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Résumé

La premième partie a pour but l’établissement d’un développement asymptotique pour la so-

lution du problème de Stokes avec une petite perturbation du domaine. Dans ce travail, nous

avons appliqué la théorie du potentiel. On a écrit les solutions du problème non-perturbé et

du problème perturbé sous forme d’opérateurs intégraux. En calculant la différence, et en

utilisant des propriétés liées aux noyaux des opérateurs on a établi un développement asymp-

totique de la solution.

L’objectif principal de la deuxième partie de ce rapport est de déterminer les termes d’ordre

élevé du développement asymptotique des valeurs propres et fonctions propres pour l’opérateur

de Stokes dus aux changements d’interface de l’inclusion. Dans la troisième partie, nous

proposons une méthode pour l’évaluation des integrales singulières provenant de la mise

en oeuvre de la méthode des éléments finis de frontière en électromagnetisme. La méth-

ode que nous adoptons consiste en une réduction récursive de la dimension du domaine

d’intégration et aboutit à une représentation de l’intégrale sous la forme d’une combinaison

linéaire d’intégrales à une dimension dont l’intégrand est régulier et qui peuvent s’évaluer

numériquement mais aussi explicitement. Pour la discrétisation du domaine, des triangles

plans sont utilisés ; par conséquent, nous évaluons des intégrales sur le produit de deux

triangles. La technique que nous avons développée nécessite de distinguer entre diverses

configurations géométriques

Mots clés: perturbation, développement asymptotique, problème de Stokes.



Abstract

This thesis contains three main parts. The first part concerns the derivation of an asymptotic

expansion for the solution of Stokes resolvent problem with a small perturbation of the do-

main. Firstly, we verify the continuity of the solution with respect to the small perturbation

δ via the stability of the density function. Secondly, we derive the asymptotic expansion of

the solution, after deriving the expansion of the density function. The procedure is based

on potential theory for the Stokes problem in connection with the boundary integral equa-

tion method, and geometric properties of the perturbed boundary. The main objective of the

second part on this report, is to present a schematic way to derive high-order asymptotic

expansions for both eigenvalues and eigenfunctions for the Stokes operator caused by small

perturbations of the boundary. Also, we rigorously derive an asymptotic formula which is in

some sense dual to the leading-order term in the asymptotic expansion of the perturbations in

the Stokes eigenvalues due to interface changes of the inclusion. The implementation of the

boundary element method requires the evaluation of integrals with a singular integrand. A

reliable and accurate calculation of these integrals can in some cases be crucial and difficult.

In the third part of this report we propose a method of evaluation of singular integrals based

on recursive reductions of the dimension of the integration domain. It leads to a representa-

tion of the integral as a linear combination of one-dimensional integrals whose integrand is

regular and that can be evaluated numerically and even explicitly. The Maxwell equations

are used as a model equation, but these results can be used for the Laplace and the Helmholtz

equations in 3-D. For the discretization of the domain we use planar triangles, so we evaluate

integrals over the product of two triangles. The technique we have developped requires to

distinguish between several geometric configurations.
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Introduction

This thesis has three main objectives:

• The first goal is to derive an asymptotic expansion for the solution of a transmission

Stokes problem with a small perturbation on the interface.

• The second goal is to present a schematic way to derive high-order asymptotic expan-

sions for both eigenvalues and eigenfunctions for the Stokes operator caused by small

perturbations of the boundary

• The third one is to provide and develop a new method of precise evaluation of singular

integrals derived from integral equation methods.

Perturbation problem

Perturbation theory is the study of the effects of small disturbances. It’s basic idea is to

obtain an approximate solution of a mathematical problem by exploiting the presence of a

small parameter. An introduction to perturbation theory can be found in [26], [29] or [56].

A theoretical approach of this problem remains of interest for two main reasons: to study

the behavior of the solution of perturbation problem, and to derive the perturbation approxi-

mation. The derived approximation formula can be applied in the theory of inverse problem

as well. It allows to recover mechanical properties by inverting the displacement data, for ex-

ample to recover the geometric features of the domain of perturbation, or the reconstruction

of the location of the anomalies.
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INTRODUCTION

Stokes transmission problem

The Stokes resolvent system can be obtained by applying the Laplace transform to the sys-

tem of the continuity and Navier-Stokes equations which describes the moderate Reynolds

number flow of a viscous incompressible fluid (for details see [34], [33], [58]). So the study

of this problem has a key role in the understanding of the biomechanics of blood flow, the

Brownian motion observed by Brown, the motion of swimming microorganisms, and other

biological or physico-chemical phenomena.

On the other hand, the potential theory for the Stokes resolvent system was developed by

Varnhorn in [60] and [58]. In addition, the fundamental solution for the system of equations

in R3 was obtained by McCraken in [43]. Also the Dirichlet and Neumann problems for

the Stokes resolvent equations on bounded and exterior domains in Rn have been studied

recently in [15] and [57]. A mixed boundary value problem for the same equations has been

treated in [32]. These autors, construct a solution of these problems in the form of appropri-

ate potentials (it can be represented as single layer potentials, double layer potentials, or their

linear combination), with the unknown source densities defined via integral equations on the

boundary of the domain. In order to show the existence of a solution (u, p) of the boundary

value problem, the method of boundary inregral equations based on layer potentials is used.

Potential theory, can also be used to study the transmission problem of the Stokes resolvent

equation, which occurs in the case of contact between two materials with different physical

characteristics. In a recent work [47], Mitrea and Wright have used layer potential methods

to develop a powerful analysis of a transmission boundary value problems in arbitrary Lips-

chitz domains. In other works [35], Kohr et Wendlend used layer potential techniques to treat

transmission boundary problems for the Stokes and Brinkman operators on C1 and Lipschitz

domains.

In this work, we consider a boundary value transmission problem for the Stokes system. Let

Ω ⊂ R3 be an open bounded domain with a connected Lipschitz boundary ∂Ω and suppose

that Ω contains an inhomogeneity in the form of an open setD with a connected C2-boundary

∂D. We assume that there exists a constant c0 > 0 such that infx∈D dist(x, ∂Ω) > c0 which

means that D is away from the boundary ∂Ω.

2



INTRODUCTION

Let us consider a boundary value transmission problem for the Stokes system:

(−∆ + κ2)u+∇q = 0 in Ω \D
(−∆ + κ̃2)u+∇q = 0 in D

∇ · u = 0 in Ω

u|+ − u|− = 0 on ∂D

µ ∂
∂n

(u, q)|+ − µ̃ ∂
∂n

(u, q)|− = 0 on ∂D

u = g on ∂Ω∫
Ω

q = 0,

(1)

where µ and µ̃ are positive constants related to the physical properties of Ω and D. Here we

take κ2 and κ̃2 in C \ {z ∈ R, z ≤ 0}. Let κ =
√
κ2 and κ̃ =

√
κ̃2 be particular square roots,

which have positive real parts (i.e. Re κ > 0, Re κ̃ > 0).

Let ν be the outward unit normal to ∂D and νΩ be the outward unit normal to ∂Ω. Then, we

denote by ∂
∂n

the conormal derivative.

In this thesis, we propose to show the existence and the uniqueness of the solution of (1) and

to express it in the form of linear combinations of potential operators.

Asymptotic expansion

We consider ∂Dδ a δ−perturbation of ∂D defined by

∂Dδ = {x̃ = x+ δν(x);x ∈ ∂D, 0 < δ << 1} (2)

and we denote by Dδ the domain bounded by ∂Dδ. Define (uδ, qδ) the solution of the trans-

mission problem for the Stokes system with a small boundary perturbation Dδ:

(−∆ + κ2)uδ +∇qδ = 0 in Ω \Dδ

(−∆ + κ̃2)uδ +∇qδ = 0 in Dδ

∇ · uδ = 0 in Ω

uδ|+ − uδ|− = 0 on ∂Dδ

µ ∂
∂n

(uδ, qδ)|+ − µ̃ ∂
∂n

(uδ, qδ)|− = 0 on ∂Dδ

uδ = g on ∂Ω∫
Ω

qδ = 0.

(3)

3



INTRODUCTION

We aim to derive an asymptotic expansion of (uδ − u)|Ω0 and (uδ − u)|D0 as δ tends to

zero, where D0 is any close subset of D ∩ Dδ and Ω0 is any subset of Ω \ (D ∪ Dδ). The

procedure is based on potential theoretical considerations in connection with a boundary

integral equations method, and geometric properties of the perturbed boundary. This work is

submitted for publication [13].

Asymptotic behaviors for eigenvalues and eigenfunctions as-

sociated to the Stokes operator in the presence of a small

boundary perturbations

The field of eigenvalue problems under shape perturbation has been an active research area for

several decades. The main objective of the second part in this report is to present a schematic

way to derive high-order asymptotic expansions for both eigenvalues and eigenfunctions for

the Stokes operator caused by small perturbations of the boundary. Also, we rigorously

derive an asymptotic formula which is in some sense dual to the leading-order term in the

asymptotic expansion of the perturbations in the Stokes eigenvalues due to interface changes

of the inclusion. This is inspired from the fact that the Stokes system can be viewed as the

incompressible limit [7]. Thus we rigourously extended some results elaborated in [5] to the

Stokes case. The properties of eigenvalue problems under shape deformations have been a

subject of comprehensive studies such as [2, 3, 10, 12, 29, 49] and the area continues to carry

great importance [5, 8, 28, 30, 46, 63]. A substantial portion of these investigations discusses

the properties of smoothness and analyticity of eigenvalues and eigenfunctions with respect

to perturbations.

Let us consider the following eigenvalue problem for the Stokes system with homogeneous

boundary conditions: 
−∆v +∇p = λv in Ω

∇.v = 0 in Ω

v = 0 in ∂Ω

(4)

with Ω ⊂ R3 a bounded open domain with boundary of class C2. Here v = (v1, v2, v3)

denotes the velocity field while the scalar function p is the pressure.

We assume that the boundary ∂Ω is subjected to a small, smooth deformation and that the

4
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boundary of the deformed domain Ωδ is given by:

∂Ωδ := {x̃ = x+ δh(x)ν(x), x ∈ ∂Ω} (5)

where ν(x) is the outward normal vector on ∂Ω and h(x) is a real function in C2(∂Ω) that

satisfies

‖h(x)‖C2(∂Ω) < 1. (6)

Obviously, the domain Ωδ is of class C2 and the Dirichlet eigenvalue problem for the Stokes

system can be defined in Ωδ as well.

In this work, we derive the asymptotic expansion of eigenvalues, eigenfunctions and the

eigenpressures solutions to the Stokes system:
−∆vδ +∇pδ = λδvδ in Ωδ

∇.vδ = 0 in Ωδ

vδ = 0 in ∂Ωδ.

(7)

Here we suppose that the eigenvalue λ0 is simple. Then the eigenvalue λδ is simple and is

near to λ0 associated to the normalized eigenfunction vδ.

To the best of our knowledge, this is the first work to rigorously investigate the Stokes eigen-

value problem in the presence of the perturbation and derive (formally) high-order terms in

the asymptotic expansion of λδ−λ0 and vδ−v0 when δ → 0. However, by the same method,

one can derive asymptotic formula for the Neumann problem as well.

Zuazua and Ortega have proved in [49] the regularity of the eigenvalues and eigenfunctions of

the Stokes system with respect to the perturbation parameter, by using the Lyapunov-Schmidt

method. Their proofs are essentially inspired in the work of J. Albert [2, 3] for the Laplace

operator. Our analysis and uniform asymptotic formulas of eigenvalues and eigenfunctions,

which are represented by the single-layer potential involving the Green function, are consid-

erably different from those in [28, 49].

These results were published in [16].

Singular integrals in Electromagnetism

Integral equation methods are an alternative for solving linear partial differential equations.

It consists in transforming the partial differential equation posed in a domain, into an integral

5
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equation posed on the edge. It is in particular a method adapted for diffraction problems that

are posed in an unbounded domain (see [25]) and for which the consideration of the radiation

condition is essential. We are interested in solving time-harmonic scattering problems by the

integral aquation method. In order to ensure a unique solution to the boundary value problem

we will take the constant impedance operator, known as standard or Leontovich impedence

boundary condition. This approximation does not depend on the incident angle at all.

Once the boundary problem has been converted into a boundary integral equation, it is nec-

essary to discretize the edge of the domain using plane polygons. Here we deal with plane

triangles and Rao-Wilton-Glisson basis functions fk. In this thesis, we are particularly inter-

ested in the singular integrals resulting from the discretization of the variational problem of

Maxwell 3-D equation, namely:∫∫
Γh

fi(x) · fj(y)
1

|x− y|
dxdy (8)

which comes from the potential of the single layer. This integral has been treated by Marc

Lenoire and Nicolas Salles in [40] with a purely analytic method.

The second one comes from a double layer potential can be written as follows:∫∫
Γh

[fi(x)× fj(y)] · x− y
|x− y|1+ξ

dxdy; ξ = 0 or 2. (9)

This singular character of the integrand makes the precise evaluation of these integrals diffi-

cult. It has been the subject of a large number of publications. The method presented in this

thesis allows us to evaluate analytically and with great precision, these singular integrals in

the variational case. Note that if ξ = 0 the integral is not singular but the method we propose

is still valid.

To better understand this singular integrand problem, in the variational case, it should be

noted that the domain of integration for these integrals with "problem", is the product of two

elements of the mesh, ie in 3-D, the product of two triangles S and T. When the two triangles

are distant, it is possible to evaluate the integral with standard numerical integration methods.

But the two problematic cases are the singular case, which occurs when the intersection of

the two triangles is not empty(adjacent triangles and triangles with a common vertex). These

two cases require separate treatment and this is a field of research still very active.

6
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Reduction process

The presented method makes it possible to reduce a 4-D integral to a linear combination of

mono-dimensional integrals whose integrand is regular. It is then possible to numerically

evaluate these 1-D integrals, but also explicitly.

This method of reduction relies on several formulas that make it possible to reduce the

dimension of the integration domain. So, repeating three times using these formulas we ob-

tain regular 1-D integrals. These formulas are based on the homogeneity of the integrand;

therefore, there are two conditions to check:

1) - The integrand must be homogeneous. We must therefore break the integrand into a part

homogeneous, which is treated with our method, and a regular part, which can be treated with

usual numerical integration methods.

2) - Flat polygons must be used to discretize the boundary of the domain. This in order to

maintain the homogeneity of the integrand during the successive stages of reduction.

Organization of this thesis

This thesis is divided into three parts, and composed of eight chapters, corresponding to the

goals introduced above.

The first part includes three chapters (Chapter 1, 2, 3) with the following contents:

Chapter 1 is devoted to introduce the notations and some preliminary results of layer-

potential theory for Stokes problem and perturbed geometry.

Chapter 2 show the existence and uniqueness of the solutions of a Dirichlet transmission

Stokes problem and presents it in form of potential operators.

In chapter 3 we first, verify the continuity of the solution with respect to the small per-

turbation δ via the stability of the density function. Secondly, we derive the asymptotic

expansion of the solution, after deriving the expansion of the density function.

7
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The second part states the results that have been published in the journal Math Phys Anal

Geom, see [16].

In chapter 4, we derive asymptotic expansions for both eigenvalues and eigenfunctions

for the Stokes operator caused by small perturbations of the boundary. Also, we rigorously

derive an asymptotic formula.

In the third part we develop a method for the evaluation of integrals with a singular inte-

grand derived from the application of a boundary element method on Maxwell’s equation.

In chapter 5, the time-harmonic scattering problem of electromagnetic waves is described

as a system of equations with boundary conditions. The uniqueness of the solution of this

problem is shown thanks to a variational formulation. It is also concerned with the discretiza-

tion of the problem with help of Rao-Wilton-Glisson basis functions for mesh triangulation.

The next chapter, is dedicated to the presentation of the method. The integration of ho-

mogeneous functions leads to formulas for reducing the size of the integration domain.

In chapter 7, we presents the evaluation of singular integrals when the triangles are Adja-

cent triangles, and the evaluation of singular integrals when the triangles have common vertex

in chapter 8.

We present numerical results in the last chapter.

We have put the proofs for some inequalities and auxiliary results concerning the first part

in Appendix A, the final expressions of the mono-dimensional integrals in Appendix B and

some preliminary results about Fredholm alternative and integral formulation Maxwell equa-

tion in Appendix C.

8
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Asymptotic expansion for the solution of
a Stokes transmission problem with a

small perturbation of the domain
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CHAPTER 1

Preliminary results

Introduction

In this chapter, we present geometric definitions, notations and basic results which will be

used in the next chapters as well as the main properties of the layer potential operators asso-

ciated to the Stokes resolvent equation on a bounded Lipschitz domains in R3.

The outline of this chapter is as follows. The first section contains the setting for basic

notations, definitions and related funtional spaces. Section 1.2 is devoted to present some

geometric properties of a boundary perturbation. In section 1.3, we describe layer potential

techniques for solving the Stokes resolvent problems on a bounded Lipschitz domains in R3.

We then present in 1.3.1 the fundamental solution for Stokes resolvent systems and we define

in 1.3.2 the properties of the associated layer potential operators.

1.1 Euclidean spaces

This section contains some notations and definitions concerning Euclidean spaces and func-

tional spaces, wich plays a segnificant role all along this work.

For x, y ∈ R3, x = (x1, x2, x3), y = (y1, y2, y3) let x · y :=
∑3

i=1 xiyi be the scalar product

of x, y and |x| :=
√
x · x be the Euclidean norm of x.

Denote by |x− y| the distance between two points x and y of R3 given by the formula

|x− y| = [
3∑
i=1

(xi − yi)2]1/2.

10



CHAPTER 1. PRELIMINARY RESULTS

More generally, |u| stands for the modulus of the vector u and we have |u| = (
∑

i u
2
i )

1/2.

Similarly, the distance between two subsets A and B of R3 is denoted by dist(A,B) and we

have

dist(A,B) = inf
x∈A,y∈B

|x− y|.

Definition 1.1.1. (Derivatives)

1. The gradient is denoted by∇ = (∂1, ∂2, ∂3), where ∂j = ∂
∂j

denotes the partial deriva-

tive with respect to the j-th coordinate (xj)j=1,2,3.

2. For all multi-indices α = (α1, α2, α3), we denote the α-derivative of f by

Dαf =
∂α1+α2+α3f

∂xα1
1 x

α2
2 x

α3
3

=
∂|α|f

∂xα1
1 x

α2
2 x

α3
3

,

where the order of this derivative is |α| = α1 + α2 + α3.

3. For vector-valued function v = (v1, v2, v3), ∇ · v = ∂1v1 + ∂2v2 + ∂3v3 defines the

divergence of v.

Definition 1.1.2. (The space Ck)

Given a non-negative integer k and an open domain D ⊂ R3, let Ck(D) denote the space of

all functions u defined inD which have all their derivativesDαu of order |α| ≤ k continuous

in D. To simplify the notation, we set C0(D) ≡ C(D).

Define Ck(D) as the space of all u ∈ Ck(D) such that Dαu can be extended from D to a

continuous function on D, the closure of the set D, for all |α| ≤ k. Ck(D) can be equipped

with the norm

‖φ‖Ck(D) = max
i=0,...,k

sup
D
|Diφ|.

Definition 1.1.3. (Lebesgue spaces)

Let L2(D) be the Lebesgue space of square integrable functions onD and let L2(∂D)3 be the

space of vector fields φ = (φ1, φ2, φ3) : R3 → R3 whose components φi belong to L2(∂D).

We have

‖φ‖(L2(∂D))d =

√√√√∫
∂D

(|φ1(x)|2 + |φ2(x)|2 + |φ3(x)|2)dσ(x).

We recall now the definition of curvature of a curve and definitions of mean and Gauss

curvature of a surface that will be appeared in the expansion terms of the area element in

chapter 3. For a complete description, we refer to [9] and [55].

11
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Definition 1.1.4. (Curvature)

Consider D a bounded open set in R2 with a connected boundary ∂D, a, b ∈ R with a < b,

and X(t) : [a, b] → R2 an arclength parametrization of ∂D. Namely, X is a C2-function

satisfying |X ′(t)| = 1 for all t ∈ [a, b] and

∂D := {x = X(t), t ∈ [a, b]}.

Then the outward unit normal to ∂D, ν(x), is given by ν(x) = R−π
2
X ′(t), where R−π

2
is

the rotation by −π/2; the tangent vector at x, T (x) = X ′(t), and X ′(t)⊥X ′′(t). Set the

curvature τ(x) to be

X ′′(t) = τ(x)ν(x).

Definition 1.1.5. (Gaussian and mean curvature)

Let k1 and k2 be the principal curvatures of a regular surface S at a point P . Define

1. The Gaussian curvature of S at P as the product K = k1k2;

2. The mean curvature of S at P is the average H = κ1+κ2

2
of the principal curvatures.

We also remark that for a bounded domain D with boundary of class C2,α, the outward

unit normal ν is a C1,α function and the following properties hold:

Lemma 1.1.1. ( [36], Lemma 6.16)

There exists a positive constant L such that

|ν(x) · {x− y}| ≤ L|x− y|2,

and

|ν(x)− ν(y)| ≤ L|x− y|,

for all x, y ∈ ∂D.

1.2 Small perturbation of an interface

Let D ⊂ R3 be a bounded domain with connected boundary ∂D of class C2. For a fixed

constant δ ∈ R, we consider ∂Dδ as a δ−perturbation of ∂D defined by

∂Dδ = {x̃ = x+ δν(x);x ∈ ∂D, 0 < δ << 1}. (1.1)

12
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We denote by Dδ the domain bounded by ∂Dδ and dσδ(x̃) the surface element of ∂Dδ at x̃.

The result presented below is given in [31] with more details.

Lemma 1.2.1. The surface elements dσ on ∂D and dσδ on ∂Dδ are related by the formula

dσδ(x̃) =
2∑

n=0

δnσn(x)dσ(x), (1.2)

where σn are bounded functions regardless of n. In particular,

σ0(x) = 1, σ1(x) = −2H(x), σ2 = K(x), x ∈ ∂D, (1.3)

withH andK denote the mean and the Gaussian curvature of ∂D respectively, as introduced

in Definition 1.1.5.

Since ∂D is parallel to ∂Dδ, we can conclude that

ν̃(x̃) = ν(x), x ∈ ∂D, x̃ ∈ ∂Dδ. (1.4)

We then have for x̃, ỹ ∈ ∂Dδ:

x̃− ỹ = x− y + δ(ν(x)− ν(y)),

and

|x̃− ỹ|2 = |x− y|2(1 + 2δ
〈x− y, ν(x)− ν(y)〉

|x− y|2
+ δ2 |ν(x)− ν(y)|2

|x− y|2
).

We also introduce two functions F and G for x 6= y ∈ ∂D defined by:

E(x, y) :=
〈x− y, ν(x)− ν(y)〉

|x− y|2
, G(x, y) :=

|ν(x)− ν(y)|2

|x− y|2
.

Since ∂D is of class C2, there exists a constant C depending only on ∂D such that:

|E(x, y)|+ |G(x, y)|
1
2 ≤ C, ∀x, y ∈ ∂D.

Hence, we obtain:

|x̃− ỹ| = |x− y|
√

1 + 2δE(x, y) + δ2G(x, y) := |x− y|
∞∑
n=0

δnLn(x, y),

where the serie converges absolutely and uniformly and the first two terms are:

L0(x, y) = 1, L1(x, y) = E(x, y).

13
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1.3 Potential theory

This section presents layer potential theory for the Stokes resolvent system. The main sources

used in the preparation of this section are [57] [58] [59] and [60]

1.3.1 Stokes resolvent system

1.3.1.1 Fundamental solution

Let consider a bounded Lipschitz domain D ⊂ R3 with connected boundary ∂D and a given

complex constant κ2 in C∗ where C∗ = C \ {z ∈ R, z ≤ 0}. Let κ =
√
κ2 be particular

square root, which have positive real parts (i.e. Re κ > 0). We denote by Γκ = (Γκij)i,j=1,2,3

and F κ = (F κ)i=1,2,3 the fundamental tensor and vector of the following Stokes resolvent

system: {
(−∆ + κ2)Γκij(x, y) + ∂jF

κ
i (x, y) = δijδy(x) on D,

∂iΓ
κ
ij(x, y) = 0 on D,

(1.5)

where δy is the Dirac distribution with mass at y and δij is the Kronecker symbol. The

components of (Γκ, F κ) are obtained in these forms (see [57] [58]): Γκij(x, y) = 1
4π

{
δij
|x−y|e1(κ|x− y|) +

(x−y)i(x−y)j
|x−y|3 e2(κ|x− y|)

}
,

F κ
i (x, y) = 1

4π
(x−y)i
|x−y|3 ,

(1.6)

where

e1(ε) =
∞∑
n=0

(n+ 1)2

(n+ 2)!
(−ε)n = exp(−ε)(1 + ε−1 + ε−2)− ε−2,

e2(ε) =
∞∑
n=0

1− n2

(n+ 2)!
(−ε)n = exp(−ε)(−1− 3ε−1 − 3ε−2) + 3ε−2.

Here and throughout this report we use the Einstein convention for the summation nota-

tion omitting the summation sign for the indices appearing twice.

1.3.1.2 Stress and pressure tensors

Now, let introduce for x, y ∈ ∂D, the stress tensor S associated to the fundamental tensors

(Γκ, F κ) defined by:

Sκijk(x, y) = −F κ
j (x̂)δik +

∂Γκij(x̂)

∂x̂k
+
∂Γκik(x̂)

∂x̂j
, i, j, k = 1, 2, 3. (1.7)
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where x̂ = x− y = (x̂1, x̂2, x̂3) and r = |x̂|. Combining (1.6) and (1.7), one can obtain:

Sκijk(x, y) = − 1

ωd

{
δik
x̂j
rd
D1(κr) + (δkj

x̂i
rd

+ δij
x̂k
rd

)D2(κr) +
x̂ix̂jx̂k
rd+2

D3(κr)

}
(1.8)

where

D1(t) = 8
( t

2
)m+1Km+1(t)

Γ(m)t2
− 6

t2
+ 1,

D2(t) = 8
( t

2
)m+1Km+2(t)

Γ(m)t2
− 6

t2
+ 2

( t
2
)mKm(t)

Γ(m)
,

D3(t) = −16
( t

2
)m+2Km+2(t)

Γ(m)t2
+

30

t2
,

with m = 3
2
, t ∈ R, Γ(m) is the Gamma function and Kn for n ≥ 0 is the modified Bessel

function of order n. For more details on these functions, see Appendix A.

The pressure tensor associated with the stress tensor S has the following components:

Λκ
ik(x, y) = − 1

4π
(2
δik
r3
− δikκ

2

r
− 6

x̂ix̂k
r5

), i, k = 1, 2, 3. (1.9)

1.3.1.3 Decay behavior of the fundamental and the stress tensor

In order to study the decay behavior of Γκij(x, y) and Sκijk(x, y) as r = |x − y| → 0, we can

apply the following decomposition:

Γκij(x, y) = Γ0
ij(x, y) + Γij(x, y), (1.10)

Sκijk(x, y) = S0
ijk(x, y) + Sijk(x, y), (1.11)

where S0 and Γ0 are weakly singular Stokes tensors (with respect to κ=0) and the remaining

part S and Γ are continuous kernels, so that the continuity behavior of the corresponding

surface potential is determined only by the Stokes tensors S0 and Γ0. A detailed proof of the

above relations can be found in [59] or [58]. Besides, we note that Γ0 and S0 are fundamental

tensors for the standard Stokes system [37].

This property will be very useful in the treatment of some boundary integral representation

associated to a transmission system that will be analyzed in the next chapter.
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1.3.2 Layer potential operators for the Stokes system

In this section, we present layer potential operators associated to the Stokes equation in the

bounded Lipschitz domain D ⊂ R3. A special attention is devoted to the invertibility of the

potential operators associated with the standard Stokes equation and the compactness of the

complementary layer potential operators.

Definition 1.3.1. For a density φ = (φ1, φ2, φ3) ∈ L2(∂D)3, we define the single-layer

potential SκDφ : R3\∂D → R3 and the associated pressure potential, VDφ : R3\∂D → R

as follows:

SκD,iφ(x) :=

∫
∂D

Γκij(x, y)φj(y)dσ(y); i, j = 1, 2, 3, (1.12)

V κ
Dφ(x) :=

∫
∂D

F κ
j (x, y)φj(y)dσ(y); j = 1, 2, 3. (1.13)

Likewise for a given density ψ = (ψ1, ψ2, ψ3) ∈ L2(∂D)3, we define the double-layer poten-

tial DκDψ : R3\∂D → R3, by

DκD,iψ(x) :=

∫
∂D

−Sκijk(x, y)νk(y)ψj(y)dσ(y); i, j, k = 1, 2, 3, (1.14)

where ν is the outward unit normal to ∂D. Moreover, the associated pressure potential

W κ
Dψ : R3\∂D → R is defined by

W κ
Dψ(x) :=

∫
∂D

−Λjk(x, y)νk(y)ψj(y)dσ(y); j, k = 1, 2, 3. (1.15)

We can easily check that (SκD, V
κ
D) and (DκD,W κ

D) are solutions of the Stokes system in

R3 \ ∂D,

(−∆ + κ2)SκDφ(x) +∇V κ
Dφ(x) = 0; ∇ · SκD(x) = 0, (1.16)

(−∆ + κ2)DκDψ(x) +∇W κ
Dψ(x) = 0; ∇ · DκD(x) = 0. (1.17)

We need also to introduce the principal value of the double-layer potential (or the bound-

ary version of the double layer potential).

Definition 1.3.2. For x ∈ ∂D and a density φ = (φ1, φ2, φ3) ∈ L2(∂D)3, the principal value

of the double-layer potential is given by:

KκD,i(φ)(x) := p.v.

∫
∂D

−Sκijk(x, y)νk(y)φj(y)dσ(y); i, j, k = 1, 2, 3, (1.18)
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and (KκD)∗ the adjoint operator of KκD:

(KκD,i)∗(φ)(x) := p.v.

∫
∂D

−Sκijk(x, y)νk(x)φj(y)dσ(y); i, j, k = 1, 2, 3. (1.19)

where p.v. means the principal value of a singular integral.

1.3.2.1 Trace and jump relations

Denote by ∂
∂n

the conormal derivative defined by

∂

∂n
(u, q) = (∇u+ (∇u)T )ν − qν on ∂D, (1.20)

where (∇u)T denotes the matrix transposed of ∇u = (∂iuk)i,k=1,2,3 (see [6], [14], [37] and

[53]). In the lemma below we give trace relations for the single and double layer potential.

Theorem 1.3.1. If D ⊂ R3 is a boundary Lipschitz domain with the boundary ∂D, then, for

(φ, ψ) ∈ L2(∂D)3 × L2(∂D)3 one has.

DκD(ψ)|± = (∓1

2
I +KκD)(ψ), (1.21)

∂

∂n
(DκD(ψ), W κ

D(ψ))|+ =
∂

∂n
(DκD(ψ), W κ

D(ψ))|−, (1.22)

∂

∂n
(SκD(φ), V κ

D(φ))|± = (±1

2
I + (KκD)∗)(φ), (1.23)

SκD(ψ)|+ = SκD(ψ)|− = Sκ
D(ψ). (1.24)

Here and throughout this report, we use the subscripts |+ (respectively |−) for the limiting

value of a field evaluated from the external side of D (or the internal side of D, respectively).

v|±(x) := lim
D±3y→x

v(y).

The formulas (1.21), (1.22), (1.23) and (1.24) have been proved in [37] when κ = 0.

Since DκD − D0
D and SκD − S0

D are smooth operators and according to (1.10) and (1.11), we

can extend the result to the case κ 6= 0. Furthermore, using (1.21) and (1.23) we can easily

show that the single and double layer potentials satisfy the following jump ralations on ∂D:

DκD(ψ)|+ −DκD(ψ)|− = −φ on ∂D, (1.25)

∂

∂n
SκD(φ)|+ −

∂

∂n
SκD(φ)|− = ϕ on ∂D. (1.26)
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1.3.2.2 Decay behavior of layer potentials

Here we give another result about the decay behavior at infinity of the layer potentials proved

by Varnhorn in [57] p.15 and [60].

Lemma 1.3.1. For the single and double layer potentials SκD[φ], V κ
D [φ], DκD[ψ] and W κ

Ω[ψ],

we have the following decay behavior as |x| → ∞:

i)

SκD[φ](x) = O(|x|−1), as |x| → ∞.

ii)

V κ
D [φ](x) = O(|x|−2), as |x| → ∞.

iii)

DκD[ψ](x) = O(|x|−2), as |x| → ∞.

iv)

W κ
D[ψ](x) = O(|x|−3), as |x| → ∞.

1.3.2.3 Compactness of layer potential operators

According to theorem 2.27 in [36], the following lemma holds about the compactness of

operators with kernels defined by (1.10) and (1.11).

Lemma 1.3.2. For x ∈ ∂D, we define the operators :

KD,i[φ](x) := p.v.

∫
∂D

−Sijk(x, y)νk(y)φj(y)dσ(y); i, j, k = 1, 2, 3, (1.27)

K∗D,i[φ](x) := p.v.

∫
∂D

−Sijk(x, y)νk(x0)φj(y)dσ(y); i, j, k = 1, 2, 3, (1.28)

SD,i[φ](x) :=

∫
∂D

Γij(x, y)φj(y)dσ(y); i, j, k = 1, 2, 3, (1.29)

SD(φ)|+ = SD(φ)|− = SD(φ). (1.30)

These operators have continuous kernel. Moreover, SD, KD and K∗D are compact operators

on C(∂D)3 and on L2(∂D)3.
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1.3.2.4 Invertibility of layer potentials

We recall that the single layer potential associated with κ = 0 is defined as follows

S0
D,iφ(x) :=

∫
∂D

Γ0
ij(x, y)φj(y)dσ(y), i = 1, · · · , 3.

where D ⊂ R3 is a bounded domain with boundary ∂D. It then follows from [37] the

theorem 1.3.2.

Theorem 1.3.2.
ker(S0

D) = {cν : c ∈ R}. (1.31)

Now, we give two lemmas about the invertibility of these operators on spaces that we are

going to define.

Lemma 1.3.3. [6] Let L2
0(∂D) := {f ∈ L2(∂D)3;

∫
∂D
f · ν = 0} and define H1

0(∂D)

likewise. Then the following result holds.

i) The operator S0
D : L2

0(∂D)→ H1
0 (∂D) is invertible.

ii) The operator λI +K0
D and λI + (K0

D)∗ are invertible on L2(∂D)3 for |λ| > 1/2.

Lemma 1.3.4. [37] Let D ⊂ R3 be a bounded domain with boundary ∂D. Then, we have:

(1/2)I + KκD : L2
0(∂D) → L2

0(∂D) is invertible and so is (1/2)I + (K0
D)∗ : L2

0(∂D) →
L2

0(∂D).

Conclusion

By referring to previous works, we recalled theorems and definitions on which our work in

the next chapters, will be based.

19



CHAPTER 2

Resolution of the Stokes transmission problem

Introduction

This chapter is devoted to resolving the Dirichlet transmission Stokes problem and presenting

its solution in form of a linear combination of potential operators. In the next section 2.1, we

construct the solution of this problem, in the form of appropriate potentials and we reduce

the transmission problem to a system of boundary integral equations. Then, in section 2.2,

we prove unicity of the unknown source densities which implies unicity of the solution.

2.1 Boundary integral representation

Let Ω ⊂ R3 be a bounded domain with a connected Lipschitz boundary ∂Ω and suppose

that Ω contains an inhomogeneity D with a C2-boundary ∂D.We assume that there exists a

constant c0 > 0 such that infx∈D dist(x, ∂Ω) > c0 which means that D is away from the

boundary ∂Ω.

Using arguments given in the previous chapter, we are looking for a solution (u, q) to the

transmission Stokes system with Dirichlet boundary condition:
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

(−∆ + κ2)u+∇q = 0 in Ω \D
(−∆ + κ̃2)u+∇q = 0 in D

∇ · u = 0 in Ω

u|+ − u|− = 0 on ∂D

µ ∂
∂n

(u, q)|+ − µ̃ ∂
∂n

(u, q)|− = 0 on ∂D

u = g on ∂Ω∫
Ω
q = 0,

(2.1)

where µ and µ̃ are positive constants related to the physical properties of Ω and D. Note that

κ2 and κ̃2 are complex numbers in C∗ such that C∗ = C \ {z ∈ R, z ≤ 0}.
Let κ =

√
κ2 and κ̃ =

√
κ̃2 be particular square roots, which have positive real parts (i.e. Re

κ > 0, Re κ̃ > 0).

From Gauss’s law theorem, we have the compatibility condition:∫
∂Ω

g · νΩ = 0,

where νΩ is the outward unit normal to ∂Ω. Let ν be the outward unit normal to ∂D.

In order to solve (2.1), We adopte a method of boundary integral equations, wich consist

on transforming the transmission problem posed in Ω \ D and in D, into integral equations

defined on the boundarys ∂D and ∂Ω. This transition from a volume problem to a surface

problem is carried out using layer potentials. Indeed, according to (1.16) and (1.17) in chap-

ter (1), for some triplet (φ, ψ, θ) ∈ L2(∂D)3 × L2(∂D)3 × L2(∂Ω)3, the boundary integral

representation: {
u = Sκ̃D[φ] in D,

u = SκD[ψ] +DκΩ[θ] in Ω \D,
(2.2)

{
q = V κ̃

D [φ] in D,

q = V κ
D [ψ] +W κ

Ω[θ] in Ω \D,
(2.3)

solves 
(−∆ + κ2)u+∇q = 0 in Ω \D
(−∆ + κ̃2)u+∇q = 0 in D

∇ · u = 0 in Ω.
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So, we will look for a solution (u, q) to the transmission problem (2.1) in the form of (2.2)-

(2.3). Otherwise, we will look for (φ, ψ, θ) ∈ L2(∂D)3×L2(∂D)3×L2(∂Ω)3 satisfying the

boundary conditions: 
u|+ − u|− = 0 on ∂D

µ ∂
∂n

(u, q)|+ − µ̃ ∂
∂n

(u, q)|− = 0 on ∂D

u = g on ∂Ω

Remark 2.1.1. For the same problem, several boundary integral representations can be ob-

tained.

2.2 Existence and unicity of the solution

To be a solution to the problem (2.1), the representation (2.2)-(2.3) must satisfy the boundary

conditions. According to the equations (1.21)-(1.24), (φ, ψ, θ) satisfy the integral equations
Sκ̃D|+
µ̃(−1

2
I + (Kκ̃D)∗)

0

−SκD|−
−µ(1

2
I + (KκD)∗)

SκD

−DκΩ
−µ ∂

∂n
DκΩ

1
2
I +KκΩ




φ

ψ

θ

 =


0

0

g

 . (2.4)

Denote by Aκ the matrix corresponding to the left hand side of (2.4).

In order to study the existence and unicity of the solution of the system (2.4), we introduce

the space H(∂D) defined by:

H(∂D) := {(φ, ψ) ∈ L2(∂D)3 × L2(∂D)3;φ− ψ ∈ L2
0(∂D)}

We annonce the theorem.

Theorem 2.2.1. Let (φ, ψ, θ) ∈ H(∂D)×L2
0(∂Ω) be the unique solution of (2.4). Then (u, q)

represented by (2.2)-(2.3) is the unique solution of (2.1).

This is equivalent to the invertibility of Aκ. We represent Aκ by a sum of two matrices

Ainv and Acom defined by

Acom =


SD

µ̃(KD)∗

0

−SD

−µ(KD)∗

SκD

−DκΩ
−µ ∂

∂n
DκΩ

KΩ

 , (2.5)
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and

Ainv =


S0
D

µ̃(−1
2
I + (K0

D)∗)

0

−S0
D

−µ(1
2
I + (K0

D)∗)

0

0

0
1
2
I +K0

Ω

 . (2.6)

We know that SκD is compact on L2(∂Ω) and that DκΩ and ∂
∂n
DκΩ which appear in the third

column of Acom are also compact on L2(∂D) since ∂D and ∂Ω do not intersect. According

to lemma 1.3.2, Acom is compact. Hence, it sufficies to prove that Ainv is invertible and that

Aκ is injective to show the invertibility of Aκ according to the Fredholm alternative.

2.2.1 Invertibility of Ainv

We prove this first result.

Lemma 2.2.1. The operator Ainv : H(∂D) × L2
0(∂Ω) → H1

0(∂D) × L2(∂D)3 × L2
0(∂Ω) is

invertible.

Proof. Let (f, h, g) ∈ H1
0(∂D)× L2(∂D)3 × L2

0(∂Ω), the solution (φ, ψ, θ) of the system

Ainv


φ

ψ

θ

 =


f

h

g

 ,

is given by

φ = (S0
D)−1(f) + ψ

ψ = 1
µ̃−µ(−1

2
1+λ
1−λI + (K0

D)∗)−1[h− µ̃(−1
2
I + (K0

D)∗)(S0
D)−1(f)]

θ = (1
2
I +K0

Ω)−1(g)

(2.7)

where 0 < λ = µ
µ̃

. As stated in Lemmas 1.3.3 and 1.3.4, the operators S0
D, −1

2
1+λ
1−λI + (K0

D)∗

and 1
2
I +K0

Ω are invertible and the proof is then completed.

2.2.2 Injectivity of Ainj

Now, we focus on to the injectivity of Aκ and we give theorem.

Theorem 2.2.2. The operator Aκ : H(∂D) × L2
0(∂Ω) → H1

0(∂D) × L2(∂D)3 × L2
0(∂Ω) is

injective .
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Proof. Suppose that there exists (φ0, ψ0, θ0) ∈ H(∂D)×L2
0(∂Ω) such thatAκ(φ0, ψ0, θ0)T =

(0, 0, 0)T and consider (u, q) defined by{
u = Sκ̃D[φ0] ,

u = SκD[ψ0] +DκΩ[θ0] ,

q = V κ̃
D [φ0] in D,

q = V κ
D [ψ0] +W κ

Ω[θ0] in Ω \D.

We can see that the couple (u, q) is a solution of (2.1) with g = 0. Then, using integration

by parts [37] on D− = D and D+ = Ω \D, we obtain

2

∫
D−

Eu : Eu+ κ̃2

∫
D−

u.u =

∫
∂D

∂(u, q)

∂n
|−.u|−,

and

2

∫
D+

Eu : Eu+ κ2

∫
D+

u.u = −
∫
∂D

∂(u, q)

∂n
|+.u|+ +

∫
∂D

∂(u, q)

∂n
|−.u|−,

where E(u) is the deformation tensor define by

E(u) :=
1

2
(∇u+ (∇u)T ).

The system (2.1) garantees that u|− = 0 on ∂D, u|− = u|+ and ∂(u,q)
∂n
|+ = µ̃

µ
∂(u,q)
∂n
|− on ∂D.

Thus, we have

2

∫
D+

Eu : Eu+ κ̃2

∫
D+

u.u = −
∫
∂D

µ̃

µ

∂(u, q)

∂n
|−.u|−

= − µ̃
µ

[

∫
D−

2Eu : Eu+ κ̃2

∫
D−

u.u].

Therefore, we get:
u = 0, q = c1, E(u) = 0, on D+,

u = 0, q = c2, E(u) = 0, on D−,
(2.8)

where c1 and c2 are real constants. Using the argument that
∫

Ω
q = 0, we have∫

Ω

q = c1

∫
D−

+c2

∫
D+

= 0. (2.9)

On the other hand, the fifth line of system (2.1) gives c1 = c2
µ
µ̃
. Taking account of (2.9), we

obtain c1 = c2 = 0.
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On the other hand, we define the solution to the system:

(−∆ + κ̃2)v +∇p = 0 in R3 \D
∇ · v = 0 in R3 \D
v = 0 on ∂D

|v||∇v| = o(|x|−2) as |x| → +∞
|v||p| = o(|x|−2) as |x| → +∞.

(2.10)

We know that

Sκ̃D(φ0)|+ = Sκ̃D(φ0)|− = u|−on ∂D.

By (2.8), we have Sκ̃D(φ0)|+ = 0. Then, (v, p) = (Sκ̃D(φ0), V κ̃
D(φ0)) is solution of exterior

Dirichlet problem (2.10) which admits a unique solution [59]. Thus, we have (v, p) = (0, 0)

which implies

(Sκ̃D(φ0),Vκ̃
D(φ0)) = (0, 0) on R3 \D.

The jump formula on ∂D yields:

∂

∂n
(Sκ̃D(φ0), V κ̃

D(φ0))|− −
∂

∂n
(Sκ̃D(φ0), V κ̃

D(φ0))|+ = φ0 = 0; x ∈ ∂D.

Consider now (v, p) the solution to the following interior Dirichlet problem:
(−∆ + κ2)v +∇p = 0 in D

∇ · v = 0 in D

v = 0 on ∂D

(2.11)

We have

SκD(ψ0)|− +DκΩ(θ0)|− = SκD(ψ0)|+ +DκΩ(θ0)|+ = u|+ on ∂D.

Then, we get SκD(ψ0)|− +DκΩ(θ0)|− = 0 on ∂D. Finally we obtain

(v, p) = (SκD(ψ0) +Dκ
Ω(θ0), V κ

D(ψ0) +W κ
Ω(θ0))

a solution of (2.11).

However, interior Dirichlet problem (2.11) admits a unique solution (v, p) where the un-

known p is determined up to an additive constant [59]. Thus, we get

(SκD(ψ0) +DκΩ(θ0), V κ
D(ψ0) +W κ

Ω(θ0)) = (0, c).

25



CHAPTER 2. RESOLUTION OF THE STOKES TRANSMISSION PROBLEM

On the other hand, the trace formula on ∂D give:

∂

∂n
(v, p)|+ −

∂

∂n
(v, p)|− =

∂

∂n
(SκD(ψ0), V κ(ψ0))|+ +

∂

∂n
(DκΩ(θ0),W κ

Ω(θ0))|+

− ∂

∂n
(SκD(ψ0), V κ(ψ0))|− −

∂

∂n
(DκΩ(θ0),W κ

Ω(θ0))|−

=
∂

∂n
(SκD(ψ0), V κ(ψ0))|+ −

∂

∂n
(SκD(ψ0), V κ(ψ0))|−

= ψ0 = cν.

We deduce thatψ0 = 0 on ∂D sinceψ0−φ0 ∈ L2
0(∂D). Therefore, we have (SκD(ψ0), V κ

D(ψ0)) =

(0, 0) on R3 \ ∂D which implies that (SκD(ψ0), V κ
D(ψ0)) = (0, 0) on D+. Then, we get

(u, q) = (DκΩ(θ0), W κ
Ω(θ0)) = (0, 0) on D+.

Now, we consider the solution to the following exterior problem :

(−∆ + κ̃2)v +∇p = 0 in R3 \ Ω

∇ · v = 0 in R3 \ Ω
∂
∂n

(v, p) = 0 on ∂Ω

|v||∇v| = o(|x|−2) as |x| → +∞
|v||p| = o(|x|−2) as |x| → +∞.

(2.12)

Then, (DκΩ(θ0), W κ
Ω(θ0)) is solution of (2.12) which is an exterior Neumann problem which

has a unique solution. We deduce that (v, q) = (0, 0). We know that (DκΩ(θ0))|−−(DκΩ(θ0))|+ =

θ0 = 0 on ∂Ω which implies that (DκΩ(θ0), W κ
Ω(θ0)) = (0, 0) in R3 \ ∂Ω and in particularly

in D+. Then, we get (u, q) = (SκD[ψ0], V κ
D [ψ0]) on D+.

We showed that (φ0, ψ0, θ0) = (0, 0, 0), which is equivalent to the injectivity of Aκ.

Conclusion

Based on the properties shown in the first chapter, we have shown the existence and unique-

ness of a solution for the Stokes transmission problem and we gave an explicit expression in

the form of single and double layer operators.
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CHAPTER 3

Asymptotic expansion

Introduction

The aim of this chapter is to give the expression of the unique solution of the perturbed

problem and to derive high-order terms in asymptotic expansion of the displacement field

resulting from a small perturbation of the interface.

3.1 Asymptotic expansion of the density functions

In the next section, we consider the perturbed transmission Stokes problem.

Let (uδ, qδ) be the solution to the perturbed problem:

(−∆ + κ2)uδ +∇qδ = 0 in Ω \Dδ

(−∆ + κ̃2)uδ +∇qδ = 0 in Dδ

∇ · uδ = 0 in Ω

uδ|+ − uδ|− = 0 on ∂Dδ

µ ∂
∂n

(uδ, qδ)|+ − µ̃ ∂
∂n

(uδ, qδ)|− = 0 on ∂Dδ

uδ = g on ∂Ω∫
Ω

q = 0.

(3.1)

with ∂Dδ a δ−perturbation of ∂D defined by

∂Dδ = {x̃ = x+ δν(x);x ∈ ∂D, 0 < δ << 1} (3.2)
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Using theorem 2.2.1, (uδ, qδ) can be represented by:{
uδ = Sκ̃Dδ [φδ] ,

uδ = SκDδ [ψδ] +DκΩ[θδ] ,

qδ = V κ̃
Dδ

[φδ] in Dδ,

qδ = V κ
Dδ

[ψδ] +W κ
Ω[θδ] in Ω \Dδ,

where (φδ, ψδ, θδ) ∈ H(∂Dδ)× L2
0(∂Ω) is the unique solution of the following system

Sκ̃Dδ [φδ]− S
κ
Dδ

[ψδ]−DκΩ[θδ] = 0 on ∂Dδ

µ̃(−1
2
I + (Kκ̃Dδ)

∗)[φδ]− µ(1
2
I + (KκDδ)

∗)[ψδ]− µ ∂
∂n
DκΩ[θδ] = 0 on ∂Dδ

SκDδ [ψδ] + (1
2
I +KκΩ)[θδ] = g on ∂Ω.

(3.3)

Let Ψδ(x) = x + δν(x) be the diffeomorphism from ∂D to ∂Dδ. The following estimates

hold.

Lemma 3.1.1. There exists a constant C depending only on D such that for any functions

(φδ, ψδ, θδ) ∈ H(∂Dδ)× L2
0(∂Ω), we have:

i)

‖Sκ̃Dδ [φδ] ◦Ψδ − Sκ̃D[φδ ◦Ψδ]‖L2(∂D)3 ≤ Cδ‖φδ‖L2(∂Dδ)3 .

ii)

‖SκDδ [ψδ] ◦Ψδ − SκD[ψδ ◦Ψδ]‖L2(∂D)3 ≤ Cδ‖ψδ‖L2(∂Dδ)3 .

iii)

‖(Kκ̃Dδ)
∗[φδ] ◦Ψδ − (Kκ̃D)∗[φδ ◦Ψδ]‖L2(∂D)3 ≤ Cδ‖φδ‖L2(∂Dδ)3 .

iv)

‖(KκDδ)
∗[φδ] ◦Ψδ − (KκD)∗[φδ ◦Ψδ]‖L2(∂D)3 ≤ Cδ‖φδ‖L2(∂Dδ)3 .

Proof. The two last inequalities have been proven in Lemma 3.1 in [?]. Following the same

steps, we can easily obtain the first and the second ones.

Let us consider the asymptotic behavior of Sκ̃Dδ [φδ], S
κ
Dδ

[ψδ], DκΩ[θδ], (Kκ̃Dδ)
∗[φδ] and

(KκDδ)
∗[ψδ] on ∂Dδ, and SκDδ [ψδ] on ∂Ω as δ → 0.

Denote by φ̃ = φδ ◦Ψδ the vectorial function with components φ̃j(j=1,2,3).

Besides, for all x̃ ∈ ∂Dδ and r = x− y 6= 0, we define the integral operators:

Sκ̃Dδ,i [φδ](x̃) =

∫
∂Dδ

Γκ̃ij(x̃, ỹ)φδ,j(ỹ)dσδ(ỹ),
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SκDδ,i [ψδ](x̃) =

∫
∂Dδ

Γκij(x̃, ỹ)ψδ,j(ỹ)dσδ(ỹ),

(Kκ̃Dδ,i)
∗[φδ](x̃) = p.v.

∫
∂Dδ

−S κ̃ijk(x̃, ỹ)ν̃k(x̃)φδ,j(ỹ)dσδ(ỹ),

(KκDδ,i)
∗[ψδ](x̃) = p.v.

∫
∂Dδ

−Sκijk(x̃, ỹ)ν̃k(x̃)ψδ,j(ỹ)dσδ(ỹ),

Dκ
Ω,i[θδ](x̃) =

∫
∂Ω

−Sκijk(x̃, y)νk(y)θδ,j(y)dσ(y),

and for x ∈ ∂Ω

SκDδ,i [ψδ](x) =

∫
∂Dδ

Γκij(x, ỹ)ψδ,j(ỹ)dσδ(ỹ).

By Taylor expansions of Γκ̃ij(x̃− ỹ), Γκij(x− ỹ), Sijk(x̃, ỹ)ν̃k(x̃) and Sijk(x̃, y)νk(y), we

obtain:

Γκ̃ij(x̃, ỹ) = Γκ̃ij(x, y) +
∞∑
n=1

δn
∑
|α|=n

(ν(x)− ν(y))α

α!
∇αΓκ̃ij(x, y)︸ ︷︷ ︸

:=Γκ̃,nij (x,y)

,

Γκij(x, ỹ) = Γκij(x, y) +
∞∑
n=1

δn
∑
|α|=n

(−ν(y))α

α!
∇α
yΓκij(x, y)︸ ︷︷ ︸

:=Γ′κ,nij (x,y)

,

−Sκijk(x̃, y)νk(y) = −Sκijk(x, y)νk(y)︸ ︷︷ ︸
:=Hij(x,y)

−
∞∑
n=1

δn
∑
|α|=n

(−ν(x))α

α!
∇α
xSκijk(x, y)νk(y)︸ ︷︷ ︸

:=H′nij (x,y)

,

−Sκijk(x̃, ỹ)ν̃k(x̃) = −Sκijk(x, y)νk(x)︸ ︷︷ ︸
:=Hij(x,y)

−
∞∑
n=1

δn
∑
|α|=n

(ν(x)− ν(y))α

α!
∇α
xSκijk(x, y)νk(y)︸ ︷︷ ︸

:=Hnij(x,y)

.

We then introduce the operators with (1.2):
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Sκ̃,nD,i [φδ](x̃) =
∑

m+q=n

∫
∂D

Γκ,mij (x, y)σq(x)ψ̃j(y)dσ(y), n > 0,

S ′κ,nD,i [ψδ](x̃) =
∑

m+q=n

∫
∂D

Γ′
κ,m
ij (x, y)σq(x)ψ̃j(y)dσ(y), n > 0,

Dκ,nΩ,i [θδ](x̃) =

∫
∂Ω

H′κ,nij (x, y)θδ,j(y)dσ(y), n > 0,

Kκ,nD,i[ψδ](x̃) = p.v.
∑

m+q=n

∫
∂D

Hκ,m
ij (x, y)σq(x)ψ̃j(x)dσ(x), n > 0.

where φ̃(x) = φδ ◦Ψ(x) and ψ̃(x) = ψδ ◦Ψ(x) .

Note that Sκ,0D = S ′κ,0D = SκD, Dκ,0D = DκD, Kκ,0D = (KκD)∗ and that σq = 0 for all q ≥ 3.

We can obtain the following theorem whose demonstration is similar to that of lemma 3.1.1.

Theorem 3.1.1. Let N ∈ N. There exists C depending on N and D such as for any

(φδ, ψδ, θδ) ∈ H(∂Dδ)× L2
0(∂Ω):

‖(KκDδ)
∗[φδ] ◦Ψδ − (KκD)∗[φ̃]−

N∑
n=1

δnKDκ,n[φ̃]‖(L2(∂D))3 ≤ CδN+1‖φ̃‖(L2(∂D))3

‖Sκ̃
Dδ

[φδ] ◦Ψδ − Sκ̃
D[φ̃]−

N∑
n=1

δnSκ̃,n
D [φ̃]‖(L2(∂D))3 ≤ CδN+1‖φ̃‖(L2(∂D))3

‖Sκ̃
Dδ

[φδ]− S′κ̃D[φ̃]−
N∑
n=1

δnS′κ̃,nD [φ̃]‖(L2(∂D))3 ≤ CδN+1‖φ̃‖(L2(∂D))3

‖DκDδ [θδ]−D
κ
D[θδ]−

N∑
n=1

δnDκ,nD [θδ]‖(L2(∂Ω))3 ≤ CδN+1‖θδ‖(L2(∂Ω))3

where φ̃ := φδ ◦Ψδ, ψ̃ := ψδ ◦Ψδ.
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Let (φ(n), ψ(n), θ(n)), n ≥ 1 be the solution of the following system:

Sκ̃
D[φ(n)]− Sκ

D[ψ(n)]−DκΩ[θ(n)] =∑n−1
m=0−Sκ̃,n−m

D [φ(m)] + Sκ,n−m
D [ψ(m)] +Dκ,n−mΩ [θ(m)] on ∂D

µ̃(−1
2
I + (Kκ̃D)∗)[φ(n)]− µ(1

2
I + (KκD)∗)[ψ(n)]− µ ∂

∂n
Dκ

Ω[θ(n)] =∑n−1
m=0−µ̃((Kκ̃,n−mD )∗)[φ(m)] + µ((Kκ,n−mD )∗)[ψ(m)] + µ ∂

∂n
Dκ,n−mΩ [θ(m)] on ∂D

SκD[ψn] + (1
2
I +KκΩ)[θ(n)] =

δ0ng +
∑n−1

m=0−S
′κ,n−m
D [ψ(m)]−Kκ,n−mΩ [θ(m)] on ∂Ω.

(3.4)

We recursively construct the sentence (φ(n), ψ(n), θ(n)) ∀n ∈ N∗.
Let define

φN =
N∑
n=0

δnφ(n), ψN =
N∑
n=0

δnψ(n), θN =
N∑
n=0

δnθ(n), (3.5)

where (φ(0), ψ(0), θ(0)) = (φ, ψ, θ) the unique solution of (2.4). Taking into account Theorem

3.1.1, one deduces from system (3.4) that:

N∑
n=0

δnSκ̃,n
D [φ̃− φN ]−

N∑
n=0

δnSκ,n
D [ψ̃ − ψN ]−

N∑
n=0

δnDκ,nΩ [θδ − θN ] = O(δN+1) on ∂D

N∑
n=0

µ̃(−δ0n

2
I + δn(Kκ̃,nD )∗)[φ̃− φN ]−

N∑
n=0

µ(
δ0n

2
I + δn(Kκ,nD )∗)[ψ̃ − ψN ]

−
∑N

n=0 µ
∂
∂n
Dκ,nΩ [θδ − θN ] = O(δN+1) on ∂D

N∑
n=0

δnS
′κ,n
D [ψ̃ − ψN ] +DκΩ[θδ − θN ] = O(δN+1) on ∂Ω.

Then we get the following lemma.

Lemma 3.1.2. Let N ∈ N, there exists C depending only on N and Ω such that

‖φ̃−
N∑
n=0

δnφ(n)‖(L2(∂D))3 ≤ CδN+1,

‖ψ̃ −
N∑
n=0

δnψ(n)‖(L2(∂D))3 ≤ CδN+1,
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‖θδ −
N∑
n=0

δnθ(n)‖(L2(∂Ω))3 ≤ CδN+1

where(φ(n), ψ(n), θ(n)) are defined by the recursive relations (3.4).

3.2 Asymptotic expansion for the solution of the perturbed

problem

In this section, we develop the asymptotic behavior of uδ − u as δ → 0. According to the

boundary integral representation of the solution, given in section 3.1, we have:

uδ − u =

{
Sκ̃Dδ [φδ]− S

κ̃
D[φ] in D0,

SκDδ [ψδ]− S
κ
D[ψ] +DκΩ[θδ]−DκΩ[θ] in Ω0,

(3.6)

where D0 is any close subset of D ∩Dδ and Ω0 is any subset of Ω \ (D ∪Dδ).

We obtain with Taylor expansion of Γκ̃ij(x, ỹ) and (1.2):

Sκ̃Dδ [φδ](x) =

∫
∂Dδ

Γκ̃ij(x, ỹ)φ̃j(y)dσδ(ỹ) (3.7)

=

∫
∂D

(
Γκ̃ij(x, y) +

N∑
n=1

δnΓ′
κ̃,n
ij (x, y)

)(
φj(y) +

N∑
n=1

δnφ
(n)
j (y)

)(
1 +

N∑
n=1

δnσn(x)

)
dσ(y)+O(δN+1)

=

∫
∂D

Γκ̃ij(x, y)φ(y)dσ(y) +
N∑
n=1

δn
∑

m+q+k=n

∫
∂D

Γ′
κ̃,m
ij (x, y)σq(y)φ(k)(y)dσ(y) +O(δN+1)

= Sκ̃D[φ](x) +
N∑
n=1

δn
∑

m+q+k=n

∫
∂D

Γ′
κ̃,m
ij (x, y)σq(y)φ(k)(y)dσ(y) +O(δN+1) ∀x ∈ ∂D.

By the same way, SκDδ [ψδ](x) for x ∈ ∂D can be rewritten as follows:

SκDδ [ψδ](x) =

∫
∂Dδ

Γκij(x, ỹ)ψ̃j(y)dσδ(ỹ) (3.8)

= SκD[ψ](x) +
N∑
n=1

δn
∑

m+q+k=n

∫
∂D

Γ′
κ,m
ij (x, y)σq(y)ψ(k)(y)dσ(y).
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Similarly, we have

DκΩ[θδ](x) =

∫
∂Ω

−Sκijk(x, y)νk(y)θδ(y)dσ(y) (3.9)

=

∫
∂Ω

−Sκijk(x, y)νk(y)

(
θj(y) +

N∑
n=1

δnθ
(n)
j (y)

)
dσ(y) +O(δN+1), x ∈ Ω0.

Then, we get the following result.

Theorem 3.2.1. Define for n ∈ N the vector-valued functions un = (uni )i=1,2,3 as follows:

uni (x) =



∑
m+q+k=n

∫
∂D

Γ′
κ̃,m
ij (x, y)σq(y)φ

(k)
j (y)dσ(y) ∀x ∈ D0;

∑
m+q+k=n

∫
∂D

Γ′
κ,m
ij (x, y)σq(y)ψ

(k)
j (y)dσ(y)

+

∫
∂Ω

−Sκijl(x, y)νl(y)θ
(n)
j (y)dσ(y) ∀x ∈ Ω0.

Then the following formula holds uniformly for x ∈ Ω0 ∪D0:

uδ(x)− u(x) =
N∑
n=1

δnun(x) +O(δN+1). (3.10)

The remainder O(δN+1) depends on N , Ω and Ω0.

3.3 Computation of the first order approximation

Let us compute the first order approximation of uδ explicitly. If we put (φ(0), ψ(0), θ(0)) =

(φ, ψ, θ) defined by (2.2)-(2.3), (φ(1), ψ(1), θ(1)) is then defined by the following system:

Sκ̃
D[φ(1)]− Sκ

D[ψ(1)]−DκΩ[θ(1)] =

−Sκ̃,1
′D [φ(0)] + Sκ,1

D [ψ(0)] +Dκ,1Ω [θ(0)] on ∂D

µ̃(−1
2
I + (Kκ̃D)∗)[φ(1)]− µ(1

2
I + (KκD)∗)[ψ(1)]− µ ∂

∂n
DκΩ[θ(1)] =

−µ̃((Kκ̃,1D )∗)[φ(0)] + µ((Kκ,1D )∗)[ψ(0)] + µ ∂
∂n
Dκ,1Ω [θ(0)] on ∂D

SκD[ψ(1)] + (1
2
I +KκΩ)[θ(1)] =

−S ′κ,1D [ψ(0)]−Kκ,1Ω [θ(0)] on ∂Ω.
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Consider the vector-valued function u1 = (u1
i )i=1,2 with:

u1
i (x) =



∑
m+q+k=1

∫
∂D

Γ′
κ̃,m
ij (x, y)σq(y)φ

(k)
j (y)dσ(y) in D0;

∑
m+q+k=1

∫
∂D

Γ′
κ,m
ij (x, y)σq(y)ψ

(k)
j (y)dσ(y)

+

∫
∂Ω

−Sκijl(x, y)νl(y)θ
(1)
j (y)dσ(y) in Ω0.

Therefore, u1
i takes the form:

u1
i (x) =

∫
∂D

Γ′
κ̃
ij(x, y)τ(y)φ

(0)
j (y)dσ(y) +

∫
∂D

Γ′
κ̃
ij(x, y)φ

(1)
j (y)dσ(y)

+

∫
∂D

Γ′
κ̃,1
ij (x, y)φ0

j(y)dσ(y); x ∈ D0

and more explicitly:

u1
i (x) =

∫
∂D

Γ′
κ
ij(x, y)τ(y)φ

(0)
j (y)dσ(y) +

∫
∂D

Γ′
κ
ij(x, y)φ

(1)
j (y)dσ(y)

+

∫
∂D

Γ′
κ,1
ij (x, y)φ

(0)
j (y)dσ(y) +

∫
∂Ω

−Sκijk(x, y)νk(y)θ
(1)
j (y)dσ(y); x ∈ Ω0.

Thus, we get the following formula for x ∈ Ω0 ∪D0

uδ(x)− u(x) = δu1(x) +O(δ2).

Conclusion

We present a result about the construction and justification of the asymptotic expansion of

the solution of the transmission Stokes system with a boundary perturbation of an inclusion.

We derive high-order terms in the asymptotic expansion of the solution with layer potential

techniques. A reconstruction procedure to determine the localization of the inhomogeneity

and the shape of the inclusion based on boundary measurements may be based on our results

here.

The method, which is explicitly carried out here for the interior Dirichlet problem of the
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Stokes operator in three dimensions, can also be used for many other boundary value prob-

lems, whenever a suitable potential theory is available, for example in the case of harmonic,

elastic, or hydrodynamic boundary value problem.
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Part II

Asymptotic expansion for Eigenvalues
and Eigenfunctions in the Presence of

Small Boundary Perturbations
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CHAPTER 4

Asymptotic behaviors for eigenvalues and eigenfunctions

associated to the Stokes operator with a small boundary

perturbation

Introduction

The main objective of the second part on this report, is to present a schematic way to de-

rive high-order asymptotic expansions for both eigenvalues and eigenfunctions for the Stokes

operator caused by small perturbations of the boundary. Also, we rigorously derive an asymp-

totic formula which is in some sense dual to the leading-order term in the asymptotic expan-

sion of the perturbations in the Stokes eigenvalues due to interface changes of the inclusion.

The following is an outline of this chapter. In Section 4.1, we describe the main problem

in this part. In Section 4.2, we develop a boundary integral formulation for solving the

eigenvalue problem (4.4), and we present some preliminary results. Finally, Section 4.3 is

dedicated to develop asymptotic expansion of the perturbations in the eigenvalues, in eigen-

functions and in eigenpressures. More precisely, in the Section 4.3.1, we present some basic

results related to shape perturbation and we develop high-order terms in the expansion of

the integral operator. In Section 4.3.2, we (formally) provide by layer potentials an asymp-

totic expansion for the perturbed eigenvalues if the unperturbed eigenvalue is simple. But in

section 4.3.3, we rigourously derive the leading-order term for the perturbed Stokes eigenval-

ues in Hölder space and for both simple and multiple eigenvalues. Here the problems to be

study are more general than the one introduced in Section 4.1. In Section 4.3.4, we end our

37



CHAPTER 4. ASYMPTOTIC BEHAVIORS FOR EIGENVALUES AND EIGENFUNCTIONS
ASSOCIATED TO THE STOKES OPERATOR WITH A SMALL BOUNDARY

PERTURBATION
chapter by developing asymptotic expansion of the perturbations in the eigenfunctions and in

eigenpressures using the same problem configurations.

4.1 Model problem

Let Ω ⊂ R3 be a bounded open domain with boundary of classC2. We consider the following

eigenvalue problem for the Stokes system with homogeneous boundary conditions:
−µ∆v +∇p̃ = λ̃v in Ω

∇.v = 0 in Ω

v = 0 in ∂Ω.

Here v = (v1, v2, v3) denotes the velocity field, µ the viscosity while the scalar function p is

the pressure.

Now, if we suppose that µ is a positive constant, then the first equation in the above system

is equivalent to:

−∆v +∇(p̃/µ) = (λ̃/µ)v in Ω.

Then, if µ is constant we have the following eigenvalue problem
−∆v +∇p = λv inΩ

∇.v = 0 inΩ

v = 0 in∂Ω

(4.1)

with p := p̃/µ and λ := λ̃/µ.

It is well known that this eigenvalue problem admits a sequence of a no decreasing positive

eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · tending to infinity as n→ +∞.

The eigenfunctions {vn}n≥1 ⊂ (H1
0 (Ω))3 and the eigenpressures {pn}n≥1 ⊂ L2(Ω) may be

taken so that {vn}n≥1 constitutes an orthonormal basis of

H(Ω) := {v ∈ (H1
0 (Ω))3 : ∇ · v = 0 in Ω}.

The pressure p is determined up to an additive constant.

We assume that the boundary ∂Ω is subjected to a small, smooth deformation and that the

boundary of the deformed domain Ωδ is given by:

∂Ωδ := {x̃ = x+ δh(x)ν(x), x ∈ ∂Ω} (4.2)
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where ν(x) is the outward normal vector on ∂Ω and h(x) is a real function in C2(∂Ω) that

satisfies

‖h(x)‖C2(∂Ω) < 1. (4.3)

Obviously, the domain Ωδ is of class C2 and the Dirichlet eigenvalue problem for the Stokes

system can be defined in Ωδ as well.

In this chapter, we derive the asymptotic expansion of eigenvalues, eigenfunctions and

the eigenpressures solutions to the Stokes system:
−∆vδ +∇pδ = λδvδ in Ωδ

∇.vδ = 0 in Ωδ

vδ = 0 in ∂Ωδ.

(4.4)

Here we suppose that the eigenvalue λ0 is simple. Then the eigenvalue λδ is simple and is

near to λ0 associated to the normalized eigenfunction vδ.

4.2 Integral equations method

We now develop a boundary integral formulation for solving the perturbed eigenvalue prob-

lem (4.4). The components of the fundamental Stokes tensor Γ = (Γij)
3
i,j=1 and those of the

associated pressure vector P = (Pij)
3
i,j=1, which determine the fundamental solution (Γ, P )

of the Stokes system in R3, are given by (see for instance [6], [37])Γij(λ, x) = − 1
4π

δije
i
√
λ|x|

|x| − 1
4πλ

∂xi∂xj(
ei
√
λ|x|−1
|x| )

Pi(x) = − 1
4π

xi
|x|3 ,

(4.5)

where ∂xi denotes ∂/∂xi for i = 1, 2, 3 and i2 = −1. We recall that the ith row Γi of Γ

satisfies −∆Γi +∇Pi(x)− λΓi = eiδ(x) in R3

∇.Γi = 0 in R3;
(4.6)

in the sense of distributions and where (ei; i = 1, 2, 3) is the orthonormal basis of R3. Note

that we used the Einstein convention for the summation notation omitting the summation sign

for the indices appearing twice.
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4.2.1 The potential theory for the Stokes system

Let us denote by ϕ = (ϕ1, ϕ2, ϕ3) a complex vector-valued function with class C0(∂Ω).

The hydrodynamic single-layer potential with density ϕ ∈ C0(∂Ω)3 is the vector function

S(λ)ϕ(x) defined by

S(λ)ϕ(x) :=

∫
∂Ω

Γ(λ, |x− y|)ϕ(y) dσ(y), x ∈ R3\∂Ω. (4.7)

The pressure term Q corresponding to the single layer potential is the function given by

Qϕ(x) :=

∫
∂Ω

P (x, y)ϕ(y) dσ(y), x ∈ R3\∂Ω.

For a careful study of these potentials, one can refer to [34], [37], [60].

Taking into account the well known properties of Green function Γ, one obtains the result

that the pair (Sϕ,Qϕ) are smooth functions in each of the domains Ω and R3\Ω respectively.

Also these functions are classical solutions to the Stokes system (4.1).

The continuity and jump relations of the Stokes surface potentials on the boundary ∂Ω

are described in the following proposition (see [6], [17] pp. 41-42 or [60] p. 66 ):

Proposition 4.2.1. Let ϕ ∈ C0(∂Ω)3 and let S denotes the surface potential defined in (4.7).

Then on the boundary ∂Ω the following continuity and jump relations are satisfied:

(S(λ)ϕ)
∣∣
+

= (S(λ)ϕ)|− = S(λ)ϕ
∂S(λ)(ϕ)

∂ν
(x)
∣∣
± = ±ϕ(x)

2
+
∫
∂Ω

∂Γ(λ,|x−y|)
∂ν(x)

ϕ(y) dσ(y).

4.2.2 Boundary integral formulation

In this section, we give a boundary integral formulation in order to solve the eigenvalue

problems (4.1) and (4.4).

Proposition 4.2.2. Suppose h satisfies (4.3). Then, there exists δ0 > 0 such that the map

Ψδ(x) defined by

Ψδ(x) = x+ δh(x)ν(x) (4.8)
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is a C2- diffeomorphism from ∂Ω to ∂Ωδ for δ < δ0. In addition, the following equality holds

det (∇Ψδ) = 1 + tr∇(hν)δ +
1

2

[(
tr∇(hν)

)2 − tr
(
∇(hν)2

)]
δ2 (4.9)

+ det (∇(hν)) δ3,

where tr means the trace of a matrix. Moreover, we have tr∇(hν) = div(hν).

proof Recall that the function h(x) is C2 on ∂Ω, then the map Ψδ(x) is also C2. A simple

calculation yields the equality (4.9). Consequently, for δ small enough the map Ψδ(x) is a

C2- diffeomorphism from ∂Ω to ∂Ωδ.

We further denote Ψ−1
δ the reciproque function of Ψδ(x). Thanks to Ψ−1

δ , we can define the

operator Aδ(λ) as follows:

Aδ(λ)ϕ(x) =
(
SΩδ(λ)ϕ(Ψ−1

δ )
)
(Ψδ(x)), ϕ ∈ (L2(∂Ω))3 (4.10)

where SΩδ(λ) is the hydrodynamic single-layer potential given by (4.7) when we have re-

placed the boundary ∂Ω by ∂Ωδ.

For i, j ∈ {1, 2, 3}, we can define the jth-component of the vector-valued functionAδ(λ)

as follows:

(Aδ(λ)ϕ)j(x) =
((
SΩδ(λ)ϕ

)
j
(Ψ−1

δ )
)

(Ψδ(x)), ϕ ∈ (L2(∂Ω))3. (4.11)

The jth-component of the single-layer potential SΩδ(λ) is given by(
SΩδ(λ)ϕ

)
j
(x̃) :=

∫
∂Ωδ

Γji(λ, |x̃− ỹ|)ϕi(ỹ) dσδ(ỹ), x̃ ∈ R3\∂Ωδ, j = 1, 2, 3, (4.12)

where ϕi is the ith-component of the vector-valued function ϕ. Using Proposition 4.2.2,

relations (4.11)-(4.12) and the continuity relations given by Proposition 4.2.1, we obtain for

x ∈ ∂Ω that(
Aδ(λ)ϕ

)
j
(x) =

∫
∂Ω

Γji(λ, |Ψδ(x)−Ψδ(y)|) det (∇Ψδ(y))ϕi(y) dσ(y), j = 1, 2, 3.

(4.13)

Let A0 the operator defined as in (4.10) by

A0φ = S(λ)φ,

where φ ∈ (L2(∂Ω))3. Then, we have the following result, which is a slight variation of the

Lemma 6.1 due to Ammari et al. [8, 10] for the scalar eigenvalue problem.
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Proposition 4.2.3. The operator-valued function A0(λ) : H−1/2(∂Ω)3 → H1/2(∂Ω)3 is

Fredholm of index zero in C\iR−. In addition the Dirichlet eigenvalues of the Stokes system

(4.1) are exactly its real zeros.

From Proposition 4.2.3 we know that if λ0 is an eigenvalue of (4.1) then λ0 is a real zero

of A0(λ). Moreover, for ε0 small enough, the function A−1
0 (λ) is meromorphic in Dε0(λ0),

where Dε0(λ0) means the disc of center λ0 and radius ε0, and λ0 is its unique pole in Dε0 .

Furthermore we have the following Laurent expansion:

A−1
0 (λ) = (λ− λ0)−1`0 +R0(λ), (4.14)

where `0 : KerA0(λ0)→ KerA0(λ0), and R0(λ) is a holomorphic function.

Our main results in this section are summarized in the following theorem.

Theorem 4.2.1. Suppose that the eigenvalue λ0 of (4.1) is with multiplicity 1. Then, there

exist a positive constant δ0(ε0) such that for |δ| < δ0, the operator-valued function λ 7→
Aδ(λ) has a real zero λ(δ) in Dε0(λ0). This zero is exactly the eigenvalue of the perturbed

eigenvalue problem (4.4), and is an analytic function with respect to δ in ]−δ0, δ0[. It satisfies

λ(0) = λ0. Moreover, the following assertions hold:

A−1
δ (λ) = (λ− λ(δ))−1`(δ) +Rδ(λ),

`(δ) : Ker(Aδ(λ(δ))→ Ker(Aδ(λ(δ)),
(4.15)

where Rδ(λ) is a holomorphic function with respect to (δ, λ) ∈]− δ0, δ0[×Dε0(λ0).

4.3 Asymptotic formula

4.3.1 High-order terms in the expansion of Aδ
We now present some basic results related to shape perturbation. The methods to be used

here differ from those in [5, 8], but the expressions deduced are the same. To begin, let

(τ1(x), τ2(x)) be the orthornormal basis of the tangent plan to the surface ∂Ω at a regular

point x. Their cross product is then orthogonal to ∂Ω at the point x. By changing their order,

we can assume that τ1 × τ2 is a vector pointing towards the exterior of the surface ∂Ω. Then

dividing it by its length yields the unit normal vector ν(x), that is:

ν0(x) =
τ1(x)× τ2(x)

|τ1(x)× τ2(x)|
, (4.16)

42



CHAPTER 4. ASYMPTOTIC BEHAVIORS FOR EIGENVALUES AND EIGENFUNCTIONS
ASSOCIATED TO THE STOKES OPERATOR WITH A SMALL BOUNDARY

PERTURBATION
for x ∈ ∂Ω. Evidently ν0 = ν, where ν was introduced in section 4.1.

Set

τ δ1 = gradΨδ · τ1, andτ δ2 = gradΨδ · τ2.

Using Proposition 4.2.2, we find that:

τ δ1 = τ1 + δMτ1, and τ δ2 = τ2 + δMτ2, (4.17)

where the (3× 3)- matrix M is given by:

M =


∂1(hν1) ∂2(hν1) ∂3(hν1)

∂1(hν2) ∂2(hν2) ∂3(hν2)

∂1(hν3) ∂2(hν3) ∂3(hν3)


with νi means the i-th (i = 1, 2, 3) component of the vector ν.

For δ sufficiently small, one can see that the outward unit normal vector to ∂Ωδ is given

by

νδ(x) =
τ δ1 (x)× τ δ2 (x)

|τ δ1 (x)× τ δ2 (x)|
, (4.18)

for x ∈ ∂Ω. Then, the following asymptotic expansion holds.

Proposition 4.3.1. Let ν0 be given by (4.16). Then, the outward unit normal νδ(x) to ∂Ωδ at

x, can be expanded uniformly as

νδ(x) = ν(0)(x) +
∞∑
n=1

δnν(n)(x), x ∈ ∂Ω,

where the vector-valued functions ν(n) are uniformly bounded. In particular, for x ∈ ∂Ω:

ν(0)(x) = ν(x),

ν(1) =
1

|τ1 × τ2|
[
τ1 ×Mτ2 +Mτ1 × τ2 −

(
ν0 · (τ1 ×Mτ2 +Mτ1 × τ2)

)
ν0

]
.

Proof. Considering the expansions (4.17) for δ sufficiently small, the relation (4.18) be-

comes:

νδ =
a + δb + δ2c

|a + δb + δ2c|
, (4.19)
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where a,b, and c are vector-valued functions given by:

a = τ1 × τ2, b = Mτ1 × τ2 + τ1 ×Mτ2, and c = Mτ1 ×Mτ2.

So that, by expanding the quotient (4.19) as δ tends to zero, we get the desired results.

Next, one can use Proposition 4.2.2 to get the uniformly convergent expansion for the

surface element as follows:

Proposition 4.3.2. Let ỹ = Ψδ(y) where Ψδ(y) is given by (4.8) for y ∈ ∂Ω. Then, the

following expansion for the surface element dσδ(ỹ) holds uniformly for y ∈ ∂Ω:

dσδ(ỹ) = det (∇Ψδ) dσ(y) =
(
σ0(y) + σ1(y)δ + σ2(y)δ2 + σ3(y)δ3

)
dσ(y), (4.20)

where σ0 ≡ 1, σ1(y) = ∇ · (hν), σ2(y) = 1
2

[(
tr∇(hν)

)2 − tr
(
∇(hν)2

)]
, and σ3(y) =

det (∇(hν)).

Set

x̃ = Ψδ(x), x ∈ ∂Ω (4.21)

ỹ = Ψδ(y), y ∈ ∂Ω, (4.22)

and define

Θ(x, y) :=
1

δ

(
Ψδ(x)−Ψδ(y)− (x− y)

)
for δ 6= 0. (4.23)

Recall that Ψδ is a C2 vector-valued function on ∂Ω, then Θ is also a C2 function. Moreover,

the following holds.

Proposition 4.3.3. The vector-valued function Θ(x, y) is C2 on ∂Ω × ∂Ω and there exists a

constant C > 0 that only depends on Ω and h such that:

|Θ(x, y)| ≤ C|x− y|,

|Θ(x, y) · (x− y)| ≤ C|x− y|2,

for all x, y ∈ ∂Ω.

Proof. Expression (4.23) shows that:

Θ(x, y) = h(x)ν(x)− h(y)ν(y).
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Since ∂Ω is a C2 surface, there exists a constant C ′ > 0 such that:

|ν(x)− ν(y)| ≤ C ′|x− y|, and |ν(x) · (x− y)| ≤ C ′|x− y|2,

for all x, y ∈ ∂Ω.

The last inequalities and the C2 regularity of h yield the results of the proposition.

Now, by using (4.23) we obtain:

x̃− ỹ = x− y + δΘ(x, y), (x, y) ∈ ∂Ω× ∂Ω, (4.24)

and the following results hold.

Lemma 4.3.1. Let r > 0 be a fixed real and m ≥ 2 be a fixed integer. The following

asymptotic expansions

ei
√
λ|x̃−ỹ|

|x̃− ỹ|m
=

ei
√
λ|x−y|

|x− y|m
(

1 + δT
(m)
1 (x, y) +

∑
n≥2

δnT (m)
n (λ;x, y)

)
, (4.25)

∂x̃i∂x̃j
ei
√
λ|x̃−ỹ| − 1

|x̃− ỹ|
= R

(ij)
0 (λ;x, y) + δR

(ij)
1 (λ;x, y) +

∑
n≥2

δnR(ij)
n (λ;x, y) (4.26)

hold uniformly for (λ, x, y) ∈ Br(0)×∂Ω×∂Ω, whereBr(0) is a ball in the complex plane of

center zero and radius r. In addition the functions T (m)
n (λ;x, y) andR(ij)

n (λ;x, y) are smooth

and bounded uniformly on Br(0)× ∂Ω× ∂Ω. The first coefficients are given by:

R
(ij)
0 (λ;x, y) := ∂xi∂xj

ei
√
λ|x−y| − 1

|x− y|
,

and

R
(ij)
1 (λ;x, y) = (x−y)·Θ(x, y)

(
−λ2δij−3i

√
λ
δij
r
−iλ3/2 rirj

r
+7λ2 rirj

r2
+15i

√
λ
rirj
r3

)ei
√
λr

r5

+(x−y)·Θ(x, y)
(

4i
√
λ
δij
r
−15

δij
r2
−λ2[−5

rirj
r2

+
(riθj + rjθi)

(x− y) ·Θ(x, y)
−7i
√
λ[−6

rirj
r3

+
1

r

(riθj + rjθi)

(x− y) ·Θ(x, y)
]

+15[−7
rirj
r4

+
1

r2

(riθj + rjθi)

(x− y) ·Θ(x, y)

)ei
√
λr

r5

+15
(x− y) ·Θ(x, y)

r7

(
δij − [−7

rirj
r2

+
(riθj + rjθi)

(x− y) ·Θ(x, y)
]
)
,

where r = |x − y|, rj = xj − yj , θj means the jth component of Θ, and δij means the

Kronecker index.
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Proof. For m = 2 and x 6= y we have:

|x̃− ỹ|2 = |x− y + δΘ(x, y)|2 = |x− y|2
(

1 + δc
(2)
1 (x, y) + δ2c

(2)
2 (x, y)

)
,

where

c
(2)
1 (x, y) =

2Θ(x, y) · (x− y)

|x− y|2
, c

(2)
2 (x, y) = Θ(x,y)·Θ(x,y)

|x−y|2 .

Proposition 4.3.1 shows that c(2)
1 (x, y) and c(2)

2 (x, y) are bounded uniformly on ∂Ω× ∂Ω.

For m > 2, we have:

|x̃− ỹ|m = |x− y + δΘ(x, y)|m = |x− y|m
∣∣1 + δ

Θ(x, y)

|x− y|
∣∣m,

where x 6= y.

Using (4.23), Proposition 4.2.2 and Proposition 4.3.3, we see that the regular vector-valued

function (x, y) 7→ Θ(x,y)
|x−y| is well defined on ∂Ω× ∂Ω, and it is independent of δ.

Therefore, we can expand:

|x̃− ỹ|m = c
(m)
0 (x, y) +

∞∑
n=1

δnc(m)
n (x, y) uniformly on ∂Ω× ∂Ω, (4.27)

where the first coefficients c(m)
0 (x, y) = |x − y|m, c(m)

1 (x, y) = m < x − y,Θ(x, y) >

|x−y|m−2 and c(m)
2 (x, y) = m

2
|x−y|m

[
|Θ(x,y)
|x−y| |

2 +(m−2)
(
< x−y
|x−y|2 ,

Θ(x,y)
|x−y| >

)2]
.Moreover,

if m is even, then c(m)
n (x, y) = 0 for n ≥ m+ 1.

Now combining (4.27) for m = 1 with the well known asymptotic expansion of the exponen-

tial function, we immediately get

ei
√
λ|x̃−ỹ| =

∞∑
n=0

δnKn(λ;x, y) uniformly on Br(0)× ∂Ω× ∂Ω, (4.28)

where the first coefficientsK0(λ;x, y) = ei
√
λc

(1)
0 = ei

√
λ|x−y|, and the coefficientsKn(λ;x, y)

can be deduced recursively from c
(1)
n .

Thanks to relations (4.24), (4.27) and (4.28), we can obtain the desired result given by (4.25)

where the coefficients T (m)
n can be deduced easily from c

(m)
n and Kn.

To prove relation (4.26), we firstly expand

∂x̃i∂x̃j
ei
√
λ|x̃−ỹ| − 1

|x̃− ỹ|
=

1

|x̃− ỹ|
∂x̃i∂x̃j

(
ei
√
λ|x̃−ỹ|−1

)
+∂x̃i

( 1

|x̃− ỹ|
)
∂x̃j
(
ei
√
λ|x̃−ỹ|−1

)
(4.29)
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+∂x̃j

( 1

|x̃− ỹ|
)
∂x̃i
(
ei
√
λ|x̃−ỹ| − 1

)
+ ∂x̃i∂x̃j

( 1

|x̃− ỹ|
)(
ei
√
λ|x̃−ỹ| − 1

)
.

To simplify, let us denote r = |x−y|, ri = xi−yi, r̃ = |x̃− ỹ|, and r̂j defined by the relation

∂x̃j r̃ =
r̂j
r̃
. (4.30)

Then,

∂x̃j(
1

r̃3
) = −3

r̂j
r̃5
, and ∂x̃i∂x̃j(

1

r̃3
) = −3

δij
r̃5

+ 15
r̂ir̂j
r̃7

. (4.31)

Now, by using the following result

∂x̃j
(
ei
√
λ|x̃−ỹ| − 1

)
= ∂x̃j(i

√
λr̃
)
ei
√
λr̃ = i

√
λ
r̂j
r̃
ei
√
λr̃, (4.32)

we get that

∂x̃i∂x̃j
(
ei
√
λ|x̃−ỹ|−1

)
= i
√
λ
[
∂x̃i(

r̂j
r̃

)ei
√
λr̃+

r̂j
r̃
∂x̃ie

i
√
λr̃
]

= i
√
λ
[δij
r̃
− r̂ir̂j

r̃3
+ i
√
λ
r̂ir̂j
r̃2

]
ei
√
λr̃.

(4.33)

To find the desired result in (4.26), we may use (4.31), (4.32) and (4.33) to see that the relation

(4.29) verifies:

∂x̃i∂x̃j
ei
√
λ|x̃−ỹ| − 1

|x̃− ỹ|3
=
[
i
√
λ
δij
r̃4
−3

δij
r̃5
−λ2 r̂ir̂j

r̃5
−7i
√
λ
r̂ir̂j
r̃6

+ 15
r̂ir̂j
r̃7

]
ei
√
λr̃ + 3

δij
r̃5
−15

r̂ir̂j
r̃7

.

(4.34)

On the other hand, the components of the vectorial relation (4.24) can be given as follows

x̃i − ỹi = xi − yi + δθi(x, y). i = 1, 2, 3 (4.35)

where θi(x, y) means the ith component of the vector-valued function Θ(x, y).

Then, by relations (4.30) and (4.35) we deduce that

r̂j = x̃i − ỹi = xi − yi + δθi(x, y) = ri + δθi(x, y), i = 1, 2, 3. (4.36)

Using both relations (4.24) and (4.36), we get the following expansion

r̂ir̂j = α
(ij)
0 + α

(ij)
1 δ + α

(ij)
2 δ2, (4.37)

where the first coefficients: α(ij)
0 = rirj, α

(ij)
1 = riθj + rjθi and α(ij)

2 = θi · θj.

Now regarding (4.27) and using the fact that c(m)
0 6= 0 for each integer m. Then one can

expand
1

r̃m
= κ

(m)
0 (x, y) +

∞∑
n=1

δnκ(m)
n (x, y) uniformly , (4.38)
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where the first coefficients: κ(m)

0 (x, y) = (c
(m)
0 )−1(x, y), and κ(m)

1 (x, y) = −
(
c

(m)
1 (c

(m)
0 )−2

)
(x, y).

By using (4.37)-(4.38), we get that

r̂ir̂j
r̃m

= β
(ij)
0,m + δβ

(ij)
1,m +

∞∑
n=2

δnβ(ij)
n,m, (4.39)

where the first coefficients: β(ij)
0,m(x, y) = α

(ij)
0 (c

(m)
0 )−1(x, y), and

β
(ij)
1,m(x, y) = −α(ij)

0

(
c

(m)
1 (c

(m)
0 )−2

)
(x, y) + α

(ij)
1 (c

(m)
0 )−1(x, y).

To achieve the proof, we may insert all expansions (4.28), (4.38) (for m ∈ {4, 5}), and

(4.39)(for m ∈ {5, 6, 7} into (4.34). We get that

∂x̃i∂x̃j
ei
√
λ|x̃−ỹ| − 1

|x̃− ỹ|3
= R

(ij)
0 (x, y) + δR

(ij)
1 (x, y) +

∞∑
n=2

δnR(ij)
n (x, y)

where the first coefficient:

R
(ij)
0 (λ;x, y) =

(
i
√
λδijκ

(4)
0 −3δijκ

(5)
0 −λ2β

(ij)
0,5 −7i

√
λβ

(ij)
0,6 +15β

(ij)
0,7

)
K0 +3δijκ

(5)
0 −15β

(ij)
0,7

=
[
i
√
λδij(c

(4)
0 )−1−3δij(c

(5)
0 )−1−λ2rirj(c

(5)
0 )−1−7i

√
λrirj(c

(6)
0 )−1 +15rirj(c

(7)
0 )−1

]
ei
√
λc

(1)
0

+3δij(c
(5)
0 )−1 − 15rirj(c

(7)
0 )−1.

Using the fact that c(m)
0 = |x− y|m, we find that

R
(ij)
0 (λ;x, y) := ∂xi∂xj

ei
√
λ|x−y| − 1

|x− y|3
.

Based on (4.34), we find that

R
(ij)
1 (λ;x, y) =

(
i
√
λδijκ

(4)
0 − 3δijκ

(5)
0 − λ2β

(ij)
0,5 − 7i

√
λβ

(ij)
0,6 + 15β

(ij)
0,7

)
K1

+
(
i
√
λδijκ

(4)
1 − 3δijκ

(5)
1 − λ2β

(ij)
1,5 − 7i

√
λβ

(ij)
1,6 + 15β

(ij)
1,7

)
K0 + 3δijκ

(5)
1 − 15β

(ij)
1,7 .

So that, by using the fact that K1 = i
√
λΘ · (x−y)

r
ei
√
λc

(1)
0 , we get

R
(ij)
1 (λ;x, y) = i

√
λΘ·(x− y)

r

(
i
√
λδij(c

(4)
0 )−1−3δij(c

(5)
0 )−1−λ2rirj(c

(5)
0 )−1−7i

√
λrirj(c

(6)
0 )−1

+15rirj(c
(7)
0 )−1

)
ei
√
λc

(1)
0

+
(

i
√
λδij(c

(4)
0 )−2c

(4)
1 − 3δij(c

(5)
0 )−2c

(5)
1 − λ2[−rirj(c(5)

0 )−2c
(5)
1 + (riθj + rjθi)(c

(5)
0 )−1]

−7i
√
λ[−rirj(c(6)

0 )−2c
(6)
1 +(riθj+rjθi)(c

(6)
0 )−1]+15[−rirj(c(7)

0 )−2c
(7)
1 +(riθj+rjθi)(c

(7)
0 )−1]

)
ei
√
λc

(1)
0
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+3δij(c

(5)
0 )−2c

(5)
1 − 15[−rirj(c(7)

0 )−2c
(7)
1 + (riθj + rjθi)(c

(7)
0 )−1].

Using the explicit forms of the coefficients c(m)
0 and c(m)

1 given above, we immediately get

the desired expression of R(ij)
1 (λ;x, y). The other coefficients can be deduced easily by the

same manner in terms of c(m)
n .

Now using (4.35), we obtain for i, j = 1, 2, 3 that:

(x̃i − ỹi)(x̃j − ỹj) = ĝ0(x, y) + δĝ1(x, y) + δ2ĝ2(x, y), (4.40)

where

ĝ0(x, y) = (xi − yi)(xj − yj), ĝ1(x, y) = θi(x, y)(xj − yj) + θj(x, y)(xi − yi),

and

ĝ2(x, y) = θi(x, y) · θj(x, y).

Now, by using (4.20), (4.27) and (4.40), we immediately get

(x̃i − ỹi)(x̃j − ỹj)
|x̃− ỹ|m

dσδ(ỹ) =
(
T̂0(x, y) + δT̂1(x, y) +

∑
n≥2

δnT̂n(x, y)
)
dσ(y), (4.41)

where the Taylor coefficients T̂n can be given explicitly with the aid of ĝ0, ĝ1, and ĝ2.

Next, the following result holds.

Lemma 4.3.2. The following uniform expansion holds on R× ∂Ω× ∂Ω:

(x̃i − ỹi)(x̃j − ỹj)|x̃− ỹ|ei
√
λ|x̃−ỹ|dσδ(ỹ) = Eδ(λ;x, y) dσ(y) =

∞∑
n=0

δnEn(λ;x, y) dσ(y)

(4.42)

with

E0(λ;x, y) = ĝ0(x, y)|x− y|ei
√
λ|x−y|,

and the other coefficients En are deduced from those σn, c(1)
n , Kn and ĝn.

Proof. From the proof of Lemma 4.3.1 (for m = 1) and from relations (4.20) and (4.40), one

can get that

(x̃i − ỹi)(x̃j − ỹj)|x̃− ỹ|ei
√
λ|x̃−ỹ|dσδ(ỹ) =

(
ĝ0(x, y) + δĝ1(x, y)+
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δ2ĝ2(x, y)
)( ∞∑

n=0

δnc(1)
n

)( ∞∑
n=0

Kn(λ;x, y)
)(
σ0(y) + δσ1(y)+

δ2σ2(y) + δ3σ3(y)
)
dσ(y).

By collecting terms of equal powers in the above relation, one can deduce easily the uniform

expansion (4.42) with

E0(λ;x, y) = ĝ0(x, y)|x− y|ei
√
λ|x−y|.

Now, from (4.5) we have

Γij(λ, |x− y|) =
ei
√
λr

4π

[δij
r
− x̂ix̂j

r3

]
+
ei
√
λr

4πλ

[
i
δij
r4
− 4i

x̂ix̂j
r4
− 3irx̂ix̂j

]
+

1

4πλ

[
− 3

δij
r5

+ 15
x̂ix̂j
r7

]
+
eiλr

4πλ

[
− 3

δij
r5

+ 15
x̂ix̂j
r3

]
,

where r = |x−y| and x̂i = xi−yi. Then, by inserting relations (4.25), (4.40), (4.41) and that

given by Lemma 4.3.2 into above identity, we immediately get the following main results

Proposition 4.3.4. Let the perturbed boundary ∂Ωδ defined by (4.2). Let x̃ and ỹ given

by (4.21)-(4.22), and the surface element dσδ(ỹ) given by (4.20). Then, the components

Γij, 1 ≤ i, j ≤ 3 of the fundamental Stokes tensor can be expanded uniformly as:

Γij(λ, |x̃− ỹ|) dσδ(ỹ) =
(

Γ
(0)
ij (λ, |x− y|) + δΓ

(1)
ij (λ, |x− y|) (4.43)

+
∑
n≥2

δnΓ
(n)
ij (λ, |x− y|)

)
dσ(y), y ∈ ∂Ω

where the first coefficients:

Γ
(0)
ij (λ, |x− y|) :=

δij
4π

(
T

(1)
0 +

i

λ
T

(4)
0 − 3

r0

λ2
− 3

T
(5)
0

λ2

)
+

1

4π
(
15

λ2
− 1)T

(3)
0 ĝ0 −

4i

4πλ
T

(4)
0 ĝ0

− 3i

4πλ
E0 +

15

4πλ2
T̂0,

and

Γ
(1)
ij (λ, |x− y|) :=

δij
4π

(
T

(1)
1 +

i

λ
T

(4)
1 − 3

r1

λ2
− 3

T
(5)
1

λ2

)
+

1

4π
(
15

λ2
− 1)

[
T

(3)
0 ĝ1 + T

(3)
1 ĝ0

]
− 4i

4πλ

[
T

(4)
0 ĝ1 + T

(4)
1 ĝ0

]
− 3i

4πλ
E1 +

15

4πλ2
T̂1.
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In Proposition 4.3.4, the coefficients r0 and r1 are deduced from (4.27) for m = 5.

Now, introduce a sequence of components of integral operators (A(n)
i )n≥0, defined for

any ϕ ∈ L2(∂Ω)3 by:(
A(n)ϕ

)
i
(x) =

∫
∂Ω

Γ
(n)
ij (x, y)ϕj(y) dσ(y), for i, j ∈ {1, 2, 3} and n ≥ 0.

Using previous results, il is clear that we know explicitly the first terms A(0)
i , A(1)

i . For

any positive integer N , we can by recursive method get the term A(N)
i . Then, the following

theorem holds.

Theorem 4.3.1. Let Aδ be the operator defined by (4.10). Let Ψδ(x) be the diffeomorphism

defined as in Lemma 4.2.2. Let N be a positive integer. There exists a positive constant C

depending only on N , and ‖h‖C2 such that for any ϕ̃ ∈ L2(∂Ωδ)
3 and i, j ∈ {1, 2, 3}, the

ith-component Aδi defined by (4.13) satisfies:

∥∥(Aδϕ̃)
i
oΨδ −

(
A(0)ϕ)i −

N∑
n=1

δn
(
A(n)ϕ

)
i

∥∥
L2(∂Ω)

≤ CδN+1‖ϕ‖L2(∂Ω)3 ,

where ϕ = ϕ̃oΨδ.

4.3.2 Asymptotic expansion of the eigenvalues

To develop asymptotic behaviors of eigenvalues and eigenfunctions with respect to the pa-

rameter of perturbation δ, we may use the results of Theorem 4.3.1. Then, the following

asymptotic expansion related to the operator Aδ appears clearly.

Proposition 4.3.5. Suppose that we have all hypothesis of Theorem 4.3.1. Then, the operator

Aδ(λ) defined by (4.10) can be expanded uniformly for x ∈ ∂Ω as follows:

Aδ(λ)ϕ = A(0)(λ)ϕ+ δA(1)(λ)ϕ+ δ2A(2)(λ)ϕ+ · · · ; as δ → 0, (4.44)

where ϕ ∈ L2(∂Ω)3, the ith-component of the first term is given by(
A(0)
i (λ)ϕ

)
i
(x) =

∫
∂Ω

Γ
(0)
ij (x, y)ϕj(y) dσ(y), for i, j ∈ {1, 2, 3},

and more generally, the ith-component of the term with order n is given by(
A(n)(λ)ϕ

)
i
(x) =

∫
∂Ω

Γ
(n)
ij (x, y)ϕj(y) dσ(y), for i, j ∈ {1, 2, 3} and n ≥ 1.
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The coefficients Γ

(n)
ij are given by (4.43).

Now, based on the well known works [8, 10], we tray to give (formally) an asymptotic

expansion related to the eigenvalues λδ if the eigenvalue λ0 is simple. But, To get an explicit

asymptotic formula for λδ we may develop our analysis in some Hölder space. This will be

given in Theorem 4.3.2. Before that, let aj(δ) denotes:

aj(δ) :=
1

2iπ
tr

∫
∂Dε0

(λ− λ0)j(Aδ)−1(λ)∂λAδ(λ)dλ. (4.45)

The functions aj(δ) is analytic in a complex neighborhood of 0 and satisfies: aj(δ) = aj(δ).

The following main result holds.

Proposition 4.3.6. Let λ0 be a simple eigenvalue of the problem (4.1). Let the operator Aδ

be defined by (4.10). Then, there exists a small positive number δ0 such that the eigenvalue

λ(δ) is analytic in ]− δ0, δ0[ and satisfies:

λ(δ) = λ0 + δλ1 +
∑
n≥2

λnδ
n, (4.46)

where the first coefficients are (formally) given by:
λ1 = 1

2iπ
tr
∫
∂Dε0

(λ− λ0)
[
(A(0))−1(λ)A(1)(λ)(A(0))−1(λ)∂λA(0)(λ)

]
dλ,

λ2 = 1
2iπ

tr
∫
∂Dε0

(λ− λ0)
[
(A(0))−1A(1)(A(0))−1∂λA(1) + (A(0))−1A(2)(A(0))−1∂λA(0)

+(A(0))−1
(
A(1)(A(0))−1

)2
∂λA(0)

]
dλ.

Proof. Let λδ be the eigenvalue of the problem (4.4). It is well known that λδ is also simple

such that λδ → λ0 as δ → 0.

On the other hand, if we take the curl of the first equation in (4.4), we see that there exists a

function w = w(vδ) called vorticity associated to vδ such that:∆w + λδw = 0 in Ω

vδ = 0 in ∂Ω.

That is, w is an eigenfunction of the negative Laplacian, but with homogeneous boundary

conditions on the velocity vδ.

Moreover, let uδ be the stream function for vδ given as in Lemma 2.10 of [28]. Then, w =

∆uδ and ∇uδ = 0 on ∂Ω. Since uδ is determined only up to a constant, we can then assume
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that uδ = 0 on ∂Ω.

Thus, uδ satisfies the following eigenvalue problem for the Dirichlet biharmonic operator:∆∆uδ + λδ∆uδ = 0 in Ω

uδ = 0 in ∂Ω.
(4.47)

Note that Temam [54] exploits the similar correspondence between the Stokes problem and

the biharmonic problem in the proof of the regularity of solutions to the Stokes system and to

justify several results. Moreover, as pointed out by Ashbaugh in [11], there is a similar cor-

respondence between the eigenvalue problems for the Dirichlet Laplacian and system (4.47)

with the boundary condition replaced by ∆uδ = 0.

Then, one can exploit this correspondence to use the approach used in [10] in order to de-

velop an asymptotic expansion for the eigenvalue.

On the other hand, it is well known [8, 10] that there exits a polynomial-valued function

δ 7→ Qδ(λ) of degree 1, analytic in ]− δ0, δ0[ and of the form:

Qδ(λ) = λ− a1(δ)

such that the perturbation λδ−λ0 is precisely its zero. For the existence ofQδ one can follow

the general approach used, for example, in [10] for the case of Laplace operator.

Writing:

Qδ(λδ − λ0) = 0.

Then we have

λδ − λ0 = a1(δ).

Therefore, by (4.45) we have

λδ − λ0 =
1

2iπ
tr

∫
∂Dε0

(λ− λ0)(Aδ)−1(λ)∂λAδ(λ)dλ.

On the other hand, for δ in a small neighborhood of 0, the following Neumann series con-

verges uniformly with respect to λ in ∂Dε0:

(Aδ)−1(λ) = (A(0))−1(λ) +
∞∑
k=1

(A(0))−1(λ)
[(
A(0)(λ)−Aδ(λ)

)
(A(0))−1(λ)

]k
.
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So,

λδ − λ0 =
1

2iπ
tr

∫
∂Dε0

(λ− λ0)(A(0))−1(λ)∂λAδ(λ)ϕ dλ+

1

2iπ
tr

∫
∂Dε0

(λ− λ0)
∞∑
k=1

(A(0))−1(λ)
[(
A(0)(λ)−Aδ(λ)

)
(A(0))−1(λ)

]k
∂λAδ(λ) dλ

By using (4.14), we find that
1

2iπ
tr

∫
∂Dε0

(λ− λ0)(A(0))−1(λ)∂λAδ(λ) dλ = 0.

This result is a direct consequence of the fact thatR0(λ) and ∂λAδ(λ) are holomorphic in the

variable λ.

Now we have:

λδ − λ0 =
1

2iπ
tr

∫
∂Dε0

(λ− λ0)(A(0))−1(λ)
[(
A(0)(λ)−Aδ(λ)

)
(A(0))−1(λ)

]
∂λAδ(λ) dλ+

1

2iπ
tr

∫
∂Dε0

(λ− λ0)(A(0))−1(λ)
[(
A(0)(λ)−Aδ(λ)

)
(A(0))−1(λ)

]2
∂λAδ(λ) dλ+

1

2iπ
tr

∫
∂Dε0

(λ− λ0)
∑
k≥3

(A(0))−1(λ)
[(
A(0)(λ)−Aδ(λ)

)
(A(0))−1(λ)

]k
∂λAδ(λ) dλ.

Inserting expression (4.44) into above relation, we may get:

λδ−λ0 =
1

2iπ
tr

∫
∂Dε0

(λ−λ0)(A(0))−1
[
δA(1)(A(0))−1+δ2A(2)(A(0))−1+· · ·

](
∂λA(0)+δ∂λA(1)

+δ2∂λA(2) + · · ·
)
ϕ dλ+

1

2iπ
tr

∫
∂Dε0

(λ− λ0)(A(0))−1
[
δA(1)(A(0))−1+

δ2A(2)(A(0))−1 + · · ·
]2(
∂λA(0) + δ∂λA(1) + δ2∂λA(2) + · · ·

)
dλ+ · · ·

If we collect the same powers of δ, then we get the desired results.
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4.3.3 Asymptotic formula in Hölder space

In section we suppose that any shape deformation like (4.2) occurs inside a bounded do-

main Ω in a Hölder space. Based on the works [5–8, 14], we may advance the asymptotic

expansions for simple and/or multiple eigenvalues of the Stokes operator and we may give

explicitly the fist term correction. Since the Stokes system can be viewed as the incompress-

ible limit and as done in [7], our method in this section may be deeply based on the ones

developed in [5] for the elastic case.

Suppose that in this section that Ω ⊂ R2 is a bounded domain with C1,1 boundary.Let D

be an open subset of Ω such that dist(∂Ω, D) ≥ d0 > 0 representing an inclusion made of a

different Newtonian fluid material. Assume that the boundary ∂D is of class C2,1. We denote

by σ0 and σ1 the stress tensor fields in Ω\D and D, respectively. We assume that both Ω\D
and D are occupied by isotropic and homogeneous Newtonian fluids. Then, the tensors σ0

and σ1 may be given by

(σs)ijlk = µs(δkiδlj + δkjδli) for i, j, k, l = 1, 2 and s = 0, 1, (4.48)

where µ0 and µ1 are the viscosity constants of the flow in Ω\D and D, respectively. Given

two (2 × 2) matrices A and B we denote by A : B the contraction, i.e., A : B =
∑

ij aijbij.

Now, it is useful to introduce the strain rate tensor D for the flow as follows:

D(v) :=
1

2
(∇v + (∇v)T ) =

(1

2
(
∂vi
∂xj

+
∂vj
∂xi

)
)

1≤i,j≤3
.

Let σD := σ0χΩ\D + σ1χD. Then according to [14], one can rewrite the eigenvalue problem

(4.1) as the generalized one:

−div(σDD(v0)− p0Id) = λ0v0 in Ω

∇.v0 = 0 in Ω

v0 = 0 in ∂Ω

‖v0‖ = 1

(4.49)

where (v0, p0, λ0) ∈ (H2(Ω))2 × H1(Ω) × R∗+ and Id means the identity. Here we refer

the reader to ( [14], Theorem IV.5.8) for more details about the regularity properties. On the

other hand, if S mens the Stokes operator, it is well know that (see for example, [7,14]) there
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exist an orthogonal projection (the Leray projection) P such that:

S(v) = P (−∆v), ∀v ∈ (H2(Ω))2 ∩H(Ω).

In consequence, the Stokes operator enters the general framework about spectral properties

of −∆.

The δ-perturbation, denoted by Dδ, of the domain D is given by

∂Dδ := {x̃ = x+ δh(x)ν(x), x ∈ ∂D} (4.50)

where here h(x) is assumed to be real function in C1,1(∂D) that satisfies

‖h‖C1,1(∂D) < c0for some positive constantc0. (4.51)

Let σDδ := σ0χΩ\Dδ + σ1χDδ . Therefore, (4.4) can be generalized to the following perturbed

eigenvalue problem 

−div(σDδD(vδ)− pδId) = λδvδ in Ω

∇.vδ = 0 in Ω

vδ = 0 in ∂Ω

‖vδ‖ = 1

(4.52)

where (vδ, pδ, λδ) ∈ (H2(Ω))2 ×H1(Ω)× R∗+.

Our purpose in this section is to develop a rigourously asymptotic behavior of the eigenvalue

of (4.52) assumed to be more precisely. The main result is the following.

Theorem 4.3.2. Suppose that Ω ⊂ R2 with class C1,1. Let λ0 be a simple eigenvalue of

the problem (4.49). Assume that we have (4.51), and the pressure still the same if we have

(4.50). Then, the first term correction in the asymptotic expansion of the eigenvalue λδ is

given through the following formula:

λδ − λ0 = δ

∫
∂D

h(x)V [D(ve0)](x) : D(ve0(x))ds(x) +O(δ1+β),

where β some positif constant and V means the viscous moment tensor (VMT) given by

V [D(ve0)] = [ 1
σ1

(V1∇̂ve0(x)τ)⊗ τ + (σ0

σ1
∇̂ve0(x)ν)⊗ ν]. Here, we denote by ν, τ respectively

the outward normal vector and the tangent vector to ∂D and V1 a given operator expresses

the transmission conditions for v0.
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Proof. To derive the corresponding formulae for the eigenvalues we will use an idea close

to Osborn’s theorem [50] which gives estimates for the convergence of the eigenvalues of a

sequence of compact operators. For any f ∈ L2(Ω), define the linear operator Tεf = uε,

where uε is the solution to the problem{
−div(σDδD(uδ)− pδId) = f in Ω,

uδ = 0 on ∂Ω.
(4.53)

For the same given function f , we define the linear operator Tf = u0, where u0 is the solution

to the problem {
−div(σDD(u0)− p0Id) = f in Ω,

u0 = 0 on ∂Ω.
(4.54)

Clearly Tε and T are are compact self-adjoint operators. One may use standard energy

estimates based on Korn and Poincaré inequalities to get these facts. Moreover, it is easy to

see that {Tδ; δ ≥ 0} with T0 = T are collectively compact and that Tδ → T pointwise as

δ → 0. To get the last result, one may prove that Tδf converges to Tf in L2(Ω) for every

f ∈ L2(Ω). By assumption, in the presence of (4.50), there exist a function p such that

pδ = p0 = p. Then, let uδ = Tδf and u0 = Tδf . For any w ∈ H1(Ω), we have:∫
Ω

∇ · (σDδD(uδ)− pId).w =

∫
Ω

f.w,

so, ∫
Ω

(σDδD(uδ)− pId) : D(w) = −
∫
Ω

f.w.

Similarly, ∫
Ω

(σDD(u0)− pId) : D(w) = −
∫
Ω

f.w.

Consequently, choosing w = uδ − u0 and subtracting these two equations we get∫
Ω

(σDδD(uδ)− σDD(u0)) : D(uδ − u0) = 0

which gives∫
Ω

σDδD(uδ − u0) : D(uδ − u0) = −
∫
Ω

(σDδ − σD)D(u0) : D(uδ − u0).
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Hence, by using successively Korn’s inequality and Hölder’s one, one can get

‖∇(uδ − u0)‖L2(Ω) ≤ C‖∇u0‖L2(Dδ4D),

where4 denotes the symmetric difference. It then follows by the Poincaré inequality that

‖uδ − u0‖H1(Ω) ≤ C‖∇u0‖L2(Dδ4D).

Consequently, using the last inequality and the fact that |Dδ4D| → 0 as δ → 0 and that

∇u0 ∈ L2(Ω) we obtain that Tδ → T pointwise as δ → 0 in L2(Ω).

Hence all hypotheses hold for the theorem of Osborn. Now if we set,

µ̃0 =
1

λ0

and µ̃δ =
1

λδ
,

then according to the problem (4.53)(resp. (4.54)) we can see that (µ̃δ, vδ) (resp.(µ̃0, v0)) is

eigenpair of Tδ (resp. of T0). So, a theorem of Osborn [50] yields∣∣µ̃0 − µ̃δ− ≺ (Tδ − T )v0, v0 �
∣∣ ≤ ‖(T − Tδ)v0‖2

L2(Ω), (4.55)

where C is independent of δ and v0 is the solution of (4.49). Furthermore, if vδ is the solution

to (4.52), then

‖v0 − vδ‖L2(Ω) ≤ ‖(T − Tδ)v0‖L2(Ω).

According to [5, 14] we can extend the regularity results obtained by De Giorgi and Nash in

the scalar case [24] to get

‖vδ‖C1,α(Dδ)
+ ‖vδ‖C1,α(Ωd0/2\Dδ)

≤ C, for some α > 0, (4.56)

whereC is a positif constant and for d0 > 0 we have Ωd0/2 := {x ∈ Ω : dist(x, ∂Ω) > d0/2}.

To compute the term ≺ (Tδ − T )v0, v0 � appearing in (4.55), we may firstly recall that

Tv0 = µ̃0v0 and Tδv0 = ũδ where ũδ is the solution to{
−∇ · (σDδD(ũδ) + pId) = v0, inΩ

ũδ = 0, on∂Ω.
(4.57)

Putting ṽ0 = µ̃0v0, then {
−∇ · (σDD(ṽ0) + pId) = v0, inΩ

ṽ0 = 0, on∂Ω.
(4.58)
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From (4.57) and (4.58), we have

≺ (Tδ − T )v0, v0 � = ≺ ũδ − ṽ0, v0 �= µ̃0

∫
Ω

v2
0 +

∫
Ω

v0ũδdx

= µ̃0

∫
Ω

(σD − σDδ)D(ũδ) : D(v0)dx

= µ̃0

∫
Dδ\D

(σ0 − σ1)D(ũiδ) : D(ve0)dx− µ̃0

∫
D\Dδ

(σ0 − σ1)D(ũeδ) : D(vi0)dx.

Now, as done in [5] we put xt := x + th(x)ν(x) for x ∈ ∂D and t ∈ [0, δ]. It is clearly that

the Jacobian determinant of the change of variables (x, t) ∈ ∂D × [0, δ] 7→ xt ∈ Dδ4D is

|h(x)|+O(δ) for δ small enough, and hence we get

I1 := µ̃0

∫
Dδ\D

(σ0 − σ1)D(ũiδ) : D(ve0)dx = µ̃0

δ∫
0

∫
∂D∩{h>0}

h(x)(σ0

−σ1)D(ũiδ)(xt) : D(ve0)(xt)ds(x)dt+O(δ2).

Moreover,

I2 := −µ̃0

∫
D\Dδ

(σ0 − σ1)D(ũeδ) : D(vi0)dx = −µ̃0

δ∫
0

∫
∂D∩{h<0}

h(x)(σ0

−σ1)D(ũeδ)(xt) : D(vi0)(xt)ds(x)dt+O(δ2).

On the other hand, based on the result of Li and Nirenberg proved in [41], the following

gradient estimate holds:

‖ũδ‖C1,α(Dδ)
+ ‖ũδ‖C1,α(Ωd0/2\Dδ)

≤ C[‖ũδ‖L2(Ω) + ‖v0‖L∞(Ωd0/2)], (4.59)

where ũδ is the solution of (4.57), and the positive constant C is independent of δ. Remark

that ‖ũδ‖H1(Ω) ≤ C‖v0‖L2(Ω) ≤ C, it follows from (4.56) that

‖ũδ‖C1,α(Dδ)
+ ‖ũδ‖C1,α(Ωd0/2\Dδ)

≤ C. (4.60)

Now using Lemma 2.2 in [5], and the relations (4.58)-(4.61), one may obtain:

‖(Tδ − T )v0‖L2(Ω) = ‖ũδ − ṽ0‖L2(Ω) ≤ Cδη+1/2. (4.61)
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On the other hand, we use the gradient estimates (4.57) and (4.58) for ũδ and v0, to approxi-

mate

D(ũiδ)(xt) : D(ve0)(xt) = D(ũiδ)(xδ) : D(ve0)(xδ) +O(δα)

for δ sufficiently small. To proceed with our proof we may investigate the transmission

conditions of v0 along the interface ∂D. One can easily see from the equation in (4.49) that

v0 satisfies: ve0 = vi0 and (σ0D(ve0))ν = (σ1D(vi0))ν where ve0 = v0|Ω\D and vi0 = v0|D. Let τ

be the unit tangential vector field to ∂D, and following the approach used in [5], one can find

that

(σ1D(vi0))τ = (V1D(ve0))τ on ∂D, (4.62)

where V1 := 2µ0I4 + 2(µ1 − µ0)I2 ⊗ (τ ⊗ τ). Here I2 is the (2× 2) identity matrix, I4 is the

identity 4-tensor and the viscosity constants µ0, µ1 are given in (4.48).

Applying the transmission conditions (4.62) for the function ũδ, one may get

D(ũiδ)(xδ) = σ−1
1 [(σ1D(ũiδ)(xδ)τ)⊗ τ + (σ1D(ũiδ)(xδ)ν)⊗ ν] = σ−1

1 [(V1D(ũeδ)(xδ)τ)⊗ τ

+(σ0D(ũeδ)(xδ)ν)⊗ ν].

Now, regarding Lemma 3.2 in [5], which still applied to Stokes case, on may approximate

D(ũiδ)(xδ) =
µ̃0

σ1

[(V1D(ve0)(x)τ)⊗ τ + (σ0D(ve0)(x)ν)⊗ ν] +O(δ
α

2(α+2) ). (4.63)

Hence,

I1 = δµ̃2
0

∫
∂D∩{h>0}

h(x)V [D(ve0)](x) : D(ve0)(x)ds(x) +O(δ1+ α
2(α+2) )

and

I2 = δµ̃2
0

∫
∂D∩{h<0}

h(x)V [D(ve0)](x) : D(ve0)(x)ds(x) +O(δ1+ α
2(α+2) ),

where α > 0 and V [D(ve0)] deduced from (4.63). Therefore,

≺ (Tδ − T )v0, v0 �= I1 + I2 = δµ̃2
0

∫
∂D

h(x)V [D(ve0)](x) : D(ve0)(x)ds(x) +O(δ1+ α
2(α+2) ),

and by considering the above relation, (4.55) and (4.61) we obtain

µ̃0 − µ̃δ = δµ̃2
0

∫
∂D

h(x)V [D(ve0)](x) : D(ve0)(x)ds(x) +O(δ1+β)
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with β = inf(η, α

2(α+2)
). To achieve the proof, we recall that

λδ − λ0 = λ0λδ(1/λ0 − 1/λδ) = λ0λδ(µ̃0 − µ̃δ)

and we take into consideration that λ0λδ = λ2
0 + δ(λ0λ1) + δ2(λ0λ2) + · · · .

Now we consider the case of a multiple eigenvalue. Let the operators T and Tδ be defined

as in the proof of Theorem 4.3.2. We suppose that µ̃0 be a nonzero eigenvalue of T with

multiplicitym ≥ 1. Then, for δ small, Tδ has a set ofm eigenvalues µ̃jδ (counted according to

their multiplicity) such that µ̃jδ → µ̃0 for each j = 1, · · · ,m as δ → 0. Let µ̄δ = 1
m

∑m
j=1 µ̃

j
δ,

and let {u0,1, u0,2, · · · , u0,m} is an orthonormal basis for Ker(T − µ̃0I), then as written in

(4.55) there exists a constant C (independent of δ) such that∣∣∣µ̃0 − µ̄δ −
1

m

m∑
j=1

≺ (Tδ − T )u0,j, u0,j �
∣∣∣ ≤ C‖(T − Tδ)u0,j‖2

L2(Ω), (4.64)

Moreover, for each j = 1, · · · ,m, there is an eigenfunction uδ,j corresponding to µ̃jδ such

that ‖uδ,j‖L2(Ω) = 1, and

‖uδ,j − u0,j‖L2(Ω) ≤ C‖(T − Tδ)|Ker(T−µ̃0I)‖. (4.65)

For more details, we can refer to [8, 30].

Suppose now that the eigenvalue λ0 of the problem (4.49) is with geometric multiplicity m

and let v0,j; j = 1, · · · ,m be L2−orthonormal eigenfunctions corresponding to λ0. Let

λjδ be the eigenvalues of problem (4.52) generated by splitting from λ0 and let vjδ be the

associated eigenfunction (normalized with respect to L2) such that vjδ → v0,j as δ → 0.

Based on (4.64) and (4.65), one can use similar approaches as in the proof of Theorem 4.3.2

to get the following result.

Corollary 4.3.1. Suppose that Ω ⊂ R2 with class C1,1. Let λ0 be an eigenvalue, of the

problem (4.49), with (geometric) multiplicity m ≥ 1. Assume that we have (4.51), and the

pressure still the same if we have (4.50). Then, there exist m eigenvalues λjδ, j = 1, · · · ,m
(repeated according to their multiplicities) such that λjδ → λ0 as δ → 0 and the following

asymptotic expansion holds:

1

λ0

− 1

m

m∑
j=1

1

λjδ
=

δ

m

m∑
j=1

∫
∂D

h(x)V [D(ve0,j)](x) : D(ve0,j)(x)ds(x) +O(δ1+β),

where β some positif constant and V given by Theorem 4.3.2.
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4.3.4 Asymptotic formula for eigenfunctions and eigenpressures

This section is dedicated to develop asymptotic expansions for both eigenfunctions and eigen-

pressures associated to (4.4). Here we suppose that we have all hypothesis and conditions of

the Section 1 and Section 2. Define the operator:

Bδ(λ)ϕ(x) = (W(λ)ϕ)(Ψ−1
δ )(Ψδ(x)),

where ϕ ∈ L2(∂Ω), Ψδ given by Section 2.2, andW(λ) is the operator associated to hydro-

dynamic double layer potential [?, 34, 60]. Then, the following main result holds.

Theorem 4.3.3. Suppose that we have (4.2) and let λ0 be a simple eigenvalue of (4.1). LetAδ
be the operator defined by (4.10), andMδ = Aδ + Bδ. Let O0 be a bounded neighborhood

of Ω in R3. Then there exists a constant δ1 > 0 smaller than δ0 such that the eigenfunction vδ
corresponding to the eigenvalue, λδ, in (H1(Ωδ))

3 ∩ H(Ωδ) can be chosen to depend holo-

morphically in (x, δ) ∈ O0×] − δ1, δ1[. Moreover this eigenfunction satisfies the following

asymptotic formulae

vδ(x) = v0(x) +
∑
n≥1

vn(x)δn, (4.66)

where the function v0 is the eigenfunction solution of (4.1) associated to λ0. The terms vn are

computed from the Taylor coefficients of the operator valued functionMδ and of those of the

function a(δ) = (aij(δ))1≤i,j≤3.

Proof. From [34, 46] we deduce that there exist a continuous function ϕ(t, δ), which is ana-

lytic in R2×]− δ0, δ0[ and such that

vδ(x) = S(λδ)ϕ+W(λδ)ϕ, x ∈ Ω (4.67)

solves the eigenvalue problem (4.4). Moreover, the function given by

U(δ)(x) =M(λδ)ϕ(Ψ−1, δ)

satisfies the eigenvalue problem (4.4) in Ωδ with the boundary conditions: U(δ)|∂Ωδ = 0.

Here,M(λδ)ϕ(Ψ−1, δ) =Mδ(λ)ϕ.

Now, by (4.67), we deduce that vδ(x) = U(δ)(x) =M(λδ)ϕ(Ψ−1, δ) is jointly analytic with

respect to (x, δ) in {‖x − Ψδ=0(y)‖ ≤ z0}×] − δ0, δ0[, where z0 is a positive constant. The

function vδ(x) is jointly analytic in the variables (x, δ) ∈ O0×]− δ0, δ0[.
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We shall now give the asymptotic expansion of the function vδ(x) when δ tends to 0. Integral

equation (4.7) gives us

vδ(x) =

∫
∂Ω

M(λδ, |x−Ψδ(y)|)ϕ(y, δ)|∇Ψδ(y)|dσ(y),

where M is the kernel of the operatorMδ. The perturbed eigenvalue λδ is in a small neigh-

borhood of λ0 for small values of δ. Then we have the following Taylor expansion

M(λδ), |x−Ψδ(y)|)|∇Ψδ(y)| = M(λ0, |x−Ψ(y)|)|∇Ψ(y)|+
∑
k≥1

δkMk(x, y),

which holds uniformly in x ∈ O0 and y ∈ ∂Ω. The analyticity of the function ϕ(y, δ) with

respect to δ immediately gives

ϕ(t, δ) = ϕ0(y) +
∑
k≥1

δkϕk(y),

uniformly in y ∈ ∂Ω. Substituting the last two asymptotic into (4.68) we find

vδ(x) = vδ=0(x) +
∑
k≥1

δk[
k∑

n=1

∫
∂Ω

ϕk−n(y)Mn(x, y)dσ(y)].

The next result provide us with the asymptotic expansion of the eigenpressures.

Corollary 4.3.2. Suppose that we have all hypothesis of Theorem (4.3.3). Then the eigen-

pressures pδ solution of (4.4) have the following uniform asymptotic expansion:

pδ(x) = p0(x) +
∑
n≥1

pn(x)δn, (4.68)

where the function p0 is the eigenpressure solution of (4.1) associated to λ0. The terms pn are

computed from the Taylor coefficients λn and vn = (v1
n, v

2
n, v

3
n) as follows:

pn(.;xi; .) =

∫
∆vindxi +

n∑
k=0

λk

∫
vin−kdxi, where i = 1, 2, 3.

Proof. From system (4.4) we have

∇pδ = ∆vδ + λδvδ.
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Hence, we can expand the function pδ in powers of δ as we have done for λδ and vδ. Moreover,

we have:

∂ipδ = ∆viδ + λδv
i
δ, for i = 1, 2, 3. (4.69)

To get the Taylor coefficients pn, introduced in the formula (4.68), one can insert both

asymptotic expansions (4.46) and (4.66) into relation (4.69), and integrate with the conven-

able variable.
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CHAPTER 5

Boundary element method - Application to

electromagnetism

Introduction

Here, we are interested in solving scattering problem of electromagnetic waves, by the bound-

ary element method. We present the boundary integral method, for the Maxwell’s equations.

It allows reducing the external problem to a system of integral equations defined on the sur-

face of an object and it takes into account the boundary conditions.

In the next section 5.1, we present mathematical model of scattering problem which includes

Boundary conditions on the surface and radiation condition far from an object. We use the

Stratton-Chu formulation to give a boundary integral formulation in section 5.1.2, then we

write it under the variational formulation with a Leontovich Boundary Condition. The Sec-

tion 5.2 will be dedicated to recall existence and uniqueness of a solution. In the last section,

we discretize the border of the domain using plane triangles and Rao-Wilton-Glisson basis

functions.

5.1 Scattering problem

The scattering problem is represented as a system of equations including boundary conditions

on the surface of an object and radiation conditions far from an object. Here, we recall the

uniqueness theorem and we intoduce an integral formulation of the problem.
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5.1.1 Mathematical model

We consider the scattering problem of electromagnetic waves (E, H) by a perfect conducting

body with a complex coating. Scattering waves take place when incident waves bounce off

an obstacle in a variety of directions as depicted in figure 5.1. The amount of scattering

waves that take place depends on the wavelength k0 of the incident waves and structure of

the object. We refer by Ω− to the region of space embodying the scatterer, with a Lipschitz-

Figure 5.1: Scattering Problem

continuous boundary denoted by Γ, n is the exterior unit normal to Γ, pointing to the exterior.

Electromagnetic waves propagate in Ω+ = Rn\Ω−. We define the incident electromagnetic

field by (Einc,Hinc), the diffracted or scattered field (Esc,Hsc) and the total electromagnetic

fields (E,H) in Ω+ as: E = Einc + Esc inΩ+,

H = Hinc + Hsc inΩ+.
(5.1)

Waves propagation medium is characterized by two physical quantities ε (electrical permit-

tivity) and µ (magnetic permeability), where ε = ε0 and µ = µ0 for free space. The fields

inside the coating are governed by a set of equations that take into account the detailed elec-

tromagnetic properties of the coating εr and µr.

The determination of the total electromagnetic field (E, H) induced in Ω+ by an incident

field on the impedance scatterer is governed by the following Maxwell equations:rotE + iωµH = 0

rotH− iωεE = 0
(5.2)
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where ω is the pulsation associated to the time-harmonic electromagnetic fields defined as

follows E(x, t) = <(E(x)eiωt)

H(x, t) = <(H(x)eiωt)
(5.3)

Let Z be the impedance operator. It depends on incident angle, medium thickness d and

the physical characteristics εr and µr of the coating material. We consider boundary condi-

tion that binds the tangent electric and magnetic fields. The medium characteristics give an

impedance at each point of the surface Γ.

Etg − Z(n×H) = 0 on Γ (5.4)

where subscript tg denotes tangent component on the surface Γ defined as:

Etg = n× (E× n)

and n is the exterior normal vector to the surface.

The boundary condition (5.4) is called impedance boundary condition (IBC). The simplest

form of which is known as Leontovich IBC or standard IBC (SIBC), where Z = constant

[38,51,52]. We should notice that asymptotic behavior of the fields (E,H) is depicted by the

Silver-Müller radiation condition:

lim
r→∞

r(E× nr + H) = 0. (5.5)

where r = |x| and nr =
x

|x|
, x ∈ R3.

So, we have the next problem:

Problem 5.1.1. Find (E,H) such that

rotE + ik0µH = 0 in Ω+

rotH− ik0εE = 0 in Ω+

Etg − Z(n×H) = 0 on Γ

limr→∞ r(E× nr + H) = 0

(5.6)
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5.1.2 Integral formulation

The boundary integral method places their unknowns on Γ the boundary of Ω. It consists in

expressing the electromagnetic field as a function of potentials defined on the boundary.

We will use the boundary integral representation to solve problem 5.1.1. We express the

electromagnetic field as a function of potentials defined on Γ. The Stratton-Chu formulation

(Appendix C eq. (C.30)) helps us to characterize the electromagnetic fields in terms of surface

current densities. These current densities are uknowns in the integral formulation of the

problem. We introduce current densities J and M on the boundary Γ as follows

M = [E× n]+− ; J = [n×H]+−,

where [ ]+− denotes difference between upper (+) and lower (-) values of interface.

We introduce the variational form of the operators (B − S), (P +Q) and I as follows:

〈(B − S)A,ψ〉 = i

∫∫
Γ

kGA ·ψ − 1

k
G∇y · A∇x ·ψdydx (5.7)

〈(P +Q)A,ψ〉 =
1

2

∫
Γ

ψ · (n× A)dx+

∫∫
Γ

(ψ × A) · ∇xGdydx (5.8)

〈IA,ψ〉 =

∫
Γ

A ·ψdx (5.9)

where G is the Green kernel G(x, y) = e−ιk|x−y|

4π|x−y| .

Using the Stratton-Chu formulae, we can give a variationnal formulation of (5.6):

Find (J,M) such that:

< Z0(B − S)J,ΨJ > + < (P +Q)M,ΨJ >=< Einc,ΨJ >, ∀ΨJ , (5.10)

− < (P +Q)J,ΨM > + <
1

Z0

(B − S)M,ΨM >=< H inc,ΨM >, ∀ΨM . (5.11)

For more details see Appendix C. Note however that these two equations are completely

equivalent.

5.1.3 Variational formulation

In order to insure a unique solution to the boundary value problem it is necessary to ap-

play boundary condition. We recall impedance boundary condition (IBC) that relates current
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densities J and M

n×M = ZJ. (5.12)

The simplest IBC is Leontovich IBC, Z = const. Usually, it is taken for incident wave

perpendicular to plane

a0 = z0

√
µr
εr

tan (
√
µrεrk0d) (LIBC)

The impedance boundary condition (5.12) can be written

n×M = a0J. (5.13)

We multiply three dimensional LIBC (5.13) by test functions and integrate on the surface Γ,

that gives us a weak form of the boundary condition. So, we take ΨJ and n × ΨM as test

functions to get the weak forms for (5.10) and (5.11), respectively∫
Γ

(n×M) ·ΨJds =

∫
Γ

a0J ·ΨJds, (5.14)

∫
Γ

(n×M) · (n×ΨM)ds =

∫
Γ

a0J · (n×ΨM)ds (5.15)

We insert the LIBC into (5.10) through (5.14), by replacing the operator P that was defined

in (5.8) then we obtain:

< PM,ΨJ >=
1

2

∫
Γ

ΨJ · (n×M)ds =
a0

2

∫
Γ

J ·ΨJds

Using the formula of vector analysis

ΨM · (n× J) = −J · (n×ΨM),

we put weak form of LIBC (5.15) into 5.11 by replacing < PJ,ΨM >. We get:

< PJ,ΨM >=
1

2

∫
Γ

ΨM · (n× J)ds = −1

2

∫
Γ

(n×ΨM) · Jds

=
−1

2a0

∫
Γ

(n×M) · (n×ΨM)ds =
−1

2a0

∫
Γ

M ·ΨMds (5.16)

Now we define bilinear operator

A(U,Ψ) =< Z0(B − S)J,ΨJ > +
1

Z0

< (B − S)M,ΨM >
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+ < QM,ΨJ > − < QJ,ΨM > +
a0

2
< J,ΨJ > +

1

2a0

< M,ΨM >

that combines integral equations (5.10)-(5.11), where operator P parts are replaced.

Finally, we introduce the following problem:

Problem 5.1.2. Find U = (J,M) such that

A(U,Ψ) = F (Ψ) (5.17)

for all Ψ = (ΨJ ,ΨM). Where

F (Ψ) =

∫
Γ

Einc ·ΨJds+

∫
Γ

Hinc ·ΨMds.

5.2 Existence and uniqueness theorem

According to theorem C.1.4 from Appendix, there exists a unique solution of the problem

(5.1.2), if the bilinear operator A(U,Ψ) verifies the continuity and coercivity conditions.

For the sake of simplicity, we consider the operator A(U,Ψ) as a sum of three bilinear oper-

ator

A(U,Ψ) =< Z0(B − S)J,ΨJ > +
1

Z0

< (B − S)M,ΨM >

+ < QM,ΨJ > − < QJ,ΨM > +
a0

2
< J,ΨJ > +

1

2a0

< M,ΨM >

Let us prove the continuity of A(U,Ψ).

5.2.1 Continuity of the operator A

Lemma 5.2.1. The bilinear operator A(U,Ψ) is continuous on V for all Ψ ∈ V .

Proof. : We have to show that there exists C > 0 such that for all Ψ ∈ V

|A(U,Ψ)| ≤ C‖U‖V ‖Ψ‖V

According to theorems (C.1.1), (C.1.2) and triangle inequality (property of a norm) we have

|A(U,Ψ)| ≤ | < Z0(B − S)J,ΨJ > |+ |Z−1
0 | | < (B − S)M,ΨM > |+ | < QM,ΨJ > |
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+| < QJ,ΨM > |+ |a0|
2
| < J,ΨJ > |+

1

2|a0|
| < M,ΨM > | ≤

≤ ‖Z0(B − S)J‖−1/2,rotΓ
‖ΨJ‖−1/2,divΓ

+|Z−1
0 |‖(B − S)M‖−1/2,rotΓ

‖ΨM‖−1/2,divΓ
+ ‖QM‖−1/2,rotΓ

‖ΨJ‖−1/2,divΓ

+‖QJ‖−1/2,rotΓ
‖ΨM‖−1/2,divΓ

+
a0

2
‖J‖L2(Γ)‖ΨJ‖L2(Γ) +

1

2a0

‖M‖L2(Γ)‖ΨM‖L2(Γ)

≤ C1‖U‖V ‖Ψ‖V

5.2.2 Coercivity of the operator A

Lemma 5.2.2. Bilinear formA(U,Ψ) verifies coercivity inequality for allU ∈ V = [H−1/2(div,Γ)∩
L2(Γ)]4.

Proof. : We have to show that there exist α > 0 such that

<[A(U,U∗)] ≥ α‖U‖2
V − C‖U‖2

H , ∀U ∈ V.

From [38], we know that there exists α1 such that

<(A) = <(< Z0(B − S)J,J∗ >) + <(< Z−1
0 (B − S)M,M∗ >) + <(< QM,J∗ >)

−<(< QJ,M∗ >) + <(
a0

2

∫
Γ

J · J∗ds) + <(
1

2a0

∫
Γ

M ·M∗ds) ≥

≥ α
(
‖J‖2

−1/2,divΓ
+ ‖M‖2

−1/2,divΓ

)
+
<(a0)

2
‖J‖2

L2(Γ) +
<(a0)

2|a0|2
‖M‖2

L2(Γ)

5.3 Discretization

We recall bilinear form that was formulated in the previous chapter. So we solve the problem

A(U,Ψ) =< Einc,ΨJ > + < Hinc,ΨM > (5.18)
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where

A(U,Ψ) =< Z0(B − S)J,ΨJ > +Z−1
0 < (B − S)M,ΨM >

+ < QM,ΨJ > − < QJ,ΨM > +
a0

2
< J,ΨJ > +

1

2a0

< M,ΨM >

We assume that the initial boundary problem is defined in a 3-D domain. The boundary Γ of

the domain is therefore a surface and can be discretized using triangles.

5.3.1 Triangular mesh element

The first step is to approach the surface of the obstacle by a surface Γh composed of finite

number of two dimensional elements. These elements are triangular facets denoted by Ti for

i = 1 to NT :

Γh =

NT⋃
i=1

Ti.

We will call it an initial mesh (or original mesh).We denote byNe the total number of edges of

the mesh component Γh. The discretization of unknowns J and M should verify a condition-

flow conservation of these currents. One way to ensure this is to use the basis functions of

Rao-Wilton-Glisson introduced below.

5.3.2 Rao-Wilton-Glisson basis functions

We introduce local numbering of a triangle T . The vertices (aTj )j=1,3 are arranged in clock-

wise order. Triangle edges are numbered so that the edge T ′j connects vertices aTj and aTj+1.

Moreover, we give an orientation νn to each edge n. Consider the two triangles sharing

this edge. We note T+
n the triangle so that the direction of the edge n coincides with the

forward direction (locally defined) of this triangle. For the other triangle, which we will

denote T−n , the direction of the edge coincides with the indirect sense.

Each RWG basis function is associated with an edge and ensures the conservation of flux

through this edge. If we denote |T | the area of a triangle T , the nth basis function is defined

as follows:
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Figure 5.2: Triangles T+
n and T−n adjacent to edge n

Definition 5.3.1. If n is the ith local edge of triangle T+
n and the jth of triangle T−n then:

fn(x) =


ln

2|T+
n |

(x− a+
i−1) if x ∈ T+

n

ln
2|T−n |

(a−j−1 − x) if x ∈ T−n
0 if x /∈ T+

n ∪ T−n

(5.19)

The density is proportional to divΓfn, where

divΓfn(x) =


+ ln
|T+
n |

on T+
n

− ln
|T−n |

on T−n

0 elsewhere.

(5.20)

5.3.3 Discrete problem

We decompose the electric and magnetic currents in the following form:

J(y) =
Ne∑
i=1

Jifi(y), M(y) =
Ne∑
i=1

Mifi(y).

Considering to these assumptions we are looking for approximated solution of the problem

(5.18). We introduce the following discrete system

Ah(Uh,Ψh) =
Ne∑
i=1

< Einc, fi > +
Ne∑
i=1

< Hinc, fi >, (5.21)
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Figure 5.3: Rao-Wilton-Glisson basis function on triangle elements associated to the edge n

where

Ah(Uh,Ψh) =
Ne∑
i,j=1

< Z0(B − S)fj, fi > Jj + Z−1
0

Ne∑
i,j=1

< (B − S)fj, fi > Mj

+
Ne∑
i,j=1

< Qfj, fi > Mj−
Ne∑
i,j=1

< Qfj, fi > Jj+
a0

2

Ne∑
i,j=1

< fj, fi > Jj+
1

2a0

Ne∑
i,j=1

< fj, fi > Mj.

Since the basis function fi is defined on two triangles, namely adjacent to the ith edge ,

T+
i and T−i . The same for the basis function fj , they are defined on two triangles, T+

j and

T−j . We define [(B − S)] matrix elements

(B − S)i,j = i

∫
T+
i ∪T

−
i

∫
T+
j ∪T

−
j

kG(x, y)fj(y) · fi(x)− 1

k
G(x, y)(divΓfi(x))(divΓfj(y))dxdy.

Analogically

Qi,j = −i
∫

T+
i ∪T

−
i

∫
T+
j ∪T

−
j

[fi(x)× fj(y)] · ∇ΓG(x, y)dydx.

For lonely integrals we have

Ii,j =
a0

2

Ntr∑
t=1

Jj

∫
Tt

fj · fidx =

∫
T+
i ∪T

−
i

fj · fidx.

In the following, we will detail the evaluation of the double layer operatorQi,j . The odher

terms was evaluated in previous works.
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5.4 Double layer operator

We denote by S the triangle T+
i and by T the triangle T+

j . We detail the evaluation of Qi,j

on S × T and it will be the same for other combinations of triangles. On each triangle, the

current is written as a linear combination of three basis functions associated to three edges of

a triangle.

Ki,j =

∫∫
S×T

fi(x) · ∇yG(x, y)× fj(y) dx dy; 1 ≤ i, j ≤ 3

=
1

4|S||T |

∫
S×T

(x− ai) · ∇yG(x, y)× (y − bj) dx dy (5.22)

where

G(x, y) = − eιk||x−y||

4π||x− y||
,

and

∇yG(x, y) = −(x− y)

4πr3
− k2(x− y)

8πr
− ιk3(x− y)

8π

−(x− y)(1− ιkr)
4π

Σ∞n=0

(ιk)n+3rn

(n+ 3)!
(5.23)

Let define the integralRi,j

Ri,j =

∫
S×T

(x− ai) ·R(x, y)× (y − bj) dx dy; i, j = 1, 2, 3 (5.24)

where

R(x, y) = −ιk
3(x− y)

8π
− (x− y)(1− ιkr)

4π
Σ∞n=0

(ιk)n+3rn

(n+ 3)!
(5.25)

and

Si,j =

∫
S×T

(x− ai) ·
(x− y)

||x− y||ξ+1
× (y − bj)dxdy; i, j = 1, 2, 3; ξ = 0, 2 (5.26)

The regular integral Ri,j can be calculated numerically with the usual known methods

such as the Gauss method. In the following chapters, we propose a method for the analytical

evaluation of the singular term.

76



CHAPTER 5. BOUNDARY ELEMENT METHOD - APPLICATION TO
ELECTROMAGNETISM

Conclusion

We have established a system of equations (5.6) describing the scattering problem of a coated

object with the boundary condition on Γ. We have introduced the Leontovich impedance

boundary conditions (LIBC). Radiation conditions helped us to establish the uniqueness of

solution. The Stratton-Chu formulation indicates how the volume problem reduced to the

problem on a surface of an object. This constitutes the main concept of integral method. We

set 3D LIBC (5.13) into EFIE and MFIE (5.10 - 5.11) and we introduce the problem (5.1.2).

We discretized the surface of a three dimensional object by triangulation. We approximated

the unknowns in terms of RWG basis functions. The singular integrals which intervene there,

will be evaluated in the following parts.
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Presentation of the reduction method

Introduction

As we saw in the previous chapter, we must evaluate singular integrals derived from a dou-

ble layer operator, arising from the boundary element method applied to resolve a scattering

problem. There was some attempt to evaluate it with purely numerical methods but the re-

sult was not very accurate. The aim is to present a new approach for the explicit and precise

calculation. We propose a method that does not require any numerical integration for the eval-

uation of singular integrals. It is based on a recursive reduction of an m-dimensional integral

into a linear combination of (m-1)-dimensional integrals. It leads to a linear combination of

1-dimensional regular integrals with factors depending only on geometric quantities. These

integrals can be evaluated either numerically or explicitly. This method makes it possible

to obtain explicit formulae to evaluate singular integrals with a very high precision. It was

introduced by M. Lenoir in 2006, see [39] to calculate a singular integral in the form of a

single layer operator.

6.1 Presentation of the method

6.1.1 Integration of homogeneous functions

The reduction process is based on several simplification formulae presented in the next sec-

tion. These formulae reduce the dimension of the integration domain. It can be used when
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the integrand is homogeneous, or positively homogeneous.

Definition 6.1.1. A function is said to be homogeneous of degree q or q-homogeneous, with

respect to the variable z ∈ Rn, if

f(λz) = λqf(z); ∀λ ∈ R; λ 6= 0. (6.1)

Definition 6.1.2. A function is said to be positively homogeneous of degree q, with respect to

the variable z ∈ Rn, if

f(λz) = λqf(z); ∀λ ∈ R; λ > 0. (6.2)

Definition 6.1.3. A function is said to be q-homogeneous with parameter if it is an homoge-

neous function with respect to a pair of variables (z, h), where z is the integration variable

and h is a real parameter

f(λz, λh) = λqf(z, h) (6.3)

Theorem 6.1.1. [39] Let f : Ω ⊂ Rn → R be an homogeneous function of degree q with

q + n 6= 0. Then,

(q + n)

∫
Ω

f(z)dz =

∫
∂Ω

(z|~ν)f(z)∂z (6.4)

where ~ν is the exterior normal to Ω, ∂z is the surface element on ∂Ω, and (z|~ν) is the inner

scalar product.

Theorem 6.1.2. [39] Let g : Rn×R+ → R be an homogeneous function of degree q referred

to as an homogeneous function with parameter h.

∫
Ω

f(z, h)dz = hq+n
∫
∂Ω

(z|~ν)

+∞∫
h

g(z, u)

uq+n+1
du∂z (6.5)

Theorem 6.1.3. [39] Let f : Ω ⊂ Rn → R a positively homogeneous function of degree q

with q = −n. We introduce an arbitrary homogeneous positive function θ : Ω→ R of degree

p > 0. Then we have ∫
Ω

f(z)dz =
1

p

∫
∂Ω

(−→z |−→ν )f(z) ln(θ(z))dsz (6.6)

These formulae will allow us to reduce the dimension of the integration domain.
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6.1.2 Reduction process

Consider the integral

I =

∫
S×T

f(z) dz,

where f is an homogeneous function of degree q, z = (x, y) with x ∈ S and y ∈ T (see

Figure 6.1: Integration domain

Figure (6.1)).

The initial 4-D integral is reduced to a linear combination of 3-D integrals of two types:

integrals on domains of type S × β and others on domains α × T . The evolution of the

integration domain during the reduction of α × T is presented in Figure (6.3). The integral

Figure 6.2: Projection of α on the support of β.

on S × β is reduced in a similar way. A second application of the formulae makes it possible

to reduce this integral to two types of 2-D integrals: integrals on domains S × β, with β a
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vertex of the triangle T , and integrals on α × T . The last reduction allows to reduce to one

dimensional integrals. The integral on S × β is reduced to a linear combination of integrals

on α × β. The reduction of the integral on α × β depends on the geometric configuration of

the supports of the two segments. When their supports are intersecting, we obtain integrals

on a × β and on α × b. When the supports of the segments are parallel (see Figure 6.2), we

note α̃ and ã, the respective projections of α and a on the support of β. The integral on α×β
then reduces to integrals on α̃× b and integrals on ã× β. All 1-D integrals are regular as we

will see in the next chapters.

Figure 6.3: Evolution of the integration domain during the reduction process on the product

of two coplanar triangles S and T.

6.1.3 Parametrization and flat polygons

It is important to note that the homogeneity of the integrand depends on the parameterization

and the origin chosen in the computation of the integral. We will start by presenting a small

calculation to detail the importance of the choice of the origin.

Let α and β be two segments of the plane (see Figure 6.4), we calculate the integral∫
α×β

x− y
||x− y||

dsxdsy (6.7)

with x ∈ α and y ∈ β.

An infinity of parametrizations is possible. But, in practice, only the use of the intersection
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Figure 6.4: Influence of the origin on the homogeneity

of the supports of the two segments as origin ensures the homogeneity of the integer in (6.7).

• If we chose o1 as origin in Figure (6.4), we obtain the following parametrization in terms

of (s, t): 
x1(s) = s ,

x2(s) = 0 ,

y1(t) = t cos(θ) ,

y2(t) = t sin(θ).

which gives ∫
s

∫
t

s− t cos(θ) + t sin(θ)√
(s− t cos(θ))2 + (t sin(θ))2

dsxdsy (6.8)

where θ is a fixed angle. The integrand is homogeneous with respect to the pair of variables

(s, t).

• If we chose o2 as an origin, we notice that there is a constant that appears in the parameter-

ization and we obtain 
x1(s) = s ,

x2(s) = 1 ,

y1(t) = t cos(θ),

y2(t) = t sin(θ).

82



CHAPTER 6. PRESENTATION OF THE REDUCTION METHOD

Then ∫
s

∫
t

s− t cos(θ)− 1 + t sin(θ)√
(s− t cos(θ))2 + (1− t sin(θ))2

dsxdsy (6.9)

The integrand is no longer homogeneous.

We understand that it will therefore be very important during the process of reducing to

carefully choose the origin in order to maintain the homogeneous character of the integrand.

We will also see that a judicious choice of the origin makes it possible to simplify the calcu-

lations.

The reducing process of the integration’s domain dimension, requires the use of flat poly-

gons for discretization. In the contrary case, after a first step of reducing the dimension,

the integrand is no more homogeneous. therefore, it is no longer possible to use formulae

(6.4), (6.5) or (6.6) to continue reducing the dimension of the integration domain until one-

dimensional integrals are obtained.

Indeed, the use of flat polygons ensures that the product of the two flat polygons is a poly-

hedron. So the boundary ∂S × T will be composed of hyperplanes on which the outgoing

normal is constant.

Therefore, the scalar product present in formulae (6.4), (6.5) and (6.6) is piecewise constant

and it will be possible to get the scalar product out of the integral, to reduce to an homoge-

neous integrand and thus repeat the process.

6.2 Geometric tools and Notation

We present some geometric notations needed for the calculations.

6.2.1 The mesh elements

Let the triangles S and T be defined (respectively) by their vertices ai and bj , i, j = 1, 2, 3

and its sides αi respectively βj , i, j = 1, 2, 3 such as αi and βj are opposed to ai respectively

bj (see Figure 6.5). We introduce |αi| and |βj| the length of the side αi respectively βj . Let

~αi and ~βj be the vectors (ai+2 − ai+1) = (a+
i − a−i ) respectively (bi+2 − bi+1) = (b+

i − b−i )

(see Figure 6.6). We denote by λi and ϑj the outside normal vector to αi respectively βj .
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Figure 6.5: Definition of Triangle S Figure 6.6: Orientation of the triangle S

6.2.2 Calculation of the projection

Note pi(x) the orthogonal projection (see Figure 6.7) of a point x on the side αi of the triangle

S and gi(x) = ||x − pi(x)|| the distance from x to the support of αi. When x = ai, we note

that pi = pi(ai) and that gi = gi(ai) is the length of the height (see Figure 6.9). We will also

use the signed distance from a point to the support of αi which involves the outgoing normal

to the triangle on αi. This distance is defined by γi = (pi(x) − x|~λi) (see Figure 6.9). We

Figure 6.7: Projection Figure 6.8: Projections and distances

use notations for the triangle T similar to those introduced for the triangle S. The orthogonal

projection of y on the support of βj , similar to pi(x), is denoted by qj(y) and the distance

from y to the support of βj is denoted by dj(y) = ||y− qj(y)||. We define the signed distance

δj(y) from y to the support of βj by δj(y) = (qj(y) − y| ~ϑj). Finally, dj = dj(bj) is the

equivalent of gi, namely the length of the height from bj to βj . (see Figure 6.9).

84



CHAPTER 6. PRESENTATION OF THE REDUCTION METHOD

Figure 6.9: Distances signees

6.2.3 Calculation of abscissas

On side α (resp β) the abscissa s (resp t) is defined with respect to an origin oα (resp oβ) and

a unit vector ~α
|α| (resp

~β
|β| ). The abscissas of the ends a± and b± are respectively denoted by

s± and t±.

sk = (ak − oα|
~α

|α|
)

tl = (bl − oβ|
~β

|β|
)

6.3 Application of the reduction method

We propose to evaluate the integral

I(x, y) =

∫
S×βj

x− y
||x− y||3

dx dy, (6.10)

where S is a triangle, x a point in the triangle S, βj is a segment in the same plane as S and

y is a point in βj . Let b+
j = bj+1 and b−j = bj+2 be the two extremities of β. The reduction

process can be applied, provided that one takes some common point to βj and S as origin, so

that the function f(z) = x−y
||x−y||3 is homogeneous on S × βj with q = 2, n = 3. The origin

can be taken anywhere on the support of βj , but a wise choice is to choose one of the ends
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of βj as origin. Indeed, some of the distances being canceled, one will have a simplification.

We choose for origin the point b−. Formula (6.4) provides

I(x, y) =
1

5

∫
∂(S×βj)

((x, y)|−→ν )
x− y
||x− y||3

∂(x, y), (6.11)

where ν is the outward normal at the border of the edge of S × βj and ∂(x, y) is the surface

element along ∂(S × βj). We have ∂(S × βj) = (∂S × βj) ∪ (S × ∂βj).

((x, y)|−→ν )b+j ×S = |βj|; ((x, y)|−→ν )|αi×βj = γi(b
−
j )

where |βj| denotes the length of the segment βj . Then, we get

I(x, y) =
|βj|
5

∫
S

x− b+
j

||x− b+
j ||3

dsx +
3∑
i=1

γi(b
−
j )

5

∫
αi×βj

x− y
||x− y||3

dsx dsy. (6.12)

So we get a linear combinaison of 2-D integrals.

Conclusion

This chapter allowed to present the reduction formulae of the dimension of the integra-

tion domain, to explain the reduction process and also to emphasize the importance of the

parametrization and the use of flat polygons on which our method is based. An important

point in the following is the choice of the origin during the stages of reduction dimension of

the integration domain, in order to maintain the homogeneity of the integrand
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Evaluation of a singular integral-Adjacent triangles

Introduction

In this chapter, we will apply the reduction process to evaluate singular integrals appearing

in chapter 5, on the product of two triangular mesh element S and T, specially the singular

integral

Si,j =

∫
S×T

(x− ai) ·
(x− y)

||x− y||ξ+1
× (y − bj)dxdy; i, j = 1, 2, 3; ξ = 0, 2

Note that if ξ = 0 the integral Si,j is not singular but the method we propose is still valid.

Here we will deal with the case where triangles have an edge in common.

7.1 Barycentric basis functions

In order to simplify the expression of the integrand and to facilitate the application of the

reduction formulae we will express the Rao-Wilton-Glisson basis functions as a linear com-

bination of barycentric basis functions.

We begin by presenting the basis functions we will use and some of their properties.

Definition 7.1.1. Let φi be a basis functions associated with the vertices of the triangle S:

φi(x) = 1 + (
−−−→
x− ai|−→ei ); i = 1, 2, 3 (7.1)

where

~ei = µ1
−−→αi+1 + µ2

−−→αi+2,
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with

µ1 =
||−−→αi+2||2 + (−−→αi+1|−−→αi+2)

||−−→αi+2||2||−−→αi+1||2 − (−−→αi+1|−−→αi+2)2
,

µ2 = − ||−−→αi+1||2 + (−−→αi+1|−−→αi+2)

||−−→αi+2||2||−−→αi+1||2 − (−−→αi+1|−−→αi+2)2
.

The basis functions φi verify φi(ai) = 1, φi(ai+1) = φi(ai+2) = 0, besides

φi|αi = 0, φi(x)|αi+1
= 1− x− ai

|αi+1|
, φi(x)|αi+2

= 1− x− ai
|αi+2|

. (7.2)

The same, if the basis functions ψ are associated with the top of the triangle T :

ψj(y) = 1 + (
−−−→
y − bj|

−→
lj ); j = 1, 2, 3 (7.3)

We rewrite the Rao-Wiston-Glisson basis functions as a combination of barycentric basis

functions and we use properties above to determine θ, κ, ζ, ρ, η and µ verifying:

(x− ai) = θφi(x) + κφi+1(x) + ζφi+2(x),

(y − bj) = ρψj(y) + ηψj+1(y) + µψj+2(y).
(7.4)

We obtain

(x− ai) = 0 + (ai+1 − ai)φi+1(x) + (ai+2 − ai)φi+2(x),

(y − bj) = 0 + (aj+1 − aj)ψj+1(y) + (aj+2 − aj)ψj+2(y).
(7.5)

7.2 Decomposition into homogeneous integrands

We are interested in calculating the singular integral

Si,j =

∫
S×T

(x− ai) ·
(x− y)

||x− y||ξ+1
× (y − bj)dxdy; i, j = 1, 2, 3; ξ = 0, 2 (7.6)

Using (7.5), the integral (7.6) becomes

Si,j =
∫
S×T (κ× η) · (φi+1(x)ψj+1(y)) (x,y)

||x−y||ξ+1dxdy

+
∫
S×T (κ× µ) · (φi+1(x)ψj+2(y)) (x−y)

||x−y||ξ+1dxdy

+
∫
S×T (ζ × η) · (φi+2(x)ψj+1(y)) (x−y)

||x−y||ξ+1dxdy

+
∫
S×T (ζ × µ) · (φi+2(x)ψj+2(y)) (x−y)

||x−y||ξ+1dxdy.

(7.7)
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So we have to evaluate four integrals of the same type:

I i,j =

∫
S×T

(φi(x)ψj(y))
(x− y)

||x− y||ξ+1
dxdy; ξ = 0, 2; i, j = 1, 2, 3 (7.8)

Since the basis function is affine, the integrand is no longer homogeneous, so we are led to

decompose it into a linear part and a constant part by making a change of origin:

φi(x) = 1 + (
−−−→
o− ai|−→ei ) + (

−−−→
x− o|−→ei ) = φi(o) + (x|−→ei ); i = 1, 2, 3,

ψj(y) = 1 + (
−−−→
o− bj|

−→
lj ) + (

−−−→
y − o|

−→
lj ) = ψj(o) + (y|

−→
lj ); j = 1, 2, 3.

(7.9)

where o is the new origin, x = x − o and y = y − o. More generally, we note α and S the

segment α and the triangle S after this change of origin. According to (7.8) and (7.9), we

constate that the integral I i,j must be decomposed into four integrals whose integrands are

homogeneous.

I i,j =

∫
S×T

(x|−→ei )(y|
−→
lj )(x− y)

||x− y||1+ξ
dxdy + φi(o)

∫
S×T

(x|−→ei )(y|
−→
lj )(x− y)

||x− y||1+ξ
dxdy

+ψj(o)

∫
S×T

(x|−→ei )(x− y)

||x− y||1+ξ
dxdy + ψj(o)φi(o)

∫
S×T

(x− y)

||x− y||1+ξ
dxdy. (7.10)

Once this decomposition has taken place, we obtain homogeneous integrands we can

then apply the reduction method intermediate of the formulae (6.4) or (6.5). During the

calculation, after each step of reduction, we will focus on expressing the results in terms

of φi and ψj in order to benefit the best of the properties (7.2) of the basic functions. We

distinguish two specific case where a singularity occurs. The two triangles S and T have a

common stop or a common vertex.

7.3 Three-dimensional reduction

We are dealing with the case of triangles with an edge in common(see Figure 7.1), so there

are two common vertices. For the first reduction, we take for origin one of the common

vertices o = a1 = b1. Let a2 = b2 be the second common vertex and a3 ,b3 be the remaining

vertices. We propose to calculate the integral

I1,1 =

∫
S×T

(φ1(x)ψ1(y))
(x− y)

||x− y||ξ+1
dxdy; ξ = 0, 2. (7.11)
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Figure 7.1: Adjacent triangles

It will be wise to choose the vertex a1 = b1, as origin o. In this case the basis functions are

written

φ1(x) = 1 + (x|−→e1 ); ψ1(y) = 1 + (y|
−→
l1 ). (7.12)

The equation (7.11) becomes

I1,1 =

∫
S×T

(y|
−→
l1 )(x− y)

||x− y||1+ξ
dxdy +

∫
S×T

(x|−→e1 )(y|
−→
l1 )(x− y)

||x− y||1+ξ
dxdy

+

∫
S×T

(x|−→e1 )(x− y)

||x− y||1+ξ
dxdy +

∫
S×T

x− y
||x− y||1+ξ

dxdy. (7.13)

The four integrands are homogeneous of degrees q = 1− ξ, q = 2− ξ, q = 1− ξ and q = −ξ
with n = 4. We apply the formula (6.4), it gives the following result

I1,1 =
3∑
i=1

γi(a1)

5− ξ

∫
αi×T

(y|
−→
l1 )(x− y)

||x− y||1+ξ
dsxdy +

3∑
j=1

δj(b1)

5− ξ

∫
S×βj

(y|
−→
l1 )(x− y)

||x− y||1+ξ
dxdsy

+
3∑
i=1

γi(a1)

6− ξ

∫
αi×T

(x|−→e1 )(y|
−→
l1 )(x− y)

||x− y||1+ξ
dsxdy +

3∑
j=1

δj(b1)

6− ξ

∫
S×βj

(x|−→e1 )(y|
−→
l1 )(x− y)

||x− y||1+ξ
dxdsy

+
3∑
i=1

γi(a1)

5− ξ

∫
αi×T

(x|−→e1 )(x− y)

||x− y||1+ξ
dsxdy +

3∑
j=1

δj(b1)

5− ξ

∫
S×βj

(x|−→e1 )(x− y)

||x− y||1+ξ
dxdsy

+
3∑
i=1

γi(a1)

4− ξ

∫
αi×T

x− y
||x− y||1+ξ

dsxdy +
3∑
j=1

δj(b1)

4− ξ

∫
S×βj

x− y
||x− y||1+ξ

dxdsy, (7.14)

where γi(x) and δj(y) are the signed distances respectively of x to the support of αi and of y

to the support of βj (see Figure 6.9).
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In particular γi(x) = 0 for all x belonging to the support of αi. γi(ai) = gi and δj(bj) = dj

are the lengths of the height from the vertex ai or bj to the support of αi (respectively βj).

Thus, the formula will be simplified and we get

I1,1 = g1

5−ξ

∫
α1×T

(y|
−→
l1 )(x−y)

||x−y||1+ξ dsxdy + d1

5−ξ

∫
S×β1

(y|
−→
l1 )(x−y)

||x−y||1+ξ dxdsy

+ g1

6−ξ

∫
α1×T

(x|−→e1)(y|
−→
l1 )(x−y)

||x−y||1+ξ dsxdy + d1

6−ξ

∫
S×β1

(x|−→e1)(y|
−→
l1 )(x−y)

||x−y||1+ξ dxdsy

+ g1

5−ξ

∫
α1×T

(x|−→e1)(x−y)

||x−y||1+ξ dsxdy + d1

5−ξ

∫
S×β1

(x|−→e1)(x−y)

||x−y||1+ξ dxdsy

+ g1

4−ξ

∫
α1×T

x−y
||x−y||1+ξ dsxdy + d1

4−ξ

∫
S×β1

x−y
||x−y||1+ξ dxdsy.

(7.15)

We express the results in terms of φ1 and ψ1 in order to benefit the best of the properties (7.2)

of the basic functions.

(x|−→e1 ) = φ1(x)− 1; (y|
−→
l1 ) = ψ1(y)− 1

we obtain

I1,1 = g1

5−ξ

∫
α1×T

ψ1(y)(x−y)
||x−y||1+ξ dsxdy − g1

5−ξ

∫
α1×T

(x−y)
||x−y||1+ξ dsxdy

+ d1

5−ξ

∫
S×β1

ψ1(y)(x−y)
||x−y||1+ξ dxdsy − d1

5−ξ

∫
S×β1

(x−y)
||x−y||1+ξ dxdsy + g1

6−ξ

∫
α1×T

φ1(x)ψ(y)(x−y)
||x−y||1+ξ dsxdy

− g1

6−ξ

∫
α1×T

φ1(x)(x−y)
||x−y||1+ξ dsxdy − g1

6−ξ

∫
α1×T

ψ1(y)(x−y)
||x−y||1+ξ dsxdy + g1

6−ξ

∫
α1×T

(x−y)
||x−y||1+ξ dsxdy

+ d1

6−ξ

∫
S×β1

φ1(x)ψ(y)(x−y)
||x−y||1+ξ dxdsy − d1

6−ξ

∫
S×β1

φ1(x)(x−y)
||x−y||1+ξ dxdsy − d1

6−ξ

∫
S×β1

ψ1(y)(x−y)
||x−y||1+ξ dxdsy

+ d1

6−ξ

∫
S×β1

(x−y)
||x−y||1+ξ dxdsy + g1

5−ξ

∫
α1×T

φ1(x)(x−y)
||x−y||1+ξ dsxdy − g1

5−ξ

∫
α1×T

(x−y)
||x−y||1+ξ dsxdy

+ d1

5−ξ

∫
S×β1

φ1(x)(x−y)
||x−y||1+ξ dxdsy − d1

5−ξ

∫
S×β1

(x−y)
||x−y||1+ξ dxdsy + g1

4−ξ

∫
α1×T

x−y
||x−y||1+ξ dsxdy

+ d1

4−ξ

∫
S×β1

x−y
||x−y||1+ξ dxdsy.

Note that there are terms that vanish because of the fact that φ1|αi = 0, ψi|βi = 0.

We have integrals in three dimensions we reapply the procedure to reduce dimention to two.

7.4 Two-dimensional reduction

The integrands are no more homogeneous. It is possible to continue the reduction by taking

the second common vertex as the origin a2 = b2 = o. We reexpress the basis function as in

(7.12) and we obtain

φ1(x) = φ1(a2) + (x|−→e1 ) = (x|−→e1 ); ψ1(x) = ψ1(b2) + (y|
−→
l1 ) = (y|

−→
l1 )
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we get

I1,1 = ( g1

5−ξ −
g1

6−ξ )
∫
α1×T

(y|
−→
l1 )(x−y)

||x−y||1+ξ dsxdy + ( g1

6−ξ − 2 g1

5−ξ + g1

4−ξ )
∫
α1×T

(x−y)

||x−y||1+ξ dsxdy

+( d1

5−ξ −
d1

6−ξ )
∫
S×β1

(x|−→e1)(x−y)

||x−y||1+ξ dxdsy + ( d1

4−ξ + d1

6−ξ −
2d1

5−ξ )
∫
S×β1

(x−y)

||x−y||1+ξ dxdsy.

We apply the formula (6.4) a second time then, we get

I1,1 = ( g1

5−ξ −
g1

6−ξ )
d2

4−ξ

∫
T

(y|
−→
l1 )(a3−y)

||a3−y||1+ξ dy + ( g1

5−ξ −
g1

6−ξ )
d2

4−ξ

∫
α1×β2

(y|
−→
l1 )(x−y)

||x−y||1+ξ dsxdsy

+( g1

6−ξ − 2 g1

5−ξ + g1

4−ξ )
|α1|
3−ξ

∫
T

(a3−y)

||a3−y||1+ξ dsxdy + ( g1

6−ξ − 2 g1

5−ξ + g1

4−ξ )
d2

3−ξ

∫
α1×β2

(x−y)

||x−y||1+ξ dsxdsy

+( d1

5−ξ −
d1

6−ξ )
|β1|
4−ξ

∫
S

(x|−→e1)(x−b3)

||x−b3||1+ξ dxdsy + ( d1

5−ξ −
d1

6−ξ )
g2

4−ξ

∫
α2×β1

(x|−→e1)(x−y)

||x−y||1+ξ dxdsy

+( d1

6−ξ −
d1

5−ξ )
|β1|
4−ξ

∫
S

(x−b3)

||x−b3||1+ξ dsx + ( d1

4−ξ + d1

6−ξ −
d1

5−ξ )
g2

4−ξ

∫
α2×β1

(x−y)

||x−y||1+ξ dsxdsy.

Recall that φ1(x) = (x|−→e1 ); ψ1(x) = (y|
−→
l1 ), thanks to what we obtain

I1,1 = ( |S|
5−ξ −

|S|
6−ξ )

2
4−ξP

ψ1(a3, T, ξ) + ( g1

5−ξ −
g1

6−ξ )
d2

4−ξQ(α1, β2, ξ)

+( |S|
6−ξ − 2 |S|

5−ξ + |S|
4−ξ )

2
3−ξP (a3, T, ξ) + ( g1

6−ξ − 2 g1

5−ξ + g1

4−ξ )
d2

3−ξQ(α1, β2, ξ)

−( |T |
5−ξ −

|T |
6−ξ )

2
4−ξP

φ1(b3, S, ξ)− ( d1

5−ξ −
d1

6−ξ )
g2

4−ξQ
1,φ1(β1, α2, ξ)

−( |S|
6−ξ −

|S|
5−ξ )

2
4−ξP (b3, S, ξ) + ( d1

4−ξ + d1

6−ξ −
d1

5−ξ )
g2

4−ξQ(α2, β1, ξ),

where

P (a, T, ξ) =

∫
T

(a− y)

||a− y||1+ξ
dsxdsy, Q(αi, βj, ξ) =

∫
αi×βj

(x− y)

||x− y||1+ξ
dsxdsy,

Pψq(a, T, ξ) =

∫
T

ψq(y)(a− y)

||a− y||1+ξ
dy, Q1,ψq(αi, βj, ξ) =

∫
αi×βj

ψq(y)(x− y)

||x− y||1+ξ
dsxdsy.

We give also the other terms calculated with the same procedure:

I1,2 = P (a3, T, ξ)(
2|S|

(5−ξ)(3−ξ) −
2|S|

(5−ξ)(4−ξ) −
2|S|

(6−ξ)(3−ξ) + 2|S|
(6−ξ)(4−ξ))

+P (b3, S, ξ)(− 2|T |
(5−ξ)(3−ξ) + 2|T |

(5−ξ)(4−ξ) + 2|T |
(6−ξ)(3−ξ) −

2|T |
(6−ξ)(4−ξ))

+Q(α1, β2, ξ)(
g1d2

(5−ξ)(3−ξ) −
g1d2

(5−ξ)(4−ξ) −
g1d2

(6−ξ)(3−ξ) + g1d2

(6−ξ)(4−ξ))

+Q(α2, β1, ξ)(
d1g2

(5−ξ)(3−ξ) −
d1g2

(6−ξ)(3−ξ) + d1g2

(6−ξ)(4−ξ) −
d1g2

(5−ξ)(4−ξ))

+Q1,ψ2(α2, β1, ξ)(
d1g2

(5−ξ)(4−ξ) −
d1g2

(6−ξ)(4−ξ)) + Pψ2(a3, T, ξ)(
2|S|

(5−ξ)(4−ξ) −
2|S|

(6−ξ)(4−ξ))

−Q1,φ1(β1, α2, ξ)(
d1g2

(6−ξ)(4−ξ) −
d1g2

(6−ξ)(5−ξ)) + P φ1(b3, S, ξ)(− 2|T |
(6−ξ)(4−ξ) + 2|T |

(6−ξ)(5−ξ))

+Qφ1,ψ2(α2, β1, ξ)(
d1g2

(6−ξ)(5−ξ)),

(7.16)
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I1,3 = P (b3, S, ξ)(− 2|T |
(5−ξ)(4−ξ) + 2|T |

(6−ξ)(4−ξ))− P
φ1(b3, S, ξ)(

2|T |
(6−ξ)(5−ξ))

+Pψ3(a3, T, ξ)(
2|S|

(5−ξ)(4−ξ) −
2|S|

(6−ξ)(4−ξ)) +Q1,ψ3(α1, β2, ξ)(
d2g1

(5−ξ)(4−ξ) −
d2g1

(6−ξ)(4−ξ))

+Q1,ψ3(α2, β1, ξ)(
d1g2

(5−ξ)(4−ξ) −
d1g2

(6−ξ)(4−ξ)) +Qφ1,ψ3(α2, β1, ξ)(
d1g2

(6−ξ)(5−ξ))

(7.17)

I2,2 = P (a3, T, ξ)(
2|S|

(6−ξ)(3−ξ) −
4|S|

(6−ξ)(4−ξ) + 2|S|
(5−ξ)(6−ξ)) + Pψ2(a3, T, ξ)(

2|S|
(6−ξ)(4−ξ) −

2|S|
(6−ξ)(5−ξ))

+Q(α1, β2, ξ)(
g1d2

(6−ξ)(3−ξ) −
2g1d2

(6−ξ)(4−ξ) + g1d2

(6−ξ)(5−ξ)) +Q1,φ2(β2, α1, ξ)(− d2g1

(6−ξ)(4−ξ) + d2g1

(6−ξ)(5−ξ))

+P (b3, S, ξ)(− 2|T |
(6−ξ)(3−ξ) + 4|T |

(6−ξ)(4−ξ) −
2|T |

(6−ξ)(5−ξ)) + P φ2(b3, S, ξ)(
2|T |

(6−ξ)(5−ξ) −
2|T |

(6−ξ)(4−ξ))

+Q(α2, β1, ξ)(
d1g2

(6−ξ)(3−ξ) −
2d1g2

(6−ξ)(4−ξ) + d1g2

(6−ξ)(5−ξ)) +Q1,ψ2(α2, β1, ξ)(− d1g2

(6−ξ)(5−ξ) + d1g2

(6−ξ)(4−ξ))

(7.18)

I2,3 = P (b3, S, ξ)(
2|T |

(6−ξ)(5−ξ) −
2|T |

(6−ξ)(4−ξ)) + Pψ3(a3, T, ξ)(
2|S|

(6−ξ)(4−ξ) −
2|S|

(6−ξ)(5−ξ))

+P φ2(b3, S, ξ)(− 2|T |
(6−ξ)(5−ξ)) +Q1,ψ3(α1, β2, ξ)(

d2g1

(6−ξ)(4−ξ) −
d2g1

(6−ξ)(5−ξ))

+Q1,ψ3(α2, β1, ξ)(
d1g2

(6−ξ)(4−ξ) −
d1g2

(6−ξ)(5−ξ)) +Qφ2,ψ3(α1, β2, ξ)(
d2g1

(6−ξ)(5−ξ))

(7.19)

I3,3 = Pψ3(a3, T, ξ)(
2|S|

(6−ξ)(5−ξ)) + P φ3(b3, S, ξ)(− 2|T |
(6−ξ)(5−ξ))

+Qφ3,ψ3(α1, β2, ξ)(
d2g1

(6−ξ)(5−ξ)) +Qφ3,ψ3(α2, β1, ξ)(
d1g2

(6−ξ)(5−ξ))
(7.20)

the symmetrical terms

I2,1 = P (a3, T, ξ)(
2|S|

(5−ξ)(3−ξ) −
2|S|

(5−ξ)(4−ξ) −
2|S|

(6−ξ)(3−ξ) + 2|S|
(6−ξ)(4−ξ))

+P (b3, S, ξ)(− 2|T |
(5−ξ)(3−ξ) + 2|T |

(5−ξ)(4−ξ) + 2|T |
(6−ξ)(3−ξ) −

2|T |
(6−ξ)(4−ξ))

+Q(α1, β2, ξ)(
g1d2

(5−ξ)(3−ξ) −
g1d2

(5−ξ)(4−ξ) −
g1d2

(6−ξ)(3−ξ) + g1d2

(6−ξ)(4−ξ))

+Q(α2, β1, ξ)(
d1g2

(5−ξ)(3−ξ) −
d1g2

(6−ξ)(3−ξ) + d1g2

(6−ξ)(4−ξ) −
d1g2

(5−ξ)(4−ξ))

+Q1,ψ1(α1, β2, ξ)(
d2g1

(6−ξ)(4−ξ) −
d2g1

(6−ξ)(5−ξ))−Q
1,φ2(β2, α1, ξ)(

d1g2

(5−ξ)(4−ξ) −
d1g2

(6−ξ)(4−ξ))

+Pψ1(a3, T, ξ)(
2|S|

(6−ξ)(4−ξ) −
2|S|

(6−ξ)(5−ξ)) + P φ2(b3, S, ξ)(− 2|T |
(5−ξ)(4−ξ) + 2|T |

(6−ξ)(4−ξ))

+Qφ2,ψ1(α1, β2, ξ)(
d2g1

(6−ξ)(5−ξ))

(7.21)

I3,1 = P (a3, T, ξ)(
2|S|

(5−ξ)(4−ξ) −
2|S|

(6−ξ)(4−ξ)) + P φ3(b3, S, ξ)(
2|T |

(6−ξ)(4−ξ) −
2|T |

(4−ξ)(4−ξ))

+Pψ1(a3, T, ξ)(
2|S|

(5−ξ)(6−ξ)) +Q1,φ3(β1, α2, ξ)(
d1g2

(6−ξ)(4−ξ) −
d1g2

(5−ξ)(4−ξ))

+Q1,φ3(β2, α1, ξ)(
d2g1

(6−ξ)(4−ξ) −
d2g1

(5−ξ)(4−ξ)) +Qφ3,ψ1(α1, β2, ξ)(
d2g1

(6−ξ)(5−ξ))

(7.22)
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I3,2 = P (a3, T, ξ)(
2|S|

(6−ξ)(4−ξ) −
2|S|

(6−ξ)(5−ξ)) + P φ3(b3, S, ξ)(
2|T |

(6−ξ)(5−ξ) −
2|T |

(6−ξ)(4−ξ))

+Pψ2(a3, T, ξ)(
2|S|

(6−ξ)(5−ξ)) +Q1,φ3(β2, α1, ξ)(
d2g1

(6−ξ)(5−ξ) −
d2g1

(6−ξ)(4−ξ))

+Q1,φ3(β1, α2, ξ)(− d1g2

(6−ξ)(4−ξ) + d1g2

(6−ξ)(5−ξ)) +Qφ3,ψ2(α2, β1, ξ)(
d1g2

(6−ξ)(5−ξ))

(7.23)

where

Qφp,ψq(αi, βj, ξ) =

∫
αi×βj

φp(x)ψq(y)(y − x)

||x− y||1+ξ
dsxdsy

7.5 Reduction to one dimensional integrals

7.5.1 Calculation of P (a, T, ξ)

we will evaluate

P (a, T, ξ) =

∫
T

(a− y)

||a− y||1+ξ
dsxdsy, (7.24)

with a = a3

7.5.1.1 Case where a does not belong to the support of T

Figure 7.2: Triangles in intersecting planes
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In this case the reduction formulae are not usable. In order to operate the reduction, it is

necessary to break P into two parts.

P (a, T, ξ) =

∫
T

(a− â)

(h2 + ||â− y||2)
1+ξ

2

dsxdsy +

∫
T

(â− y)

(h2 + ||â− y||2)
1+ξ

2

dsxdsy (7.25)

where â be the projection of a into the support of T and h the distance h = |a − â| as in

Figure (7.3). Taking â as a new origin we obtain homogeneous integrands of degrees −1− ξ
and −ξ with parameter h. We can then apply the formula (6.5) which gives

P (a, T, ξ) = (a− â)
3∑
j=1

δj(â)S1(â, βj, h, ξ) +
3∑
j=1

δj(â)R2(â, βj, h, ξ) (7.26)

where S1 and R2 are defined by

S1(a, β, h, ξ) =
∫
β
h1−ξ ∫ +∞

h
du

u2−ξ(u2+||a−y||2)
1+ξ

2

dsy

=
∫
β
f1(h, ||a− y||, ξ).

(7.27)

and
R2(a, β, h, ξ) =

∫
β
(a− y)h2−ξ ∫ +∞

h
du

u3−ξ(u2+||a−y||2)
1+ξ

2

dsy

=
∫
β
(a− y)f2(h, ||a− y||, ξ)

(7.28)

where

fn(h, s, ξ) = hn−ξ
+∞∫
h

du

un+1−ξ(u2 + s2)
1+ξ

2

(7.29)

S1(a, β, h, ξ) and R2(a, β, h, ξ) are calculated in (B.2) and (B.24).

7.5.1.2 Case where a belongs to the support of T

Since a belongs to the support of T we can consider a as an origin and get homogeneous

integrand with q = −ξ and n = 2 but we must distinguish two different cases in order to

apply the suitable reduction formula.

• If n+ q = 0, we apply (6.6) and we get

P (a, T, ξ) =
3∑
j=1

δj
2− ξ

L(a, βj) (7.30)

where

L(a, βj) =

∫
βj

a− y
||a− y||3

ln(||a− y||)dsy (7.31)
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Figure 7.3: Projection of a on the support of T

• If n+ q 6= 0, we apply (6.4) and we obtain

P (a, T, ξ) =
3∑
j=1

δj
2− ξ

S(a, β, h, ξ)) (7.32)

where

S(a, β, ξ) =

∫
β

a− y
||a− y||1+ξ

dsy (7.33)

see appendix (B.2)

7.5.2 Calculation of Q(α, β, ξ)

Here we deal with

Q(α, β, ξ) =

∫
α×β

(x− y)

||x− y||1+ξ
dsxdsy; ξ = 0, 2 (7.34)

7.5.2.1 Case where α and β are neither parallel nor secants

First of all, we must find a new origin to ensure homogeneity of the integrand. Let α̌ be

the projection of α on the plane parallel to α going through β and let o be the intersection

of α̌ with β as in Figure (7.4). We will consider o as a new origin. Define z = ǎ − a and

h = ||z||. We express Q as a sum of two integrals whose integrands are homogeneous of
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degrees q = −1− ξ and −ξ.

Q(α, β, ξ) =

∫
α̌×β

(x− x̌)

(h2 + ||x̌− y||2)
1+ξ

2

dsxdsy +

∫
α̌×β

(x̌− y)

(h2 + ||x̌− y||2)
1+ξ

2

dsxdsy (7.35)

where x̌ is a point α̂. This decomposition allows us to apply the formula (6.5) and gives

Q(α, β, ξ) = (x− x̌)[
∑
k=±

kskS1(ǎk, β, h, ξ) +
∑
l=±

ltlS1(bl, α̌, h, ξ)]

+[
∑
k=±

kskR2(ǎk, β, h, ξ)−
∑
l=±

ltlR2(a, β, h, ξ)] (7.36)

where the abscissae are evaluated by sk = (ăk − o| ~α|α|) and tl = (bl − o| ~β|β|).

Figure 7.4: Segments neither parallel nor secants

7.5.2.2 Case where α and β are secants

Let o = α ∩ β be the new origin. Note that can be o = a2 = b2 or o = a3 = b3. In this case

the integrand is homogeneous of degree q = −ξ and n = 2. We must distinguish two cases:

• If q + n 6= 0 the formula (6.4) gives

Q(α, β, 0) =

∫
α×β

(x− y)

||x− y||
dsxdsy

=
∑
k=±

ksk

2
S(ak, β, 0)−

∑
l=±

ltl

2
S(bl, α, 0). (7.37)
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• If q + n = 0 we apply (6.6) and we get

Q(α, β, 2) =

∫
α×β

(x− y)

||x− y||3
dsxdsy

=
∑
k=±

kskL(ak, β)−
∑
l=±

ltlL(bl, α) (7.38)

7.5.2.3 Case where α and β are parallel

When the supports of α and β are parallel, we must use the second formula (6.5), called with

parameter. This is possible by orthogonally projecting one of the segments (we choose β) on

the support of the other (α) (see Figure 7.5). Thus, the distance d between the supports of

the two segments, appears and plays the role of the parameter. Let β̃ and ỹ, be the respective

orthogonal projections of β and y on the support of α, ~z = ỹ−y and d = ||ỹ−y|| the distance

from α to the support of β. Then, the integral Q(α, β, ξ) becomes

Q(α, β, ξ) = ~z

∫
α×β̃

1

(d2 + ||x− ỹ||2)
1+ξ

2

dsxdsỹ +

∫
α×β̃

(x− ỹ)

(d2 + ||x− ỹ||2)
1+ξ

2

dsxdsỹ (7.39)

Taking any point of α as a new origine, for exemple one of the two vertices of the triangle

Figure 7.5: Segments are parallel

a− and a+, we get two homogeneous integrands with parameter d and degrees q = −1 − ξ
respectively q = −ξ.

Q(α, β, ξ) = ~z[s+
∫
β̃
d1−ξ ∫ +∞

d
du

u2−ξ(u2+||a+−ỹ||2)
1
2
dsỹ

+
∑

l=± lt
l
∫
α
d1−ξ ∫ +∞

d
du

u2−ξ(u2+||x−b̃l||2)
1
2
dsx]

+s+
∫
β̃
d2−ξ(a+ − y)

∫ +∞
d

du

u3−ξ(u2+||a+−y||2)
1
2
dsỹ

+[
∑

l=± lt
l
∫
α
d2−ξ(x− b̃l)

∫ +∞
d

du

u3−ξ(u2+||x−b̃l||2)
1
2
dsx]

(7.40)
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which is equivalent to

Q(α, β, ξ) =
∑
l=±

ltl[~zS1(b̃l, β, d, ξ)−R2(b̃l, β, h, ξ)]

+s+[S1(a+, β̃, d, ξ) +R2(a+, β̃, d, ξ)] (7.41)

7.5.3 Calculation of P ψq(a, T, ξ)

To calculate the singular integral

Pψq(a, T, ξ) =

∫
T

ψq(y)(a− y)

||a− y||1+ξ
dy, (7.42)

we are inspired by the section (7.5.1). There are two different geometrical cases.

7.5.3.1 Case where a does not belong to the support of T

Note that a = a3 is a vertex of S. To maintain the homogeneity of the integrands the origin

must belong to the support of the triangle T . So we consider â the projection of a on the

support of T (see Figure 7.3) and we break Pψq(a, T, ξ) into two parts

Pψq(a, T, ξ) = (a− â)

∫
T

ψq(y)

(h2 + ||â− y||2)
1+ξ

2

dy +

∫
T

ψq(y)(â− y)

(h2 + ||â− y||2)1+ξ
, (7.43)

where h = |a− â| and ξ = 0, 2. Next, we express ψq(y) with the new origin o = â,

ψq(y) = ψq(â) + (y|lq),

which gives

Pψq(a, T, ξ) = (a− â)[ψq(â)

∫
T

1

(h2 + ||â− y||2)
1+ξ

2

dy +

∫
T

(y|lq)
(h2 + ||â− y||2)

1+ξ
2

dy]

+ψq(â)

∫
T

(â− y)

(h2 + ||â− y||2)
1+ξ

2

dy +

∫
T

(y|lq)(â− y)

(h2 + ||â− y||2)
1+ξ

2

dy. (7.44)

We notice that the four intergrands are homogeneous with parameter h and degrees (respec-

tively) q = −1 − ξ, q = −ξ, q = −ξ and q = 1 − ξ. We can then apply (6.5) and we
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obtain

Pψq(a, T, ξ) = (a− â)ψq(â)
∑3

j=1 δj(â)
∫
βj
h1−ξ ∫ +∞

h
du

u2−ξ(u2+||â−y||2)
1+ξ

2

dy

+(a− â)
∑3

j=1 δj(â)
∫
βj
h2−ξ(y|lq) du

u3−ξ(u2+||â−y||2)
1+ξ

2

dy

+ψq(â)
∑3

j=1 δj(â)
∫
βj
h2−ξ(â− y)

∫ +∞
h

du

u3−ξ(u2+||â−y||2)
1+ξ

2

dy

+
∑3

j=1 δj(â)
∫
βj
h3−ξ(y|lq)(â− y)

∫ +∞
h

du

u4−ξ(u2+||â−y||2)
1+ξ

2

dy.

(7.45)

To simplify the formula, we express the basic functions in this form (y|lq) = ψq(y) − ψq(â)

and we delete the terms that vanish, thanks to (7.2)

Pψq(a, T, ξ) = (a− â)ψq(â)
∑3

j=1 δj(â)
∫
βj
f1(h, ||â− y||, ξ)− f2(h, â− y, ξ)dsy

+(a− â)[δq+1(â)
∫
βq+1

ψq(y)f2(h, â− y, ξ)dsy + δq+2(â)
∫
βq+2

ψq(y)f2(h, â− y, ξ)dsy]
+ψq(â)

∑3
j=1 δj(â)

∫
βj

(â− y)(f2(h, ||â− y||, ξ)− f3(h, â− y, ξ))dsy
+δq+1(â)

∫
βq+1

ψq(y)(â− y)f3(h, ||â− y||, ξ)dsy + δq+2(â)
∫
βq+2

ψq(y)(â− y)f3(h, â− y, ξ)dsy
(7.46)

otherwise we can write

Pψq(a, T, ξ) = (a− â)ψq(â)
∑3

j=1 δj(â)(S1(â, β, h, ξ)− S2(â, β, h, ξ))

+(a− â)[δq+1(â)S
ψq
2 (â, βq+1, h, ξ) + δq+2(â)S

ψq
2 (â, βq+2, h, ξ)]

+ψq(â)
∑3

j=1 δj(â)R2(â, βj, h, ξ)−R3(â, βj, h, ξ)

+δq+1(â)D
ψq
3 (â, βq+1, h, ξ) + δq+2(â)D

ψq
3 (â, βq+2, h, ξ)

(7.47)

where

Dψq
n (a, βp, h, ξ) = δq+1(a)

∫
βp

ψκ(y)(a− y)fn(h, a− y, ξ)dsy (7.48)

7.5.3.2 Case where a belongs to the support of T

It suffices to consider a as origin to have homogeneity.

Pψq(a, T, ξ) =

∫
T

ψq(y)(a− y)

||a− y||1+ξ
dy, (7.49)

Since o = a is the new origin, ψq(y) can be written

ψq(y) = ψq(a) + (y|lq)

We obtain

Pψq(a, T, ξ) = ψq(a)

∫
T

(a− y)

||a− y||1+ξ
dy +

∫
T

(y|lq)(a− y)

||a− y||1+ξ
dy (7.50)
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Integrands are homogeneous of degrees q = −ξ and q = 1− ξ. We apply (6.4) and we get

Pψq(a, T, ξ) = ψq(a)
3∑
j=1

δj(a)

2− ξ

∫
βj

(a− y)

||a− y||1+ξ
dsy +

3∑
j=1

δj(a)

3− ξ

∫
βj

(y|lq)(a− y)

||a− y||1+ξ
dy (7.51)

We replace (y|lq) by (y|lq) = ψq(y)− ψq(a), then we get

Pψq(a, T, ξ) = ψq(a)
3∑
j=1

δj(a)

2− ξ

∫
βj

(a− y)

||a− y||1+ξ
dsy

+
3∑
j=1

δj(a)

3− ξ

∫
βj

ψq(y)(a− y)

||a− y||1+ξ
dsy − ψq(a)

3∑
j=1

δj(a)

3− ξ

∫
βj

(a− y)

||a− y||1+ξ
dsy (7.52)

which is equivalent to

Pψq(a, T, ξ) =
3∑
j=1

δj(a)

3− ξ
Sψq(a, βj, ξ)

+ψq(a)
3∑
j=1

[
δj(a)

2− ξ
S(a, βj, ξ)−

δj(a)

3− ξ
S(a, βj, ξ)] (7.53)

7.5.4 Calculation of Q1,ψq(α, β, ξ)

We want to evaluate the singular integral on two edges

Q1,ψq(α, β, ξ) =

∫
α×β

ψq(y)(x− y)

||x− y||1+ξ
dsxdsy (7.54)

where β 6= α 6= α3, β 6= β3 6= βq. We are going to study two different cases.

7.5.4.1 Case where α and β are neither parallel nor secants

Let α̌ be the projection of α on the plane containing β and parallel to α, x̌ a point in α̌,

h = |a− ǎ| and ~z = x− x̌ (see Figure 7.4). We decompose Q1,ψq in two parts

Q1,ψq(α, β, ξ) = ~z

∫
α̌×β

ψq(y)

(h2 + ||x̌− y||2)
1+ξ

2

dsx̌dsy +

∫
α̌×β

ψq(y)(x̌− y)

(h2 + ||x̌− y||2)
1+ξ

2

dsx̌dsy

(7.55)

We will follow the same approach as previously. We consider o = α̌ ∩ β the new origin and

we replace in the equation (7.55) the basic function ψq(y) by the equivalent expression

ψq(y) = ψq(o) + (y|lq).
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Once we have homogeneous integrands, the reduction formula (6.5) gives

Q1,ψq(α, β, ξ) = ψq(o)[
∑

k=± ks
kR2(âk, β, h, ||âk − y||, ξ)−R2(bl, α, h, ||x̂− bl||, ξ)]

+
∑

k=± ks
k[D

ψq
3 (âk, βj, ||âk − y||, ξ)− ψq(o)R3(âk, β, ||âk − y||, ξ)]

+
∑

l=± lt
l[(−ψq(bl) + ψq(o))R3(bl, α, ||x̂− bl||, ξ)]

+~zψq(o)[
∑

k=± ks
kS1(âk, β, h, ξ) +

∑
l=± lt

lS1(b̂l, α, h, ξ)]

+~z
∑

k=± ks
k[S

ψq
2 (âk, β, h, ||âk − y||, ξ)− ψq(o)S2(âk, β, h, ||âk − y||, ξ)]

+~z
∑

l=± lt
l[(ψq(b

l)− ψq(o))S2(bl, α̂, h, ||x̂− bl||, ξ)]

7.5.4.2 Case where α and β are secants

Let o = α ∩ β be the new origin. The basis function ψq(y) can be expressed as following

ψq(y) = ψq(o) + (y|lq)

which gives

Q1,ψq(α, β, ξ) = ψq(o)

∫
α×β

(x− y)

||x− y||1+ξ
dsxdsy +

∫
α×β

(y|lq)(x− y)

||x− y||1+ξ
dsxdsy (7.56)

The integrands are homogeneous of degrees q = −ξ and q = 1− ξ with n = 2.

• If q + n 6= 0, formula (6.4) gives

Q1,ψq(α, β, ξ) = ψq(o)[
∑
k=±

ksk

2
S(ak, β, 0)−

∑
l=±

ltl

2
S(bl, α, 0)] +

∑
k=±

ksk

3
Sψq(y)(ak, β, 0)

−ψq(o)
∑
k=±

ksk

3
S(ak, β, 0)−

∑
l=±

ltl

3
(ψq(b

l)− ψq(o))S(bl, α, 0), (7.57)

where

Sψq(y)(ak, β, 0) =

∫
β

ψq(y)(ak − y)

||ak − y||
dsy (7.58)

• If q + n = 0 it will be appropriate to apply formula (6.6), which leads us to this

expression

Q1,ψq(α, β, ξ) = ψq(o)[
∑
k=±

kskL(ak, β)−
∑
l=±

ltlL(bl, α)] +
∑
k=±

kskLψq(ak, β)

−
∑
k=±

kskψq(o)L(ak, β)−
∑
l=±

ltl(ψq(b
l)− ψq(o))L(bl, α) (7.59)
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where

Lψq(ak, β) =

∫
β

ψq(y)(ak − y)

||ak − y||3
dsy (7.60)

7.5.5 Calculation of Qϕp,ψq(α, β, ξ)

Here we deal with the singular integral

Qϕp,ψq(α, β, ξ) =

∫
α×β

φp(x)ψq(y)(y − x)

||x− y||1+ξ
dsxdsy (7.61)

7.5.5.1 Intersecting triangles

We project α on the plane parallel to α and going through β. Let α̂ be the projection of α and

x̂ the projection of x. Then, we provide an equivalent expression of the basis functions:

φp(x) = 1 + µ
(x− ap|~α)

|α|2
= 1 + µ

(x̂− âp|~̂α)

|α|2
(7.62)

ψq(y) = 1 + ν
(y − bq)|~β
|β|2

(7.63)

where µ = ±1(µ = 1 if ap = a+ and µ = −1 if ap = a−). Likewise, ν = ±1(ν = 1 if

bp = b+ and ν = −1 if bp = b−). We choose the intersection of the supports of α̂ and β, as

origin and we note it o. we obtain :

φp(x) = 1 + µ
(o− âp|~α)

|α|2
+ µ

(x̂− o|~α)

|α|2

= Cp + µ
(x̂− o)
~̂α

(7.64)

ψq(y) = 1 + ν
(o− bq|~β)

|β|2
+ ν

(y − o|~β)

|β|2

= Cq + µ
(y − o|~β)

|β|2
(7.65)

where Cp = 1 + µ (o−âp)|~α
|α|2 and Cq = 1 + ν (o−bq)|~β

|β|2 . Then, the expression of Qϕp,ψq becomes

Qφp,ψq(α, β, ξ) = CqCq

∫
α̂×β

(x̂− y)

(h2 + ||x̂− y||2)
1+ξ

2

dsx̂dsy+
Cpν

|β|2

∫
α̂×β

(y − o|~β)(x̂− y)

(h2 + ||x̂− y||2)
1+ξ

2

dsx̂dsy
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+
Cqµ

|α|2

∫
α̂×β

(x̂− o|~α)(x̂− y)

(h2 + ||x̂− y||2)
1+ξ

2

dsx̂dsy +
µµ

|α̂|2|β|2

∫
α̂×β

(y − o|~β)(x̂− o|~α)(x̂− y)

(h2 + ||x̂− y||2)
1+ξ

2

dsx̂dsy

(7.66)

In the formula below the integrands are homogeneous with variable h and of degrees q = −ξ,

q = 1− ξ, 1− ξ and 2− ξ. Formula (6.5) gives

Qφp,ψq(α, β, ξ) = CpCq[
∑

k=± kŝ
k
∫
β
(âk − y)h2−ξ ∫ +∞

h
du

u3−ξ(u2+||âk−y||2)
1+ξ

2

dsy

+
∑

l=± lt̂
l
∫
α̂
(x̂− bl)h2−ξ ∫ +∞

h
du

u3−ξ(u2+||x̂−bl||2)
1+ξ

2

dsx]

+Cpν

|β|2 [
∑

k=± kŝ
k
∫
β
(y − o|~β)(âk − y)h3−ξ ∫ +∞

h
du

u4−ξ(u2+||âk−y||2)
1+ξ

2

dsy

+
∑

l=± lt̂
l
∫
α̂
(bl − o|~α)(x̂− bl)h3−ξ ∫ +∞

h
du

u4−ξ(u2+||x̂−bl||2)
1+ξ

2

dsx]

+Cqµ

|α|2 [
∑

k=± kŝ
k
∫
β
(âk − o|~α)(âk − y)h3−ξ ∫ +∞

h
du

u4−ξ(u2+||âk−y||2)
1+ξ

2

dsy

+
∑

l=± lt̂
l
∫
α̂
(x̂− o|~α)(x̂− bl)h3−ξ ∫ +∞

h
du

u4−ξ(u2+||x̂−bl||2)
1+ξ

2

dsx]

+ νµ
|α|2|β|2 [

∑
k=± kŝ

k
∫
β
(âk − o|~α)(y − o|~β)(âk − y)h4−ξ ∫ +∞

h
du

u5−ξ(u2+||âk−y||2)
1+ξ

2

dsy

+
∑

l=± lt̂
l
∫
α̂
(x̂− o|~α)(b̂l − o|~α)(x̂− bl)h4−ξ ∫ +∞

h
du

u5−ξ(u2+||x̂−bl||2)
1+ξ

2

dsx]

(7.67)

which is equivalent to

Qφp,ψq(α, β, ξ) = CpCq[
∑

k=± kŝ
kR2(âk, β, h, ξ)ξ −

∑
l=± lt̂

lR2(bl, α̂, h, ξ)]

+
∑

k=± kŝ
k[Cqµ|α|2 (âk − o|~α)R3(âk, β, h, ξ) + Cpν

|β|2M3(âk, o, β, h, ξ)]

+
∑

l=± lt̂
l[−Cpν

|β|2 (bl − o|~β)R3(bl, α̂, h, ξ)− Cqµ

|α|2M3(bl, o, α, h, ξ)]

+ νµ
|α|2|β|2 [

∑
k=± kŝ

k(âk − o|~α)M4(âk, o, β, h, ξ)−
∑

l=± lt̂
l(bl − o|~β)M4(bl, o, α, h, ξ)]

(7.68)

where

M3(âk, o, β, h, ξ) =

∫
β

(âk − o|~α)(âk − y)f3(h, ||âk − y||, ξ)dsy (7.69)

M4(âk, o, β, h, ξ) =

∫
β

(a− o|~α)(a− y)f4(h, ||âk − y||, ξ)dsy (7.70)

are given in Appendix (B).

7.5.5.2 Coplanar triangles

As we saw in section (7.5.2), we need to distinguish two geometrical configurations for the

supports of the sides α and β.
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Two intersecting segments
When the supports of α and β are intersecting, we choose the intersection of the supports,

denoted o, as the origin. Then we use the same decompositions as (7.64) and (7.65).

φp(y) = Cp + µ
(x− o|~α)

|α|2
(7.71)

ψq(y) = Cq + µ
(y − o|~β)

|β|2
(7.72)

In case where ξ − 2 6= 0:
If we combine (7.71, 7.72) with (6.4) we obtain

Qϕp,ψq(α, β, 0) = CpCq
2

[
∑

k=± ks
kS(ak, β, 0)−

∑
l=± lt

lS(bl, α, 0]

+ Cpµ

3|β|2 [
∑

k=± ks
kN(ak, o, β, 0)−

∑
l=± lt

l(bl − o|~β)S(bl, α, 0)]

+ Cqν

3|α|2 [
∑

k=± ks
k(ak − o|~α)S(ak, β, 0)−

∑
l=± lt

lN(bk, o, α, 0)]

+ νµ
4|α|2|β|2

∑
k=± ks

k[(ak − o|~α)N(ak, o, β, 0)−
∑

l=± lt
l(bl − o|~β)N(bk, o, α, 0)].

(7.73)

where

N(ak, o, β, ξ) =

∫
β

(y − o|~β)(ak − y)

||ak − y||1+ξ
dsy (7.74)

is given in Appendix (B)

Conclusion

This chapter presents the evaluation of the integral Si,j when using affine basis functions in

each element. We began by presenting the basis functions used and some of their properties

that will simplify the calculations. We only dealt with the case of adjacent triangles. The case

of triangles with common vertices presents no particular difficulty. This will be the subject

of the next chapter.
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Triangular mesh elements with common vertex

In this chapter, we continue to apply the reduction process to evaluate singular integrals

appearing in chapter 5, on the product of two triangular mesh element S and T. We deal with

the case where triangles have a common vertex.

8.1 Reduction to dimension three

Here we deal with the case where the triangles have a vertex in common. Let a1 = b1 be the

common vertex. We keep the same local orientation in S, then, a2 = a+
1 and a3 = a−1 . But,

we take the opposite direction for T , so, b2 = b−1 and b3 = b−1 .

we want to evaluate 9 different singular integrals in the form 7.8

I i,j =

∫
S×T

(φi(x)ψj(y))
(x− y)

||x− y||ξ+1
dxdy; ξ = 0, 2; i, j = 1, 2, 3. (8.1)

As already mentioned before the integral I i,j is not singular in the case ξ = 0 but the method

still valid and it will not cost us extra calculations. It will be wise to choose the common

vertex a1 = b1, as origin. In this case the basis functions are written

φi(x) = φi(a1) + (x|−→e1 ); ψj(y) = ψj(b1) + (y|
−→
l1 ). (8.2)

Applying Theorem 6.4 we get

I1,3 = (
g1

5− ξ
− g1

6− ξ
)U1,ψ3(α1, T, ξ) + (

d1

6− ξ
− d1

5− ξ
)Uψ3,1(β1, S, ξ)
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− g1

6− ξ
Uψ3,φ1(β, S, ξ) (8.3)

I2,1 = (
g1

5− ξ
− g1

6− ξ
)Uφ2,1(α1, T, ξ) + (

d1

6− ξ
− d1

5− ξ
)U1,ϕ2(β1, S, ξ)

+
g1

6− ξ
Uφ2,ψ1(α1, T, ξ) (8.4)

I2,2 =
g1

6− ξ
Uφ2,ψ2(α1, T, ξ)−

d1

6− ξ
Uψ1,φ2(β, S, ξ) (8.5)

I2,3 =
g1

6− ξ
Uφ2,ψ3(α1, T, ξ)−

d1

6− ξ
Uψ3,ϕ2(β1, S, ξ) (8.6)

I3,1 = (
g1

5− ξ
− g1

6− ξ
)Uϕ3,1(α1, T, ξ)− (

d1

5− ξ
− d1

6− ξ
)U1,ϕ3(β1, S, ξ)

+
g1

6− ξ
Uψ3,φ1(α1, T, ξ) (8.7)

I3,2 =
g1

6− ξ
Uφ3,ψ2(α1, T, ξ)−

d1

6− ξ
Uψ2,ϕ3(β1, S, ξ) (8.8)

I3,3 =
g1

6− ξ
Uφ3,ψ3(α1, T, ξ)−

d1

6− ξ
Uψ3,ϕ3(β1, S, ξ) (8.9)

where U1,ψq(αi, T, ξ), Uψq ,1(βj, S, ξ) and Uφp,ψq(αi, T, ξ) are defined as following

U1,ψq(αi, T, ξ) =

∫
αi×T

ψq(y)(x− y)

||x− y||ξ+1
dsxdy (8.10)

Uϕp,1(α, T, ξ) =

∫
αi×T

ϕp(x)(x− y)

||x− y||ξ+1
dsxdy (8.11)

Uϕp,ψq(αi, T, ξ) =

∫
αi×T

ϕp(x)ψq(y)(x− y)

||x− y||ξ+1
dsxdy (8.12)

8.2 Reduction to dimension two

Let ω be the intersection of the supports of T and S. Here also we need to distinguish two

different cases.

107



CHAPTER 8. TRIANGULAR MESH ELEMENTS WITH COMMON VERTEX

8.2.1 Intersection of two triangles w is secant with α

8.2.1.1 Computation of U(α, T, ξ)

We want to evaluate the integral

U(α, T, ξ) =

∫
α×T

(x− y)

||x− y||ξ+1
dsxdy; ξ = 0, 2. (8.13)

We consider α ∩ w = I as a new origin

=
3∑
j=1

dj(I)

3− ξ

∫
α×βj

x− y
||x− y||1+ξ

dsxdsy +
∑
k=±

ksk

3− ξ

∫
T

ak − y
||ak − y||1+ξ

dy

=
3∑
j=1

Q(α, βj, ξ) +
∑
k=±

ksk

3− ξ
P (ak, T, ξ)

P (ak, T, ξ) and Q(α, βj, ξ) were already computated in B

8.2.1.2 Computation of U1,ψq

Recall that U1,ψq(α, T, ξ) is defined by

U1,ψq(α, T, ξ) =

∫
α×T

ψq(y)(x− y)

||x− y||ξ+1
dsxdy

and

ψq(y) = ψq(I) + (y|
−→
lq )

We get

U1,ψq(α, T, ξ) =

∫
α×T

ψq(I)(x− y)

||x− y||ξ+1
dsxdy +

∫
α×T

(y|
−→
lq )(x− y)

||x− y||ξ+1
dsxdy

and then the reduction formula gives

U1,ψq(α, T, ξ) = ψq(I)(1− 3− ξ
4− ξ

)U(α, T, ξ)

+
1

4− ξ
Σk=±ks

kPψq(ak, T, ξ) +
3∑
j=1

δj(I)

4− ξ
Q1,ψq(α, βj, ξ) (8.14)

108



CHAPTER 8. TRIANGULAR MESH ELEMENTS WITH COMMON VERTEX

8.2.1.3 Computation of Uϕp,1

Recall that Uϕp,1(α, T, ξ) is defined by

Uϕp,1(α, T, ξ) =

∫
α×T

ϕp(x)
(x− y)

||x− y||ξ+1
dsxdy

and

ϕp(x) = ϕp(I) + (x|−→ep )

We get

Uϕp,1(α, T, ξ) =

∫
α×T

ϕp(I)(x− y)

||x− y||ξ+1
dsxdy +

∫
α×T

(x|−→ep )(x− y)

||x− y||ξ+1
dsxdy

applying the reduction formula (6.4)

Uϕp,1(α, T, ξ) = ϕp(I)(1− 3− ξ
4− ξ

)U(α, T, ξ)

+
1

4− ξ
∑
k=±

ϕp(a
k)kskP (ak, T, ξ) +

3∑
j=1

δj(I)

4− ξ
Qϕp,1(α, βj, ξ) (8.15)

8.2.2 Intersection of two triangles w is parallel to α

When the support of α is parallel to w, the homogeneity of the integrand is lost. Then, the

projection of α is carried out on the plane of the triangle T in order to decompose the norm

||x− y||. Let α̂ and â± be the respective projections of α and a± on the T plane . We denote

by ~z = x̂ − x and h = ||x − x̂|| the distance between the segment α and α̂ which plays the

role of the parameter.

8.2.2.1 Computation of U(α, T, ξ)

U(α, T, ξ) =

∫
α̂×T

(x− x̂) + (x̂− y)

(h2 + ||x̂− y||2)
ξ+1

2

dsxdy (8.16)

Thus, the integrand is homogeneous with respect to the pair formed by the integration vari-

ables (x̂, y) and the parameter h. So we have

U(α, T, ξ) = U1(α̂, T, h, ξ)− ~zU2(α̂, T, h, ξ)
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where

U1(α̂, T, h, ξ) =

∫
α̂×T

(x̂− y)

(h2 + ||x̂− y||2)
ξ+1

2

dsx̂dy

U2(α̂, T, h, ξ) =

∫
α̂×T

1

(h2 + ||x̂− y||2)
ξ+1

2

dsx̂dy

The next step, we chose the extremity â− of α̂ as a new origine, we apply the reduction

formula (6.5) and we get

U(α, T, ξ) = |α|
∫
T

(â+ − y)f3(h, ||â+ − y||)dy +
3∑
j=1

δj(â
−)

∫
α̂×β

f2(h, ||x̂− y||)dsx̂dsy

−~z[|α|
∫
T

f2(h, ||â+ − y||, ξ)dy +
3∑
j=1

δj(â
−)

∫
α̂×β

f2(h, ||x̂− y||)dsx̂dsy]

otherwise

U(α, T, ξ) = |α|P3(â+, T, h, ξ) +
3∑
j=1

δj(â
−)Q2(α̂, β, h, ξ)

−~z[|α|P2(â+, T, h, ξ) +
3∑
j=1

δj(â
−)Q2(α̂, β, h, ξ)]

8.2.2.2 Computation of U1,ψq(α, T, ξ)

We are inspired by what we did with U(α, T, ξ)

U1,ψq(α, T, ξ) =

∫
α×T

ψq(y)(x− y)

||x− y||ξ+1
dsxdy

= U
1,ψq
2 (α, T, ξ)− ~zU1,ψq

1 (α, T, ξ)

where

U
1,ψq
1 (α, T, ξ) =

∫
α̂×T

ψq(y)

(h2 + ||x̂− y||2)
ξ+1

2

dsxdy

U
1,ψq
2 (α, T, ξ) =

∫
α̂×T

ψq(y)(x̂− y)

(h2 + ||x̂− y||2)
ξ+1

2

dsxdy

We calculate each term separately. Let’s start with evaluating U1,ψq
2 (α̂, T, ξ)

U
1,ψq
2 (α̂, T, ξ) = ψq(â

−)U2(α̂, T, h, ξ) + |α|Pψq
4vect(â

+, T, h, ξ)
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+δq+1(â−)Q
1,ψq
4vect(α̂, βq+1, h, ξ) + δq+2(â−)Q

1,ψq
4vect(α̂, βq+2, h, ξ)

−ψq(â−)[|α|P4vect(â
+, T, h, ξ) +

3∑
j=1

δj(â
−)Q4vect(α̂, βj, h, ξ)] (8.17)

where

P
ψq
4vect(â

+, T, h, ξ) =

∫
T

(â+ − y)ψq(y)f4(h, ||â+ − y||, ξ)dy

Q
1,ψq
4vect(α̂, βq+1, h, ξ) =

∫
α̂×βq+1

ψq(y)f4(h, ||x̂− y||, ξ)dsx̂dsy

P4vect(â
+, T, h, ξ) =

∫
T

(â+ − y)f4(h, ||â+ − y||, ξ)dy

Q4vect(α̂, βq+1, h, ξ) =

∫
α̂×βq+1

f4(h, ||x̂− y||, ξ)dsx̂dsy

are performed below. On the other hand we have

U
1,ψq
1 (α̂, T, h, ξ) = ψq(â

−)U1(α̂, T, h, ξ) + |α|Pψq
3scal(â

+, T, h, ξ)

+δq+1(â−)Q
1,ψq
3scal(α̂, βq+1, h, ξ) + δq+2(â−)Q

1,ψq
3scal(α̂, βq+2, h, ξ)

−ψq(â−)[|α|P3scal(â
+, T, h, ξ) +

3∑
j=1

δj(â
−)Q3scal(α̂, β, h, ξ)] (8.18)

where

P
ψq
3scal(â

+, T, h, ξ) =

∫
T

(â+ − y)ψq(y)f3(h, ||â+ − y||, ξ)dy

Q
1,ψq
3scal(α̂, βq+1, h, ξ) =

∫
α̂×βq+1

ψq(y)f3(h, ||x̂− y||, ξ)dsx̂dsy

P3scal(â
+, T, h, ξ) =

∫
T

(â+ − y)f3(h, ||â+ − y||, ξ)dy

8.2.2.3 Computation of Uφ(p),ψq(α, T, ξ)

We want to evaluate the singular integral

Uϕp,ψq(αi, T, ξ) =

∫
αi×T

ϕp(x)ψq(y)(x− y)

||x− y||ξ+1
dsxdy

111



CHAPTER 8. TRIANGULAR MESH ELEMENTS WITH COMMON VERTEX

=

∫
α̂×T

ϕp(x)ψq(y)(x− x̂)

(h2 + ||x̂− y||2)
ξ+1

2

dsx̂dy

∫
α̂×T

ϕp(x)ψq(y)(x̂− y)

(h2 + ||x̂− y||2)
ξ+1

2

dsx̂dy

= −~zUφ(p),ψq
1 (α̂, T, ξ) + U

φ(p),ψq
2 (α̂, T, ξ)

We calculate each term separately. Let’s start with calculating Uφ(p),ψq
1 (α̂, T, ξ). We replace

the basis functions in their equivalent expression with â− as the origin, the integrant is homo-

geneous with parameter, we apply the formula (6.5) Which gives

U
φ(p),ψq
1 (α̂, T, ξ) = φp(â

−)ψq(â
−)

∫
α̂×T

1

(h2 + ||x̂− y||2)
ξ+1

2

dsx̂dy+

∫
α̂×T

ϕp(â
−)(y|

−→
fq )

(h2 + ||x̂− y||2)
ξ+1

2

dsx̂dy

+

∫
α̂×T

(x|−→ep )ψq(y)(y)

(h2 + ||x̂− y||2)
ξ+1

2

dsx̂dy +

∫
α̂×T

(x|−→ep )(y|
−→
fq )

(h2 + ||x̂− y||2)
ξ+1

2

dsx̂dy

Conclusion

In this chapter, we gave formulae of evaluation of the integral I i,j , on two triangles having a

vertex in common.
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CHAPTER 9

Numerical results

In the previous chapter we discretized the variational formulation of a three-dimentional scat-

tering problem. Here we present our numerical results.

9.1 Radar Cross Section

In radiation theory it’s well known that the energy intercepted by an object can be reflected,

transmitted or absorbed through the target. We can assume that most of the energy is reflected.

The spatial distribution of this energy depends on the size, shape and composition of the

target, and on the frequency and nature of the incident wave. This distribution of energy is

called scattering, and the target itself is often referred to as a scatterer. The radar cross section

(RCS) of the body is a measure of the energy scattered in a particular direction for a given

illumination [51].

Bistatic scattering is the name given to the situation when the scattering direction is not

back toward the source of the radiation. If E and H represent fields scattered by an object

illuminated by incident plane wave Einc traveling in the direction of the unit vector k, the

bistatic radar cross section in the observation direction r is

σ(r,k) = lim
r→∞

4πr2 |E|2

|Einc|2
.

This cross section is defined as the area through which an incident plane wave carries

sufficient power to produce, by omnidirectional radiation, the same scattered power density

as that observed in a given far field direction. The monostatic radar cross section is defined
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Figure 9.1: Bistattic RCS for a coated unit sphere, when d = 0.05, r = 0.95, µr = 1.0,

εr = 2 and ω = 0.9GHz

as the radar cross section observed in the back scattering direction, σ(−k,k).

Radar cross section is the measure of a target’s ability to reflect radar signals in the direction

of the radar receiver, i.e. it is a measure of the ratio of backscatter power per steradian

(unit solid angle) in the direction of the radar (from the target) to the power density that is

intercepted by the target.

The radar cross section of a target can be viewed as a comparison of the strength of the
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Figure 9.2: Bistattic RCS for a coated unit sphere, when d = 0.0125, µr = 1.0, εr = 2 and

ω = 0.9GHz

reflected signal from a target to the reflected signal from a perfectly smooth sphere.

The units for RCS are square meters. As RCS can span a wide range of values, a logarithmic

decibel scale is also used with a typical reference value σref equal to 1m2:

σdBm2 = 10 log10(
σ

σref
) (9.1)
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9.2 Numerical results
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Figure 9.3: Bistattis RCS for a coated unit sphere

To illustrate our approach, we compute the RCS of a unit sphere coated with a thin dielec-

tric layer. The radius of the inner conductor is denoted by r and the thickness of the coating

by d. The material properties are described by a Leontovich Impedance Z = const.

Z = z0

√
µr
εr

tan (
√
µrεrk0d)
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where µr and εr denote the magnetic permeability and electical permittivity of the coating. To

validate the code, we test it on a sphere with different sphere-meshes and we compare it with

Mie series. We take the sphere’s radius is 1m and incident waves pulsation ω = 0.9GHz.

In figure (9.1), we plot the exact RCS calculated by Mie Series(continuous black line) and

we compare it with our code results in different sphere mesh with inner radius r = 0.95 and

coating thikness d = 0.05. In 9.1, the azure continuous line is the ucp code calculated on

the mesh λ/10, red continuous line in our code calculated on the mesh λ/15 and the blue

discontinue line is our code on the mesh λ/20.

In the second test, we decrease the coating thikness to d = 0.125 and we increase the

inner sphere radius, for the same frequence as the previous test. In figure (9.2), we plot the

exact RCS calculated by Mie Series(continuous black line) the red continuous line is our

code calculated on the mesh λ/10, azure continuous line represent our code calculated on the

mesh λ/15 and the blue discontinuous line represent our code on the mesh λ/20

In figure 9.3, we consider a coating thikness d = 0.125, a frequence f = 014313GHz, the

same constant for the magnetic permiability µr = 1.0 and electical permittivity εr = 2073.42

. In figure (9.3), we plot the exact RCS calculated by Mie Series(continuous red line) and the

RCS calculated with our code
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Physical constant

• π = 3.1415926535897932384...;

• c = 2.99792458.108ms−1 speed of light;

•µ0 = 4π.10−7 free space permeability in (henry/m);

• ε0 = 1/(µ0c
2) free space permittivity in (farad/m);

•Z0 =
√
µ0/ε0 = µ0c impedance in (ohm);

•ω = 2πf ;

•λ = c
f

wave length;

• k0 = ω
√

µ0

ε0
= ω

c
wave number;

118



CHAPTER A

Appendix A

A.1 Modified Bessel functions I and K

The differential equation

z2∂
2u

∂z2
+ z

∂u

∂z
− (z2 + ν2)u = 0,

where ν is a real constant, is called the modified Bessel’s equation and its solutions Iν(z) and

Kν(z) are known as modified Bessel functions.

To have the formulas for Iν(z) and Kν(z) we need the following preliminary definitions

( [1]).

Definition A.1.1. The Euler constant (sometimes called Gamma) is defined as the limit of the

expression

γ = lim
n→∞

[
1 +

1

2
+

1

3
+ . . .

1

n
− lnn

]
= 0.5772156643.

The abbreviation ln stands for the natural logarithm, also called the base e logarithm.

Definition A.1.2. (Euler’s formula). For all complex numbers z, except the non-positive

integers (z 6= 0,−1,−2, . . .),

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)

If n is a positive integer,the function is defined by Γ(n) = (n− 1)!.
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Definition A.1.3. (Modified Bessel function of the first kind)

Iν(z) =
(1

2
z
)ν ∞∑

k=0

(1
4
z2)k

k!Γ(ν + k + 1)
.

We also have the following decay behaviour for Kν(z) as ν is fixed (Reν > 0) and z → 0

Kν(z) ∼ 1

2
Γ(ν)(

1

2
z)−ν .

A.2 Approximation of unit normal vector

The following result can be found in [9].

Lemma A.2.1. Let ν̃(x̃) be the outward unit normal vector to ∂Ωδ at x̃. Then the following

formula holds

ν̃(x̃) =
(
1 +O(δ)

)
ν(x) +O(δ)T (x). (A.1)

Proof. Under the notations as in Chapter 5, it follows that x̃ = X̃(t) = X(t) + δρ(x)ν(x) =

X(t)+δρ(x)R−π
2
X ′(t) is a parametrization of ∂Ωδ (whereR stands for the rotation operator),

ν(x) = R−π
2
X ′(t), the tangent vector T (x) = X ′(t), X ′(t)⊥X ′′(t) and X ′′(t) = τ(x)ν(x).

Using the simplified notations ρ(t) for ρ(X(t)) and ρ′(t) for the tangential derivative of ρ(t),

then we have (A.1).

A.3 Fundamental result of Riesz theory

Theorem A.3.1. (Fredholm alternative). Let T : X → X be a linear compact operator and

let

ker(I − T ) = {0}.

Then I − T has the bounded inverse (I − T )−1 : X → X , where I is the identity operator.

Theorem A.3.2. Let A : X → X be a compact linear operator on a normed space X . Then

1. I − A injective⇐⇒ (I − A)−1 surjective

2. I − A bijective =⇒ (I − A)−1 is bounded.
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Theorem A.3.3. Let X be a normed space, A : X → X compact. If φ − Aφ = 0 has only

trivial solution φ = 0 then φ − Aφ = f has a unique solution φ ∈ X for all f ∈ X , and φ

depends continuously on f .

Theorem A.3.4. (see [36], Theorem 3.4). Let A : X → X be a compact linear operator on

a normed space X . Then I − A is injective if and only if it is surjective. If I − A is injective

(and therefore also bijective), then the inverse operator (I −A)−1 : X → X is bounded, i.e.,

I − A is an isomorphism.

A.4 Singular kernel integrals

Denote by D ⊂ Rd a bounded domain with the boundary ∂D of class C1. We consider the

integral operator P defined as follows

P [φ] =

∫
∂D

K(x, y)φ(y)dσ(y). (A.2)

Definition A.4.1. (Weakly singular kernel). A kernel K is said to be weakly singular if it is

defined and continuous for all x, y ∈ ∂D, x 6= y, and there exist positive constants M and

α ∈ (0, d− 1]; d > 2 such that

|K(x, y)| ≤M |x− y|α−d+1, x, y ∈ ∂D, x 6= y.

The following theorem is a well-known theorem of Coifman-McIntosh-Meyer, ( [44],

Theorem 11). This theorem plays an important role in studying the boundedness of a class of

singular kernel integrals.

Theorem A.4.1. Let n,m ≥ 1 be integers and suppose thatA : Rn → Rm is a Lipschitz func-

tion. Let F : Rm → R be an infinitely differentiable odd function. Then the antisymmetric

kernel

K(x, y) = F

(
A(x)− A(y)

|x− y|

)
|x− y|−n (A.3)

defines a bounded operator on L2(Rn).
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One dimensional integrales

B.1 Calculation of S(a, β, ξ)

S(a, β, ξ) =

∫
β

a− y
||a− y||1+ξ

dsy (B.1)

Let q(a) be the projection of a on the support of β and d = ||q(a)− a||. Then

S(a, β, ξ) = (a− q(a))

t+∫
t−

1

(d2 + s2)
1+ξ

2

ds+

t+∫
t−

s

(d2 + s2)
1+ξ

2

ds (B.2)

where s is the abscissa on β which will be calculated as follows s = y − q(a) and t± where

t± are abscisses of the extremities of beta with q(a) origin and d = q(a)− a.

B.2 Calculation of S1, S2 and S3

• S1(a, β, h, ξ)

S1(a, β, h, ξ) =

∫
β

f1(h, ||a− y||, ξ)dsy

=

∫
β

h1−ξ

+∞∫
h

du

u2−ξ(u2 + ||a− y||2)
1+ξ

2

dsy (B.3)
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where fn(h, s, ξ) were be defined in 7.29. Let q(a) be the projection of a into the support of

β, then

S1(a, β, h, ξ) =

t+∫
t−

h1−ξ

+∞∫
h

du

u2−ξ(u2 + d2 + s2)
1+ξ

2

dsy (B.4)

where t± are abscissae of the extremities of β with q(a) origin and d = q(a)− a.

if ξ = 0

S1(a, β, h, 0) =

t+∫
t−

h1

+∞∫
h

du

u2(u2 + d2 + s2)
1
2

dsy

=

t+∫
t−

√
h2 + d2 + s2 − h

d2 + s2
ds

=

t+∫
t−

1√
h2 + d2 + s2 − h

ds (B.5)

S1(a, β, h, 0) = [
h

s
−
√
h2 + s2

s
+ lg(s+

√
h2 + s2)]t

+

t− (B.6)

for ξ = 2

S1(a, β, h, 2) =

t+∫
t−

h−1

+∞∫
h

du

(u2 + d2 + s2)
3
2

dsy

=

t+∫
t−

1

h(d2 + s2)
(1− h√

h2 + d2 + s2
)ds

= [
1

dh
arctan(

s

d
)− 1

dh
arctan(

hs

d
√
h2 + d2 + s2

)]t
+

t− (B.7)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• S2(a, β, h, ξ)

S2(a, β, h, ξ) =

∫
β

f2(h, ||a− y||, ξ)dsy
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=

∫
β

h2−ξ

+∞∫
h

du

u3−ξ(u2 + ||a− y||2)
1+ξ

2

dsy (B.8)

S2(a, β, h, ξ) =

t+∫
t−

h2−ξ

+∞∫
h

du

u3−ξ(u2 + d2 + s2)
1+ξ

2

ds (B.9)

if ξ = 0

S2(a, β, h, 0) =

t+∫
t−

h2

+∞∫
h

du

u3(u2 + d2 + s2)
1
2

ds

[
h2 + d2

2d2
arcsinh(

s√
h2 + d2

)− sh2

2d2
√
s2 + d2

arcsinh(

√
d2 + s2

h
)]t

+

t− (B.10)

for ξ = 2

S2(a, β, h, 2) =

t+∫
t−

+∞∫
h

du

u(u2 + d2 + s2)
3
2

ds

=

t+∫
t−

− 1

(d2 + s2)
√
h2 + d2 + s2

+
1

(d2 + s2)
3
2

arcsinh
(
√
d2 + s2)

h
ds

= [
s

d2(
√
d2 + s2)

arcsinh(

√
d2 + s2

h
)− 1

d2
log(s+

√
d2 + h2 + s2)]t

+

t− (B.11)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• S3(a, β, h, ξ)

S3(a, β, h, ξ) =

∫
β

f3(h, ||a− y||, ξ)dsy

S3(a, β, h, ξ) =

t+∫
t−

h3−ξ

+∞∫
h

du

u4−ξ(u2 + d2 + s2)
1+ξ

2

ds (B.12)

if ξ = 0

S3(a, β, h, 0) =

t+∫
t−

2h3 + (
√
d2 + h2 + s2)(d2 + s2 − 2h2)

3(d2 + s2)2
ds
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=
1

3
[
h3s− h2s

√
d2 + h2s2

d2(d2 + s2)
+
h3 arctan( s

d
)

d3

−h
3

d3
arctan(

hs

d
√
d2 + h2 + s2

) + lg(s+
√
d2 + h2 + s2)] (B.13)

if ξ = 2

S3(a, β, h, 2) =

t+∫
t−

d2 + s2 + 2h2(h−
√
d2 + h2 + s2)

(d2 + s2)2
√
d2 + h2 + s2

ds

= [
s(−h+ s

√
d2 + h2 + s2)

d2(d2 + s2)
− h

d3
(arctan(

s

d
)− arctan(

hs

d
√
d2 + h2 + s2

))] (B.14)

B.3 Calculation of T1, T2 and T3

• T1(a, β, h, ξ)

T1(a, β, h, ξ) =

t+∫
t−

sf1(h,
√
d2 + s2, ξ)ds (B.15)

if ξ = 0

T1(a, β, h, 0) =

t+∫
t−

sh

+∞∫
h

du

u2(u2 + ||a− y||2)
1
2

ds

if ξ = 2

T1(a, β, h, 2) =

t+∫
t−

sh−1

+∞∫
h

du

(u2 + ||a− y||2)
3
2

ds

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• T2(a, β, h, ξ)

T2(a, β, h, ξ) =

t+∫
t−

sf2(h,
√
d2 + s2, ξ)ds (B.16)
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if ξ = 0

T1(a, β, h, 0) =

t+∫
t−

sh2

+∞∫
h

du

u3(u2 + ||a− y||2)
1
2

dsy

=

t+∫
t−

s
√
d2 + h2 + s2

2(d2 + s2)
− sh2

2(d2 + s2)
3
2

arcsinh(

√
d2 + s2

h
)ds

= [

√
d2 + h2 + s2

2
+

h2

2
√
d2 + s2

arcsinh(

√
d2 + s2

h
)]t

+

t− (B.17)

if ξ = 2

T1(a, β, h, 2) =

t+∫
t−

s

+∞∫
h

du

u(u2 + ||a− y||2)
3
2

ds

=

t+∫
t−

− s

(d2 + s2)
√
d2 + h2 + s2

+
s

(d2 + s2)
3
2

arcsinh(

√
d2 + s2

h
)ds

[− 1√
d2 + s2

arcsinh
(
√
d2 + s2

h
)]t

+

t− (B.18)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• T3(a, β, h, ξ)

T3(a, β, h, ξ) =

t+∫
t−

sf3(h,
√
d2 + s2, ξ)ds (B.19)

if ξ = 0

T3(a, β, h, 0) =

t+∫
t−

s

3(d2 + s2)2
(
√
d2 + h2 + s2(d2 + s2 − 2h2) + 2h3)ds

[
−h3 + (d2 + h2 + s2)3

2

3(d2 + s2)
]t

+

t− (B.20)
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if ξ = 2

T3(a, β, h, 2) =

t+∫
t−

sd2 + s3 + 2sh(h−
√
d2 + h2 + s2)√

d2 + h2 + s2(d2 + s2)2

[
h−
√
d2 + h2 + s2

d2 + s2
]t

+

t− (B.21)

B.4 Calculation of R1, R2 and R3

• R1(a, β, h, ξ)

R1(a, β, h, ξ) =
∫
β
(a− y)f1(h, ||a− y||, ξ)

=
∫
β
(a− y)h1−ξ ∫ +∞

h
du

u2−ξ(u2+||a−y||2)
1+ξ

2

dsy
(B.22)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• R2(a, β, h, ξ)

R2(a, β, h, ξ) =

∫
β

(a− y)f2(h, ||a− y||, ξ)dsy

= (a− q(a))

∫
β

f2(h, ||a− y||, ξ)dsy +

∫
β

(q(a)− y)f2(h, ||a− y||, ξ)dsy

= (a−q(a))

t+∫
t−

h2−ξ

+∞∫
h

du

u3−ξ(u2 + d2 + s2)
1+ξ

2

dsy−
~β

|β|

t+∫
t−

sh2−ξ

+∞∫
h

du

u3−ξ(u2 + d2 + s2)
1+ξ

2

dsy

(B.23)

wich is equivalent to

R2(a, β, h, ξ) = (a− q(a))S2(a, β, h, ξ)−
~β

|β|
T2(a, β, h, ξ) (B.24)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• R2(a, β, h, ξ)

R3(a, β, h, ξ) =

∫
β

(a− y)f3(h, ||a− y||, ξ)dsy
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= (a− q(a))

∫
β

f3(h, ||a− y||, ξ)dsy +

∫
β

(q(a)− y)f3(h, ||a− y||, ξ)dsy

= (a−q(a))

t+∫
t−

h3−ξ

+∞∫
h

du

u4−ξ(u2 + d2 + s2)
1+ξ

2

ds−
~β

|β|

t+∫
t−

sh3−ξ

+∞∫
h

du

u4−ξ(u2 + d2 + s2)
1+ξ

2

ds

(B.25)

wich is equivalent to

R3(a, β, h, ξ) = (a− q(a))S3(a, β, h, ξ)−
~β

|β|
T3(a, β, h, ξ) (B.26)

B.5 Calculation of Sψq2

• Sψq2 (a, β, h, ξ)

S
ψq
2 (a, β, h, ξ) =

∫
β

ψq(y)f2(h, ||a− y||, ξ)dsy (B.27)

We remind that, on a stop βq, the basis function ψq vanishes. So, the calculations will be

performed only on β = βq+1 and β = βq+2.The basis function ψq on β can be written as

follows

ψq|β(y) = 1− |y − bq|
|β|

(B.28)

Which give

S
ψq
2 (a, β, h, ξ) =

∫
β

f2(h, ||y − a||, ξ)dsy −
1

|β|

∫
β

(y − bq)f2(h, ||y − a||, ξ)dsy

=

t+∫
t−

f2(h,
√
d2 + s2, ξ)ds− ε

|β|

t+∫
t−

(z − s)f2(h,
√
d2 + s2, ξ)dsy (B.29)

where ε = −1 if bq = b−, ε = 1 if bq = b+ and z is the abscissa of bq Finally, we obtain

S
ψq
2 (a, β, h, ξ) = (1− εz

|β|
)S2(a, β, h, ξ) +

ε

|β|
T2(a, β, h, ξ) (B.30)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

128



CHAPTER C

Integral formulation of Maxwell equation

C.1 Properties of integral operators

Some solutions of the problems of diffraction of electromagnetic waves can be expressed

with the help of potential of single and dual layer defined on the surface of the obstacle. We

present here the properties of the harmonic potential.

Definition C.1.1. We introduce the potentials (B − S) and Q, that are defined by

(B − S)J :=

∫
Γ

(
G(x, y)J(y) +

1

k2
∇xG(x, y)divΓJ

)
dΓ(y) (C.1)

QM :=

∫
Γ

∇yG(x, y)×MdΓ(y) (C.2)

and G(x, y) is the Green kernel giving the outgoing solutions to the scalar Helmholtz equa-

tion:

G(x, y) :=
e−ik|x−y|

4π|x− y|
, ∇xG(x, y) := −(1 + ik|x− y|)

4π|x− y|3
e−ik|x−y|(x− y) (C.3)

According to theorem 4.6 in [38](Chapter I, p.43) we have:

Theorem C.1.1. The operator Q is continuous from H−1/2(div,Γ) to H−1/2(rot,Γ) and we

have that:

|(n×Q+
I

2
)M|−1/2,divΓ

≤ C|M|−1/2,divΓ
∀M ∈ H−1/2(div,Γ) (C.4)
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According to theorem 2.2 in [38](Chapter II, p.61) we have:

Theorem C.1.2. The operator (B−S) is an isomorphisme fromH−1/2(div,Γ) toH−1/2(rot,Γ)

and it verifies the inequality:

‖(B − S)φ‖−1/2,rotΓ
≤ C‖φ‖−1/2,divΓ

(C.5)

and the coercivity relation ∀φ ∈ H−1/2(div,Γ):

<(< φ, (B − S)φ >) ≥ C‖φ‖2
−1/2,divΓ

(C.6)

C.1.1 Fredholm alternative

Let us mention the abstract theorems known as Fredholm alternative [48].

Theorem C.1.3. Let V be a Hilbert space. Let H be a Hilbert space which contains V . Let

a(u, v) be continuous bilinear form on V × V which satisfies:

<[a(u, v)] ≥ α‖u‖2
V − c‖u‖2

H , α > 0,∀u ∈ V. (C.7)

We consider the variational problem

a(u, v) = (g, v); ∀v ∈ V ; g ∈ V ∗.

Suppose that the injection of V into H is compact. Then the variational problem (VP)

satisfies the Fredholm alternative i.e.

- either it admits a unique solution in V ,

- or it has a finite dimensional kernel and a unique solution up to any element in this kernel,

when the duality product of the right-hand side g vanishes on every element in this kernel.

We take the existence and uniqueness theorem from [48] (p.245, Theorem 5.6.1).

Theorem C.1.4. (Existence and uniqueness): Let V and W be Hilbert spaces. Let A(., .) be

a bilinear form continuous on V × V which satisfies

<[A(u, ū)] ≥ α‖u‖2
V − C‖u‖2

H , α > 0, ∀u ∈ V (C.8)

where H is Hilbert space containing V . Let B(q, v) be a bilinear form continuous on W ×V
which satisfies:

sup
‖u‖V =1

|B(q, u)| ≥ β‖q‖W − C‖q‖L, β > 0, ∀q ∈ W (C.9)
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where L is a Hilbert space containing W .

Consider the following variational problem, with g1 ∈ V ∗ and g2 ∈ W ∗:{
A(u, v) +B(p, v) = (g1, v) ∀v ∈ V
B(q, u) = (g2, q) ∀q ∈ W

(C.10)

Denote by V0 the kernel of the bilinear form B in V , i.e.

V0 = {u ∈ V, B(q, u) = 0, ∀q ∈ W}

Suppose that the injection form V0 into H is compact and the injection from W into L is

compact. Suppose that there exists an element ug2 ∈ V such that:

B(q, ug2) = (g2, q), ∀q ∈ V.

Then the variational problem (C.10) satisfies the Fredholm alternative, i.e.

-either it admits a unique solution in V ×W ,

-or it admits a finite dimensional kernel, and a solution defined up to any element in this

kernel, when the right-hand side (g1, g2) vanishes on any element in this kernel.

C.2 Integral formulation of the problem

We are looking for a presentation of the fields (E,H) outside the object in terms of electro-

magnetic currents (J,M) on the surface Γ [48]. We have Maxwell’s equations on the surface

Γ : rotE− ikZ0H = MδΓ

rotH + ikZ−1
0 E = JδΓ

(C.11)

The superposition theorem lets us consider two cases. In the first case we suppose that M = 0,

in the second J = 0. In both cases we want to get E and M expressions in terms of J and M.

After we combine these cases to get the general form of fields E and M. In case M = 0, we

are looking for E in the form

E = A +∇V (C.12)
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with Lorentz gauge condition divA = k2V . The divergence of the second equation of (C.11)

with support of gauge condition, shows that V satisfies scalar Helmholtz equation

ikZ−1
0 divE = divJ (C.13)

divA + div∇V =
1

ikZ−1
0

divJ (C.14)

∆V + k2V = −ik−1Z0divJ (C.15)

It can be expressed as a potential simple layer density of −ik−1Z0divJ

V (x) = ik−1Z0

∫
Γ

G(x, y)divΓJ(y)dy (C.16)

In this expression G is the Green kernel, fundamental solution of Helmholtz equation, i.e.

verifies Maxwell’s equations and radiation condition.

We have that A verifies the next vector Helmholtz equation

∆A + k2A = ∇divA− rot(rotA) + k2A (C.17)

According to earlier condition the right side of the first term is equal to k2∇V . When (C.12)

allows us to express (C.17) as

k2∇V − rot(rotA) + k2E− k2∇V = k2E− rot(rotE) = −ikZ0J

The last equivalence derived from Maxwell’s equations (C.11).

Then A is a potential of simple layer density −ikZ0J. So we can write

A(x) = ikZ0

∫
Γ

G(x, y)J(y)dy (C.18)

E(x) = ikZ0

∫
Γ

G(x, y)J(y)dy +
1

k2
∇x

∫
Γ

G(x, y)divΓ · J(y)dy

 (C.19)

H(x) =
1

ikZ0

rotE = rot

∫
Γ

G(x, y)J(y)dy (C.20)

We write them via the operatorsE(x) = ikZ0(B − S)J(x)

H(x) = −QJ(x)
(C.21)
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where (B − S) and Q are the potentials defined in (C.1),(C.2):

(B − S)J(x) =

∫
Γ

G(x, y)J(y) +
1

k2
∇xG(x, y)divΓJ(y)dy (C.22)

QJ(x) = −rotx

∫
Γ

G(x, y)J(y)dy =

∫
Γ

∇xG(x, y)× J(y)dy (C.23)

By an argument of symmetry, the second case J = 0 derives the same way

E(x) = rotx

∫
Γ

G(x, y)M(y)dy (C.24)

H(x) = −ikZ−1
0

∫
Γ

G(x, y)M(y)dy +
1

k2
∇y

∫
Γ

G(x, y)divΓM(y)dy

 (C.25)

Potentials express E(x) = QM(x)

H(x) = −ikZ−1
0 (B − S)M(x)

(C.26)

Finally we combine (C.21) and (C.26) to get Stratton-Chu formula:E(x) = ikZ0(B − S)J(x)−QM(x)

H(x) = −QJ(x) + ikZ−1
0 (B − S)M(x)

(C.27)

These expressions are valid in external domain Ω+. The impedance condition associates

fields values on a boundary Γ. We have to determine external limit values on Γ. Using the

classical jump relations, we can express the respective limiting boundary tangential values of

E and H by Einc
tg = ikZ0(B − S)J(x)−QM + 1

2
Etg

Hinc
tg = −QJ + ikZ−1

0 (B − S)M(x) + 1
2
Htg

(C.28)

We recall that on a boundary, we have

Etg = n×M

Htg = −n× J

where the subscript t designates the tangential component Etg := n×(E×n) of the respective

vector field on Γ.
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Thus the electromagnetic field can be expressed in Ω+ in terms of the equivalent currents

and charges by the familiar Stratton-Chu formulaEinc
tg = ikZ0(B − S)J(x)−QM + 1

2
n×M

Hinc
tg = −QJ + ikZ−1

0 (B − S)M(x)− 1
2
n× J

(C.29)

Or in integral form

Einc
tg = ikZ0

∫
Γ

(
G(x, y)J(y) + 1

k2∇xG(x, y)divΓJ
)
dy

+1
2
n×M−

∫
Γ
∇xG(x, y)×Mdy

Hinc
tg = −1

2
n× J−

∫
Γ
∇xG(x, y)× Jdy

+ikZ−1
0

∫
Γ

(
G(x, y)M(y) + 1

k2∇xG(x, y)divΓM
)
dy

(C.30)

Later, to write variational formulation, we will multiply it by a test function and integrate

over the surface Γ.
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