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Resumé : L’arterial spin labelling (ASL)
est une technique d’imagerie par ré-
sonance magnétique de la perfusion
cérébrale. Les travaux présentés dans
cette thèse ont d’abord consisté à stan-
dardiser les acquisitions ASL dans le
contexte d’études de neuroimagerie mul-
ticentriques. Un processus de contrôle de
la qualité des images a par la suite été pro-
posé. Les travaux se sont ensuite orientés

vers le post-traitement de données ASL,
en évaluant la capacité d’algorithmes exis-
tants à y corriger les distorsions. Des mé-
thodes de super-résolution adaptées aux
acquisitions ASL mono et multi-TI ont fi-
nalement été proposées et validées sur
des données simulées, de sujets sains, ou
de patients imagés pour suspicion de tu-
meurs cérébrales.

Title : Arterial spin labelling : quality control and super-

resolution

Keywords : Arterial spin labelling, quality, distortions, super-resolution

Abstract : Arterial spin labelling (ASL)
is a brain perfusion magnetic resonance
imaging technique. The objective of this
thesis was first to standardize ASL acqui-
sitions in the context of multicenter neu-
roimaging studies. A quality control pro-
cedure has then been proposed. The ca-
pacity of existing algorithms to correct for

distortions in ASL images has then been
evaluated. Super-resolution methods, de-
veloped and adapted to single and multi-
TI ASL data in the context of this thesis,
are then described, and validated on si-
mulated data, images acquired on healthy
subjects, and on patients imaged for brain
tumours.
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Résumé en français

Ce chapitre propose un résumé en français du manuscrit, rédigé en anglais, en ayant
pour objectif de conserver une structure similaire à celle du reste du document.

Le travail réalisé dans le cadre de cette thèse est présenté de manière progressive.
La démarche adoptée afin de standardiser les acquisitions d’images d’arterial spin
labelling (ASL), ainsi que d’effectuer un contrôle de la qualité de ces acquisitions
dans le cadre d’études de neuroimagerie multi-centriques est décrite dans un
premier temps. Une étude d’évaluation de la capacité d’algorithmes existants à
corriger les distorsions dans les images ASL est ensuite présentée. Les descriptions
et évaluations de méthodes de super-résolution adaptées aux images ASL, proposées
dans le cadre de cette thèse, sont présentées dans la partie suivante. Une méthode
est tout d’abord adaptée aux cartes de débit sanguin cérébral, puis étendue au
cas d’acquisitions de type multi-TI, en tenant compte de l’évolution temporelle du
signal ASL.

In this chapter, we provide a French summary of the work presented in the rest
of the manuscript. Non-french speakers can easily skip this chapter.
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R.1 Contexte

R.1.1 Perfusion cérébrale

Le développement spectaculaire des techniques permettant l’étude du cerveau ces
dernières décennies a permis de grandement augmenter les connaissances au sujet de
cet organe, que ce soit sur les plans de sa structure ou de son fonctionnement. Beau-
coup reste toutefois à découvrir à son sujet, ce qui explique le fait que d’importants
moyens soient encore alloués aux études le concernant. Dans le cadre de cette thèse,
nous nous intéressons en particulier à une méthode d’imagerie par résonance magné-
tique (IRM) de la perfusion cérébrale, appelée marquage de spins artériels (arterial
spin labelling en anglais, d’où l’acronyme couramment utilisé d’ASL).

La perfusion cérébrale consiste en l’apport par le sang d’oxygène et de nutri-
ments aux tissus du cerveau. Elle est surtout étudiée au niveau de la microcircula-
tion, qui a lieu dans les vaisseaux des plus fins du système sanguin, les capillaires.
Différents paramètres sont rencontrés dans la littérature afin de caractériser cette
perfusion. Les plus couramment mentionnés en ASL sont le débit sanguin cérébral
(CBF), exprimé en millilitres par minute pour cent grammes de tissus cérébraux
(ml.min−1.100g), et le temps de transit artériel (ATT), exprimé en secondes ou
millisecondes.

Évaluer la perfusion cérébrale présente un intérêt dans de nombreuses patholo-
gies, telles que les troubles cérébraux vasculaires, les cancers, les démences, certaines
maladies psychiatriques ou encore l’épilepsie. Bien qu’un certain nombre de disposi-
tifs d’imagerie permettent d’évaluer cette perfusion, l’ASL se révèle être de plus en
plus utilisée dans le contexte clinique, mais encore surtout dans le cadre de travaux
de recherche. En effet, cette technique a comme avantage par rapport aux autres
méthodes de reposer sur l’utilisation de marqueurs endogènes, présents naturelle-
ment dans l’organisme des sujets imagés, en opposition à l’injection ou l’inhalation
de produits de contraste, nécessaire pour pouvoir utiliser les autres méthodes.

R.1.2 Arterial spin labelling

En ASL, afin de créer les marqueurs endogènes, des impulsions radiofréquences sont
générés, qui modifient l’aimantation des atomes d’hydrogène des molécules d’eau
présentes dans le sang au niveau du cou des sujets dont le cerveau est imagé, ces
molécules étant destinées à perfuser dans les tissus cérébraux. Après une durée
déterminée, appelée délai post-marquage (PLD), une image est acquise. Par dif-
férence entre cette image marquée et une image contrôle, qui en diffère de par
l’absence de marquage avant son acquisition, on obtient une carte de perfusion. Le
signal présent dans une telle carte est associé à un faible rapport signal à bruit
(SNR), ce qui implique le fait qu’une trentaine de paires d’images contrôle et la-
bel soient généralement acquises. Différents modes de marquage ont été proposés
depuis l’émergence de l’ASL. Les deux modes rencontrés dans le cadre de ces travaux
de thèse sont le marquage pulsé (PASL), et le marquage pseudo-continu (pCASL).
En PASL, les spins sont très rapidement marquées sur une large zone, alors qu’en
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pCASL, les spins sont marqués en passant à travers un plan pendant une certaine
durée de marquage (LD).

L’acquisition de données ASL peut se faire suivant une approche mono-TI, qui
consiste à acquérir les images marquées en attendant une durée fixe après le mar-
quage des spins. Les acquisitions mono-TI permettent la quantification du CBF.
L’approche multi-TI repose quant à elle sur l’acquisition d’images marquées avec
différentes valeurs de PLD, permettant ainsi l’estimation de paramètres supplémen-
taires tels que l’ATT.

Dans le cadre de cette thèse, la quantification des paramètres liés à la perfusion
cérébrale est effectuée à l’aide du modèle standard de Buxton [Buxton 1998].

R.2 Évaluation de la qualité des images ASL

R.2.1 Standardisation des séquences et évaluation de la qualité des
images dans des études multicentriques

R.2.1.1 Introduction

Ce travail a été réalisé en lien avec le centre pour l’acquisition et le traitement des
images (CATI), une plateforme nationale qui a pour objectif d’apporter un support
à des études de neuroimagerie multicentriques. L’objectif était ici de permettre
l’inclusion de séquences d’acquisition d’images ASL dans les protocoles d’imagerie
pilotés par cette plateforme. Dans un premier temps, le travail a consisté à stan-
dardiser les séquences d’acquisition sur des machines IRM de deux constructeurs
différents. Dans un second temps, un outil d’évaluation semi-automatique de la
qualité des images acquises par différents centres participant aux acquisitions a été
développé et intégré au logiciel de contrôle qualité du CATI.

R.2.1.2 Standardisation des paramètres d’acquisition

Matériel et méthode La plupart des IRM participant aux études de neuroim-
agerie pilotées par le CATI étant équipées de séquences de type 2D-EPI, le travail
de standardisation a été concentré sur de telles séquences. 10 sujets (6 femmes,
4 hommes, 53 ± 17 ans) et un patient diagnostiqué avec une forme de démence
(homme, 69 ans) se sont portés volontaires pour participer à cette étude. 7 sujets
sains et le patient ont été imagés sur une IRM, appelée A dans la suite de cette
section, et 3 sujets sains sur l’IRM B. Le protocole était constitué d’une image
structurelle (MPRAGE), une séquence 2D-EPI pCASL, et une image de la mag-
nétisation à l’équilibre (M0). Les images de l’un des sujets imagés sur le scanner A
ont du être exclues de l’étude pour cause de mauvaise qualité.

Les paramètres d’acquisition à optimiser étaient le temps de répétition (TR), le
temps d’écho (TE), la durée de marquage (LD), ainsi que le délai post-marquage
(PLD). Bien que la valeur de PLD recommandée pour l’imagerie de sujets adultes
soit de 2000 ms [Alsop 2015], nous souhaitions en effet évaluer la possibilité de
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l’allonger. En effet, les structures d’intérêt dans le cas de démences sont générale-
ment situées dans la moitié inférieure du cerveau, les images ASL pouvant être
impactées par des artefacts artériels dans ces régions en cas de trop faibles valeurs
de PLD. Les combinaisons de paramètres évaluées, ainsi que le nombre de sujets
imagés avec chacune de ces combinaisons, sont présentés dans le tableau 1. Un su-
jet supplémentaire a été imagé sur l’IRM A, afin d’évaluer l’influence des méthodes
d’imagerie parallèle GRAPPA et SENSE.

Des analyses automatiques quantitatives, telles que les calculs de SNR temporel
et de CBF, ainsi que des évaluations qualitatives réalisées par un neuroradiologue
expérimenté ont permis de procéder au choix des paramètres les mieux appropriés,
et à utiliser afin d’acquérir les images ASL dans le cadre des protocoles pilotés par
le CATI.

Résultats Suite aux analyses quantitatives et qualitatives effectuées, et réper-
toriées dans le tableau 1, les paramètres sélectionnés sont LD=1800 ms,
PLD=2170 ms, TR=4560 ms et TE=12 ms. SENSE avec un facteur d’accélération
égal à 2 est quant à elle la méthode d’imagerie parallèle choisie.

Table 1: Nombre de sujets imagés par combinaison de paramètres, SNR temporel et
CBF calculés sur des masques de cerveaux, et scores d’évaluation visuelle associés
aux acquisitions ASL. Les astérisques indiquent qu’au moins l’une des cartes de CBF
obtenues à partir des paramètres associés présentait un hypersignal artériel.

Conclusion Suite à la sélection de ces paramètres d’acquisition, des visites ont été
programmées sur différents sites afin d’y installer les séquences ASL. Le développe-
ment d’un outil semi-automatique de contrôle de la qualité des images ASL a ensuite
été réalisé, dans le but d’être utilisé par les attachés de recherche clinique, premières
personnes du CATI à recevoir ces images.

R.2.1.3 Développement d’un outil de contrôle de la qualité des images

Vérification des paramètres d’acquisition La première étape du contrôle
qualité consiste à vérifier la conformité des paramètres d’acquisition. Pour ce
faire, les paramètres d’intérêt sont cherchés dans les fichiers DICOM, format dans
lequel les images sont partagées par les sites d’acquisition. Les paramètres analysés
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sont le nom de l’antenne, le champ de vue, la matrice d’acquisition, l’épaisseur de
coupe, l’espacement entre les coupes, l’orientation, la direction d’encodage de phase,
l’espacement entre les pixels, le temps de répétition, l’angle de bascule, la largeur
de bande, le nombre de répétitions, la correction de champ B1, l’acquisition de
Fourier partielle, la méthode d’imagerie parallèle, le facteur d’imagerie parallèle, le
suréchantillonnage de phase et le temps d’écho.

Évaluation de la qualité des images Les données ASL sont traitées à l’aide
d’un pipeline développé dans le cadre de ce travail, basé sur des fonctions propres
développées en Python et des fonctionnalités de SPM8 [SPM 2006]. Des images
obtenues à différents stades de ces traitements sont affichées sur l’interface mis à la
disposition des attachés de recherche clinique, comme présenté dans la figure 1. Des
champs spécifiques aux conditions générales de l’acquisition, ainsi que des évalua-
tions d’artefacts plus précises doivent ensuite être renseignés par l’utilisateur. Un
rapport contenant l’ensemble des évaluations réalisées sur ces données ainsi qu’une
note de qualité finale sont finalement créés et sauvegardés dans la base de données
du CATI.

Raw Asl series ASL signal map CBF map

Visual control 
panel

Raw M0 image

std map
Segmented gray

matter
Realignment translations

Figure 1: Interface graphique (qualiCATI ), sur laquelle sont affichés des images et
graphiques issus du post-traitement des données ASL.
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R.2.1.4 Discussion

Ces travaux de standardisation des acquisitions d’images ASL et de contrôle de
leur qualité ont permis d’évaluer des données provenant de 191 patients imagés
dans le cadre d’un projet portant sur l’étude des relations entre facteurs de risques
vasculaires et démences. 184 de ces patients ont effectivement été imagés avec la
séquence ASL proposée. 104 de ces images ont été répertoriées comme étant de très
bonne qualité, 59 d’une qualité acceptable, et 21 (11%) ont été écartées de l’étude,
taux considéré comme satisfaisant.

R.2.2 Correction des distorsions

R.2.2.1 Introduction

Le recours à des techniques d’acquisition rapides pour obtenir les données ASL,
telles que la méthode 2D-EPI, induit parfois l’introduction de distorsions dans les
images. Celles-ci apparaissent dans des régions sujettes à d’importantes différences
de susceptibilité magnétique, en particulier au niveau des interfaces air/tissu ou
tissu/os. Différentes méthodes ont été proposées afin de corriger ces distorsions,
et appliquées à des images de diffusion, d’IRM fonctionnelle, ou encore de con-
traste de susceptibilité magnétique (DSC). Une méthode reposant sur l’acquisition
d’images dont les directions d’encodage de phase (PED) sont inversées se révèle no-
tamment produire des résultats encourageants. Une implémentation de cette tech-
nique, TOPUP [Andersson 2003], a été appliquée à des images ASL dans le travail
de [Madai 2016]. L’objectif du travail présenté dans cette section est d’évaluer la
capacité de trois méthodes qui reposent sur ce principe d’acquisition de données avec
des PED inversées à corriger les distorsions dans les images ASL. Les trois méth-
odes évaluées sont TOPUP, HySCO [Ruthotto 2012, Ruthotto 2013], et l’algorithme
Block Matching proposé par [Hedouin 2017].

R.2.2.2 Matériel et méthodes

5 sujets se sont portés volontaires pour participer à cette étude (2 femmes, 3 hommes,
22 ± 1.58 ans). Une image structurelle (MPRAGE) a été acquise pour chacun des
sujets, ainsi que 4 séries pCASL et les cartes de magnétisation à l’équilibre (M0)
associées obtenues avec des PED orientées en A>>P, P>>A, R>>L et L>>R.

Chacune des séries pCASL et des cartes M0 a été corrigée à l’aide des trois
méthodes évaluées, avant que le CBF ne soit estimé à partir de celles-ci à l’aide d’une
chaîne de traitement développée en Python et SPM8. Afin d’évaluer la capacité
de chacune des techniques à corriger les distorsions de manière satisfaisante, la
corrélation et l’indice de similarité structurelle (SSIM) entre les cartes de CBF issues
des données acquises suivant les PED inverses ont été calculés. Ces deux indices ont
également été mesurés entre les images acquises en A>>P et L>>R.
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R.2.2.3 Résultats

Les cartes de CBF (figure 2), ainsi que les valeurs de corrélations et SSIM obtenues,
indiquent que la méthode HySCO génère des images corrigées plus lisses que les
deux autres méthodes, entraînant l’atténuation de certains détails. TOPUP et Block
Matching parviennent quant à elles à corriger les distorsions et rapprocher les images
acquises avec des PED opposées, tout en conservant des structures bien détaillées.
En outre, les indices mesurés tendent à souligner une meilleure performance de la
méthode Block Matching.

R.2.2.4 Discussion

Cette étude amène à privilégier les algorithmes TOPUP et Block Matching afin
de corriger les distorsions dans les images ASL, la seconde tendant à fournir des
reconstructions d’une qualité légèrement supérieure à la première.

R.3 Méthodes de post-traitement des images ASL

R.3.1 Super-résolution adaptée aux cartes de CBF

R.3.1.1 Introduction

Cette section présente des méthodes proposées dans le cadre de cette thèse, avec
pour objectif de réduire l’influence de certaines limitations propres aux acquisitions
ASL. Les aspects principaux pris en compte dans le développement et l’adaptation
de ces méthodes à l’ASL sont sa faible résolution spatiale, les effets de volumes
partiels (PVE) engendrés par celle-ci, ainsi que le faible SNR des images acquises.
Les travaux sont basés sur des méthodes rencontrées dans la littérature et appliquées
à des images structurelles, de cartographie quantitative de temps de relaxation T1,
de diffusion, ou de spectroscopie. Il s’agit de méthodes de super-résolution basées sur
l’utilisation de patchs, qui ont la particularité de recourir à des images structurelles
acquises à des résolutions élevées afin de guider la reconstruction des images d’intérêt
à une résolution supérieure à celle à laquelle elles ont été acquises.

R.3.1.2 Matériel et méthodes

Méthodes de super-résolution par patchs Les méthodes de super-résolution
basées sur l’utilisation de patchs reposent sur une hypothèse principale, selon laquelle
des similitudes entre différentes régions d’une image médicale sont liées à des pro-
cessus physiologiques similaires. L’évaluation de similarités entre différents patchs,
à la fois dans l’image à reconstruire et dans une image structurelle directement
acquise à une résolution élevée peut ainsi guider la reconstruction. Une étape de
régularisation, qui veille à une bonne correspondance entre les images reconstruites
et les images de basse résolution (BR) originales, est généralement appliquée dans
ces techniques. Cette étape est par ailleurs la principale limitation de ces méthodes,



R.3. Méthodes de post-traitement des images ASL ix

d e f

cba

Figure 2: Images d’un sujet sain : a) image structurelle, images de signal ASL
à partir de b) la série L>>R, c) la série R>>L, d) la série L>>R corrigée avec
l’algorithme de Block Matching, e) la série L>>R corrigée avec l’algorithme TOPUP
et f) la série L>>R corrigée avec l’algorithme HySCO.
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car elle implique le fait que les images BR soient débruitées avant de les reconstruire
à une résolution plus élevée.

Méthode proposée Nous proposons dans le cadre de cette thèse de coupler
débruitage et reconstruction, en imposant une fidélité de l’image reconstruite en
terme de valeur moyenne sur la globalité de l’image avec l’image originale, et non
une fidélité à l’échelle du voxel, comme c’est le cas dans les méthodes présentées
précédemment. Selon nos connaissances, appliquer une telle méthode de super-
résolution, guidée par une image structurelle acquise à haute résolution, à des don-
nées ASL, constitue l’une des principales contributions de ce travail de thèse.

Validation La méthode proposée a été évaluée dans un premier temps sur un
jeu de 9 cartes de CBF simulées. Ces cartes ont été construites en affectant
des valeurs de CBF aux substances grise et blanche segmentées d’images struc-
turelles (MP2RAGE), avant d’être sous-échantillonnées. Différents niveaux de bruit
gaussien, compris entre 3 et 14% de la valeur de CBF affectée à la substance grise,
ont été ajoutés à ces images, afin de simuler le bruit pouvant être rencontré dans les
cartes de CBF généralement acquises. Ces images basses résolutions ont ensuite été
reconstruites à la même résolution que celle des images originales, par application de
techniques d’interpolation (plus proche voisin (NN), trilinéaire et B-splines d’ordre
3), et la méthode proposée. L’écart entre ces reconstructions et les images d’origine
a été évalué par calcul des racines des écarts quadratiques moyens (RMSE).

La méthode a dans un second temps été évaluée sur des données obtenues à
partir de 4 volontaires sains (3 femmes, 1 homme, 34 ± 6 ans). Le protocole
d’acquisition consistait en une image structurelle (MP2RAGE), une série pCASL
de basse résolution (3.5×3.5×5 mm3, une série pCASL de haute résolution (HR)
(1.75×1.75×0.5 mm3), ainsi que deux cartes M0, chacune à la résolution de l’une
des séries ASL. De la même manière que dans le cas des données simulées, les cartes
de CBF obtenues à partir des acquisitions BR ont été reconstruites à l’aide des
techniques d’interpolation et de la méthode proposée. La principale limite de cette
évaluation réside dans le faible SNR des cartes de CBF issues des acquisitions HR,
le fait de pouvoir les considérer comme des cartes de référence auxquelles comparer
les images reconstruites pouvant se révéler difficile.

Afin de pallier cette difficulté, la capacité de la méthode proposée à reconstru-
ire des cartes de CBF corrélées avec des images de DSC, technique couramment
considérée comme référence en imagerie de la perfusion, a été évaluée dans un
troisième temps. Pour ce faire, des données acquises sur 10 patients imagés dans
le cadre d’un protocole dédié aux tumeurs cérébrales ont été utilisées. Le protocole
d’acquisition comprenait une image structurelle, une séquence PASL (résolution :
3×3×7 mm3, 0.7 mm d’espacement entre les coupes), et une séquence DSC (résolu-
tion : 1.8×1.8×4 mm3, 1.2 mm d’espacement entre les coupes). Comme précédem-
ment, la performance de la méthode proposée a été comparée à celles obtenues par
des techniques d’interpolation, en étant évaluée par mesure de la corrélation entre



R.3. Méthodes de post-traitement des images ASL xi

ces reconstructions et les images de CBF issues de l’acquisition DSC.

R.3.1.3 Résultats

Données simulées Les images dont les dimensions ont été augmentées par appli-
cation des techniques d’interpolation apparaissent plus floues que celle obtenue avec
la méthode proposée, qui présente plus de détails. Le tableau 2 indique les valeurs de
RMSE obtenues pour différents niveaux de bruit initiaux. Ce tableau nous renseigne
sur la capacité de la méthode proposée à débruiter les images reconstruites, l’écart
entre les images obtenues et les images de référence augmentant moins rapidement
que suite à l’application des autres techniques.

Std du bruit 3 6 9 11 14
Plus proche voisin 14.82± 0.82∗ 15.3± 0.78∗ 16.31± 0.80∗ 17.72± 0.97∗ 19.98± 1.43∗

Trilinear 14.80± 0.91∗ 14.93± 0.90∗ 15.22± 0.89∗ 15.66± 0.86∗ 16.38± 0.94∗

B-splines 14.01± 0.89 14.35± 0.86 15.08± 0.83∗ 16.12± 0.85∗ 17.78± 1.19∗

Méthode proposée 13.92 ±1.05 14.05 ±1.04 14.34 ±1.01 14.79 ±0.99 15.56 ±1.08

Table 2: Moyenne et écart-type (std) des 9 RMSE calculées entre les images de
référence et les reconstructions obtenues par application des interpolations de type
plus proche voisin, trilinéaire, B-splines d’ordre 3, ou la méthode proposée, pour
des niveaux de bruit croissants. L’écart-type du bruit est exprimé en pourcentage
de la valeur de CBF affectée à la substance grise. Les astérisques soulignent des
différences significatives avec la méthode proposée..

Volontaires sains Les images des sujets sains reconstruites à l’aide de la méthode
proposée présentent elles aussi plus de détails que celles obtenues par application des
techniques d’interpolation (figure 3). La méthode proposée est également associée
à des valeurs de RMSE inférieures à celles obtenues avec les autres techniques pour
trois des quatre sujets.

Comparaison avec la DSC Les corrélations calculées entre les images recon-
struites et les cartes de CBF issues des acquisitions DSC sont significativement plus
élevées dans le cas de l’application de la méthode proposée que par interpolations
trilinéaire ou B-splines (p< 10−4).

R.3.1.4 Comparaison avec les méthodes de correction des volumes par-
tiels

Méthode La méthode proposée et évaluée dans les paragraphes précédents permet
d’augmenter la résolution de cartes de CBF issues de séries ASL en en augmentant
le niveau de détails. De telles propriétés peuvent amener à penser que cette méthode
réduise l’influence des PVE. La méthode de super-résolution est donc ici comparée à
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(a) (b)

(c) (d) (e)

Figure 3: Sujet sain : coupes sagittales de a) l’image structurelle, b) la carte de
CBF issue de la série pCASL acquise à basse résolution, c) la carte reconstruite
par interpolation trilinéaire, d) par application de B-splines d’ordre 3, et e) l’image
obtenue à l’aide de la méthode proposée.

la méthode de correction de PVE par régression linéaire proposée par [Asllani 2008],
qui est elle appliquée aux images dans leur résolution d’origine, sur un jeu de données
simulées. Les 9 images structurelles utilisées afin de constituer les données simulées
rencontrées dans les sections R.3.1.2 et R.3.1.3 ont ainsi permis de construire, après
segmentation et seuillage, des cartes de signal ASL dans lesquelles les proportions
de substances grise et blanche sont connues. Des variations sinusoïdales ont été
introduites dans ces images, afin d’évaluer la capacité des deux méthodes à conserver
de telles variations. Les valeurs de RMSE ont été calculées entre les images corrigées
et les références à des fins d’évaluation quantitative.

Résultats Les valeurs de RMSE mesurées montrent que la méthode proposée
permet de réduire l’influence des PVE. Les images obtenues soulignent quant à elles
la supériorité de la méthode proposée en ce qui concerne sa faculté à conserver et
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retrouver les variations spatiales introduites dans les images de référence, celles-ci
se retrouvant lissées par application de la méthode de régression linéaire.

R.3.1.5 Conclusion

Une méthode de super-résolution adaptée aux images ASL a été proposée et évaluée
sur des données simulées, des données acquises sur des volontaires sains, ainsi que des
images de patients imagés pour cause de suspicion de présence de tumeurs cérébrales.
Cette méthode s’est révélée générer des images plus proches des références dans
chacun des cas, en comparaison avec des techniques d’interpolation. La capacité de
cette méthode à réduire l’influence des PVE a également pu être mise en évidence.

R.3.2 Super-résolution adaptée aux acquisitions d’ASL multi-TI

R.3.2.1 Introduction

Cette section présente une adaptation de la méthode présentée en R.3.1 au cas
d’acquisitions ASL multi-TI. Cette adaptation, qui reste basée sur l’évaluation de
similarités entre propriétés de voxels voisins, diffère de la précédente de par le fait
que la reconstruction à une dimension supérieure intervient au niveau de la série de
cartes de signal ASL associées aux différents PLD.

R.3.2.2 Matériel et méthodes

Dans le cadre de cette nouvelle méthode, les similarités sont évaluées entre les évo-
lutions temporelles des voxels dans la série de cartes de signal ASL, la comparaison
de patchs entre voxels voisins dans une image structurelle acquise à haute résolu-
tion étant quant à elle conservée. Cette adaptation a pour objectif de corriger les
valeurs des voxels des cartes de signal ASL qui pourraient présenter des valeurs
aberrantes, ou faire dévier l’évolution temporelle du signal d’un voxel de celle de
voxels présentant des propriétés similaires. Cet ajustement du signal temporel est
supposé permettre une estimation plus fiable des paramètres que sont le CBF et
l’ATT.

Cette méthode a tout d’abord été évaluée sur des données simulées. Une série
de cartes de signal ASL théoriques correspondant à l’évolution du modèle standard
de Buxton a été générée à partir d’une carte de CBF et d’une carte d’ATT. 20 séries
sous-échantillonnées et bruitées ont été produites à partir de cette série initiale, puis
reconstruites à la résolution d’origine à l’aide de différentes méthodes. La méthode
proposée dans cette section (SR4D) a en effet été comparée à une interpolation par
B-splines d’ordre 3 et la méthode de la section précédente (SR3D) appliquées aux
cartes de CBF et ATT estimées à partir de chacune des séries de signal ASL, ou en
augmentant la résolution de chacune des cartes de signal ASL séparément à l’aide
de la méthode de la section précédente (SR3D MULTI), puis en estimant les CBF et
ATT. Les cartes ainsi estimées ont été comparées aux cartes originales par mesure
du rapport signal à bruit maximal (PSNR).
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Des images acquises sur 8 sujets sains (6 femmes, 2 hommes, 33 ± 9 ans),
consistant en une image structurelle (MP2RAGE), deux séquence prototype pCASL
multi-TI (12 PLD compris entre 500 ms et 4240 ms) et 2 cartes M0, chacune acquise à
basse et haute résolution, ont également été utilisées afin de valider cette méthode.
Les estimations des cartes CBF et ATT de basse résolution ont été reconstruites
à la haute résolution par application des quatre méthodes présentées dans le cas
des données simulées. À partir des cartes CBF et ATT ainsi obtenues, l’évolution
théorique qu’aurait dû suivre le signal ASL a été modélisé en suivant le modèle
standard de Buxton. Les évolutions de signal ASL obtenues dans les différentes
séries (acquisitions BR, HR, et reconstruites à l’aide de SR3D MULTI ou SR4D),
ont ensuite été comparées à cette évolution théorique, par calcul de la corrélation
entre leurs courbes et les évolutions simulées, suivant l’hypothèse que plus cette
corrélation est élevée, plus les estimations de CBF et ATT obtenues sont fiables.

R.3.2.3 Résultats

Sur les données simulées, la méthode proposée, SR4D, permet des estimations de
CBF et ATT associées à un PSNR significativement plus élevé que dans le cas des
autres méthodes évaluées (p<10−22), par comparaison avec les images de référence.
La capacité de SR4D à reconstruire des séries de cartes de perfusion à haute résolu-
tion dont les voxels suivent une évolution temporelle plus proche de celle de la série
de référence a également pu être soulignée.

Les évolutions temporelles obtenues par reconstruction des données acquises sur
sujets sains sont quant à elles associées à une augmentation de leur corrélation avec
les évolutions théoriques. À noter notamment une augmentation significative du
nombre de voxels pour lesquels cette corrélation devient supérieure à 0.5 (p<10−4).
Visuellement, les estimations de CBF obtenues à partir des séries reconstruites à
l’aide de SR4D présentent plus de détails et sont moins lissées que par application
de SR3D (figure 4). Ces cartes présentent également moins de valeurs aberrantes que
celles obtenues en utilisant SR3D MULTI. Les cartes d’ATT se révèlent également
être bien débruitées suite à l’application de SR4D (figure 5).

R.3.2.4 Conclusion

Cette méthode de super-résolution adaptée aux acquisitions ASL multi-TI, évaluée
sur des données simulées et acquises sur sujets sains, a montré sa capacité à produire
des estimations fiables, à haute résolution, de CBF et ATT.

R.4 Discussion et perspectives

La séquence adoptée suite au travail de standardisation des acquisitions ASL a
permis l’acquisition des images de perfusion de 184 sujets, dans le cadre d’une étude
de grande ampleur qui s’intéresse aux relations entre facteurs de risques vasculaires
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Figure 4: Sujet sain: coupes axiales d’une image structurelle (a), de la carte de CBF
de basse résolution (b) associée, de celle de haute résolution (c), celle reconstruite
avec SR3D (d), et des estimations de CBF obtenues suite aux applications de SR3D
MULTI (e) et SR4D (f).
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(a) (b) (c)

(d) (e) (f)

Figure 5: Sujet sain: coupes axiales d’une image structurelle (a), de la carte d’ATT
de basse résolution (b) associée, de celle de haute résolution (c), celle reconstruite
avec SR3D (d), et des estimations d’ATT obtenues suite aux applications de SR3D
MULTI (e) et SR4D (f).
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et démences. L’outil développé afin d’évaluer la qualité des images ASL a quant à
lui permis aux attachés de recherche clinique du CATI d’analyser ces images.

Les méthodes de super-résolutions développées dans le cadre de cette thèse ont
montré permettre une augmentation du niveau de détails dans les images ASL.
Une première méthode a été proposée afin de reconstruire les cartes de CBF à des
résolutions supérieures à celles dans lesquelles les données ASL ont été acquises.
Une extension de cette méthode dans le but de l’adapter au cas d’acquisitions de
type multi-TI a quant à elle montré sa capacité à générer des estimations fiables, à
haute résolution, de CBF et ATT. Ces techniques ont été évaluées sur des données
simulées, de sujets sains, ou de patients imagés dans le contexte d’un protocole
dédié à l’étude de tumeurs cérébrales. Des applications intéressantes dans le cadre
de travaux futurs pourraient être le cas de patients diagnostiqués avec des formes
précoces de démences, associées à des anomalies perfusionnelles pas encore liées à
des anomalies visibles sur des images structurelles.

Par ailleurs, évaluer l’influence de l’application de méthodes de correction des
distorsions avant d’utiliser l’un des algorithmes de super-résolution pourrait être
réalisé dans le cadre de travaux futurs.
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4 Chapter 1. Brain perfusion: a general presentation

1.1 Introduction

The brain, part of the central nervous system, counts for around 3 % of a human’s
total weight, while representing 20% of its oxygen and 15% of its total glucose
consumption. It had long been held to be an insignificant organ, as proven by the
fact that the heart and other organs were well conserved in Egyptian mummies,
while the brain was removed from them. For the Greek philosopher and scientist
Aristotle, the brain served as a blood conditioner, while Descartes saw it as an
antenna allowing the spirit and body to communicate.

Until the last century, most of the knowledge gained from brain structure and
function were obtained by means of experimentations and accidents involving living
people presenting unusual functions or behaviors related to brain injuries. Scientists
usually had to wait for their patients to die before being able to relate lesions and
pathological findings.

Nowadays, accumulated knowledge and spectacular technological improvements,
such as the development of electroencephalography or different imaging modalities,
at microscopic as well as mesoscopic scales, provide information about the role
and function of the brain in healthy subjects, but also concerning a number of
pathologies. Nonetheless, work is still needed to understand the brain itself, and its
relation with its environment.

In the context of this thesis, we focus on arterial spin labelling (ASL), a magnetic
resonance (MR) imaging modality that allows to obtain information about brain
perfusion. This chapter will first provide a general presentation of the brain, before
focusing on the biological process of brain perfusion, describing parameters that are
related to this perfusion, and finally introducing imaging techniques in use to obtain
perfusion information.

1.2 General presentation of the human brain

The brain can be divided into different regions, related to specific functions. Some
of them constitute the four external lobes:

• The frontal lobe, hosting the primary motor cortex, involved in the control of
voluntary movements. It is also associated with planning and language related
tasks.

• The temporal lobe, that contains the limbic system, related to the treatment
of emotions. It is also involved in auditory and visual processing.

• The parietal lobe, that integrates information from the different sensorial
modalities, and plays also a role in space perception and attention.

• The occipital lobe, mostly dedicated to the processing of visual signals.

Each lobe contains a number of gyri and sulci, forming folds that allow to increase
the brain surface (figure 1.1).
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Figure 1.1: Representation of the brain lobes and some sulci and gyri. Image cour-
tesy: https://en.wikipedia.org/wiki/Lobes_of_the_brain

The brain consists in an organization of neurons and glial cells, with a population
of some 100 billions of each. The cell bodies of the neurons are mostly located at
the periphery of the brain or in particular locations, and form the gray matter. The
white matter consists in the neuron’s axons, carrying information. These cells are
supplied with nutrients by blood through brain perfusion, described in more details
in the following section.

1.3 Brain perfusion

1.3.1 Blood supply

Brain perfusion is the biological process allowing the delivery of oxygen and nu-
trients to brain tissues. It mostly occurs by means of the microcirculation, which
corresponds to blood flowing through the capillaries.

Capillaries are the smallest vessels within the brain blood supply system. The
heart provides oxygen to the brain by means of four arteries, consisting of two inter-
nal carotids, supplying the anterior brain, and two vertebral arteries, supplying the
brainstem and posterior brain. These arteries join the circle of Willis, regulating
blood supply, notably to reduce the influence of heart pulsations on brain perfusion.
Six vessels emerge from the circle of Willis, each hemisphere of the brain being sup-
plied by an anterior, a middle and a posterior arteries. The anterior cerebral arteries
deliver blood to the medial part of the frontal and parietal lobes. The posterior cere-
bral arteries supply medial posterior parts of the temporal and occipital lobes. The
middle cerebral arteries supply the remaining parts of the frontal, temporal, parietal
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and occipital lobes. The arteries are extended by arterioles, themselves branching
into capillaries. After nutrients consumption, blood flows through venules, that con-
verge into venous sinuses. These sinuses converge progressively into the two main
veins flowing out of the brain, th internal jugular veins. Figures 1.2 and 1.3 provide
a schematic representation of this brain vasculature.

Figure 1.2: Representation of a) the carotids and vertebral arteries, b) an axial view
of arteries ramifications at the basis of the brain and c) the circle of Willis. Image
courtesy: [Gray 1918]

1.3.2 Parameters

Some parameters allow to quantify the brain perfusion process. The cerebral blood
flow (CBF), usually expressed in the unit of millilitre per minute per a hundred
grams of brain tissue (ml.min−1.100g−1) is one of the most commonly utilized pa-
rameters. Expressed in millilitre of blood per a hundred grams of tissue (ml.100g−1)
is also the cerebral blood volume (CBV). Because evaluating the celerity of the brain
blood flow has also a potential therapeutic value, the bolus arrival time (BAT, only
obtained by means of bolus related imaging techniques), the arterial transit time
(ATT) or the tissue transit time (TTT), expressed in seconds or milliseconds, can
be of interest. The time to peak (TTP), measuring the time needed to obtain the
maximal bolus signal, expressed in seconds or milliseconds, can also be evaluated.

1.3.3 Applications

Perfusion imaging can provide useful information to establish diagnosis, to follow
the evolution of pathologies or to characterize the state of a disease. While usu-
ally not sufficient as a single modality, and completing a need for other diagnostic
information, perfusion can be of great interest in different kinds of pathologies.
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Figure 1.3: Image representing the head and neck most important veins. Image
courtesy: [College 2014]
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1.3.3.1 Cerebrovascular disease

Perfusion imaging is of particular interest in the case of pathologies affecting
brain blood vessels. As a matter of fact, it has been shown in a number of
studies that abnormal perfusion patterns can be the causes or consequences of
vascular related disease, such as malformed, occluded or damaged blood vessels
[Grade 2015, Hendrikse 2004, Kimura 2005, Bokkers 2009, Yun 2012]. Figure 1.4
shows an example of images acquired in the case of an occlusion, that implies an
hypo-perfusion, visible on arterial spin labelling images.

Perfusion imaging techniques providing information about both CBF and ATT
are to be preferred. Indeed, detecting an ASL signal reduction in a brain region,
associated with an ATT increase in the same region can for example imply a stenosis,
blood following a new pathway to reach the brain tissues.

Figure 1.4: From left to right: MR diffusion image presenting an hyper-signal in the
middle cerebral territory, associated with an hypo-perfusion on 3 axial slices of an
ASL perfusion image, and to an occlusion of the middle cerebral artery on the MR
angiography. Image courtesy: [Esquevin 2013]

1.3.3.2 Oncology

Brain perfusion images provide useful information in the case of brain tumours. In-
deed, it can be used as a help for establishing diagnosis, for grading and for following
the evolution of tumours [Grade 2015]. These possibilities are linked to the fact that
tumours are subject to an angiogenesis, meaning a vascular proliferation around the
tumour, while evolving from low to high grade [Warmuth 2003, Weber 2006]. As-
sessing perfusion in tumours areas can therefore be of interest in order to adapt
treatment. Figure 1.5 provides an example of a tumour appearing under the form
of an hyper-perfused area on CBF maps obtained with ASL.

1.3.3.3 Dementia

The study of dementia related disease conducted to the adoption of perfusion imag-
ing techniques in imaging protocols, as a matter of diagnosis help. Indeed, brain
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Figure 1.5: From left to right: FLAIR, post-gadolinium T1-weighted, and CBF
images obtained with ASL of a subject diagnosed with a brain tumour. The tumour
appears as hyper-perfused on the CBF maps. Image courtesy: [Esquevin 2013]

regions presenting altered metabolism and perfusion, such as in figure 1.6, have been
shown to correspond to areas of brain structure changes, especially in the case of
Alzheimer disease (AD) [Chen 2011, Musiek 2012]. As an example, patients diag-
nosed with both AD and mild cognitive impairment, the early stage of Alzheimer
disease presented hypo-perfusion and a reduced metabolism activity, notably in the
precuneus and the posterior cingulate cortex, as well as in the frontal and parietal
lobes [Yoshiura 2009, Mak 2012].

Figure 1.6: From left to right: FDG-PET and ASL CBF maps. Left predominant
bitemporal anterior hypo-perfusion can be observed on the CBF maps, in agreement
with hypo-metabolisms visible on the PET scans. Image courtesy: [Esquevin 2013]

1.3.3.4 Psychiatric disease

Differences and abnormal perfusion patterns have been highlighted between patients
and healthy subjects regarding some psychiatric disease. Different categories of de-
pression (chronic, treatment-resistant, adolescents or late life depressions) present
different hypo or hyper-perfused areas [Duhameau 2010, Ho 2013, Colloby 2012].
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Schizophrenia and borderline personality also showed to be related with character-
istic perfusion patterns [Kindler 2013, Wolf 2012]. Studies have also concluded to
the possibility of predicting patients’ responses to treatments, conducting to therapy
adaptation and personalisation [Weiduschat 2013, Homan 2012].

1.3.3.5 Epilepsy

Assessing perfusion in epileptic patients can be useful in order to locate the
epileptogenic zone. Indeed, such regions have been shown to present hypo-
perfusion between seizures and hyper-perfusion during seizures, which can be
assessed by locating brain perfusion asymmetries with the contralateral hemisphere
[Duncan 2010]. Images acquired on a patient diagnosed with a form of epilepsy are
presented in figure 1.7.

Figure 1.7: 14-month-old boy presenting with fever, right unilateral clonic seizures
and ipsilateral hemiplegia that lasted for more than 1 hour. Postictal EEG showed
slow focal and persistent left cerebral hemisphere activity 24 hours after the seizure.
MRI performed during the postictal state shows no abnormality on conventional
imaging. a) Apparent diffusion coefficient map reveals restricted focal left hip-
pocampal diffusion (arrow). (b-d) ASL CBF map reveals a larger abnormal area
of hyper-perfusion in the left temporal and parieto-occipital lobes (arrows). Image
courtesy: [Proisy 2016]

The pathologies presented in this section are associated with different abnormal
perfusion patterns. Various imaging modalities, described in the next section, have
been developed in order to obtain useful information about brain perfusion.
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1.4 Perfusion imaging techniques

Different imaging techniques allow to obtain maps of brain perfusion parameters
and hemodynamic information. Most of them provide quantification of CBF and
CBV, but differ in the type of tracers in use (endogenous or exogenous), necessary
equipment (more or less expensive and space requiring), scan duration, or spatial
and temporal resolution. Therefore, each of these techniques has advantages and
disadvantages, making it adapted to certain kinds of populations and pathologies
[Wintermark 2005].

1.4.1 Positron Emission Tomography

Positron Emission Tomography (PET) is a nuclear imaging technique, considered
as a reference perfusion imaging method. The injection or inhalation of a radioac-
tive tracer is required. Quantitative information concerning CBF, CBV, and the
metabolic activity of tissues can be obtained. Indeed, depending on the tracer
in use, the regional oxygen extraction fraction (rOEF) and the regional cerebral
metabolic rate of oxygen or glucose (rCMRO2 / rCMROglu) can be evaluated. The
radioactive tracers, having short half-lives, are emitting positrons, that annihilate
with electrons present in their environment. This annihilation generates two pho-
tons sent in opposite directions, which are detected by sensors.The rate of detected
photons can be evaluated, providing quantitative estimations of perfusion parame-
ters by application of quantification models, often based on the indicator dilution
theory [Kety 1948, Phelps 1979].

PET is most commonly used by injecting 18F fluorodeoxyglucose, a molecule
close to glucose. This molecule accumulates in cells metabolising glucose, allowing
evaluations of cancerous cells and regions presenting a reduced metabolism. Inhala-
tions of 15O can also be prescribed in order to assess CBV, rCMRO2 and rOEF.

PET scans have a duration of 5 to 9 minutes, and a spatial resolution ranging
from 4 to 6 mm.

1.4.2 Single Photon Emission Computed Tomography

Single photon emission computed tomography (SPECT) is similar to PET in the
sense that it is based on radioactive tracers, one of the main differences being that
SPECT tracers release photons corresponding to gamma emissions. The emitted
particles are received and angularly selected by a collimator, tomographic recon-
struction enabling 2D and 3D tracer distribution assessment [Prince 2005]. 133Xenon
is the tracer that is historically used in SPECT perfusion imaging, although other
tracers can be preferred, that allow reduced scattering [Wintermark 2005]. HmPAO
(hexa-methyl-propyl-amineoxime) is particularly well suited to the brain, because
of its disposition to target regions subject to an important cerebral activity.

While 133Xenon allows to obtain quantitative CBF values, correction meth-
ods should be applied to maps obtained by means of other tracers [Kety 1948,
Lassen 1988]. SPECT tracers can be injected before scanning, one of the main
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advantages being to enable image acquisition during seizures in the case of epileptic
patients. The detection of brain regions presenting a reduced activity, and thus
reduced CBF, can also be performed on SPECT images, for dementia or Alzheimer
disease for example.

SPECT scans have a duration of 10 to 15 minutes, and allow image acquisition
at spatial resolutions from 4 to 6 mm.

1.4.3 Computed Tomography

Computed tomography (CT) perfusion imaging can be separated in two different
sub-techniques. The first one is based on stable Xenon inhalations (XeCT), rapidly
entering the brain by crossing the blood-brain barrier. Xenon is in this case used as
a contrast agent, modifying the attenuation of the X-rays between the source and
the detector [Wintermark 2005, Prince 2005]. CBF can be estimated by means of
the Kety-Schmidt equation [Kety 1948], making this imaging method interesting in
cases of cerebrovascular abnormalities.

The other CT perfusion imaging method, referred to as perfusion CT (PCT),
relates on an iodinated contrast agent injection, followed by a continuous scanning
during 40 to 45 seconds. This continuous scan allows to image the arrival of the first
bolus of the contrast agent, and to estimate CBF, CBV and MTT. This method is
also utilized for patients presenting vascular disorders, or as a prognostic factor in
cases of brain injuries [Wintermark 2005].

Computed tomography perfusion imaging does not allow whole brain coverage,
and is prescribed to children only after a careful evaluation of its potential benefit.
XeCT can reach resolutions close to 4 mm, whereas PCT allows resolutions in the
range of 1-2 mm.

1.4.4 Dynamic Susceptibility Constrast

Dynamic susceptibility contrast (DSC) is a magnetic resonance (MR) imaging tech-
nique, similar to CT perfusion imaging in the sense that its objective is to ob-
tain information about the arrival of a bolus of tracer entering the brain capillary
bed. This measurement is performed by recording the T2 or T∗2 decrease induced
by a contrast agent, usually gadolinium chelates. DSC images can be acquired
using gradient echo (GRE) or spin echo (SE) sequences, while GRE sequences
are usually preferred because of higher signal and less contrast agent requirement
[Speck 2000]. CBF, CBV, TTP and MTT can be estimated by means of DSC ac-
quisitions [Østergaard 1996, Kiselev 2001].

Spatial resolutions close to 2× 2× 4 mm can be achieved with DSC, that is well
suited for cerebrovascular disease examination. Combined with diffusion weighted
images (DWI) and spectroscopy, this method is also useful in tumour evaluation,
and in stroke assessment, joint to DWI and MR angiography [Wintermark 2005].
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1.4.5 Arterial Spin labelling

Arterial spin labelling (ASL) is an other MR perfusion imaging technique, based on
the use of endogenous tracers. Hydrogen atoms of circulating blood water molecules
are magnetically labelled and allow to acquire perfusion images, that can provide
information about CBF and ATT depending on the choice of single or multiple
imaging time sequences [Detre 1992, Günther 2001, MacIntosh 2010]. While usually
supposed equal to ATT in common ASL parameters estimations, TTT can also be
assessed by means of specific sequences making the ASL signal sensitive to different
compartments T2 relaxation times [Wells 2009, Liu 2010].

Because of the fact that ASL does not require the use of exogeneous tracers, it
is of particular interest for children or vulnerable patients imaging. Scan duration
is approximately equal to 4 minutes, and resolutions close to 3 mm can be achieved.
While not included in a majority of clinical routine imaging protocols, ASL is of
increasing interest in research investigations, concerning most of the pathologies
presented in 1.3.3. ASL, which is the MR perfusion imaging sequence providing the
images that are at the center of the present work, will be described in more details
in chapter 2.
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2.1 Introduction

Arterial spin labelling (ASL) is a non-invasive magnetic resonance perfusion imag-
ing technique, that was first proposed to assess rat brain perfusion [Detre 1992].
This technique was rapidly adapted to human brain imaging, and is now currently
used in research studies that aim to evaluate perfusion patterns related to different
pathologies. In this chapter, we present the basic principle of ASL data acquisi-
tions, as well as aspects that contribute to the quality and the reliability of ASL
images. The main perfusion quantification models are then presented, followed by a
description of the image processing pipelines developed in the context of this thesis.

2.2 Basic principle

Figure 2.1 provides a schematic description of the basic principle of ASL images
acquisition. In order to create the endogenous tracers required to generate an ASL
signal, radio-frequency pulses are applied. An image, called labelled image, is then
acquired. The difference between this labelled image and a control image, acquired
without the labelling step, corresponds to a map in which voxel intensities are
proportional to CBF. Because signal differences due to labelled blood water account
for at most 5% of the raw ASL image intensity, the signal-to-noise ratio (SNR)
of a single control-label subtraction is usually low. In order to increase this SNR,
multiple image pairs are acquired, leading to acquisitions of ASL series of interleaved
control and label images.

Since the first ASL sequence implementation, a large number of improvements
have been proposed, particularly regarding the labelling approaches.

2.3 Labelling approaches

The three main labelling approaches encountered in the literature and described
in this section are the continuous, pulsed and pseudo-continuous labelling schemes.
Vessel encoded ASL can also be of interest in the case of certain pathologies.

2.3.1 Continuous ASL

In continuous ASL (CASL), the magnetization of blood water protons is inverted
as blood flows through a single labelling plane [Detre 1992, Williams 1992]. This
inversion occurs in a continuous way, which means that RF energy is applied contin-
uously during 1 to 3 seconds. Figure 2.2 illustrates this process. The main advantage
of this labelling technique is its impact on image signal-to-noise ratio (SNR), while
drawbacks are related to the poor labelling efficiency and the necessary energy quan-
tity, implying the use of dedicated hardware [Alsop 2015]. For these reasons, other
labelling methods have been preferred since the late 1990s.
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Figure 2.1: Principle of ASL image acquisitions.



18 Chapter 2. Arterial Spin labelling

Labeling

Figure 2.2: Principle of continuous arterial spin labelling.

2.3.2 Pulsed ASL

Contrary to CASL, pulsed arterial spin labelling corresponds to the application of
one or a few radio-frequency pulses (10 to 20 ms), inverting blood water magneti-
zation located in a thick slab (10 to 20 cm). Figure 2.3 provides a schematic view
of this pulsed labelling approach. While this method allows an improvement of the
labelling efficiency, PASL SNR is inferior to the one of CASL acquisitions.

Labeling Post-labeling delay

Figure 2.3: Principle of pulsed arterial spin labelling.

Different labelling schemes have been proposed in order to address limitations
of this labelling approach. Echo planar imaging signal targeting with alternating
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radio-frequency pulses (EPISTAR) was first introduced as a single slice PASL imag-
ing technique [Edelman 1994]. This method begins with a 90◦ slice-selective pulse
saturating magnetization in a region slightly larger than the imaged slice. This
saturation is followed by a 180◦ adiabatic radio-frequency pulse inverting the mag-
netization of a thick slab of inflowing blood water protons. The control image is
acquired by applying the same operations, but inverting the magnetization above the
imaged slice. This particularity allows a limitation of the influence of magnetization
transfer on the ASL signal. This technique was extended to multi-slice acquisitions
in the pulsed signal targeting with alternating radio-frequency (PULSAR) method
[Golay 2004].

Proximal inversion with control of off-resonance effects (PICORE), is an other
PASL method, that that is similar to EPISTAR, but differs in the fact that the
control inversion pulse is applied at the same frequency offset relative to the imaging
slice as the tagging sequence, but in the absence of a spatial gradient [Wong 1997].

In flow-sensitive alternating inversion recovery (FAIR), the magnetization in-
verted slab is located around the imaged slice, and the whole volume is subject to
the control inversion [Kim 1995]. This method is more sensitive to venous tagged
blood contamination and difficult to implement for multi-slice acquisitions.

A precise quantification of CBF is nonetheless impossible using these meth-
ods alone, because of the short, but unknown, temporal width of the labelled bo-
lus. Quantitative imaging of perfusion using a single subtraction (QUIPSS) applies
an additional saturation pulse to the imaged slices (QUIPSS-I) or to the labelling
slab (QUIPSS-II), in order to provide a better temporal definition of the bolus
[Wong 1998]. An evolution of these techniques, QUIPSS-II with thin-slice TI1 pe-
riodic saturation (Q2TIPS), consisting in a train of saturation pulses during 800 to
1200 ms, is also commercially available [Luh 1999].

2.3.3 Pseudo-continuous ASL

Pseudo-continuous arterial spin labelling (pCASL) is a method combining advan-
tageous aspects of both CASL and PASL. Labelling is performed on blood water
protons flowing through a slice located at the level of the neck of the imaged sub-
ject, by applying a train of labelling pulses [Dai 2008]. The global value of the
radio-frequency pulses applied in pCASL is the same than in CASL, but the pseudo-
continuous approach is preferred because of its better adaptation to commonly avail-
able hardware, and its higher labelling efficiency, closer to the one obtained using
PASL. Because of this increased labelling efficiency, and a higher SNR than in the
case of PASL acquisitions, pCASL has been recommended by a consortium of ex-
perts as the reference ASL acquisition scheme [Alsop 2015].

2.3.4 Vessel encoded pCASL

Vessel encoded pseudo-continuous arterial spin labelling provides perfusion param-
eter maps resulting from the labelling of blood water protons flowing through one
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of the four arteries delivering blood to the brain. When the four maps are joined
together, maps similar to the ones which could be obtained by means of a classical
pCASL acquisition are generated. But getting individual maps for each of the arter-
ies can provide useful information in the case of cerebrovascular disease, collateral
flow or in order to study lesions blood supply [Wong 2007, Okell 2013].

2.4 Acquisition parameters

2.4.1 Labelling duration and post-labelling delay

The sensitivity of the ASL signal to arterial transit time has been outlined, leading
to the introduction of a delay between blood water protons labelling and image
acquisition [Alsop 1996]. This delay is named differently in the PASL and pCASL
contexts, which is related to implementation differences. In PASL, the delay intro-
duced between the short spin tagging operation and the image acquisition is called
inversion time (TI). In pCASL, the duration of the spin tagging step is called la-
belling duration (LD), and the time between the end of this labelling operation and
the image acquisition, the post-labelling delay (PLD). Figure 2.4 illustrates these
aspects for pCASL and QUIPSS-II PASL acquisitions.

pCASL

PASL

Labeling/Control
pulse

QUIPSS II
Saturation pulse

Image
acquisition

Labeling duration Post-labeling delay

TI1
TI

Figure 2.4: Timing diagram of pCASL and PASL (QUIPSS-II) acquisitions.

2.4.2 Single-TI and multi-TI acquisitions

ASL acquisitions can also be classified into single or multi-TI acquisitions, names
simply chosen identical in cases of PASL and pCASL acquisitions. In single-TI ASL,
a duration at least as long as the longest estimated arterial transit time must be
chosen as TI or PLD. The objective is to ensure that all tagged molecules entered
brain microvasculature before acquiring images. Because blood velocity is different
in children, adults or clinical patients, TI and PLD have to be adapted accordingly.
LD and PLD values recommended by an international consortium are presented in
table 2.1 [Alsop 2015].
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Parameter Value
PASL TI1 800 ms
PASL TI Same as pCASL PLD
pCASL LD 1800 ms
pCASL PLD (neonates) 2000 ms
pCASL PLD (children) 1500 ms
pCASL PLD (healthy subjects < 70 years) 1800 ms
pCASL PLD (healthy subjects > 70 years) 2000 ms
pCASL PLD (adult clinical patients) 2000 ms

Table 2.1: Recommended LD and PLD for single-TI pCASL and QUIPSS-II PASL
acquisitions [Alsop 2015].

Multi-TI acquisitions consist in acquiring images with various TI or PLD, in
order to obtain ASL signal time series. These series have the advantage of allow-
ing a direct estimation of more parameters than the single-TI approach. The main
disadvantage of multi-TI scans is the reduced SNR obtained for each ASL image,
because of reduced repetition numbers of label and control image acquisitions al-
lowed at each TI during a clinically reasonable acquisition time. Figure 2.5 shows
the evolution of the ASL signal in an axial slice, at different PLDs in a multi-TI
acquisition.

2.4.3 Background suppression

As stated in 2.2, intensities between control and label images only differ by at
most 5%. Because of this aspect, the ASL signal has a relatively low SNR.
Artifacts can also be introduced during the acquisition, impairing the ASL sig-
nal. Therefore, the use of background suppression (BS) can be recommended
[Maleki 2011, Garcia 2005]. This technique consists in canceling the longitudinal
magnetization of static spins located in the imaged brain region, by means of satu-
ration and inversion pulses. As a consequence, intensity differences between control
and labelled images are preserved, while the influence of artifacts that affect the
entirety of the images is decreased. While significantly improving the ASL signal
SNR, BS is subject to two main limitations. The labelling efficiency is decreased
by 5% for each inversion pulse, resulting in a signal loss that should be taken into
account while estimating the cerebral blood flow. The longitudinal magnetization
of static tissues is only canceled at a given time point, so that the method is well
suited for 3D readout approaches, but not optimal for 2D multi-slice acquisitions.

2.4.4 Readout approaches

Because of the possibility to apply an efficient background suppression and their low
sensitivity to off-resonance effects, segmented 3D readout approaches are the recom-
mended ASL image acquisition techniques [Günther 2005, Fernández-Seara 2005].
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Figure 2.5: From upper left to bottom right: ASL signal evolution in an axial slice
corresponding to a multi-TI ASL acquisition (12 TIs ranging from 500 ms to 4240
ms).
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However, these sequences are not available on all scanners, and multi-slice single-
shot 2D echo-planar imaging (EPI) or spiral readout approaches are more commonly
used [Alsop 2015, Vidorreta 2013].

Parallel imaging with moderate acceleration factors can be used in order
to reduce the imaging time and distortions [Pruessmann 1999, Griswold 2002,
Wang 2005]. A good tradeoff between these advantages and a potential SNR de-
crease corresponds to the choice of the sensitivity encoding (SENSE) parallel imaging
method with an acceleration factor of 2 [Ferré 2012].

Effort is also made to develop ASL multi-band imaging sequences, that allow
to acquire multiple 2D slices at the same time [Kim 2013, Li 2015]. This method
could be a good alternative to 3D readout approaches, by providing increased tem-
porally and spatially resolved whole brain acquisitions. Early evaluations found to
an improvement of high-resolution 2D EPI pCASL image SNR [Li 2015].

2.4.5 Vascular flow crushing gradients

Vascular flow crushing gradients consist in dephasing the spins of blood water pro-
tons flowing at a velocity superior to an encoding velocity (VENC) value, while
maintaining the phase of protons circulating at a velocity inferior to this VENC,
that remain visible on the ASL images. The objective is to avoid vascular artefacts,
obtained when the PLD is too short and the labelled blood is still flowing through
the arteries, generating hyperintense signals in these areas, sometimes masking use-
ful information. Applying flow crushing gradients can therefore be of interest in
order to retrieve this masked information, but in that case, acquiring a second ASL
scan without applying the crushing gradients is advised if possible, providing indi-
cations about the true nature of the ASL signal that should have been obtained.
While not recommended for usual ASL image acquisitions, particular applications
such as the evaluation of brain tumours or studies implying group comparisons can
benefit from the application of these gradients [Wang 2003, Alsop 2015].

2.5 ASL signal models

2.5.1 General kinetic model

The general kinetic model is based on the assumption that the ASL signal ∆M(t),
which is the difference between control and label images acquired at a time t after
the end of the labelling duration can be related to three main effects, represented
by time depending functions [Buxton 1998]. The delivery function c(t) corresponds
to the arterial concentration of tagged blood water molecules arriving in a given
voxel at time t. The residue function, r(t − t′), represents the fraction of tagged
molecules that have reached the voxel at time t′ and are still present at time t. The
magnetization relaxation functionm(t−t′) models the decrease in magnetization due
to the longitudinal magnetization relaxation between times t′ and t. The measured
ASL signal at time t can therefore be written as follows:
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∆M(t) = 2M0bαf

∫ t

0
c(t′)r(t− t′)m(t− t′) dt′, (2.1)

with M0b the blood equilibrium magnetization, α the labelling efficiency and f the
CBF.

2.5.2 Standard kinetic model

From this general kinetic model, the standard kinetic model has been proposed,
that is largely adopted by the ASL community [Buxton 1998], and schematically
described in figure 2.6. This model is based on three major assumptions regarding
the c, r and m functions:

1. the arrival of labelled blood water is supposed to be uniform, so that the c
function can be expressed as:

c(t) =


0, 0 < t < ∆t

e−t/T1b , ∆t < t < ∆t+ τ

0, ∆t+ τ < t,

(2.2)

with τ the labelling duration or the bolus width, T1b the blood longitudinal
relaxation time and ∆t the arterial transit time.

2. the kinetics is subject to the single compartment model, which means that la-
belled water exchanges rapidly between blood vessels and brain tissues. There-
fore, tissue and arterial transit time can be considered as equal, and the ratio
between venous and brain concentrations of labelled water is considered as
constant, so that r can be written as:

r(t) = e−ft/λ, (2.3)

with λ the brain-blood partition coefficient of water.

3. labelled blood water magnetization is supposed to decay initially with the
blood water relaxation time, and immediately after reaching the imaged brain
tissue voxel, with tissue T1, so that:

m(t) = e−t/T1 . (2.4)

Formulating these assumptions, the expression of the ASL signal measured by
means of PASL acquisitions follows an evolution expressed as:

∆M(t) =


0, 0 < t < ∆t

2M0bf(t−∆t)αe−t/T1bqp(t), ∆t < t < ∆t+ τ

2M0bfταe
−t/T1bqp(t), ∆t+ τ < t,

(2.5)
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with

qp(t) =

{
ekt(e−k∆t−e−kt)

k(t−∆t) , ∆t < t < ∆t+ τ
ekt(e−k∆t−e−k(τ+∆t))

kτ , ∆t+ τ < t,

k =
1

T1b
− 1

T1′
,

1

T1′
=

1

T1
+
f

λ
.

In the case of pCASL or CASL acquisitions, the ASL signal follows the following
equation:

∆M(t) =


0, 0 < t < ∆t

2M0bfT1′αe
−∆t/T1bqss(t), ∆t < t < ∆t+ τ

2M0bfT1′αe
−∆t/T1be−(t−τ−∆t)/T1′ qss(t), ∆t+ τ < t,

(2.6)

with

qss(t) =

{
1− e−(t−∆t)/T1′ , ∆t < t < ∆t+ τ

1− e−τ/T1′ , ∆t+ τ < t.

Given equations 2.5 and 2.6, the ASL signal follows an evolution similar to the
curve displayed in figure 2.7.

While this standard model is the most commonly used in quantitative ASL CBF
related studies, and is the one in use in the next sections of this document, a two-
compartment model has been proposed, that is described in the following section.

arterial
blood

venous
blood

tissue
voxel

f.M0b f.M0b/λ

M, T1

Figure 2.6: Schematic description of the standard model.
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ATT LD time

∆M

Figure 2.7: Signal evolution following the standard model.

2.5.3 Two compartment model

The two compartment model aims to include two major assumptions regarding brain
blood microcirculation [Parkes 2002]. The first one, called the T1 effect, consists in
considering that labelled blood water molecules are not directly exchanging with
extravascular tissues, but flowing through blood vessels during some time before
this exchange occurs. The second assumption, called the outflow effect, corresponds
to the hypothesis that a certain amount of labelled blood water will not exchange
with the extravascular space at all. Both assumptions lead to a new formulation
of the ASL signal ∆M(t), as the sum of contributions from two compartments, the
extravascular and the intravascular ones:

∆M(t) = vev∆me(t) + viv∆mi(t), (2.7)

with vev and viv the respective volume fractions of the extra and intravascular com-
partments, and me(t) and mi(t) the corresponding water magnetizations. Introduc-
ing the permeability surface area product (PS), the following evolution for the intra
and extravascular compartments is obtained [Parkes 2002]:

d(viv∆mi(t))

dt
= −viv∆mi(t)

T1b
+f∆ma(t)−f∆mv(t)+PS(∆me(t)−∆mi(t)), (2.8)

d(vev∆me(t))

dt
= −vev∆me(t)

T1e
+ PS(∆mi(t)−∆me(t)), (2.9)
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with ma the incoming arterial magnetization and mv the outgoing venous magneti-
zation.

A schematic description of this two compartments model is provided in figure 2.8.

arterial
blood

venous
blood

tissue
voxel

f.ma f.mv

mb, vbw, T1b

me, vew, T1e

PS

Figure 2.8: Schematic description of the two compartment model.

2.6 Processing pipelines

This section presents ASL image processing pipelines developed in the context of
this thesis. The pipeline dedicated to single-TI acquisitions is described in the
first subsection. The pipeline built to process multi-TI ASL data is presented in
the second subsection. These inhouse ASL image processing pipelines have been
developed using Python, Nipype [Gorgolewski 2011] and a standalone version of
SPM8 [SPM 2006].

2.6.1 Single-TI ASL image processing pipeline

Figures 2.9 and 2.10 present the automated structural and ASL image process-
ing pipeline dedicated to single-TI ASL acquisitions. Inputs of this pipeline are
a structural image, usually consisting in a magnetization-prepared rapid gradient-
echo (MPRAGE, [Mugler 1990]) or a magnetization-prepared 2 rapid gradient echo
(MP2RAGE, [Marques 2010]) image, an equilibrium magnetization image (M0) and
an ASL control and label image time series.

The structural image is first bias corrected and segmented into probability maps
of gray matter, white matter, cerebro-spinal fluid, bone and soft tissues by means
of the unified segmentation algorithm [Ashburner 2005].

A realignment of the ASL series is then performed by applying a six parameters
rigid registration of all control and label volumes to the mean of these volumes. The
control and label images are pairwise subtracted in order to generate a realigned ASL
signal time series. The M0 and ASL series are then registered to the structural image
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by applying a mutual information based rigid registration. The temporal mean of
the ASL signal series is calculated, to which the M0 image is resliced, in order to
quantitatively estimate the cerebral blood flow (CBF) by applying the standard
kinetic model [Buxton 1998]. The temporal standard deviation of the realigned
ASL signal series is also generated, because of its interesting contribution in the
ASL acquisitions quality assessment. The mean CBF values are finally calculated
within the brain, gray matter and white matter masks.

Structural image

Bias corrected
structural

image

Gray matter
segmentation

White matter
segmentation

Cerebro-spinal
fluid

segmentation

Bone
segmentation

Soft tissues
segmentation

Figure 2.9: Structural image processing.

This pipeline has been adapted to the CATI database management system
(CATIDB), as well as to a file organization similar to the brain imaging data struc-
ture (BIDS) standard [Gorgolewski 2016], only slightly different because of its earlier
development.

2.6.2 Multi-TI image processing pipeline

A processing pipeline dedicated to multi-TI ASL acquisitions was also implemented
in the context of this thesis. This pipeline is adapted to a files organization similar to
the BIDS standard. Inputs to this pipeline are at least a structural image, and time
series constituted of the control-label images acquired at each TI or PLD. External
M0 and quantitative tissue T1 images can also be provided as inputs.

The whole original ASL time series is first registered to the mean of all control
and label volumes by means of a rigid registration. The control-label pairs images
are then subtracted in order to generate ASL series at each TI. The mean of each
of these series is then calculated, in order to obtain a series of mean ASL images,
containing a number of images equal to the number of TIs. The processing pipeline
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Figure 2.10: ASL image processing pipeline.
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then differs depending whether external M0 and quantitative tissue T1 images are
available or not.

2.6.2.1 With external M0 and tissue T1 acquisitions

When external M0 and quantitative tissue T1 images have been acquired, the cere-
bral blood flow (CBF) and the arterial transit time (ATT) are voxelwise estimated
from the ASL time series by applying a voxelwise non-linear least-squares fitting of
the standard kinetic model, in which the M0 and tissue T1 values are provided by
the available images (figure 2.11).

Raw ASL series

Realigned 
raw ASL series

Mean ASL signal
time series

M0 T1

ATT CBF

Realignment

Quantification

Figure 2.11: Multi-TI ASL image processing pipeline with external M0 and quanti-
tative tissue T1 acquisitions.

2.6.2.2 Without external M0 and tissue T1 acquisitions

When no external M0 and tissue T1 scans are available, the pipeline allows their
estimation from the original ASL control and label images time series, if a saturation
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is applied to the imaged brain area directly at the end of each repetition time, and
no background suppression is used [Johnston 2015]. All the control and label images
acquired at a given TI are averaged, which creates a time series of images in which
individual voxels follow a T1 recovery curve, as shown in figure 2.12. This T1

recovery can be formulated as follows:

M(t) = M0(1−m · exp(−t/T1)) (2.10)

withM the longitudinal magnetization measured at each TI, andm a scalar account-
ing for imperfect signal saturations. M0 and tissue T1 can therefore be estimated
by means of a voxelwise least-squares fit of this curve on the averaged control and
label images time series, as in figure ??. The maps estimated this way can then be
used in order to estimate CBF and ATT in a similar manner to that presented in
2.6.2.1 (figure 2.14).

Figure 2.12: Upper left to bottom right: signal evolution in an axial slice of an
averaged control and label time series.

2.7 Thesis objectives

This document presents studies conducted following a progressive way. First, in
the context of the development of a French multicenter neuroimaging platform, the
CATI, work has been performed in order to answer the need for ASL acquisitions
standardization in studies involving different vendors and scanners. ASL sequences
parameters had to be adapted to acquire large cohorts of subjects, mostly elderly
patients diagnosed with a form of dementia or neurodegenerative disease. The defi-
nition of a semi-automated ASL images quality assessment procedure was associated
to this standardization work, with the objective to allow clinical research assistants
to evaluate the conformity of acquisitions coming from multiple centers, and the
potential presence of artifacts in the images. These aspects are presented in part II.
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Figure 2.13: Fitting of the T1 recovery curve on the signal evolution of a voxel in
an averaged control and label time series.

Raw ASL series

Realigned 
ASL series

Mean ASL signal time series Control and label average time series

M0 T1ATT CBF

Realignment

Quantification

Figure 2.14: Multi-TI ASL image processing pipeline without external M0 and quan-
titative tissue T1 acquisitions.
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In a second phase, an assessment of the possibility to apply existing distortion
correction methods on ASL data is presented in chapter 4. These methods, devel-
oped to correct for susceptibility artifacts in MR images that are not specifically
ASL data, have been evaluated on ASL scans acquired on healthy subjects.

Then, image processing methods have been developed in order to address certain
limitations of ASL images. A super-resolution reconstruction method adapted to
ASL data acquired in the context of common clinical imaging protocols is presented
in chapter 5. Finally, an extension of this super-resolution method to multi-TI ASL
acquisitions is presented in chapter 6.

Discussions of these contributions, as well as a presentation of perspectives are
provided in part 6.4.





Part II

Image quality assessment
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3.1 Introduction

As ASL demonstrated its potential to outline abnormal perfusion patterns in pa-
tients affected by different kinds of pathologies, the center for images acquisition and
processing (CATI), a French multicenter neuroimaging platform created to handle
neurodegenerative disease and psychiatry related imaging studies, decided to include
ASL sequences in some of the protocols to be deployed.

The CATI is a consortium of neuroimaging research laboratories: NeuroSpin,
the French high-field MR imaging center of the central commission for nuclear and
alternative energies (CEA), and four teams located in La Pitié-Salpêtrière Hospital:
the neuroimaging analysis research team (ARAMIS ) and the neuroimaging platform
of the Brain and Spine Institute (CENIR), the Institute for Memory and Alzheimer’s
disease (IM2A) and an INSERM-Sorbonne Université unit focusing on research on
functional imaging (LIB). These teams have been collaborating since 2011, and are
funded by a French Alzheimer’s disease initiative. More than 10000 subjects have
been scanned at least once in the context of a study in which the CATI is involved,
on a scanner located in one of the cities figuring in figure 3.1.

Key steps in the implementation of multicenter imaging studies are the stan-
dardization of the acquisition protocols and the quality assessment of the acquired
images. The work presented in this chapter focuses on these two aspects. We first
present a study conducted in order to standardize acquisition protocols from scan-
ners of two different vendors. An overview of the main artifacts that can impair
ASL acquisitions and images is provided in the second section. Finally, the pro-
posed semi-automated ASL images quality assessment procedure is described in the
third section.

The standardized protocols have been deployed in the centers participating in
neuroimaging studies supervised by the CATI, and the quality assessment procedure
and the associated software are currently used by the clinical research assistants
working for the CATI. This work was presented at the European Cooperation in
Science and Technology (eCOST) Action: ASL in dementia Workshops in March
and October 2015.

3.2 Acquisition parameters standardization

The objective of this work was to propose standardized ASL images acquisition pro-
tocols to be included in some research studies apportioned to the CATI. This ini-
tiative was taken at a time when other studies were conducted, as [Mutsaerts 2015],
investigating the possibility to include ASL acquisitions in multicenter imaging pro-
tocols. This particular study outlined that pooling multicenter or multivendor ASL
results is only possible if near-identical sequences parameters are used in order to
acquire the images. This aspect is even shown to be more important than hardware
or software considerations.

We chose in our study to focus on the standardization of 2D EPI pCASL se-
quences. Indeed, even if 3D readout approaches correspond to the recommendation



3.2. Acquisition parameters standardization 39

Figure 3.1: French sites participating in research studies in which the CATI is
involved. Research teams are located in sites marked with a star. The other sites
perform images acquisitions in a clinical context. (i2bm.cea.fr)
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provided in the ASL white paper [Alsop 2015], most of the centers participating in
images acquisitions were equipped with 2D EPI sequences at the time of this inves-
tigation. Acquisitions were performed on scanners of two different vendors: a 3T
Siemens Verio (software version: VB17), Rennes, France, and a 3T Philips Achieva
(software version: 3.2.3), Grenoble, France, both equipped with 32-channel head
coils.

This work did not involve any direct participation of the vendors, and did not
have as an objective to outline the superiority of a scanner against the other. There-
fore, we chose to anonymise and refer to the scanners by means of A and B in this
document.

3.2.1 Material and method

Data were acquired on 10 healthy subjects (6 females, 4 males, 53 ± 17 years old)
and a patient diagnosed with dementia (male, 69 years old). 7 healthy subjects
and the patient were imaged on scanner A, and 3 healthy subjects on scanner B.
The acquired images consisted in a MPRAGE structural image, a pCASL sequence
(2D gradient-echo EPI readout, resolution: 3.5× 3.5× 5 mm3, 1 mm interslice gap,
FOV: 224 × 224 mm2, 20 slices, 30 control-label pairs), and five M0 images (2D
gradient-echo EPI readout, resolution: 3.5 × 3.5 × 5 mm3, 1 mm interslice gap,
FOV: 224× 224 mm2, 20 slices, TR: 10000 ms) to be averaged in order to generate
a single M0 map used to quantify CBF. The acquisition box was placed parallel to
the anterior-posterior commissure line (CA-CP). The labelling plane was located
90 mm under the lowest slice. The parallel imaging method was selected as SENSE
by default [Pruessmann 1999]. Subjects were asked to remain their eyes closed,
without sleeping and if possible thinking about nothing. Table 3.1 summarizes
these fixed acquisition parameters. Due to low quality acquired ASL data, images
from one of the subjects imaged on scanner A needed to be removed from the study.

Antenna
FOV
(mm2)

Voxels size
(mm3) Slices Repetitions

32ch 224× 224 3.5× 3.5× 5 20 30

Slice
thickness
(mm)

Orientation
Phase

encoding
direction

Frequency
encoding
direction

5 (20% gap) CA-CP P>>A R>>L

Table 3.1: Fixed parameters selected to perform the standardization study.
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The imaging parameters to be optimized were the repetition time (TR), the
echo time (TE), the labelling duration (LD) and the post-labelling delay (PLD).
The tested TR values consisted in the minimal values that could be reached on the
scanners, compared to TR=4560 ms, which was the value usually selected to perform
ASL acquisitions in one of the centers. Similarly, the minimal TE values achievable
on the scanners were compared to TE=12 ms, the value selected by default on the
same scanner. The ranges taken under consideration for LD and PLD were largely
inspired by the recommendations provided in the ASL white paper [Alsop 2015].
LD equal to 1650 ms and 1800 ms, and PLD ranging from 2020 ms to 2370 ms at
the level of the central slice were evaluated. Indeed, PLD=2000 ms is recommended
in the case of acquisitions performed on adult clinical patients or healthy subjects
older than 70 years old. We wanted to investigate the possibility of an increase of
the PLD, because of the fact that in the context of dementia or neurodegenerative
disease, an important number of patients are actually older than 70 years old, and
present a reduced or prolonged ATT in regions of interest. Furthermore, structures
of interest in the case of dementia or neurodegenerative disease are most of the time
located in the lower half of the imaged brain volume (hippocampus, ventricles), an
area that can be subject to arterial ASL signal perturbations if the PLD is too
short. The evaluated parameters combinations are summarized in table 3.2. All
combinations could not be evaluated in all subjects because of the necessity to keep
the total scan time within an acceptable duration. Therefore, the number of subjects
imaged with each parameters combination is indicated in the table.

Data were processed by means of the pipeline presented in 2.6.1. In order to
evaluate the influence of each parameter (TR, TE, LD and PLD), automated calcu-
lations were performed. The temporal signal-to-noise ratio (tSNR) was calculated
on the pairwise subtracted control-label series, over the whole brain and on the
segmented gray and white matter. CBF quantification completed the automated
measurements. A visual analysis of the CBF maps was also conducted by a trained
neuroradiologist. The reviewed criteria included the signal homogeneity, the tissue
contrast, and the potential presence of vascular artifacts. Scores ranging from 0
(non satisfactory) to 3 (very satisfactory) were attributed to each scan. Figure 3.2
illustrates this quality review process.

After selecting the TR, TE, LD and PLD, an additional healthy subject was
imaged on scanner A in order to evaluate the influence of the parallel imaging
method on the quality of the ASL acquisitions. Indeed, while it has been shown
that deactivating the largest number of options is recommended in order to facilitate
comparability between sequences available on different scanners [Mutsaerts 2015],
we believed that using a parallel imaging method, and thus reducing the acquisition
time and risks of patient motion that could occur in the case of elderly subjects
diagnosed with a form of dementia, was important. The objective was also to ensure
that the results obtained in [Ferré 2012] from PASL scans, were still applicable to
pCASL acquisitions. Two repetitions of acquisitions whith both GRAPPA and
SENSE parallel imaging methods were performed, with an acceleration factor of 2.
The other parameters correspond to the ones selected by means of the TR, TE, LD
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Figure 3.2: Images evaluation method adopted to perform the acquisition parame-
ters standardization.

and PLD investigation.

3.2.2 Results

Table 3.2 presents the tSNR, brain CBF, and mean visual scores obtained from
images acquired with the evaluated parameters combinations. tSNRs calculated on
ASL series generated from acquisitions performed on scanner B were significantly
higher than the ones measured on images originating from scanner A, which is
the reason why both are separated in the table. Reasons for this difference may be
related to different reconstruction methods, coil design, or the automatic application
of a processing filter in scanner B.

While we could not provide an explanation for this aspect, the ASL images
obtained from data acquired with LD=1650 ms were all associated with strong
arterial signals, which explains the very low corresponding visual scores. These
strong arterial signals can also explain the differences in CBF values.

No significant differences could be observed between images acquired with dif-
ferent TE values. Therefore, TE=12 ms appears as a good choice in the interest of
sequences homogeneity accross scanners.

With LD=1800 ms, images acquired with PLD=2370 ms were less contrasted
than the ones generated from acquisitions performed at lower PLD values, which
explains the lower visual score attributed to the corresponding scans. This can be
explained by the relaxation of the magnetization of the tagged blood water protons,
and the veinous outflow. tSNR and CBF measurements provided satisfactory values
for datasets obtained with PLD=2020 ms and PLD=2170 ms. Nevertheless, the
fact that 2 of the acquisitions performed with PLD=2020 ms presented enhanced
arterial signals oriented our choice toward PLD=2170 ms for use in the neuroimaging
studies. Higher tSNR and visual scores obtained with TR=4560 ms compared to



3.2. Acquisition parameters standardization 43

the minimal TR values led us to choose the following sequence as a result of this
parameters optimization study: LD=1800 ms, PLD=2170 ms, TR=4560 ms and
TE=12 ms.

Figure 3.3 presents the voxelwize measured temporal signal-to-noise ratio (tSNR)
and the CBF values for the whole brain, gray matter and white matter in the con-
text of the parallel imaging methods investigation. Compared to GRAPPA parallel
imaging, the SENSE method shows increased tSNR and CBF values, and was there-
fore selected as the method to use in the context of neuroimaging studies supervised
by the CATI. A summary of the selected parameters is presented in table 3.3.

tSNR

CBF

Figure 3.3: Data obtained in a healthy subject: tSNR and CBF calculated on the
whole brain, gray matter and white matter for the GRAPPA and SENSE parallel
imaging methods.

3.2.3 Conclusion

This study allowed to provide ASL images acquisition guidelines to centers partic-
ipating in research studies. Visits on sites were organized in order to install the
acquisition protocol directly on some scanners.

The first datasets received from the centers equipped with the chosen protocol
allowed to study artifacts that can be encountered in ASL images, and to develop a
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Table 3.2: Number of subjects scanned, tSNR, brain CBF and visual evaluation score
associated with each of the parameters combinations used to acquire ASL images in
the context of the acquisition parameters standardization study. Asterisks indicate
that at least one of the CBF maps generated from the parameters set presented
arterial hyper-signal.
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TR
(ms)

TE
(ms)

LD
(ms)

PLD
(ms)

(central slice)

Parallel
imaging

4560 12 1800 2170 SENSE

Table 3.3: Parameters selected following the acquisition parameters standardization
study.

semi-automated quality assessment procedure.

3.3 Artifacts

This section proposes an overview of the main artifacts encountered in the first
images provided by the acquisition centers, that impair the quality of ASL images.

3.3.1 Motion

As the subtraction of a control and a label image generates an ASL sgnal map with
a poor SNR, a number of repeated control and label images are usually acquired
(usually around 30 control-label images pairs for single-TI acquisitions). This makes
ASL sensitive to motion artifacts. Periodic motion affects images in the form of
border duplication, while random motion induces hypo-perfusion signal or image
blurring, as shown in figure 3.4.

a b

Figure 3.4: Motion artifact in the form of a) border duplication, b) image blurring.
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3.3.2 Vascular artifacts (hyperintense ASL signal)

Vascular artifacts can appear in two different forms on ASL images. Bright spots
can correspond to situations where the TI or PLD is too long and not adapted to
the subject’s blood velocity. Labelled water molecules having already flown out of
brain tissues concentrate in veins and sinuses, that appear as bright points.

If the TI or PLD is too short, labelled water is still in large vessels and has
not been provided a sufficient duration to enter the microvasculature. This results
in higher intensities in brain regions that are early supplied by blood flowing from
the arteries, and a much lower ASL signal in other brain areas. Figure 3.5 presents
examples of both forms of vascular artifacts.

a b

Figure 3.5: Vascular artifact in the form of a) venous hyperintensities, b) arterial
hyperintensities.

3.3.3 Signal inhomogeneities

Signal drop can be observed in more or less widespread areas. It can be associated
with motion or susceptibility artifacts, but can also be caused by labelling issues due
to tortuous arteries at the level of the labelling plane (left image in figure 3.6), or
patient perfusion abnormalities. Signal inhomogeneities can also correspond to coil
sensitivity artifacts, that appear as hypo and/or hyper-perfusion areas (right image
in figure 3.6), and can be assessed by looking at the raw control and label images.
Low frequency signal variations affecting these raw images allow to conclude that
images are affected by a coil sensitivity artifact.

3.3.4 Parallel imaging

Parallel imaging artifacts depend on the method chosen to accelerate images acqui-
sition. When SENSE is selected [Pruessmann 1999], a curved line of higher intensity
voxels can sometimes be observed on ASL images. This curve is even more visible
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a b

Figure 3.6: Signal drop caused by a) a labelling issue due to a tortuous artery in
the labelling plane, b) a susceptibility artifact.

on temporal standard deviation maps, obtained from the temporal ASL series gen-
erated by the successive control-label images subtractions, as shown in figure 3.7.
This artifact is related to the SENSE algorithm, reconstructing images from signals
acquired by each individual reception coil in the image domain.

On the contrary, GRAPPA parallel imaging [Griswold 2002], consisting in a
reconstruction of the images in the spectral domain, sometimes conducts to the
presence of blur in the images.

a b

Figure 3.7: Temporal standard deviation maps of ASL series acquired on the same
subject with the a) GRAPPA and b) SENSE parallel imaging techniques.
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3.3.5 Distortion

Distortion can be observed in ASL images (figure 3.8). These artifacts are related
to the echo train length (3D readout approaches, such as 3D RARE or 3D GRASE)
or the echo time (2D EPI), and result in image deformations in the phase-encoding
direction. In the case of axial acquisitions, the encoding direction is therefore advised
to be chosen as antero-posterior (A>>P) or postero-anterior (P>>A), depending on
the brain structures that are of particular interest and have to be at most preserved
in the context of the imaging protocol.

a b

Figure 3.8: Difference between images of the same subject acquired following the a)
A>>P and b) P>>A phase encoding directions.

3.3.6 Conclusion

Various kinds of ASL images perturbations were encountered in the first images
acquired in the context of this standardization and quality assessment study. We
have shown in this section that they can have different origins, related to aspects to
generally take into account when dealing with MR acquisitions, as well as pertur-
bations more specific to ASL acquisitions. These aspects have been considered in
order to develop the ASL images quality evaluation tool described in the following
section.

3.4 Implemented quality assessment method

This section presents the quality assessment tools developed and implemented in
order to evaluate the conformity of the images received by the clinical research as-
sistants, and the potential presence of artifacts in the ASL images. We will first
describe the procedure to verify the acquisition parameters conformity, and then
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present the semi-automated software that allows to provide information on the im-
ages quality.

3.4.1 Acquisition parameters conformity assessment

The quality assessment procedure proposed in the context of this work is largely
based on the processing pipeline presented in 2.6.1, therefore requiring the use of
a structural image, an equilibrium magnetization image (M0) and an ASL series as
DICOM inputs. The DICOM format allows to access information about parameters
used to perform the acquisitions. The parameters of interest are, for the M0 image
and ASL series: coil name, field of view, acquisition matrix, slice thickness, spac-
ing between slices, acquisition orientation, phase encoding direction, pixel spacing,
repetition time, flip angle, bandwidth, number of acquired volumes, B1 correction,
partial Fourier acquisition fraction, parallel imaging method, parallel reduction fac-
tor, oversampling phase and echo time.

Other important parameters such as the post labelling delay or the labelling
duration are often indexed as hidden parameters, and cannot be controlled in the
context of this verification. Part of the work consisted in installing the acquisition
protocols on sites participating in research studies, in order to limit risks of mistakes.

The result of this acquisition parameters review appears as a table on the graph-
ical interface of the quality control software, as shown in figure 3.9.

If the parameters match the requirements, the processing pipeline described in
2.6.1 is applied to the raw ASL series.

3.4.2 ASL images quality assessment

Images generated at different steps of this processing pipeline are saved and pre-
sented to clinical research assistants on a graphical user interface presented in fig-
ure 3.10. These images are the raw ASL series, the raw M0 map (or a series of M0

maps to be averaged in order to generate an image of higher SNR), the subtracted
ASL image, the quantitative CBF map, the map that corresponds to the temporal
standard deviation calculated on the ASL time series, and the gray matter partial
volume image. A graph that presents the translations calculated to perform the
realignment of the raw ASL series is also displayed.

Once all data are available, following the application of the processing pipeline, a
panel allows the clinical research assistant to fill different quality criteria. This panel
consists of three sections (figure 3.11). The first is related to the evaluation of general
criteria concerning the raw and generated images: positioning, head coverage, signal
homogeneity and gray/white matter differentiation. A score ranging from 1 to 3 is
affected to each category, 1 meaning that an aspect is non satisfactory, 2 acceptable
and 3 conform to requirements.

The second section concerns artifacts, such as motion artifacts, distortion, signal
drop, bright spots and parallel imaging artifacts. Scores are affected to each artifact,
0 corresponding to an absence of artifact, and 2 a strong artifact.



50 Chapter 3. Standardization and quality assessment

Figure 3.9: Graphical interface (qualiCATI ) on which the review of the acquisition
parameters is displayed.
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Figure 3.10: Graphical interface (qualiCATI ) on which images necessary for the
quality assessment are displayed.
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On the third panel, global concerns about the ASL images quality are addressed.
A global appreciation has to be provided, ranging from 1 (poor quality) to 4 (very
good quality). A conclusion following the quality assessment procedure is also to
formulate. The associated notes correspond to 0: reject scan (important problem
concerning image acquisition in the emitting center), 1: ask the emitting center for
a rescan, 2: mitigated evaluation (more information concerning quality problems
should be provided as comments by the clinical research assistant), 3: scan accept-
able for inclusion in the study and 4: scan of good quality to include in the study.
A space dedicated to comments is also provided in this panel section.

These different criteria usually have to be filled by the clinical research assistant.
Exceptions have been added in the case of strong artifacts, resulting in an automated
filling of some criteria. If translations superior to 0.5 mm have been estimated
during the realignment (and visible on the displayed graph), "Motion" is printed
into the comments space, and the motion criterion automatically changed to 1. For
translations superior to 2 mm, the motion criterion is changed to 2 and "Excessive
motion" entered as a comment. In the case of very noisy ASL acquisitions, the
normal classification consisting in gray matter CBF superior to brain CBF, superior
to the white matter CBF can be affected. In that case, the mention "Wrong ROIs
CBF order" appears in the comments space, ROI standing for region of interest.

Figure 3.11: Graphical interface (qualiCATI ): sections constituting the visual qual-
ity control panel.

A document compiling the ranks affected to each criterion and the corresponding
images is generated when the totality of the required fields are filled. A final
score is calculated as the difference between the sum of the scores provided to
the first section of the panel and the sum of the section concerning the artifacts.
The objective of these document and score is to facilitate comparison between
acquisitions. Such comparisons can occur when images are acquired on different
scanners or between different exams of a same subject for example.
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3.5 Discussion

The ASL sequences standardization work presented in this chapter allowed to include
ASL acquisitions in the neuroimaging protocol of a study investigating relations
between vascular risks factors and dementia. Since the beginning of inclusions, 191
patients have been scanned in 6 different centres, from which 7 could not be imaged
by means of the ASL sequence. Table 3.4 presents the results of the scans quality
evaluation performed by the clinical research assistants, using the quality assessment
tool detailed in 3.4.2. From the 184 ASL acquisitions, 104 were considered as fully
satisfactory, 59 of an acceptable quality to be integrated into the study, and 21 were
rejected (11%). Since very few studies are sharing their rate of scans inclusion, it
appears difficult to estimate if the rate that we obtain is satisfactory. But as a matter
of comparison, and while these rates have been obtained on pediatric populations,
under specific imaging conditions, studies reported rejection rates of about 25% after
ASL images quality evaluations in [Tortora 2017] and [Boudes 2014].

Scanner parameters ok Very good OK Rejected
Total 184 104 59 21

Philips Achieva 3T 42 29 10 2
Siemens Verio 3T 28 13 13 2
Siemens Prisma 3T 31 14 11 6
Siemens Skyra 3T 33 13 16 5
Siemens Verio 3T 19 14 4 1
Philips Ingenia 3T 31 21 5 5

Table 3.4: Summary of the quality control performed on the ASL scans acquired in
the context of a neuroimaging study.

Following this work on ASL acquisitions quality assessment and the idea of
improving the reliability of ASL images analysis and quantitative evaluations, we
chose to address some limitations specific to ASL acquisitions. A post-processing
approach was developed, which is presented in the following parts of this document.
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4.1 Introduction

The aim of the work presented in this chapter is to quantitatively investigate the
capability of different existing distortion correction methods to correct for suscep-
tibility artifacts in ASL images. Indeed, as stated in 3.3.5, the use of fast readout
approaches, such as echo planar imaging (EPI), results in the introduction of distor-
tions in areas of important magnetic susceptibility differences, typically at tissue/air
or tissue/bone interfaces. These distortions correspond to geometric deformations
(compressions and dilations) and hypo/hyper-intensities introduced in the phase-
encoding direction (PED).

In the case of EPI acquisitions, distortions are echo time (TE) dependent, and
reducing this parameter to the minimal value achievable on the scanner can limit
the impact of the artifacts. Partial Fourier acquisitions allow to reduce the TE, but
at the cost of signal-to-noise ratio and spatial resolution. Multi-shot EPI is an other
alternative, but associated with an increase of the acquisition time.

Several post-processing methods have thus been proposed in the literature to per-
form distortion corrections. Field maps can be used to calculate estimations of the
voxel’s displacement to apply in order to unwrap the distorted images [Jezzard 1995].
These maps are obtained by calculating the phase differences between two gradient
echo images acquired with different TEs. The main disadvantage of this method is
the important time needed to acquire the additional field maps. An other approach
consists in acquiring an image with a reversed PED compared to the data to be cor-
rected [Chang 1992, Morgan 2004, Andersson 2003, Ruthotto 2012, Ruthotto 2013,
Voss 2006, Hedouin 2017]. Such methods are based on the assumption that im-
ages acquired with opposite PEDs contain artifacts in opposition in terms of spatial
deformations and intensities modifications. Acquiring an additional EPI image is
usually less time consuming than generating a field map, which is the principal ad-
vantage of this kind of techniques. This reversed-phase approach has been demon-
strated in diffusion imaging [Ruthotto 2012, Voss 2006, Hedouin 2017], functional
MRI [Embleton 2010], and dynamic susceptibility contrast [Vardal 2013]. It has
also been applied to arterial spin labelling images [Madai 2016], for images acquired
with a multi-TI PASL sequence associated with a 3D-GRASE readout approach.
This study revealed that correcting the CBF and arterial arrival time (ATT) maps
estimated from the acquired ASL data improved the comparability with reference
images estimated from dynamic susceptibility contrast acquisitions, in the case of
patients affected by steno-occlusive disease.

In this work, we focus on reversed-phase based distortion correction methods,
that have shown to provide more reliable artifacts reduction than field maps based
techniques [Hong 2015]. We propose to compare the method applied in [Madai 2016]
to other methods available as parts of free neuroimage processing software packages,
on a set of 2D multi-slice EPI pCASL images acquired in healthy subjects.
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4.2 Material and methods

4.2.1 Healthy subjects dataset

Images were acquired in 5 healthy subjects (2 females, 3 male, 22 ± 1.58 years old),
by means of a 3T Siemens Verio scanner and a 32-channel head coil. Acquisitions
consisted in a MPRAGE structural image (resolution: 1×1×1 mm3) [Mugler 1990],
pCASL series (resolution: 3.5× 3.5× 5 mm3, interslice gap: 1 mm, 30 control-label
pairs, PLD: 1800 ms, LD: 1800ms, 20 slices, TE=12 ms), and equilibrium magneti-
zation (M0) images (resolution: 1× 1× 1 mm3, interslice gap: 1 mm, 5 repetitions,
20 slices, TE=12 ms). The pCASL series and M0 maps were acquired with an iden-
tical positioning of the acquisition box, and four phase encoding directions: A>>P,
P>>A, R>>L and L>>R.

4.2.2 Methods

Three reversed-phase based distortion correction methods were applied to the data
presented in the previous section. The TOPUP method [Andersson 2003], imple-
mented in the FMRIB software library (FSL, [Smith 2004]), which is the method
applied to ASL images in [Madai 2016], is compared to the hyperelastic suscepti-
bility artefact correction (HySCO, [Ruthotto 2012, Ruthotto 2013]) method, avail-
able as a part of the statistical parametric mapping (SPM) toolbox [SPM 2006].
The third technique evaluated in the context of this study is the one proposed
in [Hedouin 2017], which we will refer to as the block-matching (BM) distortion
correction method, which is implemented in the Anima medical image processing
open-source software.

All pCASL series were corrected by means of each of these three algorithms.
The M0 maps acquired with the same and reversed PED were used in each case to
estimate the voxels displacements to apply to correct for distortions. The estimated
transformations were then applied to the raw ASL series and the M0 maps, before
processing them by means of the pipeline described in 2.6.1 to obtain quantified CBF
maps. We chose to apply the distortion correction methods on the raw data, and
not on subtracted ASL or CBF images, following the assumption that distortions
only appear along the PED. Therefore, we consider that these perturbations should
be corrected before performing any motion correction, as it is the case in our ASL
images processing pipeline.

The capability of each method to correct for distortions was then quantitatively
estimated, by comparing the CBF maps obtained after correcting pCASL series
acquired with reversed PED, following the idea that corrected images should be
closer to each other than uncorrected distorted images. The correlation and the
structural similarity index (SSIM) were calculated to this end. The corrected A>>P
and L>>R acquired series were also compared, as done in [Hedouin 2017], in order
to evaluate the capability of the algorithms to provide corrected images close to each
other, even if acquired with perpendicular PED.
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4.3 Results

Figures 4.1 and 4.2 present the correlation and SSIM values measured between
CBF maps quantified from ASL series acquired with reversed phase encoding direc-
tions, and compared while uncorrected for distortions, corrected by means of the
block-matching algorithm, and corrected by application of the TOPUP and HySCO
methods. Graphs showing the measures calculated from the A>>P and L>>R
acquired series are displayed in Figure 4.3.

These figures provide information about the fact that the HySCO method seems
to perform more irregularly than the other distortion correction methods on ASL
images. Indeed, increased correlations between CBF images estimated from HySCO
corrected ASL series acquired following the A>>P / P>>A and A>>P / L>>R
PED can be observed, compared to the values obtained after applying the other
methods. But SSIM values inferior to those calculated from the uncorrected images
are measured between CBF maps generated from the HySCO corrected A>>P /
L>>R and R>>L / L>>R ASL series.

On the contrary, TOPUP and BM show to provide corrected images closer to
each other in terms of correlation and SSIM in all tested cases. BM appears to
perform slightly better than TOPUP, ANOVA and Tukey statistical analysis con-
cluding to significant differences between both methods when comparing the CBF
maps produced from the R>>L / L>>R and A>>P / L>>R corrected series
(p < 0.05).

Figure 4.1: Healthy subjects: correlations measured between quantified CBF maps
obtained from ASL series acquired with reversed phase encoding directions, and
compared while uncorrected for distortions, corrected with the block-matching al-
gorithm, TOPUP or HySCO (left: A>>P and P>>A, right: L>>R and R>>L).
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Figure 4.2: Healthy subjects: structural similarity index measured between quan-
tified CBF maps obtained from ASL series acquired with reversed phase encoding
directions, and compared while uncorrected for distortions, corrected with the block-
matching algorithm, TOPUP or HySCO (left: A>>P and P>>A, right: L>>R and
R>>L).

Figure 4.3: Healthy subjects: correlations (left) and structural similarity index
(right) measured on quantified CBF maps obtained from ASL series acquired fol-
lowing the A>>P and L>>R phase encoding directions.
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In figure 4.4, mean ASL signal maps images that correspond to scans acquired
with both the A>>P and P>>A PED, as well as the A>>P images corrected by
means of the three evaluated methods, are displayed. Figure 4.5 shows similar im-
ages, but corresponding to acquired L>>R, R>>L, and L>>R distortion corrected
series. These images show slight performance differences between the evaluated
methods regarding reconstructions of distorted areas. Differences can be observed
between the borders obtained after reconstructing the A>>P PED acquired series,
and appear to be a bit more important following the L>>R series distortion correc-
tion. Sharper structures can be seen on the ASL images generated after applying
the BM method, which explains the higher SSIM obtained in figures 4.1, 4.2 and
4.3. In the contrary, the images corrected by means of the HySCO method appear
slightly smoother than the other ones, which could give an explanation to the higher
correlation and lower SSIM values identified in the graphs.

4.4 Discussion

Following the work of [Madai 2016], in which the TOPUP distortion correction
method was the only one evaluated, we provided a comparison between three meth-
ods applied on 2D pCASL ASL series. This study outlines difficulties of the HySCO
method to provide good reconstructions from ASL series acquired following each of
the tested PED. TOPUP and the block-matching algorithm show to generate CBF
maps estimated from reversed-phase ASL series closer to each other in each case,
as well as when comparing data acquired with perpendicular PED. These aspects
confirm the possibility to apply these methods to ASL data. In addition, the BM
algorithm appears to perform slightly better than TOPUP in the context of this
study.
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Figure 4.4: Images acquired on a healthy subject: a) structural images, b) mean ASL
signal maps obtained from the ASL series acquired following the A>>P phase en-
coding direction, c) following the P>>A PED, d) after applying the block-matching
distortion correction algorithm, e) after correction with the TOPUP method and f)
after correction with the HySCO method.
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Figure 4.5: Images acquired on a healthy subject: a) structural images, b) mean ASL
signal maps obtained from the ASL series acquired following the L>>R phase en-
coding direction, c) following the R>>L PED, d) after applying the block-matching
distortion correction algorithm, e) after correction with the TOPUP method and f)
after correction with the HySCO method.
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5.1 Introduction

This part presents post-processing methods that have been developed and validated
on different datasets in the context of this thesis.

Indeed, in addition to improvements provided in the field of hardware and image
acquisition sequences, several post-processing algorithms have been proposed in the
literature to address some limitations of ASL data. Particularly, denoising methods
have been successfully applied to deal with artifacts and outliers in ASL images
[Maumet 2014, Petr 2010b, Owen 2018]. Algorithms have also been proposed to
correct for the low resolution of ASL images, and the fact that perfusion of different
tissues contribute to the ASL signal observed in a single image voxel, which is
commonly referred to as partial voume effects (PVE) [Asllani 2008, Chappell 2011,
Petr 2010a]. These methods have in common to be applied at the resolution of
the acquired images. While attenuating the effect of these corruptions, they do not
allow to increase the level of details in images. However, this aspect could be of great
interest, the thickness of gray matter (GM) being often inferior to the size of the
ASL images voxel size. PVE can lead to diagnosis uncertainties, as for example in a
voxel associated with a reduced ASL signal that can be explained by a real perfusion
decrease or a structural gray matter atrophy. In clinical conditions, acquiring ASL
images at higher resolutions is a challenging task, since this would imply a decrease
in SNR, or increase the acquisition time.

Various methods have been proposed in order to increase the resolution
of MR images facing similar low resolution properties, such as structural im-
ages [Manjón 2010, Rousseau 2010b, Rueda 2013, Shi 2015], quantitative T1 maps
[Steenkiste 2016], diffusion MRI [Scherrer 2012, Coupé 2013] or spectroscopy
[Jain 2017], as a post-processing step. Interpolation methods can be applied to MR
data (trilinear interpolation, B-spline), unfortunately resulting in blurred images. To
overcome this problem, super-resolution (SR) approaches allow to reconstruct high
frequency information from low resolution data. Most of these methods are based
on cost functions minimizations, that contain a term modeling the relation between
the low resolution acquired images and the high resolution ones to recosntruct, and
a regularization term, that constraints this ill-posed problem. Different forms of reg-
ularization terms are encountered in the literature, such as low rank and total vari-
ation constraints [Shi 2015], sparsity [Rueda 2013], and non-local patch-based sim-
ilarity evaluations [Manjón 2010, Rousseau 2010b, Coupé 2013, Jain 2017]. Some
of these methods are based on multiple low resolution acquisitions, therefore re-
quiring specific acquisition protocols, which can be time consuming [Rousseau 2006,
Rousseau 2010a, Scherrer 2012, Jia 2017]. Other methods rely on regularization
terms that imply strong assumptions concerning properties of the high resolution
reconstructed images. For example, methods based on total variation can generate
reconstructed images smoother than realistic corresponding images.

Recent developments also led to the development of supervised super-resolution
methods, based on overcomplete dictionaries [Rueda 2013] or deep learning ap-
proaches [Pham 2017, Chen 2018a, Chen 2018b]. While providing very promising
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results on structural images, the lack of reference high resolution images makes such
methods difficult to apply in the context of ASL acquisitions.

Regarding these aspects, the development of non-local patch-based SR ap-
proaches that are independent of the data acquisition process, and their adaptation
to data commonly acquired in clinical conditions, such as T2-weighted, diffusion
weighted or spectroscopy images, appears to be a solution that could be adapted to
ASL images. The main idea consists in using self similarities in the images to perform
reconstructions at higher resolutions [Protter 2009, Rousseau 2010b, Manjón 2010,
Coupé 2013, Jain 2017]. Moreover, this approach prevents any increase in the ac-
quisition time. The main limitation of these methods is that they require clean low
resolution data as inputs, which means that denoising algorithms must first carefully
be applied to the images prior to SR reconstruction.

In this chapter, we propose a novel method to increase the resolution of ASL
images, which deals with the presence of noise. This non-local patch-based SR re-
construction approach is based on the assumption of appearing similarities between
neighborhoods in the image that is reconstructed and a high resolution (HR) struc-
tural image, generally acquired in imaging protocols. This assumption of shared
anatomical properties between structural and ASL images comes from the fact that
gray matter and white matter are the two tissues that contribute to the brain ASL
signal, with their own perfusion characteristics (e.g. CBF and arterial arrival time)
[Asllani 2008, Chappell 2011, Petr 2010a]. This proposition allows to increase the
resolution of ASL images without extending the acquisition time. The method is
evaluated on a simulated dataset and images of healthy subjects in order to in-
vestigate its capacity to reconstruct images close to HR ASL references. As DSC
is commonly considered to be a reference perfusion imaging technique, we investi-
gate the ability of our method to generate images closer to the DSC quantitative
maps from images acquired on subjects scanned for brain tumours. In addition, we
investigate the influence of a recovery of HR details on PVE.

The material and methods are presented in section 5.2, results regarding compar-
isons between generated images and reference HR ASL or DSC maps in section 5.3,
an evaluation of the influence of the SR reconstruction on PVE in section 5.4 and a
discussion of these aspects in section 5.5.

5.2 Materials and Methods

5.2.1 Summary of existing similarity-based SR methods

The objective of super-resolution methods is to recover an unknown high resolution
(HR) image x from a low resolution acquired one y. The following model explicits
the relation between both images :

y = Mx+ η, (5.1)

with M a matrix representing subsampling, blurring and geometric transfor-
mations, and η representing some additive noise [Protter 2009, Rousseau 2010b,
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Manjón 2010, Coupé 2013, Jain 2017]. An optimization problem of the following
form would correspond to a common approach to recover the unknown image x:

X̃ = arg min
x
{
∣∣∣∣y −Mx

∣∣∣∣2
2

+ γΦ(x)}, (5.2)

where Φ is a regularization term necessary to solve this ill-posed minimization prob-
lem and γ a positive parameter.

As shown in [Manjón 2010], [Coupé 2013] and [Jain 2017], an iterative
reconstruction-correction procedure can be adopted in order to reconstruct x, which
allows to avoid problems such as local minima or parameters initialization linked
to this ill-posed optimization problem. This procedure consists of two steps, corre-
sponding to a reconstruction and a subsampling consistency constraint.

The reconstruction is based on the assumption that locations in a HR acquired
structural image and the SR reconstructed one should share anatomical properties,
and that the structural image could therefore be used to drive the reconstruction
process. This assumption leads to the choice of non-local regularization approaches.

The subsampling consistency imposes the constraint of a strict equality between
the downsampled version of the SR reconstructed image and the original low resolu-
tion image y, which is made possible by formulating strong assumptions about the
M matrix composition. However, this constraint implies the need for well denoised
low resolution images for the method to be consistent. Therefore, [Coupé 2013] pro-
posed to apply a Rician-adapted denoising filter on diffusion images before solving
the optimization problem.

In the case of low signal-to-noise ratio ASL images, different noise patterns can
be introduced depending on the scanners, sequences or settings chosen to perform
the acquisition. The use of parameters that could not be the most appropriate ones
in the filtering step, potentially has important consequences regarding the quality of
the final reconstructed image. This is the reason why we introduce a reconstruction
driven by a HR structural image, while denoising the SR reconstructed image at the
same time.

5.2.2 A new SR method for ASL images

The main objective of this work is to assess the relevance of using a HR anatom-
ical image to increase the resolution of ASL images. Following a similar idea as
[Rousseau 2010b], [Manjón 2010], [Coupé 2013] and [Jain 2017], we propose a non-
local patch-based method, while introducing a novel denoising strategy.

Because of the use of non-local patch-based approaches, both in the denoising
and SR methods previously described [Coupé 2013], we propose to combine them
in a unique SR image reconstruction process. A third order B-spline interpolation
is first applied to the low resolution image in order to increase its dimension to
the desired one. This initialization is followed by iterations between a non-local
patch-based regularization and a fidelity term assuring the global intensities mean
consistency between the initial low resolution image and the reconstructed one.
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This fidelity term differs from the one in use in the works presented in the previous
section, in the sense that it involves a global image mean consistency, and not a
subsampling consistency at the voxel level, therefore allowing a denoising of the
reconstructed image.

The reconstruction term can be written as:

Xn+1
i =

1

Zi

∑
j∈Vi

Xn
j w

n
i,j , (5.3)

with Xn
i the intensity of voxel i in Xn, the reconstructed image at iteration n, Vi

a correspondence search volume around voxel i, Zi a scaling parameter, and wni,j a
weight accounting for the influence of the intensity of voxel j in this reconstruction
step.

The correspondences between voxels’ neighborhoods are assessed both in the
reconstructed image and the structural one:

wni,j = exp−
( ||N(Xi,S)−N(Xj,S)||22

βstructσ2
i,S

+
||N(Xn

i )−N(Xn
j )||22

βaslσ
2
i

)
, (5.4)

XS represents the structural image, N(Xi) and N(Xi,S) patches selected around
voxel i in the ASL and structural images respectively, σ2

i and σ2
i,S are the empirical

local variances, and βasl and βstruct are two scalars adjusting the importance of the
terms related to the ASL and structural images. The exponential weights, including
an evaluation of the simultaneous similarity between voxel neighborhoods in the
structural HR and reconstructed images, enable an increase in the level of details
in the ASL image, while preserving features that are only visible in this image.
Indeed, if neighborhoods are similar on two voxel locations in both images, the
contribution in the regularization will be important. On the contrary, if a feature
is only visible in one of the images, the weight will have a lower value, and have a
reduced contribution in this process.

The global low resolution mean value consistency corresponds to an additive
offset equal to the difference between the mean image value of Xn and the mean of
the low resolution image Y , respectively µ(X) and µ(Y ):

Xn′ = Xn +
(
µ(Y )− µ(Xn)

)
. (5.5)

Iterations between these two steps are performed until no significant difference be-
tween consecutive reconstructed images can be observed, which can be written as
follows:

|Xn−1 −Xn−2|
|Xn −Xn−1|

< τ. (5.6)

As in [Coupé 2013], a coarse to fine approach is proposed where the weights
βasl and βstruct are decreased at each iteration of the process, leading to
[βasl, βasl/2, βasl/4, ...] and [βstruct, βstruct/2, βstruct/4, ...] respectively.
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5.2.3 Validation framework

5.2.3.1 Simulated dataset

In order to evaluate the proposed method in a controlled environment, we con-
structed a simulated set of 9 CBF maps. This dataset was built from structural
(MP2RAGE UNI, [Marques 2010]) images acquired at a resolution of 1×1×1 mm3

with a 3T Siemens Verio scanner and a 32-channel head-coil. Fixed CBF values
were considered for gray matter (GM) and white matter (WM), equal to 70 and
25 ml/100g/min respectively [Parkes 2004]. These values were affected to the prob-
ability maps obtained by means of the SPM12 segmentation algorithm [SPM 2006],
leading to the application of the following equation:

cbfi = pGM,i · 70 + pWM,i · 25, (5.7)

with cbfi the simulated CBF value at voxel i, and pGM,i and pWM,i the respective
partial volume probability values for GM and WM provided by the segmentation at
the same voxel location.
These HR simulated CBF maps were then downsampled to a resolution of 2× 2×
2 mm3 by applying a gaussian blurring before downscaling by a factor of 2 in the 3

directions. The downsampled images were then reconstructed at the original resolu-
tion using the proposed SR reconstruction method. In order to assess the influence
of the ASL and structural related terms on the proposed reconstruction, implemen-
tations with different βasl and βstruct values were evaluated. Images reconstructed
by only taking the ASL or the structural related term into account were gener-
ated. βasl and βstruct pairs equal to [0.25; 0.75], [0.5; 0.5] and [0.75; 0.25] were also
evaluated.

Images reconstructed by means of nearest neighbor interpolation, trilinear inter-
polation and 3rd order B-spline interpolation were then generated and compared to
the CBF maps reconstructed by means of the proposed method performed with the
selected βasl and βstruct.

The root mean square errors (RMSE) between the original HR simulated CBF
maps and the reconstructed images were calculated in order to evaluate the ability
of each method to provide reconstructed images close to this reference.

As ASL images acquired in clinical conditions are usually affected by noise,
commonly considered as gaussian in CBF maps due to the averaging of multiple
label-control pairs, we also studied the behavior of each of these methods as a func-
tion of the amount of noise. Downsampled images affected by gaussian noise with
standard errors corresponding to 3 to 14% of the GM CBF value were reconstructed
at the original resolution in order to evaluate this behavior. Figure 5.1 illustrates
these image generation and processing steps.

5.2.3.2 Healthy controls

The SR reconstruction method was also evaluated on images acquired on 4 healthy
subjects (3 females, 1 male, age = 34±6 years). For each of these volunteers, images
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Figure 5.1: Pipeline describing the generation of the simulated dataset and the
different reconstruction methods to be compared, applied to the downscaled and
noise corrupted images.

were acquired on a 3T Siemens Verio scanner with a 32-channel head-coil. The struc-
tural image was a MP2RAGE UNI (resolution: 1×1×1 mm3). pCASL (resolution:
3.5×3.5×5 mm3, interslice gap: 1 mm, 30 control-label pairs, PLD: 1800 ms, labeling
duration (LD): 1800 ms, 20 slices [Wu 2007]) and M0 (resolution: 3.5×3.5×5 mm3,
interslice gap: 1 mm, 5 repetitions, 20 slices) images were acquired as the low reso-
lution data used to generate the CBF maps to be reconstructed by increasing their
dimensions by a factor of 2 in each direction. HR pCASL images were also acquired
for the evaluation purpose (resolution: 1.75×1.75×2.5 mm3, interslice gap: 0.5 mm,
100 control-label pairs, PLD: 1800 ms, LD: 1800 ms, 20 slices), as well as HR M0

(resolution: 1.75× 1.75× 2.5 mm3, interslice gap: 0.5 mm, 10 repetitions, 20 slices).
While not allowing to cover the entire brain, a number of 20 slices was selected for
these HR acquisitions as a matter of acquisition time. Image SNR being propor-
tional to voxel volume, 100 repetitions were acquired in order to generate the HR
pCASL images. While not entirely compensating for the SNR decrease in compari-
son with the 30 repetitions low resolution acquisitions, this repetition number was
chosen as a compromise between scan time (10 minutes), risk of subjects motion
and SNR.

CBF maps were obtained by applying the general kinetic model for pCASL
acquisitions [Buxton 1998]:

CBF =
6000 · λ ·∆M · exp( PLD

T1,blood
)

2 · α · T1,blood ·M0 · (1− exp(− LD
T1,blood

))
, (5.8)

with λ the blood/brain partition coefficient of water (λ = 0.9), α the labeling



72 Chapter 5. CBF maps super-resolution

efficiency (α = 0.85), ∆M the control-label signal difference, and T1,blood the blood
T1 relaxation time (T1,blood : 1650 ms).

As in the case of the simulated data, RMSE values between the reconstructed
images generated by the different methods and the HR pCASL CBF map, considered
as the reference, were calculated.

5.2.3.3 Correlation with DSC

As mentioned in the introduction, Dynamic Susceptibility Contrast (DSC) imag-
ing is often considered as a standard perfusion MR imaging technique. A contrast
agent, usually gadolinium-based, is injected to the subject and the induced suscep-
tibility effects are imaged via T2*-weighted acquisitions. In clinical conditions, this
technique enables acquisitions at a higher resolution than ASL scans. Therefore,
we studied the correlation between low resolution CBF maps obtained from pulsed
ASL (PASL) images, the same images after an increase of the dimensions by a factor
of 2 in each direction with different interpolation methods and the HR DSC CBF
images.

The dataset contains images of 10 patients imaged for brain tumors (3 females,
7 males, age = 63 ± 13 years, 5 grade IV tumors, 1 grade III, and 3 patients not
showing hyper-perfusion signals after evaluation by an experienced neuroradiolo-
gist). Images were acquired on a 3T Siemens Verio scanner with a 32-channel
head-coil. A 3D T1w sequence (resolution: 1 × 1 × 1 mm3) was acquired, as well
as a PICORE Q2TIPS PASL sequence with flow crusher gradients (EPI readout,
TR: 3000 ms, TE: 18 ms, FOV: 192 × 192 mm2, flip angle: 90◦, in plane res-
olution: 3 × 3mm2, slice thickness: 7 mm, interslice gap: 0.7 mm, inversion time
(TI): 1700 ms, bolus width (TI1): 700 ms, 30 control-label repetitions) and a DSC
sequence (GRE EPI readout, TR: 1500 ms, TE: 300 ms, FOV: 230 × 230 mm2,
flip angle: 90◦, in plane resolution:1.8 × 1.8 mm2, slice thickness: 4 mm, interslice
gap: 1.2 mm, 100 measures).

CBF maps were generated from the DSC images by use of the MR manufacturer
software. An arterial input function was manually chosen to calculate the DSC
relative CBF on a voxel basis. The method in use is based on a singular value
decomposition deconvolution, as described in [Østergaard 1996]. The general kinetic
model for PASL acquisitions was applied to the ASL scans [Buxton 1998]:

CBF =
6000 · λ ·∆M · exp( TI

T1,blood
)

2 · α · TI1 ·M0
, (5.9)

The other parameters are the same as in (5.8), except α = 0.98.
Although linear correlation between ASL and DSC relative CBF has not

been strictly demonstrated, in a first approximation as shown in [Warmuth 2003,
Ma 2017, Knutsson 2010], we assume that positive correlations should be obtained
between both estimations. Therefore, the Pearson correlation coefficients were cal-
culated between the low resolution ASL CBF and the registered HR DSC CBF
maps, and the SR reconstructed ASL CBF and DSC CBF maps.



5.3. Results 73

5.2.4 Implementation details

An in-house image processing pipeline based on Python, Cython, Nipype
[Gorgolewski 2011] and SPM12 functions was used to conduct the experiments. Con-
sidering results presented in [Coupé 2013] and our own experiments, the patch size
was chosen equal to 3× 3× 3 voxels in the non-local patched-based regularization,
and the search volume to 7× 7× 7 voxels.

5.3 Results

5.3.1 Simulated dataset

Figure 5.2 presents the mean RMSE values obtained between the high resolution
simulated references and the images reconstructed by means of the proposed SR
reconstruction method for noise levels equal to 3%, 6% and 9% of the GM CBF
value. One can first notice that referring to only one of the ASL or structural images
provides less satisfactory reconstructions. Indeed, taking only the ASL image into
account does not allow to recover details absent from the downsampled CBF maps.
In the contrary, a reconstruction only based on the structural image will not allow
to consider and preserve CBF patterns only visible in the ASL image. One can
then notice that the balance between βasl and βstruct does not lead to significant
differences when a low level of noise is added to the simulated CBF maps. However,
differences in this balance have a higher influence on the quality of the reconstruction
when dealing with images corrupted by a higher noise level. In the case of [βasl;
βstruct] = [0.25; 0.75], the weights generated to perform the reconstruction are more
governed by the ASL related term, which can explain the higher RMSE values
obtained when the level of noise increases. [βasl; βstruct] = [0.5; 0.5] and [0.75; 0.25]
provide lower RMSE values when a realistic noise level is added to the images, and
no significant difference between their RMSE distributions can be noted. Therefore,
in the context of this work, we propose to keep an equal contribution of the ASL
and structural related terms, meaning [βasl; βstruct] = [0.5; 0.5].

Images corresponding to reconstructions of a low resolution CBF map corrupted
by gaussian noise with a standard deviation equal to 9% of the GM CBF value, which
we qualitatively suppose being a close example to effective low resolution acquired
images, are displayed in Figure 5.3. The images generated by use of interpolation
techniques (nearest neighbor, trilinear and 3rd order B-spline interpolations) ap-
pear flattened, compared to the SR reconstructed map, which enables to recover
sharp structures and edges. Table 5.1 confirms these observations, with lower mean
RMSE values (in bold) calculated between the simulated reference images and the
SR reconstructed ones than between the references and the interpolated images. In
addition, the evolution of these RMSE values indicates that the more the standard
deviation of noise increases, the closer to the reference the reconstructed image is in
comparison with the interpolated images. This result is associated with the capa-
bility of the proposed method to denoise the images. Significant RMSE distribution
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differences between the proposed reconstruction method and all interpolation tech-
niques are found for levels of noise superior to 9% of the GM CBF value (p<0.00111
after Bonferroni correction for an α level equal to 0.01), and are marked by asterisks
in table 5.1.

Figure 5.2: Graphs showing the RMSE values calculated between the reference HR
image and images reconstructed with the proposed high resolution reconstruction
method, by taking only the ASL, [βasl; βstruct] equal to [0.25; 0.75] (more ASL
than structural), [0.5; 0.5] (equivalent contribution), [0.75; 0.25] (less ASL than
structural), or only the structural image into account. The displayed noise levels
correspond to 3%, 6% and 9% of the GM CBF value.

Noise std 3 6 9 11 14
Nearest neighbor 14.82± 0.82∗ 15.3± 0.78∗ 16.31± 0.80∗ 17.72± 0.97∗ 19.98± 1.43∗

Trilinear 14.80± 0.91∗ 14.93± 0.90∗ 15.22± 0.89∗ 15.66± 0.86∗ 16.38± 0.94∗

B-spline 14.01± 0.89 14.35± 0.86 15.08± 0.83∗ 16.12± 0.85∗ 17.78± 1.19∗

Proposed method 13.92 ±1.05 14.05 ±1.04 14.34 ±1.01 14.79 ±0.99 15.56 ±1.08

Table 5.1: Means and standard deviations of the 9 RMSE values calculated between
the reference HR image and the images reconstructed with nearest neighbor interpo-
lation, trilinear interpolation, 3rd order B-spline interpolation and the proposed SR
reconstruction method, with increasing levels of noise. Standard deviations of noise
are expressed as percentage of the GM CBF value. Asterisks are joined to RMSE
values corresponding to significant differences compared to the values obtained by
application of the proposed method.

5.3.2 Healthy controls

Figures 5.4, and 5.5 present the images obtained from one of the 4 volunteers.
Sagittal slices are shown, notably to insist on the influence of the methods on the
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Figure 5.3: Simulated dataset: comparison of a) a HR reference image and b) the
corresponding low resolution downsampled image corrupted by noise with std=9%
of the GM CBF value, c) nearest neighbor interpolation, d) trilinear interpolation,
e) 3rd order B-spline interpolation, and f) proposed SR reconstruction.

staircase effect related to the particularly low initial resolution in the slice acquisition
direction (5mm + 1mm gap). This effect is strongly corrected by the proposed SR
reconstruction method. The RMSE values are reported in table 5.2, the proposed
method providing images closer to the HR references than common interpolation
techniques for three of the four subjects.

5.3.3 Comparison with DSC

Figure 5.6 reports, for each of the subjects, the values of the Pearson correlation
coefficients obtained between the reference DSC CBF images and the low resolution
acquired ASL CBF maps, their interpolations by trilinear and 3rd order B-spline
and the images generated with the proposed SR reconstruction method. For each
subject, the SR reconstructed image was more correlated to the DSC reference
than the others. The significance of the differences was assessed by applying a
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Method Subject 1 Subject 2 Subject 3 Subject 4
Nearest neighbor 28.16 26.83 32.19 24.23
Trilinear 26.93 24.80 30.15 22.58
3rd order B-spline 26.34 25.04 29.68 22.49
Proposed method 26.44 24.49 29.12 22.20

Table 5.2: RMSE values calculated between the HR acquired reference image and
the images generated by nearest neighbor interpolation, trilinear interpolation, 3rd
order B-spline interpolation and the proposed SR reconstruction method, for each
of the 4 healthy subjects (lowest RMSE value in bold for each subject).

Fisher transformation to the correlation coefficients. The p-values obtained after this
transformation indicate a significant difference between the correlation coefficients
distributions. Indeed, a paired t-test between the correlation values obtained for
the proposed reconstructions and the low resolution acquisitions provided a p-value
equal to 1.4× 10−4, p = 8× 10−5 in comparison to the trilinear interpolation, and
p = 3.33 × 10−4 in comparison to the 3rd order B-spline. Figure 5.7 displays the
DSC CBF images, low resolution ASL CBF maps and CBF maps reconstructed with
our method for two of the patients.

5.4 Comparison with Partial Volume Correction meth-
ods

5.4.1 Method

Typical low resolution ASL acquisitions lead to well known PVE in ASL images,
sometimes unfortunately preventing clinicians to interpret MRI observations such as
reduced CBF values in regions of interest. Indeed, they could be the consequences
of an effective reduced perfusion, a thinner GM or small subject motion. Because
of the fact that the method described in this chapter enables the recovery of high
frequency details that are not visible in low resolution acquisitions, we propose
to evaluate the influence of this recovery on a potential reduction of PVE. This
is of particular interest, since the PVE correction methods that are currently the
most commonly applied to ASL images correct CBF values at the voxel level, thus
not providing better detailed images. Moreover, the method that we present in
this work is only dependent on the registration of a HR structural image to an
interpolated ASL map, while classical PVE correction methods require the use of
tissue partial volume estimates. These partial volume estimate maps are provided
by segmentation algorithms, and are therefore subject to potential additional errors.

In order to compare the impact of these algorithms on PVE, a simulation was
conducted from the same 9 structural images as presented in 5.2.3.1, in which we
aimed at having the most possible information about intensity values. In order to
construct these 9 HR ASL images in which we knew the exact voxel constitution
and associated values, images containing 100% GM or WM voxels were created, by
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(a) (b)

(c) (d) (e)

Figure 5.4: Healthy subject: sagittal slices of a) a structural image, b) the cor-
responding CBF map from the acquired low resolution pCASL, c) after trilinear
interpolation, d) after 3rd order B-spline interpolation, and e) the proposed SR re-
constructed CBF image. Upper lines: sagittal slices, bottom lines: zoom on the
same slices.

thresholding the partial volume estimates generated by the SPM12 segmentation
algorithm. Synthetic ASL signal maps were generated by affecting ∆M values of 10

for GM and 1.5 for WM, with additional sinusoidal variations of 20% amplitude to
make them more realistic, and evaluate the capability of the tested algorithms to
preserve spatial variations and details [Zhao 2017]. The same process was used to
create M0 images, with values of 1350 and 1000 in GM and WM respectively. These
HR ASL signal and M0 maps were downsampled by averaging 2×2×2 voxel cubes,
therefore reducing the size of the images and adding PVE, while knowing the exact
brain tissue mixture of these new low resolution voxels. Different amount of gaussian
noise (SNR=5,10) were added to these images in order to evaluate the influence of
noise on PVE correction. The general kinetic model for pCASL acquisitions was then
applied to obtain the corresponding CBF maps (λ = 0.9, α = 0.85, T1,blood=1650 ms,
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Healthy subject: axial slices of a) a structural image, b) the correspond-
ing CBF map from the low resolution pCASL acquisition, c) the HR acquisition,
d) after trilinear interpolation, e) after 3rd order B-spline interpolation, and f) the
proposed SR reconstructed CBF image. Upper lines: sagittal slices, bottom lines:
zoom on the same slices.

LD=1800 ms, PLD=1800 ms).
The effect of the proposed algorithm on PVE was evaluated by analyzing its

ability to recover the effective GM contribution in the CBF values observed in each
voxel, in comparison with the linear regression method, which is one of the standard
PVE correction technique applied to ASL images [Asllani 2008].

Our proposed SR method provides high resolution CBF maps unlike the linear
regression method, which produces two partial volume maps at the initial resolu-
tion. This is the reason why our SR CBF maps have been downsampled, in order
to be able to compare the two results. The GM contributions in the CBF maps
obtained by applying the general kinetic model to the HR ASL and M0 images,
without noise, were considered as the references to which the generated images had
to be compared. Figure 5.8 illustrates the pipeline that corresponds to the above-
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Figure 5.6: Pearson correlation coefficient between the reference DSC CBF maps
and low resolution CBF images, the same images after trilinear interpolation, 3rd
order B-spline interpolation and the proposed SR reconstruction method. These
coefficients are presented for each of the 10 subjects.

mentioned operations.

5.4.2 Results

Contrary to differences in the produced GM contribution maps reported in
[Zhao 2017], between an application of the linear regression to the calculated CBF
map and to ASL and M0 images before the CBF calculation, our method did
not show such significant differences while testing for the influence of this ef-
fect. Figure 5.9 presents the GM contributions to the CBF values in a reference
image, their recovery by application of the linear regression method to the low
resolution CBF map, by applying the same method to ASL and M0 images be-
fore CBF calculation, and after increasing the CBF image dimensions with our
method. Figure 5.10 shows the difference images obtained after the subtraction
of each of the produced images listed above and the corresponding reference. An
important aspect illustrated in these difference images is the fact, already stated
in [Asllani 2008, Chappell 2011, Petr 2010a, Zhao 2017], that the linear regression
method implies a smoothing of the GM contributions. On the contrary, the sinu-
soidal variations are retained in the image originating from the proposed algorithm.

Table 5.3 presents the evolution of the mean RMSE values calculated between
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b c da

Figure 5.7: a) structural image, b) DSC CBF image, c) low resolution ASL CBF
image and d) SR reconstructed ASL CBF map. The two lines correspond to images
of two different subjects.

the generated GM contribution images and their references as a function of noise
(SNR=inf, 10, 5). In practice, both applications of the linear regression method to
the CBF maps or to the ASL and M0 images are commonly accepted [Zhao 2017].
Since the mean RMSE values obtained by applying our method to CBF maps are
bounded by the mean RMSE provided by these two linear regressions, we can pre-
sume that our method reduces the influence of PVE.

Moreover, the linear regression method is based on the use of information pro-
vided by partial volume estimates, which makes it dependent upon the chosen seg-
mentation algorithm and sensitive to potential segmentation errors. On the con-
trary, our SR reconstruction method is independent of any segmentation algorithm.
In order to investigate the influence of these segmentation corruptions on the GM
contribution maps resulting from the application of the linear regression, we simu-
lated variations in the segmented partial volume estimates by introducing gaussian
noise or by applying an opening and closing morphological operation to these partial
volume maps. Tables 5.4 and 5.5 show a significant increase in the mean RMSE
values when the partial volume estimates are modified. These results indicate that
the property of the SR reconstruction to be independent of the use of partial volume
estimates could be of great interest to avoid potential errors due to segmentation
corruption.
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Figure 5.8: Pipeline describing the operations applied to each of the 9 images of the
simulated dataset and the GM contribution assessment maps to be compared.

Method SNR=inf SNR=10 SNR=5
Lin Reg on CBF 6.41± 0.74 6.54± 0.75 7.05± 0.75

Lin Reg on Perf & M0 4.39± 0.17 4.52± 0.17 4.90± 0.17

SR on CBF 5.66± 0.11 5.94± 0.13 6.77± 0.14

Table 5.3: Mean RMSE values between the reference GM CBF contribution images
and the images obtained after linear regression (Lin Reg) on the low resolution (LR)
CBF image, Lin Reg on the ASL and M0 images, and the proposed SR method
applied to the LR CBF images.

5.5 Discussion

In this work, we have presented and investigated different properties of a SR re-
construction method dedicated to ASL images. This method enables to increase
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a b c d

Figure 5.9: Comparison of gray matter cerebral blood flow contribution maps: a)
GM contribution maps from the reference image, b) linear regression applied to the
low resolution CBF image, c) linear regression applied to the low resolution ASL and
M0 images, and d) proposed SR method applied to the LR CBF image (SNR=5).

Method SNR=inf SNR=10 SNR=5
Lin Reg on CBF 7.46± 0.60 7.65± 0.59 8.09± 0.62

Lin Reg on Perf & M0 5.84± 0.23 5.97± 0.24 6.24± 0.22

SR on CBF 5.66± 0.11 5.94± 0.13 6.77± 0.14

Table 5.4: Mean RMSE values between the reference GM CBF contribution images
and the images obtained after linear regression (Lin Reg) on the low resolution(LR)
CBF image and on the ASL and M0 images, with noise added to the partial volume
estimates needed by the Lin Reg method, and the proposed SR method applied to
the LR CBF images.

Method SNR=inf SNR=10 SNR=5
Lin Reg on CBF 11.68± 0.70 11.78± 0.70 12.10± 0.75

Lin Reg on Perf & M0 11.19± 0.50 11.23± 0.49 11.42± 0.51

SR on CBF 5.66± 0.11 5.94± 0.13 6.77± 0.14

Table 5.5: Mean RMSE values between the reference GM CBF contribution images
and the images obtained after linear regression (Lin Reg) on the low resolution (LR)
CBF image and on the ASL and M0 images, with an opening+closing operation
added to the partial volume estimates needed by the Lin Reg method, and the
proposed SR method applied to the LR CBF images.

the level of details, while providing a denoising of the reconstructed images. It is
based on the assumptions of an appearing accordance between neighborhoods in
the image to be reconstructed and a classically acquired HR anatomical image, and
that distant neighborhoods could serve as a learning database in the reconstruction
process.

On a simulated dataset, we have shown that the contributions of the ASL and
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a b c

Figure 5.10: Comparison of gray matter cerebral blood flow contribution maps: a)
difference images obtained by subtration of the reference GM contribution map from
the images obtained by applying the linear regression (Lin Reg) to the low resolution
(LR) CBF image, b) the linear regression to the LR ASL and M0 images, and c)
the proposed SR method to the LR CBF image (SNR=5).

structural related terms can be considered as equivalent in the reconstruction pro-
cess, by selecting [βasl; βstruct] = [0.5; 0.5]. Our method is also shown to provide
images closer to references than common interpolation techniques. The fact that
this result could be obtained with different levels of noise added to the images to be
reconstructed is an indication of the ability of the proposed method to denoise the
reconstructed images.

Experiments on low resolution data acquired on healthy subjects confirmed these
findings in 3 out of 4 sujects. The main limitation of this study is nonetheless the
relevance of the definition of the HR ASL images as references, because of their
low SNR. In order to maintain the scan time reasonable and avoid subject motions
that would almost certainly happen after 10 minutes of continuous scanning, 100
control-label repetitions have been acquired to generate the high resolution ASL
images. This number is certainly still not sufficient to obtain an appropriate image
quality, which could explain the fact that a better RMSE value was obtained by
applying a 3rd order B-spline interpolation for the first subject. This limitation is
precisely the reason why we chose to conduct the two other studies, meaning with
a simulated dataset and the comparison with DSC images.

The study based on images of patients with brain tumors revealed a significantly
increased correlation between DSC and images reconstructed with our method, sup-
porting the capability of the proposed method to recover details by driving the
reconstruction of ASL images with a high resolution structural one. The TI value
chosen to acquire these PASL data was possibly a little short for subjects 5, 6 and 10,
associated with intense ASL signals in their macrovasculature, which could explain
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the reduced correlation values obtained for these three subjects.
We showed that our method associates an increase in the level of details with a

reduction of the partial volume effect in ASL images. The main advantage of this
SR reconstruction in comparison with the linear regression partial volume correction
method is to preserve spatial signal fluctuations, which are smoothed by the latter.

Despite the three validation approaches that were addressed in the context of this
work, we did not evaluate the method on pathologies implying subtle and localized
perfusion changes. Investigating the capability of the method to preserve CBF
modifications appearing prior to structural changes, as it is the case for early stages
of neurodegenerative disease for example, would be of interest as a future work.

The method proposed in this chapter only depends on the accurate registration
of a HR structural image to the initially interpolated ASL image to be reconstructed.
Indeed, experiments revealed that the initial interpolation method selected in order
to increase the dimension of the image to reconstruct does not have a significant in-
fluence on the generated image, and denoising is performed jointly with the increase
in the level of details.

This aspect makes our method an appropriate tool to increase the quality and
the fidelity of ASL images, and particularly CBF maps, with respect to effective
physiological processes. Another promising aspect is its capability to recover well
detailed ASL images from standard clinical acquisition protocols, therefore not
increasing the acquisition time and patient discomfort. We believe that such a
post-processing procedure could help clinicians to establish even more accurate
diagnosis, by reducing interrogations concerning the reasons of reduced ASL signal
and being able to distinguish GM thickness reduction or an effective ASL signal
reduction for example.

This work is published in the form of a Neuroimage article [Meurée 2019].
A stay of one month within the Siemens Healthineers neuro applications devel-

opment team, located in Erlangen, Germany, led to the inclusion of an ASL image
super-resolution module in the MR Arterial Spin Labeling Perfusion Analysis pro-
totype, as a syngo.via Frontier application (www.siemens.com/syngo.via-frontier).
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6.1 Introduction

As single-TI ASL images, multi-TI ASL data are subject to noise and partial volume
effects. We present in this section a method, whose object is to address these
limitations in a manner more appropriate to such acquisitions than the one proposed
in chapter 5. An increase of the resolution of multi-TI ASL parameters estimation
maps is achieved, while increasing the reliability of these estimations. This method
is based on non-local similarities evaluations, performed by considering the temporal
evolution of the ASL signal at neighboring locations, and driven by a high resolution
structural image, as acquired in a majority of imaging protocols. The main difference
between this method and the one proposed in chapter 5 is that the similarity between
voxels in the ASL image series is assessed by means of their temporal evolution,
instead of spatial similarities. The method and material are described in section 6.2,
results obtained on a simulated dataset, as well as on data acquired on healthy
subjects in section 6.3, and a discussion is provided in section 6.4.

6.2 Material and methods

6.2.1 Non-local spatio-temporal super-resolution method

In the context of this work, we propose to adapt the CBF maps reconstruction
method presented in chapter 5 to the case of multi-TI ASL acquisitions. The ob-
jective is to recover an unknown ASL signal series, xt,t∈[0,number of PLD] from a low
resolution acquired one yt,t∈[0,number of PLD]. The relation between images of both
series can be written as:

yt = Mxt + ηt, (6.1)

with M a matrix corresponding to blurring, subsampling and geometric transfor-
mations, and η additive gaussian noise. As previously shown, the ill-posed problem
corresponding to recover the xt from the yt can be solved by iterating between re-
construction and correction operations of each ASL signal map, yt, of the time series.

The dimension of each ASL signal map of the time series is first increased
by applying a 3rd order B-spline interpolation. The work concentrating on CBF
maps reconstructions only considered spatial information in the implementation
of the super-resolution algorithm, based on the assumption of shared anatomical
properties between a high resolution structural image and the ASL image to
be reconstructed. We propose to extend this approach, and to add a non-local
evaluation of temporal evolution similarities between neighboring voxels, based on
the idea that voxels located close to each other should share similar temporal ASL
signal evolutions.

Therefore, the reconstruction term can be written as:
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Xn+1
t,i =

1

Zi

∑
j∈Vi

Xn
t,jw

n
i,j , (6.2)

with Xn
t,i the intensity of voxel i in the ASL signal map Xn

t corresponding to a given
ASL image at iteration n, Vi a correspondence search volume around voxel i, Zi a
scaling parameter, and wnt,j a weight accounting for the influence of the intensity of
voxel j in this reconstruction step:

wni,j = exp−
( ||Tni − Tnj ||22

βσ2
+
||Ni,S −Nj,S ||22

σ2
i,S

)
. (6.3)

Tni is a vector containing the intensities of voxel i at each acquired PLD, Ni,S a patch
selected around voxel i in the structural image, σ2 the empirical variance calculated
on the whole ASL signal time series, σi,S the empirical local variance calculated on
the patch Ni,S , and β a scalar adjusting the influence of the ASL and structural
related terms.

This expression is similar to the one presented in 5.4, but a term taking the
temporal evolution of the ASL signal series into account substitutes for the spatial
similarities evaluation. This weight enables to recover spatial details from the struc-
tural image in the ASL images, while preserving features that would only be visible
in the ASL images and shared by voxels presenting similar temporal evolutions. In
addition, taking these temporal evolutions into account allows to perform a denois-
ing of the reconstructed temporal time series, outlier ASL signals being corrected to
follow an evolution similar to that of neighboring voxels. A schematic description
of this reconstruction process is provided in figure 6.1.

The correction term consists in ensuring that the global mean value of the ASL
signal time series, µ(.), remains constant:

Xn+1 = Xn +
(
µ(Y )− µ(Xn)

)
, (6.4)

with X the high resolution time series being reconstructed and Y the acquired low
resolution time series.

Reconstruction and correction are performed until convergence, and the weight
β is divided at each reconstruction iteration, leading to [β, β/2, β/4, ...], as proposed
in the previous method.

6.2.2 Method evaluation

6.2.2.1 Simulated dataset

A simulated dataset was constructed in order to evaluate the method. A structural
image (MP2RAGE UNI, resolution: 1.33 × 1.33 × 1.33 mm3) was acquired on a
Siemens Verio scanner with a 32-channel head coil. 70 and 25 ml/100g/min CBF
values were attributed to gray and white matter partial volume maps obtained by
segmenting the structural image using SPM12 respectively [SPM 2006], adding 8%
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Figure 6.1: Schematic representation of the reconstruction performed in the pro-
posed SR4D method.
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amplitude sinusoidal variations in order to simulate a CBF map. An ATT map was
obtained by applying a gaussian filter (σ = 2) to an image from a multi-TI ASL
acquisition performed on the same subject. These two maps were used to simulate
an ideal ASL signal time series corresponding to ASL images that should have been
acquired following the single compartment model at 12 different PLDs (500 ms to
4240 ms) [Buxton 1998]. Tissue T1 and equilibrium magnetization were fixed equal
to 1300 ms and 1700 ms respectively as a matter of simplification. Each of the ASL
images was downsampled by applying a gaussian blurring before downscaling by a
factor of 2 in each direction. Noise with a standard deviation equal to the third
of each low ASL signal map mean intensity value was added to 20 generated time
series, simulating low resolution acquisitions.

In order to select the best β parameter, the 20 low resolution ASL time
series were reconstructed by applying the proposed method (SR4D) with β =

1/2, 1/22, 1/23, and 1/24. CBF and ATT maps were estimated from these recon-
structed ASL time series, and compared to the original CBF and ATT maps by
calculation of the peak signal-to-noise ratios (PSNR). The maps obtained by means
of the β providing the highest PSNRs were compared to estimations generated by
applying the three following methods in order to assess the proposed method con-
tribution to the quality of reconstructions and estimations:

• (Splines) the CBF and ATT values were voxelwise estimated from the low
resolution ASL series using non-linear least-squares fitting of the single com-
partment model. The estimated parameter maps were interpolated by means
of 3rd order B-spline interpolations.

• (SR3D) the parameter maps are voxelwise estimated and reconstructed to
higher dimensions by means of the algorithm presented in chapter 5, with βasl
and βstruct equal to 0.5.

• (SR3D MULTI) each of the ASL signal maps of each time series was recon-
structed to the original dimension using the method presented in chapter 5,
with βasl and βstruct equal to 0.5. The CBF and ATT maps were voxelwise
estimated from these reconstructed ASL images (cf figure 6.2).

6.2.2.2 Healthy subjects

The method was also evaluated on images acquired on 8 healthy subjects (6 fe-
males, 2 males, 33 ± 9 years old). A structural image (MP2RAGE, resolution:
1×1×1mm3), a prototype multi-TI pseudo-continuous ASL (pCASL) (3D GRASE
readout, resolutions: 3× 3× 3 mm3 and 6× 6× 6 mm3, 12 equally separated PLDs
(500 ms to 4240 ms), labelling duration: 1800 ms), and 2 equilibrium magnetization
M0 images (3D GRASE readout, resolutions: 3 × 3 × 3 mm3 and 6 × 6 × 6 mm3)
were acquired. CBF and ATT maps were reconstructed at the high resolution from
the lower resolution acquisition by means of the four methods described in 6.2.2.1.
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Realigned 
raw ASL series

LR ASL time series
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HR M0 HR T1HR ATT HR CBF

Super-Resolution

Quantification

Figure 6.2: Schematic description of the SR3D MULTI method.
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Tissue T1 and M0 maps were provided by the separate M0 and MP2RAGE T1

acquisitions in order to fit the single compartment model to the ASL series.
CBF and ATT could therefore be estimated from each of the ASL time series:

the LR acquisitions, the HR acquisitions, the SR3D MULTI reconstructions and the
proposed SR4D method. From these estimations, voxelwise theoretical ASL signal
evolution curves were generated from these estimated CBF and ATT maps, that
strictly match the single compartment model. The voxelwise correlation between
these theoretical curves and the ASL signal evolutions of each of the evaluated time
series was calculated on gray matter as a quantitative evaluation.

6.2.3 Implementation details

Similarly to chapter 5, the Ni,S patch size was chosen equal to 3× 3× 3 voxels, and
the correspondence search volume to 7× 7× 7 voxels.

6.3 Results

6.3.1 Simulated dataset

The graph presented in figure 6.3 presents the PSNR values obtained with different β
parameter values applied to the ASL related term during the reconstruction process.
β = 1/22 provides CBF and ATT maps closer to the original images (higher mean
PSNR), and is therefore selected.

Figure 6.3: Simulated dataset: PSNR obtained by comparing reference CBF and
ATT maps with the SR4D reconstructions obtained with different β parameter
values.
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Figure 6.4 reports higher mean PSNRs (in bold) in the case of the proposed
SR4D method, than by performing the splines, the SR3D or the SR3D MULTI
reconstructions. P-values following paired t-tests between the values calculated
from the 20 corrupted downsampled ASL time series indicate a significant difference
between the PSNR distributions (p < 10−22). Figures 6.5 and 6.6 present images
from this simulated dataset. Of particular note is the noise pattern resulting from
the corruption of the downsampled ASL time series, resulting in the introduction of
outliers in the estimated maps. This noise is reduced in the image generated after
applying the SR4D method, which can be explained by the faculty of this method
to correct the reconstructed ASL series in the temporal domain. This aspect is
visible on figure 6.7, showing the signal evolution of a voxel in the reference, 2 noisy
low resolution and the 2 corresponding SR3D MULTI and SR4D reconstructed time
series. Taking temporal similarities between neighboring voxels into account in the
reconstruction step allows to recover an evolution closer to the one of the reference
time series.

Figure 6.4: Simulated dataset: PSNR obtained by comparing reference CBF and
ATT maps with the splines, SR3D, SR3D MULTI and SR4D reconstructions.

6.3.2 Healthy subjects

In figure 6.8, correlations between the theoretical curves matching the single com-
partment model and the low resolution, high resolution, SR3D MULTI and SR4D
reconstructed ASL time series are reported. The series reconstructed by means of
the proposed method are more correlated to the model than the others. This image
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Simulated dataset: CBF maps from : a) the reference image, b) the CBF
estimation from the noise corrupted downsampled series, c) the splines interpolation,
d) the SR3D reconstruction, e) estimations from the SR3D MULTI and f) SR4D
reconstructed ASL time series.
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: Simulated dataset: ATT maps from: a) the reference image, b) the ATT
estimation from the noise corrupted downsampled series, c) the splines interpolation,
d) the SR3D reconstruction, e) estimations from the SR3D MULTI and f) SR4D
reconstructed ASL time series.
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Figure 6.7: Simulated dataset: ASL signal temporal evolution of a voxel in the
reference, 2 noisy low resolution and the 2 corresponding SR3D MULTI and SR4D
reconstructed time series.
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also outlines the fact that ASL signal time series associated with HR acquisitions
are less correlated with the theoretical ASL signal evolution. The SNR reduction
caused by the higher acquisition resolution can explain this result. The correlations
obtained with the SR4D reconstruction are significantly higher than the ones calcu-
lated from the HR and the SR3D MULTI reconstructed ASL time series (p<0.01).
The SR4D reconstruction is also associated with a significantly higher number of
voxels that correspond to correlations with the theoretical curves superior to 0.5
(p< 10−4).

Figures 6.9, 6.10, 6.11 and 6.12 present examples of axial and sagittal slices of
CBF and ATT maps obtained from the low resolution and high resolution acquisi-
tions, the SR3D reconstructed maps, and the maps estimated after SR3D MULTI
and SR4D ASL signal series reconstructions. The CBF slices that correspond to
the SR4D reconstruction in figures 6.9 and 6.11 provide sharper details than the
SR3D reconstructed map, and fewer outlier values, notably in white matter, than
the image originating from the SR3D MULTI reconstruction. The SR4D method
also reveals its capability to reduce the number of bright appearing points in the
ATT images (figures 6.10 and 6.12). ATT patterns closer to the aspect of perfusion
territories can be observed in the SR4D ATT map, associated with shorter ATT in
areas close to arteries, and longer ATT in posterior and anterior areas. This result
is in agreement with the assumption of ATT maps containing little high spatial
resolution information, as formulated in [Dai 2011].

Figure 6.8: Healthy subjects: mean ± standard deviation (std) and percentage of
brain voxels with correlations to the single compartment model superior to 0.5 for
the low resolution (LR), high resolution (HR), SR3D MULTI and proposed SR4D
reconstructed ASL signal time series.
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: Images from one healthy subject: axial slices of a structural image
(a), low resolution CBF map (b), high resolution CBF map (c), SR3D CBF map
reconstruction (d), and CBF estimations from the SR3D MULTI (e) and SR4D (f)
reconstructions.
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(a) (b) (c)

(d) (e) (f)

Figure 6.10: Images from one healthy subject: axial slices of a structural image
(a), low resolution ATT map (b), high resolution ATT map (c), SR3D ATT map
reconstruction (d), and ATT estimations from the SR3D MULTI (e) and SR4D (f)
reconstructions.
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6.4 Discussion

In this chapter, we have presented a new method extending the application of super-
resolution to multi-TI ASL sequences. This non-local method based on the evalu-
ation of similarities in the temporal evolution of neighboring voxel intensities, and
driven by a high resolution structural image, shows to improve the reliability of
images reconstruction and the estimation of parameters at increased resolutions,
compared to the application of super-resolution methods only taking spatial simi-
larities into account.

This aspect has been evaluated on a simulated dataset and on images acquired
on healthy subjects. A difficult aspect of this work is the lack of high resolution
reference in the case of the healthy subject study. Indeed, SNR being proportional
to voxel volume, increasing the acquisition resolution considerably decreases images
SNR, as shown in figures 6.9, 6.10, 6.11 and 6.12. Therefore, considering a high
resolution CBF image as a reliable reference to which generated images could be
compared is difficult.

Similarly to chapter 5, an evaluation of the method on data acquired on patients
presenting slight CBF modifications, and no visible abnormalities in the structural
image, such as in the case of an early stage of a neurodegenerative disease, would
be interesting.
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(a) (b) (c)

(d) (e) (f)

Figure 6.11: Healthy subject: sagittal slices of a structural image (a), low resolution
CBF map (b), high resolution CBF map (c), SR3D CBF map reconstruction (d),
and CBF estimations from the SR3D MULTI (e) and SR4D (f) reconstructions.

(a) (b) (c)

(d) (e) (f)

Figure 6.12: Healthy subject: sagittal slices of a structural image (a), low resolution
ATT map (b), high resolution ATT map (c), SR3D ATT map reconstruction (d),
and ATT estimations from the SR3D MULTI (e) and SR4D (f) reconstructions.
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Standardization and quality control:

The ASL sequence parameters selected following the standardization study pre-
sented in chapter 3 led to the acquisitions of 184 ASL scans as part of a large-
scale study, whose purpose is to assess interactions between vascular risk factors or
markers, and cognitive deficit and decline. To this aim, ASL and MR angiography
acquisitions are correlated with data coming from pulse wave velocity assessments,
ophthalmological data such as spectral-domain coherence tomography examinations
and fundus images, neuropsychological tests based on behavioral and mood scales,
and urinary albumin excretion measurements.

The standardization work presented in this document is based on acquisitions
performed on a few healthy volunteers. This limited subject number is related to
the goal to begin the patients’ inclusions as early as possible. Nevertheless, the
relatively good quality of the 184 recorded acquisitions, associated with a rejection
rate equal to 11%, indicates that the chosen sequence is adapted to the requirements
of this study.

Beside the choice of the SENSE parallel imaging method, the selected sequence
is as simple as possible, in order to obtain acquisitions that could be similar between
multiple centers. Efforts made to develop new sequences (increase of the acquired
images resolution, of the temporal resolution, of the SNR), and post-processing
methods reducing the influence of artifacts, are proposed by vendors and should
allow to obtain even more reliable and reproducible ASL acquisitions. However,
including such options as acquisition parameters in multicenter neuroimaging studies
does not appear feasible yet, because of the disparity of the performances achieved
by these techniques on different scanners.

[Fallatah 2018] recently proposed a visual control scale to perform visual quality
assessments dedicated to QUASAR CBF, T1 relaxation rate, arterial blood volume
and ATT maps. While slightly differing in the criteria’s grades attribution, espe-
cially because of the different parameter maps to be evaluated, very similar aspects
are taken into account. This study concludes to the robustness of the proposed pro-
cedure within and between different raters, on images acquired on both patients and
healthy subjects. One particularly interesting aspect of this work is the definition
of several thresholds, that allow to determine with good sensitivity and specificity
whether ASL acquisitions are of acceptable quality or not. A combination of such
thresholds and automated calculations, as described in this thesis, may further im-
prove the robustness of multiple ASL parameter maps quality assessments in the
context of future work.

The standardization study and the quality assessment tool presented in chapter 3
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are adapted to 2D EPI ASL acquisitions, which is a limitation of this work. The
democratization of 3D readout approaches, as recommended in [Alsop 2015], may
necessitate providing adjustments to the proposed solutions, in order to be included
in multicenter neuroimaging studies. Indeed, lower contrasts between gray and white
matter are usually expected on images acquired by means of 3D readout approaches,
which may imply a reduction of the post-labelling delay or an adjustment of the
acceptable contrast. However, 3D acquisitions are also associated with reductions
of geometric artifacts, such as distortions.

The issue of data variability in large-scale studies can be addressed as it is in
this work, focusing on the acquisition aspect. But it is also shown that processing
pipelines do have a great influence on this data variability, sometimes making
generated data difficult to compare or to include into studies compiling results
obtained from different processing approaches. As an example, studies performed
by [Carp 2012] and [Bowring 2018] highlighted the influence of strategies adopted
in papers or software packages dedicated to the analysis of functional MRI data,
resulting in different qualitative and quantitative outcomes. In chapter 4, we also
concluded to different behaviors resulting from the application of three different
distortion correction methods. Different free software packages providing ASL
processing pipelines being available, evaluating the influence of a conjunction
of each of the methods proposed to perform the steps required by a pipeline
specifically dedicated to ASL images would be of great interest. Indeed, while
the use of post-processing methods (motion correction, partial volume correction,
temporal and spatial denoising) are shown to increase the reproducibility of analysis
performed on a single scanner [Fazlollahi 2015], pooling data obtained from different
machines and processing pipelines could be affected by variabilities emanating from
both aspects. Transparency about the way data are acquired and processed is
an important aspect that is really important to account for in neuroimaging studies.

Super-resolution for arterial spin labelling images:

The processing methods presented in this document showed to improve the qual-
ity and the reliability of ASL images. This aspect has been validated on simulated
datasets, healthy subjects and patients scanned for brain tumours. Applying the
proposed methods on datasets constituted of data acquired on different popula-
tions, such as patients diagnosed with early stages of neurodegenerative diseases,
pharmacoresistant depression forms or subtle CBF perturbations located in small
brain areas, and not related to an atrophy that would be visible on a structural
image, could be of great interest in the context of future work. As an example, a
study recently concluded to specific perfusion patterns correlated with state-anxiety
in depressive subjects in the cingulate cortex, insula and amygdala [Conan 2017].
Applying the super-resolution method described in chapter 5 on the images acquired
in the context of such a study may allow to refine the location of such particular



103

perfusion patterns.
Joined to improvements of the ASL acquisition sequences, and particularly con-

cerning the achievable spatial resolutions, the super-resolution algorithms could be
of great use in order to analyze CBF maps in neonates and young children CBF
maps. Indeed, images acquisition, as well as the application of post-processing algo-
rithms, reveals to be very challenging on these populations. Indeed, while included
in an increasing number of studies as a matter to non-invasively assess child brain
perfusion, ASL suffers from its low resolution. The evolution of the shape of the
brain structure and perfusion patterns during brain development, and CBF changes
induced by sedation, are other aspects that have to be taken into account in such
cases [Carsin-Vu 2018, Proisy 2016]. Difficulties to perform CBF map registration
to structural images, to conduct region-based CBF analysis or the necessity to create
different child brain atlases and templates that follow the children’s brain evolution
with age, outline some of the difficulties related to imaging such particular popula-
tions.

The methods presented in this document could also allow to generate high reso-
lution atlases of brain perfusion related parameters, such as CBF and ATT. While
actual recommendations consist in acquiring a well resolved single-TI ASL series,
and a low resolution multi-TI series to generate ATT maps [Dai 2016], improve-
ments brought to acquisition sequences, associated with the application of a super-
resolution algorithm, could allow to estimate more detailed images, that may provide
information about localized perfusion decrease or slow down, not directly related to
a global vascular territory.

Furthermore, the generation of well detailed ATT maps could allow to delineate
these vascular territories, without the need for specific sequences acquisitions. In-
deed, in normal brains, the boundaries between different vascular territories have
longer ATT than their center [Donahue 2017].

An other aspect that would be interesting to investigate, is the influence that
would have an application of a distortion correction method on ASL series, before
processing it by means of a super-resolution algorithm. Indeed, while it can be
assumed that small misalignments between the initially interpolated image and the
structural one, used to drive the reconstruction, do not have a strong influence on the
reconstruction process, because of the fact that patches are compared over a quite
large search window, hypo and hyper intensities related to susceptibility artifacts
could have an impact on the generated high resolution ASL images.
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