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Abstract

A discontinuous Galerkin (DG) technique for modeling wave propagation in damaged (brittle) materials

is developed in this thesis. This subject is of great interest in dynamics of materials or in solid Earth

geophysics. The numerical approach of this thesis will be related only to the DG method but there are two

different types of mechanical models for describing the damaged materials which are considered. In the first

one, called "micro-mechanics based damage model" and studied in the first part of the thesis, the micro-

cracks are introduced through a damage parameter (crack density parameter) which can increase under the

loading wave. The heterogeneity is a material one (the mechanical model loses its isotropy and homogeneity

but the geometric homogeneity is preserved). In the second one, called the "cracked solid" or "cracked

material" studied in the second part of this thesis, the micro-cracks, describing the damage of the material,

are introduced as a "geometric heterogeneity" in an isotropic and homogeneous elastic solid. This geometric

heterogeneity induces a loss of both (global) isotropy and (global) homogeneity of the elastic solid. The two

models are diametral opposite but they show like a mirror of the physical reality, where both geometric and

material heterogeneities are present.

In the first part is analyzed the coupling between the damage evolution and the wave propagation. Since

the loading wave, propagating into the material, produces damage and changes the propagation properties

of the material, the mechanical damage processes cannot be separated from the wave propagation process.

The (local) damage model for brittle materials used in this part is rather general and covers a wide spectrum

of the micro-mechanics-based damage models. Stability criteria for dynamic and quasi-static processes point

out that for a given continuous strain history the quasi-static or dynamic problems are unstable or ill-posed

(multiplicity of material responses) and whatever the selection rule is adopted, shocks (time discontinuities)

will occur. A critical crack density parameter, which distinguishes between stable and unstable behaviors,

is computed.

For homogeneous strain-driven processes at intermediate and low rates of deformation, sharp stress drops

related to the material instabilities could be expected. On the contrary, for high rates of deformation, the

strain-stress curve depends strongly on the rate of deformation but only a smooth stress drop is expected.

A new numerical scheme associated to the boundary value problem of the wave propagation was pro-

posed. To solve the associated nonlinear hyperbolic problem an explicit leapfrog type scheme for the time

discretization was used. To capture the instabilities a semi-implicit Euler method and a micro-scale time

step were used. A DG method with a centered flux choice was considered for the spatial discretization. To

test the numerical scheme a new (nontrivial) analytical solutions for a 1-D problem was constructed. Using

the exact solution the accuracy of the numerical scheme and its time step/mesh size sensitivity has been

analyzed. The centered scheme flux choice works well as far as the macro-scale solution is smooth and the

dynamic processes (at the microscopic scale) are very well approximated. For quasi-static processes (at the

microscopic scale), the solution exhibits shocks and a specific shock capturing flux choice have to be used.

Numerical tests showed that the one dimensional stress pulse is flatter (larger length and smaller ampli-

tude) when the flaw density increases while the length of the pulse is less affected by the initial crack length.

In the anti-plane configuration, in the direction of the micro-cracks the material is hardly damaged and the
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initial circular wave is propagating much slower than in the orthogonal direction. Even if the cracks’ systems

have different orientations, the final snapshot still shows an important anisotropy. For isotropic loadings,

the choice of only three directions with the same initial properties, ensures an isotropic damage behavior.

Numerical tests for the blast wave propagation illustrated the role played by the micro-cracks orientation.

The friction in the damage model has also a non-negligible influence on the amplitude and on the speed of

the loading wave. If several orientations of the micro-cracks are considered an additive effect of the damage

is present without an important interplay between the micro-cracks families.

In the second part of the thesis the wave propagation in (damaged) materials with a nonlinear micro-

structure (micro-cracks in frictional contact) was investigated. The numerical scheme developed here makes

use of the explicit leapfrog scheme in time and a centered flux choice for the inner element face. The nonlinear

conditions on the micro-cracks are treated by using an augmented Lagrangian technique, with a reasonable

additional computational cost.

This technique was used to compare the effective wave velocity in a damaged material obtained by direct

DG computation and by the analytical formula, deduced form the effective elasticity of a cracked solid theory.

The over-all wave speed is slower than the theoretical speed and the difference is very important for large

values of the crack density parameter. If the wave length is of order of the crack length, the wave speed

is strongly dependent on wavelength, but for a large wavelength the wave speed depends only on the crack

density parameter.

Finally, to illustrate the numerical scheme the wave generated by a blast in a cracked material was

analyzed. The crack orientation affects the wave propagation and its scattering. The friction phenomena

between the faces of the micro-cracks are affecting the wave propagation only for the mode II behavior.
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Notations

General Notations

a : scalar variable

a : vector/tensor variable

n : external unit normal

an = a · n normal component of vector a

σn = σn · n normal component ofstress vector σn

aT = a− ann tangential component of vector a

σT = σn− σnn tangential component of stress vector σn

ȧ time derivative of a

a · b = aibi scalar product of vectors a, b

A : B = AijBij scalar product of two tensors A,B

Domain

D : domain in R
3

Ω domain in R
2

∂D : domain boundary

Σ : internal boundary

Σv : part of the external boundary where velocity condition is imposed

Σσ : part of the external boundary where stress condition is imposed

Dynamic Model

u : displacement

v : velocity

ε = ε(u) = 1
2
(∇u+∇tu): small deformation tensor

σ : stress tensor

b : mass forces

E : Stiffness tensor

A : Compliance tensor

cP : P-wave velocity

cS : S-wave velocity

c0 : reference wave velocity

µf : friction coefficient
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η : flaw density

ρ : crack density/ damage parameter

Material parameters

E : Young modulus

ν : Poison ratio

G : Shear modulus

λ, µ: Lamé coefficients

ρmass : mass density

Damage Evolution

τ : generic stress (one dimension)

τ c : critical stress

γ : generic strain (one dimension)

γc : critical strain

li : radius (half length) for circular cracks of family i

l0i : initial radius (half length) of family i

Ki : damage criterion function of family i

Li : damage rate of family i

KI
d , K

II
d , K

III
d : Dynamic stress intensity factor in different modes

KI , KII , KIII : Static stress intensity factor in different modes

Kc : Critical stress intensity factor

cm : crack growth velocity

A0, C : compliance coefficients

ρc : critical crack density parameter

lc : critical micro-crack radius

MQ: microscopic evolution index

M c
Q : critical microscopic evolution index

Mathematical Functions

div : divergency

min(·) : minimum function

∇ : gradient

∇t : transposed gradient
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[x] = x+ − x− : jump of x

[x]− = (|x| − x)/2 : negative part of x

[x]+ = (x+ |x|)/2 : positive part of x

Numerical Implementation

∆t : time step (macro-scale)

δt : time step (micro-scale)

Fk
v : velocity flux

Fk− 1

2

σ : stress flux

Acrimonious

CFL: Courant-Friedrichs-Lewy condition

NIC: non interacting cracks scheme

DS: Differential scheme

SCS: Self consistent scheme

SIF: Stress intensity factor
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CHAPTER 1

GENERAL INTRODUCTION

Discontinuous Galerkin (DG) methods form a class of numerical techniques that can be

considered as finite element methods supporting discontinuities in the test spaces. These

methods can also be thought of as finite volume methods where the approximate solution

is expressed by polynomial instead of constant functions. An overview of the principal

mathematical aspects of DG methods can be found in the recent book of Ern [37]. In 1973

Reed and Hill [102] presented the first discontinuous Galerkin method in the framework

of the hyperbolic neutron transport equation. The year after, Lesaint [77], Lesaint and

Raviart [78] produced the first analysis for steady first order PDEs. Later, Chavent and

Cockburn [26] expanded the method to time-dependent hyperbolic PDEs using the forward

Euler scheme for time discretization. At the beginning of the 1970s, Nitsche introduced

the Discontinuous Garlekin method to PDEs with diffusion using penalty methods [92].

Advances using this technique were done by Babuska [9], Babuska and Zlamal [10], Douglas

and Dupont [39], Baker [11], Wheeler [124], and Arnold [4]. The implementation of numerical

fluxes in the Discontinuous Garlerkin methods can be traced back to the late 1990s in the

oeuvre of Bassi and Rebay on the Navier-Stokes equations [14] and of Cockburn and Shu on

convection-diffusion systems [28]. A complete analysis of Discontinuous Galerkin methods

for the elliptic equation is given in the paper of Arnold, Brezzi, Cockburn, and Marini [5].

Discontinuous Galerkin methods are associated to (nonlinear) initial and boundary value

problems which develop discontinuities (in time and/or in space). Their solutions could

have a complicated structure near such discontinuities. The numerical techniques for these
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problems have to guarantee that the approximate solution is physically relevant and not

to induce spurious oscillations. All these difficulties were successfully addressed during the

remarkable development of the high-resolution finite difference and finite volume schemes for

nonlinear hyperbolic systems by means of suitably defined numerical fluxes and slope limiters.

Since DG methods assume discontinuous approximate solutions, they can be considered as

generalizations of finite volume methods. As a consequence, the DG methods incorporate

the ideas of numerical fluxes and slope limiters into the finite element frame-work.

One of the main advantages of the DG methods over classical finite volume and finite

difference methods is that they are very well suited for handling complicated geometries

and that they require an extremely simple treatment of the boundary conditions. Another

advantage of the DG methods is that they can easily handle adaptivity strategies and that the

degree of the approximating polynomial can be easily changed from one element to another.

Finally DG methods of arbitrarily high formal order of accuracy can be obtained by suitably

choosing the degree of the approximating polynomials and they are highly parallelizable.

The large majority of numerical schemes that treat wave propagation in complex media

uses the finite-difference method (see for instance [121, 106, 105, 122, 54]). Nevertheless,

FDMs suffer from some critical issues that are inherent to the underlying Cartesian grid,

such as parasite diffractions in cases where the boundaries have a complex topography.

That is why a lot of attention have been done in the last decade to the development of the

DG techniques for the numerical techniques associated to elastodynamics and seismic wave

propagation (see for instance [29, 18, 17, 30, 41, 40, 54, 71, 116, 46]).

The aim of this thesis is to develop a DG technique for modeling wave propagation in

damaged (brittle) materials. This subject is of great interest in dynamics of materials or in

solid Earth geophysics. Understanding the rock wave velocities variations is very important in

extracting the information on the mechanical state of the rock from seismic and seismological

data. In the oil industry, this has a direct bearings on the quantification of the oil content. In

seismology, the mechanical properties of the surrounding rock of a fault can be associated to

precursory phenomena (as earthquake nucleation) related to earthquakes predictability. On

the other hand, it is of significant importance in dynamics of materials related to engineering

and defense issues, the role played by the waves propagation associated to high rate loadings

(blast, explosions, etc) in the stiffness reduction of elastic bodies, due to the development or

presence of many disordered micro-cracks.

Even if the numerical approach of this thesis will be related only to the DG method, we
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will consider two different types of mechanical models for describing the damaged materials.

In the first one, called "micro-mechanics based damage model" and studied in the first part

of the thesis, the micro-cracks are introduced through a damage parameter (crack density

parameter) which can increase under the loading wave. The heterogeneity is a material one

(the mechanical model looses its isotropy and homogeneity but that the geometric homogene-

ity is preserved). In the second one, called the "cracked solid" or "cracked material" studied

in the second part of this thesis, the micro-cracks, describing the damage of the material,

are introduced as a "geometric heterogeneity" in an isotropic and homogeneous elastic solid.

This geometric heterogeneity induces a loss of both (global) isotropy and (global) homogene-

ity of the elastic solid. The lengths (radii) of micro-cracks do not change (no crack growth)

under the loading wave, but on the micro-cracks (internal) interface of a unilateral frictional

contact is considered. The two models are diametral opposite but they show like a mirror of

the physical reality, where both geometric and material heterogeneities are present. At the

end of the thesis, in chapter 14, a comparison of these two models illustrates the blast wave.

Finally, we have to mention that all the numerical results presented in this thesis were

obtained with "homemade" codes developed in FreeFem++ [59], which is a high level inte-

grated development environment for numerically solving of partial differential equations.
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Part I

Damage and wave propagation
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CHAPTER 2

INTRODUCTION

Brittle (or quasi-brittle) materials, as ceramics, concretes, rocks, and many others, are more

and more used in civil and defense applications as well as in earthquake modeling. The

main feature of these materials is a high compressive strength, which increases with the

confinement and with the loading rate, in the same time as well as a low tensile strength.

Moreover, at high strain rates or sufficiently low temperature even ductile materials exhibit a

"brittle" behavior. Modeling damage and failure of brittle materials has become increasingly

important in order to appropriately design structures containing brittle materials, to avoid

catastrophic failures, or to model the mechanical behavior of fault zones. The effects of

damage are particularly important in geo-mechanical models of phenomena that involve

high levels of stress such as earthquakes, underground explosions, and meteorite impacts.

Brittle materials contain a large number of defects as micro-voids or micro-cracks, making

predictive modeling difficult. A number of models, used in mechanical engineering or in

geophysics, are simple empirical models. But there are a lot of micro-mechanics-based models

that provide more accurate descriptions of material responses. Some of the latter models are

now available in engineering analysis codes. They assume that the macroscopic damage of

the material is the result of the response of all the penny-shaped micro-cracks (with different

sizes and orientations) to the stress field.

The aim of this part is to analyze the coupled phenomena between the damage evolution

and the wave propagation. This coupling is working in both senses: the loading wave,

propagating into the material, produces damage and changes the propagation properties of
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the material. In this way the mechanical damage processes cannot be separated from the

wave propagation process. The micro-crack growth is activated in some privileged directions

according to the applied macroscopic loading. That is why we have to use anisotropic models.

We used in the following chapters a discontinuous Galerkin numerical scheme for the

numerical integration of the damage model. Why a discontinuous Galerkin approach ?

The first reason is related to the damage models. In many damage models the damage

evolution laws are written in terms of the stress field, hence the accuracy of computed stress is

essential to have a good numerical integration. Between the numerical techniques associated

to the elastodynamics equations only finite differences (FD) and discontinuous Galerkin (DG)

techniques have the same approximation level for the stress and for the velocities fields. The

second reason is related to the fact that damage phenomena are sometimes associated to

time and space discontinuities (or instabilities). These difficulties can be successfully be

addressed by using high-resolution FD or DG schemes with a suitably defined numerical

fluxes and slope limiters. However, in contrast to the FD schemes, DG methods are very

well suited to handling complicated geometries.

After a first chapter dedicated to a short overview of the local damage models in brittle

materials we give a stability analysis of the constitutive law under a strain driven process.

We continue with the presentation of the numerical scheme and we analyze its capacities to

approach an exact solution for high and moderate strain rates. The following two chapters

will consider the one dimensional and the two dimensional anti-plane wave propagation.

Finally we will illustrate the numerical scheme with some numerical results related to blast

wave propagation.
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N types of circular micro-cracks of radius (half-length in 2D) li oriented through the normals

vectors ni, i = 1, ...N (see Figure 3.1). The crack density parameter (introduced in [22]) ρi

is defined as a function of the micro-cracks area (radius or length for circular cracks)

ρi = ρ(li) =
Mi

V
l3i = ηil

3
i , in 3D, ρi = ρ(li) =

Mi

A
l2i = ηil

2
i , in 2D,

where Mi is the number of cracks of type i in the volume V (area A) and ηi = Mi/V (

ηi = Mi/A) is the flaw density. The crack density parameter is an equivalent (micro-scale)

non-dimensional parameter to the micro-crack radius (half-length in 2D) li through

li = l(ρi) = (ρi/ηi)
1/3, in 3D, li = l(ρi) =

√

ρi/ηi, in 2D,

In the special case N = 1 we will distinguish two situations: one family of "parallel cracks"

(PC) and "random crack" (RO) orientations.

The principal geometric parameters as the flaw density η, the micro-cracks’ radius l

and the micro-cracks’ orientations n are the micro-mechanics based inputs of the material.

These inputs are generally considered as deterministic variables which describe the state of

the material. An important step froward was done by Graham-Brady [53] and Huq et al.

[65] which proposed a technique for assigning probability distributions to these geometric

parameters.

In order to define a damage model we have to state two equations. The first one gives an

estimation of effective elastic properties of cracked materials and relates the (macro-scale)

stresses σ and the (macro-scale) strains ε, trough a linear or non-linear elastic law depending

on the (micro-scale) damage variables ρ1, ..., ρN . The second one describes the evolution of

damage (micro-scale) parameters ρ1, ..., ρN as a function of the (macro-scale) stress σ or of

the strains ε.

3.1 Effective elasticity of a cracked solid

It is possible to distinguish two classes of micro-mechanical approaches: direct approach

and homogenization-based (Eshelby type) approach for heterogeneous materials. The direct

approach is generally based on the analysis of displacement discontinuity induced by micro-

cracks and on the fracture mechanics for the propagation of cracks.
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The direct approach is used in various works on the determination of the effective prop-

erties of micro-cracked materials (Nemat-Nasser and Hori [90], Krajcinovic [75], Kachanov

[70], Renaud et al. [103]) and in micro-mechanical models (Andrieux et al. [1], Gambarotta

and Lagomarsino [52] and Pensé and Kondo [96]). The mathematical formulation of di-

rect micro-mechanical models is relatively simple and does not involve a rigorous upscaling

procedure.

We shall also distinguish between the stress-based and strain-based formulations. Stress-

based micro-mechanical (anisotropic) damage models take into account (in situ) stresses and

pore pressure as key factors for mechanical modeling of damage. They can be written in a

general form as

ε = A(σ, ρ1, ..., ρN), (3.1)

A typical example, used in this paper (see Gambarotta and Lagomarsino [52] and Kachanov

[69] to cite only some), called the "non-interacting cracks method" (NIC) is given in the Ap-

pendix. But other direct approaches use the so called "method of effective matrix" (see [69])

to model the crack interactions on a given crack family. Among them we can distinguish

the "self-consistent schemes" (SC) developed by Budiansky and O’Connell [22] for random

crack orientations, by Hoening [61] for parallel cracks and by Hori and Nemat-Nasser [62] for

frictional cracks. The "differential schemes " (see MacLaughlin [86], Hashin [58]), denoted

by DS, increase the crack density in small steps and the effective matrix is recalculated at

each step. In the appendix we have given the expressions of the Young modulus for one

family of micro-cracks (parallel cracks).

We shall suppose in the next following for a given crack density distribution ρ1, ..., ρN the

nonlinear elastic constitutive equation (3.1) can be inverted to get the stress as nonlinear

function of the strain

σ = E(ε, ρ1, ..., ρN). (3.2)

This general expression of the effective elasticity is the starting point of strain-based micro-

mechanical anisotropic damage models. This last approach is phenomenological but strongly

motivated by the micro-mechanics analysis (see Halm and Dragon [55, 56], Bargellini et al

[12, 13]).

The effective properties of cracked materials could also be obtained by following the

method based on the Eshelby inhomogeneous inclusion solution (see Eshelby [45, 44], Mura

[88]). Using the Eshelby-based homogenization procedure for random heterogeneous materi-
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als Deudé et al. [36] and Dormieux et al [38] have built a different approach by considering

the cracked material as a matrix-inclusion composite. Ponte-Castaneda and Willis [24] have

improved the existing Eshelby-based inclusion models by introducing a new tensor which

accounts for the spatial distribution of inclusions. This method was adapted by Zhu et al

[131, 130, 132] to get effective properties of cracked materials and to analyze the role of the

homogenization scheme (see Appendix chapter 15 for the expressions of the Young and shear

moduli for one family of micro-cracks).

3.2 Damage evolution

To complete the damage model let us formulate the evolution of the effective cracked solid

(i.e. equations modeling the evolution of each micro-crack type i = 1, .., .N defined by its

radius l = li and its normal ni). In what follows we restrict ourselves to the cracks whose

orientation remains constant (i.e. ṅi = 0). Two types of micro-scale evolutions will be

considered: quasi-static and dynamic.

3.2.1 Quasi-static evolution

First, let us first describe the micro-scale quasi-static evolution. For each type of micro-

crack we shall consider a negative scalar function Ki = Ki(ρi,σ), called "damage criterion

function". If Ki = Ki(ρi,σ) is negative, the damage (crack density parameter ρ, crack

radius/length l) is not growing, but micro-cracks could propagate for Ki = 0. More precisely,

the damage evolution law can be expressed through the complementary conditions :

ρ̇i ≥ 0, Ki(ρi,σ) ≤ 0, Ki(ρi,σ)ρ̇i = 0, for all i = 1, ...N. (3.3)

The above nonconservative condition ρ̇i ≥ 0, stating the damage irreversibility, can be

reformulated for non-smooth (discontinuous) time dependence of the crack radius (length).

Indeed, if we assume that the crack density parameter t → ρi(t) is non decreasing then the

time derivative ρ̇i exits in a weak sense (distributions, bounded measures).

It is a difficult task to find a unified criterion for the damage evolution. A first type

of damage criterion could be obtained from the microscopic considerations. If we suppose

that micro-cracks are not interacting and they have only a self similar growth, we can use

the Griffith theory to get a criterion for the micro-crack growth under the macroscopic
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stress σ. One can find in the Appendix chapter 18 the expressions of K for simple cases in

different configurations. These expressions are much more complicated for the growth and

interaction of tensile wing cracks nucleated at the tips of a micro-crack. They were obtained

by Ashby and Samis [7], Deshpande and Evans [35], Bath et al [20, 21] by incorporating

results from many other studies of mode I wing cracks nucleated and driven by mode II

sliding (see Kachanov [70], Nemat-Naser and Hori [90], Ashby and Hallam [8], Jeyakumaran

and Rudnicki [66] and others). Paliwal and Ramesh [95] and Hu et al. [63] have a different

approach for tensile wing cracks by using the superposition principle to compute K(ρ,σ)(for

details see Chapter 18 of the Appendix).

The second type of damage criterion is obtained by integrating the results obtained

in micro-mechanical analysis into the thermodynamic framework, classically used for the

macroscopic formulation (see for instance Zhu et al [131, 130, 132]). To do this one can

introduce the elastic potential W (ε, ρ1, ..., ρN) and its conjugate W ∗(σ, ρ1, ..., ρN) such that

(3.1) and (3.2) can be written as

ε =
∂W ∗

∂σ
(σ, ρ1, ..., ρN), σ =

∂W

∂ε
(ε, ρ1, ..., ρN).

Using thermodynamic force Fi associated to the family i, defined as Fi =
∂W ∗

∂ρi
(or

Fi =
∂W

∂ρi
), the damage criterion is introduced as Ki(ρi,σ) = Fi(ρi,σ) − Ri(ρi), where

Ri represents the "material resistance" to the micro-cracks family i growth of micro-cracks

belonging to family i (damage evolution).

3.2.2 Dynamic evolution

For very high deformation rates, the above rate independent constitutive law for damage

evolution has to be reconsidered by using a model able to describe the dynamics of micro-

cracks propagation. The general equation for dynamic damage could be written as follows

ρ̇i = Li(ρi,σ). (3.4)

Particular expressions of Li can be obtained from the quasi-static damage criterion

function Ki. Indeed, the micro-crack propagation criterion is commonly given through a

"dynamic stress intensity factor" Ki
d instead of the "static stress intensity factor" Ki (see
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[50, 49, 32])). Since the first one is obtained from the second one, the expression of the

damage rate L yields (see for instance Paliwal and Ramesh [95], Hu et al. [63] and the

Appendix chapter 18 for details).

To ensure the compatibility between quasi-static and dynamic damage evolution criteria

(i.e. L(ρ,σ) = 0 for K(ρ,σ) ≤ 0 ) one can suppose that there exists an increasing positive

non-dimensional function ϕi : [0, 1] → R+ with ϕi(0) = 0 which gives the crack growth rate

l̇i:

d

dt
l(ρi) = cmϕi([

Ki(ρi,σ)

α +Ki(ρi,σ)
]+), for all i = 1, ...N, (3.5)

where [x]+ = (x+ |x|)/2 is the positive value function, cm is associated to the "micro-scale"

crack growth velocity and α > 0 is a non-dimensional constant. We remark that using

this expression of the micro-crack propagation speed we get the rate of the crack density

parameter, given by

ρ̇i = Li(ρi,σ) =
cm
l′(ρi)

ϕi([
Ki(ρi,σ)

α +Ki(ρi,σ)
]+), for all i = 1, ...N. (3.6)

But the compatibility between quasi-static and dynamic damage evolution criteria can be

obtained asymptotically by using a power law (see for instance Deshpande and Evans [35]

and the Appendix chapter 16 for details).

Another type of dynamic approach of the damage evolution makes use of the probabilistic

approach to derive the evolution law of the damage variables on a continuum level. The

Denoual-Forquin-Hild model (Denoual and Hild [33], Forquin and Hild [48]) is based on the

description of micro-mechanisms activated during the dynamic fragmentation process. It

depicts the random distribution of defects in the microstructure, the onset, the propagation

of unstable cracks and the obscuration of critical defects in the vicinity of cracks. Zinszner

et al. [133] and Erzar and Forquin [43] use the method provided in Denoual and Hild [34]

(see also Hild et al. [60])to derive a random critical stress.

3.3 Quasi-static versus dynamic

Let us discuss now the choice of dynamic vs. the quasi-static damage evolution laws. For

that let us consider a strain driven problem with a given rate of deformation ǫ̇c and a final

24



characteristic strain ǫf . The loading characteristic time is T load =
ǫf
ǫ̇c

while, as it follows from

(3.5), the micro-scale characteristic time is Tmicro =
Lmicro

cm
, where Lmicro is the micro-scale

length scale (characteristic radius of a micro-crack). It is clear now that if T load >> Tmicro

then the quasi-static model has to be used. In contrast, for very high rate of deformations

ǫ̇c, the loading characteristic time could be of order of the micro-scale characteristic time

(T load ≈ Tmicro) and we have to use the dynamic model of damage. In this case, the dynamics

of micro-cracks growth play an important role in the macro-scale deformation.

Let us notice that micro-scale quasi-static regime can be present even for a macro-scale

dynamic process. Indeed, having in mind that the macro-scale process is dynamic if T load ≈
Tmacro =

Lmacro

cP
(cP is the P-wave speed and Lmacro is the macro-scale characteristic length)

and the fact that cm is of order of cP we deduce that T load >> Tmicro is compatible with

Lmacro >> Lmicro.
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CHAPTER 4

DAMAGE MATERIAL STABILITY

4.1 Introduction

One challenging phenomenon in brittle materials is related to the instabilities associated to

the material softening, which occurs due to accumulation of damage. Since damage models

are describing micro-cracks growth, which is generally an unstable phenomenon, it is natural

to expect some loss of stability on the associated micro-mechanics based models. If the model

accurately captures the material behavior, then this can be due to the unstable nature of

the brittle material itself. If the model does not take strain-rate or spatially nonlocal effects

into account this material instability can cause to the associated initial and boundary value

problem to be unstable or ill-posed. This often leads to lack of convergence upon mesh

refinement in numerical solutions.

The aim of this section is to analyze the stability of the damage constitutive law under a

strain driven process. To do that we restrict ourselves to the stability of the equilibrium con-

figurations but we consider a rather general approach of damage. Further we will investigate

the case of one family of micro-cracks for NIC effective elasticity associated to a self-similar

growth of micro-cracks under a stress far field.

In both cases (quasi-static and dynamic) we say that ε0,σ0, ρ01, .., ρ
0
N is an equilibrium

configuration if

ε0 = A(σ0, ρ01, ..., ρ
0
N), and Ki(ρ0i ,σ

0) ≤ 0, for all i = 1, ...N. (4.1)
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4.2 Quasi-static stability analysis

Let us define here what we mean by a stable equilibrium configuration in a quasi-static strain-

driven process. Since the problem is non-smooth we have to use a more elementary definition.

We say that an equilibrium ε0,σ0, ρ01, .., ρ
0
N is stable if for all neighborhood V of (σ0, ρ01, .., ρ

0
N)

there exists a neighborhood W of ε0 such that for all continuous strain-path t→ ε(t) in W ,

with ε(0) = ε0, there exists a continuous material response in V , i.e. there exists a continuous

time evolution t → (σ(t), ρ1(t), .., ρN(t)) ∈ V , with σ(0) = σ0, ρ1(0) = ρ01, .., ρN(0) = ρ0N ,

satisfying (3.1) and

ρ̇i(t) ≥ 0, Ki(ρi(t),σ(t)) ≤ 0, Ki(ρi(t),σ(t))ρ̇i(t) = 0, (4.2)

for all i = 1, .., N. We say that a strain-driven quasi-static process is stable if

ε(t),σ(t), ρ1(t), .., ρN(t) is a stable equilibrium at each time t.

Let us give some physical interpretation of the above "abstract" definition. For that

we have plotted in Figure 4.1 a schematic representation of a quasi-static damage process

in the space of stress σ, strain ε and crack density parameter ρ. The damage evolution

curve (ρ̇ > 0) is the intersection of the effective elastic surface ε − A(σ, ρ) = 0 with the

damage surface K(ρ,σ) = 0. We can see on this curve two examples of stable and unstable

material equilibrium configurations. The evolution of point S can be done either on damage

evolution curve corresponding to an increasing damage (ρ̇ > 0) and an increasing strain

or on the unloading curve corresponding to a constant damage (ρ̇ = 0) and a decreasing

strain. On the contrary, the evolution of point U is much more complicated. For decreasing

strain we have to choose between the damage evolution curve corresponding to an increasing

damage (ρ̇ > 0) and the unloading curve corresponding to a constant damage (ρ̇ = 0).

But, for increasing strain there exists no continuous path obeying the irreversible damage

assumption (ρ̇ ≥ 0). We conclude that S is a stable configuration and U is an unstable one.

From the above example we deduce that for a given continuous strain history t → ε(t)

we could have several solutions (material responses) of the quasi-static problem and in some

cases there exists no continuous material response. However, since the quasi-static problem

(3.1),(4.2) is ill-posed, a criterion to select the most appropriate solution with a physical

interpretation is needed. Whatever the selection rule, shocks (time discontinuities) will

occur. A possible choice for this criterion is the so-called perfect delay convention: the
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ρ̇ > 0) while the other ones are not (ρ̇ = 0), i.e.

{

Ki(ρ0i ,σ
0) = 0, for all i = 1, ..,M,

Ki(ρ0i ,σ
0) < 0, for all i =M + 1, .., N,

(4.3)

and Ki and E are differentiable at σ0, ρ01, .., ρ
0
M .

Let us suppose that ε0,σ0, ρ01, .., ρ
0
N is stable, hence for any given smooth strain history

t→ ε(t), with ε(0) = ε0 there exists a smooth material response t→ σ(t), ρ1(t), .., ρN(t) with

σ(0) = σ0, ρ1(0) = ρ01, .., ρN(0) = ρ0N . From (4.3) we have ρ̇i(0) = 0 for all i = M + 1, .., N

and since Ki(ρi(t),σ(t)) ≤ 0 we get
d

dt
Ki(ρi(t),σ(t)) ≤ 0 for all i = 1, ..,M . From this last

inequality we deduce

∂Ki

∂ρ
ρ̇i +

M
∑

j=1

∂Ki

∂σ
:
∂E

∂ρj
ρ̇j ≤ −∂K

i

∂σ
:
∂E

∂ε
: ε̇, for all i = 1, ..,M. (4.4)

Since the strain rate history ε̇ is arbitrary, we deduce that the last inequality must have a

solution (ρ̇1, .., ρ̇M) ∈ R
M
+ for all negative righthand side. If we denote by I the quasi-static

tangent matrix

I0
ij =

∂Ki

∂ρ
(ρ0i ,σ

0)δij +
∂Ki

∂σ
(ρ0i ,σ

0) :
∂E

∂ρj
(ε0, ρ01, ..., ρ

0
N), (4.5)

then we see that the lefthand side is now I0(ρ̇1, .., ρ̇M)T and if stability occurs then the image

of the cone R
M
+ through the matrix I

0 contains the cone R
M
− , i.e. RM

− ⊂ I
0(RM

+ ). But since

I(RM) is a space of dimension M − k, where k is the dimension of the kernel of I0, from

this last inclusion we deduce that I0 must be invertible (i.e. k = 0) and we should have

I
0(RM

+ ) = R
M
− , (4.6)

which is a necessary stability condition.

Let remark that the above equality is also a sufficient stability condition. Indeed, for

the following nonlinear system of equations

Fi(ρ1, ..., ρM , ε) = Ki(ρi,E(ε, ρ1, ..., ρN)) = 0, for all i = 1, ..,M, (4.7)

the tangent matrix is also I0
ij = ∂Fi

∂ρj
(ε0, ρ01, ..., ρ

0
M) and from the implicit function theorem

and (4.6) we get that (4.7) has locally a smooth nondecreasing solution t→ (ρ1(t), .., ρM(t))
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for all strain process in the neighborhood of ε0.

For weak inter-families interactions, i.e. for

∂Ki

∂σ
(ρ0i ,σ

0) :
∂E

∂ρj
(ε0, ρ01, ..., ρ

0
N) ≅ 0, for all i 6= j, i, j = 1, ..,M, , (4.8)

or for a single active family of micro-cracks (M = 1) the stability condition (4.6) has a much

simpler formulation: I
0 has negative elements on the diagonal, i.e

∂Ki

∂ρ
(ρ0i ,σ

0) +
∂Ki

∂σ
(ρ0i ,σ

0) :
∂E

∂ρi
(ε0, ρ01, ..., ρ

0
N) < 0, for all i = 1, ..,M. (4.9)

4.3 Dynamic stability analysis

Let us remark first that a strain-driven process can be described only by a micro-scale time

evolution. Indeed, for a given strain history t → ε(t) ,with ε(0) = ε0, we get from (3.4)

and (3.2) that t → ρi(t), i = 1, .., N is the solution of the following nonlinear system of N

differential equations

d

dt
ρi(t) = Li(ρi, E(ε(t), ρ1(t), .., ρN(t))), for all i = 1, .., N. (4.10)

with the initial condition ρ1(0) = ρ01, .., ρN(0) = ρ0N .

We say that an equilibrium configuration ε0,σ0, ρ01, .., ρ
0
N is dynamically stable if there

exists a neighborhood W of ε0 such that for all continuous strain-path t → ε(t) in W the

solution t→ (ρ1(t), .., ρN(t)) of the micro-scale differential system (5.1) is stable in the sense

of Lyapunov.

To characterize the dynamic stability of an equilibrium configuration ε0,σ0, ρ01, .., ρ
0
N let

us suppose that M micro-cracks families out of N (M ≤ N) are active while the other ones

are not (i.e. (4.3) holds) and Li and E are differentiable at σ0, ρ01, .., ρ
0
M . For the linear

stability analysis we have to compute the dynamic tangent matrix T
0 = (T 0

ij ),

T 0
ij =

∂ρ̇i

∂ρj
=
∂Li

∂ρ
(ρ0i ,σ

0)δij +
∂Li

∂σ
(ρ0i ,σ

0) :
∂E

∂ρj
, for all i, j = 1, ..,M.

We can formulate now the following linear stability criterion: the equilibrium configuration
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ε0,σ0, ρ01, .., ρ
0
N is linearly dynamically stable if

T
0 has all its eigenvalues with a negative real part. (4.11)

To relate quasi-static and dynamic stability analyses, we shall suppose that the dynamic

rate of damage Li is constructed from the quasi-static criterion Ki through the equation

(3.6). Denote by D = (Dij) the diagonal matrix D0
ij =

cm
l′(ρ0i )

ϕ′
i(0)δij and using (3.6) we

obtain the following relation between the dynamic and quasi-static tangent matrices

T
0 = D

0
I

0, T 0
ij =

cm
l′(ρ0i )

ϕ′
i(0)I0

ij.

Having in mind the above connection between the tangent and interaction matrices one can

notice that, generally, the dynamic and quasi-static criteria do not coincide. However, for

weak inter-families interactions assumption (5.3) or for a single active family of micro-cracks

(M = 1), the dynamic linear stability criterion (4.11) is exactly the quasi-static stability

criterion (4.9).

4.4 One family of micro-cracks

We would like to illustrate here the above stability analysis. For that we have chosen a very

simple one-dimensional problem with only one family of micro-cracks (N = 1) of radius (half

length) l = l(ρ) and normal vector n = (1, 0, 0). We shall denote by τ ≥ 0 the (generic)

stress and by γ ≥ 0 the (generic) strain (see table 4.1 for different configurations).

For the effective elasticity law we have chosen the "non-interacting cracks method" (NIC)

(see for instance Gambarotta and Lagomarsino [52] and Kachanov [69]) but other laws could

be considered. The strain-stress equation (17.1) can be written as

γ = A(τ, l) = A0τ + Cρ(l)[τ − f ]+,

where f ≥ 0 is the friction force and A0, C are compliance coefficients (see table 4.1) and η

is the flaw density.

For the damage evolution law we have chosen the criterion associated to the micro-cracks

self similar growth under a far field stress (4.2) when the stress intensity factor K has simple
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Mode I, 3-D I, 2-D II, 2-D III, 2-D
τ σxx σxx σxy σxz

γ ǫxx +
ν0

1− ν0
(ǫyy + ǫzz) ǫxx + ν ′0ǫyy ǫxy ǫxz

A0
(1 + ν0)(1− 2ν0)

E0(1− ν0)

1− (ν ′0)
2

E ′
0

1 + ν ′0
E ′

0

1 + ν0
E0

C
16(1− ν20)

3E0

2π

E ′
0

π

E ′
0

2π(1 + ν0)

E0

f 0 0 µ[−σxx]+ µ[−σxx]+
a

√
2

π

√
π

√
π

√
π

Table 4.1: Single micro-crack family: the expressions of the generic stress τ , strain γ, com-
pliance coefficients A0, C, the friction force f and the non-dimensional constant a in different
configurations.

expression

K(l, τ) =
K(l, τ)

Kc

− 1, K(l, τ) = a
√
l[τ − f ]+ (4.12)

with a different non-dimensional number for each configuration (see table 4.1).

4.4.1 Quasistatic evolution

The quasi-static strain-driven problem (3.1),(3.3) can be written as : for a given strain

loading t→ γ(t) find the stress t→ τ(t) and the micro-cracks length t→ l(t) solution of







γ = A0τ + Cρ(l)[τ − f ]+, l̇ ≥ 0,

a
√
l[τ − f ]+ ≤ Kc, l̇

(

a
√
l[τ − f ]+ −Kc

)

= 0,

with the initial condition l(0) = l0.

To see what equations correspond to a damage increase (i.e. l̇ > 0) we have to have

τ > f and the following system of algebraic equations for the unknowns l and τ

A0τ + Cρ(l)(τ − f) = γ, a
√
l(τ − f) = Kc. (4.13)
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Mode I, 3-D I, 2-D II, 2-D III, 2-D

ρc
3(1− 2ν0)

80(1− ν0)2
1− (ν ′0)

2

6π

1 + ν ′0
3π

1

6π

Table 4.2: Single micro-crack family: the expressions of the critical crack density parameter
ρc in different configurations.

One can rewrite the above equation for the length l as follows:

γ = Leq(l) = A0f +
Kc

a
√
l
(A0 + Cρ(l)), (4.14)

or equivalently for the stress τ

γ = Σeq(τ) = A0τ + Cρ(
K2

c

a2(τ − f)2
), (4.15)

where γ = Ld(l) and γ = Σd(τ) equilibrium curves. A simple analysis of these equilibrium

curves could explain the mechanical behavior during a loading (or unloading) process. For

that let us compute
dLeq

dl
=

Kc

2al
√
l
(A0 + Cρ(l)− 2Clρ′(l))

and let us notice that there exists a critical micro-crack radius (half length) lc which dis-

criminates the monotonicity of function Leq. Indeed if lc is the solution of the equation

2lCρ′(l) = A0 +Cρ(l) then Ld is decreasing for l < lc and increasing for l > lc. This critical

value can be easily computed to find the critical damage parameter ρc

ρc =
A0

3C
in 2-D, ρc =

A0

5C
in 3-D, , (4.16)

which is given in Table 4.2 in various configurations. One can also get the critical crack-length

lc, the critical stress τ c and the critical strain γc:

lc = l(ρc), τ c = f +
Kc

a
√
lc
, γc = A0τc + Cρc

Kc

a
√
lc
. (4.17)

In figure 4.2 we have represented the equilibrium curves γ = Leq(l) (left) and γ = Σeq(τ)

(right). It corresponds to mode III for ceramics (ν0 = 0.24, E0 = 300 GPa, Kc
III = 2.7

MPa
√

m, η = 106/(2π)m−2) but it can be considered as a generic representation for all the
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(OA on Figure 4.2 right) the micro-cracks do not grow (l̇ = 0) and the strain-stress path is

linear. Then the stress reaches the activation level τ1 (A on Figure 4.2), corresponding to

the intersection between the linear strain-stress path and the equilibrium curve γ = Σeq(τ).

Following the stability criterion (4.9) this equilibrium position (l = l1, τ = τ1) is not stable

and accordingly to the perfect delay convention, the material response has to reach the stable

equilibrium position τ = τ ∗1 , l = l∗1 (B on Figure 4.2). That means that we deal with a jump

(time discontinuity) of the stress and damage fields. As we shall see in the next subsection

this time discontinuity for the stress and damage fields at the quasi-static time-scale is a

(dynamic) unstable growth at the dynamic time-scale. After this time discontinuity, the

stress and the damage have a smooth evolution on the curve γ = Σd(τ) to reach the final

strain (F on Figure 4.2). The second scenario starts with l0 = l2 ≥ lc. As before there is

a first period of time (OD on Figure 4.2 right) during which the micro-cracks do not grow

(l̇ = 0) and the strain-stress path is linear. When the stress reaches the activation level τ2

(D on Figure 4.2), the micro-cracks start growing smoothly following the curve γ = Ld(l) to

reach the final strain (the path DF on Figure 4.2).

4.4.2 Dynamic evolution

The dynamic strain-driven problem (3.1),(3.5) can be written as: for a given strain loading

t→ γ(t) find the stress t→ τ(t) and the micro-cracks length t→ l(t) solution of















l̇(t) = cmϕ(

[

a
√
l[E(γ(t), l(t))− f ]+ −Kc

(α− 1)Kc + a
√
l[E(γ(t), l(t))− f ]+

]

+

),

τ(t) = E(γ(t), l(t))
(4.18)

with the initial condition l(0) = l0.

Since we deal with a single family of micro-cracks the dynamic stability criterion reduces

to the quasi-static stability criterion (4.9) (see the remark at end of section 4) which is

satisfied only for l > lc. The decreasing part (l < lc) of the curve γ = Ld(l) corresponds to a

dynamically unstable equilibrium while on the increasing part deals with a dynamic stable

equilibrium.

Let us analyze here the two scenarios, considered above in the quasi-static case, for the

dynamic problem (4.18). As before the computations have been done for mode III anti-

plane cracks (α = 1, cm = cS and ϕ(x) = x ) but the results could be considered as generic
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Notice that the strain rate sensitivity and the passage from dynamic to quasi-static

process at the microscopic level, presented in Figure 4.3 left and explained here through a

stability analysis, is not specific to NIC effective elasticity and to the similar growth model.

Indeed, for the SCS effective elasticity and the wing crack-model Paliwal and Ramesh [95] and

Hu et al. [63] obtained the same strain rate dependence with the same time "discontinuities"

(see Figures 7 and 12 of [95] and Figure 7 of [63]).

4.5 Conclusions

We obtained stability criteria for dynamic and quasi-static processes at the microscopic scale.

These criteria are rather general and they are related to a large class of damage models. We

show that for a given continuous strain history the quasi-static or dynamic problems are

instable or ill-posed (multiplicity of material responses) and whatever the selection rule is

adopted, shocks (time discontinuities) will occur. We show that the quasi-static equilibria

chosen by the "perfect delay convention" is always stable. The dynamic stability criterion

coincides with the quasi-static one for weak inter-families interactions or for a single active

family of micro-cracks.

These stability criteria are used to analyze the NIC effective elasticity associated to the

self similar growth associated to some special configurations (one family of micro-cracks

in mode I, II and III and in plane strain or plain stress). In each case we determine a

critical crack density parameter and critical micro-crack radius (length) which distinguish

between stable and unstable behaviors. This critical crack density depends only on the

chosen configuration and on the Poisson ratio.
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CHAPTER 5

THE HOMOGENOUS STRAIN-DRIVEN PROBLEM

We would like to analyze in this section only the constitutive assumptions (material be-

havior) regardless of the wave propagation. For that we will focus on the homogeneous

problem (i.e. all the mechanical fields being independent of the spatial variables), also called

the zero-dimensional problem. We have chosen the strain-driven processes (i.e. the strain

evolution t → ε(t) is prescribed) because they are easier to implement and there are no

constitutive restrictions, as for a stress-driven problem. Since the associated (ordinary) dif-

ferential equations are nonlinear and no analytical solutions is available, we will first develop

a numerical scheme able to capture the material behavior even for unstable processes. This

time integration technique of the damage constitutive law for a strain-driven process will be

used later to develop the numerical scheme for the initial and boundary value problem.

First, let us recall first that a strain-driven process can be described only by a micro-scale

time evolution. Indeed, for a given strain history t→ ε(t) ,with ε(0) = ε0, we get from (3.4)

and (3.2) that t → ρi(t), i = 1, .., N is the solution of the following nonlinear system of N

differential equations

d

dt
ρi(t) = Li(ρi, E(ε(t), ρ1(t), .., ρN(t))), for all i = 1, .., N. (5.1)

with the initial condition ρ1(0) = ρ01, .., ρN(0) = ρ0N .
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5.1 Numerical approach

To integrate the differential system (5.1) over the time interval [0, T 0] we consider m local

(micro-scale) steps and T 0 = mδt, with δt the local (micro-scale) time step. Since the system

of equations (5.1) could have unstable solutions it is necessary to use an implicit scheme. If

we put ρji = ρi(jδt) then the implicit time discretization (backward Euler scheme) of (5.1)

reads:

ρj+1
i − ρji
δt

= Li(ρj+1
i , E(ε((j + 1)δt), ρj+1

1 , .., ρj+1
N )), for all i = 1, .., N. (5.2)

Let us notice that the above system of equation is nonlinear and we have to use some

numerical algorithm to solve it at each time step. However, for weak inter-family micro-

cracks interactions, i.e. for

∂Ki

∂σ
:
∂E

∂ρk
≅ 0, for all i 6= k, i, k = 1, .., N, , (5.3)

or for a single family of micro-cracks (N = 1), the above nonlinear system could be replaced

by a sequence of N nonlinear scalar equations as follows

ρj+1
i − ρji
δt

= Li(ρj+1
i , E(ε((j + 1)δt), ρj1, ...ρ

j
i−1, ρ

j+1
i , ρji+1, ..., ρ

j
N)), (5.4)

for all i = 1, .., N . In many cases the above nonlinear equation can be solved analytically,

hence (5.4) is not computationally expensive.

The above numerical scheme will be used in the next section to compute the homogeneous

solution for a single family of micro-cracks.

5.2 Single orientation micro-cracks

We suppose that all the micro-cracks have the same configuration and normal vector n =

(1, 0, 0). Having in mind that we are looking for a zero-dimensional problem we shall denote

by τ ≥ 0 the (generic) stress and by γ ≥ 0 the (generic) strain (see table 4.1 for different

configurations). For 0-D problems with constant strain rate the acceleration terms are van-

ishing, hence there are no inertial effects and we cannot distinguish between the dynamical

and quasi-static macroscopic processes. At the microscopic level we analyze here only the
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dynamic process with high or moderate rate of deformation.

Each element of the i-th family of micro-cracks has a different initial radius (half length)

l0i , i = 1, ..N . The chosen effective elasticity law is the "non-interacting cracks method"

(NIC) (Gambarotta and Lagomarsino [52] and Kachanov [69] and Appendix, chapter 17)

and for the sake of simplicity we have considered only frictionless processes. The strain-

stress equation (3.1) can be written as

γ = A(τ, l1, .., lN) = (A0 + C
N
∑

i=1

ρ(li))τ (5.5)

while (3.2) reads

τ = E(γ, l1, .., lN) =
γ

A0 + C
∑N

i=1 ρ(li)
, (5.6)

where A0, C are compliance coefficients (see table 4.1).

The damage evolution law (5.1) is constructed, as in (3.5), from a quasi-static criterion

K ≤ 0, associated to the micro-cracks self similar growth under a far field stress (4.2) (the

stress intensity factor K given by (4.12) with a from table 4.1).

1	 2	 3	

A A 

Figure 5.1: A schematic representation of the initial distribution of the micro-cracks. Left:
single micro-cracks family model (F1). Right: 3 micro-cracks families model (F3). Note that
the two models have the same damage, and the second model has an uniformly distributed
damage on all three micro-crack types.

For a given strain rate γ̇ and a given final γf we define the following loading/unloading

process :

γ(t) =







tγ̇ if t ∈ [0, tf ],

γf − tγ̇ if t ∈ [tf , 2tf ],
(5.7)

where tf = γf/γ̇ is the duration of both the loading and unloading processes. With this

given strain evolution we have computed the stress τ and the evolution of the micro-cracks
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length li from the ordinary differential system

l̇i = ϕ(

[

1− Kc

a
√
liE(γ, l1, .., lN)

]

+

), for all i = 1, ...N, (5.8)

using an Euler’s backward method, described in the previous section.

In what follows we have used the following material settings corresponding to the anti-

plane configuration for ceramics (ν0 = 0.24, E0 = 300 GPa, and Kc
III = 2.7 MPa, cm =

cS, ϕ(x) = x, which will generate the coefficients A0, C and a through Table 4.1) but the

results are not qualitatively different in other configurations for other brittle materials.

Figure 5.2: Stress (in Pa) versus strain for a strain driven loading/unloading process of a
single family model (F1) under different strain rates γ̇ = 104, 103, 102, 101s−1 and γ̇ = 1s−1.

5.2.1 One family of micro-cracks

First, we have considered model F1, that is, a single family (N = 1, see Figure 5.1 left) of

micro-cracks with the flaw density η = 106/(2π)m−2 and the initial the half-length l0 was

chosen such that the material is almost undamaged at the initial state ρ0 = 0.016 and the

process is unstable (l0 < lc). For a given final strain γf = 0.005 we have considered five strain

rates γ̇ = 104s−1, γ̇ = 103s−1, γ̇ = 102s−1, γ̇ = 10s−1 and γ̇ = 1s−1. The numerical results
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were plotted in Figure 5.2. For a first period of time, the micro-cracks are inactive (l̇ = 0)

and the strain-stress path is linear and rate-independent. We see that in all cases, strain-

stress paths have a (unstable) softening part due to the damage evolution. For high rates of

deformations γ̇ = 103, 104s−1 the softening process is very different from the moderate rate of

deformations γ̇ = 1, 102s−1. This is due to the fact that for moderate strain rate the micro-

scale time-scale is very small with respect to the loading time scale (macro-scale). In this case

the micro-cracks (damage) growth is very rapid, giving a "discontinuous", rate independent

strain-stress path. For high strain rates the softening process due to micro-cracks growth

is compensated by the loading process giving a smooth, rate dependent, strain-stress path.

For more details and discussion on this unstable material behavior see the previous chapter.

This strain rate sensitivity, presented in Figure 5.2 is not specific to NIC effective elasticity

and to the self similar growth model. Indeed, for the SCS effective elasticity and the wing

crack-model Paliwal and Ramesh [95] and Hu et al. [63] obtained the same type of strain

rate dependence (see Figures 7 and 12 of [95] and Figure 7 of [63]).

As it follows from Katcoff and Graham-Brady [73] the distribution of flaw sizes is very im-

portant at moderate strain rate and the presence of large flaws control the dynamic strength

of the material. On the contrary, at very high strain rates, crack growth is activated even in

small flaws and therefore the flaw density is controlling the dynamic strength.

In conclusion, for a single family of micro-cracks the rate of deformation plays a major

role. For intermediate and low rates of deformation, sharp stress drops related to the material

instabilities could be expected, and the strain-stress curve is not very sensitive on the strain

rate. On the contrary, for high rates of deformation, the strain-stress curve depends strongly

on the rate of deformation but only a smooth stress drop is expected.

5.2.2 Three families of micro-cracks

In a second numerical experiment called model F3, we have considered three families of

micro-cracks (N = 3, see Figure 5.1 rigth), with the initial lengths l01 = l0, l02 = l0/2, l03 = 2l0.

The flaw density η1 = η/3, η2 = 4η/3, η3 = η/12 was chosen such that ρ0i = ηi(l
0
i )

2 = ρ0/3,

hence the specimen has the same initial damage uniformly distributed on all three micro-

crack types.

he strain versus the stress (in Pa) for a strain driven loading/unloading process of a single

family model (F1) under different strain rates γ̇ = 104, 103, 102, 101s−1 and γ̇ = 1s−1.
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Figure 5.3: Stress (in Pa) versus strain of a strain driven loading/unloading process with
models F1 and F3 for two different strain rates γ̇ = 103s−1 and γ̇ = 104s−1.

We have done computations for two rates of deformation (γ̇ = 103s−1 and γ̇ = 104s−1

and we compared models F1 and F3 presented in the previous subsection. For the lowest

strain rate we remark that only the largest micro-crack system (number 3) of model F3 is

activated, much earlier than the micro-crack of model F1. However, even with only one

activated micro-crack type the total damage is larger for model F3 than for model F1. This

can be seen in Figure 5.3 where we have compared the two models (in red and blue) in a

strain-stress representation. For the highest rate of deformation the situation is different. In

this case 2 micro-crack systems (1 and 3) of model F3 are activated but the overall damage is

less than in model F1 (see Figure 5.3 green and magenta curves) . This can be explained by

the fact that the time period between the activation of the systems 3 and 1 is much shorter,

hence the difference between them are dominated by the flaw density η.

5.3 Conclusions

We proposed a semi-implicit numerical scheme to integrate the (ordinary) differential equa-

tions associated to homogeneous strain-driven processes of a damage constitutive law. We

used this numerical scheme to investigate some simple damage problems. We found that for
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a single family of micro-cracks the rate of deformation plays a major role. For intermediate

and low rates of deformation, sharp stress drops related to the material instabilities could

be expected, and the strain-stress curve is not very sensitive on the strain rate. On the

contrary, for high rates of deformation, the strain-stress curve depends strongly on the rate

of deformation but only a smooth stress drop is expected. The role played by the rate of

deformation is much more complex if more families of micro-cracks are considered. As a

matter of fact, the damage evolution is driven not only by the initial micro-crack densities

but also by the initial micro-cracks lengths (or flaw densities). There exists a subtile inter-

play between the rate of deformation and the distribution of the micro-cracks lengths, even

with the same spatial orientation.
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CHAPTER 6

NUMERICAL APPROACH

The aim of this chapter is to introduce a new numerical scheme associated to the boundary

value problem of the wave propagation in a damaged material described by a rather general

(local) damage constitutive law. To solve this nonlinear hyperbolic problem we will adapt

here the second order scheme proposed by Etienne et al. [46]. The explicit leapfrog scheme

used for the time discretization deals with the velocity and the strain fields and not with

the stress fields, as it is usual in a velocity-stress formulation. This technique permits us to

use the effective elasticity constitutive law and not its time derivative. Using this specific

time discretization during a (macro-scale) time step the constitutive damage law becomes a

strain driven homogeneous problem, which was studied in the previous section. To capture

the instabilities we use here a semi-implicit Euler method and a micro-scale time step to

integrate it. For the flux choice a centered scheme will be considered.

6.1 The continuous boundary value problem

We consider the deformation of an elastic body occupying, in the initial unconstrained con-

figuration, a domain D in R
3 not necessarily bounded. Its boundary ∂D is supposed to be

smooth and divided into two disjoint parts: denoted Σv and Σs. We denote the displacement

field by u = (ux, uy, uz), the velocity filed by v = u̇ and by ε = (∇u +∇Tu)/2 the small

strain tensor. If we denote by ρmass the mass density, the momentum balance law can be
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written as:

ρmassv̇(t) = div σ(t) + ρmassb(t) in D, (6.1)

where ρmassb are the volume forces, while the rate of deformation is given by

ε̇(t) = ε(v(t)) =
1

2
(∇v(t) +∇Tv(t)) in D. (6.2)

We complete the above general equations with the damage model presented in the previous

section,

σ(t) = E(ε(t), ρ1(t), ..., ρN(t)), (6.3)

ρ̇i(t) = Li(ρi(t),σ(t)), for all i = 1, .., N. (6.4)

We complete the field equations with some boundary conditions

v(t) = V (t) on Σv, σ(t)n = S(t) on Σs, (6.5)

where n is the outward unit normal to ∂D, and the initial conditions

v(0) = v0, ε(0) = ε0, ρi(0) = ρ0i , i = 1, ..N. (6.6)

The initial and boundary value with anisotropic damage can be formulated now as follows:

find the velocity v : [0, T ] × D → R
3, the stress σ : [0, T ] × D → R

3×3
S , the strain ε :

[0, T ] × D → R
3×3
S and the crack-density parameters ρi : [0, T ] × D → R+, for i = 1, ..N

solution of (6.1)-(6.3) with the boundary conditions (6.5) and the initial conditions (6.6).

6.2 Time discretization

For the time discretization, we adopt a second-order explicit leap-frog scheme that allows

to compute alternatively the velocity and the stress components from one half time step to

the next. To this end, let ∆t > 0 be the time step, M the maximum number of steps, and

T = M∆t, with ∆t the (macro-scale) time step. We denote by uk,vk the discretization of

the displacement and velocity at time t = k∆t and by σk+ 1

2 , εk+
1

2 , ρ
k+ 1

2

i the stress, strain and

crack density parameters at time t = (k+ 1
2
)∆t. The equations (6.1) and (6.2) are discretized
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in time as
ρmass

∆t
(vk − vk−1) = div σk− 1

2 + ρmassbk−
1

2 in D, (6.7)

1

∆t

(

εk+
1

2 − εk− 1

2

)

= ε(vk) =
1

2
(∇vk +∇Tvk) in D. (6.8)

To get the stress σk+ 1

2 we have to integrate the constitutive equation (6.3) over the time

interval [(k− 1
2
)∆t, (k+ 1

2
)∆t]. Since the strain εk+

1

2 is already computed we are dealing with

a material strain-driven process, described in the previous section. The algorithm used here,

similar to the returning map algorithm in plasticity, was already described for homogeneous

processes.

The (macro-scale) time interval [(k − 1
2
)∆t, (k + 1

2
)∆t] is divided into m (micro-scale)

time steps δt with ∆t = mδt. If we put ρ
k− 1

2
,0

i = ρ
k− 1

2

i ,σk− 1

2
,0 = σk− 1

2 and we interpolate

the strains as

εk−
1

2
,j = εk−

1

2 +
jδt

∆t
(εk+

1

2 − εk− 1

2 )

then the sequence of nonlinear equations (5.4) reads

ρ
k− 1

2
,j

i − ρ
k− 1

2
,j−1

i

δt
= Li(ρj+1

i , E(εk− 1

2
,j, ρj−1

1 , ...ρj−1
i−1 , ρ

j
i , ρ

j−1
i+1 , ..., ρ

j−1
N )), (6.9)

for all i = 1, .., N . The stress field is computed after we have computed all the micro-cracks

densities ρ
k− 1

2
,j

i from

σk− 1

2
,j = E(εk−

1

2
,j, ρ

k− 1

2
,j

1 , .., ρ
k− 1

2
,j

N ). (6.10)

At the end of the macro-scale time interval [(k− 1
2
)∆t, (k+ 1

2
)∆t] we put ρ

k+ 1

2

i = ρ
k− 1

2
,m

i and

σk+ 1

2 = σk− 1

2
,m.

6.3 Space discretization

In order to achieve the spatial discretization of the partial differential equations (6.7),(6.8)

let D be discretized with a family of tetrahedra Th,h denoting the mesh size . The discretiza-

tion space Wh for the velocities vk, strains εk+
1

2 , stresses σk+ 1

2
,j and micro-cracks density

parameters ρk+
1

2
,j is associated to the discontinuous Galerkin method. The functions ϕ ∈ Wh

are polynomial functions of degree d on each tetrahedron T ∈ Th, but may be discontinuous

between two tetrahedra.
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Let us fix the time iteration k. If we multiply (6.7) by ϕ ∈ W 3
h and (6.8) by Ψ ∈ W 3×3

h ,

and we make use of Green formula, then the variational problem on each tetrahedron T ∈ Th

of the domain D reads:

∫

T

[

ρmass

∆t
(vk − vk−1) ·ϕ+ σk− 1

2 : ε(ϕ)

]

dv =

∫

T

ρmassbk−
1

2 ·ϕ dv+

∫

∂T

Fk− 1

2

σ ·ϕ da, (6.11)

∫

T

[

1

∆t

(

εk+
1

2 − εk− 1

2

)

: Ψ+ vk · div(Ψ)

]

dv =

∫

∂T

Ψn · Fk
v da (6.12)

where n is the unit outward normal along the boundary ∂T of T and Fk− 1

2

σ ,Fk
v are the

stress and velocity fluxes. The above problems can be solved with a discontinuous Galerkin

technique by using a specific choice of the flux appearing in the right hand side of (6.11) and

(6.12). Here we have chosen the centered flux scheme which has very good non-dissipative

properties (see BenJemaa et al. [19], Delcourte et al. [31], Etienne et al [46]):

Fk
v = vk +

1

2
[v]k+1, on ∂T ∩ D, (6.13)

Fk− 1

2

σ = (σk− 1

2 +
1

2
[σ]k−

1

2 )n, on ∂T ∩ D, (6.14)

where [σ] and [v] denote the jump of σ and v across the boundary of T . Following this

choice and using the boundary conditions (6.5) we get the following variational equations

∫

D

[ ρ

∆t
(vk − vk−1) ·ϕ+ σk− 1

2 : ε(ϕ)
]

dv =
∑

T∈Th

∫

∂T\∂D

Fk− 1

2

σ ·ϕ da+ (6.15)

∫

D

ρmassbk−
1

2 ·ϕ dv +

∫

Σs

ϕ · S((k − 1

2
)∆t) da+

∫

Σv

ϕ · σk− 1

2n da,

∫

Ω

[

1

∆t

(

εk+
1

2 − εk− 1

2

)

: Ψ+ vk · div(Ψ)

]

dv =
∑

T∈Th

∫

∂T\∂D

Fk
v ·Ψn da+ (6.16)

∫

Dv

V (k∆t) ·Ψn da+

∫

Ds

vk ·Ψn da,

for all ϕ ∈ W 3
h and all Ψ ∈ W 3×3

h .

Concerning the Courant-Friedrichs-Lewy (CFL) condition, which links the mesh width

and the time step to guarantee numerical stability, there is no mathematical proof for unstruc-
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tured meshes associated to the second-order explicit leap-frog scheme used here. However,

a heuristic stability criterion, that usually works well, was found by Kaser et al. [72]

∆t <
1

2d+ 1
min
T∈Th

2r(T )

cP (T )
, (6.17)

where r(T ) is the radius of the sphere inscribed in the element T and cP (T ) is the P-wave

velocity in the element T . For structured or uniform meshes we will denote by CFL the

non-dimensional parameter

CFL =
∆t

h
c0, (6.18)

where c0 is the reference wave velocity of the process.

Let us summarize here the proposed numerical algorithm at each time step k. First, we

compute vk from (6.15), then we use it to compute εk+
1

2 from (6.16). Finally, we make use

of the strain εk+
1

2 to compute σk+ 1

2 and ρ
k+ 1

2

i from the iterative scheme (6.9)-(6.10).

6.4 Testing the numerical approach

To test the numerical scheme proposed in this chapter we would like to compare the computed

solution with an exact (analytical) one. As far as we know there are no (nontrivial) analytical

solutions for the wave propagation in a material modeled with a damage constitutive law.

That is why we will construct first a one dimensional problem for which we can have an

exact solution with a specific choice of the volume forces. Since the role played by the strain

rate is essential in mechanical modeling, as well in the numerical integration, we discuss here

the numerical accuracy for different strain rates. Using specific dimensionless variables we

will compare different exact solutions associated to different strain rates.

6.4.1 Exact solution

The aim of this subsection is to construct an exact (analytical) solution of the wave prop-

agation problem with damage to test the numerical scheme presented in this chapter. For

that we will suppose that we deal with a single family of micro-cracks (N = 1). The start-

ing point will be the strain-driven homogeneous problem studied before. Let s → γ0(s) be

the given (generic) strain pulse of length 2δ (i.e. γ0(s) = 0 for s ≤ 0 or s ≥ 2δ) and let
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s → τ 0(s) be the (generic) stress (see Table 4.1 for the expressions of γ0 and τ 0 in different

configurations). We suppose that no frictional or unilateral phenomenon occurs and we will

assume a linear stress-strain law τ = E(γ, ρ) = E(ρ)γ. We denote by s→ ρ0(s) the solution

of the following ordinary differential equation modeling the damage evolution

d

ds
ρ0(s) = L(E(ρ(s))γ0(s), ρ(s)), ρ0(0) = ρ0, (6.19)

where ρ0 is the initial damage. The solution of this differential equation can be found

analytically or numerically. In the latter case one can use the (implicit) backward Euler

method described in the previous chapter. Since it is computationally non-expensive it can

be done with a very small time step such that the error of the numerical integration is very

small with respect to the error expected for the wave propagation problem. That is why,

even obtained numerically s→ ρ0(s) could be considered as an "exact" (analytical) solution.

Then the exact stress evolution s→ τ 0(s) could be obtained from τ 0(s) = E(ρ0(s))γ0(s).
Let x be the generic one-dimensional space variable and let (0, L) be the spatial domain,

while the strain rate relationship reads

γ̇(t, x) = β∂xv(t, x),

where β is the non dimensional parameter corresponding to the choice off the configuration

(β = 1 for the mode I and β = 1/2 in mode II or mode III). The time interval will be

denoted by [0, T ], where T = L/c0 and c0 =
√

E(0)β/ρmass is the (generic) wave speed in

the undamaged material. Let us denote by

vex(t, x) = −c0γ0(t− x/c0), τ ex(t, x) = τ 0(t− x/c0),

γex(t, x) = γ0(t− x/c0), ρex(t, x) = ρ0(t− x/c0),

the exact solution that we are looking for. Even if it is constructed from the homogeneous

problem and using the characteristics method the above solution does not satisfy the mo-

mentum balance law in the absence of the volumetric forces. Indeed,

ρmassv̇ex =
∂

∂x
(E(0)βγex) 6= ∂

∂x
τ ex

but it could satisfy the momentum balance law with an appropriate choice of the volume force
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f = ∂
∂x
(βE(0)γex − τ ex). This volume force could be easily computed from the homogeneous

solution as

f(t, x) = − 1

c0
b(t− x/c0), (6.20)

where

b(s) = [βE(0)− E(ρ0(s))] d
ds
γ0(s)− dE(ρ0(s))

dρ
L(E(ρ(s))γ0(s), ρ(s))γ0(s).

Finally we get that vex, τ ex, γex and ρex is the solution of the following one dimensional

system of equations























ρmassv̇(t, x) = ∂xτ(t, x) + f(t, x),

γ̇(t, x) = β∂xv(t, x),

τ(t, x) = E(ρ(t, x))γ(t, x),
ρ̇(t, x) = L(ρ(t, x), τ(t, x)),

(6.21)

with the boundary and initial conditions

v(t, 0) = −c0γ0(t), v(t, L) = 0, (6.22)

v(0, x) = 0, γ(0, x) = 0, ρ(0, x) = ρ0. (6.23)

For the effective elasticity law obtained using the "non-interacting cracks method" (NIC)

and without any unilateral or frictional effects (traction in mode I or frictionless in mode II

or III) the expression of the the the compliance E is

γ = A(ρ)τ = (A0 + Cρ(l))τ, τ = E(ρ)γ =
1

A0 + Cρ(l)
γ,

where A0, C are compliance coefficients (see table 4.1).

If the damage evolution law is associated to the micro-cracks self similar growth under a

far field stress (4.2) and without any unilateral or frictional effects the stress intensity factor

K has a simple expression

K(l, τ) =
K(l, τ)

Kc

− 1, K(l, τ) = a
√
lτ

where a is a non-dimensional number (see table 4.1). The dynamic evolution law for the
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damage parameter ρ can be replaced by an evolution law for the crack-length l and the one

dimensional evolution equation (6.21) reads







































ρmassv̇(t, x) = ∂xτ(t, x) + f(t, x),

γ̇(t, x) = β∂xv(t, x),

τ(t, x) =
1

A0 + Cρ(l(t, x))
γ(t, x),

l̇(t, x)(t, x) = cmϕ(

[

a
√

l(t, x)τ(t, x)−Kc

(α− 1)Kc + a
√

l(t, x)τ(t, x)

]

+

),

(6.24)

while the initial conditions (6.23) have to be replaced by

v(0, x) = 0, γ(0, x) = 0, l(0, x) = l0. (6.25)

6.4.2 Strain rate sensitivity

We want to see here the strain rate influence on the exact solution constructed before.

For that let Γ̇ be the strain rate and we denote by γf the given final strain. To compare

the solutions we have to use non-dimensional variables and functions, but for the sake of

simplicity we will use the same notations. For instance, instead of ρmass we use ρmassρmass
c

where ρmass
c is the characteristic mass density and ρmass is the non-dimensional density. We

proceed in the same way with t → tTc, x → xLmacro
c , v → vVc, τ → τSc, l → lLmicro

c and

f → ffc. If we take the following (natural) choices for the characteristic variables

Tc =
γf

Γ̇
, Sc =

1

A0

, Vc =

√

Sc

βρmass
c

, Lmacro
c = VcTc, Lmicro

c = l(ρc), fc =
ρmass
c Vc
Tc

,

then the system (6.24) reads







































ρmassv̇(t, x) = ∂xτ(t, x) + f(t, x),

γ̇(t, x) = β∂xv(t, x),

τ(t, x) =
1

1 + Cρ(l(t, x))/A0

γ(t, x),

l̇(t, x) =
cmγ

f

Lmicro
c Γ̇

ϕ(

[

a
√

l(t, x)τ(t, x)−KcA0/L
micro
c

(α− 1)KcA0/Lmicro
c + a

√

l(t, x)τ(t, x)

]

+

).

(6.26)

54



Using this non-dimensional system we can compare now different exact solution on the

same (non-dimensional) space x ∈ (0, 1) and on the same (non-dimensional) time t ∈ (0, 1)

but associated to different processes, related to different strain rates Γ̇. We notice that the

structure of the system is unchanged with exception of the last equation related to the crack-

growth which is directly dependent on the strain rate Γ̇. The stiffness of this last differential

equation is related to the non dimensional numberMQ, called here the "microscopic evolution

index",

MQ =
cmγ

f

Lmicro
c Γ̇

(6.27)

which discriminate, at the microscopic scale, a quasi-static from a dynamic behavior. For

small values of MQ we deal with a dynamic process while for large values of MQ the macro-

scopic time scale is too large to capture the micro-scale evolution, hence the process is

quasi-static (see the discussion given in the first chapter of this part) .

Using the above one-dimensional solution one can construct two dimensional or three

dimensional analytical solutions. For instance, for the anti-plane configuration considered in

what follows, we put D = (0, L)× (0, H)×R to get that vz(t, x, y) = vex(t, x), σxz(t, x, y) =

τ ex(t, x), σyz(t, x, y) = 0, ǫxz(t, x, y) = γex(t, x) and ǫyz(t, x, y) = 0 is a the exact solution for

the boundary value problem with vanishing tangential stress on y = 0 and y = H.

We have computed the exact solution for different strain rates in the anti-plane configu-

ration, corresponding to mode III for ceramics (ν0 = 0.24, E0 = 300 GPa, ρmass = 3673 kg

m−3, c0 = cS =
√

G0/ρmass, Kc
III = 2.7 MPa

√
m, η = 106/2πm−2). The strain pulse was

chosen to be γ0(t) = γfϕδ(t− δ), with ϕδ(s) = (cos(sπ/δ) + 1)/2 if |s| ≤ δ and ϕδ(s) = 0 if

|s| > δ and γf = 0.005. The initial micro-crack length was chosen to be l0 =
√

ρc/(3η) cor-

responding to a crack density ρ0 = ρc/3, where ρc is the critical crack density (ρc = 1/6π in

the anti-plane case). Following the analysis given in section 4.4.2 the process has a material

instability.

In figure 6.1 we have plotted the spatial distribution of the exact stress x→ τ ex(t, x) for

different strain rates. We remark an important sensitivity with respect to the strain rate: the

pulse loses its amplitude when the strain rate is decreasing. However, starting to Γ̇ = 102s−1

the role of the strain rate is less important and we can speak on a rate independent model

(no differences between Γ̇ = 101s−1 and Γ̇ = 1s−1). Since the microscopic evolution index

MQ varies from MQ = 4969.98 for Γ̇ = 10s−1 to MQ = 4.96998 for Γ̇ = 104s−1 one can

deduce from the above discussion that for small values of the strain rate the process is
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quasi-static at the microscopic scale, but it is still dynamic at the macroscopic scale. In our

case the critical microscopic evolution index M c
Q, which discriminate the dynamic from the

quasi-static micro-scale behavior, is around of

M c
Q = 50,

i.e. for MQ < M c
Q we deal with a micro-scale dynamic process while for MQ ≥ M c

Q we have

to use a micro-scale quasi-static model.

Figure 6.1: The transition from dynamic to quasi-static microscopic process. The spa-
tial distribution of the exact stress pulse x → τ ex(t, x) for different strain rates: Γ̇ =
1, 10, 102, 103, 104s−1.

6.4.3 Mesh/Time step analysis

In section we focus on the analysis of the mesh/time step sensitivity of the numerical solution

in connection with role played by the strain rate. Since the exact solution was constructed

with a volume forces f which is associated through (6.20) to a wave propagating with the

speed c we cannot distinguish between the role played by the mesh size and the time step.

That is why we have considered here that the micro-scale time step is equal to the macro-

scale time step, δt = ∆t, and we fixed the CFL constant to be CFL = 0.1, i.e. ∆t = h/10,

where h is the size of an uniform mesh.

Using the non-dimensional settings of the previous section all the solutions, associated to

different strain rates, are computed on the same space interval (0, 1) during the same time
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interval (0, 1).

Figure 6.2: Micro-scale dynamic process (Γ̇ = 103, 104s−1): the spatial distribution of the
computed stress x → τ(t, x) and of the exact stress x → τ ex(t, x). For Γ̇ = 104s−1 the
computed stress with h = 10−2(∆t = 10−3) and with h = 0.5 · 10−2(∆t = 0.5 · 10−3). For
Γ̇ = 103s−1 the computed stress with h = 10−2(∆t = 10−3), h = 0.5 · 10−2(∆t = 0.5 · 10−3)
and with h = 0.25 · 10−2(∆t = 0.25 · 10−3). A zoom of the front wave on the left.

Let us first analyze the case of high strain rates, for which the process is dynamic at

both scales (micro and macro). In Figure 6.2 we have plotted the comparison of the exact

solution with the numerical results for Γ̇ = 103, 104s−1. We notice that for Γ̇ = 104s−1 the

solution is very close to the exact one even for h = 10−2(∆t = 10−3). For Γ̇ = 103s−1 some

small errors are present for h = 10−2,∆t = 10−3 which disappear for a smaller time step,

beginning with h = 0.5 · 10−2(∆t = 0.5 · 10−3). If we formulate this conclusion in terms of

microscopic evolution index MQ we get that the associated non-dimensional number ∆tMQ

have to be less than 0.05 to get a very good numerical accuracy.

Let us see now the role played by the mesh size/time step for moderate strain rates. In

figure 6.3 we have plotted the numerical results and the exact solution for Γ̇ = 102s−1. We

see that the numerical solution does not approach the exact pulse for h = 0.5 · 10−2(∆t =

0.5 · 10−3) and for h = 0.25 · 10−2(∆t = 0.25 · 10−3) but starting with h = 0.125 · 10−2(∆t =

0.125 · 10−3) the difference between them is very small. We get that the non-dimensional

number ∆tMQ have to be less than 0.075 for a good convergence.

The numerical results and the exact solution for Γ̇ = 10s−1 are plotted in Figure 6.4.

As we can see from Figure 6.1 the exact solution contains shocks and we are dealing with

a quasi-static microscopic process associated to a dynamic macroscopic process. We notice

that for h = 0.125 · 10−3(∆t = 0.125 · 10−4), which corresponds to ∆tMQ = 0.075, the
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Figure 6.3: Micro-scale dynamic/quasi-static process (Γ̇ = 102s−1): the spatial distribution of
the exact stress x→ τ ex(t, x) and of the computed stress x→ τ(t, x) with h = 0.5·10−2(∆t =
0.5 · 10−3) , h = 0.25 · 10−2(∆t = 0.25 · 10−3) and h = 0.125 · 10−2(∆t = 0.125 · 10−3).

computed pulse has a good amplitude but the are a lot of spurious oscillations. We conclude

that a mesh/time step refinement is not enough to get a accuracy and special shock capturing

techniques have to be used.

Following the above analysis we conclude that the mesh size/time step have to be adapted

to the strain rate. For dynamic microscopic processes the non-dimensional time step ∆t has

to be less that 0.05/MQ which can be rewritten for the dimensional variables as

δt ≤ 0.05
Lmicro
c

cm
, (6.28)

for a CFL=0.1.

6.5 Conclusions

We have introduced a new numerical scheme associated to the boundary value problem of the

wave propagation in a material modeled by a general damage constitutive law. To solve the

associated nonlinear hyperbolic problem we used an explicit leapfrog type scheme for the time

discretization. This scheme deals with velocity and strain fields and not with stress fields, as

it is usual in a velocity-stress formulation. Using this specific time discretization, during a

(macro-scale) time step the constitutive damage law becomes a strain driven homogeneous

problem ( previous chapter). To capture the instabilities we used a semi-implicit Euler
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Figure 6.4: Micro-scale quasi-static process (Γ̇ = 10s−1): the spatial distribution of the exact
stress x → τ ex(t, x) and of the computed stress x → τ(t, x) with h = 0.3125 · 10−3(∆t =
0.3125 ·10−4) h = 0.15625 ·10−3(∆t = 0.15625 ·10−4) and h = 0.125 ·10−3(∆t = 0.125 ·10−4).

method and a micro-scale time step to integrate the (micro-scale) strain driven problem. A

DG method with a centered flux choice was considered for the spatial discretization.

To test the numerical scheme proposed in this chapter we construct a new (nontrivial)

analytical solutions for a 1-D problem. Using a specific dimensionless variables we compared

different exact solutions associated to different strain rates. Using the exact solution we

analyzed the accuracy of the numerical scheme and its time step/mesh size sensitivity. We

found that the dynamic processes (at the microscopic scale) are very well approximated by

the numerical scheme. The centered scheme flux choice works well as far as the macro-scale

solution is smooth. For quasi-static processes (at the microscopic scale), the solution exhibit

shocks and a specific shock capturing flux choice has to be used.
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CHAPTER 7

1-D WAVE PROPAGATION

The objective of this section is to study how the damage affects the one dimensional wave

propagation of a stress pulse. For that we consider the dynamic evolution of an one-

dimensional elastic body Ω = (0, L) (the generic space variable will be denoted by x) with a

generic velocity v = v(t, x), a generic strain γ = γ(t, x) and a generic stress τ = τ(t, x) (see

Table 4.1 for the expressions of v, γ and τ in different configurations).

7.1 Problem statement

Let us write the system of equations for v, γ, τ and li = l(ρi) modeling the one dimensional

wave propagation problem with damage. The momentum balance law and the definition of

the strain rate read

ρmassv̇(t, x) = ∂xτ(t, x), (7.1)

γ̇(t, x) = β∂xv(t, x), (7.2)

where β = 1 in mode I and β = 1/2 in modes II and III. For the effective elasticity law

we have chosen the "non-interacting cracks method" (NIC) (see for instance Gambarotta

and Lagomarsino [52] and Kachanov [69]) without any frictional or unilateral effects. The

strain-stress equation (17.1) can be written as

τ(t, x) =
1

A0 + C
∑N

i=1 ρ(li(t, x))
γ(t, x), (7.3)
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Next we want to show how damage affects the profile and the propagation of a loading

stress pulse. To do that we have considered the same values as in the previous subsection,

corresponding to a anti-plane configuration in mode III, with ρmass = 3673 kg m−3, while

for the stress pulse S we have chosen Smax = 200MPa, δ = L/(10c0). As before the initial

half-length l0i is taken small enough so that the material is almost undamaged at the initial

state with a wave propagation speed c0 ≈
√
β/

√
ρmassA0. In all cases we consider below, the

damaged stress pulse, after a transitory period of time near x = 0, propagates as a solitary

wave (plotted as a snapshot of the stress-pulse taken at t = 9δ).

First, we have considered a single family (N = 1) of micro-cracks (see Figure 7.1 left)

and we have plotted in Figures 7.2 and 7.3, the stress pulse τ(t, x) versus the space x,

computed at t = 9δ. We remark that the damage induced by the loading wave significantly

modifies the stress pulse shape (the amplitude is smaller and the pulse length is larger).

The amplitude loss of the stress pulse is related to the softening of the strain-stress curve

(see Figure 5.3) associated to damage and we expect a lower stress amplitude for the same

strain. Since the elastic coefficients are affected, the wave velocity in the damaged material

c =
√

β/

√

√

√

√ρmass(A0 + C
N
∑

i=1

ρ(li)) (always localized behind the pulse front) is smaller than

the velocity of the stress pulse front propagating in a fully undamaged zone. That means

that the stress pulse needs more time and space to evacuate, and its length is larger than

the undamaged pulse length.

7.2 Influence of the flaw density

To show the influence of the flaw density we have chosen the initial micro-cracks length

to be l0 = 0.025mm and we have performed computations for three different flaw densities

η = 106/2π, η = 106/π and η = 0.25 · 106/π m−2 and compared them with the undamaged

case (see Figure 7.2). The stress pulse is more flat (larger length and smaller amplitude)

when the flaw density increases. We also note that the damage pulse has the same shape

as the undamaged pulse at the beginning, and the three cases are different only afterwards.

This can be explained by the fact that the three cases have the same initial crack-length,

hence the same activation stress. Only after that the flaw density η will play a role in the

evolution of the stress pulse.
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Figure 7.2: Influence of the flaw density in 1-D wave propagation. Normalized stress
τ(t, x)/Smax versus normalized space x/L, computed at t = 9δ for model F1 (left in Figure
7.1): the undamaged material (red line) and different values of flaw densities η = 106/2π
(green), η = 106/π (magenta) and η = 0.25 · 106/π m−2 (blue).

7.3 Influence of the initial crack length

We analyze now the influence of the initial crack length on the stress pulse. For that we have

chosen the flaw density η = 106/πm−2 and we have made computations (see Figure 7.3) for

three different values of initial crack length l0 = 0.025mm (green), l0 = 0.050mm (magenta)

and l0 = 0.0125mm (blue) and for the undamaged material (l0 = 0, red line). From the

shape of the stress pulse at the forward tip, we see that for small initial crack lengths the

damage is activated later than for larger ones, which leads to different pulse amplitude. The

length of the pulse is less affected by the initial crack length.

7.4 Three families of micro-cracks

In a second numerical experiment we have considered models F3 and F3’, that is, a family of

three cracks (N = 3) with the initial lengths l01 = l0 = 0.025mm, l02 = l0/2, l03 = 2l0, and two

different distributions of the flaw density. For the first one (model F3 plotted in Figure 7.1

middle) we take: η1 = η/3 = 106

6π
m−2, η2 = 4η/3, η3 = η/12 and ρ0i = ρ(l0i ) = ρ0/3, hence the

specimen has the same initial damage uniformly distributed at the three crack types. For

the second case (model F3’ Figure 7.1 right) we have chosen η1 = η2 = η3 = η/3 = 106

6π
m−2,

i.e. the three different cracks are uniformly distributed. In Figure 7.4 we have compared
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Figure 7.3: Influence of the initial crack length in 1-D wave propagation. Normalized stress
τ(t, x)/Smax versus normalized space x/L, computed at t = 9δ for model F1 (left in Figure
7.1): undamaged material (red line) and different values of initial crack lengths l0 = 0.025mm
(green), l0 = 0.050mm (magenta) and l0 = 0.0125mm (blue).

the three damage models F1,F3,F3’ represented in Figure 7.1. The stress pulse of model

F1 (green) and F3’ (magenta) are very close, but model F3 (blue) is very different. This

confirms the fact, already observed for model F1, that the flaw density has a much stronger

influence than the initial crack length.

7.5 Conclusions

We analyzed how the damage affect the one dimensional wave propagation of a stress pulse.

We found that the stress pulse is more flat (larger length an smaller amplitude) when the

flaw density increases. Concerning the influence of the initial crack length on the stress pulse

we found that for small initial crack lengths the damage is activated later than for larger

ones, which leads to different pulse amplitude. The length of the pulse is less affected by the

initial crack length.
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Figure 7.4: 1-D problem for 3 families of micro-cracks: normalized stress τ(t, x)/Smax versus
normalized space x/L computed at t = 9δ. Red: undamaged model, green: model F1 (left
in Figure 7.1), blue: model F3 (middle in Figure 7.1), magenta: model F3’ (right in Figure
7.1).
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CHAPTER 8

ANTI-PLANE WAVE PROPAGATION

Consider the anti-plane shearing in a domain D = Ω × R, with Ω ⊂ R
2 not necessarily

bounded. We suppose that the displacement field u = (ux, uy, uz) is 0 in directions Ox and

Oy and that uz does not depend on z. The displacement is therefore denoted simply by w =

w(t, x, y) and the velocity by v = ẇ. The non-vanishing deformations are γx = ǫxz = 1
2
∂xw

and γy = ǫyz = 1
2
∂yw (i.e. γ = 1

2
∇w), while the non-vanishing shear stress components are

τx = σxz, τy = σyz, which can also be represented through the vector τ = (τx, τy).

The effective elasticity model, the damage model and the material settings used in this

chapter are the same as in Chapter 7 .

8.1 Anisotropic damage under isotropic loading

The numerical experiment considered in this subsection investigates the influence of the

damage anisotropy on the propagation of an initial isotropic loading. We considered the

elastic body Ω = {(x, y) ; x2 + y2 < R2}, the disc of rayon R, impacted in the center with

an initial velocity v0(x, y) = V0ϕδ(
√

x2 + y2) (δ = R/5).

We have considered three models of the initial distributions of three the mini-cracks

families (N = 3) of normal vectors ni = (cos(θi), sin(θi)) for i = 1, 2, 3. The first one,

called "model a", is the same as model F3 in the one-dimensional problem (see also Figure

7.1 middle), i.e. θi = 0, l01 = l0 = 0.025mm, l02 = l0/2, l03 = 2l0 and η1 = η/3 = 106

6π
m−2,

η2 = 4η/3, η3 = η/12.
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Figure 8.1: The distribution of stress deviator at the final time t = T . Up left : no-damage
model. Up right: damage model a). Button left: damage model b). Button right: damage
model c).

The second one, called "model b", has the same initial lengths l0i and flaw densities ηi,

but the orientations are different for each family : θ1 = 0, θ2 = π/3, θ3 = 2π/3. The last one,

called "model c", has the same orientations as in the previous case but with uniform initial

lengths l0i = l0 and flaw densities ηi = η/3. We have made numerical computations over the

time interval [0, T ] with T = (R− δ)/c0.

In Figure 8.1 we have plotted the spatial distribution of the stress deviator
√

τ 2x + τ 2y

at the final time t = T for different damage models. The the undamaged model (up left)

exhibits perfect isotropy and its the stress deviator is concentrated in a circular ring. For

damage model (up right in Figure 8.1) the final distribution is very different. In the direction

of the micro-cracks the initial circular wave damages the material, which affects the speed

wave, hence the wave is propagating much slower than in the orthogonal direction, where

the material is hardly damaged. As we can see from Figure 8.2 (top) all the three systems

are activated but, as expected, systems 1 and 3 are more developed than the system 2. Once
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Figure 8.2: The distribution of the micro-cracks length li(t) at the final time t = T . Up:
damage model a). Middle: damage model b). Button: damage model c).

again we do not note any significant difference between the three final micro-cracks lengths.

In Figure 8.1 (bottom left) we have depicted model b). We remark that even if the

three cracks systems have different orientations, the final snapshot still shows an important

anisotropy. This is due to the differences of initial micro-cracks lengths and flaw densities

for the three directions. We note that damage is weaker in the direction of the largest micro-

cracks which also have the lowest flaw density. This small flaw density is not compensated

by the crack lengths. Indeed, in Figure 8.2 (middle) we see that all 3 directions are activated

and, even if the initial crack lengths are different ,the final lengths are very similar.

Finally, the damage model c) is plotted in Figure 8.1 ( bottom right). We note that the

final distribution of the stress deviator shows a very good damage isotropy. Hence, at least

for isotropic loadings, the choice of only three directions with the same initial properties,

ensures an isotropic damage behavior. This is confirmed by the symmetric distribution of

the final crack lengths plotted in Figure 8.2 (bottom).
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8.2 Anisotropic loading of an initial isotropic damaged

material

We want to illustrate here the influence of an anisotropic loading on an initially isotropic

(damaged) material. In order to do so, we consider a domain Ω = (0, 2a) × (0, a) ∪ A \ D
where A is the half disk of radius R = a/2 centered at (2a, a/2) and D is the disk of radius

R = a/6 entered at (2a, a/2) (see Figure 8.3). At initial time the elastic body is at rest

without any pre-stress conditions. We impose in x = 0 a stress pulse σn = Bϕ(t − δ)ez of

duration 2δ (with δ = a/8cS) while the other boundaries are stress free. We want to see how

this loading wave will damage the material and will change its wave propagation properties.

As before we have considered the material settings: Young modulus E = 300GPa, Poisson

ratio ν = 0.24 and ρmass = 3673kg/m3. As we can see from the previous subsection the

"isotropic" damage behavior could be obtained with an uniform spatial distribution in three

directions orientated at 2π/3. That is why we have considered an uniform initial micro-crack

lengths l0i = 0.025mm, with the same flaw density ηi =
106

6π
m−2 and having the orientations

of the normals at θ = 0, θ2 = 2π/3 and θ3 = 4π/3. We have done numerical computations

over the interval [0, T ] with T = 2a/cS.

The main scenario of this numerical experiment has three time periods. In the first time

interval the loading wave will travel as a plane wave in the material in the Ox direction and

will generate a damage increase principally in the direction θ = 0 and less in the other two

directions. When reaching the circular hole the wave will be reflected as a cylindrical wave

(isotropic loading) in the domain which was non-isotropically damaged by the incident wave.

We expect to see in the third time interval that in θ = 0 direction the reflected wave will be

slower than in the other directions.

To see how the stress pulse is affected by the presence of micro-cracks we have plotted

in Figure 8.3 four snapshots (t = 0.6T, 0.7T, 0.8T and the final time t = T ) of the spatial

distribution of the stress deviator
√

τ 2x + τ 2y for the model with damage (top) and without

damage (bottom). In Figure 8.4 we plotted the distribution of the micro-cracks length li(t)

at the same time t for the three families of micro-cracks (up θ = 0, middle θ = 2π/3 and

bottom θ = 4π/3).

At the first snapshot (Figure 8.3 left up and Figure 8.4 left), associated to the first time

interval of our scenario, we remark that the wave associated to the loading pulse at the

left side traveled as a plane wave in both models. As we have already noticed in the one
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Figure 8.3: Snapshots of the spatial distribution of the stress deviator at t = 0.6T, 0.7T, 0.8T
and the final time t = T . The model with damage on the top of the model without damage.

dimensional simulations, the damaged wave has a smaller amplitude and a longer wave length

but the two pulses have the same front wave. The first family, θ = 0, is the single family of

micro-cracks which was affected by the loading wave. That means that after the passage of

the plane wave the material has a weakness in the Ox direction and loses its isotropy.

The second time interval of our scenario (the reflection on the circular cavity) is illustrated

in the second snapshot (see Figure 8.3 top and right and Figure 8.4 middle left). We see

that, since the damaged pulse is larger, it can include the reflected wave, while for the non-

damage model the direct and reflected pulses are separated. The damage for the first family

continue to increase and we notice the first evolution of the damage in the second and third

directions. Essentially, they are due to the reflection on the circular cavity and we remark

the localization of the damaged zones are not the same for the second and third family of

micro-cracks.

In the third snapshot (see Figure 8.3 bottom left and Figure 8.4 middle right) we see the

propagation of the direct wave behind the circular cavity and the propagation of the reflected
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shows an important anisotropy. This is due to the differences of initial micro-cracks lengths

and flaw densities. If the initial micro-cracks lengths and flaw densities are the same in three

directions the final distribution of the stress deviator shows a very good damage isotropy.

Hence, at least for isotropic loadings, the choice of only three directions with the same initial

properties, ensures an isotropic damage behavior.

Concerning the anisotropic loading of an initial isotropic damaged material we found that

even if at the beginning we deal with an isotropic damaged material, after the propagation

of a (loading) anisotropic wave the material has an anisotropic behavior.
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CHAPTER 9

BLAST IMPACT AND DAMAGE EVOLUTION

The aim of this chapter is to illustrate how the numerical method associated to the damage

model works in modeling the blast wave propagation.

We consider, as for the cracked materials, an elastic domain Ω = (0, a)×(0, 5a) in a stress

plane configuration (see Figure 9.1), which is impacted at the left side x = 0, y ∈ (2a, 3a) by

a compressive pulse t→ S(t) with an amplitude −B and a time duration 2δ = 0.5a/cP . The

faces y = 0 and y = 5a are fixed and the face x = a is stress free. The loading compressive

wave is traveling into the damage material till it reaches the stress free boundary, when it

will be reflected as traction loading wave. In addition to this direct and reflected P-wave we

have also a S-wave generated at the boundary between the loaded surface and the unloaded

one (x = 0, y = 2a, 3a).

We have done numerical computations over the interval [0, T ] with T = 2a/cP using the

damage model defined by a NIC effective elasticity (17.1) associated to micro-cracks having

normals orientated with an angle θ.

As before, we have considered the material settings: Young modulus E = 300GPa,

Poisson ratio ν = 0.24 and ρmass = 3673kg/m3with an uniform initial micro-crack lengths

l0i = 0.025mm, with the same flaw density ηi =
106

3
m−2, corresponding to the initial crack

density parameter ρ0 = 10−5, and having the orientations at θi, i = 1, .., N . Concerning

the damage model we have used the self similar micro-crack under a stress far field model,

associated to a mixed mode (I and II) fracture criterion (18.2) withKI = KII = 2.7 MPa
√

m.

For the damage evolution law we have used the universal crack speed function of Deng and
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CHAPTER 10

FINAL CONCLUSIONS AND PERSPECTIVES

In this part we analyzed the coupling between the damage evolution and the wave propaga-

tion. Since the loading wave, propagating into the material, produces damage and changes

the propagation properties of the material, the mechanical damage processes cannot be sep-

arated from the wave propagation process. The micro-crack growth is activated in some

privileged directions according to the applied macroscopic loading leading to a anisotropic

behavior.

The (local) damage model for brittle materials used in this part is rather general and

covers a wide spectrum of the micro-mechanics-based damage models.

We obtained stability criteria for dynamic and quasi-static processes at the microscopic

scale. We found that for a given continuous strain history the quasi-static or dynamic

problems are unstable or ill-posed (multiplicity of material responses) and whatever the

selection rule is adopted, shocks (time discontinuities) will occur. The dynamic stability

criterion coincides with the quasi-static one for weak inter-families interactions or for a

single active family of micro-cracks. We found a critical crack density parameter and a

critical micro-crack radius (length) which distinguish between stable and unstable behaviors

of some specific models (NIC effective elasticity and self similar growth) associated to some

special configurations (one family of micro-cracks in mode I, II and III and in plane strain

or plain stress).

For homogeneous strain-driven processes we found that for a single family of micro-cracks

the rate of deformation plays a major role. For intermediate and low rates of deformation,
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sharp stress drops related to the material instabilities could be expected, and the strain-stress

curve is not sensitive on the strain rate. On the contrary, for high rates of deformation, the

strain-stress curve depends strongly on the rate of deformation but only a smooth stress

drop is expected. The role played by the rate of deformation is much more complex if more

families of micro-cracks are considered.

We have introduced a new numerical scheme associated to the boundary value problem

of the wave propagation. To solve the associated nonlinear hyperbolic problem we used an

explicit leapfrog type scheme for the time discretization. This scheme deals with velocity

and strain fields and not with stress fields, as it is usual in a velocity-stress formulation. To

capture the instabilities we used a semi-implicit Euler method and a micro-scale time step to

integrate the (micro-scale) strain driven problem. A DG method with a centered flux choice

was considered for the spatial discretization. To test the numerical scheme proposed in this

chapter we construct a new (nontrivial) analytical solutions for an 1-D problem. Using the

exact solution we analyzed the accuracy of the numerical scheme and its time step/mesh size

sensitivity. We found that the dynamic processes (at the microscopic scale) are very well

approximated by the numerical scheme. The centered scheme flux choice works well as far

as the macro-scale solution is smooth. For quasi-static processes (at the microscopic scale),

the solution exhibit shocks and a specific shock capturing flux choice have to be used.

We analyzed how the damage affect the one dimensional wave propagation of a stress

pulse. We founded that the stress pulse is more flat (larger length an smaller amplitude)

when the flaw density increases while the length of the pulse is less affected by the initial

crack length.

In the anti-plane configuration in the direction of the micro-cracks the material is hardly

damaged and the initial circular wave is propagating much slower than in the orthogonal

direction. Even if the cracks systems have different orientations, the final snapshot still

shows an important anisotropy. This is due to the differences of initial micro-cracks lengths

and flaw densities. For isotropic loadings, the choice of only three directions with the same

initial properties, ensures an isotropic damage behavior. We illustrated the fact that even

if at the beginning we deal with an isotropic damaged material, after the propagation of a

(loading) anisotropic wave the material has an anisotropic behavior.

We have analyzed the role played by the initial distribution of the micro-cracks in the

blast wave propagation. We found that the behavior depends on the micro-cracks orientation.

The friction in the damage model has a non-negligible influence on the amplitude and on
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the speed of the loading wave. If several orientations of the micro-cracks are considered

an additive effect of the damage is present without an important interplay between the

micro-cracks families.

For the future prospects related to the wave propagation in a solid with a micro-mechanics

based damage model we want to mention that a deeper analysis of the inter-families interac-

tion (especially for the interaction of micro-cracks with different orientations) in connection

with the dynamic material stability or wave propagation is needed. In this thesis we have

given some examples one dimensional or two dimensional problems to point out that this

interaction exists but we have not explored this subject in detail. Another future prospect

is to include some shock capturing techniques (numerical fluxes, slope limiters, ... ) or other

smoothing methods (Suliciu’s or viscous or gradient regularizations) in the numerical scheme.

This is in important point in modeling wave propagation at low and moderate strain rates in

damaged materials which exhibit material instabilities. Indeed, in this thesis only the mate-

rial and temporal instabilities were well captured, while the spatiotemporal discontinuities

associated to the induced wave propagation have to be addressed in a future work. Finally,

in the numerical and mechanical approach the flaw densities, the micro-cracks’ radius and

orientations have to be introduced as random variables (as in Graham-Brady [53] and Huq

et al. [65] for instance), and not as deterministic characteristics of the material. It will be

of high interest to address a stability analysis in connection with a deterministic approach.

Can the present instability capturing numerical approach be adapted to random materials

variables, and how to take advantage of a DG discretization for a probabilistic analysis, are

two questions to be addressed also.
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Part II

Wave propagation in a cracked solid
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CHAPTER 11

INTRODUCTION

11.1 Introduction

The derivation of accurate relationships between the micro-structure (pores, micro-cracks)

and overall elastic properties of brittle materials (rocks, ceramics,..) is an ongoing problem

in material science, geophysics, and solid mechanics. Micro-fractures strongly influence the

(seismic) wave propagation giving rise to scattering and fracture-induced anisotropy. In a

fractured medium, when the size of fractures is substantially less than the wavelength, wave

propagation can be described using effective-medium theories (see for instance [84, 64, 108,

115] or [109] and references therein).

There is a general agreement for a dilute concentration of micro-cracks among these

models, but for higher concentrations considerable differences arise. Moreover, spatial corre-

lations between different fractures cannot be included in equivalent-medium models. There-

fore, it is necessary to validate effective-medium theories with experimental data [23, 64] or

numerical simulation [106, 105] .

The large majority of numerical schemes that treat the wave propagation in materials with

micro-fractures are using the finite-difference method. Some of them take the cracks as sec-

ondary point sources [121] and others use penny-shaped weak inclusions [106, 105] to model

the micro-cracks. In order to adequately model the thickness of cracks, the finite-difference

discretization has to be done on a small grid spacing which generates high computational cost

(both the grid spacing and time interval have to be small to satisfy stability considerations).
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Also, when the medium contains high-contrast discontinuities (strong heterogeneities), some

instability problems arise on a staggered grids [122] may appear. Some of them could be

avoided by using the rotated staggered grid technique [104].

In contrast, for the "explicit interface" approaches the fracture is assumed to have a

vanishing width across which tractions are continuous, but displacements and velocities are

allowed to have jumps. One of the "explicit interface" approaches is the so called "linear-

slip displacement-discontinuity model" [107, 108, 123, 129] offering a unified description of

fractures on scales both large and small, relative to the wavelength. However, this model is

linear and cannot describe the nonlinear phenomena present on the micro-cracks interface

as unilateral contact and/or friction.

To model frictional contact constraints, the classical finite-element technique makes use

of three (nodal values) discretization methods: the Lagrange multiplier method, the penalty

method and the augmented Lagrangian method (see for instance [6, 110, 99, 128, 85, 42] or

[125]). Other discretization schemes, as mortar methods, were developed for non-matching

grid [15, 16, 76, 113]. Another class of mixed formulations are the "dual mortar" methods

(see for instance [100, 111]). An alternative to mixed methods is the primal formulation (in

which the displacement field is the only unknown) by using Nitsche’s method (see [83, 126]

and its extensions to either quasi-static friction [3, 119] or explicit dynamics [2]).

Nitsche’s method has also been used under the guise of the "interior penalty" method

within the context of discontinuous Galerkin (DG) methods (see Arnold [4] for the ear-

liest applications). There are a lot of important developments of discontinuous Galerkin

approaches for linear and nonlinear solid mechanics (see for instance [57] in linear elastic-

ity, [79, 114, 117] in finite-strain elasticity, [93] in elasto-plasticity and [91] in second-order

computational homogenization). A unifying analysis of the DG method applied to elliptic

problems is contained in [6]. A second group of important interface problems in solid me-

chanics involves contact problems with friction. Very recently, Truster and Masud [120] have

developed a stabilized discontinuous Galerkin (DG) interface method for transient contact

with Coulomb friction extending their previous work on interphase damage modeling [118].

The aim of this part of the thesis is to use the discontinuous Galerkin (DG) method to

investigate the dynamics of (damaged) materials with a nonlinear micro-structure (micro-

cracks in frictional contact). In the classical finite element technique, inner boundary condi-

tions require a geometrical treatment, hence the computational effort became very important

for a large number of micro-cracks. In contrast, in the DG method the inner boundary con-
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ditions are modeled by the flux choice without any additional computational cost even for

many micro-cracks.

We chose to adapt here the second order numerical scheme, proposed in [46] (the explicit

leapfrog scheme in time and a centered flux choice for the inner element faces) for the elastic

wave propagation in homogeneous isotropic media. The nonlinear conditions on the micro-

cracks are treated as special flux choices. The resulting nonlinear equations at each time step

are solved by using the augmented Lagrangian technique. The numerical results obtained

with this numerical scheme will be compared to a nontrivial analytical solution to see its

mesh size and time step sensitivity.

The numerical scheme will be used for a numerical upscaling homogenization to find

the effective properties of the damaged material and to study the wave propagation (speed,

amplitude, wavelength, etc. ) in an isotropic material with micro-cracks and to analyze how

a loading pulse is affected by the presence of micro-cracks.

Finally we will illustrate how our DG method can be used to investigate more com-

plex wave propagation phenomena as a blast-wave propagation in a ceramic block with an

anisotropic crack distribution.

11.2 Problem statement

Let D ⊂ R
3 be an elastic domain which contains an internal boundary (a set of cracks)

Σ ⊂ D (see Figure 11.1 for a schematic representation). We are looking for the displacement

u : [0, T ] × D → R
3 and the stress tensor σ : [0, T ] × D → R

3×3
s (here R

3×3
s is the space of

symmetric 3× 3 matricies) solution of the following equations

ρmassü(t) = div σ(t) + ρmassb(t) in D, (11.1)

σ = Eε in D, (11.2)

ε(u) =
1

2
(∇u+∇tu) in D, (11.3)

where ε is the small strain tensor, ρmassb are the volume forces and E is the fourth order

tensor of the elastic coefficients. If we denote by v = u̇ the velocity field and by A = E−1

the compliance tensor then (11.2) reads

Aσ̇(t) = ε(v(t)). (11.4)
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Figure 11.2: Representation of Signorini unilateral conditions and of the compliance law.

1
2
(−x+ |x|) is the negative part of x. Indeed, as we see from Figure 11.2, the compliance law

is the asymptotic approximation of unilateral non penetration condition (11.7) for Cn → +∞.

µσ
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-µσ
n

 

σΤ
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Figure 11.3: Representation of Coulomb friction law.

Let us write the Coulomb friction law (11.8) as a variational inequality. This will be

useful in developing the numerical approach. For that, let us consider the set of admissible

tangential stress

T t = {τ : D → R
3×3
s ; |τ T |+ µfσn(t) 6 0 on Σ}. (11.10)

Then (11.8) is equivalent with

σ(t) ∈ T t; [v̇(t)]T · (τ T − σT (t)) 6 0 for all τ ∈ T t (11.11)

93



We complete the field equations and the boundary conditions with the initial conditions

u(0) = u0 (or σ(0) = σ0 = Aε(u0)), v(0) = v0, in D. (11.12)

The initial and boundary problem can be formulated now as follows: find the displace-

ment u : [0, T ] × D → R
3 (or equivalently the velocity v = u̇ : [0, T ] × D → R

3) and the

stress σ : [0, T ]×D → R
3×3
S , solution of (11.1)-(11.3) with the external boundary conditions

(11.5), the nonlinear internal boundary conditions (11.6)-(11.8) (or (11.9) instead of (11.7)

) and the initial conditions (11.12).
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CHAPTER 12

NUMERICAL APPROACH

The general framework of the numerical scheme which will be introduced in this chapter

is based on the second order numerical scheme proposed by Etienne et al. [46]: the ex-

plicit leapfrog scheme in time and a centered flux choice for the inner element faces. The

nonlinear conditions on the micro-cracks will be treated as special flux choices, while the re-

sulting nonlinear equations at each time step are solved by using an augmented Lagrangian

technique.

12.1 Time Discretization

In order to discretize the time, we adopt here a second order explicit leap-frog scheme that

allows to compute alternatively the velocity v = u̇ and the stress σ from one half time step

to the next. To this end, let ∆t > 0 be the time step and let M be the maximum number

of steps M∆t = T . We denote by uk,vk the displacement and the velocity field at t = k∆t

and σk+ 1

2 , εk+
1

2 the stress and the strain at t = (k + 1
2
)∆t.

The momentum balance law (11.1) is discretized as an explicit equation for the velocity

field

ρmass

∆t
(vk+1 − vk) = div σk+ 1

2 + ρmassbk+
1

2 , (12.1)
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from now on called "velocity problem". The displacement is obtained from u̇ = v as

uk+1 = uk +
∆t

2
(vk + vk+1). (12.2)

The time discretization of the constitutive equation (11.4), as from now called "stress prob-

lem", reads

Aσ
k+ 3

2 − σk− 1

2

∆t
= ε(vk+1) (12.3)

It is not difficult to write the time discretization of the displacement and stress conditions

(11.5)

vk+1 = V ((k + 1)∆t), on Dv, (12.4)

σk+ 1

2n = F k((k +
1

2
)∆t), on Dσ, (12.5)

but for the contact and frictional conditions, which relate the stress and velocity/ displace-

ment fields, some special treatments must be made to accommodate fields which are not

computed at the same time.

We will develop two numerical strategies to deal with the Signorini condition (11.7). For

the first one, called “the compliance method”, we have chosen to write

σ
k+ 1

2

n = −Cn

[

[uk] · n
]mn

−
on Σ. (12.6)

For the second strategy, called “Lagrangian approach ” we will write the contact comple-

mentary condition as

[uk+1] · n > 0; σ
k+ 1

2

n 6 0; σ
k+ 1

2

n ([uk+1] · n) = 0, on Σ, (12.7)

and using (12.2) we write the above complementary conditions (12.7) in a variational form

as

v ∈ Vk+1, σ
k+ 1

2

n ([ϕ] · n− [vk+1] · n) > 0, on Σ, for all ϕ ∈ Vk+1, (12.8)

where the cone Vk+1 is

Vk+1 = {ϕ : D → R
3; [uk] · n+

∆t

2
([vk] · n+ [ϕ] · n) > 0 on Σ}.
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In the treatment of the tangential part of the stress vector we consider

T k+ 3

2 = {τ : D → R
3×3
s ; |τ T |+ µfσ

k+1
n 6 0 on Σ}, (12.9)

where σk+1
n will be defined later for each strategy. Then, the frictional complementary

condition (11.11) can be written as

σk+ 3

2 ∈ T k+ 3

2 ; [vk+1]T · (τ T − σk+ 3

2

T ) 6 0 on Σ, (12.10)

for all τ ∈ T k+ 3

2 .

12.2 Space Discretization and Algorithm

In order to give a spatial discretization of the partial differential equations (11.1),(11.2) let

D be discretized by using a family of tetrahedra Th with the mesh size h. The discretization

space Wh for the velocities vk, the strain εk+
1

2 and the stress σk+ 1

2 fields is the set of

polynomial functions of degree d on each tetrahedron T ∈ Th, which can have discontinuities

between two tetrahedra.

Apart from internal or external boundaries, the stress and velocity fluxes, associated to

the discontinuous Galerkin method, were chosen to follow the centered flux scheme, which

has very good non-dissipative properties (see BenJemaa et al. [19], Delcourte et al. [31],

Etienne et al [46]).

Concerning the Courant-Friedrichs-Lewy (CFL) condition, which links the mesh width

and the time step to guarantee numerical stability, there is no mathematical proof for unstruc-

tured meshes associated to the second-order explicit leap-frog scheme used here. However,

a heuristic stability criterion, that usually works well, was found by Kaser et al. [72]

∆t <
1

2d+ 1
min
T∈Th

2r(T )

cP (T )
, (12.11)

where r(T ) is the radius of the sphere inscribed in the element T and cP (T ) is the P-wave

velocity in the element T . For structured or uniform meshes we will denote by CFL the

non-dimensional parameter

CFL =
∆t

h
c0, (12.12)
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where c0 is the reference wave velocity of the process.

12.2.1 Velocity Problem

Let us fix the time iteration k > 0. If we multiply (12.1) by ϕ ∈ W 3
h and we use the Green

formula, then the variational problem on each tetrahedron T of Th reads:

∫

T

[

ρmass

∆t
(vk+1 − vk) ·ϕ+ σk+ 1

2 : ε(ϕ)

]

dv =

∫

∂T

Fk+ 1

2

σ ·ϕ da+

∫

T

ρmassbk+
1

2 ·ϕ dv,

(12.13)

where n is the unit normal to ∂T outward T and Fk+ 1

2

σ is the stress flux which will be derived

below. If ∂T is not included in the boundary of D (i.e. ∂T ∩∂D = ∅) then we use the central

flux scheme:

Fk+ 1

2

σ = σk+ 1

2n+
1

2
[σ]k+

1

2 · n, on ∂T ∩ D.

On Σσ, the flux is derived from the stress boundary conditions :

Fk+ 1

2

σ = F ((k +
1

2
)∆t), on ∂T ∩ Σσ

while on the velocity boundary Σv we put

Fk+ 1

2

σ = σk+ 1

2n, on ∂T ∩ Σv

The stress flux Fk+ 1

2

σ could be decomposed in the normal flux Fk+ 1

2

σn and the tangential

flux Fk+ 1

2

σT :

Fk+ 1

2

σ = Fk+ 1

2

σn n+ Fk+ 1

2

σT , Fk+ 1

2

σT · n = 0.

To define the flux Fk+ 1

2

σ on the inner boundary Σ we should distinguish two cases corre-

sponding to two numerical approaches.
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Lagrangian Approach

In the case of the “Lagrangian approach”, if we use (12.13) with ϕ− vk+1 instead of ϕ and

we do the summation over all triangles we get

∫

D

[

ρmass

∆t
(vk+1 − vk) · (ϕ− vk+1) + σk+ 1

2 : ε(ϕ− vk+1)

]

dv−
∫

D

ρmassbk+
1

2 · (ϕ− vk+1) dv =
∑

T∈Th

∫

∂T

Fk+ 1

2

σ · (ϕ− vk+1) da
(12.14)

Having in mind that

∑

T∈Th

∫

∂T∩Σ

Fk+ 1

2

σn · (ϕ · n− vk+1 · n) da =

∫

Σ

Fk+ 1

2

σn · ([ϕ] · n− [v]k+1 · n) da

we get that the last term in (12.14) can be written as

∑

T∈Th

(

∫

∂T\Σ

Fk+ 1

2

σ · (ϕ− vk+1) da+

∫

∂T∩Σ

Fk+ 1

2

σT · (ϕ− vk+1) da

+

∫

∂T∩Σ

Fk+ 1

2

σn · ([ϕ] · n− [v]k+1 · n) da
)

.

If we choose now

Fk+ 1

2

σ = Fk+ 1

2

σT = σ
k+ 1

2

T +
1

2
[σ]

k+ 1

2

T , Fk+ 1

2

σn = 0, on ∂T ∩ Σ,

then, from (12.8) we find the following variational inequality for vk+1 ∈ Vk+1

∫

D

[

ρmass

∆t
(vk+1 − vk) · (ϕ− vk+1) + σk+ 1

2 : ε(ϕ− vk+1)

]

dv >

∫

D

ρmassbk+
1

2 · (ϕ− vk+1) dv +
∑

T∈Th

∫

∂T

Fk+ 1

2

σ · (ϕ− vk+1) da,
(12.15)

for all ϕ ∈ Vk+1.

To solve the variational inequality (12.15) we use here a Lagrangian approach. For that

let

Γh = {γ : Σ → R; γ|∂T ∈ Pd},
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be the Lagrange multipliers space and let Lv be the Lagrangian defined by

Lv(ϕ, γ) =
1

2

∫

D

ρmass

∆t
|ϕ|2 −

∫

D

ρmass

∆t
vk ·ϕ+

∫

D

σk+1 : ε(ϕ)−
∫

D

ρmassbk+
1

2 ·ϕ+
∑

T∈Th

∫

∂T

Fk+ 1

2

σ ·ϕ−
∫

Σ

2

∆t

{

[u]k · n+
∆t

2
([v]k · n+ [ϕ] · n)

}

γ.

At each time step k we start the Uzawa algorithm with γk+1
0 = γk and we compute vk+1

i

solution of Lv(v
k+1
i , γk+1

i−1 ) 6 Lv(ϕ, γ
k+1
i−1 ) for all ϕ. Since Lv is quadratic we get the following

equation for vk+1
i ∈ W 3

h

∫

D

ρmass

∆t
(vk+1

i − vk) ·ϕ−
∫

Σ

γk+1
i [ϕ] · n+

∫

D

σk+ 1

2 : ε(ϕ) =

∑

T∈Th

∫

∂T\Σ

Fk+ 1

2

σ ·ϕ−
∫

D

ρmassbk+
1

2 ·ϕ,
(12.16)

for all ϕ ∈ W 3
h . Let us remark that in the above linear system for the velocity field we deal

with the same matrix at each time iteration k and at each Uzawa iteration i. That means

that the computational cost of each iteration is low, hence the algorithm for solving the

nonlinear non-penetration condition does not introduce an important additional cost. To

have less Uzawa iterations one can imagine an augmented Lagrangian approach by replacing

Lv with

La
v(ϕ, γ) = Lv(ϕ, γ) +

∫

Σ

2rv
∆t

[

[u]k · n+
∆t

2
([v]k · n+ [ϕ] · n)

]2

−

,

where [x]− = (|x| − x)/2 is the negative value and rv is some numerical parameter discussed

below. If an augmented Lagrangian technique is used then the linear system to be solved is

different at each Uzawa iteration i. In this case one have to evaluate if the benefits of the

augmented Lagrangian technique are not overpassed by the additional cost for solving the

linear system.

After the computation of the velocity field vk+1
i one can compute the displacement

uk+1
i = uk +

∆t

2
(vk + vk+1

i ), (12.17)

and we update the Lagrangian multiplayer γk+1 through the Uzawa algorithm

γk+1
i+1 = γki + rv[[u

k+1
i ] · n]−, (12.18)
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where rv is a numerical parameter which has to be chosen. In general, if rv is too small,

the convergence is too slow and if r is too large, then the algorithm does not converge. The

convergence is achieved when the difference ‖vk+
3

2

i − vk+1
i−1 ‖ is small enough with respect to

a chosen tolerance.

Finally, we choose the normal stress in the definition of T k+ 3

2 to be

σk+1
n = −γk+1.

In conclusion, the velocity problem (12.1) is reduced to the variational inequality (12.15)

which is solved with the Lagrangian approach by using the Uzawa algorithm (12.16), (12.18).

Compliance Algorithm

The compliance approach makes use of (12.6) to choose the flux

Fk+ 1

2

σ = σ
k+ 1

2

T +
1

2
[σ]

k+ 1

2

T − Cn

[

uk] · n
]mn

−
n on ∂T ∩ Σ. (12.19)

With this choice of stress flux, by summation of (12.13) over all T ∈ Th, we get the following

linear equation for the velocity vk+1:

∫

D

[

ρmass

∆t
(vk+1 − vk) ·ϕ+ σk+ 1

2 : ε(ϕ)

]

dv =
∑

T∈Th

∫

∂T

Fk+ 1

2

σ ·ϕ da

+

∫

D

ρmassbk+
1

2 ·ϕ, for all ϕ ∈ W 3
h .

(12.20)

After computing vk+1, we find uk+1 from (12.2) and the normal stress is given by

σk+1
n =− Cn[[u

k+1] · n]mn

− , on Σ. (12.21)

We remark that, unlike to the Lagrangian approach, for the compliance approach the

velocity problem (12.1) is reduced to (12.20) without any additional computational cost.

12.2.2 Stress Problem

To give the space discretization of the stress problem (12.3) let Sk+ 3

2

h be the set of admissible

tangential stress:
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Sk+ 3

2

h = {τ ∈ W 3×3
h,s ; |τ T |+ µfσ

k+ 3

2

n 6 0 on Σ}.

If we multiply (12.3) by ψ−τ k+ 3

2 (ψ ∈ Sk+ 3

2

h ), and integrate the result over each tetrahedron

T ∈ Th, we get:

∫

T

A(
σk+ 3

2 − σk+ 1

2

∆t
) : (ψ − σk+ 3

2 ) +

∫

T

vk+1 · div(ψ − σk+ 3

2 ) =
∫

∂T

(ψ − σk+ 3

2 )n · Fk+1
v ,

(12.22)

where Fk+1
v is the velocity flux. If ∂T is not on the boundary of D, we use, as for the stress

flux, the centered flux scheme

Fk+1
v = vk+1 +

1

2
[v]k+1, on ∂T ∩ D.

On the boundary Σv we have

Fk+1
v = V ((k + 1)∆t), on ∂T ∩ Σv,

while on the stress boundary we choose the flux to be

Fk+1
v = vk+1, on ∂T ∩ Σσ.

For ∂T ⊂ Σ we have to decompose the velocity flux Fk+1
v into the tangential Fk+1

vT
and the

normal part Fk+1
vn

Fk+1
v = Fk+1

vT
+ Fk+1

vn n, Fk+1
vT

· n = 0.

Having in mind that vk+1
T = (vk+1

T + 1
2
[v]k+1

T )− 1
2
[v]k+1

T from (12.10) we deduce

vk+1
T · (ψT − σk+ 3

2

T ) > (vk+1
T +

1

2
[v]k+1

T ) · (ψT − σk+ 3

2

T ) on Σ. (12.23)

If we choose Fk+1
vn = vk+1 · n for the normal part, while for the tangential part we consider

the centered flux Fk+1
vT

= vk+1
T + 1

2
[v]k+1

T , i.e.

Fk+1
v = vk+1

T +
1

2
[v]k+1

T + (vk+1 · n)n, on ∂T ∩ Σ (12.24)

102



then, using the last inequality (12.23), one can sum (12.22) for all T ∈ Th to get the following

variational inequality for the stress field σk+ 3

2 ∈ Sk+ 3

2

h :

∫

D

1

∆t
A(σk+ 3

2 − σk+ 1

2 ) : (ψ − σk+ 3

2 ) +

∫

D

vk+1 · div(ψ − σk+ 3

2 )

>
∑

T∈Dh

∫

∂T

Fk+1
v · (ψ − σk+ 3

2 )n, for all ψ ∈ Sk+ 3

2

h .
(12.25)

In order to solve the variational inequality (12.25) we use here a Lagrangian formulation

and the Uzawa algorithm. For that, let Λh be the Lagrange multipliers space

Λh = {λ : Σ → R
3; λ · n = 0; λ|∂T ∈ Pd}

and let us define the Lagrangian Ls : W
3×3
h,s × Λh → R as

Ls(ψ, λ) =
1

2

∫

D

1

∆t
Aψ : ψ −

∫

D

1

∆t
Eσk+ 1

2 : ψ −
∫

D

vk+1 · divψ

−
∑

T∈Th

∫

∂T

Fk+1
v ·ψn+

1

2

∫

Σ

λ(|ψT |2 − (µfσ
k+1
n )2).

At each time step k we start the Uzawa algorithm by choosing the Lagrange multiplier to be

λk+1
0 = λk. At each iteration i we compute σ

k+ 3

2

i to be the minimum of Ls with respect to

the first variable, i.e. Ls(σ
k+ 3

2

i , λk+1
i−1 ) 6 Ls(ψ, λ

k+1
i ) for all ψ ∈ W 3×3

h . Since Ls is quadratic,

we get the following linear equation for the stress field σ
k+ 3

2

i

∫

D

1

∆t
A(σ

k+ 3

2

i − σk+ 1

2

i ) : ψ +

∫

Σ

λk+1
i−1σ

k+ 3

2

i,T ·ψT −
∫

D

vk+1 · divψ

=
∑

T∈Th

∫

∂T

Fk+1
v ·ψn, for all ψ ∈ W 3×3

h,s .
(12.26)

To decrease the number of iterations one can choose to use an augmented Lagrangian tech-

nique by using the augmented Lagrangian La
s

La
s(ψ, λ) = Ls(ψ, λ) +

∫

Σ

rs
[

|ψT | − µf |σk+1
n |

]2

+
,

instead of Ls. As before, we remark that, since the Lagrange multiplier λk+1
i−1 is different at

each iteration the linear equation (12.26) has a different matrix at each iteration implying an
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important computational extra-cost. For this reason, one could replace it with the following

linear system

∫

D

1

∆t
A(σ

k+ 3

2

i − σk+ 1

2

i ) : ψ +

∫

Σ

λk+1
i−1σ

k+ 3

2

i−1,T ·ψT −
∫

D

vk+1 · divψ

=
∑

T∈Th

∫

∂T

Fk+1
v ·ψn, for all ψ ∈ W 3×3

h,s .
(12.27)

which has the same matrix at all time and Uzawa iterations. Even if the convergence is

slower, this version of the Lagrangian approach is computationally attractive.

The Lagrange multipliers are updated from:

λk+1
i+1 = λk+1

i + rs[|σk+ 3

2

iT |2 − (µfσ
k+1
n )2]+

where rs > 0 is a numerical parameter(step) which has to be chosen (if rs is too small the

convergence is too slow and if rs is too large then the algorithm does not converge). The

convergence is achieved when the difference ‖σk+ 3

2

i+1 −σk+ 3

2

i ‖ is small enough with respect to

a chosen tolerance.

12.2.3 Frictionless Contact with Compliance

The case without friction is simpler and does not involve any iterative algorithm. The

compliance method is used to define the stress flux:

Fk+ 1

2

σ = −Cn[[u
k] · n]mn

− n, on ∂T ∩ Σ

instead of (12.19) and to solve (12.20) for the velocity problem. Then, if we put

Fk+1
v = vk+1, on ∂T ∩ Σ,

instead of (12.24), we have to solve the following equation for σk+ 3

2

∫

D

1

∆t
A(σk+ 3

2 − σk+ 1

2 ) : ψ −
∫

D

vk · divψ =
∑

T∈Th

∫

∂T

Fk+1
v ·ψn

for all ψ ∈ W 3×3
h .
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12.3 Testing the numerical schemes

In order to test the above algorithms, we considered two examples for which we can construct

an exact solution. In both problems, we have compared the results of our numerical schemes

with the analytical solutions. Plane stress conditions (i.e σxz = σyz = σzz ≡ 0) in an isotropic

homogeneous elastic body D = Ω×(−r, r) are assumed in all cases. The rectangular domain

Ω = [0, L]× [−b, b], has an internal interface Σ = {l} × [−b, b]( l < L).

In all the computations we have chosen the degree of polynomials to be d = 2.

12.3.1 Unilateral Contact Problem

At y = −b and y = b, vanishing shear stress and normal displacement are imposed, while

a stress free condition is considered at x = L (see Figure 12.1). For x = 0, we impose

a pulse of time length 2δ and amplitude B on the velocity field v(t) = (V (t), 0, 0) with

V (t) = Bϕδ(t − δ) where B > 0 and ϕδ(s) = 1
2
(cos( sπ

δ
) + 1) if |s| 6 δ and ϕδ(s) = 0

otherwise. At the inner boundary Σ, we impose a frictionless non penetration Signorini

condition:

σT = 0, [u] · n > 0, σn[u] · n = 0.

For the initial state t = 0, we suppose that the elastic body is at rest (v0 = 0) and stress

free (σ0 = 0).

The initial and boundary conditions are chosen such that we deal with an unidimensional

behavior

ux = ux(t, x), σxx = σxx(t, x), uy ≡ 0, σxy = 0, σyy = νσxx.

Denoting by τ = σxx, v = vx, u = ux, the problem is reduced to the following first order

hyperbolic system:










ρmassv̇=
∂τ

∂x
,

τ̇ =
E

1− ν2
∂v

∂x
.

The time interval of interest will be [0, T ] with T = (3(L − l) + l)/c (here c is the wave

propagation velocity given by c =
√

E
ρmass(1−ν2)

), such that the wave which starts at x = 0

has the time to reflect at x = L and then to reflect again at x = l.

The propagation of the compressive wave through the unilateral interface Σ is plotted in
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Figure 12.3: Representation of the method of characteristic for the considered contact prob-
lem

To test the two proposed methods (Uzawa and compliance), we have done several nu-

merical computations and compared them with the exact solution.

First, we start with the compliance method. Choosing the power mn = 1 in (11.9)

we will analyze the parameter Cn and we will try to find an optimal Copt
n , defined as the

maximum Cn for which the algorithm is still convergent. For that we tested the compliance

method on an uniform mesh with 8 nodes over the fault Σ (h ≃ 2b/7). We start by choosing

Cn =
15G

h
, where h the mesh size and G is is the shear Lamé modulus. For CFL=

1

15
(here

CFL= cP∆t/h) we have plotted in figure 12.4 the time evolution of the computed velocity

on the fault versus the exact solution and in Figure 12.5 the time evolution of the absolute

normalized velocity error

t→ E(t) =
1

B

√

∫

Σ
(vh(t)− v(t)2)

|Σ| ,

where vh is the computed velocity and v is the exact solution. We noticed that, the numerical

scheme captures very well the loading pulse but a numerical artifact appears later (see the

zoom). Indeed, we remark the presence of a small (2%) amplitude "bump" having the same

duration as the loading pulse. This bump is the reflection on the left boundary of the non-

exact propagation of the loading wave through the fault. It can be explained by the fact that

the compliance method allows a small interpenetration, related to the compliance (penalty)

parameter Cn. Later, we tested Cn =
30G

h
an we obtained an improvement of the error. For

bigger values of Cn using the same CFL=1/15 the algorithm does not converge. Therefore,
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Figure 12.4: Time evolution of the computed normalized velocity v(t, l−) on the fault versus
the exact solution using compliance method. Zoom on the bump reflection for different
choices of Cn = 15G/h, 30G/h, 90G/h, 300G/h together with the analytical solution.

Copt
n =

30G

h
for this CFL. Later, using the same mesh we changed the time step ∆t, by

taking CFL=
1

30
and we computed the solution for Cn = 90G/h and a smaller bump. We

also tested Cn =
120G

h
and we obtained an improvement but for bigger values of Cn the

algorithm diverges. Thus, Copt
n =

120G

h
for CFL=

1

30
. For our last test, having the same

mesh but with CFL=
1

60
we have chosen Cn =

300G

h
. We obtained that the maximum of

the error is no longer at the bump but during the loading pulse. For bigger values of Cn

the algorithm diverges hence Copt
n =

300G

h
for CFL=

1

60
. We conclude that the optimal

compliance (penalty) parameter Copt
n = Copt

n (h, cP∆t, G) depends on the size of mesh, time

step and the elastic coefficients. Globally, as expected, the error is decreasing for increasing

Cn, but the computational cost, related to the number of time iterations, is quickly increasing

if a very good accuracy is needed.

For the Uzawa algorithm we have considered the same mesh as before and the CFL was

chosen to be CFL=
1

60
. Due to the fact that for both algorithms the maximal error is at

the beginning and at the end of the pulse, we compared their computed solutions with the

solution of the wave propagation problem computed without any unilateral conditions. In

figure 12.6, we plotted the evolution of the absolute normalized error in velocity for both
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Figure 12.6: Time evolution of the absolute normalized error in velocity found using the
compliance method (violet) and Uzawa method (green) compared with the scheme without
contact (blue).

the maximal error occurs at the beginning of the pulse. Even if we do not study the rate of

convergency, we observed that the error decrease with the refinement of the mesh.

Figure 12.7: Time evolution of the velocity absolute normalized error for the compliance
method (left) and Uzawa method (right) for three different meshes: coarse mesh (violet),
medium mesh (green) and fine mesh (blue).

We conclude that the Uzawa and compliance methods give accurate results to the contact

problem. Generally, the Uzawa scheme is more accurate but it requires a higher computa-

tional cost. If a high accuracy is required, the compliance method needs a large penalty

parameter and a very small time step. This induces an important extra computational cost

and it is not anymore attractive with respect to the Uzawa method. On the other hand,

for low or medium accuracy the compliance method seems to be more convenient than the

Uzawa method due to it is a good compromise between accuracy and computational cost.
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12.3.2 Frictional Contact Problem

For the second test, the body is under a spherical compressive stress p = B acting on all the

boundaries, σn = −B while at y = −b and y = b the tangential displacement is vanishing

σn = −B, uT = 0 on y = ±b.

We also impose a vanishing tangential stress at x = L, while for x = 0 we consider a loading

tangential pulse F (t):

σn = −B, σT (t) = F (t)ey on x = 0, σn = −B, σT (t) = 0 on x = L,

with F (t) = Bϕδ(t − δ) (here B > 0 and ϕδ(s) =
1
2
(cos( sπ

δ
) + 1) if |s| 6 δ and ϕδ(s) = 0

otherwise). The inner boundary Σ is a frictional contact surface where a Coulomb friction

law is considered

[u] · n > 0; σn 6 0; σn([u] · n) = 0,

|σT |+ µfσn 6 0, (|στ |+ µfσn)[u̇T ] = 0 and
[u̇τ ]

|[u̇τ ]|
= − στ

|στ |
,

where µf is the frictional coefficient (chosen to be µf = 0.5). At t = 0, the elastic body is at

rest (v0 = 0) and under a spherical pressure σ0 = −BI.

The tangential stress condition at x = 0 generates a shear wave which will propagate

into the body arriving at the frictional interface Σ. Since the amplitude of the shear wave

B is larger that the frictional threshold µfB, the slab will start to slip and part of the pulse

is transmitted on the right side, while the other part will be reflected on left side of the

interface. The evolution of shear stress σxy is plotted in figure 12.8. Let us notice that the

problem has an one-dimensional solution with

σxx = σyy = −B, vx = 0, vy = v(t, x), σxy = τ(t, x)

and the system can be reduced to the following first order hyperbolic system











ρv̇ =
∂τ

∂x
1

G
τ̇=

∂v

∂x
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Figure 12.8: Propagation of a shear wave through an interface with friction with the shear
stress σxy in a color scale. In the first frame we observe the loading shear wave propagating
into the frictional surface without slipping, in the second frame we observe a frictional slip
and in the third frame we observe the reflected wave generated by the frictional slip.

with the nonlinear boundary condition at x = l

τ(t, l) 6 µfB, (τ(t, l)− µfB)[v(t, l)] = 0, and τ(t, l)[v](t, l) ≥ 0,

while the other boundary conditions and the initial conditions read

τ(t, 0) = F (t), τ(t, L) = 0, v(0, x) = 0, τ(0, x) = 0.

We can compute the exact solution of the above problem on the fault Σ using the method

of characteristics, see Figure 12.9 for a schematic representation. If we denote by t′ and t′′

the instances when F (t′ − l/cs) = µfB and F (t′′ − l/cs) = µfB, with t′ < t′′, then the two

slabs will slip ([v](t, l) > 0) during the time interval [t′, t′′], while in the rest of the time no

slip occurs ([v](t, l) = 0). The analytical solution can be computed for each time interval to

be

τ(t, l) = F (t− l

c
), v(t, l−) = v(t, l+) =

1√
ρG

F (t− l

c
),

for t ∈ [0, t′] ∪ [t′′, T ], while for t ∈ [t′, t′′] we have

τ(t, l) = µfB, v(t, l−) =
−1√
ρG

µfG, v(t, l+) =
1√
ρG

(µfB − 2F (t− l

c
)).
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Figure 12.9: Representation of the method of characteristics for the frictional problem.

We have done several numerical tests and we compared the results with the analytical

solution. In figure 12.10 we have plotted the time evolution of the normalized analytical

stress versus the computed stress together with the loading pulse (analytical stress without

friction) on the frictional interface. We observe a plateau in the loading pulse corresponding

to the activation of the friction conditions, generating frictional slip and a wave reflection.

We remark a very good approximation proving accuracy of the proposed numerical scheme

(numerical and analytical solutions are superposed).

The best choice for the frictional Uzawa coefficient, rf , was found to be rf =
1√
Gρ

.

For this choice of rf the convergence is rapid at a tolerance around 10−5. If the tolerance

is larger than 10−4 spurious oscillations could appear. For tolerance smaller that 10−5 the

computational time increases without any significant decrease of the error.

To study the convergence of the method with respect to the time step we have done

several tests with different CFL. Although for contact problems we need a CFL=0.1 to have

convergence, the frictional algorithm we need a much lower CFL=0.01. For higher values,

we found that the algorithm is not convergent.

Secondly, we analyzed the mesh dependency of the numerical error. We considered three

meshes h, 1.6h and 0.6h, with h having 9 nodes over the fault. We plotted the time evolution

of the error in figure 12.11. As we can observe, there is an improvement for the finer mesh

around 20%. We also plot in Figure 12.12 the time evolution of τ = σxy with respect to the
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Figure 12.10: The time evolution of the normalized analytical shear stress (violet) versus the
computed stress (blue) together with the loading pulse (analytical stress without friction,
green) on the frictional interface Σ.

same three meshes. As before, we observe an improvement in the numerical solution with

regard a mesh refinement. Though we do not analyze the convergence rate, we observe the

convergence of the method with respect to the mesh size. Only small spurious oscillations

are present in the frot of the wave.

12.4 Conclusions

We developed here a numerical scheme for the wave propagation in cracked solid. The

internal boundary is a set of numerous cracks exhibiting nonlinear boundary conditions

(unilateral contact and friction). For the time discretization is we have chosen the explicit

leapfrog scheme in time while for the spatial discretization DG method was used. Since

the "internal" discontinuities are already included in a DG formulation, the DG method is

suitable for this kind of problems, involving numerous (micro) cracks. The switch between

an edge lying on the crack and an edge lying on an internal finite element is done very simply

by the flux choice. The centered flux scheme was chosen for the inner element faces while the

flux on the cracks is the solution of nonlinear equations. To solve the non-linear equations

associated to the non-penetration condition two techniques were used: the penalty method

(based on the compliance approximation) and the Uzawa (Lagrangian) method. Even if

both give accurate results, the Uzawa scheme is more accurate but it requires a higher
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Figure 12.11: Evolution of the stress error for 3 meshes. Coarse mesh in violet, Medium
Mesh in green and Finer Mesh in blue

computational cost. For low or medium accuracy the compliance method seems to be more

convenient than the Uzawa method due to it is a good compromise between accuracy and

computational cost. If a high accuracy is required, the compliance method it is not anymore

attractive with respect to the Uzawa method. To solve the non-linear equations associated

to friction an (augmented) Lagrangian algorithm is proposed. It exhibits excellent results

and high accuracy but it requires a more important computational effort.
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CHAPTER 13

EFFECTIVE WAVE VELOCITY IN A CRACKED

MATERIAL

The aim of this chapter is to use the discontinuous Galerkin (DG) method to find the effective

properties of the damaged material via a numerical upscaling homogenization technique. We

focus on the wave propagation (speed, amplitude, wavelength, etc. ) in an isotropic cracked

material to analyze how a loading pulse is affected by the presence of micro-cracks.

In the classical finite element technique an inner boundary condition requires a geomet-

rical treatment; hence the computational effort became very important for a large number

of micro-cracks. In contrast, in the DG method, the inner boundary conditions are modeled

by the flux choice (see the previous section) without additional computational costs even for

many micro-cracks.

13.1 Heterogeneous Problem

We consider the deformation of an elastic material occupying a bounded domain D ⊂ R
3,

which is the union of cube cell Cj, such that Cj ∩ Ck = ∅ for j 6= k. Cj contains N types of

circular micro-cracks of radius li oriented through the normals ni, i = 1, . . . , N (see figure

13.1). The union of all micro-cracks (internal boundary) will be denoted by Σ while the

external boundary ∂D̄ of D will be supposed to be smooth and divided in two disjoint parts:
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Σσ,Σv. We suppose that the material is isotropic, hence (11.2) becames

ε = ε(u) =
1 + ν0
E0

σ − ν ′0
E0

tr(σ)I in Ω. (13.1)

where E0 the Young’s modulus and ν0 the poisson’s ratio of the undamaged material.

n
1 

l
1 

l
2 

n
2 n

i 
l
i 

n
i l

i 

l
1 

V 

Ω

Figure 13.1: Representation of the domain Ω, its cells and zoom in a representative cell
Ck. Ck contains N types of circular micro-cracks of radius li oriented through the normals
ni, i = 1, . . . , N .

The wave propagation in the heterogeneous domain D consists in finding the displacement

field u : [0, T ]×D → R
3 (or equivalently the velocity v = u̇ : [0, T ]×D → R

3) and the stress

field σ : [0, T ]×D → R
3×3
S , solution of (11.1)-(11.3) with the external boundary conditions

(11.5), the nonlinear internal boundary conditions (11.6)-(11.8) (or (11.9) instead of (11.7)

) and the initial conditions (11.12).

To simplify the general problem, we focus in the next section on the plane stress config-

uration, where D = Ω× (−h, h) and σxz = σyz = σzz ≡ 0.

13.1.1 Uniaxial Loading in Plane Stress

In order to construct a problem which has an analytical solution in the absence of the

heterogeneities, we consider the wave propagation in a rectangular domain Ωe = (0, L) ×
(0, 2b) under a stress loading. More precisely, we suppose that the faces y = −b and y = b are

in bilateral contact without friction with two rigid parallel plates (shear stress and normal
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snapshots). In the same time, the pulse opens the second crack and the above scenario is

repeated: the second crack closes with a compressive wave propagating is both directions

(forth and fifth snapshots). At the end (sixth snapshots) we remark that the interaction

between the micro-cracks continues a long period of time after the path of the main traction

pulse.

Figure 13.4: Propagation of an uniaxial traction pulse with σxx in color scale. Zoom of the
figure 13.3 to a zone with two cracks.

The phenomenon becomes more complex when the micro cracks are closer. To observe it

we have considered a new geometry consisting of four vertical cracks with one centered large

crack, followed by two smaller aligned cracks and another large centered crack. In figure

13.5 we present six snapshots with the spatial distribution of σxx in color scale. In the first

snapshot, the pulse arrives to the first crack and starts to open it. Then (second snapshot)

the traction pulse opens the second crack-line generating a large stress intensity at the crack

tips. The upper tip at the top crack and the bottom tip of the lower crack presents a higher

stress concentration compared with the middle tips (third and forth snapshots). Later, the

first crack closes generating a compression wave that propagates to the left (fifth and sixth

snapshots) long time after the evacuation of main traction wave.
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Figure 13.5: Propagation of an uniaxial traction pulse in a damaged zone (second crack
distribution) with σxx in color scale.

13.2 Equivalent Problem

The equivalent problem consists in finding an equivalent (homogeneous) material able to

describe the presence of micro-cracks on an undamaged (homogeneous, equivalent) elastic

domain De = D ∪ Σ which does not have any micro-cracks. In order to achive this goal, we

consider here the homogenous problem for an anisotropic elastic material

εe = Aeσe in De, (13.4)

where Ae is the compliance tensor of the effective material. The equivalent wave propagation

in the heterogeneous domain De consists in finding the displacement field ue : [0, T ]×De →
R

3 (or equivalently the velocity ve = u̇e : [0, T ] × De → R
3) and the stress field σe :

[0, T ] × De → R
3×3
S , solution of (11.1), (13.4), (11.3) in De with the boundary conditions

(11.5) and the initial conditions (11.12).

As for heterogeneous problem, we focus in the next section on the plane stress configu-

ration, where De = Ωe × (−h, h), and σe
xz = σe

yz = σe
zz ≡ 0.
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13.2.1 Uniaxial loading in one dimensional propagation

In order to make a comparison with the heterogeneous problem, we consider the wave prop-

agation in the same rectangular domain Ωe = (0, L) × (−b, b), under the same boundary

conditions and under the same stress loading, but for an equivalent material. Due to the

symmetry of our problem we will suppose that the equivalent material is orthotropic (two

plane symmetries), i.e. the strain-stress relation for the plane stress configuration is reduced

to
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, (13.5)

where E1, E2 are the anisotropic Young modulus, ν21 and ν12 are the anisotropic Poisson

coefficients, while G12 is the shear modulus. Under uniaxial loading, the presence of cracks

does not cause any additional lateral strain (see [69]), hence we can suppose in the following

that:
ν12
E1

=
ν21
E2

=
ν0
E0

. (13.6)

Therefore, we are looking for a plane wave in the x-direction, such that:

uex = uex(t, x), u
e
y = 0 and σe

xy = 0,

which is compatible with the boundary conditions. Hence, εeyy = 0, and by replacing in

(13.5), we get σe
yy = ν21σ

e
xx and the following non-vanishing stress-strain relation yields

σe
xx =

E1

1− ν12ν21

∂uex
∂x

. (13.7)

Let us compute the equivalent plane wave speed

ce =

√

E1

ρmass(1− ν12ν21)
,
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which can be normalized with respect to the initial wave speed c0

ce

c0
=

√

E1

E0

1− ν20
1− ν12ν21

=

√

1− ν20
E0/E1 − ν20E2/E0

. (13.8)

Therefore, the equivalent plane wave is given by

σe
xx(t, x) = S(t− x

ce
), vex(t, x) = −S(t− x/ce)

ρmassce
. (13.9)

13.2.2 Micro-cracks orthogonal to the loading direction

When the cracks are oriented orthogonal to the loading direction (i.e. n = (1, 0, 0)) they

do not affect the wave propagation in the y-direction (E2 = E0) and the expression of the

normalized speed wave depends only on the ratio E1/E0:

ce

c0
=

√

1− ν20
E0/E1 − ν20

. (13.10)

Following the formulae given in the Appendix section 15.2 the expression of the normal-

ized speed wave for the non-interacting cracks (NIC) scheme is

ceK
c0

=

√

1− ν20
1− ν0 + 2πρ

while for the differential scheme (DS) we get

ceDS

c0
=

√

1− ν20
exp(2πρ)− ν20

.

For the self consistent scheme (SCS) we cannot find an analytical expression of the normalized

speed wave, but we can compute it numerically from the expressions of E1 and G12.

13.2.3 Micro-cracks with a miss-orientation

In order to study the influence of the micro-cracks orientation in the propagation of a plane

wave we have considered a configuration with parallel micro-cracks which have a miss-fit with

respect to the loading wave direction. We have denoted by n = (nx, ny, 0) the normal to the
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cracks and we have considered only the non interacting cracks scheme (NIC). Following [69],

one can compute the expressions of E1 and E2 and from (13.8) get the normalized speed

wave in the loading direction

ceK
c0

=

√

(1 + 2πρn2
y)(1− ν20)

(1 + 2πρn2
x)(1 + 2πρn2

y)− ν20
. (13.11)

13.3 Computed effective waves velocities

In this section we shall compare the effective wave velocity in a damaged material obtained by

direct DG computation and by the analytical formula deduced form the effective elasticity

of a cracked solid theory (non-interacting cracks (NIC), differential scheme (DS) and self

consistent (SC) schemes). We have considered the plane-stress configuration on the domain

Ωe = [0, L]× [0, 2b], where L is the characteristic (macro-scale) length, fixed for all numerical

tests. For a simple evaluation of the speed wave, Ωe contains a damaged zone, denoted by

ΩD = (xin, xout) × [0, 2b], which is in-between two undamaged zones. In order to compute

the speed wave, we denote by t→ σin(t) and t→ σout(t) the average (in y) of σxx at x = xin

and at x = xout:

σin
xx(t) =

1

2b

∫ 2b

0

σxx(t, xin, y)d y, σout
xx (t) =

1

2b

∫ 2b

0

σxx(t, xout, y)d y, (13.12)

The effective (average) wave velocity cN of the heterogeneous media is not always simple

to define. The choice which have been done here is to compute it form the following relation

cN =
xout − xin
Tout − Tin

, (13.13)

where Tin is the time when σin reaches its maximum at xin, while Tout is the time when σout

reaches its maximum at xout.

The damaged zone contains square cells of size Lc = L/15 and each cell contains a

vertical crack of length Lf . Since cell length Lc is fixed for all the tests, we have considered

five different crack length: Lf = 3Lc/5, Lc/2, Lc/3, Lc/4 and Lf = Lc/8, which correspond

to the following values of crack density parameter ρ ( ρ = (0.5Lf/Lc)
2 in our case):

ρ1 = 0.09, ρ2 = 0.0625, ρ3 = 0.02778, ρ4 = 0.0156, ρ5 = 0.0039. (13.14)

125





x = xout for the three configurations and the undamaged case (purple). We remark that the

pulse recorded at the end of the damaged zone is slower, has a smaller amplitude and larger

duration in comparison with the loading pulse. The numerical results obtained for all the

three geometrical configurations are very close. We conclude that, for this choice of crack

orientation, the number of vertical cells does not influence the horizontal wave propagation

and therefore, for the following tests, we consider only the third configuration.

Figure 13.7: Comparison of the time evolution of the averaged stress t→ σout(t) at x = xout
for three configurations and the undamaged case (loading pulse).

Next, we study the mesh influence on the numerical results. For that, we consider two

meshes: a coarse mesh and a fine one both with the polynomial degree d = 2. The coarse

mesh has 773 number of vertex, 1356 number of triangles and 8100 number of degrees of

freedom, while the fine mesh has 2877 number of vertex, 5364 number of triangles and 32184

number of degrees of freedom. The evolution in time of the averaged stress t → σout(t) at

x = xout, computed on these two meshes is shown in Figure 13.8. Since the differences are

negligible in the result we have concluded that the mesh sensitivity is very small and we can

trust the numerical results on the coarse mesh.
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Figure 13.9: Evolution in time of the averaged stress t → σout(t) at x = xout for different
crack density factors ρ = 0.09, 0.0625, 0.02778, 0.0156, 0.0039 and without damage (purple).

are also given in table 13.3.2. We note that, for small values of ρ (ρ < 0.02) the three

theoretical formula and the computed speed wave are very close, but for ρ > 0.02 there is

an important gap between them. The computed wave speed is placed between the curve

given by the differential scheme (DS, top) and the self consistent scheme (SCS , bottom)

and the best approximation is given by the differential scheme, followed by NIC. The bigger

gap is given by the self consistent scheme, due to an under estimation of the effective Young

modulus.

ρ1 = 0.09 ρ2 = 0.0625 ρ3 = 0.02778 ρ4 = 0.0156 ρ5 = 0.0039

ceK/c0 0.79053 0.84016 0.91855 0.951658 0.98723
ceDS/c0 0.74396 0.81369 0.91197 0.94947 0.98709
ceSCS/c0 0.60291 0.71419 0.86875 0.92553 0.98124
cN/c0 0.70449 0.78625 0.89280 0.93323 0.98478

Table 13.1: Normalized wave speed for each crack density ρ : ceK/c0 (NIC up), ceDS/c0
(differential scheme second) , ceSCS/c0 (self consistent scheme third) and cN/c0 (numerical
computations bottom).
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Figure 13.10: Normalized wave speed c/c0 versus the crack density ρ: ceK/c0 (NIC in
magenta), ceDS/c0 (differential scheme in green) , ceSCS/c0 (self consistent scheme in blue)
and cN/c0 (numerical computations in yellow).

13.3.3 Wave length influence

In this subsection we study the influence of the wave length on the wave propagation proper-

ties. In order to do so, we have made several computations using five different wave lengths,

by changing each time the pulse duration 2δ. We denote the previous δ = T/6 as δ0 and

we choose five different wave lengths Lp =
c0δ0
4
,
c0δ0
2
, c0δ0, 2c0δ0, 4c0δ0. For each wave length

we consider the same crack lengths as before, corresponding to the same crack densities

ρ1, ρ2, ρ3, ρ4 and ρ5.

ρ1 = 0.09 ρ2 = 0.0625 ρ3 = 0.02778 ρ4 = 0.0156 ρ5 = 0.0039

Lp = c0δ0/4 0.7051 0.7823 0.8842 0.9528 0.9867
Lp = c0δ0/2 0.7045 0.7905 0.8822 0.9421 0.9817
Lp = c0δ0 0.7045 0.7863 0.8928 0.9332 0.9848
Lp = 2c0δ0 0.7008 0.7709 0.8877 0.9392 0.9859
Lp = 4c0δ0 0.7514 0.8187 0.9123 0.94551 0.9852

Table 13.2: Normalized wave speed cN/c0 for each crack density ρ and for five different wave
lengths.

In the table 13.2, we present the normalized wave speed cN/c0 for each wave length and
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each crack density. In the figure 13.11 we show the normalized wave speed cN/c0 versus the

crack density ρ computed for different wave lengths and compared them with the theoretical

results (NIC, DS and SCS), and cN for each Lp considered. We remark that all the curves

computed for different wave lengths are between NIC curve (upper-bound) and the SCS curve

(lower-bound). For small ρ all the values for the ratio cN/c0 are very similar, approaching

all the theoretical curves. For larger ρ there are important differences depending also on the

wave length. For the largest wave length LP = 4c0δ0 the ρ-dependency curve is very close

to the DS theoretical estimation but for smaller wave lengths the situation is different.

Figure 13.11: Normalized wave speed c/c0 versus the crack density ρ: ceK/c0 (NIC in
magenta), ceDS/c0 (differential scheme in green) , ceSCS/c0 (self consistent scheme in blue) and

cN/c0 (numerical computations) for different wave lengths Lp =
c0δ0
4
,
c0δ0
2
, c0δ0, 2c0δ0, 4c0δ0.

In figure 13.12 we plotted the normalized wave speed cN/c0 versus ρ and versus the ratio

between the wave length and the crack length Lp/Lf . We remark that, if the wave length

Lp is of order of the crack length, the speed wave has an important variation with respect

to ρ. Moreover, the speed wave is strongly dependent on wave length for Lp/Lf ∈ [1, 5].

On the other hand, for Lp/Lf ∈ [5, 30], the speed wave cN/c0 depends only on ρ and for

Lp/Lf > 30 and small crack density ρ, we recover the speed wave of the undamaged material.

We conclude that, when the wave length Lp is smaller than the crack length Lf there is a
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Figure 13.13: Role played by the wavelength Lp. Comparison of the time evolution of the
averaged stress t → σout(t) for different ρ and the undamaged case (loading pulse). Up left
Lp = Lc, up right Lp = Lc/2, left bottom Lp = 2Lc and right bottom Lp = 4Lc.

ρ1 ρ2 ρ3 ρ4 ρ5

Lp1 = c0δ0/4 0.0991 0.1246 0.1824 0.2482 0.5236
Lp2 = c0δ0/2 0.1949 0.2287 0.3472 0.4541 0.8457
Lp3 = c0δ0 0.3903 0.4562 0.6439 0.7832 0.9822
Lp4 = c02δ0 0.7359 0.8109 0.9503 0.9893 1.0004
Lp5 = c04δ0 1.0423 1.0490 1.0202 1.0067 1.0046

Table 13.3: Variation of the ratio AN/A0 (between the amplitude of the damaged pulse
AN and the amplitude of the undamaged pulse A0) with respect to the wave length Lp for
different ρ.

Lp1 and therefore the pulse is strongly perturbed. For ρ1 and ρ2, there is a extreme distortion

in the shape and in the amplitude of the damaged pulse. For ρ3 and ρ4, the damaged pulse
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gets more than four times the original time duration and there is a loss of symmetry. For

ρ5, the amplitude is around the half and the damaged pulse duration is longer. This is the

only case that preserves its original shape.

For Lp2, the wave length is of the same order of the cracks length. For all ρ, except ρ5,

the pulse lose its symmetry. As before, when we consider ρ1 and ρ2 there is a big elongation

of the pulse and some perturbation in the shape. For ρ3, and ρ4 the damaged wave duration

is more than the double undamaged one. For ρ5, the damaged pulse is a bit diminished and

its duration is slightly longer.

For Lp3, the pulse shape is preserved for all ρ considered. For the ρ1 to ρ4 there is a loss

in the symmetry. For ρ1 and ρ2 there is a loss of regularity and the damaged wave duration

is longer. For ρ3 and ρ4 there is reduction in the amplitude and the damaged pulse duration

is proportionally longer. For ρ5, there is a small impact in the amplitude and the shape is

preserved.

For Lp4, there is almost no impact in the profile for ρ3 to ρ5. For ρ1 and ρ2 the damaged

pulse duration is longer wave length and there is a small loss of symmetry.

We conclude that the ratio Lp/Lf is a tool to estimate the role played by the wave

length in the damaged pulse shape. If the ratio Lp/Lf is close to 1, there is a high loss in the

amplitude, being less than the 40% of the undamaged amplitude. If the ratio Lp/Lf is around

3, there is a limited impact in the amplitude and for Lp/Lf > 6 an impact is barely visible,

the loss is less than 10%. We also conclude, that for small Lp/Lf this parameter is crucial

in the propagation of the loading pulse in a damaged zone while the damage parameter ρ

plays a second role.

13.3.4 Micro-crack pattern influence

We analyze here the influence of micro cracks pattern in the wave propagation in a damaged

zone. We test a new pattern, called "intercalated cracks" model. As we can see form Figure

13.3.4 in the half cells the micro-crack length is half of the entire cell’s crack and therefore

the value of ρ is preserved in all cells. In Figure 13.15 we show the time evolution of the

averaged stress t→ σout(t) for the initial pattern (green) and for "intercalated cracks" model

( blue) and the undamaged pulse (magenta). The crack length was chosen to be Lf = Lc/3.

For a large wave length Lp = 2c0δ0 (Figure 13.15 right), the damaged pulses for the two

geometries are very close. There is only slight differences between the speed waves and the
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13.3.5 Micro-cracks with a miss-orientation

We want to analyze here the role played by the miss-orientation of the micro-cracks with

respect to the direction of the loading wave. To do that we have chosen the orientation of

the micro-cracks to be θ = π/4 i.e n = (
√
2/2,

√
2/2). As before, we begin by studying the

geometrical and mesh dependency influences. Later, we analyze the speed wave obtained

numerically and by the NIC approach. At the end, we compare the behavior of the pulse for

different wave lengths.

Geometrical and mesh sensitivity analyse

First, we analyze the role played by the chosen number of vertical cells. As before, we

consider three configurations: 9× 3, 9× 2 and 9× 1, with 9 horizontal cells, and i = 1, 2 and

3 vertical cells In figure 13.16 we have plotted the time evolution of the averaged stress pulse

t → σout(t) for these three configurations. We note that all the stress pulses present the

same delay with respect to the undamaged pulse, but the amplitudes are slightly different

(the amplitude decreases when the number of vertical cell increases). These differences are

much higher than the ones founded for the cracks with no miss orientation. This can be

easily explained by the fact that the reflections of the incident wave on the micro-cracks are

not anymore in the Ox direction and the number of vertical cells will play a more important

role. Since the differences are rather small we choose the configuration 9 × 2 for further

computations.

We continue by analyzing the mesh sensitively on the computed stress pulse by consid-

ering two meshes: the coarse mesh which has 3502 number of triangles, 1871 number of

vertex and 21012 number of degrees of freedom, and the fine mesh which has 8160 number

of triangles, 4261 number of vertex and 48960 number of degrees of freedom. In figure 13.17

we plotted the averaged stress t → σout(t) at x = xout computed with these two different

meshes. We noticed that there are almost no differences between the two pulses and we

conclude that and we can use the corse mesh in the further computations.

Crack Density and Speed Wave

We analyze here the computed outgoing pulse σout(t) for five different geometries, corre-

sponding to five values of the crack density parameter ρ (see (13.14)) and we will compare

the speed wave obtained numerically with the speed predicted by the NIC scheme given by
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Figure 13.16: Micro-cracks with a miss-orientation. Comparison of the time evolution of
the averaged stress t → σout(t) at x = xout for three configurations (9x1, 9x2 and 9x3) and
the undamaged case (loading pulse).

Figure 13.17: Micro-cracks with a miss-orientation. Time evolution of the averaged stress
t→ σout(t) at x = xout for two different meshes: a coarse mesh (in green) ) and a fine mesh
(in blue).

(13.11). The pulse duration will be fixed, as in the previous subsection, to be TP = 2δ = T/12

(corresponding to a the wave length LP = 2δc0 = Tc0/12).

We have plotted in Figure 13.18 the time evolution of the averaged stress t→ σout(t) for

different crack density factor ρ and without damage. As for the vertical cracks the pulse is

slower and the amplitude is smaller for increasing crack density parameter ρ. Moreover, for

large ρ the crack length is of the same order as the wavelength and the pulse profile changes

by losing its symmetry and its regularity. For small values of ρ there are not big differences

in amplitude with respect the undamaged pulse but the delay of the wave is perceptible.

We present in table 13.3.5 the ratios of the wave speed in the Ox direction: cK/c0 given

by the NIC approach (13.11) and cN/c0 obtained by numerical computations. As or the
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Figure 13.18: Micro-cracks with a miss-orientation. Time evolution of the av-
eraged stress t → σout(t) at x = xout for different crack density factors ρ =
0.09, 0.0625, 0.02778, 0.0156, 0.0039 and without damage (purple).

ρ1 = 0.09 ρ2 = 0.0625 ρ3 = 0.02778 ρ4 = 0.0156 ρ5 = 0.0039

cK/c0 0.87254 0.90596 0.95455 0.97351 0.99319
cN/c0 0.82683 0.86977 0.93729 0.96463 0.99359

Table 13.4: Micro-cracks with a miss-orientation. Normalized wave speed for each crack
density ρ : cK/c0 NIC scheme and cN/c0 numerical computations.

vertical cracks the wave speed obtained by NIC approach is larger than the computed one.

However, cK gives a better approximation than in the case with no miss-orientation, where

for ρ1, the relative gap is 5.5% and for ρ5 the relative gap is 0.04%.

Wave length influence

To study the influence of the wave length on the wave propagation properties we will do

here several computations using five different wave lengths by changing each time the pulse

duration 2δ. We denote the previous δ = T/6 as δ0 and we chose five different wave lengths

Lp =
c0δ0
4
,
c0δ0
2
, c0δ0, 2c0δ0, 4c0δ0. For each wave length we have considered the same crack

lengths as before, corresponding to the same crack densities ρ1, ρ2, ρ3, ρ4 and ρ5.

In the table 13.3.5, we present the normalized wave speed cN/c0 for each wave length

and each crack density and in Figure 13.19 we plotted the normalized wave speed cN/c0

versus the crack density ρ computed for different wave lengths and compared them with

NIC theoretical results. We remark that all the computed curves for different wave lengths

are under the NIC curve (upper-bound) . For small ρ all the values for the ratio cN/c0
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ρ1 = 0.09 ρ2 = 0.0625 ρ3 = 0.02778 ρ4 = 0.0156 ρ5 = 0.0039

Lp1 = c0δ/4 0.8316 0.8705 0.9410 0.9916 0.99553
Lp2 = c0δ/2 0.8376 0.8712 0.9433 0.9735 0.99053
Lp3 = c0δ 0.8259 0.8698 0.9373 0.9646 0.99219
Lp4 = c02δ 0.8132 0.8646 0.9388 0.9673 0.99160
Lp5 = c04δ 0.8460 0.8924 0.9493 0.9707 0.99231

Table 13.5: Micro-cracks with a miss-orientation. Normalized wave speed cN/c0 for each
crack density ρ and for five different wave lengths.

Figure 13.19: Micro-cracks with a miss-orientation. Normalized wave speed cN/c0 versus
the crack density ρ: cK/c0 theoretical NIC in magenta, the numerical computations cN/c0

for different wave lengths Lp =
c0δ0
4
,
c0δ0
2
, c0δ0, 2c0δ0, 4c0δ0.

are very similar, approaching all the theoretical curves while for larger ρ the are important

differences.

As for vertical cracks the speed wave has an important variation with respect to ρ for

wave lengths Lp of order of the crack length. Moreover, the speed wave is strongly dependent

on wave length for Lp/Lf ∈ [1, 5]. We conclude that when the wave length Lp is smaller

than the crack length Lf there is a high influence of the wave length on the speed wave for

all ρ. This influence decreases a lot when the wave length larger that four times the crack

length.
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13.4 Conclusions

The proposed discontinuous Galerkin (DG) method was used find the effective properties

of the damaged material via a numerical upscaling homogenization technique. We have

analyzed how a loading pulse is affected by the presence of micro-cracks (speed, amplitude,

wavelength, etc. ).

The computations have been done in a plane stress configuration with frictionless cracks

parallel or not to the loading direction. Only traction loading conditions have been tested.

Concerning the speed wave dependency on the micro-crack density ρ, the computed wave

speed is placed between the curve given by the differential scheme (DS, upper bound) and

the self consistent scheme scheme (SCS, lower bound) and the best approximation is given

by the differential scheme (DS), followed by NIC scheme.

To see the role played by the wave length in the damaged pulse shape we have used the

ratio Lp/Lf , between the the wave length Lp and the crack length Lf . If the ratio Lp/Lf is

close to 1, there is a high loss in the amplitude, being less than the 40% of the undamaged

amplitude. If the ratio Lp/Lf is around 3, there is a limited impact in the amplitude and

for Lp/Lf > 6 an impact is barely visible, the loss is less than 10%.

We have analyzed also the role played by the micro-crack pattern. However, In the cases

we have investigated we haven’t found a crucial influence of the micro-crack pattern in the

propagation of the loading wave in a damaged region.
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CHAPTER 14

BLAST IMPACT ON A CRACKED MATERIAL

The aim of this chapter is to illustrate how the DG method can be used to investigate more

complex wave propagation phenomena. To aim this, we consider a (compressive) blast-

wave propagation in a ceramic block with an anisotropic crack distribution. Finally, we will

compare the numerical results obtained for a cracked material, to the ones obtained from a

micro-mechanics damage model (see first part).

The elastic domain Ω = (0, a) × (0, 5a), in a stress plane configuration, is impacted at

the left side x = 0, y ∈ (2a, 3a) by a compressive pulse t → S(t) with an amplitude −B
and a time duration 2δ = 0.5a/cP (see Figure 14.1). The faces y = 0 and y = 5a are fixed

and the face x = a is stress free. The numerical computations are over the interval [0, T ]

with T = 2a/cp in a domain containing M micro-cracks inclined at the angle θ. The loading

compressive wave is traveling into the cracked material till it reaches the stress free boundary,

when it will be reflected as traction loading wave. We will consider two cases corresponding

to frictionless and frictional contact on the micro-cracks.

14.1 Micro-cracks with frictionless contact

For our first numerical simulation consider M = 72 vertically oriented (θ = π/2) micro-

cracks. In Figure 14.2 we show the comparison between the propagation of the blast wave in

a cracked material and an undamaged one with the stress deviator in the color scale. In the

first frame, at t = 0.5T we can observe the instance before the pulse reaches the boundary.
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Figure 14.2: Vertical micro-cracks. Comparison between the propagation of the blast wave
in a cracked material (left) and an undamaged one (right). Four snapshots of the stress
deviator (color scale in Pa) at t = 0.5T, 0.7T, 0.8T and t = 0.9T .

The third numerical simulation concerns micro-cracks oriented at θ = π/4. We notice in

the first frame of Figure 14.4 that the P-Wave is already perturbed due to cracks acting in

mode II. After the reflection (t = 0.7T ) we observe that more right cracks begin to open. In

the last two frames the cracks are active in mode I and II and it is difficult to distinguish an

overall behavior of the resulting scattered wave.

14.2 Micro-cracks with frictional contact

Since in the previous study the nonlinear behavior was related to the (frictionless) unilateral

contact, we will analyze here the role played by the friction phenomena. In this aim, we

have considered the last configuration with the cracks oriented at θ = π/4. The two sides

of the cracks are in frictional unilateral contact and the friction coefficient was chosen to

be µf = 0.5. Globally, we expect the friction to have a stabilized effect and waves less

perturbed by the presence of the micro-cracks. This is due to the fact that the cracks have

more resistance to slip in mode II. On the contrary, the mode I activation of the micro-cracks

is not affected by the friction.

In Figure 14.5 we show several frames of the propagation of the blast wave in a cracked

material with friction, without friction and in an undamaged one (with the stress deviator

in the color scale). The first snapshot is done at t = 0.5T and we remark a lose of symmetry
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Figure 14.3: Horizontal micro-cracks. Comparison between the propagation of the blast
wave in a cracked material (left) and an undamaged one (right). Four snapshots of the stress
deviator (color scale in Pa) at t = 0.5T, 0.7T, 0.8T and t = 0.9T .

in the horizontal plane. In the frictional case, the waves (P and S) are less scattered than in

the frictionless case. Indeed all the micro-cracks are working in mode II at this stage, where

friction imply a "damage decrease". For t = 0.7T , when the reflected wave is in traction we

remark that in both cases the cracks next to the right boundary start to open, working in

mode I. However the P-wave has a larger amplitude in the frictional case than in the other

one. The other cracks are working in mode II and, as before, we remark that the S-waves

are more scattered in the frictionless case. In the last two frames, we observe that in both

cases the waves are spread out and it is difficult to distinguish between the frictional and

frictionless propagation. This is due to the key role played by the mode I activation of the

micro-cracks in the damage evolution, which affects the waves propagation.

14.3 Conclusions

In conclusion we studied the wave propagation in an anisotropic damaged material under an

anisotropic loading. We pointed out that the cracks’ orientation affects the wave propagation

and their scattering. We illustrated the fact that the friction phenomena between the faces

of the micro-cracks are affecting the wave propagation only for the mode II behavior. If the

waves activate principally the mode I, the role played by the friction is negligible.
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CHAPTER 15

FINAL CONCLUSIONS AND PERSPECTIVES

The discontinuous Galerkin (DG) method is used here to investigate the dynamics of (dam-

aged) materials with a nonlinear micro-structure (micro-cracks in frictional contact). In

opposition to the classical finite element technique in the DG method the inner boundary

conditions are modeled by the flux choice without additional computational costs, even for

many micro-cracks.

The numerical scheme developed here makes use of the explicit leapfrog scheme in time

and a centered flux choice for the inner element face. The nonlinear conditions on the micro-

cracks are treated by using an augmented Lagrangian technique, with a reasonable additional

computational cost.

This technique was used to compare the effective wave velocity in a damaged material

obtained by direct DG computation and by the analytical formula, deduced form the effective

elasticity of a cracked solid theory (NIC, DS and SCS approaches). Even if the stress field

loses its homogeneity (unloading zones around the micro cracks and high stress concentration

on the crack tips, compressive waves that propagates in the opposite direction, etc) the pulse

has an over-all front wave at each moment. This is an important point which allowed us to

compute the over-all wave speed. We found that, the over-all wave speed is slower than the

theoretical speed and the difference is very important for large values of the crack density

parameter. If the wave length is of order of the crack length, the speed wave is strongly

dependent on wavelength, but for a large wavelength the speed wave depends only on the

crack density parameter.
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To illustrate the numerical scheme we have analyzed the wave generated by a blast in

a cracked material (81 vertical, horizontal or inclined frictional or frictionless micro-cracks).

We found that the cracks’ orientation affects the wave propagation and their scattering. The

friction phenomena between the faces of the micro-cracks are affecting the wave propagation

only for the mode II behavior but if the waves activate principally the mode I, the role played

by the friction is negligible.

For the future prospects related to the wave propagation in a cracked solid we want

to mention that it will be of high interest to introduce constitutive cohesive laws on each

micro-crack. The advantage of a DG approach is that the cohesive laws are very simple to

be introduced as flux choices. Moreover, even the frictional contact could be introduced in

a "cohesive" approach. Another possible development of the present work could be related

to the 3-D development of the FreeFem++ codes.
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CHAPTER 16

MODELS COMPARISON AND GENERAL

CONCLUSIONS

First, we present here a comparison between the propagation of the blast wave in a "cracked

solid" (see the second part of this thesis), and in a solid with a micro-mechanics based dam-

aged model. The comparison is not natural because the two models make use of two different

approaches. The micro-cracks in the "cracked material" model are introduced as a "geometric

heterogeneity" in an isotropic and homogeneous elastic solid. The lengths (radius) of micro-

cracks do not change (no crack growth) under the loading wave. In the micro-mechanics

based damaged model the cracks are introduced through a damage parameter (crack density

parameter) which could increase under the loading wave. The heterogeneity is a material

one : the mechanical model looses its isotropy and its homogeneity but the geometric ho-

mogeneity is preserved. Even if we expect that the two models give very different results

the comparison could be useful in understanding the role played by different assumptions in

modeling damage processes.

In Figure 16.1 we have plotted four snapshots (at t = 0.5T, 0.75T, 0.875T and t = T ) for

horizontal micro-cracks without friction. We note that even if there are a lot of differences

between the two numerical results we have an overall similarity. The micro-mechanics based

damaged model does not exhibit any S-waves scattering, present in the "cracked solid" model,

but the P-waves are similarly represented in both models. Much more differences are in the

case of vertical micro-cracks without friction plotted in Figure 16.2. Here the scattering

of the P-wave in the cracked solid is important: the interplay of the micro-cracks is more
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Figure 16.1: Blast wave propagation in a cracked solid (left) and in a solid with a micro-
mechanics based damage model (right). Four snapshots of the stress deviator (color scale in
Pa) at t = 0.5T, 0.75T, 0.875T and t = T for horizontal micro-cracks without friction.

present and there a lot of wave reflections between them. This fact is not captured with the

a micro-mechanics based damaged model, where a non-interacting cracks’ model is assumed.

In Figure 16.3 we plotted the blast wave in a "cracked solid" and in a solid with a micro-

mechanics based damaged model with frictional micro-cracks oriented at θ = −π/4. In all

the frames the the blast the wave is scattered in the first model and it is not for the second.

In both models we remark a lose of symmetry of the wave due to orientation the micro-cracks

and due to the presence of the friction. The arrival times of the P-wave is almost the same,

but the computed time period is too small to see important differences in the evaluation of

the speed wave. That can also explain why the roles played the crack evolution model is

not so important: the fixed crack length (cracked solid) and the micro-mechanics evolution

crack-length model gives a similar overall behavior. Another explanation could be the fact

that energy transfer in crack growth is not so important and the time length associated to

the crack growth is very small.

We would like to point out the main characteristics of the wave propagation in a cracked

solid and in a solid modeled by a micro-mechanics based damage constitutive law, what they

have in common and what differentiate them. We have putted several features of the two

models in the table 16.1 and we can see that they are rather complimentary. Indeed, the

micro-mechanics based damage models seems to be more versatile but they require much

more calibration (experimental or a micro-mechanics analysis). The cracked solid model
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Figure 16.2: Blast wave propagation in a cracked solid (left) and in a solid with a micro-
mechanics based damage model (right). Four snapshots of the stress deviator (color scale in
Pa) at t = 0.5T, 0.75T, 0.875T and t = T for vertical micro-cracks without friction.

has a simple material description but it needs a complex geometrical implementation. The

micro-mechanics based damage models are accurate in modeling the strain rate sensitivity

of the material strength, while the cracked solid exhibits a wave length sensitivity. Even if

there is some connections between them (a higher strain rate could correspond to a lower

wave length) the two phenomena are complementary. The cracked solid response does not

depend on the stress amplitude of the loading wave but it gives a very accurate description

of the dynamic interaction of the micro-cracks. Finally the micro-mechanics based damage

models are (generally) unstable and they require special numerical techniques (numerical

fluxes, slope limiters, regularization, etc) for solving the associated boundary value problems.
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CHAPTER 17

EFFECTIVE ELASTICITY

17.1 The non-interacting cracks method

In the "non-interacting cracks method" (NIC) (see Gambarotta and Lagomarsino [52] and

Kachanov [69] to cite only some) the strain ε will be expressed as the sum

ε = A0σ + εn + εT , (17.1)

of the mean strain in the elastic matrix (A0 =
1 + ν0
E0

I4 −
ν

E0

I2 ⊗ I2, with E0 the Young

modulus and ν0 the Poisson ratio) and εn, εT representing the contributions of the normal

and tangential discontinuities across the micro-crack faces:

εn = Cn

N
∑

i=1

ρi[σ
i
n − p]+ni ⊗ ni, εT = CT

N
∑

i=1

ρi
(

σi
T − f i

)

⊗S ni, (17.2)

where [x]+ = 1/2(x+|x|) is the positive part and a⊗Sb = (a⊗b+b⊗a)/2 is the symmetrize

tensorial product. Here σi
n and σi

T represent the normal and tangential decomposition of

the stress vector (σni = σi
nni + σ

i
T ), f i = f(σ,ni) is the Coulomb frictional force acting

on the micro-crack faces

f i = σi
T , if |σi

T | ≤ µ[−σi
n]+, else f i =

µ[−σi
n]+

|σi
T |

σi
T ,
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3-D 2-D plain stress 2-D plain strain 2-D anti-plain

Cn
16(1− ν20)

3E0

π

E0

π(1− ν20)

E0

0

CT
32(1− ν20)

3E0(2− ν0)

π

E0

π(1− ν20)

E0

2π(1 + ν0)

E0

Table 17.1: Compliance coefficients Cn, CT in different configurations.

and the two compliance parameters Cn, CT have to be chosen following the choice of the

configuration (see Table 17.1). Note that, due to the unilateral contact with friction on the

micro-cracks faces, the above equation is nonlinear and not differentiable.

17.2 One family of parallel cracks

Let us consider here materials composed of an isotropic solid matrix (elastic coefficients

E0, G0, ν0) and one family (N = 1) of parallel non-frictional circular cracks of normal n =

(1, 0, 0). Different models of effective elasticity will give the expressions of the Young modulus

E1(ρ) acting in the direction of the normal and the shear modulus G12(ρ).

For the non-interacting cracks method (NIC), the effective elastic coefficients (see [69])

in 3-D are

E1(ρ) = E0
1

1 + ρ16(1+ν0)
3

, ρ < ρmax = +∞ (17.3)

G12(ρ) = G0
1

1 + ρ
16(1−ν2

0
)

3(2−ν0)

, ρ < ρmax = +∞ (17.4)

while in 2-D we have

E ′
1(ρ) = E0

1

1 + 2πρ
, ρ < ρmax = +∞ (17.5)

G12(ρ) = G0
1

1 + 2πρG0

E′

0

, ρ < ρmax = +∞. (17.6)

To model the crack interactions on a given crack family one can use the self-consistent

schemes (SC), the effective elastic coefficients in 2-D were obtained by Hoening [61] as a
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solution of the following nonlinear system of equations























1

E1(ρ)
=

1

E0

+
2πρ

√

E0E1(ρ)

√

(

E0

E1(ρ)

)1/2

+
E1(ρ)

2G12(ρ)
− ν0,

1

G12(ρ)
=

1

G12(ρ)
+

2πρ

E0

√

(

E0

E1(ρ)

)1/2

+
E1(ρ)

2G12(ρ)
− ν0.

(17.7)

Another way to model the crack interactions is to increase the crack density in small steps and

to recalculate the effective matrix at each step, called differential schemes (DS) developed

by MacLaughlin [86] and Hashin [58]). In 2-D the expression of the Young modulus (see

[69]) is

E ′
1(ρ) = E ′

0 exp(−2πρ).

The effective properties of cracked materials could also be obtained by following the

method based on the Eshelby inhomogeneous inclusion solution (see Eshelby [45, 44], Mura

[88]). Ponte-Castaneda and Willis [24] have improved the existing Eshelby-based inclusion

models by introducing a new tensor which accounts for the spatial distribution of inclu-

sions. This method was adapted by Zhu et al [131, 130, 132] to get effective properties of

cracked materials and following the homogenization scheme they get (see [131]) for the 3-D

configuration:

E1(ρ) = E0
3(1− 2ν0)− 16ρ(1− ν0)

2

3(1− 2ν0)− 32ρν20(1− ν0)
, ρ < ρmax =

3(1− 2ν0)

16(1− ν0)2

G12(ρ) = G0(1− ρ
16(1− ν0)

3(2− [v − u]0)
, ρ < ρmax =

3(1− 2ν0)

16(1− ν0)

for the dilute scheme,

E1(ρ) = E ′
0

3(1− 2ν0)

16ρ(1− ν0 − ν20)(1− ν0) + 3(1− 2ν0)
, ρ < ρmax = +∞

G12(ρ) = G0
3(2− ν0)

3(2− ν0) + 16ρ(1− ν0)
, ρ < ρmax = +∞

for Mori-Tanaka [87] scheme and

E1(ρ) = E0
45(1− 2ν0) + 16ρ(7− 14ν0 + 15ν20)− 240ρ(1− ν0)

2

45(1− 2ν0) + 16ρ(7− 14ν0 + 15ν20)− 480ρ(1− ν0)ν20
, ρ < ρmax =

45

128
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G12(ρ) = G0
45(2− ν0)− 16ρ(7− 5ν0)

45(2− ν0) + 32ρ(4− 5ν0)
, ρ < ρmax =

45(2− ν0)

16(7− 5ν0)

for Ponte-Casteneda and Willis [24] scheme.

17.3 Isotropic (random) orientated micro-cracks

Let us consider here materials composed of an isotropic solid matrix (elastic coefficients

E0, G0, ν0) with isotropic (random) orientated micro-cracks non-frictional circular cracks

(N = 1). Different models of effective elasticity will give the expressions of the Young mod-

ulus E(ρ), the shear modulus G(ρ) and of the Poisson ratio ν(ρ) of the effective isotropic

solid.

For the non-interacting cracks method (NIC), the effective elastic coefficients (see [69])

in 3-D are

E(ρ) = E0
1

1 + ρ
16(1− ν20(1− 3ν0/10))

9(1− ν0/2)

(17.8)

G(ρ) = G0
1

1 + ρ
16(1− ν0)(1− ν0)(1− ν0/10)

9(1− ν0/2)

(17.9)

ν(ρ) = ν
E

E0

[

1 + ρ
8(1− ν2)

45(1− ν0/2)

]

(17.10)

while in 2-D we have

E ′(ρ) = E ′
0

1

1 + πρ
, ρ < ρmax = +∞ (17.11)

ν(ρ) = ν0
1

1 + πρ
, ρ < ρmax = +∞. (17.12)

To model the crack interactions on a given crack family one can use the self-consistent

schemes (SC), the effective elastic coefficients were obtained by by Budiansky and O’Connell

[22] for random crack orientations as a solution of the following nonlinear system of equations

E(ρ) = E0

[

1− ρ
16(1− ν2)(10− 3ν)

45(2− ν)

]

(17.13)
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G(ρ) = G0

[

1− ρ
32(1− ν)(5− ν)

45(2− ν)

]

(17.14)

ρ =
45(ν0 − ν)(2− ν)

16(1− ν2)(10ν0 − ν(1 + 3ν))
(17.15)

in 3-D and

E(ρ) = E0

[

1 + ρ
π2

30
(1 + ν)(5− 4ν)

]

(17.16)

G(ρ) = G0

[

1− ρ
π2

60
(10− 7ν(ρ))

]

(17.17)

ρ =
60(ν0 − ν)

π2(1 + ν)(10ν0 − ν(1 + 8ν0))
(17.18)

in 2-D.
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CHAPTER 18

DAMAGE CRITERIA

18.1 Quasi-static processes

For not interacting and self similar micro-cracks of radius/length l = l(ρ) and normal n

under the stress far field σ (see Figure 18.1) the Griffith theory gives the following criterion

for crack growth:

K(ρ,σ) =
K(l(ρ),σ)

Kc

− 1, (18.1)

where K is the stress intensity factor (SIF) and Kc is the critical stress intensity factor.

For instance K(l,σ) = KI(l,σ) in mode I, K(l,σ) = KII(l,σ) in mode II and K(l,σ) =

KII(l,σ) and K(l,σ) = KIII(l,σ) in mode III (see Table 18.1). The stress intensity factor

depends on the stress through the normal and tangential stresses σn and σT (σni = σnn+

σT ) and the Coulomb frictional force f = f(σ,n) acting on the crack faces

f = σT , if |σT | ≤ µ[−σn]+, else f i =
µ[−σn]+
|σT |

σT .

For the mixed mode the fracture criterion (see for instance Ju and Lee [68] and Yu and

Feng [127]) reads

K(ρ,σ) =

√

[

KI(l(ρ),σ)

KI
c

]2

+

[

KII(l(ρ),σ))

KII
c

]

− 1. (18.2)
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Figure 18.1: Schematic representation of a micro-crack of radius/length l = l(ρ) and normal
n under the stress far field σ.

KI(l,σ) in 3-D KI(l,σ) in 2D KII(l,σ) in 2D KIII(l,σ)√
2l

π
[σn]+

√
πl[σn]+

√
πl [|σT | − µ[−σn]+]+

√
πl [|σT | − µ[−σn]+]+

Table 18.1: The (static) stress intensity factors in different configurations.

When the micro-cracks propagate they can be arrested by energy barriers (or grains)

with higher strength Kc. If the stress level is high enough the arrested micro-cracks could

also propagate and pass the energy barriers till they are arrested by a higher barriers, and

so on. A simple way to model that is to let the critical stress intensity factor Kc depending

on the micro-crack radius/length l, i.e.

Kc = Kc(l).

18.2 Wing cracks modeling

In tension a single crack grows unstably, while in compression a population of small cracks

extends stably, each growing longer as the stress is raised, until their length is comparable

with their spacing when they interact. Then an instability develops, and the sample fails.

To describe the geometry of a wing crack let us follow [7] and for the sake of the simplicity
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let us analyze only the two dimensional case. We consider first the case of an isolated crack

of normal n which contain an initial inclined flaw of half length 2a, normal n∗ and tangent

τ ∗ (we take the angle between n and n∗ to be π/4) as in Figure 18.2 . In this case the

dependence ρ(l) of the crack density parameter ρ upon the wing crack half length l have to

be replaced by

ρ∗(l) = ρ(l + a/
√
2), l∗(ρ) = l(ρ)− a/

√
2.

Using the above expression of the crack density parameter one can use one of the effective

elasticity formula (see the previous chapter) for describing the dependence of the elastic

coefficients upon the damage. Moreover, more precise effective anisotropic compliance re-

lationships for wing-cracked brittle materials under compression was obtained by Liu and

Graham-Brady [80].

As it follows from Ashby and Sammis [7] the force acting at the midpoint of the inclined

cracks produces a mode I stress intensity at the tips of their wing cracks and the mode I

stress intensity factor KI reads

2a 

n 

n* l 

ϕ= π/4

ϕ

l 

σe
2

-σe2

 

σe
1

 

-σe
1
 

e
1
 

e
2
 

n* 

Figure 18.2: Schematic representation of a 2D wing micro-crack of length l = l∗(ρ) and
normal n∗ under the stress far field σ.
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K(l,σ) =
a [A(µ)(|σT ∗ | − σn∗) + B(µ)(|σT ∗ |+ σn∗)]

√

π(l + βa)
+ σn∗

√
πl, (18.3)

where σn∗ = σn∗ ·n∗ and σT ∗ = σn∗ · τ ∗ are the normal and tangential stress acting on the

inclined flaw and the constants A,B are given by

A(µ) =
π
√
β√
3
(
√

1 + µ2 − µ), B(µ) =
π
√
β√
3
(
√

1 + µ2 + µ).

The constant β was found to be β = 0.1 by comparing the equivalent expression for K in 2D

with analytic and numerical results for small values of l. The second term is the reduction

in K caused by the direct application of normal stress σn to the wing cracks. Notice that

the criterion for the wing crack to nucleate is

K(0,σ) =
1√
πβ

√
a [A(µ)(σT ∗ − σn∗) + B(µ)(σT ∗ + σn∗)] = KI

c .

Ashby and Sammis [7] estimated the interaction between the growing wing cracks in a global

sense by requiring that the wedging force across any vertical section is balanced by an internal

stress. This gives a more complicate expression of K(l,σ).

Paliwal and Ramesh [95] and Hu et al. [63] have a different way to compute the stress

intensity factor K(l,σ) at the wing-crack tips, by using the superposition principle. The

problem of a cracked inclusion in an effective medium subjected to remote uniform loading

is decomposed into two problems: a homogeneous elliptical inclusion of the matrix material

(without the crack) is embedded in the effective medium which is subjected to the same

remote loading as in the original problem. The tractions tr are the tractions on the planes

corresponding to the cracks. In the second configuration only the crack surfaces are subjected

to tractions teff that are derived from the first problem such that they satisfy the following

traction boundary condition σn∗ = tr + teff . The expression of the stress intensity factor

K(l,σ) is different from (18.3) but it has the same dependence on the wing crack length l.

To transform the anisotropic damage criterion (18.3), associated to parallel wing cracks,

into an isotropic one, associated to an randomly orientated wing cracks, Deshpande and

Evans [35] express (18.3) in terms of the stress invariants. For ease of numerical implemen-

tation they restrict their self to the first two invariants σm = trace(σ)/3, σe =
√

3σD : σD/2

(here σD is the stress deviator) of the stress tensor, neglecting the dependence on the third
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stress invariant. They found the expression

K(l,σ) =
√
πac1(l)

[

[(B(µ)− A(µ))c2(l) + c3(l)] σm + [c2(l)(B(µ) + A(µ)) + c3(l)] σe/
√
3
]

+
,

(18.4)

where c1, c2 and c3 are functions of l and a. Note that the above criterion has to be used in

connection with an isotropic (random) orientated micro-cracks effective elasticity model.

18.3 Dynamic processes

The damage dynamic evolution could be deduced from the of the static criterion K(ρ,σ) (or

equivalently from the SIF K(l,σ)). One way to do that is to introduce the "dynamic stress

intensity factor" Kd(l,σ, l̇) instead of the static stress intensity factor K(l,σ) but to keep

the same criterion Kd(l,σ, l̇) = Kc for the dynamic crack growth. For instance, in mode I

the dynamic stress intensity factor of a growing crack, with an instantaneous speed l̇, can

be related to the static SIF through Kd(l,σ, l̇) = k(l̇)K(l,σ) (see Freund [49, 50]), where

k(l̇) is the universal function of the crack speed, representing the inertial effect on the crack

growth. Deng and Nemat-Nasser [32] obtained a simplified approximate expression k(l̇) in

good accord with the computed solution k(l̇) = 2
cR − l̇

2cR − l̇
where cR is the Rayleigh wave

speed of the material. In mode III of the anti-plane configuration k(l̇) =

√

1− l̇

cS
with cS

the S-wave speed. After some algebra one can find the expression of the micro-crack growth

rate (3.5) with cm = cR, α = 1/2 and ϕ(x) = x in mode I, i.e.

d

dt
l = cR[

K(ρ(l),σ)
1
2
+K(ρ(l),σ)

]+, (18.5)

and cm = cS, α = 1 and ϕ(x) = x in mode III, i.e.

d

dt
l = cS[

K(ρ(l),σ)

1 +K(ρ(l),σ)
]+, (18.6)

The above expression of the micro-crack growth rate was obtained from the universal

crack speed function by solving a self-similar dynamic crack growth problem under far-field

uniform tension. It may be applicable for the case of compressive loading of a population

of local tensile enclaves at the wing-crack tips. Paliwal and Ramesh [95] and Hu et al. [63]
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assumed that a similar form of k(l̇) exists for the wing-crack growth rate and they have

considered (3.5) with cm = cR/a, α = 1/2 and ϕ(x) = xγ, i.e.

d

dt
l =

cR
a
[

K(ρ(l),σ)
1
2
+K(ρ(l),σ)

]γ+, (18.7)

where a ≥ 1 and γ > 0 are fitting parameters characterizing the toughness-velocity relation.

The evolution law (3.5) has the advantage that it contains the quasi-static criterion for

small growth rate, and it compatible with the quasi-static evolution, i.e. L(ρ,σ) = 0 for

K(ρ,σ) ≤ 0. But this compatibility can be done asymptotically by using a power law. For

instance, for the wing-crack growth rate Deshpande and Evans [35] have considered

d

dt
l = min {c0(K(ρ(l),σ) + 1)m, cS} , (18.8)

with m a large rate sensitivity exponent (m ∈ [10, 20] ) and c0 the reference crack growth

rate, to investigate the events occurring in the timescale when the dynamic effects on the

stress intensity factor have subsided.
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Modélisation Galerkin-discontinue de la propagation des ondes dans un milieu

endommagé

Dans cette thèse on utilise une méthode de Galerkin discontinue (GD) pour modéliser la propagation des

ondes dans un matériau endommagé. Deux modèles différents pour la description de l’endommagement ont

été considérés. Dans la première partie de la thèse on utilise un modèle d’endommagent assez général, basé

sur une modélisation micromécanique. Pour ce modèle on établit un critère de stabilité basé sur une densité

critique de fissuration. On développe aussi une méthode numérique GD capable de capturer les instabilités au

niveau microscopique. On construit une solution exacte pour analyser la précision de la méthode proposée.

Plusieurs résultats numériques vont permettre d’analyser la propagation des ondes dans les configurations

planes et anti-planes. Dans la deuxième parte de la thèse on étudie la propagation des ondes dans un milieux

fissuré (microfissures en contact avec frottement). La méthode numérique développée utilise une technique

GD et la méthode du Lagrangien augmenté. En utilisant cette méthode on a pu calculer numériquement la

vitesse de propagation moyenne dans un matériau endommagé. On a pu comparer les résultats obtenus avec

les formules analytiques obtenues avec des approches micromécaniques. Finalement, on a utilisé les calculs

numériques pour étudier la propagation des ondes après un impact sur une plaque céramique pour les deux

modèles mécaniques considérés.

Discontinuous Galerkin Modeling of Wave Propagation in Damaged Materials

A discontinuous Galerkin (DG) technique for modeling wave propagation in damaged (brittle) materials

is developed in this thesis. Two different types of mechanical models for describing the damaged mate-

rials are considered. In the first part of the thesis general micro-mechanics based damage models were

used. A critical crack density parameter, which distinguishes between stable and unstable behaviors, was

computed. A new DG-numerical scheme able to capture the instabilities and a micro-scale time step were

proposed. An exact solution is constructed and the accuracy of the numerical scheme was analyzed. The

wave propagation in one dimensional and anti-plane configuration was analyzed through several numerical

computations. In the second part of the thesis the wave propagation in cracked materials with a nonlinear

micro-structure (micro-cracks in frictional contact) was investigated. The numerical scheme developed makes

use of a DG-method and an augmented Lagrangian technique. The effective wave velocity in a damaged

material, obtained by a numerical upscaling homogenization method, was compared with analytical formula

of effective elasticity theory. The wave propagation (speed, amplitude and pulse length) in micro-cracked

materials in complex configurations was studied. Finally, numerical computations of blast wave propaga-

tion, for the both models, illustrate the role played by the micro-cracks orientation and by the friction.

Keywords: discontinuous Galerkin, Lagrangian method, wave propagation, damage modeling, cracked

solid, frictional contact, anisotropy, numerical homogenization
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