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Abstract
Discovering and exploiting the task hierarchy to learn sequences of motor

policies for a strategic and interactive robot

Efforts have been made to enable robots to operate more and more in complex
unbounded ever-changing environments, alongside or even in cooperation with hu-
mans. Their tasks can be of various kinds, can be hierarchically organized, and can
also change dramatically or be created, after the robot deployment. Therefore, those
robots must be able to continuously learn new skills, in an unbounded, stochas-
tic and high-dimensional space. Such environment is impossible to be completely
explored during the robot’s lifetime, therefore it must be able to organize its explo-
ration and decide what is more important to learn and how to learn it. This becomes
an even bigger challenge, when the robot is faced with tasks of various complexities,
some requiring a simple action to be achieved, others needing a sequence of actions
to be performed. How to learn is the question of which learning strategy the robot
decides to use in order to learn a particular task. Those strategies can be of two dif-
ferent kinds: autonomous exploration of the environment, where the robot relies on
itself and its own database to try achieving a task at best, and interactive strategies,
where the robot relies on human experts to demonstrate how to achieve the task.
As some strategies perform differently depending on the task at hand, the choice of
both what task to learn and which data-collection strategy to use is connected, and a
method used to make this choice is called intrinsic motivation. The learner is guided
towards the interesting parts of the environment to learn the most interesting skills.
It is capable to assess the complexity of the action needed to achieve a task. When
faced with hierarchically organized tasks of different complexity which can be ful-
filled by combinations of simplier tasks, the robot finds a new way to get knowledge
by exploring the task hierarchy itself, combining skills in a goal-oriented way so as
to build new more complex ones.

Starting from the study of a socially guided intrinsically motivated learner learn-
ing simple tasks, actively deciding what task to learn and which strategy to use
between imitation of a human teacher and autonomous exploration, I extended this
algorithm to enable it to learn sequences of actions, discover and exploit the task
hierarchy. I ended up extending a more generic learning architecture, able to tackle
this problem, called Socially Guided Intrinsic Motivation (SGIM), adapting it to this
new challenge of learning complex hierarchical tasks using sequences of actions. I
call the extended architecture Socially Guided Intrinsic Motivation for Sequences
of Actions through Hierarchical Tasks (SGIM-SAHT).

This SGIM-SAHT learner is able to actively choose which kind of strategy to use
between autonomous exploration and interactive strategies and which task to focus
on. It can also discover the task hierarchy, and decide when it is most appropriate
to exploit this task hierarchy and combine previously learned skills together. It is
also capable to adapt the size of its action sequence to the task at hand. In this
manuscript, I will present different implementations of this architecture, which were
developed incrementally up to the complete generic architecture.

This architecture is able to learn skills by mapping a motion it has done, known
as an action or policy, to the consequence observed on the environment known as an
outcome. Developing this architecture enabled to make contributions in:
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• Learning sequences of motor actions: I propose a framework, called the proce-
dure framework, developed to enable a strategic learner to discover and exploit
the task hierarchy, by combining previously known actions in a task-oriented
manner. I also enable the learner to perform sequences of actions of any size,
which enables it to adapt their size to the task at hand;

• Interactive learning: I developed a new way for a human teacher to provide
demonstrations to a robot, which is by using the task hierarchy via our pro-
cedure framework. I compared which kind of demonstrations, procedures
or actions, is most appropriate for what kind of task, simple or complex and
highly-hierarchical;

• Active learning: I introduced the procedure space, which can be explored and
optimized by a strategic and intrinsically motivated learner. Now our learner
can decide in function of the task at hand and depending on its own maturity,
which space to use between procedure and actions;

• Strategic learning: using the same learning architecture, I tested its ability to
handle a high variety of strategies and outcome spaces. The architecture was
indeed able to organize its learning process despite such combined numbers
of strategies and outcome spaces.

This thesis is organized as follows. In Chapter 1, I define our computational
framework, taking the cognitive developmental perspective. This field allows the
elaboration of very effective learning architecture by implementing theories taken
from developmental psychology on a robotic platform, which also enables to test
those theories. In this context, I formalize our learning architecture in Chapter 2,
SGIM-SAHT, which extends the existing SGIM one to learning sequences of motor
primitives for hierarchical tasks. In the next chapters, I develop new implementa-
tions of this architecture, tackling increasingly more complex problems. In Chapter
3, I present a basic implementation of this architecture, called Socially Guided Intrin-
sic Motivation with Active Choice of Teacher and Strategy for Cumulative Learning
(SGIM-ACTSCL), and see how it can tackle the learning of multiple tasks hierar-
chically organized using simple actions only by testing it on the humanoid robot
Poppy. It can actively decide what task to learn and how to learn it, either build-
ing actions autonomously or requesting a teacher for demonstrations. In Chapter
4, I tackle the learning of sequences of actions to achieve multiple tasks of vari-
ous complexity, by discovering and exploiting this task hierarchy thanks to a new
framework I introduced: the procedure framework, which allow the combination of
previously known primitive motor sequences in a task-oriented way. This leads to
the development of two algorithms. The former, called Intrinsically Motivated Pro-
cedure Babbling (IM-PB), enables to test if this task hierarchy can be autonomously
explored alongside the autonomous exploration of actions. The latter, called So-
cially Guided Intrinsic Motivation with Procedure babbling (SGIM-PB), lets us test
if this autonomous exploration of the task hierarchy and the action space can be
bootstrapped by human teachers providing demonstrations. I test both implemen-
tations on a purely simulated environmental setup. Then in Chapter 5, I test the
SGIM-PB algorithm on a physical setup featuring the Yumi industrial robot learning
sequences of actions in a hierarchical environment. This test was first performed on
simulation, then confirmed on the actual physical robot. I also tried to determine
if the task hierarchy can be transferred between two different robots learning in the
same environment. Finally, Chapter 6 concludes the thesis, focusing on the achieve-
ments, the limitations and perspectives of this study.
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Résumé
Découverte et exploitation de la hiérarchie des tâches pour apprendre des

séquences de politiques motrices par un robot stratégique et interactif

Des efforts sont réalisés pour permettre à des robots d’opérer dans des environ-
nements complexes, non bornés, évoluant en permanence, au milieu ou même en
coopération avec des humains. Leurs tâches peuvent être de types variés, hiérar-
chiques, et peuvent subir des changements radicaux ou même être créées après le
déploiement du robot. Ainsi, ces robots doivent être capable d’apprendre en con-
tinu de nouvelles compétences, dans un espace non-borné, stochastique et à haute
dimensionnalité. Ce type d’environnement ne peut pas être explorer en totalité du-
rant la durée de fonctionnement du robot, il doit donc être capable d’organiser son
exploration et de décider ce qui est le plus important à apprendre ainsi que la méth-
ode d’apprentissage. Ceci devient encore plus difficile lorsque le robot est face à
des tâches avec des complexités variables, certaines demandant une action simple
pour être réalisée, d’autre demandant une séquence d’actions. Parler de méthode
d’apprentissage signifie que le robot doit choisir une stratégie d’apprentissage adap-
tée à la tâche en cours. Ces stratégies peuvent être de deux catégories: autonomes,
quand le robot se débrouille pour réaliser sa tâche au mieux en fonction de sa base
de données collectées durant son apprentissage ou interactives, quand le robot de-
mande des démonstrations. Comme certaines stratégies performent différemment
en fonction de la tâche à apprendre, le choix de quelle tâche apprendre et quelle
stratégie utiliser est fait de manière combinée. Une méthode permettant de guider ce
choix se nomme la motivation intrinsèque. Le robot est guidé vers les zones les plus
intéressantes de son environnement afin d’apprendre les compétences les plus in-
téressantes. Il est capable d’évaluer la complexité de l’action nécessaire pour réaliser
une tâche. Quand il fait face à des tâches hiéarchiques de différrentes complex-
ités, qui peuvent être réalisées par une combinaison de tâches plus simples, le robot
utilise une nouvelle manière d’acquérir des compétences en explorant la hiérarchie
des tâches elle-même, en combinant ses compétences via une combinaison de tâches
afin d’acquérir des nouvelles et plus complexes.

Je suis parti de l’étude d’un algorithme stratégique et interactif apprenant des ac-
tions simples, décidant activement sur quelle tâche se concentrer et quelle stratégie
utiliser entre imitation d’un expert humain et exploration autonome. Je l’ai étendu
afin de lui permettre d’apprendre des séquences d’actions, découvrant et exploitant
la hiérarchie des tâches. J’ai fini par étendre une architecture d’apprentissage plus
génerique dans ce but, appelée Socially Guided Intrinsic Motivation (SGIM), en
l’adaptant à ce nouveau problème d’apprentissage de tâches hiérarchiques par des
séquences d’actions. J’appelle cette architecture étendue, Socially Guided Intrinsic
Motivation for Sequences of Actions through Hierarchical Tasks (SGIM-SAHT).

Cette architecture SGIM-SAHT est capable de choisir activement quelle type de
stratégie utiliser entre exploration autonome et stratégies interactives, ainsi que sur
quelle tâche se concentrer. Elle peut également découvrir la hiérarchie des tâches,
et décider quand il est plus approprié de l’exploiter et combiner des compétences
précédemment acquises. L’architecture SGIM-SAHT est également capable d’adapter
la longueur de ses séquences d’actions à la tâche en cours. Dans ce manuscrit, je vais
présenter différentes implémentations de cette architecture complète et générique
développées de manière incrémentale.

Découverte et exploitation de la hiérarchie des tâches pour apprendre des séquences de politiques motrices par un robot stratégique et interactif Nicolas Duminy 2018



viii

Cette architecture est capable d’apprendre des compétences en reliant les mou-
vements réalisés, appelés actions ou politiques, aux conséquences observées sur son
environnement. En développant cette architecture, je réalise des contributions aux
domaines de :

• Apprentissage de séquences d’actions motrices : je propose une infrastructure
algorithmique appelée procédure, developpée pour permettre à un apprenant
stratégique et interactif de découvrir et exploiter la hiérarchie des tâches, en
combinant des actions connues en fonction des tâches. Je lui ai également per-
mis de construire des séquences d’actions de n’importe quelle taille, lui per-
mettant d’adapter cette taille à la tâche en cours d’étude;

• Apprentissage interactif : j’ai développé une nouvelle manière de fournir des
démonstrations à un robot pour un expert humain, en utilisant la hiérarchie
des tâches via les procédures. J’ai analysé quel type de démonstrations, procé-
dures ou actions, est plus adapté à quel type de tâche, simple ou complexe et
hiérarchique;

• Apprentissage actif : j’ai introduit l’espace procédural, qui peut être exploré
et optimisé par un apprenant stratégique et intrinséquement motivé. Cet ap-
prenant peut maintenant décider en fonction de la tâche travaillée et de la ma-
turité de son apprentissage, quel espace utiliser entre celui des procédures et
celui des actions;

• Apprentissage stratégique : en utilisant la même architecture d’apprentisage,
j’ai testé sa capacité à gérer une grande variété de stratégies et d’espaces de
conséquences. Cette architecture a en effet été capable d’organiser son ap-
prentissage malgré cette grande combinaison de stratégies et d’espaces de con-
séquences.

Cette thèse est organisée de la manière suivante. Dans le chapitre 1, je définis
mon infrastructure algorithmique, en prenant l’approche du développement cogni-
tif. Cette approche permet l’élaboration d’architectures d’apprentissage très efficaces
en appliquant les théories de la psychologie développementale sur une plateforme
robotique, ce qui permet dans le même temps de tester ces théories. Dans ce con-
texte, je formalise mon infrastructure algorithmique d’apprentissage dans le chapitre
2, SGIM-SAHT, étendant l’architecture SGIM à l’apprentissage de séquences d’actions
motrices pour des tâches hiérarchiques. Dans les chapitres suivants, je développe
des nouvelles implémentations de cette architecture attaquant des problèmes de
plus en plus complexes de manière incrémentale. Dans le chapitre 3, je présente une
implémentation basique de cette architecture, appelée Socially Guided Intrinsic Mo-
tivation with Active Choice of Teacher and Strategy for Cumulative Learning (SGIM-
ACTSCL), et vois comment elle peut apprendre plusieurs tâches hiérarchiques en
utilisant des actions simples en la testant sur le robot humanoïde Poppy. Il peut
décider activement quelle tâche apprendre et comment, soit en construisant des ac-
tions tout seul, soit en demandant des démonstrations à un expert humain. Dans le
chapitre 4, je m’intéresse à l’apprentissage de séquences d’actions pour réaliser de
multiples tâches de complexités différentes, en apprenant et exploitant la hiérarchie
des tâches grâce à la nouvelle infrastructure algorithmique que nous introduisons :
les procédures, qui permet la combinaison de séquences d’actions connues en fonc-
tion des effets de ces actions. Ceci mène au développement de deux algorithmes.
Le premier, appelé Intrinsically Motivated Procedure Babbling (IM-PB), permet de
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tester si cette hiérarchie des tâches peut être exploré de manière autonome en même
temps que l’espace des actions motrices. Le second, appelé Socially Guided Intrinsic
Motivation with Procedure babbling (SGIM-PB), me permet de voir si cette explo-
ration autonome de la hiérarchie des tâches et de l’espace des actions complexes
peut être accéléré par des experts humains fournissant des démonstrations. Je teste
les deux implémentations sur un environnement purement simulé. Puis dans le
chapitre 5, je teste l’algorithme SGIM-PB sur le robot industriel Yumi apprenant des
tâches hiérarchiques avec des séquences d’actions motrices dans un environnement
physique. Ce test fut d’abord réalisé en simulation, puis confirmé sur le robot réel.
J’ai également essayé de déterminer si la hiérarchie des tâches peut être transféré
entre deux robots apprenant dans un même environnement. Finalement, le chapitre
6 conclut cette thèse, en se concentrant sur ses contributions, ses limitations et ses
perspectives.
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Chapter 1

Life-long learning of hierarchical
tasks using sequences of motor
primitives

Nowadays, robots are expected to be able to perform more and more daily tasks such
as manipulating objects, possibly in cooperation with humans in an ever changing
environment. The expectations of the robot tasks and skills are also to vary. In such
a context, the robots can not possibly possess all the useful information prior to its
deployment. To compensate for this prior lack of knowledge, robots should be able
to continuously learn how to interact with their environment. One way to achieve
this is to inspire from the way humans learn. The robot would learn to perform more
and more complicated tasks, some of them being combinations of tasks themselves,
or related to each other according to a hierarchy which is a representation of the de-
pendency between the tasks (i.e. complex tasks can be described as combinations
between simplier tasks). An example of such a hierarchy is shown on Fig.1.1 , it
shows a task hierarchy from the experimental setup described in Section 4.1. Dis-
covering and exploiting this hierarchy can help a learner combine previous skills
in a task-oriented way to build new more complex skills. In order to learn how to
achieve those tasks, a robot would need to explore its environment, to observe the
effects of its actions and the relationships between them. It would then have differ-
ent methods at its disposal: it can either count on itself and explore its environment
autonomously, or count on human experts to help it explore by providing advice or
guidance. I believe that the combinations of these abilities to autonomously explore
such an environment, getting advice from human experts, along with the discovery
and exploitation of the task hierarchy simplifies the adaptation of the robot to this
complex ever changing environment. Indeed, the ability to self-explore enables the
robot to adapt its knowledge base directly in its deployed working area, without
requiring an engineer to hand-craft the modifications. Getting advice from human
experts which are experts on the tasks the robot has to learn but not necessarily
robotic experts, can bootstrap the learning process by focusing the robot on interest-
ing motions and tasks quicker. Also, in a complex tasks environment, where tasks
could be interrelated, meaning they have potential dependencies between them, dis-
covering and exploiting the task hierarchy can enable the reuse of the skills learned
for the simplest tasks in order to learn the more complex ones, without restarting
from scratch.
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FIGURE 1.1: Illustration of a task hierarchy. To make a drawing be-
tween points (xa, ya) and (xb, yb), a robot can recruit subtasks con-
sisting in (ωi) moving the pen to (xa, ya), then (ωj) moving the pen
to (xb, yb). These subtasks will be completed respectively with ac-
tions πi and πj. Therefore to complete the complete this drawing, the

learning agent can use the sequence of actions (πi, πj)

1.1 Life-long learning problem

Introducing robots into human environments to fulfil daily tasks makes their adap-
tivity necessary. As opposed to robots only environment, such as factories, human
environments generally evolve and change all the time. So robots’ actions can no
longer be only programmed in advance prior to deployment. Also the prospect
of increasingly deploying them among human users who are non-robotic experts,
makes frequent engineer interventions to adapt the robots impractical. Thus, robots
need to continuously adapt to their changing and potentially open-ended environ-
ment, and also to the humans’ ever changing needs, for its whole lifetime. This
corresponds to the definition of continual life-long learning (Thrun, 2012): a learning
agent needs to continuously learn new skills, in an environment in potential differ-
ent states, without reprogramming its behaviour by hand. Such an environment in-
volves the learning of multiple tasks, which are impossible to test in totality because
of the curse of dimensionality. This emphasizes the need to organize the learning pro-
cess (i.e. actively decide which task to learn and how to learn it) in order to enable
the robot to explore the tasks and learn as much of them as quickly as possible.

There are multiple challenges facing a robot tackling such a life-long learning
problem:

• Stochasticity: when the robot performs an action on its environment, it isn’t
sure whether the same action repeated later will have the same consequences
or outcomes. This is due to imprecisions in the robot’s actuators or sensors, or
even to changes occuring in the environment of the learner. As a consequence,
the mapping between the actions and the outcomes produced can generally
not be described by a simple function, but by a probability density.

• High-dimensionality: the sensorimotor space of those robots can contain a lot
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of information, which overwhelms them at all time. The actions they can per-
form can be of potentially infinite dimensionality and the consequences ob-
served can be of various types and dimensionality. The volume of those spaces
grows exponentially as their dimensionality does. This problem is known as
the curse of dimensionality as mentioned in (Baranes and Oudeyer, 2013).

• Unlearnability: there can be various regions in the sensorimotor space of the
robot in which a predictive control model can not be learned by the robot, be-
cause of the environment and the robot’s geometry. Those unlearnable regions
are not known in advance and must be discovered by the learner.

• Unboundedness: the robot is in a situation, in which the number of associa-
tions between the possible outcomes and actions is infinite. As such, even dur-
ing its whole lifetime, it would not have time to test any possible associations
or even discover which associations are possible. This renders the existence of
a mechanism to prioritize certain spaces instead of others necessary, as well as
that of a metric to do this prioritization.

Life-long learning is also a problem that humans face, and particularly infants.
Indeed, although humans possess certain skills at birth, they are nowhere near to
what they will be able to perform in the later stages of their development. So human
infants are faced with the same problems as a life-long learning robot. As such,
taking inspiration from the way human infants tackle their environment leads to
the birth of cognitive developmental robotics. This approach uses the principles of
developmental learning described in (Lungarella et al., 2003), the action-perception loop
inferred in (Hari, 2006), enactivism as stated in (Varela, Thompson, and Rosch, 1991),
and trial and error as observed in (Thorndike, 1898).

More precisely, I embrace the idea of a developmental approach, as described in
(Asada et al., 2009) (Lungarella et al., 2003), indicating the learning process is pro-
gressive and incremental. As it is impossible to pre-program all the skills needed
by a robot in a changeable environment, adaptation mechanisms are needed to con-
tinuously learn new skills. This approach is derived from observations on human
infants in their early developmental stage in (Piaget, 1952). Indeed, newborn infants
don’t have the same level of abilities than adults, and only get those through a long
and progressive period of maturation. Adults themselves are also able to adapt to
changes in their environment or bodies, showing this developmental process is still
ongoing.

I also consider the action-perception loop principle, that actions and perception
are inter-related. The robot motions need to be guided by the robot perception. Also,
the robot needs to move in order to perceive new situations. In my context, I con-
sider an action-perception loop in which self-produced movements use perception
information as a feedback to improve the learner knowledge. This principle is de-
rived from studies on living beings, as (Held and Hein, 1963) showed on a cat that
feeding it passive observation deprive it of its walking ability. (Hari, 2006) observed
it by looking into human brain and concluded that we, humans, " shape our envi-
ronment by our own actions and our environment shapes and stimulates us".

Moreover, I take the enactivist approach, introduced in (Varela, Thompson, and
Rosch, 1991) which considers that cognition is based on situated and embodied
agents. As such, its knowledge is gained and organized by interacting with its en-
vironment, and are thus dependent of the robot’s body. Therefore, enactivism is
based on the notion of embodiment Brooks (1991). In this approach, the robot must
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perform actions with its own body in order to learn as its cognition is grounded on
self-experience.

In this concept, I also take the trial-and-error approach, which states that the
robot learns through repeated attempts of actions on its environment, until success
or quitting. Both failures and successes help the robot improving its behaviour using
its gained personal experience. This principle is directly derived from observations
on animal behaviors, such as those performed on cats in (Thorndike, 1898), which
when placed in a maze get better with experience for finding a way out.

Also, I aimed at a robot capable to perform various ranges of tasks of different
complexities. This means that actions of various length or duration are needed to
achieve those tasks. Therefore, I considered the definition of primitive motor actions,
as the smallest quantity of motion doable by the robot. When combining multiple
primitive actions together, the robot can perform a complex motor action, which is
defined as a succession of primitive actions. Therefore, concerning the tasks, I con-
sider complexity as the underlying complexity of the motor actions able to achieve
them. Enabling the learner to build actions of various complexities emphasizes the
problem of unlearnability, unboundedness and the curse of dimensionality. Indeed
I would like the robot to be able to associate with a task a sequence of action of
unbounded size. This means that I consider that the action space is of infinite di-
mensionality, rendering the number of possible actions also infinite. However, this
approach enables the learner to adapt the complexity of its actions to the task at
hand, which in a real world environment leads to a robot learning to be efficient in
its actions. This also leads to a learning process, prioritizing the easiest and simplest
tasks at first, before exploiting the task hierarchy and combine them to learn new
ones.

Grounding my work on these principles and in order to tackle those challenges of
stochasticity, high-dimensionality, unboundedness and unlearnability, I take inspi-
ration from the approaches to the problem of learning sequences of motor actions,
multi-task learning by a hierarchical representation, active motor skill learning in
high-dimensional spaces. For this latter, I focus on the concepts of intrinsic mo-
tivation, social guidance and strategic learning. In the next section, I discuss such
methods.

1.2 Learning methods

In this section, I discuss different methods which I got my inspiration from for tack-
ling the life-long learning of complex motor actions problem. I also need to first for-
malize my view of the sensorimotor space, for this thesis. This view, is goal-oriented
and derived from the action-perception loop principle. It differs from the state-
action view traditionally used in reinforcement learning Sutton and Barto (1998),
and is described in (Nguyen and Oudeyer, 2012).

The robot is faced with 3 different spaces, describing parts of the whole sensori-
motor space:

• the context space describes all the possible states of the environment, prior to an
action execution by the robot.

• the action space contains all actions the robot can attempt. Those actions are a
parametrized encoding of the robot movement.
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• the outcome space contains all effects on the environment observable by the
robot. An outcome describes the change of state of the environment after a
robot motion.

As I am tackling the learning of sequences of motor actions instead of only single
primitives, I am increasing the exploration range of the learner. In this case, the con-
text would need to be defined as the initial state of the environment prior to a primi-
tive action execution. This introduces the idea of intermediate contexts which can be
encountered during a motor sequence execution. However, as I already increase the
dimensions to explore through enabling action sequences, and even combinations of
tasks with the procedure framework described in section 4.2, I decided to simplify
my learning problem by ignoring the context.

1.2.1 Learning motor action sequences

In this thesis, I tackle the learning of complex actions to complete high-level tasks.
More concretely, in this study, I define the actions as a sequence of primitive actions.
As I wish to get rid of any a priori on the maximum complexity of the action needed
to complete any task, the sequence of primitive actions can be unbounded. The
learning agent thus learns to associate to any outcome or effect on the world, an a
priori unbounded sequence of primitive actions. I review in this paragraph works
in compositionally of primitives from the robot learning perspective. The principle
that motions are divided in motor primitives, that can be composed together after
a maturation phase is derived from such observations in many species including
primates and human beings (Giszter, 2015), showing evidences for the existence of
motor primitives in skilled behaviours of childs and their re-use throughout adult-
hood.

A first approach to learning motor actions is to use via-points such as in (Stulp
and Schaal, 2011; Reinhart, 2017) or parametrised skills such as in Silva, Konidaris,
and Barto, 2012. The number of via-points or parameters is a way to define the level
of complexity of the actions, but these works use a fixed and finite number of via-
points. A small number of via-points can limit the complexity of the actions available
to the learning agent, while a high number can increase the number of parameters to
be learned. Another approach is to chain primitive actions into sequences of actions.
However, this would increase the difficulty for the learner to tackle simpler tasks
which would be reachable using less complex actions. Enabling the learner to decide
autonomously the complexity of the action necessary to solve a task would allow the
approach to be adaptive, and suitable to a greater number of problems.

Options (Sutton, Precup, and Singh, 1999; Machado, Bellemare, and Bowling,
2017) introduced in the reinforcement learning framework Sutton and Barto, 1998
offer temporally abstract actions to the learner. These options represent a temporal
abstraction of actions as explained in Sutton, 2006. Chains of options have been
proposed as extensions in order to reach a given target event. Learning simple skills
and planning sequences of actions instead of learning a sequence directly has been
shown to simplify the learning problem in Konidaris and Barto, 2009. They are a
way to represent action probability density in a goal-oriented way. However, each
option is built to reach one particular task and they have only been tested for discrete
tasks and actions, in which a bounded number of options were used. I would like to
reuse this idea of temporal abstraction and goal-oriented representation to create
unbounded action sequences.
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1.2.2 Multi-task learning by a hierarchical representation

Indeed, an essential component of autonomous, flexible and adaptive robots will be
to exploit temporal abstractions, i.e. to treat complex tasks of extended duration,
that is to treat complex tasks of extended duration (e.g. making a drawing) not as
a single skill, but rather as a sequential combination of skills (e.g. grasping the pen,
moving the pen to the initial position of the drawing, etc.) Such task decompositions
drastically reduce the search space for planning and control, and are fundamental
to making complex tasks amenable to learning. This idea can be traced back to the
hypothesis posed in Elman, 1993 that the learning needs to be progressive and de-
velop, starting small. It has been reintroduced as curriculum learning in Bengio et
al., 2009, as formalised in terms of the order of the training dataset: the examples
should not be randomly presented but organized in a meaningful order which illus-
trates gradually more concepts, and gradually more complex ones. For multi-task
learning in the reinforcement learning framework, it has been studied as hierarchical
reinforcement learning as introduced in Barto and Mahadevan, 2003, relying on task
decomposition or task hierarchy.

Indeed, the relationships between tasks in task hierarchy Forestier and Oudeyer
(2016) and Reinhart (2017) have been successfully exploited for learning tool use or
learning inverse models for parameterized motion primitives, allowing the robot to
reuse previously learned tasks to build more complex ones. As opposed to clas-
sical methods enabling robots to learn tool-use, as (Brown and Sammut, 2012) or
(Schillaci, Hafner, and Lara, 2012), which consider tools as objects with affordances
to learn using a symbolic representation, (Forestier and Oudeyer, 2016) does not ne-
cessitate this formalism and learns tool-use using simply parametrized skills, lever-
aging on a pre-defined task hierarchy. Barto, Konidaris, and Vigorito (2013) showed
that building complex actions made of lower-level actions according to the task hi-
erarchy can bootstrap exploration by reaching interesting outcomes more rapidly.
Temporal abstraction has also proven to enhance the learning efficiency of a deep
reinforcement learner in Kulkarni et al. (2016).

On a different approach (Arie et al., 2012) also showed composing primitive ac-
tions through observation of a human teacher enables a robot to build sequences of
actions in order to perform object manipulation tasks. This approach relies on neuro-
science modelling of mirror neuron systems. From the computational neuroscience
point of view for sequence-learning task with trial-and- error, Hikosaka et al. (1999)
suggested that procedural learning proceeds as a gradual transition from a spatial
sequence to a motor, based on observations that the brain uses two parallel learn-
ing processes to learn action sequences: spatial sequence (goal-oriented, task space)
mechanism and motor sequence (action space) mechanism. Each of the acquired
motor sequences can also be used as an element of a more complex sequence.

I would like to extend these ideas of representations of tasks as temporal abstrac-
tion and as hierarchies, and to exploit the dual representation of tasks and actions
sequences in this thesis. Instead of a pre-defined task hierarchy given by the pro-
grammer, my robot learner should be able to learn hierarchical representations of
its task space to more easily use acquired skills for higher-level tasks.

1.2.3 Active motor learning in high-dimensional spaces

In order to learn sequences of primitive actions for multi-task learning, beyond the
specific methods for learning sequences of actions and multi-task learning, I would
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like to review the methods for learning high-dimensional mappings. More specifi-
cally, while the cited works above have outlined the importance of the organisation
and order of the training data, I would like to examine how this organisation can be
decided online by the robot learner during its learning process, instead of being left
to the designer or programmer.

To address the challenge of multi-task motor learning, I will take the point of
view of continual learning, also named life-long or curriculum Bengio et al., 2009
learning, that constructs a sophisticated understanding of the world from its own
experience to apply previously learned knowledge and skills to new situation with
more complex skills and knowledge. Humans and other biological species have
this ability to learn continuously from experience and use these as the foundation
for later learning. Reinforcement learning, as described in Sutton and Barto, 1998,
has introduced in a framework for learning motor actions from experience by au-
tonomous data sampling through exploration. However, classical techniques based
on reinforcement learning such as Peters and Schaal, 2008; Stulp and Schaal, 2011
still need an engineer to manually design a reward function for each particular task,
limiting their capability for multi-task learning.

Intrinsic motivation

More recent algorithms have tried to replace this manually defined reward func-
tion, and have proposed algorithms using intrinsic reward, using inspiration from
intrinsic motivation, which is first described in developmental psychology as trigger-
ing curiosity in human beings Deci and Ryan, 1985 and has more recently been de-
scribed in terms of neural mechanisms for information-seeking behaviours Gottlieb
et al., 2013. This theory tries to explain our ability to learn continuously, although
I do not have a clear tangible goal other than survival and reproduction, intrinsi-
cally motivated agents are still able to learn a wide variety of tasks and specialise in
some tasks influenced by their environment and development, even in some tasks
that are not directly useful for survival and reproduction. Psychological theories
such as intrinsic motivation have tried to explain these apparently non-rewarding
behaviours and have successfully inspired learning algorithms Oudeyer, Kaplan,
and Hafner, 2007; Schmidhuber, 2010. More recently, these algorithms have been
applied for multi-task learning and have successfully driven the learner’s explo-
ration through goal-oriented exploration as illustrated in Baranes and Oudeyer,
2010; Rolf, Steil, and Gienger, 2010. Santucci, Baldassarre, and Mirolli (2016) has also
proposed a goal-discovering robotic architecture for intrisically-motivated learning
to discover goals and learn corresponding actions, providing the number of goals is
preset. Intrinsic motivation has also been coupled with deep reinforcement learning
in (Colas, Sigaud, and Oudeyer, 2018) to solve sparse or deceptive reward problems
to reach a single goal.

However for multi-task learning, especially when the dimension of the outcome
space increases, these methods become less efficient (Baranes and Oudeyer, 2013)
due to the curse of dimensionality, or when the reachable space of the robot is small
compared to its environment. To enable robots to learn a wide range of tasks, and
even an infinite number of tasks defined in a continuous space, heuristics such as
social guidance can help by driving its exploration towards interesting and reach-
able space fast. Also, another approach combining introspection with intrinsic mo-
tivation described in (Merrick, 2012) enables a Reinforcement Learner to learn more
complex goals by altering its strategy during its learning process.
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Social guidance

Indeed, imitation learning Argall et al. (2009), Billard et al. (2007), and Schaal, Ijspeert,
and Billard (2003) has proven very efficient for learning in high-dimensional space as
demonstration can orient the learner towards efficient subspaces. Information could
be provided to the robot using external reinforcement signals (Thomaz and Breazeal,
2008), actions (Grollman and Jenkins, 2010), advice operators (Argall, Browning, and
Veloso, 2008), or disambiguation among actions (Chernova and Veloso, 2009). Fur-
thermore, tutors’ demonstrations can be combined with autonomous robot learn-
ing for more efficient exploration in the sensori-motor space. Initial human demon-
strations have successfully initiated reinforcement learning in Muelling, Kober, and
Peters, 2010; Reinhart, 2017. Nguyen, Baranes, and Oudeyer (2011) has combined
demonstrations with intrinsic motivation throughout the learning process and shown
that autonomous exploration is bootstrapped by demonstrations, enabling an agent
to learn mappings in higher-dimensional spaces. Another advantage of introducing
imitation learning techniques is to include non-robotic experts in the learning pro-
cess (Chernova and Veloso, 2009).

Furthermore, tutor’s guidance has been shown to be more efficient if the learner
can actively request a human for help when needed instead of being passive, both
from the learner or the teacher perspective (Cakmak, Chao, and Thomaz, 2010).
(Melo, Guerra, and Lopes, 2018) showed that having a human teacher adapt to its
student instead of imposing its demonstrations increases the teaching benefit for the
learner. This approach is called interactive learning and it enables a learner to ben-
efit from both local exploration and learning from demonstration. One of the key
elements of these hybrid approaches is to choose when to request human informa-
tion or learn in autonomy so as to diminish the teacher’s attendance. The need for
reducing the learner’s calls of the teachers was identified in (Billard et al., 2007).

Strategic learning

This principle of a learner deciding on its learning process is generalised as strate-
gic learning, as formalised in Lopes and Oudeyer (2012). Simple versions have en-
abled the learner to choose which task space to focus on (Baranes and Oudeyer,
2010), or change its strategy online (Baram, El-Yaniv, and Luz, 2004). In (Nguyen
and Oudeyer, 2012), the algorithm SGIM-ACTS enabled the robot learner to both
choose its strategy and target outcome. Owing to its ability to organize its learn-
ing process, by choosing actively both which strategy to use and which outcome to
focus on. They have introduced the notion of strategy as a method of generating ac-
tions and outcome samples. This study considered 2 kinds of strategy: autonomous
exploration driven by intrinsic motivation and imitation of one of the available hu-
man teachers. The SGIM-ACTS algorithm relies on the empirical evaluation of its
learning progress. It showed its potential to learn on a real high dimensional robot
a set of hierarchically organized tasks in (Duminy, Nguyen, and Duhaut, 2016). This
is why I consider to extend SGIM-ACTS to learn to associate a large number of tasks
to motor action sequences.

However, these works have considered an action space at fixed dimensionality,
thus actions of bounded complexity. I would like to extend these methods for un-
bounded sequences of motor primitives and for larger outcome spaces.

Thus, in the following of this thesis, I propose a learning architecture to tackle the
learning of multiple hierarchically organized continuous tasks in a real-life stochas-
tic world, using motor primitive sequences of unconstrained size. Such approach
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clearly needs to overcome the challenges of stochasticity, unlearnability and un-
boundedness of the robot environment. The ability to combine without limitations
motor actions together will increase the challenge of high-dimensionality facing the
robot. I ground my work on the field of cognitive developmental robotics and con-
sider its principles when designing my learning architecture. I take a developmental
approach, I consider actions and perceptions as linked, I take the enactivist approach
and develop a learning agent increasing its knowledge through trial-and-error. More
precisely, I combine multiple learning methods in my approach. I reuse the idea of
temporal abstraction, and consider a learner able to form unbounded sequences of
motor primitives. I implement a framework, called the procedures and described in
Chapter 4, which represent the task hierarchy of the environment through sequences
of tasks, leading to a combination of reused motor actions in a task-oriented way. I
am using intrinsic motivation as a mean to guide the learning process of a strate-
gic architecture, combining socially guided interactive strategies with autonomous
ones, to tackle the learning of a set of multiple hierarchically organized tasks of var-
ious complexities. The teacher attendance is taken into account as my learning ar-
chitecture can request help from human experts but is encouraged to rely on itself as
much as possible.

In the Chapter 2, I formalize the learning problem and describe the Socially
Guided Intrinsic Motivation for Sequence of Actions through Hierarchical Tasks
(SGIM-SAHT) learning architecture, which I propose for solving it. In the next
chapters, I describe various experiments in which I implemented different versions
of this architecture. I start in Chapter 3 by testing the SGIM-SAHT architecture on
an experiment with only simple motor actions but with a set of hierarchical tasks,
designed to put my architecture to the test, before considering the learning of se-
quences of motor actions. In Chapter 4, I designed an experiment with a set of
hierarchical tasks achieved using sequences of motor actions on which I test an au-
tonomous learner which also implements the SGIM-SAHT architecture, and a more
complete version adding social guidance. In Chapter 5, I designed another complex
environmental setup using a physical real industrial robot. The SGIM-SAHT archi-
tecture is tested on a simulated version of the environment, and then on a physical
real version of this environment. At the end of the chapter, I tested if procedures
can be transferred to bootstrap the learning of another learning agent on the same
environmental setup. Finally, I conclude this manuscript in Chapter 6.
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Chapter 2

A strategic intrinsically motivated
architecture for life-long learning

In this chapter, I formalize the learning problem within the developmental robotics
scope and I describe my learning architecture, called the SGIM-SAHT architecture.
This architecture is proposed for learning sequences of motor actions instead of sin-
gle primitive actions. This architecture self-organizes its learning process using in-
trinsic motivation to decide at any time which outcome to focus on and which data-
collection strategy to use. Those data-collection strategies include specific strategies
classified as either social guidance or autonomous exploration and described in de-
tail in the following chapters. However, this architecture does not in any way limit
the field of available strategies to those two domains. It is to tackle the learning
of a field of hierarchically organized tasks using unbounded sequences of motor
primitives in a continuous environment by discovering and exploiting the task
hierarchy.

2.1 Formalization of the problem

In my thesis, I am tackling the problem of enabling a robot to actively learn how
to interact with its environment. Those interactions are made through the robot’s
sequences of actions and can have various observable consequences. The robot is
to learn actively how to generate an ensemble of consequences as broad as possible,
as fast as possible. It has access to sensory information, and know which features
to attend to, corresponding to the possible outcomes it can observe. It initially only
knows the dimensionalities and extended boundaries of the spaces of parametrized
actions it can execute, and those of the multiple types of consequences it can ob-
serve. It knows neither its own geometry, nor any a-priori relationship between
those spaces, nor the degree of difficulty of learning in each space.

So, in my approach, I consider that the learning agent is a robot, able to perform
motions through the use of primitive actions πθ ∈ Π. We suppose that the primitive
actions are parametrised functions with parameters of dimension n : we note the
parameters θ ∈ Rn. Those primitive actions therefore correspond to the smallest
unit of motion available to the learner. The robot is also able to perform sequences of
primitive actions of any size i ∈ N, by chaining multiple primitive actions together.
Let us note the action π. Therefore, the complete space of actions available to the
learner, is the ensemble of all sequence of action of any size. The space of complex
action is thus ΠN.

When the robot performs motions, the environment can change as a consequence
of those motions. Let us call outcomes ω ∈ Ω the consequences that are perceived by
the robot. Those outcomes can be of various types and dimensionalities, and are
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FIGURE 2.1: Representation of the learning problem: spaces are
shown as well as example points and mappings

therefore split in outcome subspaces Ωi ⊂ Ω. Those outcomes can also be of differ-
ent complexities, meaning that the actions generating these outcomes may require
different numbers of primitive actions to chain. The robot aims at knowing how to
generate a range of outcomes as broad as possible, as fast as possible. It learns the
mapping between the actions π ∈ ΠN it can perform and their outcomes ω ∈ Ω.
This is known as the forward model L. More importantly, it learns which action to
perform depending on the outcomes to generate. This is known as the inverse model
L−1.
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FIGURE 2.2: Rotating robotic arm drawing: simple typical simu-
lated experimental setup tackable by a SGIM-SAHT learner: a pla-
nar robotic arm able to move its tip, grab and move a pen, and make

drawings with this pen

2.2 Example of experimental setup: rotating robotic arm draw-
ing

To illustrate the type of problems I have formalised, I describe in this section a the-
oretical setup featuring a multiple DOF robot learning multiple complex tasks hier-
archically organized using sequences of motor actions.

Let us consider a planar robotic arm, consisting of 3 joints able to rotate without
physical constraints. The robot controls its motions using sequences of motion prim-
itives of any size. Around the robot lays a pen that can be grabbed by hovering the
tip of the robotic arm close to it. After grabbing the pen by hovering close to it, the
robot is able to draw on the 2D-surface. The drawing corresponds to the trajectory
of the grabbed pen on the surface. The previous drawing is deleted when starting a
new motion primitive. A representation of the complete setup is shown on Fig. 2.2.

Let us define actions as the trajectories of the robot’s joint angles for a dura-
tion of 3s: α0, α1 and α2 which are the respective angles of each joints, ordered
from base to tip. Then, I define a primitive action as πθ parametrized by θ =
(α0

t=1s, α1
t=1s, α2

t=1s, α0
t=2s, α1

t=2s, α2
t=2s, α0

t=3s, α1
t=3s, α2

t=3s) ∈ R9. Those actions are exe-
cuted by interpolating the trajectories of each angle αi linearly, from the pose at the
beginning of the action to the each of the given poses. The robot is free to chain as
many primitive actions as it wants. This beginning pose (α0

t=0s, α1
t=0s, α2

t=0s) is reset
to the initial position of the robot after each action sequence tried, along with the
whole environment (pen repositioned to initial position and drawing cleared). For
the purpose of my thesis, this initial pose can be fixed to any position depending
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on the experiment (not to any position resulting to the pen starting already in the
robot’s grasp though).

There are various observables available to the learner. First, the learner can de-
tect the position of its arm’s tip (x0, y0). When grabbed, the robot also detects the
pen’s position (x1, y1). In addition, the drawing is sensed by the robot through the
following features: the first (xa, ya) and last (xb, yb) points of the drawing. There
are 3 outcome subspaces in this setup: Ω0 = {(x0, y0)}, Ω1 = {(x1, y1)} and Ω2 =
{(xa, ya, xb, yb)}. The outcome space to tackle is therefore Ω = Ω0 ∪ Ω1 ∪ Ω2.

The outcome subspaces are set this way as to be increasingly more difficult to
learn and complex. They are also hierarchical, as moving the pen (Ω1) means being
able to move the arm’s tip (Ω0) from the pen initial pose to its desired end position,
while making drawings (Ω2) means moving the pen (Ω1) to the first point of the
desired drawing and moving the arm’s tip (Ω0) to the last point.

In this setup, the robot only knows the dimensionalities and boundaries of each
outcome space alongside with that of the primitive action space. The robot is then to
learn how to reach a range of outcomes as broad as possible, as quickly as possible,
by building and testing sequences of actions.

In the next section, I describe the approach I followed to tackle such example of
a learning problem. The architecture I developed, enables a robot to self-organize
its learning process through the selection of the most adapted learning strategy for
each task in a developmental manner. This architecture enables a learner to discover
and exploit the hierarchical relationships between the tasks by combining skills in
order to achieve more complex tasks.

2.3 Strategic Intrinsically Motivated learner

To tackle this problem of learning to reach fields of outcomes using sequences of
motor actions, I consider the family of strategic learning algorithm. These strategic
learners propose active learning architecture able to decide when, what and how to
learn at any given time. When to learn refers to the time at which the agent will
learn, what to learn refers to the outcomes to focus on, and how to learn refers to
the method used to learn reaching that outcome called strategy. More particularly, I
focused on the branch of intrinsically motivated algorithms that started by the Self-
Adaptive Goal Generation - Robust Intelligent Adaptive Curiosity (SAGG-RIAC)
algorithm.

2.3.1 SAGG-RIAC

This algorithm presented in Baranes and Oudeyer, 2010 focuses on the problem to
help a learning agent to decide what outcome to focus on at any given time. It learns
by episodes, where a goal outcome is generated based on the competence improve-
ment recorded during the learning process. This goal outcome tends to be generated
in areas where this competence improvement or progress is maximal. Then the al-
gorithm performs the autonomous exploration of the action space which generates
an action to reach that goal, based on its inverse model.

This algorithm was successfully used on high-dimensional robots that learned
reaching whole outcome spaces, using primitive actions. It was also extended by
the Socially Guided Intrinsic Motivation architecture (SGIM), to add new imitation
strategies that the robot can use to bootstrap its learning process thanks to demon-
strations provided by human teachers.
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2.3.2 SGIM-ACTS

There are different variants of this SGIM architecture that have been tested, giving
more and more control to the learning agent of its own learning process. Socially-
Guided Intrinsic Motivation with Active Choice of Teacher and Strategies (SGIM-
ACTS), developed in (Nguyen and Oudeyer, 2012), is the most advanced of them,
in which the learning agent is able to actively choose both what goal outcome to
learn and what strategy to use for that, between the autonomous exploration strat-
egy developed by SAGG-RIAC to the strategies of imitating a specific teacher. This
choice of both strategy and goal outcome is done at the same time depending on
a measurement derived from the competence progress used by SAGG-RIAC called
the interest metric. This metric introduces strategy costs so to encourage the learner
to rely on autonomous exploration as much as possible.

This algorithm proved to be able to learn reaching whole outcome spaces, us-
ing primitive actions, more quickly and broadly than the SAGG-RIAC algorithm.
It showed imitation strategies bootstrapped the early learning process of a robotic
agent. Also, this agent was proved able to be able to organize its learning process,
focusing on the easiest outcomes first, and identifying quickly the teachers’ area of
expertise. This is why I decided to extend this architecture to the problem of learning
complex tasks hierarchically organized with sequences of actions.

2.3.3 Extension to complex tasks

As I tackle the learning of multiple tasks, of potential various types and complexity,
I consider the use of sequences of motor actions and procedures, so as to profit from
the underlying task hierarchy of the environment. This task hierarchy is unknown
from the learner at the beginning and will be discovered during learning.

The actions and outcomes are grouped in a common ensemble called features
F = Π ∪ Ω. I call feature sequences l f action sequences if l f ∈ ΠN, and procedures
if l f ∈ ΩN. Action sequences correspond to a succession of primitive actions that
are chained together and executed, one after the other. Procedures are successions
of outcomes, which represent how the learner exploits the task hierarchy to combine
known skills. This idea of procedures, and how a specific SGIM-SAHT implemen-
tation uses them, is explained in section 4.2. Let us note that while procedures or
other sequences combining outcomes can be used as internal representations by the
learning agent, only action sequences can be executed on the environment.

Confined in those principles, I developed a generic learning architecture, using
strategic multi-task learning, guided by intrinsic motivation, to learn sequences of
motor actions by potentially exploiting the task hierarchy as I show in section 4.2.
This architecture is called Socially Guided Intrinsic Motivation for Sequence of Ac-
tions through Hierarchical Tasks (SGIM-SAHT), and is described in the next section.
This architecture is an extension and generalization of the SGIM-ACTS algorithm.

2.4 Socially Guided Intrinsic Motivation for Sequence of Ac-
tions through Hierarchical Tasks

The SGIM-SAHT architecture learns by episodes in which a goal outcome ωg ∈ Ω
and a strategy σ ∈ Σ have been selected.

The selected strategy σ is applied for the chosen goal outcome ωg, and a feature
sequence l f is built to try reaching the goal.
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FIGURE 2.3: The SGIM-SAHT algorithmic architecture

This feature sequence l f is broken down to a sequence of motor actions π ∈
ΠN, before being executed by the robot to see its outcomes. The outcomes ωr are
then recorded, along with the tried actions and built observable sequence. This is
important to note that the breakdown process is potentially recursive, and that each
step of it is also recorded in the robot memory.

After each episode, the learner stores the executed actions and feature sequences,
along with their reached outcomes in its episodic memory. Then, it computes its
competence competence(ωg) at reaching the goal ωg, which depends on the eu-
clidean distance between ωg and the reached outcome ωr. Its exact definition de-
pends on the implementation. More importantly, the learner updates its interest
map, by computing the interest interest(ωg, σ) of the goal outcome for the used strat-
egy. This interest depends on the progress measure p(ωg) which is the derivative of
the competence.

The learner then uses these interest measures to partition the outcome space Ω in
regions Ri of high and low progress. In the beginning of the next episode, the learner
chooses the strategy and goal outcome according to the updated interest map. The
forward and inverse models consist local nearest neighbours based of the collection
of all the actions attempted by the learner along with their reached outcomes. They
are subsequently learned by adding more data, through more trials made by the
learner on future episodes.

Algorithm 1 SGIM-SAHT architecture

Input: the different strategies σ1, ..., σn
Initialization: partition of outcome spaces R ← �

i{Ωi}
Initialization: episodic memory Memory ← ∅

1: loop
2: ωg, σ ← Select Goal Outcome and Strategy (R, H)
3: l f ← Execute Strategy(σ, ωg)
4: Memory ← Execute Sequence(l f )
5: R ← Update Outcome and Strategy Interest Mapping(R,Memory,ωg)
6: end loop

The learner is provided with the outcome spaces boundaries (possibly larger
than what is actually possible), the primitive action space boundaries, and distance
metrics for both outcome spaces and action spaces. The strategies are also provided
to the learner, although it does not know what they consist of. The robot will then
learn the mapping between the outcome space and the action space, potentially re-
lying on the unprovided task hierarchy which will also have to be discovered.
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2.5 Tackling the experiment of the rotating robot arm draw-
ing

If we test the SGIM-SAHT architecture on the experimental setup of the rotating
robot arm drawing introduced in section 2.2, we can expect to see interesting pat-
terns in the results showing its capabilities. This architecture shall learn faster and
more broadly than simplier strategic algorithms like SAGG-RIAC or SGIM-ACTS.

If provided with different teachers and autonomous strategies, it shall be able
to identify the most adapted combinations of strategies and tasks that optimize its
learning accuracy and speed. It shall also be able to organize its learning process,
so as to learn the easiest tasks first (in this case Ω0), then tackling more and more
complex tasks (Ω1 and finally Ω2) when maturing. It shall rely more heavily on
interactive strategies early on to benefit from their observed bootstrapping effect
on learning, while relying more on autonomous strategies on the long run. The
evolution of the learner strategical decisions of what task and which strategy to use
shall also be greatly influenced by the task hierarchy.

SGIM-SAHT shall be able to discover and use the task hierarchy wisely to learn
faster. For example, using the task hierarchy would be useless to learn to move its
tip (Ω0), as it corresponds to the simplest task of the setup. Also, this task being the
base of the task hierarchy, its learning shall be prioritary for the robot. However,
hopefully, when desiring to move the pen (Ω1), the robot shall use its skill at moving
its arm’s tip, as an intermediary to more easily learn, this being possible only when
maturing the learning of the tip motion task (Ω0). Finally when able to move the pen
reliably, making drawings (Ω2) shall be decomposed into a first skill corresponding
to moving the pen position towards the first position of the drawing, then a second
one moving the arm’s tip towards the last position of the drawing. It is to note that
the robot might also decide to combine two displacements of the pen as skills to do
this same drawing, although it might lead to a less efficient learning. Indeed, after
the first displacement of the pen, this latter is still in the robot’s grasp, so it won’t
need to grab it again to move it afterwards, a simple arm motion will suffice. This
could lead to two potential problems: the former is that when chaining two skills
of pen displacement together the second one might have an unnecessary hovering
by the initial pose of the pen, leading to more complex actions than needed, the
latter is that the robot will necessary have learned more skills to displace its tip than
to move the pen, so it would be able to tune a arm’s tip motion to reach the final
drawing position more accurately than a pen’s one. This is an example of a potential
suboptimal use of the task hierarchy by the learner. More extreme ones could be to
use drawing skills to move the arm’s tip.

Finally, SGIM-SAHT, while chaining multiple primitive actions together to move
the pen or make drawings, shall be able to limit the complexity of this action se-
quences. Indeed, it would be suboptimal to use more complex actions than prim-
itives to move the arm’s tip around. Moving the pen’s position shall be possible
using primitives also or at least less than 2 primitives. Indeed, using the task hierar-
chy by reusing its skills in moving the arm’s tip could ease the learning of the pen’s
motion one, at the result of more complex actions of 2 primitive actions. However,
making a drawing shall not require more than the number of primitives used for
moving the pen plus an additional one. The tradeoff between accuracy of the skills
built and their efficiency in terms of number of actions chained can be tune by the γ
parameter.
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2.6 Conclusion

In this Chapter, I described a learning architecture, called SGIM-SAHT, able to self-
organize its learning process by actively choosing which task to focus on and which
data-collection strategy to use, along with a simulated experimental setup built to
show the qualities of the architecture. SGIM-SAHT is driven by intrinsic motiva-
tion towards the tasks leading to a maximal progress, and can build unbounded
sequences of primitive actions. Those action sequences can be built directly, ac-
cording to the target task, or can be the result of the recursive process of replacing
combinations of tasks by such an action sequence, this combination of tasks resulting
of an exploitation of the observed task hierarchy of the environment. The strategies
available to the learning architecture can be socially guided or autonomous, and
their determination depend on the specific implementation. The next chapters de-
scribe 3 main implementations of this architecture, from the most simple one to the
more complete version: SGIM-ACTSCL, described in Chapter 3, IM-PB, described
in Chapter 4, and SGIM-PB, described in Chapter 4 and tested on real-life robot in
Chapter 5. Their specific implementation details, along with the results they yield
when experimented, are also contained in thir respective chapters.
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Chapter 3

Poppy humanoid robot learning
inter-related tasks on a tactile tablet

I present a first implementation of the SGIM-SAHT architecture in this chapter. The
idea is to find out whether the SGIM-SAHT architecture can effectively learn in a
continuous environment with a set of hierarchically organized tasks. Developing
my architecture incrementally, I propose in this chapter a first version using simple
actions only. The adaptation of the learning architecture to complex motor actions is
the focus of the entire Chapter 4.

This implementation was built to tackle the learning of a set of multiple inter-
related and hierarchically organized tasks using only simple motor actions. Those
kinds of inter-related tasks can be triggered at the same time or even share parame-
ters in their definition, which means they cannot be learned one at a time in isolation.
The fact that they are hierarchically organized also means that one or more tasks
consist in a combination of other tasks. This means that it is difficult for my SGIM-
SAHT learner to organize its learning process in terms on which outcomes to focus
on, as they are inter-related. Also the fact they are hierarchically organized means
my learner shall be able to identify the basic tasks from the more complex ones, and
start by learning the simplest ones to later tackles the most complex ones. To sum-
marize, in this chapter, I want to see if the developed SGIM-SAHT implementation,
called SGIM-ACTSCL described in section 3.1 can self-organize its learning pro-
cess despite this challenge, and if it can learn better than each of its strategies taken
alone. I conducted an experiment, designed to identify whether my SGIM-SAHT
architecture seems appropriate for learning multiple hierarchically organized tasks
due to its self-organizing learning process. The chapter is organized as follows: first
I describe the algorithm I designed to learn the setup and then I show and analyse
its results on my experimental setup. Both the developed algorithm and the exper-
iment presented in this chapter, were published in (Duminy, Nguyen, and Duhaut,
2016).

3.1 SGIM-ACTSCL

SGIM-ACTSCL is a hierarchical algorithmic architecture that merges intrinsically
motivated active exploration and interactive learning. The agent learns to achieve
different types of outcomes by actively choosing which outcomes to focus on and set
as goals, which data collection strategy to adopt and to which teacher to ask for help.
It learns local inverse and forward models in complex, redundant and continuous
spaces.
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20 Chapter 3. Poppy humanoid robot learning inter-related tasks on a tactile tablet

The SGIM-ACTSCL learner starts from scractch, it is only provided with the
primitive action space and the outcome subspaces boundaries and dimensionali-
ties. Its aim is to learn how to reach a set of outcomes as broad as possible, as fast as
possible. It has therefore to learn both what are the possible outcomes to reach and
the primitive actions to use for that. In order to learn, the agent can count on differ-
ent learning strategies, which are methods to build a primitive action for any given
target outcome. It also need to map the different regions of the outcome subspaces
with the best suited strategies to learn them. The forward and inverse models con-
sist only of the data collected during the learning process, which are the mappings
between primitive actions and reached outcomes. So these are learned by adding
new data in the memory of the learner.

This algorithm is an adaptation of SGIM-ACTS Nguyen and Oudeyer, 2012 for
cumulative learning by sharing the observables produced during an episode be-
tween all task spaces to enhance the learning process. This enables other task spaces
which have been reached too to take the most of the attempt (which is particularly
useful when task spaces have dimension overlaps). The teachers were modified to
enable them to give a demonstration close to the requested goal for each task space.
Details about each module can be read in Nguyen and Oudeyer, 2012. The complete
architecture is shown on Fig. 3.1.
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FIGURE 3.1: Architecture of the SGIM-ACTSCL algorithm: number
between brackets link parts of the architecture with lines in Algo. 1,

the arrows show data transfer between the different blocks

3.1.1 Strategies

SGIM-ACTSCL learns by episodes during which it actively chooses simultaneously
an outcome ωg ∈ Ω to reach and a learning strategy. Its choice of strategy σ is
selected between autonomous exploration of the action space and mimicry of a
specific action teacher.

Mimicry of an action teacher

In an episode under the mimicry of an action teacher strategy (see Algo. 2), my
SGIM-ACTSCL learner actively self-generates a goal ωg where its competence im-
provement is maximal. The SGIM-ACTSCL learner explores preferentially goal out-
comes easy to reach and where it makes progress the fastest. The selected teacher
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answers its request with a demonstration [πθd , ωd] to produce an outcome ωd that
is closest to ωg (line 1 in Algo. 2). In the case of the present study, ωd and ωg can
belong to different subspaces of the outcome space, and can be of different dimen-
sionality. The robot mimics the teacher to reproduce πθd , first exactly (line 2 in Algo.
2), then for a fixed duration, by performing actions πθ which are small variations of
an approximation of πθd (lines 3-7 in Algo. 2). Indeed, the demonstration trajectory
might be impossible for the learner to re-execute, because of correspondence prob-
lems and of the encoding of motor primitives. The variations on the demonstrated
action are built by adding a uniform noise of maximum range � (line 4 in Algo. 2).

Algorithm 2 Mimicry of an action teacher

Input: number of repetitions of the strategy nbIm
Input: the teacher demonstration repertoire D = {πθ , ω}
Input: a target outcome ωg
Input: noise added during repetitions �

1: [πθd , ωd] ← Nearest Neighbour(ωg, D)
2: Execute action(πθd )
3: for nbIm times do
4: πθrand ← random vector with | πθrand |< �
5: πθ ← πθd + πθrand

6: Execute action(πθ)
7: end for

The teacher’s demonstrations repertoire are built in advance in practice for my
experiments, by recording actions and their reached outcomes.

Autonomous exploration of the primitive action space

In an episode under the autonomous exploration of the primitive action space strat-
egy, it explores autonomously following a method inspired by the SAGG-RIAC al-
gorithm , which I call Goal-Directed Optimization in Fig. 3.1. This method works by
iteration in which the learner first chooses how it explores the action space:

• Global exploration: the learner performs a random action without any regards
to the actual goal outcome;

• Local exploration: the learner builds an action optimized for the specific goal
outcome using the best local model.

The choice between both methods is done according to the learner’s knowledge
in the neighbourhood of the goal outcome. It tends to use global optimization when
no close outcome is known (i.e. in the beginning of the learning process and when
it explores remote region according to its current skill set) and use local exploration
when more mature. The probability used to bias this choice is based on the sigmoid
function, applied to the distance between the target outcome ωg and its nearest-
neighbours in the learner’s dataset. This choice is referred in the algorithm as the
choice of mode (line 3 in Algo. 3). The complete algorithm is written in Algo. 3.

The local exploration method (line 8 in Algo. 3) starts by determining the best
local model for the outcome at hand. A function called best locality is used, as to
select an ensemble of pairs of actions and outcomes M = {πθ , ω} (each action with
its corresponding reached outcome). The pseudo-code for this method is shown in
Algo. 4. Four different constants are needed when applying this algorithm: nbY
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Algorithm 3 Autonomous exploration of the primitive action space

Input: a target outcome ωg
Input: number of repetitions of the strategy nbAuto

1: for nbAuto times do
2: Y ←Nearest-Neighbours(ωg)
3: mode ← mode global-exploration or local-exploration(Y, ωg)
4: if mode =Global exploration then
5: πθ ← Random action parameters
6: Execute action(πθ)
7: else if mode =Local exploration then
8: Local-optimization(ωg)
9: end if

10: end for

which gives the minimum number of nearest-neighbours of the target outcome ωg
to check, nbA which is the minimum number of nearest-neighbours checked for
a target action, distA and distY corresponds to maximal distances accepted before
rejecting respectively actions and outcomes. Multivariate linear regression is used
inside this algorithm, computed using the normal equation method. Once a local
model is selected, the learner uses the Nelder-Mead simplex algorithm to optimize
the action. When this method is chosen by the learner, it is applied up to the end of
the learning episode, as opposed to the global exploration which is only applied for
one iteration (making the choice again afterwards).

An extensive study of the role of these different learning strategies can be found
in Nguyen and Oudeyer, 2012. Thus the imitation exploration increases the learner’s
actions repertoire on which to build up self-exploration, while biasing the action
space exploration to interesting subspaces, that allow the robot to overcome high-
dimensionality and redundancy issues and interpolate to generalise in continuous
outcome spaces. Self-exploration is essential to build up on these demonstrations to
overcome correspondence problems and collect more data to acquire better precision
according to the embodiment of the robot.

3.1.2 Interest Mapping

After each episode, the learner stores the actions executed along with their reached
outcomes in its episodic memory. It computes its competence in reaching the goal
outcome ωg by computing the distance d(ωr, ωg) with the outcome ωr it actually
reached. Then it updates its interest model by computing the interest interest(ω, σ)
of the goal outcome and each outcome reached (including the outcome spaces reached
but not targeted): interest(ω, σ) = p(ω)/K(σ), where K(σ) is the cost of the strategy
used and the empirical progress p(ω) is the difference between the best competence
before the attempt and the competence for the current attempt.

The learning agent then uses these interest measures to partition the outcome
space Ω into regions of high and low interest (line 5 in Algo. 1). For each strategy σ,
the outcomes reached and the goal are added to their partition region. Over a fixed
number of measures of interest in the region, it is then partitioned into 2 subregions
so as maximise the difference in interest between the 2 subregions. Each partition is
done according to one dimension only. This dimension and the exact frontier value
between both partitions is determined between all possible one-dimensional cuts
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Algorithm 4 Best Locality

Input: constants distA, distY, nbA, nbY
Input: a target outcome ωg

1: H = {πθ , ω} ← Nearest Neighbours(ωg)
2: K ← ∅
3: V ← ∅
4: for each element Hi of H do
5: if d(ωi, ωg) > distY and i > nbY then
6: break
7: end if
8: Ki = {πθ , ω} ← Nearest Neighbours(πθi )
9: for each element Kij of Ki do

10: if d(πθi , πθij) > distA and j > nbA then
11: Remove Kij and the following Kik from Ki
12: end if
13: end for
14: v ← 0
15: for each element Kij of Ki do
16: M ← Ki \ Ki j
17: πθg ←Linear-Regression(M, ωj)
18: v ← v + d(πθg , πθij)
19: end for
20: Vi ← v/size(Ki)
21: end for
22: k ← argmin(V)
23: M ← Kk
24: return M

between two consecutive outcomes of the region (consecutive after sorting them ac-
cording to the dimension currently studied). The method used is detailed in Nguyen
and Oudeyer, 2014. Thus, the learning agent discovers by itself how to organise
its learning process and partition its task space into unreachable regions, easy
regions and difficult regions, based on empirical measures of interest.

The choice of strategy and goal outcome is based on the empirical progress mea-
sured in each region Rn of the outcome space Ω. ωg, σ are chosen stochastically (with
respectively probabilities p1, p2, p3), by one of the sampling modes (line 2 in Algo.
1):

• mode 1: choose σ and ωg ∈ Ω at random;

• mode 2: choose an outcome region Rn and a strategy σ with a probability pro-
portional to its interest value. Then generate ωg ∈ Rn at random;

• mode 3: choose σ and Rn like in mode 2, but generate a goal ωg ∈ Rn close to
the outcome with the highest measure of progress.

In the beginning of the learning process , as the robot has no outcome and inter-
est measure to guide this choice, the first mode doing random exploration is auto-
matically selected. At this state, the partition regions consist of the whole outcome
subspaces.
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24 Chapter 3. Poppy humanoid robot learning inter-related tasks on a tactile tablet

FIGURE 3.2: Experimental setup: the Poppy robot is in front of a tac-
tile tablet it will learn to interact with. The red arrows indicate the
motors used. The green arrows represent the axes of the surface of

the tablet.

3.2 Experiment

I designed an experiment for a robot to learn to use a tactile tablet, namely to learn
an infinite number of tasks, organised as 3 interrelated types of tasks.

I carried out my experiment on a real robot with a high number of dimensions
for action and observable spaces. Testing the algorithm on a real platform adds the
problem of stochasticity as the control of a real robot and the use of a real sensor
(the tablet) add uncertainty. Fig. 3.3 shows that when repeating several times the
same movement, the teacher’s demonstration, the points sensed by the tablet are
stochastic. I also decided to use the bio-inspired Dynamic Movement Primitives as my
robot motion encoders.

This setup is designed to test the robustness of my SGIM-ACTSCL algorithm
to self-organize its learning process when facing multiple inter-related set of tasks:
correctly assessing the difficulty of each task and learn them incrementally, adapt its
strategy to the task at hand despite their inter-relations, performs better than each
strategy taken alone which proves this active choice of task and strategy is beneficial
to the learner.

Description of environment

The learning agent of this experiment is a Poppy torso robot designed by the flowers
team of INRIA Bordeaux and described in (Lapeyre, Rouanet, and Oudeyer, 2013).
It is equipped with a tactile stylus on its right hand. Before him lays a 10" tactile
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tablet, which it will learn to interact with, through the learning of 3 interrelated
types of tasks described in subsection 3.2. Each of its actions produces observables
of 5 dimensions (section 3.2).

The robot always starts an episode from the same position, as shown in Fig. 3.2.
The learning algorithm gives an action to the robot controller to execute. Then the
tablet senses the list of points touched and returns to the robot the observables.

In the next subsections, I formalize how I encoded the tasks and actions for this
experiment.

Dynamic Movement Primitives

I encode my actions as discrete joint space motions using the dynamic movement
primitives (DMP) framework Ijspeert, Nakanishi, and Schaal, 2002. This framework
offers many advantages (robustness, temporal and spatial invariance, and guaran-
teed convergence to the goal) and is thus widely used in robotics.I here use the for-
mulation developed in Pastor et al., 2009. Each one dimensional DMP is defined by
the system:

τv̇ = K(g − x)− Dv − K(g − x0)s + K f (3.1)
τẋ = v (3.2)

where x and v are the position and velocity of the system; x0 and g are the starting
and end position; τ is a factor used to temporally scale the system; K is like a spring
constant; D is the damping term and f is a non-linear term used to shape the trajec-
tory of the motion called the forcing term. It can be learned to fit a given trajectory
using learning from demonstrations techniques Schaal, Atkeson, and Vijayakumar,
2002 and is defined as:

f (s) = ∑i ωiψi(s)s
∑i ψi(s)

(3.3)

where ψi(s) = exp(−hi(s − ci)
2) , with centres ci; widths hi, and weights wi. The

function f does not depend directly on time but uses a phase variable s, which will
start at 1 and decrease monotonically to 0 through the motion duration following
the canonical system:

τṡ = −αs (3.4)

The realization of multi-dimensional DMPs is feasible by using one transforma-
tion system per degree of freedom (DOF) which share a common canonical system,
ensuring henceforth the synchronization of the different DOF throughout the mo-
tion. The learning of their forcing term can be done successively.

Action space

I selected 6 joints on the whole robot: the right arm, one joint to rotate the spine and
one to bend forward (Fig. 3.2).

A 6-dimensional DMP is used to encode an action. The K, D and α parameters of
eq. 3.1 are fixed for the whole experiment. The temporal scaling term τ of the DMP
is shared for all the dimensions. The forcing term fi of each transformation system
is coded with 5 basis functions, which locations and widths are fixed for the whole
experiment, leaving only their corresponding weights wi to be parametrized. The
end angle gi of each joint is also a parameter but the starting pose is fixed, the robot
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always starting from the same pose. Therefore an action πθ is parametrized by:

θ = (τ, a0, a1, a2, a3, a4, a5) ∈ [0, 1]37 (3.5)

where ai = (gi, wi,0, wi,1, wi,2, wi,3, wi,4) represents the parameters of joint i. The ac-
tion space is thus [0, 1]37.

Observable spaces

The effects of the robot’s actions are observed by the tablet which acts here as a
sensor. The tablet sends the list of all points (x, y) touched by the robot at the end of
the movement. Using this list, I considered the following observables:

• Mstart = (xstart, ystart): the first position touched on the tablet by the learner
during its attempt.

• Mend = (xend, yend): the last position touched on the tablet during its attempt.

• l: the length of the drawing on its whole attempt.

Task spaces

The tasks the agent will learn to master are normalised combinations of the previ-
ously defined observables: Ω1 = {Mstart} = [0, 1]2, Ω2 = {Mstart, Mend} = [0, 1]4

and Ω3 = {Mstart, Mend, l} = [0.1]5. I defined the task space as Ω = Ω1 ∪ Ω2 ∪ Ω3.
These tasks have various degrees of difficulty and some will depend on each

other. The idea beyond this choice of interdependent task spaces is to use tasks
representing different levels of complexity (different combinations of observables)
that the robot could explore progressively. The observables produced by an action
are shared to improve the skill of the robot in all the tasks at once, without restricting
them to the task space initially targeted by the action.

3.2.1 The teacher

For the experiment, I designed a teacher who has a demonstration dataset, recorded
by kinaesthetic on the robot. The dataset consists of 24 demonstrations to touch
points regularly distributed on the surface of the tablet which don’t coincide with
any test point of the evaluation testbench so to not give the learners using this
teacher an unfair advantage. Each demonstration corresponds to outcomes where
Mstart = Mend. So he is an expert in tasks Ω1 only. The points contained in the
dataset of the teacher are shown by the blue circles in Fig. 3.3. The teacher gives a
demonstration when requested for an outcome ωg ∈ Ω by the robot. For any ωg in
any subspace Ω1, he chooses the demonstration (πd, ωd) which outcome ωd is the
closest to ωg. His dataset has been built by kinaesthetic on the robot as to be capable
of reaching a big proportion of the tablet.

Moreover, due to problems during the experiment, the dataset was built using
a Poppy robot different from the one used in the learning phase. The differences in
the joints offsets and robot’s position introduce a correspondence problem. Fig. 3.3
shows a shift between demonstrations and repetitions by the robot of the demon-
strated action.
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FIGURE 3.3: 24 demonstrations in the teacher dataset (blue circles).
For each demonstration, the robot repeats 20 times exactly the same
demonstrated movement. The outcomes reached (red crosses) are

stochastic. Overall the stylus did not touch the tablet 126 times.

3.2.2 Evaluation Protocol

To assess the capacity of my SGIM-ACTSCL learner, I first need an evaluation method,
and more importantly a metric, and I need other algorithms to compare my evalua-
tion results with.

Evaluation method

FIGURE 3.4: Evaluation datasets: 441 points for Ω1, 625 points for Ω2
and Ω3
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FIGURE 3.5: Strategies of the compared algorithms

In order to evaluate my algorithm, I define beforehand a benchmark dataset of
outcomes: one set per outcome space or a total of 1691 points (Fig. 3.4). For the
tesbench of Ω1, a grid with cells of 0.1 was used. For Ω2 and Ω3, 25 points regularly
distributed on the tablet surface were chosen and the tesbenches correspond to each
possible straight lines between two of those points. The task space Ω3 uses the same
lines than Ω2, except the line length l is added. This evaluation dataset is different
from the teacher demonstrations, sharing no common outcomes.

To assess how well the robot can reach each of the outcomes of the evaluation
dataset, I compute the closest reached outcomes. I plot the mean distance for pre-
defined and regularly distributed timestamps. The evaluation is carried out while
freezing the learning system. Its results have no impact on the learning process.

Compared algorithms

To check the efficiency of my SGIM-ACTSCL algorithm in this experimental setup, I
compared with 3 other learning algorithms:

• Random exploration: the robot learns by executing random actions π from the
action space.

• SAGG-RIAC: the learner autonomously explores its environment using goal-
babbling without any teacher demonstrations and is driven by intrinsic moti-
vation.

• Imitation: the learner requests a demonstration at a regular frequency, the
demonstration given is among the less chosen ones. It is executed and repeated
with small variations.

• SGIM-ACTSCL: interactive learning where the learner driven by intrinsic mo-
tivation chooses between autonomous exploration or imitation of the teacher.

Each run took an average of 3 days. The code for those algorithms is available at
���������������������������������������������.

3.2.3 Results

Evaluation performance

Fig. 3.6 plots for the 4 exploration algorithms, the mean distance to outcomes of
the evaluation set, through time obtained on those four experiments. It shows that
SGIM-ACTSCL outperforms the three others. SAGIM-ACTSCL outperforms Ran-
dom and SAGG-RIAC from the beginning. From t > 1000, it outperforms imitation,
owing to goal-oriented self-exploration.

Fig. 3.7 analyses this difference, by plotting the outcomes reached by imitation,
SGIM-ACTSCL and SAGG-RIAC. The first column shows that the outcomes in Ω1
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FIGURE 3.6: Mean and variance error for reaching goal averaged on
all task subspaces

FIGURE 3.7: Points Mstart reached and histogram of the line length l
drawn by Imitation, SGIM-ACTSCL and SAGG-RIAC

reached by imitation are close to the demonstrations, whereas SGIM-ACTSCL ex-
tended its exploration to cover a wider range of outcomes. SAGG-RIAC explored
intensively a smaller part of the tablet. Likewise, while demonstrations correspond
to outcomes in Ω3 with only length l = 0, the histograms in the second column
shows that imitation could increase the length of its drawings a bit, while SGIM-
ACTSCL and SAGG-RIAC could draw longer lines.
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FIGURE 3.8: Evolution of the choice of learning strategy of SGIM-
ACTSCL: percentage of times each strategy is chosen across time

Learning process organization

While SGIM-ACTSCL outperforms each of its strategy taken alone, I analyse how
the SAGG-RIAC and imitation strategies were used by SGIM-ACTSCL through time.
Fig 3.8 shows that in the beginning the robot takes advantage of the imitation strat-
egy which overcomes the difficulty to reach the tablet at first. This difficulty is well
shown by the Random algorithm results which only touched the tablet 14 times on
the 3000 attempts. Imitation strategy enables it to outperform the self-exploration
algorithms, but not the imitation algorithm as the latter was repeating each demon-
stration equally while the former was not (the demonstrations were chosen accord-
ing to the robot curiosity). After more than 700 attempts using the imitation strategy,
the robot had reproduced most of the teacher demonstrations and changed its strat-
egy to keep progressing. As the teacher was only able to produce points, the learner
chose the autonomous exploration strategy which enabled him to reach points far-
ther and farther from the initial points it reached through demonstrations.

FIGURE 3.9: Evolution of the choice of tasks of SGIM-ACTSCL: per-
centage of times each task is chosen across time
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Detailing the different types of outcomes, Fig. 3.9 shows 4 phases in time. The
learner focuses on type of outcomes Ω1 in the beginning. The combined choice of the
imitation strategy with the task space Ω1 enabled the robot to progress quickly and
starts choosing the task space Ω2 in the second phase for 250 < t < 800. After accu-
mulating skills, from t = 800, it became able to tackle the most complex task space
Ω3. Finally for t > 1500, the SGIM-ACTSCL learner kept using autonomous explo-
ration with the three task spaces, focusing more on the difficult tasks Ω3 and Ω2.
This finally enabled him to overtake the imitation algorithm by keeping progressing
when the latter stagnates.

FIGURE 3.10: Synergy between the choice of task space and the choice
of learning strategy of SGIM-ACTSCL: percentage of times each strat-

egy and task is chosen over all the learning process

Fig. 3.10 shows that the task space Ω3 was mostly combined with autonomous
exploration on the overall learning process when the imitation was more associated
with Ω1 and Ω2. The learner could coherently choose the adequate exploration
method for each task.

The learner showed it was capable to make wise strategic decisions regarding
the outcome spaces to tackle and the best strategy to use for it. It started with the
simplest task space Ω1 and also tried quickly Ω2 and chose to imitate the teacher
for enabling it to make the quickest progress. It was then capable to tackle the most
difficult task space Ω3 and noticed the teacher was less adapted for it. The learner
successfully used its first acquired dataset of task spaces Ω1 and Ω2 to autonomously
explore the more complex task space Ω3.

3.2.4 Conclusions

The SGIM-SAHT architecture appears to be able to self-organize its learning pro-
cess to learn a set of hierarchically organized tasks in a continuous environment.
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It is capable of correctly assessing which strategy is more appropriate with each out-
come space. It was able to learn on a developmental manner, focusing on the easiest
task first, before tackling increasingly more difficult ones, requesting demonstra-
tions from the teacher at the beginning when it knew barely nothing, before relying
on autonomous exploration to extend its range of skills. All of these reasons explain
why the SGIM-ACTSCL learner outperforms its competitors on this setup.

The learning architecture therefore seems a viable candidate for learning a set of
hierarchical organized tasks using complex motor actions. However, as this tran-
sition from simple actions to possibly infinite successions of primitive actions can
increase the curse of dimensionality, I need to design a mechanism to enable my
learner to discover and exploit the task hierarchy to ease its learning process. It
needs to be able to combine previously learned skills to learn more complex ones
iteratively. In the next chapter, I describe an experimental setup with a hierarchical
set of tasks, tackled by a learner performing sequences of motor actions at will. I
also describe the method I found for easing this learning using the task hierarchy:
the procedure framework.
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Chapter 4

Using the task hierarchy to form
sequences of motor actions

In this chapter, I introduce the learning of sequences of motor primitives. While the
previous chapter considered, as a majority of works in motor learning, an action
space at fixed dimensionality, thus actions of bounded complexity, I would like to
extend these methods for unbounded sequences of motor primitives and for larger
outcome spaces. How can a robot learn to achieve a set of hierarchically organized tasks
using unbounded sequences of primitive actions?

To enable a robot to learn the mapping between unbounded and high-dimen-
sional outcome and action spaces, I introduce in this chapter a goal-oriented rep-
resentation of sequences of actions, and propose two versions of the algorithm for
multi-task learning. The first version of the algorithm introduces the procedural
framework, built to discover and exploit the task hierarchy. It performs autonomous
exploration only, and its results are shown and analysed in the second section. Then,
a second version of the algorithm adds interactive strategies to built a socially guided
intrinsically motivated learner, so as to study whether its bootstrapping effect ex-
tend to sequences of motor actions learning. This latter algorithm is described in the
section 4.4. I show that both algorithms are capable of determining a task hierar-
chy representation to learn a set of complex interrelated tasks using adapted action
sequences, and that the performance of my algorithm is bootstrapped by a tutor’s
demonstrations.

To illustrate the multi-task learning problems that I am considering, I first de-
scribe an experimental setup. The code for the algorithms developed in this chapter
as well as the experimental setup described is available at ����������������������
��������������������.

4.1 Experimental setup

In this study, I designed an experiment with a simulated robotic arm, which can
move in its environment and interact with objects in it. I considered a setup with
multiple tasks to learn, with tasks independent of each other and tasks that are in-
terdependent. For interdependent tasks, I was inspired by tool use examples such as
the setup proposed in (Forestier, Mollard, and Oudeyer, 2017). The robot can learn
an infinite number of tasks, grouped as 6 hierarchically organized types of tasks. The
robot is capable of performing action sequences of unrestricted size (i.e. consisting
of any number of primitives), with primitive actions highly redundant and of high
dimensionality. The experimental setup was first introduced in (Duminy, Nguyen,
and Duhaut, 2018b).
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FIGURE 4.1: Experimental setup: a robotic arm, can interact with the
different objects in its environment (a pen and two joysticks). Both
joysticks enable to control a video-game character (represented in
top-right corner). A grey floor limits its motions and can be drawn

upon using the pen (a possible drawing is represented).

4.1.1 Environment

The Fig. 4.1 shows environmental setup (contained in a cube delimited by (x, y, z) ∈
[−1; 1]3). The learning agent is a planar robotic arm of 3 joints with the base centred
on the horizontal plane, able to rotate freely around the vertical axis (each link has
a length of 0.33) and change its position on the z-axis. The robot can grab objects in
this environment, by hovering its arm tip (blue in the Fig. 4.1) close to them, which
position is noted (x0, y0, z0). The robot can interact with:

• Floor (below z = 0.0): limits the motions of the robot, slightly elastic which
enable the robot to go down to z = −0.2 by forcing on it;

• Pen: can be moved around and draw on the floor, broken if forcing too much
on the floor (when z <= −0.3);

• Joystick 1 (the red one on the figure): can be moved inside a cube-shaped area
(automatically released otherwise, position normalized for this area), its x-axis
position control a video-game character x position on the screen when grabbed
by the robot;

• Joystick 2 (the green one on the figure): can be moved inside a cube-shaped
area (automatically released otherwise, position normalized for this area), its
y-axis position control a video-game character y position on the screen when
grabbed by the robot;

• Video-game character: can be moved on the screen by using the two joysticks,
its position is refreshed only at the end of a primitive action execution for the
manipulated joystick.
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The robot grabber can only handle one object. When it touches a second object,
it breaks, releasing both objects.

The robot always starts from the same position before executing an action, and
primitives are executed sequentially without getting back to this initial position.
Whole action sequences are recorded with their outcomes, but each step of the action
sequence execution is also recorded. This is done so as to enable the robot to select
parts of action sequences when it can, thus helping it to optimize the size of action
sequences it executes with respect to the outcomes at hand.

4.1.2 Formalization of tasks and actions

The distance used to compare two actions or outcomes together is the normalized
euclidean distance.

Action spaces

The motions of each of the three joints of the robot are encoded by one-dimensional
Dynamic Movement Primitive (DMP) (Pastor et al., 2009), defined by the system:

τv̇ = K(g − x)− Dv + (g − x0) f (s) (4.1)
τẋ = v (4.2)
τṡ = −αs (4.3)

where x and v are the position and velocity of the system; s is the phase of the
motion; x0 and g are the starting and end position of the motion; τ is a factor used
to temporally scale the system (set to fix the length of a primitive execution); K and
D are the spring constant and damping term fixed for the whole experiment; α is
also a constant fixed for the experiment; and f is a non-linear term used to shape the
trajectory called the forcing term. This forcing term is defined as:

f (s) = ∑i wiψi(s)s
∑i ψi(s)

(4.4)

where ψi(s) = exp(−hi(s − ci)
2) with centers ci and widths hi fixed for all prim-

itives. There are 3 weights wi per DMP.
The weights of the forcing term and the end positions are the only parameters of

the DMP used by the robot. The starting position of a primitive is set by either the
initial position of the robot (if it is starting a new action sequence) or the end position
of the preceding primitive. The robot can also set its position on the vertical axis z
for every primitive. Therefore a primitive action πθ is parametrized by:

θ = (a0, a1, a2, z) (4.5)

where ai = (w(i)
0 , w(i)

1 , w(i)
2 , g(i)) corresponds to the DMP parameters of the joint i,

ordered from base to tip, and z is the fixed vertical position. Thus, the primitive ac-
tion space is Π = R13. When combining two or more primitive actions (πθ0 , πθ1 , ...),
in an action sequence πθ , the parameters (θ0, θ1, ...) are simply concatenated together
from the first primitive to the last. The total action space, (R13)N is of unbounded
dimension.
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Outcome subspaces

The outcome subspaces the robot learns to reach are hierarchically organized and
defined as:

• Ω0: the position (x0, y0, z0) of the end effector of the robot in Cartesian coordi-
nates at the end of an action execution;

• Ω1: the position (x1, y1, z1) of the pen at the end of an action execution if the
pen is grabbed by the robot;

• Ω2: the first (xa, ya) and last (xb, yb) points of the last drawn continuous line
on the floor if the pen is functional (xa, ya, xb, yb);

• Ω3: the position (x3, y3, z3) of the first joystick at the end of an action execution
if it is grabbed by the robot;

• Ω4: the position (x4, y4, z4) of the second joystick at the end of an action execu-
tion if it is grabbed by the robot;

• Ω5: the position (x5, y5) of the video-game character at the end of an action
execution if moved.

The outcome space is a composite and continuous space Ω = ∪5
i=0Ωi, with sub-

spaces of 3 to 4 dimensions. A quick analysis of this setup highlights interdepen-
dencies between tasks: controlling the position of the pen comes after controlling
the position of the end effector; and controlling the position of the video-game char-
acter comes after controlling the positions of both joysticks, which in turn comes
after controlling the position of the end effector. In my setup, the most complex
task is controlling the position of the video-game character. This task should require
a sequence of 4 actions : move the end-effector to initial position of the joystick 1,
move joystick 1, then move the end-effector to the initial position of joystick 2, and
move joystick 2. Besides, there are independent tasks: the position of the pen does
not really depend on the position of the video-game character. Therefore, the inter-
dependencies can be grouped into 2 dependency graphs, these are shown in Fig.
4.2. With this setup, I test if the robot can distinguish task hierarchies between
dependent and independent tasks, and can compose tools uses.

In this setup, my intuition is that a learning agent should start by making good
progress in the easy tasks in Ω0 then Ω1, Ω3, Ω4. Once it has a good mastery of the
easy tasks, it can reuse this knowledge to learn to achieve higher-level tasks.

In my multi-task learning perspective, I will examine how well the robot per-
forms for each of the tasks in these subspaces. I will particularly examine its perfor-
mance for the tasks of Ω5, which I consider the most complex tasks.

In the next section, I formalize my learning problem by introducing a goal- ori-
ented representation of sequences of actions, named the procedures.

4.2 Procedures framework

As this algorithm tackles the learning of complex hierarchically organized tasks,
exploring and exploiting this hierarchy could ease the learning of the more com-
plex tasks. I define procedures as a way to encourage the robot to reuse previously
learned tasks, and chain them to build more complex ones. More formally, a proce-
dure is defined as a succession of previously known outcomes (ω1, ω2, ..., ωn ∈ Ω)
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FIGURE 4.2: Task hierarchy represented in this experimental setup

and is noted (ω1, ω1, ..., ωn). The procedure space is thus simply ΩN. The defi-
nition of the procedure space only depends on the outcome space. But the valid
procedures, representing the real dependencies between tasks, depend on each ap-
plication case. Thus the learning agent can explore the procedure space to test which
procedures are valid.

Executing a procedure (ω1, ω1, ..., ωn) means building the action sequence π cor-
responding to the succession of actions πi, i ∈ �1, n� (potentially action sequences
as well) and execute it (where the πi reach best the ωi ∀i ∈ �1, n� respectively). An
example illustrates this idea of task hierarchy in Fig. 1.1. As the subtasks ωi are
generally unknown from the learner, the procedure is updated before execution (see
Algo. 5) to subtasks ω�

i which are the closest tasks reached by the learner (by exe-
cuting respectively π�

1 to π�
n). When the agent selects a procedure to be executed,

this latter is only a way to build the action sequence which will actually be executed.
So the agent does not check if the subtasks are actually reached when executing a
procedure.

Algorithm 5 Procedure adaptation

Input: (ω1, ..., ωn) ∈ Ωn

Input: inverse model L
1: for i ∈ �1, n� do
2: ω�

i ←Nearest-Neighbour(ωi) // get the nearest outcome known from ωi
3: π�

i ← L(ω�
i) // get the known action sequence that reached ω�

i
4: end for
5: return π = π�

1...π�
n

If the procedure given can not be executed by the robot, because at least one of
the subtasks space is not reachable, then the procedure is abandoned and replaced
by a random action sequence.
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4.3 Intrinsically Motivated Procedure Babbling

In this section, I describe an intrinsically motivated learner, able to learn action se-
quences through autonomous exploration. This algorithm, called Intrinsically Mo-
tivated Procedure Babbling (IM-PB), learns action sequences to complete multiple
tasks by exploring autonomously, driven by intrinsic motivation. It uses the proce-
dure framework, to expand its learning capabilities on complex tasks by combining
previously learned simpler tasks. This algorithm and the experimental results were
first published in (Duminy, Nguyen, and Duhaut, 2018b).

Contrarily to the definiiton of procedures, for the algorithm, I limited my study
to the case of procedures of size 2 (sequences of 2 outcomes only) as I wish to prove
the bootstrapping effect of the representation via procedures, before tackling the
challenges of exploring a high-dimensional space of procedures ΩN. This still allows
the learning agent to use a high number of subtasks because of the recursivity of the
definition of procedures.

My learning algorithm, called IM-PB, starts from scratch, it is only provided with
the primitive action space and outcome subspaces dimensionalities and boundaries.
The procedural spaces are also predefined, as all the possible composition of out-
come subspaces (Ωi, Ωj) with Ωi, Ωj ∈ Ω. Then its aim is to learn how to reach a set
of outcomes as broad as possible, as fast as possible. This means it has to learn both
what are the possible outcomes to reach and the action sequences or procedures to
use for that. In order to learn, the agent can count on different learning strategies,
which are methods to build an action or procedure from any given target outcome. It
also needs to map the outcome subspaces and even regions to the best suited strate-
gies to learn them. In this algorithm, the forward and inverse models are memory
based and consist only of the cumulative data, mappings of actions, procedures and
their respective reached outcomes obtained through all the attempts of the learner.
So they are learned by adding new data in the learner’s memory.

The IM-PB algorithm learns by episode, each of which starts by the learner choos-
ing a goal outcome ωg to target and a strategy σ to use, based on its progress, as de-
tailed in section 3.1.2 with SGIM-ACTSCL. In each episode, the robot starts from the
same position before executing an action, and primitives are executed sequentially
without getting back to this initial position. Whole action sequences are recorded
with their outcomes, but each step of the action sequence execution is also recorded.
These data enable the robot to select parts of the action sequences, thus helping it
to optimize the size of action sequences it executes with respect to the outcomes at
hand. The way these data are generated depend on the strategy chosen. The strate-
gies available for the learner are the autonomous exploration of the action space and
that of the procedure space.

4.3.1 Strategies

Autonomous exploration of the action space

In an episode under the autonomous exploration of the action space strategy, the
learner tries to optimize the action sequence π to produce ωg using on of these meth-
ods:

• Global exploration: the learner performs a random action sequence of uncon-
strained size;

• Local exploration: the learner optimizes a action sequence for the specific goal
outcome using the best local inverse model.
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The metric used to make this choice is the same than in SGIM-ACTSCL in section
3.1.1.

The global exploration builds recursively an action sequence following Algo. 6.
It starts by a single random primitive action, and it chains it with other random
primitive actions with a probability of 1/αn, where α = 2 is a constant controlling
the distribution of the size of produced actions and n is the current size of the built
action.

Algorithm 6 Random Action Sequence

Input: constant α
Initialization: π ← ∅
Initialization: n ← 0

1: loop
2: r ← 1/αn

3: p ← Random number between 0 and 1
4: if p > r then
5: Break
6: end if
7: πθn ← Random Primitive Action
8: π ← Concatenate π and πθn

9: n ← n + 1
10: end loop
11: return π

The local exploration optimizes an action sequence to reach at best the target out-
come. The best locality function is used to determine the local inverse model used.
Then multivariate linear regression is used to build an action sequence. This action
sequence is modified by adding a uniform noise with a range inversely proportional
to the standard deviation among the actions in the local inverse model used. This
noise is added to increase exploration in case of a too homogeneous local model.
The complete algorithm for this strategy is described in Algo. 7.

Algorithm 7 Autonomous exploration of the action space

Input: a target outcome ωg
1: Y ←Nearest-Neighbours(ωg)
2: mode ← mode global-exploration or local-exploration(Y, ωg)
3: if mode =Global exploration then
4: π ← Random Action Sequence
5: Execute action(π)
6: else if mode =Local exploration then
7: M ← Best Locality(ωg)
8: π ← Linear Regression(M, ωg)
9: � ← Maximum noise proportional to standard deviation of actions in M

10: πrand ← random vector with | πrand |< �
11: π ← π + πrand
12: Execute action(π)
13: end if
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Autonomous exploration of the procedure space

In an episode under the autonomous exploration of the procedure space strategy,
the learner builds a size 2 procedure (ωi, ωj) such as to reproduce the goal outcome
ωg the best using one of these methods:

• Global exploration: the learner performs a random procedure;

• Local exploration: the learner optimizes a procedure for the specific goal out-
come using the best local inverse model.

The metric used to make this choice is the same than in SGIM-ACTSCL in section
3.1.1. When no outcome space has been discovered, the execution of any procedure
is not feasible, therefore in this case the learner produces a random action sequence
following the global exploration method of the autonomous exploration of the action
space strategy.

The global exploration method builds a random procedure by selecting two out-
come spaces Ωi and Ωj already known to the learner (i.e. reached at least once by the
learner), and then select both random components of the procedures among them.
The algorithm is described in Algo. 8.

Algorithm 8 Random Procedure

1: l ← List of outcome spaces Ωi reached at least once
2: if l = ∅ then
3: return ∅
4: else
5: (Ωi, Ωj) ← Choose two random outcome spaces from l
6: ωi ← Random vector from Ωi
7: ωj ← Random vector from Ωj
8: return (ωi, ωj)
9: end if

The local exploration optimizes a procedure to reach the target at best. The best
locality function is also used to determine the local inverse model used (in this case
the inverse model is a subpart of Ω2 → Ω). The procedure obtained is modified
by adding a uniform noise proportional to the standard deviation among the proce-
dures of the local model similarly to the local exploration of the action space in 4.3.1.
The complete algorithm of the strategy is described in Algo. 9.

4.3.2 Overview

The IM-PB algorithm learns by episodes. It starts each episode by selecting a goal
outcome ωg and a strategy to use.

Its available strategies are autonomous exploration of the action space, and that
of the procedure space.

The strategy used for the episode, builds a feature sequence l f (either a sequence
of motor actions or a procedure), which is then executed by the learner. The reached
outcomes ω, along with the executed feature sequence l f are recorded.

The interest model is then updated, according to the data acquired during the
episode.

The complete algorithm is shown on Fig. 4.3.

Découverte et exploitation de la hiérarchie des tâches pour apprendre des séquences de politiques motrices par un robot stratégique et interactif Nicolas Duminy 2018



4.3. Intrinsically Motivated Procedure Babbling 41

Algorithm 9 Autonomous exploration of the procedure space

Input: a target outcome ωg
Initialization: p ← ∅

1: Y ←Nearest-Neighbours(ωg)
2: mode ← mode global-exploration or local-exploration(Y, ωg)
3: if mode =Global exploration then
4: p = (ωi, ωj) ← Random Procedure
5: if p = ∅ then
6: π ← Random Action Sequence
7: Execute action(π)
8: else
9: Execute procedure(p)

10: end if
11: else if mode =Local exploration then
12: M ← Best Locality Procedure(ωg)
13: p = (ωi, ωj) ← Linear Regression(M, ωg)
14: � ← Maximum noise proportional to standard deviation of procedures in M
15: prand ← random vector with | prand |< �
16: p ← p + prand
17: Execute procedure(p)
18: end if
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FIGURE 4.3: Architecture of the IM-PB algorithm: number between
brackets link parts of the architecture with lines in Algo. 1, the arrows

show data transfer between the different blocks

An important change from the SGIM-ACTSCL algorithm, is the development of
a new metric called the performance, which adds the action cost to the competence
measure. The learner can compute nearest neighbours to select actions or proce-
dures to optimize (when choosing local optimization in any of both autonomous
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exploration strategies and when refining procedures) or when computing the com-
petence to reach a specific goal, it actually uses a performance metric (4.6) which
also takes into account the complexity of the action chosen:

per f (ωg) = d(ω, ωg)γ
n (4.6)

where d(ω, ωg) is the normalized Euclidean distance between the target outcome
ωg and the outcome ω reached by the action, γ is a constant and n is equal to the
size of the action (the number of primitives chained).

4.3.3 Experiment

Evaluation Method

To evaluate my algorithm, I created a benchmark linearly distributed across the Ωi,
of 27,600 points. The evaluation consists in computing mean Euclidean distance
between each of the benchmark outcomes and their nearest neighbour in the learner
dataset. This evaluation is repeated regularly.

Then to asses my algorithm efficiency, I compare its results to those algorithms:

• RandomAction: performs random exploration of the action space ΠN;

• SAGG-RIAC: performs autonomous exploration of the action space ΠN guided
by intrinsic motivation;

• Random-PB: performs both random exploration of actions and procedures;

• IM-PB: performs both autonomous exploration of the procedural space and
the action space, guided by intrinsic motivation.

Each algorithm was run 5 times for 25,000 iterations (complete action sequences
executions). The meta parameter was: γ = 1.2.

4.3.4 Results

Evaluation performance

Fig. 4.4 shows the global evaluation of all tested algorithms, which is the mean error
made by each algorithm to reproduce the benchmarks with respect to the number
of complete action sequences tried. Random-PB and IM-PB owing to procedures
have lower errors than the others even since the beginning. Indeed, they perform
better than the downgrades without procedures, RandomAction and SAGG-RIAC.
We can also see, through the final standard deviation given in the legend for each
algorithm, that those results are consistent.

On each individual outcome space (Fig. 4.5), IM-PB outperforms the other
algorithms. The comparison of the learners without procedures (RandomAction
and SAGG-RIAC) with the others shows they learn less on any outcome space but
Ω0 (reachable using single primitives, with no subtask) and especially for Ω1, Ω2
and Ω5 which were the most hierarchical in this setup. So the procedures helped
when learning any potentially hierarchical task in this experiment.
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FIGURE 4.4: Evaluation of all algorithms (standard deviation shown
in caption)

FIGURE 4.5: Evaluation of all algorithms per outcome space (for Ω0,
all evaluations are superposed)

Lengths of action sequences used

I wanted to see if my IM-PB learner adapts the complexity of its actions to the work-
ing task. So I looked which action space would be chosen by the local optimization
function (used inside the action space exploration strategy) for the Ω0, Ω1 and Ω2
subspaces (chosen because they are increasingly complex) on their respective evalu-
ation benchmarks. Fig. 4.6 shows the results of this analysis.

As we can see on those three interrelated outcome subspaces (Fig. 4.6), the
learner is capable to adapt the complexity of its action sequences to the outcome
at hand. It chooses longer actions for Ω1 and Ω2 (size 3 and 4 compared to size 1 for
Ω0). My learner is capable to correctly limit the complexity of its action sequences
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FIGURE 4.6: Number of actions selected per action size for three in-
creasingly more complex outcome spaces by the IM-PB learner

instead of being stuck into always trying longer and longer actions. However, the
learner did not increase its action sequences complexity from Ω1 to Ω2, as I hoped.

4.3.5 Conclusion

The results show, an intrinsically motivated learner is capable to learn sequences
of motor actions. Intrinsic Motivation seems indeed to guide the learning process
towards interesting regions. It also shows that my procedure framework is highly
relevant to learn hierarchical set of tasks. In the next section, I finish the implemen-
tation of a complete socially guided learner intrinsically motivated, and analyze its
performance on the experimental setup.

To summarize, I have introduced the framework of procedures as a goal-directed
representation of sequences of primitive actions. To show that procedures can boot-
strap the learning of action sequences, I have proposed IM-PB as a learning algo-
rithm that leverages two data collection strategies: autonomous exploration of ac-
tions, and exploration of procedures. IM-PB learns to reach an ensemble of out-
comes, by mapping them to actions. IM-PB takes advantage of the dependencies
between tasks. It explores the procedure space to learn these dependencies. Com-
bining these procedures with the learning of simple actions to complete simple
tasks, it can build sequences of actions to achieve complex tasks.

I showed that the robot can take advantage of the procedures representation to
improve its performance, especially on high-level tasks. It can also adapt the com-
plexity of its action sequence to the task to achieve.

Nevertheless, this adaptation is limited to the first two levels of task hierarchy,
and the learner can not well adapt this complexity to a deeper hierarchy of tasks. To
help the robot improve its understanding of task dependencies, I explore in the next
section how supplementary information from tutors can help the robot to learn task
hierarchies.
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4.4 Socially Guided Intrinsic Motivation with Procedure Bab-
bling

In this section, I want to extend IM-PB, by providing human teachers to my learner. I
show in this section, that as social guidance does in a simple action setup in Chapter
3, adding human action teachers help the learner by bootstrapping its early learning
process by focusing on the most interesting parts of the action space. I also show that
adding human procedural teachers has a similar effect on its ability to focus on the
most useful procedural spaces and adapt them to the task at hand. To enable my
socially guided learner to perform interactive strategies, I developed two different
strategies. Both can provide demonstrations from human experts. These strategies,
added to the IM-PB algorithm, transforms it to a new algorithm using social guid-
ance as well as autonomous exploration, called Socially Guided Intrinsic Motivation
with Procedure Babbling (SGIM-PB). I analyze in the results of this section, what are
the advantages of both types of demonstrations (procedures or actions) and I show
that they are complementary, as action demonstrations are well suited for the sim-
plest outcome spaces while procedure demonstrations are better suited for the most
complex and hierarchical tasks.

This algorithm is built on the same prerequisites and hypothesis than IM-PB.
The only difference being the strategies available to both learners, SGIM-PB able
to count on interactive strategies unavailable to IM-PB. The implementations and
experimental results were presented in (Duminy, Nguyen, and Duhaut, 2019).

4.4.1 Interactive strategies

When implementing interactive learning, we need to think about two aspects: what
human expertise will provide (what kind of data), and when it will provide them.
For the second aspect, I am considering an active learner, and therefore consider
only strategies in which help is providing to the learner’s request. For the first as-
pect, we need to look at what the learner can do. It can execute sequences of motor
actions, but thanks to the procedural framework, it can also perform procedures.
Therefore, I design two types of teachers that can interact with the learner at the
learner’s request: action teachers and procedural teachers.

Action teachers

This first type of strategy enables a teacher to provide demonstrations of sequences
of motor actions to the learner on the learner’s request. It functions exactly like
for the SGIM-ACTSCL algorithm, except the actions might here be sequences. This
strategy is also called mimicry of a action teacher.

Procedural teachers

This second type of strategy enables a teacher to provide demonstrations of pro-
cedures to the learner according to a preset function which depends on the goal
outcome ωg. The procedures are computed on the fly when the learner requests
them and don’t need to be recorded first as the action demonstrations from a ac-
tion teacher do. In this case, another factor can prevent the learner from using the
provided demonstration well and it is its current skill set. Indeed the procedure
is adapted to the learner’s skill set before being executed (using Algo. 5) and can
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thus be quite different from the one provided by the teacher. This strategy is called
mimicry of a procedural teacher.

4.4.2 Algorithm overview

The SGIM-PB algorithm learns by episode. It starts each episode by selecting a goal
outcome ωg and a strategy to use.

Its available strategies are autonomous exploration of the action space, autono-
mous exploration of the procedure space, mimicry of one of the available action
or procedural teachers (N.B. each teacher is considered a specific strategy by the
learner).

The strategy used for the episode, builds a feature sequence l f (either a motor
action sequence or a procedure), which is then executed by the learner. The reached
outcomes ω, along with the executed feature sequence l f are recorded.

The interest model is then updated, according to the data acquired during the
episode.

The complete algorithm is shown on Fig. 4.7.
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FIGURE 4.7: Architecture of the SGIM-PB algorithm: number be-
tween brackets link parts of the architecture with lines in Algo. 1,

the arrows show data transfer between the different blocks

4.4.3 Experiment

Teachers

My SGIM-PB learner can actively learn by asking teachers to give demonstrations of
procedures or actions (strategies Mimic procedural teacher and Mimic action teacher).

To help the SGIM-PB learner, procedural teachers were available so as to provide
procedures for every complex outcome subspaces Ω1, Ω2, Ω3, Ω4 and Ω5. As Ω0 is
the simplest outcome space in my setup, the base of its task hierarchy, I decided to
build the preset functions for these procedural teachers up from Ω0. Each teacher
was only giving procedures useful for its own outcome space, and was aware of its
task representation. When presented with an outcome outside its outcome space of
expertise, it provides a demonstration for a newly drawn random target outcome in
its outcome space of expertise. They all had a cost of 5. The rules used to provide
procedures are the following:
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• ProceduralTeacher1 (ω1g ∈ Ω1): (ω1, ω0) with ω1 ∈ Ω1 equals to the pen initial
position and ω0 ∈ Ω0 equals to the desired final pen position ω1g ;

• ProceduralTeacher2 (ω2g = (xa, ya, xb, yb) ∈ Ω2): (ω1, ω0) with ω1 ∈ Ω1 equals
to the point on the z = 1.0 plane above the first point of the desired drawing
ω1 = (xa, ya, 1), and ω0 ∈ Ω0 equals to the desired final drawing point, ω0 =
(xb, yb, 0);

• ProceduralTeacher3 (ω3g ∈ Ω3): (ω3, ω0) with ω3 = (0, 0, 0), ω3 ∈ Ω3 and
ω0 ∈ Ω0 equals to the end effector position leading to the desired final position
of the first joystick ω3g ;

• ProceduralTeacher4 (ω4g ∈ Ω4): (ω4, ω0) with ω4 = (0, 0, 0), ω4 ∈ Ω4 and
ω0 ∈ Ω0 equals to the end effector position leading to the desired final position
of the second joystick ω4g ;

• ProceduralTeacher5 (ω5g = (x, y) ∈ Ω5): (ω3, ω4) with ω3 = (x, 0, 0), ω3 ∈ Ω3
with x corresponding to the desired x-position of the video-game character,
ω4 = (0, y, 0), ω4 ∈ Ω4 with y corresponding to the desired y-position of the
video-game character.

I also added action teachers corresponding to the same outcome spaces to boot-
strap the robot early learning process. The strategy attached to each teacher has
a cost of 10. Each teacher was capable to provide demonstrations (as actions exe-
cutable by the robot) linearly distributed in its outcome space. All those teachers
consist of demonstrations repertoires built by drawing sparse demonstrations from
a random action learner trained a huge amount of time (1,000,000 iterations):

• MimicryTeacher1 (Ω1): 15 demonstrations;

• MimicryTeacher2 (Ω2): 25 demonstrations;

• MimicryTeacher3 (Ω3): 18 demonstrations;

• MimicryTeacher4 (Ω4): 18 demonstrations;

• MimicryTeacher5 (Ω5): 9 demonstrations;

These costs were chosen so as to encourage the robot to rely on itself as much as
possible to reduce the teacher load. The costs of 10 for an action teacher strategy and
5 for a procedural teacher are arbitrary. Their difference comes from my belief that
giving a procedure takes less time to the teacher than providing it with a detailed
demonstrated motor action.

Evaluation method

The method used to evaluate an algorithm on the setup is the same than in 4.3.3. To
assess my algorithm efficiency, I compare its results with 3 other algorithms:

• SAGG-RIAC: performs autonomous exploration of the action space ΠN guided
by intrinsic motivation;

• SGIM-ACTS: interactive learner driven by intrinsic motivation. Choosing be-
tween autonomous exploration of the action space ΠN and mimicry of one of
the available action teachers;
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• IM-PB: performs both autonomous exploration of the procedural space and
the action space, guided by intrinsic motivation;

• SGIM-PB: interactive learner driven by intrinsic motivation. Choosing be-
tween autonomous exploration strategies (either of the action space or the pro-
cedural space) and mimicry of one of the available teachers (either action or
procedural teachers).

Each algorithm was run 10 times on this setup. Each run, I let the algorithm
performs 25,000 iterations (complete action sequences executions). The value of γ
for this experiment is 1.2. The probabilities to choose either of the sampling mode of
SGIM-PB are p1 = 0.15, p2 = 0.65, p3 = 0.2.

4.4.4 Results

Distance to goals

FIGURE 4.8: Evaluation of all algorithms (final standard deviation
shown in caption)

The Fig. 4.8 shows the global evaluation of all the tested algorithms, which
corresponds to the mean error made by each algorithm to reproduce the bench-
marks with respect to the number of complete action sequences tried. Random,
SGIM-ACTS, SGIM-PB were run 20 times while IM-PB and SAGG-RIAC was run
10 times on this setup so as to obtain statistically significant differences between
SGIM-PB and the other algorithms, according to the Student’s t-test on two algo-
rithms : p = 3 ∗ 10−16 < 0.1 when compared with random, p=0.01 for SAGG-
RIAC, p = 1 ∗ 10−9 for SGIM-ACTS. The complete results for Student’s t-test are
reported in Table 4.1. The algorithms capable of performing procedures (IM-PB
and SGIM-PB) have errors that drop to levels lower than the their non-procedure
equivalents (SAGG-RIAC and SGIM-ACTS). The t-test comparing the final errors
of IM-PB and SGIM-PB vs SAGG-RIAC and SGIM-ACTS gives a strong difference
with p = 9e − 4 < 0.1. Moreover, this difference starts since the beginning of the
learning process (shown on Fig. 4.8). It seems that the procedures bootstrap the ex-
ploration, enabling the learner to progress further. Indeed, the autonomous learner
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IM-PB learner, the upgraded version of SAGG-RIAC by the use of procedures, has
significantly better performance.

We can also see that the SGIM-PB algorithm has a very quick improvement in
global evaluation owing to the bootstrapping effect of the different teachers. It goes
lower to the final evaluation of SAGG-RIAC (0.17) after only 500 iterations. This
bootstrapping effect comes from the mimicry teachers, as it is also observed for
SGIM-ACTS which shares the same mimicry teachers.

FIGURE 4.9: Evaluation of all algorithms per outcome space (for Ω0,
all evaluations are superposed)

If we look at the evaluation on each individual outcome space (Fig. 4.9), we can
see that the learners with demonstrations (SGIM-PB and SGIM-ACTS) outper-
form the other algorithms, except for the most simple outcome space Ω0, which
does not require sequences of actions, and the outcome space Ω5. In the case of Ω5,
the difference with IM-PB is not significative (IM-PB seems a bit better but the differ-
ence is not significative with p > 0.1). The results for Student’s t-test are reported in
Table 4.1. This exception for Ω5 is due to the fact that IM-PB practiced much more on
this outcome space (1500 iterations where it chose goals in Ω5 against 160 for SGIM-
PB). SGIM-PB and SGIM-ACTS are much better than the other algorithms on the
two joysticks outcome spaces (Ω3 and Ω4) (with respectively p=7e-4 and 1e-5). This
is not surprising given the fact that those outcome spaces require precise actions.
Indeed, if the end-effector gets out of the area where it can control the joystick, the
latter is released, thus potentially ruining the attempt. So on these outcome spaces
working directly on carefully crafted actions can alleviate this problem, while using
procedures might be tricky, as the outcomes used don’t take into account the motion
trajectory but merely its final state. SGIM-PB was provided with such actions by the
action teachers. Also if we compare the results of the autonomous learner without
procedures (SAGG-RIAC) with the one with procedures (IM-PB), we can see that it
learns less on any outcome space but Ω0 (which was the only outcome space reach-
able using only single primitive actions and that could not benefit from using the
task hierarchy to be learned) and especially for Ω1, Ω2 and Ω5 which were the most
hierarchical in this setup. More generally, it seems than on this highly hierarchi-
cal Ω5, the learners with procedures were better. So the procedures helped when
learning any potentially hierarchical task in this experiment.
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global task0 task 1 task 2 task 3 task 4 task 5
SGIM-PB vs random t -33 9 -27 -15 -32 -50 -57

p 3e-16 5e-8 9e-15 4e-11 4e-16 6e-19 5e-20
SGIM-PB vs SAGG-RIAC t -3 9 -10 -2 -44 -46 -84

p 1e-2 6e-8 1e-8 3e-2 4e-18 2e-18 1e-22
SGIM-PB vs IM-PB t -11 -4 -4 -5 -5 -3 1

p 3e-9 4e-4 1e-3 1e-4 9e-5 3e-3 0.2
SGIM-PB vs SGIM-ACTS t -12 5 -3 -3 -0.5 -3 -18

p 1e-9 2e-4 2e-3 1e-2 6e-2 1e-2 2e-12
(SGIM-PB, IM-PB) vs t -2.5 9 -5 -2 -4 -5 -8

(random, SAGG-RIAC, SGIM-ACTS) p 2e-2 1e-12 3e-6 7e-2 6e-4 3e-6 4e-11

TABLE 4.1: Student’s t-test on two samples for comparing SGIM-PB
with each of the algorithms and for comparing the procedure algo-
rithms (SGIM-PB and IM-PB) to algorithms without the procedure
framework (SGIM-ACTS, SAGG-RIAC and random). I tested the dif-
ference of the distances to goal at the end of the learning (t=25,000)
for the global evaluation and for each task type. Negative values for t
mean that SGIM-PB makes lower error. The non-significative results

(p > 0.1) are hightlighted.

Analysis of the sampling strategy chosen for each goal

I further analyzed the results of my SGIM-PB learner. I looked in its learning process
to see which pairs of teachers and target outcomes it has chosen (Fig. 4.10). It was
capable to request demonstrations from the relevant teachers depending on the
task at hand, except for the outcome space Ω0 which had no human teachers and
therefore could not find a better teacher to help it. Indeed, for the outcome space Ω2,
the procedural teacher (ProceduralTeacher2) specially built for this outcome space
was greatly chosen.

FIGURE 4.10: Choices of teachers and target outcomes of the SGIM-
PB learner

I wanted to see if my SGIM-PB learner adapts the complexity of its action se-
quences to the working task. So I looked which action space would be chosen by the
local optimization function (used inside the action space exploration strategy) for the
Ω0, Ω1 and Ω2 subspaces (chosen because they are increasingly complex) on their
respective evaluation benchmarks. I compared those results with the same obtained
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by the IM-PB learner in Fig. 4.6 to see if the teachers had an effect on the complexity
of action sequences produced. Fig. 4.11 shows the results of this analysis.

Length of the sequence of primitive actions

FIGURE 4.11: Number of actions selected per action size for three
increasingly more complex outcome spaces by the SGIM-PB (on the

left) and IM-PB (on the right) learners

As we can see on those three interrelated outcome subspaces (Fig. 4.11), the
learner is capable to adapt the complexity of its action sequences to the outcome
at hand. It chooses longer actions for the Ω1 subspace (actions of size 2 and 3 while
using mostly actions of size 1 and 2 for Ω0) and even longer for the Ω2 subspace
(using far more actions of size 3 than for the others). It shows that my learner is
capable to correctly limit the complexity of its action sequences instead of being
stuck into always trying longer and longer actions. Also, if we look at the action
sequence complexity of the IM-PB learner, we see it was also capable to correctly
limit its complexity (especially on Ω0 where it used even more single-primitive ac-
tions than SGIM-PB). However, we can see that the SGIM-PB learner, owing to the
teacher strategies available to it, had a smaller spread on the size of action sequences
distribution for each of the three outcome spaces.

I also wanted to see if my SGIM-PB algorithm had discovered the task hierar-
chy of this experiment. I hoped it would correctly assess which procedural space
is adapted to each of the complex outcome subspaces (all subspaces except Ω0 as it
cannot benefit from procedures to be reached). So I looked which procedural space
was selected by the local optimization function (used inside the procedural space
exploration strategy) for each of the outcome subspaces on their respective evalua-
tion benchmarks. For assessing those results, I compared them with those obtained
by the IM-PB learner on the same process.

As we can see on left column of Fig. 4.12, the SGIM-PB learner successfully
chooses the procedural spaces most adapted for each complex outcome subspace
(the same as those I used to build the procedural teachers). For instance, to move
the video character (task Ω5), the robot mainly uses subtasks Ω4 (position of the
second joystick) and Ω3 (position of the first joystick). To move the position of the
first joystick (task Ω3), subtasks Ω0 (position of the end-effector) and Ω3 (position
of the first joystick) are used. The same way, task Ω4 recruits subtasks Ω0 and Ω4.
Thus by recursively, the robot has built a hierarchical representation that task Ω5
depends on subtasks (Ω0, Ω4, Ω0, Ω3). This means it was successfully able to dis-
cover and exploit it. By comparison, the IM-PB learner was only capable to identify
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useful procedural spaces for the Ω1 and Ω2 outcome subspaces. For both those out-
come subspaces, it identified the one procedural space mainly used by SGIM-PB
learner and another one (Ω2, Ω0) which can also be useful to learn to reach those
outcome subspaces, though arguably less efficient. Indeed, using a action moving
the pen (in Ω1) is enough for the first component of procedures used to reach Ω1
and Ω2, and it can lead to less complex action sequences than using one drawing
on the floor (in Ω2). If we look at the result for the outcome subspaces Ω3 and Ω4,
the IM-PB learner was incapable to identify adapted procedural spaces. The ab-
sence of a teacher to guide it could explain the IM-PB learner poor results on those
outcome subspaces. Also, compared to the great focus of the SGIM-PB learner on
this outcome subspaces, IM-PB results were more dispersed, indicating its difficulty
to select an adapted procedural space. As those outcome subspaces require pre-
cise actions and are less adapted to procedures, this difficulty is understandable. By
looking at the results of both learners, we can see that the procedural teachers had
a profound impact on the choice of adapted procedures for each outcome sub-
spaces, and clearly guided its whole learning process by helping it discover the task
hierarchy of the experimental setup.

4.4.5 Conclusion

Both IM-PB and SGIM-PB learner proved they could tackle the learning of a set of
multiple hierarchically organized tasks using sequences of motor actions. These
results prove my procedural framework enables the discovery and exploitation of
the task hierarchy, and helps the learner to explore further its environment. Both
algorithms were able to outperform their non-procedural respective competitors
(SGIM-ACTS for SGIM-PB and SAGG-RIAC for IM-PB) on this setup. My SGIM-
PB learner, also benefited from its interactive strategies, which by making it focus
on a subset of the action space or the procedural space, bootstrapped its learning
process and made it learn the task hierarchy better than IM-PB did on its own.

However, my setup was only a simulation and did not consider a real physical
robot in a realistic setup. Therefore, in the next chapter, I propose such a realistic
setup, and test my algorithm SGIM-PB on it.
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FIGURE 4.12: Task hierarchy discovered by the SGIM-PB (left side)
and IM-PB (right side) learners: this represents for each complex out-
come space the percentage of time each procedural space would be

chosen
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Chapter 5

Yumi industrial robot learning
complex hierarchical tasks on a
tangible interactive table

In this chapter, I am interested in replicating the results I observed in the previous
chapter, but this time using a real-world robot, the Yumi robot from ABB, in a
realistic setup. I study first a simulated version of this real-world setup. I want to see
if my algorithm is still relevant in the more realistic context on an industrial robot.
Then I study the real physical version of this setup. The testing on the real physical
setup being very long (more than one month for one run of one learning algorithm),
I decided to emphasize on the simulation results, which were faster to obtain (less
than 10 days per run). However, I wanted to see if using those simulation results are
relevant by performing one run for the two best learning algorithms in simulation on
the actual real setup. Afterwords, I describe a way of introducing transfer learning in
the simulated setup, so as to bootstrap the learning of my SGIM-PB agent. The idea
is to transfer the usable and relevant knowledge, from a previous learning process,
to a new learner with a different learning context. In this exploratory work, I looked
at a small change where a two-arms robot, previously trained on its right arm has to
start again only with its left arm.

5.1 Simulated experiment

In this part, I describe the experimental setup using a real-life industrial robot, on
which I compare my different algorithms. I want to confirm the results obtained in
Chapter 4 on a realistic setup.

I designed an experimental setup, in which the 7 DOF right arm of an industrial
Yumi robot by ABB can interact with an interactive table and its virtual objects. It
can learn an infinite number of hierarchically organized tasks regrouped in 5 types
of tasks, using sequences of motor actions of unrestricted size. This experimental
setup was first introduced in (Duminy, Nguyen, and Duhaut, 2018a).

5.1.1 Setup

Fig. 5.1 shows the robot facing an interactive table. The robot learns to interact
with it using the tip of its arm (the tip of the vacuum pump below its hand). The
position of the arm’s tip on the table is noted (x0, y0). Two virtual objects (disks
of radius R = 4cm) can be picked and placed, by placing the arm’s tip on them and
moving it at another position on the table. Once interacted with, the final positions of
the two objects are given to the robot by the table, respectively (x1, y1) and (x2, y2).
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interactive table

FIGURE 5.1: Experimental setup for the Yumi simulated experiment

Only one object can be moved at a time, otherwise the setup is blocked and the
robot’s motion cancelled. If both objects have been moved, a sound is emitted by
the interactive table, parametrised by its frequency f , its intensity level l and its
rhythm b. The emitted sound depends on the relative position of both objects and
the absolute position of the first object. The sound parameters are computed as
follow:

f = (D/4 − dmin)4/D (5.1)
l = 1 − 2(log(r)− log(rmin))/(log(D)− log(rmin)) (5.2)
b = (|ϕ|/π) ∗ 0.95 + 0.05 (5.3)

where D is the diagonal of the interactive table, rmin = 2R, (r, ϕ) the polar co-
ordinate of the second object in the system centred on the first one, and dmin is the
distance between the first object and the closest table corner (see Fig. 5.3).

The motions of the Yumi robot are executed using a physical simulation (using
the Robotstudio software by ABB). The interactive table and its behaviour is simu-
lated and its state is refreshed after each primitive motor action executed. The robot
is not allowed to collide with the interactive table. In this case, the motor action is
cancelled and reaches no outcomes. The arm itself has 7 DOF. Before each attempt,
the robot is set to its initial position and the environment is reset.

5.1.2 Experiment variables

Action spaces

The motions of each joint are controlled by Dynamic Movement Primitives (DMP).
To each joint is attached a one dimensional DMP ai controlling it, parametrised by
the end joint angle g(i), and one basis functions for the forcing term, parametrized
by its weight w(i). I am using the original form of the DMP from Pastor et al., 2009
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FIGURE 5.2: Representation of the interactive table: the first object is
in blue, the second one in green, the produced sound is also repre-

sented in top left corner

and I keep the same notations. A primitive motor action is simply the concatenation
of those DMP parameters for all joints:

θ = (a0, a1, a2, a3, a4, a5, a6) (5.4)

where ai = (w(i), g(i)) (5.5)

Two or more primitive actions (πθ0 , πθ1 , ...) can be combined in an action se-
quence π.

Task spaces

The task spaces the robot learns are hierarchically organized:

• Ω0 = {(x0, y0)}: the positions touched by the robot on the table;

• Ω1 = {(x1, y1)}: the positions where the robot placed the first object on the
table;

• Ω2 = {(x2, y2)}: the positions where the robot placed the second object on the
table;

• Ω3 = {(x1, y1, x2, y2)}: the positions where the robot placed both objects;

• Ω4 = {( f , l, b)}: the sounds produced by the table;

The outcome space is a composite and continuous space Ω =
�5

i=0 Ωi, containing
subspaces of 2 to 4 dimensions. Multiple interdependencies are present between
tasks: controlling the position of either the blue object (Ω1) or the green object (Ω2)
comes after being able to touch the table at a given position (Ω0); moving both objects
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FIGURE 5.3: Representation of task hierarchy of the simulated Yumi
experimental setup

(Ω3) or making a sound (Ω4) comes after being able to move the blue (Ω1) and the
green object (Ω2). This task hierarchy is represented on Fig.??.

In this setup, my intuition is that a learning agent should start by making a good
progress in the easiest task Ω0, then Ω1, Ω2. Once it mastered those easy tasks, it can
reuse that knowledge to learn to achieve the most complex tasks Ω3 and Ω4. I will
particularly focus on the learning of the Ω4 task space and the use of the procedure
framework for it. Indeed in this setup, the relationship between a goal outcome in
Ω4 and the necessary positions of both objects (Ω1, Ω2) to reach that goal are not
linear. So with this setup, I test if the robot can learn a non-linear mapping between
a complex task and a procedural space.

5.1.3 The teachers

To help the SGIM-PB learner, procedural teachers (with a strategical cost K(σ) = 5)
were available for every outcome space except Ω0. Each teacher is only capable to
give procedures according to its outcome space of expertise, knows the task hierar-
chy and indicate procedures according to a construction rule:

• ProceduralTeacher1 (ω1 ∈ Ω1): (ω0, ω�
0) where ω0 ∈ Ω0 is equal to the initial

position of the first object on the table, and ω�
0 = ω1 ∈ Ω0 to its desired final

position;

• ProceduralTeacher2 (ω2 ∈ Ω2): (ω0, ω�
0) where ω0 ∈ Ω0 is equal to the initial

position of the second object on the table, and ω�
0 = ω2 ∈ Ω0 to its desired final

position;

• ProceduralTeacher3 (ω3 = (x1, y1, x2, y2) ∈ Ω3): (ω1, ω2) where ω1 = (x1, y1) ∈
Ω1 is equal to the first object desired final position on the table, and ω2 =
(x2, y2) ∈ Ω2 to that of the second one;

• ProceduralTeacher4 (ω4 ∈ Ω4): (ω1, ω2), where ω1 ∈ Ω1 is the final position of
the first object, chosen as to both be on the semi-diagonal going from bottom-
right corner to the centre of the table and corresponding to the desired sound
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frequency, and ω2 ∈ Ω2 is the final position of the second object which relative
position to first one corresponds to the desired sound level and rhythm.

I also added different configurations of action teachers (with a strategical cost of
K(σ) = 10), each expert of one outcome space:

• ActionTeacher0 (Ω0): 11 demos of primitive actions;

• ActionTeacher1 (Ω1): 10 demos of size 2 actions;

• ActionTeacher2 (Ω2): 8 demos of size 2 actions;

• ActionTeacher34 (Ω3 × Ω4): 73 demos of size 4 actions.

5.1.4 Evaluation method

To evaluate my algorithm, I created a benchmark linearly distributed across the Ωi,
of 19,200 points. The evaluation consists in computing mean Euclidean distance be-
tween each of the benchmark outcomes and their nearest neighbour in the learner
dataset. When the learner is incapable to at least reach the outcome space, the eval-
uation is set to 5. The evaluation is repeated regularly across the learning process.

Then to assess the efficiency of my algorithm, I am comparing the results of the
following algorithms:

• RandomAction: random exploration of the action space ΠN;

• IM-PB: autonomous exploration of the action space ΠN and the procedural
space Ω2 driven by intrinsic motivation;

• SGIM-ACTS: interactive learner driven by intrinsic motivation. Choosing be-
tween autonomous exploration of the action space ΠN and mimicry of one of
the action teachers;

• SGIM-PB: interactive learner driven by intrinsic motivation. Choosing be-
tween autonomous exploration strategies (either of the action space or the pro-
cedural space) and mimicry of one of the available teachers procedural teach-
ers and ActionTeacher0.

Each algorithm was run 10 times (results averaged on all runs). I also added
another result as a threshold corresponding to the evaluation of a learner know-
ing only the combined skills of every action teachers for the whole learning pro-
cess, called Teachers. Each run takes a total average of 7 days to complete the
25,000 learning iterations. The code used for this experiment is available at ������
�����������������������������������������.

5.1.5 Results

Evaluation performance

The Fig. 5.4 shows the global evaluation of all tested algorithms, which corresponds
to the mean error made by each algorithm to reproduce the benchmarks with respect
to the number of complete sequences of motor actions tried during the learning. We
can see that both autonomous learners (RandomAction and IM-PB) have higher final
levels of error than the others, which shows this setup was tough to learn without
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FIGURE 5.4: Evaluation of all algorithms throughout learning pro-
cess, final standard deviations are given in the legend

demonstrations. I also show that both the SGIM-PB and the SGIM-ACTS learners
have errors dropping lower than the Teachers result (in black), showing they went
further than the provided action demonstrations. And if we look at the values of
final standard deviation for each algorithm, we can see that these results are pretty
consistent among all runs. Also both have about the same final evaluation, SGIM-PB
even slightly outperforming SGIM-ACTS, showing that procedural teachers can re-
place action teachers for helping learning complex tasks. If we look at the evaluation
per outcome space, on Fig. 5.5, we also see that both autonomous learners were not
able to move any of the objects as they did not reach any of the complex outcome
spaces Ω1, Ω2, Ω3, Ω4. Moreover, both SGIM learners have similar final evaluation
measures for the Ω0, Ω1, Ω2 spaces and SGIM-PB outperforms SGIM-ACTS on the
most complex tasks Ω3, Ω4. Thus, procedural teachers are well adapted to tackle
the most complex and hierarchical outcome spaces.

Analysis of the sampling strategy chosen for each goal

If we look at the learning process of the SGIM-PB learner, we can see the proportion
of strategical choices made by the learner at the beginning of each episode. Fig. 5.6
shows those choices per outcome space and strategy, and we see that the SGIM-PB
learner was capable to organize its learning process. We can see that the learner
spent most of its time learning the most complex outcome spaces Ω3, Ω4 and es-
pecially the highest dimension space Ω3. Also the learner spent most time using
autonomous exploration strategies, which reduces the need for the teachers atten-
dance. We also see that the learner explored mostly the procedural space for the
most complex outcome spaces Ω3, Ω4, while more relying on action exploration for
the least complex outcome space Ω0. We can also see that the learner figured on the
overall which teacher was more appropriate for each outcome space. Even though it
used almost equally ProceduralTeacher 3 and 4 for the Ω4 space as those spaces are
related.
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FIGURE 5.5: Evaluation of all algorithms per outcome space (Rando-
mAction and IM-PB are superposed on all evaluations except for Ω0)

FIGURE 5.6: Choices of strategy and goal outcome for the SGIM-PB
learner

Length of the sequence of primitive actions

To see if the SGIM-PB learner was capable to adapt the complexity of its actions to
the task at hand, I analysed which action size would be chosen by the local action
optimization function, for each point of the evaluation testbench. I computed this
percentage for three outcome spaces of increasing complexity : Ω0, Ω1 and Ω4. I
showed it on Fig. 5.7. We can see that SGIM-PB is able to limit the size of its
actions: using mostly primitive actions and 2-primitive actions for Ω0, 2-primitive
actions for Ω1, and 4-primitive actions for Ω4. Although, it could be wondered why
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FIGURE 5.7: Percentage of actions chosen per action size by the SGIM-
PB learner for each outcome space

the Ω0 outcome space had been associated with size 2 actions, and not only prim-
itives. This is certainly due to the fact that SGIM-PB set goals in the Ω0 outcome
space far fewer times than on the more complex outcome spaces (2000 times against
more than 18,000 times for Ω3 and Ω4). So it tried a lot of action sequences which
reached Ω0 as any action that moves any object or makes sound (Ω1, Ω2, Ω3, Ω4) also
touches the table.

5.1.6 Conclusion

This experiment showed the SGIM-PB learner is adapted to learn a set of multiple
hierarchical tasks on such a real-world setup. It is capable to learn better than the
other algorithms, but also it learns quickly, owing to the bootstrapping effect of the
teachers. The interesting observation we can do is that, even deprived of action
teachers for the complex tasks Ω1, Ω2, Ω3 and Ω4, the SGIM-PB learner was capa-
ble to outperforms the other algorithms on these outcome subspaces. This shows
that in a setup with a hierarchical set of tasks, the procedural teachers are sufficient
to bootstrap the learning process. They even enable SGIM-PB to outperform the
learner SGIM-ACTS which had action teachers for such tasks. This confirms the
results I obtained on Chapter 4 indicating that both teachers are complementary
and procedural teachers are particularly good with the most complex tasks.

Without surprise for us, the SGIM-SAHT architecture is still able to self-organize
its learning process on this realistic setup. The SGIM-PB learner correctly assessing
the teachers’ domains of expertise, and switching from exploring actions mainly
for the simplest tasks Ω0, Ω1 and Ω2 to exploring mainly procedures for the most
complex ones Ω3 and Ω4.

It is also capable of adapting the complexity of its action sequences to that of the
task at hand. Although it is not perfect at it, it still figures out the optimal action se-
quence size to use depending on the task in average. In next section, I compare both
SGIM-PB and SGIM-ACTS (the second better learning algorithm in this experiment)
on a physical version of this setup. The setup has been slightly modified with the
addition of a more complex outcome subspace, for which both learners are deprived
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of human advice. This so to confirm my belief that the procedural framework, ow-
ing to the possibility to combine previous knowledge, is well suited to explore such
a space.

5.2 Physical experimental setup

In this experiment, I want to compare both SGIM-ACTS and SGIM-PB on a physical
setup. As mentioned earlier, the setup was slightly modified with the addition of a
new task more complex, for which no teacher repertoire is built. This modification
was added to see whether my SGIM-PB learner is able to tackle such a highly hierar-
chical space autonomously better thanks to the autonomous exploration of the pro-
cedure space strategy. Another change I made was to alter the procedural teacher
strategy so as to make it more similar to the action teachers, with a repertoire of
procedural demonstrations, which I compare with the repertoires of actions for the
teachers of SGIM-ACTS. The outcomes of the repertoires of both kinds of teachers
are identical to see if SGIM-PB still performs better on the complex tasks, with a
limited number of procedure demonstrations.

5.2.1 Description of the environment

This experimental setup is quite similar to the one with a simulated Yumi robot de-
scribed in section 5.1. Only this time a real Yumi robot is used in conjunction with a
real interactive table. The interactive table used for this experiment is described in
(Kubicki, Lepreux, and Kolski, 2012) (Kubicki et al., 2016). The dimensions of the ta-
ble are the same than the simulated one and the objects, also virtual and managed by
the interactive table, are positioned at the same spots. The only addition to the setup
was a sixth type of outcome in the form of a maintained sound. After moving both
objects on the table, the same sound ( f , l, b) is emitted in a burst, but if the arm’s tip
is detected by the table to a new position on the table, the sound is now maintained
for a duration t proportional to the distance between the arm’s tip detected position
and the second object current position: t = d2/D where d2 is the distance between
the arm’s tip and object 2 on the table and D is the table diagonal. A picture of this
setup is shown on Fig. 5.8.

5.2.2 Formalization of tasks and actions

The actions are encoded using Dynamic Movement Primitives, as described in 5.1.2
with the notations used in 5.4.

The task spaces the robot learns are hierarchically organized:

• Ω0 = {(x0, y0)}: the positions touched by the robot on the table;

• Ω1 = {(x1, y1)}: the positions where the robot placed the first object on the
table;

• Ω2 = {(x2, y2)}: the positions where the robot placed the second object on the
table;

• Ω3 = {(x1, y1, x2, y2)}: the positions where the robot placed both objects;

• Ω4 = {( f , l, b)}: the burst sounds produced by the table;

• Ω5 = {( f , l, b, t)}: the maintained sound produced by the table.
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FIGURE 5.8: Real Yumi setup

FIGURE 5.9: Representation of task hierarchy of the real physical
Yumi experimental setup

The outcome space is composite and continuous: Ω =
�5

i=0 Ωi. This task hier-
archy is similar to the one presented in section 5.1.2, with the addition of a higher
hierarchical task, which is the maintained sound Ω5. It is is represented on Fig. 5.9.
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5.2.3 Teachers

In this experiment, I wanted to delve into the differences between SGIM-ACTS and
SGIM-PB in terms of learning ability. So as to put them on an equal footing, I
changed the procedural teacher strategy, which now works the same way that the
action teachers do. Instead as a function building an adapted procedure on the fly to
the learner’s request, the procedural teacher now has a demonstration dataset, and
provides the procedure reaching the closest outcome to the one asked. To maximize
their similarity in knowledge, I built the teachers dataset for 4 of the most complex
tasks (Ω1, Ω2, Ω3 and Ω4) for both action and procedural teachers the same way. So
each of those teachers have the demonstrations reaching the same outcomes respec-
tively. An extra action teacher was added to provide demonstration for the simplest
outcome space Ω0:

• ActionTeacher0 (Ω0): 9 demonstrations of primitive actions;

• ActionTeacher1 (Ω1): 7 demonstrations of size 2 actions;

• ActionTeacher2 (Ω2): 7 demonstrations of size 2 actions;

• ActionTeacher3 (Ω3): 32 demonstrations of size 4 actions;

• ActionTeacher4 (Ω4): 7 demonstrations of size 4 actions;

The corresponding demonstrations for the procedural teachers, correspond to
the way the primitive actions from ActionTeacher0 were composed together to build
the demonstration repertoires for the teachers of the complex tasks:

• ProceduralTeacher1 (ω1 ∈ Ω1): (ω0, ω�
0) where ω0 ∈ Ω0 is equal to the initial

position of the first object on the table, and ω�
0 = ω1 ∈ Ω0 to its desired final

position;

• ProceduralTeacher2 (ω2 ∈ Ω2): (ω0, ω�
0) where ω0 ∈ Ω0 is equal to the initial

position of the second object on the table, and ω�
0 = ω2 ∈ Ω0 to its desired final

position;

• ProceduralTeacher3 (ω3 = (x1, y1, x2, y2) ∈ Ω3): (ω1, ω2) where ω1 = (x1, y1) ∈
Ω1 is equal to the first object desired final position on the table, and ω2 =
(x2, y2) ∈ Ω2 to that of the second one;

• ProceduralTeacher4 (ω4 ∈ Ω4): (ω1, ω2), where ω1 ∈ Ω1 is the final position of
the first object, chosen as to both be on the semi-diagonal going from bottom-
right corner to the centre of the table and corresponding to the desired sound
frequency, and ω2 ∈ Ω2 is the final position of the second object which relative
position to first one corresponds to the desired sound level and rhythm.

The action teachers were provided to the SGIM-ACTS learner, while the SGIM-
PB algorithm had all procedural teachers and the action teacher for Ω0. No teacher
was provided to both learners for the most complex outcome space Ω5, as to com-
pare the autonomous exploration capability of both learners.
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FIGURE 5.10: Global evaluation of the physical Yumi experiment

5.2.4 Evaluation method

For this experiment, the same evaluation method as in 5.1.4 is used, except that a
new evaluation testbench of 10,000 points has been added for the Ω5 outcome space.
So now the testbench for the whole evaluation totalizes 29,200 points.

For this experiment, only two algorithms have been compared, due to a lack
of time for the experiment. The SGIM-ACTS algorithm as well as the SGIM-PB one.
Both algorithms were run once for the experiment, so the results provided in the next
subsection are advanced results. Each run takes a total of 30 days to complete the
20,000 learning iterations. The code used for this experiment is available at ������
�����������������������������������������.

5.2.5 Results

Evaluation performance

Fig. 5.10 shows the comparative global evaluation results of SGIM-PB and SGIM-
ACTS. SGIM-PB is capable of learning much further than SGIM-ACTS, and keeps
on progressing throughout the learning process. In order to understand this huge
gap between both algorithms, we need to look at the evaluation measure evolution
for each individual outcome space.

Fig. 5.11 shows that excepting the first two outcome spaces Ω0 and Ω1, SGIM-
PB outclasses SGIM-ACTS in terms of final learning capabilities. More generally,
both algorithms are capable of converging very quickly, owing to the bootstrap-
ping effect of the interactive strategies. SGIM-PB teachers for the complex out-
comes (Ω1, Ω2, Ω3, Ω4) only gives procedures, which necessitates to first learn the
components simplier outcomes before being able to exploit them for reaching more
complex ones, whereas SGIM-ACTS can directly request actions from its teachers,
leading to more immediate results. However, while converging slightly slower than
SGIM-PB, it still takes less than 1,000 iterations for it to catch up with SGIM-ACTS
in terms of evaluation convergence. Furthermore, SGIM-PB is capable of progress-
ing throughout the experiment while SGIM-ACTS quickly stagnates after only 5,000
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FIGURE 5.11: Evaluation for each outcome space of the physical Yumi
experiment

iterations. For the Ω5 outcome space, both algorithms could only rely on their au-
tonomous exploration strategies, as no teacher was provided. SGIM-PB, owing
to the procedure framework to reuse the knowledge acquired for the other out-
come spaces, was able to explore in this outcome space while SGIM-ACTS was
not capable to at least reach it once.

Analysis of the sampling strategy chosen for each goal

If we focus on the SGIM-PB results on this experiment, we can see it was capable
of correctly self-organize its learning process, by correctly peak the teacher most
adapted to the goal at hand (see Fig. 5.12). There is however one exception, as it
appears that the learner chose the ProceduralTeacher4, giving procedures for the Ω4
outcome space, with target outcome in Ω3. Though suboptimal, it can be explained
by the fact producing sound (Ω4) induces moving both objects (Ω3), so this teacher
can indirectly provide demonstrations for this outcome space.

Length of actions chosen and task hierarchy discovered

I wanted to see whether SGIM-PB was able to learn both the task hierarchy of this
setup, and the complexity of the different outcome spaces.

That is why, after the learning process, I subjected my learner to the evaluation
testbench, recording which procedural space and which size of actions the local ex-
ploration method would use to build the procedure and action reaching each out-
come test point. The results of this analyzes are presented as histograms, Fig. 5.13 for
the action sequence complexity on 4 incrementally more complex outcome spaces
(Ω0, Ω1, Ω4, Ω5), and Fig. 5.14 for the procedural spaces chosen for each outcome
space.

We can see on Fig. 5.13, that the SGIM-PB learner is capable to adapt the com-
plexity of its action sequences to the targeted outcome. It chooses short actions of
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FIGURE 5.12: Number of choices of each interactive strategy and goal
outcome space during the learning process

FIGURE 5.13: Percentage of actions chosen per action size by the
SGIM-PB learner for each outcome space

size 1 or 2 for the simplest outcome space Ω0, size 2 actions mostly for Ω1, while
using longer actions of size 4 for producing sound (Ω4), and it uses size 5 actions for
the most complex outcome space (Ω5).

Fig. 5.14 shows SGIM-PB was able to learn the task hierarchy. For each out-
come space is choosing mostly the same procedural space than the one used by the
procedural teacher expert of this outcome space. It is even capable to learn the task
hierarchy in the absence of provided teacher for the Ω5 outcome space. The learner
found that to produce a maintained sound (Ω5), it simply has to produce a sound
(Ω4) and then put its arm’s tip (Ω0) at a new position on the interactive table.
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FIGURE 5.14: Task hierarchy discovered by the SGIM-PB learner: this
represents for each complex outcome space the percentage of time
each procedural space would be chosen for the physical yumi exper-

iment

5.2.6 Conclusion

The results of this experiment confirm the simulation results observed in section 5.1.
SGIM-PB is able to outperform SGIM-ACTS on a real physical setup, SGIM-ACTS
which is the best action-only developmental learner of the simulated experiment. It
also proves the ability of the SGIM-SAHT architecture to self-organizes the learning
process. The SGIM-PB algorithm can also discover and exploit the task hierarchy
to learn further, thanks to the procedure framework. It is also capable to correctly
assess the complexity of each outcome space at the end of its learning process.

Another conclusion of this experiment is the apparent superiority of demon-
strated procedures for complex outcomes over demonstrated actions. At the cost
of a slightly slower convergence, the learner seems to learn better in the end. And
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this, while the time needed to record the demonstrated procedures, which only re-
quires to select the two procedure component for each demonstration, is far shorter
than the time needed to record a demonstrated action. Indeed, because of the corre-
spondence problem, showing the robot a action is done using kinaesthetic.

In the next section, I investigate another potential advantage of the procedure
framework. I study if the procedural knowledge can be easily transferred between
two learning agents on similar setups.

5.3 Transfer learning

Transfer learning (Pan and Yang, 2010) (Taylor and Stone, 2009) (Croonenborghs,
Driessens, and Bruynooghe, 2008) describes an ensemble of techniques that address
the problem of adapting a learning agent to changes in the environment he has
learned, without restarting from scratch the learning process. This is especially true
in cases where building a training dataset is expensive or impossible. These tech-
niques instead, focuses on giving the learner the capability to reuse the old training
data and adapt them to the new circumstances.

I wanted to see if my SGIM-PB learner could, owing to transfer learning tech-
niques, have an advantage when its environment changes during the learning pro-
cess (i.e. robot displacement or even change of robot type altogether) so that it
doesn’t have to restart from scratch. In particular, I argue the procedures frame-
work is a good way to transfer data after such a change.

5.3.1 Experimental setup

I reused the simulated Yumi setup, described in 5.1. I let the SGIM-PB learner exer-
cises on the setup for a complete run duration of 25,000 iterations. Then, I stopped
the learning process, and forced the robot to use its left arm instead of its right arm
(it used the right arm for the whole learning process up to this point). Then the
robot has to adapt to the change as rapidly as possible in order to learn in this new
configuration. The primitive action space Π and outcome space Ω are the same, but
the individual actions have all to be relearned. A new revised action teacher is pro-
vided to the learner for the Ω0 outcome space, and the same procedural teachers are
available to it.

The goal for the learner is through the use of transfer learning, to learn faster
thanks to reusing parts of its old knowledge base which are not outdated. And
the parts that are unchanged are the procedures which it had learned as the outcome
spaces and their relationships which were left untouched.

5.3.2 Definition of the problem

To understand transfer learning (Pan and Yang, 2010), we should define two impor-
tant notions first: "domain" and "task".

A "domain" D = {χ, P(X)} consists of two components: a feature space χ and a
marginal distribution P(X) where X = {x1, ..., xn} ∈ χ. An example in a document
classification task is taking each term as binary feature, χ is the space of all term
vectors, and xi corresponds to the ith term vector in some documents, and X is a
particular learning sample. Two domains are different if they have a different feature
space of a different marginal probability distribution.

Given a specific domain D, a "task" t = {Y, f (.)} consists of two components:
a label space Y and an objective predictive function f (.) which is learned from the
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training data, consisting of pairs {xi, yi} and is used to predict the label f (x) of new
instances x. In the same example of a document binary classification task, Y can be
True or False.

Given a target domain DT and task TT, and a source domain DS and task TS,
transfer learning aims at improving the learning of the target predictive function
fT(.) in DT using the knowledge in DS and TS, where DS �= DT or TS �= TT.

Transfer learning techniques are categorized in 3 types according to Pan and
Yang (2010):

• Inductive transfer learning: TS �= TT. Some labelled data in DT are required to
induce fT(.);

• Transductive transfer learning: DS �= DT and TS = TT. No labelled data in DT
are available while a lot are in DS;

• Unsupervised transfer learning: TS �= TT but are related and YS and YT are not
observable. It focuses on solving unsupervised tasks.

5.3.3 Transfer Learning in SGIM-PB

In this experiment, I want the SGIM-PB learner to reuse the procedures previously
learned on the new modified setup. So the outcomes correspond to the features
in the transfer learning notations, while the actions and procedures are viewed as
the labels. This can be counter-intuitive as the actions are the variables the learner
controls to produce the outcomes. However, it must be noted that the SGIM-PB algo-
rithm is trying to learn the inverse model L−1, as it tries to predict which procedure
is more adapted to which outcome. Then P(X) represents the distribution of out-
comes, while f (.) corresponds to the inverse model itself L−1. So in my particular
problem, We can make the following transfer learning assumptions:

• The outcome spaces are the same;

• The action space Π is not the same so YS �= YT;

• P(X) is not the same between the target and source domain;

• The predictive function f (.) is different but related by the procedures;

• Labelled data (both procedures and actions) are available for DS, while only
partial labelled data (procedures only) are available for DT.

From these assumptions, we can deduce that DS and DT, and TS and TT are
respectively different but related for SGIM-PB. We also have access to labelled data
in DT. Therefore my problem lies in the inductive transfer learning category.

For this first attempt at using transfer learning for the SGIM-PB learner, I am
using an offline approach. When the environment of the learner changes, when it
has to switch its controlled arm, a transfer function is applied so as to keep all old
reached outcome reached via a procedure, along with the procedure in question.
So these old transferred data, will only be used when the robot is using the local
exploration of the procedural space substrategy.
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interactive table

FIGURE 5.15: Global evaluation of both learners

5.3.4 Teachers

As the dataset of actions for the Ω0 outcome space, used by ActionTeacher0 in sec-
tion 5.1 was recorded for a Yumi robot right arm, I need to replace it by a new dataset
adapted to its left arm. So I built a new teacher dataset of 11 demonstrations of
primitive actions reaching various positions on the interactive table, including both
objects initial positions.

5.3.5 Evaluation method

To assess my method ability, I used the same evaluation method as in 5.1.4.
I trained a SGIM-PB learner on its right arm for 25,000 iterations, corresponding

to a rather mature learning process. Then I compared two SGIM-PB runs on the
left arm, one starting from scratch, and the other having transferred the procedures
from the mature right-arm SGIM-PB learner. In the following subsection, I refer at
SGIM-PB for the learner starting from scratch on the left arm, and SGIM-TL for
the one using transfer learning. Each was run 3 times and the results given are the
average of those runs.

5.3.6 Results

Fig. 5.15 shows the results of the global evaluation of both learners. We can see
that the learner with the procedures transferred, SGIM-TL, has an initial boost com-
pared to the regular SGIM-PB algorithm. Then after around 500 iterations, both
algorithms have almost the same evaluation measures up to the end. This seems to
show that my transfer learning method is sufficient to bootstrap the early learn-
ing of a SGIM-PB learner, but this advantage does not endure for the full learning
process.

If we look in more details, we can see the evaluation for each particular outcome
space of both algorithms on Fig. 5.16.

The results are really astonishing, as I had expected the transfer learning boot-
strap to be more visible on the most complex tasks, however it appears to be the
opposite. Indeed, SGIM-TL has a significant head start for the outcome space Ω0,
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FIGURE 5.16: Evaluation for each task of both learners

Ω2 and Ω1 to a limited extent. SGIM-TL is also slightly faster in the beginning to
learn on all the other outcome spaces, but this difference is small.

If we look at the procedures the learners are choosing, in order to see if the trans-
ferred procedures have any effect on the learner SGIM-TL, we obtain underwhelm-
ing results. Indeed if I compute at the end of the learning process the procedures
used for each point of the evaluation testbench, which gives us the task hierarchy
discovered at the end of the learning process, we can see that SGIM-TL discovers
the same hierarchy than its model the transfer dataset. This is shown on Fig. 5.17
But this can easily be explained as SGIM-TL is still in the beginning of its learning
process after the experiment (5,000 iteration versus the 25,000 iterations of learning
data in the transfer dataset), so the majority of its procedures comes from this trans-
ferred dataset. However if we look at what both learners have actually used during
their learning process on Fig. 5.18, we don’t see much of a difference between both
learners.

5.3.7 Conclusion

Although I still believe that procedures can be transferred from a mature SGIM-PB
learner to a beginner SGIM-PB learner with a change in its motor control (in this case
using the left arm instead of the right one), this experiment proved that my method
is too simple, and should be modified significantly if I want to reach better results.

However, the early bootstrap which we observe on the learner with the trans-
ferred dataset compared to the regular one makes us hopeful that this method could
be improved to yield better results. I still need to understand why the transfer of
such a huge dataset of procedures seems not to alter the online choices of proce-
dures made by the learner during its learning process.

Implementing a real transfer function, such as to analyze the data before trans-
ferring them, could be a lead to follow in order to develop a reliable transfer learning
mechanism for a SGIM-PB learner. Such a method could use clustering methods to
filter the procedures most helpful to the learner. Also, prolonging the experiment
and examining the results at the end of a longer learning process of 25,000 iterations
would be interesting to see if the transfer has some long term learning benefits.
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interactive table

FIGURE 5.17: Task hierarchy discovered by the learners compared to
the transferred dataset (Transfer dataset on the left column, SGIM-
PB in center one, SGIM-TL on right one): this represents for each
complex outcome space the percentage of time each procedural space
would be chosen for the simulated yumi experiment with transfer

learning
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FIGURE 5.18: Task hierarchy used by the learners during their learn-
ing process compared to the hierarchy discovered in the transferred
dataset (Transfer dataset on the left column, SGIM-PB in center one,
SGIM-TL on right one): this represents for each complex outcome
space the percentage of time each procedural space is chosen for the

simulated yumi experiment with transfer learning
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Chapter 6

Conclusion

6.1 Conclusion of the manuscript

In this thesis, I tackled the learning of a set of multiple hierarchically organized
tasks using action sequences. In Chapter 1, I described the life-long learning prob-
lem, in which scope I fall, and its challenges a learning agent has to overcome. Those
challenges are the stochasticity of the agent’s environment, the high-dimensionality
of its sensorimotor space, the unlearnability of some regions of this sensorimotor
space and its unboundedness. To tackle these challenges, I use the principles of
cognitive developmental robotics: a developmental approach, the action-perception
loop, enactivism and trial-and-error. More precisely, I described the different meth-
ods from which I inspire: using temporal abstraction and goal-oriented represen-
tation to learn unbounded motor action sequences, exploiting the dual representa-
tion of tasks and action sequences to discover and exploit the task hierarchy in an
environment, using intrinsic motivation as a guidance mechanism for the learning
process, using interactive strategies to bootstrap this learning process, choosing be-
tween multiple strategies the most appropriate one depending on the task at hand.
In Chapter 2, I developed both the formalization of the learning problem and that of
the SGIM-SAHT learning architecture. This architecture combines intrinsic moti-
vation as a guidance mechanism with multi-task learning, and proposes to use both
autonomous strategies and interactive ones, bootstrapped by a framework built to
discover and exploit the task hierarchy of the environment, by combining skills in a
task-oriented way: the procedure framework. In the previous chapters, different im-
plementations of this architecture were proposed. Their features are shown in Table.
6.1.

I tested my architecture first using simple primitive actions only on a real
physical setup. The first version of the SGIM-SAHT architecture, developped for
this case of simple primitive actions, proved able to self-organize its learning pro-
cess. It was also capable to learn more tasks than other learning algorithms on this
setup, owing to the combined strength of the interactive strategy to bootstrap the
early learning process and autonomous exploration strategy to extend its skills. This
ability to learn a set of hierarchically organized tasks proved the SGIM-SAHT archi-
tecture as potentially adapted to learn sequences of motor actions.

Intrinsic Motivation Action Size Procedure Framework Social Guidance
SGIM-ACTSCL Yes Primitives only No Yes
IM-PB Yes Any Size-2 No
SGIM-PB Yes Any Size-2 Yes
SGIM-SAHT Yes Any Any Yes

TABLE 6.1: Features implemented by all the implementations of the
SGIM-SAHT architecture presented in this thesis
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Then I developed the procedure framework, which by allowing the combina-
tion of previously learned skills through the composition of outcomes, enabled
the discovery and exploitation of the task hierarchy. In this framework, we de-
fine procedures as sequences of previously known outcomes, which are replaced by
the succession of actions reaching those. This framework was made to tackle the
learning of sequences of motor actions in a task-oriented way. This was tested on an
experimental setup with a set of hierarchically organized tasks. It was first tested on
a learner performing autonomous exploration strategies, called IM-PB. Then it was
tested on a more complete implementation of the SGIM-SAHT architecture which
uses interactive strategies, called SGIM-PB. The procedural framework, eased the
learning of the hierarchical set of tasks. The learners having this framework, were
capable to learn more tasks than their respective counterparts. Such learners were
also capable of organizing their learning process, adapting the complexity of actions
used to that of the tasks at hand, and discovering the task hierarchy of the setup. This
framework seemed particularly useful on the most complex and hierarchical tasks,
whereas the use of actions seemed logically preferred on the most simple tasks. For
SGIM-PB, a new way to provide demonstrations as procedures was designed in the
mimicry of a procedure teacher strategy. This strategy proved to enable the robot to
focus more on the most useful procedural spaces according to the task at hand.

An experimental setup was designed, using a real physical robot to learn a set of
hierarchical tasks using sequences of motor actions. The test of the SGIM-PB learner
on this setup in simulation, yielded the same results than on the previous one. The
tests on a real physical version of this setup, although not statistically significant for
now, seemed to comfort my results. Also, in this physical test, I delved more deeply
in the comparison of procedure demonstrations and action ones. The results con-
firmed my theory that both are complementary: actions more useful for the simplest
tasks while procedures are better on the complex most hierarchical tasks. Lastly, I
wanted to see how my procedural framework could enable the transfer of the hier-
archical information (i.e. the learned procedures) from a trained SGIM-PB learner
to an untrained different one. This transfer of the procedures proved to bootstrap
the early learning process of a different SGIM-PB robot, though it did not seem to
influence on the long run, and the tasks affected were not the most complex ones as
I anticipated. Moreover, the transfer of procedures did not seem to alter the proce-
dures used by the SGIM-PB learner. This proved that the method I used to transfer
procedures must be refined before producing any significant predictable results.

6.2 Conclusions and limitations

6.2.1 Conclusions of the approach

I showed in this work that a developmental approach, and more precisely a strate-
gical and intrinsically motivated one, can effectively enable a robot to learn mul-
tiple hierarchically organized and inter-related tasks in a complex environment.
This is due to the learner ability to organize its learning process and tackle multiple
tasks using the most appropriate strategies. The ability to exploit the task hierarchy
after discovering it, also contributes in a learner ability to reuse its previous knowl-
edge to tackle the most complex tasks.

In both the cases of a simple action setup like the Poppy experiment and an
action sequence one like the Yumi experiment, the SGIM-SAHT architecture enables
the learner to adapt its learning strategy to the task at hand.
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The use of the procedure framework, gives the SGIM-PB learner an advantage in
learning speed, as well as in learning more tasks in the end. I showed that although
action teachers directly providing sequences of motor actions for complex outcomes
bootstraps the early learning process, the use of procedures, demonstrated or not,
gives an edge to a strategic intrinsically motivated learner on the long run.

And in the absence of teachers, an autonomous intrinsically motivated learner
using the procedural framework showed it outmatched its action-only counterpart.

Both the IM-PB and the SGIM-PB algorithms, showed to be able to adapt the
length of their actions to the task at hand.

The procedural teachers do not only help the SGIM-PB learner to start its learn-
ing process for complex outcome spaces. Once simpler outcome spaces needed have
become mature, they also learn it to focus on the most useful procedural spaces. This
showed the ability of my algorithmic architecture to discover and exploit the task
hierarchy. Also the very existence of the procedure framework, gives human teach-
ers another mean to provide demonstrations to a learning agent. I hypothesize that
this way of providing demonstrations is easier for the teacher, especially for the most
complex tasks and if they are non-robotic but only task experts and would have a
hard time handling the robot to provide it actions.

The procedure framework also seems to enable the transfer of knowledge when
the environment of the learner changes. That transferred knowledge is the ensemble
of all procedures tested along with their reached outcomes. This transfer is however
not significant and I believe that refining the transfer method will yield better results.

6.2.2 Limitations of the approach

However, some work still needs to be done on the subject. Indeed some preparatory
work has been presented in this thesis, and they still need to be confirmed by a
more statistical analysis. But more importantly, the current approach suffers from
different drawbacks.

While the procedures do enable a learner to combine previously learned skills
to build new more complex ones, not a great focus has been given to the efficiency
of the action sequences built. Indeed while the algorithm does adapt the length of
its actions to the task at hand, it still combine way more primitive actions than
necessary. This is due to the fact that the main factors to build procedures is the
accuracy of the attempt, rather than some efficiency, or energy spent in the process.
A way of tackling this issue could be to integrate the energy or time spent during
each attempt into the performance metric more aggressively to balance the ratio be-
tween accuracy and efficiency, instead of just adding a limitation factor as it is now
the case. Another method would be to formalize a 2-variables progress, one being
the accuracy progress already in use, the other being a progress in efficiency. This
would enable the learner to come back to the study of an already known outcome
space region, when a breakthrough shows it could be reached using shorter actions.
And a third method would be to add an analysis process using for example clus-
tering techniques, so as to form classes of actions supposedly able to cover whole
outcomes regions, and prioritize the use of the most efficient ones.

Also, the initial state of the environment, before performing an action (whether
from rest state or between two primitive actions execution) is not taken into ac-
count. So when combining actions together, the first one was actually recorded from
the same starting point, while the second one will necessary start from a different
position, and even a different environment configuration (i.e. context). This could
generate situations in which a first action is executed (according to a procedure) and
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would reach the given outcome (the first component of the procedure) and possibly
some other outcome as well (in a different outcome space), then the second action
could undo what the first one did, or been unable to do its part because of another
outcome reached by the first action. This problem is amplified by the fact the learner
does not know when an outcome is produced, if it comes from the action it just did,
or if this is just a consequence already observed before that has not been modified
by the last action executed.

Moreover, it can sometimes generate suboptimal behaviours where a procedure
outcome is only due to one of its components. More precisely, it can reach the target
outcome then move on and do something else which does not invalidate the first
step. Then the robot will consider this procedure reached the correct outcome, and
its procedural space, though suboptimal, would have more chances of being reused
later for the same target outcome space. For example, in the Yumi simulated ex-
periment, the robot could decide to move the first object, by applying a procedure
moving both objects. This would lead to more complex procedures and actions for
relatively simple target outcomes. This latter problem being due both to not using
the contexts, and amplified by the quasi-absence of a measure of the robot efficiency
from the algorithm decisions. This problem could become intractable, if we autho-
rize the learner to combine an unconstrained number of outcomes in a procedures.

Lastly, while the low-level models and functions used in this work are voluntar-
ily simple, using more complex models, such are neural networks instead of linear
regression, or simply taking time to optimize certain hyperparameters (like the γ fac-
tor used to take action size into account in NN-search), could make these algorithms
more powerful. This is especially true for the exploitation of all combined knowl-
edge by the inverse model, for which a better method of generalizing its knowledge
could unlock new possibilities for our architecture in real-life applications.

6.2.3 Perspectives

I see different ways to enhance this work. They are based on problems encountered
and identified during this thesis.

First, the learner is only able to reuse actions and procedures starting from the
initial rest pose, as they could lead to various different outcomes if starting from an-
other context. This prevent the learner to reuse parts of actions and procedures, not
starting from rest pose. Enabling the learner to do so, would multiply possibilities
for the learner to reuse its knowledge. It could be accomplished by introducing the
contexts in the SGIM-SAHT architecture, as a new space to be exploited. Then the
robot could record all encountered contexts, and identified which are close so that it
could more easily combine actions based on their final and initial context. However,
this could dramatically increase the complexity of the learning process, and would
also lead to the problem of balancing between contexts and target outcomes to deter-
mine the action or procedure to apply. This problem could tackled by allowing the
learner to extract itself the features (parameters of actions, contexts or outcomes)
that influences a specific task. This could, for example, enable the learner to ignore
the context in situations where it does not influence the outcome.

Second, actions are combined using procedures in my work, and those proce-
dures are built using demonstrations or exploration of the procedural space. This
exploration can be quite slow, and could become intractable when enabling the for-
mation of procedures of unbounded size. Combining this approach with planning
could help explore this infinite dimensional space of actions more effectively. A
planning process could build unbounded sequences of outcomes or actions, from the
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learner knowledge base, therefore speeding up the exploration. In order to do that,
we would need to rely more on the forward model learned by the robot. However,
this planning process should also be optimized so as not to slow done the whole
learning process. This could be done by discretizing the environment in classes of
actions and outcomes.

Third, whenever the learner is trying to autonomously reach a specific outcome
in the environment, whether in the beginning of its learning process when its knowl-
edge base is really sparse or at the end when it is denser, it starts by searching in its
whole database and build a neighbour set of actions or procedures, and outcomes.
This process is quite slow and is growing slower when the dataset grows. Working
at a representational level and extract global and local rules from its database and
apply them to similar situations instead of always looking in its whole database,
could speed up the process while allowing the learner to reflect on its knowledge
and optimize them. Clustering and tree- or graph-based representation techniques
could be used for such purpose. These would also add the benefit of providing a
human expert observer with a better understanding of the learner’s knowledge, and
so allowing him to help it more accordingly.

Last, when a human expert is teaching the robot in my approach, it is only at the
learner’s request. So, if the teacher observes the learner is performing very poorly, by
spending a lot of time exploring uninteresting spaces (known as such by the teacher
but not by the learner), or overoptimizing actions to reach specific outcomes in an
already vastly known region because it did not discover other regions, it must wait
for the learner to ask for help. This could take some time, giving teachers the ability
to intervene when they saw fit, could enable them to bias the learner’s exploration
towards what they deem more important faster. This could be done by allowing
them to use scaffolding or provide external rewards, leading to a more complete and
unified implementation of a developmental robotic approach. Scaffolding is done by
a teacher to place its student in a state that eases its learning, for example a parent
holding its infant hands or hips to help the learning of walk. I could also introduce
other social guidance notions such as emulation, which could show to the learner
what tasks are more useful and feasible in the environment.

6.3 Contributions

In this thesis, I have focused on the learning of a set of complex hierarchically or-
ganized tasks. I showed that a strategical intrinsically motivated learner is well
equipped to learn in such an environment, owing to its ability to select the right
task to learn, the right method to learn it, at the right time. The ability to combine
both autonomous exploration and interactive strategies is particularly useful, as it
enables the learner to combine those methods strengths while alleviating their weak-
nesses. I also showed that taking a task-oriented approach to enable a learner to
compose known skills together is well indicated into enhancing the learning in
such environment. I also showed why this framework inside a strategical intrin-
sically motivated learner is efficient, due to the ability for such learner to adapt its
strategy and the complexity of its actions to the task at hand.

6.4 Takeaway message

One of the key aspects in learning complex tasks with sequences of motor actions,
is the ability to combine simplier skills together in a task-oriented way so as to
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build new more complex ones. Without this way of combining and reusing simplier
skills, a learning agent would be overwhelmed by the vastness of its environment,
and that of its own effectors. Also, combining interactive learning and autonomous
exploration into a single strategical intrinsically motivated learner clearly showed its
potency in such environment, by both bootstrapping early development via human
advice, then decreasing the human load by relying on self-exploration on the long
run. Teaching a learner how to combine its skills rather than teaching it new complex
skills from scratch extends the communication tools of the teacher with the robot, by
offering a new promising way for it to help a robot in its learning process.

6.5 Impact

This work could be used outside the sphere of developmental robotics. Indeed,
the algorithms developed in this thesis, could be applied in any machine learn-
ing problem, where an agent has to learn in as few trials as possible how to per-
form its tasks, for multi-task learning in a static environment. But also, a dual-
representation of sequences of actions and outcomes as used in this thesis could also
be observed in human infants learning complex tasks. Experiments could be con-
ducted so as to see how infants learn those complex tasks and how they tend to
reuse their previous knowledge to solve increasingly more difficult problems relat-
ing to motor skills development in sport practice. Also a sociological study could
suggest if this approach of teaching how to combine simple skills rather than teach-
ing the new sportive motor skills from scratch is actually easier and more relevant
for a human teacher.

6.6 Papers

• N. Duminy, S. M. Nguyen, and D. Duhaut, "Strategic and interactive learn-
ing a a hierarchical set of tasks by the Poppy humanoid robot", in 2016 Joint
IEEE International Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob), Sept. 2016, pp. 204-209.

• N. Duminy, S. M. Nguyen, and D. Duhaut, "Learning a set of interrelated
tasks by using sequences of motor policies for a strategic intrinsically moti-
vated learner", in 2018 Second IEEE International Conference on Robotic Comput-
ing (IRC), 2018, pp. 288-291.

• N. Duminy, S. M. Nguyen, and D. Duhaut, "Effects of social guidance on a
robot learning sequences of policies in hierarchical learning", in IEEE Interna-
tional Conference on Systems, Man and Cybernetics (SMC2018), 2018, pp. 3755-
3760.

• N. Duminy, A. Manoury, S. M. Nguyen, C. Buche, and D. Duhaut, "Learning
Sequences of Policies by using an Intrinsically Motivated Learner and a Task
Hierarchy", in the Workshop on Continual Unsupervised Sensorimotor Learn-
ing in 2018 Joint IEEE International Conference on Development and Learning and
Epigenetic Robotics (ICDL-EpiRob), 2018, accepted.

• N. Duminy, S. M. Nguyen, and D. Duhaut, "Learning a Set of Interrelated Tasks
by Using a Succession of Motor Policies for a Socially Guided Intrinsically Mo-
tivated Learner". In: Frontiers in Neurorobotics 12, p. 87.

Découverte et exploitation de la hiérarchie des tâches pour apprendre des séquences de politiques motrices par un robot stratégique et interactif Nicolas Duminy 2018



83

Bibliography

Argall, Brenna D., B. Browning, and Manuela Veloso (2008). “Learning robot motion
control with demonstration and advice-operators”. In: In Proceedings IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, pp. 399–404.

Argall, Brenna D. et al. (2009). “A survey of robot learning from demonstration”. In:
Robotics and Autonomous Systems 57.5, pp. 469 –483.

Arie, Hiroaki et al. (2012). “Imitating others by composition of primitive actions: A
neuro-dynamic model”. In: Robotics and Autonomous Systems 60.5, pp. 729–741.

Asada, Minoru et al. (2009). “Cognitive developmental robotics: A survey”. In: IEEE
transactions on autonomous mental development 1.1, pp. 12–34.

Baram, Y., R. El-Yaniv, and K. Luz (2004). “Online choice of active learning algo-
rithms”. In: The Journal of Machine Learning Research, 5, pp. 255–291.

Baranes, Adrien and Pierre-Yves Oudeyer (2010). “Intrinsically motivated goal ex-
ploration for active motor learning in robots: A case study”. In: Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE, pp. 1766–
1773.

Baranes, Adrien and Pierre-Yves Oudeyer (2013). “Active Learning of Inverse Mod-
els with Intrinsically Motivated Goal Exploration in Robots”. In: Robotics and Au-
tonomous Systems 61.1, pp. 49–73.

Barto, Andrew G, George Konidaris, and Christopher Vigorito (2013). “Behavioral
hierarchy: exploration and representation”. In: Computational and Robotic Models
of the Hierarchical Organization of Behavior. Springer, pp. 13–46.

Barto, Andrew G and Sridhar Mahadevan (2003). “Recent advances in hierarchical
reinforcement learning”. In: Discrete event dynamic systems 13.1-2, pp. 41–77.

Bengio, Yoshua et al. (2009). “Curriculum Learning”. In: Proceedings of the 26th An-
nual International Conference on Machine Learning. ICML ’09. New York, NY, USA:
ACM, pp. 41–48.

Billard, Aude et al. (2007). “Handbook of Robotics”. In: 59. Chap. Robot Program-
ming by Demonstration.

Brooks, Rodney A (1991). “Intelligence without representation”. In: Artificial intelli-
gence 47.1-3, pp. 139–159.

Brown, Solly and Claude Sammut (2012). “A relational approach to tool-use learning
in robots”. In: International Conference on Inductive Logic Programming. Springer,
pp. 1–15.

Cakmak, Maya, C. Chao, and Andrea L. Thomaz (2010). “Designing interactions for
robot active learners”. In: Autonomous Mental Development, IEEE Transactions on
2.2, pp. 108–118.

Chernova, Sonia and Manuela Veloso (2009). “Interactive Policy Learning through
Confidence-Based Autonomy”. In: Journal of Artificial Intelligence Research 34.1,
p. 1.

Colas, Cédric, Olivier Sigaud, and Pierre-Yves Oudeyer (2018). “GEP-PG: Decou-
pling Exploration and Exploitation in Deep Reinforcement Learning Algorithms”.
In: arXiv preprint arXiv:1802.05054.

Découverte et exploitation de la hiérarchie des tâches pour apprendre des séquences de politiques motrices par un robot stratégique et interactif Nicolas Duminy 2018



84 Bibliography

Croonenborghs, Tom, Kurt Driessens, and Maurice Bruynooghe (2008). “Learning
Relational Options for Inductive Transfer in Relational Reinforcement Learning”.
In: Inductive Logic Programming. Ed. by Hendrik Blockeel et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 88–97.

Deci, E.L. and Richard M. Ryan (1985). Intrinsic Motivation and self-determination in
human behavior. New York: Plenum Press.

Duminy, N., S. M. Nguyen, and D. Duhaut (Sept. 2016). “Strategic and interactive
learning of a hierarchical set of tasks by the Poppy humanoid robot”. In: 2016
Joint IEEE International Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob), pp. 204–209.

Duminy, Nicolas, Sao Mai Nguyen, and Dominique Duhaut (2018a). “Effects of so-
cial guidance on a robot learning sequences of policies in hierarchical learn-
ing”. In: IEEE International Conference on Systems, Man and Cybernetics (SMC2018),
pp. 3755–3760.

Duminy, Nicolas, Sao Mai Nguyen, and Dominique Duhaut (2018b). “Learning a set
of interrelated tasks by using sequences of motor policies for a strategic intrinsi-
cally motivated learner”. In: IEEE International Robotics Conference, pp. 288–291.

Duminy, Nicolas, Sao Mai Nguyen, and Dominique Duhaut (2019). “Learning a
Set of Interrelated Tasks by Using a Succession of Motor Policies for a Socially
Guided Intrinsically Motivated Learner”. In: Frontiers in Neurorobotics 12, p. 87.

Elman, J. (1993). “Learning and development in neural networks: The importance of
starting small”. In: Cognition 48, pp. 71–99.

Forestier, Sébastien, Yoan Mollard, and Pierre-Yves Oudeyer (2017). “Intrinsically
Motivated Goal Exploration Processes with Automatic Curriculum Learning”.
In: CoRR abs/1708.02190.

Forestier, Sébastien and Pierre-Yves Oudeyer (2016). “Curiosity-driven development
of tool use precursors: a computational model”. In: 38th Annual Conference of the
Cognitive Science Society (CogSci 2016), pp. 1859–1864.

Giszter, Simon F (2015). “Motor primitives—new data and future questions”. In: Cur-
rent opinion in neurobiology 33, pp. 156–165.

Gottlieb, Jacqueline et al. (2013). “Information-seeking, curiosity, and attention: com-
putational and neural mechanisms”. In: Trends in Cognitive Sciences 17.11, pp. 585–
593.

Grollman, Daniel H and Odest Chadwicke Jenkins (2010). “Incremental learning of
subtasks from unsegmented demonstration”. In: Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on. IEEE, pp. 261–266.

Hari, Riitta (2006). “Action–perception connection and the cortical mu rhythm”. In:
Progress in brain research 159, pp. 253–260.

Held, Richard and Alan Hein (1963). “Movement-produced stimulation in the devel-
opment of visually guided behaviour”. In: Journal of comparative and physiological
psychology 56.5, pp. 872–876.

Hikosaka, Okihide et al. (1999). “Parallel neural networks for learning sequential
procedures”. In: Trends in neurosciences 22.10, pp. 464–471.

Ijspeert, Auke Jan, Jun Nakanishi, and Stefan Schaal (2002). Learning attractor land-
scapes for learning motor primitives. Tech. rep.

Konidaris, G.D. and Andrew G. Barto (2009). “Skill Discovery in Continuous Rein-
forcement Learning Domains using Skill Chaining.” In: Advances in Neural Infor-
mation Processing Systems (NIPS), pp. 1015–1023.

Kubicki, Sébastien, Sophie Lepreux, and Christophe Kolski (2012). “RFID-driven sit-
uation awareness on TangiSense, a table interacting with tangible objects”. In:
Personal and Ubiquitous Computing 16.8, pp. 1079–1094.

Découverte et exploitation de la hiérarchie des tâches pour apprendre des séquences de politiques motrices par un robot stratégique et interactif Nicolas Duminy 2018



Bibliography 85

Kubicki, Sébastien et al. (2016). “Using a tangible interactive tabletop to learn at
school: empirical studies in the wild”. In: Actes de la 28ième conférence francophone
sur l’Interaction Homme-Machine. ACM, pp. 155–166.

Kulkarni, Tejas D et al. (2016). “Hierarchical deep reinforcement learning: Integrat-
ing temporal abstraction and intrinsic motivation”. In: Advances in neural infor-
mation processing systems, pp. 3675–3683.

Lapeyre, Matthieu, Pierre Rouanet, and Pierre-Yves Oudeyer (Oct. 2013). “Poppy
Humanoid Platform: Experimental Evaluation of the Role of a Bio-inspired Thigh
Shape”. In: Humanoids. Atlanta, United States.

Lopes, Manuel and Pierre-Yves Oudeyer (2012). “The strategic student approach for
life-long exploration and learning”. In: Development and Learning and Epigenetic
Robotics (ICDL), 2012 IEEE International Conference on. IEEE, pp. 1–8.

Lungarella, Max et al. (2003). “Developmental robotics: a survey”. In: Connection Sci-
ence 15.4, pp. 151–190.

Machado, Marlos C, Marc G Bellemare, and Michael Bowling (2017). “A laplacian
framework for option discovery in reinforcement learning”. In: arXiv preprint
arXiv:1703.00956.

Melo, Francisco S, Carla Guerra, and Manuel Lopes (2018). “Interactive Optimal
Teaching with Unknown Learners.” In: IJCAI, pp. 2567–2573.

Merrick, Kathryn E (2012). “Intrinsic motivation and introspection in reinforcement
learning”. In: IEEE Transactions on Autonomous Mental Development 4.4, pp. 315–
329.

Muelling, Katharina, Jens Kober, and Jan Peters (2010). “Learning table tennis with a
mixture of motor primitives”. In: Humanoid Robots (Humanoids), 2010 10th IEEE-
RAS International Conference on. IEEE, pp. 411–416.

Nguyen, Sao Mai, Adrien Baranes, and Pierre-Yves Oudeyer (2011). “Bootstrapping
intrinsically motivated learning with human demonstrations”. In: IEEE Interna-
tional Conference on Development and Learning. Vol. 2. IEEE, pp. 1–8.

Nguyen, Sao Mai and Pierre-Yves Oudeyer (2012). “Active choice of teachers, learn-
ing strategies and goals for a socially guided intrinsic motivation learner”. In:
Paladyn Journal of Behavioural Robotics 3.3, pp. 136–146.

Nguyen, Sao Mai and Pierre-Yves Oudeyer (2014). “Socially Guided Intrinsic Moti-
vation for Robot Learning of Motor Skills”. In: Autonomous Robots 36.3, pp. 273–
294.

Oudeyer, Pierre-Yves, Frederic Kaplan, and V. Hafner (2007). “Intrinsic Motivation
Systems for Autonomous Mental Development”. In: IEEE Transactions on Evolu-
tionary Computation 11.2, pp. 265–286.

Pan, S. J. and Q. Yang (Oct. 2010). “A Survey on Transfer Learning”. In: IEEE Trans-
actions on Knowledge and Data Engineering 22.10, pp. 1345–1359.

Pastor, Peter et al. (2009). “Learning and generalization of motor skills by learning
from demonstration”. In: Robotics and Automation, 2009. ICRA’09. IEEE Interna-
tional Conference on. IEEE, pp. 763–768.

Peters, Jan and Stefan Schaal (2008). “Natural Actor Critic”. In: Neurocomputing 7-9,
pp. 1180–1190.

Piaget, J. (1952). The origins of intelligence in children (M. Cook, Trans.) New York: WW
Norton & Co.

Reinhart, René Felix (2017). “Autonomous exploration of motor skills by skill bab-
bling”. In: Autonomous Robots 41.7, pp. 1521–1537.

Rolf, M., J. Steil, and M. Gienger (Sept. 2010). “Goal Babbling permits Direct Learn-
ing of Inverse Kinematics”. In: IEEE Trans. Autonomous Mental Development 2.3,
pp. 216–229.

Découverte et exploitation de la hiérarchie des tâches pour apprendre des séquences de politiques motrices par un robot stratégique et interactif Nicolas Duminy 2018



86 Bibliography

Santucci, V. G., G. Baldassarre, and M. Mirolli (2016). “GRAIL: A Goal-Discovering
Robotic Architecture for Intrinsically-Motivated Learning”. In: IEEE Transactions
on Cognitive and Developmental Systems 8.3, pp. 214–231.

Schaal, S., A. Ijspeert, and A. Billard (2003). “Computational approaches to motor
learning by imitation”. In: Philosophical Transactions of the Royal Society of London.
Series B: Biological Sciences 358.1431, p. 537.

Schaal, Stefan, Christopher G Atkeson, and Sethu Vijayakumar (2002). “Scalable
techniques from nonparametric statistics for real time robot learning”. In: Applied
Intelligence 17.1, pp. 49–60.

Schillaci, Guido, Verena Vanessa Hafner, and Bruno Lara (2012). “Coupled inverse-
forward models for action execution leading to tool-use in a humanoid robot”.
In: Proceedings of the seventh annual ACM/IEEE international conference on Human-
Robot Interaction. ACM, pp. 231–232.

Schmidhuber, J. (2010). “Formal Theory of Creativity, Fun, and Intrinsic Motiva-
tion (1990-2010)”. In: IEEE Transactions on Autonomous Mental Development 2.3,
pp. 230–247.

Silva, B.C. da, G. Konidaris, and Andrew G. Barto (2012). “Learning Parameterized
Skills”. In: 29th International Conference on Machine Learning (ICML 2012).

Stulp, Freek and Stefan Schaal (2011). “Hierarchical reinforcement learning with
movement primitives”. In: Humanoid Robots (Humanoids), 2011 11th IEEE-RAS
International Conference on. IEEE, pp. 231–238.

Sutton R. S., Rafols E. J. Koop A. (2006). “Temporal abstraction in temporal-difference
networks”. In: Advances in Neural Information Processing Systems 18 (NIPS*05).

Sutton, Richard S. and Andrew G. Barto (1998). Reinforcement Learning: an introduc-
tion. MIT Press.

Sutton, Richard S, Doina Precup, and Satinder Singh (1999). “Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning”.
In: Artificial intelligence 112.1-2, pp. 181–211.

Taylor, Matthew E. and Peter Stone (Dec. 2009). “Transfer Learning for Reinforce-
ment Learning Domains: A Survey”. In: J. Mach. Learn. Res. 10, pp. 1633–1685.

Thomaz, Andrea L. and Cynthia Breazeal (2008). “Experiments in Socially Guided
Exploration: Lessons learned in building robots that learn with and without hu-
man teachers”. In: Connection Science 20 Special Issue on Social Learning in Em-
bodied Agents.2,3, pp. 91–110.

Thorndike, E. L. (1898). “Animal intelligence: An experimental study of the associa-
tive processes in animals”. In: The Psychological Review: Monograph Supplements
2.4, pp. i–109.

Thrun, Sebastian (2012). Explanation-based neural network learning: A lifelong learning
approach. Vol. 357. Springer Science & Business Media.

Varela, F., E. Thompson, and E. Rosch (1991). The embodied mind : cognitive science and
human experience. Cambridge, MA: MIT Press.

Découverte et exploitation de la hiérarchie des tâches pour apprendre des séquences de politiques motrices par un robot stratégique et interactif Nicolas Duminy 2018



Titre : Découverte et exploitation de la hiérarchie des tâches pour apprendre des séquences 
de politiques motrices par un robot stratégique et interactif 

Mots clés :  Motivation intrinsèque, Babillage de buts, Apprentissage de tâches multiples, Apprentissage 
interactif, Apprentissage hiérarchique, Apprentissage stratégique 

Résumé :  Il y a actuellement des efforts pour faire 
opérer des robots dans des environnements
complexes, non bornés, évoluant en permanence, au 
milieu ou même en coopération avec des humains. 
Leurs tâches peuvent être de types variés, 
hiérarchiques, et peuvent subir des changements 
radicaux ou même être créées après le déploiement 
du robot. Ainsi, ces robots doivent être capable 
d’apprendre en continu de nouvelles compétences,
dans un espace non-borné, stochastique et à haute 
dimensionnalité. Ce type d’environnement ne peut 
pas être exploré en totalité, le robot va devoir 
organiser son exploration et décider ce qui est le plus 
important à apprendre ainsi que la méthode 
l’apprentissage. Ceci devient encore plus difficile 
lorsque le robot est face à des tâches à complexités 
variables, demandant soit une action simple ou une 
séquence d’actions pour être réalisées. Nous avons  

développé une infrastructure algorithmique 
d’apprentissage stratégique intrinsèquement motivé, 
appelée Socially Guided Intrinsic Motivation for 
Sequences of Actions through Hierarchical Tasks 
(SGIM-SAHT), apprenant la relation entre ses 
actions et leurs conséquences sur l’environnement. 
Elle organise son apprentissage, en décidant 
activement sur quelle tâche se concentrer, et quelle 
stratégie employer entre autonomes et interactives. 
Afin d’apprendre des tâches hiérarchiques, une 
architecture algorithmique appelée procédures fut 
développée pour découvrir et exploiter la hiérarchie 
des tâches, afin de combiner des compétences en 
fonction des tâches. L’utilisation de séquences 
d’actions a permis à cette architecture 
d’apprentissage d’adapter la complexité de ses 
actions à celle de la tâche étudiée. 

Title:  Discovering and exploiting the task hierarchy to learn sequences of motor 

policies for a strategic and interactive robot 

Keywords :  Intrinsic Motivation, Goal-Babbling, Multi-task learning, Interactive learning, Hierarchical 
learning, Strategic learning 

Abstract :  Efforts are made to make robots operate 
more and more in complex unbounded ever-
changing environments, alongside or even in 
cooperation with humans. Their tasks can be of 
various kinds, can be hierarchically organized, and 
can also change dramatically or be created, after the 
robot deployment. Therefore, those robots must be 
able to continuously learn new skills, in an 
unbounded, stochastic and highdimensional space. 
Such environment is impossible to be completely 
explored during the robot’s lifetime, therefore it must 
be able to organize its exploration and decide what is 
more important to learn and how to learn it, using 
metrics such as intrinsic motivation guiding it towards 
the most interesting tasks and strategies. This 
becomes an even bigger challenge, when the robot 
is faced with tasks of various complexity, some 
requiring a simple action to be achieved, other need- 
 

ing a sequence of actions to be performed. We 
developed a strategic intrinsically motivated learning 
architecture, called Socially Guided Intrinsic 
Motivation for Sequences of Actions through 
Hierarchical Tasks (SGIM-SAHT), able to learn the 
mapping between its actions and their outcomes on 
the environment. This architecture is capable to 
organize its learning process, by deciding which 
outcome to focus on, and which strategy to use 
among autonomous and interactive ones. For 
learning hierarchical set of tasks, the architecture 
was provided with a framework, called procedure 
framework, to discover and exploit the task 
hierarchy and combine skills together in a task-
oriented way. The use of sequences of actions 
enabled such a learner to adapt the complexity of its 
actions to that of the task at hand. 

Découverte et exploitation de la hiérarchie des tâches pour apprendre des séquences de politiques motrices par un robot stratégique et interactif Nicolas Duminy 2018


	Abstract
	Résumé
	Contents
	List of Figures
	List of Symbols
	Chapter 1 Life-long learning of hierarchical tasks using sequences of motor primitives
	1.1 Life-long learning problem
	1.2 Learning methods

	Chapter 2 A strategic intrinsically motivated architecture for life-long learning
	2.1 Formalization of the problem
	2.2 Example of experimental setup: rotating robotic arm drawing
	2.3 Strategic Intrinsically Motivated learner
	2.4 Socially Guided Intrinsic Motivation for Sequence of Actions through Hierarchical Tasks
	2.5 Tackling the experiment of the rotating robot arm drawing
	2.6 Conclusion

	Chapter 3 Poppy humanoid robot learning inter-related tasks on a tactile tablet
	3.1 SGIM-ACTSCL
	3.2 Experiment

	Chapter 4 Using the task hierarchy to form sequences of motor actions
	4.1 Experimental setup
	4.2 Procedures framework
	4.3 Intrinsically Motivated Procedure Babbling
	4.4 Socially Guided Intrinsic Motivation with Procedure Babbling

	Chapter 5 Yumi industrial robot learning complex hierarchical tasks on a tangible interactive table
	5.1 Simulated experiment
	5.2 Physical experimental setup
	5.3 Transfer learning

	Chapter 6 Conclusion
	6.1 Conclusion of the manuscript
	6.2 Conclusions and limitations
	6.3 Contributions
	6.4 Takeaway message
	6.5 Impact
	6.6 Papers

	Bibliography



