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Résumé

La premieme partie a pour but I’établissement d’un développement asymptotique pour la so-
lution du probleme de Stokes avec une petite perturbation du domaine. Dans ce travail, nous
avons appliqué la théorie du potentiel. On a écrit les solutions du probleme non-perturbé et
du probleme perturbé sous forme d’opérateurs intégraux. En calculant la différence, et en
utilisant des propriétés liées aux noyaux des opérateurs on a établi un développement asymp-
totique de la solution.

L’ objectif principal de la deuxieme partie de ce rapport est de déterminer les termes d’ordre
élevé du développement asymptotique des valeurs propres et fonctions propres pour I’ opérateur
de Stokes dus aux changements d’interface de I'inclusion. Dans la troisieme partie, nous
proposons une méthode pour 1’évaluation des integrales singulieres provenant de la mise
en oeuvre de la méthode des éléments finis de frontiere en électromagnetisme. La méth-
ode que nous adoptons consiste en une réduction récursive de la dimension du domaine
d’intégration et aboutit a une représentation de I’intégrale sous la forme d’une combinaison
linéaire d’intégrales a une dimension dont I'intégrand est régulier et qui peuvent s’évaluer
numériquement mais aussi explicitement. Pour la discrétisation du domaine, des triangles
plans sont utilisés ; par conséquent, nous évaluons des intégrales sur le produit de deux
triangles. La technique que nous avons développée nécessite de distinguer entre diverses

configurations géométriques

Mots clés: perturbation, développement asymptotique, probleme de Stokes.




Abstract

This thesis contains three main parts. The first part concerns the derivation of an asymptotic
expansion for the solution of Stokes resolvent problem with a small perturbation of the do-
main. Firstly, we verify the continuity of the solution with respect to the small perturbation
0 via the stability of the density function. Secondly, we derive the asymptotic expansion of
the solution, after deriving the expansion of the density function. The procedure is based
on potential theory for the Stokes problem in connection with the boundary integral equa-
tion method, and geometric properties of the perturbed boundary. The main objective of the
second part on this report, is to present a schematic way to derive high-order asymptotic
expansions for both eigenvalues and eigenfunctions for the Stokes operator caused by small
perturbations of the boundary. Also, we rigorously derive an asymptotic formula which is in
some sense dual to the leading-order term in the asymptotic expansion of the perturbations in
the Stokes eigenvalues due to interface changes of the inclusion. The implementation of the
boundary element method requires the evaluation of integrals with a singular integrand. A
reliable and accurate calculation of these integrals can in some cases be crucial and difficult.
In the third part of this report we propose a method of evaluation of singular integrals based
on recursive reductions of the dimension of the integration domain. It leads to a representa-
tion of the integral as a linear combination of one-dimensional integrals whose integrand is
regular and that can be evaluated numerically and even explicitly. The Maxwell equations
are used as a model equation, but these results can be used for the Laplace and the Helmholtz
equations in 3-D. For the discretization of the domain we use planar triangles, so we evaluate
integrals over the product of two triangles. The technique we have developped requires to

distinguish between several geometric configurations.




ABSTRACT

Key words: perturbation, asymptotic expansion, Stokes problem.
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Introduction

This thesis has three main objectives:

e The first goal is to derive an asymptotic expansion for the solution of a transmission

Stokes problem with a small perturbation on the interface.

e The second goal is to present a schematic way to derive high-order asymptotic expan-
sions for both eigenvalues and eigenfunctions for the Stokes operator caused by small

perturbations of the boundary

e The third one is to provide and develop a new method of precise evaluation of singular

integrals derived from integral equation methods.

Perturbation problem

Perturbation theory is the study of the effects of small disturbances. It’s basic idea is to
obtain an approximate solution of a mathematical problem by exploiting the presence of a
small parameter. An introduction to perturbation theory can be found in [26], [29] or [56].
A theoretical approach of this problem remains of interest for two main reasons: to study
the behavior of the solution of perturbation problem, and to derive the perturbation approxi-
mation. The derived approximation formula can be applied in the theory of inverse problem
as well. It allows to recover mechanical properties by inverting the displacement data, for ex-
ample to recover the geometric features of the domain of perturbation, or the reconstruction

of the location of the anomalies.
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Stokes transmission problem

The Stokes resolvent system can be obtained by applying the Laplace transform to the sys-
tem of the continuity and Navier-Stokes equations which describes the moderate Reynolds
number flow of a viscous incompressible fluid (for details see [34], [33], [58]). So the study
of this problem has a key role in the understanding of the biomechanics of blood flow, the
Brownian motion observed by Brown, the motion of swimming microorganisms, and other
biological or physico-chemical phenomena.

On the other hand, the potential theory for the Stokes resolvent system was developed by
Varnhorn in [60] and [58]. In addition, the fundamental solution for the system of equations
in R? was obtained by McCraken in [43]. Also the Dirichlet and Neumann problems for
the Stokes resolvent equations on bounded and exterior domains in R" have been studied
recently in [15] and [57]. A mixed boundary value problem for the same equations has been
treated in [32]. These autors, construct a solution of these problems in the form of appropri-
ate potentials (it can be represented as single layer potentials, double layer potentials, or their
linear combination), with the unknown source densities defined via integral equations on the
boundary of the domain. In order to show the existence of a solution (u, p) of the boundary
value problem, the method of boundary inregral equations based on layer potentials is used.
Potential theory, can also be used to study the transmission problem of the Stokes resolvent
equation, which occurs in the case of contact between two materials with different physical
characteristics. In a recent work [47], Mitrea and Wright have used layer potential methods
to develop a powerful analysis of a transmission boundary value problems in arbitrary Lips-
chitz domains. In other works [35], Kohr et Wendlend used layer potential techniques to treat
transmission boundary problems for the Stokes and Brinkman operators on C'* and Lipschitz
domains.

In this work, we consider a boundary value transmission problem for the Stokes system. Let
Q2 C R? be an open bounded domain with a connected Lipschitz boundary 92 and suppose
that © contains an inhomogeneity in the form of an open set D with a connected C?-boundary
0D. We assume that there exists a constant ¢y > 0 such that inf,cp dist(z, 9) > c¢q which

means that D is away from the boundary 0.
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Let us consider a boundary value transmission problem for the Stokes system:

(—A+k*)u+Vqg=0 in Q\D
(—A+FHu+Vg=0 in D

V-u=0 in

uly —ul-=0 on 0D )
pan(u, )|y — figs(u,q)|- =0 on 9D

u=gq on Of)

/QZQ

e

where . and /i are positive constants related to the physical properties of {2 and D. Here we
take k% and K2 in C\ {z € R, 2 < 0}. Letx = VkZ and & = V/i?2 be particular square roots,
which have positive real parts (i.e. Re k > 0, Re £ > 0).

Let v be the outward unit normal to 0D and v, be the outward unit normal to 9€). Then, we
denote by % the conormal derivative.

In this thesis, we propose to show the existence and the uniqueness of the solution of (1) and

to express it in the form of linear combinations of potential operators.

Asymptotic expansion
We consider 0D a §—perturbation of 0D defined by
O0Ds ={&=x+ov(z);z € 0D,0 < § << 1} 2

and we denote by Dj the domain bounded by 0D;. Define (us, gs5) the solution of the trans-

mission problem for the Stokes system with a small boundary perturbation Dj:

[ (A + &®)us + Vg5 = 0 in Q\ D;
(—A+ 1%2)%5 + Vg =0 in Ds
V- -us=0 in
U5|+ - UJ5|, =0 on 8D5 (3)
p(us, gs) |+ — A (us, gs)| - =0 on 9D
us =g on 0f)
/Q5 =0.
\ Q
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We aim to derive an asymptotic expansion of (us — u)|q, and (us — u)|p, as ¢ tends to
zero, where D is any close subset of D N Ds and (2 is any subset of 2\ (D U Dy). The
procedure is based on potential theoretical considerations in connection with a boundary
integral equations method, and geometric properties of the perturbed boundary. This work is

submitted for publication [13].

Asymptotic behaviors for eigenvalues and eigenfunctions as-
sociated to the Stokes operator in the presence of a small

boundary perturbations

The field of eigenvalue problems under shape perturbation has been an active research area for
several decades. The main objective of the second part in this report is to present a schematic
way to derive high-order asymptotic expansions for both eigenvalues and eigenfunctions for
the Stokes operator caused by small perturbations of the boundary. Also, we rigorously
derive an asymptotic formula which is in some sense dual to the leading-order term in the
asymptotic expansion of the perturbations in the Stokes eigenvalues due to interface changes
of the inclusion. This is inspired from the fact that the Stokes system can be viewed as the
incompressible limit [7]. Thus we rigourously extended some results elaborated in [5] to the
Stokes case. The properties of eigenvalue problems under shape deformations have been a
subject of comprehensive studies such as [2, 3,10, 12,29, 49] and the area continues to carry
great importance [5, 8,28, 30,46, 63]. A substantial portion of these investigations discusses
the properties of smoothness and analyticity of eigenvalues and eigenfunctions with respect
to perturbations.
Let us consider the following eigenvalue problem for the Stokes system with homogeneous
boundary conditions:

—Av+Vp=Xv in{Q

V=0 in Q) (4)

v=20 in 052

with © C R? a bounded open domain with boundary of class C?. Here v = (vy,vs,v3)
denotes the velocity field while the scalar function p is the pressure.

We assume that the boundary 0f2 is subjected to a small, smooth deformation and that the
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boundary of the deformed domain €25 is given by:
0 ={T =z +oh(z)v(z), =z €I} (5)

where v(z) is the outward normal vector on OS2 and h(x) is a real function in C?(95) that

satisfies
12(2)]|c200) < 1. (6)

Obviously, the domain €25 is of class C? and the Dirichlet eigenvalue problem for the Stokes

system can be defined in (25 as well.

In this work, we derive the asymptotic expansion of eigenvalues, eigenfunctions and the

eigenpressures solutions to the Stokes system:

—AU(; + Vp(; = )\5?)5 in Q(g
V.U5 =0 in Q(g (7)
Vs = 0 in 895

Here we suppose that the eigenvalue )\, is simple. Then the eigenvalue \;s is simple and is
near to )\ associated to the normalized eigenfunction vs.

To the best of our knowledge, this is the first work to rigorously investigate the Stokes eigen-
value problem in the presence of the perturbation and derive (formally) high-order terms in
the asymptotic expansion of A\; — A\ and v5 — vg when 6 — 0. However, by the same method,
one can derive asymptotic formula for the Neumann problem as well.

Zuazua and Ortega have proved in [49] the regularity of the eigenvalues and eigenfunctions of
the Stokes system with respect to the perturbation parameter, by using the Lyapunov-Schmidt
method. Their proofs are essentially inspired in the work of J. Albert [2, 3] for the Laplace
operator. Our analysis and uniform asymptotic formulas of eigenvalues and eigenfunctions,
which are represented by the single-layer potential involving the Green function, are consid-
erably different from those in [28,49].

These results were published in [16].

Singular integrals in Electromagnetism

Integral equation methods are an alternative for solving linear partial differential equations.

It consists in transforming the partial differential equation posed in a domain, into an integral
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equation posed on the edge. It is in particular a method adapted for diffraction problems that
are posed in an unbounded domain (see [25]) and for which the consideration of the radiation
condition is essential. We are interested in solving time-harmonic scattering problems by the
integral aquation method. In order to ensure a unique solution to the boundary value problem
we will take the constant impedance operator, known as standard or Leontovich impedence
boundary condition. This approximation does not depend on the incident angle at all.

Once the boundary problem has been converted into a boundary integral equation, it is nec-
essary to discretize the edge of the domain using plane polygons. Here we deal with plane
triangles and Rao-Wilton-Glisson basis functions fy. In this thesis, we are particularly inter-
ested in the singular integrals resulting from the discretization of the variational problem of

Maxwell 3-D equation, namely:

| 8@ vy ®)

I

which comes from the potential of the single layer. This integral has been treated by Marc
Lenoire and Nicolas Salles in [40] with a purely analytic method.

The second one comes from a double layer potential can be written as follows:
f,(x) x £ "7Y  Jrdy € =0or 2 9
[fi(x) x j(y)].mxy,g_ or 2. )
'y

This singular character of the integrand makes the precise evaluation of these integrals diffi-
cult. It has been the subject of a large number of publications. The method presented in this
thesis allows us to evaluate analytically and with great precision, these singular integrals in
the variational case. Note that if £ = 0 the integral is not singular but the method we propose

is still valid.

To better understand this singular integrand problem, in the variational case, it should be
noted that the domain of integration for these integrals with "problem", is the product of two
elements of the mesh, ie in 3-D, the product of two triangles S and T. When the two triangles
are distant, it is possible to evaluate the integral with standard numerical integration methods.
But the two problematic cases are the singular case, which occurs when the intersection of
the two triangles is not empty(adjacent triangles and triangles with a common vertex). These

two cases require separate treatment and this is a field of research still very active.
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Reduction process

The presented method makes it possible to reduce a 4-D integral to a linear combination of
mono-dimensional integrals whose integrand is regular. It is then possible to numerically

evaluate these 1-D integrals, but also explicitly.

This method of reduction relies on several formulas that make it possible to reduce the
dimension of the integration domain. So, repeating three times using these formulas we ob-
tain regular 1-D integrals. These formulas are based on the homogeneity of the integrand;
therefore, there are two conditions to check:

1) - The integrand must be homogeneous. We must therefore break the integrand into a part
homogeneous, which is treated with our method, and a regular part, which can be treated with
usual numerical integration methods.

2) - Flat polygons must be used to discretize the boundary of the domain. This in order to

maintain the homogeneity of the integrand during the successive stages of reduction.

Organization of this thesis

This thesis is divided into three parts, and composed of eight chapters, corresponding to the
goals introduced above.

The first part includes three chapters (Chapter 1, 2, 3) with the following contents:

Chapter 1 is devoted to introduce the notations and some preliminary results of layer-

potential theory for Stokes problem and perturbed geometry.

Chapter 2 show the existence and uniqueness of the solutions of a Dirichlet transmission

Stokes problem and presents it in form of potential operators.

In chapter 3 we first, verify the continuity of the solution with respect to the small per-
turbation 0 via the stability of the density function. Secondly, we derive the asymptotic

expansion of the solution, after deriving the expansion of the density function.
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The second part states the results that have been published in the journal Math Phys Anal
Geom, see [16].

In chapter 4, we derive asymptotic expansions for both eigenvalues and eigenfunctions
for the Stokes operator caused by small perturbations of the boundary. Also, we rigorously

derive an asymptotic formula.

In the third part we develop a method for the evaluation of integrals with a singular inte-
grand derived from the application of a boundary element method on Maxwell’s equation.

In chapter 5, the time-harmonic scattering problem of electromagnetic waves is described
as a system of equations with boundary conditions. The uniqueness of the solution of this
problem is shown thanks to a variational formulation. It is also concerned with the discretiza-

tion of the problem with help of Rao-Wilton-Glisson basis functions for mesh triangulation.

The next chapter, is dedicated to the presentation of the method. The integration of ho-

mogeneous functions leads to formulas for reducing the size of the integration domain.

In chapter 7, we presents the evaluation of singular integrals when the triangles are Adja-
cent triangles, and the evaluation of singular integrals when the triangles have common vertex
in chapter 8.

We present numerical results in the last chapter.

We have put the proofs for some inequalities and auxiliary results concerning the first part
in Appendix A, the final expressions of the mono-dimensional integrals in Appendix B and
some preliminary results about Fredholm alternative and integral formulation Maxwell equa-

tion in Appendix C.



Part 1

Asymptotic expansion for the solution of
a Stokes transmission problem with a

small perturbation of the domain



CHAPTER 1

Preliminary results

Introduction

In this chapter, we present geometric definitions, notations and basic results which will be
used in the next chapters as well as the main properties of the layer potential operators asso-
ciated to the Stokes resolvent equation on a bounded Lipschitz domains in R3.

The outline of this chapter is as follows. The first section contains the setting for basic
notations, definitions and related funtional spaces. Section 1.2 is devoted to present some
geometric properties of a boundary perturbation. In section 1.3, we describe layer potential
techniques for solving the Stokes resolvent problems on a bounded Lipschitz domains in R3.
We then present in 1.3.1 the fundamental solution for Stokes resolvent systems and we define

in 1.3.2 the properties of the associated layer potential operators.

1.1 Euclidean spaces

This section contains some notations and definitions concerning Euclidean spaces and func-
tional spaces, wich plays a segnificant role all along this work.

Forz,y € R3, o = (v, 12, 23),y = (y1,y2,¥y3) letz -y := 25:1 x;y; be the scalar product
of z,y and |z| :== \/z - = be the Euclidean norm of .

Denote by |z — y| the distance between two points z and y of R? given by the formula

3

=yl = [ (s — )42

i=1

10



CHAPTER 1. PRELIMINARY RESULTS

u| stands for the modulus of the vector u and we have |u| = (3, u?)'/2.

More generally, ;U3
Similarly, the distance between two subsets A and B of R? is denoted by dist(A, B) and we
have

dist(A,B) = inf |z —yl.

reAyeB

Definition 1.1.1. (Derivatives)

1. The gradient is denoted by NV = (01, 02, 03), where 0; = a% denotes the partial deriva-

tive with respect to the j-th coordinate (;) ;=12 3.

2. For all multi-indices o = (a1, aa, a3), we denote the a-derivative of f by

goataztas f ala\f
Daf pum . =
Or{t ey OxPrag?ag®’

where the order of this derivative is |a| = ay + as + as.

3. For vector-valued function v = (v1,v9,v3), V - v = 0101 + Oav9 + 0303 defines the

divergence of v.

Definition 1.1.2. (The space C*)

Given a non-negative integer k and an open domain D C R3?, let C*(D) denote the space of
all functions u defined in D which have all their derivatives D“u of order || < k continuous
in D. To simplify the notation, we set C°(D) = C(D).

Define C*(D) as the space of all u € C*(D) such that D*u can be extended from D to a
continuous function on D, the closure of the set D, for all || < k. C*(D) can be equipped

with the norm

Definition 1.1.3. (Lebesgue spaces)

Let L?(D) be the Lebesgue space of square integrable functions on D and let L*(0D)? be the
space of vector fields ¢ = (¢1, ¢2, ¢3) : R® — R? whose components ¢; belong to L*(0D).
We have

19l (c20p))2 = /(chl(:':)l2 + o () > + [¢3(z)[>)do(z).
aD
We recall now the definition of curvature of a curve and definitions of mean and Gauss

curvature of a surface that will be appeared in the expansion terms of the area element in

chapter 3. For a complete description, we refer to [9] and [55].

11
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Definition 1.1.4. (Curvature)

Consider D a bounded open set in R? with a connected boundary 0D, a,b € R with a < b,
and X (t) : [a,b] — R? an arclength parametrization of D. Namely, X is a C*-function
satisfying | X'(t)| = 1 for all t € [a,b] and

0D :={z = X(t),t € [a,]]}.

Then the outward unit normal to 0D, v(x), is given by v(x) = R—TWX’(t), where R_x is

the rotation by —7 /2; the tangent vector at x, T'(x) = X'(t), and X'(t)LX"(t). Set the

curvature T(x) to be
X"(t) = 7(x)v(z).

Definition 1.1.5. (Gaussian and mean curvature)

Let k1 and ks be the principal curvatures of a regular surface S at a point P. Define
1. The Gaussian curvature of S at P as the product K = kiks;

of the principal curvatures.

2. The mean curvature of S at P is the average H = %

We also remark that for a bounded domain D with boundary of class C?, the outward

unit normal v is a C1* function and the following properties hold:

Lemma 1.1.1. ( [36], Lemma 6.16)

There exists a positive constant L such that

v(z) {z —y} < Lz -y,

and
lv(z) —v(y)| < Ll —yl,

forall z,y € OD.

1.2 Small perturbation of an interface

Let D C R? be a bounded domain with connected boundary 9D of class C%. For a fixed
constant 0 € R, we consider 0Dj as a —perturbation of 9D defined by

0Ds = {2 =x+dv(x);x € 0D,0 < << 1}. (1.1)

12



CHAPTER 1. PRELIMINARY RESULTS

We denote by D;s the domain bounded by 0Ds and dos() the surface element of 0D; at .

The result presented below is given in [31] with more details.

Lemma 1.2.1. The surface elements do on 0D and dos on 0Dy are related by the formula

2

dos() = Y 0"o,(z)do(x),

n=0

where o, are bounded functions regardless of n. In particular,

oo(z) =1,01(x) = —2H(z),09 = K(z), x € 0D,

(1.2)

(1.3)

with H and K denote the mean and the Gaussian curvature of 0D respectively, as introduced

in Definition 1.1.5.

Since 0D is parallel to Ds, we can conclude that
v(z) =v(z), x € 0D, T € ODs.

We then have for z,y € 0D;s:

T—y=x—y+ov(r)—rvy))),

and

— — _ 2
(@ =y vle) = vl) | plv(@) = V)P,
|z -y |z —y]

We also introduce two functions F' and G for x # y € dD defined by:

) i @) =)
9) = -yl

F— 3 = o —y2(1+ 20

E(%, y) — <l’ B y|7x’/(_x;|; V(y>> : G(

Since OD is of class C?, there exists a constant C' depending only on D such that:
|E(z,y)| + |G(z.y)|* < C,Va,y € 9D,

Hence, we obtain:

T =3l = |z = y[V/1+20E(z,y) + 2G(x,y) = [z —y| > " Ln(2,y),
n=0
where the serie converges absolutely and uniformly and the first two terms are:

LO(I7y) = 1,L1<C(7,y) = E(ZL’,y)

13
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1.3 Potential theory

This section presents layer potential theory for the Stokes resolvent system. The main sources

used in the preparation of this section are [57] [58] [59] and [60]

1.3.1 Stokes resolvent system

1.3.1.1 Fundamental solution

Let consider a bounded Lipschitz domain D C R? with connected boundary 9D and a given
complex constant 52 in C* where C* = C \ {z € R, z < 0}. Let x = V2 be particular
square root, which have positive real parts (i.e. Re x > 0). We denote by I'* = (P%)i,jzl,g’g
and F* = (F");_1 23 the fundamental tensor and vector of the following Stokes resolvent

system:

{ (A + K25 (2, y) + 0, FF (2, y) = 0i;0,(x) on D, 05

Ol (x,y) =0 on D,
where 6, is the Dirac distribution with mass at y and 9;; is the Kronecker symbol. The

components of (I'*, F'*) are obtained in these forms (see [57] [58]):

p 0ij z—y)i(z—y);
D5(e,y) = & {2ealnlo — y)) + CLE ey (o — y)) |
Fri(e,y) = o

(1.6)

i T dm ey
where
— (n+1) 1, 2 -2
(e =3 (o = eap(—)(1+ ¢ ) — 2,
— (n+2)!
=~ 1—n? n -1 -2 -2
exle) =) m(—e) = exp(—€)(—1 — 3 — 3e72) + 3¢ 2.
n=0 '

Here and throughout this report we use the Einstein convention for the summation nota-

tion omitting the summation sign for the indices appearing twice.

1.3.1.2 Stress and pressure tensors

Now, let introduce for =,y € 0D, the stress tensor S associated to the fundamental tensors
(I'", F'*) defined by:

OT5(3) | Or ()

K — _F5(#)6;
S]k:($a y) j (‘T)ézk + 83?]@ 83%]

7

L i j.k=1,2,3. (1.7)

14
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where & = x — y = (21, T2, 23) and r = |z|. Combining (1.6) and (1.7), one can obtain:

1 Z; T s T,2,%
fjk(.ﬁ[, y) = —w— {5lkr—le1(/€7”) + ((Skjﬁ + 51']'7"_5)1)2(%7’) + Tdiszg(K)T)} (18)

d

where (O, () 6
D (t) = 8~2 F(m)”;;l ~ 5Tl
()" Knpa(t) 6 (5)"Kn(t)
Dy(t) =38 ()P 5 + QW’
Dy(t) = _16(%)?;13,;2(75) + ?;—S

with m = %, t € R, I'(m) is the Gamma function and K, for n > 0 is the modified Bessel

function of order n. For more details on these functions, see Appendix A.

The pressure tensor associated with the stress tensor S has the following components:

_i(2% _ (SikKJQ JA?ZLi'k
47

Afk(x7y) = r3 r r5

), ik =123 (1.9)

1.3.1.3 Decay behavior of the fundamental and the stress tensor

In order to study the decay behavior of I';(, y) and S

zjk($>y) asr = |z —y| — 0, we can

apply the following decomposition:
[i(z,y) = Ty (a,y) + (2, ), (1.10)

te(@,y) = S, y) + Sijr(z, y), (1.11)

where S and 'Y are weakly singular Stokes tensors (with respect to x=0) and the remaining
part S and I' are continuous kernels, so that the continuity behavior of the corresponding
surface potential is determined only by the Stokes tensors S” and I'. A detailed proof of the
above relations can be found in [59] or [58]. Besides, we note that I'° and S° are fundamental
tensors for the standard Stokes system [37].

This property will be very useful in the treatment of some boundary integral representation

associated to a transmission system that will be analyzed in the next chapter.

15
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1.3.2 Layer potential operators for the Stokes system

In this section, we present layer potential operators associated to the Stokes equation in the
bounded Lipschitz domain D C R3. A special attention is devoted to the invertibility of the
potential operators associated with the standard Stokes equation and the compactness of the

complementary layer potential operators.

Definition 1.3.1. For a density ¢ = (¢1, ¢2,¢3) € L*(OD)3, we define the single-layer
potential S§¢ : R3\OD — R? and the associated pressure potential, Vp¢ : R3\0D — R

as follows:

St b(a) = / I (2, 1), (y)do(y): 6] = 1,2,3, (1.12)
oD

Vi(a) = / FE (e, )y (y)do(y); j = 1,2,3. (1.13)
oD

Likewise for a given density 1) = (11, 19,13) € L*(0D)3, we define the double-layer poten-
tial Dy : R3\OD — R3, by

oD

where v is the outward unit normal to 0D. Moreover, the associated pressure potential

Wy : R3\OD — R is defined by

Wi(o)i= [ ~Ao )5 ()do(w)i b = 1.2,3 (1.15)
oD
We can easily check that (57, V}5) and (D}, W7;) are solutions of the Stokes system in
R?*\ 0D,
(A + KA SEo(x) + VVip(r) =0; V- Sh(x) =0, (1.16)
(A + K)DiY(x) + VWEY(z) = 0; V- Df(z) = 0. (1.17)
We need also to introduce the principal value of the double-layer potential (or the bound-

ary version of the double layer potential).
Definition 1.3.2. For x € 0D and a density ¢ = (¢1, o, ¢3) € L*(OD)3, the principal value

of the double-layer potential is given by:

%A@@%:pv/—&ﬁ@wwaw%@ﬂdwﬂ&k=123, (1.18)
oD

16
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and (KC})* the adjoint operator of K-

(KD (9)(z) == p-v-/—Sfjk(x,y)vk($)¢j(y)d0(y);i>j,k =1,2,3. (1.19)

oD

where p.v. means the principal value of a singular integral.

1.3.2.1 Trace and jump relations

Denote by a% the conormal derivative defined by

L w,q) = (Vu+ (V)" — qu on D, (1.20

where (Vu)T denotes the matrix transposed of Vu = (9;uy); k=123 (see [6], [14], [37] and

[53]). In the lemma below we give trace relations for the single and double layer potential.

Theorem 1.3.1. If D C R? is a boundary Lipschitz domain with the boundary 0D, then, for
(¢,¢) € L*(0D)* x L*(9D)? one has.

D()]s = (Fy T +K5)(), (1.21)
(D), WL = o (D), Whw)l-. (1.22)
2 (55(0), VB0 = (£31 + (K5)")(6). (1.23)
SHW: = SH0)|- = Sh(w) (1.24)

Here and throughout this report, we use the subscripts |, (respectively |_) for the limiting
value of a field evaluated from the external side of D (or the internal side of D, respectively).

alo) = lim o(y).

The formulas (1.21), (1.22), (1.23) and (1.24) have been proved in [37] when x = 0.
Since D%, — DY and S5 — SY, are smooth operators and according to (1.10) and (1.11), we
can extend the result to the case x # 0. Furthermore, using (1.21) and (1.23) we can easily

show that the single and double layer potentials satisfy the following jump ralations on 0D:

Dp(W)]+ = Dp(W)|- =—¢ on 0D, (1.25)
0 0
%Sf)(fﬁ)ﬁ - %SB(CW— =¢ on 0OD. (1.26)

17
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1.3.2.2 Decay behavior of layer potentials

Here we give another result about the decay behavior at infinity of the layer potentials proved
by Varnhorn in [57] p.15 and [60].

Lemma 1.3.1. For the single and double layer potentials St[¢], V[0|, D[] and W[,

we have the following decay behavior as |x| — oo:

i)
Sple)(z) = O(lz|™"), as |z| — co.

ii)
Vplol(x) = O(|z[?), as |a| = occ.

iii)
DplYl(z) = O(|x[7*), as |z — 0.

iv)

Wp¥l(z) = O(l2| %), as |z — oco.

1.3.2.3 Compactness of layer potential operators

According to theorem 2.27 in [36], the following lemma holds about the compactness of
operators with kernels defined by (1.10) and (1.11).

Lemma 1.3.2. For x € 0D, we define the operators :

Kpil¢l(z) := p.v/—Sz-jk(fc,y)Vk(y)cbj(y)dU(y); 0,7,k =1,2,3, (1.27)
oD

Kp:[8l(x) == p~v-/—Sijk(x,y)vk(xo)sbj(y)da(y); i,j,k=1,2,3, (1.28)
oD
Sp.l¢)(z) = /Fz‘j(ﬂfay)%(y)da(y); i,j,k=1,2,3, (1.29)
oD
Sp(@)|l+ = Sp(9)|- = Sp(9). (1.30)

These operators have continuous kernel. Moreover, Sp, Kp and K%, are compact operators
D

on C(0D)? and on L*(OD)3.

18



CHAPTER 1. PRELIMINARY RESULTS

1.3.2.4 Invertibility of layer potentials
We recall that the single layer potential associated with x = 0 is defined as follows

Spd(x) == /F?j(x,y)cbj(y)da(y), i=1,--,3

oD

where D C R? is a bounded domain with boundary dD. It then follows from [37] the
theorem 1.3.2.

Theorem 1.3.2.
ker(S)) = {cv:c e R} (1.31)

Now, we give two lemmas about the invertibility of these operators on spaces that we are

going to define.

Lemma 1.3.3. [6] Let L3(0D) = {f € L*(9D)% [,, [ - v = 0} and define Hy(0D)
likewise. Then the following result holds.

i) The operator S% : L2(0D) — H(OD) is invertible.

ii) The operator \I + K% and \I + (K%)* are invertible on L*(OD)3 for |\ > 1/2.
Lemma 1.3.4. [37] Let D C R3 be a bounded domain with boundary 0D. Then, we have:
(1/2)I + K%, : LE(0D) — L%(OD) is invertible and so is (1/2)I + (K%)* : L2(OD) —
L2(D).

Conclusion

By referring to previous works, we recalled theorems and definitions on which our work in

the next chapters, will be based.
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CHAPTER 2

Resolution of the Stokes transmission problem

Introduction

This chapter is devoted to resolving the Dirichlet transmission Stokes problem and presenting
its solution in form of a linear combination of potential operators. In the next section 2.1, we
construct the solution of this problem, in the form of appropriate potentials and we reduce
the transmission problem to a system of boundary integral equations. Then, in section 2.2,

we prove unicity of the unknown source densities which implies unicity of the solution.

2.1 Boundary integral representation

Let O C R? be a bounded domain with a connected Lipschitz boundary ) and suppose
that 2 contains an inhomogeneity D with a C?-boundary 9 D.We assume that there exists a
constant ¢y > 0 such that inf,cp dist(z,02) > ¢y which means that D is away from the
boundary 0f).

Using arguments given in the previous chapter, we are looking for a solution (u, ¢) to the

transmission Stokes system with Dirichlet boundary condition:
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(—A+k*)u+Vqg=0 in Q\D
(—A+FHu+Vg=0 in D
V-u=0 in
uly —ul-=0 on 0D (2.1)
pan(u, @)y — g (u,q)|- =0 on 9D
u=gq on Of)

\ qu =0,

where 1 and [i are positive constants related to the physical properties of €2 and D. Note that
k? and i? are complex numbers in C* such that C* = C\ {z € R, 2z < 0}.

Let k = v/x2 and & = /2 be particular square roots, which have positive real parts (i.e. Re
k> 0,Re k> 0).

From Gauss’s law theorem, we have the compatibility condition:

/g-VQ:O’

o0N

where 1 is the outward unit normal to 0f). Let v be the outward unit normal to 0D.

In order to solve (2.1), We adopte a method of boundary integral equations, wich consist
on transforming the transmission problem posed in 2 \ D and in D, into integral equations
defined on the boundarys 9D and 0f). This transition from a volume problem to a surface
problem is carried out using layer potentials. Indeed, according to (1.16) and (1.17) in chap-
ter (1), for some triplet (¢, v, 0) € L*(0D)* x L*(0D)? x L*(00Q)3, the boundary integral

representation:

{ u = SE|¢] inD, 02

u=ShH[Y]+Dglo] inQ\ D,

{qﬂﬁﬂ inD, 2.3)
q= V5[l +W§[0] inQ\ D,

solves
(-A+r)u+Vg=0 in Q\D
(-A+F)u+Vg=0 in D
V-u=0 in €.
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So, we will look for a solution (u, ¢) to the transmission problem (2.1) in the form of (2.2)-
(2.3). Otherwise, we will look for (¢,1,0) € L*(0D)3 x L*(0D)? x L*(99)3 satisfying the

boundary conditions:

uly —ul-=0 on 0D
M%(lhq)br_ﬂ%(uacﬁyf =0 on 9D
u=g on Of)

Remark 2.1.1. For the same problem, several boundary integral representations can be ob-

tained.

2.2 Existence and unicity of the solution

To be a solution to the problem (2.1), the representation (2.2)-(2.3) must satisfy the boundary
conditions. According to the equations (1.21)-(1.24), (¢, 1, 0) satisfy the integral equations

Spl+ —Spl- —Dg ¢ 0
(=31 + (Kp)) —nGI+(Kp)) —ufDs | | v [=] 0] @9
0 S I+ K 0 g

Denote by A” the matrix corresponding to the left hand side of (2.4).
In order to study the existence and unicity of the solution of the system (2.4), we introduce
the space H(0D) defined by:

H(9D) := {(¢,¢) € L*(OD)’ x L*(OD)* ¢ — o € Ly(9D)}
We annonce the theorem.

Theorem 2.2.1. Let (¢,v,0) € H(OD) x L2(00Q) be the unique solution of (2.4). Then (u, q)
represented by (2.2)-(2.3) is the unique solution of (2.1).

This is equivalent to the invertibility of A”. We represent A" by a sum of two matrices
A" and A°™ defined by

SD _SD —DS
Acom — /](’CD)* _,U(ICD)* _M%DS , (25)
0 SE Ko
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and
) 50 0
0 0 51+ K,

We know that S%, is compact on L?*(9€2) and that D and 8%1)6 which appear in the third
column of A®™ are also compact on L?(9D) since OD and 052 do not intersect. According
to lemma 1.3.2, A®™ is compact. Hence, it sufficies to prove that A is invertible and that

A" is injective to show the invertibility of A" according to the Fredholm alternative.

2.2.1 Invertibility of A™

We prove this first result.

Lemma 2.2.1. The operator A™ : H(OD) x L3(9Q) — Hy(OD) x L*(0D)3 x L(0R) is

invertible.

Proof. Let (f,h,g) € Hy(OD) x L*(0D)3 x L3(952), the solution (¢, 1, §) of the system

¢ f
Ainv w _ h ’
0 9
is given by
¢ =(Sp) (N +v
Vo= (R + (K)) b — Al=31 + (K)*)(Sh) (/)] 2.7)
0 =GI+K0)™(9)

where 0 < \ = &. As stated in Lemmas 1.3.3 and 1.3.4, the operators S, —5 551 + (K})*

and %I + K2 are invertible and the proof is then completed. [

2.2.2 Injectivity of A™J
Now, we focus on to the injectivity of A® and we give theorem.

Theorem 2.2.2. The operator A% : H(OD) x L2(02) — HL(OD) x L*(0D)? x L3(99) is

injective .
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Proof. Suppose that there exists (¢, 1o, o) € H(OD) x LE(0€) such that A®(¢g, 1o, 0p)" =
in D,

q = Vg (o]
q = Vo] + Wg[6] inQ\ D.

(0,0,0)7 and consider (u, ¢) defined by
{ u = Sp[]
We can see that the couple (u, ¢) is a solution of (2.1) with ¢ = 0. Then, using integration

u = SpH[o] + Dg 6o

by parts [37]on D_ = D and D, = Q\ D, we obtain
0
2/Eu:Eu+R2/u.u:/M|_.u|_,
on
D_ oD

D
and 5 5
Q/Eu : Bu+ /{2/u.u = —/M|+.u|+ + / M|_.u|_,
on on
Ds Dy oD oD
where E/(u) is the deformation tensor define by
1
E(u) := §(Vu + (Vu)').
The system (2.1) garantees that u| - = 0 on 9D, u|_ = u|, and %h = %a(;,lq) | on dD.
Thus, we have
00,
Q/Eu:Eu—l—l%Q/u. = —/HML.UL
po on
Dy D. oD
= ——[/ 2Fu : Eu+ R2/uu}
_ D_
Therefore, we get:
= 07 = ) E - O’ D Y
u qg=c (u) on D, 2.8)
u=0, g=cy E(u)=0, on D_,
(2.9)

where c; and ¢, are real constants. Using the argument that fQ q = 0, we have
/q201/+02/:0.
Q D_ Dy

On the other hand, the fifth line of system (2.1) gives c¢; = CQ%. Taking account of (2.9), we

obtain ¢; = ¢ = 0.
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On the other hand, we define the solution to the system:

(((—A+#)w+Vp=0 in R3\D
V.ou=0 in R*\D
v=20 on 0D (2.10)
[v]|Vv| = of|z|7?) as x| — +oo

| [vllpl = o(]z[7?) as |z| — +o0.

We know that
Sh(90)|+ = Sp(¢o)|- = u|_on dD.

By (2.8), we have S%(¢g)|+ = 0. Then, (v,p) = (S%(do), V(o)) is solution of exterior
Dirichlet problem (2.10) which admits a unique solution [59]. Thus, we have (v, p) = (0, 0)
which implies

(Sp(0), Vi (g0)) = (0,0) on R*\ D.
The jump formula on 9D yields:

0 0

%(Sﬁ)(%), Vi5(¢o))|- — %(SEWO)»VS(%))H =¢o=0; xe€dD.

Consider now (v, p) the solution to the following interior Dirichlet problem:

(-A+£*)v+Vp=0 in D
V.-v=0 in D (2.11)
v=20 on 0D

We have
S5 (o)|- +Dg(00)| - = S5 (vo)|+ + Da(0o)|4 = uly on ID.

Then, we get S (v0)|- + D&(0o)|— = 0 on OD. Finally we obtain
(v,p) = (Sp(¥o) + D (00), V5 (o) + W (6o))

a solution of (2.11).
However, interior Dirichlet problem (2.11) admits a unique solution (v, p) where the un-

known p is determined up to an additive constant [S9]. Thus, we get

(Sp(%0) + Dy (o), Vi (1o) + Wq (b)) = (0,¢).

25



CHAPTER 2. RESOLUTION OF THE STOKES TRANSMISSION PROBLEM

On the other hand, the trace formula on 0D give:

2wl — 2 (w.p)l- =g%<sg<wo> VR WO, + gn
— (S5 (), V (Yo)l- = 5-(D;(60), Wi (60))|-
= 5, (5b(W0), V" (vo))l+ — 5 -(Sp(tho), V(%))

=1y = cv.

D (60), Wi (6o)) |+

We deduce that 1)y = 0 on 9D since Yg—¢y € LE(OD). Therefore, we have (S5 (1), V(1)) =
(0,0) on R* \ D which implies that (S%(¢), V5 (¢0)) = (0,0) on D,. Then, we get
(u, q) = (D5y(6o), W(60)) = (0,0) on D

Now, we consider the solution to the following exterior problem :

(~A+&)v+Vp=0 in R3\Q
V-v=0 in R3\Q
Z(v,p) =0 on 0f) (2.12)
[v]|[Vv| = o(|z]7?) as |z| = +oo
[ [vllpl = o(lz[7*) as || = 4o0.

Then, (Dg(6y), W¢(6p)) is solution of (2.12) which is an exterior Neumann problem which
has a unique solution. We deduce that (v, ¢) = (0, 0). We know that (Dg(6y))|-—(Dg&(0))|+ =
0y = 0 on O which implies that (Dg(6y), W5(6y)) = (0,0) in R3 \ 99 and in particularly
in D,. Then, we get (u, q) = (S%[wo], Vi[to]) on D

We showed that (¢, 10, 6p) = (0,0, 0), which is equivalent to the injectivity of A*. [J

Conclusion

Based on the properties shown in the first chapter, we have shown the existence and unique-
ness of a solution for the Stokes transmission problem and we gave an explicit expression in

the form of single and double layer operators.
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CHAPTER 3

Asymptotic expansion

Introduction

The aim of this chapter is to give the expression of the unique solution of the perturbed
problem and to derive high-order terms in asymptotic expansion of the displacement field

resulting from a small perturbation of the interface.

3.1 Asymptotic expansion of the density functions

In the next section, we consider the perturbed transmission Stokes problem.

Let (us, gs) be the solution to the perturbed problem:

[ (—A + &*)us + Vgs = 0 in Q\ D;
(—A+ &)us +Vgs =0 in Dy
V- -us =0 in €
U,g(|;_ — U,5|_ = 0~ ) on 8D5 (31)
15, (Us, )|+ — iy (us,g5)|- =0 on 9D;
Us = ¢ on X2

q=0.
\ Q
with 0D;s a §—perturbation of 0D defined by

ODs ={t =x+ov(z);z € 0D,0 < § << 1} (3.2)
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Using theorem 2.2.1, (us, ¢s) can be represented by:

{ us = Sp,[¢s] ; 45 = Vb, |5 in Dy,
us = Sp [0s] + Dgl0s) a5 = Vi, [ws) + W§[0s] inQ\ Dy,

where (¢5,5,05) € H(OD;) x LE(09) is the unique solution of the following system

S #s] — Sp,[ws] — Dglbs] = 0 on 0D
A(=51 + (K5,)")bs] — u(31 + (K5,)") [Ws]) — pa=Dgl0s] =0 on 9Ds  (3.3)
Sps[ts] + (31 +K5)[0s] = g on 0.

Let Vs(z) = x + dv(z) be the diffeomorphism from 0D to 0D;. The following estimates
hold.

Lemma 3.1.1. There exists a constant C' depending only on D such that for any functions
(¢5,5,05) € H(ODs) x LE(0N2), we have:

i)
1S5, [¢s] 0 Ws — STds 0 W]l L2apys < C8|l sl 12(aD4)3-
ii)
15D, [1hs] © Ws — Spltrs 0 ol 12apys < C6|¢s|120m,)3-
iii)
[(K5,)*[0s) 0 Ws — (K)* (s © V]|l 12op)ys < CO||¢s]lr2(op5)2-
iv)

|(KD,) " [@s] 0 Ws — (KD)"[¢s © Vsl L2(ap)s < C0l|dsL2aps)3-

Proof. The two last inequalities have been proven in Lemma 3.1 in [?]. Following the same

steps, we can easily obtain the first and the second ones. [

Let us consider the asymptotic behavior of S7, [¢s], S [¢s]. Dg[0s]. (Kp,)*[¢s] and
(K5, )*[ths] on ODs, and S [1hs] on 02 as § — 0.
Denote by 5 = ¢s o Uy the vectorial function with components ng(j:LQ’g).

Besides, for all z € 0D and r = x — y # 0, we define the integral operators:

S5, 10)(7) = / I%.(&, §) s, (9 dos (D).

dDs
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S5, [03)(7) = / I (&, 3)n, (3)dos @),

0Dg

(Kh,.) [¢s](T) = pv. / —87 (2, 9) 0k (%) 5,3 (9)dos (1),
0Dg

(I, / 5 (&, 5)7 (s (9)dos(D),
0Dg

D [64]() = [ = S5u(E 0o, (0)do ),
o0
and for z € 9N

S5, [s)(x) = / I (2, 3, (5)dos (7).

0Dg
By Taylor expansions of I'};(Z — ¥), I'f;(x — ¥), Sije (T, §)Vk(T) and Sy (%, y) vk (y), we

obtain:
n _V ) “ aTk
M%7, 5) = T% (2, 9) 25 S DO Gy (1),
lof=n '
::Ff'j’n(z,y)
I% (2, §) = T4 (2, y +Z§” S CH Gapn (),
* a! vy
n=l Ja|=n
:=F’fp(w7y)
—S5(Z, y)vi(y) = St y)ve(y 25” Z — )) =V S (T y)ve(y),
*Htj(x v) |a\
:=H§}‘(=’B»y)
K (2 ~ [~ n _V(y)) K
_Sijk(x’@yk(x) S@Jk X y yk 25 Z al v:p 'ij(x y)yk(y) :
*Hm(w y) ‘al P _
=H ()

We then introduce the operators with (1.2):
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SEo)@ = 3 / D5 (2, y)og (@) (y)do(y), 1> 0,

M=y p

SErs@) = 3 / DS (0, y)og (2)5 () dor(y), >0,

mTa=ngp

Dg:‘ [0s)(z /H/“" z,y)0s;(y)do(y), n =0,

K@ =po. Y [ 1w w)oe)iy@)dotw). 00

mTa=ngp

where ¢(z) = ¢5 0 ¥(z) and () = b5 0 U(z) .

Note that S5;° = Siy° = S, D’ = D, K5° = (K%)* and that o, = 0 for all ¢ > 3.

We can obtain the following theorem whose demonstration is similar to that of lemma 3.1.1.

Theorem 3.1.1. Let N € N. There exists C depending on N and D such as for any
(¢5,¢5, (95) € H((‘)D(;) X L%(@Q)

(K, ) " [ds] 0 W5 — 25% [l z2pye < C8VH 16l 2opys

N
1Sp,[¢s5] 0 W5 — Splo] — Z5nsgn[¢]||(L2(aD))3 < OV |9l (22 (apy)e
n=1

15D, [¢s] — ZWSIM olllz2opy < CS (Gl z2(0m)y0
n=1
N

D5, 185] — D5 [6s] = > 6" D5 [6s]ll 12003 < C6™16sl 12003
n=1

where 5 = ¢5 0 Vs, @Z = 15 o W
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Let (¢, ™ §()) n > 1 be the solution of the following system:

p

SHle™] — S§[p™] — Dg[o™)] =
an;lo —S%"‘m[qb(m)} + sg“—m[wm)] + Dgg’"—m[e(m)} on 0D

(=3 + (Kp))[6™] = n(z ! + (Kp))W™] — g Do) =

> o (K" ™))[6)] + p((KE" ™)) W] + n & Dg™ " [0] on 9D

Splvm] + (GT + Kg)[o™)] =

Song + S0 ST ] — KT )] on 99
(3.4)

\

We recursively construct the sentence (¢(™, (™ () Vn € N*,
Let define

N N N
N _ Zéngb(n)’wN _ Zénw(n)’elv _ Zéne(n)’ (3.5)
n=0 n=0 n=0

where (¢(0), () 9(©)) = (¢, ), 0) the unique solution of (2.4). Taking into account Theorem
3.1.1, one deduces from system (3.4) that:

(

N N N
> 5"SE o — N =D 8"SE W — N =Y 6D 05 — 67 = O(6" ') on 0D
n=0 n=0 n=0
AR Yoo -
DA T4 TGN = 9] = D ngd 0" )1
n=0
— N wZDE" 05 — ON] = 0(5N+1) on dD
N ~
> 6"SH W — N + D05 — 0N] = OV ) on 0.
\ n=0

Then we get the following lemma.

Lemma 3.1.2. Let N € N, there exists C depending only on N and () such that

N
¢ — Z 5" (L2(apyys < CONTY,
n=0

N

1 — Z 5" || (12(apyyr < CENT,

n=0
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N
105 = > 8"0" | z2amy: < COVT

n=0

where(¢p™ (™) 0(”)) are defined by the recursive relations (3.4).

3.2 Asymptotic expansion for the solution of the perturbed

problem

In this section, we develop the asymptotic behavior of us — v as 6 — 0. According to the

boundary integral representation of the solution, given in section 3.1, we have:

) Sp,les] = Splel in Dy,
Us — U = ] (3.6)
Sy [Ws] — SplY] + Dglbs] — DG[0]  in o,
where Dy is any close subset of D N Dy and €2 is any subset of Q2 \ (D U D).
We obtain with Taylor expansion of Ffj (x,7) and (1.2):
Splod(e) = [ TG0 )dos(i) 67
8D
~ N ~ N N
= / (F?j(x, y)+ Y 0T y)) (cbj(y) +> 5”¢§")(y)> (1 +> 5”0”(9€)> do(y)+O0(6M )
oD n=1 n=1 n=1

- / M (2, )o(w)do(y) + S0 Y / 5 (2, g)og (9) 6% (y)do (y) + O(6™ )

oD n=1 m+q+k:naD
~ N ~
= Splel(x) + ) 0" > / 5" (2, 9)04(y)0™ (y)do(y) + O(5N+!) Va € OD.
n=1 m+q+k:naD

By the same way, S}, [15](z) for x € 0D can be rewritten as follows:

S5 [s) (2) = / I (2, 5)(4)dos(5) (3.8)

8D

= Spll@) + Y > / 175" (@, y)og ()™ (y)do (y).

n=1 m+q+k:n8D
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Similarly, we have

D5 [65](x) = / Sy ()05 (y)do () (3.9)
o0

~ [ =St ( +26" ) (y) + 08" ), 2 € Q.

B9)
Then, we get the following result.

Theorem 3.2.1. Define for n € N the vector-valued functions u" = (u}');—1 2,3 as follows:

> / 5" (@, 9)oy()6;” (v)do(y) Vo € Dy

m+q+k:naD

ww -] X [T wic)
m+q+k:naD
+[ Syt Wiow)  Yreo
L 99
Then the following formula holds uniformly for x € Qy U Dy:

us(x) —u(z) = Zé"u”(m) + 00N ). (3.10)

n=1

The remainder O(6N ) depends on N, Q and Q.

3.3 Computation of the first order approximation

Let us compute the first order approximation of u;s explicitly. If we put (¢(?, () 90) =
(6,1, 0) defined by (2.2)-(2.3), (61, (M) #()) is then defined by the following system:

(

SHeW] — Sp[wW] — DgeV] =
—S[60] + S v @] + D 0] on 9D

ﬂ(—%ffr(/C%)*)[cb(”]—M(%f ( H))] — g Do) =
~((K5)) 60 + u((KE) )] + 1 DG [0 on 9D

SpM] + (51 + Kg)[0W] =
_SS’IW(O)] - ’C?z’l[e(o)] on Of).
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Consider the vector-valued function u' = (u});—; » with:

S T, y)ot(y)6P (y)doy) in Do

m+q+k=15p,

i@ =1 Y [T e w )

m+q+k=15p,

+ / — S, y) ()6 (y)do(y) in Q.
\ I

Therefore, u! takes the form:

w@) = [ Thea)re o) + [T e o

oD oD

+ [T @ )slwdato)s € Dy
oD

and more explicitly:

ul(z) = / 1% () ()60 (y)dor () + / 1% (2, )é) (y)dor ()

- / 5 (2, y) 0 (y)do(y) + / — S (2, Y ()0 (y)do(y); @ € Q.
oD o0
Thus, we get the following formula for x € Qy U D

us(z) — u(z) = ou'(x) + O(6?).

Conclusion

We present a result about the construction and justification of the asymptotic expansion of

the solution of the transmission Stokes system with a boundary perturbation of an inclusion.

We derive high-order terms in the asymptotic expansion of the solution with layer potential

techniques. A reconstruction procedure to determine the localization of the inhomogeneity

and the shape of the inclusion based on boundary measurements may be based on our results

here.

The method, which is explicitly carried out here for the interior Dirichlet problem of the
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Stokes operator in three dimensions, can also be used for many other boundary value prob-
lems, whenever a suitable potential theory is available, for example in the case of harmonic,

elastic, or hydrodynamic boundary value problem.
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Part 11

Asymptotic expansion for Eigenvalues
and Eigenfunctions in the Presence of

Small Boundary Perturbations
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CHAPTER 4

Asymptotic behaviors for eigenvalues and eigenfunctions

associated to the Stokes operator with a small boundary

perturbation

Introduction

The main objective of the second part on this report, is to present a schematic way to de-
rive high-order asymptotic expansions for both eigenvalues and eigenfunctions for the Stokes
operator caused by small perturbations of the boundary. Also, we rigorously derive an asymp-
totic formula which is in some sense dual to the leading-order term in the asymptotic expan-
sion of the perturbations in the Stokes eigenvalues due to interface changes of the inclusion.
The following is an outline of this chapter. In Section 4.1, we describe the main problem
in this part. In Section 4.2, we develop a boundary integral formulation for solving the
eigenvalue problem (4.4), and we present some preliminary results. Finally, Section 4.3 is
dedicated to develop asymptotic expansion of the perturbations in the eigenvalues, in eigen-
functions and in eigenpressures. More precisely, in the Section 4.3.1, we present some basic
results related to shape perturbation and we develop high-order terms in the expansion of
the integral operator. In Section 4.3.2, we (formally) provide by layer potentials an asymp-
totic expansion for the perturbed eigenvalues if the unperturbed eigenvalue is simple. But in
section 4.3.3, we rigourously derive the leading-order term for the perturbed Stokes eigenval-
ues in Holder space and for both simple and multiple eigenvalues. Here the problems to be

study are more general than the one introduced in Section 4.1. In Section 4.3.4, we end our
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PERTURBATION
chapter by developing asymptofic expansion of the perturbations in the eigenfunctions and in

eigenpressures using the same problem configurations.

4.1 Model problem

Let ©Q C R3 be a bounded open domain with boundary of class C?. We consider the following

eigenvalue problem for the Stokes system with homogeneous boundary conditions:

—uAv+Vp=I inQ

V=0 in

v=>0 in 0€).
Here v = (v, v9, v3) denotes the velocity field, u the viscosity while the scalar function p is
the pressure.

Now, if we suppose that p is a positive constant, then the first equation in the above system

is equivalent to:
—Av+V(p/p) = (Mp)v inQ.

Then, if x is constant we have the following eigenvalue problem

—Av+ Vp=Xv inQ)
Vu=0 in() 4.1)
v=20 inof2
with p :== p/pand X := \/p.
It is well known that this eigenvalue problem admits a sequence of a no decreasing positive
eigenvalues 0 < A\; < Ay < --- < )\, < --- tending to infinity as n — +oo.

The eigenfunctions {v, },>1 C (H(2))? and the eigenpressures {p,},>1 C L*(Q2) may be

taken so that {v,, },>; constitutes an orthonormal basis of
H(Q):={ve (H;(Q)*: V-v=0inQ}.

The pressure p is determined up to an additive constant.
We assume that the boundary 0f? is subjected to a small, smooth deformation and that the

boundary of the deformed domain €25 is given by:

Qs ={Z =z +oh(z)v(z), =z €I} 4.2)
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where v(z) 1s the outward normal vector on J%2 and /(z) 1s a real function in C*(0f?) that

satisfies
1h(z)]|c2(a0) < 1. (4.3)

Obviously, the domain §2; is of class C? and the Dirichlet eigenvalue problem for the Stokes

system can be defined in (25 as well.

In this chapter, we derive the asymptotic expansion of eigenvalues, eigenfunctions and

the eigenpressures solutions to the Stokes system:

—AU(; + Vp(s = )\51)5 in Q(g
V.v5 =0 in Q(g (4-4)
Vs = 0 in 895

Here we suppose that the eigenvalue )\, is simple. Then the eigenvalue \;s is simple and is

near to \q associated to the normalized eigenfunction v;.

4.2 Integral equations method

We now develop a boundary integral formulation for solving the perturbed eigenvalue prob-
lem (4.4). The components of the fundamental Stokes tensor I' = (Fu)f j—1 and those of the
associated pressure vector P = (Bj)?,jzl’ which determine the fundamental solution (I, P)

of the Stokes system in R?, are given by (see for instance [6], [37])

o 1 51']'6“5‘:”‘ 1 eiﬁ\z\il
Pyh o) = == = o 00y (S5 45)
where Ox; denotes 9/0x; for i = 1,2,3 and i* = —1. We recall that the i** row I'; of I'

satisfies
—AT; + VP,(z) — A\[; = €'§(x) inR3

V.I; =0 in R3;

(4.6)

in the sense of distributions and where (e;7 = 1,2, 3) is the orthonormal basis of R3. Note
that we used the Einstein convention for the summation notation omitting the summation sign

for the indices appearing twice.
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4.2.1 The potential theory for the Stokes system

Let us denote by ¢ = (1, 2, 3) a complex vector-valued function with class C°(992).

The hydrodynamic single-layer potential with density o € C°(9€2)? is the vector function
S(N)p(x) defined by

S(Np(r) = / DA [z — yl)e(y) do(y), = € RO\OQ. “.7)

The pressure term Q corresponding to the single layer potential is the function given by

Qule) i= [ Plag)oly) doty), = B\0R
o9
For a careful study of these potentials, one can refer to [34], [37], [60].
Taking into account the well known properties of Green function I', one obtains the result
that the pair (Sg, Q) are smooth functions in each of the domains 2 and R*\( respectively.

Also these functions are classical solutions to the Stokes system (4.1).
The continuity and jump relations of the Stokes surface potentials on the boundary Of
are described in the following proposition (see [6], [17] pp. 41-42 or [60] p. 66 ):

Proposition 4.2.1. Let ¢ € C°(9Q)3 and let S denotes the surface potential defined in (4.7).
Then on the boundary 0f) the following continuity and jump relations are satisfied:

(S(
sl ),

(SNp)|l- =8Ny

Ne)l,
= +20 4 [0 T o(y) do(y).

:I:@

I

4.2.2 Boundary integral formulation

In this section, we give a boundary integral formulation in order to solve the eigenvalue
problems (4.1) and (4.4).

Proposition 4.2.2. Suppose h satisfies (4.3). Then, there exists 69 > 0 such that the map
Us(x) defined by

Us(z) =z + dh(z)v(x) (4.8)
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is a C*-diffeomorphism from 051 fo 0¥15 for 0 < 0¢. In addition, the following equality holds

1
det (VW) = 1+ tV(w)d+ 5 [(trV (1)) = tr(V (hr)?)]6? (4.9)
+det (V(hv)) 6%,
where tr means the trace of a matrix. Moreover, we have trV (hv) = div(hv).
proof Recall that the function h(z) is C? on O, then the map W;(x) is also C?. A simple
calculation yields the equality (4.9). Consequently, for ¢ small enough the map Ws(x) is a
C?- diffeomorphism from 92 to 9.

We further denote \Ifgl the reciproque function of Ws(z). Thanks to \I’gl, we can define the

operator As(\) as follows:
As(Np(x) = (So,(Np(¥51)) (Ps()), @ € (L*(09Q))° (4.10)

where Sq, () is the hydrodynamic single-layer potential given by (4.7) when we have re-
placed the boundary 0€2 by 0€2s.

Fori,j € {1,2,3}, we can define the j""-component of the vector-valued function Az(\)

as follows:

(A N)p)i(2) = ((Sa,(N9), (B51)) (Ws(w)), ¢ € (LFO9))° @11

The j'"-component of the single-layer potential S, () is given by

(S0, 0)9), (@) = [ Tal0 |5 = 3Dei(9) dos(@), &€ B\ODs,j = 12,3, @12
Qs

where ¢; is the i*"-component of the vector-valued function ¢. Using Proposition 4.2.2,
relations (4.11)-(4.12) and the continuity relations given by Proposition 4.2.1, we obtain for
x € 0S) that

(A V), (@) = /Fﬁ(% [Ws(x) — Ws(y)|) det (VWs(y)) @i(y) do(y), j=1,2,3.

G19)
(4.13)

Let Ay the operator defined as in (4.10) by

«40¢ = S()‘)¢7

where ¢ € (L?*(99))3. Then, we have the following result, which is a slight variation of the

Lemma 6.1 due to Ammari et al. [8, 10] for the scalar eigenvalue problem.
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Proposition 4.2.3. The operator-valued function Ag(A) © H 72(081)° — H7=(0%)° is

Fredholm of index zero in C\iR ™. In addition the Dirichlet eigenvalues of the Stokes system

(4.1) are exactly its real zeros.

From Proposition 4.2.3 we know that if )\ is an eigenvalue of (4.1) then )\ is a real zero
of Ay()\). Moreover, for €, small enough, the function Ay *()\) is meromorphic in D, (o),
where D, (o) means the disc of center )\, and radius ¢,, and )\ is its unique pole in D_eo

Furthermore we have the following Laurent expansion:
AT (A) = (A= Xo) Mo + Ro(N), (4.14)

where ( : KerAg(Ao) — KerAy(Ao), and Ry(A) is a holomorphic function.

Our main results in this section are summarized in the following theorem.

Theorem 4.2.1. Suppose that the eigenvalue \q of (4.1) is with multiplicity 1. Then, there
exist a positive constant 8y(€g) such that for |d| < oo, the operator-valued function \
As(\) has a real zero \(0) in D, (\o). This zero is exactly the eigenvalue of the perturbed
eigenvalue problem (4.4), and is an analytic function with respect to § in | — 8o, do|. It satisfies

A(0) = Ao. Moreover, the following assertions hold:

A5 (3) = (= X0 + RN, s
0(0) : Ker(As(\(0)) = Ker(As(A(9)),

where Rs(\) is a holomorphic function with respect to (0, A) €] — o, o[ X D¢, (No)-

4.3 Asymptotic formula

4.3.1 High-order terms in the expansion of 4;

We now present some basic results related to shape perturbation. The methods to be used
here differ from those in [5, 8], but the expressions deduced are the same. To begin, let
(11(z), 72(x)) be the orthornormal basis of the tangent plan to the surface OS2 at a regular
point . Their cross product is then orthogonal to 02 at the point x. By changing their order,
we can assume that 77 X 7 is a vector pointing towards the exterior of the surface 9€). Then

dividing it by its length yields the unit normal vector v(z), that is:

o) = T1(z) X To(x)

= 4.16
ri(z) % (@) (10
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for z € Otl. Evidently vy = v, where v was 1nfroduced 1n section 4.1.
Set
Tf = grad¥s - 7, andTés = grad¥s - 7.
Using Proposition 4.2.2, we find that:
7 =7 +0Mr, andT) =1+ M, (4.17)

where the (3 x 3)- matrix M is given by:

Oy (hvy) Oz(hvy) 05
M =1 01(hvg) Oo(hin) 03(his)
31(111/3) 82(lw3) 83

with v; means the i-th (+ = 1,2, 3) component of the vector v.

For ¢ sufficiently small, one can see that the outward unit normal vector to 9€); is given

by
V() = 71 (2) x 73 (2)
|7 () x ()’

for z € 0€). Then, the following asymptotic expansion holds.

(4.18)

Proposition 4.3.1. Let vy be given by (4.16). Then, the outward unit normal vs(x) to 095 at

x, can be expanded uniformly as
vs(z) = v (z) + Z(S”l/(")(x), x € 01,
n=1

where the vector-valued functions V™ are uniformly bounded. In particular, for © € 0):

1 [7-1 X M1y + Mt X 79 — (Vo (11 X M7y + My X 72))V0]'

- |7'1 X TQl
Proof. Considering the expansions (4.17) for ¢ sufficiently small, the relation (4.18) be-

comes:
a+ db + d%c

_ arobroce 4.19
la + db + d%c|’ (+19)

Vs
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where a, b, and c are vector-valued functions given by:
a=7T X7y, b=MnrXmn+7 XMm, andc= Mm X M.

So that, by expanding the quotient (4.19) as J tends to zero, we get the desired results.

Next, one can use Proposition 4.2.2 to get the uniformly convergent expansion for the

surface element as follows:

Proposition 4.3.2. Let § = Us(y) where Vs(y) is given by (4.8) for y € 0N). Then, the
following expansion for the surface element dos(y) holds uniformly for y € 0€):

dos(5) = det (VUs) do(y) = (00(y) + 01(y)d + 02(y)6* + 03(y)8°)do(y),  (4.20)

where o9 = 1, o1(y) = V - (hv), o2(y) = %[(tTV(hV))2 = tr(V(hw)?)], and o3(y) =
det (V(hv)).

Set
T=Vs(z), x€N (4.21)
§=Ys(y), yeoIN, (4.22)
and define .
O(z,y) == = (Vs(z) — Us(y) — (x —y)) ford #0. (4.23)

)
Recall that U5 is a C? vector-valued function on 952, then © is also a C? function. Moreover,

the following holds.

Proposition 4.3.3. The vector-valued function ©(z,y) is C? on 9Q x 0N and there exists a
constant C' > 0 that only depends on ) and h such that:

Oz, y)l < Clz —yl,
O(z,y) - (z — y)| < Clz -y,

forall x,y € 0f).

Proof. Expression (4.23) shows that:
Oz, y) = h(z)v(z) —hly)r(y).

44



CHAPTER 4. ASYMPTOTIC BEHAVIORS FOR EIGENVALUES AND EIGENFUNCTIONS
ASSOCIATED TO THE STOKES OPERATOR WITH A SMALL BOUNDARY
PERTURBATION

Since OS2 isa C? surface, there exists a constant C” > 0 such that:
() = v(y)| < 'z =y, and [v(z) - (z — y)| < C'|lz -yl

for all z,y € 0.
The last inequalities and the C? regularity of & yield the results of the proposition.

Now, by using (4.23) we obtain:
T—g=x—y+00(z,y), (z,y)e€ N x I, (4.24)

and the following results hold.

Lemma 4.3.1. Let r > 0 be a fixed real and m > 2 be a fixed integer. The following

asymptotic expansions

eiﬁli"fg\ eiﬁ|x7y|

(1 + 6T (@ y) + > 8T (A, y)>, (4.25)

iz —gl™ |z —ylm =
AT 1 ) (i)
8@3@ﬁ = R\ Nz, y) + ORI (X z,y) —1—25” R (X\;z,y)  (4.26)
=Y n>2

hold uniformly for (\, z,y) € B,.(0) x 0Q x 00, where B,.(0) is a ball in the complex plane of
center zero and radius r. In addition the functions T\™ ()\ x,y) and Ry, () (A\; x,y) are smooth

and bounded uniformly on B,.(0) x 02 x 0). The first coefficients are given by:

g ivVAz—y| _
RW) A x,y) = 81,.896.6—
0 ( y) i J |x _ y|
and
L] (51 i i % ﬁr
R (Nxy) = (;p_y).@(x,y)(_m_gm?] N2 7N 15id AT )

STl (ri0; +1;6;) 7 \/—[ mﬂj 1 (r8; +1r;6:)
2 (v —y) O(z,y) e —y) - 6(,y)
T 4 i (rﬂj + Tj‘gi) ) eiﬁr

rt 2 (z—y)-O(z,y)/ 1

]

+(z—y)-O(x, )<4lf N5

+15[—7

rf r2 o (z-y)-O(z,y)
where r = |x — y|, r; = x; — y;, 0; means the jth component of ©, and 0;; means the

Kronecker index.
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Proof. For m =2 and x # y we have:

#— P =l —y+ 00y = |z —yP (1+6c? (@,9) + 2P (@),
where

2 2@(I7y) ) (I — y) 2 O(z,y)-O(x,
Dy = = &) = S

Proposition 4.3.1 shows that c§2) (x,y) and 052) (x,y) are bounded uniformly on 02 x OS2.

For m > 2, we have:

~, ~1m m O(x m

8317 = o =y + 86" = o — o1+ 6L

where x # .

Using (4.23), Proposition 4.2.2 and Proposition 4.3.3, we see that the regular vector-valued
function (z,y) — % is well defined on 02 x 02, and it is independent of ¢.

Therefore, we can expand:

1T —g|™ = (x,y) + 25" m) (x,y) uniformly on 0 x 02, 4.27)

where the first coefficients ¢\ (z,y) = |z — y|™, ™ (z,y) = m < z — y,O(z,y) >

m— m m m z— O(z, 2
o=y 2 and i (2, y) = Flo—y|" [|ZEL P+ (m—2) (< 2=k, T2 > )] Moreover,

if m is even, then ™ (r,y) =0forn >m+ 1.
Now combining (4.27) for m = 1 with the well known asymptotic expansion of the exponen-

tial function, we immediately get

VATl — Z 0"K,(A;z,y) uniformly on B,(0) x 02 x 09, (4.28)

where the first coefficients Ko(\; z,y) = eV = eiVAe—ul and the coefficients K.\ 2,y)

can be deduced recursively from .

Thanks to relations (4.24), (4.27) and (4.28), we can obtain the desired result given by (4.25)

where the coefficients Té m)

can be deduced easily from ™ and K,.

To prove relation (4.26), we firstly expand

eVAE-gl _ q 1

amzarj = 7 (9528@ (eiﬁ\i‘*ﬂ _ 1) +ajz ( 1

— 1

)0, (VNET 1) (4.29)

z
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+05, (=) 05, (VT — 1) + 05,05 —) (VAT — 1),
e N G R o | )
To simplify, let us denote r = |z —y|, r; = x; —y;, 7 = | — g|, and 7; defined by the relation
0,7 = L. (4.30)
T
Then, 5
Now, by using the following result
Dz, (VI 1) = 95 (iVAF) VN = iV AL VAT, (4.32)
T
we get that
iV i—§ i PNy Oij Tty . T i/
05,05, (VN9 1) = iV X [0, (L) eVA 4 g, ] = iV/A[ 2L - T /N ] VAT,
T T rT T
(4.33)

To find the desired result in (4.26), we may use (4.31), (4.32) and (4.33) to see that the relation
(4.29) verifies:
VAE-gl _ q

dij 5 i . TT Fili /N | 200 il
— [i(VA%Z 3 W T i/ 5T i 300 5T
r r r

74 7"5

05,0,

|z — g
On the other hand, the components of the vectorial relation (4.24) can be given as follows

Ti— Ui =1 — vy +00i(x,y). i=1,2,3 (4.35)

th

where 6;(x, y) means the i*" component of the vector-valued function O(z, y).

Then, by relations (4.30) and (4.35) we deduce that
T, =3, — U =x; — Y + 08 (x,y) =1 + 00;(x,y), i=1,2,3. (4.36)
Using both relations (4.24) and (4.36), we get the following expansion
ity = ay? + al?6 + als?, (4.37)

where the first coefficients: a( i) =11y, ag =r;0; + r;0; and oz(”) 0; - 0;.

Now regarding (4.27) and using the fact that c0 7& 0 for each integer m. Then one can

expand

1 [o.¢]
— =k (2,y) + Y 0"k (2, y) uniformly (4.38)
=1
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where the first coefficients: k;  (z,y) = (c )‘ (z,y), and /f\l Ty = (a7 )2 (@, y).
By using (4.37)-(4.38), we get that

TiT5 g 4500 13 g 4.39

,,:m + /81 + Z /Bn m? ( . )

where the first coefficients: 5822(:10 y) = ozé” )(cém))_l( ,y), and

(@, y) = —al? (™ (™)) (@, y) + o8P (M) ().

To achieve the proof, we may insert all expansions (4.28), (4.38) (for m € {4,5}), and
(4.39)(for m € {5,6,7} into (4.34). We get that

aﬁ;ﬁ@% = R(()ij) (z,y) + R (z,y) + f: S"RUD (2, 7)
n=2
where the first coefficient:
Ry (N, y) = (iVAGky — 30365 — X285 — TivVABYE +15852)) Ko +38,k8) — 15657
= [IVA() T =305 (c”) 7 = N2y () 7 =TV Ay () 15 () 7| A
—|—35ij(c§]5))_1 — 15rirj(c(()7))_1.

Using the fact that cém) = |z — y|™, we find that

o VA a—yl _ 1
R((JJ)O\;%?/) = aziazjw

Based on (4.34), we find that
RPNz, y) = (iVAGky — 30,58 — 2657 — TivAslE) + 15859 K,

IV Y — 36,887 — A28 — 7iﬁ5¥ + 158V Ko + 30,51 — 15817
So that, by using the fact that K; = iv/\O - &=y iviacg” , we get

R(” \z,y) = iv)O- (- )(\/_(5”( ) 1—35Z~j(c(()‘r’))’l—)\27"1-7"]-(0(()5))’1—7i\/anj(686))’1

+15nrj(087))_1)eiﬁ031)
. 4 5)\— 5 5)\— 5 5)\ —
(VA0 ()26 = 3035 (cf”) 26 = X2[rany ()2l + (185 + 100 ()

—TivVA =i () 20 4 (r30,44730) () 1+ 15[ —rir; (c§7) 287 +(ri6 47,60, (57) Deiﬁcéﬁ
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+50ij(60 C" — 15[—7'1‘7’3 (CO Cq -+ (Tiﬁj —+ rj(ii)(co J

Using the explicit forms of the coefficients c(()m) and cgm) given above, we immediately get

the desired expression of Rgij ) (A;z,y). The other coefficients can be deduced easily by the

: f (m)
same manner 1n terms of ¢, .

Now using (4.35), we obtain for ¢, j = 1, 2, 3 that:
(% = 6:)(Z; — 4;) = do(x,y) + 641 (2, y) + 6o, y), (4.40)
where
go(@,y) = (@i — yi)(z; —y;),  9u(@,y) = 0@, y)(x; — y;) + 0;(x,y) (@i — vi),

and
92(z,y) = bi(z,y) - (2, y).
Now, by using (4.20), (4.27) and (4.40), we immediately get

(i’z - gz)(?] — gj)dO}s(?j) — <T0(l', y) + 5T1 ([L’, y) + Z 5nTn(fE, y))dd(?/)a (4.41)

’f - y’m n>2

where the Taylor coefficients T,, can be given explicitly with the aid of g, g1, and gs.

Next, the following result holds.

Lemma 4.3.2. The following uniform expansion holds on R x 0€) x 0€):

(& — 5:)(%; — §;)|& — §1VNTdos(5) = Es(\z,y) doly) = Z 0"En(As 2, y) do(y)
" (4.42)

with
Eo(X;2,) = gol, y)|w — yle™ =,
and the other coefficients I, are deduced from those o, cg), K, and g,.

Proof. From the proof of Lemma 4.3.1 (for m = 1) and from relations (4.20) and (4.40), one
can get that

(T5 — 0:)(T5 — 75)|T — eV dog () = (?]0(% y) +0g1(z,y)+
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0 (w,y )(25" )(imm,y)) (70(y) + 0o (y)+
50a(y) + 0%03(y)) do(y).

By collecting terms of equal powers in the above relation, one can deduce easily the uniform

expansion (4.42) with
Eo(\s2,) = golw, y)|z — yle™V Ny,

Now, from (4.5) we have

VN Sy ddgy VY 8y Edy
Lii(A\ |z —y]) = ym [7j - J] + 1 [z—j — 4i 7”4] — 3ird;i;)
1 )y e Oij T,
+47r)\[_ 75 }+47r)\[_ 5 }

where r = |z —y| and &; = x; — y;. Then, by inserting relations (4.25), (4.40), (4.41) and that

given by Lemma 4.3.2 into above identity, we immediately get the following main results

Proposition 4.3.4. Let the perturbed boundary 0S)s defined by (4.2). Let ¥ and 7y given
by (4.21)-(4.22), and the surface element dos(7j) given by (4.20). Then, the components
I'i;, 1 < 1,5 < 3 of the fundamental Stokes tensor can be expanded uniformly as:

D013 = 1) dos(@) = (T O 2 = yl) + 0T O, e = y) (4.43)

+ 30T e — ) doly), y € o0

n>2

where the first coefficients:

8 T 1 15 4i
rOM, |z — (7" L@ _glo _3lo_ )+ (5~ D50 — T8
g Ml =yl) =T+ 3T =35 =355 ) + (2 = D700 = 57640
3 15 .
L ;) T,
PSS eall
and
POy Ly — oy o 90 (g0 gty g GTN 115 T4, + T go]
i (A |z y|)-—ﬂ 1 +X1 ﬁ \ + - ()\2 ) 1+ 417 go
4 . @, 3i 15 .
—— [T T - T B+ T
a0 9+ 100 = p Bt 5T
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In Proposition 4.3.4, the coetficients ry and r; are deduced trom (4.27) for m = o.

Now, introduce a sequence of components of integral operators (A("))nzo, defined for

any p € L*(00Q)3 by:
(A ) (z) = /FE?)(w,y)st(y) do(y), fori,j e {1,2,3}andn > 0.
oN

Using previous results, il is clear that we know explicitly the first terms AEO), AW For

(3

any positive integer /V, we can by recursive method get the term AEN). Then, the following

theorem holds.

Theorem 4.3.1. Let A° be the operator defined by (4.10). Let V() be the diffeomorphism

defined as in Lemma 4.2.2. Let N be a positive integer. There exists a positive constant C
depending only on N, and ||| c2 such that for any ¢ € L*(0Qs)® and i,j € {1,2,3}, the
it"-component A° defined by (4.13) satisfies:

N
” (A(S@)ioqj5 - (A(O)‘P)i - Zén (A(n)"o)iHm(aQ) < C5N+1||90”L2(89)37
n=1

where ¢ = poVs.

4.3.2 Asymptotic expansion of the eigenvalues

To develop asymptotic behaviors of eigenvalues and eigenfunctions with respect to the pa-
rameter of perturbation ¢, we may use the results of Theorem 4.3.1. Then, the following

asymptotic expansion related to the operator A5 appears clearly.

Proposition 4.3.5. Suppose that we have all hypothesis of Theorem 4.3.1. Then, the operator
A°(\) defined by (4.10) can be expanded uniformly for x € OS2 as follows:

AN = AN + AV N + SPAPD N+ asd — 0, (4.44)

where ¢ € L*(0N))3, the i'"-component of the first term is given by

(4%&@4@—/ﬂ%aw%@wdw fori,j e {1,2,3},

o0N

and more generally, the i*"-component of the term with order n is given by

(NWM@AW=/WW%M%@de fori,j € {1,2,3} andn > 1.
o0
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The coefficients 1';; e given by (4.43).

Now, based on the well known works [8, 10], we tray to give (formally) an asymptotic
expansion related to the eigenvalues \; if the eigenvalue ) is simple. But, To get an explicit
asymptotic formula for A; we may develop our analysis in some Holder space. This will be
given in Theorem 4.3.2. Before that, let a;(J) denotes:

1 )
a;(0) == —tr / (A = X0) (A2)"HN)ONAY (N)d. (4.45)

um
8D,

The functions a;(§) is analytic in a complex neighborhood of 0 and satisfies: a;(8) = a;(9).

The following main result holds.

Proposition 4.3.6. Let )\ be a simple eigenvalue of the problem (4.1). Let the operator A°
be defined by (4.10). Then, there exists a small positive number Oy such that the eigenvalue
A(0) is analytic in | — 6o, o[ and satisfies:
A(8) = Ao+ 0A + ) A0, (4.46)
n>2

where the first coefficients are (formally) given by:

M= gt fop, (A= X0) [(A© A(”(A)(A NTHNRAD (V)] dA,
Ao = ﬁ tr faDeo()‘ /\0 [ A A 0))71@“4(1) + (A(0>)*1A(2)(A(O))*lc‘),\A(O)
+(A(0))—1(A(1)(A(0 ) 1)2@“40 ] A\
Proof. Let \s be the eigenvalue of the problem (4.4). It is well known that )\s is also simple
such that \s — A\gas § — 0.

On the other hand, if we take the curl of the first equation in (4.4), we see that there exists a

function w = w(vs) called vorticity associated to vs such that:

Aw+Asw =0 1in

vs =0 in 0€).
That is, w is an eigenfunction of the negative Laplacian, but with homogeneous boundary
conditions on the velocity v;.

Moreover, let us be the stream function for vs given as in Lemma 2.10 of [28]. Then, w =

Aug and Vus = 0 on 0f). Since us is determined only up to a constant, we can then assume
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that us = U on O!..

Thus, u; satisfies the following eigenvalue problem for the Dirichlet biharmonic operator:

AAus + N\sAus =0 in )
us = 0 in 0.

(4.47)

Note that Temam [54] exploits the similar correspondence between the Stokes problem and
the biharmonic problem in the proof of the regularity of solutions to the Stokes system and to
justify several results. Moreover, as pointed out by Ashbaugh in [11], there is a similar cor-
respondence between the eigenvalue problems for the Dirichlet Laplacian and system (4.47)
with the boundary condition replaced by Aus = 0.

Then, one can exploit this correspondence to use the approach used in [10] in order to de-

velop an asymptotic expansion for the eigenvalue.

On the other hand, it is well known [8, 10] that there exits a polynomial-valued function

d — Qs(A) of degree 1, analytic in | — dy, dp| and of the form:
Qs5(A) = X —a1(0)

such that the perturbation \s — )\ is precisely its zero. For the existence of Qs one can follow

the general approach used, for example, in [10] for the case of Laplace operator.

Writing:
Qs(As — Ag) = 0.
Then we have
As — Ao = a1(0).
Therefore, by (4.45) we have
As — Ao = %tr / (A = o) (AL N9 A° (V) dA
dDe,

On the other hand, for ¢ in a small neighborhood of 0, the following Neumann series con-

verges uniformly with respect to A in 9D, :

(A°)7H(\) = )+ f: AOY T [(AD () = A7) (A9) ()]
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S0,
s — A = %tr / (A = X0) (A LN, A% (N dA+
D¢,
gt [ =20 S AD) TA[(AT) - A (AY) ] A dn

k=1

dDe,

1
By using (4.14), we find that _—tr / (A = 20) (A@)"L (N9, A% (M) dX = 0.
m
dDe,

This result is a direct consequence of the fact that Ro(\) and 9,.4°(\) are holomorphic in the

variable \.

Now we have:

A do= ot / (A= Ao)(A@) () [(AD ) — A(N)) (A) ()] A’ (A) dA+

1y, / (A= M) (AD) T [(AO(A) — A7) (AD) (A0 A°(N) dA+

2
8D¢,

it [ =20 SAT) T [(AV0) — AT) (A )] AN
8D, k>3

Inserting expression (4.44) into above relation, we may get:

A=A = %tr / (A=20) (AN EAD (AT 452 AP (AO) g ] (9,40 450,40
dDe,

+520, AP 4 ... o dX\ + %tr / (A= A) (A [5A(1)<A(0))—1+

9De,
S2A® (A1 4. -}2(@«4(0) + 6NAW 4 29, A@) ) dA + -

If we collect the same powers of §, then we get the desired results.
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4.3.3 Asymptotic formula in Holder space

In section we suppose that any shape deformation like (4.2) occurs inside a bounded do-
main 2 in a Holder space. Based on the works [5-8, 14], we may advance the asymptotic
expansions for simple and/or multiple eigenvalues of the Stokes operator and we may give
explicitly the fist term correction. Since the Stokes system can be viewed as the incompress-
ible limit and as done in [7], our method in this section may be deeply based on the ones

developed in [5] for the elastic case.

Suppose that in this section that  C R? is a bounded domain with C'* boundary.Let D
be an open subset of €2 such that dist(02, D) > dy > 0 representing an inclusion made of a
different Newtonian fluid material. Assume that the boundary 9D is of class C?*. We denote
by o and o the stress tensor fields in Q\ D and D, respectively. We assume that both Q\ D
and D are occupied by isotropic and homogeneous Newtonian fluids. Then, the tensors o

and o, may be given by
(Us>ijlk = us(ékiélj + (5kj5h-) for i,j, k,l = 1, 2and s = O, 1, (448)

where 149 and i, are the viscosity constants of the flow in Q\ D and D, respectively. Given
two (2 x 2) matrices A and B we denote by A : B the contraction, i.e., A : B = Zij a;jbij.
Now, it is useful to introduce the strain rate tensor D for the flow as follows:

1( avi an
2

D(v) := %(VU + (Vo)") = ( dx; | O >1§i,j§3.

Let op := ooxo\p + 01xp- Then according to [14], one can rewrite the eigenvalue problem

(4.1) as the generalized one:

( —div(epD(vg) — pold) = Agvg in Q
V.UO =0 in
(4.49)
v =10 in 0f)
ool =1

where (v, po, Ao) € (H?*(Q))* x H'(Q) x R and Id means the identity. Here we refer
the reader to ( [14], Theorem IV.5.8) for more details about the regularity properties. On the

other hand, if S mens the Stokes operator, it is well know that (see for example, [7, 14]) there
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exist an orthogonal projection (the Leray projection) £~ such that:

S(v) = P(=Av), Vv € (H*(Q))>N H(Q).
In consequence, the Stokes operator enters the general framework about spectral properties
of —A.

The J-perturbation, denoted by Dy, of the domain D is given by
0Ds :={% =z + oh(z)v(z), x€dD} (4.50)

where here () is assumed to be real function in C*!(9D) that satisfies

|h|lc1.1apy < cofor some positive constantc. 4.51)

Let op, := 09X\, + 01X D,- Therefore, (4.4) can be generalized to the following perturbed

eigenvalue problem

([ div(op,D(vs) — psId) = A\svs in Q2
V.us =0 in 2
(4.52)
vs =0 in 0f2
lusl| =1

where (vs, ps, As) € (H*(Q2))? x H'(Q) x R*.
Our purpose in this section is to develop a rigourously asymptotic behavior of the eigenvalue

of (4.52) assumed to be more precisely. The main result is the following.

Theorem 4.3.2. Suppose that @ C R? with class O, Let \y be a simple eigenvalue of
the problem (4.49). Assume that we have (4.51), and the pressure still the same if we have
(4.50). Then, the first term correction in the asymptotic expansion of the eigenvalue \s is

given through the following formula:

As — Ao = 5/h(x)V[D(US)](J;) : D(vi(z))ds(x) + O(6*7),
oD

where [3 some positif constant and V means the viscous moment tensor (VMT) given by
V[D(v§)] = [Uil(Vlﬁvg(x)T) ® T+ (g—?ﬁvg(x)y) ® v|. Here, we denote by v, T respectively
the outward normal vector and the tangent vector to 0D and V), a given operator expresses

the transmission conditions for vy.
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Proof. 'To derive the corresponding tormulae tor the eigenvalues we will use an 1dea close

to Osborn’s theorem [50] which gives estimates for the convergence of the eigenvalues of a
sequence of compact operators. For any f € L?(Q2), define the linear operator 7. f = u,,

where . is the solution to the problem

{ —div(op,D(us) — psId) = f in{Y, (4.53)

us =0 on 0f).
For the same given function f, we define the linear operator 7' f = wg, where v, is the solution

to the problem

{ —div(epD(ug) — pold) = f in (), (4.54)

up =0 on 0f.

Clearly 7T, and 7' are are compact self-adjoint operators. One may use standard energy
estimates based on Korn and Poincaré inequalities to get these facts. Moreover, it is easy to
see that {Ts;0 > 0} with Ty = T are collectively compact and that 75 — T pointwise as
§ — 0. To get the last result, one may prove that T;f converges to T'f in L*(Q) for every
f € L*(Q). By assumption, in the presence of (4.50), there exist a function p such that
ps = po = p. Then, let us = Ty f and ug = T f. For any w € H'(Q)), we have:

/ V- (00, D(ug) — pId)w = / Faw,

SO,
(005 D(us) — pld) : fw.
/ -
Similarly,
(0pD(uo) — pId) faw.
/ ~

Consequently, choosing w = us — ug and subtracting these two equations we get

/(UD(;D(u(s) —opD(ug)) : D(us —up) =0

which gives

/O’D(;D(u(; —ug) : D(us — up) / op; — 0p)D(ug) : D(us — up).
Q Q
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Hence, by using successively Korn's inequality and Holder's one, one can get

1V (us — uo)ll 20y < ClVuollL2(psapy,

where A denotes the symmetric difference. It then follows by the Poincaré inequality that

|us — wol| 1) < C||Vuol|r2(psa0)-

Consequently, using the last inequality and the fact that [DsAD| — 0 as 6 — 0 and that
Vug € L*(Q) we obtain that Ts — T pointwise as § — 0 in L*(2).

Hence all hypotheses hold for the theorem of Osborn. Now if we set,

- 1 47 1
Ho )\0 s )\6 )

then according to the problem (4.53)(resp. (4.54)) we can see that (zis, vs) (resp.(jio, vo)) is
eigenpair of T} (resp. of 1j). So, a theorem of Osborn [50] yields
|70 — fis— = (Ts — T)vo,v0 > | < |[(T = T5)wol1 32 (4.55)

where C'is independent of ¢ and vy is the solution of (4.49). Furthermore, if v; is the solution
to (4.52), then

[vo = sl 20) < [(T" = Ts)voll 22(0-
According to [5, 14] we can extend the regularity results obtained by De Giorgi and Nash in
the scalar case [24] to get

HU6||0170(E5) + Hv(5||cl,a(QdO/2\Dé) < (C, forsome «a >0, (4.56)

where C'is a positif constant and for dy > 0 we have g, /o := {x € Q : dist(x,0Q) > dy/2}.

To compute the term < (75 — T)vg, vy > appearing in (4.55), we may firstly recall that

Ty = pgv and Tsvg = s where s is the solution to

~V - (9p,D(iis) + pId) = vy, inQ 4.57)
s = 0, ondf2.

Putting vy = fipvo, then
—V - (opD(io) + pId) = vo, in (4.58)
Go =0, onof).
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From (4.57) and (4.5%), we have
< (T5 — T)UO,UQ - = < Us — Vg, Vg == ﬁg/U(Q) + /U(ﬂ]gdl‘
Q Q

= ﬁo /(UD — O'DL;)D(’&(;) . D(’Ug)dl‘

= o / (o0 — o1)D(%) : D(vE)dx — fig / (o0 — 01)D(@§) : D(v})dw.
Ds\D D\Ds

Now, as done in [5] we put z; := x + th(z)v(z) forx € 0D and t € [0, d]. It is clearly that
the Jacobian determinant of the change of variables (x,t) € 0D x [0,0] — x; € Ds/AD is
|h(z)| + O(6) for § small enough, and hence we get

)
Il = ﬁo / (O’Q — 01)D<U(5> UO = / O'Q
Ds\D 0 8Dﬁ{h>0}
—01)D(T5) () : D(v§) (z¢)ds(z)dt + O(6?).
Moreover,
)
IQ = —/70 / (0’0 — Ul)D(fLS) : D UO dl’ = —/LQ/ 0'0
D\Ds 0 8DN{h<0}

—01)D(@S) () : D(vh)(2,)ds(z)dt + O(5?).

On the other hand, based on the result of Li and Nirenberg proved in [41], the following

gradient estimate holds:

sl cr.a @) + sl ora(uy \05) < Clllasllzi@) + [[voll e (64, )]s (4.59)

where 4 is the solution of (4.57), and the positive constant C' is independent of . Remark
that ||t g1 (o) < Clvol|r2) < C, it follows from (4.56) that

sl 1oy + lltsllcre oy, 05 < C- (4.60)
Now using Lemma 2.2 in [5], and the relations (4.58)-(4.61), one may obtain:

1(Ts — T)vol| 2 () = ||tis — Dol p2(y < C6"H2. (4.61)
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On the other hand, we use the gradient estimates (4.57) and (4.58) for u;s and vy, {0 approxi-

mate
D(ug)(we) = D(vy)(w:) = D(tig)(ws) : D(vg)(x5) + O(6%)

for ¢ sufficiently small. To proceed with our proof we may investigate the transmission
conditions of vy along the interface D. One can easily see from the equation in (4.49) that
vy satisfies: v§ = v} and (oD (vf))v = (01 D(vg))v where v§ = vg|o\p and v§ = vg|. Let T
be the unit tangential vector field to 9D, and following the approach used in [5], one can find
that

(o1D(v)))T = WD (v§))T on OD, (4.62)
where Vy = 2ugly + 2(p1 — o) Io ® (7 @ 7). Here I is the (2 x 2) identity matrix, /, is the
identity 4-tensor and the viscosity constants L, (11 are given in (4.48).

Applying the transmission conditions (4.62) for the function s, one may get
D(iis)(z5) = 01 [(01D(@5) (w5)7) @ 7 + (01D (i) (w5)v) ® v] = oy [V D (i) (ws)7) @ 7

+(ooD(u§) (xs5)v) @ V.

Now, regarding Lemma 3.2 in [5], which still applied to Stokes case, on may approximate

D(u5)(ws) = g—?[(VlD(US)(x)T) @7 + (00D(v)(x)v) @ V] + O(5T7). (4.63)
Hence,
I = oG / hz)V[D(W)](x) : D(ve)(z)ds(z) + O(5 T 2@m)
0DN{h>0}

and
Iy = o5 / hz)V[D(9)](x) : D(vE)(z)ds(x) + O(8 T 2@m),
0DN{h<0}
where o > 0 and V[D(v§)| deduced from (4.63). Therefore,

=< (T = T)vo, vo == 1 + I = 65 / h(z)V[D(§)](x) : D(v§)(x)ds(x) + O(8" =),

oD

and by considering the above relation, (4.55) and (4.61) we obtain

fio — fis = O / h(@)VID(E)|(x) : D(v)(x)ds(z) + O(6"+7)
oD
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with 0 = mi(n, m). T'o achieve the prooi, we recall that
As — Ao = XoAs(1/ X0 — 1/Xs) = XoAs(fio — fis)
and we take into consideration that A\gpAs = A3 + (XoA1) + %(XgAg) + - - .
Now we consider the case of a multiple eigenvalue. Let the operators 7" and 75 be defined

as in the proof of Theorem 4.3.2. We suppose that /iy be a nonzero eigenvalue of 7" with

multiplicity m > 1. Then, for § small, T has a set of m eigenvalues ,EL% (counted according to

their multiplicity) such that ,&g — fig foreachj =1,--- ;/masd — 0. Let ig = % Z;"Zl ﬂg,
and let {ug 1, up 2, - ,Uom} is an orthonormal basis for Ker(T — fio]), then as written in
(4.55) there exists a constant C' (independent of §) such that
N
o — fis — — > < (Ts = Tugg uoy = | < CIT = Ty)uo 1720 (4.64)
j=1
Moreover, for each j = 1,--- ,m, there is an eigenfunction us ; corresponding to [Lg such
that Huts,jHLQ(Q) =1, and
[us,j — wollz2(e) < CI(T = Ts) [ ker(r—pon Il (4.65)

For more details, we can refer to [8, 30].

Suppose now that the eigenvalue )\q of the problem (4.49) is with geometric multiplicity m
and let vo;; j=1,---,m be L?—orthonormal eigenfunctions corresponding to \o. Let
)\g be the eigenvalues of problem (4.52) generated by splitting from )\ and let vg be the
associated eigenfunction (normalized with respect to L?) such that v) — vy, as § — 0.
Based on (4.64) and (4.65), one can use similar approaches as in the proof of Theorem 4.3.2

to get the following result.

Corollary 4.3.1. Suppose that Q C R? with class CY'. Let \y be an eigenvalue, of the
problem (4.49), with (geometric) multiplicity m > 1. Assume that we have (4.51), and the
pressure still the same if we have (4.50). Then, there exist m eigenvalues X, j = 1,--- ,m
(repeated according to their multiplicities) such that )\g — Ao as 0 — 0 and the following

asymptotic expansion holds:

Lo S =Y [ MaVIDEE ) Des, ) (ds(a) + 00 ),

m & ) :
j=1 7% j:laD

where (3 some positif constant and V given by Theorem 4.3.2.
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4.3.4 Asymptotic formula for eigenfunctions and eigenpressures

This section is dedicated to develop asymptotic expansions for both eigenfunctions and eigen-
pressures associated to (4.4). Here we suppose that we have all hypothesis and conditions of

the Section 1 and Section 2. Define the operator:

Bs(Np(z) = (WN)p) (P51 (Ts(2)),

where ¢ € L*(01), U5 given by Section 2.2, and W()\) is the operator associated to hydro-
dynamic double layer potential [?,34,60]. Then, the following main result holds.

Theorem 4.3.3. Suppose that we have (4.2) and let \y be a simple eigenvalue of (4.1). Let As
be the operator defined by (4.10), and M5 = As + Bs. Let Oy be a bounded neighborhood
of L in R3. Then there exists a constant 6, > 0 smaller than 8, such that the eigenfunction vs
corresponding to the eigenvalue, \s, in (H'(Qs))> N H(Qs) can be chosen to depend holo-
morphically in (x,6) € Ogx| — 01,01[. Moreover this eigenfunction satisfies the following
asymptotic formulae

vs(x) = vo(x) + Z v (2)0", (4.66)

n>1
where the function vy is the eigenfunction solution of (4.1) associated to \y. The terms v,, are

computed from the Taylor coefficients of the operator valued function Ms and of those of the

function a(8) = (a;;(8))1<ij<s.

Proof. From [34,46] we deduce that there exist a continuous function ¢(t, §), which is ana-
lytic in R?x| — dy, do[ and such that

0s(@) = SOs)p + Wiks)p, @ €0 (4.67)
solves the eigenvalue problem (4.4). Moreover, the function given by
U@0)(x) = M(Xs)p(T7,0)

satisfies the eigenvalue problem (4.4) in €2; with the boundary conditions: U(0)|gq, = O.
Here, M(Xs)(0~1,8) = Ms(\)p.

Now, by (4.67), we deduce that vs(z) = U(0)(x) = M(Xs)p(¥ ™1, 6) is jointly analytic with
respect to (x,0) in {||x — Ws—o(y)|| < 20} %] — do, do[, where z is a positive constant. The

function vs(z) is jointly analytic in the variables (x,d) € Oy x| — do, do[.
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We shall now give the asymptotic expansion of the function vs(x) when 0 tends to 0. Iniegral

equation (4.7) gives us

= /M()\g, [z = Ws(y) ey, 6)[V¥s(y)ldo(y),

where M is the kernel of the operator M. The perturbed eigenvalue ); is in a small neigh-

borhood of A for small values of 9. Then we have the following Taylor expansion

M(As), 2 = Ws())[VTs(y)| = M(No, [ — () ) [VE(y)| + Y 6* Mi(z,y),

k>1

which holds uniformly in z € Oy and y € ). The analyticity of the function ¢(y, §) with

respect to 0 immediately gives

p(t,0) = @oly) + Y dFerly

k>1
uniformly in y € JS). Substituting the last two asymptotic into (4.68) we find

05() = Voo +25k2/¢kn (2, 9)do(y)].

k>1 n= 1aQ

The next result provide us with the asymptotic expansion of the eigenpressures.

Corollary 4.3.2. Suppose that we have all hypothesis of Theorem (4.3.3). Then the eigen-

pressures ps solution of (4.4) have the following uniform asymptotic expansion:

T)+ Y pa(z)dn, (4.68)

n>1

where the function py is the eigenpressure solution of (4.1) associated to \o. The terms p,, are

computed from the Taylor coefficients \, and v, = (v}, v2,v3) as follows:

n’ 'nr "n

P xi;.) = /Avidmi + Z /\k/vfl_kdxi, where i = 1,2, 3.
k=0
Proof. From system (4.4) we have

Vps = Avs + A\svs.
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Hence, we can expand the function p;s in powers ot 0 as we have done for As and vs. Moreover,

we have:

Oips = Avs + N\svk,  fori=1,2,3. (4.69)

To get the Taylor coefficients p,,, introduced in the formula (4.68), one can insert both

asymptotic expansions (4.46) and (4.66) into relation (4.69), and integrate with the conven-
able variable.
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CHAPTER 5

Boundary element method - Application to

electromagnetism

Introduction

Here, we are interested in solving scattering problem of electromagnetic waves, by the bound-
ary element method. We present the boundary integral method, for the Maxwell’s equations.
It allows reducing the external problem to a system of integral equations defined on the sur-
face of an object and it takes into account the boundary conditions.

In the next section 5.1, we present mathematical model of scattering problem which includes
Boundary conditions on the surface and radiation condition far from an object. We use the
Stratton-Chu formulation to give a boundary integral formulation in section 5.1.2, then we
write it under the variational formulation with a Leontovich Boundary Condition. The Sec-
tion 5.2 will be dedicated to recall existence and uniqueness of a solution. In the last section,
we discretize the border of the domain using plane triangles and Rao-Wilton-Glisson basis

functions.

5.1 Scattering problem

The scattering problem is represented as a system of equations including boundary conditions
on the surface of an object and radiation conditions far from an object. Here, we recall the

uniqueness theorem and we intoduce an integral formulation of the problem.
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5.1.1 Mathematical model

We consider the scattering problem of electromagnetic waves (E, H) by a perfect conducting
body with a complex coating. Scattering waves take place when incident waves bounce off
an obstacle in a variety of directions as depicted in figure 5.1. The amount of scattering
waves that take place depends on the wavelength k( of the incident waves and structure of

the object. We refer by 2_ to the region of space embodying the scatterer, with a Lipschitz-

'\ r
ESC H;C\ /Esc: HSC
o =
= a

Einc’ Hinc

Figure 5.1: Scattering Problem

continuous boundary denoted by I', n is the exterior unit normal to I', pointing to the exterior.
Electromagnetic waves propagate in €2, = R™\Q)_. We define the incident electromagnetic
field by (E™¢ H™), the diffracted or scattered field (E*°, H*°) and the total electromagnetic
fields (E,H) in Q1 as:

E =E"™ +E* inQ,,

, (5.1)

H=H"+ H* in{),.
Waves propagation medium is characterized by two physical quantities e (electrical permit-
tivity) and p (magnetic permeability), where € = €, and = pg for free space. The fields
inside the coating are governed by a set of equations that take into account the detailed elec-
tromagnetic properties of the coating €, and (..
The determination of the total electromagnetic field (E, H) induced in {2, by an incident

field on the impedance scatterer is governed by the following Maxwell equations:

rotE + iwwpH = 0
(5.2)
rotH — iweE =0
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where w is the pulsation associated to the time-harmonic electromagnetic fields defined as

follows
E(z,t) = R(E(x)e™")

H(z,t) = R(H(z)e™?)

(5.3)

Let Z be the impedance operator. It depends on incident angle, medium thickness d and
the physical characteristics ¢, and ., of the coating material. We consider boundary condi-
tion that binds the tangent electric and magnetic fields. The medium characteristics give an

impedance at each point of the surface I'.
Ey,—ZmnmxH)=0 onl (5.4)
where subscript tg denotes tangent component on the surface I' defined as:
E,, =nx (E xn)

and n is the exterior normal vector to the surface.

The boundary condition (5.4) is called impedance boundary condition (IBC). The simplest
form of which is known as Leontovich IBC or standard IBC (SIBC), where Z = constant
[38,51,52]. We should notice that asymptotic behavior of the fields (E, H) is depicted by the
Silver-Miiller radiation condition:

lim 7(E x n, + H) = 0. (5.5)

r—00

where 7 = |x| and n, = |£ x € R%.
X

So, we have the next problem:

Problem 5.1.1. Find (E,H) such that

)
rotE + ikopuH = 0 in Q"

rotH — ikyeE = 0 in QT
(5.6)
E,—ZnxH)=0onl

L limy oo r(Exn.+H)=0
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5.1.2 Integral formulation

The boundary integral method places their unknowns on I' the boundary of €). It consists in
expressing the electromagnetic field as a function of potentials defined on the boundary.

We will use the boundary integral representation to solve problem 5.1.1. We express the
electromagnetic field as a function of potentials defined on I'. The Stratton-Chu formulation
(Appendix C eq. (C.30)) helps us to characterize the electromagnetic fields in terms of surface
current densities. These current densities are uknowns in the integral formulation of the

problem. We introduce current densities J and M on the boundary I' as follows
M= [E xn]t ; J=[nx H|,

where [ |T denotes difference between upper (+) and lower (-) values of interface.

We introduce the variational form of the operators (B — S), (P + ) and I as follows:

(B — S)A, ) = z// kGA - — le AV, - dydzs (5.7)

(P + Q)A, ) = %/ nxAdx+//1/J><A V,Gdydzs (5.8)

T
(A, ) = /A -apdz (5.9)

T

where G is the Green kernel G(x,y) = —jﬂl’;'””_ ;y‘\ _

Using the Stratton-Chu formulae, we can give a variationnal formulation of (5.6):
Find (J, M) such that:

<Zy(B—=8S)J,W; >+ < (P+QM,¥; >=< E" ¥; > V¥, (5.10)
1 ,
— < (P+ Q)J,\I’M >+ < 7(3 - S)M,‘I’M >=< H"™ W) >, YW,,. (5.11)
0
For more details see Appendix C. Note however that these two equations are completely

equivalent.

5.1.3 Variational formulation

In order to insure a unique solution to the boundary value problem it is necessary to ap-

play boundary condition. We recall impedance boundary condition (IBC) that relates current
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densities J and M
nxM=27J. (5.12)

The simplest IBC is Leontovich IBC, Z = const. Usually, it is taken for incident wave

perpendicular to plane

ag = 2o B tan (\/pr€rkod) (LIBC)
V e
The impedance boundary condition (5.12) can be written
nx M = qgJ. (5.13)

We multiply three dimensional LIBC (5.13) by test functions and integrate on the surface I,
that gives us a weak form of the boundary condition. So, we take W ; and n x W, as test

functions to get the weak forms for (5.10) and (5.11), respectively

/(n M) - W ds — /aOJ W ds, (5.14)
I I
/(n < M) - (n x Wy)ds = /aOJ (0 x Wyy)ds (5.15)
N T

We insert the LIBC into (5.10) through (5.14), by replacing the operator P that was defined
in (5.8) then we obtain:

< PM,¥; >= — /\IIJ n><M /J W ;ds

Using the formula of vector analysis
‘I’M'<IIXJ):—J'(IIX\I’M),

we put weak form of LIBC (5.15) into 5.11 by replacing < PJ, ¥, >. We get:

1
<PJ‘I’M>— /\I’]w n><J) 2/(HX‘I’M)JdS
—1
= 2a (mxM)-(nx W¥y)ds = 2—%/M W ds (5.16)
T

Now we define bilinear operator

AU, W) =< Zo(B ~ I, W5 >+ < (B~ M, By, >
0
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1
+<QM,\IIJ>—<QJ,\IIM>+%<J7\IJJ>+2—<M,\IJM>
ao

that combines integral equations (5.10)-(5.11), where operator P parts are replaced.

Finally, we introduce the following problem:

Problem 5.1.2. Find U = (J, M) such that
A(U, W) = F(0) (5.17)
forall V= (U ; W,,). Where

F(W) :/EW-\I:stJr/Hi"C-\I:Mds.
r r

5.2 Existence and uniqueness theorem

According to theorem C.1.4 from Appendix, there exists a unique solution of the problem
(5.1.2), if the bilinear operator A(U, ¥) verifies the continuity and coercivity conditions.
For the sake of simplicity, we consider the operator A(U, ¥) as a sum of three bilinear oper-

ator
1
AUY) =< Zo(B—S5)], ¥, > +- < (B—S)M, ¥, >
0
1
+<QM,\IIJ>—<QJ,\I'M>+%<J,\IJJ>+2—<M,\IIM>
Qo

Let us prove the continuity of A(U, V).

5.2.1 Continuity of the operator A
Lemma 5.2.1. The bilinear operator A(U, V) is continuous on'V for all V € V.

Proof. : We have to show that there exists C' > 0 such that forall U € V'

AU, )| < CIU|v Iy
According to theorems (C.1.1), (C.1.2) and triangle inequality (property of a norm) we have

AU, )| < | < Zo(B—=S), ;> |+ |Z; | < (B=SM, ¥y >|+|<QM, ¥, > |
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a 1
+|<QJ,‘I’M>I+M| <JU;> |+ <MTy, >|<
2 2|ay|
< || Zo(B = S)J||=1/2,r0t0 [ ¥ 51| -1 /2,divr
1 Z5 1B = SMI 12,0t 1 ar |- 1/2,a50 + QM =12, 010 1% 7|1 /2,dive
ao 1
N QI =120t 1€ a1l =1 /2,divr + 5”JHL2(F)H‘I’JHL2(F) + 2_a0HMHL2(F)H‘IIMHL2(F)

< GiUlvvly

5.2.2 Coercivity of the operator A

Lemma 5.2.2. Bilinear form A(U, V) verifies coercivity inequality for all U € V = [H~/?(div, T')N
L3(T)]

Proof. : We have to show that there exist a > 0 such that
RIAU, UM = a|UIf - CUI, YU € V.

From [38], we know that there exists «; such that

R(A) = R(< Zo(B — ), T* >) + R(< Z, (B — S)M, M* >) + R(< QM, J* >)

“R(< QI,M* >) + %(%/J L J*ds) +%(%/M - M*ds) >
r 0 T
R(ao)
2

R(ao)
1220y + 55 M Z2r

>« (||J||2,1/27divF + HMHEI/Q,diVF) + 2|6L0|2

5.3 Discretization
We recall bilinear form that was formulated in the previous chapter. So we solve the problem

AUT) =< E™ W) >+ < H™ Uy, > (5.18)
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where
AUY) =< Zy(B—S)J,¥; > +2Z;' < (B—S)M, ¥y, >

1
+<QM,\IIJ>—<QJ,\IIM>+%<J,\IJJ>+2—<M,\IIM>
Qo

We assume that the initial boundary problem is defined in a 3-D domain. The boundary I' of

the domain is therefore a surface and can be discretized using triangles.

5.3.1 Triangular mesh element

The first step is to approach the surface of the obstacle by a surface I';, composed of finite
number of two dimensional elements. These elements are triangular facets denoted by 7; for
1 =1to Ny:

Np
Iy =JT.
i=1

We will call it an initial mesh (or original mesh).We denote by N, the total number of edges of
the mesh component I';,. The discretization of unknowns J and M should verify a condition-
flow conservation of these currents. One way to ensure this is to use the basis functions of

Rao-Wilton-Glisson introduced below.

5.3.2 Rao-Wilton-Glisson basis functions

We introduce local numbering of a triangle 7". The vertices (a;[’) j=1,3 are arranged in clock-
wise order. Triangle edges are numbered so that the edge 7 connects vertices a;; and ajTH.
Moreover, we give an orientation v, to each edge n. Consider the two triangles sharing
this edge. We note T the triangle so that the direction of the edge n coincides with the
forward direction (locally defined) of this triangle. For the other triangle, which we will

denote 7, the direction of the edge coincides with the indirect sense.

Each RWG basis function is associated with an edge and ensures the conservation of flux
through this edge. If we denote |T'| the area of a triangle T', the n'" basis function is defined

as follows:
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+
a’i1
Figure 5.2: Triangles 7, and 7, adjacent to edge n

Definition 5.3.1. If n is the i'" local edge of triangle T’} and the ;" of triangle T}, then:
2|l£ﬂ<x - a;r—l) Zf T e T;—
f(2) =4 (a7, —x) if x €T, (5.19)

2|y |

0 ife¢THUT:

The density is proportional to divrf,, where

ln
i on T.f
divrf, (z) = _ITI%I onT = (5.20)

0 elsewhere.

5.3.3 Discrete problem

We decompose the electric and magnetic currents in the following form:

3w) = D" ), M) = D M)

Considering to these assumptions we are looking for approximated solution of the problem

(5.18). We introduce the following discrete system

Ne Ne
AU, W) =) <E™f; > +) < H" f >, (5.21)
=1 =1
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A
a’iq
Figure 5.3: Rao-Wilton-Glisson basis function on triangle elements associated to the edge n

where

Ne Ne
AU Uy) =Y < Zo(B= )£ > J;+ Z;' ) < (B= 9. £ > M,

i,j=1 i,j=1

Ne
+ > < Q£ > M— Z<Qf],f>J+ Z<fj,f>J+—Z<fj,f>M

2,7=1 7,7=1 2,7=1
Since the basis function f; is defined on two triangles, namely adJacent to the i*" edge ,
T;" and T, . The same for the basis function f;, they are defined on two triangles, Tj+ and
T;". We define [(B — 5)] matrix elements

(B / / KG ()8 (0) - () — £ C o) (divet (o) (divef, () drdy.

/ / fi(z) x £;(y)] - VrG(z, y)dydz.

+0uT— 7T
TFuT TUT;

Analogically

For lonely integrals we have

Nt'r

J,,j:C;“ZJ/f o = / £ - fidr.

t=1 T Tf uT;
In the following, we will detail the evaluation of the double layer operator (; ;. The odher

terms was evaluated in previous works.
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5.4 Double layer operator

We denote by S the triangle T, and by T the triangle Tj*. We detail the evaluation of @); ;

on S x T and it will be the same for other combinations of triangles. On each triangle, the

current is written as a linear combination of three basis functions associated to three edges of

a triangle.
Ks, // ) V,G(r,y) x £(y) dedy; 1<i,j <3
SxT
- 5T / VLGl y) % (y — by) i dy
where
_ gkl
r,Y) =
YT e =l
and ( ) kQ( ) k3( )
T —y r—1y LR\ — Y
VGl y) 473 8mr 8w
(z—y)(A — k) (k)3
4 "=0" (n +3)

Let define the integral R; ;

Rij= / (x —a;) - R(z,y) x (y —b;)dxdy; i,j=1,2,3
SxT

where
Kz —y)  (z—y)(1—tkr) o, (k)"3rm

87 A =0 (n + 3)!

and

Sij = /(x—al->~|(‘”;y> X (y — b)dady: i,j =1,2,3; € = 0,2

|z — y| [
SxT

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

The regular integral R; ; can be calculated numerically with the usual known methods

such as the Gauss method. In the following chapters, we propose a method for the analytical

evaluation of the singular term.
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Conclusion

We have established a system of equations (5.6) describing the scattering problem of a coated
object with the boundary condition on I'. We have introduced the Leontovich impedance
boundary conditions (LIBC). Radiation conditions helped us to establish the uniqueness of
solution. The Stratton-Chu formulation indicates how the volume problem reduced to the
problem on a surface of an object. This constitutes the main concept of integral method. We
set 3D LIBC (5.13) into EFIE and MFIE (5.10 - 5.11) and we introduce the problem (5.1.2).
We discretized the surface of a three dimensional object by triangulation. We approximated
the unknowns in terms of RWG basis functions. The singular integrals which intervene there,

will be evaluated in the following parts.
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CHAPTER 6

Presentation of the reduction method

Introduction

As we saw in the previous chapter, we must evaluate singular integrals derived from a dou-
ble layer operator, arising from the boundary element method applied to resolve a scattering
problem. There was some attempt to evaluate it with purely numerical methods but the re-
sult was not very accurate. The aim is to present a new approach for the explicit and precise
calculation. We propose a method that does not require any numerical integration for the eval-
uation of singular integrals. It is based on a recursive reduction of an m-dimensional integral
into a linear combination of (m-1)-dimensional integrals. It leads to a linear combination of
1-dimensional regular integrals with factors depending only on geometric quantities. These
integrals can be evaluated either numerically or explicitly. This method makes it possible
to obtain explicit formulae to evaluate singular integrals with a very high precision. It was
introduced by M. Lenoir in 2006, see [39] to calculate a singular integral in the form of a

single layer operator.

6.1 Presentation of the method

6.1.1 Integration of homogeneous functions

The reduction process is based on several simplification formulae presented in the next sec-

tion. These formulae reduce the dimension of the integration domain. It can be used when
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the integrand is homogeneous, or positively homogeneous.

Definition 6.1.1. A function is said to be homogeneous of degree q or q-homogeneous, with

respect to the variable z € R", if
f(Az) = Xif(2); VA ER; A #0. (6.1)

Definition 6.1.2. A function is said to be positively homogeneous of degree q, with respect to
the variable z € R", if
f(Az2) = X1f(2); VAER; A > 0. (6.2)

Definition 6.1.3. A function is said to be q-homogeneous with parameter if it is an homoge-
neous function with respect to a pair of variables (z, h), where z is the integration variable

and h is a real parameter
f(Az, Ah) = X1 f(z, h) (6.3)

Theorem 6.1.1. [39] Let f : 2 C R™ — R be an homogeneous function of degree q with
q+n # 0. Then,
@+ m) [ 1)z = [Cnre0: (64
Q o9
where U is the exterior normal to Q, Oz is the surface element on 0S), and (z|V) is the inner

scalar product.

Theorem 6.1.2. [39] Let g : R" xR, — R be an homogeneous function of degree q referred

to as an homogeneous function with parameter h.

+oo
/ F(z, h)dz = hotn / (2|7) / ij;ﬁduaz 6.5)
Q h

o0N

Theorem 6.1.3. [39] Let f : Q) C R™ — R a positively homogeneous function of degree q
with ¢ = —n. We introduce an arbitrary homogeneous positive function 6 : () — R of degree

p > 0. Then we have

1
Q/ f(2)dz = ];4 (Z[7)£ (=) In(8(2))ds. 6.6)

These formulae will allow us to reduce the dimension of the integration domain.
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6.1.2 Reduction process

Consider the integral

I= | f(z)dz
J

where [ is an homogeneous function of degree ¢, z = (x,y) withx € S and y € T (see

bj+2

i1

i 2

Figure 6.1: Integration domain

Figure (6.1)).
The initial 4-D integral is reduced to a linear combination of 3-D integrals of two types:
integrals on domains of type S x 3 and others on domains o x 7. The evolution of the

integration domain during the reduction of o x 7' is presented in Figure (6.3). The integral

Figure 6.2: Projection of « on the support of .

on S x fis reduced in a similar way. A second application of the formulae makes it possible

to reduce this integral to two types of 2-D integrals: integrals on domains S x [, with [ a
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vertex of the triangle 7', and integrals on o x 7T'. The last reduction allows to reduce to one
dimensional integrals. The integral on S x [ is reduced to a linear combination of integrals
on « X 3. The reduction of the integral on o x  depends on the geometric configuration of
the supports of the two segments. When their supports are intersecting, we obtain integrals
on a X 3 and on o x b. When the supports of the segments are parallel (see Figure 6.2), we
note « and a, the respective projections of « and a on the support of 5. The integral on a x 3
then reduces to integrals on & X b and integrals on @ x 3. All 1-D integrals are regular as we

will see in the next chapters.

Figure 6.3: Evolution of the integration domain during the reduction process on the product

of two coplanar triangles S and T.

6.1.3 Parametrization and flat polygons

It is important to note that the homogeneity of the integrand depends on the parameterization
and the origin chosen in the computation of the integral. We will start by presenting a small
calculation to detail the importance of the choice of the origin.
Let o and (3 be two segments of the plane (see Figure 6.4), we calculate the integral
r—Yy
[lz =yl

dsgds, (6.7)

aX

withx € cand y € .

An infinity of parametrizations is possible. But, in practice, only the use of the intersection
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Y

Figure 6.4: Influence of the origin on the homogeneity

of the supports of the two segments as origin ensures the homogeneity of the integer in (6.7).

e If we chose o; as origin in Figure (6.4), we obtain the following parametrization in terms

of (s,t):

z1(s) = s,
Ta(s) = 0,
y1(t) = tcos(0),
yo(t) = tsin(0).
which gives 0) )
s —tcos(f) + tsin
// V(s —tcos(0))? + (t Sin(Q))stxdsy (©5)

where 0 is a fixed angle. The integrand is homogeneous with respect to the pair of variables

(s,t).

o If we chose o, as an origin, we notice that there is a constant that appears in the parameter-

ization and we obtain
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Then

—t — 1+ tsin(0
//\/ s — tcos( ) smg) ds.ds, 6.9)

(s —tcos(f))? + (1 — tsin(h))?

The integrand is no longer homogeneous.

We understand that it will therefore be very important during the process of reducing to
carefully choose the origin in order to maintain the homogeneous character of the integrand.
We will also see that a judicious choice of the origin makes it possible to simplify the calcu-

lations.

The reducing process of the integration’s domain dimension, requires the use of flat poly-
gons for discretization. In the contrary case, after a first step of reducing the dimension,
the integrand is no more homogeneous. therefore, it is no longer possible to use formulae
(6.4), (6.5) or (6.6) to continue reducing the dimension of the integration domain until one-
dimensional integrals are obtained.

Indeed, the use of flat polygons ensures that the product of the two flat polygons is a poly-
hedron. So the boundary 0S5 x T will be composed of hyperplanes on which the outgoing
normal is constant.

Therefore, the scalar product present in formulae (6.4), (6.5) and (6.6) is piecewise constant
and it will be possible to get the scalar product out of the integral, to reduce to an homoge-

neous integrand and thus repeat the process.

6.2 Geometric tools and Notation

We present some geometric notations needed for the calculations.

6.2.1 The mesh elements

Let the triangles S and 7" be defined (respectively) by their vertices a; and b;, 7,7 = 1,2,3
and its sides «; respectively (3}, 4, j = 1,2, 3 such as «; and 3; are opposed to a; respectively
b; (see Figure 6.5). We introduce |o;| and |3;| the length of the side o respectively /3;. Let
«; and 3; be the vectors (a;5 — a;11) = (af — a; ) respectively (bis — bip1) = (b5 — b7)

(see Figure 6.6). We denote by \; and ), the outside normal vector to «; respectively [;.
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a; &

A3

Figure 6.5: Definition of Triangle S Figure 6.6: Orientation of the triangle S

a;yq i1

6.2.2 Calculation of the projection

Note p; () the orthogonal projection (see Figure 6.7) of a point x on the side «; of the triangle
S and g;(z) = ||x — p;(x)]| the distance from z to the support of ;. When z = a;, we note
that p; = p;(a;) and that g; = g;(a;) is the length of the height (see Figure 6.9). We will also
use the signed distance from a point to the support of «; which involves the outgoing normal

to the triangle on «;. This distance is defined by v; = (p;(z) — z|X;) (see Figure 6.9). We

pi+1(33) ait+2 ai+2

a1 a1

Figure 6.7: Projection Figure 6.8: Projections and distances

use notations for the triangle 7" similar to those introduced for the triangle S. The orthogonal
projection of y on the support of ;, similar to p;(z), is denoted by ¢;(y) and the distance
from y to the support of /3; is denoted by d;(y) = ||y — ¢;(v)||. We define the signed distance
9;(y) from y to the support of 3, by d;(y) = (g;(y) — y|193) Finally, d; = d;(b,) is the
equivalent of g;, namely the length of the height from b; to ;. (see Figure 6.9).
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vilai)=g;=0

te!

i1
R
vilz1)=gi(21)=0 "\
.

A\

Figure 6.9: Distances signees

6.2.3 Calculation of abscissas

On side « (resp [3) the abscissa s (resp t) is defined with respect to an origin o, (resp og) and
a unit vector % (resp %). The abscissas of the ends a® and b* are respectively denoted by

st and t*.

6.3 Application of the reduction method

We propose to evaluate the integral

r—1Y
= ylP

X B

I(z,y) = dz dy, (6.10)

where S is a triangle, 2 a point in the triangle S, 3; is a segment in the same plane as .S and
y is a point in f3;. Let bj = bj11 and b; = bj;» be the two extremities of 5. The reduction
process can be applied, provided that one takes some common point to 3; and .S as origin, so
that the function f(z) = Hi;jw is homogeneous on S x f3; with ¢ = 2, n = 3. The origin

can be taken anywhere on the support of 3;, but a wise choice is to choose one of the ends
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of 3; as origin. Indeed, some of the distances being canceled, one will have a simplification.

We choose for origin the point b~. Formula (6.4) provides

e =5 [ (@@ =tsoe ). ©.11)

O(Sxpyj)

where v is the outward normal at the border of the edge of S x (3; and J(z, y) is the surface
element along (S x ;). We have 0(S x f3;) = (05 x ;) U (S x 90;).

((Q%y)‘?)bjxs = |ﬁj’; ((x7y)|7)|ai><,3j = %(b]_)

where |3;| denotes the length of the segment /3;. Then, we get

b P

. z— bt 3 (b _
I(z,y) = |B5]|/|I / ds$+2¥ / Y s, ds,. (6.12)
g =1

So we get a linear combinaison of 2-D integrals.

Conclusion

This chapter allowed to present the reduction formulae of the dimension of the integra-
tion domain, to explain the reduction process and also to emphasize the importance of the
parametrization and the use of flat polygons on which our method is based. An important
point in the following is the choice of the origin during the stages of reduction dimension of

the integration domain, in order to maintain the homogeneity of the integrand

86



CHAPTER 7

Evaluation of a singular integral-Adjacent triangles

Introduction

In this chapter, we will apply the reduction process to evaluate singular integrals appearing
in chapter 5, on the product of two triangular mesh element S and T, specially the singular
integral
_ (r —y) i e
Sij = / (z —a;) - EETEa (y — bj)dady; i,j = 1,2,3; £ =0,2
SxT

Note that if { = 0 the integral S; ; is not singular but the method we propose is still valid.

Here we will deal with the case where triangles have an edge in common.

7.1 Barycentric basis functions

In order to simplify the expression of the integrand and to facilitate the application of the
reduction formulae we will express the Rao-Wilton-Glisson basis functions as a linear com-
bination of barycentric basis functions.

We begin by presenting the basis functions we will use and some of their properties.
Definition 7.1.1. Let ¢; be a basis functions associated with the vertices of the triangle S':

gilr) =1+ (x —a)|&);i=1,2,3 (7.1)
where

- — —
€; = 1011 + Halyya,
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with
|@is|? + (@it | es)

M Pl — @ acs)?
R e s (o7

|| [?[|oiri|]? — (custlaigz)?

The basis functions ¢; verify ¢;(a;) = 1, ¢;(a;11) = ¢i(a;42) = 0, besides

r — a; Tr — a;
il = 05 0i(2)joisr = T i)y, = 1 = T/ (7.2)
¢| i ¢( )| +1 |ai+1| ¢( )| ) ‘ai+2‘
The same, if the basis functions v/ are associated with the top of the triangle 7"
e
biy) =14 (y —bsll;);5 =1,2,3 (7.3)

We rewrite the Rao-Wiston-Glisson basis functions as a combination of barycentric basis

functions and we use properties above to determine 0, «, (, p, n and p verifying:

(x—a;) = 0¢i(x) + Kdip1(7) + (Pira(T),

(7.4)
(y—bj) = p(y) +nVi1(y) + pbja(y).
We obtain
(#—a;)) = 0+ (aiy1 — ;)P 1(x) + (air2 — a;)Piya(x), (7.5)
(y—0;) = 0+ (a1 —a;)Vjp1(y) + (ajp2 — a;)jra(y).

7.2 Decomposition into homogeneous integrands

We are interested in calculating the singular integral

T — .
SxT

Using (7.5), the integral (7.6) becomes

S” = foT(H X 77) ’ (¢i+1(x)¢j+1(y)) Hx(xy’ﬁzﬂ dﬂfdy
+ stT(’i X ) - (i1 (2)Yj42(y)) Hz(wyﬁé)ﬂ dxdy (7.7)
+ foT(C X 1)+ (Piv2(2)Yi11(y)) IIz(xyITQ“dxdy
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So we have to evaluate four integrals of the same type:

JHI — / (¢z($)¢3(y))#dmd% 5 = 0727 1,] = 17273 (78)
SxT
Since the basis function is affine, the integrand is no longer homogeneous, so we are led to

decompose it into a linear part and a constant part by making a change of origin:

0i(e) = 1+ (0= aile) + (@ —0F) = 6u(o) + @ F)si = 1,23,
i) =1+ (0~ B|L) + (= 41) = (o) + wlT)ij = 1,2.3 |

where o is the new origin, x = z — o and y = y — 0. More generally, we note « and S the
segment « and the triangle S after this change of origin. According to (7.8) and (7.9), we

constate that the integral 1"/ must be decomposed into four integrals whose integrands are

homogeneous.
— —
; () (y] ;) (z - y) () (y| ;) (z —y)
m / ||z — ||+ dedy + $i(0) / |z — y| [+ e
SxT SxT
+1,(0) / W—)dzdy%—w Yoi(o / —)d:vdy (7.10)
A AN PR 10000 | =y |

Once this decomposition has taken place, we obtain homogeneous integrands we can
then apply the reduction method intermediate of the formulae (6.4) or (6.5). During the
calculation, after each step of reduction, we will focus on expressing the results in terms
of ¢; and 1); in order to benefit the best of the properties (7.2) of the basic functions. We
distinguish two specific case where a singularity occurs. The two triangles S and 7" have a

common stop or a common vertex.

7.3 Three-dimensional reduction

We are dealing with the case of triangles with an edge in common(see Figure 7.1), so there
are two common vertices. For the first reduction, we take for origin one of the common
vertices o = a; = by. Let a; = by, be the second common vertex and a3 ,bs be the remaining

vertices. We propose to calculate the integral

m= | <¢1<x>¢1<y>>(m—”2ﬂdazd% £=0.2 7.1

SxT ||
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Figure 7.1: Adjacent triangles

It will be wise to choose the vertex a; = by, as origin o. In this case the basis functions are
written

%
o1(x) = 1+ (z]el); enly) =1+ (y| ). (7.12)
The equation (7.11) becomes
%
(v )z~ ) (aef)(yl 1) (z — y)
= / ————dxdy + = —dzdy
|z — yl[*+ |z =yl
SxT SxT
/ (ale)(z —y we)@=9) ) - (7.13)
= —————dxdy. .
|z — yl['+¢ |z — yl['+¢
SxT
The four integrands are homogeneous ofdegreesq=1—-¢(,qg=2—-¢,g=1—¢fandqg= —¢
with n = 4. We apply the formula (6.4), it gives the following result
3 %
: Y1) (e — (ylh)(z—y)
= vila1) / ( dsxd + / = = dxds
— 5—-¢ lz — gl Z |z — yl['+¢ !
ax 5xB;
— —
+Z‘°’:%(a1) / Ehwle-y) +23:53(b1) / e -y)
—~6—¢ |z —y|['+¢ g 6-¢ |z — y|[**¢ !
aixT SxB;
3 — 3 —
~i(a) / (zlei)(z —y) 9;(b1) / (z[ef)(z —y)
+ ds,dy + dzxds
~5-¢ |z — yl|*+ ;5—5 |z — yl|** !
ixT SxBj
3 3
vi(a1) / r—y 6;(b1) / Lr—Y
————ds,d dxds,, 7.14
DD N e A D el B v
=1 a; XT = j=1 SxB;

where ~;(x) and J,(y) are the signed distances respectively of x to the support of «; and of y
to the support of 3; (see Figure 6.9).
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In particular ;(z) = 0 for all = belonging to the support of ;. ;(a;) = g; and 9,(b;) = d;
are the lengths of the height from the vertex a; or b; to the support of o (respectively ;).

Thus, the formula will be simplified and we get

JLl — a1 (y\ll d dy+ foﬁl (ylll (z—y) Wlh)@—y) ;. dsy

5-¢ JaixT |lz— yH1+£ z—yl[TF€

(zlef )(y\l (z|ed)(y \
+ng§ fa1 xT |1\x y|l|1+5 —d dy + =z 6 5 SxB1 M—H—&dl’dsy
(7.15)

(zlef)(z (z)e])
+g_1 fa —g|1+§ dsxdy+ 5_ § SXBl ||$ 1y|\1+5 ddey

g9
—|—4_1 a1 xT Jlz— yHH—g‘dSzdy‘f‘ foﬁ = yHHgd:L'dSy

We express the results in terms of ¢; and v; in order to benefit the best of the properties (7.2)

of the basic functions.

(@) = (@) = 1; (| h) = valy) — 1

we obtain
L1 _ g 1 (y)(z—y) _
! 515 a1 xT H:v yll1+E dsxdy a1 xT JJz— y\|1+§d5‘xdy
Yily)(zy) r 1 (2)(w) (2—y)
fSXBl [lz— yH“5 dzdsy — 5 5 foﬁl [Jo— y\\”&dxdsy 6 1 a1 xT stxdy

+52 Jsxp, %dmd% stm lTo— y|\1+5 dmsy 5f5x51 dedsy
+6d_1§ Sxp1 Hfﬁ(zywdxdsy + 591 a1 xT %desxdy a1 xT [lz— y||1+5dsxdy
32 Ssus, Topretdadsy — 5 [o 5 pgtedads, + 491 T gl 7 501y

T sfswl ey drdsy.

Note that there are terms that vanish because of the fact that ¢y, = 0,95, = 0.

We have integrals in three dimensions we reapply the procedure to reduce dimention to two.

7.4 Two-dimensional reduction

The integrands are no more homogeneous. It is possible to continue the reduction by taking
the second common vertex as the origin ay = by = 0. We reexpress the basis function as in
(7.12) and we obtain

61(2) = d1(az) + (2[8) = ([E)); i(x) = albe) + W) = (W Ty)
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1 1 (J )(z 1
I = (— — g_) f y—wdsmdy + (g_g ZQ + gT§> fale Hx y||1+5dsmdy

arxT |z
(zlef) (2

4
d dy (z—y)
+(3% — 52¢) Jona Wdffﬂdsy (% T o — 52e) Jowp eogrredodsy.

We apply the formula (6.4) a second time then, we get

I = (- ) [ ﬁf;);’ﬁé dy + (% = )% [ s, %d%dsy
ke — 2% + ik fT Tax ey + (gTs 242+ £2)5% Joy i Tagteedsadsy
+(5d_5 6d_ - fs ﬁfli(ﬂli?dxdsy (d_§_6__1§>4_—2§ azx B (E'?—Tlfé)dxdsy
+(2 — )2 s —Hx(wbjl)ﬂ dse + (32 + 5% — 520) 1% Jowsss ||x(xy_\|1)+€ dsyds,y.

Recall that ¢, () = (z]e7); ¥1(z) = (|11 ), thanks to what we obtain

Ll — (;%I _ u)ﬁpw(a&T, £+ (2 — Gg—jg)f—ng(Oél,ﬁ%g)
+H5%e ~ 2%+ e Plas T + (3 — 252 + 2032 )
2

—(5 - ) 2 PP (b5, 5,€) — (34 — &)fﬁ@ <ﬂl,a2,§>
— (2 — £0) e P03, S, ) + (2 + 2 — 24)12:Q(as, By, ©),
where
(a—y) (z —y)
P(CL,T, f) = T/stmdsy, Q(Oéiyﬁjaf) - X/B stmdsy,

ey, o

PYe(a,T, &) = Wdy, Q " 1(ay, B, €) = ||z — y|[*+¢
T

|la —y|[*+¢
;X B;

We give also the other terms calculated with the same procedure:

o 2s oSl s 2ls]
1% = Plas, T, §)(1 R T + (th)(zx—s))
2 2 2 2
+P(b3, 5, 6)(~5=g5=5 T Fmou-0 T T96-9 ~ T-0u=9)

gido gido gido gido
+Q(, 82, )(5=6G-g ~ T-81-9 ~ G-o6-9 T T-6i-)

di1g2 _ di1g2 di1g2 _ d1g2
+Q(az, 1, ) (=869 ~ wo6-9 T G99 ~ T-o=9)

7 d 4 2/5] 25|
+Q" (02, 1, O (wgti-n ~ wroto) T (@ TG ~ vrou-o)

, d __d 2T| 27|
—Q" (B, 02, ) (G5gifize ~ wge-g) + I (0. 5. O (- gug + wo-0)

_’_Q(ﬁl,d& (042, ﬁla g)(&%)?
(7.16)
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'3 = P(bs, 8,6)(— a5 + wai=g) — P (bs, 8, ) (—ai=g)

215) 25| y : y
- ws’(“&T’ 5)((5,5)(4,@ woug) T Q"o 52, 8)(gtimg ~ wotmg) 717D
d d d
+Q (02, 1, ) (5gilicg ~ wreing) Q7 (02, 51, ) (g g)

22 _ 25| 4] 2/8] " 28 28|
%% = Plas, T,6) (G55 — 6= + 6-00- 5))+P *(as, T, 5>(<6—§)(4—5> T
d 2g1d; d
+Q(an, B2, ) (=51 §7§|) (6—?)1(41—;) + Too0 §u§|)) + Q" (52a04175>(_(gu§§?i—5) - (g;ﬁ(é 9
2 4 2
+P(bs, 5,6) (= 068 T 6 HEd (6%)(57@) P? (b3, 3,)( (6-6)(5-9) (6%)(475))

d 2d d d d
+Q(a2761a€)((6_5?§_5) - (6—5)1(312—5) + (6—5?;—5)) + QM2 (02, B1, ) (— (6—5?52—5) + (6—5?2—5)
(7.18)

27] 27| 215 219
% = P(bs, S, €)(G=g)= g - woag) TP T.)(caus ~ o5
2 dag1 da2g1
+P%(bs, 5, 6) (- —(6%')(5'7&))+Ql’%(o‘l’5275)(@75)?475) 660 (7.19)

Q" (a2, 51 ) (F5tig ~ wotg) T Q7 (a1 52 ) (T

%% = P¥(as, T,€) (ai=g) + P (b3, 5, &) (— g=aria=g))

+QP o, B, ) (=gli=g) + Q7 (02, 1, ) (=)

the symmetrical terms

(7.20)

o1 as s 2] 2ls]
151 = Plas, T, §)(1 0 00 T T + (62|7§)<45>)
(53’5 (-9 + tmou-9 T Tor-9 ~ Tou9)
( ) ( gida gi1do gida + gido )
G OG0 GO0 6969 64D

dig dig dig dig2
(0‘2751’ O(Go6-9 ~ 969 T T94D ~ T-H4D)
dag d d d
+QM o, B2, ) (giimg ~ re6me) — @77 (P2 1. O (glicg ~ wo-g)
2[5] 2[5 2|7 97|
+P" (a3, T, ) (=g — wooe=g) T (035 ) (—5=ga=9 + m=gu=g)

+Q7 " (o, B, €) (=g =g)

(7.21)
2|S| 2(3| 2/T| 2/T|
%t = Plas, T, §) (= g ~ Goug) T P70, 5.9 (gamg ~ aroae)
d d
+P" (a3, T, g)(ﬁ) + QM (Br, 5, €) (-85 — el (7.22)

d; d d
+Q1 #3 (ﬁZ; aq, f)((ﬁ_gi?i_g) - (5_58_5)) + Q¢3,¢1 (ala ﬁ2a f)(m)
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25| 25| 2|7 2|7
I = Plas, T, §) (g 9~ To g) + P?(03,5.8)(Eg5g ~ o)
9 2 d2g1 d2g1
_|_P¢ (ai’)aT 5)( (6— §| gl, £) )+ Q1¢ (52,04175)((675)(575) (675)(475)) (7-23)

+Q' (B, a2, &)~ gt + wg) + Q7 (a2 B ) ()

where

b Op(z x)
Q¢ Oél;ﬁj? / - ||$—y||1+§ dsxdsy

a; X B;

7.5 Reduction to one dimensional integrals

7.5.1 Calculation of P(a, T, ¢)

we will evaluate
P(a,T,¢) = / Ta = yHHgdsmdsy, (7.24)

with a = a3

7.5.1.1 Case where a does not belong to the support of 7’

bjt1 = aj1

A2

Figure 7.2: Triangles in intersecting planes
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In this case the reduction formulae are not usable. In order to operate the reduction, it is

necessary to break P into two parts.

J%QT@yz/i (a=4) lﬁd%@y+/m (a-y) ds,ds,  (7.25)
A A

h? +la —yl[?) = +la—yl»)F

where a be the projection of a into the support of 7" and h the distance h = |a — @] as in
Figure (7.3). Taking a as a new origin we obtain homogeneous integrands of degrees —1 — &

and —¢ with parameter h. We can then apply the formula (6.5) which gives

3 3
P(a,T,&) = (a—a) Y _06;(a)Si(a, B, h, &) + Y _ 0;(a)Ra(a, B, . €) (7.26)
j=1 j=1

where S, and R, are defined by

Boh,€) = [, - ds
S1(a Sl B ey (7.27)
= [ b lla = yll.€).
and
Rola,B,h.€) = [,(a —y)h?* ds
2( fﬂ f ud- £<u2+ua g2 (7.28)
= Js(a=y)fa(h,lla = yl],€)
where
+o0 d
i h, 7 :hn—f/ u 7.29
fa(h, s,8) un+1—§(u2+82)% ( )

h
Si(a, B, h, &) and Ry(a, B, h, &) are calculated in (B.2) and (B.24).

7.5.1.2 Case where a belongs to the support of T’

Since a belongs to the support of 7" we can consider a as an origin and get homogeneous
integrand with ¢ = —¢& and n = 2 but we must distinguish two different cases in order to
apply the suitable reduction formula.

o If n+ g =0, we apply (6.6) and we get

[\
QQ’I
o
D

P(a,T.€) = (7.30)

where

tlapy) = [ o= talla = yl)as, a.31)
Bj
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Figure 7.3: Projection of a on the support of T'

o If n + ¢ # 0, we apply (6.4) and we obtain

3
0
P(a,T.6) = > 57¢S(a,8.1.¢)) (732)
j=1
where
/ o= yHHdey (7.33)
B
see appendix (B.2)
7.5.2 Calculation of Q(«, 3, &)
Here we deal with
_ (2~ y) _
Q(a767£) - ||$ ||1+5d5md3ya 5 - 072 (734)

axf

7.5.2.1 Case where o and [ are neither parallel nor secants

First of all, we must find a new origin to ensure homogeneity of the integrand. Let & be
the projection of « on the plane parallel to o going through S and let o be the intersection
of & with [ as in Figure (7.4). We will consider o as a new origin. Define 2z = @ — a and

h = ||z||- We express Q as a sum of two integrals whose integrands are homogeneous of
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degrees ¢ = —1 — £ and —€.

Q(a,ﬁ,ﬁ):/ = %) : dsxdser/( &~ y) —ds,ds, (1.35)

. 14 . 1££
(2 + ||z — y]2) Sy

axp

where 7 is a point &. This decomposition allows us to apply the formula (6.5) and gives
Qo 8,€) = (w — @)D _ ks*Si(a*, 8,0, &) + > 1'Si(V, 6, h, )]
k=+ =+
+[> ks*Ro(a*, 8,0, €) = Y ' Ry(a, B, 1, )] (7.36)
k=+ =+

>k a
[

where the abscissae are evaluated by s* = (@* — o] %) and t' = (0! — o\%).

[

Figure 7.4: Segments neither parallel nor secants

7.5.2.2 Case where o and [ are secants

Let o = a N (3 be the new origin. Note that can be 0 = as = by or 0 = a3 = bs. In this case
the integrand is homogeneous of degree ¢ = —¢ and n = 2. We must distinguish two cases:

o If ¢ + n # 0 the formula (6.4) gives

S(a*, 3,0) =Y —S(b,a,0). (7.37)
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o If ¢ +n = 0 we apply (6.6) and we get

B (z—y)
Q(a, 3,2) = oo yl‘gdsmdsy
= kstL(a®, B) =Y LY, a) (7.38)
k== l==%

7.5.2.3 Case where o and [ are parallel

When the supports of « and 3 are parallel, we must use the second formula (6.5), called with
parameter. This is possible by orthogonally projecting one of the segments (we choose () on
the support of the other («) (see Figure 7.5). Thus, the distance d between the supports of
the two segments, appears and plays the role of the parameter. Let (3 and ¢, be the respective
orthogonal projections of /3 and y on the support of o, 2 = §—y and d = || —y/|| the distance
from « to the support of 5. Then, the integral Q(«, 3, £) becomes

1 (z —9)
Qa, B,€) = Z/ ———ds,ds; + / S——rds.ds; (7.39)
(@l —gl?) = (@ lr—glP) =
axf axf
Taking any point of « as a new origine, for exemple one of the two vertices of the triangle
bt U i b
e -
L |
| - 7 | +
It : i -
-9 w7 a T = @ oat
Figure 7.5: Segments are parallel
a” and a™, we get two homogeneous integrands with parameter d and degrees ¢ = —1 — ¢

respectively ¢ = —¢.

Qla, B,&) = Z[s* [3d¢ [/ du dsj

=€ (u2 4 [lat—g][2)
4 B ltl dl,g 400 du _ de
Dt foz fd w2 (u2+|jo—bt|[2) 2 ) (7.40)
+st fB d2—§<a+_y) +o0 du

1
d 3= |at—y|[2)2

DL I et TR 0 W du ds,]

~ 1
wS—E(u2+|la—B[2) 2
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which is equivalent to

Qa, 8,6) = Y 1'EZS(V, 8, d,€) — Ro(V, B, b, €)]
=t
+$+[Sl(a+787d7 f) +R2(G+,B,d, 6)] (741)

7.5.3 Calculation of P¥:(a, T, &)

To calculate the singular integral

Pt = [, (7.42)

we are inspired by the section (7.5.1). There are two different geometrical cases.

7.5.3.1 Case where a does not belong to the support of T’

Note that a = a3 is a vertex of .S. To maintain the homogeneity of the integrands the origin
must belong to the support of the triangle 7. So we consider a the projection of a on the

support of T (see Figure 7.3) and we break P¥e(a, T, £) into two parts

pwq(%T’g) :(a—d)/( ¢q(y) : dy—i—/( ¢q(y)(d—y) (7.43)

W2+ |la—y|)2) % h? 1 [la — y[[2)1+€

T

where h = |a — a] and § = 0, 2. Next, we express 1,(y) with the new origin o = 4,

1/%1(9) = 1/’61(&) + (?J|lq)’

which gives

. X 1 (ylly)
PYa(q. T €) = (a — d 2 d
(a,T,€) = (a a)[wq(a)T/(hzﬂl&_sz)lgf y+/(h2+||&—y|!2)13£ y]
. (a—1y) (yllg)(a —y)
. —d —dy. 7.44
" <a>T/(h2+||&—y||2) 2 y+T/(h2+l|d—yl|2) = 7

We notice that the four intergrands are homogeneous with parameter h and degrees (respec-

tively) ¢ = —1 —&,q = —&§,q = —§ and ¢ = 1 — £ We can then apply (6.5) and we
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obtain
PY¥a(a,T,€) = (a — @)yq(a )ZJ L 05(@) fy, P ey
A 3 2— { du
Ha ‘Z) 225=103(@) Jo, D=4 ully )+3_s<uz+|a—y|2)17+5dy (7.45)
(@) 225 95(a fﬁj a0 T W
+ Z?:l d;(a) fgj R4 (yllg) (@ —y) h+oo au e dy.

ut=E (u+ja—y|[?) "2
To simplify the formula, we express the basic functions in this form (y|l,) = ¥,(y) — ¥,(a)
and we delete the terms that vanish, thanks to (7.2)

PY1(a,T,€) = (a — @), (a) 27, 0;(@) [y, fu(hlla —yll,&) — falh,a —y,&)ds,

A

+(a — a)[dg+1(a) qu 1/’(1 (Y) fo(h,a —y,&)ds, + 6412(a fﬂ o Ve(y) f2(h,a =y, €)ds,]
(@) 3251 05(a) [5 (@ —y)(fa(h lla = yll, &) = fs(h.a —y,&))ds,
+5q+1 fﬁ 11 ¢q ) )f3(h HCL yH,f)dSy + 6q+2 d) f5q+2 qu(y)(d - y)f?)(h? a— y,f)dSy
(7.46)

otherwise we can write

Pla(a,T,&) = (a — a)y(a) Y0, 6;(a)(SL(a, B, h, &) — S2(a, B, h, €))
+(a = @)[0341(8) S5 (@, By, B §) + 042(0) S5 (@, Byy2, h, €)]

3 A ) A (7.47)
‘H/}q(a) Zj:l 6j(a>R2(a’> ﬁj7 h’7 5) - R3<6L, ﬁja ha f)
+0441(8) D5 (@, Byr1, b €) + 8412(@) D3 (@, By, 1, €)
where
D:fq ((Z, 61)7 hv 5) = 5q+1(a) /?/)n(?/) (CL - y)fn(ha a—1Y, €>d5y (748)
7.5.3.2 Case where a belongs to the support of T’
It suffices to consider a as origin to have homogeneity.
Ye(y)(a —y)
Plu(a,T,&) = | —=———=dy, (7.49)
T ) o=y
Since o = a is the new origin, ¢, (y) can be written
Vq(y) = Yq(a) + (ylly)
We obtain o )
PY(a,T,€) = ¥y (a / —d n / WLRE—Y) g, (7.50)
( "D J Ta= g1 ] o s
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Integrands are homogeneous of degrees ¢ = —¢ and ¢ = 1 — £. We apply (6.4) and we get

(yllq)(
PYu(a,T,€) = ¢y(a 2 §/||a |1+§d +23 g | — |1+£ y (75D

We replace (y|l,) by (y|l;) = 14(y) — 14(a), then we get

P .8 = wifa g/ﬂa—mHé

3
3 9j(a) [ ¥q(y)(a—y) i(a) [ (a—vy)
dsy — d 52
Tegse ) Tla— e ¢“@§;3_6Zﬁa_mw%39 (7:52)

which is equivalent to

PY(a,T,€) = Z qu (a, B;,€)
0f0) 2500, 5,.6) — 2005, (1.53)

J=1

7.5.4 Calculation of Q¢ (a, 3, €)

We want to evaluate the singular integral on two edges

Q"i(a, B,€) = %d 23, (7.54)

axp

where 3 # o # as, 8 # B3 # [, We are going to study two different cases.

7.5.4.1 Case where o and [ are neither parallel nor secants

Let & be the projection of « on the plane containing  and parallel to «, & a point in &,
h =|a — a|and Z = x — ¥ (see Figure 7.4). We decompose Q¥ in two parts

Q' (o, 8,8) =7 / ( 0a(y) e dsadsy + / ( YaW)(& ~ y) e dszds,

n 4 1@ -yl ) Sy

axp

(7.55)
We will follow the same approach as previously. We consider o = & N 3 the new origin and

we replace in the equation (7.55) the basic function v,(y) by the equivalent expression

Va(y) = 1g(0) + (ylly)-
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Once we have homogeneous integrands, the reduction formula (6.5) gives

QM(a, B,€) = 1y (0) [y ks"Ro(a, B, 1, [[a* — y]], &) — Ra(b', v, b, |3 — B[], €))]
+ s ksF[DY (@, By, [k — yl],€) — vy (0) Rs(a*, B, ]|a* — g, €)]

+ 3 (=1 (0) + 1 (0) Rs(¥, v, |2 — V||, €)]

200 (0)[32 oy ks®S1(a%, B, b, €) + 32, 1S (B, o, b, €)]

23y kR[S @k, B, b, |6F — ], €) — 1y(0)Sa(a, B, h, ||a* — yl[,€)]

230y (1 (B) = g (0)) SV, 6, b, || & — ][, €)]

7.5.4.2 Case where o and [ are secants

Let o = avN [ be the new origin. The basis function ¢, (y) can be expressed as following

Va(y) = ty(0) + (ylly)

which gives

_ I _
le"bq(a;ﬁuf):wq(0> / W;(x_—yﬁlrsds‘”dsy—i_ / stzdsy (7.56)
axf

axf

The integrands are homogeneous of degrees ¢ = —{ and ¢ = 1 — £ withn = 2.
o If ¢ + n # 0, formula (6.4) gives

1 ksk k It . kst i
Q 7¢q(0z757€) :wq(O)[Z _S(a 757()) - —S(b,a,O)]+Z—S¢‘I(y)(a aﬂvo)
k=% 2 =t 2 k== 3
kst . It ’ ]
_¢q(0) ?S((I 7/370) _Z§(¢q(b) _¢q(0))5(baa,0)7 (757)
k== ==
where ol (e )

¢q(y) k — R ARSI yl —y d 5

T B/ I 759

o If ¢ + n = 0 it will be appropriate to apply formula (6.6), which leads us to this

expression

Q"1(a, B,) = g (0)[ > ks*L(a*, B) = > UL, )] + Y ks"L¥(a*, B)
k=+ =t k==
= kst (0) Lk, B) = ) 1t (1hy(b) — vg(0)) L(V, ) (7.59)
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where

V(g Yqy)(a” —
L /q‘ak yH3 5, (7.60)

7.5.5 Calculation of Q¥»%4(c, 3, &)

Here we deal with the singular integral

Qv (a, B,8) = /% Hx_y)H(fﬁg )dsmdsy (7.61)

7.5.5.1 Intersecting triangles

We project o on the plane parallel to « and going through 3. Let & be the projection of o and

2 the projection of z. Then, we provide an equivalent expression of the basis functions:

—

dp(x) =1+ u(x |_aC\L§ D _y + u—(”% |_a6|i§ 4) (7.62)
Yely) =1+ , W= b)I6 (7.63)

Ik
where 4t = £1(u = lifa, = a* and p = —1if a, = a7). Likewise, v = £1(v = 1 if
b, = b" and v = —1if b, = b~). We choose the intersection of the supports of & and 3, as

origin and we note it 0. we obtain :

(0 —aylad) | (& —old)
=1
(bP(:C) + H |Oé‘2 + 2 ’Oé|2
_ 04 _ °) (7.64)
(8]
(0—=bglB) , (y—olB)
Yo(y) =14v +v
o) AP B
J— O 3
=0, + 40P (7.65)
18]
where C), = 1 + u(o ‘ af; % and C,=1+ plo=balf ‘ ;é) 13 . Then, the expression of Q¥»*¥« becomes

%t (o, B,€) = C,C (& —y) dssdds, + 2 v —olA) —y) ds;ds,
Qe B,8) fzq/<m+wx_mn ) rm2/<m+wx—mm”ss

axp
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C & ola) (s — _ _ _
7 / (e ) g, [ ARG~ =9)
P S+ 12—yl GPIBE S (2 e = ol2) 5
(7.66)
In the formula below the integrands are homogeneous with variable / and of degrees ¢ = —&,
q=1—-¢&,1—¢and 2 — & Formula (6.5) gives
Qo V(e B, &) = CpCy[d 2y kS fg a* —y)h* §f au [EE3 ds,
u = (u2+[ak —y|[?) 2
7l — du
F 3 [ (3 bYR2E [T e o .=x ds,]
Cp A~ u
e [ K8 fﬁ B O|B) a" —y)h* éf =€ (u2 4 ||k —y|2) T oy
+Zl,i 1 [ (0 — o]@) (3 — bh)R>—¢ [T u4_£(u2+‘l|i;7bl“2)#ds$]
_ _ 3—¢ +00 du
D b0 —ol@) (@ — e ) pETERTEE
— +oo U
+ i 152 — o) (2 = B)RE u4—s(u2+\(|i —bH[2) i -
JF%[Zk:i ks® fﬁ(dk —0ld)(y — ol B)(a" — y)h** fh u5—€(u2+||i;fy|\2)# dsy
+ S0 U (& — ol @) (B — o]a) (& — b)RA=E [ — 5( If“ e S
ub—&(u2+||2—-bt||2) 2
(7.67)

which is equivalent to

Q7% (a, B,€) = CpCy[> i ik§kR2( 8,006 =0 j:lt Ry(b', &, h, &)
+ 3 k[T (08 — o|d@) Ry(a", B, h, €) + Th5 M (@, 0, 8, h, €]
+ 3 - f;;( — ol B)Ry(V, &, h, &) — T M3V, 0,0, D, €]

+|a|2|ﬁ|2[2k :I: ((l _0|06)M4(CL 0 ﬁ h 5) Zl iltl( —0|5)M4(b 0, Q, h f)]
(7.68)

where

Malat,0,0,0,6) = [(@ =~ o@)(a* = ) flh @~ yll. s, (T69)
B

Mifat,0.5.1.) = [ (@ old)a = ) fulh |~ o]l E)ds, (7.70)
B
are given in Appendix (B).
7.5.5.2 Coplanar triangles

As we saw in section (7.5.2), we need to distinguish two geometrical configurations for the

supports of the sides « and .
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Two intersecting segments

When the supports of o and /3 are intersecting, we choose the intersection of the supports,

denoted o, as the origin. Then we use the same decompositions as (7.64) and (7.65).

dp(y) = Cp + W= ald) ’_a;‘a) 7.71)
Uy(y) = Cy + u(y ’—mzlﬁ) (1.72)

In case where £ — 2 # 0:
If we combine (7.71, 7.72) with (6.4) we obtain

Q¥r¥i(a, 8,0) = Cpcq [ ks ks®S(a", B,0) = 32, 1'S(V, ., 0]
3|/3|2[Zk ik:skN(a 0,/3,0) — Zl iltl(bl_OW) (0, @, 0)]
+ 5 [ kst (ah — 0|@)S(a*, 8,0) = X, N (B, 0,0, 0)]
+4|a\2\/3|2 Dot ks *[(a* —ol@)N (a 0,5,0) — leiltl(bl—o\g)N(bk,o,a,O)].

(7.73)
where =
b _ [ y=olf)a" —y)
N(a",0,8,¢) —/ Tk — yl[e ds, (7.74)
g
is given in Appendix (B)
Conclusion

This chapter presents the evaluation of the integral S; ; when using affine basis functions in
each element. We began by presenting the basis functions used and some of their properties
that will simplify the calculations. We only dealt with the case of adjacent triangles. The case
of triangles with common vertices presents no particular difficulty. This will be the subject

of the next chapter.
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Triangular mesh elements with common vertex

In this chapter, we continue to apply the reduction process to evaluate singular integrals
appearing in chapter 5, on the product of two triangular mesh element S and T. We deal with

the case where triangles have a common vertex.

8.1 Reduction to dimension three

Here we deal with the case where the triangles have a vertex in common. Let a; = b, be the
common vertex. We keep the same local orientation in S, then, ay = af and a3 = a; . But,
we take the opposite direction for 7', so, by = b] and bs = b; .

we want to evaluate 9 different singular integrals in the form 7.8

= [y s =020 =123. ®D

SxT

As already mentioned before the integral I* is not singular in the case ¢ = 0 but the method
still valid and it will not cost us extra calculations. It will be wise to choose the common

vertex a; = by, as origin. In this case the basis functions are written

6i(x) = dila) + (z|E]): ;(y) =y (b) + (] 11). (8.2)

Applying Theorem 6.4 we get
dy dy

13_ (. 9 0 1,3

3,1
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__gl P3,P1
= (e I ey, 1,6 + (-2 - D yuies, 86
5_£ 6—£ 1,4, 6—5 5_5 1,
91 7100
+6_£U (a1, T, €) (8.4)
22 _ 91 17604 g,
2,3_L ¢2,%3 _L V3,02
=g =gU (a1, T, €) i %2 (5, S, €) (8.6)
= (- e, T - (e - U6, 5,6)
5_€ 6—5 1,4, 5_5 6—5 1,4~
g1 P3,¢1
+'6 — €U (ala T7 5) (87)
32 _ 91 rro5.0m e
I _6—§U (a1,T,§) 6—§U #3(By, 59, €) (8.8)
33 _ _ 91 rress L T
"= =gV (a1, T, €) ¢V # (B4, S, €) (8.9)

where UV (o, T, €), U¥2(3;, S, €) and U%» %1 (o, T, €) are defined as following

U (, T,€) = %d%d;j (8.10)
a; XT

U#rta,T,€) = / stzdy (8.11)

U (a;, T, €) = / sop(ﬁ);bi(z)H(il— Y) gs. dy 8.12)
a; XT

8.2 Reduction to dimension two

Let w be the intersection of the supports of 7" and S. Here also we need to distinguish two

different cases.
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8.2.1 Intersection of two triangles w is secant with «

8.2.1.1 Computation of U(«, T &)

We want to evaluate the integral

Ula, T, €) = / %d%d% £=0,2 (8.13)

We consider o Nw = I as a new origin

a* —y
ds,ds, + dy
3 é/llﬂff—yH”5 ! 23 &/ lla® =yl

3 k
= ZQ(O‘7BJ"§) P(ak’T7§>

J=1

P(a*,T,¢) and Q(«v, B;, &) were already computated in B

8.2.1.2 Computation of U ¥4

Recall that U< (o, T, €) is defined by

Ulﬂllq (Oé, T7 5) = l/ﬁlm(‘ 2( | ’5_‘_1) ds dy

axT

and
%

%(y) = @qu(l) + (g| lq)
We get

Nz - _
UM (a, T, €) = %d%d;ﬂr / W)=y, o

axT axT

and then the reduction formula gives
Ut (aa T, 5) = wq([)(l - —>U<O" T.¢)

1

3
k pig [k
4_£Ek2iks P%(a ,T,{)—i-z

+ Q4 "1(a, B;,€) (8.14)
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8.2.1.3 Computation of U/#»!

Recall that U7 (o, T, €) is defined by

Uerl(a,T,€) = /cpp(x)(x_;yﬁgﬂdsxdy

axT

and

We get

. _ [ -y) (z]&;)(z - y)
Uw“%T‘”‘/nHz—ywﬂd%@”%/‘uz—QWH

axT axT

ds,dy

applying the reduction formula (6.4)
3—-¢

U@p’l(OQTv 5) = ()OP(])(]' - 4—_€)U(O‘7 T7 5)
1 ek k 5 i, s
e > eplad)hs P T 6) + ) - @7 (0,85,6) (8.15)
k=4 j=1

8.2.2 Intersection of two triangles w is parallel to o

When the support of « is parallel to w, the homogeneity of the integrand is lost. Then, the
projection of « is carried out on the plane of the triangle 7" in order to decompose the norm
||z — y||. Let & and a* be the respective projections of o and a* on the T plane . We denote
by Z = & — x and h = ||z — Z|| the distance between the segment v and & which plays the

role of the parameter.

8.2.2.1 Computation of U(«, T, &)

(e =)+ ()
Ula, T,§) = —ds,d 8.16
0= | o o

axT
Thus, the integrand is homogeneous with respect to the pair formed by the integration vari-

ables (Z,y) and the parameter h. So we have

U(CY,T, f) = Ul(@7T7 haf) - EUQ(OA(aTa ha 5)
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where

T—y
U(aTh,Q:/hz <A )2+185;y
) (B2 + (i —yl?)
Us(&, T, h, ) / ! dszd
200, L, N, - SzayY
(h2 + )& — y||2)

axT
The next step, we chose the extremity a~ of & as a new origine, we apply the reduction

formula (6.5) and we get

U, T, ¢) = |a|/ y) folhs |6+ —y||dy+25 /fz(h,lli'—yH)dsgzdsy

axp

3
o) / foh 1t = yll, Ody + 3 6;(a7) / folh, |12 — yll)dssds,]
T J=1 ax

otherwise

3
Ua, T, €) = |o| Ps(a™, T, 7, §) + Y 6;(a7)Qa(d, B, h, €)
j=1
3
—Ho| Py, T 7, )+ 6;(67)Qa2(dr B, 1, €)]
7=1

8.2.2.2 Computation of U4 (o, T, €)

We are inspired by what we did with U(«, T, §)

Ul’wq(O[,T,g) = %d dy

aX
= UyY1(a, T, €) — 20,1 (, T, €)

where

tﬁ%mﬂﬁw=/ i) day
L (]l =yl

Uzlqu (Oé,T, 5) — / @Dq(y)(i - y) . dSwdy
S wre -y T

We calculate each term separately. Let’s start with evaluating U21 ¥a (&, T,¢)

UYH(,T,6) = (a7 Un(8, T h, ) + o] P

4duect

( +7T7 h?é-)
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041 (@) QU (&, Bysrs 1y €) + 8410(a7) Q2 (&, Byyas b, €)

3
_¢Q(d7)[|a|P4vect(d+v T7 h‘> é) + Z 51'(&7)Q4vect(&u 6]'7 h7 f)} (817)

j=1
where

PYt (6% T 1 €) = / @+ — )b (y) falhs 1+ — 1, E)dy

T

QL (6, Byr B, €) = / balw) fah, |12 — yll, €)dsads,

axBgt1
P4vect(a'+a T7 h’a 6) = /(&+ - y)f4<h7 ||d+ - y”?&)dy
T
Q4vect(d7 Bq-‘rla ha 5) = / f4(h7 ||‘% - y||’ g)dedSy
OA‘Xﬁqwtl

are performed below. On the other hand we have

UL (6, T,h,€) = (a7 Ua (@, T, 1, €) + ol Py

3scal

(a*,T,h,¢)

+5Q+1(d_)Qégﬁgl(d7 Bq—ﬁ-lv hv 5) + 5Q+2(d_>Q;,:ﬁ(qzl(é‘7 ﬁq—ﬁ-?? h? 5)

3
_wq(&i)Ha‘PBscal(&Jra T7 h, f) + Z 5j (d7>Q33cal(&7 Ba h> ’5)] (818)
j=1
where
Pt T8 = [ @ = )0 flhla* = ol )y
T
QG h€) = [ by 1d — yll. dsads,
axfgt1
PSSCal(&+7T7 h7€> = /(d+ - y)f3(ha ||d+ - y||7§)dy
T

8.2.2.3 Computation of U?P)¥4(q, T €)

We want to evaluate the singular integral

U%%@%ﬂazz/‘%@wmw@—yw%@

|z —y[|*+!

Ozz‘XT
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1d$£dy

zay
h? 4 |12 —y||2)S

(02 +[[& = yl[?) =

_ / ¢p<$>¢q(y)<x_i) / @p(x)¢q(y)(j_y)
I

axT axT
= —ZUyP(A, T, €) + Uy (4, T, €)

We calculate each term separately. Let’s start with calculating Uf) (P) g (&, T,&). We replace

the basis functions in their equivalent expression with a~ as the origin, the integrant is homo-

geneous with parameter, we apply the formula (6.5) Which gives

_>

1 ep(@™)(yl fy)
id + — d @d

szdy /( szdy

UV, T,€) = (@ Wy(a™) / d :
1 e (B2 + |3 — y|2)F h2 + ||z — y|[) 5

axT axT

dszdy

(z]e2)s (v) () (2l I Fy)
"—/( wdsidy—i—A/(

2 A2 2 SIDA =t
NN e -yl

Conclusion

In this chapter, we gave formulae of evaluation of the integral /*/, on two triangles having a

vertex in common.
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CHAPTER 9

Numerical results

In the previous chapter we discretized the variational formulation of a three-dimentional scat-

tering problem. Here we present our numerical results.

9.1 Radar Cross Section

In radiation theory it’s well known that the energy intercepted by an object can be reflected,
transmitted or absorbed through the target. We can assume that most of the energy is reflected.
The spatial distribution of this energy depends on the size, shape and composition of the
target, and on the frequency and nature of the incident wave. This distribution of energy is
called scattering, and the target itself is often referred to as a scatterer. The radar cross section
(RCS) of the body is a measure of the energy scattered in a particular direction for a given
illumination [51].

Bistatic scattering is the name given to the situation when the scattering direction is not
back toward the source of the radiation. If E and H represent fields scattered by an object
illuminated by incident plane wave E™¢ traveling in the direction of the unit vector k, the

bistatic radar cross section in the observation direction r is

E[*

O'(I'7 k) = Tli)ﬂ;) 47T7’2w.

This cross section is defined as the area through which an incident plane wave carries

sufficient power to produce, by omnidirectional radiation, the same scattered power density

as that observed in a given far field direction. The monostatic radar cross section is defined

113



CHAPTER 9. NUMERICAL RESULTS

20 SER sphere radius R=1m f=0.14313GHz
T T T T T T

Mie Series
UCP codel
— UCP code2
—-—-UCP code3

15 -

SER TM en dB
1
o
T

o
T
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0 20 40 60 80 100 120 140 160 180 200

angle en degres

Figure 9.1: Bistattic RCS for a coated unit sphere, when d = 0.05, » = 0.95, u, = 1.0,
¢, = 2 and w = 0.9GHz

as the radar cross section observed in the back scattering direction, o(—k, k).

Radar cross section is the measure of a target’s ability to reflect radar signals in the direction
of the radar receiver, i.e. it is a measure of the ratio of backscatter power per steradian
(unit solid angle) in the direction of the radar (from the target) to the power density that is
intercepted by the target.

The radar cross section of a target can be viewed as a comparison of the strength of the
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16 SER sphere radius R=1m f=0.14313GHz
T T T T T T

Mie Series
—— UCP codel

UCP code2
—-—-UCP code3
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12

10

SER TM en dB

| | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
angle en degres

Figure 9.2: Bistattic RCS for a coated unit sphere, when d = 0.0125, i, = 1.0, ¢, = 2 and
w = 0.9GHz

reflected signal from a target to the reflected signal from a perfectly smooth sphere.
The units for RCS are square meters. As RCS can span a wide range of values, a logarithmic

decibel scale is also used with a typical reference value o,.; equal to 1m?:

7 ©.1)

Oapmz = 10 10g10(0 -
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9.2 Numerical results

serlc R=1m f=0.14313GHz d=0.0125m epsilon=2073.42-57.969i mu=1
T T T T T

200

Figure 9.3: Bistattis RCS for a coated unit sphere

To illustrate our approach, we compute the RCS of a unit sphere coated with a thin dielec-
tric layer. The radius of the inner conductor is denoted by r and the thickness of the coating

by d. The material properties are described by a Leontovich Impedance Z = const.

Z = 24| Br tan (\/r€rkod)
ET
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where 11, and €, denote the magnetic permeability and electical permittivity of the coating. To
validate the code, we test it on a sphere with different sphere-meshes and we compare it with
Mie series. We take the sphere’s radius is 1m and incident waves pulsation w = 0.9GH z.
In figure (9.1), we plot the exact RCS calculated by Mie Series(continuous black line) and
we compare it with our code results in different sphere mesh with inner radius » = 0.95 and
coating thikness d = 0.05. In 9.1, the azure continuous line is the ucp code calculated on
the mesh \/10, red continuous line in our code calculated on the mesh \/15 and the blue
discontinue line is our code on the mesh \/20.

In the second test, we decrease the coating thikness to d = 0.125 and we increase the
inner sphere radius, for the same frequence as the previous test. In figure (9.2), we plot the
exact RCS calculated by Mie Series(continuous black line) the red continuous line is our
code calculated on the mesh A/10, azure continuous line represent our code calculated on the
mesh \/15 and the blue discontinuous line represent our code on the mesh A\/20

In figure 9.3, we consider a coating thikness d = 0.125, a frequence f = 014313G'H z, the
same constant for the magnetic permiability 1, = 1.0 and electical permittivity €, = 2073.42
. In figure (9.3), we plot the exact RCS calculated by Mie Series(continuous red line) and the
RCS calculated with our code
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Physical constant

o7
e C
® o
®c
e/
oW
o)\
o Ly

= 3.1415926535897932384...;

= 2.99792458.108ms~! speed of light;

= 47.1077 free space permeability in (henry/m);

= 1/(uoc?) free space permittivity in (farad/m);

= \/lto/€0 = poc impedance in (ohm);
=2nf;

.

f
=w

wave length;

fo — w

€0

C

wave number;
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Appendix A

A.1 Modified Bessel functions / and X

The differential equation
Pt — (2 Hu =0,

where v is a real constant, is called the modified Bessel’s equation and its solutions /,,(z) and
K, (z) are known as modified Bessel functions.
To have the formulas for [, (z) and K,(z) we need the following preliminary definitions

C[1D).

Definition A.1.1. The Euler constant (sometimes called Gamma) is defined as the limit of the
expression

11 1
v=lim [1+ -+ < +...= —Inn] = 0.5772156643.

The abbreviation In stands for the natural logarithm, also called the base e logarithm.
Definition A.1.2. (Euler’s formula). For all complex numbers z, except the non-positive
integers (z # 0,—1,—-2,...),

nln?

M) = i gy )

If n is a positive integer;the function is defined by I'(n) = (n — 1).
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Definition A.1.3. (Modified Bessel function of the first kind)

(%ZZ)k

1 e
I,(z) = (52) I; ET(v+k+1)

We also have the following decay behaviour for K, (z) as v is fixed (Rer > 0) and z — 0

A.2 Approximation of unit normal vector

The following result can be found in [9].

Lemma A.2.1. Let v(Z) be the outward unit normal vector to 025 at x. Then the following
Jormula holds
()= (1+0(0))v(z) + O0)T (). (A.1)

Proof. Under the notations as in Chapter 5, it follows that ¥ = X (t) = X (t) + dp(z)v(z) =
X(t)+9 p(x)R—Tw X'(t) is a parametrization of 0§25 (where R stands for the rotation operator),
v(z) = R%X’(t), the tangent vector 7T'(z) = X'(¢), X'(¢)LX"(¢) and X" (t) = 7(x)v(x).
Using the simplified notations p(¢) for p(X (t)) and p/(t) for the tangential derivative of p(t),
then we have (A.1). ]

A.3 Fundamental result of Riesz theory

Theorem A.3.1. (Fredholm alternative). Let T' : X — X be a linear compact operator and
let
ker(I —T) = {0}.

Then I — T has the bounded inverse (I —T)™' : X — X, where [ is the identity operator.

Theorem A.3.2. Let A : X — X be a compact linear operator on a normed space X. Then
1. I — Ainjective <= (I — A)~! surjective

2. I — Abijective = (I — A)~! is bounded.
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Theorem A.3.3. Let X be a normed space, A : X — X compact. If p — A¢p = 0 has only
trivial solution ¢ = 0 then ¢ — A¢ = [ has a unique solution ¢ € X forall f € X, and ¢

depends continuously on f.

Theorem A.3.4. (see [36], Theorem 3.4). Let A : X — X be a compact linear operator on
a normed space X. Then I — A is injective if and only if it is surjective. If | — A is injective
(and therefore also bijective), then the inverse operator (I — A)*1 : X — X is bounded, i.e.,

I — Ais an isomorphism.

A.4 Singular kernel integrals

Denote by D C R? a bounded domain with the boundary 9D of class C'. We consider the

integral operator P defined as follows

Plg) = / K (2, y)0(y)do(y). (A2)

Definition A.4.1. (Weakly singular kernel). A kernel K is said to be weakly singular if it is
defined and continuous for all x,y € 0D, x # vy, and there exist positive constants M and
a € (0,d—1]; d > 2 such that

K (z,y)| < Mz —y|*""™, 2,y €D,z #y.

The following theorem is a well-known theorem of Coifman-Mclntosh-Meyer, ( [44],
Theorem 11). This theorem plays an important role in studying the boundedness of a class of

singular kernel integrals.

Theorem A.4.1. Let n, m > 1 be integers and suppose that A : R" — R™ is a Lipschitz func-
tion. Let F' : R™ — R be an infinitely differentiable odd function. Then the antisymmetric

kernel

K(z,y) = F(W) =y (A3)

defines a bounded operator on L*(R™).
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One dimensional integrales

B.1 Calculation of S(a, 3, &)

= / o=l B

Let ¢(a) be the projection of a on the support of 5 and d = ||¢(a) — a||. Then

tt tt

1 S
S(aaﬂag) = (a_q<a))/md8+/md8 (BZ)

where s is the abscissa on 3 which will be calculated as follows s = y — ¢(a) and t* where

t* are abscisses of the extremities of beta with ¢(a) origin and d = ¢(a) — a.

B.2 Calculation of S, S5 and S5

L] Sl(avﬂ7 hv é)
Su(a, B, h,€) = / £1(ha o — yll, €)ds,

—+00

= / W< / du s, (B.3)
JU ] e o)
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where f,,(h, s, &) were be defined in 7.29. Let g(a) be the projection of a into the support of
5, then

tt —+o0 d
Si(a, B,h, &) = hhé/ 4 d B.4
l(a 6 6) t_/ / u2_5(u2 N 2 N 32)1¥ Sy ( )

where t* are abscissae of the extremities of 3 with ¢(a) origin and d = ¢(a) — a.
if€ =0

tt +00 J
Sﬂaﬁihﬂnzi/hl/m 4 _ds,
) u?(u? + d? + s?)2
J

+t
_/ h2+d2+82—hd
B d? + s? i
ha
+t
1
= / ds (B.5)
h? 4 d? 4+ s2 — h
ha
h  Vh?+ s
Sia,5,h,0) =[5 = = +Ia(s + VIE ) (B.6)
for & =2
tt +oo J
u
Si(a, B, h,2 :/h_l/ =ds
1 ) (u? 4+ d? + s?)2 Y
t= h
+t
1 h
= 1-— d
s (e
e
5 1 hs +
= [% arctan(a) - arctan(dm)]t_ (B.7)
L 52(a7ﬁ7 h7 6)

So(a, B, b, €) = / folh. o — y], €)ds,
B
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—+00

:/hQ_E/ u e A5y
/et Jla— gl

B

tt “+o0

du
So(a, B, h, &) = [ h2~¢ / ds
2(a 6, h,€) / ) u3E(u2 + @ + 52) 2

-

tt “+oo
Sg(a,ﬁ,h,O) :/h2 / du rds
wd(u? + d? + s?)2
t~  h
Marcsinh( i ) — I arcsinh(M)]t+
N YN e R

tt 400

5’2<a767h72) :// du 3d8
w(u? + d? + s?)2
t— h
tt

_ /_ 1 1 (Vd? + s?)
(d? + s?) h

sarcsinh

+
V2 +d?+ 52 (d? + s2)>

h

=

1
arcsinh( ) — = log(s + Vd? + h? + 52)]§f

2(VE + 2)

L 53(&, 57 h7 5)

Sy(a, B, hy€) = / falh, lla -yl €)ds,
B

tt +oo

du
Ss(a,B,h, &) = [ B3¢ / —ds
(@, h,¢) / J u4*5(u2—|—d2—i—s2)%5

-

¢+
2h3 + (Vd2 + h? + s2)(d* + s* — 2h?)
53(0757 h,O) :/ 3(d2 +32)2 ds

.
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1 [h3s — h2sV/d? + h?s? N h? arctan(¥)
"3 (2 + 52) 43

3
—% arctan(d\/#) +1g(s + Vd? + h? + s?)] (B.13)
S
ife =2
tt+
d* + s* + 2h*(h — Vd? + h? + s?)
= d
Sg(a,ﬁ, h, 2) / (d2+82)2\/m S
J
—h+ sVd® + h? + s? h h
_ [5( dj(d2 T <) ﬁ(arctan(g) ~ arctan~ m))] (B.14)
B.3 Calculation of 77, T, and 15
.Tl<a767h7£)
tt+
Ti(a, B, h, &) = /sfl(h, Vd? + s%,&)ds (B.15)
J
ife=0
tt +o0o d
U
Ti(a, B,h,0) = [ sh rd
(w00 = fon | 2 1 fla— [P
t— h
ife =2
tt +oo d
Ti(a,B,h,2 —/Sh_l/ ¢ ~ds
R S PR
L TQ(aa 67 hu 6)
tt+
10, 5.0.€) = [ sfalh VET S €)ds (B.16)

-
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tt +oo

T1<a7ﬁ7h70) :/Sh2/ du 1d8y
S uw(u? + la —y[[?)2

=

/ svVd? + h? + 32 sh?

\/ d? + s2
-arcsinh(———
2(d? + s?

(d2—|—s) h

_ [\/m N h? Vd? + 52)]t+
B 2 2V d? + s? h v

)ds

arcsinh(

tt

S
= [ - +
/ (d? + s2)V/d* + h? + s?

=

(& + s2)2 h

(Vd* + 52 t+

arcsinh . ))i-

1
VEs

tt

Ts(a, 8, h, &) = /ng(h, Vd? + s%,€)ds

-

tt

Ty(a, B, h,0) = /m(\/ﬂ Fh2 1 S22+ s* — 2h2) + 2h%)ds

e
[—h?’ + (d* + h* + 52)%]t+
3(d2 + 2) -
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t+
d? 34 9sh(h — \V/d2 + h2 2
Ty(a, B,h,2) = [ S5 25 Tt e)
E 12+ (& + 52)?
J

D VPR

e (B.21)

B.4 Calculation of R, > and R3

.Rl(ayﬁah7£>
h, - h —ll,
_} f— £h1 éffﬁa y) fa( IIa dei) B2
ol ut- €(u2+ua e
.RQ(a767h7£>
0.8.0.€) = [(@ =) falhla vl s,
B
= (a—Q(a))/fa(fuHa—yll,f)dSﬁ/(Q(a) —y)fa(hs [la —yl[, §)dsy
B
t+ 400 g 400 g
~ (a— h2=¢ - d sh2¢ . d
(a Q(a))t/ h/u3 5(u2+d2+32)“§§ Sy— |ﬂ|/ h/u3 5(u2+d2+82) g Sy
(B.23)
wich is equivalent to
RQ(avﬁa haf) = (CL - CI(CL))SQ(CL,ﬁ, hvS) - T2(aa6a hag) (B24)

18]

4 RQ(a’v 57 h7 5)
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=wa—¢@y/ﬁmwm—ymawy+/@m»—wﬁmmm—mu@wy
B

B
tt 400 p B_, tt +00 g
— (a— B3¢ = ds—-—- [ sh3=¢ - d
(B.25)
wich is equivalent to
Ra(a 1) = (a = ala))Sila 5.1.€) = -Tafa 5.1 ) (B.26)
B.5 Calculation of S;p !
o S3(a, B, h,¢)
5§7(a,6,006) = [ bul) ol la = ol €)ds, (B.27)

B
We remind that, on a stop 3,, the basis function ¢, vanishes. So, the calculations will be
performed only on 8 = 3,41 and 8 = [,42.The basis function ), on 5 can be written as

follows
|y - bq |

B.28
7] (B:28)

dquﬁ(y) =1-

Which give

5§"(a.8,1,9) = [ b lly = all )ds, - WL/ b falh g = al €)ds,

B
tt+
/ ol VP2, €)ds = BI (o= ) folh VE T2, 6)ds,  (B.29)
where ¢ = —1if b, = b, e = 1if b, = b" and z is the abscissa of b, Finally, we obtain
¥
S5 (a6, ) = (1= 20820 6.0, + 2T 5,1 €) (B.30)
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CHAPTER C

Integral formulation of Maxwell equation

C.1 Properties of integral operators

Some solutions of the problems of diffraction of electromagnetic waves can be expressed
with the help of potential of single and dual layer defined on the surface of the obstacle. We

present here the properties of the harmonic potential.

Definition C.1.1. We introduce the potentials (B — S) and Q), that are defined by

1
QM := /VyG(x,y) x MdI'(y) (C.2)
r
and G(x,y) is the Green kernel giving the outgoing solutions to the scalar Helmholtz equa-
tion:
e~ kle—yl (1+iklz —y|) _,
G = V,G = — —tklryl(x C3
(7,9) yrp— Va.G(z,y) Irr—yp ¢ (x—y) (C3)

According to theorem 4.6 in [38](Chapter I, p.43) we have:

Theorem C.1.1. The operator Q is continuous from H—'/?(div,T") to H='/?(rot, T') and we
have that:

1 _ .
(0% Q+ 5)M|_12 i < CIM|_yjp v, YM € H*(div,T) (C.4)
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According to theorem 2.2 in [38](Chapter II, p.61) we have:
Theorem C.1.2. The operator (B—S) is an isomorphisme from H='/%(div,T") to H~'/?(vot, T")
and it verifies the inequality:

(B = 5)@l-1/200t0 < CllD] 1720000 (C.5)

and the coercivity relation V¢p € H=/?(div, T):

R(< ¢, (B—S)p>) > CH¢“2—1/2,divF (C.6)

C.1.1 Fredholm alternative

Let us mention the abstract theorems known as Fredholm alternative [48].

Theorem C.1.3. Let V be a Hilbert space. Let H be a Hilbert space which contains V. Let

a(u, v) be continuous bilinear form on' V' x V which satisfies:

Rla(u,v)] > al|ull} — cl|lull, a > 0,Yu e V. (C.7)

We consider the variational problem
a(u,v) = (g,v); YveV;ge V™.

Suppose that the injection of V' into H is compact. Then the variational problem (VP)
satisfies the Fredholm alternative i.e.
- either it admits a unique solution in 'V,
- or it has a finite dimensional kernel and a unique solution up to any element in this kernel,

when the duality product of the right-hand side g vanishes on every element in this kernel.
We take the existence and uniqueness theorem from [48] (p.245, Theorem 5.6.1).

Theorem C.1.4. (Existence and uniqueness): Let V and W be Hilbert spaces. Let A(.,.) be

a bilinear form continuous on V' x 'V which satisfies
RIAw, @) = allulZ — Cllully, a>0,VueV (C8)

where H is Hilbert space containing V. Let B(q,v) be a bilinear form continuous on W x V/

which satisfies:

sup [B(g,u)| = Bllgllw — Cllgllz, 8>0,VgeW (C9)

flullv=1
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where L is a Hilbert space containing W'.

Consider the following variational problem, with g € V* and g, € W*:

{ A(u,v) +B(p,v) = (g1,v) W eV (C.10)

B(q,u) =(92,q9) Yge W

Denote by V| the kernel of the bilinear form B in 'V, i.e.
Vo={u€V, B(qg,u) =0, Vg € W}

Suppose that the injection form Vj into H is compact and the injection from W into L is

compact. Suppose that there exists an element ug, € V such that:

B(Q7u92) = (927(])’ VC] eV

Then the variational problem (C.10) satisfies the Fredholm alternative, i.e.
-either it admits a unique solution in V- x W,
-or it admits a finite dimensional kernel, and a solution defined up to any element in this

kernel, when the right-hand side (g1, g2) vanishes on any element in this kernel.

C.2 Integral formulation of the problem

We are looking for a presentation of the fields (E, H) outside the object in terms of electro-
magnetic currents (J, M) on the surface ' [48]. We have Maxwell’s equations on the surface
I':

rotE — ik ZoH = Mor

(C.11)

rotH + ikZ;'E = Jor
The superposition theorem lets us consider two cases. In the first case we suppose that M = 0,
in the second J = 0. In both cases we want to get E and M expressions in terms of J and M.
After we combine these cases to get the general form of fields E and M. In case M = 0, we
are looking for E in the form

E=A+VV (C.12)
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with Lorentz gauge condition divA = k*V. The divergence of the second equation of (C.11)

with support of gauge condition, shows that V' satisfies scalar Helmholtz equation

ikZy'divE = div] (C.13)
1
AV + BV = —ik™ 1 Zydiv] (C.15)

It can be expressed as a potential simple layer density of —ik~!Zydiv]

V(z) = z'k_lZo/G(a:,y)dinJ(y)dy (C.16)
T

In this expression G is the Green kernel, fundamental solution of Helmholtz equation, i.e.
verifies Maxwell’s equations and radiation condition.

We have that A verifies the next vector Helmholtz equation
AA + k*A = VdivA — rot(rotA) + k*A (C.17)

According to earlier condition the right side of the first term is equal to k2VV'. When (C.12)

allows us to express (C.17) as
E*VV — rot(rotA) + k’E — k°VV = k’E — rot(rotE) = —ikZ,J

The last equivalence derived from Maxwell’s equations (C.11).

Then A is a potential of simple layer density —ikZyJ. So we can write

Alw) =itz [ Glalwdy  (€18)

N

1
Bla) = ikZo | [ Glay)dw)dy + 15V [ Glavy)dive - Io)dy (€.19)
I I
1

(x) = ikZorOtE = rot/G(a:,y)J(y)dy (C.20)

I

We write them via the operators

E(z) = ikZo(B — 5)J(x)
H(z) = —QJ(z)

(C.21)
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where (B — S) and () are the potentials defined in (C.1),(C.2):

(B—9))(z) = /G(x,y)J(y) + %VmG(x,y)dinJ(y)dy (C.22)
QI(x) = —rot, / Gz, y)I(y)dy = / V.G(z,y) x J(y)dy (C23)

By an argument of symmetry, the second case J = 0 derives the same way
E(z) = rot, / G(z,y)M(y)dy (C.24)
r

1
72V / Gz, y)diveM(y)dy (C.25)

H(r) = —ikZ;" /G(x,y)M(y)dy +

Potentials express

E(z) = QM
(z) = QM(z) ©26)
H(z) = —z’kZo_l(B — S)M(x)
Finally we combine (C'.21) and (C'.26) to get Stratton-Chu formula:
E(z) =ikZy(B — — QM
() = ikZo(B — 5)J(z) — QM(z) €27)

H(z) = —QJ(z) +ikZ; (B — S)M(x)

These expressions are valid in external domain Q. The impedance condition associates
fields values on a boundary I'. We have to determine external limit values on I'. Using the
classical jump relations, we can express the respective limiting boundary tangential values of
E and H by

E)¢ = ikZy(B — 5)J(z) — QM + 1E,,
H)) = —QJ + ikZ; ' (B — S)M(z) + 31Hy,

(C.28)

We recall that on a boundary, we have
Etg =nxM

H,,=-nx]

where the subscript ¢ designates the tangential component E;, := nx (Exn) of the respective

vector field on I'.
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Thus the electromagnetic field can be expressed in 27 in terms of the equivalent currents

and charges by the familiar Stratton-Chu formula

E)¢ = ikZo(B — S)J(z) — QM+ 3n x M

(C.29)
H) = -QJ +ikZ; ' (B — S)M(z) — sn x J
Or in integral form
(Bine = ikZ, [, (G(z,9)I(y) + 5 V.G, y)dived) dy
+in x M — [ V,G(z,y) x Mdy (©.30)

Hy = —inxJ— [[V,G(z,y) x Jdy
+ikZy " [ (G(z, y)M(y) + 5 V.G(z, y)diveM) dy

\

Later, to write variational formulation, we will multiply it by a test function and integrate

over the surface I'.
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