity,
si,t = min(ni,t, 1). Little information is lost when considering s instead of n as long as Dt
is smaller than the typical inter-spike interval of the cells.

Activity-only decoders

Bayesian approach to map decoding. We introduce probabilistic models for the distribu-
tion of activities {si}i=1...N in a time bin, P({si}, Q). Those models are parametrized by
a set of variables, Q, which are fitted to maximize the likelihood of the data in reference
sessions. Two sets of parameters Q(m) are fitted, one for each reference session m = A, B.
We then define the difference in log–probabilities

E({si}) = log

"
P({si}|Q(A))

P({si}|Q(B))

#
. (5.1)

The sign of the quantity E({si,t}) may be used to decode the map in time bin t. Signifi-
cance levels, based on the percentiles of the distribution of E can be imposed, see Results,
Section 5.2.

Independent-cell model. The simplest way to model the firing properties of the neural
population is to assume that the neural activities si are independent from cell to cell. For
each map m, the probability distribution P is parametrized by a set Q(m) = {h(m)

i } of N

‘inputs’ h(m)
i :

P(m)�
{si}|Q(m)� = ’

i

eh(m)
i si

1 + eh(m)
i

. (5.2)

Each input parameter is fitted in order to match the average value of si with P(m) and
the mean value µ

(m)
i of si,t across the time bins t in reference session relative to map m.

This procedure yields h(m)
i = log[µ(m)

i /(1� µ
(m)
i )].

Graphical Ising model. A more accurate probabilistic model for the activity of the cell
population is obtained when pairwise correlations between neural activities si in a time
bin are taken into account. For each map m, we introduce couplings J(m)

ij to express the
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conditional probability that cell i is active given the activity of cell j. The probability
distribution P(m) is now parametrized by the set Q(m) = {h(m)

i , J(m)
ij } of N inputs h(m)

i

and 1
2 N(N � 1) couplings J(m)

ij :

P(m)�
{si}|Q(m)� =

exp
⇣

Âi h(m)
i si + Âi<j J(m)

ij si sj

⌘

Z (m)[{h(m)
i , J(m)

ij }]
(5.3)

where Z
(m) is a normalization constant. Parameters h(m)

i and J(m)
ij are computed

to match the average values of si and sisj with P and, respectively, the mean values
of si,t and si,tsj,t across the time bins t in reference session relative to map m. This
hard computational problem can be approximately solved with the Adaptive Cluster
Expansion (ACE) algorithm [33, 46, 49, 177], which provides estimates of the parameters
{h(m)

i , J(m)
ij } and Z

(m) in Eq. (6.2).

Adaptive Cluster Expansion (ACE). The log-likelihood of the model parameters given
the neural activities, log P, is regularized, i.e. added a term penalizing large couplings. It
is expanded as a sum of contributions corresponding to clusters (subsets) of variables
[33,177]. Clusters of increasing sizes are recursively built from smaller clusters and added
to the expansion if their contributions to the log-likelihood exceed some threshold value.
The value of the threshold is iteratively decreased, until the 1- and 2-point statistics of the
data are reproduced (within the expected sampling accuracy). This iterative procedure
builds the simplest network (smallest number and sizes of selected clusters) able to
reproduce the low order statistics of the data and avoids overfitting. Statistical error
bars on the inferred inputs and coupling parameters are estimated [177]. The threshold
value, the number, and maximal size of selected clusters at convergence are given in
Appendix A.

Rate-map based decoders

Computation of rate maps. The squared box is partitioned into a 20 ⇥ 20 grid of
3⇥ 3 cm2 bins, and the rat position during the two reference sessions is discretized with
respect to this grid. The coordinates (xt, yt) associated to time bin t correspond to the
first spatial bin visited by the rat in the time interval [t� Dt; t]. We define the average
firing rate r(m)

i (x, y) as the total number of spikes emitted by neuron i in the reference
session m when the rat is at position (x, y), divided by the total time T(m)(x, y) spent by
the animal in this spatial bin. These rate maps are then smoothed to fill missing bins
through discrete cosine transform [190].
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Pearson decoder. The observed firing pattern at time t ,{ni,t}i=1...N , is compared to the
average firing rates in map m,

�
r(m)

i (xt, yt)
 

i=1...N , in the position (xt, yt) occupied by the
animal at the same time [143]. This comparison is made through the Pearson correlation

C
(m)({ni,t}) =

hn r(m)(xt, yt)it � hnit hr(m)(xt, yt)itr�
hn2it � hni2t

� ⇣
hr(m)(xt, yt)2it � hr(m)(xt, yt)i2t

⌘
)

(5.4)

where the notation h f it := 1
N ÂN

i=1 fi,t denotes the average of the quantity fi,t over the N
neurons i in time bin t. The decoding of the map in time bin t is done according to the
sign of

E({ni,t}) = C
(A)({ni,t})� C

(B)({ni,t}) . (5.5)

Dot-product decoder. The second method used in [143] compares directly the activity to
the firing rates at the rat position. The decoding of the map m is done according to the
sign of

E({ni,t}) = hn r(A)(xt, yt)it � hn r(B)(xt, yt)it . (5.6)

Bayesian Poisson rate model. This model assumes that each neuron fires independently
according to a Poisson statistics, with a position-dependent firing rate r(m)

i (x, y) in map
m. The probability of the number of spikes {ni} emitted by the neural cells in a time bin
when the rat is at position (x, y) reads

P(m)�
{ni}| (x, y)

�
= (5.7)

= ’
i

⇣
r(m)

i (x, y)Dt
⌘ni

ni!
e�r(m)

i (x,y)Dt

The prior probability over positions is

P(m)(x, y) = T(m)(x, y)/T(m) , (5.8)

where T(m) is the total recording time in reference session m. Assuming that both maps
m are a priori equally likely, we obtain the probability of the activity conditioned to map
m by marginalizing over positions

P({ni}|m) = Â
x,y

P
�
{ni}|(x, y)

�
⇥ P(m)(x, y) . (5.9)

We then define the log-ratio

E({ni,t}) = log


P({ni,t}|A)

P({ni,t}|B)

�
, (5.10)

whose sign will be used to decode the map in time bin t.
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decoder output A B A B
cue A A B B

denomination True Positive False Negative False Positive True Negative

Table 5.1: Denominations used for the four possible events, depending on the output of the decoder
and on the environment-defining cue. The cue is not changed throughout the reference
session.

Performance measure of a binary decoder

To quantitatively assess decoding performance of map-decoding methods we refer to
binary classifier theory [191–194].

Receiver Operating Characteristic (ROC) diagrams. A standard framework to assess
the performance of binary decoders is the so-called ROC diagram [191]. For each time
bin t the decoder outputs either map A or map B. To match the vocables used in the
ROC framework we will arbitrarily say that the output is positive if the map is decoded to
be A, and negative if the map is predicted to be B. If the output of the decoder matches
the environment defined by the light cues at the same time t, the prediction is said to
be True, otherwise it is said to be False. For instance, a time bin such that the decoder
predicts A, in agreement with the cues, corresponds to a True Positive event. The 2⇥ 2
possible events are shown in Table A.1. Two important quantities are: the True Positive
Rate (TPR, also called Recall), that is, the number of true positive predictions divided
by the total number of positive events, and the False Positive Rate (FPR), that is, the
number of false positive predictions, divided by the total number of negative events. In
other words, the TPR measures the fraction of time bins with A–cues that are correctly
decoded as A, while the FPR is the fraction of time bins with B–cues that are incorrectly
predicted to be A.

Our binary decoders are all based on thresholding the estimator variable E . Within
the Bayesian framework, for instance, we compute E as the difference between the
logarithms of the posterior probabilities of A and B, and output Positive if the difference
is larger than q = 0, Negative otherwise. The value of the significance threshold q can
be arbitrarily changed, with the consequence of modifying the TPR and FPR values.
A ROC curve shows the parametric plot of TPR vs. FPR as the threshold varies, and
describes a curve in the unit square, see Results, Section 5.2. The two extreme points
of the ROC curves have coordinates (0,0), and (1,1); (0,0) is obtained for a very large
significance threshold q, the decoder never outputs Positive and both TPR and FPR
vanish; (1,1) is obtained when the significance threshold is very low, the decoder always
outputs Positive and both TPR and FPR are equal to unity. Very good decoders are
such that the TPR is close to unity, while maintaining a very low value for the FPR. A
random-guessing decoder would give equal values for the TPR and FPR, and the ROC
curve would coincide with the diagonal of the unit square.
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A complementary measure of decoding performances is the Precision versus Recall (or
TPR) curve, obtained by scanning the values of the significance threshold q, see Results,
Section 5.2. The Precision is defined as the number of true positive events, divided by
the total number of positive predictions. When lowering the significance threshold the
Precision decreases from 1 to 0, while the Recall increases from 0 to 1.
Area Under the Curve (AUC). A quantitative measure of the decoding performances is
the Area Under the (ROC) Curve [191]. According to this measure, the ideal decoder
has AUC = 1, while random guessing would give AUC = 0.5. Note that this measure is
invariant with respect to the arbitrary choice of assigning positive value to environment
A: if we assign positive to B and negative to A instead of the previous choice, ROC
curves will undergo a symmetry transformation with respect to the top-left/bottom-right
diagonal, resulting in an identical area under the curve. This is granted by the fact
that positive and negative values are mutually exclusive and complementarily cover the
whole data set: for each q value the fraction of False Positive (B decoded as A) equals
one minus the fraction of True Negative (B decoded as B) events.

Continuity prior for map decoding

A continuity prior can be included in map inference in order to reduce noise in the
decoding and highlight clusters of contiguous transited time bins. To do so, we consider
the output {Et} of the map decoder (see Section 5.4); for Bayesian decoders Et is the
difference between the log-likelihoods of the two maps mt = +1 and �1 in time bin t.
We then introduce a prior, controlled by a strength parameter K, which favors persistence
between decoded maps in nearby time bins. Informally speaking, K is the cost (in log-
likelihood) we are willing to pay for flipping the map index in time bin t predicted by the
sign of Et to its opposite value, if it then matches the map indices of the neighboring time
bins, t� 1 or t + 1. The prior may thus be effective in changing the map prediction mt if
the differences between Et�1 , Et, Et+1, ... are of the order of K (in absolute value). Two
situations are encountered: (1) for some decoders, e.g. Pearson, Et takes value in [�2; 2],
and the variations of E over successive time bins is bounded; (2) for other decoders,
e.g. Independent-Cell, Poisson and Ising, the difference between Et and Et+1 can take
arbitrarily large values and show wide fluctuations as t varies across the recording. In
the latter case, a uniform prior K is unadequate in large portions of the recording. To
circumvent this difficulty we introduce a scale factor b < 1, and multiply all outcomes Et
by this factor. As a result we get a smoother time course of Et over the time index t, on
which a uniform prior can now be applied.

The joint probability of the time sequence of map predictions {mt} reads

P(m1, m2, . . . , mT) = (5.11)

=
1
Z

exp

 
b

2

T

Â
t=1

Et mt + K
T�1

Â
t=1

mt mt+1

!
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where Z is a normalization coefficient. To decode the map in time bin t we compute the
marginal probability Pt over mt from the joint distribution P. Exploiting the analogy with
the one-dimensional Ising model of statistical physics, this computation can be done with
the transfer matrix method, also called dynamic programming, in a time scaling linearly
with the total number of time bins. Then the outcome of our combined decoder+prior is

E
decoder+prior
t =

1
b

log


Pt(mt = +1)
Pt(mt = �1)

�
. (5.12)

The presence of the 1
2 and 1

b factors in, respectively, Eq. (5.11) and Eq. (5.12) ensure

that, for K = 0, Edecoder+prior
t and Et coincide. In practice we choose b = 1

|E0|
, where

E0 := maxt {|Et|}.

Induced correlation as a function of K. The transfer matrix technique allows us to
compute also the correlation between the maps decoded t bins apart, defined as

C(t) =
1

T � t

T�t

Â
t=1

�
hmtmt+ti � hmti hmt+ti

�
(5.13)

where the angular-bracket notation denotes the average over the probability distribution
in Eq. (5.11). C(t) decays exponentially with t, over a characteristic ‘time’ monotically
growing with K in Eq. (5.11), see Results, Section 5.2.
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5.5 supplementary information

ACE inference convergence details

The ACE inference procedure of Ising model parameters was applied with L2-norm
regularization of strength g = 5/B, where B is the total number of time bins [177]. Details
on the convergence are given in Table 5.2. The full code for Adaptive Cluster Expansion
can be downloaded from the GitHub repo https://github.com/johnbarton/ACE/.

Comparison of neuron activities across spatial maps

Similarly to Fig. 5.2 where we compare the Ising parameters inferred from the population
activity in the two environments A, B, we show in Fig. 5.9 the probabilities of firing of all

https://github.com/johnbarton/ACE/
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session N q(⇥10�3) S KC NC
cv. A 36 0.89 5.31 7 390
cv. B 36 0.08 6.21 8 4789

t. I-II A 33 0.21 4.82 4 509
t. I-II B 33 1.4 4.33 5 198
t. III A 17 1.1 1.60 3 27
t. III B 17 0.81 1.76 3 34
t. IV A 20 0.89 5.45 4 117
t. IV B 20 0.99 4.51 6 1347

Table 5.2: Studied sessions (cv. = cross-validation, t. = teleportation, followed by number of
teleportation and environment) number of recorded cells (N) and ACE parameters at
convergence: threshold q for cluster selection, cross-entropy (in natural log.), maximal size
KC and number NC of selected clusters. The algorithms stops when the relative errors
on single-neuron frequencies and pairwise connected correlations become smaller than
unity [177].

cells i (in fixed time bins with Dt = 120 ms) and the pariwise correlations (defined as the
probability that cells i, j fire together in a bin minus the product of their individual firing
probabiltiies). We see that no substantial correlation is found in the pairwise statistics of
cells across the two environments.
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Figure 5.9: Comparison between correlations and averages of the two maps of the cross-validation
reference sessions. Fixed binning with Dt = 120 ms.
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Dependence of Jij on temporal binning

Couplings inferred for time-bin duration Dt = 120 ms are compared to the ones inferred
for Dt = 10 ms in Fig. 5.10. Many couplings are very similar across the two binning
choices. Differences, in particular null couplings in just one of the two cases, mostly
arise from sampling differences. For 10 ms time windows, it is rare to find two neurons
active within the same time bin, while, for larger time bins, there is a smaller number
B of time bins, which forces us to consider larger ACE threshold q. Couplings inferred
using the theta-binning discretization procedure for data are very similar to the ones
inferred using a fixed time binning of 120 ms (average duration of theta cycles), see Fig.
5.10. A discussion of the independence of Ising couplings from the bin duration Dt was
done by [50].
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Figure 5.10: Left: Scatter plot of couplings inferred with time bin Dt = 120 ms vs. Dt = 10 ms (fixed
time bin discretization procedure, from cross-reference data set). Right: Scatter plot of
couplings inferred with fixed time bin vs. theta-binning procedure (Dt = 120 ms, from
cross-reference data set).
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This Chapter was published by myself, S. Cocco, and R. Monasson in [2]. It features an
analysis of the CA3 data of [143], courtesy of Karel Jezek from Charles University.

abstract The hippocampus is known to store cognitive representations, or maps,
that encode both positional and contextual information, critical for episodic memories
and functional behavior. How path integration and contextual cues are dynamically
combined and processed by the hippocampus to maintain these representations accurate
over time remains unclear. To answer this question, we propose a two-way data analysis
and modeling approach to CA3 multi-electrode recordings of a moving rat submitted to
rapid changes of contextual (light) cues, triggering back-and-forth instabitilies between
two cognitive representations (“teleportation” experiment of Jezek et al). We develop a
dual neural activity decoder, capable of independently identifying the recalled cognitive
map at high temporal resolution (comparable to theta cycle) and the position of the
rodent given a map. Remarkably, position can be reconstructed at any time with an
accuracy comparable to fixed-context periods, even during highly unstable periods.
These findings provide evidence for the capability of the hippocampal neural activity
to maintain an accurate encoding of spatial and contextual variables, while one of
these variables undergoes rapid changes independently of the other. To explain this
result we introduce an attractor neural network model for the hippocampal activity
that process inputs from external cues and the path integrator. Our model allows us
to make predictions on the frequency of the cognitive map instability, its duration, and
the detailed nature of the place-cell population activity, which are validated by a further
analysis of the data. Our work therefore sheds light on the mechanisms by which the
hippocampal network achieves and updates multi-dimensional neural representations
from various input streams.

author summary As an animal moves in space and receives external sensory inputs, it must
dynamically maintain the representations of its position and environment at all times. How the
hippocampus, the brain area crucial for spatial representations, achieves this task, and manages
possible conflicts between different inputs remains unclear. We propose here a comprehensive
attractor neural network-based model of the hippocampus and of its multiple input streams
(including self-motion). We show that this model is capable of maintaining faithful representations
of positional and contextual information, and resolves conflicts by adapting internal representations
to match external cues. Model predictions are confirmed by the detailed analysis of hippocampal
recordings of a rat submitted to quickly varying and conflicting contextual inputs.
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6.1 introduction

Following the discovery of place cells, which specifically fire at determined positions
in space [80], the hippocampus was recognized as an essential brain area for spatial
representations and memories. These cognitive representations, or maps, actually code
for more than position in physical space, and are also strongly informative about context
[195], including physical features of the background, such as visual landmarks, light,
odors, auditory stimuli, as well as more abstract conditions, such as the emotional state
or the task to be performed [84, 87–89, 118, 196].

A fundamental property of the hippocampus is its capacity to memorize multiple
cognitive maps [80,94,108,197]. This property may result from specific recurrent synaptic
connectivity in the hippocampal CA3 region [198, 199], and can be theoretically un-
derstood in the framework of continuous attractor neural networks (CANN) [154, 200].
Thanks to the remapping properties of place cells, multiple maps can be memorized in
the same connectivity matrix with almost no interference between them [155,156,160,201].

Cognitive maps may be retrieved when the animal explores again the corresponding
environments, or be quickly and intermittently recalled depending on the most relevant
behavorial information at that moment [141]. Different sources of inputs to the hippocam-
pus concur to form, recall, and dynamically maintain cognitive maps [202]. Changes in
visual cues and landmarks may substantially affect place field shape and positioning [84].
The Path Integrator (PI), capable of integrating proprioceptive, vestibular and visual
flow inputs and possibly supported by the grid-cell network in the medial-enthorinal
cortex (mEC) [109], allows the animal to update the neural representation during naviga-
tion [116]. The path integrator is itself sensitive to other sources of inputs, and undergoes
reset in case of large disagreement with external landmarks or sensory information [126].

Insights about how these different inputs contribute to hippocampal representations
were recently obtained by studying the effects of mismatches between path-integration
and visual sensory information, in particular in virtual reality settings [124, 203]. In
another study Jezek et al showed how abrupt changes in visual context (light conditions)
during active exploration by a rodent resulted in fast flickering between context-associated
maps in CA3 on the theta time scale [143] (Fig. 6.1A). Though they are largely artificial,
these conditions offer a rare window on the fast dynamics of the place-cell population,
and on how this dynamics is shaped by the various inputs.

Despite these studies, how contextual and PI inputs are combined by the hippocampal
network to produce cognitive maps and accurate positional encoding is not fully under-
stood yet. In this work, we carefully reanalyze and model the experiment of Jezek et al
to address this issue. We first introduce of a dual inference method capable of extracting
reliably and independently the encoded map [1] and the encoded position [176,204] from
the recorded spiking activity alone (Fig. 6.1B). Our dual decoder allows us to robustly
show that the hippocampal activity always encodes the correct location in the retrieved
map, even during the fast, unstable dynamics of the cognitive maps, as put forward
in [143]. To explain this robust encoding, we propose a CANN model of the hippocampal
circuitry, capable of storing multiple cognitive maps; the model is fed by visual-cue
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and path-integration inputs projecting on the place-cell populations supporting those
maps [157]. The path integrator is, in turn, influenced by the hippocampal activity,
closing an interaction loop between the hippocampus and the mEC [123]. Our model not
only reproduces the flickering phenomenology and the stable encoding of position, but
also makes several precise predictions on the dynamics of cognitive maps, the relative
strength of inputs, and the intricate activation of place-cell populations supporting the
two maps. These predictions are corroborated by a further detailed analysis of Jezek et
al’s data. Our work therefore proposes explicit mechanisms by which the hippocampus
could be capable of encoding various contextual and self-locomotion information in
multi-dimensional representations, and of updating them accurately on fast time scales.
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Figure 6.1: Neural encoding and decoding of cognitive maps and position. A. Schematic description of Jezek
et al’s experiment. As a rodent is moving in an environment, its position r = (x, y) is tracked over
time, and a population of place cells is recorded (see raster plot). The activity of each cell is then
binarized (0: silent cell, 1: active cell) to define the activity pattern st in theta cycle t. One out of
two cognitive maps, established during the training sessions, is recalled at any time; change of maps
are located by vertical dashed arrows. Place cells may have place fields in both cognitive maps (red,
orange, and blue cells) or in one map only (green and purple cells). In addition, pair of neurons may
be active simultaneously or not depending on the map; for instance the red and blue neurons have
overlapping place fields in map B, but not in A. Hence, pairwise correlations are a fingerprint of the
map. B. Sketch of the dual decoder. The neural activity alone is used to decode the retrieved map
mt as a function of time, and then to infer the position of the animal based on the place fields in the
decoded cognitive map. Mismatches between the decoded maps and the external light cues define
flickers over time. The distance between the predicted and real positions defines the positional error
et .
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6.2 results

Jezek et al trained a rodent in two environments (square boxes), equal in size and shape,
but differing by their light conditions [143]. A population of 34 CA3 place cells was
recorded during reference sessions with fixed light conditions, and shown to define
environment-specific maps, denoted by A and B. In a subsequent test session, taking
place in a single box, instantaneous switches between environmental light conditions
triggered the instability of the recalled cognitive map, which flickered back and forth
between the two corresponding environments.

The neural activity st of the population in any theta cycle t encodes information on
the context (the set of rules that connects position to activity, i.e. the place fields defining
the cognitive map) as well as on the specific position within the environment (Fig. 6.1A).
We first introduce a dual decoder, able to independently infer the cognitive map and
the position, at high temporal resolution. By comparing the inferred position to the
true animal location, we then assess how precisely the position is represented in the
population activity, irrespectively of the cognitive map in which it is neurally encoded
(Fig. 6.1B).

Functional network-based decoding of the cognitive map dynamics

Due to the global remapping properties of CA3, the intensities and mutual superpositions
of place fields are specific to each environment (Fig. 6.1A). Consequently, the average
firing rates and pairwise correlations of the place-cell population define a fingerprint of
the corresponding cognitive map [4, 5]. We use the reference session recordings in each
environment m (A or B) to compute this fingerprint statistics. We then build a model
Pm(s) that approximates the probability of observing the neural activity s when the
cognitive map m is recalled. This model relies on the inference of a functional network of
couplings between the place cells, reproducing the fingerprint statistics of map m [4, 205]
(Methods).

Given the activity st recorded in theta bin t during the test session, we then compare
the two probabilistic models PA and PB to estimate which map m is more likely to have
generated st. The log-ratio

DL(st) = log


PA(st)
PB(st)

�
(6.1)

indicates whether the neural activity st is more similar to the neural patterns encountered
in map A than to the ones of map B (large and positive DL), or typical of B and not of
A (large in absolute value and negative DL). Comparing DL to a statistical significance
threshold allows us to infer the map mt (Methods). If the decoded map mt is discordant
with the imposed light conditions the theta bin is identified as a flicker.

As a control, we check that DL is mostly positive in reference sessions for environment
A and negative for B, see Fig. 6.2A. Applying the decoder to the test session, we observe
the presence of flickers, see Fig. 6.2B (yellow bins); flickers were first found in [143] with
correlation-based methods requiring knowledge of the true position of the animal. An
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analysis of the temporal correlation of these flickers reveals that they typically persist
over ⇠ 6 theta bins (Methods and Fig. 6.2C); hence, cognitive maps show some inertia
extending beyond the theta scale.
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Figure 6.2: Decoding the cognitive map from neural activity. A. Map-decoding procedure applied to constant-
environment reference sessions. The log-ratio DLt , Eqn. (1), which is the difference of likelihoods
of map A and B given the recorded neural pattern in theta bin t (Methods), is mostly positive in
the reference session with constant light-cue evoking A (blue) and mostly negative in the reference
session B (grey). B. Time course of DL in a portion of the test session around one light switch (red
vertical line). The emergence of flickers (disagreement between the recalled map and the light cue) is
clearly visible after the light switch. Yellow horizontal dashed lines show the statistical threshold
applied in map decoding and flicker identification (|DL| > L0 = log 10, Methods). Yellow bars
represent the identified flicker instabilities, i.e. significative discordances (DL < �L0) between the
decoded cognitive map (here, B) and the post-switch light conditions (here, A). C. time correlation of
flickers, computed with significance threshold L0 = log 10. The exponential fit shows that correlations
extend over ⇠ 6 theta bins, highlighting the tendency of the cognitive map to persist beyond the theta
cycle.

Position is accurately encoded even during flickering instabilities of the cognitive map

To assess if the fast dynamics of cognitive maps affects the quality of positional encoding
we next re-use the neural activity pattern st in theta bin t, this time to infer the position of
the animal. A naive Bayesian decoder [176,204] takes as an input the above-decoded map
mt (Fig. 6.1B) and uses its place fields to estimate the position. The distance between the
inferred position, r̂t, and the true position, rt, defines the positional error et. As shown
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in Fig. 6.3A, the positional error et (blue line) is independent of the time elapsed after
the light switch, and has a value comparable to the one obtained in fixed-environment
conditions (blue dashed line). This result crucially depends on the fact that position is
estimated according to the decoded map mt, which varies with time t. For comparison,
in Fig. 6.3B we show the error if we decode the position according to the new, post-switch
map (green line) or to the old, pre-switch one (red line) at all times. Both procedures
result in similar, higher errors right after the light-switch, where flickers are frequent.
The error with the post-switch map eventually decrease to fixed-environment value after
few seconds, due to the rarity of flickers long after the light switch.

In summary, the output of our map decoder, mt, can be interpreted as the correct
cognitive state to read the positional code, see Fig. 6.2A. Even in the presence of fast
dynamical flickers of the cognitive map, the location of the animal is robustly and coher-
ently represented at all times. Our findings show that the hippocampus representation
encodes both positional and contextual information in an independent and accurate way.
Interestingly, the positional error computed with the map opposed to the decoded one
(orange line in Fig. 6.3A) shows a significant reduction in the first seconds after the light
switch; this non-trivial effect will be explained in detail in the next sections.

Continuous attractor neural network model for the interplay between path integrator, visual cues,
and memory

The findings above suggest that the stream of positional information to the hippocampus
is maintained despite the presence of rapid changes of cognitive representations following
the abrupt modification of visual cue (V) after the light switch. A natural hypothesis
is that the path-integrator (PI) sends to the hippocampus information relative to the
position in the ‘old’ map [108, 157], competing with the visual cue input associated to
the ‘new’ map. To formalize this assumption, we introduce a continuous attractor neural
network (CANN) model that contains the minimal ingredients to understand the effect
of conflicting PI and V stimuli onto the hippocampal activity. In the CANN paradigm
for memory storage and retrieval of cognitive maps [12, 154–156], the animal location
at a certain time is represented as a self-sustained bump of neural activity. The bump
is localized in the current position within a two-dimensional manifold, where place
cells are embedded according to the positions of their place field centers in the real
environment. We generalize this classical model by including two informational inputs
on the memory network, from allothetic (visual cues) and idiothetic (path integrator)
stimuli. The proposed interaction model is composed of the following four ingredients,
see Fig. 6.4A and Methods:

(a) A CANN memory, including excitatory recurrent connections of strength gJ and
global inhibition, designed to store and support two cognitive maps m, denomi-
nated A and B, which mimics the status of the CA3 place-cell network after learning
of the two ‘environments’. This model of stochastic neurons was described and
studied in [12, 158, 160].
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Figure 6.3: Positional error as a function of time from the teleportation light switch. A. Recorded data.
Positional error computed as a function of time from the teleportation (in units of theta cycle). In
each theta bin t, the map decoder is used to select which map mt (set of place fields) to use to infer
the position from the neural activity (Fig. 1A). When using the decoded map mt , the positional
error (blue line) is comparable to the one found in constant-environment conditions (blue dashed
line). The orange line shows the positional error if the opposite map (alternative to mt) is used for
inferring position. The positional error is significantly reduced with respect to constant-environment
conditions (orange dashed line) in the vicinity of the teleportation, and reaches comparable values
after ⇠ 80 theta bins. Shaded areas represent the standard error computed over 15 teleportation
events. B. Recorded data. Same as in panel A but using a fixed map of reference for position
inference, irrespectively from the decoded map. Red and green lines show results with, respectively,
the ‘old’ (pre-teleportation) and the ‘new’ (post-teleportation) maps. C & D. Simulations of CANN
model: same analysis as in panels A & B, computed over 15 simulated teleportation events, with
the same trajectory of the rodent as in the experimental data. Model parameters: N = 400 neurons,
gJ = 0.0025, gV = gPI = 0.4, gW = 6.25, b = 15, see Methods and Figs. B&C in S1 Text for detailed
discussion of the choice of parameters.

(b) A visual-cue input of amplitude gV onto place cells whose place fields match the
current position of the rat, rt, in the cognitive map corresponding to the external
light cue. The latter is denoted by V = A or B.

(c) A path-integrator input of amplitude gPI that projects onto place cells whose place
fields match the current position in the cognitive map corresponding to its own
internal cognitive state [108], denoted by the variable PI = A or B.

(d) An effective feedback from the hippocampal network to the path integrator, which
stochastically maintains coherence between the recalled cognitive map and the
path-integrator state.
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From a functional point of view, the CANN model mostly behaves, for a fixed position
r of the rodent, as an effective two-state model for the hippocampal activity, as sketched
in Fig. 6.5A. These two states correspond to the activity localized in map A or B; their
probabilities are controlled by the intensity of, respectively, the path-integrator and visual-
cue inputs. Note that the emergence of two well separated collective states from the
microscopic CANN model is intrinsically due to the presence of recurrent connections,
see Fig. 6.5A; A characterization of the effective barrier between the states is reported in
S1 Text (see Fig. A in S1 Text). The height of the barrier, controlled by the parameter gJ ,
and the amount of stochasticity in the individual neural dynamics are crucial ingredients
to determine the dynamics of the model. In particular, these variables control the
time-correlation of flickers (Methods); For the chosen simulation parameters, the time
correlation decays over ⇠ 7 theta bins (Fig. 6.5B) in accordance with data (Fig. 6.2C).

The typical outcome of a simulated experiment is shown in Fig. 6.4B. During the
exploration phase preceding the light switch, the visual (b) and path-integrator (c) inputs
jointly contribute to the stability of the internal representation of the position. A localized
bump of activity, sustained by the recurrent connections (a), can be observed in the
pre-switch map (Fig. 6.4A, left), say, m = PI = V = A. Right after the switch, the
hippocampal network receives conflicting streams of information: PI = A differs from
V = B. The path integrator is still activating place cells coding for the current position
of the animal in the ‘old’ map, while the visual stream points to neurons coding for the
same position in the ‘new’ map (Fig. 6.4A, center). This results in a conflict between the
two bump representations, which are mutually incompatible due to the orthogonality of
global remapping. Flickering is produced as an alternance between these two possible
states, m = PI = A and m = V = B. During this conflicting phase (Fig. 6.4, shaded
region), the feedback (d) from the memory network to the path integrator tries to achieve
coherence between the hippocampal and path-integrator states. When the bump is in the
visually-driven, post-switch map (m = B), incoherence is strong, and the path integrator
is more likely to be reset. Realigning the path integrator state with the external cue,
PI = V = m = B, brings the conflict phase to an end, and the hippocampal state reaches
stability (Fig. 6.4A, right).

Despite its conceptual simplicity, the model shows a rich phenomenology and repro-
duces in a strikingly-accurate manner the results of the analysis of the CA3 teleportation
recordings. In Fig. 6.4D we show a representative time trace of the log-ratio DL (Eqn. (1))
in a simulated teleportation session. Alternate intervals of positive and negative DL
signal the presence of map instability, as in [143], following the light switch (red vertical
lines) and the path-integrator realignment (green vertical lines). Applying to the simu-
lated data the same positional-error analysis as for the recorded data (Fig. 6.3A&B), we
observe the same qualitative picture, see Fig. 6.3C&D. In particular, position is coherently
encoded in the recalled cognitive map at all times.
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Figure 6.4: CANN model for interplay between path integrator, external stimuli, and memory.
A. Phenomenology of the CANN model. The model is composed of a recurrent hip-
pocampal network that has memorized two cognitive maps (place fields dispositions)
denominated A and B, a path integrator input (PI), and a visual input (V). In the left
panel both PI and V are activating place cells whose place-field centers (shown by blue
dots) correspond to the position of the rodent (red cross X) in the cognitive map A.
The activity is said to be localized in a bump around X in t map A, while it appears
as sparse and uninformative if interpreted with respect to the place-field locations in
map B. A feedback projection (blue arrows) from the hippocampal state (bump) to the
path-integrator state (purple) maintains the stability of the system by enforcing that the
retrieved hippocampal map and the PI state agree. After the light conditions have been
switched (teleportation, red line), V projects on place cells encoding position X in map B.
The two hippocampal cognitive maps are therefore in conflict, and the bump of activity is
alternatively localized in A (center-top) or in B (center- bottom). When the hippocampal
activity is localized in the cognitive map B, the feedback projection tries to realign the
internal state of PI along the corresponding map. Once the realignment has succeeded
(green line), both inputs are back to a coherent state, and stability is reached in the
cognitive map relative to the post-teleportation external light conditions. B. Time trace
of the log-likelihood difference DL (Eqn. (6.13) in Methods) in a simulated teleportation
session; flickers can be observed during the conflicting phase following teleportation
(shaded region). Prior to teleportation, and after the PI is realigned, inputs are coherent,
and the system is stable: the sign of DL is constant, mirroring the localization of the
bump in one map. Screenshots of the activity projected on the two cognitive maps are
shown for five different times. From left to right: bump localized in map A, bump
localized in map A during the conflicting phase, mixed state during the conflicting phase,
bump localized in map B during the conflicting phase, bump localized in map B. The
video of the simulation can be found in SI.
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Figure 6.5: CANN model for interplay between path integrator, external stimuli, and memory. A.
Representation of the effective model for the activity bump and effects of parameters.
The input strengths, gPI and gV , contribute to push the hippocampal activity towards
the corresponding cognitive states. Increasing the strength of recurrent connections, gJ ,
results in an effective barrier separating the two collective hippocampal states, giving
rise to well formed bumps in either map A (left) or in map B (right). Due to this effective
trap the bump state remains localized in either map for more than a single theta bin.
B. Temporal correlation of flickering events (theta bins with cognitive state opposite to
external light conditions) decay over c.a. 7 theta bins in simulated data. Same model
parameters as in Fig. 6.3.

Flickering frequency is constant throughout the conflicting phase, whose duration is exponentially
distributed

Our model predicts that (1) the duration of the conflict phase, i.e. the time elapsed from
a light switch to the subsequent PI realignment, is exponentially distributed (Fig. 6.6A,
right panel); (2) during the conflict phase, the flickering frequency i.e. the percentage
of theta bins identified as flickers, is constant and independent of time (Fig. 6.6B, right
panel).

In order to test these two predictions on CA3 recordings, we introduce a method to
disentangle the flickering dynamics of the cognitive map and the realignment of the PI,
the latter bringing an end to the former. We first infer the most likely PI-realignment
time for each light-switch event, given the sequence of identified flickers (Methods).
The outcomes are shown as green lines in Fig. 6.6D, and correctly separate conflicting
phases (rich in flickering events) from coherent periods (during which the hippocampal
representation is much more stable). The distribution of conflicting phase durations is
approximately exponential in agreement with model prediction (1), with decay time
t = 53 theta bins (Fig. 6.6A, left panel). Dividing the test session into conflicting and
coherent phases, we compute the frequency of flickers in the conflicting phase only.
Consistently with the model prediction (2), the frequency of flickers is independent of
the delay after the switch, with about 60% of theta bins in the conflicting phase carrying
flickers (Fig. 6.6B, left panel).
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Similar frequencies of flickers, close to one half, are obtained in the model when
the two inputs have comparable strengths (gPI ' gV in Fig. 6.4B, see also Fig. C in S1
Text). A testable consequence of this balance is that the distributions of the sojourn
times (durations of the periods in which the neural activity persists in a cognitive map,
see Methods) in map A and in map B are similar. This prediction is confirmed by a
further analysis of the CA3 recordings: the two distributions of the sojourn times are both
exponential, with roughly the same decay times (see Fig. E in S1 Text). This common
time scale is related to the correlation time of the flickers (Fig. 6.2C & 6.4C), see Methods.

The combination of properties (1) and (2) explains the exponential decay in the fre-
quency of flickers with the delay after the switch reported in [143] and [206]. While the
frequency of flickers is constant and large in the conflicting phase, and constant and
very low in the coherent phase, the duration of the conflicting phase is exponentially dis-
tributed. Hence the frequency of flickering theta bins, irrespectively of the phase, shows
the same exponential decay, see Fig. 6.6C (right panel: simulated experiment, left panel:
analysis of CA3 recordings). A detailed analysis of the data provides overwhelming
statistical support to our two-fold explanation compared to a simple exponential decay
of the flickering frequency (logarithmic likelihood-ratio test ⇠ 150, see Methods).
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Figure 6.6: Flickering rate is homogenous within each conflicting period. A. Distribution of the path-integrator
realignment times in a simulated session (right) and inferred from the recorded data (left). B. Mean
Frequency of Flickers (MFF) during the conflicting phase, binned over 8 theta bins (⇠ 1 second)
intervals. MFF is constant during the conflicting phase, both in the model (right) and in recordings
(left). Realignment times inferred from data were obtained with a Bayesian procedure (Methods);
histograms show flickering frequency in each time bin t normalized with respect to the fraction of
conflicting phases, out of 15 teleportation events, that survived at least up to time t. C. Convolution
of the two distributions shown in panels A and B, i.e. the MFF computed on the full test session,
shows an apparent exponential decay both in the model (right) and in data (left, similar to the
analysis shown in [143]). D. Map decoder output DL and inferred PI-realignment times for the
experimental test session; 3 out of 15 teleportations are shown. Light switches are marked with red
lines, inferred PI-realignment times are marked with green lines. Identified conflicting periods are
shaded. Simulated data were obtained with the same model parameters as in Fig. 6.3.
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Neural encoding of position reflects the presence of input mismatches

Our model allows us to better understand the subtle differences between the neural
encodings of position in the conflicting and the coherent phases. In the latter phase, both
path-integrator and visual inputs point to the neurons with place fields overlapping the
rodent position r in map. During the conflicting phase, the two inputs excite the two
place-cell populations centered in r in their respective maps, respectively, m = PI and
m = V. Hence, while the bump of activity is mostly localized in one of the two maps
(varying over time), some dispersion may be expected due to these incoherent inputs.

Mixed activity states, in which two (distinct) populations of neurons encoding the
same position in the two maps are active, can be occasionally observed in the snapshots
of the simulated activity in Fig. 6.4D, e.g. around theta bin t = 80. The over-dispersion
present during the conflicting phase has two consequences. First, the accuracy in position
encoding is expected to be lower in the conflicting phase that in the coherent phase, see
Fig. 6.7A, left panel. Secondly, the loss in accuracy is not due to some random noise in
the neural activity, but to a transient bump-like activity in the ‘wrong’ map, opposite to
the decoded one. This effect is clearly seen when we choose the opposite map to infer
the rodent position. While this choice leads to very poor prediction during the coherent
phase, the positional error is significantly reduced during the conflicting phase (Fig. 6.7B,
left panel).

To test these two predictions in CA3 recordings, we combine our positional analysis
and our PI-realignment time inference procedure. In Fig. 6.7A (right), we compare the
distributions of positional errors computed with the decoded map (according to the sign
of DL) during conflicting and coherent phases (blue and red, respectively). Consistently
with the model predictions, the positional error is significantly increased during the
conflicting phase (ANOVA p < 8⇥ 10�8; conflicting: 14.7 ± 0.5 SEM, coherent: 12.3 ± 0.1
SEM). When computed with the opposite map, the positional error is obviously much
higher than its counterpart computed with the decoded map, but a substantial decrease
is found in the conflicting phase compared to the coherent phase, see Fig. 6.7B, right
panel (ANOVA p < 5⇥ 10�23; conflicting: 27.8 ± 0.6 SEM, coherent: 34.2 ± 0.2 SEM), in
full agreement with the model prediction. This effect also explains the relatively low
value of the positional error obtained with the opposite map right after the switch, i.e.
deep into the conflicting phase, compared to later times, see Fig. 6.3A&C. While this
phenomenology is clear, it could in principle be affected by the presence of visual inputs
projecting onto place cells during flickering events, i.e. when the ‘opposite’ map agrees
with the external cues. In order to analyze the effect of the path integrator alone, we have
restricted the analysis to theta bins whose decoded maps agreed with the visual inputs,
i.e. to non-flickering theta bins. Results, shown in Fig. 6.7C&D, are still statistically
significant and in strong agreement with the model predictions (decoded map: ANOVA
p < 1⇥ 10�12; conflicting: 17.1 ± 0.7 SEM, coherent: 12.3 ± 0.2 SEM; opposite map:
ANOVA p < 1⇥ 10�7; conflicting: 28.9 ± 0.95 SEM, coherent: 34.2 ± 0.3 SEM). Our
findings are robust against changes in the statistical threshold L0 for map decoding in
the identification of conflict/coherent phases (Methods), see Fig. I in S1 Text.
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The over-dispersion of the neural bump during the conflicting phase can also be
observed from the reduction in (the absolute value of) the log-ratio, |DL|, see Eqn. (1).
This quantity can be interpreted as a proxy for the completeness of the bump in one
single map (Methods), larger |DL| corresponding to large bumps in either of the two
maps and randomly scattered activity in the other map (Fig. 6.4A&D). We find that
the absolute value of DL is significantly reduced during the conflicting phase in CA3
data, see Fig. 6.7E (left panel, ANOVA p < 10�15; conflicting: 5.51 ± 0.16 SEM, coherent:
7.19 ± 0.08 SEM). Figure 6.7F shows the bimodal nature of the distributions of DL in the
conflicting and coherent phases. While the reference and coherent-phase distributions
coincide, the conflicting-phase distribution is more narrow, due to the overdispersion
of the bump (reference s2 = 80.7, coherent s2 = 79.2, conflict s2 = 47.3). This result
provides further evidence for the predictive power of the CANN model.
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Figure 6.7: Distributions of positional errors in conflicting and coherent phases. A. Distributions of positional
errors in the decoded cognitive map during coherent/stable (red) and conflicting/unstable (blue)
phases. The model predicts (left panel) that the mean error is significantly increased during conflicting
periods, mirroring the dispersion of the neural representation induced by the conflicting input streams.
The same phenomenology is observed in recordings (right panel). B. The over-dispersion of the
neural code in the ‘correct’ cognitive state (reported in panel A) is caused by an increased precision
of the positional representation in the ‘opposite’ map, i.e. the one where the bump is not localized.
This effect is significant in the model, left panel, and in the recorded data, right panel. C, D. Same
analysis after exclusion of flickering theta bins. E. The absolute value of the log-ratio DL, Eqn. (1),
is significantly reduced during the conflicting phase, both in the model (left) and in the data. |DL|
is a proxy for the completeness and stability of the bump (Methods). F Distributions of DL in the
test session during the conflicting (left, blue) and the coherent (right, red) phases, compared to the
distribution in the two reference sessions (black contour, same as in Fig. 6.2A).
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6.3 discussion

Our statistical inference-based data analysis allows us to quantify how well the CA3
neural activity encode various cognitive maps, and the position therein. Correlation-
based procedures, e.g. used in [143], decode the cognitive state by comparing the
instantaneous population activity to the average activity recorded in reference sessions at
the same position of the rodent. Our functional-network based map decoder, instead,
relies on the fact that the joint pairwise spiking activity of neurons is a fingerprint of
the cognitive map [1, 4]. It does not need any knowledge of the sensory correlate (here,
position), and could be used to decode generic brain states in other areas.

The fast dynamics of cognitive maps studied in [143] and here results from an unreal-
istic sensory situation. Imposing artificial conflicts between inputs and studying their
consequences is a standard approach to unveil the circuitry underlying the processing
of multimodal sensory information in the hippocampus [124, 203] as well as in other
brains areas, see for instance [207] for an illustration in the primary visual cortex where
mismatches involve sensory and motor inputs. However, fast retrieval of functionally
relevant maps, characterized by grouping and cognitive control, has also been observed
in realistic settings, in which a behaving animal is required to maintain representations
of two distinct spatial frames [141].

The position of the animal was accurately inferred at all times from the spiking activity
using the place fields of the retrieved cognitive map (Fig. 6.1B). As a main finding, we
show that the hippocampus maintains high-quality encoding of the position even if the
contextual variable undergoes fast dynamical changes. This is explained in the model by
the fact that inputs point to place cells coding for the physical position in both competing
maps (Fig. 6.4A), and that the bump of activity is most often localized around these place
cells in one map, and scattered all over the other map. Similar findings were reported
in [143] (main text, Fig. 3d and Supplementary Text Fig. 8), within a statistical framework
assuming a priori the consistency of positional representation during flickering events,
as the cognitive map was decoded by comparing the neural activity to the mean-activity
vectors at the recorded real position of the rat. The emergence of unambiguous, non-
mixed representations was also underlined in [143], and shown to take place in the
second half of the theta cycle. However, the detailed analysis of the CA3 recordings and
of the model data shows a loss of quality of the bump state (reduction in absolute value
of log-ratio |DL|) and an increased quality of position decoding in the opposite map (Fig.
6.7), providing evidence for the presence of partially mixed states.

Our model for the retrieval of hippocampal cognitive maps in the presence of inputs
from the path integrator and visual cues is based on CANN theory [123, 129]. Two-
dimensional CANN attractors, were previously applied to networks of place [154, 156]
and grid [169, 208] cells. Indirect experimental evidence supporting CANN is now accu-
mulating in various animals and brain areas. Evidence of a ring-shaped attractor region
associated to head direction representation was recently reported in the drosophila cen-
tral brain [170]. Attractor dynamics has also been associated to behavioral observation in
a study on the monkey prefrontal cortex [171]. As for space representation, experimental
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support for attractor behaviour has been found in hippocampal CA1 [172] as well in grid
cell [111] recordings. Further indirect evidence is provided by the pattern of connectivity
in CA3, compatible with its functional role as an auto-associative attractor network [199],
as suggested long ago based on anatomical and computational considerations [189, 198],
and by the active nature of dendrites of mEC neurons, which enhances the robustness of
attractors under environmental changes [209].

The detailed analysis of the CA3 recordings done here provides another indirect
support for CANN theoretical framework, when multiple (two) cognitive maps are
memorized. Memorization of the two attractors is obtained, in the model, by adding
the corresponding connectivity matrices into the unique CANN connectivity matrix
[155, 156, 160, 201]. A detailed theoretical study of the mechanisms for transition from
map to map was obtained in the absence of inputs, i.e. for spontaneous transitions
induced by neural noise only [12]. A similar picture is found here in the presence of
visual-cue inputs pointing to the ‘new’ map, while the path-integrator inputs point to the
‘old’ map in the conflicting phase. As inputs are of comparable magnitude, no single map
is favored. The stochastic fluctuations resulting from the noise of the individual neurons
are sufficient for the system to cross the activation barrier between the two memory states
(maps) of the network, see Fig. 6.4B and Fig. A in S1 Text. The hippocampal network
jumps intermittently from one cognitive map to the other, reproducing the flickering
events experimentally identified and described in [143]. Transition rates between the two
maps increase with the neural noise, modeled here by the parameter b, see Eqn. (6.12) in
Methods and Fig. D in S1 Text. Neural noise relative to the population activity could
also be effectively increased through the introduction of periodic (theta and gamma)
modulations of the activity into the model [157, 158, 210]. The presence of rhythms is
known to facilitate memory formation and integration of information [211, 212]. While
theta oscillations can help produce flickering events as previously reported [157,206], our
work shows that such periodic modulations are not necessary. Transitions could also be
facilitated by particular ‘confounding’ landmarks or positions in space, where the maps
happen to be locally similar [12, 155].

The present model reproduces accurately all the observed flickering properties, without
any need for a post-learning short-term plasticity of the CA3 network hypothesized
in [206]. In particular, our model predicts that the flickering frequency is independent
from the time spent after the teleportation event in the conflicting phase (Fig. 6.6B). This
finding is at first sight in disagreement with the exponential decay of the flickering
frequency reported in [143, 206]. However, the latter was obtained as a result of an
averaging over many teleportation events. For a single event, accurate data analysis
shows that our constant flickering rate hypothesis, when combined with the exponentially
distributed realignment time of the path integrator (Fig. 6.6A), is much more likely than
an exponential decreasing scenario.

Our model is based on the existence of two streams of inputs conveying, respectively,
external landmark and self-navigation information. Recent studies have pointed to the
grid cells network in mEC as the possible region that supports path integration, as their
firing patterns are maintained in the dark [85], and the relative phases of grid cells
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seem to be largely unaffected by global remapping between environments of similar
shapes [108, 213]. CANN-based approaches have been proposed to model grid-cell
networks [169,208], differing from hippocampal CANN mostly by the short-range nature
of the inhibitory couplings. In much the same way the microscopic hippocampal CANN
proposed here can effectively be reduced to a 2-state model (Fig. 6.4B), we expect CANN
models for the grid-cell networks to be approximately described by a 2-state model,
corresponding to the PI aligned with map A or B [108,214,215]. This motivates the simple
model for the PI we have considered here.

In addition to sending projections towards the hippocampus, our model PI receives
a feedback from the CANN, greatly increasing the probability of transition to the state
agreeing with the instantaneous cognitive map [102, 123, 216]. Eventually, the state of
the PI is realigned along the visual cue inputs, which stops the conflicting phase. Our
model effectively implements a ratchet mechanism, locking the system into the coherent
phase after a conflicting transient. Realignment of the path integrator based on visual
landmarks is an important functional property, intended to limit the accumulation of
errors in position estimation [217], and observed for large mismatch between external
and internal inputs [126]. From a physiological point of view, projections exist from CA1
to mEC [123], and have been shown to be important for the formation of grid cells [216].
Hence, the feedback from the CANN, thought here to model CA3 activity, to the PI
should be understood as effective.

As recently reported in [213], the impairement of the mEC grid firing resulted in a loss
of path integrator in behaving rodents. As in our model, the recall of the pre-teleportation
map, and, therefore, the whole flickering phenomenology are driven by the input stream
from the path integrator to the CA3 network, we conjecture that flickering instabilities
would disappear upon grid-cell impairement. Simultaneous recordings of mEC and CA3,
as in [108], would be extremely useful to test our predictions and better describe the
effect of the path integrator on the cognitive status of CA3.
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6.4 methods

Cognitive map decoding from neural activity

Theta bins are identified with the Hilbert transform procedure of [143]. The activity of
the N recorded neurons is binarized into each theta bin t: si,t = 1 if neuron i is active in
bin t, 0 otherwise. For each cognitive map m = A, B a Ising-model probability distribution
Pm(s) for the activity configurations s = (s1, s2, ..., sN) is inferred,

Pm(s) =
1
Zm

exp

0

@Â
i

h(m)
i si + Â

i<j
J(m)
ij si sj

1

A , (6.2)

where Zm is a normalization constant. Couplings (Jm) and fields (hm) are determined such
that the pairwise correlations and average activities in the neural population computed
from Pm match their experimental counterparts in the reference session of environment m.
These inverse Ising problems are solved using the Adaptive Cluster Expansion algorithm
[33, 45, 46, 177]. The inferred models (6.2) are then used to dynamically decode the map
mt during the test session (s) [1], based on the log-ratio of the probabilities of the activity
configuration in time bin t in the two environments (main text Eqn. [1]), with the result

mt =

(
A if DL(st) > L0 ,
B if DL(st) < �L0 ,

(6.3)

where the threshold L0 is chosen according to the required statistical confidence. We
generally set L0 = log 10 ' 2.3.

After having decoded the map mt in theta bin t, we define the flicker variable ft, equal
to 1 if mt does not match the light cue in theta bin t, to 0 otherwise.

Temporal correlation of flickers and sojourn times

The time correlation of flickering events for delay t is defined as

C(t) =
1

Ttot

S�1

Â
i=1

Ti+1�t

Â
t=Ti

ft ft+t �
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(6.4)

where S is the total number of switch events in the recorded data (S = 16 in [143]), Ti
is the theta bin index of switch i (< S), and Ttot = TS is the total number of theta bins
in the test session. The time correlation C(t) is typically exponentially decaying, with a
decay time t0, see Fig. 6.2C.

The correlation time t0 is related to the sojourn time of the neural bump in the cognitive
maps, defined as a sequence of contiguous theta bins decoded in the same map, see S1
Text. Theta bins whose |DL| are lower than the threshold L0 are considered as belonging
to the same map as the last statistically significant time bin. The distribution of sojourn
times in each map is shown in Fig. E in S1 Text.
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Position decoding from neural activity

The arena is discretized into 60⇥ 60 squared bins of 1 cm2 each, with integer coordinates
(x, y) [143]. For each reference environment m 2 (A, B) we construct the binary rate map,
p(m)

i (x, y), equal to the average of si,t over all theta bins t in which the rat is at position
(x, y). Position is then decoded according to the naive Bayesian framework [218]: the
probability of the activity configuration st = {s1, s2, ..., sn} in theta bin t and at fixed
position (x, y) reads

Pm(st|x, y) =
N

’
i=1


p(m)

i (x, y) · si +
�
1� p(m)

i (x, y)
�
· (1� si)

�
. (6.5)

Once m is known, e.g. either through the map decoder or due to constant experimental
conditions, the position of the rodent can be reconstructed from the recorded neural
activity through

(x̂t, ŷt) = arg max
(x,y)


Pm(st|x, y)⇥ Tm(x, y)

�
, (6.6)

where the maximum is computed over the 60⇥ 60 possible positions. Tm(x, y) is the
number of theta bins spent by the rodent at position (x, y) during the reference session
of map m; we use it as a prior to favor positions where the rodent is more likely to be,
irrespectively of the neural activity.

Continuous Attractor Neural Network model for hippocampal activity

The hippocampal population includes N place cells. For each cell i = 1...N the place-field
centers coordinates, rA

i and rB
i , are drawn uniformly and independently at random in the

squared environments, respectively, A and B. The linear size of each square is denoted
by L.

Neural activities are represented by binary variables: si,t = 0 or 1 if neuron i is,
respectively, silent or active in time bin t = 1, 2, 3, .... The duration of a time bin is the
theta cycle over K; results reported here were obtained with K = 4, which corresponds to
approximately 30 ms.

The total input received by neuron i at time t is

Hi,t = Â
j 6=i

Jij sj,t + h(V)
i (r) + h(PI)

i (r) . (6.7)

The three terms on the right hand side of Eqn. [6.7] represent, in order:

• the input due to recurrent connections in the hippocampal network. The underlying
assumption is that connections have emerged from learning during the exploration
of the two environments by the rodent: Place cells that turned out to be simultane-
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ously active in either environment have developed positive couplings. Couplings
are defined through

Jij = JA
ij + JB

ij with

8
<

:

JA
ij = gJ ⇥ f(rA

i � rA
j )

JB
ij = gJ ⇥ f(rB

i � rB
j )

, (6.8)

where gJ controls the strength of the connections, and

f(r) =
L2

N ⇥ 2ps2 e�
|r|2

2s2 . (6.9)

Parameter s in Eqn. [6.9] is the spatial scale corresponding to the width of the
place fields. The prefactor in Eqn. [6.9] ensures that f is dimensionless and that,
on average, the sum of the Gaussian factors f(r� rm

i ) over all neurons i is close to
unity for every possible position r and map m.

• the visual input

h(V)
i (r) = gV ⇥

8
<

:
f(rA

i � r) if V = A ,

f(rB
i � r) if V = B ,

(6.10)

depends on the position r of the rodent. We again assume that, during the
exploration of the environment, visual-cue projections onto place cells have been
strengthened through learning. For simplicity we use the same function f as in the
recurrent connections, see Eqn. (6.8), to characterize the portion of environment in
which visual cues project onto a specific place cell i.

• the path-integrator input

h(PI)
i (r) = gPI ⇥

8
<

:
f(rA

i � r) if PI = A ,

f(rB
i � r) if PI = B .

(6.11)

PI inputs have the same functional dependence over space as visual-cue related
inputs. The amplitudes of both input types are tuned by the parameters gPI and
gV .

All neurons undergo stochastic updating of their activities from time bin t ! t + 1
according to their total inputs. The activity of neuron i at time t + 1 is chosen to be

si,t+1 =

8
>>><

>>>:

0 with probability 1
1+eb(Hi,t�q)

1 with probability eb(Hi,t�q)

1+eb(Hi,t�q) .

(6.12)

To enforce global inhibition in the population activity, the value of the threshold q
is dynamically adjusted so that an average fraction f of the neurons is active at any
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time. Parameter b controls the amount of noise in the neural dynamics. For b ! 0
neuron activities are random and independent of their inputs, while, for b ! •, they
deterministically follow the signs of the inputs (after subtraction of the threshold q). The
average activity of cell i at time t + 1 is therefore a monotonously increasing sigmoidal
function of its total input Hi,t at time t, with maximal slope equal to b/4 in Hi,t = q.

The properties of this CANN model in the absence of any visual and PI inputs, i.e.
for gV = gPI = 0, were analytically studied in [12, 158, 160], see S1 Text for further
discussion. The log-ratio DL defined in Eqn. (1) for the decoding of cognitive maps has a
direct counterpart in our CANN model as the difference between the contributions to
the log-probability of an activity configuration s when the bump is localized in maps A
and B,

DL(s) = Â
i<j

(JA
ij � JB

ij ) si sj . (6.13)

Mechanism for path-integrator realignment

The path integrator is described as a two-state model, PI = A or B. Its dynamics is
stochastic and Markovian: in each time bin t, the state PI can jump into state PI0 with
transition probabilities R(PI ! PI0), independently of the previous states. The feedback
from the hippocampal network to the path integrator is expressed in the dependence of
R on the hippocampal map Mt at time t. To favor transitions to the state PI0 agreeing
with the current map Mt, we introduce the following witness function for the presence
of the bump in map m = A, B:

W(m)(s, r) =
N

Â
i=1

si f (r� rm
i ) , (6.14)

where s and r are, respectively, the activity configuration and the position of the rodent
at time t. Due to the normalization of f in Eqn. [6.9], we expect W(m) to be close to one
for the retrieved map m = Mt and to be much smaller for the opposite map.

We impose the preference for realigning the path-integrator state in accordance with the
hippocampal map through the ratio between the two reciprocal transition probabilities,

R( PI = B! PI0 = A )
R( PI = A! PI0 = B )

= egW

�
W(A)(s,r)�W(B)(s,r)

�
. (6.15)

Here, gW is a positive parameter allowing us to tune the strength of the preference. If
the hippocampal bump of activity is localized in, say, map A, the right hand side of
Eqn. [6.15] will be strongly positive, and the probability of realigning the path integrator
to PI0 = A will be much larger than the probability of the reciprocal transition.

A solution to the constraint expressed by Eqn. [6.15] is given by

R( PI = B! PI0 = A ) = R0 ⇥ egW

�
W(A)(s,r)�W(B)(s,r)

�
/2 ,

R( PI = A! PI0 = B ) = R0 ⇥ e�gW

�
W(A)(s,r)�W(B)(s,r)

�
/2 , (6.16)
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where R0 is a positive number. In the absence of bias (gW = 0), the inverse of R0 may be
interpreted as the average time scale between two realignments of the path-integrator
state.

The model for the path-integrator dynamics is entirely defined by the transition
probabilities in Eqn. [6.17] and the probability conservation identities:

R( PI = A! PI0 = A ) + R( PI = A! PI0 = B ) = 1 ,

R( PI = B! PI0 = A ) + R( PI = B! PI0 = B ) = 1 . (6.17)

Inference of path-integrator realignment times

Defining t as the PI-realignment time, t = 0 as the time bin corresponding to the light
switch and T as the time bin corresponding to the next switch (end of analyzed data), we
assume the probability p(t) for time bin t to be a flickering event to be

p(t) =

(
p0, if 1  t  t ,
pe, if t + 1  t  T .

(6.18)

Here, p0 is the constant flickering probability, and pe is the baseline decoding error, see
S1 Text for discussion of the values of parameters p0 and pe.

We write the log-likelihood of the parameter t as a function of the identified flickering
sequence f = { ft} as follows:

log P(f | t, p0, pe) = log p0 ⇥Ât
t=1 ft + log(1� p0)⇥Ât

t=1(1� ft) +

+ log pe ⇥ÂT
t=t+1 ft + log(1� pe)⇥ÂT

t=t+1(1� ft) (6.19)

We then maximize this log-likelihood over t to infer the most likely value t⇤ of the
realignment time. The procedure is repeated for all light switches, see Fig. G in S1 Text.

Independence of frequency of flickers from delay after light switch

We consider two hypothesis:

(a) Hdecay = the flickering probability depends on time as a decaying function that
can be inferred from data, that can be inferred from the full test session (15 lght
switches)

(b) Hconstant = the flickering probability is constant throughout the conflicting period
of varying duration, which can be inferred from data (see previous section).

Following the Bayesian information criterion [219], we parametrize each model with the
same number of variables. For hypothesis Hdecay, we estimate the flickering frequency
as a function of time from the average frequency computed over the full test session
(Fig. 6.6C, bottom), in bins of one second-width (8 theta cycles), up to 15 seconds after
the light switch. For later delays (>15 s) the flickering frequency is set to a baseline error
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probability, pe = 0.01. For hypothesis Hconstant, we infer the most likely PI realignment
times for each one of the 15 light-switch events (see Section above). The associated
flickering probability pt is then set to p0 = 0.55 until the inferred PI realignment time
t⇤, and equal to the baseline probability pe = 0.01 afterwards. We then compute the
likelihoods of both hypothesis given the observed data (identified flickering theta bins f)
through

`(hypothesis|data) =
T

Â
t=1


log pt ⇥ ft + log(1� pt)⇥ (1� ft)

�
, (6.20)

where T is the total length of analyzed session (number of time bins between two
consecutive light switches). The above expression is then summed over all light-switch
events. We define the difference of the two log-likelihoods as

D` = `(Hconstant|data)� `(Hdecay|data) . (6.21)

The constant flickering frequency hypothesis Hconstant is extremely more likely (D` ⇠ 150)
than the decaying model Hdecay. The result is robust against changes in the parameters,
see Fig. F in S1 Text.
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7
PA I RW I S E M O D E L S I N F E R R E D F R O M H I P P O C A M PA L A C T I V I T Y
G E N E R AT E N E U R A L C O N F I G U R AT I O N S T Y P I C A L O F S I N G L E O R
M U LT I P L E L O W- D I M E N S I O N A L AT T R A C T O R S

7.1 introduction

In chapters 5 and 6 we investigated the task of decoding the cognitive map from the
observation of the neural activity of a hippocampal population. We framed the decoding
problem in a Bayesian setup: from the statistical properties of neural patterns observed
in controlled conditions (in our case, the two cognitive maps of the two environments
A and B) we were able to classify patterns of activity registered in unknown external
conditions [1, 2]. The statistical model used for the binary classification was the Ising
model accounting for empirical pairwise correlations of neurons. Neural correlations,
more than the average activities, can be considered as "fingerprint" of the expressed
cognitive map [2], especially in the presence of low-orthogonality between firing rates
of the two cognitive states (e.g., rate remapping in CA1). The decoding was performed
by inferring two models, parametrized with map-specific fields hA,B

i and functional
couplings JA,B

ij ,

P(s | M) =
1

ZM exp

0

@Â
i

hM
i si + Â

i<j
JM
ij sisj

1

A , (7.1)

and using them to score the likelihood of a new pattern given one or the other cognitive
map as the log-probability of the pattern given the map M 2 [A, B]. The max-entropy
principle [22] ensures that the graphical Ising model is the least biased statistical model
constrained to first and second-order statistics, i.e., average activations and correlations.
Other approaches that rely on the definition of a functional connectivity between neurons
have been proposed to fit a probabilistic model on population activity, which include
RBMs, GLM, integrate-and-fire [183, 185–187].

An important feature of statistical models for population activity is that they can be
used to generate new neural patterns, by Monte Carlo sampling of the corresponding
probability distribution [220]. One important question concerns the generative power
of the models, i.e., how well they can produce new patterns that are functional for the
cognitive task. This question is central for future applications attempting at creating
devices to emulate the activity of brain areas (Brain-Computer Interfaces). With few
exceptions [221], very little has been done, so far, in this direction. In the case of the Ising
model, it is known that 3-body correlations are well-reproduced [51], though there are
deviations [50], despite being not directly included in the inference. Conversely, some
observables are not necessary fitted well by pairwise models (e.g., the number of active
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neurons) and ad-hoc modifications of models have been proposed [222]. Yet, it is unclear
which observables matter functionally, so the question of whether pairwise Ising models
are generative or not remains open.

Here we address this issue in the case of the Ising models inferred from hippocampal
place-cell recordings analyzed in Chapter 6 [2, 143]. Place cells encode for the spatial
location of the rat in the environment, as well as for contextual information, such as
olfactory stimuli, emotional state, or task to be performed [83–88]. Therefore, in the
case of hippocampal activity, functionality has a precise meaning regarding the spatial
correlate of the activity.

We generate activity patterns by simulating the inferred model with Metropolis Monte
Carlo sampling and test them on their spatial correlate. We show that the generated
activity configurations are meaningful, in that they code for positions of a virtual animal
in the environment. We also show that a model inferred from the joint collection of
patterns from the two distinct environments generates bimodal activity configurations,
coding for well-defined position in one of the two environments only, with spontaneous
stochastic transitions from one map to the other. Therefore, the inferred Ising model
captures and preserves the functional relation between neurons, on a coarse-grained
scale, that can be used to generate new activity patterns that are functional for navigation
within one or more cognitive maps.

7.2 attractor-like behavior of the inferred model : single map

Functional meaning of inferred couplings Jij

In the continuous-attractor neural network theory (see Chapter 3.2), the neural dynamics,
during the exploration of a familiar environment, is confined to the manifold of the
corresponding cognitive map. As a consequence, the neural correlations fitted by the Ising
inference will reflect structural information (synaptic connection) as well as functional
one (being confined to the attractor). As suggested in Chapter 4, the smaller is the
subpopulation that we observe, the more the correlation will be dominated by the
functional constraints. In our case (⇠ 30 neurons over ⇠ 100, 000), we thus expect the
inferred couplings Jij to primarily encode functional aspects of the neural population,
leading to a model able to generate patterns that are functional if interpreted within the
cognitive map.

Coherently with results on theoretical models [5] (see Chapter 4), we find that the
inferred couplings have a direct relation to the distance between the centers of place fields,
see Fig. 7.1. Couplings are positive at small distances (comparable to place-field size),
and negative at larger distances. This behavior of the connectivity is observed for both
maps and is compatible with attractor models of spatial navigation, where short-range
excitation leads to the formation of a localized activity bump while long-range inhibition
keeps a stationary average activity.
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Figure 7.1: Couplings between pairs of neurons vs. distances between their place-field centers
computed on reference sessions from CA3 recordings of Jezek et al. [143], discretized
and binarized in time bins of Dt = 120 ms. Red lines are obtained by sliding average on
the x-axis.

Generated activity configurations are diverse and statistically consistent

To test the generative power of the inferred model, we sampled, via Metropolis Monte
Carlo, from the model inferred from discretized (Dt = 120 ms) neural activity sampled
during the exploration of a single environment (A). As a first analysis, we tested the
diversity of the generated activity with respect to the training session by computing
the minimum Hamming distance of each generated pattern bs to the training set (the
experimental reference session), defined as

min
s2trainig set

|bs� s| , (7.2)

where |a� b| is the Hamming distance between the words a and b. As shown in Fig. 7.2
(left), the generated patterns are diverse and do not merely reproduce the training set. We
then tested how this distribution of Hamming distances compares to the one computed
between batches of real data. We performed the same analysis comparing the second
half of the experimental reference session to the first one (Fig. 7.2, center), obtaining a
striking similarity to the distribution obtained from generated activity.

To assess the statistical consistency of the generated patterns, we computed the distri-
bution of the log-likelihood (i.e., the energy of the inferred model, up to a constant) and
compared it with the one computed on experimental recordings. Again, we observe a
substantial similarity between the two distributions, see Fig. 7.2 (right panel).
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Figure 7.2: Generated activity configurations are diverse and statistically consistent. Left: distri-
bution of minimal hamming distances between T = 10, 000 generated patterns and the
training (experimental) reference recordings. Center: same analysis but with T = 1924
generated patterns and the first half of the experimental reference recordings (T = 2000
patterns, in blue), superposed to the same quantity computed between patterns in the
second half of the experimental reference recordings (T = 1924, shown in red). The error
bars refer to standard error from the mean over n = 10 different training-test partitions
of the real reference session. Right: distribution of log-likelihood in the generated (blue)
and real (red) data.

Generated patterns are spatially selective, coding for localized positions and smooth trajectories in
the environment

To assess the functionality of the generated activity in terms of spatial selectivity, we
employed a naive Bayesian decoder for the position [204] for each pattern bs of the
generated session. The standard deviation s of the spatial posterior P(x, y | bs), measured
in cm, can be used as a proxy for the dispersion of the bump of activity. As shown in
Fig. 7.3, the dispersion of the generated activity is comparable to the one obtained
by neural patterns in the reference session. In contrast, patterns generated by an
independent-site model show a sensibly-higher dispersion (see Fig.7.3, right panel),
highlighting the importance of pairwise couplings in capturing and generalizing the
functional (spatial, in this case) relation between the recorded neurons.

We then tested if the decoded position, defined as the probability mass center of the
posterior, displays a continuity in time that is comparable to the one observed in the
data. Since velocity is a dynamical property, we need to choose a scale factor between
simulation time and real time in order to compare the results of the simulations with
real data. The dynamics of the real neural system is driven by both the structural
connectivity and external factors, such as visual inputs and the path integration, and is
therefore linked to the running speed and behavior of the rat. Therefore, the definition
of a precise relationship between real data and Monte Carlo simulations, which we
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Figure 7.3: Spatial selectivity of new generated activity patterns. Distribution of bump dispersion
s, defined as the standard devation of the posterior of position inference and measured
in cm, for patterns generated by the Ising model (left) and the independent-site model
(right), compared to the one obtained from real data. The ⇠ 20% (Ising) and ⇠ 50%
(IND) of the generated patterns are new, i.e., not present in the training batch.

might interpret more as spontaneous activities of the network, poses several challenges
and is still a work in progress. For the following results, we choose the scale factor
tMC = 5, i.e., we perform 5 Metropolis step between two consecutive sampled activities.
As shown in Fig. 7.4 (left panel), this choice is consistent in terms of average inferred
spatial distance after a single time bin, that we interpret as the "velocity" of the simulated
rat. Intuitively, if we break the temporal structure, by shuffling the activities in time,
the distribution becomes comparable to the one expected from random points in a
confined environment (Fig. 7.4, central panel). To assess the importance of the precise
low-dimensional spatial relationship between neurons, we shuffled the neuron index
of the activity before decoding the velocity from it. This procedure changes the spatial
correlate of each neuron while keeping the time-correlation in the neural space, which is
a function of the simulation time scale tMC that we have previously fitted. As reported in
Fig. 7.4 (right panel), except for the zero-velocities (which are maintained independently
on the neuron index), the velocities inferred from the shuffled activity are significantly
higher than the ones retrieved with the correct activity-to-chart mapping.

Overall, these analyses suggest that the generated activity is confined to a manifold
of a dimensionality comparable to the one where real neural patterns live and that this
confinement is deeply associated to the spatial relations between neurons on the chart.
An analysis of the effects of tMC on this and other dynamical observables is in progress
and will be discussed in a future publication.

Stimulation of a single neuron causes neighbors to fire leading to a localized bump

In theoretical models, a property of the activity bump is that, during the navigation
of a continuos-attractor manifold, it can be driven by external inputs to be positioned
in a specific location on the chart. To test the response of the inferred Ising model to
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Figure 7.4: Generated activity represents a continuous position in time. Left: Distribution of
velocities inferred from patterns generated by the Ising model, compared to the one
obtained from real data, T = 10, 000 generated time-bins. Center: same generated data
of left panel compared with velocities obtained by breaking the time coherence (random
shuffle in time). Right: Velocity inferred from generated data (T = 1000) compared to
velocity inferred after a shuffle of the neuron index in the activity vectors. Data obtained
with n = 20 different repetitions of the random shuffling. tMC = 5.

positional stimulations, we performed a "pinning" test by forcing one specific neuron si
to be always active, generating patterns from the conditioned distribution

P(s1, s2, . . . , si�1, si+1, . . . , sN | si = 1) . (7.3)

Each neuron si is associated with a specific location (xi, yi) by the position of its place
field. We analyzed the generated patterns by applying the same naive Bayesian decoder
for the position, excluding the i� th neuron from the procedure. In Fig. 7.5 (left) we
show the 2D histogram of the decoded positions, normalized with the one obtained
in un-pinned conditions, for 6 neurons located in different regions (red cross) of the
squared environment. The distribution of positions decoded from the pinned activity is
clusterized around the location of the stimulated neuron, often in a well-shaped unimodal
form.

In Fig. 7.5 (right panel) we show the distribution of the distances between the decoded
positions from pinned activity and the stimulated-cell position (xi, yi) for all "A-like" (i.e.,
non-silent in the recorded environment) neurons. A comparison with the same analysis
done in un-pinned conditions (both analyses exclude cell i from the position-decoding
procedure) shows a strong quantitative confirmation of the effect of the stimulation.

Therefore, the excitation of a neuron si biases the activity of the remaining cells to be
localized around (xi, yi) effectively "pinning" the bump around the excited place field.
This result gives additional support to the capability of the Ising model to reproduce
a phenomenology that is compatible with the attractor picture, despite the strongly-
reduced number of modelled functional units from the neural population (34 out of
⇠ 105).
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Figure 7.5: Stimulation of a specific neuron causes neighboring neurons to fire leading to a lo-
calized bump of activity. Left: Spatial distribution of inferred position from simulated
neural activity in six different pinning conditions, compared with the inferred position
of an un-pinned simulation. Color scale represents the ratio between the two. In all
conditions (pinned and unpinned) the selected neuron (red X) was excluded from posi-
tional inference. Right: distribution of Euclidean distance from the decoded position in
pinned (blue) and un-pinned (control, in red) conditions. Displayed data refers to the
aggregated analysis of all "A" cells (1 to 16, 32, 33, 34). Each analysis was performed by
concatenating five different simulations, each of length T = 500 time bins.

7.3 attractor-like behavior of the inferred model : two maps

Simulated activity is bimodally distributed and oscillates between the two maps

In the applications seen so far, an Ising model is inferred for each of the two environments,
leading to map-specific couplings JM

ij . However, in theoretical attractor models (as well
as the real brain), multiple cognitive maps are stored in the same connectivity matrix.
A natural question, therefore, concerns the capability of the inferred model of storing
multiple attractor states in one single functional-connectivity matrix. To test this idea,
we inferred a single Ising model from the concatenation of reference sessions recorded
in CA3 from the exploration of two different environments [2, 143]. We then generated
activity from the resulting model PA+B(s) and decoded the map by using the two single-
map models PA(s) and PB(s) in the same Bayesian framework of [1] (see Chapters 5
and 6). Interestingly, we observed that the represented cognitive map of the simulated
network oscillates, in time, between the two attractor states, never falling into mixed or
uninformative states, see Fig.7.6. This oscillating phenomenology recalls the flickering
behavior reported by Jezek et al. in the original experiment from which the reference
sessions were recorded [143], interpreted as a stimuli-driven transition between the two
memorized attractor states [2, 157, 206]. The typical persistence of the map in one single
environment can be computed from the autocorrelation in time of a map index mt = 1
if DLt > 0 and 0 if DLt < 0. The autocorrelation is exponential, with a typical time
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tm ⇠ 10 time bins. This value is not far from the one observed in real data during
conflict-driven flickering transitions of the cognitive map, which we computed in Chapter
6 finding a value of ⇠ 6 time bins. However, the persistence of the simulated activity
in one single map depends on the simulation time tMC and can vary from ⇠ 30 to
⇠ 5 in the range t 2 [1, 50]. Importantly, the activity is time-by-time coherent with the
retrieved map and represents a localized position on the corresponding chart, since the
bump dispersion is comparable to the one obtained on real data, see Fig.7.6, bottom-right
panel. For this comparison we used the teleportation session [143], where the cognitive
map that changes in time and can be tracked by the log-likelihood difference [2]. The
"depth" of the activity in one or the other attractor state at time t can be quantified by
the delta-likelihood DLt. If we visualize the histogram of DLt separated by the number
of active neurons n, we observe a more accentuated polarization of the activity into the
two states, with fewer mixed states, as we increase n (see Fig.7.6, bottom panel). This
bimodality reflects the fact that low-energy mixed states are impossible when a high
number of neurons is simultaneously active, suggesting an effective inhibition between
the two attractors. As we will see below, this inhibition is encoded into effective negative
couplings between the two sub-populations that encode for the two maps.
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Figure 7.6: Bimodal behavior of simulated activity in the two-maps-stored case. Top: time course
of the likelihood difference DLt between the cognitive maps in a simulated session. The
recalled map oscillates between the two attractor states, with a persistence time of ⇠ 10
time bins. Bottom: histograms of DLt separated by the number of active neurons in the
time bin st. Each row is normalized. The spatial coherence of the activity is quantified
by the bump dispersion in the chart decoded by DLt, and is comparable to experimental
data (teleportation session of [143]). Simulation tMC = 5.
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Figure 7.7: Storing two maps in the connectivity matrix causes effective inhibition between the
two sub-networks Comparison between the network inferred by concatenation of refer-
ence sessions and the linear composition of the two networks independently inferred
from the two reference sessions. The connectivity inferred from the concatenated session
has an effective inhibition between the two sub-populations that is not present in the
composed network, noticeable from the large number of points on the (x, y) = 0 line
(highlighted in orange).

Storing two orthogonal maps in the connectivity matrix causes effective inhibition between the
two sub-networks

The explanation of such oscillatory behavior lies in the connectivity structure of the
inferred model. In Fig. 7.7 we compare the couplings obtained by the concatenated
reference session, denominated as JA+B

ij to the sum of the two couplings obtained by
single reference sessions, JA

ij + JB
ij , which would follow from the linear-sum assumption

of an Hopfield-like model [12, 152, 155]. In the analyzed CA3 data, the neurons display
a significant map selectivity in their average firing rate, a phenomenon that is due to
a combination of global remapping and pre-processing of the experimental recordings.
Therefore, two neurons belonging to the sub-population "A" and "B", respectively, are
rarely seen firing together. In the concatenation of the two reference session, this mutual
exclusion is interpreted as a negative coupling in the inferred matrix. As the two
populations are almost orthogonal, the result is an effective network composed of two
subpopulations, each retaining their own structure of excitatory-inhibitory functional
connections and connected with each other by inhibitory couplings (see Fig. 7.7).
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8B A C K G R O U N D

8.1 direct-coupling analysis (dca) from sequence data

Direct-coupling analysis (DCA) is an application of statistical inference to the modelling
of protein sequences. It has recently gained interest in bioinformatics and genomics since
it outperformed previous standard methods in predicting the 3D contact structure and
the mutational landscape of proteins, both in real and synthetic data [43,44,56–58]. It has
also been shown to provide meaningful biological predictions in relevant bioinformatics
problems, such as protein-protein interaction [223, 224] or genome-wide analysis [225].

The DCA procedure consists in finding the interaction matrix that best reproduces the
pairwise co-variation structure computed from a multiple-sequence-alignment (MSA) of
a protein family. The resulting connectivity matrix represents the "easier explanation"
of the empirical correlation matrix, which in turn can result from direct (i.e., between
two sites that are directly connected, in a statistical sense) or indirect (i.e., via a common
third node) correlations, see Fig. 8.1 for a pictorial example.

correlation structure direct couplings

DCA

Figure 8.1: Direct Coupling Analysis: the correlation structure of the four nodes (colored circles)
is fully connected (left panel). However, the correlations between the red, purple, and
green node are indirect, since they are not caused by direct mutual connection but by an
external common source (blue node, right panel). DCA methods are designed to retrieve
this direct connectivity structure (right panel).

8.1.1 The inverse Potts model

The standard procedure to perform DCA is to solve the inverse Potts problem from
sequence data in the MSA of the investigated protein family. The Potts model is an
extension of the Ising model presented in Section 2.1 where each spin si can take A

127
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different values, called colors. The case A = 2 retrieves the Ising model. Its Hamiltonian
reads

H
Potts(s) = �Â

i
hi(si)�Â

i<j
Jij(si, sj) (8.1)

Where i 2 [1, N] indicates a site and si 2 [1, . . . , A] is the color on site i. Analogously to
the Ising case, the Boltzmann-Gibbs measure of the Potts Hamiltonian is the max-entropy
distribution that reproduces a set of observed correlations pij(a, b) and conservations
pi(a). The first step of DCA from sequence data is to compute the empirical correlations
and conservations from the MSA of the relevant protein family:

pi(a) :=
1
B Â

s2 MSA
d(si, a) (8.2)

pij(a, b) :=
1
B Â

s2 MSA
d(si, a)d(sj, b) (8.3)

Then, approximate or exact methods (see Section 2.1) are used to retrieve the maximum-
likelihood or maximum-a-posteriori set of Potts parameters J, h that explain the observed
sequence data. The resulting Potts Boltzmann-Gibbs measure

P(s) =
1
Z

e Âi hi(si)+Âi<j Jij(si ,sj) (8.4)

represents the probability for the sequence s to be part of the protein family, and the
inferred Hamiltonian plays the role of "statistical energy". This probabilistic formulation
allows for several applications [58, 226, 227]. For example, we can score a newly-observed
sequence to predict to which protein family it belongs by using Bayesian hypothesis
testing (homology detection), or we can generate new sequences that are likely to belong
to a given family by sampling from the corresponding Boltzmann distribution.

8.1.2 Contact prediction

Homologous proteins, descending from a common ancestor, usually conserve the same
tridimensional structure along evolution, despite showing high variability in their se-
quences of amino acids. This variability results from iterated random mutagenesis and
natural selection. A random mutation is typically deleterious for the foldability of the
protein since it might affect the physical compatibility of a chain site with its close-by
residues in the folded conformation. However, this instability can sometimes be resolved
by compensating mutations of residues that are in physical proximity (contact) with the
mutated site. On an evolutionary scale, this causes a constraint in the variability of the
involved sites, since they are forced to co-evolve to maintain the structural stability of the
protein (see Fig. 8.2).

A physical contact, therefore, will cause a co-variation between amino acids on the
two sites in contact, that can be observed as a correlation pij(a, b) from the MSA of the
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Figure 8.2: Evolutionary constraints shaping the variability between homologous sequences:
While constraints on individual residues (e.g., active sites) lead to variable levels of
aminoacid conservation, the conservation of contacts leads to the coevolution of struc-
turally neighboring residues and therefore to correlations between columns in a multiple-
sequence alignment of homologous proteins (here an artificial alignment is shown for
illustration). Figure and caption from [227]

protein family. As we saw, the simple observation of a correlation does not imply a direct
statistical connection, since it can be caused by a common connection to a third site. For
this reason, correlation-based methods strived to take off despite being in the literature
for several decades [228, 229].

DCA has originally been introduced to overcome this limitation, i.e., to retrieve the
contact structure of a protein family from the correlation structure computed from an
MSA of homologous sequences [57]. As shown by several works [57, 58, 230–232], a
strong inferred Potts coupling Jij(a, b) (either positive or negative) constitutes a more
reliable indication of a contact than the simple correlation pij(a, b). Couples of sites can,
therefore, be scored by computing the Frobenius norm of their coupling matrices Jij:

fij =
s

Â
a,b

Jij(a, b)2 (8.5)

As shown in [57, 58], the top-scoring couples are often good predictors of structural
contacts.

8.1.3 Fitness prediction

Homologous proteins, i.e., belonging to the same family, are often assumed to share a
common functionality related to their structure. If we define the fitness of a protein as
the degree of performance of this function, an MSA can be considered as a collection
of high-fitness proteins, since they have been sequenced from natural (alive, therefore
successful) organisms. From a statistical physics point of view, an MSA is, therefore, a
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low-temperature sampling of an unknown fitness landscape, whose shape we want to
retrieve from the observed sequence data.

The inferred Potts Hamiltonian H
Potts(s) can be interpreted as a low-mode (pairwise)

approximation of the unknown fitness landscape. We can therefore use it to predict the
phenotypic effect of residue mutations by computing the difference of energy between
the mutated and original sequence. If we choose the starting sequence s0 as the gauge of
our Potts parameters (i.e., Jij(a, b) = 0 8a = s0

i , 8b = s0
j and hi(a) = 0 8a = s0

i ) we can
compute the predicted fitness difference due to the single mutation s0

i ! a as

DHPotts
ia := H

Potts(s0
i!a)�H

Potts(s0) = �hi(a) (8.6)

Likewise, we predict the epistatic effect of a double mutation s0
i ! a, s0

j ! b as

DDHPotts
ijab := H

Potts(s0
i!a,j!b)�H

Potts(s0
i!a)�H

Potts(s0
j!b) +H

Potts(s0) = �Jij(a, b)
(8.7)

In the s0 gauge, the DCA-inferred fields hi(a) represent therefore the statistical-energy
differences of single mutations and the coupling Jij(a, b) are interpretable as the epistatic
effects of double mutations. This approach has been shown to provide good results
on real and synthetic protein datasets [7, 44, 233, 234]. Note that the fitness function is
not expected to be a linear function of the statistical energy H

Potts [227], therefore the
Spearman coefficient r between the experimental and predicted fitness difference (that
does not assume a linear relationship between the correlated variables) is usually taken
as performance measure of the inference [44, 234] (see for example Fig. 8.3, from [44]).

Figure 8.3: The computed DHPotts mutational landscape of the DNA methyltransferase M.HaeIII
(left, color range from 5th percentile to 0) agrees quantitatively with experimental mea-
surements of M.HaeIII fitness under selection by restriction enzyme cleavage (right,
r = 0.69, N = 1, 634; marginal distributions in orange). The average mutational sen-
sitivity per position shows improved correlation beyond individual effects (r = 0.80,
N = 304). Figure and caption adapted from [44]
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8.1.4 Open issues

Despite their recent success, criticism has been raised against DCA techniques mainly
due to their theoretical grounding in maximum-entropy arguments, whose suitability
to describe co-evolution of protein sequences is controversial [235, 236]. One of the
main arguments points to the fact that the "real" model, i.e., the fitness function whose
landscape is explored by evolution, is not a "simple" exponential model of pairwise
interaction between protein sites. The real fitness function of a protein results from a
multitude of complex biological processes and constraints, clearly involving higher-order
terms of interaction as well as degrees of freedom beyond the sequence of amino acids on
the protein chain. The discrepancy between the inferred pairwise function and the real
one, therefore, will cause a finite error even in the best case of infinite training data [235].
Another arguable point is that, by doing DCA, we explicitly choose to include only
correlations and single-point averages in our theory - a choice that uniquely determines
our statistical model through constrained maximization of the Shannon entropy [22] -
while we typically have access to more information, namely the entire MSA and relevant
metadata [236]. Finally, a practical matter is that the inferred pairwise model often suffers
from over-parametrization since the number of training data points (sequences in the
MSA ⇠ 103�5) is sensibly lower than the number of inferred parameters (⇠ 105�7).

Some of these issues, namely the non-consistence of the inferred model with the real
one and over-fitting in the typical under-sampled regime, are partly due to the fact that
we are using a single Potts model, that has O(N2) degrees of freedom, to score the fitness
of, in principle, any possible point of the immense sequence space. However, in the
task of computing the single mutations landscape of a specific wildtype protein, we do
not need such a general purpose, since we only have to retrieve the set of N ⇥ 20 (N
being the number of sites, 20 the number of possible mutations on a site, gap included)
single-point mutational effects DEia.

In the next chapters, we will investigate theoretically and practically these issues on
a toy model of protein folding, called Lattice Proteins, whose fitness is a high-order
(non pairwise) function that represents the probability of a sequence to fold into a given
structure. We will discuss how the complexity of the model used to infer the landscape
and the training sequence data in the MSA have to be optimally adapted to make accurate
single-point predictions, framing both these issues in the context of bias-variance tradeoff.
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8.2 lattice proteins

Lattice proteins are highly-simplified models for protein folding where all the possible
folding structures are the non-intersecting walks that fill a squared or cubic lattice.
Lattice Proteins display important behaviors that reproduce real-proteins features, such
as efficient folding, non-trivial statistics, and the possibility of defining two proteins
as homologous if they both are good folders for the same structure. At the same
time, being a numerical model, they have the obvious advantage of being treatable by
analytical methods and simulations. For these reasons, Lattice Proteins have been widely
employed in the literature, for example as a model for protein folding [237–239], protein
evolvability [240,241], or to benchmark statistical methods designed to retrieve the folding
structure from observations of sequence data within the corresponding family [58].

8.2.1 The model

Proteins are defined as sequences of N = 27 sites, each of which has one out of 20
possible amino acids (residues). Close-by sites in the structure are called contacts. Sites
that are in contact interact with an interresidue energy that depends on their specific
amino acids (a, b) through the so-called Miyazawa-Jernigan (MJ) matrix e(a, b). Entries
of this matrix have been estimated by analysis of the statistics of residue-residue contacts
observed in a large dataset of crystallized proteins [242]. Given a fold F and a sequence
of residues s = s1, s2, . . . , sN , the structural energy is defined as the sum of all the MJ
contact energies:

E(F, s) = Â
(ij)2CF

e(si, sj) (8.8)

where CF is the set of site couples that are in contact in the structure F. The idea behind
the model is that a given sequence s explores the energy landscape, defined over all the
folding possibilities, at thermal equilibrium. This allows us to write the probability for a
specific sequence s to fold in a structure F as the corresponding Boltzmann distribution:

Pnat(F|s) =
e�E(F,s)

ÂF0 e�E(F0 ,s) (8.9)

=
1

1 + ÂF0 6=F e�GF0 ,F(s)
(8.10)

where GF,F0 (s) := E(F0, s) � E(F, s) is energy gap between the two structures F,F0.
The (8.10) exposes the central feature of the model: the probability of folding into a
given structure F does indeed depend on the structural energy of the protein sequence,
E(F, s), but only through its difference with the energy of the other competing folds. The
probability Pnat(F|s) is therefore ruled by the competition between folds: the goodness
of a sequence as a folder for a structure F depends on its specificity, not on its absolute
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Figure 8.4: Lattice proteins on the 3⇥ 3⇥ 3 cubic lattice: four specific folds, denominated A, B,
C, and D, that have been used in the present work. Three contacts are highlighted on
structure A.

structural energy. If a sequence s has a high probability of folding into the structure F we
say that it is a good folder for that structure (a typical value is Pnat(F|s) > q = 0.99 [58]).

We will hereafter focus on the case of 3⇥ 3⇥ 3 cubic lattice, see Fig. 8.4. Each protein
is a sequence of N = 27 residues, arranged in one of NF = 103, 346 possible cubic folds
(estimated via enumeration, up to rotational and chirality symmetries [243]). The number
of contacts is the same, |C| = 28, for every structure. Note that the chain contacts between
two consecutive sites are not taken into account since they induce a constant factor (i.e.,
not fold-dependent) in the energy which is simplified in the (8.10).
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Figure 8.5: Families as subsets of sequence space in lattice proteins: Protein families, each corre-
sponding to a particular structure F = A, B, C, D, represent portions of sequence space
(colored blobs), in which all sequences (colored dots) fold into a unique conformation.
Many sequences are expected to be non folding, and not to belong to any family (black
dots). Figure and caption adapted from [58]

8.2.2 Sampling an MSA from a Lattice Protein family

As we saw, a sequence s is a good folder for the structure F0 if it is highly specific, i.e.,
the structural energy E(F, s) is low only for F = F0. In other words, a sequence can be a
good folder for (at most) one structure at the time. Therefore, we can partition the space
of sequences into non-overlapping sets of good folders for each of the NF structures (plus
the set of those that do not fold at all). An outline of this idea is shown in Fig. 8.5. The
set of good folders for the same structure defines a family of homologous proteins. The
shared functionality within a family is, therefore, folding into the same 3D conformation.

The in-silico nature of Lattice Proteins allows for sampling a collection of good folders
for a given structure, i.e., an MSA, under controlled conditions. As explained in [58]1,
sequences belonging to the family of structure F can be collected via Metropolis Monte
Carlo sampling of an effective Hamiltonian defined as

H
nat(s) := �b log Pnat(F|s) = b log

 
1 + Â

F0 6=F
e�DEF,F0 (s)

!
(8.11)

With a sampling temperature b that controls the average Pnat(F|s) of the collected
sequences (e.g. b = 1000 corresponds to a mean Pnat of c.a. 0.995). As we will see in the
next chapters, we can exploit this controllability to study how the sampling conditions of
the training MSA affects the performance of an inferred statistical model that aims to
predict the mutational landscape of a reference sequence, called wildtype, or swt. One of
the control parameters we will investigate is the mean homology between the wildtype

1 To ensure consistency with the previous chapters we here use a notation that is different from the one in [58],
where the sequences is noted as A and the structure as S.
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Figure 8.6: Biased sampling of MSA in Lattice Proteins: The four distributions of hamming dis-
tances from the wildtype are shown for four MSAs sampled with different biases b. Each
MSA is sampled by Metropolis Monte Carlo with b = 1000, T = 1000 thermalization
time steps between two collected sequences, B = 105 sequences.

and sequences in the sampled MSA. This parameter can be controlled by adding to the
effective Hamiltonian a biasing term in the Hamming distance (i.e., the number of sites
that have a different residue) to the wildtype [58], controlled by a parameter b

H
nat
b (s) := �b log Pnat(F|s) + b b dH(s, swt) (8.12)

where dH(s, z) := 1
N Âi(1� d(si, zi)) is the normalized Hamming distance between s and

z. In Fig. 8.6 we see an example of how the parameter b controls the mean Hamming
distance of the MSA. The Metropolis acceptance rule for the single mutation si!a (the
i-th site of the protein s is mutated into amino acid a) then becomes

P(accept si!a) = min

2

41,

 
1 + ÂF0 6=F e�DEF,F0 (s)

1 + ÂF0 6=F e�DEF,F0 (si!a)

!b

· e
b
N b(da,swt

i
�dsi ,swt

i
)

3

5 (8.13)

To ensure the independence of samples in the collection we add one sequence every
T Metropolis Monte Carlo steps to the MSA. In the present work, as done in [58],
we typically set T = 1000 and consider, without loss of generality, a fixed subset of
N0F = 10, 000 structures.
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8.3 outline of the following chapters

In the next chapters we will use Lattice Proteins to benchmark Potts-inference meth-
ods aimed at retrieving the single-point mutational landscape of a protein. The fitness
function in Eq. 8.10 is not a pairwise model since it contains terms of higher order that
model the competition between structures in the folding probability. Therefore, Lattice
Proteins reproduce an essential issue discussed in Section 8.1, namely the non-consistence
of the inferred (pairwise) and real model, making them a good compromise between
controllability and complexity.

In chapter 9, we will study how the single-mutation landscape of Lattice Proteins de-
pends on the fitness of the mutated sequence, and how this compares with the landscape
predicted by the inferred Potts model.

In chapter 10 we will show that a sparse model that includes, as a prior, structural
information outperforms the current standards in the common under-sampled regime,
introducing an adaptive method that yields optimal performances in both the under-
sampled and well-sampled cases.

Finally, in chapter 11, we will study how the predictive power of the inferred model
depends on the training MSA through few simple descriptors: the number of sequences,
that controls the variance of the Potts predictions, and the average Hamming distance
to the mutated protein, which, as we will see, is related to the bias of the inferred Potts
model. We will introduce a prescription, called focusing procedure, to choose the optimal
training MSA for the specific task of inferring the single-point mutations fitness effects
around one given sequence.
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C H A R A C T E R I Z AT I O N O F T H E M U TAT I O N A L L A N D S C A P E O F
L AT T I C E P R O T E I N S

This chapter is composed of two parts. In the first part, we will show how the shape
of the single-point mutational landscape of a Lattice Proteins, which is related to its
evolvability, depends on its fitness, i.e., its folding probability Pnat. As we will see, a
higher fitness corresponds to a smaller variance of the mutational landscape, an effect
that is derivable from the mathematical definition of the fitness

H
nat(s) := �b log Pnat(s) . (9.1)

In the second part, we will investigate how the single-mutation landscape predicted by
a Potts model, inferred from an MSA of homologous sequences, relates to the real one.
We will see that in the range of non-deleterious mutations we can derive a linear relation
with a slope that depends on the Pnat of the mutated sequence in the native structure and
on the energy of competing structures, using the derivation of the pressure lij obtained
by Jacquin et al. [58].

9.1 dispersion of the mutational landscape depends on the fitness

An essential question in protein design concerns the evolvability of a sequence, i.e., its
capacity to adapt to changing environmental pressures. During the evolutionary process,
a protein explores its local fitness landscape by mutating one or more amino acids on the
chain. The evolutionary paths, and consequently the evolvability of a protein, therefore
crucially depends on the shape of the local mutational landscape.

To investigate the local landscape of Lattice Proteins, we computed the set of all
possible single-mutation fitness effects

�
DHnat

ia
 

i,a defined as

DHnat
ia := �b log Pnat(si!a) + b log Pnat(s) , (9.2)

where s is the starting sequence, the notation si!a stands for the mutated s where the
amino acid a is placed on the site i, and b is the MSA sampling temperature (see Eq.
8.11).

In Fig. 9.1, we show an example of the distribution of single-mutational effects DHnat

on n = 36 Lattice Proteins with Pnat ranging from 0.985 to 0.999. Higher-fitness proteins
are, as common sense suggests, surrounded by sequences with a lower fitness (almost
all DH > 0 in panels belonging to the bottom row). However, the distribution of single-
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mutational effects gets more squeezed as the fitness increases, an effect that we can
quantify by computing the variance

s2(DHnat
ia ) =

1
27 · 19 Â

i,a

⇥
DHnat

ia
⇤2
�

"
1

27 · 19 Â
i,a

DHnat
ia

#2

(9.3)

A systematic analysis of the variance of the single-mutational landscape for n = 1000
proteins is shown in Fig. 9.2. To avoid the dominating effect of very deleterious mutations
(up to DHnat

⇠ 103) the variance is computed within a threshold H
nat < 15. As reported

in the figure, the scaling of the standard deviation s is linear in the Pnat of the mutated
sequence, i.e.

s
⇥
DHnat

ia (s)
⇤

µ b [1� Pnat(s)] (9.4)

This linear scaling can be explained, as shown below, by analytical development of the
definition of the fitness of Lattice Proteins.

9.2 derivation of s ⇠ (1 � Pnat ) scaling

Let’s consider a structure F0, defining a Lattice Protein family. The mutational landscape
of the protein s is defined as the collection of single-point mutation effects on its effective
Hamiltonian

DH
nat
i a := H

nat (s i!a ) � H
nat (s) = b log

 
1 + Â F 6=F0 e�GF ,F0 (s i!a )

1 + Â F 6=F0 e�GF ,F0 (s)

!
(9.5)

Where s i!a is the sequence s with the residue a placed on site i. In order to investigate
how the structure of the mutational landscape depends on the Pnat of the starting
sequence, we will develop the (9.5) to isolate the role of Pnat . By plugging the expression
of Pnat (8.9) in the (9.5), we can write

Pnat (s i!a ) =

 
1 + Â

F 6=F0

e�GF ,F0 (s i!a )

!�1

(9.6)

=

 
1 + Â

F 6=F0

e�GF ,F0 (s)�DGF ,F0 (s i!a ,s)

!�1

(9.7)

'

 
1 + Â

F 6=F0

e�GF ,F0 (s) [1 � DGF ,F0 (s i!a , s) ]

!�1

(9.8)

=

 "
1 + Â

F 6=F0

e�GF ,F0 (s)

#
� Â

F 6=F0

e�GF ,F0 (s) DGF ,F0 (s i!a , s)

!�1

(9.9)
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Figure 9.1: Characterization of mutational landscape, dependence on Pnat: Histogram of single-
mutation landscape DHnat

ia (s) for N = 36 different sequences s of increasing Pnat. To
avoid the dominating effect of mutations that cause very strong fitness drops (up to
⇠ 103) the variance is computed within the shown x range. The family-defining fold is
the structure A of [58].
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Figure 9.2: Characterization of mutational landscape, dependence on Pnat: Scatter of the standard
deviation of the mutational landscape

�
DHnat

ia
 

i,a for n = 1000 different Lattice Proteins
with Pnat ranging from 0.985 to 0.999. To avoid the dominating effects of deleterious
mutations and highlight the qualitative scaling the standard deviation is computed on
H

nat
ia < 15. In blue: average of y-values in 10 equally-spaced x intervals. In red is the

best linear fit of the blue points. The family-defining fold is the structure A of [58].

where we assumed that the gap difference DGF ,F0 (s i!a , s) is small, i.e., the mutated
sequence is still a good folder for structure F0. Note that we can write the gap difference
in terms of the Miyazawa-Jernigan structural energy E(s , F):

DGF ,F0 (s i!a , s) := GF ,F0 (s i!a ) � GF ,F0 (s) (9.10)

= E(s i!a , F) � E(s i!a , F0 ) � E(s , F) + E(s , F0 )

= �DE F0
i a + DE F

i a

Where DEF
ia is the structural-energy difference due to the single point mutation si ! a in

the fold F. By plugging this into the (9.9) we obtain

Pnat(si!a) '

 "
1 + Â

F 6=F0

e�GF,F0 (s)

#
+ DEF0

ia · Â
F 6=F0

e�GF,F0 (s) + Â
F 6=F0

e�GF,F0 (s) DEF
ia

!�1

(9.11)

'

 "
1 + Â

F 6=F0

e�GF,F0 (s)

#
+ DEF0

ia · Â
F 6=F0

e�GF,F0 (s)

!�1

(9.12)

where we assumed that the average over all the folds F of the structural energy difference
DEF

ia is zero. By using this into the (9.5) we obtain
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DHnat
ia ' b log

0

@

h
1 + ÂF 6=F0 e�GF,F0 (s)

i
+ DEF0

ia · ÂF 6=F0 e�GF,F0 (s)

1 + ÂF 6=F0 e�GF,F0 (s)

1

A (9.13)

= b log
⇣

1 + DEF0
ia · [1� Pnat(s)]

⌘
(9.14)

Since we assumed s to be a good folder for the structure F0, the term [1� Pnat(s)] is
small. We can therefore expand the logarithm to obtain the final form of our derivation:

DHnat
ia (s) ' b(1� Pnat(s)) · DEia (9.15)

Where for simplicity we dropped the notation F0. From Eq. 9.15 we retrieve the linear
scaling of the standard deviation observed in Fig. 9.2 by assuming that DEia, the MJ energy
difference due to a mutation, is a random variable (on the indexes i, a) equally distributed
across different sequences. This assumption is, of course, a gross approximation, but
qualitative explains the linear scaling observed in the analysis of Fig. 9.2.

9.3 relationship between potts and real landscapes depends on the
fitness

As we saw in the previous chapter, several works in the literature have focused on
retrieving the mutational landscape of a protein by inferring a Potts model from a
collection of homologous sequences [44, 58, 234]. In the next chapters, we will use Lattice
Proteins as a benchmark to understand how the performance of inference models depends
on different sampling conditions. We will here make a preliminary characterization
of the relationship between the inferred parameters and the real mutational landscape,
integrating some results obtained by Jacquin et al. in [58].

An example of the comparison between inferred and real single-mutations landscape
is shown in Fig. 9.3, where the x-scale has been set as linear for x < 15 and log for x > 15
to highlight the fact that some mutations are extremely deleterious for the real fitness
(Pnat < 0.3 =) DHnat

⇠ 103), while the Potts prediction saturates at DHPotts
⇠ 15.

This saturation is explainable from the fact that the model is inferred from a very-
low-temperature sample of the probability of folding Pnat (see Eq. 8.11). The value we
used for the sample, b = 1000, results in a MSA of homologous proteins with typical
value of Pnat ⇠ 0.995 (see [58, 241] for a discussion on the role of b). The Potts model is a
low-mode (pairwise) approximation of the rough and complex real fitness landscape of
Lattice Proteins. The pairwise order of its interaction limits its resolution in the sequence
space. In the process of solving the inverse Potts problem, we find the model that better
adapts this smooth approximation to the typical sequence data in the MSA. It is therefore
natural that a Potts model inferred from a collection of good-folders (typical Pnat ⇠ 0.995)
is unable to quantitatively characterize very deleterious mutations (Pnat < 0.5). The value
of these mutations is therefore mainly set by the regularization and other priors [244].



142 the mutational landscape of lattice proteins

nat

5

0

5

10

15

P
o
tt
s

=0.958

-5 0 5 10 15 100 1000
nat

0

20

40

60

co
u
n
t

-5 0 5 10 15 100 1000

Figure 9.3: Inference of the single-mutation landscape of Lattice Proteins comparison between
real and inferred single-mutation landscape in a case of good sample (number of training
sequences B = 105). The protein family is the one corresponding to structure C in [58].

The non-linearity of the relationship between inferred and true fitness, as is the case
for mutagenesis experiments on real proteins [44, 234], makes the standard Pearson
correlation coefficient unfit to describe the performance of the predictions. As done in
recent related works [44, 244], we will, therefore, use the Spearman coefficient r, i.e.,
the Pearson coefficient of the rank, as a measure for the performance of the inferred
Potts model. As shown in Fig. 9.3, the Spearman coefficient is very high despite the
strong non-linearity of deleterious mutations. In this and the next chapters, we will time
by time restrict our analysis to a subset of mutations, usually the ones that keep the
protein foldable, in order to highlight quantitative or qualitative features of the inferred
mutational landscape.

From Fig. 9.3 we can see that the bulk of mutations that are in the range DHnat < 2� 5
are more linearly predicted by the Potts model, although with a slope 6= 1. By analyzing
the slope of the bulk of non-deleterious mutations on several different sequences we see
that the slope depends on the Pnat of the mutated protein, see Fig. 9.4. In particular, we
observe that as Pnat increases, the slope of the bulk gets smaller and smaller. To explain
this behavior, we combined the derivation of Eq. 9.15 with the equation for the pressure
obtained by Jacquin et al. in [58].



9.3 relationship between potts and real landscapes depends on the fitness 143

Figure 9.4: Characterization of mutational landscape, dependence on Pnat: Scatter plots of Potts
(y axis) vs real (x axis) mutational landscape of N = 36 sequences. For coherence with
the theoretical approximations, the analysis is performed on the bulk of non-deleterious
mutations, i.e., Hnat

ia < q = 2 (see also Fig. 9.4), and for good folders, i.e., Pnat > 0.995.
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In [58] (Main text Eq. 1), Jacquin and collaborators derived an approximated equation
that relates the inferred Potts couplings Jij(a, b) with the Miyazawa-Jerningan energy
e(a, b):

Jij(a, b) ' �lij e(a, b) , (9.16)

where lij is a pressure term that depends on the fold structure, on the sampling condi-
tions, and on if the pairs (ij) are in contact or not in the competing structures. The Potts
inferred fitness difference of a single mutation for a sequence s can be written as

DHPotts
ia (s) = � (hi(a)� hi(si))�Â

j 6=i

⇣
Jij(a, sj)� Jij(si, sj)

⌘
(9.17)

By plugging the Eq. 9.16 into this definition, and ignoring the sub-leading field term we
find

DHPotts
ia (s) ⇠ �Â

j 6=i

⇣
Jij(a, sj)� Jij(si, sj)

⌘
(9.18)

' Â
i 6=j

lij

⇣
e(a, sj)� e(si, sj)

⌘
(9.19)

⇠ l̄ DEia(s) (9.20)

Where we made the approximation lij ⇠ l̄ = the average pressure computed on all the
couples ij. By combining Eq. 9.20) with Eq. 9.15 we find the equation that relates the
inferred mutational landscape with the real one:

DHPotts
ia (s) '

l̄

b(1� Pnat(s))
DHPnat

ia (s) (9.21)

To investigate the validity of this derivation, we inferred the fitness landscape of n = 1000
different sequences by retrieving a Potts model with PLM [44, 56], from an MSA of
B = 105 homologous sequences. Results, reported in Fig. 9.5 show that, in a range of
reasonable validity of the approximations (Pnat > 0.995, DHia < 2), we indeed observe a
linear relation between the slope of the bulk of non-deleterious mutations and the Pnat of
the mutated sequence.

Moreover, we can estimate the parameter l̄ by best fit of the linear relationship in
(9.21) on the N = 1000 points. Surprisingly, the retrieved values of l̄ are very similar to
the ones reported in [58] (structure A: 1.94 compared to 2.00; structure C: 1.32 compared
to 1.32). However, note that our estimation of l̄ changes with the threshold q used in
the definition of the bulk, and can vary up to ±0.5 depending on the parameters of the
analysis. Therefore, this result should be taken as a qualitative agreement and not as a
precise quantitative estimation.
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Figure 9.5: Characterization of mutational landscape, dependence on Pnat: Top: structure A; bot-
tom: structure C. Scatter of the slope of Potts-vs-real mutational landscape against

1
b(1�Pnat(s))

for N = 1000 different sequences s. To ensure coherence with the theoretical
approximations the analysis is performed on non-deleterious mutations, i.e., DHnat

ia < 2,
and for good folders of the native structure, i.e., Pnat > 0.995. In blue: average of
y-values in 10 equally-spaced x intervals. In red is the best linear fit of the blue squares.
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I M P R O V E S F I T N E S S P R E D I C T I O N S I N U N D E R - S A M P L E D R E G I M E

In the previous chapter we studied how the Potts-inferred mutational landscape compares
with the true one, defined through the log-Pnat difference between the mutated and the
original sequence. The current standards to retrieve the Potts model from MSA data
are pseudo-likelihood maximization (PLM) [44, 234] and adaptive cluster expansion
(ACE) [227, 244]. The aim of this chapter is to show that to infer a fully-connected Potts
model is rarely the optimal choice for typical applications where, contrarily to the case
of synthetic data, the number of training data (the MSA) is limited by the available
sequenced proteins for the relevant family.

10.1 introduction

Balancing the complexity of the inferred model according to the amount of available
data is a task of primary importance in statistical inference. As known from the statistics
literature, if a model is over-parametrized it will yield predictions with a high variance,
while an under-parametrization will cause biased predictions due to un-modeled degrees
of freedom. In the context of modelling proteins from sequence data with the inverse
Potts model, this problem is today of central importance since the number of inferred
parameters systematically outnumbers the available sequences in the training MSA.

The number of parameters of a fully-connected Potts model is P = 202
·

N(N+1)
2 '

200 N2, N being the number of amino acids of the analyzed protein. To give an order of
magnitude, the MSA used by Figliuzzi et al. [234] for predicting the mutational landscape
of TEM-1 has B ' 3000 sequences and N = 197 sites, corresponding to P ' 7 · 106

parameters. The number of available sequences in the 34 MSAs used by Hopf et al. [44]
to predict as many mutagenesis experiments range from B ⇠ 102 to B ⇠ 105, while
the number of parameters inferred for the corresponding fully-connected Potts models
(50� 500 sites) range from P ⇠ 105 to P ⇠ 107.

In the same work, Hopf and collaborators tested the predictive power of the coupled
Potts model (called "epistatic" model) and of the independent Potts model (i.e., only
average values are matched with hi(a)). They reported a superior performance of the
coupled Potts model on c.a. 2/3 of the families. The remaining part showed an equal or
better performance for the independent model. These results suggest that by varying the
complexity of the model (the number of inferred parameters P) by interpolating between
the independent and the fully-connected model, one could find an optimal point P⇤,
corresponding to the best bias-variance tradeoff of the statistical inference.

The classic way to reduce the number of parameters is to enforce the sparsity of the
model by using a `-1 regularization [32], which was shown to yield the correct topology

147
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of a sparse interaction graph in the under-sampled regime. Practical applications usually
employ an `-2 norm, that corresponds to a Gaussian prior on the value of the inferred
parameters [31, 44, 56, 234]. However, there is no global consensus on how to choose the
optimal prior strength for a given number of training data points, since it is hard to
precisely relate it to the effective number of inferred parameters.

Here, we test a sparse version of Potts inference, introduced in [47], where the in-
teraction graph is enforced basing on the 3D contact structure of the analyzed Lattice.
We show that this sparse method sensibly improves the performance of single-point
mutations predictions, with respect to current standards, in the common under-sampled
regime.

We then benchmark an unsupervised approach based on a sparse version of the cross-
entropy minimization which only uses some prior knowledge on the degree of sparsity of
the original interaction graph [244]. We show that the optimal performances are obtained
when adapting the sparsity of the inferred graph to the number of available data points,
i.e., the number of sequences in the training MSA, providing a rule of thumb to obtain
optimal predictions without the need of fine-tuning prior parameters.

This work has been carried out in parallel on the analysis of real protein data done by
F. Rizzato. Part of her results on mutagenesis experiments is presented here to highlight
the generality of these approaches. The joint work will be included in a paper now at the
draft stage [8].

10.2 results

cmap-ACE inference improves fitness predictions in the undersampled regime

In the case of Lattice Proteins, we know the real contact map of the 3D fold that defines
the protein family. It is known that the strongest inferred Potts couplings, defined with
the Frobenius norm of the interaction matrix Jij(a, b), are good predictors of the structural
contacts in the fold [58]. Here we test the inverse idea, i.e., that the most informative
functional couplings in the inferred Potts model are the ones between sites that are in
contact. If this is true, we could exploit the structural information to infer only the most
relevant parameters when only a small number of training points are available.

For the inference, we used a two-site cluster approximation limited to the sites that are
in contact in the tridimensional structure of the protein [31]. This expansion is exact in
the case of tree-like connectivity. Therefore, it is expected to be a good approximation
in the case of very sparse connectivity, which is the case of Lattice Proteins (28 contacts,
27 sites). For simplicity, we have here re-written a single-purpose version of the cluster
expansion code, see Methods and the upcoming publication for reference [8].

We first compared cmap-ACE against standard models in the literature, i.e., DCA via
pseudo-likelihood minimization (PLM) [44, 56], ACE, and the independent Potts model
(IND). As shown in Fig. 10.1, the structural Potts model sensibly outperforms the other
models in the under-sampled regime (B  1000 · N).
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Figure 10.1: Structural Potts compared to PLM and independent Potts model. Top:performances,
measured by the Spearman coefficient of the inferred and real mutational landscape, as
a function of the number of sequences in the training MSA for the cmap-ACE (blue),
PLM (green) and independent Potts model (orange). For each B the mean and standard
error of the inference performance are computed on 256 different wildtypes. Bottom
histograms of inference performances, computed on the 256 wildtypes, for the three
compared models at three different values of B. Analysis performed on structure C and
D in [58], on mutations with DHnat < q = 25.
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Figure 10.2: Structural Potts: comparison between real and random contacts 25 draws of 28 ran-
dom contacts. Each point represents the average over n = 64 sequences drawn from the
MSA of structure C.

We then tested how this improvement depends on the specific choice of the 28 real
contacts, by performing the SP inference on n = 25 random sets of K = 28 different site
couples (instead of the real contacts), for three different B in the under-sampled regime.
Results, shown in Fig. 10.2, confirm that the parameters inferred on the connectivity
graph defined by structural contacts are especially relevant for fitness predictions.

Adapting the complexity of the inferred model to the number of data: SP-ACE

The results above depend on the fact that we already know the contact structure of the
protein. In practical applications, however, the 3D structure of the wildtype is rarely
given. One possible procedure (that we are applying to real proteins [8]) is to infer the
contact structure by classic DCA [56] and use the retrieved contact map as imposed
topology for the sparse Potts inference. However, it is still unclear how to determine the
precise number of structural contacts to infer from sequence data [227].

Here we show that, in the context of fitness inference from sequence data, the number
of bounds in the graph of interaction should be adapted to the number of available data
points. For the case of Lattice Proteins, it has been shown in [58] that the largest inferred
couplings reflect the interactions on the site in contact on the native fold. However,
additional non-zero inferred couplings might correspond to the constraint of not-folding
in competing structures (negative design). Therefore, in the case of large available data,
we should retrieve these additional couplings to refine our fitness estimations.

To test how to adapt the sparsity of the inferred graph to the number of data, we
introduce a sparse model based on the adaptive cluster expansion approximation of the
cross-entropy [45, 47, 244]. The sparsity of the inferred interaction graph is obtained by
truncating the expansion when the total number of non-zero interactions Jij reaches a
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pre-determined number of contacts K, that is adjusted on the number (B) of available
sequences in the MSA. Such sparse inference has been shown to be optimal when recon-
structing Erdős-Rény models from configuration sampling data [244]. If the cross-entropy
contribution is a good criterion for quantifying the relevance of inferred parameters,
the resulting interactions are the most relevant for the functionality, either structural or
biochemical, of the analyzed protein family. This method is referred to as structural-prior
adaptive cluster expansion (SP-ACE).

We tested the performance of the SP-ACE model on Lattice Proteins from the structures
C and D. As a rule of thumb, the routine is stopped when the number of 2-clusters
reaches a threshold K(B) such that the number of inferred parameters P equals the
number of available sequences B, i.e.

K(B) =
B� N · Q̄

Q̄2
, (10.1)

where Q̄ is the average number of colors and Q̄2 is the mean size of the Jij matrix after
compression of unseen colors, see also Methods for details. In Fig. 10.3 we compare the
SP-ACE model for different B and different numbers of inferred contacts K. As expected
in the case of the Lattice Proteins, where the 28 structural contacts strongly dominate the
fitness function, the best performances are obtained for either K = 28 (when K(B) < 28,
upper panels) or for K(B) as expressed in Eq. 10.1, when greater than 28 (lower panels).
This result confirms the hypothesis that the ACE routine automatically selects the most
relevant couples of sites during the SP-ACE inference.

In Fig. 10.4 we show how the inference performance varies with B for the SP-ACE
model with K = K(B) (black line) and K = max[N, K(B)] (SP-ACE-N, red line). As
we expected from the results of the analysis shown in Fig. 10.3, the SP-ACE model is
outperformed by the SP-ACE-N and cmap-ACE with the real contacts in the under-
sampled regime (B < 104), still showing superior performances than both PLM and
the independent models. When B is large (B > 105), however, SP-ACE and SP-ACE-N
become equivalent to PLM in yielding the best performance. Therefore, SP-ACE-N
is equivalent or superior to all models, including cmap-ACE with real contacts, in
both the under-sampled and well-sampled regimes. Importantly, SP-ACE-N yields
performances comparable to cmap-ACE without the need of knowing a-priori the contact
map. Interestingly, the full ACE outperforms PLM in the sub-sampled regime, thanks to
the cluster-selection routine that automatically retrieves a sparser model. The convergence
of the SP-ACE inference, however, is much faster than the one of the full ACE inference
(minutes-hours against hours-days, see [244] for more detailed benchmarks).

Adapting the complexity of the model to the number of data: real proteins

We will here present some early results of the analysis performed by Francesca Rizzato
on four data sets that were analyzed in [234] and [44]. This part is a work in progress
and will be included in a future publication [8].
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Figure 10.3: Role of the number of bounds K in SP-ACE inference. Black lines show the mean
performance (over 256 wildtypes) of the SP-ACE model performed with different
sparsities, i.e., a different input value of K. The SP-ACE is compared to the fully
connected PLM (green triangle), the independent model (orange triangle) and the
cmap-ACE model (blue square). Each model is positioned on the x-axis according to
the number of inferred parameters related to the number of training data B. Structure
C, 256 wildtypes, q = 25.

The model used for the analysis on real protein datasets is 2-site clusters approximation
such as the one used for cmap-ACE inference (see methods and [31]), where the contact
map is inferred by application of PLM-DCA [56] on the same MSA. For each data set four
sparse models, with a variable number of inferred contacts, have been tested. Calling N
the lenght of the protein, the sparsity was set such that the number of clusters K equals
0.5N, N, 2N, 3N.

In Fig. 10.5 we compare these models with PLM and the independent model, showing
that the performance has a maximum for one of the sparse structural models (leftmost
points of each curve are the performance of PLM, rightmost refer to the independent
model). For all four families, the performance peak (green circle) is in the vicinity of
P = B, suggesting that the P = B criterion could be a practical rule of thumb to approach
the optimal inference in the subsampled regime.
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Figure 10.4: Performance of SPACE and SPACE-N compared Spearman coefficient of the inferred
and real mutational landscape, as a function of the number of sequences in the training
MSA, for the SP-ACE (black dotted line), ACE (purple dotted line), and SP-ACE-N (red
line), compared to the three models reported in Fig. 10.1. For each B the mean and
standard error of the inference performance are computed on 256 different wildtypes.
q = 25.
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Figure 10.5: Adapting the sparsity of the inferred Potts model: real data. Performance, computed
as the Spearman coefficient between inferred mutational landscape (using cmap-ACE)
and the one estimated by mutagenesis experiments, as a function of the sparsity of
the inferred model. Since true contacts are not known a priori, they are first estimated
by DCA using PLM [57]. Performances of cmap-ACE are compared to the ones of
fully-connected PLM (leftmost points) and independent model (rightmost points). The
optimal sparsities are highlighted by green circles, the dashed black line represents the
rule of thumb B = P. Analysis performed by Francesca Rizzato [8].
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10.3 discussion

In this work, we tested the idea of adapting the sparsity of the inferred Potts model,
aimed at retrieving the fitness landscape of a protein from sequence data, to the number
of available training sequences in the MSA.

Deriving meaningful observables from the inferred Potts model in the under-sampled
regime is highly non trivial, and the meaning of the inferred parameters are still object
of debate in the DCA community [235, 236]. Therefore, reducing the number of inferred
parameters is a problem of central importance for practical applications as well as
theoretical interpretation of the inference results. The work here presented follows a
number of propositions, in the literature, to tackle this problem. Examples include
clustering multiple sites in one single variable [245], or pre-selection of the most relevant
set of couplings [246, 247], an approach that has been proven successful in providing
biologically-meaningful predictions on genome-wide modelling [225]. Another approach
to the reduction of inferred parameters, proposed by members of our group, is to decrease
the number of colors-per-site, a procedure called "color compression" [244].

We implemented an ad-hoc version of the 2-cluster approximated inference introduced
by Barton et al. [47], previously carried from the ACE routine with the composition of
the commands �cmap and �t 1. This routine is tested on Lattice Proteins, showing
that adapting the sparsity on the known set of structural contacts leads to a significant
improvement, in the under-sampled regime, with respect to standard plmDCA, however
being limited when the number of data increases. We then tested an unsupervised
method that adapts the sparsity following the rule of thumb P (number of paramters)
= B (number of data). As expected, this model is equivalent to plmDCA and ACE
for large B, while yielding superior performances in the regime of low number of
data. Overall the findings on Lattice Proteins suggest that one can adapt the sparsity
of the model, including only the most informative parameters by imposing a hard
constraint on the topology of the inferred interaction matrix J. In the case of fitness
predictions from sequence data of real protein families, one could, therefore, leverage on
structural or functional information, for example, if some sites on the chain are known
(or inferred [248]) to play a crucial role in the function of the protein, to choose to model
only a selected subset of the interactions.

Therefore, we propose these approaches as unsupervised methods to obtain close-to-
optimal predictions in both the under-sampled and well-sampled regime. This work has
been carried in parallel with the analysis of real protein data sets from Francesca Rizzato,
and will be included in a joint publication [8].

The presence of an optimum in the axis of model complexity is often referred to as
"bias-variance tradeoff" in the statistics literature [249, 250]. In the next chapter, we will
give a more precise description of how bias and variance control the performance of the
Potts model in retrieving the fitness landscape of a protein.
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10.4 methods

Contact-map cluster expansion (cmap-ACE) with known contacts

The inference is performed by considering the 2-cluster approximation of the inverse
Potts model [31]. This approximation can be solved analytically in the case of non-
regularized inference. In the present work we used a Bayesian regularization lh = 0.1

B
for the field terms and lJ =

1
B for the coupling terms, therefore the problem has to be

solved numerically. The cross-entropy (log likelihood with a minus sign) of each two-site
(ij) inverse problem is

Sij =
Qi ,Qj

Â
a,b=1

J(ij)ij (a, b) · pij(a, b) +
Qi

Â
a=1

h(ij)i (a)pi(a) +
Qj

Â
b=1

h(ij)j (b)pj(b) (10.2)

+ log

0

@1 +
Qi

Â
a=1

eh(ij)i (a) +
Qj

Â
b=1

eh(ij)j (b) +
Qi ,Qj

Â
a,b

eh(ij)i (a)+h(ij)j (b)+J(ij)ij (a,b)

1

A (10.3)

+ lh ·

0

@
Qi

Â
a=1

h
h(ij)i (a)

i2
+

Qj

Â
b=1

h
h(ij)j (a)

i2
1

A+ lJ ·

0

@
Qi ,Qj

Â
a,b=1

h
J(ij)ij (a, b)

i2
1

A , (10.4)

where Qi and Qj is the total number of un-compressed colors on sites i and j (see [226,244]
for color-compression in the Potts inference). The gradient is

rSij =

 
∂Sij

∂h(ij)i (1)
, . . . ,

∂Sij

∂h(ij)i (Qi)
,

∂Sij

∂h(ij)j (1)
, . . . ,

∂Sij

∂h(ij)j (Qj)
, (10.5)

∂Sij

∂J(ij)ij (1, 1)
,

∂Sij

∂J(ij)ij (1, 2)
, . . . ,

∂Sij

∂J(ij)ij (Qi, Qj)

!
(10.6)

The function is minimized for each couple of sites (i, j) in the contact map C, by Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm (scipy implementation), and the final
fields and coupling are built, following [45], as

hi(a) = hind
i (a) + Â

j2Ci

Dh(ij)i (a) (10.7)

Jij(a, b) = Jji(b, a) = J(ij)ij (a, b) (10.8)

Where Ci is the set of sites that are in contact with i, Dh(ij)i (a) := h(ij)i (a)� hind
i (a), and

hind = log(pi(a) + p0). The pseudo-count p0 = 1
B is added to the 1-point averages to

avoid divergent solutions.
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Structural-prior adaptive cluster expansion (SP-ACE)

The method is a declination of the cross-entropy cluster expansion described in [33,
45]. Briefly, the cross-entropy of the inverse problem is expanded into all k-cluster
contributions

S(h, J|MSA) =
N

Â
k=1

Â
G2Ck

SG (10.9)

Where Ck is the set of all subsets of size k of the N sites. The inference process
starts from clusters of size two and includes all those clusters whose contribution to
the total cross-entropy is above a threshold qt. For larger k, only clusters composed
of previously-included clusters are considered. At the next iteration, the threshold q
is lowered qt+1 = qt � Dq, therefore more clusters are included in the expansion. The
iteration stops when desired criterion of convergence (usually defined through the largest
error et in the moment-matching conditions) is matched by the proposed solution (ht, Jt).

Here we employed the criterion of convergence introduced in [244]: we monitor the
number of 2-clusters included in the expansion at each iteration, and we stop the process
at when this number reaches a pre-determined number K. The corresponding iteration
is called tK . Then we analyze the profile of the largest error of the moment-matching
condition et (4th column of ACE output from https://github.com/johnbarton/ACE)
for all t < tK , and we take the threshold qt⇤ that corresponds to the lowest error, i.e.,
t⇤ = argmint et. The corresponding Potts model (ht⇤ , Jt⇤ ) is then returned. This corre-
sponds to the best ACE solution conditioned to have a topology of interaction with K or
fewer bounds.

The number of two-clusters K is chosen such that the total number of inferred parame-
ters P is equal to the number of available training points. In the case of compressed-color
Potts inference [244] we restrict the inference to Qi colors for each site i, which corre-
spond to the number of Potts states a such that pi(a) > pcut. In the present work we use
pcut = 0, i.e., we set the value of unseen colors to a Bayesian prior value punseen = B�1.
As a consequence, the total number of inferred fields is Q̄ · N, with Q̄ := 1

N Âi Qi. Each
pairwise interaction of the included K yields a number of parameters that depend on the
values of Qi. To estimate a-priori this value we computed the average coupling matrix
size as Q̄2 := 2

N(N�1) Âi<j QiQj. The number of interactions is therefore set as

P = K · Q̄2 + N · Q̄ =) K(B) =
B� N · Q̄

Q̄2
(10.10)

https://github.com/johnbarton/ACE
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Note that both Q̄ and Q̄2 can be computed directly from the MSA. In the SP-ACE-N
version we exploit the fact that the dominant interactions in Lattice Proteins are of the
order of the number of sites (28 contacts for 27 sites) and use

K = max
✓

N,
B� N · Q̄

Q̄2

◆
(10.11)

Finally, if K � N(N�1)
2 we use the normal ACE routine [47] until convergence.





11
T H E F O C U S I N G P R O C E D U R E : S E L E C T T H E O P T I M A L T R A I N I N G
M S A F O R F I T N E S S P R E D I C T I O N S

11.1 introduction

Retrieving the mutational landscape of a protein is a problem of fundamental importance
in bioinformatics and in biology in general. In bioengineering, characterizing the local
fitness landscape of a specific sequence can guide the de-novo design of highly-functional
mutants of a known genotype; in vaccine-antibiotics design, knowledge of the mutational
landscape of a protein is of fundamental importance due to its tight relation to the
evolvability (therefore the escape capability) of the host specimen from external, drug-
induced, pressure [251, 252]. It has recently been shown that the max-entropy statistical
model inferred from the alignment of homologous sequences (MSA), called Potts model
in Statistical Physics, outperforms standard bioinformatics and biophysics methods
in predicting the single-point mutation effects observed in mutagenesis experiments
[44, 234, 252].

Performances, however, with Spearman coefficients typically ranging from r ⇠ 0.4 to
r ⇠ 0.7 in the best cases, are far from being optimal. The max-entropy approach indeed
suffers of a number of limitations [235, 236]. Among others, two key issues that affect the
performance of the retrieval of single-mutation effects are

(a) the Potts model is a low-order approximation of the complex and rough fitness
landscape explored by evolution, from which sequences included in the training
MSA are drawn. This inconsistency, therefore, leads to biased estimations, due to
un-modelled high-order couplings and unknown degrees of freedom.

(b) the number of available sequences in the training MSA is usually much lower
than the number of inferred parameters. The over-parametrization of the statistical
model causes a high variance of its predictions, affecting the retrieval performance.

In this chapter, we will use Lattice Proteins as a model to investigate both these issues
in the context of bias-variance tradeoff [249, 250, 253]. We will show that, given one MSA,
the performance of the model inferred from it can be predicted in terms of two simple
descriptors: the number of sequences B, which is connected to the scaling of the variance
(b), and the average Hamming distance D from the wildtype, which is related to the
bias (a) of the inferred model. We will derive a scaling law for the performance as a
linear sum of two terms that are computable a priori from the sequence data in linear
time. From this derivation, we will show that one can improve the performance of the
inference model by choosing a subset of the MSA that is optimal in terms of bias-variance
tradeoff. We will finally present a procedure, called focusing, that retrieves the optimal
training set from a starting MSA.

159
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11.2 bias-variance tradeoff in independent-potts inference

As pointed above, the probability of observing a sequence in nature is clearly not a simple
exponential model truncated to pairwise interaction terms. Even in the reasonable, but
not obvious, approximation that this probability is related to a fitness function F that
depends on the sequence only, i.e. (in the exponential formulation)

P(s) =
eF (s)

Z
, (11.1)

this latter will certainly contain terms of any order of interaction. Being defined over a
discrete set (all sequences of length N), we can always write F (s) as a sum of all possible
interaction terms for all the possible combinations of amino acids, times a delta function
that is one only if the sequence s displays that specific combination on those specific
sites. By defining qppp(a) as the fitness interaction term that the amino acids a = a1, a2, . . .
would yield if placed on sites ppp = (p1, p2, . . . ), we can therefore expand F as:

F (s) = Â
ppp2P(N)

Â
a:|a|=|ppp|

qppp(a) d(sppp , a) (11.2)

Where P(N) is the set of all possible combinations of sites of any size from 1 to N,
d(sppp , a) := d(sp1 , a1) · d(sp2 , a2) · · · , and |a| is the number of elements in the vector a. If
we separate the sum into the n-wise interaction terms, we can write it as

F (s) =
N

Â
n=1

Â
ppp:|ppp|=n

Â
a:|a|=n

qppp(a) d(sppp , a) (11.3)

If we truncate the sum to pairwise terms (|ppp|  2), we retrieve a (minus) Potts energy
function, where the values of ppp can only take single indexes and pairs, i.e.

ppp 2 {1, 2, . . . , N, (1, 2), (1, 3), . . . , (1, N), . . . , (N � 1, N)} (11.4)

and the parameters q are fields and couplings, i.e.

(
qi(a) = hi(a)
qij(ab) = Jij(a, b)

(11.5)

As for the Potts Hamiltonian, the function F is over-parametrized. We therefore need to
choose a gauge sequence s0 such that all multi-body interaction terms qppp(a) that contain
at least one amino acid ai equal to the gauge sequence on the site pi, i.e. s0

pi
= ai, are

0. This ensures that F (s0) = 0. In what follows we will conveniently gauge our theory
on the wildtype sequence (the one whose mutational landscape we want to predict), i.e.
s0 = sWT .
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Let’s now suppose that, in an idealized situation, we are able to sample a large
collection of natural sequences

�
s1, s2, . . . , sB , which all differ from the wildtype sWT

by only one single mutation. Assuming that all the sequences are unbiasedly sampled
from the same fitness function, the characterization of the single-mutation landscape of
the wildtype would be, in this case, straightforward. Indeed it would only require to
compute the statistics of amino acids on single sites, since nature itself provided us with
a good sample of the local landscape region that we want to characterize. Formally, we
would invert the single-point statistics

pi(a) =
1
B

B

Â
k=1

d(sk
i , a) , (11.6)

to infer an independent Potts model. Since we chose the wildtype as the gauge of the
fitness expansion in (11.2), we will have

F (s0
i!a) = qi(a) =)

pi(a)
pi(s0

i )
=

Prob(swt
i!a)

Prob(s0)
= eqi(a) . (11.7)

Therefore, irrespectively of the complexity of the real fitness function F , the independent
Potts field hi(a) computed from the single-site statistics will correctly retrieve the single-
point fitness difference:

�DHPotts
ia = hi(a) = log

pi(a)
pi(swt

i )
= qi(a) . (11.8)

In other words, in this idealized scenario there is no background effect on the single
mutations, and therefore we can directly access an unbiased estimation of the local
landscape of the wildtype.

This is of course not true in the still-idealized but less-convenient scenario where only
sequences at distance two are available. In this case, the single-point statistic pi(a) would
not be sufficient to retrieve the fitness effect of the mutation i! a, since the amino acid
on the "second" mutated site will interact via pairwise epistasis, biasing our single-point
estimation. The fitness of a sequence at distance two from the gauge is

F (s0
i!a,j!b) = qi(a) + qj(b) + qij(ab) (11.9)

which leads to a single-point statistic

pi(a)
pi(swt

i )
'

Â
s at D=2

P(s) d(si, a)

Â
s at D=2

P(s) d(si, swt
i )

(11.10)

=

Â
j 6=i

Â
b

eqi(a)+qj(b)+qij(a,b)

Â
j,k 6=i

Â
b,c

eqj(b)+qk(c)+qjk(b,c) (11.11)

:= eqi(a)Xi,a (11.12)
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where Xi,a :=
Â
j 6=i

Â
b

eqj (b)+qij (a,b)

Â
j,k 6=i

Â
b,c

eqj (b)+qk (c)+qjk (b,c) depends on the specific mutation we are inferring.

Therefore, when we infer our independent Potts parameter we will obtain a biased
estimation

�DHPotts
ia = hi(a) = log

pi(a)
pi(swt

i )
= qi(a) + log Xi,a 6= qi(a) (11.13)

This argument can be generalized to any distance greater than two, and consequently
to any order of epistasis: the larger the number of mutations, i.e., the Hamming distance,
the more important is the bias induced by high-order background effects to single-points
estimations. In an idealized scenario, therefore, the best choice to characterize single-
point mutations would be to build an MSA with only sequences at distance D = 1 and
infer an independent Potts model from it. Some single-point mutagenesis experiments
indeed reproduce a controlled version of this scenario. They yield unbiased estimations
from single-point statistics since the fitness effect is retrieved from observations of the
survival rate of organisms all of which express the same protein except for one single
mutation.

The performance r scales with the descriptors B and D

Thanks to the controllability of the training MSA of Lattice Proteins we can test the idea
put forward in the previous section, i.e., that the mean Hamming distance D affects
the performance of the inferred model due to its relation with unmodelled high-order
terms. We performed a systematic analysis by sampling several MSAs with controlled
descriptors D and B and tested the retrieval performance r of an independent Potts
model inferred on these training data. To obtain a fine-controlled distance D, we started
from four main-MSAs sampled with different values of b = 0.0, 0.025, 0.050, 0.075 in
Eq. 8.13 (controlling the distance), following the method described in [58]. We then
built a training MSA by mixing sequences from the four main MSAs with an iterative
procedure that stops when the sample reaches the desired mean Hamming distance D
and the number of sequences B.

In Fig. 11.1 (left panel) we show 9 examples of the comparison between retrieved and
real single-point mutational landscape in as many different sampling conditions of the
training MSA. We observe that the retrieval performance, measured by the Spearman
correlation coefficient r, depends on the two descriptors D (left panel, y axis) and B (left
panel, x axis). Intuitively, a larger number of training data corresponds to more accurate
inference. Interestingly, we also observe that models trained on MSAs with smaller mean
Hamming distance D yield the best performances, confirming the role of this descriptor
in affecting the inference precision. A systematic analysis of several combinations of the
descriptors, reported in Fig. 11.1 (right panel), shows that the performance r depends
almost linearly from both of them. In the next section, we will try to explain this linear
dependence by framing the inference problem in the context of bias-variance tradeoff.
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Figure 11.1: Linear dependence on B and D of the performance r. Left: 9 examples of the com-
parison between independent-Potts-inferred and real single-mutation landscape of a
wildtype sequence in different sampling conditions of the training data. A dependence
on the number of data (B) and the mean hamming distance of sequences in the MSA
from the wildtype is reported. Right: the performance r (Spearman coefficient of
inferred and real mutational landscape) is inversely proportional, almost linearly, to the
value of the two descriptors D and 1/B. Each point is the average r obtained on n = 10
different MSAs with fixed descriptors.
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Computation of bias and variance

It is known from the statistics literature that the mean squared error (MSE) of an estimator
bY, for a variable Y, can be divided into a linear sum of two terms: the squared bias
(µ2) and the variance (s2) of the estimator, plus a term that does not depend on the
estimator [249, 253]

h

⇣
bY�Y

⌘2
i

| {z }
MSE

=
⇣
hbY�Yi

⌘2

| {z }
µ2:=bias2

+
⇣
hbY2
i � hbYi2

⌘

| {z }
s2:=variance

(11.14)

where h.i is the average over the probability distribution of the sample data from which
the inference is performed. By recalling our variables bY = DHPotts

ia and Y = DHnat
ia , the

bias and variance of each estimator (for each single-point mutation i, a) are therefore
defined as

µ2
ia :=

⇣
hDHPotts

ia � DHnat
ia i

⌘2
(11.15)

s2
ia :=

✓
h

h
DHPotts

ia

i2
i � hDHPotts

ia i
2
◆

. (11.16)

Our goal is to investigate the role of the descriptors B and D in controlling the perfor-
mance of the inference through their relation with the variance and the bias, respectively.
The averages in Eq.s 11.15 and 11.16 are therefore computed on several (typically n = 10)
MSAs with different sequences and identical descriptors B, D.

To connect the bias and variance to the performance of the inference, i.e., the Spearman
correlation coefficient r of the inferred-vs-real single mutational landscape, we define
two global measures of bias and variance that account for all single-point mutations by
averaging over the index (i, a):

µ2 := hµ2
iaiia|q � hµiai

2
ia|q (11.17)

s2 := hs2
iaiia|q , (11.18)

where the notation hiia|q stands for the average over all the single-point mutations
such that DHnat

ia < q. As we saw in the previous chapters, some mutations cause
such a negative effect on the fitness that are never observed, therefore we can use only
prior information to estimate their value from data. To provide a precise quantitative
description of the dependence of bias and variance from the sampling conditions we
restricted our analysis, without loss of generality, to the least-noisy mutations by setting
q = 5. Since the Spearman correlation coefficient r is unaffected by a global shift of the
single points DHPotts

ia , in Eq. 11.17 we defined a measure of global bias that disregards
the global displacement (the mean bias hµiai

2
ia) of the inferred mutational effects.
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Bias and variance control the inference performance r

In the case of Lattice Proteins, knowing the real single-mutation landscape, we can
estimate these quantities for each performed inference and correlate them with the
performance r. We numerically estimated the global bias and variance for n = 400
different combinations of the two descriptors, B 2 [200, 4000] and D 2 [7, 20]. We
then correlated the Spearman coefficient, averaged over the n = 10 MSAs with equal
descriptors, with their linear sum µ2 + s2. Results, reported in Fig. 11.2 (a,b), show a
perfect linear correlation (R2

' 1). This confirms that the formulations given in Eq.s 11.17
and 11.18 are the correct terms that control the fitness performance of the inferred
independent Potts model. This results holds as well for different protein families (see
Appendix).
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Figure 11.2: Independent Potts: Inference performance r scales with numerical bias and variance
Comparison between the performance of the Independent Potts model, quantified by
the Spearman correlation coefficient of inferred and real mutational landscapes, with
the linear sum of numerical bias and numerical variance. Each point is obtained by
averaging over n = 10 different MSAs with same descriptors B and D, which vary in
the intervals B 2 [200, 4000] (equally spaced 1

B values) and D 2 [7, 20] (equally spaced
values). Structure A, q = 5, 400 points.

Analytical estimation of bias and variance in terms of the descriptors B,D

Considered the scaling observed in Fig. 11.2, we could be tempted to explain the linear
relationship between each of the two descriptors, B�1 and D, and the inference perfor-
mance r, observed in Fig. 11.1, as a consequence of bias and variance terms that linearly
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depend on the descriptors, i.e., µ2 µ D and s2 µ B�1. Here we will show, by analytical
development of a simple case, that this is indeed the case.

variance An approximate expression for the variance of the inferred independent
Potts model can be computed by error propagation from the uncertainty of single-point
estimations. A derivation can be found in [47], Supplementary Material. The variance
reads

bs2
ia =

1
B

 
1� pi(a)

pi(a)
+

1� pi(swt
i )

pi(swt
i )

!
, (11.19)

from which we immediately retrieve the scaling 1/B, observed in Fig. 11.1, for the global
"theoretical" variance:

bs2 :=
1
B
· V

ind :=
1
B

*
1� pi(a)

pi(a)
+

1� pi(swt
i )

pi(swt
i )

+

ia

. (11.20)

The term V
ind depends on the sequences in the MSA but is reasonably regular for MSAs

drawn from the same protein family. Therefore, the dominant factor for the variance, at
least in the case of the independent model, is the scaling B�1. The full formulation is
nevertheless necessary to obtain a reliable quantitative estimation of the variance.

bias Estimating the bias of a statistical model is generally complicated since it involves,
by definition, un-modelled degrees of freedom from the "real", unknown, underlying
model. The reasoning put forward in the previous section suggests that the Hamming
distance could be taken as a correlate for the bias of single-point statistics, since the
background effect of high-order interactions is reduced when the distance is lowered.
We will here show how this intuition can be formalized in the case in which the "real"
fitness function is a pairwise Potts energy, providing an example of how the Hamming
distance directly relates to the inference bias of an independent Potts model.

In the case of a probability distribution resulting from a Potts Hamiltonian with
parameters Jij(a, b), hi(a), i.e. Ppotts(s) = 1

Z
exp

⇣
Âi hi(si) + Âi<j Jij(si, sj)

⌘
, the single-

point average pi(a) can be written as

pi(a) =

*
ehi(a)+Âj Jij(a,sj)

Âb ehi(b)+Âj Jij(b,sj)

+

PPotts(s)

, (11.21)

which is is called the Callan identity. If we infer an independent Potts in the wildtype
gauge from these single-point averages, the inferred field bhi(a) will be

bhi(a) = log
pi(a)

pi(swt
i )

= log

*
ehi(a)+Âj Jij(a,sj)

Âb ehi(b)+Âj Jij(b,sj)

+

PPotts(s)

� log

*
1

Âb ehi(b)+Âj Jij(b,sj)

+

PPotts(s)

,

(11.22)



11.2 bias-variance tradeoff in independent-potts inference 167

where Jij(swt
i , b) = 0 8b. Since the averages hiPPotts(s) are difficult to compute analyti-

cally, we need to resort to approximations. A first possibility is to make the annealed
approximation, i.e. logh·i ' hlog ·i. When applied to the (11.22), it yields

bhi(a) ' hi(a) +

*

Â
j

Jij(a, sj)

+

PPotts(s)

. (11.23)

Therefore, the bias of the estimator for the single mutation is

bµi(a) := hi(a)� bhi(a) =

*

Â
j

Jij(a, sj)

+

PPotts(s)

. (11.24)

Let’s now assume that we have a collection of B sequences
n

sk
oB

k=1
i.i.d. sampled from

PPotts(s) (i.e. our MSA). If B is large enough, we can assume that sample averages are
good estimations of the distribution averages hiPPotts(s), therefore

bµi(a) =

*

Â
j

Jij(a, sj)

+

PPotts(s)

'
1
B

B

Â
k=1

L

Â
j=1

Jij(a, sk
j ) . (11.25)

Since we gauged the model on the wildtype sequence, each Jij(a, sk
j ) where sk

j = swt
j is

zero. Therefore, the RHS in (11.25) is a sum of B⇥ D terms, where D is the average
hamming distance of the sequences in our collection from the wildtype. If we make the
simplified assumption that each Jij(a, b) is sampled from a random distribution, i.e.

Jij(a, b) ⇠ N ( J̄, J0) (11.26)

we finally find our ansatz expression of the bias as

bµ2 = varia bµi(a) ' J0 · D (11.27)

from which we retrieve the linear scaling with D observed in Fig. 11.1. The coefficient J0
depends on the variance of high-order (pairwise, in this case) interactions. Therefore,
its value has to be estimated for each different protein family, see below for further
discussion.

in Fig. 11.3, we compared the theoretical estimations of bias bµ2 and variance bs2 with
their numerical counterparts in the same n = 400 different combinations of B and D of
the analysis shown in Fig. 11.2. The theoretical variance, defined in Eq. 11.20, correlates
well and almost linearly with the numerical one, although with a pre-factor 6= 1. This
pre-factor is likely due the theoretical approximation of the variance, derived by assuming
an independent model as the probability distributions that rule the pi(a). Therefore we
have the relation

bs2 = a s2 , (11.28)



168 the focusing procedure : select the optimal training msa for fitness predictions

1.5 2.0
2
numeric

7.5

10.0

12.5

15.0

17.5

20.0

0.0 0.1
2
numeric

0.0

0.1

0.2

0.3

2 th
e
o
r

D

Figure 11.3: Independent Potts: Theoretical estimations of bias and variance correlate with the
numerical counterparts. Comparison between theoretical estimations of bias µ2 and
variance s2 with the numerical ones. Error bars in the left panel refer to mean and
standard error computed over n = 20 cases at fixed D. Same procedure and data of
Fig. 11.2

with a ⇠ [1.5, 2] for the three structures here considered (see Appendix).

Surprisingly, we also find that the numerical bias scales well, and almost linearly, with
the average hamming distance D, confirming the ansatz of Eq. 11.27. By linear fit of
this dependence we can infer the value of J0 in Eq. 11.26, reported in Tab. 11.1. From
the derivation of the linear dependence in Eq. 11.27 the J0 encodes the variance of the
Jij(a, b) couplings. We can therefore try to give an estimate for this value by inferring
a fully-connected Potts model (in the wildtype gauge) from a very large MSA, then
computing

bJ0 =
1
nc Â

i,a|q
Â
j,b

bJij(a, b)2
�

0

@ 1
nc Â

i,a|q
Â
j,b

bJij(a, b)

1

A
2

, (11.29)

where bJij(a, b) are the inferred couplings (using ACE fully-connected inference) and
nc := Âi,a|q Âj,b d(a 6= swt

i )d(b 6= swt
j ). As shown in Table 11.1, the Potts-estimated bJ0

is well retrieved for the structure C, which is the one whose fitness function mostly
resembles a pairwise model [58], while is over-estimated, still in the same order of
magnitude, for structure A and D.
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structure J0 (linear fit) bJ0 from ACE Potts inference
A 0.071 0.140
C 0.077 0.071
D 0.063 0.142

Table 11.1: Bias term J0: comparison between the bias factor J0 of Eq. 11.26 inferred from linear fit
of numeric bias and Hamming distance (first column) and the factor computed from
inferred fully-connected Potts model from a large MSA (B = 625, 000) from Eq. 11.29.

These results suggest that the performance r of the independent Potts model could be
deduced directly from sequence data of the training MSA, up a single parameter J00, as a
function of the linear sum of theoretical bias and variance:

r(MSA) ⌘ r
⇣

J00 · D
| {z }

th. bias bµ2

+
1
B
· V

ind

| {z }
th. variance bs2

⌘
(11.30)

Where J00 := a J0 includes the pre-factor in front of the theoretical variance with respect
to the numeric one. If the scaling law of Eq. 11.30 is valid, we can retrieve the parameter
J00 by supervised maximization of the correlation coefficient between the performance
r and the sum of theoretical bias and variance for many different training MSAs, see
Fig. 11.5. Once the parameter J00 is inferred, the scaling law is confirmed with astonishing
precision (R2

⇠ 1), see Fig. 11.4.
If represented as a 2-dimensional function where one independent variable is the mean

hamming distance (bµ2
⇠ D) and the other is the inverse of the number of sequences

of the training MSA (bs2
⇠

1
B ), the scaling of the performance r(B, D) draws a plane

in the 3D space, corresponding to linear and parallel level curves in the 2D projection,
whose slope depends on the ratio between J00 and the mean rescaled variance V

ind. We
call this representation the bias-variance diagram, see Fig. 11.6. As we will see in the
next section, this representation is helpful in visualizing the "focusing procedure" as a
trajectory on the bias-variance plane.

11.3 the "focusing" procedure : independent model

The results above have been obtained by generating several MSAs with varying de-
scriptors B, D, and analyzing how these latter control the performance of the inferred
independent Potts model. However, this scenario is different from real protein data sets,
were we start from a given MSA of the relevant protein family, generated by alignment
of sampled sequences, and infer our model from it.

Taking the full MSA as a training set is rarely the optimal choice. In fact, by simply
knowing the value of one parameter, i.e. J00 in the (11.30), we could in principle score any
subset of the given MSA and then choose the subset msa⇤ that minimizes the bias-variance
tradeoff:
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Figure 11.4: Independent Potts: Scaling law for the inference performance. Top: Comparison
between the linear sum of theoretical bias and variance, estimated from the sequence
data in the MSA, and the performance of the inferred Potts model. Same data of
Fig. 11.2.

msa⇤ = argmin
✓

J00 · D(msa) +
1

B(msa)
· V(msa)

◆
(11.31)

that is, the one that is predicted to yield the best performance. The number of possible
subsets of a given MSA is astronomical, therefore the minimization can not be done by
enumeration. Luckily, the definition of our descriptors D and B allows for an iterative
scheme that explores an optimal trajectory in the bias-variance diagram: the "focusing"
procedure.

Starting from a given MSA with descriptors B and D, we remove all the sequences
that have an hamming distance from our wildtype greater than a cutoff d0. Doing so,
we reduce the bias, since we are reducing the average distance (D "d0 ), and increase
the variance, since we are taking into account a smaller number of training sequences
( 1

B #d0 ). For each d0 2 [1, N] we can estimate the the tradeoff bµ2(d0) + bs2(d0) of the
subsampled MSA, and choose the optimal cutoff as the one that minimizes it. This
succession of decreasing cutoffs draws a trajectory on the bias-variance diagram. Note
that, given a cutoff d0, there is no subset of the starting MSA that has the same number
of sequences B(d0) and a mean hamming distance smaller than D(d0). Therefore, the
focusing procedure is guaranteed to reach the maximum performance that we can achieve
by binary inclusion/exclusion of sequences.

In Fig. 11.7 we show an example of this trajectory, starting from an MSA with B = 3000
and D = 20, and iteratively decreasing the cutoff from d0 = 27 to d0 = 5. For each cutoff



11.3 the "focusing" procedure : independent model 171

Figure 11.5: Independent Potts: Scaling law for the inference performance. Individual contribu-
tions of bias and variance to the performance r and fit of the parameter J00. Same data
of Fig. 11.2.

d0 we draw a point in the bias-variance diagram (in its linear-scaling approximation of
Eq. 11.30) by estimating the bias and variance of the resulting MSA from Eq.s 11.27 and
11.20. The resulting trajectory is a curve that starts at the top-left corner, i.e. low variance
and high bias, and ends in the low-right one. The predicted optimal cutoff is the one
corresponding to the closer point to the low-left region. For each cutoff d0 we compute
the performance r of the inferred independent Potts model. As shown in Fig. 11.7, the
performance reaches a maximum around d0 = 10 (red dot), which indeed corresponds to
the distance that minimizes the tradeoff (blue triangle). We then tested this procedure on
n = 64 starting MSAs with different B (equally spaced from 500 to 4000) and D (integers
from 12 to 20). The result, reported in Fig. 11.8, shows that the optimal performance is
reached in almost all cases, as expected.

We finally tested if the tradeoff of (11.31) is predictive for the optimal cutoff for
sequences different than the wildtype used to fit J00 in the scaling law. To do that,
we repeated the procedure of Fig. 11.7 for n = 128 different sequences, sampled with
pnat > 0.990 for the same family of the original wildtype. For each sequence we therefore
computed the performance rpred, at the predicted optimal cutoff by (11.30), the supervised
optimal one, ropt, and the one obtained from the full MSA, rnocut. As reported in Fig. 11.9,
this systematic analysis shows that the value of J00 is indeed predictive for all sequences
belonging to the same family.

Therefore, J00 is, as suggested by the theoretical derivation in (11.26), a feature of the
protein family. This is a crucial result, since from the knowledge of only one mutational
landscape (e.g. from one mutagenesis experiment), we can retrieve the best value of J00 by
changing systematically the training MSA and testing the scaling law (11.30) as reported
in this section, and then use it to predict the optimal MSA for any other sequence in the
same family.
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Figure 11.7: Independent Potts model: focusing on the bias-variance diagram. Each cutoff d0
yields a different MSA, whose bias and variance are quantified by the theoretical
estimations. This couple of values represents a point in the bias-variance diagram.
The succession of points obtained by decreasing cutoff values draws a curve from the
top-left to the low-right corner of the diagram. For each cutoff the performance and the
bias-variance tradeoff T (d0) = J00 · D(d0) +

1
B(d0)

· V(d0) are computed (central panel).
Starting MSA with B = 3000, D = 20; distribution of hamming distances from the
wildtype of the starting MSA is shown in the right panel. Same wildtype used to
retrieve J00.
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Figure 11.8: Independent Potts model: systematic analysis of focusing on different MSAs.
Same analysis of Fig. 11.7 performed on n = 50 different starting MSA with
B = 500, 1000, 2000, 4000, 8000, D = 12, 13, . . . , 21, same wildtype used for the fit of
J00. For each MSA we define the predicted optimal cutoff as the one that minimizes
the bias-variance tradeoff bµ2(d0) + bs2(d0). The performance of the independent Potts
model inferred at the predicted optimal cutoff is called rpred. This is compared to the
performance computed at the supervised optimal cutoff ropt. The performance gain Dr
is computed with respect to the performance of the full MSA rnocut.

Figure 11.9: Independent Potts model: systematic analysis of focusing on different wildtypes
Analysis on n = 40 different sequences. For each sequence the starting MSA is sampled
with B = 4000, D = 18.

11.4 bias-variance tradeoff in structural-potts inference

The results obtained in the case of the independent Potts model are useful to get an
intuition on how the descriptors B and D contribute to the performance of the inference
by controlling, respectively, the variance and the bias of the inferred model. However, the
standard model for fitness prediction is the epistatic Potts model, i.e., the one involving
pairwise interactions Jij(a, b) between residues. As we saw in the previous chapter, the
fully-connected model is very often over-parametrized with respect to the number of
available data points [8], which can be interpreted as a very high variance. Therefore,
a fully-connected model will rarely improve its performance by further increasing its
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variance, i.e., by focusing the training set around a specific wildtype. This is however
not the case for the sparse Structural-Potts model (cmap-ACE) presented in the previous
chapter since the number of parameters is sensibly lower than in the fully-connected
one. In this section, we will extend the analysis done for the independent model to the
cmap-Potts model, i.e., the sparse Potts model whose couplings are inferred only on the
graph of interaction defined by the contact map of the folded protein.

Theoretical bias and variance in the pairwise Potts model

Analytical results, in the case of the coupled Potts model, are much more involved
with respect to the independent one. The variance can be expressed by adapting the
approximated derivation of [47] to a small number of couplings interacting on the contact
structure. This approximation can then be checked by comparison with the numerical
computation of the variance, that is model-independent, as defined in Eq. 11.18. By
defining nCi as the number of sites in contact with the site i, the variance of the cmap-Potts
model reads

bs2
ia =

1
B

2

4nCi

 
1� pi(a)

pi(a)
+

1� pi(swt
i )

pi(swt
i )

!
+ Â

j2Ci

 
1� pij(a swt

j )

pij(a swt
j )

+
1� pij(swt

i swt
j )

pij(swt
i swt

j )

!3

5 .

(11.32)

Again, the global variance is defined as per Eq. 11.18. For what concerns the bias, we
need to resort to an ansatz, that can be numerically verified a-posteriori. As we saw for
the independent model, the pairwise interactions Jij(a, b) of a coupled Potts model have
a biasing effect, on single point statistics, which is proportional to the average number of
mutations, i.e., to the mean hamming distance from the gauge sequence (the wildtype).
Informally, we could extend the argument for higher-order interactions: three-wise
couplings will realistically have a similar biasing effect on averages and correlations,
and the number of biasing terms in the fitness function would be again proportional
(although not linearly) to the mean hamming distance. Moreover, in the present case of
a very sparse coupled model, the biasing effect of un-modeled couplings (i.e., the one
put to zero from the sparsity prior) will be not so different from the bias described in
the independent case. We will therefore assume, as an ansatz, that the linear term is the
dominant one:

bµ2 = Jcoupled
0 · D . (11.33)

For the sake of notation we will use J0 ⌘ Jcoupled
0 .

Numerical vs. theoretical bias and variance

The approximated formula for the variance of the cmap-Potts model in Eq. 11.32 and
our assumption for the bias in Eq. 11.33 can be verified by comparing them with their
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numerical counterparts. Similarly to what we did for the independent Potts model,
we generated several MSAs, changing the descriptors B and D, and computed the
numerical and theoretical bias and variance. As shown in Fig. 11.10, the theoretical
estimations of bias and variance linearly correlate with their numerical counterparts.
Importantly, the variance is estimated with a prefactor ⇠ 1, which confirms the validity
of the approximated form of Eq. 11.32. Therefore, in the case of the coupled model we
have J00 = aJ0 = J0.
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Figure 11.10: Cmap Potts: Theoretical estimations of bias and variance correlate with the numer-
ical counterparts. Same procedure used in the analysis of the independent Potts
model, see Fig. 11.2. Structure A, q = 5, 400 points.

We then validated the scaling law, as done in the independent case, by finding the
best J0 that maximizes the correlation between the linear sum of theoretical bias and
variance J0D + bs2 and the performance of the cmap-Potts model r (Fig. 11.12). Despite
the considerable approximations involved in the theoretical derivations of bias and
variance, the scaling law is still confirmed with astonishing precision (R = �0.991), see
Fig. 11.11.

Drawing the corresponding bias-variance diagram, shown in Fig. 11.13, we again
observe fairly-parallel and fairly-straight level curves. Note that, while in the independent
case the tradeoff was substantially dominated by the bias, here the variance is a strong
factor in determining the performance. This is shown by the steepest curves in the right
panel in Fig. 11.13, and from the detailed analysis of the fit of J0 shown in Fig. 11.12.

11.5 the "focusing" procedure : cmap-ace potts model

We then tested the focusing procedure in the case of the inference on the known interac-
tion graph (cmap� ACE defined in the previous chapter) of the known 28 contacts on
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Figure 11.11: Cmap Potts: Scaling law for the inference performance Comparison between the
theoretically-estimated bias-variance tradeoff and the inference performance. Same
values of B and D of Fig. 11.4. Structure A, q = 5, 400 points.

Figure 11.12: Cmap Potts: Scaling law for the inference performance. Individual contributions
of bias and variance to the performance r and fit of the parameter J0. Same data of
Fig. 11.11

the structure. We repeated the analysis that we performed for the independent model in
Fig. 11.8, for n = 40 different starting MSAs with different B and D. Results, reported in
Fig. 11.15, show that the optimal cutoff predicted by minimizing the bias-variance trade-
off retrieves the optimal performance in almost all cases. An example of the trajectory
drawn by the focusing procedure on the bias-variance diagram is shown in Fig. 11.14.

We finally tested whether the inferred value of J0 is again predictive for the best
cutoff in the analysis of the mutational landscape of different sequences. We performed
the focusing procedure on n = 40 new wildtype sequences, with starting MSA with
B = 8000 and D = 18. Results, reported in Fig. 11.16, show that minimizing the bias-
variance tradeoff where J0 has been inferred from the analysis of one wildtype sequence
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Figure 11.13: Cmap Potts: bias-variance diagram Same procedure of Fig. 11.6. Structure A, q = 5,
400 points.

Figure 11.14: Cmap Potts model: trajectory on the bias-variance diagram At each cutoff a cmap-
Potts model is inferred, its performance is tested and compare with the computed
bias-variance tradeoff. The predicted cutoff, i.e. the one that minimizes the tradeoff
(blue triangle), is indeed the optimal one (red dot). Starting MSA with B = 4000,
D = 18.

is predictive for the best cutoff for any sequence belonging to the same family, as we saw
for the independent Potts case.
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Figure 11.15: Cmap Potts model: systematic analysis of focusing on diverse MSAs. Focusing
performed on n = 50 different starting MSA with B = 500, 1000, 2000, 4000, 8000,
D = 12, 13, . . . , 21, same wildtype used for the fit of J0. For each MSA we define
the predicted optimal cutoff as the one that minimizes the bias-variance tradeoff
bµ2(d0) + bs2(d0). The performance of the independent Potts model inferred at the
predicted optimal cutoff is called rpred. This is compared to the performance computed
at the supervised optimal cutoff ropt. The performance gain Dr is computed with
respect to the performance of the full MSA rnocut.

Figure 11.16: Cmap Potts model: systematic analysis of focusing on different wildtype se-
quences. Analysis on mutational landscape of 25 different sequences from the same
the family (A) of the original wildtype used for the analysis above. For each sequence,
a starting MSA with D = 18 and B = 8000 is generated, and the procedure of Fig. 11.14
is repeated to compare the predicted, optimal, and full-MSA performances.
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11.6 scaling law in real protein datasets

We here report some early results obtained in collaboration with Francesca Rizzato on
the four protein datasets analyzed in the previous chapter. We took the initial MSA
and mutagenesis fitness experiments used in [44] to test how the prediction Spearman
coefficient of the independent Potts model scales with the descriptors B, D. We varied
the mean hamming distance D from 0.4⇥ N to N (number of sites), and the number of
sequences from B = 100 to the full starting MSA. Results, reported in Fig. 11.17, show a
striking confirmation of the scaling law in all the four cases (PDZ: r = �0.90, RNA-bind:
r = �0.94, WW: r = �0.79, BLAT: r = �0.94). The study of bias and variance on real
protein datasets is a work in progress and will be included in a future publication [7].

Figure 11.17: Bias-variance Scaling law in real protein data sets to predict mutagenesis experi-
ments The performance r of the inferred independent Potts model on four protein
data sets, compared to the linear composition of two terms: the scaling of the variance
1/B and the mean Hamming distance from the wildtype, normalized on the number
of protein sites N. Each point corresponds to a different training MSA. The scaling
parameter J0 is retrieved by minimizing the Spearman correlation between the linear
composition of bias-variance terms and the performance r.
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11.7 discussion

In this work, we investigated how the training sample data (MSA) can be optimally
chosen to improve the performance of max-entropy models aimed at retrieving the local
(single-point) mutational landscape of a specific wildtype. We framed the problem in
terms of bias and variance of the estimated parameters and tested our reasoning on
in-silico data generated from a Lattice-Protein model. We showed that the performance
of the estimated model scales with the linear sum of bias and variance, both for the
independent-Potts and the sparse-Potts model (cmap-ACE, introduced in the previous
chapter). We then provided a theoretical argument for the proportional relationship
between the bias of the inferred model and the mean hamming distance of sequences in
the MSA from the wildtype, called D. Similarly, the variance is known from previous
works [47] to scale with the inverse number of sequences, i.e., B�1. We provided evidence
of the performance of the inferred model to scale linearly with the two descriptors, both
in the independent and in the cmap-Potts model.

Together, these results suggest that the predictive power of the inferred max-entropy
model can be deduced by simple observables computable in linear/polynomial time from
the training MSA, i.e., the mean Hamming distance D and the variance s µ B�1. We
finally introduced a method, called "focusing" that yields the optimal subset of a given
MSA, demonstrating its efficacy and generality (generalization to different wildtypes) in
both the independent and the cmap-Potts model on in-silico data.

We provided some early evidence of the same scaling law (performance as a function
of a linear composition of estimated bias and variance) on four real protein datasets.
These results are part of a more comprehensive analysis performed in our group, in
parallel to the work presented here, by Francesca Rizzato. Results of in-silico and real
data analysis will be published alongside in a future paper [7].

The application of a pairwise model on real data poses a series of challenging problems,
such as the strongly-limited amount of data and a non-equilibrium biased sample
of sequences in the training MSA [235, 236]. While coupled epistatic models have
been demonstrated to provide superior predictions in several cases, some mutagenesis
experiments were best retrieved by an independent model [44]. While we might be
confident in forecasting a bright future of abundant data for bioinformatic analyses, at
the present moment there still are strong limitations due to the low amount of training
data with respect of the complexity of the model [8]. Therefore, the independent-site
Potts model is still, in some cases, the best compromise.

The suitability of max entropy models to provide biological predictions such as the
effects of single mutations is still an object of alive discussion in the statistical physics and
bioinformatics community [235, 236]. For this reason, we think that our results provide a
step forward in the understanding of which factors determine the performance of these
methods, approaching the problem by both theoretical and numerical analysis, as well as
providing practical prescriptions to improve the accuracy of the predictions.
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D I S C U S S I O N A N D P E R S P E C T I V E S

12.1 outline

This thesis presents results obtained on two diverse biological systems by a complemen-
tary approach that includes both top-down modelling (abstraction to observables) and
bottom-up statistical-inference methods (observables to abstraction). This bidirectional
approach has, as we think the diversity of systems studied here might suggest, a wide
range of applicability.

Our modelling approach is based on sampling equilibrium configurations from the
Boltzmann-Gibbs measure of statistical-physics systems. To model the neural activity
encoding for self-location during navigation within a memorized cognitive map we
employed a continuous attractor neural network (CANN) [12, 154, 155]. We proposed
a CANN subject to inputs from the external world and path integration, and showed
that a conflict between the two positionally-coherent sources of input could explain
the metastable "flickering" oscillations reported in the CA3 region by Jezek et al. in
the "teleportation" experiment [143] (Chapter 6). To model the fitness landscape of
proteins, we employed the so-called "Lattice Proteins", a model for the structural energy
and competition between different structures in protein folding [238, 239]. Due to the
competition terms between folding structures, Lattice Proteins are complex enough to
reproduce non-trivial feature of real proteins, while at the same time being treatable by
analytical and numerical means (Chapter 9). We leveraged the controllability of Lattice
Proteins to control the sampling conditions of multiple-sequence alignments (MSA) used
to train an inference model aimed at the retrieval of the fitness landscape of a specific
protein (wildtype).

Our modelling was complemented with the application of Bayesian-inference methods
that allowed us to infer a statistical description of experimental and synthetic data. In
Chapter 5 and 4, we showed how the expressed attractor state in the hippocampal
network can be decoded, from neural activity, by the application of the inverse Ising
model to experimental and simulated neural recordings. We then applied the Ising
decoder to real CA3 data from the teleportation experiment. Since the Ising decoder,
contrarily to the standard methods, does not rely on the position of the animal to retrieve
the cognitive map, we were able to decode the precision of the positional representation
and the flickering oscillations of the cognitive state independently. We, therefore, were
able to show that the position of the animal is coherently represented even during fast
oscillations of the contextual variable, with a precision that is slightly (yet measurably)
affected by the mismatch between the two positional inputs, as predicted by the CANN
model.
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184 discussion and perspectives

In chapters 10 and 11, we showed that the local fitness landscape of a protein could
be retrieved by applying the inverse Potts model to a collection of sequences sampled
from the relevant family. We investigated how prior information regarding structural
features of the protein could be used to enforce sparsity on the most relevant variables.
The adaptive cluster expansion of the Potts model (ACE) revealed as a natural method to
retrieve the most informative parameters in an unsupervised way, thanks to its iterative
procedure that discards those clusters that less contribute to the log-likelihood of the
model. We then investigated the factors that primarily determine the precision of the
inferred Potts model, as it represents a low-order approximation of the "real" rough
fitness landscape, in the task of retrieving the local mutational landscape of a specific
wildtype. We showed that we could improve the predictive power of the inferred model
by giving up its generality and "focusing" on the local region of the sequence space that
surrounds the wildtype.

12.2 methodology and future research

The application of statistical physics modelling and max-entropy inference to the complex
phenomenology of biological systems raises several methodological questions, which
range from the strong simplifications made in theoretical models to the arbitrariness
of means and correlations as constraints included in the max-entropy inference. The
founding roots of the physicist’ approach to foreign fields, including but not limited
to biology, have been thoroughly discussed in the literature, and it would be an utter
simplification to attempt here a comprehensive outline of a discussion that spans several
decades of scientific research. The reader who is interested in deep methodological
considerations is invited to the seminal books of Amit [153] and Jaynes [17], both
physicists by formation and fathers of, respectively, the theory of attractor neural network
and the max-entropy argument in Bayesian inference. At the same time, we think that
there are a few points, undoubtedly less profound and more practical, that deserve to
be mentioned, especially concerning how the assumptions that underlie our inference
approach relate to the specific biological systems investigated here.

One of the most arguable features of the Ising model inferred from activities of a
neural population is that it does not explicitly account for a dynamics in time, assuming
that each observed neural pattern is independently sampled from equilibrium conditions.
In fact, a time-shuffle of the neural patterns used to train the inference would leave
the inferred model unchanged. One way to account for this unrealistic equilibrium
assumption is to be careful in choosing the time bin used in the discretization procedure
of the raw spiking data. For example, in our work on CA3 recordings, we used a
discretization in theta cycles. The theta rhythm is thought to represent a "refresh time" of
neural activity; therefore each theta cycle could be though, in a first approximation, as a
natural binning time. In the benchmark on CA1 data (Chapter 5) we indeed showed that
the Ising decoder loses some performance points in favor of a rate-based model on very
short timescales (. 20 ms, see Fig. 5.3).
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Despite the lack of explicit time dependence, the Metropolis sampling of the Ising
Gibbs-Boltzmann distribution provides a sort of coherence in time due to the Markov-
chain exploration of the energy landscape of the model. Interestingly, in some recent re-
sults concerning the analysis presented in Chapter 7, and not reported in this manuscript,
we observed that the Ising model inferred from hippocampal activity and used to gener-
ate new patterns can reproduce a trajectory that is coherent in time, in the sense that it
reproduces a diffusive process on the chart corresponding to the cognitive map. These
results are in agreement with recent findings obtained by F. Stella [254] in the rodent
hippocampus, on activities sampled in sharp-wave ripples during sleep. Neural patterns
sampled during sleep are more realistically comparable to an "equilibrium-like" sponta-
neous sampling of the energy landscape defined by the post-learning neural connectivity.
A future line of research, therefore, will be to directly assess these results on similar
"spontaneous" data.

The max-entropy graphical Ising model, in our view, represents a well-grounded and
well-interpretable approach to retrieve the direct functional connectivity between neurons.
Today, it is a vivid research field that includes development of new methods [255] as
well as application to retinal [51–53], cortical [173, 174, 256] and hippocampal [1, 2, 257]
regions. The retrieved functional network encodes both for structural constraints as well
as for statistical properties induced by the collective dynamics of the neural population.
Therefore, it would be interesting to assess whether it could discriminate between health
and condition in diseases that are related to a dysfunction of the network behavior of the
neural population, such as Alzheimer disease, schizophrenia, and epilepsy.

As discussed in Chapter 11, the fact that the rugged high-order fitness landscape
of a protein could be described by a low-order (pairwise) Potts model is not trivial.
In facts, despite outperforming previous methods [44, 227, 234], performances of max-
entropy models are far from being perfect. A possible approach would be to include
higher order terms in the inferred model. However, this generalization raises the
number of parameters dramatically, and several approaches have been proposed to
overcome this problem by, for example, enforcing a sparse high-order connectivity or by
machine learning techniques that unsupervisedly retrieve a sparse representation, such
as restricted Boltzmann machines [258]. This last line of research has been carried in our
group by J. Tubiana and has been proven capable of predicting meaningful biological
features on protein domains Kunitz and WW and a chaperone protein Hsp70 [259].
Following a complementary direction, we showed how the precision of the predictions
for single-point mutations could be improved by giving up generality and focusing on a
local region of the landscape around the wildtype. In order to predict the optimal focusing
threshold, we fitted a parameter J0 that encodes for the high order un-modelled biasing
terms of the real fitness function. A possible future generalization of the method could be
to retrieve the value of this parameter by comparing multiple mutagenesis experiments
around proteins from the same family. By computing how the local mutational landscapes
de-correlate with the Hamming distance between the different wildtypes, we can estimate
the magnitude/variance of high order terms, possibly integrating this information in the
focusing procedure.
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a.1 effective two-state model for hippocampal cann activity

We show below how the two-state model pictured in Main Text, Fig. 3B, can be derived
from the definition of the microscopic CANN model, see Main Text, Methods. The
dynamical evolution of the CANN ensures that the log probability of a configuration of
activity s = {si} is given by [158]

L
�
s
�
= Â

i<j
Jij si sj + Â

i

�
hV

i (r) + hPI
i (r)

�
si + L⇤ , (A.1)

where r if the rodent position and L⇤ is a constant term such that the sum of the
probabilities eL over all 2N configurations s is normalized to unity.

For simplicity, we consider that the bump of activity consists of a⇥ N active neurons
si = 1 with place-field centers as close as possible in a map, say, m = A, where a is the
fraction of active neurons in any time bin. This corresponds to the limiting case of zero
neural noise, b ! • [160]; calculation of effective potentials at finite b is much more
involved and requires the use of sophisticated statistical physics techniques able to take
into account the fluctuations of neural activities, see [12].

Let us define rbump as the radius of the bump, i.e. the maximal distance in environment
m between the rodent position r and the place-field centers rm

i of active neurons. We
have

a N =
p r2

max
d2 , (A.2)

where d2 is the elementary portion of surface per place cell, defined as the total area of
the environment, L2, over the number of place cells, N. We thus obtain the expression of
the bump radius as a function of the activity,

rmax(a) = L
r

a
p

. (A.3)

Contributions to log-likelihood due to inputs.

We assume that the CANN has activity localized in map m, and that the whole system
is in the conflicting phase, with PI = A and V = B. The contributions to L due to the
visual (V) and path-integrator (PI) inputs reads, up to quadratic terms in a,

Linput = g Â
i

si f
�
rM

i � r
�

, (A.4)
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where g = gPI if m = A and g = gV if m = B. According to the definition of the bump
radius rmax, we have

Linput = g
Z rmax

0

dr
d2 f

�
r
�
=

g

s2

Z rmax

0
dr r e�r2/(2s2) = g

�
1� e�r2

max/(2s2)� . (A.5)

Contributions to log-likelihood due to recurrent connections.

We now consider the contribution Lrecurrent to the log-likelihood coming from the recur-
rent connection in the CANN. The coupling Jij between neurons i and j is the sum of
one interaction specific to map A and another one specific to map B, see Eqn. (9) in Main
Text, Methods. Assuming again that the bump of activity is localized in map m = A, we
neglect the contribution to L due to the interaction specific to map B. This simplifying
approximation amounts to an error of the order of a2, see [160] for more details. We
obtain
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1
2

gJ

Z rmax

0

dr
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, (A.6)

where I0 is the first kind modified Bessel function of zero order.

Case of mixed state.

Assume now that a fraction a of the bump is localized in map m = A and the remaining
fraction, 1� a, is localized in map B. The log-likelihood of this mixed state is obtained
by summing the expressions of the log-likelihood in state A above with activity a! a a
and of the log-likelihood in state B above with activity a! (1� a) a. The result is shown
in Supplementary Fig. A. As indicated in Main Text, the amplitude gJ of the recurrent
connections controls the depth of the well separating the two complete bump states (all
A or all B), while the ratio gPI/gV controls the asymmetry of the log-likelihood profile
and favors one of the two states.

a.2 effects of parameters on the model properties

The CANN model is defined up to a set of parameters:

(a) the level of neural noise in the simulated activity, b; higher b corresponding to
lower noise. This parameter is formally equivalent to the inverse temperature in
the Monte Carlo simulation;

(b) the strength of the recurrent connectivity, gJ ;

(c) the strength of the two inputs, gV and gPI ;
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Supplementary Figure A. Log-likelihood of a mixed state with a fraction a of bump in state A and
a fraction 1� a in state B. An additive constant, independent of a, is introduced such that L = 0 for
a = 0.5. Top: symmetric case gPI = gV = 0.4 for three values of gJ , showing how the intensity of
recurrent connections control the depth in log-likelihood of the mixed state. Bottom: Asymmetric
case with gJ = 0.0025 and for three values of gPI > gV . In all cases, s/L = 0.125, a = 0.1.

(d) the spread of place fields and positional inputs, s;

(e) the number of neurons, N.

(f) the mean activity (fraction of active neurons at any time), a.

A fully-detailed analysis of the response of the system to the each of these parameters is
beyond the scope of this paper, and previous works have fully characterized the behavior
of the model in the absence of positional inputs [12, 158, 160]. Hereafter, we show how
some of these parameters control the dynamical properties of the flickering of the cognitive
map and the ability to navigate, i.e. the correct positioning of the bump of activity in the
position defined by the V and PI inputs. These two quantities are indeed observable
in the CA3 electrophysiology data, through the map and position-decoding analysis. A
characterization of their parametric dependence in the model is therefore a necessary
step to a correct quantitative modelling.

For this reason, we will here divide the parameters into two classes:

• the structural parameters, N, s, a. The number of neurons N was varied from a few
hundreds to a few thoousands in simulations. To keep the contributions to the total
in put Hi,t acting on neuron i at time t independent of N, we scale the recurrent
connection strength gJ as 1/N, see Eqn. (9) in Main Text. This ensures that the
sum of local inputs over all active neurons due to these connections has a finite,
fixed value as N grows. This is why we will compare below the value of gJ ⇥ N
to the other input strengths, gV and gPI . In addition, we have fixed the average
linear size of place fields to s/L ⇠ 0.125, which sets the average area occupied by
a place field to 2p(s/L)2

' 10% of the environment total area, a value comparable
to experimental findings [260]. The average activity (in a time bin) was fixed to
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a = 10% throughout our simulations to match the values fixed in previous works
focusing on the same model in the absence of inputs, see discussions in [12, 160].

• the control parameters (gJ , gV , gPI , b), that have a predictable influence on the
behaviors we are interested in. Note that the four control parameters are redundant,
as the properties of the model depend only on (b⇥ gJ , b⇥ gPI , b⇥ gV); we may
therefore fix one of them and let the other three vary. We now study how the model
properties depend on the values of these parameters.

Navigation of the environment

The model is explicitly designed to mimic the representation of self-location in the
hippocampal network under the influence of positional inputs. A natural question is
how the values of parameters influence the capability of the model to actually represent
the correct position in a single map, that is, the correct centering of the neural bump
around the input position. Consider the case of coherent inputs at a certain time t, i.e. PI
and V point to the same position rt in the same map , and let us assume that the bump
is correctly centered around rt. As the input position changes in the next simulated time
bin t + Dt, PI and V will try to activate place cells corresponding to a shifted location,
effectively pushing the bump to rt+Dt. If the positional input is too weak compared to
the recurrent network connections are too strong, the bump will fail to update to the
new position, being trapped by the strong connection with the active cells at position
rt. Similarly, a very high value of b, i.e. a low neural noise, would have the effect of
enhancing the roughness of the energy landscape, in the positional space, and of trapping
the bump and impairing its motion. As a consequence, the model would lose the ability
to correctly navigate the environment. Conversely, a very low value of b would result in
the inability of the model to condensate the bump of activity [12], therefore losing any
notion of represented position.

The inverse of the mean positional error et can be used as a proxy for the navigation
ability, and is shown in Supplementary Fig. B as a function of b and of the relative
strength gV/(NgJ) (in the balanced case gV = gPI). The navigable region (yellow) has a
triangular shape that widens with higher values of the input strength, meaning that the
temperature has to be fine tuned for low values of gV/PI , while it can take a wider set of
values in the presence of strong inputs.

Flickering of the cognitive map

As discussed above, the system acts as an effective two-state model when the two
inputs are put into conflict, i.e. point to the same position in different cognitive maps.
The transition of the bump from one map to the other happens stochastically, and its
dynamical properties are controlled by the parameters of the model. Characterizing this
dynamics in the simulated test experiment is rather involved, since the positional inputs
move at a variable speed (we use the recorded trajectory of the real rat as input) and a
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Supplementary Figure B. Navigation of the environment. Dependence of the inverse mean po-
sitional error (in cm�1) on the control parameters: b and the relative strength between network
connectivity and positional inputs. gV = gPI , N = 400, a = 0.1.

fast change of the positional input can facilitate the evaporation of the bump from one
map, increasing the transition rate between maps. We here analyze the dependence of
two data-testable quantities on the parameters. The first is the statistics of permanence in
the visual-cue associated map or in the PI-associated map during the conflicting phase,
as a function of the relative strength between the two inputs, shown in Supplementary
Fig. C. We see that a ration gV/gPI close to 1 results in a mean fraction of flickers (MFF)
close to 0.55. This value, slightly different from the expected 0.5 is due to the inertia of
the bump that, for few bins after the teleportation, tends to stay in the PI-associated map.
Since each simulation is carried for a finite number of time bins after the teleportation
(600), this discrepancy is explained as a consequence of the finite-time simulated for each
trial.

Next we analyze a dynamical quantity, i.e. the mean sojourn time of the activity in
one of the two maps, given a balanced value of gPI = gV , see Methods for the definition
of the sojourn time. This quantity is directly proportional to the height of the barrier
described in the two-state approximation, which is controlled by the network connectivity
strength gJ and the parameter b. High noise (small b) or weak connections (low gJ)
is expected to enhance the probabiity of crossing the barrier easy, and to make the
sojourn times low. This statement is confirmed by the results shown in the diagram in
Supplementary Fig. D.

Putting together the results reported in Supplementary Figs. B and D, we see that the
model reproduces the dynamical properties of the observed data, while at the same time
keeping an accurate representation of the input position, for a range of parameters in
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the center of the diagrams. In particular, we have chosen, for the simulations reported
in the Main Text, b = 15 and gV = gPI = 0.4, with no need for fine tuning these
two parameters. Indeed any choice in the range b 2 [15, 30] and gV = gPI 2 [0.3, 0.6]
would qualitatively reproduce the behavior observed in data in terms of flickering of the
cognitive map and precision in the positional encoding.
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Supplementary Figure C. Dependence of the mean frequency of flickers (MFF) in simulated data
upon model parameters. The MFF is defined as the fraction of time bins, during the conflicting phase,
in which the hippocampal representation m differs from light cues. Simulations were performed
using the real trajectory of the rat, with N = 400 neurons, gW ⇠ • to hold the conflicting state to a
fixed amount of time bins (600), b = 15.

a.3 relationship between sojourn time and correlation time

The correlation time t0 (see Main Text Methods and Main Text Fig. 2B & 4C) is related to
the sojourn times of the neural bump in the cognitive maps, defined as a sequence of
contiguous theta bins that are all decoded in the same map. The relationship between
correlation and sojourn time can be established by assuming a Markovian dynamics
for the 2-state model (m = A or m = B) evolving in discrete time. The dynamics is
determined by the map transition probabilities from one time bin to the next:

8
>>>><

>>>>:

pA!A = e�1/tA

pA!B = 1� e�1/tA

pB!B = e�1/tB

pB!A = 1� e�1/tB

(A.7)

where tA and tB are the mean sojourn times in, respectively, map A and B. A straightfor-
ward calculation shows that the time correlation C(t) between the map state at times t
and t + t is decreases exponentially with the delay t only, with an average time equal to

t0 = �


log

⇣
e�1/tA + e�1/tB � 1

⌘ ��1
. (A.8)
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Supplementary Figure D. Flickering behavior: Dependence of the mean sojourn time, defined as
the number of consecutive theta bin in which the bump is condensed in the same map, from the
control parameters: b and the relative strength between network connectivity and positional inputs.
gV = gPI , N = 400, a = 0.1.

Hence, the correlation time t0 is approximately given by the smaller mean sojourn time
among tA and tB. The distribution of sojourn times in each map for experimental CA3
data [143] is shown in Supplementary Fig. E.

a.4 inference of path-integrator realignment times - discussion on
parameters p0 and pe

To identify the realignment times of the PI we first introduce a simple probabilistic
model for the hippocampal representation to be incoherent with the light-cue conditions
(flickering time bin) as a function of time elapsed after the switch (see Main Text Methods).
This procedure needs an input value for p0, the probability of flickering during the
conflicting phase, whose consistency can be checked a posteriori by computing the mean
flickering frequency in the conflicting phase. In Supplementary Fig. F we show that
the a-posteriori average flickering frequency remains remarkably stable, around the
self-consistent choice ⇠ 0.6, for any input value of p0, with a slight dependence on the
chosen L0 threshold. The same value is observed in the model when the strength of PI
and V projections are set to similar values (gP I /gV 2 [0.95, 1.05 ]), see Supplementary
Fig. C.



196 appendix - chapter 6

0 20 40 60 80 100
duration (theta bins)

0

0.05

0.1

0.15

0.2

0.25

0.3
PI regions
Visual regions

PI Visual
0

2

4

6

8 ANOVA p = 0.4

m
ea

n 
du

ra
tio

n

Supplementary Figure E. Sojourn times of hippocampal activity in the two cognitive maps dur-
ing the conflicting phase for CA3 recordings. Regions of consecutive theta bins whose decoded
representation disagree with the external light conditions are marked as “PI” regions. Vicevesa, if
they agree with light conditions, they are marked as “Visual”. Results obtained after application of
our map decoder to the recorded CA3 data of [143]. As shown in the bar plot and from the ANOVA
comparison, the permanence times in the two maps during the conflicting phase have roughly the
same distribution. Results obtained with map-decoding threshold L0 = 2.3.

a.5 independence of frequency of flickers from delay after light
switch : parameters p0 and pe and L0

As pointed in the main text, the constant flickering frequency hypothesis Hconstant is
extremely more likely (D` ⇠ 150) than the decaying model Hdecay . The result is robust
against changes in the parameters, see Supplementary Fig. F. For instance, we obtain
D` ' 170 and D` ' 60 when the flickering identification is done based on, respectively,
a less (L0 = log 2) and more (L0 = log 100) restrictive criterion. Similarly, the log-
likelihood difference between the two hypothesis remains very large and positive if we
change the constant-rate model p0 value, e.g. D` ' 160 for p0 = 0.4, D` ' 120, 33 for
pe = 0.1, 0.001, or if we extend the definition of Hdecay up to 30 seconds after the switch
(instead of 15 seconds): D` ' 125. In many teleportation events the flickering-dense area
is indeed too short (too few flickers) or too long (too many flickers occurring far away the
teleportation time) to be explained by the Hdecay hypothesis, see Supplementary Fig. G.
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Supplementary Figure F. Dependence of mean frequency of flickers in recorded data upon
threshold L0 and upon the mean frequency p0 used in the inference of PI-realignment time.
A self-consistent value of p0 is identified, for each value of map-decoding statistical threshold L0,
as the intersection between the corresponding curve and the y = x line (Methods). Simulations
performed with the same parameters described in Fig. 2, main text.

a.6 assessment of performances of map decoder

Our map decoder (based on the inference of an Ising model for each cognitive map)
does not use any information about the current rodent position. Its performance can
be assessed against the correlation-based decoders used in [143] (which compares the
activity st to the expected activities in maps A and B at the given rat position) by means
of the classical binary-classifier theory [191–194]. The Ising model was shown, first
on retinal ganglion cell recordings, and, more recently, on prefrontal cortex [173, 174]
and hippocampal data [1, 257], to provide a good approximation for the distribution
of population activity configurations. The performance in the decoding task has been
shown to be superior to rate-based decoders on CA1 data [1].

The standard tool used to compute the performance of binary decoders is the Receiver
Operating Characteristic (ROC) diagram [191]. This diagram is drawn by computing the
true positive rate (TPR) and false positive rate (FPR) as a function of different thresholding
values, and plotting the resulting curve in the TPR-FPR plane. These quantities can be
defined in the context of our map decoder as follows: for each theta bin t the decoder
outputs a value DL(t), which is then interpreted as referring to map A or B depending
on its value compared to a moving threshold Q. Note that this is slightly different from
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Supplementary Figure G. Decoded maps as a function of time for all 15 light-switch events in
the test session. Same analysis in main text Fig. 1C, which was restricted to a single light switch.
PI-realignment times are marked with a dashed green line.
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the map-decoding method reported in Main Text, since it does not allow undecoded
statistically-not-significant bins.

mt =

(
A i f DL(t) > Q ,
B i f DL(t) < Q .

(A.9)

To match the vocables used in the ROC framework we will arbitrarily follow the
convention that the output is positive if the map is decoded to be A, and negative if the
map is predicted to be B. Doing so, a True Positive is defined as a correctly-decoded
environment A (with respect to the light conditions: mt = A = light cues), while a True
Negative will be a correctly-decoded environment B. The final observable (area under the
ROC curve) is symmetrical under the inversion of this convention, which is summarized
in Table A.1. The decoding capability is finally assessed by applying the decoder to two
“constant” test sessions, where the environment is constantly set to A and B, respectively.
Assuming that the neural representation is stable under fixed light conditions, we can
compute the TPR and FPR of the decoder by counting how many theta bins are correctly
and falsely decoded in the two reference sessions. For a specific value of the threshold Q,
this corresponds to a point in the FPR-TPR plane. By varying this value we then draw the
curve as the succession of the corresponding TPR-FPR values. The standard quantitative
measure of the decoding performances is the Area Under the Curve (AUC) of the ROC
diagram [191]. According to this measure, the ideal decoder has AUC = 1, while random
guessing would give AUC = 0.5. All the decoders, tested on constant test sessions, i.e.
where no teleportation is performed, show very high performances, see Supplementary
Fig. H. Note, in addition, that our functional-network based decoder is robust against
the presence of correlations between the maps: it shows much better performance than
correlation-based methods for CA1 recordings, where maps are much less orthogonal
than in CA3 [1].

decoder output A B A B
light conditions A A B B
denomination True Positive False Negative False Positive True Negative

Table A.1: Denominations used for the four possible events, depending on the output of the decoder
and on the environment-defining cue. The cue is not changed throughout the reference
session.

a.7 dependence of positional-error analysis with L0

The significance of positional-error analysis as a function of the threshold L0 is shown in
Supplementary Fig. I.
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Figure B.1: Bias-variance diagram for structure C q = 5, 400 points.

Figure B.2: Bias-variance diagram for structure D q = 5, 400 points.
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ABSTRACT 

 

The recent advent of high-throughput experimental procedures has opened a new era for the quantitative 
study of biological systems. Today, electrophysiology recordings and calcium imaging allow for the in vivo 
simultaneous recording of hundreds to thousands of neurons. In parallel, thanks to automated sequencing 
procedures, the libraries of known functional proteins expanded from thousands to millions in just a few 
years. This current abundance of biological data opens a new series of challenges for theoreticians. Accurate 
and transparent analysis methods are needed to process this massive amount of raw data into meaningful 
observables. Concurrently, the simultaneous observation of a large number of interacting units enables the 
development and validation of theoretical models aimed at the mechanistic understanding of the collective 
behavior of biological systems. In this manuscript, we propose an approach to both these challenges based on 
methods and models from statistical physics. We present an application of these methods to problems from 
neuroscience and bioinformatics, focusing on (1) the spatial memory and navigation task in the hippocampal 
loop and (2) the reconstruction of the fitness landscape of proteins from homologous sequence data. 
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Inférence, Physique Statistique, Neuroscience, Hippocampe, Protéines, Bio-informatique, 

Modèle d’Ising. 

RÉSUMÉ 

 

L'avènement récent des procédures expérimentales à haut débit a ouvert une nouvelle ère pour l'étude 
quantitative des systèmes biologiques. De nos jours, les enregistrements d'électrophysiologie et l'imagerie du 
calcium permettent l'enregistrement simultané in vivo de centaines à des milliers de neurones. 
Parallèlement, grâce à des procédures de séquençage automatisées, les bibliothèques de protéines 
fonctionnelles connues ont été étendues de milliers à des millions en quelques années seulement. 
L'abondance actuelle de données biologiques ouvre une nouvelle série de défis aux théoriciens. Des 
méthodes d’analyse précises et transparentes sont nécessaires pour traiter cette quantité massive de 
données brutes en observables significatifs. Parallèlement, l'observation simultanée d'un grand nombre 
d'unités en interaction permet de développer et de valider des modèles théoriques visant à la compréhension 
mécanistique du comportement collectif des systèmes biologiques. Dans ce manuscrit, nous proposons une 
approche de ces défis basée sur des méthodes et des modèles issus de la physique statistique, en 
développent et appliquant ces méthodes au problèmes issu de la neuroscience et de la bio-informatique : 
l’étude de la mémoire spatiale dans le réseau hippocampique, et la reconstruction du paysage adaptatif local 
d'une protéine. 
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Attractor Neural Network, Proteins, Fitness Landscape. 
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