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Résumé en français

Contexte

La miniaturisation et la baisse du coût des systèmes électroniques connectés ont
permis de créer de nouveaux services en connectant de nombreux appareils et ob-
jets. Cette révolution, appelée l’Internet des Objets (IoT), engendre notamment le
déploiement de nombreux capteurs connectés, dont les mesures doivent permettre
d’optimiser les processus auxquels ils s’intègrent afin d’en réduire les coûts. Ces cap-
teurs visent un large nombre de cas d’usage, comprenant notamment l’optimisation
de la production agricole ou de processus industriels, ainsi que la mise en place de
villes intelligentes afin d’en réduire la consommation énergétique.

L’architecture de tous ces capteurs est généralement similaire. Chaque objet em-
barque un ou plusieurs transducteurs, qui transforment une donnée physique en une
valeur électrique. Un microcontrôleur, composé d’un processeur, de ses mémoires et
d’entrées/sorties afin de communiquer avec d’autres composants. Afin de commu-
niquer les données mesurées, il intègre également une interface réseau. En plus de
ces composants matériels, les capteurs connectés embarquent un logiciel embarqué
(“firmware”), qui a pour fonction de récupérer les données des différents transduc-
teurs, d’effectuer d’éventuels traitements sur ces données, et de les transmettre via
le protocole de communication choisi.

Afin de réduire les coûts d’installation de ces réseaux, les capteurs communiquent
général via des technologies sans-fil. De nombreux protocoles de communication
sans-fil ont été développés afin de répondre à la demande croissante de systèmes
IoT. Parmi les technologies utilisées, la technologie LoRaWAN permet l’envoi d’un
message du capteur à une passerelle réseau sur plusieurs kilomètres avec une faible
consommation d’énergie. Cette longue portée permet au réseau de couvrir une large
zone avec un nombre réduit de passerelles, ce qui a pour effet de baisser le coût
d’installation du réseau.

Ces systèmes électroniques doivent cependant être eux-mêmes alimentés en én-
ergie. Alors que plus de 8 milliards d’objets connectés pourraient être déployés dans
les prochaines années d’après certaines études, la question de la consommation én-
ergétique de ces appareils ne peut être ignorée. L’alimentation sur secteur de ces
systèmes pose des problèmes de déploiement, certains capteurs pouvant être instal-
lés à distance de toute infrastructure électrique. De plus, les courants de fuite de plus
de 8 milliards de transformateurs AC/DC provoqueraient une forte hausse de la con-
sommation électrique globale. L’utilisation de piles permet le déploiement de réseaux
de capteurs à distance de toute infrastructure électrique, mais limite la durée de vie
des capteurs. En outre, le remplacement de ces piles afin d’entretenir le réseau de



Source Puissance de la source Puissance récupérée
Lumière ambiante
Intérieur 0.1 mW / cm2 10 µW / cm2

Extérieur 100 mW / cm2 10 mW / cm2

Vibration/Mouvement
Humain 0.5 m à 1 Hz

1 m / s2 à 50 Hz 4 µW / cm2

1 m à 5 Hz
10 m / s2 à 1 kHz 100 µW / cm2

Energie thermique
Humaine 20 mW / cm2 30 µW / cm2

Industrielle 100 mW / cm2 1 — 10 mW / cm2

RF
Station de base GSM 0.3 µW / cm2 0.1 µW / cm2

Table 1: Aperçu de différentes sources d’énergie et leurs caractéristiques (source [1]).

capteurs serait coûteux et les piles usagées deviendraient de nouveaux déchets chim-
iques à traiter. Si l’utilisation de batterie rechargeable permet de limiter le volume
de déchets chimique produit, elle ne réduit cependant pas le coût d’entretien des
réseaux de capteurs.

En conséquence, il est intéressant d’utiliser l’énergie naturellement présente dans
l’environnement (sous forme de lumière, chaleur, mouvement...) pour alimenter les
futurs réseaux de capteurs connectés. Cette méthode permet de réduire le coût
d’entretien des réseaux, puisque la batterie se recharge de manière autonome, sans
besoin d’intervention humaine. L‘essor récent des énergies renouvelables, couplé aux
progrès de la miniaturisation, a permis le développement de récupérateurs d’énergie
(panneaux solaires, éoliennes...) suffisamment petits pour être intégrés à des cap-
teurs de taille réduite pour un coût modéré. Bien que délivrant de faibles quantités
d’énergie, illustrées dans la Table 1, la faible consommation électrique des com-
posants électroniques récents permet d’envisager des capteurs connectés entièrement
autonomes en énergie.

Les sources d’énergie ambiante sont cependant généralement variables, et ne
délivrent pas continuellement de l’énergie. C’est le cas de la récupération d’énergie
solaire, qui ne délivre d’énergie qu’en journée. Afin de concevoir des systèmes élec-
troniques entièrement autonomes en énergie, il est nécessaire de prendre en compte
cette variabilité de l’alimentation. Pour cela, des gestionnaires d’énergie ont été
développés, afin de moduler l’activité et la consommation énergétique du capteur à
sa source d’énergie, permettant ainsi un fonctionnement théoriquement perpétuel.
Cependant, ces technologies ont uniquement été testées sur des réseaux de capteurs
à courte portée et très faible consommation, et jamais sur des réseaux longue portée
tels que LoRaWAN. En outre, la possibilité d’exploiter plusieurs sources d’énergie
ambiante pour alimenter le capteur reste peu explorée. L’objectif de cette thèse
est donc la conception d’un capteur connecté à un réseau LoRaWAN alimenté par
plusieurs sources de récupération d’énergie ambiante, et au fonctionnement entière-
ment autonome.
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Figure 1: Diagramme bloc complet de l’architecture du capteur développé.

Récupération d’énergie multi-source pour capteur con-

necté

Ce travail commence par une étude de la fiabilité des différents composants consti-
tuant le capteur connecté. En effet, lorsqu’un gestionnaire d’énergie est utilisé afin
d’assurer l’alimentation en continu du capteur, l’usure de ses composants devient
l’un des facteurs limitant sa durée de vie. Cette étude, basée sur le référentiel MIL-
HDBK-217, permet de comparer la durée de vie estimée des différents composants,
afin d’isoler le maillon faible du capteur. L’étude démontre que les composants
de stockage d’énergie (super-condensateur et batterie lithium-ion) sont les éléments
limitant la durée de vie globale de l’appareil. Ces composants doivent ainsi être di-
mensionnés afin d’assurer une marge permettant au capteur de fonctionner sur toute
la durée requise. Les batteries lithium-ion se montrent particulièrement sensibles aux
contraintes thermiques et électriques, et doivent ainsi faire l’objet d’une attention
particulière.

Après un état de l’art des circuits de récupération d’énergie ambiante, cette thèse
présente un système permettant d’alimenter le capteur en exploitant simultanément
plusieurs sources d’énergie. Afin de réduire le coût d’implémentation de la solution,
ce circuit utilise un seul convertisseur de tension. Chaque source d’énergie stocke
l’énergie récupérée dans un condensateur. Le convertisseur est successivement con-
necté à chaque condensateur, dont il puise l’énergie pour charger la batterie du
capteur. Malgré une efficacité limitée, ce système permet de réduire le coût de la
récupération d’énergie multi-source lorsqu’un grand nombre de sources d’énergie est
utilisé. Sur la base de cette étude, une carte a été développée afin de récupérer
simultanément l’énergie de 3 sources.



Gestion de l’énergie récupérée pour un capteur Lo-

RaWAN

Afin d’assurer que le capteur ne vide pas son stockage d’énergie trop rapidement, il
est nécessaire de réduire sa consommation énergétique. S’il est possible de réduire
la consommation des composants en réduisant leurs tensions d’alimentation et leurs
fréquences de fonctionnement (DVFS), le plus efficace est de mettre le plus de com-
posants possible en veille le plus souvent possible. Cette technique, appelée “duty-
cycling”, est particulièrement adaptée aux capteurs connectés, qui n’ont générale-
ment pas de tâches à exécuter entre deux mesures et envois de données. La plupart
des composants, notamment le microcontrôleur et le composant de communication
radio, peuvent ainsi être mis en veille la plupart du temps, réduisant leur consomma-
tion électrique à quelques µW contre plusieurs dizaines de mW lorsqu’ils sont actifs.
Ainsi, en modulant l‘activité du capteur, et donc sa qualité de service (QoS), il est
possible de moduler sa consommation électrique.

En adaptant la consommation énergétique du capteur à la quantité d’énergie
récupérée, il est théoriquement possible de faire fonctionner un capteur pour une
durée illimitée, en évitant de complètement vider la réserve d’énergie. C’est le rôle
du gestionnaire d’énergie. Ce module peut se diviser en deux sous-modules : un
estimateur de budget énergétique (EBE) et un alloueur d’énergie (EA). Le premier
calcule le budget énergétique pouvant être consommé par le capteur, tandis que le
second décide de la meilleure manière de dépenser ce budget énergétique.

Deux types d’EBE sont utilisés. Les premiers sont dits “model-based”, et se
basent sur une modélisation de la source d’énergie ambiante utilisée pour prévoir
la quantité d’énergie qui pourra être récupérée dans le futur. Ainsi, il est possible
de délivrer un budget énergétique plus élevé, et donc obtenir une meilleure QoS,
si l’on sait que de l’énergie sera disponible dans un futur proche. Ces EBE sont
particulièrement bien adaptés pour les sources d’énergie périodiques, telles que la
récupération d’énergie solaire. Cependant, ils sont peu adaptés pour la récupération
d’énergie multi-sources, où il est complexe d’extraire un modèle d’une somme de
sources d’énergie. Pour ce type d’applications, il est préférable d’utiliser des EBE
dits “model-free”, qui se passent de modèles de source et utilisent des algorithmes
proches de ceux utilisés en automatismes afin de calculer le budget énergétique.

Cette thèse présente les travaux réalisés afin d’adapter ces EBE “model-free” à une
utilisation avec des réseaux longue portée de type LoRaWAN. En effet, le délai entre
deux transmissions peut s’étendre de plusieurs minutes à plusieurs heures au sein d’un
réseau LoRaWAN, contre plusieurs secondes à plusieurs minutes au sein des réseaux
courte portée utilisés dans les travaux existants. Cette thèse présente également
une comparaison de plusieurs EBE, à la fois en simulation et sur de réels capteurs
connectés, basés sur une plate-forme et un réseau commercial. Les résultats obtenus
montrent que le choix de l’EBE a peu d’impact lorsque l’on cherche à maximiser
leurs performances, ce qui permet l’utilisation d’algorithmes plus simples à régler et
implémenter.

Le problème de l’allocation d’énergie pour les capteurs à récupération d’énergie
a été peu étudié au sein des travaux de recherche existants, qui s’attachent pour
la plupart à l’étude des systèmes temps-réel alimentés par récupération d’énergie



Figure 2: Capteur connecté développé et utilisé pour ce travail, ici avec un panneau
solaire.

ambiante. En particulier, aucun travail antérieur n’étudie l’allocation d’un bud-
get énergétique pour plusieurs tâches pouvant avoir des priorités et QoS requises
différentes. Cette thèse présente en détail le problème, et propose une répartition
optimale du budget énergétique pour plusieurs tâches avec différentes priorités. En
outre, cette thèse présente un algorithme intégrant ce calcul optimal pour allouer
un budget énergétique à plusieurs tâches en prenant en compte leurs contraintes
de QoS. Cet algorithme a été validé sur un capteur réel effectuant des mesures de
température, humidité, bruit et concentration de gaz, communiquant sur un réseau
LoRaWAN et alimenté par récupération d’énergie ambiante.

En conclusion, cette thèse répond à l’objectif initialement fixé : la conception d’un
capteur communiquant sur un réseau LoRaWAN alimenté par plusieurs sources de
récupération d’énergie et entièrement autonome. Ce document détaille la conception
d’un nouveau circuit de récupération d’énergie multi-sources et la solution finalement
choisie. Plusieurs algorithmes d’EBE sont comparés en simulation et sur des capteurs
réels. Un nouvel algorithme d’allocation d’énergie, basé sur une allocation optimale,
est développé et implémenté. Le prototype ainsi réalisé est alimenté par plusieurs
sources d’énergie, et dispose d’un gestionnaire d’énergie capable d’estimer comment
dépenser au mieux l’énergie récupérée.
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Introduction

New Advances in Internet of Things

A famous principle in engineering, management and many other disciplines is that
what can not be measured, can not be improved. Measurements are mandatory to
improve systems, in order not to act with simple guesses of the effects. In order to
optimize their processes, multiple industries have used sensors to monitor the perfor-
mance of their machines and processes. Applications of such sensor systems include
predictive maintenance, process automation, workload optimization, and many oth-
ers. In such systems, sensors can communicate with other systems, and can thus
be named Machine to Machine (M2M) communications. With the increasing impor-
tance of the Internet, it has become easier to directly connect sensors and objects
to the web than designing specific systems. This phenomenon where objects are
directly connected and accessible from Internet forms the basis of the Internet of
Things (IoT).

For a long time, communicating devices have been connected by wired technolo-
gies, as it was cheaper and more reliable than early wireless communications. How-
ever, installing a wired network can be costly and requires more work. The recent
advances of wireless communication technologies drastically reduced their cost and
improved their reliability, making them a contender for traditional wired systems in
a variety of use-cases. In particular, for data gathering applications, using a fleet
of connected sensors, the use of wireless technologies makes sense, as it reduces the
installation cost of the network and eases the deployment. Such a system is called a
Wireless Sensor Network (WSN), and is typically composed of nodes which measure
a physical value and transmit it over the network.

A WSN node is usually a simple system, as shown in Fig. 3. It is composed of a
micro controller, which integrates in a single package a processor core, its required
memories and interfaces to communicate with peripheral components. These periph-

Micro 
controller 

Radio 
Frequency 

IC 
Sensor 

Power 
converter 

Power source

Physical data

Figure 3: Block diagram of a usual WSN node.
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eral components include one or more sensors, to sense physical data, and a Radio
Frequency (RF) Integrated Component (IC) used to communicate with the WSN.
Some recent components directly integrate the radio IC in the same package as the
micro controller, to lower the cost of the system and ease its design. Around these
core components, power supply components are used to power the system, typically
from a primary battery.

In order to follow with the rise in demand for WSN, multiple technologies have
been developed and adapted for these use-cases. An overview of their different char-
acteristics is given in Table 2. WiFi and Bluetooth, which are commonly found
in consumer products, have been adapted for low power use-cases, through the de-
velopment of WiFi Hallow and Bluetooth Low Energy (BLE), respectively. Other
networking technologies, such as Zigbee, Z-Wave, the 802.15.4 Media Access Control
(MAC) layer or the 6LoWPAN routing layer, have been created specifically to ad-
dress these applications. In some use-cases, cellular networks (GSM, EDGE, HSPA,
LTE) can also be used, in order to take advantage of their wide coverage. By exten-
sion, some cellular technologies, as LTE-M and NB-IoT, have been standardized to
more efficiently address these use-cases. As cellular technologies are usually power
hungry, new types of long range wireless communication systems have been devel-
oped in order to enable communications with a long range (multiple km) and low
power consumption, at the cost of lower data throughput. Such technologies include
Weightless, Sigfox from the eponymous society, and LoRa technology from Cycleo,
later bought by Semtech.

The LoRa technology has attracted many actors, due to its open nature which
enable multiple MAC and applicative layers to be used on top of it. These actors
include semiconductor companies, network operators and equipment design compa-
nies. In particular, an alliance has been created to develop LoRaWAN, a networking
technology based on LoRa transmissions, used to set up Low Power Wide Area Net-
works (LPWAN) at a lower cost than cellular technologies. The LoRa technology is
based on a chirp spread spectrum modulation, which enables communications with
a range up to 10 km with a limited transmission power. As it transmits messages on
unlicensed frequency bands, LoRa communications are limited by duty cycle regula-
tions. Therefore, the data throughput is limited to a few kB per day. On top of this
physical layer, the LoRaWAN technology implements a star network configuration,
in which all devices transmit their data to a gateway. The gateway then transmits
the messages to a network server, which decrypts and decodes the message, and

Wireless network type Advantages Drawbacks Examples

Local Area Network
Possible high data rate
Wide userbase
Existing networks

Low range
Higher power consumption

Bluetooth, BLE,
WiFi, Zigbee,
Z-Wave

Low Power Wide
Area Network

Low power consumption
Low cost of ownership
High range

Small userbase
Low data rate

LoRa, Sigfox,
Weightless, NB-IoT

Cellular Network
Possible high data rate
Wide userbase
Existing coverage

High cost of ownership
High power consumption

GSM, HSPA, LTE

Table 2: Overview of different wireless communications possibilities for IoT nodes.
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eventually forwards the payload to an application server. All LoRaWAN messages
are encrypted, except their metadata, so that the data payload can only be read by
the receiving server.

Although LoRaWAN systems are limited in throughput, they are suitable for a
large variety of use-cases. LoRaWAN sensors are typically used in metering appli-
cations. In this type of application, a measurement is periodically sent to a server.
LoRaWAN actuators can also receive commands from a server, for example to power
on a radiator when a sensor detects a low temperature. Finally, LoRaWAN devices
can be used for alarm systems, where a message is only transmitted at an event
detection. To generalize, LoRaWAN is a suitable solution for a device which has to
transmit occasional small data packets with a low energy consumption. The use of
long range communications also eases the deployment of the network and lowers its
cost.

Powering the Internet of Things

IoT devices are expected to be used in a variety of applications and contexts. Due
to the large number of applications for these technologies, it is expected that billions
of connected devices will be deployed in the coming years. Some reports point that
up to 20 billions IoT nodes could be in use by 2020 [2]. However, deploying so many
devices comes with its own challenges. One of them is powering these billions of
devices efficiently, in order to limit their environmental impact.

A first way to power these sensors is simply to plug them on a classical electric
grid. However, power converters have losses that can easily reach hundreds of mW,
due to the high voltages on main networks. Thus, powering 20 billions devices each
with a power supply that has 100 mW of power leakage, an optimistic estimation,
would leak 2 GW of power, which is not desirable.

An alternative is to power the IoT nodes with batteries, which work around the
leakage power in AC power converters. Modern IoT nodes can last a few years on
a suitable non-rechargeable primary battery, provided the node is designed for low
power. Moreover, non rechargeable batteries are usually cheap, which can help the
adoption of WSN technologies. However, these batteries have a limited life cycle, and
they are hard to recycle when they are depleted. Thus, the use of non rechargeable
batteries for 20 billions devices would create too much chemical waste for it to be
sustainable.

The use of rechargeable batteries could circumvent this problem and increase the
life cycle of the device, provided the battery has been characterized so that its wear-
out does not limit it. When the battery is depleted, it could simply be recharged
and put back in operation. However, like changing non-rechargeable batteries, this
operation requires a technician to fetch the node, recharge its battery and set it back
to its place. This operation is not instantaneous, as rechargeable batteries require
time to be charged. Moreover, accessing the WSN node is not always possible. In
some environmental measurement campaigns, for example, the WSN node could have
been dropped in a forest, set up on a cliff or near a volcano. Even in an urban setting,
a sensor placed in a high place would require specific equipment and operators to
fetch the sensor, which may have a high cost. This makes recharging batteries hard
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Source Source Power Harvested Power
Ambient light
Indoor 0.1 mW / cm2 10 µW / cm2

Outdoor 100 mW / cm2 10 mW / cm2

Vibration/Motion
Human 0.5 m at 1 Hz

1 m / s2 at 50 Hz 4 µW / cm2

1 m at 5 Hz
10 m / s2 at 1 kHz 100 µW / cm2

Thermal energy
Human 20 mW / cm2 30 µW / cm2

Industrial 100 mW / cm2 1 — 10 mW / cm2

RF
GSM base station 0.3 µW / cm2 0.1 µW / cm2

Table 3: Overview of different energy sources and their characteristics (from [1]).

to justify economically, as it would increase the cost of ownership and maintenance
of the WSN.

In order to enable sustainable operation of IoT nodes, the use of energy harvest-
ing technologies has been considered. Indeed, energy is present in most environ-
ments, and even in living being, either vegetal [3] or animal [4]. If the WSN node
can recharge its batteries by harvesting energy from its environment, the need for
maintenance is reduced, which lowers the cost of ownership of the WSN. Multiple
energy sources, shown in Table 3, can be used, including light, wind or vibrations,
which can respectively be harvested with solar panels, wind turbines and piezoelec-
tric elements. Although this table does not take into account state of the art energy
harvesting sources, it shows the order of magnitude of the expected harvested en-
ergy for each type of source. Due to the specificity of each of these sources, and their
variable nature, specific hardware has to be used to implement energy harvesting ca-
pabilities. Although these added components increase the cost of the node, they also
increase its life cycle, thus making it more sustainable. As most WSN applications
require little power to run, energy harvesting is an efficient solution to efficiently
power IoT nodes in a sustainable manner.

In order to maximize the use of harvested energy by the WSN node, multiple
approaches can be imagined. Using a bigger energy harvesting source enables the
node to harvest more energy. However, the size of the energy source may be limited
by the cost and size requirements of the product. An alternative approach to increase
the quantity of harvested energy is the use of multi-source energy harvesting, where
energy is harvested from multiple different energy sources simultaneously. The use
of multiple sources enable the node to still harvest energy when a source is not active
(e.g. a solar panel at night), thus increasing its QoS.
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Figure 4: Structure of the power management logic.

Power Management for Wireless Sensor Nodes

While an energy harvesting device can be used to power IoT nodes, it is usually a
variable power source, which can deliver no energy over some periods of time. Due
to this, the IoT node should embed functionalities to properly manage its energy
and avoid battery depletion. In energy harvesting WSN nodes, a power manager is
implemented to fill this task. To adapt the node power consumption and ensure it
does not deplete its battery, the power manager can reduce the QoS of the node,
for example by increasing the delay between two consecutive transmissions to let
the components a longer time in a low power mode. The power manager can also
increase the QoS of the node when the battery is sufficiently filled.

In this thesis, we decompose the power manager (shown in Fig. 4) in two elements:
an EBE and an EA. The EBE monitors the energy capabilities of the WSN nodes,
i.e. the residual energy in storage ER, the harvested energy EH , etc., and uses these
measurements to compute an energy budget EB which can be spent by the node
over a time-slot. The EA takes this EB, its knowledge of the tasks the node has to
perform and their required QoS as inputs. Using this information, it manages the
activity of the node, such as the delay DTX between two transmissions or the task
set it executes, so that it does not consume more energy than EB.

The design of power management schemes for energy harvesting WSN nodes
has been an active area of research in recent years. However, it can be noted that
most works focus on the use of meshed networking technologies [5][6][7], closer to
802.15.4 and Zigbee protocols than to the LoRa technology. Due to the differences
in use-cases and power consumption between these systems, many aspects of these
algorithms have to be adapted to fit long range wireless communications applications.

Moreover, these power management systems only consider the case of single-task
devices, where the task consists of measuring a value and transmitting it immedi-
ately. As IoT systems are used in more and more applications, their complexity have
increased and some devices now have to execute multiple tasks. These tasks can be
different measurement or data processing tasks. As this case has not been consid-
ered in previous works, there is a need to adapt energy harvesting power management
systems to multi-task WSN nodes.
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Figure 5: Full block diagram of the proposed energy harvesting WSN node.

Contributions and Thesis Outline

Contributions

This thesis aims at developing an energy harvesting WSN node, as shown in Fig. 5,
communicating over a LoRaWAN network and based on an available commercial
platform. A classical battery powered WSN node is composed of a Micro-Controller
Unit (MCU), one or more sensor and a radio transceiver, with embedded software to
manage the sensing tasks, data processing and networking stack. In addition, the use
of energy harvesting requires the use of one or more energy harvester and the use of a
rechargeable energy storage. Moreover, the embedded software is more consequent,
as a power manager is integrated to ensure the proper operation of the WSN node.
The final objective is to add multi-source energy harvesting capabilities, as well as
a new power manager which enables the implementation of multiple sensing tasks
with different QoS requirements. The main contributions of this thesis are:

• A study of the reliability of components involved in energy harvesting WSN
node design, in order to detect which component has the highest probability
to break earlier than other. This study shows that the life cycle of an energy
harvesting system is limited by its energy storage life cycle. To our knowledge,
this is the first application of this type of analysis to energy harvesting WSN
nodes.

• A new multi-source energy harvesting architecture, aimed to lower the imple-
mentation cost of such solutions [8]. The system uses a single power converter
and dynamically switches between multiple energy harvesting sources. The
new architecture has a limited efficiency, but the use of a single power con-
verter is more cost effective when a high number of different energy sources is
used.

• An implementation and comparison of EBE algorithm on a real world commer-
cial platform [9] using LoRa communications. To the best of our knowledge,
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this is the first industrial implementation of this type of system, and the first
energy harvesting power management system adaptation for LoRa communi-
cations. This study shows that, for long range systems, the choice of EBE
algorithm has little impact over the performance of the system, provided that
all algorithms have been properly tuned to maximize performance, which en-
ables the use of simpler algorithms.

• An exploration of energy allocation techniques for energy harvesting WSN
nodes. The problem is detailed for both single task and multi-task nodes.
Multiple solutions are shown to adapt the QoS of the node to its energy capa-
bilities, detailing their advantages and different use-cases. To the best of our
knowledge, this is the first work that considers multi-task energy harvesting
WSN nodes.

Thesis Outline

This thesis is divided in two parts. Part 1, composed of Chapters 1 and 2, focuses
on the hardware components of energy harvesting WSN nodes, and the design of
multi-source energy harvesting systems. Part 2, which comprises Chapters 3, 4 and
5, concentrates on the firmware of WSN nodes, and especially on the design of power
management systems for energy harvesting devices.

Chapter 1 - Energy Harvesting Components The Chapter 1 presents the
different elements of an energy harvesting WSN node. For each possible energy
source and energy harvesting component, a detailed state of the art shows the recent
advances in energy harvesting technologies. The first contribution of this thesis, a
reliability analysis of these components, is presented, as a way to estimate the life
cycle of energy harvesting WSN nodes.

Chapter 2 - Multi-source Energy Harvesting The Chapter 2 describes the
second contribution of this thesis, a new multi-source energy harvesting circuit which
aims at cost reduction. Our architecture is compared to state of the art architectures
to detail the use-cases where it is more efficient and enables cost reduction of the
system. Based on this study, a multi-source energy harvesting board is designed for
an industrial long range IoT platform.

Chapter 3 - Power Management for Energy Harvesting IoT nodes The
Chapter 3 details the challenges of power management for Energy Harvesting IoT
nodes. A state of the art of power reduction techniques and harvested energy man-
agement concepts are presented. This chapter introduces many techniques which are
used to reduce the energy consumption of energy harvesting WSN nodes and the
purposes of managing harvested energy.

Chapter 4 - Energy Budget Estimators for Long Range IoT nodes The
Chapter 4 introduces energy budget estimation concepts and their application to
long range WSN nodes. A state of the art of different EBE algorithms is presented.
The constraints of power management for LoRa IoT nodes are introduced, and our
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approach to integrate these constraints is presented. The third contribution of this
thesis, a comparison of state of the art EBE algorithms, both in simulation and
implementation on real-world IoT nodes, is detailed.

Chapter 5 - Energy Allocation The Chapter 5 presents the energy allocation
problem for energy harvesting WSN nodes. Multiple solutions to adapt and increase
the QoS of a node are presented, as well as their limits and the use-cases they are
fit for. In particular, the problem of energy allocation for multi-task is detailed, and
multiple solutions are presented to efficiently allocate the energy budget to different
tasks with different energy and QoS requirements.
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Multi-source energy harvesting
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Chapter 1

Energy Harvesting Components

Energy harvesting devices are complex systems, which integrate multiple technolo-
gies. In particular, the low power consumption required by energy harvesting needs
specific design trade-offs, e.g. between cost, size, performance of the solution. This
chapter presents the different component technologies available for the design of en-
ergy harvesting systems, and the trade-offs associated with each technology. More-
over, an analysis of energy harvesting components lifetime is presented to show the
design choices impact on the system lifetime.

1.1 Energy Harvesting Sources

Energy can be harvested from a variety of environmental sources. Each energy
harvesting source can be used for different use-cases, with its own design trade-offs. In
the following subsections, an overview of the different energy harvesting possibilities
is given. For each source, state of the art implementations and applications are
described, to show the activity and technical progress of these devices.

1.1.1 Solar Energy

Out of all energy harvesting sources, solar panel has been one of the most researched
energy source, as shown in the best research cell efficiencies compiled by the Na-
tional Center for Photovoltaics [10]. Indeed, light is nearly everywhere, making it
an ideal energy harvesting source used in multiple systems [11][12][13]. However, in
most of these environments, light is only present intermittently and the node has to
manage the period where no energy is present. Energy from light is harvested using
photovoltaic cells, which provide power when exposed to light. A simple model of
a single solar cell is provided in Fig. 1.1. To form a solar panel, multiple solar cells
can be connected in series to generate a higher voltage or in parallel to generate a
higher current. As solar energy harvesting is an active research field for both small
and large scale systems, a number of materials has been proposed to increase the
energy harvesting efficiency. However, most systems use traditional silicium based
solar cells.

Traditional solar cells are manufactured from crystalline silicon. Solar cells man-
ufactured from mono-crystalline silicon usually yield a higher conversion efficiency
(up to 26.7 % [14]) than poly-crystalline based solar cells (up to 21.9 %), but are
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Figure 1.1: Model of a solar cell.

also more expensive. Their high efficiency and widespread adoption make these cells
a first-rate candidate for light energy harvesting. However, these cells have a lower
efficiency under low illumination [15], and thus are unsuitable for indoor light energy
harvesting. In this case, amorphous silicon solar cells [16] are well suited, as their
efficiency stays relatively similar under low illumination. However, they are more
expensive and have a lower overall conversion efficiency (up to 10.2 % [14]).

Furthermore, multiple new structures have emerged in recent years to create
cheaper and more efficient solar cells. Thin-film solar cells, where a thin film of
photovoltaic material is deposited on a rigid or flexible substrate, have been devel-
oped as a cheaper alternative to traditional crystalline silicon cells. However, they
usually have a lower efficiency (4.3 to 11.0 % [17]) even though recent research shows
promising results with efficiency up to 22.3 % [18]. An alternative to reduce the cost
of photovoltaic energy harvesters is the use of organic solar panels. This technology
enables the manufacturing of solar panels printed on flexible substrate, which can
be easily manufactured [19] but yields a low efficiency (< 4 %). However, recent
research has reported a 15 % efficiency for an organic photovoltaic solar panel [20]
which shows the potential of this technology.

The popularity of solar energy harvesting for energy harvesting WSN has led to
closer integration between the energy source and the power consumer. [21] proposes
the implementation of an array of photodiodes on a chip with associated storage
capacitors. This implementation enables an energy harvesting device in a small form
factor. [22] describes the design of a system which integrates a thin-film solar panel,
a thin-film battery and a battery management circuit implemented using thin-film
components, which enables the addition of solar energy harvesting capabilities in a
plug and play manner.

1.1.2 Thermal Energy

Energy can be generated from a ThermoElectric Generator (TEG) such as shown in
Fig. 1.2 due to the Seebeck effect, a phenomenon which creates a voltage difference
between two different conductors when their temperatures are different. This effect
can also be reversed to create Peltier cells for cooling/heating applications. The
voltage difference is usually directly proportional to the temperature difference. This
voltage is low, from a few tens to a few hundreds of mV, and has to be converted to
a higher voltage in order to be usable by a WSN node, usually in a range from 1.8 to
5.0 V. However, the delivered current is higher than other energy harvesting sources,
and a characterization of commercial thermoelectric modules [23] has shown that up
to a few tens of mW can be extracted from a TEG. In an application, the hot side
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Figure 1.2: Structure of a TEG.

of the TEG is attached to a heat source, while the cold side has to be refreshed,
typically with a heat sink.

The use of TEGs is particularly interesting to get energy from wasted heat. A
good example of such applications is presented in [24]. In this work, a WSN is
deployed in a server farm to monitor temperature, humidity, light, supply voltage
and concentration of carbon-monoxide and volatile organic compounds. Each sensor
is powered by a TEG placed between the Central Processing Unit (CPU) and its
heat sink, thus taking advantage of the energy wasted by the servers. In [25], an
application-specific TEG is developed to take advantage of human heat, which is able
to generate a voltage up to 9 V, to power an electroencephalogram (EEG) sensor with
18 µW. This work shows the potential use of thermo-electricity for biomedical appli-
cations, typically to power sensors such as EEG modules and to ease the maintenance
requirements for the patient.

Thermoelectric generator can also be an alternative to other energy sources when
they are not available. In [26], a TEG is used to power autonomous sensors located in
walls, where no light is available. The sensors are powered by the heat dissipated by
walled-in pipes of a heating plant where hot air is fluxed. A heat sink is mounted on
the cold side to maximize heat exchange with the environment. A similar installation
could be deployed in residential areas near water heaters, where cold and hot water
pipes are usually close to each other.

One of the drawback of TEGs is the complex mechanical and thermal integration.
Indeed, the hot side of the TEG must be placed as close as possible to the heat
source, but electronic components are sensitive to heat and could be damaged if the
temperature of the heat source is too high. [27] proposes an intelligent integration
of the TEG between two Printed Circuit Boards (PCBs) fabricated using aluminum
instead of usual epoxy and copper, shown in Fig. 1.3. The two PCBs act as heat
collector and spreader due to the high thermal conductivity of aluminum. They are
separated by an insulated foam and the electronic components are mounted on the
PCB attached to the cold side of the TEG. This proposed form factor helps packaging
the solution and avoids separating the thermoelectric module from the electronics.
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Figure 1.3: Thermoelectric generator application presented in [27]
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Figure 1.4: Setup of a wind turbine. The alternative voltage delivered by the energy
harvester has to be rectified, typically with a diode bridge.

In a similar way, [28] shows the implementation of a solar TEG by using a TEG
between an aluminum heat sink and a large aluminum panel exposed to the sun.

1.1.3 Wind Energy

Wind turbines are well known for their use in large scale electricity production,
but they can also be used to power WSN node. Wind turbines can easily deliver
tens of mW, which is interesting to quickly recharge a WSN node battery or power
devices that require more energy, such as image sensors. They provide an alternative
voltage, which has to be rectified to be used, as shown in Fig. 1.4. Despite their high
power supply potential, few systems have been designed for wind energy harvesting.
[29] highlights the difficulties and challenges of designing small scale wind energy
harvesting systems. In particular, the size of small scale wind turbines is heavily
constrained, and the small blades severely reduce the aerodynamic force. Moreover,
these small devices are deployed at lower height, where the wind speed is lower and
the wind flow is more likely to be disturbed by the surrounding environment.

Wind energy has a good complementary with solar energy. There is often less
wind on sunny days, when a solar energy harvester gives energy, than on cloudy
days, where the wind turbine can provide energy instead of the solar panel. This
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approach is used to increase the global harvested energy in multiple works. In [30],
for example, the authors use both a solar panel and a wind turbine in a multi-source
energy harvesting setup, backed up by a hydrogen micro fuel cell when both battery
level and harvested energy are low. [31] proposes a platform which can harvest
energy from a solar panel, a wind turbine, a TEG and vibrations. In an agricultural
context, [32] harvests energy from the sun, the wind and the water flow of nearby
irrigation to monitor fields.

Another method for harvesting energy from wind is presented in [33]. In this
work, an anemometer, usually designed to measure wind speed, is used to gener-
ate electricity. The anemometer vertical shaft is used to turn a compact alternator,
which is used to recharge a battery. This approach results in a small energy harvest-
ing device, but the output power is less than 1 mW (less than 700 µW after power
conversion), which is much lower than usual wind turbines.

It must be noted that most wind energy harvesting examples are used in an
outdoor setting, where wind is obviously more present than indoors. However, there
are also indoor use-cases for wind energy harvesting. [34] for example presents WSN
node powered by a wind turbine in an underground tunnel of a metro line. In
this use-case, no other energy sources (solar, thermoelectric, radio-frequency...) are
available other than the wind generated by the train when it passes near the wind
micro-turbine. [35] is another example, where a micro-generator harvests the wind
flow from aeration pipes with magnetic and piezoelectric materials.

1.1.4 Electromagnetic Energy

Since electricity and radio communications are now pervasive, energy can be found
everywhere in the form of electro-magnetic fields. Thus, scavenging this energy
would enable the installation of energy harvesting WSN in a large variety of use-
cases. Due to its wave nature, energy harvested from electro-magnetic field creates
an alternating voltage, which is then rectified and converted to be used by the WSN
node.

RF is now universally used as a communication medium. The ambient electro-
magnetic field can be harvested to power low power devices, with different methods
depending on the distance between the energy harvester and the RF emitter. Near-
field RF energy harvesting typically uses induction to transmit power from a source
to a receiver. Use-cases of such technology typically include Radio-Frequency Iden-
tification (RFID) and Near-Field Communication (NFC) systems, where an active
reader is used to power and read measurements from a passive tag. Since some
of these tags only have to be powered when they are asked for measurement, such
systems can be implemented without use of any battery [36]. Although near-field
energy harvesting is usually used for short range power transmission, the range can
reach up to 5 m [37].

Since the power of an electro-magnetic wave decreases quadratically with the
distance it crosses, and even quicker in non line-of-sight cases, long range RF energy
harvesting usually yields very low power output. Nevertheless, due to the omnipres-
ence of electro-magnetic fields, a large number of work have been published to develop
such technologies. [38] uses RF energy harvesting to power a tag to monitor the heart
of patients. However, this device only harvests 15 µW when an RF source located
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Figure 1.5: Setup of a current transformer used to harvest energy from an AC power
line. The generated voltage is rectified, and a Zener diode is used to protect the
power converter from overvoltages generated by the transformer.

3.1 m away emits 800 mW Equivalent Isotropic Radiated Power (EIRP) at 800 MHz,
which shows the low efficiency of this technology. A similar system presented in [39]
also requires an input power of -19.7 dBm to operate, which is not always available
in the environment. In order to avoid setting up RF emitters for the sole purpose
of transmitting power, with low efficiency, to energy harvesting devices, some works
have focused on the use of ambient field. For example, [40] manages to harvest up
to 8 µA from a 1.584 MHz amplitude modulated radio signal, and [41] harvests up
to 6.93 and 18.75 µW for a 1 and 18 MΩ load, respectively. These power outputs are
promising but are still too small to efficiently power a WSN node.

Electricity flowing through cables also creates an electro-magnetic field around
the conductor. In this case, the energy which can be harvested is a function of the
power flowing through the line. [42], for example, presents a system which harvests
up to 1 or 2 mW power from AC power lines, which is sufficient to supply a low
power device. [43] explores different methods to harvest energy from a high power
cable, notably a magnet attached to a piezoelectric energy harvester which provides
up to 108.24 µW and a flux concentrator, which can provide up to 257 mW. Finally,
[44] uses a current transformer, as shown in Fig. 1.5 to harvest energy from lower
power cables, such as electrical motor power supplies.

1.1.5 Piezoelectricity

Some materials have a property to accumulate electric charges when they are sub-
jects to mechanical constraints. This property can be exploited to create devices
used to generate mechanical vibrations from electricity (e.g. piezoelectric buzzers)
or to generate electricity from mechanical movements. Most piezoelectric devices
in the industry are made of PZT (lead zirconate titanate — Pb Zi Ti) and PVDF
(polyvinylidene fluoride) [45] instead of traditional quartz, which are still used in
watches. Piezoelectric devices generate an alternative voltage, which has to be rec-
tified to be used by electronic systems. However, piezoelectric devices are usually
designed to give a maximum output power at a specific resonant frequency, and thus
have to be properly matched to the mechanical energy source.

The mechanical structure of the piezoelectric device is directly linked to its ef-
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ficiency, its frequency and its output voltage. The output energy can typically be
amplified with the use of a weighted cantilever [46][47]. However, a compromise has
to be made to maximize output power and minimize the form factor at the same
time. This is especially true for small systems for which the size of the energy har-
vester is an important factor. In order to ease integration of such energy harvesters,
the design of MicroElectroMechanical Systems (MEMS) piezoelectric generators has
been considered [48][49]. Although these implementations can easily be integrated
in constrained space, their output power, respectively 16 and 66.75 µW peak power
for the two cited solutions, limits their application.

Despite their mechanical integrations constraints, piezoelectric generators have
found multiple use-cases. Indeed, vibrations sources can be found in industrial con-
text, e.g. produced by machines such as motors, residential areas with the vibrations
from the compressor of a refrigerator, or multiple machines powered objects such as
cars. An industrial solution which can be used anywhere is proposed by EnOcean
[50], which gathers enough energy from a button pressure to send a radio transmis-
sion.

Another source of mechanical energy is the human body. For example, multiple
works [51][52] have explored the use of piezoelectric generators embedded in footwear
to generate electricity from steps, which can then power a wearable device, typically
for health monitoring or sportive measurements. The use of piezoelectric generators
has also been considered as a power source for biomedical devices. In [53], the use of
an in vivo wireless implant sensor powered by a piezoelectric is proposed to detect
excessive implant wear and/or incipient failure in orthopedic implants. By using
the knee movement to power the sensor, the state of the implant can be monitored
and the implant can be changed before failure, which reduces both medical costs
and patient trauma. [54] proposes the use of piezoelectric generators implanted on
the heart, lung and diaphragm of a patient to continuously power a pacemaker, for
which a power failure can be fatal to the patient.

1.1.6 Other Energy Sources

Outside of the previously detailed energy sources, there exists multiple ways to har-
vest energy from the environment. These sources are less used in industrial appli-
cations, due to their limited power output and/or limited use-cases. For example,
[55] proposes the use of ultrasonic-based wireless power transmission for implantable
sensors. A 2-D MEMS energy harvester is designed to harvest energy over a 302 Hz
bandwidth around 38.5 kHz. However, this energy harvester only delivers 22.7 nW
at most, which is not sufficient to power a sensor node.

Energy can also be harvested from vibrations without the use of piezoelectric
materials. Electrostatic energy harvesters rely on a variable capacitor. Vibrations
are used to move a mobile plate of the capacitor, and thus modifying its capacitance.
[56] shows an example where an electrostatic energy harvester is used to power an
array of active pH sensors, which aims to be powered by human motion. Electrostatic
energy harvesters can be fabricated using standard Complementary Metal-Oxyde-
Silicium (CMOS) process, and thus can be integrated with electronic components,
and even on flexible substrate such as in [57]. However, they require an external
power source to initially charge the capacitor, which limits their applications.
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Another way of harvesting vibrations takes advantage of Faraday’s law of electro-
magnetic induction. Electromagnetic energy harvesters use the vibrations to move
a magnet in the magnetic field created by a coil, producing an induced voltage. [58]
presents an example of such a system which harvests 54 Hz vibrations to produce
up to 115.1 µW. Another example presented in [59] uses a mechanical barrier struc-
ture to increase 10 Hz external vibrations to 394 Hz, increasing the efficiency of the
electromagnetic harvester to generate 88.6 mV and 544.7 µW RMS power. Electro-
magnetic harvesters have a high relliability, due to the absence of mechanical contact
in the harvesting process, but are more difficult to integrate than electrostatic energy
harvesters.

Another mechanical energy harvesting source uses the water flow to generate
electricity. [32], for example, uses a commercial hydrogenerator attached to a pipe
in a field to generate up to 18 mW. Water flow energy harvesting is not much used,
notably because the installation of a hydrogenerator implies the alteration of existing
pipes, which can be costly and risky.

Another way to use water as an energy harvesting source is to use naturally
occurring chemical reactions. Seawater batteries are an example of such energy
harvesters, which can be used, for example, to monitor the structure of offshore
oilrigs [60]. In such a system, seawater is used to create a battery with two electrodes,
providing power to the system, making it a good solution for applications in seas
and oceans. Other alternatives include the use of Microbial Fuel Cells (MFC), where
electricity is generated from the microbial activity of the environment. [61] uses the
microbial activity present in sediments at the bottom of lakes, rivers and oceans to
generate up to 3.8 mW. Some other applications of this technology, such as a robot
fed by sludge which can dispose of its own organic waste [62], a mobile phone powered
from urine [63] or a WSN node [64], show the potential of this technology for power
generation.

1.2 Power Conversion

Different power converter architectures can be used to regulate the energy from the
energy harvesting source voltage VIN to a suitable output voltage VOUT , each with
their advantages and shortcomings. The simplest architecture is the Low DropOut
(LDO) regulator. In this architecture, shown in Fig. 1.6, a feedback loop is used to
regulate a pass transistor between the energy source and its load. This system is
cheap, simple, and provides a clean power rail for sensitive electronic components
such as analog components. However, as the current is the same at the input and
output of the circuit, this system has a limited efficiency (VOUT −VDROP )/VIN where
VDROP is the voltage drop across the pass transistor. This inefficiency makes LDOs
unsuitable for small scale energy harvesting systems where very few power is har-
vested and losses have to be minimized, although they can be used in systems where
more energy is harvested [65]. Moreover, this regulator can only reduce a voltage
to another, which makes them unsuitable for multiple low voltage energy sources
such as small solar panels and TEGs. [66] uses LDOs to reduce the quiescent power
consumption of the power converter, but this system can not extract power from a
low voltage energy harvester and can only be used with sources reaching at least
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Figure 1.6: Low DropOut (LDO) regulator architecture.

3.2 V.
An alternative to linear regulators is to use a Switched Mode Power Supply

(SMPS). In this kind of system, a switch between the energy source and the energy
load is rapidly opened and closed. The switching frequency and the duty cycle
(i.e. the percentage of time the switch is closed over a switching period) are usually
regulated to provide a constant output voltage. Multiple topologies exist, which
enable implementation of buck (i.e. VIN > VOUT , see Fig. 1.7a), boost (i.e. VIN <
VOUT , see Fig. 1.7b) or buck-boost (i.e. V min

IN < VOUT < V max
IN , see Fig. 1.7c),

where an inductor is used as a storage element to smooth the current output and
a capacitor is used to smooth the voltage output. Charge-pumps are an alternative
topology which relies on capacitor-diode voltage multipliers, and are usually used for
low currents. SMPS can easily provide good conversion efficiency, from 70% to 90%,
but are more complex and expensive than LDOs and charge pumps, take more space
due to the use of external components (e.g. inductor) and generate noise, which can
disturb sensitive analog and radio components.

As SMPS can boost a low harvested voltage (e.g. from a TEG) to a higher voltage
and have better efficiency than linear regulators, they are usually used in small scale
energy harvesting systems. [67] proposes the use of a charge pump for indoor solar
energy harvesting, but the output power is very limited, from 0 to 80 µW. In [68],
a buck-boost converter is used to provide multiple regulated power rails directly
from an indoor photovoltaic energy harvester. This avoids using multiple regulators,
reducing the system size and increasing its global efficiency. In [69], a buck regulator
is associated with an active bias-flip rectifier for piezoelectric energy harvesting, and
a boost regulator is used to power internal components of the IC. In order to mitigate
the size of the system, one of the drawbacks of SMPS, the authors propose the use of
a shared inductor between the rectifier, buck and boost regulators, with an arbiter
managing access to the inductor. For ultra-low voltage energy sources such as TEG,
[70] proposes a boost converter which accepts inputs from 20 mV to 250 mV, but its
output capacitor has to be pre-charged to 650 mV before it can start operating.

In order to reduce the voltage required by a boost IC to start-up, [71] proposes
a two-stage circuit, where a first boost converter is used to generate energy from
a voltage as low as 0.5 V with a 2 µA current. This energy is used to start-up a
second, more efficient boost regulator, which is used to power the load and charge
the battery. However, this system requires two inductors, which increase the size
of the solution. [72] uses a similar architecture, but the use of a charge pump as
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Figure 1.7: Switched-mode power supply architectures.

the start-up circuit avoids the use of a second inductor. Industry contributions
have also been made, such as [73] where a boost converter which can start from
330 mV and 5 µW is proposed for solar and thermoelectric energy sources. Based
on these works, semiconductor manufacturers have released multiple off-the-shelf
components, such as the LTC3108 [74] from Linear Technology, the BQ25570[75]
from Texas Instruments or the SPV1050 [76] from STmicroelectronics.

1.3 Storing Energy

The choice of energy storage has an important impact on the lifetime and efficiency
of the energy harvesting WSN node. Embedded systems usually rely on Nickel-Metal
Hybrid (NiMH) batteries [11] or lithium based batteries [77] to store energy. NiMH
batteries provide a voltage between 1.1 and 1.4 V with a limited self-discharge, are
packaged in standard form factors and are cheap. Lithium based batteries have a
higher nominal voltage. Standard Lithium-ion (Li-Ion) and Lithium-polymer (LiPo)
batteries provide a voltage ranging from 3.2 V to 4.2 V, and Lithium-Iron-Phosphate
(LiFePo) batteries provide a constant 3.2 V voltage. As electronic components are
usually powered from 3.3 V or 1.8 V power rails, the choice of lithium based batteries
enables using buck regulators to lower the voltage, which are generally cheaper and
less power-hungry than boost regulators.

The lifetime of a rechargeable battery is counted as the number of charge cy-
cles before it loses 20 % of its nominal capacity. A charge cycle is considered as
a complete discharge at standard discharge current, followed by a complete charge
at the maximum charge current. NiMH batteries typically have a lifetime of 500
charge cycles, while Li-Ion/LiPo and LiFePo batteries can hold around 1000 and
2000 charge cycles, respectively. However, it is possible to increase the lifetime of
rechargeable batteries by discharging and charging them with a lower current, or
stopping the charge/discharge before the battery is completely full/empty. It is
commonly estimated that dividing by N the charge/discharge current multiplies by
N the maximum number of charge cycles. Moreover, even when the battery has
reached its maximal number of charge cycles, it is still functional, although with
lower performance and capacity than specified.

The maximum discharge current of a rechargeable battery is usually equivalent to
its capacity C, i.e. a 2400 mAh battery will deliver up to 2.4 A before risking damage.
The charge method, however, differs depending on the chemistry of the battery. The
simplest safe charging method is the trickle charge, where a low current (up to 0.1C)
is used to recharge the battery up to its maximal voltage. For NiMH batteries, the
voltage of the battery is monitored, and the battery is considered to be charged
when a voltage drop is detected. If this voltage can be reliably detected, the charge
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Figure 1.8: Illustration of a CC/CV charging scheme.

current can be increased up to 1C. Lithium based battery are charged with a two
step process, illustrated in Fig. 1.8. In a first step, a Constant Current (CC) of up to
1C is applied to the battery, until it reaches its maximal voltage. In the second step,
a Constant Voltage (CV) equal to the maximum voltage of the battery is applied
until the charging current becomes lower than a threshold, usually fixed to 0.1C. In
the case of LiFePo batteries, the use of the CC step only is enough to recharge the
battery to 95 % of its State of Charge (SOC) [78].

Due to the popularity of rechargeable batteries, a number of off-the-shelf ICs
are available to properly manage the charge and discharge of rechargeable batteries.
Such components can be used to increase the durability of the battery by limiting
its charging current. Some of these devices also include circuitry to estimate the
SOC of the battery. Indeed, the state of charge of these batteries can not be di-
rectly measured, and must be estimated by measuring the current from and to the
battery. Another possibility is to measure the battery voltage and calculate the
SOC based on the charge/discharge curves of the battery, but this method is less
accurate and is specific to each battery model. Finally, most battery management
ICs include circuitry to detect and prevent damages on the battery. Indeed, due to
electrical, thermal and mechanical constraints, batteries can become unstable and
cause damage to the device or user [79].

Energy harvesting devices repeatedly charge and discharge their energy storage.
Thus, the limited number of charge cycles of usual batteries is concerning for long
term deployment of energy harvesting WSN. An alternative is to use supercapacitors,
also sometimes called ultra-capacitors. Supercapacitors are simply capacitors with
high capacitance. Thus, they behave like usual capacitors. Compared to usual
rechargeable batteries, they have a lower energy density and a much higher self-
discharge rate, which is specified in days or weeks compared to months for NiMH
and lithium based batteries. On the other side, supercapacitors can withstand up
100.000 to 1.000.000 charges cycles and deliver a higher current than conventional
batteries. In the context of supercapacitors, C refers to the capacitance of the device,



28 Storing Energy

Vmax

V I

Time (seconds) 

Figure 1.9: Supercapacitor charging curve.

and is measured in Farads (F). The SOC of a supercapacitor of a capacitance C can
easily be estimated by measuring its voltage VC and calculating the stored energy
ER as ER = 0.5 × C × V 2

C . These characteristics make them suitable for energy
harvesting WSN.

Supercapacitor voltages are usually limited to a few volts. Moreover, using super-
capacitors near their maximum voltage increases the self-discharge current. Multiple
supercapacitors can be connected in series in order to create a higher voltage energy
storage. However, a balancing circuit has to be used to prevent charge imbalance
between the different capacitors and to increase the lifetime of the supercapacitors
[80]. This circuit raises the cost of the storage and reduces its efficiency [81], thus a
compromise has to be made. It is also possible to connect supercapacitors in parallel
to increase the global storage capacity, but this increases the self-discharge of the
global storage.

Charging supercapacitor is straightforward and is similar to the charge of a ca-
pacitor. The charge profile of a supercapacitor is shown in Fig. 1.9. The voltage of
the supercapacitor rises linearly while it draws as much current as it can from the
power supply. Once the supercapacitor voltage reaches the power supply voltage,
it starts to draw less current, until it is completely charged. This charge process is
simple to implement and can be very quick if there is sufficient current. However,
multiple works [82][12] show that charging a supercapacitor with pulses of energy
instead of a continuous power supply increases the charging efficiency. It can be
noted that, due to that charge redistribution in the supercapacitor, these energy
storages tend to demonstrate a memory effect, where the voltage increases without
an external power source after a sudden discharge or decreases after a sudden charge
[83].

Energy storage has long been a limiting factor when reducing the size of embed-
ded systems. In order to enable smaller systems, a number of manufacturers has
developed thin-film batteries [84]. Moreover, in order to bridge the gap between
rechargeable batteries and supercapacitors, research has begun on the design of hy-
brid storage called Li-Ion capacitors [85]. The goal of this work is to create an energy
storage which can withstand a large number of charge cycles while keeping a limited
self-discharge rate. Even if some commercial products have been launched [86][87],
these components are still rare, hard to source, and thus are difficult to use in indus-
trial applications. Table 1.1 shows an overview of the advantages and drawbacks of



Energy Harvesting Components 29

Supercapacitor Li-Ion capacitor Lithium battery
Energy density Low Medium High
Internal resistance Low Medium High
Charge duration Very fast Fast Medium
Self-discharge High Low Very low
Charge cycle lifetime ∼100k ∼10k to 100k Up to ∼2k
Safety High High Medium
Cost High Very high Low

Table 1.1: Comparison of energy storages for WSN nodes.

the different energy storage choices. As can be seen, there is no “one size fits all” so-
lution, and the choice of energy storage has to be adapted to the design constraints,
especially in terms of cost, space and performance.

1.4 Measuring Energy

Recent systems rely more and more on batteries, thus energy consumption mea-
surement has become more and more important. In particular, measuring the power
consumption of different parts of the system enables a better knowledge of the global
power consumption. As these measurements require active circuitry, multiples work
propose to use simulation and model-based energy consumption estimations to get
more information on the system power consumption. [88] and [89] propose models
to estimate the power consumption of acquisition, communications and processing
elements of the node. These models rely on measurements of the WSN node hard-
ware components and application profiles to give a more accurate estimation, once
these design choices are defined. Other models [90][91] use instruction level energy
consumption models to calculate the power consumption of the system based on
its application binary, but do not take into account external components, such as
sensors and communications ICs. All these works can be used as power consump-
tion estimation tools during the design process, but can not be used to measure the
harvested energy, nor the immediate power consumption.

The easiest way to measure the power consumption PC is to measure the current
consumption IC and multiply it by the system supply voltage VDD, as PC = IC×VDD.
To measure the current, a shunt resistor can be set in series on the power rail,
creating a voltage drop of IC × R where R is the shunt resistance in Ω. High-side
circuit (Fig. 1.10a) requires a special amplifier to support the high common mode
voltage. Low-side circuit (Fig. 1.10b) can use a cheaper amplifier, but the resistor
creates an unstable ground reference. In the case of WSN nodes, this drop is often
small and has to be amplified before being measured, typically by an Analog to
Digital Converter (ADC) like in [92], which adds a power consumption overhead to
the system. [93] reduces this power consumption overhead by using a Voltage to
Frequency Converter (VFC) and hardware counters to quantify the energy flowing
through the shunt resistor. However, the power consumption of this system is not
quantified, and its 25$ cost is high for industrial applications. This approach is also
used in off-the-shelf components such as the LTC4150 [94], which consumes up to
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Figure 1.10: Shunt resistor circuit configurations.
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Figure 1.11: Schematic of a basic coulomb counter. A comparator periodically emp-
ties a known amount of energy from Cstore capacitor. The number of impulsions is
counted to calculate the total energy from the input to the load.

140 µA at 8.5 V. The precision of such systems can however be limited, as the shunt
resistor size is a compromise between the smallest measurable voltage drop and the
maximum acceptable voltage drop on the power rail.

Another approach is to use a coulomb counter to count the electrical charges flow-
ing from the source to the load, as shown in Fig. 1.11. For example, the BQ2019 [95]
uses this type of approach to measure the long-term charge and discharges of bat-
teries in mobile systems. An original implementation of such a system is presented
in [96], which uses switched capacitors to measure a processor power consumption
at the instruction level. However, this system is implemented using a FPGA and a
host PC, and can not be used on a WSN node. An interesting circuit is presented
in [97]. Using small capacitors as intermediate energy buffers and dynamic threshold
comparator, this system implements an efficient coulomb counter. Its low power con-
sumption (1.7 µA) and high precision, more than 90%, make it suitable for ultra-low
power WSN node. The off-the-shelf LTC3335 [98] is another original implementation
of a coulomb counter, which is integrated with a buck-boost converter to monitor
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Figure 1.12: MPP of a solar cell for two different illumination - Image from Wiki-
media Commonsa, distributed in public domain

ahttps://commons.wikimedia.org/wiki/File:MaximumPowerPoint.svg

the converted energy.

1.5 Maximizing the Harvested Energy

Depending on their load, energy harvesting sources can deliver significantly more or
less power. Therefore, it is important to match the input impedance of the power
converter to the output impedance of the energy source. When these impedances
are matched, the energy harvester delivers its maximum power output. This point is
called the Maximum Power Point (MPP). However, the characteristics of an energy
source varies with its environment, and the MPP is modified. Thus there is a need to
develop Maximum Power Point Tracking (MPPT) techniques, circuits and algorithms
to efficiently track the variations of the MPP. In particular, MPPT implementations
manage the power converter so that the voltage of the energy harvesting source is
equal to VMPP , the voltage of the MPP. Although different energy harvesters have
different I-V characteristics curve (cf. Fig. 1.12) and thus different MPP, similar
MPPT techniques can often be applied.

It can be noted that, due to the popularity of solar energy harvesting for both
small scale WSN systems and large scale solar power generators, a large number
of MPPT systems has been tested with solar panels. However, solar power plants
are subjects to more constraints than small scale devices. In particular, large solar
panels and solar panel arrays can be subjects to partial shadowing, where only a
part of the panel or array is shadowed [99]. Depending on the arrangement of the
panel or array, this can create multiple local MPPs. Thus, complex algorithms are
required to sort the different local MPPs and determine which one effectively delivers
the most power. Energy harvesting WSN nodes, which use smaller panels, are not
affected by this phenomenon. This relaxed constraint enables the use of significantly
simpler and cheaper MPPT implementations.

[100] shows an early implementation of an MPPT technique. In this work, the
I-V curve of a photovoltaic panel is periodically swiped to find the MPP location.
Although this technique can be applied to a vast variety of energy harvesters and
is not affected by partial shadowing, this technique requires significant resources to
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measure both voltage and current provided by the source, store the measurements
and process them. Moreover, swiping the I-V curve takes time during which the
energy harvester is inefficient, but the process has to be repeated as often as possible
to stay locked on a accurate MPP value. Therefore, a design trade-off has to be
made.

Two methods, Perturb & Observe (P&O) and Hill Climbing [101], simplify the
MPPT by supposing that the power curve P = f(U) has a single maximum and
no local maxima. Thus, the power curve is supposed to be rising while the MPP
has not been reached, and falling once the MPP is reached. These methods periodi-
cally try to move the current operating point, and measure the resulting power from
the energy harvester. If the measured power is higher than the previous measure-
ment, the algorithm keeps moving the operating point in the same direction, and
changes direction otherwise. This algorithm is able to dynamically track the MPP
but requires significant components to measure the harvested power. This increases
the cost and power consumption of the solution, although some lower cost analog
implementations can be imagined [102].

A low complexity method is the Fractional Open Circuit Voltage (FOCV) method,
presented in [103]. This method is based on the observation that the voltage of the
MPP VMPP can often be approximated by multiplying the open-circuit voltage VOC

of the source by a coefficient Kfocv fixed between 0 and 1 (around 0.75 for a solar
source and 0.5 for a TEG). Thus, the energy source is periodically disconnected in
order to sample VOC . VMPP is then calculated from VOC and used as a reference for
the power converter until the next VOC sampling. This method, shown in Fig. 1.13,
does not dynamically track the MPP, and induces some power losses since the energy
source is periodically disconnected for a short time. However, its implementation is
simple and low cost, and can easily be adapted for a new power source simply by
modifying the Kfocv coefficient. Moreover, no current measurement of the source
is required, which reduces the number of components to implement this technique.
[104] has presented another method for MPP estimation which relies on VOC measure-
ment, but this technique only slightly improves the MPP tracking efficiency (99.2 %
vs. 98 % for FOCV at 25 °C) while being significantly more complex.

Due to the tight coupling between the power converter control and the MPPT
circuit, a number of circuits has integrated the MPPT implementation directly with
the power converter control circuit. This is the case in multiple research works
[105][106][107], but also in multiple industrial off-the-shelf solutions [76][75]. It can be
noted that the later implementations rely on the FOCV method, due to its simplicity
and the possibility to adapt it to a vast panel of energy sources.

1.6 Electronic Components Lifecycle

Provided with proper power management, energy harvesting enables the deployment
of WSN for a theoretically infinite duration. However, practical lifetime is limited
by the wear life of the components. Thus, a long term WSN deployment has to take
into account the dependability of each element to ensure that the deployed sensors
run as long as required.
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Figure 1.13: Illustration of the FOCV MPPT with VOC = 1.25V and VMPP = 1.05V
from the SPV1050 [76] datasheet.
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Figure 1.14: Comparison of MTBF and MTTF of a product.

1.6.1 Electronic components dependability

Dependability is an engineering field which aims to characterize the availability, re-
liability, maintainability and security of a system. When estimating the lifetime of a
system, a particular attention is paid to its reliability, defined as its capacity to per-
form its expected function during a time interval, in specified conditions. Reliability
is often expressed as the Mean Time Between Failures (MTBF) of a system, although
this notion can only be applied to repairable systems. For non-repairable systems,
the lifetime of the product is expressed with the Mean Time To Failure (MTTF),
which characterizes the mean duration between a repair and the next failure. The
difference between the two notions is shown in Fig. 1.14. Electronic components are
considered as non-repairable, as the manpower and machinery required to diagnose
and repair an IC is significantly more expensive than simply replacing the compo-
nent. By extension, a low cost device such as a WSN node can also be considered as
non-repairable.

In the context of reliability, failures are defined as events which prevent the
device from operating as specified. It can be noted that this definition can vary
depending on the applications. For example, lithium batteries lifetime is specified as
the number of charge cycle before they lose 20 % of their nominal capacity. However,
a battery with 80 % of its nominal capacity is still functional and may still be used
in an energy harvesting WSN node with proper power management, especially if
the energy storage has been properly sized to anticipate its wear. Moreover, the
lifetime specified in charge cycles is specified at specific temperatures and does not
take into account the mechanical and thermal constraints applied to the system.
This illustrates the complexity of reliability estimation.

MTTF and MTBF can be measured in-field, by gathering reliability data of
deployed units. However, this approach is severely limited. In order to gather sta-
tistically reliable data, a very large number of products has to be deployed and
monitored, for a significant amount of time before being able to advertise a certain
reliability. Multiple standards have been proposed which define methodologies for
electronic components MTBF estimation. There is no such method to estimate the
MTTF of electronic subsystems. Due to this, MTBF is often used as an equivalent
to MTTF for non-repairable systems [108].

The oldest MTBF estimation methodology for electronic components, MIL-HDBK-
217 [109], was developed in the early 1980s and last revised in 1995. Although it
tends to underestimate the reliability of recent component technologies due to its age,
it is still one of the most popular MTBF estimation method. The ANSI/VITA 51.1
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Figure 1.15: Evolution of the failure rate during the life-cycle of a product.

specification aims to complement the MIL-HDBK-217 for more recent components.
Other methodologies include the Telcordia SR-332 method, which tends to be sim-
pler and more up-to date, or the IEC 61709:2017 developed by the French industry
which tends to be more complex and much less used. Out of these methodologies,
only the MIL-HDBK-217 original specification is easily accessible, while engineers
must pay a charge to access the others, making it a viable choice despite its age.
Depending on the used parameters and the environmental conditions of the system,
the efficiency of these methodologies can vary greatly [110]

It can be noticed that these methodologies assume that the system operates at
a stable failure rate. However in reality, the failure rate of a system is sensibly
higher during the beginning of its service (infant mortality) and its end of service
(wearout region). The evolution of the failure rate of a system is illustrated in
Fig. 1.15. Moreover, these methodologies only take into account failure modes related
to electronics, and mechanically induced failures, such as solder cracking, are not
considered. Despite these limitations, these methodologies are still widely used to
give an estimation before deployment of a product lifetime and to identify the points
of failure.

1.6.2 MTBF/MTTF of a WSN node

In order to simplify the reliability estimation of a WSN node, MTTF and MTBF
will be considered as equivalent. This estimation relies on the WSN node model
presented in Fig. 1.16. In addition to the components used to implement this model,
real world circuits implement a number of passive components: resistors, capacitors
and inductors. A huge variety of energy harvesting sources can be used, each with
their own electrical, mechanical and thermal constraints which impact the MTTF of
the harvester. Moreover, the environment has a huge impact on the lifetime of the
source. This makes it difficult to model the energy source, and explains why very
few modeling tools for energy harvesting devices exist. Thus, the energy harvesters
will not be included in this study.

Electronic components lifetime can be evaluated through the MIL-HDBK-217
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Figure 1.16: WSN model used for the lifetime estimation of components.

framework, a military standard used to calculate the reliability of military equip-
ments. Each component model is associated with a base failure rate λb, associated
with an environment factor πE, a quality factor πQ and a temperature factor πT ,
calculated with a formula adapted to the component. Different models can also have
more specific associated risk factors. Thus, active components take into account the
age of the component through a learning factor πL, resistors use a power factor πP

and a power stress factor πS, and capacitor models include a capacitance factor πC ,
a voltage stress factor πV and a series resistance factor πSR. These risk factors πi are
calculated according to formulas and abacus which are specific for each component
model. The complete failure λp, expressed in failures/106 Hours, is calculated as the
product of the base failure rate and all risk factors πi that apply:

λp = λb ×
�

πi (1.1)

The lifetime L of the component in hours as a function of the failure rate λp can
then be calculated as:

L(λp) =
106

λp

(1.2)

All components lifetimes are calculated for temperature ranging from -20 °C to
55 °C. The use of commercial quality components is assumed in a Ground Fixed
(GF) environment, as defined by the MIL-HDBK-217 standard.

Active components models used in this lifetime evaluation are shown in Table 1.2.
Power components are modelled as purely analog ICs, where a SMPS converter is
assumed to be more complex than a LDO, and an energy harvesting Power Man-
agement Integrated Component (PMIC) is more complex than a SMPS due to the
added functionalities. Due to the complexity of modern ICs, radio communications
and sensors ICs are modelled as hybrid components composed of an analog subsys-
tem, corresponding to the core functionality of the IC, and a digital subsystem which
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Component Parameter Value

LDO
Die Complexity Failure Rate

MIL-HDBK-217 section 5.1, MOS
Linear IC with 101 to 300 transistors

Number of functional pins
3 to 8 pins, non-hermetic DIP,
PGA or SMT package is assumed

SMPS
Die Complexity Failure Rate

MIL-HDBK-217 section 5.1, MOS
Linear IC with 301 to 1000 transistors

Number of functional pins
3 to 10 pins, non-hermetic DIP,
PGA or SMT package is assumed

PMIC
Die Complexity Failure Rate

MIL-HDBK-217 section 5.1, MOS
Linear IC with 1001 to 10000 transistors

Number of functional pins
6 to 24 pins, non-hermetic DIP,
PGA or SMT package is assumed

Radio IC
Die Complexity Failure Rate

MIL-HDBK-217 section 5.5, hybrid microcircuit
composed of an analog and digital subsystem

Number of functional pins Not applicable
Circuit Function Factor Microwave, f >1GHz

Radio IC
analog

subsystem

Die Complexity Failure Rate
MIL-HDBK-217 section 5.1, MOS
Linear IC with 1001 to 10000 transistors

Number of functional pins
Not applicable as part of a hybrid
microcircuit

Radio IC
digital

subsystem

Die Complexity Failure Rate
MIL-HDBK-217 section 5.1, MOS
Digital IC with 3001 to 10000 gates

Number of functional pins
Not applicable as part of a hybrid
microcircuit

Sensor IC
Die Complexity Failure Rate

MIL-HDBK-217 section 5.5, hybrid microcircuit
composed of an analog and digital subsystem

Number of functional pins Not applicable
Circuit Function Factor Linear, f <10MHz

Sensor IC
analog

subsystem

Die Complexity Failure Rate
MIL-HDBK-217 section 5.1, MOS
Linear IC with 301 to 1000 transistors

Number of functional pins
Not applicable as part of a hybrid
microcircuit

Sensor IC
digital

subsystem

Die Complexity Failure Rate
MIL-HDBK-217 section 5.1, MOS
Digital IC with 3001 to 10000 gates

Number of functional pins
Not applicable as part of a hybrid
microcircuit

Table 1.2: Models used for active components lifetime assessment.
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models the digital control and communications interfaces included in the component.
Micro-controllers, which include a high number of functionalities, are modelled as
a hybrid system composed of a CPU subsystem, a RAM memory block, a ROM
memory block, a digital peripherals subsystem and an analog peripherals subsystem.
The parameters of the different micro-controller subsystems scale with the CPU sub-
system, so that an 8-bit CPU is associated with smaller memories and less complex
peripherals than a 32-bit CPU. The different micro-controller configurations are as
follows:

• 8-bits: analog and digital peripherals subsystem is estimated with MIL-HDBK-
217 section 5.1, respectively as a MOS linear IC of 101 to 300 transistors and a
MOS digital IC of 1001 to 3000 gates, RAM and ROM memories are estimated
with MIL-HDBK-217 section 5.2, respectively as MOS SRAM and MOS EEP-
ROM of 16 kbits to 64 kbits, with 500 to 1000 EEPROM programming cycles
during the life of the product.

• 16-bits: analog and digital peripherals subsystem is estimated with MIL-
HDBK-217 section 5.1, respectively as a MOS linear IC of 301 to 1000 tran-
sistors and a MOS digital IC of 1001 to 3000 gates, RAM and ROM memories
are estimated with MIL-HDBK-217 section 5.2, respectively as MOS SRAM
and MOS EEPROM of 64 kbits to 256 kbits, with 500 to 1000 EEPROM pro-
gramming cycles during the life of the product.

• 32-bits: analog and digital peripherals subsystem is estimated with MIL-
HDBK-217 section 5.1, respectively as a MOS linear IC of 1001 to 10000 tran-
sistors and a MOS digital IC of 3001 to 10000 gates, RAM and ROM memories
are estimated with MIL-HDBK-217 section 5.2, respectively as MOS SRAM
and MOS EEPROM of 256 kbits to 1 Mbits, with 500 to 1000 EEPROM pro-
gramming cycles during the life of the product.

The active component lifetimes calculated from these ranges are shown as box
plots on a logarithmic scale in Fig. 1.17, with the median indicated on the graph.
Fig. 1.18 shows how a box plot is traced.

Passive components use different modeling parameters than active components.
Inductors are modeled as coils, and only use the temperature, quality and environ-
ment coefficients πT , πQ and πE. Resistors are modeled as fixed film resistors. In
IoT applications, where the power consumption must be as low as possible, there is
always little power dissipated in resistors. Therefore, resistors are modeled for power
dissipation ranging from 1 µW to 1 mW with 10 values per decade, and for a power
stress, defined as the ratio between real dissipated power and maximal dissipated
power, ranging from 0.001 to 0.05 with a 0.001 step between values. Capacitors are
modeled as fixed value Multiple Layer Ceramic Chip (MLCC) capacitors, and the
series resistance factor πSR can thus be ignored and set to 1. The voltage stress is
defined as the ratio between the effective capacitor voltage and the nominal capacitor
voltage. In these calculations, it ranges from 0.05 to 0.65 with 0.05 steps between
values. The tested capacitances range from 1 pF to 1 F, with 12 values per decade,
calculated with the E12 Series from the IEC60063:2015 standard [111]. The compo-
nent lifetimes calculated from these ranges are shown as box plots on a logarithmic
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Figure 1.17: MTTF estimation, in years, of active components.

scale in Fig. 1.19, with the median indicated on the graph. As can be seen in this
graph, passive components are resistant to wear-out, especially if they are properly
dimensioned to avoid too much power of voltage stress.

Energy storages are not included in the MIL-HDBK-217 framework. Typically,
lithium battery lifetime is affected by the environment temperature, its mean SOC,
the depth of discharge of each charge/discharge cycle, the charging and discharging
current, its age and mechanical constraints. Due to this complexity, there is still no
MTTF model for lithium batteries which does not require consequent measurements.
In [112], the authors propose a model which is able to predict the lifetime of the
battery based on its temperature, mean depth of discharge, mean SOC and age.
Although this model requires measurements to calibrate it to a specific battery model,
these measurements are provided for the tested samples. This enables us to obtain
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Figure 1.18: Box plot explanation.
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Figure 1.19: MTTF estimation, in years, of passive components.

lifetime results for different parameters, even though it only concerns a single specific
reference. Due to the number of parameters in this model, it is necessary to reduce
the number of input values to avoid long calculation times. Therefore, the tested
temperatures range from -20 °C to 55 °C with steps of 5 °C instead of 1 °C. The age
of the battery is linked to the duration of a discharge cycle, which is set between
10 s to 1 full day. The Depth of Discharge (DoD) varies from 0.01 (corresponding to
1 % discharge) to a full charge/discharge, which can be calculated from the SOC as
DoDMAX = 1− 2 ∗ |SOC − 0.5|.

Supercapacitors are simpler, as they are mainly affected by their voltage and the
environment temperature and humidity. Even though no lifetime estimation model
has emerged from the academic world, rough estimation models have been proposed
by supercapacitor manufacturers, such as [113]. This model applies a voltage stress
factor and a temperature factor to a base MTTF value of the supercapacitor, ex-
pressed as a couple [L, T ] where L is the number of hours before the supercapacitor
is considered defective, and T the temperature used to characterize this MTTF. For
this estimation, the temperature varies from -20 °C to 55 °C with 1 °C steps, and
voltage stress ranging from 0.05 to 0.95 with 0.05 steps. These stress factors are
applied to a range of [L, T ] tuple from commercial supercapacitor datasheets. The
results of lifetime estimation for both lithium batteries and supercapacitors is shown
in Fig. 1.20 on a logarithmic scale, with the median indicated on the graph. It can
be noted that, for this estimation, the end-of-life of energy storage is assumed to
correspond to an energy capacity reduced by 20 % compared to the nominal value
of the storage. In many cases, the energy storage is still functional, although with
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degraded performance, and could still be used if the power management software
takes into account the wear-out of the storage.

��
��
���
��
���
��

���
���
��
��
���
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

����� ����

Figure 1.20: MTTF estimation, in years, of energy storage components.

Fig. 1.21 shows the MTTF of all components on the same graph, on a logarithmic
Y-axis. It can be quickly observed that the energy storage is the weak point of
energy harvesting devices. In particular, the use of lithium batteries severely impacts
the lifetime of the node, due to the sensitivity of this component to temperature
variations. For extreme use-cases, where the battery is subject to short (tens of
seconds) deep charge/discharge cycles at extreme temperature, the wear-out of the
battery is particularly low. However, this use-case rarely happens in real energy
harvesting use-cases if the energy harvester and storage are properly dimensioned.
This also shows the advantage of supercapacitors to design resilient energy harvesting
systems.

This work also shows that, even if a power manager can be used to ensure a
theoretically infinite lifetime to the node, the real lifetime of a node will still be
limited in time by the wear-out of its components. Therefore, there is a risk for the
lifetime of the node to be limited by poor hardware design choices instead of power
management strategies. Thus, it is necessary, when designing an energy harvesting
sensor node, to ensure the proper choice of component so that the wear-out of the
system does not become the limiting factor. For use-cases which require an ultra-
low cost, and thus lower quality components, it can be interesting to use the power
manager as a mean to maximize the QoS of the node, instead of maximizing its
lifetime.
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Figure 1.21: MTTF comparison for all components of an energy harvesting device.

1.7 Conclusion

In this chapter, we presented the different components used in the design of an
energy harvesting system, and the associated trade-offs. Additionally, we proposed a
lifetime assessment of the different energy harvesting system building blocks, based
on the MIL-HDBK-217 specifications and state of the art energy storage models.
To the best of our knowledge, this is the first lifetime analysis applied to energy
harvesting WSN nodes with theoretically infinite lifetimes. Using this analysis, we
show that the theoretically infinite WSN lifetime, advertised by the use of a power
manager, is in reality limited by the lifetime of the components, and especially of
the battery storage. Thus, we show that care should be taken to the energy storage
choice in order to properly ensure a long WSN autonomy.



Chapter 2

Multi-Source Energy Harvesting

Energy harvesting has been an active area of interest in recent years, in both aca-
demic and industrial worlds, notably to deploy WSN in remote locations [114][115].
While most early energy harvesting architectures focus on the use of a single en-
ergy source, recent systems attempt to simultaneously harvest energy from multiple
heterogeneous sources. This chapter presents state-of-the-art energy harvesting plat-
forms, and our proposal for a low cost multi-source energy harvesting architecture.

2.1 State of the Art Energy Harvesting Platforms

The performance of these systems can be compared on many different aspects. Com-
mon metrics include the harvesting, power conversion and charging efficiencies of the
system, but also the cold boot time of the platform, i.e. the time it takes for the
platform to boot from fully depleted energy storage elements. In many use-cases, the
cost, size and integration of the solution also play a significant role. In this section,
we review the existing energy harvesting platforms and their characteristics.

2.1.1 Single Path Architecture

The most straightforward energy harvesting architecture is called the single-path
architecture. In this architecture, the energy storage, which can be either a lithium
battery or supercapacitor, acts as an energy buffer between the energy harvesters
and the power supply of the node. All harvested energy charges the energy storage
which powers the node. Fig. 2.1 shows a block diagram of such an architecture.
This architecture is simple and straightforward to implement, while limiting its cost.
However, this architecture increases the booting time of the platform. Indeed, the
power supply of the node requires a minimum input voltage to operate, which will
not be reached until the energy storage is sufficiently charged. A bigger energy
storage will provide more autonomy but will increase the booting time, while a
smaller energy storage will charge faster but decrease autonomy. This drawback can
be worked around by charging the energy storage just before deploying the WSN.

During the recent years, multiple energy harvesting platforms which use this
architecture have been proposed. Heliomote [11] is an example of such a platform,
aiming to bring energy harvesting capabilities to an off-the-shelf sensor node (Mica2
motes). This platform is designed to harvest energy from solar panels. Energy
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Figure 2.1: Single path architecture for energy harvesting node

is stored in two NiMH batteries, which voltage ranges from 2.2 V to 2.8 V. The
batteries are rated for 500 discharge cycles only, which limits the lifetime of the
platform. Moreover, this platform does not use a MPPT circuit. Instead, a diode is
used to protect the 4.0 V solar panel from reverse current, and to keep the voltage
of the solar panel between 2.9 V and 3.5 V, closer to the MPPT. This approach is
inexpensive to implement but creates losses due to the voltage drop of the diode.

Zebranet [77] shows an application example of such a system. In this work, a WSN
record GPS position data of long-term animal migrations. The nodes are powered by
a solar array of 14 solar modules, where each module includes a boost converter and
produces up to 7 mA at 5 V. An MPPT circuit based on a hysteresis comparator
is implemented in each module. This method is inexpensive but lacks precision
compared to state-of-the-art MPPT circuits. The use of piezoelectric harvesters
and mechanical conversion techniques are also considered, but are dismissed due to
mechanical and packaging considerations. The energy is stored in a 2 mAh lithium-
ion battery with a voltage varying from 3.0 V to 4.2 V, which is able to power the
node for about 3 days. Although the lithium-ion batteries are rated for 1000 charge
cycles, which is higher than NiMH batteries, the lifetime of the system is still limited
by its energy storage. Moreover, Zebranet does not provide any power management
scheme outside of power consumption reduction, which makes it heavily reliant on a
sunny weather.

Everlast [12] increases the system lifetime of the platform by replacing the battery
by a supercapacitor. This solar powered platform uses a custom designed voltage
regulator to efficiently charge the supercapacitor. Everlast uses energy pulses to
charge the energy storage up to 400% faster than direct charging, where a current
limited energy source is directly connected to the supercapacitor. Moreover, the
power conversion circuit includes a MPPT function, which sweeps the I-V charac-
teristic of the source to get the MPP. This significantly increases the conversion
efficiency of the platform. However, the MPP implementation is done in software,
and requires multiple components to stay active. Thus, the control circuitry of this
platform consumes over 2 mW, which is too high for a variety of energy harvesters,
especially in indoor harvesting systems.

In [116], Weddell et al. show the design and implementation of an energy harvest-
ing system specifically designed for indoor solar panels. The system uses a buck-boost
topology and integrates a MPPT circuit, which periodically samples the open circuit
voltage of the solar panel to calculate its MPP voltage. The circuit reaches over 70%
efficiency under SPICE simulations and shows a 30% improvement over diode-only
system in practical tests. However, this system requires further adaptations to be
usable with low voltage sources such as thermoelectric generators and alternating
current sources such as wind turbines and piezoelectric elements. It is also subject
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Figure 2.2: Dual path architecture for energy harvesting node

to the limitations of single path energy harvesting systems.
The cold boot problem has been recognized and some single path architecture

implementations try to mitigate its effects. In TwinStar [117], Zhu et al. address
the instability of the voltage regulator during cold boot. The addition of a Schmitt
trigger ensures that sufficient energy has been harvested before starting the regulator.
To limit the power consumption overhead of this solution, this boot-up circuit is
powered by an independent solar panel which stores its energy in a 47 µF capacitor.
However, this second solar panel increases the cost of the solution, and TwinStar
does not accelerate the cold boot time. Solar Biscuit [118] defines multiple operating
modes, in order to allow the node to boot with lower energy in a degraded mode.
This software solution reduces the boot time but still requires significant energy to
power the main micro-controller and radio module.

2.1.2 Dual Path Architecture

In order to tackle the limitations of single path architectures, dual path architectures
have been developed. In a dual path architecture, two energy storages, called primary
and secondary storage (PS and SS), are used instead of only one, as shown in Fig. 2.2.
The PS usually has a small energy capacity and is used to power the node, while the
SS has a higher capacity and is not directly connected to the node. The harvested
energy is used to charge the PS in priority, and the SS is only charged with the
surplus energy when the PS is fully charged. On the other hand, the SS is used
to recharge the PS when environment energy is insufficient. The use of a small
energy storage for the PS enables a fast charging, thus a fast cold boot from empty
storages. The use of a bigger energy storage as the SS enables a long operation even
when environment energy is lacking, without slowing the booting time. However,
this architecture requires circuitry to route energy between the different elements,
which adds to the cost and complexity of the energy harvesting solution. Due to
this, a large number of current energy harvesting systems still uses a single path
architecture.

Prometheus [119] is an example of an early dual path energy harvesting system.
This platform uses a Li-Ion battery for long term energy storage and uses a super-
capacitor as the PS in order to increase the lifetime of the system. By using it as an
SS, the lithium battery is charged and discharged less often, increasing its lifetime.
On the other hand, the PS is charged and discharged more often, but this does not
affect the lifetime of the system as a supercapacitor is used. As these components
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have a higher leakage current than lithium-ion batteries, an energy model is pro-
posed to define a trade-off between the supercapacitor characteristics and the power
consumption of the node. However, this circuit does not integrate an MPPT circuit,
which limits its harvesting efficiency. This platform still suffers from a long boot
time, which is due to the high start-up voltage of the regulator.

DuraCap [120] directly addresses the cold booting problem and MPPT for dif-
ferent solar panels. The harvested energy is used to charge a small capacitor as the
PS, which can quickly boot the node, while the SS is made of an array of superca-
pacitors. DuraCap uses a I-V curve based MPPT circuit, similarly to Everlast [12].
However, the control logic of the MPPT is implemented with four hardware analog
comparators, instead of software ones. This reduces the power consumption over-
head of the MPPT circuit and thus rises its efficiency. The MPPT circuit can be
re-calibrated through digital potentiometers by the node when a new solar panel is
plugged. EscaCap [13] extends this work by making the supercapacitor array recon-
figurable, enabling the node to connect the supercapacitors in series or parallel. This
can be used to improve the charging speed of the array, reduce its leakage energy,
and use more energy from the supercapacitors when they have a low energy level.

In [121], Le et al. detail the design of a dual path energy harvesting system using
off-the-shelf components, in order to extend the existing PowWow [122] platform. In
this work, a capacitor of appropriate size is used for both PS and SS and the platform
harvests energy from a thermoelectric generator. In [123], this work is extended to
use either a solar panel or a thermoelectric generator as its energy harvesting source.
Although this makes the platform more flexible, this rules out the use of a simple
MPPT circuit, as the possible sources have different characteristics and a different
MPP, which limits the harvesting efficiency of the platform. This extended work also
describes a method to accurately determine the size of both PS and SS, which takes
into account the leakage current of the supercapacitor and the power consumption
of the node.

[28] shows a variation of the classical dual path architecture for an environmen-
tal measurement system which harvests its energy from a thermoelectric generator.
This circuit is based on the off-the-shelf LTC3108 [74] IC, an ultra-low voltage boost
converter which integrates power management circuitry which can be used to imple-
ment a dual path system. By default, the component first outputs a stable regulated
voltage, which can be used with a PS, and charges a supercapacitor used as SS after-
wards. The SS is then used to maintain the output voltage if the harvested energy
is not sufficient. However, Dias et al. bypass this power management circuit to im-
plement their own, where only the energy management circuit is powered by the PS.
The rest of the node is powered by a second regulated output of the LTC3108 when
harvested energy is sufficient, or switches to use the supercapacitor when there is not
enough energy. Although this system is not a pure dual path architecture, as only a
part of the node uses the PS, this hybrid approach reduces the energy management
circuit power consumption overhead and increases the autonomy of the system, when
no energy is harvested, to 266 h, compared to 136 h when using the LTC3108 dual
path energy management circuit. One drawback of this system, however, is that no
MPPT is used, which limits the efficiency of the harvesting system.

More recently, [124] shows an example of a state-of-the-art dual path energy har-
vesting system dedicated to solar energy harvesting. This system aims at minimizing
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the cold boot time under very low illumination level. It uses standard capacitors as
primary energy buffer, backed by a backup supercapacitor as SS, and details the
methodology used to properly size both primary and secondary storages. The im-
plementation is based on off-the-shelf components, which makes it accessible. The
novelty of this circuit lies in a day/night detector which is used to route energy be-
tween the different elements. The full node has a power consumption of less than
25 µW in sleep mode, which makes it last 81h in total darkness. However, this sys-
tem does not include a MPPT circuit, limiting its efficiency. It also does not use
any voltage regulator, which means the power supply of the node will not be stable
over time. This can cause problems for some radio modules and components which
require a certain voltage to ensure output power.

2.1.3 Multi-Source State of the Art Architectures

While a significant number of energy harvesting systems are dedicated to a single en-
ergy transducer, a recent trend is to design multi-source energy harvesting systems.
This is especially useful to ensure the service continuity in harvesting environment,
for example by combining complementary energy sources such as a wind turbine and
a solar panel. Several systems, such as [125], switch from an energy source to another
when the former source does not give energy (e.g. a solar panel during night time).
In this thesis, the definition of multi-source energy harvesting system is limited to
systems which can simultaneously harvest energy from multiple energy sources, thus
increasing the total harvested energy. While some works [126] assume that the total
harvested energy is simply the sum of energy from the different sources, the different
energy sources used in IoT systems exhibit very different characteristics. This makes
combining different energy sources non trivial. Multi-source energy harvesting sys-
tems can be based either on single-path or dual-path architectures, as they simulate
a combined energy harvesting source and do not require completely new energy har-
vesting architecture. This enables designers to capitalize on previous works more
easily.

An early multi-source management circuit is proposed in [127]. This system
uses a solar panel and considers its battery as a second energy source. In this
work, the power sources are not combined but connected to one or more matching
power consumers, which can be the microelectronic components, sensors, wireless
transmission module or battery charger of the node. The power sources are connected
to power consumer subsystems through a switch array called Power Utility Maximizer
(PUMA), that includes a switch unit for each consumer subsystem. The switch array
can be dynamically reconfigured with control logic. Although the system manages
to balance the power consumption between the battery and solar panel and could
theoretically be used for multi-source energy harvesting system, it is complex to
implement. Indeed, the complexity of the switch unit increases with the number
of both energy sources and consumers. This makes it impractical to add energy
sources after design, as it requires a redesign of the switch units. Moreover, the
active circuitry of the PUMA switch induces a power consumption overhead, which
is not quantified in the original publication.

The simplest way to combine energy sources is to connect them through diodes,
as shown in Fig. 2.3. [128] is an implementation of this architecture, where an indoor
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Figure 2.3: Diode ORing architecture, as presented in [128]

solar panel and a thermoelectric generator are connected through Schottky diodes
to an energy converter. The use of a single energy converter aims at reducing the
cost, form factor and design complexity of the system. The system is based on a
single path architecture which uses a 0.1 F supercapacitor as storage, and targets
deployments in office and factory settings, where indoor light is intermittent and
machines constantly emit heat. This system uses an MPPT circuit with a fixed
reference voltage which is cheap and power efficient. However, this implementation
lacks flexibility, as using a different solar panel or thermoelectric generator would
change the MPP, and would require a redesign of the MPPT adapted to the new
MPP. This circuit does not track the MPP of each source individually but uses an
MPP of the combined energy sources, which means that each source will not have its
best efficiency. Moreover, the calculated efficiency of 90% does not take into account
the 135 µW power consumption of MPPT control circuit, which is a significant power
overhead. Additionally, the power losses in the diodes is not quantified. Indeed, the
0.2 V voltage drop of the diodes reduces the harvested energy.

Another approach of multi-source energy harvesting based on diodes is presented
in [49]. This system uses both light and vibration energy to charge a supercapacitor.
The solar panel is associated with an MPPT circuit using the fractional open circuit
algorithm, while the piezoelectric generator is associated with a buck-boost regulator
which acts as an impedance matching circuit. These circuits are fully implemented
using analog components, in order to reduce power consumption compared to digi-
tally controlled implementations. This enables both sources to harvest energy close
to their MPP, thus maximizing their energy harvesting efficiency. However, the use
of an impedance matching circuit for each source increases the cost of the solution.
Moreover, this system suffers from the same drawback as other diode based multi-
source energy harvesting system: the diode induces a voltage drop and thus power
losses.

Ambimax [31] is a multi-source energy harvesting system which can combine
a solar panel, a wind turbine, a thermoelectric generator and a piezoelectric gen-
erator. Each energy transducer is connected to a supercapacitor through a boost
regulator with a custom MPPT circuit. This circuit is fully implemented with ana-
log components and no digital control, which lowers its current consumption to less
than 500 µA. All supercapacitors are connected together through diodes, as shown
in Fig. 2.4, to form a Reservoir Capacitor Array (RCA). This RCA is used to power
the node and charge a back-up LiPo battery. New energy harvesting sources can be
simply added by connecting a new energy harvesting subsystem to the RCA with a
diode. In this design, each supercapacitor has to be properly sized to its associated
source in order to ensure that its terminal voltage is not always lower than the other



Multi-Source Energy Harvesting 49

Source 1

Energy
storage

WSN
node

Power converter

MPPT

DC/DCSource 2

Power converter

MPPT

Source 3

Power converter

MPPT

Figure 2.4: Diode ORing with multiple power converters [49][31]

supercapacitors voltage in the RCA, which would prevent it from delivering current.
However, the use of diodes to connect the supercapacitor to the RCA creates some
power losses, which reduce the efficiency of the multi-source combination circuit.
Moreover, supercapacitors are expensive components, and the use of multiple super-
capacitors significantly increases the cost of the system, which can reduce its interest
for commercial applications.

Inspired by this system, [32] proposes a WSN node for agriculture monitoring,
powered by a solar panel, a wind turbine and a small hydrogenerator. Each energy
harvesting source is connected to a capacitor which is used as a charge reservoir.
The voltage of this capacitor is monitored by a comparator with hysteresis. When
this voltage rises above an upper threshold, a boost converter is powered on and dis-
charges the charge reservoir into a NiMH battery. Once the charge reservoir voltage
falls under a lower threshold, the boost converter is turned off and the battery is dis-
connected. These pulses can be counted to estimate the harvested energy. By setting
the thresholds of the comparator near the MPP of the energy source, this system
constantly operates the energy transducer around this point and thus maximizes har-
vesting efficiency. Also, charging with this circuit is done with energy pulses which
increases the energy transmission. This system does not need diodes because the
boost converters isolate the energy source from the battery when they are powered
off. Current flowing back from an energy harvester to another is only possible when
two or more converters are active at the same time. Thus, the system is designed
so that the battery voltage is always lower than the converter output voltage, which
ensures the current will always flow towards the battery. The main drawback of the
MPPT scheme used, which relies on a hardware implemented comparator threshold
and requires a redesign if another energy source is used.

Multiple other systems use a power converter for each energy source, in order to
maximize the harvesting efficiency. More recently, CAPNET [129] reuses a similar
architecture for an outdoor wireless node powered by light, wind and thermal gra-
dient, while [130] uses this architecture with a solar panel and a wind turbine in a
dual-path architecture. [131] proposes a standardized plug and play interface where
each energy harvesting module has to regulate its output to a maximum of 4.5 V and
prevent back-flow of current with a diode or switch. The goal of this interface is to
enable the node to identify its different energy harvesting sources in order to better
manage its energy resources and dynamically reconfigure itself when energy sources
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are added or removed.

In order to reduce the form factor and power consumption overhead of the multi-
source energy harvesting system, it is possible to develop a dedicated Application
Specific IC (ASIC) instead of a PCB level solution. For example, [132] is an ASIC
which can harvest and combine energy from a solar panel, a thermoelectric genera-
tor, a piezoelectric generator and an electromagnetic induction harvester operating
on the 13.56 MHz band. In this component, called MultiHarvesting Power Chip
(MHPC), each energy harvesting source is connected to an appropriate power con-
verter. Each power converter can be connected to its own local storage device or a
single common storage device. The power converters implemented are LDOs, which
are cheaper to implement and do not require external passive components, but are
much less efficient than SMPS converters. Moreover, if reverse current protection
is not implemented, current can flow back from the output of the converter to the
energy source if the voltage difference between output and input is higher than the
LDO transistor parasitic diode threshold. In this design, no mention of reverse cur-
rent protection is made. Moreover, this IC does not integrate MPPT circuits, which
limits the harvesting efficiency of the solution.

[133] is another example of integrated circuit for multi-source energy harvesting
from a solar panel, a thermoelectric generator, a piezoelectric generator and a radio-
frequency energy harvester over the 935 MHz band. Each energy harvesting source
uses its own power conversion chain, which outputs power to its own capacitor. The
four capacitors are connected in series in order to add their voltage, and the capacitor
stack is connected to a supercapacitor which powers the load. In this work, the solar
panel has a primordial importance as it is responsible for the startup of the complete
IC. As such, the solar panel energy harvesting chain integrates an MPPT circuit
based on the P&O algorithm presented in Section 1.5. However, the other energy
harvesting sources do not use any MPPT circuit. Moreover, this IC has only been
tested in simulations, and has not been fabricated. Thus, it has not been validated
in real world conditions.

An alternative approach, shown in Fig. 2.5 is proposed in [134]. In this work, a
multi-input energy harvesting power converter ASIC is designed to combine energy
harvested from a solar panel, a thermoelectric generator and piezoelectric generator.
The IC integrates a Hill Climbing MPPT tracking circuit for its photovoltaic input
and adapts the duty cycle of the regulator to match the impedance of the thermo-
electric and piezoelectric generators. This component adapts the inductor sharing
design developed in [69] for heterogeneous energy sources. A switch matrix is used
to connected one energy source at a time to the converter, which is reconfigured as a
boost or buck-boost converter to match the energy transducer. Each energy source
is connected to a capacitor, so that the harvested energy is not wasted when it is
not connected to the power converter. The IC also implements a dual path archi-
tecture which output a regulated voltage to a primary storage and an unregulated
power output to a secondary storage supercapacitor. The solution minimizes cost
by reducing the number of required external components. However, manufacturing
a component is expensive and the application must be produced in volume in or-
der to be economically efficient. Moreover, the switching pattern between sources is
hard-coded, which limits the flexibility of the solution when choosing energy sources.
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Figure 2.5: Shared inductor architecture presented in [134], configured for photo-
voltaics

2.2 A New Approach to Multi-Source Energy Har-

vesting

When designing an industrial solution, there is interest in developing a solution as
generic and flexible as possible, in order to reduce Non-Recurring Engineering (NRE)
costs as much as possible. However, generic designs often show less performance,
and a compromise has to be made between flexibility and performance. In the
context of energy harvesting, this translates into having to balance between the
energy harvesting and power conversion efficiencies on one side, and the possibility
to use any energy source, or even multiple sources on the other side. In this section,
we present the design of a multi-source energy harvesting platform aimed for use with
an existing commercial IoT node. This platform should be able to be adapted to new
designs with minimal modifications while keeping a competitive efficiency. In order
to ease its industrialization, the platform should rely on off-the shelf components and
have a low cost.

2.2.1 Multi-Source Switching Architecture

A way to reduce the cost of a multi-source energy harvesting solution is to use a
single power converter, instead of using one per energy source. Fig. 2.6 shows the
block diagram of our proposed solution. In this system, a switch matrix circuit is
used to select which energy source is connected to a single PMIC at a time. This
component integrates a voltage converter, a MPPT circuit and a battery charging
circuit in a single package. To avoid wasting harvested energy when an energy source
is not connected to the PMIC, a capacitor is used as an energy buffer. When an
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Figure 2.6: Multiple source switching system.

energy buffer is connected to the power converter, the latter draws as much current as
it can from the buffer to charge the main energy storage and power the WSN node.
When the energy buffer is emptied, its switch is opened and a new energy buffer
is selected. Contrary to previous work such as [134], a programmable controller is
used to decide which source should be connected to the PMIC at each time. This
programmable solution can be used to dynamically adapt the switching policy to the
different sources and new environment conditions.

This system uses a single path architecture. The power path contains two SMPS
converters, which reduces the overall power conversion efficiency. The first is a buck-
boost converter, embedded in the PMIC, used to transform the input voltage and
charge the energy storage. The second is a buck converter present on the commercial
WSN node platform, and is used to power the node from the battery. This archi-
tecture choice reduces the overall cost of the platform and allows to easily use our
system with existing platforms, simply by replacing the node energy supply by the
PMIC energy storage.

The PMIC integrates a power converter, a MPPT circuit and a battery charger.
The same functions could be implemented separately with discrete components. The
use of a generic component instead of a custom designed power converter has a
negative impact on the conversion efficiency. However, using an off-the-shelf IC has
advantages in terms of size and cost. In this work, the PMIC used is the SPV1050
[76] from STmicroelectronics. This PMIC integrates a converter which can be used
as a boost or buck-boost, depending on the application. Moreover, the input stage
can tolerate voltages from 0.15 V up to 18 V, which covers a large range of energy
transducers, and has a low quiescent power consumption PQ, as shown in Fig. 2.7,
e.g. 6 µW or a 5 V input voltage.

Most commercial off-the-shelf energy harvesting PMIC use a Fractional Open
Voltage Circuit as a cheap and low power MPPT implementation. However, this
approach is incompatible with our switching system. Indeed this MPPT method
relies on periodically opening the energy harvesting circuit to measure the open cir-
cuit voltage VOC of the energy transducer. When the transducer is connected to
an energy buffer, the impedance of the buffer prevents the energy transducer from
reaching its VOC during the sampling time, which gives an incorrect value for the
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Figure 2.7: Quiescent consumption of the PMIC.

MPPT algorithm to work on. Moreover, the measured MPP corresponds to a single
source and is not adapted to a second energy source, and will therefore reduce the
harvested energy. A more advanced MPPT method, such as hill-climbing or P&O
algorithm is required. However, the implementation of such algorithm requires addi-
tional hardware and software, which increases the size, cost and power consumption
overhead of the platform. Thus we have chosen to not use any MPPT methods, and
rely on switching policies to maximize the harvested energy.

The MPPT circuit can still be used to control the PMIC. Indeed, the MPP voltage
VMPP of the SPV1050 can be set externally to control the integrated regulator. If this
external pin is set to an arbitrary reference voltage V set

MPP , the converter integrated
in the PMIC will adapt its switching frequency to keep the input voltage close to
V set
MPP . This can be used by the programmable controller to more efficiently manage

the discharge threshold of the energy buffers.

2.2.2 Multi-Source Switching Implementation

The developed architecture includes multiple active elements, such as the switches
and the controller, for which the power consumption overhead must be minimized as
much as possible. The size of the energy buffers can also impact the efficiency of the
system. The following subsection details some design choices regarding the sizing,
design and impact on the system of the different elements.

2.2.2.1 Energy Buffer Sizing

The input energy buffers are implemented using capacitors. An accurate sizing of
these capacitors is required, as an oversized capacitor would increase its leakage
current [117], as well as the cost and size of the solution. On the other hand, an
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undersized capacitor would be too quickly charged by its energy harvester, leading
to energy waste once it is full of energy. In the proposed architecture, the size of the
input energy buffers depends on both voltage and current provided by the harvesting
device, but it also depends on the switching process. More specifically, the number of
harvesting devices, the switching period DSW between two switching decisions and
the decision algorithm have an impact on the duty cycle of the switch associated to
the harvester, and thus on the time it is charging or discharging. The capacitance
of the energy buffer can be derived from the energy source as follows.

Let CBUF be the buffer capacitance and VBUF its voltage, the current IBUF is
given by:

IBUF = CBUF
d VBUF

dt
. (2.1)

The use of a solar panel is considered, which can provide up to VOC Volts, IMAX

mA and has its MPP at VMPP = Kfocv ∗ VOC . At initial conditions, energy buffer
is supposed to be empty with a voltage down to V set

MPP . During charging state, once
the voltage VBUF reaches VMPP , the power provided by the panel starts to decline.
The energy buffer is thus considered to be "charged" when its voltage rises above
the VMPP voltage of its harvester. The time DCHRG required to charge the capacitor
up to VMPP is expressed by:

DCHRG = CBUF
Kfocv ∗ VOC − V set

MPP

IBUF

. (2.2)

As the current IBUF depends on its voltage, the worst case is considered with
IBUF = IMAX . Oversizing the current at IMAX leads to a shorter charging time, and
thus a bigger capacitance.

As seen earlier, the capacitance also depends on the switching process between
multiple harvesters. Considering a decision algorithm with a periodic switch between
the N sources, one buffer is connected to PMIC during DSW , while being in charging
state during (N − 1)×DSW . Therefore, to avoid overcharging the energy buffers in
such a scheme, DCHRG should be greater than or equal to (N −1)×DSW . With this
constraint, the minimal energy buffer capacitance CBUF can be computed by:

CBUF ≥
DSW × (N − 1)× IMAX

Kfocv × VOC − V set
MPP

. (2.3)

Finally, a safety margin is used to prevent capacitance variations, which can occur
according to ambient temperature, input voltage or chosen technology, and which
can change over time. This margin can be analytically derived from the capacitor
specifications.

This expression has been validated through electrical simulations on LTspice [135],
using the solar panel model shown in Fig. 1.1 as the energy source. For different
capacitances and various illumination conditions, the charging time Dsim

CHRG from
V set
MPP = 1.8V to VMPP is simulated, and compared with the theoretical time Dcalc

CHRG

calculated using (2.2). Simulation results, shown in Table 2.1, show that our model
deviates from simulation when illuminance is low. This difference leads to oversizing
the energy buffers, slighly increasing the circuit cost and leakage currents. However,
it enables a simplified and sped-up capacitor sizing for each system configuration.
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Figure 2.8: Simulation circuit for capacitor sizing, using a solar cell model.

Ill (lux) CBUF (µF ) Dsim
CHRG (s) Dcalc

CHRG (s) ∆DCHRG (%)

100 10 0.262 0.331 26.3
100 100 2.261 3.304 26.0
100 1000 26.214 32.996 25.9
200 10 0.143 0.174 21.6
200 100 1.431 1.755 22.7
200 1000 14.306 17.529 22.5
500 10 0.064 0.074 16.4
500 100 0.636 0.739 16.3
500 1000 6.357 7.374 16.0

1000 10 0.034 0.036 5.3
1000 100 0.342 0.361 5.6
1000 1000 3.418 3.641 6.5

Table 2.1: Comparison between Dcalc
CHRG and Dsim

CHRG.
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Figure 2.9: Load switch block diagram and schematic of the ideal diode circuit.

2.2.2.2 Switch Circuit Design

Switching between energy sources is a well-known issue. Power ORing [136] has been
used for a long time in applications where power failures are unacceptable [137],
such as datacenters. However, these systems are designed for power consumption of
several kW, whereas our application uses only at most a few mW. Moreover, we want
the harvested energy to flow from the energy buffers to the PMIC, and not to flow
from an energy buffer to another. Therefore, the switches must have reverse current
blocking capabilities.

In our system, shown in Fig. 2.9, each load switch is implemented with a SiP32431
[138]. Due to its input voltage limitations, this circuit can only be used for energy
harvesting sources providing voltage between 1.1 V and 5.5 V. For different voltages,
another load switch should be used. The load switch is composed of a PMOS tran-
sistor as the switching element and a NMOS transistor to control the gate of the
former transistor. Like all MOS transistors, the PMOS structure creates a reverse
body diode which can let current flow from the drain of the transistor to its gate,
thus from the output of the load switch to its input. Some off-the shelf load switch
components offer reverse blocking capabilities, but this feature is usually limited
to an output voltage lower than the input voltage. This is not always the case in
our system, if one energy source delivers a voltage sensibly higher than another, for
example if both a solar panel and a thermoelectric generator are used.

Thus, the load switch is coupled with an ideal diode circuit to avoid reverse
current flow. The full switch block diagram, which includes the ideal diode schematic,
is shown in Fig. 2.9. The ideal diode circuit works as follows. When the output
voltage VOUT is lower than the input voltage VIN , Q2 PNP transistor will be in
blocking state and the Field-Effect Transistor (FET) gate voltage will be 0 V, making
it passing. When VOUT is higher than VIN , Q2 is saturated, the gate voltage is
close to VOUT and the FET is blocked. The use of two resistors to polarize the
PNP transistors creates an additional power consumption. This consumption can
be reduced by increasing the resistor values, however the transient response of the



Multi-Source Energy Harvesting 57

1 2 3 4 5 6
0

20

40

60

80

Input voltage [ V]

P
L
O
S
S

[µ
W

]
RL = 10kΩ

RL = 50kΩ

RL = 100kΩ

(a) PLOSS over VIN

1 2 3 4 5 6
0

10

20

30

35

Input voltage [ V]

P
L
O
S
S

/
P
I
N

[%
]

RL = 10kΩ

RL = 50kΩ

RL = 100kΩ

(b) PLOSS/PIN over VIN

Figure 2.10: Power consumption overhead of a passing switch unit
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circuit will also increase.
The power consumption overhead has been measured and is shown in Fig. 2.10

when the switch is closed and current is flowing from the energy buffer to the load.
For this measurement, the load is a resistor RL, which value varies between 10 kΩ,
50 kΩ and 100 kΩ to test different load currents. The power losses PLOSS are shown as
absolute values in Fig. 2.10a and relative to the input power PIN in Fig. 2.10b. These
measurements show that the power consumption of the switch cell is not negligible.
However, these losses are constant and independent from the flowing current. This
is because the losses come from the current in the resistors which polarize the Q1
and Q2 transistors. This has the advantage of providing a good efficiency when the
current is sufficient.

However, when VOUT is higher than VIN , Q2 is saturated and current flows in
R2. This means that the switch cell creates some leakage power losses PR

LOSS on its
output when it is blocking. These power losses have been measured and are shown
in Fig. 2.11. These power losses are equivalent to those in passing mode, since
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the same resistors and transistors are used on both side on the circuit. The main
drawback of these losses is that they draw current from the active energy harvesting
source. It also means that care should be taken when adding too many harvesting
sources, since the reverse power losses of each switch will be added to the other. In
the case of a system with N energy sources, the reverse power losses are equal to
(N −1)×PR

LOSS(VOUT ), where PR
LOSS is expressed as a function of the circuit output

voltage VOUT . To mitigate these losses, we can set the V set
MPP of the PMIC at a low

voltage. The PMIC will draw most current until VOUT is close to V set
MPP , and the low

VOUT voltage will reduce the reverse power losses.

2.2.2.3 Switch Manager Implementation

In the system, the controller decides which switch should be closed at a time. Multi-
ple decision algorithms can be implemented depending on the information that the
controller could monitor in the system. For example, if the energy levels are known,
the controller can allocate a time slot per source that is proportional to its maximum
output power.

The only requirement for the controller is that the control signals must be com-
patible with the selected switches. The controller is an always-on component, thus
its power consumption must be reduced to a bare minimum. Although dedicated
analogue or digital circuits could lower this power consumption, the use of a pro-
grammable component allows a good trade-off between power consumption and flex-
ibility.

Programmable digital logic (i.e. Field Programmable Gate Arrays (FPGAs) and
Complex Logic Programmable Devices (CPLD)) are usually considered as a good
compromise between a specialized and efficient circuit and a more general-purpose
implementation. However, their use is not suitable for WSN nodes where an ultra
low power consumption is required. Most FPGAs are designed for higher end system
and their static power consumption, when inactive, range from hundreds of µW
to tens of mW. The few references that target battery devices and have a lower
static power consumption [139][140] often require a dedicated low voltage power rail,
which increases the implementation cost. Moreover, designing with such components
requires the use of specific languages such as Verilog or VHDL, for which it is difficult
to find experimented developers.

Though generally considered a more general-purpose and less efficient alternative,
micro-controllers can be efficiently used in ultra low power designs. Indeed, recent
micro-controllers usually offer multiple power modes. By keeping the micro-controller
in a low power mode and only waking it up when needed, the average power used
by the micro-controller can be kept close to its sleep mode power consumption, i.e.
few µW. Since the micro-controller functionality is implemented using software, its
features can be easily modified, simply by loading a new firmware. Moreover, con-
trary to pure digital components like FPGAs and CPLDs, modern micro-controllers
often include ADCs to interface with the analog world, while some references also
include programmable analog blocks [141]. In our system, it allows a switching policy
to get more information on the SOC of the energy buffers without adding external
components.

Due to these considerations, we chose to use a MSP430FR5969 [142] as the switch-
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Figure 2.12: Power consumption of the controller.

ing controller. Its flexible clocking trees enable the use of many peripherals while
being in low power mode. In our implementation, to avoid adding an external Digital-
to-Analog Converter (DAC), an internal timer is used as a Pulse Width Modulation
signal, averaged through a low-path RC filter to provide the PMIC its V set

MPP voltage.
V set
MPP can be set down to 1.1 V at minimum, to keep the energy sources voltages in

the SiP32421 voltage range. A TPS60210 [143] charge pump with ultra-low quiescent
current is used to power the MSP430 with a constant 3.3 V voltage, attenuating the
battery voltage variations.

We use the MSP-EXP430FR5969 development platform, which provides an em-
bedded energy measurement tool, enabling real-time measurement of the controller
power consumption. In order to take into account the power drawn by the con-
troller charge pump, we powered our development board from the charge pump, and
powered this charge pump from the integrated debugger 3.6 V power supply. The
charge pump is set in low-power mode, so that its quiescent current consumption is
minimized. The SOC of the main energy storage is measured with an external ADC
with high input impedance through a resistor divider.

To get an estimation of the controller power consumption, a simple decision
algorithm is implemented, which alternatively closes the switches each DSW = 1 s.
It also implements a simple power management algorithm, which monitors the main
energy storage SOC. Fig. 2.12 illustrates the power consumption of the controller on
a 10 second period. To get the average power consumption of the full circuit, a 5
minute measurement has been run. The mean power consumption was 334 µW for a
current of 92 µA. The power losses induced by the controller are relatively high, and
mainly come from the ADC measurements required by the power manager. If the
switch system is implemented without the power manager, the power consumption
of the controller decreases at 185 µW for a current of 51 µA.
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Figure 2.13: Evaluated multi-source energy harvesting circuit architectures.

2.3 Multi-Source Energy Harvesting Evaluation

2.3.1 Experimental Set-up and Measurements

In order to compare our proposed architecture to existing solutions, we implemented
the different existing architectures for laboratory experiments, using breadboards
and evaluation boards. In order to minimize the differences due to implementation
choices, the same components and circuits were reused as much as possible.

The realized prototype is functional and is able to self-start. Functionality of the
controller has also been validated using a simple switch algorithm, which alternatively
closes the switches each DSW = 1 s. Our system is used to power a wireless sensor
developed by Wi6labs [144]. A simple power manager is implemented on the MSP430,
which measures the main energy storage SOC and commands the sensor node to
transmit a packet if the storage is charged. Therefore, the more energy is harvested,
the lower the period between two transmissions DTX will be. Voltage generators
are used to emulate sources. The first source is set at 4.2 V, while the second is
set between 1.5 V, 3.1 V or 3.7 V. Both sources are limited to 1 mA in order to
simulate low power sources. However, these sources are still oversized compared to
real energy sources. As the power provided by real sources would be lower, the power
consumption overhead of the circuit would have a higher impact on the harvested
energy.

Even if these energy sources are oversized, compared to low power provided by real
energy sources, the use of deterministic sources allows an accurate characterization
of the proposed system. Different measurements can be performed in a consistent
set-up, without being affected by the environment. The input energy buffers are
arbitrarily chosen and have respectively a 4700 µF and 1000 µF capacitance, while the
energy storage is a capacitor array with a 34.7 mF total capacitance. The following
cases, illustrated in Fig. 2.13a to Fig. 2.13d are evaluated:

• S1/2: Source 1 or 2 only, with MPPT
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Figure 2.14: Period in s between two LoRa TX depending on case and S2 voltage.

• D: Source 1 and 2 connected to a single PMIC through ideal diode circuit,
without MPPT (Fig. 2.13a)

• DMPPT : Source 1 and 2 connected to a single PMIC through ideal diode circuit,
with MPPT (Fig. 2.13b)

• Switch1 V 1/3V : Periodic switch (DSW = 1s) with PMIC V set
MPP set to 1.1 V/3.0 V

(Fig. 2.13c)

• Parallel: Parallel architecture - two PMIC directly connected to the battery,
with MPPT (Fig. 2.13d)

For all situations, the period DTX between two consecutive LoRa packet trans-
missions is measured ten times. The average value DTX is then computed. These
results are shown in Fig. 2.14. When more energy is harvested, the energy storage is
charged faster, and the period between two messages is reduced. On the other hand,
a less efficient energy harvesting system will induce a higher delay between messages.

2.3.2 Discussion

The situation D performs significantly worse than single-source situations, while
DMPPT performs better. This is due to the lack of any MPPT in situation D, and
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Component Switching Arch. Parallel Arch.

Name Unit Price Count Price Count Cost
SPV1050 $2.21 1 $2.21 N $N × 2.21
MSP430 $0.70 1 $0.70 0 $0

TPS60210 $1.47 1 $1.47 0 $0
SiP32431 $0.28 N $N × 0.28 0 $0

Ideal diode $0.30 N $N × 0.30 0 $0
Total 1 $(4.38 +N × 0.58) 1 $N × 2.21

Table 2.2: Cost breakdown of the solution.

shows the impact of MPPT. However, DMPPT is a naive implementation, and is not
efficient if the two input voltages are too different. When the MPPT circuit measures
VOC , it measures the highest voltage in all sources, and sets its VMPP accordingly.
Thus, a source with a lower voltage operates far from its MPP, or does not provide
power even if its voltage is smaller than the measured VMPP .

Our solution is hindered by the lack of MPPT. By setting V set
MPP too low, as in

situation Switch1 V 1, the sources operate far from their optimal power point, and
provide less energy. Alternatively, rising V set

MPP too high may render some sources
useless. Indeed, when S1 is set at 4.2 V, rising V set

MPP to 3 V brings the converter
operating point close to the source MPP. But, if the second source voltage is smaller
than V set

MPP , no current will be drawn, and the source will not be used at all. However,
if V set

MPP is close to both sources MPP, such as situation Switch3V with S2 set a 3.7 V,
our solution performs correctly. This demonstrates the potential of our solution,
when the sources operate close to their MPP. The Parallel architecture does not
suffer from this limitation, as a different MPPT circuit is used for each energy source.

The energy buffer size has also an impact on the system: an oversized buffer takes
more time to charge, and the energy source takes a longer time to reach its VMPP .
In order to maximize harvesting efficiency, decision algorithms should be designed
so that the sources operate near their MPP. Possible solutions include setting V set

MPP

from a DAC and adapt its value according to the selected source, or adding a full-
featured MPPT circuit between a source and its energy buffer.

Cost was a primary concern when designing our system. Table 2.2 shows the cost
associated with a state-of-the-art parallel architecture and our switching architecture.
Only active components are taken in account. Prices are obtained from standard
distributors for 100 pieces of each component. Ideal diode cost is estimated. N
designates the number of energy sources in the system. Our system becomes cost
effective for N ≥ 3, which makes it interesting for systems using a large number of
energy sources.

2.4 Industrial implementation

The previous work was used as a basis for the design of Wi6labs energy harvesting
platform. In an industrial energy harvesting WSN node, the system is usually pow-
ered by a single energy harvesting source. Although we can easily identify use-cases
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Figure 2.15: SPV1050 battery management circuit - from SPV1050 datasheet [76]

for combining two energy sources, the number of use-cases for 3 energy sources or
more is limited. We previously highlighted that a parallel architecture implementa-
tion based on the SPV1050 is more cost efficient for a low number of energy sources,
and has a better energy harvesting efficiency, especially for heterogeneous sources.
Thus, we designed the Wi6labs platform based on this architecture, instead of our
proposed source switching architecture.

Fig. 2.15 shows the battery management circuit of the SPV1050 PMIC. It imple-
ments a dual path architecture where it first charges a capacitor CSTORE. When its
voltage VSTORE reaches an end-of-charge voltage VEOC , detected with a comparator,
a pass transistor is closed to discharge CSTORE in the system battery. If the bat-
tery is full, i.e. the pass transistor is closed and VSTORE > VEOC − EOCHY S where
EOCHY S is the comparator hysteresis, the SMPS converter is stopped to avoid over-
charging the battery. The pass transistor is opened to avoid discharging the battery
when VSTORE falls under an under-voltage threshold VUV P . This charging system
can be used with both supercapacitors and lithium batteries, provided that VEOC is
set between 2.6 and 5.3 V and VUV P is set between 2.2 and 3.6 V. If an energy stor-
age requires end-of-charge and under-voltage protection thresholds outside of these
limits, active circuitry would be required to manage the charge limits outside the
PMIC.

This system can also be used to implement an energy harvesting system similar
to the one proposed in [32]. Our implementation is represented in Fig. 2.16 for
tree energy sources. The three SPV1050 use a 47 µF capacitor as CSTORE. Here,
this capacitor is not used to store energy but to stabilize the output of the SMPS
converter. All SPV1050 are connected to a single energy storage. A supercapacitor
or lithium battery can be selected, by modifying 3 resistors to set the appropriate
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Figure 2.16: Architecture of the Wi6labs multi-source energy harvesting board.

Figure 2.17: Wi6labs multi-source energy harvesting board.

VUV P and VEOC thresholds. When the energy storage voltage VBAT is under VUV P

and the pass transistor closes (VSTORE ≥ VEOC), CSTORE quickly discharges itself in
the energy storage, until VSTORE goes lower than VUV P . Thus, the energy storage is
charged with pulses until VBAT > VUV P , after which the energy storage is constantly
powered by the SMPS regulator. However, the converter isolates the energy source
from the energy storage, preventing current from feeding back to the source.

Our implementation offers a multi-source energy harvesting system with very low
power consumption overhead, as the only active components are the SPV1050. The
platform approach makes it possible to reuse the circuit for different energy sources
and storage, by modifying solder straps and setting resistors. However, the circuit
still has to be adapted, and energy sources and storages can not be interchanged
in a plug-and-play manner. As the board is used as a basis to develop custom
solutions for customer, this is not blocking in our use-case. The demonstration board,
shown if Fig. 2.17, implements a simple single path architecture, which directly
powers the WSN node. However, additional features, such as a dual-path architecture
or starter circuit could easily be implemented without modifying the multi-source
energy harvesting scheme.

2.5 Conclusion

In this chapter, we presented the different architectures which can be used to im-
plement energy harvesting functionality. A new multi-source switching system has
been proposed, implemented and evaluated against state-of-the-art architectures.
This system is efficient for sources which have similar voltage, and is cost-efficient
if three sources or more are used. However, this proposed system does not match
Wi6labs requirements. Thus, we implemented a circuit inspired by previous work.
This implementation shows a better energy harvesting efficiency and lower cost if less
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than three energy sources are used. Moreover, this system is designed as a platform,
using only off-the-shelf components, and can be quickly adapted to fit a new product
design. This platform has been fabricated on a PCB and is now used as the main
energy harvesting development platform at Wi6labs.
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Chapter 3

Power Management for Energy

Harvesting IoT nodes

In modern embedded systems, the role of the firmware includes hardware manage-
ment tasks. In particular, the embedded software has to properly control the different
components in order to manage the power consumed by the device. In energy har-
vesting systems, this role is particularly important as it enables the node to increase
its battery life and avoid battery depletion. In this chapter, we present the different
techniques used in modern embedded systems to reduce the power consumption and
properly manage the harvested energy.

3.1 Reducing Power Consumption in IoT Nodes

3.1.1 Power Consumption in IoT Nodes

As the power dissipated in passive components is negligible, the power consumption
of an IoT essentially comes from its active components. The large majority of modern
components relies on Complementary Metal-Oxyde-Silicium (CMOS) logic, which
enables a lower power consumption. The power consumption of CMOS components is
the sum of a static power consumption PS, a short-circuit power dissipation PSC [145]
and a dynamic power consumption Pdyn. The static power consumption is fixed and
independent of the component workload. This consumption is due to the fabrication
process of the component, and notably the small leakages of each transistor which
constitutes the IC. Thus, the reduction of PS is determined during the conception
of the component, when its architecture and fabrication process is determined. The
short-circuit power dissipation PSC , illustrated in Fig. 3.1, is created during a gate
transition, when a direct path is created between the power supply and the ground
by a pair or PMOS and NMOS transistor. This power dissipation can be reduced
by ensuring that all switching signals have sharp rising and falling edges, reducing
the duration of this short-circuit. The dynamic power consumption Pdyn varies with
the workload of the component. For each CMOS gate in the IC, the dynamic power
consumption Pdyn can be calculated as (3.1), where CL is the capacitance of the gate
load, fν is the switching frequency of the gate and VG is the voltage of the gate. As
most gates are not always switching, the expression can be written as (3.2) where α

is a coefficient between 0 and 1 which represents the duty cycle of the gate. In an
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Figure 3.1: Short circuit power consumption in a CMOS inverter.

IC, CL is determined by the architecture and fabrication process of the component,
and thus cannot be reduced once the component is fabricated.

Pdyn = CL × fν × V 2
G (3.1)

Pdyn = α× CL × fν × V 2
G (3.2)

In usual server and workstation computing systems, the majority of the power
consumption comes from the CPU. In IoT nodes, the microprocessor core is inte-
grated in a micro-controller, which also integrates RAM and ROM memories and an
array of analog and digital peripherals to interface the CPU with external compo-
nents. The microprocessors used in WSN nodes are small scale device, which do not
integrate a Memory Management Unit and can not run usual Operating Systems
(OSs) such as Linux [146] or BSD derivatives. Instead, the memory is directly ac-
cessed. Although the application can be run bare-metal, without any OS, a small OS
such as Riot-OS [147] or Contiki [148], or a Real-Time Operating System (RTOS)
such as FreeRTOS [149], is often used to ease the development process. As IoT
use-cases become more complex, the use of more complex and featured OS such
as NuttX [150] or uClinux [151] is also considered. A majority of micro-controllers
embed a microprocessor from the ARM Cortex-M family, but other possibilities in-
clude AVR cores, PIC cores, MIPS cores, the MSP430 CPU core or the older Intel
8051 processor. Micro-controllers implement several low power modes, which en-
able the developer to disable different components of the micro-controller in order
to lower the overall power consumption. Due to the variety of possible implemen-
tations, the power consumption of micro-controllers can vary from several µW in
low-power mode to a maximum or nearly 1 W. As the micro-controller does not run
at full power all the time, its mean power consumption is often far lower than the
maximum. In WSN nodes especially, the micro-controller mainly runs control tasks,
while the heavier data processing calculations are usually done by a central remote
server.
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The wireless communications of WSN nodes require the use of a radio communi-
cation IC, which integrates both transmission and reception chains. The reception
chain integrates a low-noise amplifier to amplify the received signal and the trans-
mission chain includes a power amplifier. Depending on the wireless communications
protocol, the emission power can increase up to several hundreds mW. Some proto-
cols also require the node to periodically emit control messages or to open reception
windows to check for incoming messages. Due to this, the radio IC has to be period-
ically turned on and consumes power, which raises the mean power consumption of
the WSN node. Due to the relatively high power consumption of the amplifiers used
in both reception and transmission chains, and the relatively low power consumed
by micro-controllers, wireless communication accounts for a significant part of the
total node power consumption. It can be noted that the use of wired communica-
tions could significantly decrease the power consumption, but comes with significant
constraints on the use-case of the node.

Due to the variety of use-cases for WSN, it is difficult to quantify a priori the
power consumption of the sensing element. While some sensors, such as temperature
or voltage sensors, are easy to integrate and consume little power, others, such as gas
sensors, consume much more energy. Sensors usually integrate a transducer, which
converts the sensed physical data to an electrical value (voltage or current), which
goes through a signal conditioning circuit and is converted to a digital value with
an ADC. Depending on the sensed data, the transducer can be a simple thermis-
tor, or can be based on complex electro-chemical reactions. Moreover, the signal
conditioning stage can be complex, including multiple filters and preamplification
stages. Additionally, some sensitive sensors have to be calibrated before use, which
consumes power. Although the impact of sensors can be minimal on the overall
power consumption, it can also, in complex use-cases, be the most power consuming
part of a sensor.

Finally, the quiescent power consumption of the power converters (SMPS and
LDO) also has a significant impact on the system. This quiescent power consumption
corresponds to the energy consumed by the active circuitry of the converter (feedback
loop, comparators, voltage generator...) which is always powered regardless of the
circuit activity. WSN nodes usually use small scale power converters, which have
a low quiescent current consumption of several µA. Although a dozen µW power
consumption is lower than the consumption of other active components by several
orders of magnitude, this represents the majority of the power consumption of the
device when all components are in a low power mode. Therefore, minimizing the
quiescent current of the power converters reduces the mean power consumption of
the node and has a significant impact on the power consumption of the platform.

Fig. 3.2, Fig. 3.3 and Fig. 3.4 show the result of a power consumption estimation
obtained with Wisebatt [152] for a commercial WSN node, powered by a primary
battery, over its whole lifetime. The node is based on Wi6labs LoRa platform, built
around a STM32L0 micro-controller and a SX1272 RFIC. The device is used to
periodically measure temperature and humidity values, and immediately transmit
them over a LoRaWAN network. Since the device is in standby 99.99 % of the time,
the power components account for a large majority of the spent energy, as shown
in Fig. 3.2. If the SMPS converter power consumption is ignored (Fig. 3.3), the
power consumption of communication and processing (micro-controller) tasks can
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Figure 3.2: Energy consumption repartition per component type with main SMPS
converter.
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Figure 3.3: Energy consumption repartition per component type without main SMPS
converter.



Power Management for Energy Harvesting IoT nodes 71

be observed, alongside the consumption of other power components, such as load
switches, which stay powered all the time. Although this can not be seen in this
graph, the radio-communications IC has the highest instantaneous power consump-
tion. Finally, Fig. 3.4 shows the power consumption repartition per task. Despite
the very low power consumption of components in standby mode, the sleeping power
consumption accounts for 44.5 % of the energy consumption. Radio-communications
tasks amount to a total of 35.6 % of the consumed energy. In particular, using a more
efficient MAC protocol could reduce the time spent listening to the radio channel,
and could significantly reduce the energy consumed by this task.
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Figure 3.4: Power consumption repartition per task for a commercial WSN node.

3.1.2 Power Consumption Reduction

Multiple strategies have been deployed in order to reduce the power consumption of
embedded systems. A first method is to reduce the power consumption of electronic
components when they are active.

On the other hand, for many components, the frequency and voltage can be
varied dynamically. This process is called Dynamic Voltage and Frequency Scaling
(DVFS) [153]. In a typical use-case, the working frequency and supply voltage of a
component will be reduced when the workload is low in order to save power, while
they will be increased when needed to process a large workload. Fig. 3.5 shows the
effect of varying the frequency and voltage of a component on the power and energy
consumed for the same task execution. A lower colored area means that less energy
is consumed. The voltage reduction has more impact than frequency reduction when
reducing the dynamic power, since its squared value is used in Pdyn calculation (3.2).
However, voltage cannot be reduced under the transistor switching threshold, which
is determined by the silicon fabrication process. Moreover, reducing the voltage can
limit the maximum switching frequency, as it reduces the power available to properly
drive all gate signals with short enough rising and falling edges. Frequency variation
has a more limited impact on the component power consumption but is more flexible.
The maximum frequency is set by the design of the component, and corresponds to
the inverse of the critical path, i.e. the longest path in a set of combinatorial logic of
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Figure 3.5: Energy consumed for a task, for different voltages and frequencies.

the chip. This critical path can be cut, up to certain limits, by inserting sequential
logic (i.e. registers and flip-flops) as an intermediate step. While the frequency
could theoretically be reduced down to 0 Hz, it is usually, in practice, limited by the
capabilities of the embedded clock generators.

Although DVFS has been used for a long-time in a variety of system, from smart-
phones and laptops to datacenter servers, there is few reports of DVFS implementa-
tion on resource constrained WSN nodes. An explanation is that the implementation
of DVFS strategies requires additional work and resources. The firmware of the node
has to implement the functionality and regularly monitor the device activity in or-
der to decide which is the most optimized state. Moreover, the components have to
be able to support quick variations of frequency and voltage. In particular, voltage
converters (LDO and SMPS) have to be designed to enable a programmable output
voltage and support quick output voltage variations without losing stability, which
increases the cost of the converter, and thus of the complete solution. Neverthe-
less, some solutions can be implemented by using programmable potentiometers in
the converter feedback loop. Moreover, recent micro-controllers tend to implement
different options to implement low power running modes.

But some recent electronic components such as micro-controllers, radio commu-
nication ICs and even some SMPS, also implement low-power modes. In these power
states, the functionality of the component is severely degraded or completely stopped,
but the power consumption drops drastically, down to a less than a µA, while SMPS
converters, micro-controllers and radio-communications ICs draw several µW to tens
of mW when in active mode. Therefore, it becomes interesting for the WSN node
to execute its task as fast as possible to spend most of the time in these low-power
modes. This power consumption reduction technique is known as duty-cycling. Since
the power consumption in low power modes is several orders of magnitude lower than
in active mode, it is more interesting to run tasks as quickly as possible, whereas
DVFS is more useful when the component still consumes power in idle state (e.g.
desktop processors). This ensures that the device stays in sleep mode for as long as
possible, thus reducing the mean power consumption. Duty cycling is a very efficient
power consumption reduction method for devices which only operate intermittently,
which applies to a lot of IoT use-cases. [154], for example, presents a wake-up system
which makes use of sleep modes to detect high frequency sound waves while consum-
ing as little as 0.56 mW. In this example, the Micro-Controller Unit (MCU) is only
active when measuring the received frequency, and sleeps while no high frequency
wave is detected. However, some use-cases which require extremely low latencies or
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Figure 3.6: Comparison of commonly used protocols for IoT communications. A
bigger circle indicates a higher data-rate.

continuous operation are not compatible with this method, thus a compromise has
to be made between energy consumption and performance [155].

Radio-communications represent a significant part of the power consumption in
an embedded system. This is notably due to the use of amplifiers in the radio chains.
Low noise amplifiers are used when receiving the signal, and power amplifiers are used
to amplify the emitted signal to up to 200 mW, depending on the communications
protocol. Moreover, some protocols such as recent WiFi versions, incur heavy signal
processing computations, which further increase the energy consumption of radio-
communications [156]. Thus, it is interesting to reduce the communications time, in
order to better duty-cycle the radio-communications tasks. To this effect, multiple
low-power transmission protocols have been developed, as shown in Fig. 3.6. It
can be observed that not all protocols can be used for all use-cases. For example,
Bluetooth Low Energy (BLE) can only be used for short range, while LoRa [157]
and SigFox [158] have been developed to enable long range communications with a
limited power consumption. The choice of the communications protocols is tightly
coupled with the end-user application, and is outside the scope of this work.

A large part of these communication protocols requires the WSN node to peri-
odically emit a message to keep its synchronization with the network. Due to these
mechanisms, WSN nodes have to periodically draw power to emit a beacon or open
a receiving window. Multiple protocols [159][160][161] have been proposed in order
to minimize the power required to synchronize two nodes. Another approach is to
use Wake-Up Radio (WUR) [162][163] to completely remove the need for receiving
windows. WURs are radio specifically designed to have an ultra low power consump-
tion. The transmitting node emits a beacon addressed to the WUR. Upon reception
of the beacon, the WUR wakes up the main radio from low power mode so that it
can receive the message from the transmitting node. WURs power consumption can
go down to a few µW, which is significantly lower than the mean power consumption
compared to standard radio. Moreover, the use of an always-on WUR instead of a
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standard radio which only periodically opens a receiving window can lower the mean
transmission latency. However, WURs are recent components and are not available
off-the-shelf yet. More importantly, due to their low power consumption, they have
a low sensitivity, often around -60 dBm to -50 dBm, which makes them unsuitable
for long range transmissions on their own. To circumvent this problem, [164] pro-
poses the use of both a WUR and LoRa radio, where WURs are used for short range
communication in a cluster and LoRa is used to relay the gathered data to a central
gateway. Moreover, no standard communication protocol have been designed to take
advantage of WURs, and a custom protocol layer has to be developed, implemented
and validated.

Without changing communication protocols, it is possible to reduce the radio
communication power consumption by transmitting less data. A way to reduce the
size of the transmission packet is to compress the data before sending it. Compression
can be lossless, in which case the compressed data can be reconstructed to be an exact
copy of the original, or lossy, in which case part of the original data is lost in the
process. Lossy compression algorithms are typically used for images (e.g. JPEG),
audio (e.g. mp3, Opus, Ogg...) and video (e.g. H.264, VP9, AV1...) files, where
small details which can not be heard or seen by the human ear or eye are discarded
to reduce the size of the file. Lossless compression is less efficient, but is suitable
when no data losses are acceptable, typically for documents or raw measurement
data. This type of compression exploits statistical redundancy and probabilistic
model to create a dictionary which matches a repetitive string of data with a short
compressed code. In the context of WSN nodes, this type of data compression has
two significant drawbacks. First, in many use-cases, the size of data to send is limited
to a few tens of bytes. Due to the small sample size of this data, there is usually little
redundancy to be exploited by the algorithm. Secondly, the dictionary has to be sent
along with the compressed message. The size of this dictionary further reduces the
efficiency of the compression, especially when the data to compress is already small.
Moreover, some communication protocols, such as LoRa and SigFox, have a very
limited maximum payload size, where a dictionary and compressed message can not
fit. Finally, running a compression algorithm can be complex for a micro-controller,
which raises its power consumption.

For this kind of use-cases, alternative compression methods have to be used. The
use of specific number representation can be used to optimize the number of bits
required to represent each measurement. The use of fixed point representation en-
ables a good compromise between precision and dynamic of the data. An alternative
is the use of floating point representations on a reduced number of bits, such as
half-precision floating-point format, as defined in the IEEE 754-2008 standard [165].
Based on the same principles, floating point values can be represented on even less
bits [166][167] to further reduce the measurement size. Floating-point representa-
tions enable a higher dynamic fixed-point representations on a similar number of
bits. However, the precision of the representation is not fixed, and high numbers
close the the maximum representable value have to be rounded to the nearest repre-
sentable value. On the contrary, fixed-point representations have a smaller dynamic
but a fixed absolute precision 2−Q where Q is the number of bits used to represent the
fractional part. Thus, a compromise between the number of bits used to represent the
measurements and the required precision. Fig. 3.7 and Table 3.1 respectively show
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Figure 3.7: Examples of fixed-point and floating-point representations.

the structure and precision of different fixed-point and floating-point representation.
As can be seen, floating-point representation can enable the representation of much
smaller numbers. Moreover, by carefully choosing the exponent bias, floating-point
representation can represent high numbers in much less bits, as shown in the last
line of Table 3.1, although with a reduced precision.

Dynamic
Minimum
positive

Precision

(1) Signer integer −231 ≤ i ≤ (231 − 1) 1 1
(2) Signed Q15.16 −215 ≤ i ≤ 215 − 2−16 2−16 2−16

(3) Signed Q7.8 −27 ≤ i ≤ 27 − 2−8 2−8 2−8

(4) Signed Q3.4 −23 ≤ i ≤ 23 − 2−4 2−4 2−4

(5) Single precision
floating-point

−(2128 − 2104) ≤ i ≤ 2128 − 2104 2−149 Variable
Minimum 2−149

(6) Half-precision
floating-point

−(216 − 25) ≤ i ≤ 216 − 25 2−24 Variable
Minimum 2−24

(7) Minifloat
(Exp. bias = -7)

−(28 − 24) ≤ i ≤ 28 − 24 2−9 Variable
Minimum 2−9

(7) Minifloat
(Exp. bias = 2)

−(217 − 213) ≤ i ≤ 217 − 213 1
Variable

Minimum 1

Table 3.1: Dynamic and precision of multiple fixed-point and floating-point repre-
sentations.

Another commonly used method for measurement compression when a single
data is measured is to encode only the first measured value, and then encode the
difference between a measurement and the previous one. The use of such a method
can introduce redundancy to improve a usual lossless compression. Moreover, when
the difference between measurements is sufficiently small, it is possible to encode
these values in less bits than the full measurements. When the WSN node is sens-
ing slow-moving values, such as temperature, the reduction in data volume can be
significant. However, the use of a such a method must be known by the receiver, as
a specific decoder must be implemented to reconstitute the different measurements.
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3.2 Managing Harvested Energy

3.2.1 Power Manager in an Energy Harvesting System

Embedded systems are usually powered by batteries, which requires the user to
recharge or change the battery when it is empty, depending if the battery is recharge-
able or not. In this type of use-case, a power manager can be implemented to mini-
mize the power consumption of the device. Typically, the power manager monitors
the device activity to detect which part of the device is used and power off the un-
used parts, or apply DVFS policies. This power manager can be implemented on
a dedicated micro-controller which manages the platform or as a software module
which is part of the main firmware. By minimizing the power consumption, the
power manager tries to increase the battery life time and the useful life of the device.

In an energy harvesting WSN node, the autonomy of the WSN node depends on
the battery capacity, the power consumption of the electronic components, but also
on the harvested energy. If the power manager is only used to minimize the power
consumption, then the purpose of adding energy harvesting capabilities is only to
increase the battery life of the device. However, it is possible to use a more intelligent
power manager to adapt the QoS of the node according to its energy capabilities.
This way, a node can reduce its QoS when it harvests little energy in order to avoid
completely depleting its energy storage, and profit from plentiful harvested energy
and charged energy storage to increase the QoS of its application.

Using such a power manager theoretically enables the node to avoid depleting
its energy storage, preventing it from stopping its operations, but also to avoid
completely charging the storage and wasting the harvested energy. Moreover, if the
QoS of the node is correctly adapted to the harvested energy, we can define a point,
called the Energy Neutral Operation (ENO) point, at which the harvested energy
is equal to the consumed energy, as detailed by Kansal et all in [168]. Thus, the
power manager can be designed to enable perpetual operation of the WSN node by
constantly trying to operate around the ENO point. The consumed energy is reduced
with the QoS when little energy is harvested, and is increased by improving the QoS
when more energy is harvested.

In such a use-case, time is divided in time slots of a fixed duration. The power
manager is periodically executed, at the end of each time slot. It adapts the QoS
according to the residual energy ER in the energy storage and the harvested energy
EH during the time slot. Multiple power managers using this concept have been
proposed by the academic world [169][170][171]. These proposals target WSN which
use short range ultra-low power communications, where the delay between messages
DTX is short, usually counted in seconds or minutes. Due to this short DTX , at
least a few messages are transmitted during each time slot. Thus, the time slot can
be defined to a relatively short duration. As the time slot duration decreases, the
number of power manager executions increases, making it easier for the WSN node
power management algorithm to converge to the ENO point.

Finally the power manager can also ensure the proper boot of the platform.
When a node boots up, it usually has to join a network. Depending on the wireless
protocol used, joining the network requires one to several message exchanges, which
consumes power. This is especially challenging in energy harvesting application,
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if the node has harvested enough energy to boot up but not enough to join the
network. In this case, joining the network can deplete the battery enough to make
the node shut down. Two solutions can be performed to mitigate this issue. A
first solution is to use to hardware comparator with hysteresis to generate the node
boot up signal. The hysteresis thresholds are determined to ensure that the node
has enough energy to join the network after booting up. A second solution is to
use the power manager to monitor ER after boot, and only try to join the network
if sufficient energy is harvested. This solution is more flexible and more resilient.
Indeed, if the transmission conditions are bad, the node may have to try multiple
times before joining the network, each time consuming more power. Using the power
manager enables waiting until sufficient energy is harvested before attempting to
rejoin the network, while the node would fully empty its energy storage in repeated
join attempts if it only uses a hardware comparator.

3.2.2 Power Manager Structure

Although the power manager can include extra-functionalities such as boot manage-
ment, the main feature of the power manager is still to control the QoS of the node
so that the consumed energy ETotal

C is equal to the harvested energy EH . Thus, the
behavior of a power manager is analog to a control algorithm, which takes the WSN
node energy capabilities as input and outputs the delay between two consecutive
messages DTX . This type of problem is frequent in other domains, such as industrial
control, robotics and automation, and multiple solutions have already been proposed
to optimize control systems speed, precision and stability. These solutions can also
be applied to power manager design.

A common solution found in control systems is the use of a Proportional-Integral-
Derivative (PID) controller. PID controller is a closed-looped system designed to
continuously control a process to obey a command. The PID controller continuously
computes the error between the command and the result, and processes this error
through three components: a Proportional component which corresponds to the error
multiplied by a factor K, an Integral component which represents the accumulation
of the past errors, and a Derivative component which represents the prediction of
future errors. The outputs of each component are weighted, summed together and
passed through an adaptation function to generate the controlled output. An appli-
cation of such a control system applied to power manager is shown in [169]. In this
work, the SOC of the supercapacitor is compared with a reference SOC the input
of the PID controller, which generates DTX . The reference SOC can be set by the
designer to fit different use-cases: a high reference SOC will quickly increase DTX in
order to take more risks, while a lower reference SOC will take less risks but offers
more performance in terms of transmitted messages. PID controllers are easy to
implement, even on low performance micro-controllers, due to their low complexity.
However, the proportional, integral and derivative component coefficients are hard
to tune to optimal values to find the required compromise between control precision,
speed and stability.

A recent solution to reduce the complexity of tuning the control system to the
application is the use of self-learning technologies. In [172], the authors present
RLman, a power manager which uses Reinforcement Learning (RL). RL algorithms
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Figure 3.8: Structure of RLman algorithm.

try to maximize the cumulative rewards received by trying a set of actions in an
environment. If an action is beneficial to the system in a specific environment, its
reward will be higher, and will be favored by the algorithm as a better way to
maximize the cumulative reward. Over the time, the system learns which actions
maximize the reward in each environment. In the context of power management
for energy harvesting WSN nodes, RLman uses ER as an input and outputs the
transmission frequency of the node. ER is used to calculate a feature. The feature is
associated to a reward sent to a critic, which represents an analyze of the previous
decision. The critic and the feature are used by the actor to decide the next action.
This structure is shown in Fig. 3.8. RLman is generic and can adapt itself to a
large variety of energy sources and environments. It also has a low complexity,
which enables implementation in the low resources of WSN node micro-controllers.
However, it relies on high level theory and may be hard to tune for people foreign
to RL theory. Moreover, it directly outputs the transmission frequency, which only
applies to a use-case where the node sends its data after each measurement. For other
use-cases, such as measurements without transmission and transmission of multiple
aggregated data, the feature calculation step would have to be adapted, which could
decrease the performance of the algorithm.

It is challenging to design a power manager which is efficient while still working
with a wide variety of inputs for all use-cases. If order to ease these requirements, the
power manager can be divided in two sub-functions, shown in Fig. 3.9. The first block
is an Energy Budget Estimator (EBE). Based on the WSN node energy capabilities
(i.e. ER, EH ...), and its knowledge of the underlying platform (e.g. the energy
storage characteristics...), the EBE delivers an Energy Budget EB, which represents
the amount of energy which can be consumed by the node until the next power
management execution. The second block is the Energy Allocator (EA), which takes
EB as an input. Based on its knowledge of the use-case (e.g. power consumption
of tasks, QoS requirements...), the EA decides how to spend EB, i.e. which tasks
to execute, and how much time to wait until the next power management algorithm
execution. This separation is more flexible, as it enables easy modification of the
power management scheme. For example, if the use-case evolves to add a new sensing
tasks, only the EA has to be changed, while the EBE part of the power manager
do not have to be modified. However, this separation also means that the power
management policy is not fully optimized as a whole for the application.
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Figure 3.9: Power manager for energy-harvesting WSN node, divided in two func-
tions.

3.3 Conclusions

In this chapter, we presented how a WSN node power consumption can be reduced to
increase its autonomy. Furthermore, we showed how these methods are not sufficient
in the case of energy harvesting WSN node. To enable a perpetual operation of such
a system, a power manager is used to dynamically manage the power consumption
of the node according to its energy capabilities, rather than simply reduce its power
consumption. Such power managers implement an EBE function, which computes
an energy budget EB, and an EA function which allocates this EB to the different
task(s). Previous work has mainly focused on short range communications, while our
platform uses LoRa communications, which is characterized by a long delay between
transmissions and a higher instantaneous power consumption. Thus, the power man-
ager must be adapted to fit these constraints. To the best of our knowledge, this
work is the first to design a power manager for an energy harvesting LoRa WSN
node. Chapter 4 details the adaptation of EBE algorithm for multi-source LoRa
nodes, and chapter 5 shows how we can allocate energy in both single and multi-task
systems.



Chapter 4

Energy budget estimators for Long

Range IoT nodes

In order to properly manage the QoS of a device based on its power capabilities,
a power manager must know how much energy it can allocate to each task. This
amount of energy, called an energy budget and noted EB, is estimated by the Energy
Budget Estimator (EBE) algorithm. This algorithm bases its calculations on the
different energy capabilities of the energy harvesting WSN node. The energy storage
SOC is systematically used. The harvested energy is often required but is difficult
to measure accurately, and is often estimated by a measurement of the variation of
the SOC of the energy storage ∆ER. This chapter presents the different types of
energy budget estimation algorithms and describes some notable estimation methods.
These algorithms are then adapted to a long range network (LoRaWAN) use-case,
implemented and evaluated on the Wi6labs platform with the previously designed
multi-source energy harvesting board. To the best of our knowledge, this is the first
use of EBE algorithms on a LoRa WSN node.

4.1 Energy Budget Estimation Algorithms and Meth-

ods

4.1.1 Model-Based Energy Budget Estimation Algorithms

The first type of EBE algorithms is said to be “model-based”. This type of algorithm
relies on a model of the energy source it is associated with. Using the characteristics
of the energy source, the algorithm is able to predict the future harvested energy
and to adapt the calculated energy budget EB to past, present and future energy
harvesting conditions. Such algorithms heavily rely on predictors to estimate the
future harvested energy. Therefore, model-based algorithms combine two problems:
how to accurately predict future amount of harvested energy and how to decide the
best EB using this parameter. As they use a model of an energy source to predict
the future harvested energy, prediction algorithms are specific to the energy source
they were designed for. Due to the progresses of energy harvesting technologies and
use-cases, the design of energy harvesting prediction algorithms has been an active
area of research during the past years, as detailed in the next paragraphs.

80
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Although RF energy harvesting is not the most efficient energy source, it is easier
to predict, as multiple works try to predict the future power of RF signal, in order
to increase the quality of radio links. These work can be adapted to estimate the
future power harvested with RF energy harvesting. For example in [173], De Araujo
et al. model the link as a Markov chain and discover its parameters on the fly. This
solution makes use of genetic machine learning algorithms to adapt itself to new
radio conditions. This work is extended in [174] with the introduction of the notion
of orientation in order to represent the tendency of the signal strength to increase
or decrease. Machine learning is also used in [175] to predict the future link quality.
In this work, link quality data is used to train a prediction model based on logistic
regression, which enables a lower computational cost than alternatives such as Bayes
classifiers and artificial neural networks.

The first energy predictor for solar sources for WSN has been proposed by Kansal
et al. in [168], which introduced the concept of power management for energy harvest-
ing WSN nodes. In this work, the predictor is based on an Exponentially Weighted
Moving Average (EWMA) algorithm [176], with a window size of 24 hours divided in
time slots of 30 minutes. The energy harvested during a slot is expected to be simi-
lar to the the energy harvested in the same slot of previous days. This assumption
makes the algorithm sub-optimal for environments where the weather varies a lot.
Piorno et al. [170] mitigate this issue with the Weather-Conditioned Moving Aver-
age (WCMA) algorithm, which is able to predict the output of a solar panel with
a 10 % accuracy by taking into account both present and past weather measure-
ments. [177] uses a phase displacement regulator to extend the WCMA algorithm
and reduces its average error. A comparison of these different algorithms is given
in [178], which shows the higher efficiency of the WCMA algorithm over EWMA
and a neural network solution. However, WCMA requires more memory and com-
putational power than the alternative solutions. [179] presents SunCast, an indoor
solar energy harvesting predictor which learns predictable losses of luminosity due
the the environment (e.g. trees, nearby buildings...). [180] proposes to estimate the
harvested energy with EWMA when there are no clouds, and use meteorological
models to scale this value when there are clouds. Finally, [181] uses Q-Learning, a
reinforcement learning approach, to efficiently predict future harvested power based
on past and present measurements.

Procarelli et al., in [34], proposes an energy predictor dedicated to forecast the
availability of a wind energy source. The predictor uses a linear regression over
a 30 s sliding window, using the last power measurement to predict the next one,
and adapts the power converter settings to the harvested power. The Adaptive
Response Rate Single Exponential Smoothing (ARRSES) is presented in [182]. This
predictor is based on EWMA, but varies the smoothing factor proportionally with
the fluctuations of input power, increasing its response time to weather variations.
This approach is extended in [183] which considers longer forecasting periods.

Although most approaches are specific to a single energy source, some solutions
can be adapted to fit multiple sources. [184] presents Pro-Energy, which predicts
the future harvested energy by, once per time slot, comparing the energy harvested
in the current day and saved energy harvesting profiles of past days. Pro-Energy is
able to make short-term and medium-term predictions, and dynamically adapts its
set of saved energy profiles, based on their age and similarities, to adapt itself to
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new conditions. [185] extends this work with the introduction of Pro-Energy VLT,
which also dynamically adapts the lengths of time slots. [186] presents a study of
both indoor light and thermoelectric energy harvesting in the context of Body area
Networks (BAN), taking in account the impact of human activity. The system uses
measurement to know the current state of the energy source and a Kalman filter to
predict the next state of the source and how much energy it will provide. Finally, [187]
proposes the use of Markovian models to simulate the behavior of piezoelectric and
solar energy harvesting sources. The authors conclude that although both sources
can be modeled by the same principles, the piezoelectric source is better modeled
by a generalized Markovian model while the solar source is better modeled by a
stationary Markovian model.

The prediction algorithm delivers the estimated future harvested energy to the
model-based EBE, which then estimates the energy budget EB. Multiple EBE algo-
rithms have been designed to rely on energy prediction.

The first EBE is proposed in [168]. This EBE directly controls the duty cycle
of the WSN node based on the difference between the estimated future harvested
energy and the actual measurement energy input. Due to this, the EBE is directly
impacted by the lack of precision of the EWMA predictor when the environment
varies quickly. Moreover, the duty cycle is not balanced over the observation period,
and thus is highly variable between periods of plentiful energy and periods where no
energy can be harvested. It can be noted that this EBE does not take into account
the residual energy ER, which leads to power failures.

In [188], Casgnetti et al. present two EBE, named OL PM (Open Loop Power
Manager) and CL PM (Closed Loop Power Manager) which both aim to reach ENO.
The harvested energy EH is used to estimate the recharge rate of the energy storage.
OL PM calculates a duty cycle based on this recharge rate, while CL PM predicts
the periods where the recharge rate is below a threshold, meaning not enough energy
is harvested. In these so-called Zero Energy Intervals (ZEI), CL PM tries to save as
much energy as possible. When enough energy is harvested, it uses the same policy
as OL PM. A similar approach is taken in [6], where the power manager uses the
EWMA predictor to decide the duty cycle during non ZEI periods and uses a specific
NE PM (Negative Energy Power Manager) during ZEI, which focuses on avoiding
power failures.

4.1.2 Model-Free Energy Budget Estimation Algorithms

Model-based EBE algorithms performance heavily relies on the quality of the used
predictor. Accurate predictors tend to be computationally intensive, while algo-
rithms targeted at constrained embedded environments tend to lack precision, espe-
cially with variable energy sources. Moreover, model-based EBE algorithms tend to
apply a model to a particular type of energy source (e.g. pseudo-periodic model for a
solar panel), which can not always be efficiently used with a different energy source.
Therefore, there is a need for EBE algorithms which do not rely on a prediction
algorithm.

The alternative to model-based algorithms is referred as “model-free” algorithms.
This kind of algorithms takes only the platform energy capabilities (e.g. ER, EH ,
∆ER...) as inputs to compute EB, and does not require an estimation of future
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Figure 4.1: Structure of a fuzzy logic controller.

harvested energy.This type of algorithm is close to control systems, where a control
loop tries to reach the optimal value of a process variable according to different inputs
and constraints. In the case of EBE algorithms, the process variable is the energy
budget EB. Control systems have been widely implemented and studied, from home
appliances to industrial and scientific systems. Thus, control theory and automation
are active research areas, and a number of existing solutions, such as PID controllers
[169], can be adapted to design model-free EBE algorithms.

Vigorito et al. proposed the first model-free EBE algorithm in [189] in 2007. The
system targets ENO, explicitly focusing on generality and adaptivity, while keeping
a good computational efficiency. The algorithm uses a linear-quadratic tracker (LQ-
tracker) to solve the problem, using only the energy storage SOC as input. In order
to get as close to ENO operation as possible, LQ-tracker tries to minimize the average
squared difference between the current SOC and the initial SOC. When this differ-
ence is null, the system has consumed exactly as much energy as it has harvested.
The control law coefficients are estimated using the gradient descent algorithm. This
algorithm is executed online, so that the WSN node can adapt its control law to the
environment condition and improve LQ-tracker control law dynamically. Moreover,
the system computes an exponentially weighted moving average of the previous out-
puts in order to smooth the output and reduce its variance. Even without using an
energy predictor, LQ-tracker manages to outperform Kansal et al. [168] by increas-
ing the mean duty cycle of the platform, reducing its variance. More importantly,
the battery SOC never drops to 0 %, ensuring continuous operation of the WSN.

[171] proposes P-FREEN, a prediction free energy neutral power management
strategy which takes into account the energy storage inefficiencies. This algorithm
takes both ER and EH as inputs and bases its decisions on time slots. If, at the
start of time slot k, ER is too low, or if the energy harvested in the previous time
slot is lower than its last value, then P-FREEN outputs the minimal energy budget
Emin

B . Otherwise, EB is computed as a function of harvested energy EH in the last
time slot and the energy storage efficiency, capped at a maximum value of Emax

B . P-
FREEN manages to deliver better performance than [168]. However, it requires EH ,
which is hard to measure. As multiple calculations are based on EH , it is difficult
to replace EH with the SOC variation ∆ER without losing precision. Moreover, as
ER is compared to a hard threshold, it may create variations in the delivered EB

for a small ER variation, which increases the variances of the output and reduces its
stability.

In [190], the WSN node is designed to perform two actions: a storage action and a
measurement and transmission action. For each of these actions, a fuzzy logic based
controller is designed to compute the duty cycle, taking the percentage of data in the
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Figure 4.2: Graphical representation of the membership function (4.1).

data buffer and the 24 hour moving average battery SOC as inputs. Fuzzy logic uses
3 steps, described in Fig. 4.1. The fuzzification step transforms crisp input values in a
set of fuzzy values through a set of membership functions, which is a representation
of how much an input corresponds to a statement. For example, a fuzzy value
µfull could be equal to 1 if the energy storage SOC has reached a certain voltage
threshold Efull

R and is considered full, 0 if the storage voltage is below a threshold
Eempty

R , and a value between 0 and 1 when the voltage is between the two thresholds.
Equation (4.1) shows such a membership function, and Fig. 4.2 shows its graphical
representation. The fuzzy inputs are then processed by a rule-based inference engine,
which makes each fuzzy input combination correspond to a certain rule and computes
its activation value Ai

R. Finally the defuzzification process computes a mean value of
all rules weighted by their corresponding fuzzy inputs, to deliver the control output.
Fuzzy logic can be seen as an extension of boolean logic, where there exist values
between true and false. In the considered work, the output of the fuzzy controller
is discretized to avoid heavy computations. However, storing the discretized fuzzy
output consumes a lot of memory resources. Moreover, the fuzzy rule-set is tuned
by trial-and-error for each specific source, and is hard to generalize to a large variety
of applications.

µfull(ER) =















0 if ER ≤ Eempty
R

−ER+Efull
R

Efull
R

−Eempty
R

if Eempty
R < ER < Efull

R

1 if ER ≥ Efull
R .

(4.1)

Also based on fuzzy logic, [191] proposes Fuzzyman, a power manager which
computes an energy budget EB based on the residual energy in storage ER and the
harvested energy EH . The membership functions and the rule-set are designed to
be as simple as possible to avoid heavy computations, which removes the need to
discretize the output of the fuzzy controller and free memory resources. Moreover,
the proposed rule-set is generic enough to be independent of the used energy source.
Fuzzyman significantly reduces the WSN node down time compared to [171]. How-
ever, it is hard to accurately measure EH without consuming much power, which
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makes the implementation of Fuzzyman difficult in a real WSN node. In [192], the
authors correct this point by proposing a Fuzzyman rule-set which takes ER and its
variation ∆ER instead of EH . For both Fuzzyman versions, tuning and optimization
of the EBE is difficult. Indeed, although the proposed rule-sets are generic enough to
be used in multiple contexts, design of fuzzy logic rule-set is complicated and must
often be optimized through trial and error, which often breaks the generality of the
solution.

Finally, another approach is proposed in [193]. In this work, Hsu et al. propose
the use of Q-learning, a reinforcement learning algorithm, to compute the optimal
power management policy for the WSN node in its environments. The system takes
into account the battery SOC, the deviation from energy neutral operation and the
deviation from the required QoS. Although the system increases the mean battery
SOC, thus reducing the probability of down time, the obtained duty cycle is similar
to [168]. Moreover, the algorithm requires the battery SOC ER, the harvested energy
EH and the consumed energy EC to operate. As the latter two values are difficult to
efficiently measure with a reduced power consumption, the implementation of this
power management scheme is difficult in the context of a real WSN deployment.

4.2 Application to Long Range IoT Nodes

4.2.1 Long Range Energy Budget Estimation Requirements

In this thesis application, the use of long range radio transmission technologies is
considered. The delay between messages DTX usually ranges from minutes to hours,
but can even reach more than a day between two transmissions. This contrasts with
state of the art proposals, where the delay between messages ranges from seconds
to minutes, and the wait before the next power manager execution can be set to
an hour or less. Thus, the time slot duration has to be set to a long time in order
to ensure that at least one transmission is made during the time slot. This makes
it much harder for the control algorithm to converge to the ENO point. Moreover,
since the delay between two power manager executions is longer, the system can not
quickly react to change in the environment and harvested energy. This creates a risk
of depleting the energy storage and stopping operation if the power manager still
provides the WSN node a high QoS while the harvested energy has decreased. To
circumvent this problem, the power manager is executed after each transmission, so
that it can quickly adapt to changes in the environment between two messages.

State-of-the-art EBE try to reach the ENO point as quickly as possible. In these
works, one of the objective is to use the harvested energy as efficiently as possible.
Thus, energy harvested when the energy storage is fully charged is considered lost,
as it can not be used by the device. Power management algorithms try to avoid this
situation by increasing the QoS of the node when the energy storage is sufficiently
charged. In an industrial context however, a fully charged energy storage is not nec-
essarily a problem. In such applications, QoS limits can be required by a customer.
In this use-case, once the maximal QoS is reached, having more energy does not
improve the performance of the WSN node. Thus, a smaller energy storage can be
chosen to reduce the cost of the platorm.
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Frequency band Max. power
Max.

duty cycle
Max.

bandwidth
Note

433.05 to
434.79MHz

1 mW ERP
-13 dBm/10 kHz if

bandwidth ≥ 250kHz
— —

♦

10 mW ERP 10 % —
434.04 to
434.79MHz

10 mW ERP 100 % 25 kHz

863 to
865MHz

25 mW ERP 0.1 % — ♦♥

10 mW ERP 100 % — �

865 to
868MHz

25 mW ERP 1 % — ♦♥

868 to
868.6MHz

25 mW ERP 1 % —
♠♥

868.7 to
869.2MHz

25 mW ERP 0.1 % —

868.4 to
869.65MHz

500 mW ERP 10 % — ♠♥

25 mW ERP 0.1 % — ♦♥

869.7 to
870MHz

5 mW ERP — — ♦

869.7 to
870MHz

25 mW ERP 1 % — ♦♥

2400 to
2483.5MHz

10 mW EIRP — — —

5725 to
5875MHz

25 mW EIRP — — —

♦ Analogue audio and video applications are excluded, except voice trans-
mission if interferences mitigation techniques are implemented.
♠ Analogue video applications are excluded.
♥ Duty cycle can be ignored if channel access and interferences mitigation
techniques (e.g. listen before talk, adaptive frequency hopping...) described
in [194] are implemented.
� Only applies to wireless audio and multimedia devices.

Table 4.1: Subset of legislation defined by [195] for common IoT use-cases and fre-
quency bands. Recent evolutions (2018 and later) are not shown as the new rules
have not been implemented to this documentation publication date. ERP = Effective
Radiated Power.
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Figure 4.3: WSN node platform used for the experiments, powered by a solar panel.

Moreover, it can be noted that many wireless communication protocols operate
in the Industrial, Scientific and Medical (ISM) frequency bands, especially in the
433 MHz, 868 MHz, 915 MHz, and 2.45 GHz bands. These frequency bands are free
to use without any license requirements, but are regulated in order to reduce electro-
magnetic interferences between the multiple devices and transmissions. Especially,
the legislation of sub-GHz bands (433 MHz, 868 MHz and 915 MHz) limits the duty
cycle of the transmissions, as shown in Table 4.1. Depending on the region, the
frequency band and the duration of the transmission, the WSN node must wait a
minimum delay Dmin

TX before emitting a new message. This imposes an upper QoS
limit on the device, which has to be taken into account by the power manager.

Although those use-cases differ from the target of state-of-the-art model-free al-
gorithms, the fundamental problem stays similar: delivering an optimal EB under
constraints, according to the node energy characteristics and its harvesting capabil-
ities. Thus, there is an interest in evaluating the performance of these algorithms
under those constraints, in order to quantify their performance for long range WSN.
Moreover, most of these algorithms have only been evaluated in a simulation con-
text. Therefore, a real-world evaluation of these algorithms is required, to validate
the assumptions taken for the simulations.

4.2.2 Real-World Implementation of Energy Budget Estima-

tors

A software library containing state of the art EBE algorithms has been developed in
C, and implemented on a real world WSN node platform, shown in Fig. 4.3. Since
the micro-controller has no Floating-Point Unit, the library was implemented using
a portable fixed-point arithmetics library [196]. This portability enables the compi-
lation of the library for multiple platforms, from a WSN node to a standard desktop
processor. This enables the validation of the EBE library on a computer before be-
ing implemented on a target node and speeds up development time. Moreover, the
library can be integrated as a software module in a simulator, which then executes
the same code as the one on the WSN node. This limits the potential differences
between simulations and real-world usage.

In this section, the focus is made on the impact of the EB estimation step over
the global efficiency of the power manager. Therefore, algorithms in which the en-
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ergy estimation and allocation are tightly coupled, such as the PID controller [169]
and RLman [172] are discarded. Moreover, in order to reduce its cost, the consid-
ered hardware platform does not embed components to measure the harvested and
consumed energy EH and EC . Therefore, only the algorithms which use ER and/or
∆ER are implemented: LQ-tracker [189], Fuzzyman [191] and P-FREEN [171]. How-
ever, ∆ER is a much less accurate measurement than EH . This severely reduces the
stability of P-FREEN, which relies heavily on the measured EH . Thus, P-FREEN is
not considered in this study. LQ-tracker can be implemented using only ER as input.
Fuzzyman in its original design also requires EH , but has already been adapted to
use ∆ER. In this work, we consequently use a custom rule-set that uses ∆ER as
input instead of EH , and uses the last energy budget EB [k − 1] to determine the
new EB. The rules are detailed in Table 1 and only depends on the application
and platform parameters and can be reused for a variety of applications and energy
sources.

ER

Empty Full

∆ER

< 0 Emin
B f(EB [k − 1])

= 0 f(EB [k − 1]) EB [k − 1]
> 0 EB [k − 1] Emax

B

Table 4.2: Fuzzyman custom rule-set.

In Table 1, f(EB[k−1]) is a function defined by:

f(EB [k − 1]) = max

�

Emin
B ,

ER − Eempty
R

Efull
R − Eempty

R

.EB [k − 1]

�

. (4.2)

This study assumes that the WSN node periodically executes a single task, which
enables benchmarking the different EBE algorithms with a simplified energy alloca-
tion scheme. In most use-cases, this task is composed of one or more sensor mea-
surements, an eventual data processing, and the transmission of the processed mea-
surement over the network. The energy consumption of this single task is supposed
to be constant and known a priori, and is denoted Emono

C .
The QoS is set in the library by defining a time base D, usually set to 1 hour,

and the minimal and maximal delay between two transmissions Dmin
TX and Dmax

TX . The
minimal and maximal energy budget Emin

B and Emax
B for this application are then

computed as (4.3) and (4.4), respectively.

Emin
B =

D × Emono
C

Dmax
TX

(4.3)

Emax
B =

D × Emono
C

Dmin
TX

(4.4)

Thus, to set a maximal or minimal QoS of υ (υ ∈ IR≥0) transmissions per time
base D for example, Dmin

TX is simply set to D/υ. The length of the time base D
can be adapted to keep the computation within the fixed point format limits for
a vast varying range of Dmin

TX and Dmax
TX . These parameters are dependent on the
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end-application and are customizable. DTX (in seconds) is calculated from EB and
Emono

C as:

D =
D × Emono

C

EB

. (4.5)

The library also needs information about the underlying hardware energy capa-
bilities. We denote VBAT , V min

BAT and V max
BAT the current, minimal and maximal battery

voltage. V min
BAT is the voltage for which the platform stops functioning, or can be set

with a margin before the battery is fully depleted. When the energy storage is a
super-capacitor, its capacitance is defined. Based on these parameters, the current,
minimal and maximal residual energy in storage ER, Eempty

R and Efull
R are calculated.

Besides, we implemented two naive EBE algorithms: Linear_T and Linear_E.
Linear_E calculates an energy budget between Emin

B and Emax
B as a pro-rata of VBAT

between V min
BAT and V max

BAT :

EB = Emin
B + (Emax

B − Emin
B )×

�

VBAT − V min
BAT

V max
BAT − V min

BAT

�

. (4.6)

Linear_T calculates a fixed delay between Dmin
TX and Dmax

TX as a proportion of
VBAT between V min

BAT and V max
BAT . This delay is then converted to an energy budget

based on Emono
C . The full equation is given by:

EB = D ×
Emono

C

Dmax
TX − (Dmax

TX −Dmin
TX )×

�

VBAT−V min
BAT

V max
BAT

−V min
BAT

� . (4.7)

These two algorithms are used as a performance baseline to evaluate the advan-
tages of more advanced control algorithms. Their advantage is their simplicity, as
no settings are required beyond the common platform settings. Finally, to avoid
sharp EB variations due to temporary change in energy harvesting conditions, all
algorithms outputs are smoothed by a low pass filter with a parameter γ = 0.9:

EBfiltered [k] = γ × EB + (1− γ)× EBfiltered [k − 1] . (4.8)

4.2.3 Simulation Comparison of Energy Budget Estimators

for Long Range IoT Nodes

All the selected algorithms can be tuned in order to improve their performance. The
library has been designed to be portable, which enables the algorithms to be tuned
in a simulation framework using the same code and same results as for the platform.
Indeed, it takes more time to tune an algorithm with a measurement campaign than
with simulation. This is particularly true for algorithms with many settings, such
as Fuzzyman. In this subsection, we compare the performance of four algorithms:
Fuzzyman, LQ-Tracker, Linear_T and Linear_E.

Each EBE algorithm has its tuning capabilities. Linear_T and Linear_E only
need the common platform parameters, V min

BAT and V max
BAT . However, these thresholds

can be adjusted to increase the linear algorithms performance. By respectively in-
creasing and reducing the V min

BAT and V max
BAT , the energy storage is considered to be

fully depleted or charged more quickly. This can be used to better conserve energy,



90 Application to Long Range IoT Nodes

by settings a high V min
BAT . On the other hand, performance can be increased by re-

ducing V max
BAT , which makes the EBE output higher EB values for the same ER and

deliver Emax
B even if the storage is not really fully charged.

LQ-tracker requires more parameters: it takes as input an energy target level
ETRGT , a step-size µ, a feature vector Φ and a parameter vector Θ. ETRGT value
is dependent on the application. µ is set by default to 0.001 and impacts how fast
LQ-tracker converges. Φ and Θ default values can be modified to immediately fit the
application. However, this is not necessary as the algorithm is iterative. Φ values are
calculated at each iteration of the algorithm, while Θ is modified in order to converge
towards an optimal value corresponding to the hardware platform and environment
conditions. Increasing the parameter µ will enable a quicker convergence of the
algorithm but may reduce its stability. ETRGT is an important parameter, as it sets
the residual energy storage that LQ-tracker will try to reach. A higher ETRGT will
make the algorithm more conservative, as it will tend to save more energy to reach
its target, while a low ETRGT will let it deliver higher EB values but reduce the mean
ER. LQ-tracker also applies an exponentially weighted moving average filter (4.9)
with a coefficient α ∈ [0, 1] to smooth the control output at time t ut into a smoothed
output ut. The higher α is set, the fewer past values will be used for smoothing.
Finally, a coefficient β ∈ [0, 1] is used to compute a moving average between short
term and long term control. A small β with reduce variance but adapt more slowly
to energy harvesting variations, while a high β will make the algorithm more reactive
at the cost of increased EB variance.

ut = ut−1 + α (ut − ut−1) (4.9)

Fuzzyman is the hardest one to tune, as it can be entirely redesigned to fit the
application. ER is processed through membership functions to compute whether the
storage is full, empty or in-between. ∆ER is processed to calculate if it is positive,
negative or approximately equal to 0. The thresholds of these membership functions
(Efull

thr , Eempty
thr , ∆Epos

thr , ∆Eneg
thr ) can be set by the user to define the EBE algorithm

energy policy. Moreover, the complete rule-set can be redesigned to provide better
performance. In this case, a compromise has to be made between performance,
stability of the algorithm, but also the computational efficiency of each rule.

For our simulations, the delay between two messages is set between 15 minutes to
3 hours. The energy consumed by a Long Range Wide Area Network (LoRaWAN)
transmission is measured to 140mJ with a SF7 spreading factor. We set V min

BAT and
V max
BAT respectively to 3.7 V and 4.1 V, as for our real energy storage. The system

was tested with a solar energy source, using EnHANTS [197] measurement data.
The simulated solar panel is 3.2 cm × 4.2 cm with an efficiency of 10:%, like the
one used in experimentation. The simulation results, without tuning, are shown in
Table 4.5. The mean value x̄ and standard deviation σ of VBAT , EB and DTX are
presented. Moreover, the number of transmissions Tx is counted. When the node
has to transmit a message but VBAT is under a threshold arbirarily fixed to 3.4 V, the
transmission is aborted and is considered failed. The number of failed transmissions
is denoted Txfail.

It can be noticed that all algorithms have some failed transmissions, meaning
some transmissions were aborted due to VBAT being lower than V min

BAT . Most of them
occur around a lack of data in the solar traces, which is kept to simulate a long period
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Algorithm Setting Description Value
Linear E
Linear T

V min
BAT Low battery limit 3.75 V

V max
BAT Full battery limit 3.85 V

LQ-tracker

µ Step-size 0.005

ETRGT Target SOC
36 %

(∼ VBAT = 3.85 V )
Φ Initial feature vector [1, 0,−ETRGT ]

T

Θ Initial parameter vector [2,−1, 1]T

α
Control output

smoothing coefficient
0.5

β
Long-term/short-term

decision coefficient
0.9

Fuzzyman

Efull
thr

"Battery full" threshold
for membership function

1.03× Eempty
R

Eempty
thr

"Battery empty" threshold
for membership function

0.85× Efull
R

∆Epos
thr

Positive ∆ER threshold
for membership function

0.35

∆Eneg
thr

Negative ∆ER threshold
for membership function

−0.5

Table 4.3: Settings used for EBE algorithms in this work.

ER

Empty Full

∆ER

< 0 Emin
B 0.95× EB[k−1]

= 0 0.95× EB[k−1] 1.5× EB[k−1]

> 0 1.5× EB[k−1] Emax
B

Table 4.4: Fuzzyman new ruleset.

without energy. Two algorithms, Fuzzyman and Linear_T, are more conservative,
which can be seen as they keep a higher and more stable VBAT , and thus emit less
messages than the other two. EB of Fuzzyman is high and unstable, which shows
that it sometimes tries to deliver an EB too high and can not stabilize. Linear_E
and LQ-tracker, on the other hand, take more risks, showing a lower mean VBAT ,
and are rewarded with a higher number of transmissions.

All algorithms parameters have been tuned in order to improve their performance
as much as possible and maximize the number of transmissions. Table 4.3 shows the
list of used settings for this work experiments. For Linear_E and Linear_T, V min

BAT is
set to 3.75 instead of 3.7 V, and V max

BAT to 3.85 V instead of 4.1 V. This enables both
algorithms to be more conservative when the energy storage is nearly depleted and
take more risks when it is sufficiently replenished. The step-size µ of LQ-tracker is
increased to 0.005, and Φ and Θ are left to their default values, fixed in [189]. A
new rule-set is designed for Fuzzyman, shown in Table 4.4, while the fuzzification
thresholds Eempty

thr , Efull
thr , ∆Epos

thr and ∆Eneg
thr were respectively set to 1.03 × Eempty

R ,
0.85 × Efull

R , 0.35 and −0.5. The simulation was run again with the new settings,
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and Table 4.6 shows the results.

Fuzzyman Linear E Linear T LQ-tracker
x̄ σ x̄ σ x̄ σ x̄ σ

VBAT (V) 4.060 0.058 4.010 0.103 4.056 0.070 3.988 0.107
EB (J) 0.454 0.163 0.446 0.125 0.364 0.155 0.529 0.107

DTX (min) 29 36 24 23 33 27 21 28
Tx 18201 22624 16452 25814

Txfail 7 31 13 31

Table 4.5: Simulation before algorithm tuning.

Fuzzyman Linear E Linear T LQ-tracker
x̄ σ x̄ σ x̄ σ x̄ σ

VBAT (V) 3.978 0.116 3.985 0.109 3.996 0.100 3.988 0.107
EB (J) 0.530 0.100 0.528 0.107 0.526 0.117 0.528 0.107

DTX (min) 20 27 21 27 21 27 21 28
Tx 26217 25947 25284 25800

Txfail 36 33 28 31

Table 4.6: Simulation after algorithm tuning.

After optimization, there is little difference between the performance of the dif-
ferent EBE algorithms. In the considered use-case, the energy budget EB is limited
between a minimal value Emin

B and a maximal value Emax
B . Thus all EBE algorithms

have a similar behavior in limit cases where energy storage is sufficiently charged or
empty. As all algorithms are tuned to maximize throughput, they deliver EB = Emax

B

for an extended range of input values, as shown in Fig. 4.4, which shows the evolution
of EB as a function of the state-of-charge.
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Figure 4.4: EB as a function of the State-of-Charge.

This graph gives a quick insight of how the different algorithms behave at low
and high states of charge. Indeed, it illustrates how much risks are taken by each
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algorithm for different SOC. However, this visualization has its limits when applied
to algorithms which use more data inputs than only VBAT , such as Fuzzyman, since
it does not show the other inputs. Since all algorithms try to maximize EB, they take
less precautions and are more likely to fail if the environment conditions are bad for
an extended time period. In the evaluated algorithms, LQ-tracker seems to be the
most conservative, starting to reduce the delivered EB when the state of charge goes
under 70 %. The Linear algorithms and Fuzzyman are more aggressive, delivering
maximum EB when the state of charge is respectively over 35 % and 17 %.

4.2.4 Real-World EBE measurements

In order to confirm the simulation results, we set up an experiment on real WSN
nodes to run the same comparison. During the experiments, each hardware device is
powered by a solar panel which can provide up to 5 V and 40 mA from direct sunlight.
The experiment was run for seven days in an office settings. Each algorithm is run
on a different device. All sensors were located next to a north oriented window, and
ran in parallel to reduce differences in ambient energy. After each transmission, the
energy budget and delay to the next transmission are calculated and sent through an
Universal Asynchronous Receiver-Transmitter (UART) link, along with VBAT and a
count of successful transmissions. This UART transmission is logged by a computer,
parsed and analyzed to produce the graphs shown in Fig. 4.5.

The experimental results confirm the tendencies observed with the simulation
results. The differences between both, especially regaring the number of failed trans-
missions, can be explained by the difference between the energy traces profile used in
simulation and the real harvested energy profile. The number of successful transmis-
sions is approximately the same for all algorithms, within a 15 % margin. Only one
transmission failed during the fifth night for Fuzzyman. Although this performance
difference is notable, it is sufficiently small to be overlooked in some industrial appli-
cations, and may be reduced over a longer experiment, with more weather variations.
Thus, even though Linear_T and Fuzzyman are somewhat less efficient algorithms
under these conditions, their use can still be justified by their other qualities, i.e. the
simplicity of Linear_T and the customization possibilities of Fuzzyman. This shows
that the algorithms are quantitatively equivalent when they are properly tuned, and
confirms the results obtained through simulation. Qualitative differences can how-
ever be observed between the different EBE implementations.

As expected, LQ-tracker, by being more conservative, keeps its VBAT higher than
the other algorithms, which makes it more able to survive long periods without en-
ergy. On the contrary, Fuzzyman delivers a competitive number of transmissions but
keeps its VBAT much closer to the failure threshold, making it more sensible to lack
of energy input, as seen with the failed transmission. As Fuzzyman is highly tunable,
this could be optimized by a carefully designed rule-set, to provide characteristics
closer to LQ-tracker.

Moreover, Fuzzyman and Linear_T show a high variance in the delivered EB

and delay DTX , which can be explained by the quick decrease of EB when VBAT goes
under a certain threshold, defined by the tuning of the algorithm. This quick EB

decrease translates into a much longer delay DTX , and decreases the performance
of the algorithm, despite the aggressive tuning. On the other hand, Linear_E and
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Figure 4.5: EBE algorithms comparison over seven days.
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LQ-tracker reduce EB more progressively, which translates to a lower mean DTX and
improved performance. This behavior also depends on how DTX is calculated from
EB, and could be varied using a different energy allocation method.

Finally, it can be observed that all algorithms show a sharp rise of EB when
the energy storage gets replenished. As all the evaluated algorithms are model-free,
they have no means to predict an approximate future energy state of charge. In our
use-case, this is typically the case in the morning: the calculated DTX is long at the
end of the night, when the energy storage starts getting replenished. When this long
delay DTX is elapsed, the storage has been charging for a long time, and the EBE
can deliver a higher EB. This effect would be less important with a model-based
EBE algorithm, as it would predict that energy was going to be harvested.

4.3 Conclusions

In this chapter, we focused on how an energy harvesting WSN node can estimate
how much energy it can consume over a time period. State-of-the-art algorithms
are presented, for both model-based estimators, which rely on prediction algorithms,
and model-free EBE which draw inspiration from control theory solutions. This
works presents the constraints of EB estimation for long range energy harvesting
WSN node, and shows a performance comparison of EBE algorithms in this context.
Furthermore, the algorithms are implemented in a portable software library and
executed on real-world WSN nodes. Experimentation confirms the results obtained
through simulation. Both results show that the maximum performance which can
be reached is nearly equivalent for all tested algorithms when the QoS is capped to a
maximum value and the energy allocation policy is the same. However, the amount
of fine-tuning required to reach this performance level varies between the different
algorithms. Thus, the choice of algorithm is a question of ease of implementation
and fine-tuning, more than a question of performance.



Chapter 5

Energy allocation for Energy

Harvesting WSN Nodes

In addition to the EBE algorithm, energy harvesting power managers must embed
an Energy Allocator (EA) step. In this context, EA focuses on how to best use the
previously computed energy budget EB to achieve the WSN node QoS requirements.
Depending on the use-case and the node, this step can vary as the QoS requirements,
the tasks of the node and/or the way QoS is measured differ. The typical tasks of
a WSN node include measurement tasks, computing tasks to process the data and
transmission tasks. These tasks can be defined by different properties, such as their
priority, duration, energy cost and/or period. The use of a separate EBE algorithm
isolates the EA from the energy capabilities of the platform. Thus, the EA can focus
on the behavior and tasks of the node, enabling simple algorithm designs.

5.1 Related work

In some ways, EA can be seen as a task scheduling problem. In OSs where multiple
tasks can be executed, a scheduler is used to decide which task is executed by the
processor at a moment. In many general use-cases (e.g. general purpose computers,
non-critical appliances...), these tasks have very few requirements, and a long delay
to their execution has a low impact. In some other use-cases, called hard real-time
systems, these delays have a high impact and it is important that tasks are executed
before their deadline. In such systems, specific OSs called RTOSs are used to ensure
that all tasks are correctly and timely executed. RTOSs make use of dedicated
scheduling policies such as Rate Monotonic Scheduling (RMS) [198] and Deadline
Monotonic Scheduling (DMS) [199] when tasks have a fixed priority based on their
period, or Earliest Deadline First (EDF) [200] and its variants [201] when tasks have
a dynamic priority based on their urgency. These scheduling policies are typically
used when a missed deadline for a task has a high impact on the security of the system
(e.g. plane control system...), of its user (e.g. modern car breaking system...), or
when the task requires a low latency (e.g. audio/video applications...). However,
these systems only take into account the deadline and/or the frequency of a task,
with no concern for power consumption.

In order to better understand the following related works, we define a few terms

96
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which are commonly used in the field. Task schedulers can be implemented as on-
line algorithms, which are executed directly on the WSN node, or off-line algorithms
where the scheduling policy is computed before-hand on another more powerful ma-
chine. Off-line algorithms can be much more complex, as more computing power
is available, but can not be used when new tasks with varying characteristics are
dynamically created. On the other hand, on-line algorithms are more flexible but
must be simpler, as less computing resources are available. The tasks to be scheduled
can be characterized by their priority, their periodicity or their deadline. Tasks take
a certain length or execution time to complete, which can be fixed or variable. In
that case, the worst case execution time (WCET ) can be defined. In the context of
energy aware task schedulers, tasks characteristics also include the power consumed
during their execution. Based on this, the energy consumed for a task execution can
be computed. When a task has a variable length, the worst case execution energy
(WCEE ) is computed. The list of tasks which can be executed at some point by
the task scheduler is defined as the task set. When the tasks are periodic, the hyper
period of the task set can be computed as the least common multiple of the task
periods.

Real-time scheduling for energy harvesting systems is a recent field of research.
Some early works [202][203][204] focused on the use of DVFS to reduce the power
consumption of the node according to its energy capabilities, with little modifications
of existing real-time scheduling algorithms. On the other hand, an introduction to
energy aware task schedulers has been published in 2012 in [205], which provides
an overview of the complexity of real-time energy harvesting systems and existing
solutions. This complexity is further detailed in [206]. In this work, the authors
present a preemptive fixed priority scheduling policy where tasks are executed as
late as possible (PFPALAP ). The goal of this policy is to let the WSN node harvest
energy to recharge its battery for as long as possible. This work also shows that the
optimality of energy harvesting scheduling policies is much harder to prove and can
go against intuition. Specifically, PFPALAP is evaluated against a similar preemptive
fixed priority policy but where tasks are executed as soon as possible (PFPASAP ).
Although PFPALAP is supposed to let the WSN node recharge its battery for a
longer time, the authors show an example task set where PFPALAP fully depletes
the energy storage, while PFPASAP does not. To work-around this problem, the
article shows an off-line method to compute the minimal size of the energy storage
which ensures the task set schedulability, based on the expected harvested power
and the task set hyper period.

In [207], the same authors focus on PFPASAP to prove its optimality, provided
that all tasks consume the same amount of energy at each execution time unit and
the harvested power is constant. Intuitively however, these conditions are not met
in real-world conditions. PFPASAP is extensively evaluated against PFPALAP and
PFPST , where tasks are executed As Soon As Possible (ASAP) when there is energy,
and As Late As Possible (ALAP) while ER ≤ Efull

R to recharge the battery when
there is no more energy. PFPASAP is shown to have a low overhead and failure rate,
but also lowers the average battery level. PFPASAP is extended in [208] to take
into account the non-ideal behavior of supercapacitor energy storages. Also in [209],
PFPASAP is extended with an harvested energy EH predictor to create FPCASAP

(As Soon As Possible Clairvoyant Fixed Priority), with the aim of extending the
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optimality of PSPASAP . However, this addition significantly increases the complexity
of the algorithm, which makes its implementation more complicated for resource
constrained WSN nodes.

Another early approach is presented in [210] with the Lazy Scheduling Algorithm
(LSA). This algorithm extends the classical EDF policy by adapting its behavior
to the battery level ER. Tasks are usually executed as ALAP. However, when ER

reaches Efull
R , the task with the earliest deadline is executed ASAP. Thus, LSA can be

seen as a switch between an ASAP policy when the energy storage is fully charged and
an ALAP policy otherwise. Although basic, LSA is a significant improvement over
classical real-time schedulers used in energy harvesting context. However, it requires
a knowledge of EH , which is hard to measure. In [211], Audet et al. introduce the
concept of virtual tasks for task scheduling. Each virtual task represents a physical
task, but smooths the energy required over time for a task execution down to the
average energy usage (STAM - Smooth To Average Method), or to a value calculated
to create a virtual task set with 100 % utilization (i.e. the CPU is always executing a
task of the virtual task set). The scheduling algorithm is applied to the virtual task
set, and all virtual tasks are then replaced by their corresponding physical tasks. This
method has been used on EDF, ALAP et LSA policies, and significantly decreases
the probability of task deadline violation.

Algorithm 5.1: Earliest Deadline with energy guarantee (EDeg) algorithm

initialization;
while always do

while tasks are pending do
while ER > Eempty

R AND Slack.energy(t) > 0 do
execute task;

end

while ER < Efull
R AND Slack.time(t) > 0 do

wait;
end

end
while no tasks are pending do

wait;
end

end

Another family of energy aware task schedulers, based on EDF algorithm and
called Earliest Deadline with energy guarantee (EDeg), in presented in [212]. This
algorithm, shown in Algorithm. 5.1 does not make any supposition on the nature and
dynamics of the energy source, which makes it easily adaptable for multiple use-cases.
The algorithm makes use of the slack time of the tasks, defined as the maximum time
a task can be delayed on its activation to complete before its deadline and calculated
with the function Slack.time(t). This work also defines the slack energy of a task τi
at time t as the energy surplus which can be used from t until the activation of τi and
still guarantees that the task fulfills its energy and timing requirements, calculated
with the function Slack.energy(t). By extension, the slack energy of the task set
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is the maximum energy that can be consumed, starting at t, while still satisfying
all timing constraints. This algorithm efficiently improves the performance of EDF
algorithm for energy constrained WSN nodes. The complexity of the slack time
and energy calculation is limited to O(K ×Ddmax/dmin) where K is the number of
tasks, Ddmax is the longest deadline and dmin in the shortest period. Although this
complexity is limited, the computation of slack time and energy may still create a
significant computation overhead, especially for a large number of tasks with strong
constraints. [213] extends this method to RMS and DMS algorithms, using the slack
time to make the node idle to recharge its energy storage.

Another approach is the use of advanced algorithms to determine the optimal
scheduling policy to take into account energy variations. [214] presents such an
algorithm, where the system is modeled as a Markov Decision Process (MDP). In
order to optimize scheduling, tasks are divided in subtasks, some being able to run
in parallel with each other. At each state, a particular action, defined as a set of
subtasks, is chosen and executed. Utility functions are used to compute the rewards
associated with each actions. Like in reinforcement learning systems, the MDP
learns the best actions (i.e. the best policy) to use at each state. However, this
algorithm is computationally complex, as it grows exponentially with the number of
subtasks. Thus, the authors implement a suboptimal version of the algorithm with
a complexity of O(M ×K) where M is the number of subtask queues and K is the
number of tasks.

Some other works focus on task scheduling for specific applications. [215], for
example, presents a periodic task scheduling framework for multi-core embedded
systems with energy harvesting. The system maps new tasks to the processor cores
with the lowest utilization. The system also includes DVFS and task slack man-
agement capabilities. However, it requires an energy predictor, which increases the
required computations. [216] presents an algorithm which takes into account mesh
networking, where a node must be able to route a packet to another node. This work
introduces a priority policy where sensing tasks are executed first, their result stored
in a buffer, and this buffer is only transmitted when the energy storage is sufficiently
charged. However, this policy is hard to implement on long range networks, where
the transmission buffer is usually small and limited to a few tens of bytes. A different
approach is taken in [217], where a complete RTOS is designed with energy aware-
ness as a requirement. The tasks can reserve resources such as CPU time, network
bandwidth and energy. The OS enforces theses reservations, guaranteeing that the
tasks meet their QoS and scheduling requirements. Like many new OS initiatives,
however, the system supports very few platforms.

It can be noted that the previously cited solutions focus on real-time systems
for which missing a deadline is not acceptable. However, in many applications, the
non-execution of a task has moderate consequences. In a metering application, a
missing measurement does not have a significant impact, and may even be corrected
with an interpolation of the surrounding measurements. While the energy allocation
problem for non real-time systems has not been as much explored as for real-time
systems, some previous research exists. In [218], a system is presented which aims
at finding optimal energy allocation to reach a battery energy target. The authors
use Karush-Kuhn-Tucker (KKT) conditions [219] to compute the optimal energy
allocation for each hour in a 24 hours horizon, based on an expected EH value, and
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adapt the results when the measured EH does not correspond to the expected value.
This error correction system is shown to have a constant time complexity, and the
full algorithm is shown to have little power consumption overhead.

In this thesis, the EA system has to divide an energy budget between one or
multiple tasks. This energy distribution must be fair in regards with the priorities
of the task. As the studied tasks do not have any real time constraints, the EA
does not have to ensure the timely execution of all tasks. Instead, the EA is aimed
at maximizing the QoS of the WSN node while preventing battery depletion. This
approach has been previously explored in [220], but only considers the case of single
task WSN node. This thesis extends the study to multi-task WSN nodes.

5.2 Single-task Energy Allocation

5.2.1 Single-Task IoT Nodes

This work first addresses the case of WSN nodes which only perform one task.
Although this task can be composed of multiple subtasks, it is assumed that the
whole task is executed as a whole. An example of such a system can be a WSN node
which measures a value, processes it and transmits it immediately over the network.
This approach is typically used for measurement reporting applications.

In term of energy allocation, this approach is the simplest one. Indeed, in this
use-case, the role of the energy allocator is simply to translate the energy budget
EB into an inversely proportional delay between two messages DTX . In other words,
the only requirement of the energy allocation is to compute a descending function
DTX = f (EB). The function can be designed so that its shape fits the application,
e.g. it takes more risks by computing a smaller DTX for a large range of EB values,
or is more conservative and deliver DTX = Dmax

TX for a range of small EB values.
In this work, two functions for single task energy allocation are presented and

compared. Both deliver a delay DTX fixed between the minimal and maximal values
Dmin

TX and Dmax
TX , which are fixed as parameters by the system designer. The first

function computes DTX between Dmin
TX and Dmax

TX on a pro-rata basis of EB between
Emin

B and Emax
B . Thus, the function DTX = f (EB) is given by (5.1).

DTX = Dmax
TX −

EB − Emin
B

Emax
B − Emin

B

×
�

Dmax
TX −Dmin

TX

�

(5.1)

The second function generalizes (4.3) and (4.4), which respectively compute Emin
B

and Emax
B as a function of Emono

C , D, Dmin
TX and Dmax

TX . The formula can be generalized
as (5.2).

EB =
D × Emono

C

DTX

(5.2)

The delay DTX as a function of EB can then be extracted as (5.3).

DTX =
D × Emono

C

EB

(5.3)

In a previous work [220], the authors obtain through a different reasoning an
equivalent formula, shown in (5.4), where PS is the power consumption in sleep
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EBE LQ-Tracker Linear E
EA Inverse Ramp Inverse Ramp

VBAT (V )
Mean 3.962 4.002 3.995 4.057

Std. deviation 0.075 0.064 0.089 0.060

EB(J)
Mean 0.477 0.527 0.427 0.479

Std. deviation 0.136 0.084 0.134 0.134

DTX(min)
Mean 22.3 25.5 21.8 32.1

Std. deviation 21.6 26.7 10.9 23.2
Transmitted messages 2362 2130 2527 1683

Table 5.1: EA algorithm comparison for different EBE over 40 days.

mode and dT is the duration of the task. It can be noted that both this formula and
(5.3) are similar if PS is considered negligible and equal to 0 µW.

DTX =
Emono

C − dT × PS

EB

D
− PS

(5.4)

This approximation holds in the case of long range transmission as Emono
C is

generally higher than in traditional mesh networked WSN nodes. Indeed, in our
use case, Emono

C is equal to approximately 140 mJ, PS is less than 80 µW, depending
on the board used with our platform, and dT is less than 10 s, depending on the
network transmission parameters. Thus, the product τT × P is always less than
about 0.8 mJ, which is significantly lower than Emono

C . On the denominator side,
D is set to 60 minutes, and Emin

B = (D × Emono
C ) /Dmax

TX ≈ 4.7 mJ , which makes
the ratio EB/D at least equal to 778 µW. Thus, in our use-case, we always have
EB/D � PS. So, as the PS contribution is small in both sides of the fraction, it
can be safely considered as equal to 0. The practical impact of this decision will be
that the computed DTX will be slightly lower, thus increasing the QoS but slightly
increasing the risk of energy storage depletion.

5.2.2 Experimental validation

Both these energy allocation functions were implemented, tested and compared. As
for EBE algorithms, these functions were implemented as a portable C library to
help validation and speed up the development. The same sensors and energy sources
as the EBE comparison in Chapter 4 were used. Out of four deployed sensors, two
used LQ-Tracker and two used Linear_E as the EBE solution, in order to check the
results consistency for different used EBE. For each of these two nodes, one used the
ramp formula presented in (5.1) and the other used the inverse formula presented
in (5.3). All WSN sensor nodes ran in the same location for approximately 40 days,
sending logs of each transmission and energy capabilities over an UART link to a
computer. The results of this experiment are traced in Fig. 5.1 and performance for
all EBE+EA couples are shown in Table 5.1.

A first observation is that the choice of EA function has an important impact
on the performance of the solution. In this case, the use of the ramp function
implements a more conservative policy than the inverse function. This translates
in a higher delay DTX despite a higher energy budget EB, which enables the node
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Figure 5.1: EA algorithm comparison for different EBE over 40 days.
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Data aggregation Disabled Enabled
EA Inverse Ramp Inverse Ramp

VBAT (V )
Mean 3.937 3.947 3.973 3.977

Std. deviation 0.097 0.088 0.083 0.065

EB(J)
Mean 0.395 0.418 0.484 0.509

Std. deviation 0.188 0.184 0.124 0.102
DTX(min) Mean 40.3 60.7 107.4 156.9
Messages transmitted 1004 668 377 258
Data transmitted 2008 1336 3770 2580

Table 5.2: Comparison of QoS with and without data aggregation.

to keep more energy in storage, as shown by the increase in the mean VBAT value,
but also decreases the QoS as less messages are transmitted. This experiment shows
that, for single task WSN nodes, the choice of the DTX = f(EB) EA function is a
compromise between performance, in terms of QoS, and energy safety.

It can be noted that, when the EA function is a ramp, the performance of EBE
algorithms differs by approximately 20 %, which is slightly more than the previously
observed results in Chapter 4. One explanation is that the Linear_E EBE algorithm
shows much more variations on its EB output than LQ-Tracker, as shown with the
difference in standard deviation. Due to this, Linear_E decreases much more quickly
its EB output when VBAT gets lower. Due to this, the conservative ramp function
tends to deliver higher DTX more often, which increases the mean DTX and decreases
the QoS.

5.2.2.1 Aggregation: Increasing QoS for Single-Task Sensors

In the previous experiment, QoS is measured as the number of transmitted messages
over a period of time. However, an alternative is to consider the number of transmit-
ted measurements instead, and transmit multiple measurements per transmission.
This scheme reduces the mean energy consumed each time the node wakes up, as
the transmission is not always carried out. As less energy is consumed, the energy
in storage ER is higher, and the number of performed measurements may be higher
than if it is directly transmitted.

In order to test this hypothesis, the previous experiment has been adapted to add
data aggregation capabilities. The sensor performs both temperature and humidity
measurements, which both have to be transmitted. Thus, at least two measurements
are transmitted in each message. Using Wi6labs platform and proprietary WAP
(Wi6labs Applicative Protocol) protocol, up to 11 measurements can be transmitted
per LoRa frame, each encoded as a 5 bytes packet, including metadata. Thus, in our
use-case, up to 5 sensor measurements (temperature + humidity) can be transmitted
per frame.

When data aggregation is disabled, temperature and humidity measurements
are formatted as WAP packets and directly transmitted. Thus the transmission
chain is only powered for a 10 bytes transmission. On the other hand, when data
aggregation is enabled, the WAP packets are stored in a buffer. This 50 bytes buffer
is only transmitted when it is full, i.e. when 5 consecutive temperature + humidity
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measurements have been performed and stored. After each action (measurements
or measurements + transmission), a new EB and DTX is computed, using the same
code as in previous experiments. However, the new calculations are only logged after
a transmission. Thus, as less transmissions are performed when data aggregation is
enabled, less VBAT , EB and DTX values are logged, which reduce the precisions of
statistics over these values. The experiment has been run for 4 weeks on 4 nodes.
All use LQ-Tracker as the EBE algorithm. Two use the ramp function and the two
others use the inverse EA function. For each pair of WSN node using the same EA
function, one is run with data aggregation enabled while the other has it disabled.
Results are presented in Table 5.2.

As expected, this system reduces the number of transmitted frames but increases
the number of transmitted data packets. In our system, this effect is particularly
visible, as the temperature and humidity sensors use much less energy than a radio
transmission. Thus, transmitting data only once out of five node wake-up saves a lot
of energy, which lets the system wakes up more often to make more measurements.
In particular, it can be observed that the number of transmitted frames is not simply
divided by J when J data are aggregated. Indeed, as less energy is used each time
the node wakes up, the delay between consecutive task executions is lower, which
reduces the delay between transmissions.

These results show that such a system is an efficient way to increase the number
of sensed data for an energy constraint WSN node. However, it is not fit for use-cases
which requires reactivity through frequent data upload, as the number of transmis-
sions is severely reduced, thus increasing the latency. Moreover, in LoRa systems,
the data is often timestamped when received by the gateway. Using a data aggre-
gation system, the delay between the different measurements is not always equal.
Thus, the data would have to be timestamped before its transmission, which would
add additional overhead on the packet, as the timestamp would also have to be sent.
Also, the node would be required to implement time synchronisation logic, which
requires additional resources. An alternative would be to estimate timestamps on
the decoder side, using an interpolator. This method would avoid the overhead on
the transmitted frame and required resources, but is less accurate as it does not
compute the exact values. Thus, this type of system is not fit for all use-case.

5.3 Multi-task Energy Allocation

5.3.1 Multi-Task IoT Nodes

The case of multi-task is significantly more complicated than single task WSN nodes.
Multi-task use-cases can consider WSN with a single sensor, but which de-correlates
the sensing, processing and transmission tasks, or nodes which measures multiple
physical values with different QoS requirements for each different sensing task. An
example of such a use-case is the Super Citizen Smart Sensor (SCSS) project [221],
where deployed WSN nodes are capable of measuring noise level, gas concentration
for air quality, and temperature and humidity. All different sensing tasks can require
a different periodicity: temperature and humidity tend to change slowly, while the
noise level can vary very quickly. Moreover, the power consumption of each of these
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tasks is different. Thus, an efficient energy allocation algorithm is required.
In this work, a task τi is defined by the process it executes, its energy consumption

Eτi
C , its priority ρi, and its minimal and maximal number of executions between two

transmissions, respectively denoted φmin
i and φmax

i , which enable to set the required
QoS of the task. A high priority task has a high ρi. A task which execution is not
always required can have φmin

i set to 0. The transmission task is particular, as it is
always executed at the end of a time slot. This can be modeled by setting both φmin

i

and φmax
i to 1. This task model only adds QoS requirements and energy awareness

to processes. Real-time capabilities can be integrated either by linking energy aware
tasks to real-time processes, which embed information about their deadline and/or
period, or by adding this information to the task model.

As the system is not composed of a single task anymore, the computation of
Emin

B and Emax
B has to be adapted. Emin

B corresponds to the case where all tasks are
executed the minimal number of times φmin

i with a delay DTX = Dmax
TX between two

transmissions, and thus can be expressed as (5.5). Inversely, Emax
B corresponds to the

case where each task τi is executed φmax
i times with Dmin

TX between two transmissions,
as expressed in (5.6).

Emin
B =

D ×
�K

i=1 (φ
min
i × Eτi

C )

Dmax
TX

(5.5)

Emax
B =

D ×
�K

i=1 (φ
max
i × Eτi

C )

Dmin
TX

(5.6)

More than different QoS requirements, the different tasks can also have different
types of use-cases. We denote three major types of use-cases which can be easily
applied to most applications:

• Reporting : the task has a fixed QoS, as the goal is to measure a value with
an accurate period between two measurements. For example in the previously
presented use-case, a meteorological report based on temperature and humidity
could be requested every two hours.

• Alarm: the task is triggered by an interrupt, which launches an optional pro-
cessing task and a transmission to send an alarm. An example of such a task
would be a microphone which detects an abnormal noise level, processes the
samples to detect its source and transmit an alarm if a potential danger (e.g.
a car crash noise) is detected.

• QoS maximization: the task is run as much as possible between the φmin
i and

φmax
i limits. This is typically used to maximize the efficiency of a measurement

campaign, for example to maximize the number of air quality measurements.

Although this work focuses on tasks which target QoS maximization, it is inter-
esting to keep the possibility of adding other types of task in the energy allocation
system, so that it can be extended for future use.

The strategy for data transmission can also differ, depending on the use-case. A
measured data can be transmitted on the network directly after its measurement.
Although this strategy reduces latency, defined as the delay between a measurement
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and its transmission, to a minimum, it also consumes more power, as a larger number
of transmissions is attempted. Thus, this reduces the QoS for all tasks. If all tasks
must be executed only once per transmission slot, the system can wake-up, execute
all sensing and processing tasks, transmit the relevant data and go in sleep mode. In
this case, the system is analog to a mono-task system, where a meta task composed
of all sensing/processing tasks and the transmission task is periodically executed.
Finally, the transmission task can send aggregated data from multiple sensing and
processing tasks.

This last case is explored in the following subsections, with a QoS maximization
target of all tasks. The goal of the energy allocation step is to maximize the consumed
energy ETotal

C , given by (5.7) with the limit ETotal
C ≤ EB, where φi is the number of

execution of a task between two transmissions, computed by the energy allocator,
and K is the total number of tasks.

max
φi

�

ETotal
C =

K
�

i=1

(φi × Eτi
C )

�

s.t. ETotal
C ≤ EB

(5.7)

5.3.2 Naive Energy Allocation Algorithm

A first approach is to find the set {φ1,φ2, ...,φK} which maximizes ETotal
C , expressed

in (5.7), while still keeping ETotal
C ≤ EB. An algorithm could be used to search

for all possible combinations of φi which respect ETotal
C ≤ EB, compute ETotal

C for
all combinations and return the combination which maximizes ETotal

C . However,
this algorithm would not take into account the priority of the different tasks nor the
QoS requirements, and would require additional logic to check if the QoS and priority
requirements are respected. Moreover, the complexity of this algorithm grows quickly
with the number of tasks and the difference between EB and the respective Eτi

C , as
a larger number of combinations becomes possible. This complexity requires both
memory and computing resources, and is thus not fit for a WSN node.

Algorithm 5.2: Naive energy allocation algorithm.
input : A list of the tasks to be scheduled, sorted by descending priority.
initialization;
for i ← 1 to K do

φi ← 0
end

Emin
i = min (Eτi

C )
K
i=1;

while EB ≥ Emin
i do

for i ← 1 to K do
φi ← φi + allocate (τi, EB);
EB ← EB − φi × Eτi

C ;
end

end

A simpler algorithm is to initialize all φi to 0, and to increment it for each task
τi starting with the highest priority ρi. This algorithm can be run until there is



Energy allocation for Energy Harvesting WSN Nodes 107

not sufficient energy budget EB to allocate energy to the task with minimal energy
consumption, i.e.:

EB − ETotal
C < min (Eτi

C )
K
i=1 (5.8)

Such an algorithm can be described as Algorithm 5.2. In this algorithm, the
function allocate (τi, EB) can be adapted to define different energy allocation policies.
For example, φi can be incremented by 1, φmin

i or φmax
i at each loop to ensure that

all tasks are executed. The increment could also be calculated as EB/E
τi
C , possibly

capped at φmin
i or φmax

i , to minimize the number of loop iterations. It can be noted
that this algorithm does not ensure that the minimal QoS is reached for all tasks
before allocating energy to tasks for which φi ≥ φmin

i . To work-around this limitation,
the algorithm can simply be executed multiple times with multiple stop conditions.
The full pseudo-code of this method in shown in Algorithm 5.3. φMinReached()
and φMaxReached() are functions which return True if φi ≥ φmin

i and φi ≥ φmax
i

∀i ∈ [1;K], respectively, and False otherwise.

Algorithm 5.3: Naive energy allocation algorithm with QoS.
input : A list of the tasks to be scheduled, sorted by descending priority.
initialization;
φmin
reached ← False;

φmax
reached ← False;

for i ← i to K do
φi ← 0

end

Emin
i = min (Eτi

C )
K
i=1;

while (EB ≥ Emin
i OR φmin

reached = False) do
for i ← 1 to K do

φi ← φi + allocate (τi, EB);
EB ← EB − allocate (τi, EB)× Eτi

C ;
end
φmin
reached ← φMinReached (TaskSet)

end
while (EB ≥ Emin

i OR φmax
reached = False) do

for i ← 1 to K do
φi ← φi + allocate (τi, EB);
EB ← EB − allocate (τi, EB)× Eτi

C ;
end
φmax
reached ← φMaxReached (TaskSet)

end
while EB ≥ Emin

i do
for i ← 1 to K do

φi ← φi + allocate (τi, EB);
EB ← EB − allocate (τi, EB)× Eτi

C ;
end

end
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Once the number of execution φi has been computed for each task, the delay
between each task execution can be executed as Dτi = DTX/φi, where DTX is the
delay between two transmissions and the length of the current time slot. A single
timer set to the Greatest Common Divisor (GCD) can be used to schedule all tasks,
which eases the resource requirements for constrained platforms.

This algorithm is much more efficient than searching for all possible φi combi-
nations, but its complexity can still grow quickly if the number of tasks or EB is
high. Moreover, this solution does not accurately take into account the priority ρi

of the tasks. Thus, a lower priority task with a consumption E0 lower than a higher
priority task can be executed more times. For example, if we take two tasks τ0 and τ1
where Eτ0

C > χ× Eτ1
C and ρ0 > ρ1, we can find EB values in ]Eτ0

C ; 2× Eτ0
C [ for which

EB − Eτ0
C > Eτ1

C , possibly leading to multiple executions of the lower priority task.
Additionally, as all φi computed by this method are integer, ETotal

C is not always
equal to EB. Indeed, up to Emin

i can be unallocated as there is not enough energy
to be allocated, even for the task with the smallest consumption. Thus, although it
provides a quick practical solution to the energy allocation problem for multi-task
WSN nodes, this algorithmic solution is suboptimal.

5.3.3 Optimal Energy Allocation for Multi-task IoT Node

As a fully algorithmic energy allocator is suboptimal, there is a need to determine an
optimal solution to this problem. To define this problem, we suppose the following
hypothesis:

• All priorities ρi are normalized so that
�K

i=1 ρi = 1

• Data is transmitted only once, at the end of each time slot

The allocation problem solution must be able to provide equity between the
different tasks, to avoid a task with a much lower consumption Eτi

C or much higher
priority ρi being the only one executed. One way to solve this problem while keeping
fairness between tasks is to solve the cost function as a sum of logarithms [222], as
defined in (5.9), where −→x is a solution vector {φ1,φ2, ...,φK}:

f0(
−→x ) = −

K
�

i=1

(ρi × ln (φi)) (5.9)

With the constraint defined by the function (5.10), where ETX
C is the energy

consumption of the transmission task:

K
�

i=1

(φi × Eτi
C ) ≤ EB − ETX

C . (5.10)

Thus we can define the constraint function gi (
−→x ) as (5.11):

gi(
−→x ) =

�

K
�

i

(φi × Eτi
C )

�

− (EB − ETX
C ) ≤ 0. (5.11)
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This is a linear optimization of a convex function problem, thus a local solution
is also a global solution. The Lagrangian function for the problem can be expressed
as (5.12):

L
�

−→x ,
−→
λ
�

= f0(
−→x ) +

K
�

i=1

(λi × gi(
−→x )) (5.12)

λi are the Lagrange multipliers. We resolve this optimization problem using the
KKT conditions [219]. This theorem states that for each point x which maximizes
the f0(

−→x ) function, there exists a set of these multipliers that satisfies the following
conditions and is an optimal solution:

• x maximizes L
�

−→x ,
−→
λ
�

∀x

• λi ≥ 0, at least one λ is > 0

• λi × gi(
−→x ) = 0

Thus, if we can find a local solution which satisfies the KKT conditions, this
solution is proven to globally maximize the function, and is the optimal allocated
energy value. To determine this local solution, we pose i = K. (5.12) becomes:

L
�

−→x ,
−→
λ
�

= ρK × ln(φK) + λK × φK × EK − (EB − ETX
C ) (5.13)

This function of φK presents a local maximum when its derivative with respect
to φK is equal to 0, expressed as (5.14):

dL
�

−→x ,
−→
λ
�

dφK

=
−ρK

φK

+ λK × EK = 0 ⇔ φK =
ρK

λK × EK

(5.14)

This gives us a local solution for which λK > 0, as φK ≥ 0, and thus respects
the first and second KKT conditions. If we check the third KKT condition for
λi = λK ≥ 0, we have (5.15):

λK×
K
�

i=1

(φi × Eτi
C )−(EB−ETX

C ) = 0 ⇒

�

λK = 0
�K

i=1 (φi × Eτi
C ) = (EB − ETX

C )
(5.15)

λK can not be equal to 0, otherwise φK would not exist. By integrating the local
solution in (5.15), we obtain (5.16):

λK×gi(
−→x ) = 0 ⇔

K
�

i=1

�

ρi

λK × Eτi
C

× Eτi
C

�

= (EB−ETX
C ) ⇔

1

λK

K
�

i=1

ρi = (EB−ETX
C )

(5.16)
As ρi values are normalized so that their sum is equal to 1, (5.16) can be simplified

as:

1

λK

= (EB − ETX
C ) ⇔ λK =

1

EB − ETX
C

(5.17)
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Thus, if EB > ETX
C , (5.17) proves that we have a set of λi defined as λi = λK =

1/(EB − ETX
C ) > 0, a solution which fulfills both the second and third condition,

while the first condition is fulfilled by the fact that the function is convex. So, the
solution φi = ρi/(λK ×Eτi

C ) maximizes f0(
−→x ), provided that EB enables at least one

transmission. If EB < ETX
C , the problem does not apply, as the WSN node does not

have enough energy to perform any action.
Hence, the optimal φi for each task can be computed as (5.18):

φi =
ρi ×

�

EB − ETX
C

�

Eτi
C

(5.18)

Although this result is simple to compute, the mathematical process behind its
demonstration ensures its optimality. It can be noticed that the result of this optimal
formula is not always an integer. It is possible to truncate each φi to obtain integer
values which respect the constraint ETotal

C ≤ EB −ETX
C . This enables computing the

delays Dτi of each task and schedule them as with the previous algorithmic method.
However, that breaks the optimality, as there will still be a difference between ETotal

C

and EB − ETX
C .

Another possibility is to compute Dτi = DTX/φi while keeping the exact value
of φi, even if it is not an integer. As it becomes much complicated to compute the
GCD of the different φi, each task must be scheduled with its own timer. Although
this increases computing requirements, most embedded OSs provide software timer
libraries which simplify this implementation, and avoid requiring a large number of
hardware timers. Each timer can be set to the new Dτi value when it is computed.
As the tasks are run asynchronously from the transmission task and the time slot,
the data to be transmitted has to be stored in a properly sized buffer. In the case of
long range transmission, such as LoRaWAN and Sigfox networks, where only a few
tens of bytes can be transmitted at once, the QoS of the tasks must be set carefully
to avoid overflowing this transmission buffer and losing data.

Although this solution is optimal in regard to the priority ρi and energy con-
sumption Eτi

C of the tasks, it does not take into account the minimal and maximal
QoS of the tasks. Moreover, it does not compute the delay between two consecutive
transmissions, as it is supposed that each time slot ends with a transmission. Thus,
these computations have to be included in an algorithm which enforces the required
QoS and computes an adapted DTX .

Algorithm 5.4 proposes the integration of the optimal φi. It defines Emax
C as the

maximum energy that can be consumed, i.e. the ETotal
C when all φi are equal to φmax

i

and DTX = Dmin
TX . If EB > Emax

C , it enforces the maximal QoS rules, which lets
the node save more energy for later usage. If EB < Emax

C , it tries to maximize the
QoS by allocating energy using the optimal formula in (5.18). This example favors
the battery life over the QoS, as the minimal QoS settings are not enforced if not
enough energy is available. On the other hand, it tries to maximize QoS as much as
possible, ensuring that high priority tasks will be favored. It can be noticed that the
QoS limits do not have to be aligned with the priority setting. For example, a high
priority task may require only one execution per timeslot, while a less important
sensing task may be executed multiple times. Due to this, the calculated φi has to
be capped at φmax

i . Although this breaks the optimality of the φi computation for
the other tasks, it avoids spending energy on an unrequired task execution. The
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delay Dτi between two consecutive τi executions is then computed as the duration
of the time slot, equal to the delay DTX between two transmissions, divided by its
optimal number of execution φi.

Algorithm 5.4: Optimal φi calculation integrated in practical solution.
input : A list of the tasks to be scheduled, sorted by descending priority.
initialization;
if EB > Emax

C then

E%
B ←

EB−Emax
C

Emax
B

−Emax
C

;

DTX ← Dmin
TX + (Dmax

TX −Dmin
TX )×

�

1− E%
B

�

;
for i ← 1 to K do

φi ← φmax
i ;

Dτi ←
DTX

φi
;

end

else
DTX ← Dmax

TX ;
for i ← 1 to K do

φi ← max

�

φmax
i ,

ρi×(EB−ETX
C )

E
τi
C

�

;

Dτi ←
DTX

φi
;

end

end

5.3.4 Efficiency of Multi-task energy Allocation Methods

The algorithm presented in Algorithm. 5.4 has been implemented and evaluated
on real world IoT nodes. The nodes firmware is based on Contiki, which provide
lightweight software timer libraries. Thus, an asynchronous task execution scheme,
where all tasks have their own timer, can be implemented with a low overhead. The
delay for each timer is computed using the previous algorithm.

Sensing task
Energy

consumption (J)
Minimal number

of executions
Maximal number

of execution
Temperature/
Humidity

0.098 1 2

Noise 0.209 0 4
Gas (CO2) 0.172 1 3

Table 5.3: Characteristics of the tasks executed by the energy harvesting nodes. All
priorities are set to the same value.

This multi-source energy allocation scheme has been implemented on two sensor
nodes. Each node is equipped with a temperature/humidity sensor, a CO2 sensor and
a noise sensor. The power consumption characteristics and minimal/maximal QoS
settings for each sensor is described in Table 5.3. In this experiment, all priorities
are set to the same value. It is clear that a higher priority will lead to more task
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Energy harvesting node Multi-sources Single source

VBAT (V)
Mean 4.061 4.058
Std. deviation 0.061 0.127

EB (J)
Mean 5.682 5.064
Std. deviation 1.095 2.123

DTX (min)
Mean 31.99 48.38
Std. deviation 34.32 61.08

Messages transmitted 672 446
Failed transmission 0 0

Table 5.4: Comparison of multi and single source energy harvesting systems.

executions. Setting an equal value for all tasks priority avoids this and highlights
the effect of QoS requirements on the energy allocation.

The first sensor is powered by a 2 W solar panel, while the second sensor uses a
multi-source energy harvesting board to combine two solar panels capable of up to
2 W and 3.5 W. Additionally, a voltage generator is used to simulate a thermoelectric
generator with an open voltage of 800 mV and a short maximum current of 4 mA. As
the MPPT uses this source at VMPP = 0.5×VOC , and the boost converter efficiency is
about 40 %, this simulated source delivers a continuous power 0.8×0.5×0.004×0.4 =
0.64 mW, which is small enough to let the 7.5 F supercapacitor partially discharge.
This experiment also validates the approach of multi-source energy harvesting to
increase the QoS of a WSN node.

The experiment has been run for a total of 15 days. The simulated thermoelectric
generator was cut on the second day due to a power failure. However, this enabled
testing the efficiency of multi-source energy harvesting with similar types of energy
sources, i.e. two solar panels. The simulated thermoelectric generator was reset at
the end of the fifth day. During the campaign, the energy storage voltage VBAT ,
the energy budget EB, the delay between two transmissions DTX and the number of
successful transmissions are recorded. These measurements are shown in Fig. 5.2.

The measurements show that, as expected, the use of multiple energy harvesting
sources has a positive impact on the QoS of the node. In particular, Table 5.4 show
that the mean EB is sensibly higher and the mean DTX is lower when more energy
harvesting sources are used. Due to this, the node with multiple sources is able to
transmit 672 packets, compared to 446 packets when the node is powered by a single
energy source. In both cases, no transmission has failed due to a low SOC.

It can be noticed that the type of energy sources used has a direct impact on the
efficiency of the multi source energy harvesting system. From the second to the fifth
day, the first node was powered by two solar panels, providing respectively 2 and
3.5 W, while the second node was powered only by a 2 W solar panel. During this
period, the multi source energy harvesting node was only marginally more efficient
than the single source energy harvesting node, with 141 transmitted packets against
133.

Indeed, the 2 W solar panel is sufficient to completely recharge the energy storage
and maximize its QoS at the start of a new day. Thus, the additional solar panel only
helps the node recharge its storage faster and its additional energy is not required
during the day. On the contrary, when a thermoelectric generator is simulated during
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Figure 5.2: Comparison of multi and single source energy harvesting systems.
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day and night, its energy enables the node to sensibly increase the QoS. In this case,
the simulated energy source complements the solar panel, bringing energy when the
solar panels do not harvest energy. This shows that the use of a second similar source
has little interest in some use cases, while a complementary energy source would have
a higher impact on the QoS of the node.

Additionally, the number of executions per time slot is counted for each task.
Thus, the mean and total number of executions can be computed for each task.
These results are presented in Table 5.5, while Fig. 5.3 shows the distribution of the
measurements over time.

These results confirm that the addition of a second solar panel has much less
effect on the node QoS than the use of the simulated TEG. Indeed, the simulated
TEG is complementary to the solar panels, as it provides power at night, when the
solar panels does not. This can be seen in the repartition of task execution, which
is similar between the two nodes when the simulated thermoelectric generator is
powered off. When it is powered on, however, the multi source energy harvesting
node has enough energy to maximize the QoS of each task and reduce the delay
DTX between transmissions, while the other node still has to modulate the number
of executions of each task to avoid depleting its battery. This shows that our energy
allocation system works as expected, and enabled the multi source energy harvesting
node to perform significantly more tasks than the single source one.

In some time slots, the number of executions of some tasks is higher than the
specified maximum. This is due to the fact that each task manages its own timer.
In some situations where multiple timers expire at a similar time, a task execution is
already scheduled before its new number of executions is calculated. As the scheduler
does not check if the task is already in the execution queue, it does not account for this
task execution, which can lead to an additional task execution. A bug also happened
around day 6 and 14, when the single source energy harvesting node respectively
executed 12 and 31 noise sensing tasks, far more than specified. However, these bugs
are linked to the scheduler and its implementation and do not prevent the proper
application of the energy allocation policy.

Task executions Multi sources Single source

Temperature/
Humidity

Mean per time slot 1.978 1.871
Std. deviation 0.199 0.482
Total number
of executions

1331 842

Noise
Mean per time slot 3.906 3.596
Std. deviation 0.714 1.894
Total number
of executions

2629 1618

Gas
Mean per time slot 2.945 2.700
Std. deviation 0.570 0.912
Total number
of executions

1982 1215

Table 5.5: Number of task executions for multi and single source energy harvesting
systems.
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Figure 5.3: Number of task executions for multi and single source energy harvesting
systems.
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In this case, the use of additional energy sources enable the multi source energy
harvesting node to keep executing its tasks at their maximum QoS. Due to this, the
number of task execution per time slot is much more stable, as seen with the lower
standard deviation of this value in Table 5.5. Thus, the use of additional energy
sources has the unexpected effect of enabling a more predictable QoS.

5.4 Conclusions

In this chapter, we explored the problem of energy allocation for single and multi
task energy harvesting systems. We showed that the state-of-the-art solutions focus
on real time systems and thus are not adapted to our use-case. In particular, there is
no existing solution to optimally divide an energy budget between multiple different
tasks. We first detail how an energy budget can be allocated for single task WSN
node, and demonstrate how data aggregation can improve the QoS of single task
WSN node. The case of multi-task systems is then presented. An optimal energy
allocation policy is mathematically derived, and is then adapted to fit a real world
implementation. Experiments show the proper operation of our energy allocation
system. Furthermore, this experiment also demonstrates that multi-source energy
harvesting is useful to improve the QoS of the WSN node.



Conclusion & Perspectives

Conclusion

In the coming years, it is expected that billions of connected devices will be deployed,
for applications ranging from industrial to residential contexts. A large part of these
devices will be in charge of measurements, periodically measuring and transmitting
physical values. Due to their vast variety of use cases, powering these billions of
devices is a challenge. In particular, traditional solutions such as primary batteries do
not scale well, as they would generate a huge quantity of chemical waste. Moreover,
the cost of maintaining the network, by recharging and/or changing these batteries
would be high, especially for use-cases where the nodes are difficult to access, and
would impact the financial viability of some IoT deployments. In order to circumvent
this problem, the use of energy harvesting technologies is considered, to let the device
recharge itself. However, this solution also has its challenges, and requires the node
to manage his own energy locally and efficiently.

In this thesis, energy harvesting capabilities were added to an already existing IoT
platform which communicates using LoRa technology. In particular, we proposed a
new energy harvesting architecture, aimed at lowering the implementation cost of
such a solution. We compared this architecture with state of the art solutions, and
showed that it reduces cost when a large number of sources are used but is less
efficient when the sources level are too different. Based on this study, we designed a
multi-source energy harvesting platform for Wi6labs sensor platform.

Although the produced board enabled the WSN node to efficiently harvest energy,
it still required additional intelligence to efficiently manage its energy. A power
management module was implemented in the firmware to fill this task. In this thesis,
the power manager is divided into two sub-modules. The Energy Budget Estimator
(EBE) sub-module is tasked with estimating the energy capabilities of the platform,
and accordingly compute an energy budget which can be spent over a period of time.
An Energy Allocator (EA) sub-module then takes this energy budget as input and
adapts the behavior of the node to match the energy consumption. Thus, the WSN
node was able to adapt its Quality of Service (QoS) to match his energy capabilities,
enabling theoretically perpetual operation.

This thesis presents a comparison of state of the art EBE algorithms, both in sim-
ulation and implemented on Wi6labs platform. To our knowledge, this is the first
implementation of such algorithms on a commercial WSN node platform. Moreover,
this implementation adapts the execution of these algorithms to the specificities
of long range radio networks, such as LoRaWAN, which include a high instanta-
neous power consumption and a large delay between transmissions. Our experiments
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showed that the choice of EBE algorithm has little impact over the performance of the
WSN node, once all algorithms have been tuned to maximize performance. Thus,
this makes it possible to choose algorithms which are much simpler to implement
and/or to tune.

The problem of energy allocation for energy harvesting WSN nodes was then
explored. Most state of the art solutions tackle this problem through the prism of
task scheduling, often in real-time context, and do not consider variable QoS. We first
focused on energy allocation for single task WSN nodes, showing that this problem
is equivalent to finding a suitable function to transform an energy budget into a
delay. Two different policies were implemented, which showed the impact that this
step has on the global performances of the device. Moreover, we demonstrated that
successive measurements can be aggregated to minimize the number of transmissions
and increase the number of transmitted measures, and the implementation challenges
this solution presents. In this type of system, the use-case drives the compromises
to be done between performances, battery depletion avoidance and implementation
cost, and thus the match between different possible solutions and requirements.

Finally, this thesis extends the precedent studies to multi-task WSN nodes, i.e.
systems which have to perform multiple types of measurements with different QoS
requirements. A fully algorithmic solution which solves this problem was presented,
along with the difficulties of implementing it on a resource constrained WSN node.
An optimal solution to the problem was then mathematically derived, and was inte-
grated in a practical application. This solution was implemented and tested to show
how it increases the QoS of a WSN node when more energy is available to harvest.

To conclude, this thesis outlines the different challenges of designing and im-
plementing efficient energy harvesting solutions on real-world WSN platforms, and
proposes solutions which tackle these challenges. The various requirements of IoT
applications in terms of energy and applications make it complicated to design a
generic solution which can be adopted as-is for all use-cases. In the end, the adopted
solution should be tuned and adapted to fit the application requirements.

Perspectives

Although energy harvesting for WSN nodes has been an active research field during
the recent years, multiple problems still have to be addressed in the future.

5.4.1 Multi-source energy harvesting integration

Though the academic world has proposed multiple multi-source energy harvesting
circuits, very few industrial implementations have followed. Moreover, these systems
are often a compromise between energy harvesting efficiency and genericity, where
the most efficient systems are tightly coupled to a specific type of energy source.
Though only a few passive components have to be modified to adapt our solution,
it is not completely plug and play. Thus, there is an interest in developing circuits
which can take multiple undetermined sources as input. Moreover, in order to lower
the implementation cost of such solutions, there is a need for commercial off-the-shelf
ICs which implement this type of solution. As of the publication of this document, a
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first commercial implementation has recently been announced [223] but not released.

5.4.2 Energy source detection in a multi-source context

As multi-source energy harvesting adds multiple heterogeneous sources, the EBE
algorithm has to be model-free, and can not depend on the model of a particular
source. However, model-based EBE algorithms can be very efficient when sources
are predictable, such as a solar panel in an outdoor context. It could be interesting
to be able to detect which energy sources are connected in a multi-source energy
harvesting system, in order to use the most efficient EBE algorithm for each energy
source.

5.4.3 Self-learning EBE algorithm

The performance of EBE algorithm can be drastically modified with different set-
tings. Thus, proper tuning of the algorithm is essential to maximize the performance
of the node. Using solutions which learn and adapt their settings over the time could
greatly simplify the implementation of such solutions. RLman [172] is an example
of such a solution, but only considers a single-task system, and can be hard to im-
plement for multi-task systems. Thus, there is a need for a similar solution which
decouples the EBE and EA steps.

5.4.4 Performance based QoS

In this work, the EA varies the QoS of a task on a WSN node by varying its frequency,
and assumes the task is always executed with the same performance. However, the
energy consumption of some tasks can be varied by adapting their performance,
e.g. decreasing the energy consumption of a sensing task by reducing its measure-
ment precision or adapting the transmission parameters. For example, [224] details
how the LoRa modulation settings (i.e. bandwidth, spreading factor...) affect both
the data throughput and energy consumption of the transmitter. Integrating this
knowledge in the EA would enable in to take into account the network conditions
and accordingly adapt its energy allocation policy.

5.4.5 Design tool for energy harvesting WSN node with power

management

The usual approach to an energy harvesting WSN node design is to design the sensor
for a type of energy source and storage, and the nergy source is only specified in the
end to ensure it meets the application requirements. Often, the selected energy
source is bigger than required to ensure that the system will always have a sufficient
energy reserve. It could be interesting to develop tools which use the power manager
characteristics to determine how much energy should be harvested to fulfill given
QoS requirements under expected environmental conditions. Such a tool could be
use to help properly size the different elements of the design.



Acronyms

ADC Analog to Digital Converter.

ALAP As Late As Possible.

ASAP As Soon As Possible.

CPU Central Processing Unit.

DAC Digital-to-Analog Converter.

DMS Deadline Monotonic Scheduling.

DVFS Dynamic Voltage and Frequency Scaling.

EA Energy Allocator.

EBE Energy Budget Estimator.

EDF Earliest Deadline First.

EEPROM Electrically Erasable Programmable Read-Only Memory.

EIRP Equivalent Isotropic Radiated Power.

ENO Energy Neutral Operation.

ERP Effective Radiated Power.

EWMA Exponentially Weighted Moving Average.

FPGA Field Programmable Gate Array.

IC Integrated Component.

IoT Internet of Things.

KKT Karush-Kuhn-Tucker.

LDO Low DropOut.

Li-Ion Lithium-ion.
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LiPo Lithium-polymer.

LoRa Long Range.

LoRaWAN Long Range Wide Area Network.

MAC Media Access Control.

MCU Micro-Controller Unit.

MPP Maximum Power Point.

MPPT Maximum Power Point Tracking.

MTBF Mean Time Between Failures.

MTTF Mean Time To Failure.

NiMH Nickel-Metal Hybrid.

NMOS N-type Metal-Oxide-Semiconductor.

OS Operating System.

P&O Perturb & Observe.

PCB Printed Circuit Board.

PID Proportional-Integral-Derivative.

PMIC Power Management Integrated Component.

PMOS P-type Metal-Oxide-Semiconductor.

PS Primary Storage.

QoS Quality of Service.

RAM Random Access Memory.

RF Radio Frequency.

RMS Rate Monotonic Scheduling.

ROM Read-Only Memory.

RTOS Real-Time Operating System.

SMPS Switched Mode Power Supply.

SOC State of Charge.

SS Secondary Storage.
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TEG ThermoElectric Generator.

UART Universal Asynchronous Receiver-Transmitter.

WSN Wireless Sensor Network.

WUR Wake-Up Radio.



Nomenclature

Common

VBAT Energy storage voltage, in Volt (V). V min
BAT and V max

BAT indicate the values at
which the energy storage is considered empty and full, respectively.

ER Residual energy left in storage, in Joule (J). Eempty
R and Efull

R indicate the
values at which the energy storage is considered empty and full, respectively.

∆ER Residual energy variation between two consecutive time slots, in Joule (J).

EH Harvested energy, in Joule (J).

EB Energy budget for the current time slot, in Joule (J). Emin
B and Emax

B are the
minimal and maximal EB values that can be delivered, respectively.

EC Consumed energy, in Joule (J).

DTX Delay between two consecutive transmissions, in minutes (min). Dmin
TX and

Dmax
TX are the minimal and maximal values, respectively.

VMPP Voltage of the MPP, in Volt (V).

Tx Number of transmissions done.

Txfail Number of failed transmissions.

x̄ Mean value of x.

σ Standard deviation.

Energy Harvesting Hardware

VIN Input voltage of a power converter or switch, in Volt (V).

VOUT Output voltage of a power converter or switch, in Volt (V).

C Capacity of a lithium based battery, in milliAmpere Hours (mAh).

C Capacitance of a capacitor or supercapacitor, in Farads (F).

λb Base failure rate of a component per 106 hours.

λp Failure rate of a part per 106 hours.
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πi Stress factor induced by parameter i.

L Lifetime of a component, in hours.

V set
MPP Manually set VMPP , in Volt (V).

VOC Open circuit voltage of an energy source, in Volt (V).

Kfocv Coefficient ∈ [0; 1] of VOC at which the MPP is located.

N Number of energy sources.

Energy Management

D Time base for EBE and EA computations. Set to 60 minutes.

Efull
thr Fuzzy value which indicates how full the energy storage is. Used by Fuzzyman.

Eempty
thr Fuzzy value which indicates how empty the energy storage is. Used by Fuzzy-

man.

∆Epos
thr Fuzzy value which indicates if the energy storage is charging. Used by Fuzzy-

man.

∆Eneg
thr Fuzzy value which indicates if the energy storage is discharging. Used by

Fuzzyman.

ETRGT Target ER. Used by LQ-Tracker.

µ Step size. Used by LQ-Tracker.

Φ Feature vector. Used by LQ-Tracker.

Θ Parameter vector. Used by LQ-Tracker.

ut Control output of LQ-Tracker.

α Control output smoothing coefficient. Used by LQ-Tracker.

β Long/short term filter coefficient. Used by LQ-Tracker.

γ Low-pass filter coefficient. Used by all EBE.

Emono
C Energy consumption of the task, for a single task WSN node, in Joule (J).

K Total number of tasks.

τi Task i.

ρi Priority of τi.

φi Number of executions of τi. φmin
i and φmax

i indicate the minimal and maximal
number of times τi should be executed.

Dτi Delay between two consecutive τi executions, in minutes (min).
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Eτi
C Energy consumption of the task τi.

min(Eτi
C ) Minimum Eτi

C in the task set of a WSN node.

ETotal
C Energy consumption of the node, i.e. energy consumed when all tasks are

executed φi times, in Joule (J).

ETX
C Energy consumption of the transmission task, in Joule (J).

Emax
C Maximum energy consumption of the node, i.e. energy consumed when all

tasks are executed φmax
i times, in Joule (J).

−→x Solution vector of the EA optimization problem.

λi Lagrange multipliers.

m Lagrangian solution space size.
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Résumé : L’avènement de l’Internet des Objets 

a permis de déployer de nombreux réseaux de 
capteurs sans-fil. Ces réseaux sont utilisés dans 
des domaines aussi variés que l’agriculture, 
l’industrie ou la ville intelligente, où ils 
permettent d’optimiser finement les processus. 
Ces appareils sont le plus souvent alimentés par 
des piles ou batteries, ce qui limite leur 
autonomie. De plus, il n’est pas toujours 
possible ou financièrement viable de changer ou 
recharger les batteries.  
Une solution possible est d’alimenter ces 

capteurs en récupérant l’énergie présente dans 
l’environnement alentour. Ces sources d’énergie 
sont cependant peu fiables, et le capteur doit 
être capable d’éviter de vider complètement sa 
réserve d’énergie. Afin de moduler sa 
consommation d’énergie, le capteur peut 
adapter sa qualité de service à ses capacités  

énergétiques. L’appareil peut ainsi fonctionner 
en continu sans interruption de service. 
 Cette thèse présente les méthodes utilisées 
pour la conception d’un capteur entièrement 
autonome alimenté par récupération d’énergie 
ambiante, communiquant sur un réseau longue 
portée LoRa. Afin d’assurer l’alimentation 
électrique, une carte permettant de récupérer 
de l’énergie depuis plusieurs sources d’énergie 
simultanément a été conçue. Un module 
logiciel de gestion d’énergie a ensuite été 
développé afin de calculer un budget 
énergétique que le capteur peut dépenser, et 
choisir la meilleure manière de dépenser ce 
budget pour exécuter une ou plusieurs tâches. 
Ce travail a ainsi permis le développement d’un 
prototype de produit industriel entièrement
autonome en énergie. 
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Abstract :  The advent of the Internet of Things 
has enabled the roll-out of a multitude of 
Wireless Sensor Networks. These networks can 
be used in various fields, such as agriculture, 
industry or the smart city, where they facilitate 
fine optimization of processes. These devices 
are often powered by primary or rechargeable 
batteries, which limits their battery life. 
Moreover, it is sometimes not possible or 
financially viable to change and/or recharge 
these batteries. 
A possible solution is to harvest energy from 

the environment to power these sensors. But 
these energy sources are unreliable, and the 
sensor must be able to prevent the complete 
depletion of its energy storage. In order to adapt 
its energy consumption, the node can match its 

quality of service to its energetical capabilities. 
Thus, the device can continuously operate 
without any service interruption. 
 This thesis presents the methods used for the 
conception of a completely autonomous 
sensor, powered by energy harvesting and 
communicating through a long range LoRa 
network. In order to ensure its power supply, a 
board has been designed to harvest energy 
from multiple energy sources simultaneously. A 
power management software module has then 
been developed to calculate an energy budget 
the sensor can use, and to choose the best 
way to spend this budget over one or multiple 
tasks. This work has enabled the development 
of an energy autonomous industrial sensor 
prototype. 
 

 


