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“If you’re not prepared to be wrong, you’ll never come up with anything original.”

Ken Robinson



Abstract

This thesis centers on introducing modern non-linear approaches for data analysis in

economics and finance with special attention on business cycles and financial crisis. It is

now well stated in the statistical and economic literature that major economic variables

display non-linear behaviour over the different phases of the business cycle. As such,

nonlinear approaches/models are required to capture the features of the data generating

mechanism of inherently asymmetric realizations, since linear models are incapable of

generating such behavior.

In this respect, the thesis provides an interdisciplinary and open-minded approach to

analyzing economic and financial systems in a novel way. The thesis presents approaches

that are robust to extreme values, non-stationarity, applicable to both short and long

data length, transparent and adaptive to any financial/economic time series. The thesis

provides step-by-step procedures in analyzing economic/financial indicators by incor-

porating concepts based on surrogate data method, wavelets, phase space embedding,

’delay vector variance’ (DVV) method and recurrence plots. The thesis also centers on

transparent ways of identifying, dating turning points, evaluating impact of economic

and financial crisis. In particular, the thesis also provides a procedure on how to an-

ticipate future crisis and the possible impact of such crisis. The thesis shows that the

incorporation of these techniques in learning the structure and interactions within and

between economic and financial variables will be very useful in policy-making, since it

facilitates the selection of appropriate processing methods, suggested by the data itself.

In addition, a novel procedure to test for linearity and unit root in a nonlinear framework

is proposed by introducing a new model – the MT-STAR model – which has similar

properties of the ESTAR model but reduces the effects of the identification problem and

can also account for asymmetry in the adjustment mechanism towards equilibrium. The

asymptotic distributions of the proposed unit root test is non-standard and is derived.

The power of the test is evaluated through a simulation study and some empirical

illustrations on real exchange rates show its accuracy. Finally, the thesis defines a

multivariate Self–Exciting Threshold Autoregressive with eXogenous input (MSETARX)

models and present an estimation procedure for the parameters. The modeling procedure

for the MSETARX models and problems of estimation are briefly considered.



Résumé

L’axe principal de la thèse est centré sur des approches non-linéaires modernes d’analyse

des données économiques et financières, avec une attention particulière sur les cycles

économiques et les crises financières. Un consensus dans la littérature statistique et fi-

nancière s’est établie autour du fait que les variables économiques ont un comportement

non-linéaire au cours des différentes phases du cycle économique. En tant que tel, les ap-

proches/modèles non-linéaires sont requis pour saisir les caractéristiques du mécanisme

de génération des données intrinsèquement asymétriques, que les modèles linéaires sont

incapables de reproduire.

À cet égard, la thèse propose une nouvelle approche interdisciplinaire et ouverte à

l’analyse des systèmes économiques et financiers. La thèse présente des approches ro-

bustes aux valeurs extrêmes et à la non-stationnarité, applicables à la fois pour des

petits et de grands échantillons, aussi bien pour des séries temporelles économiques que

financières. La thèse fournit des procédures dites étape par étape dans l’analyse des

indicateurs économiques et financiers en intégrant des concepts basés sur la méthode

de substitution de données, des ondelettes, espace incorporation de phase, la méthode

retard vecteur variance (DVV) et des récurrences parcelles. La thèse met aussi en avant

des méthodes transparentes d’indentification, de datation des points de retournement et

de lévaluation des impacts des crises économiques et financières. En particulier, la thèse

fournit également une procédure pour anticiper les crises futures et ses conséquences.

L’étude montre que l’intégration de ces techniques dans l’apprentissage de la structure

et des interactions au sein et entre les variables économiques et financières sera très

utile dans l’élaboration de politiques de crises, car elle facilite le choix des méthodes de

traitement appropriées, suggérées par les données.

En outre, une nouvelle procédure pour tester la linéarité et la racine unitaire dans

un cadre non-linéaire est proposé par l’introduction d’un nouveau modèle – le modèle

MT-STAR – qui a des propriétés similaires au modèle ESTAR mais réduit les effets

des problèmes d’identification et peut aussi représenter l’asymétrie dans le mécanisme

d’ajustement vers l’équilibre. Les distributions asymptotiques du test de racine uni-

taire proposées sont non-standards et sont calculées. La puissance du test est évaluée

par simulation et quelques illustrations empiriques sur les taux de change réel montrent

son efficacité. Enfin, la thèse développe des modèles multi-variés Self-Exciting Thresh-

old Autoregressive avec des variables exogènes (MSETARX) et présente une méthode

d’estimation paramétrique. La modélisation des modèles MSETARX et des problèmes

engendrés par son estimation sont brièvement examinés.
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Chapter 1

Introduction

1.1 Motivation and Challenges

It is now well stated in the statistical and economic literature that major economic

variables display a non-linear behaviour over the different phases of the business cycle. In

particular, asymmetry has been recognized as a nonlinear phenomenon in several recent

studies investigating various economic and financial time series. Nonlinear models are

therefore required to capture the features of the data generating mechanism of inherently

asymmetric realizations of some of the macroeconomic business cycle series, since linear

models are incapable of generating such behavior. In particular, nonlinearity in an

economic indicator conveys information on possible existence of different states of the

world or regimes in the economy. In real-world applications of economic time series

analysis, the process underlying the generated signal, which is the time series, are a

priori unknown. In this respect, the thesis provides an interdisciplinary and open-

minded approach to analyzing economic and financial systems in a novel way. The thesis

presents approaches that are robust to extreme values, non-stationarity, applicable to

both short and long data length, transparent and adaptive to any financial/economic

time series.

In this respect, the thesis contributions can be placed under the themes: a) Characteriza-

tion and Detection of Nonlinear Schemes in economics and financial indicators; b) Finan-

cial and Economic Crisis: Detection, Characterization and Turning Point Chronology

and c) Nonlinear Models and applications.

1
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1.1.1 Characterization and Detection of Nonlinear Schemes in eco-

nomics and financial indicators

An unavoidable step in nonlinear modeling is testing linearity against nonlinearity before

fitting any of the nonlinear models. However, most linearity testing against nonlinearity

in literature, usually require a specification of a stationary nonlinear model under the

alternative hypothesis. This makes such tests restrictive to the dynamics of the specified

nonlinear model. There is therefore a need to use procedures that tests linearity against

any form of nonlinearity in the economic time series.

In line with this objective, we provide a signal modality analysis to distinguish be-

tween linearity and nonlinearity by incorporating the surrogate data methodology in to

the recently proposed ’Delay Vector Variance’ (DVV) method. The approach can be

applicable to non-stationary data, requires no a priori assumptions on the statistical

properties of the data and requires no specification on the exact form (model) of nonlin-

earity under the alternative hypothesis. Statistical testing of the null of linearity using

a non-parametric rank-order test is performed to enhance robust conclusion of results

obtained via the DVV-analysis.

We have successfully used this method in understanding exchange rates dynamics, de-

tecting nonlinearity in both business cycle indicators and financial stock series.

1.1.2 Financial and Economic Crisis: Detection, Characterization and

Turning Point Chronology

We propose a transparent way of establishing a turning point chronology for the busi-

ness cycle of any economic system (i.e country or region). Our analysis is achieved by

exploiting the concept of recurrence plots, in particular distance plots, to detect and

data turning points as well as evaluating the impact of economic crisis. A comprehen-

sive analysis of the feasibility of this approach applied to financial data and economic

time series is provided. Our proposed methodology is applicable to both univariate and

multivariate time series. We have provided a step-by-step procedure which incorporates

concepts on surrogate data method, wavelets, phase space embedding, ’delay vector vari-

ance’ (DVV) method and recurrence plots in order to anticipate future crisis and even

the possible impact before they happen. Our findings indicates that the turning points

provided by NBER for the US can be obtained with only Industrial Production Index

data using the distance plot approach.

The findings from the data analysis with recurrence plots, in this case distance plots,

shows that these plots are robust to extreme values, non stationarity and applicable
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to both short and long data length. This approach is also replicable and transparent;

is adaptive to any time series. In particular, we show that this approach provides a

transparent chronology of business cycles since it avoids revision of crisis dates through

time. Moreover, our methodology can be used to provide early warning signals of crisis

especially when applied to variables which are predictors of such crisis.

1.1.3 Nonlinear Models and applications

We present different statistical models able to take into account certain nonlinearities

and their most recent extensions. Special attention is paid to nonlinear models that

rely on state-dependent or regime-switching behavior. We compare those nonlinear

models developed in univariate and multivariate modeling, both from a theoretical and

empirical point of view. The main models models that will be developed and extended

are the Self-Exciting Threshold Autoregressive (SETAR) models and Smooth Transition

Autoregressive (STAR) models.

In this respect, we propose the MT-STAR model which generalizes the T-STAR model

proposed in literature by introducing asymmetric adjustment towards equilibrium and

presents a new unit root test in a nonlinear framework which contributes to the existing

literature in unit root tests. We also derive the limit distributions of this new test and

give some empirical applications.

Concerning the multivariate setting, there is work in progress on developing a Mul-

tivariate Self-Exciting Threshold Autoregressive (MSETARX) Models with Exogenous

inputs. Special attention is paid to establishing a complete modeling strategy for such

a multivariate nonlinear model and providing some empirical applications.

1.2 Contributions

The main contributions of this work are to introduce modern non-linear interdisciplinary

and open-minded approaches for data analysis in economics and Finance with special

attention on business cycles and financial crisis.

In today’s globalized economy, given the increasing importance of central bank’s credibil-

ity especially in times of economic crisis, it is reputation that is key. This key policy issue

is linked to the continued action via financial stability and monetary policy measures to

improve the economic health of the nation or region the bank represents.

Following the recent financial crisis, Analysts could confirm that most conclusion drawn

from existing models may not been appropriate for policy-making. These claims are valid
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since existing models do not account for the increased interconnectedness, increased risk

of recession, and the increased sensitivity of systemic failure. It is therefore essential to

conduct research on the identification of risks in the financial system and the detection

of early warning signals for systemic risk to enhance better policy-making decisions to

prevent and manage such risks. In other words, obtaining early warning signals before

economic crisis will aid the central banks in responding in such a way as to ensure

stability of the global financial system. Thus, the central banks will be safe from the

reputational damage that could take decades to repair.

Asymmetry has been recognized as a nonlinear phenomenon in several recent studies

investigating various economic and financial time series. As such, it is therefore necessary

to introduce modern approaches for nonlinear data analysis of economic and financial

indicators via interdisciplinary research. This approaches need to be robust to extreme

values, non stationarity, applicable to both short and long data length, transparent and

adaptive to any time series. For instance, a section of the thesis centers on transparent

ways of identifying, dating turning points, evaluating impact of economic and financial

crisis. In particular, the study also provides a procedure on how to anticipate future

crisis and the possible impact of such crisis. In addition, the incorporation of some

modern signal processing and machine learning techniques in learning the structure and

interactions within and between economic and financial variables will be very useful

in policy-making, since it facilitates the selection of appropriate processing methods,

suggested by the data itself. Moreover, the identification of transmission channels and

how the network structure of the financial system change over time will aid in drawing

meaningful conclusions for appropriate policy-making. In this respect, research will help

policy makers safeguard the reputation of central banks in today’s globalized economy.

The work in this thesis has contributed in part or full to the following publications:

• Addo, P. M., Billio, M., Guégan, D. (2013). “Nonlinear Dynamics and Re-

currence Plots for Detecting Financial Crisis”, The North-American Journal of

Economics and Finance, Volume 26, December 2013, Pages 416–435.

http://dx.doi.org/10.1016/j.najef.2013.02.014.

• Addo P.M., M. Billio, D. Guégan (2014), “Turning point chronology for the

Euro–Zone: A Distance Plot Approach”. Journal of Business Cycle Measurement

& Analysis (forthcoming).

• Addo, P. M., Billio, M., D. Guégan (2014). “The Univariate MT-STAR Model

and a new linearity and unit root test procedure”. Computational Statistics & Data

Analysis (CSDA). http://dx.doi.org/10.1016/j.csda.2013.12.009.
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• Addo, P. M., Billio, M., D. Guégan (2014). “Nonlinear Dynamics and Wavelets

for Business Cycle Analysis”. In Marco Gallegati and Willi Semmler (Eds.),

“Wavelets Applications in Economics and Finance: Essays in Honor of James Ram-

sey”, Dynamic Modeling and Econometrics in Economics and Finance. Springer

Series (forthcoming).

• Addo, P. M., Billio, M., Guégan, D. (2012), “Understanding exchange rate dy-

namics”, In A. Colubi, K. Fokianos, & E. J. Kontoghiorghes (Eds.), Proceedings of

the 20th International Conference on Computational Statistics, pp. 1–14. Curran

Associates, Inc. ISBN: 978-1-62748-321-6 .

1.3 Outline of Thesis

This prelude has introduced the idea of introducing modern non-linear approaches for

data analysis in economics and Finance with special attention on business cycles and

financial crisis. The Chapters of the thesis correspond to the contributions made via

publication.

Chapter 2 provides a signal modality analysis to characterize and detect nonlinearity

schemes in the US Industrial Production Index time series. The analysis is achieved by

using the recently proposed ’delay vector variance’ (DVV) method, which examines local

predictability of a signal in the phase space to detect the presence of determinism and

nonlinearity in a time series. Optimal embedding parameters used in the DVV analysis

are obtained via a differential entropy based method using Fourier and wavelet-based

surrogates. A complex Morlet wavelet is employed to detect and characterize the US

business cycle. A comprehensive analysis of the feasibility of this approach is provided.

The results coincide with the business cycles peaks and troughs dates published by the

National Bureau of Economic Research (NBER).

Chapter 3 proposes a transparent way of establishing a turning point chronology for

the Euro-zone business cycle. Our analysis is achieved by exploiting the concept of

recurrence plots, in particular distance plots, to characterize and detect turning points

of the business cycle. Firstly, we apply the concept of recurrence plots on the US

Industrial Production Index (IPI) series: this serves as a benchmark for our analysis

since it already exists a reference chronology for the US business cycle, provided by

the Dating Committee of the National Bureau of Economic Research (NBER). This

concept is then used to construct a turning point chronology for the Euro-zone business

cycle. In particular, study shows that this approach permits to detect turning points
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and study the business cycle without a priori assumptions on the statistical properties

of the underlying economic indicator.

Chapter 4 centers on the detection and characterization of financial crisis. Identification

of financial bubbles and crisis is a topic of major concern since it is important to prevent

collapses that can severely impact nations and economies. Our analysis deals with the

use of the recently proposed ’delay vector variance’ (DVV) method, which examines local

predictability of a signal in the phase space to detect the presence of determinism and

nonlinearity in a time series. Optimal embedding parameters used in the DVV analysis

are obtained via a differential entropy based method using wavelet-based surrogates.

We exploit the concept of recurrence plots to study the stock market to locate hidden

patterns, non-stationarity, and to examine the nature of these plots in events of financial

crisis. In particular, the recurrence plots are employed to detect and characterize finan-

cial cycles. A comprehensive analysis of the feasibility of this approach is provided. We

show that our methodology is useful in the diagnosis and detection of financial bubbles,

which have significantly impacted economic upheavals in the past few decades.

In Chapter 5, a novel procedure to test for unit root in a nonlinear framework is proposed

by first introducing a new model – the MT-STAR model – which has similar properties

as the ESTAR model but reduces the effects of the identification problem and can also

account for cases where the adjustment mechanism towards equilibrium is not symmet-

ric. The limiting non-standard asymptotic distributions of the proposed unit root test

is then derived. Finally, the power of the test is evaluated through a simulation study

and some empirical illustrations are given at the end.

Chapter 6 presents a preliminary version of a work in progress on a multivariate nonlinear

model. The recent financial crisis of 2007-2009 has lead to a need for regulators and

policy makers to understand and track systemic linkages. As the events following the

turmoil in financial markets unfolded, it became evident that modern financial systems

exhibit a high degree of interdependence and nonlinearity making it difficult in predicting

the consequences of such an intertwined system. This study defines a multivariate

Self–Exciting Threshold Autoregressive with eXogenous input (MSETARX) models and

present an estimation procedure for the parameters. The conditions for stationarity of

the nonlinear MSETARX models is provided. The efficiency of an adaptive parameter

estimation algorithm and LSE (least squares estimate) algorithm for this class of models

is investigated via simulations. The modeling procedure for the MSETARX models and

problems of estimation are briefly considered.



Chapter 2

Nonlinear Dynamics and

Wavelets for Business Cycle

Analysis

2.1 Introduction

In general, performing a nonlinearity analysis in a modeling or signal processing context

can lead to a significant improvement of the quality of the results, since it facilitates the

selection of appropriate processing methods, suggested by the data itself. In real-world

applications of economic time series analysis, the process underlying the generated sig-

nal, which is the time series, are a priori unknown. These signals usually contain both

linear and nonlinear, as well as deterministic and stochastic components, yet it is a com-

mon practice to model such processes using suboptimal, but mathematically tractable

models. In the field of biomedical signal processing, e.g., the analysis of heart rate

variability, electrocardiogram, hand tremor, and electroencephalogram, the presence or

absence of nonlinearity often conveys information concerning the health condition of

a subject (for an overview 69). In some modern machine learning and signal process-

ing applications, especially biomedical and environmental ones, the information about

the linear, nonlinear, deterministic or stochastic nature of a signal conveys important

information about the underlying signal generation mechanism. In the analysis of eco-

nomic indicators, the presence of nonlinearity in the data provides information about

both structural and behavioral changes that can occur in the economy across time. In

particular, nonlinearity in an economic indicator conveys information on possible ex-

istence of different states of the world or regimes in the economy. There has been an

7
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increasing concerns on the forecasting performance of some nonlinear models in mod-

eling economic variables. Nonlinear models often provide superior in-sample fit, but

rather poor out-of-sample forecast performance (123). In cases were the nonlinearity is

spurious or relevant for only a small part of the observations, the use of nonlinear models

will lead to forecast failure (130). It is, therefore, essential to investigate the intrinsic

dynamical properties of economic time series in terms of its deterministic/stochastic and

nonlinear/linear components reveals important information that otherwise remains not

clear in using conventional linear methods of time series analysis.

Since the early work by [29], many attempts have been made to measure and fore-

cast business cycles. Many business cycle indicators present asymmetric features that

have long been recognized in economics ([81, 103]). Putting it simply, there are sharp

retractions during downturns in the economy as opposed to gradual upswings during re-

coveries ([17, 25, 83, 121]). Asymmetry has been recognized as a nonlinear phenomenon

in several recent studies investigating various economic time series. Nonlinear models

are therefore required to capture the features of the data generating mechanism of in-

herently asymmetric realizations of some of the macroeconomic business cycle series,

since linear models are incapable of generating such behavior ([38, 54, 131, 132]). Many

nonlinear models are only identified when the alternative hypothesis holds (the model is

genuinely nonlinear) but not when the null hypothesis is valid. Since the parameters of

an unidentified model cannot be estimated consistently, testing linearity before fitting

any of these models is an unavoidable step in nonlinear modeling ([92, 145]). However,

most linearity testing against nonlinearity in literature, usually require a specification

of a stationary nonlinear model under the alternative hypothesis. This makes such tests

restrictive to the dynamics of the specified nonlinear model. There is therefore a need

to use procedures that tests linearity against any form of nonlinearity in the economic

time series.

Several methods for detecting nonlinear nature of a signal have been proposed over the

past few years. The classic ones include the ’deterministic versus stochastic’ (DVS)

plots (148), the Correlation Exponent and ’δ-�’ method (78). For our purpose, it is

desirable to have a method which is straightforward to visualize, and which facilitates

the analysis of predictability, which is a core notion in online learning. In this paper,

we adopt to the recently proposed phase space based ’delay vector variance’ (DVV)

method (51), for signal characterization, which is more suitable for signal processing

application because it examines the nonlinear and deterministic signal behavior at the

same time. This method has been used for understanding the dynamics of exchange

rates (5), detecting nonlinearity in financial markets (6), qualitative assessment of ma-

chine learning algorithms, analysis of functional magnetic resonance imaging (fMRI)

data, as well as analyzing nonlinear structures in brain electrical activity and heart



Chapter 2. Nonlinear Dynamics and Wavelets for Business Cycle Analysis 9

rate variability (HRV) (52). Optimal embedding parameters will be obtained using a

differential entropy based method proposed in 50, which allows for simultaneous deter-

mination of both the embedding dimension and time lag needed for the DVV analysis.

Surrogate generation used in this study will be based on both the Iterative Amplitude

Adjusted Fourier Transform (iAAFT) ([119, 120]) and a recently refined iAAFT with a

wavelet-based approach, denoted WiAAFT (79).

Wavelet analysis has successfully been applied in a great variety of applications like

signal filtering and denoising, data compression, imagine processing and also pattern

recognition. The application of wavelet transform analysis in science and engineering

really began to take off at the beginning of the 1990s, with a rapid growth in the

numbers of researchers turning their attention to wavelet analysis during that decade

(56, 75, 114, 115). The wavelet transforms has the ability to perform local analysis of

a time series revealing how the different periodic components of the time series change

over time. Wavelets are able to locate precisely in time regime shifts, discontinuities, and

isolated shocks to a dynamical system. A wavelet approach has the ability to deal with

non-stationarity of stochastic innovations that are inevitably involved with economic and

financial time series (114). The maximum overlap discrete wavelet transform (MODWT)

has commonly been used by some economists (56, 49, 48, among others). The MODWT

can be seen as a kind of compromise between the discrete wavelet transform (DWT) and

the continuous wavelet transform (CWT); it is a redundant transform, because while it

is efficient with the frequency parameters it is not selective with the time parameters.

The CWT, unlike the DWT, gives us a large freedom in selecting our wavelets and yields

outputs that makes it much easier to interpret. The continuous wavelet transform has

emerged as the most favored tool by researchers as it does not contain the cross terms

inherent in the Wigner-Ville transform and Choi-Williams distribution (CWD) methods

while possessing frequency-dependent windowing which allows for arbitrarily high reso-

lution of the high frequency signal components. Moreover, the time invariance property

of the CWT implies that the wavelet transform of a time-delayed version of a signal is

a time-delayed version of its wavelet transform. This serves as an important property

in terms of pattern recognition. In other words, the identification of the business cycle

turning points for a subset of the entire time series does not change through time for

a given time series. From an economic point of view, this ensures an effective dating

chronology since it avoids revisions through time. This nice property of the CWT is not

readily obtained in the case of DWT and MODWT (2, 147).

Dating is an ex post exercise, and in this respect accuracy is an important criterion

since dating is useful for economic decision-making (7). Governments and central banks

are usually very sensitive to indicators showing signs of deterioration in growth to allow

them to adjust their policies sufficiently in advance, avoiding more deterioration or a
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recession (11). As such, it will be interesting to choose a wavelet that will provide a

better interpretation of the results from an economic point of view and also enhance

accurate detection of the dates. In this respect, the choice of the wavelet is important.

We are concerned with information about cycles and as such complex wavelets serves

as a necessary and better choice. We need complex numbers to gather information

about the phase, which, in turn, tells us the position in the cycle of the time-series

as a function of frequency and the associated magnitude in this position. This will

enable extraction of information about the economy-wide fluctuations in production

that occur around a long-term growth trend. Thus, detecting and studying periods of

relatively rapid economic growth (an expansion), and periods of relative stagnation or

decline (recession) in the economy. There are many continuous wavelets to choose from;

however, by far the most popular are the Mexican hat wavelet and the Morlet wavelet.

In this work, we employ a complex Morlet wavelet which satisfies these requirements

and has optimal joint time-frequency concentration, meaning that it is the wavelet which

provides the best possible compromise in these two dimensions.

In this paper, we provide a novel methodology for business cycle modeling which en-

compasses different existing methods successfully applied in physics and engineering.

In particular, we first study the structure of a chosen economic indicator1 via a phase-

space representation using the differential entropy based method with both iAAFT and

wavelet-based surrogates. We then use the DVV method to detect the nonlinear nature

of the economic indicator using the values of the optimal embedding parameters ob-

tained via the differential entropy method with surrogates. Finally, we perform wavelet

analysis with a complex Morlet wavelet using a continuous wavelet transform to dis-

cover patterns or hidden information that cannot be captured with traditional methods

of business cycle analysis such as spectral analysis. Our results is consistent with busi-

ness cycle dates published by the National Bureau of Economic Research (NBER). We

are able to detect these business cycle dates and study these fluctuations in the economy

over frequency and time. This serves as an important finding in terms of forecasting

and pattern recognition.

The paper is organized as follows: The concept of wavelet analysis and our choice of

analyzing wavelet is presented in Section 2.2.1. Surrogate generation methodology and

differential entropy based method for determining optimal embedding parameters of

the phase-space representation of time series are then presented in Section 4.2.1 and

Section 4.2.2 respectively. Lastly, we present, in Section 4.2.3, an overview of the ’delay

vector variance’ method with illustrations. In Section 2.3, we present a comprehensive

1The economic indicator used in the work is the US Industrial Production Index. We remark that
our methodology can easily be applied to any known business cycle indicator.
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analysis of the feasibility of this approach to analyze the US Business cycle. Section 2.4

concludes.

2.2 Background: Wavelet Analysis and ’Delay Vector Vari-

ance’ Method

In this section, we present an overview of different existing methods successfully ap-

plied in physics and engineering. In particular, we show the usefulness of these methods

over other methods and then explain how we merged these methods to business cycle

modeling. Our methodology encompasses wavelet analysis, surrogate generation meth-

ods, differential entropy method for determining the optimal embedding parameters in

phase-space, and the DVV method.

2.2.1 Wavelet and Wavelet Analysis

It is a time-frequency signal analysis method which offers simultaneous interpretation

of the signal in both time and frequency allowing local, transient or intermittent com-

ponents to be elucidated. These components are often not clear due to the averaging

inherent within spectral only methods like the fast Fourier transform (FFT).

A wavelet is a function, ψ, which has a small concentrated burst of finite energy in the

time domain and exhibits some oscillation in time. This function must be in the space of

measurable functions that are absolutely and squared-integrable, i.e. ψ ∈ L1(R)∩L2(R),

to ensure that the Fourier transform of ψ is well-defined and ψ is a finite energy signal.

A single wavelet function generates a family of wavelets by dilating (stretching and

contracting) and translating (moving along the time axis) itself over a continuum of

dilation and translation values. If ψ is a wavelet analyzing function then the set {τtDsψ}

of all the dilated (by s �= 0) and translated (by t) versions of ψ is that wavelet family

generated by ψ. Dilation in time by contracting values of scale (s > 1) corresponds to

stretching dilation in the frequency domain.

The basic concept in wavelet transforms is the projection of data onto a basis of wavelet

functions in order to separate large-scale and fine-scale information (26). Thus, the

signal is decomposed into a series of shifted and scaled versions of a mother wavelet

function to make possible the analysis of the signal at different scales and resolutions.

For reconstruction of a signal, it is necessary that ψ be such that {τtDsψ} span a large

enough space of interest.
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• Thus, every signal f of interest should be representable as a linear combination of

dilated and translated versions of ψ.

• Knowing all the inner products {�f, τtDsψ �} , the signal should be recoverable.

The wavelet ψ is assumed to satisfy the admissibility condition,

Cadm,ψ =

�

R

|ψ̂(ω)|2

|ω|
dω < ∞, (2.1)

where ψ̂(ω) is the Fourier transform of ψ(ξ), ψ̂(ω) =
�

R
ψ(ξ)e−iωξdξ. The admissibility

condition (2.1) implies ψ̂(0) =
�

R
ψ(ξ)dξ = 0. For s restricted to R

+, the condition (2.1)

becomes

Cadm+,ψ =

� ∞

0

|ψ̂(ω)|2

ω
dω < ∞. (2.2)

This means that the wavelet has no zero-frequency component. The value of the admissi-

bility constant, Cadm,ψ or Cadm+,ψ depends on the chosen wavelet. This property allows

for an effective localization in both time and frequency, contrary to the Fourier trans-

form, which decomposes the signal in terms of sines and cosines, i.e. infinite duration

waves.

There are essentially two distinct classes of wavelet transforms: the continuous wavelet

transform and the discrete wavelet transform. We refer the reader to 2, 147 for a review

on wavelet transforms. In this work, we employ a complex wavelet via a continuous

wavelet transform (CWT) in order to separate the phase and amplitude information,

because the phase information will be useful in detecting and explaining the cycles in

the data. We provide in A.1.2 an overview of CWT and its relevance to our work.

2.2.1.1 Choice of Wavelet

The Morlet wavelet is the most popular complex wavelet used in practice. A complex

Morlet wavelet (129) is defined by

ψ(ξ) =
1√
πfb

e
i2πfcξ− ξ2

fb (2.3)

depending on two parameters: fb and fc, which corresponds to a bandwidth parameter

and a wavelet center frequency respectively. The Fourier transform of ψ is ψ̂(ζ) =

e−π2fb(ζ−fc)2 , which is well-defined since ψ ∈ L1(R). It can easily be shown that the

Morlet wavelet (2.3) is a modulated Gaussian function and involutive, i.e. ψ = ψ̃.

The Fourier transform ψ̂ has a maximum value of 1 which occurs at fc, since �ψ�1 :=
�

|ψ| = 1. This wavelet has an optimal joint time-frequency concentration since it has
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an exponential decay in both time and frequency domains, meaning that it is the wavelet

which provides the best possible compromise in these two dimensions. In addition, it

is infinitely regular, complex-valued and yields an exactly reconstruction of the signal

after the decomposition via CWT.

In this work, the wavelet that best detects the US business is the complex Morlet wavelet

with fb = 1 and fc = 0.5. In this case, the Morlet wavelet becomes

ψ(ξ) =
1√
π
eiπξ−ξ2 , (2.4)

which we will often refer to as Morlet wavelet. The nature of our choice of wavelet

function and the associated center frequency is displayed in figure 2.1. It illustrates the

oscillating nature of the wavelet with short duration of the time support. In other words,

the wavelet is bounded, centered around the origin, and have time support (respectively

frequency support).

Figure 2.1: Complex Morlet wavelet with fb = 1 and fc = 0.5

2.2.2 Surrogate Data Method

Surrogate time series, or ’surrogate’ for short, is non-parametric randomized linear ver-

sion of the original data which preserves the linear properties of the original data. For

identification of nonlinear/linear behavior in a given time series, the null hypothesis

that the original data conform to a linear Gaussian stochastic process is formulated.

An established method for generating constrained surrogates conforming to the proper-

ties of a linear Gaussian process is the Iterative Amplitude Adjusted Fourier Transform
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(iAAFT), which has become quite popular (85, 119, 120, 129). This type of surrogate

time series retains the signal distribution and amplitude spectrum of the original time

series, and takes into account a possibly nonlinear and static observation function due

to the measurement process. The method uses a fixed point iteration algorithm for

achieving this, for the details of which we refer to 119, 120.

Wavelet-based surrogate generation is a fairly new method of constructing surrogate for

hypothesis testing of nonlinearity which applies a wavelet decomposition of the time

series. The main difference between Fourier transform and wavelet transform is that the

former is only localized in frequency, whereas the latter is localized both in time and

frequency. The idea of a wavelet representation is an orthogonal decomposition across

a hierarchy of temporal and spatial scales by a set of wavelet and scaling functions.

The iAAFT-method has recently been refined using a wavelet-based approach, denoted

by WiAAFT (79), that provides for constrained realizations of surrogate data that re-

sembles the original data while preserving the local mean and variance as well as the

power spectrum and distribution of the original except for randomizing the nonlinear

properties of the signal. The WiAAFT-procedure follows the iAAFT-algorithm but

uses the Maximal Overlap Discrete Wavelet Transform (MODWT) where the iAAFT-

procedure is applied to each set of wavelet detail coefficients Dj(n) over the dyadic scales

2j−1 for j = 1, · · · , J , i.e., each set of Dj(n) is considered as a time series of its own. The

main difference between iAAFT and wiAAFT algorithms is that the former is designed

to produce constrained, linear realizations of a process that can be compared with the

original time series on some measure, while the later algorithm restricts the possible

class of realizations to those that retain some aspect of the local mean and variance of

the original time series (80).

Statistical analysis by the concept of surrogate data tests for a difference between a test

statistic computed for the original and linearized versions of the data, i.e., an ensemble

of realizations of the null hypothesis linear dynamics. For statistical testing of the null

hypothesis of linearity, we follow [135] by using a non-parametric rank-order test. The

degree of difference between the original and surrogate data is given by the ranked

position of the data asymmetry with respect to the surrogates. For a right-tailed test,

we generate at least Ns = 1
α
− 1 surrogates, where α is the level of significance and

Ns denotes the number of surrogates. The rank-threshold ( or critical value) for right-

tailed rank-order test is given by (1 − α)(Ns + 1). The null of linearity is rejected as

soon as the rank-order statistic is greater than the rank-threshold. To achieve a minimal

significance requirement of 95% (α = 0.05), we need at least 19 surrogates time series for

right-tailed tests. Increasing the number of surrogates can increase the discrimination

power (119, 120, 135). The concept of surrogate data will be incorporated into the Delay
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Vector Variance method (below) to examine the dynamics of an underlying economic

indicator.

2.2.3 Optimal Embedding Parameters

In the context of signal processing, an established method for visualizing an attractor

of an underlying nonlinear dynamical signal is by means of time delay embedding (69).

By time-delay embedding, the original time series {xk} is represented in the so-called

’phase space’ by a set of delay vectors (DVs) of a given embedding dimension, m, and

time lag, τ : x(k) = [xk−τ , · · · , xk−mτ ]. 50 proposed a differential entropy based method

for determining the optimal embedding parameters of a signal. The main advantage of

this method is that a single measure is simultaneously used for optimizing both the

embedding dimension and time lag. We provide below an overview of the procedure:

The “Entropy Ratio” is defined as

Rent(m, τ) = I(m, τ) +
m lnN

N
, (2.5)

where N is the number of delay vectors, which is kept constant for all values of m and

τ under consideration,

I(m, τ) =
H(x,m, τ)

�H(xs,i,m, τ)�i
(2.6)

where x is the signal, xs,i i = 1, · · · , Ts surrogates of the signal x, �·�i denotes the

average over i, H(x,m, τ) denotes the differential entropies estimated for time delay

embedded versions of a time series, x, which an inverse measure of the structure in the

phase space. 50 proposed to use the Kozachenko-Leonenko (K-L) estimate (89) of the

differential entropy given by

H(x) =
T
�

j=1

ln(Tρj) + ln 2 + CE (2.7)

where T is the number of samples in the data set, ρj is the Euclidean distance of the j-th

delay vector to its nearest neighbor, and CE(≈ 0.5772) is the Euler constant. This ratio

criterion requires a time series to display a clear structure in the phase space. Thus, for

time series with no clear structure, the method will not yield a clear minimum, and a

different approach needs to be adopted, possibly one that does not rely on a phase space

representation. When this method is applied directly to a time series exhibiting strong

serial correlations, it yields embedding parameters which have a preference for τopt = 1.

In order to ensure robustness of this method to the dimensionality and serial correla-

tions of a time series, 50 suggested to use the iAAFT method for surrogate generation
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since it retains within the surrogate both signal distribution and approximately the au-

tocorrelation structure of the original signal. In this Paper, we opt to use wavelet-based

surrogate generation method, WiAAFT by in 79, for reasons already discussed in the

previous section.

2.2.4 ’Delay Vector Variance’ method

The characterization of signal nonlinearities, which emerged in physics in the mid-1990s,

have been successfully applied in predicting survival in heart failure cases and also

adopted in practical engineering applications (70, 101). The ’delay vector variance’

(DVV) method (51) is a recently proposed phase space based method for signal charac-

terization. It is more suitable for signal processing application because it examines the

deterministic2 nature of a time series and when combined with the concept of surrogate

data, provides as additional account of the nonlinear behavior of the time series. The

DVV-analysis is based on the calculation of the target variance, σ∗2, which is an inverse

measure of the predictability of a time series. The algorithm is summarized below:

• For an optimal embedding dimension m and time lag τ , generate delay vector

(DV): x(k) = [xk−τ , · · · , xk−mτ ] and corresponding target xk

• The mean µd and standard deviation, σd, are computed over all pairwise distances

between DVs, �x(i)− x(j)� for i �= j.

• The sets Ωk are generated such that Ωk = {x(i)|�x(k)−x(i)�≤ �d}, i.e., sets which

consist of all DVs that lie closer to x(k) than a certain distance �d, taken from

the interval [min{0, µd − ndσd};µd + ndσd], e.g., uniformly spaced, where nd is a

parameter controlling the span over which to perform the DVV analysis.

• For every set Ωk, the variance of the corresponding targets, σ2
k, is computed. The

average over all sets Ωk, normalized by the variance of the time series, σ2
x, yields

the target variance, σ∗2 :

σ∗2(�d) =
1
N

�N
k=1 σ

2
k(�d)

σ2
x

(2.8)

where N denotes the total number of sets Ωk(�d)

Graphical representation of DVV-analysis is obtained by plotting σ∗2(�d) as function of

the standardized distance, �d. The minimum target variance, σ∗2
min = min�d [σ

∗2(�d)],

2This means that the underlying process that generate the data can theoretically be described pre-
cisely by a set of linear or nonlinear equations. Thus, the component of a time series that can be
predicted from a number of previous samples. [149]
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(a) AR(2) signal (b) Henon signal

Figure 2.2: Nonlinear and deterministic nature of signals. The first row of Diagrams
4.1(a) and 4.1(b) are DVV plots for a linear benchmark signal: AR(2) signal and a
nonlinear benchmark signal: Henon signal, where the red line with crosses denotes the
DVV plot for the average of 25 WiAAFT-based surrogates while the blue line denotes
that for the original signal. The second row of Diagrams 4.1(a) and 4.1(b) denote
the DVV scatter diagrams for those two signals, where error bars denote the standard

deviation of the target variances of surrogates.

which corresponds to the lowest point of the curve, is a measure for the amount of

noise which is present in the time series. Thus, σ∗2
min is inversely related to prevalence

of the deterministic component over the stochastic one, lowest σ∗2
min indicating a strong

deterministic component. At the extreme right, the DVV plots smoothly converge to

unity, as illustrated in Figure 4.1(a) and Figure 4.1(b). The reason behind this is that

for maximum spans, all DVs belong to the same set, and the variance of the targets is

equal to the variance of the time series.

The analysis addressing the linear or nonlinear nature of the original time series is

examined by performing DVV analysis on both the original and a set of WiAAFT

surrogate time series. Due to the standardization of the distance axis, these plots can be

conveniently combined within a scatter diagram, where the horizontal axis corresponds

to the DVV plot of the original time series, and the vertical to that of the surrogate time

series. If the surrogate time series yield DVV plots similar to that of the original time

series, as illustrated by the first row of Figure 4.1(a), the DVV scatter diagram coincides

with the bisector line, and the original time series is judged to be linear, as shown in

second row of Figure 4.1(a). If not, as illustrated by first row of Figure 4.1(b), the DVV

scatter diagram will deviate from the bisector line and the original time series is judged

to be nonlinear, as depicted in the second row of Figure 4.1(b). Statistical testing of the

null of linearity using a non-parametric rank-order test ([135]) is performed to enhance

robust conclusion of results obtained via the DVV-analysis. We refer the reader to A.2

for more on DVV analysis of some simulated process.
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We provide below a summary of our methodology which can be characterized in two

stages:

1. Stage One: Detection of Nonlinearity in the underlying time series.

(a) We study the structure of the economic indicator via a phase-space repre-

sentation using the differential entropy-based method with both iAAFT and

wiAAFT surrogates. Embedding parameters that yields lower entropy ratio

is selected for the DVV analysis in next step. The main advantage of this

differential entropy-based method is that a single measure is simultaneously

used to obtain the embedding dimension, m, and time lag, τ .

(b) In order to detect the nonlinear behavior in the underlying time series, we use

the DVV method discussed in Section 4.2.3. We are able to generate delay

vectors necessary for the DVV analyzes using the (m, τ) obtained in the step

(5.1). Unlike classical nonlinearity testing procedures, this non-parametric

method is essentially data-driven and carry no a priori assumptions about

the intrinsic properties or mathematical structure of the underlying time se-

ries. In particular, this method provides a straightforward visualization and

interpretation of results. With this approach, we are able to obtain impor-

tant information on the underlying economic indicator, which is essential in

choosing the appropriate class of models suggested by the data itself. It is

noteworthy that this procedure does not need the underlying time series to be

stationary. Statistical testing of the null of linearity using a non-parametric

rank-order test ([135]) is performed to enhance robust conclusion of results

obtained via the DVV-analysis.

2. Stage Two: Detection and explaining the business cycle.

The next stage of the methodology deals with the problem of discovering pat-

tern or hidden information that cannot be captured with traditional methods

of business cycle analysis such as spectral analysis, which in only localized in

frequency. In this work, we perform wavelet analysis using a complex-valued

wavelet via a continuous wavelet transform in order to separate the phase and

amplitude information. The phase information will be useful in explaining

the economy-wide fluctuations in production that occur around a long-term

growth trend. Information on the magnitude of such cycles across time will

be obtained from the amplitude information.
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2.3 Data Analysis

It is now well-known that the United States and all other modern industrial economies

experience significant swings in economic activity. In this section, we perform analy-

sis to characterize and detect nonlinear schemes for the US business cycle considering

the monthly industrial production. The Industrial Production index is a business cycle

indicator that has been widely used in business cycle analysis (see [7, 11, 14, 16, 23]).

Firstly, we characterize the nature of the time series using the DVV method with both

iAAFT and WiAAFT surrogates and then employ complex Morlet wavelet to discover

the cycles or hidden information in the data. In particular, we show that this new

methodology permits to study the dynamics of the underlying economic indicator with-

out a priori assumptions on the statistical properties and also allows for the detection

of recessions periods. In addition, we attempt to establish a comparison between the

late-2000s financial crisis and the Great Depression of the 1930s.

(a) Industrial Production Index with the shaded areas
indicating the US recessions.

(b) The Spectrum of the Industrial Produc-
tion Index (IPI) which can be interpreted as
a presence of long memory dynamics

Figure 2.3: US Industrial Production Index (IPI) time seris. Diagram 3.1 is the
plot of the monthly IPI series for the period: 1919:01 - 2012:07 (n = 1123), where
the shaded regions corresponds to the US recessions from 1920 published by NBER.

Diagram 2.3(b) is the plot of the Spectrum of IPI.

The monthly US Industrial Production Index (IPI) time series3 spanning over the period

January, 1919 to July, 2012 is considered for the data analysis. Figure 3.1 is the plot

of the monthly IPI series for the period: 1919:01 - 2012:07, implying 1123 observations,

where the shaded regions corresponds to NBER4 published dates for US recessions from

1920. Figure 2.3(b) is the plot of the IPI spectrum which can be interpreted as a presence

of long memory dynamics in the data.

We now give a comprehensive analysis of the IPI in level. To begin with, we opted for the

differential-entropy based method (50) to determine the optimal embedding parameters,

3The data can be downloaded from Federal Reserve Bank of St. Louis:
http://research.stlouisfed.org/fred2/

4National Bureau of Economic Research: http://www.nber.org/cycles.html



Chapter 2. Nonlinear Dynamics and Wavelets for Business Cycle Analysis 20

i.e., the embedding dimension, m, and the time lag, τ , for the DVVmethod with both the

iAAFT surrogates and WiAAFT surrogates. We consider two approaches for estimating

(m, τ). In the first case, the optimal embedding parameters are estimated using wiAAFT

surrogates are m = 3 and τ = 1 with an entropy ratio, Rent(m, τ) = 0.7923, indicated

as an open circle in the diagram with a clear structure in Figure 2.4(b). This result

indicates the presence of time correlations, in the time series, implying a higher degree

of structure, thus, a lower amount of disorder. The second case is by using the iAAFT

surrogates of which the estimated values of the optimal embedding parameters arem = 4

and τ = 7 with entropy ratio, Rent(m, τ) = 0.7271, which is less than that obtained via

wiAAFT surrogates. In selecting the embedding parameters to generate delayed vectors

needed to perform the DVV analysis, we choose the estimates with lower entropy ratio

implying a higher degree of structure. In this case, m = 4 and τ = 7 is used to generate

the delayed vectors needed to perform the DVV analysis.

(a) Differential-Entropy based method with
iAAFT surrogates. The optimal embedding
values are m = 4 and τ = 7 with entropy ratio,
Rent(m, τ) = 0.7271.

(b) Differential-Entropy based method with
wiAAFT surrogates. The optimal embedding val-
ues are m = 3 and τ = 1 with Rent(m, τ) = 0.7923.

Figure 2.4: The optimal embedding parameters obtained via the Differential-Entropy
based method using the two types of surrogates are indicated as an open circle in the
diagrams with a clear structure. We obtain a lower entropy Rent(m, τ) with iAAFT
surrogates which corresponds to a higher degree of structure. The values will be used

is creating delay vectors needed for the DVV analysis.

Based on the optimal embedding parameters m = 4 and τ = 7, we generate delay vec-

tors necessary for the DVV Analysis. The results from the DVV analysis , in figure

2.5, with iAAFT surrogates performed on the IPI indicates a clear deviation from the

bisector on the DVV scatter diagram. The DVV plot also shows that the process is

neither strictly deterministic or strictly stochastic. Thus, the original time series, IPI,

exhibits nonlinear dynamics since the iAAFT surrogates are linear realizations of the

original ([119, 120]). Statistical testing of the null of linearity using the non-parametric

rank-order test, Table 2.1, indicates that the IPI is nonlinear. Thus, the DVV analysis

suggests that the time series under consideration, IPI, behaves more of a nonlinearity

with neither a strictly deterministic or strictly component. The nonlinearity in the data
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Data Code, H Rank-Order Rank-Threshold Decision

IPI 1 26 24.7 Nonlinear Dynamics

Table 2.1: Results of the non-parametric rank-order test. The null of linearity is
rejected as soon as the Rank-Order is greater than Rank-Threshold. The code H takes
the value 0 or 1, where H = 0 corresponds to failure of rejecting the null of linearity
and H = 1 the rejection of linearity for nonlinearity. The number of iAAFT surrogates
considered for the DVV-analysis is 25, which is greater than the minimum requirement

of 19 surrogates for testing at α = 0.05 level of significance.

could be due to both structural and behavioral changes that can occur in the econ-

omy across time. In otherwords, the nonlinearity may be as a result of existence of

different states of the world or regimes in the economy. Many business cycle indicators

present asymmetric features that have long been recognized in economics ([81, 103]).

Putting it simply, there are sharp retractions during downturns in the economy as op-

posed to gradual upswings during recoveries ([17, 25, 83, 121]). Asymmetry has been

recognised as a nonlinear phenomenon in several recent studies investigating various

economic time series. Nonlinear models are therefore required to capture the features

of the data generating mechanism of inherently asymmetric realizations of some of the

macroeconomic business cycle series, since linear models are incapable of generating such

behaviour ([38, 54, 131, 132]). Thus, some possible class of nonlinear models such as

Markov switching models, smooth transition autoregressive (STAR) models, threshold

autoregressive models, could capture such nonlinear behavior ([3, 22, 47, 54, 82]).

Figure 2.5: This is the DVV analysis with iAAFT surrogates performed on the IPI
using the embedding parameters obtained via the differential entropy-based method.
We clearly observe a deviation from the bisector on the DVV scatter diagram. The
DVV plot also indicates that the process is neither strictly deterministic or strictly
stochastic. Thus, the original time series, IPI, exhibits nonlinear dynamics since the

surrogates are linear realizations of the original ([119, 120]).
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On understanding the dynamics of the growth rate (suppose we denote the IPI as Xt,

then the growth rate of IPI defined as Yt = log(Xt) − log(Xt−1)) of IPI to study the

business cycle, we obtain the same estimates of embedding parameters m = 2 and τ = 1

using the differential entropy-based method with both iAAFT surrogates and WiAAFT

surrogates. Using the values of the embedding parameters, we are able to generate the

phase space representation as displayed in figure 2.7 and perform the DVV analysis in

figure 2.8 . The purpose of studying the growth rate of IPI is not to ensure stationarity

but to enable a better comparison of IPI dynamics over time. Business cycles are usually

measured by considering the growth rate of industrial production index or the growth

rate of real gross domestic product.

(a) Differential-Entropy based method with
iAAFT surrogates on the growth rate of the IPI

(b) Differential-Entropy based method with
wiAAFT surrogates on the growth rate of the IPI

Figure 2.6: The optimal embedding parameters obtained via the Differential-Entropy
based method using the two types of surrogates are indicated as an open circle in the
diagrams with a clear structure. The values of the embedding parameters arem = 2 and
τ = 1 in both diagrams. This result τ = 1 indicates the presence of time correlations,
in the growth rate of IPI, implying a higher degree of structure, thus, a lower amount

of disorder.

Figure 2.7: Phase Space reconstruction using the embedding parameters m = 2 and
τ = 1. This represents the embedding of the underlying time series, growth rate of IPI,

in phase space. The attractor is clearly visualized.
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(a) DVV with iAAFT surrogates. (b) DVV with wiAAFT surrogates.

Figure 2.8: The DVV analysis on Growth rate of IPI indicates that it is characterize
by nonlinear dynamics.

The DVV analysis, in figure 2.8 and the statistical testing of the null of linearity us-

ing the non-parametric rank-order test, Table 2.2, suggests that the time series under

consideration behaves more of a nonlinear stochastic process than a deterministic one.

Data surrogates Code, H Rank-Order Rank-Threshold Decision

Growth rate of IPI wiAAFT 1 25 24.7 Nonlinear Dynamics
Growth rate of IPI iAAFT 1 26 24.7 Nonlinear Dynamics

Table 2.2: Results of the non-parametric rank-order test. The null of linearity is
rejected as soon as the Rank-Order is greater than Rank-Threshold. The code H takes
the value 0 or 1, where H = 0 corresponds to failure of rejecting the null of linearity and
H = 1 the rejection of linearity for nonlinearity. The number of surrogates considered
for the DVV-analysis is 25, which is greater than the minimum requirement of 19

surrogates for testing at α = 0.05 level of significance.

In the following step, we perform CWT on the IPI growth rate using wavelets of the form

in equation (2.3) at different bandwidths fb and center frequency fc. In detecting the

recession dates, the wavelet analysis was first performed for the period 1919:02-1940:01

using the US recession dates published by NBER as benchmark. The Morlet wavelet

that captures the recession dates in this sample is then chosen as the wavelet to be used

for the whole sample period. The Morlet wavelet that best detect cycles and hidden

information in the data for the period 1919:02-1940:01, is given in equation (2.4) . The

colormap used in the coefficient plots and scalogram plot ranges from blue to red, and

passes through the colors cyan, yellow, and orange. The blue root-like structures on the

phase-angle plot of the Coefficient plots, in figure 2.9, corresponds to recession periods of

the economy. These are the periods where the economy-wide fluctuations in production

are below the long-term growth trend.

The detection of the recession dates are represented by blue root-like structures on the

angle coefficient plot in figure 2.9. We consider only such structures with a minimum
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Figure 2.9: Coefficients plots obtained from the CWT using complex Morlet wavelet
on the growth rate of IPI: First row represents the phase (angle) plot and second row
is the corresponding Modulus plot. The colormap ranges from blue to red, and passes
through the colors cyan, yellow, and orange. The blue regions on the Angle Coefficient
plot corresponds to periods of relative stagnation in the economy from 1920. Thus,
we consider only such structures with a minimum of six months as recession in the

economy. The corresponding amplitudes can be read from the Modulus plot.

of six months5 as recession in the economy. The corresponding magnitude of these

cycles can be read from the modulus plot of the coefficient plot in figure 2.9. The

Wall Street Crash of 1929, followed by the Great Depression of the 1930s - the largest

and most important economic depression in the 20th century - are well captured on

the phase-angle coefficient plot in the figure 2.9 for time period (128 - 235), reported

on Table 3.1. The three recessions between 1973 and 1982: the oil crisis - oil prices

5This is a known censuring period accepted in Business Cycle literature and National Bureau of
Economic Research: http://www.nber.org/cycles.html
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Figure 2.10: The IPI growth rate and associated Scalogram from the CWT. The bar
with colour scales on the left-hand side of the scalogram plot indicates the percentage
of energy for each wavelet coefficient. Higher energy levels can be clearly observed for
the Great Depression of the 1930s compared to the period of late-2000s financial crisis,

also known as the Global Financial Crisis.

Figure 2.11: The pseudo-frequency associated to scale, in Hertz (Hz). The horizontal
axis represents the scales and the vertical axis corresponds to the frequency associated

to a scale.

soared, causing the stock market crash are shown on the blue root-like structures of

the phase-angle coefficient plot in the figure 2.9 for the time periods (659-676), (733-

739), (751-767). Furthermore, the bursting of dot-com bubble - speculations concerning

Internet companies crashed is also detected for the time periods (987-995). The wavelet

energy at time periods are displayed on the scalogram in Figure 2.10 and the pseudo-

frequency corresponding to scales are displayed in Figure 2.11 . This interesting finding

provide support for the use of wavelet methodology in business cycle modeling.
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Figure 2.12: A contour representation of Scalogram, figure 2.10, associated with the
US IPI growth rate.

In order to compare the late-2000s financial crisis with the Great Depression of the

1930s, we perform the wavelet analysis on the growth rate of the IPI. The IPI growth

rate dynamics are well captured by the phase-angle coefficient plot in figure 2.9, where

the blue root-like structures corresponds to periods of relative stagnation in the economy

from 1920. The amplitudes associated with these economic fluctuations can be read from

the modulus plot in figure 2.9. Looking at the modulus plot in figure 2.9 and scalograms

in figure 2.10, we clearly observe higher amplitude and energy levels on the interval

(0.008%− 0.016%) corresponding to the Great depression of the 1930’s compared to the

late-2000s financial crisis with energy levels below 0.004%. These results, based on the

data set we used, suggests that the intensity of the late-2000s financial crisis, also known

as the Global Financial Crisis (GFC) is at the moment not so high as compared to the

Great Depression of the 1930s.

2.4 Conclusion

In this paper, we have proposed a methodology in business cycle modeling which en-

compasses different existing methods successfully applied in physics and engineering.

Our proposed procedure allows to first study the dynamics of the underlying economic

indicator using non-parametric methods which are essentially data-driven and carry no

a priori assumptions on the statistical properties, such as possible non-stationarity, or

mathematical structure of the time series. We have provided a comprehensive analysis

of the feasibility of our approach as essential in selecting the appropriate class of models

suggested by the data itself. Finally, we have demonstrated the usefulness of wavelets in

discovering patterns or hidden information that vary in nature across time which cannot
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Peak Trough Time Index

1920:01 1921:07 13-31
1923:05 1924:07 53-67
1926:10 1927:11 94-107
1929:08 1933:03 128-171
1937:05 1938:06 221-235
1945:02 1945:10 314-322
1948:11 1949:10 359-370
1953:07 1954:05 415-425
1957:08 1958:04 464-472
1960:04 1961:02 496-506
1969:12 1970:11 613-623
1973:11 1975:04 659 -676
1980:01 1980:07 733-739
1981:07 1982:11 751-767
1990:07 1991:03 859-867
2001:03 2001:11 987-995
2007:12 2009:06 1068-1086

Table 2.3: Business Cycle Peaks and Troughs in the United States, 1920-2009. The
peak and trough dates, in the format YYYY:MM, represent the start and end of

“episodes” of some sort. ( http://www.nber.org/cycles.html ).

be captured using traditional methods of business cycle analysis such as the correlation

analysis and spectral analysis.

Acknowledgements

We thank the conference participants of ISCEF 2012, CFE–ERCIM 2012, COMPSTAT

2012 and the participants at the Econometrics Internal Seminar at Center for Operations

Research and Econometrics (CORE) for their participation and interest. We also would
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Chapter 3

Turning point chronology for the

Euro-Zone: A Distance Plot

Approach

3.1 Introduction

Since the early work by [29], many attempts have been made to measure and forecast

business cycles. The main aim of business cycle analysis is to detect and anticipate

economic fluctuations with a particular attention paid to turning points location ([11]).

There are a great number of articles on national chronology dating (e.g. Belgium,

UK, Canada, Austria and Australia); however, very few countries have official dating

procedures (among them the USA (National Bureau of Economic Research, NBER) and

Japan (Economic and Social Research Institute)). Since the establishment of the Euro

area, several papers have been devoted to its cyclical dating. However, there does not

yet exists an official dating for the Euro area. Dating is an ex post exercise, and in this

respect accuracy is an important criterion since dating is useful for economic decision-

making. Governments and central banks are usually very sensitive to indicators showing

signs of deterioration in growth to allow them to adjust their policies sufficiently in

advance, avoiding more deterioration or a recession. In this respect, timing is important

and the earlier the signal, the better ([10]). It is worth noticing that the announcement of

the cycle turning point dates in the United States (US) are often substantially delayed1.

As such, it will be interesting to propose methods that will enhance faster and accurate

detection of the dates.

1For more information on announcement of these dates, see http://www.nber.org/cycles.html

28
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In literature, two types of cycles are usually considered: the classical business cycle

and the growth cycle. The growth cycle refers to the deviations from the long-term

trend of the series while the classical business cycle refers to fluctuations in the level

of the underlying economic indicator. The growth cycle has not been studied much

compared to the classical business cycle due to the de-trending problem of this concept

([10, 15]). In this paper, we study the classical business cycle using monthly data to

enhance accuracy of the dating. The most commonly dated monthly time series is the

industrial production ([10, 14–16]). Our aim is to propose a method with these features:

1. Robustness to extreme values, non stationarity and to any length of data.

2. It must be replicable by anyone. This enhances the transparency of the method.

3. Adaptability of the method to different time series.

4. The chronology would not be revised through time.

Recurrence Plot (RP) is an advanced graphical technique of nonlinear data analysis

which reveals all the times when the phase space trajectory of a dynamical system visits

roughly the same area in the phase space. The phase space trajectory of a system refers

to the path traced in a high-dimensional space representing the time evolution and the

dynamics of the system. Although, most applications of this technique have been in

physics and biology, it has gained interest in a variety2 of scientific fields ([94, 96]). Re-

currence plots and recurrence quantification analysis ([97, 152]) is gaining some attention

also in economics ([6, 20, 72, 87, 125], among others). This technique is applicable to any

time series since it requires no a priori assumptions on the statistical properties, such

as stationarity, or mathematical structure of the time series. We find this technique as a

promising means of analyzing economic data since it is robust against non-stationarity

([96]). In this work, we mainly use distance plots (sometimes called unthresholded recur-

rence plots) in studying the turning points of business cycles. Whilst the central focus

of this paper is the analysis of univariate time series (Industrial Production Index), we

also provide the reader with possible extensions beyond the scope of the paper in order

to clarify the methodology.

Previous works documenting the Euro-zone business cycle are quite limited by: station-

arity of data, choice of filters and usually model-based approaches (see [10, 12, 14, 16,

21, 45, 59, 66, 67, 71, 100, 104]). For instance, the work by [104] first constructs a Euro

area monthly real GDP series by interpolation and then applies a modified version of

a nonparametric algorithm, the Bry-Boschan procedure ([27]), to determine peaks and

2A comprehensive introduction and bibliography about on recurrence plots is available on
http://www.recurrence-plot.tk/ and [96]
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troughs in univariate time series. It is unclear whether information is lost or gained

after such interpolation. It is worth noting that the proposed Bry-Boschan procedure

by [104] as a turning point selection method is unsuitable when multivariate time series

are considered for dating. To our best of knowledge, most of the existing dating method-

ologies are restrictive in terms of assumptions on model specification and usually not

suitable for short and non-stationary data. As such, we propose an alternative method-

ology using the concept of recurrence plots, which is essentially a data-driven approach

with no a priori assumptions on the statistical properties on the underlying economic

indicator(s). This concept of recurrence plots can be applicable to both univariate and

multivariate time series ([95, 116]).

Our aim is to construct a turning point chronology for the Euro-zone business cycle. Our

analysis exploits the concept of recurrence plots on an underlying economic indicator

to locate hidden patterns, non-stationarity, and to examine the nature of these plots

in events of economic crisis. The qualitative interpretation of our results relates the

existence of disruptions (butterfly-like or band structures) to the non-stationarity; rare

states (extreme events) or far from the normal; transitions ([6, 43, 94, 96]).

The paper is organized as follows: We provide in Section 3.2, an overview on the concept

of recurrence plots and distance plots. In Section 3.3, we present a comprehensive anal-

ysis of the feasibility of this approach to analyze both the US and Euro-zone economic

cycle. Section 3.4 concludes.

3.2 Methodology based on recurrence plots

The method of recurrence plots (RP) was introduced to visualize the dynamics of phase

space3 trajectories ([43, 94]). It is a graphical technique that depicts the different occa-

sions when a dynamical system visits roughly the same area in the phase space. From

Takens’ embedding theorem ([127]), the dynamics can be appropriately presented by a

reconstruction of the phase space trajectory4 �x(t) = �xi ∈ R
m (i = 1, · · · , η , t = i∆t,

where ∆t is the sampling rate) in the m−dimensional phase space. For a given one-

dimensional time series {ui}
N
i=1, the phase space vectors �x can be reconstructed by

embedding the series using Takens’ time delay method �xi = (ui, ui+τ , · · · , ui+(m−1)τ ).

The coordinates of this vector correspond to the present and lead values of the time

3Phase spaces are usually high-dimensional which makes it difficult to visualize. [43] introduction
of the recurrence plot enables us to investigate the m-dimensional phase space trajectory through a
two-dimensional representation of its recurrences. This is interesting as higher-dimensional phase spaces
can only be visualized by projection into the two or three-dimensional sub-spaces.

4The state of a system typically changes in time, and, hence, the vector in the phase space describes
a trajectory representing the time evolution, the dynamics, of the system. This trajectory is referred to
as a phase space trajectory ([76, 127]).
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series. The parameters m and τ are referred to as the embedding dimension and time

delay respectively ([5, 96, 127]). The choice of m and τ are usually based on methods for

approximating these parameters, such as the false nearest neighbors method (for m) and

mutual information (for τ), which ensures the entire covering of all free parameters and

avoiding autocorrelated effects ([76]). [50] proposed a differential entropy-based method

in which a single measure is simultaneously used to obtain the embedding dimension,

m, and time lag, τ . We refer the interested reader to [50] and [4, 6] for an overview of

this method. We refer to the case for which m = 1 and τ = 1 as an unembedded time

series. The recurrence plot is the calculation of an η × η matrix

Rx
i,j =







1 : ��xi − �xj� < ε

0 : otherwise
�xi ∈ R

m, i, j = 1, · · · , η, η = N − (m− 1)τ, (3.1)

where � · � is a norm (e.g Euclidean or maximum norm) and ε is the cut-off distance

which defines a region centered at �xi. If �xj falls within this region, the state will be

near to �xi and is taken to be a recurrence of the state �xi, which implies Rx
i,j = 1. The

recurrence plot is square matrix plot of the binary values Rx
i,j , in which the matrix

element correspond to those calender times at which a state of a dynamical system

recurs (columns and rows correspond then to a certain pair of calender times) ([6, 96]

and the references therein). In general the cut-off distance, ε, has to be chosen as small

as possible, but a too small ε can lead one to miss some structure, if there is noise

distortion ([94]). [153] suggest to set a threshold level equal to the lower 10% of the

maximum distance between the embedded vectors. In literature, further variations5 of

the recurrence plots have been proposed for different purposes. In this paper, we make

use of a special type of recurrence plot referred to as unthresholded recurrence plots

([74]). This recurrence plot is obtained by plotting a matrix of distances

Dx
i,j = ��xi − �xj� (3.2)

between the vectors �xi and �xj . The matrix data obtained from the application of equa-

tion (3.2) is graphically represented as colors making it easier to read. In otherwords, the

unthresholded recurrence plot is a heatmap (colormap) of the distance matrix obtained

from equation (3.2). As such, it is appropriate to term the unthresholded recurrence

plot as distance plot. In the Section that follows, we will often use the term distance

plot and unthresholded recurrence plot interchangeably. Multivariate extensions of re-

currence plots have been developed as cross recurrence plots and joint recurrence plots

([95, 116]). In comparing the dynamics of any two time series simultaneously embedded

in the same phase space, we employed the cross recurrence plot ([6, 95, 151]). This is

5For more details on these variations, we refer the reader to http://www.recurrence-
plot.tk/variations.php.
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useful in studying the simultaneous occurrence of a state in both series. The cross recur-

rence plot entails testing for closeness of each point of the first trajectory �xi (i = 1, · · · , η)

with each point of the second trajectory �yj (j = 1, · · · ,ϑ) resulting in η × ϑ array

CRxy
i,j =







1 : ��xi − �yj� < ε.

0 : otherwise
(3.3)

Thus, the purpose of cross recurrence plot (CRP) is to compare the states of two systems,

which means that the states represent the same physical system, i.e. the data should

have the same unit and the phase space reconstruction must be the same. We employ

the CRP in comparing US IPI and Euro area IPI since both time series have the same

unit6 and phase space reconstruction ([6, 95–97]).

In contrast to cross recurrence plots, joint recurrence plot (JRP) shows all those times

at which a recurrence in one dynamical system occurs simultaneously with a recurrence

in a second dynamical system. In other words, the JRP is the element-wise product of

the recurrence plot of the first system and the recurrence plot of the second system, i.e.

for two systems �x and �y, the joint recurrence plot is

JRxy
i,j = Rx

i,j ·R
y
i,j , �xi ∈ R

m, �yj ∈ R
n, i, j = 1, 2, · · · , ηϑ. (3.4)

JRPs can be computed from more than two systems. The dimension of the considered

systems in phase spaces can be different but the data length has to be the same. Joint

recurrence plots can be used in order to detect phase synchronization ([95, 96, 116]).

For example, in the U.S., the NBER uses several indicators ( such as Gross Domestic

Product, personal income, household employment, Industrial production Index, Gross

domestic Income, payroll employment, manufacturing and retail sales ) to date reces-

sions. Considering this multivariate time series, in which the seven univariate time series

are usually not of the same unit, the joint recurrence plot is more suitable to compare

their recurrences, i.e. whether the recurrences of states in processes separately occur at

the same times. We remark that the concept of JRP is beyond the scope of the paper

and it is only provided in order to clarify the methodology.

Recurrence plots contains typical small-scale7 structures and in particular large-scale

structure, also called texture, caused by characteristic behavior of phase space trajectory

of systems. These large-scale structures can be visually characterized by homogeneous,

periodic, drift or disrupted ([43, 94, 96, 152]). The visual appearance of these plots gives

hints about the dynamics of the system. The qualitative interpretation of the existence of

6It is same unit since both univariate time series are indexes.
7The small-scale structures as in single dots, diagonal lines and vertical or horizontal lines. These

can also be extended clusters resulting from a mixture of the latter.



Chapter 3. Turning point chronology for the Euro-Zone: A Distance Plot Approach 33

disruptions (butterfly-like or band structures) are as a result of non-stationarity; some

states are rare or far from the normal; transitions may have occurred ([43, 94, 96]).

We refer to the existence of such butterfly-like structures along the main diagonal of

the recurrence plot as an indication of economic crisis, where the turning points are

identified as the start and end of the formation of these structures. It is worth noting

that we mainly use the distance plots in identifying the turning points in each univariate

time series (principally IPI of U.S. and Euro- zone) and then the cross recurrence plots

in studying the simultaneously recurrence of states in both series. The distance plot is

replicable by definition since it is obtained by plotting a matrix of distances Dx
i,j , in

equation (3.2), which do not change through time for a given time series. This ensures

an effective dating chronology since it avoids revision through time for an underlying

economic indicator. The main advantage of recurrence plots is that they provide useful

information even for short and non-stationary data, where other methods fail ([96]).

The Section that follows will be devoted to dating the Euro-zone business cycle.

3.3 Data Analysis

In this Section, we perform analysis to characterize and detect turning points for the

Euro-zone economic cycle considering the monthly Industrial Production Index (IPI)

series. Firstly, we exploit the concept of recurrence plots8 on the US IPI series to char-

acterize and detect recessions periods. The essence of starting the analysis with the

US data is to serve as a benchmark for our analysis since there already exists refer-

ence chronology for the US business cycle, provided by the Dating Committee of the

NBER9. We then use this concept in constructing a monthly turning point chronology

for the Euro-zone business cycle. In particular, we show that this approach permits to

detect turning points and study the business cycle without a priori assumptions on the

statistical properties on the underlying economic indicator.

The monthly US Industrial Production Index (IPI) time series10 spanning over the period

January, 1919 to July, 2012 is considered for the data analysis. Figure 3.1 is the plot

of the monthly IPI series for the period: 1919:01 - 2012:07, implying 1123 observations,

where the shaded regions corresponds to NBER11 published dates for US recessions from

1920. Figure 3.2 is the plot of monthly Euro-zone12 IPI series for the period: 1971:01 -

2011:12 (n = 492).

8The distance plots are generated with the Cross Recurrence Plot Toolbox in Matlab provided by
Norbert Marwan upon request: http://tocsy.pik-potsdam.de/CRPtoolbox/

9National Bureau of Economic Research
10The data can be downloaded from Federal Reserve Bank of St. Louis
11http://www.nber.org/cycles.html
12Source: [22] and Eurostat.
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Figure 3.1: US Industrial Production Index (IPI) time series. The plot of the monthly
IPI series for the period: 1919:01 - 2012:07 (n = 1123), where the shaded regions

corresponds to the US recessions from 1920 published by NBER.

Figure 3.2: The plot of the monthly Euro-zone Industrial Production Index (IPI)
time series for the period: 1971:01 - 2011:12 (n = 492).

We provide in Figure 3.3 the unthresholded recurrence plot which is sometimes termed

distance plot ([74]) on the US IPI. It is a matrix plot with both vertical and horizontal

axes corresponds to calender dates. The colormap corresponds to the distance to the

next recurrence of a state in the time series. In this paper, we mainly consider the case

when the embedding parameters are m = 1 and τ = 1 since the results obtained for

unembedded and embedded version of the time series do not differ in terms of identi-

fication of the turning points associated with the business cycle ([6]). The recurrence

plot provides a graphical understanding of the dynamics of phase space trajectories, of

the time series, as distances between states are revealed. The recurrence plots allows

to study the recurrence of a state at a particular calender date. In other words, fixing

a period or date on the horizontal axis, we are able to observe the recurrence of such
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Figure 3.3: This is an unthresholded recurrence plot which is sometimes termed
distance plot ([74]). It is a matrix plot with calender time on both the vertical and
horizontal axes. The colormap corresponds to the distance to the next recurrence of
a state in the time series. This representation shows the distances between states
and enhance understanding of the phase space trajectory of US IPI. The existence of
butterfly-like structures, of a minimum size of six months, along the main diagonal
(bisector) indicates economic crisis. In this case, the start and end of a economic crisis
corresponds the start and end on the formation of butterfly-like structure along the

main diagonal.

events along the calender dates on the vertical axis. Intuitively, the plot depicts the

different occasions when the economic system, described by IPI, visits roughly the same

area in the phase space. The existence of butterfly-like structures along the main diago-

nal (bisector) of the plot indicates economic crisis as discussed in the previous Section.

In this case, the start and end of a declining economic activity corresponds the start

and end of the formation of butterfly-like structure along the main diagonal. In this

paper, we designate any butterfly-like structure with a minimum size13 of six months as

economic crisis. Our results on the dating chronology obtained from the distance plot,

Figure 3.3, for US IPI are presented in Table 3.1 .

Sensitivity analysis on the distance plot with respect to the embedding dimension m

and the time delay τ reveals that for fixed τ = 1 and for any chosen m > 1, the turning

points identified are same as setting m = 1 and τ = 1. In particular, we observe much

sharper picture of the butterfly-like structures as the embedding dimension is set close to

1. We noticed that for any given m, as the time delay parameter increases (τ ≥ 1), the

butterfly-like structures grow dimmer making it not easy to clearly identify the peaks

and troughs of the business cycle. As such, we recommend that the time delay parameter

be set to 1 for better identification of turning points.

The dates from the distance plot, Figure 3.3, for US IPI appears not to differ much from

the official business cycle dates published by NBER. Interestingly, the main difference

13The size refers to the length in time from the start and end on the formation of butterfly-like structure
along the main diagonal.
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occurs in the detection of the peak date of two recession periods: 1973 and 2001 (see

Table 3.1). Our findings also indicates that the turning points provided by NBER for

the US can be obtained with only IPI data using the distance plot approach. Thus, this

results on the preliminary exploratory analysis for the US provides support for the use

of our propose procedure to dating the Euro-Zone business cycle.

NBER dates butterfly dates

Peak Trough Peak Trough

1920:01 1921:07 1920:02 1921:08
1923:05 1924:07 1923:05 1924:08
1926:10 1927:11 1926:10 1927:11
1929:08 1933:03 1929:08 1933:04
1937:05 1938:06 1937:05 1938:02
1945:02 1945:10 1945:02 1945:10
1948:11 1949:10 1948:08 1949:10
1953:07 1954:05 1953:07 1954:01
1957:08 1958:04 1957:09 1958:04
1960:04 1961:02 1960:01 1961:03
1969:12 1970:11 1969:10 1970:11
1973:11 1975:04 1974:09 1975:04
1980:01 1980:07 1980:00 1980:08
1981:07 1982:11 1981:08 1983:01
1990:07 1991:03 1990:08 1991:03
2001:03 2001:11 2000:09 2001:11
2007:12 2009:06 2007:12 2009:06

Table 3.1: Business Cycle Peaks and Troughs in the United States, 1920-2009. The
peak and trough dates, in the format YYYY:MM, represent the start and end of
“episodes” of some sort. The column NBER are the reference chronology for US
business cycles published at http://www.nber.org/cycles.html . The results of turn-
ing points obtained from the distance plot of US IPI is displayed in column labelled

butterfly dates.

In the following, we focus on detecting and constructing the turning points for the Euro-

zone business cycle. We proceed with the same analysis as done on the US data but

now on the Euro-zone IPI series. We remark that embedding the original time series

does not yield different results in terms of identification of the turning points associated

with the business cycle. Our results on the dating chronology of the Euro-zone based

on the IPI is presented in Table 3.2 and Figure 3.5 with the distance plot in Figure

3.4. A comparison of turning points for the Euro-Zone considering dates identified by

the distance plot and in [10] for the monthly series of Euro-zone IPI is given in Table

3.3. The quarterly turning points provided by the Centre for Economic Policy Research

(CEPR) using the Euro area real GDP and the [104] turning points identified by the

Bry-Boschan algorithm when applied to the Moench/Uhlig (MU) monthly series of Euro

area real GDP is also provided in Table 3.3. Notice that the dates determined by the
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distance plot procedure does not differ much from the turning points already provided

by CEPR and other two dating chronologies. In particular, our proposed dates comes

close to the monthly turning points proposed in [104] within a few months.

Figure 3.4: The distance plot for the Euro-zone IPI and it’s embedded version. The
existence of butterfly-like structures, of a minimum size of six months, along the main
diagonal (bisector) indicates economic crisis. Embedding the original time series does
not yield different results in terms of identification of the turning points associated with

the business cycle.

butterfly dates for Euro-Zone

Peak Trough

1974:06 1975:08
1980:01 1980:10
1982:05 1982:12
1992:04 1993:06
2000:12 2001:11
2007:12 2009:04
2011:07

Table 3.2: Industrial business cycle dating chronology for the Euro-zone from 1971:01–
2011:12. The peak and trough dates, in the format YYYY:MM, represent the start and
end of “episodes” of some sort. The end of the last recession period that started

2011:07(q3) was not determined considering the sample period.
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Figure 3.5: The shaded regions corresponds to the Butterfly dates for the Euro Area
Business Cycles from 1971:01–2011:12. The end of the last recession period that started

2011:07(q3) was not determined considering the sample period.

In Figure 3.6, we provide the distance plots for the US IPI and Euro-zone IPI for the

period 1991:01 - 2012:07. The simultaneous occurrence of economic crisis in both US

and Euro-zone for this period can be visualize on the cross recurrence plot displayed

in Figure 3.7 . These two economic systems were both hit by the crisis resulting from

the bust of dot-com bubble and even more on the 2007-2012 global financial crisis, also

known as the Global Financial Crisis and 2008 financial crisis. Similar features in the

plots for this period suggests strong economic interdependence between the US and

Euro-zone economic system.

3.4 Conclusion

In this work, we have demonstrated the usefulness of recurrence plots in identifying,

dating and explaining economic crisis. The study provides a preliminary exploratory

analysis for the US to validate the procedure to the following application to the Euro-

zone. Our findings also indicates that the turning points provided by NBER for the

US can be obtained with only IPI data using the distance plots approach. The findings

from the data analysis with recurrence plots, in this case distance plots, shows that

these plots are robust to extreme values, non stationarity and applicable to both short

and long data length. This approach is also replicable and transparent; is adaptive

to any time series. In particular, we show that this approach provides a transparent
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Figure 3.6: The distance plots of US IPI and Euro-zone IPI for the period 1991:01
- 2012:07. The top figure corresponds to the distance plots of US IPI. The second

distance plot is for the Euro-zone IPI.

Figure 3.7: This is a cross recurrence plot to visualize the simultaneous occurrence
of a similar state in both US IPI and Euro IPI.

chronology of business cycles since it avoids revision of crisis dates through time. The

proposed methodology can easily be used in dating business cycles in country-specific

time series for the European economies. Obviously, the nature of the distance plots will

depend on the underlying economic indicator(s) of the given country as displayed in

Figure 3.8. Finally, a direct extension of this paper will be to consider the use of joint
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(a) distance plot for French (b) distance plot for German

(c) distance plot for Italian (d) Cross recurrence plot for French and German

Figure 3.8: The distance plots on monthly IPI series of some european countries:
France, Germany and Italy. The data is obtained from [22] and Eurostat, and spans

over the period: 1970:01 to 2012:11.

recurrence plots on multivariate time series14 (e.g. production, employment, real income

and real sales), which in this case will be a vector of indicators.
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butterfly dates [10] dates CEPR dates MU dates

Peak Trough Peak Trough Peak Trough Peak Trough

1974:06(q2) 1975:08(q3) 1974:04(q2) 1975:04(q2) 1974:xx(q3) 1975:xx(q1) 1974:08(q3) 1975:04(q2)
1980:01(q1) 1980:10(q4) 1980:02(q1) 1981:01(q1) 1980:xx(q1) 1982:xx(q3) 1980:03(q1) 1980:09(q3)
1982:05(q2) 1982:12(q4) 1981:10(q4) 1982:12(q4) – – 1982:04(q2) 1982:07(q3)
1992:04(q2) 1993:06(q2) 1992:01(q1) 1993:05(q2) 1992:xx(q1) 1993:xx(q3) 1992:02(q1) 1993:01(q1)
2000:12(q4) 2001:11(q4) 2000:12(q4) 2001:12(q4) – – – –
2007:12(q4) 2009:04(q2) – – 2008:xx(q1) 2009:xx(q2) – –
2011:07(q3)

Table 3.3: Comparison of turning points for the Euro-Zone. The format of the dates
“yyyy:mm(qq)” denotes “year:month(quarter)”. The butterfly dates corresponds to
peaks and troughs identified by the distance plot when applied to the monthly series of
Euro-zone IPI. The turning points obtained in [10] for the monthly Euro-zone IPI series
is denoted as [10] dates. The CEPR dates are the quarterly turning points determined
by the CEPR using the Euro area real GDP. MU dates are turning points identified by
the Bry-Boschan algorithm when applied to the Moench/Uhlig (MU) monthly series of
Euro area real GDP. The end of the last recession period that started 2011:07(q3) was

not determined considering the sample period 1971:01–2011:12.
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Chapter 4

Nonlinear dynamics and

recurrence plots for detecting

financial crisis

4.1 Introduction

In real-world applications of financial time series analysis, the process underlying the

generated signal, which is the time series, are a priori unknown. These signals usually

contain both linear and nonlinear, as well as deterministic and stochastic components,

yet it is a common practice to model such processes using suboptimal, but mathemati-

cally tractable models. In general, performing a nonlinearity analysis in a modeling the

time series can lead to a significant improvement of the quality of the results, since it

facilitates the selection of appropriate processing methods, suggested by the data itself.

It is, therefore, essential to investigate the intrinsic dynamical properties of financial

time series in terms of its deterministic/stochastic and nonlinear/linear components re-

veals important information that otherwise remains not clear in using conventional linear

methods of time series analysis. For this purpose, we adopt to the recently proposed

phase space based ’delay vector variance’ (DVV) method (51), for signal characteriza-

tion, which is more suitable for signal processing application because it examines the

nonlinear and deterministic signal behavior at the same time. This method has been

used for understanding the dynamics of exchange rates (5), qualitative assessment of

machine learning algorithms, analysis of functional magnetic resonance imaging (fMRI)

data, as well as analysing nonlinear structures in brain electrical activity and heart

rate variability (HRV) (52). Optimal embedding parameters will be obtained using a

42
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differential entropy based method proposed in 50, which allows for simultaneous deter-

mination of both the embedding dimension and time lag. Surrogate generation used in

this study will be based on both the Iterative Amplitude Adjusted Fourier Transform

(iAAFT) ([119, 120]) and a recently refined iAAFT with a wavelet-based approach,

denoted WiAAFT (79).

Recurrence Plot (RP) is an advanced graphical technique of nonlinear data analysis

which reveals all the times when the phase space trajectory of the dynamical system

visits roughly the same area in the phase space. Although, most applications of this

technique has been in physics and biology, it has gained interest in a variety1 of scientific

fields ([96]). Recurrence plots and recurrence quantification analysis ([97, 152]) is gaining

some attention in financial studys ([20, 72, 87, 125], among others) .This technique is

applicable to any time series since it requires no a prior assumptions on the statistical

properties, such stationarity, or mathematical structure of the time series. We find this

technique as a promising means of analyzing financial data since it is robust against

non-stationarity in the data. In this work, we will mainly use distance plots, which

is sometimes called unthresholded recurrence plot in studying the dynamics of stock

markets.

In this article, our aims is to characterize and detect nonlinear schemes for the U.S.

financial cycle considering both S&P 500 Index and Nasdaq Composite. We refer to

fluctuations or swings in financial asset prices over time as financial cycle, which is

characterised by periods of financial disruptions and booms. Firstly, our analysis deals

with the use of the recently proposed ’delay vector variance’ (DVV) method, which

examines local predictability of a signal in the phase space to detect the presence of

determinism and nonlinearity in a time series. Optimal embedding parameters used in

the DVV analysis are obtained via a differential entropy based method using wavelet-

based surrogates. This enables the characterization of the financial time series without

a priori assumption on the dynamics or statistical properties of the series. Secondly,

we exploit the concept of recurrence plots on both series to locate hidden patterns,

non-stationarity, and to examine the nature of these plots in events of financial crisis.

The qualitative interpretation of the existence of disruptions (butterfly-like or band

structures) are as a result of nonstationarity ; some states are rare (extreme events) or

far from the normal; transitions may have occurred ([43, 96]). In particular, we show

the usefulness of recurrence plots in the diagnosis and detection of financial bubbles and

crisis, which have significantly impacted economic upheavals in the past few decades

([9]).

1A comprehensive introduction and bibliography about on recurrence plots is available on
http://www.recurrence-plot.tk/ and [96]
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The paper is organised as follows: surrogate generation methodology and differential

entropy based method for determining optimal embedding parameters of the phase-space

representation of time series are presented in section 4.2.1 and section 4.2.2 respectively.

In section 4.2.3, an overview of the ’delay vector variance’ method with illustrations.

We provide in section 4.2.4, the concept of recurrence plots. In section 4.3, we present

a comprehensive analysis of the feasibility of this approach to analyse the U.S. financial

cycle. Section 4.4 concludes.

4.2 ’Delay Vector Variance’ Method and Recurrence Plots

In this section, we present an overview2 of different existing methods successfully applied

in physics and engineering. In particular, we show the usefulness of these methods over

other methods and then explain how we merged these methods to studying the dynamics

of financial time series. Our methodology encompasses surrogate generation methods,

differential entropy method for determining the optimal embedding parameters in phase-

space, the DVV method and data analysis with recurrence plots.

4.2.1 Surrogate Data Method and Statistical testing

Surrogate time series, or ’surrogate’ for short, is non-parametric randomised linear ver-

sion of the original data which preserves the linear properties of the original data. For

identification of nonlinear/linear behavior in a given time series, the null hypothesis

that the original data conform to a linear Gaussian stochastic process is formulated.

An established method for generating constrained surrogates conforming to the proper-

ties of a linear Gaussian process is the Iterative Amplitude Adjusted Fourier Transform

(iAAFT), which has become quite popular (85, 119, 120, 129). This type of surrogate

time series retains the signal distribution and amplitude spectrum of the original time

series, and takes into account a possibly nonlinear and static observation function due

to the measurement process. The method uses a fixed point iteration algorithm for

achieving this, for the details of which we refer to 119, 120.

Wavelet-based surrogate generation is a fairly new method of constructing surrogate for

hypothesis testing of nonlinearity which applies a wavelet decomposition of the time

series. The main difference between Fourier transform and wavelet transform is that the

former is only localized in frequency, whereas the latter is localized both in time and

frequency. The idea of a wavelet representation is an orthogonal decomposition across

a hierarchy of temporal and spatial scales by a set of wavelet and scaling functions.

2The first three sections of this overview do not differ from those presented in [4].
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The iAAFT-method has recently been refined using a wavelet-based approach, denoted

by WiAAFT (79), that provides for constrained realizations3 of surrogate data that

resembles the original data while preserving the local mean and variance as well as the

power spectrum and distribution of the original except for randomizing the nonlinear

properties of the signal. The WiAAFT-procedure follows the iAAFT-algorithm but

uses the Maximal Overlap Discrete Wavelet Transform (MODWT) where the iAAFT-

procedure is applied to each set of wavelet detail coefficients Dj(n) over the dyadic scales

2j−1 for j = 1, · · · , J , i.e., each set of Dj(n) is considered as a time series of its own. The

main difference between iAAFT and wiAAFT algorithms is that the former is designed

to produce constrained, linear realisations of a process that can be compared with the

original time series on some measure, while the later algorithm restricts the possible

class of realizations to those that retain some aspect of the local mean and variance of

the original time series (80).

Statistical analysis by the concept of surrogate data tests for a difference between a test

statistic computed for the original and linearized versions of the data, i.e., an ensemble

of realizations of the null hypothesis linear dynamics. For statistical testing of the null

hypothesis of linearity, we follow [135] by using a non-parametric rank-order test. The

degree of difference between the original and surrogate data is given by the ranked

position of the data asymmetry with respect to the surrogates. For a right-tailed test,

we generate at least Ns = 1
α
− 1 surrogates, where α is the level of significance and

Ns denotes the number of surrogates. The rank-threshold ( or critical value) for right-

tailed rank-order test is given by (1 − α)(Ns + 1). The null of linearity is rejected as

soon as the rank-order statistic is greater than the rank-threshold. To achieve a minimal

significance requirement of 95% (α = 0.05), we need at least 19 surrogates time series for

right-tailed tests. Increasing the number of surrogates can increase the discrimination

power (119, 120, 135). The concept of surrogate data will be incorporated into the Delay

Vector Variance method (below) to examine the dynamics of an underlying economic

indicator.

4.2.2 Optimal Embedding Parameters

In the context of signal processing, an established method for visualizing an attractor

of an underlying nonlinear dynamical signal is by means of time delay embedding (69).

By time-delay embedding, the original time series {xk} is represented in the so-called

3These are surrogate realizations that are generated from the original data to conform to certain
properties of the original data, e.g., their linear properties, i.e., mean, standard deviation, distribution,
power spectrum and autocorrelation function (119, 120).
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’phase space’ by a set of delay vectors4 (DVs) of a given embedding dimension, m, and

time lag, τ : x(k) = [xk−τ , · · · , xk−mτ ]. 50 proposed a differential entropy based method

for determining the optimal embedding parameters of a signal. The main advantage of

this method is that a single measure is simultaneously used for optimizing both the

embedding dimension and time lag. We provide below an overview of the procedure:

The “Entropy Ratio” is defined as

Rent(m, τ) = I(m, τ) +
m lnN

N
, (4.1)

where N is the number of delay vectors, which is kept constant for all values of m and

τ under consideration,

I(m, τ) =
H(x,m, τ)

�H(xs,i,m, τ)�i
(4.2)

where x is the signal, xs,i i = 1, · · · , Ts surrogates of the signal x, �·�i denotes the

average over i, H(x,m, τ) denotes the differential entropies estimated for time delay

embedded versions of a time series, x, which an inverse measure of the structure in the

phase space. 50 proposed to use the Kozachenko-Leonenko (K-L) estimate (89) of the

differential entropy given by

H(x) =
T
�

j=1

ln(Tρj) + ln 2 + CE (4.3)

where T is the number of samples in the data set, ρj is the Euclidean distance of the j-th

delay vector to its nearest neighbour, and CE(≈ 0.5772) is the Euler constant. This ratio

criterion requires a time series to display a clear structure in the phase space. Thus, for

time series with no clear structure, the method will not yield a clear minimum, and a

different approach needs to be adopted, possibly one that does not rely on a phase space

representation. When this method is applied directly to a time series exhibiting strong

serial correlations, it yields embedding parameters which have a preference for τopt = 1.

In order to ensure robustness of this method to the dimensionality and serial correla-

tions of a time series, 50 suggested to use the iAAFT method for surrogate generation

since it retains within the surrogate both signal distribution and approximately the au-

tocorrelation structure of the original signal. In this article, we opt to use wavelet-based

surrogate generation method, WiAAFT by in 79, for reasons already discussed in the

previous section.

4Time delay embedding is an established method for visualising an attractor of the underlying non-
linear dynamical signal, when processing signals with structure (69).
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4.2.3 ’Delay Vector Variance’ method

The Characterization of signal nonlinearities, which emerged in physics in the mid-

1990s, have been successfully applied in predicting survival in heart failure cases and

also adopted in practical engineering applications (70, 101). The ’delay vector variance’

(DVV) method (51) is a recently proposed phase space based method for signal charac-

terization. It is more suitable for signal processing application because it examines the

deterministic5 nature of a time series and when combined with the concept of surrogate

data, provides as additional account of the nonlinear behavior of the time series. The

DVV-anlysis is based on the calculation of the target variance, σ∗2, which is an inverse

measure of the predictability of a time series. The algorithm is summarized below:

• For an optimal embedding dimension m and time lag τ , generate delay vector

(DV): x(k) = [xk−τ , · · · , xk−mτ ] and corresponding target xk

• The mean µd and standard deviation, σd, are computed over all pairwise distances

between DVs, �x(i)− x(j)� for i �= j.

• The sets Ωk are generated such that Ωk = {x(i)|�x(k)−x(i)�≤ �d}, i.e., sets which

consist of all DVs that lie closer to x(k) than a certain distance �d, taken from

the interval [min{0, µd − ndσd};µd + ndσd], e.g., uniformly spaced, where nd is a

parameter controlling the span over which to perform the DVV analysis.

• For every set Ωk, the variance of the corresponding targets, σ2
k, is computed. The

average over all sets Ωk, normalized by the variance of the time series, σ2
x, yields

the target variance, σ∗2 :

σ∗2(�d) =
1
N

�N
k=1 σ

2
k(�d)

σ2
x

(4.4)

where N denotes the total number of sets Ωk(�d)

Graphical representation of DVV-analysis is obtained by plotting σ∗2(�d) as function of

the standardized distance, �d. The minimum target variance, σ∗2
min = min�d [σ

∗2(�d)],

which corresponds to the lowest point of the curve, is a measure for the amount of

noise which is present in the time series. Thus, σ∗2
min is inversely related to prevalence

of the deterministic component over the stochastic one, lowest σ∗2
min indicating a strong

deterministic component. At the extreme right, the DVV plots smoothly converge to

unity, as illustrated in Figure 4.1(a) and Figure 4.1(b). The reason behind this is that

5This means that the underlying process that generate the data can theoretically be described pre-
cisely by a set of linear or nonlinear equations. Thus, the component of a time series that can be
predicted from a number of previous samples. [149]
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(a) AR(2) signal (b) Henon signal

Figure 4.1: Nonlinear and deterministic nature of signals. The first row of Diagrams
4.1(a) and 4.1(b) are DVV plots for a linear benchmark signal: AR(2) signal and a
nonlinear benchmark signal: Henon signal, where the red line with crosses denotes the
DVV plot for the average of 25 WiAAFT-based surrogates while the blue line denotes
that for the original signal. The second row of Diagrams 4.1(a) and 4.1(b) denote
the DVV scatter diagrams for those two signals, where error bars denote the standard

deviation of the target variances of surrogates.

for maximum spans, all DVs belong to the same set, and the variance of the targets is

equal to the variance of the time series.

The analysis addressing the linear or nonlinear nature of the original time series is

examined by performing DVV analysis on both the original and a set of WiAAFT

surrogate time series. Due to the standardization of the distance axis, these plots can be

conveniently combined within a scatter diagram, where the horizontal axis corresponds

to the DVV plot of the original time series, and the vertical to that of the surrogate time

series. If the surrogate time series yield DVV plots similar to that of the original time

series, as illustrated by the first row of Figure 4.1(a), the DVV scatter diagram coincides

with the bisector line, and the original time series is judged to be linear, as shown in

second row of Figure 4.1(a). If not, as illustrated by first row of Figure 4.1(b), the

DVV scatter diagram will deviate from the bisector line and the original time series is

judged to be nonlinear, as depicted in the second row of Figure 4.1(b). Statistical testing

of the null of linearity using a non-parametric rank-order test ([135]) is performed to

enhance robust conclusion of results obtained via the DVV-analysis. We refer the reader

to Appendix A.2 for more on DVV analysis of some simulated process.

4.2.4 Data Analysis based on recurrence plots

The method of recurrence plots (RP) was introduced to visualize the dynamics of phase

space trajectories ([43]). It is a graphical technique that depicts the different occasions

when a dynamical system visits roughly the same area in the phase space. From Takens’



Chapter 4. Nonlinear dynamics and recurrence plots for detecting financial crisis 49

embedding theorem ([127]), the dynamics can be appropriately presented by a recon-

struction of the phase space trajectory �x(t) = �xi ∈ R
m (i = 1, · · · , η , t = i∆t, where ∆t

is the sampling rate) in the m−dimensional phase space. For a given one-dimensional

financial time series {ui}
N
i=1, the phase space vectors �x can be reconstructed by embed-

ding the series using Takens’ time delay method �xi = (ui, ui+τ , · · · , ui+(m−1)τ ). The

coordinates of this vector correspond to the present and lead values of the series. The

parameters m and τ are referred to as the embedding dimension and time delay re-

spectively. We refer to the case for which m = 1 and τ = 1 as an unembedded time

series.

The recurrence plot is the calculation of an η × η matrix

Ri,j(ε) =







1 : ��xi − �xj� < ε

0 : otherwise
�xi ∈ R

m, i, j = 1, · · · , η, η = N − (m− 1)τ, (4.5)

where � · � is a norm (e.g Euclidean or maximum norm) and ε is the cut-off distance

which defines a region centered at �xi. If �xj falls within this region, the state will be

near to �xi and is taken to be a recurrence of the state �xi, which implies Ri,j = 1. The

recurrence plot is square matrix plot of the binary values Ri,j , in which the matrix

element correspond to those calender times at which a state of a dynamical system

recurs (columns and rows correspond then to a certain pair of calender times) ([96]). In

literature, further variations6 of the recurrence plots have been proposed for different

purposes. In this paper, we make use of a special type of recurrence plot referred to

as unthresholded recurrence plots ([74]). This recurrence plot is obtained by plotting

a matrix of distances Di,j = ��xi − �xj� between the vectors �xi and �xj . As such, it is

appropriate to term the unthresholded recurrence plot as distance plot. In the section

that follows, we will often use the term distance plot and recurrence plot interchangeably.

In comparing the dynamics of any two time series simultaneously embedded in the same

phase space, we employed the cross recurrence plot ([95, 151]). This is useful in studying

the simultaneous occurrence of a state in both series. The cross recurrence plot entails

testing for closeness of each point of the first trajectory �xi (i = 1, · · · , η) with each point

of the second trajectory �yi (i = 1, · · · ,ϑ) resulting in ε× ϑ array

CRi,j(ε) =







1 : ��xi − �yj� < ε.

0 : otherwise
(4.6)

We provide below a summary of our methodology which can be characterized in two

stages:

6For more details on these variations, we refer the reader to http://www.recurrence-
plot.tk/variations.php.
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1. Stage One: Detection of Nonlinearity in the underlying time series.

(a) Obtain embedded parameters using differential entropy method with wiAAFT

surrogates.

(b) Perform Delay vector variance analysis (DVV) on the series using iAAFT

surrogates to detect nonlinearity.

(c) Statistical testing is perform to validate the results obtained from DVV anal-

ysis.

2. Stage Two: Detection and explaining the financial cycle.

Data analysis is done based on recurrence plots.

• Underlying financial time series is not embedded before recurrence anal-

ysis.

• The series is embedded using the embedding parameter values obtained

from the previous stage.

Remark 4.1. [On anticipating crisis] The distance plot, which is obtained by plotting a

matrix of distances Di,j in section 4.2.4, uses mainly the original data. In other words,

the rare events or crisis are detected based on the data available and the detections dates

or periods does not change for any sample period. One implication is that it will be a

challenge to use it for forecasting financial crisis directly since additional data will be

required. We hereby provide below our proposed procedure to enable forecasting crisis

based on distance plots :

1. Use distance plot to detect and explain crisis on any time series (Xt).

2. Model the original time series Xt with some modeling approach. The results from

the DVV analysis will facilitate the selection of appropriate class of models to use:

linear or nonlinear model.

3. from step 2, perform forecast with the model to obtain data points Xt+h, h =

1, 2, 3, · · · , n. Thus, extending the original data by n data points.

4. Finally, we perform data analysis using recurrence (distance) plot on the extended

original data i.e. (X1, X2, · · · , Xt+n).

As such, in order to anticipate future crisis and even the possible impact before they

happen, we recommend the above step-by-step procedure. It is important to note that

the interpretation of any rare event detected by distance plots performed on the extended

original data is conditional on the chosen forecasting model used in step 2 of the above

procedure.
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4.3 Data Analysis on S&P 500 and NASDAQ Composite

Identification of financial bubbles and crisis is a topic of major concern since it is im-

portant to prevent collapses that can severely impact nations and economies. We refer

to fluctuations or swings in financial asset prices over time as financial cycle, which is

characterized by periods of financial disruptions and booms. In this section, we perform

analysis to characterize and detect nonlinear schemes for the U.S. financial cycle con-

sidering both S&P 500 Index and Nasdaq Composite. We consider these two indexes

to better capture the U.S. financial cycle since the S&P 500 is regarded as a gauge of

the large cap U.S. equities market and the Nasdaq Composite is highly followed in the

U.S. as an indicator of the performance of stocks of technology companies and growth

companies. Firstly, our analysis deals with the use of the recently proposed ’delay vector

variance’ (DVV) method, which examines local predictability of a signal in the phase

space to detect the presence of determinism and nonlinearity in a time series. Optimal

embedding parameters used in the DVV analysis are obtained via a differential entropy

based method using wavelet-based surrogates. This enables the characterization of the

financial time series without a priori assumption on the dynamics or statistical proper-

ties of the series. Secondly, we exploit the concept of recurrence plots7 on both series

to locate hidden patterns, non-stationarity, and to examine the nature of these plots in

events of financial crisis. In particular, we show the usefulness of recurrence plots in the

diagnosis and detection of financial bubbles and crisis, which have significantly impacted

economic upheavals in the past few decades.

In this paper, we consider the daily adjusted closing price of S&P 500 Index and Nasdaq

Composite8 spanning over the period 2nd January, 1990 to 31st August, 2012. Figure

4.2 and Figure 4.3 is the plot of the daily adjusted closing price of S&P 500 Index and

Nasdaq Composite respectively for the period: 1990-01-02 to 2012-08-31, implying 5716

observations.

To begin with, we opted for the differential-entropy based method (50) to determine the

optimal embedding parameters, i.e., the embedding dimension, m, and the time lag, τ ,

for the DVV method with WiAAFT surrogates. The optimal embedding parameters

estimated for the S&P 500 in level and it’s returns are (m = 6, τ = 18) and (m = 2, τ =

10) respectively. This is displayed in Figure 4.4 as an open circle in the diagram with

a clear structure. The embedding parameters obtained for the Nasdaq Composite are

(m = 5, τ = 19) and it’s associated returns as (m = 3, τ = 2) as showed in Figure 4.5 .

7The distance plots are generated with the Cross Recurrence Plot Toolbox in Matlab provided by
Norbert Marwan upon request: http://tocsy.pik-potsdam.de/CRPtoolbox/

8The historical financial data can be downloaded from http://quote.yahoo.com/ using the
get.hist.quote command contained in the tseries package in R.
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Figure 4.2: The daily adjusted closing price of S&P 500 Index and it’s associated rate
of change for the time period 1990-01-02 to 2012-08-31. Thus, the underlying financial

time series is of length 5716 observations.

Figure 4.3: The daily adjusted closing price of Nasdaq Composite and it’s associated
returns for the time period 1990-01-02 to 2012-08-31. This implies the time series is of

length 5716 observations.

We will use the values of the embedding parameters obtained for the level of S&P 500

and Nasdaq Composite to generate delayed vectors needed to perform the DVV analysis.

The results from the DVV analysis with iAAFT surrogates performed on both the

S&P 500 and Nasdaq Composite series in level indicates a clear deviation from the

bisector on the DVV scatter diagram as shown in Figure 4.6 and Figure 4.7 respectively.

The DVV plot also shows that the process is neither strictly deterministic or strictly
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(a) Differential-Entropy based method with
wiAAFT surrogates on S&P 500 Index. The
optimal embedding values are m = 6 and τ = 18
with entropy ratio, Rent(m, τ) = 0.8526.

(b) Differential-Entropy based method with
wiAAFT surrogates on the returns of S&P 500.
The optimal embedding values are m = 2 and
τ = 10 with entropy ratio, Rent(m, τ) = 0.9948.

Figure 4.4: The optimal embedding parameters for S&P 500 Index obtained via the
Differential-Entropy based method are indicated as an open circle in the diagrams with

a clear structure.

(a) Differential-Entropy based method with
wiAAFT surrogates on Nasdaq Composite. The
optimal embedding values are m = 5 and τ = 19
with entropy ratio, Rent(m, τ) = 0.8211.

(b) Differential-Entropy based method with
wiAAFT surrogates on the returns of Nasdaq
Composite. The optimal embedding values
are m = 3 and τ = 2 with entropy ratio,
Rent(m, τ) = 0.9959.

Figure 4.5: The optimal embedding parameters for Nasdaq Composite obtained via
the Differential-Entropy based method are indicated as an open circle in the diagrams

with a clear structure.

stochastic. Thus, the two original time series exhibits nonlinear dynamics since the

iAAFT surrogates are linear realizations of the original ([119, 120]). Statistical testing

of the null of linearity using the non-parametric rank-order test, Table 4.1, indicates

that both time series are nonlinear. The DVV analysis suggests that both time series

under consideration behaves more of a nonlinearity with neither a strictly deterministic

or strictly component.

In the following step, we consider two cases in the identification and characterization

of financial crisis using recurrence plots. The first case consist of perform data analysis

with recurrence plots without embedding the underlying financial time series. In the
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Figure 4.6: This is the DVV analysis with iAAFT surrogates performed on S&P 500
using the embedding parameters obtained via the differential entropy-based method.
We clearly observe a deviation from the bisector on the DVV scatter diagram. The
DVV plot also indicates that the process is neither strictly deterministic or strictly
stochastic. Thus, the original time series, S&P 500, exhibits nonlinear dynamics since

the surrogates are linear realizations of the original ([119, 120]).

Figure 4.7: This is the DVV analysis with iAAFT surrogates performed on Nasdaq
Composite using the embedding parameters obtained via the differential entropy-based
method. We clearly observe a deviation from the bisector on the DVV scatter diagram.
The DVV plot also indicates that the process is neither strictly deterministic or strictly
stochastic. Thus, Nasdaq Composite exhibits nonlinear dynamics since the surrogates

are linear realizations of the original.

second case, recurrence plots are performed on embedded versions of the underlying

financial times using the previously estimated values of embedding parameters.
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Data Code, H Rank-Order Rank-Threshold Decision

S&P 500 1 26 24.7 Nonlinear Dynamics
Nasdaq Composite 1 25 24.7 Nonlinear Dynamics

Table 4.1: Results of the non-parametric rank-order test. The null of linearity is
rejected as soon as the Rank-Order is greater than Rank-Threshold. The code H takes
the value 0 or 1, where H = 0 corresponds to failure of rejecting the null of linearity
and H = 1 the rejection of linearity for nonlinearity. The number of iAAFT surrogates
considered for the DVV-analysis is 25, which is greater than the minimum requirement

of 19 surrogates for testing at α = 0.05 level of significance.

Figure 4.8: This is an unthresholded recurrence plot which is sometimes termed
distance plot ([74]). It is a matrix plot with calender time on both the vertical and
horizontal axes for the time period 1990-01-02 to 2012-08-31. The colormap corresponds
to the distance to the next recurrence of a state in the time series. This representation
shows the distances between states and enhance understanding of the phase space
trajectory of S&P 500 and embedded version of S&P 500. The existence of butterfly-
like structures, of a minimum size of six months, along the main diagonal (bisector)
indicates a financial crisis. In this case, the start and end of a financial crisis corresponds
the start and end on the formation of butterfly-like structure along the main diagonal.

We provide in Figure 4.8 and Figure 4.9 the unthresholded recurrence plots which is

sometimes termed distance plot ([74]) on both underlying financial time series. It is a
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matrix plot with both vertical and horizontal axes corresponds to calender dates. The

colormap corresponds to the distance to the next recurrence of a state in the time series.

The results obtained for unembedded and embedded version of both time series do not

differ in terms of identification of the financial crisis. The recurrence plot shows the

distances between states and enhance understanding of the phase space trajectory of

the series. The existence of butterfly-like structures along the main diagonal (bisector)

indicates a financial crisis. The qualitative interpretation of the existence of disruptions

(butterfly-like or band structures) are as a result of nonstationarity; some states are

rare or far from the normal; transitions may have occurred ([43, 96]). In this case,

the start and end of a declining financial activity corresponds the start and end on the

formation of butterfly-like structure along the main diagonal. In this paper, we designate

any butterfly-like structure with a minimum size9 of six months as a financial crisis. A

sequential increase in the size of the butterfly-like structures along the main diagonal is

an indication of a boom in a bubble cycle. In this way, the start of such a sequential

increase in size of butterfly-like structures can be interpreted as the start of a financial

bubble. For instance, Figure 4.9 shows that the Nasdaq Composite’s dot-com bubble

started from late 1995 and reached it’s peak in March, 2000. We obtain that the financial

crisis that resulted from the collapse of the dot-coms bubble began in March, 2000 and

ended in April, 2003. The 2007-2012 global financial crisis, also known as the Global

Financial Crisis and 2008 financial crisis, is also well detected on the recurrence plot. We

discover a financial crisis10 that began in July 2007 ended in March 2009. This result is

interesting since it confirms that stock prices series tend to shift direction in advance of

the business cycle. We detect butterfly-like structure which corresponds to the existence

of financial crisis for the period January, 2011 - January, 2012.

The recurrence plots, displayed in this work, allows to study the recurrence of a state at

a particular calender date. Fixing a period or date on the horizontal axis, we are able

to observe the recurrence of such events along the calender dates on the vertical axis.

We also find that Nasdaq was well exposed and hit by the dot-com bubble of the 1990s

compared to S&P 500. Nasdaq, on which many dot-coms traded, rose to record highs

as indicated by larger distance to next recurrence. Similar features displayed in Figure

4.8 and Figure 4.9 suggests strong financial interdependence.

On studying that the simultaneous occurrence of financial bubbles and crisis in both S&P

500 and Nasdaq Composite, we perform a cross recurrence plot on the series without

embedding. The results, as seen in Figure 4.10, shows that both financial time series

were hit by the dot-com bubble.

9The size refers to the length in time from the start and end on the formation of butterfly-like structure
along the main diagonal

10According to the U.S. National Bureau of Economic Research (NBER), the recession began in
December 2007 ended in June 2009,
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Figure 4.9: The distance plot of the Nasdaq Composite and it’s embedded version.
It is observed that the Nasdaq was well exposed and hit by the dot-com bubble of the
1990s compared to S&P 500. Nasdaq, on which many dot-coms traded, rose to record

highs as indicated by larger distance to next recurrence.

The returns cycle11 is often subject to very short-term fluctuations mainly due to transi-

tory events making the peaks of such cycles extremely difficult to date. In the recurrence

plots, Figure 4.11, we are enable to visualize and date these peaks in both returns of the

underlying series. The peaks dates are recognised by visualising higher distances to the

next recurrence.

Finally, to illustrate our proposed procedure in identifying future crisis and even the

possible impact before they happen, as discussed in remark 4.1, we consider the monthly

S&P 500 Stock Price Index12 from 1990-01-01 to 2012-08-01. It is worth pointing out

that the distance plot obtained using the monthly data does not differ from Figure 4.8.

The results from the DVV analysis for S&P 500 in Figure 4.6 suggests that the stock

11This cycle is equivalent to the growth rate cycle used in analyzing economic cycles. Suppose, we
denote the financial time series by Xt, then the returns is defined by Yt = logXt − logXt−1 .

12The data is downloaded from Federal Reserve Economic Data (FRED). The S&P 500 is regarded
as a gauge of the large cap U.S. equities market.
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Figure 4.10: This is a cross recurrence plot to visualize the simultaneous occurrence
of a similar state in both S&P 500 and Nasdaq Composite. The dot-com bubble clearly

occurs in both series.

price index is characterized by nonlinear dynamics. In this work, we perform a 12 month

ahead forecast of the monthly S&P 500 using an additive nonlinear autoregressive model

of the form

xt+1 = µ+

m
�

i=1

gi(xt−(i−1)d) + εt+1 (4.7)

where d is time delay, m is the embedding dimension and gi are nonparametric univariate

functions of lagged time series values represented by penalized cubic regression splines

([68, 150]). Model (4.7) is also referred to as a nonparametric additive autoregressive

model ([68]). We assume that error distribution to be Gaussian, εt+1 ∼ i.i.dN(0,σ2
εt+1

)

and apply the model (4.7) with m = 2, d = 1, to the monthly S&P 500 Index. The

details of estimation of this model is well discussed in [150] and [68]. The results of the 12

month ahead forecast based on model (4.7) are reported in Table 4.2. Thus, the original

data can now be extended by 12 data points as already presented in remark (4.1). The

distance plot on the extended data with range 1990-01-01 to 2013-08-01 is displayed in

Figure 4.12. The last butterfly-like structure observed in Figure 4.12 started in March

2012 and ended October 2012. Based on the forecast values obtained from the model

(4.7) for the monthly S&P 500 Index and the distance plot in Figure 4.12, we do not

anticipate a financial crisis for the United States in about six months from August 2012.

In studying the possible impact of a financial crisis after it is identified, we consider the

monthly S&P 500 stock price Index from January 1990 to February 2008 since a crisis is

identified to have began in July 2007. We perform a three month ahead forecast based

on model (4.7) and then a recurrence plot analysis on the extended data. In Figure

4.13, the region of the two ellipse drawn on the plot shows that crisis that began in July
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Figure 4.11: The distance plot of the growth rate (returns) of S&P 500 and Nasdaq
Composite. The growth rate cycle is often subject to very short-term fluctuations
mainly due to transitory events making the peaks of such cycles extremely difficult to
date. In this case, we are enable to visualize and date these peaks in both underlying
series. The peaks dates are recognized by visualizing higher distances to the next

recurrence.

2007 is a recurrence of the financial crisis that resulted from the collapse of the dot-coms

bubble. Thus, the possible impact and duration of the financial crisis that began in July

2007 will be similar to the dot-com bubble. We observe from Figure 4.8, looking at the

“wings” of the butterfly-like structure, that this results on the possible impact of the

crisis that began in July 2007 does not differ much from the dot-coms bubble.
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Figure 4.12: The distance plot on an extended monthly S&P 500 stock price Index:
original data range 1990-01-01 to 2012-08-01 with an additional 12 months ahead fore-
cast obtained via the additive nonlinear autoregressive model (4.7). There is no signal
of a possible occurrence of financial crisis in about six months from August 2012. The
last butterfly-like structure observed started in March, 2012 and ended October 2012.

Figure 4.13: The distance plot on an extended monthly S&P 500 price index: original
data range 1990-01 to 2008-02 with an additional 3 months ahead forecast obtained via
the additive nonlinear autoregressive model (4.7). The region of the two ellipse drawn
on the plot shows that crisis that began in July 2007 is a recurrence of the financial crisis
that resulted from the collapse of the dot-coms bubble. Thus, the possible impact and
duration of the financial crisis that began in July 2007 will be similar to the dot-com

bubble.

4.4 Conclusion

In this paper, we have studied the dynamics of two financial time series using non-

parametric methods which are essentially data-driven and carry no a priori assumptions

on the statistical properties, such as possible non-stationarity, or mathematical structure

of the time series. We have provided a comprehensive analysis of the feasibility of our

approach as essential in selecting the appropriate class of models suggested by the data

itself. Finally, we have demonstrated the usefulness of recurrence plots in identifying,
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Month Forecast value

2012:09 1407.371
2012:10 1402.220
2012:11 1395.267
2012:12 1388.223
2013:01 1381.473
2013:02 1375.089
2013:03 1369.070
2013:04 1363.397
2013:05 1358.050
2013:06 1353.009
2013:07 1348.255
2013:08 1343.769

Table 4.2: This is the 12 month ahead forecast of monthly S&P 500 stock price Index
based on the additive nonlinear autoregressive model (4.7).

dating and explaining financial bubbles and crisis. The study provides a proposed outline

on how to anticipate these rare events and even their impacted before occurrence. The

findings from the data analysis with recurrence plots, in this case distance plots, shows

that these plots are robust to extreme values, non stationarity and to the sample; are

replicable and transparent; are adaptive to different time series and finally, can provide

better chronology of financial cycles since it avoids revision of crisis dates through time.
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Chapter 5

The Univariate MT-STAR Model

and a new linearity and unit root

test procedure

5.1 Introduction

Smooth transition autoregressive (STAR) models ([35, 130]) and in general nonlinear

time series models have been successfully applied in explaining the behavior of different

macro-economic time series, such as output, (un)employment, and exchange rates, at

different phases of the business cycle. In particular, Exponential Smooth Transition

Autoregressive (ESTAR) models have been used for modeling real exchange rates and

real interest rates, where the presence of a unit root cannot be rejected using conventional

linear unit root tests ([39], [110], [1], [90], [105], [44], [128], [146] and [111]). This has led

researchers to develop new testing procedures to detect the presence of nonlinear mean

reversion against non-stationarity. Papers that developed such type of tests include [77],

[107], [40], [32].

Recently, [77] proposed a test, denoted KSS test, to detect the presence of a particu-

lar kind of nonlinear stationary dynamics through the Exponential Smooth Transition

Autoregressive (ESTAR) model, which was originally proposed by [58]. Unfortunately,

the results of their simulation study indicated that the test does not present completely

satisfactory power properties. In this paper, we are mainly concerned with the limita-

tions of the ESTAR model and to develop a new procedure to test for unit roots in a

nonlinear framework considering a STAR type model. In particular, we develop a test

(ABG test), which enables us to distinguish between a linear non-stationary process and

a specific new nonlinear globally stationary STAR process. In view of this objective, we

62
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introduce a new STAR model named MT-STAR model, which has similar properties as

the ESTAR model but reduces the effects of the identification problem ([41]) and can

also account for asymmetry in the adjustment mechanism towards equilibrium.

The nonlinear structure of the ESTAR model leads to the presence of unidentified pa-

rameters for some combinations of the transition parameter and the error term variance.

As discussed in the literature ([93], [58], [91]), it is usually difficult to obtain good param-

eter estimates in ESTAR models, since very small values of the error term variance lead

to an unidentified transition parameter, making nearly impossible to obtain consistent

estimates of the transition parameter. In a seminal paper, [41] addressed the so-called

identification problem of the ESTAR model − the problem of properly distinguishing

the transition function in relation to extreme parameter combinations − and proposed

an alternative model to the ESTAR model namely the T-STAR model. It is noteworthy

that these two competitive models, ESTAR and T-STAR, can be very useful in modeling

adjustment processes, which is a growing and relevant part of the econometric literature.

However, these two models are limited by the assumption of symmetric adjustment in the

transition to equilibrium, which in practice might not be the same for a given degree of

positive or negative deviation from equilibrium. The main concern about the symmetric

assumption is that if the adjustment towards equilibrium is asymmetric, the alternative

hypothesis in the ESTAR model (similarly in the T-STAR) will be mis-specified and

tests based on the ESTAR model might not be valid.

Given this limitation, we first introduce a new STAR model, the MT-STAR model,

based on a new and more general smooth transition function which nests the T-STAR

model by [41] and also accounts for cases where the adjustment towards equilibrium

is not necessarily symmetric. Accordingly, the MT-STAR model can be viewed as a

modified T-STAR model. For practical purposes, we focus on a particular case of this

new transition function and then develop a linearity test and a unit root test for this

new STAR model. Regarding the new unit root test, the hypothesis are defined to

be linear non-stationary process (unit root) under the null against nonlinear globally

stationary MT-STAR process under the alternative. The results indicates that the new

test statistic has more sophisticated power properties than some other unit root test

proposed by [77], [107] and [40].

Some Monte Carlo experiments allows us to compare finite sample properties of the

ABG test and existing alternative unit root tests under a variety of conditions. The new

ABG test is correctly sized and quite often superior in terms of power. In particular, it

exhibits higher power compared to KSS when the data generating process is nonlinear

with asymmetric adjustment to the long-run equilibrium. Finally, the model and the

tests are illustrated in an empirical application to monthly real effective exchange rates
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for the Euro Zone. The results indicate that the new ABG test shows new evidence on

the stationarity of the EU real effective exchange rates which suggests the validity of

the Purchasing Power Parity (PPP).

The paper is organized as follows. Section 5.2 introduces STAR models and presents

drawbacks of using ESTAR model in modelling adjustment processes. After introducing

the new model in Section 5.3, we discuss in Section 5.4 a linearity and unit root test

associated with this new model. The non-standard limiting distribution of the new

unit root test, ABG test, is derived and consistency of the test is proven. We also

show that the limiting distribution remains unchanged if we account for potential serial

correlation in the innovation terms by augmenting the test regression with lags of the

dependent variable. In Section 5.5, a Monte Carlo study is performed and in Section

5.6 the empirical illustration is discussed. Proofs are given in the appendix.

5.2 Background

5.2.1 Overview of STAR models and Notations

Let (yt)t∈Z be a univariate stochastic process. (yt)t∈Z is called STAR(p), p ≥ 1, if

yt = [Ψωt]· [1−G(yt−d, γ, c)] + [Θωt]·G(yt−d, γ, c) + εt, (5.1)

where d ≤ p, Ψ = (ψ0,ψ1, · · · ,ψp), Θ = (ϑ0,ϑ1, · · · ,ϑp), and ωt = (1, yt−1, · · · , yt−p)
�.

The equation (5.1) can be reparametrized as:

yt = [Ψωt] + [Φωt]·G(yt−d, γ, c) + εt, t ≥ 1, (5.2)

where Φ = (ϕ0,ϕ1, · · · ,ϕp) = (ϑ0 − ψ0,ϑ1 − ψ1, · · · ,ϑp − ψp). The process (εt)t is

assumed to be a martingale difference sequence with respect to the history of the time

series up to time t − 1, denoted as Ωt−1 = {yt−1, · · · , yt−p}, i.e., E[εt|Ωt−1] = 0. For

computational purposes, we restrict the conditional variance of the process (εt)t to be

constant, E[ε2t |Ωt−1] = σ2. However, this restriction could be relaxed by allowing for

potential asymmetric autoregressive conditional heteroscedasticity.

The transition function G(· , γ, c) : R → [0, 1], which models the regime-switching be-

havior, depends on three parameters: γ which controls the degree of nonlinearity, the

threshold c and the delay d which can be chosen to maximize the goodness of fit over

d = {1, 2, · · · , dmax} ([77]). In practice this last parameter is often chosen to be equal

to 1, therefore yt−d = yt−1 in (5.1) and (5.2). In Ψ(·) and Φ(·), the parameter p is
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generally determined using the Akaike Information Criterion (AIC). In literature, two

main functions are used:

• The Logistic function

G(yt−d, γ, c) = (1 + exp{−γ(yt−d − c)})−1, c ∈ R, γ > 0, (5.3)

and the resultant model is called the logistic STAR [LSTAR] model.

• The Exponential function

G(yt−d, γ, c) = 1− exp{−γ(yt−d − c)2}, c ∈ R, γ > 0, (5.4)

and the resultant model is called the ESTAR model.

5.2.2 Drawbacks of the ESTAR model

The nonlinear structure of the ESTAR model leads to the presence of unidentified pa-

rameters, occurring for some combinations of the transition parameter γ and the error

term variance σ2. In the ESTAR setting, very small values of σ2 involve an unidentified

γ, making nearly impossible to obtain a consistent estimate of γ. [41] addressed the so-

called identification problem of the ESTAR (i.e. the problem of properly distinguishing

the transition function in relation to extreme parameter combinations) by showing that

the variance of the conditional maximum likelihood estimator γ̂ tends to infinity as σ2

vanishes (see Lemma 2.4 of [41]). The authors proposed a new type of nonlinear model

formulation named T-STAR using an alternative transition function to (5.4) given by

T (yt−d, γ, c) = 1− (1 + (yt−d − c)2)−γ , γ > 0, (5.5)

which shares same properties of (5.4) and also reduces the identification problem as-

sociated with ESTAR models. In addition the authors proposed a linearity and a unit

root test for the new model. In this paper, we extend this last work by first introducing

a new model which takes into account asymmetric adjustments, and then developing a

linearity and a unit root test for our model.

5.3 A new Model: The MT-STAR model

In this section, we extend the work of [41] by introducing the possibility of asymmetric

adjustment towards the equilibrium. In particular, we introduce a more general smooth
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transition function which nests the T-STAR model and also accounts for cases where

the adjustment towards the equilibrium is not necessarily symmetric.

5.3.1 A general MT-STAR(n,p) model

We define the general univariate MT-STAR(n, p) model of order p for a process (yt)t by

the following representation:



















yt = [Ψωt]· [1−Gn(yt−d, γ, c)] + [Θωt]·Gn(yt−d, γ, c) + εt

Gn(yt−d, γ, c) = 1− (1 + fn(yt−d, γ, c))
−γ , n ∈ N

fn(yt−d, γ, c) = (
�n

i=1(yt−d − ci))
2 + k(

�n
i=1(yt−d − ci)), c1 ≤ c2 ≤ · · · ≤ cn, k ∈ R,

(5.6)

whereGn(·, γ, c) is the general nth order smooth transition function, n is the degree of the

polynomial of the transition function, d ≤ p, Ψ = (ψ0,ψ1, · · · ,ψp), Θ = (ϑ0,ϑ1, · · · ,ϑp),

and ωt = (1, yt−1, · · · , yt−p)
�. It can also can be reparametrized as follows:

yt = [Ψωt] + [Φωt]·Gn(yt−d, γ, c) + εt, t ≥ 1, (5.7)

where Φ = (ϕ0,ϕ1, · · · ,ϕp) = (ϑ0 − ψ0,ϑ1 − ψ1, · · · ,ϑp − ψp). Assuming n = 1 in

equations (5.7) and denoting G(·, γ, c) = G1(·, γ, c), we obtain:







yt = [Ψωt] + [Φωt]·G(yt−d, γ, c) + εt

G(yt−d, γ, c) = 1− (1 + (yt−d − c)2 + k(yt−d − c))−γ .
(5.8)

and we can observe that the MT-STAR model (5.8) incorporates the component k(yt−d−
c) to the transition function (5.5), which makes the functional form of G(yt−d, γ, c) not

necessarily symmetric:

• For k = 0 , the function G(yt−d, γ, c) in (5.8) induces a non monotonic change

which is symmetric around yt−d = c. Suppose γ → ∞ then G(· ) → 1− Ic, where

Ic is the indicator function at c, which corresponds to a single abrupt break only at

yt−d = c. This generates the same behavior as the transition function T (yt−d, γ, c)

defined in (5.5) proposed by [41].

• For k �= 0, the transition function G(yt−d, γ, c) is asymmetric around the equilib-

rium c of yt.

Moreover, the transition function G(yt−d, γ, c) has the following interesting properties:
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• if γ = 0, G(yt−d, γ, c) = 0 and we are back to a linear error correction framework

where the process (yt)t follows an autoregressive (AR) model in our representation.

• If γ > 0, G(yt−d, γ, c) approximates to 0 when yt−d is near c and approximates

to 1 when yt−d approaches ±∞. Thus G(yt−d, γ, c) has the same properties of

the function T (yt−d, γ, c) defined in (5.5) eventhough G(yt−d, γ, c) is asymmetric

around the equilibrium c of yt.

Hence, by not imposing the assumption of symmetry, the function G(yt−d, γ, c) in the

MT-STAR model (5.8) is more general than the transition function T (yt−d, γ, c) in the

T-STAR model of [41]. Accordingly in modeling nonlinear adjustment processes without

a priori knowledge on their symmetry, the MT-STAR model would be more appropriate

than the T-STAR and the ESTAR models whose definition appear too restrictive. The

MT-STAR model can therefore be seen as a modified version of the T-STAR and also as

an alternative model to the M-ESTARmodel (see [40]), applicable to the same situations.

The existence and uniqueness of a stationary distribution for the process {yt, t ≥ 1} in

(5.8) is guaranteed by the geometric ergodicity (see [142], [136], [34], [37], [46]) as long

as the density function of εt is positive everywhere on the real line and satisfies the

condition

|ψi + ϕi| < 1 ∀i ∈ {1, 2, · · · , p}.

5.3.2 MT-STAR(1,1) modelling

For application reasons, we restrict to the univariate MT-STAR (1,1) model with delay,

d = 1,






yt = ψyt−1 + ϕyt−1G(yt−1, γ, c) + εt

G(yt−1, γ, c) = 1− (1 + (yt−1 − c)2 + k(yt−1 − c))−γ .
(5.9)

This process (yt)t is geometrically ergodic if |ψ + ϕ| < 1. Consider now the following

cases with respect of the properties of the process (εt)t:

1. If (εt)t is a strong white noise (0,σ2), the model (5.9) can be reparameterized as

∆yt = βyt−1 + ϕyt−1G(yt−1, γ, c) + εt, (5.10)

where β = ψ−1 , ∆yt = yt−yt−1 and it is geometrically ergodic when −2 < β+ϕ <

0. If the smoothness parameter γ approaches zero, the MT-STAR model becomes

a linear AR(1) model, i.e. ∆yt = βyt−1 + εt, that is stationary if −2 < β < 0.
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2. If the process (εt)t follows the form:

εt =

p
�

i=1

ρi∆yt−i + ut, (5.11)

with (ut)t a strong white noise (0,σ2), then the model (5.10) becomes

∆yt = βyt−1 + ϕyt−1G(yt−1, γ, c) +

p
�

i=1

ρi∆yt−i + ut. (5.12)

The model equation (5.12) is interesting for testing purposes ([39] and [118]) and it in-

cludes (5.10) as a particular case. The effective determination of the speed of adjustment

in the MT-STAR model arises for γ > 0. The adjustment coefficient changes smoothly

from β when yt−1 is at equilibrium to β + ϕ when yt−1 is far from c. The adjustment

speed depends thus on the magnitude of deviations from equilibrium. This makes sense

for many economic models where the underlying process tends to display mean revert-

ing behavior for large deviations from equilibrium but might follow a unit root or even

explosive behavior when the deviations are small. In the setting of the MT-STAR, it

implies that when β ≥ 0, we must have ϕ < 0 and −2 < β + ϕ < 0 since under these

conditions the process displays a unit root or an explosive behavior for some deviations

from equilibrium and mean reversion for large deviations.

Additionally, following the current practice in the literature (e.g., [19] for threshold au-

toregressive models and [77] for ESTAR models) one can impose β = 0 which implys

that the process (yt)t follows a unit root process in the first regime. When β = 0, the

MT-STAR model (5.12) becomes:

∆yt = ϕyt−1[1− (1 + (yt−1 − c)2 + k(yt−1 − c))−γ ] +

p
�

i=1

ρi∆yt−i + ut, (5.13)

which is globally stationary for −2 < ϕ < 0 with the lag-polynomial α(L) = 1− ρ1L−
ρ2L

2 − · · · − ρpL
p having no roots inside the unit circle and is locally non-stationary

when yt−1 = c, since it contains a unit root.

5.4 Linearity and Non Stationarity Tests

In this section, we develop a testing procedure based on the MT-STAR model which

does not impose the restriction of symmetric adjustment to the equilibrium. This allows

us to overcome difficulties of the standard linear DF test and the KSS test based on the

nonlinear ESTAR framework when the true process is stationary but in a nonlinear and
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asymmetric way. In this respect, we first develop a test for linearity and then proceed

to propose a unit root test for this model.

5.4.1 Linearity Test

Testing linearity against STAR modelling constitutes a first step towards building STAR

models. Thus, testing linearity is important as a preliminary modelling step. The null

hypothesis of linearity can be expressed as null on Φ parameters in model (5.8). Many

nonlinear models are only identified when the alternative hypothesis holds (the model is

genuinely nonlinear) but not when the null hypothesis is valid. Since the parameters of

an unidentified model cannot be estimated consistently, testing linearity before fitting

any of these models is a necessary step in nonlinear modelling.

The procedure is based on model equation (5.8). Under the linearity, we have only one

regime, and no transition between two regimes. We can thus test for

H0 : Φ = 0(1×p) vs. H1 : at least one ϕi �= 0, i = 1, · · · , p (5.14)

which is equivalent to test for

H0 : γ = 0 vs. H1 : γ > 0 . (5.15)

The MT-STAR model (5.8) reduces under the null to a linear AR(p) model for any of

the hypothesis (5.14) or (5.15). When γ = 0, H1 is not identified, and thus the vector

Φ and c can take any value without changing the value of the likelihood function and

vice versa. We thus approximate G in (5.8) as follows:

Gh(·) =

h
�

n=1

(−1)n
γ(γ + 1)(γ + 2) . . . (γ + n− 1)

n!
[(yt−d−c)2+k(yt−d−c)]n+O(.), γ > 0.

(5.16)

By expanding terms [(yt−d − c)2 + k(yt−d − c)]n, n = 1, · · · , h, and making some re-

arrangements, we obtain the auxiliary regression model for yt for a fixed d ≤ p and

h ∈ N,

yt =

p
�

i=1

φiyt−i+

p
�

j=1

δj,0yt−j+

p
�

j=1

δj,1yt−jyt−d+

p
�

j=1

δj,2yt−jy
2
t−d+· · ·+

p
�

j=1

δj,2hyt−jy
2h
t−d+ξt .

(5.17)

The error terms in the regression (5.17) are now denoted by ξt rather than εt. After

approximating (5.8) by (5.17), to test linearity against nonlinearity, we only need to

test the nullity of parameters δj,·. We do this using a simple (F ) of Fisher test and

the properties of the error term under the null and thus the asymptotic distribution
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of the classical F test remain unaffected. We illustrate in detail this result for the

MT-STAR(1, 1) model defined in (5.9):

yt = ψ1yt−1 + ϕ1yt−1[1− (1 + (yt−1 − c)2 + k(yt−1 − c))−γ ] + εt, (5.18)

where c �= 0. To test linearity for process (yt)t, we approximate G in (5.18) by G3 given

by (5.16) with d = 1 and h = 3. The process (yt)t in (5.18) becomes

yt = ψ1yt−1 + ϕ1yt−1

�

γx− 1

2
γ(γ + 1)x2 +

1

6
γ(γ + 1)(γ + 2)x3

�

+ ut, (5.19)

where x = [(yt−1 − c)2 + k(yt−1 − c)]. The auxiliary regression in (5.19) is given by

yt = ψ1yt−1+ δ1,0yt−1+ δ1,1y
2
t−1+ δ1,2y

3
t−1+ δ1,3y

4
t−1+ δ1,4y

5
t−1+ δ1,5y

6
t−1+ δ1,6y

7
t−1+ut,

(5.20)

where

δ1,0 = ϕ1[m1(c
2 − kc) +m2(c

4 − 2kc3 + kc2) +m3(c
6 − 3kc5 + 3k2c3 + k3c3)],

δ1,1 = ϕ1[m1(k − 2c) +m2(6kc
2 − 4c3 − 2kc) +m3(−6c5 + 15kc4 + 9k2c2 + 3k3c2)],

δ1,2 = ϕ1[m1 +m2(6c
2 − 6kc+ k) +m3(15c

4 − 30kc3 − 9k2c− 3ck3)],

δ1,3 = ϕ1[m2(2k − 4c) +m3(−20c3 + 30c2k + 3k2 + k3)],

δ1,4 = ϕ1[m2 +m3(15c
2 − 15kc)],

δ1,5 = ϕ1[m3(3k − 6c)],

δ1,6 = ϕ1[m3],

m1 = γ,

m2 = −1
2γ(γ + 1),

m3 =
1
6γ(γ + 1)(γ + 2).

Now to test linearity against nonlinear MT-STAR, we test for

H0 : δ1,1 = · · · = δ1,6 = 0 vs. H1 : at least one δ1,i �= 0, i = 1, · · · , 6. (5.21)

We suggest to use the F -version of the LM test statistics since it has better size properties

than the χ2 variant, which may be heavily oversized in small samples ([145]). This can

be performed with the following steps:

1. Estimate the model under the null hypothesis of linearity by regressing yt on yt−1

and compute its sum of squared residuals SSR0.

2. Estimate the auxiliary regression of yt on yt−1 and yt−1y
i
t−1 for i = 1, · · · , 6 and

compute its sum of squared residuals SSR1.
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3. Under the null (5.21) the test statistic

F =
(SSR0 − SSR1)/12

SSR1/(T − 14)
, (5.22)

is approximately distributed as F of Fisher with 12 numerator degrees of freedom

and T − 14 denominator degrees of freedom.

Remark 5.1. It is noteworthy to underline that if we approximate the transition function

G in (5.16) by setting h = 1 and letting k = 0:

• if c = 0, we obtain the auxiliary regression for the development of the KSS test by

[77] as a special case;

• if c �= 0, we obtain the auxiliary regression used to drive the modified Wald form

test statistic of [84].

5.4.2 Test for Non Stationarity in the MT-STAR framework

We propose a testing procedure for the null hypothesis of a linear unit root process

against a nonlinear globally stationary MT-STAR process, defined in (5.13) and con-

taining a partial unit root in one regime. This unit root test is proposed with the same

approach as in [77] and [84] for the STAR framework.

We distinguish three cases for testing procedure: a process (yt)t defined in (5.13); a

centered process (zt)t = yt−µ; and a demeaned and detrended process, (wt)t = yt−µ−αt.

In the following, we restrict c = 0 and thus the process (yt)t becomes:

∆yt = ϕyt−1[1− (1 + y2t−1 + kyt−1)
−γ ] +

p
�

i=1

ρi∆yt−i + ut, (5.23)

which is a globally stationary MT-STAR process provided that −2 < ϕ < 0 with the

polynomial in L, α(L) = 1 − ρ1L − ρ2L
2 − · · · − ρpL

p having no roots inside the unit

circle (we assume this condition hereafter). Our test directly focuses on the parameter,

γ, which is zero under the null and positive under the alternative. Hence we test

H0 : γ = 0 vs. H1 : γ > 0. (5.24)

To avoid the presence of nuisance parameters under the null hypothesis, we approximate

the smooth transition function G(yt−1, γ, c) in model (5.23) by (5.16) with d = 1 and

h = 3. We detail now the three cases.
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1. We assume that (yt)t is a zero mean process. According the auxiliary regression

is:

∆yt = δ1,2y
3
t−1 + δ1,4y

5
t−1 + δ1,6y

7
t−1 +

p
�

i=1

ρi∆yt−i + ut, (5.25)

ut ∼ i.i.d(0,σ2). Suppose that the initial sample size is T + p+ 1 such that there

are T observations in the regression. We test the hypothesis

H0 : Rβ = r vs. H1 : Rβ �= r (5.26)

where

R =









1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0









3×(p+3)

=
�

I3 03×p

�

, β =































δ1,2

δ1,4

δ1,6

ρ1

ρ2
...

ρp































(p+3)×1

and r =









0

0

0









3×1

.

by using the statistic

F̃NL = (R(β̂ − β))�
�

σ̂2
TR(

T
�

t=1

XtX
�
t)
−1R�

�−1
R(β̂ − β), (5.27)

where Xt =































y3t−1

y5t−1

y7t−1

∆yt−1

∆yt−2

...

∆yt−p































(p+3)×1

, β̂ is the OLS estimator for the parameter β, and

σ̂2
T is the variance of ∆yt in (5.25). Under the null of β = 0 and statistic (5.27)

becomes

F̃NL =
β̂�[V ar(β̂)]−1β̂

3
. (5.28)

Before providing the non-standard limiting distribution of F̃NL test statistic (5.28),

we need to introduce a technical result.

Proposition 5.2. If (yt)t is a linear single unit root process of the form:

∆yt = ρ1∆yt−1 + ρ2∆yt−2 + · · ·+ ρp∆yt−p + ut, ut ∼ i.i.d(0,σ2),
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with (γj)j = Cov(∆yt,∆yt−j), then the following results hold:

(a) 1

T
n
2 +1

�T
t=1 y

n
t−1 −→d [Ψ(1)]nσn

� 1
0 [W (r)]ndr.

(b) 1

T
n+1
2

�T
t=1 y

n
t−1ut −→d [Ψ(1)]nσn+1

� 1
0 [W (r)]ndW (r).

(c) 1
T

�T
t=1∆yt−i ·∆yt−j −→d γ|i−j|.

(d) 1

T
n
2 +1

�T
t=1 y

n
t−1 ·∆yt−j −→d 0.

(e) 1

T
1
2

�T
t=1∆yt−iut −→d N(0,σ2γ0), i ≥ 1.

with Ψ(1) = (1−ρ1−ρ2− · · ·−ρp)
−1. The proof is provided proposition is provided

in the Appendix.

Theorem 5.3. Let be the process (yt)t defined in (5.25), and y1, · · · , yT a sample

of size T . If β̂ is a consistent estimator of β and converges to its true value with

rate of convergence

diag(T 2, T 3, T 4, T 1/2, T 1/2, · · · , T 1/2)(p+3)×(p+3),

then the F̃NL test statistic given in (5.28) has the following asymptotic distribution:

F̃NL −→d v�Q−1v (5.29)

with

v =









1
4W (1)4 − 3

2

� 1
0 W (r)2dr

1
6W (1)6 − 5

2

� 1
0 W (r)4dr

1
8W (1)8 − 7

2

� 1
0 W (r)6dr









and

Q =









� 1
0 W (r)6dr

� 1
0 W (r)8dr

� 1
0 W (r)10dr

� 1
0 W (r)8dr

� 1
0 W (r)10dr

� 1
0 W (r)12dr

� 1
0 W (r)10dr

� 1
0 W (r)12dr

� 1
0 W (r)14dr









.

where W (r) is the standard Brownian motion defined on r ∈ [0, 1]. Under the

alternative the test is consistent.

The proof is given in the Appendix.

Corollary 5.4. If the process (yt)t in (5.10) is restricted to c = 0 and ψ = 1

∆yt = δ1,2y
3
t−1 + δ1,4y

5
t−1 + δ1,6y

7
t−1 + ut, (5.30)

with ut ∼ i.i.d(0,σ2), then the test statistic F̃NL (5.28) computed for β = (δ1,2, δ1,4, δ1,6)
�

has the same asymptotic distribution given in Theorem 5.3.
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2. We consider now the de-meaned process (zt)t:

zt = yt −
1

T

T
�

k=1

yk,

and the following process

∆zt = ϕzt[1− (1 + (zt)
2 + kzt)

−γ ] + ut, ut ∼ i.i.d(0,σ2) . (5.31)

For this model, the asymptotic distribution of F̃NL test statistic (5.28) has the

same form as in Theorem 5.3 replacing the Brownian motion W (r) by the de-

meaned Brownian motion

W̄ (r) = W (r)−
� 1

0
W (r)dr.

3. We conclude with the de-meaned and de-trended process (wt)t, defined as

wt = yt − µ̂− α̂t, (5.32)

where µ̂ and α̂ are the ordinary least squares estimators of yt = µ + αt + �t, and

the auxiliary regression

∆wt = ϕwt[1− (1 + (wt)
2 + kwt)

−γ ] + ut. (5.33)

Again the asymptotic distribution of the test statistic F̃NL given in (5.28) is the

same as in the Theorem 5.3 replacing the Brownian motionW (r) by the de-meaned

and de-trended Brownian motion

W̃ (r) = W (r) + (6r − 4)

� 1

0
W (r)dr + (6− 12r)

� 1

0
rW (r)dr.

Derivations of W̃ (r) are given in the proof of Theorem 5.1 of [122] and in [106]; the

result can also be derived from Theorem 2.1 of [42]. As [106] demonstrate, W̃ (r) can be

thought as a de-trended Brownian motion, i.e. the residual of the projection of W onto

(1, t). The theoretical power of the test based on F̃NL is not known, thus in the next

section we investigate its empirical size and power by some Monte Carlo experiments.

5.5 Monte Carlo Study

In this section, we carry out a Monte Carlo simulation to study the size and power prop-

erties of the new test procedure (labelled ABG test) for finite sample sizes. In particular,
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we compare the test with some existing unit root tests in the STAR framework:

1. the KSS test proposed by [77];

2. the FNL test proposed by [107] to test for a unit root in the asymmetric nonlinear

smooth transition framework;

3. the Wnl test of [40]. The M-ESTAR model is a modification of the ESTAR to

account for cases where the adjustments to equilibrium are not necessarily sym-

metric;

4. the [39] unit root test.

We consider three different cases: Case 1 with the raw data, Case 2 with the de-meaned

data and Case 3 with the de-trended data. In Table 5.1, we provide the asymptotic

critical values for the ABG test based on the distribution given in Theorem 5.3 for the

three cases. We set the sample size to T = 10, 000 and the number of replications to

1, 000, 000.

Fractile (%) Case 1 Case 2 Case 3

1 4.7217 5.4746 6.6019
5 3.4594 4.1309 5.1323
10 2.8856 3.5145 4.4439

Table 5.1: Asymptotic critical values of ABG statistic. Note: Case 1, Case 2 and
Case 3 refer to the underlying model with the raw data, the de-meaned data and the

de-trended data, respectively.

We calibrate each test, assuming a random walk under the null. Table 5.2 presents the

size of the alternative tests for different sample sizes at nominal level α = 5% using

50, 000 replications. The proposed ABG test appears to be properly sized for a nominal

level of 1% for any sample size considered. However, for a nominal level of 5% or

10% there exist some slight distortions for small samples sizes, T < 500, but the test

approaches its nominal level as the sample size increases. This does not invalidate the

use of the proposed test in small samples since a small size of the test implies that the

real type I error is smaller than the nominal error and thus we are willing to accept. The

results for FNL test for Case 3 test indicates that in small samples it tends to over-reject

the null hypothesis when the true process has a unit root.

We evaluate the empirical powers of the five alternative tests. We generate a dataset

according to the following Data Generating Process (DGP):

yt = ψyt−1 + ϕyt−1(1− (1 + y2t−1 + kyt−1)
−γ) + �t, (5.34)
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Case 1 Case 2 Case 3

T ABG KSS Wnl FNL DF ABG KSS Wnl FNL DF ABG KSS Wnl FNL DF

50 3.812 4.562 4.446 5.146 5.176 3.792 4.986 3.764 4.726 6.408 4.708 5.154 3.852 6.738 7.49
100 3.852 4.812 4.654 5 4.954 3.53 4.732 4.096 4.696 5.636 3.964 4.888 4.114 6.916 6.214
150 3.914 4.918 4.556 4.882 4.95 3.688 4.868 4.624 4.916 5.522 3.656 4.77 4.366 7.254 5.644
200 3.984 5.048 4.688 5.01 5.158 3.682 4.922 4.546 4.836 5.288 3.718 5.066 4.674 7.518 5.67
500 4.466 4.854 4.862 5.094 4.772 4.21 4.88 4.79 4.766 5.07 3.912 4.936 4.91 8.042 5.258
1000 4.718 4.86 4.9 5.094 4.764 4.708 5.068 5.08 4.84 5.218 4.386 5.14 5.062 8.15 5.068
5000 5.084 5.07 5.154 5.168 5.008 5.118 4.896 4.994 4.772 5.108 4.746 4.762 4.78 7.78 5.082

Table 5.2: The size of alternative tests [in %] at nominal level α = 5%

where �t ∼ N(0,σ2). We choose a broad range of parameter values and sample sizes:

ϕ = {−1.8,−1.5,−1.2,−0.9,−0.6,−0.3,−0.05}.

γ = {0.5, 0.8, 1}, ψ = 1.

σ = {0.1, 1}, k = {0, 1, 4}.

T = {50, 100, 200, 500, 1000}.

The values of ϕ are chosen to satisfy the condition −2 < ϕ < 0 for global station-

arity. The values of k are considered to account for both symmetric and asymmetric

adjustments. Thus, k is the measure of the magnitude of asymmetry in the adjustment

process. In particular, the value of k = 4 is considered to illustrate the cases in which

the DGP is highly asymmetric. The parameter ϕ indicates the difference between the

regimes. As this parameter approaches zero, the DGP approximates a linear process

and it is expected that the DF test performs very well. We examine the power of the

various tests considering two cases for error variances σ = {0.1, 1}. We report simulation

results for the Case 1, Case 2 and Case 3 at α = 5%, γ = 0.8, T = {50, 100, 200, 500}

for σ = {0.1, 1}, k = {0, 4}.

5.5.1 Simulation results

In general, the empirical power increases with the sample size T for any value of k, γ

and σ. The empirical power for each test, we considered, increases as the value of the

transition variable γ increases. When the DGP is approximately linear, corresponding to

ϕ very small or large γ, there is no real power gain using a test different than the simple

DF. This is not surprising because as γ increases, the model becomes approximately

linear. By considering the range of ϕ values from −0.05 to −1.8, we observe that the

empirical power increases with an increase in the magnitude of ϕ. Thus, the power of the

tests decreases when the difference between the regimes is very small, corresponding to a

small value of ϕ. The results indicate a good overall performance of the unit root test in

all sample sizes considered, especially as sample size increases. The ability to distinguish

between a unit root process and a globally stationary MT-STAR model increases when
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either the difference between the regimes becomes larger or even more when the sample

size increases.

A general finding is that our suggested ABG test is relatively more powerful for both

symmetric (k = 0) and asymmetric (k �= 0) DGP when σ = 1 regardless of the values of

γ, ϕ, and T . We refer to Table 5.4, Table 5.6 and Table 5.8. Interestingly, in the region

of the null where the series is relatively more persistent, corresponding to relatively

small values of γ and/or ϕ, the ABG test performs the best relative to the KSS test for

T ≥ 500 and σ = 1. From Table 5.4, Table 5.6 and Table 5.8, we obtain that for any

value of k, when T = 500 and ϕ = −0.05, the KSS test exhibits lower power relative

to the ABG test. Considering that most economic time series are likely to be highly

persistent or close to unit root, this might be a useful finding at least empirically ([77]).

The new ABG test performs better for the de-meaned and/or de-trended data than KSS,

FNL and Wnl tests, in terms of power, for any values of k and for all sample sizes. For

instance, for k = 4, when the DGP is highly asymmetric, the ABG test is more powerful

than the other tests for any sample size. This result supports our prior arguments that

the KSS test might be unable to detect the presence of a globally stationary process if

the adjustment is asymmetric.

We also examine the behavior of the ABG unit root test in presence of very small

variances for the innovation term, say σ = 0.1. In this case the power of all the tests

considered deteriorates compared to the case of the white noise distribution. However,

for sample size T ≥ 200, we get nearly the same power properties for all the tests for

any given values of k, ϕ and γ. In particular, for small values of error variances, σ = 0.1,

and different values of k (from 0 to 4), which corresponds to the degree of asymmetry,

the power of KSS test deteriorates as k increases. In Table 5.3, Table 5.5 and Table 5.7,

for any ϕ and T , the KSS test records lower power compared to the ABG, FNL and

Wnl tests. In particular, for k = 4, the ABG, FNL and Wnl tests exhibit good power

properties for all values of T .

5.6 Empirical Illustration

We now consider a real exercise to compare the accuracy of the different tests on real

data and we focus on the analysis of the Purchasing Power Parity (PPP). In this exer-

cise, we consider three datasets: monthly real effective exchange rate CPI deflated of the

euro over the period from October 1980 to October 2011; eight bilateral real exchange

rates relative to the euro over the period from January 1999 to November 2011; and five

normalized real exchange rates relative to the US dollar over the period from January

1973 to June 2008. Unit root tests have become a very popular tool in the literature



Chapter 5. The Univariate MT-STAR Model and a new linearity and unit root test
procedure 78

Case 1, σ� = 0.1, γ = 0.8

k = 0 k = 4

ABG KSS Wnl FNL DF ABG KSS Wnl FNL DF

ϕ = −1.8
T = 50 18.334 55.466 17.752 18.030 39.908 96.410 66.136 94.048 94.596 99.604
T = 100 61.704 96.808 65.500 60.772 97.168 97.300 64.334 95.000 95.584 99.770
T = 200 99.884 100.000 99.714 99.540 100.000 97.138 61.974 94.900 95.314 99.832
T = 500 100.000 100.000 100.000 100.000 100.000 96.832 62.092 94.900 95.288 99.902
ϕ = −1.5
T = 50 14.912 47.168 14.046 14.790 32.562 93.182 55.956 92.008 93.394 98.890
T = 100 50.842 94.156 54.800 50.356 93.306 93.994 59.692 92.908 94.176 99.324
T = 200 99.412 99.990 99.056 98.564 100.000 94.020 60.214 92.900 93.956 99.474
T = 500 100.000 100.000 100.000 100.000 100.000 94.014 62.064 93.066 93.818 99.658
ϕ = −1.2
T = 50 12.160 38.162 11.276 12.174 25.236 90.256 53.132 89.566 89.826 98.294
T = 100 38.910 88.974 42.518 39.168 84.570 92.148 57.226 92.280 92.232 98.882
T = 200 97.212 99.966 96.946 95.624 100.000 92.462 58.334 92.460 92.490 99.138
T = 500 100.000 100.000 100.000 100.000 100.000 92.426 58.944 92.138 92.332 99.522
ϕ = −0.9
T = 50 9.046 28.252 8.300 9.490 18.950 79.754 43.066 87.028 86.726 97.266
T = 100 27.218 79.104 29.582 27.632 68.802 86.276 45.164 88.400 87.768 98.126
T = 200 89.042 99.806 90.188 87.080 99.968 89.494 47.618 89.294 88.910 98.756
T = 500 100.000 100.000 100.000 100.000 100.000 90.330 50.064 89.350 89.074 99.252
ϕ = −0.6
T = 50 7.058 18.916 6.238 7.112 13.698 73.700 41.984 83.470 88.354 95.354
T = 100 16.896 61.088 17.960 17.758 45.768 83.424 46.126 90.028 90.358 97.380
T = 200 65.764 98.322 70.268 65.594 98.940 89.294 49.134 90.924 90.612 98.216
T = 500 100.000 100.000 99.998 100.000 100.000 90.914 50.886 91.002 90.648 98.768
ϕ = −0.3
T = 50 5.064 10.838 4.430 5.378 9.808 36.028 20.034 68.686 78.984 71.222
T = 100 8.430 31.386 8.484 9.254 21.950 52.336 31.080 91.158 94.718 98.094
T = 200 27.872 83.322 31.502 29.494 76.128 75.562 42.312 96.088 96.170 98.932
T = 500 99.468 99.992 98.956 98.440 100.000 94.630 54.746 96.356 96.344 99.158

ϕ = −0.05
T = 50 3.920 5.560 3.384 4.344 6.972 4.126 2.008 2.036 4.028 4.742
T = 100 3.972 7.960 3.730 4.438 8.190 4.442 3.396 4.982 6.722 13.226
T = 200 5.326 16.500 5.492 5.944 13.642 6.200 9.336 22.170 23.956 52.726
T = 500 18.798 67.800 20.350 19.674 60.666 32.094 43.766 82.326 88.778 99.584

Table 5.3: The power of alternative tests against the hypothesis of global MT-STAR
stationarity [in %] at nominal level α = 5%: Case 1 with σ� = 0.1.

concerned with the analysis of the validity of the Purchasing Power Parity (PPP), which

is certainly one of the most important parities in international macroeconomics. The

finding of a unit root in real exchange rates by [102] shifted the modelling approach for

real exchange rates to non-linear models.

The Purchasing Power Parity (PPP) holds if and only if the real exchange rates are

stationary. As such, real exchange rates should not behave like a unit root process but

rather be non-linear and globally stationary processes to support PPP. Accordingly to

test the unit root hypothesis means to test the non-validity of the PPP theory. Since

linear unit root tests of [39] and [110] often fail to reject the null hypothesis of non-

stationarity when applied to real exchange rates data, researchers tend to use nonlinear

unit root tests when the model that is assumed under the alternative is congruent with

economic models of financial markets.
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Case 1, σ� = 1, γ = 0.8

k = 0 k = 4

ABG KSS Wnl FNL DF ABG KSS Wnl FNL DF

ϕ = −1.8
T = 50 100.000 100.000 99.992 99.992 100.000 93.566 55.088 87.526 90.858 99.862
T = 100 100.000 100.000 100.000 100.000 100.000 97.410 68.862 95.034 96.090 99.902
T = 200 100.000 100.000 100.000 100.000 100.000 98.808 75.950 97.694 98.092 99.954
T = 500 100.000 100.000 100.000 100.000 100.000 99.478 75.946 98.814 98.994 99.972
ϕ = −1.5
T = 50 99.996 100.000 99.894 99.930 100.000 99.542 90.836 98.960 99.640 99.904
T = 100 100.000 100.000 100.000 100.000 100.000 99.706 89.756 99.576 99.756 99.960
T = 200 100.000 100.000 100.000 100.000 100.000 99.712 88.240 99.646 99.710 99.946
T = 500 100.000 100.000 100.000 100.000 100.000 99.746 86.386 99.652 99.732 99.964
ϕ = −1.2
T = 50 99.944 99.986 99.144 99.386 100.000 99.136 89.160 98.296 99.162 99.850
T = 100 100.000 100.000 100.000 100.000 100.000 99.160 87.160 99.160 99.220 99.850
T = 200 100.000 100.000 100.000 100.000 100.000 99.164 84.692 99.234 99.264 9.878
T = 500 100.000 100.000 100.000 100.000 100.000 99.108 80.336 99.158 99.184 99.910
ϕ = −0.9
T = 50 98.978 99.720 94.036 94.852 100.000 99.154 91.556 97.110 98.924 99.828
T = 100 100.000 100.000 99.992 99.996 100.000 99.346 90.230 99.192 99.346 99.888
T = 200 100.000 100.000 100.000 100.000 100.000 99.222 88.098 99.264 99.272 99.878
T = 500 100.000 100.000 100.000 100.000 100.000 99.256 84.372 99.358 99.292 99.942
ϕ = −0.6
T = 50 84.300 96.182 71.718 72.598 99.884 96.528 94.540 84.400 91.350 99.944
T = 100 99.980 99.980 99.316 99.516 100.000 99.764 97.270 99.170 99.738 99.964
T = 200 100.000 100.000 100.000 100.000 100.000 99.822 96.976 99.794 99.838 99.974
T = 500 100.000 100.000 100.000 100.000 100.000 99.810 95.786 99.820 99.826 99.982
ϕ = −0.3
T = 50 30.430 68.462 26.698 26.982 87.154 51.754 73.460 39.262 42.960 97.300
T = 100 87.190 96.944 76.336 76.890 99.986 95.204 95.494 83.882 89.856 99.980
T = 200 100.000 99.972 99.430 99.650 100.000 99.944 99.162 98.964 99.728 99.988
T = 500 100.000 100.000 100.000 100.000 100.000 99.960 99.124 99.956 99.960 99.998

ϕ = −0.05
T = 50 4.236 11.708 3.606 4.518 13.928 4.758 12.612 4.004 4.984 17.524
T = 100 6.616 24.898 6.690 7.144 29.094 7.658 23.880 7.370 8.032 34.026
T = 200 18.366 54.328 19.010 18.806 71.162 19.534 50.618 18.164 19.350 74.406
T = 500 82.794 93.840 70.590 72.246 99.978 78.850 92.284 66.512 68.278 99.968

Table 5.4: The power of alternative tests against the hypothesis of global MT-STAR
stationarity [in %] at nominal level α = 5%: Case 1 with σ� = 1.

5.6.1 Application to the Euro Real Effective Exchange Rate

We apply the new ABG unit root test and the others tests (KSS, Wnl, FNL, and DF ) to

the monthly real effective exchange rate CPI deflated time series for the euro. The data

spans from 1980:10 to 2011:10 implying 373 observations. The log of the time series is

depicted in Figure 5.1. We can observe that no linear trend appears in the data but the

mean appears to be highly significant. Accordingly, we de-mean the data in a first step.

In the next step we estimate the regressions with a lag length (p̂ = 1) chosen accordingly

to the Bayesian information criterion (BIC). We obtain that the KSS test (= −2.6763)

and the τ test (= 7.4801) fail to reject the null hypothesis of unit root at the 10% level

suggesting that the PPP does not hold. Furthermore, the DF unit root test against

linear alternatives does not provide any evidence against the null hypothesis. However,

the ABG test (= 11.2695), the Wnl (= 14.5695) and the FNL (= 11.2245) reject the null

hypothesis at 1% level of significance. This yields new evidence on the stationarity of the
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Case 2, σ� = 0.1, γ = 0.8

k = 0 k = 4

ABG KSS Wnl FNL DF ABG KSS Wnl FNL DF

ϕ = −1.8
T = 50 15.600 19.974 18.876 16.246 18.214 94.394 51.776 88.536 91.082 95.900
T = 100 44.062 61.472 63.272 54.662 49.240 97.236 55.986 94.204 95.232 98.312
T = 200 98.404 98.584 99.574 99.080 99.768 97.094 54.808 94.662 95.212 99.122
T = 500 100.000 100.000 100.000 100.000 100.000 96.826 56.850 94.786 95.206 99.578
ϕ = −1.5
T = 50 13.410 16.710 15.358 13.470 16.218 92.654 45.814 91.134 92.704 98.376
T = 100 35.100 51.836 53.052 44.374 39.950 93.790 53.334 92.646 93.936 98.940
T = 200 95.170 96.756 98.632 97.400 98.716 93.918 56.534 92.766 93.800 99.206
T = 500 100.000 100.000 100.000 100.000 100.000 93.992 59.938 93.008 93.692 99.540
ϕ = −1.2
T = 50 11.500 13.782 12.810 11.374 14.652 89.336 43.350 87.584 87.986 97.420
T = 100 26.986 41.118 41.406 33.870 31.282 91.936 50.290 91.734 91.876 98.344
T = 200 87.114 92.968 95.966 93.106 94.526 92.336 54.394 92.166 92.238 98.770
T = 500 100.000 100.000 100.000 100.000 100.000 92.388 56.650 92.040 92.134 99.298
ϕ = −0.9
T = 50 9.446 11.056 9.758 8.958 12.984 83.234 47.022 87.330 87.544 96.816
T = 100 19.408 29.802 29.692 23.842 23.808 85.500 47.466 88.122 88.254 97.756
T = 200 70.276 84.198 88.092 81.948 80.784 88.766 48.604 88.944 89.066 98.464
T = 500 100.000 99.994 100.000 100.000 100.000 90.062 49.438 88.986 88.908 98.972
ϕ = −0.6
T = 50 7.676 8.884 7.750 7.342 11.132 86.246 53.232 87.758 89.772 94.518
T = 100 13.460 19.518 19.134 15.524 17.928 87.190 56.798 90.850 91.018 97.246
T = 200 44.526 64.536 67.628 58.218 53.982 89.170 56.676 91.340 91.308 98.114
T = 500 99.992 99.888 99.998 99.994 100.000 90.552 54.948 91.100 91.134 98.610
ϕ = −0.3
T = 50 6.084 6.652 5.814 5.598 9.018 72.944 29.294 68.744 76.366 46.208
T = 100 8.530 11.514 10.532 8.812 12.668 93.124 51.438 93.998 95.718 95.430
T = 200 19.488 30.628 31.398 25.016 25.528 95.144 70.954 96.130 96.486 98.778
T = 500 94.834 96.096 98.448 97.000 98.800 96.156 72.436 96.550 96.562 99.080

ϕ = −0.05
T = 50 4.266 4.706 4.094 4.814 6.650 4.780 3.398 3.998 4.410 6.744
T = 100 4.702 5.980 5.284 5.120 7.266 6.890 4.598 7.860 6.898 9.420
T = 200 6.044 8.262 7.732 6.596 9.280 18.632 8.750 25.998 21.192 23.202
T = 500 14.898 21.824 21.464 16.922 20.176 86.528 46.846 86.200 83.868 94.512

Table 5.5: The power of alternative tests against the hypothesis of global MT-STAR
stationarity [in %] at nominal level α = 5%: Case 2 with σ� = 0.1.

euro real effective exchange rate which suggests the validity of PPP. It is worth noting

that the time series has possibly an asymmetric adjustment to equilibrium since the

only STAR type test that rejects the null hypothesis accounts for such adjustment. The

false non-rejections of the null by the KSS test leading to reject a nonlinear adjustment

process for real exchange rates could be due to extremely small error variances of the

process. We conclude that nonlinearities with potential asymmetric adjustment to the

long-run equilibrium are relevant for the data.

5.6.2 Application to Five Bilateral Real Exchange Rates relative to

the US Dollar

For this application, we consider our proposed test procedure compared with other tests

previously discussed on the same dataset used by [28]. Our objective is to verify if indeed



Chapter 5. The Univariate MT-STAR Model and a new linearity and unit root test
procedure 81

Case 2, σ� = 1, γ = 0.8

k = 0 k = 4

ABG KSS Wnl FNL DF ABG KSS Wnl FNL DF

ϕ = −1.8
T = 50 100.000 99.998 99.992 99.986 100.000 93.380 44.874 83.654 88.498 99.754
T = 100 100.000 100.000 100.000 100.000 100.000 97.398 62.134 91.826 94.780 99.856
T = 200 100.000 100.000 100.000 100.000 100.000 98.816 71.424 95.450 97.438 99.898
T = 500 100.000 100.000 100.000 100.000 100.000 99.490 72.652 97.676 98.872 99.942
ϕ = −1.5
T = 50 99.990 99.902 99.876 99.874 100.000 99.514 88.686 98.004 99.588 99.828
T = 100 100.000 100.000 100.000 100.000 100.000 99.702 87.570 98.874 99.746 99.902
T = 200 100.000 100.000 100.000 100.000 100.000 99.714 85.874 99.226 99.710 99.914
T = 500 100.000 100.000 100.000 100.000 100.000 99.746 83.802 99.486 99.722 99.942
ϕ = −1.2
T = 50 99.836 99.184 99.044 98.950 99.996 99.072 86.096 97.312 99.036 99.752
T = 100 100.000 100.000 100.000 100.000 100.000 99.108 84.272 98.644 99.138 99.768
T = 200 100.000 100.000 100.000 100.000 100.000 99.156 81.338 99.032 99.180 99.814
T = 500 100.000 100.000 100.000 100.000 100.000 99.092 76.376 99.054 99.154 99.874
ϕ = −0.9
T = 50 97.266 94.850 93.590 92.588 99.768 99.106 88.960 96.078 98.622 99.758
T = 100 100.000 99.996 99.994 99.988 100.000 99.310 88.526 98.662 99.338 99.838
T = 200 100.000 100.000 100.000 100.000 100.000 99.198 85.926 99.140 99.260 99.832
T = 500 100.000 100.000 100.000 100.000 100.000 99.230 81.338 99.226 99.284 99.904
ϕ = −0.6
T = 50 75.058 74.764 70.874 66.694 92.870 97.524 86.310 86.656 87.924 99.870
T = 100 99.918 99.226 99.276 99.048 100.000 99.748 96.276 98.848 99.680 99.926
T = 200 100.000 99.998 100.000 100.000 100.000 99.826 96.416 99.600 99.842 99.964
T = 500 100.000 100.000 100.000 100.000 100.000 99.806 95.018 99.770 99.828 99.972
ϕ = −0.3
T = 50 25.490 31.362 27.454 23.492 41.902 49.620 45.660 42.352 38.732 77.556
T = 100 77.288 77.828 75.724 70.570 95.766 95.354 86.178 87.780 86.540 99.846
T = 200 99.976 99.222 99.420 99.292 100.000 99.898 97.488 99.132 99.556 99.982
T = 500 100.000 100.000 100.000 100.000 100.000 99.958 98.926 99.904 99.960 99.992

ϕ = −0.05
T = 50 5.202 5.968 5.042 5.000 7.950 5.372 5.960 5.126 5.302 8.528
T = 100 6.796 9.538 8.608 7.118 11.426 7.498 10.272 9.472 7.992 13.206
T = 200 14.936 22.336 20.854 16.852 27.400 16.972 22.478 21.824 18.430 32.604
T = 500 71.856 71.446 71.420 66.822 94.010 70.022 67.552 68.016 63.664 95.160

Table 5.6: The Power of Alternative Tests against the hypothesis of global MT-STAR
stationarity [in %] at nominal level α = 5%: Case 2 with σ� = 1.

the ESTAR model is appropriate for modelling the real exchange rates considered by

[28]. The data consists of five real exchange rates relative to the US dollar corresponding

to UK, Japan, Germany, France and Switzerland, from January 1973 to June 2008.

These real exchange rates are constructed in the standard way as qt ≡ log
�CPIhome

t

CPIUS
t St

�

,

where St is the home currency price of one US dollar. We employ our linearity test

on each real exchange rates. We obtain that the only exchange rate that exhibits clear

nonlinearity is the German real exchange rate series. This result shows that the real

exchange rates considered in this exercise might follow a nonlinear model like the ESTAR

model. In order to test for unit root, we first consider the underlying time series without

de-meaning it and then perform the unit root testing procedures. We obtain ABG

(= 5.0121) and KSS (= −2.7887) for the French series, which are significant at 1% and

5% level suggesting that PPP holds. For the German series, ABG (= 4.2385), KSS

(= −2.7209) which are significant at 5% and FNL (= 3.1266) which is significant at 10%
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Case 3, σ� = 0.1, γ = 0.8

k = 0 k = 4

ABG KSS Wnl FNL DF ABG KSS Wnl FNL DF

ϕ = −1.8
T = 50 12.446 13.014 12.020 16.894 14.740 93.834 46.014 83.366 89.204 94.182
T = 100 28.536 36.546 37.420 45.380 30.878 96.958 52.930 92.404 94.550 97.760
T = 200 90.210 91.894 94.066 96.320 93.446 97.286 52.762 94.556 95.464 98.938
T = 500 100.000 100.000 100.000 100.000 100.000 96.888 54.572 94.660 95.212 99.540
ϕ = −1.5
T = 50 10.686 11.236 10.468 15.102 13.340 92.438 42.210 89.200 92.452 98.170
T = 100 22.674 29.114 29.690 37.246 25.424 93.826 49.296 92.404 94.006 98.768
T = 200 80.418 85.284 88.324 92.218 84.710 94.058 55.022 92.786 94.036 99.150
T = 500 100.000 99.998 100.000 100.000 100.000 93.930 59.036 92.878 93.692 99.472
ϕ = −1.2
T = 50 9.374 9.718 8.860 13.182 12.284 88.590 39.726 84.208 87.472 96.826
T = 100 18.068 22.536 22.664 29.462 21.230 91.646 46.622 90.760 91.672 98.042
T = 200 65.410 74.510 78.024 84.288 70.620 92.304 51.602 91.812 92.130 98.474
T = 500 100.000 99.990 99.996 100.000 100.000 92.356 55.450 91.928 92.124 99.116
ϕ = −0.9
T = 50 7.850 7.904 7.228 11.032 10.674 82.050 44.378 85.398 87.018 96.110
T = 100 13.462 16.708 16.370 22.180 17.130 84.650 45.736 87.844 88.530 97.544
T = 200 46.000 58.148 61.104 69.876 51.140 88.268 46.856 88.740 89.082 98.180
T = 500 100.000 99.906 99.984 99.996 100.000 90.098 48.822 89.260 89.022 98.716
ϕ = −0.6
T = 50 6.744 6.776 6.098 9.380 9.292 86.428 51.274 86.564 89.836 92.014
T = 100 9.736 11.588 11.024 15.826 13.398 86.278 54.870 89.286 91.138 96.898
T = 200 26.740 36.392 37.888 47.072 31.794 88.184 54.616 90.876 91.060 97.722
T = 500 99.682 98.686 99.520 99.766 99.924 90.376 53.292 91.000 91.104 98.484
ϕ = −0.3
T = 50 5.712 5.542 4.774 7.856 8.082 64.518 23.602 53.268 72.628 33.138
T = 100 6.878 8.006 7.476 11.286 9.784 91.166 42.286 88.636 94.912 84.404
T = 200 12.894 17.018 17.052 23.682 17.392 94.570 64.922 95.514 96.404 98.416
T = 500 76.486 81.586 85.728 91.034 83.026 95.916 70.222 96.424 96.516 98.994

ϕ = −0.05
T = 50 4.742 5.066 4.664 6.830 7.018 5.444 3.970 4.142 7.202 6.990
T = 100 4.340 5.066 4.664 7.498 6.486 5.288 3.782 5.046 8.358 7.078
T = 200 4.772 6.260 5.994 9.592 7.238 10.930 5.336 13.102 19.190 13.246
T = 500 9.848 12.548 12.816 18.262 13.318 68.786 24.050 67.674 77.486 73.070

Table 5.7: The power of alternative tests against the hypothesis of global MT-STAR
stationarity [in %] at nominal level α = 5%: Case 3 with σ� = 0.1.

level. Furthermore, no test statistic fails to reject the non-validity of PPP at 5% for

the Japanese, UK, and Swiss real exchange rates series. As one can see from Figure

5.2, no linear trend appears for the different series but the means appear to be highly

significant. Thus we de-mean each series and perform the unit root tests. Results show

that no test statistic provides support that the French, German, Japanese and Swiss

real exchange rates series are nonlinear globally stationary process. However, for the

UK series we obtain ABG (= 6.1335), which is significant at 1% level suggesting PPP

holds. These findings provide no support for the use of the ESTARmodel to forecast such

real exchange rates, particularly for Japan, UK and Switzerland. Hence, our findings

are consistent with the results of [28] on no forecast gained by ESTAR model over linear

autoregressive model.
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Case 3, σ� = 1, γ = 0.8

k = 0 k = 4

ABG KSS Wnl FNL DF ABG KSS Wnl FNL DF

ϕ = −1.8
T = 50 99.996 99.938 99.942 99.978 100.000 92.812 38.216 79.406 86.704 99.726
T = 100 100.000 100.000 100.000 100.000 100.000 97.166 57.868 89.484 94.046 99.808
T = 200 100.000 100.000 100.000 100.000 100.000 98.758 68.608 94.186 97.132 99.920
T = 500 100.000 100.000 100.000 100.000 100.000 99.408 71.008 97.132 98.796 99.926
ϕ = −1.5
T = 50 99.966 99.448 99.428 99.762 99.996 99.552 87.166 96.700 99.520 99.798
T = 100 100.000 100.000 100.000 100.000 100.000 99.634 86.662 98.270 99.662 99.844
T = 200 100.000 100.000 100.000 100.000 100.000 99.682 84.584 98.784 99.680 99.886
T = 500 100.000 100.000 100.000 100.000 100.000 99.756 82.222 99.306 99.730 99.912
ϕ = −1.2
T = 50 99.394 96.852 96.748 98.398 99.912 98.936 83.904 95.560 98.906 99.596
T = 100 100.000 100.000 100.000 100.000 100.000 99.148 82.624 98.064 99.228 99.788
T = 200 100.000 100.000 100.000 100.000 100.000 99.126 79.486 98.676 99.178 99.798
T = 500 100.000 100.000 100.000 100.000 100.000 99.040 74.832 98.884 99.092 99.868
ϕ = −0.9
T = 50 92.614 85.202 83.938 89.646 98.232 98.956 85.650 92.534 98.248 99.704
T = 100 100.000 99.874 99.902 99.970 100.000 99.208 87.166 97.780 99.262 99.798
T = 200 100.000 100.000 100.000 100.000 100.000 99.254 84.946 98.922 99.316 99.830
T = 500 100.000 100.000 100.000 100.000 100.000 99.256 80.224 99.178 99.316 99.914
ϕ = −0.6
T = 50 60.686 55.322 52.644 61.994 76.888 94.372 74.396 74.958 85.420 99.504
T = 100 99.444 96.294 96.400 98.230 99.994 99.714 94.926 97.576 99.636 99.920
T = 200 100.000 99.996 99.998 100.000 100.000 99.776 95.654 99.226 99.800 99.946
T = 500 100.000 100.000 100.000 100.000 100.000 99.752 94.534 99.650 99.774 99.960
ϕ = −0.3
T = 50 18.790 18.622 16.910 22.832 27.428 37.500 29.088 27.768 36.712 57.810
T = 100 60.264 56.630 55.172 64.156 80.426 88.940 72.698 74.096 82.858 98.748
T = 200 99.740 96.272 97.064 98.604 99.998 99.790 95.084 97.578 99.326 99.984
T = 500 100.000 99.998 100.000 100.000 100.000 99.752 94.534 99.650 99.774 99.960

ϕ = −0.05
T = 50 5.224 4.968 4.372 7.338 7.458 5.350 4.850 4.462 7.614 7.842
T = 100 5.610 6.606 6.196 9.422 8.734 6.298 6.968 6.632 10.212 10.020
T = 200 10.222 12.810 12.294 17.846 16.392 11.648 13.642 13.564 19.266 20.046
T = 500 53.084 50.890 51.634 61.846 75.572 53.362 47.866 49.350 59.950 79.434

Table 5.8: The power of alternative tests against the hypothesis of global MT-STAR
stationarity [in %] at nominal level α = 5%: Case 3 with σ� = 1.

5.6.3 Application to Bilateral Real Exchange Rates relative the Euro

We now consider eight bilateral monthly exchange rates of Australian dollar, Canadian

dollar, Swiss franc, UK pound sterling, Japanese yen, US dollar, Hong Kong dollar and

South African rand relative to the euro. Our data is taken from the European Central

Bank and spans from 1999:01 to 2011:11 implying 155 observations (see Figure 5.3).

We obtain that linearity is rejected for the Canadian and UK exchange rates based on

our linearity test procedure. By performing the unit root tests with no transformation

on the exchange rates, we obtain ABG (= 4.5540), Wnl (= 5.0981), FNL (= 4.1139),

and τ (= 10.1964), which are significant at 5% level suggesting that the PPP holds

for Canadian exchange rates. We obtain evidence of possible asymmetric adjustment

to the long-run equilibrium for the UK exchange rate series since ABG (= 5.0491) and

FNL (= 3.2379) are significant at 1% and 10% respectively. The bilateral exchange rates

series for Australia, Switzerland, Japan, US, Hong Kong, South Africa, behave like linear
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Figure 5.1: Logarithm of euro real effective exchange rates (October, 1980 to October,
2011)

Figure 5.2: Normalized real exchange rates relative to the US dollar against UK,
Japan, Germany, France and Switzerland (January, 1973 to June, 2008).

unit root processes and might not present better forecast ability when modelled with

ESTAR model over linear autoregressive models. Furthermore, when we perform the

unit root tests on the de-meaned or de-trended real exchange rates series depending on

the evolution of the time series, we obtain no evidence that PPP holds for Australia,

Switzerland, Japan, US and Hong Kong. However, for the case of South Africa, we

obtain FNL (= 4.0637), and for the UK series the Wnl (= 5.9599), τ (= 11.9197),

KSS (= −3.2675) which are significant at 10% level. We still obtain evidence of PPP

on Canadian series with ABG (= 6.3594), Wnl (= 10.1362), KSS (= −4.3833), Fnl

(= 6.8746) and τ (= 20.2723), all significant at 1% level.

5.7 Conclusion

This paper extends the work of [41] by introducing the possibility of asymmetric adjust-

ment to the equilibrium. Based on the work of [130] and [77], the present paper proposes

a new unit root test, called ABG test, that has power against nonlinear but globally sta-

tionary alternatives, where the adjustment is smooth over time. The paper derives the
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Figure 5.3: Bilateral real exchange rates relative to the euro (January, 1999 to Novem-
ber, 2011).

asymptotic limit distributions of this new test and some empirical application show that

it should be used together with tests proposed by [130] and [77] to distinguish whether

the adjustment to the long-run equilibrium is either symmetric or asymmetric over time.

We also assess the power performance of the ABG test by Monte Carlo experiments. A

possible extension would be to establish the theoretical power of the test by allowing

the alternative to be contiguous to the null hypothesis (see [55]).
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Chapter 6

Multivariate Self-Exciting

Threshold Autoregressive Models

with eXogenous Input

{PRELIMINARY VERSION–

please do not quote}

6.1 Introduction

Recently there has been considerable interest in nonlinear time series analysis ([8, 24,

65, 112, 133, 134, 140], and references therein), due primarily to the various limitations

encountered with linear time series models in real applications. Many nonlinear time

series models have been introduced in the literature and illustrated to be useful in some

applications ([53, 57, 112, 126, 139, 140]). For instance, [138, 140] proposed the threshold

autoregressive (TAR) model and showed its usefulness in describing the asymmetric limit

cycle of the annual sunspot number. Let (Ω,F , P ) be a probability space, R =
�l

j=1Rj ,

Rj = (rj−1, rj ],−∞ = r0 < r1 < · · · < rl = ∞ a disjunctive decomposition of the real

axis. Let d, p1, · · · , pl ∈ Z+. Any solution of (yt)t of

yt +

l
�

j=1

y
(j)
t,d

�

a
(j)
0 +

pl
�

i=1

a
(j)
i yt−i

�

=

l
�

j=1

y
(j)
t,d ε

(j)
t (6.1)
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where

y
(j)
t,d =







1; yt−d ∈ Rj

0; yt−d /∈ Rj .
(6.2)

is a univariate Self–Exciting Threshold Autoregressive process denoted by SETAR (l, p1, · · · , pl)

with delay d (see [139, 140] and the references therein). The process (yt)t is assumed

to be ergodic and its stationary distribution has a finite second moment. The process

(εt)
(j)
t in model equation (6.1) for each regime j is assumed to be a martingale dif-

ference sequence with respect to an increasing sequence of σ-field, denoted as Ft, i.e.,

E[ε
(j)
t |Ft−1] = 0. In this setting, the conditional variance of the process (εt)

(j)
t can

be a constant, E[(ε
(j)
t )2|Ft−1] = σ2 or allowed for possibly asymmetric autoregressive

conditional heteroscedasticity. The model equation (6.1) is nonlinear in time when the

number of regimes l > 1 and is a piecewise linear model in the threshold space yt−d.

Thus SETAR model (6.1) adopts a piecewise linear setting in such a fashion that regime

switches are triggered by an observed variable crossing an unknown threshold. For a

review on the asymptotic theory and inference for the SETAR model (6.1), see [33, 62–

64, 113, 140]. Despite the simplicity of SETAR models, they have been shown to be

able to capture economically interesting asymmetries, regime changes (such as periods

of low/high stock market valuations, recessions/expansions, periods of low/high inter-

est rates, etc), and empirically observed nonlinear dynamics relevant to economic data.

For instance, [108] used a single–threshold SETAR model in describing the dynamic

behaviour of the three–month US T-bill interest rate.

In analysing multivariate relationships between economic variables, the linear Vector

Autoregression (VAR) models have gain popularity for empirical macroeconomic mod-

elling, policy analysis and forecasting. However, the inability of these linear models

to capture non-linear dynamics such as regime switching and asymmetric responses to

shocks, has gained attention in macroeconomic research. For example, a significant

number of empirical studies document asymmetries in the effects of monetary policy on

output growth ([117] and reference therein). In this respect, the interest in nonlinear

ARX time series and regression models has been increasing in econometrics as in other

disciplines ([36, 73, 133] and references therein). In this work, we consider the intro-

duction of an exogenous input (ft)t as an extension of the Multivariate SETAR model

formulation and has a structural form of a nonlinear bivariate ARX model ([99]). Un-

like the multivariate threshold model proposed in [141], we allow the possibility of the

threshold variable to also be a multivariate process. In this case, the regime of the whole

system is not necessarily determined by a single stationary subprocess. In otherwords,

there exists thresholds for all subprocess of the multivariate process.

A short overview of the paper is as follows. In Section 6.2 we define the multivariate
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SETAR process with exogenous input denoted MSETARX model as an extension of

the multivariate SETAR model. In Section 6.3 we find conditions for stationarity of

the MSETARX models, whereas Section 6.4 is used to present the LSE (least squares

estimate) algorithm and an adaptive parameter estimation algorithm ([13, 88]) based on

the stochastic gradient principles for linear systems shown to be suitable for nonlinear

systems. The performance of the proposed algorithms for estimating the parameters of

Multivariate SETARX models is evaluated via simulations in Section 6.4.3. In Section

6.5, the modeling procedure for the MSETARX models and problems of estimation are

briefly considered.

6.2 Multivariate SETARX models

Consider a D-dimensional time series yt = (y1t, · · · , yDt)
T such that L1, · · · , LD ∈ Z+,

for each 1 ≤ i ≤ D, (Ri
j)j=1,2,··· ,Li a disjuction decomposition of the real axis: R =

�Li
j=1R

i
j ; i ∈ {1, · · · , D}. Let L = max{L1, L2, · · · , LD} and Ri

j = Φ ; j = Li+1, · · · , L.

Then any solution (yt)t of

yt +
�

J∈{1,··· ,L}D
y
(J)
t,d

�

a
(J)
0 +

pJ
�

i=1

A
(J)
i yt−i

�

=
�

J∈{1,··· ,L}D
y
(J)
t,d ε

(J)
t (6.3)

is called a multivariate SETAR process denoted MSETAR (L, pJ ; J ∈ {1, · · · , L}D),

where y
(J)
t,d : {1, · · · , L}D ←→ {0, 1} is the indicator variable defined by the following

relation:

�

y
(j1,··· ,jD)
t = 1

�

⇔def

�

(yt−d)i ∈ Ri
j ; j ∈ (1, · · · , L)D; i ∈ (1, · · · , D)

�

and {ε
(J)
t ,Ft} be a sequence of martingale difference with respect to an increasing se-

quence of σ-field {Ft} such that

sup
t≥0

E[�ε(J)t+1�|Ft] = 0 a.s, sup
t≥0

E[�ε(J)t+1�2|Ft] = σ2 < ∞ a.s, sup
t≥0

E[�ε(J)t+1�α|Ft] < +∞ a.s

for some α > 2 and �·� be a matrix norm.

Now consider a D-dimensional time series yt = (y1t, · · · , yDt)
T and a κ-dimensional

inputs ft = (f1t, · · · , fκt)
T such that L1, · · · , LD ∈ Z+, for each 1 ≤ i ≤ D, (Ri

j)j=1,2,··· ,Li

a disjuction decomposition of the real axis: R =
�Li

j=1R
i
j ; i ∈ {1, · · · , D}. Let L =

max{L1, L2, · · · , LD} be the maximum of the number of regimes for each subprocess of
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yt and Ri
j = Φ ; j = Li + 1, · · · , L. Then any solution (yt)t of























yt +
�

J∈{1,··· ,L}D y
(J)
t,d

�

a
(J)
0 +

�pJ
i=1A

(J)
i yt−i + Λ(J)ft

�

=
�

J∈{1,··· ,L}D y
(J)
t,d ε

(J)
t

ft =
�q

τ=1 Ξτ ft−τ + ηt

(6.4)

is called a multivariate SETAR process with exogenous input denoted MSETARX (L, pJ , q; J ∈
{1, · · · , L}D). The variables (yt)t and (ft)t in model (6.4) are endogenous and exogenous,

respectively, and the econometrics significance of estimating the relationship between

(yt)t and (ft)t is well known. The model equation (6.4) can be rewritten as

yt +
�

J∈{1,··· ,L}D
y
(J)
t,d

�

a
(J)
0 +

pJ
�

i=1

A
(J)
i yt−i + Λ

(J)
q
�

τ=1

Ξτ ft−τ

�

=
�

J∈{1,··· ,L}D
y
(J)
t,d ω

(J)
t

(6.5)

where ω
(J)
t = ε

(J)
t − Λ(J)ηt, a

(J)
0 and ω

(J)
t are D × 1 vectors, A

(J)
i are D ×D coefficient

matrices, Λ(J) are D × κ coefficient matrices, Ξ
(J)
τ are κ × κ coefficient matrices, and

(ft)t is κ× 1 vector. When Λ(J) = 0 for all J ∈ {1, · · · , L}D, (6.5) becomes a MSETAR

model (6.3).

The representation in equation (6.5) shows that the MSETARX (L, pJ , q; J ∈ {1, · · · , L}D)

model (6.4) has approximately the same structure as the MSETAR (L, pJ ; J ∈ {1, · · · , L}D)

model (6.3) with exogenous variables or factors (ft)t. For simplicity, we assume the ex-

ogenous inputs enter the model in a linear autoregressive fashion. It is worth pointing out

that the dynamics of process (ft)t could be captured by suitable linear/nonlinear model,

principal components, and among other model specifications. Unlike the multivariate

threshold model in [141], the threshold space is of dimension equal to the dimension

of the multivariate process. Thus there exists thresholds for all subprocess of the mul-

tivariate process (6.5). In this case, the regime of the whole system is not necessarily

determined by a single stationary subprocess, say yit, as in [141].

Assumption 1. Let {ε
(J)
t ,Ft} and {ηt,Ft}; ∀J ∈ {1, · · · , L}D be two independent se-

quence of martingale difference with respect to an increasing sequence of σ-field {Ft}

such that

sup
t≥0

E[�ε(J)t+1�2|Ft] = Ῠε < ∞ a.s and sup
t≥0

E[�ηt+1�2|Ft] = Ῠη < ∞ a.s

This ensures that {ω
(J)
t ,Ft} is a sequence of martingale difference with respect to an

increasing sequence of σ-field {Ft} where

sup
t≥0

E[�ω(J)
t+1�2|Ft] = Ῠω < ∞ a.s .
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Simple orthogonality assumptions on the errors ω
(J)
t are insufficient to identify nonlinear

models ([31]) and as such it is important that Assumption B.4 holds.

Let p = max{pJ |J ∈ {1, · · · , L}D} and q be the model orders for model(6.5). Now,

suppose that ω
(J)
t , and p be regime independent. We can rewrite model equation (6.5)

as

yt =
�

J∈{1,··· ,L}D
y
(J)
t,d

�

Θ̆
(J)
�T

Φ̆t−1 + ωt (6.6)

where
�

Θ̆(J)
�T

= −[a
(J)
0 , A

(J)
1 , · · · , A

(J)
p ,Λ(J)Ξ1,Λ

(J)Ξ2, · · · ,Λ
(J)Ξq],

Φ̆T
t = [1,yT

t ,y
T
t−1, · · · ,y

T
t−p+1, f

T
t , f

T
t−1, · · · , f

T
t−q+1] and the notation ζT denotes the

transpose of ζ. We remark that the MSETARX model with the representation (6.6)

permits us to make use of the [13] proposed adaptive parameter estimation algorithm

for the MSETAR model (6.3).

6.3 On the Stationarity of MSETARX model

In this section, we establish the conditions for the existence of a solution for the model

equation (6.4). Let p = max{pJ |J ∈ {1, · · · , L}D} and q be the model orders for

model(6.4). Now, suppose that p and q be regime independent and a
(J)
0 = 0 for each J .

We rewrite model equation (6.4) in the form

yt =
�

J∈{1,··· ,L}D
y
(J)
t,d

�

�

Θ̆1
(J)
�T

Φ̆1,t−1 + Λ
(J)ft

�

+
�

J∈{1,··· ,L}D
y
(J)
t,d ε

(J)
t (6.7)

ft =
�

Θ̆2

�T
Φ̆2,t−1 + ηt (6.8)

where
�

Θ̆1
(J)
�T

= −[A
(J)
1 , · · · , A

(J)
p ],

�

Θ̆2

�T
= −[Ξ1,Ξ2, · · · ,Ξq],

Φ̆T
1,t = [yT

t ,y
T
t−1, · · · ,y

T
t−p+1] and Φ̆T

2,t = [fTt , f
T
t−1, · · · , f

T
t−q+1].

The equation model (6.7)-(6.8) can be represented as a nonlinear ARX model ([99]) of

the form :







yt = g
(J)
1 (yT

t−1, · · · ,y
T
t−p) + g

(J)
2 (fTt , · · · , f

T
t−q) +

�

J∈{1,··· ,L}D y
(J)
t,d ε

(J)
t

ft = g3(f
T
t−1, · · · , f

T
t−q) + ηt

(6.9)

with g
(J)
1 (yT

t−1, · · · ,y
T
t−p) =

�

J∈{1,··· ,L}D y
(J)
t,d

�

Θ̆1
(J)
�T

Φ̆1,t−1, g
(J)
2 (fTt , · · · , f

T
t−q) =

�

J∈{1,··· ,L}D y
(J)
t,d Λ

(J)ft, and g3(f
T
t−1, · · · , f

T
t−q) =

�

Θ̆2

�T
Φ̆2,t−1. The process {ft,yt}

of the equation model (6.9) is a Markov process.
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Assumption 2. We denote y = (yT
t−1, · · · ,y

T
t−p) and f = (fTt , · · · , f

T
t−q). The multivariate

SETARX model (6.9) satisfies the following:

1. The functions g
(J)
1 (y), g

(J)
2 (f), and g3(f) for each J ∈ {1, · · · , L}D are nonperiodic

and bounded on compact sets, and g
(J)
2 (f) = O(�f�γ1) as �f� → ∞ for some real

γ1.

2. Assumption B.4 holds, the supt≥0E[�ηt+1�max(1,γ1+γ2)|Ft] < ∞ for some γ2 > 0.

3. There exist A (J) = [A
(J)
1 ,A

(J)
2 , · · · ,A

(J)
p ] and B = [B1,B2, · · · ,Bq−1], each

of which may be the zero matrix, for each J ∈ {1, · · · , L}D, where A
(J)
i and

Bτ are matrices of dimension D ×D and κ × κ respectively such that g
(J)
1 (y) =

y
�

A (J)
�T

+ o(�y�) and g3(f) = f
�

B
�T

+ o(�f�) as �y� and �f� → ∞. Then the

Dp-dimensional square matrix A defined by 0 if A (J) = 0 and by

A =





















OD OD · · · OD

�

A
(J)
1

�T

ID OD · · · OD

�

A
(J)
2

�T

OD ID · · · OD

�

A
(J)
3

�T

...
...

. . .
...

...

OD OD · · · ID
�

A
(J)
p

�T





















otherwise, and the κq-dimensional square matrix B be defined by

B =





















Oκ Oκ · · · Oκ

�

B1

�T

Iκ Oκ · · · Oκ

�

B2

�T

Oκ Iκ · · · Oκ

�

B3

�T

...
...

. . .
...

...

Oκ Oκ · · · Iκ
�

Bq

�T





















satisfy �(A) < 1 and �(B) < 1, where � denotes the spectral radius, Oι denotes

the ι-dimensional zero square matrix and Iι denotes the ι-dimensional unit square

matrix.

Lemma 6.1. Under Assumption B.5, {ft,yt} of the multivariate SETARX model (6.7)-

(6.8) represented as a nonlinear ARX model (6.9) is α-mixing with mixing coefficient

α(k) ∼ e−βk for some β > 0.

Proof. The result is known as in Lemma 3.1 in [99] and thus we do not provide the proof

since it is roughly same. We refer the interested reader to remarks after Assumption 3.3

and Lemma 3.1 in [99] and the references therein.
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Remark 6.2. Lemma 6.1 provides sufficient conditions for the multivariate SETARX

process (6.9) to be stationary ([99, 109, 137]). The proof of this Lemma as in Lemma

3.1 in [99] implies geometric ergodicity and stronger conclusion of absolute regularity

with an exponentially decreasing rate ([109, 137, 143, 144]).

Lemma 6.3. Let a
(J)
0 = 0 for each J in model (6.3) and p = 1. Assume that there is a

D-cycle of indexes j1 → j2 → j3 → · · · → jD → j1 with the notation A
(js)
1 corresponding

to A
(js)
1 (mod the D-cycle) so that A

(js+1)
1 = A

(j1)
1 . The process {yt} of the multivariate

SETAR model (6.3) is geometrically ergodic if

�
�

D
�

s=1

−A
(js)
1

�

< 1

where � denotes the spectral radius and the product notation
�n

s=mA(js) = A(jm) · · ·A(jm+1)A(jm)

is interpreted as the identity matrix if n = m− 1.

Proof. The result about geometric ergodicity follows from Theorem 4.5 and equation

model (4.12) in [137] with Ais = −A
(js)
1 and k = D.

6.4 Estimation of model parameters

In this section, we assume that assumption B.5 and Lemma 6.3 are satisfied. We also

assume the model orders p, q, d, and L, of model (6.4)-(6.5)-(6.6) are known. Let model

(6.4) be represented as a MSETAR (L, pJ ; J ∈ {1, · · · , L}D) model (6.3) with exogenous

variables or factors as in model (6.5)-(6.6). We propose to use estimation procedures

based on the standard LSE approach and the concept of self-tuning regulators used in

the study of adaptive control of stochastic linear systems (see [86]). [13] has shown that

algorithms for estimation of parameters based on the stochastic gradient principles for

linear systems are also suitable for nonlinear systems. Alternatively, following [30], one

can use local linear fitting plus the projection method to estimate components g
(J)
1 (·)

and g
(J)
2 (·) of model equation (6.9). The function g3(·) can then be estimated directly

using a standard approach or by kernel-type estimation ([98]).

6.4.1 Standard LSE Algorithm for Parameter Estimation

Consider the MSETARX (L, pJ , q; J ∈ {1, · · · , L}D) model in equation (6.6):

yt =
�

J∈{1,··· ,L}D
y
(J)
t,d

�

Θ̆
(J)
�T

Φ̆t−1 + ωt (6.10)
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where
�

Θ̆(J)
�T

= −[a
(J)
0 , A

(J)
1 , · · · , A

(J)
p ,Λ(J)Ξ1,Λ

(J)Ξ2, · · · ,Λ
(J)Ξq],

Φ̆T
t = [1,yT

t ,y
T
t−1, · · · ,y

T
t−p+1, f

T
t , f

T
t−1, · · · , f

T
t−q+1] with the autoregressive orders pJ , q,

delay d, and thresholds known. Then the LSE is
ˆ̆
Θ(J) =

�

J∈{1,··· ,L}D y
(J)
t,d

�

Φ̆T
t−1Φ̆t−1

�−1
Φ̆T
t−1yt.

Following [86] presentation of the stochastic gradient algorithm for ARX systems, the

true parameter Θ̆(J) can also be estimated by the LSE using the recursion,

ˆ̆
Θ

(J)
k+1 =

ˆ̆
Θ

(J)
k + y

(J)
k+1,dR

−1
k Φ̆k

�

yT
k+1 − Φ̆

T
k
ˆ̆
Θ

(J)
k

�

(6.11)

Rk =
�

J∈{1,··· ,L}D

k
�

i=0

y
(J)
k+1,dΦ̆iΦ̆

T
i (6.12)

6.4.2 Algorithm for Adaptive Parameter Estimation

Let 0 < α ≤ 1, 0 < υ(J) ≤ 1, p∗ = max{p, d, q}, and Θ̆ be the coefficients of the

MSETARX (L, pJ , q; J ∈ {1, · · · , L}D) model in equation (6.6).

Θ̆
(J)
k = 0; k ≤ p∗

Θ̆
(J)
k+1 = Θ̆

(J)
k + y

(J)
k+1,d

αΦ̆k

s
(J)
k

�

yT
k+1 − Φ̆

T
k Θ̆

(J)
k

�

; k ≥ p∗

r
(J)
k =







1; k < p∗

r
(J)
k−1 +

�

J∈{1,··· ,L}D y
(J)
k+1,d�Φ̆k�2; k ≥ p∗.

(6.13)

s
(J)
k =







1; k < p∗

s
(J)
k−1 + y

(J)
k+1

�

max{υ(J)r
(J)
k−1, 1}+ �yk�2 − s

(J)
k−1

�

; k ≥ p∗.
(6.14)

This algorithm 6.4.2 corresponds to the adaptive parameter estimation algorithm pro-

posed by [13], with the control sequence being (s
(J)
k )−1 instead of (r

(J)
k )−1. The sim-

ulation results presented by the authors showed that as the control sequence (r
(J)
k )−1

becomes large, a further progress towards the true coefficients is prevented or slowed

down since this control sequence which weight the prediction error decrease too fast.

The relaxed control sequence (s
(J)
k )−1 have similar properties as (r

(J)
k )−1 with the con-

vergence spend decreased by the factors υ(J) and in particular, improves the estimation

accuracy ([13]). This algorithm was applied in [88] for the analysis of biomedical signals.

6.4.3 Simulations

In this section, we carry out a simulation exercise to study the performance of the pa-

rameter estimation algorithm presented in Section 6.4.1&6.4.2 on MSETARX models. In



Chapter 6. Multivariate Self-Exciting Threshold Autoregressive Models with eXogenous
Input 94

this respect, we consider two data generating process (DGP) according to the following:

1. Consider a simulated 50, 000 points of a two-dimensional MSETARX process with

six-regimes, delay d = 6, Λ(J) = 0 for all J ∈ {1, · · · , L}D in equation (6.5),

standard normal noise N(0, 1) added to all regimes and autoregressive order p = 3

defined by:

Regime 1 Ri
1 := [−∞,−0.50)×[−∞, 0), A

(1)
1 =

�

−0.02 0.00

0.00 0.30

�

, A
(1)
2 =

�

0.53 0.00

0.00 0.30

�

,

A
(1)
3 =

�

0.00 0.53

0.00 0.30

�

, a
(1)
0 =

�

0.74

−0.20

�

Regime 2 Ri
2 := [−∞,−0.50)×[0,∞), A

(2)
1 =

�

−0.02 0.00

0.00 0.30

�

, A
(2)
2 =

�

0.53 0.00

0.00 0.30

�

,

A
(2)
3 =

�

0.00 0.53

0.00 0.30

�

, a
(2)
0 =

�

−0.75

−0.20

�

Regime 3 Ri
3 := [−0.50, 0.50)×[−∞, 0), A

(3)
1 =

�

−0.94 0.00

0.00 0.30

�

, A
(3)
2 =

�

0.85 0.00

0.00 0.30

�

,

A
(3)
3 =

�

0.00 0.85

0.00 0.30

�

, a
(3)
0 =

�

1.15

−0.20

�

Regime 4 Ri
4 := [−0.50, 0.50) × (0.00,∞), A

(4)
1 =

�

−0.94 0.00

0.00 0.30

�

, A
(4)
2 =

�

0.85 0.00

0.00 0.30

�

, A
(4)
3 =

�

0.00 0.85

0.00 0.30

�

, a
(4)
0 =

�

0.74

0.20

�

Regime 5 Ri
5 := [0.50,∞)×[−∞, 0.00), A

(5)
1 =

�

−1.10 0.00

0.00 0.30

�

, A
(5)
2 =

�

−0.30 0.00

0.00 0.30

�

,

A
(5)
3 =

�

0.00 −0.30

0.00 0.30

�

, a
(5)
0 =

�

−0.75

0.20

�

Regime 6 Ri
6 := [0.50,∞)×[0.00,∞), A

(6)
1 =

�

−1.10 0.00

0.00 0.30

�

, A
(6)
2 =

�

0.30 0.00

0.00 0.30

�

,

A
(6)
3 =

�

0.00 0.30

0.00 0.30

�

, a
(6)
0 =

�

1.15

0.20

�

,

and a signal section is shown in Figure 6.1. In Appendix C.1, autoregressive

coefficient estimates obtained via the LSE algorithm is provided.

2. Consider a three–regime (L = 3) bivariate (D = 2) MSETARX (L, pJ , q; J ∈
{1, · · · , L}D) model with a bivariate exogenous input (κ = 2), model orders be
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unit (p = max{pJ |J ∈ {1, · · · , L}D} = 1, q = 1) and delay d = 1:

yt =



















A
(1)
1 yt−1 + Λ(1)Ξ1ft−1 + ωt; (yt−1)2 ≤ −0.5

A
(2)
1 yt−1 + Λ(2)Ξ1ft−1 + ωt; (yt−1)2 ∈ (−0.5, 0.5]

A
(3)
1 yt−1 + Λ(3)Ξ1ft−1 + ωt; (yt−1)2 ≥ 0.5

(6.15)

where A
(1)
1 =

�

−0.3 0.6

−0.7 0.4

�

, A
(2)
1 =

�

1.5 −1

0.2 0.3

�

, A
(3)
1 =

�

0.3 −0.1

0.2 0.6

�

, Ξ1 =

�

0.5 0

0.3 0

�

, Λ(1) =

�

0.2 0

0 0

�

, Λ(2) =

�

0.3 0

0 0.2

�

, Λ(3) =

�

0.8 0

0 0

�

. It is worth

noting that the multivariate process yt is unstable in the inner regime and only

the second subprocess determines the current regime.

Figure 6.1: Two-dimensional MSETARX process with six-regimes, delay d = 6, au-
toregressive order p = 3 and Λ(J) = 0 for all J ∈ {1, · · · , L}D in equation (6.5). This

is a signal section of 500 time samples of the multivariate process.

6.5 Concluding remarks

The recent financial crisis of 2007-2009 has lead to a need for regulators and policy

makers to understand and track systemic linkages. As the events following the tur-

moil in financial markets unfolded, it became evident that modern financial systems

exhibit a high degree of interdependence and nonlinearity making it difficult in predict-

ing the consequences of such an intertwined system. In this study, we define a nonlinear
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multivariate SETARX model useful in modeling economic relationships and to capture

non-linear dynamics such as regime switching and asymmetric responses to shocks. We

then present an estimation procedure for the parameters.

In general, testing linearity is the first step of a proper modelling strategy of nonlinear

models as it is possible that a linear model could adequately capture the relationship

considered. Nonlinear models are usually not identified when the underlying process

is linear ([8, 63, 73, 134, 141]). The proposed test statistic for detecting threshold

nonlinearity in vectors time series and the procedure for building multivariate threshold

models discussed in [141] could be performed on each subprocess in the MSETARX

model setting. In this case, [13] suggests a reasonable choice of the delay to be d∗ =

argmax{
�D

i C (i)(d) | d ∈ {1, · · · , dmax}} where C (i)(d) is the value of the test statistic

([141]) for each subprocess i. One could apply the Wald test procedure used in [18],

which is a generalisation of [61] approach, to test linearity. Another possibility of testing

linear VAR model against a MSETARX model would be to generalise the approach the

approach of [124] to multivariate models.

After the parameter estimation of model (6.5), it is necessary to evaluate the model by

appropriate misspecification tests before putting it into practice. The general purpose

is to find out if the assumptions made in the estimation step appear satisfied ([62, 64,

124, 141]). For more details about modelling strategies and issues of vector threshold

autoregressive models, we refer interested readers to [65, 141]. This model could be very

useful in studying huge data sets such as the analysis of high-frequency financial data.

Many problems remain open for the multivariate SETARX models. For example, estab-

lishing a testing procedure in determining the number of regimes and the specification

of the threshold space will required a careful investigation.
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Appendix A

Appendix for Chapter 2

A.1 Wavelet Analysis

A.1.1 Notation and Operators

Consider the mapping

Γ : L2(R) −→ L2(R)

Let f ∈ L2(R), α,β ∈ R and s ∈ R
+ where R

+ := {t ∈ R : t > 0}. Unless otherwise

stated, the complex conjugate of z ∈ C is denoted z̄ and the magnitude of z is denoted

|z|. The symbol i will represent the square root of −1, i.e., i2 = −1. We present in Table

A.1 some notations and operators that will be often referred to in this manuscript.

Operator, Γ Notation, Γf Output Inverse, Γ ∗ f = Γ−1f Fourier transform, (Γf )̂

Dilation (Dsf)(t)
1

s1/2
f( ts) Ds−1f Ds−1 f̂

Involution f̃ f̄(−t) f̃
¯̂
f

Translation (ταf)(t) f(t− α) τ−αf e−af̂

Modulation (eαf)(t) ei2παtf(t) e−αf ταf̂

Reflection (Rf)(t) f(−t) Rf Rf̂

Table A.1: Notations and Operators

A.1.2 Continuous Wavelet Transform (CWT)

The continuous wavelet transform (CWT) differs from the more traditional short time

Fourier transform (STFT) by allowing arbitrarily high localization in time of high fre-

quency signal features. The CWT permits for the isolation of the high frequency features

97
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due to it’s variable window width related to the scale of observation. In particular, the

CWT is not limited to using sinusoidal analyzing functions but allows for a large se-

lection of localized waveforms that can be employed as long as they satisfy predefined

mathematical criteria (described below).

Let H be a Hilbert space, the CWT may be described as a mapping parameterized by

a function ψ

Cψ : H −→ Cψ(H). (A.1)

The CWT of a one-dimensional function f ∈ L2(R) is given by

Cψ : L2(R) −→ Cψ(L
2(R))

f �→ �f, τtDsψ�L2(R) (A.2)

where τtDsψ is a dilated (by s) and translated (by t) version of ψ given as

(τtDsψ)(ξ) =
1

|s|
1
2

ψ
�ξ − t

s

�

(A.3)

Thus, the CWT of one-dimensional signal f is a two-dimensional function of the real

variables time t, and scale s �= 0. For a given ψ, the CWT may be thought of in terms

of the representation of a signal with respect to the wavelet family generated by ψ, that

is, all it’s translated and dilated versions. The CWT may be written as

(Cψf)(t, s) := �f, τtDsψ� (A.4)

For each point (t, s) in the time-scale plan, the wavelet transform assigns a (complex)

numerical value to a signal f which describes how much f like a translated by t and

scaled by s version of ψ.

The CWT of a signal f is defined as

(Cψf)(t, s) =
1

|s|
1
2

�

R

f(ξ)ψ̄
�ξ − t

s

�

dξ (A.5)

where ψ̄(ξ) is the complex conjugate of the analyzing wavelet function ψ(ξ). Given

that ψ is chosen with enough time-frequency localization1, the CWT gives a gives a

picture of the time-frequency characteristics of the function f over the whole time-scale

plane R × (R\{0}). When Cadm,ψ < ∞, it is possible to find the inverse continuous

1The time-frequency concentrated functions, denoted TF (R), is a space of complex-valued finite en-
ergy functions defined on the real line that decay faster than 1

t
simultaneously in the time and frequency

domains. This is defined explicitly as TF (R) := {ϕ ∈ L2(R : |ϕ(t)| < η(1 + |t|)−(1+ε) and |ϕ̂(γ)| <
η(1 + |γ|)−(1+ε)for η < ∞, ε > 0}
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transformation via the relation known as Calderón’s reproducing identity,

f(ξ) =
1

Cadm,ψ

�

R2

�f, τtDsψ�τtDsψ(ξ)
1

s2
dsdt. (A.6)

and if s restricted in R
+, then the Calderón’s reproducing identity takes the form

f(ξ) =
1

Cadm+,ψ

� ∞

−∞

� ∞

0
�f, τtDsψ�τtDsψ(ξ)

1

s2
dsdt. (A.7)

Let α and β be arbitrary real numbers and f , f1, and f2 be arbitrary functions in L2(R)

The CWT, Cψ, with respect to ψ satisfies the following conditions:

1. Linearity

• (Cψ(αf1 + βf2))(t, s) = α(Cψf1)(t, s) + β(Cψf2)(t, s)

2. Time Invariance

• (Cψ(τβf))(t, s) = (Cψf)(t− β, s)

3. Dilation

• (Cψ(Dαf))(t, s) = (Cψf)(αt,α
−1s)

4. Negative Scales

• Cψf(t,−s) = (CψRf)(−t, s)

The time invariance property of the CWT implies that the wavelet transform of a time-

delayed version of a signal is a time-delayed version of its wavelet transform. This serves

as an important property in terms of pattern recognition. This nice property is not

readily obtained in the case of Discrete wavelet transforms (2, 147).

The contribution to the signal energy at the specific scale s and location t is given by

E(t, s) = |Cψ|
2 (A.8)

which is a two-dimensional wavelet energy density function known as the scalogram.

The wavelet transform Cψ corresponding to a complex wavelet is also complex valued.

The transform can be separated into two categories:

• Real part R{Cψ} and Imaginary part I{Cψ}

• Modulus (or Amplitude), |Cψ| and phase (or phase-angle), Φ(t, s),
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which can be obtained using the relation :

Cψ = |Cψ|e
iΦ(t,s) and Φ(t, s) = arctan

�

I{Cψ}

R{Cψ}

�

. (A.9)

A.1.3 Maximal Overlap Discrete Wavelet Transform

The Maximal Overlap Discrete Wavelet Transform (MODWT), also related to notions

of ’cycle spinning’ and ’wavelet frames’, is with the basic idea of downsampling values

removed from discrete wavelet transform. The MODWT unlike the conventional dis-

crete wavelet transform (DWT), is non-orthogonal and highly redundant, and is defined

naturally for all sample sizes, N (147). Given an integer J such that 2J < N , where N

is the number of data points, the original time series represented by the vector X(n),

where n = 1, 2, · · · , N , can be decomposed on a hierarchy of time scales by details,

Dj(n), and a smooth part, SJ(n), that shift along with X:

X(n) = SJ(n) +

J
�

j=1

Dj(n) (A.10)

with Sj(n) generated by the recursive relationship

Sj−1(n) = SJ(n) +DJ(n). (A.11)

The MODWT details Dj(n) represent changes on a scale of τ = 2j−1, while the Sj(n)

represents the smooth or approximation wavelet averages on a scale of τJ = 2J−1. 49

employed this wavelet transform to investigate the issue of moderation of volatility in

G-7 economies and also to detect the importance of the various explanations of the

moderation.

A.2 DVV Plots of simulated Processes

We provide the structure of the DVV analysis on some simulated processes such as: a

Threshold autoregressive process (TAR), linear autoregressive integrated moving aver-

age (ARIMA) signal, a Generalized autoregressive conditional heteroskadastic process

(GARCH), and a Bilinear process.
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(a) DVV analysis on ARIMA(1,1,1) signal (b) DVV analysis on TAR(1) signal

Figure A.1: DVV analysis on ARIMA and Threshold Autoregressive signals

(a) DVV analysis on GARCH(1,1) signal (b) DVV analysis on Bilinear signal

Figure A.2: DVV analysis on GARCH and Bilinear signals



Appendix B

Appendix for Chapter 5

B.1 Functional Central Limit Theorem (Recall)

Suppose ut ∼ i.i.d(0,σ2), t = 1, 2, · · · , T and

XT (r) =
1

T

�Tr�
�

t=1

ut,

where XT (r) is a variable constructed from the sample mean of the first rth fraction of

random variables ut, r ∈ [0, 1] and where �Tr� denotes the largest integer that is less

than or equal to Tr. Thus XT (r) is a step function in r defined as follows:

XT (r) =















































0 if 0 ≤ r < 1/T

u1/T if 1/T ≤ r < 2/T

(u1 + u2)/T if 2/T ≤ r < 3/T

. . . . . .

(u1 + u2 + · · ·+ uT )/T if r = 1

Then the sequence of stochastic functions
�√

TXT (·)
σ

�∞

T=1
converges in distribution to a

standard Brownian motion W (·),
√
TXT (·)
σ

d−→ W (·).
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B.2 Proof of Proposition 1

Proof. We want to prove (a), (b), (c), (d), (e) of proposition 1. First let us introduce

the AR(p+ 1) process:

yt = φ1yt−1+φ2yt−2+φ3yt−3+ · · ·+φpyt−p+φp+1yt−p−1+ut where ut ∼ i.i.d(0,σ2).

This process can be written in the form:

yt = ρyt−1 + α1∆yt−1 + α2∆yt−2 + · · ·+ αp∆yt−p + ut,

where: ρ = φ1 + φ2 + · · ·+ φp+1 , αi = −(φi+1 + φi+2 + · · ·+ φi+p+1).

Suppose now that (yt)t contains a single unit root, that is one of the roots is 1 in the

equation :

1− φ1z − φ2z
2 − · · ·− φp+1z

p+1 = 0,

thus

1− φ1 − · · ·− φp+1 = 0 and φ1 + φ2 + · · ·+ φp+1 = 1 implies that ρ = 1.

Under the null hypothesis of a unit root we have:

∆yt = α1∆yt−1 + α2∆yt−2 + · · ·+ αp∆yt−p + ut,

thus

(1− α1L− α2L
2 − · · ·− αpL

p)∆yt = ut. (B.1)

a. Suppose that the process (yt)t has only one unit root and all other roots are outside

the unit circle, then ∆yt is stationary. From equation (B.1) we have:

∆yt = (1− α1L− α2L
2 − · · ·− αpL

p)−1ut = Ψ(L) · ut,

where Ψ(L) = (1− α1L− α2L
2 − · · ·− αpL

p)−1.

Next, define εt = ∆yt ∀t, it means that εt = Ψ(L) · ut, ut ∼ i.i.d(0,σ2), and

yt = y0 + ε1 + ε2 + · · ·+ εt. (B.2)

The Beveridge-Nelson decomposition implies that:

yt = ε1 + ε2 + · · ·+ εt + y0 = Ψ(1)
�

u1 + u2 + · · ·+ ut

�

+ ηt − η0 + y0, (B.3)
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where Ψ(1) = (1−α1−α2− · · ·−αp)
−1 and (ηt)t is a stationary process with zero

mean of the form:

ηt =

∞
�

j=0

λjut−j where

∞
�

j=0

|λj | < ∞.

We construct a variable ZT (r) from the sample mean of the first rth fraction of

random variables εt, r ∈ [0, 1]:

ZT (r) =
1

T

�Tr�
�

t=1

εt, (B.4)

√
TZT (r) =

√
T
1

T

�Tr�
�

t=1

εt =
√
T ·

1

T

�

Ψ(1)

�Tr�
�

t=1

ut + η�Tr� − η0

�

,

= Ψ(1)
√
TXT (r) +

1√
T

�

η�Tr� − η0

�

.

From the functional Central Limit theorem and continuous mapping theorem we

have:
√
TXT (·) →d σW (·) ⇒ Ψ(1)

√
TXT (r) →d Ψ(1) · σW (r), with (ηt)t a zero

mean stationary process. Thus we have: 1√
T

�

η�Tr�− η0

�

−→p 0 (see [60], example

17.2). It follows that: √
TZT (·) →d Ψ(1) · σW (·) . (B.5)

The stochastic function ZT (r) in (B.4) can be expressed in the form of a step

function in r as follows:

ZT (r) =















































0 if 0 ≤ r < 1/T

ε1/T if 1/T ≤ r < 2/T

(ε1 + ε2)/T if 2/T ≤ r < 3/T

. . . . . .

(ε1 + ε2 + · · ·+ εT )/T if r = 1

(B.6)

thus
√
T (ZT (r) +

y0
T
) =















































y0√
T

if 0 ≤ r < 1/T

y1√
T

if 1/T ≤ r < 2/T

y2√
T

if 2/T ≤ r < 3/T
...

...

yT√
T

if r = 1
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The stochastic function FT (r) =
�√

T (ZT (r)+
y0
T )
�n

is then expressed in the form:

FT (r) =















































yn0
T

n
2

if 0 ≤ r < 1/T

yn1
T

n
2

if 1/T ≤ r < 2/T

yn2
T

n
2

if 2/T ≤ r < 3/T
...

...

ynT
T

n
2

if r = 1

(B.7)

and

� 1

0
FT (r)dr =

yn0
T

n
2

·
1

T
+

yn1
T

n
2

·
1

T
+

yn2
T

n
2

·
1

T
+ · · ·+

ynT−1

T
n
2

·
1

T
=

1

T (n/2+1)

T
�

t=1

ynt−1.

From (B.5) we have:

FT (·) =
�√

T (ZT (·) +
y0
T
)
�n

−→d [Ψ(1)]nσn[W (·)]n, (B.8)

thus

� 1

0

FT (r)dr →d [Ψ(1)]nσn

� 1

0

[W (r)]ndr ⇒ 1

T (n/2+1)

T
�

t=1

ynt−1 →d [Ψ(1)]nσn

� 1

0

[W (r)]ndr.

b. Using the Beveridge-Nelson decomposition in (B.3):

yt = ε1 + ε2 + · · ·+ εt + y0 = Ψ(1)
�

u1 + u2 + · · ·+ ut

�

+ ηt − η0 + y0.

⇒ ∆yt = yt − yt−1 = εt = Ψ(1)ut + ηt − ηt−1, (B.9)

1

T (n+1)/2

T
�

t=1

ynt−1εt =
1

T (n+1)/2

T
�

t=1

ynt−1

�

Ψ(1)ut + ηt − ηt−1

�

,

=
1

T (n+1)/2
Ψ(1)

T
�

t=1

ynt−1ut +
1

T (n+1)/2

T
�

t=1

ynt−1

�

ηt − ηt−1

�

,

⇒ 1

T (n+1)/2
Ψ(1)

T
�

t=1

ynt−1ut =
1

T (n+1)/2

T
�

t=1

ynt−1εt −
1

T (n+1)/2

T
�

t=1

ynt−1

�

ηt − ηt−1

�

.

(B.10)

By denoting FT (r) = FT �Tr�, from the function FT (r) in (B.7) we have: FT �Tr� =
yn
T�Tr�

Tn/2 .

By denoting ZT (r) = ZT �Tr�, from the function FT (r) in (B.6) we have

ZT �Tr� =
ε1 + ε2 + · · ·+ ε�Tr�

T
⇒ ∆ZT,�Tr� = ZT,�Tr� − ZT,�Tr�−1 =

ε�Tr�
T

. (B.11)
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Now let us consider the first element of the RHS of (B.10):

1

T (n+1)/2

T�

t=1

ynt−1εt =

T�

t=1

ynt−1

Tn/2
·
√
T
εt

T
=

T�

�Tr�=1

FT,�Tr�−1·
√
T
ε�Tr�

T
=

T�

�Tr�=1

FT,�Tr�−1·
√
T∆ZT,�Tr�.

We have the stochastic integral:

T
�

�Tr�=1

FT,�Tr�−1 ·
√
T∆ZT,�Tr� =

� 1

0
FT (r) ·

√
TdZT (r) =

� 1

0
FT (r) · d

√
TZT (r),

⇒ 1

T (n+1)/2

T
�

t=1

ynt−1εt =

� 1

0
FT (r) · d

√
TZT (r).

From (B.6) and (B.8), and by convergence to stochastic integrals we have:

� 1

0

FT (r)·d
√
TZT (r)

d
−→

� 1

0

[Ψ(1)]nσn[W (·)]ndΨ(1)·σW (r) = [Ψ(1)]n+1
σ
n+1

� 1

0

[W (r)]ndW (r),

⇒ 1

T (n+1)/2

T
�

t=1

ynt−1εt
d−→ [Ψ(1)]n+1σn+1

� 1

0
[W (r)]ndW (r). (B.12)

Next, consider the second element on RHS of (B.10):

1

T (n+1)/2

T
�

t=1

ynt−1(ηt − ηt−1) =

T
�

t=1

ynt−1

Tn/2
·
ηt − ηt−1

T 1/2
=

T−1
�

�Tr�=0

FT (r) ·
η�Tr�+1 − η�Tr�√

T

From (B.8): FT (·) =
�√

T (ZT (·) +
y0
T )
�n

−→d [Ψ(1)]nσn[W (·)]n

⇒
T−1
�

�Tr�=0

FT (r) ·
η�Tr�+1 − η�Tr�√

T

d−→ [Ψ(1)]nσn[W (r)]n
T−1
�

�Tr�=0

η�Tr�+1 − η�Tr�√
T

,

⇒
T−1
�

�Tr�=0

FT (r)·
η�Tr�+1 − η�Tr�√

T

d−→ [Ψ(1)]nσn[W (r)]n
�√

T (
1

T

T
�

t=1

ηt)−
√
T (

1

T

T
�

t=1

ηt−1)
�

,

Where ηt is a stationary process with zero mean of the form: ηt =
�∞

j=0 λjut−j

where
�∞

j=0 |λj | < ∞. Applying the central limit theorem for stationary process

we have:
�√

T (
1

T

T
�

t=1

ηt)−
√
T (

1

T

T
�

t=1

ηt−1)
�

d−→ 0. (B.13)

⇒
T−1
�

�Tr�=0

FT (r) ·
η�Tr�+1 − η�Tr�√

T

d−→ 0.

It follows that:

1

T (n+1)/2

T
�

t=1

ynt−1(ηt − ηt−1)
d−→ 0. (B.14)
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From (B.10), (B.12), and (B.14) we obtain:

1

T (n+1)/2
Ψ(1)

T
�

t=1

ynt−1ut
d−→ [Ψ(1)]n+1σn+1

� 1

0
[W (r)]ndW (r).

⇒ 1

T (n+1)/2

T
�

t=1

ynt−1ut
d−→ [Ψ(1)]nσn+1

� 1

0
[W (r)]ndW (r).

c. From (B.9) : ∆yt = yt − yt−1 = εt = Ψ(1)ut + ηt − ηt−1 where ηt is a zero mean

stationary process, ut ∼ i.i.d(0,σ2)

⇒ E(∆yt) = E[Ψ(1)ut + ηt − ηt−1] = Ψ(1)E(ut) + E(ηt)− E(ηt−1) = 0.

⇒ 1

T

T
�

t=1

∆yt−i ·∆yt−j =
1

T

T
�

t=1

[∆yt−i − E(∆yt−i)][∆yt−j − E(∆yt−j)].

yt has a single unit root ⇒ ∆yt is stationary with: E(∆yt) = 0, V ar(∆yt) is finite

and Cov(∆yt,∆yt−s) = γs only depends on s. By the law of large numbers:

1

T

T
�

t=1

[∆yt−i − E(∆yt−i)][∆yt−j − E(∆yt−j)]
p−→ Cov(∆yt−i,∆yt−j) = γ|i−j|.

⇒ 1

T

T
�

t=1

∆yt−i ·∆yt−j
p−→ γ|i−j|.

d.

1

Tn/2+1

T
�

t=1

ynt−1 ·∆yt−j =
1√
T

T
�

t=1

ynt−1

Tn/2
·
∆yt−j√

T
=

1√
T

T−1
�

�Tr�=0

FT (r) ·
∆y�Tr�+1−j√

T
,

where we have FT (r) −→d [Ψ(1)]nσn[W (r)]n.

⇒ 1

Tn/2+1

T
�

t=1

ynt−1 ·∆yt−j
d−→ [Ψ(1)]nσn[W (r)]n

1

T

T−1
�

�Tr�=0

∆y�Tr�+1−j .

⇒ 1

Tn/2+1

T
�

t=1

ynt−1 ·∆yt−j
d−→ [Ψ(1)]nσn[W (r)]n

1

T

T
�

t=1

∆yt−j ,

and ∆yt is a zero mean stationary process. By applying the law of large number

for a covariance stationary process it follows that: 1T
�T

t=1∆yt−j
p−→ 0

⇒ 1

Tn/2+1

T
�

t=1

ynt−1 ·∆yt−j
d−→ 0 ⇒ 1

Tn/2+1

T
�

t=1

ynt−1 ·∆yt−j
p−→ 0.



Appendix B. Appendix for Chapter 5 108

e. Consider the sequence: ∆yt−i · ut ∀i ≥ 1

Notice that ut is uncorrelated to ∆yt−i i.e. E(∆yt−i · ut) = E(∆yt−i) · E(ut) = 0,

then

the conditional mean is:

E(∆yt−i · ut/∆yt−i−1 · ut) = E(∆yt−i/∆yt−i−1 · ut) · E(ut/∆yt−i−1 · ut)

= E(∆yt−i/∆yt−i−1 · ut) · E(ut) = 0.

Hence ∆yt−i is a martingale difference sequence.

V ar(∆yt−i·ut) = E[(∆yt−i·ut)
2] = E[(∆yt−i)

2·u2t ] = E[(∆yt−i)
2]·E[u2t ] = σ2E[(∆yt−i)

2],

since ∆yt is a zero mean stationary process

⇒ E[(∆yt−i)
2] = V ar(∆yt−i) = V ar(∆yt) = γ0.

⇒ V ar(∆yt−i · ut) = σ2γ0.

Thus, the martingale difference sequence ∆yt−i ·ut satisfies the usual central limit

theorem:
√
T
� 1

T

T
�

t=1

∆yt−iut

�

d−→ N(0,σ2γ0).

⇒ 1

T 1/2

T
�

t=1

∆yt−iut
d−→ N(0,σ2γ0).

B.3 Proof of Theorem 1

Proof. Let D̃T be a 3× 3 diagonal matrix of the form:

D̃T =









T 2 0 0

0 T 3 0

0 0 T 4









,

R =









1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0









3×(p+3)

,

β = (δ1,2, δ1,4, δ1,6, ρ1, ρ2, · · · , ρp)
�
(p+3)×1 andXt = (y3t−1, y

5
t−1, y

7
t−1,∆yt−1, · · · ,∆yt−p)

�
(p+3)×1

with β̂ being the OLS estimator for the parameter β, and σ̂2
T the variance of ∆yt .
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Next, consider the scaling matrix:

DT =































T 2 0 0 0 0 . . . 0

0 T 3 0 0 0 . . . 0

0 0 T 4 0 0 . . . 0

0 0 0 T 1/2 0 . . . 0

0 0 0 0 T 1/2 . . . 0

. . . . . .

0 0 0 0 0 . . . T 1/2































(p+3)×(p+3)

,

where D̃T and DT are diagonal matrices and D̃TR = RDT . Therefore, we obtain:

F̃NL = (β̂ − β)�R�D̃T · D̃−1
T

�

σ̂2
TR(

T
�

t=1

XtX
�
t)
−1R�

�−1
D̃−1

T · D̃TR(β̂ − β)

= (β̂ − β)�R�D̃T

�

σ̂2
T D̃TR(

T
�

t=1

XtX
�
t)
−1R�D̃T

�−1
D̃TR(β̂ − β),

since D̃T is symmetric : D̃T = D̃�
T

⇒ F̃NL = (β̂ − β)�(D̃TR)�
�

σ̂2
T D̃TR(

T
�

t=1

XtX
�
t)
−1(D̃TR)�

�−1
D̃TR(β̂ − β).

and since D̃TR = RDT we have :

F̃NL = (β̂ − β)�(RDT )
�
�

σ̂2
TRDT (

T
�

t=1

XtX
�
t)
−1(RDT )

�
�−1

RDT (β̂ − β).

⇒ F̃NL = [(RDT )(β̂ − β)]�
�

σ̂2
TRDT (

T
�

t=1

XtX
�
t)
−1DTR

�
�−1

RDT (β̂ − β)

⇒ F̃NL = [(RDT )(β̂ − β)]�
�

σ̂2
TR
�

D−1
T (

T
�

t=1

XtX
�
t)D

−1
T

�−1
R�
�−1

RDT (β̂ − β)

with

D−1
T =































T−2 0 0 0 0 . . . 0

0 T−3 0 0 0 . . . 0

0 0 T−4 0 0 . . . 0

0 0 0 T−1/2 0 . . . 0

0 0 0 0 T−1/2 . . . 0

. . . . . .

0 0 0 0 0 . . . T−1/2































(p+3)×(p+3)

,
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whereXt = (y3t−1, y
5
t−1, y

7
t−1,∆yt−1, · · · ,∆yt−p)

�
(p+3)×1

. It follows that: D−1
T (
�T

t=1XtX
�
t)D

−1
T =

























T−4
�T

t=1
y6

t−1
T−5

�T
t=1

y8

t−1
T−6

�T
t=1

y10

t−1
T−5/2 �T

t=1
y3

t−1
∆yt−1 . . . T−5/2 �T

t=1
y3

t−1
∆yt−p

T−5
�T

t=1
y8

t−1
T−6

�T
t=1

y10

t−1
T−7

�T
t=1

y12

t−1
T

−

7

2
�T

t=1
y5

t−1
∆yt−1 . . . T

−

7

2
�T

t=1
y5

t−1
∆yt−p

T−6
�T

t=1
y10

t−1
T−7

�T
t=1

y12

t−1
T−8

�T
t=1

y14

t−1
T−9/2 �T

t=1
y7

t−1
∆yt−1 . . . T−9/2 �T

t=1
y7

t−1
∆yt−1

T−5/2 �T
t=1

y3

t−1
∆yt−1 T

−

7

2
�T

t=1
y5

t−1
∆yt−1 T−9/2 �T

t=1
y7

t−1
∆yt−1

1

T

�T
t=1

(∆yt−1)
2 . . . 1

T

�T
t=1

∆yt−1∆yt−p

. . . . . .

T−5/2 �T
t=1

y3

t−1
∆yt−p T

−

7

2
�T

t=1
y5

t−1
∆yt−p T−9/2 �T

t=1
y7

t−1
∆yt−p

1

T

�T
t=1

∆yt−1∆yt−p . . . 1

T

�T
t=1

(∆yt−p)
2

























(B.15)

Under the null hypothesis, (yt)t is a unit root process that satisfies the condition of

proposition 1. Hence applying the proposition, it follows that: D−1
T (
�T

t=1XtX
�
t)D

−1
T

d−→

d−→























Ψ6σ6
� 1
0 W (r)6dr Ψ8σ8

� 1
0 W (r)8dr Ψ10σ10

� 1
0 W (r)10dr 0 0 0 . . . 0

Ψ8σ8
� 1
0 W (r)8dr Ψ10σ10

� 1
0 W (r)10dr Ψ12σ12

� 1
0 W (r)12dr 0 0 0 . . . 0

Ψ10σ10
� 1
0 W (r)10dr Ψ12σ12

� 1
0 W (r)12dr Ψ14σ14

� 1
0 W (r)14dr 0 0 0 . . . 0

0 0 0 γ0 γ1 γ2 . . . γp−1

0 0 0 γ1 γ0 γ1 . . . γp−2

0 0 0 γ2 γ1 γ0 . . . γp−3

. . . . . . . . . . . . . . . . . .

0 0 0 γp−1 γp−2 γp−3 . . . γ0.























.

⇒ D−1
T (

T
�

t=1

XtX
�
t)D

−1
T

d−→
�

Q3×3 0

0 Vp×p

�

, (B.16)

with Q3×3 =









Ψ6σ6
� 1
0 W (r)6dr Ψ8σ8

� 1
0 W (r)8dr Ψ10σ10

� 1
0 W (r)10dr

Ψ8σ8
� 1
0 W (r)8dr Ψ10σ10

� 1
0 W (r)10dr Ψ12σ12

� 1
0 W (r)12dr

Ψ10σ10
� 1
0 W (r)10dr Ψ12σ12

� 1
0 W (r)12dr Ψ14σ14

� 1
0 W (r)14dr









,

and Vp×p =



















γ0 γ1 γ2 . . . γp−1

γ1 γ0 γ1 . . . γp−2

γ2 γ1 γ0 . . . γp−3

. . . . . . . . . . . .

γp−1 γp−2 γp−3 . . . γ0



















.

⇒ R
�

D−1
T (
�T

t=1XtX
�
t)D

−1
T

�−1
R� d−→ (I3 03×p)

�

Q−1
3×3 0

0 V −1
p×p

��

I3

0p×3

�

⇒ R
�

D−1
T (
�T

t=1XtX
�
t)D

−1
T

�−1
R� d−→ Q−1

3×3.

⇒
�

R
�

D−1
T (
�T

t=1XtX
�
t)D

−1
T

�−1
R�
�−1 d−→ Q3×3.

we have:
�T

t=1Xtut =































�

y3t−1ut
�

y5t−1ut
�

y7t−1ut
�

∆yt−1ut
�

∆yt−2ut

· · ·
�

∆yt−put































(p+3)×1

. ⇒ D−1
T

�T
t=1Xtut =































1
T 2

�

y3t−1ut
1
T 3

�

y5t−1ut
1
T 4

�

y7t−1ut
1

T 1/2

�

∆yt−1ut
1

T 1/2

�

∆yt−2ut

· · ·
1

T 1/2

�

∆yt−put































.
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We have showed that the inner product
�T

t=1XtX
�
t of the regressor matrix including

the additional regressors is asymptotically block diagonal. Applying the proposition 1,

under the null hypothesis of a unit root, it follows that:

D−1
T

T
�

t=1

Xtut
d−→

























Ψ3σ4
� 1
0 W 3dW

Ψ5σ6
� 1
0 W 5dW

Ψ7σ8
� 1
0 W 7dW

N(0,σ2γ0)

. . .

N(0,σ2γ0)

























(p+3)×1

=

�

A3×1

Bp×1

�

, (B.17)

where A3×1 =









Ψ3σ4
� 1
0 W 3dW

Ψ5σ6
� 1
0 W 5dW

Ψ7σ8
� 1
0 W 7dW









and Bp×1 =









N(0,σ2γ0)

. . .

N(0,σ2γ0)









.

Using DT (β̂−β) = [D−1
T (
�T

t=1XtX
�
t)D

−1
T ]−1[D−1

T (
�T

t=1Xtut)] and from B.16 and B.17

we have :

DT (β̂ − β)
d−→
�

Q−1
3×3 0

0 V −1
p×p

��

A3×1

Bp×1

�

=

�

Q−1
3×3A3×1

V −1
p×pBp×1

�

(p+3)×1

.

⇒ RDT (β̂ − β)
d−→ (I3 03×p)

�

Q−1
3×3A3×1

V −1
p×pBp×1

�

(p+3)×1

.

⇒ RDT (β̂ − β)
d−→ Q−1

3×3A3×1. (B.18)

Using
�

R
�

D−1
T (
�T

t=1XtX
�
t)D

−1
T

�−1
R�
�−1 d−→ Q3×3 and B.18 we have:

F̃NL = [(RDT )(β̂ − β)]�
�

σ̂2
TR
�

D−1
T (

T
�

t=1

XtX
�
t)D

−1
T

�−1
R�
�−1

RDT (β̂ − β).

⇒ F̃NL
d−→ 1

σ2

�

(Q−1
3×3A3×1)

� ·Q3×3 ·Q
−1
3×3A3×1

�

.

⇒ F̃NL
d−→ 1

σ2

�

A3×1
�
Q−1

3×3 ·A3×1

�

(since Q3×3 is symmetric).

It follows that: F̃NL −→d v�Q−1v with,

v =









1
4W (1)4 − 3

2

� 1
0 W (r)2dr

1
6W (1)6 − 5

2

� 1
0 W (r)4dr

1
8W (1)8 − 7

2

� 1
0 W (r)6dr








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and

Q =









� 1
0 W (r)6dr

� 1
0 W (r)8dr

� 1
0 W (r)10dr

� 1
0 W (r)8dr

� 1
0 W (r)10dr

� 1
0 W (r)12dr

� 1
0 W (r)10dr

� 1
0 W (r)12dr

� 1
0 W (r)14dr









.

B.4 Proof of Corollary

Proof. We consider the asymptotic behavior of the least squares estimator β̂ = (δ̂21 , δ̂
4
1 , δ̂

6
1)

�

under the null ∆yt = ut and the OLS estimator β̂ can be written as:

β̂T =









�T
t=1 y

6
t−1

�T
t=1 y

8
t−1

�T
t=1 y

10
t−1

�T
t=1 y

8
t−1

�T
t=1 y

10
t−1

�T
t=1 y

12
t−1

�T
t=1 y

10
t−1

�T
t=1 y

12
t−1

�T
t=1 y

14
t−1









−1







�T
t=1 y

3
t−1ut

�T
t=1 y

5
t−1ut

�T
t=1 y

7
t−1ut









.

The following results are needed:

1

T 4

T
�

t=1

y6t−1 =
1

T

T
�

t=1

(
1√
T
yt−1)

6 =
1

T

T
�

t=1

� k
T

k−1
T

(
1√
T
YT (r)dr)

6 −→d σ6

� 1

0
W (r)6dr,

where k−1
T ≤ t < k

T , YT (r) =
Sk−1√

T
=

�k−1
t=1 ut√
T

,

similarly, we have:

1

T 5

T
�

t=1

y8t−1 −→d σ8

� 1

0
W (r)8dr,

1

T 6

T
�

t=1

y10t−1 −→d σ10

� 1

0
W (r)10dr,

1

T 7

T
�

t=1

y12t−1 −→d σ12

� 1

0
W (r)12dr,

1

T 8

T
�

t=1

y14t−1 −→d σ14

� 1

0
W (r)14dr.

Now by using the continuous mapping theorem, Itô’s formula, and the weak convergence

of stochastic integrals it is possible to obtain a general result for i ∈ N > 0

1

T
(i+1)

2

T
�

t=1

yit−1ut −→d

� 1

0
W i(r)dW (r) = σi+1

� 1

i+ 1

� 1

0
W (1)(i+1)− i

2

� 1

0
W (r)i−1dr

�

,
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and we obtain:

1

T 2

T
�

t=1

y3t−1ut −→d

� 1

0
W 3(r)dW (r) = σ4

�1

4

� 1

0
W (1)4 − 3

2

� 1

0
W (r)2dr

�

,

1

T 3

T
�

t=1

y5t−1ut −→d

� 1

0
W 5(r)dW (r) = σ6

�1

6

� 1

0
W (1)6 − 5

2

� 1

0
W (r)4dr

�

,

1

T 4

T
�

t=1

y7t−1ut −→d

� 1

0
W 7(r)dW (r) = σ8

�1

8

� 1

0
W (1)8 − 7

2

� 1

0
W (r)6dr

�

.

It is straightforward that the estimators have different convergence rates. Thus, the

least squares estimators need to be scaled using the following scaling matrix: DT =

diag(T 2, T 3, T 4). Denote β̂T = (δ̂21 , δ̂
4
1 , δ̂

6
1)

� and XT = (y3t−1, y
5
t−1, y

7
t−1)

�. Then, we have

that:

DT (β̂T − β) = [D−1
T (

T
�

t=1

XtX
�
t)D

−1
T ]−1[D−1

T (

T
�

t=1

Xtut)].

After some algebra one gets that

DT (β̂T − β) −→L
1

σ2
(ΓQΓ)−1(Γv),

where

v =









1
4W (1)4 − 3

2

� 1
0 W (r)2dr

1
6W (1)6 − 5

2

� 1
0 W (r)4dr

1
8W (1)8 − 7

2

� 1
0 W (r)6dr









and

Q =









� 1
0 W (r)6dr

� 1
0 W (r)8dr

� 1
0 W (r)10dr

� 1
0 W (r)8dr

� 1
0 W (r)10dr

� 1
0 W (r)12dr

� 1
0 W (r)10dr

� 1
0 W (r)12dr

� 1
0 W (r)14dr









and Γ = diag(1,σ2,σ4). Our test statistic has then the following representation:

F̃NL = (β̂T − β)�(RDT )
�[σ̂2

TDTR(
T
�

t=1

XtX
�
t)
−1DTR

�]−1RDT (β̂T − β),

with R = I3, and has the limiting distribution:

F̃NL −→L ((ΓQΓ)−1(Γv))�((ΓQΓ)−1)−1((ΓQΓ)−1(Γv)) = v�Q−1v.

By the law of large numbers it is easy to show that under the null as T → ∞

σ̂2
T =

1

T − 4

T
�

t=1

(∆yt − δ21y
3
t−1 − δ41y

5
t−1 − δ61y

7
t−1)

2 P−→ σ2
T .
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Under the alternative ∆yt and yit−1, ∀i ∈ N > 0 are I(0) and thus it is readily seen that

1

T

T
�

t=1

∆yt = OP (1),
1

T

T
�

t=1

yit−1 = OP (1),

are bounded in probability. Furthermore the innovation process (ut)t is by assumption

I(0) and thus

1

T

T
�

t=1

ut = OP (1)

as well. For the OLS estimate β̂ we have

(OP (T ))
−1OP (T

2) = (TOP (1))
−1T 2OP (1) =

1

T
T 2OP (1) = TOP (1) = OP (T ).

Hence, the F̃NL statistic diverges to infinity at the rate OP (DT ).
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Appendix for Chapter 6

C.1 Estimation Results

We provide below the estimation of parameters obtained via LSE algorithm in Section

6.4.1 on the first simulated process in Section 6.4.3. The regime time corresponds to the

number of temporal samples, where the multivariate process stayed in each regime.

Regime 1 Ri
1 := [−∞,−0.50)×[−∞, 0), Â

(1)
1 =

�

−0.0278 −0.0169

0.0027 0.2812

�

, Â
(1)
2 =

�

0.5275 0.0025

0.0013 0.3073

�

,

Â
(1)
3 =

�

0.0069 0.5419

−0.0005 0.3046

�

, â
(1)
0 =

�

0.7399

−0.2012

�

, (regime time: 10927).

Regime 2 Ri
2 := [−∞,−0.50)×[0,∞), Â

(2)
1 =

�

−0.0156 0.0009

0.0033 0.2935

�

, Â
(2)
2 =

�

0.5317 −0.0051

0.0043 0.3102

�

,

Â
(2)
3 =

�

−0.0012 0.5173

−0.0021 0.2904

�

, â
(2)
0 =

�

−0.7404

−0.1951

�

, (regime time: 8770).

Regime 3 Ri
3 := [−0.50, 0.50)×[−∞, 0), Â

(3)
1 =

�

−0.9417 −0.0008

0.0143 0.2859

�

, Â
(3)
2 =

�

0.8602 0.0040

0.0211 0.3003

�

,

Â
(3)
3 =

�

0.0067 0.8483

−0.0004 0.3014

�

, â
(3)
0 =

�

1.1337

−0.2408

�

, (regime time: 3932).

Regime 4 Ri
4 := [−0.50, 0.50) × (0.00,∞), Â

(4)
1 =

�

−0.9302 −0.0210

−0.0023 0.3142

�

, Â
(4)
2 =

�

0.8631 0.0033

−0.0135 0.3116

�

, Â
(4)
3 =

�

0.0066 0.8497

0.0079 0.2789

�

, â
(4)
0 =

�

0.7101

0.1960

�

, (regime time:

3235).
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Regime 5 Ri
5 := [0.50,∞)×[−∞, 0.00), Â

(5)
1 =

�

−1.1008 −0.0056

0.0032 0.2923

�

, Â
(5)
2 =

�

−0.2918 −0.0012

0.0019 0.3106

�

,

Â
(5)
3 =

�

0.0066 −0.2971

0.0029 0.2958

�

, â
(5)
0 =

�

−0.7595

0.1927

�

, (regime time: 9697).

Regime 6 Ri
6 := [0.50,∞)×[0.00,∞), Â

(6)
1 =

�

−1.0995 0.0087

0.0013 0.3147

�

, Â
(6)
2 =

�

0.3011 −0.0150

0.0029 0.2904

�

,

Â
(6)
3 =

�

−0.0004 0.3033

0.0026 0.2996

�

, â
(6)
0 =

�

1.1508

0.1942

�

, (regime time: 13433).



Bibliography

[1] Abuaf, N., and Jorion, P. Purchasing power parity in the long run. Journal

of Finance 45 (1990), 157–174.

[2] Addison, P. S. Wavelet transforms and ecg: a review. Physiological Measurement

26 (2005), 155–199.
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