M,N ) p défini par la 1-forme dN (M,N ) p sur C 2+δ M,N , de même, nous montrons au chapitre 4 que pour tout p 0 dans P le germe du déploiement F (M,N ) p , p ∈ (P, p 0 ) est un déploiement équisingulier universel du feuilletage F (M,N ) p 0 . De plus, nous montrons également que cette famille est globalement unique.
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Introduction.

Soit f un germe de fonction holomorphe à deux variables qui s'annule à l'origine, f (x, y) ∈ C{x, y}, (x, y) ∈ C 2 , f (0, 0) = 0.

L'ensemble zéro de cette fonction, S = {f (x, y) = 0}, définit un germe de courbe analytique. Bien que la classification topologique d'un tel germe est bien connue depuis les travaux de Zariski [START_REF] Zariski | Le problème des modules pour les branches planes[END_REF], la classification analytique est encore largement ouverte. En 2012, Hefez et Hernandes [START_REF] Hefez | Algorithms for the implementation of the analytic classification of plane branches[END_REF] ont résolu le cas irréductible et ils ont annoncé le cas à deux composants. En 2015, Genzmer et Paul [START_REF] Genzmer | Moduli spaces for topologically quasi-homogeneous functions[END_REF] ont résolu le cas des fonctions topologiquement quasi-homogènes. L'objectif principal de cette thèse est d'étudier la première classe topologique de fonctions non quasi-homogènes. Nous décrivons l'espace de modules local des feuilletages dans cette classe et nous donnons des formes normales analytiques. Nous prouvons également l'unicité de ces formes normales. Enfin, nous présentons un algorithme permettant de calculer la dimension des strates génériques de l'espace de modules local des courbes.

Position du problème.

Un germe de fonction holomorphe f : (C 2 , 0) -→ (C, 0) est dit quasi-homogène si et seulement si f appartient à son idéal jacobien J(f ) = ( ∂f ∂x , ∂f ∂y ). Si f est quasi-homogène, alors il existe des coordonnées (x, y) et des entiers positifs coprimes k et l tels que le champ de vecteur quasi radial R = kx ∂ ∂x + ly ∂ ∂y satisfait R(f ) = d • f , où l'entier d est le (k, l)-degré quasi-homogène de f [START_REF] Saito | Quasihomogene isolierte Singularitaten von Hyperflachen[END_REF]. Le couple (k, l) est appelé le poids des branches de f . Dans [START_REF] Genzmer | Moduli spaces for topologically quasi-homogeneous functions[END_REF], Genzmer et Paul ont construit des formes normales analytiques pour les fonctions topologiquement quasi-homogènes, les fonctions holomorphes topologiquement équivalentes à une fonction quasi-homogène.

Dans cette thèse, nous étudions l'une des classes topologiques les plus simples au-delà des singularités quasi-homogènes, et nous considérons la famille de fonctions suivante

f M,N = N i=1 y + a i x M i=1 y + b i x 2 .
Selon leur processus de réduction, pour M, N ≥ 2, ces fonctions ne sont pas quasi homogènes. La symétrie R mentionnée ci-dessus est un outil essentiel pour l'étude de l'espace de modules de fonctions quasi-homogènes. D'une certaine manière, cela a permis Genzmer et Paul de compacter l'espace de modules et de le décrire globalement à partir d'une étude locale. Cependant, dans notre cas, il n'existe pas une telle symétrie et nous devons donc introduire une nouvelle approche.

Pour toute série convergente f dans C{x, y}, nous pouvons reconnaître trois objets mathématiques différents associés: un germe de fonction holomorphe défini par la somme de cette série, un germe de feuilletage dont les feuilles sont les composantes connexes des courbes de niveau f =constant, et une courbe plongée f = 0. Par conséquent, il existe trois relations d'équivalence analytique différentes:

• La classification des fonctions (ou équivalence à droite):

f 1 ∼ r f 2 ⇔ ∃φ ∈ Diff(C 2 , 0), f 2 = f 1 • φ.
• La classification des feuilletages (ou équivalence gauche-droite):

f 1 ∼ f 2 ⇔ ∃φ ∈ Diff(C 2 , 0), ψ ∈ Diff(C, 0), ψ • f 2 = f 1 • φ.
• La classification des courbes:

f 1 ∼ c f 2 ⇔ ∃φ ∈ Diff(C 2 , 0), u ∈ O 2 , u(0) = 0, uf 2 = f 1 • φ.
Dans ce qui suit, nous allons examiner les deux dernières relations d'équivalence pour les feuilletages et les courbes. La comparaison entre les deux premières classifications analytiques a été étudiée dans [START_REF] Berthier | Transformations isotropes des germes de feuilletages holomorphes[END_REF]. Nous soulignons que dans notre travail, nous exigerons toujours que les conjugaisons qui apparaissent ci-dessus respectent une numérotation fixe des branches de f = 0. En d'autres termes, si nous numérotons les branches, nous exigeons que la classification laisse invariant cette numérotation (appelée espace de modules marqué).

On note par T M,N l'ensemble de fonctions holomorphes topologiquement équivalentes à f M,N ,

T M,N = f ∈ C{x, y} | ∃φ ∈ Hom(C 2 , 0), ψ ∈ Hom(C, 0), ψ • f = f M,N • φ .
Le but principal de cette thèse est de décrire l'espace de modules M M,N qui est la classe topologique T M,N quotionnée par l'équivalence gauche-droite.

M M,N = T M,N / ∼ .

Dans le chapitre 2, nous donnons une famille universelle de formes normales analytiques et nous prouvons son unicité globale.

Dans le chapitre 3, nous étudions l'espace de modules des courbes qui est l'espace M M,N quotionnée par la troisième relation d'équivalence. En particulier, nous présentons un algorithme pour calculer sa dimension générique.

Le chapitre 4 présente une autre famille universelle de formes normales analytiques, qui est aussi globalement unique. En effet, il n'existe pas de modèle canonique pour la distribution de l'ensemble des paramètres sur les branches. Donc, avec cette famille, nous pouvons voir que la famille précédente n'est pas la seule et qu'il est possible de construire des formes normales en considérant une autre distribution des paramètres.

Enfin, en ce qui concerne la globalization, nous discuterons au chapitre 5 une stratégie basée sur la théorie géométrique des invariants et nous discuterons des raisons pour lesquelles cela ne fonctionne pas jusqu'à présent.

Le chapitre 1 est une introduction générale sur les feuilletages, comprenant les définitions et les propriétés des objets utilisés dans cette thèse.

Présentation des résultats.

Un résultat général de J.F. Mattei [START_REF] Mattei | Modules de feuilletages holomorphes singuliers: I équisingularité[END_REF] implique en particulier que l'espace tangent à l'espace de modules M M,N est donné par le premier groupe de cohomologie de Cech H 1 (D, Θ F ), où D est le diviseur exceptionnel de la désingularisation de f M,N et Θ F est le faisceau de germes des champs de vecteurs tangents au feuilletage désingularisé du feuilletage induit par df M,N = 0. Ainsi, une première étape vers l'étude de l'espace de modules M M,N consiste à calculer la dimension du groupe H 1 (D, Θ F ). Soit Q M,N la région dans l'union des demi-plans réels (X, Y ), X ≥ 0 et Y ≥ 0, délimitée par Y -X + (M -1) > 0 et 2Y -X -(N -1) < 0.

- Proposition. La dimension δ M,N du premier groupe de cohomologie H 1 (D, Θ F ) est égale au nombre de points entiers dans la région Q M,N qui peut être exprimé par la formule suivante

δ M,N = (M + N -2)(M + N -3) 2 + (M -1)(M -2) 2 .
Compte tenu de cette proposition, une famille universelle doit dépendre de δ M,N paramètres. Pour cela, on note par P l'ensemble ouvert suivant de C δ M,N En particulier, pour tout déploiement équisingulier F t , t ∈ (T , t 0 ) qui définit F (M.N ) p 0 pour t = t 0 , il existe un map λ : (T , t 0 ) -→ (P, p 0 ) telle que la famille F t est analytiquement équivalente à N (M,N ) λ(t)

P = (• • • , a k,i , • • • , b k ,i , • • • ) tels que a 1,i = 0, b 1,j = 0, 1 et a 1,i = a 1,
. De plus, le différentiel de λ au point t 0 est unique. Pour l'unicité du map λ, elle découle de l'unicité des formes normales.

Pour étudier l'unicité de ces formes normales, nous considérons le difféomorphisme défini par h λ (x, y) = (λx, λ 2 y) et nous avons donc:

N p • h λ = λ 2M +2N -1 N λ•p , λ • p = λ • (a k,i , b k,i ) = (λ 2k-3 a k,i , λ k-1 b k,i ).
Cette action de C * ne peut pas être utilisée pour localiser le problème de l'unicité comme dans [START_REF] Genzmer | Moduli spaces for topologically quasi-homogeneous functions[END_REF] car, contrairement au cas quasi-homogène, la classe topologique de la famille

λ → N p • h λ λ 2M +2N -1
saute quand λ passe à zéro. Cependant, nous sommes toujours en mesure de prouver ce qui suit:

Theorem (Unicité globale). Les feuilletages définis par N p et N q , p et q sont dans P, sont équivalents si et seulement s'il existe λ dans C * tel que p = λ • q.

Dans le chapitre 3, nous considérons la troisième relation d'équivalence sur l'espace de modules M M,N , et nous obtenons ainsi l'espace de modules de la courbe associée.

S = {f M,N = 0} .
Le troisième objectif principal de cette thèse est de décrire cet espace de modules, ou en d'autres termes, d'étudier le problème de Zariski associé dans le cas générique. Ce problème n'a que quelques réponses: Zariski [START_REF] Zariski | Le problème des modules pour les branches planes[END_REF] pour le tout premier traitement de certains cas particuliers, Hefez et Hernandes [START_REF] Hefez | Analytic classification of plane branches up to multiplicity 4[END_REF] [6] [START_REF] Hefez | Algorithms for the implementation of the analytic classification of plane branches[END_REF] pour les courbes irréductibles, Granger [START_REF] Granger | Sur un espace de modules de germe de courbe plane[END_REF] et Genzmer et Paul [START_REF] Genzmer | Normal forms of foliations and curves defined by a function with a generic tangent cone[END_REF] pour la classe topologique homogène et [START_REF] Briancon | Maisonobe: Le nombre de modules du germe de courbe plane x a + y b = 0[END_REF] pour des résultats qui sont des cas particuliers de la classe topologique quasi-homogène traitée ultérieurement par Genzmer et Paul [START_REF] Genzmer | Moduli spaces for topologically quasi-homogeneous functions[END_REF]. Nous suivons ici la stratégie introduite par Genzmer et Paul: sur l'espace de modules de feuilletages M M,N , nous considérons la distribution intégrable C dont les feuilles correspondent aux feuilletages tels que les ensembles analytiques invariants associés -la séparatrice du feuilletage-définissent la même courbe à ∼ c près. En étudiant la famille des champs de vecteurs induits par la distribution C sur M M,N , nous présentons une formule permettant de calculer la dimension des strates génériques de cet espace de modules local. Si on considère

τ 0 = N -4 r=0 q N +1+r ≥[ N -3+2r 3 ]+[ r 2 ]-[ r-1 2 ]+2 q N +1+r - N -3 + 2r 3 + r 2 - r -1 2 + 2 + 2M -6 r=N -3 q N +1+r ≥N -2+[ r-N +4 2 ]+[ r 2 ]-[ r-1 2 ] q N +1+r -N -2 + r -N + 4 2 + r 2 - r -1 2 , où q k = k+N -2 2
+ M -k désigne le nombre de points entiers dans l'intersection entre la région de modules et la droite de l'équation (y 4 = k -1) si N ≤ k ≤ N + 2M -5, alors nous avons ce qui suit:

Theorem. La dimension des strates génériques de l'espace de modules de S = {f M,N = 0} est donnée par 1. si M, N = 2 et N est pair:

τ M,N = τ 0 + 3N -7 + (M -3) N 2 + 2 + (N -4)(N -6) 4 + N 2 -3 i=0 [ 2i+1 3 ]+1≤M-3 M -4 - 2i + 1 3 2. si M, N = 2 et N = 3 est impair: τ M,N = τ 0 + 3N -7 + (M -3) N -1 2 + 2 + (N -5) 2 4 + N +1 2 -3 i=0 [ 2i 3 ]+1≤M-3 M -4 - 2i 3 
3. si N = 3, M = 2: τ M,N = q 4 + 3M + 3N -17 + 2M -6 r=1 q r+4 - r 2 - 2 
4. si M = 2, N = 2: τ M,N = 2N -5 + [ N -1 2 ] d=2 (N -2d -1) 5. si N = 2: τ M,N = 2 (M -2) + 2M -6 r=0 q r+3 ≥[ r+2 2 ]+[ r 2 ]-[ r-1 2 ] q r+3 - r + 2 2 + r 2 - r -1 2 , où exceptionnellement q N +1 = M -3.
Finalement, nous remarquons que la famille précédente de formes normales n'est pas la seule famille de formes normales. Considérant le même espace de paramètres P, pour p ∈ P, nous définissons une autre forme normale analytique par

N (M,N ) p = xy(y + x) N -2 i=1 y + i k=1 a k,i xy k-1 M -1 i=1 y + N -3+2i k=1 b k,i x k+1 .
Dans la construction précédente des formes normales, nous avons fixé la courbe y+x 2 = 0 et nous avons distribué les paramètres sur les N -1 branches restantes de poids (1, 1) et M -2 branches de poids (1, 2). Cependant, nous choisissons ici de fixer la courbe y + x = 0, de sorte qu'il reste N -2 branches de poids (1, 1) et M -1 branches de poids (1, 2) sur lesquels on distribue les paramètres. Si nous considérons le feuilletage saturé F

Introduction.

Let f be a germ of holomorphic function in two variables which vanishes at the origin,

f (x, y) ∈ C{x, y}, (x, y) ∈ C 2 , f (0, 0) = 0.
The zero set of this function, S = {f (x, y) = 0}, defines a germ of analytic curve.

Although the topological classification of such a germ is well known since the work of Zariski [START_REF] Zariski | Le problème des modules pour les branches planes[END_REF], the analytical classification is still widely open. In 2012, Hefez and Hernandes [START_REF] Hefez | Algorithms for the implementation of the analytic classification of plane branches[END_REF] solved the irreducible case and announced the two components case. In 2015, Genzmer and Paul [START_REF] Genzmer | Moduli spaces for topologically quasi-homogeneous functions[END_REF] solved the case of topologically quasi-homogeneous functions. The main purpose of this thesis is to study the first topological class of non quasi-homogeneous functions. We describe the local moduli space of the foliations in this class and give analytic normal forms. We also prove the uniqueness of these normal forms. Finally, we present an algorithm to compute the dimension of the generic strata of the local moduli space of curves.

Position of the problem.

A germ of holomorphic function f : (C 2 , 0) -→ (C, 0) is said to be quasi-homogeneous if and only if f belongs to its jacobian ideal J(f ) = ( ∂f ∂x , ∂f ∂y ). If f is quasi-homogeneous, then there exist coordinates (x, y) and positive coprime integers k and l such that the quasi-radial vector field R = kx ∂ ∂x + ly ∂ ∂y satisfies R(f ) = d • f , where the integer d is the quasi-homogeneous (k, l)-degree of f [START_REF] Saito | Quasihomogene isolierte Singularitaten von Hyperflachen[END_REF]. The couple (k, l) is referred to as the weight of the branches of f . In [START_REF] Genzmer | Moduli spaces for topologically quasi-homogeneous functions[END_REF], Genzmer and Paul constructed analytic normal forms for topologically quasi-homogeneous functions, the holomorphic functions topologically equivalent to a quasi-homogeneous function.

In this thesis, we study one of the simplest topological classes beyond the quasi-homogeneous singularities, and we consider the following family of functions

f M,N = N i=1 y + a i x M i=1 y + b i x 2 .
According to their reduction process, for M, N ≥ 2, these functions are not quasi homogeneous.

V2 V3 V4 Figure 3 -Desingularization of f M,N for M = N = 3
The symmetry R mentioned above is a key tool to study the moduli space of quasihomogeneous functions. In some sense, it allowed Genzmer and Paul to compactify the moduli space and to describe it globally from a local study. However, in our case, we lack the existence of such a symmetry and thus we have to introduce a new approach.

For any convergent series f in C{x, y}, we can recognize three different associated mathematical objects: a germ of holomorphic function defined by the sum of this series, a germ of foliation whose leaves are the connected components of the level curves f =constant, and an embedded curve f = 0. Therefore, there are three different analytic equivalence relations:

• The classification of functions (or right equivalence):

f 1 ∼ r f 2 ⇔ ∃φ ∈ Diff(C 2 , 0), f 2 = f 1 • φ.
• The classification of foliations (or left-right equivalence):

f 1 ∼ f 2 ⇔ ∃φ ∈ Diff(C 2 , 0), ψ ∈ Diff(C, 0), ψ • f 2 = f 1 • φ.
• The classification of curves:

f 1 ∼ c f 2 ⇔ ∃φ ∈ Diff(C 2 , 0), u ∈ O 2 , u(0) = 0, uf 2 = f 1 • φ.
In what follows, we are going to consider the last two equivalence relations for foliations and curves. The comparison between the first two analytical classifications has been studied in [START_REF] Berthier | Transformations isotropes des germes de feuilletages holomorphes[END_REF]. We emphasize that in our work, we will always require that the conjugacies which appear above will respect a fixed numbering of the branches of f = 0.

In other words, if we number the branches, we require that the classification keeps this numbering invariant (what is referred to as the marked moduli space).

We denote by T M,N the set of holomorphic functions which are topologically equivalent to f M,N ,

T M,N = f ∈ C{x, y} | ∃φ ∈ Hom(C 2 , 0), ψ ∈ Hom(C, 0), ψ • f = f M,N • φ .
The main purpose of this thesis is to describe the moduli space M M,N which is the topological class T M,N up to left-right equivalence

M M,N = T M,N / ∼ .
In chapter 2, we give a universal family of analytic normal forms and prove its global uniqueness.

In chapter 3, we study the moduli space of curves which is the space M M,N up to the third equivalence relation. In particular, we present an algorithm to compute its generic dimension.

Chapter 4 presents another universal family of analytic normal forms which is globally unique as well. Indeed, there is no canonical model for the distribution of the set of parameters on the branches. So, with this family, we can see that the previous family is not the only one and that it is possible to construct normal forms by considering another distribution of the parameters.

Finally, concerning the globalization, we discuss in chapter 5 a strategy based on geometric invariant theory and why it does not work so far.

Chapter 1 is a general introduction about foliations including definitions and properties of objects used in this thesis.

Presentation of the results.

A general result of J.F. Mattei [START_REF] Mattei | Modules de feuilletages holomorphes singuliers: I équisingularité[END_REF] implies in particular that the tangent space to the moduli space M M,N is given by the first Cech cohomology group H 1 (D, Θ F ), where D is the exceptional divisor of the desingularization of f M,N , and Θ F is the sheaf of germs of vector fields tangent to the desingularized foliation of the foliation induced by df M,N = 0. So, a first step towards studying the moduli space M M,N is to compute the dimension of the group H 1 (D, Θ F ). Let Q M,N be the region in the union of the real half planes

(X, Y ), X ≥ 0 and Y ≥ 0, delimited by Y -X + (M -1) > 0 and 2Y -X -(N -1) < 0. -(N-1) -(M-1) M-1 (N-1)/2 x4 y4 Figure 4 -The region Q M,N for M = N = 6
Proposition. The dimension δ M,N of the first cohomology group H 1 (D, Θ F ) is equal to the number of the integer points in the region Q M,N which can be expressed by the following formula

δ M,N = (M + N -2)(M + N -3) 2 + (M -1)(M -2) 2 .
In view of this proposition, a universal family must depend on δ M,N parameters. For that, we denote by P the following open set of

C δ M,N P = (• • • , a k,i , • • • , b k ,i , • • • ) such that a 1,i = 0, b 1,j = 0, 1 and 
a 1,i = a 1,j , b 1,i = b 1,j for i = j and i = j ,
where the indexes k,i,k and i satisfy some inequalities which will be developed later. We take a parameter

p = • • • , a k,i , • • • , b k ,i , • • • ∈ P
and introduce the family of functions

N (M,N ) p = xy(y + x 2 ) N -1 i=1 y + i k=1 a k,i xy k-1 M -2 i=1 y + N -1+2i k=1 b k,i x k+1 .
These functions seem to be good candidates for parameterizing the moduli space M M,N .

The first main result of chapter 2 ensures that at the infinitesimal level, they are actually analytic normal forms. More precisely, if we consider the saturated foliation F In particular, for any equireducible unfolding F t , t ∈ (T , t 0 ) which defines F (M.N ) p 0 for t = t 0 , there exists a map λ : (T , t 0 ) -→ (P, p 0 ) such that the family F t is analytically equivalent to

N (M,N ) λ(t)
. Furthermore, the differential of λ at the point t 0 is unique. As for the uniqueness of the map λ, it follows from the uniqueness of the normal forms.

To study the uniqueness of these normal forms, we consider the diffeomorphism defined by h λ (x, y) = (λx, λ 2 y) and so we have:

N p • h λ = λ 2M +2N -1 N λ•p , λ • p = λ • (a k,i , b k,i ) = (λ 2k-3 a k,i , λ k-1 b k,i ).
This action of C * cannot be used to localize the uniqueness problem as done in [START_REF] Genzmer | Moduli spaces for topologically quasi-homogeneous functions[END_REF] because, contrary to the quasi-homogeneous case, the topological class of the family

λ → N p • h λ λ 2M +2N -1
jumps while λ goes to zero. However, we are still able to prove the following: Theorem (Global uniqueness). The foliations defined by N p and N q , p and q are in P, are equivalent if and only if there exists λ in C * such that p = λ • q.

In chapter 3, we consider the third equivalence relation on the moduli space M M,N , and so we get the moduli space of the associated curve

S = {f M,N = 0} .
The third main purpose of this thesis is to describe this moduli space, or in other words, to study the associated Zariski problem in the generic case. This problem has only some answers: Zariski [START_REF] Zariski | Le problème des modules pour les branches planes[END_REF] for the very first treatment of some particular cases, Hefez and Hernandes [START_REF] Hefez | Analytic classification of plane branches up to multiplicity 4[END_REF][6] [START_REF] Hefez | Algorithms for the implementation of the analytic classification of plane branches[END_REF] for the irreducible curves, Granger [START_REF] Granger | Sur un espace de modules de germe de courbe plane[END_REF] and Genzmer and Paul [START_REF] Genzmer | Normal forms of foliations and curves defined by a function with a generic tangent cone[END_REF] for the homogeneous topological class and [START_REF] Briancon | Maisonobe: Le nombre de modules du germe de courbe plane x a + y b = 0[END_REF] for some results which are particular cases of the quasi homogeneous topological class treated later by Genzmer and Paul [START_REF] Genzmer | Moduli spaces for topologically quasi-homogeneous functions[END_REF]. Here, we follow the strategy introduced by Genzmer and Paul: on the moduli space of foliations M M,N , we consider the integrable distribution C whose leaves correspond to the foliations such that the related invariant analytic sets -the separatrix of the foliationdefine the same curve up to ∼ c . Studying the family of vector fields induced by the distribution C on M M,N , we present a formula to compute the dimension of the generic strata of this local moduli space. If we let

τ 0 = N -4 r=0 q N +1+r ≥[ N -3+2r 3 ]+[ r 2 ]-[ r-1 2 ]+2 q N +1+r - N -3 + 2r 3 + r 2 - r -1 2 + 2 + 2M -6 r=N -3 q N +1+r ≥N -2+[ r-N +4 2 ]+[ r 2 ]-[ r-1 2 ] q N +1+r -N -2 + r -N + 4 2 + r 2 - r -1 2 ,
where q k = k+N -2

2

+ M -k denotes the number of integer points in the intersection between the region of moduli and the straight line of equation (y

4 = k -1) if N ≤ k ≤ N + 2M -5,
then we have the following:

Theorem. The dimension of the generic strata of the moduli space of S = {f M,N = 0} is given by 1. if M, N = 2 and N is even:

τ M,N = τ 0 + 3N -7 + (M -3) N 2 + 2 + (N -4)(N -6) 4 + N 2 -3 i=0 [ 2i+1 3 ]+1≤M-3 M -4 - 2i + 1 3 2. if M, N = 2 and N = 3 is odd: τ M,N = τ 0 + 3N -7 + (M -3) N -1 2 + 2 + (N -5) 2 4 + N +1 2 -3 i=0 [ 2i 3 ]+1≤M-3 M -4 - 2i 3 
3. if N = 3, M = 2: τ M,N = q 4 + 3M + 3N -17 + 2M -6 r=1 q r+4 - r 2 -2 4. if M = 2, N = 2: τ M,N = 2N -5 + [ N -1 2 ] d=2 (N -2d -1) 5. if N = 2: τ M,N = 2 (M -2) + 2M -6 r=0 q r+3 ≥[ r+2 2 ]+[ r 2 ]-[ r-1 2 ] q r+3 - r + 2 2 + r 2 - r -1 2 ,
where exceptionally q N +1 = M -3.

Finally, we remark that the previous family of normal forms is not the only family of normal forms. Considering the same space of parameters P, for p ∈ P, we define another analytic normal form by

N (M,N ) p = xy(y + x) N -2 i=1 y + i k=1 a k,i xy k-1 M -1 i=1 y + N -3+2i k=1 b k,i x k+1 .
In the previous construction of normal forms, we fixed the curve y+x 2 = 0 and distributed the parameters on the remaining N -1 branches of weight (1, 1) and M -2 branches of weight (1,2). However, here we choose to fix the curve y + x = 0, and so it remains N -2 branches of weight . Moreover, we also show that this family is globally unique. 

Basics and properties.

A holomorphic foliation F of dimension p on a complex manifold M of dimension n is the data of an atlas

ψ i : U i ⊂ M -→ C p × C n-p
such that the change of charts mappings are holomorphic and of the form

(x, t) → (ψ(x, t), φ(t)) , x = (x 1 , ..., x p ) , t = (t 1 , ..., t n-p ) .
It can be also given by a covering by open sets {U i } i∈J equipped with submersions

H i : U i -→ C n-p i∈I
satisfying, on every intersection U i ∩ U j , the gluing condition [START_REF] Godbillon | Feuilletages, etudes géométriques[END_REF]. On the open set U i , the relation x and y belong to the same component connected by arc of a fiber of H i defines an equivalence relation R i . Every equivalence class of the equivalence relation on M generated by the family of relations (R i ) i∈I is called a leaf of the foliation F. The gluing conditions ensure that the relations R i and R j coincide on U i ∩ U j .

H j = ψ ij • H i for a biholomorphism ψ ij : H i (U i ∩ U j ) -→ H j (U i ∩ U j )
1.1 A germ of foliation in C 2 .

A germ of singular holomorphic foliation F in C 2 corresponds to the data of a germ of holomorphic 1-form a(x, y)dx + b(x, y)dy

(1.1)
up to the action of the group of germs of unities O * 2 . Here, the functions a and b are germs of holomorphic functions which vanish at the origin of C 2 . The singular set of the foliation is the zero set of a and b. When the singular set is of codimension 1, a and b have a non-trivial common factor in C {x, y}. The foliation associated to the 1-form a(x, y) gcd(x, y) dx + b(x, y) gcd(x, y) dy extends the foliation (1.1) to a regular foliation outside the origin. It is called the saturated foliation associated to the foliation defined by (1.1). From now on, the singularity of (1.1) is supposed to be isolated, which is to say that a and b do not have a common factor in C {x, y}.

Reduced singularity.

A germ of foliation is said to be reduced if there exists a system of coordinates in which it is defined by a 1-form of the form

λxdy + µydx + ..., µ = 0, λ µ / ∈ Q * -.
This quotient is an important invariant of the foliation. It is called the Camacho-Sad index of foliation [START_REF] Camacho | Invariant varieties through singularities of holomorphic vector fields[END_REF]. This singularity of the foliation is said to be of type [START_REF] Loray | Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux[END_REF] 1

. hyperbolic if λ µ / ∈ R, 2. node if λ µ ∈ R * -, 3. saddle if λ µ ∈ R * + , 4. saddle-node if λ = 0, 5. resonant if λ µ ∈ Q.
We note that a reduced singularity produces only reduced singularities after a standard blow-up centered at the singularity. We are going to explain now the principle of reduction of non-reduced singularities.

Reduction of singularities of a foliation.

Regarding the reduction of non-reduced singularities, the notion of a reduced singularity with respect to a germ of curve specifies that of a reduced singularity. It leads to a reduction of singularities which is finer than that associated to the simple notion of a reduced singularity.

Definition 1.1.1. Let F be a germ of foliation and S a germ of curve. The couple (F, S) is said to be reduced if one of the following conditions is satisfied 1. F is reduced and singular and S is invariant.

2. F is regular, S is not invariant and all the leaves of F are transverse to S.

To define the reduction of singularities, we call a blow-up process at 0 ∈ C 2 the data of a commutative diagram

M h E h ---→ ... ---→ M j E j ---→ M j-1 ---→ ... E 1 ---→ M 0 = C 2 → → → → Σ h ---→ ... ---→ Σ j ---→ Σ j-1 ---→ ... ---→ Σ 0 = {0} → → → → S h ---→ ... ---→ S j ---→ S j-1 ---→ ... ---→ S 0 = {0} (1.2)
where M j is a complex analytic variety of dimension 2; Σ j , called the singularity set, is a finite set of points contained in the curve

D j := E 1 • ... • E j -1 S 0 ,
called the jth exceptional divisor of the blow-up; E j+1 is the standard blow-up of center S j , called the jth center of blow-up. The application E h := E 1 • ... • E h is called the total morphism of the process. We denote by Comp D j the set of irreducible components of D j . The integer h is called the height of the blow-up process and the triplet M h , D h , Σ h the tree of the blow-up process. The triplet M 0 , D 0 , Σ 0 is the socle of the process.

Considering a germ of foliation F, the theorem of Seidenberg says that:

Theorem 1.1.

([8][31]

). There exists a blow-up process of height h such that 1. for every j = 0, ..., h, the center S j is the set of non-reduced singularities of E j * F with respect to the divisor D j , 2. for every j = 0, ..., h, the set Σ j is the set of singularities of the foliation E j * F,

3. S h = ∅.
The second condition of the definition (1.1.1) avoids the situation of a foliation locally regular whose one of the leaves would be tangent to the divisor. When the considered blow-up process is the minimal among those which satisfy the properties of theorem (1.1.1), we talk about the reduction process of F and the tree (M, D, Σ) := M h , D h , Σ h is called the reduction tree of F. This tree and its total morphism are unique up to the permutation of the order of some intermediate blow-up applications.

A separatrix is an irreducible component of the closure of an invariant curve of the regular foliation induced by F outside the singularity whose closure is an analytic curve. The existence of a reduction process is a basic point in the proof of the classic theorem: [START_REF] Camacho | Invariant varieties through singularities of holomorphic vector fields[END_REF]). Every germ of singular holomorphic foliation admits at least a separatrix.

Theorem 1.1.2 ([
As every separatrix can be lifted through the reduction tree to a curve which is transverse to the divisor turning it into a smooth separatrix of a reduced singularity, the reduction process of a foliation desingularizes the singularities of the separatrices. The strategy adopted for the proof of theorem (1.1.2) is to show, by a combinatorial argument, the existence of a reduced singularity for the reduced foliation admitting a separatrix transverse to the divisor of the reduction tree. This curve contracts then at the origin to a germ of analytic curve constituting a separatrix. If the divisor of the reduction tree is not an invariant curve, then the foliation is said to be dicritical and it is said to be non-dicritical in the contrary case. This alternative corresponds to the presence or not of a finite number of separatrices.

If the reduced foliation does not have any saddle-node singularity, then it is said to be of a generalized curve type. It is not required for the foliation to be non-dicritical. The foliations of a generalized curve type admit a reduction process which is easy to describe:

Theorem 1. 1.3 ([11]). The reduction processes of a germ of foliation of a generalized curve type and its separatrices are the same.

This result explains the terminology generalized curve. In this thesis, we work with foliations defined by holomorphic functions. Thus, they are clearly non-dicritical and of a generalized curve type.

To describe the topology of the reduction tree, there is a combinatorial invariant controlling the topological type of the reduction process: so, using the notations of (1.2), the dual tree A * (F) of a foliation F is defined by the data of an oriented graph whose set of vertices is the set Comp D h ; two vertices D and D are linked by an edge if and only if D • D = 1.

Equireducible unfolding.

Let F 0 be a germ of holomorphic foliation at 0 ∈ C 2 with isolated singularity 0. An unfolding of F 0 of base P = (C p , 0) is the data of a germ of saturated foliation F p of codimension 1 at the origin of (C 2+p , 0) of singular set Σ(F p ) such that the leaves of F p are transverse to the fibers of the projection Π : (C 2+p , 0) → P, Π(x, t) = t, with x = (x 1 , x 2 ), t = (t 1 , ..., t p ), and such that we have the equality

i * (F p ) = F 0 ,
where i : (C 2 , 0) → (C 2+p , 0) designs the embedding i(x) = (x, 0).

In other words, it is the data of a germ of holomorhic 1-form The last condition corresponds to the transversality of the leaves and the fibers.

Ω = A 1 (x, t)dx 1 + A 2 (x, t)dx 2 + p j=1 C j (x, t)dt j , (1.3 
Two unfoldings F p and F p of the same base P are said to be holomorphically conjugated, or equivalent, if there exists a germ of holomorphic automorphism φ of (C 2+p , 0) such that φ * F p = F p and Π • φ = Π.

When φ is only a C k -homeomorphism, we say that F p and F p are C k -conjugated. An unfolding F p is said to be trivial if it is conjugated to a constant unfolding F 0 × P , i.e. defined by (1.3) with

A i (x, t) ≡ A i (x, 0), C j (x, t) ≡ 0, i = 1, 2, j = 1, .., p.
The equireducibility of an unfolding corresponds to the existence of reduction of singularities in family:

Definition 1.2.1. We say that an unfolding F p of F 0 of base P = (C p , 0) is equireducible if there exists a sequence of blow-ups

E i p : M i p → M i-1 p such that
1. The singular sets Σ i p are smooth; the centers S i p are constituted of irreducible components of Σ i p ; S h p = ∅.

Considering

E i,p := E 1 p • ... • E i p , the restrictions of Π i,p := Π • E i,p on Σ i p are étale.
3. The foliations E * i,p F p are transverse to the fibers of Π i,p at every regular point. 4. The succession of blow-ups obtained by restricting every E i,p to the fibers of Π i,p and Π i-1,p is exactly the succession of blow-ups of the reduction process of F 0 .

The argument followed in the proof of Theorem A is mainly based on the following result about equireducible unfoldings.

Theorem 1.2.1 (J.F. Mattei [START_REF] Mattei | Modules de feuilletages holomorphes singuliers: I équisingularité[END_REF]). If F p is an equireducible unfolding of F 0 , then Fp := E * h,p F p is locally analytically trivial. If F 0 is defined by an exact one-form, then we can suppose that the unfolding is given by the one-form

dF p = ∂F p ∂x dx + ∂F p ∂y dy + p r=1 ∂F p ∂p r dp r .
Let m be any regular or singular point of the exceptional divisor D, in some local chart (x i , y i ) of D. According to the proof of the previous theorem, for each parameter p r , we can find a local vector field in some neighborhood U of m

X r = α r (x i , y i , p) ∂ ∂x i + β r (x i , y i , p) ∂ ∂y i - ∂ ∂p r ,
such that d Fp (X r ) = 0, which can also be written as

∂ Fp ∂p r = α r (x i , y i , p) ∂ Fp ∂x i + β r (x i , y i , p) ∂ Fp ∂y i . (1.4)
The local trivialization ϕ U on U is obtained by successive integrations of the vector fields X r . A direct corollary of the previous theorem is the following: [START_REF] Mattei | Modules de feuilletages holomorphes singuliers: I équisingularité[END_REF]). If F p is an equireducible unfolding of F 0 , then F p is topologically trivial.

Corollary 1.2.1 ([
Following [START_REF] Mattei | Modules de feuilletages holomorphes singuliers: I équisingularité[END_REF], the set of the classes of equireducible unfoldings Fp of F0 up to analytic equivalence is in bijection with the first non abelian cohomology group H 1 (D, G P ), where G P is the sheaf on D of the germs of automorphisms of the trivial deformation on M × P which commute with the projection on P , and are equal to the identity on the divisor. This map is defined by the cocycle {ϕ U,V } induced by the local trivializations ϕ U previously obtained. Consider the sheaf Θ F 0 of germs of vector fields tangent to the desingularized foliation F0 of the foliation F 0 . We adopt the following definition:

Definition 1.2.2. We call class of infinitesimal equireducible unfolding of F 0 every element of the first Cech cohomology group H 1 (D, Θ F 0 ).

For each direction defined by v in T 0 P , the derivative of {ϕ U,V } in this direction defines a map from T 0 P into H 1 (D, Θ F 0 ). We denote this map by T F p : if X U is a collection of local vector fields solutions of (1.4), then the cocycle {X U,V = X U -X V } evaluated at p = 0 is the image of the direction ∂/∂p r in H 1 (D, Θ F 0 ) by T F p . We also have that: [START_REF] Mattei | Modules de feuilletages holomorphes singuliers: I équisingularité[END_REF]). For every linear application L of T 0 P into H 1 (D, Θ F 0 ), there exits an equireducible unfolding F p of base P such that L = T F p .

Theorem 1.2.2 ([
The geometric meaning of this theorem is that the C-space H 1 (D, Θ F 0 ) can be interpreted as the tangent space to H 1 (D, G P ) at F 0 . The following result is the main tool of the proof of Theorem A: [START_REF] Mattei | Modules de feuilletages holomorphes singuliers: I équisingularité[END_REF]). The unfolding F p , p ∈ P is universal among the equireducible unfoldings of F 0 if and only if the map T F p :

Theorem 1.2.3 ([
T 0 P -→ H 1 (D, Θ F 0 ) is a bijective map.
Chapter 2

First universal family of normal forms of foliations.

The purpose of this chapter is to describe the local moduli space of the foliations in the topological class T M,N and give a universal family of analytic normal forms. We give the infinitesimal description and local parametrization of the moduli space M M,N using the cohomological tools considered by J.F. Mattei in [START_REF] Mattei | Modules de feuilletages holomorphes singuliers: I équisingularité[END_REF]: the tangent space to the moduli space is given by the first Cech cohomology group H 1 (D, Θ F ), where D is the exceptional divisor of the desingularization of f M,N , and Θ F is the sheaf of germs of vector fields tangent to the desingularized foliation of the foliation induced by df M,N = 0. Using a particular covering of D, we give a presentation of the space H 1 (D, Θ F ) in section (2.1).

In section (2.2), we exhibit a universal family of analytic normal forms (Theorem A). This way, we obtain local description of M M,N . We give the proof of the main result for the particular case M = N = 3 in section (2.3) and for the general case in section (2.4). The last section (2.5) is devoted to the proof of the global uniqueness of these normal forms (Theorem B).

The dimension of H 1 (D, Θ F ).

The foliations induced by the elements of T M,N can be desingularized after two standard blow-ups of points. So, we consider the composition of two blow-ups E : (M, D) -→ (C 2 , 0) with its exceptional divisor D = E -1 (0). On the manifold M, we consider the three charts V 2 (x 2 , y 2 ), V 3 (x 3 , y 3 ) and V 4 (x 4 , y 4 ) in which E is defined by E(x 2 , y 2 ) = (x 2 y 2 , y 2 ), E(x 3 , y 3 ) = (x 3 , x 2 3 y 3 ) and E(x 4 , y 4 ) = (x 4 y 4 , x 4 y 2 4 ). In particular, once M ≥ 2 and N ≥ 2, any function in T M,N is not topologically quasihomogeneous since the weighted desingularization process is a topological invariant [START_REF] Lejeune-Jalabert | Sur l'équivalence des courbes algébroïdes planes. Coefficients de Newton. Contribution à l'étude des singularités du point de vue du polygone de Newton[END_REF].

Notation. Let Q M,N be the region in the union of the real half planes (X, Y ), X ≥ 0 and Y ≥ 0, delimited by

Y -X + (M -1) > 0 2Y -X -(N -1) < 0 CHAPTER 2.
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δ M,N = (M + N -2)(M + N -3) 2 + (M -1)(M -2) 2 .
Proof. We consider the vector field θ f with an isolated singularity defined by

θ f = - ∂f ∂x ∂ ∂y + ∂f ∂y ∂ ∂x .
We consider the following covering of the divisor introduced above

D = V 2 ∪ V 3 ∪ V 4 .
The sheaf Θ F is a coherent sheaf, and according to Siu [START_REF] Siu | Every Stein subvariety admits a Stein neighborhood[END_REF], the covering {V 2 , V 3 , V 4 } can be supposed to be Stein. Thus, the first cohomology group H 1 (D, Θ F ) is given by the quotient

H 1 (D, Θ F ) = H 0 (V 2 ∩ V 4 , Θ F ) ⊕ H 0 (V 3 ∩ V 4 , Θ F ) η H 0 (V 2 , Θ F ) ⊕ H 0 (V 3 , Θ F ) ⊕ H 0 (V 4 , Θ F ) , CHAPTER 2.

FIRST UNIVERSAL FAMILY OF NORMAL FORMS OF FOLIATIONS.18

where η is the operator defined by η(X 2 , X 3 , X 4 ) = (X 2 -X 4 , X 3 -X 4 ). In order to compute each term of the quotient, we consider the following vector field

θ is = E * θ f x M +N -2 4 y 2M +N -3 4 .
This vector field has isolated singularities and defines the foliation on the two intersections

V 2 ∩ V 4 and V 3 ∩ V 4 . Therefore, we have H 0 (V 2 ∩ V 4 , Θ F ) = O(V 2 ∩ V 4 ) • θ is and H 0 (V 3 ∩ V 4 , Θ F ) = O(V 3 ∩ V 4 ) • θ is , and each element θ 24 in H 0 (V 2 ∩ V 4 , Θ F ) and θ 34 in H 0 (V 3 ∩ V 4 , Θ F
) can be written

θ 24 =   i∈N,j∈Z λ ij x i 4 y j 4   • θ is and θ 34 =   i∈Z,j∈N λ ij x i 4 y j 4   • θ is .
Similarly, we find that the elements θ 2 in H 0 (V 2 , Θ F ) and θ 3 in H 0 (V 3 , Θ F ) can be written

θ 2 =   i,j∈N α ij x j 4 y 2j-i-(N -1) 4   • θ is and θ 3 =   i,j∈N β ij x i-j-(M -1) 4 
y i 4   • θ is .
The cohomological equation describing H 1 (D, Θ F ) is thus equivalent to

θ 24 = θ 2 -θ 4 0 = θ 3 -θ 4 ⇐⇒ θ 24 = θ 2 -θ 3 and 0 = θ 2 -θ 4 θ 34 = θ 3 -θ 4 ⇐⇒ θ 34 = θ 3 -θ 2 ,
which means that its dimension corresponds to the number of elements which do not have a solution in any of the above two systems. This implies that the dimension of the cohomology group is equal to the number of integer points in the region Q M,N that can be expressed by the following formula

δ M,N = (M + N -2)(M + N -3) 2 + (M -1)(M -2) 2 .

The local normal forms.

We denote by P the following open set of

C δ M,N P = (• • • , a k,i , • • • , b k ,i , • • • ) such that a 1,i = 0, b 1,j = 0, 1 and 
a 1,i = a 1,j , b 1,i = b 1,j for i = j and i = j ,
where the indexes k,i,k and i satisfy the following system of inequalities

       0 ≤ k -1 ≤ i -1 -(N -2) ≤ 2k -i -1 ≤ 2i -2 -(M -2) ≤ k -i -1 ≤ N -3 + 2i 0 ≤ k -1 ≤ N -2 + 2i CHAPTER 2.
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For p ∈ P, we define the analytic normal form by

N (M,N ) p = xy(y + x 2 ) N -1 i=1 y + i k=1 a k,i xy k-1 M -2 i=1 y + N -1+2i k=1 b k,i x k+1 .
We consider the saturated foliation F (M,N ) p defined by the one-form dN

(M,N ) p on C 2+δ M,N .
The first main result is the following: for t = t 0 , there exists a map λ : (T , t 0 ) -→ (P, p 0 ) such that the family F t is analytically equivalent to N λ(t) . The differential of λ at the point t 0 is unique and the uniqueness of the map λ follows from Theorem B.

Theorem A.
Consider the sheaf Θ F (M,N ) p 0 of germs of vector fields tangent to the desingularized foliation

F(M,N) p 0 of the foliation F (M,N ) p 0 induced by dN (M,N ) p 0 = 0.
In chapter 1, we said that according to [START_REF] Mattei | Modules de feuilletages holomorphes singuliers: I équisingularité[END_REF], one can define the derivative of the deformation as a map from

T p 0 P into H 1 D, Θ F (M,N ) p 0
. We denote this map by T F (M,N ) p 0 : since, according to theorem (1.2.1), after desingularization any equireducible unfolding is locally analytically trivial, there exists X l , l ∈ {2, 3, 4}, a collection of local vector fields solutions of

∂ Ñ (M,N ) p ∂p 1,i = α 1,i (x l , y l , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂x l + β 1,i (x l , y l , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂y l , (2.1) 
where

p 1,i ∈ {a 1,i , b 1,i }. The cocycle {X 2,4 = X 2 -X 4 , X 3,4 = X 3 -X 4 } evaluated at p = p 0 is the image of the direction ∂ ∂p 1,i in H 1 D, Θ F (M,N ) p 0 by T F (M,N ) p 0

. To prove

Theorem A, we will make use of the following result stated before in chapter 1: [START_REF] Mattei | Modules de feuilletages holomorphes singuliers: I équisingularité[END_REF]). The unfolding F t , t ∈ (T , t 0 ) is universal among the equireducible unfoldings of F t 0 if and only if the map T F t 0 :

Theorem 2.2.1 ([
T t 0 T -→ H 1 (D, Θ F ) is a bijective map.
Theorem A is thus a consequence of the following proposition. , p ∈ (P, p 0 ). The image of the family

∂ ∂a k,i , ∂ ∂b k,i k,i in H 1 D, Θ F (M,N ) p 0 by T F (M,N ) p 0
is linearly free.

Let S be the subset of P defined by its elements at the first level k = k = 1 i.e.

S = (• • • , a 1,i , • • • , b 1,i , • • • ) such that 1 ≤ i ≤ N -1 and 1 ≤ i ≤ M -2 .
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We denote by A 1 the square matrix of size M + N -3, representing the decomposition of the images of

∂ ∂a 1,i , ∂ ∂b 1,i in H 1 D, Θ F (M,N ) p 0 by T F (M,N ) p 0
on the corresponding basis.

We note that the corresponding basis is in bijection with the set

x α y β /(α, β) = (0, 1 -i), 1 ≤ i ≤ N -1 or (α, β) = (-i, 0), 1 ≤ i ≤ M -2 .
Therefore, the proof of the proposition results from the following two lemmas.

Lemma 2.2.1. The matrix A 1 is invertible.

Lemma 2.2.2. The square matrix A of size δ M,N , representing the decomposition of the images of

{ ∂ ∂a k,i , ∂ ∂b k,i } k,i in H 1 (D, Θ F (M,N ) p 0
) by T Fp (p 0 ) on its basis, is an invertible matrix.

Proof of Theorem

A for M = N = 3.
In this section we give the proof of lemma (2.2.1) and lemma (2.2.2) for the case M = N = 3. In this case, the function f M,N is given by

f 3,3 = 3 i=1 (y + a i x) 3 i=1 y + b i x 2 ,
and the dimension δ M,N of the first cohomology group

H 1 (D, Θ F ) is equal to δ 3,3 = 7,
where the region Q M,N is given by the following figure. Considering the open set P of C δ 3,3 in this case

P = {(a 1,1 , a 1,2 , a 2,2 , b 1,1 , b 2,1 , b 3,1 , b 4,1 ) such that a 1,1 , a 1,2 = 0, b 1,1 = 0, 1 and a 1,1 = a 1,2 } ,
for p ∈ P, the analytic normal form is given by

N (3,3) p = xy y + x 2 (y + a 1,1 x) (y + a 1,2 x + a 2,2 xy) y + b 1,1 x 2 + b 2,1 x 3 + b 3,1 x 4 + b 4,1 x 5 .
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Proof of Lemma 2.2.1 for M = N = 3. The matrix A 1 is given by

A 1 =    ∂ ∂a 1,1 ∂ ∂a 1,2 ∂ ∂b 1,1 1 y 4 e 1,1 e 1,2 e 1,3 1 e 2,1 e 2,2 e 2,3 1 
x 4 e 3,1 e 3,2 e 3,3   .
We start by computing the entries e 3,1 and e 3,2 . In the chart V 4 , we have to solve

∂ Ñ (3,3) p ∂a 1,i = α 1,i (x 4 , y 4 , a 1,1 , a 1,2 , b 1,1 ) ∂ Ñ (3,3) p ∂x 4 + β 1,i (x 4 , y 4 , a 1,1 , a 1,2 , b 1,1 ) ∂ Ñ (3,3) p ∂y 4 . (2.2)
Since E is defined on V 4 by E(x 4 , y 4 ) = (x 4 y 4 , x 4 y 2 4 ), we find that

Ñ (3,3) p (x 4 , y 4 ) = x 6 4 y 9 4 (1 + x 4 ) (y 4 + a 1,1 ) y 4 + a 1,2 + a 2,2 x 4 y 2 4 1 + b 1,1 x 4 + b 2,1 x 2 4 y 4 + b 3,1 x 3 4 y 2 4 + b 4,1 x 4 4 y 3 4 .
We have

∂ Ñ (3,3) p ∂a 1,1 = Ñ (3,3) p y 4 + a 1,1 = y 9 4 a 1,1 (Q(x 4 ) + y 4 (...)) ∂ Ñ (3,3) p ∂a 1,2 = Ñ (3,3) p y 4 + a 1,2 + a 2,2 x 4 y 2 4 = y 9 4 a 1,2 (Q(x 4 ) + y 4 (...)) with Q(x 4 ) = a 1,1 a 1,2 x 6 4 (1 + x 4 )(1 + b 1,1 x 4
) and where the suspension points (...) correspond to auxiliary holomorphic functions in (x 4 , y 4 ). Since Ñ (3,3) p = y 9 4 (Q(x 4 ) + y 4 (...)), we find that

∂ Ñ (3,3) p ∂x 4 = y 9 4 (Q (x 4 ) + y 4 (...)) ∂ Ñ (3,3) p ∂y 4 = 9y 8 4 Q(x 4 ) + y 9 4 (...). (2.3) 
Setting β 1,i = y 4 β1,i , we deduce from (2.2) that

Q(x 4 ) a 1,i = α 1,i (x 4 , 0)Q (x 4 ) + 9 β1,i (x 4 , 0)Q(x 4 ) + y 4 (...) (2.4) 
Using Bézout identity, there exist polynomials W and Z in x 4 such that

Q ∧ Q = W Q + ZQ
where Q ∧ Q is the great common divisor of Q and Q . We can choose the polynomial function W to be of degree 2. We denote by

S(x 4 ) = x 4 (1 + x 4 )(1 + b 1,1 x 4 ) CHAPTER 2. FIRST UNIVERSAL FAMILY OF NORMAL FORMS OF FOLIATIONS.22 the polynomial function satisfying Q = (Q ∧ Q )S.
Therefore we obtain a solution of (2.2) in the chart V 4 of the form

α 1,i = W (x 4 )S(x 4 ) a 1,i
+ y 4 (...)

β 1,i = y 4 9 Z(x 4 )S(x 4 ) a 1,i + y 2 4 (...) i.e. X (4) 1,i = W (x 4 )S(x 4 ) a 1,i ∂ ∂x 4 + y 4 (...).
Similarly, in the chart V 3 we have to solve

∂ Ñ (3,3) p ∂a 1,i = α 1,i (x 3 , y 3 , a 1,1 , a 1,2 , b 1,1 ) ∂ Ñ (3,3) p ∂x 3 + β 1,i (x 3 , y 3 , a 1,1 , a 1,2 , b 1,1 ) ∂ Ñ (3,3) p ∂y 3 . (2.5)
We have

Ñ (3,3) p (x 3 , y 3 ) = x 9 3 y 3 (y 3 + 1)(x 3 y 3 + a 1,1 )(x 3 y 3 + a 1,2 + a 2,2 x 2 3 y 3 ) (y 3 + b 1,1 + b 2,1 x 3 + b 3,1 x 2 3 + b 4,1 x 3 3 ).
Similarly, we write (2.6)

∂ Ñ (3,3) p ∂a 1,1 = Ñ (3,3) p x 3 y 3 + a 1,1 = x 9 3 a 1,1 (P (y 3 ) + x 3 (...)) ∂ Ñ (3,3) p ∂a 1,2 = Ñ (3,3) p x 3 y 3 + a 1,2 + a 2,2 x 2 3 y 3 = x 9 3 a 1,2 (P (y 3 ) + x 3 (...)) with P (y 3 ) = a 1,1 a 1,2 y 3 (y 3 + 1)(y 3 + b 1,1 ).
Setting α 1,i = x 3 α1,i , we deduce from (2.5) that P (y 3 ) a 1,i = 9α 1,i (0, y 3 )P (y 3 ) + β 1,i (0, y 3 )P (y 3 ) + x 3 (...).

We set P ∧ P = U P + V P and P = (P ∧ P )S with

R(y 3 ) = y 3 (y 3 + 1)(y 3 + b 1,1 )
Also, we can assume that the degree of U is 2, and so we obtain the solution

α 1,i = x 3 9 V (y 3 )R(y 3 ) + x 2 3 (...) β 1,i = U (y 3 )R(y 3 ) a 1,i + x ( 3 ...) i,e. X (3) 1,i = U (y 3 )R(y 3 ) a 1,i ∂ ∂y 3 + x 3 (...).
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To compute the cocycle we write X (3) 1,i in the chart V 4 . Using the standard change of coordinates x 4 = 1/y 3 and y 4 = x 3 y 3 and since we have

U (y 3 ) = Ũ (x 4 ) x 2 4 and R(y 3 ) = S(x 4 ) x 4 4
where Ũ is a polynomial function, we find the first part of the first term of the cocycle

X (3,4) 1,i = X (3) 1,i -X (4) 1,i = - S(x 4 ) a 1,i Ũ (x 4 ) x 4 4 + W (x 4 ) ∂ ∂x 4 + y 4 (...).
Let Θ 0 be a holomorphic vector field with isolated singularities defining F(3,3)

p 0 on V 3 ∩ V 4 . We have X (3,4) 1,i = Φ (3,4) 1,i Θ 0 .
We can choose

Θ 0 = E * Θ N (3,3) p x 4 4 y 6 4 with Θ N (3,3) p = ∂N (3,3) p ∂x ∂ ∂y - ∂N (3,3) p ∂y ∂ ∂x .
According to Proposition (2.1.1), the set of the coefficients of the Laurent's series of Φ

(3,4) 1,i characterizes the class of X (3,4) 1,i in H 1 (D, Θ F (3,3) p 0
). Using the relations

∂ ∂x = 2 y 4 ∂ ∂x 4 - 1 x 4 ∂ ∂y 4 and ∂ ∂y = -1 y 2 4 ∂ ∂x 4 + 1 x 4 y 4 ∂ ∂y 4 ,
we write

Θ 0 = 1 x 4 4 y 6 4 -1 x 4 y 2 4 ∂ Ñp ∂y 4 ∂ ∂x 4 + 1 x 4 y 2 4 ∂ Ñp ∂x 4 ∂ ∂y 4 .
Now, according to (2.3), we get the equality

Φ (3,4) 1,i = 1 9a 1,i a 1,1 a 1,2 Ũ (x 4 ) x 4 4 + W (x 4 ) + y 4 (...).
Since Ũ (x 4 ) is of degree 2, then the coefficient of 1/x 4 in the Laurent series of Ũ (x 4 )

x 4 4 is zero. So the entries e 3,1 and e 3,2 are zeros.

We proceed similarly to compute the entry e 3,3 . So, in the chart V 4 , we have to solve the following equation

∂ Ñ (3,3) p ∂b 1,1 = η 1,1 (x 4 , y 4 , a 1,1 , a 1,2 , b 1,1 ) ∂ Ñ (3,3) p ∂x 4 + γ 1,1 (x 4 , y 4 , a 1,1 , a 1,2 , b 1,1 ) ∂ Ñ (3,3) p ∂y 4 . (2.7)
Following the same algorithm, we obtain the second part of the first term of the cocycle

Y (3,4) 1,1 = Y (3) 1,1 -Y (4) 1,1 = - S(x 4 ) 1 + b 1,1 x 4 Ũ (x 4 ) x 3 4 + x 4 W (x 4 ) ∂ ∂x 4 + y 4 (...).
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Setting

Y (3,4) 1,1 = Ψ (3,4)
1,1 Θ 0 , we obtain the following expression of Ψ

(3,4) 1,1 Ψ (3,4) 1,1 = 1 9a 1,1 a 1,2 (1 + b 1,1 x 4 ) Ũ (x 4 ) x 3 4 + x 4 W (x 4 ) + y 4 (...).
Now, to compute the coefficient of 1/x 4 , we write

Ũ (x 4 ) = u 0 + u 1 x 4 + u 2 x 2 4 and 1 1 + b 1,1 x 4 = ∞ s=0 (-1) s b s 1,1 x s 4 .
So, we obtain the following equality

Ũ (x 4 ) (1 + b 1,1 x 4 )x 3 4 = b 2 1,1 Ũ -1 b 1,1 1 x 4 + T (x 4 ) x 3 4 + x 4 (...) + cst,
where T is a polynomial in x 4 of degree 1. This yields the following expression of e 3,3

e 3,3 = b 2 1,1 9a 1,1 a 1,2 Ũ -1 b 1,1 , which is different from zero. We note that Ũ -1 b 1,1 is different from zero because -b 1,1
is a root of the polynomial P which satisfies the Bézout identity P ∧ P = U P + V P . Now we compute the second cocycle. In the chart V 4 , we can write

Ñ (3,3) P as Ñ (3,3) P (x 4 , y 4 ) = x 6 4 A(y 4 ) + y 9 4 x 4 (...)
where A(y 4 ) = y 9 4 (y 4 + a 1,1 )(y 4 + a 1,2 ). So, we obtain the following expressions 

Setting α 1,i = x 4 α1,i , we deduce from (2.2) that A(y 4 ) y 4 + a 1,i = 6α 1,i (0, y 4 )A(y 4 ) + β 1,i (0, y 4 )A (y 4 ) + y 8 4 x 4 (...).

(2.9)

Using Bézout identity, there exist polynomials B and C in y 4 such that

A ∧ A = BA + CA.
As before, we can choose the polynomial function B to be of degree 2. We denote by

D(y 4 ) = y 4 (y 4 + a 1,1 )(y 4 + a 1,2 ) the polynomial function satisfying A = (A ∧ A )D.
Therefore we obtain a solution of (2.2) in the chart V 4

X (4) 1,i = B(y 4 )D(y 4 ) y 4 + a 1,i ∂ ∂y 4 + x 4 (...).
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Similarly, in the chart V 2 we write

Ñ (3,3) p (x 2 , y 2 ) = y 6 2 (J(x 2 ) + x 2 2 y 2 (...)) with J(x 2 ) = x 2 (1 + a 1,1 x 2 )(1 + a 1,2 x 2 ).
We set J ∧ J = KJ + LJ = 1. Again, we can assume that the degree of K is 2 and so we obtain the solution

X (2) 1,i = x 2 1 + a 1,i x 2 K(x 2 )J(x 2 ) ∂ ∂x 2 + y 2 (...).
Using the change of coordinates x 4 = x 2 2 y 2 and y 4 = 1/x 2 , we find the first part of the second term of the cocycle

X (2,4) 1,i = X (2) 1,i -X (4) 1,i = - 1 y 4 + a 1,i K(y 4 )A(y 4 ) y 12 4 + B(y 4 )D(y 4 ) ∂ ∂y 4 + x 4 (...)
where K is the polynomial function satisfying K(x 2 ) = K(y 4 )

y 2 4
.

Finally, we obtain the following expression of Φ

,i = -1 6(y 4 + a 1,i ) K(y 4 ) y 4 4 + B(y 4 ) + x 4 (...). (2,4) 1,i Φ (2,4) 1 
Similarly, we find that Φ (2,4) 1,i can be written as

Φ (2,4) 1,i = -1 6 - K(-a 1,i ) a 4 1,i 1 y 4 + K(-a 1,i ) a 5 1,i + B(0) a 1,i + R(y 4 ) y 4 4
+ y 4 (...) + x 4 (...).

So, the entries (e ji ) 1≤i,j≤2 are given by

e ji =      K(-a 1,i ) 6a 4 1,i if j = 1 -1 6 K(-a 1,i ) a 5 1,i + B(0) a 1,i if j = 2.
A simple computation shows that the determinant of the block matrix formed by these entries is given by

det(e ji ) 1≤i,j≤2 = K(-a 1,1 ) K(-a 1,2 ) 36a 4 1,1 a 4 1,2 1 a 1,1 - 1 a 1,2 + B(0) a 3 1,1 K(-a 1,1 ) - a 3 1,2 K(-a 1,2 ) .
Let us compute the terms K (-a 1,i ) and B(0). In fact, we know that K(y 4 ) = y 2 4 K(x 2 ) with y 4 = 1/x 2 . This implies that

K(-a 1,i ) = a 2 1,i K - 1 a 1,i .
But, we also know that

K -1 a 1,i = 1 J -1 a 1,i
. Computing the term J -1 a 1,i , we get the following expressions

K(-a 1,1 ) = -a 2 1,1 a 1,2 1 
a 1,2 -1 a 1,1 and K(-a 1,2 ) = -a 2 1,2 a 1,1 1 a 1,1 -1 a 1,2
.

(2.10)

A simple computation using Bézout identity shows that the term B(0) is given by

B(0) = 1 9a 1,1 a 1,2 . (2.11)
Finally, we get the following expression of the determinant

det(e ji ) 1≤i,j≤2 = -11 324 
1 a 2 1,1 a 2 1,2 (a 1,2 -a 1,1 )
,

which is different from zero because a 1,1 = a 1,2 .
Proof of Lemma 2.2.2 for M = N = 3. After proving the invertibility of the matrix A 1 , it remains to study the propagation of these coefficients along the higher levels. In fact, we have to solve the following equations

∂ Ñ (3,3) p ∂a k,i = α k,i (x 4 , y 4 , a k,i , b k,i ) ∂ Ñ (3,3) p ∂x 4 + β k,i (x 4 , y 4 , a k,i , b k,i ) ∂ Ñ (3,3) p ∂y 4 (2.12) ∂ Ñ (3,3) p ∂b k,i = η k,i (x 4 , y 4 , a k,i , b k,i ) ∂ Ñ (3,3) p ∂x 4 + γ k,i (x 4 , y 4 , a k,i , b k,i ) ∂ Ñ (3,3) p ∂y 4 . (2.13) 
We note that we have the following relations

∂ Ñ (3,3) p ∂a 2,2 = x 4 y 2 4 ∂ Ñ (3,3) p ∂a 1,2 and ∂ Ñ (3,3) p ∂b k,i = x k-1 4 y k-1 4 ∂ Ñ (3,3) p ∂b 1,i , k = 2, 3, 4. (2.14) This implies that if X k,i = α k,i ∂ ∂x 4 + β k,i ∂ ∂y 4 and Y k,i = η k,i ∂ ∂x 4 + γ k,i
∂ ∂y 4 are solutions of (2.12) and (2.13) respectively for k = 1, then we obtain solutions for the other values of k setting

X 2,2 = x 4 y 2 4 X 1,2 and Y k,i = x k-1 4 y k-1 4 Y 1,i .
This propagation can be described using the region Q M,N as shown in figure (2.3). In fact, the decomposition of the vector fields X

(2,4)

k,i , X (3,4) k,i , Y (2,4) k,i and 
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corresponds to the decomposition of the series Φ

(2,4)

k,i , Φ (3,4) k,i , Ψ (2,4) k,i and Ψ (3,4)
k,i on the basis

1/x 4 , 1, 1/y 4 , x 4 y 4 , y 4 , x 4 y 2 4 , x 2 4 y 3 4 .
As a consequence of the previous relations, this decomposition can be expressed by the following matrix

A =     A 1 0 0 0 * A 2 0 0 * * A 3 0 * * * A 4    
where A 1 is as in the previous lemma and A k , k = 2, 3, 4, is given by

A 2 = ∂ ∂a 2,2 ∂ ∂b 2,1 x 4 y 4 e 1,2 0 y 4 0 e 3,3 A 3 = ∂ ∂b 3,1 x 4 y 2 4 e 3,3 A 4 = ∂ ∂b 4,1 x 2 4 y 3 4 e 3,3 .
The fact that e 1,2 =

1 6a 1,2 (a 1,1 -a 1,2
) is different from zero shows that the whole matrix A is invertible.

Remark. If we consider the germs of functions defined by

N (3,3) p = xy y + x 2 (y + a 1,1 x) y + a 1,2 x + a 2,2 x 2 y + b 1,1 x 2 + b 2,1 x 3 + b 3,1 x 4 + b 4,1 x 5 ,
we find that the matrix A is not invertible everywhere. In fact, in this case, we have the relation

∂ ∂a 2,2 = x 4 y 4 ∂ ∂a 1,2 ,
and so the matrix A 2 is given by

A 2 = ∂ ∂a 2,2 ∂ ∂b 2,1 x 4 y 4 e 2,2 0 y 4 0 e 3,3 . 
The fact that the term e 2,2 =

a 1,2 -10a 1,1 6a 2 1,2
vanishes on the hypersurface of equation

(a 1,2 -10a 1,1 = 0),
shows that this family of functions is not universal, it is only "generically" universal.

Proof of Theorem A for the general case.

In this section, we give the proof of lemma (2.2.1) and lemma (2.2.2) for the general case.
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Proof of Lemma 2.2.1. The matrix A 1 is given by

A 1 =                     ∂ ∂a 1,1 ∂ ∂a 1,2 . . . ∂ ∂a 1,N -1 ∂ ∂b 1,1 ∂ ∂b 1,2 . . . ∂ ∂b 1,M -2 1 y N -2 4 1 y N -3 4 . . . M 1 M 2 1 y 4 1 1 x 4 1 x 2 4 . . . M 3 M 4 1 x M -2 4                     .
We start by computing the matrix M 3 . In the chart V 4 , we have to solve

∂ Ñ (M,N ) p ∂a 1,i = α 1,i (x 4 , y 4 , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂x 4 + β 1,i (x 4 , y 4 , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂y 4 . (2.15) Since E is defined on V 4 by E(x 4 , y 4 ) = (x 4 y 4 , x 4 y 2 4
), we find that

Ñ (M,N ) p (x 4 , y 4 ) = x M +N 4 y 2M +N 4 (1 + x 4 ) N -1 i=1 y 4 + i k=1 a k,i x k-1 4 y 2k-2 4 M -2 i=1 1 + N -1+2i k=1 b k,i x k 4 y k-1 4 .
We have

∂ Ñ (M,N ) p ∂a 1,i = Ñ (M,N ) p y 4 + i k=1 a k,i x k-1 4 y 2k-2 4 = y 2M +N 4 a 1,i (Q(x 4 ) + y 4 (...)) with Q(x 4 ) = x M +N 4 (1 + x 4 ) N -1 j=1 a 1,j M -2 j=1 (1 + b 1,j x 4 )
and where the suspension points (...) correspond to auxiliary holomorphic functions in

(x 4 , y 4 ). Since Ñ (M,N ) p = y 2M +N 4 (Q(x 4 ) + y 4 (...)), we find that ∂ Ñ (M,N ) p ∂x 4 = y 2M +N 4 (Q (x 4 ) + y 4 (...)) ∂ Ñ (M,N ) p ∂y 4 = (2M + N )y 2M +N -1 4 Q(x 4 ) + y 2M +N 4 (...) (2.16) 
Setting β 1,i = y 4 β1,i , we deduce from (2.15) that

Q(x 4 ) a 1,i = α 1,i (x 4 , 0)Q (x 4 ) + (2M + N ) β1,i (x 4 , 0)Q(x 4 ) + y 4 (...) (2.17) CHAPTER 2.

FIRST UNIVERSAL FAMILY OF NORMAL FORMS OF FOLIATIONS.29

Using Bézout identity, there exist polynomials W and Z in x 4 such that

Q ∧ Q = W Q + ZQ
where Q ∧ Q is the great common divisor of Q and Q . We can choose the polynomial function W to be of degree M -1. We denote by

S(x 4 ) = x 4 (1 + x 4 ) M -2 i=1 (1 + b 1,i x 4 ) the polynomial function satisfying Q = (Q ∧ Q )S.
Therefore we obtain a solution of (2.15) in the chart V 4 of the form

α 1,i = W (x 4 )S(x 4 ) a 1,i
+ y 4 (...)

β 1,i = y 4 2M +N Z(x 4 )S(x 4 ) a 1,i + y 2 4 (...) i.e. X (4) 1,i = W (x 4 )S(x 4 ) a 1,i ∂ ∂x 4 + y 4 (...).
Similarly, in the chart V 3 we write

Ñ (M,N ) p = x 2M +N 3 (P (y 3 ) + x 3 (...)) with P (y 3 ) = y 3 (y 3 + 1) N -1 j=1 a 1,j M -2 j=1 (y 3 + b 1,j ).
We set P ∧ P = U P + V P and P = (P ∧ P )R with

R = y 3 (y 3 + 1) M -2 i=1 (y 3 + b 1,i ).
Also, we can assume that the degree of U is M -1 and so we obtain the solution

X (3) 1,i = U (y 3 )R(y 3 ) a 1,i ∂ ∂y 3 + x 3 (...).
To compute the cocycle we write X

1,i in the chart V 4 . Using the standard change of coordinates x 4 = 1/y 3 and y 4 = x 3 y 3 and since we have

U (y 3 ) = Ũ (x 4 ) x M -1 4 and R(y 3 ) = S(x 4 ) x M +1 4
where Ũ is a polynomial function, we find the first part of the first term of the cocycle

X (3,4) 1,i = X (3) 1,i -X (4) 1,i = - S(x 4 ) a 1,i Ũ (x 4 ) x 2M -2 4 + W (x 4 ) ∂ ∂x 4 + y 4 (...).
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Let Θ 0 be a holomorphic vector field with isolated singularities defining F(M,N)

p 0 on V 3 ∩V 4 . We have X (3,4) 1,i = Φ (3,4) 1,i Θ 0 .
We can choose ). Now, according to (2.16), we get the equality

Θ 0 = E * Θ N (M,N ) p x M +N -2
Φ (3,4) 1,i = 1 (2M + N )a 1,i N -1 j=1 a 1,j Ũ (x 4 ) x 2M -2 4 + W (x 4 ) + y 4 (...). Since Ũ (x 4 ) is of degree M -1, then the coefficients of 1/x l 4 for 1 ≤ l ≤ M -2 in the Laurent series of Ũ (x 4 )
x 2M -2 4 are zeros. So the matrix M 3 is the zero matrix.

We proceed similarly to compute the matrix M 4 . So, in the chart V 4 , we have to solve the following equation

∂ Ñ (M,N ) p ∂b 1,i = η 1,i (x 4 , y 4 , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂x 4 + γ 1,i (x 4 , y 4 , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂y 4 . (2.18) 
Following the same algorithm, we obtain the second part of the first term of the cocycle

Y (3,4) 1,i = Y (3) 1,i -Y (4) 1,i = - S(x 4 ) 1 + b 1,i x 4 Ũ (x 4 ) x 2M -3 4 + x 4 W (x 4 ) ∂ ∂x 4 + y 4 (...).
Setting Y 3,4 1,i = Ψ 3,4 1,i Θ 0 , we obtain the following expression of Ψ

(3,4) 1,i Ψ (3,4) 1,i = 1 (2M + N ) N -1 j=1 a 1,j (1 + b 1,i x 4 ) Ũ (x 4 ) x 2M -3 4 + x 4 W (x 4 ) + y 4 (...).
Now, to study the invertibility of the matrix M 4 , we write

Ũ (x 4 ) = M -1 l=0 u l x l 4 and 1 1 + b 1,i x 4 = ∞ s=0 (-1) s b s 1,i x s 4 .
So, we obtain the following equality

Ũ (x 4 ) (1 + b 1,i )x 2M -3 4 = M -2 j=1 d ji 1 x M -j-1 4 + T (x 4 ) x 2M -3 4 + x 4 (...) + cst,
where T is a polynomial in x 4 of degree M -2 and d ji is given by

d ji = M -1 r=0 (-1) M -r+j u r b M +j-r-2 1,i = (-1) M +j b M +j-2 1,i Ũ -1 b 1,i .
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This yields the following expression of Ψ

(3,4) 1,i Ψ (3,4) 1,i = 1 (2M + N ) N -1 l=1 a 1,l   M -2 j=1 (-1) j+1 b 2M -j-3 1,i x j 4 Ũ -1 b 1,i + T (x 4 ) x 2M -3 4 + x 4 (...) + cst   + y 4 (...).
Thus, the matrix M 4 = (m ji ) 1≤i,j≤M -2 is given by

m ji = (-1) j+1 b 2M -j-3 1,i (2M + N ) N -1 l=1 a 1,l Ũ -1 b 1,i ∀1 ≤ i, j ≤ M -2
which defines a Vandermonde matrix. We note that Setting α 1,i = x 4 α1,i , we deduce from (2.15) that

Ũ -1 b 1,i is different from zero for all 1 ≤ i ≤ M -2 because the different values {-b 1,i } 1≤i≤M -
A(y 4 ) y 4 + a 1,i = (M + N )α 1,i (0, y 4 )A(y 4 ) + β 1,i (0, y 4 )A (y 4 ) + y 2M +N -1 4 x 4 (...). (2.20) 
Using Bézout identity, there exist polynomials B and C in y 4 such that

A ∧ A = BA + CA.
As before, we can choose the polynomial function B to be of degree N -1. We denote by

D(y 4 ) = y 4 N -1
j=1 (y 4 +a 1,j ) the polynomial function satisfying A = (A∧A )D. Therefore we obtain a solution of (2.15) in the chart V 4

X (4) 1,i = B(y 4 )D(y 4 ) y 4 + a 1,i ∂ ∂y 4 + x 4 (...).
Similarly, in the chart V 2 we write

Ñ (M,N ) p = y M +N 2 (J(x 2 ) + x 2 2 y 2 (...)) CHAPTER 2. FIRST UNIVERSAL FAMILY OF NORMAL FORMS OF FOLIATIONS.32 with J(x 2 ) = x 2 N -1 j=1 (1 + a 1,j x 2 ).
We set J ∧ J = KJ + LJ = 1. Again, we can assume that the degree of K is N -1 and so we obtain the solution

X (2) 1,i = x 2 1 + a 1,i x 2 K(x 2 )J(x 2 ) ∂ ∂x 2 + y 2 (...).
Using the change of coordinates x 4 = x 2 2 y 2 and y 4 = 1/x 2 , we find the first part of the second term of the cocycle

X (2,4) 1,i = X (2) 1,i -X (4) 1,i = - 1 y 4 + a 1,i K(y 4 )A(y 4 ) y 2M +3N -3 4 + B(y 4 )D(y 4 ) ∂ ∂y 4 + x 4 (...)
where K is the polynomial function satisfying K(x 2 ) = K(y 4 )

y N -1 4 .
Finally, we obtain the following expression of Φ

(2,4) 1,i Φ (2,4) 1,i = -1 (M + N )(y 4 + a 1,i ) K(y 4 ) y 2N -2 4 + B(y 4 ) + x 4 (...).
Similarly, we find that Φ (2,4) 1,i can be written as

Φ (2,4) 1,i = -1 M + N   N -1 j=1 (-1) N +j-1 K(-a 1,i ) a N +j 1,i 1 y N -j-1 4 + B(0) a 1,i + R(y 4 ) y 2N -2 4 + y 4 (...)   + x 4 (...).
So, the matrix M 1 = (m ji ) 1≤i,j≤N -1 is given by

m ji =      (-1) N +j (M +N )a N +j 1,i K(-a 1,i ) for j = N -1 1 M +N -1 a 2N -1 1,i K(-a 1,i ) -B(0) a 1,i for j = N -1.
A simple computation shows that the determinant of the matrix M 1 is given by

det(M 1 ) = (-1) N 2 -1 (M + N ) N -1 N -1 i=1 K(-a 1,i ) a N +1 1,i   1≤i<j≤N -1 1 a 1,i - 1 a 1,j -B(0) N -1 i=1 (-1) i a N 1,i K(-a 1,i ) M (N -1)i   CHAPTER 2.
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where

M (N -1)i = 1≤j<j ≤N -1 j,j =i 1 a 1,j -1 a 1,j
is the determinant of the matrix obtained by deleting the (N -1) th row and i th column of the Vandermonde (N -1)-matrix of

-1 a 1,i 1≤i≤N -1 .
Let us compute the term B(0

) N -1 i=1 (-1) i a N 1,i K(-a 1,i ) M (N -1)i . In fact, we know that K(y 4 ) = y N -1 4 K(x 2 ) with y 4 = 1/x 2 . This implies that K(-a 1,i ) = (-a 1,i ) N -1 K - 1 a 1,i .
But, we also know that

K -1 a 1,i = 1 J -1 a 1,i
. Computing the term J -1 a 1,i , we get the following expression

K(-a 1,i ) = (-1) N a N -1 1,i N -1 j=1 j =i a 1,j 1 a 1,j -1 a 1,i . (2.21)
Moreover, one can see that the term (-1) i N -1

j=1 j =i 1 a 1,j -1 a 1,i M (N -1)i is equal to (-1) α+i 1≤i<j≤N -1 1 a 1,i -1 a 1,j
, where α is equal to the number of integer numbers in the interval

[i + 1, N -1]. When N is even (-1) α+i is equal to -1 but when N is odd it is equal to 1.
This implies that we have the following equality

B(0) N -1 i=1 (-1) i a N 1,i K(-a 1,i ) M (N -1)i = -(N -1)B(0) N -1 j=1 a 1,j 1≤i<j≤N -1 1 a 1,i - 1 a 1,j .
A simple computation using Bézout identity shows that the term B(0) is given by

B(0) = 1 (2M + N ) N -1 j=1 a 1,j . (2.22)
Finally, we get the following expression of the determinant of the matrix

M 1 det(M 1 ) = (-1) N 2 -1 (M + N ) N -1 2M + 2N -1 2M + N N -1 i=1 K(-a 1,i ) a N +1 1,i 1≤i<j≤N -1 1 a 1,i - 1 a 1,j .
Like for Ũ , we also have that K(-a 1,i ) is different from zero for all 1 ≤ i ≤ N -1 and a 1,i is different from a 1,j for all i = j. This ensures that the matrix M 1 is invertible.

Proof of Lemma 2.2.2. After proving the invertibility of the matrix A 1 , it remains to study the propagation of these coefficients along the higher levels. In fact, we have to solve the following equations

∂ Ñ (M,N ) p ∂a k,i = α k,i (x 4 , y 4 , a k,i , b k,i ) ∂ Ñ (M,N ) p ∂x 4 + β k,i (x 4 , y 4 , a k,i , b k,i ) ∂ Ñ (M,N ) p ∂y 4 (2.23) CHAPTER 2. FIRST UNIVERSAL FAMILY OF NORMAL FORMS OF FOLIATIONS.34 ∂ Ñ (M,N ) p ∂b k,i = η k,i (x 4 , y 4 , a k,i , b k,i ) ∂ Ñ (M,N ) p ∂x 4 + γ k,i (x 4 , y 4 , a k,i , b k,i ) ∂ Ñ (M,N ) p ∂y 4 . (2.24)
We note that we have the following relations

∂ Ñ (M,N ) p ∂a k,i = x k-1 4 y 2k-2 4 ∂ Ñ (M,N ) p ∂a 1,i and ∂ Ñ (M,N ) p ∂b k,i = x k-1 4 y k-1 4 ∂ Ñ (M,N ) p ∂b 1,i . (2.25) This implies that if X k,i = α k,i ∂ ∂x 4 + β k,i ∂ ∂y 4 and Y k,i = η k,i ∂ ∂x 4 + γ k,i
∂ ∂y 4 are solutions of (2.23) and (2.24) respectively for k = 1, then we obtain solutions for the other values of k setting

X k,i = x k-1 4 y 2k-2 4 X 1,i and Y k,i = x k-1 4 y k-1 4 Y 1,i .
This propagation can be described using the region Q M,N as shown in figure (2.2). In fact, the decomposition of the vector fields X

(2,4)

k,i , X (3,4) k,i , Y (2,4) k,i and 
Y (3,4) k,i on the basis of H 1 D, Θ F (M,N ) p 0
corresponds to the decomposition of the series Φ

(2,4)

k,i , Φ (3,4) k,i , Ψ (2,4) k,i and 
Ψ (3,4)
k,i on the basis

x i 4 y j 4 | (i, j) ∈ N × Z ∪ Z × N such that j -2i + (N -1) > 0 and j -i -(M -1) < 0 .
As a consequence of the previous relations, this decomposition can be expressed by the following matrix

A =        A 1 0 0 • • • 0 * A 2 0 • • • 0 * * A 3 • • • 0 . . . . . . . . . . . . . . . * * * * A N +2M -5       
where

A 1 = M 1 M 2 M 3 M 4 and A k is given by               ∂ ∂a k,1 . . . ∂ ∂a k,N -k ∂ ∂b k,1 . . . ∂ ∂b k,M -2 x k-1 4 y N -2k 4 M k 1 = M 1 \ last . . . k -1 0 x k-1 4 y k-1 4
column and row

x k-2 4 y k-1 4 . . . 0 M 4 y k-1 4 x M -k-1 4               if 2 ≤ k ≤ N -1 CHAPTER 2. FIRST UNIVERSAL FAMILY OF NORMAL FORMS OF FOLIATIONS.35      ∂ ∂b k,M -1-q k . . . ∂ ∂b k,M -2 y k-1 4 x M -k-q k 4 M k 4 = M 4 \ first M -2 -q k y k-1 4 x M -k-1 4 column and row      if N ≤ k ≤ N + 2M -5 with q k =] k-1+(N -1) 2 ] + M -k, where ]x] is the strict integer part m of x defined by m < x ≤ m + 1. For 2 ≤ k ≤ N -1, the determinant of the matrix M k 1 is given by Vandermonde 1 a 1,1 , ..., 1 a 1,N -k N -k i=1 (-1) N +i K(-a 1,i ) (M + N ) N -k N -k i=1 a N +1 1,i . Since K(-a 1,i ) is different from zero for all 1 ≤ i ≤ N -1 and a 1,i is different from a 1,j for all i = j, then the matrix M k 1 is invertible for all 2 ≤ k ≤ N -1. Similarly, for N ≤ k ≤ N + 2M -5, the determinant of the matrix M k 4 is given by Vandermonde 1 b 1,M -1-q k , ..., 1 b 1,M -2 M -2 i=M -1-q k (-1) i+1 b M -2+q k 1,i Ũ -1 b 1,i (2M + N ) q k N -1 i=1 a q k 1,i . Also since Ũ -1 b 1,i is different from zero for all 1 ≤ i ≤ M -2 and b 1,i is different from b 1,
j for all i = j, then the matrix M k 4 is invertible for all N ≤ k ≤ N + 2M -5. This shows that the whole matrix A is invertible.

Remark. The fact that the matrix M k 1 is a principal minor of M 1 is essential for its determinant to be written under the form above. As we saw in the previous section, some coefficients of the last row of M 1

-1 a 2N -1 1,i K(-a 1,i ) -B(0)
a 1,i may vanish.

The uniqueness of the normal forms.

This section is devoted to study the uniqueness of the normal forms. From now on, we will consider N p as a notation for the normal form instead of N (M,N ) p . Let h λ be the diffeomorphism defined by: h λ (x, y) = (λx, λ 2 y). We have:

N p • h λ = λ 2M +2N -1 N λ•p with λ • p = λ • (a k,i , b k,i ) = (λ 2k-3 a k,i , λ k-1 b k,i ).
Again, this action of C * cannot be used to "localize" the uniqueness problem as done in [START_REF] Genzmer | Moduli spaces for topologically quasi-homogeneous functions[END_REF] because, contrary to the quasi-homogeneous case, the topological class of the function Np•h λ λ 2M +2N -1 jumps while λ goes to zero. However, we have:

CHAPTER 2. FIRST UNIVERSAL FAMILY OF NORMAL FORMS OF FOLIATIONS.36

Theorem B. The foliations defined by N p and N q , p and q are in P, are equivalent if and only if there exists λ in C * such that p = λ • q.

We start by the following lemma: Lemma 2.5.1. Let X be a germ of formal vector field given by its decomposition into the sum of its homogeneous components X = X ν 0 +1 + X ν 0 +2 + . . .. If N p • e X ν 0 +1 +... = N q , then for all 1 ≤ i ≤ N -1 and 1 ≤ k ≤ ν 0 we have a k,i = a k,i and for all 1 ≤ i ≤ M -2 and 1 ≤ k ≤ ν 1 we have b k,i = b k,i , where ν 1 + 1 is the order of tangency of φ, the lifted biholomorphism of φ = e X by the blowing up E 1 defined by E 1 (x 1 , y 1 ) = (x 1 , x 1 y 1 ).

Proof. We consider the decomposition of the normal form into its homogeneous components:

N p = N (M +N ) p + N (M +N +1) p + . . . Since we have e X ν 0 +1 +... * N p = N p + X ν 0 +1 .N p + . . . , we obtain that N (M +N +l) p = N (M +N +l) q
for l from 0 to ν 0 -1. The expression of N (M +N +l) p only depends on the variables a k,i for k ≤ l + 1 and b k,i for k ≤ l. Setting φ = e Xν 1 +1 +... , the initial hypothesis leads to the following equality

Ñp • e Xν 1 +1 +... = Ñq ,
where

Ñp (x 1 , y 1 ) = x 1 y 1 (y 1 + x 1 ) N -1 i=1 y 1 + i k=1 a k,i x k-1 1 y k-1 1 M -2 i=1 y 1 + N -1+2i k=1 b k,i x k 1 .
Similarly we obtain

Ñ (M +1+l) p = Ñ (M +1+l) q
for l from 0 to ν 1 -1. The expression of Ñ (M +1+l) p only depends on the variables a k,i for k ≤ l (except for l = 0 as Ñ (M +1) p depends on a 1,i ) and b k,i for k ≤ l + 1. Now, we claim that for all l from 0 to ν 0 -1,

N (M +N +l) p = N (M +N +l) q and Ñ (M +1+l) p = Ñ (M +1+l) q ⇔ a k,i = a k,i and b k,i = b k,i ∀k ≤ l+1.
This fact can be proved by induction on l ≤ ν 0 -1. For l = 0, we have the following two equalities

N (M +N ) p = N (M +N ) q and Ñ (M +1) p = Ñ (M +1) q .
Since the conjugacy preserves a fixed numbering of the branches, we obtain that

a 1,i = a 1,i and b 1,i = b 1,i . Suppose that a k,i = a k,i and b k,i = b k,i for l < ν 0 -1. Then we have N (M +N +l) p = N (M +N +l) q with N (M +N +l) p = N -1 i=1 a l+1,i xy l N (M +N ) p y + a 1,i x + M -2 i=1 b l,i x l+1 N (M +N ) p y + H a,b (x, y),
where H a,b is a function which depends on a k,i for k < l + 1 and b k,i for k < l. This implies that a l+1,i = a l+1,i . Similarly, we have

Ñ (M +1+l) p = Ñ (M +1+l) q with Ñ (M +1+l) p = N -1 i=1 a l 2 +1,i x l 2 1 y l 2 1 Ñ (M +1) p a 1,i + M -2 i=1 b l+1,i x l+1 1 Ñ (M +1) p y 1 + b 1,i x 1 + Ha,b (x 1 , y 1 )
where the first term exists only if l is even and greater than or equal to two and Ha,b (x 1 , y 1 ) is a function which depends on a k,i for k < l and b k,i for k < l + 1. This implies that b l+1,i = b l+1,i . Now, we know that ν 0 ≤ ν 1 . So we claim that for all

ν 0 ≤ l ≤ ν 1 -1, Ñ (M +1+l) p = Ñ (M +1+l) q ⇐⇒ b k,i = b k,i ∀k ≤ l + 1.
For l = ν 0 , we know that a ν 0 ,i = a ν 0 ,i and b

ν 0 ,i = b ν 0 ,i . Similarly we obtain that b ν 0 +1,i = b ν 0 +1,i . Suppose that b k,i = b k,i for l < ν 1 -1. Then we have Ñ (M +1+l) p = Ñ (M +l+l) p
where

Ñ (M +1+l) p = N -1 i=1 a l 2 +1,i x l 2 1 y l 2 1 Ñ (M +1) p a 1,i + M -2 i=1 b l+1,i x l+1 1 Ñ (M +1) p y 1 + b 1,i x 1 + N -1 i=1 M -2 i=1 2k 1 +k 2 =l+3 k 1 ,k 2 =1 a k 1 ,i b k 2 ,j x k 1 +k 2 -1 1 y k 1 -1 1 Ñ M +1 p a 1,i (y 1 + b 1,j x 1 ) + Ha,b (x 1 , y 1 ).
To show that b l+1,i = b l+1,i , it is enough to show that k 1 < ν 0 + 1. In fact, by definition we have

k 1 = l+3-k 2 2
. So, using that l ≤ ν 1 -1, k 2 > 1 and that ν 1 ≤ 2ν 0 , we conclude that k 1 < ν 0 + 1.

A process of blowing-up E is said to be a chain process if, either E is the standard blowing-up of the origin of C 2 , or E = E • E where E is a chain process and E is the standard blowing-up of the of a point that belongs to the smooth part of the highest irreducible component of E . The length of a chain process of blowing-up is the total number of blowing-up and the height of an irreducible component D of the exceptional divisor of E is the minimal number of blown-up points so that D appears. A chain process of blowing-up admits privileged systems of coordinates (x, y) in a neighborhood of the component of maximal height such that E is written

E : (x, t) -→ (x, tx h + t h-1 x h-1 + t h-2 x h-2 + . . . + t 1 x).
The values t i are the positions of the successive centers in the successive privileged coordinates and x = 0 is a local equation of the divisor. Let φ be a germ of biholomorphism tangent to the identity map at order ν 0 + 1 ≥ 2 and fixing the curves {x = 0} and {y = 0}. The function φ is written

(x, y) -→ x(1 + A ν 0 (x, y) + . . .), y(1 + B ν 0 (x, y) + . . .) (2.26)
where A ν 0 and B ν 0 are homogeneous polynomials of degree ν 0 . The following lemma can be proved by induction on the height of the component:

Lemma 2.5.2. The biholomorphism φ can be lifted-up through any chain process E of blowing-up with length smaller ν 0 + 1: there exists φ such that E • φ = φ • E. The action of φ on any component of the divisor of height less than ν 0 is trivial. Its action on any component of height ν 0 + 1 is written in privileged coordinates

(0, t) -→ 0, t + t 1 B ν 0 (1, t 1 ) -t 1 A ν 0 (1, t 1 )
where t 1 is the coordinate of the blown-up point on the first component of the irreducible divisor.

Definition 2.5.1. A germ of biholomorphism φ is said to be dicritical if φ can be written

(x, y) -→ x + A ν (x, y) + . . . , y + B ν (x, y) + . . . ,
with xB ν (x, y) -yA ν (x, y) vanishing.

We can now prove the main Theorem B of this section.

Proof of Theorem B. Suppose that there exists a conjugacy relation

N p • φ = ψ • N q . (2.27) 
Following [START_REF] Berthier | Transformations isotropes des germes de feuilletages holomorphes[END_REF], we can suppose that ψ is a homothety γId. The biholomorphism φ can be supposed tangent to the identity. In fact, since φ lets the curves {x = 0}, {y = 0} and {y + x 2 = 0} invariant, then it can be written (x, y) -→ λx(1 + A ν 0 (x, y) + . . .), λ 2 y(1 + B ν 0 (x, y) + . . .) ,

for some λ = 0. Then

N p • φ • h -1 λ = γN q • h -1 λ = cN λ -1 •q ,
where c stands for some non vanishing number. Since φ • h -1 λ is tangent to the identity, we find that c = 1. Thus, setting for the sake of simplicity q = λ -1 • q and φ = φ • h -1 λ , we are led to the relation

N p • φ = N q ,
where φ can be written under the form (2.26).

The proof reduces to show that in this situation, we have p = q. Using Lemma (2.5.1), we know that for all 1 ≤ i ≤ N -1 and 1 ≤ k ≤ ν 0 we have a k,i = a k,i and for all

1 ≤ i ≤ M -2 and 1 ≤ k ≤ ν 1 we have b k,i = b k,i
. This means that, based on the structure of the normal form, to show that for any

k ≤ N -1, a k,i = a k,i , it is enough to show that ν 0 ≥ N -1.
In the same way, to show that for any

k ≤ 2M -N -5, b k,i = b k,i , it is enough to show that ν 1 ≥ N + 2M -5.
Thus, the proof results from the following proposition:

Proposition 2.5.1. If N p • φ = N q , then the following assertions hold:
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1. If φ is dicritical then p = q.

2. If φ is non-dicritical then ν 0 ≥ N .

3. If φ and φ are non-dicritical then ν 1 ≥ 2M + N -5.

4. If φ is dicritical then p = q.

Proof.

1. If ν 0 ≥ 2M + N -5 then ν 1 ≥ 2M + N -5 and ν 0 ≥ N -1. So, by Lemma (2.5.1), we have p = q. Suppose that ν 0 < 2M + N -5. Since φ is tangent to the identity, then it is the time one of the flow of a formal dicritical vector field φ = e X .

Its homogeneous part of degree ν 0 +1 is radial and is written φ ν 0 R where φ ν 0 stands for a homogeneous polynomial function of degree ν 0 and R for the radial vector field x∂ x + y∂ y . The initial hypothesis can be expressed as follows

e X * N p = N p + φ ν 0 R.N p + . . . = N q .
In this relation, the valuation of φ ν 0 R.N p is at least ν 0 + M + N . Lemma (2.5.1) implies that the first non-trivial homogeneous part of the previous relation is of valuation ν 0 + M + N and it is written

N (ν 0 +M +N ) p + φ ν 0 R.N (M +N ) p = N (ν 0 +M +N ) q .
Since N (M +N ) p is homogeneous, then this relation becomes

N (ν 0 +M +N ) p -N (ν 0 +M +N ) q + (M + N )φ ν 0 N (M +N ) p = 0.
The homogeneous component of degree ν 0 + M + N in N p is written

• If ν 0 + 1 ≤ N -1, then N (ν 0 +M +N ) p = N -1 i=1 a ν 0 +1,i xy ν 0 N (M +N ) p y + a 1,i x + M -2 i=1 b ν 0 ,i x ν 0 +1 N (M +N ) p y + H a,b (x, y)
where H a,b is a function which depends on a k,i for k < ν 0 +1 and b k,i for k < ν 0 . Since a 1,i = a 1,i and b ν 0 ,i = b ν 0 ,i , then the difference N

(ν 0 +M +N ) p -N (ν 0 +M +N ) q is written N (M +N ) p N -1 i=1 λ i xy ν 0 y + a 1,i x ,
where λ i = a ν 0 +1,i -a ν 0 +1,i . Therefore, the polynomial function φ ν 0 must coincide with

- 1 M + N N -1 i=1 λ i xy ν 0 y + a 1,i x
which happens to be polynomial if and only if λ i vanishes for all i and therefore φ ν 0 must be the zero polynomial. CHAPTER 2. FIRST UNIVERSAL FAMILY OF NORMAL FORMS OF FOLIATIONS.40

• If ν 0 + 1 > N -1, then N (ν 0 +M +N ) p = M -2 i=1 b ν 0 ,i x ν 0 +1 N (M +N ) p y + H a,b (x, y)
where H a,b is a function which depends on b k,i for k < ν 0 . Since b ν 0 ,i = b ν 0 ,i , then the difference N

(ν 0 +M +N ) p -N (ν 0 +M +N ) p
is zero. As a consequence φ ν 0 must be the zero polynomial.

2. We suppose that ν 0 < N . We know that φ can be written as follows

(x, y) -→ (x(1 + A ν 0 (x, y) + . . .), y(1 + B ν 0 (x, y) + . . .)) .
Since the action of φ on any component of height ν 0 + 1 conjugates the complete cones, then the function tB ν 0 (1, t) -tA ν 0 (1, t) vanishes on {0, ∞, a 1,1 , . . . , a 1,ν 0 }, which is the common tangent cone of N p and N q . Since the degree of tB ν 0 (1, t) -tA ν 0 (1, t) is at most ν 0 + 1, then it is the zero polynomial. Hence,

xyB ν 0 (x, y) -xyA ν 0 (x, y) = 0, which is impossible since φ is non-dicritical.
3. Suppose that ν 1 < 2M + N -5. The functions A ν 0 and B ν 0 are homogeneous of degree ν 0 . So, we write them as

A ν 0 (x, y) = i+j=ν 0 α i,j x i y j and B ν 0 (x, y) = i+j=ν 0 β i,j x i y j .
Since ν 0 ≥ N , then the function f (t), defined by

f (t) = tB ν 0 (1, t) -tA ν 0 (1, t) = t i+j=ν 0 (β i,j -α i,j )t j , vanishes at {0, ∞, a 1,1 , . . . , a 1,N -1 }. The biholomorphism φ is given by φ = E -1 1 • φ • E 1 . So, it can be written as φ(x 1 , y 1 ) = (x 1 (1 + A(x 1 , x 1 y 1 )), y 1 (1 + B(x 1 , x 1 y 1 ) -A(x 1 , x 1 y 1 ) + . . .)) ,
where the lifted homogeneous parts of degree ν 0 of A and B has the form

A ν 0 (x 1 , x 1 y 1 ) = i+j=ν 0 α i,j x ν 0 1 y j 1 and B ν 0 (x 1 , x 1 y 1 ) = i+j=ν 0 β i,j x ν 0 1 y j 1 .
Since the order of tangency of φ is ν 0 + 1 then there exists i and j satisfying i + j = ν 0 such that α i,j = 0 or β i,j = 0. Let j 0 be the smallest such j. So, we have

φ(x 1 , y 1 ) = x 1 (1 + Ãν 1 (x 1 , y 1 ) + . . .), y 1 (1 + Bν 1 (x 1 , y 1 ) + . . .) ,
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where

Ãν 1 (x 1 , y 1 ) = i+j=α 0 ≤j 0 α i,j x ν 0 +i 1 y j 1 and Bν 1 (x 1 , y 1 ) = i+j=α 0 ≤j 0 (β i,j -α i,j )x ν 0 +i 1 y j 1 .
So, the order of tangency of φ, ν 1 +1, is equal to ν 0 +α 0 +1. We define the function f by

f (t) = t Bν 1 (1, t) -t Ãν 1 (1, t).
We know that ν 1 ≥ ν 0 ≥ N . Since the action of φ on any component of height ν 1 + 1 conjugates the complete cones, then, if ν 1 = N , the function f vanishes at 0, 1 and ∞. Since φ is non-dicritical then α 0 + 1 must be greater than or equal to 3. This implies that j 0 ≥ 2 and so for all j < 2 satisfying i + j = ν 0 , we have α i,j = β i,j = 0. However, the function f (t) = t 3 i+j=ν 0 (β i,j -α i,j )t j-2 vanishes at {0, ∞, a 1,1 , . . . , a 1,N -1 }. Since φ is non-dicritical, then ν 0 -2 must be greater than or equal to N . This implies that ν 1 must be at least N + 4 which is impossible. Thus, ν 1 must be greater than N . We proceed similarly at each level. Finally, if

ν 1 = 2M + N -6, then the function f vanishes at {0, 1, ∞, b 1,1 , . . . , b 1,M -3 }. Since φ is non-dicritical, then α 0 + 1 must be at least M . This implies that j 0 ≥ M -1.
Similarly, we must have ν 0 -M + 1 ≥ N . As a consequence, ν 1 must be at least 2M + N -2 which is impossible.

4. The proof is similar to that of the first point, noting that we necessarily have

a k,i = a k,i for all 1 ≤ i ≤ N -1 and 1 ≤ k ≤ ν 0 .
Chapter 3

The dimension of the moduli space of curves. 

The infinitesimal generators of C.

We first recall general facts proved in [START_REF] Genzmer | Normal forms of foliations and curves defined by a function with a generic tangent cone[END_REF], which are valid in every topological class. Let F be a foliation defined by a holomorphic function f (or more generally by any generic non dicritical differential form ω), and let S be the curve defined by f = 0 (or by the separatrix set of ω). Let E : M → (C 2 , 0) be the desingularization map of the foliation, and D its exceptional divisor. We denote by f , F and S the pull back by E on M of f , F and S. The tangent space to the point [S] in the moduli space of curves is the cohomological group H 1 (D, Θ S ) where Θ S is the sheaf on D of germs of vector fields tangent to S [START_REF] Mattei | Quasihomogénité et équiréductibilité de feuilletages holomorphes en dimension 2[END_REF]. The inclusion of Θ F into Θ S induces a map i:

H 1 (D, Θ F ) i -→ H 1 (D, Θ S )
whose kernel represents the directions of unfolding of foliations with trivial associate unfolding of curves. 

[R 3,4 , R 2,4 ] of F is the element of H 1 (D, Θ F ) induced by (R 3 -R 4 , R 2 -R 4 ).
Noting that H 1 (D, Θ F ) has a natural structure of O 2 -module, we have:

Theorem 3.1.1 ([58]
). The kernel of the map i is generated by the cocycle of quasihomogeneity, i.e.:

ker(i) = {h • [R 3,4 , R 2,4 ], h ∈ O 2 }.
In particular, the distribution induced by these directions is integrable and defines a singular foliation C on P.

Let X m,n be the vector fields on P generated by

x m y n •[R 3,4 , R 2,4
]. We give the expression of X 0,0 in the basis

∂ ∂a k,l , ∂ ∂b k,l k,l
of the vector space generated by the set P:

Proposition 3.1.1.
The O 2 -generator of C is given by:

X 0,0 = [R 3 -R 4 , R 2 -R 4 ] = -1 2M +2N -1 N -1 i=1 i k=1 (2k -3)a k,i ∂ ∂a k,i + M -2 i=1 N -1+2i k=1 (k -1)b k,i ∂ ∂b k,i . 
Proof. Let p be in P and consider the following deformation

(λ, p) ∈ (C, 1) × (P, p) → N p,λ (x, y) = N p λx, λ 2 y = λ 2M +2N -1 N λ•p (x, y) .
This deformation is analytically trivial in λ. Hence, its related cocycle is trivial. Blowing the deformation up yields

Ñp,λ (x 4 , y 4 ) = λ 2M +2N -1 x M +N 4 y 2M +N 4 (1 + x 4 ) N -1 i=1 y 4 + i k=1 λ 2k-3 a k,i x k-1 4 y 2k-2 4 M -2 i=1 1 + N -1+2i k=1 λ k-1 b k,i x k 4 y k-1 4 
, and so we have

Ñ -1 p,λ ∂ Ñp,λ ∂λ = (2M + 2N -1)λ -1 + N -1 i=1 i k=1 (2k -3) λ 2k-4 a k,i x k-1 4 y 2k-2 4 y 4 + i k=1 λ 2k-3 a k,i x k-1 4 y 2k-2 4 + M -2 i=1 N -1+2i k=1 (k -1) λ k-2 b k,i x k 4 y k-1 4 1 + N -1+2i k=1 λ k-1 b k,i x k 4 y k-1 4 .
The vector field R 4 is defined as a solution on V 4 of R 4 Ñp = Ñp . Moreover, ∂ ∂a k,i and ∂ ∂b k,i are defined by the cocycle related to the vector fields X (j)

k,i and Y (j) k,i respectively such that X (j) k,i Ñp = ∂ Ñp ∂a k,i and Y (j) k,i Ñp = ∂ Ñp ∂b k,i . Setting λ = 1, we obtain ∂ Ñp,λ ∂λ | λ=1 = (2M + 2N -1)R 4 + N -1 i=1 i k=1 (2k -3)a k,i X (4) k,i + M -2 i=1 N -1+2i k=1 (k -1)b k,i Y (4) k,i Ñp,λ = C (4)
Ñp,λ .

The same computation in the other two charts leads to

C (3) = (2M + 2N -1)R 3 + N -1 i=1 i k=1 (2k -3)a k,i X (3) 
k,i + M -2 i=1 N -1+2i k=1 (k -1)b k,i Y (3) k,i C (2) = (2M + 2N -1)R 2 + N -1 i=1 i k=1 (2k -3)a k,i X (2) 
k,i + M -2 i=1 N -1+2i k=1 (k -1)b k,i Y (2) k,i
.

The triviality of the cocycle induced by C (3) -C (4) , C (2) -C (4) ends the proof.

We shall make use of the following result: [START_REF] Genzmer | Normal forms of foliations and curves defined by a function with a generic tangent cone[END_REF]). The vector field X m,n on Vect (P) is related to the cocycle

Proposition 3.1.2 ([
x m y n • [R 3 -R 4 , R 2 -R 4 ]
if and only if there exists a germ of vector field

Z m,n = α m,n (x, t, p) ∂ ∂x + β m,n (x, t, p) ∂ ∂y such that X m,n • N p = Z m,n • N p + x m y n N p .
From now on, we denote by q k = k+N -2

2

+ M -k the number of integer points in the intersection between the region of moduli and the straight line of equation (y

4 = k -1) if N ≤ k ≤ N + 2M -5.
We consider the following two subspaces of the vector space generated by the set P

P a = Vect ∂ ∂a k,i i=1,...,N -1 k=1,...,i and P b = Vect ∂ ∂b k,i i=1,...,M -2 k=1,...,N -1+2i . For 1 ≤ l a ≤ N -1 (respectively 1 ≤ l b ≤ N + 2M -5)
, we denote by P la a (respectively P l b b ) the level of height l a (respectively l b ) of the subspace P a (respectively P b ), i.e.

P la a = Vect ∂ ∂a la,i i=la,...,N -1

P l b b =      Vect ∂ ∂b l b ,i i=1,...,M -2 if 1 ≤ l b ≤ N Vect ∂ ∂b l b ,i i=M -1-q l b ,...,M -2 if N + 1 ≤ l b ≤ N + 2M -5.
We have the following direct decomposition of

P P = ⊕ 1≤l b ≤N -1 la=l b Vect P la a , P l b b ⊕ l b =N +2M -5 l b =N P l b b .
The decomposition of each vector field X on P is denoted by

X = X ν + X ν+1 + ... + X N +2M -5
where X ν = X a,νa + X b,ν b , such that ν b = ν a , is the first non vanishing component of X.

Now, we consider the following two subsets of the region Q M,N corresponding to the subspaces P a and P b respectively

I a = (i, j) | 0 ≤ i ≤ N -2 and -(N -2) + 2i ≤ j ≤ i I b = (i, j) | 0 ≤ j ≤ N -1 and -(M -2) + j ≤ i ≤ j -1 N ≤ j ≤ N + 2M -6 and -(M -2) + j ≤ i ≤ j -1 -(M -2 -q j+1 ) ,
where the levels l a and l b are given by the straight lines of equations x 4 = l a -1 and y 4 = l b -1 respectively. Let Θ 0 be a holomorphic vector field with isolated singularities defining F(M,N)

p 0 on the two intersections V 2 ∩ V 4 and V 3 ∩ V 4 . We denote by x i 4 y j 4 the class of x i 4 y j 4 (Θ 0 , 0) (respectively x i 4 y j 4 (0, Θ 0 )) in H 1 D, Θ F (M,N ) p 0 if (i, j) ∈ I a (respectively (i, j) ∈ I b ).
Below, we describe some properties of the distribution induced by the vector fields X m,n .

Proposition 3.1.3.

1. The coefficients of ∂ ∂a k,l and ∂ ∂b k,l in the basis

x i 4 y j 4 | (i, j) ∈ N × Z ∪ Z × N s.t. j -2i + (N -1) > 0 and j -i -(M -1) < 0 are in the ring C(a 1,• , b 1,• )[a 2,• , ..., a N -1,• , b 2,• , ..., b N +2M -5,• ].

The coefficients of X m,n in the basis

∂ ∂a k,l , ∂ ∂b k,l k,l are in the ring C(a 1,• , b 1,• )[a 2,• , ..., a N -1,• , b 2,• , ..., b N +2M -5,• ].
3. For any m, n, we have

[(2M + 2N -1)X 0,0 , X m,n ] = (m + 2n)X m,n .
The coefficients of X a,ν m,n and X b,ν m,n are homogeneous with respect to the weight X 0,0 of degrees (m + 2n -(2ν -3)) and (m + 2n -(ν -1)) respectively. In particular, they only depend on the variables a j,• and b j,• respectively, where j ≤ ν -1.

Proof.

1. In the proof of Theorem A in the previous chapter, the equations (2.23) and (2.24) can be solved the following way: looking at the homogeneous part of order ν yields

J ν ∂ Ñp ∂a k,i = r+s=ν J r (α k,i ) J s ∂ Ñp ∂x 4 + J r (β k,i ) J s ∂ Ñp ∂y 4 J ν ∂ Ñp ∂b k,i = r+s=ν J r (η k,i ) J s ∂ Ñp ∂x 4 + J r (γ k,i ) J s ∂ Ñp ∂y 4 .
Hence, we find the following induction relations

J ν-ν 0 (α k,i ) J ν 0 ∂ Ñp ∂x 4 + J ν-ν 0 (β k,i ) J ν 0 ∂ Ñp ∂y 4 = J ν ∂ Ñp ∂a k,i - r+s=ν s =ν 0 J r (α k,i ) J s ∂ Ñp ∂x 4 + J r (β k,i ) J s ∂ Ñp ∂y 4 J ν-ν 0 (η k,i ) J ν 0 ∂ Ñp ∂x 4 + J ν-ν 0 (γ k,i ) J ν 0 ∂ Ñp ∂y 4 = J ν ∂ Ñp ∂b k,i - r+s=ν s =ν 0 J r (η k,i ) J s ∂ Ñp ∂x 4 + J r (γ k,i ) J s ∂ Ñp ∂y 4 ,
where ν 0 = 3M +2N -1. are polynomial. Hence, an induction on ν ensures that for all ν the coefficients of 3. From proposition (3.1.2), we know that there exists a vector field

J ν (α k,i ), J ν (β k,i ), J ν (η k,i ) and J ν (γ k,i ) can be
Z = A(•) ∂ ∂x + B(•) ∂ ∂y such that x m y n N p + Z • N p = X m,n • N p .
In particular and using proposition (3.1.1), there exists a vector field R such that

1 2M + 2N -1 R • N p = N p -X 0,0 • N p .
It is clear that the vector field R = x ∂ ∂x + 2y ∂ ∂y satisfies the above relation. We note that [R , X m,n ] = 0. Therefore, we can perform the following computation

[X 0,0 , X m,n ] • N p = X 0,0 (x m y n N p + Z • N p ) -X m,n (N p -c 0 R • N p ) = x m y n (N p -c 0 R • N p ) + X 0,0 • Z • N p -x m y n N p -Z • N p + c 0 R (x m y n N p + Z • N p ) = -c 0 x m y n R • N p + [X 0,0 , Z] • N p + Z • X 0,0 • N p -Z • N p +c 0 x m y n R • N p + (m + 2n)c 0 x m y n N p + c 0 R • Z • N p = [X 0,0 , Z] • N p + Z (N p -c 0 R • N p ) -Z • N p +(m + 2n)c 0 x m y n N p + c 0 R • Z • N p = [X 0,0 , Z] • N p + c 0 [R , Z] • N p + (m + 2n)c 0 x m y n N p ,
where c 0 = 1 2M +2N -1 . Since the vector [X 0,0 , Z] is written under the form (•) ∂ ∂x + (•) ∂ ∂y , the previous relation ensures that [X 0,0 , X m,n ] = (m + 2n)c 0 X m,n . Now, if we decompose the vector field X m,n on the basis

∂ ∂a k,l , ∂ ∂b k,l k,l
and inject this decomposition in the Lie bracket, it follows

[X 0,0 , X m,n ] = ν≥m+n+1 X 0,0 , X ν m,n = ν≥m+n+1 X 0,0 , i α ν,i m,n (p) ∂ ∂a ν,i + i β ν,i m,n (p) ∂ ∂b ν,i = ν≥m+n+1 i X 0,0 • α ν,i m,n (p) + c 0 (2ν -3)α ν,i m,n (p) ∂ ∂a ν,i + X 0,0 • β ν,i m,n (p) + c 0 (ν -1)β ν,i m,n (p) ∂ ∂b ν,i .
Hence, identifying the coefficients in the basis

∂ ∂a k,l , ∂ ∂b k,l k,l
leads to the following relations

X 0,0 • α ν,i m,n (p) + c 0 (2ν -3)α ν,i m,n (p) = (m + 2n)c 0 α ν,i m,n X 0,0 • β ν,i m,n (p) + c 0 (ν -1)β ν,i m,n (p) = (m + 2n)c 0 β ν,i m,n .
Therefore α ν,i m,n (respectively β ν,i m,n ) is homogeneous with respect to X 0,0 . Its weight is -c 0 (2ν -3 -(m + 2n)) (respectively -c 0 (ν -1 -(m + 2n))). In particular, since m + 2n > 1, α ν,i m,n (respectively β ν,i m,n ) does not depend on a j,• (respectively b j,• ) with j ≥ ν since it is of weight -c 0 (2j -3) (respectively -c 0 (j -1)).

We can write the standard basis of

H 1 D, Θ F (M,N ) p 0 as B = B a ∪ B b where B a = x i 4 y j 4 | (i, j) ∈ I a B b = x i 4 y j 4 | (i, j) ∈ I b .

If we denote by

∂ ∂a 1,l , x i 4 y j 4 the coefficient of x i 4 y j 4 in the decomposition of ∂ ∂a 1,l on the standard basis of H 1 D, Θ F (M,N ) p 0 , then we have the following:

Lemma 3.1.1. The term ∂ ∂a 1,l , y 4 x i-1 4 is equal to the coefficient of 1 x i-1 4
in the development of Φ l (x 4 ) in Laurent series where Φ l (x 4 ) is given by

Φ l (x 4 ) = -(2M +N +1) (2M +N ) 2 a 1,l N -1 j=1 a 1,j (1+x 4 ) Ũ (x 4 ) x 2M -2 4 + W (x 4 )   x 4 M -1 j=1 (1+b 1,j x 4 ) M -2 j=1 b 2,j 1 + b 1,j x 4 + N -1 i=1 1 a 1,i x 4 M -2 j=1 (1 + b 1,j x 4 )   - 1 (2M +N )a 2 1,l N -1 j=1 a 1,j Ũ (x 4 ) x 2M -2 4 + W (x 4 ) .
where W and Ũ are the polynomial functions of degree M -1 defined in the proof of Theorem A.

Proof. We proceed similarly like in the proof of Theorem A. In the chart V 4 , we have to solve

∂ Ñ (M,N ) p ∂a 1,i = α 1,i (x 4 , y 4 , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂x 4 + β 1,i (x 4 , y 4 , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂y 4 . (3.1)
Since E is defined on V 4 by E(x 4 , y 4 ) = (x 4 y 4 , x 4 y 2 4 ), we find that

Ñ (M,N ) p (x 4 , y 4 ) = x M +N 4 y 2M +N 4 (1 + x 4 ) N -1 i=1 y 4 + i k=1 a k,i x k-1 4 y 2k-2 4 M -2 i=1 1 + N -1+2i k=1 b k,i x k 4 y k-1 4 .
We have

∂ Ñ (M,N ) p ∂a 1,i = Ñ (M,N ) p y 4 + i k=1 a k,i x k-1 4 y 2k-2 4 = y 2M +N 4 y 4 + a 1,i Q(x 4 , y 4 ) + y 2 4 (...) with Q(x 4 , y 4 ) = x M +N 4 (1 + x 4 ) N -1 j=1 (y 4 + a 1,j ) M -2 j=1 1 + b 1,j x 4 + b 2,j x 2 4 y 4
and where the suspension points (...) correspond to auxiliary holomorphic functions in (x 4 , y 4 ). We can write

Q(x 4 , y 4 ) = Q(x 4 ) + y 4 Q 1 (x 4 ) + y 2 4 (...), with Q(x 4 ) = x M +N 4 (1 + x 4 ) N -1 j=1 a 1,j M -2 j=1 (1 + b 1,j x 4 )
and

Q 1 (x 4 ) = x M +N 4 (1 + x 4 )    N -1 j=1 a 1,j x 2 4 M -2 j=1 b 2,j M -2 i=1 i =j (1 + b 1,i x 4 ) + N -1 j=1 N -1 i=1 i =j a 1,i M -2 i=1 (1 + b 1,i x 4 )    . Since Ñ (M,N ) p = y 2M +N 4 Q(x 4 ) + y 4 Q 1 (x 4 ) + y 2 4 (...) , we find that ∂ Ñ (M,N ) p ∂x 4 = y 2M +N 4 Q (x 4 ) + y 4 Q 1 (x 4 ) + y 2 4 (...) ∂ Ñ (M,N ) p ∂y 4 = y 2M +N -1 4 (2M + N )Q(x 4 ) + (2M + N + 1)y 4 Q 1 (x 4 ) + y 2 4 (...) (3.2) 
Setting β 1,i = y 4 β1,i , we deduce from (3.1) that

Q(x 4 ) a 1,i = α 1,i (x 4 , 0)Q (x 4 ) + (2M + N ) β1,i (x 4 , 0)Q(x 4 ) Q 1 (x 4 ) a 1,i -Q(x 4 ) a 2 1,i = α 1,i (x 4 )Q (x 4 ) + α 1,i (x 4 , 0)Q 1 (x 4 ) + (2M + N ) β1,i (x 4 )Q(x 4 ) +(2M + N + 1) β1,i (x 4 , 0)Q 1 (x 4 ), (3.3 
) where α 1,i (x 4 , y 4 ) = α 1,i (x 4 , 0) + α 1,i (x 4 )y 4 + y 2 4 (...) and β1,i (x 4 , y 4 ) = β1,i (x 4 , 0) + β1,i (x 4 )y 4 + y 2 4 (...). Using Bézout identity, there exist polynomials W and Z in x 4 such that

Q ∧ Q = W Q + ZQ CHAPTER 3.
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where Q ∧ Q is the great common divisor of Q and Q . We can choose the polynomial function W to be of degree M -1. We denote by

S(x 4 ) = x 4 (1 + x 4 ) M -2 i=1 (1 + b 1,i x 4 )
the polynomial function satisfying Q = (Q ∧ Q )S. Therefore, we obtain a solution of the first equation of system (3.3) of equations of the form

α 1,i (x 4 , 0) = W (x 4 )S(x 4 ) a 1,i β1,i (x 4 , 0) = Z(x 4 )S(x 4 ) (2M +N )a 1,i .
The second equation can be written then as

Q 1 (x 4 ) a 1,i -Q(x 4 ) a 2 1,i = α 1,i (x 4 )Q (x 4 ) + W (x 4 )S(x 4 ) a 1,i Q 1 (x 4 ) + (2M + N ) β1,i (x 4 )Q(x 4 ) + 2M +N +1 2M +N Z(x 4 )S(x 4 ) a 1,i Q 1 (x 4 ). Writing Q 1 (x 4 ) =   x 2 4 M -2 j=1 b 2,j 1 + b 1,j x 4 + N -1 i=1 1 a 1,i   Q(x 4 ),
we obtain a solution of it of the form

α 1,i (x 4 ) = -W (x 4 )S(x 4 ) a 2 1,i β1,i (x 4 ) = -Z(x 4 )S(x 4 ) (2M +N )a 1,i   1 a 1,i + 1 2M +N   x 2 4 M -2 j=1 b 2,j 1 + b 1,j x 4 + N -1 i=1 1 a 1,i     .
Thus, we obtain a solution of (3.1) in the chart V 4 of the form

X (4) 1,i = W (x 4 )S(x 4 ) a 1,i - W (x 4 )S(x 4 ) a 2 1,i y 4 ∂ ∂x 4 + 1 2M + N Z(x 4 )S(x 4 ) a 1,i ∂ ∂y 4 + y 2 4 (...).
Similarly, in the chart V 3 we write

Ñ (M,N ) p = x 2M +N

3

(P (y 3 ) + x 3 P 1 (y 3 ) + x 2 3 (...))

with

P (y 3 ) = y 3 (y 3 + 1) N -1 j=1 a 1,j M -2 j=1 (y 3 + b 1,j )
and

P 1 (y 3 ) = y 3 (y 3 + 1)    N -1 j=1 a 1,j M -2 j=1 b 2,j M -2 i=1 i =j (y 3 + b 1,i ) + N -1 j=1 y 3 N -1 i=1 i =j a 1,i M -2 i=1 (y 3 + b 1,i )    .
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We set P ∧ P = U P + V P and P = (P ∧ P )R with

R = y 3 (y 3 + 1) M -2 i=1 (y 3 + b 1,i ).
Also, we can assume that the degree of U is M -1 and so we obtain the solution

X (3) 1,i = 1 2M + N V (y 3 )R(y 3 ) a 1,i x 3 ∂ ∂x 3 + U (y 3 )R(y 3 ) a 1,i - U (y 3 )R(y 3 ) a 2 1,i x 3 y 3 ∂ ∂y 3 + x 2 3 (...).
To compute the cocycle we write X

1,i in the chart V 4 . Using the standard change of coordinates x 4 = 1/y 3 and y 4 = x 3 y 3 and since we have

U (y 3 ) = Ũ (x 4 ) x M -1 4 , R(y 3 ) = S(x 4 ) x M +1 4 and V (y 3 ) = Ṽ (x 4 )
x M -2

4
where Ũ and Ṽ are polynomial functions, we find the first part of the first term of the cocycle

X (3,4) 1,i = X (3) 1,i -X (4) 1,i = -S(x 4 ) a 1,i Ũ (x 4 ) x 2M -2 4 + W (x 4 ) ∂ ∂x 4 + S(x 4 ) a 1,i 1 2M +N Ṽ (x 4 ) x 2M -1 4 + Ũ (x 4 ) x 2M -1 4 -Z(x 4 ) 2M +N y 4 ∂ ∂y 4 + S(x 4 ) a 2 1,i Ũ (x 4 ) x 2M -2 4 + W (x 4 ) y 4 ∂ ∂x 4 + y 2 4 (...).
We have X ). Now, according to (3.2), we get the equality

Φ (3,4) 1,i = 1 (2M + N )a 1,i N -1 j=1 a 1,j Ũ (x 4 ) x 2M -2 4 + W (x 4 ) + y 4 Φ i (x 4 ) + y 2 4 (...),
where

Φ i (x 4 ) = -(2M +N +1) (2M +N ) 2 a 1,i N -1 j=1 a 1,j (1+x 4 ) Ũ (x 4 ) x 2M -2 4 + W (x 4 )   x 4 M -1 j=1 (1+b 1,j x 4 ) M -2 j=1 b 2,j 1 + b 1,j x 4 + N -1 i=1 1 a 1,i x 4 M -2 j=1 (1 + b 1,j x 4 )   - 1 (2M +N )a 2 1,i N -1 j=1 a 1,j Ũ (x 4 ) x 2M -2 4 + W (x 4 ) ,
which ends the proof.
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The next proposition is the basic tool for the proof of the main result of this chapter. Proposition 3.1.4. If we decompose the vector field X 0,0

X 0,0 = -1 2M + 2N -1   N -1 j=0 X a,j 0,0 1 y j 4 + M -2 i=1 X b,i 0,0 y 4 x i-1 4 + N -3 j=0 Y a,j 0,0 x 4 y j-1 4   + ...
where the dots correspond to the decomposition of X 0,0 at the levels l a and l b with l a ≥ 3 and l b ≥ 3, then the functions X a,j 0,0 are the zero functions for 1 ≤ j ≤ N -2 and the functions {X a,0 0,0 , X b,i 0,0 , Y a,j 0,0 } i=1,...,M -2 j=0,...,N -3 are algebraically independent.

Proof. Let us write the decomposition of the first term of the cocycle

∂ ∂a 1,l , ∂ ∂b 1,l in the standard basis of H 1 (D, Θ F (M,N ) p 0 ) ∂ ∂a 1,l = i,j∈B R l ij (p) x i 4 y j 4 ,
where p ∈ P. In view of Theorem A and using the notation introduced in its proof, the first term of the cocycle associated to ∂ ∂a 1,l is written Φ 3,4 1,l , Φ

(2M +N )a 1,l N -1 s=1 a 1,s Ũ (x 4 ) x 2M -2 4 + W (x 4 ) + y 4 (...) Φ (2,4) 1,l = -1 (M +N )(y 4 +a 1,l ) K(y 4 ) y 2N -2 4 + B(y 4 ) + x 4 (...). 2,4 1,l where Φ (3,4) 1,l = 1 
In fact, R l -i,0 (p) is the coefficient of 1 which can be written as

Φ (2,4) 1,l = -1 M + N   N -1 j=1 (-1) N +j-1 K(-a 1,l ) a N +j 1,l 1 y N -j-1 4 + B(0) a 1,l + R(y 4 ) y 2N -2 4 + y 4 (...)   + x 4 (...).
For simplicity, we will replace the notation R l 0,-j (p) by R l 0,j (p). So, we can write R l 0,j (p) as follows

R l 0,j (p) =      -1 M +N K(-a 1,l ) a 2N -1 1,l + B(0) a 1,l if j = 0 1 M +N (-1) j-1 K(-a 1,l ) a 2N -j-1 1,l if 1 ≤ j ≤ N -2.
It is clear that R l 0,j (p) satisfies the following relation

R l 0,0 (p) = - R l 0,1 (p) a 1,l -1 M +N B(0) a 1,l R l 0,j (p) = (-1) j-1 a j-1 1,l R l 0,1 (p) if 1 ≤ j ≤ N -2.
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∂ ∂a 1,l = -1 M +N B(0) a 1,l + N -2 j=0 (-a 1,l ) j-1 R l 0,1 (p) 1 y j 4 + Ba i =0 ∂ ∂a 1,l , x i 4 y j 4 x i 4 y j 4 + B b j =0 ∂ ∂a 1,l , x i 4 y j 4 x i 4 y j 4 .
Proposition (3.1.1) yields a decomposition of the cocycle X 0,0 in the standard basis which can be written as

X 0,0 = c   N -2 j=0 X a,j 0,0 1 
y j 4 + M -2 i=1 X b,i 0,0 y 4 x i-1 4 + N -3 j=0 Y a,j 0,0 x 4 y j-1 4   + c     Ba,i =0,1 B b ,j =0,1 N -1 l=1 -a 1,l ∂ ∂a 1,l , x i 4 y j 4 x i 4 y j 4 + Ba,i =0,1 B b ,j =0,1 N -1 l=2 a 2,l ∂ ∂a 2,l , x i 4 y j 4 x i 4 y j 4 + B b ,j =0 Ba,i =0,1 M -2 l=1 b 2,l ∂ ∂b 2,l , x i 4 y j 4 x i 4 y j 4 + N -1 l=3 l k=3 (2k -3) a k,l ∂ ∂a k,l + M -2 l=1 N -1+2l k=3 (k -1) b k,l ∂ ∂b k,l where X a,0 0,0 = N -1 M +N B(0) + N -1 l=1 R l 0,1 (p) X a,j 0,0 = N -1 l=1 (-a 1,l ) j R l 0,1 (p) X b,i 0,0 = M -2 l=1 b 2,l ∂ ∂b 2,l , y 4 x i-1 4 + N -1 l=1 -a 1,l ∂ ∂a 1,l , y 4 x i-1 4 Y a,j 0,0 = M -2 l=1 b 2,l ∂ ∂b 2,l , x 4 y j-1 4 + N -1 l=2 a 2,l ∂ ∂a 2,l , x 4 y j-1 4 + N -1 l=1 -a 1,l ∂ ∂a 1,l , x 4 y j-1 4
and c is constant given by

c = -1 2M + 2N -1 .
We note that the term ∂ ∂a 2,l , y 4

x i 4 -1 is zero for all 1 ≤ i ≤ M -2. Now, using the expression of K (-a 1,l ) in (2.21), we find that R l 0,1 (p) is given by

R l 0,1 (p) = 1 M + N (-1) N a 1,l N -1 j=1 j =l (a 1,l -a 1,j )
.

To compute the term X a,0 0,0 , we introduce the polynomial F 0 in the variable x 4 defined by

F 0 (x 4 ) = N -1 j=1 (x 4 -a 1,j ) .
Clearly, we have the following equality

1 F 0 (x 4 ) = N -1 j=1 1 (x 4 -a 1,j ) N -1 j =1 j =j a 1,j -a 1,j .
So, we can write X a,0 0,0 as

X a,0 0,0 = N -1 M +N B(0) + 1 M +N N -1 l=1 (-1) N a 1,l N -1 j=1 j =l (a 1,l -a 1,j ) = N -1 M +N B(0) + (-1) N +1 M +N 1 F 0 (0) .
The initial expression of F 0 (x 4 ) implies that F 0 (0) = N -1 j=1 (-a 1,j ). Since from (2.22) we have

B(0) = 1 (2M +N ) N -1 j=1 a 1,j
, we obtain the following expression of X a,0 0,0

X a,0 0,0 = 2M + 2N -1 M + N B(0),
which is different from zero. Similarly, to compute the term X a,j 0,0 , we introduce the polynomial F j in the variable x 4 defined by

F j (x 4 ) = Q(x 4 ) P j (x 4 )
where Q(x 4 ) = N -1 i=1 (x 4 -a 1,i ) and P j (x 4 ) = (-x 4 ) j for all 1 ≤ j ≤ N -2. Also, we have the following equality

1 F j (x 4 ) = N -1 i=1 (-a 1,i ) j (x 4 -a 1,i ) N -1 i =1 i =i a 1,i -a 1,i .
So, we can write X a,j 0,0 as

X a,j 0,0 = (-1) N M + N N -1 l=1 (-a 1,l ) j a 1,l N -1 j=1 j =l (a 1,l -a 1,j ) = (-1) N +1 F j (0) .
The initial expression of F j (x 4 ) implies that X a,j 0,0 = 0 for all 1 ≤ j ≤ N -2.

Now, for the terms X b,i 0,0 , lemma (3.1.1) shows that the term

N -1 l=1 -a 1,l ∂ ∂a 1,l , y 4 x i-1 4 is equal to the coefficient of 1 x i-1 4 in the development of N -1 l=1 -a 1,l Φ l (x 4 ) in Laurent series
where Φ l (x 4 ) is given by

Φ l (x 4 ) = -(2M +N +1) (2M +N ) 2 a 1,l N -1 j=1 a 1,j (1+x 4 ) Ũ (x 4 ) x 2M -2 4 + W (x 4 )   x 4 M -1 j=1 (1+b 1,j x 4 ) M -2 j=1 b 2,j 1 + b 1,j x 4 + N -1 i=1 1 a 1,i x 4 M -2 j=1 (1 + b 1,j x 4 )   - 1 (2M +N )a 2 1,l N -1 j=1 a 1,j Ũ (x 4 ) x 2M -2 4 + W (x 4 ) . Since ∂ ∂b 2,l = x 4 y 4 ∂ ∂b 1,l
, then we have the following relation

∂ ∂b 2,l , y 4 x i-1 4 = ∂ ∂b 1,l , 1 x i 4 ,
and so in view of the proof of Theorem (A), the term

M -2 l=1 b 2,l ∂ ∂b 2,l , y 4 x i-1 4 is equal to the coefficient of 1 x i-1 4 in the development of M -2 l=1 b 2,l x 4 Ψ (3,4) 1, 
l (x 4 ) in Laurent series where

Ψ (3,4) 1,l (x 4
) is given by

Ψ (3,4) 1,l = 1 (2M + N ) N -1 j=1 a 1,j (1 + b 1,l x 4 ) Ũ (x 4 )
x 2M -3 4 + x 4 W (x 4 ) + y 4 (...).

We can write

N -1 j=1 a 1,j N -1 l=1 -a 1,l Φ l (x 4 ) = c 1 (1+x 4 ) M -2 j=1 (1+b 1,j x 4 ) Ũ (x 4 ) x 2M -3 4 M -2 j=1 b 2,j 1 + b 1,j x 4 +x 4 (...) + cst + ... N -1 j=1 a 1,j M -2 l=1 b 2,l x 4 Ψ (3,4) 1,l (x 4 ) = M -2 l=1 b 2,l x 4 (2M + N )(1 + b 1,l x 4 ) Ũ (x 4 ) x 2M -3 4 + x 4 (...) + y 4 (...), where c 1 = (2M +N +1)(N -1) (2M +N ) 2
and the dots stand for terms which do not contain b 2,j .

The coefficient of b 2,l in the sum

N -1 j=1 a 1,j N -1 l=1 -a 1,l Φ l (x 4 ) + N -1 j=1 a 1,j M -2 l=1 b 2,l x 4 Ψ (3,4) 1,l (x 4 )
is given by

E (x 4 ) = 1 x 2M -3 4 Ũ (x 4 ) (1 + b 1,l x 4 ) c 1 (1 + x 4 ) M -2 j=1 (1 + b 1,j x 4 ) + c 2 x 4
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where c 2 = 1 2M +N . This implies that the coefficient of b 2,l in the expression of X b,i 0,0 is the coefficient of 1

x i-1 4
in the previous expression.

The next part of the proof is devoted to showing that if we consider the functions X b,i 0,0 as linear functions of the M -2 variables b 2,l , where 1 ≤ l ≤ M -2, then their determinant is not the zero function. Hence, for a generic choice of the variables b 2,1 , ..., b 2,M -2 , these M -2 linear functions are independent as linear functions of M -2 variables. Thus they are algebraically independent. In fact, we know, from the proof of Theorem A and lemma (3.1.1), that Ũ is a polynomial function in x 4 defined by the equality

Ũ (x 4 ) = x M -1 4 U (y 3 )
where U is the polynomial function of degree M -1 satisfying the Bezout identity

P ∧ P = U P + V P.
Since we are interested in the generic independence, we restrict the proof to the following case

             M -2 j=1 b 1,j = 1 and (-b 1,j ) M -1 = -1 ∀1 ≤ j ≤ M -2 if M is even M -2 j=1 b 1,j = -1 and (-b 1,j ) M -1 = 1 ∀1 ≤ j ≤ M -2 if M is odd.
So, the function P , which is given by

P (y 3 ) = N -1 i=1 a 1,i y 3 (y 3 + 1) M -2 j=1 (y 3 + b 1,j ) ,
can be written as

P (y 3 ) =            N -1 i=1 a 1,i y 3 y M -1 3 + 1 if M is even N -1 i=1 a 1,i y 3 y M -1 3 -1 if M is odd.
If M is even, then using euclidean division, we find that Ũ is given by

Ũ (x 4 ) = x M -1 4 + M M -1 .
In this case, the expression E is equal to

E (x 4 ) = 1 x 2M -3 4 Ũ (x 4 ) (1 + b 1,l x 4 ) c 1 1 + x M -1 4 + c 2 x 4 .
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Ũ (x 4 ) (1 + b 1,l x 4 )x 2M -3 4 = M -2 j=0 d jl 1 x j 4 + T (x 4 ) x 2M -3 4 + x 4 (...),
where T is a polynomial in x 4 of degree M -2 and d jl is given by

d jl = (-1) j+1 b 2M -j-3 1,l Ũ -1 b 1,l .
In this case, we have

d jl = (-1) j+1 M -1 b 2M -j-3 1,l
and the polynomial T satisfies the equality

T (x 4 ) x 2M -3 4 = 2M -3 j=M -1 c jl 1 x j 4 ,
where

c jl = (-1) j-1 b 2M -3-j 1,l M M -1 .
Thus, the decomposition of X b,i 0,0 , where 1 ≤ i ≤ M -2, on the family b 2,l , where

1 ≤ l ≤ M -2, is given by the matrix      X b,1 0,0 X b,2 0,0 . . . X b,M -2 0,0 b 2,1 c 2 d 1,1 + c 1 d 0,1 -c 1 c M -1,1 c 2 d 2,1 + c 1 d 1,1 -c 1 c M,1 . . . c 2 d M -2,1 + c 1 d M -3,1 -c 1 c 2M -4,1 b 2,2 c 2 d 1,2 + c 1 d 0,2 -c 1 c M -1,2 c 2 d 2,2 + c 1 d 1,2 -c 1 c M,2 . . . c 2 d M -2,2 + c 1 d M -3,2 -c 1 c 2M -4,2 . . . . . . . . . . . . b 2,M -2 c 2 d 1,M -2 + c 1 d 0,M -2 -c 1 c M -1,M -2 c 2 d 2,M -2 + c 1 d 1,M -2 -c 1 c M,M -2 . . . c 2 d M -2,M -2 + c 1 d M -3,M -2 -c 1 c 2M -4,M -2     
.

From the expressions of c i+M -2,l and d i-1,l , we have the following relation

d i-1,l = - 1 M c i+M -2,l .
Since d i,l = -1/b 1,l d i-1,l , we can write the following relation

c 2 d i,l + c 1 d i-1,l -c 1 c i+M -2,l = - 1 M c 1 - c 2 b 1,l -c 1 c i+M -2,l .
Thus, the determinant of the above matrix is equal to

M -2 l=1 1 M c 1 - c 2 b 1,l + c 1 det (c i+M -2,l ) 1≤i≤M -2 1≤l≤M -2
which is equal to

M M -1 M -2 M -2 l=1 1 M c 1 - c 2 b 1,l + c 1 Vand (-b 1,1 , ..., -b 1,M -2 ) .
Since b 1,i = b 1,j for i = j, the determinant is not the zero function.

The case where M is odd can be treated similarly. If M is odd, then Ũ is given by

Ũ (x 4 ) = -x M -1 4 + M M -1 .
The expression E is equal to

E (x 4 ) = 1 x 2M -3 4 Ũ (x 4 ) (1 + b 1,l x 4 ) c 1 1 -x M -1 4 + c 2 x 4 .
In this case, we have

d jl = (-1) j+1 M -1 b 2M -j-3 1,l
, where 0 ≤ j ≤ M -2 and

c jl = (-1) j-1 b 2M -3-j 1,l M M -1 ,
where M -1 ≤ j ≤ 2M -3. Thus, the decomposition of X b,i 0,0 , where

1 ≤ i ≤ M -2, on the family b 2,l , where 1 ≤ l ≤ M -2, is given by the matrix      X b,1 0,0 X b,2 0,0 . . . X b,M -2 0,0 b 2,1 c 2 d 1,1 + c 1 d 0,1 + c 1 c M -1,1 c 2 d 2,1 + c 1 d 1,1 + c 1 c M,1 . . . c 2 d M -2,1 + c 1 d M -3,1 + c 1 c 2M -4,1 b 2,2 c 2 d 1,2 + c 1 d 0,2 + c 1 c M -1,2 c 2 d 2,2 + c 1 d 1,2 + c 1 c M,2 . . . c 2 d M -2,2 + c 1 d M -3,2 + c 1 c 2M -4,2 . . . . . . . . . . . . b 2,M -2 c 2 d 1,M -2 + c 1 d 0,M -2 + c 1 c M -1,M -2 c 2 d 2,M -2 + c 1 d 1,M -2 + c 1 c M,M -2 . . . c 2 d M -2,M -2 + c 1 d M -3,M -2 + c 1 c 2M -4,M -2     
.

Similarly, we have the following relation

d i-1,l = 1 M c i+M -2,l .
Again, since d i,l = -1/b 1,l d i-1,l , we can write the following relation

c 2 d i,l + c 1 d i-1,l + c 1 c i+M -2,l = 1 M c 1 - c 2 b 1,l + c 1 c i+M -2,l .
Thus, the determinant of the matrix is equal to

M -2 l=1 1 M c 1 - c 2 b 1,l + c 1 det (c i+M -2,l ) 1≤i≤M -2 1≤l≤M -2
which is equal to

M M -1 M -2 M -2 l=1 1 M c 1 - c 2 b 1,l + c 1 Vand (-b 1,1 , ..., -b 1,M -2 ) .
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Now, for the terms Y a,j 0,0 , we have

∂ ∂b 2,l , x 4 y j-1 4 = ∂ ∂b 1,l , 1 
y j 4 = 0 for all 0 ≤ j ≤ N -3. Since ∂ ∂a 2,l = x 4 y 2 4 ∂ ∂a 1,l , we have ∂ ∂a 2,l , x 4 y j-1 4 = ∂ ∂a 1,l , 1 
y j+1 4 = (-a 1,l ) j R l 0,1 (p)
for all 0 ≤ j ≤ N -3.

Again, computations similar to those in the proof of Theorem A and lemma (3.1.1)

show that the term

N -1 l=1 -a 1,l ∂ ∂a 1,l , x 4 y j-1 4
is equal to the coefficient of 1

y j-1 4 in the development of N -1 l=1
-a 1,l Ψ l (y 4 ) in Laurent series where Ψ l (y 4 ) is given by

Ψ l (y 4 ) = (M +N +1) (M +N ) 2 (y 4 +a 1,l ) 1 + M -2 i=1 b 1,i + N -1 i=2 a 2,i y 2 4 y 4 + a 1,i K(y 4 ) y 2N -2 4 + B(y 4 ) + a 2,l (M +N )(y 4 +a 1,l ) 2 K(y 4 ) y 2N -4 4 + y 2 4 B(y 4 ) .
Now, the coefficient of a 2,l in the expression of

N -1 l=1 -a 1,l Ψ l (y 4 ) = N -1 l=2
-a 1,l Ψ l (y 4 ) (as

Ψ 1 (y 4 ) = 0) is given by -ca 1,l K(y 4 ) (y 4 + a 1,l ) 2 y 2N -4 4
where c = 2M +2N +1 (M +N ) 2 . Thus the coefficient of a 2,l in Y a,j 0,0 is equal to (-a 1,l ) j R l 0,1 (p) added to the coefficient of 1 y j-1 4 in the previous expression. Simple computations show that it is given by

1 M + N + c(2N -2 -j) (-1) j K(-a 1,l ) a 2N -2-j 1,l -c (-1) j a 2N -2-j 1,l N -1 i=0 (-1) i ia i 1,l k i
where the complex numbers k i are such that K(y 4 ) = N -1 i=0 k i y i 4 . Similarly, we can show that if we consider the functions Y a,j 0,0 as linear functions of the N -2 variables a 2,l , where 2 ≤ l ≤ N -1, then their determinant is not the zero function. Hence, for a generic choice of the variables a 2,2 , ..., a 2,N -1 , these N -2 linear functions are independent as linear functions of N -2 variables. Thus they are algebraically independent. Finally, it is clear that considering the functions X a,0 0,0 , X b,i 0,0 and Y a,j 0,0 where 1 ≤ i ≤ M -2 and 0 ≤ j ≤ N -3 as linear functions of 1, a 2,l and b 2,l where 2 ≤ l ≤ N -1 and 1 ≤ l ≤ M -2, we can deduce that they are algebraically independent.

The dimension of the generic strata.

The dimension τ of the generic strata of the local moduli space of curves corresponds to the codimension of the distribution C at a generic point of M . According to proposition (3.1.4), the family of coefficients {X a,0 0,0 , X b,i 0,0 , Y a,j 0,0 } i=1,...,M -2 j=0,...,N -3 of X 0,0 is functionally independent: thus, any family of r vector fields in dimension r whose coefficients are chosen among {X a,0 0,0 , X b,i 0,0 , Y a,j 0,0 } i=1,...,M -2 j=0,...,N -3 is generically free: indeed, their determinant cannot identically vanish since it would produce a functional relation between {X a,0 0,0 , X b,i 0,0 , Y a,j 0,0 } i=1,...,M -2 j=0,...,N -3

. Thus, to compute the dimension of the generic strata, we just have to browse the region of moduli and to compute at each level how many moduli can actually be reached by the vector fields X m,n . For the following considerations, we recommend to refer at each step to Example 3.3.1 presented at the end of the section.

From now on, we denote by l the levels of the region of moduli in correspondence with the decomposition of the set P introduced before. In fact, for 1 ≤ l b ≤ N -1, it implies that it is the level formed by l a = l b of the subspace P a and l b of the subspace P b , and for N ≤ l b ≤ N + 2M -5, it is just the level formed by l b . Proposition (3.1.4) shows that the first level at which the vector field X 0,0 starts action is l = 1. We note that we say a vector field X m,n starts action at a level l if there is at least one non zero coefficient in its decomposition on this level and all the coefficients in its decomposition on the previous levels are zero. The main purpose of this section is to show:

Lemma 3.2.1. If M, N > 2,
then the vector space generated by the vector fields X m,n term having X a,0 0,0 as a coefficient in the decomposition of X m,0 is outside the region of moduli (at these levels we are outside the subspace P a ) and so we will see that the vector field X m,0 acts only on the subspace P b starting precisely at the level l b = m + 2.

The vector fields X m,1 may start action on the subspaces P a and P b . The first level of the subspace P a at which X m,1 may have an action is l a = m+3 and that of the subspace P b is l b = m + 3 as well. If M = 2, then there are no moduli in the region associated to the subspace P b , and so we can use the vector field X m,1 to kill one modulus at each level l a = m + 3 of the subspace P a . If M > 2, then for 3 ≤ l b ≤ N + 1, l a = l b , the vector fields X m,1 can be used to kill one modulus at each level l b = m + 3 of the subspace P b . For N + 2 ≤ l b ≤ N + 2M -5, the monomial term having X a,0 0,0 as a coefficient in the decomposition of X m,1 is outside the region of moduli, and so we will see that this vector field acts only on the subspace P b starting precisely at the level l b = m + 4.

For n = 0, 1, the vector fields X m,n may start action on the subspace P a . The first level of the subspace P a at which X m,n may have an action is l a = m + n + 2 and that of the subspace P b is l b = m + 2n + 1 which is strictly greater than m + n + 2 as n ≥ 2: in fact, X m,n = x m y n X 0,0 = x m+n 4 y m+2n 4 X 0,0 and the levels of the subspace P a are determined by the powers of x 4 and those of the subspace P b are determined by the powers of y 4 . For l a ≥ 4, X m,n can be used to kill a modulus which is exactly at the level l a = m + n + 2 of the subspace P a . However, once all the moduli at a certain level are killed, the extra vector fields acting at this level can be used to kill moduli at the level l b = m + 2n + 1 of the subspace P b if the monomial term having X a,0 0,0 as a coefficient in the decomposition of X m,n is inside the region of moduli. Otherwise, if it is outside the region of moduli, then either the extra vector fields X m,n do not act at the level l b = m + 2n + 1 but act and can be used to kill moduli at the level l b = m + 2n + 2 of the subspace P b , or they actually act at the level l b = m + 2n + 1 of the subspace P b but all the moduli at this level and the next levels are killed. This also works for the extra vector fields acting at the higher levels of the subspace P a .

Based on that, we denote by ν m,n + 1 = m + 2n + 1 the first level of the subspace P b at which a vector field X m,n may have an action.

We note that if M > 2, then killing moduli on the subspace P b always starts at the level l b = 3 and this is because we use X 0,0 to kill a modulus at the first level of the subspace P a and X 1,0 to kill a modulus at the second level (if it exists, i.e. N > 2), so X 0,1 will be used at the third level of the subspace P b (if N = 2 then both X 1,0 and X 0,1 will be used at the third level of the subspace P b ).

Using the equations of the edges of the region of moduli, we find that the monomial term having X a,0 0,0 as a coefficient in the decomposition of X m,n , which is x m+n 4 y m+2n

4

, is inside the region of moduli when m and n satisfy the following inequalities

n + 1 ≤ M -1 m + 1 ≤ N -1.
The vector fields X m,n such that m ≥ N -1 and n = 0 do not actually act at the level

2 if d = N + r where N -3 ≤ r ≤ 2M -6.
Proof. It is clear that only X 0,0 acts at the level l = 1 and X 1,0 acts at the level l = 2. The vector fields X 2,0 and X 0,1 act at the level l = 3 and they are linearly independent. In fact, their decomposition is given by the following invertible matrix

X 2,0 X 0,1 x 2 4 y 2 4 X a,0 0,0 Y a,1 0,0 x 4 y 2 4 0 X a,0 0,0 .
For d ≥ 3, the vector field X m,0 such that m + 1 = d + 1 acts at the level l a = d + 1 of the subspace P a . The vector field X m,1 such that m + 3 = d + 1 acts at the level l b = d + 1 of the subspace P b (it also acts at the level l a = d + 1 of the subspace P a but we will consider its action on the subspace P b as M > 2). The number of vector fields X m,n such that n = 0, 1 and m + n + 2 = d + 1 is equal to d -2 and the number of points at the level l a = d + 1 of the subspace P a is equal to N -d -1.

If N is even, then the first level of the subspace P a having all the moduli killed corresponds to d = N 2 and there are no extra vector fields at this level. For d = N 2 + 1, there are two extra vector fields acting a the level l a = d + 1. Among them, the vector field X m,n with the smallest n is given by X N 2 -2,2 . This vector field acts on the subspace P b starting precisely at the level l b = N 2 + 3. Thus, if 3 ≤ d ≤ N 2 + 1, then the dimension of the vector space generated by the vector fields X m,n which act at the level l

= d + 1 is equal to 1 + min (N -d -1, d -1). In fact, if 3 ≤ d ≤ N
2 , then their decomposition is given by the matrix

         X 0,d-1 X 1,d-2 . . . X d-3,2 X d,0 X d-2,1 x d 4 y 2 4 Y a,2d-3 0,0 Y a,2d-4 0,0 . . . Y a,d 0,0 0 Y a,d-1 0,0 . . . . . . . . . . . . . . . . . . x d 4 y d-1 4 Y a,d 0,0 Y a,d-1 0,0 . . . Y a,3 0,0 0 Y a,2 0,0 x d 4 y d 4 Y a,d-1 0,0 Y a,d-2 0,0 . . . Y a,2 0,0 X a,0 0,0 Y a,1 0,0 x d-1 4 y d 4 0 0 . . . 0 0 X a,0 0,0         
which is clearly invertible. If d = N 2 + 1 and d = N -2, then their decomposition is given by the matrix

         X 0,d-1 X 1,d-2 . . . X N -d-3,2d-N +2 X d,0 X d-2,1 x d 4 y 2d-N +2 4 Y a,N -3 0,0 Y a,N -4 0,0 . . . Y a,d 0,0 0 Y a,N -d-1 0,0 . . . . . . . . . . . . . . . . . . x d 4 y d-1 4 Y a,d 0,0 Y a,d-1 0,0 . . . Y a,2d-N +3 0,0 0 Y a,2 0,0 x d 4 y d 4 Y a,d-1 0,0 Y a,d-2 0,0 . . . Y a,2d-N +2 0,0 X a,0 0,0 Y a,1 0,0 x d-1 4 y d 4 0 0 . . . 0 0 X a,0 0,0         
which is clearly invertible as well. We note that if d = N 2 +1 = N -2, then the associated matrix is the principle submartix of the above matrix corresponding to the vector fields X d,0 and X d-2,1 .

To know the number of vector fields which act at the level l b of the subspace P b for N 2 + 3 ≤ l b ≤ N , we have to count the extra vector fields acting at the levels N 2 + 2 ≤ l a ≤ N -1 of the subspace P a . For that we write d = N 2 + j where 1 ≤ j ≤ N 2 -2, and so the number of the extra vector fields acting at the level l a = d + 1 is equal to 2j. We can easily check that among them the number of those which act at the level

l b = N 2 + 3 + i where 0 ≤ i ≤ N 2 -3 is equal to 2i+1 3 + 1.
We note that at the levels N 2 + 3 ≤ l a ≤ N , all the moduli are killed. Thus, if N 2 + 2 ≤ d ≤ N -3, then the decomposition of the vector fields which act at the level l = d + 1 is given by the following invertible matrix 

                    X 0,d-1 X 1,d-2 . . . X N -d-3,2d-N +2 X d,0 X d-2,1 X N 2 -2+i,2 X N 2 -4+i,3 . . . X N 2 +i-2m1,m1+1
x d 4 y d-1 4 Y a,d 0,0 Y a,d-1 0,0 . . . Y a,2d-N +3 0,0 0 Y a,2 0,0 * x d 4 y d 4 Y a,d-1 0,0 Y a,d-2 0,0 . . . Y a,2d-N +2 0,0 X a,0 0,0 Y a,1 0,0 x d-1 4 y d 4 0 0 . . . 0 0 X a,0 0,0 x d-2 4 y d 4 X a,0 0,0 * x d-3 4 y d 4 X a,0 0,0 . . . 0 . . . x d-1-m1 4 y d 4 0 X a,0 0,0                    
,

where m 1 = min 2i+1 3 + 1, M -3 . If d = N -2 (respectively d = N -1)
, then their decomposition is given by a matrix of the above form such that the first block matrix reduces to its principle submatrix corresponding to the vector fields X d,0 and X d-2,1 (respectively X d-2,1 ). Now, for d = N -1, the number of vector fields X m,n such that n = 0, 1 and m + n

+ 2 = d + 1 is equal to d -2 = N -3.
Actually, if we write d as before i.e. d = N 2 + j with j = N 2 -1, then this number is not equal to 2j = N -2. The vector field among them having the greatest n is given by X 0,N -2 . Since this vector field starts action at the level l b = 2N -3 of the subspace P b , then we can not use the previous formula to find the number of vector fields which act at the levels l b ≥ 2N -2 of the subspace P b . If we write d = 2N -3 + j where 0 ≤ j ≤ 2M -N -3, we can easily check that among them the number of those which act at the level

l b = d + 1 is equal to N -3 + j+1 2 .
For the levels l b = d + 1 = N + 1 + r where 0 ≤ r ≤ 2M -6, we know from lemma (3.2.2) that among the vector fields X m,n such that n = 0, 1 and m + 2n + 1 = d + 1, there are r-1 2 vector fields such that m ≥ N -1 which do not act at the level l b = d + 1. They are given by the family

   X d-4,2 , ..., X N -1, r+1 2 if r ≥ 3 is odd X d-4,2 , ..., X N, r 2 if r ≥ 4 is even .
However, we also know from lemma (3.2.2), that at the previous level l b = d r-1 + 1 where d r-1 = N + (r -1), there are r 2 + 1 vector fields X m,n such that m + 2n + 1 = d r-1 + 1 which do not act at the level l b = d r-1 + 1 because m ≥ N -1 but act at the level l b = d r + 1 where d r = N + r. They are given by the family

   X N -1+r,0 , ..., X N, r-1 2 if r is odd X N -1+r,0 , ..., X N -1, r 2 if r is even .
We note that the vector fields X m,n such that m ≥ N -1 do not act on the subspace P a . Thus, if 0 ≤ r ≤ N -4 and r is odd, then if the number of the vector fields which act at the level l b = N + 1 + r, which is equal to n 1 = N -3+2r 3 + 2, is less than or equal to the number of points at this level, then their decomposition is given by the matrix

                X N -3, r+1 2 +1 X N -5, r+1 2 +2 . . . X N +r-2n1,n1 X N -1+r,0 X N -3+r,1 . . . X N, r-1 2 x N + r+1 2 -2 4 y N +r 4 X a,0 0,0 * X b, r-1 2 +2 0,0 X b, r-1 2 +1 0,0 . . . X b,2 0,0 x N + r+1 2 -3 4 y N +r 4 X a,0 0,0 X b, r-1 2 +3 0,0 X b, r-1 2 +2 0,0 . . . X b,3 0,0 . . . . . . . . . . . . . . . x N +r-n1 4 y N +r 4 0 X a,0 0,0 X b,n1 0,0 X b,n1-1 0,0 . . . X b,n1-r-1 2 0,0 x N +r-n1-1 4 y N +r 4 X b,n1+1 0,0 X b,n1 0,0 . . . X b,n1-r-3 2 0,0 . . . 0 . . . . . . . . . x N + r+1 2 -n1-1 4 y N +r 4 X b,n1+ r+1 2 0,0 X b,n1+ r-1 2 0,0 . . . X b,n1+1 0,0                
.

We note that having vector fields less than the number of points at that level is equivalent to having the following inequality

n 1 ≤ M -2 - r + 1 2 .
This ensures that all the entries X b,j 0,0 in the last block matrix of the above matrix satisfy j ≤ M -2 and so they are different from zero. Otherwise, if their number is greater than the number of the points at that level, then their decomposition is given by a principal sub-matrix of size q N +1+r of the above matrix. So, it is invertible. Similarly, if 0 ≤ r ≤ N -4 and r is even, then if the number of the vector fields which act at the level l b = N + 1 + r, which is equal to n 2 = N -3+2r to the number of points at this level, then their decomposition is given by the matrix

               X N -2, r 2 +1 X N -4, r 2 +2 . . . X N +r-2n2+2,n2-1 X N -1+r,0 X N -3+r,1 . . . X N -1, r 2 x N + r 2 -1 4 y N +r 4 X a,0 0,0 * X b, r 2 +1 0,0 X b, r 2 0,0 . . . X b,1 0,0 x N + r 2 -2 4 y N +r 4 X a,0 0,0 X b, r 2 +2 0,0 X b, r 2 +1 0,0 . . . X b,2 0,0 . . . . . . . . . . . . . . . x N +r-n2+1 4 y N +r 4 0 X a,0 0,0 X b,n2-1 0,0 X b,n2-2 0,0 . . . X b,n2-r 2 -1 0,0 x N +r-n2 4 y N +r 4 X b,n2 0,0 X b,n2-1 0,0 . . . X b,n2-r 2 0,0 . . . 0 . . . . . . . . . x N + r 2 -n2 4 y N +r 4 X b,n2+ r 2 0,0 X b,n2+ r 2 -1 0,0 . . . X b,n2 0,0               
.

Having vector fields less than the number of points at that level is equivalent to having the following inequality

n 2 ≤ M -2 - r 2 .
This ensures that all the entries X b,j 0,0 in the last block matrix of the above matrix satisfy j ≤ M -2 and so they are different from zero. Otherwise their decomposition is given by a principal sub-matrix of size q N +1+r of the above matrix. So, it is invertible. Now, if N -3 ≤ r ≤ 2M -6 and r is odd, then the number of the vector fields which act at the level

l b = N + 1 + r is equal to n 3 = r-N +4 2 + N -2.
If this number is less than or equal to the number of points at this level, then their decomposition is given by the matrix

                X N -3, r+1 2 +1 X N -5, r+1 2 +2 . . . X N +r-2n3,n3 X N -1+r,0 X N -3+r,1 . . . X N, r-1 2 x N + r+1 2 -2 4 y N +r 4 X a,0 0,0 * X b, r-1 2 +2 0,0 X b, r-1 2 +1 0,0 . . . X b,2 0,0 x N + r+1 2 -3 4 y N +r 4 X a,0 0,0 X b, r-1 2 +3 0,0 X b, r-1 2 +2 0,0 . . . X b,3 0,0 . . . . . . . . . . . . . . . x n3+1 4 y N +r 4 0 X a,0 0,0 X b,n3 0,0 X b,n3-1 0,0 . . . X b, N 2 0,0 x n3 4 y N +r 4 X b,n3+1 0,0 X b,n3 0,0 . . . X b, N 2 +1 0,0 . . . 0 . . . . . . . . . x N 2 4 y N +r 4 X b, N 2 +r 0,0 X b, N 2 +r-1 0,0 . . . X b, N +r+1 2 0,0                 .
which is invertible for the same previous reason. Otherwise their decomposition is given by a principal sub-matrix of size q N +1+r of the above matrix. If N -3 ≤ r ≤ 2M -6 and r is even, then the number of the vector fields which act at the level

l b = N + 1 + r is equal to n 4 = r-N +4 2 + N -1.
Similarly, if this number is less than or equal to the number of points at this level, then their decomposition is given by the following invertible matrix

                X N -2, r 2 +1 X N -4, r 2 +2 . . . X N +r-2n4+2,n4-1 X N -1+r,0 X N -3+r,1 . . . X N -1, r 2 x N + r 2 -1 4 y N +r 4 X a,0 0,0 * X b, r 2 +1 0,0 X b, r 2 0,0 . . . X b,1 0,0 x N + r 2 -2 4 y N +r 4 X a,0 0,0 X b, r 2 +2 0,0 X b, r 2 +1 0,0 . . . X b,2 0,0 . . . . . . . . . . . . . . . x n4-1 4 y N +r 4 0 X a,0 0,0 X b,n4-1 0,0 X b,n4-2 0,0 . . . X b, N 2 0,0 x n4-2 4 y N +r 4 X b,n4 0,0 X b,n4-1 0,0 . . . X b, N 2 +1 0,0 . . . 0 . . . . . . . . . x N 2 -1 4 y N +r 4 X b, N 2 +r+1 0,0 X b, N 2 +r 0,0 . . . X b,n4 0,0                 .
Otherwise their decomposition is given by a principal sub-matrix of size q N +1+r of the above matrix.

We note that if M is odd, then the number of the extra vector fields acting at the level l a = d + 1, where d = N 2 + j and 1 ≤ j ≤ N 2 -2, is greater than or equal to the number of the remaining points at the horizontal line of equation (y 4 = d) of the subspace

P b if j ≥ M -3
2 . This means that at the levels l b ≥ N +3M -1

2

-3, all the moduli are killed. The vector fields X m,n such that n ≥ M -1, which act at the level l a = m + n + 2 but extra, satisfy the inequality m + n ≥ M +N -3

2

. Thus, they may start action at the level

l b ≥ N +3M -3 2
where all the moduli are killed. The number of the vector fields X m,n such that m + n + 2 = N + s, where s ≥ 0, is greater than or equal to the number of points at the horizontal line of equation (y

4 = N -1 + s) of the subspace P b if N -1 + s ≥ M -2,
so at the levels l b ≥ N + M -4, all the moduli are killed. The vector fields X m,n such that m + n + 2 = N + s and n ≥ M -1, where s ≥ 0, may start action at the levels l b ≥ M + N -2 where all the moduli are killed. A similar argument works if M is even.

The next part of the proof is devoted to the case where N is odd. If N is odd, then the first level of the subspace P a having all the moduli killed corresponds to d = N +1 2 and there is one extra vector fields at this level. We can choose the vector field X m,n with the smallest n which is given by X N +1 2 -3,2 . This vector field acts on the subspace P b starting precisely at the level

l b = N +1 2 + 2. Thus, if 3 ≤ d ≤ N +1 2
, then the dimension of the vector space generated by the vector fields X m,n which act at the level l

= d + 1 is equal to 1 + min (N -d -1, d -1).
As in the case where N is even, to know the number of vector fields which act at the level l b of the subspace P b for N +1 2 + 2 ≤ l b ≤ N , we have to count the extra vector fields acting at the levels N +1 2 + 1 ≤ l a ≤ N -1 of the subspace P a . For that we write d = N +1 2 + j where 0 ≤ j ≤ N +1 2 -3, and so the number of the extra vector fields acting at the level l a = d + 1 is equal to 2j + 1. Similarly, we can check that among them the number of those which act at the level l b = N +1 2 + 2 + i where 0 ≤ i ≤ N +1 2 -3 is equal to 2i 3 + 1. Also, we note that at the levels N +1 2 + 2 ≤ l a ≤ N , all the moduli are killed. Now, for d = N -1, the number of vector fields X m,n such that n = 0, 1 and m + n

+ 2 = d + 1 is equal to d -2 = N -3. If we write d as before i.e. d = N +1 2 + j with j = N +1
2 -2, then this number is not equal to 2j + 1 = N -2. The vector field among them having the greatest n is given by X 0,N -2 . Since this vector field starts action at the level l b = 2N -3 of the subspace P b , then we can not use the previous formula to find the number of vector fields which act at the levels l b ≥ 2N -2 of the subspace P b . Similarly, if we write d = 2N -3 + j where 0 ≤ j ≤ 2M -N -3, we can easily check that among them the number of those which act at the level

l b = d + 1 is equal to N -3 + j+1
2 . Thus, for the levels N + 1 ≤ l b ≤ 2M + N -5, the same argument as the case where N is even works.

Remark. If M > 2 and N ≤ 5, then for any d = 0, ..., N + 2M -6, the dimension of the vector space generated by the vector fields X m,n which act at the level l = d + 1 is given by: Theorem C. The dimension of the generic strata of the moduli space of S = {f M,N = 0} is given by 1. if M, N = 2 and N is even:

τ M,N = τ 0 + 3N -7 + (M -3) N 2 + 2 + (N -4)(N -6) 4 + N 2 -3 i=0 [ 2i+1 3 ]+1≤M-3 M -4 - 2i + 1 3 
2. if M, N = 2 and N = 3 is odd:

τ M,N = τ 0 + 3N -7 + (M -3) N -1 2 + 2 + (N -5) 2 4 + N +1 2 -3 i=0 [ 2i 3 ]+1≤M-3 M -4 - 2i 3 
3. if N = 3, M = 2: τ M,N = q 4 + 3M + 3N -17 + 2M -6 r=1 q r+4 - r 2 - 2 
4. if M = 2, N = 2: τ M,N = 2N -5 + [ N -1 2 ] d=2 (N -2d -1) 5. if N = 2: τ M,N = 2 (M -2) + 2M -6 r=0 q r+3 ≥[ r+2 2 ]+[ r 2 ]-[ r-1 2 ] q r+3 - r + 2 2 + r 2 - r -1 2 .

Examples.

In this section, we present some explicit examples. The vector field X 0,0 is given by

X 0,0 = X a,0 0,0 + 5 i=1 X b,i 0,0 y 4 x i-1 4 + 5 j=0
Y a,j 0,0

x 4 y j-1 4 + • • • .
The vector fields X m,n satisfying m + n = d for d = 0, ..., 8 are given by

m + n = 0 : X 0,0 (l a = 1) m + n = 1 : X 1,0 (l a = 2) X 0,1 (l b = 3) m + n = 2 : X 2,0 (l a = 3) X 1,1 (l b = 4) X 0,2 (l a = 4) m + n = 3 : X 3,0 (l a = 4) X 2,1 (l b = 5) X 1,2 (l a = 5) X 0,3 (l a = 5) m + n = 4 : X 4,0 (l a = 5) X 3,1 (l b = 6) X 2,2 (l b = 7) X 1,3 (l b = 8) X 0,4 (l a = 6) m + n = 5 : X 5,0 (l a = 6) X 4,1 (l b = 7) X 3,2 (l b = 8) X 2,3 (l b = 9) X 1,4 (l b = 10) X 0,5 (l b = 11) m + n = 6 : X 6,0 (l a = 7) X 5,1 (l b = 8) X 4,2 (l b = 9) X 3,3 (l b = 10) X 2,4 (l b = 11) X 1,5 (l b = 12) X 0,6 (l b = 13) m + n = 7 : X 7,0 (l b = 9) X 6,1 (l b = 9) X 5,2 (l b = 10) X 4,3 (l b = 11) X 3,4 (l b = 12) X 2,5 (l b = 13) X 1,6 (l b = 14) X 0,7 (l b = 15) m + n = 8 : X 8,0 (l b = 10) X 7,1 (l b = 11) X 6,2 (l b = 11) X 5,3 (l b = 12) X 4,4 (l b = 13) X 3,5 (l b = 14) X 2,6 (l b = 15) X 1,7 (l b = 16) X 0,8 (l b = 17)
where the level in the parenthesis is the level at which the vector field acts.

The decomposition of the vector fields acting at the level l such that l = d + 1 on the corresponding basis is given by:

• For l = 1, we have X 0,0 .

• For l = 2, we have X 1,0 .

• For l = 3, we have X 2,0 and X 0,1 .

X 2,0 X 0,1

x 2 4 y 2 4 X a,0 0,0 Y a,1 0,0 x 4 y 2 4 0 X a,0 0,0 • For l = 4, we have X 0,2 , X 3,0 and X 1,1 .    X 0,2 X 3,0 X 1,1 x 3 4 y 2 4 Y a,3 0,0 0 Y a,2 0,0 x 3 4 y 3 4 Y a,2 0,0 X a,0 0,0 Y a,1 0,0 x 2 4 y 3 4 0 0 X a,0 0,0    • For l = 5, we have X 0,3 , X 1,2 , X 4,0 and X 2,1 .       X 0,3 X 1,2 X 4,0 X 2,1 x 4 4 y 2 4 Y a,5 0,0 Y a,4 0,0 0 Y a,3 0,0 x 4 4 y 3 4 Y a,4 0,0 Y a,3 0,0 0 Y a,2 0,0 x 4 4 y 4 4 Y a,3 0,0 Y a,2 0,0 X a,0 0,0 Y a,1 0,0 
x 3 4 y 4 4 0 0 0 X a,0 0,0      
• For l = 6, we have X 0,4 , X 5,0 and X 3,1 .

  

X 0,4 X 5,0 X 3,1 • For l = 7, we have X 6,0 , X 4,1 and X 2,2 .

   X 6,0 X 4,1 X 2,2 x 6 4 y 6 4 X a,0 0,0 Y a,1 0,0 * x 5 4 y 6 4 0 X a,0 0,0 Y a,1 0,0 x 4 4 y 6 4 0 0 X a,0 0,0    • For l = 8, we have X 5,1 , X 3,2 and X 1,3 .    X 5,1 X 3,2 X 1,3 x 6 4 y 7 4 X a,0 0,0 Y a,1 0,0 * x 5 4 y 7 4 0 X a,0 0,0 Y a,1 0,0 x 4 4 y 7 4 0 0 X a,0 0,0   
• For l = 9, we have X 6,1 , X 4,2 , X 2,3 and X 7,0 .

      X 6,1 X 4,2 X 2,3 X 7,0 x 7 4 y 8 4 X a,0 0,0 Y a,1 0,0 * X b,1 0,0 x 6 4 y 8 4 0 X a,0 0,0 Y a,1 0,0 X b,2 0,0 x 5 4 y 8 4 0 0 X a,0 0,0 X b,3 0,0 x 4 4 y 8 4 0 0 0 X b,4 0,0      
• For l = 10, we have X 5,2 , X 3,3 , X 1,4 and X 8,0 .

      X 5,2 X 3,3 X 1,4 X 8,0 x 7 4 y 9 4 X a,0 0,0 Y a,1 0,0 * X b,2 0,0 x 6 4 y 9 4 0 X a,0 0,0 Y a,1 0,0 X b,3 0,0 x 5 4 y 9 4 0 0 X a,0 0,0 X b,4 0,0 x 4 4 y 9 4 0 0 0 X b,5 0,0       Example 3.3.2.
For N = 9, M = 6,we have τ 6,9 = 47. The vector field X 0,0 is given by

X 0,0 = X a,0 0,0 + 4 i=1 X b,i 0,0 y 4 x i-1 4 + 6 j=0 Y a,j 0,0 x 4 y j-1 4 + • • • . x4 y4 5 -5 -8 4 Figure 3.3 -The region Q M,N for N = 9, M = 6
The vector fields X m,n satisfying m + n = d for d = 0, ..., 9 are given by m + n = 0 : X 0,0 (l a = 1)

m + n = 1 : X 1,0 (l a = 2) X 0,1 (l b = 3) m + n = 2 : X 2,0 (l a = 3) X 1,1 (l b = 4) X 0,2 (l a = 4) m + n = 3 : X 3,0 (l a = 4) X 2,1 (l b = 5) X 1,2 (l a = 5) X 0,3 (l a = 5) m + n = 4 : X 4,0 (l a = 5) X 3,1 (l b = 6) X 2,2 (l b = 7) X 1,3 (l a = 6) X 0,4 (l a = 6) m + n = 5 : X 5,0 (l a = 6) X 4,1 (l b = 7) X 3,2 (l b = 8) X 2,3 (l b = 9) X 1,4 (l b = 10) X 0,5 (l a = 7) m + n = 6 : X 6,0 (l a = 7) X 5,1 (l b = 8) X 4,2 (l b = 9) X 3,3 (l b = 10) X 2,4 (l b = 11) X 1,5 (l b = 12) X 0,6 (l b = 13) m + n = 7 : X 7,0 (l a = 8) X 6,1 (l b = 9) X 5,2 (l b = 10) X 4,3 (l b = 11) X 3,4 (l b = 12) X 2,5 (l b = 13) X 1,6 (l b = 14) X 0,7 (l b = 15) m + n = 8 : X 8,0 (l b = 10) X 7,1 (l b = 10) X 6,2 (l b = 11) X 5,3 (l b = 12) X 4,4 (l b = 13) X 3,5 (l b = 14) X 2,6 (l b = 15) X 1,7 (l b = 16) X 0,8 (-) m + n = 9 : X 9,0 (l b = 11) X 8,1 (l b = 12) X 7,2 (l b = 12) X 6,3 (l b = 13) X 5,4 (l b = 14) X 4,5 (l b = 15) X 3,6 (l b = 16) X 2,7 (-) X 1,8 (-) X 0,9 (-)
where the dash means that the vector field does not act at any level.

The decomposition of the vector fields acting at the level l such that l = d + 1 on the corresponding basis is given by:

• For l = 1, we have X 0,0 .

• For l = 2, we have X 1,0 .

• For l = 3, we have X 2,0 and X 0,1 .

X 2,0 X 0,1

x 2 4 y 2 4 X a,0 0,0 Y a,1 0,0 x 4 y 2 4 0 X a,0 0,0 • For l = 4, we have X 0,2 , X 3,0 and X 1,1 .    X 0,2 X 3,0 X 1,1 x 3 4 y 2 4 Y a,3 0,0 0 Y a,2 0,0 x 3 4 y 3 4 Y a,2 0,0 X a,0 0,0 Y a,1 0,0 x 2 4 y 3 4 0 0 X a,0 0,0    • For l = 5, we have X 0,3 , X 1,2 , X 4,0 and X 2,1 .       X 0,3 X 1,2 X 4,0 X 2,1 x 4 4 y 2 4 Y a,5 0,0 Y a,4 0,0 0 Y a,3 0,0 x 4 4 y 3 4 Y a,4 0,0 Y a,3 0,0 0 Y a,2 0,0 x 4 4 y 4 4 Y a,3 0,0 Y a,2 0,0 X a,0 0,0 Y a,1 0,0 x 3 4 y 4 4 0 0 0 X a,0 0,0      
• For l = 6, we have X 0,4 , X 1,3 , X 5,0 and X 3,1 .

      X 0,4 X 1,3 X 5,0 X 3,1 x 5 4 y 3 4 Y a,6 0,0 Y a,5 0,0 0 Y a,3 0,0 x 5 4 y 4 4 Y a,5 0,0 Y a,4 0,0 0 Y a,2 0,0 x 5 4 y 5 4 Y a,4 0,0 Y a,3 0,0 X a,0 0,0 Y a,1 0,0 x 4 4 y 5 4 0 0 0 X a,0 0,0      
• For l = 7, we have X 0,5 , X 6,0 , X 4,1 and X 2,2 .

      X 0,5 X 6,0 X 4,1 X 2,2 x 6 4 y 5 4 Y a,6 0,0 0 Y a,2 0,0 * x 6 4 y 6 4 Y a,5 0,0 X a,0 0,0 Y a,1 0,0 * x 5 4 y 6 4 0 0 X a,0 0,0 Y a,1 0,0 x 4 4 y 6 4 0 0 0 X a,0 0,0      
• For l = 8, we have X 7,0 , X 5,1 and X 3,2 .

   X 7,0 X 5,1 X 3,2

x 7 4 y 7 4 X a,0 0,0 Y a,1 0,0 * x 6 4 y 7 4 0 X a,0 0,0 Y a,1 0,0 x 5 4 y 7 4 0 0 X a,0 0,0   
• For l = 9, we have X 6,1 , X 4,2 and X 2,3 .

   X 6,1 X 4,2 X 2,3 x 7 4 y 8 4 X a,0 0,0 Y a,1 0,0 * x 6 4 y 8 4 0 X a,0 0,0 Y a,1 0,0 x 5 4 y 8 4 0 0 X a,0 0,0   
• For l = 10, we have to choose four vector fields among X 7,1 , X 5,2 , X 3,3 , X 1,4 and X 8,0 .

      X 7,1 X 5,2 X 3,3 X 1,4
x 8 4 y 9 The vector field X 0,0 is given by

X 0,0 = X a,0 0,0 + 5 i=1 X b,i 0,0 y 4 x i-1 4 + 2 j=0
Y a,j 0,0 The vector fields X m,n satisfying m + n = d for d = 0, ..., 8 are given by m + n = 0 : X 0,0 (l a = 1)

x 4 y j-1 4 + • • • .
m + n = 1 : X 1,0 (l a = 2) X 0,1 (l b = 3) m + n = 2 : X 2,0 (l a = 3) X 1,1 (l b = 4) X 0,2 (l b = 5) m + n = 3 : X 3,0 (l a = 4) X 2,1 (l b = 5) X 1,2 (l b = 6) X 0,3 (l b = 7) m + n = 4 : X 4,0 (l b = 6) X 3,1 (l b = 6) X 2,2 (l b = 7) X 1,3 (l b = 8) X 0,4 (l b = 9) m + n = 5 : X 5,0 (l b = 7) X 4,1 (l b = 8) X 3,2 (l b = 8) X 2,3 (l b = 9) X 1,4 (l b = 10) X 0,5 (l b = 11) m + n = 6 : X 6,0 (l b = 8) X 5,1 (l b = 9) X 4,2 (l b = 10) X 3,3 (l b = 10) X 2,4 (l b = 11) X 1,5 (l b = 12) X 0,6 (l b = 13) m + n = 7 : X 7,0 (l b = 9) X 6,1 (l b = 10) X 5,2 (l b = 11) X 4,3 (l b = 12) X 3,4 (l b = 12) X 2,5 (l b = 13) X 1,6 (l b = 14) X 0,7 (l b = 15) m + n = 8 : X 8,0 (l b = 10) X 7,1 (l b = 11) X 6,2 (l b = 12) X 5,3 (l b = 13) X 4,4 (l b = 14) X 3,5 (l b = 14) X 2,6 (-) X 1,7 (-) X 0,8 (-)
The decomposition of the vector fields acting at the level l such that l = d + 1 on the corresponding basis is given by:

• For l = 1, we have X 0,0 .

• For l = 2, we have X 1,0 .

• For l = 3, we have X 2,0 and X 0,1 .

X 2,0 X 0,1

x 2 4 y 2 4
X a,0 0,0 Y a,1 0,0

x 4 y 2 4 0 X a,0 0,0

• For l = 4, we have X 3,0 and X 1,1 .

X 3,0 X 1,1

x 3 4 y 3 4 X a,0 0,0 Y a,1 0,0 x 2 4 y 3 4 0 X a,0 0,0
• For l = 5, we have X 2,1 and X 0,2 .

X 2,1 X 0,2

x 3 4 y 4 4 X a,0 0,0 Y a,1 0,0 x 2 4 y 4 4 0 X a,0 0,0
• For l = 6, we have X 3,1 , X 1,2 and X 4,0 .

   X 3,1 X 1,2 X 4,0 x 4 4 y 5 4 X a,0 0,0 Y a,1 0,0 X b,1 0,0 x 3 4 y 5 4 0 X a,0 0,0 X b,2 0,0 x 2 4 y 5 4 0 0 X b,3 0,0   
• For l = 7, we have X 2,2 , X 0,3 and X 5,0 .

   X 2,2 X 0,3 X 5,0 x 4 4 y 6 4 X a,0 0,0 Y a,1 0,0 X b,2 0,0 x 3 4 y 6 4 0 X a,0 0,0 X b,3 0,0 x 2 4 y 6 4 0 0 X b,4 0,0   
• For l = 8, we have X 3,2 , X 1,3 , X 6,0 and X 4,1 .

      X 3,2 X 1,3 X 6,0 X 4,1 x 5 4 y 7 4 X a,0 0,0 Y a,1 0,0 X b,2 0,0 X b,1 0,0 x 4 4 y 7 4 0 X a,0 0,0 X b,3 0,0 X b,2 0,0 x 3 4 y 7 4 0 0 X b,4 0,0 X b,3 0,0 x 2 4 y 7 4 0 0 X b,5 0,0 X b,4 0,0      
• For l = 9, we can choose three vector fields among X 2,3 , X 0,4 , X 7,0 and X 5,1 .

  

X 2,3 X 0,4 X 7,0 • For l = 10, we ca choose three vector fields among X 3,3 , X 1,4 , X 8,0 , X 6,1 and X 4,2 .

   X 3,3 X 1,4 X 8,0 x 6 4 y 9 4 X a,0 0,0 Y a,1 0,0 X b,3 0,0 x 5 4 y 9 4 0 X a,0 0,0 X b,4 0,0 x 4 4 y 9 4 0 0 X b,5 0,0    Chapter 4
Second universal family of normal forms of foliations.

In this chapter, we present another universal family of analytic normal forms in section (4.1) (Theorem D). We also prove its global uniqueness in section (4.2) (Theorem E).

The local normal forms.

Considering the same space of parameters P, for p ∈ P, we define the analytic normal form by

N (M,N ) p = xy(y + x) N -2 i=1 y + i k=1 a k,i xy k-1 M -1 i=1 y + N -3+2i k=1 b k,i x k+1 .
We consider the saturated foliation F Similarly, since, according to theorem (1.2.1), after desingularization any equireducible unfolding is locally analytically trivial, there exists X l , l ∈ {2, 3, 4}, a collection of local vector fields solutions of

∂ Ñ (M,N ) p ∂p 1,i = α 1,i (x l , y l , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂x l + β 1,i (x l , y l , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂y l , (4.1) 
where

p 1,i ∈ {a 1,i , b 1,i }. The cocycle {X 2,4 = X 2 -X 4 , X 3,4 = X 3 -X 4 } evaluated at p = p 0 is the image of the direction ∂ ∂p 1,i in H 1 D, Θ F (M,N ) p 0 by T F (M,N ) p 0 .
As in the first universal family of analytic normal forms, Theorem D is a consequence of the following proposition. Proof. The matrix A 1 is given by

A 1 =                   ∂ ∂a 1,1 ∂ ∂a 1,2 . . . ∂ ∂a 1,N -2 ∂ ∂b 1,1 ∂ ∂b 1,2 . . . ∂ ∂b 1,M -1 1 y N -2 4 1 y N -3 4 . . . M 1 M 2 1 y 4 1 1 x 4 . . . M 3 M 4 1 x M -2 4                   .
We start by computing the matrix M 1 . In the chart V 4 , we have to solve

∂ Ñ (M,N ) p ∂a 1,i = α 1,i (x 4 , y 4 , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂x 4 + β 1,i (x 4 , y 4 , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂y 4 . (4.2)
Since E is defined on V 4 by E(x 4 , y 4 ) = (x 4 y 4 , x 4 y 2 4 ), we find that

Ñ (M,N ) p (x 4 , y 4 ) = x M +N 4 y 2M +N 4 (1 + y 4 ) N -2 i=1 y 4 + i k=1 a k,i x k-1 4 y 2k-2 4 M -1 i=1 1 + N -3+2i k=1 b k,i x k 4 y k-1 4 .
We have Using Bézout identity, there exist polynomials B and C in y 4 such that

∂ Ñ (M,N ) p ∂a 1,i = Ñ (M,N ) p y 4 + i k=1 a k,i x k-1 4 y 2k-2 4 = x M +N
A ∧ A = BA + CA.
where A ∧ A is the great common divisor of A and A . We can choose the polynomial function B to be of degree N -1. We denote by D(y 4 ) = y 4 (y 4 + 1)

N -2 j=1 (y 4 + a 1,j )
the polynomial function satisfying A = (A ∧ A )D. Therefore we obtain a solution of (4.2) in the chart V 4 of the form

α 1,i = x 4 M +N C(y 4 )D(y 4 ) y 4 +a 1,i + y 2M +N -1 4
x 2 4 (...) β 1,i = B(y 4 )D(y 4 ) y 4 +a 1,i + y 2M +N -1 4

x 4 (...)

i.e. X Similarly, in the chart V 2 we write

Ñ (M,N ) p = y M +N 2 (J(x 2 ) + x 2 y 2 (...)) with J(x 2 ) = x 2 (1 + x 2 ) N -2 j=1
(1 + a 1,j x 2 ).

We set J ∧ J = KJ + LJ = 1. Also, we can assume that the degree of K is N -1 and so we obtain the solution

X (2) 1,i = x 2 1 + a 1,i x 2 K(x 2 )J(x 2 ) ∂ ∂x 2 + y 2 (...).
To compute the cocycle we write X

1,i in the chart V 4 . Using the standard change of coordinates x 4 = x 2 2 y 2 and y 4 = 1/x 2 and since we have

K(x 2 ) = K(y 4 ) y N -1
where K is a polynomial function, we find the first part of the first term of the cocycle

X (2,4) 1,i = X (2)
1,i -X Let Θ 0 be a holomorphic vector field with isolated singularities defining F(M,N)

p 0 on V 2 ∩V 4 . We have X (2,4) 1,i = Φ (2,4) 1,i Θ 0 .
We can choose Θ 0 = ). Now, according to (4.3), we get the equality Φ (2,4)

E * Θ N (M,N ) p x M +N -2
1,i = -1 (M + N )(y 4 + a 1,i ) K(y 4 ) y 2N -2 4 + B(y 4 ) + x 4 (...).
To study the invertibility of the matrix M 1 , we write

K(y 4 ) = N -1 l=0 c l y l 4 and 1 y 4 + a 1,i = 1 a 1,i ∞ s=0 (-1) s 1 a s 1,i y s 4 .
So, we obtain the following equality

K(y 4 ) (y 4 + a 1,i )y 2N -2 4 = N -2 j=1 d ji 1 y N -j-1 4 + R(y 4 ) y 2N -2 4 + y 4 (...) + cst,
where R is a polynomial in y 4 of degree N -1 and d ji is given by

d ji = N -1 r=0 (-1) N -r+j-1 c r a N +j-r 1,i = (-1) N +j-1 a N +j 1,i K(-a 1,i ).
This yield the following expression of Φ

(2,4) 1,i Φ (2,4) 1,i = -1 M + N   N -2 j=1 (-1) N +j-1 K(-a 1,i ) a N +j 1,i 1 
y N -j-1 4 + R(y 4 ) y 2N -2 4 + y 4 (...) + cst   + x 4 (...).
Thus, the matrix M 1 = (m ji ) 1≤i,j≤N -2 is given by

m ji = (-1) N +j (M + N )a N +j 1,i K(-a 1,i ),
which defines a Vandermonde matrix. We note that K(-a We proceed similarly to compute the matrix M 2 . So, in the chart V 4 , we have to solve the following equation

∂ Ñ (M,N ) p ∂b 1,i = η 1,i (x 4 , y 4 , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂x 4 + γ 1,i (x 4 , y 4 , a 1,i , b 1,i ) ∂ Ñ (M,N ) p ∂y 4 . (4.5) 
The same argument allows us to obtain the following expressions and so we deduce from (4.5) that (M + N ) α1,i (0, y 4 )A(y 4 ) + β 1,i (0, y 4 )A (y 4 ) + y 2M +N -1 4

∂ Ñ (M,N ) p ∂b 1,i = x M +N +1
x 4 (...) = 0. (4.7)

Therefore we obtain a solution of (4.5) in the chart V 4 X

1,i = x 4 (...).

Similarly in the chart V 2 we obtain the solution X

1,i = y 2 (...).

Thus, we find the second part of the first term of the cocycle

X (2,4) 1,i = X (2) 1,i -X (4) 
1,i = x 4 (...)

Finally, we obtain the following expression of Φ

(2,4)

1,i = x 4 (...).

So, the matrix M 2 is the zero matrix. Now, we compute the second cocycle. In the chart V 4 , we can write

Ñ (M,N ) p = y 2M +N 4 (Q(x 4 ) + y 4 (...)) , with Q(x 4 ) = x M +N 4 N -2 j=1 a 1,j M -1
j=1 (1+b 1,j x 4 ). So, we obtain the following expressions Setting γ 1,i = y 4 γ1,i , we deduce from (4.5) that

x 4 1 + b 1,i x 4 Q(x 4 ) = η 1,i (x 4 , 0)Q (x 4 ) + (2M + N )γ 1,i (x 4 , 0)Q(x 4 ) + y 4 (...).
Using Bézout identity, there exist polynomials W and Z in x 4 such that

Q ∧ Q = W Q + ZQ.
As before, we can choose the polynomial function W to be of degree M -1. We denote by S(x 4 ) = x 4

M -1 i=1 (1 + b 1,i x 4 ) the polynomial function satisfying Q = (Q ∧ Q )S.
Therefore we obtain a solution of (4.5) 

in the chart V 4 Y (4) 1,i = x 4 1 + b 1,i x 4 W (x 4 )S(x 4 ) ∂ ∂x 4 + y 4 (...).
Similarly, in the chart V 3 we write

Ñ (M,N ) p = x 2M +N

3

(P (y 3 ) + x 3 (...))

with

P (y 3 ) = y 3 N -2 j=1 a 1,j M -1 j=1 (y 3 + b 1,j ).
We set P ∧ P = U P + V P . Again, we can assume that the degree of U is M -1. We denote by R(y 3 ) = y 3 Using the change of coordinates x 4 = 1/y 3 and y 4 = x 3 y 3 and since we have

U (y 3 ) = Ũ (x 4 ) x M -1 4 and R(y 3 ) = S(x 4 ) x M +1 4
where Ũ is a polynomial function, we find the second part of the second term of the cocycle

Y (3,4) 1,i = Y (3) 1,i -Y (4) 1,i = - S(x 4 ) 1 + b 1,i x 4 Ũ (x 4 ) x 2M -3 4 + x 4 W (x 4 ) ∂ ∂x 4 + y 4 (...).
Thus, we obtain the following expression of Ψ

(3,4) 1,i Ψ (3,4) 1,i = 1 (2M + N ) N -2 j=1 a 1,j (1 + b 1,i x 4 ) Ũ (x 4 )
x 2M -3 4 + x 4 W (x 4 ) + y 4 (...).

CHAPTER 4. SECOND UNIVERSAL FAMILY OF NORMAL FORMS OF FOLIATIONS.86

Similarly, we find that Ψ

(3,4) 1,i can be written as

Ψ (3,4) 1,i = 1 (2M + N ) N -2 l=1 a 1,l   M -2 j=0 (-1) j+1 b 2M -j-3 1,i x j 4 Ũ -1 b 1,i + T (x 4 ) x 2M -3 4 + x 4 (...)   +y 4 (...),
where T is a polynomial in x 4 of degree M -2. So, the matrix M 4 = (m ji ) 1≤i,j≤M -1 is given by

m ji = (-1) j+1 b 2M -j-3 1,i (2M + N ) N -2 l=1 a 1,l Ũ -1 b 1,i ∀1 ≤ i, j ≤ M -1
which defines a Vandermonde matrix. Like for K, we also have that Ũ -1 b 1,i is different from zero for all 1 ≤ i ≤ M -1 because the different values {-b 1,i } 1≤i≤M -1 are roots of the polynomial P which satisfies the Bézout identity P ∧ P = U P + V P . So, the matrix M 4 is invertible. 

∂ ∂a k,i , ∂ ∂b k,i } k,i in H 1 (D, Θ F (M,N ) p 0
) by T Fp (p 0 ) on its basis, is an invertible matrix.

Proof. After proving the invertibility of the matrix A 1 , it remains to study the propagation of these coefficients along the higher levels. In fact, we have to solve the following equations

∂ Ñ (M,N ) p ∂a k,i = α k,i (x 4 , y 4 , a k,i , b k,i ) ∂ Ñ (M,N ) p ∂x 4 + β k,i (x 4 , y 4 , a k,i , b k,i ) ∂ Ñ (M,N ) p ∂y 4 (4.9) ∂ Ñ (M,N ) p ∂b k,i = η k,i (x 4 , y 4 , a k,i , b k,i ) ∂ Ñ (M,N ) p ∂x 4 + γ k,i (x 4 , y 4 , a k,i , b k,i ) ∂ Ñ (M,N ) p ∂y 4 . (4.10) 
We note that we have the following relations

∂ Ñ (M,N ) p ∂a k,i = x k-1 4 y 2k-2 4 ∂ Ñ (M,N ) p ∂a 1,i and ∂ Ñ (M,N ) p ∂b k,i = x k-1 4 y k-1 4 ∂ Ñ (M,N ) p ∂b 1,i . (4.11) 
This implies that if

X k,i = α k,i ∂ ∂x 4 + β k,i ∂ ∂y 4 and Y k,i = η k,i ∂ ∂x 4 + γ k,i
∂ ∂y 4 are solutions of (4.9) and (4.10) respectively for k = 1, then we obtain solutions for the other values of k setting

X k,i = x k-1 4 y 2k-2 4 X 1,i and Y k,i = x k-1 4 y k-1 4 Y 1,i .
This propagation can be described using the region Q M,N as shown in figure (2.2). In fact, the decomposition of the vector fields X

(2,4) k,i on the basis

k,i , X (3,4 
x i 4 y j 4 | (i, j) ∈ N × Z ∪ Z × N such that j -2i + (N -1) > 0 and j -i -(M -1) < 0 .
As a consequence of the previous relations, this decomposition can be expressed by the following matrix

A =        A 1 0 0 • • • 0 * A 2 0 • • • 0 * * A 3 • • • 0 . . . . . . . . . . . . . . . * * * * A N +2M -5       
where

A 1 = M 1 M 2 M 3 M 4 and A k is given by               ∂ ∂a k,k . . . ∂ ∂a k,N -2 ∂ ∂b k,1 . . . ∂ ∂b k,M -1 x k-1 4 y N -2k 4 M k 1 = M 1 \ last . . . (k -1) row and 0 x k-1 4 y k-2 4 first (k -1) column x k-1 4 y k-1 4 . . . * M 4 y k-1 4 x M -k-1 4               if 2 ≤ k ≤ N -2      ∂ ∂b k,M -q k . . . ∂ ∂b k,M -1 y k-1 4 x M -k-q k 4 M k 4 = M 4 \ first M -1 -q k y k-1 4 x M -k-1 4 column and row      if N -1 ≤ k ≤ N + 2M -5 with q k =] k-1+(N -1) 2 ] + M -k, where ]x] is the strict integer part m of x defined by m < x ≤ m + 1. For 2 ≤ k ≤ N -2, the determinant of the matrix M k 1 is given by Vandermonde 1 a 1,k , ..., 1 a 1,N -2 N -2 i=k (-1) N +i K(-a 1,i ) (M + N ) N -1-k N -2 i=k a N +1 1,i . Since K(-a 1,i ) is different from zero for all 1 ≤ i ≤ N -2 and a 1,i is different from a 1,j for all i = j, then the matrix M k 1 is invertible for all 2 ≤ k ≤ N -2. Similarly, for Vandermonde 1 b 1,M -q k , ..., 1 b 1,M -1 M -1 i=M -q k (-1) i+1 b M -1+q k 1,i Ũ -1 b 1,i (2M + N ) q k N -2 i=1 a q k 1,i . Also since Ũ -1 b 1,i is different from zero for all 1 ≤ i ≤ M -1 and b 1,i is different from b 1,j for all i = j, then the matrix M k 4 is invertible for all N -1 ≤ k ≤ N + 2M -5
. This shows that the whole matrix A is invertible.

The uniqueness of the normal forms.

This section is devoted to study the uniqueness of the normal forms. We will also consider N p as a notation for the normal form instead of N (M,N ) p . Let h λ be the diffeomorphism defined by: h λ (x, y) = (λx, λy). We have:

N p • h λ = λ M +N N λ•p with λ • p = λ • (a k,i , b k,i ) = (λ k-1 a k,i , λ k b k,i ).
Although the topological class of the function N p •h λ λ 2M +2N -1 jumps while λ goes to zero, we are still able to prove the following: Theorem E. The foliations defined by N p and N q , p and q are in P, are equivalent if and only if there exists λ in C * such that p = λ • q.

The following lemma can be proved exactly the same way as lemma (2.5.1): Lemma 4.2.1. Let X be a germ of formal vector field given by its decomposition into the sum of its homogeneous components X = X ν 0 +1 + X ν 0 +2 + . . .. If N p • e X ν 0 +1 +... = N q , then for all 1 ≤ i ≤ N -2 and 1 ≤ k ≤ ν 0 we have a k,i = a k,i and for all 1 ≤ i ≤ M -1 and 1 ≤ k ≤ ν 1 we have b k,i = b k,i , where ν 1 + 1 is the order of tangency of φ, the lifted biholomorphism of φ = e X by the blowing up E 1 defined by E 1 (x 1 , y 1 ) = (x 1 , x 1 y 1 ).

Let φ be a germ of biholomorphism tangent to the identity map at order ν 0 + 1 ≥ 2 and fixing the curves {x = 0} and {y = 0}. The function φ is written

(x, y) -→ x(1 + A ν 0 (x, y) + . . .), y(1 + B ν 0 (x, y) + . . .) (4.12) 
where A ν 0 and B ν 0 are homogeneous polynomials of degree ν 0 .

We give now the proof of the main Theorem E of this section.

Proof of Theorem E. Suppose that there exists a conjugacy relation Also, following [START_REF] Berthier | Transformations isotropes des germes de feuilletages holomorphes[END_REF], we can suppose that ψ is a homothety γId. The biholomorphism φ can be supposed tangent to the identity. In fact, since φ lets the curves {x = 0}, {y = 0} and {y + x = 0} invariant, then it can be written (x, y) -→ (λx(1 + A ν 0 (x, y) + . . .), λy(1 + B ν 0 (x, y) + . . .)) ,

N p • φ = ψ • N q . ( 4 
for some λ = 0. Then

N p • φ • h -1 λ = γN q • h -1 λ = cN λ -1 •q ,
where c stands for some non vanishing number. Since φ • h -1 λ is tangent to the identity, we find that c = 1. Thus, setting for the sake of simplicity q = λ -1 • q and φ = φ • h -1 λ , we are led to the relation

N p • φ = N q ,
where φ can be written under the form (4.12). The proof reduces to show that in this situation, we have p = q. Using Lemma (4.2.1), we know that for all 1 ≤ i ≤ N -2 and 1 ≤ k ≤ ν 0 we have a k,i = a k,i and for all

1 ≤ i ≤ M -1 and 1 ≤ k ≤ ν 1 we have b k,i = b k,i
. This means that, based on the structure of the normal form, to show that for any k ≤ N -2, a k,i = a k,i , it is enough to show that ν 0 ≥ N -1. In the same way, to show that for any k

≤ 2M -N -5, b k,i = b k,i , it is enough to show that ν 1 ≥ N + 2M -5.
Thus, the proof results from the following proposition:

Proposition 4.2.1. Let X = X ν 0 +1 + X ν 0 +2 + ... be a germ of formal vector field such that φ = e X . If N p • φ = N q , then we have:

1. ν 0 ≥ M + N -1. 2. ν 1 ≥ 2M + N -5.
Proof.

1. It suffices to prove that ν 0 < M + N -1 leads to a contradiction. The first non-trivial relation of the above equality is given by

X ν 0 +1 • N (M +N ) p = N (M +N +ν 0 ) q -N (M +N +ν 0 ) p (4.14)
where N (M +N ) p = xy M (y + x) N -2 i=1 (y + a 1,i x). We can write it as

X ν 0 +1 •N (M +N ) p = N -2 i=1 M -1 j=1 k 1 +k 2 =ν 0 +1 k 1 =1 a k 1 ,i b k 2 ,j -a k 1 ,i b k 2 ,j x k 2 +2 y k 1 -1 N (M +N ) p y (y + a 1,i x) + N -2 i=1 a ν 0 +1,i -a ν 0 +1,i xy ν 0 N (M +N ) p y + a 1,i x + M -1 i=1 b ν 0 ,i -b ν 0 ,i x ν 0 +1 N (M +N ) p y .
Chapter 5

Globalization and relation with geometric invariant theory.

As mentioned in section (2.5) of chapter 2 about the uniqueness of the analytic normal forms, the C * action cannot be used to globalize the local existence as done in [START_REF] Genzmer | Moduli spaces for topologically quasi-homogeneous functions[END_REF]. In this chapter, we present another formulation of the globalization problem using the context of geometric invariant theory. The main purpose would be to analyze the conjecture: for any function f in T (M,N ) , there exists p in P such that f is analytically equivalent to N (M,N ) p

. In section (5.1), we present a possible approach using GIT. In section (5.2), we talk about geometric quotients by algebraic group actions. Section (5.3) presents some related results. The last section (5.4) is about a counter example to the proposed approach.

Presentation of the approach.

An element f in T (M,N ) can be written as

f = xy(y + x 2 ) N -1 i=1 (y + a 1,i x) M -2 i=1 y + b 1,i x 2 + i+j≥M +N +1 α i,j x i y j .
We denote by T (M,N ) fix the subspace of T (M,N ) of elements having fixed a 1,i and b 1,i . A result of Mather ([35], [START_REF] Mather | Stability of C ∞ -maps IV. Classification of stable germs by R-algebras[END_REF]) implies that f is topologically equivalent to its jet of order k ≥ µ + 1 where µ is the milnor number of f . We recall that the k-jet of a function

f ∈ O = O (C n+1 ,0) is the class j k f ∈ O/m k+1 ,
where m ⊂ O is the maximal ideal. Using this result, we can easily check that we have the following lemma: is in bijection with C L . We denote this bijection by φ.

Let

G = {φ : (C 2 , 0) -→ (C 2 , 0) biholomorphism /φ(x, y) = (x(1 + ...), y(1 + ...))}.
The algebraic group j k G is linear and acts on j k T (M,N ) fix .

If we denote by Σ M,N the space of the normal forms N (M,N ) p with p ∈ P, we deduce from the above lemma that the space Σ M,N ∩ j k T (M,N ) fix of normal forms with fixed a 1,i and b 1,i is in bijection with C δ-(M +N -3) . Thus, we can define the map Ψ as follows

Ψ : C δ-(M +N -3) -→ C L /j k G for any normal form N (M,N ) p,fix , we set Ψ(p) = j k G.φ(N p ).
With this construction, the globalization problem is equivalent to the conjecture: Conjecture 1. The map Ψ is surjective.

The idea of the proof can be split into four parts:

1. Show that there exists a finitely generated subalgebra of the algebra C[C L ] G of G-invariant polynomial functions on C L which separates the orbits.

2. The local result implies that its dimension is equal to δ -(M + N -3) (as the whole map is locally invertible).

3. The normal forms are unique, so the whole map is injective.

4. Apply the theorem of Ax about the surjectivity of any injective morphism of an algebraic variety into itself [START_REF] Ax | The elementary theory of finite fields[END_REF].

With this formulation, the proof reduces to showing the first point. For that, we would like to see under which conditions such an algebra exists to be able to know if they are satisfied in our case.

Geometric quotients.

A linear algebraic group is a subgroup of the group of invertible n × n matrices that is defined by polynomial equations. Given a vector space V over a field K, it has an underlying affine space A obtained by forgetting the origin with V acting by translations.

The affine group of A can be described as the semi-direct product of V by GL(V ). It is clear that every linear algebraic group is affine. Conversely, a result of Chevalley [1] says that every affine algebraic group is linear, i.e. it is isomorphic to a closed subgroup of GL(n, K). We start by showing that our group j k G is linear algebraic.

Proof of lemma 5.1.1. The first point is clear. For the second point, we know that j k G acts on a finite dimensional vector space V ⊂ C[x, y]/m k+1 :

j k G × V -→ V, (φ, p) -→ p • φ. For φ ∈ j k G, we define the map ρ φ : V -→ V , f -→ f • φ.
This map is a linear map, so we can define ρ : j k G -→ GL(V ), φ -→ ρ φ . The morphism ρ is a group homomorphism which is a morphism of varieties. Moreover, it is an embedding because the action is free. So, ρ is injective and the j k G is a subgroup of GL(V ). Finally, the ring morphism ρ

* : C[GL(V )] -→ C[j k G], g -→ g
• ρ is surjective, so ρ is a closed embedding which concludes the proof.

A linear algebraic group G is said to be unipotent if there exists a sequence of subgroups

G ⊃ G N ⊃ ... ⊃ G 1 = {1} such that G i is normal in G i+1
and the quotient G i+1 /G i is isomorphic to the additive group (C, +). It is said to be reductive if it does not contain any closed normal unipotent subgroup.

We note that we always work with the base field C, so we do not distinguish between reductive and linearly reductive groups.

A G-variety is a variety X equipped with an action of the algebraic group G which is also a morphism of varieties. A regular function

f ∈ C[X] is said to be G-invariant if f (g • x) = f (x) for all g ∈ G.
For reductive group actions, the action can be described in a nice way. We have:

Theorem ( [START_REF] Brion | Introduction to actions of algebraic groups, Notes of the course "Actions hamiltoniennes : invariants et classification[END_REF]). Let G be a reductive algebraic group, and X an affine G-variety. Then:

1. The subalgebra C[X] G ⊂ C[X] (consisting of regular G-invariant functions) is finitely generated. 2. Let f 1 , ..., f n be generators of the algebra C[X] G . Then the image of the morphism X -→ C n , x -→ (f 1 (x), ..., f n (x))
is closed and independent of the choice of f 1 , ..., f n .

3. Denote by X//G the image and by π = π X : X -→ X//G the surjective morphism defined by (2). Then every G-invariant morphism f : X -→ Y , where Y is an affine variety, factors through a unique morphism φ : X//G -→ Y .

4. For any closed G-stable subset Y ⊂ X, the induced morphism Y //G -→ X//G is a closed immersion. In other words, the restriction of π X to Y may be identified with π Y . Moreover, given another closed G-stable subset Y ⊂ X, we have π

X (Y ∩Y ) = π X (Y ) ∩ π X (Y ).
5. Each fiber of π X contains a unique closed G-orbit.

6. If X is irreducible, then so is X//G.

The above map π is uniquely determined by the universal property (3); it is called a categorical quotient (for affine varieties). Also, X//G may be viewed as the space of closed orbits by [START_REF] Hefez | Analytic classification of plane branches up to multiplicity 4[END_REF].

Given an algebraic group G and a G-variety X, a geometric quotient of X by G consists of a morphism π : X -→ Y satisfying the following properties:

In fact, for any unipotent algebraic group G which acts regularly on a quasi-affine variety X, all orbits are closed [START_REF] Rosenlicht | On quotient varieties and the affine embedding of certain homogeneous spaces[END_REF] and there are no finite stabilizers which are not trivial. So, to define a subset of X which admits a geometric quotient in the unipotent case, the previous definition of stable points, introduced for reductive group actions, does not make sense. With another definition of stable points, Greuel and Pfister proved the existence of geometric quotients for unipotent group actions [START_REF] Greuel | Geometric quotients of unipotent group actions[END_REF]. Moreover, they produced a criterion for deciding when all the points are stable. The next part of this section is devoted to recalling some definitions and fixing some notations before announcing this criterion.

Before we start, we recall that Hertling in the same book [START_REF] Hertling | Frobenius manifolds and moduli spaces for singularities[END_REF] showed that in our case the quotient space is an analytic geometric quotient. He proved that using the criterion of Holmann [START_REF] Holmann | Komplexe Raume mit komplexen Transformationsgruppen[END_REF] for the existence of analytic geometric quotient which requires the two conditions: having a Hausdorff quotient and the existence of holomorphic functions in a neighbourhood of j k f in C L , which are constant on the j k G-orbits and which separate points in different orbits. Moreover, a result of Rosenlicht [START_REF] Dolgachev | Lectures on Invariant theory[END_REF] says that for regular algebraic group action on an irreducible variety X, there exists an open subset U such that the field of rational functions on U/G is isomorphic to the subfield K(X) G of G-invariant rational functions on X, where K is an algebraically closed field. If G is unipotent, we have some thing more. In fact, an orbit

G • x is called G-separated if for any y ∈ X, y / ∈ G•x, there is an f ∈ K[X] G so that f (y) = f (x)
. So, if we let Ω(X, G) be the interior of the union of all the G-separated orbits, then Ω(X, G) is dense in X [START_REF] Dixmier | Sur le quotient d'une variété algébrique par un groupe algébrique[END_REF]. In fact, this result is true for any quasi-affine variety X over a field K of any characteristic. For affine varieties over a field K of characteristic zero, it results from:

Theorem ( [START_REF] Rentschler | L'injectivité de l'application de Dixmier pour les algébres de Lie résolubles[END_REF]). If a unipotent group G acts on an affine variety SpecA, where A is a K-algebra of finite type without nilpotent elements and SpecA denotes the set of all prime ideals of A, then there exits t ∈ A G such that A t = (A t ) G [ξ 1 , ..., ξ m ] (polynomial ring) and such that (A t ) G = (A G ) t separates the G-orbits of SpecA.

From now on, let G be a unipotent algebraic group which acts regularly on an affine variety X = SpecA where A is a noetherian K-algebra and K is a field of characteristic zero. We start by the definition of a stable point:

Definition 5.2.1. Let π : X -→ SpecA G denote the canonical map. A point x ∈ X is said to be stable if there exits f ∈ A G with x ∈ X f = {x ∈ X | f (x) = 0} such that the induced map π f : X f -→ (SpecA G ) f is
open and an orbit map i.e. the fibers are exactly the G-orbits in X.

In view of this definition, we have:

Proposition ( [START_REF] Greuel | Geometric quotients of unipotent group actions[END_REF]). The quotient X s /G exists and is quasi-affine, and the map π | X s : X s -→ π(X s ) is a geometric quotient.

Before announcing the criterion, we recall that a Lie algebra is a vector space V over a field K together with a binary operation [., .] : V × V -→ V called the Lie bracket that satisfies the following axioms:

1. [., .] is bilinear.

[x,

x] = 0 for all x ∈ V . To every Lie group we can associate a Lie algebra whose underlying vector space is the tangent space of the Lie group at the identity element and which completely captures the local structure of the group. The Lie bracket of the Lie algebra is related to the corresponding commutator. So, we denote by LieG the Lie algebra of G and recall that there exists an exponential map exp : LieG -→ G given by exp(x) = ∞ k=0 x k /k! for linear algebraic groups [START_REF] Demazure | Groupes algebriques[END_REF]. The action of G on SpecA induces a representation ρ : G -→ Aut K (A) and ρ * : LieG -→ Der nil K (A), fitting into a commutative diagram [START_REF] Greuel | Geometric quotients of unipotent group actions[END_REF] LieG Der nil K (A)

G Aut K (A) ρ * exp exp ρ
where Aut K (A) is the group of K-algebra automorphisms, and Der nil K (A) denotes the set of nilpotent K-linear derivations of A. We say that δ ∈ Der

K (A) is nilpotent if, for each a ∈ A, there is an n(a) such that δ n(a) (a) = 0; (expδ)(a) := i≥0 (1/i!)δ i (a) for δ ∈ Der nil K (A).
The algebra LieG is a finite-dimensional Lie algebra which is nilpotent. We can now present the criterion called column-minor criterion:

Theorem ( [START_REF] Greuel | Geometric quotients of unipotent group actions[END_REF]). Let δ 1 , ..., δ n ∈ Der nil K (A) and x 1 , ..., x n ∈ A, satisfy the following properties:

1

. [δ i , δ j ] ∈ n ν=1 Aδ ν , 2. det(δ i (x j )) is a unit in A,
3. for any k = 1, ..., n and any k-minor M of the first k columns of (δ i (x j )), we have

∆(M ) ∈ ν<k A∆(x ν ),
with the conventions x 0 = 0 and ∆ = (δ 1 , ..., δ n ) t .

Let L ⊂ n ν=1 Aδ ν be any K-Lie algebra such that δ 1 , ..., δ n ∈ L. Then A L [x 1 , ..., x n ] = A and x 1 , ..., x n are algebraically independent over A L . In particular, (Spec(A)) s = SpecA.

Greuel and Pfister proved this theorem using the following two lemmas: Lemma 5.2.2 ( [START_REF] Greuel | Geometric quotients of unipotent group actions[END_REF]). Let δ ∈ Der nil K (A), x ∈ A and δ(x) ∈ A δ be a unit. Then A δ [x] = A and x is transcendental over A δ .

an integrally closed domain. Following [START_REF] Arzhantsev | Factorial algebraic group actions and categorical quotients[END_REF], we say that the action of G on X is factorial, if every invariant hypersurface is the zero set of an invariant function f ∈ K[X] G : in particular if G is unipotent and X is a vector space, then the G-action is factorial. We have:

Theorem ( [START_REF] Arzhantsev | Factorial algebraic group actions and categorical quotients[END_REF]). For any algebraic group action there exists a finitely generated separating subalgebra A ⊂ K[X] G . Moreover, if X is normal and the G-action is factorial, then one may choose A to have K(X) G as its field of fractions.

This interesting result applies in our case because X = C L and j k G is unipotent. In view of that, a possible lemma would be: A possible way to prove this lemma is to show that if the set of orbits which cannot be separated is nonempty, then it must contain non isolated orbits. The idea would be to show that if there is a function which has the same value for two different orbits i.e. some level of this function contains the two orbits, then another level contains other two orbits, and so on until we get very close orbits and obtain a contradiction with the result of Hertling which ensures the existence of an analytic geometric quotient. We note that example 5.2.1 is not a counter example to this lemma because the quotient in this example is not an analytic geometric quotient.

Possible
A semi-algebraic subset of R n is a union of finitely many subsets of the form {x ∈ R n ; P (x) = 0, Q 1 (x) > 0, ..., Q l (x) > 0} , where l ∈ N and P, Q 1 , ..., Q l ∈ R[x 1 , ..., x n ]. A useful tool which can be used to show that the existence of non separated orbits must be in family, is the small path lemma, which holds also for semi analytic sets: Lemma (Small path lemma [START_REF] Milnor | Singular points of complex hypersurfaces[END_REF]). Let E be a semi-algebraic subset of R n and let x be an adherent point to E. Then, there exits a real algebraic path p : [0, δ[→ R n such that p(0) = x and p(t) ∈ E for all t = 0.

The idea of the proof of lemma (5.3.1) would be to proceed by contradiction. Suppose that there exit x, y ∈ C L such that Gx = Gy with π(Gx) = π(Gy) = 0. This means that the following set is nonempty where Gx = max g∈G gx . The set S is a semi algebraic subset of R 4L . Suppose that S is not closed and that its closure is obtained by relaxing the strict inequalities. If we take a point (x, y) ∈ S \ S 1 , then we have (x, y) ∈ S1 \ S 1 , and so Gx = Gy. By the small path lemma, there exits a map p : [0, δ[→ R 4L such that p(0) = (x, y) and p(t) ∈ S for all t = 0. Let (t ) be a sequence in [0, δ[ such that t = 0 for all = 0 and t -→ →0 0. Since p (t ) ∈ S, we have p (t ) = (x , y ) such that Gx = Gy and π(Gx ) = π(Gy ) = 0. Moreover, P (t ) tends to P (0) = (x, y) as tends to zero. This means that x -→ x and y -→ y, and so Gx -→ Gx and Gy -→ Gy. Now, for any neighborhood U of Gx, there exits such that Gx , Gy ∈ U . But Gx = Gy and π(Gx ) = π(Gy ) = 0 which is a contradiction if C C L G separates the orbits locally. A possible way to show this is to use the fact that C L /G is an analytic geometric quotient and that the foliation generated by G is regular (see lemma (5.3.1)).

However, even if C C L G separates the orbits locally, we still have two problems: the set S may be closed, and even if it is not so, then its closure is not necessarily obtained by relaxing the strict inequalities. So, a first possible lemma would be to show that: if we have two algebraic subsets X and Y of C L such that their intersection is nonempty and X is not included in Y , then X \Y is not closed. For instance, this is true if we take X to be the zero set of x and Y the zero set of y in C 2 . If such a lemma is true, then we can apply it for X = {(x, y) ∈ C L × C L | π(Gx) = π(Gy)} and Y = {(x, y) ∈ C L × C L | Gx = Gy}.

A possible proof would be to show that X is connected or its connected components contain infinitely many points with Y not being a connected component of X. However, since the action is not explicit, we can not make sure that such a statement holds. We know that the connected components, in the euclidean topology, of an algebraic set are generally only semi-algebraic [2]. The image of an algebraic set under a regular mapping, even a linear projection of the euclidean space, is in general only semi-algebraic. A semialgebraic set has finitely many connected components in the euclidean topology and each such a component is semi-algebraic. As for the second problem regarding the closure, we know that

Proposition ( [START_REF] Coste | An introduction to semialgebraic geometry. Istituti editoriali e poligrafici internazionali[END_REF]). Every closed semi-algebraic subset of a real algebraic manifold is locally a finite union of sets of the form {x : f 1 (x) ≥ 0, ..., f k (x) ≥ 0}

where the f i are algebraic functions.

The same statement works for the closure of a semi-analytic subset of R n [START_REF] Bierstone | Semianalytic and subanalytic sets[END_REF]. Also, according to Lojaciewicz [START_REF] Lojasiewicz | Triangulation of semi-analytic sets[END_REF], the closure, the interior, the boundary and the complement of any semi-analytic set is in general semi-analytic.

3. If deg xn P i ≥ 1 and the leading coefficient of P i is not constant, then PROJ(P 1 , ..., P i , ..., P r ) contains the leading coefficient of P i and PROJ(P 1 , ..., trunc (P i ) , ..., P r ), where trunc (P i ) denotes the truncated polynomial obtained by deleting its leading term.

4. If deg xn P i = 0 and P i is not constant, then PROJ(P 1 , ..., P i , ..., P r ) contains P i .

The following theorem is a generalization of Thom's lemma for sevaral variables:

Theorem ([47]). Let (P i,j ) be a family of polynomials with real coefficients, 1 ≤ i ≤ n, 1 ≤ j ≤ s i , such that:

1. for fixed i, (P i,1 , ..., P i,s i ) is a family of polynomials in R[x 1 , ..., x i ], all quasi-monic with respect to x i , closed under derivation with respect to x i , 2. for i < n, the family of polynomials (P i,1 , ..., P i,s i ) contains the family PROJ(P i+1,1 , ..., P i+1,si+1 ).

For 0 < k ≤ n, given a family = ( i,j ) of signs in {-1, 0, 1} indexed by i = 1, ..., k and j = 1, ..., s i , set C = {x ∈ R k ; sign(P i,j (x)) = i,j for i = 1, ...k and j = 1, ..., s i }, C ¯ = {x ∈ R n ; sign(P i,j (x)) ∈ ¯ i,j for i = 1, ...n and j = 1, ..., s i }.

The closure of the nonempty cell C is C ¯ , which is a union of cells.

Clearly, since in our case, the action is not explicit, these conditions cannot be tested.

The contraction obtained by the end of the idea of the proof is partially due to the following lemma: Proof. By Rosenlicht [START_REF] Dolgachev | Lectures on Invariant theory[END_REF], there exits an algebraic invariant manifold Z such that the field of rational functions on U/G, where U = C L \ Z, is isomorphic to the subfield C C L G of G-invariant rational functions on C L . This means that the orbits of G on C L define an algebraic foliation which is completely integrable by rational functions. So, there exit f 1 , ..., f k ∈ C C L G such that the generic leaf L ⊂ {f 1 = c 1 , ..., f k = c k } with dimL = L -k. As the rational forms df 1 , ..., df k generate the foliation, a singular locus of such a foliation is given by df 1 ∧ ... ∧ df k = 0. If the singular locus has the same dimension as that of the leaves, then this is not a geometric singular locus, i.e. it is not a singular locus of the foliation, only of the form. If the singular locus is geometric, then its dimension is strictly smaller than that of the leaf because the singular locus is defined by C k L equations which is strictly greater than k. Moreover, it is invariant by the action because the fact that the foliation is completely integrable by rational functions means that g * df i in a linear combination of df j . This implies that g * df 1 ∧ ... ∧ df k is a multiple of df 1 ∧ ... ∧ df k by a holomorphic function. So, the set df 1 ∧ ... ∧ df k = 0 is invariant by G. In particular, it contains leaves of strictly smaller dimension which is impossible.

We remark that if we go back to the case considered by Hertling [START_REF] Hertling | Frobenius manifolds and moduli spaces for singularities[END_REF] and replace the quasi-affine variety by C L and the group by a unipotent group, then we have to check if in this case the quotient is algebraic. A variety X is said to be complete if it is separated and universally closed which means that for any variety Y , the projection map Y × X -→ Y sends closed sets to closed sets. Chow's lemma shows that a complete variety is not far from a projective variety.

Theorem (Chow's Lemma). For every complete irreducible variety V , there exists a surjective regular map f : V -→ V from a projective algebraic variety V to V such that for some dense open subset U of V , f induces an isomorphism f -1 (U ) -→ U (in particular, f is birational).

The next theorem implies that complete quotients which are analytic geometric quotients are not far from algebraic quotients.

Theorem (Chow's Theorem [START_REF] Chow | On compact complex analytic varieties[END_REF]). Every closed analytic subset of a projective variety is algebraic.

A direct application of this theorem is:

Theorem ([57]). Every compact analytic subset of an algebraic variety is algebraic.

If the base field is the field of complex numbers, then X is complete is and only if X with the classical topology coming from C is compact, and if X is quasi-projective, then complete is equivalent to projective. Based on this remark, we cannot make use of the previous results because our quotient is not complete in general.

Counter example.

Deveney and Finston constructed an example of an action of the additive group on C 5 such that the algebra of invariants does not separate the orbits [START_REF] Deveney | A proper G a -action on C 5 which is not locally trivial[END_REF]. Since this example satisfies the conditions of the possible lemma (5.3.1), it implies that the lemma as it is, is not true, and so to obtain the desired conclusion we need to add more hypothesis which is not known for the moment. This section is devoted to present this example. For the convenience of the reader, we present most of the details established by Deveney and Finston in [START_REF] Deveney | A proper G a -action on C 5 which is not locally trivial[END_REF].

Let G a denotes the additive group of complex numbers, X a variety over C, and σ : G a × X -→ X a rational action of G a on X. The action is said to admit an equivariant trivialization if X is (G a ) equivariantly isomorphic to Y × C, with the group action fixing the first coordinate and acting by addition on the second. In that case, the affine variety Y is a geometric quotient. The action is said to be locally trivial (in the Zariski topology) if X is covered by G a stable (affine) open subsets on each of which the action admits an equivariant trivialization.

As we mentioned before, if (σ, id) : G a × X -→ X × X is a proper morphism of varieties, we say that σ is a proper action. A proper action of G a on X = C n is locally trivial CHAPTER 5. GLOBALIZATION AND RELATION WITH GIT 105 if C[X] is a flat extension of its subring of G a invariants and equivariantly trivial if the extension is faithfully flat [START_REF] Deveney | G a actions on C n[END_REF]. Moreover, under those conditions the geometric quotient exists as a quasiaffine variety. These results were used to show that all proper fixed point free G a actions on C 3 admit equivariant trivializations. Fauntleroy [3] has shown that locally trivial G a actions are necessarily proper. Smith [START_REF] Snow | Unipotent actions on affine space[END_REF] and Winkelmann [START_REF] Winkelmann | On free holomorphic C-actions on C n and homogeneous Stein manifolds[END_REF] have given examples of fixed point free actions on C 4 for which the space of orbits is not Hausdorff in the quotient topology induced from the complex topology on C 4 . These examples are clearly nonproper, and admit no geometric quotient. In the same paper, Winkelmann has given an example of a proper action on C 5 which is locally trivial in the Zariski topology but does not admit an equivariant trivialization.

In [START_REF] Deveney | A proper G a -action on C 5 which is not locally trivial[END_REF], James K. Deveney and David R. Finston constructed an example of a proper action on complex affine five space which is not locally trivial. They noted that Fauntleroy [3] has shown that if distinct orbits of a proper G a action on a quasifactorial variety can be separated by invariant rational functions (i.e., if the action is properly stable), then the action is locally trivial. Based on that, they found out that it is the stability that is lacking by their example. An assertion which would imply that any proper, fixed point free G a action on a normal variety is locally trivial and admits a quasiprojective quotient appears in a paper of Magid and Fauntleroy [START_REF] Fauntleroy | Proper G a actions[END_REF], and the source of the error is pointed out in [3]. The example of Deveney and Finston indicates that no such general result is possible.

We start by presenting some features of proper rational algebraic G a actions on C n discussed by them aiming to give some indication of how close proper actions are to being locally trivial. Let σ : G a × X -→ X be a rational action of G a on X = C n , σ : C[X] -→ C[X, t] the induced map on coordinate rings, and σ the morphism G a × X -→ X × X given by (t, x) -→ (x, σ(t, x)). Differentiating σ yields a locally nilpotent derivation δ of C[X]: δ(P ) = σ(P ) -P t | t=0 , σ = exp(tδ).

Every σ, hence every rational G a action, arises as the exponential of a locally nilpotent derivation. It should be noted that the ring of invariants of the G a action is identical to the kernel of δ and that the fixed point set for the action is the set of common zeros of {δx i : 1 ≤ i ≤ n} where x i , 1 ≤ i ≤ n are coordinates on X.

Properness of the action is expressed in terms of coordinate rings: σ induces a C-algebra homomorphism σ :

C[X × X] -→ C[X × G a ] ∼ = C[X, t].
It was proved in [START_REF] Deveney | G a actions on C n[END_REF] that σ is proper if and only if σ is surjective, and locally trivial if and only if im(δ) ∩ C[X] Ga generates the unit ideal in C[X]. In the latter case the action admits a quasiaffine geometric quotient. An easy consequence of the surjectivity of σ is the absence of fixed points. Moreover, for proper G a actions, Deveney and Finston have shown that the action is locally trivial if and only if the ring extension C[X] Ga → C[X] is flat, and equivariantly trivial if and only if the extension is faithfully flat [START_REF] Deveney | G a actions on C n[END_REF]. If there is a slice for the action, i.e. s ∈ C[X] with σ(s) = s + t (equivalently, δ(s) = 1), then clearly CHAPTER 5. GLOBALIZATION AND RELATION WITH GIT 106 σ is surjective. Moreover, if a slice exists, then the action is equivariantly trivial, i.e., X ∼ = X/G a × G a .

Assume that σ is a proper action of G a on X = C n , so that for some P ∈ C[X × X] = C[x 1 , ..., x n , y 1 , ..., y n ], we have t = σP (x 1 , ..., x n , y 1 , ..., y n ) = P (x 1 , ..., x n , σx 1 , ..., σx n ).

(5.1)

For a = (a 1 , ..., a n ) ∈ X define P a = P (a 1 , ..., a n , x 1 , ..., x n ) ∈ C[X]. Clearly P a provides an algebraic isomorphism from the orbit of a to C. In particular, each orbit is a complete intersection [START_REF] Ohm | Space curves as ideal theoretic complete intersections[END_REF]. The following remarks by Deveney and Finston show how close P a is to a slice. Differentiating (5.1) with respect to t, using the fact that σ = exp(tδ), leads to

1 = n i=1 ∂P a ∂x i δx i (a i ).
The definition of the tangent space to the zero set of P a at a (e.g., [ [START_REF] Shafarevitch | Basic algebraic geometry[END_REF], p. 73]) shows that the zero set of P a intersects the orbit of a transversally at a [ [START_REF] Shafarevitch | Basic algebraic geometry[END_REF], p. 82], and it is clear that a is the unique point in the intersection. If {h 1 , ..., h n-1 } is a minimal generating set for the ideal of the orbit of a, then h 1 , ..., h n-1 , P a are local parameters at a in X.

Moreover, since a is simple on the zero set of P a , only one component, say Z a = the zero set of q, passes through it. The h i need not be invariants, however. If the orbit of a can be determined as the vanishing set of invariant rational functions g i , then on an affine neighborhood U a of a, Z a ∩ U a gives a local quotient for the action. Indeed, because Z a intersects the orbit of a transversally, the local parameters g i , q form a coordinate system for U a at a. In particular, orbits on ). To see that the action is proper, observe that t = σz-z-y 2 2 (σx 2 -x 2 )-y 2 (σx 2 -x 2 )(σy 2y 2 )-(σx 2 -x 2 )(σy 2 -y 2 ) 2

3

. They showed that there are distinct orbits which are not separable by invariant rational functions. In fact, generators for the ring of invariants are explicitly given, from which it is clear that the ring of invariants is not regular. They note that with aid of the computer algebra program MAPLE, it is easy to check that the action is unstable by checking the elements of a Gröbner basis for the kernel of σ against those of a Gröbner basis for the ideal of C[X, Y ] generated by {c(X) -c(Y ) : c ∈ C[X] Ga }. They clarified that instability clearly is due to the inability to separate orbits by G a invariants: the use of computational methods is mentioned to emphasize their utility in problems such as these.

The ring of invariants is generated by the five polynomials c 1 = x 1 , c 2 = y 1 , and 
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  j , b 1,i = b 1,j pour i = j et i = j , où les index k,i,k et i satisfont certaines inégalités qui seront développées plus tard. Nous prenons un paramètre p= • • • , a k,i , • • • , b k ,i , • • • ∈ P et nous introduisons la famille de les fonctions N (M,N ) p = xy(y + x 2 ) i x k+1 .Ces fonctions semblent être de bons candidats pour paramétrer l'espace de modules M M,N . Le premier résultat principal du chapitre 2 garantit qu'au niveau infinitésimal, il s'agit bien de formes normales analytiques. Plus précisément, si nous considérons le feuilletage saturé F (M,N ) p défini par la 1-forme dN (M,N ) p sur C 2+δ M,N , alors nous pouvons montrer que: Theorem (Existence locale). Pour tout p 0 dans P, le germe du déploiement F (M,N ) p , p ∈ (P, p 0 ) est un déploiement équisingulier universel -suivant [29]-du feuil-

(

  M,N ) p defined by the one-form dN (M,N ) p on C 2+δ M,N , then we can show that: Theorem (Local existence). For any p 0 in P, the germ of unfolding F (M,N ) p , p ∈ (P, p 0 ) is a universal equireducible unfolding -following [29]-of the foliation F (M,N ) p 0 .
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 11 and M -1 branches of weight (1, 2) on which we distribute the parameters. If we consider the saturated foliation F (M,N ) p defined by the one-form dN (M,N ) p on C 2+δ M,N , we show similarly in chapter 4 that for any p 0 in P the germ of unfolding F (M,N ) p , p ∈ (P, p 0 ) is a universal equireducible unfolding of the foliation F (M,N ) p 0
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 43 with Θ N (M,N ) to Proposition (2.1.1), the set of the coefficients of the Laurent's series of Φ in H 1 (D, Θ F (M,N ) p 0
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 4444414444444444 2 are roots of the polynomial P which satisfies the Bézout identity P ∧ P = U P + V P . So the matrix M 4 is invertible. Now we compute the second cocycle. In the chart V 4 , we can write Ñ (M,N ) P as Ñ (M,N ) P (...)where A(y 4 ) = y 2M +N a 1,j ). So, we obtain the following expressions∂ Ñ (M,N ) +a 1,i A(y 4 ) + y 2M +N4 x 4 (...) ∂ Ñ (M,N ) p ∂x (M + N )x M +N -1 (y 4 ) + y 2M +N -1 (...) (2.19)

  This chapter is devoted to the study of the distribution C related to the following equivalence relation on the moduli space M M,N of foliations: two points in M M,N are equivalent if and only if the separatrices of the corresponding class of foliations are in the same analytic class of curves. In section (3.1), we describe the infinitesimal generators of the distribution C and give some properties about them. The main result of this section is proposition(3.1.4) in which we show the algebraic independence of some coefficients of the O 2 -generator of C. Section (3.2) presents an algorithm to compute the dimension of the generic strata of the local moduli space of curves (Theorem C). Finally, we give some examples in section (3.3).
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 311 An open set U of M is a quasi-homogeneous open set (relatively to f ) if there exists a holomorphic vector field R U on U such that R U ( f ) = f .In our case, we can always cover D by three quasi-homogenous open sets V 2 , V 3 and V 4 . The cocycle of the quasi-homogeneity
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  chosen rational in a 1,• and b 1,• and polynomial in the variables a k,• and b k,• , k ≥ 2. The same result holds for the relations (2.23) and (2.24) in the other two charts. Now, following the computation of the cocycle in the proof of Theorem A makes it obvious that the coefficients in its Laurent development are in C(a 1,• , b 1,• )[a 2,• , ..., a N -1,• , b 2,• , ..., b N +2M -5,• ]. So are the coordinates of ∂ ∂a k,i and ∂ ∂b k,i in the standard basis.

2 .

 2 Combining proposition (3.1.1) and the previous point ensures that the coefficients of X 0,0 in the standard basis are in C(a 1,• , b 1,• )[a 2,• , ..., a N -1,• , b 2,• , ..., b N +2M -5,• ]. Since the multiplication by x m y n is a linear shift, the coefficients of X m,n are also in the previous ring. Now, if we order the basis x i N 2 , then the matrix of basis changing is diagonal by blocks with coefficients in C(a 1,• , b 1,• )[a 2,• , ..., a N -1,• , b 2,• , ..., b N +2M -5,• ]. Moreover, the diagonal blocks only depend on the variables a 1,• and b 1,• . Thus, the coefficients of the inverse matrix are in C(a 1,• , b 1,• )[a 2,• , ..., a N -1,• , b 2,• , ..., b N +2M -5,• ], which proves the claim.

  to Proposition (2.1.1), the set of the coefficients of the Laurent's series of Φ in H 1 (D, Θ F (M,N ) p 0

  for all 1 ≤ i ≤ M -2 and R l 0,-j (p) is the coefficient of1 

Example 3 . 3 . 1 . 7 Figure 3 . 2 -

 331732 Figure 3.2 -The region Q M,N for N = 8, M = 7

4 XExample 3 . 3 . 3 .

 4333 For N = 5, M = 7, we have τ 7,5 = 30.

Figure 3 . 4 -

 34 Figure 3.4 -The region Q M,N for N = 5, M = 7

  one-form dN (M,N ) p on C 2+δ M,N , and so we have: Theorem D. For any p 0 in P the germ of unfolding F (M,N ) p , p ∈ (P, p 0 ) is a universal equireducible unfolding of the foliation F (M,N ) p 0 .

CHAPTER 4 .Proposition 4 . 1 . 1 .Lemma 4 . 1 . 1 .

 4411411 SECOND UNIVERSAL FAMILY OF NORMAL FORMS OF FOLIATIONS.81 We consider the unfolding F(M,N) p defined by the blowing up of N (M,N ) p, p ∈ (P, p 0 ). The image of the family∂ ∂a k,i , ∂ ∂b k,i k,i in H 1 D, Θ F (M,N )Denoting by A 1 the square matrix of size M + N -3, representing the decomposition of the images of∂ ∂a 1,i , ∂ ∂b 1,iin H 1 D, Θ F (M,N ) the proposition results from the following two lemmas. The matrix A 1 is invertible.
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 4444444444444444344 a 1,i A(y 4 ) + y 2M +N a 1,j ) CHAPTER 4. SECOND UNIVERSAL FAMILY OF NORMAL FORMS OF FOLIATIONS.82 and where the suspension points (...) correspond to auxiliary holomorphic functions in (x 4 , y 4 ). Since Ñ (M,N ) P (...) , we find that∂ Ñ (M,N ) p ∂x (M + N )x M +N -1 (y 4 ) + y 2M +N -1Setting α 1,i = x 4 α1,i , we deduce from (4.2) that A(y 4 ) y 4 + a 1,i = (M + N )α 1,i (0, y 4 )A(y 4 ) + β 1,i (0, y 4 )A (y 4 ) + y 2M +N -1

4 +

 4 x 4 (...).

4 +

 4 B(y 4 )D(y 4 ) ∂ ∂y 4 + x 4 (...).
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M - 1 i=1 (y 3 +U

 13 b 1,i ) the polynomial function satisfying P = (P ∧ P )R and so we obtain the solution Y (y 3 )R(y 3 ) y 3 + b 1,i ∂ ∂y 3 + x 3 (...).
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 5111 The space j k T (M,N ) fix of jets of order k of the space T (M,N ) fix

3 .

 3 [., .] satisfies the Jacobi identity [x, [y, z]]+[z, [x, y]]+[y, [z, x]] = 0 for all x, y, z ∈ V .
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 531 Suppose that C(C L ) G = C(f 1 , ..., f β ) such that {f 1 , ..., f β } ⊂ C[C L ] G is a separating set. Let π : C L → C β be the polynomial map defined by (f 1 , ..., f β ). If C L /Gis an analytic geometric quotient, then the orbits are separated (i.e. π : C L /G → C β is injective).

S

  = (x, y) ∈ C L × C L | Gx = Gy and π(Gx) = π(Gy) = 0 = ∅.Considering the maps Pri : C L × C L -→ C L , (x 1 , x 2 ) -→ x i and P : C L -→ C L /G, x -→ Gx, we can write S = S 1 ∩ S 2 with S 1 = (x, y) ∈ C L × C L | P • Pr 1 (x, y) -P • Pr 2 (x, y) > 0 S 2 = (x, y) ∈ C L × C L | π • P • Pr 1 (x, y) = π • P • Pr 2 (x, y) = 0 ,
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 531 If C L /G is an analytic geometric quotient, then the foliation generated by G is regular.

2 δ → x 1 δ→ 0, y 2 δ → y 1 δ→ 0, z δ → ( 1 + x 1 y 2 2

 2121δ12 U a are determined by values of the rational functions g i . Now, we present the counter example of Deveney and Finston. The action is determined by the locally nilpotent derivation δ of C[x 1 , x 2 , y 1 , y 2 , z] given by x

c 3 = 2 -3y 2 , c 5 = x 2 1 c 4 +c 3 3 +3x 1 c 3 y 1 .

 3221 x 1 y 2 -x 2 y 1 , c 4 = 3y 1 z -x 1 y 3
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  The singular set Σ(F p ) is the zero set of the ideal(A 1 , A 2 , C 1 , ..., C p ) ⊂ O 2+p , 4. (C 1 , ..., C p ) is a sub-ideal of (A 1 , A 2 ).

	2. Ω is integrable, i.e. Ω ∧ dΩ ≡ 0,
	3.
	)
	such that
	1. A 1 , A 2 and C 1 , ..., C p are germs of holomorphic functions at a neighborhood of {0},

  For any p 0 in P the germ of unfolding F

				(M,N ) p	, p ∈ (P, p 0 ) is a universal
	equireducible unfolding of the foliation F	(M,N ) p 0	.
	As mentioned in the introduction, this means that for any equireducible unfolding F t ,
	t ∈ (T , t 0 ) which defines F	(M.N ) p 0	

  The coefficients of J ν 0

	∂ Ñp ∂x 4	and J ν 0	∂ Ñp ∂y 4	depend only
	on the variables a 1,• and b 1,• . Moreover, the coefficients of J s	∂ Ñp ∂x 4	and J s	∂ Ñp ∂y 4

  1,i ) is different from zero for all 1 ≤ i ≤ N -2 because the different values values { -1 a 1,i } 1≤i≤N -2 are roots of the CHAPTER 4. SECOND UNIVERSAL FAMILY OF NORMAL FORMS OF FOLIATIONS.84 polynomial J which satisfies the Bézout identity KJ + LJ = 1. So, the matrix M 1 is invertible.

+ 3, is less than or equal

Acknowledgements.

which act at the level l = 1, ..., N + 2M -5 admits as a basis:

{X 2,0 , X 0,1 } 4 ≤ l ≤ N 2 + 1 {X l-1,0 , X l-3,1 , X 0,l-2 , ..., X l-4,2 } l = N 2 + 2 {X l-1,0 , X l-3,1 , X 0,l-2 , ..., X N -l-2,2l-N } l = N 2 + 3 + i, 0 ≤ i ≤ N 2 -5, {X l-1,0 , X l-3,1 , X 0,l-2 , ..., X N -l-2,2l-N , N even

{X l-1,0 , X l-3,1 , X N -6,2 , X N -8,3 , ...,

+1 , X N -5, r+1 2 +2 , ..., X N +r-2n 1 ,n 1 , r odd X N -1+r,0 , X N -3+r,1 , ..., X N, r-1

+1 , X N -4, r 2 +2 , ..., X N +r-2n 2 +2,n 2 -1 , r even X N -1+r,0 , X N -3+r,1 , ..., X N -1, r 2 * l = N + 1 + r, N -3 ≤ r ≤ 2M -6, X N -3, r+1 2 +1 , X N -5, r+1 2 +2 , ..., X N +r-2n 3 ,n 3 , r odd X N -1+r,0 , X N -3+r,1 , ..., X N, r-1

+1 , X N -4, r 2 +2 , ..., X N +r-2n 4 +2,n 4 -1 , r even X N -1+r,0 , X N -3+r,1 , ..., X N -1, r 2 *

.

where

+ N -2 and n 4 = r-N +4 2 + N -1. The asterisk ( * ) means that this family is a basis if its cardinal is less than or equal to q l , otherwise, any subfamily of cardinal q l form a basis.

Since X a,0 0,0 is a non zero coefficient among the coefficients {X a,j 0,0 } in the decomposition of X 0,0 , the vector fields X m,0 may start action on the subspace P a . The first level of the subspace P a at which X m,0 may have an action is l a = m + 1 and that of the subspace

4 y m 4 X 0,0 and the levels of the subspace P a are determined by the powers of x 4 and those of the subspace P b are determined by the powers of y 4 and since X m,0 = x m X 0,0 , its projection on the previous levels vanish. For 1 ≤ l b ≤ N -1, l a = l b , the vector fields X m,0 can be used to kill only one modulus at each level l a = m + 1 of the subspace P a . For N ≤ l b ≤ N + 2M -5, the monomial ν m,n + 1 of the subspace P b . The following lemma shows that they act at the next level. We note that they do not even act on the subspace P a . Lemma 3.2.2. For a fixed integer d, the vector fields X m,n such that ν m,n + 1 = d + 1 and m ≥ N -1 act at the level ν m,n + 2 = m + 2n + 2 = d + 2 of the subspace P b when there are moduli at this level.

Proof. If m ≥ N -1, then the vector fields X m,n such that ν m,n + 1 = d + 1 do not act at the level ν m,n + 1 = N + 1 + i where -1 ≤ i ≤ 2M -6: X m,0 does not act at the level ν m,n + 1 of the subspace P a and X m,n such that n = 0 does not act at the level ν m,n + 1 of the subspace P b . They are given by

X 0,0 is the only vector field X m,n such that m ≥ N -1 and ν m,n + 1 = N which does not act at the level N of the subspace P a (because it does not exist actually): indeed it is the first vector field for which the monomial term having X a,0 0,0 as a coefficient in its decomposition , which is

4

, is outside the region of moduli: it is actually at the edge of equation (2x 4 -y 4 -(N -1) = 0) of the region. Supposing that M > 2 (otherwise there are no moduli in the region associated to the subspace P b ), the coefficient of y 4 in the decomposition of X 0,0 , which is X b,1 0,0 , is different from zero. So, the vector field X N -1,0 acts at the level N + 1 of the subspace P b : in its decomposition, X b,1 0,0 is the coefficient of x N -1

4

y N 4 which is the first monomial term inside the region of moduli at the level N + 1.

0 , the monomial term having X a,0 0,0 as a coefficient in the decomposition of X N -1, i+1

2 is also at the edge of equation (2x 4 -y 4 -(N -1) = 0) of the region of moduli (as y = x 4 y 2 4 ). Again since M > 2, the vector field X N -1, i+1 2 , which does not act at the level N +1+i of the subspace P b , acts at the level N + 1 + (i + 1): also in its decomposition, X b,1 0,0 is the coefficient of x

4 which is the first monomial term inside the region of moduli at the level N + 1 + (i + 1). Now, for the other vector fields, we have

.

in the decomposition of X 0,0 , which is X b,j+1 0,0 , is different from zero, and so the first monomial term inside the region at the level N + 1 + (i + 1) which is x

will have X b,j+1 0,0 as a coefficient in the decomposition of X N -1+2j, i+1 2 -j . This means that to show that the vector fields

2 act at the level N + 1 + (i + 1), it is enough to show that we have the following inequality j + 1 ≤ M -2 for 0 ≤ j ≤ i+1 2 , which ensures the existence of y 4

x j 4 for all 0 ≤ j ≤ i+1 2 in the decomposition of X 0,0 . In fact, it is enough to show that these vector fields act at the level ν m,n + 2 = N + 1 + (i + 1) = d + 2 when there are moduli at this level. More precisely, we need to consider the action of the r vector fields X N -1+2j, i+1 2 -j 0≤j≤r-1 at the level d + 2 if the number of points at this level is greater than or equal to r i.e. if we have the following inequality q d+2 ≥ r where

, such that i is even, then we have

in the decomposition of X 0,0 , which is X b,j+2 0,0 , is different from zero, and so the first monomial term inside the region of moduli at the level N + 1 + (i + 1) which is x

This means that to show that the vector fields X N +2j, i 2 -j 0≤j≤ i 2 act at the level N + 1 + (i + 1), it is enough to show that we have the following inequality j + 2 ≤ M -2 for 0 ≤ j ≤ i 2 , which ensures the existence of y 4

x j+1 4 for all 0 ≤ j ≤ i 2 in the decomposition of X 0,0 . As before, it is enough to show that these vector fields act at the level ν m,n + 2 = N + 1 + (i + 1) = d + 2 when there are moduli at this level. More precisely, we need to consider the action of the r vector fields X N +2j, i 2 -j 0≤j≤r-1 at the level d + 2 if the number of points at this level is greater than or equal to r i.e. if we have the following inequality q d+2 ≥ r where

If M > 2, then the vector fields X m,n such that n ≥ M -1, which are extra from the region associated to the subspace P a , may start action at the level ν m,n +1 of the subspace P b . In the next lemma, which deals with the generic dimension of the distribution C, we will see that all the moduli at such a level as well as the next levels are killed. Lemma (3.2.1) is equivalent to: Lemma 3.2.3. If M > 2 and N ≥ 6, then for any d = 0, ..., N + 2M -6, the dimension of the vector space generated by the vector fields X m,n which act at the level l = d + 1 is given by:

We note that we can easily check that if the number of the vector fields acting at some level is less than that at the previous level by one (which is the only possible case and it is only possible if l b ≥ N + 1), then the number of points at this level is less than the number points at the previous level by one. So, we do not need to consider the vector fields, which are extra at some level, at the next level.

If we let

where exceptionally q N +1 = M -3, then the previous lemma implies that we have the following:

Since k 1 ≤ ν 0 and k 2 ≤ ν 0 ≤ ν 1 , then according to Lemma (4.2.1), we have

We take the pull-back of the previous equality with respect to the map E and write it in the coordinates (x 4 , y 4 ):

x 4 y 4 (y 4 + a 1,i ) + Xν 0 +1 • (x 4 y 4 (y 4 + 1))

where Xν 0 +1 stands for the vector field

. Evaluating the residue at y 4 = -a 1,i yields the relation

Now, in view of the construction of the normal form, the coefficient δ ν 0 +1,i = a ν 0 +1,i -a ν 0 +1,i has to be zero for ν 0 values of i. A straightforward computation shows that Xν 0 +1 •y 4 is a polynomial function of degree at most ν 0 +1 in y 4 . Noting that 0 and 1 are also roots of it (by evaluating the residue also), it must be the zero polynomial function. Hence, the vector field X ν 0 +1 has to be tangent to N

which is a contradiction with the hypothesis ν 0 < M + N -1.

2. Similarly, we show that ν 1 < 2M + N -5 leads to a contradiction. Denoting by 

. We can write

, then according to Lemma (4.2.1), we have

Similarly, we take the pull-back of the previous equality with respect to the map E and write it in the coordinates (x 4 , y 4 ):

where Xν 1 +1 stands for the vector field

x ν 0 4 y ν 0 +α 0 4

and α 0 = ν 1 -ν 0 . Evaluating the residue at

A simple computation shows that Xν 1 +1 • x 4 is a polynomial function of degree at most α 0 + 1 in x 4 . Now, in the relation (4.17), we know that d = ν 1 2 -ν 0 ≤ 0. So, we have the following three cases:

is a contradiction with the hypothesis ν 1 < 2M + N -5.
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In the last two cases, we can write

In view of the construction of the normal form, the coefficient δ ν 1 +1,j = b ν 1 +1,jb ν 1 +1,j has to be zero for ν 1 -N 2 + 1 values of j. We note that 0 is also a root of the polynomial function Xν 1 +1 • x 4 . However, we know that it is at most of degree α 0 + 1. We also know that

• x 4 must be the zero polynomial function. Hence, the vector field Xν 1 +1 has to be tangent to Ñ (2M +N ) p which is a contradiction with the hypothesis ν 1 < 2M + N -5. This implies that ν 1 must be greater than or equal to M + N . We proceed similarly at each level. Finally, if ν 1 = 2M + N -6, then α 0 can be at most M -5. Since in this case we have ν 1 -N 2 + 1 = M -2, we obtain that the polynomial function Xν 1 +1 • x 4 must be the zero function. Similarly, the vector field Xν 1 +1 has to be tangent to Ñ (2M +N ) p which is a contradiction with the hypothesis ν 1 < 2M + N -5.

Remark. If we consider the germs of functions defined by

then proceeding similarly to the proof of Theorem D, we can show that this family is universal as well. However, this family does not seem to satisfy the uniqueness property. In fact, one can easily check that lemma (4.2.1), which is basic in the proof of the uniqueness, is not valid for this family of functions.

Under these assumptions, the topological space Y may be identified with the orbit space X/G equipped with the quotient topology, in view of ( 1) and ( 2). Moreover, the structure of variety on Y is uniquely defined by (3) (which may be rephrased as the equality of sheaves O Y = π * (O X ) G ). In particular, if X is irreducible, then so is Y , and we have the equality of function fields

We now give the definition of an open subset of X that admits a geometric quotient. Let G be a reductive group, and X an affine G-variety. A point x ∈ X is said to be stable if the orbit G • x is closed in X and the isotropy group G x is finite. The (possibly empty) set of stable points is denoted by X s .

Proposition ( [START_REF] Brion | Introduction to actions of algebraic groups, Notes of the course "Actions hamiltoniennes : invariants et classification[END_REF]). With the preceding notation and assumptions, π(X s ) is open in X//G, we have X s = π -1 π(X s ) (in particular, X s is an open G-stable subset of X), and the restriction π s : X s -→ π(X s ) is a geometric quotient.

In his book [START_REF] Hertling | Frobenius manifolds and moduli spaces for singularities[END_REF], where Hertling considered a more general case than our case, he proved that all the orbits are closed and have the same dimension. In view of that and the previous result, if our group j k G is reductive, then conjecture 1 holds. However, the group j k G is not reductive. In fact, we can easily check that we have: Lemma 5.2.1. The group j k G is unipotent.

Unfortunately, the above results about reductive group actions are not valid for unipotent group actions. A first difference is that the algebra of G-invariant regular functions is not necessarily finitely generated (the so-called Hilbert's fourteenth problem) due to the famous counter example of Nagata [START_REF] Nagata | On the fourteenth problem of Hilbert[END_REF]. In fact, even if it is finitely generated, it does not in general separate closed orbits having finite isotropy group as in the following example: Example 5.2.1 ( [START_REF] Brion | Introduction to actions of algebraic groups, Notes of the course "Actions hamiltoniennes : invariants et classification[END_REF]). Let G = C act on X = C 3 , viewed as the space of polynomials of degree at most 2 in a variable x, by translation on x:

Then all orbits are closed, and contained in the fibers of the map

Specifically, the fiber over (x, y) consists of one orbit if x = 0, and two orbits if x = 0 but y = 0; all these orbits have trivial isotropy group. Moreover, the fiber over (0, 0) is the line l defined by b = c = 0, and consisting of the G-fixed points. It follows that C(X) G = C(a, ac -b 2 ) and that X admits no geometric quotients, nor does the G-stable open subset X \ l consisting of orbits with trivial isotropy group.

In this case, they remarked that the invariant functions can be easily obtained by putting

for y ∈ A.

Then i(y) ∈ A δ and i(y

Let L be a nilpotent Lie algebra of finite dimension such that the unipotent group G = exp(L) acts on SpecA. If δ 1 , ..., δ n is a basis of L and

x n ] and x 1 , ..., x n are algebraically in dependent over A L .

In the same work, Greuel and Pfister gave another similar criterion called row-minor criterion which deals with rows instead of columns. These two criteria seem to be a nice way to determine whether all the points are stable or not. However, to be able to use them, the action has to be explicitly describable. Unfortunately, in our case the action is quite general, so we can not apply them.

Related results.

A group action is said to be proper if the mapping G × X → X × X (g, x) → (gx, x) is a proper map, i.e., the inverses of compact sets are compact. By Artin [START_REF] Artin | Versal deformations and algebraic stacks[END_REF] and Kollár [START_REF] Kollár | Quotient spaces modulo algebraic groups[END_REF], proper actions admit geometric quotients in the category of algebraic spaces. Since in our case, the isotropy groups contain the flow maps of the vector fields tangent to the foliation, they are not compact and so the action is not proper. We say that the quotient is locally trivial if there exists a covering {U i } i whose pre-images under the map G × X → X/G are isomorphic to G × U i . A result of Bérczi, Hawes, Kirwan and Doran [START_REF] Bérczi | Constructing quotients of algebraic varieties by linear algebraic group actions, Handbook of Group Actions[END_REF] says that if a locally trivial quotient exists, then it is affine if and only if X → X/G is a trivial G-bundle. However, in our case the quotient is not locally trivial for the same reason. We remark that every orbit of a unipotent group action is isomorphic to an affine space [START_REF] Kambayashi | Unipotent algebraic groups[END_REF].

Let G be a linear algebraic group acting on an affine variety X over an algebraically closed field K. A subset S ⊂ K[X] is called separating if for all x, y ∈ X, the existence of a function f ∈ K[X] G with f (x) = f (y) implies the existence of a function f ∈ S with f (x) = f (y). We know that if G is unipotent, then the invariant field K(X) G is equal to the field of fractions of the invariant ring K[X] G [START_REF] Kamke | Algorithmic invariant theory of nonreductive group[END_REF], but the latter is not necessarily finitely generated. However, Arzhantsev, Celic and Hausen proved that, under some conditions, K(X) G is the field of fractions of a finitely generated separating subalgebra [START_REF] Arzhantsev | Factorial algebraic group actions and categorical quotients[END_REF]. In fact, an affine variety is said to be normal if the ring of regular functions on X is A result of Thom says that, under some conditions, the closure of a semi-algebraic set in one variable is obtained by relaxing the strict inequalities:

Proposition (Thom's lemma, [START_REF] Coste | An introduction to semialgebraic geometry. Istituti editoriali e poligrafici internazionali[END_REF]). Let P 1 , ..., P s ∈ R[x] be a finite family of nonzero polynomials, which is closed under derivation (i.e., if the derivative P i is nonzero, there is j such that P i = P j ). For = ( 1 , ..., s ) ∈ {-1, 0, 1} s , let A ⊂ R be defined by A = {x ∈ R; sign(P i (x)) = i for i = 1, ..., s}. Then 1. either A = ∅, 2. or A is a point (necessarily, at least one of the i is 0), 3. or A is a nonempty open interval (necessarily, all i are ±1).

where ¯ is given by

Then A ¯ is either empty, or a point, or a closed interval different from a point, and the interior of this interval is A .

Consider two polynomials P = a 0 x d + ... + a d of degree d and Q = b 0 x e + ... + b e of degree e. The resultant of P and Q is the determinant of the Sylvester matrix of P and Q, which is the square matrix of size d + e whose rows are the coordinates of x e-1 P, ..., xP, P, Q, xQ, ..., x d-1 Q, respectively, in the monomial basis x d+e-1 , ..., x, 1. For 0 ≤ j ≤ min(d, e), PSRC j (P, Q) denotes the principle subresultant coefficient of order j of P and Q, which is defined by the determinant if the square matrix of size d + e -2j which is obtained from the Sylvester matrix of P and Q by deleting the first j rows, the last j rows, the first j columns and the last j columns. The resultant of P and Q is PSRC 0 (P, Q).

If P is a polynomial in R[x 1 , ..., x n ], we consider it as a polynomial in the variable x n with coefficients in R[x 1 , ..., x n-1 ]. Let P 1 , ..., P r be a family of polynomials in R[x 1 , ..., x n ]. We denote by PROJ(P 1 , ..., P r ) the smallest family of polynomials in R[x 1 , ..., x n-1 ] satisfying the following conditions:

1. If deg xn P i = d ≥ 2, then PROJ(P 1 , ..., P i , ..., P r ) contains all non constant polynomials among PSRC j (P i , ∂P i /∂x n ) for j = 0, ..., d -1.

2. If 1 ≤ d = min deg xn P i , deg xn P k , then PROJ(P 1 , ..., P i , ..., P k , ..., P r ) contains all non constant PSRC j (P i , P k ) for j = 0, ..., d.

These generators were obtained by implementing a form of the algorithm in [START_REF] Tan | An algorithm for explicit generators of the invariants of the basic Graciions[END_REF], easily extended to locally nilpotent, but not necessarily linear, derivations of polynomial rings.

Van den Essen has given a treatment of the algorithm, suitable for computer implementation, in [START_REF] Van Den Essen | Locally finite and locally nilpotent derivations with applications to polynomial flows, morphisms, and G a actions[END_REF]. Since the latter reference may not be easily accessible, Deveney and Finston sketched the application to the example at hand, referring to [START_REF] Tan | An algorithm for explicit generators of the invariants of the basic Graciions[END_REF] for details. It follows from [START_REF] Deveney | Fields of G 1 invariants are ruled[END_REF] that the ring of G a invariants for the action extended to C[X, 1 y 1 ] is generated by { 1 y 1 , c 1 , c 2 , c 3 , c 4 }. Indeed, y 2 y 1 is a slice for the extended action. Deveney and Finston built a chain of subrings C i of the ring of G a invariants in C[X] as follows:

. View C1 as the homomorphic image of the polynomial ring C[z 1 , z 2 , z 3 ] under the mapping which sends z i , to the residue class of c i . Since C1 is a two-dimensional domain, the kernel is a principal ideal, easily seen to be generated by z 2 1 z 4 + z 3 3 + 3z 1 z 3 . In other words, x 2 1 c 4 + c 3 3 + 3x 1 c 3 lies in the ideal of C 1 generated by y 1 . The invariant c 5 is obtained by dividing out the highest power (= 1) of

Repeating this procedure with C2 = C 2 /(y 1 ), one finds that the residue class of c 5 is algebraically independent from the classes c 1 , c 2 , c 3 , c 4 . In particular, no new relations, and hence no new invariants, arise. Thus, the ring of invariants C is isomorphic to C[u 1 , u 2 , u 3 , u 4 , u 5 ]/ < u 2 u 5u 2 1 u 4 -u 3 3 -3u 1 u 3 > which is the coordinate ring of a variety with singularities at all points p α = (0, 0, 0, a, 0). Denoting spec C by Y and by π the morphism induced by the inclusion C → C[X], the fiber π -1 (p α ) is two dimensional, consisting of all points (0, β, 0, -α 3 , γ). In particular, the extension They added that distinct orbits can, however, be separated by algebraic functions. By the method of Seshandri [[14], Theorem 6.1], the G a action extends to the normalization Z of X in a certain degree six Galois extension of C(X). The action on Z is locally trivial and admits a geometric quotient W , which is a variety (necessarily not quasiprojective by [ [START_REF] Seshandri | Quotient spaces modulo reductive algebraic groups[END_REF], p. 543]). If G denotes the Galois group of C(Z)/C(X), then, as indicated in [3], the geometric quotient of X is the algebraic space W/G. The affine variety Z is constructed as follows. Let S 1 be the hyperplane in X defined by z = 0 and S 2 the hyperplane x 2 = y 2 . One checks that X = σ(G a × S 1 ) ∪ σ(G a × S 2 ). Denote C(G a × S i ) by K i , observing that they are field extensions of C(X) since the U i are dense in X. If u 11 = x 1 , u 12 = x 2 , u 13 = y 1 , and u 14 = y 2 are coordinates on S, and t is the coordinate on G a , then the field extension C(X) → K 1 is given by x 1 → u 11 , x 2 → u 12 + tu 12 , y 1 → u 13 , y 2 → u 13 + tu 14 , z → t(1 + u 11 u 2 14 ) + t 2 u 11 u 13 u 14 + t 3 3 u 11 u 2 13 . Applying the invariants c 1 , ..., c 5 to these expressions shows that t satisfies a cubic polynomial over C(X) and K 1 = C(X)(t). A similar procedure shows that K 2 = C(X). Now Z is taken to be the normalization of X in the normal closure of K 1 over C(X). The slices on Z are given by x 2

x 1 , y 2 y 1 , and the three roots of the minimal polynomial for t in C(Z).