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Neoadjuvant treatment setting (chemotherapy before surgery) is widely being used in poor 

prognosis breast carcinoma. Beyond clinical benefits, it serves as a test of in vivo 

chemosensitivity, and represent a major research opportunity to understand resistance or 

sensitivity mechanisms to chemotherapy.  The core of the thesis is to identify factors 

predicting sensitivity or resistance to treatment, while studying clinical, pathological, 

genomic, transcriptomic data from BC patients.  

The outline of the thesis is summarized as follows :  

- In the first chapter, we will present the neoadjuvant model as a valuable, underexplored 

research tool. We will describe how the analysis of clinical trials or real-life data can 

represent an opportunity for raising new research hypotheses. 

- In the second chapter, we will focuse on the relationships between immunity and breast 

cancer. Immunity has emerged as the top cancer research field in the last decade, but little is 

known about the evolution during neoadjuvant chemotherapy. We will describe and analyse 

the respective part of immunity in every breast cancer subtype, and their evolution before and 

after neoadjuvant chemotherapy.  

- In the third chapter, we will describe two examples of associations between comedication 

use and oncologic outcomes. We will adress the full potential of systematically analysing non 

anticancerous drugs in cancer patients, with the objective of discovering unsuspected 

associations with immune infiltration, prognosis or response to treatment. Such discoveries 

could lead to either (i) warnings to patients and cancer practitioners in case of associations 

worsening outcomes; (ii) drug repurposing clinical trials for associations improving patients 

outcome. 

The articles published during the PhD are highlighted in red. 
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Chapter 1 : Neoadjuvant treatment is an optimal framework for 
translational research. 

Breast cancer (BC) is the most commonly diagnosed cancer and remains the leading cause of 

cancer-related death in women. In 2008, an estimated 1.38 millions new cases have been 

diagnosed worldwide and the incidences rate in Western Europe was 89.7 per 100.000 women 

(www.iacr.org).  

Neoadjuvant setting (i.e treatment before surgery) is currently being used in patients with 

advanced disease. The clinical benefits are supported by: a) an increase rate of breast 

conserving surgery, b) a similar prognosis of breast cancer patients receiving a neoadjuvant 

versus an adjuvant therapy regimen, c) an accumulation of evidences showing a strong 

correlation between achieving a pathological complete response (pCR) after neoadjuvant 

chemotherapy and a good prognosis in specific subgroups (triple negative, HER2 positive). 

Additional benefits include access to oncogenetic screening, and avoidance of delays to 

systemic treatments due to surgical complications. Beyond the direct clinical benefit, the 

neoadjuvant setting represents an opportunity for patients to have a more rapid access to 

innovation. Finally, from the research and development point of view, NAC enables studying 

and monitoring “in vivo” treatment-sensitivity of the tumor and evaluating selection or 

resistance acquisition processes, and represents an unique strategic opportunity for 

translational research. Article N°1, Reyal et al., 2018, ESMO OPEN, p. 37, Article N°2 

Brandao et al., 2019, ESMO OPEN, p. 41.  

The Residual Tumor and Response to Treatment team (Dr Fabien REYAL, RT2Lab) has 

started a translational research program on “identification of factors predicting sensitivity or 

resistance to therapies for breast cancer” through various modalities, from clinical data to 

transcriptomics and genomics.  
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Clinical trials in the neoadjuvant setting evaluate whether a drug or a strategy may modify 

response to treatment (mainly evaluated at surgery by pathological complete response rate) or 

long-term prognosis (mainly evaluated by disease-free survival). 

 

The REMAGUS 02 was a multicenter randomized phase II trial including 340 patients with 

locally advanced BC.  Patients were randomly assigned to receive neoadjuvant sequential 

chemotherapy [NAC: (1) epirubicin/cyclophosphamide, followed by: (2) docetaxel alone or 

docetaxel plus celecoxib (400 mg twice daily, orally) for HER2-negative tumors (n=220, 

stratum A); or docetaxel alone or docetaxel plus trastuzumab for HER2-positive tumors 

(n=120, stratum B)]. In the stratum A, the trial previously published found no benefit of 

celecoxib, in terms of pathological complete response 21 (primary objective) ; conversely, in 

the stratum B, patients who were randomized to receive trastuzumab during docetaxel had 

pCR rates modestly increased when compared to patients not receiving trastuzumab (26% 

versus 19%, p=0.05). After a median follow-up of 94 months, no survival benefit was 

evidenced in any of the two experimental arms of each stratum (stratum A : celecoxib / 

stratum B : trastuzumab) Article N°3, Giacchetti et al. 2017, European Journal of Cancer, 

p. 49. In HER2-negative BC patients, only classical factors such as initial clinical tumor size, 

PR negativity, and pathological complete response status were prognostic for DFS ; whereas 

the only prognostic factor was axillar pCR in the HER2-positive BC population. 

 

In an effort to increase the accuracy of predictive and prognostic models for response to 

treatment and prognosis, we evaluated if transcriptomic data could help predicting patients 

outcome Article n°4 Hamy et al, 2016, Breast cancer research and treatment, p.61. We 

highlighted that only genes related to Estrogen pathways (TTF1) or proliferation (MYBL2) 

increased the performance of the model to predict pCR. Similarly, in the population of 
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patients failing to reach pCR, only BIRC5- a gene related to proliferation – was associated 

with an impaired prognosis. 

=> Alltogether, these results suggest that well-known pathways such as estrogen and 

proliferation remain cornerstones of the prediction of response to treatment and prognosis 

in breast cancer. 

 

Real life data represent an unprecedented amount of information, which is to date 

underexploited for research purposes. RT2Lab handles a unique cohort of primary BC 

including 1200 patients treated by NAC in Institut Curie between 2002 and 2011 (NEOREP 

cohort), with fully annotated clinical database, pathologic assessment of response to treatment 

as well as survival data.  Investigating clinical and pathological parameters from this database 

separately in BC subtypes enabled us to identify the different predictive and prognostic value 

of several factors. 

 

In the first study, we identified that the population of TNBC patients could be separated into 5 

different subgroups with very different prognoses, based on axillary involvment, menopausal 

status, and BMI Article n°5, Bonsang-Kitzis et al., 2015, Plos One, p. 76.  

 

In a second study on 287 patients  with HER2-positive tumors, we highlighted that the 

dramatic pCR and survival gains were achieved in real-life data since the routine use of 

trastuzumab era Article n°6 Hamy et al., 2016, British Journal of Cancer, p. 93. 

 

We further investigated if other baseline factors – such as the presence of a pre-NAC DCIS 

component –Article n°7 Morel. C et al., 2019,  in revision in Plos One, p. 104, or the 

occurrence of a breast cancer the year following pregnancy [Pregnancy-associated breast 

cancer (PABC)] - Article n°8, Labrosse et al., 2018, The Breast, p. 129- were associated 
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with response to NAC and/or prognosis, and we found that these factors were not predictive 

of response to treatment. 

 

Beyond the binary criteria of pathological response to treatment, we next investigated if 

further prognostic information could be retrieved while studying residual specimen. We 

evaluated the prognostic value of lymphovascular invasion (LVI) on residual specimen 

Article n°9  Hamy et al, 2018, Breast cancer research and treatment, p.138. We found 

that LVI was a very strong, independent prognostic marker of poor disease-free, metastasis-

free, and overall survival after NAC. Finally, we identified a strong interaction between BC 

subtype and LVI, meaning that the prognostic value of LVI at NAC completion was worse in 

HER2-positive patients than in luminal or TNBCs.  

In the same vein, we identified a strong interaction between BC subtype and the prognostic 

value of axillar nodal involvment following NAC. In luminal BC patients, intermediate nodal 

involvement (1 to 3 axillary nodes involved) was not associated with decreased DFS or OS 

compared to patients with no nodal involvement, whereas an increased number of nodes 

involved was associated with an impaired prognosis. 
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Figure 1:Kaplan-Meier curves of the association  between nodal involvment and disease-free survival  
in the cohort from Institut Curie treated with neoadjuvant treatment (NEOREP cohort). The interaction 
between BC subtypes and nodal involvment is statistically significant (Pinteraction =0.006) 
 
In addition, we validated the residual cancer burden score developed by Fraser Symmans and 

collegues, and demonstrated a high prognostic accuracy of this score. Validation study of the 

residual cancer burden score, unpublished, p.183. 
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! Alltogether, these findings support the fact that datasets contain a very large 

amount of information, and that several associations remain to discover. As a 

perspective for future research, we hypothesized than rather investigating each 

factor in a supervised manner, tools for systematic exploration and exploratory 

analyses could be applied to unravel hidden associations. 

 

In the last decade, health data have become increasingly available, and the wide opening of  

data sets represent a wealth of new information for research purposes. Due to their 

heterogeneity, their complexity and to the volume of data, the need for visualization tools has 

risen, and data vizualisation is progressively emerging as a new field in research. No solely 

has it been demonstrated that more richly illustrated journal articles have higher citation 

counts, but clear figures make associated concepts more memorable. Visualizations can be 

used for two main purposes when analyzing data (i) exploratory analysis, looking for 

relationships in the data and enabling discoveries, thus leveraging the full potential of 

database; (ii) explanatory analysis, aiming at graphically highlighting insights from a work 

and being an important support for communication among scientists. 

The research team of institut Curie headed by Herve Isambert (U830) developped an online 

innovative tool to provide data-visualization together with causal relationships. MIIC 

algorithm is a network learning method combining constraint-based and information-theoretic 

frameworks to reconstruct causal, non-causal or mixed networks from non-perturbative data. 

Starting from a fully connected network, the algorithm first removes dispensable edges by 

iteratively subtracting the most significant information contributions from indirect paths 

between each pair of variables, and the remaining edges are then filtered based on their 

confidence assessment or oriented based on the signature of causality in observational data.  
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MIIC online server was first developed for biological and genomic data, and its application 

was secondarily extended to mixed heterogeneous both categorical and continuous data. 

 

We tested the relevance of the MIIC network on the in-house dataset of patients treated with 

neoadjuvant chemotherapy in Institut Curie (NEOREP cohort) (Figure 2).  

The MIIC algorithm successfully enabled: (i) Clusterizing items into clinically relevant 

categories (demographics ; outcome ; disease presentation); (ii) Performing quality controls ; 

(iii) Identifying intra and inter-modality correlations (clinical / radiological / pathological 

data) ; (iv) Highlighting clinical practice habits including center specificities ; (v) Redrawing 

the natural history of the disease ; (vi) Weighting the relative effects of factors ; (vii) Pointing 

out unsuspected and hidden associations ; (viii) Enabling new discoveries. 

 

Such visualisation tools offer major perspective for quick and efficient exploratory analyses. 

MIIC is planned to be released as open access tool to the medical and scientific community in 

a near future. 
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Chapter 2 : Immunity and neoadjuvant treatment for breast cancer  
 

With the rise of high throughput technologies in the late 90’s, microarrays gene expression 

profiling has identified a first robust stratification level of invasive breast cancer defined by 

three main tumor categories with very specific features [Luminal, Basal or Triple negative 

breast cancer (TNBCs), HER2]. Curtis et al published a gene-expression profile analysis of 

2000 early breast cancer showing the high level of heterogeneity of this disease and identified 

up to ten independent molecular subgroups with different profile and prognosis. These 

subtypes have also been shown to differ in terms of clinical presentation, and sensitivity to 

systemic treatment [1][2], supporting the view that breast cancer is a disease composed of 

very different and independent molecular subgroups.  

 

We first investigated the heterogeneity of cancer by studying gene expression from cell lines 

from CCLE and CGP public datasets Article n°10, Sadacca et  Hamy et al., Scientific 

reports 2018, p.197. We developed a robust classification grouping cell lines into clusters 

displaying greater homogeneity of drug sensitivity than when grouped based on tissue of 

origin. Notably, 15 TNBC cell lines were split in 7 different clusters with different drug 

sensitivity. 

These findings are important, as (i) they point out the need for further development of basket 

trials (ii) they highlight the major heterogeneity of cancers. 

 

To further decipher tumor heterogeneity within the three BC subtypes [Luminal, Basal, 

HER2], we analyzed 3,247 primary human breast cancer bulk tumors samples from 21 

publicly available datasets, using a five-step method: (1) selection of BC simplified subtypes 
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using bimodal filtering on ER-HER2 and PR, (2) normalization of the selected samples, (3) 

selection of the most variant genes, (4) identification of gene clusters and biological gene 

selection within gene clusters on the basis of String© database connections and gene-

expression correlations, (5) summarization of each gene cluster in a metagene. We then 

assessed the ability of these metagenes to predict response to treatment and  prognosis on 

external public datasets.  

 

In TNBCs, Article n°11 Bonsang et al. 2015, Oncoimmunology,p.211, we identified a six-

metagene signature (167 genes) in which the metagenes were enriched in different gene 

ontologies (Immunity1, Immunity2, Proliferation/DNA damage, AR-like, Matrix/Invasion1 

and Matrix2). Only the Immunity2 metagene had a strong prognostic value.  

 

Secondly, HER2-positive BCs could be split into a  six-metagene signature (138 genes) 

(Immunity, Tumor suppressors/proliferation, Interferon, Signal transduction, 

Hormone/survival and Matrix clusters) Article n°12 Hamy et al. 2016, Plos One, p.278 

Similarly, the immunity” metagene was associated with higher pathological complete 

response rates after NAC and with a better prognosis in HER2-positive/ER- negative breast 

cancers. 
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Finally, luminal BCs (Hamy AS., unpublished) could be split into a six metagene signature 

(104 genes, Immunity, Interferon, Breast_metabolism, DNA_replication, Matrix_1, 

Matrix_2). 

 

Figure 3: Heatmap showing the 105 most variable genes in the 1105 luminal BC samples (training 
set). 
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Combined with the proliferation gene expression, the Immunity metagene was associated with 

increasing response rates to chemotherapy.  

 
Figure 4: Pathological complete response rates according to the Immunity and the proliferation 

metagene status, in the luminal BCs from the Ignatiadis dataset. 
 
 

Additionally, we identified an inverse correlation between the expression of immune genes 

and ESR1 expression, both in terms of morphological lymphocytic infiltration (Fig.5a) and in 

terms of immune gene expression (Fig.5b) in 6 independent BC public datasets.  
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=> Alltogether, these results suggest that a subset of patients display tumors enriched in 

immune genes, that may play an important role in breast cancer response to treatment or 

prognosis. 

 

Beyond their important predictive and prognostic role in breast cancer, we focused on 

unraveling the evolution of TILs before and after NAC. In this aim, we evaluated the 

immune infiltration in paired matched breast cancer samples before and after neoadjuvant 

chemotherapy in a large cohort of 716 patients treated with NAC. Pre and post-treatment BC 

samples were reviewed for: (i) quantitative lymphocyte infiltration evaluation; (ii) response to 

treatment assessed both by the occurrence of a pathological complete response (pCR) and by 

the RCB score (Residual Cancer Burden).  

Several results emerged from this project: (i) Pre-NAC TIL levels were associated to 

pathological complete response (pCR) in a non- linear manner in triple negative BC and were 

not associated with pCR in HER2-positive BC.  (ii) TIL levels decreased after chemotherapy 

completion and this decrease was strongly associated with pCR. (iii) High post-NAC TIL 

levels were associated with impaired survival in HER2- positive BC but not in the other 

subtypes. Article n°13 Hamy et al, 2017, Annals of Oncology, p.320, Article n°14 Hamy 

et al., 2019, Clinical Cancer Research, p.347. 

! Altogether, those findings provide a strong rationale for a differential composition 

of the TILS according to the subtype of BC and pre- versus post-NAC. TILs 

subsetting seems critical to further identify the different immune subpopulations in 

residual specimen and understand if their localization, their quantity or their state 

of activation is associated with the non-linear predictive impact and/or their 

different prognostic value before and after NAC among BC subtypes. 
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As perspective, we are currently leading a research program (Neocheck) aiming at 

characterizing extensively the different immune subpopulations in 42 specimen of tumor 

resistant to treatment (RCB-III) from various subtypes TNBC (n=15)/ luminal (n=15) / and 

HER2-positive BC (n=12)). We are using multispectral Vectra imaging system (PerkinElmer) 

and Inform* software to distinguish and localize the different cell populations (stromal/tumor) 

and the expression of immune checkpoint / check point ligand in residual specimen of the 3 

BC subtypes. Deciphering the nature of the immune infiltration in post-neoadjuvant residual 

tumor burden is the biological core of this project. 

 

 

  Figure 6: Multispectral Vectra imaging system on a breast cancer specimen. 
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Chapter 3 : Comedications, immunity and response to neoadjuvant 
treatment in breast cancer 
 

The incidence of breast cancer (BC) increases with age, as does the incidence of many other 

chronic diseases, such as diabetes, hypertension, and cardiovascular disease. Comorbidity is 

defined as the “coexistence of disorders in addition to a primary disease of interest”. 

Comorbidities have been shown to influence BC history, cancer treatment decisions as well as 

short- and long-term survival.  

In parallel, there is growing interest in comedications – i.e. chronically used medications - 

that may influence the risk for, as well as the progression of cancer [3],[4]. Hence, the 

chemoprevention approach is the matter of growing interest in the cancer field, and several 

recent conferences addressed drug repurposing as a potential approach for cancer 

prevention[5]. Epidemiological evidence has reported associations between some medications 

such as aspirin or non-steroidal anti-inflammatory drugs (NSAID) and a decrease in BC risk 

[6]. Others, as statins [7], NSAIDs [8] beta blockers (BB) [9] and metformin were found to be 

associated with a decrease in BC recurrence or to an improved survival after BC [10], [11]. 

Concomittant drugs taken during anticancer treatment may modify its pharmacodynamics 

or pharmacokinetics. However, interactions between comedications and chemotherapy have 

been so far little investigated. They were evaluated essentially from the toxicity point of view, 

i.e. regarding adverse events in patients with polypharmacy [12], or interactions with oral 

antineoplastic agents[13].  Regarding response to treatment, Jiralerspong et al. reported 

increased response rates to NAC in 68 diabetic BC patients treated by metformin (24%) 

compared with 87 patients without metformin (8.0%, p=0.007), and versus 2374 nondiabetic 

patients (16%, p=0.04) [14].  
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The REMAGUS02 trial was a multicenter randomized phase II trial that included 340 

patients with locally advanced breast cancer. In the HER2-negative stratum of the trial 

(n=220), patients were randomly assigned to receive celecoxib (400 mg twice daily, orally) in 

addition to neoadjuvant sequential chemotherapy (NAC, epirubicin/cyclophosphamide 

followed by docetaxel) versus standard treatment. The trial failed to demonstrate a benefit in 

the experimental arm with celecoxib, both for pathological complete response [15] (primary 

objective) or disease-free survival (DFS, secondary objective)[16].  

 

We performed a secondary analysis of the randomized clinical trial REMAGUS02 

(neoadjuvant chemotherapy (NAC) for breast cancer +/- celecoxib) according to COX 

activation status evaluated by PTGS2 expression. 

We identified a significant interaction between PTGS2 expression and response to treatment 

assessed by pathological complete response Article n°15 Cremoux et al., 2018, Anticancer 

research, 2018, p.387. 

In addition, we found a significant interaction between PTGS2 expression and celecoxib on 

prognosis; and we evidenced an unexpected paradoxical effect: patients in the PTGS2-low 

group from the celecoxib arm had impaired EFS and impaired OS compared with the 

standard arm, whereas no association was seen in the PTGS2-high group Article n°16 Hamy 

et al, 2019, Journal of Clinical Oncology, p.395. 

! These results suggest that strong, complex interactions exist between gene 

expression, response to treatment, prognosis and neoadjuvant chemotherapy, and 

that those associations might be masked from basic statistical analyses. We 

hypothesize that several interactions between comedications and chemotherapy 

remain to discover in datasets from clinical trials. 
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On the other hand, comedications may enhance response to treatment. In a cohort of 1023 

breast cancer patients treated with neoadjuvant chemotherapy (NAC), we systematically 

analyzed the concurrent comedications (n=1178) on the density of tumor infiltrating 

lymphocytes (TILs) and pathological complete responses (pCR). Pre-NAC TIL density was 

increased by medications targeting nervous system in triple negative BC (TNBC), and 

psycholeptics use was independently associated with pathological complete response. These 

experiments were reproduced in BC bearing mice, where psycholeptics reduced tumor growth 

and increased the anti-cancer activity of cyclophosphamide in a T cell-dependent manner. 

Article n°17, Hamy et al, submitted to Oncoimmunology, p.431 

This prompted us to launch a confirmatory research program, aiming at analyzing the 

relationships between co-morbidities, comedications, immune infiltration, response to 

treatment and toxicities, as well as breast cancer outcomes in a very large dataset of breast 

cancer patients (COMBIMMUNO project). Several independent cohorts from international 

trials (EORTC 10994/BIG 1-00 n=1856, GeparSexto, GeparSepto (n≈2000)) or national trials 

(PACS-08, PACS-09, n≈1000), or real life cohorts (cohorte CANTO n≈11 000, data Institut 

Curie n≈20000) are currently being agregated. A robust statistical methodology will be 

developed to take into account both counfounding factors and the aggregation of 

heterogeneous data. A large integrative analysis will be analyzed on a pooled analysis of 

nearly 50000 BC patients. 

These analyses will identify drugs or drug combinations modulating immune infiltration, 

increasing or decreasing response to treatment, improving or harming prognosis. The ultimate 

goal of such analyses is to help designing drug-repositioning clinical trials aiming at 

prospectively validate whether the addition of comedications could modify the natural course 

of breast cancer.

0.2 Outline of the thesis 25



 

Figure 7: O
utline of the C

O
M

B
IM

M
U

N
O

 research program
 (C

O
M

edications and com
orB

idities in breast cancer: D
eciphering interactions betw

een 
IM

M
U

N
e infiltration, response to treatm

ent and prO
gnosis (C

O
M

B
IM

M
U

N
O

)).

'
'''''''''''''''''''''

'
BREAST'CAN

CER'
DATASETS':'

''
• 

Clinical'trials'
/ 

GBG((
/ 

EO
RTC(

(• 
RealMlife'

/ 
N
EO

REP((
/ 

CAN
TO

((
/ 

Curie(data((
/ 

PACS/08((
/ 

PACS/09(
(• 

N
eoadjuvant'

(n≈15000)(and(
adjuvant'(n≈15000)(
seW

ng(
(=>'Pooled'data'n≈45000'
(

'
PATIEN

T’S,'TU
M
O
RS,'

TREATM
EN

T'
CHARACTERISTICS':'

(/ 
Annota%ons(

/ 
Clinical(and(
dem

ographics(
/ 

Pathological(data((
/ 

Cancer(treatm
ents(((

/ 
Com

orbidity((ICD/10)(
(/ 

Com
edica%ons((ATC)(

(

'
STU

DY(EN
DPO

IN
TS(:(

'
/ 

TILs(
/ 

pCR(
/ 

Safety(
/ 

O
utcom

e((PFS)(

'
BEST'CO

M
BIN

ATIO
N
S'

Com
edicaFonM'BC'

'
!
'im

m
une'infiltraFon''

!
'response'to'treatm

ent'
(

Data'cleaning'
and''

agrega1on'

Sta1s1cal'analyses'based''
on'm

achine'learning'm
ethods'

for'causal'inference''
in'm

eta8analy1c'studies'

'

26 Contents



In the same vein, we scaled this project to the national level using data from the French 

national reimbursment system. We first conducted a feasability study to investigate whether 

the reimbursment data for comedication faithfully reflect data retrieved in electronic health 

records (Hamy AS., unpublished). We analyzed a subset of 1101 Curie patients from the 

institutional database diagnosed for a primary invasive breast cancer without distant 

metastasis between 2009 and 2012. The SNDS data of these patients have been identified by 

matching the tracks of the acts directly sent by Curie hospital to the CNAM (Caisse Nationale 

d’Assurance Maladie) to the PMSI in the SNDS data. Overall, 2,938 drugs were reported in 

our study. In 2,304 cases, SNDS data matched with Curie records (78.4%) and in 634 cases, 

the drug was reported only in one out of the two sources (21.6%) (Figure 8). 

 

  Figure 8: Concordance of comedications reported in Curie Data and in the SNDS data 

 

The concordance between comedications reported in Curie and in SNDS data was class-

dependent, with high concordance rates observed for lipid modifying agents, agents acting on 

the renin-angiotensin system, and thyroid therapy, whereas the concordance was poor for 

drugs for acid related disorders. 
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Figure 9: Concordance of comedications reported in Curie Data and in the SNDS data, according to 
the class of drugs. 
 

 

Figure 10: Repartition of drugs not reported in Curie electronical health records (EHR), but retrieved 
in the SNDS data (underreported), and drugs reporterd in Curie EHR, but not retrieved in the SNDS 
data, according to the class of drugs. 
 

! These data suggest that concordance between EHR and SNDS data should be 

carefully evaluated within drug classes. In both cases (overreporting due to poor 

compliance or underreporting due to under-declaration), using SNDS data seems 

more relevant to consider than EHR data. 
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Based on these findings, we next designed the COMBICANCER-SEIN research project. 

The objective of this project was to analyse the relationships between comorbidity, 

comedications, and oncologic toutcome at the scale of the exhaustive French population from 

BC patients treated between 2007 and 2018. This project has been selected as a pilot project 

for the Health data Hub from the French government. This work will be organized according 

to 4 work packages :  

 

WP #1. Creation of a fully annotated database of BC patients with clinical and 

pathological annotation (dataset SNDS-CLCC-SEIN, n≈120 000). 

Patients will be identified from 9 cancer centers with a search engine (Consore). Clinical 

annotations (stage, BC subtype, pathological patterns, outcomes etc… ) will be automatically 

structured from electronical health records (EHRs) and will be agregated into a unique 

database. SNDS data will be retrieved and merged to the previous cohort (Set SNDS-CLCC-

SEIN, n≈120 000)  
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WP #2. Analyses of associations between comorbidities-comedications-response to 

treatment – prognostic of BC in dataset SNDS-CLCC-SEIN. 

 

WP #3: Evaluation of the concordance between clinical patterns between clinical 

annotations and SNDS data. 

We will notably evaluate the direct concordance for the following patterns : age, dates and 

treatment regimen ; endocrine therapy / oral chemotherapy prescription and release; non 

anticancerous comedication ; type of surgery ; radiation therapy ; date of deaths. 

For other items, we will build algorithms to test whether we estimate from SNDS data: local 

relapse, distant metastases, BC subtype, comorbidity. If this approach is successfull, these 

items would further be used as proxy in further analyses in the SNDS. 

 

WP #4. Analyses of associations between comorbidities-comedications-response to 

treatment – prognostic of BCs in the complete dataset of breast cancer from the SNDS 

(n≈500 000). 

 
Perspectives derived from this program include the identification of comedications harming / 

improving BC prognosis. The associations identified might in turn be tested within drug 

repositionning trials, to evaluate if they might translate into clinical benefits for breast cancer 

patients. 
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Discussion and conclusion 
	
In this thesis, we highlighted that the neoadjuvant model is a unique opportunity to explore 

resistance to treatement and represents an information mine to generate hypotheses to 

improve BC care.  Performing basic analyses on 2 datasets of breast cancer patients treated by 

NAC, we successively demonstrated that :  

(i) The clinical significance of immune infiltration was modified by chemotherapy ;  

(ii) Comedication use modified response to treatment ;  

(iii) Post-NAC LVI was a major prognostic factor outperforming several classical 

clinico pathological variables;  

(iv) The reanalysis of clinical trials published as negative could unmask hidden 

clinically relevant effects;  

(v) Finally, by answering clinically or biologically-driven questions, we unmasked 

multiple hidden interactions : (a) Interaction between nodal axillar involvment – 

BMI- menopausal status in TNBC on DFS; (b) Interaction between LVI and BC 

subtype on DFS ; (c) Interaction between pre-NAC TILs and BC subtype on pCR; 

(d) Interaction between pre-NAC TILs and BC subtype on DFS ; (e) Interaction 

between post-NAC TILs and BC subtype on DFS ; (f) Interaction between post-

NAC TILs and BC subtype on DFS ; (g) Interaction between post-NAC TILs and 

RCB on DFS ; (h) Interaction between post-NAC axillary invovlment and BC 

subtype on DFS ;   (i) Interaction between PTGS2 expression and celecoxib use on 

pCR; (j)  Interaction between both ER and PTGS2 expression and celecoxib use on 

DFS, (k) Interaction between age and BC subtype on DFS ; (l) Interaction between 

comedications of class N and C and  BC subtype on pCR etc…. 
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! Alltogether, these findings suggest that digging deeply into breast cancer datasets of 

patients treated with NAC could enable to decipher subsets of patients deriving 

different benefits from different treatments, and we hypothesize that many 

associations remain to discover. 

 

In this aim, releasing data of BC patients treated by NAC as an open-access resource, i.e. an 

agile platform considered as a « Neoadjuvant hub », could enable agile research in the 

neoadjuvant field. To build such ambitious tool, efforts should be paid in:  

1. Improving data collection : Increasing the number of data sources (connected 

devices, health insurance reimbursment data), the quality of data (collecting 

standardized patients reported outcomes, putting efforts on interoperability), and the 

number of patients would allow to generate large real life datasets. Creating an active 

community of BC patients treated with NAC represents a substantial meaningful 

challenge. 

2. Standardizing the translational framework of neoadjuvant treatment before and 

during treatment: The standardization of biobanking (tumor and nodal resampling, 

peripheral blood), of imaging evaluation (PET-FDG, MRI), the automatization of 

pathological slides scanning would ensure comparability of endpoints, and enable 

central review.  

3. Enlarging research fields to find ways to optimize response to treatment : while 

clinical trials mostly focuse on the evaluation of new drugs, several other aspects of 

remain to explore. They notably include dose and intensity modulation, number of 

cycles, sequence and order of treatment, schedules of administration and their links 

with circadian rythm and clock genes. In addition, the modification of behaviours 
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(modulation of gut microbiota, physical activity, comedication use, impact of diet) 

could be investigated. 

4.  Developing new statistical, analytic, and visualization methods : As many 

modalities carry predictive or prognostic informations (Biological parameters, 

genomic and transcriptomic alterations, imaging data, pathological records, free full 

text of electronic health records etc…), all patterns can be integrated within this 

platform, and methods should be developed to explore and analyze massive data, to 

systematically detect interactions, and to visualize results.  

 

Such an open-access platform would enable to quickly generate hypotheses, that could 

be validated in (or embedded within) clinical trials (Non pharmacological intervention 

trials, combination trials, early switch trials, de-escalation, second line trials).  
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In a recent paper published in the British 
Medical Journal by Vaidya and colleagues,1 the 
authors call for reconsidering the routine 
use of neoadjuvant chemotherapy in patients 
with breast cancer. Their main arguments are 
(1) the increased risk of locoregional recur-
rence, (2) the imperfect correlation between 
the response to primary chemotherapy and 
overall survival, and (3) the complexity of 
surgery after neoadjuvant chemotherapy. We 
strongly disagree with this opinion paper.

First, great care should be applied in 
interpreting 15-year locoregional recur-
rence rates published in the recent Early 
Breast Cancer Trialists’ Collaborative Group 
(EBCTCG) meta-analysis,2 as considerable 
changes have occurred in the past 15 years 
in terms of diagnosis and staging (MRI, 
ultrasound, PET/CT), medical treatments 
(chemotherapy/targeted therapy/endo-
crine therapy), surgical techniques and radi-
ation protocols. Similar hot debates on the 
increased risk of local relapse emerged in 
the transition period from radical Halstedt 
mastectomy to breast conservating surgery 
plus radiation therapy, with the latter no 
longer being controversial as a standard of 
care.

Second, in response to the inconsistent 
relationship between treatment response and 
survival, the authors advocate to limit the 
use of neoadjuvant chemotherapy (NAC). 
Contrarily, we see this theme as a great oppor-
tunity to better understand breast cancer. 
Since National Surgical Adjuvant Breast and 
Bowel Project (NSABP)-18,3 a large body of 
literature has proved survival equivalence 
between chemotherapy administered in the 
neoadjuvant and in the adjuvant setting. 
Beyond the binary character of patholog-
ical complete response (pCR), a variety of 
post-NAC scores have been developed and 
validated, allowing to sharply refine indi-
vidual prognosis. Residual cancer burden 
score by Symmans and colleagues4 proved to 
be a robust and reproducible tool to identify 
a group of patients with very poor prognosis. 

To our knowledge, no such powerful prog-
nostic marker has been validated so far in the 
adjuvant setting.

On the other hand, critical beneficial 
aspects of neoadjuvant treatment should be 
highlighted and can be grouped into three 
main axes: (1) patient benefits/care pathway, 
(2) access to innovation and (3) research and 
development.

Regarding patient benefits, the unequiv-
ocal increase in conservative surgery rates 
is associated with an improved quality of 
life and a reduction of the need for breast 
reconstruction. Primary chemotherapy also 
prevents from rushed oncogenetic screening 
and enables in case of BRCA1–2 mutation 
a much needed reflexion period to discuss 
surgical curative treatment options (total 
mastectomy/conservative surgery) and/
or prophylactic procedures (contralateral 
breast/ovaries). Finally, beginning oncolog-
ical treatment sequence with chemotherapy 
avoids delays in systemic treatment caused 
by surgical complications; the latter become 
more and more frequent as the complexity of 
surgical techniques increases (sentinel lymph 
node vs axillary dissection, lumpectomy vs 
oncoplasty, mastectomy vs mastectomy plus 
immediate breast reconstruction).

The second distinct feature of NAC is 
more rapid access to innovation. Many neoad-
juvant clinical trials are currently opening 
due to the FDA-accelerated approval path 
for drugs achieving a higher rate of patho-
logical response. Great progress has been 
made in identifying tumours unlikely to 
reach pCR, and patients can be offered ‘early 
switch’ trials. At NAC completion, patients 
with an excellent response can be enrolled 
into de-escalation trials, whereas patients 
with high tumour burden can be included in 
‘salvage therapy’ trials testing new drugs. The 
residual tumour burden can be submitted to 
next-generation sequencing in order to iden-
tify actionable mutations or may be used to 
generate patient-derived xenograft.
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Third, in terms of research and development, neoadjuvant 
therapy is a strategic opportunity. It gives access succes-
sively to intrinsic baseline tumour characteristics, in 
vivo analysis of the sensitivity to treatment and to final 
postoperative evaluation of the residual tumour, making 
it the optimal framework for translational research. It 
enables serial tumour and blood biobanking, as well as 
iterative imaging procedures to lead comprehensive 
research programmes aimed at understanding tumour 
dynamics and resistance to treatments. In addition, the 
neoadjuvant setting allows the testing of new hypotheses 
and the identification of new predictive biomarkers. Let 
us just mention a few illustrative examples: the superi-
ority of weekly paclitaxel over a three weekly adminis-
tration,5 of aromatase inhibitors over tamoxifen6 7 and 
of sequential anthracycline–taxane over anthracycline 
alone8 has first been shown in neoadjuvant trials with 
subsequent confirmation in large adjuvant studies. The 
same is true for the dynamic biomarker Ki67, the drop 
of which after 2 weeks of endocrine therapy predicts 
endocrine sensitivity.9 Finally, neoadjuvant treatment 
makes it possible to investigate the role various factors 
play in modulating the response to treatment such as the 
microbiota, patient comorbidities and comedications, or 
other extrinsic factors. Decades of adjuvant clinical trials 
with needs of high number of patients to observe few 
‘events’, long follow-up times to obtain mature survival 
data and huge costs have led to the conclusion that this 
model is no longer sustainable for drug development. In 
contrast, the neoadjuvant modal  represents a more flex-
ible setting, with shorter treatment durations, hundreds 
instead of thousands of patients who enrol and reduced 
costs. In the era of personalised oncology, adapative trial 
designs such as those promoted by the I-SPY two group 
are remarkable templates for efficient and cost-effective 
drug development strategies.10

In conclusion, NAC is a not-to-be-missed opportunity 
for patients, physicians and researchers, and should in 
fact be the preferred approach for the majority of patients 
bearing aggressive forms of the disease (namely luminal 
B, triple negative and HER2-positive subtypes).
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Last year, we published an editorial in this 
journal, advocating the use of neoadjuvant 
treatment (NAT) in patients with breast 
cancer, especially for those bearing aggres-
sive tumours (luminal B, triple-negative and 
HER2-positive subtypes).1 With the recent 
publication of important practice-changing 
data, we argue now that the use of NAT is the 
only ethical strategy for around one-third of 
women with early breast cancer.

The first reason for using NAT is that it 
allows surgical de-escalation, as it increases 
the rates of breast-conserving surgery.2 It may 
also avoid a full axillary dissection in selected 
patients who ‘convert’ from cN1 to a negative 
sentinel lymph-node biopsy.3 Another very 
important reason is that it identifies patients 
at a higher risk of relapse, for whom addi-
tional ‘salvage’ options are now available. 
Two large meta-analyses have demonstrated 
that patients who do not achieve a patho-
logical complete response (pCR) after NAT 
have worse long-term survival, especially in 
triple-negative breast cancer (TNBC) and 
HER2-positive disease.4 5 Yet, it has recently 
been shown that their outcome may be 
improved by escalating post-NAT.

The CREATE-X trial, conducted in Asia, 
included both patients with oestrogen 
receptor (ER)-positive/HER2-negative 
disease and TNBC, who were randomised 
to receive standard postsurgical treatment 
either with or without capecitabine.6 Among 
patients with TNBC, capecitabine signifi-
cantly improved 5-year disease-free survival: it 
was 69.8% in the capecitabine group versus 
56.1% in the control group (HR 0.58; 95% CI 
0.39 to 0.87); it also improved overall survival 
(HR 0.52; 95% CI 0.30 to 0.90). In patients 
with ER-positive/HER2-negative disease, the 
HR for disease free-survival was more modest: 
0.81 (95% CI 0.55 to 1.17). Despite concerns 

on the extrapolation of CREATE-X results to 
non-Asian patients, international guidelines 
adopted adjuvant capecitabine as a possible 
treatment for patients with TNBC and inva-
sive residual disease after NAT.7 8

More recently, the KATHERINE trial 
randomised 1486 patients with residual inva-
sive HER2-positive disease following NAT 
to adjuvant T-DM1 or trastuzumab for 14 
cycles.9 Results were impressive: the 3-year 
invasive disease-free survival rate was 88.3% in 
the T-DM1 group versus 77.0% in the trastu-
zumab group (HR 0.50; 95% CI 0.39 to 0.64), 
making it clear that these patients with subop-
timal responses to standard chemotherapy 
and anti-HER2 monoclonal antibodies (tras-
tuzumab ± pertuzumab) should receive 
adjuvant T-DM1 instead of continuing trastu-
zumab. Nonetheless, there is space for further 
improvement in the ER-negative/HER2-posi-
tive subgroup, as 3-year invasive disease-free 
survival rate was 82.1% with T-DM1. Overall 
survival data are still immature.

Of note, there are several ongoing phase 
III trials testing the postneoadjuvant use of 
other drugs in patients with residual disease 
after NAT, like the PENELOPE-B trial in 
ER-positive/HER2-negative patients (stan-
dard endocrine therapy with/without 1 year 
of palbociclib;  ClinicalTrials. gov identifier: 
NCT01864746) or the SWOG S1418/NRG 
BR006 trial in TNBC (1 year of pembroli-
zumab or placebo; NCT02954874).

Considering the above results—and partic-
ularly those of the very robust international 
KATHERINE trial—we advocate that clini-
cians must use tumour’s response to NAT as 
a way to tailor adjuvant treatment of patients 
with intermediate to high-risk HER2-pos-
itive disease or TNBC, instead of blindly 
prescribing chemotherapy and/or targeted 
agents after surgery.
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NAT becomes the ‘standard of care’ for these women 
and not only an ‘option’ to discuss for the purpose of 
increasing the probability of less aggressive surgery, as it 
has an impact on disease-free survival and, possibly, on 
overall survival as well. A number of remaining questions 
will need to be addressed, like which adjuvant anti-HER2 
therapy to prescribe to patients who achieve pCR after 
neoadjuvant chemotherapy with trastuzumab and pertu-
zumab and whether or not biomarkers evaluated after 
one or two courses of NAT might reliably identify patients 
who will not reach a pCR and who could benefit from an 
earlier introduction of a ‘salvage’ treatment.

The NAT strategy could also become a standard of care 
for high-risk luminal B disease in the near future, if it is 
demonstrated that those patients who do not achieve a 
pCR after NAT may benefit from the addition of targeted 
therapy to endocrine treatment. Beyond pCR ‘yes or 
no’, other prognostic markers can be used to identify 
high-risk patients, like the residual cancer burden10 or 
the PEPI score.11 More recently, prognostic markers like 
tumour-infiltrating lymphocytes in the residual tumour12 
or the persistence of circulating tumour DNA (ctDNA)13 
have also been explored. These markers may also be 
important for patients who achieve pCR, as we know that 
a part of these patients still relapse afterwards and we 
should find ways of identifying them.

Even though the use of NAT helps tailoring adjuvant 
therapy, in patients who do not achieve pCR (who are still 
the majority), the duration of neoadjuvant plus adjuvant 
treatment can be very long—for example, up to 18 months 
in HER2-positive disease. Thus, an earlier identification of 
patients who are benefiting or not from NAT is necessary 
in order to (de)escalate therapy accordingly. One possi-
bility is the use of imaging during the course of NAT, like 
MRI14 15 and/or 18F-FDG PET/CT,16 17 which have shown 
to be associated with achievement of pCR. Other possi-
bilities are measuring the drop of Ki67 after 2–4 weeks of 
treatment18–21 or assessing the fall in ctDNA levels during 
NAT.22 23 Today, however, there is no proven benefit of 
changing the type of regimen used throughout NAT 
according to these markers, but there are ongoing trials 
testing this hypothesis (ie, ALTERNATE [NCT01953588] 
and ADAPT HR+/HER2- [NCT01779206]).

It should also be realised that the use of NAT demands 
a highly organised team of pathologists, radiologists, 
surgeons, medical oncologists, radiation oncologists and 
other professionals specialised in breast cancer care. 
As already recommended by the European Society for 
Medical Oncology,24 we are strong believers that the 
model of ‘breast cancer units’ should now be fully imple-
mented in Europe and abroad, as failing to do so might 
compromise patients’ survival.25 A courageous way of 
accelerating its dissemination would be to restrict breast 
cancer treatment reimbursement to hospitals which have 
an accredited breast cancer unit.

In conclusion, we claim that patients with intermediate 
to high-risk TNBC or HER2-positive disease (≥T2 and/
or lymph-node positive tumours) must receive NAT, as 

this strategy not only increases the chance of less aggres-
sive surgery, but identifies patients who will benefit from 
‘salvage’ adjuvant therapy with an impact on long-term 
outcomes.
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! Celecoxib, an anti Cox2, does no improve pathological complete response (pCR) nor outcome in HER2 negative breast cancer
patients receiving sequential neoadjuvant chemotherapy.
! Long term outcome of luminal B breast cancer can be worse than triple negative breast cancer while HER2 positive breast
cancer patients have a better prognostic than other subtypes with the addition of trastuzumab in neoadjuvant or adjuvant
setting.
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Abstract Background: The REMAGUS-02 multicenter randomised phase II trial showed
that the addition to neoadjuvant chemotherapy (NAC) of trastuzumab in patients with loca-
lised HER2-positive breast cancer (BC) increased the pathological complete response (pCR)
rate and that the addition of celecoxib in HER2-negative cases did not increase the pCR rate.
We report here the long-term follow-up results for disease-free survival (DFS) and overall sur-
vival (OS).
Patients and methods: From 2004 to 2007, 340 stage IIeIII BC patients were randomly as-
signed to receive neoadjuvant EC-T (four cycles of epirubicinecyclophosphamide followed
by four cycles of docetaxel) þ/" celecoxib in HER2-negative cases (n Z 220)
and # trastuzumab in HER2-positive cases (nZ 120). From September 2005, all patients with
HER2-positive BC received adjuvant T (n Z 106).
Results: Median follow-up was nearly 8 years (94.4 months, 20e127 m). In the HER2-
negative subgroup, addition of celecoxib was not associated with a DFS benefit. Favourable
factors were smaller tumour size, expression of progesterone receptor status (PgR) and pCR.
In the HER2-positive population, neoadjuvant trastuzumab was not associated with a DFS
benefit. Axillary pCR was the only prognostic factor associated with DFS in this group
[HR Z 0.44, 95% CI Z 0.2e0.97], p Z 0.035]. To note, DFS and OS were significantly higher
in the HER2-positive than in HER2-negative BC patients (HR Z 0.58 [0.36e0.92],
p Z 0.021).
Conclusion: Celecoxib combined with NAC provided neither pCR nor survival benefit in pa-
tients with HER2-negative BC. Absence of PgR is a major prognostic factor. Neoadjuvant
trastuzumab increased pCR rates without translation into a DFS or OS benefit compared with
adjuvant trastuzumab only. Axillary pCR could be a more relevant surrogate of survival than
in the breast in HER2-positive population. A retrospective comparison shows that patients
with HER2-positive tumours have a better outcome than HER2-negative BC patients showing
the impact of trastuzumab on the natural history of BC.
ª 2017 Elsevier Ltd. All rights reserved.

Key message: Celecoxib, an anti-Cox2, neither improves pCR nor the outcome in HER2-negative

BC patients receiving sequential NAC. The long-term outcome of luminal B BC can be worse than

triple-negative BC, whereas HER2-positive BC patients have a better prognostic than other sub-

types with the addition of trastuzumab in neoadjuvant or adjuvant setting.Q1

1. Introduction

Neoadjuvant chemotherapy (NAC) was initially devel-
oped for non-resectable breast cancers, but is now
widely used in localised breast cancer not eligible for
breast-conserving surgery [1]. However, randomised
trials and meta-analyses have not shown any improve-
ment in disease-free survival (DFS) or overall survival
(OS) compared with adjuvant approaches [1e4]. Despite
the lack of demonstrated survival gain with the neo-
adjuvant strategy, several advantages are recognised.
Tumour regression induced by NAC allows breast
conservation in a proportion of patients with initially
large tumours non-accessible to immediate conservative
surgery. In patients with possible breast conservation
from the beginning, preoperative treatment may also
result in a better cosmetic outcome [5]. In particular,
neoadjuvant therapy offers the advantage of rapidly

assessing the response to both standard treatment and
novel therapies and a research platform to evaluate the
predictive factors of response to treatment [6,7]. Such
frontline treatment defined pathological complete
response (pCR, i.e. absence of infiltrating tumour in
breast and lymph nodes) as the key end-point in pre-
dicting the long-term survival especially in patients with
oestrogen receptor (ER)-negative and triple-negative
(TN) tumours [7e9].

We previously reported the pCR results of this
multicenter randomised phase II study aiming to
determine the impact of adding celecoxib or trastuzu-
mab to NAC in stage IIeIII breast cancers [10]. We
showed that celecoxib did not improve the pCR rates in
HER2-negative population, whereas trastuzumab added
to NAC was associated with an increased pCR rate in
patients with HER2-positive tumours [10]. Here, we
report the long-term outcome of the patients treated in

S. Giacchetti et al. / European Journal of Cancer xx (2017) 1e102

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

EJC10118_proof ■ 10 February 2017 ■ 2/10

Please cite this article in press as: Giacchetti S, et al., Long-term outcome of the REMAGUS 02 trial, a multicenter randomised phase II trial in
locally advanced breast cancer patients treated with neoadjuvant chemotherapy with or without celecoxib or trastuzumab according to HER2
status, European Journal of Cancer (2017), http://dx.doi.org/10.1016/j.ejca.2017.01.008

1.3 Article n°3 : Giacchetti, S. et al. Eur. J. Cancer 75, 323–332 (2017) 49



this study and evaluate the prognostic factors associated
with DFS and OS.

2. Patients and methods

From May 2004 to October 2007, 340 patients were
randomly assigned to receive NAC # celecoxib in
HER2-negative patients (Stratum A, n Z 220), þ/"
trastuzumab in HER2-positive patients (Stratum B,
n Z 120) [10] (Fig. 1).

2.1. Patients selection

Main eligibility criteria were female patients over the age
of 18 and under the age of 65 with histologically proven
non-metastatic invasive breast carcinoma (Stage II and
III), not amenable to breast-conserving surgery
(diameter > 3 cm, central) or with risk factors making
NAC the preferred treatment (i.e. N2eN3, rapid growth
rate). Inflammatory breast cancers and clinical T4 stage
were allowed. HER2 status was centrally reviewed for
all patients and HER2 positivity confirmed by FISH in
all cases.

2.2. Treatment

All patients were to receive epirubicin (75 mg/m2)e
cyclophosphamide (750 mg/m2) intravenously every 3
weeks for four cycles followed by docetaxel (100 mg/m2)

every 3 weeks for four cycles. During neoadjuvant
docetaxel sequence, HER2-negative tumour patients
(stratum A) were randomised between without (arm1)
or with (arm 2) celecoxib 400 mg twice daily orally. In
HER2-positive tumour, patients were randomised be-
tween without (arm 3) or with (arm 4) trastuzumab
every 3 weeks. Surgery was performed 21e45 d after
cycle eight, based on initial and post-chemotherapy
assessment. Surgery was followed by local and
regional radiotherapies when indicated. The adminis-
tration of adjuvant trastuzumab for a total of 18 3-
weekly i.v. infusions was amended for HER2-positive
cancer patients from September 2005, when adjuvant
trastuzumab was available in France. Trastuzumab was
thus started after surgery for patients randomised to
control and pursued for patients randomised to neo-
adjuvant arm. Patients with hormone receptor-positive
tumours received adjuvant tamoxifen or aromatase in-
hibitors according to their menopausal status. Adjuvant
chemotherapy according to centres’ preferences in pa-
tients with residual axillary nodal involvement (pNþ)
could be delivered based on 5-fluorouracile and vinor-
elbine combination (four cycles), concomitantly or not
with radiotherapy.

2.3. Objectives

The primary end-point of the study was pCR rates. pCR
was defined as absence of residual invasive cancer cells

Fig. 1. Consort diagram.

S. Giacchetti et al. / European Journal of Cancer xx (2017) 1e10 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

EJC10118_proof ■ 10 February 2017 ■ 3/10

Please cite this article in press as: Giacchetti S, et al., Long-term outcome of the REMAGUS 02 trial, a multicenter randomised phase II trial in
locally advanced breast cancer patients treated with neoadjuvant chemotherapy with or without celecoxib or trastuzumab according to HER2
status, European Journal of Cancer (2017), http://dx.doi.org/10.1016/j.ejca.2017.01.008

50 Neoadjuvant treatment



in the breast and axillary lymph nodes (grade 1 and 2 of
Chevallier’s classification) [11]. Both DFS and OS were
predefined secondary objectives. DFS was defined as the
time from surgery to death, loco-regional or distant
recurrence, or contralateral cancer, whichever occurred
first. OS was defined as the time from surgery to death.
Patients for whom none of these events were recorded
were censored at the date of their last known contact.
Results are described in the whole population, and in
each stratum.

2.4. Statistical analysis

The study population was described in terms of fre-
quencies for qualitative variables or medians and asso-
ciated ranges for quantitative variables. The cutoff date
for the analysis was May 1st 2015. Hazard ratios (HRs)
and their associated 95% confidence intervals (CIs) were
calculated with the Cox proportional hazard model. Age
class, menopausal status, clinical tumour size, clinical
nodal status, histological type, SBR Grade, lympho-
vascular invasion, ER, PgR, HER2 status, p53 and
randomised treatment were included in the univariate
analysis. Variables with a p-value for the likelihood ratio
test lower than 0.15 in univariate analysis were included
in the multivariate model. Backward selection was used
to establish the final multivariate model. The signifi-
cance threshold was 5%. Survival probabilities were
estimated by the KaplaneMeier method, and survival
curves were compared with log-rank tests. Analyses
were performed with R software, version 3.1.2 (R
Development Core Team, 2011).

3. Results

Among 340 patients included in the study, 220 had
HER2-negative tumours (stratum A) and 120 had
HER2-positive tumours (stratum B). All the patients
received the first four courses of epi-
rubicinecyclophosphamide. In the stratum A, 21 pa-
tients who were assigned to celecoxib arm (arm 2) did
not receive it (19.6%). In the stratum B, five patients
who were assigned in the neoadjuvant trastuzumab arm
(arm 4) did not receive it (8%), whereas two patients in
the arm without trastuzumab (arm 3) received neo-
adjuvant trastuzumab. All patients but 14 received
adjuvant trastuzumab (Fig. 1), 10 in arm 3 (17.2%) and
four in arm 4 (6.5%), p Z 0.07. A total of 14 patients
were not included in the DFS analysis [no surgery
nZ 9; distant metastases during NAC (nZ 4); protocol
violation (n Z 1)].

Patient’s characteristics are described in Table 1.
Overall, the population had poor prognostic factors.
Near half of the patients had T3-T4 (47.4%) and grade
SBR 3 tumours (49.8%); 60% had lymph nodes involved
clinically at baseline (N1, N2 and N3). In the HER2-

negative population, almost 40% of the patients had TN
tumours. The median follow-up was 94.5 months [range:
19.9e126.9].

3.1. Whole population

A total of 111 patients experienced relapse and 74 pa-
tients died. The median DFS as and the median OS are
not reached for the whole population. The 8-year DFS
and OS were 67.9% [62.8e73.6] and 77.5% [72.7e82.6],
respectively. After univariate analysis, ER expression
was not (Fig. 2A) significantly associated with DFS,
whereas clinical tumour size, clinical nodal status, his-
tological type, lymphovascular invasion, progesterone
receptor (PgR) (Fig. 2B), HER2 status (Fig. 2C) and
pCR were prognostic for DFS. Tumour size (T2 versus
T3 and T4; HR Z 1.75 [1.15e2.66], p Z 0.009); PgR
status (positive versus negative; HR Z 0.47 [0.3e0.72],
p Z 0.001), HER2 status (positive versus negative;
HRZ 0.58 [0.36e0.92], pZ 0.021) and pCR (yes versus
no; HR Z 0.38 [0.17e0.84], p Z 0.016) remained
significantly associated with DFS after multivariate
analysis (Table 2). All four factors were also associated
with OS (clinical tumour size HR Z 2.69 [1.61e4.49],
p < 0.001, PgR, HR Z 0.3 [0.17e0.53], p < 0.001,
HER2; HR Z 0.58 [0.34e0.99], p Z 0.046, pCR:
HR Z 0.38 [0.15e0.94], p Z 0.037).

3.2. Stratum A: HER2-negative tumours

Of 220 patients with HER2-negative tumours, 82 pa-
tients experienced recurrences and 53 patients died.
Median DFS and OS were not reached. The 8-year DFS
and OS are, respectively, 64.4% [57.7e71.7] and 76.5%
[70.7e82.9]. No effect of the addition of celecoxib to
NAC on DFS was observed, neither in intent to treat
(ITT) (celecoxib versus no, HR Z 1.23 [0.77e1.96],
p Z 0.38) nor in the per protocol analysis (HR Z 1.27
[0.8e2.02], p Z 0.32).

Due to the differences of the shapes of the Kaplan
Meier curves for ER and PgR status, the heterogeneity
of luminal breast cancer [12,13], we combined ER and
PgR status into three classes (ERþ/PgRþ, ERþ/PgR-,
ER"/PgR-) (Fig. 3). Only two patients were ER"/
PgRþ in the stratum A and were pooled with the ERþ/
PgRþ population into a PRþ group in the analysis.
Overall, ERþ/PR-status was associated with a worse
long-term DFS when compared with ERþ/PRþ (refer-
ence class, HR Z 1); ERþ/PR": HR: 2.3 [1.28e4.12],
p Z 0.005, whereas TN status was not HR Z 1.49 (95%
CI (0.86e2.6), p Z 0.16).

After univariate analysis, clinical tumour size, histo-
logical type, PgR and pCR were significantly associated
with DFS and all factors, but histological type remained
associated with DFS after multivariate analysis
(Table 2). Histological type, ER status, tumour size,
PgR status and pCR were significantly associated with
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Table 1
Patients’ characteristics. Q4

Stratum A: HER2 negative Stratum B: HER2 positive Total p Value

CT alone
(arm 1)

CT þ celocoxib
(arm 2)

CT alone
(arm 3)

CT þ trastuzumab
(arm 4)

n Z 108 (%) n Z 112 (%) n Z 58 (%) n Z 62 (%) 340 (%)

Age (years) <40 23 (21.3) 25 (22.3) 13 (22.4) 15 (24.2) 76 (22.4) 0.8191
40e49 42 (38.9) 49 (43.8) 25 (43.1) 20 (32.3) 136 (40.0)
$50 43 (39.8) 38 (33.9) 20 (34.5) 27 (43.5) 128 (37.6)

Menopausal status No 69 (65.1) 76 (67.9) 41 (70.7) 40 (64.5) 226 (66.9) 0.8645
Yes 37 (34.9) 36 (32.1) 17 (29.3) 22 (35.5) 112 (33.1)

Clinical tumour size T2 55 (50.9) 65 (58) 27 (46.6) 32 (51.6) 179 (52.6) 0.508
T3 and T4 53 (49.1) 47 (42) 31 (53.4) 30 (48.4) 161 (47.4)

Clinical nodal status N0 42 (39.6) 45 (40.2) 18 (31.6) 25 (40.3) 130 (38.6) 0.699
N1, N2, N3 64 (60.4) 67 (59.8) 39 (68.4) 37 (59.7) 207 (61.4)

Histological type Ductal 83 (76.9) 90 (80.4) 56 (96.6) 57 (91.9) 286 (84.1) 0.0059
Lobular 19 (17.6) 13 (11.6) 1 (1.7) 2 (3.2) 35 (10.3)
Others 6 (5.6) 9 (8) 1 (1.7) 3 (4.8) 19 (5.6)

SBR grade I 13 (12.6) 7 (6.4) 0 (0) 0 20 (6.1) 0.0042
II 41 (39.8) 56 (50.9) 22 (40.7) 25 (41.7) 144 (44%)
III 49 (47.6) 47 (42.7) 32 (59.3) 35 (58.3) 163 (49.8)

LVI No 90 (84.9) 93 (85.3) 41 (71.9) 43 (74.1) 267 (80.9) 0.0668
Yes 16 (15.1) 16 (14.7) 16 (28.1) 15 (25.9) 63 (19.1)

ER Negative 35 (32.4) 45 (40.2) 23 (39.7) 30 (48.4) 133 (39.1) 0.2271
Positive 73 (67.6) 67 (59.8) 35 (60.3) 32 (51.6) 207 (60.9)

PR Negative 55 (51.4) 64 (58.2) 37 (63.8) 41 (67.2) 197 (58.6) 0.1867
Positive 52 (48.6) 46 (41.8) 21 (36.2) 20 (32.8) 139 (41.4)

HR Negative 34 (31.5) 44 (39.3) 21 (36.2) 28 (45.2) 127 (37.4) 0.3316
Positive 74 (68.5) 68 (60.7) 37 (63.8) 34 (54.8) 213 (62.6)

Triple negative Yes 34 (31.5) 44 (39.3)
No 74 (68.5) 68 (60.7)

HR (4 classes) ER"/PR" 34 (31.8) 44 (40) 21 (36.2) 28 (45.9) 127 (37.8) 0.303
ERþ/PR" 21 (19.6) 20 (18.2) 16 (27.6) 13 (21.3) 70 (20.8)
ER"/PRþ 1 (0.9) 1 (0.9) 2 (3.4) 2 (3.3) 6 (1.8)
ERþ/PRþ 51 (47.7) 45 (40.9) 19 (32.8) 18 (29.5) 133 (39.6)

p53 WT 20 (54.1) 26 (63.4) 10 (47.6) 9 (39.1) 65 (53.3) 0.2815
Mutated 17 (45.9) 15 (36.6) 11 (52.4) 14 (60.9) 57 (46.7)

Per protocol neoadjuvant No celocoxib 108 (100) 21 (18.8)
Treatment Celocoxib 0 91 (81.2)

No trastuzumab 56 (96.6) 5 (8.1)
Trastuzumab 2 (3.4) 57 (91.9)

Surgery No 4 (3.7) 4 (3.6) 1 (1.7) 0 9 (2.6) 0.4374
Yes 104 (96.3) 108 (96.4) 57 (98.3) 62 (100) 331 (97.4)

Adjuvant chemotherapy No 77 (71.3) 82 (73.2) 46 (79.3) 49 (79) 254 (74.7) 0.5598
Yes 31 (28.7) 30 (26.8) 12 (20.7) 13 (21) 86 (25.3)

Adjuvant trastuzumab No 10 (17.2) 4 (6.5) 0.0658
Yes 48 (82.8) 58 (93.5)

Hormonotherapy No 28 (27.7) 38 (36.5) 26 (48.1) 32 (51.6) 124 (38.6) 0.0084
Yes 73 (72.3) 66 (63.5) 28 (51.9) 30 (48.4) 197 (61.4)

Radiotherapy No 1 (1) 3 (2.9) 0 5 (8.1) 9 (2.8) 0.0276
Yes 101 (99) 101 (97.1) 54 (100) 57 (91.9) 313 (97.2)

pCR No 93 (89.4) 94 (87) 46 (80.7) 46 (74.2) 279(84.3) 0.0458
Yes 11 (10.6) 14 (13) 11 (19.3) 16 (25.8) 52 (15.7)

pCR (breast) No 89 (85.6) 91 (85) 42 (73.7) 46 (74.2) 268 (81.2) 0.0917
Yes 15 (14.4) 16 (15) 15 (26.3) 16 (25.8) 62 (18.8)

pCR (axilla) No 69 (67) 64 (60) 30 (52.6) 28 (45.2) 191 (58.2) 0.0361
Yes 34 (33) 42 (39.6) 27 (47.4) 34 (54.8) 137 (41.8)

Relapses 37 45 15 14 111
Deaths 23 30 10 11 74

*Missing data: menopausal status (n Z 2), IMC (n Z 1), nodal status (n Z 3), grade (n Z 13), LVI (n Z 10), RP (n Z 4), p53 (n Z 218),
hormonotherapy (n Z 19), radiotherapy (n Z 18), pCR (n Z 9). Q5

Abbreviations: LVI, lymphovascular invasion; pCR, pathological complete response.

S. Giacchetti et al. / European Journal of Cancer xx (2017) 1e10 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

EJC10118_proof ■ 10 February 2017 ■ 5/10

Please cite this article in press as: Giacchetti S, et al., Long-term outcome of the REMAGUS 02 trial, a multicenter randomised phase II trial in
locally advanced breast cancer patients treated with neoadjuvant chemotherapy with or without celecoxib or trastuzumab according to HER2
status, European Journal of Cancer (2017), http://dx.doi.org/10.1016/j.ejca.2017.01.008

52 Neoadjuvant treatment



OS after univariate analysis. As for DFS, three of these
factors remained significantly associated with OS after
multivariate analysis: clinical tumour size (T3 and T4:
HR Z 2.64 [1.43e4.86] versus T2, p Z 0.002); PgR
positive (HR Z 0.25 [0.12e0.49], p < 0.001) and pCR
(HR Z 0.23 [0.06e0.97], p Z 0.046).

3.3. Stratum B: HER2-positive tumours

Of the 120 patients with HER-positive tumours, 29 pa-
tients experienced recurrences and 21 patients died.
There was no association between neoadjuvant trastu-
zumab and DFS neither in intent to treat nor in the per

Fig. 2. DFS in the whole population. A: ERþ versus ER", B: PgRþ versus PgR", C: HER2-positive versus HER2 negative.

Table 2
Multivariate analysis for DFS in stratum A and B.

Variable Stratum A (HER2 neg) DFS Stratum B (HER2þþþ) DFS

Univariate analysis Multivariate analysis Univariate analysis Multivariate
analysis

HR IC p HR IC p HR IC p HR IC p

Age >40 1 1
40e49 0.81 [0.45e1.47] 0.78 1.4 [0.48e4.09] 0.583
%50 0.91 [0.5e1.67] 0.78 1.71 [0.61e4.8] 0.583

Menopausal status No 1 1
Yes 1.07 [0.66e1.75] 0.787 1.42 [0.67e3.04] 0.36

Clinical tumour size T2 1 1 e e 1
T3/T4 1.92 [1.21e3.07] 0.005 1.96 [1.2e3.19] 0.007 1.55 [0.72e3.3] 0.256

Clinical nodal status N0 1 1
N1/N2/N3 1.42 [0.86e2.34] 0.165 1.98 [0.8e4.9] 0.134

Histological type Ductal 1 1
Lobular 2 [1.14e3.52] 0.048
Others 1.25 [0.5e3.15] 0.048 1.3 [0.31e5.5] 0.718

SBR Grade I 1
II 1.79 [0.63e5.04] 0.41 1
III 2 [0.71e5.66] 0.41 1.99 [0.84e4.73] 0.113

LVI No 1 1
Yes 1.67 [0.93e3] 0.084 1.58 [0.72e3.46] 0.246

ER negative 1 1
positive 0.97 [0.59e1.58] 0.888 0.94 [0.44e1.99] 0.872

PgR negative 1 1 e e 1
positive 0.56 [0.35e0.92] 0.019 0.41 [0.25e0.68] 0.001 0.65 [0.29e1.49] 0.307

HR negative 1 1
positive 0.91 [0.56e1.48] 0.698 0.8 [0.38e1.69] 0.557

p53 WT 1 1
mutated 1.25 [0.57e2.77] 0.573 0.42 [0.1e1.78] 0.227

pCR (breast
and axilla)

No 1 1 e e 1
Yes 0.28 [0.09e0.9] 0.023 0.24 [0.07e0.76] 0.016 0.53 [0.18e1.52] 0.229

pCR (breast) No 1 1
Yes 0.3 [0.11e0.81] 0.012 0.77 [0.31e1.9] 0.569

pCR (axilla) No 1 1 1
Yes 0.4 [0.22e0.72] 0.001 0.44 [0.2e0.97] 0.035 0.44 [0.2e0.97] 0.035
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protocol analysis in the HER2-positive stratum. Eight
years DFS was 73.8% [62.9e86.8%] in the group rand-
omised to receive NAC alone, versus 76.2%
[65.9e88.1%] in the group randomised to receive NAC
plus trastuzumab. After univariate analysis, none of the
classical factors were significantly associated with DFS
except axillary pCR: HR Z 0.44 [0.2e0.97], p Z 0.035.
No factor was significantly associated with the OS after
univariate analysis, although a trend to a better OS was
observed when axillary pCR was reached [HR Z 0.34
(0.11e1.07), p Z 0.053].

4. Discussion

We report here the long-term outcome of patients with
locally advanced breast cancer included in a randomised
phase II trial studying the impact of adding NAC to
celecoxib in HER2-negative population and trastuzu-
mab in HER2-positive population. We showed that the
addition of celecoxib was not associated with an
increased DFS nor OS in HER2-negative patients irre-
spective of hormone receptors status. We previously
published that the adjunction of celecoxib to NAC was
not associated with higher pCR rates [10]. However, this
study will provide the opportunity to study predictive
genomic factors of celecoxib response as PTGS2
overexpression.

In the HER2-positive population, neoadjuvant tras-
tuzumab was associated with a higher pCR rate but this
did not translate into a DFS or OS benefit. The
REMAGUS 02 trial is the only neoadjuvant randomised
trial including patients with HER2-positive tumours
that compared neoadjuvant trastuzumab with no neo-
adjuvant trastuzumab in a population that received
adjuvant trastuzumab in both arms. In the NOAH trial
[14], patients received either trastuzumab given as neo-
adjuvant and adjuvant treatment or no trastuzumab at
all. In other neoadjuvant trials as the GeparQuinto [15],
NeoALTTO [16] or Neosphere [17,18] trials, all control
arms included neoadjuvant anti-HER2etargeted ther-
apy. We acknowledge some weaknesses in our trial,
possible lack of statistical power due to randomised
phase II design, absence of adjuvant trastuzumab in a
small subset of patients and a few discrepancies between
treatment randomization and treatment allocation.
However, these data arguing for no effect on DFS of an
early introduction of trastuzumab in addition to
NAC may ever remain the only trial to address such a
question as neoadjuvant trastuzumab has become a
standard of care in HER2-positive breast cancers.

In our study, pCR was not a surrogate of DFS and
OS, regardless of the hormonal receptors in patients
with HER2-positive tumours. pCR has been proposed
as a surrogate end-point of long-term benefit such as
event-free survival (EFS), DFS and OS. However, the
association between pCR and long-term outcome is not

Fig. 3. DFS as a function of hormonal receptors status in patients with HER2-negative tumours.
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clearly demonstrated. The German Breast Group re-
ported that in HER-positive patients, reaching pCR was
associated with a DFS advantage in patients with ER
negative, but not ER positive tumours [9]. Cortazar
et al. on behalf of the FDA established an international
working group (CTNeoBC) which aims to investigate
the relation between pCR and long-term outcome via a
pooled analysis of neoadjuvant trials [7]. They showed
that pCR was positively associated with EFS and OS in
all subgroups of breast cancers. However, at a trial level,
the authors recorded little or no association between
increases of pCR and the treatment’s effect on EFS or
OS. In a recent meta-analysis [19], only the NOAH trial
has demonstrated that pCR achievement could be a
surrogate end-point for EFS and OS [14]. The effect of
pCR gain on survival in the NOAH trial could be seen
only because the control group lacked an effective tar-
geted therapy for HER2-positive breast cancer. In our
trial, trastuzumab was given in both arms but earlier in
the experimental group. The introduction of adjuvant
trastuzumab could have compensated the use of neo-
adjuvant trastuzumab in terms of long-term DFS or OS.
Our study, as well as other studies, emphasises that in
future neoadjuvant studies in HER2-positive popula-
tion, all patients will receive HER2-targeted therapy,
and thus the gain of a new drug on pCR gain must be
large enough to have an effect on EFS and survival [19].

The other point underlined in our series is the major
role of post-NAC lymph nodes’ involvement in patients
with HER2-positive tumours. The analysis of the path-
ological response in the axilla is not or rarely studied
independently of the breast, although we know that
axilla involvement is a major predictor of DFS and/or
OS in adjuvant. Patients with extensive nodal involve-
ment after NAC have a very poor outcome [20e22]. The
population included in our study has large locally
advanced tumours with almost half of the population
having T3/T4 tumours. The size of the tumours (T3 and
T4 versus T2) is one of the major predictive factor in our
series with a HR Z 2.96, p Z 0.002. Other authors have
reported that the clinical size of the tumours is a major
prognostic factor in breast cancers treated with NAC
[23e26].

Another key observation from this study is the major
impact of PgR receptors. Indeed, the long follow-up
(nearly 8 years) allowed to report such mature data and
to highlight the long-lasting risk of hormone-responsive
breast cancers, as opposed to hormone receptore-
negative BC. We already published that there is a non-
constant effect in time for TN and non-TN breast can-
cers. Overall, TN status had the worst initial risk of
recurrence that gradually decreased during the first 24
months of follow-up to disappear after 48 months of
follow-up [27]. Here, ERþ/PR-status was associated
with a worse DFS when compared with ERþ/PRþ
(reference class, HR Z 1); ERþ/PR": HR: 2.3
[1.28e4.12], p Z 0.005, whereas TN status was not

HR Z 1.49 (95% CI (0.86e2.6), p Z 0.16). With a long
follow-up, the prognosis of TNBC was not significantly
different from ERþ/PRepositive patients, whereas
ERþ/PR-negative BC patients had a nearly two-fold
increased risk of relapse. These results are very impor-
tant as chemotherapy is increasingly avoided for pa-
tients with ERþ tumours. At the last San Gallen
conference, in patients with ‘luminal B-like’ (HER2-
negative) tumours, the Panel was more closely divided,
but only a minority would recommend chemotherapy
for most of the cases [28]. In the European Organisation
for Research and Treatment of Cancer recommenda-
tions [29], the luminal B HER2-negative cancers were
considered as a population of the highest uncertainty
regarding chemotherapy indications. Other authors
explored the significance of PgR negativity [30e32]. Bae
et al. [32] showed that patents with single HRþ, negative
HER2 tumours were associated with poorer survival
than ER þ PR þ tumours and had comparable poor
survival than TN tumours. It has been recently shown
that PgR is not merely an ERa-induced gene target, but
is also an ERa-associated protein that modulates its
behaviour [33]. Q2PR functions as a molecular rheostat to
control ERa chromatin binding and transcriptional ac-
tivity. Our findings call for the necessity of PgR deter-
mination which has important implications for
prognosis and therapeutic interventions, as considering
chemotherapy in the Luminal B BC population.

In conclusion, the addition of celecoxib to NAC was
not associated with an increase of DFS nor OS in pa-
tients with HER2-negative locally advanced tumours.
Our study emphasised the role of progesterone
receptors and their importance in distinguishing
luminal A from luminal B breast cancers with worst
prognostic.

Patients with HER2-positive tumours treated with
trastuzumab had a statistically higher DFS and OS than
patients with HER2-negative tumours, highlighting how
targeted anti-HER2 treatment has improved the initial
poor prognostic of these cancers. This is the first study
comparing neoadjuvant to adjuvant trastuzumab. Both
DFS and OS were similar in the patients who received
neoadjuvant versus adjuvant trastuzumab. It is not un-
likely that adjuvant trastuzumab, compensate the lack
of an early trastuzumab. Finally, in HER2-positive pa-
tients, only the pCR in the axilla was associated with a
poor DFS. These patients with no pCR after NAC
remain at high risk of relapse despite adjuvant trastu-
zumab treatment and should be considered for specific
‘adjuvant-post neoadjuvant’ studies.
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Abstract  34 

Neoadjuvant systemic therapy (NAC) is currently used in the treatment of stage II/III breast 35 

cancer. Pathological complete response as a surrogate endpoint for clinical outcomes is not 36 

completely validated for all subgroups of breast cancers. Therefore, there is a need for reliable 37 

predictive tests of the most effective treatment. 38 

We used a combination of predictive clinical, pathological and gene-expression-based 39 

markers of response to NAC in a prospective phase II multicentre randomized clinical trial in 40 

breast cancer patients, with a long follow up (8 years). This study concerned the 41 

subpopulation of 188 patients with similar levels of pathological response rates to sequential 42 

epirubicin/cyclophosphamide and docetaxel to determine predictive marker of pCR and DFS. 43 

We used a set of 45 genes selected from high throughput analysis and a standardized RT-44 

qPCR. We analyzed the predictive markers of pathological complete response (pCR) and DFS 45 

in the overall population and DFS the subpopulation of 159 patients with no pCR. 46 

In the overall population, combining both clinical and genomic variables, large tumor size, 47 

low TFF1 and MYBL2 overexpression were significantly associated with pCR. T4 Stage, 48 

lymphovascular invasion, negative PR status, histological type and high values of CCNB1 49 

were associated with DFS. In the no pCR population, only lymphovascular invasion and high 50 

values of BIRC5 were associated with DFS.  51 

 52 

We confirm the importance of ER-related and proliferation genes in the prediction of pCR in 53 

NAC-treated breast cancer patients. Furthermore, we identified BIRC5 (survivin) as a main 54 

pejorative prognostic factor in patients with breast cancers with no pCR. These results also 55 

open perspective for predictive markers of new targeted therapies.  56 

Introduction  57 

Breast cancer is a heterogeneous disease with regard to clinicopathological features, 58 

biological behavior, molecular profiles, responses to treatment, and prognosis [1]. 59 

Neoadjuvant chemotherapy (NAC) is currently used in patients with early-stage and advanced 60 

disease [2,3,4]. Its clinical benefits are: a) higher rates of breast-conserving surgery, b) similar 61 

prognoses for breast cancer patients receiving a neoadjuvant and for those receiving an 62 
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adjuvant therapy regimen, c) a body of evidence showing that the achievement of a 63 

pathological complete response (pCR) after neoadjuvant chemotherapy is associated with a 64 

good prognosis in specific subgroups (triple-negative, HER2-positive) [5-6].  However, a 65 

pCR is observed in only 10% to 25% of patients depending of the phenotype of the tumor, 66 

and inversely, around 75 to 90% of patients do not respond. Consequently, there is a clinical 67 

need for reliable predictive tests of the most effective treatment. Although some clinico-68 

pathological characteristics (e.g. estrogen receptor-negative status, high histological grades 69 

and high proliferative status) and the simplified immuno-histochemical classification 70 

according to intrinsic molecular subgroups [7-10], have already been demonstrated to be 71 

associated with the sensitivity to chemotherapy,	 more precise classifications are required, 72 

because intrinsic tumor sensitivity, for the same stage of disease and the same drug, may 73 

differ according to tumor phenotype.  74 

The pre-therapeutic breast cancer core biopsies provide naive tumor tissue and a basis for the 75 

analysis of predictive biologic factors to identify patients either that will benefit from 76 

chemotherapy but also to identify predictive marker of resistance to a chemotherapy regimen.  77 

The present study aimed to identify predictive clinical, pathological and biological markers of 78 

response to neoadjuvant chemotherapy and DFS in the context of a prospective randomized 79 

clinical trial, the REMAGUS-02 trial (RO2), with a long follow up. The RO2 trial was a 80 

phase II multicentre randomized trial designed to assess antitumor efficacy of sequential 81 

epirubicin/cyclophosphamide followed by docetaxel in stage II and III operable breast cancer 82 

patients +/- celecoxib for HER2- patients and +/- trastuzumab for HER2+ [11 This study 83 

concerned the subpopulation of 188 patients with similar levels of pathological response rates 84 

to NAC, (without neoadjuvant trastuzumab). We previously defined the optimal pre-analytical 85 

conditions of samples treatment, quality criteria for RNA integrity assessment, calibration and 86 

standardization of RT-qPCR to be able to analyze the multicentre samples with high accuracy 87 
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(de Cremoux, 2011). Two others publications (Spyratos et al, 2012; Valet et al, 2013) 88 

concerned transcriptome analysis, ie high throughput data of unselected genes, analyzed on 89 

the same samples. In the current study, we used a set of 45 genes selected from our previous 90 

works and literature data, and a standardized RT-qPCR approach for the analysis of the 91 

mRNA expression of genes to determine predictive markers of pCR. We also analyzed the 92 

predictive markers of DFS in the overall population and in the sub population of 159 patients 93 

with no pCR. 94 

 95 

Patients and Methods 96 

Patients  97 

The phase II randomized REMAGUS-02 (R02) trial included 340 patients from 4 different 98 

institutions, as previously described [11]. The period of inclusion: was from May 2004 to 99 

October 2007). All patients received neoadjuvant chemotherapy for operable and locally 100 

advanced breast cancer. After four cycles of epirubicin (75mg/m2)–cyclophosphamide 101 

(750mg/m2), patients were randomized to four cycles of docetaxel (100mg/m2) with or 102 

without celecoxib (400mg twice daily orally) for patients with HER2-negative tumors (arms 103 

A and B, respectively), and docetaxel with or without trastuzumab (8mg/kg then 6mg/kg 104 

every 3 weeks) for patients with HER2-positive tumors (arms C and D, respectively). 105 

Adjuvant trastuzumab for a total of 18 three-weekly infusions was given for HER2-positive 106 

cancer patients, starting either before surgery combined with docetaxel (arm C), or only after 107 

surgery (arm D).  108 

All patients were informed and prospectively gave their signed consent to participate in the 109 

trial and ancillary studies, (ISRCTN 10059974, French ethics committee Paris-Bicêtre, n°03-110 

55). 111 

62 Neoadjuvant treatment



5 
 

The primary objective was pathological complete response (pCR), evaluated according to 112 

Chevallier’s criteria [12]. Secondary objectives were to define genomic profiles of success or 113 

failure for response to chemotherapy (pCR / no pCR) and of survival for each type of 114 

treatment.  115 

Because of the known major impact of neoadjuvant trastuzumab on pCR rates in HER2-116 

positive tumors, we chose to study in the current work, the subpopulation of 188 patients with 117 

adequate quality control criteria [13,14] and with similar levels of pathological response rates 118 

[11]:  arms A and B (both HER2-) and arm D (HER2+ without trastuzumab in the 119 

neoadjuvant setting), with 11%, 16%, and 17% pCR respectively. We did not take into 120 

account patients of group C ((HER2+ with trastuzumab in the neoadjuvant setting), that had 121 

28% pCR.  122 

 123 

Tissue samples 124 

Frozen biopsy samples were processed under RNAse-free conditions, as previously described 125 

in detail [13,14]. Briefly, tumor cellularity was evaluated on frozen sections of biopsies 126 

dedicated to RNA extraction by breast pathologists. Only biopsies with more than 30% 127 

invasive epithelial tumor cells were analyzed. Total RNA was extracted from biopsies using a 128 

TRIzol method followed by RNA clean-up using the NucleoSpin RNA II kit (Macherey 129 

Nagel, Hoerdt, France). Evaluation of RNA integrity was performed on the Agilent 130 

Bioanalyzer 2100 microfluidics-based platform using the RNA 6000 Nano Lab Chips kit 131 

(Agilent, Santa Clara, CA, USA). Only samples with a RIN (RNA Integrity Number) greater 132 

than 6 were analyzed. One µg total RNA was kept for RT-qPCR. All samples were tested for 133 

albumin DNA contaminants using an intronic albumin gene design in qPCR. No amplification 134 

of albumin DNA was observed in our series of samples (Ct>35). Total RNA of human breast 135 
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cancer cell lines T47D and MDA-MB 231 were used to calibrate reverse transcription and 136 

standardize real-time PCR. 137 

Real-time RT-qPCR analysis 138 

The list of selected genes belong to the main well-known pathways in breast cancer ie 139 

estrogen receptor, growth factors/HER2 and proliferation pathways [15,16]. We also included 140 

the classical genes considered in luminal (equivalent to ER pathway) and basal classification 141 

[1]. We also included proteases genes while it is known that RNA expression of proteases is 142 

less powerful that protein proteases expression to predict outcome [17,18]. Topoisomerase II, 143 

MAPTau were added as target of chemotherapy (anthracyclines and taxanes [19,20] 144 

PTGS2/COX2 was included because this may be a target for the celecoxib arm of the HER2 145 

negative arm of the R02 trial [21]. CD24 and CD 44 were included as markers of stem cells 146 

and CD68 for macrophages. Je propose de supprimer cette phrase car il faudrait des ref pout 147 

tous les gènes non cites avant. On peut considerer qu’ils sont inclus dans la phrase suivante. 148 

The Remagus 02 working group collegially discussed the definite choice of the limited list of 149 

genes during the design of the trial and the ancillaries’ studies. 150 

First-strand cDNA synthesis was performed with 1µg total RNA using Superscript II Reverse 151 

Transcriptase (Invitrogen Corporation) in a final volume of 20 µL, as previously described [6-152 

8]. Quantitative PCR analysis was performed on 6.25 ng cDNA in duplicate. A 5 µL diluted 153 

sample of cDNA (6.25ng) was added to 10 µL of the PCR mix. The thermal cycling 154 

conditions comprised an initial denaturation step at 95°C for 10 min, 45 cycles at 95°C for 15 155 

sec, and annealing temperature, either 60°C or 65°C depending on the target, for 1 min. 156 

All PCR reactions were performed using the ABI Prism 7900 Sequence Detection System 157 

(Applied Biosystems Inc., Forster City, USA). The PCR Core reagent kit was used for 158 

systems with Taqman probes (Eurogentec, Liège, Belgium), and the Power SYBR Green PCR 159 

master Mix (Applied Biosystems Inc.) was used for systems without Taqman probe. Primers 160 

and fluorescent probes were designed from published sequences using Primer express 161 
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software (Applied Biosystems Inc.). BLASTN searches against dbEST and nr (the 162 

nonredundant set of the GenBank sequence database) were performed to confirm the total 163 

gene specificity of the chosen nucleotide sequences and the absence of DNA polymorphisms. 164 

Target sequences were 60-120 long. Forty-five cancer-related target genes (Table 1. 165 

supplementary data) involved in the main signaling pathways associated with in breast cancer 166 

development were studied (nucleotide and probe sequences available on request). RPLPO, 167 

TATA Box binding protein (TBP), transferrin receptor (TFR), beta-actin, beta-glucuronidase 168 

(GUS), and GAPDH were used as endogenous reference genes. Transferrin receptor-TFRC-5’ 169 

(Hs00951086_m1), GAPDH-5’ (Hs99999905_m1) and GUSB-3’ (Hs99999908_m1) were 170 

obtained as Assays-on-Demand from Applied Biosystems. Human breast cancer cell lines 171 

T47D and MDA-MB 231 cDNA were used to generate 8 points standard curves for each 172 

gene. Target quantities were normalized to each of the reference genes and to the median of 173 

the 6 reference genes and calibrated using the second point of each standard curve. Final 174 

results were expressed as N-fold differences in target gene expression relative to the reference 175 

genes and the calibrator and are expressed as: 176 

E target
 (Ct calibrator – Ct sample) /E reference gene

 (Ct calibrator – Ct sample), 177 

where E is the efficiency of PCR measured using the slope of the calibration curve, and Ct is 178 

the cycle threshold.  179 

No reverse-Transcription Controls (NTC) were included in each batch of samples. Only cases 180 

with exploitable data obtained for the 6 reference genes and the 45 target genes were 181 

submitted to further statistical analysis, i.e. 182 

Samples needed to have linear amplification of the house keeping genes from 1/40 to 1/200 183 

dilutions. NTC had to be greater than 40 in all cases. High RT-qPCR efficiencies (>90%) had 184 

to be found for each gene transcript. 185 

Statistical analysis  186 

Clinico- pathological data (age, menopausal status, clinical tumor size and clinical nodal 187 

status, histological type, grade, presence of lymphovascular invasion, Estrogen receptor status 188 
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(ER), Progesterone receptor status (PR), HER2 status were analyzed by classes as presented 189 

in the different Tables. 190 

Genes were first grouped into biological pathways categories (Estrogen Receptors genes 191 

group, proliferation genes group, growth factor receptors genes group, basal genes group, 192 

protease genes group, other genes). As no consensual threshold with RT-qPCR, analyses, and 193 

to ensure the robustness of the results, we chose to split the gene expression according to the 194 

median (low versus high) or to the tertiles (low, intermediate, high).  The choice of analyzing 195 

genes according to the tertiles or the median was based on the biological knowledge of the 196 

gene function. For the genes analyzed by tertiles, we chose to group the two consecutive 197 

tertiles with odds ratios for pCR of similar magnitude and we analyzed them versus the third 198 

one. If the three relative risks showed a continuous increase or decrease, suggesting a linear 199 

association, we chose to analyze the genes within this family cutting them at the median 200 

value. 201 

To analyze the association between clinical, pathological, genomic variables and pCR, we 202 

performed a univariate analysis using the chi-square test and a univariate logistic regression 203 

model to estimate odds Ratios (OR) and their 95% confidence intervals.  204 

DFS was defined as the time from surgery to death, loco-regional recurrence, or distant 205 

recurrence, whichever occurred first. Patients for whom none of these events were recorded 206 

were censored at the date of their last known contact. Survival probabilities were estimated by 207 

the Kaplan–Meier method, and survival curves were compared with log-rank tests. Hazard 208 

ratios and their associated 95% confidence intervals were calculated with the Cox 209 

proportional hazard model.  210 

For the multivariate analyses of gene expression, given the strong correlations of most of the 211 

genes within a biological family (data not shown), we chose to retain retained in each family 212 

the gene significantly associated to pCR or DFS with the lowest p-value. When no gene was 213 
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correlated to pCR or DFS with a p-value for the likelihood ratio test higher than 0.1, this 214 

family was not retained. Variables with a p-value for the likelihood ratio test ≤ 0.10 in 215 

univariate analysis were included in the multivariate model. Forward selection was used to 216 

establish the final multivariate model.  217 

To analyze the association between clinical, pathological and gene expression parameters and 218 

pCR and DFS, we first analyzed separately clinico-pathological and genomic data, which 219 

resulted in two different multivariate models (one “clinical model” and one “genomic” 220 

model), finally, a mixed model was implemented after pooling clinico-pathological covariates 221 

and genomic variables selected after the first two steps of the statistical analysis (final model). 222 

Clinico-pathological variables were forced to be included in the final model irrespective of the 223 

p-value for the association, and genomic variables were added to the model using a forward 224 

selection procedure. 225 

The cutoff date for the DFS analysis was May 1st 2015. The median follow-up was: 94.5 226 

months, (range: 19.9-127 months). 227 

Survival analyses were performed in the overall population and were also performed in the 228 

“no pCR” population. 229 

In this manuscript, we included the essential elements of "Reporting recommendations for 230 

tumor marker prognostic studies (REMARK)" [22]. 231 

 232 

Results 233 

Patients’ population 234 

Among the 188 patients from the arms A, B and D of Remagus 02 trial, 27 had complete 235 

pathological response (14.4%) and 66 patients presented an event. Patients characteristics 236 

were similar between this substudy and the whole population included in the REMAGUS02 237 

trial regarding age, menopausal status, body mass index, clinical tumor size and nodal status, 238 
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ER, PR status. There was significantly less HER2-positive tumors (19.1% versus 54.6% 239 

respectively, p<0.001) in the studied subpopulation than in the remaining patients of the trial, 240 

because patients from arm C who received neoadjuvant trastuzumab were excluded from the 241 

current study. 242 

For DFS analysis, 186 patients had available data. Among the 159 patients with no complete 243 

pathological response and DFS data available, 56 patients presented an event. The 244 

characteristics of the population according to the pathological complete response are 245 

described in Table 1. The occurrence of a pathological complete response was significantly 246 

associated with a higher clinical tumor size, higher tumor grade and negativity of hormone 247 

receptor status.  248 

 249 

Results of gene expression analyzed by RT-qPCR  250 

All RT-qPCR data were presented using the median of the housekeeping genes. Mean Ct 251 

values were comprised between 20 and 27 for the majority of genes, and between 31 and 33 252 

for KRT 5, KRT17, PTGS2, TERT, PROM1 and SERPINB5. Forty-four of the 45 selected 253 

genes were considered to be expressed in all samples; GSTM1 was undetectable (Ct>35) in 254 

22% of samples. (suppl table)  255 

 256 

Genes associated with the complete pathological response on the overall population  257 

 The genomic variables in each pathway category were analyzed by univariate analysis. 258 

Results are presented in supplemental Table 1. Only the most significant gene of each 259 

subgroup (in bold) was selected for further multivariable analysis. High levels of proliferation 260 

genes (MKI67, AURKA, BIRC5, MYBL2, E2F1, TTK) were strongly correlated with pCR. The 261 

association between MYBL2 expression and pCR reached the lowest p-value. In contrast, high 262 

levels of genes of the oestrogen receptor pathway (ESR1, PGR, SCUBE2, GATA3, FOXA1, 263 

TTF1), of MAPT, and BCL2 were inversely correlated with pCR. ERBB2 was not related to 264 
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pCR. High levels of the proteases CTSL2 and MMP9 were associated with pCR, as were high 265 

levels of PROM1, VEGF, HIF1α and BRCA2.  266 

   267 

Table 2 represents the results of the multivariate analysis to predict pCR. In the first part of 268 

the table, results present the model built with the clinical variables alone (clinical model, 269 

Table 2a), then models were built with genomic variables alone (genomic model, Table 2b) 270 

and the third part of the table shows the final model including both clinical and genomic 271 

variables (Final model, Table 2c). Among clinical variables, high tumor size, low ER and PR 272 

expression analyzed by IHC were associated with higher pCR. Among genomic variables, 273 

higher pCR were observed in tumors with low ESR1-related genes represented by low TFF1 274 

values and high proliferation- related genes represented by high MYBL2 values and lower 275 

MAPT/tau expression. Combining both clinical and genomic 1variables, only tumor size, 276 

TFF1 and MYBL2 expression remains significantly associated with pCR.  277 

 278 

Genes predictive of the disease free survival in the overall population  279 

These results were obtained on 186 patients. After univariate analysis performed with clinical 280 

variables, large tumor size, lobular histology, lymphovascular invasion and PR negativity, 281 

were associated with a shorter DFS (Table 3). The pCR was not significantly predictive of 282 

DFS in the overall population; however, pCR was predictive of longer DFS in the subgroup of 283 

triple negative breast cancer patients (HR=0.28 [0.08-0.96]; p=0.03). After univariate analysis 284 

with genomic variables, only high levels of proliferation’s genes were correlated with a 285 

shorter DFS (supplemental table 2). The two genes most significantly associated with DFS 286 

were selected for further multivariable analysis (BIRC5 and CCNB1).  287 

Table 4a represents the results of the multivariate analysis of the clinical variables to predict 288 

DFS. T3 and T4 stage, positive lymphovascular invasion, lobular histological subtype and 289 
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negative PR were associated with shorter DFS. Table 4b represents the results of the 290 

multivariate analysis of genomic variables to predict DFS. Only high levels of CCNB1 were 291 

associated with a shorter DFS. In the final model including both clinical and genomic 292 

variables (Table 4c) CCNB1 remained associated with DFS in addition to stage of the disease, 293 

lymphovascular invasion and histological type. 294 

Genes predictive of the disease free survival in patients with no pathological complete 295 

response  296 

The same analyses were performed on the population of 159 patients with no pCR. After 297 

univariate analysis of clinical variables, tumor size, histological subtype, lymphovascular 298 

invasion and progesterone receptor status were associated with DFS (more T3, PR negative, 299 

lobular or other subtypes with lymphovascular invasion had shorter DFS, Supplemental Table 300 

3).  301 

Supplemental Table 4 represents the most significant genomic variables in each pathway 302 

category selected by univariate analysis. We found that low levels of ESR1 genes, high levels 303 

of proliferation’s genes mainly BIRC5, high level of the basal networks genes best 304 

represented by TRIM29 and low levels of protease gene MMP11 and high levels of TOP2A 305 

and BRCA2 genes were correlated with shorter DFS.  306 

Table 5a represents the results of the multivariate analysis of the clinical variables to predict 307 

DFS. Patients with T stage 3 and 4, high tumor grade and lymphovascular invasion were 308 

correlated with the shortest DFS. Table 5b represents the results of the multivariate analysis of 309 

genomic variables to predict DFS. High levels of BIRC5 and TRIM29 predict shorter DFS in 310 

the patients with no pCR. When clinicopathological variables were included in the 311 

multivariate model using the same procedure (Table 5c), only lymphovascular invasion and 312 

BIRC5 levels remained significantly associated with DFS.  313 

   314 
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Discussion 315 

This study was designed both to identify predictive clinical, pathological and biological 316 

markers of response to chemotherapy and to identify predictive marker of DFS in the whole 317 

population and, in subgroup of patients with no pCR, in the context of a prospective 318 

randomized clinical trial [11]. We found that in neoadjuvant context, pCR and prognosis 319 

prediction can be improved by adding a few genes selected after a biologically driven process, 320 

to standard clinical and pathological variables. Indeed, few data have been reported to 321 

determine prognostic biomarker in the context of no response to neoadjuvant chemotherapy 322 

and particularly with such a long term follow up. In addition, celecoxib treatment  in the 323 

HER-negative strate of the study,  did not improve survival (Giachetti et al, submitted). 324 

 325 

Compared to a recent meta-analysis based on 11,695 subjects from 30 NAC eligible studies 326 

from 2001 to 2005, our population is representative of a T2-T3 breast carcinoma particularly 327 

in term of ER, PR, HER2 expression and pCR rate [23].  328 

We used a set of genes selected from high throughput analysis that may have a biological role 329 

in the response to treatment and genes involved in the major network activated in breast 330 

carcinoma. They were then assembled from the literature [24,25]. We already published 331 

qPCR quality control criteria for gene expression assessment [13,14]. 332 

In addition to the results of the whole population of patients with similar levels of 333 

pathological response rate to NAC, we report results in the subpopulation of 159 patients with 334 

no pCR.  There is a great interest to identify clinical, pathological and biological factors 335 

associated with a shorter DFS in this subgroup of patients, as it is known that patients with 336 

pCR are very less likely to experience relapse than no pCR patients, notably in the TNBC and 337 

the HER2-positive subgroup. Recently, a pooled analysis of 12 international neoadjuvant 338 

clinical trials including 11.955 patients with breast carcinoma did not validate pCR as a 339 

surrogate endpoint for improved EFS and DFS for all subtypes of breast carcinoma [2]. They 340 
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observed the strongest association between pCR and long-term outcome in patients with 341 

aggressive breast cancer subtypes (triple negative; hormone-receptor-positive, high-grade, and 342 

HER2-negative; and HER2-positive and hormone-receptor-negative). 343 

In our study, we found an association between pCR and DFS only in the subgroup of triple 344 

negative breast cancers patients. However, the discrepancy could be explained by the study 345 

design (meta-analysis versus clinical trial), the small size of our series of patients and a longer 346 

median follow up than in Cortazar’s study [2] (near 8 years versus 5.40 years respectively).  347 

As expected in this subpopulation of large breast carcinoma, we observed that tumor size and 348 

hormone receptor status were the main determinants of the pathological response. We also 349 

confirmed the major weight on pCR prediction, of a combined signature associating clinical 350 

and genomic data, Trefoil factor 1 expression (TFF1, also known as pS2), from the ER 351 

network, and MYBL2, from the proliferation network. In multivariate analysis, low level of 352 

TFF1, and high level of MYBL2 expression remained statistically significant in the prediction 353 

of pCR.  We previously demonstrated that probesets associated with ESR1 provided one of 354 

the best performances to predict pCR in a subgroup of patients’ of the R02 trial, with 355 

available material for transcriptome analysis [14,26]. Furthermore, the proliferation marker 356 

network has been previously described as a predictive factor of response to neoadjuvant 357 

chemotherapy either using transcriptomic analysis [27,28] and also genomic data from in 358 

silico analysis [29,30]. 359 

In the subpopulation with no pCR, only two factors were predictive of a worse survival: 360 

lymphovascular invasion and high level of BIRC5. Lymphovascular invasion is well known 361 

factor of poor prognosis, ie breast cancer-specific survival and DFS, irrespective of the NAC 362 

regimen [31]. To our knowledge, it is the first description of the prognostic role of BIRC5 363 

expression after a long follow up in a large series of breast cancer patients that did not 364 

respond to neoadjuvant chemotherapy and in addition, with a long follow up.  BIRC5 gene is 365 

72 Neoadjuvant treatment



15 
 

coding for survivin protein. Survivin is a member of the inhibitor of apoptosis (IAP) gene 366 

family, which encodes negative regulatory proteins that prevent apoptotic cell death. It has a 367 

dual role in regulation of cell division and apoptosis that are both involved in tumor 368 

development [32]. It is not expressed in normal tissue and it is re-expressed in human cancer 369 

cells at a frequency of 34-100% [33,34].   Prognostic and clinical significance of survivin in 370 

breast cancers have been evaluated, mainly in the adjuvant setting and the results have been 371 

published: overall, up- regulation of BIRC5 is a frequent event in breast cancer, and its 372 

expression in breast cancer tissue is significantly associated with a poor clinical outcome, 373 

whether using immuno-histochemical analysis [35], quantitative analysis of the protein by 374 

Elisa [36] or quantitative RT-PCR [3738]. However, few studies did not find this prognostic 375 

value. One retrospective study in 293 patients treated in an adjuvant setting, where only 376 

nuclear staining of survivin was considered [39] and a small neoadjuvant study in 45 patients 377 

treated by anthracyclins and taxane regimen, where the authors found a predictive value of 378 

high levels of survivin for prediction of pCR, but no prognostic value [40]. However, in this 379 

latter study, methodological concerns have been pointed out [41]. Finally, two recent meta 380 

analyses [42,43] confirmed the prognostic role of survivin, revealing a high risk of recurrence 381 

with higher survivin expressing tumors.  382 

Furthermore, the impact of BIRC5 (survivin) overexpression in the group of no pCR after 383 

neoadjuvant chemotherapy not only is prognostic, but should also be theranostic. Recent 384 

preclinical publications supported this hypothesis.  Survivin overexpression may be 385 

responsive to response to therapy, based on preclinical studies using organotypic human 386 

breast tumors for doxorubicin treatment [44]. Preclinical in vitro study on TNBC cell line 387 

(MDA-MB-231) demonstrated that repressing BIRC5 expression by siRNA could 388 

significantly inhibit the proliferation of TNBC cell lines [45]. Moreover, in vitro drug 389 

sensitivity of breast cancer cell lines was restored by the decrease of survivin expression 390 
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induced by mir218 targeting [46]. Interestingly, a role for survivin in cancer cell protection 391 

from DNA damage has been recently shown [47].  These interesting preclinical data, showing 392 

the role for survivin in endogenous DNA damage repair by homologous recombination in 393 

human breast cancer cell lines, were confirmed by the analysis of publically available 394 

database from primary breast tumors. The authors showed a positive correlation between the 395 

level of expression of BIRC5 and other genes involved in HR pathways, namely EME1, 396 

RAD51 or EXO1 mRNA, and that, high expression of these genes was independently 397 

associated with pejorative prognostic. Finally, more recently, survivin has been discussed as a 398 

potential target for cancer therapy with different promising therapeutic strategies, including a 399 

phase II study in breast cancer using YM155, a small molecular suppressor of survivin 400 

[48,49,50]. Interestingly, BIRC5 gene is one of the common genes included in Oncotype 401 

DX®, Endopredict® and PAM50, breast cancer signatures [51,52,53]. Our results reinforced 402 

the need to identify biomarkers that could help to select patients who might benefit of specific 403 

inhibitors of survivin.  404 

 405 

In conclusion, we confirm the importance of ER-related and proliferation genes in the 406 

prediction of pCR in breast cancer patients treated in neoadjuvant setting. We identified 407 

survivin as a main pejorative prognostic factor in patients with breast cancers who did not 408 

respond to neoadjuvant chemotherapy. As the survinin pathway seems potentially accessible 409 

to drugs, these results open new thrilling perspective for not only prognostic, but also 410 

predictive markers of new targeted therapies. If these results were confirmed, it would open a 411 

way to modify the clinical course of breast cancer not responding to chemotherapy currently 412 

associated with a poor prognosis. Following NAC, it is known that no pCR patients are at a 413 

high risk of relapse. In the presence of poor prognostic factors, such as lymphovascular 414 
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invasion / high-grade tumors/ PR negativity, these patients could be enrolled in second line 415 

clinical trials stratified on BIRC5 status. BIRC5-low patients would be allocated to 416 

observation whereas BIRC5-high patients would be randomized to either observation or drugs 417 

targeting BIRC5. 418 

 419 
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Abstract

Background
Triple-negative breast cancers (TNBC) are a specific subtype of breast cancers with a par-
ticularly poor prognosis. However, it is a very heterogeneous subgroup in terms of clinical
behavior and sensitivity to systemic treatments. Thus, the identification of risk factors specif-
ically associated with those tumors still represents a major challenge. A therapeutic strategy
increasingly used for TNBC patients is neoadjuvant chemotherapy (NAC). Only a subset of
patients achieves a pathologic complete response (pCR) after NAC and have a better out-
come than patients with residual disease.

Purpose
The aim of this study is to identify clinical factors associated with the metastatic-free survival
in TNBC patients who received NAC.

Methods
We analyzed 326 cT1-3N1-3M0 patients with ductal infiltrating TNBC treated by NAC. The
survival analysis was performed using a Cox proportional hazard model to determine clini-
cal features associated with prognosis on the whole TNBC dataset. In addition, we built a
recursive partitioning tree in order to identify additional clinical features associated with
prognosis in specific subgroups of TNBC patients.
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Results
We identified the lymph node involvement after NAC as the only clinical feature significantly
associated with a poor prognosis using a Cox multivariate model (HR = 3.89 [2.42–6.25],
p<0.0001). Using our recursive partitioning tree, we were able to distinguish 5 subgroups of
TNBC patients with different prognosis. For patients without lymph node involvement after
NAC, obesity was significantly associated with a poor prognosis (HR = 2.64 [1.28–5.55]).
As for patients with lymph node involvement after NAC, the pre-menopausal status in grade
III tumors was associated with poor prognosis (HR = 9.68 [5.71–18.31]).

Conclusion
This study demonstrates that axillary lymph node status after NAC is the major prognostic
factor for triple-negative breast cancers. Moreover, we identified body mass index and men-
opausal status as two other promising prognostic factors in this breast cancer subgroup.
Using these clinical factors, we were able to classify TNBC patients in 5 subgroups, for
which pre-menopausal patients with grade III tumors and lymph node involvement after
NAC have the worse prognosis.

Introduction
Breast cancer is a heterogeneous disease with regard to clinicopathological features, biological
behavior, molecular profiles, responses to treatment, and prognosis [1]. Triple-negative breast
(TNBC), defined by negative estrogen/progesterone (ER/PR) receptor expression and lack of
HER2 overexpression/amplification, corresponds to 15%–20% of breast cancers. TNBC differs
from other subtypes in terms of axillary lymph node involvement, local and regional recur-
rence, time to metastatis delay (early distant metastatic events before 5 years from initial diag-
nosis), and patterns of distant recurrence (high rates of brain, lung, and distant nodal
metastasis) [2].

TNBC represents an important clinical challenge as no major improvement in treatment
has occurred recently in this subgroup apart from adjuvant chemotherapy, which has reduced
mortality by approximately 30% [3]. This is well demonstrated with neoadjuvant therapy
where those that achieve pCR have almost a 40% absolute difference in survival compared to
those that do not. As a whole, patients with TNBC have the worst outcome among breast can-
cer subgroups [4]. Moreover, their survival differs from others subgroups: there is a sharp
decrease in survival during the first 3–5 years after diagnosis but distant relapse after this is
much less common [4].

Given their poor prognosis, their assumed relative chemosensitivity, and absence of any
alternative specific systemic therapy, chemotherapy remains the mainstay of TNBC treatment.
Neoadjuvant therapy is being increasingly used for TNBC and can be effectively used as a
research tool to assess the efficacy of new drugs and/or new schedules with a validated surro-
gate endpoint [5]. It also represents a model to evaluate relationships between treatments and
tumor biomarkers with the analysis of patient tissues possible both before and after therapy
[6]. Patients who achieve a complete pathologic response (pCR) after neoadjuvant chemother-
apy (NAC) have an improved prognosis compared to those with residual disease; pCR is a
good surrogate marker of long-term survival and cure. Despite their relative chemosensitivity,
30%–40% of TNBC patients treated with routine NAC achieve pCR. However, patients with
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residual disease (no pCR) following neoadjuvant chemotherapy have worse prognosis and
overall survival [7][8].

The aim of our study was to identify patient subgroups with different prognostic outcome
in a large population of TNBC patients treated by NAC at the Institut Curie (Paris, France)
and to generate insight for the development of targeted therapies for the poor prognosis group.

Materials and Methods
Population
We analyzed a retrospective cohort of 326 cT1-3N1-3M0 patients with triple-negative infiltrat-
ing ductal breast carcinoma (NEOREP Cohort) treated at the Institut Curie between 2002 and
2012. Unilateral, non-recurrent, non-metastatic tumors were only included with the exclusion
of T4. All patients received NAC followed by surgery with or without radiotherapy.

Tumor samples
The following histological features were retrieved: tumor type, clinical initial tumor size and
nodal status, grade (Elston and Ellis), Estrogen Receptor (ER) and Progesterone Receptor (PR)
status, HER2 status, number of metastatic and total sentinel and non-sentinel nodes. ER and
PR status were determined as follows. After rehydration and antigenic retrieval in citrate buffer
(10 mM, pH 6.1), the tissue sections were stained for ER (clone 6F11, Novocastra, Leica Biosys-
tems, Newcastle, UK; 1/200) and PR (clone 1A6, Novocastra, 1/200). Revelation of staining
was performed using the Vectastain Elite ABC peroxidase mouse IgG kit (Vector, Burlingame,
CA, USA) and diaminobenzidine (Dako A/S, Glostrup, Denmark) as chromogen. Positive and
negative controls were included in each slide run. Cases were considered positive for ER and
PR according to the standardised guidelines using a cutoff of greater than or equal to 10%
stained tumor nuclei. Hormone receptors (HR) positivity was defined by positivity of either ER
or PR, and HR negativity was defined by the negativity of both ER and PR. The determination
of HER2 over-expression status was determined according to the American Society of Clinical
Oncology (ASCO) guidelines [9].

Triple-negative breast tumors were defined as infiltrating tumors with estrogen
receptor< 10%, progesterone receptor< 10% and 0 or 1+ in IHC test or 2+ in IHC test with a
situ hybridization test negative for HER2 status.

Pathologic complete response was defined as no invasive and non-invasive residuals in the
breast and axillary nodes (ypT0 ypN0).

Treatments
Patients were treated according to national guidelines. Neoadjuvant chemotherapy regimens
varied with time period (anthracyclines based regimen or sequential anthracyclines-taxanes
regimen). Surgery was performed four to six weeks after the end of the chemotherapy. Patients
received adjuvant radiotherapy according to national guidelines.

Statistical analysis
The study population was described in terms of frequencies for qualitative variables or medians
and associated range for quantitative variables. The cutoff date for analysis was July 13, 2013.
Metastasis-free interval was defined as the time from NAC until first occurrence of metastasis.
Patients free of metastasis were censored at the date of their last known contact. Survival analy-
ses were performed using the Kaplan-Meier estimate. Comparison between survival curves was
performed using the log-rank test. Estimation of hazard ratios (HR) and their associated 95%

Axillary Lymph Node Metastasis, BMI and Menopausal Status as Prognostic Factors for TNBC

PLOSONE | DOI:10.1371/journal.pone.0144359 December 18, 2015 3 / 15

1.5 Article n°5 : Bonsang-Kitzis, H. et al. PloS One 10, e0144359 (2015) 83



confidence interval was carried out using the Cox proportional hazard model. Variables with
P-value of the score test inferior to 0.15 in univariate analysis were included in the multivariate
model. Backward selection was used to establish the final multivariate model.

R-Part Software, a method of applying classification and regression trees, was used to iden-
tify the most significant variable that drive prognosis. A decision tree was established to iden-
tify homogeneous subgroups of patients and have a better clinical representation of the model.
The rules of the construction of the decision tree are: the log-rank test p-value has to be signifi-
cant and each subgroup defined by the discrimination has to include at least ten patients.
Between several factors we choose the factor which minimizes the log-rank test p-value. Metas-
tasis free survival rates of the subgroups identified by the decision tree were estimated by the
Kaplan–Meier method, and were compared using the log-rank test. All these estimations were
then plotted.

Significance level was 0.05. Analyses were performed using R software, 2.13.2 version
(http://cran.rproject.org) using the following packages: glm, survival and rpart.

Results
Population characteristics
Patient demographics and baseline characteristics of the NEOREP Cohort (N = 326) are shown
in Table 1. Median age was 47 years with 38 patients (11%) aged less than 35 years old and 81
(25%) aged more than 55 years old. 197 patients (61%) had a body mass index (BMI) inferior
or equal to 25 and 40 (12%) had a BMI superior to 30. Association between patient age and
their BMI is significant (p-value = 0.054) (S1 Table) and BMI was more likely to be lower
among pre-menopausal women (p-value = 0.012) (S2 Table). Median tumor size was 40 mm
(0–140); 91% of patients were T2 or T3; 88% of patients were Elston-Ellis grade III and 56% of
the population had a clinical lymph node involvement. A descriptive analysis of demographic
and baseline clinical characteristics according to pre-NAC lymph node status is detailed on S3
Table.

All patients received NAC, which was generally based on an anthracycline/taxane regimen
(77%) or a solely anthracycline regimen (15%). Surgery and histological data are also detailed
in Table 1. Seventy-nine percent of patients had conservative surgery and 90% had axillary
dissection.

Median residual tumor size was 10 mm (0–130) and 25% of patients had lymph node dis-
ease. There was no association between tumor size at diagnosis and lymph node status after
NAC (S3 Table). Histological response was considered as complete (pCR) in 33% of patients.
36% of patients had no residual disease in the breast and 75% had no residual disease in axillary
lymph nodes (Table 2). Seven percent of patients had residual in-situ disease.

Median follow-up duration was 52 (range, 8–125) months. At 36 months, metastasis free
survival is 79% CI95% [74;84] and the overall survival is 85% CI95% [81;89] (S1 Fig). 69
patients experienced at least one metastases. 10 patients had more than 2 metastases. The most
common site of metastasis was lung (23%) then central neurologic system (21%) and lymph
node (20%) following by liver (18%) and bony metastases (16%). At 36 months, locoregional
recurrence free survival is 93% CI95% [90; 96] (S1 Fig).

Lymph node disease after NAC is a prognostic factor for metastasis-free
survival
Three factors were significantly associated (p< 0.05) with metastasis-free survival (MFS) on
univariate analysis: post-NAC breast tumor disease (HR = 2.05, CI95% [1.17; 3.59]); post-NAC
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Table 1. Patient demographics and baseline characteristics for NEOREP Cohort (N = 326).

Age, y, median (range) 47 (25–76)

Age, n (%)

!35 y 38 (11)

36–45 y 100 (31)

46–55 y 107 (33)

>55 y 81 (25)

Body weight, kg, median (range) 63.5 (43–120)

Height, cm, median (range) 164 (145–178)

BMI, n (%)*
!25 kg/m2 197 (61)

26–30 kg/m2 88 (27)

>30 kg/m2 40 (12)

Family history of breast cancer, n (%)

No 246 (76)

Yes 79 (24)

Missing 1

Pregnancy <1 y prior to diagnosis, n (%)

No 315 (97)

Yes 11 (3)

Menopausal status, n (%)

Premenopausal 199 (62)

Postmenopausal 123 (38)

Missing 4

Tumor size, mm, median (range) 40 (0–140)

T stage, n (%)

T1 29 (9)

T2 212 (65)

T3 85 (26)

N stage, n (%)

N0 142 (44)

N1 163 (50)

N2 17 (5)

N3 4 (1)

Elston-Ellis grade, n (%)*

I 4 (1)

II 36 (11)

III 282 (88)

Missing 4

Mitotic index, n, median (range) 27 (1–138)

Mitotic index, n (%)*
!10 45 (15)

11–22 79 (26)

>22 180 (59)

Missing 22

Neoadjuvant chemotherapy type, n (%)

Anthracycline 49 (15)

Anthracycline/taxane 252 (77)

Other 25 (8)

(Continued)
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lymph node disease (HR = 3.89, CI95% [2.42; 6.25]), and post-NAC residual disease (breast +
lymph node) (HR = 2.63, CI95% [1.41; 4.91]) as expected. Clinical tumor size, EE grade and
pre NAC lymph node status were associated in the univariate analysis but the only prognostic
factor which persisted on multivariate analysis was post-NAC lymph node disease (HR = 3.89,
CI95% [2.42; 6.25]; P< 0.0001) (Table 3). When we stratified lymph node involvment accord-
ing to the pTNM classification (pN0, pN1, pN2, pN3), the results remained significantly asso-
ciated with MFS after univariate and multivariate survival analyses. Additionally, the
magnitude of the impact of lymph node involvment on MFS increased with increasing nodal
status according to TNM (data not shown).

Body mass index, EE grade and menopausal status could have a role in
MFS: a decision tree analysis
Five homogeneous prognostic subgroups were identified (Fig 1): patients without lymph node
disease after NAC and not obese (pN-/BMI! 30kg/m²) (which represents the reference
group), obese patients without lymph node disease after NAC (pN-/BMI> 30kg/m²), patients
with lymph node disease after NAC and grade I-II (pN+/EEgrade I-II), patients with lymph
node disease after NAC grade III tumor and postmenopausal status (pN+/EEgrade III/postM)
and finally patients with lymph node disease after NAC grade III tumor and pre-menopausal
status (pN+/EEgrade III/preM). The last group has the poorest metastatic prognosis (MFS at
36 months 31% CI95% [18; 54] for pN+/EEgrade III/preM patients).

Lymph node disease after NAC remain the first discriminant prognostic factor of MFS: it
has the strongest prognostic impact.

For calculation of the metastasis hazard ratio (HR) associated with each branch of the tree,
we used pN–/BMI! 30 kg/m2 as a reference group. Metastatic risk of pN–/BMI> 30 kg/m2

Table 1. (Continued)

Neoadjuvant chemotherapy cycles, n, median (range) 8 (1–16)

Mammary surgery, n (%)

Partial mastectomy 259 (79)

Total mastectomy 67 (21)

Mammaplasty, n (%)

No 265 (81)

Yes 61 (19)

Axillary surgery, n (%)

Sentinel node biopsy 16 (5)

Axillary dissection 293 (90)

Sentinel node biopsy + axillary dissection 17 (5)

Histological tumor size, mm, median (range) 10 (0–130)

Lymph nodes removed, n, median (range) 12 (1–28)

Positive lymph nodes, n (%)

0 245 (75)

1–3 49 (15)

3–9 26 (8)

>9 6 (2)

Note
* Data were missing or not evaluable for some patients and are not included in the denominator for percent
calculations.

doi:10.1371/journal.pone.0144359.t001

Axillary Lymph Node Metastasis, BMI and Menopausal Status as Prognostic Factors for TNBC

PLOSONE | DOI:10.1371/journal.pone.0144359 December 18, 2015 6 / 15

86 Neoadjuvant treatment



patients is 2.64 times more than pN-/BMI< 30 kg/m2. (CI95% [1.28; 5.55]). Hazard ratio of
the pN+/EE grade I–II patients is 1.29 (CI95% [0.39; 4.26]), the pN+/EE grade III/post-meno-
pausal status patients is 3.57 (CI95% [1.69; 7.77]), and the pN+/EE grade III/pre-menopausal
status patients is 9.68 (CI95% [5.71; 18.31]).

Table 2. Response to neoadjuvant chemotherapy in the NEOREP Cohort (N = 326).

Clinical response to treatment, n (%)

Complete response 189 (58)

Partial response >50% 76 (23)

Partial response <50% 37 (11)

Stable disease 15 (5)

Progressive disease 9 (3)

Pathological response to treatment, n (%)

Lymph node disease

No 245 (75)

Yes 81 (25)

Tumor disease

No 118 (36)

Yes 208 (64)

Histological response

pCR 107 (33)

Residual disease 219 (67)

In-situ disease

No 301 (93)

Yes 24 (7)

doi:10.1371/journal.pone.0144359.t002

Table 3. Metastasis-free survival analysis following neoadjuvant therapy in the NEOREP Cohort (N = 326).

Univariate Cox Model Multivariate Cox Model

HR (95% CI) P-value HR (95% CI) P-value

!45 y 1

Age 46–55 y 0.96 (0.56–1.68) 0.95

>55 y 1.07 (0.59–1.94)

Body mass !30 kg/m2 1 1

index >30 kg/m2 1.52 (0.81–2.83) 0.19 1.71 (0.92–3.21) 0.09

Menopausal Premenopausal 1

status Postmenopausal 0.89 (0.55–1.46) 0.65

Clinical !30 mm 1 1

tumor size >30 mm 1.56 (0.85–2.85) 0.15 1.51 (0.82–2.78) 0.18

Pre-NAC N– 1 1

lymph node N+ 1.52 (0.93–2.48) 0.09 1.28 (0.77–2.14) 0.34

status

Elston-Ellis I/II 1

grade III 1.23 (0.59–2.57) 0.56

Mitotic index !22 1

>22 1.15 (0.70–1.88) 0.58

Post-NAC No 1 1

tumor Yes 2.05 (1.17–3.59) 0.01 1.35 (0.74–2.44) 0.33

(Continued)
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The Kaplan-Meier plot of metastasis-free survival for each subgroup is presented in Fig 2.
Description of the clinical and pathological characteristics of the five subgroups defined in the
decision tree is presented in S4 Table.

Discussion
Triple-negative breast cancer patients are more likely to achieve a pathologic complete
response after neoadjuvant chemotherapy compared to others breast cancer subtypes but those
who do not still have poor prognosis [7][8][10]. The aim of this study was to identify prognos-
tic factors in triple-negative breast cancer patients receiving neoadjuvant chemotherapy.

Table 3. (Continued)

Univariate Cox Model Multivariate Cox Model

HR (95% CI) P-value HR (95% CI) P-value

disease

Post-NAC No 1 1

lymph node Yes 3.89 (2.42–6.25) <10−4 3.48 (2.08–5.84) 2.25 x 10−6

disease

Histological pCR 1

response Residual disease 2.63 (1.41–4.91) 0.002

Univariate Cox Model Multivariate Cox Model

HR (95% CI) P-value HR (95% CI) P-value
!45 y 1

Age 46–55 y 0.96 (0.56–1.68) 0.95

>55 y 1.07 (0.59–1.94)

Body mass !30 kg/m2 1 1

index >30 kg/m2 1.52 (0.81–2.83) 0.19 1.71 (0.92–3.21) 0.09

Menopausal Premenopausal 1

status Postmenopausal 0.89 (0.55–1.46) 0.65

Clinical !30 mm 1 1

tumor size >30 mm 1.56 (0.85–2.85) 0.15 1.51 (0.82–2.78) 0.18

Pre-NAC N– 1 1

lymph node N+ 1.52 (0.93–2.48) 0.09 1.28 (0.77–2.14) 0.34

status

Elston-Ellis I/II 1

grade III 1.23 (0.59–2.57) 0.56

Mitotic index !22 1

>22 1.15 (0.70–1.88) 0.58

Post-NAC No 1 1

tumor Yes 2.05 (1.17–3.59) 0.01 1.35 (0.74–2.44) 0.33

disease

Post-NAC No 1 1

lymph node Yes 3.89 (2.42–6.25) <10−4 3.48 (2.08–5.84) 2.25 x 10−6

disease

Histological pCR 1

response Residual disease 2.63 (1.41–4.91) 0.002

CI, confidence interval; NAC, neoadjuvant chemotherapy; pCR, complete pathological response

doi:10.1371/journal.pone.0144359.t003
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We found that axillary lymph node metastasis following NAC is the most important prog-
nostic factor in women with TNBC. Lymph node response to NAC appears as the central
determinant of the prognosis (metastasis-free survival) with a poorer prognosis when lymph
nodes were involved (HR = 3.89, CI95% [2.42; 6.25]; P< 0.0001) while persistence of tumor
disease in breast after NAC is not significant (HR = 1.35; CI95% [0.74; 2.44]; P = 0.33) in multi-
variate analysis.

Evidence from various studies has revealed that pCR after NAC is the most important prog-
nostic factor for long-term outcome in TNBC [11]. However, there is no general agreement on
the actual definition of pCR. Indeed, in both clinical trials and daily practice, different defini-
tions of pCR are used, including absence of invasive cancer in the breast only or in both the
breast and axillary lymph nodes, and absence of invasive and in-situ cancer in the breast only
or in both the breast and axillary lymph nodes. The prognostic impact of pCR after NAC was
only found to be true when pCR was defined as no residual disease present in both the breast
and axilla (ypT0, ypN0 excluding ductal carcinoma in situ). In contrast patients with extensive
nodal involvement after NAC have a very poor outcome [12]. Our study corroborates these
results and highlights that eradication of lymph node disease is probably the major prognostic
factor for pathological response in patients with node involvement. Lymph node disease after
NAC should therefore be interpreted as a 'distant metastatic marker'.

Fig 1. Decision tree algorithm. Abbreviations: NAC, neoadjuvant chemotherapy; BMI, body mass index; RR, relative risk [confidence interval 95%]; MFS,
metastasis free survival at 36 months [confidence interval 95%].

doi:10.1371/journal.pone.0144359.g001
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There are conflicting results on the prevalence of lymph node metastasis at the time of diag-
nosis in TNBC patients [13]. Some studies described a higher prevalence of lymph node metas-
tasis in TNBC [14] while others have found no statistical differences [15] or even an inverse
association between TNBC and lymph node metastasis [16]. The main theory is that TNBC
seems to disseminate to axillary nodes and bones less frequently than non-TNBC, presenting a
preferential hematogenous dissemination [17][18] with a proclivity to develop metastatic
deposition in the brain and lungs [13]. These different routes of metastatic spread may explain
differences in recurrence and patient mortality rates [19].

Moreover, some authors have argued that basal-like tumors do not seem to obey the 'size-
node' rule. For ER-negative, HER2-negative breast cancer, nodal status was almost indepen-
dent of tumor size with a relatively constant trend for axillary metastases at ~20%. Conversely,
for ER-positive or HER2-positive breast cancer, there was a strong, almost linear, correlation
between tumor size and development of axillary metastasis [14][20]. Despite being in a neoad-
juvant setting, our results appear to agree with this, as there was no association between tumor
size and post-NAC lymph node disease for TNBC.

Fig 2. Kaplan-Meier plots of metastasis-free survival for each subgroup of the decision tree in the NEOREP Cohort. Abbreviations: BMI, body mass
index; PostM, postmenopausal; PreM, premenopausal.

doi:10.1371/journal.pone.0144359.g002

Axillary Lymph Node Metastasis, BMI and Menopausal Status as Prognostic Factors for TNBC

PLOSONE | DOI:10.1371/journal.pone.0144359 December 18, 2015 10 / 15

90 Neoadjuvant treatment



As previously demonstrated, we also showed that Elston and Ellis grade is a significant pre-
dictor of metastasis free survival in TNBC with poorer prognosis for grade III patients, even if
TNBC are more likely to be high grade tumors [21][22][14] [23].

Markers of the hormonal environment such as BMI and menopausal status also seemed to
have an important prognostic value in TNBC. For patients with no post-NAC lymph node dis-
ease, prognosis was poorer when BMI was> 30 kg/m2 (HR = 2.64, CI95% [1.28; 5.55];
P = 0.0067). Epidemiological investigations evaluating the relationship between TNBC and
obesity have reported conflicting results leaving an open question in the understanding of the
etiology of this aggressive tumor subtype. Some have reported an overall increase in the risk of
TNBC in women with higher BMI [24][25] while others could not confirm this association
[26][27]. There are several hypotheses on the mechanisms that link obesity to breast cancer.
First, increased estrogen production availability by adipocytes (due to enhanced aromatase
activity) may induce and stimulate the growth of abnormal ER-positive mammary cells [28].
Second, obesity, especially when associated with metabolic syndrome, presents increased levels
of insulin and insulin-like growth factor, hormones with potent mitogenic activity toward epi-
thelial cells [29]. Finally, paracrine secretion of interleukin-6 and tumor necrosis factor-alpha
and the establishment of a pro-inflammatory micro-environment can induce the development
of malignant phenotypes that are independent of hormonal secretion [30]. Since TNBC lacks
expression of hormone receptors, distinct molecular mechanisms must link obesity to this sub-
type of breast cancer, for example insulin resistance, secretion of pro-angiogenic adipokines
such as leptin, and chronic inflammation [31].

Alternatively, the detrimental effect of obesity on TNBC prognosis might be linked to sub-
therapeutic treatment. Drug dosing has traditionally been based on a patient's estimated body
surface area (BSA) in adults [32]. There is compelling evidence that reductions from standard
dose and dose intensity may compromise disease-free and overall survival in the curative set-
ting [33][34][35]. Despite studies confirming the safety and importance of full weight–based
cytotoxic (intravenous and oral) chemotherapy dosing, many (up to 40%) overweight and
obese patients continue to receive limited chemotherapy doses that are not based on actual
body weight [36] [37][35]. Many oncologists continue to use either ideal body weight or
adjusted ideal body weight, or to cap BSA at, for example, 2 m2 rather than use actual body
weight to calculate BSA.

Although regarded as an endocrine-insensitive disease, several hormonal alterations
throughout a woman’s life have been associated an increased risk of developing TNBC. For
example, parity and young age at first full-term pregnancy increase the risk of developing
TNBC in some studies, while a longer duration of breastfeeding and an increasing number of
children breastfed reduce the risk of developing TNBC [24]. There is no strongly demonstrated
association between menopausal status and TNBC prognosis in the literature. However, our
study suggests that a premenopausal status is associated with a poorer prognosis for patients
with post-NAC lymph node involvement (HR = 9.68, CI95% [5.71; 18.31]; P = 5.22 × 10−15), as
though a hormonal pathway may be involved in such tumors in some way.

For example, aromatase receptors (ARs) are expressed in a subset of TNBC patients. The
overall frequency of AR expression varies considerably among the studies from 0% to 53% of
TNBC patients [38][39][25]. AR is a member of the family of steroid nuclear receptors, which
also includes ER and PG receptors. Further studies demonstrated a correlation between AR
and ER/PR pathways [40] and the potential role for AR in patient prognosis with TNBC [41]
[39][25]. The prognostic value of these 'hormonal environmental' markers in TNBC may also
be related in part to tumor heterogeneity, reinforcing the hypothesis that variation in ER, PR,
and HER2 status between primary breast cancer and metastases [42] may actually reflect clonal
genome evolution. Tumor heterogeneity may be attributable to tumor biological drift, selective
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pressure of therapy leading to clonal selection with the development of a novel tumor cell
clone, or the presence of small subclones routinely undetected within the primary tumor.

Conclusion
The identification of risk factors specifically associated with TNBC still represents a major
challenge for the development of targeted and more efficient curative programs. This study
highlights the strong association between the lymph node involvement after NAC and the
worse prognostic outcome of patients with TNBC. This study confirms the association between
the Elston and Ellis grade and the worse prognostic outcome of those patients. Moreover, it
revealed two intrinsic factors of the « hormonal environment » of patients (BMI and meno-
pausal status), which also play an important role in the prognosis of such tumors. This work
needs to be validated, and will help in identifying individuals who are at a higher risk of devel-
oping an aggressive form of TNBC. Integration of monitoring of these factors now into NAC
studies can help refine our understanding of high-risk TNBC patients (pN+/EE grade III/pre-
menopausal) and generate ideas for new therapeutic solutions.
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Abstract:  1	

Introduction: Trastuzumab was introduced a decade ago and has improved outcomes for 2	

HER2-positive breast cancer. We investigated the factors predictive of pathological complete 3	

response (pCR), prognostic factors for disease-free survival (DFS), and interactions between 4	

pCR and DFS after neoadjuvant treatment. 5	

Material and Methods: We identified 287 patients with primary HER2-positive breast 6	

cancers given neoadjuvant chemotherapy (NAC) between 2002 and 2011. Univariate and 7	

multivariate analyses of clinical and pathological factors associated with pCR and DFS were 8	

performed. 9	

Results: pCR rates differed between patients receiving neoadjuvant trastuzumab treatment or 10	

not (47.7% versus 19.3%, p<0.0001). DFS also differed significantly between patients 11	

receiving adjuvant trastuzumab or not (hazard ratio=4.84, 95% CI [2.52; 9.31], p<0.001). We 12	

analyzed 199 patients given neoadjuvant and adjuvant trastuzumab. Multivariate analysis 13	

identified older age and hormone receptor-negative tumors as independent predictors of pCR. 14	

T stage (hazard ratio=2.55, 95% CI [1.01; 6.48], p=0.05) and strict pCR (hazard ratio=9.15, 15	

95% CI [1.22; 68.83], p=0.03) were independent predictors of DFS. The latter association 16	

was significant in the HR-negative subgroup (p=0.02), but not in the HR-positive subgroup 17	

(p=0.12). 18	

Conclusion: Major pCR and DFS gains in HER2-positive BC were observed since 19	

“trastuzumab” era. Further improvements rely on the enrollment of accurately selected 20	

patients into clinical trials. 21	

Keywords: Breast cancer; HER2-positive; neoadjuvant chemotherapy; pathologic complete 22	

response; prognostic factors; trastuzumab 23	

  24	
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Introduction  1	

Breast cancer (BC) is the most frequently diagnosed cancer and the leading cause of cancer-2	

related death in women. HER2-positive breast carcinomas display amplification and 3	

overexpression of the HER2 tyrosine kinase receptor gene (17q12). This subgroup is defined 4	

by aggressive pathological features and a high rate of early distant metastatic events. 5	

Trastuzumab-based treatments have been used for the last decade and have improved 6	

outcomes in patients with early or metastatic HER2-positive breast cancer.  7	

Neoadjuvant treatment is currently being used in patients with early-stage and advanced 8	

disease. Its clinical benefits are: a) higher rates of breast-conserving surgery, b) similar 9	

prognoses for breast cancer patients receiving a neoadjuvant and for those receiving an 10	

adjuvant therapy regimen, c) a body of evidence showing that the achievement of a 11	

pathological complete response (pCR) after neoadjuvant chemotherapy is associated with a 12	

good prognosis in specific subgroups (triple-negative, HER2-positive). Furthermore, it may 13	

serve as a test of in vivo chemosensitivity, making it possible to evaluate the efficacy of 14	

systemic therapy early and to discontinue ineffective treatment.  15	

In parallel, interest has increased in the use of pCR as a surrogate marker for long-term 16	

outcome, to accelerate the approval process for new drugs, since the publication by the FDA 17	

of a set of guidelines entitled "Guidance for Industry. Pathologic Complete Response in 18	

Neoadjuvant Treatment of High-Risk Early-Stage Breast Cancer: Use as an Endpoint to 19	

Support Accelerated Approval".  20	

In the last few years, the combination of trastuzumab with neoadjuvant chemotherapy (NAC) 21	

has become standard, since two phase III trials comparing a regimen in which trastuzumab 22	

was added to NAC and NAC alone reported higher pCR rates (MD Anderson Cancer center 23	

trial: pCR rates: 26.3 vs. 65.2% with and without trastuzumab respectively (Buzdar et al., 24	

2007); NOAH trial: pCR rates: 19% versus 38% respectively) and longer DFS for the 25	

combined treatment (NOAH trial: 3-year EFS, 71% vs. 56% with and without trastuzumab, 26	

respectively (Gianni et al., 2010)). In patients with HER2-positive breast tumors for whom 27	
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neoadjuvant treatment is indicated, trastuzumab is generally added to chemotherapy, and the 1	

patient then receives one year of adjuvant trastuzumab treatment. 2	

However, factors predictive of pCR and prognostic factors for survival have yet to be 3	

identified, and there is still no robust demonstration of the correlation between pCR and 4	

outcome in patients treated with optimal therapy. The aim of this study was to identify factors 5	

predictive of pCR and prognostic factors in a large cohort of HER2-positive breast cancer 6	

patients treated by neoadjuvant chemotherapy plus trastuzumab. 7	

Materials and methods 8	

Patients 9	

We analyzed a cohort of 287 T1-3NxM0 patients with HER2-positive invasive breast 10	

carcinoma (NEOREP Cohort, CNIL declaration number 1547270) treated at Institut Curie 11	

between 2002 and 2012. We included only unilateral, non-recurrent, non-inflammatory, non-12	

metastatic tumors, excluding T4 and lobular tumors. All patients received NAC, followed by 13	

surgery and radiotherapy. The study was approved by the Breast Cancer Study Group of 14	

Institut Curie and was conducted according to institutional and ethical rules concerning 15	

research on tissue specimens and patients. Informed consent from the patients was not 16	

required. 17	

 18	

Tumor samples 19	

The following histological features were retrieved: tumor type, initial tumor size and nodal 20	

status, grade (Elston and Ellis), estrogen receptor (ER) and progesterone receptor (PR) status, 21	

HER2 status, number of metastatic nodes and total sentinel and non-sentinel nodes. ER and 22	

PR status were determined as follows. Tissue sections were rehydrated and antigen retrieval 23	

was carried out in citrate buffer (10 mM, pH 6.1). The sections were then incubated with 24	

antibodies against for ER (clone 6F11, Novocastra, Leica Biosystems, Newcastle, UK; 1/200) 25	

and PR (clone 1A6, Novocastra, 1/200). The antibodies were then detected with the 26	

Vectastain Elite ABC peroxidase-conjugated mouse IgG kit (Vector, Burlingame, CA, USA), 27	

with diaminobenzidine (Dako A/S, Glostrup, Denmark) as the chromogen. Positive and 28	

102 Neoadjuvant treatment



	 5	

negative controls were included in each run. Cases were considered positive for ER and PR if 1	

at least 10% of the tumor nuclei were stained, in accordance with standard guidelines used in 2	

France(Harvey et al, 1999)(Recommandations pour la Pratique Clinique : Saint Paul de Vence 3	

2007 « cancers du sein »). Tumors were considered to be hormone receptor (HR)-positive if 4	

they were positive for either ER or PR, and HR-negative if they were negative for both ER 5	

and PR. HER2 overexpression status was determined according to the American Society of 6	

Clinical Oncology (ASCO) guidelines (Wolff et al., 2007). 7	

 8	

Treatments 9	

Patients were treated according to national guidelines. Neoadjuvant chemotherapy regimens 10	

changed over time (anthracycline-based regimen or sequential anthracycline-taxane regimen), 11	

with trastuzumab used in an adjuvant and/or neoadjuvant setting since the middle of the last 12	

decade. Endocrine therapy (tamoxifen, aromatase inhibitor, or GnRH agonists) was 13	

prescribed when indicated. Surgery was performed four to six weeks after the end of the 14	

chemotherapy. All patients received adjuvant radiotherapy. Trastuzumab treatments changed 15	

over time and we splitted the whole cohort into 3 distinct groups, according to trastuzumab 16	

use. Patients who did not receive any trastuzumab were indicated as cohort A (n= 35); 17	

patients who received only adjuvant trastuzumab were indicated as cohort B (n=53); patients 18	

who received both neoadjuvant and adjuvant trastuzumab were indicated as cohort C (n= 19	

199). 20	

 21	

Pathology assessment at NAC completion 22	

A pathologic complete response (pCR) was defined as the absence of residual invasive cancer 23	

cells in the breast and axillary lymph nodes (ypT0/is + / ypN0). Strict pCR (spCR) was 24	

defined as an absence of invasive and non-invasive residuals in the breast, and invasive 25	

disease in the axillary nodes (ypT0 ypN0). 26	

 27	

Disease free survival and overall survival 28	
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Disease-free survival (DFS) was defined as the time from surgery to death, loco-regional 1	

recurrence or distant recurrence, whichever occurred first, and overall survival (OS) was 2	

defined as the time from surgery to death. Patients for whom none of these events were 3	

recorded were censored at the date of their last known contact. Survival probabilities were 4	

estimated by the Kaplan-Meier method, and survival curves were compared with log-rank 5	

tests. 6	

 7	

Descriptive analysis of pCR and DFS rates according to the three cohorts 8	

For the pCR rates descriptive analysis, because of the known major impact on trastuzumab 9	

use on pCR rates, we chose to pool cohort A and B (in both of which patients did not receive 10	

neaoadjuvant trastuzumab) and compared the resulting pooled cohort to the cohort C (in 11	

which patients received neoadjuvant trastuzumab). 12	

For the DFS and OS descriptive analysis, because of the known major impact on trastuzumab 13	

on DFS rates, we chose to pool cohort B and C (in both of which patients received 14	

trastuzumab) and compared the resulting pooled cohort to the cohort A (in which patients did 15	

not receive any trastuzumab). 16	

 17	

Statistical analysis 18	

The study population was described in terms of frequencies for qualitative variables or 19	

medians and associated ranges for quantitative variables. The cutoff date for the analysis was 20	

March 13th 2013.  21	

The statistical analyses of the factors predictive of pCR and prognostic for DFS were 22	

performed in the cohort C only, as neoadjuvant trastuzumab in association to chemotherapy 23	

followed by adjuvant trastuzumab represents the gold standard treatment in 2015. 24	

Factors predictive of pCR were introduced into a univariate logistic regression model. A 25	

multivariate logistic model was then implemented. The covariates selected for the 26	

multivariate analysis were those with a likelihood ratio test p-value lower than 0.10 in 27	

univariate analysis. A backward stepwise selection procedure was used.  28	
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Hazard ratios and their associated 95% confidence intervals were calculated with the Cox 1	

proportional hazard model. Variables with a p-value for the likelihood ratio test lower than 2	

0.10 in univariate analysis were included in the multivariate model. Backward selection was 3	

used to establish the final multivariate model. The proportional hazards hypothesis was tested 4	

for each factor, with Schoenfeld’s residuals test and plotting. The significance threshold was 5	

5%. Analyses were performed with R software, version 2.13.2 (R Development Core Team, 6	

2011). 7	

 8	

 9	

Results 10	

Overall, 287 patients were identified in our database. The baseline characteristics of these 11	

patients are summarized in Table 1. All 287 patients received neoadjuvant chemotherapy and 12	

underwent surgery followed by radiotherapy. The median age of the patients was 48 years old 13	

(27-79); 193 patients had T2 tumors (67.2%), and 169 had clinically involved nodes (58.9%). 14	

In total, 129 patients had hormone receptor-negative breast cancer (44.9%). Trastuzumab 15	

treatments changed over time and the characteristics of the patients are presented by treatment 16	

(cohort A, n= 35, no trastuzumab at all; cohort B, n=53, adjuvant trastuzumab only; cohort C, 17	

n= 199, both neoadjuvant and adjuvant trastuzumab) in Table 1. There were significant 18	

differences between cohorts A, B, C for treatment period, number of nodes involved (patients 19	

in cohort C were less likely to have nodes involved), and median follow-up. Strict pathologic 20	

complete response (spCR) and pathologic complete response (pCR) rates differed 21	

significantly between the three cohorts (p<0.0001). These rates were higher in patients given 22	

neoadjuvant trastuzumab (cohort C, pCR rate: 47.7%) than in patients who did not receive 23	

this treatment (cohort A and B, pCR rate: 19.3% p<0.0001), and in HR-negative subgroups 24	

than in HR-positive subgroups (pCR rate: 48.8% versus 31.2%, p=0.003) (Table 2).  25	

DFS (Figure 1A) also differed significantly between cohorts (p< 0.001). Patients treated 26	

without trastuzumab (cohort A) had a higher risk of relapse (hazard ratio = 4.84 95% CI 27	

[2.52; 9.31]) than patients receiving adjuvant trastuzumab with or without neoadjuvant 28	

trastuzumab (cohort B and C pooled). Five years disease-free-survival rates were 48.6% 29	
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(95%CI [34.5-68.3], cohort A) versus 83.5% (95% CI [77.6-89.9], cohort B and C pooled), 1	

and were not different between cohort B and C (cohort B: 80.0%, 95%CI [69.5-92.0] versus 2	

cohort C 85.8%, 95%CI [79.0-93.3]). 3	

Overall survival (Figure 1B) was also significantly lower in cohort A (hazard ratio=9.01, 95% 4	

CI [2.95-27.52]) than in cohort B and C pooled (p<0.001; 5 years OS rates: 76.9%, 95% CI 5	

[64.1-92.3]) versus 96.9; 95% CI [94.2-99.7] respectively). 6	

Pathological complete response was predicted and prognostic analysis performed for cohort C 7	

only (patients who received optimal neoadjuvant and adjuvant treatment, n=199). After 8	

neoadjuvant treatment, 66 patients had no residual disease on the surgical specimen, and 29 9	

patients had residual carcinoma in situ only (strict pCR rate: 33.2% (66/199); pCR: 10	

47.7%(95/199)). The following results are given for strict pCR. Univariate logistic regression 11	

analysis identified two factors correlated with spCR: age at diagnosis and hormone receptor 12	

expression. Both factors remained significant in the multivariate logistic regression model 13	

(Table 3). Strict pathologic complete response rates increased with age in both HR-positive 14	

tumors (12.5, 18.6 and 28.6% for patients <45 years old, 45 to 55, and >55 years old 15	

respectively), and in HR-negative ones (27.3, 36.0 and 50.0% respectively) (Figure 2). 16	

After a median of 33 months of follow-up (range: 6-92), 18 patients experienced relapses (8 17	

local, 3 regional, 7 distant). Two of these patients died. In univariate analysis, the factors 18	

associated with DFS were age at diagnosis, spCR and pCR, menopausal status and initial 19	

tumor stage. Tumor stage (T3: HR=2.55, 95%CI [1.01-6.48] versus T1-T2: HR=1, reference 20	

class) and strict pathological complete response (No pCR: HR=9.15, 95%CI [1.22-68.83] 21	

versus spCR (reference class), p=0.03) remained significantly associated with DFS in 22	

multivariate analysis (Table 4), though the number of events was very low in patients whose 23	

tumor achieved pCR after NAC. Five years DFS rates were 78% (95%CI [66.9-90.9]; No 24	

pCR group) versus 95% (95%CI [89.4-100]; spCR group) respectively.  25	

The persistence of in situ carcinoma after chemotherapy was not associated with shorter DFS 26	

than the absence of any residual disease (p=0.17), or invasive disease only (p=0.32).  27	

Pathologic complete response was positively associated with DFS in patients with HR-28	

negative tumors (Figure 3A), but not in those with HR-positive tumors (Figure 3B).  29	
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 1	

Discussion  2	

Our retrospective longitudinal study highlights the major impact of the introduction of 3	

trastuzumab on HER2-positive tumors, with a dramatic improvement in pCR (19.3% to 4	

47.7%), DFS (5y DFS: 48.6% to 83.5%), and OS rates (5y OS: 76.9% to 96.9%) between 5	

“pre-trastuzumab” and “trastuzumab” eras. In patients treated by neoadjuvant chemotherapy 6	

plus trastuzumab, we identified age at diagnosis and hormone receptor status as predictive 7	

factors for spCR, and pCR and tumor stage at diagnosis as prognostic factors for DFS.  8	

Our study confirms that patients with pCR have excellent DFS and OS. Several studies 9	

documented trastuzumab benefits in real-world practice in the adjuvant (Vici et al. , 2014) 10	

(Matos et al. , 2014) (Inwald et al. , 2014) (Bonifazi et al. , 2014)(Seferina et al. , 2015) 11	

(Jackisch et al. , 2014), and in the metastatic setting (Olson et al. , 2013) (Karam et al. , 2013) 12	

(Park et al. , 2009)(Jackisch et al. , 2014). Most of these authors found that the magnitude of 13	

trastuzumab benefits was equivalent to what was observed in clinical trials (improvement the 14	

relative risk for DFS by approximately 50% and OS by 30%). Few-if any- observational 15	

studies focused on the neoadjuvant setting. Our results suggest an even higher magnitude of 16	

trastuzumab benefits in a population of HER2-positive breast tumors treated by NAC. Due to 17	

the retrospective, non randomized design of the study, we can not conclude to the single role 18	

of trastuzumab effect. Indeed, there were significant differences in the three cohorts in the 19	

number of nodes involved as node negative patients represented 77.4% of the cohort C, versus 20	

60% and 47.2% of the cohort A and B respectively. As it is known that the prognostic of 21	

breast carcinoma following neoadjuvant chemotherapy is largely driven by nodal 22	

status(Hennessy et al, 2005), we can assume that the dramatic differences in DFS between the 23	

3 cohorts are not solely explained by the trastuzumab treatment, but also by post NAC nodal 24	

status. 25	

As expected from previous studies of neoadjuvant treatment(Untch et al., 2012)(Baselga et 26	

al., 2012; Gianni et al., 2012), the absence of hormone receptor expression was an important 27	

predictor of pCR. This relationship may be quantitative, as some authors have reported an 28	

inverse correlation between the level of HR expression and pCR (Bhargava et al., 2011). 29	
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Trastuzumab emtansine (T-DM1) is an antibody–drug conjugate composed of the cytotoxic 1	

agent DM1 and trastuzumab, connected by a stable thioether linker. The ADAPT trial 2	

(NCT01745965) is currently investigating if the concomitant adjunction of endocrine therapy 3	

to T-DM1 neoadjuvant therapy would increase pCR rates in HER2+/HR+ operable breast 4	

cancers.  5	

In our cohort, older age was significantly associated with spCR. These finding are consistent 6	

with those of a retrospective study of 229 HER2-positive tumors treated by NAC plus 7	

trastuzumab, in which both being young and premenopausal status were significantly 8	

associated with lower pCR rates (Kim et al., 2013). By contrast, Huober et al. found no 9	

difference in pCR rates between two age groups (<40 years versus ≥ 40 years) for 475 HER2-10	

positive tumors (Huober et al., 2010). However, none of these patients were treated with 11	

neoadjuvant trastuzumab. Similarly, the German Breast Group (GBG) and the AGO-B study 12	

group published a meta-analysis focusing on the impact of age on neoadjuvant chemotherapy 13	

outcomes. In 1820 patients with HER2-positive tumors, pCR rates did not differ significantly 14	

with age, in either HR-positive or HR-negative tumors (Loibl et al, 2015). Patients with 15	

HER2-positive disease received anti-HER2 treatment as part of the neoadjuvant treatment in 3 16	

on 8 trials of this meta-analysis. 17	

Initial T stage remained a significant prognostic factor. This finding is consistent with those 18	

of several other studies, (Tanioka et al., 2014; Kim et al., 2013; Takada et al., 2014), although 19	

similar results were obtained only for the HR-negative subgroup in the study by Takada et al.  20	

In a sub-study of EORTC 10994/BIG 1-00 phase III trial (Fei et al. , 2015) on 283 patients 21	

with pCR achievement after NAC, only clinical tumor size independently predicted relapse. 22	

Several hypotheses can be drawn to explain the independent impact of tumoral size. The first 23	

one is that large tumors may be more likely to present intrinsic or acquired chemoresistance. 24	

Causal factors may first include a variety of physical and mechanical effects (inefficient 25	

distribution of the drug, central necrosis and hypoxia, anarchic neoangiogenesis etc…). 26	

Second, the immune reaction appears to evolve with tumor progression, and it is known that 27	

immune subpopulations densities change with increasing stage (Bindea et al. , 2013) (Fridman 28	

et al. , 2012), potentially impairing the response to chemotherapy . Third, tumoral 29	
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heterogeneity increases with tumor size, leading to the potential emergence of drug-1	

multiresistant clones. 2	

A second hypothesis considers the kinetics of the tumor growth. Mathematical modelings 3	

(Hartung et al. , 2014) validate the link between primary tumor size and emission rate, ie, 4	

metastatic spreading. In clinical practice, this relation between a large tumor size and the 5	

presence of circulating tumor cells in peripheral blood has also been identified (Liao et al. , 6	

2014). Considering initial exponential growth phase of the Gompertz model (Benzekry et al. , 7	

2014) and the high proliferation rate of HER2 positive breast cancers, it seems plausible that 8	

these tumors may rapidly toggle from localized breast cancers to a micrometastatic disease. 9	

The subsequent pivotal transition between micrometastases and macrometastases (namely the 10	

metastatic colonization) is still poorly understood. It remains unknown if tumoral size may 11	

impact this process. Both phenomena (chemoresistance and micrometastic spreading) may 12	

coexist and share pathways by complex homing interactions. 13	

It remains a matter of debate whether pCR can be used as a surrogate for DFS in HER2-14	

positive breast carcinomas, particularly those that are HR-positive. In our cohort, residual 15	

disease was associated with a hazard ratio for relapse of 9 relative to patients with spCR. This 16	

effect was limited to HR-negative tumors. In a large meta-analysis of 6,377 patients with 17	

primary breast cancer receiving neoadjuvant anthracycline-taxane–based chemotherapy in 18	

seven randomized trials, Von Minckwitz (von Minckwitz et al., 2012) identified pCR as a 19	

surrogate marker for both DFS and OS in HER2-positive subgroups. In patients with HER2-20	

positive tumors treated with trastuzumab (n=662), pCR was associated with a hazard ratio of 21	

2.85 ([1.69-4.83], p<0.001) for DFS, and of 14.11 ([1.93-103.03], p<0.009) for OS. However, 22	

the prognostic impact of pCR was restricted to HR-negative tumors. It was not observed in 23	

the luminal B/HER2-positive subgroup. In a recent pooled analysis of 12 international trials 24	

and 11955 patients (CTNeoBC), Cortazar (Cortazar et al., 2014) found a significant 25	

association between pCR and event-free survival in both the HR-positive and HR-negative 26	

subgroups, although the magnitude of this effect was greater in HR-negative tumors (HR-27	

positive, 0.58 [0.42-0.82]; HR-negative: 0.25 [0.18-0.34]). However, a subset of HER2-28	

positive breast cancer did not receive adjuvant trastuzumab. When the analysis was restricted 29	
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to patients who received trastuzumab, the association between pCR and overall survival was 1	

not significant in HR-positive tumors (0.56 [0.23-1.37]). In addition, three multicenter 2	

retrospective studies on HER2-positive breast tumors treated with NAC and trastuzumab 3	

identified pCR as a surrogate marker for DFS in HR-negative disease (Tanioka et al., 2014, 4	

Takada et al., 2014; Kim et al., 2013), but the results for the HR-positive group were 5	

discordant, with a positive association retrieved by some authors (Kim et al., 2013), but not 6	

others (Takada et al., 2014; Tanioka et al., 2014).  7	

Our study adds weight to the findings of previous investigations, because it focuses on a 8	

particular breast cancer subtype and reports results for a large population treated with 9	

neoadjuvant chemotherapy and trastuzumab, the gold standard treatment in 2015. This study 10	

provides a better representation of real-life experience than previous meta-analyses of clinical 11	

trials, because, although meta-analysis provide an effective means of acquiring large amounts 12	

of data, the patients included in clinical trials differ from the general population. Our data 13	

confirm the association of pCR with DFS in HER2-positive HR-negative breast cancers and 14	

provide new insight that could improve prognostic prediction. The absence of a significant 15	

effect in the HR-positive subgroup might be due to biological differences though we can not 16	

exclude a lack of statistical power.  17	

The confirmation of a quantitative correlation between increments in pCR and gains in 18	

survival in large datasets is of paramount importance for accelerated drug approval for the 19	

neoadjuvant model. It is particularly important because the HER2-targeting drug pipeline 20	

contains many candidates. The novel anti-HER2 antibody pertuzumab has obtained 21	

accelerated approval from the US Food and Drug Administration (FDA) (Prowell & Pazdur, 22	

2012) for use in the neoadjuvant setting for HER2-positive breast cancer, based on the results 23	

of the NEOSPHERE trial (Gianni et al., 2012). Definitive approval for pertuzumab will 24	

depend of the results of the APHINITY trial, evaluating the addition of pertuzumab to 25	

adjuvant trastuzumab-based chemotherapy. Controversy concerning the legitimacy of pCR as 26	

a surrogate reemerged with the results of the ALTTO trial in ASCO 2014 (Piccart-Gebhart et 27	

al., 2014). In this study, the addition of lapatinib to standard trastuzumab adjuvant therapy 28	

was not found to improve survival in women with HER2-positive early breast cancer. This 29	

110 Neoadjuvant treatment



	 13	

result was unexpected, because the combination of lapatinib and trastuzumab was associated 1	

with higher rates of pCR rates in the neoALTTO trial (Baselga et al., 2012). Improving pCR 2	

rates may theoretically: (i) increase conservative treatment probabilities; (ii) identify a 3	

population at higher risk of relapse and thus help selecting patients likely to benefit from new 4	

therapies. Accurate and sharp patients selection may avoid failure of all-comers trials as 5	

ALTTO and MARIANNE (NCT01120184). The KATHERINE trial (NCT01772472) is 6	

currently investigating TDM-1 as alternative adjuvant treatment to trastuzumab in HER2-7	

positive patients with residual disease following NAC. Our study supports this design for new 8	

drug testing, bearing in mind that even in patients with residual disease, DFS rates were high 9	

in our cohort. 10	

Conclusion  11	

Trastuzumab considerably modifies the prognosis of HER2-positive breast carcinomas. These 12	

tumors have an excellent prognosis when pCR is achieved. However, it remains unclear 13	

whether second-line HER2-targeted treatments with pertuzumab, lapatinib or TDM1 14	

following neoadjuvant chemotherapy improve survival in selected patients. Our findings 15	

suggest that patients with HER2-positive tumors of a large initial size, for which pCR is not 16	

achieved at the end of neoadjuvant chemotherapy, remain at risk of relapse despite adjuvant 17	

trastuzumab treatments. Such patients could be studied in second-line treatment trials. 18	

However, there is a need to rethink future clinical trials designs, bearing in mind several 19	

pitfalls: (i) sufficient recruitment of patients despite the scarcity of trastuzumab-resistant 20	

patients; (ii) consider a different disease setting with possibly already micrometastatic 21	

populations and thus consider new therapeutic targets to investigate (Mina & Sledge, 2011) ; 22	

(iii). Finally, expected events may whatever be low, and only international collaborative 23	

works will allow sufficient population size. The challenge still needs to be overcome. 24	

 25	

 26	

 27	
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Figures captions:  1	

Figure 1: Disease-free survival (Fig. 1A) and overall survival (Fig. 1B), by cohort. 2	

Figure 2: pCR rates by age and hormone receptor status.  3	

Figure 3: Association of pCR and DFS in patients with HR-negative tumors (Fig. 3A), and 4	

patients with HR-positive tumors (Fig. 3B).  5	

 6	

Table captions:  7	

Table 1: Patients, tumors, and treatment characteristics, by cohort (cohort A, n=35, no 8	

trastuzumab; cohort B, n=53, adjuvant trastuzumab only; cohort C, n= 199, both neadjuvant 9	

and adjuvant trastuzumab). 10	

Abbreviations : tz*= trastuzumab. 11	

Table 2: Pathological response rates, by definition, by cohort, and by hormone receptor 12	

status. 13	

Table 3: Odds ratios for predicting strict pCR (univariate and multivariate analyses)  14	

Table 4: Hazard ratios for predicting DFS (univariate and multivariate analyses)  15	

 16	

  17	

1.6 Article n°6 : Hamy-Petit, A.-S. et al. Br. J. Cancer 114, 44–52 (2016) 113



	 16	

References: 1	

Baselga	J,	Bradbury	I,	Eidtmann	H,	Di	Cosimo	S,	de	Azambuja	E,	Aura	C,	Gómez	H,	Dinh	P,	2	
Fauria	K,	Van	Dooren	V,	Aktan	G,	Goldhirsch	A,	Chang	T-W,	Horváth	Z,	Coccia-Portugal	3	
M,	Domont	J,	Tseng	L-M,	Kunz	G,	Sohn	JH,	Semiglazov	V,	Lerzo	G,	Palacova	M,	Probachai	4	
V,	Pusztai	L,	Untch	M,	Gelber	RD,	Piccart-Gebhart	M,	NeoALTTO	Study	Team	(2012)	5	
Lapatinib	with	trastuzumab	for	HER2-positive	early	breast	cancer	(NeoALTTO):	a	6	
randomised,	open-label,	multicentre,	phase	3	trial.	Lancet	379:	633–640,	7	
doi:10.1016/S0140-6736(11)61847-3.	8	
Benzekry	S,	Lamont	C,	Beheshti	A,	Tracz	A,	Ebos	JML,	Hlatky	L,	Hahnfeldt	P	(2014)	9	
Classical	mathematical	models	for	description	and	prediction	of	experimental	tumor	10	
growth.	PLoS	Comput	Biol	10:	e1003800,	doi:10.1371/journal.pcbi.1003800.	11	
Bhargava	R,	Dabbs	DJ,	Beriwal	S,	Yildiz	IA,	Badve	P,	Soran	A,	Johnson	RR,	Brufsky	AM,	12	
Lembersky	BC,	McGuire	KP,	Ahrendt	GM	(2011)	Semiquantitative	hormone	receptor	13	
level	influences	response	to	trastuzumab-containing	neoadjuvant	chemotherapy	in	14	
HER2-positive	breast	cancer.	Mod	Pathol	Off	J	U	S	Can	Acad	Pathol	Inc	24:	367–374,	15	
doi:10.1038/modpathol.2010.209.	16	
Bindea	G,	Mlecnik	B,	Tosolini	M,	Kirilovsky	A,	Waldner	M,	Obenauf	AC,	Angell	H,	17	
Fredriksen	T,	Lafontaine	L,	Berger	A,	Bruneval	P,	Fridman	WH,	Becker	C,	Pagès	F,	18	
Speicher	MR,	Trajanoski	Z,	Galon	J	(2013)	Spatiotemporal	dynamics	of	intratumoral	19	
immune	cells	reveal	the	immune	landscape	in	human	cancer.	Immunity	39:	782–795,	20	
doi:10.1016/j.immuni.2013.10.003.	21	
Bonifazi	M,	Franchi	M,	Rossi	M,	Zambelli	A,	Moja	L,	Zambon	A,	Corrao	G,	La	Vecchia	C,	22	
Zocchetti	C,	Negri	E	(2014)	Long	term	survival	of	HER2-positive	early	breast	cancer	23	
treated	with	trastuzumab-based	adjuvant	regimen:	a	large	cohort	study	from	clinical	24	
practice.	Breast	Edinb	Scotl	23:	573–578,	doi:10.1016/j.breast.2014.05.022.	25	
Buzdar	AU,	Valero	V,	Ibrahim	NK,	Francis	D,	Broglio	KR,	Theriault	RL,	Pusztai	L,	Green	26	
MC,	Singletary	SE,	Hunt	KK,	Sahin	AA,	Esteva	F,	Symmans	WF,	Ewer	MS,	Buchholz	TA,	27	
Hortobagyi	GN	(2007)	Neoadjuvant	therapy	with	paclitaxel	followed	by	5-fluorouracil,	28	
epirubicin,	and	cyclophosphamide	chemotherapy	and	concurrent	trastuzumab	in	human	29	
epidermal	growth	factor	receptor	2-positive	operable	breast	cancer:	an	update	of	the	30	
initial	randomized	study	population	and	data	of	additional	patients	treated	with	the	31	
same	regimen.	Clin	Cancer	Res	Off	J	Am	Assoc	Cancer	Res	13:	228–233,	32	
doi:10.1158/1078-0432.CCR-06-1345.	33	
Cortazar	P,	Zhang	L,	Untch	M,	Mehta	K,	Costantino	JP,	Wolmark	N,	Bonnefoi	H,	Cameron	34	
D,	Gianni	L,	Valagussa	P,	Swain	SM,	Prowell	T,	Loibl	S,	Wickerham	DL,	Bogaerts	J,	Baselga	35	
J,	Perou	C,	Blumenthal	G,	Blohmer	J,	Mamounas	EP,	Bergh	J,	Semiglazov	V,	Justice	R,	36	
Eidtmann	H,	Paik	S,	Piccart	M,	Sridhara	R,	Fasching	PA,	Slaets	L,	Tang	S,	Gerber	B,	Geyer	37	
CE,	Pazdur	R,	Ditsch	N,	Rastogi	P,	Eiermann	W,	von	Minckwitz	G	(2014)	Pathological	38	
complete	response	and	long-term	clinical	benefit	in	breast	cancer:	the	CTNeoBC	pooled	39	
analysis.	Lancet	384:	164–172,	doi:10.1016/S0140-6736(13)62422-8.	40	
Fei	F,	Messina	C,	Slaets	L,	Chakiba	C,	Cameron	D,	Bogaerts	J,	Bonnefoi	H	(2015)	Tumour	41	
size	is	the	only	predictive	factor	of	distant	recurrence	after	pathological	complete	42	
response	to	neoadjuvant	chemotherapy	in	patients	with	large	operable	or	locally	43	
advanced	breast	cancers:	a	sub-study	of	EORTC	10994/BIG	1-00	phase	III	trial.	Eur	J	44	
Cancer	Oxf	Engl	1990	51:	301–309,	doi:10.1016/j.ejca.2014.11.023.	45	
Fridman	WH,	Pagès	F,	Sautès-Fridman	C,	Galon	J	(2012)	The	immune	contexture	in	46	
human	tumours:	impact	on	clinical	outcome.	Nat	Rev	Cancer	12:	298–306,	47	
doi:10.1038/nrc3245.	48	
Gianni	L,	Eiermann	W,	Semiglazov	V,	Manikhas	A,	Lluch	A,	Tjulandin	S,	Zambetti	M,	49	

114 Neoadjuvant treatment



	 17	

Vazquez	F,	Byakhow	M,	Lichinitser	M,	Climent	MA,	Ciruelos	E,	Ojeda	B,	Mansutti	M,	1	
Bozhok	A,	Baronio	R,	Feyereislova	A,	Barton	C,	Valagussa	P,	Baselga	J	(2010)	2	
Neoadjuvant	chemotherapy	with	trastuzumab	followed	by	adjuvant	trastuzumab	versus	3	
neoadjuvant	chemotherapy	alone,	in	patients	with	HER2-positive	locally	advanced	4	
breast	cancer	(the	NOAH	trial):	a	randomised	controlled	superiority	trial	with	a	parallel	5	
HER2-negative	cohort.	Lancet	375:	377–384,	doi:10.1016/S0140-6736(09)61964-4.	6	
Gianni	L,	Pienkowski	T,	Im	Y-H,	Roman	L,	Tseng	L-M,	Liu	M-C,	Lluch	A,	Staroslawska	E,	7	
de	la	Haba-Rodriguez	J,	Im	S-A,	Pedrini	JL,	Poirier	B,	Morandi	P,	Semiglazov	V,	8	
Srimuninnimit	V,	Bianchi	G,	Szado	T,	Ratnayake	J,	Ross	G,	Valagussa	P	(2012)	Efficacy	9	
and	safety	of	neoadjuvant	pertuzumab	and	trastuzumab	in	women	with	locally	10	
advanced,	inflammatory,	or	early	HER2-positive	breast	cancer	(NeoSphere):	a	11	
randomised	multicentre,	open-label,	phase	2	trial.	Lancet	Oncol	13:	25–32,	12	
doi:10.1016/S1470-2045(11)70336-9.	13	
Hartung	N,	Mollard	S,	Barbolosi	D,	Benabdallah	A,	Chapuisat	G,	Henry	G,	Giacometti	S,	14	
Iliadis	A,	Ciccolini	J,	Faivre	C,	Hubert	F	(2014)	Mathematical	modeling	of	tumor	growth	15	
and	metastatic	spreading:	validation	in	tumor-bearing	mice.	Cancer	Res	74:	6397–6407,	16	
doi:10.1158/0008-5472.CAN-14-0721.	17	
Harvey	JM,	Clark	GM,	Osborne	CK,	Allred	DC	(1999)	Estrogen	receptor	status	by	18	
immunohistochemistry	is	superior	to	the	ligand-binding	assay	for	predicting	response	19	
to	adjuvant	endocrine	therapy	in	breast	cancer.	J	Clin	Oncol	Off	J	Am	Soc	Clin	Oncol	17:	20	
1474–1481.	21	
Hennessy	BT,	Hortobagyi	GN,	Rouzier	R,	Kuerer	H,	Sneige	N,	Buzdar	AU,	Kau	SW,	22	
Fornage	B,	Sahin	A,	Broglio	K,	Singletary	SE,	Valero	V	(2005)	Outcome	after	pathologic	23	
complete	eradication	of	cytologically	proven	breast	cancer	axillary	node	metastases	24	
following	primary	chemotherapy.	J	Clin	Oncol	Off	J	Am	Soc	Clin	Oncol	23:	9304–9311,	25	
doi:10.1200/JCO.2005.02.5023.	26	
Huober	J,	von	Minckwitz	G,	Denkert	C,	Tesch	H,	Weiss	E,	Zahm	DM,	Belau	A,	Khandan	F,	27	
Hauschild	M,	Thomssen	C,	Högel	B,	Darb-Esfahani	S,	Mehta	K,	Loibl	S	(2010)	Effect	of	28	
neoadjuvant	anthracycline-taxane-based	chemotherapy	in	different	biological	breast	29	
cancer	phenotypes:	overall	results	from	the	GeparTrio	study.	Breast	Cancer	Res	Treat	30	
124:	133–140,	doi:10.1007/s10549-010-1103-9.	31	
Inwald	EC,	Ortmann	O,	Zeman	F,	Koller	M,	Hofstädter	F,	Gerstenhauer	M,	Klinkhammer-32	
Schalke	M	(2014)	Guideline	concordant	therapy	prolongs	survival	in	HER2-positive	33	
breast	cancer	patients:	results	from	a	large	population-based	cohort	of	a	cancer	registry.	34	
BioMed	Res	Int	2014:	137304,	doi:10.1155/2014/137304.	35	
Jackisch	C,	Schoenegg	W,	Reichert	D,	Welslau	M,	Selbach	J,	Harich	H-D,	Tesch	H,	36	
Wohlfarth	T,	Eustermann	H,	Hinke	A	(2014)	Trastuzumab	in	advanced	breast	cancer--a	37	
decade	of	experience	in	Germany.	BMC	Cancer	14:	924,	doi:10.1186/1471-2407-14-924.	38	
Karam	I,	Hamilton	S,	Nichol	A,	Woods	R,	Speers	C,	Kennecke	H,	Tyldesley	S	(2013)	39	
Population-based	outcomes	after	brain	radiotherapy	in	patients	with	brain	metastases	40	
from	breast	cancer	in	the	Pre-Trastuzumab	and	Trastuzumab	eras.	Radiat	Oncol	Lond	41	
Engl	8:	12,	doi:10.1186/1748-717X-8-12.	42	
Kim	MM,	Allen	P,	Gonzalez-Angulo	AM,	Woodward	WA,	Meric-Bernstam	F,	Buzdar	AU,	43	
Hunt	KK,	Kuerer	HM,	Litton	JK,	Hortobagyi	GN,	Buchholz	TA,	Mittendorf	EA	(2013)	44	
Pathologic	complete	response	to	neoadjuvant	chemotherapy	with	trastuzumab	predicts	45	
for	improved	survival	in	women	with	HER2-overexpressing	breast	cancer.	Ann	Oncol	Off	46	
J	Eur	Soc	Med	Oncol	ESMO	24:	1999–2004,	doi:10.1093/annonc/mdt131.	47	
Liao	Y,	Wang	S-Y,	Meng	X-Y,	Yang	J,	Shi	M-J,	Liu	H-L,	Chen	F-F,	Xiong	B	(2014)	Circulating	48	
tumor	cells	in	breast	cancer	and	its	association	with	tumor	clinicopathological	49	

1.6 Article n°6 : Hamy-Petit, A.-S. et al. Br. J. Cancer 114, 44–52 (2016) 115



	 18	

characteristics:	a	meta-analysis.	Med	Oncol	Northwood	Lond	Engl	31:	343,	1	
doi:10.1007/s12032-014-0343-7.	2	
Loibl	S,	Jackisch	C,	Lederer	B,	Untch	M,	Paepke	S,	Kümmel	S,	Schneeweiss	A,	Huober	J,	3	
Hilfrich	J,	Hanusch	C,	Gerber	B,	Eidtmann	H,	Denkert	C,	Costa	SD,	Blohmer	J-U,	4	
Nekljudova	V,	Mehta	K,	von	Minckwitz	G	(2015)	Outcome	after	neoadjuvant	5	
chemotherapy	in	young	breast	cancer	patients:	a	pooled	analysis	of	individual	patient	6	
data	from	eight	prospectively	randomized	controlled	trials.	Breast	Cancer	Res	Treat	7	
doi:10.1007/s10549-015-3479-z.	8	
Matos	E,	Zakotnik	B,	Kuhar	CG	(2014)	Effectiveness	of	adjuvant	trastuzumab	in	daily	9	
clinical	practice.	Radiol	Oncol	48:	403–407,	doi:10.2478/raon-2013-0081.	10	
Mina	LA,	Sledge	GW	(2011)	Rethinking	the	metastatic	cascade	as	a	therapeutic	target.	11	
Nat	Rev	Clin	Oncol	8:	325–332,	doi:10.1038/nrclinonc.2011.59.	12	
Von	Minckwitz	G,	Untch	M,	Blohmer	J-U,	Costa	SD,	Eidtmann	H,	Fasching	PA,	Gerber	B,	13	
Eiermann	W,	Hilfrich	J,	Huober	J,	Jackisch	C,	Kaufmann	M,	Konecny	GE,	Denkert	C,	14	
Nekljudova	V,	Mehta	K,	Loibl	S	(2012)	Definition	and	impact	of	pathologic	complete	15	
response	on	prognosis	after	neoadjuvant	chemotherapy	in	various	intrinsic	breast	16	
cancer	subtypes.	J	Clin	Oncol	Off	J	Am	Soc	Clin	Oncol	30:	1796–1804,	17	
doi:10.1200/JCO.2011.38.8595.	18	
Olson	EM,	Najita	JS,	Sohl	J,	Arnaout	A,	Burstein	HJ,	Winer	EP,	Lin	NU	(2013)	Clinical	19	
outcomes	and	treatment	practice	patterns	of	patients	with	HER2-positive	metastatic	20	
breast	cancer	in	the	post-trastuzumab	era.	Breast	Edinb	Scotl	22:	525–531,	21	
doi:10.1016/j.breast.2012.12.006.	22	
Park	YH,	Park	MJ,	Ji	SH,	Yi	SY,	Lim	DH,	Nam	DH,	Lee	J-I,	Park	W,	Choi	DH,	Huh	SJ,	Ahn	JS,	23	
Kang	WK,	Park	K,	Im	Y-H	(2009)	Trastuzumab	treatment	improves	brain	metastasis	24	
outcomes	through	control	and	durable	prolongation	of	systemic	extracranial	disease	in	25	
HER2-overexpressing	breast	cancer	patients.	Br	J	Cancer	100:	894–900,	26	
doi:10.1038/sj.bjc.6604941.	27	
Piccart-Gebhart	MJ,	Holmes	AP,	Baselga	J,	Azambuja	ED,	Dueck	AC,	Viale	G,	Zujewski	JA,	28	
Goldhirsch	A,	Santillana	S,	Pritchard	KI,	Wolff	AC,	Jackisch	C,	Lang	I,	Untch	M,	Smith	IE,	29	
Boyle	F,	Xu	B,	Gomez	HL,	Gelber	RD,	Perez	EA	(2014)	First	results	from	the	phase	III	30	
ALTTO	trial	(BIG	2-06;	NCCTG	[Alliance]	N063D)	comparing	one	year	of	anti-HER2	31	
therapy	with	lapatinib	alone	(L),	trastuzumab	alone	(T),	their	sequence	(T→L),	or	their	32	
combination	(T+L)	in	the	adjuvant	treatment	of	HER2-positive	early	breast	cancer	33	
(EBC).	J	Clin	Oncol	32:5s:	34	
Prowell	TM,	Pazdur	R	(2012)	Pathological	complete	response	and	accelerated	drug	35	
approval	in	early	breast	cancer.	N	Engl	J	Med	366:	2438–2441,	36	
doi:10.1056/NEJMp1205737.	37	
R	Development	Core	Team	(2011)	R:	A	Language	and	Environment	for	Statistical	38	
Computing.	R	Foundation	for	Statistical	Computing.	39	
Recommandations	pour	la	Pratique	Clinique :	Saint	Paul	de	Vence	2007	« cancers	du	40	
sein ».	41	
Seferina	SC,	Lobbezoo	DJA,	de	Boer	M,	Dercksen	MW,	van	den	Berkmortel	F,	van	42	
Kampen	RJW,	van	de	Wouw	AJ,	de	Vries	B,	Joore	MA,	Peer	PGM,	Voogd	AC,	Tjan-Heijnen	43	
VCG	(2015)	Real-Life	Use	and	Effectiveness	of	Adjuvant	Trastuzumab	in	Early	Breast	44	
Cancer	Patients:	A	Study	of	the	Southeast	Netherlands	Breast	Cancer	Consortium.	The	45	
Oncologist	doi:10.1634/theoncologist.2015-0006.	46	
Takada	M,	Ishiguro	H,	Nagai	S,	Ohtani	S,	Kawabata	H,	Yanagita	Y,	Hozumi	Y,	Shimizu	C,	47	
Takao	S,	Sato	N,	Kosaka	Y,	Sagara	Y,	Iwata	H,	Ohno	S,	Kuroi	K,	Masuda	N,	Yamashiro	H,	48	
Sugimoto	M,	Kondo	M,	Naito	Y,	Sasano	H,	Inamoto	T,	Morita	S,	Toi	M	(2014)	Survival	of	49	

116 Neoadjuvant treatment



	 19	

HER2-positive	primary	breast	cancer	patients	treated	by	neoadjuvant	chemotherapy	1	
plus	trastuzumab:	a	multicenter	retrospective	observational	study	(JBCRG-C03	study).	2	
Breast	Cancer	Res	Treat	145:	143–153,	doi:10.1007/s10549-014-2907-9.	3	
Tanioka	M,	Sasaki	M,	Shimomura	A,	Fujishima	M,	Doi	M,	Matsuura	K,	Sakuma	T,	4	
Yoshimura	K,	Saeki	T,	Ohara	M,	Tsurutani	J,	Watatani	M,	Takano	T,	Kawabata	H,	Mukai	H,	5	
Naito	Y,	Hirokaga	K,	Takao	S,	Minami	H	(2014)	Pathologic	complete	response	after	6	
neoadjuvant	chemotherapy	in	HER2-overexpressing	breast	cancer	according	to	7	
hormonal	receptor	status.	Breast	Edinb	Scotl	23:	466–472,	8	
doi:10.1016/j.breast.2014.03.008.	9	
Untch	M,	Loibl	S,	Bischoff	J,	Eidtmann	H,	Kaufmann	M,	Blohmer	J-U,	Hilfrich	J,	Strumberg	10	
D,	Fasching	PA,	Kreienberg	R,	Tesch	H,	Hanusch	C,	Gerber	B,	Rezai	M,	Jackisch	C,	Huober	11	
J,	Kühn	T,	Nekljudova	V,	von	Minckwitz	G,	German	Breast	Group	(GBG),	12	
Arbeitsgemeinschaft	Gynäkologische	Onkologie-Breast	(AGO-B)	Study	Group	(2012)	13	
Lapatinib	versus	trastuzumab	in	combination	with	neoadjuvant	anthracycline-taxane-14	
based	chemotherapy	(GeparQuinto,	GBG	44):	a	randomised	phase	3	trial.	Lancet	Oncol	15	
13:	135–144,	doi:10.1016/S1470-2045(11)70397-7.	16	
Vici	P,	Pizzuti	L,	Natoli	C,	Moscetti	L,	Mentuccia	L,	Vaccaro	A,	Sergi	D,	Di	Lauro	L,	Trenta	17	
P,	Seminara	P,	Santini	D,	Iezzi	L,	Tinari	N,	Bertolini	I,	Sini	V,	Mottolese	M,	Giannarelli	D,	18	
Giotta	F,	Maugeri-Saccà	M,	Barba	M,	Marchetti	P,	Michelotti	A,	Sperduti	I,	Gamucci	T	19	
(2014)	Outcomes	of	HER2-positive	early	breast	cancer	patients	in	the	pre-trastuzumab	20	
and	trastuzumab	eras:	a	real-world	multicenter	observational	analysis.	The	RETROHER	21	
study.	Breast	Cancer	Res	Treat	147:	599–607,	doi:10.1007/s10549-014-3133-1.	22	
Wolff	AC,	Hammond	MEH,	Schwartz	JN,	Hagerty	KL,	Allred	DC,	Cote	RJ,	Dowsett	M,	23	
Fitzgibbons	PL,	Hanna	WM,	Langer	A,	McShane	LM,	Paik	S,	Pegram	MD,	Perez	EA,	Press	24	
MF,	Rhodes	A,	Sturgeon	C,	Taube	SE,	Tubbs	R,	Vance	GH,	van	de	Vijver	M,	Wheeler	TM,	25	
Hayes	DF,	American	Society	of	Clinical	Oncology,	College	of	American	Pathologists	26	
(2007)	American	Society	of	Clinical	Oncology/College	of	American	Pathologists	27	
guideline	recommendations	for	human	epidermal	growth	factor	receptor	2	testing	in	28	
breast	cancer.	J	Clin	Oncol	Off	J	Am	Soc	Clin	Oncol	25:	118–145,	29	
doi:10.1200/JCO.2006.09.2775.	30	
 31	

  32	

1.6 Article n°6 : Hamy-Petit, A.-S. et al. Br. J. Cancer 114, 44–52 (2016) 117



	 20	

 1	

118 Neoadjuvant treatment



1.7 Article n°7 : Morel et al, in revision in PlosOne 119





1 
 

The presence of an in situ component on pre-treatment 
biopsy is not associated with response to neoadjuvant 

chemotherapy for breast cancer 
 
 
 
Charlotte Morel1¶, Than Lam2¶, Julie Labrosse1, Enora Laas1, Jean-Guillaume Feron1, Florence 
Coussy3, Marick Lae4, Fabien Reyal1,5*, Anne-Sophie Hamy3,5 

 
 
 
1 Department of Surgery, Institut Curie, Paris, France. 
2 Service de Gynécologie, Hôpitaux universitaires de Genève, Switzerland. 
3 Medical Oncology department, Centre René Hughenin, Saint Cloud, France. 
4 Department of Tumor biology, Institut Curie, Paris, France. 
5 Residual Tumor & Response to Treatment Laboratory, RT2Lab, PSL Research University, 
Translational Research Department, INSERM, U932 Immunity and Cancer, F-75248, Paris, France. 
 
 
 
* Corresponding author: 
E-mail: fabien.reyal@curie.fr (FR) 
 
 ¶Charlotte Morel and Than Lam equally contributed to this work. 
 
  

Manuscript Click here to access/download;Manuscript;Manuscript.docx

1.7 Article n°7 : Morel et al, in revision in PlosOne 121



2 
 

Abstract  1 

 2 
Background. A ductal in situ (DCIS) component is often associated with invasive breast 3 
carcinoma (BC). It is unknown whether this parameter affects response to treatment. In this 4 
study, we assessed the predictive value of DCIS component on pathologic complete response 5 
(pCR) after neoadjuvant chemotherapy (NAC). 6 
Method. We analyzed a cohort of 1148 T1-3NxM0 breast cancer (BC) patients treated by NAC 7 
at Institut Curie between 2002 and 2012. Presence of a DCIS component was retrospectively 8 
retrieved both in pre-NAC biopsy pathological report and surgical specimen. 9 
Results. 1148 BC patients treated with NAC who had available pre and post-NAC data on in 10 
situ component were included. DCIS was present before NAC in 19.6% of the population.  11 
Overall, 283 patients (19.4%) reached pCR after NAC. There were no significant association 12 
between the presence of pre-NAC DCIS in biopsy and pCR. After multivariate analysis 13 
including subtype, tumor size, grade, mitotic index, Ki67 index, only BC subtype 14 
(luminal/TNBC/HER2-positive) and Ki67 were significantly associated with pCR. 15 
Conclusion. Presence of a DCIS component on pre-NAC biopsy is not associated with pCR 16 
and does not seem to be a critical factor to predict response to NAC. 17 
 

 

 

Keywords: Breast cancer - Neoadjuvant chemotherapy (NAC)- Ductal carcinoma in situ 

(DCIS) - Pathological complete response (pCR) 
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Background  18 

Neoadjuvant or pre-operative chemotherapy (NAC) is administered to patients with 19 

inflammatory or locally advanced breast cancer (BC). It is now used more widely, including in 20 

early-stage breast cancers. On one hand, since it can reduce some tumors and make them 21 

resectable [1-2], this strategy increases breast-conserving surgery rates; on the other hand, it 22 

enables to study the effect of chemotherapy on the tumor itself by analyzing residual tumor 23 

burden on surgical specimens. Furthermore, it was shown that patients who reached 24 

pathological complete response (pCR) after neoadjuvant systemic treatment had a better long 25 

term outcome [3-4]. Identifying markers for predicting response and resistance to NAC has 26 

become an important research objective [5]. The major clinical and biological factors yet 27 

identified to predict the chance of achieving pCR are age [6], body mass index (BMI) [7], 28 

proliferation biomarker Ki-67 [8], estrogen receptor status [5], and more recently, tumor 29 

infiltrating lymphocytes (TILs) [9]. 30 

 31 

Ductal carcinoma in situ (DCIS) is associated with invasive disease in more than half of 32 

invasive BC cases [10]. It is defined as a neoplasic proliferation of epithelial cells confined to 33 

the ductal-lobular system that can evolve to invasive breast cancer. Although it is generally 34 

assumed that DCIS does not respond to NAC [11], the effect of chemotherapy on in situ 35 

component has scarcely been studied. In this study, we assessed the predictive value of in situ 36 

component on pre-NAC biopsy on pCR in a real-life cohort of patients treated by neoadjuvant 37 

chemotherapy. 38 

 39 

In this study, we assessed the predictive value of in situ component on pre-NAC biopsy on pCR 40 

in a real-life cohort of patients treated by neoadjuvant chemotherapy. 41 
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Methods   42 

Patients 43 

We analyzed a cohort of 1148 T1-3NxM0 patients with invasive breast carcinoma (NEOREP 44 

Cohort, CNIL declaration number 1547270) treated at Institut Curie, Paris, between 2002 and 45 

2012. We included patients with only unilateral, non-recurrent, non-inflammatory, non-46 

metastatic tumors that had an indication of NAC and for whom pre and post NAC data on 47 

DCIS component were available. Every patient received NAC, followed by surgery and 48 

radiotherapy when indicated. The study was approved by the Breast Cancer Study Group of 49 

Institut Curie and by the CNIL concerning data analysis for research purposes. It was 50 

conducted according to institutional and ethical rules regarding research on tissue specimens 51 

and patients. Written informed consent from the patients was not required by French 52 

regulations. All data were anonymized prior to access and analysis. 53 

 54 

Treatments 55 

Patients were treated according to national guidelines. NAC regimens changed over time 56 

(anthracycline-based regimen or sequential anthracycline-taxane regimen), with trastuzumab 57 

used in an adjuvant and/or neoadjuvant setting since 2005 for HER2-positive breast cancer. 58 

Surgery was performed four to six weeks after the end of chemotherapy. Most patients (98.2%, 59 

n=1127) received adjuvant radiotherapy. Endocrine therapy (tamoxifen, aromatase inhibitor, 60 

and/or GnRH agonists) was prescribed when indicated.  61 

 62 

Tumor samples 63 

Tumor samples were collected in routine care in the management of breast cancer at Institut 64 

Curie. ER and PR status were determined as follows. Tissue sections were rehydrated and 65 
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antigen retrieval was carried out in citrate buffer (10 mM, pH 6.1). The sections were then 66 

incubated with antibodies against ER (clone 6F11, Novocastra, Leica Biosystems, Newcastle, 67 

UK; 1/200) and PR (clone 1A6, Novocastra, 1/200). Antibody binding was detected with 68 

Vectastain Elite ABC peroxidase-conjugated mouse IgG kit (Vector, Burlingame, CA, USA), 69 

with diaminobenzidine (Dako A/S, Glostrup, Denmark) as chromogen. Positive and negative 70 

controls were included in each run. According to French recommendations, cases were 71 

considered positive for ER and PR if at least 10% of tumor nuclei were stained [12]. Tumors 72 

were considered hormone receptor (HR)-positive when positive for either ER or PR, and HR-73 

negative when negative for both ER and PR.  74 

Concerning Ki-67 assessment, tissue sections were incubated for one hour with the anti-Ki67 75 

monoclonal antibody (Clone MIB1, Dako A/S, Glostrup, Denmark) at 1/100 dilution. The 76 

revelation of the staining was performed using the Vectastain Elite ABC peroxydase mouse 77 

IgG kit (Vector Burlingame, CA, USA) and diamino-benzidine (Dako A/S) as chromogen. The 78 

semiquantitative assessment was performed by estimating at x200 magnification the percentage 79 

of positive neoplastic nuclei within the area of highest positivity chosen after scanning the 80 

entire tumor surface at low power (x10 objective). All nuclei with homogeneous staining, even 81 

with a light staining or only a nucleolar staining, were interpreted as positive. 82 

HER2 expression was determined by immunohistochemistry using a monoclonal anti-HER2 83 

antibody (CB11, Novocastra, New-Castle, UK; 1/800). Scoring was performed according to 84 

American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) 85 

guidelines [13]. Scores 3+ were reported as positive, scores 1+/0 as negative. Tumors with 86 

scores 2+ were tested by FISH. FISH was performed using a HER2-gene-specific probe and a 87 

centromeric probe for chromosome 17 (PathVysion HER-2 DNA Probe kit, Vysis-Abbott, 88 

Abbott Park, IL, USA) according to manufacturers’ instructions. HER2 gene amplification was 89 

defined according to ASCO/CAP guidelines [13].  An average of 40 tumor cells per sample 90 
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was evaluated and mean HER2 signals per nuclei were calculated. A HER2/CEN17 ratio ≥ 2 91 

was considered positive, and a ratio < 2 was considered negative [13]. 92 

Presence or absence of a DCIS component was retrospectively retrieved in pathological reports 93 

of pretreatment core needle biopsy and surgical specimens. Presence of DCIS component was 94 

considered as binary (yes/no), and all tumor samples that contained DCIS were included, 95 

regardless of subtype. 96 

 97 

Study endpoints 98 

ypTN stage was defined according to the American Joint Committee on Cancer/Union for 99 

International Cancer Control staging. Pathological complete response (pCR) was defined as the 100 

absence of invasive residual tumor in the breast and axillary nodes (ypT0/is+ ypN0). 101 

 102 

Statistical analysis 103 

The study population was described in terms of frequencies for qualitative variables, or 104 

medians, means and associated ranges for quantitative variables. Comparisons of proportion of 105 

samples with a DCIS component before and after NAC were investigated by Mac Nemar tests. 106 

Factors predictive of pCR were introduced into a univariate logistic regression model. A 107 

multivariate logistic model was then implemented. Covariates selected for multivariate analysis 108 

were those with a p-value likelihood ratio test below 0.05 in univariate analysis. 109 

Significance threshold was of 5%.  Analyses were performed with R software, version 3.1.2 110 

[14], with the Epi, dplyr, cowplot and ggplot2 libraries. 111 
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Results   112 

Patients and tumor characteristics  113 

A total of 1148 patients were included in the cohort. These patients were mostly premenopausal 114 

(63%, n= 713), and 13% (n=146) were obese (BMI>30). Clinically, most patients had stage T2 115 

tumors (67%, n=764) and node-positive breast cancers (56%, n=644). 44% of tumors were 116 

luminal (n=508), 31% were TNBC (n=359) and 24% were HER2-positive BC (n=281), 117 

including 134 HER2/ER- and 147 HER2/ER+. Most tumors were grade 3 (59.1%, n=659). 118 

DCIS component was present before NAC in 19.6% of samples (n=225), (Table 1). 119 

120 
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Table 1. Patients and tumor characteristics  121 

 
    n  
Menopausal status 
  

postmenopausal 426 (37.4%) 
premenopausal 713 (62.6%) 

  BMI < 19 68 (6%) 

BMI BMI: 19 to 25 644 (56.4%) 

  BMI: 25 to 30 284 (24.9%) 

  BMI>30 146 (12.8%) 

  T1 65 (5.7%) 

Tumor size T2 764 (66.6%) 

  T3 318 (27.7%) 

Nodal status 
  

N0 503 (43.9%) 
N1-N2-N3 644 (56.1%) 

Mitotic index 
  

<=22 684 (64.7%) 
>22 374 (35.3%) 

Histology 
  

other 116 (10.2%) 
 (NST) 1022 (89.8%) 

  luminal 508 (44.2%) 

Subtype TNBC 359 (31.3%) 

  HER2 281 (24.5%) 

Grade 
  

Grade I-II 457 (40.9%) 
Grade III 659 (59.1%) 

Ki-67 
  

<20 168 (30.3%) 
≥ 20 387 (69.7%) 

DCIS component 
  

no 923 (80.4%) 
yes 225 (19.6%) 

 
Abbreviations: Body Mass Index (BMI); Ductal Carcinoma in situ (DCIS); No Specific Type (NST) 
Missing data: Menopausal status: 9; BMI: 6; tumor size: 1; nodal status: 1; mitotic index: 90; histology: 10; 
subtype: 0; grade: 32; ki-67: 593; DCIS: 0 
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Pre-NAC DCIS 122 

Pre-NAC, DCIS was found in 225 samples (19.6%). Presence of a DCIS component was 123 

associated with BC subtype (p<0.001). The percentage of pre-NAC samples with a DCIS 124 

component was higher in HER2-positive BC (29.5%), compared to luminal BC (21.3%) or 125 

TNBC (9.5%) (Fig 1). 126 

 127 

Fig 1. Presence of a DCIS component on pre-NAC breast cancer biopsies 128 

 129 

Presence of a DCIS component on pre-NAC biopsy was associated to menopausal status, BMI, 130 

mitotic index and grade (Table 2). Concerning samples with pre-NAC DCIS, most patients 131 

were premenopausal (73.2%) with a BMI≤30 (92.9%); tumors were mostly Grade I-II (51.4%), 132 

with lower mitotic index (75.1%). 133 
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Table 2. Association between patients and tumor characteristics and presence of pre-NAC 134 
DCIS 135 
 
    No DCIS pre-NAC DCIS pre-NAC p 

Menopausal status premenopausal 549 (60%) 164 (73.2%) < 0.001 postmenopausal 366 (40%) 60 (26.8%) 

BMI 

BMI<19 502 (54.6%) 142 (63.4%) 

0.007 BMI: 19 to 25 52 (5.7%) 16 (7.1%) 
BMI: 25 to 30 234 (25.5%) 50 (22.3%) 

BMI>30 130 (14.2%) 16 (7.1%) 

Tumor size 
T1 52 (5.6%) 13 (5.8%) 

0.79 T2 619 (67.1%) 145 (64.7%) 
T3 252 (27.3%) 66 (29.5%) 

Nodal status N0 407 (44.1%) 96 (42.7%) 0.75 N+ 515 (55.9%) 129 (57.3%) 

Mitotic Index ≤22 530 (62.1%) 154 (75.1%) 0.001 >22 323 (37.9%) 51 (24.9%) 

Subtype 
luminal 400 (43.3%) 108 (48%) 

< 0.001 TNBC 325 (35.2%) 34 (15.1%) 
HER2 198 (21.5%) 83 (36.9%) 

Grade Grade I-II 346 (38.4%) 111 (51.4%) 0.001 Grade III 554 (61.6%) 105 (48.6%) 

Ki-67 ki-67<20 120 (28.6%) 48 (35.3%) 0.17 ki-67≥ 20 299 (71.4%) 88 (64.7%) 
 
Abbreviations: Body Mass Index (BMI), Ductal Carcinoma in situ (DCIS) 
Missing data: Menopausal status: 9, BMI: 6, tumor size: 1, nodal status: 1, mitotic index: 90, subtype: 0, grade: 
32, ki-67: 593 

 

 

Post-NAC DCIS 136 

In surgical specimens after NAC, the rate of samples with DCIS differed by BC subtype: 137 

54.4% in HER2-positive BC; 53.3% in luminal BC; 24% in TNBC,  p<0.001, (Fig 2). 138 

 

Fig 2. Presence of a DCIS component on post-NAC breast cancer surgical specimen. 
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Evolution of DCIS component pre and post NAC 139 

Paired pre and post-NAC data on the presence of DCIS were available in 1148 patients (508 140 

luminal, 359 TNBC and 281 HER2-positive BC). 141 

DCIS was present both in microbiopsy and in the surgical specimen for 143 patients.  No DCIS 142 

pre and post-NAC was found for 556 cases (Fig 3, 3A, 3B and 3C). 367 (32%) paired samples 143 

had no DCIS pre-NAC but had DCIS in the surgical specimen after NAC. For 82 patients, 144 

DCIS was present on the pre-NAC sample but not on the surgical specimen.  145 

 

Fig 3. Presence pre and post NAC DCIS in global population (1148 patients).  

Fig 3A. Presence of pre and post NAC DCIS in Luminal BC (508 patients). 

Fig 3B. Presence of pre and post NAC DCIS in TNBC (359 patients).  

Fig 3C. Presence of pre and post NAC DCIS in HER2-positive BC (281 patients). 

 

In global population, presence of DCIS was significantly higher after NAC compared to before 146 

NAC (44.4% versus 19.6%).  Similar results were observed for the different BC subtypes 147 

(HER2-positive BC: 54.4% versus 29.5% (p=0.002), luminal: 53.3% versus 21.3% (p<0.0001),  148 

TNBC: 24% versus 9.5% (p<0.0001)), (Table 3). 149 
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Table 3. Evolution of DCIS component pre and post NAC 150 

  
pre-NAC post-NAC 

Whole population 
no DCIS 923 (80.4%) 638 (55.6%) 

DCIS 225 (19.6%) 510 (44.4%) 

Luminal 
no DCIS 400 (78.7%) 237 (46.7%) 

DCIS 108 (21.3%) 271 (53.3%) 

TNBC 
no DCIS 325 (90.5%) 273 (76%) 

DCIS 34 (9.5%) 86 (24%) 

HER2 
no DCIS 198 (70.5%) 128 (45.6%) 

DCIS 83 (29.5%) 153 (54.4%) 
 
In the whole population, percentage of samples with DCIS was of 19.6% before NAC and of 44.4% after NAC 
(p<0.0001). 
Luminal: 21.3% of samples with DCIS before NAC and 53.3% after NAC  (p<0.0001) 
TNBC: 9.5% of samples with DCIS before NAC and 24.0% after NAC  (p<0.0001) 
HER2: 29.5% of samples with DCIS before NAC and 54.4% after NAC  (p=0.002) 
 

 

Among patients who achieved pCR, 46 (16.3%) had DCIS on pre-NAC biopsy, distributed as 151 

follows: 7 luminal BC (21.9%), 10 TNBC (7.1%), and 29 HER2-positive BC (26.4%). 152 

Concerning patients with no pCR, 179 (20.7%) had a DCIS component on pre-NAC sample: 153 

101 luminal (21.2%), 24 TNBC (11%) and 54 HER2-positive BC (31.6%). 154 

 155 

Baseline clinicopathological parameters associated with pCR  156 

Overall, 283 patients achieved pCR (24.7%) after NAC.  After univariate analysis, baseline 157 

clinical and pathological factors significantly associated with higher pCR rates were: TNBC or 158 

HER2-positive BC subtypes, high grade, high mitotic index and Ki-67 ≥20. Tumor size ≥T2 159 

was associated with lower pCR rates (Table 4). 160 

In a multivariable regression logistic analysis including subtype, tumor size, grade, mitotic 161 

index and Ki-67 index, only subtype and Ki-67 were significantly associated with pCR. 162 

Presence or absence of DCIS in biopsy was not significantly associated with response to NAC. 163 
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Indeed, pCR rate was of 20.4% in case of pre-NAC DCIS in biopsy vs. 25.7% for samples with 164 

no DCIS (OR=0.74 (95% CI 0.52-1.06), p=0.1). 165 

 
 
 
 
Table 4. Association of baseline clinicopathological factors and pCR 166 
 
 

          Univariate 
analysis     Multivariate analysis 

Variable n pCR  %  OR 95% CI 
(OR) p OR 95% CI 

(OR) p 

Menopausal post 426 113 26.5 1           
status pre 713 167 23.4 0.85 0.64-1.12 0,2       

BMI 
19-25 644 164 25.5 1           
<19 68 13 19.1 0.69 0.35-1.26 0.25       
>25 430 103 24 0.92  0.69-1.22  0.57       

Tumor size 
T1 65 32 49.2 1           
T2 764 186 24.3 0.33  0.20-0.56  <0.0001       
T3 318 65 20.4 0.26  0.15-0.46 <0.0001       

Nodal status 
N0 503 120 23.9 1           

N1-N2-
N3 644 163 25.3 1.08 0.82-1.42 0.57       

Mitotic index 
≤22 684 127 18.6 1           
>22 374 133 35.6 2.42 1.82-3.22 <0.0001       

Histology 
other 116 17 14.7 1           
NST 1022 265 25.9 2.04 1.2-3.47 0,01       

Grade 
I-II 457 55 12 1           
III 659 221 33.5 3.69 2.66-5.1 <0.0001       

Ki-67 <20 168 11 6.5 1     1     
≥20 387 105 27.1 5.3 2.77-10.2 <0.0001 3 1.31-7.75  0.01 

DCIS 
no 923 237 25.7 1           
yes 225 46 20.4 0.74 0.52-1.06 0,1       

Subtype 
luminal 508 32 6.3 1     1     
TNBC 359 141 39.3 9.62 6.43-14.8  <0.0001 5.4  2.68-11.3 <0.0001 

HER2 281 110 39.1 9.57 6.29-14.9  <0.0001 8.7  4.39-18.3 <0.0001 
 

Abbreviations: neoadjuvant chemotherapy (NAC); Body Mass Index (BMI); Ductal Carcinoma in situ (DCIS), 
pathological complete response (pCR); No Specific Type (NST) 
 

167 
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 Discussion 168 

In this study, no significant association between the presence of DCIS on pre-NAC biopsy and 169 

histological response to NAC was observed. 170 

The proportion of samples with an in situ component associated to an invasive one (19.6%) was 171 

lower than reported in other cohorts. According to different studies, adjacent in situ component 172 

rates vary from 33% [16] to 53% [10] of invasive BC. This could result from a lower rate of in 173 

situ disease in more advanced BC treated with NAC. Furthermore, because of the small amount 174 

of tissue collected in biopsies before treatment, we might have underestimated the real extent of 175 

pre-NAC DCIS. 176 

 177 

Concerning pre-NAC samples, the percentage of in situ disease in biopsy was higher in HER2-178 

positive BC (29.5%), compared to luminal BC (21.3%) or TNBC (9.5%), (p<0.001). To our 179 

knowledge, no other study has yet assessed the presence of DCIS in biopsy before treatment 180 

according to BC subtypes. 181 

On post-NAC surgical specimen, the rate of samples with a DCIS component was higher in 182 

HER2-positive BC (54.4%), compared to luminal BC (53.3%) or TNBC (24%). Similar post-183 

operative results were found by Wong et al. in a study on 1159 no specific type (NST) breast 184 

cancer patients treated by upfront surgery [15]. In that study, DCIS was associated with NST 185 

carcinoma in 63.2% of HER2-positive BC, compared to 53.3% for luminal BC and 33.3% for 186 

TNBC.  187 

 188 

In our study, DCIS was present in 82 patients on pre-NAC samples but not on surgical 189 

specimens. An explanation could be that the biopsy contained the entire in situ component, or 190 

that chemotherapy has an effect on DCIS. As we probably underestimated the real extent of 191 

adjacent DCIS in pre-NAC biopsy, we probably underestimated the frequency of complete 192 
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eradication of DCIS as well. Response to NAC of adjacent DCIS has been reported in few 193 

studies. Goldberg et al. [16] investigated the impact of neoadjuvant chemotherapy on DCIS in a 194 

cohort of 92 patients with locally advanced BC and found that NAC +/- trastuzumab may 195 

completely eradicate in situ component. Indeed, both invasive and non invasive components 196 

had disappeared in 33% of the patients in that trial. Matsuo et al. [17] reported a strong 197 

correlation in pathological response between invasive and non invasive components in a series 198 

of 100 primary BC treated with NAC. Von Minckwitz et al. [18] found a response to NAC 199 

combined with trastuzumab in a cohort of 158 HER2-positive breast cancer patients. 50.8% of 200 

the samples with DCIS associated with NST carcinoma showed complete eradication of 201 

adjacent DCIS after NAC.  202 

Conversely, in a study evaluating 25 patients with locally advanced BC after NAC, Wu et al. 203 

[11] showed that in situ component was poorly responsive to NAC. When assessing the 204 

proportion of pre-NAC DCIS, they found that although chemotherapy had a favorable effect on 205 

tumor reduction, its effectiveness varied with the proportion of pre-NAC in situ component. 206 

Cases with high rates of DCIS had a lower response to NAC, and an important proportion of 207 

cancer cells remained in mammary ducts and maintained proliferative activity. 208 

 209 

For 367 paired samples (32% of the pairs), there was no DCIS pre-NAC but presence of an in 210 

situ component in the surgical specimen after NAC. These paired samples could be considered 211 

as “false negative” due to of the lack of representativeness of the pre-NAC biopsy.  212 

 213 

pCR was achieved for 283 patients (24.7%). No significant association between presence of a 214 

pre-NAC DCIS component and pCR was observed. Conversely, Von Minckwitz et al. [18] 215 

found that the presence of DCIS associated to HER2-positive breast cancer was an independent 216 

negative predictor of pCR after NAC (OR=0.42 (95% CI 0.2-0.9), p=0.0027). 217 
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In conclusion, the presence of a DCIS component on pre-NAC biopsy is not associated with 218 

response to NAC in our study. Further studies are expected to validate pre-NAC biomarkers 219 

that could potentially improve prediction of response to neoadjuvant treatment. 220 

221 
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Abstract 

Background:  Pregnancy-associated breast cancer (PABC) refers to breast cancers (BC) 

diagnosed during pregnancy or shortly after birth. Although the inflammatory environment of 

post-partum PABC cases (designed as PP-PABC) may be deleterious, so far PP-PABC have 

scarcely been distinguished from breast cancers diagnosed during pregnancy. Furthermore, 

whether PP-PABC cases have an enhanced immune infiltration remains unknown. We 

investigated chemosensitivity, immune infiltration and survival of PP-PABC patients treated 

by neoadjuvant chemotherapy (NAC) compared to non-PABC matched BC patients.  

Materials and methods: We identified PP-PABC cases among a cohort of 1199 invasive BC 

patients treated with NAC between 2002 and 2012. Each PP-PABC case was matched with 3 

non-PABC controls, according to age and pathological breast cancer subtypes. Microbiopsy 

specimens and paired surgical samples were evaluated for stromal lymphocyte infiltration. 

The association of clinical and pathological factors with pathological complete response 

(pCR) and disease-free survival (DFS) was assessed by univariate and multivariate analyses. 

Results: Our final population study was composed of 116 patients (29 PP-PABC cases and 87 

non-PABC controls). Median follow-up was of 32.4 months. After NAC, pCR rates (p=0.64), 

post-NAC immune infiltration (stromal TILs: p=0.67; intratumoral TILs: p=0.14), and DFS 

rates (p=0.17) were comparable between PP-PABC and non-PABC patients in global 

population. Similar results were found after stratification by pathological subtype. 

Conclusion: We observed similar patterns between postpartum PABC and control tumors in 

terms of chemosensitivity, immune infiltration, and prognostic. Our results enhance the idea 
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that PP-PABC should receive the same standard of care treatment as other patients, including 

neoadjuvant chemotherapy. 

 
 
 
	

Keywords 
 
Pregnancy associated breast cancer; PABC; post-partum breast cancer; 
chemosensitivity; prognosis; tumor infiltrating lymphocytes; TILs 
 
	
	

Abbreviations: 
 
PABC: pregnancy-associated breast cancer 

PREG-PABC: breast cancers diagnosed during pregnancy	

PP-PABC: post-partum pregnancy-associated breast cancer (breast cancers diagnosed during 

the first post-partum year) 

DFS: disease-free survival	

OS: overall survival 

BC: breast cancer 

TILs: tumor infiltrating lymphocytes	

pCR: pathological response rate	

NAC: neo-adjuvant chemotherapy	

ER: estrogen receptor	

PR: progesterone receptor	

HER2: human epidermal growth factor receptor 2	

TNBC: triple-negative breast cancer 

RCB: residual cancer burden 

HR: hazard ratio 

CI: confidence interval 

IT: intratumoral	
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Tables and Figures 
 

Table 1: Patient characteristics for PP-PABC patients and non-PABCcontrols   
 

Table 2: Post-NAC characteristics for PP-PABC patients and non-PABC controls, in whole 
population and by pathological breast cancer subtype   

 
Figure 1: Pre-NAC stromal TILs levels in PP-PABC patients and non-PABC controls, in 
global population and by pathological breast cancer subtype 
 

Figure 2: Pathological complete response rates in PP-PABC patients and non-PABC controls, 
in global population and by pathological breast cancer subtype 

 

Figure 3: Post-NAC stromal TILs levels in PP-PABC patients and non-PABC controls, in 
global population and by pathological breast cancer subtype 

 
Figure 4: Disease-free survival curves of PP-PABC patients and non-PABC controls, in 
whole population and by pathological breast cancer subtype 
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Introduction 1	

Pregnancy-associated breast cancer (PABC) refers to breast cancers diagnosed during 2	

pregnancy or shortly after birth. Although there is no consensus on the exact time after 3	

delivery, PABC is usually defined as breast cancers diagnosed during pregnancy or in the first 4	

postpartum year [1]. It represents 8% of breast cancer cases occurring in women younger than 5	

45 years old, and up to 15.6% in women younger than 35 years old [2]. The incidence of 6	

PABC increases among breast cancer cases in the global population. Since women tend to 7	

delay childbearing, it is expected to be more and more frequent [3], [4].  8	

 9	

PABC’s pathogenic pathway is probably different from that of non-PABC [2], [5], [6], [7]. It 10	

is usually associated with pejorative prognostic factors such as young age, locally advanced 11	

tumors, or hormone receptor-negative tumors [4], [8], [9]. However, so far, studies on PABC 12	

have scarcely distinguished breast cancers diagnosed during pregnancy (PREG-PABC) from 13	

those diagnosed during the first post-partum year (post-partum PABC; designed as PP-14	

PABC).  15	

 16	

Controlling for age, tumor characteristics and adjuvant treatment, the largest observational 17	

study lead on PREG-PABC patients did not show any difference in terms of disease-free 18	

survival (DFS) nor overall survival (OS) between PREG-PABC and non-pregnant BC 19	

patients [10]. However, PP-PABC may have a different prognostic impact [11], as a 20	

deleterious role of the inflammatory breast microenvironment during breast-feeding and 21	

breast involution favoring metastatic spreading has been evoked [12], [13]. Indeed, breast 22	

cancer cells exposed to the involuting mammary microenvironment may acquire 23	

prolymphangiogenic properties that could contribute to peritumor lymphatic expansion, tumor 24	
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size, invasion, and distant metastases [14].   1	

 2	

Tumor-infiltrating lymphocytes’ (TILs) role in breast cancer has been extensively studied 3	

over the last decade. High TILs levels have been associated with high pathological complete 4	

response (pCR) rates in the neoadjuvant setting and with better outcomes in the adjuvant 5	

setting [15], [16]. In PREG-PABC patients, lower mean TILs levels were observed in patients 6	

developing a DFS event compared to those that did not experience an event [17]. Despite 7	

growing interest in the field of immunity and oncology, no study has provided data on TILs in 8	

PP-PABC so far [18], [19]. Hence, whether the inflammatory environment is associated to an 9	

enhanced immune infiltration remains unknown. 10	

 11	

Neoadjuvant chemotherapy (NAC) is currently administered to patients with locally 12	

advanced breast cancers. Beyond increasing breast-conserving surgery rates, it serves as an in 13	

vivo chemosensitivity test and the analysis of residual tumor burden may help understanding 14	

resistance to treatments [3]. To our knowledge, only one study with small effectives analyzed 15	

PABC’s response to NAC and showed that PABC was as chemosensitive as non-PABC 16	

tumors [2]. 17	

 18	

The objective of the current study is to provide further data on chemosensitivity, immune 19	

infiltration, and survival of PP-PABC patients treated by neoadjuvant chemotherapy 20	

compared to non-PABC matched BC patients.  21	

22	
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Materials and methods	1	

Patients and tumors 2	

Our retrospective case-control study analyzed a cohort of 1199 female patients with T1-3	

3NxM0 invasive BC (NEOREP Cohort, CNIL declaration number 1547270) treated with 4	

NAC at Institut Curie between 2002 and 2012. The cohort included unifocal, unilateral, non-5	

recurrent, non-metastatic tumors, excluding T4 tumors (inflammatory, chest wall or skin 6	

invasion). Approved by the Breast Cancer Study Group of Institut Curie, the study was 7	

conducted according to institutional and ethical rules concerning research on tissue specimens 8	

and patients. Informed consent from patients was not required.  9	

Information on clinical characteristics (age, body mass index) and tumor characteristics 10	

(tumor size and grade, ER, PR, HER2 status, lymph node involvement, number of mitosis, 11	

ki67) were retrieved from electronic health records. 12	

Histological grade was described according to the Elston-Ellis modification of the Scarff-13	

Bloom-Richardson grading system [20]. Hormone-receptor expression was analyzed by 14	

immunohistochemistry. Tumors were considered positive for estrogen receptor (ER) or 15	

progesterone receptor (PR) if 10% of carcinomatous cells displayed positive staining, as 16	

recommended by European guidelines [21]. HER2 status was determined according to 17	

American Society of Clinical Oncology (ASCO) recommendations [22]. Based on 18	

immunohistochemistry surrogates, pathological breast cancer subtypes were defined as 19	

follows: tumors positive for either ER or PR and negative for HER2 were classified as 20	

luminal; tumors positive for HER2 were considered HER2-positive BC; tumors negative for 21	

ER, PR, and HER2 were considered triple negative BC (TNBC). 22	
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Treatment Protocol 1	

Patients were treated according to national guidelines. Every patient included in our study 2	

received NAC. NAC regimens changed over time (anthracycline-based regimen or 3	

sequential anthracycline–taxane regimen), with trastuzumab used in an adjuvant and/or 4	

neoadjuvant setting for HER2-positive tumors since the middle of the past decade. 5	

Trastuzumab treatments changed over time due to a change of marketing authorization 6	

during the study period. Adjuvant hormone therapy (tamoxifen, aromatase inhibitor, or 7	

GnRH agonists) was prescribed when indicated. Surgery (breast-conserving or mastectomy) 8	

was performed 4 to 6 weeks after NAC. Every patient received adjuvant radiotherapy. 9	

Adjuvant chemotherapy (ADJ) was decided after multidisciplinary consultation meeting 10	

considering patient characteristics, prognostic factors and response to NAC (residual 11	

disease and/or node involvement). Patient follow-up after treatment was of every 3 months 12	

during the first 2 years, then every 6 months during 3 years, and once a year starting from the 13	

5th year. Follow-up consisted of clinical examination associated to mammography and 14	

mammary ultrasound once a year. 15	

 16	

Pregnancy associated breast cancer cases 17	

Information on pregnancy at inclusion or the year prior breast cancer diagnosis was extracted 18	

from the structured database. Every pregnancy was included irrespective of its outcome (full-19	

term pregnancy, miscarriage, abortion).  20	
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Study endpoints and definitions 1	

pCR was defined as the absence of residual invasive cancer cells in the breast and axillary 2	

lymph nodes (ypT0/is + / ypN0). 3	

Residual cancer burden (RCB) [23] was assessed for each patient after NAC. 4	

DFS was defined as the time from surgery to death, loco-regional or distant recurrence, or 5	

contralateral cancer, whichever occurred first. Patients for whom none of these events were 6	

recorded were censored at the date of their last known contact.  7	

TILs levels were evaluated retrospectively, for research purposes, by two pathologists (ML, 8	

LT) of the Tumor Biology Department of Institut Curie (France). TILs levels were assessed 9	

on pretreatment core needle biopsies and post-NAC surgical specimens for the presence of 10	

mononuclear cells infiltrate (including lymphocytes and plasma cells, excluding 11	

polymorphonuclear leukocytes), following international TILs Working Group 12	

recommendations [24]. They were evaluated in stroma, within tumor scar border, after 13	

excluding areas around ductal carcinoma in situ, tumor zones with necrosis and artifacts, and 14	

were scored continuously as the average percentage of stromal area occupied by mononuclear 15	

cells.  16	

 17	

Statistical analyses 18	

The study population was described in terms of frequencies for qualitative variables, or 19	

medians and associated ranges for quantitative variables. Each PP-PABC case was matched 20	

with 3 non-PABC controls, according to age and pathological breast cancer subtypes. Factors 21	

predictive of pCR were introduced in a univariate logistic regression model. A multivariate 22	

logistic model was then implemented. Covariates selected for multivariate analysis were those 23	
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with a p-value no greater than 0.1 after univariate analysis. TILs levels and qualitative 1	

variables in classes were compared by ANOVA test with a post hoc Tukey analysis when 2	

necessary. 3	

Survival probabilities were estimated by Kaplan-Meier method, and survival curves were 4	

compared in log-rank tests. Hazard ratios (HR) and their 95% confidence intervals (CI) were 5	

calculated with the Cox proportional hazards model. Analyses were performed with R 6	

software, version 3.1.2 [25], Ggplot2, MatchIt, Optmatch, Matching and Survival libraries. 7	

Significance threshold was of 5%.  8	

 9	

Results 10	

Baseline patient and tumor characteristics 11	

We identified 29 PP-PABC cases in the whole cohort of 1199 BC patients. Each PP-PABC 12	

case (n=29) was matched with 3 non-PABC controls (n=87). The final population study was 13	

composed of 116 patients. Median age was 35.9 years (range: 26.7-44.3 years). Patient 14	

characteristics are described in Table 1. No pattern was significantly different between PP-15	

PABC patients (n=29) and non-PABC controls (n=87) regarding age, body mass index, 16	

histology, pathological breast cancer subtype, tumor size and grade, or number of mitoses. 17	
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Table 1: Patient characteristics for PP-PABC patients and non-PABC controls   

Variables PP-PABC (n=29) 
non-PABC controls 
(n=87) 

 

 

p-value 

Age  (median +/- SD) 35.5 (4.3) 35.9 (4.7) 0.67 

Body Mass Index   0.52 

<19 1 (3.4%) 7 (8.0%)  

19-25 18 (62.1%) 61 (70.1%)  

25-30 7 (24.1%) 13 (14.9%)  

>30 3 (10.3%) 6 (6.9%)  

Histology   0.99 

Ductal 29 (100.0%) 85 (97.7%)  

Other 0 (0.0%) 2 (2.3%)  

Pathological subtypes   0.99 

Luminal 7 (24.1%) 21 (24.1%)  

TNBC 9 (31.0%) 27 (31.0%)  

HER2-positive 13 (44.8%) 39 (44.8%)  

Grade Elston Ellis   0.26 

I-II 12 (42.9%) 24 (28.9%)  

III 16 (57.1%) 59 (71.1%)  

Number of mitosis   0.99 

<22 15 (57.7%) 46 (59.7%)  

>22 11 (42.3%) 31 (40.3%)  

Tumor size   0.65 

T1 2 (6.9%) 9 (10.3%)  

T2 22 (75.9%) 58 (66.7%)  

 T3 5 (17.2%) 20 (23.0%)  

Clinical nodal status   0.39 

N0 10 (34.5%) 40 (46.0%)  

N1/N2/N3 19 (65.5%) 47 (54.0%)  

Pre-NAC TILs (%)    

Stromal  21.6  25.6  0.39 

Intratumoral 8.8 12.3  0.26 

Abbreviations: SD: standard deviation 
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Pre-NAC TILs were available for 27 PP-PABC patients and 67 non-PABC patients. Pre-NAC 1	

stromal TILs levels were comparable between PP-PABC and non-PABC patients in global 2	

population (21.6% for PP-PABC vs. 25.6% for non-PABC, respectively, p=0.39; Figure 1). 3	

These results were unchanged after stratification by pathological breast cancer subtype 4	

(luminal: 13.7% for PP-PABC vs. 15.2% for non-PABC, respectively, p=0.77; TNBC: 29.4% 5	

for PP-PABC vs. 32% for non-PABC, respectively, p=0.82; HER2-positive: 21.7% for PP-6	

PABC vs. 24.7% for non-PABC, respectively, p=0.61; Figure 1). Similar results were found 7	

for intratumoral (IT) TILs. 8	

 

 

Figure 1: Pre-NAC stromal TILs levels in PP-PABC patients and non-PABC controls, in 
whole population and by pathological breast cancer subtype 
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Response to treatment and immune infiltration 

 

Table 2: Post-NAC characteristics for PP-PABC patients and non-PABC controls, in whole population and by pathological breast cancer 

subtype 

Variables 
 

  
 

  
 

  
 

  

 

PP-PABC 
(n=29) 

 

non-PABC 
controls 
(n=87) 

 

p-value PP-PABC 
(n=7) 

 

non-PABC 
controls 
(n=21) 

 

p-value PP-PABC 
(n=9) 

 

non-PABC 
controls 
(n=27) 

 

p-value PP-PABC 
(n=13) 

 

non-PABC 
controls 
(n=39) 

 

p-value 

pCR status 

 

  

 

 

  

 

  

 

  

no pCR 22 (75.9) 60 (69.0) 0.64 6 (85.7) 18 (85.7) 0.99 6 (66.7) 17 (63.0) 0.99 10 (76.9) 25 (64.1) 0.61 

pCR 7 (24.1) 27 (31.0)  1 (14.3) 3 (14.3)  3 (33.3) 10 (37.0)  3 (23.1) 14 (35.9)  

Nodal involvement 

 

  

 

  

 

  

 

  

Luminal 
(n=28) 

TNBC    
(n=36) 

HER2-positive 
(n=52) 

Whole population 
(n=116) 
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After NAC, pCR rates were not significantly different in PP-PABC patients compared to non-1	

PABC (pCR: 24.1% for PP-PABC vs. 31.0% for non-PABC, respectively, p=0.64, Table 2). 2	

No difference was seen either after stratification by pathological breast cancer subtype 3	

(luminal: 14.3% for PP-PABC vs. 14.3% for non-PABC, respectively, p=0.99; TNBC: 33.3% 4	

for PP-PABC vs. 37.0% for non-PABC, respectively, p=0.99; HER2-positive: 23.1% for PP-5	

PABC vs. 35.9% for non-PABC, respectively, p=0.61; Figure 2). Similarly, no difference was 6	

seen regarding RCB index (Table 2).  7	

 

Figure 2: Pathological complete response rates in PP-PABC patients and non-PABC 
controls, in whole population and by pathological breast cancer subtype (color for print) 
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Abstract:  
 
Background: Few studies evaluated the prognostic value of the presence of lymphovascular 

invasion (LVI) after neoadjuvant chemotherapy (NAC).  

Methods: The association between LVI and survival was evaluated in a cohort of BC patients 

treated by NAC between 2002 and 2011. Five post-NAC prognostic scores (ypAJCC, RCB, 

CPS, CPS+EG and Neo-Bioscore) were evaluated and compared with or without the addition 

of LVI.  

Results: Out of 1033 tumors, LVI was present on surgical specimens in 29.2 % and absent in 

70.8 % of the cases. Post-NAC LVI was associated with impaired disease-free (DFS) (HR, 

2.54; 95% CI, 1.96 - 3.31; P < 0.001), and the magnitude of this effect depended on BC 

subtype (Pinteraction = 0.003), (luminal BC: HR, 1.83; P = 0.003; triple negative BC: HR, 3.73; 

P < 0.001; HER2-positive BC: HR, 6.21; P < 0.001). Post-NAC LVI was an independent 

predictor of local relapse, metastases and overall survival and increased the accuracy of all 5 

post-NAC prognostic scoring systems. 

Conclusion: Post-NAC LVI is a strong independent prognostic factor that: (i) should be 

systematically reported in pathology reports; (ii) should be used as stratification factor after 

NAC to propose inclusion in second-line trials or adjuvant treatment; (iii) should be included 

in post-NAC scoring systems. 

Key words: Breast carcinoma; lymphovascular invasion; neoadjuvant chemotherapy; 

prognostic scores  
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Manuscript text 

Introduction  

Lymphovascular invasion (LVI) is defined as the presence of tumor cells in lymphatic or 

blood vessels in patients with breast carcinoma (BC). Evidence suggest that LVI is a risk 

factor for axillary and distant metastasis (Lee et al, 2006;, Rakha et al, 2012). However it has 

been reported that LVI is not an independent factor for overall survival (OS) (Freedman et al, 

2012). Much controversy remains about the importance of this factor, which is still absent 

from prediction tools such as Adjuvant on Line! (Ravdin, 1996), cancermath.net (Michaelson 

et al, 2011) or Predict (Wishart et al, 2010). LVI is not systematically taken into account in 

decisions about systemic treatment (not mentioned in the NCCN (NCCN Clinical Practice 

Guidelines in Oncology, 2016) and Saint Gallen guidelines (Coates et al, 2015), and 

considered only in cases of luminal cancer in the ESMO recommendations (Senkus et al, 

2015)).   

Beyond increasing the rate of breast-conserving surgery, neoadjuvant chemotherapy (NAC) 

serves as an in vivo chemosensitivity test and identifies patients whose tumor reaches a 

pathological complete response (pCR) as a group with a good prognosis. However, few 

studies have assessed the prognostic value of LVI in the neoadjuvant setting (Liu et al, 2016), 

and its prognostic value is unknown. The aim of this study was to analyze the prognostic 

impact on survival of LVI on surgical specimens following NAC in a large cohort of BC 

patients. 

 

Materials and methods 

Patients and tumors 

We analyzed a cohort of 1033 T1-3NxM0 patients with invasive breast carcinoma (NEOREP 

Cohort) treated with NAC at Institut Curie between 2002 and 2012 with data available on LVI 

status. Details on this cohort have been published elsewhere (Supplementary material). All 
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patients received neoadjuvant chemotherapy, and trastuzumab was used in HER2-positive 

tumors in an adjuvant and/or neoadjuvant setting since 2005. 

 

Lymphovascular invasion 

LVI was defined as the presence of carcinoma cells within a finite endothelial-lined space (a 

lymphatic or blood vessel). Presence or absence of LVI was determined by unstained standard 

formalin-fixed paraffin-embedded examination. Immunostaining with vascular markers was 

occasionally performed to rule out invasive carcinoma with shrinkage artifact. LVI data were 

extracted from pathology records by two independent researchers (TL, ASH), and were 

dichotomized into a binary variable (Post-NAC LVI: yes/no). Patients whose tumor reached 

pCR were considered as having no LVI unless LVI presence was explicitly mentioned (n=3). 

Results were crosschecked and a breast expert pathologist (ML) resolved discrepancies.  

Study endpoints 

A pCR was defined as the absence of invasive residual tumor in breast and axillary nodes 

(ypT0/is N0). Disease-free survival (DFS) was defined as the time from surgery to death, 

loco-regional recurrence or distant recurrence, whichever occurred first. Metastasis-free 

survival (MFS) was defined as the time from surgery to distant metastasis. Recurrence-free 

survival (RFS) was defined as the time from surgery to recurrence. OS was defined as the 

time from surgery to death. Patients for whom none of these events were recorded, date of 

their last known contact was retained. Survival cutoff date analysis was March 13, 2013. 

Comparison to prognostic scores  

We evaluated five post-NAC staging systems (ypAJCC (Edge et al, 2009), RCB (Symmans et 

al, 2007), CPS (Jeruss et al, 2008), CPS+EG (Jeruss et al, 2008) and Neo-Bioscore 

(Mittendorf et al, 2016)), and we assessed their performance with or without LVI. Prognostic 

scores were compared using Akaike Information Criterion (AIC). AIC is a method for 
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selecting the most predictive model from a set of models. It selects the model with the largest 

likelihood under the constraint of the smallest number of predictors. Lower AIC values 

represent better models.  

 

Statistical analysis 

Survival probabilities were estimated by the Kaplan–Meier method, and survival curves were 

compared in log-rank tests. Hazard ratios and their 95% confidence intervals were calculated 

with the Cox proportional hazards model. Variables with a P-value for the likelihood ratio test 

≤ 0.10 in univariate analysis were selected for inclusion in the multivariate analysis. A 

forward stepwise selection procedure was used to establish the final multivariate model. The 

significance threshold was 5%. Analyses were performed with R software, version 3.1.2 (R 

Development Core Team: R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing., 2011), with the ggplot2, survminer, mice and survival 

libraries. 

 

Results 

In total, 1033 patients were included in the analyses. Patient characteristics are summarized in 

Table 1. Median age at diagnosis was 48.8 years old (range 24-80 years). Tumor distribution 

by BC subtype was as follows: luminal: n= 448 (43.4%); triple negative breast cancer 

(TNBC): n= 330 (31.9%); HER2-positive: n= 255 (24.7%). Most of the patients received an 

anthracyclines-taxanes based chemotherapy regimen (n=713 [69.0%]). 

 

Characteristics associated with post-NAC LVI 

After NAC, 292 patients achieved pCR (28.3%). The rate of pCR differed significantly 

between BC subtypes (luminal: n=36 [8.0%]; TNBC: n=143 [43.3%]; HER2-positive: n=113 

[44.3%]) (P < 0.001). LVI was present (Supplementary Fig. 1) in 302 surgical specimens 
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(29.2%), absent in 731 specimens (70.8%). Only three of the 1033 patients had isolated LVI 

with no invasive residual disease in breast and lymph nodes. The presence of LVI after NAC 

was significantly different by BC subtype (luminal: 42.2%; TNBC: 19.4%; HER2-positive: 

19.2%, P < 0.0001, Fig. 1A), tumor grade (grade I-II: 36%; grade III: 24.3%, P =0.0001, Fig. 

1B). Post-NAC LVI was also associated with an increasing RCB index (pCR: 1.4%; RCB-I: 

9.1%; RCB-II: 28.8%; RCB-III: 48.5%, P < 0.0001, Fig. 1C) and nodal involvement (N-: 

14.5%; 1 to 3N+: 44.5%; ≥4N+: 60.5%, P < 0.0001, Fig. 1D)(Supplementary Table 1).  

Tumors with post-NAC LVI had a lower pre-NAC mitotic index (17.7 versus 22.9, P < 0.01, 

Supplementary Fig. 2A), the decrease of their mitotic index was less marked (-0.5 versus -

10.8, P < 0.001, Supplementary Fig. 2C), and the post-NAC mitotic index was not different 

(20.7 versus 14.7, P = 0.05, Supplementary Fig. 2B) than tumors without post-NAC LVI  

(Supplementary Table 1). Pre-NAC tumor cellularity was not different (Supplementary Fig. 

2D), but post-NAC cellularity was higher in tumors with post-NAC LVI than those without 

(P <0.01)  (Supplementary Fig. 2E). 

 

DFS analyses 

After a median follow-up of 50.7 months, 224 patients had presented a relapse (locoregional, 

n=74, distant metastasis, n=178), and 120 had died. In univariate analysis, the presence of 

LVI was associated with poor DFS (HR, 2.54; 95% CI, 1.96 - 3.31; P < 0.001, Fig. 2A) 

(Table 2). An adverse effect of post-NAC LVI was observed in all three BC subtypes, but the 

magnitude of this effect differed between subtypes (Fig. 2) (Pinteraction= 0.003). Post–NAC LVI 

impact was the smallest for luminal BC (HR, 1.83; 95% CI, 1.23 - 2.73; P = 0.003, Fig. 2B); 

intermediate for TNBC (HR, 3.73; 95% CI, 2.41 - 5.78; P < 0.001, Fig 2C); and the hazard 

ratio was the greatest for HER2-positive BC (HR, 6.21; 95% CI, 3.36 - 11.45, P < 0.001, Fig. 

2D) (Supplementary Tables 2-4). Among the whole population (Table 2) and BC subtypes 
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(Supplementary Tables 2-4), LVI remained an independent prognostic factor after 

multivariate analysis.  

Combination of LVI with pCR status and with pathological nodal involvement 

When analyzing together pCR status and LVI, both variables had an independent prognostic 

value in the whole population and in the TNBC population (Supplementary Figs 6 and 

Supplementary Table 5). Conversely, in the luminal and the HER2-positive population, pCR 

was of no incremental value to LVI status. 

The adverse impact of LVI on DFS was detected both in pN- (HR, 2.51; 95% CI, 1.61-3.93; P 

< 0.001, Supplementary Fig. 3A) and pN+ tumors (HR, 1.94; 95% CI, 1.36-2.28; P < 0.001, 

Supplementary Fig. 3B). In pN- tumors (Supplementary Fig 4), LVI was a significant 

prognostic factor in all but in the luminal BC subtype (Pinteraction =0.003) where no interaction 

was seen. No interaction between BC subtype and the prognostic impact of LVI was seen in 

pN+ tumors (P=0.44) (Supplementary Fig 5). 

 Figure 3 summarizes the prognostic impact of LVI combined with nodal involvement. In 

luminal BC, the combination of nodal involvement and LVI was associated with an adverse 

outcome when compared to other subgroups. In TNBC, only the absence of both nodal 

involvement and LVI was associated with an improved outcome when compared to other 

subgroups. In HER2-positive BC, the HR of relapse of patients with LVI was about 8 times 

higher than the reference class, irrespective of nodal status. 

Combination of Post-NAC LVI with prognostic scores 

We analyzed whether post-NAC LVI added prognostic significance to existing staging or 

scoring systems following NAC. We retrieved AJCC staging (n=975), RCB index (n=640), 

CPS score (n=975), CPS + EG score (n=509) and Neo-Bioscore (n=509). For 473 patients, all 

these data were available together with post-NAC LVI status. When combined with each 

score, post-NAC LVI retained a prognostic value for DFS in every model (Table 3) and was 

associated with a lower AIC criterion when compared with the model with each score alone.  
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RFS, MFS and OS analyses 

After univariate analysis, the presence of post-NAC LVI was significantly associated with 

RFS, MFS and OS in the whole population and in the three BC subtypes (see Supplemental 

results, Supplementary Figs 7-9 and Supplementary Tables 6-17) and remained an 

independent prognostic after multivariate analysis. 

 

Discussion 

We identified post-NAC LVI as a strong independent factor predictive of poor survival in a 

large retrospective series of 1033 BC patients treated by NAC and this factor added 

independent prognostic information to existing post-NAC scoring systems. 

This study presents an evaluation of LVI in the post-NAC setting in the largest cohort studied 

to date. Liu et al. (2016) recently published an analysis of 166 patients for whom pathology 

reports were evaluated for LVI following NAC. The presence of post-NAC LVI was 

significantly associated with lower progression-free survival (HR, 3.76; 95% CI, 2.07-6.83; P 

< 0.01) and OS (HR, 5.70; 95% CI, 2.08-15.64; P < 0.01). Abdel-Fatah et al.(2015) recently 

developed the Nottingham Clinico-Pathological Response Indexes (NPRI), including fibrosis, 

LVI status, number of positive nodes and planned hormonal therapy. The NPRI was shown to 

outperform other prognostic factors including RCB index and pCR (Abdel-Fatah et al, 2015). 

The presence of LVI had previously been identified as an independent predictor of the early 

failure of NAC in 397 patients receiving NAC for locally advanced BC (Choi et al, 2014). In 

accordance with these studies, our results further support the prognostic role of post-NAC 

LVI in the neoadjuvant setting. 

In the adjuvant setting, the largest historical study evaluating LVI in operable BC included 

16,172 BC patients treated between 1996 and 2002 (Ejlertsen et al, 2009). In this cohort, LVI 

was associated with a poor prognosis only for patients at high risk (positive lymph nodes, 
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tumor size >2 cm, high grade, hormone receptor–negative tumor, patient less than 35 years 

old). Despite its large sample size, the major limitation of this study was the absence of data 

for HER2 status. In another cohort of 3,812 patients with BCs of different subtypes (Rakha et 

al, 2012), LVI was an independent prognostic factor for both breast cancer-specific survival 

(BCSS) and distant metastasis-free survival (DMFS) in the whole cohort and in the various 

subgroups considered.  

Our study provides new insight into the patterns associated with LVI at the end of NAC. In 

the neoadjuvant setting, Liu et al. (2016) did not found association between post-NAC LVI 

and the baseline characteristics of the tumor or of the patients. In the adjuvant setting, 

previous studies on BC showed that LVI was associated with young age (Ragage et al, 2010) 

or premenopausal status (Rakha et al, 2012), ductal histological type (Ejlertsen et al, 2009), 

high tumor grade (Rakha et al, 2012; Ragage et al, 2010), proliferation index (Rakha et al, 

2012), or tumor size (Rakha et al, 2012;,  Ejlertsen et al, 2009;, Guarnieri et al, 2001). 

Conflicting findings have been reported concerning the relationship between LVI and ER 

status, with some studies reporting higher rates of LVI in ER positive tumors (Ugras et al, 

2014) and others reporting lower rates of LVI in these tumors(Rakha et al, 2012; ,Ejlertsen et 

al, 2009; ,Ragage et al, 2010). Similarly, some studies found a higher incidence of LVI in 

HER2-positive BC (Ugras et al, 2014), whereas others did not (Ragage et al, 2010). Finally, 

most studies have reported an association between LVI and the involvement of a larger 

number of nodes(Rakha et al, 2012;, Ejlertsen et al, 2009). In our cohort, post-NAC LVI was 

most frequently identified in low-grade and luminal tumors. It was also associated with a 

smaller decrease in mitotic index, a higher RCB index, and a larger number of involved 

lymph nodes, consistent with patterns of resistance to chemotherapy.  

The molecular mechanisms underlying LVI in invasive BC remain poorly understood. LVI is 

a crucial step in the invasion-metastasis cascade (Talmadge & Fidler, 2010), including as 

prerequisites (i) cell detachment from the growing tumor mass, (ii) local invasion of the 
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surrounding tissues by primary tumor cells, and (iii) migration to the vascular walls through 

the extracellular matrix (ECM). One key process underlying these steps is the epithelial-

mesenchymal transition, which renders more motile and invasive epithelial cells, and 

increases their ability to degrade ECM components. However, no robust gene expression 

profile, gene signature or proteomic profile has been validated to date, and the molecular 

mechanisms driving BC tumor cells to invade vascular spaces and to disseminate remain 

largely unknown (Aleskandarany et al, 2015). 

This study has several important implications: (i) it calls for the systematic reporting of LVI 

in pathology records. International experts recently wrote recommendations acknowledging 

that there were too few data, at that time, to conclude that post-NAC LVI was an independent 

prognostic factor, but they advised recording the presence or absence of LVI in the specimen 

obtained after neoadjuvant treatment (Provenzano et al, 2015). Our results reinforce theses 

guidelines by providing robust evidence on its strong prognostic value. (ii) LVI seems a major 

factor for stratifying patients at high risk of relapse following NAC. pCR status clearly 

identifies a group of patients with an excellent prognosis; by contrast, post-NAC LVI status 

identified a subgroup at high risk of relapse, particularly in the TNBC subgroup in which 

post-NAC median DFS was below 20 months. (iii) Third, LVI should be an important item to 

incorporate in future research on post-NAC scoring and staging systems. (iv) Finally, the 

adjuvant capecitabine was recently shown to improve both DFS and OS in patients failing to 

achieve pCR at the completion of NAC (Masuda et al, 2017). Our results clearly support the 

fact that all TNBC with LVI at the end of NAC should be offered this second-line treatment 

or inclusion in second-line clinical trials. 
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Tables legends :  

Table 1: Characteristics of patients and tumors.  

Abbreviations: BMI: body mass index (kg/m2), ER: estrogen receptor, NST: no 

specific type, PR: progesterone receptor, TNBC: triple negative breast cancer. 

Missing data: menopausal status: n=7, BMI: n=4, histological type: n=13, grade: 

n=35, mitotic index: n=96, PR: n=1.  

 

Table 2: Univariate and multivariate analysis for disease-free survival (whole 

population) 

Abbreviations: BMI: body mass index (kg/m2), DFS: disease-free survival, ER: 

oestrogen receptor, LVI: lymphovascular invasion, NAC: neoadjuvant chemotherapy, 

NST: no specific type, pCR: pathological Complete Response, PR: progesterone 

receptor, TNBC: triple negative breast cancer.    

Events: locoregional relapse, distant metastasis or death. 

 

Table 3: Comparison of post-NAC staging and scoring systems alone or in 

combination with post-NAC LVI. 

Abbreviations: AIC: Akaike Information Criterion, AJCC: American Joint Committee 

on Cancer, CPS: Clinical-pathological Scoring, E: negative oestrogen receptor, G: 

nuclear grade III tumor pathology, LVI: lymphovascular invasion, pCR: pathological 

Complete Response, pN+: pathological nodal involvement, RCB: Residual Cancer 

Burden.  

P* corresponds to the P-value for the log-rank test for association between the 

variable and the DFS, and P corresponds to the P-value for the association of each 

class versus the reference class (Cox proportional hazard model). 
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Variable NEOREP Cohort n=1033

Age, years
<45 376 (36.4)

45-55 392 (37.9)

>55 265 (25.7)

Menopausal status
Premenopausal                          634 (61.8)

Postmenopausal                         392 (38.2)

BMI class
19≤BMI≤25                           570 (55.4)

BMI<19                                59 (5.7)

BMI>25                                400 (38.9)

Tumor size
T1-T2                              754 (73.0)

T3                                 279 (27.0)

Clinical nodal status
N0                                        447 (43.3)

N1-N2-N3                                  586 (56.7)

Histology
Ductal carcinoma NST                        933 (91.5)

other                              87 (8.5)

Grade
Grade I-II                          394 (39.5)

Grade III                           604 (60.5)

Ki67
<20%                              139 (29.4)

≥20%                            333 (70.6)

Mitotic index
≤22 590 (63.0)

>22                                347 (37.0)

DCIS component
No                 512 (84.5)

Yes                     94 (15.5)

ER status
Negative                            483 (46.8)

Positive                            550 (53.2)

PR status
Negative                            594 (58.7)

Positive                            418 (41.3)

Table 1: Characteristics of patients and tumors
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HER2  status

Negative                          778 (75.3)

Positive                          255 (24.7)

Subtype
Luminal                             448 (43.4)

TNBC                                330 (31.9)

HER2                                255 (24.7)

Type of NAC
Anthracyclines based regimens        189 (18.3)

Anthracyclines-taxanes regimens      713 (69.0)

Other                    131 (12.7)

Type of surgery
Lumpectomy                        703 (68.1)

Mastectomy                        330 (31.9)

Radiotherapy
Yes                             1017 (98.5)

No 16 (1.5)

Hormonotherapy
Yes                     551 (53.3)

No 482 (46.7)
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Table 2: Univariate and multivariate analysis for disease-free survival (whole popula

Variable n Events HR [95% CI] P  value HR [95% CI]

Age, years
<45 376 89 1 0.27

45-55 392 84 0.82 [0.61 - 1.1]

>55 265 51 0.79 [0.56- 1.11]

Menopausal status
Postmenopausal                        392 82 1 0.53

Premenopausal                         634 139 1.09 [0.83 - 1.43]

BMI class
19≤BMI≤25                           570 109 1 0.04a

BMI<19                                59 17 1.64 [0.98 - 2.73]

BMI>25                                400 98 1.35 [1.02 - 1.77]

Tumor size
T1-T2                              754 142 1 1 -

T3                                 279 82 1.85 [1.41 - 2.43] <0.001 1.83 [ 1.37 - 2.46 ]

Clinical nodal status
N0                                        447 89 1

N1-N2-N3                                  586 135 1.28 [0.98 - 1.67] 0.07

Histology
Ductal carcinoma NST                        933 197 1

other                              87 23 1.22 [0.79 - 1.88] 0.37

Grade
Grade I-II                          394 85 1

Grade III                           604 131 1.23 [0.93 - 1.62] 0.14

Ki67
<20%                              139 28 1

≥20%                            333 90 1.63 [1.07 - 2.5] 0.02

Mitotic index
≤22 590 124 1 1 -

>22                                347 80 1.28 [0.97 - 1.7] 0.08 1.38 [ 1.02 - 1.87 ]

DCIS component
No                 512 99 1

Yes                     94 25 1.4 [0.9 - 2.18] 0.13

ER status
Negative                            483 113 1

Positive                            550 111 0.71 [0.55 - 0.93] 0.01

PR status

Univariate analysis Multivariate an
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Negative                            594 140 1

Positive                            418 77 0.66 [0.5 - 0.87] 0.003

HER2  status

Negative                          778 182 1

Positive                          255 42 0.77 [0.55 - 1.08] 0.13

Subtype
Luminal                             448 99 1 0.003b 1 -

TNBC                                330 83 1.56 [1.16 - 2.08] 2.5 [ 1.78 - 3.51 ]

HER2                                255 42 0.92 [0.64 - 1.33] 1.18 [ 0.78 - 1.8 ]

Post-NAC LVI 
No 731 107 1 1 -

Yes 302 117 2.54 [1.96 - 3.31] <0.001 2.11 [ 1.55 - 2.87 ]

pCR
pCR 292 28 1 1 -

No pCR 741 196 2.57 [1.73 - 3.81] <0.001 2.47 [ 1.58 - 3.86 ]

a: P -value versus reference class (<19 versus 19-25. P  =0.06; >25 versus 19-25. P =0.03)

b: P -value versus reference class (TNBC versus luminal. P  =0.003; HER2  versus luminal. P = 0.66)
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Variable HR [95% CI] P  value P value* AIC Variable HR

LVI LVI
No 1 - - <0.001 900.8 No 1
Yes 2.87 [1.85 - 4.45] <0.001  Yes 2.87
pAJCC pAJCC
0 1 - - <0.001 883.4 0 1
I 2.74 [0.96 - 7.83] 0.061  I 2.5
IIA 4.36 [1.65 - 11.5] 0.003  IIA 3.83
IIB 8.44 [3.1 - 22.93] <0.001  IIB 6.62
IIIA 8.93 [3.26 - 24.46] <0.001  IIIA 7.02
IIIC 21.61 [6.8 - 68.72] <0.001  IIIC 15.24

LVI
No 1
Yes 1.65

RCB index RCB index
0 1 - - <0.001 892.8 0 1
I 1.55 [0.41 - 5.76] 0.516 I 1.44
II 3.13 [1.51 - 6.52] 0.002 II 2.59
III 6.19 [2.97 - 12.88] <0.001 III 4.59

LVI
1 - - No 1

Yes 1.84
CPS CPS
0 1 - - <0.001 904.3 0 1
1 1.46 [0.68 - 3.13] 0.333  1 1.39
2 2.98 [1.45 - 6.15] 0.003  2 2.38
3 7.33 [2.6 - 20.66] <0.001  3 4.57

LVI
No 1
Yes 2.21

CPS +EG CPS +EG
0 1 - - <0.001 898.4 0 1
1 0.68 [0.15 - 3.1] 0.616 1 0.76
2 0.56 [0.13 - 2.38] 0.429 2 0.59
3 0.76 [0.18 - 3.2] 0.706 3 0.81
4 2.88 [0.68 - 12.18] 0.15 4 2.85
5 0 [0 - Inf] 0.996 5 0

LVI

Table 3: Comparison of post-NAC staging and scoring systems alone or in com
Univariate analysis M
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1 - - No 1
Yes 2.65

Neo-Bioscore Neo-Bioscore
0 or 1 1 - - <0.001 891.6 0 or 1 1
2 0.53 [0.18 - 1.58] 0.254 2 0.6
3 0.66 [0.25 - 1.77] 0.406 3 0.63
4 1.29 [0.5 - 3.33] 0.604 4 1.23
5 4.56 [1.7 - 12.24] 0.003 5 4.21
6 0 [0 - Inf] 0.996 6 0

LVI
No 1
Yes 2.62
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[95% CI] P  value P value* AIC

- - <0.001 900.8
[1.85 - 4.45] <0.001  

- - <0.001 881.3
[0.87 - 7.18] 0.088  

[1.44 - 10.18] 0.007  
[2.37 - 18.51] <0.001  
[2.49 - 19.78] <0.001  
[4.56 - 50.9] <0.001  

- -  
[1.02 - 2.65] 0.04 0.04  

- - 0.01 888.5
[0.39 - 5.34] 0.59
[1.22 - 5.5] 0.013
[2.11 - 9.99] <0.001

- -  
[1.15 - 2.95] 0.01 0.01  

- - <0.001 895.7
[0.65 - 2.98] 0.398  
[1.14 - 4.98] 0.021  

[1.56 - 13.39] 0.006  

- -  
[1.39 - 3.52] 0.001 <0.001  

- - <0.001 883.1
[0.17 - 3.48] 0.724
[0.14 - 2.53] 0.478
[0.19 - 3.41] 0.769

[0.67 - 12.02] 0.155
[0 - Inf] 0.996

bination with post-NAC LVI
Multivariate analysis
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- -
[1.7 - 4.12] <0.001 0.001

- - <0.001 876.8
[0.2 - 1.79] 0.357
[0.23 - 1.68] 0.353
[0.48 - 3.19] 0.664

[1.57 - 11.31] 0.004
[0 - Inf] 0.996

- - 0.002
[1.68 - 4.09] <0.001
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Figure legends:  

Figure 1: Association of LVI status with pathological parameters. (A) tumor subtype, 

(B) tumor grade, (C) RCB index, (D) number of nodes involved. Stars represent P-

value for t-test: *: 0.01 ≤ P ≤ 0.05; **: 0.001 ≤ P < 0.01; ***: P < 0.001. 

Figure 2: Association of LVI status with disease-free survival (DFS). (A) whole 

population, (B) luminal BC, (C) TNBC, (D) HER2-positive BC. 

Figure 3: Association of LVI status combined with N status with disease-free 

survival (DFS).  
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Supplementary Materials  
 
Lymphovascular invasion after neoadjuvant chemotherapy is  strongly associated with 

poor prognosis in breast  carcinoma (BC) 

Hamy, et  al .  

Patients and tumors 

The NEOREP cohort (CNIL declaration number 1547270) included all consecutive patients with 

unilateral, non-recurrent, non-inflammatory, non-metastatic BC, and excluded T4 tumors. Patients 

were treated according to national guidelines. NAC regimens changed over time (anthracycline-based 

regimen, sequential anthracycline-taxane regimen), with trastuzumab used in an adjuvant and/or 

neoadjuvant setting since 2005. The surgery was performed four to six weeks after the end of 

chemotherapy. All but 16 patients received radiotherapy. Endocrine therapy (tamoxifen, aromatase 

inhibitor, and/or GnRH agonists) was prescribed when indicated. The study was approved by the 

Breast Cancer Study Group of Institut Curie and was conducted in accordance with institutional and 

ethical rules regarding research on tissue specimens and patients. Written informed consent from the 

patients was not required under French regulations.  

 

Tumor samples 

Cases were considered estrogen receptor (ER) or progesterone receptor (PR) positive (+) if at least 

10% of the tumor cells expressed estrogen and/or progesterone receptors (ER/PR), in accordance with 

guidelines used in France [1]. HER2 expression was determined by immunohistochemistry with 

scoring in accordance with American Society of Clinical Oncology (ASCO)/College of American 

Pathologists (CAP) guidelines [2]. Scores 3+ were reported as positive, score 1+/0 as negative (-). 

Tumors with scores 2+ were further tested by FISH. HER2 gene amplification was defined in 

accordance with ASCO/CAP guidelines [2]. We evaluated a mean of 40 tumor cells per sample and the 

mean HER2 signals per nuclei was calculated. A HER2/CEN17 ratio ≥ 2 was considered positive, and 

a ratio < 2 negative [2]. BC subtypes were defined as follows: tumors positive for either ER or PR, and 

negative for HER2 were classified as luminal; tumors positive for HER2 were considered to be HER2-

positive BC; tumors negative for ER, PR, and HER2 were considered to be triple-negative breast 

cancers (TNBC). Tumor cellularity was defined as the percentage of tumor cells (in situ and invasive) 

on the specimen (biopsy or surgical specimen). Mitotic index was reported per 10 high power fields 

(HPF) (1 HPF= 0.301 mm2).  

Supplementary results  

Recurrence-free survival (RFS) analysis     
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The presence of LVI was associated with poor RFS (Supplementary Tables S6, 7, 8, 9 and 

Supplementary Fig. 7) in the whole population (HR, 2.57; 95% CI, 1.63 - 4.06; P < 0.001) and in all 

BC subtypes (luminal BC: HR, 2.58; 95% CI, 1.04 - 6.39; P= 0.03; TNBC: HR, 3.75; 95% CI, 1.8 - 

7.81; P < 0.001; HER2-positive BC: HR, 4.22; 95% CI, 1.89 - 9.39; P < 0.001). Post-NAC LVI 

remained an independent factor of poor RFS after multivariate analysis in whole population (HR, 3.66; 

95% CI, 2.22 - 6.05; P < 0.001), TNBC (HR, 3.55; 95% CI, 1.53 - 8.25, P =0.003) and HER2 

subtypes (HR, 4.22; 95% CI, 1.89 - 9.39, P < 0.001).  

Metastasis-free survival (MFS) analysis  

The presence of LVI was associated with poor MFS (Supplementary Tables S10, 11, 12, 13 and 

Supplementary Fig. 8) in the whole population (HR, 2.52; 95% CI, 1.88 - 3.38; P < 0.001) and in all 

BC subtypes (luminal BC: HR, 1.89; 95% CI, 1.21 - 2.94; P= 0.005; TNBC: HR, 3.26; 95% CI, 2.02 - 

5.24; P < 0.001; HER2-positive BC: HR, 6.96; 95% CI, 3.16 - 15.34; P < 0.001). Post-NAC LVI 

remained an independent factor of poor survival after multivariate analysis in the total population and 

in BC subtypes. 

Overall  survival  (OS) analysis 

Univariate analysis of OS showed that post-NAC LVI was associated with a poor prognosis 

(Supplementary Tables 14, 15, 16, 17 and Supplementary Fig. 9)) in the whole population (HR, 2.5; 

95% CI, 1.74 - 3.58; P < 0.001) and in BC subtypes. Post-NAC LVI remained an independent factor of 

poor survival after multivariate analysis in the total population and in BC subtypes. 
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Supplementary Figure legends:  

Supplementary Figure S1: Lymphovascular invasion in a surgical specimen obtained after NAC. 

H&E (haemotoxylin and eosin) x20, 10 high power fields. 

Supplementary Figure S2: Association of LVI status with pathological parameters. (a) Pre-NAC 

mitotic index; (b) Post-NAC mitotic index; (c) Change in mitotic index; (d) Pre-NAC tumor cellularity; 

(e) Post-NAC tumor cellularity. Asterisks indicate the P-values for t-tests: *: .01≤P≤.05; **: 

.001≤P<.01; ***: P<.001. 

Supplementary Figure S3: Association of LVI status with disease-free survival (DFS) by 

pathological node status. (a) DFS in the node-negative cohort, (b) DFS in the node-positive cohort. 

Supplementary Figure S4: Association of LVI status with disease-free survival (DFS) in pN- 

population. (a) DFS in the whole population, (b) DFS in luminal BC, (c) DFS in TNBC, (d) DFS in 

HER2-positive BC. 

Supplementary Figure S5: Association of LVI status with disease-free survival (DFS) in pN+ 

population. (a) DFS in the whole population, (b) DFS in luminal BC, (c) DFS in TNBC, (d) DFS in 

HER2-positive BC. 

Supplementary Figure S6: Association of LVI status combined with pCR status with disease-free 

survival (DFS). (a) DFS in the whole population, (b) DFS in the luminal BC, (c) DFS in the TNBC, (d) 

DFS in the HER2-positive BC.  

Three patients with LVI in the breast without any residual disease in the breast or in the nodes were 

removed from the analyses. Hazard ratios are as follows: Whole population: pCR /no LVI, HR=1; no 

pCR / no LVI, HR= 1.91 [1.23; 2.97]; no pCR / LVI, HR= 3.95 [2.58; 6.05]; luminal BC: pCR /no 

LVI, HR=1; �no pCR / no LVI, HR= 1.75 [0.54; 5.66]; no pCR / LVI, HR= 2.99 [0.94; 9.54]; TNBC: 

pCR /no LVI, HR=1; no pCR / no LVI, HR= 2.7 [1.48; 4.92]; no pCR / LVI, HR= 6.45 [3.56; 

11.67]; HER2-positive: pCR /no LVI, HR=1; no pCR / no LVI, HR= 1.67 [0.65; 4.32]; no pCR / LVI, 

HR= 8.31 [3.56; 19.4]. 

Supplementary Figure S7: Association of LVI status with recurrence-free survival (RFS). (a) RFS 

in the whole population, (b) RFS in luminal BC, (c) RFS in TNBC, (d) RFS in HER2-positive BC.  

Supplementary Figure S8: Association of LVI status with metastasis-free survival (MFS). (a) 

MFS in the whole population, (b) MFS in luminal BC, (c) MFS in TNBC, (d) MFS in HER2-positive 

BC.  

Supplementary Figure S9: Association of LVI status with overall survival (OS). (a) OS in the 

whole population, (b) OS in luminal BC, (c) OS in TNBC, (d) OS in HER2-positive BC.  
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Supplementary Figure S1: Lymphovascular invasion in a surgical specimen 

obtained after NAC 
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Supplementary Figure S2: Association of LVI status with pathological 

parameters 

 

  



0

50

100

150

LVI no LVI

Pr
e−

N
AC

 m
ito

tic
 in

de
x

a

********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************

0

50

100

150

LVI no LVI

Po
st
−N

AC
 m

ito
tic

 in
de

x

b

0

25

50

75

100

LVI no LVI

Pr
e−

N
AC

 tu
m

or
 c

el
lu

la
rit

y

d



0

25

50

75

100

LVI no LVI

Po
st
−N

AC
 tu

m
or

 c
el

lu
la

rit
y

e

 

0

50

100

150

Baseline End
 

M
ito

tic
 in

de
x

LVIc

0

50

100

150

Baseline End
 

M
ito

tic
 in

de
x

no LVI

198 Neoadjuvant treatment



Supplementary Figure S3: Association of LVI status with disease-free survival 

(DFS) by pathological node status 
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Supplementary Figure S4: Association of LVI status with disease-free survival 

(DFS) in pN- population 
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Supplementary Figure S5: Association of LVI status with disease-free survival 

(DFS) in pN+ population 

	

++++

++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++ ++

++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++ ++++ ++ +++++++

p = 2e−04

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100 125
Time

D
is

ea
se
−f

re
e 

su
rv

iva
l 

post−NAC LVI
+
+

yes
no

Whole population (pN+)

214 153 96 47 13 0
214 157 92 40 13 0−− 0 25 50 75 100 125

 

 

number at risk

a

+++++++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++
++++ ++++++++++ +

++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++
++++++++ + +++ +++++++

p = 0.0063

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100 125
Time

post−NAC LVI
+
+

yes
no

Luminal (pN+)

148 124 78 39 11 0
133 108 65 30 10 0−− 0 25 50 75 100 125

 

 
number at risk

b

++

+

+

+
+ + ++ ++ + + + +

+

+++

+
+
+

+ +
++

+ +++
++ + + + +

p = 0.11

0.00

0.25

0.50

0.75

1.00

0 30 60 90 120
Time

D
is

ea
se
−f

re
e 

su
rv

iva
l 

post−NAC LVI
+
+

yes
no

TNBC (pN+)

40 10 8 3 0
37 15 6 3 0−− 0 30 60 90 120

 

 

number at risk

c

+

+++

++ +++

+++

+

+++ ++++++++ +++ ++
+ +++++++ +++++ ++ +++ + +

p = 0.0061

0.00

0.25

0.50

0.75

1.00

0 30 60 90 120
Time

post−NAC LVI
+
+

yes
no

HER2 (pN+)

26 15 6 0 0
44 28 15 3 0−− 0 30 60 90 120

 

 

number at risk

d

1.9 Article n°9 : Hamy, A.-S. et al. Breast Cancer Res. Treat. (2018) 201



Supplementary Figure S6: Association of LVI status combined with pCR status 

with disease-free survival (DFS) 
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Supplementary Figure S7: Association of LVI status with recurrence-free 

survival (RFS) 
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Supplementary Figure S8: Association of LVI status with metastasis-free 

survival (MFS) 
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Supplementary Figure S9: Association of LVI status with overall survival (OS) 
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Supplementary Table legends  

Supplementary Table S1: Pre and post-NAC parameters in whole population according to LVI 

status.  
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Supplementary Table S2: Univariate and multivariate analysis for disease-free survival in luminal 

BC.  

 

a:	P-value	versus	reference	class	(45-55	versus	<45.	P	=0.02;	>55	versus	45-55	P	
=0.14).	
b:	P-value	versus	reference	class	(<19	versus	19-25.	P	=0.01;	>25	versus	19-25.	P	
=0.39).		
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Supplementary Table S3: Univariate and multivariate analysis for disease-free survival in TNBC.  

 

Supplementary Table S4: Univariate and multivariate analysis for disease-free survival in HER2–

positive BC. 
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Supplementary Table S5: Combination of LVI with pCR status and with pathological nodal 

involvement  
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Supplementary Table S6: Univariate and multivariate analysis for recurrence-free survival in 

whole population.  
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Supplementary Table S7: Univariate and multivariate analysis for recurrence-free survival in 

luminal BC. 
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 Supplementary Table S8: Univariate and multivariate analysis for recurrence-free survival in 

TNBC

. 
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Supplementary Table S9: Univariate and multivariate analysis for recurrence-free survival in 

HER2–positive BC. 
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Supplementary Table S10: Univariate and multivariate analysis for metastasis-free survival in 

whole population. 
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Supplementary Table S11: Univariate and multivariate analysis for metastasis-free survival in 

luminal BC. 

 

Supplementary Table S12: Univariate and multivariate analysis for metastasis-free survival in 

TNBC. 
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Supplementary Table S13: Univariate and multivariate analysis for metastasis-free survival in 

HER2–positive BC. 
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Supplementary Table S14: Univariate and multivariate analysis for overall survival in whole 

population. 
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Supplementary Table S15: Univariate and multivariate analysis for overall survival in luminal BC. 
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Supplementary Table S16: Univariate and multivariate analysis for overall survival in TNBC. 
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Supplementary Table S17: Univariate and multivariate analysis for overall survival in HER2–

positive BC. 

 

See Supplementary Files for Tables.  
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RCB validation study 
Anne-Sophie HAMY-PETIT / Fabien REYAL 

1. Patients characteristics 
The total number of patients included in the cohort is 718. Patients’ main characteristics by subgroup are 
summarized in Table 1. The median age was 47.5 years old (range 25, 80) and most patients (63%) were 
premenopausal. Patients repartition by subtype was as follows: luminal (n=224; 31, 3%), TNBC (n=311; 43,4%), 
HER2-positive (n=181; 25,3%). There were no differences between the groups regarding age, menopausal 
status, tumor size nor clinical nodal status. TNBC and HER2-positive BC were associated with a higher grade, 
Ki67 and mitotic index than luminal BC (p<0.001). 

  n (%) 

  718 
age <45 y.o 286 (39.8) 

 45-55 y.o 254 (35.4) 

 >55 y.o 178 (24.8) 
menopausal status postmenopausal 259 (36.4) 

 premenopausal 452 (63.6) 
BMI class 19<=BMI<=25 414 (57.7) 

 BMI<19 41 (5.7) 

 BMI>25 262 (36.5) 
tumor size T1 47 (6.5) 

 T2 482 (67.1) 

 T3 189 (26.3) 
clinical nodal status N0 282 (39.3) 

 N1-N2-N3 435 (60.7) 
number mitoses <=22 389 (57.0) 

 >22 294 (43.0) 
histology ductal 661 (92.6) 

 other 53 (7.4) 
grade Grade I-II 211 (30.1) 

 Grade III 491 (69.9) 
ki67 ki67<20 33 (18.4) 

 ki67>=20 146 (81.6) 
ER status luminal 223 (31.1) 

 TNBC 320 (44.6) 

 HER2 175 (24.4) 
PR status ER negative 397 (55.3) 

 ER positive 321 (44.7) 
HER2 status PR negative 474 (68.2) 

 PR positive 221 (31.8) 
NAC regimen HER2 negative 543 (75.6) 

 HER2 positive 175 (24.4) 
subtype Anthracyclines based regimens 61 (8.5) 

 Anthracyclines-taxanes regimens 577 (80.4) 
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  n (%) 

 Others 80 (11.1) 
nodal involvment 0 445 (62.0) 

 1-3 188 (26.2) 

 >=4 N+ 85 (11.8) 
RCB class pCR 202 (28.2) 

 RCB-I 65 (9.1) 

 RCB-II 310 (43.2) 

 RCB-III 140 (19.5) 
Post-NAC LVI no 501 (77.2) 

 yes 148 (22.8) 

1.1 RCB repartition following NAC 
At NAC completion, pCR (RCB 0) was observed in 209 patients (29,2%). Among 499 patients with residual 
disease, RCB index repartition was as follows RCB-I: n= 64 (8.9%), RCB-II: n=299 (41.6%), and RCB-III: 
n=136 (19%), (Table 2). 

RCB index distribution was significantly different by BC subtypes (p<0.001) (Figures 3 /table 1): luminal 
tumors were more likely to be RCB-II (49.1%) or III (36.9%), whereas HER2-positive BC or TNBC were more 
likely to be RCB 0 or 1 (52.6% and 48.2% respectively) (p<0,001). Only a small subset of tumor was classified 
as RCB-III in these 2 subtypes (HER2-positive : 8% and TNBC :12,9 % respectively). 

 

1.2 Patients characteristics by RCB class 
Among pre-NAC parameters, RCB class was significantly different by BMI, initial clinical tumor size, Pre-NAC 
mitotic index, clinical nodal status, histological type, pathological grade, BC subtype. Pre-NAC TILs were 
inversely associated with RCB. Among post-NAC parameters, RCB class was significantly different by LVI 
presence, nodal involvment, post-NAC mitotic index. Post-NAC TILs were positively associated with RCB. 

n=202, (28%)

n=65, (9%)

n=310, (43%)

n=140, (20%)

0

25

50

75

100

all
 

%
 c

as
es

n=11, (5%)
n=18, (8%)

n=110, (49%)

n=84, (38%)

n=123, (39%)

n=23, (7%)

n=131, (41%)

n=42, (13%)

n=68, (39%)

n=24, (14%)

n=69, (39%)

n=14, (8%)

0

25

50

75

100

luminal TNBC HER2

%
 c

as
es

RCB class
RCB−III
RCB−II
RCB−I
pCR

230 Neoadjuvant treatment



  pCR RCB-I RCB-II RCB-III p  
  202 65 310 140   
age  

48.64 
(10.57) 

45.83 
(10.21) 

47.76 
(10.28) 

49.35 
(10.06) 0.109  

bmi  24.53 (4.42) 23.30 (4.22) 24.86 (4.82) 25.22 (4.87) 0.042  
clinical tumor size  

42.06 
(21.83) 

39.09 
(14.82) 

45.57 
(19.25) 

50.84 
(22.33) <0.001  

Pre-NAC mitotic 
index  

27.05 
(19.59) 

22.81 
(21.09) 

27.09 
(24.11) 

18.75 
(18.52) 0.001  

Pre-NAC TILs  
33.99 
(23.90) 

26.06 
(20.32) 

19.71 
(16.23) 

18.86 
(16.04) <0.001  

age <45 y.o 76 (37.6) 31 (47.7) 131 (42.3) 47 (33.6) 0.118  
 45-55 y.o 66 (32.7) 25 (38.5) 108 (34.8) 55 (39.3)   
 >55 y.o 60 (29.7) 9 (13.8) 71 (22.9) 38 (27.1)   
menopausal status postmenopausal 80 (40.2) 18 (28.1) 106 (34.3) 55 (39.9) 0.219  
 premenopausal 119 (59.8) 46 (71.9) 203 (65.7) 83 (60.1)   
BMI class 19<=BMI<=25 125 (62.2) 46 (70.8) 176 (56.8) 67 (47.9) 0.011  
 BMI<19 8 (4.0) 6 (9.2) 16 (5.2) 11 (7.9)   
 BMI>25 68 (33.8) 13 (20.0) 118 (38.1) 62 (44.3)   
tumor size T1 26 (12.9) 3 (4.6) 12 (3.9) 6 (4.3) <0.001  
 T2 129 (63.9) 52 (80.0) 213 (68.7) 87 (62.1)   
 T3 47 (23.3) 10 (15.4) 85 (27.4) 47 (33.6)   
clinical nodal status N0 83 (41.1) 32 (49.2) 138 (44.5) 29 (20.9) <0.001  
 N1-N2-N3 119 (58.9) 33 (50.8) 172 (55.5) 110 (79.1)   
number mitoses <=22 89 (47.1) 40 (66.7) 168 (56.4) 92 (68.1) 0.001  
 >22 100 (52.9) 20 (33.3) 130 (43.6) 43 (31.9)   
histology ductal 188 (93.5) 59 (90.8) 293 (95.4) 120 (85.7) 0.003  
 other 13 (6.5) 6 (9.2) 14 (4.6) 20 (14.3)   
grade Grade I-II 33 (16.8) 21 (32.8) 91 (30.1) 66 (47.8) <0.001  
 Grade III 164 (83.2) 43 (67.2) 211 (69.9) 72 (52.2)   
ki67 ki67<20 6 (10.2) 3 (30.0) 17 (20.7) 7 (25.0) 0.198  
 ki67>=20 53 (89.8) 7 (70.0) 65 (79.3) 21 (75.0)   
ER status luminal 11 (5.4) 18 (27.7) 110 (35.5) 84 (60.0) <0.001  
 TNBC 123 (60.9) 23 (35.4) 131 (42.3) 42 (30.0)   
 HER2 68 (33.7) 24 (36.9) 69 (22.3) 14 (10.0)   
PR status ER negative 163 (80.7) 31 (47.7) 153 (49.4) 49 (35.0) <0.001  
 ER positive 39 (19.3) 34 (52.3) 157 (50.6) 91 (65.0)   
HER2 status PR negative 183 (91.5) 38 (60.3) 186 (61.4) 66 (51.6) <0.001  
 PR positive 17 (8.5) 25 (39.7) 117 (38.6) 62 (48.4)   
NAC regimen HER2 negative 134 (66.3) 41 (63.1) 241 (77.7) 126 (90.0) <0.001  
 HER2 positive 68 (33.7) 24 (36.9) 69 (22.3) 14 (10.0)   
subtype Anthracyclines based 

regimens 17 (8.4) 3 (4.6) 30 (9.7) 11 (7.9) 0.612  

 
Anthracyclines-taxanes 
regimens 158 (78.2) 57 (87.7) 245 (79.0) 116 (82.9)   

 Others 27 (13.4) 5 (7.7) 35 (11.3) 13 (9.3)   
nodal involvment 0 202 (100.0) 53 (81.5) 188 (60.6) 2 (1.4) <0.001  
 1-3 0 (0.0) 12 (18.5) 102 (32.9) 74 (52.9)   
 >=4 N+ 0 (0.0) 0 (0.0) 20 (6.5) 64 (45.7)   
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  pCR RCB-I RCB-II RCB-III p  
RCB class pCR 202 (100.0) 0 (0.0) 0 (0.0) 0 (0.0) <0.001  
 RCB-I 0 (0.0) 65 (100.0) 0 (0.0) 0 (0.0)   
 RCB-II 0 (0.0) 0 (0.0) 310 (100.0) 0 (0.0)   
 RCB-III 0 (0.0) 0 (0.0) 0 (0.0) 140 (100.0)   
Post-NAC LVI no 200 (99.0) 41 (91.1) 191 (71.5) 68 (50.7) <0.001  
 yes 2 (1.0) 4 (8.9) 76 (28.5) 66 (49.3)   
Post-NAC mitotic 
index  NaN (NA) 0.82 (2.54) 17.83 

(28.86) 
19.16 
(33.60) <0.001  

Post-NAC TILs  8.78 (10.55) 12.84 
(14.64) 

14.87 
(12.47) 

15.16 
(13.99) <0.001  

 1.2.1 association between RCB class and clinico pathological variables 

 

1. 1.3 RCB distribution 
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RCB distribution was bimodal, with a strong overlap with nodal status. 

 

2. 2 Survival analyses 
2. 2.1 Disease-free survival 
With a median follow-up of 46.4 months, (range[ 2.8-119.8months]), 145 patients experienced relapse, and 83 
deceased . 

RCB class was significantly associated with DFS (p<0.001). 
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 2.1.1 Looking for interactions 

2.1.1.1 Interactions RCB / BC subtype 

The interaction between RCB class and subtype was not significant (P interaction=0.10). 

2.1.1.2 Interaction TILs and RCB 

There was a significant interaction between post-NAC TILs and RCB class to predict DFS (p=0.03). Post-NAC 
TILs had no prognostic impact on DFS in pCR, RCB-I and RCB-II subgroups. Conversely, post-NAC TILs had 
a poor prognostic impact (HR=1.019, [1.001-1.037]) in the RCB-III subgroup(n=140). 

 2.1.2 Prognosis by RCB class 

The prognosis of RCB-0 and RCB-I patients was not statistically different. 
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RCB-II and RCB-III had impaired DFS (HR=3.41 [1.92 - 6.04]and HR=6.03 [3.35 - 10.88] respectively). 

 

 2.1.3 RCB 0 and I grouped 
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 2.1.4 Univariate and multivariate analysis on DFS 

     
Univariate 

analysis   
Multivariate 

analysis   
age <45 y.o 286 60 1  0.67     
 45-55 y.o 254 54 0.98 [0.68 - 1.41]      
 >55 y.o 178 31 0.83 [0.53 - 1.27]      
menopausal 
status postmenopausal 259 53 1  0.86     

 premenopausal 452 89 0.97 [0.69 - 1.36]      
BMI class 19<=BMI<=25 414 78 1  0.27     
 BMI<19 41 6 0.74 [0.32 - 1.71]      
 BMI>25 262 61 1.25 [0.89 - 1.75]      
tumor size T1 47 5 1  <0.01  1 - - 

 T2 482 91 1.67 [0.68 - 4.12]  0.26 1.61 [ 0.58 - 
4.48 ] 0.36 

 T3 189 49 2.69 [1.07 - 6.74]  0.04 2.8 [ 0.98 - 
7.99 ] 0.054 

clinical nodal 
status N0 282 54 1  0.45     

 N1-N2-N3 435 91 1.14 [0.81 - 1.6]      
number 
mitoses <=22 389 71 1  0.03  1 - - 

 >22 294 70 1.45 [1.04 - 2.02]  0.03 1.83 [ 1.23 - 
2.7 ] 0.003 

histology ductal 661 130 1  0.2     
 other 53 14 1.43 [0.82 - 2.48]      
grade Grade I-II 211 41 1  0.34     
 Grade III 491 101 1.19 [0.83 - 1.71]      
ki67 ki67<20 33 7 1  0.29     
 ki67>=20 146 41 1.54 [0.69 - 3.43]      
ER status TNBC 320 83 1  <0.01  1 - - 

 luminal 223 44 0.61 [0.42 - 0.88]  <0.01 0.33 [ 0.21 - 
0.52 ] <0.001 

 HER2 175 18 0.37 [0.22 - 0.62]  <0.01 0.32 [ 0.18 - 
0.58 ] <0.001 

PR status ER negative 397 91 1  <0.01     
 ER positive 321 54 0.64 [0.46 - 0.9]  <0.01    
HER2 status PR negative 474 106 1  <0.01     
 PR positive 221 32 0.57 [0.39 - 0.85]  <0.01    
NAC regimen HER2 negative 543 127 1  <0.01     
 HER2 positive 175 18 0.45 [0.28 - 0.74]  <0.01    
subtype Anthracyclines based 

regimens 61 20 1  0.49     

 
Anthracyclines-
taxanes regimens 577 111 0.75 [0.46 - 1.22]      

 Others 80 14 0.84 [0.42 - 1.68]      
nodal 
involvment 0 445 63 1  <0.01     

 1-3 188 45 1.66 [1.13 - 2.43]  <0.01    
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Univariate 

analysis   
Multivariate 

analysis   

 >=4 N+ 85 37 3.54 [2.36 - 5.32]  <0.01    
RCB class pCR 202 14 1  <0.01  1 - - 

 RCB-I 65 5 1.12 [0.4 - 3.12]  0.82 2.19 [ 0.71 - 
6.76 ] 0.175 

 RCB-II 310 72 3.41 [1.92 - 6.04]  <0.01 3.52 [ 1.9 - 
6.5 ] <0.001 

 RCB-III 140 53 6.03 [3.35 - 10.88]  <0.01 7.62 [ 3.84 - 
15.14 ] <0.001 

Post-NAC 
LVI no 501 69 1  <0.01  1 - - 

 yes 148 60 3.1 [2.19 - 4.38]  <0.01 1.75 [ 1.17 - 
2.62 ] 0.006 

3. 2.2 Overall survival 

 2.2.1 KM survival curves 
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 2.2.2 Univariate and multivariate analysis on OS 

     
Univariate 

analysis   
Multivariate 

analysis   
age <45 y.o 286 60 1  0.67     
 45-55 y.o 254 54 0.98 [0.68 - 1.41]      
 >55 y.o 178 31 0.83 [0.53 - 1.27]      
menopausal 
status postmenopausal 259 53 1  0.86     

 premenopausal 452 89 0.97 [0.69 - 1.36]      
BMI class 19<=BMI<=25 414 78 1  0.27     
 BMI<19 41 6 0.74 [0.32 - 1.71]      
 BMI>25 262 61 1.25 [0.89 - 1.75]      
tumor size T1 47 5 1  <0.01  1 - - 

 T2 482 91 1.67 [0.68 - 4.12]  0.26 1.61 [ 0.58 - 
4.48 ] 0.36 

 T3 189 49 2.69 [1.07 - 6.74]  0.04 2.8 [ 0.98 - 
7.99 ] 0.054 

clinical nodal 
status N0 282 54 1  0.45     

 N1-N2-N3 435 91 1.14 [0.81 - 1.6]      
number 
mitoses <=22 389 71 1  0.03  1 - - 

 >22 294 70 1.45 [1.04 - 2.02]  0.03 1.83 [ 1.23 - 
2.7 ] 0.003 

histology ductal 661 130 1  0.2     
 other 53 14 1.43 [0.82 - 2.48]      
grade Grade I-II 211 41 1  0.34     
 Grade III 491 101 1.19 [0.83 - 1.71]      
ki67 ki67<20 33 7 1  0.29     
 ki67>=20 146 41 1.54 [0.69 - 3.43]      
ER status TNBC 320 83 1  <0.01  1 - - 

 luminal 223 44 0.61 [0.42 - 0.88]  <0.01 0.33 [ 0.21 - 
0.52 ] <0.001 

 HER2 175 18 0.37 [0.22 - 0.62]  <0.01 0.32 [ 0.18 - 
0.58 ] <0.001 

PR status ER negative 397 91 1  <0.01     
 ER positive 321 54 0.64 [0.46 - 0.9]  <0.01    
HER2 status PR negative 474 106 1  <0.01     
 PR positive 221 32 0.57 [0.39 - 0.85]  <0.01    
NAC regimen HER2 negative 543 127 1  <0.01     
 HER2 positive 175 18 0.45 [0.28 - 0.74]  <0.01    
subtype Anthracyclines based 

regimens 61 20 1  0.49     

 
Anthracyclines-
taxanes regimens 577 111 0.75 [0.46 - 1.22]      

 Others 80 14 0.84 [0.42 - 1.68]      
nodal 
involvment 0 445 63 1  <0.01     

 1-3 188 45 1.66 [1.13 - 2.43]  <0.01    
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Univariate 

analysis   
Multivariate 

analysis   

 >=4 N+ 85 37 3.54 [2.36 - 5.32]  <0.01    
RCB class pCR 202 14 1  <0.01  1 - - 

 RCB-I 65 5 1.12 [0.4 - 3.12]  0.82 2.19 [ 0.71 - 
6.76 ] 0.175 

 RCB-II 310 72 3.41 [1.92 - 6.04]  <0.01 3.52 [ 1.9 - 
6.5 ] <0.001 

 RCB-III 140 53 6.03 [3.35 - 10.88]  <0.01 7.62 [ 3.84 - 
15.14 ] <0.001 

Post-NAC 
LVI no 501 69 1  <0.01  1 - - 

 yes 148 60 3.1 [2.19 - 4.38]  <0.01 1.75 [ 1.17 - 
2.62 ] 0.006 
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New insight for pharmacogenomics 
studies from the transcriptional 
analysis of two large-scale cancer 
cell line panels
Benjamin Sadacca  1,2,3, Anne-Sophie Hamy1,2, Cécile Laurent1,2, Pierre Gestraud5,  
Hélène Bonsang-Kitzis1,2,6, Alice Pinheiro1,2, Judith Abecassis1,2,4,5, Pierre Neuvial  3,7 & 
Fabien Reyal1,2,6

One of the most challenging problems in the development of new anticancer drugs is the very high 
attrition rate. The so-called “drug repositioning process” propose to find new therapeutic indications 
to already approved drugs. For this, new analytic methods are required to optimize the information 
present in large-scale pharmacogenomics datasets. We analyzed data from the Genomics of Drug 
Sensitivity in Cancer and Cancer Cell Line Encyclopedia studies. We focused on common cell lines 
(n = 471), considering the molecular information, and the drug sensitivity for common drugs screened 
(n = 15). We propose a novel classification based on transcriptomic profiles of cell lines, according to a 
biological network-driven gene selection process. Our robust molecular classification displays greater 
homogeneity of drug sensitivity than cancer cell line grouped based on tissue of origin. We then 
identified significant associations between cell line cluster and drug response robustly found between 
both datasets. We further demonstrate the relevance of our method using two additional external 
datasets and distinct sensitivity metrics. Some associations were still found robust, despite cell lines 
and drug responses’ variations. This study defines a robust molecular classification of cancer cell lines 
that could be used to find new therapeutic indications to known compounds.

One of the most challenging problems in the development of new anticancer drugs is the very high attrition rate. 
Less than 5% of the drugs entering phase I trials eventually obtain marketing authorization1. Clinical trials are 
the only real way to assess drug efficacy and toxicity, but this approach is inadequate for testing the hundreds of 
drugs currently being developed2. Scientists need to test hundreds of drugs on numerous tumor models therefore 
frequently make use of tumor-derived cell lines3–5. Such studies aim to identify genomic biomarkers for predict-
ing the responses of individual patients to the drug and, ultimately, for identifying the best drug for each patient.

In 2012, the first large-scale pharmacogenomics studies provided an unprecedented wealth to the scientific 
community. The Broad Institute-Cancer Cell Line Encyclopedia (CCLE) provided a collection of 1,036 human 
cancer cell lines from 36 tumor types, tested for 24 anticancer drugs. The Genomics of Drug Sensitivity in 
Cancer (GDSC) assessed the sensitivity of 727 cell lines, from 29 tissue types, to 138 drugs. Both datasets contain 
genome-wide gene expression and sequencing data for a subset of genes. These studies have provided unprece-
dented amounts of information about molecular profiles and drug sensitivity and have validated several known 
genetic biomarkers, such as the BRAF-V600E mutation sensitizing melanomas to vemurafenib6 or ERBB2 ampli-
fication/overexpression conferring sensitivity to lapatinib7.
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Previous studies assessed drug sensitivity by pooling all the cell lines or by controlling for tissue source. 
However, with improvements in our knowledge about tumors, it has become clear that genomic, epigenomic, 
transcriptional, and proteomic analyses of a given cancer can reveal subtypes differing in pathway activity, pro-
gression or treatment response8,9. Conversely, the recent success of basket studies10,11 have demonstrated that 
treatment choices can be based on abnormalities shared by tumors originating from different tissue types.

We present here a comprehensive reanalysis of these two recently published large-scale pharmacogenomics 
resources. We propose an alternative approach in which cell lines are grouped by transcriptomic profile, based 
on a biological network-driven gene selection process. This molecular classification of cancer cell lines appeared 
robust across CCLE and GDSC. We further demonstrated the relevance of this novel classification through the 
drug response We validate our approach by robustly found in CCLE and GDSC as in two external dataset the 
significant associations between cell line clusters and drug responses.

Results
A biologically driven approach identifies four robust gene modules. Gene expression profiles were 
recovered for 471 cell lines, from 24 different tissues, tested in both CCLE and GDSC. Data were curated and 
annotated with the pipeline of Haibe-Kains et al.12. We developed a three-step biological network-driven process 
based on transcriptomic data for identifying robust clusters of genes. This process was applied in parallel for 
each dataset. We first selected the most variant genes from the set of 12,153 genes common to GDSC and CCLE, 
by the inflexion point method. We then performed hierarchical consensus clustering13 to identify robust gene 
modules. Finally, we used String© database software14 to analyze our gene selection. The goal was to decrease 
the heterogeneity of each gene cluster. We retained the genes from our initial selection that had (1) high String© 
database gene connection indices (greater than 0.7), and (2) similar patterns of expression to other genes within 
the same biological network (correlation coefficient of at least 0.5) (Fig. 1 step A). This selection process identified 
four stable clusters in GDSC (n = 183 genes) and five in CCLE (n = 210 genes), including a subset of 170 genes 
common to the two datasets. Distinct functional gene ontologies were associated to each gene modules based on 
a gene ontology analysis: (Supplementary Fig. 1) Gene Cluster – Extracellular Matrix (GC-ECM; n_ccle = 48, 
n_GDSC = 36), Gene Cluster - Migration (GC-Migration; n_ccle = 56, n_GDSC = 75), Gene Cluster - Immunity-
Interferon (GC-Immunity; n_ccle = 22, n_GDSC = 14) and Gene Cluster - Epithelial Phenotype (GC-Epithelial; 
n_ccle = 63, n_GDSC = 58). A set of 21 genes enriched in development processes (GC-Development) was found 
exclusively in the CCLE dataset.

Biologically driven gene selection identifies eleven reproducible cell line clusters. We per-
formed a consensus clustering with the previously selected genes, for each dataset separately, to identify global 

Figure 1. Flow chart of the analysis. We apply the same pipeline of analysis independently to CCLE and GDSC. 
(a) Biologically driven gene selection was performed to build robust clusters of genes. (b) Robust clusters of 
cell lines were then built using the selected genes. (c) Cell lines clusters have been associated to distinct drug 
response.
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differences in gene expression between cancer cell lines (Fig. 1 step B). We obtained eleven stable clusters of cell 
lines in CCLE and GDSC (Fig. 2a and Supplementary Fig. 2a).

Previous studies reported strong correlations between the expression profiles of identical cell lines12. We there-
fore investigated the closeness of the cell line clusters obtained. We defined the similarity between any two cell 
lines as the number of datasets in which they clustered together (0 = none, 1 = CCLE or GDSC, 2 = CCLE and 
GDSC). We assessed the consistency between the clustering patterns obtained with CCLE and GDSC data, using 
a heatmap clustering of the similarity matrix as a visualization tool. The heatmap shows the number of times that 
two samples are clustered together across datasets (Fig. 3a). Groups of cell lines that frequently cluster with each 
other are shown in darker shades of blue. The heatmap revealed a well defined 11-block, corresponding to the 
11 clusters previously identified. A high degree of consistency between the 11 clusters was observed, with 90% 
accuracy. As the cell line clusters were highly similar, we use the term “cluster” to denote the same group of cell 
lines from CCLE and GDSC, unless the dataset is specified.

Tissue-of-origin or transcriptomic features dominate cell line clusters. Our eleven clusters can be 
organized in three major patterns: (i) four clusters of cell lines were derived mostly from tumors from the same 
tissue of origin. These cell line clusters were named after the organ or cancer subtypes from which most of the 
cell lines were derived: hematopoietic and lymphoid tissues (HAL), small cell lung cancer (SCLC), skin (SKCM) 
and breast (BRCA) clusters; (ii) four clusters of cell lines were derived from tissues from the same organ system 
or had a common embryonic origin: gastrointestinal tract (GI), aerodigestive tract (ADG), glioma and sarcoma 
(GLSR) and endodermal origin tumors (EDOT) clusters; (iii) three clusters contained cell lines from different 
tissues of origin. These clusters were named Mixed 1, Mixed 2 and Mixed 3 (Fig. 3b and c. Details provided in 
Supplementary data 1 and 2).

Clusters of cell lines with common presumptive tissues of origin. Four cell line clusters appeared very homogene-
ous in terms of tissue lineage: HAL, SCLC, SKCM and BRCA. These lineages accounted for 84%, on average, of 
the cells of their respective clusters. The HAL cluster grouped together all the cell lines originating from hemato-
poietic and lymphoid tissues. This clear clustering pattern can be accounted for by the hematopoietic phenotype 
of this type of tumor. The SKCM cluster was the second most homogeneous cell line cluster in terms of tissue type 
(92% of the cell lines in this group originated from melanomas). Breast cancer is a heterogeneous disease with 
a growing number of recognized biological subtypes, including ER+ Her2−, Her2+ and triple-negative breast 
cancer (TNBC), which is the most aggressive subtype. BRCA cluster contained all the breast cancer cell lines 
defined as ER+ Her2− (7/7) and Her2+ (7/7). However, only about half the cell lines defined as triple-negative 

Figure 2. Cell line clustering with CCLE data. (a) Heatmap clustering with 471 cell lines (in columns) and 210 
selected genes (in rows) for the CCLE data. (b) EMT status of the cell lines.
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belonged to this cluster (11/20 in GDSC, 8/20 in CCLE). The remaining triple-negative breast cancer cell lines 
were found in six different clusters of cell lines (SCLC, EDOT, Mixed 1, Mixed 2, GLSR and ADG) (Fig. 3b,c). 
SCLC cluster contained 28% of the lung cancer cell lines and 45% of the small-cell lung carcinoma cell lines. We 
performed a Gene Set Enrichment Analysis15 (GSEA) based on our previously defined gene modules to charac-
terized the transcriptomic profile of cell line clusters (Supplementary Fig. 3). The immunity gene module was 
strongly expressed in the cell lines of the HAL cluster. Leukemia affects both the bone marrow and lymphocytes, 
potentially accounting for the detection of immunity gene expression in cell lines derived from a tumor system 
with no stromal environment. In the SKCM cell line cluster, the epithelial phenotype gene module was down-
regulated. Furthermore, the activation of the ECM and migration gene modules in this cluster is suggestive of 
aggressive cancer. In the BRCA and SCLC cell line clusters, the epithelial gene module was expressed, whereas the 
migration and ECM gene modules were not.

Clusters of cell lines from tissues of the same organ system or common embryonic origin. Some clusters could not 
be defined on the basis of origin from a single tissue type. However, with a more systemic vision, a consistent 
organization was obtained for four clusters: GI, ADG, GLSR and EDOT. Cell lines derived from tumors of the 
digestive system belonged to two clusters. The ADG cell line cluster consisted mostly of tumors from the esopha-
gus, upper aerodigestive tract, salivary and also urinary glands, whereas the GI cluster grouped together tumors 
derived from large intestine, stomach and pancreas cancers. About 70% of the cell lines of the GLSR cluster 
were derived from tumors of the central nervous system, bone, autonomic ganglia and soft tissue. Finally, the 
EDOT cell line cluster grouped together cell lines derived from tumors of different tissues (e.g. lung, pancreas, 
urinary tract) arising from the same germ layer (endoderm). The relevance of the EDOT cluster is supported by 
studies suggesting that oncogenesis may be initiated by the activation of a common pathway in an endodermal 
progenitor16.

The ADG, GI and EDOT clusters all displayed strong expression of the genes of the epithelial phenotype 
module and weak expression of the ECM gene module. According to GSEA, the migration gene module was less 
strongly expressed in GI cells. For the EDOT cluster, inconsistencies between the CCLE and GDSC datasets were 
observed concerning the activation or inhibition of migration gene expression at the transcriptomic level only. 
The GLSR cluster displayed low levels of expression for the epithelial gene module, and high levels of expression 
for the ECM and migration modules.

Clusters of cell lines from tumors with heterogeneous tissues of origin. Three clusters displayed no particular prev-
alence of cell lines corresponding to any particular tissue or organ system. They contained cell lines from tumors 

Figure 3. Clustering similarity. (a) Color-coded heatmap for similarity between CCLE and GDSC clustering; 
Tag Cloud represents the tissue composition of cell lines cluster, in CCLE (b) and GDSC (c). The importance of 
each tissue is indicated by font size. The TNBC cell lines belonging to each cluster are indicated by red dots.
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of 11 to 16 different tissues. We named these clusters Mixed 1, Mixed 2 and Mixed 3. All three of these clusters 
displayed low levels of epithelial phenotype genes, suggesting that the cell lines they contained were probably 
mesenchymal. These clusters also displayed an upregulation of ECM genes. Mixed 1 and 2 displayed an upregu-
lation of migration gene expression. These results suggest that some of the cell lines may have been metastatic in 
origin or subject to drift, from the characteristics of the tissue of origin to a less differentiated state. In this case, 
transcriptomic profile is more relevant than tissue of origin.

EMT discriminates between cell line clusters. The identification of an epithelial phenotype gene mod-
ule led us to investigate the epithelial-mesenchymal status of each cell line. A previous study17 showed that epi-
thelial/mesenchymal transition (EMT)-associated differences in gene expression were a major determinant of the 
stratification of cancer cell lines based on transcriptomic profiles. Indeed, we found a significant overlap between 
our gene selections and a published EMT-derived gene signature consisting of 249 genes18 (P < 0.0001, two-tailed 
Fisher’s exact test). We superimposed epithelial/mesenchymal cell line classifications over our gene expression 
clusters and found a strong association (Fig. 2b and Supplementary Fig. 3b). According to the EMT signature, five 
cell line clusters (SCLC, GI, EDOT, ADG and BRCA) contained mostly epithelial cell lines, whereas the Mixed 1, 
Mixed 3, GLSR and SKCM cell line clusters contained mostly mesenchymal cell lines. The Mixed 2 cell line cluster 
appeared to contain mostly mesenchymal cell lines in GDSC but almost half the cell lines assigned to this cluster 
in CCLE were epithelial. The HAL cell lines were not concerned by this stratification. Finally, the epithelial/mes-
enchymal classification was consistent with that obtained with the epithelial phenotype gene module.

CCLE vs GDSC CCLE vs GDSC CCLE vs GSK

IC50 AUC IC50

Drug Cluster Response Drug Cluster Response Drug Cluster Response

Erlotinib ADG Sensitive Erlotinib ADG Sensitive Lapatinib Mixed 1 Resistant

AZD6244 SKCM Sensitive AZD6244 SKCM Sensitive Lapatinib SKCM Resistant

AZD6244 BRCA Resistant AZD6244 BRCA Resistant

Lapatinib SCLC Resistant Lapatinib HAL Resistant

Lapatinib ADG Sensitive Crizotinib SKCM Resistant

PD0332991 GI Resistant AZD0530 SKCM Resistant

PD0332991 HAL Sensitive PLX4720 SKCM Sensitive

PLX4720 SKCM Sensitive

PD0325901 GI Sensitive

PD0325901 SKCM Sensitive

CCLE vs gCSI GDSC vs gCSI

IC50 IC50

Drug Cluster Response Drug Cluster Response

Erlotinib ADG Sensitive PD0325901 SKCM Sensitive*
Erlotinib Mixed 1 Resistant

Erlotinib GLSR Resistant

Erlotinib SKCM Resistant

Lapatinib Mixed 1 Resistant

Lapatinib ADG Sensitive

PD0325901 BRCA Resistant

PD0325901 SKCM Sensitive

CCLE vs gCSI GDSC vs gCSI

Mean Viability Mean Viability

Drug Cluster Response Drug Cluster Response

Erlotinib ADG Sensitive PD0325901 SKCM Sensitive

Erlotinib Mixed 1 Resistant

Erlotinib GLSR Resistant

Erlotinib SKCM Resistant

Erlotinib HAL Resistant

Erlotinib SCLC Resistant

PD0325901 BRCA Resistant

PD0325901 SKCM Sensitive

Table 1. Significant associations found between CCLE, GDSC, GSK and GCSI. In bold associations found 
significant in at least three datasets. The association between PD0325901 and SKCM had an adjusted p-values of 
0.058 (marked with*).
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Cell line clusters are enriched in somatic mutations. We investigated a common set of 64 genes for 
the presence of mutations in CCLE and GDSC datasets. However, many inconsistencies between both datasets 
led us to focus on a set of eight genes (TP53, KRAS, NRAS, APC, PIK3CA, BRAF, PTEN and RB1) for which 
at least 5% of identical cell lines display mutations in both datasets (Supplementary Information). The muta-
tional profile of cell line clusters was then described based on these genes. Mutation profiles clearly distinguished 
four clusters (Fig. 2a). The SCLC cluster was enriched in RB1 mutations. The GI cluster was rich in APC and 
KRAS mutations; NRAS mutations were overrepresented in the HAL cluster and the SKCM cluster was enriched 
in BRAF mutations. Finally, KRAS mutations were particularly abundant in the EDOT clusters. No significant 
enrichment in mutations was observed for the GLSR, ADG, BRCA and Mixed 3 cell line clusters (Supplementary 
Tables 1 and 2). These clusters have fewer mean mutation rates than the other clusters (GDSC: 13% vs. 19%, t-test 
p-value = 0.01; CCLE: 17% vs. 22%, t-test p-value = 0.08).

Transcriptomic clustering is more consistent than clustering on the basis of tissue of origin 
in terms of drug responses. The large-scale drug screening programs of the Broad and Sanger Institutes 
have provided to the scientific community an unprecedented wealth of publicly available data. Molecular data 
have been systematically collected for each cell line, but far less information is available for drug screening 
(Supplementary Information). Moreover, in many cases (25% in CCLE and 45% in GDSC) it was not possible to 
extract the IC50 from the dose-response curve. In order to overcome these issues, both study also report the AUC 
(area under the dose response curve) that can always be calculated.

We evaluated whether our clustering was more discriminant than the tissue of origin of the cell lines, in 
terms of drug response. We calculated a pseudo F-statistic separately for IC50 and AUC values for each of the 15 
drugs common to CCLE and GDSC. This measurement should capture consistency between the clustering and 
screening data. It is calculated as the ratio of between-group variance in drug response to the corresponding 
within-group variance19. High pseudo F values indicate well-separated, compact clusters. We then compared the 
pseudo F values calculated with our clustering method with those obtained for ‘tissue partitioning’ for a given 
drug (i.e. each tissue being to correspond to a cluster of cell lines).

Twelve of the fifteen drugs had a higher ratio in CCLE and GDSC for our clustering than for clustering based 
on tissue of origin with the IC50 (Fig. 4) and ten out of fifteen with the AUC (Supplementary Fig. 4). This trend 
was confirmed by a t-test comparing the pseudo F values for our clustering with those for ‘tissue partitioning’ 
(IC50: CCLE t.test p-value = 0.041, GDSC t.test p-value = 0.032, AUC: CCLE t.test p-value = 0.011, GDSC t.test 
p-value = 0.043). PLX4720 (Raf kinase B inhibitor) and PD0325901 (MEK1 and MEK2 inhibitors) were drugs 
with the largest pseudo F values in both dataset. Paclitaxel was the only molecule in the panel with a higher 
pseudo F value for tissue partitioning in CCLE and GDSC. As the drug sensitivity results were not used to deter-
mine the clustering of the cell lines, these findings provide independent evidence for a major role of mRNA levels 
in drug sensitivity.

Robust identification of drug response across datasets. Subgroups of patients or cell lines defined 
on the basis of transcriptomic data have been shown to be associated with differences in drug sensitivity8,9. We 
sought to identify associations between clusters of cell lines and “sensitive” or “resistant” drug phenotypes, for the 

Figure 4. Pseudo F value for the 15 drugs common to CCLE and GDSC. The pseudo F index have been 
computed from the IC50 values for each drug. The pseudo F statistic is the ratio of between-cluster variance 
to within-cluster variance. Large values of pseudo F indicate well-separated, tight clusters. Drugs are listed in 
descending order of pseudo F values for clustering.
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15 drugs tested in both CCLE and GDSC. For each dataset and each drug separately, we investigated whether the 
mean IC50 of a given cell line cluster differed significantly from those for the other cell line clusters (see Fig. 1 step 
C and Materials and Methods). Six molecules were found to be significantly associated with six different clusters 
in both CCLE and GDSC (Table 1 and Supplementary Table 3, Supplementary Fig. 5). The SKCM and GI cell line 
clusters were both significantly more sensitive than the other cell lines to PD0325901 (MEK 1 and MEK 2 inhibi-
tors) (Fig. 5a). The association of melanoma and PLX4720 (Raf kinase B inhibitor) is already well established and 
was confirmed by our analysis. Moreover, an inhibitor of MEK 1 and MEK 2, AZD6244, displayed significantly 
higher levels of activity in cell lines from the SKCM cell line cluster. Both EGFR inhibitors, erlotinib (Fig. 5b) 
and lapatinib, appeared to be significantly more effective against ADG cell lines than against other cell lines. 
Hematopoietic and lymphoid tissue cells were sensitive to the CDK4/6 inhibitor PD033991. By contrast, SLCL cell 
lines appeared to be resistant to lapatinib (EGFR and HER2 inhibitor) and the CDK4/6 inhibitor PD033991 was 
found inefficient to kill GI cell lines. Finally, AZD6244 (inhibitor of MEK1 and MEK2) appeared ineffective to 
treat BRCA cell. In addition to variation between drug sensitivity and cell lines, previous studies report variations 
across the different metrics used to report the drug efficacy12,20. We then performed similar analysis using AUC. 
More than half of the associations between cell lines clusters and drug sensitivity were found still significant with 
AUC (Table 1 and Supplementary Information).

We further evaluated the relevance of our clustering regarding the drug sensitivity using two external public 
datasets. We first study the 118 cell lines tested in common between the CCLE and the GlaxoSmithKline cell line 
collection (GSK)21 on lapatinib and paclitaxel (GDSC was excluded due to small sample size, see Supplementary 
Information). We found that lapatinib was significantly inactive to kill cells from clusters SKCM and Mixed 1 in 
both CCLE and GSK (Table 1). Since the set of common cell lines and drugs was small between CCLE, GDSC 
and GSK (Supplementary Table 4), we consider the Genentech Cell Line Screening Initiative (gCSI)22. A panel of 
244 unique cell lines and 5 drugs overlap between CCLE, GDSC and gCSI. Instead of AUC, the gCSI reported the 
mean viability statistic to measure drug efficacy in addition to the IC50. Eight associations between cell lines clus-
ters and drug sensitivity were found significant using the IC50 and nine with the mean viability statistic. Among 
them, the sensitivity of ADG to erlotinib and lapatinib as well as the efficacy of PD0325901 to kill cells from 
SKCM cluster were common to CCLE, GDSC and gCSI (Table 1 and Supplementary Information). Our results 
suggest that our cell line clustering is able to find significant associations with drugs efficacy robustly in four dif-
ferent dataset, despite the large variations across pharmacological data and drug response measures.

Distinct drug profiles were associated with the various cell line clusters. We applied the same 
procedure to all the drugs tested in the CCLE (24 molecules) and GDSC (129 molecules) studies. For each data-
set and each of the 153 drugs separately, we determined whether the mean IC50 of a given cell line cluster was 
significantly different those of the other cell line clusters (Supplementary Tables 5 and 6). Overall, the most strik-
ing result was the very small number of drugs associated with a sensitive profile (88 associations, including 71 
unique drugs) compared to drugs associated with a resistant profile (163 associations, including 92 unique drugs) 
(Supplementary Information). It was particularly interesting to observed that Mixed 2 and Mixed 3 clusters were 
each sensitive to only one drug: respectively midostaurin and vorinostat. Both drugs are targeted agents (PI3K/
mTOR inhibitor and HDAC inhibitor). These clusters are made of several cells from different tissue of origin. 
However, we were able to identify targeted therapies active to kill those cells. These results provide further evi-
dences that our clustering can identify relevant groups of cell sharing unknown features associated to targeted 
drugs.

Overall, these results suggest that cancer cell lines can be classified, on the basis of their transcriptomic pro-
file, into 11 clusters that may or may not be specific to the tissue of origin. We demonstrated that transcriptomic 
clustering was more consistent than clustering on the basis of tissue of origin in terms of drug response whatever 
the drug sensitivity metric considered. We were also able to find several significant associations between clusters 
of cell lines and “sensitive” or “resistant” drug phenotypes. Many of these associations were robustly found across 
four different datasets with three different drug response metrics. As the drug sensitivity results were not used to 
determine the clustering of the cell lines, these findings provide independent evidence about the relevance of this 
new classification. Furthermore, we show that when we are trying to associate a group of genes from a consistent 
biological pathway with a group of cell lines, rather than a single gene with a single drug, robust associations can 
be established across several pharmacologic datasets.

Discussion
Despite the progress in the development of in vivo models, cancer cell lines remain a key tool in cancer research. 
Patients are usually treated with combination therapy. However, it is important to better understand the mecha-
nisms involved with monotherapies before moving forward to study combination therapies. Here, we introduce 
a new cell line classification constructed from 471 cell lines derived from tumors from 24 different tissues. A 
biological network analysis for the most variant genes identified 11 clusters of cell lines. These clusters appeared 
robust in two large-scale cell line panels. This biologically driven gene selection process, which is probably less 
sensitive to sample fluctuations than other methods, made it possible to capture strong biological signals that 
might be concealed by the noise present in microarray data. Several studies have reported that the incorporation 
of network information improves the stability of gene selection and the biological interpretability of biomarker 
signatures for a given prediction accuracy23–25.

In this new classification, a clear distinction was established between non-epithelial cancer cell lines (GLSR, 
SKCM, Mixed 3) and epithelial cell lines (EDOT, BRCA, GI). This suggests that EMT-associated differences in 
gene expression are major determinants of the gene expression–based stratification of cancer cell lines. This 
new molecular clustering system classified more than 65% of the cell lines differently from the currently used 
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tissue-of-origin cell line classification system. Only four clusters consisted mostly of cell lines originating from 
a single tissue. Furthermore, three clusters include cells with expression profiles stronger than that of the origi-
nal tissue (Mixed clusters). Thus, 25% of the cells lines displayed no link to any tissue of origin or related organ 
system.

One of the most interesting cases was the triple-negative breast cancer (TNBC). We focused on this subtype, 
as it is the only subtype of breast cancer without any targeted therapy associated. TNBC were found to be highly 
heterogeneous, falling into six different clusters. This divergence shows the relevance of studying cell lines from 
various tumor types. Drug response was dependent on cluster membership, with the EDOT cluster sensitive to 
chemotherapy, whereas the BRCA cluster was resistant. The widely dispersed TNBC cell lines were mostly mes-
enchymal, whereas the cell lines of the BRCA cluster were exclusively epithelial. TNBC is increasingly emerging 
as a heterogeneous disease26,27, with tumors differing in histological features, gene expression profiles, clinical 
behavior, overall prognosis28 and sensitivity to systemic treatment9,29,30. These findings provide strong evidence to 
suggest that TNBC heterogeneity is reflected at the cell line level. Our results suggest also that particular attention 
should be paid to the selection of cell lines for studies of particular types or subtypes of cancer.

By analyzing several large-scale public data sets, we demonstrated that drug efficacy is significantly associated 
to transcriptomic profile. A comparative analysis recently showed that the gene-expression profiles of the 471 
cell lines shared by CCLE and GDSC were highly concordant whereas the reported cell-line drug sensitivities 
for the 15 drugs tested in both studies were highly inconsistent12. The authors put forward several hypotheses to 
explain these discrepancies, including differences in experimental protocols, the viability assay and procedures 
for summarizing dose response and non-observed IC50 (the half maximal inhibitory concentration). Despite dis-
crepancies between the drug sensitivity data retrieved from different databases, we were able to find some robust 
combinations. Well-known drug associations were found, such as the sensitivity of SKCM lines to vemurafenib. 
We also found that cancers with BRAF mutations, such as melanoma31 and cancers with KRAS/BRAF mutations, 
such as colorectal cancer32, were more sensitive to MEK inhibitors. Furthermore, CDK4/6 inhibition-induced 
cell death has been noted in cell lines and xenografts derived from patients with T-cell leukemia33. SCLC cell 
lines have been shown to be resistant to lapatinib, but combination with a cytotoxic agent may yield promising 
results34.

The decline in the number of new treatments approved in recent years is a major challenge for the pharma-
ceutical industry. One of the reasons for this decline is the lack of systematic evaluation of therapeutic indications 
for a drug that is either in advanced development phase or has already obtained a marketing authorization. The 
so-called “drug repositioning process” proposed to find new therapeutic indications to already approved drugs 
with faster development times and reduced risks. Furthermore, it allows patients to have access to earlier ther-
apeutic advances35. Several robust associations were found. Targeted drugs were found efficient to treat clusters 
of cell lines constituted of cell from different tissues. These drugs are known to be active in one or several tissues 
that constitute theses clusters. It would be of particular interest to test specifically these drugs on the other tissues 

Figure 5. Distribution of IC50 values for each in CCLE and GDSC. Ordered according to mean IC50 for the 
cluster. From resistant (left) to sensitive (right).
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represented in these cell lines clusters. For example, cluster ADG is mostly constituted of upper-aerodigestive, 
oesophagus and urinary tract cancer cell lines. ADG cluster was particularly sensitivity to the anti EGFR - erlo-
tinib. If EGFR is a validated target for upper-aerodigestive cancer36–38 the therapeutic potential of erlotinib has 
already been highlighted for bladder cancer39 and showed promising results in phase II for oesophagus cancer40,41.

Different types of drugs have been used in the panels. Around 10% of the 153 drugs screened in CCLE and 
GDSC, and only 1 out of the 15 drugs in common to both studies, are cytotoxic agents. These drugs are expected 
to be broadly active among the cell line panel since they are not specific molecules. On the contrary, targeted 
agents are expected to be active only in a subset of cell lines, at least, those carrying the given target. Furthermore, 
the recent study published by Rees et al.42 demonstrated that target’s expression and drug sensitivity were corre-
lated in only 31% of the cases. Grouping cell lines on the basis of their transcriptomic profiles makes it possible to 
identify subsets of cells with common off-target features. It is then more relevant to compare the drug sensitivity 
between cell lines of these groups rather than examined the correlation of response of each cell line to a particular 
drug reported by one dataset with the response of the same cell line to the same drug reported by another dataset. 
These results suggest that when robust clusters of cell lines based on biologically network-driven approach are 
considered, consistency between drug responses can be achieved.

In conclusion, our cell line classification provides novel insight for pharmacogenomics studies. As cell lines 
remain the most widely used models for the preclinical evaluation of candidate cancer drugs, further investiga-
tion should be made to use this classification in the development of cancer treatments with the aim of reducing 
the attrition rate.

Materials and Methods
Pharmacogenomics data. We collected data from the Broad and Sanger Institutes. The CCLE profiled 
24 anticancer drugs on 1,036 cell lines. The GDSC screened 138 drugs on 727 cell lines. Both datasets contain 
genome-wide gene expression and massive parallel sequencing data. All data were recovered, curated and anno-
tated with the pipeline developed by Haibe-Kains et al.12 (the GDSC was referred to the Cancer Genome Project 
[CGP] in Haibe-Kains et al.). We used this pipeline as described in the original article, but with a different method 
for the normalization of gene expression. Haibe-Kains et al. normalized gene expression data by frozen robust 
multiarray analysis, fRMA43. This method was designed to combine several datasets and overcome multiple batch 
issues. This strategy is relevant when trying to ensure assay reproducibility. Even though this approach would be 
unlikely to have a major effect on gene expression values, we chose to normalize the gene expression data sepa-
rately with RMA44, to ensure that the two datasets were perfectly independent. Our analysis focused on 471 cell 
lines and 15 drugs for which we have transcriptomic and drug sensitivity data available in both the CCLE and 
GDSC studies. We also collected two large datasets to validate our classification. Data from the GlaxoSmithKline 
cell line collection were retrieved from Haibe-Kains et al.12. The Genentech Cell Line Screening Initiative data 
were available from compareDrugScreens R package published by Haverty et al.22.

Gene expression data. Transcriptomic data were restricted to the 12,153 genes common to the two tech-
nologies used by GDSC and CCLE (Affymetrix GeneChipHG-U133A and HG-U133PLUS2, respectively). The 
Jetset method45 was used to select a unique probe set for given genes. The same probe set was used in both data-
sets for 83% of the genes.

Drug sensitivity data. The micromolar concentration (μM) at which the drug inhibited 50% of maximal 
cell growth was used to assess drug sensitivity as well as the area under the dose response curve (AUC). We also 
consider the mean viability statistic when comparing with gCSI. These measurements were converted to a com-
mon scale (−log10(M) for IC50, [0,1] for AUC and 1 – mean viability for mean viability), such that high values 
would be correspond to cell lines sensitive to drugs.

Gene selection by the inflexion point method. We selected the most variant genes, based on the inflex-
ion point of the interquartile range (IQR) distribution for gene expression. This method is more data-driven than 
a fixed threshold for defining the proportion of genes displaying the highest level of variation. The full procedure 
is described below. For each gene, we: (1) calculated the IQR for all cell lines, (2) sorted the IQR values of the 
genes in ascending order, to generate an ordered distribution, (3) estimated the major inflection point of the IQR 
curve as the point on the curve furthest away from a line drawn between the start and end points of the distribu-
tion, and (4) retained genes with an IQR higher than the inflection point.

Gene expression-based identification of cell line clusters. We developed a biological network-driven pro-
cess based on transcriptomic data, to identify robust clusters of genes and cell lines. This process can be broken down 
into two parts: (A) identification of robust clusters of genes, used for (B) identification of robust clusters of cell lines.

(A) The gene selection process is a three-step procedure. (1) We selected the most variant genes from among 
the 12,153 genes common to GDSC and CCLE, by the inflexion point method. (2) We performed hierarchical con-
sensus clustering (ConsensusClusterPlus R Package) to identify robust gene modules. The consensus-clustering 
step, based on Pearson distance and Ward linkage, identified robust clusters of genes. It involved hierarchical 
clustering by resampling (1,000 iterations) randomly selected genes. (3) We identified known biological net-
works, for each gene cluster separately, using String© database software version 9.1 (http://string-db.org/). We 
then applied a two-step selection process: (1) we selected strong biological networks by retaining only genes for 
which connection scores of at least 0.7 were obtained with String© database software, (2) within each biological 
network, we selected groups of genes for which expression levels were correlated, with a correlation coefficient of 
at least 0.5. We used the R package clusterProfiler46 for comparing and visualizing gene ontologies profiles among 
gene modules. (B) We applied a consensus-clustering with hierarchical clustering to the cell line gene expression 
profiles, using the selected genes to visualize the optimal number of stable cell line clusters.
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Characterization of cell line clusters at the transcriptomic and mutational levels. Gene set 
enrichment analysis (GSEA) was performed on genes modules built in step (A) of the biological network-driven 
process described above. We identified up-regulated or down-regulated gene modules, associated with each cell 
line cluster. An analysis was first performed to identify genes differentially expressed between a particular clus-
ter and all the other cell lines, based on a linear model. For a given cluster k, cell lines were partitioned into two 
groups j = {Cluster-k, non-Cluster-k}. We then performed a differential analysis by comparing the mean gene 
expression of each group in a linear model (limma R package47). The analysis was performed separately for each 
dataset. The results were used to rank genes in order of significance and to search for overrepresented gene mod-
ules, by pre-ranked gene set enrichment analysis (GSEA).

Genes with significantly higher frequencies of mutation in a given cluster were identified by one-tailed Fisher’s 
exact tests. We compared the occurrence of any given mutation in each cell line clusters with that in all the 
remaining clusters combined.

Identification of cell line clusters common to different studies. We studied the likeness between 
the clusterings for CCLE and GDSC, by clustering the cell lines with a similarity matrix (hierarchical clustering 
with Pearson’s metric and the Ward agglomerative method). The similarity matrix contains the number of times 
two cell lines are clustered together in each dataset (0 = never, 1 = only in one classification, 2 = in both classi-
fications). This similarity matrix constitutes a natural visualization tool for assessing the consistency between 
two clustering patterns. In particular, if we associate a color gradient to the 0–2 range of real numbers, such that 
white corresponds to 0, and dark blue corresponds to 2, and if we assume that the matrix is arranged so that items 
belonging to the same cluster are adjacent to each other (with the same item order used to index both the rows 
and the columns of the matrix), a matrix corresponding to a perfect consensus will be displayed as a color-coded 
heatmap characterized by blue blocks along the diagonal, on a white background. The accuracy was calculated as 
the number of times two cell lines clustered together divided by the number of possible combinations

EMT cell line classification. The “epithelial” or “mesenchymal” status of each cell line was defined with the 
signature identified by Taube et al.18. This epithelial-to-mesenchymal transition signature consists of 159 down-
regulated genes and 90 upregulated genes. We performed a hierarchical clustering of cell lines based on these 249 
genes and labeled clusters of cell lines according to the overexpression of known epithelial marker genes, known 
mesenchymal marker genes or neither.

Definition of breast cancer subtypes. Breast cancer subtypes were defined with a bimodal mixture of 
two Gaussian distributions for ESR1, PGR and ERBB2 gene expression. Triple-negative (TN) breast cancer cell 
lines were defined by an absence of estrogen and progesterone receptor expression and a lack of ERBB2 overex-
pression/amplification (n = 31). We subsequently defined breast cancer cell lines overexpressing ESR1 but with a 
lower level of ERBB2 expression as the ER + Her2- subtype (n = 7), with cell lines overexpressing the ERBB2 gene 
defined as the Her2 + subtype (n = 7).

Impact of cell line clustering on drug sensitivity. We investigated the relevance of our cluster-
ing for drug sensitivity, by comparing the results obtained for this method with those for ‘tissue partitioning’ 
(i.e. each tissue of origin being considered to correspond to a cluster of cell lines). We calculated the pseudo 
F index computed from any drug sensitivity statistic (IC50, AUC, mean viability) for each drug. The pseudo F 
statistic is the ratio of between-cluster variance to within-cluster variance19. It is defined as [Between-cluster var-
iance/(N-K)]/[Within-cluster variance/(K-1)], where N is the number of observations (N = 471) and K is the num-
ber of clusters (K = 11 or K = 24). Large values of pseudo F indicate well-separated, tight clusters.

The sensitivity and resistant phenotypes of each cell line for a given drug were defined by comparing the drug 
sensitivity measure between cell lines from any given cluster and the cell lines in all remaining clusters com-
bined. We focus on IC50 for clarity. For a given cluster k, cell lines were partitioned into two groups j = {Cluster-k, 
non-Cluster-k}. We then compared the mean IC50 values of the two groups in a t test. The sign of the statistical 
test was used to define the phenotype as sensitive (t > 0) or resistant (t < 0). We accounted for multiple testing, by 
calculating the FDR-adjusted p-value for each drug. An FDR-adjusted p-value < 0.05 was considered significant.

Supplementary data. A summary of each cell line cluster, with information regarding tissue composition, 
molecular profile and drug profile, and other supplementary data for this article can be accessed from the pub-
lisher’s website.

Consent for publication. All authors read and approved the final manuscript.

Availability of Data and Materials
All data analyzed during this study were retrieved and curated based on the pipeline published by Haibe-Kains 
et al.12. Data are available from the CCLE website (http://www.broadinstitute) and GDSC website (http://www.
cancerrxgene.org/downloads/).
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Abstract 

Triple-negative breast cancer is a heterogeneous group of aggressive breast cancers 

for which no targeted treatment is available. Robust tools for TNBC classification are 
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required, to improve the prediction of prognosis and to develop novel therapeutic 

interventions.  

 

Methods 

We analyzed 3247 primary human breast cancer samples from 21 publicly available 

datasets, using a five-step method: 1) selection of TNBC samples by bimodal filtering 

on ER-HER2 and PR, 2) normalization of the selected TNBC samples, 3) selection of 

the most variant genes, 4) identification of gene clusters and biological gene 

selection within gene clusters on the basis of String© database connections and 

gene-expression correlations, 5) summarization of each gene cluster in a metagene. 

We then assessed the ability of these metagenes to predict prognosis, on an external 

public dataset (METABRIC).  

 

Results 

Our analysis of gene expression in 557 triple-negative breast cancers from 21 public 

datasets identified a six-metagene signature (167 genes) in which the metagenes 

were enriched in different gene ontologies. The gene clusters were named as 

follows: Immunity1, Immunity2, Proliferation/DNA damage, AR-like, Matrix/Invasion1 

and Matrix2 clusters respectively. This signature was particularly robust for the 

identification of TNBC subtypes across many datasets (n=1125 samples), despite 

technology differences (Affymetrix© A, Plus2 and Illumina©). Weak Immunity 2 

metagene expression was associated with a poor prognosis (disease-specific 

survival; HR=2.68 [1.59-4.52], p=0.0002).  

 

Conclusion 
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The six-metagene signature (167 genes) was validated over 1125 TNBC samples. 

The Immunity 2 metagene had strong prognostic value. These findings open up 

interesting possibilities for the development of new therapeutic interventions. 

 

Keywords 

Triple-negative breast cancer, molecular subtype, predictive value, prognosis impact. 
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Introduction 

Triple-negative breast cancer (TNBC), defined by the absence of estrogen and 

progesterone receptor expression and a lack of HER2 overexpression/amplification, 

is an aggressive disease accounting for 15% to 20% of breast cancers. It differs from 

other molecular subtypes 1–3 in displaying axillary lymph node involvement, local and 

regional recurrence, differences in the time lag to metastasis (distant metastatic 

events occurring within five years of diagnosis), high rates of brain, lung and distant 

nodal metastasis and in its response to neoadjuvant treatment. 

TNBC constitutes a major clinical challenge because there has been no 

substantial improvement in treatment for this subgroup in the recent past. Even if 

adjuvant chemotherapy has significantly improved outcome, reducing the risk of 

death by approximately 30% 4, but these cancers do not respond to endocrine or 

targeted therapy. TNBC is, thus, currently the breast cancer subgroup with the worst 

outcome 5. Moreover, the shape of the survival curve for this subgroup differs from 

that for other BC subtypes: there is a sharp decrease in survival during the first three 

to five years after diagnosis, but distant relapses, occurring after this interval, are 

much less common 5. 

TNBC is a highly heterogeneous group of tumors differing in terms of their 

histological features, gene expression profiles, clinical behavior, overall prognosis 6 

and sensitivity to systemic treatment 7–9.  

Robust classifiers are urgently required, to improve our understanding of the 

molecular basis of TNBC and to define novel therapeutic interventions. Lehmann et 

al. recently published a classification of six molecular subtypes of TNBC10 and 
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developed a website (http://cbc.mc.vanderbilt.edu/tnbc/) 11 for the classification of 

TNBC samples on the basis of their gene expression profiles. This classification has 

been shown to be relevant, as it identifies the main biological component and 

pathways of TNBC. However, the large number of genes defining this TNBC 

molecular classification (2188 genes) constituted a potential source of instability 12,13.  

We developed a two-step biological network-driven gene selection process: 1) 

identification of the most variant genes displaying highly correlated patterns of 

expression, 2) direct connection of these genes within known biological networks. 

This method has been reported to be efficient for the construction of molecular 

signatures 14,15. We defined a robust TNBC molecular subtype classification, 

providing considerable biological insight, with great potential for use in the 

development of therapeutic interventions. We also identified a stromal immune 

module gene expression profile strongly correlated with TNBC prognosis.  

 

Results 

TNBC gene expression profiles identify 6 main gene clusters  

Gene expression (GE) profiles were obtained from 21 publicly available datasets, 

containing data for 3,247 primary human breast cancer samples. These profiles were 

processed according to the flow chart in Figure 1. The training set included samples 

hybridized on HGU-133A Affymetrix© arrays (12 datasets, n=1,995), to eliminate 

cross-platform discrepancies and to ensure robust normalization. The validation set 

included samples hybridized on HGU-133Plus2 Affymetrix© arrays (9 datasets, 

n=1,014). We filtered out 42 outlier samples from the training set and 17 from the 

validation set. 
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We also collected two large datasets, for the validation of our classification: 

the Ignatiadis set (n=996) and the METABRIC set (n=1992). The processing of these 

two datasets has been described elsewhere16,17.  

 Bimodal filtering on ER-PR and HER2 GE identified 262, 295, 314 and 254 

TNBC samples in the training set, the validation set, the Ignatiadis set and the 

METABRIC set, respectively.  

We developed a gene selection process based on biological networks, to 

decrease the intrinsic instability of molecular classification methods. 

We identified the 830 most variant genes (SD>0.8) in the training set (n=262). 

A consensus clustering method and hierarchical clustering identified four main gene 

clusters. Further increases in cluster number yielded no significant increase in the 

consensus distribution function area (Supplementary Figure S1 and Materials and 

Methods).  

The various gene clusters were associated with different gene ontologies 

(Supplementary Figure S2). The clusters were thus named as follows 

(Supplementary Figure S3A): Immunity cluster (145 genes), Proliferation/DNA 

damage cluster (397 genes), AndrogenReceptor(AR)-like cluster (139 genes) and 

Matrix/Invasion cluster (149 genes). 

The Immunity cluster was the most homogeneous, with strong correlations 

between the gene expression profiles of most of the genes within this cluster 

(Supplementary Figure S3B).  

We used String© database software to analyze our gene selection, with the 

aim of decreasing the heterogeneity of each main gene cluster. We retained the 

genes from our initial selection that 1) had high String© database gene connection 

indexes (greater than 0.7, Supplementary Figure S4), 2) had similar patterns of 
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expression to other genes within the same biological network (correlation coefficient 

of at least 0.5). We selected a final set of 167 genes [Immunity cluster (80), 

Proliferation/ DNA damage (15), AR-Like(15), Matrix/Invasion (57)] (Supplementary 

Figure S5).  

Following biological network-driven gene selection, it became clear that the 

original Immunity and Matrix/Invasion clusters were more accurately described by 

splitting them into two subclusters displaying minor differences [Immunity1 (33), 

Immunity2 (47), Matrix/Invasion1 (43), Matrix2 (14)] (Supplementary Figure S6A). 

This approach yielded an increase in the area under the consensus distribution 

function (CDF) curve (Supplementary Figure S7). 

 For each of the six gene clusters identified in this way, we defined a 

metagene. The Immunity1 and Immunity2 metagenes displayed similar patterns of 

expression, with a Pearson correlation coefficient of 0.58; the Pearson correlation 

coefficient for the expression patterns of Matrix/Invasion1 and Matrix2 was 0.48. The 

Proliferation/DNA damage and Matrix metagenes displayed the strongest inverse 

correlation (coefficients of -0.43 and -0.60 for Matrix/Invasion1 and Matrix2, 

respectively) (Supplementary Figure S6B).  

We validated this six-gene cluster classification, by applying hierarchical 

clustering based on the 167 genes selected to the validation set (n=295). Clustering 

was highly consistent between the training and validation gene sets (concordance: 

93-100%). 

 

The 6 gene clusters identify 6 stable TNBC subgroups 

Hierarchical clustering was performed on the four TNBC datasets [training set (262), 

validation set (295), Ignatiadis (314) and METABRIC (254)]. For Affymetrix© arrays, 
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we used the 167 selected genes. For the Illumina© platform, we used 153 common 

genes. We identified six reproducible subgroups of TNBC, for which GE patterns 

were similar in the training set and in the three validation sets (total of 1125 

samples). The corresponding heatmaps are shown in Figure 2. The Pearson 

correlation coefficients for the relationships between each sample subgroup centroid 

in the three validation sets and the corresponding subgroup centroid in the training 

set are shown in Figure 2.  

We illustrated the dynamic links between genes within a biological network, as 

defined by the String© database, by showing GE levels for a “prototype sample” 

(Supplementary Figure S8). 

We compared our sample classification with those reported by Lehmann et al. 

and Curtis et al. (Supplementary Figure S9). Our classification appears very different 

from that of Lehmann at first glance (² test p value=0.05), but the samples assigned 

to Centroids 1 and 6 (with high levels of Matrix/Invasion 1 and Matrix 2 gene 

expression, respectively) tended to be classified as Mesenchymal (M) or 

Mesenchymal stem-like (MSL), the samples in Centroid 5 (strong expression of 

Immunity2 genes) tended to be classified as Immunomodulatory (IM), and the 

samples in Centroid 4 (strong expression of AR-like genes) tended to be classified as 

of the Luminal androgen receptor (LAR) subtype (Supplementary Figure S10A and 

Figure S10B). Curtis et al. aimed at defining a new classification across all cancer 

subtypes, not specific to TNBC subtypes. In this classification, the TNBC samples 

were mostly classified as IntClust10 or IntClust4, with an even distribution.  

  

Prognostic value of the Immunity2 metagene in TNBC 

The prognostic value of the 167-gene TNBC signature was assessed with the 
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METABRIC dataset. The 254 TNBC samples were split into two subgroups: a 

subgroup treated by chemotherapy (139) and a subgroup not treated by 

chemotherapy (115). The chemotherapy-naïve (noCT) population and the 

chemotherapy-treated population were significantly different (Supplementary Table 

S1). The patients in the noCT population were older (mean age of 61.5 years vs. 

50.1 years, p<1.210-11), more likely to be postmenopausal (77% vs. 47%, p=5.3810-5), 

and their tumors were of lower grade (p=0.01), with less lymph node involvement 

(81% vs. 17%, p<2.2 10-16), a lower Nottingham Prognostic Index (NPI<3.4, 17% vs. 

2%, p=2.5710-5), and less cellularity (p=0.03).   

Univariate analysis identified three factors significantly correlated with a poor 

outcome (distant disease-free survival) in the chemotherapy-treated population:  

NPI>5.4 (HR=2.15 [1.28-3.60], p=0.003); p53 mutation (HR=2.42 [1.15-5.09], 

p=0.02); and weak Immunity2 metagene expression (HR=2.59 [1.54-4.34], p=0.0002) 

(Table 1A, Figure 4A). We did not include p53 mutation status in the multivariate 

model, due to missing data (n=79). A NPI>5.4 and low levels of Immunity2 metagene 

expression were retained in the multivariate model and were significantly associated 

with a poor outcome (HR=2.30 [1.36-3.89], p=0.002; HR=2.68 [1.59-4.52], p=0.0002, 

respectively) (Table 1A). The combined variable, NPI score/Immunity2 metagene 

expression was found to be of particular interest. In a first model, a NPI score greater 

than 5.4 was associated with a worse prognosis: HR=3.98 [2.00-7.92], p=8.7210-5. 

For patients with NPI scores of 5.4 or below, Immunity2 metagene expression 

discriminated between two groups of patients with different outcomes (HR=2.90 

[1.51-5.56], p=0.001). In a second model, NPI3 patients can also be split into two 

groups on the basis of Immunity2 metagene expression. The NPI3 group with high 

levels of Immunity2 metagene expression had a prognosis similar to that of the 
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NPI1/2 group with low levels of Immunity2 metagene expression (Table 1B, Figure 

4A). 

Univariate analysis identified four factors significantly correlated with poor 

outcome in the noCT population: tumor size > 20 mm (HR=2.36 [1.01-5.48], p=0.04), 

lymph node-positive status (HR=3.66 [1.65-8.11], p=0.001), NPI score >5.4 

(HR=10.69 [2.74-41.76], p=0.001) and low levels of Immunity2 metagene expression 

(HR=2.33 [1.09-4.95], p=0.03) (Table 2A, Figure 4B). Two of these factors were 

retained in the multivariate model: NPI score>5.4 (HR=12.03 [3.05-47.50], p=0.0004) 

and low levels of Immunity2 metagene expression (HR=2.42 [1.13-5.16], p=0.02) 

(Table 2A). As in the chemotherapy-treated subpopulation, the combined variable, 

NPI score/Immunity2 metagene expression discriminated between two groups of 

patients with different outcomes in this noCT population (Table 2B, Figure 4B). The 

chemotherapy-naïve group contained only seven patients classified as NPI3. 

Stratification of this subgroup defined on the basis of treatment was therefore not 

considered methodologically relevant. 

We compared the prognostic value of the Immunity2 metagene with that of 

eight previously published immune signatures, 18,19,20,21,22,23,24,25 using the 

METABRIC dataset.  

We generated a heatmap (Supplemental Figure S11) of the gene expression profiles 

of each of the above prognostic signatures applied to the METABRIC dataset. The 

samples were ordered according to our classification of low/high Immunity2 

metagene expression. Expression patterns were very similar between the Immunity2 

gene expression signature and all the other gene expression signatures, with the 

exception of the Bianchini, Karn and Burstein (BLIS) gene-expression signatures.  
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We first performed a univariate analysis of the prognostic value of the eight-gene 

expression signatures, as described in the corresponding original manuscripts. The 

Rody, Sabatier, Teschendorff, Desmedt, Gu-Trantein Tfh, Gu-Trantien Th1 and 

Burstein signatures were significantly correlated with the prognosis of TNBC. The 

Bianchini and Karn gene expression signatures were not correlated with the 

prognosis of TNBC (Supplemental Figure S12, Supplemental Table S2). We then 

performed a multivariate analysis. We included NPI score, the Immunity2 metagene 

and each of the Rody, Sabatier, Teschendorff, Desmedt, Gu-Trantein Tfh, Gu-

Trantien Th1, and Burstein signatures, one-by-one, in the model. In all comparisons 

the only significant variables remaining in the multivariate model were NPI score and 

the Immunity2 metagene (Supplemental Table S2). 

 

The Immunity2 metagene corresponds to B-cell and T-cell pathways  

String database connections between the Immunity1 or Immunity2 genes and the 

genes of the eight published prognostic immune signatures 18,19,20,21,22,23,24,25 are 

provided in Figure 3. The gene intersection was poor, but our immune signature 

nevertheless appears to be strongly correlated with other published signatures 

(Supplementary data), suggesting the use of similar immune pathways. The 

Immunity2 metagene was strongly correlated with the expression metagenes of the 

above signatures (coefficient greater than 0.8), except for the Bianchini, Karn and 

BLIS metagenes (Supplemental Figure S13). 

 We explored the pathways relating to the Immunity metagenes in detail, by 

analyzing the correlation between the expression of the Immunity1 and Immunity2 

metagenes and the metagenes defined by Gatza et al. 26 (IFN-alpha, IFN-gamma, 

STAT3, TGF-beta, TNF-alpha) and Palmer et al. 27 (LB, LT, CD8, GRANS, 

D
ow

nl
oa

de
d 

by
 [

A
nn

e-
So

ph
ie

 H
am

y-
Pe

tit
] 

at
 0

0:
43

 2
7 

Ju
ne

 2
01

5 
268 Neoadjuvant and Immunity



 

12 

LYMPHS). This analysis was performed on the METABRIC dataset published by 

Curtis et al. 17. 

We showed that the Immunity2 metagene was highly correlated with the B-cell, T-cell 

and CD8 cell metagenes (Pearson correlation scores: 0.93, 0.91, 0.87) 

(Supplemental Figure S14). The Immunity1 metagene was highly correlated with the 

interferon alpha and gamma pathways (Pearson correlation scores: 0.97, 0.94).  

Furthermore, in cancer cell lines (CCLE and CGP datasets), the Immunity2 

metagene displayed very low levels of expression, similar to those of the CD8 

metagene (Supplemental Figure S15). This was true for all cell lines and breast 

cancer cell lines tested.  

Moreover, the IFN-alpha, IFN-gamma, STAT3, TGF-beta, TNF-alpha, LB, LT, 

GRANS metagenes were more strongly expressed in TN breast cancer cell lines 

than in HER2-positive and luminal breast cancer cell lines (Supplemental Figure 

S16).  

We investigated Immunity2 gene expression in white blood cell populations 

(Palmer et al. 27), by performing a consensus clustering of the Immunity2 genes on 

Palmer‟s dataset. This analysis identified four stable clusters of the genes of the 

Immunity2 signature. Some genes were more strongly expressed in B cells (GZMA, 

GZMB, CCR7, LY96, MS4A1, CD74 for example), others in T cells (CD3D, CCL2, 

CD14, CD2, LCK, IL7R), and still others in granulocytes (named Pax cells) (CD163, 

MNDA, NCF2, CSF2RB, FGL2) (Supplemental Figure S17). These findings suggest 

that, even if the „Immune2‟ signal is highly homogeneous within tumor samples (the 

entire set of genes being coordinately either over- or under-expressed), different 

subpopulations of cells express different subsets of these genes in the periphery. 
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The Immunity2 metagene is probably expressed by stromal cells   

In TNBC cell lines (TNBC_CL), genes from the Immunity2 module displayed very low 

medians and narrow ranges of expression, suggesting that they were expressed only 

in the tumor stromal compartment. A similar trend was observed for all breast cancer 

cell lines (BC_CLs). The Immunity1 module genes had higher median expression 

levels and a broader range of expression in TNBC_CL and in all BC_CL, suggesting 

that Immunity1 genes were expressed by the tumor cells (Figure 5A and Figure 5B). 

Furthermore, we explored the contributions of stromal and cancer cells to 

Immunity1 and Immunity2 expression in detail, by comparing our gene lists to the 

“stromal contribution to global gene expression evaluated in PDX RNAseq data”, as 

defined by Isella et al. 28. The Immunity2 metagene had a very high stromal fraction, 

as for the Matrix/Invasion1 and Matrix2 metagenes. The Immunity1 metagene had a 

very low stromal fraction, like the ARLike and Proliferation/DNA damage metagenes 

(Supplemental Figure S18). 

 

The Immunity2 metagene open up interesting new possibilities for therapeutic 

interventions 

To highlight the new opportunities for therapeutic intervention provided by this study, 

we represented the existing drugs (with or without US Food and Drug Administration 

approval) for each metagene (Supplemental Figure S19 and Supplementary data). 

Some are undergoing clinical investigation in patients with TNBC.   

We explored the links between PD1, PDL1, CTLA4 (and their respective 

metagenes) and the Immunity2 metagene. We compared the Immunity2 metagene 

with the TILs signature defined by Schalper et al. 29, who showed that PD-L1 mRNA 

synthesis was associated with increases in the expression of TILs and recurrence-
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free survival. This analysis was performed on the METABRIC dataset. The PD1 and 

CTLA-4 metagenes were constructed from the genes most strongly correlated with 

the PD1 and CTLA-4 genes, respectively (Pearson correlation score > 0.8). The 

PDL1 metagene was defined by Sabatier et al. 30.  

The Immunity2 metagene was highly correlated with the PD1, PDL1 and CTLA-4 

metagenes (Pearson correlation: 0.90, 0.96, 0.91). The coefficient of correlation 

between the Immunity2 metagene and the TILs signature was up to 0.90 

(Supplemental Figure S20).  

In cell lines, the PD1, PDL1, CTLA-4 and TILs metagenes were very weakly 

expressed, like the Immunity2 metagene (Supplemental Figure S21). 

Using the METABRIC dataset, we compared the prognostic value of these 

metagenes (PD1, PDL1, CTLA4 and TILs) with that of the Immunity2 metagene. In 

univariate analysis, high levels of PD1, PDL1, CTLA-4 and TILs metagene 

expression were associated with a good prognosis (Supplemental Figure S22, 

Supplemental Table S3). In multivariate analysis, we included NPI score, the 

Immunity2 metagene and each of the PD1, PDL1, CTLA4 and TILs metagenes, one-

by-one, in the model. In all comparisons, the only significant variables remaining in 

the multivariate model were NPI score and the Immunity2 metagene. 

 

Discussion 

New tools for classifying TNBCs are urgently required, to improve our understanding 

of the molecular basis of TNBC and to identify potentially useful novel therapeutic 

interventions. By analyzing the GE profiles of 1125 triple-negative breast cancers, we 

identified a six-metagene signature (167 genes) in which the various metagenes 

were enriched in different gene ontologies: two clusters were enriched in immunity 
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genes, one in proliferation/DNA damage genes, one in AR pathway genes, and two 

in matrix/invasion genes. This signature appeared to be particularly robust for 

identifying TNBC subtypes across different datasets, independently of the genechip 

technology used to generate the data. Furthermore, one metagene (Immunity2) was 

found to be of strong prognostic value for TNBC samples.  

Lehmann et al. 10 recently developed a classification of TNBCs in which a 2188-gene 

signature was used to classify tumors. They suggested that this classification could 

also be used to classify xenografts or cell lines. They also developed a website 

(http://cbc.mc.vanderbilt.edu/tnbc/) for the classification of TNBC samples 11. This 

study provided important biological insight into the molecular drivers of TNBC, but it 

also raised several key concerns. First, the normalization process involved data from 

different platforms. Several studies have shown that large discrepancies in signature 

composition and absences of concordance concerning outcome may be due to 

differences in the array platform and preprocessing method used 12. Second, 

Lehmann et al. used a very large number of genes (2188 genes) to establish their 

molecular signature, and this may have constituted a source of instability, due to the 

noise introduced 12,13. As shown by Weigelt et al. 31, microarray-based single-sample 

predictors do not allocate individual samples to a given molecular subtype 

reproducibly, probably because the use of large numbers of genes leads to instability 

of the classification when new samples are added. Third, it would be unwise to 

transpose this classification to various in vitro and in vivo breast cancer models 

(primary tumor xenografts, cell lines, cell line-derived xenografts), because the 

stromal environment and the original tumor are very different 32,33. We found that 

genes from the Immunity compartment (Immunity2 module) were highly relevant for 

the classification of TNBC samples and that these genes were not expressed in 
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breast cancer cell lines. The observed lack of reproducibility between classifiers may 

reflect major differences in the methodology and aims of the studies concerned. 

Further validation will be required before these models can be used in routine clinical 

practice. 

We developed a strategy for the definition of a gene expression signature 

based on the analysis of biological networks for the most variant genes. Within these 

networks, we then analyzed gene expression parameters, to select the genes with 

the most strongly correlated patterns of expression. The validation process showed 

that our gene matrix identified similar GE patterns across 1125 TNBC samples. This 

first step in biological network analysis, which is probably less sensitive to sample 

fluctuations than other methods, made it possible to capture strong biological signals 

that might be concealed by the noise present in microarray data. Several studies 

have reported that the incorporation of network information improves the stability of 

gene selection and the biological interpretability of biomarker signatures for a given 

prediction accuracy 14,15,34.  

The Immunity2 module was identified as a strong prognostic factor for 

disease-free survival (strong expression of this metagene is correlated with a good 

outcome), regardless of the characteristics of the tumor (NPI score, tumor size, tumor 

grade and lymph node status). It clearly suggest the presence of an hemopoietic 

infiltrate, composed of activated cytotoxic T cells, B cells, myeloid cells, NK cells and 

neutrophils. This module includes adhesion molecule-associated genes (SELL, 

ITGB2), and genes encoding proteins involved antigen processing and presentation 

(CD74 or ligand, HLA-DRA), B-lymphocyte cell surface molecules (PTPRC, ITGB2, 

HLA-DRA), the caspase cascade (CASP1), complement pathway (C1QA, C1QB), 

CTL-mediated immune responses to target cells (ITGB2, CD3D, GZMB), dendritic 
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cell regulation of Th1 and Th2 development (CD2, IL7R), granzyme-mediated 

apoptosis (GZMA, GZMB), IL12-mediated signaling events (CD3D, HLA-DRA, 

GZMA, LCK), the IL2 signaling pathway (LCK), interleukin-3, 5 and GM-CSF 

signaling (HCK, BLNK, CSF2RB), T-cell surface molecules (PTPRC, CD3D, CD2, 

ITGB2), and the T-cell receptor signaling pathway (PTPRC, CD3D, HLA-DRA, LCK).  

Burstein et al. 25 identified four different TNBC subtypes (LAR, MES, BLIS, 

BLIA) with the identification of similar pathways and a prognostic value for the BLIA 

subgroup similar to that for the signature identified in our study. This subgroup 

displays an upregulation of B-cell, T-cell, and natural killer cell immune-regulating 

pathways and an activation of STAT transcription factor-mediated pathways. The 

authors showed that the prognosis was worse for basal-like immune-suppressed 

tumors than for basal-like immune-activated tumors, for both disease-free survival 

(p=0.04) and disease-specific survival (p=0.039). 

Several recent studies have demonstrated the importance of tumor-infiltrating 

lymphocytes (TILs) in controlling the clinical progression of various epithelial cancers 

35. In breast cancer, recent advances in gene expression profiling have revealed an 

association between immune signatures and favorable outcomes 29,36. A gene 

signature enriched in cytotoxic CD8+ T-cell genes and genes associated with natural 

killer cell activity has been reported 37. However, the ability of CD8+ T cells to control 

human breast cancer is probably counteracted by the presence of 

immunosuppressive cells, CD4+ T-regulatory cells or macrophages: 

immunohistochemistry (IHC) analysis of tissue microarray data for 179 treatment-

naive breast tumors revealed that high levels of macrophages and CD4+ T cells were 

correlated with poor overall survival, whereas a combination of high levels of CD8+ T 

cells and low levels of macrophages and CD4+ T cells was correlated with higher 
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overall survival 38. Intratumoral B cells have also been associated with a favorable 

prognosis in breast cancer 39. In ER-negative breast cancers, a STAT1 signaling 

metagene 16, and a B-cell metagene 19 were found to be associated with better 

outcomes. Another group identified an immune response-based prognostic gene 

module (C1QA, XCL2SPP1, TNFRSF17, LY9, IGLC2, HLA-F) associated with a 

better prognosis than for other ER-negative breast cancers, regardless of lymph 

node status and lymphocytic infiltration 40. According to Bertucci et al. 41, the 

immunomodulatory subtype (overlapping with medullary breast cancers, a rare form 

of TNBC with a prominent lymphocytic reaction) is associated with a favorable 

prognosis. The two Immunity modules identified in this study had many biological 

connections with other eigth immune prognosis signatures published for 

TNBC18,19,20,21,22,23,24,25.  

Neoadjuvant chemotherapy is increasingly being used for TNBC, because 

these tumors have a poor prognosis, are assumed to be chemosensitive and no 

alternative specific systemic treatment is available. Patients with a complete 

pathologic response (pCR) after neoadjuvant chemotherapy have a better outcome 

than those with residual disease, and pCR is a good surrogate for long-term survival 

and cure in this specific subgroup9,42.  

The Immunity2 metagene was not found to be predictive of response to neoadjuvant 

chemotherapy in TNBC (272 fine needle aspirations of TNBC samples for which 

information about pCR or its absence was available from the eight datasets 

previously published by Ignatiadis et al. 16) (data not shown). This lack of relationship 

may have resulted from the use of fine needle aspiration biopsy samples. The 

Immunity2 genes, which are largely expressed in the stromal environment, were less 
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strongly expressed in fine needle aspiration samples than in tumor samples 

(Supplemental Figure S23).  

However, intratumoral immune responses are known to be correlated with clinical 

outcomes in TNBC. This may reflect the role of immune cells in the activity of 

cytotoxic chemotherapeutic agents. Some chemotherapeutic drugs, such as 

anthracyclines, act not only through direct cytotoxic effects, but also by activating 

CD8+ T-cell responses. Conflicting results have been published on the ability of other 

immune-based classifiers to predict outcome in TNBC. High intratumoral levels of 

CD8+ T cells 43 or TILs 36,44 are associated with better clinical responses to 

anthracycline-based chemotherapy. West et al. 45 reported that high levels of 

lymphocyte gene expression were associated with a high rate (74%) of complete 

pathological responses to neoadjuvant anthracycline-based chemotherapy. In 2011, 

Sabatier et al. 20 showed, by gene-expression profiling, that „Immune High‟ patients 

(59%) were more likely to present pCR than „Immune Low‟ patients (43%), but this 

difference was not significant (p=0.29). In 2014 46, they showed that „PDL1 mRNA 

expression high‟ (57%) patients presented higher rates of pCR than „PDL1 mRNA 

expression low‟ (43%) patients (p<0.001). Wimberley et al. 47 showed that PDL1 

protein levels in the epithelium and stroma were correlated with pCR only in hormone 

receptor-positive and HER2-amplified breast cancers. Denkert et al. 44 demonstrated 

the importance of TIL and immune gene expression signatures for predicting pCR in 

breast carcinoma. However no significant difference in pCR rate was detected 

between lymphocyte-predominant breast cancer (LPBC) and no-LPBC in the 

anthracycline-taxane subgroup.  

However, the results of these studies suggest that clinical outcomes in ER-negative 

breast cancers, including TNBC in particular, are strongly influenced by tumor 
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immune responses and are, thus, highly responsive to immunotherapies. The 

possible use of immunotherapy approaches to treat TNBC (tumor vaccine 

approaches, immune-checkpoint inhibitors, antagonists of immunosuppressive 

molecules and adoptive cell therapies) should be investigated in detail 48.  

The other metagenes studied had no significant prognostic or predictive value. 

However, they identified sound biological networks providing opportunities for 

therapeutic intervention. The Immunity1 metagene included genes involved in the 

interferon α/β signaling pathway or cytokine signaling (STAT1, IRF7, IRF27, OAS1, 

OAS2, PMSB8, XAF1, IFIT1, IFITM1, ISG15, IGS20, IF6, MX1), the Toll-like receptor 

signaling pathway (STAT1, CXCL9, CXCL10, CXCL11, CCL5, IRF7), cell-cycle 

checkpoints and DNA synthesis (PSMB8, PSMB9). Patients displaying strong 

expression of this metagene often also had high levels of Immunity2 and 

Proliferation/DNA damage metagene expression, suggesting the possible existence 

of common pathways. The IDO1 (indoleamine 2,3-dioxygenase 1) gene is a 

particularly interesting potential target. It encodes a tryptophan-degrading enzyme 

known to suppress antitumor CD8+ T cells and it contributes to the inhibition of 

anticancer immune responses 48. This immunosuppressive enzyme is actually 

investigated as a promising candidate target in cancer immunotherapy. 

A subset of TNBC tumors strongly expresses AR-regulated genes 49. AR 

expression has been reported to be lower in triple-negative breast tumor cells than in 

other types of breast cancer. The overall frequency of AR expression in carcinoma 

cells varies considerably between studies (0-53%) 50,51. We identified strong 

expression of AR pathway genes in 25% of our population. The biological role of 

androgens in TNBC remains a matter of debate. Immunohistochemical studies 

investigating the presence of AR in tumor cells have reported conflicting results for 
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clinical outcome; some studies have suggested that AR expression is advantageous 

for survival 52–54, whereas others found no significant effect 55.
 
Lehmann et al. found 

that the LAR subtype of TNBC displayed the lowest frequency of pCR (10%). The 

presence of AR in a subset of TNBC patients suggests that androgenic pathways in 

tumor cells could be targeted in at least some TNBC patients. The widespread 

availability of agents targeting the AR also makes this approach potentially 

appealing, as it would be straightforward to incorporate such treatment into clinical 

practice.  

The Matrix/Invasion1 metagene included genes associated with β1 integrin 

cell surface interactions, ECM-receptor interaction or integrin family cell surface 

interactions (NID1, TGFBI, COL5A1, COL5A2, COL6A3, COL3A1, COL1A1, 

COL1A2, COL11A1, FN1, FBN1, THBS1, THBS2), the TGF β signaling pathway 

(DCN, COMP, THBS1, THBS2), the inhibition of matrix metalloproteases (MMP2, 

TIMP3), and the AP-1 transcription factor network (DCN, COL1A2, MMP2). 

Metalloproteinases (MMPs) and their tissue inhibitors are involved in several key 

pathways of tumor growth, invasion and metastasis 56,57. The expression and activity 

of MMPs has been linked to advanced stages of breast cancer, greater tumor 

invasion and the construction of metastatic formations 58,59,60. Some studies have 

highlighted the importance of matrix MMP expression by stromal cells a prognostic 

factor in the TNBC subtype 61. These molecules are thus attractive targets for drug 

development 62.  

The Matrix2 metagene included genes associated with the AP-1 transcription factor 

network (FOS, EGR1, FABP4, DUSP1), the EGR receptor signaling pathway (FOS, 

DUSP1, EGR1), the Wnt or ALK signaling pathway (CAV1), the MAPK signaling 
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pathway (FOS, DUSP1) or Trk receptor signaling mediated by the MAPK pathway 

(FOS, EGR1), the mTOR signaling pathway (IGF1), the PPAR signaling pathway 

(ADIPOQ, CD36, FABP4), and androgen-mediated signaling (FOS, EGR1). These 

pathways may contribute to cell motility and tumor cell invasion 63 and play a 

prominent role in epithelial-mesenchymal transition (EMT) and in stem cells. These 

metagenes are strongly expressed in mesenchymal cells and metaplastic breast 

cancers 4. Metaplastic breast cancers have lineage plasticity, including spindle cell 

foci, and display osseous or cartilaginous differentiation 64. Some drugs targeting the 

pathways relating to the metagenes identified here may be of particular interest for 

the treatment of TNBC (PI3K/mTOR inhibitor, Wnt/β catenin inhibitor). 

Conclusion 

In conclusion, our 167-gene TNBC molecular signature, consisting of six metagenes, 

appears to be particularly robust for the identification of TNBC subtypes. 

Furthermore, expression of the Immunity2 metagene was strongly correlated with 

prognosis, and many biological targets have been identified within the corresponding 

biological network. These findings open up interesting new possibilities for the 

development of new therapeutic interventions. 

 

Patients and Methods  

Data normalization and quality control  

We collected 21 publicly available datasets (described in the supplementary data) 

containing raw gene expression data from microarray analyses (Affymetrix© 

GeneChip Human Genome HG-U133A and HG-U133Plus2) of 3247 primary human 

breast cancer samples. The data were normalized by the robust multichip average 
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(RMA) procedure from the EMA R package 65. The datasets were split into training 

(HGU-133A Affymetrix© arrays, 12 datasets, n=1,995) and validation (HGU-

133Plus2 Affymetrix© arrays (9 datasets, n=1,014) sets. We also collected two large 

datasets, to validate our classification: The Ignatiadis dataset (n=996) and the 

METABRIC dataset (n=1992). Data processing for these two datasets has been 

described elsewhere16,17. 

 

Determination and preprocessing of triple-negative breast cancer samples  

We identified the TNBC samples in each dataset, using a bimodal mixture of two 

Gaussian distributions for ER and HER2 gene expression, and the median value for 

PR expression. 

The training, validation and Ignatiadis datasets 

Batch effects were eliminated by the median centering of each probe-set across 

arrays and by a, independent quantile normalization of all arrays for each dataset. 

We controlled for outliers with the Array Quality Metrics R package.  

The METABRIC set 

We fitted a linear model (limma R package) to remove the batch effect and probes 

were filtered according to three criteria: probe quality 66, GC content and presence in 

more than 5% of the samples. We centered expression values, using the R function 

scale(). 

 

Gene selection process  

Consensus clustering was applied to the training set, to determine the optimal 

number of robust gene clusters for the most variant genes (standard deviation>0.8). 

We investigated the enrichment of each gene cluster in particular types of genes. We 
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then identified known biological networks, for each gene cluster separately, using 

String© database software version 9.1 (http://string-db.org/)67. 

We then applied a two-step selection process: 1) we selected strong biological 

networks by retaining only genes for which connection scores of at least 0.7 were 

obtained with String© database software, 2) within each biological network, we 

selected groups of genes with for which expression levels were correlated, with a 

correlation coefficient of at least 0.5.  

For each dataset (the training, validation, Ignatiadis and METABRIC sets), we 

applied a hierarchical clustering procedure to the TNBC gene expression (GE) 

profiles, using the selected genes to visualize the optimal number of stable TNBC 

subtypes.  

 

Prognostic analysis 

Prognostic analysis was performed on the METABRIC set published by Curtis et al. 

17. 

Expression data were summarized by a metagene for each gene cluster (details in 

the supplementary material). The clinical and pathological variables available for 

each dataset are described in the supplementary data. Qualitative variables were 

compared in ² tests or Fisher‟s exact tests, as appropriate. Quantitative variables 

were analyzed in Student‟s t-tests. Survival analyses were performed separately for 

patients with and without chemotherapy. Survival analyses were performed, with the 

Kaplan-Meier estimate of the survival function. The endpoint of these analyses was 

breast cancer-specific survival (BCSS). Survival curves were compared in log rank 

tests. Hazard ratios were estimated with Cox‟s proportional hazard model.  
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Expression of the gene signature in human triple-negative breast cancer cell 

lines  

We downloaded the gene expression profiles of the human cancer cell lines from the 

Cancer Cell Line Encyclopedia (CCLE)68 of Novartis/the Broad Institute and the 

Cancer Genome Project (CGP)69 of the Sanger Institute. We normalized all the cell 

lines from different tissues together.  

 

All statistical analyses were performed with R software (www.cran.r-

project.org). P-values<0.05 were considered statistically significant. 

 

Abbreviations 

TNBC: Triple-negative breast cancer  

ER: Estrogen receptor 

PR: Progesterone receptor 

HER2: Human epidermal growth factor receptor 2 

BC: Breast cancer 

RMA: Robust multichip average  

GE: Gene expression  

BCSS: Breast cancer-specific survival  

CCLE: Cancer Cell Line Encyclopedia  

CGP: Cancer Genome Project 

CDF: Consensus distribution function  

AR: Androgen receptor 

M: Mesenchymal  

MSL: Mesenchymal stem-Like  
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IM: Immunomodulatory  

LAR: Luminal androgen receptor  

pCR: Pathological complete remission  

no CT: No chemotherapy  

NPI: Nottingham Prognostic Index  

BC_CL: Breast cancer cell lines 

TNBC_CL: Triple-negative breast cancer cell lines  

TILs: Tumor-infiltrating lymphocytes 

IHC: Immunohistochemistry  

EMT: Epithelial-mesenchymal transition  
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Table 1A. Survival analysis (disease-specific survival). Chemotherapy-treated 

population. Univariate and multivariate analysis. 

139 triple-negative breast 
cancer patients 

Univariate analysis  Multivariate analysis 
DS-survival 
HR [95% CI] 

 p value 
 

DS-survival 
HR [95% CI] 

p value 
 

Menopausal 
status 

Pre 1   
Post 1.56 [0.95-2.55] 0.08 

Tumor size (mm) <20 mm 1  
>20 mm 1.03 [0.58-1.82] 0.92 

Tumor grade II 1   
III 1.23 [0.45-3.39] 0.69 

Lymph node 
status 

0 1  
1 0.84 [0.42-1.65] 0.61 

NPI score <5.4 1  1  
>5.4 2.15 [1.28-3.60] 0.003 2.30 [1.36-3.89] 0.002 

Cellularity Low 1   
Moderate 0.57 [0.22-1.46] 0.24 
High 0.59 [0.25-1.39] 0.23 

 P53 status Wild-type 1  
Mutant 2.42 [1.15-5.09] 0.02 

Immunity1 
metagene 
expression 

High  1  
Low 0.97 [0.60-1.58] 0.91 

Immunity2 
metagene 
expression 

High 1  1 / 
Low 2.59 [1.54-4.34] 0.0002 2.68 [1.59-4.52] 0.0002 

Proliferation/DNA 
damage metagene 
expression  

High 1   
Low 1.13 [0.69-1.84] 0.63 

AR-like metagene 
expression  

High 1  
Moderate 1.07 [0.59-1.94] 0.82 
Low 0.98 [0.50-1.94] 0.96 

Matrix/Invasion1 
metagene 
expression 

High 1  
Low 1.23 [0.76-2.01] 0.40 

Matrix2 metagene 
expression 
 

High 1  
Low 0.99 [0.61-1.61] 0.96 

Abbreviations: NPI, Nottingham Prognostic Index; AR, androgen receptor; HR, hazard ratio; CI, confidence 
interval. 
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Table 1B. Survival analysis (disease-specific survival). Chemotherapy-treated 

population. Two univariate models. Combination of NPI score and Immunity2 

metagene expression. 

139 triple-negative breast 
cancer patients 

DS-survival 
HR [95% CI] 

 p value 
 

NPI 
score/Immunity2 
metagene 
expression  

NPI1-2/HighI2 1  
NPI1-2/LowI2 2.90 [1.51-5.56] 0.001 
NPI3 3.98 [2.00-7.92] 8.72 10-5 

 

139 triple-negative breast 
cancer patients 

DS-survival 
HR [95% CI] 

 p value 
 

NPI 
score/Immunity2 
metagene 
expression  

NPI1-2/HighI2 1  
NPI1-2/LowI2 2.91 [1.51-5.59] 0.001 
NPI3/HighI2 2.31 [0.96-5.57] 0.06 
NPI3/LowI2 6.30 [2.89-13.78] 3.87 10-6 

Abbreviations: NPI, Nottingham Prognostic Index; I2, Immunity2; HR, hazard ratio; CI, confidence interval. 

 

NPI = [0.2 x S] + N + G 

S: tumor size (cm) 

N: number of lymph nodes involved (0=1, 1-3=2, >3=3) 

G: tumor grade according to Elston and Ellis (Grade I=1, Grade II=2, Grade III=3) 
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Table 2A. Survival analysis (disease-specific survival). Chemotherapy-naive 

population. Univariate and multivariate analysis. 

 
115 triple-negative breast 
cancer patients 

Univariate analysis  Multivariate analysis 

DS-survival 
HR [95% CI] 

 p value 
 

DS-survival 
HR [95% CI] 

p value 
 

Menopausal 
status 

Pre 1   
Post 1.31 [0.56-3.06] 0.53 

Tumor size (mm) <20 mm 1  
>20 mm 2.36 [1.01-5.48] 0.04 

Tumor grade I-II 1   
III 1.33 [0.51-3.49] 0.56 

Lymph node 
status 

0 1  
1 3.66 [1.65-8.11] 0.001 

NPI score <3.4 1  1  
3.4-5.4 1.36 [0.47-3.96] 0.57 1.55 [0.53-4.51] 0.43 
>5.4 10.69 [2.74-41.76] 0.001 12.03 [3.05-47.50] 0.0004 

Cellularity Low 1   
Moderate 1.91 [0.54-6.71] 0.31 
High 1.42 [0.41-4.90] 0.58 

P53 status Wild-type 1  
Mutant 0.90 [0.17-4.63] 0.90 

Immunity1 
metagene 
expression  

High 1  
Low 1.56 [0.76-3.19] 0.22 

Immunity2 
metagene 
expression  

High 1  1  
Low 2.33 [1.09-4.95] 0.03 2.42 [1.13-5.16] 0.02 

Proliferation/DNA 
damage metagene 
expression  

High 1    
  
  

Low 1.14 [0.56-2.32] 0.72 

AR Like metagene 
expression 

High 1  
Moderate 0.96 [0.42-2.20] 0.92 
Low 0.74 [0.28-2.00] 0.56 

Matrix/Invasion1 
metagene 
expression  

High 1  
Low 0.48 [0.23-1.01] 0.06 

Matrix2 metagene 
expression 

High 1  
Low 1.31 [0.64-2.66] 0.46 

Abbreviations: NPI, Nottingham Prognostic Index; AR, androgen receptor; HR, hazard ratio; CI, confidence 
interval. 
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Table 2B. Survival analysis (disease-specific survival). Chemotherapy-naive 

population. Univariate analysis. Combination of NPI score and Immunity2 metagene 

expression. 

115 triple-negative breast 
cancer patients 

DS-survival 
hazard Ratio [95% CI] 

 p value 
 

NPI 
score/Immunity2 
metagene 
expression 

NPI1-2/HighI2 1  
NPI1-2/LowI2 2.13 [0.95-4.78] 0.07 
NPI3 12.89 [4.07-40.82] 1.37 x 

10-5 

Abbreviations: NPI, Nottingham Prognostic Index; I2, Immunity2; HR, hazard ratio; CI, confidence interval. 
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Figure 1 

Methodology flow chart  
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Figure 2 

Heatmaps of the selected genes in the TNBC training set (upper left) and the 

TNBC validation sets (upper right: validation, lower left: Ignatiadis, lower right: 

METABRIC). 
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Figure 3 

String Software connections between our Immunity1 and Immunity 2 genes 

and the genes of eight previously published prognostic immune signatures. 

Stronger associations between genes are represented by thicker lines. 

Associations between genes with a coefficient < 0.9 are shown in green.  

Associations between genes with a coefficient  ≥ 0.9 are shown in red.  

Associations between genes with a coefficient between 0.4 to 0.7 are not 

shown. 
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Figure 4 

(A) Kaplan-Meier plots. Disease-specific survival of the chemotherapy-treated 

population (n=139). NPI score. Immunity2 metagene. NPI score/Immunity2 

metagene.  

(B) Kaplan-Meier plots. Disease-specific survival of the noCT population (n=115). 

NPI score. Immunity2 metagene. NPI score/Immunity2 metagene.  
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Figure 5 

(A) Boxplots of gene expression for the Immunity 1 and Immunity 2 metagenes, in 

each breast cancer cell line subtype from the CCLE. 

(B) Boxplots of gene expression for the Immunity 1 and Immunity 2 metagenes in 

each breast cancer cell line subtype from the CGP. 
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We collected eight publicly available datasets from the following studies: 

EORTC10994, I-SPY-1, LBJ/INEN/GEICAM, MDACC trial, TOP, MAQCII/MDACC, 

MAQCIII, USO-02103, all of which used Affymetrix GeneChip Human Genome HG-

U133A arrays. This series was described by Ignatiadis et al.2 for an analysis of the 

responses of various TNBC molecular subtypes to neoadjuvant chemotherapy 

(anthracycline, with or without taxane; n=996). Raw GE values for each dataset were 

normalized independently, for identification of the TNBC samples in each dataset. 

 

The METABRIC set 

We collected the METABRIC -Molecular Taxonomy of Breast Cancer 

International Consortium- dataset published by Curtis et al.3, which was established 

for analysis of the prognosis of the various molecular subtypes of TNBC. We 

normalized the 1992 samples together, using scripts and Rdata provided by the 

authors.  

 

Determination of triple-negative status 

The Affymetrix probes 205225_at, 208305_at and 216836_s_at were chosen, 

to provide information about ER, PR and HER2 expression, respectively4. For the 

Metabric dataset, after a quality control test, the Illumina probes ILMN_1678535, 

ILMN_1811014, and ILMN_2352131 were chosen to provide information about ER, 

PR and HER2 expression, respectively. A density plot of ER, PR and HER2 gene 

expression in each dataset showed a bimodal distribution for ER and HER2, but not 

for PR (Supplemental Figure S24). We identified the TNBC samples in each dataset 

as follows: the distribution of ER and HER2 expression was analyzed empirically, with 

a two-component Gaussian mixture model, and parameters for bimodal filtering were 
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estimated with the R Mclust package. The median value was used as the cutoff for PR 

expression in each dataset.  

 

Preprocessing of triple-negative samples 

Affymetrix© platform 

For each dataset (training, validation and Ignatiadis), we used the R 

arrayQualityMetrics package on an Affybatch object to filter out outliers. We excluded 

samples detected as outliers by at least two of the following methods: distances 

between arrays, boxplots, relative log expression (RLE), normalized unscaled 

standard error (NUSE), MA plots, spatial distribution of M. Raw GE values for the 

TNBC samples in each dataset (training, validation and Ignatiadis) were normalized 

independently. The optimal microarray probe set to represent a gene was selected 

with the R JetSet package. This package developed scoring methods for the 

assessment of each probe set for specificity, coverage, and degradation resistance. 

For each dataset, batch effects were removed by the median centering of each probe 

set across arrays and the quantile normalization of all arrays separately for each set. 

 

Illumina© platform 

We used the Illumina© probe quality score introduced by Barbosa-Morais in 

2010 to ensure that all the probes used were of high quality (deleting probes scored 

as “bad” or “no match”). Probes were filtered on the basis of three criteria: probe 

quality5, GC content between 38% and 64% and presence in more than 5% of the 

samples (n = 20,009 probes). We eliminated any batch effects associated with sample 

collection sites, by fitting a linear model (R limma package). Three samples were 

300 Neoadjuvant and Immunity



excluded because of missing data. We then chose the most variant probes as the 

optimal probe set. We centered expression values, using the R function scale. 

 

1) Establishment of the TNBC classifier 

Gene selection process  

Consensus clustering was applied to the training set, to determine the optimal 

number of robust gene clusters from the most variant genes (standard deviation > 0.8) 

(ConsensusClusterPlus R package). Cluster robustness was assessed by hierarchical 

clustering (1,000 iterations) with a ward inner, final linkage and Pearson distance. The 

optimal number of clusters was determined from the cumulative distribution function 

(CDF), which plots the corresponding empirical cumulative distribution, defined over 

the range [0,1], and by calculating the proportional increase in the area under the CDF 

curve. The number of clusters was set as that at which an increase in cluster number 

(k) did not lead to a corresponding marked increase in CDF area. We calculated 

Pearson’s correlation coefficient for the relationships between genes within the same 

cluster, to assess the heterogeneity of each gene cluster.  

Each gene cluster was tested for gene enrichment (biological process (BP), 

molecular function (MF), cellular component (CC)) by a conditional test for 

overrepresentation, in the R runHyperGO package.  

We then used the String© database (http://string-

db.org/help/index.jsp?topic=/org.string-db.docs/ch04.html)6 to identify biological gene 

networks. String© is a database of known and predicted protein interactions. The 

interactions include physical and functional associations derived from four sources: 

genomic context, high-throughput experiments, conserved coexpression, previous 

knowledge. For each gene cluster, we excluded genes that were not connected to any 
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of the other genes present in the cluster. We then applied a two-step selection process: 

1) we selected strong biological networks, by retaining genes with connection scores 

of at least 0.7 to each other, according to the String database 2) within each biological 

network, we then selected groups of genes with correlated patterns of expression, with 

correlation coefficients of at least 0.5. For this step, we used Cytoscape 

(http://cytoscapeweb.cytoscape.org), an open-source software platform for visualizing 

complex networks and integrating them with any type of attribute data. Attribute data, 

like correlation, variance and interquartile range, were calculated from the expression 

data matrix.  

After selection, we checked that the various genes selected from the same 

cluster clustered together again (R package ConsensusClusterPlus). We also 

assessed gene enrichment in each of the gene clusters. 

 

Metagene identification 

For each dataset (training, validation, Ignatiadis and METABRIC), each gene 

cluster was used to define a metagene (for the Affymetrix© platform: from the 167 

selected genes; for the METABRIC set, we used the 153 genes common to the 

preprocessed METABRIC expression matrix and the selected genes matrix from the 

Affymetrix© platform). Metagene expression was assessed by calculating the median 

value for the normalized expression values of all probesets in the respective gene 

clusters for each sample. For each dataset, we calculated the correlation between 

expression levels for the various metagenes, using the R psych package.  We 

generated a scatter plot of the metagene matrices, with bivariate scatter plots, 

histograms, and Pearson’s correlation coefficient. The metagene value for each 
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sample was then discretized as “high” or “low” expression or as “low”, “moderate” and 

“high” expression, depending on the distribution of expression values for the metagene 

concerned. 

 

Classification of TNBC samples  

In each dataset, hierarchical clustering was applied to the TNBC GE profiles, 

using the selected genes to visualize the optimal number of stable TNBC subtypes 

(ConsensusClusterPlus R package). We identified six stable TNBC subtypes, using 

the same decision rules as described in Materials and Methods (gene selection 

process section). We checked the concordance between each of the validation sets 

and the training set (Pearson’s correlation coefficient for the relationship between 

centroids). Centroid expression values were determined by calculating the mean 

normalized expression values of all samples in the sample cluster, for each probe set. 

For each TNBC sample, we compared our classification with those of Lehmann 

et al. and Curtis et al. (c² test p value). 

 

2) Analysis of prognosis 

We assessed the prognostic classification, by collecting the independent 

dataset described above (METABRIC set), which contained data for gene expression 

and clinical variables. We selected TNBC samples and the data were preprocessed as 

described above. 

The following clinical and pathological variables were available: age, 

menopausal status, histological type, tumor size, tumor grade according to the Elston 

and Ellis grading system, number of lymph nodes involved, number of lymph nodes 
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removed, Nottingham Prognostic Index score, tumor cellularity, p53 mutation status, 

treatment type, last follow-up status and the time at which last-follow-up occurred.  

We performed descriptive statistics and survival analyses separately for the 

samples of patients with and without chemotherapy, as follows. 

1) We assessed the expression of the metagenes in each population. Given their 

unimodal distribution, the expression of each metagene was classified as “low” or 

“high”, based on the median value for five metagenes (Immunity1, Immunity2, 

Proliferation/DNA damage, Matrix/Invasion1 and Matrix2). For the AR-like metagene, 

we used three classes (low expression: up to and including the first quartile, moderate 

expression: between the first and third quartiles, high expression: third quartile or 

higher). 

2) We performed a descriptive analysis of these two populations, as described above.  

 3) Survival analyses were performed by calculating Kaplan-Meier estimates of the 

survival function. The endpoint of these analyses was breast cancer-specific survival 

(BCSS) (death from breast cancer). Time-censoring analyses were performed with a 

right censoring of events from 1 to 20 years. Log rank tests were used to compare 

survival curves. Hazard ratios were estimated with Cox’s proportional hazards model. 

Only variables significant in the univariate analysis were included in the multivariate 

model. However, some variables (size, grade and lymph node status) were 

systematically excluded due to redundancy with NPI score and p53 status the large 

proportion of missing data. 
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3) Expression of our gene signature in human triple-negative breast cancer cell 

lines  

We assessed the expression of our signature in “in vitro” models, as a means 

of validating our classification and its prognostic value. 

We used the gene expression profiles of the human cancer cell lines from the 

Cancer Cell Line Encyclopedia (CCLE)7 of Novartis/the Broad Institute and from the 

Cancer Genome Project (CGP)8 of the Sanger Institute. All cell lines from different 

tissues were normalized together. The global gene expression signal is shown for all 

cancer cell lines and breast cancer cell lines from the CCLE (1036 and 58, respectively) 

and CGP (727 and 39, respectively). Box plots were generated for the expression of 

the Immunity 1 and Immunity 2 metagenes in the CCLE and CGP, according to breast 

cancer subtype (CCLE: 31 TN, 15 Her2+ and 13 ER+Her2- cell lines; CGP: 23 TN, 8 

Her2+ and 8 ER+Her2- cell lines). 
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Figure S1 

Identification of gene clusters. 

(A) The consensus distribution function (CDF), showing the cumulative distribution 

from consensus matrices at a given cluster number (k). 

(B) The optimal cluster number is 4, corresponding to the point in which the relative 

change in area (Δ) under the CDF plot does not change with increasing k. 

(C)  Consensus clustering for four gene clusters (1,000 iterations, ward inner and final 

linkage, Pearson distance). 

(D)  Tracking plot showing the consensus clusters of genes (in columns) for each k (in 

rows). 

 

Figure S2 

Gene ontology analysis for the four main gene clusters identified.  

 

Figure S3 

(A) Heatmap showing the 830 most variant genes in the 262 TNBC samples (training 

set). 

(B) Distribution of 2 by 2 gene expression correlation (Pearson score) for each of the 

four main gene clusters.  

 

Figure S4 
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String database software confidence view of the Immunity genes cluster. Stronger 

associations between genes are represented by thicker lines (medium confidence 

score=0.4). 

 

Figure S5 

Cytoscape View for the Immunity genes cluster. GE correlations between genes 

are indicated by colored lines, from green to red.  GE correlation  > 0.5 (third 

quartile of the distribution of correlations), shown in red. GE variability is indicated 

by points, the size and color (from green to red) of which are proportional to the 

variability.  

 

Figure S6 

(A) Heatmap showing the relative expression of 167 selected genes in 262 TNBC 

samples from the training set. 

(B) Table of Pearson correlation coefficient values for the correlations between 

metagenes. 

 

Figure S7 

Heatmaps generated after consensus gene clustering before and after the gene 

selection process and the consensus distribution function (CDF) curve associated. 
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Figure S8 

Cytoscape view of a “Prototype Immunity2 TNBC Sample”. Gene expression levels 

are represented by a circle, the size and color (from green to red) of which are 

proportional to the expression level.  

 

Figure S9 

Comparison between our classification (HBK classification) and those of Lehmann 

and Curtis for each TNBC sample from the METABRIC set.  

 

Figure S10 

(A) Comparison between our TNBC classification and Lehmann’s classification, for 

the METABRIC set. Barplots representing the percentage of samples assigned to 

each of Lehmann’s subtypes, for each of our subtypes.  

(B) Comparison between Lehmann’s TNBC classification and our classification, for 

the METABRIC set. Barplots representing the percentage of samples assigned to 

each of our subtypes, for each of Lehmann’s subtypes. 

 

Figure S11 

Heatmap of the gene expression profiles of the eight immune prognostic signatures 

previously published, applied to the METABRIC dataset. The samples were 

ordered according to our classification of Low/High ‘Immunity2’ metagene 

expression. 
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Figure S12 

Kaplan-Meier plots. Disease-specific survival of the METABRIC population 

(n=254), according to each of the eight previously published immune prognostic 

signatures. 

 

Figure S13 

Distribution histograms for the eight previously published immune prognostic 

metagenes and for the Immunity 2 metagene. Pearson correlation coefficient 

values and pairwise scatter plots. 

 

Figure S14 

Distribution histograms for the Immune metagenes and the immune pathway 

metagenes published by Gatza et al. and Palmer et al.. Pearson correlation 

coefficient values and pairwise scatter plots. 

 

Figure S15 

Boxplots of gene expression for the Immune metagenes and immune pathway 

metagenes (published by Gatza et al. and Palmer et al.) in all cancer cell lines 

from the CCLE and the CGP. 

 

Figure S16 
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Boxplots of gene expression for the Immune metagenes and immune pathway 

metagenes (published by Gatza et al. and Palmer et al.) in each subtype of breast 

cancer cell lines from the CCLE and the CGP. 

 

Figure S17 

Heatmap generated after consensus clustering of the Immunity 2 genes in the 

white blood cell populations from Palmer et al. 

 

Figure S18 

Boxplots of the stromal contribution to global gene expression evaluated with PDX 

RNAseq data (Isella et al.), for each of the gene clusters for our signature. 

 

Figure S19 

Representation of the various genes available (with or without US Food and Drug 

Administration approval) for the targeting of each of the metagenes in our 

signature. First line: point size is proportional to the number of genes in the 

metagene divided by the total number of genes in the signature; Second line: point 

size is proportional to the number of drugs in the metagene divided by the total 

number of drugs; Third line: point size is proportional to the number of genes in the 

metagene divided by the number of drugs targeting the metagene. 

 

Figure 20 
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Distribution histograms for the Immunity 2 metagene, TILs metagene and the PD1, 

PDL1, CTLA4 genes and their metagenes, Pearson correlation coefficient values 

and pairwise scatter plots. 

 

 

Figure S21 

Boxplots of gene expression for Immune metagenes, the TILs metagene and the 

PD1, PDL1, CTLA4 genes and their metagenes, in all cancer cell lines from the 

CCLE and the CGP. 

 

Figure S22 

Kaplan-Meier plots. Disease-specific survival of the METABRIC population 

(n=254) according to expression of the PD1, PDL1, CTLA4, TILs metagenes. 

 

Figure S23 

Boxplots of gene expression for each gene cluster of our signature in tumor 

samples, fine needle aspiration samples and core biopsy samples, as assessed 

on the Affymetrix platform. 

 

Figure S24 

Histograms of ER, HER2 and PR gene expression distribution in the training, 

validation and Metabric sets, and density plots of groups obtained by bimodal 

filtering (R Mclust package). 
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Table S1. Comparison of the chemotherapy-naive and chemotherapy-treated 

populations in the METABRIC dataset (characteristics of patients and tumors). 

Triple-negative breast cancer 
patients 

Chemotherapy-naive 
population 
 
115 samples 

Chemotherapy-treated 
population 
 
139 samples 
 

 

Characteristics N (%)- Median (range), Mean N (%)- Median (range), Mean p value 
Age Median (range) 

Mean 
64.0 (31-96) 
61.5 

49.6 (28-83) 
50.1 

1.2 10-11 

Menopausal 
status 

Pre 27 (0.23) 72 (0.52) 5.38 10-5 
Post 88 (0.77) 66 (0.47) 
Missing data 0 1 (0.01) 

Tumor size 
(mm) 

Median (range) 
Mean 

22 (0-80) 
24.8 

25 (1-182) 
31.3 

 

<20 mm 40 (0.35) 36 (0.26) 0.25 
>20 mm 75 (0.65) 101 (0.73) 
Missing data 0 2 (0.01) 

Tumor grade II 22 (0.19) 9 (0.07) 0.01 
III 88 (0.77) 128 (0.92) 
Missing data 5 (0.04) 2 (0.01) 

Lymph node 
status 

0 93 (0.81) 23 (0.17) < 2.2 10-16 
1 18 (0.16) 116 (0.83) 
Missing data 4 (0.03) 0 

NPI score <3.4 20 (0.17) 3 (0.02) 2.57 10-5 
3.4-5.4 88 (0.77) 105 (0.76) 
>5.4 7 (0.06) 31 (0.22) 

Cellularity Low 16 (0.14) 9 (0.06) 0.03 
Moderate 40 (0.35) 34 (0.24) 
High 58 (0.50) 93 (0.67) 
Missing data 1 (0.01) 3 (0.02) 

P53 status Wild-type 24 (0.21) 40 (0.29) 0.66 
Mutant 10 (0.09)  20 (0.14)  
Missing data 81 (0.70) 79 (0.57) 

Status at end 
point 

Alive 80 (0.73) 73 (0.53) 0.004 
Dead from cancer 31 (0.27) 66 (0.47) 

Abbreviations: NPI, Nottingham Prognostic Index. 
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Table S2. Survival analysis (disease-specific survival) with immune prognosis 

signatures previously published. Univariate and multivariate analysis. 

254 triple-negative breast cancer patients 
 

Univariate analysis  Multivariate analysis* Multivariate analysis** 

DS-survival 
HR [95% CI] 

p value 
 

DS-survival 
HR [95% CI] 

p value 
 

DS-survival 
HR [95% CI] 

p value 
 

Immunity2 metagene 
expression  

High 1     1  
Low 2.39 [1.57-3.64] 5.1 10-5     3.01 [1.08-8.39] 0.03 

Bianchini metagene 
expression 

High 1    
Moderate 0.83 [0.51-1.36] 0.46 
Low 1.01 [0.63-1.64] 0.97 

Rody metagene 
expression 

High 1  1  1  
Low 2.07 [1.21-3.54] 0.008 1.13 [0.57-2.23] 0.73 1.11 [0.41-3.00] 0.84 

Sabatier metagene 
expression 

High 1  1  1  
Low 2.06 [1.36-3.12] 0.0006 0.89 [0.39-2.04] 0.79 0.71 [0.27-1.83] 0.47 

Teschendorff  
metagene expression 

High 1  1  1  
Low 0.70 [0.46-1.06] 0.09 0.84 [0.54-1.30] 0.44 0.89 [0.55-1.46] 0.66 

Desmedt metagene 
expression 

High 1  1  1  
Moderate 2.24 [1.31-3.82] 0.003 1.27 [0.66-2.44] 0.47 1.36 [0.57-3.26] 0.49 
Low 2.33 [1.37-3.96] 0.002 0.94 [0.43-2.01] 0.87 0.83 [0.29-2.34] 0.72 

Tfh_Gu.Trantien  
metagene expression 

High 1  1  1  
Moderate 1.47 [0.85-2.55] 0.17 0.96 [0.46-2.01] 0.91 0.64 [0.23-1.78] 0.40 
Low 2.66 [1.61-4.40] 0.0001 1.30 [0.54-3.16] 0.56 1.04 [0.32-3.41] 0.94 

Th1_Gu.Trantien  
metagene expression 

High 1  1  1  
Moderate 1.91 [1.10-3.30] 0.02 1.17 [0.58-2.39] 0.66 1.16 [0.38-3.51] 0.80 
Low 2.66 [1.58-4.49] 0.0003 1.30 [0.55-2.93] 0.57 1.14 [0.33-3.93] 0.84 

Karn metagene 
expression 

High 1    
Low 0.74 [0.48-1.15] 0.19 

Burstein groups BLIA 1  1  1  
BLIS 1.92 [1.17-3.13] 0.01 1.19 [0.68-2.07] 0.55 1.41 [0.75-2.62] 0.28 
LAR 1.87 [1.07-2.27] 0.03 0.98 [0.53-1.80] 0.94 1.04 [0.53-2.06] 0.91 
MES 0.95 [0.47-1.92] 0.89 0.91 [0.45-1.84] 0.79 1.03 [0.49-2.15] 0.94 
UNCLASSIFIED 1.06 [0.31-3.60] 0.92 0.56 [0.16-1.96] 0.36 0.52 [0.14-1.97] 0.33 

 
* 9 multivariate models including NPI score, the Immunity2 metagene and each of the Rody, 
Sabatier, Teschendorff, Desmedt, Gu-Trantein Tfh, Gu-Trantien Th1, and Burstein 
signatures, one-by-one, in the model.  
HR of the ‘Immunity2’ metagene in each multivariate model:  

With Rody metagene: Immunity2 low expression= 2.44 [1.42-4.19], p=0.001 
With Sabatier metagene: Immunity2 low expression= 2.86 [1.23-6.65], p=0.01 
With Teschendorff metagene: Immunity2 low expression= 2.45 [1.57-3.83], p=8.64 10-5 
With Desmedt metagene: Immunity2 low expression= 2.69 [1.46-4.96], p=0.002 
With Tfh_Gu.Trantien  metagene: Immunity2 low expression= 2.19 [1.04-4.61], 

p=0.04 
With Th1_Gu.Trantien  metagene: Immunity2 low expression= 2.22 [1.13-4.37], 

p=0.02 
With Burstein  centroid: Immunity2 low expression= 2.49 [1.53-4.07], p=0.0003 

** global multivariate model with NPI score, the Immunity2 metagene and the Rody, Sabatier, 
Teschendorff, Desmedt, Gu-Trantein Tfh, Gu-Trantien Th1, and Burstein signatures.	
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Table S3. Survival analysis (disease-specific survival) with PD1, PDL1, CTLA4 and 

TILs metagenes. Univariate and multivariate analysis. 

 
 

254 triple-negative breast cancer patients 
 

Univariate analysis  Multivariate analysis* Multivariate analysis** 

DS-survival 
HR [95% CI] 

p value 
 

DS-survival 
HR [95% CI] 

p value 
 

DS-survival 
HR [95% CI] 

p value 
 

Immunity2 metagene 
expression  

High 1     1  
Low 2.39 [1.57-3.64] 5.1 10-5     4.67 [1.51-14.44] 0.007 

PD1 metagene 
expression 

High 1  1  1  
Low 2.42 [1.58-3.71] 4.6 10-5 1.48 [0.71-3.09] 0.29 5.99 [1.64-21.92] 0.007 

PDL1 metagene 
expression 

High 1  1  1  
Low 2.15 [1.42-3.27] 0.0003 0.78 [0.31-1.98] 0.60 0.33 [0.08-1.32] 0.12 

CTLA4 metagene 
expression 

High 1  1  1  
Low 2.01 [1.33-3.04] 0.0009 0.85 [0.43-1.68] 0.63 0.54 [0.19-1.57] 0.26 

TILs metagene 
expression 

High 1  1  1  
Low 2.00 [1.33-3.03] 0.001 0.67 [0.27-1.64] 0.38 0.53 [0.17-1.66] 0.28 

 
* 4 multivariate models including NPI score, the Immunity2 metagene and each of the PD1, 
PDL1 and CTLA4 metagenes, one-by-one, in the model.  
HR of the ‘Immunity2’ metagene in each multivariate model:  

With PD1 metagene: Immunity2 low expression= 1.88 [0.90-3.90], p=0.09 
With PDL1 metagene: Immunity2 low expression= 3.25 [1.27-8.34], p=0.01 
With CTLA4 metagene: Immunity2 low expression= 2.98 [1.47-6.02], p=0.002 
With TILs metagene: Immunity2 low expression= 3.75 [1.49-9.42], p=0.005 

** global multivariate model with NPI score, the Immunity2 metagene and the PD1, PDL1 
and CTLA4 metagenes. 
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Abstract

Introduction

HER2-positive breast cancer (BC) is a heterogeneous group of aggressive breast cancers,

the prognosis of which has greatly improved since the introduction of treatments targeting

HER2. However, these tumors may display intrinsic or acquired resistance to treatment,

and classifiers of HER2-positive tumors are required to improve the prediction of prognosis

and to develop novel therapeutic interventions.

Methods

We analyzed 2893 primary human breast cancer samples from 21 publicly available data-

sets and developed a six-metagene signature on a training set of 448 HER2-positive BC.

We then used external public datasets to assess the ability of these metagenes to predict

the response to chemotherapy (Ignatiadis dataset), and prognosis (METABRIC dataset).

Results

We identified a six-metagene signature (138 genes) containing metagenes enriched in dif-

ferent gene ontologies. The gene clusters were named as follows: Immunity, Tumor sup-

pressors/proliferation, Interferon, Signal transduction, Hormone/survival and Matrix

clusters. In all datasets, the Immunity metagene was less strongly expressed in ER-positive

than in ER-negative tumors, and was inversely correlated with the Hormonal/survival meta-

gene. Within the signature, multivariate analyses showed that strong expression of the
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“Immunity” metagene was associated with higher pCR rates after NAC (OR = 3.71[1.28–

11.91], p = 0.019) than weak expression, and with a better prognosis in HER2-positive/ER-

negative breast cancers (HR = 0.58 [0.36–0.94], p = 0.026). Immunity metagene expression

was associated with the presence of tumor-infiltrating lymphocytes (TILs).

Conclusion

The identification of a predictive and prognostic immune module in HER2-positive BC con-

firms the need for clinical testing for immune checkpoint modulators and vaccines for this

specific subtype. The inverse correlation between Immunity and hormone pathways opens

research perspectives and deserves further investigation.

Introduction

HER2-positive breast carcinomas (BCs) are defined by amplification and overexpression of the

HER2 tyrosine kinase receptor gene (17q12). The tumors of this subgroup have aggressive

pathological features and a high rate of early distant metastatic events. They are routinely

treated with a combination of docetaxel plus a monoclonal antibody targeting the HER2 recep-

tor (trastuzumab). Other drugs also appear to be of major interest and will probably be made

available for routine treatment in the near future (lapatinib, pertuzumab and T-DM1).

HER2-positive BCs constitute a heterogeneous group of tumors differing in histological fea-

tures, gene expression profiles, clinical behavior, overall prognosis, and response to conven-

tional systemic cytotoxic therapy. Trastuzumab-based treatments have been used for the last

decade and have substantially improved outcomes in patients with early or metastatic HER2-

positive BC. However, some HER2-positive tumors display intrinsic or acquired resistance to

trastuzumab. Robust classifiers are required, both to improve our understanding of the molec-

ular basis of HER2-positive BC and to develop novel therapeutic interventions.

We developed a two-step biological network-driven gene selection process: 1) identification

of the most variable genes displaying highly correlated patterns of expression, 2) direct connec-

tion of these genes within known biological networks. This method has been shown to con-

struct molecular signatures efficiently [1–3]. We defined a HER2-positive molecular subtype

classification and identified a stromal immune module gene expression profile strongly corre-

lated with predicted response to chemotherapy, prognosis and lymphocytic infiltration. This

classification provides considerable biological insight, and has potential for use in the develop-

ment of therapeutic interventions, such as novel immunotherapies in particular.

Material and methods

Data normalization and quality control

Training, validation and Ignatiadis datasets. We collected 21 publicly available datasets

(described in the S1 File) containing raw gene expression data for 2893 primary human breast

cancer samples. The data were normalized by the robust multichip average (RMA) procedure

from the EMA R package [4]. The datasets were split into training (HGU-133A Affymetrix�

arrays, 12 datasets, n = 1921) and validation (HGU-133Plus2 Affymetrix� arrays (9 datasets,

n = 972) sets. Batch effects were eliminated by the median centering of each probe-set across

arrays and by an independent quantile normalization of all arrays for each dataset. We con-

trolled for outliers with the Array Quality Metrics R package. We also collected two large

Immune Module in HER2+ Breast Cancer Is Predictive of Response to Chemotherapy and Prognosis
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datasets to validate our classification: The Ignatiadis dataset (Affymetrix data n = 996) [5] and

the METABRIC dataset (Illumina data n = 1992) published by Curtis et al. [6].

Determination and preprocessing of HER2-positive breast cancer

samples

We identified the HER2-positive samples in the training and validation datasets, on the basis

of transformed ERBB2 mRNA expression, as described by Gong et al. [7], and using the

bimodal distribution of ERBB2 expression for the Ignatiadis and the METABRIC dataset.

Gene selection process

Consensus clustering with the ConsensusClusterPlus R Package was applied to the training set

with a ward inner, final linkage and Pearson distance, to determine the optimal number of

robust gene clusters for the most variable genes (standard deviation>0.8). We investigated

the enrichment of each gene cluster in particular types of genes, and categorized and labeled

genes clusters according to the different gene ontologies. We then identified known biological

networks, for each gene cluster separately, using String� database software version 9.1 (http://

string-db.org/) [8]. We then applied a two-step selection process: 1) we selected strong biologi-

cal networks by retaining only genes for which connection scores of at least 0.7 were obtained

with String� database software, 2) within each biological network, we selected groups of genes

with correlated expression patterns and a correlation coefficient of at least 0.5.

For each dataset (the training, validation, Ignatiadis and METABRIC sets), we applied a

hierarchical clustering procedure with a ward inner, final linkage and Pearson distance to the

HER2-positive gene expression (GE) profiles, using the selected genes to visualize the optimal

number of stable HER2-positive subtypes.

Metagene construction

We defined a metagene as an aggregate patterns of gene expression. Metagene expression was

assessed by calculating the median normalized expression values of all probe sets in the respec-

tive gene clusters for each sample. The metagene value for each sample was then discretized on

the basis of the median value, as “high” or “low”.

Association between expression of the Immunity metagene and that of

ESR1, PGR, and AR

All the analyses were performed on all four datasets (training, validation, Ignatiadis, METAB-

RIC). The levels of expression of ESR1, PGR and AR were compared between “Immunity low”

and “Immunity high” samples, by ANOVA. Levels of Immunity metagene expression were

compared between samples positive and negative for ER, PR, and AR, by ANOVA. We also

performed ANOVA for each gene of the Immunity metagene as a function of ER status.

Analysis of the predicted response to NAC

We analyzed the predicted response to chemotherapy in the datasets published by Ignatiadis

et al. [5]. Expression data were summarized by defining a metagene for each gene cluster. The

clinical and pathological variables available for each dataset are described in S1 File. Qualitative

variables were compared with logistic regression models.

Immune Module in HER2+ Breast Cancer Is Predictive of Response to Chemotherapy and Prognosis
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Prognostic analysis

Prognostic analysis was performed on the METABRIC set. Expression data were summarized

by defining a metagene for each gene cluster. The clinical and pathological variables available

for each dataset are described in S1 File. Survival analyses were performed for the whole popu-

lation, and separately for ER-positive and ER-negative patients, by calculating Kaplan-Meier

estimates of the survival function. The endpoint of these analyses was breast cancer-specific

survival (BCSS). Survival curves were compared in log-rank tests. Hazard ratios were esti-

mated with Cox’s proportional hazard model. Predictive and prognostic analyses were per-

formed with the R survival package. Variables associated with pCR or BCSS with a P-value

<0.10 in univariate analysis were included in the multivariate model. Variables with P-values

<0.05 in multivariate analysis were considered statistically significant.

Correlation with tumor-infiltrating lymphocyte levels

We downloaded the gene expression data from the REMAGUS 02 trial [9] and retrieved 27

samples for which paraffin-embedded tissue sections were available at our institution. All

patients enrolled in this study gave their informed written consent. Histologic microbiopsy

specimens were evaluated independently for the presence of a lymphocytic infiltrate (intratu-

moral TILs and stromal TILs by one BC pathologist (ML) and one breast physician (ASH)

unaware of the gene expression classification. Percentages of TLs and StrL were compared, as

a function of Immunity metagene status, in ANOVA. The correlations between Immunity

metagene expression and the percentages of TLs and StrL were assessed by calculating Pear-

son’s correlation coefficient.

Expression of the gene signature in human breast cancer cell lines

We downloaded the gene expression profiles of the human cancer cell lines from the Cancer

Cell Line Encyclopedia (CCLE) [10] of Novartis/the Broad Institute and the Cancer Genome

Project (CGP) [11] of the Sanger Institute. We normalized the data for all the cell lines from

different tissues together.

Statistical analysis

Data were processed and statistical analyses were carried out with R software version 3.1.2 [12]

(www.cran.r-project.org).

Results

HER2-positive gene expression profiles identify six main gene clusters

HER2-positive BC samples were selected from 21 publicly available datasets (n = 3,247 breast

cancer samples) and separated into a training set and a validation set (S1 File and S1 Fig). In

the training set, we applied a gene selection process based on biological networks (Fig 1A to

1C), to decrease the instability intrinsic to molecular classification methods (see S1 File), as

previously described for triple-negative breast cancers (TNBCs) [3]. We selected a final set of

138 genes (S1 Table), composed of six gene clusters enriched in different gene ontologies:

Immunity (n = 28), Interferon (n = 11), Signal transduction (n = 20), Hormonal/survival

(n = 22), Tumor suppressors/Proliferation (n = 36), Matrix (n = 21) (Fig 1D). We defined a

metagene for each of the six gene clusters identified in this way (S1 File). The Immunity and

Interferon metagenes displayed similar patterns of expression. The Immunity and Hormonal/

survival metagenes displayed the strongest inverse correlation for expression (coefficient of

-0.46) (Fig 1E and 1F). The correlations between the 138 genes and the metagenes are

Immune Module in HER2+ Breast Cancer Is Predictive of Response to Chemotherapy and Prognosis
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described in more detail in S1 File. For validation, we applied hierarchical clustering methods

to three additional independent HER2-positive datasets; a validation set (n = 194), the Ignatia-

dis dataset (n = 82) and the METABRIC dataset (n = 248) (S1 File and S2 Fig).

The expression of the Immunity metagene is strongly associated with ER

status, PR, and AR status

Given the inverse correlation between Immunity metagene and the Hormonal/survival meta-

gene expression (Fig 2A) and with the strong correlation of Hormonal/survival metagene

expression with ESR1 expression (Pearson correlation coefficient = 0.77), we compared levels

of ESR1, PGR and AR expression as a function of Immunity metagene status (Fig 2B). These

three genes were consistently more strongly expressed in the “Immunity low” subgroup than

in the “Immunity high” subgroup (p< 10−16, p< 10−8, p = 0.002 respectively). Similar results

were obtained with the other three datasets, although less consistently for PR and AR (S1 File).

Fig 1. Gene selection process. A Heatmap showing the 616 most variable genes in the 448 HER2-positive samples (training set). B String

database software confidence view of the Matrix genes cluster. Stronger associations between genes are represented by thicker lines. C

Cytoscape View for the Immunity gene cluster. GE correlations between genes are indicated by edges (edge color varies from green to red

and edge size increases with increasing correlation) and gene expression variance is represented by node color (node color varies from

green to red and node size increases with increasing variance). D Heatmap showing the relative expression of 138 selected genes in 448

HER2-positive samples from the training set. E Table of Pearson’s correlation coefficient values for the correlations between the 6

metagenes. F Heatmap showing the anticorrelation between the Immunity and the Hormone/Survival metagene.

doi:10.1371/journal.pone.0167397.g001
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We then compared the levels of expression of our Immunity metagene with those of two

other immune genes (CTLA4 and PD1; PDL1 was not available on the HGU133a Chip) as a

function of ER, PR, and AR status. The Immunity metagene and CTLA4 were significantly

more strongly expressed in the ER-negative, PR-negative, and AR-negative subgroups (Fig

2C). PD1 was significantly more strongly expressed in ER-negative and PR-negative tumors,

but the difference in expression levels according to AR status was not significant for this gene.

Similar findings were obtained when we compared each of the genes of the Immunity meta-

gene separately as a function of ER status, and across the three other datasets. The results were

less consistent for PR and AR (see S1 File). The proportions of tumors in the Immunity

Fig 2. Association between Hormone genes expression and Immunity genes expression. A Correlation of Immunity metagene and

Hormone/Survival metagene expression (training set). Pearson’s correlation coefficient is -0.46 (95% CI [-52.7–38.0], p<10−16). B Boxplots

of global gene expression and ESR1, PGR and AR expression by Immunity metagene status, “low” versus “high” in the training set (A).

P-values for ANOVA are p = 10−16, p = 10−6 and p = 0.0002, respectively. C Boxplots of Immunity metagene and immune gene (CTLA4 and

PD1) expression levels by ER, PR and AR status in the training set (A). The p values for ANOVA were p<10−16, p = 0.002 and p = 0.008 for

the Immunity metagene, CTLA4 and PD1 by ER status, respectively; p = 0.0001, p = 0.05 and p = 0.001 by PR status, respectively; and

p<10−6, p = 0.006 and p = 0.23 by AR status, respectively. The statistical significance (p-value) of the difference between gene expression

values is indicated by black stars (p-value� 0.05: *; p-value� 0.01: **; p-value� 0.001: ***).

doi:10.1371/journal.pone.0167397.g002
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metagene “low” and “high” subgroups as a function of ER status differed significantly in three

of the four datasets. ER-positive samples were more likely to be in the Immunity metagene

“low” group, whereas ER-negative samples were more likely to be in the Immunity metagene

“high” group (S1 File).

These findings suggest that there are strong inverse interactions between immune pathways

that are captured by the Immunity metagene and ER, PR, and AR hormonal pathways in

HER2-positive breast cancer tumors.

Predictive value of the Immunity metagene in HER2-positive breast

cancers

We assessed the value of the six metagenes for predicting the response to neoadjuvant chemo-

therapy (NAC) on 82 HER2-positive samples from the Ignatiadis dataset. Univariate analysis

identified four factors (ER status, tumor grade, and Immunity and Hormone/survival meta-

gene expression) correlated with pathological complete response (pCR) (Table 1). In multivar-

iate analysis, both ER status and the Immunity metagene were significantly associated with

pCR (ER-positive: OR = 0.29 [0.09–0.82] versus ER-negative (reference class), p = 0.02; Immu-

nity metagene “high” expression: OR = 3.71, 95% CI [1.28–11.91], versus “low” expression

Table 1. Association of clinical factors and gene cluster expression with pathological response rates after neoadjuvant chemotherapy in the Igna-

tiadis dataset, univariate and multivariate analysis.

n Univariate analysis Multivariate analysis

OR IC pval OR IC pval

Age <50 y.o. 39 1

> = 50 y.o 43 1.1 [0.42–2.9] 0.84

ER status ER negative 38 1 1

ER positive 44 0.23 [0.08–0.63] 0.006 0.29 [0.09–0.82] 0.023

PR status PR negative 78 1

PR positive 4 NA NA* 0.99

Tumoral size T1 and T2 34 1

T3 21 0.34 [0.08–1.14] 0.096

T4 27 0.41 [0.12–1.23] 0.122

Nodal status N0 12 1

N1,N2 or N3 55 1.02 [0.26–5.1] 0.974

Tumor grade Grade I or II 24 1

Grade III 51 4.16 [1.22–19.26] 0.037

Immunity metagene low 41 1 1

expression high 41 4.57 [1.65–14.2] 0.005 3.71 [1.28–11.91] 0.019

Tumor suppressor/proliferation low 41 1

metagene high 41 1.61 [0.62–4.3] 0.333

Interferon metagene low 41 1

expression high 41 0.49 [0.18–1.27] 0.149

Signal transduction metagene low 41 1

expression high 41 1.27 [0.49–3.33] 0.628

Hormone/survival metagene low 41 1

expression high 41 0.22 [0.07–0.61] 0.005

Matrix metagene low 41 1

expression high 41 1.27 [0.49–3.33] 0.628

*: OR not available, no pCR in the PR-positive group

doi:10.1371/journal.pone.0167397.t001
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(reference class), p = 0.02) (Fig 3A). Analyses in the subset of patients that did not receive tras-

tuzumab (n = 75) yielded similar results (S1 File).

We compared the predictive value of the Immunity metagene with that of nine immune sig-

natures or metagenes already validated as predictors of the response to chemotherapy for

breast cancer, notably in HER2-positive BCs [13–18]. In multivariate analysis, the Immunity

metagene and six of the other signatures or metagenes tested were identified as predictive of

the response to chemotherapy. The smallest p-value obtained was that for our Immunity meta-

gene (p = 0.019), OR = 3.71, 95% CI [1.28–11.91] (S2 Table).

We then investigated the reasons for which the Immunity metagene (28 genes) was predic-

tive of pCR in HER2-positive BCs, whereas the Immunity2 metagene (47 genes) published by

Bonsang et al. [3] was not in a TNBC population [3], despite the strong correlation between

these two signatures in three independent datasets (correlation coefficients: 0.96; 0.94 and 0.96

in the training set, METABRIC and Ignatiadis dataset, respectively). We applied both signa-

tures to the whole population for the Ignatiadis dataset, and analyzed pCR as a function of

breast cancer subtype and Immunity metagene status. We found that pCR rates were signifi-

cantly higher in the “Immunity high” subgroup in HER2-negative/ER-positive (16.7% versus
8.4%, OR = 2.17, p = 0.05), HER2-positive (43.6% versus 16.7%, OR = 3.84, p = 0.01), and

TNBC breast cancers (37.3 versus 22.6%, OR = 2.08, p = 0.03) (S3A Fig). A similar pattern was

observed for the Immunity2 metagene (HER2-negative-ER positive: 16.5% versus 8.1%,

OR = 2.22, p = 0.05), HER2-positive (45.5% versus 18.7%, OR = 3.57, p = 0.01), and TNBC

breast cancers (36.3 versus 24.6%, OR = 1.75, p = 0.08; S3B Fig), but the difference was not sta-

tistically significant (p = 0.08) in the TNBC subgroup. Interestingly, Immunity metagene status

appeared to have a larger effect on pCR rates in the HER2-positive subgroup (OR = 3.84 and

3.57, respectively) than in the ER-positive (OR = 2.17 and 2.22, respectively) and TNBC

(OR = 2.08 and 1.75, respectively) subgroups. The Immunity metagene therefore seems to be

Fig 3. pCR and DSS outcomes in the Ignatiadis and the METABRIC dataset. A: pCR rates by ER and Immunity metagene status (low

versus high in the Ignatiadis dataset). B: Kaplan-Meier plots. Disease-specific survival of the ER-negative population (n = 138) according to

Immunity metagene expression (low/high) and nodal status in the METABRIC dataset.

doi:10.1371/journal.pone.0167397.g003
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associated with the response to NAC in all breast cancer subtypes, with a marked effect in

terms of both the strength and magnitude of the association in the HER2-positive subgroup.

Prognostic value of the Immunity metagene in HER2-positive breast

cancers

The prognostic value of the 138-gene HER2-positive signature was assessed with 248 HER2-

positive samples from the METABRIC dataset. Univariate analysis identified five factors (men-

opausal status, tumor size, nodal status, Immunity and Signal transduction metagene expres-

sion) significantly correlated with a poor outcome (disease-specific survival) (Table 2).

In multivariate analysis, nodal status (node-negative versus node-positive) was significantly

associated with a poor outcome (HR = 3.29 [2.14–5.06], p<0.001), and there was a trend

towards association between high levels of Immunity metagene expression and better disease-

free survival (DFS; HR = 0.70 [0.48–1.01], p = 0.054). In the ER-negative population, the

Immunity metagene was found to be of significant prognostic value in multivariate analysis

(n = 138) (HR = 0.58 [0.36–0.94], p = 0.026; Fig 3B), but was not associated with DFS in the

ER-positive population (n = 110) (p = 0.43). We compared the prognostic value of the Immu-

nity metagene with that of nine previously published immune signatures or metagenes known

to predict survival in several breast cancer subtypes [14,17–22]. None of the signatures or

metagenes described above was significantly associated with prognosis (S2F Table).

The Immunity metagene is correlated with tumor-infiltrating lymphocytes

(TILs) in HER2-positive breast cancer

We then investigated the correlation between Immunity metagene expression and lymphocyte

infiltration. We analyzed an independent set of HER2-positive tumors for which both histol-

ogy and gene expression data were available (n = 27). Intratumoral TILs (TLs) and stromal

TILs (StrL) were evaluated separately. Intratumoral TIL percentages were significantly higher

in patients with strong Immunity metagene expression than in those with weak Immunity

metagene expression (24% and 9%, respectively, p = 0.001) (Fig 4A). The same pattern was

observed for the percentage of stromal TILs (36% versus 16.6%, p = 0.009) (Fig 4B). The coeffi-

cients of correlation between Immunity metagene expression level on the one hand and the

percentage of intratumoral TILs (Fig 4C) or stromal TILs (Fig 4D) on the other hand were

high (r = 0.60, p<0.001 and r = 0.69, p<0.00001 respectively). Lymphocyte infiltration is

shown for two specimens, one with weak (Fig 5A and 5B), and the other with strong lympho-

cyte infiltration (Fig 5C and 5D). The Immunity metagene was therefore strongly correlated

with the amount of lymphocyte infiltration in both the stromal compartment and the tumor

bed.

The Immunity metagene corresponds to the B-cell, T-cell and CD8 cell

pathways

The Immunity metagene was strongly correlated with several published immune signatures

(S4 Fig and S1 File), suggesting the use of similar immune pathways (see S1 File). We analyzed

the correlation between expression of the Immunity and Interferon metagenes and expression

of the metagenes defined by Gatza et al. [23] (IFN-alpha, IFN-gamma, STAT3, TGF-beta,

TNF-alpha) and Palmer et al. [24] (LB, LT, CD8, GRANS, LYMPHS). This analysis was per-

formed on the METABRIC dataset. The Immunity metagene was highly correlated with the B-

cell, T-cell and CD8 cell metagenes (Pearson correlation coefficients: 0.89, 0.86, and 0.90,

respectively; S5 Fig). We also assessed the correlations between the expression of PD1, PDL1,
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CTLA4, and that of their respective metagenes. The PD1 and CTLA-4 metagenes were con-

structed from the genes most strongly correlated with the PD1 and CTLA-4 genes, respectively

(Pearson’s correlation coefficient > 0.8). The PDL1 metagene was defined by Sabatier et al.
[25]. Pearson’s correlation coefficients for the relationships between the Immunity metagene

and each individual gene were strong for PD1 and CTLA-4 (Pearson’s correlation coefficient:

0.75 and 0.84, respectively), and weaker for PDL1 (0.36), but the expression of all three meta-

genes was strongly correlated with that of the Immunity metagene (Pearson’s correlation

Table 2. Survival analysis (disease-specific survival) in the METABRIC dataset (univariate and multivariate analysis); whole population and ER-

negative population.

Whole population (n = 248) ER negative population (n = 138)

n Univariate analysis Multivariate analysis n Univariate analysis Multivariate analysis

HR IC pval HR IC pval HR IC pval HR IC pval

Age at

diagnosis

< = 45 y.

o.

52 1 - 25 1

45–55 59 0.67 [0.4–1.14] 0.142 19 0.65 [0.36–1.18] 0.153

>55 130 0.66 [0.43–1.04] 0.071 23 0.62 [0.35–1.1] 0.103

Menopausal

status

Pre 74 1 - 32 1

Post 167 0.68 [0.46–1] 0.051 33 0.67 [0.41–1.09] 0.11

Tumoral size < 20 mm 68 1 - 15 1

> = 20

mm

173 1.87 [1.18–2.96] 0.008 52 1.51 [0.85–2.69] 0.159

Tumor grade I 3 1 - 10 1 - -

II 53 1.66 [0.22–12.19] 0.621 55 0.942 [0.48–1.85] 0.863

III 178 1.81 [0.25–13.05] 0.554 10 NA NA NA

ER status negative 135 1 -

positive 108 0.74 [0.51–1.07] 0.108

PR status negative 193 1 - 65 1

positive 50 0.84 [0.53–1.34] 0.46 2 2.3 [0.56–9.49] 0.25

Nodal status N- 105 1 - 1 13 1 1

N+ 138 3.26 [2.13–5.01] <0.001 3.29 [2.14–5.06] <0.001 54 3.55 [1.93–6.51] <0.001 3.57 [1.94–6.55] <0.001

NPI GP 38 1 - 6 1

IP 155 1.26 [0.71–2.25] 0.433 35 1.01 [0.42–2.4] 0.988

PP 50 3.32 [1.78–6.19] <0.001 26 2.81 [1.15–6.84] 0.023

Metagene expression

Immunity low 122 1 - 1 54 1

high 121 0.71 [0.49–1.03] 0.073 0.70 [0.48–1.01] 0.054 81 0.58 [0.36–0.94] 0.028 0.58 [0.36–0.94] 0.026

TS

/proliferation

low 121 1 - 50 1

high 122 1.04 [0.72–1.51] 0.828 85 0.84 [0.51–1.38] 0.491

Interferon low 122 1 - 78 1

high 121 1.23 [0.85–1.78] 0.278 57 1.28 [0.79–2.07] 0.316

Signal

transduction

low 121 1 - 72 1

high 122 1.48 [1.02–2.14] 0.04 63 1.34 [0.83–2.17] 0.232

Hormone/

survival

low 122 1 - 114 1

high 121 0.94 [0.65–1.36] 0.751 21 1.35 [0.72–2.52] 0.351

Matrix low 121 1 - 69 1

high 122 1.05 [0.73–1.52] 0.785 66 1.03 [0.64–1.67] 0.889

Abbreviations: GP: good prognosis, IP: intermediate prognosis, PP: poor prognosis; TS: tumor suppressor

doi:10.1371/journal.pone.0167397.t002
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Fig 4. Association between tumor-infiltrating lymphocyte levels and Immunity metagene expression in the REMAGUS dataset. A:

Percentage of intratumoral TILs according to Immunity metagene status (low versus high). B Percentage of stromal TILs according to

Immunity metagene status (low versus high). C: Correlation between metagene expression and the percentages of intratumoral TILs. D:

Correlation between metagene expression and the percentage of stromal TILs.

doi:10.1371/journal.pone.0167397.g004

Fig 5. Lymphocytic infiltration in breast tumors. A and B: Tumor specimen with weak lymphocytic

infiltration (A: zoom x10 B: zoom x 40). Abbreviations: S = stroma, T = tumor, L = lymphocytes. Intratumoral

TILs are indicated by a black star. C and D: Tumor specimen with prominent lymphocytic infiltration. (C: zoom

x10 D: zoom x 40). Abbreviations: S = stroma, T = tumor, L = lymphocytes. Intratumoral TILs are indicated by

a black star; stromal TILs are indicated by a blue star.

doi:10.1371/journal.pone.0167397.g005
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coefficient: PD1: 0.89, PDL1: 0.95, CTLA-4: 0.93), opening up new possibilities for therapeutic

intervention.

The Immunity metagene is probably expressed by stromal cells

In breast cancer cell lines (CCLE and CGP datasets), the Immunity metagene displayed very

low levels of expression, similar to those of the CD8 metagene (S6A and S6B Fig), consistent

with expression only in the tumor stromal compartment. This pattern was observed for all cell

lines and breast cancer cell lines tested. The Interferon module genes had higher median

expression levels and a broader range of expression than those of the Immunity metagene in

breast cancer cell lines, consistent with their expression by tumor cells. We also explored the

contributions of stromal and cancer cells to the expression of the Immunity and Interferon

metagenes in detail, by comparing our gene lists with the “stromal contribution to global gene

expression evaluated in PDX RNAseq data”, as defined by Isella et al. [26]. The stromal frac-

tion of the Immunity metagene was high, although lower than those of the Matrix and the

Tumor suppressor/proliferation metagenes. The Interferon metagene had a low stromal frac-

tion, like the Hormone/survival and Signal transduction metagenes (S6C Fig). Although these

data relate to the colon cancer PDX model, they provide support for the stromal expression of

the Immunity metagene.

Discussion

By analyzing the gene expression profiles of 448 HER2-positive breast cancers, we identified a

six-metagene signature (138 genes) in which each of the various metagenes was enriched in a

different gene ontology. Within these metagenes, we identified an immune stromal module

inversely correlated with the ER and hormonal pathways and strongly associated with the pre-

dicted response to chemotherapy, prognosis, and tumor lymphocyte infiltration. We report

here one of the first immune signatures identified as both predictive and prognostic, reflecting

histological immune infiltration in HER2-positive breast cancers. We also provide a relevant

analysis by HR status.

We previously developed a strategy for defining gene expression signatures based on the

analysis of biological networks for the most variable genes [3]. Since the early 2000s, a molecu-

lar classification of breast cancers has emerged that is continually being refined. Several

authors have proposed TNBC subclassifications [3,27,28] but, to our knowledge, only one clas-

sifier has been published, but was not subsequently validated in HER2-positive BC [18]. The

various metagenes in our signature were enriched in different gene ontologies: two clusters

were enriched in immunity genes, one in signal transduction genes, one in hormonal/survival

genes, one in tumor suppressor/proliferation genes and one in matrix genes. Unlike several

other teams [29–31], we did not identify a subgroup to tumors overexpressing androgen recep-

tor pathways in HER2-positive BCs by our biology-driven approach. The expression of the

Immunity and Hormone/survival metagenes accurately predicted the response to NAC, but

the expression of the Hormone/survival metagene had no significant effect in multivariate

analysis, because the information it provided largely overlapped with ER status. Moreover,

only the Immunity metagene was found to be of significant prognostic value.

Several authors have previously identified immunity patterns in HER2-positive BC. The

Immunity module identified in our study had many biological connections with other predic-

tive or prognostic immune signatures published for HER2-positive breast cancers [13–21], but

it outperformed previous classifiers. This module includes genes encoding chemokines for T

cells (CXCL10, CXCL9, CCL5), B cells (CXCL13), both B and T cells (CCL19) or other

immune cells (CXCL13, CCL5); chemokine receptors (CCR7); cytokines (LTB); adhesion
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molecule-associated genes (SELL), and genes encoding proteins involved antigen processing

and presentation (HLA-DRA), B-lymphocyte cell surface molecules (PTPRC, HLA-DRA),

complement pathway proteins (C1QB), and proteins involved in CTL-mediated immune

responses to target cells (CD3D), dendritic cell regulation of Th1 and Th2 development (CD2,

IL7R), granzyme-mediated apoptosis (GZMA), IL12-mediated signaling events (CD3D,

HLA-DRA, GZMA, LCK), the IL2 signaling pathway (LCK), T-cell surface molecules

(PTPRC, CD3D, CD2), and molecules of the T-cell receptor signaling pathway (PTPRC,

CD3D, HLA-DRA, LCK). It was also strongly correlated with the B-cell, T-cell and CD8 cell

pathways.

There was a marked significant inverse association between ESR1 expression and that of

the Immunity metagene. Similar inverse associations were found between PGR, AR and

immunity, but these associations were weaker and less consistent. There is growing evidence

for sex-based differences in the innate and adaptive immune responses underlying susceptibil-

ity to infectious diseases and the prevalence of autoimmune diseases. A higher proportion of

men than of women display infectious diseases and their severity is also greater in men than in

women [32]. By contrast, many autoimmune diseases predominantly affect women [33].

There are also difference between men in terms of humoral and cellular responses to infection

and vaccination, with women often displaying higher response rates and mounting stronger

humoral responses [34]. Estrogen receptors are expressed in most of the cells of the innate and

adaptive immune system, including T cells, B cells, neutrophils, macrophages, dendritic cells

(DC), and natural killer (NK) cells [35]. The effects of major sex steroid hormones were

reviewed by Giefing-Kröll [36]. Estradiol and testosterone have opposite effects on the cells of

the adaptive and innate immune systems, with estradiol having mostly enhancing and testos-

terone mostly suppressive effects. Estrogens affect the expression of some chemokine receptors

(CCR1 and CCR5) by T cells [37]. They also affect B-cell development [38], decrease the cyto-

toxicity of NK cells [39] and regulate DC development [40]. TReg-cell frequencies within the

CD4+ population change considerably during the ovarian cycle, with potential effects on

immunoregulation [41]. Unlike the differences between the sexes in terms of infection and

auto-immunity, the relationships between tumor immunology, sex and steroid hormones have

remained largely unexplored. In two phase III trials, immunotherapy had a significant benefi-

cial effect on survival only in male patients [42,43]. However, it remains unclear whether there

is a true “sex” effect on the efficacy of immunotherapy or whether these findings are purely

incidental.

The interaction between the ER, immunity and HER2 pathways is complex. There is

increasing evidence to suggest that interactions between HER2 and hormone-receptor path-

ways play an important role in disease progression and that there is extensive, complex, bidi-

rectional, crosstalk between the HER2 and ER pathways [44]. Immune signatures have been

reported to have a predictive or prognostic role mostly in ER-negative breast cancers [45–48].

In HER2-positive breast cancer subtypes, Rody found that an immune T-cell metagene was of

predictive value in both ER-positive and ER-negative HER2-positive BC [49]. The prognostic

value of HDDP was demonstrated in both subgroups (11), but its value for predicting the

response to NAC was not evaluated as a function of ER status. Conversely, the IRSN-23 [15]

was not predictive in the ER-positive subpopulation. However, few authors determined the

predictive [18] or prognostic value of their metagene or signature as a function of ER status

within HER2-positive breast cancers [5,13,14,19–21]. The inverse association observed

between ESR1 expression and immunity genes may be an important piece of the puzzle, and

merits further investigation.

Consistent with previous reports [13,15,16], we found that the Immunity metagene was

predictive of the response to NAC in HER2-positive BC. However, despite the similar gene
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module identification methods used and the strong correlation between the Immunity meta-

gene and the Immunity2 metagene previously described by our team for TNBC [3], the Immu-

nity metagene was predictive of the response to chemotherapy in HER2-positive BC, whereas

the Immunity2 metagene was not predictive of the response to chemotherapy in TNBC. This

finding was reported in the princeps report by Ignatiadis, in which high immune module

scores were strongly and independently associated with a higher probability of pCR probability

in HER2-positive tumors, whereas this association, although still significant, was weaker in

TNBC [5]. ER-positive tumors have long been described as chemoresistant, with low pCR

rates after NAC. Taking Immunity metagene expression into account, pCR rates ranged from

7.4 to 29.4%, with the highest rates close to those of ER-negative tumors.

The Immunity metagene was also prognostic in HER2-positive ER-negative breast cancer.

The impact of immunity on prognosis has been reported before [21](Alexe et al., 2007)

[21]14[18,20,21]. Together with our work, these findings suggest that immunity gene expres-

sion is highly predictive and of prognostic value in HER2-positive breast cancer. Nevertheless,

the HER2-positive patients of the METABRIC dataset did not receive targeted anti-HER2 ther-

apies, and our results would probably be influenced by adjuvant trastuzumab treatment.

We also demonstrated a correlation between Immunity metagene expression and stromal

and intratumoral lymphocyte infiltration. The significance of TILs has recently become appar-

ent, with advances in tumor immunology and the availability of cancer immunotherapies. TIL

levels are strongly correlated with breast cancer subtype, and are higher in HER2-positive BCs

than in ER-positive BCs, but lower than in TNBCs [50]. TIL levels are consistently higher in

ER-negative tumors than in ER-positive tumors [51]. This was also found to be the case when

the analysis was limited to HER2-positive BC only [52], [50]. The value of TIL levels for pre-

dicting pCR after NAC is less clear in HER2-positive BC than in TNBC. Stromal TILs and the

lymphocyte-predominant breast cancer phenotype (LPBC) were strongly associated with treat-

ment response in the GeparSixto trial [13]. However, this effect was found to be nonlinear in

the NeoALTTO trial, and the optimal cutoff value remains unclear [52]. Two large studies in

the adjuvant setting gave conflicting results. A positive association between higher levels of

TILs and greater benefit from trastuzumab in HER2-positive disease was found in a retrospec-

tive analysis of the FinHER trial [50], whereas the opposite result was reported in the ALLI-

ANCE N9831 study [53]. No difference in DFS between chemotherapy and chemotherapy

plus trastuzumab was found in LPBC, whereas benefits of trastuzumab in addition to chemo-

therapy were observed only in non-LPBC. Thus, the prognostic impact of TILs on survival

remains a matter of debate in HER2-positive BC. A few authors have reported a correlation

between TIL and stromal lymphocyte levels and gene expression in HER2-positive breast can-

cers [13,15,21]. If this correlation is further validated, TIL levels could be used as a surrogate

marker for the Immunity metagene, as TIL assessment is carried out in routine practice and is

currently undergoing standardization [54].

Conclusion

Our work opens up a number of exciting therapeutic perspectives in HER2-positive breast can-

cers. Due to the high immunogenicity of HER2-positive breast cancers and the considerable

predictive and prognostic impact of immunity in this subtype, immunotherapies may soon

become part of the therapeutic arsenal for such cancers. Preclinical models have suggested that

there is synergy between anti-HER2 monoclonal antibody and anti-PD-1 [55] or anti-CTLA4

antibodies [56]. The PANACEA phase Ib/II trial is currently investigating the use of pembroli-

zumab (KEYTRUDA1) in combination with trastuzumab, to determine whether the addition

of an anti-PD-1 treatment can overcome trastuzumab resistance in patients with HER2-
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positive breast cancer whose cancer spread whilst they were on trastuzumab. Future challenges

in the field of immunity and HER2-positive breast cancers include:

1. The public accessibility of large sets of gene expression data for tumors from patients

treated with HER2-targeting treatments. As treatments are constantly changing for this

breast cancer subtype, it is important for expression data to be shared promptly, to facilitate

comprehensive research and the identification of predictive and prognostic markers in

patients treated with cutting edge care.

2. Improvements in our understanding of hormone and immunity pathways in HER2-positive

breast cancers. In particular, it would be very useful to determine whether a subset of

patients with HER2-positive ER-positive cancers could be effectively treated by a combina-

tion of endocrine therapy/immune checkpoint blockade/ targeted therapy, without the

need for chemotherapy.

3. Drug positioning strategies in HER2-positive BC, because, by contrast to other breast can-

cer subtypes, the HER2-targeting drug pipeline contains many candidates despite the com-

parative rarity of this particular disease.

4. The selection criteria for the candidates most likely to benefit from immune checkpoint

blockade is a key point. The use of PD-L1 as a surrogate marker of anti-PD-1 efficacy

remains controversial, even in cancers for which immunotherapy treatments have proved

effective, and few data are available for breast cancer. The standardization and demonstra-

tions of the reproducibility of published immune signatures would be useful, as would

improvements in our understanding of the prognostic value of TILs in HER2-positive

breast cancers. Moreover, it remains to be determined whether and how the immunogenic

power of tumors with low expression of immunity genes could be enhanced.

Once these challenges have been overcome, given the outstanding results of immunother-

apy for other cancers (e.g. melanoma, lung cancer) and the expected efficacy of such treatment

for HER2-positive disease, such therapies could revolutionize the course of HER2-positive

breast cancer in the near future.
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Supporting information file 1 

1 Supplementary Methods 

1.1 Data  

1.1.1 Training and validation sets 

We collected 21 publicly available datasets containing raw gene expression data from 

microarrays (Affymetrix© GeneChip Human Genome HG-U133A and HG-U133Plus2) for 

2893 primary human breast cancer samples. The raw data were downloaded from the NCBI 

Gene Expression Omnibus or ArrayExpress, with the following identifiers: GSE1456 

(Pawitan Y.), GSE1561, GSE2034 (Wang Y), GSE2603 (Minn AJ), GSE2990 (Sotiriou C), 

GSE3494 (Miller LD), GSE5327, GSE5847 (Boersma BJ), GSE7390 (Desmedt C), 

GSE11121 (Schmidt M), GSE20194, MDA133, GSE2109, GSE7904 (Richardson AL.), 

GSE12276 (Bos PD), GSE16446 (Juul N), GSE18864 (Juul N), GSE19615 (Juul N), 

GSE22513 (Bauer A), GSE28796, GSE28821. Raw GE values for each dataset (n=21) were 

normalized independently, for identification of the HER2-positive samples in each dataset. 

The training set included samples hybridized on HGU-133A Affymetrix© arrays (12 datasets, 

n=1921), to eliminate cross-platform discrepancies and to ensure robust normalization. The 

validation set included samples hybridized on HGU-133Plus2 Affymetrix© arrays (9 datasets, 

n=972).  

1.1.2 The Ignatiadis dataset 

 

We collected eight publicly available datasets from the following studies: EORTC10994, I-

SPY-1, LBJ/INEN/GEICAM, the MDACC trial, TOP, MAQCII/MDACC, MAQCIII, USO-

02103, all of which used Affymetrix GeneChip Human Genome HG-U133A arrays. 
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Ignatiadis et al.[1] used these datasets to analyze the responses of various molecular subtypes 

of breast cancer to neoadjuvant chemotherapy (anthracycline, with or without taxane; n=996). 

Raw GE values for each dataset were normalized independently, for identification of the 

HER2-positive samples in each dataset. As different sample types were available for gene 

expression, we chose to keep only tumors sampled by fine needle aspiration, to ensure that the 

samples studied were homogeneous, as this was the technique used for the majority of tumors 

in the Ignatiadis dataset (n=586). 

1.1.3 The METABRIC set 

 

We used the METABRIC — Molecular Taxonomy of Breast Cancer International 

Consortium — dataset published by Curtis et al.[2], which was established for analysis of the 

prognosis of various molecular subtypes of breast cancer. We normalized the 1992 samples 

together, using scripts and Rdata provided by the authors. We fitted a linear model (limma R 

package) to remove the batch effect and probes were filtered according to three criteria: probe 

quality [3], GC content and presence in more than 5% of the samples.  

1.2 Determination of HER2-positive status, ER, PR and AR status 

The Affymetrix probe 216836_s_at was chosen to provide information about HER2 

expression for the training, validation and Ignatiadis datasets [4]. For the METABRIC 

dataset, after quality control, the Illumina probe ILMN_2352131 was chosen to provide 

information about HER2 expression. We used a threshold value of 1150 for ERBB2 mRNA to 

identify ERBB2-positive patients, as described by Gong[5] for the training and validation 

datasets, and the bimodal distribution of ERBB2 expression for the Ignatiadis and 

METABRIC datasets. GE analyses identified 448, 194, 82 and 248 HER2-positive samples in 

the training set, the validation set, the Ignatiadis set and the METABRIC set, respectively. We 
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identified the ER-, PR- and AR-positive samples in each dataset as follows: the distributions 

of ER PR and AR expression were analyzed empirically, with a two-component Gaussian 

mixture model, and parameters for bimodal filtering were estimated with the R Mclust 

package. A density plot of ER, PR and AR gene expression in each dataset showed a bimodal 

distribution for ER and PR, but not for AR. The median value was used as the cutoff for AR 

expression in each dataset.  

1.3 Preprocessing of HER2-positive samples 

1.3.1 Affymetrix© platform 

For each dataset (training, validation and prediction), we used the R arrayQualityMetrics 

package on an Affybatch object to filter out outliers. We excluded samples detected as 

outliers by at least two of the following methods: distances between arrays, boxplots, relative 

log expression (RLE), normalized unscaled standard error (NUSE), MA plots, spatial 

distribution of M. The HER2-positive samples were selected and split into training and 

validation sets. We filtered out 52 outlier samples from the training set and 11 from the 

validation set. Raw GE values for the HER2-positive samples in each dataset (training, 

validation and prediction) were normalized independently. The optimal microarray probe set 

to represent a gene was selected with the R JetSet package. This package developed scoring 

methods for the assessment of each probe set for specificity, coverage, and degradation 

resistance. For each dataset, batch effects were removed by median centering of each probe 

set across arrays and the quantile normalization of all arrays separately for each set. 

1.3.2 Illumina© platform 

We used the Illumina© probe quality score introduced by Barbosa-Morais in 2010 to ensure 

that all the probes used were of high quality (deleting probes scored as “bad” or “no match”). 

Probes were filtered on the basis of three criteria: probe quality[3], GC content between 38% 
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and 64% and presence in more than 5% of the samples (n= 20,009 probes). We eliminated 

any batch effects associated with sample collection sites, by fitting a linear model (R limma 

package). We then chose the most variable probes as the optimal probe set.  

1.4 Statistical analyses 

All statistical analyses were performed with R software. Affymetrix© microarrays were 

normalized with the robust multichip average (RMA) procedure from the EMA R package[6]. 

Principal component analysis was carried out and heatmaps were generated with the R gplots 

package. 

1.5 Establishment of the HER2-positive classifier 

1.5.1 Gene selection process  

Consensus clustering[7] was applied to the training set, to determine the optimal number of 

robust gene clusters from the most variable genes (standard deviation >0.8) 

(ConsensusClusterPlus R package). Cluster robustness was assessed by hierarchical clustering 

(1,000 iterations) with a ward inner, final linkage and Pearson distance. The optimal number 

of clusters was determined from the cumulative distribution function (CDF), which plots the 

corresponding empirical cumulative distribution, defined over the range [0,1], and by 

calculating the proportional increase in the area under the CDF curve. The number of clusters 

was set as that at which an increase in cluster number (k) did not lead to a marked increase in 

CDF area. We calculated Pearson’s correlation coefficient for the relationships between genes 

within the same cluster, to assess the heterogeneity of each gene cluster. The consensus 

clustering method and hierarchical clustering identified five main gene clusters. Further 

increases in cluster number yielded no significant increase in the consensus distribution 

function area. Each gene cluster was tested for gene enrichment (biological process (BP), 

molecular function (MF), cellular component (CC)) by a conditional test for 
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overrepresentation, in the R runHyperGO package. The various gene clusters were associated 

with different gene ontologies). The clusters were named as follows: Immunity cluster (70 

genes), Signal/transduction cluster (130 genes), Hormonal/survival cluster (312 genes), 

Tumor suppressor cluster (65 genes) and Matrix cluster (39 genes). The Matrix and Immunity 

clusters were the most homogeneous, with strong correlations between the gene expression 

profiles of most of the genes within each of these clusters (Pearson’s correlation coefficients 

of 0.60 and 0.43, respectively). We then used the String© database (http://string-

db.org/help/index.jsp?topic=/org.string-db.docs/ch04.html)[8] to identify biological gene 

networks. String© is a database of known and predicted protein interactions. The interactions 

include physical and functional associations derived from four sources: genomic context, 

high-throughput experiments, conserved coexpression, previous knowledge. For each gene 

cluster, we excluded genes that were not connected to any of the other genes present in the 

cluster. We then applied a two-step selection process: 1) we selected strong biological 

networks, by retaining genes with connection scores of at least 0.7 to each other, according to 

the String database 2) within each biological network, we then selected groups of genes with 

correlated patterns of expression, with correlation coefficients of at least 0.5. For this step, we 

used Cytoscape (http://cytoscapeweb.cytoscape.org), an open-source software platform for 

visualizing complex networks and integrating them with any type of attribute data. Attribute 

data, such as correlations, variance and interquartile range, were calculated from the 

expression data matrix.  

After selection, we checked that the various genes selected from the same cluster clustered 

together again (R package ConsensusClusterPlus). Following biological network-driven gene 

selection, it became clear that the original Immunity cluster was more accurately described by 

splitting into two slightly different subclusters (Immunity (n=28), Interferon (n=11)). This 

approach yielded an increase in the area under the consensus distribution function (CDF) 
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curve. The six clusters were renamed as follows, after reclustering: Immunity (n=28), 

Interferon (n=11), Signal transduction (n=20), Hormonal/survival (n=22), Tumor 

suppressors/Proliferation (n=36), Matrix (n=21).  

1.5.2 Metagene identification 

For each dataset (training, validation, Ignatiadis and METABRIC), each gene cluster was 

used to define a metagene (for the Affymetrix© platform: from the 138 selected genes; for the 

prognosis set, we used the 136 genes common to the preprocessed prognosis expression 

matrix and the selected genes matrix from the Affymetrix© platform). Metagene expression 

was assessed by calculating the median value for the normalized expression values of all 

probe sets in the respective gene clusters for each sample. For each dataset, we calculated the 

correlation between expression levels for the various metagenes, using the R psych package. 

The metagene value for each sample was then classified as corresponding to “high” or “low” 

expression according to the median value for the metagene. 

1.5.3 Classification of HER2-positive samples 

In each dataset, hierarchical clustering was applied to the HER2-positive GE profiles, using 

the selected genes to visualize the optimal number of stable HER2-positive subtypes 

(ConsensusClusterPlus R package). We identified five HER2-positive subtypes, using the 

138-genes signature. We checked the concordance between each of the validation sets and the 

training set (Pearson’s correlation coefficient for the relationship between centroids). Centroid 

expression values were determined by calculating the mean normalized expression values for 

all samples in the sample cluster, for each probe set (Figure S2). 
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1.6 Analysis of the predicted response to chemotherapy prognosis, and the 

correlation with intratumoral and stromal lymphocyte levels  

1.6.1 Analysis of the response to chemotherapy 

We assessed the predictive value of our metagenes, by collecting the independent dataset 

described above (the Ignatiadis set), which contained data for gene expression and clinical 

variables. We selected HER2-positive samples and the data were preprocessed as described 

above. The following clinical and pathological variables were available and were categorized 

as follows: age (<50 versus ≥50), pre-chemotherapy clinical tumor size (T1 and T2, T3, T4), 

pre-chemotherapy tumor nodal status (N0 versus N1, N2, N3), tumor grade (Grade I and II 

versus III), treatment type, and response to chemotherapy (pathological compete response 

versus no pathological complete response). ER and PR status were assessed by gene 

expression (as described above). We assessed the expression of the metagenes in each 

population. Given their unimodal distribution, the expression of each metagene was classified 

as “low” or “high”, based on the median value for the six metagenes. Pathological complete 

response (pCR) was defined as the disappearance of the invasive component of the primary 

tumor in one study[9] and no residual invasive cancer in the breast and axillary lymph nodes 

in the other seven studies. Factors predictive of pCR were introduced into a univariate logistic 

regression model. A multivariate logistic model was then generated. The covariates selected 

for the multivariate analysis were those with a likelihood ratio test p-value lower than 0.10 in 

univariate analysis. A backward stepwise selection procedure was used.  

We also tested the predictive value of nine immune signatures or metagenes validated as 

predictive of the response to chemotherapy in HER2-positive breast cancer patients: 12 

immune-gene signatures [10], Th1 and T-fh metagenes [11], an immune-related 23-gene 

signature for NAC (IRSN-23) [12], the CXCL13, CCL8 and CXCL9 metagenes [13], the 

376 Neoadjuvant and Immunity



	   8	  

LCK and IgG combined metagene [14], and the HER2-derived prognostic predictor 

(HDPP)[15]. We performed several multivariate analyses with each signature or metagene 

independently and the clinical variables significantly associated with pCR in univariate 

analysis (tumor grade, tumor stage, ER status). We generated a heatmap of the gene 

expression profiles of each of the above predictive signatures (Figure S4A). The samples were 

ordered according to our classification of low/high levels of Immunity metagene expression. 

Expression patterns were similar for the Immunity metagene and for the other predictive gene 

expression signatures or metagenes, with the exception of Staaf’s signature genes.  

1.6.2 Prognosis 

We assessed the prognostic classification, by collecting the independent dataset described 

above (METABRIC set), which contained data for gene expression and clinical variables. We 

selected HER2-positive samples and the data were preprocessed as described above. The 

following clinical and pathological variables were available and were categorized as follows: 

age (≤45, [45-55], >55), menopausal status, tumor size, tumor grade according to the Elston 

and Ellis grading system, number of lymph nodes involved (0 (N-, node negative) versus 1 or 

more lymph nodes involved (N+, node positive)), the Nottingham Prognostic Index score 

(good prognosis, intermediate prognosis, poor prognosis), treatment type, last follow-up status 

and the time at which last-follow-up occurred. ER and PR statuses were assessed on the basis 

of gene expression (as described above). We assessed the expression of the metagenes in each 

population and the expression of each metagene was classified as “low” or “high”, relative to 

the median value for the six metagenes. Survival analyses were performed by calculating 

Kaplan-Meier estimates of the survival function. The endpoint of these analyses was breast 

cancer-specific survival (BCSS) (death from breast cancer). Time-censoring analyses were 

performed with a right censoring of events from 1 to 20 years. Log-rank tests were used to 

compare survival curves. Hazard ratios and their associated 95% confidence intervals were 
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calculated with the Cox proportional hazard model. Variables with a p-value for the 

likelihood ratio test lower than 0.10 in univariate analysis were included in the multivariate 

model. Backward selection was used to establish the final multivariate model. However, NPI 

was excluded due to redundancy with the variables size, grade and lymph node status. 

 

Analyses were performed in the whole population, and in the ER-positive, and ER-negative 

populations. We also assessed the prognostic value of nine immune signatures or metagenes 

previously validated as predictive of prognosis in HER2-positive breast cancer patients: the 

LCK metagene[14], an immune response module described by Desmedt [16], the T-fh and 

Th1 metagenes, and CXCL13 alone[11], the stroma-derived prognosis predictor (SDDP)[17]) 

or signatures developed specifically for HER2-positive breast cancers (HDPP 

[18]18(18)(17)(17)[15], the 105 lymphocyte-associated gene signature [19], the 14-immune 

gene signature [20]). We generated a heatmap of the gene expression profiles of each of the 

above prognostic signatures (Figure S4B). The samples were ordered according to our 

classification of low/high Immunity metagene expression. The expression patterns were 

similar among signatures, except for the Staaf signature genes, which were associated with 

poor outcome, and the Finak signature genes associated with a mixed or poor outcome. 

1.6.3 Assessment of tumor and stromal infiltrating lymphocytes and Immunity 

metagene expression in the REMAGUS dataset. 

We selected 27 HER2-positive breast cancer patients treated by NAC with or without 

neoadjuvant trastuzumab at our institution during the REMAGUS 02 trial [21]. Core biopsies 

were obtained before treatment, and separate cores were processed for histology and for RNA 

extraction, amplification, and hybridization to Affymetrix U133P2 arrays. We selected HER2-

positive patients on the basis of the expression of the “216836_s_at” probeset. According to 

the bimodal distribution of ERBB2 expression, 74 of the 226 samples for which 
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transcriptomic data were available were considered HER2-positive. Gene expression data 

were normalized with the RMA package and batch effects were removed by the median 

centering of each probe set across arrays and the quantile normalization of all arrays 

separately for each set. Thirty of these patients were treated at our institution, and 

pretreatment microbiopsies corresponding to the gene expression chips were retrieved for 27 

of them. Histologic microbiopsy specimens were evaluated independently for the presence of 

a lymphocytic infiltrate by one BCA pathologist (ML) and one physician (ASHP) unaware of 

the gene expression classification. Intratumoral TILs and stromal TILs were quantified in a 

semi-quantitative manner as percentages, as previously recommended [22]. Samples were 

split into Immunity “low” and “high” expression, relative to the median value for the 

metagene, as described for the other datasets. Intratumoral TIL and stromal TIL percentages 

were compared between the Immune “high” and Immune “low” subgroups by ANOVA. The 

correlation between gene expression and intratumoral TIL and stromal TIL percentages was 

assessed by calculating Pearson’s correlation coefficient. 

1.6.4 Expression of our gene signature in human breast cancer cell lines  

We assessed the expression of our signature in “in vitro” models, as a means of validating our 

classification and its prognostic value. We used the gene expression profiles of the human 

cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE)[23] of Novartis/the Broad 

Institute and from the Cancer Genome Project (CGP)[24] of the Sanger Institute. All the cell 

lines from different tissues were normalized together. The global gene expression signal is 

shown for breast cancer cell lines from the CCLE (58) and CGP (39). Box plots were 

generated for the expression of the Immunity and Interferon metagenes, and the metagenes 

defined by Gatza et al. (16) (IFN-alpha, IFN-gamma, STAT3, TGF-beta, TNF-alpha) and 

Palmer et al. (17) (LB, LT, CD8, GRANS, LYMPHS) in the CCLE and CGP. 
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2 Supplementary results 

2.1 Correlations between 138 genes and metagenes 

We assessed the correlation of each gene of the 138-gene signature with each of the six 

metagenes. For the Immunity, Interferon and Matrix metagenes, the expression of several 

genes was correlated with that of the metagene with correlation coefficients greater than 0.90 

(Immunity metagene: CCL5, LCK, CD3D, CD2; Interferon metagene: IFI44L, IFIT1, ISG15, 

MX1; Matrix metagene: CDH11, FNB1, COL5A1, COL5A2, THBS2). The ESR1 gene was 

the gene most strongly correlated with the Hormone survival metagene, with a correlation 

coefficient of 0.77. The ESR1 gene was also inversely correlated with the Immunity 

metagene, with a correlation coefficient of -0.43. 

2.2 Validation of the 138-gene signature 

For Affymetrix© arrays, we used the 138 selected genes. For the Illumina© platform, we used 

136 common genes. The corresponding heatmaps and the correlation coefficients for the 

relationships between each sample subgroup centroid in the three validation sets and the 

corresponding subgroup centroid in the training set are shown in Supplementary Figure 2. 

 

Sample clustering was moderately consistent between the training and validation gene sets. 

Concordance was high for centroid 1 (high Immunity, low Matrix, low Hormone/survival, 

concordance from 69 to 79%), but reproducibility was not high for the other centroids in the 

validation datasets.  

2.3 Correlation of Immunity metagene expression with hormonal pathways 

The levels of expression of ESR1, PGR and AR as a function of Immunity metagene 

expression status were compared in the four datasets (see the results section for the training 

set). The results below are presented with p-values for the differences in the Immunity “low” 
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versus the Immunity “high” group, in the training, validation, Ignatiadis and METABRIC 

datasets. ESR1 expression was consistently higher in the “Immunity low” subgroup than in 

the “Immunity high” subgroup (p< 10-16, p=0.008, p=0.003, p<0.00001, respectively). PGR 

expression was also stronger in the Immunity metagene “low” expression group, in three of 

the four datasets (p<10-6, p=0.003, p=0.07 and p=0.02, respectively). Similarly, AR 

expression was stronger in the Immunity metagene “low” expression group, in two of the four 

datasets (p=0.0002, p=0.43, p=0.003 and p=0.17, respectively). 

We also compared the level of Immunity metagene expression across the four datasets as a 

function of ER, PR and AR status, as previously described. Immunity metagene expression 

was significantly stronger in the ER-negative subgroup than in the ER-positive subgroup, in 

all four datasets (p<10-9, p=0.03, p<0.0001 and p=0.02, respectively). PR negativity was 

associated with higher levels of Immunity metagene expression in all but the Ignatiadis 

dataset (p=0.0001, p=0.05, p=0.24 and p=0.04, respectively), and AR negativity was 

associated with stronger Immunity metagene expression in the training and METABRIC 

datasets (p=10-6 and p=0.04, respectively), whereas no such association was observed in the 

validation and Ignatiadis datasets (p=0.75 and 0.80, respectively). 

 

We also compared the expression levels of each gene of the Immunity metagene separately as 

a function of ER status. Most of the genes of the Immunity metagene were significantly less 

strongly expressed in ER-positive than in ER-negative tumors in all four datasets (training set: 

27/28 genes, validation set: 19/28, METABRIC: 23/26 genes, and Ignatiadis dataset: 16/28).  

 

We then assessed the proportion of Immunity “low” and Immunity “high” samples across the 

four datasets as a function of ER status. The samples of ER-positive patients were more likely 

to be classified as Immunity “low” in all but the validation set (81% versus 19%, p<10-9; 47% 
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versus 53%, p=0.54; 63% versus 37%, p<0.001; 61% versus 39%, p=0.03). Samples from 

ER-negative patients were more likely to be classified as Immunity “high” in all but the 

validation set (71% versus 29%, p<10-9; 48% versus 52%, p=0.54; 60% versus 40%, p<0.001; 

63% versus 37%, p=0.03). 

2.4 Prediction of the response to chemotherapy 

We also performed similar analyses in the subset of patients that did not receive trastuzumab 

(n=75). The rates of pCR as a function of ER status were 16.3% (7/43) for ER–positive 

tumors and 40.6% (13/32) for ER-negative tumors (p=0.02). After stratification for Immunity 

metagene status, the pCR rates obtained were significantly different (p=0.003): 7.4% (2/27 

Immunity low) v 31.3% (5/16 Immunity high) for ER-positive tumors (p=0.08) and 16.7% 

(2/12 Immunity low) versus 55.0% (11/20 Immunity high) for ER-negative tumors (p=0.08). 

2.5 Correlations between the Immunity metagene and published signatures 

String database connections between the Immunity genes and published predictive and 

prognostic metagenes or immune signatures are provided in Figure S4. The gene intersection 

was poor, but our immune signature nevertheless appears to be strongly correlated with other 

published signatures, consistent with the use of similar immune pathways. Pearson’s 

correlation coefficients for the signatures are shown in brackets. The Immunity metagene was 

strongly correlated with the T-fh metagene (r=0.89), the CXCL13 metagene (r=0.74), and the 

LCK metagene (r=0.96). In comparisons with prognostic signatures, it was found to be 

correlated with the Denkert signature (r=0.73), the Th1 metagene (r=0.75), the IRSN-23 

predictor (r=0.62), the CXCL9 metagene (r=0.70), and the IgG metagene (r=0.78), although 

the coefficients were lower.  
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5 Stromal lymphocyte infiltration after neoadjuvant
chemotherapy is associated with aggressive
residual disease and lower disease-free survival in
HER2-positive breast cancer
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Background: The role of tumor-infiltrating lymphocytes (TILs) in breast cancer has been extensively studied over the last
decade. High TILs levels have been associated with pathological response rate in the neoadjuvant setting and with better
outcomes in the adjuvant setting. However, little attention has been paid to changes in TILs and residual TIL levels after
neoadjuvant chemotherapy (NAC). We investigated TIL levels before, after chemotherapy, and their dynamics during treatment;

25 and we assessed the correlation of these levels with response to NAC and prognosis.

Materials and methods: We identified 175 patients with primary HER2-positive breast cancers receiving NACþ/"
trastuzumab between 2002 and 2011. Microbiopsy specimens and paired surgical samples were evaluated for stromal
lymphocyte infiltration. Univariate and multivariate analyses were carried out to assess the association of clinical and
pathological factors with pathological complete response (pCR) and disease-free survival.

30 Results: Baseline TIL levels were not significantly associated with pCR. TIL levels decreased during treatment in 78% of the
patients. The magnitude of the decrease was strongly associated with pCR. After chemotherapy, TIL levels were high in tumors
displaying aggressive patterns (high residual cancer burden score, mitotic index>22, tumor cellularity>5%). In the population
with residual disease, TIL levels>25% at the end of NAC were significantly associated with an adverse outcome (TILs>25%,
HR¼ 7.98, P¼ 0.009) after multivariate analyses including BMI, post-NAC mitotic index and tumor grade.

35 Conclusion: A decrease in TIL levels during chemotherapy was positively associated with response to treatment. In tumor
failing to achieve pCR, post-NAC lymphocytic infiltration was associated with higher residual tumor burden and adverse clinical
outcome. Further studies are required to characterize immune infiltration in residual disease to identify candidates who could
benefit from second-line therapy trials including immune checkpoint inhibitors.
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40 Introduction

Breast cancer (BC) is the most frequently diagnosed cancer and
the leading cause of cancer-related death in women. HER2-posi-
tive BCs display amplification and overexpression of the HER2

tyrosine-kinase receptor gene. This subgroup is defined by ag-
45gressive pathological though trastuzumab-based treatments have

greatly improved their outcomes over the last decade [1]. AQ6
Neoadjuvant treatment is currently administered to pa-

tients with locally advanced BC. Beyond increasing the rate of
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breast-conserving surgery, it serves as a test of in vivo chemo-
sensitivity, and the analysis of residual tumor burden may help
understanding resistance to treatments.AQ7

The role of tumor-infiltrating lymphocytes (TILs) in BC has
5 been studied in detail over the last decade. Many studies have re-

ported associations between high levels of TILs at diagnosis
and better response to neoadjuvant chemotherapy [2–4], and
better prognosis in both neoadjuvant and adjuvant chemotherapy
[5–8], particularly for triple negative BCs (TNBC) and HER2-posi-

10 tive BC. Only few studies investigated TILs following neoadjuvant
chemotherapy (NAC) and addressed their prognostic significance.

In this study, we assessed the association between TIL levels
(before, during, and after NAC) and response to treatment, and
their prognostic values in a real-life cohort of HER2-positive BC

15 patients.

Materials and methods

Patients

We analyzed a cohort of 175 T1-3NxM0 patients with HER2-positive in-
vasive BC (NEOREP Cohort, CNIL declaration number 1547270) treated

20 at Institut Curie, Paris, between 2002 and 2012. We included unilateral,
non-recurrent, non-inflammatory, non-metastatic tumors, excluding T4
tumors. All patients received NAC, followed by surgery and radiotherapy.
NAC regimens changed over time (anthracycline-based regimen or se-
quential anthracycline-taxane regimen), with trastuzumab used in an ad-

25 juvant and/or neoadjuvant setting since 2005. Endocrine therapy
(tamoxifen or aromatase inhibitor) was prescribed when indicated. The
study was approved by the Breast Cancer Study Group of Institut Curie
and was conducted according to institutional and ethical rules regarding
research on tissue specimens and patients. Considering that neoadjuvant

30 trastuzumab and adjuvant trastuzumab use have been associated with an
increase in pathological complete response (pCR) rates and disease-free
survival (DFS), respectively [1], this study provides data on the subpopu-
lation of patients who received both neoadjuvant and adjuvant trastuzu-
mab as supplementary Materials and methods, available at Annals of

35 Oncology online (supplementary Tables S4–S6 and Figures S6–S10, avail-
able at Annals of Oncology online).

Tumor samples and pathology review

Pretreatment core needle biopsies and post-NAC surgical specimens
were reviewed for the purpose of the study and were evaluated independ-

40 ently for the presence of a mononuclear cells infiltrate (including
lymphocytes and plasma cells, excluding polymorphonuclear leukocytes)
following the recommendations of the international TILs Working
Group [9]. TILs were reviewed by one expert breast pathologist (ML) on
hematoxylin and eosin-stained sections without additional staining.

45 They were evaluated in the stroma, within the border of the tumor scar,
after excluding areas around ductal carcinoma in situ, and tumor zones
with necrosis and artifacts, and were scored continuously as the average
percentage of stromal area occupied by mononuclear cells. To ensure
that the mononuclear cells infiltrate considered as TILs in the analyses in-

50 deed corresponded to lymphocytes, we carried out a CD3þ immunos-
taining on a subset of 20 surgical specimens, which strongly correlated
with the levels of unstained TILs (see supplementary Results, Table S3,
and Figures S2–S5, available at Annals of Oncology online). The scar area
was first analyzed and measured at gross examination. Scar appeared as a

55 white aspect of the breast parenchyma representing the previous tumor
bed modified by NAC, and is characterized by histiocytes, lymphocytes,
macrophages, fibrosis, and elastosis. The whole fibro-inflammatory scar
was evaluated on HE sections (size evaluation in millimeters and stromal

TILs evaluation). Cases were considered estrogen receptor (ER) or pro-
60gesterone receptor (PR) positive if at least 1% of the tumor cells expressed

estrogen and/or progesterone receptors (ER/PR). Results using a 10%
positivity threshold in accordance with guidelines used in France [10] are
provided in the Supplementary Materials and methods, available at
Annals of Oncology online (supplementary Tables S7–S9 and Figures S11

65and S12, available at Annals of Oncology online). HER2 expression was
determined by immunohistochemistry and scoring was carried out ac-
cording to the American Society of Clinical Oncology (ASCO)/College of
American Pathologists (CAP) guidelines [11]. Scores 3þwere reported
as positive, score 1þ/0 as negative. Tumors with scores 2þwere further

70tested by FISH. With regard to HER2 gene amplification, an average of 40
tumor cells per sample was evaluated and the mean HER-2 signals per
nuclei was calculated. A HER2/CEN17 ratio$2 was considered positive,
and a ratio<2 negative [11].

Study end points
75ypTN stage was defined according to the American Joint Committee on

Cancer.

A pCR was defined as the absence of invasive residual tumor in both
breast and axillary nodes (ypT0/is N0). Determination of residual cancer
burden (RCB) was realized according to Symmans [12]. DFS was defined

80as the time from surgery to death, locoregional recurrence or distant re-
currence. Patients for whom none of these events were recorded were
censored at the date of their last known contact.

Statistical analysis

TIL levels and qualitative variables in classes were compared by ANOVA
85test with a post hoc Tukey analysis when necessary. Relative changes in

TIL levels were calculated by the difference between TIL levels post- and
pre-NAC divided by pre-NAC TIL levels. Changes in mean values were
investigated in paired t-tests. As no cut-off value for TIL levels after NAC
has been published, we investigated the prognostic performance of each

90threshold value concerning the association with DFS and retained the
cut-off value yielding the lowest P-value.

Factors predictive of pCR were introduced into a univariate logistic re-
gression model. A multivariate logistic model with forward stepwise selec-
tion procedure was then implemented with the covariates having a

95likelihood ratio test P-value below 0.10. Survival probabilities were esti-
mated by the Kaplan–Meier method, and survival curves were compared
in log-rank tests. Hazard ratios and their 95% confidence intervals
were calculated with the Cox proportional hazards model. Variables with a
P-value for the likelihood ratio test%0.10 in univariate analysis

100were included in the multivariate model. Forward selection was used to es-
tablish the final multivariate model. The significance threshold was 5%.

Analyses were carried out with R software, version 3.1.2.

Results

A total of 175 patients were included in the cohort. The median
105age was 47 years (range: 27–78 years), 64% (n¼ 109) were preme-

nopausal, and 29.1% (n¼ 51) were overweight or obese
(BMI> 25). Clinically, most patients were classified as having
stage T2, node-positive BC (64%, n¼ 109). Most of the tumors
were grade 3 tumors (70%, n¼ 121), and 38.3% were ER-

110negative. Most of them received anthracycline-taxane based regi-
men (88%, n¼ 154) as neoadjuvant treatment, 82% of patients
received both neoadjuvant and adjuvant trastuzumab (n¼ 144)
and 15% adjuvant trastuzumab only (n¼ 26). Sixty-eight pa-
tients (39%) achieved pCR after NAC, and this rate was different

115by ER status [ER negative 53.7% (36/67); ER positive: 29.6% (32/
108), P¼ 0.002].
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Table 1. Association between baseline, post-NAC TILs and pre- and post-NAC clinicopathological factors (n 5 175)

Variables n Baseline TILs (%) P Post-NAC TILs (%) P

Pre-neoadjuvantAQ13 chemotherapy parameters
Age %45 years 82 27.13 0.7 12.41 0.1

46–55 years 49 26.47 10.49
>55 years 44 24.93 8.61

Menopausal status Post 61 27.49 0.5 8.89 0.06
Pre 113 25.95 11.89

BMI 19–25 117 24.25 0.054 11.03 0.8
<19 7 34.29 8.57
>25 51 30.24 10.98

Tumor size T1 10 32 0.5 6.7 0.2
T2 113 26.28 10.62
T3 52 25.56 12.38

Nodal status N0 62 27.81 0.4 10.13 0.4
N1–N2–N3 113 25.62 11.35

Histology Other 5 12.4 0.06 8.4 0.5
Ductal 169 26.55 10.97

Grade I–II 51 24.16 0.2 10.24 0.5
III 121 27.62 11.33

Neoadjuvant trastuzumab No 26 22.01 0.1 13.69 0.1
Yes 144 27.26 10.47

Tumor cellularity <70% 72 27.74 0.3 9.85 0.2
$70% 103 25.46 11.67

Mitotic index %10 45 26.93 0.1 9.53 0.5
11–22 72 23.64 11.18
>22 58 29.4 11.67

ER status (cut-off 1%) Negative 67 28.99 0.12 11.04 0.9
Positive 108 24.79 10.84

PR status (cut-off 1%) Negative 111 27.51 0.2 9.81 0.1
Positive 59 23.98 12.49

Post-NAC parameters
pCR Residual disease 107 25.36 0.3 13.94 <0.001

pCR 68 28.01 6.16
RCB 0 68 28.01 0.2 6.16 <0.001 (b)

1 24 29.17 9.79
2 69 23.17 13.29
3 14 29.64 24.29

Mitotic index %10 153 26.3 0.9 9.43 <0.001 (c)
11–22 5 25 15.6
>22 17 27.65 22.94

Tumor cellularity %5% 91 28.19 0.2 7.27 <0.001 (d)
6%–15% 33 22.7 10.42
>15% 49 25.92 18.16

Nodal involvement 0 129 26.91 0.78 9.84 0.054
1–3 38 25.18 13.47
$4 Nþ 8 23.75 16.25

Larger nodal metastasis %2 mm 24 22.92 0.02 (a) 8.63 0.001 (e)
3–5 mm 12 18.08 12.92
>5 mm 11 36.82 26.36

Post hoc analyses for significant ANOVA tests (only results with P-value 0.05 or below are reported); baseline TIL levels: larger nodal metastasis (a) size
>5 mm versus %2 mm P ¼ 0.05; size >5 mm versus 3–5 mm, P ¼ 0.02; post-NAC TIL levels: RCB (b): 2 versus 0, P < 0.001; 3 versus 0, P < 0.001; 3 versus 1,
P < 0.001, 3 versus 2, P < 0.001; mitotic index (c): >22 versus %10, P < 0.001;.tumor cellularity (d): >15% versus %5%, P < 0.001, >15% versus 6–15%,
P < 0.001; larger nodal metastasis (e): >5 mm versus %2 mm, P < 0.001; >5 mm versus 3–5 mm, P ¼ 0.03.
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At baseline, the median baseline TIL level was 25% (range:
2%–70%). Baseline TIL levels were higher in patients with
BMI>25 (P¼ 0.05) and in patients with larger nodal metasta-
sis>5 mm at NAC completion than patients with larger nodal

5 metastasis%2 mm (P¼ 0.02) (Table 1).

After chemotherapy, the median TIL percentage fell to 10%
[1–90] [TIL levels decrease (n¼ 136, 78%), unchanged (n¼ 18,
10%), increase (n¼ 21, 12%)]. TIL levels decreased in all but
three patients in the pCR group (Figure 1A). The variation of TIL

10levels was strongly associated with pCR (P< 10"5), with the
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Figure 1. (A) TILs levels before (baseline) and after (post-NAC) chemotherapy. The solid black line represents paired samples displaying a de-
crease in TILs levels, the dotted lines represent pairs with no change in TILs levels, and the dashed lines represent pairs displaying an increase
in TILs levels. (B) Relationship between the change in TILs level (represented as a percentage change relative to baseline levels) and patho-
logical complete response. Plots are sorted by increasing magnitude of change in TILs levels.AQ12
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Figure 2. AssociationAQ17 between post-NAC TILs percentages and post-NAC parameters: mitotic index (A), tumor cellularity (B), pCR status (C),
RCB class (D), larger nodal metastasis size (E) and number of nodes involved (F).
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largest decreases of TILs being strongly associated with the
achievement of a pCR (Figure 1B). In univariate analysis, baseline
TIL levels were not associated with the occurrence of a pCR (sup-
plementary Table S1, available at Annals of Oncology online).AQ8

5 None of the baseline characteristics of the patients or tumors
were significantly associated with post-NAC TIL levels (Table 1).
Conversely, post-NAC TILs were strongly associated with post-
NAC parameters, and were higher in tumors with aggressive
characteristics [no pCR, high RCB class, high mitotic index and

10 residual tumor cellularity, P< 0.001), as well as a high number of
nodes involved (P¼ 0.054), and larger nodal metastases
(P¼ 0.001)] (Figure 2).

Higher RCBs were associated with higher post-NAC TIL levels
but not with baseline TIL levels (Figure 3). Overall, these findings

15 indicate that the aggressiveness of the residual tumor is associated
with TIL levels after chemotherapy, but not with baseline TIL lev-
els. Analyses carried out after stratifying by ER status did not

substantially change the results and are detailed in supplementary
Table S2, available at Annals of Oncology online.

20During a median follow-up of 38.8 months (range 5.5–91.7),
18 patients suffered relapses (one from pCR group). No associ-
ation was found between DFS and baseline TIL levels (supple-
mentary Table S3, available at Annals of Oncology online). In the
population of patients without pCR (n¼ 107), levels of TILs

25higher than 25% were an independent poor prognostic factor to-
gether with BMI, tumor grade, post-NAC mitotic index and RCB
score (Table 2; supplementary Figure S1, available at Annals of
Oncology online).

Discussion
30This study of 175 HER2-positive pair-matched pre-treatment bi-

opsy and post-treatment surgical specimens provides new insight
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into TILs variation during NAC, and the prognostic significance
of residual TIL levels.

First, the association we reported between higher pCR rates
and a large decrease in TIL levels after NAC was also found by Ali

5 et al. [13], who first highlighted that an increase in lymphocyte
density was associated with a relative chemoresistance. The
higher pCR rate may be due to the disappearance of
FOXP3þ lymphocyte-T as suggested by Ladoire et al. [14].

Second, the clinical significance of post-NAC TILs seems also
10 complex. Here, we showed that (i) at NAC completion, TILs are

present at higher levels in tumors failing to reach pCR than in
chemosensitive tumors; (ii) this lymphocyte infiltration does not
clear cancer cells effectively. Two hypotheses can be drawn.

On the one hand, TIL presence in patients with residual disease
15could be active but may not have had sufficient time to com-

pletely eradicate the tumor. Furthermore, the immune response
may not recognize the tumor cells and post-NAC TILs could be
unable to exert their antitumor function, possibly due to a sur-
rounding immunosuppressive milieu.

20Interestingly, the opposite pattern has been reported for
TNBC by Dieci et al. [15] who showed that high levels of TILs in
residual disease were associated with an absence of axillary
lymph node metastasis (18 of 27; 66%) and a small tumor size
(<2 cm, 22 of 27; 81%) after NAC. Similarly, Miyashita et al.

25[16] showed that high levels of CD8þ TILs after NAC were asso-
ciated with a small residual tumor size in a series of 130 TNBCs.

Table 2. Association of clinicopathological factors and TILs parameters with DFS (population without pCR)

Univariate analysis Multivariate analysis

Variable n Ev HR 95% CI P P* HR 95% CI P*

Pre-NACAQ14 parameters
Age %45 years 59 9 1

46–55 year 31 6 1.14 0.41–3.21 0.8 0.9
>55 year 17 2 0.8 0.17–3.71 0.7 0.9

Menopausal status post 29 5 1
pre 77 12 0.99 0.35–2.83 0.9 0.9

BMI 19–25 69 6 1 1
<19 4 1 2.4 0.29–20.04 0.4 9.57 0.83–110.54 0.07
>25 34 10 3.76 1.36–10.37 0.01 0.02 5.21 1.8–15.11 0.002

Tumor size T1 3 0 1
T2 70 9 NA NA 0.2
T3 34 8 NA NA

Nodal status N0 37 5 1
N1–N2–N3 70 12 1.28 0.45–3.64 0.6 0.6

Mitotic index %22 69 13 1
>22 37 4 0.71 0.23–2.17 0.5 0.5

Grade I–II 31 10 1 1
III 75 7 0.32 0.12–0.85 0.02 0.015 0.11 0.03–0.42 0.001

ER status (cut-off 1%) Negative 31 7 1
Positive 76 10 0.63 [0.24–1.67] 0.4 0.4

PR status (cut-off 1%) Negative 54 10 1
Positive 48 5 0.58 0.2–1.69 0.3 0.3

Pre-NAC TILs <10% 7 1 1 0.924
10%–60% 91 15 1.28 [0.17–9.7] 0.811
>60% 9 1 0.91 [0.06–14.61] 0.947

Tumor cellularity <70% 43 8 1
$70% 64 9 0.69 0.27–1.79 0.4 0.4

Post-NAC parameters
Nodal involvement 0 61 9 1

1–3 38 6 0.89 0.31–2.53 0.829 0.67
$4 8 2 1.82 0.39–8.45 0.445 0.67

Mitotic index %10 85 9 1 1
>10 22 8 3.13 1.2–8.12 0.019 0.014 2.98 0.99–8.94 0.051

Tumor cellularity %5% 29 1 1
>5% 78 16 4.56 0.6–34.51 0.141 0.106

RCB 1 24 1 1
2 69 12 3.35 0.44–25.84 0.245
3 14 4 6.1 0.68–54.6 0.106 0.201

Post-NAC TILs %25% 98 13 1 1
>25% 9 4 3.23 1.05–9.93 0.041 0.03 7.98 1.68–37.77 0.009
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An hypothesis accounting for differences in the predictive and
prognostic impacts of TILs between HER2-positive BCs and
TNBCs is the use of trastuzumab as a neoadjuvant treatment, as
interactions between treatment type and the predicted impact of

5 TIL levels have previously been reported [4]. It might also be plaus-
ible that TILs significance differs by BC subtype. In TNBC, baseline
TIL levels are associated with pCR [2, 4, 17], whereas this effect
seems more controversial in HER2-positive BC [3, 18–20], and a
non-linear association between TILs and pCR had been evidenced

10 in the NeoSPHERE [18] and the NeoALTTO trials [3]. In our
study, TIL levels were not associated with pCR (similarly to the
NeoSPHERE [18], NeoALTTO [3], and the GeparSepto trials
[19]), whereas they were associated with response to chemother-
apy in the GeparQuattro and GeparQuinto [20] trials.

15 Third, to our knowledge, this is the first report of an adverse
prognostic impact of high post-NAC TIL levels in such a large co-
hort of HER2-positive BC patients. Our findings are consistent
with those of Garcia Martinez et al., who reported an association
between high levels of post NAC tumor lymphocyte infiltration

20 and a worse DFS, even though the analysis was carried out on 121
patients of various BC subtypes [21]. To end, Ladoire et al. [22]
investigated post-treatment tumor lymphocyte infiltrate in 111
HER2-positive BC, and showed that low levels of CD8þ cell infil-
tration after NAC were associated with poor RFS (HR¼ 3.85,

25 P< 0.0001), and that low levels of FOXP3þ cell infiltration after
NAC were associated with better RFS (HR¼ 0.52, P¼ 0.036). We
did not yet perform immunostaining to separate out the immune
subpopulations, which will enable us to determine whether there
is any enrichment in immunosuppressive signaling. However,

30 there is currently no clear consensus as to which single antibody
or antibody combination should be used, and their interpretation
is not standardized. One advantage of quantitative TIL assess-
ment is that it could be carried out routinely in any pathology de-
partment with no real increase in technical costs; furthermore,

35 our findings suggest that this quantitative information per se
could be a useful prognostic marker after chemotherapy. Some
studies have reported a positive correlation between the numbers
of unstained TILs and CD8þTILs [16], CD3 counts or counts for
other immune subpopulations (CD3þ, CD20þ, CD68þ) [21],

40 supporting the notion that quantitative assessments could serve
as a relevant surrogate marker. Moreover, Denkert et al. [2]
showed that the expression of inflammatory marker genes and
proteins was linked to the histopathological infiltrate, even for
proteins with reported immunosuppressive functions, such as

45 PD-1, PD-L1, IDO1, and CTLA4.
However, from a research standpoint, extensive characteriza-

tion of the lymphocyte infiltrate remaining in residual tumors to
determine the subsets of TILs present will further improve our
understanding of chemoresistance mechanisms and anti-tumor

50 immunology. In addition, immunostaining for PD1, PDL1,
CTLA4 may provide theranostic information facilitating selec-
tion of the patients most likely to benefit from treatment with
drugs restoring sensitivity to anti-tumor treatment.

Conclusion
55 If TILs variations are confirmed to be predictive of pCR, an early

assessment of changes in TIL levels during chemotherapy could

serve as an early surrogate of resistance to treatment and
could offer a possibility to a premature switch to second-line
treatments. We will investigate whether the residual lymphocyte

60infiltrate in non-responding tumor is enriched in immunosup-
pressive cells that could be targeted by immune checkpoint block-
ade. If our findings are confirmed, we suggest that patients failing
to achieve pCR and with high post-NAC TILS should be included
in specific second-line drug trials.
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Key Message

In HER2-positive BC, TILs decrease is strongly associated with pathological complete response. A high lymphocyte infiltration (>25%) at
NAC completion is associated with higher residual tumor burden and with an adverse outcome.AQ11
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Supplementary file 

1.  Supplementary methods 

1.1.  Patients 

We analyzed a cohort of 175 T1-3NxM0 patients with HER2-positive invasive BC treated by 

neoadjuvant chemotherapy (NAC) at Institut Curie, between 2002 and 2012. Trastuzumab use 

changed over time and was introduced in an adjuvant setting in 2004. Its use was generalized 

both in the neoadjuvant and the adjuvant setting in 2006. Since the results of the NOAH study 

1, the standard of care in HER2-positive BC patients receiving neoadjuvant chemotherapy 

became the use of both neoadjuvant trastuzumab in addition to NAC and adjuvant 

trastuzumab after NAC completion. Overall, 144 patients received both neoadjuvant and 

adjuvant and the analyses on this subpopulation are provided in the supplementary results, 

section 2.2. 

1.2.  Tumor samples and pathology review 

1.2.1.  Evaluation of tumor-infiltrating lymphocytes and pathology review  

Pathological specimens (pretreatment core needle biopsy and post-NAC surgical specimens) 

were reviewed by one expert breast pathologist (ML) for the purpose of the study following 

the recommendations of the international TILs Working Group2. They were evaluated 

independently for the presence of a mononuclear cells infiltrate (including lymphocytes and 

plasma cells, excluding polymorphonuclear leukocytes), on hematoxylin and eosin-stained 

sections without additional staining as recommended by Salgado et al 2. 

Both IT and stromal TILs were assessed, but exhaustive results are reported for stromal TILs 

only. Intratumoral TILs (IT TILs) were defined as intraepithelial mononuclear cells within 

tumor nests or in direct contact with tumor cells and stromal TILs (Str TILs) were defined as 

mononuclear inflammatory cells within intratumoral stromal area and were reported as 

percentage of stromal area. Pearson’s correlation coefficients were calculated for the 

relationships between IT and stromal TIL levels.  
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To study their association with pathological complete response (pCR), stromal TILs levels 

were categorized into the following classes: <10%, 10 to 60%, >60%, according to Denkert et al 

(SABCS 2016, oral presentation) 

1.2.2.  Immunostaining 

To further validate that the unstained mononuclear cells infiltrate we considered as TILs in 

the analyses indeed corresponded to tumor-infiltrating lymphocytes, we performed a CD3+ 

immunostaining on a subset of 20 surgical specimens selected within the cases without 

pathological complete response. For immunohistochemistry, 4 μm sections were cut from the 

tissue specimen, deparaffinated, rehydrated and processed with standard methods using an 

automatized stainer (Autostainer Link 48, DAKO, Carpinteria, CA, USA) and the following 

antibodies was used CD3 (A0452, Dako). CD3 positivity was assessed blind to the levels of 

unstained TILs. We assessed correlations between unstained TILs and CD3+ cells by 

calculating the Pearson’s correlation coefficient. 

1.2.3.  Tumor samples 

In the main manuscript, cases were considered estrogen receptor (ER) or progesterone 

receptor (PR) positive if at least 1% of the tumor cells expressed estrogen and/or progesterone 

receptors (ER/PR), according to the ASCO/CAP guideline recommendations3. However, 

French guidelines4 recommend to use a 10% positivity threshold for ER and PR to consider a 

tumor as ER or PR-positive respectively. The results of the supplementary results section 2.3 

are provided with the 10% threshold for ER and PR positivity. 

2.  Supplementary results 

2.1.  Supplementary pathological results  

2.1.1.  Correlation between IT and stromal TILs 

Stromal TILs were assessed on 175 pretreatment and post-treatment samples, and IT TILS 

were assessed in 175 pretreatment samples and 107 surgical specimens with residual disease. 
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The median baseline IT TIL level was 15% (range: 1-60%), and the median baseline Str TIL 

level was 25% (range: 2-70%) (Supplementary Figure 2). 	

 

Supplementary Figure 2: IT and Str TIL levels before (1a) and after (1b) neoadjuvant 
chemotherapy. The bar represents the median value, and the box plot represents the interquartile 
ranges. 
 

IT and Str TIL levels were strongly correlated both before (Pearson correlation coefficient, 

r=0.93 [0.91-0.95], p<10-16, supplementary Figure 3a) and after NAC (Pearson correlation 

coefficient, r=0.92 [0.89-0.95], p<10-16, supplementary Figure 3b).  
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Supplementary Figure 3:  Correlation between pre-NAC intra tumoral (IT) TIL levels and pre-
NAC stromal TIL levels. (3a) : Correlation between post-NAC intra tumoral (IT) TIL levels and post-
NAC stromal TIL levels (3b) 
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2.1.2.  Correlation between unstained TILs and CD3+ TILs 

A subset of 20 surgical specimen with residual disease were stained with a CD3 antibody. 

Correspondence between unstained TILs and CD3+ TILs are detailed in supplementary table 

3 and represented on supplementary Figure 4. 

 

Case #  
Unstained 

TILs 
CD3+ 
TILs 

1 20 20 
2 10 10 
3 5 5 
4 5 5 
5 10 7 
6 15 15 
7 10 10 
8 10 10 
9 2 2 

10 15 15 
11 10 10 
12 10 10 
13 20 20 
14 90 90 
15 20 20 
16 25 25 
17 10 10 
18 10 10 
19 10 7 
20 15 15 

	

	

	

	

Supplementary Table 3 and supplementary figure 4:  Relationships between unstained TILs 
and CD3+ TILs 
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CD3 staining ranged from 2 to 90%. Supplementary Figure 5 shows pictures of a 5% (5a) – 

25% (5b) and 90% (5c) CD3+ immunostaining 

 

Supplementary Figure 5:  Evaluation of stromal TILs percentages with a CD3 immunostaining. 
5a: stromal TILs: 5%; 5b: stromal TILs: 25%; 5c: stromal TILs : 90% 
 
Overall, CD3+ and unstained TILs showed an excellent correlation (r=0.99, p<0.00001). 

a

b

c
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2.2.  Results within the population treated with both neoadjuvant and 

adjuvant trastuzumab only (n=144) 

In the whole cohort (n=175), trastuzumab combined with neoadjuvant chemotherapy was 

associated with higher pCR rates than chemotherapy alone (15.4% versus 42.4%, p=0.01) 

(Supplementary Figure 6a). DFS was not different by use of neoadjuvant trastuzumab (yes 

versus no, HR=0.65 [0.24 - 1.77], p=0.4) (Supplementary Figure 6b). 

	
	

 
Supplementary Figure 6:  6a: Pathological complete response rates according to the use of 
neoadjuvant trastuzumab (no neoadjuvant trastuzumab, red plot (no_neoadjuvant_tz); neoadjuvant 
trastuzumab, blue plot (neoadjuvant_tz)). 6b: Kaplan Meier Disease Free survival curve by use of 
neoadjuvant trastuzumab. 
 

All the following results are presented in the population of patients treated with both 

neoadjuvant and adjuvant trastuzumab (n=144). The median age was 48 years (range: 27-78 

years), 64.6% (n=93) were premenopausal, and 29.2% (n=42) were overweight or obese 

(BMI>25). Clinically, most patients were classified as having stage T2 (n=96, 66.7%), node–

positive breast cancer (61.8%, n=89). Most of the tumors were grade 3 tumors (71.3%, 

n=102), and 36.8% were ER-negative (n=53). All patients (but one) received anthracycline-

taxane based regimen as neoadjuvant treatment. 
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At baseline, the median baseline TIL level was 25% (range: 5-70%). PR negativity was 

associated with higher baseline TIL levels (p<0.001), and baseline TIL levels were higher in 

patients with larger nodal metastasis > 5mm at NAC completion than patients with larger 

nodal metastasis ≤ 2 mm (p=0.03) (Supplementary Table 4). 

    n=144 

Variables n 
baseline 

p 
post-
NAC 

TILs (%) 
p 

TILs (%) 

Pre-neoadjuvant chemotherapy parameters 

Age 
≤45 y 67 26.87 

0.75 
12 

0.23 46-55 y 38 29.08 9.45 

>55 y 39 26.15 8.85 

Menopausal 
status 

post 51 29.22 
0.5 

8.63 
0.1 

pre 93 26.18 11.48 

Body mass 
index (BMI) 

19 to 25 98 25.56 

0.24 

10.91 

0.36 <19 4 28.75 3.75 

>25 42 31.07 10.1 

Tumor size 

T1 8 33.75 

0.57 

8 

0.43 T2 96 26.77 10.02 

T3 40 27.12 12.05 

Nodal 
status 

N0 55 28.36 
0.56 

10.42 
0.96 

N1-N2-N3 89 26.57 10.51 

Grade 
I-II 41 24.27 

0.19 
9.98 

0.69 
III 102 28.58 10.73 

Tumor 
cellularity 

< 70% 61 28.52 
0.46 

10.25 
0.82 

≥ 70% 83 26.33 10.64 

Mitotic 
index 

≤ 10 36 26.94 
0.33 

9.94 
0.65 11-22 54 24.81 9.81 

>22 54 29.91 11.48 

ER status 
(cut-off 1%) 

negative 53 30.57 0.09 9.85 0.57 
positive 91 25.33 10.84 

PR status 
 

negative 91 29.01 <0.001 9.19 0.04 
positive 51 24.51 12.78 
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    n=144 

Variables n 
baseline 

p 
post-
NAC 

TILs (%) 
p 

TILs (%) 

Post-NAC parameters 

 pCR 
Residual disease 83 25.9 0.29 13.55 <0.001 

pCR 61 29.1 6.28 

Residual 
cancer 
burden 
(RCB) 

0 61 29.1 

0.44 

6.28 

<0.001  (b) 
1 22 28.18 10 

2 53 24.15 12.83 
3 8 31.25 28.12 

Mitotic index 
≤  10 130 27.19 

0.91 
9.46 

<0.001  (c) 11-22 3 31.67 19.33 
>22 11 26.82 20 

Tumor 
cellularity 

≤ 5% 82 29.27 
0.34 

7.55 
<0.001  

(d) 6-15% 26 24.23 11.31 
>15% 34 25.29 17.06 

Nodal 
involvement 

0 113 27.43 

0.91 

9.6 

0.11 1 - 3 N+ 25 27.2 13.12 

≥ 4 N+ 6 24.17 15.83 

Larger nodal 
metastasis 

≤ 2 mm 19 22.89 

0.03 (a) 

7.89 

0.001  (e) 3-5mm 4 16.25 9.5 

>5mm 8 40.63 29.38 
 

Supplementary Table 4:  Association between baseline TIL levels, post-NAC TILs levels and 
clinical and pathological factors before and after chemotherapy in the population treated with 
neoadjuvant and adjuvant trastuzumab only (n=144).  
Abreviations: Body mass index (BMI); Estrogen Receptor (ER) ; Progesterone Receptor (PR); 
neoadjuvant chemotherapy (NAC) ; pathological complete response (pCR) ; Residual cancer burden 
(RCB), events (Ev).		
Post hoc analyses for significant ANOVA tests (only results with p-value 0.05 or below are reported):  
(a) Larger nodal metastasis size: >5mm versus ≤ 2 mm, p=0.04; (b) RCB class: 2 versus 0: p<0.001, 3 
versus 0, p<0.001, 3 versus 1 p<0.001, 3 versus 2  p<0.001 ;  (c) Mitotic index ≤ 10  versus >22 
p<0.001 ; (d) Post NAC tumor cellularity : >15% versus ≤ 5% p<0.001, >15% versus 6-15% p=0.05 ; 
(e) Larger nodal metastasis size :  >5mm versus ≤ 2 mm p<0.001.  
 
After chemotherapy, the median TIL percentage fell to 10% [1-90] (TIL levels decrease 

(n=113, 78.5%), unchanged (n=15, 10.4%), increase (n=16, 11.1%)). TIL levels decreased in 

all but three patients in the pCR group (Supplementary Figure 7a). The variation of TIL levels 

was strongly associated with pCR (p<10-5), with the largest decreases of TILs being strongly 

associated with the achievement of a pCR (Supplementary Figure 7b). 
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Supplementary Figure 7: 7a: Str TIL levels before (Baseline) and after (post NAC) chemotherapy 
(population of patients treated with both neoadjuvant and adjuvant trastuzumab (n=144)). The solid 
black line represents paired samples displaying a decrease in TIL levels, the dotted lines represent 
pairs with no change in TIL levels, and the dashed lines represent pairs displaying an increase in TIL 
levels. 7b : Relationship between the change in Str TIL level (represented as a percentage change 
relative to baseline levels) and pathological complete response. Plots are sorted by increasing 
magnitude of change in Str TIL levels. 
 
Overall, pCR was reached in 61 patients (42.4%), and this rate was significantly different by 

ER status (ER negative, 32/53 (60.4%), ER positive 29/91 (31.9%), p<0.001). In univariate 

analysis, age, menopausal status, ER and PR status were associated with the occurence of a 

pCR, but baseline TIL levels were not (Supplementary Table 5). After multivariate analysis, 

only PR status remained significantly associated with pCR. 
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	 	 	 	 Univariate	 Multivariate	

Variables	 n	 pCR	(n)	 pCR	(%)	 OR	 95%	IC	 p	 OR	 95%	IC	 p	

Age	

≤45	y	 67	 21	 31.3	%	 1	 		 		 	 	 	

46-55	y	 38	 16	 42.1	%	 1.59	 [0.7	-	3.65]	 0.269	 	 	 	

>55	y	 39	 24	 61.5	%	 3.5	 [1.55	-	8.17]	 0.003	 	 	 	

Menopausal	 post	 51	 28	 54.9	%	 1	 		 		 	 	 	

status	 pre	 93	 33	 35.5	%	 0.45	 [0.22	-	0.9]	 0.025	 	 	 	

Body	mass	
index	(BMI)	

19	to	25	 98	 43	 43.9	%	 1	 		 		 	 	 	

<19	 4	 3	 75%	 3.84	 [0.47	-	79.07]	 0.251	 	 	 	

>25	 42	 15	 35.7	%	 0.71	 [0.33	-	1.49]	 0.37	 	 	 	

Tumor	size	

T1	 8	 5	 62.5	%	 1	 		 		 	 	 	

T2	 96	 39	 40.6	%	 0.41	 [0.08	-	1.77]	 0.241	 	 	 	

T3	 40	 17	 42.5	%	 0.44	 [0.08	-	2.06]	 0.308	 	 	 	

Nodal	 N0	 55	 25	 45.5	%	 1	 		 		 	 	 	

status	 N1-N2-
N3	

89	 36	 40.4	%	 0.82	 [0.41	-	1.61]	 0.555	 	 	 	

Mitotic	index	

≤	10	 36	 15	 41.7	%	 1	 		 		 	 	 	

nov-22	 54	 22	 40.7	%	 0.96	 [0.41	-	2.28]	 0.93	 	 	 	

>22	 54	 24	 44.4	%	 1.12	 [0.48	-	2.65]	 0.794	 	 	 	

Grade	
I-II	 41	 19	 46.3	%	 1	 		 		 	 	 	

III	 102	 42	 41.2	%	 0.81	 [0.39	-	1.69]	 0.573	 	 	 	

ER	status	
(cut-off	1%)	

negative	 53	 32	 60.4	%	 1	 		 		 	 	 	

positive	 91	 29	 31.9	%	 0.31	 [0.15	-	0.62]	 0.001	 	 	 	

PR	status	
(cut-off	1%)	

negative	 91	 51	 56%	 1	 		 		 1	 		 		
positive	 51	 10	 19.6	%	 0.19	 [0.08	-	0.42]	 <0.001	 0.19	 [0.08	-0.42]	 <0.001	

Tumor	
cellularity	

<70%	 61	 27	 44.3	%	 1	 		 		 	 	 	

≥70%	 83	 34	 41	%	 0.87	 [0.45	-	1.71]	 0.692	 	 	 	

TILS	(3	classes)	

<	10%	 8	 3	 37.5	%	 1	 		 		 	 	 	

10-60%	 121	 50	 41.3	%	 1.17	 [0.28	-	5.93]	 0.832	 	 	 	

≥	60%	 15	 8	 53.3	%	 1.9	 [0.34	-	12.24]	 0.472	 	 	 	
 
Supplementary Table 5:  Association of baseline clinicopathological factors and pCR in the 
population treated with neoadjuvant and adjuvant trastuzumab only (n=144). 
 

None of the baseline characteristics of the patients or tumors were significantly associated 

with post-NAC TIL levels (Supplementary Table 4), except for PR positivity, that was 

significantly associated with higher TILs than PR negativity (p=0.04). Conversely, post-NAC 

TILs were strongly associated with post-NAC parameters, and were higher in tumours with 

aggressive characteristics (no pCR, high RCB class, high mitotic index and residual tumor 
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cellularity, p<0.001), and in tumors with larger nodal metastases (p=0.001)) (Supplementary 

Figure 8). 

 

Supplementary Figure 8:  Association between post-NAC Str TIL percentages and post-NAC 
parameters (population of patients treated with both neoadjuvant and adjuvant trastuzumab (n=144)): 
mitotic index (a), tumor cellularity (b), pCR status (c), RCB class (d), larger nodal metastasis size (e) 
and number of nodes involved (f). 
Higher RCBs were associated with higher post-NAC TIL levels but not with baseline TIL 
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levels (Supplementary Figure 9).  

 

Supplementary Figure 9:  Pre-chemotherapy median Str TIL level in the whole population (a) and 
by RCB class (b). Post-chemotherapy median Str TIL level in the whole population (c) and by RCB 
class (d). 
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During a median follow-up of 31.3 months (range: 5.5-91.7), 12 patients suffered relapses 

(one from pCR group). No association was found between DFS and baseline TIL levels 

(Supplementary Table 5). In the population of patients without pCR (n=83), post-NAC TIL 

levels higher than 25% were an independent poor prognostic factor (Supplementary Table 6, 

Supplementary Figure 10). 

 

Supplementary Figure 10:  Kaplan Meier DFS survival curve by post-NAC TIL levels (cut-off: 
25%) in the population of patients treated with both neoadjuvant and adjuvant trastuzumab and with 
residual disease at NAC completion (n=83)) 
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Supplementary Table 6:  Association of clinicopathological factors and TILs parameters with DFS 
(population treated with both neoadjuvant and adjuvant trastuzumab and without pCR (n=83)) 

		 		 		
	

Univariate	analysis	 Multivariate	analysis	

Variables	 		 n	 events	
(n)	 HR	 95%	IC	 p	 p	(global)	 HR	 95%	IC	 p	

Pre-neoadjuvant	chemotherapy	parameters	

Age	

≤45	y	 46	 6	 1	 		 		

0.708	

		 		 		

46-55	y	 22	 4	 1.27	 [0.36	-	4.53]	 0.71	 		 		 		

>55	y	 15	 1	 0.51	 [0.06	-	4.3]	 0.54	 		 		 		

Menopausal	
status	

post	 23	 2	 1	 		 		
0.368	

		 		 		

pre	 60	 9	 2	 [0.43	-	9.27]	 0.378	 		 		 		

Body	mass	index		
(BMI)	

19	to	25	 55	 4	 1	 		 		

0.072	

		 		 		

<19	 1	 0	 0	 [0	-	Inf]	 0.998	 		 		 		

>25	 27	 7	 3.76	 [1.1	-	12.85]	 0.035	 		 		 		

Tumor	size	
T1-T2	 60	 7	 1	

	
		

0.363	
		 		 		

T3	 23	 4	 1.78	 [0.52	-	6.13]	 0.363	 		 		 		

Nodal	
status	

N0	 30	 4	 1	 		 		
0.88	

		 		 		

N1-N2-N3	 53	 7	 1.1	 [0.32	-	3.76]	 0.88	 		 		 		

Mitotic	index			

≤	10	 21	 5	 1	 		 		

0.279	

		 		 		

11-22	 32	 4	 0.47	 [0.13	-	1.75]	 0.261	 		 		 		

>22	 30	 2	 0.31	 [0.06	-	1.63]	 0.168	 		 		 		

Grade	
I-II	 22	 6	 1	 		 		

0.064	
1	 		 		

III	 60	 5	 0.34	 [0.1	-	1.12]	 0.077	 0.27	 [0.08	-	0.92]	 0.036	

ER	status	
(cut-off	1%)	

negative	 21	 5	 1	 		 		
0.135	

		 		 		

positive	 62	 6	 0.4	 [0.12	-	1.33]	 0.135	 		 		 		

PR	status	
(cut-off	1%)	

negative	 40	 7	 1	 		 		
0.32	

		 		 		

positive	 41	 4	 0.54	 [0.16	-	1.83]	 0.32	 		 		 		

Tumor	cellularity	
<	70%	 34	 5	 1	 		 		

0.718	
		 		

		
≥	70%	 49	 6	 0.8	 [0.25	-	2.64]	 0.718	 		 		

TILs	(3	classes)	

<	10%	 5	 1	 1	
	 	 0.1	

		 		

		10-60%	 71	 9	 0.67	 [0.08	-	5.28]	 0.702	 		 		

≥	60%	 7	 1	 0.86	 [0.05	-	13.96]	 0.918	 		 		

Post-NAC	parameters	

Nodal	involvment	

0	 52	 6	 1	 		 		

0.831	

		 		

		1	to	3	N+	 25	 4	 1.41	 [0.4	-	5.02]	 0.592	 		 		

≥	4	N+	 6	 1	 1.54	 [0.18	-	12.84]	 0.69	 		 		

Mitotic	index			

≤	10	 69	 7	 1	 		 		

0.221	

		 		

		11-22	 3	 1	 4.17	 [0.5	-	34.56]	 0.186	 		 		

>22	 11	 3	 2.31	 [0.59	-	8.96]	 0.228	 		 		

Tumor	cellularity		
<	70%	 27	 1	 1	 		 		

0.141	
		 		

		
≥	70%	 56	 10	 4.14	 [0.53	-	32.42]	 0.176	 		 		

Residual	Cancer	Burden	
(RCB)	

1	 22	 1	 1	 		 		

0.487	

		 		

		2	 53	 9	 3.3	 [0.42	-	26.04]	 0.258	 		 		

3	 8	 1	 2.64	 [0.16	-	42.22]	 0.493	 		 		

TIL	levels		
(cut-off:	25%)	

≤25%	 77	 8	 1	 		 		
0.01	

1	 		 		

>	25%	 6	 3	 4.91	 [1.28	-	18.81]	 0.02	 6.61	 [1.65	-	26.46]	 0.008	
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2.3.  Results in the whole population (n=175) with a 10%-threshold for 

ER and PR positivity 

Results in the main manuscript are provided with a 1% positivity threshold for ER and PR 

positivity according to American guidelines3. In France, cases are considered estrogen 

receptor (ER) or progesterone receptor (PR) positive if at least 10% of the tumor cells 

expressed estrogen and/or progesterone receptors (ER/PR). Results below are provided using 

a 10% positivity threshold in accordance with guidelines used in France4. 

With the 10% threshold value, the distribution of the population by ER status was as follows: 

ER negative (n=77, 44%), ER positive (n=98, 56%). Concerning PR status, the distribution of 

the population was similar using a 1% or a 10% threshold. ER negativity was associated with 

higher baseline TIL levels 30.61 versus 23.08, p=0.003, but not with the level of post-NAC 

TILs (Supplementary Table 7). 

Variables	
	 n	

baseline		
TILs	(%)	

p		 post-NAC	TILs	
(%)	

p	

ER	status		
(cut-off	10%)	

negative	 77	 30.61	
0.003	

11.26	
0.6	positive	 98	 23.08	 10.65	

ER	status	
(cut-off	1%)	

negative	 67	 28.99	 0.12	 11.04	 0.9	
positive	 108	 24.79	 	 10.84	 	

 
Supplementary Table 7:  Association between baseline, post-NAC TILs and ER status with the two 
thresholds for ER positivity (cut-off 10% according to French guidelines and cut-off 1% according to American 
guidelines respectively). 
 
Irrespective of the 10% or the 1% threshold, ER negativity was strongly associated with 

higher pCR rates (OR : 0.37 and 0.36 respectively, p-value=0.002, Supplementary Table 8 

and Supplementary Figure 11). 

	 Univariate	analysis	
		 		 n	 pCR		 %		 OR	 95%	CI	(OR)	 p	

ER	status		
(cut-off	10%)	

negative	 77	 40	 51.9	 1	 		 		
positive	 98	 28	 28.6	 0.37	 0.2-0.69	 0.002	

ER	status	
(cut-off	1%)	

negative	 67	 36	 53.7	 1	 	 	
positive	 108	 32	 29.6	 0.36	 [0.19	-	0.68]	 0.002	

 
Supplementary Table 8:  Association between pCR and ER status with the two thresholds for ER 
positivity (cut-off 10% according to French guidelines and cut-off 1% according to American 
guidelines respectively). 
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Supplementary Figure 11:  pCR rates by ER status and by ER-positivity threshold. a  : cut-off 
10% according to French guidelines. b: cut-off 1% according to American guidelines.  
 
In the population without pCR, ER status was not associated with DFS, neither with the 1 nor 

the 10% threshold (HR=0.63 [0.24-1.67], p=0.4 and HR=0.85 [0.32-2.23], p=0.7 respectively, 

Supplementary Table 9). 

        Univariate analysis  
Variable 

 
n Ev HR 95% CI p p* 

ER status  
(cut-off 

10%) 

negative 37 7 1       
positive 70 10 0.85 [0.32-2.23] 0.7 0.7 

ER status 
(cut-off 1%) 

negative 31 7 1    
positive 76 10 0.63 [0.24-1.67] 0.4 0.4 

 
Supplementary Table 9:  Association between DFS and ER status with the two thresholds for ER 
positivity (cut-off 10% according to French guidelines and cut-off 1% according to American 
guidelines respectively; population without pCR, n=107). 
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2.4.  pCR rates by TILs in classes according to Denkert  and by 

ER status 

We	investigated	in	the	whole	population	(n=175)	if	pre-NAC	TIL	levels	were	associated	

with	pCR.	Pre-NAC	TILs	were	not	associated	with	pCR	(Supplementary	Figure	12),	

neither	in	the	whole	population	(a),	nor	in	the	ER-positive	(b)	or	the	ER-negative	(c)	

subgroup.	

 
 
Supplementary Figure 12: pCR rates by pre-NAC TIL levels by classes, according to Denkert et 
al (<10%, 10 to 60%, >60%), in the whole population (a), in the ER-positive population (b), and in the 
ER-negative population (c) (cut-off for ER positivity: 1%). 
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Statement of translational relevance 

In breast cancer (BC), the evaluation of tumor infiltration lymphocytes (TILs) is encouraged 

in routine practice.  However, little is know on their variations between before and after 

neoadjuvant chemotherapy (NAC), and few data is available on their value after treatment. 

We investigated TIL levels before and after neoaduvant chemotherapy (NAC) in 716 paired 

biopsy and surgical specimens.  

Pre-NAC TILs levels were associated to pathological complete response (pCR) in a non-

linear manner in triple negative BC and were not associated with pCR in HER2-positive BC. 

TIL levels decrease after chemotherapy completion and this decrease was strongly associated 

with pCR. High post-NAC TIL levels were associated with impaired survival in HER2-

positive BC but not in the other subtypes. TILs subsetting would be critical (i) to further 

identify the different immune subpopulations in residual specimen (ii) and understand if their 

localization, their quantity or their state of activation is associated with the non-linear 

predictive impact and/or their different prognostic value before and after NAC among BC 

subtypes. 
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Abstract 

Purpose: High levels of tumor-infiltrating lymphocytes (TILs) before neoadjuvant 

chemotherapy (NAC) are associated with higher pathological complete response (pCR) rates, 

and better survival in TNBC and HER2-positive breast cancers (BCs). We investigated the 

value of TIL levels by evaluating lymphocyte infiltration before and after NAC. 

Patients and methods: We assessed stromal TIL levels in 716 pre- and post-treatment 

matched paired specimens, according to the guidelines of the international TIL working 

group. 

Results:  Pre-NAC TIL levels were higher in tumors for which pCR was achieved than in 

cases with residual disease (33.9% versus 20.3%, p=0.001). This was observed in luminal 

tumors and TNBCs, but not in HER2-positive BCs, (pInteraction =0.001). The association 

between pre-NAC TIL levels and pCR was non-linear in TNBCs (p=0.005). Mean TIL levels 

decreased after chemotherapy completion (pre-NAC TILs: 24.1% versus post-NAC TILs: 

13.0%, p<0.001). This decrease was strongly associated with high pCR rates, and the 

variation of TIL levels was strongly inversely correlated with pre-NAC TIL levels (r=-0.80, 

p<0.001). Pre-NAC TILs and disease-free survival (DFS) were associated in a non-linear 

manner (p<0.001). High post-NAC TIL levels were associated with aggressive tumor 

characteristics and with impaired DFS in HER2-positive BCs (HR=1.04, CI [1.02-1.06], 

p=0.001), but not in luminal tumors or TNBCs (pInteraction =0.04). 

Conclusion:  The associations of pre and post-NAC TIL levels with response to treatment and 

DFS differ between BC subtypes. The characterization of immune subpopulations may 

improve our understanding of the complex interactions between pre- or post-NAC setting, BC 

subtype, response to treatment and prognosis. 
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Background  

 

Breast cancer (BC) is the most frequently diagnosed cancer, and the leading cause of cancer-

related death in women. Neoadjuvant chemotherapy (NAC) is increasingly prescribed for 

patients with locally advanced BC and provides opportunities for studying and monitoring the 

treatment sensitivity of tumors “in vivo”. A pathological complete response (pCR) after NAC 

is a surrogate marker of good prognosis in triple-negative BC (TNBC) and HER2-positive 

BC, and is now used in FDA trials as a means of accelerating the approval of new drugs.  

The role of tumor-infiltrating lymphocytes (TILs) in BC has been studied over the last 

decade. Many studies have reported associations between high TIL levels at diagnosis and a 

better response to NAC (1–3), and a better prognosis in both neoadjuvant and adjuvant 

chemotherapy settings (4–7), particularly for TNBC and HER2-positive BC. In 2015, an 

international consortium provided guidelines for the standardized evaluation of TILs in 

clinical practice(8), and their assessment is encouraged in routine practice, although the 

results of such evaluations currently have no impact on therapeutic strategy in clinical 

practice.  

The analysis of residual tumor burden after systemic neoadjuvant treatment is an 

underexplored area that may help us to understand the mechanisms of resistance to specific 

treatments in BC. However, only a few studies have investigated the variation of TIL levels in 

response to NAC. Furthermore, studies of the prognostic significance of post-chemotherapy 

TILs have focused almost exclusively on TNBCs(9,10).  

The aim of this study was to report and compare the predictive and prognostic values of TIL 

levels (before and after NAC) as a function of BC subtype, in a real-life cohort of 718 BC 

patients treated with NAC.  
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Methods   

Patients and treatments 

We analyzed a cohort of 718 patients with non-metastatic BC treated with NAC with or 

without trastuzumab, followed by surgery, at the Institut Curie (Paris and Saint Cloud, 

France). The cohort and treatments have been described in detail elsewhere and are 

summarized in the Supplementary material. This study was approved by the institutional 

review board of Institut Curie and was conducted in accordance with the ethical standards laid 

down in the 1964 declaration of Helsinki. By the law, no informed consent from the patient 

was required in this observational study. 

Tumor samples  

BC tumors were classified into subtypes (TNBC, HER2-positive, and luminal HER2-negative 

[referred to hereafter as “luminal”]) on the basis of immunohistochemistry and fluorescence 

in situ hybridization (see the Supplementary material). In accordance with the guidelines used 

in France(11), cases were considered estrogen receptor (ER)-positive or progesterone receptor 

(PR)-positive if at least 10% of the tumor cells expressed estrogen and/or progesterone 

receptors (ER/PR) and endocrine therapy was prescribed when this threshold was exceeded.  

 

Pathological review  

Pretreatment core needle biopsy specimens and the corresponding post-NAC surgical 

specimens were reviewed independently by two experts in breast diseases (ML and DdC).  

Formalin-fixed paraffin-embedded (FFPE) tumor tissue samples were studied. Tumor-

infiltrating lymphocytes (TILs), residual cancer burden (RCB) indices and pre- and post-NAC 

cellularity were reviewed simultaneously, specifically for the purposes of this study, between 

January 2015 and March 2017. In accordance with the recommendations of the international 

TILs Working Group (12), we checked for presence of a mononuclear cell infiltrate in the 

stroma on hematoxylin and eosin-stained sections without additional staining, after excluding 

areas around ductal carcinomas in situ (DCIS), and tumor zones with necrosis and artifacts. 
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Infiltrates were scored on a continuous scale, as the mean percentage of the stromal area 

occupied by mononuclear cells. After NAC, we assessed TIL levels within the borders of the 

residual tumor bed, as defined by the RCB index(13). Nothing is known about the clinical, 

biological and prognostic significance of TILs in the area of regression in cases of 

pathological response, but the TILs international working group recently called for their 

evaluation for research purposes. In cases of pCR, the scar area was measured on macroscopic 

examination. The scar appeared as a white area in the breast parenchyma corresponding to the 

tumor bed modified by NAC. It was characterized by the presence of histiocytes, 

lymphocytes, macrophages, fibrosis and elastosis. The whole fibro-inflammatory scar was 

evaluated on HE sections (size in mm and stromal TIL level evaluation) (Supplementary Fig. 

S1). We determined the RCB index, as described by Symmans(13), with the web-based 

calculator freely available via the Internet (www.mdanderson.org/breastcancer_RCB). 

Invasive tumor cellularity before and after NAC was determined as the percentage of the 

tumor area occupied by invasive cancer. 

 

Study endpoints 

We defined pathological complete response (pCR) as the absence of invasive residual tumor 

from both the breast and axillary nodes (ypT0/is N0). Disease-free survival (DFS) was 

defined as the time from surgery to death, locoregional recurrence or distant recurrence, and 

overall survival (OS) was defined as the time from surgery to death. For patients for whom 

none of these events were recorded, we censored data at the time of last known contact. 

  

 

Quantitative data handling and statistical analysis 

Pre- and post-NAC TIL levels were analyzed as continuous variables, after performing 

linearity tests (see the complementary statistical methods section of the Supplementary 

material). RCB index was assessed as a continuous variable in both univariate and 

multivariate analysis. All analyses were performed on the whole population and after 
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stratification by BC subtype. TIL levels and qualitative variables in classes were compared by 

ANOVA, with post-hoc Tukey analysis when required, or in Mann Whitney U or Kruskall-

Wallis tests, where indicated. Absolute and relative changes in TIL levels were calculated as 

the difference between pre- and post-NAC TIL levels, and as these levels divided by pre-

NAC TIL levels, respectively.  Changes in mean values were investigated in paired t-tests. 

The classical statistical methods used to analyze univariate and multivariate associations with 

pCR (logistic regression models) and survival (Cox proportional hazard models) are described 

in the complementary statistical methods section of the Supplementary material. 
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Results 

Associations between pre-NAC TILs, clinicopathological patterns, response to treatment 

and survival 

Patient and tumor characteristics before NAC 

In total, 718 patients were included in the cohort (luminal (n=223), TNBC (n=320), HER2-

positive (n=175), Supplementary Table S1). Mean pre-NAC TIL level was 24.2% (luminal: 

16.2%; TNBC: 28.5%; HER2-positive: 26.5%, p<0.001), and the distribution of TILs differed 

between BC subtypes (Fig. 1A-B).  

Pre-NAC TILs and response to treatment 

Pre-NAC TIL levels were significantly higher in tumors for which pCR was achieved than for 

tumors for which residual disease (RD) was detected, except in HER2-positive BCs  

(Supplementary Table S2, pInteraction =0.001). Pre-NAC TILs were significantly associated 

with pCR (all: OR=1.03, CI [1.02 - 1.04], p<0.001) (Table 1). However, after stratification by 

BC subtype, this association was found to be significant only in TNBCs (luminal, OR=1.03 

CI [1 - 1.06], p=0.058; TNBC, OR=1.03 CI [1.02 - 1.04], p<0.001; HER2-positive, OR=1.01, 

CI [0.99 - 1.03], p=0.341) (Supplementary Table S3). The association between TILs and pCR 

(Fig. 1C) was linear for all groups (Figs. 1D-E-G) except TNBCs, for which it was best fitted 

by a cubic spline (p=0.006) (Fig. 1F). In univariate and multivariate analysis, pre-NAC TIL 

levels were significantly associated with pCR in the whole population and in the TNBC 

subtype.  

Prognostic impact of pre-NAC TILs  

Pre-NAC TIL levels were significantly associated with DFS in the whole population (HR= 

0.988, CI [0.979-0.998], p=0.017) (Table 2) and in the TNBC subgroup (HR=0.982 CI 

[0.971-0.993], p=0.002), but not in the other subgroups (luminal, HR=0.994, CI [0.971-

1.018], p=0.641; HER2-positive HR=1.007, CI [0.981-1.032], p=0.611) (Supplementary 

Table S4). Statistical tests revealed significant deviations from the assumption of linearity in 
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the whole population, and in the luminal and TNBC subgroups, consistent with a non-linear 

prognostic effect of TILs. No such deviation from linearity was observed in the HER2-

positive population (Figs. 1 H-K). In addition, the interaction test between pre-NAC TILs and 

chemotherapy regimen on DFS was significant (Pinteraction=0.05), suggesting that the positive 

impact of TILs on DFS was different according to the NAC used (Anthra-taxanes, HR=0.993, 

95%CI [0.983-1.003], p=0.18, Others, HR=0.968, 95%CI [0.944-0.994], p=0.014). 

TIL variations before and after NAC 

After chemotherapy, TIL levels decreased in 61.6% of tumors (n=441), did not change in 

17.7% (n=127) and increased in 20.7% (n=148). Mean TIL levels were higher before than 

after NAC (all: 24.1 versus 13.0%, p<0.001; luminal: 16.0 versus 11.2 %; TNBC: 28.5 versus 

15.4 %; HER2-positive: 26.5 versus 10.9 %, p<0.001) (Fig. 2A). These results were similar 

according to NAC regimen (Supplementary Fig. S2). 

Mean TIL variation differed according to pCR status (pCR: -25.2 versus no pCR: -5.6, 

p<0.001).  TIL levels were more likely to increase or remain stable after NAC if pre-NAC 

TIL levels were low than if they were high (Fig. 2B-D). PCR status was strongly associated 

with the magnitude of TIL level decrease (Fig. 2E); however, the variation of TIL level was 

strongly inversely correlated with pre-NAC TIL levels (r=-0.80, p<0.001) regardless of pCR 

status (Fig. 2F).  Overall, these findings suggest a strong inverse correlation between pre-

NAC TIL levels and the variation of TIL levels, both of which are also strongly associated 

with pCR (Supplementary Fig. S3). This was true irrespective of BC subtypes and NAC 

regimen (Supplementary Fig. S4 and S5). 

 

Association between post-NAC TILs, clinicopathological patterns, and survival 

Association between post-NAC TILs and tumor characteristics 
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After NAC, mean TIL levels were 13%, and differences were observed between BC subtypes 

(TNBC: 15.4%; luminal: 11.3%, HER2-positive: 10.9%, p<0.001, Fig. 3A-B).  

Post-NAC TIL levels differed significantly between tumors with and without pCR (no pCR/ 

pCR: 14.7% versus 8.8 %, p<0.001) (Fig. 3C, Supplementary Table S5) except in luminal 

BCs (TNBC: 18.6% versus 10.3%, p<0.001; HER2-positive: 14.0% versus 6.2 %, p<0.001; 

luminal: 11.4% versus 7.8 % p=0.27). Post-NAC TIL levels were associated with aggressive 

tumor characteristics in the HER2-positive population, but not in luminal tumors and TNBCs 

(Fig. 3D-E). Significant interactions were observed for the association between post-NAC 

TILs, BC subtype, and post-NAC mitotic index (pInteraction:0.037), invasive tumor cellularity 

(pInteraction<0.001), and RCB class (Pinteraction=0.05, Figure 3F). 

 

Survival as a function of post-NAC TIL levels 

Post-NAC TIL levels were not associated with DFS in the whole population (HR=1.01, 

95%CI [0.099-1.02], p=0.325, Table 2), but a significant interaction with BC subtype was 

observed (pInteraction =0.04). Post-NAC TILs had no impact on prognosis in the luminal 

subgroup (HR=0.996, CI [0.964-1.029], p=0.79 or TNBC subtypes (HR=0.998, CI [0.983-

1.013], p=0.786), but had a significant adverse impact in HER2-positive BCs (HR= 1.04, 

95%CI [1.016-1.064], p=0.001, Supplementary Table S4). No significant deviation from the 

assumption of linearity was observed. In the population with residual disease, an adverse 

impact of post-NAC TILs was observed for patients with HER2-positive disease (HR=1.029, 

CI [1.002-1.057], p=0.034), whereas a trend towards a protective effect of high post-NAC 

TIL levels was observed for TNBC (HR=0.984, CI [0.966-1.003], p=0.095). 

Multivariate survival analyses  

After multivariate analysis, pre-NAC TIL levels, BC subtype, RCB index, and post-NAC 

mitotic index were significantly associated with DFS (Table 2). In TNBCs, pre-NAC TIL 

levels were an independent predictor of better DFS (Supplementary Table S4), whereas post-
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NAC TIL levels were an independent predictor of impaired DFS in the HER2-positive 

subgroup. Neither pre-NAC nor post-NAC TIL levels were associated with DFS in the 

luminal subgroup. 

 

 

TIL analyses by RCB class and trastuzumab use  

 

Relationship between TIL levels and survival, by RCB class 

Detailed analyses performed after stratification by RCB class are provided in the 

Supplementary Tables S6-7. The association between post-NAC TILs and DFS was not 

significant in the RCB-0-I or RCB-II classes, whereas post-NAC TILs were associated with 

poor outcome in the RCB-III class (HR=1.02, CI [1.001-1.037], p=0.036). 

 

Survival analysis in the HER2-positive population, according to neoadjuvant trastuzumab 

use and ER status 

We investigated survival as a function of neoadjuvant trastuzumab use (n=144, 82.3%) or 

non-use (n=31, 17.7%) in the HER2-positive population (Supplementary Table S8).. Pre-

NAC TIL levels were not associated with DFS in either of the two groups, and post-NAC TIL 

levels were significantly associated with impaired DFS only in the population treated with 

neoadjuvant trastuzumab (HR=1.038, CI [1.011-1.065], p=0.005)  

We analyzed the HER2-positive population according to ER status (ER positive, n=98, ER 

negative, n=77) (Supplementary Table S9). Tumors from the ER-/HER2+ subgroup were of 

higher grade, and TILs levels were higher before chemotherapy than in the ER+/HER2+ 

subgroup (30.6% versus 23.2%, p<0.01). After chemotherapy, there was no difference in the 

TIL levels.  

Pre-NAC TILs levels were neither associated with pCR nor DFS in any of the ER positive or 

ER negative subgroups. Post-NAC TILs were associated with impaired DFS in ER positive 

population (HR= 1.04, 95%CI [1.02-1.07], p<0.01) but not in the ER negative population 
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(HR= 1.04, 95%CI [0.99-1.09], p=0.13). This difference might be explained by a lack of 

statistical power (Pinteraction with ER status =NS). 
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Discussion 

 

We report here detailed analyses of associations between baseline and post-treatment immune 

infiltration levels in a large cohort of paired pre- and post-NAC BC samples. Our findings 

extend existing knowledge in this field in several ways.   

First, our results confirm the widely reported association between pre-NAC TILs and pCR(1–

3,14–18), but we nevertheless observed (i) a non-linear effect in TNBCs; (ii) a significant 

interaction with BC subtype.  

Non-linear effects have been reported for the association of pCR and TIL levels in HER2-

positive tumors(2,19,20); but linearity has never been investigated in detail for TNBCs in the 

neoadjuvant setting (no linearity test reported(1,3,9,10,16–18,21–28)). Additionally, our data 

also revealed a non-linear prognostic impact of TILs, differing by BC and by NAC regimens.  

Second, significant interactions with BC subtype have been described only in the GeparSixto 

trial(3) so far. It is unclear why pre-NAC TILs were associated with pCR only in TNBC. 

While the relationship we found here is almost constant in TNBC studies (1,3,18,24), this 

effect seems less clear in HER2-positive BC(2,15,29,30). Several studies on HER2-positive 

BC (NeoSPHERE (29), NeoALTTO (2), GeparSepto (30)) - including ours -  showed no 

association between pre-NAC TILs and pCR, whereas other did (GeparQuattro and 

GeparQuinto (15)). Several hypotheses could explain such differences: (i) Differences in 

tumor biology; (ii) quantitative and qualitative differences in the immune infiltration and 

corresponding threshold values for defining high-TILs tumors (2,19); (iii) the use, the type, 

and the interaction of TILs with anti-HER2 targeted therapies (2,7,31) (iv) the type and the 

sequences of NAC regimen, as interactions have been previously described between TILs, 

subtype and chemotherapy regimen(4,5)(3)); (v) and the difference in the percentages of ER-

positive disease in the different HER2-positive BC cohorts. Regarding luminal BC, the 

number of patients whose tumor reached pCR was very low, and a lack of statistical power 

may partially explain why the association between pre-NAC TILs and pCR failed to reach 

statistical significance (p=0.058).  
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Our results are are in line with a recently published pooled analysis from German Breast 

Group(14) analyzing the relationships between TIL levels in baseline samples and oncologic 

outcomes in a large cohort of 3771 patients receiving NAC. Denkert and colleagues(1) found 

that higher TIL levels were associated with a DFS benefit in HER2-positive and TNBC 

tumors; but with a poor OS in luminal HER2-negative BCs. The authors concluded that the 

biological features of the immunological infiltrate are probably important in luminal HER2-

negative BCs and that the use of genomic parameters, such as mutational signatures or copy 

number variations, should be considered for stratification purposes.  

 

Second, we demonstrated a decrease in mean TIL levels when comparing levels before and 

after chemotherapy. Only a few cohorts (9,16,22,25–28,32–35) have reported pathological 

TIL evaluations on paired matched samples, and all these previous cohorts were small 

(Supplementary Table S10). Two studies assessing lymphocyte density by computational 

pathology on large cohorts of patients from neoadjuvant trials (Neo-tAnGo (26), 

ARTemis(28)) found that both pre-NAC immune infiltration and a decrease in immune 

infiltration were associated with pCR, and another study found that larger decreases in CD3 

levels  after treatment were associated with better DFS and OS(16). Due to the strong 

association between pre-NAC TILs, TILs changes, pCR status, post-NAC TILs and DFS, 

their respective part regarding the association with prognostic remains unknown. Notably, 

TILs changes might be an interesting parameter, as it was both strongly associated with pCR 

and DFS. As these data on TILs variation are unprecedented on a large cohort of BC patients 

in the literature, it calls for further validation of this endpoint on independent cohorts. 

Third, regarding the immune infiltration after treatment, there was almost no post-NAC 

LPBCs (TILs≥60%), highlighting the need for a revision of TIL level cutoff points after 

NAC. Post-NAC TIL levels were higher in tumors with RD than in areas of scarring in 

tumors displaying pCR. TIL levels have never been reported from pCR specimens, but recent 

guidelines(36) have suggested that these levels could be evaluated for research purposes. We 

2.5 Article n°14 : Hamy, A.-S. et al., CCR Apr 2019, in press 439



 18 

found that TIL levels were extremely low in most, but not all, tumors scars. Our findings 

might suggest that, once the immune cells have eradicated the tumor, they would move into 

the periphery similar to responses to infection or other anomalies eliciting an immune 

response.  Research on post-NAC TILs in pCR specimen could be of interest notably to 

analyze their association with the rare subgroup of patients experiencing relapse after their 

tumor reached pCR.  

In cases of RD, TILs were associated with aggressive post-NAC patterns only in the HER2-

positive subgroup. It remains unclear whether this difference reflects inherent differences 

between the three BC subtypes, the use of neoadjuvant trastuzumab, or differences in the 

immune infiltration in RD. Two hypotheses can be drawn. On the one hand, TILs in specimen 

with residual disease could be active but may not have had sufficient time to completely 

eradicate the tumor. Our data do not support this hypothesis, because we found no correlation 

at all between time from biopsy to surgery and post-NAC TIL levels (Supplementary Figure 

S6). On the other hand, the immune response may not recognize the tumor cells and post-

NAC TILs could be unable to exert their antitumor function, possibly due to a surrounding 

immunosuppressive milieu. 

 Finally, our results suggest that pre- and post-NAC TIL levels may have different impacts on 

outcome. In TNBC, high pre-NAC TIL levels were an independent predictor of good 

prognosis, whereas, in HER2-positive BC, high post-NAC TIL levels were an independent 

predictor of poor outcome. We are currently characterizing the immune subpopulations, 

immune checkpoint and immune checkpoint ligand expression in residual tumor specimens, 

in the hope that this will shed further light on the mechanisms underlying the observed 

differences in the prognostic impact of post NAC-TILs in the 3 BC subtypes. Analyses of 

spatial and temporal dynamics, particularly to determine whether TIL location (intratumoral 

versus stromal) has a differential effect on outcome, will also be of interest. 
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The strengths of this study include the large sample size and the availability of paired 

matched pre- and post-NAC samples for 716 patients. In addition, the patients and samples 

were derived from an institutional cancer center cohort, and therefore reflect real-life 

conditions more faithfully than analyses of results for randomized trials including only highly 

selected patients. The limitations of this study include the lack of data on TILs during NAC 

(i.e. on-treatment biopsies), which would have (i) provided insights into the mechanisms 

underlying immune response to chemotherapy (ii) confirmed if pre-NAC TIL levels go 

straightforward to the levels observed after NAC, or if it is preceded by an initial increase. 

On-treatment data from the I-SPY trial suggest that the immune genes expression decreases as 

soon as 1 to 4 days after NAC begininng(37). Additionally, the study was performed at a 

single center, making external validation necessary. Large integrative and collaborative 

analyses may make it possible to decipher the role of immune infiltration in BC in more 

detail, particularly in cases of residual disease after NAC. We therefore provide our original 

data as an open-access resource for the medical and scientific community, for pooling with 

existing datasets (Supplementary Table S11).    

Our results have several implications. First, they suggest that future studies should include 

interaction and linearity tests, to help determining and validating TILs thresholds values 

relevant to each BC subtype, both in the pre and in the post-NAC setting. Second, due to the 

multiplicity of interactions (breast cancer subtypes, NAC regimen, benefit from targeted 

therapy, RCB score), efforts should be paid in routinely score TILs both in the pre and the 

post-NAC setting, and share data within collaborative projects, as such complex associations 

may only be deciphered with a very large amount of patients and samples. Finally, the 

adverse outcome associated with high TIL levels after the completion of NAC in some 

subgroups (HER2-positive patients; RCB-III tumors) highlights the urgent need for second-

line trials in the post-NAC setting. Immunotherapies may theoretically be of interest for the 

treatment of tumors with an immune infiltrate associated with a poor prognosis.  
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Table legends: 

Table 1: Association between clinical and pathological factors with pathological complete 

response (Univariate and multivariate analysis, whole population).  

Odds ratio for pCR and corresponding confidence interval are calculated with a univariate 

logistic regression model.  Pre-NAC TILs are considered as a continuous variable in the 

analyses. Due to the difficulty to translate a continuous variable into a pCR rate, we also 

reported pre-NAC TILs binned by 10% increment to enable comparison with further studies 

using other TILs threshold values. 

Table 2: Association with clinical and pathological pre and post-NAC parameters with 

disease-free survival (whole population, univariate and multivariate analysis).  

Due to a significant deviation to the linearity assumption, pre-NAC TILs are considered as a 

continuous variable but are modelized with a fractional polynomial. Post-NAC TILs are 

considered as a continuous, linear variable.Figure legends:  

Figure 1: Associations between pre-NAC TIL levels, clinical and pathological factors 

and response to treatment  

A: Distribution of pre-NAC TIL levels, by BC subtype (kernel density plot); B: Barplot of the 

repartition of the percentage of tumors according to pre-NAC TIL levels binned by 10% 

increment by BC subtype). The proportion of tumors with TILs ≥60% is 11% (n=80) 

[luminal: 2.3%, n=5; HER2-positive: 9.7%, n=17; TNBC: 18.2%, n =58). C: Percentage of 

pathological complete response rate (pCR) by pre-NAC TIL levels, in the global population 

and by BC subtype (TILs were binned by increments of 10%, as previously described(6)). 

The shape of the TNBCs bars enables a visual representation of the deviation to the linearity 

assumption. D to G: Graphical representation of the best statistical model retained for 

analyzing the association between pre-NAC TIL levels and pCR. X-axis represents the 

increasing value of pre-NAC TILs, and y-axis represents the increasing odds ratio for pCRD: 

whole population, linear model; E: luminal, linear model; F: TNBC: restricted cubic spline, 
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G: HER2-positive: linear model. H to K: Graphical representation of the model best fitting the 

data for the association between pre-NAC TILs and DFS. X-axis represents the increasing 

value of pre-NAC TILs, and y-axis represents the increasing hazard ratio for DFS: H: whole 

population, second-order fractional polynomial; I: luminal, restricted cubic spline; J:TNBC, 

second-order fractional polynomial; K: HER 2-positive, linear model.   

 

Figure 2: TIL levels variation before and after NACA : Bar plots of TIL levels before and 

after NAC in the whole population and in the various BC subtypes Lower and upper bars of 

the boxplots represent the first and third quartile respectively, the medium bar is the median, 

and whiskers extend to 1.5 times the inter-quartile range; B : Repartition (as percentages) of 

TIL variation classes, according to the pre-NAC TIL levels, binned by increments of 10%. 

TIL level variation is  classified into three categories (TIL level decrease: yellow/ no change: 

blue/ increase: red); C: Variation of TIL levels  according to the pre-NAC TIL levels binned 

by increments of 10%. Lines represent pre and post-NAC paired TIL levels values of a given 

patient, and are colored according to TIL variation category; (TIL level decrease: yellow/ no 

change: blue/ increase: red). D: Waterfall plot representing the variation of TILs according to 

the pre-NAC TILs levels, binned by increments of 10%. Each bar represents the absolute TIL 

variation, i.e. the difference between TIL levels after and before NAC and is colored 

according to the pre-NAC TIL levels; Within each pre-NAC TIL levels category, the change 

in TIL levels is ranked by increasing TIL level variation.  

E : Association between pre-NAC TIL levels by 10% increment and absolute difference in 

TIL levels before and after NAC, by pCR status(No pCR tumor, left panel, pCR tumor, right 

panel)); each boxplot represents the median value and  associated interquartile range.  

F. Waterfall plot representing the variation of TIL levels according to pCR status ; each bar 

represents one sample, and samples are ranked by increasing order of TIL level change. 

Paired samples for which no change was observed have been removed from the graph.  
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Figure 3: Post-NAC TIL levels and their association with post NAC pathological factors  

A: Distribution of post-NAC TIL levels, by BC subtype (kernel density plot); B: Barplot of 

the repartition of the percentage of tumors according to post-NAC TIL levels binned by 10% 

increment by BC subtype);The proportion of tumors with TILs ≥60% is 2% (n=16) (luminal: 

1%, n=3; HER2-positive: 1%, n=1; TNBC: 4%, n =12). C: Post-NAC TIL levels by pCR 

status and by BC subtype; D: Associations between post-NAC TIL levels and post-NAC 

mitotic index, E: Associations between post-NAC TIL levels and post-NAC cellularity.  

F: Associations between post-NAC TIL levels and RCB in the whole population, and after 

stratification by BC subtype.  Lower and upper bars of the boxplots represent the first and 

third quartile respectively, the medium bar is the median, and whiskers extend to 1.5 times the 

inter-quartile range. The results are considered statistically significant at a p-value <0.05 (*), 

<0.01 (**) or <0.001 (***). 
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Table1

Characteristics Class n pCR % OR [95% CI] pval OR [95% CI] p

Age (years) < 45 286 76 26.6 % 1
45-55 254 66 26 % 0.97 [0.66 - 1.42] 0.877
> 55 178 60 33.7 % 1.4 [0.93 - 2.11] 0.101

Menopausal Post 259 80 30.9 % 1
status Pre 452 119 26.3 % 0.8 [0.57 - 1.12] 0.193
BMI class [19-25] 414 125 30.2 % 1

< 19 41 8 19.5 % 0.56 [0.24 - 1.19] 0.156
[25-30] 166 41 24.7 % 0.76 [0.5 - 1.14] 0.186
> 30 96 27 28.1 % 0.9 [0.55 - 1.47] 0.69

Tumor size T1-T2 529 155 29.3 % 1
T3 189 47 24.9 % 0.8 [0.54 - 1.16] 0.245

Clinical nodal N0 282 83 29.4 % 1
status N1-N2-N3 435 119 27.4 % 0.9 [0.65 - 1.26] 0.546
ER status Negative              397 163 41.1 % 1

Positive                321 39 12.1 % 0.2 [0.13 - 0.29] <0.001
PR status Negative              474 183 38.6 % 1

Positive                221 17 7.7 % 0.13 [0.08 - 0.22] <0.001
HER2  status Negative              543 134 24.7 % 1

Positive                175 68 38.9 % 1.94 [1.35 - 2.78] <0.001
BC subtype Luminal 223 11 4.9 % 1 1

TNBC 320 123 38.4 % 12.03 [6.58 - 24.27] <0.001 10.96 [ 5.64 - 24 ] <0.001
HER2 175 68 38.9 % 12.25 [6.46 - 25.36] <0.001 11.08 [ 5.52 - 24.8 ] <0.001

Histology NST                     661 188 28.4 % 1
Other 53 13 24.5 % 0.82 [0.41 - 1.52] 0.543

Grade I-II 211 33 15.6 % 1
III 491 164 33.4 % 2.71 [1.8 - 4.16] <0.001

Ki67 < 20 33 6 18.2 % 1
≥ 20 146 53 36.3 % 2.56 [1.05 - 7.23] 0.051

NAC regimen Anthra-tax 610 169 27.7 % 1
Anthra 62 17 27.4 % 0.99 [0.54 - 1.74] 0.962
Taxane-based 23 7 30.4 % 1.14 [0.43 - 2.73] 0.774
Others 23 9 39.1 % 1.68 [0.69 - 3.9] 0.236

Mitotic index < 11 176 36 20.5 % 1
[11-22] 202 53 26.2 % 1.38 [0.86 - 2.25] 0.187
> 22 319 110 34.5 % 2.05 [1.34 - 3.19] 0.001

Tumor (inv) ≤  60% 372 107 28.8 % 1
cellularity > 60% 344 95 27.6 % 0.94 [0.68 - 1.31] 0.733
DCIS Yes 605 174 28.8 % 1
component No 112 28 25 % 0.83 [0.51 - 1.3] 0.417
Pre-NAC TIL levels [0.10] 266 40 15.0% 1
(10% increment) [10.20] 157 43 27.4% 2.13 [1.65 - 2.62] 0.002

[20.30] 135 44 32.6% 2.73 [2.24 - 3.22] <0.001
[30.40] 53 18 34.0% 2.91 [2.25 - 3.57] 0.002
[40.50] 25 9 36.0% 3.18 [2.29 - 4.06] 0.01
 [50.60] 34 16 47.1% 5.02 [4.27 - 5.77] <0.001
[60.70] 29 18 62.1% 9.25 [8.42 - 10.07] <0.001
[70.80] 12 8 66.7% 11.3 [10.05 - 12.55] <0.001
[80.90] 6 6 100.0%
(90.100] 0 0

Pre-NAC TILs (linear) 1.03 [1.02 - 1.04] <0.001 1.03 [ 1.02 - 1.03 ] <0.001

 Table 1: Associa on between clinical and pathological factors with pathological complete response (Univariate and mul variate analysis, whole popula on). Odds ratio f
Abbreviations: BC: breast cancer, BMI: body mass index (kg/m2), DCIS: ductal carcinoma in situ , ER: estrogen receptor, NAC: neoadjuvant chemotherapy, NST: no specific t

Total population Univariate Multivariate

Pre-NAC Parameters

Table 1: Association between clinical and pathological factors with pathological complete response (Univariate and 
multivariate analysis, whole population). 

Odds ratio for pCR and corresponding confidence interval are calculated with a univariate logistic regression model.  Pre-NAC 
TILs are considered as a continuous variable in the analyses. Due to the difficulty to translate a continuous variable into a pCR 

rate, we also reported pre-NAC TILs binned by 10% increment to enable comparison with further studies using other TILs 
threshold values.
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 Table2

Characteristics Class n ev HR [95% CI] p p wald HR [95% CI] p
Pre-NAC parameters
Age (years) < 45 286 60 1 0.666

[45-55] 254 54 0.98 [0.68 - 1.41]
> 55 178 31 0.83 [0.53 - 1.27]

Menopausal Post 259 53 1 0.864
status Pre 452 89 0.97 [0.69 - 1.36]
BMI class < 25 455 84 1 0.143

≥ 25 262 61 1.28 [0.92 - 1.78]
Tumor size T1-T2 529 96 1 0.004

T3 189 49 1.66 [1.18 - 2.34]
Clinical node N0 282 54 1 0.449
status N1-N2-N3 435 91 1.14 [0.81 - 1.6]
ER status Negative                 397 91 1 0.009

Positive                   321 54 0.64 [0.46 - 0.9]
PR status Negative                 473 106 1 0.006

Positive                   222 32 0.57 [0.38 - 0.84]
HER2  status Negative                 543 127 1

Positive                   175 18 0.45 [0.28 - 0.74] 0.002
BC subtype Luminal                   223 44 1 <0.001 1 - -

TNBC                       320 83 1.64 [1.14 - 2.37] 2.45 [ 1.55 - 3.87 ] <0.001
HER2                       175 18 0.61 [0.35 - 1.05] 1.05 [ 0.53 - 1.7 ] 0.95

Histology NST                     661 130 1 0.206
Other                      53 14 1.43 [0.82 - 2.48]

Grade I-II                    211 41 1 0.344
III                     491 101 1.19 [0.83 - 1.71]

Ki 67 < 20%                 33 7 1 0.292
≥ 20%                    146 41 1.54 [0.69 - 3.43]

Tumor ≤ 60% 372 82 1 0.345
cellularity (inv) > 60% 344 63 0.85 [0.61 - 1.19]
Mitotic index < 11 176 27 1 0.061

[11-22] 202 43 1.47 [0.91 - 2.37] 0.119
> 22 319 73 1.7 [1.1 - 2.65] 0.018

Pre-NAC TILs (as FP* ) <0.001 0.01
Post-NAC parameters
pCR No pCR 516 131 1 <0.001

pCR 202 14 0.26 [0.15 - 0.46]
RCB index continuous 1.63 [1.42 - 1.86] <0.001 1.66 [1.4 - 1.95 ] <0.001
Post-NAC TILs (linear) 1.01 [0.99-1.02] 0.325
Mitotic index < 11 524 64 1 <0.001 1 - -

[11-22] 34 8 1.94 [0.93 - 4.04] 0.078 0.95 [ 0.43 - 2.1 ] 0.89
> 22 120 61 5.54 [3.9 - 7.88] <0.001 2.92 [ 1.95 - 4.35 ] <0.001

Tumor (inv) ≤ 30% 456 59 1 <0.001
cellularity > 30% 237 79 2.6 [1.85 - 3.64] <0.001
Size of nodal ≤ 2 135 45 1 0.046
metastasis [3-5] 73 14 0.51 [0.28 - 0.93] 0.028
(mm) > 5 59 21 1.15 [0.68 - 1.93] 0.604

Abbreviations: BC: breast cancer, BMI: body mass index (kg/m2), DCIS: ductal carcinoma in situ , ER: estrogen receptor, NAC: neoadjuvant chemotherapy, NS

All
Univariate Multivariate

Table 2: Association with clinical and pathological pre and post-NAC parameters with disease-free survival (whole population, 
univariate and multivariate analysis). 
Due to a significant deviation to the linearity assumption, pre-NAC TILs are considered as a continuous variable but are modelized 
with a fractional polynomial. Post-NAC TILs are considered as a continuous, linear variable.
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Supplementary Figures  

Supplementary Figure S1 

 
	

Supplementary Figure S1: TILs in surgical specimens obtained after NAC (H&E 

(hematoxylin and eosin) staining). A: RD with low TIL levels (5%); B: RD with high 

TIL levels (60%); C: pCR with low TIL levels (5%); D: pCR with high TIL levels 

(60%). Abbreviations: RD: residual disease, pCR: pathological complete response.  

 

 

Supplementary Figure S2  
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Supplementary Figure S2 : Association between pre-NAC TIL levels (A), 

post-NAC TIL levels (B) according to chemotherapy regimen in the whole population 

and after stratification by BC subtype. Lower and upper bars of the boxplots represent 

the first and third quartile respectively, the medium bar is the median, and whiskers 

extend to 1.5 times the inter-quartile range.	 The results are considered statistically 

significant at a p-value <0.05 (*), <0.01 (**) or <0.001 (***). 
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Supplementary Figure S3 

 
Supplementary Figure S3: Association between pre-NAC TIL levels and 

chemotherapy response (A), change in TIL levels (B), cellularity (C), and ER status 

(D). Pre-NAC TIL levels have been rescaled to values between zero and one for 

illustration. Abbreviations: a.u.: arbitrary units, ER: estrogen receptor, pCR: 

pathological complete response. We ranked 716 paired samples in increasing order of 

pre-NAC TIL levels (figure adapted from computational pathology analyses 

performed in the Neo-tAnGo (10) and ARTemis(11) trials). 
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Supplementary Figure S4:  

 
 

Supplementary Figure S4: C: Variation of TIL levels  according to the pre-NAC 

TIL levels binned by increments of 10%. Lines represent pre and post-NAC paired 

TIL levels values of a given patient, and are colored according to TIL variation 

category; (TIL level decrease: yellow/ no change: blue/ increase: red). Upper panel 

represents luminal BC, middle panel represents TNBCs, and lower panel represents 

HER2-positive BC. 
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Association between TIL level variation and pCR according to the BC subtype; each 

bar represents one sample, and samples are ranked by increasing order of TIL level 

change. Paired samples with no change observed have been removed from the graph. 

 

Supplementary Figure S6: 

 
Supplementary Figure S6: Post-NAC TIL levels as a function of time from 

biopsy to surgery (number of days). 
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Supplementary material 

1.  Patients and treatments 

1.1. Patients 

In total, 718 patients with T1-3NxM0 invasive breast cancer (BC) (NEOREP Cohort, CNIL 

declaration number 1547270) treated at Institut Curie (Paris and Saint Cloud) between 2002 

and 2012 were included in this study. We included unilateral, non-recurrent, non-

inflammatory, non-metastatic tumors, excluding T4 tumors. NAC regimens changed over 

time (anthracycline-based regimen or sequential anthracycline-taxane regimen) with 

trastuzumab used in an adjuvant and/or neoadjuvant setting since 2005 for HER2-positive 

tumors. All but 10 patients underwent radiotherapy. Endocrine therapy (tamoxifen or 

aromatase inhibitor) was prescribed when indicated. This study was approved by the Breast 

Cancer Study Group of Institut Curie. 

1.2. Treatments 

The wide majority of patients  (610/718, 85%) received an anthracyclines and taxanes based regimen, 

while the other patients received anthracyclines-based regimen without taxanes (62/718, 9%), taxanes-

based regimen without anthracyclines (23/718, 3%), or other various regimen (23/718, 3%). Due to 

the very low number of patients who did not receive anthracyclines and taxanes-based regimen, we 

grouped the three other regimens into a single category (anthracyclines based regimen without taxanes 

/ taxanes based regimen without anthracyclines, or others, total n=108). 

2.  Tumor samples and pathological review 

2.1.  ER, PR, HER2 status and BC subtype 

Cases were considered to be estrogen receptor (ER)-positive or progesterone receptor (PR)-

positive if at least 10% of the tumor cells expressed estrogen and/or progesterone receptors 

(ER/PR). HER2 expression was determined by immunohistochemistry, with scoring 

according to the American Society of Clinical Oncology (ASCO)/College of American 

Pathologists (CAP) guidelines (1). Scores of 3+ were reported as positive, and scores of 1+/0 

as negative. Tumors with scores of 2+ were further tested by fluorescence in situ 
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hybridization (FISH). For HER2 gene amplification, we evaluated a mean of 40 tumor cells 

per sample and calculated the mean HER2 signal per nucleus. A HER2/CEN17 ratio ≥ 2 was 

considered positive, and a ratio < 2 was considered negative (1). BC subtype was defined as 

follows (luminal: ER+ or PR+/ HER2-; TNBC: ER-/PR-/HER2-; HER2-positive BC: HER2+). 

 

2.2.  Other pathological parameters 

Histological grade was determined as described by Elston Ellis. Mitotic cells were counted on 

10 high-power fields (HPF) (x40 objective; field diameter = 0.62 mm) and cutoffs of <11, 12–

22 and >22 mitoses were used to define low, intermediate and high mitotic indices, 

respectively, according to the international recommendations(2). Due to significant 

differences in distribution before and after NAC, invasive tumor cellularity was binned 

according to the median value (pre-NAC: 60%; post-NAC: 30%). 

 

2.3.  Immunostaining 

We checked that the infiltrating mononuclear cells considered to be TILs in the analyses were 

indeed lymphocytes, by immunostaining for CD3 on a subset of 20 surgical specimens. CD3 

immunostaining was strongly correlated with the levels of unstained TILs(3) (r=0.99, 

p<0.00001). 

3.  Statistical analysis  

3.1.  Handling of missing data 

For tumors for which a pCR (pathological complete response) was achieved, we considered 

mitotic index and tumor cellularity to be “Non Available” for descriptive and univariate pCR 

and disease-free survival (DFS) analysis. As multivariate analysis must be performed after the 

exclusion of missing data, pCR cases were imputed to the “< 11” mitotic index category, and 

the “≤ 30%” category for tumor cellularity, to avoid the need to exclude these patients from 

the multivariate analysis.  
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3.2.  Complementary statistical methods 

We investigated the linearity of the association between TILs and pCR/DFS, by comparing 

the model in which TIL levels were considered to vary linearly with models based on 

restricted cubic spline fits and fractional polynomials, as previously described(16). If the TIL 

variable was found to be linear, TILs were analyzed as a continuous variable; if significant 

deviation from the assumption of linearity was observed, the variable was modeled with the 

model yielding the best fit to the data. 

Factors predictive of pCR were introduced into a univariate logistic regression model. For 

variables that were significantly correlated, collinearity was avoided by retaining only one 

variable, based on its clinical relevance or likelihood ratio. A multivariate logistic model with 

a forward stepwise selection procedure was then applied, the covariates included having a 

likelihood ratio test p-value ≤ 0.05. Survival probabilities were estimated by the Kaplan–

Meier method, and survival curves were compared in log-rank tests. Hazard ratios and their 

95% confidence intervals were calculated with the Cox proportional hazards model. Variables 

with a p-value for the likelihood ratio test ≤ 0.05 in univariate analysis were included in the 

multivariate model. Forward selection was used to establish the final multivariate model.  The 

significance threshold was 5%.   

3.3.  Software and libraries 

Analyses were performed with R software(8), version 3.1.2, with the libraries ggplot2, 

performanceanalytics, cowplot, survival, survminer, rms, grid, dplyr, reshape2, tableone, 

ggpubr, and ggsci. 
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Chapter 3 Comedication, neoadjuvant and
Immunity





Abstract. Background: The prognostic and predictive role of
cyclo-oxygenase-2 (COX2) in breast cancer is still debated,
and in particular, its role as a target of COX2 inhibitor
(celecoxib) in neoadjuvant setting. Materials and Methods: We
analyzed a series of 156 breast cancer samples from patients
of the COX2 inhibitor-treated arm included in the REMAGUS-
02 randomized phase II trial. COX2 gene expression was
assessed by reverse transcription and quantitative polymerase
chain reaction using ribonucleic acid from frozen biopsies.
Pathological complete response (pCR) was the surrogate end-
point. Results: Significantly higher rates of grade 3, and
estrogen and progesterone receptor negativity were observed
in tumors with the highest expression of COX2. pCR rates
were significantly higher in COX2-overexpressing tumors in

patients receiving celecoxib. The test for interaction between
COX2 gene expression and the celecoxib effect was
statistically significant (p<0.01), but was not retained in the
multivariate analysis. Conclusion: COX2 overexpression is
predictive of pCR in patients with celecoxib-treated tumors.
The efficacy of celecoxib in breast cancer might be improved
by quantification of COX2 gene expression.

Many human cancers exhibit elevated prostaglandin levels
due to up-regulation of cyclo-oxygenase-2 (COX2), a key
enzyme in eicosanoid biosynthesis. COX2 overexpression
has been observed in different malignant tumors and
especially in breast cancer (1). Experimental studies showed
that COX2 overexpression and a related production of
prostaglandins stimulates angiogenesis and proliferation,
promotes cell invasion and development of metastases (2).
Consequently, selective COX2 inhibitors such as celecoxib
have been explored as therapeutic or chemopreventive agents
in different settings (3-5). 

The level of COX2 has been associated with poor
outcomes in many tumor models and clinical studies (6-8).
However, there is no consensus on the prognostic or
predictive value of COX2 expression in invasive breast
carcinoma (9-11). Very few studies addressed the
neoadjuvant context and response to celecoxib associated to
chemotherapy in primary or metastatic breast cancer (12).
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One could expect to obtain better results with a better
selection of patients receiving celecoxib. We present here
data obtained in the human epidermal growth factor receptor
2 (HER2)-negative arm of the prospective neoadjuvant
randomized phase II trial, REMAGUS-02 (R02), suggesting
that the quantification of COX2 gene transcripts predicts the
pathological response to neoadjuvant celecoxib associated
with chemotherapy including anthracyclines and taxanes.

Patients and Methods

Patients. The present study concerns a series of 220 breast cancer
samples from patients included in the HER2-negative arm of the
prospective randomized phase II trial REMAGUS-02 (R02) for

patients with T2/T3/T4 advanced breast cancer. The patients were
treated by sequential epirubicin/cyclophosphamide followed by
docetaxel with or without the randomized addition of celecoxib (400
mg twice daily, orally) (arms A and B, respectively). Surgery was
performed for 218 patients after eight cycle of chemotherapy, as
previously described (13, 14). The primary objective of the trial was
pathological complete response (pCR) evaluated according to
Chevallier criteria (15). Secondary objectives were to define genomic
profiles of success (pCR) or failure of each type of treatment and were
published elsewhere together with quality control criteria (16-18). 

The trial and ancillary studies were reviewed by the Ethics
Committee of Bicêtre (CPP IDF VII), no. 03-55, 14th October 2004,
in compliance with the Helsinki Declaration. All patients were
informed and prospectively gave their signed consent to participate
in the trial and ancillary studies, 

Due to safety concerns, the use of celecoxib was suspended by
the French Health Products Safety Agency (AFSSAPS) from
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Table I. Patient and tumor characteristics.

Variable                                                                             n (%)

Age (years)
   <40                                                                            34 (22.3%)
   40 to 49                                                                    66 (43.4%)
   ≥50                                                                            52 (34.2%)
Clinical tumor stage
   T2                                                                              88 (57.9%)
   T3 and T4                                                                 64 (42.1%)
Clinical lymph node status*
   N0                                                                             57 (37.8%)
   N1, N2, N3                                                               94 (62.2%)
Histological subtype                                                            
   Ductal                                                                      127 (83.6%)
   Lobular                                                                      15 (9.8%)
   Other                                                                          10 (6.6%)
Elston-Ellis grade*
   I                                                                                  13 (8.8%)
   II                                                                                60 (40.8%)
   III                                                                              74 (50.3%)
Lymphovascular invasion*
   No                                                                            128 (84.8%)
   Yes                                                                            23 (15.2%)
ER
   Negative                                                                   54 (35.5%)
   Positive                                                                     98 (64.5%)
PR*
   Negative                                                                   83 (55.7%)
   Positive                                                                     66 (44.3%)
Triple-negative status                                                           
   Yes                                                                            53 (35.3%)
   No                                                                              99(64.7%)
Celecoxib treatment (per protocol)
   No                                                                            89 (58.6%)
   Yes                                                                            63 (41.4%)
pCR
   No                                                                            132 (86.8%)
   Yes                                                                            20 (13.2%)

ER: Estrogen receptor; PR: progesterone receptor; pCR: pathological
complete response. *Missing data: lymph node status, n=1; grade, n=5;
lymphovascular invasion, n=1; and PR, n=3.

Table II. Tumor characteristics in the subgroups of tumors with low and
high levels of cyclo-oxygenase-2 (COX2) mRNA expression.

                                                        COX2 mRNA expression

Variable                                          Low n (%)      High n (%)     p-Value

Age (years)
   <40                                                23 (22.5)         11 (22.0)          0.99
   40 to 49                                         44 (43.1)         22 (44.0)
   ≥50                                                35 (34.3)         17 (34.0)
Clinical tumor stage
   T2                                                  61 (59.8)         27 (54.0)          0.61
   T3 and T4                                     41 (40.2)         23 (46.0)
Clinical lymph node status*
   N0                                                  36 (35.3)         21 (42.9)          0.47
   N1, N2, N3                                   66 (64.7)         28 (57.1)
Histological subtype 
   Ductal                                            86 (84.3)         41 (82.0)          0.11
   Lobular                                          12 (11.8)           3 (6.0)
   Other                                                4 (3.9)            6 (12.0)
Elston-Ellis grade*
   1                                                     11 (10.9)           2 (4.3)            0.01
   2                                                     48 (47.5)         12 (26.1)
   3                                                     42 (41.6)         32 (69.6)
Lymphovascular invasion*
   No                                                  87 (86.1)         41 (82.0)          0.67
   Yes                                                 14 (13.9)          9 (18.0)
ER
   Negative                                        23 (22.5)         31 (62.0)         <0.01
   Positive                                          79 (77.5)         19 (38.0)
PR*
   Negative                                        45 (45.0)         38 (77.6)         <0.01
   Positive                                          55 (55.0)         11 (22.4)
Triple-negative status
   Yes                                                 22 (21.6)         31 (62.0)         <0.01
   No                                                  80 (78.4)         19 (38.0)

ER: Estrogen receptor; PR: progesterone receptor; pCR: pathological
complete response. *Missing data: lymph node status, n=1; grade, n=5;
lymphovascular invasion, n=1; and PR, n=3. Significant data are
indicated in bold.
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December 2004 to September 2005 and thereafter authorized with
revision of the informed consent form (13, 14). Thirteen patients
randomized to receive celecoxib did not receive it. Consequently,
the analyses were performed in the per protocol population. 

Of the cases, 152 samples out of the 218 patients were available
for reverse transcription and quantitative polymerase chain reaction
(RT-qPCR) analysis on the basis of RNA of high quality from
frozen pretreatment biopsies with more than 30% invasive
epithelial tumor cells. There was no difference between the 152
patients with RT-qPCR data and the remaining 66 patients of the
HER2-negative arm regarding age, menopausal status, clinical
tumor size or nodal involvement, and hormone receptor status (data
not shown). 

Tissue samples and real-time RT-qPCR analysis. Total RNA
extraction from frozen pretreatment biopsies, reverse transcription
and qPCR analysis conditions and quality controls were previously
described in detail (16-18). Primer and probe sequences for COX2
mRNA expression are available on request. Large ribosomal protein
(RPLPO), TATA box-binding protein (TBP), transferrin receptor
(TFR), beta-actin (ACTB), beta-glucuronidase (GUS), and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used as
endogenous reference genes. COX2 mRNA levels were normalized
to the median of the six reference genes. 

Statistical analysis. As no consensual threshold was defined for RT-
qPCR analyses and to ensure the robustness of the results, COX2
gene expression was arbitrarily split according to tertiles (low,
intermediate and high). As the magnitude of odds ratios for pCR of
the two lower tertiles (tertiles 1 and 2) was similar, we chose to
group these two tertiles and analyze them (low and intermediate
expression) versus the third one (tumors with the highest COX2
mRNA levels). 

To analyze the association between clinical, pathological, COX2
mRNA and pCR data, we performed a univariate analysis using the
chi-square test and a univariate logistic regression model to estimate
odds ratios (OR) and their 95% confidence intervals. 

Association between COX2 expression (tertile 1&2 versus tertile
3) and pCR were performed.

Analyses were performed with R software, version 3.1.2 (R
Development Core Team, 2011).

Results

Patient population. The characteristics of the population of
152 patients are described in Table I. Patients and tumor
characteristics were similar in patients treated with and
without celecoxib. However, the tumor characteristics were
significantly different in subgroups with low (n=102) and
high (n=50) COX2 gene expression level (Table II). We
observed higher rates of grade 3 (69.6% versus 41.6%,
p=0.01), ER-negative (62.0% versus 22.5%, p<0.01) and
PR-negative (77.6% versus 45.0%, p<0.01) tumors in the
population with the highest expression of COX2 when
compared with the lower tertiles (Table II). 

Pathological response. A pCR was observed in 20/152
patients (13.2%). Considering the whole population, no
effect of celecoxib was observed on tumor pCR (15.9% in
celecoxib-treated patients vs. 11.2% in those without
celecoxib; p=0.41) (Table III). However, the pCR rate was
higher in the group of patients with highest tertile of COX2
in the overall population and in patients receiving celecoxib
(p=0.002) (Table III). 

Taking into account the level of COX2 expression in
patients who received celecoxib, the pCR rate was
significantly higher in those with tumors with the highest
tertile of COX2 (47.4%) than in those with low expression
of COX2 (2.3%) (Table III). The magnitude of the OR for
pCR in the group of patients who received celecoxib
suggested an interaction between COX2 gene expression and
the effect of celecoxib. The test for interaction was
statistically significant (p<0.01), meaning that the effect of
celecoxib on pCR was significantly different according to
COX2 gene expression. On the contrary, in the arm without
celecoxib, no difference in pCR rate was observed according
to COX2 expression (Table III). However, after multivariate
analysis, the interaction between celecoxib and COX2
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Table III. Pathological response in patients as a function of tumor cyclo-oxygenase-2 (COX2) expression and celecoxib treatment.

Population                                     Celecoxib         COX2 expression*                n                pCR, n (%)                      OR 95% CI                        p-Value

Whole population (n=152)                 No                             -                             89                10 (11.2%)                               1                                       
                                                            Yes                             -                             63                10 (15.9%)                  1.49 (0.57-3.87)                      0.407
Whole population (n=152)                  −                       Low level                    102                  7 (6.9%)                                 1                                       
                                                              −                       High level                     50                13 (26%)                     4.77 (1.81-13.58)                     0.002
No celecoxib (n=89)                                                     Low level                      58                  6 (10.3%)                               1                                       
                                                                                      High level                     31                  4 (12.9%)                  1.28 (0.31-4.89)                      0.716
Celecoxib (n=63)                                                          Low level                      44                  1 (2.3%)                                 1                                       
                                                                                      High level                     19                  9 (47.4%)                   38.7 (6.27-757)                      0.001

pCR: Pathological complete response; OR: odds ratio; CI: confidence interval. *Low level=tertiles 1 and 2; high level=tertile 3. Significant data
are indicated in bold.
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expression failed to reach statistical significance (p=0.12),
and only initial tumor size (T3 and T4 versus T2: OR=0.14,
95% CI=0.03-0.5, p=0.006) and ER status (OR=0.03, 95%
CI=0-0.12, p<0.001) were significantly associated with pCR. 

Discussion 

In this biologically-driven analysis of the HER2-negative
arm of the breast cancer neoadjuvant REMAGUS 02 trial,
we found that COX2 expression analyzed by RT-qPCR could
be a target for celecoxib treatment. The effect of celecoxib
in addition to neoadjuvant chemotherapy was different
according to COX2 expression level in patients with HER2-
negative breast cancer in terms of pCR. To our knowledge,
this phase II neoadjuvant trial is the first to investigate in a
prospective randomized trial the efficacy of the selective
COX2 inhibitor celecoxib in addition to chemotherapy
according to COX2 gene expression in breast cancer.

The main finding of the current study was that patients
with high COX2 gene expression who received celecoxib had
a significantly higher pCR rate compared with patients with
low COX2 gene expression. It was previously shown in 42
patients with metastatic breast cancer patients treated with
anthracyclines with and without taxanes, that the combination
of celecoxib with capecitabine was more effective in patients
overexpressing COX2 (19). Our results are also supported by
interesting data published on lung cancer. Edelman et al. re-
analyzed the negative results of the CALGB 30203 trial in
advanced non-small cell lung cancer (20). Their analysis of
the COX2 expression data indicate that the benefit of 400 mg
celecoxib twice per day was greatest in those with tumors
with a higher level of COX2 expression (20, 21). 

Regarding the relationship between COX2 and other tumor
characteristics, we observed a positive correlation of COX2
overexpression with higher tumor grade, as observed in the
recent retrospective Chilkman’s study. Their study was
designed for a subgroup of 303 high-grade breast cancers and
they analyzed COX2 expression by immunohistochemistry (9).
In contrast, they did not find any correlation with ER
expression and only eight out of 18 studies cited in their article
found an inverse correlation between ER and COX2 expression
as observed in our study (9). Furthermore, in a recent study
performed on a retrospective cohort of 446 breast carcinomas
treated in the adjuvant setting where COX2 expression was
analyzed by RT-qPCR, the authors found an inverse correlation
between COX2 expression and ER and PR expression (22).

A recent meta-analysis including 21 studies and 6739
patients with breast cancer showed that the presence of high
levels of COX2 predicts a greater tumor size and lymph node
metastasis (11). The occurrence of COX2-overexpressing
tumors in each study ranged from 27.9% to 81.4%. As
illustrated by this meta-analysis (11), most published studies
on prognostic or predictive value of COX2 were performed

using immunohistochemistry. But the methods used for
immunohistochemical analysis of COX2 were diverse, with
various antibodies, lack of standardization of staining, and
analysis of tumor COX2 expression. Classifications of
COX2 positivity and negativity differed significantly
between published studies, which make comparisons
between studies difficult. Recent studies pointed out several
problems related to this method and explained discrepancies
between studies. Urban et al. pointed out the importance of
taking into account the stromal component of the tumor and
not only epithelial cells, as is usually done (23). Only a few
studies used RT-qPCR to assess COX2 expression (22, 24,
25). The main advantage of RT-qPCR is its truly quantitative
approach but there is still no standardized method. However,
this could be adapted, since to date, new standardized tests
using quantification of target genes by RT-qPCR are
available for routine use of a molecular signature for luminal
breast cancer (26, 27). However, a recent publication showed
a good correlation between COX2 expression analyzed by
immunohistochemistry and by RT-qPCR (22).

We conclude that COX2 expression in breast cancer is
associated with histological type and grade, and inversely
correlated with ER and PR expression. We also showed that
higher COX2 expression is associated with an increase in
pCR rate in patients treated with celecoxib. Taken together,
our findings support the fact that drug trials using celecoxib
should include pre-stratification by COX2 status. The efficacy
of COX2 inhibitors in combination with chemotherapy might
benefit from the quantitative evaluation of the target as a
predictive biomarker (companion diagnosis). These results
need to be confirmed in independent prospective study. 

In this article, we included the essential elements of the
Reporting Recommendations for Tumor Marker Prognostic
Studies (REMARK) (28).
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abstract

PURPOSE The overexpression of cyclooxygenase 2 (COX-2) gene, also known as prostaglandin-endoperoxide
synthase 2 (PTGS2), occurs in breast cancer, but whether it affects response to anticox drugs remains unclear.
We investigated the relationships between PTGS2 expression, celecoxib use during neoadjuvant chemotherapy
(NAC), and both event-free survival (EFS) and overall survival (OS).

MATERIALS AND METHODS We analyzed a cohort of 156 patients with human epidermal growth factor receptor
2–negative breast cancer from the REMAGUS02 (ISRCTN Registry No. 10059974) trial with pretreatment
PTGS2 expression data. Patients were treated by sequential NAC (epirubicin plus cyclophosphamide followed
by docetaxel with or without celecoxib). Experimental validation was performed on breast cancer cell lines. The
Cancer and Leukemia Group B (CALGB) 30801 (ClinicalTrials.gov identifier: NCT01041781) trial that tested
chemotherapy with or without celecoxib in patients with lung cancer served as an independent validation cohort.

RESULTS After 94.5 months of follow-up, EFS was significantly lower in the celecoxib group (hazard ratio [HR],
1.7; 95% CI, 1 to 2.88; P = .046). A significant interaction between PTGS2 expression and celecoxib use was
detected (Pinteraction = .01). In the PTGS2-low group (n = 100), EFS was lower in the celecoxib arm (HR, 3.01;
95%CI, 1.45 to 6.24; P = .002) than in the standard treatment arm. Celecoxib use was an independent predictor
of poor EFS, distant relapse–free survival, and OS.

Celecoxib in addition to docetaxel enhanced cell viability in PTGS2-low cell lines but not in PTGS2-high cell lines.
In CALGB 30801, a trend toward poorer progression-free survival was observed in the patients with low urinary
metabolite of prostaglandin E2 who received celecoxib (HR = 1.57; 95% CI, 0.87 to 2.84; P = .13).

CONCLUSION Celecoxib use during chemotherapy adversely affected survival in patients with breast cancer, and
the effect was more marked in PTGS2-low and/or estrogen receptor–negative tumors. COX-2 inhibitors should
preferably be avoided during docetaxel use in patients with breast cancer who are undergoing NAC.

J Clin Oncol 37. © 2019 by American Society of Clinical Oncology

INTRODUCTION

Cyclooxygenase-2 (COX-2; also known as PTGS2
[prostaglandin-endoperoxide synthase 2]) is an iso-
form of the key enzyme in eicosanoid biosynthesis
PTGS, which catalyzes the rate-limiting step in pros-
taglandin synthesis. COX-2 overexpression has been
observed in various malignant tumors, including lung,1

colon,2 and breast3,4 cancers. Preclinical studies have
shown that COX-2 overexpression and the resulting
production of prostaglandins stimulated angiogenesis
and proliferation, which promoted cell invasion and
metastasis development.5,6 High COX-2 levels are
associated with poor outcome in many tumor models
and clinical studies.7-9 However, there is no consensus

about the prognostic or predictive value of COX-2
expression in invasive breast carcinoma.10-12

The selective COX-2 inhibitor celecoxib was released
onto themarket in 2000 for the symptomatic treatment
of arthritis. Celecoxib binds reversibly to a hydrophilic
pocket near the active site of COX-2 and thus inhibits
the conversion of arachidonic acid to prostaglan-
din H2. This results in anti-inflammatory and pain-
relieving effects. Selective COX-2 inhibitors have also
been explored as therapeutic or preventive agents in
various oncologic settings.13,14 Several studies have
evaluated celecoxib in the neoadjuvant setting for
breast cancer as a monotherapy15,16 or combined with
endocrine therapy.17,18 In addition to toxicity and safety
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concerns, the benefits of such strategies to patients with breast
cancer were not sufficiently high for these agents to be in-
corporated into standard care, and the development of COX-2
inhibitors in oncology thus fell short of initial expectations.19,20

The REMAGUS02 (ISRCTN Registry No. 10059974) study
was a multicenter, randomized, phase II trial that included
340 patients with locally advanced breast cancer. Patients
were randomly assigned to receive neoadjuvant sequential
chemotherapy (NAC; either epirubicin plus cyclophospha-
mide, followed by docetaxel alone or docetaxel plus celecoxib
[400 mg twice per day orally] for human epidermal growth
factor receptor 2 (HER2)–negative tumors [n = 220]; or
docetaxel alone or docetaxel plus trastuzumab for HER2-
positive tumors [n = 120]). The trial found no benefit of cel-
ecoxib in terms of pathologic complete response21 (primary
objective) or disease-free survival22 (DFS; secondary objective).

Predictive biomarkers are biologic indicators of the likely
response of a patient to a particular drug. Estrogen receptor
(ER), progesterone receptor, and HER2 status, which are
used to determine the potential benefits of endocrine and
trastuzumab treatments, are currently the only predictive
markers used in clinical settings in breast cancer. However,
many patients still do not respond to these therapies, and
the identification of additional biomarkers to provide per-
sonalized treatment to population subgroups remains an
important task in breast oncology.

In this study, we investigated the dependence of the effects
of celecoxib on COX-2 expression by performing a post hoc
exploratory analysis of the REMAGUS02 trial to evaluate
survival as a function of PTGS2 expression, as assessed by
reverse transcription quantitative polymerase chain re-
action (RT-qPCR). We validated our findings experimen-
tally on breast cancer cell lines, and we performed
analyses in an independent cohort of patients with non–
small-cell lung cancer (NSCLC) from the Cancer and
Leukemia Group B (CALGB) 30801 (ClinicalTrials.gov
identifier: NCT01041781).

MATERIALS AND METHODS

Patients

In total, 220 patients with locally advanced breast cancer
were included in the HER2-negative stratum of the
REMAGUS02 phase II randomized trial. The patients re-
ceived sequential chemotherapy with, first, epirubicin plus
cyclophosphamide alone followed by docetaxel with or
without celecoxib 400 mg administered twice per day orally
with random assignment to arm 1 (without celecoxib) or
arm 2 (with celecoxib), as previously described.21,22 The full
protocol (REMAGUS02 protocol; Appendix, online only),
CONSORT diagram (Appendix Fig A1, online only), and
results of the clinical trial (REMAGUS02 trial; Appendix) are
provided. The use of celecoxib was suspended by the
French Health Products Safety Agency from December
2004 to September 2005 because of safety concerns.

Thereafter, the use of this agent was authorized but with a
revision of the informed consent form. As a result, 13
patients randomly assigned to the celecoxib group did not
receive this drug. Analyses of the results of this study were
performed on an intention-to-treat basis and per-protocol
analyses are provided in the Appendix. For the 220 patients
who were randomly assigned, 156 (71%) had frozen
pretreatment biopsy specimens that contained more than
30% invasive epithelial tumor cells and that were available
for RT-qPCR analysis (raw data in Data Supplement).
Among them, 139 patients had Affymetrix U133A chips
(Thermo Fisher Scientific, Waltham, MA) with baseline
gene expression data available (standard treatment, n = 72;
celecoxib, n = 67).

PTGS2 (COX-2) Expression

Total RNA extraction from frozen pretreatment biopsy
specimens, reverse transcription, and qPCR analysis and
quality control were performed as previously described.23,24

The RPLPO, TATA box-binding protein (TBP), transferrin
receptor (TFR), beta-actin, beta-glucuronidase (GUS), and
GAPDH genes were used as endogenous reference genes.
Target quantities were normalized relative to the median
value for the six reference genes. No consensus threshold
has been defined for RT-qPCR analyses, so PTGS2 gene
expression was classified on the basis of tertiles (low, in-
termediate, and high). The odds ratios (ORs) for pathologic
complete response of tertiles 1 (OR, 1; four [7.7%] of 52);
and 2 (OR, 0.77; three [6%] of 50) were essentially similar
(v OR, 4.22; 13 [26%] of 50 for tertile 3), so we chose to
merge those two tertiles (PTGS2-low) and compare them
with the third tertile (PTGS2-high), as previously
described.24

Statistical Analysis

To investigate if tumors were different between the cele-
coxib and noncelecoxib arms, we performed a differential
expression analysis between the two groups of treatment
(Appendix). Event-free survival (EFS) was defined as the
time from random assignment to progression, locoregional
recurrence, distant recurrence, or death, whichever oc-
curred first. Distant relapse–free survival (DRFS) was de-
fined as the time from random assignment to first distant
metastasis or death; overall survival (OS) was defined as the
time from random assignment to death. Patients for whom
none of these events was recorded were censored at the
date of last known contact. The cutoff date for the analysis
was May 1, 2015. Predictive effects were evaluated with a
test of interaction between treatment group and PTGS2
expression and ER status. EFS and OS were estimated
using the Kaplan-Meier method, and survival curves were
compared using a log-rank test. Univariable Cox pro-
portional hazard models were performed to determine the
variables associated with survival. Covariables selected for
the multivariable analysis were those with P values no
greater than .15 after univariable analysis. A multivariable

2 © 2019 by American Society of Clinical Oncology
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model was then implemented using a forward stepwise
selection procedure. Analyses were performed with R
software, version 3.1.2.

Experimental Validation and Independent Human

Validation Cohort

We performed an experimental validation on two PTGS2-
low breast cancer cell lines (MDA-MB-231 andMDA-MB-157),
and two PTGS2-high cell lines (BT549 and MDA-MB-436;
Appendix). Cell lines were treated with increasing con-
centrations of docetaxel with or without celecoxib 25 mM.
Cellular viability was assessed at 72 hours. Statistical an-
alyses were performed using GraphPad Prism 5 software
(GraphPad Software, San Diego, CA). The data were
expressed as the mean and standard error of the mean
(SEM). One-way analyses of variance followed by Bonferroni
post hoc comparison tests were performed in all statistical
analyses. The results were considered statistically significant
at a P, .05, P, .01, orP, .001. To confirm our results, we
also performed a post hoc reanalysis of the CALGB 30801
trial,25 in which 312 patients with advanced NSCLC were
randomly assigned to receive celecoxib or placebo in ad-
dition to standard chemotherapy. We stratified the analyses
by the expression levels of the urinary after they were
stratified by the expression levels of the urinary metabolite of
prostaglandin E2 (PGE-M; Appendix).

RESULTS

Analyses of the REMAGUS02 Trial

Patient population. In total, 156 patients from the REMA-
GUS02 trial were included in this study; 78 were randomly
assigned to the celecoxib arm, and 78 were randomly
assigned to the arm with standard treatment only. Patient
and tumor baseline characteristics were similar in the
celecoxib and standard treatment arms (Table 1). In ad-
dition, no gene of 19,965 was differentially expressed

TABLE 1. Patient and Tumor Characteristics at Baseline by Treatment
Arm in the Intention-to-Treat Population

Characteristic
Standard Treatment

Arm (n = 78)
Celecoxib Arm

(n = 78) P

Age, years

, 40 17 (21.8) 17 (21.8) .55

40 to 49 30 (38.5) 36 (46.2)

$ 50 31 (39.7) 25 (32.1)

Menopausal status

Pre 51 (66.2) 55 (70.5) .69

Post 26 (33.8) 23 (29.5)

Mean BMI, kg/m2 25.8 (5.0) 24.5 (4.7) .09

Tumor size

T2 40 (51.3) 49 (62.8) .2

T3 and T4 38 (48.7) 29 (37.2)

Clinical nodal status

N0 30 (39.0) 29 (37.2) .95

N1, N2, N3 47 (61.0) 49 (62.8)

Histology

Ductal 67 (85.9) 64 (82.1) .77

Lobular 7 (9.0) 8 (1.3)

Other 4 (5.1) 6 (7.7)

Grade

1 9 (12.2) 5 (6.6) .22

2 25 (33.8) 35 (46.1)

3 40 (54.1) 36 (47.4)

LVI

No 67 (85.9) 64 (83.1) .8

Yes 11 (14.1) 13 (16.9)

ER status

Negative 27 (34.6) 29 (37.2) .87

Positive 51 (65.4) 49 (62.8)

PR status

Negative 42 (54.5) 44 (57.9) .8

Positive 35 (45.5) 32 (42.1)

TNBC

Yes 26 (33.3) 29 (37.2) .74

No 52 (66.7) 49 (62.8)

p53

WT 20 (54.1) 24 (61.5) .67

Mutated 17 (45.9) 15 (38.5)

Surgery

No 2 (2.6) 2 (2.6) .99

Yes 76 (97.4) 76 (97.4)

Adjuvant chemotherapy

No 54 (69.2) 55 (70.5) .99

Yes 24 (3.8) 23 (29.5)

(continued in next column)

TABLE 1. Patient and Tumor Characteristics at Baseline by Treatment
Arm in the Intention-to-Treat Population (continued)

Characteristic
Standard Treatment

Arm (n = 78)
Celecoxib Arm

(n = 78) P

Endocrine therapy

No 23 (31.1) 25 (34.2) .82

Yes 51 (68.9) 48 (65.8)

Radiotherapy

No 1 (1.3) 3 (4.1) .59

Yes 74 (98.7) 70 (95.9)

NOTE. Data are presented as No. (%). The following data are
missing: menopausal status (n = 1), BMI (n = 1), clinical nodal status
(n = 1), grade (n = 6), LVI (n = 1), PR (n = 3), p53 (n = 80), endocrine
therapy (n = 9), radiotherapy (n = 8), and pCR (n = 4).
Abbreviations: BMI, body mass index; ER, estrogen receptor; LVI,

lymphovascular invasion; PR, progesterone receptor; TNBC, triple-
negative breast cancer; WT, wild type.
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between the celecoxib arm and the standard treatment
arm, consistent with the random allocation of patients to the
celecoxib arm.

Notable differences in tumor characteristics according to
PTGS2 status were observed. The frequencies of grade III,
p53-mutated, ER-negative and progesterone receptor–
negative tumors were higher in the PTGS2-high pop-
ulation than in the PTGS2-low population (Appendix
Table A1, online only).

The Effect of Celecoxib on Survival is Modified by PTGS2
Expression and ER Status

EFS analysis. In the full study cohort of patients withHER2-
negative disease (n = 156), celecoxib use was significantly
associated with shorter EFS (hazard ratio [HR], 1.7; 95%

CI, 1 to 2.88; P = .046; Table 2). There was a significant
interaction between PTGS2 expression and celecoxib for
EFS (Pinteraction = .01), which meant that the effect of
celecoxib on EFS differed significantly between the PTGS2-
low and PTGS2-high groups.

In the PTGS2-low group, celecoxib use was associated with
shorter EFS (HR, 3.01; 95% CI, 1.45 to 6.24; P = .002; Fig
1A), and the obtained results differed by ER status. In ER-
negative tumors, celecoxib use was strongly associated with
shorter EFS (HR, 13.45; 95% CI, 1.68 to 107.44; P = .002;
Fig 1B), whereas celecoxib had no effect on EFS in ER-
positive tumors (HR, 1.87; 95% CI, 0.84 to 4.16; P = .121;
Pinteraction = .02; Fig 1C). In the PTGS2-high group, cele-
coxib use did not affect EFS (Fig 1D) in either the ER-
negative (Fig 1E) or ER-positive (Fig 1F) population.
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FIG 1. Kaplan-Meier curves for association between treatment arm and event-free survival (EFS), according to PTGS2 and estrogen receptor (ER) status: (A)
PTGS2-low population; (B) PTGS2-low/ER-negative subpopulation; (C) PTGS2-low/ER-positive subpopulation; (D) PTGS2-high population; (E) PTGS2-high/
ER-negative subpopulation; and (F) PTGS2-high/ER-positive subpopulation. HR, hazard ratio.
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The association between celecoxib use and impaired EFS
(P , .001), the interactions between celecoxib use and
PTGS2 expression (P = .008), and the interactions between
celecoxib use and ER status (P = .005) were highly sig-
nificant after multivariable analysis (Appendix Table A2,
online only). Similar results were also found for DRFS (data
not shown).

OS analyses. Similar results were obtained for OS (Table 2).
In the PTGS2-low group, celecoxib use was associated with
a shorter OS (HR, 3.32; 95% CI, 1.23 to 9.01; P = .012;
Appendix Fig A2A, online only), and its effects differed
according to ER status (Pinteraction = .05). Celecoxib use was
associated with a shorter OS in ER-negative tumors (HR,
13.64; 95% CI, 1.71 to 108.87; P = .001; Appendix Fig
A2B) but had no significant effect on OS in ER-positive
tumors (HR, 1.61; 95% CI, 0.48 to 5.35; P = .434; Ap-
pendix Fig A2C).

In the PTGS2-high group, celecoxib use had no effect on
OS (Appendix Fig A2D) in the ER-negative population
(Appendix Fig A2E) or in the ER-positive population (Ap-
pendix Fig A2F).

The association between celecoxib use and impaired OS
(P = .001), the interactions between celecoxib use and
PTGS2 expression (P = .03), and the interactions between
celecoxib use and ER status (P = .02) were again significant
after multivariable analysis (Appendix Table A3, online
only). The combined Kaplan-Meier curves for EFS and OS

as a function of PTGS2 expression and celecoxib use are
shown for ER-negative tumors in Figure 2.

Per-protocol analyses. Analyses of this study on a per-
protocol basis showed comparable results that are pro-
vided in the Appendix (Appendix Table A4, online only;
Appendix Figs A3, A4, and A5, online only).

Experimental validation. The addition of celecoxib to
docetaxel enhances cell viability in PTGS2-low but not in
PTGS2-high breast cancer cell lines. To assess whether
preclinical models would mimic the clinical observations,
we performed translational research by studying a panel of
four ER-negative and HER2-negative breast cancer cell
lines. PTGS2 expression was very low in MDA-MB-231 and
MDA-MB-157, whereas it was high in BT549 and MDA-
MB-436 (Appendix Fig A6, online only). In all four triple-
negative breast cancer cell lines, celecoxib alone (5 to 200
mM) had no effect on cellular viability (data not shown).

In the PTGS2-low cell lines (MDA-MB-231 and MDA-MB-
157), addition of celecoxib enhanced cellular viability
compared with docetaxel treatment alone (Figs 3A and 3B).
In PTGS2-high cell lines (BT549 and MDA-MB-436),
celecoxib in association with docetaxel had no effect on
cellular viability (Figs 3C and 3D). These cell culture results
therefore match the clinical observations and suggest the
following: (1) The effect of celecoxib in addition to che-
motherapy varies with the expression levels of PTGS2, and
this effect is restricted to PTGS2-low cell lines. (2) In
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FIG 2. Kaplan-Meier combined survival curves for the association between PTGS2 expression and treatment arm in
the estrogen receptor (ER)–negative population. (A) Event-free survival (EFS) by PTGS2 expression and celecoxib use;
(B) overall survival (OS) by PTGS2 expression and celecoxib use. ITT, intention to treat.
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PTGS2-low cell lines, the addition of celecoxib to taxanes
enhances cellular viability compared with taxanes alone.
Analyses of the CALGB 30801 trial. The effect of celecoxib
in addition to chemotherapy is associated with a trend to-
ward an impaired progression-free survival in patients with
NSCLC who have low values of PGE-M. In the population of
the CALGB 30801 trial with metabolite of prostaglandin E2
(PGE-M) data available, the addition of celecoxib to che-
motherapy had no impact on PFS (celecoxib v no celecoxib:
HR, 1.08; 95% CI, 0.85 to 1.36; P = .53). In the population
with PGE-M values less than quartile 1 (Q1), celecoxib in
addition to chemotherapy was associated with a trend
toward impaired progression-free survival (PFS) compared
with chemotherapy alone (HR, 1.57; 95% CI, 0.87 to 2.84;
P = .13). In contrast, for the population with PGE-M values
of Q1 or greater, the addition of celecoxib to chemotherapy
was not associated with differences in PFS (HR, 0.91; 95%
CI, 0.66 to 1.26; P = .57; Appendix Figs A7A and A7B,
respectively, online only).

DISCUSSION

In this exploratory analysis of the REMAGUS02 trial, we
report an adverse effect of celecoxib use during NAC on
survival in patients with breast cancer. The magnitude of
this effect was greater in patients with either PTGS2-low
tumors or ER-negative tumors, and it was particularly
dramatic in the subgroup of patients with ER-negative and

PTGS2-low tumors. One might have expected COX-2 in-
hibitors to act preferentially on tumors cells that express
COX-2. Instead, we identified a paradoxical effect on cells
with a low expression of PTGS2. The clinical observation
was reproduced experimentally by performing translational
research in four different breast cancer cell lines. Impor-
tantly, this effect was observed only in combination with
taxanes and not with celecoxib alone. These results are
particularly important because despite the evidence of a
potential protective effect of nonsteroidal anti-inflammatory
drugs (NSAIDs) against breast cancer in preclinical and
epidemiologic data, no randomized trial, to our knowledge,
has investigated the addition of any NSAID to NAC in breast
cancer. Previous or unpublished randomized trials have
been designed using celecoxib alone,26 but evidence is still
lacking for the effects of celecoxib in addition to NAC in
humans.27 We also found a trend toward a similar effect in
an independent cohort derived from a randomized clinical
trial, in a different setting, and in another cancer localization
(advanced NSCLC).

These results raise concerns about the safety of COX-2
inhibitors during chemotherapy in patients with breast
cancer. They are consistent with a recent study11 per-
formed on a cohort of 911 patients with breast cancer,
which identified an interaction among COX-2 expression,
prognosis, and preoperative NSAID use (Pinteraction = .009).
In that study, patients with preoperative NSAID treatment
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FIG 3. Effect of docetaxel alone or in
combination with celecoxib on cel-
lular viability in PTGS2-low cell lines
(A) MDA-MB-231 and (B) MDA-MB-
157 as well as PTGS2-high cell lines
(C) BT549 and (D) MDA-MB-436.
(*) P , .001; (†) P , .01; (‡) P ,

.05.
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TABLE 3. Summary of Randomized Controlled Trials to Evaluate Combinations of COX-2 Inhibitors With Chemotherapy in Patients With Cancer

First Author
Setting and
Cancer Type

COX-2
Assessment

No. of
Patients
in the

Analyses
Conclusion of
the Authors

Premature or
Temporary

Discontinuation
Primary End

Point Comments

Interaction/Stratification by
COX-2 expression (when

assessed)

Maiello30 First-line locally
advanced
and/or
metastatic
colorectal
cancer

No FOLFIRI (n = 38)
or
FOLFIRI + CBX
(n = 39)

FOLFIRI regimen was
effective and well
tolerated as first-line
treatment in
patients with
advanced colorectal
cancer. The
addition of CBX to
the FOLFIRI
regimen did not
improve results.

ORR The ORR was lower in
the arm with
combined CBX.
ORR: FOLFIRI v
FOLFIRI + CBX:
45% (95% CI, 29%
to 61%) v 36%
(95% CI, 21% to
51%)

No

Kohne31 First-line
metastatic
colorectal
cancer

No FOLFIRI (n = 41)
or
CAPIRI (n =
44) with CBX
(n = 42) or
placebo (n =
43)

Because of the small
sample size after
early termination,
no definitive
conclusions could
be drawn in relation
to the noninferiority
of CAPIRI
compared with
FOLFIRI.

Yes PFS Median PFS and OS
times were shorter
for CAPIRI v
FOLFIRI (PFS: 5.9 v
9.6 months; OS:
14.8 v 19.9 months)
and CBX v placebo
(PFS: 6.9 v 7.8
months; OS: 18.3 v
19.9 months).

Assumptions of an
absence of interaction
between FU v
capecitabine and CBX v
placebo effects.

Jin35 First-line
metastatic
colorectal
cancer

Yes (IHC) FOLFOX4 (n =
30)
v
FOLFOX4 +
CBX (n = 58)

The addition of CBX to
the FOLFOX4
regimen increased
the short-term
efficacy and the
3-year survival rate.

Not reported RR (CR + PR) was
significantly greater
in the group with
FOLFOX4 + CBX
than in the group
with FOLFOX4 (P =
.022)

No stratification

Lilenbaum32 Second-line
treatment of
stage IIIB or IV
NSCLC

No Irinotecan
docetaxel (n =
69) +
irinotecan
gemcitabine
(n = 64) with
CBX (n = 67)
or
without CBX
(n = 66)

CBX did not seem to
enhance efficacy or
improve patient-
reported symptoms.

Yes Median/1-year
survival
probabilities

Median survival of
patients was higher
with chemotherapy
alone v with CBX:
8.99 months (95%
Cl, 6.60 to 11.14
months) v 6.31
months (95% Cl,
4.53 to 8.57
months).

Study design assumed no
interaction between
chemotherapy treatment
and use of CBX.

Gridelli36 First-line
treatment
stage IIIB or IV
NSCLC

No Gemcitabine IV
(n = 200)
or PCI +
cisplatin (n =
200)
with rofecoxib
(n = 149)
or without
rofecoxib (n =
251)

Rofecoxib improved
RR but did not
prolong survival.
The trial was closed
prematurely
because of safety
issues.

Yes OS The study was not planned
to test efficacy
interactions in the
experimental factors.

Edelman28 First-line
treatment
stage IIIB or IV
NSCLC

Yes (IHC,
n = 83)

Carboplatin +
gemcitabine +
CBX (n = 44) +
zileuton (n =
45) + CBX +
zileuton (n =
45)

This study failed to
demonstrate the
value of dual
eicosanoid
inhibition or benefit
from either agent
alone in addition to
chemotherapy.

9-month failure-
free survival

CBX treatment
associated with a
trend toward worse
OS outcome (HR,
1.59; 95% CI, 0.85
to 2.96; P = .15)
after multivariable
analysis.

Interaction of receiving
CBX and COX-2
expression on OS (P =
.0026); analyses
stratified by COX-2
expression

Groen34 First-line
treatment
stage IIIB or IV
NSCLC

Yes (31%) Docetaxel
carboplatin
with CBX (n =
281)
or
placebo (n =
280)

In advanced NSCLC,
CBX did not
improve survival.

OS Interaction between COX-2
expression and the
impact on CBX/placebo
treatment was tested but
was not significant.
Analyses were stratified
by COX-2 expression.

(continued on following page)
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and COX-2-negative tumors had a significantly higher risk
of events (HR, 4.51; P , .001) compared with the other
patients.

Furthermore, several randomized trials that investigated
multiple COX-2 inhibitors in addition to chemotherapy for
the treatment of different cancers have reported
interactions25,28,29 among COX-2 inhibitor use, COX

expression, chemotherapy regimen, and clinical outcome.
The findings of these previous studies are listed in
Table 3.28-37 In eight of these studies25,28-33 (including this
study), COX-2 inhibitor use during chemotherapy was, or
tended to be, associated with a poorer outcome than no
COX-2 inhibitor use. Of note, seven trials were temporarily
or prematurely discontinued because of safety concerns

TABLE 3. Summary of Randomized Controlled Trials to Evaluate Combinations of COX-2 Inhibitors With Chemotherapy in Patients With Cancer (continued)

First Author
Setting and
Cancer Type

COX-2
Assessment

No. of
Patients
in the

Analyses
Conclusion of
the Authors

Premature or
Temporary

Discontinuation
Primary End

Point Comments

Interaction/Stratification by
COX-2 expression (when

assessed)

Koch37 First-line
treatment
stage IIIB or IV
NSCLC

No Palliative
chemotherapy
with CBX (n =
158)
or
placebo (n =
158)

This study failed to
demonstrate a
survival benefit of
the addition of CBX
to palliative
chemotherapy.

Yes OS In women, survival
was shorter with
placebo than with
CBX (HR, 1.16;
95% CI, 0.83 to
1.62), whereas the
opposite was
observed in men
(HR, 0.79; 95% CI,
0.57 to 1.09).

No

Edelman29 Second-line
treatment
stage IIIB or IV
NSCLC

Yes, baseline
urinary
PGE-M

Docetaxel or
pemetrexed
with apricoxib
(n = 36)
or
placebo (n =
36)

Apricoxib did not
improve PFS,
despite biomarker-
driven patient
selection.

PFS Patients who received
docetaxel +
apricoxib (n = 17)
had a numerically
inferior median PFS
of 75 days (95% CI,
47 to 104 days) v 97
days (95% CI, 48 to
216 days) for those
who received
docetaxel + placebo
(n = 20; HR, 1.62; P
= .18)

Interaction between
baseline PGE-M and
chemotherapeutic
agents (docetaxel v
pemetrexed) for PFS
(P = .026).

Edelman25 Second-line
treatment
stage IIIB or IV
NSCLC

Yes (n = 312;
COX-2 IHC
and
urinary
PGE-M)

Carboplatin
pemetrexed +
gemcitabine
with CBX (n =
154)
or
with placebo
(n = 158)

COX-2 expression by
IHC failed to select
patients who could
benefit from
selective COX-2
inhibition.

Yes PFS Complementary
analyses
(unpublished,
performed for this
study): In patients
with PGE-M values
, Q1 (n = 53), there
was a trend toward
impaired PFS with
CBX compared with
CT alone (HR, 1.57;
95% CI, 0.87 to
2.84; P = .13).

Interaction between
treatment effect (CBX v
placebo) and baseline
urinary PGE-M level
significant for OS (P =
.02) but not for PFS (P =
.22)

Reyners33 First-line stage
IC to IV
ovarian
cancer

Yes (61%;
n = 120)

Carboplatin
docetaxel 6
CBX

CBX did not influence
PFS and OS, but
interpretation of
results was
hampered by
premature CBX
discontinuation.

Yes RR and PFS CBX use was
associated with a
trend toward worse
PFS in the
multivariable
analysis (HR, 1.28;
95% CI, 0.90 to
1.81; P = .16).

No

This study Neoadjuvant
treatment of
locally
advanced
breast
cancers

Yes (PTGS2
RT-qPCR;
n = 156)

Epirubicin
cyclophos-
phamide
followed by
docetaxel
(n = 78) + CBX
(n = 78)

CBX was associated
with impaired EFS
(P = .05) and OS
(P = .11),
particularly in the
PTGS2-low and the
ER-negative groups.

Yes pCR CBX use associated
with impaired EFS,
metastasis-free
survival, OS after
multivariable
analysis

Significant interactions
between PTGS2
expression and CBX use
(P = .008) and ER status
and CBX use (P = .005)
on EFS

Abbreviations: CAPIRI, irinotecan plus capecitabine; CBX, celecoxib; COX-2, cyclooxygenase 2; CR, complete response; EFS, event-free survival; ER,
estrogen receptor; FOLFIRI, fluorouracil, leucovorin, and irinotecan; FOLFOX4, folinic acid–fluorouracil– oxaliplatin; FU, fluorouracil; HR, hazard ratio; IHC,
immunohistochemistry; IV, intravenously; NSCLC, non–small-cell lung cancer; ORR, objective response rate; OS, overall survival; PCI, prolonged constant
infusion; pCR, pathologic complete response; PFS, progression-free survival; PGE-M, prostaglandin E2 metabolite; PR, partial response; Q1, quartile 1; RR,
response rate; RT-qPCR, reverse transcription quantitative polymerase chain reaction.
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or enrollment failure, which may partially explain un-
derpowered definitive analyses. Although several regimens
were used, evidence that the combination of COX-2 in-
hibitor with chemotherapy might be detrimental was re-
ported in four trials (including this study) that evaluated
taxane-based chemotherapy regimens.29,32,33 Finally, only
two of 12 randomized trials were stratified for COX-2
expression.28,34 The re-analysis of the 10 remaining
trials after stratification by COX-2 expression could unmask
a hidden deleterious or beneficial effects in specific
subgroups.

This study has limitations. The REMAGUS02 trial was a
phase II randomized trial that was only designed to assess
the efficacy of celecoxib in the whole population, but an-
alyses stratified by ER or PTGS2 status were not pre-
specified. Hence, we cannot strictly infer causality for the
negative association we report in the subpopulations.
However, two arguments suggest that the relevance of
these subgroup analyses is not spurious. First, the in-
teractions between COX-2 inhibitors and COX-2 expression
has already been demonstrated by multiple teams.25,28,29

Second, both ER status, which is a pivotal biomarker for any
breast cancer trial, and PTGS2 (COX-2 expression), which
is the very target of the drug tested (ie, celecoxib), have a
strong biologic rationale to justify these subgroup analyses.
Finally, we cannot derive any information on the safety
profile of celecoxib in HER2-positive tumors because of the
design of the REMAGUS02 trial (none of the patients with
HER2-positive disease received celecoxib). The safety data
in HER2-positive tumors could have been informative,
because Subbaramaiah et al38 has reported that celecoxib
can interrupt HER2 downstream signaling.

This study also has several strengths. As the only ran-
domized trial, to our knowledge, to assess celecoxib in
association with NAC in patients with breast cancer, the
results show independent, significant, negative associa-
tions with EFS, DRFS, and OS, after a long follow-up, both in

the intention-to-treat and the per-protocol analyses. A
validation phase III trial specifically powered to confirm the
deleterious impact of this drug in specified subgroups
would be unethical. Thus, these data will remain unique for
the foreseeable future. Finally, because there cannot and
will not be a confirmatory trial to establish strict causality
between celecoxib use during NAC for breast cancer and
the risk of adverse outcome, physicians should apply
caution and recommend alternatives to prescriptions of
celecoxib in patients with ER-negative, HER2-negative
breast cancer who are being treated with taxane-containing
NAC.

This study has several implications: (1) Given the
hypothesis-generating value of these findings, additional
research should be performed and may include the post
hoc reanalysis of randomized trials that evaluated COX-2
inhibitors in addition to chemotherapy after stratification
by COX-2 expression. We also strongly recommend that
investigators of clinical trials that evaluate COX-2 inhibitors
should provide individual patient data that could be
pooled into large meta-analyses. Such an effort is critical
to reach robust evidence to derive routine recommen-
dations about the avoidance or the safety of the routine
prescription of COX-2 inhibitors during chemotherapy.
(2) Evidence for synergy between COX inhibitors and
checkpoint blockade immunotherapy is emerging.39,40 On
the basis of our results, we recommend the stratification of
all future trials that involve these inhibitors according to
COX-2 expression status. (3) In the absence of other
evidence, we recommend avoidance of celecoxib use and
preference for alternative drugs in patients with ER-
negative, HER2-negative breast tumors who are receiving
docetaxel-containing NAC, unless the expected benefit
greatly outweighs the potential risks. Only by carefully
addressing these concerns will it be possible to determine
the subgroups of patients most likely to benefit from COX
inhibitors.
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APPENDIX Analysis of the REMAGUS02 Trial

Patients. All of the patients included in this study were informed
about the study in advance and gave written consent for participation
in the trial and ancillary studies (ISRCTN Registry No. 10059974,
French ethics committee Paris-Bicêtre, No. 03-55). The primary
outcomemeasure of the trial was pathologic complete response (pCR),
evaluated according to Chevallier criteria.21 The secondary outcome
measures were the definition of genomic profiles of success (ie, pCR)
or failure for each type of treatment, and these results have been
published elsewhere, together with quality-control data.23

Samples. In total, 156 samples from the 220 patients with breast
cancer were available for transcriptomic analyses. The subgroup of
156 patients with available reverse transcription quantitative poly-
merase chain reaction (RT-qPCR) data did not differ from the
remaining 64 patients of theHER2-negative population in terms of age,
menopausal status, clinical tumor size, or nodal involvement. However,
lobular and grade 1 and 2 tumors were overrepresented in the pop-
ulation without available transcriptome data relative to the population
with available transcriptome available (26.6% v 9.6% [P = .004] and
58.3% v 49.3% [P = .03], respectively). Raw data for the patients are
provided in the Data Supplement.

Statistical Analysis

Differential expression analysis. Of 156 patients with RT-qPCR
available for PTGS2 expression, 139 had Affymetrix U133A chips
(Thermo Fisher Scientific, Waltham, MA) available for analysis. We
performed a differential analysis by comparing the mean gene ex-
pression of each group according to treatment arm (celecoxib v no
celecoxib) using a linear model (limma R package) and retained as
differentially expressed genes those for which the mean expression
was different with a P value of .05 or lower. The analysis was performed
in the whole population and after stratification by PTGS2 status
(PTGS2-low, n = 93; PTGS2-high, n = 46).

Experimental Validation

Cell lines. Human breast cancer cell lines BT-549, MDA-MB-436,
MDA-MB-231, and MDA-MB-157 were obtained from the American
Type Culture Collection (ATCC, Manassas, VA). The cell lines were
authenticated every 20 passages using the GenePrint 10 system kit
(B9510; Promega, Madison, WI). All cell lines were cultured in RPMI-
1640 medium or DMEM (Thermo Fisher Scientific, Waltham, MA)
supplemented with 10% fetal bovine serum (Thermo Fisher Scientific)
and 1% antibiotics (penicillin 50 mg/mL, streptomycin 50 mg/mL,
neomycin 100 mg/mL; Thermo Fisher Scientific), at 37°C in a hu-
midified atmosphere that contained 5% CO2.

Drugs. Docetaxel was purchased from Téva laboratory (Courbevoie,
France). Celecoxib was purchased from Biogaran laboratory
(Colombes, France) and was dissolved in phosphate-buffered saline.

Viability assay. A total of 8,000 cells per well were seeded in P96
plates and allowed to adhere for 24 hours at 37°C. Cells were then
treated with various concentrations of chemotherapeutic agents and/or
celecoxib for 72 hours. Cellular proliferation was measured using the
MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium) assay according to the manufacturer’s
instructions (Promega, Madison, WI). Absorbance was measured at

490 nm on a 96-well microplate reader (Dynatech Laboratories MRX,
Chantilly, VA).

Experimental plan. We assessed the in vitro antitumor activity of
celecoxib in combination with chemotherapeutic agents on the triple-
negative breast cancer cell lines. MDA-MB-231 and MDA-MB-157
were defined by qRT-PCR as PTGS2-low cell lines; BT549 and MDA-
MB-436, as PTGS2-high cell lines. To this end, we evaluated cellular
viability under increasing concentrations of docetaxel in combination
or not with celecoxib 25mM.

Analyses of the Cancer and Leukemia Group P 30801
trial. To confirm our results, we performed a post hoc reanalysis of
the Cancer and Leukemia Group B 30801 Alliance trial.21 In this trial,
312 patients with in advanced non–small-cell lung cancer—stage IIIB
with pleural effusion or stage IV—were randomly assigned to receive
celecoxib or placebo in addition to standard chemotherapy. Only
patients with a COX-2 index of two or greater were registered and
randomly assigned to treatment. Urinary metabolite of prostaglandin
E2 (PGE2), hereafter designated PGE-M, was evaluated at the baseline
and on day 8 of the first cycle in 211 patients in the study. Patients were
evenly divided into four groups (quartiles) that were based on the
quantity of urinary PGE-M at baseline (Q1, 10.09; Q2, 15.38; and Q3,
27.86 ng/mg creatinine). Progression-free survival was analyzed
according to celecoxib addition, and the Q1 cutoff was used for PGE-M
(PGE-M , Q1 v PGE-M $ Q1). Kaplan-Meier curves were used for
survival analysis, and the log-rank test was used to assess differences
in progression-free survival between PGE-M–defined patient groups.

Per-Protocol Analyses Results: Survival Analyses—The

Effect of Celecoxib on Survival is Modified by PTGS2
Expression and Estrogen Receptor Status

Event-free survival analysis. In the PTGS2-low group, celecoxib
use was associated with poorer event-free survival (EFS; hazard ratio
[HR], 1.96; 95% CI, 1.02 to 3.76; P = .039; 8-year EFS: 50.5% [95%
CI, 37.3% to 68.4%] v 73.1% [95% CI, 62.3% to 85.8%]; Appendix
Table A4, online only; Appendix Fig A3A, online only), but the obtained
results differed according to ER status (Pinteraction = .011). In ER-
negative tumors, celecoxib use was associated with poor EFS (HR,
7.18; 95% CI, 1.5 to 34.3; P = .004, Appendix Fig A3B, online only),
whereas it had no such effect on EFS in ER-positive tumors (P = .65;
Appendix Fig A3C, online only). In the PTGS2-high group, celecoxib
use was not associated with EFS (Appendix Fig A3D, online only), in
either the ER-negative (Appendix Fig A3E, online only) or the ER-
positive (Appendix Fig A3F, online only) population.

Overall survival analysis. Similar results were obtained for overall
survival (OS; Appendix Table A3, online only; Appendix Figs A4A
through A4F, online only). Celecoxib use was associated with poor OS
in the PTGS2-low/ER-negative subgroup (HR, 6.81; 95% CI, 1.43 to
32.33;P = .005; 8-year OS, 27.3% [95%CI, 10.4% to 71.6%] v 84.6%
[95% CI, 67.1% to 100%]; Appendix Fig A3B online only) but not in
the PTGS2-low/ER-positive subgroup (HR, 0.81; 95% CI, 0.26 to 2.56;
P = .72; Pinteraction(celecoxib/ER status) = .02; Appendix Fig A4C online
only). Finally, Appendix Figure A5 shows the Kaplan-Meier curves for
EFS and OS according to PTGS2 expression and the effect of celecoxib
in ER-negative tumors in per-protocol analyses.
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Included
(N = 340)

HER2 positive
(n = 120)

HER2 negative
(n = 220)

Arm 1
(n = 78)

NAC

Arm 1
(n = 78)

NAC plus celecoxib

Eligible with
complete clinical and
transcriptomic data

(n = 156)

FIG A1. Study flow diagram of included patients and
tumors samples available for reverse transcription
quantitative polymerase chain reaction analysis in the
REMAGUS02 (ISRCTNRegistry No. 10059974) biologic
trial. NAC (neoadjuvant chemotherapy [epirubicin +
cyclophosphamide followed by docetaxel]); HER2, hu-
man epidermal growth factor receptor 2.
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FIG A2. Kaplan-Meier curves for association between treatment arm (intention-to-treat analyses) and overall survival (OS) according to PTGS2 expression
and estrogen receptor (ER) status: (A) PTGS2-low population; (B) PTGS2-low/ER-negative subpopulation; (C) PTGS2-low/ER-positive subpopulation; (D)
PTGS2-high population; (E) PTGS2-high/ER-negative subpopulation; and (F) PTGS2-high/ER-positive subpopulation. HR, hazard ratio.
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TABLE A1. Patient and Tumor Characteristics by PTGS2 Expression in the Intention-to-Treat Population

Characteristic

No. (%) of Patients

P
PTGS2 Low
(n = 104)

PTGS2 High
(n = 52)

Age, years

, 40 23 (22.1) 11 (21.2) .99

40 to 49 44 (42.3) 22 (42.3)

$ 50 37 (35.6) 19 (36.5)

Menopausal status

Pre 68 (66.0) 38 (73.1) .48

Post 35 (34.0) 14 (26.9)

BMI, kg/m2

# 25 60 (57.7) 28 (54.9) .88

. 25 44 (42.3) 23 (45.1)

Tumor size

T2 62 (59.6) 27 (51.9) .46

T3 and T4 42 (4.4) 25 (48.1)

Clinical nodal status

N0 37 (35.6) 22 (43.1) .46

N1, N2, N3 67 (64.4) 29 (56.9)

Histology

Ductal 88 (84.6) 43 (82.7) .11

Lobular 12 (11.5) 3 (5.8)

Other 4 (3.8) 6 (11.5)

Grade

1 12 (11.7) 2 (4.3) , .01

2 48 (46.6) 12 (25.5)

3 43 (41.7) 33 (70.2)

LVI

No 88 (85.4) 43 (82.7) .83

Yes 15 (14.6) 9 (17.3)

ER status

Negative 24 (23.1) 32 (61.5) , .01

Positive 80 (76.9) 20 (38.5)

PR status

Negative 47 (46.1) 39 (76.5) , .01

Positive 55 (53.9) 12 (23.5)

TNBC

Yes 23 (22.1) 32 (61.5) , .01

No 81 (77.9) 20 (38.5)

p53

WT 35 (71.4) 9 (33.3) , .01

Mutated 14 (28.6) 18 (66.7)

Celecoxib (pp)

No 59 (56.7) 32 (61.5) .69

Yes 45 (43.3) 20 (38.5)

Abbreviations: BMI, body mass index; ER, estrogen receptor; LVI, lymphovascular invasion; pp, per protocol; PR, progesterone receptor; TNBC, triple-
negative breast cancer; WT, wild type.
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TABLE A2. Univariable and Multivariable Analyses of Clinical and Pathologic Factors on EFS

Variable Comparison

Univariable Multivariable

HR 95% CI P HR 95% CI P

Age, years

40 to 49 v , 40 0.73 0.37 to 1.42 .428

$ 50 v , 40 1.05 0.54 to 2.06

Menopausal status

Post v pre 0.91 0.52 to 1.61 .755

Tumor size

T3 and T4 v T2 1.97 1.17 to 3.31 .009

Clinical nodal status

N1, N2, and N3 v N0 1.49 0.84 to 2.62 .169

Histology

Lobular v ductal or other 2.13 1.16 to 3.92 .013

Grade

3 v 2 1.19 0.69 to 2.06 .524

ER status

Positive v negative 0.79 0.46 to 1.35 .386 1.04 0.4 to 2.69 .931

PR status

Positive v negative 0.54 0.31 to 0.94 .026

LVI

Yes v no 1.93 1.04 to 3.6 .035 2.26 1.14 to 4.48 .02

Treatment allocation

Celecoxib arm v standard arm 1.7 1 to 2.88 .046 9.17 2.88 to 29.15 , .001

PTGS2 expression

High v low 1.24 0.73 to 2.13 .425 2.50 1.05 to 5.95 .038

pCR status

Yes v no 0.33 0.1 to 1.06 .051 0.21 0.06 to 0.75 .016

Interaction: celecoxib with PTGS2 .011 .008

Interaction: celecoxib with ER .106 .005

Abbreviations: EFS, event-free survival; ER, estrogen receptor; HR, hazard ratio; LVI, lymphovascular invasion; pCR, pathologic complete response PR,
progesterone receptor.

© 2019 by American Society of Clinical Oncology
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TABLE A3. Univariable and Multivariable Analyses of Clinical and Pathologic Factors on OS

Variable Comparison

Univariable Multivariable

HR 95% CI P HR 95% CI P

Age, years

40 to 49 v , 40 0.79 0.33 to 1.92 .379

$ 50 v , 40 1.33 0.57 to 3.1

Menopausal status

Post v pre 0.94 0.46 to 1.91 .866

Tumor size

T3 and T4 v T2 2.8 1.43 to 5.5 .002 2.7653 1.35 to 5.67 .006

Clinical nodal status

N1, N2, and N3 v N0 1.46 0.72 to 2.96 .286

Histology

Lobular v ductal or other 2.39 1.18 to 4.86 .013

Grade

3 v 2 1.51 0.76 to 3.02 .239

ER status

Positive v negative 0.41 0.21 to 0.78 .005 1.86 0.6 to 5.81 .283

PR status

Positive v negative 0.25 0.11 to 0.57 , .001 0.3049 0.11 to 0.81 .017

LVI

Yes v no 2.04 0.96 to 4.34 .058

Treatment allocation

Celecoxib arm v standard arm 1.71 0.88 to 3.33 .108 9.75 2.41 to 39.45 .001

PTGS2 expression

High v low 1.47 0.76 to 2.83 .25 2.32 0.73 to 7.35 .154

pCR status

Yes v no 0.37 0.09 to 1.55 .158

Interaction: celecoxib with PTGS2 .045 .03

Interaction: celecoxib with ER .124 .023

Abbreviations: ER, estrogen receptor; HR, hazard ratio; LVI, lymphovascular invasion; OS, overall survival; pCR, pathologic complete response; PR,
progesterone receptor.
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a AP-HP, Hôpital Saint-Louis, Breast Disease Unit, University Paris Diderot, 75475 Paris, France
b Institut Curie, PSL Research University, Translational Research Department, INSERM, U932 Immunity and Cancer,

Residual Tumor & Response to Treatment Laboratory (RT2Lab), Paris, France
c Medical Oncology Department, Gustave Roussy, Cancer Center Villejuif, France
d Medical Oncology Department, Institut Curie, Saint Cloud, Paris, France
e Biostatistics Department, Institut Curie, Paris, France
f Tumor Biology Department, Institut Curie, Saint Cloud, Paris, France
g Pathology Department, Gustave Roussy, Cancer Center Villejuif, France
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Abstract Background: The REMAGUS-02 multicenter randomised phase II trial showed

that the addition to neoadjuvant chemotherapy (NAC) of trastuzumab in patients with loca-

lised HER2-positive breast cancer (BC) increased the pathological complete response (pCR)

rate and that the addition of celecoxib in HER2-negative cases did not increase the pCR rate.

We report here the long-term follow-up results for disease-free survival (DFS) and overall sur-

vival (OS).

Patients and methods: From 2004 to 2007, 340 stage IIeIII BC patients were randomly as-

signed to receive neoadjuvant EC-T (four cycles of epirubicinecyclophosphamide followed

by four cycles of docetaxel) þ/� celecoxib in HER2-negative cases (n Z 220)

and � trastuzumab in HER2-positive cases (nZ 120). From September 2005, all patients with

HER2-positive BC received adjuvant T (n Z 106).

Results: Median follow-up was nearly 8 years (94.4 months, 20e127 m). In the HER2-

negative subgroup, addition of celecoxib was not associated with a DFS benefit. Favourable

factors were smaller tumour size, expression of progesterone receptor status (PgR) and pCR.

In the HER2-positive population, neoadjuvant trastuzumab was not associated with a DFS

benefit. Axillary pCR was the only prognostic factor associated with DFS in this group

[HR Z 0.44, 95% CI Z 0.2e0.97], p Z 0.035]. To note, DFS and OS were significantly higher

in the HER2-positive than in HER2-negative BC patients (HR Z 0.58 [0.36e0.92],

p Z 0.021).

Conclusion: Celecoxib combined with NAC provided neither pCR nor survival benefit in pa-

tients with HER2-negative BC. Absence of PgR is a major prognostic factor. Neoadjuvant

trastuzumab increased pCR rates without translation into a DFS or OS benefit compared with

adjuvant trastuzumab only. Axillary pCR could be a more relevant surrogate of survival than

in the breast in HER2-positive population. A retrospective comparison shows that patients

with HER2-positive tumours have a better outcome than HER2-negative BC patients showing

the impact of trastuzumab on the natural history of BC.

ª 2017 Elsevier Ltd. All rights reserved.

Key message: Celecoxib, an anti-Cox2, neither improves pCR nor the outcome in HER2-negative

BC patients receiving sequential NAC. The long-term outcome of luminal B BC can be worse than

triple-negative BC, whereas HER2-positive BC patients have a better prognostic than other sub-

types with the addition of trastuzumab in neoadjuvant or adjuvant setting.

1. Introduction

Neoadjuvant chemotherapy (NAC) was initially devel-

oped for non-resectable breast cancers, but is now

widely used in localised breast cancer not eligible for

breast-conserving surgery [1]. However, randomised

trials and meta-analyses have not shown any improve-

ment in disease-free survival (DFS) or overall survival

(OS) compared with adjuvant approaches [1e4]. Despite

the lack of demonstrated survival gain with the neo-
adjuvant strategy, several advantages are recognised.

Tumour regression induced by NAC allows breast

conservation in a proportion of patients with initially

large tumours non-accessible to immediate conservative

surgery. In patients with possible breast conservation

from the beginning, preoperative treatment may also

result in a better cosmetic outcome [5]. In particular,

neoadjuvant therapy offers the advantage of rapidly

assessing the response to both standard treatment and

novel therapies and a research platform to evaluate the

predictive factors of response to treatment [6,7]. Such

frontline treatment defined pathological complete
response (pCR, i.e. absence of infiltrating tumour in

breast and lymph nodes) as the key end-point in pre-

dicting the long-term survival especially in patients with

oestrogen receptor (ER)-negative and triple-negative

(TN) tumours [7e9].

We previously reported the pCR results of this

multicenter randomised phase II study aiming to

determine the impact of adding celecoxib or trastuzu-
mab to NAC in stage IIeIII breast cancers [10]. We

showed that celecoxib did not improve the pCR rates in

HER2-negative population, whereas trastuzumab added

to NAC was associated with an increased pCR rate in

patients with HER2-positive tumours [10]. Here, we

report the long-term outcome of the patients treated in
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this study and evaluate the prognostic factors associated

with DFS and OS.

2. Patients and methods

From May 2004 to October 2007, 340 patients were

randomly assigned to receive NAC � celecoxib in

HER2-negative patients (Stratum A, n Z 220), þ/�
trastuzumab in HER2-positive patients (Stratum B,

n Z 120) [10] (Fig. 1).

2.1. Patients selection

Main eligibility criteria were female patients over the age

of 18 and under the age of 65 with histologically proven

non-metastatic invasive breast carcinoma (Stage II and

III), not amenable to breast-conserving surgery

(diameter > 3 cm, central) or with risk factors making
NAC the preferred treatment (i.e. N2eN3, rapid growth

rate). Inflammatory breast cancers and clinical T4 stage

were allowed. HER2 status was centrally reviewed for

all patients and HER2 positivity confirmed by FISH in

all cases.

2.2. Treatment

All patients were to receive epirubicin (75 mg/m2)e
cyclophosphamide (750 mg/m2) intravenously every 3

weeks for four cycles followed by docetaxel (100 mg/m2)

every 3 weeks for four cycles. During neoadjuvant

docetaxel sequence, HER2-negative tumour patients

(stratum A) were randomised between without (arm1)

or with (arm 2) celecoxib 400 mg twice daily orally. In

HER2-positive tumour, patients were randomised be-

tween without (arm 3) or with (arm 4) trastuzumab

every 3 weeks. Surgery was performed 21e45 d after

cycle eight, based on initial and post-chemotherapy
assessment. Surgery was followed by local and

regional radiotherapy when indicated. The administra-

tion of adjuvant trastuzumab for a total of 18 3-weekly

i.v. infusions was amended for HER2-positive cancer

patients from September 2005, when adjuvant trastu-

zumab was available in France. Trastuzumab was thus

started after surgery for patients randomised to control

and pursued for patients randomised to neoadjuvant
arm. Patients with hormone receptor-positive tumours

received adjuvant tamoxifen or aromatase inhibitors

according to their menopausal status. Adjuvant

chemotherapy according to centres’ preferences in pa-

tients with residual axillary nodal involvement (pNþ)
could be delivered based on 5-fluorouracile and vinor-

elbine combination (four cycles), concomitantly or not

with radiotherapy.

2.3. Objectives

The primary end-point of the study was pCR rates. pCR

was defined as absence of residual invasive cancer cells

Fig. 1. Consort diagram.
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in the breast and axillary lymph nodes (grade 1 and 2 of

Chevallier’s classification) [11]. Both DFS and OS were

predefined secondary objectives. DFS was defined as the

time from surgery to death, loco-regional or distant

recurrence, or contralateral cancer, whichever occurred

first. OS was defined as the time from surgery to death.

Patients for whom none of these events were recorded

were censored at the date of their last known contact.
Results are described in the whole population, and in

each stratum.

2.4. Statistical analysis

The study population was described in terms of fre-

quencies for qualitative variables or medians and asso-
ciated ranges for quantitative variables. The cutoff date

for the analysis was May 1st 2015. Hazard ratios (HRs)

and their associated 95% confidence intervals (CIs) were

calculated with the Cox proportional hazard model. Age

class, menopausal status, clinical tumour size, clinical

nodal status, histological type, SBR Grade, lympho-

vascular invasion, ER, PgR, HER2 status, p53 and

randomised treatment were included in the univariate
analysis. Variables with a p-value for the likelihood ratio

test lower than 0.15 in univariate analysis were included

in the multivariate model. Backward selection was used

to establish the final multivariate model. The signifi-

cance threshold was 5%. Survival probabilities were

estimated by the KaplaneMeier method, and survival

curves were compared with log-rank tests. Analyses

were performed with R software, version 3.1.2 (R
Development Core Team, 2011).

3. Results

Among 340 patients included in the study, 220 had

HER2-negative tumours (stratum A) and 120 had

HER2-positive tumours (stratum B). All the patients

received the first four courses of epi-

rubicinecyclophosphamide. In the stratum A, 21 pa-

tients who were assigned to celecoxib arm (arm 2) did

not receive it (19.6%). In the stratum B, five patients

who were assigned in the neoadjuvant trastuzumab arm
(arm 4) did not receive it (8%), whereas two patients in

the arm without trastuzumab (arm 3) received neo-

adjuvant trastuzumab. All patients but 14 received

adjuvant trastuzumab (Fig. 1), 10 in arm 3 (17.2%) and

four in arm 4 (6.5%), p Z 0.07. A total of 14 patients

were not included in the DFS analysis [no surgery

nZ 9; distant metastases during NAC (nZ 4); protocol

violation (n Z 1)].
Patient’s characteristics are described in Table 1.

Overall, the population had poor prognostic factors.

Near half of the patients had T3-T4 (47.4%) and grade

SBR 3 tumours (49.8%); 60% had lymph nodes involved

clinically at baseline (N1, N2 and N3). In the HER2-

negative population, almost 40% of the patients had TN

tumours. The median follow-up was 94.5 months [range:

19.9e126.9].

3.1. Whole population

A total of 111 patients experienced relapse and 74 pa-

tients died. The median DFS and the median OS are not

reached for the whole population. The 8-year DFS and

OS were 67.9% [62.8e73.6] and 77.5% [72.7e82.6],
respectively. After univariate analysis, ER expression

was not (Fig. 2A) significantly associated with DFS,

whereas clinical tumour size, clinical nodal status, his-

tological type, lymphovascular invasion, progesterone

receptor (PgR) (Fig. 2B), HER2 status (Fig. 2C) and

pCR were prognostic for DFS. Tumour size (T2 versus

T3 and T4; HR Z 1.75 [1.15e2.66], p Z 0.009); PgR

status (positive versus negative; HR Z 0.47 [0.3e0.72],
p Z 0.001), HER2 status (positive versus negative;

HRZ 0.58 [0.36e0.92], pZ 0.021) and pCR (yes versus

no; HR Z 0.38 [0.17e0.84], p Z 0.016) remained

significantly associated with DFS after multivariate

analysis (Table 2). All four factors were also associated

with OS (clinical tumour size HR Z 2.69 [1.61e4.49],

p < 0.001, PgR, HR Z 0.3 [0.17e0.53], p < 0.001,

HER2; HR Z 0.58 [0.34e0.99], p Z 0.046, pCR:
HR Z 0.38 [0.15e0.94], p Z 0.037).

3.2. Stratum A: HER2-negative tumours

Of 220 patients with HER2-negative tumours, 82 pa-

tients experienced recurrences and 53 patients died.

Median DFS and OS were not reached. The 8-year DFS

and OS are, respectively, 64.4% [57.7e71.7] and 76.5%

[70.7e82.9]. No effect of the addition of celecoxib to

NAC on DFS was observed, neither in intent to treat
(ITT) (celecoxib versus no, HR Z 1.23 [0.77e1.96],

p Z 0.38) nor in the per protocol analysis (HR Z 1.27

[0.8e2.02], p Z 0.32).

Due to the differences of the shapes of the Kaplan

Meier curves for ER and PgR status, the heterogeneity

of luminal breast cancer [12,13], we combined ER and

PgR status into three classes (ERþ/PgRþ, ERþ/PgR-,

ER�/PgR-) (Fig. 3). Only two patients were ER�/
PgRþ in the stratum A and were pooled with the ERþ/
PgRþ population into a PgRþ group in the analysis.

Overall, ERþ/PgR-status was associated with a worse

long-term DFS when compared with ERþ/PgRþ
(reference class, HR Z 1); ERþ/PgR�: HR: 2.3

[1.28e4.12], p Z 0.005, whereas TN status was not

HR Z 1.49 (95% CI (0.86e2.6), p Z 0.16).

After univariate analysis, clinical tumour size, histo-
logical type, PgR and pCR were significantly associated

with DFS and all factors, but histological type remained

associated with DFS after multivariate analysis

(Table 2). Histological type, ER status, tumour size,

PgR status and pCR were significantly associated with
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Table 1
Patients’ characteristics.

Variable Stratum A: HER2 negative Stratum B: HER2 positive Total p Value

CT alone

(arm 1)

CT þ celocoxib

(arm 2)

CT alone

(arm 3)

CT þ trastuzumab

(arm 4)

**n Z 108 (%) n Z 112 (%) n Z 58 (%) n Z 62 (%) 340 (%)

Age (years) <40 23 (21.3) 25 (22.3) 13 (22.4) 15 (24.2) 76 (22.4) 0.8191

40e49 42 (38.9) 49 (43.8) 25 (43.1) 20 (32.3) 136 (40.0)

�50 43 (39.8) 38 (33.9) 20 (34.5) 27 (43.5) 128 (37.6)

Menopausal status* No 69 (65.1) 76 (67.9) 41 (70.7) 40 (64.5) 226 (66.9) 0.8645

Yes 37 (34.9) 36 (32.1) 17 (29.3) 22 (35.5) 112 (33.1)

Clinical tumour size T2 55 (50.9) 65 (58) 27 (46.6) 32 (51.6) 179 (52.6) 0.508

T3 and T4 53 (49.1) 47 (42) 31 (53.4) 30 (48.4) 161 (47.4)

Clinical nodal status* N0 42 (39.6) 45 (40.2) 18 (31.6) 25 (40.3) 130 (38.6) 0.699

N1, N2, N3 64 (60.4) 67 (59.8) 39 (68.4) 37 (59.7) 207 (61.4)

Histological type Ductal 83 (76.9) 90 (80.4) 56 (96.6) 57 (91.9) 286 (84.1) 0.0059
Lobular 19 (17.6) 13 (11.6) 1 (1.7) 2 (3.2) 35 (10.3)
Others 6 (5.6) 9 (8) 1 (1.7) 3 (4.8) 19 (5.6)

SBR grade* I 13 (12.6) 7 (6.4) 0 (0) 0 20 (6.1) 0.0042
II 41 (39.8) 56 (50.9) 22 (40.7) 25 (41.7) 144 (44%)
III 49 (47.6) 47 (42.7) 32 (59.3) 35 (58.3) 163 (49.8)

LVI No 90 (84.9) 93 (85.3) 41 (71.9) 43 (74.1) 267 (80.9) 0.0668

Yes 16 (15.1) 16 (14.7) 16 (28.1) 15 (25.9) 63 (19.1)

ER Negative 35 (32.4) 45 (40.2) 23 (39.7) 30 (48.4) 133 (39.1) 0.2271

Positive 73 (67.6) 67 (59.8) 35 (60.3) 32 (51.6) 207 (60.9)

PgR* Negative 55 (51.4) 64 (58.2) 37 (63.8) 41 (67.2) 197 (58.6) 0.1867

Positive 52 (48.6) 46 (41.8) 21 (36.2) 20 (32.8) 139 (41.4)

HR Negative 34 (31.5) 44 (39.3) 21 (36.2) 28 (45.2) 127 (37.4) 0.3316

Positive 74 (68.5) 68 (60.7) 37 (63.8) 34 (54.8) 213 (62.6)

Triple negative Yes 34 (31.5) 44 (39.3)

No 74 (68.5) 68 (60.7)

HR (4 classes) ER�/PgR� 34 (31.8) 44 (40) 21 (36.2) 28 (45.9) 127 (37.8) 0.303

ERþ/PgR� 21 (19.6) 20 (18.2) 16 (27.6) 13 (21.3) 70 (20.8)

ER�/PgRþ 1 (0.9) 1 (0.9) 2 (3.4) 2 (3.3) 6 (1.8)

ERþ/PgRþ 51 (47.7) 45 (40.9) 19 (32.8) 18 (29.5) 133 (39.6)

p53* WT 20 (54.1) 26 (63.4) 10 (47.6) 9 (39.1) 65 (53.3) 0.2815

Mutated 17 (45.9) 15 (36.6) 11 (52.4) 14 (60.9) 57 (46.7)

Per protocol neoadjuvant No celocoxib 108 (100) 21 (18.8)

Treatment Celocoxib 0 91 (81.2)

No trastuzumab 56 (96.6) 5 (8.1)

Trastuzumab 2 (3.4) 57 (91.9)

Surgery No 4 (3.7) 4 (3.6) 1 (1.7) 0 9 (2.6) 0.4374

Yes 104 (96.3) 108 (96.4) 57 (98.3) 62 (100) 331 (97.4)

Adjuvant chemotherapy No 77 (71.3) 82 (73.2) 46 (79.3) 49 (79) 254 (74.7) 0.5598

Yes 31 (28.7) 30 (26.8) 12 (20.7) 13 (21) 86 (25.3)

Adjuvant trastuzumab No 10 (17.2) 4 (6.5) 0.0658

Yes 48 (82.8) 58 (93.5)

Hormonotherapy* No 28 (27.7) 38 (36.5) 26 (48.1) 32 (51.6) 124 (38.6) 0.0084

Yes 73 (72.3) 66 (63.5) 28 (51.9) 30 (48.4) 197 (61.4)

Radiotherapy* No 1 (1) 3 (2.9) 0 5 (8.1) 9 (2.8) 0.0276

Yes 101 (99) 101 (97.1) 54 (100) 57 (91.9) 313 (97.2)

pCR* No 93 (89.4) 94 (87) 46 (80.7) 46 (74.2) 279(84.3) 0.0458
Yes 11 (10.6) 14 (13) 11 (19.3) 16 (25.8) 52 (15.7)

pCR (breast) No 89 (85.6) 91 (85) 42 (73.7) 46 (74.2) 268 (81.2) 0.0917

Yes 15 (14.4) 16 (15) 15 (26.3) 16 (25.8) 62 (18.8)

pCR (axilla) No 69 (67) 64 (60) 30 (52.6) 28 (45.2) 191 (58.2) 0.0361
Yes 34 (33) 42 (39.6) 27 (47.4) 34 (54.8) 137 (41.8)

Relapses 37 45 15 14 111

Deaths 23 30 10 11 74

*Missing data: menopausal status (n Z 2), nodal status (n Z 3), grade (n Z 13), LVI (n Z 10), RP (n Z 4), p53 (n Z 218), hormonotherapy

(n Z 19), radiotherapy (n Z 18), pCR (n Z 9).

**n Z number of patients.

Bold values are the values which are statiscally significant.

Abbreviations: LVI, lymphovascular invasion; pCR, pathological complete response.

S. Giacchetti et al. / European Journal of Cancer 75 (2017) 323e332 327

3.2 Article n°16 : Hamy, A.-S. et al. J. Clin. Oncol. JCO.18.00636 (2019) 499



OS after univariate analysis. As for DFS, three of these

factors remained significantly associated with OS after

multivariate analysis: clinical tumour size (T3 and T4:

HR Z 2.64 [1.43e4.86] versus T2, p Z 0.002); PgR

positive (HR Z 0.25 [0.12e0.49], p < 0.001) and pCR

(HR Z 0.23 [0.06e0.97], p Z 0.046).

3.3. Stratum B: HER2-positive tumours

Of the 120 patients with HER-positive tumours, 29 pa-

tients experienced recurrences and 21 patients died.

There was no association between neoadjuvant trastu-

zumab and DFS neither in intent to treat nor in the per

Fig. 2. DFS in the whole population. A: ERþ versus ER�, B: PgRþ versus PgR�, C: HER2-positive versus HER2 negative.

Table 2
Multivariate analysis for DFS in stratum A and B.

Variable Stratum A (HER2 neg) DFS Stratum B (HER2þþþ) DFS

Univariate analysis Multivariate analysis Univariate analysis Multivariate

analysis

HR IC p HR IC p HR IC p HR IC p

Age >40 1 1

40e49 0.81 [0.45e1.47] 0.78 1.4 [0.48e4.09] 0.583

�50 0.91 [0.5e1.67] 0.78 1.71 [0.61e4.8] 0.583

Menopausal status No 1 1

Yes 1.07 [0.66e1.75] 0.787 1.42 [0.67e3.04] 0.36

Clinical tumour size T2 1 1 e e 1

T3/T4 1.92 [1.21e3.07] 0.005 1.96 [1.2e3.19] 0.007 1.55 [0.72e3.3] 0.256

Clinical nodal status N0 1 1

N1/N2/N3 1.42 [0.86e2.34] 0.165 1.98 [0.8e4.9] 0.134

Histological type Ductal 1 1

Lobular 2 [1.14e3.52] 0.048
Others 1.25 [0.5e3.15] 0.048 1.3 [0.31e5.5] 0.718

SBR Grade I 1

II 1.79 [0.63e5.04] 0.41 1

III 2 [0.71e5.66] 0.41 1.99 [0.84e4.73] 0.113

LVI No 1 1

Yes 1.67 [0.93e3] 0.084 1.58 [0.72e3.46] 0.246

ER negative 1 1

positive 0.97 [0.59e1.58] 0.888 0.94 [0.44e1.99] 0.872

PgR negative 1 1 e e 1

positive 0.56 [0.35e0.92] 0.019 0.41 [0.25e0.68] 0.001 0.65 [0.29e1.49] 0.307

HR negative 1 1

positive 0.91 [0.56e1.48] 0.698 0.8 [0.38e1.69] 0.557

p53 WT 1 1

mutated 1.25 [0.57e2.77] 0.573 0.42 [0.1e1.78] 0.227

pCR (breast
and axilla)

No 1 1 e e 1

Yes 0.28 [0.09e0.9] 0.023 0.24 [0.07e0.76] 0.016 0.53 [0.18e1.52] 0.229

pCR (breast) No 1 1

Yes 0.3 [0.11e0.81] 0.012 0.77 [0.31e1.9] 0.569

pCR (axilla) No 1 1 1
Yes 0.4 [0.22e0.72] 0.001 0.44 [0.2e0.97] 0.035 0.44 [0.2e0.97] 0.035

Bold values are the values which are statiscally significant.
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protocol analysis in the HER2-positive stratum. Eight

years DFS was 73.8% [62.9e86.8%] in the group rand-

omised to receive NAC alone, versus 76.2%

[65.9e88.1%] in the group randomised to receive NAC

plus trastuzumab. After univariate analysis, none of the

classical factors were significantly associated with DFS

except axillary pCR: HR Z 0.44 [0.2e0.97], p Z 0.035.

No factor was significantly associated with the OS after
univariate analysis, although a trend to a better OS was

observed when axillary pCR was reached [HR Z 0.34

(0.11e1.07), p Z 0.053].

4. Discussion

We report here the long-term outcome of patients with
locally advanced breast cancer included in a randomised

phase II trial studying the impact of adding NAC to

celecoxib in HER2-negative population and trastuzu-

mab in HER2-positive population. We showed that the

addition of celecoxib was not associated with an

increased DFS nor OS in HER2-negative patients irre-

spective of hormone receptors status. We previously

published that the adjunction of celecoxib to NAC was
not associated with higher pCR rates [10]. However, this

study will provide the opportunity to study predictive

genomic factors of celecoxib response as PTGS2

overexpression.

In the HER2-positive population, neoadjuvant tras-

tuzumab was associated with a higher pCR rate but this

did not translate into a DFS or OS benefit. The

REMAGUS 02 trial is the only neoadjuvant randomised

trial including patients with HER2-positive tumours

that compared neoadjuvant trastuzumab with no neo-

adjuvant trastuzumab in a population that received

adjuvant trastuzumab in both arms. In the NOAH trial
[14], patients received either trastuzumab given as neo-

adjuvant and adjuvant treatment or no trastuzumab at

all. In other neoadjuvant trials as the GeparQuinto [15],

NeoALTTO [16] or Neosphere [17,18] trials, all control

arms included neoadjuvant anti-HER2etargeted ther-

apy. We acknowledge some weaknesses in our trial,

possible lack of statistical power due to randomised

phase II design, absence of adjuvant trastuzumab in a
small subset of patients and a few discrepancies between

treatment randomization and treatment allocation.

However, these data arguing for no effect on DFS of an

early introduction of trastuzumab in addition to

NAC may ever remain the only trial to address such a

question as neoadjuvant trastuzumab has become a

standard of care in HER2-positive breast cancers.

In our study, pCR was not a surrogate of DFS and
OS, regardless of the hormonal receptors in patients

with HER2-positive tumours. pCR has been proposed

as a surrogate end-point of long-term benefit such as

event-free survival (EFS), DFS and OS. However, the

association between pCR and long-term outcome is not

Fig. 3. DFS as a function of hormonal receptors status in patients with HER2-negative tumours.
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clearly demonstrated. The German Breast Group re-

ported that in HER-positive patients, reaching pCR was

associated with a DFS advantage in patients with ER

negative, but not ER positive tumours [9]. Cortazar

et al. on behalf of the FDA established an international

working group (CTNeoBC) which aims to investigate

the relation between pCR and long-term outcome via a

pooled analysis of neoadjuvant trials [7]. They showed
that pCR was positively associated with EFS and OS in

all subgroups of breast cancers. However, at a trial level,

the authors recorded little or no association between

increases of pCR and the treatment’s effect on EFS or

OS. In a recent meta-analysis [19], only the NOAH trial

has demonstrated that pCR achievement could be a

surrogate end-point for EFS and OS [14]. The effect of

pCR gain on survival in the NOAH trial could be seen
only because the control group lacked an effective tar-

geted therapy for HER2-positive breast cancer. In our

trial, trastuzumab was given in both arms but earlier in

the experimental group. The introduction of adjuvant

trastuzumab could have compensated the use of neo-

adjuvant trastuzumab in terms of long-term DFS or OS.

Our study, as well as other studies, emphasises that in

future neoadjuvant studies in HER2-positive popula-
tion, all patients will receive HER2-targeted therapy,

and thus the gain of a new drug on pCR gain must be

large enough to have an effect on EFS and survival [19].

The other point underlined in our series is the major

role of post-NAC lymph nodes’ involvement in patients

with HER2-positive tumours. The analysis of the path-

ological response in the axilla is not or rarely studied

independently of the breast, although we know that
axilla involvement is a major predictor of DFS and/or

OS in adjuvant. Patients with extensive nodal involve-

ment after NAC have a very poor outcome [20e22]. The

population included in our study has large locally

advanced tumours with almost half of the population

having T3/T4 tumours. The size of the tumours (T3 and

T4 versus T2) is one of the major predictive factor in our

series with a HR Z 2.96, p Z 0.002. Other authors have
reported that the clinical size of the tumours is a major

prognostic factor in breast cancers treated with NAC

[23e26].

Another key observation from this study is the major

impact of PgR receptors. Indeed, the long follow-up

(nearly 8 years) allowed to report such mature data and

to highlight the long-lasting risk of hormone-responsive

breast cancers, as opposed to hormone receptore-
negative BC. We already published that there is a non-

constant effect in time for TN and non-TN breast can-

cers. Overall, TN status had the worst initial risk of

recurrence that gradually decreased during the first 24

months of follow-up to disappear after 48 months of

follow-up [27]. Here, ERþ/PgR-status was associated

with a worse DFS when compared with ERþ/PgRþ
(reference class, HR Z 1); ERþ/PgR�: HR: 2.3
[1.28e4.12], p Z 0.005, whereas TN status was not

HR Z 1.49 (95% CI (0.86e2.6), p Z 0.16). With a long

follow-up, the prognosis of TNBC was not significantly

different from ERþ/PgRepositive patients, whereas

ERþ/PgR-negative BC patients had a nearly two-fold

increased risk of relapse. These results are very impor-

tant as chemotherapy is increasingly avoided for pa-

tients with ERþ tumours. At the last San Gallen

conference, in patients with ‘luminal B-like’ (HER2-
negative) tumours, the Panel was more closely divided,

but only a minority would recommend chemotherapy

for most of the cases [28]. In the European Organisation

for Research and Treatment of Cancer recommenda-

tions [29], the luminal B HER2-negative cancers were

considered as a population of the highest uncertainty

regarding chemotherapy indications. Other authors

explored the significance of PgR negativity [30e32]. Bae
et al. [32] showed that patents with single HRþ, negative
HER2 tumours were associated with poorer survival

than ER þ PgR þ tumours and had comparable poor

survival than TN tumours. It has been recently shown

that PgR is not merely an ERa-induced gene target, but

is also an ERa-associated protein that modulates its

behaviour [33]. PgR functions as a molecular rheostat to

control ERa chromatin binding and transcriptional ac-
tivity. Our findings call for the necessity of PgR deter-

mination which has important implications for

prognosis and therapeutic interventions, as considering

chemotherapy in the Luminal B BC population.

In conclusion, the addition of celecoxib to NAC was

not associated with an increase of DFS nor OS in pa-

tients with HER2-negative locally advanced tu-

mours. Our study emphasised the role of progester-
one receptors and their importance in distinguishing

luminal A from luminal B breast cancers with worst

prognostic.

Patients with HER2-positive tumours treated with

trastuzumab had a statistically higher DFS and OS than

patients with HER2-negative tumours, highlighting how

targeted anti-HER2 treatment has improved the initial

poor prognostic of these cancers. This is the first study
comparing neoadjuvant to adjuvant trastuzumab. Both

DFS and OS were similar in the patients who received

neoadjuvant versus adjuvant trastuzumab. It is not un-

likely that adjuvant trastuzumab, compensate the lack

of an early trastuzumab. Finally, in HER2-positive pa-

tients, only the pCR in the axilla was associated with a

poor DFS. These patients with no pCR after NAC

remain at high risk of relapse despite adjuvant trastu-
zumab treatment and should be considered for specific

‘adjuvant-post neoadjuvant’ studies.
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Abstract (234 words)  

 

Immunosurveillance plays an important role in breast cancer (BC) prognosis and 

progression, and can be geared by immunogenic chemotherapy. In a cohort of 1023 BC 

patients treated with neoadjuvant chemotherapy (NAC), 40% of the individuals took 

comedications mostly linked to aging and comorbidities. We systematically analyzed the 

off-target effects of 1178 concurrent comedications (classified according to the 

Anatomical Therapeutic Chemical (ATC) Classification System) on the density of tumor 

infiltrating lymphocytes (TILs) and pathological complete responses (pCR). At level 1 of 

the ATC system, the main anatomical classes of drugs were those targeting the nervous 

system (class N, 39.1%), cardiovascular disorders (class C, 26.6%), alimentary and 

metabolism (class A, 16.9%), or hormonal preparations (class H, 6.5%). At level 2, the 

most frequent therapeutic classes were psycholeptics (N05), analgesics (N02), and 

psychoanaleptics (N06). Pre-NAC TIL density in triple negative BC (TNBC) was 

influenced by medications from class H, N and A, while TIL density in HER2+ BC was 

associated with the use of class C. Psycholeptics (N05) and agents acting on the renin-

angiotensin system (C09) were independently associated with pCR in the whole 

population of BC or TNBC, and in HER2-positive BC respectively. Importantly, level 3 

hypnotics (N05C) alone were able to reduce tumor growth in BC bearing mice and 

increased the anti-cancer activity of cyclophosphamide in a T cell-dependent manner. 

These findings prompt for prospective drug repositioning to improve the efficacy of 

NAC in BC. 
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Introduction 

Breast cancer (BC) incidence increases with age, as does the prevalence of many other 

chronic diseases, such as diabetes, hypertension, and cardiovascular disease. Molecular BC 

subtypes and the density of tumor-infiltrating immune cells are both considered as important 

predictive and prognostic factors for optimal risk stratification and treatment individualization 

of BC patients. Denkert et al. first evidenced that the amount of stromal immune infiltration 

was positively associated with pathological complete response (pCR) after neoadjuvant 

chemotherapy (NAC) (1). These results were recently confirmed on a pooled analysis of large 

cohort of 3771 patients receiving NAC from German Breast Group(2), showing that the 

relationships between TIL levels and pCR translates into improved disease-free survival in 

HER2-positive and triple negative BC (TNBC). 

The drivers of immunosurveillance have largely been studied in the past decade, and derive 

from both (i) tumor-intrinsic characteristics; and/or (ii) extrinsic factors related to the host or 

the environment(3)(4). Among endogenous tumor characteristics, molecular features (BC 

subtype, proliferative patterns), expression of human leukocyte antigen (HLA)-class I, tumor 

mutational burden(3), activation of cellular pathways(5), or induction of autophagy(5) have 

been found to be associated with immune infiltration.  Extrinsic factors including host 

characteristics (gender(6), age(7), body mass index), environment (tobacco, alcohol), 

nutritional factors, diet, commensal microbiota, physical activity, hormonal exposure(8) have 

been studied less extensively.  

There is growing interest in chronically used medications that may influence the risk for and 

the progression of cancer (9). Some medications such as aspirin or non-steroidal anti-

inflammatory drugs (NSAID) have been reported to decrease BC risk or BC recurrence 

(statins(10), NSAIDs (11), beta blockers (BB) (12) and metformin(13)). So far, the impact of 

chronic comedications on immune infiltration has not been investigated. A few studies 
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suggest that drugs that do not fall into the class of antineoplastics may have an impact on 

immunosurveillance through various mechanisms. For instance, metformin may increase 

CD8+ TILs (14) or potentiate PD-1 blockade through reduction of tumor hypoxia(15); 

propranolol and etodolac modulate tumor infiltration(16); zoledronic acid(17) targets tumor-

associated macrophages; proton pump inhibitors(18) reverse T cell anergy; and tadalafil 

inhibits myeloid derived-suppressor cells(19). 

In the current study, we hypothesized that some comedications might be associated with TIL 

levels in BC. We evaluated the interactions between comedications, immune infiltration at 

diagnosis and pCR rates in a cohort of 1023 non-metastatic BC patients treated with NAC. 

Here, we report on epidemiological associations between distinct classes of comedications, 

TIL density and pCR rates, as we exemplify the T lymphocyte-dependent anticancer effects of 

the psycholeptic zolpidem in preclinical mouse models. Altogether, our results indicate that 

comedication may represent a confounding factor in BC clinical trials, prompting for 

prospective studies aimed at validating their beneficial role in drug repositioning for BC 

treatment. 
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Material and methods 

 

Patients, tumors and cancer treatments 

We analyzed a cohort of 1023 T1-3NxM0 patients with invasive breast carcinoma (NEOREP 

Cohort, CNIL declaration number 1547270) treated with NAC at Institut Curie, Paris, 

between 2002 and 2012. We included only unilateral, non-recurrent, non-inflammatory, non-

metastatic tumors, and excluded T4 tumors. All patients received NAC, followed by surgery 

and all but 21 patients received radiotherapy. The study was approved by the Breast Cancer 

Study Group of Institut Curie and was conducted according to institutional and ethical rules 

regarding research on tissue specimens and patients. Written informed consent from the 

patients was not required by French regulations. Patients were treated according to national 

guidelines. NAC regimens changed over time (anthracycline-based regimen or sequential 

anthracycline-taxane regimen), with trastuzumab used in an adjuvant and/or neoadjuvant 

setting since the mid 2000’s. Surgery was performed four to six weeks after the end of the 

chemotherapy. Endocrine therapy (tamoxifen, aromatase inhibitor, and/or GnRH agonists) 

was prescribed when indicated. 

 

Tumor samples and pathology review 

ER, PR and HER2 positivity determination is detailed in the supplemental material. BC 

subtypes were defined as follows: tumors positive for either ER or PR, and negative for HER2 

were classified as luminal; tumors positive for HER2 were considered HER2-positive BC; 

tumors negative for ER, PR, and HER2 were considered as triple negative BC (TNBC).  

For a subset of patients (n=615), stromal TILs were retrospectively reviewed on pathological 

specimens of pre-NAC core needle biopsy. Pretreatment core needle biopsies were evaluated 

independently by two expert breast pathologists for the presence of a mononuclear cells 

infiltrate (including lymphocytes and plasma cells, excluding polymorphonuclear leukocytes) 
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following the recommendations of the international TILs Working Group(43). TILs were 

scored continuously on hematoxylin and eosin-stained sections without additional staining as 

the average percentage of stromal area occupied by mononuclear cells.  

 

Comedications 

Chronic concomitant therapies - designed throughout the manuscript as comedications - were 

extracted retrospectively from medical charts, as any chronic treatment declared by the patient 

at initial or anaesthesics consultation. Intercurrent treatments lasting less than one week were 

excluded, as well as medications prescribed around chemotherapy (anti vomiting drugs, 

granulocytes-colony stimulating factors, steroids), as they are systematically prescribed to all 

patients. As the information on drug dosing, schedule, or date of introduction was not 

constantly available, comedication use was coded as a binary variable (yes: at least one drug 

declaration; no: no comedication mentioned). They were classified according to the 

Anatomical Therapeutic Chemical (ATC) Classification System controlled by the World 

Health Organization Collaboration (available at the URL 

https://www.whocc.no/atc_ddd_index/). ATC is used for the classification of active 

ingredients of drugs according to the organ or system on which they act and their therapeutic, 

pharmacological and chemical properties. The first level of the code indicates the anatomical 

main group (14 main groups) and consists of one letter; the second level of the code indicates 

the therapeutic subgroup; the third level and the fourth levels of the code indicate the 

chemical / therapeutic / pharmacological subgroup, and the fifth level indicates the chemical 

substance. The complete classification of metformin illustrates the structure of the code: 
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A Alimentary tract and metabolism 
(1st level, anatomical main group) 

A10 Drugs used in diabetes 
(2nd level, therapeutic subgroup) 

A10B Blood glucose lowering drugs, excl. insulins 
(3rd level, pharmacological subgroup) 

A10BA Biguanides 
(4th level, chemical subgroup) 

A10BA02 Metformin 
(5th level, chemical substance) 

 

Drugs from categories D (dermatologicals), P (antiparasitic products, insecticides and 

repellents), L (antineoplastic and immunomodulating agents), S (sensory organs) were 

excluded from the analyses. Only chronic antivirals for systemic use (J05) and oral drugs for 

respiratory system (antihistamines for systemic use (R06)) were included in drugs from 

category J (anti-infectives for systemic use) and R (respiratory system) respectively. 

Anatomical classes with less than 50 comedications were grouped into the category “Others”. 

 
 
Comorbidities 
 
Comorbidities, defined as any chronic condition declared by the patient at initial or 

anaesthesics consultation were extracted retrospectively from medical charts. Comorbidities 

were regrouped into 6 classes: hypertension / heart disease, depression/anxiety, dyslipidemia, 

diabetes, ulcer/gastritis, thyroid disorders, and the category “Others” regrouped the remaining 

chronic conditions.  

 
Gene expression 

Total RNA extraction from frozen pretreatment biopsies was previously performed for 140 

patients who participated in the clinical trials REMAGUS02 and REMAGUS04. Human 

Genechip U133 plus 2.0 microarray hybridization and quality controls have already been 
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described in details elsewhere(44). For each dataset, batch effects were eliminated by the 

median centering of each probe set across arrays and the quantile normalization of all arrays 

separately for each set. The expression levels of 6 immune genes (IFNG, IDO1, CXCL9, 

CXCL10, HLA-DRA, STAT1) from the previously published Interferon-γ signature (20) were 

extracted from the pooled gene expression matrix. We assessed Interferon-γ  metagene 

expression by calculating the mean normalized expression value for all the genes considered 

together and we generated a heatmap of the metagene expression profile using the gplot 

package. 

 
Study endpoints 

ypTN stage was defined according to the American Joint Committee on Cancer/Union for 

International Cancer Control staging(45). A pathological complete response (pCR) was 

defined as an absence of invasive residual tumor in the breast, and of invasive disease in the 

axillary nodes (ypT0/is+ ypN0) (46).  

 

Animal models 

All animal experiments were carried out in compliance with French and European laws 

and regulations. The local institutional animal ethics board and French Ministère de la 

Recherche approved all mouse experiments (permission numbers: 2014-071-1124, 2016-049-

4646). 

Immunodeficient xenograft model 

The PDX HBCx-8 xenograft was established from a triple-negative negative breast cancer as 

previously described(47). The in vivo efficacy study was conducted by transplanting HBCx-8 

tumor fragments into female 8-week-old Swiss nude mice that were randomly assigned to the 

control or treated groups (6 mice per group) when tumors reached a volume of 60 to 200 

mm3. Adriamycin, 2 mg/kg (Doxorubicin, Teva Pharmaceuticals) and cyclophosphamide, 100 
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mg/kg (Endoxan, Baxter), or docetaxel, 20 mg/kg (Taxotere, Sanofi-Aventis) were given as 

single injection at day 1 by intraperitoneal (i.p.) and intraveinous (i.v.) injections. 

Bromazepam was given orally at 0.6 mg/kg 5 days/week until ethical sacrifice. Tumor growth 

was evaluated by measurement of two perpendicular diameters of tumors with a caliper twice 

per week. Individual tumor volumes were calculated as V = axb 2/2, a being the largest 

diameter, b the smallest. Mice were ethically sacrificed when the tumor volume reached 1500 

mm3. 

 

Immunocompetent mice model 

The C57BL/6 mice were injected intraperitoneally (i.p.) for 14 consecutive days with 

Zolpidem (5 mg/kg twice a day) or Pantoprazole (100 mg/kg once a day) or vehicle (NaCl). 

On day 14, 106 AT3 cells were inoculated and mice continued their treatment with Zolpidem 

or Pantoprazole or vehicle. When tumors reached 20 to 35 mm² in size, mice received either 

NaCl or Cyclophosphamide (100 mg/kg of body weight) every 7 days x 3-4 injections. Tumor 

size was routinely monitored every 3 days by means of a caliper. In experiments using anti-

CD4 mAb (clone GK1.5, 200μg per mouse) or anti-CD8 mAb (clone 53-6.72, 200μg per 

mouse) or their isotype controls (clone LTF-3 or clone 2A3), mAb were injected i.p. 2 days 

before Cyclophosphamide injection and then continued every 7 days starting from day 0 until 

the final Cyclophosphamide injection. All antibodies were purchased from BioXcell, NH, 

USA. 

 

Immunohistochemistry 

Immunofluorescence staining, scanning and analysis were performed for Foxp3, CD4 and 

CD3 expression in AT3 tumor from treated mice. For multiplexed staining, 3μm-thick 

sections of formalin-fixed, paraffin-embedded AT3 tumor from treated mouse were stained by 
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means of an automated immunostainer (DISCOVERY ULTRA, Ventana, IGR). Heat-induced 

antigen retrieval in EDTA buffer (pH 8.0) for 48 minutes at 95°C was performed. The 

primary polyclonal Rabbit anti-human Foxp3 antibody (Thermo Fisher Scientific, #PA-1-

46126, 1mg/mL) was applied on the slides for 1hour at 37°C, followed by detection using the 

biotin-free peroxydase system of detection, Discovery UltraMap anti-Rabbit HRP (Ventana, 

#760-4315). The Visualization of Foxp3 was accomplished using TSA fluorophore system, 

Discovery Rhodamine 6G kit (Ventana, #760-244). Heat-induced antigen retrieval in Citrate 

buffer (pH 6.0) for 10 minutes at 100°C was performed. Then, the slides were incubated on 

primary monoclonal Rabbit anti-human CD4 antibody (Abcam, EPR19514, 0.623mg/mL) for 

1 hour at 37°C, detected by Discovery UltraMap anti-rabbit HRP and visualized by Discovery 

Cy5 kit 360 (Ventana, #760-238). Heating step with Citrate Buffer was carried out, as 

described above. Next, the slides were incubated on primary polyclonal rabbit anti- human 

CD3 antibody (DAKO, #IS503, ready to use) for 32 minutes at RT, detected by Discovery 

UltraMap anti rabbit HRP and visualized by Discovery FAM kit (Ventana, # 760-364 243). 

After the heating step with Citrate Buffer, nuclei were subsequently visualized with Spectral 

DAPI (Perkin Elmer, FP1490, 1:10). Images displayed in the figures were acquired as whole 

slide images (WSI) with a slide scanner Zeiss Axio Scan.Z1 (objective Plan-Apochromat 

20x/0.8, 3CCD camera Hitachi HV-F202SCL) and exported from the Zeiss Zen 2 lite 

software as TIFF images. Image analysis of WSIs was performed using QuPath(48). Regions 

of Interest were defined for tumor in each WSI by hand. Cells were detected based on the 

DAPI intensity. Next, CD3, CD4, and Foxp3 positive cells were determined by thresholds of 

each fluorescence intensity on QuPath.  

 

Statistical analysis 

Clinical cohort 

3.3 Article n°17 : Hamy, A.-S. et al., submitted to Oncoimmunlogy 517



Anne-Sophie Hamy and Lisa Derosa et al. submitted to Cancer Immunology Research      12 

The study population was described in terms of frequencies for qualitative variables, or 

medians and associated ranges for quantitative variables. All the analyses were performed on 

the whole population and after stratification by BC subtype. The association between TIL 

levels, qualitative variables, and comedications (ATC level 1,2,3) in classes were compared 

by student’s/ANOVA tests, or in Mann Whitney U/Kruskall-Wallis tests where indicated. 

Interactions tests were performed when a differential effect between TILs levels and 

comedication was suspected across BC subtypes. The relationships between pCR and 

comedications are reported according to the levels 1,2,3 of the ATC. Factors predictive of 

pCR (clinical, pathological variables, and comedication according to ATC level 1,2,3) were 

introduced into a univariate logistic regression model. The covariates selected for the 

multivariate analysis were the clinical, pathological variables, and comedications according to 

ATC level 2 classes with a likelihood ratio test p-value 0.05 or lower in univariate analysis. A 

multivariate logistic model was then implemented using a forward stepwise selection 

procedure.  Analyses were performed with R software, version 3.1.2 (49), with the ggplot2, 

dplyr, cowplot, tableone, and survival libraries. 

Animal experiments 

Data analyses were performed with the statistical environment Prism 6 (GraphPad, San 

Diego, CA, USA). Tumor size differences were calculated using Anova, Student’s t-test or 

dedicated software (https://kroemerlab.shinyapps.io/TumGrowth/). Briefly, tumor growth was 

subjected to a linear mixed effect modeling applied to log pre-processed tumor surfaces. P-

values were calculated by testing jointly whether both tumor growth slopes and intercepts (on 

a log scale) were different between treatment groups of interest. All reported tests are two-

tailed and were considered significant at p<0.05.  

 

Results 
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Up to 40% BC patients at diagnosis take drugs affecting nervous, cardiovascular systems or 

alimentary tract  

 

Overall, 1023 patients with different BC subtypes (luminal: 44.6% (n=456); TNBC: 31.2% 

(n=319), HER2-positive: 24.2% (n=248)) were included in the analyses. 482 patients (47.1%) 

took at least one comedication (total number of comedications: n=1178) and 421 (41.1%) had 

at least one comorbidity. The five main anatomical classes (level 1) were drugs for nervous 

system (Class N, n=460, 39.1%), cardiovascular diseases (class C, n=313, 26.6%), alimentary 

and metabolism (class A, n=199, 16.9%), and hormonal preparations (class H, n=76, 6.5%), 

whereas 130 comedications were grouped in the category “others” (11.0 %) (Supplementary 

Fig. S1, Supplementary Table S1). At level 2, the most frequent therapeutic classes were 

psycholeptics (N05, n=199), analgesics (N02, n=118), and psychoanaleptics (N06, n=114).  

The more frequent comorbidity was hypertension / heart disease, (n=177), followed by ulcer / 

gastritis (n=109) (Supplementary Fig. S2A). The number of comedications was strongly 

associated with the number of comorbidities (p<0.001) (Supplementary Fig. S2B). The 

majority of patients with a given comorbidity took at least one comedication from the 

corresponding class (57% of patients with depression/anxiety taking drugs for nervous system 

(N), 69% of patients with hypertension/heart disease taking cardiovascular drugs (C), 70% of 

patients with thyroid disorders taking drugs from class H mainly composed of thyroid 

therapy) (Supplementary Fig. S2C). However, the class of the comedication was not always 

related to the very indication (Supplementary Fig. S2D). Indeed, the use of compounds 

affecting the nervous system was more frequently related to self-medication than to the 

diagnosis of a psychiatric disease. 
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Patients with comedications were older, and/or more likely to be post-menopausal, and/or 

obese, and to have comorbidity than patients without comedication (Supplementary Table 

S2). Intrinsic tumor characteristics (tumor size, nodal status, grade, BC subtype, mitotic 

index) were not significantly associated with comedication use of any class (except for a 

lower tumor size in patients using a class A comedication, and a lower proportion of 

histologies of the non-specific type (NST) in HER2-positive BC patients using class N drugs).  

We conclude that a sizeable proportion (approximately 40%) of BC patients took a 

medication that may be related or not to aging and distinct classes of comorbidity. However, 

as an aggregate, comedication does not impact on disease presentation at diagnosis. 

 

Some comedications are associated with pre-NAC TIL levels, mostly in TNBC.  

 

Information on pre-NAC TIL levels was available for 615 patients (60%). The TIL density 

was increased in BC patients taking drugs from class H (systemic hormonal preparations (H), 

Fig. 1A). After stratification by BC subtype, TILs were higher in TNBC patients taking class 

N (nervous System), class A (alimentary tract) or class (H) drugs (Fig. 1, A to C) whereas in 

HER2-positive patients, TILs were higher in patients taking drugs from class C 

(cardiovascular system, Fig. 1D). Conversely, TIL levels were not different according to any 

comorbidity (Supplementary Fig. S3).  

At the ATC level 2 (Supplementary Table S3), pre-NAC TILs were increased in patients with 

diuretics (C03) or thyroid therapy (H03) (Fig. 2, A to D). TIL levels were increased 

specifically in TNBC patients taking analgesics (N02) and drugs for [gastric] “acid related 

disorders” (A02) (Fig. 2, B and C). This was not found in the other BC subtypes and the 

interactions tests were statistically significant (Pinteraction comedication/BC subtype= 0.019 and 

0.027 for N02 and A02, respectively), meaning that the association of the comedication use 
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and TIL levels differed by BC subtype. Conversely, in TNBC patients, TILs tended to be 

decreased (p=0.175) in patients taking lipid-modifying agents (C10) and were significantly 

(p=0.044) reduced in individuals consuming anti-inflammatory and anti-rheumatic products 

(M01) (Fig. 2, E and F). 

We next analyzed gene expression profiles (GEPs) using RNA from baseline tumor samples 

in pre-NAC BC patients (n=140). We focused on immune-related signatures that had been 

reported to correlate with clinical benefit in different clinical studies using immune 

checkpoint inhibitors for various cancer types (20). The T cell–inflamed GEP enriched in 

IFNJ–responsive genes related to antigen presentation, chemokine expression, cytotoxic 

activity and adaptive immune resistance were found in about 40% specimen (Supplementary 

Fig. S3). The level of the T cell–inflamed GEP or "IFN metagene" was significantly higher in 

patients taking hormonal preparations (whole population, luminal, HER2-positive, Fig. 3A), 

and had a differential impact according to the molecular type among patients taking drugs 

from class A (lower in luminal, higher in TNBC patients) (Fig. 3, B and C). 

 Altogether, hormonal preparations (mostly targeting thyroid disorders), nervous 

system-affecting drugs (such as analgesics), medications targeting cardiovascular diseases 

(such as diuretics) and compounds treating acid-related disorders were associated with 

increased lymphocytic infiltrates, and T cell inflamed GEP in all and/or triple negative BC at 

diagnosis. In contrast, anti-inflammatory and anti-rheumatic products were negatively 

correlated with TIL density. 
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Comedication influences pCR rates in BC 

 

Bearing in mind the strong correlations between pre-NAC TIL density and pathological 

responses(1, 21), we next undertook to analyze potential associations between comedications 

and rates of pathological complete responses (pCR) assessed by pathologists at surgery post-

NAC. The use of drugs from the class N (Nervous system) was associated with higher pCR 

rates than no use (Supplementary Table S4) in the whole population (p=0.035) and in TNBC 

patients (p=0.026). At the level 2 (Supplementary Table S5), pCR rates were increased in 

patients taking psycholeptics (N05), agents acting on the renin-angiotensin system (C09), and 

TNBC patients taking psychoanaleptics (N06) (Fig. 4, A to C). Conversely, pCR rates tended 

to be decreased in TNBC patients taking vasoprotective drugs (C05) or anti-inflammatory and 

anti-rheumatic products (M01) (Fig. 4, D and E). 

After multivariate analysis, the association between psycholeptics (N05) and pCR remained 

statistically significant in the whole population (OR=1.64, 95%CI [1.05 - 2.55], p=0.027) and 

in TNBC patients (OR=2.04, CI [1.06 - 3.97], p=0.034). Accordingly, the association between 

pCR and agents acting on the renin-angiotensin system (C09) in HER2-positive BC withheld 

the multivariate Cox regression model (OR=3.13, CI [1.1 - 9.71], p=0.037) (Supplementary 

Table S6). No comorbidity was significantly associated with pCR after multivariate analysis. 

 

T cell- dependent antitumor effects of zolpidem in mouse breast cancer 

 

We next analyzed cause-effect relationships between comedications taken by patients and 

natural or chemotherapy-induced cancer immunosurveillance in immunodeficient or 

immuncompetent mice bearing BC. First, we tested the combination of bromazepam with 

standard of care (anthracycline based chemotherapy and taxanes) in the PDX model of TNBC 
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HBCx-8 inoculated in immunosuppressed animals.   HBCx-8 xenografts were treated with 

PBS, AC (adriamycin, 2 mg/kg, and cyclophosphamide (CTX), 100 mg/kg), or docetaxel 

(TXT), 20 mg/kg, given as single injection at day 1 by i.p. or i.v. injections, respectively, 

alone or combined with the benzodiazepine bromazepam (class N, ATC level 3, anxiolytics), 

given orally at 0.6 mg/kg, 5 days/week. Bromazepam alone did not reduce tumor growth. 

Both the AC or TXT regimens mediated marked antitumor effects, followed by tumor 

recurrence. The addition of bromazepam to AC and TXT did not delay the time until tumor 

recurrence (Fig. 5A). 

Based on the findings that comedications correlated with the T cell inflamed GEP and TIL 

densities in tumor beds (Fig. 2 and  Fig. 3), and the assumption that an intact immune system 

is required for long lasting anticancer protective effects induced by cytotoxicants, we 

challenged immunocompetent mice with the transplantable AT3 triple negative mouse 

BC(22). AT3 showed a significant albeit minimal response to zolpidem (N05CF) 

(10mg/kg/day, i.p. for 30 days), an imidazopyridine nonbenzodiazepine hypnotic drug 

(binding with high affinity to the α1 subunit of the gamma amino butyric acid A receptor) 

(Fig. 5B, left panel) but not to the proton pump inhibitor pantoprazole (A02BC) 

(100mg/kg/day), when the medication was initiated 14 days prior to tumor inoculation and 

pursued for >14 days (Fig. 5B, middle panel). When combined to CTX (100 mg/kg weekly 

for 3 weeks) alone, Zolpidem (N05CF) (but not pantoprazole (A02BC)) ameliorated the 

anticancer effects (Fig. 5C). The additive effects of the cytotoxicant CTX and hypnotic drugs 

were markedly abolished after the depletion of CD4+ and CD8+ T cells by means of suitable 

antibodies (Fig. 5D), supporting the working hypothesis. Moreover, tissue 

immunofluorescence stainings revealed that AT3 TNBC were infiltrated with CD3+CD4- 

lymphocytes that were inversely correlated with tumor size across all experiments and 

animals (Fig. 6A). Similarly the T effector ratio over that of regulator T cells (Treg) 
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negatively correlated with tumor size across all experiments (Fig. 6B). Importantly, the 

density of such effectors was increased by concomitant therapy with Zolpidem (N05CF) 

alone as compared to untreated controls. Zolpidem combined with CTX also yielded a higher 

density of effector T cells compared to CTX alone (Fig. 6C).  

These results illustrate that specific drugs modulating the nervous system can advantageously 

be combined with chemotherapy to increase tumor infiltration by T lymphocytes and to 

reduce tumor progression in immunocompetent (but not immunodeficient) TNBC bearing 

hosts. 

 

Discussion 

 

Comedication may represent an underestimated confounding factor in many clinical trials 

conducted in oncology. Off-target effects mediated by non-cytotoxic drugs with a satellite 

role in the oncological armamentarium may have direct or indirect anti-cancer effects through 

several mechanisms. These mechanisms include reduction of inflammation(16), decrease of 

invasion and metastasis(16), modulation of angiogenesis and vasculature(23), enhancement of 

apoptosis, inhibition of epithelia-mesenchymal transition, reversal of hypoxia(15) and 

acidosis, decrease of proliferation, inhibition of critical growth or tumor suppressor 

pathways(24). These effects were evidenced either alone(16, 17) and in combination with 

other anti-cancer treatments (chemotherapy(23) or radiotherapy(25)). The concomitant use of 

co-medication during NAC may also affect pharmacokinetic-related parameters, in as much 

as a wide range of medications interfere with cytochromes. For example, cimetidine has been 

described to modify the pharmacokinetic of epirubicin in advanced BC patients(26). 

Comedications may also inhibit multi-drug resistance (MDR), involving efflux proteins of the 

ATP binding cassette transporter family translocating a substrate from the intracellular to the 
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extracellular compartment. P-glycoproteins and breast cancer resistance protein can indeed be 

inhibited by atorvastatin, itraconazole, verapamil or PPI(27). 

 

In this hypothesis-generating study performed in 1023 BC patients, we found that the use of 

several comedication classes was associated with either increased or decreased TIL levels, 

some of these associations translating into increased pCR rates. While independent from the 

intrinsic molecular and clinical characteristics of BC at disease presentation, the use of 

comedications, linked to age-related morbidities, was found to correlate with immune 

infiltration at diagnosis, knowing that a high TIL density is a prerequisite for optimal 

pathological response to NAC(1, 21). Our preclinical data also support a mandatory role for T 

lymphocytes in the additive effects of hypnotic and cytotoxic compounds in 

immunocompetent tumor bearers while they failed to boost each other in PDX models 

established in immunodeficient hosts. These findings plead for immune related effects 

mediated by comedications and their capacity to shape the tumor microenvironment to pave 

the way to the immunomodulatory role of chemotherapy(28).  

 

While many retro- or prospective studies evaluated the links between aspirin or NSAID and 

reduced cancer occurrence(29) , no such study has evaluated the potential impact of daily 

administration of other types of self-medication or prescription by the general practitioner on 

immune functions and cancer immunosurveillance.  In a randomized controlled trial in 38 BC 

patients, perioperative COX-2 and β-adrenergic blockade by propranolol and etodolac was 

associated with changes in immune profiles of surgical specimens with notably decreased 

tumor-infiltrating monocytes and increased tumor-infiltrating B cells(16). Moreover, 

retrospective clinical data suggest that some anesthetic techniques can attenuate 

immunosuppression and minimize metastasis after cancer surgery (30). For example, in 
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patients undergoing breast cancer surgery, propofol anesthesia with postoperative ketorolac 

analgesia reportedly has a favorable impact on NK cell cytotoxicity compared with 

sevoflurane anesthesia and postoperative fentanyl analgesia (31). 

Several mechanisms have been proposed to account for these off-target effects of distinct 

compounds, not necessarily annotated as "cytotoxic agents". ER stress response inducers (i.e. 

tapsigargin(32) or cardiac glycosides(33) or autophagy inducers (such as aspirin, spermidine, 

hydroxycitrate (34) could mediate a cellular stress of cancer cells associated with secretion of 

alarmins or cell surface expression of danger signals igniting the inflammasome and/or 

pattern recognition receptors(28). These cell autonomous changes of cancerous cells 

preceding immunogenic cell death pave the way to synergistic anticancer activities when 

these compounds are combined with conventional chemotherapy, radiotherapy or targeted 

treatments. Other comedications can reprogram the tumor microenvironment by dampening 

myeloid suppressor cells. Thus, the anti-diabetic biguanide metformin may yield clinical 

benefit in ovarian cancer patients through improvement of antitumor T-cell immunity by 

dampening CD39/CD73-dependent MDSC immunosuppression(35). Metformin may also act 

on the cognate arm of immunity i.e. CD8+ TILs and protect them from apoptosis and 

exhaustion(14), thereby potentiating the efficacy of PD-1 blockade. In addition, proton pump 

inhibitors could cause reversal of acidity-induced cancer immune escape(18) and modulate 

myelopoiesis and the polarization of tumor associated macrophages(36). Compounds 

impacting the nervous system, more specifically hypnotic drugs are broadly prescribed. The 

hypnotic zolpidem was associated with higher TIL density in our retrospective clinical study 

and turned out to be immunogenic in combination with CTX in our preclinical AT3 model. 

These proinflammatory effects are consistent with correlative associations reported in a large 

population-based study of >59 000 individuals in the National Health Insurance Research 

Database (NHIRD) of Taiwan performed among patients with sleep disturbance taking 
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zolpidem for at least 2 years (n=14 000 patients).  The authors found positive associations 

between the use of zolpidem and the risk of ischemic stroke(37), of Parkinson disease after 5 

years of follow-up(38) and of cancer occurrence(39) (oral cancer (HR, 2.36; 95% CI, 1.57-

3.56), as well as kidney cancer, esophageal cancer, and BC). Conversely, GABAergic 

modulation with classical benzodiazepines lorazepam and clonazepam, aside from exerting 

anxiolytic and antidepressant effects, may have therapeutic potential as 

neuroimmunomodulators during psychosocial stress. Lorazepam and clonazepam as well as 

the antidepressant imipramine blocked stress-induced accumulation of macrophages in the 

central nervous system, prevented neuroinflammatory signaling and reversed anxiety-like and 

depressive-like behavior in mice exposed to repeated social defeat(40).  The use of beta-

blocker, specifically the selective blockade of β2adrenergic receptors, correlated with better 

overall survival in metastatic melanoma patients and improved the efficacy of anti-PD1 and 

IL-2-based immunotherapies mobilizing T lymphocytic effectors in mice(41). Conversely, in 

another experimental study where epinephrine-mobilized NK cells prevented tumor 

outgrowth following exercise, β-adrenergic signaling blunted training-dependent tumor 

inhibition and the trafficking of IL-6-dependent NK effectors into the tumor bed(42). These 

apparent contradictions highlight the need for mechanistic exploration of the synergistic or 

antagonistic off-target bioactivity of these comedications. 

We found that the effect of comedications on TILs and pCR varied by BC subtype. The 

multiple interactions and the high number of drugs to explore on a single cohort highlights the 

need for large-scale validation studies to address the immense complexity that likely underlies 

the interactions between comedication, immune infiltration and chemotherapy outcome. Only 

very large patient cohorts would provide the sufficient statistical power for meaningful 

comparisons among tumor and drug subgroups.  
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Our work opens several thrilling perspectives in drug repositioning. It paves the way to 

explore the field of comedications as immunomodulators and chemotherapy sensitizers. As 

nearly half of the patients take one or more comedications, a considerable amount of untapped 

data is already available for exploitation in electronical health records of patients treated with 

NAC in cancer centers. We hypothesize that a variety of drugs that are not usual part of the 

oncological armamentarium may exert off-target effects against BC or other cancer types. 

Digging into such real-life data could help to identify drugs or life style experiences that 

improve the response to antineoplastic treatments, followed by the design of clinical trials to 

quickly validate these hypotheses. In a context where the financial burden of innovative 

oncologic therapies jeopardizes health systems, repositioning routine prescriptions as 

anticancer treatments sensitizers could be an exciting strategy.  
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FIGURE LEGENDS 
 
 
 
 
Fig. 1. Pre-NAC TILs densities by comedication use (ATC level 1) in the whole population 
and by BC  subtype.  
 
Fig. 2. Pre-NAC TILs densities by comedication use (ATC level 2) in the whole population 
and by BC  subtype. 
 
Fig. 3. Levels of the T cell–inflamed gene expression profile or "IFN metagene" in the whole 
population and by BC  subtype. 
 
Fig. 4. Pathological complete response (pCR) rates by comedication use (ATC level 2) in the 
whole population and by BC  subtype. 
 
Fig. 5. Immune effects of co-medication in mouse breast cancer models. 
 
Fig. 6. Comedications influence TIL densities in mo 
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Fig.  1. Pre-NAC TILs densities by 
comedication use (ATC level 1) in the 
whole population and by BC  subtype.  
The TIL density (% pre-NAC TILs) was 
scored continuously as the average 
percentage of stromal area occupied by 
mononuclear cells as previously 
recommended(43). In the x-axis, patients 
were classified according to their use 
("yes") or absence of use ("no") of a co-
medication. (A) Systemic hormonal 
preparations (class H); (B) Nervous 
system (class N); (C) Alimentary and 
metabolism (class A); (D) Cardiovascular 
(class C); (E) Others. In boxplots, lower 
and upper bars represent the first and third 
quartile respectively, the medium bar is 
the median, and whiskers extend to 1.5 
times the inter-quartile range. TIL density 
was compared in Wilcoxon-Mann-
Whitney tests (for groups including less 
than 30 patients) or with student t-test (n 
≥30).  
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Fig. 2. Pre-NAC TILs densities by 
comedication use (ATC level 2) in 
the whole population and by BC  
subtype. 
The TIL density (% pre-NAC TILs) 
was scored continuously as the average 
percentage of stromal area occupied by 
mononuclear cells as previously 
recommended(43). In the x-axis, 
patients were classified according to 
their use ("yes") or absence of use 
("no") of a co-medication. (A) Thyroid 
therapy (class H03); (B) Analgesics 
(class N02); (C) Drugs for acid related 
disorders (class A02); (D): Diuretics  
(C03); (E) Lipid modifying agents 
(C10) ; (F) Anti-inflammatory and 
anti-rheumatic products (M01). In 
boxplots, lower and upper bars 
represent the first and third quartile 
respectively, the medium bar is the 
median, and whiskers extend to 1.5 
times the inter-quartile range. TIL 
density was compared in Wilcoxon-
Mann-Whitney tests (for groups 
including less than 30 patients) or with 
student t-test (n ≥30).   
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Fig. 3. Levels of the T cell–
inflamed gene expression 
profile or "IFN metagene" in 
the whole population and by 
BC  subtype. 
Gene expression profiling on 140 
pre-NAC tumor samples 
centered around the IFN-J 
metagene described in Ayers et 
al.(20) quantified according to 
the mean normalized expression 
value for 6 genes (IFNG, IDO1, 
CXCL9, CXCL10, HLA-DRA, 
STAT1).  In the x-axis, patients 
were classified according to their 
use ("yes") or absence of use 
("no") of a co-medication. (A) 
Systemic hormonal preparations 
(class H); (B) Nervous system 
(class N); (C) Alimentary and 
metabolism (class A); 
(D) Cardiovascular (class C); (E) 
Others. In boxplots, lower and 
upper bars represent the first and 
third quartile respectively, the 
medium bar is the median, and 
whiskers extend to 1.5 times the 
inter-quartile range. IFNG-
metagene levels were compared 
in Wilcoxon-Mann-Whitney tests 
(for groups including less than 
30 samples) or with student t-test 
(n≥30).   
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Fig. 4. Pathological complete 
response (pCR) rates by 
comedication use (ATC level 
2) in the whole population and 
by BC  subtype. 
The pCR was assessed 
according to routine clinical 
guidelines(46). Effectives 
mentioned on the barplot 
represent the number of patients 
whose tumor reached pCR / 
total number of patients of the 
given category. In the x-axis, 
patients were classified 
according to their use ("yes") or 
absence of use ("no") of a co-
medication. (A) Psycholeptics  
(N05); (B) Psychoanaleptics 
(N06); (C) agents acting on the 
renin-angiotensin system (class 
C09); (D) Vasoprotectives 
(class C05); (E) Anti-
inflammatory and anti-
rheumatic products (M01). The 
association between categorical 
variables was assessed with chi-
square test or with the Fisher's 
exact test if at least one category 
showed less than 3 patients. 
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Fig. 5. Immune effects of co-medication in mouse breast cancer models. 
(A) The PDX HBCx-8 xenograft established from a TNBC patient was transplanted into female 8-week-old Swiss nude mice and then, randomly assigned to 
the control or treatment groups (AC versus TXT alone or combined with bromazepam (N05BA)). Tumor growth kinetics with broma alone versus Ctrl, AC 
versus AC+ N05BA and TXT versus TXT+ N05BA are represented overtime, in six animals/group, in a representative experiment out of two yielding similar 
conclusions. Statistical analyses(50): *p<0.05, ** p<0.01,*** p<0.001, ns=not significant. (B) and (C). Prophylactic and therapeutic i.p. administration of 
zolpidem (N05CF) or pantoprazole (A02BC) versus NaCl alone (B) or in combination with Cyclophosphamide (CTX) (C) in C57Bl/6 mice bearing the TNBC 
AT3. (D) Depletion of CD4+ or CD8+ lymphocytes with specific antibodies in the same setting as in (C). Tumor growth kinetics are depicted for a pool of two 
independent experiments comprising 6 mice/groups for (B) and (D). *p<0.05, ** p<0.01, *** p<0.001, ns=not significant.  
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Fig.6. Comedications influence TIL densities in mouse TNBC. Representative micrograph pictures of co-immunofluorescence of CD3 (green), CD4 (cyan), 
FOXP3 (magenta), and DAPI stain (blue) in AT3 tumors at sacrifice in mice treated with CTX, zolpidem (N05CF) or pantoprazole (A02BC) alone or 
combined together. Scale bar: 20 µm (A). Spearman correlations between tumor sizes at sacrifice and CD3+ CD4- cell density (B, left) and the ratio of 
CD3+CD4- cells/ CD3+CD4+FOXP3+ cells across 6 experimental groups comprising 6 mice/group (B, right).  Bar graphs showing CD3+CD4- cell density in 
AT3-bearing mice treated with NaCl, N05CF or A02BC, (C, left), CTX, CTX + N05CF or CTX + A02BC (C, right). Data are shown as means ± SEM. P 
values were obtained using ANOVA test.
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Synthèse	

	

La	chimiothérapie	néoadjuvante	(CNA)	est	utilisée	dans	les	cancers	du	sein	agressifs	ou	

localement	avancés	(CS).	Au	delà	des	bénéfices	cliniques,	elle	représente	une	

opportunité	pour	monitorer	in	vivo	la	sensibilité	d’une	tumeur	à	un	traitement.	

A	partir	de	l’analyse	de	sets	de	données	de	patients	traités	par	CNA,	nous	souhaitons	

identifier	des	mécanismes	associes	à	la	résistance	ou	sensibilité	au	traitement.		

Dans	la	première	partie,	nous	avons	évalué	des	paramètres,	cliniques,	

anatomopathologiques	et	transcriptomiques.	Nous	avons	démontré	que	:		

- les	voies	de	la	prolifération		et	les	voies	de	signalisation	liées	au	récepteur	à	

l’estrogène	(ER)	étaient	des	marqueurs	forts	de	prédiction	de	la	réponse	à	la	

chimiothérapie	;	

- les	facteurs	prédictifs	et	pronostiques	variaient	en	fonction	du	sous	groupe	de	

cancer	du	sein	:	l’atteinte	ganglionnaire,	le	statut	ménopausique	et	l’indice	de	

masse	corporelle	étaient	des	éléments	déterminants	dans	les	cancers	du	sein	

triple	négatif;		tandis	que	le	traitement	par	trastuzumab	avait	un	impact	

pronostique	majeur	sur	les	cancers	du	sein	HER2-positif.	

- Enfin,	des	éléments		non	explorés	comme	la	présence	d’embols	après	CNA	

revêtaient	une	information	pronostique	importante,	avec	une	valeur	différente	

dans	les	différents	sous	types	de	cancer	du	sein.	

	

Dans	une	2ème	partie,	nous	avons	démembré	l’hétérogénéité	des	cancers	du	sein	grâce	

à	des	analyses	bioinformatiques.	Quel	que	soit	le	sous	type	de	cancer	du	sein,	un	sous	

groupe	de	patients	présentait	des	tumeurs	surexprimant	des	gènes	de	l’immunité	;	et	
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cette	expression	avait	une	valeur	prédictive	sur	la	réponse	à	la	chimiothérapie	et/ou	

pronostique.	

Nous	avons	ensuite	analysé	l’impact	de	l’infiltrat	immunitaire	dans	le	cancer	du	sein,	et	

avons	décrit	les	changements	observés	entre	des	échantillons	avant	et	après	CNA.	Nous	

avons	montré	que	l’impact	pronostique	des	TILs		était	différent	avant	et	après	CNA,	et	

était	opposé	dans	les	CS		triple	négatif	(où	des	niveaux	de	TILs	élevé	avaient	une	

tendance	à	un	effet	protecteur)	ou	HER2-positif	(où	des	niveaux	de	TILs	élevé	avaient	

une	tendance	à	un	effet	délétère).		

	

Finalement,	dans	une	3ème	partie,	nous	avons	analysé	l’impact	des	comédications	

pendant	la	CNA.	Nous	avons	analysé	de	manière	sytématique	l’ensemble	des	

comédications	chroniques	déclarées	par	les	patients	pendant	la	CNA	Nous	avons	trouvé	

des	effets	positifs	–	via	l’augmentation	de	l’infiltrat	immunitaire	et	la	réponse	au	

traitement.	

Enfin,	nous	avons	réanalysé	en	fonction	de	l’expression	du	gène	PTGS2	(COX2)	l’essai	

clinique	REMAGUS02	testant		l’adjonction	d’un	inhibiteur	sélectif	de	COX2,	le	celecoxib,	

à	la	chimiothérapie	néoadjuvante.	Nous	avons	mis		en	évidence	des	effets	délétères	sur	

la	survei	dans	certains	sous	groupes	de	patients	(patients	dont	la	tumeur	exprimait	

faiblement	PTGS2	;	particulièrement	en	cas	de	tumeur	du	sein	ER-negative).	

		

En	conclusion,	la	situation	néoadjuvante	représente	une	plateforme	pour	générer	et	

valider	des	hypothèses	de	recherche.	La	mise	à	disposition	de	jeux	de	données	de	

patients	traités	par	chimiothérapie	néoadjuvante	constituerait	une	ressource	majeure	

pour	accélérer	la	recherche	contre	le	cancer	du	sein	et	doit	être	encouragée.	
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Titre : Identification des facteurs prédictifs de sensibilité ou résistance à la chimiothérapie 
néoadjuvante dans le cancer  du sein  

Mots clés : Cancer du sein – chimiothérapie néoadjuvante - résistance 

Résumé : La chimiothérapie néoadjuvante 
(CNA) est utilisée dans les cancers du sein 
agressifs ou localement avancés (CS). Au delà 
des bénéfices cliniques, elle représente une 
opportunité pour monitorer in vivo la sensibilité 
d’une tumeur à un traitement. 
A partir de l’analyse de sets de données de 
patients traités par CNA, nous souhaitons 
identifier des mécanismes associes à la 
résistance ou sensibilité au traitement.  
Dans la première partie, nous avons évalué des 
paramètres, cliniques, anatomopathologiques et 
transcriptomiques. Nous avons démontré que 
des éléments  non explorés comme la présence 
d’embols après CNA revêtaient une information 
pronostique importante. 
Dans une 2ème partie, nous avons analysé 
l’impact de l’infiltrat immunitaire dans le 
cancer du sein, et avons décrit les changements  

observés entre des échantillons avant et après 
CNA. Nous avons montré que l’impact 
pronostique des TILs  était différent avant et 
après CNA, et était opposé dans les CS  triple 
négatif ou HER2-positif.  
Finalement, nous avons analysé l’impact des 
comédications pendant la CNA. Nous avons 
trouvé des effets positifs – via l’augmentation 
de l’infiltrat immunitaire et la réponse au 
traitement – et des effets négatifs avec des effets 
délétères dans certains sous groupes de patients.  
En conclusion, la situation néoadjuvante 
représente une plateforme pour générer et 
potentiellement valider des hypothèses de 
recherche. La mise à disposition de jeux de 
données de patients traités par chimiothérapie 
néoadjuvante constituerait une ressource 
majeure pour accélérer la recherche contre le 
cancer du sein. 

 

 

Title : Identification of factors predicting sensitivity or resistance to neoadjuvant chemotherapy in 
breast cancer 

Keywords : Breast cancer – Neoadjuvant treatment  - resistance 

Abstract : Neoadjuvant chemotherapy (NAC 
i.e. chemotherapy before surgery) is 
increasingly being used for aggressive or 
locally advanced breast cancer (BCs). Beyond 
clinical benefits, it represents an opportunity to 
monitor in vivo sensitivity to treatment. 
Based on the analysis of datasets of BCs 
patients treated with NAC, we aimed at 
identifying mechanisms associated with 
resistance or sensitivity to treatment.  
In the first part, we evaluated biological, 
clinical, pathological and transcriptomic 
patterns. We demonstrated that unexplored 
pathological features such as post-NAC 
lymphovascular invasion may carried an 
important prognostic information. 
In a second part, we analyzed impact of imune 
infiltration in BC and we described extensively 
the changes of tumor infiltrating lymphocytes 

(TILs) between pre and post-NAC samples. We 
showed that the prognostic impact of TILs  was 
different before and after NAC, and was 
opposite in TNBC and HER2-positive BCs.  
Finally, we investigated the impact of 
comedications use during NAC. We found both 
positive effects - while enhancing immune 
infiltration and response to treatment - and 
negative effects with deleterisous oncologic 
outcomes in specific patients subgroups. 
In conclusion, the neoadjuvant setting 
represents a platform to both generate and 
potentially validate research hypotheses aiming 
at increasing the efficacy of treatment. The 
public release of real-life datasets of BC 
patients treated with NAC would represent a 
major resource to accelerate BC research. 
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