
HAL Id: tel-02284435
https://theses.hal.science/tel-02284435

Submitted on 11 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of system-on-chip devices for embedded
real-time simulators of electrical systems

Daniel Tormo Borreda

To cite this version:
Daniel Tormo Borreda. Evaluation of system-on-chip devices for embedded real-time simulators of
electrical systems. Electronics. Université de Cergy Pontoise, 2018. English. �NNT : 2018CERG0969�.
�tel-02284435�

https://theses.hal.science/tel-02284435
https://hal.archives-ouvertes.fr

E VA L U AT I O N O F S Y S T E M - O N - C H I P D E V I C E S F O R E M B E D D E D
R E A L - T I M E S I M U L AT O R S O F E L E C T R I C A L S Y S T E M S

daniel tormo borredà

A dissertation for becoming Doctor of Philosophy in
Electrical and Electronic Engineering

11th July 2018 – version 1.1

Année 2018

Université Paris Seine

THÈSE

Présentée pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PARIS SEINE
École doctorale: Sciences et Ingénierie

Spécialité: Génie Électrique et Électronique

Soutenue publiquement le 11 Juillet 2018 par

daniel tormo borredà

E VA L U AT I O N O F S Y S T E M - O N - C H I P D E V I C E S F O R E M B E D D E D
R E A L - T I M E S I M U L AT O R S O F E L E C T R I C A L S Y S T E M S

Laboratoire de Systèmes et Applications des Technologies
de l’Information et de l’Énergie (SATIE) - CNRS UMR8029

Devant le Jury composé par

Président : Prof. Serge PIERFEDERICI Univ. de Lorraine

Rapporteurs : Prof. Guillaume GATEAU Univ. de Toulouse

Prof. Mickaël HILAIRET Univ. de Franche-Comté

Examinateur : Prof. Ramón BLASCO-GIMÉNEZ Univ. Politècnica de València

Directeur de Thèse : Prof. Eric MONMASSON Univ. Paris Seine

Co-encadrant de Thèse : Ph.D. Lahoucine IDKHAJINE Univ. Paris Seine

Daniel Tormo Borredà: Evaluation of System-on-Chip devices for Embedded Real-Time Simulators
of Electrical Systems, A dissertation for becoming Doctor of Philosophy in Electrical and Elec-
tronic Engineering, © 11th July 2018

Per als meus pares i germans. Per als meus nebots. Per a tots aquells que en major o menor
mesura m’han ajudat a ser la persona que sóc. Esta tesi no haguera sigut possible sense tots

vosaltres.

A tots, gràcies de tot cor.

I recordeu: sigueu curiosos. La curiositat és la recerca constant de coneixement.

— D. Tormo

To my parents and brothers. To my niece and nephews. To all those who to a greater or
lesser extent have helped me become the person I am. This thesis would not have been

possible without all of you.

Thank you very much indeed.

And remember: be curious, because curiosity is the constant pursuit of knowledge.

— D. Tormo

A B S T R A C T

This Doctoral Thesis is a detailed study of how suitable System-on-Chip (SoC) devices are
for implementing Embedded Real-Time Simulators (eRTS) of electromechanical and power elec-
tronic systems. This emerging class of Real-Time Simulators (RTS) are not only expected for
Hardware-in-the-Loop (HIL) validations of systems; but they also have to be embedded within
the controller to play several roles like observers, parameter estimation, diagnostic, health
monitoring, fault-tolerant and sensorless control, etc.

The design of these Intellectual Properties (IP) must rigorously consider a set of constraints at
different development stages: (i) during the modeling of the system to be real-time simulated;
(ii) during the digital realization of the IP; and also (iii) during its final implementation in
the digital platform. Thus, the conducted work of this Thesis focuses specially on this last
stage and its aim is to evaluate the time/resource performances of recent SoC devices and
study how suitable they are for implementing eRTSs. These kind of digital platforms com-
bine powerful general purpose processors, a Field-Programmable Gate Array (FPGA) and other
peripherals which make them very convenient for controlling and monitoring a complete
system.

One of the limitations of these devices is that control engineers are not particularly famil-
iarized with FPGA programming, which needs extensive expertise in order to code these
highly sophisticated algorithms using Hardware Description Languages (HDL). Notwithstand-
ing, there exist High-Level Synthesis (HLS) tools which allow to program these devices using
more generic programming languages such as C, C++ or SystemC. Moreover, by inserting
directives and constraints to the source code, these tools can produce different hardware im-
plementations (e.g. full-combinatorial design, pipelined design, parallel or factorized design,
partition or arrange data for a better utilisation of memory resources, etc.).

This dissertation is based on the implementation of two representative applications that
are well known in our laboratory: a Doubly-fed Induction Generator (DFIG) commonly used as
wind turbines; and a Modular Multi-level Converter (MMC) that can be arranged in different
configurations and utilized for many different energy conversion purposes. Since the DFIG
has low/medium system dynamics (electrical and mechanical ones), both a full-software im-
plementation using solely the ARM processor and a full-hardware implementation using HLS
to program the FPGA will be evaluated with different design optimizations and data formats
(64/32-bit floating-point and 32-bit fixed-point). Moreover, it will also be investigated whether
a system of these characteristics is interesting to be run as a hardware accelerator. Different data
transfer options between the Processor System (PS) and the Programmable Logic (PL) have been
studied as well for this matter. Conversely, because of its harsh dynamics (switching dynam-
ics), the MMC will be implemented only with a full-hardware approach using HLS tools, as
well.

For the experimental validation of this Thesis work, a complete MMC test bench has been
built from scratch in order to compare the real-world results with its SoC eRTS implementa-
tion.

Keywords – Embedded Real-Time Simulator, System-on-Chip, High-Level Synthesis, Modu-
lar Multi-level Converter, Field-Programmable Gate Array

vii

R É S U M É

L’objectif de ce travail de Thèse est d’évaluer les capacités de composants numérique de
type Système-sur-Puce (SoC en anglais) pour l’implantation de Simulateurs Temps Réel Embar-
qués (eRTS en anglais) de systèmes électromécaniques et d’électronique de puissance. En ef-
fet, l’utilisation de ces simulateurs n’est pas seulement limitée aux validations matériel dans
la boucle (en anglais Hardware-in-the-Loop ou HIL) du système mais doivent également être
embarqués avec le contrôleur afin d’assurer plusieurs fonctionnalités additionnelles comme
l’observation, l’estimation, commande sans capteur (ou sensorless), le diagnostic ou la surveil-
lance de la santé, commande tolérante aux défauts, etc.

La réalisation de ces simulateurs doit néanmoins considérer plusieurs contraintes à plusieurs
niveaux de développement : durant la modélisation de la partie du système à simuler en
temps-réel, durant la réalisation numérique et enfin durant l’implantation sur le composant
numérique utilisé. Ainsi, le travail réalisé durant cette Thèse s’est focalisé sur ce dernier
niveau et l’objectif était d’évaluer les capacités temps/ressources des composants de type SoC
pour l’implantation de modules eRTS. Ce type de plateformes intègrent dans un même com-
posant de puissants processeurs, un circuit logique programmable (Field-Programmable Gate
Array ou FPGA), et d’autres périphériques, ce qui offre plusieurs opportunités d’implantation.

Afin de pallier les limitations liées au codage VHDL de la partie FPGA, il existe des out-
ils High-Level Synthesis (HLS) qui permettent de programmer ces dispositifs en utilisant des
langages à haut niveau d’abstraction comme C, C++ ou SystemC. De plus, en incluant des
directives et contraintes au code source, ces outils peuvent produire des implémentations
matérielles différentes (architecture totalement combinatoire, « pipeline », architecture paral-
lélisées ou factorisées, arranger les données et leurs formats pour une meilleure utilisation
des ressources de mémoire, etc.).

Dans le but d’évaluer ces différentes implantations, deux cas d’études ont été choisis : le
premier se compose d’un Générateur Asynchrone à Double Alimentation (GADA) et le second
d’un Convertisseur Modulaire Multiniveau (ou Modular Multi-level Converter - MMC). Vu que
la GADA a une dynamique basse/moyenne (dynamiques électriques et mécaniques), deux
versions d’implantations ont été évaluées : (i) une implantation full-software en utilisant seule-
ment les processeurs ARM; et (ii) une implantation full-hardware en utilisant l’outil HLS pour
programmer la partie FPGA. Ces deux versions ont été évaluées avec différentes optimisa-
tions du compilateur et trois formats de données: 64/32-bit en virgule flottante, et 32-bit en
virgule flottante. L’approche mixe software/hardware a également été évaluée à travers la carac-
térisation des transferts de données entre le processeur et l’IP eRTS implantée dans la partie
FPGA. Quant au convertisseur MMC, sa complexité et sa forte dynamique (dynamique de
commutation) impose une implantation exclusivement full-hardware. Celle-ci a également été
réalisée à base d’outils HLS.

Enfin pour la validation expérimentale de ce travail de Thèse, une maquette à base de
convertisseur MMC a été construite dans le but de comparer des mesures du système réel
avec les résultats fournis par l’IP eRTS.

Mots clés – Simulateurs en temps réel embarqués, Système-sur-puce, Synthèse de haut
niveau, Convertisseur Modulaire Multiniveaux, Field-Programmable Gate Array

ix

R E S U M

L’objectiu d’aquest treball de Tesi és avaluar les capacitats de dispositius digitals de tipus
System-on-Chip (SoC) per a la implantació de Simuladors en Temps Real Embarcats (Embedded
Real-Time Simulators o eRTS en anglès) de sistemes electromecànics i d’electrònica de potèn-
cia. Aquesta classe emergent de Simuladors en Temps Real (RTS) no estan pensats només per a
realitzar validacions de controladors amb Hardware-in-the-Loop (HIL); aquests deuen estar em-
barcats amb el controlador per a executar diferents tasques tals com observadors, estimació de
paràmetres, diagnòstic, monitorització de l’estat de salut del sistema, control amb tolerància
a fallades o sensorless, etc.

El disseny d’aquestes Propietats Intel·lectuals (IP) deu considerar rigorosament certes restric-
cions en cadascuna de les etapes de desenvolupament: (i) durant el modelat del sistema a
ser simulat en temps real; (ii) durant la discretització de l’IP; i també (iii) durant la fase final
d’implementació en la plataforma digital escollida. Per això, el present treball s’enfoca especí-
ficament en aquesta última etapa i el seu objectiu és avaluar el rendiment considerant temps
d’execució i recursos utilitzats dels dispositius SoC i estudiar quant apropiats són per a im-
plementar eRTSs. Aquests tipus de plataformes combinen potents processadors de propòsit
general, Field-Programmable Gate Arrays (FPGA), juntament amb altres perifèrics que els fan
molt adequats per a controlar i monitoritzar un sistema complet.

Una de les limitacions d’aquests dispositius és que els enginyers de control no estan partic-
ularment familiaritzats amb la programació d’FPGAs, els quals requereixen una gran exper-
iència per a programar els algoritmes altament sofisticats utilitzant Llenguatges de Descripció
Hardware (HDL). No obstant això, existixen ferramentes de Síntesi d’Alt Nivell (High-Level
Synthesis en anglès o HLS) que permeten programar aquests dispositius utilitzant llenguatges
de programació més genèrics tals com C, C++ o SystemC. A més a més, inserint directives i
restriccions al codi font, aquestes ferramentes poden produir diferents implementacions hard-
ware (e.g. disseny completament combinacional, disseny segmentat, disseny paral·lel o fac-
toritzat, partint o reordenant les dades per a una millor utilització dels recursos de memòria,
etc.).

Aquesta dissertació està basada en la implementació de dos aplicacions representatives que
són ben conegudes al nostre laboratori: un Generador Inductiu Doblement Alimentat (Doubly-fed
Induction Generator en anglès o DFIG) utilitzat normalment en turbines eòliques; i un Con-
vertidor Modular Multinivell (Modular Multi-level Converter o MMC) que pot ser assemblat
en diferents configuracions i utilitzat en diverses aplicacions de conversió d’energia. Ja que
el DFIG té dinàmiques baixes/mitjanes (elèctriques i mecàniques), dos implementacions una
completament software usant només el processador ARM i una completament hardware util-
itzant HLS per a programar l’FPGA seran avaluades utilitzant diferents optimitzacions i for-
mats de dades (64/32-bit en coma flotant i 32-bit en coma fixa). A més a més, serà investigat
si un sistema d’aquestes característiques és adequat d’ésser implementat com a accelerador
hardware. Diferents modes de transferència de dades entre el Sistema Processador (PS) i la Lòg-
ica Programable (PL) han sigut estudiades per a aquest propòsit. Contràriament, a causa de les
dinàmiques exigents de l’MMC (dinàmiques de commutació), aquest només serà implementat
completament en hardware utilitzant també ferramentes HLS.

xi

Per a la validació experimental d’aquest treball de Tesi, una maqueta completa d’un MMC
ha sigut construïda des de zero per tal de comparar resultats reals amb el seu eRTS imple-
mentat en un SoC.

Keywords – Simuladors en Temps Real Embarcats, System-on-Chip, Síntesi d’alt nivell, Con-
vertidor Modular Multinivell, Field-Programmable Gate Array

xii

P U B L I C AT I O N S

The following publications have been issued during the development of this dissertation:

Published papers

[1] Daniel Tormo, Lahoucine Idkhajine, Eric Monmasson, Ramón Blasco-Gimenez, Evalua-
tion of SoC-based embedded real-time simulators for electromechanical systems, presented at:
IECON 2016 - 42nd Annual Conference of IEEE Industrial Electronics Society, 23-26

October, Florence, Italy. DOI: 10.1109/IECON.2016.7793185

[2] Daniel Tormo, Lahoucine Idkhajine, Eric Monmasson, Ramón Blasco-Gimenez, Embedded
real-time simulator implementations of electromechanical systems using system-on-chip devices,
presented at: ELECTRIMACS 2017, 4-6 July, Toulouse, France.

[3] Daniel Tormo, Ricardo Vidal-Albalate, Lahoucine Idkhajine, Eric Monmasson, Ramón
Blasco-Gimenez, Study of system-on-chip devices to implement embedded real-time simulators
of modular multi-level converters using high-level synthesis tools, presented at: 2018 IEEE
International Conference on Industrial Technology (ICIT), 20-22 February, Lyon, France.
DOI: 10.1109/ICIT.2018.8352393

[4] Daniel Tormo, Ricardo Vidal-Albalate, Lahoucine Idkhajine, Eric Monmasson, Ramón
Blasco-Gimenez, Modular multi-level converter hardware-in-the-loop simulation on low-cost
system-on-chip devices, will be presented at: IECON 2018 - 44th Annual Conference of
IEEE Industrial Electronics Society, 21-23 October, Washington DC, USA.

Publication pending

[5] Daniel Tormo, Ricardo Vidal-Albalate, Lahoucine Idkhajine, Eric Monmasson, Ramón
Blasco-Gimenez, Embedded real-time simulators for electromechanical and power electronic
systems using system-on-chip devices, to be published in a special issue of Transactions of
IMACS - Mathematics and Computers in Simulation (MATCOM) from Elsevier.

xiii

https://doi.org/10.1109/IECON.2016.7793185
https://doi.org/10.1109/ICIT.2018.8352393
https://www.journals.elsevier.com/mathematics-and-computers-in-simulation/

Great minds discuss ideas;
Average minds discuss events;

Small minds discuss people.

— Eleanor Roosvelt

A C K N O W L E D G M E N T S

I would like to give special thanks to Professor Eric Monmasson, Professor Ramón Blasco
Giménez and Dr. Lahoucine Idkhajine for guiding me in the longest and darkest hours of this
PhD experience. It was indeed a hell of an experience, in the good sense.

Special mention as well to all the administrative staff of the Université Paris Seine (formerly
Université de Cergy-Pontoise): to Mme. Aude Brebant, to Mme. Marie-Hélène Moreau and
specifically to Don Abasse Boukary; for his kindness, his always smiling face, and because he
always had a solution for no matter what problem I had. Thanks a lot indeed Abasse!

Other people who I want to show my gratitude is to Mr. Miguel Albero Gil, Mr. Raúl Moril-
las Pérez, Dr. Ricardo Vidal Albalate, and Professor Ramón Blasco Giménez. The experimental
work accomplished in Chapter 5 that was carried out at the Institut d’Automàtica i Informàtica
Industrial (AI2) at the Universitat Politècnica de València (UPV), Spain, would not have been
possible without their help and effort.

Thanks as well to the amazing colleagues I met in the laboratory: to Wided Zine who was
always bringing sweets from Tunisia and rushing to get the RER A; to Gianluca Vicidomini
and Sarah Ciaglia for the amazing trips to Normandie, Bretagne and the amazing week in
Salerno; to Amina Mseddi who brought sweets and food as well and for our conversations
letting us learn more about our different cultures; to Hanen Arfaoui for her discussions about
life and for her mama’s harissa; and to Fabio and Marco, for their Italian coffee and the coffee
maker they let me!

And last but not least to Mathilde Hay, parce que sans toi, ces trois années de thèse à Paris
n’auraient pas été aussi spéciales et amusantes. Merci de tout cœur pour tout ce temps qu’on
a passé ensemble, pour ta patience, pour ne pas t’énerver contre moi pour arriver trop tard
à diner chez toi, pour ces escapades touristiques qui m’aidaient à reprendre des forces pour
continuer, et parce que si je parle français aussi bien c’est grâce à toi Coucou ! Il y a pas
de mots pour exprimer les remerciements que je devrais te faire. Merci beaucoup ma chère
Mathilde.

xv

C O N T E N T S

i general introduction and state of the art

1 general introduction 3

1.1 Thesis objectives and author contributions . 4

1.2 Thesis outline . 5

2 state of the art 7

2.1 Introduction . 7

2.2 What is an Embedded Real-Time Simulator? . 7

2.3 eRTS development (I) : System modeling . 9

2.4 eRTS development (II) : Digital realization . 9

2.4.1 Numerical solver . 10

2.4.2 Time-step selection . 10

2.4.3 Data representation . 12

2.5 eRTS development (III) : Digital implementation 12

2.6 System-on-Chip devices . 14

2.6.1 General overview . 14

2.6.2 ARM Cortex-A9 hardware accelerators . 17

2.6.3 PS-PL interfacing . 18

2.7 Design tools and methodology . 19

2.8 Chapter conclusions . 21

ii case applications

3 erts for electromechanical systems : the dfig case 25

3.1 Introduction . 25

3.2 The methodology . 25

3.3 Case application description: The DFIG . 29

3.3.1 DFIG dynamic equations in the dq reference frame 30

3.3.2 The controller . 34

3.4 Discretization methods comparison . 34

3.4.1 Euler method . 36

3.4.2 Tustin method . 36

3.4.3 C-code implementation . 36

3.4.4 Full-software implementation of both discretizations 38

3.4.5 Full-hardware implementation of both discretizations 39

3.4.6 Discretization results and conclusion . 39

3.5 Full-software Euler implementation . 40

3.5.1 64-bit floating-point full-software implementation 40

3.5.2 32-bit floating-point full-software implementation 41

3.5.3 Full-software implementation conclusions 41

3.6 Full-hardware Euler implementation . 41

3.6.1 32-bit floating-point full-hardware implementation 42

3.6.2 32-bit fixed-point full-hardware implementation 42

3.6.3 Full-hardware implementation conclusions 43

3.7 Hardware-Software co-design . 43

xvii

3.7.1 Hardware accelerator using OCM . 44

3.7.2 Hardware accelerator using BRAM . 45

3.7.3 Hardware-software co-design conclusions 45

3.8 Chapter conclusions . 45

4 erts for power electronic systems : the mmc case 47

4.1 Introduction . 47

4.2 The methodology . 47

4.3 Case application description: The MMC . 48

4.4 MMC numerical models . 50

4.4.1 MMC model classification . 50

4.4.2 The simplified model . 51

4.5 Discretization . 53

4.6 Hardware implementation . 54

4.6.1 Description of the IP . 55

4.7 Results . 56

4.7.1 Resources usage . 56

4.7.2 Execution time . 57

4.7.3 Precision . 59

4.8 Chapter conclusions . 59

iii experimental validation

5 application of an erts in an experimental prototype 63

5.1 Introduction and objectives . 63

5.2 Software/hardware co-design description . 63

5.2.1 Zynq block design . 67

5.2.2 IP descriptions and configurations . 67

5.2.3 The C code . 76

5.3 Experimental results . 81

5.3.1 PSCAD MMC model . 82

5.3.2 HLS MMC model implementation . 86

5.3.3 Control verification using the MMC IP as HIL 88

5.3.4 Control verification with experimental prototype 91

5.3.5 eRTS for cell voltage estimation and fault-tolerant control 97

5.4 Chapter conclusions . 109

iv general conclusions and perspectives

6 general conclusions 113

7 perspectives 115

7.1 Minimise the eRTS execution time . 115

7.2 Improve eRTS model . 115

7.3 Increase the number of SM to be controlled . 115

7.4 Implement new converter topologies . 116

7.5 Test new control strategies . 116

7.6 eRTS current estimator for fault-tolerant control 116

v appendix

a experimental test bench 119

a.1 Introduction . 119

a.2 Test bench description . 121

xviii

a.2.1 The Half-Bridge sub-module . 121

a.2.2 Control System . 121

b mmc state space model parameters 129

xix

L I S T O F F I G U R E S

Figure 2.1 Real-Time systems classification . 8

Figure 2.2 Real-time execution tasks . 10

Figure 2.3 Effect of time-step selection when discretizing 11

Figure 2.4 Interfacing errors . 12

Figure 2.5 Microsemi’s SmartFusion2 SoC FPGA [credit: Microsemi Corp.] 15

Figure 2.6 Intel’s Cyclone V SoC [credit: Intel Corp.] 16

Figure 2.7 Xilinx’s Zynq-7000 All Programmable SoC [credit: Xilinx Inc.] 16

Figure 2.8 NEON operations [credit: Xilinx Inc.] . 17

Figure 2.9 Zynq interfaces [credit: Mohammadsadegh Sadri] 19

Figure 3.1 DFIG as a standalone generator implemented in Simulink 27

Figure 3.2 Speed change test inputs . 27

Figure 3.3 Load change test inputs . 28

Figure 3.4 Different time-step synchronization . 29

Figure 3.5 DFIG diagram . 30

Figure 3.6 DFIG connected to an isolated load . 31

Figure 3.7 dq reference frame . 31

Figure 3.8 DFIG continuous model implementation in Simulink 33

Figure 3.9 Control diagram . 34

Figure 3.10 System signals . 35

Figure 3.11 DFIG IP block . 37

Figure 3.12 Algorithm execution time comparison on the ARM 39

Figure 3.13 PS-PL Interconnections. a) Using OCM. b) Using BRAM. 45

Figure 4.1 Structure of the MMC . 48

Figure 4.2 HB functioning modes . 49

Figure 4.3 Model evolution with decreasing complexity 50

Figure 4.4 a) MMC arm circuit, b) off-state SM, c) on-state SM 52

Figure 4.5 An IP block representing one phase of the MMC 55

Figure 4.6 FPGA resources usage when using no directives or pragmas 58

Figure 4.7 Execution time comparison . 59

Figure 5.1 Complete IP block diagram showing signal and data paths 64

Figure 5.2 FPGA hardware resources utilisation (%) 66

Figure 5.3 Vivado Block Design . 68

Figure 5.4 Zynq Processing System IP . 69

Figure 5.5 MMC HIL model IP . 69

Figure 5.6 Capacitor voltage eRTS IP . 71

Figure 5.7 PWM Generator IP . 72

Figure 5.8 CIC filter IP . 72

Figure 5.9 CIC filter structure for decimation (N = 3, M = 1) 73

Figure 5.10 CIC converter to float IP . 74

Figure 5.11 Capacitor overvoltage alarm IP . 75

Figure 5.12 XADC IP . 76

Figure 5.13 State Machine diagram including software initialization, MMC capaci-
tor charging, MMC normal operation and data retrieval 77

xx

Figure 5.14 Evolution of the input, output and capacitor voltages through the exe-
cution states . 79

Figure 5.15 PSCAD detailed model of the MMC . 83

Figure 5.16 MMC model validation: Output currents 85

Figure 5.17 MMC model validation: Phase output voltages 86

Figure 5.18 MMC model validation: Upper capacitor voltages 87

Figure 5.19 MMC model validation: Lower capacitor voltages 88

Figure 5.20 MMC model validation: Phase output currents - Detail 89

Figure 5.21 MMC model validation: Phase output voltages - Detail 90

Figure 5.22 MMC model validation: Upper capacitor voltages - Detail 91

Figure 5.23 MMC model validation: Lower capacitor voltages - Detail 92

Figure 5.24 Energy controllers . 92

Figure 5.25 Current controllers . 93

Figure 5.26 Capacitor balancing controllers . 93

Figure 5.27 MMC IP working as HIL . 94

Figure 5.28 Input voltage and HIL estimated output voltage and currents - Com-
plete simulation . 94

Figure 5.29 HIL estimated capacitor voltages - Complete simulation 95

Figure 5.30 HIL estimated capacitor voltages - Capacitor oscillations 95

Figure 5.31 Input voltage and HIL output voltage and currents. At 4.5s the control
starts operating . 96

Figure 5.32 Input voltage and HIL estimated output voltage and currents. Load
switched in at 6.5s . 96

Figure 5.33 Input voltage and HIL estimated output voltage and currents. Load
switched out at 7.5s . 97

Figure 5.34 Test bench input and output voltages and output currents (from 0s to
5.5s) . 98

Figure 5.35 Test bench capacitor voltages (from 0s to 5.5s) 98

Figure 5.36 Test bench input and output voltages and output currents(from 3.48s
to 3.6s) . 99

Figure 5.37 Test bench capacitor voltages (from 3.48s to 3.6s) 99

Figure 5.38 eRTS for fault-tolerant control diagram 101

Figure 5.39 Current offset observer and Capacitor voltage eRTS diagram 102

Figure 5.40 eRTS upper cell voltage estimation during normal operation 103

Figure 5.41 eRTS lower cell voltage estimation during normal operation 103

Figure 5.42 eRTS upper cell voltage estimation during change from normal opera-
tion mode to fault mode at 5.5s . 104

Figure 5.43 eRTS lower cell voltage estimation during change from normal opera-
tion mode to fault mode at 5.5s . 105

Figure 5.44 Upper capacitor voltage error . 105

Figure 5.45 Lower capacitor voltage error . 106

Figure 5.46 eRTS upper cell voltage estimation during change from normal opera-
tion mode to fault mode at 5.5s - Detail 106

Figure 5.47 eRTS lower cell voltage estimation during change from normal opera-
tion mode to fault mode at 5.5s - Detail 107

Figure 5.48 Vout reconstruction . 108

Figure 5.49 Vout reconstruction switching the Capacitor voltage eRTS in at 5.5s . . . 108

Figure A.1 Test bench main diagram - Control system 120

Figure A.2 Test bench main diagram - Power converter 120

xxi

Figure A.3 Picture of the experimental prototype . 121

Figure A.4 Rack picture - Front . 122

Figure A.5 Rack picture - Back . 122

Figure A.6 Half-Bridge sub-module picture . 123

Figure A.7 Half-Bridge rack diagram . 123

Figure A.8 Control board picture . 124

Figure A.9 Fiber optics interface . 125

Figure A.10 Protection board . 126

Figure A.11 Protection board diagram . 126

Figure A.12 Current and voltage sensor . 127

L I S T O F TA B L E S

Table 2.1 FPU instruction throughput and latency cycles 18

Table 3.1 Number of operations to be executed . 37

Table 3.2 Best execution times (per iteration) on the ARM 39

Table 3.3 Latency and area utilisation on the Zynq-7020 40

Table 3.4 64-bit floating-point average errors (software version) 40

Table 3.5 32-bit floating-point average errors (software version) 41

Table 3.6 32-bit floating-point absolute average errors (hardware version) 42

Table 3.7 32-bit fixed-point absolute average errors (hardware version) 43

Table 3.8 FPGA hardware resources utilisation (32-bit) 43

Table 4.1 Execution time (in µs) . 57

Table 4.2 Precision results for va . 59

Table 5.1 FPGA hardware resources utilisation . 66

Table 5.2 HLS IPs execution times using a 100MHz clock 66

Table 5.3 MMC HIL Execution time per state . 81

L I S T E D E S S Y M B O L E S

ADC Analog-to-Digital Converter

AMBA Advanced Microcontroller Bus Architecture

AXI Advanced Extensible Interface

CPLD Complex Programmable Logic Device

DAC Digital-to-Analog Converter

DDR Double Data Rate memory

xxii

DFIG Doubly-Fed Induction Generator

DMA Direct Memory Access

ERTS Embedded Real-Time Simulator

FPGA Field-Programmable Gate-Array

HB Half-Bridge

HDL Hardware Description Languages

HLS High-level Synthesis

I/O Input/Output

IP Intellectual Property

MMC Modular Multi-level Converter

MSPS Mega Sample Per Second

OCM On-chip Memory

OPAMP Operational Amplifier

PCB Printed Circuit Board

PL Programmable Logic

PS Processor System

PWM Pulse-Width Modulation

QoS Quality-of-Service

RT Real-Time

RTL Register Transfer Level

SM Submodule

SoC System-on-Chip

VHDL VHSIC Hardware Description Language

XADC Xilinx Analog-to-Digital Converter

xxiii

Part I

G E N E R A L I N T R O D U C T I O N A N D S TAT E O F T H E A RT

1
G E N E R A L I N T R O D U C T I O N

In the course of the last two decades, real-time digital simulation has been under the focus of
important research in almost any area of engineering. Its aim is mainly to provide control en-
gineers with another testing scenario right after the offline simulation verification –but much
closer to reality than this one, before its trial and deployment on the real plant. Actually, a
real-time simulation differs from a standard offline simulation in that the system behavior
is simulated in natural time by implementing its dynamical model on hardware. As a con-
sequence, the design of a Real-Time Simulator (RTS) includes additionnal constraints to the
development cycle which can be classified in three levels: (i) the modeling of the system to be
controlled, (ii) its digital realization, and (iii) its digital implementation.

These RTS have been used mainly as Hardware-in-the-Loop (HIL) testing of controllers, where
the plant model is executed at the same pace as the real system providing a similar dynamic
response. Even though the focus of this thesis is very much related with them, its aim goes
a bit further, where these RTS will be embedded within the controller to provide additional
functionalities. These Embedded Real-Time Simulators (eRTS) could play several roles like obser-
vators, estimators, diagnosis and health-monitoring, or fault-tolerant and sensorless control to
mention some of them.

Nevertheless, when implementing such model-based eRTS, the main concern is how to
balance between the accuracy of the model, the system dynamics, the simulation time-step
(implicitly the execution time) and the needed mathematical computations to be executed in
the chosen digital platform. The main challenge when designing these simulator Intellectual
Properties1 (IPs) is to cope with their complexity having in mind that, in the case of embedded
systems, the available hardware resources are limited. Moreover, this challenge is increased
by the requirement of very short simulation time-steps when simulating power electronics
[2].

To bring technological solutions to these implementation issues, for some years there has
existed a new kinds of devices called System-on-Chip (SoC) which integrate in the same device
CPU-based processor cores along with a Field-Programmable Gate Array (FPGA) fabric and
other peripherals such as ADCs, DACs, DMAs, and hardware interfaces which provide these
platforms with great connectivity capabilities.

Alongside these devices, the design tools have evolved as well aiming to reduce develop-
ment time of the increasing complexity of nowadays controllers, providing professional tools
that ease the utilisation and exploitation of SoC devices.

1 An IP core is a block of logic or data that is used in making an FPGA or Application-Specific Integrated Circuit
(ASIC) for a product. As essential elements of design re-use, IP cores are part of the growing Electronic Design
Automation (EDA) industry trend towards repeated use of previously designed components. Ideally, an IP core
should be entirely portable –that is, able to easily be inserted into any vendor technology or design methodology.
Universal Asynchronous Receiver/Transmitter (UART), Central Processing Units (CPU), Ethernet controllers, Universal
Serial Bus (USB) and PCI interfaces are all examples of IP cores [1].

3

4 general introduction

1.1 thesis objectives and author contributions

The goal of this dissertation is then to evaluate and analyze the capabilities of these kinds
of devices and the software tools that come with them for the implementation of accurate
and reliable eRTS of electrical systems. In this work, the Zynq-7000 All Programmable SoC from
Xilinx Inc. has been selected and its choice will be motivated later on.

To this purpose, two case applications have been chosen. Offshore Wind farm are composed
of several subsystems. Among them, electrical machines (wind generators) and power elec-
tronic systems (power converters) are significantly different in terms of requirements, and
quite representative of what SoC devices can be used for.

Regarding the electrical machine, the decision of choosing a Doubly-fed Induction Generator
(DFIG) has been taken because it is a quite popular generator used as wind turbines and it
has a representative model complexity compared to other electromechanical systems [3]. The
specific application is a DFIG working as an islanded generator and feeding a three-phase RL
load [4, 5, 6, 7].

Concerning power electronics systems, some might think that it would have been more
appropriate to use the classical two-level power converter that is usually connected to the
DFIG in order to test the device in a complete power electronics application. However, this
work has already been done; it can be found extensively in the literature, and it does not have
the amount of complexity to evaluate the full capabilities of a SoC device [8, 9, 10]. Therefore,
in this work it has been decided to use a Modular Multilevel Converter (MMC) [11]. The aim of
choosing it is however to use a scalable power converter, with a much more complex structure
in order to exploit the device capabilities at maximum, coping with the eRTS requirements of
speed, computational power, and degree of parallelism [12, 2, 13, 14].

In more detail, the idea is to have one –or several– IP blocks which estimate: e.g. stator and
rotor currents and voltages, phase output voltages, arm and load currents, Half-Bridge (HB)
capacitor voltages, etc.; based on other measured magnitudes. One of the most interesting
applications these IP blocks could be utilized for is in the context of fault-tolerant embedded
controllers, where these estimated variables would be used in case of a sensor fault. Further-
more, they could also be adopted as estimators, observers, or also applied for diagnosis and
health-monitoring [8, 15], without forgetting HIL applications for testing the control before
its deployment on the real plant [16, 17, 18, 19, 8], and sensorless control [20, 21, 22, 23].

Accordingly, several IP blocks will be developed. On one hand, by the creation of several
DFIG models using two different discretization methods and exploring whether is more suit-
able to execute the coded algorithms either in software using the Processing System (PS), in
hardware using its Programmable Logic2 (PL), or a collaboration between both. And on the
other hand, by the conception of various MMC models to estimate different converter vari-
ables, modifying the number of cells per arm to exploit all the computational power of the
device.

Moreover, a deep exploration of the Vivado HLS software tool will be performed as well
aiming to reduce the execution time at maximum, using different data formats (fixed- and
floating-point) and data widths (64- and 32-bit) for the internal and external variables. The
device performance will be compared in terms of execution time, resources utilisation and
precision of the calculations.

2 A Programmable Logic Device (PLD) is an electronic component used to build reconfigurable digital circuits. Unlike
a logic gate, which has a fixed function, a PLD has an undefined function at the time of manufacture. Before the
PLD can be used in a circuit it must be programmed, that is, reconfigured [24].

1.2 thesis outline 5

In this study, a total of three boards mounting two different Zynq versions will be uti-
lized. The ZedBoard3 and the MicroZed4 development boards manufactured by Avnet Inc., both
mounting a Zynq-7020 classified as mid-range with an Artix-7 equivalent FPGA fabric, will
be used for the DFIG study and for the experimental tests respectively. For the MMC case
evaluation however, the ZC706 Evaluation Kit produced by Xilinx Inc. will be utilized. The lat-
ter mounts a high-end Zynq-7045 having a Kintex-7 equivalent FPGA fabric with considerably
more hardware resources.

To conclude, an MMC test rig has been developed and used to prove a real-world imple-
mentation of eRTS. First, by using one IP to perform HIL validation of the controller before
its deployment on the real plant; and second, by implementing a capacitor voltage estimator
for fault-tolerant control.

This thesis work is mainly focused on the digital implementation issues of eRTSs. In fact,
the proposed work can be seen as an extension of Dr. Dagbagi’s thesis [25] where the focus
was limited to full-hardware FPGA-based implementation of eRTSs. However, the implemen-
tation constraints have been extended to consider SoC devices, which allow full-hardware,
full-software and mixed hardware/software solutions.

1.2 thesis outline

The rest of this thesis dissertation is organized as follows: Chapter 2 presents the State of the
Art and introduces the main problems linked to the development of eRTSs. Then it focuses
on the digital implementation by presenting the SoC technology and the programming tools
linked to them. Chapter 3 is dedicated to eRTSs for electromechanical systems, hence the
DFIG case. Chapter 4 is devoted to the eRTS for power electronic systems, therefore the
MMC case. In Chapter 5 an exhaustive experimental validation of the MMC implementation
is performed. Finally, Chapters 6 and 7 are left for general conclusions and future work
respectively. At the end of this document Appendix A can be found with the description
of the test bench, and Appendix B with the parameters of the state space model utilised in
the experimental tests.

3 Official website zedboard.org.
4 Official website microzed.org

2
S TAT E O F T H E A RT

2.1 introduction

This chapter discusses the main problems linked to the development of eRTS of electrical
systems. They can be located at the main development stages of the eRTSs and can be classi-
fied as follows: (i) Selection of the system’s mathematical model, (ii) digital realization of this
model and (iii) its digital implementation.

1. Modeling. A model of the plant has to be found, with a good approach to emulate the
system’s behavior using appropriate equations. Regarding power systems dynamics,
they can be divided into two groups:

• Electromechanical and electromagnetic systems, which have relatively slow dy-
namic response

• And power electronics systems, which have much more fast dynamics

2. Digital realization. In this step have to be chosen: a –constant– time-step, a numerical
solver (explicit or implicit), and an appropriate data format (fixed- or floating-point),
aiming always at the highest level of precision considering the computational power
available.

3. Implementation. The last step is where the simulation platform to be used has to be
decided. There exist many different possibilities ranging from powerful multi-core pro-
cessors, FPGAs, or SoC devices to mention the most commonly used nowadays. The
methodology when programming each of these platforms differ significantly and so do
the software tools utilised. Moreover, the programming languages are also a big issue
specially when FPGAs are involved.

2.2 what is an embedded real-time simulator?

The real-time concept has been extensively used by the industry but worn and utilised inap-
propriately most of the time by the general public. According to [26] “A real-time system can
be described as one which controls an environment by receiving data, processing them, and returning
the results sufficiently quickly to affect the environment at that time”. By using this description one
could think that every controller is implemented in real-time. In regard to the subject we are
on, this other more appropriate and specific definition is preferred: “Real-time is an adjective
describing a system in which results and feedback follow input with no noticeable delay from the sys-
tem’s point of view”. Accordingly, the timing requirements will rely upon the dynamics of the
system under study.

A system is said to be in real-time if the total correctness of an operation depends not
only on its logical fidelity, but also on the time in which it is performed. According to [27],

7

8 state of the art

Deadline Time

Soft RT system
Firm RT system
Hard RT system

Usefulness

Figure 2.1: Real-Time systems classification

real-time systems, as well as their deadlines, are classified by the consequence of missing a
deadline:

• Hard: any missed deadline is a total system failure

• Firm: infrequent deadline misses are tolerable, but may degrade the system’s Quality of
Service1 (QoS)

• Soft: The usefulness of a result degrades after its deadline, thereby degrading the sys-
tem’s QoS

Figure 2.1 shows a representation of this classification.
Moving forward on the definition, a Real-Time Simulator (RTS) can be seen as a digital entity

that mimics a real-world system or a part of it, which is executed at a rate that matches the one
of the real process. As it will be explained later, this digital entity is executed at a constant
time-step. Any missed deadline due to implementation issues is not tolerated, causing a
simulation failure. Hence, RTSs can be classified as hard real-time systems.

When applied to electrical systems, RTS are mostly implemented in the context of Hardware-
in-the-Loop (HIL) testing of the system controller in order to validate it in every operating
condition, which would not be possible using only experimental setups [18, 19, 16, 17]. How-
ever, an RTS can also be embedded within the controller of the system in what is known
as an Intellectual Property2 (IP) to play several roles like observators, estimators, model-based
diagnostics, fault-tolerant and sensorless control, health monitoring, etc. It is in this context
where such IP modules are called Embedded Real-Time Simulators (eRTS) [25, 8, 6, 28, 7, 14].

Apart from the execution rate, another constraint when designing an eRTS is to cope with
its complexity having in mind that, in the case of embedded systems, the available hardware
resources of the digital platform are limited.

Moreover, this challenge is increased by the requirement of very short simulation time-steps
when simulating power electronics [15]. This is the reason why at each development stage,

1 Description or measurement of the overall performance of a service.
2 An IP core is a block of logic or data that is used in making an FPGA or Application-Specific Integrated Circuit

(ASIC) for a product. As essential elements of design re-use, IP cores are part of the growing Electronic Design
Automation (EDA) industry trend towards repeated use of previously designed components. Ideally, an IP core
should be entirely portable - that is, able to easily be inserted into any vendor technology or design methodology.
Universal Asynchronous Receiver/Transmitter (UART), Central Processing Units (CPU), Ethernet controllers, Universal
Serial Bus (USB) and PCI interfaces are all examples of IP cores [1].

2.3 erts development (i) : system modeling 9

designer must rigorously consider a set of constraints linked to: (i) the chosen model of the
system part to be RT simulated; (ii) its digital realization and (iii) its implementation on the
targeted digital platform.

In the following, these development constraints will be discussed. Since the outline of this
thesis is more about the implementation issues, an important focus will be given to the de-
scription of the available SoC FPGA platforms and their value-added to this context.

2.3 erts development (i) : system modeling

To face today’s society and industry demands, the electrical systems have been the focus of
intensive research starting from power generation, storage, until its consumption. As a con-
sequence, a wide range of increasingly complex machine drives, power electronic converters
and their controllers are now available in the market. This trend makes their design very chal-
lenging since the time-to-market and the growing development cost must also be considered.
All these reasons make the real-time digital simulation of these electrical systems mandatory
in modern design cycles.

The first thing that influences the quality of a real-time simulation is the chosen model. It
has to be properly formulated in order to represent the static and dynamic behavior of the
system accurately. However, it has to be understood that a mathematical model of a system
is a simplified representation of the reality. This simplification has to be done mainly because
of two reasons: (i) models can become extremely complicated and hence, their development
time can be significantly long; and (ii), these models have to be executed in a digital device, so
execution time and resources must be considered. Therefore, neglecting physical phenomena
that occur in the system (e.g. saturations, core losses, saliencies, power converter switching,
skin effects, etc.) has to be assumed in most of the cases. This becomes even more impor-
tant when considering RTS where the execution time of the mathematical model is a critical
constraint.

An electrical system can be described as a set of interconnected elements that have different
characteristics and dynamics. Naming them and starting from slow to fast dynamics: thermal
dynamics, electromechanical dynamics, electrical dynamics, electromagnetic dynamics, and
power electronics dynamics. Due to their wide gap between them, these phenomena can be
grouped in two: fast dynamic systems considering only the power electronics systems, and slow
dynamic systems grouping the rest [25]. In this dissertation, an example representing each of
the groups will be studied.

2.4 erts development (ii) : digital realization

Besides its mathematical modeling, the real-time simulation of an electrical system is also
conditioned by the digital realization of the chosen models. This consists in selecting the
appropriate numerical solver, the right simulation time-step, and the numerical representa-
tion of the processed data. The choice has to consider: the complexity (number of operations
to implement), accuracy (contrasted to the original continuous-time model); numerical stabil-
ity (the system may become unstable due to proximity to singularities of various kinds or
by growth of round-off errors or small fluctuations in initial data); and respect of real-time
operation (computation time shorter than the chosen time-step).

10 state of the art

44

Exec.
ERTS

Exec.
ERTS

Exec.
ERTS

Execute
control

Exec.
ERTS

CIC int. (5us)

At this moment, the CIC
conversion has finished.
We have all the RAW
values available Read

XADC Write to
ERTS inputs

Read & Save
ERTS outputs

Read
XADC Write to

ERTS inputs

Read & Save
ERTS outputs Send control

signals to PWM

Apply outputs
and read inputs

Solve model
equations

2 3

Generate
outputs

... ...

100us
5us 5us 5us 5us

100us
5us

5us 5us
100us

5us

...
95us 100us 105us 110us 200us

1 2 31

Wait

Clock
tick

42 31 ...

Total time-step
Time

Figure 2.2: Real-time execution tasks

2.4.1 Numerical solver

The numerical solvers use a set of integration algorithms that approximate, based on Taylor
series, the continuous-time differential equations of the plant. The approximation order has
a huge impact, but if only the first-order approximation methods are considered, two cate-
gories can be differentiated: explicit and implicit methods. The explicit methods calculate the
state variables3 of the current time-step based only on previous values. Conversely, implicit
methods compute the state variables based on current and previous values. More details and
quantitative comparisons have been discussed in [25].

2.4.2 Time-step selection

The right choice of the real-time simulation time-step is crucial, specially when explicit meth-
ods are in use. They might become unstable if the simulation time-step is too short. Implicit
methods do not present this problem as far as all the continuous-time real poles are negative
[29].

As previously introduced, it is assumed a discrete-time and constant time step. This means
that during a discrete-time simulation, time moves forward in steps of equal duration. This
is known as fixed time-step simulation [30]. However, other solving techniques exist which
use variable time-steps. Such techniques are used for solving high frequency dynamics and
non-linear systems, but they are not suitable in the context of RTSs because of important
implementation issues [31]. In addition, the required time to compute the model at a given
time-step must be shorter than the wall-clock duration of the chosen time-step. Therefore, if
the simulator operations are not all achieved within the required time-step, the RTS commits
an overrun and the simulation is considered as non-valid [26].

As shown in Figure 2.2, for each time-step, the simulator must execute the same series of
tasks: 1) apply previous iteration outputs and read current iteration inputs, 2) solve model
equations, 3) generate outputs and 4) wait for the start of the next iteration. So in order
to guarantee a real-time execution, the amount of time needed to perform these operations
should be less than the total time-step.

The four most important selection criteria when defining the time-step duration are the
following:

3 A state variable is one of the set of variables that are used to describe the mathematical “state” of a dynamical
system.

2.4 erts development (ii) : digital realization 11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Continuous
Discrete (Ts = 0.05 τ)

Discrete (Ts = 0.1τ)

Discrete (Ts = 0.5τ)

Time (seconds)

A
m

pl
it

u
d

e

Figure 2.3: Effect of time-step selection when discretizing

• System dynamics. According to [26, 32], when an electromagnetic element is of concern,
a time-step between 5% to 10% of the smallest time constant has to be chosen. To give
an idea, most mechanical systems –which have slow dynamics– require time-steps from
1ms to 10ms, whereas electromagnetic transient simulation with frequency content up
to 10kHz, typically require a simulation time-step around 10µs. Furthermore, if the
objective is to accurately simulate fast-switching power electronic devices, the timing
requirements can be in the order of 250ns without interpolation, or 10µs if an interpola-
tion technique is utilized [32, 33]. In Figure 2.3 is shown how different time-steps affect
the discrete-time system’s similarity with the continuous-time version.

• Interfacing errors. When considering switching elements which are interfaced with a
controller, the power converter RTS can respond to its control signals only at each simu-
lation time-step [34]. As a result, switching events that occur between two steps cannot
be detected and therefore errors are inevitably introduced to the simulation results. To
avoid this problem, the time-step should be at least 100 times shorter than the switching
period [35]. Figure 2.4 shows how the PWM sampled signal fidelity decreases as the
sampling period increases. Note that Ts3 = 2Ts2 = 4Ts1 .

• Numerical stability. Whatever the numerical solver is, even if it is unconditionally stable4,
when the time-step decreases, the poles of the discrete-time model move closer to the
stability limit (i.e., |z| = 1). Hence, poles become very sensitive to variations caused by
limited precision data quantification [36]. These variations may then lead to instability

4 According to [29], A-stable discretization methods are unconditionally stable if all continuous-time poles are stable,
i.e. they are placed in the negative part of the s-plane. All implicit methods have this characteristic.

12 state of the art

Deadline Time

Soft RT system
Firm RT system
Hard RT system

Usefulness

Sampling

Ts1

Time

Ts2

Ts3

PWMcont.

PWM1

PWM2

PWM3

Figure 2.4: Interfacing errors

especially when fixed-point format is used. Hence, care should be taken when choosing
the amount of fractional bits and its representation. Moreover, the growth of round-off
errors or small fluctuations in initial data could also affect the stability of the system
[37].

• Real-time operation. Logically, when considering a real-time simulation, the time-step
must be short enough to reproduce system’s behavior, but at the same time, sufficiently
long to allow processing of the model equations (see Figure 2.2). Accordingly, to guaran-
tee real-time operation, the processing time must be shorter than the chosen time-step
[26].

2.4.3 Data representation

Regarding the numerical data representation, fixed- or floating-point can be adopted. The
first uses between 3 to 4 times less hardware and is 3 to 4 times faster [38]. However, the price
to pay is accuracy. With floating-point representation the range of the data is much more
broader but the price to pay is complexity of floating-point operations and thus, both area
utilisation and computation time increases.

2.5 erts development (iii) : digital implementation

Once the importance of selecting the right model, the appropriate numerical solver, a suitable
time-step, and the right data format has been explained, the final step that influences the
performance of a real-time simulation is its digital implementation. The main challenge from
the application’s point of view is to find an appropriate platform able to handle the complex-
ity of the simulated system and ensure the required timing performances, i.e. providing a
simulation time-step small enough to properly simulate the highest system dynamics.

Along this line, many performance digital platforms are available in the market. They inte-
grate powerful multi-core processors where the number of CPUs and other components can
be arranged on demand by the manufacturer regarding system’s scale, complexity, number of
I/Os, timing requirements, cost, etc. The most widely known companies providing commer-

2.5 erts development (iii) : digital implementation 13

cial real-time simulators are RTDS Technologies5 and Opal-RT6. The first are more focused on
power systems applications whereas the second excel on power electronic based applications.

From the designer’s point of view, these platforms are provided with a set of software tools
that allow creating the system’s model, setting up the simulation, controlling and modifying
the system parameters during simulation, acquire data, and analyze its results. Two examples
can be RTDS Simulator from RTDS Technologies, and HYPERSIM from Opal-RT. Besides these
tools, which are specific to each manufacturer, they often provide as well toolboxes that allow
using their hardware in traditional simulation tools like MATLAB/Simulink from Mathworks7.

As far as digital implementation is concerned, using FPGAs for real-time simulation has
been a big trend in the last few years [18, 19, 35, 39, 40]. This approach has many advantages.
First, computation time is almost independent of the size of the system because of the parallel
nature of FPGAs. Second, overruns cannot occur when the model is implemented in hardware
once timing constraints are met during the design process. And finally, the simulation time-
step achieved can be in the order of few hundred of nanoseconds. However, there are still
limitations on model size since the number of gates and their interconnections are limited.

Hence, to boost timing performances these commercial platforms are also equiped with
FPGA-based boards, which have been successfully integrated because of the following rea-
sons:

• Parallel computational capability. Works [35, 39, 40, 9] show how these kinds of devices are
used in the real-time simulation of electrical systems with ultra-fast transients such as
high-frequency IGBT-based power converters. Taking advantage of the inherent paral-
lelism of FPGAs, the computation time is reduced setting small time-steps in the order
of 1µs or less.

• Additional hardware resources. These devices include distributed memories, Digital Sig-
nal Processor (DSP) blocks, high speed I/Os, Analog-to-Digital Converters (ADC), Digital-
to-Analog Converters (DAC), logic blocks, etc., which give the possibility to implement
complex models like power converters with large number of switches [41], or using the
combination of multiple FPGA boards to simulate large-scale systems [42].

• New design tools. The traditional way of programming these kinds of devices was using
Hardware Description Languages (HDL). The most widely utilised are VHDL, Verilog and
SystemC. However, the use of these languages can be seen as a disadvantage since con-
trol and software engineers might not be particularly familiar with them. To overcome
this issue, two kinds of software tools are available in the market. Most commercial
simulation platforms allow today to program the FPGAs by using graphical tools such
as Xilinx System Generator from Xilinx, DSP Builder toolbox from Intel8, or the LabVIEW
FPGA Module from National Instruments. The second group are High-Level Synthesis (HLS)
tools let the designers to work at a higher abstraction level by specifying the behavior of
an algorithm using C, C++ or SystemC. Additional information regarding this last set
of tools can be found in Section 2.7.

As introduced earlier, these high-performance platforms are most of the time dedicated to
HIL testing during the design of digital controllers [18, 19, 16, 17]. However, their cost is not
always taken into account. Additionally to the reduction of the development time and the

5 Official website rtds.com
6 Official website opal-rt.com
7 Official website mathworks.com
8 Intel recently bought Altera Corporation, an American manufacturer of programmable logic devices who released

its first Programmable Logic Device (PLD) in 1984.

14 state of the art

verification of the controller in every situation, the other primary objective of a HIL test is to
achieve a high level of correspondence with the real plant. This implies utilizing detailed and
complex algorithms running at very short time-steps. The consequence is the use of powerful
but costly digital platforms [41, 43]. Nevertheless, The use of such expensive devices is not
acceptable in the case of embedded applications where eRTSs are not only developed for HIL
testing but also embedded within digital controllers [8, 25, 7, 14].

Consequently, the constraints linked to the real-time simulation discussed in the former
Section are strengthened by those of embedded systems such as cost, power consumption,
reliability, size, and flexibility. To bring solutions to this new field, SoC devices including
FPGA fabric are surely one of the most promising technologies. The following Section tries to
prove it by describing these devices and giving an overview of the design opportunities that
they offer thanks to their versatile architecture and improved design tools.

2.6 system-on-chip devices

A wide and diversified range of powerful platforms are available nowadays in the market.
Among them, recent SoC devices are surely the most promising since they bring a new design
paradigm thanks to their heterogeneity and computational power. Heterogeneity because
they include in the same chip general-purpose processors and an FPGA fabric associated to
several peripherals like ADCs or DACs; and computational power thanks to these potent
hard-processors plus the many capabilities the PL offers, which can increase massively the
computing speed of the whole system.

Considering all these properties, one can easily see that SoC-based eRTS offer much more
flexibility compared to the pure hardware FPGA-based eRTS approach studied in [25]. To
provide clear examples about it, with this new technology it is possible to go with a full-
software implementation (everything runs in the processor or processors), a full-hardware one
(all is computed in the FPGA fabric), or a hardware-software co-design where only the heavy
calculations are performed in hardware (also known as a hardware accelerator).

2.6.1 General overview

To cite some of these new SoC devices, the first version of Microsemi’s SmartFusion SoCs
features an ARM Cortex-M3 processor clocked at 100MHz, an FPGA fabric, and other pro-
grammable analog circuitry [44]. The processor is the actual industry-leading 32-bit processor
for highly deterministic real-time applications [45]. Its FPGA part is based on their ProASIC3
architecture, ranging between 60.000 to 500.000 system gates with up to 350MHz system
performance, embedded SRAMs and FIFOs and up to 128 FPGA I/Os supporting LVDS, PCI,
PCI-X and LVTTL/LVCMOS standards [46]. The programmable analog has high-performance
analog signal condition blocks with voltage, current and temperature monitors, 12-bit ADC
and DAC converters, up to ten 15ns high-speed comparators, and up to 32 analog inputs
and 3 analog outputs. They offer as well the SmartFusion2 (diagram shown in Figure 2.5) with
lower power consumption, higher security, and better reliability for safety critical and mission
critical systems [47].

Intel –formerly Altera– offers a full-range SoC FPGA product portfolio spanning high-end,
mid-range, and low-end applications [48]. Their high-end Stratix 10 SoC mount the powerful
64-bit quad-core ARM Cortex-A53 processor [49], whereas the Arria 10, Arria V and Cyclone V
SoCs feature a 32-bit dual-core ARM Cortex-A9 processor [50], a significantly more powerful
processor than the one present in Microsemi’s products. These multiprocessors come as well

2.6 system-on-chip devices 15

Figure 2.5: Microsemi’s SmartFusion2 SoC FPGA [credit: Microsemi Corp.]

with two embedded hardware accelerators per core, which will be described afterwards: the
NEON Single Instruction, Multiple Data (SIMD), capable of executing the same mathematical
operation on several registers in parallel [51]; and the VFPv3 (in Cortex-A9) and VFPv4 (in
Cortex-A53), two Floating-point Units (FPU), which can compute operations with very few
clock cycles in either 32- and 64-bit precision [52, 53]. These two units, initially developed and
broadly used in media processing, can be configured and used to execute intensive operations
–like matrix multiplications and matrix inversions– reducing the execution time significantly
compared to sequential operations in common processors or DSPs. Moreover, they are com-
posed as well of configurable L1 caches up to 64kB of memory with a system coherency
support using the Accelerator Coherency Port (ACP), and hardened floating-point DSP blocks
capable of processing rates up to 1.5 TFLOPS9 and power efficiency up to 40 GFLOPS/Watt.
However, Intel’s SoC does not come with a built-in ADC. The Cyclone V SoC diagram is shown
in Figure 2.6.

The last example of SoC devices available in the market, which is included in this thesis
work, is the Zynq All Programmable SoC produced by Xilinx, which main diagram is shown in
Figure 2.7. They offer a broad portfolio ranging from single-core 32-bit ARM Cortex-A9 plus an
Artix FPGA fabric, passing through a double-core version with the FPGA hardware available
in both technologies Artix and Kintex. Recently, they released the Zynq UltraScale+ featuring
dual- and quad-core ARM Cortex-A53 (64-bit architecture), another version including as well
a dual-core ARM Cortex-R5 deterministic real-time microcontroller, plus the highest-end ver-
sion which also comes with a GPU10 Mali-400 MP2 supporting the H.264-H.265 video codec.
Wistfully, Xilinx has not included in any of the Zynq UltraScale+ versions the double 12-bit
ADC, 1MSPS11 ADCs present in the older Zynq-7000 devices [54].

9 In computing, floating-point operations per second (FLOPS) is a measure of computer performance, useful in fields
of scientific computations that require floating-point calculations.

10 A Graphics Processing Unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter
memory to accelerate the creation of images in a frame buffer intended for output to a display device.

11 Millions of Samples Per Second (MSPS).

16 state of the art

Figure 2.6: Intel’s Cyclone V SoC [credit: Intel Corp.]

Figure 2.7: Xilinx’s Zynq-7000 All Programmable SoC [credit: Xilinx Inc.]

2.6 system-on-chip devices 17

Figure 2.8: NEON operations [credit: Xilinx Inc.]

2.6.2 ARM Cortex-A9 hardware accelerators

When implementing an RTS, the processing accuracy and execution time are the most critical
parameters [8, 55, 22]. Indeed, the choice between using floating- or fixed-point data format is
directly related not only with the accuracy of the calculations, but also with the time needed
to execute them. As previously introduced, the ARM Cortex-A9 present in the Intel and Xil-
inx’s products, have two powerful FPUs [52], one per core, which are capable of computing
operations with very few clock cycles either in 32- or 64-bit precision –see Table 2.1. Addition-
ally, these powerful processors come as well with two NEON SIMD units which can execute
the same mathematical operation on several registers in parallel [51], decreasing significantly
the algorithm execution time as it will be demonstrated later on. These two units can be con-
figured and used to execute intensive operations reducing the execution time significantly.

2.6.2.1 The NEON SIMD

NEON technology is a 128-bit SIMD architecture extension of the ARM Cortex-A9 series pro-
cessors, designed initially to provide flexible and powerful acceleration for consumer multi-
media applications [51]. It has 32 registers, 64-bits wide (dual view as 16 registers, 128-bits
wide), which are shared with the FPU.

It can perform packed SIMD processing –see Figure 2.8:

• Registers are considered as vectors of elements of the same type

• Data types can be: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, and single precision
floating-point

• Instructions perform the same operation in all lanes

2.6.2.2 The VFPv3 FPU

This FPU provides hardware support for floating-point operations in half-, single- and double-
precision floating-point arithmetic [52]. The FPU fully supports the basic instructions shown
in Table 2.1 along with their corresponding latency12 and throughput13 for either 32- and
64-bit floating-point formats.

12 Number of clock cycles to process an operation.
13 Number of clock cycles before a new input data value is accepted.

18 state of the art

Table 2.1: FPU instruction throughput and latency cycles

UAL
Single-Precision Double-Precision

Throughput Latency Throughput Latency

VADD
1 4 1 4

VSUB

VMUL 1 5 2 6

VMLA 1 8 2 9

VDIV 10 15 20 25

VSQRT 13 17 28 32

2.6.3 PS-PL interfacing

Regarding the interface between PS, PL, and the additional peripherals of the devices pre-
sented above, all of them use ARM’s Advanced Microcontroller Bus Architecture (AMBA) open-
standard, on-chip interconnect specification. However, each manufacturer uses a different
version. Microsemi uses the AMBA 2, a 1999 protocol called Advanced High-performance Bus
(AHB), a single clock-edge protocol. Intel chose the AMBA 3 specification from 2003, which
included the Advanced eXtensible Interface (AXI3), a high-performance, high-clock frequency
system designs that uses separate address/control and data phases, supports unaligned data
transfers and burst based transactions with only start address issued. Xilinx opted for the
AMBA 4 specification released in 2011, which included the AXI4 defining three new different
protocols: AXI4-Master, AXI4-Lite, and AXI4-Stream. The AXI4-Master is an improved version
of the AXI3 protocol, allowing bigger burst transactions and QoS signals among other en-
hancements. The AXI4-Lite is a simpler version of the AXI4-Master that uses less hardware
resources and is intended to be used mainly for control and configuration purposes. Both
are memory mapped protocols, where the read/write transactions contain the destination ad-
dresses. Finally, the AXI4-Stream is the simplest and fastest interconnection, where there are
no addresses involved, uses one single channel and hence the data is traveling only in one
direction. In [56] can be found further details about the AMBA AXI protocol.

Among the three devices presented above, Xilinx’s Zynq include other useful peripher-
als like ADCs, external Direct Memory Access (DMA) controllers, and I/O peripherals and
interfaces. All of them are interconnected using the ARM Advanced Microcontroller Bus Archi-
tecture (AMBA), which in the 4th specification of the protocol –the one implemented in the
Zynq-7000– include the AXI4 point-to-point channels for communicating addresses, data, and
response transactions between master and slave clients [56]. These interfaces, seen in Figure
2.9, can be divided into three groups:

• Four AXI High-Performance slave ports (HP0-HP3):

– Configurable 32-bit or 64-bit data width

– Access to OCM and DDR only

– AXI FIFO Interface (AFI) are 1kb FIFOs to smooth large data transfers

– Automatic conversion and synchronization to processing system clock domain

• Four AXI General-Purpose ports:

– Two masters from PS to PL (GP0 and GP1)

2.7 design tools and methodology 19

Figure 2.9: Zynq interfaces [credit: Mohammadsadegh Sadri]

– Two slaves from PL to PS (SGP0 and SGP1)

– 32-bit data width

– Automatic conversion and synchronization to processing system clock domain

• One 64-bit Accelerator Coherency Port (ACP):

– AXI slave interface performing OCM and DDR coherent accesses

All the system components can be accessed using physical addresses except for the CPU cores
and their L1 instruction caches. The memory map of the Zynq-7000 defined in [57] indicates
the address range of each logic block.

2.7 design tools and methodology

In addition to this technological evolution, the design tools have also been subject of im-
portant progress. The design issues of these powerful platforms are cumbersome. Hence,
manufacturers have invested notable efforts in making the development cycle shorter for a
faster time-to-market, relieving programming efforts by automating the configuration of the
device, and increasing the level of abstraction easing the utilisation of the FPGA fabric and
peripherals.

Some of these tools let the system designer to graphically interconnect the different IPs
present in the FPGA fabric with the PS and other subsystems, allowing to configure them
using Graphical User Interfaces (GUI) instead of setting up control and configuration registers
one by one. Once the design process has finished, these tools synthesize14 the design, perform

14 In electronics, logic synthesis is a process by which an abstract form of desired circuit behavior, typically at Register
Transfer Level (RTL), is turned into a design implementation in terms of logic gates, typically by a computer

20 state of the art

the place and route15, and generate a bitstream16 containing the whole hardware code and device
configuration. Every manufacturer has their own set of tools that allow users to program their
devices, but there exist as well third-party products like MATLAB/Simulink and its HDL Coder
for example. It can be a good choice if the designer is already familiar with it and wants to
develop a not very demanding application using SoC devices. To cite other notable companies
that produce Electronic Design Automation (EDA) tools: Synopsys, Cadence Design Systems, or
Mentor Graphics are among the most important.

Similarly, High-Level Synthesis (HLS) tools ease the utilisation of SoCs –and FPGAs too– to
software designers, allowing them to use the benefits of hardware acceleration as processing
speed and energy saving, without the mandatory need of building up extensive hardware ex-
pertise. Some examples of these programs are Catapult HLS from Mentor Graphics, VivadoHLS
from Xilinx, Bambu developed at Politecnico di Milano, or Kiwi from the University of Cam-
bridge [60]. They let designers work at a higher abstraction level by specifying the behavior
of an algorithm using C, C++ or SystemC rather than inferring its hardware definition using
HDLs such as VHDL or Verilog. Indeed, these software tools allow to express the algorithm
in a behavioral way instead of using tedious Register-Transfer Level17 (RTL) descriptions [62],
reducing considerably the development time.

All in all, these software tools have reached a significant grade of maturity in recent times,
besides, the size and price of FPGAs improve year after year. Therefore, the use of such mature
platforms have an added value for implementing eRTSs of electrical systems since they have
proven their efficiency in many applications such as medical imaging [63], convolutional
neural networks [64], image processing [65], encryption algorithms [66], big data processing
[67], computer vision [68], or machine learning [69] with successful improvements in energy
consumption and performance. Notwithstanding, the hardware code these tools produce is
still far from what can be achieved manually using HDL languages in terms of performance
and FPGA resources [10]. Nevertheless, when the complexity of the applications increase, the
use of these tools becomes convenient if not mandatory because it impacts considerably in
the development time and cost in man-hours.

Furthermore, some of these HLS platforms allow the use of test bench18 files coded as well
using C, C++ or SystemC. It eases significantly the debugging and verification of the proper
functioning of the whole algorithm, avoiding the necessity of creating complicated HDL test
bench files commonly used in hardware designs. Furthermore, these tools also admit the use
of pragmas, directives and/or constraints to infer different hardware configurations from the
same source code in order to compel the design meeting the required specifications [70]. As
an illustration example, in [6, 7, 14] authors evaluate different word-sized implementations by

program called a synthesis tool. Common examples of this process include synthesis of HDLs, including VHDL
and Verilog. Some synthesis tools generate bitstreams for programmable logic devices such as PALs or FPGAs,
while others target the creation of ASICs. Logic synthesis is one aspect of Electronic Design Automation (EDA) [58].

15 Place and route is a stage in the design of printed circuit boards, integrated circuits, and field-programmable gate
arrays. As implied by the name, it is composed of two steps, placement and routing. The first step, placement,
involves deciding where to place all electronic components, circuitry, and logic elements in a generally limited
amount of space. This is followed by routing, which decides the exact design of all the wires needed to connect
the placed components. This step must implement all the desired connections while following the rules and
limitations of the manufacturing process [59].

16 Sequence of bits carrying up the configuration data to be loaded into the FPGA through a serial bit stream.
17 In digital circuit design it refers to a design abstraction which models a synchronous digital circuit in terms of

flow of digital signals (data) between hardware registers, and the logical operations performed on those signals
[61].

18 Test bench files are pieces of code that are used during FPGA or ASIC simulation. This kind of simulation allows
the programmer to evaluate the FPGA or ASIC design and ensure that it does what is expected to. A test bench
provides the stimulus that drives the IP block and then collects the output results to verify their correctness.

2.8 chapter conclusions 21

changing the data types to be inferred by the tool simply by changing the typedef 19 alias used
in the whole design, whereas modifying the RTL code would require days or even weeks to
be accomplished. A good study of different HLS tools available in academia and the market
can be found in [60].

2.8 chapter conclusions

The objective of this chapter was to give an overview of the challenges linked to the develop-
ment of eRTSs of electrical systems. After introducing what these systems are and what they
can be used for, all the relevant constraints linked to the modeling of the plant, its digital
realization, and its digital implementation were profusely exposed.

Since it is at the central point of this dissertation, recent SoC devices including FPGA fabric
were discussed by describing device architectures and features and their associated design
tools. Regarding the latter, HLS tools were depicted as they will become an important pillar
in this thesis work for programming the device PL.

According to the previously exposed, the Zynq-7000 All Programmable SoC has been chosen
because of its powerful dual-core ARM Cortex-A9 processor, its versatile programmable logic,
and the simultaneous dual-channel 1MSPS ADC. Furthermore, this choice has been moti-
vated by the complete Vivado Design Suite that allows managing all the device configuration
and block interconnections graphically, the Vivado HLS tool which converts C/C++/SystemC
into RTL to directly program the FPGA fabric, and also because of the large and active com-
munity behind it.

The following chapters are dedicated to the evaluation of SoC devices to implement eRTSs
of electrical systems.

19 The typedef keyword allows the C/C++ programmer to create new names for types such as int (integer), float
(single-precision floating-point) or double (double-precision floating-point). Typedefs can be used both to provide
more clarity to your code and to make it easier to make changes to the underlying data types that you use.

Part II

C A S E A P P L I C AT I O N S

3
E RT S F O R E L E C T R O M E C H A N I C A L S Y S T E M S : T H E D F I G C A S E

3.1 introduction

The objective of this chapter is to evaluate the capabilities of the Zynq-7000 through the devel-
opment of an eRTS of a DFIG. The choice of this system was motivated because it is a quite
popular machine utilized in wind generators and it has a representative complexity regarding
electromechanical systems.

The study explores various implementations that will give a clear picture of how this SoC
can be used for performing advanced control strategies using eRTS. These are the different
implementations that will be carried out:

• Two numerical solvers with contrasted computational load will be analyzed in order to
find which is more appropriate for developing eRTSs:

– Euler’s Forward discretization

– the bilinear or Tustin discretization

• Once a discretization method has been chosen, three implementation approaches will
be carried out:

– a full-software ARM-based implementation

– a full-hardware one using solely the FPGA fabric

– a hardware-software co-design, also known as hardware accelerator

• And these proposed solutions will be realized using three different data formats, de-
pending on where they will be implemented:

– 64-bit floating-point (ARM only)

– 32-bit floating-point (ARM and FPGA)

– 32-bit fixed-point (FPGA only)

The aim is then to evaluate and compare the device performance in terms of execution time,
resources utilisation and precision of the calculations. Notwithstanding, this approach can be
extrapolated to any other application involving eRTS, HIL and modern control techniques
which require performing extensive computations on SoC devices. Papers [6] and [7] were
issued out of this work.

3.2 the methodology

The methodology followed for this evaluation can be briefly explained as follows. First, the
equations of the machine will be obtained using the dq reference frame [71]. Second, an

25

26 erts for electromechanical systems : the dfig case

evaluation of two discretization methods will be performed. Then, according to results, the
selected discretized model will be implemented using various approaches and a conscientious
examination of the different solutions will be made.

As introduced previously, when implementing an embedded RTS in a heterogeneous sys-
tem like the Zynq, and considering that the DFIG model is coded in C/C++, one can think of
different approaches:

• A full-software implementation using solely the ARM processor. The mathematical model
of the machine is a function that is called from within the main program. Even though
the ARM Cortex-A9 is a 32-bit processor, it has a FPU capable of executing operations
in 64-bit efficiently. Hence, it is worth studying the differences when using 32-bit and
64-bit variables in terms of accuracy and execution time. This option is evaluated in
Section 3.5

• A full-hardware implementation using Vivado HLS to program the FPGA fabric using
the same C/C++ model coded for the software version. In this case, two different im-
plementations are proposed for a further comparison with the software version: a 32-bit
floating-point version and a 32-bit fixed-point version. This implementation is covered
in Section 3.6

• A hardware-software co-design. If a whole control system is considered, some subsystems
can run in different parts of the Zynq trying to alleviate some PS computational load
transferring it to the PL. These are known as hardware accelerators and for some appli-
cations they can help reducing the total algorithm execution time. When this option is
going to be implemented, a shared memory space has to be used in order to send data
to and receive it from the PL. This approach is covered in Section 3.7 and evaluates two
different implementations, one using BRAM and the other using the On-Chip Memory
(OCM)

All these different versions will be compared in terms of accuracy of the results with a
Simulink off-line implementation of the continuous model equations, setting a 100ns fixed
time-step, using the Runge-Kutta ODE4 solver and double-precision floating-point variables.
This solver was chosen to produce the reference values because of its high accuracy. The
Simulink model can be seen in Figure 3.1. The input signals to the block are in the abc frame
but they are converted to the dq frame before performing the model computations. In the next
Section, Figure 3.8 shows the block diagram continuous equations of the model based in the
dq reference frame.

The model will be tested in two different scenarios: (i) one changing the speed of the
shaft ±30% around the synchronous value; and (ii) another modifying the load to pass from
consuming 50% to 85% of the nominal power at constant speed. The variation of the input
signals on each of these experiments can be seen in Figures 3.2 and 3.3, along with the speed
of the shaft –which is an internal variable. Currents and voltages are shown in per-unit system1

whereas angular speed and torque are in rad/s and Nm respectively.

1 A per-unit system is the expression of system quantities as fractions of a defined base unit quantity. Calculations
are simplified because quantities expressed as per-unit do not change when they are referred from one side of a
transformer to the other. This can be a pronounced advantage in power system analysis where large numbers of
transformers may be encountered. Moreover, similar types of apparatus will have the impedances lying within a
narrow numerical range when expressed as a per-unit fraction of the equipment rating, even if the unit size varies
widely. The main idea of a per-unit system is to absorb large difference in absolute values into base relationships.
Thus, representations of elements in the system with per-unit values become more uniform. More information can
be found in [72].

3.2 the methodology 27

Figure 3.1: DFIG as a standalone generator implemented in Simulink

1.1 1.15 1.2 1.25 1.3 1.35 1.4
−4.2

−4

−3.8
x 10−3

V
sd

1.1 1.15 1.2 1.25 1.3 1.35 1.4
0.98

0.985

0.99V
sq

1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

0.05

0.1V
rd

1.1 1.15 1.2 1.25 1.3 1.35 1.4
−0.5

0

0.5V
rq

1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

10

20T
m

1.1 1.15 1.2 1.25 1.3 1.35 1.4
100

200

300Ω

Time (s)

Figure 3.2: Speed change test inputs

28 erts for electromechanical systems : the dfig case

1.1 1.15 1.2 1.25 1.3 1.35 1.4
−0.2

0

0.2V
sd

1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

1

2V
sq

1.1 1.15 1.2 1.25 1.3 1.35 1.4
−0.1

0

0.1V
rd

1.1 1.15 1.2 1.25 1.3 1.35 1.4

0.35

0.4V
rq

1.1 1.15 1.2 1.25 1.3 1.35 1.4
−10

0

10T
m

1.1 1.15 1.2 1.25 1.3 1.35 1.4
117.5

118

118.5Ω

Time (s)

Figure 3.3: Load change test inputs

It is recommendable to set the time-step of the reference data equal to that of the short-
est implementation in order to have iteration results produced simultaneously. Moreover, it
would be very appropriate for the other implementations to have a time-step multiple of that
same value so as to have results synchronized with them as well. This is illustrated in Figure
3.4, where it can be seen the continuous signal from a real system, the fastest implementation
being executed at 100ns –same as the golden data, a second one computed at 200ns, and the
slowest one at 400ns, all of them used in the Zero-Order Hold2 (ZOH) context. In this way, every
4th iteration, all implementations will generate a result, thus allowing to properly compare
the results with all the other solvers.

The error when comparing the golden data with the Zynq implementations will be calcu-
lated using equation 3.1.

eavg =
Σ
∣∣xre f − ximp

∣∣
N

(3.1)

where xre f is the reference signal obtained in Simulink, ximp is the actual implementation
result, and N the total number of samples.

Regarding the full-software implementation, the discretized models will be coded in a func-
tion using C/C++. When being executed by the ARM, this function will be called from the
main routine and the results logged for their latter verification. The execution time needed
to compute each model function will be measured as well in order to set the corresponding
sampling time parameter in the discretized model equations, configure the software interrupt
to ensure synchronized calls to the function, and to then compare the amount of time needed
to perform the calculations with the other implementations.

2 The ZOH is the simplest mathematical model to reconstruct a continuous signal. It basically consists in generat-
ing an analog value and holding it for one sample interval. It is also the method used by the analog-to-digital
converters (ADC), where the value of the continuous-time signal is measured and the value kept until the next
sampling.

3.3 case application description : the dfig 29

100 200 300 400 500 600 700 800 900 1000 1100 1200

Time (ns)

Exec. @ 400ns
Exec. @ 200ns
Exec. @ 100ns
Continuous

Amplitude

Figure 3.4: Different time-step synchronization

Conversely, the common way of programming the FPGA fabric is using Hardware Descrip-
tion Languages (HDL). The most widely used HDLs are VHDL, Verilog and SystemC. There-
after, this code is synthesized into Register Transfer Level (RTL), a type of architecture specific for
digital logic circuits based on gates, registers and other more manufacturer-specific hardware.
It is also important to point out the important amount of time needed to code and debug the
increasingly sophisticated algorithms used nowadays with them.

Due to these drawbacks and because of the fact that not all control engineers are famil-
iarized with these languages and platforms, an interesting alternative is to use High-Level
Synthesis (HLS) tools like Vivado HLS provided by Xilinx [73]. This software converts algo-
rithmic description written in C, C++ or SystemC into RTL. From the same source code, it
can generate code which is device specific and therefore, this source code can be re-utilized
when targeting other platforms. It is supplied with extensive libraries ranging from arbitrary
precision data types, to data streaming, math, linear algebra, or data signal processing among
others. Furthermore, it is possible to use pragmas, directives and/or constraints to infer dif-
ferent hardware architectures from the same source code in order to obtain an appropriate
solution for the specific implementation regarding latency, initiation interval and resources
utilization [70]. This tool is therefore very powerful for conducting an in depth exploration of
the architectural space.

3.3 case application description : the dfig

The chosen application is a DFIG working as an islanded generator feeding a three-phase
RL load [4]. This asynchronous generator is widely used in wind-generation applications be-
cause it allows operating with variable speed of the shaft but maintaining a fixed voltage and
frequency in the stator terminals [3, 4, 74, 5]. This is accomplished by controlling the rotor
voltage using power converters. This feature gives the machine an advantage compared to
others regarding the high-power generators, because for a varying speed of ±30% around the
synchronous speed, the power converters are considered to be around one-third of the nom-
inal output power of the wind turbine [3, 4]. This adds a surplus to this kind of generators

30 erts for electromechanical systems : the dfig case

θ

α
S

r
αα

A
i

v
A

A

B

C

a

b

c

a
i

v
a

Figure 3.5: DFIG diagram

due to the reduction in size and losses of the converter. Moreover, this machine can produce
and consume reactive power avoiding the use of batteries and capacitors connected to the sta-
tor. The main drawback of the DFIG are the brushes and slip rings which make the machine
bulkier than the one with squirrel cage rotor, less reliable and suitable of constant mainte-
nance. Figure 3.5 shows the electrical diagram of the machine, having the stator quantities in
uppercase letters whereas their rotor analogues in lowercase.

A controller has been also included to guarantee constant frequency and voltage despite
of load and shaft’s speed variations [5]. Hence, the considered system can be divided into
three different parts: the load, the DFIG, and the controller. In order to optimize the use of
the Zynq, the best distribution would be to use one ARM core to implement the controller,
the other core for the DFIG model, and use the FPGA fabric to test different loads and power
converters, which require very short simulation time-steps for adequate real-time simulation
of the power electronic switching components. A schematic of the actual system under study
is shown in Figure 3.6. It is composed of a DFIG, a power converter, a three-phase RL load
and the controller. However, in this study only the DFIG model will be evaluated.

3.3.1 DFIG dynamic equations in the dq reference frame

Some assumptions need to be made in order to simplify the machine dynamic equations:

• Saturation is neglected since the generator is operating in the linear region. This means
that self and mutual inductances are independent of the winding current level

3.3 case application description : the dfig 31

DFIG LoadDFIG

Converter Control
board

Figure 3.6: DFIG connected to an isolated load

r
ξ

d
q

ω=pΩ

θ
s
ξ

β
s

α
s

r
α

r
β

s
ξ
.

r
θ

d
q

ω=pΩ

θ
s
θ

β
s

α
s

rα

r
β

s
ω

Φs

v
s

Φ
s

Figure 3.7: dq reference frame

• A smooth, uniform air-gap is assumed, so rotor and stator slotting is neglected

• The hysteresis and Foucault losses are also neglected

• The temperature effect in the windings is not considered

According to these simplifications and to the convention shown in Figure 3.7, the dynamic
behavior of a DFIG can be described by equations 3.2.

vs = Rsis +
d
dt

ϕ
s
+ jωs ϕ

s

vr = Rrir +
d
dt

ϕ
r
+ jωr ϕ

r
(3.2)

ϕ
s

= Lsis + Msrir

ϕ
r

= Msris + Lrir

where the s and r subscript mean stator and rotor quantities respectively, ϕ is the flux, L is
the self inductance, M is the mutual inductance between rotor and stator windings, and ω is
the angular speed of the electrical field which is related to the mechanical angular speed of
the rotor Ω by equation (3.3), where p is the number of pairs of poles.

32 erts for electromechanical systems : the dfig case

ωr = ωs − pΩ (3.3)

For the equations, it will be adopted the convention in the dq reference frame [71]. Substi-
tuting, operating, and arranging the equations in a matrix representation, 3.4 is obtained.

d
dt isd
d
dt isq
d
dt ird
d
dt irq

 =
1
σ

A

isd

isq

ird

irq

+
1
σ

B

vsd

vsq

vrd

vrq

 (3.4)

A, B and σ being:

A =

−Rs

Ls
ωs −ωr

M2
sr

Ls Lr

Msr Rr
Ls Lr

pΩ Msr
Ls

ωr
M2

sr
Ls Lr
−ωs −Rs

Ls
−pΩ Msr

Ls

Msr Rr
Ls Lr

Msr Rs
Ls Lr

−pΩ Msr
Lr

−Rr
Lr

ωr −ωs
M2

sr
Ls Lr

pΩ Msr
Lr

Msr Rs
Ls Lr

ωs
M2

sr
Ls Lr
−ωr −Rr

Lr

B =

1
Ls

0 − Msr
Ls Lr

0

0 1
Ls

0 − Msr
Ls Lr

− Msr
Ls Lr

0 1
Lr

0

0 − Msr
Ls Lr

0 1
Lr

σ =
LrLs −M2

sr
LrLs

Regarding the mechanical part of the DFIG model, equation 3.5 describes its behavior.

J
d
dt

Ω = Tm − Te − BΩ (3.5)

considering the angular speed of the rotor Ω, J the inertia, B the friction coefficient, Tm the
load mechanical torque, and Te the electromagnetic torque of the machine. Rearranging this
formula in matrix form:

[
d
dt

Ω
]

=

[
−B

J

]
[Ω] +

[
1
J − 1

J

] [Tm

Te

]
(3.6)

Tm is the input torque of the mechanical load and Te is calculated using equations (3.4) and
(3.7).

Te = Msr
(
irdisq − irqisd

)
(3.7)

These equations were implemented in Simulink using continuous blocks as seen in Figure
3.8.

3.3 case application description : the dfig 33

 ELECTRICAL TORQUE

1
vs

1
is

2
vr

3
omega 2

ir

Lo*Tebase

i_sd

i_rd

i_rq

i_sq

[wr]

[w]p

Gain

[theta_r]

asd

asd
1

[v_rq]

[v_sq]
[v_sd]

[v_rd]

4
ws

1
s

[theta_s]1
s

1/wbase

p.u. conversion1

1/wbase

p.u. conversion2

1/Ls

Lo/(Lr*Ls)

Lo/Ls

1
s

Integrator

wbase/sigma_
i_sq

i_sq

[v_sq]

[v_rq]

[ws]

Rs/Ls

Rr*Lo/(Lr*Ls)

i_rq

[w]

i_rd

[wr]

Lo^2/(Lr*Ls)
i_sd

1/Ls

Lo/(Lr*Ls)

Lo/Ls

1
s

Integrator1

i_sd
i_sd

[v_sd]

[v_rd]

[ws]

Rs/Ls

Rr*Lo/(Lr*Ls)

i_rd

[w]

i_rq

[wr]

Lo^2/(Lr*Ls)
i_sq

1/Lr

Lo/(Lr*Ls)

Lo/Lr

1
s

Integrator2

i_rq
i_sq

[v_rq]

[v_sq]

[ws]

i_rq

[w]

i_sd

[wr]

i_rd

Rs*Lo/(Lr*Ls)

Rr/Lr

1/Lr

Lo/(Lr*Ls)

Lo/Lr

1
s

Integrator3

i_rd

i_sd

[v_rd]

[v_sd]

[ws]

i_rd

[w]

i_sq

[wr]

i_rq

Rs*Lo/(Lr*Ls)

Rr/Lr

Lo^2/(Lr*Ls)

Lo^2/(Lr*Ls)

[ws]

wbase/sigma_

wbase/sigma_
wbase/sigma_

[v_sd]

[v_sq]

[v_rd]

[v_rq]

i_rd

i_rq

[theta_s]

[theta_s]

[theta_r]

i_sd

i_sq

[theta_r]

abc
theta dq

abc-dq
(Amplitude Invariant)

abc
theta dq

abc-dq
(Amplitude Invariant)1

dq
theta abc

dq-abc
(Amplitude Invariant)

dq
theta abc

dq-abc
(Amplitude Invariant)1

1/(m*Vsbase)

1/Vsbase

Isbase/m

Isbase

wbase

p.u. conversion3

wbase

p.u. conversion5

simulink_output_Reference

i_sd
i_sq
i_rd
i_rq

[Te_dq]
[omega_dq]

[theta] 3
theta

4
Te

1
s wbase

p.u. conversion4

[theta]

theta_s

vrq

vsd

vrd
vsq

theta_r

we
wr

wr

theta_r
theta_s

Figure 3.8: DFIG continuous model implementation in Simulink

34 erts for electromechanical systems : the dfig case

K2
t2s+1
t2s

K1
t1s+1
t1s

Iµd
∗

−

Iµd

Ird∗
−

Ird

−

gωsσLrIrq

Vrd

Rs
1
Lss

Isd −
+

Vsd

Iµd

−Ls

Lo
K1

t1s+1
t1s

Isq Irq
∗

−

Irq

+

gωsσLoIµd

+

gωsσLrIrd

Vrq

Calculating g

ωs
∗−pΩ
ωs

∗

ωs
∗

Ω
g

General scheme

Controller DFIG

ξ

Ω

irabc

Pref∗
Qref∗

vsabc

vrabc

Ω

Tm

isabc

irabc

θ

Te

Ω

Output filter

Ls

Rs
is

Cf Rf

iload

Vs

1

Figure 3.9: Control diagram

3.3.2 The controller

An indirect decoupled vector control using stator flux oriented techniques is adopted to ad-
just the DFIG stator output voltages [5]. Its magnitude is indirectly controlled through the
regulation of the stator flux. Unlike the utility grid case, in standalone applications the stator
flux is no longer imposed by the grid and can be adjusted by action on the d component of
the rotor current. Among the main advantages of this indirect vector approach are the low
harmonic distortion and the sinusoidal grid voltage even in the presence of non-linear loads
[5, 3]. The block diagram of the controller is shown in Figure 3.9.

The proper functioning of the controller shown in Figure 3.10, was verified using MAT-
LAB/Simulink, where the voltages and currents in the RL load are maintained while the speed
of the shaft varies ±30% around the nominal value (2π f

p = 157, 1rad/s).

3.4 discretization methods comparison

In order to simulate the dynamics of a continuous system in a digital environment, a discrete
model of the system must be calculated. All systems subjected to a simulation in state-space
representation [75] are written as:

ẋ (t) = Ax (t) + Bu (t)

The Laplace transform[76] applied to the system equation leads to:

sx (s) = Ax (s) + Bu (s)

3.4 discretization methods comparison 35

Figure 3.10: System signals

36 erts for electromechanical systems : the dfig case

3.4.1 Euler method

The first and foremost basic numerical integration approximation technique is the Euler’s
Forward discretization used in the ZOH context. It is based on replacing the Laplace operator s
with (z− 1) /Ts, where z refers to the z-transform operator and Ts is the numerical integration
time-step. Accordingly, the discretization using this method leads to 3.8.

xk = (I + TsA) xk−1 + TsBuk−1 (3.8)

3.4.2 Tustin method

The bilinear or Tustin discretization is an integration method that is used mainly in the
First-Order Hold3 (FOH) context. It assumes that the input vector u varies linearly between
kTs and (k + 1) Ts. Consequently, and substituting the s of the Laplace transformation by
2 (z− 1) /Ts (z + 1) equation 3.9 is obtained.

xk = M
[

I +
Ts

2
A
]

xk−1 + MBTs (uk−1 + uk) (3.9)

where M =
[
I− Ts

2 A
]−1

.

In this case, like A is changing,
[
I− Ts

2 A
]−1

and
[
I + Ts

2 A
]

need to be calculated at ev-
ery time-step which increases significantly the computational load. However, the use of this
method will make sense if the error compared to the Euler implementation (using a smaller
time-step due to its moderate computational load) is lower.

3.4.3 C-code implementation

If equations (3.4) and (3.6) are to be implemented in C-code using the discretization methods
explained in Sections 3.4.1 and 3.4.2, the following constraints must be considered: First of
all, a sample time must be specified depending on the system’s time constants. Nonetheless,
like the main aim of this work is to test the maximum computational power of the device, the
sample time will be set to the minimum possible. And secondly, the inputs and outputs of the
system and the parameters must be specified. The model under study has five input variables
(vsd, vsq, vrd, vrq and Tm), five output variables (isd, isq, ird, irq and Te), and ten parameters
of the model: the electrical parameters of the machine (Rs, Ls, Rr, Lr, Msr), the mechanical
parameters (B, J and the number of pair poles p), the grid frequency ws, and the sample time
Ts used in the discretization. A representation of the resulting IP block can be seen in Figure
3.11.

The total amount of computations needed by the two solvers can be seen in Table 3.1. Some
simplifications were made in the code in order to alleviate the number of operations and ease
the compiler interpretation to produce quality assembly code: precomputing parameters that
do not change during the simulation, changing divisions by multiplications by the inverse
value when possible, arranging the input data in a proper way for a sequential reading, etc.

3 The FOH is a mathematical model which consists of reconstructing an analog signal by a linear interpolation its
actual value and the previous sample.

3.4 discretization methods comparison 37

DFIG model IP

v sd

v sq

v rd

v rq

Tm

i sd

i sq

i rd

i rq

Te

Figure 3.11: DFIG IP block

Table 3.1: Number of operations to be executed

ADD SUB MUL DIV

Euler 25 6 40 2

Tustin, of which: 152 46 324 2

- Matrix inversion 43 40 212 1

- Matrix multiplication 64 0 64 0

38 erts for electromechanical systems : the dfig case

Once the number of operations has been obtained, the next step is to compare the error
between the two methods and the golden data generated using Simulink. If the computation-
ally lighter Euler model, which will use shorter time-step, produce equal or less error than its
Tustin counterpart, it will therefore be more convenient to use it because of lesser hardware
utilisation and lower power consumption.

3.4.4 Full-software implementation of both discretizations

In this subsection, equations (3.8) and (3.9) are programmed in the PS using standard C-code.
The SIMD and FPU units available on the ARMv7 architecture will be utilized to boost the
algorithm performance.

Two different versions of each discretization method were coded to be executed by the
ARM: one using 32-bit and another one using 64-bit floating-point formats. The results re-
garding execution time are shown in Figure 3.12. The difference between the two versions of
the code is only the size of the digital words. The different optimization options utilised in
the GCC compiler, explained in detail in [77], are the following:

• -O0: no optimization. It turns off automatic vectorization regardless of additional com-
piler options

• -O3: with no additional commands. Automatically turns on -ftree-vectorize

• -O3a: adding -mfpu=vfpv3 -ffast-math -mcpu=cortex-a9

• -O3b: adding -mfpu=neon -ffast-math -mcpu=cortex-a9

• -O3c: adding only -mcpu=cortex-a9

To briefly explain what these compiler options are, the Xilinx ARM GNU Toolchain use these
below by default:

• -mfloat-abi=softfp: This option sets the overall strategy for floating-point code compila-
tion. It allows the generation of code using specific hardware floating-point instructions,
but still uses the soft-float calling conventions

• -mfpu=neon-fp16: It configures the type of FPU hardware accelerator. In this case, the
NEON for half-precision floating-point format is enabled

Then, depending on the level of specification (-O0 to -O3), further optimizations can be in-
cluded in the compiler:

• -ftree-verctorize: enables NEON automatic vectorization4

• -mfpu=vfpv3: select the VFPUv3 as FPU

• -mfpu=neon: select the NEON as FPU

• -ffast-math: some floating-point operations are not vectorized by default due to possible
loss of precision. Using this option forces vectorization of floating-point operations

• -mcpu=cortex-a9: the specific processor model is passed to the compiler

3.4 discretization methods comparison 39

Algorithm Euler (10.001s) Per sample (us) Tustin ZOH (10.001s) Per sample (us) Tustin FOH (10.001s) Per sample (us)

No optimization (-O0) 10,102 1,010 141,38 14,137 143,49 14,348

-O3 4,6908 0,469 17,862 1,786 18,626 1,862

-mfpu=vfpv3 -ffast-math -mcpu=cortex-a9 4,1484 0,415 18,507 1,851 19,211 1,921

-mcpu=cortex-a9 4,014 0,401 16,585 1,658 17,303 1,730

ERRORS 32-bit

Algorithm (760001 samples) Euler (760ks) Per sample (ns) Tustin FOH (760ks) Per sample (ns) Euler (760ks) Per sample (ns) Tustin FOH (760ks) Per sample (ns)

No optimization (-O0) 696 0,916 10911 14,357 745,96 0,982 10879 14,314

-O3 314,86 0,414 1687,8 2,221 326,94 0,430 1405,5 1,849

-mfpu=vfpv3 -ffast-math -mcpu=cortex-a9 297,6 0,392 1458,7 1,919 285,04 0,375 1445,4 1,902

-mfpu=neon -ffast-math -mcpu=cortex-a9 297,6 0,392 1437,1 1,891 285 0,375 1356,1 1,784

-mcpu=cortex-a9 279,24 0,367 1554 2,045 283,04 0,372 1302 1,713

LAST SHOT------

-O0 680,64 750 0,987 10892 14,332

-O3 356,24 0,469 1413,2 1,859

-O3a 314,04 0,413 1461,2 1,923

-O3b 314 0,413 1373,2 1,807

-O3c 297,4 0,391 1316 1,732

64-bit 32-bit

0

2

4

6

8

10

12

14

16

-O0 -O3 -O3a -O3b -O3c

T
(u

s)

Optimization

Tustin 64-bit

Tustin 32-bit

Euler 64-bit

Euler 32-bit

0

2

4

6

8

10

12

14

16

-O0 -O3 -O3a -O3b -O3c

T
(u

s)

Optimization

Tustin 64-bit

Tustin 32-bit

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

-O0 -O3 -O3a -O3b -O3c

T
(u

s)

Optimization

Euler 64-bit

Euler 32-bit

Figure 3.12: Algorithm execution time comparison on the ARM

Table 3.2: Best execution times (per iteration) on the ARM

CPU @ 667MHz Optimization Time (µs)

Tustin 64-bit -O3b 1,891

Tustin 32-bit -O3c 1,713

Euler 64-bit -O3c 0,372

Euler 32-bit -O3c 0,367

It can be seen in Figure 3.12 that the execution time depends highly on the algorithm
implementation (and the quality of the code) but it does not vary significantly whether 32-
or 64-bit variables are used. The best results obtained and the corresponding optimization
option are shown in Table 3.2. Note that the clock frequency of the ARM processor present in
the Zynq-7020 is 667MHz.

3.4.5 Full-hardware implementation of both discretizations

Only minor changes were made to the ARM version of the C-code in order to properly adapt it
to Vivado HLS. Regardless of the input and output format arrangements, the main structure
of the code was kept unmodified. A test bench program was also created to let the tool
automatically execute the C algorithm validation (Pre-synthesis5), and the RTL verification
(Post-synthesis6).

Table 3.3 shows the latency for a 100MHz clock and the resources utilisation for the Zynq-
7020.

3.4.6 Discretization results and conclusion

The reference values were obtained using a Simulink implementation of the continuous model
equations, setting for this evaluation a 2µs fixed time-step, the Runge-Kutta ODE4 solver and
double-precision variables. The simulation was run for 1.5s and then the results compared
with the Zynq implementations with the same time-step just to ease the evaluation of the

4 Automatic vectorization is a special case of automatic parallelization, where a computer program is converted
from a scalar implementation, which processes a single pair of operands at a time, to a vector implementation,
which processes one operation on multiple pairs of operands at once (see Figure 2.8 in Chapter 1)

5 A Pre-synthesized design is merely an RTL schematic. It enables you to see the netlist after the RTL elaboration.
6 The Post-synthesis is the technology schematic. It takes the synthesized input as netlist. Using a synthesized netlist

as input provides information about clocks and clock-related logic in the design.

40 erts for electromechanical systems : the dfig case

Table 3.3: Latency and area utilisation on the Zynq-7020

Latency BRAM DSP FF LUT

Tustin 64b 253 12 (4%) 185 (84%) 30.959 (29%) 32.855 (61%)

Tustin 32b 216 2 (~0%) 63 (28%) 12.583 (11%) 14.870 (27%)

Euler 64b 103 12 (4%) 100 (45%) 6.660 (6%) 11.007 (20%)

Euler 32b 86 6 (2%) 32 (14%) 3.107 (2%) 5.683 (10%)

Table 3.4: 64-bit floating-point average errors (software version)

Speed change test Load change test

isd 7.302e−8 1.739e−6

isq 6.947e−8 2.064e−6

ird 7.328e−8 1.599e−6

irq 4.724e−8 1.884e−6

Te 1.451e−6 4.289e−5

results. The average relative error for the 32-bit Euler version varied between 1.1% and 0.3% on
the different case scenarios, whilst for the Tustin varied between 0.23% and 0.1%. Concerning
the 64-bit version, the Euler method gave values between 0.06% and 0.016%, and the Tustin
between 0.014% and 0.0016%.

These very small average absolute errors and the little difference between an Euler and
Tustin discretization can be explained due to the dynamics of the machine. Most mechanical
systems require time-steps from 1ms to 10ms. So it is not surprising that when executing the
code at a range between 500 and 5.000 times faster, any of the two methods give pretty good
results.

Accordingly, it was decided to use the Euler method for its significantly lesser resources
utilisation.

3.5 full-software euler implementation

This is the easiest and most straightforward implementation. It is supposed that all the system
submodules are implemented in the PS and hence, all the system variables are stored in the
same memory space which facilitates and reduces the implementation time considerably.

As stated in Section 3.4.4, compiler optimization options were used to infer automatic vec-
torization which implies arranging data and operations in a proper way to be executed by
the NEON SIMD [51] and the VFPv3 FPU [52]. In some cases (see Figure 3.12) it reduced the
execution time by 80% while maintaining the same precision in the results [6].

3.5.1 64-bit floating-point full-software implementation

When using double-precision floating-point variables, the time needed by the DFIG Euler
function to return the values was 372ns. Then, in order to evaluate the results obtained by
this version, a comparison with the Simulink continuous-time model equations was performed.
Error results of both case scenarios obtained using equation 3.1 are shown in Table 3.4. The
values are in per-unit.

3.6 full-hardware euler implementation 41

Table 3.5: 32-bit floating-point average errors (software version)

Speed change test Load change test

isd 1.136e−3 1.986e−3

isq 7.959e−4 2.057e−3

ird 1.222e−3 1.896e−3

irq 7.554e−4 1.925e−3

Te 1.674e−2 4.485e−2

3.5.2 32-bit floating-point full-software implementation

On the other hand, when using single-precision floating-point variables, the execution time
needed by the IP was not significantly smaller: 367ns. This gives us an idea about how opti-
mized are these CPUs to perform 64-bit operations, even though their architecture is based
on 32-bit. Similarly to the previous implementation, the results when comparing this version
with the Simulink model using equation 3.1 are shown in Table 3.5.

3.5.3 Full-software implementation conclusions

Comparing the errors of both software implementations and taking into account that the
difference in execution time is barely noticeable, it is obvious that using double-precision
floating-point variables is more convenient.

3.6 full-hardware euler implementation

The design and development of this version –which includes managing the variables and the
communications between the different system blocks– is significantly more time consuming,
even if HLS tools are utilised. However, this option can be a good candidate –or sometimes
the only option– if the objective is to obtain the minimum execution time.

During the development of this model it was found that the fastest way of realizing all the
calculations was when using a very slow clock in order to let Vivado HLS implement a full-
combinatorial7 solution, i.e. an IP having zero latency. By default, Vivado HLS uses a 100MHz
clock to drive the FPGA fabric. However, in this specific application it was better to set the
oscillator to 5MHz so as to allow the internal logic to generate a result with zero latency. For
the 32-bit floating-point version for example, the time needed by the logic to propagate the
digital signals from input to output was 172ns. Conversely, when utilizing a 100MHz clock,
the logic required 76 clock cycles (i.e. 760ns) to output a result.

It is also important to mention that not using input and output arrays in the IP avoids the
use of memory interfaces allowing the data to be accessed in one clock cycle, thus reducing
the total latency of the IP.

7 In a digital design, when the logic has enough time to propagate the signals between input and output without
requiring to add intermediate registers, it is said that the the paths are implemented in full-combinatorial. Thus,
the logical operations are performed with zero latency.

42 erts for electromechanical systems : the dfig case

Table 3.6: 32-bit floating-point absolute average errors (hardware version)

Speed change test Load change test

isd 4.957e−4 1.848e−3

isq 5.937e−4 1.837e−3

ird 5.788e−4 1.745e−3

irq 4.595e−4 1.705e−3

Te 5.877e−4 2.132e−3

3.6.1 32-bit floating-point full-hardware implementation

A 64-bit floating-point version of the DFIG model was quickly peeked as well using Vivado
HLS. However, the amount of DSP slices available in the Zynq-7020 was not enough to obtain
a solution comparable to the software version in terms of execution time. However, a 32-bit
floating-point implementation gave results which could compete with the software version.
As previously announced, the best execution time was achieved using a slow clock frequency
(5MHz) in which the longest data path required 172ns to output a result according to Vivado
HLS. The FPGA resources used can be seen in Table 5.1. However, empiric evaluations showed
that the time estimation is not what the IP really needs to stabilize the combinatorial output
after performing the place and route. After the implementation on the Zynq, the timing analysis
summary said that the longest data path was 256ns. Notwithstanding, the model was tested
empirically in the ZedBoard and looking at the waveform it was seen that the outputs were
stabilized between 70 and 80ns. Even though the results were correct, care should be taken
when considering utilizing smaller timings as there is a data path that exceeds the 200ns.

Regarding the accuracy of the results in the Speed and Load tests, they do not differ signif-
icantly from the 32-bit floating-point software version. See Table 3.6 for more details.

3.6.2 32-bit fixed-point full-hardware implementation

The aim to study a fixed-point version was because the logic involved in the mathematical
operations is much simpler than its floating-point counterpart, and hence, the execution time
tends to be shorter and the area utilisation reduces significantly. Like the model uses per-unit
variables, it was easy to define the format of the fixed-point word for voltages and currents:
32Q30, which uses 1 sign bit, 1 integer bit, and 30 fractional bits. For the torque and angular
speed the format used was 32Q23, using 1 sign bit, 8 integer bits, and 23 fractional bits. This
allows the current and voltage signals to be between the range]2,−2], whereas torque and
angular speed can vary between]256,−256].

Regarding the HLS implementation, the same procedure as with the floating-point version
was followed. A slow clock was configured in order to let Vivado HLS synthesize a full-
combinatorial IP. Once the synthesis was finished, Vivado HLS estimations showed that the
fixed-point version executes all the necessary operations in 110ns using the resources shown
in Table 5.1. Again, these results did not match after performing the place and route, which
showed that the longest path required only 76ns. Moreover, after programming and running
the model in the real SoC platform, the waveform captured by the Integrated Logic Analyzer8

(ILA) showed that the output results were valid and stable after 20ns letting the DFIG model

8 An Integrated Logic Analyzer is a logic analyzer IP core that can be used to monitor the internal signals of a digital
design.

3.7 hardware-software co-design 43

Table 3.7: 32-bit fixed-point absolute average errors (hardware version)

Speed change test Load change test

isd 4.391e−4 5.657e−4

isq 8.225e−4 4.351e−4

ird 4.706e−4 6.015e−4

irq 7.842e−4 3.971e−4

Te 8.680e−2 5.165e−3

Table 3.8: FPGA hardware resources utilisation (32-bit)

Resource type BRAM DSP48E FF LUT

Available 280 220 106400 53200

Float. ver. 0 179 (81%) 10832 (10%) 24505 (46%)

Fix. ver. 0 128 (58%) 353 (~0%) 1441 (2%)

to be executed in an extraordinary short amount time. But once again, experimental results
should be considered with care as according to the timing summary, which takes into account
worst-case scenario (highest temperature and lowest voltage), there exists a critical path which
needs 76ns to output a valid value.

The average absolute errors compared with the Simulink 64-bit floating-point version can
be seen in Table 3.7.

3.6.3 Full-hardware implementation conclusions

The amount of time required to develop and implement the fixed-point version in the FPGA
was much longer than for the floating-point version even when using HLS tools. That without
considering converting the model to the per-unit system, which is a methodology broadly
used when working with electrical power systems [72]. So taking into account that the errors
achieved by both hardware solutions are very low, it is not rare to suggest a floating-point
implementation if the execution time is not a critical requirement.

3.7 hardware-software co-design

If a cooperation between PS and PL is chosen, always aiming to reduce the computation time
and make the response of the controller faster, the process becomes much more complicated.
The data needs to be accessible either from the PS as from the PL. This is automatically
managed when using the software version or easier to handle in the full-hardware one, but it
is not the case when both fabric and processor get involved for two reasons: (i) the data needs
to be in a common area where the two technologies could access it, and (ii) both systems need
to be perfectly synchronized to perform data reads and writes in the right moment. In this
case, two data transfer solutions are evaluated.

The Zynq system has several ways of transferring data between PS and PL. As introduced in
Section 2.6.3, it uses the AXI4 data bus standard [56] which specifies three different interfaces:

• The AXI4-Lite, address-driven, easy to configure and mainly used to send scalar values

44 erts for electromechanical systems : the dfig case

• The AXI4-Master or AXI4-Full, also address-driven, able to send data bursts but more
complicated to configure

• And the AXI4-Stream, not address-driven, single-direction, easier to implement and
used mainly to process data continuously and at a very high data rates

Considering the characteristics of the system where it is required to write and read back
only five different variables, the AXI4-Stream was discarded for this application. Either the
AXI4-Master or the AXI4-Lite can be a possible option.

Regarding the input and output data, it has to be stored in an area accessible from either
the PL as the PS. There exist three possible solutions in order to accomplish this. One method
could be to use the DDR. The PS is directly connected to it using dedicated channels and the
PL can have access to it through an AXI slave port. The second option is to use the 256KB
OCM available inside the PS. Again, the PL can access to it via the AXI slave port. The last
possibility is to use the BRAM available in the FPGA fabric. The main difference between
the three is that in the first two cases the hardware IP has to behave as a master writing the
data to the memory space without any intervention of the PS. Conversely, when using the
BRAM, it has to be the PS the one managing the data transfers. The OCM is used by both
processors to communicate to each other. When compared to DDR memory, OCM provides
very high performance and low latency access from both processors. Hence, OCM has the
lowest latency for the PS while the BRAM provides the lowest for the PL. DDR is suitable for
large volumes of data which neither the OCM nor BRAM can manage. Hence, the DDR was
dismissed. A simplified diagram of the two implementations can be seen in Figure 3.13.

Moreover, if the PL has a master role there are two channels to accomplish data transfers.
One is using the High-Performance (HP) port. The Accelerator Coherency Port (ACP) emerges
as another possible solution by enabling hardware accelerators to issue coherent accesses to
the memory space. This eliminates the need of flushing the data compared to the HP option,
which in the end reduces the total execution time.

In order to compare the use of a hardware accelerator with the full-software and full-hardware
versions, the total time has to include the time the IP needs to access the data, the time it needs
to perform the calculations –same as the full-hardware implementation, and finally the time it
needs to write the data in the shared memory space to make it available for the PS.

Regarding the data to transfer at every cycle, the IP needs four voltages (vsd , vsq, vrd, and
vrq) and the mechanical –load– torque (Tm) to compute the four currents (isd, isq, ird, and irq)
and the electromagnetic torque (Te). Therefore, using 32-bit variables this translates to 20 bytes
to read and 20 to write.

3.7.1 Hardware accelerator using OCM

Accessing the OCM from the PL was made through the ACP port. It has a 64-bit wide AXI
interface which allows the PL to access the OCM using an AXI4-Master interface while main-
taining memory coherency. Additionally, the DFIG IP has an AXI4-Lite interface used to set
the model parameters and control the IP.

Using a clock for the AXI connections of 250MHz, the time needed by the ARM when using
the OCM was 869ns and 885ns to write and read data respectively.

3.8 chapter conclusions 45

Figure 3.13: PS-PL Interconnections. a) Using OCM. b) Using BRAM.

3.7.2 Hardware accelerator using BRAM

In the case where the BRAM was used as the shared memory, the data transfer times were
444ns to write and 562ns to read data using an AXI4-Master interface through a General-
Purpose (GP) port driven by a 250MHz clock.

3.7.3 Hardware-software co-design conclusions

It has to be taken into account that the time needed to transfer small amounts of data is not
optimized and hence, for this specific case scenario, this solution lacks of interest.

3.8 chapter conclusions

The objective of this Chapter was to evaluate how suitable is the Zynq SoC platform to be used
in low-cost embedded RTS of electromechanical systems. This study was achieved through
the implementation of a DFIG coded in C/C++ in either the PS as well as in the PL.

A first study of two different discretization methods was made in order to see whether it
was more interesting of using a simpler, lighter and faster solver (Euler’s Forward method), or
a more precise and with more computational burden one (bilineal or Tustin method). Results
showed that for this specific case, where the system dynamics of the DFIG are between 500

and 5.000 times slower, the accuracy of the Euler version was sufficient. Hence, the Euler
model was chosen to be used for the rest of the study.

A total of six different versions, two in the processor, two in the FPGA fabric, and two
using hardware accelerators were implemented and then compared in terms of execution

46 erts for electromechanical systems : the dfig case

time and accuracy. The last two options were achieved making an evaluation of the data
transfer speeds to find whether it is interesting or not to have the DFIG model running as a
hardware accelerator.

A Simulink continuous-time model using 100ns of simulation time step and a Runge-Kutta
ODE4 solver was taken as a reference to compare the precision of the results in two different
scenarios: (i) a ±30% progressive change in the speed of the shaft; and (ii) a change in the
load from 50% to 85% of the nominal power of the generator.

Results showed that in terms of accuracy, having a model running with a time-step four
times shorter but half the precision did not obtain better results than the 64-bit floating-point
software implementation. Furthermore, using a 32-bit floating-point software implementation
did not reduce significantly the execution time compared with its 64-bit counterpart. Hence, if
the system is not execution-time critical, a software, double-precision version is recommended.
If however, the best performance in terms of rapidity of the calculations is needed, the fixed-
point version implemented in the PL is the most convenient solution.

Regarding the full-hardware implementation, the execution time estimations made by Vi-
vado HLS after synthesis were not coherent with the post place and route timing analysis,
showing in the fixed-point implementation more than 30% of time reduction. Even though an
execution time of 76ns for a DFIG model may seem too short considering the real system re-
sponse, this study shows the power of this platform to compute complex-averaged algorithms.
It allows the possibility to improve and/or extend this model with additional functionalities
like including non-linearities, losses, saturation, aging, etc. Besides, the re-utilization of hard-
ware resources using HLS directives in order to reduce area might be as well considered.

If the focus is put on implementing a hardware accelerator in the PL, the time needed
to transfer small amounts of data (40 bytes of total data transfer) is not optimized. This
option is therefore not interesting for this specific application. However, for control algorithms
running at a relatively large period, data transfer time delay has a smaller impact on overall
performance. Thus, PL hardware acceleration might be interesting as well if the purpose is to
alleviate computational load from the PS.

4
E RT S F O R P O W E R E L E C T R O N I C S Y S T E M S : T H E M M C C A S E

4.1 introduction

As previously stated, the aim of this Section is to use a scalable power converter with a
complex structure in order to exploit the device capabilities at maximum coping with the
eRTS requirements. Hence, an MMC was chosen as the application to be studied [11]. The idea
is to have one –or several– IP blocks which estimate, e.g. phase output voltages, arm and load
currents, Half-Bridge (HB) capacitor voltages, etc., based on other measured magnitudes. Then,
these IP blocks could be utilized for fault-tolerant embedded controllers, where the estimated
variables would be used in case of a sensor fault. Furthermore, they could also be adopted as
well as estimators, observers, or also applied for diagnosis and health-monitoring [8, 15, 6, 7,
14], without forgetting HIL applications for testing the control before its deployment on the
real plant [16, 17, 18, 19, 8]., and sensorless control [20, 21, 22, 23].

MMCs offer significant benefits compared to other types of Voltage-Sourced Converters (VSC)
[78, 12, 13]. The modular structure provides the flexibility to scale the voltage and power level
by adding more sub-modules (SM). Hence, when the number of them is sufficiently high, the
produced ac voltage has very low distortion which eliminates most of the filtering require-
ments. Furthermore, the losses decrease significantly compared to other VSC due to the low
switching frequency of each SM, hence, of each IGBT [13, 79].

However, the high number of devices in MMCs increase the computational burden in elec-
tromagnetic transient-type simulations. Detailed MMC models must include the represen-
tation of hundreds, sometimes thousands of switches and small numerical integration time
steps are required to accurately represent the multiple simultaneous switching events. The sig-
nificant computational load needed by these models require developing other simpler, more
efficient models [80, 81, 41, 43].

In this paper, the Xilinx’s Zynq-7045 SoC has been chosen because of its powerful dual-core
ARM Cortex-A9 processor and its versatile and large programmable logic (Kintex-7 family
equivalent) [54]. This platform is a superior version of the one used in Chapter 2 (Zynq-7020)
because the requirements in terms of area and computational power the digital simulation
of MMC needs are greater than the ones to simulate electromagnetic systems. The additional
hardware resources will be needed because the goal is to keep short the execution time while
increasing the number of SM [14].

4.2 the methodology

Conversely to the DFIG case, due to the huge amount of computations when the number of
HBs increase and the short time-step required to properly emulate the switching behavior, a
full-software version will not be considered for this study. Nevertheless, thanks to the inherent
parallel structure of the MMC and making use of the appropriate formulation, realizing one

47

48 erts for power electronic systems : the mmc case

–or several– IP blocks to perform the mathematical computations of the different converter
arms simultaneously stands out to be a potentially good solution.

Hence, an IP block for its use in a full-hardware design or as a hardware accelerator will
be developed. This IP will be evaluated when changing the number of SM from 6 to 700 per
phase, and also using different data word sizes and formats. Therefore, 64- and 32-bit floating-
point and 32-bit fixed-point data formats for variables and parameters will be contrasted.
Then, these different versions of the eRTS will be valued in terms of precision, computational
power and area utilization.

4.3 case application description : the mmc

The basic structure of an MMC is shown in Figure 4.1. It is formed by N Half-Bridge (HB)
SM per arm capable of producing a line-to-neutral voltage waveform of N + 1 levels [11]. An
inductor Larm is added on each arm to limit current harmonics and the short circuit current in
the event of a dc fault. Each SM includes a capacitor and two IGBTs with antiparallel diodes
as shown in the enlarged part of Figure 4.1.

SMn

SM2

SM1

SMn

SM2

SM1

SMn

SM2

SM1

SMn

SM2

SM1

SMn

SM2

SM1

SMn

SM2

SM1

iarm

V SM

C

T1

T2

iarmciarma iarmb

iarmciarma iarmb

upper upper upper

lower lower lower

ia ib ic vavbvc

Larm

Larm

Larm

Larm

Larm

Larm

V DC
2

V DC
2

V DC

Figure 4.1: Structure of the MMC

4.3 case application description : the mmc 49

The two IGBTs of each SM can be controlled through gate signals which allow two different
states. In the on-state T2 is fired and T1 is blocked and accordingly, the SM voltage VSM is
equal to the capacitor voltage. Depending on the arm current iarm direction, the capacitor will
be charged through the IGBT as shown in Figure 4.2a, or discharged through the diode as
shown in Figure 4.2b (equations 4.1 and 4.2 respectively). In the off-state T1 is fired and T2 is
blocked, resulting in VSM = 0. The capacitor voltage remains constant whatever the direction
of iarm is, but in one case the current flows through the IGBT as shown in Figure 4.2c, and in
the other through the diode as shown in Figure 4.2d (equations 4.3 and 4.4 respectively).

Modular
Multi-level
Converter
(MMC)

+

-

 ~
~

L

C1

C2

V ac

AT
DB

Load

OFF-stateON-state

V SM T1

T2

iarm

C

V SM T1

T2

C

iarm

T1

T2

C

V SM

iarm

V SM T1

T2

C

iarm

a) b) c) d)

Figure 4.2: HB functioning modes

The corresponding output voltage of these four modes can be calculated using the following
equations:

a) VSM = RIGBT
on iarm + Vcap (4.1)

b) VSM = Rdiode
on iarm + Vcap (4.2)

c) VSM = RIGBT
on iarm (4.3)

d) VSM = Rdiode
on iarm (4.4)

After explaining how each SM works and coming back to Figure 4.1, the output ac voltages
of each converter phase can be computed using 4.5.

vabc =
V l

arm −Vu
arm

2
+

Req

2
iabc +

Larm

2
d
dt

iabc (4.5)

where Vu
arm and V l

arm are the voltages to be inserted in the upper and lower arm (equations
4.6 and 4.7 respectively), Req the equivalent resistor considering the on resistance of the MOS-
FETs and anti-parallel diodes plus the parasitic resistance of the arm inductors, and iabc are
the phase ac output currents (equation 4.8). Hence, the output current iabc can be controlled
by means of Vu

arm and V l
arm when the MMC is connected to an ac grid of voltage vabc.

Vu
arm =

VDC

2
− vre f

abc − vre f
circabc

(4.6)

V l
arm =

VDC

2
+ vre f

abc − vre f
circabc

(4.7)

iabc = iu
armabc

− il
armabc

(4.8)

50 erts for power electronic systems : the mmc case

From the above equations, VDC is the pole-to-pole dc voltage, vre f
abc is the required output

phase voltage, and vre f
circabc

the voltage linked to the circulating currents which is computed
using equation 4.9 according to [82].

vre f
circabc

= Ra

(
ire f
circabc

− icircabc

)
− R̂ire f

circabc
(4.9)

where Ra is the referred as the “active resistance” –which is in fact the gain parameter of
the P regulator that controls the circulating current, and R̂ is an estimate of Req, and ire f

circabc
is

the circulating current reference which is calculated using equation 4.10. More information
about this implementation can be found in [83].

ire f
circabc

=
iu
abc + il

abc
2

(4.10)

In a perfectly balanced three-phase MMC, each arm would provide half of the ac output
current plus a circulating current whose value would correspond to one third of the total dc

current. Notwithstanding, capacitor voltage variations lead to additional circulating currents
that increase not only the RMS value of the arm currents, but the capacitor voltage oscillations
and the overall losses as well.

4.4 mmc numerical models

4.4.1 MMC model classification

Model 1

Model 2

Model 3

Model 4

Figure 4.3: Model evolution with decreasing complexity

[2] defines four levels of models according to the type of study and required accuracy. A
graphical depiction of these models can be seen in Figure 4.3. These four models are:

4.4 mmc numerical models 51

• Model 1: The Detailed IGBT-based Model is the most detailed and computationally costly
representation of power electronics. This model uses an ideal switch, two non-linear
(series and anti-parallel) diodes, and two snubber circuits [81].

• Model 2: The Equivalent Circuit-based Model replace the power switches by on/off state
resistors. Ron is in the range of 10−3Ω whereas Ro f f is in the range of 106Ω. This ap-
proach reduces the amount of internal electrical nodes allowing the creation of a Norton
equivalent for each MMC arm [80].

• Model 3: In the MMC Arm Switching Function and according to [84], each arm is reduced
to a single cell with a capacitance equal to C

N and a voltage equal to ∑ vcaps, where C is
the cell capacitance, N the number of SMs, and ∑ vcaps the summation of all HB capaci-
tor voltages. Thus, it assumes all capacitor voltages are perfectly balanced, having all the
same voltage value. If Sn is the logical function denoting on and off-state cells (i.e. 1

and 0 respectively), then, the arm voltage varm is calculated using the following equation:

varm = ∑ Snvcaps + NRoniarm

where iarm is the arm current and Ron the linear conductivity losses on for each SM. The
equivalent current icapstot that flows through the capacitor is:

icapstot = Sniarm

• Model 4: The Average Value Model presented in [81] does not explicitly represents the
IGBTs and their diodes. Conversely, the behavior of the MMC is modeled using con-
trolled voltage and current sources. Three ideal ac voltage sources are used to model
the ac-side. The dc-side is modeled by means of a dc current source whose value is
derived using the principle of power balance. This model also assumes that the internal
variables of the MMC are fully controlled, i.e. all SM capacitor voltages are perfectly
balanced and circulating currents in each phase are suppressed.

Models 1 and 2 offer great representation of the power electronics. However, the computa-
tional burden is cumbersome if the focus is to implement a reliable and fast MMC model into
SoC devices, specially when the number of SM is high. Conversely, models 3 and 4 have very
few computation requirements, but their main limitation is their inability to represent the
internal converter dynamics, which are essential when developing eRTSs. The model used in
this dissertation does not apply to any of these cases and it is explained in the next Subsection.

4.4.2 The simplified model

The model proposed in [85] can be placed between models 2 and 3. It is based on the Equiv-
alent Circuit-based Model and aims to reduce the computational requirements of the detailed
models. It neglects the Ro f f resistance due to its high value when compared to Ron, which
reduces the computation burden, but conversely to Model 3, it stores the capacitor voltages
and represents the circulating currents.

As shown in Figure 4.4a, this simplified model consists of a variable voltage source Varm,
a variable capacitor Ceq, a variable resistor Req, and a reactor Larm on each phase branch.
Hence, all the SMs in each arm are reduced to these components, regardless of the number of

52 erts for power electronic systems : the mmc case

Req

Larm

+
C eq

+
V arm

Larm

+
C eq

+
V arm

Req

iarm
upper

iabc

iarm
lower

vabc

V DC
2

V arm
upper

V arm
lower

V SM T1

T2

C

iarm

T1

T2

C

V SM

iarm

b)

c)

V SM

iarm

Ron
IGBT /diode

+
C

+
E = V cap0

Ron
IGBT /diode

V SM

iarm

V cap

a)

Req

Larm

+
C eq

+
V arm

Larm

+
C eq

+
V arm

Req

iarm
upper

iabc

iarm
lower

vabc

V DC

V DC
2

Figure 4.4: a) MMC arm circuit, b) off-state SM, c) on-state SM

4.5 discretization 53

levels considered. This model is based on the Thevenin equivalent circuit with the following
considerations:

• The IGBTs and diodes are modeled as a two-state resistor: Ron and Ro f f .

• The off-state resistance Ro f f of diodes and IGBTs are considered to be infinite.

• The off-state SMs (see Figure 4.4b) are replaced by an equivalent resistor whose value
is RIGBT

on if iarm is positive, or Rdiode
on if iarm is negative. RIGBT

on and Rdiode
on are the IGBT and

diode conduction resistance respectively.

• The on-state SMs (see Figure 4.4c) are replaced by an equivalent capacitor C with zero
voltage, a voltage source E with the same voltage of the capacitor Vcap0 at the instant of
time when the SM is switched on, and a resistor. The resistor is equal to Rdiode

on if iarm is
positive, and RIGBT

on if iarm is negative.

Hence, the model parameters Varm and Ceq can be calculated using 5.4 and 4.12.

Varm =
Non

∑
i=1

Vcap0 (4.11)

Ceq =
C

Non
(4.12)

But as seen in Figures 4.4b and 4.4c, the equivalent resistor Req however depends on the
sense of the arm current iarm and the state of each SM:

• If iarm > 0:

Req = NonRdiode
on + No f f RIGBT

on (4.13)

• If iarm < 0:

Req = No f f Rdiode
on + NonRIGBT

on (4.14)

being Non and No f f the number of on and off SMs of each arm respectively, and taking
into account that the total number of cells N is equal to:

N = Non + No f f

4.5 discretization

The capacitor charge in continuous time can be expressed by means of equation 4.15.

iarm (t) = C
d
dt

Vcap (t) (4.15)

Applying the integral to both parts of the equal and operating leads to:

Vcap (t) = Vcap0+
1
C

∫ Ts

0
iarm (t) dt (4.16)

54 erts for power electronic systems : the mmc case

Then, realizing the integral equation 4.17 is obtained.

Vcap (t) ≈ Vcap0 +
Ts

C
iarm (t) + iarm (t− Ts)

2
(4.17)

being Ts the sampling time, Vcap0 the capacitor voltage at instant t− Ts, iarm (t) the measured
current at instant t, and iarm (t− Ts) the measured current at instant t− Ts. This equation can
be directly implemented in software, but for a more appropriate notation, equation 4.17 can
be rewritten as:

Vcap (k) = Vcap (k− 1) +
Ts

C
iarm (k) + iarm (k− 1)

2
(4.18)

Then, in order to calculate the phase voltage equation 4.19 is used.

vabc (t) =
V l

arm (t)−Vu
arm (t)

2
+

Req

2
iabc (t) +

Larm

2
d
dt

iabc (t) (4.19)

But this time the Euler’s Forward method is applied leading to equation:

vabc (k) =
V l

arm (k− 1)−Vu
arm (k− 1)

2
+

Req

2
iabc (k− 1) +

Larm

2∆Ts
(iabc (k)− iabc (k− 1))

4.6 hardware implementation

As within the DFIG case, the MMC model will be coded using Vivado HLS in order to
generate an IP block containing the considered inputs and outputs of the system. Several
approaches were studied considering the characteristics of the converter aiming to reduce at
maximum the execution time for an adequate emulation of the power electronics switching.

Focusing on the objective of parallelizing the calculations, the three most obvious possibil-
ities were to divide the system into 6 IP blocks (one per arm), 3 IP blocks (one per phase),
or one single IP block for emulating the whole converter. Authors discovered that the best
results were found when the model was divided into three identical functions, i.e. one per
phase, mainly because a compromise between parallelization of computations and reduction
in input and output signals. These three IPs could be called simultaneously in order to com-
pute each phase at the same time reducing the total execution time by three if compared to a
sequential realization as it would be done using a general purpose processor.

Vivado HLS was very successful in reusing hardware, managing memory accesses and
pipelining the calculations reducing the latency significantly. It is relevant to mention another
work found in the literature comparing a hard-coded HDL IP with their HLS counterparts for
its intended use in power electronics systems [10]. However, they evaluate a generic hardware
solver –which simply performs matrix multiplications– changing the number of states to be
computed rather than a real model of the power converter. Moreover, they do not compare
different variable formats but a custom-made floating-point format.

Needless to say that the decision of format and word size of variables and parameters im-
pacts directly in the precision of the results, the execution time, and particularly the FPGA
area utilized. The difference between fixed-point and floating-point is that the firsts have

4.6 hardware implementation 55

smaller footprints and latencies, whereas the lasts have larger dynamic ranges and better ac-
curacy. In this Section three different formats are therefore compared: 64- and 32-bit floating-
point, and 32-bit fixed-point. It is worth saying that when using C-code it is quite straightfor-
ward to change from one format to another. Making use of the type definition functionality
typedef when declaring variables, and then changing it to either double (64-bit floating-point),
float (32-bit floating-point), or ap_fixed<M,N> (a fixed-point declaration where M is the word
width and N the number of integer bits), all variables and parameters of the system can be
changed instantaneously. This is a powerful feature of HLS tools because it is not necessary
to handle all the logic involved in floating-point format when using HDL languages, which
is an arduous task and quite error-prone.

4.6.1 Description of the IP

When coding in Vivado HLS, the function that performs the calculations has to be defined
where the inputs and outputs of the system are defined as function parameters. They can be
scalar, vectors, or even arrays with several dimensions. In this case, the voltage reference to
be generated by each phase vre f

abc, the upper and lower arm currents iu
abc and il

abc, the triangular
waveform used to be compared with the vre f

abc to generate the PWM signals of all the SMs, the
internal voltage controlling the circulating current ure f

circ, and the output voltage of each phase
vabc are all scalar values. The capacitor voltages of every cell vcaps[N] are defined as vectors in
order to easily change the number of SM setting the appropriate parameter, without the need
of modifying the internal code of the function. All these inputs and outputs are depicted in
Fig. 4.5.

MMC model IP
1-phase

v

triangular

i abc

i abc

abc

v circ
ref

v abc
ref

v [N]caps

u

l

Figure 4.5: An IP block representing one phase of the MMC

In order to reduce the block inputs to decrease the data transfers and improve the total
execution time, the capacitor balance algorithm was included inside the IP This way, the
capacitor voltage values and the SM states do not need to be driven out so as to be computed
in another place, hence improving the total IP performance. Moreover, the PWM duty cycle
comparison and the number of cells required was also calculated in it for the same reason.
All calculations performed by this IP block –or C function actually– can be divided into the
following steps:

56 erts for power electronic systems : the mmc case

• Step 1: Capacitor voltages are updated by using 4.20, where Su,l
i is a binary function

containing the on-off switch states.

Vu,l
capi

(k) = Vu,l
capi

(k− 1) + Su,l
i (k− 1)

Ts

C
iu,l
arm (k) + iu,l

arm (k− 1)
2

(4.20)

• Step 2: The number of cells Nu,l
on (k) needed to produce the required voltage at instant k

is calculated.

– The following steps are only executed if the number of cells change in a specific arm, i.e. Nu,l
on (k) 6=

Nu,l
on (k− 1) where Nu,l

on (k) is the number of SMs to be inserted in the upper and lower arms.

• Step 3: The capacitor balancing algorithm chooses, according to the direction of the
current iarm and the voltage of the SMs Vcapi , the most suitable one to be switched on or
off according to the required output voltage vre f

abc.

• Step 4: The equivalent capacity Ceq, the equivalent resistor Req, and the output voltage
vre f

abc are calculated using equations 4.12, 4.13 or 4.14 depending on the current direction,
and 4.5.

• Step 5: The variables registering the values of the previous iteration of switch gates
Su,l

i (k− 1), capacitor voltages Vu,l
capi (k− 1), and currents iu,l

arm (k− 1) are updated.

Once the MMC function is coded, Vivado HLS generates automatically all the control signals,
internal data channels and operations to be performed, create inputs and output ports, and
performs scheduling and binding process generating an IP block ready to be utilised in the
Vivado Design Suite.

4.7 results

In this Section, the three different implementations are compared in terms of resources usage,
execution time, and precision against a PSCAD simulation which uses 64-bit floating-point
data format.

4.7.1 Resources usage

It is convenient to remember that the Zynq-7045 FPGA has 900 DSP units, 437.200 Flip-Flops,
1.090 BRAM blocks, and 218.600 Look-up Tables. The amount of resources allowed to handle
up to 700 HB-SMs per phase except for the fixed-point case, where the amount of DSPs
exceeded the available units when the number of SMs surpassed 200. It has to be highlighted
that these evaluations are per phase. Therefore, attention has to be taken when any of the
resources approach 30% because the IP has to be triplicated in order to be able to emulate a
three-phase converter. Other possibilities would be either to execute the function three times
to calculate all the phases, hence triplicating the execution time; or by selecting the highest
range Zynq (the one used in this Section is the second highest); or by limiting the number
of DSPs –or any other resources– utilized making use of HLS directives at the expense of
execution time. However, in order to have a fair comparison between the fixed- and floating-
point implementations, no resource allocation directives or any other pragmas were used, thus
letting Vivado HLS perform all the synthesis with the default settings.

4.7 results 57

As said previously, the model was structured in order to easily change the number of
cells and the type of data used for inputs, outputs, internal variables and parameters. Three
different types of data formats were evaluated changing the number of cells per phase from
6 to 700. Figure 4.6 shows the resources usage of all implementations. The results are shown
in percentage of the total amount of every hardware resource available in the Zynq-7045.

It can be seen in these graphs that in the worst case, i.e. 700 HB per phase, both floating-
point versions did not consume more than 30% of any of the hardware resources. Conversely,
in the fixed-point version the maximum amount of resources for a single phase exceed the
available DSPs once reached 200 HB cells per phase. But as said previously, if the purpose
is to simulate a three-phase converter, the usage of any resource should not exceed the 30%.
These limits are reached for LUTs around 700 cells for both of the floating-point versions, and
60 cells for the fixed-point version because of exhaustion of DSP units.

4.7.2 Execution time

Several tests were previously performed trying to find which clock was the most appropriate
for most of the cases. It was found that using a 100MHz clock gave the shortest execution
time on average. However, author suggests to vary this parameter to explore possible better
implementations once the number of cells has been defined. Figure 4.7 shows the results of
all the implementations for that specific clock frequency, and in Table 4.1 the detailed results.

Table 4.1: Execution time (in µs)

no. cells 64-bit float. 32-bit float. 32-bit fixed

6 1, 25 0, 93 0, 24

8 1, 38 1, 03 0, 28

10 1, 69 1, 38 0, 57

20 2, 48 2, 12 0, 57

30 3, 29 2, 88 1, 05

60 6, 26 5, 12 1, 56

120 11, 74 9, 76 3, 05

200 19, 15 15, 97 6, 06

400 37, 65 31, 47 10, 08

700 65, 50 54, 72 35, 09

Regarding execution time, it can be seen that the difference between the 64-bit floating-point
and the 32-bit fixed-point versions is up to 5 times shorter for six cells per phase. Furthermore,
it was possible to get the fixed-point version executed at 216ns when using a 166.7MHz
clock. However, this gap between fixed- and floating-point implementations reduces when
the number of cells increase. On the other hand, both floating-point versions do not differ
significantly. Therefore, author suggests to utilize the 32-bit fixed-point version using per-unit
values with 2 integer bits –plus one for the sign whenever needed– and the rest as decimal
values. If huge dynamic ranges need to be handled though, the 64-bit floating-point version
is the best choice if the available resources are not a constraint.

58 erts for power electronic systems : the mmc case

0%

5%

10%

15%

20%

25%

30%

35%

6 8 10 20 30 60 120 200 400 700

Number of HB per phase

64-bit floating-point

BRAM

DSP

FF

LUT

0%

5%

10%

15%

20%

25%

30%

6 8 10 20 30 60 120 200 400 700

Number of HB per phase

32-bit floating-point

BRAM

DSP

FF

LUT

0%

50%

100%

150%

200%

250%

300%

350%

6 8 10 20 30 60 120 200 400 700

Number of HB per phase

32-bit fixed-point

BRAM

DSP

FF

LUT

0

10

20

30

40

50

60

70

6 8 10 20 30 60 120 200 400 700

T (μs)

Number of HB per phase

64-bit float

32-bit float

32-bit fixed

Figure 4.6: FPGA resources usage when using no directives or pragmas

4.8 chapter conclusions 59

0%

5%

10%

15%

20%

25%

30%

35%

6 8 10 20 30 60 120 200 400 700

Number of HB per phase

64-bit floating-point

BRAM

DSP

FF

LUT

0%

5%

10%

15%

20%

25%

30%

6 8 10 20 30 60 120 200 400 700

Number of HB per phase

32-bit floating-point

BRAM

DSP

FF

LUT

0%

50%

100%

150%

200%

250%

300%

350%

6 8 10 20 30 60 120 200 400 700

Number of HB per phase

32-bit fixed-point

BRAM

DSP

FF

LUT

0

10

20

30

40

50

60

70

6 8 10 20 30 60 120 200 400 700

T (μs)

Number of HB per phase

64-bit float

32-bit float

32-bit fixed

Figure 4.7: Execution time comparison

4.7.3 Precision

The correct functionality of the model was verified by feeding the IP block with offline simu-
lation data generated using a detailed model in PSCAD. The number of cells chosen for this
comparison was eight per phase (hence four per arm) and the simulation was run for half a
second using a time step of 5µs. Even though a shorter time step could be chosen according
to Table 4.1, if the IP would be used in a real application, the management of input and out-
put variables should be considered. This kind of study has been carried out in Subsection 3.7
and in [7]. The converter’s output voltage va of the PSCAD simulation was compared with
the HLS implementations for the three data formats. The equation used for obtaining the
absolute error is shown in Table 4.2 is 4.21.

errorabs =

n
∑

i=1

(
vaPSCAD (i)− vazynq (i)

)
n

× 100 (4.21)

being n the number of simulation steps.

Table 4.2: Precision results for va

64-bit float 32-bit float 32-bit fixed

Relative error 0.404% 0.437% 3.218%

4.8 chapter conclusions

In this section was presented an evaluation of the Zynq-7045 to perform eRTS of MMCs. An
improved average model which keeps record of the SMs capacitor voltages was utilised. An
IP block containing the power converter equations of a single phase was programmed where
the circuit parameters, the number of HBs and the format of the variables can be changed
easily.

There were compared three different data formats: 64- and 32-bit floating-point, and 32-bit
fixed-point. Moreover, the number of HB cells per phase was changed by 6, 8, 10, 20, 30, 60,
120, 200, 400, and 700 SMs. They were analyzed in terms of resources usage, execution time,
and precision compared with a PSCAD simulation.

60 erts for power electronic systems : the mmc case

With regard to the area utilised, both floating-point versions reached 30% of the resources
when computing 700 HB per phase. However, the fixed-point version ran out of DSP units at
200 HB per phase.

Regarding the execution time, bigger differences were observed when the number of cells
was low. For the case of 6 HBs per phase, the 32-bit version is below 1µs whereas the 64-bit is
at 1.25µs. But for the same number of cells, the fixed-point version was 5 times faster than its
64-bit floating-point counterpart.

The error evaluation was performed comparing the results for an IP of 8 HBs per phase
with a 0.5s PSCAD simulation using 5µs as time-step. The absolute error achieved was around
0.4% for the two floating-point versions, whereas for the fixed-point version was a bit above
3%.

It has to be highlighted that when using HLS tools, changing the width and format of the
data was quite straightforward. The tool dealt with all the hardware manipulations automati-
cally. The choice will be made depending on the number of cells of the converter, the precision
of the results required, and the FPGA area available in order to best emulate the behavior of
the real system.

Part III

E X P E R I M E N TA L VA L I D AT I O N

5
A P P L I C AT I O N O F A N E RT S I N A N E X P E R I M E N TA L P R O T O T Y P E

5.1 introduction and objectives

The purpose of this Chapter is to explain the development and experimental validation of an
eRTS for Modular Multi-level power electronic Converters. As previously mentioned, particu-
lar attention has been paid to the use of HLS for eRTS SoC implementation. For this purpose,
a complete low-power test rig was designed, built and put in operation –see Appendix A for
a detailed description of the test bench. The developed eRTS ecosystem was validated in a
single phase MMC based on 3 HBs per arm. Three test cases have been considered:

1. HLS implementation of both MMC eRTS models and their control

2. Hardware-in-the-Loop simulation: whereas the FPGA fabric simulates the power converter
and generates the corresponding feedback signals, the control is carried out in the ARM

3. eRTS for fault-tolerant control, where the eRTS is used for cell voltage estimation. In case
of cell voltage sensor failure, it is shown that the developed eRTS can provide adequate
feedback signals for the converter to operate safely after the fault. The experimental
results, their applications and limitations will be thoroughly discussed.

5.2 software/hardware co-design description

A single-phase MMC converter based on 3 HBs per arm was used for eRTS experimental
validation. This means three sub-modules forming the upper arm, and the remaining three
forming the lower arm.

The different subsystems necessary to control the test bench were classified into three
groups, according to their increasing difficulty, in either (i) VHDL, (ii) HLS, or (iii) in soft-
ware. Hence:

• (i) VHDL: the basic blocks with simple tasks that require the fastest execution time
possible and will not be modified in the future

• (ii) HLS: the blocks with average complexity with only a few number of parameters and
requiring the fastest possible execution time with great parallelization possibilities

• (iii) Software: the parts of the system which perform complicated tasks and calculations,
with very few parallelization chances, and that will definitely change during develop-
ment cycle

Accordingly, among the different ways of implementing all the blocks needed for a system of
these characteristics –diagram shown in Figure 5.1, it was decided to partition the system as
follows:

63

64 application of an erts in an experimental prototype

C
ontroller

(C
-code)

C
ontroller

(C
-code)

V
ref

 PW
M

 G
enerator
 (V

H
D

L)

 PW
M

 G
enerator
 (V

H
D

L)

D
utyC

ycle
6

P
W
M

66

2
2

D
D

R

(data logger)

D
D

R

(data logger)

X
A

D
C

(X
ilinx IP)

X
A

D
C

(X
ilinx IP)

V
in
analog

V
outanalog

V
in
digital

V
outdigital

iarm
s
digital

iarm
s
analog

C
IC

Filter

(V
H

D
L)

C
IC

Filter

(V
H

D
L)

V
caps(ΣΔ

)

6

6
V
caps(uint32)

6

62

2

6

V
caps

iarm
s

A
R

M
FP

G
A

V
caps

iarm
s

V
out

V
in

M
M

C

TEST

BEN
C

H

M
M

C

TEST

BEN
C

H

S
IG

N
A

L
 A

N
D

 D
A

T
A

 P
A

T
H

S

 Protections
 Board

 Protections
 Board

C
apacitor

O
ver V

oltage
(V

H
D

L)

C
apacitor

O
ver V

oltage
(V

H
D

L)

12

E
N

iarm
s

V
out

V
in

V
caps

6

P
W
M

V
caps(ΣΔ

)

O
ptic Fibers
A

dapter

O
C

M
O

C
M

V
caps

62
62

6

6

iarm
s

2

V
caps

V̂
caps

iarm
s

2

6

C
om

plete system

uint32
to

Float

uint32
to

Float
V
caps

6

M
M

C
H

IL
M

M
C

H
IL

P
W
M

iarm
s

V
caps(uint32)

V̂
caps

V̂
out

îarm
s

H
IL

H
IL

H
IL

6

V̂
caps
E

R
T

S

V̂
caps
H

IL

V̂
out
H

IL

îarm
s

H
IL

V̂
caps
E

R
T

S

V̂
caps
H

IL

V̂
out
H

IL

îarm
s

H
IL

6 2
C

apacitor
V

oltages
ER

TS

C
apacitor

V
oltages
ER

TS

iarm
s

V
caps(uint32)

V̂
caps
E

R
T

S

6

26

1 1

9 9
8 8

7 7
6 6

5 5

4 4

3 3

2 2

Figure 5.1: Complete IP block diagram showing signal and data paths

5.2 software/hardware co-design description 65

1. Master Controller → ARM. The master controller is in charge of booting the system
up, configuring all the peripherals and IP blocks needed, managing the interrupts to
ensure the synchronization of all of them, verifying that every single block execute their
tasks when they are required, perform part of the data logging, and last but not least
executing the MMC control functions.

2. MMC HIL → FPGA. Considering versatility, scalability, and of course the most impor-
tant parameter which is execution time, it was the best option to implement it in the
fabric. Moreover, it needs to read the PWM signals coming from the PWM Generator as
fast as possible. Therefore, it has to be directly connected by hardware to this block to
read its values with the smallest possible delay.

3. Capacitor Voltage eRTS→ FPGA, because of the same reasons of the previous block.

4. PWM Generator → FPGA. Its main function is to generate a PWM signal with enough
resolution so the control commands are applied in the right moment. Hence, if the
control is being executed at 100µs, the comparator of the PWM has to run at least
100 times faster to have a minimum resolution of 1µs [35]. However, like the switching
frequency could change and in order to make this block reusable in other projects, it was
decided to make it fully configurable and implement it in PL using VHDL for achieving
the fastest performance.

5. CIC Filter → FPGA. It converts the frequency-modulated capacitor voltages coming
from the HBs to an integer value. It has been also coded in VHDL mainly because this
filter was designed specifically for it and because it uses very little FPGA fabric [86].

6. Capacitor Overvoltage Alarm → FPGA. This simple block has to constantly check the ca-
pacitor voltages coming from the CIC Filter and issue an error if a capacitor has reached
a predefined voltage. Consequently, the best option is to place it in the PL.

7. CIC conversion to float → FPGA. This block is in charge of reading the integer value
produced by the CIC Filter and converting it to a 32-bit floating-point value in order to
avoid the PS from doing it, thus alleviating some computational burden. This is what is
known as hardware accelerator.

8. XADC→ FPGA. This Xilinx’s Analog-to-Digital Converter IP is actually just for config-
uring the XADC peripheral.

9. Data Logger → ARM. This is more of a functionality than an actual functional block.
All the system signals need to be registered for its later study. The variables read by
the XADC (branch currents, and input and output voltages) will be logged using the
CPU. However, the measured capacitor voltages, the MMC HIL results, and the capac-
itor voltages estimated by the eRTS will be placed automatically on the DDR memory
by implementing AXI4-Master interfaces in the corresponding HLS IPs without any in-
tervention of the PS.

The FPGA resource usage of the whole system can be seen in Table 5.1 and graphically in
Figure 5.2. The AXI Interconnect (Zynq-to-IPs) and the AXI SmartConnect (IPs-to-Zynq) have
been as well added for relevance. The latency of the HLS generated blocks considering AXI4-
Master transactions is shown in Table 5.2. The complete block design is displayed in the
following Section.

The next thing to be defined were the interfaces to operate the IPs and transfer data between
them aiming always to achieve the fastest transfer time, which in the end means reducing the

66 application of an erts in an experimental prototype

Table 5.1: FPGA hardware resources utilisation

Resource type BRAM DSP FF LUT

Available 140 220 106.400 53.200

Zynq Processing System 0 0 44 230

MMC HIL 1 29 6.095 6.583

Capacitor voltage eRTS 1 60 12.003 9.454

PWM generator 0 0 2.302 1.581

CIC filter 0 0 5.957 2.782

CIC conversion to float 1 5 3.444 2.458

Capacitor overvoltage 0 0 473 395

XADC 0 0 235 160

AXI Interconnect 0 0 7.710 5.953

AXI SmartConnect 0 0 6.281 7.383

Complete design 3 94 44.654 36.417

68%

13%
42%

43%
41%

3%

2%

0 25 50 75

LUT

LUTRAM
FF

BRAM

DSP
IO

BUFG

Figure 5.2: FPGA hardware resources utilisation (%)

Table 5.2: HLS IPs execution times using a 100MHz clock

Latency Execution time (in ns)

MMC HIL 88 880

Capacitor voltage eRTS 71 710

CIC conversion to float 32 320

5.2 software/hardware co-design description 67

overall execution time. Considering the amount of data to be transferred in this specific ap-
plication, there are three kinds of interconnections that are used: AXI4-Master, AXI4-Lite, and
simple wires (no protocol used). AXI4-Stream is not an option because it implies processing a
steady flow of high speed data continuously removing memory addressing to reduce stream-
ing buses overhead. So mainly connections between blocks implemented on the fabric will be
done by simple wires, and then the operation of each IP and the data transfers between FPGA
and ARM will be done using AXI interfaces.

Following, each part of the control system will be described.

5.2.1 Zynq block design

In Figure 5.3 the Vivado block design of the complete system is displayed. There are all the
blocks needed to control the MMC test bench plus the HIL and the eRTS IPs. It can be seen
as well the AXI and non-AXI interconnections between blocks. Though, some of they are
used just for debugging and could be removed before its final commissioning, reducing area
utilisation and improving data rate due to reduction of data transfers on the AXI Interconnect.
The AXI clock is running at 100MHz like all the other IPs.

When adding a new IP that uses an AXI connection, Vivado assigns a memory address
automatically. Then, that address has to be used in the SDK in order to configure and access
this peripheral. Apart from the interconnections between blocks, it is needed to define and
assign the system inputs and outputs to the physical pins of the device. This is done using
the Xilinx Design Constraints (XDC) file.

Once the block design is ready, an HDL wrapper has to be generated and the bitstream
produced, which might take quite a while for such a big design. So when the bitstream has
been successfully created, it is suggested to have a look to the timing report, which might
cause design malfunctioning if the constraints have not been met due to clock uncertainties,
power supply oscillations, exceeded temperature range, etc. Some problems were experienced
related to this when the AXI clock was set to 250MHz trying to speed up data transmissions.
In this case though, the bitstream was generated without any error. However, the timing report
was showing Negative Slack, which essentially says that there are some paths which might not
meet timing in harsh conditions. Xilinx strongly recommends to modify the design to remove
the Negative Slack. In the end it was decided then to reduce the AXI clock to 100MHz in
order to avoid any problem.

5.2.2 IP descriptions and configurations

In this section, all the IPs utilized in the test bench are presented and explained.

5.2.2.1 Zynq Processing System

The MicroZed System-on-Module (SOM) consists of a Zynq-7020 which processor runs at 667MHz
and its 1GB DDR3 at 533MHz [57]. Its Vivado block design IP is shown in Figure 5.4.

It was activated the UART1 and configured to work at 115.2kbps, 8 data bits and 1 stop bits.
It is used mostly to print out in console the state of the simulation and to output some values
in order to verify the proper functioning of the system.

The single clock driving all the FPGA IP modules and the AXI interconnect was set to
100MHz. It was tested for higher speeds but the implementation failed to meet timing re-
quirements, so it was left to this value in order to avoid Negative Slack. The General Purpose
Port 0 (GP0) was enabled to manage all the AXI4-based peripherals present in the fabric.

68 application of an erts in an experimental prototype

Figure 5.3: Vivado Block Design

5.2 software/hardware co-design description 69

Figure 5.4: Zynq Processing System IP

Figure 5.5: MMC HIL model IP

The 16-bit shared interrupt port, the IRQ_F2P, was as well enabled and connected to several
hardware IPs. There are ten interrupt signals connected to it notwithstanding that not all of
them are critical for the system to work properly. The only two which are essential are the
100µs and the 5µs interrupts. The 5µs interrupt is the main interrupt. In its routine it retrieves
and logs the ADC measurements, and controls the HIL and eRTS IPs. Then, the 100µs inter-
rupt is used to synchronize the control with the PWM generation. The other interrupts are
used just for letting know the ARM that an error has occurred because they are managed in-
side the FPGA without its direct intervention. This is the case of the Capacitor Overvoltage, the
emergency button, and the three overvoltages and overcurrents coming from the protection
card.

It was also enabled the Accelerator Coherency Port (ACP) to allow the CIC conversion to float,
the MMC HIL and the Capacitor voltage eRTS IPs to register their results autonomously in
the OCM memory using AXI4-Master ports. In this way, the CPU is able to read these val-
ues directly from the OCM keeping coherency with the L1 caches, which is in the end a lot
quicker than reading them from the DDR through the High-Performance Port (HP) [87]. Never-
theless, the HP port was enabled as well and connected to a second AXI4-Master port present
in all three IPs in order to store all the iteration results by increasing the writing address
automatically on each iteration, again without any intervention of the ARM.

5.2.2.2 MMC HIL

Besides the Capacitor voltage eRTS, the other IP –shown in Figure 5.5– is as well a device
under test and the other main objective of this dissertation. Roughly speaking, it is an IP
module that emulates the MMC behavior in real-time and has many different applications:
from sensorless and fault-tolerant control, to Hardware-in-the-Loop (HIL) testing, or diagnostic
and fault detection among others. Due to its complexity and to allow easier modification of
the converter parameters, it was coded using HLS instead of VHDL. The application involving
this IP is explained in Section 5.3.3.

70 application of an erts in an experimental prototype

This block reads the dc input voltage fed to the converter and the PWM signals and com-
putes all the HB capacitor voltages, the currents of the upper and lower arms, and the output
voltage in the middle connection point of the phase leg.

In order to reduce the data transfer time at minimum, the PWM input signals were config-
ured to use ap_none instead of any AXI or BRAM protocol. This way, the block was getting
the PWM signals directly from the PWM Generator. Regarding the input dc voltage, it was
used as well an ap_none port which value was fed by the PS through an AXI4-GPIO. Besides
the AXI4 interfaces, the other inputs present in the IP shown in 5.5 are used to change the
functioning mode of the IP from charging mode (no load is present) to normal operation mode (a
44Ω resistor is connected to the middle point of the leg), and to reset the internal variables
if a new simulation is performed by using rst_iteration. As explained earlier, the results are
automatically registered into two reserved spaces, one in the OCM for a faster access from the
PS, and another one into the DDR memory for data logging purposes using two AXI4-Master
interfaces: m_axi_OCM_DATA and m_axi_DDR_DATA respectively.

Regarding the pragmas used in this IP, only a few were employed:

• ARRAY_PARTITION complete dim=1: in order to avoid the use of BRAMs for the A, B, and
C matrices

• INTERFACE s_axilite: applied to the return port in order to make the IP controllable
through AXI4-Lite. Vivado HLS automatically generates the drivers with all the func-
tions necessary for this purpose

• INTERFACE m_axi offset=slave bundle=DDR_DATA: for the DDR and OCM output ports,
using different bundles to force implementing two AXI4-Master ports. This way, one will
be connected to the DDR memory through the HP port for data logging, and the other
to the OCM through the ACP to maintain cache coherency with the PS and achieve the
lowest latency access

• INTERFACE ap_none register: used in the Vin, PWM, mode and rst_iteration ports to
infer simple wire connections adding an input register

This block performs 13 multiplications, 2 divisions, 18 additions, and 1 subtraction in 88 cycles
which correspond to 880ns with a running clock of 100MHz. Regarding area utilisation, 1

BRAMs, 29 DSPs, 6.095 FF, and 6.583 LUT were needed, which correspond to 1%, 13%, 6%
and 12% of the total hardware resources of the Zynq-7020.

The time constant, capacitance values, Larm, Ron, and load value are hardcoded in the IP in
order to reduce computations and improve execution time.

5.2.2.3 Capacitor voltage eRTS

This, together with the MMC HIL described in the former Subsection, is the other device
under test and the other main objective of this dissertation. This IP is used to estimate the
capacitor voltages just from the currents and PWM signals. The raw –integer– capacitor volt-
ages provided by the CIC filter IP are utilised to estimate the current offset and compensate
the capacitor voltage drift. This IP is used in a real-case scenario of fault-tolerant control in
Section 5.3.5. The controller utilizes the capacitor voltages estimated by this block when losing
a capacitor voltage measurement in order to continue operating the converter.

Figure 5.6 shows the resulting IP where voltages, currents and PWMs are fed into the block
using ap_none ports. The capacitor voltages and the PWM signals are connected directly to
the CIC filter and PWM Generator IP blocks respectively, thus retrieving the values without

5.2 software/hardware co-design description 71

Figure 5.6: Capacitor voltage eRTS IP

intervention of the PS. The currents however are sent to the IP by the processor after being
read from the ADC using two generic AXI4-GPIO ports. Like in the MMC HIL case, the results
are automatically registered into the OCM and DDR memories.

These are the pragmas used in this IP:

• INTERFACE s_axilite: applied to the return port in order to make the IP controllable
through AXI4-Lite, and also to the a and b parameters of the ramp function used to
calibrate and convert the integer values generated by the CIC filter into floating-point
values.

• INTERFACE m_axi offset=slave bundle=DDR_DATA: for the DDR and OCM output ports,
using different bundles to force implementing two AXI4-Master ports similarly to the
previous IP

• INTERFACE ap_none register: used in the upper_current, lower_current, PWM, VcapX_raw,
mode and rst_iteration ports to infer simple wire connections adding an input register

This block performs 36 multiplications, 36 additions, and 24 subtraction in 71 cycles. Clocking
the entity with a 100MHz oscillator, the latency needed to compute all the six voltages is 71

(710ns). It uses 1 BRAMs, 60 DSPs, 12.003 FF, and 9.454 LUT, which corresponds to 1%, 27%,
11% and 18% of the total resources of the Zynq-7020.

5.2.2.4 PWM generator

This block coded in VHDL receives the duty cycle to be applied to each cell by an AXI4-Lite
interface and then generates the PWM signals at the desired switching frequency. It has four
configuration registers per HB that are modified as well via AXI4-Lite which correspond to:
the phase angle delay, the frequency, the duty cycle and the minimum pulse width. This single
block is able to manage a complete rack at once, i.e. 12 HB cells.

The control of this IP is made through four scalar signals: en, rst, set, and tick:

• en: The enable signal. If this signal is low, the PWM outputs are fixed to one, which
equals to switch the capacitors in (i.e. the output voltage of each SM is Vcap) to avoid a
short-circuit of the input dc voltage if any.

• rst: The reset signal. It is active high, so if this signal is asserted, all the configuration
registers are set to their predefined values.

72 application of an erts in an experimental prototype

Figure 5.7: PWM Generator IP

Figure 5.8: CIC filter IP

• set: By setting this signal to logical 1, the counters (there is one per SM) start count-
ing and do not stop until either the enable or reset signals are activated. It is used to
synchronize the PWM signals with the MMC control function.

• tick: This signal is used to make valid the duty cycle values stored in the registers. So it is
supposed to send a pulse to this signal once the ARM has written the control references
for the next control period. The values are updated in the registers but will not be
applied until the counter reaches either zero or the maximum count, i.e. the bottom and
the top of the triangular waveform respectively.

The operation of this block is quite straightforward. In the initialization, phase and fre-
quency registers are configured. Then, the en and set signals are both asserted by the ARM
using an AXI4-GPIO port. In this way and thanks to the additional hardware seen in Figure
5.7, the set signal gets synchronized with the control executed every 100µs.

5.2.2.5 CIC filter

As explained in Appendix A, the VHDL block shown in Figure 5.8 performs a Cascaded
Integrator-Comb (CIC) filtering of the frequency-modulated signals coming from the Σ∆ ADCs
present in the HBs. A CIC is Finite Impulse Response (FIR) filter whose principal advantage is
that it does not need multipliers. It is solely composed of adders and registers. This implies an
important benefit in terms of FPGA area usage. Moreover, it can be used either for decimation
as for interpolation [86].

It is characterized by the next parameters:

• N: number of stages

• M: delay of the comb stage

5.2 software/hardware co-design description 73

z−1

−

+

z−1

+

z−1

+

z−1 R

−z−1 −z−1 −z−1

Integrator stages Comb stagesInput register Down-sampler

Figure 5.9: CIC filter structure for decimation (N = 3, M = 1)

• R: decimation/interpolation factor

According to these parameters, the filter needs a minimum register size of Bout to provide
valid results, and will have a gain G determined by the next equations:

Bout = N log2 (RM) + Bin

G = (RM)N

Being Bout the size of the number of internal and external bits, and Bin the size of the
number of bits of the input signal. So according to these equations, the maximum value the
output filter can produce is G. Hence, dividing the result of the filter by G will give a value
between 0 and 1.

The filter implementation of this block used in this Thesis work is a 3 stages decimation. Its
structure is shown in Figure 5.9.

Although it can control up to 12 sub-modules, it only has one configuration register where
the R parameter –the number of clock pulses the filter will be integrating– is set fixing the
periodicity of a valid output.

This block is controlled by three inputs: en, rst, and tick.

• en: When this signal is set high, the filter starts integrating. It will provide a valid result
once it has reached R clock cycles.

• rst: Active high, this input sets the R register to zero and c_en to logical 1.

• tick: By sending a pulse to this input, the results of every filter are transferred to their
corresponding CIC_output_X[31:0] output registers and are kept constant until the next
rising edge arrives.

• CIC_input[11:0]: These are the 12 frequency-modulated binary signals coming from the
Σ∆ ADCs present on each HB. The Σ∆ module operates at 10MHz bit rate.

• c_en: Conversion finished or new data is available. This signal outputs a pulse every R
clock cycles once the en signal has gone high.

• CIC_output_x[31:0]: A 32-bit integer value corresponding to the number of high pulses
the filter has integrated. This CIC Filter has been configured with three stages, which
means that the maximum value it can have is G. This means that if every clock cycle the
filter finds CIC_input[x] high, the output will be equal to G. Conversely, if the filter finds
every clock cycle CIC_input[x] low, its output will be 0. Consequently, if the number of
pulses counted by the filter is even, its output value will be G/2.

74 application of an erts in an experimental prototype

Figure 5.10: CIC converter to float IP

It has to be said that if the R value is relatively low, the results will have a high noise compo-
nent. This IP is actually a low-pass filter and the R parameter is inversely proportional to the
cutting frequency. Reasonably good results (i.e. with not so much noise) were found when
the integration parameter was bigger than 200.

5.2.2.6 CIC conversion to float

This block, displayed in Figure 5.10 and also generated using HLS, reads the capacitor volt-
ages in raw (integer), converts them to floating-point, and stores them in the DDR memory
without any intervention of the processor.

The conversion from the integer value to floating-point format is done using equation 5.1,
where a and b are the ramp and offset values of the ramp function respectively, and R is the
CIC factor. The ramp function parameters are calibrated for every HB and configured in the
initialization using an AXI4-Lite connection. Then, the block converts from integer to floating-
point each time there is a value produced by the CIC Filter and stores it automatically in the
DDR memory in the address previously specified through AXI4-Lite as well.

Vcap f loat =
Vcapint a

R3 − b (5.1)

The directives used in this IP are the following:

• INTERFACE s_axilite: similarly to the Capacitor voltage eRTS, this directive was applied
to the return port in order to make the IP controllable through AXI4-Lite, and also to the
a and b parameters of the ramp function used to calibrate and convert the integer values
generated by the CIC filter into floating-point values.

• INTERFACE m_axi offset=slave bundle=DDR_DATA: for the DDR and OCM output ports,
using different bundles as with the other HLS IPs to force implementing two AXI4-Master
ports

• INTERFACE ap_none register: used in the VcapX_raw and rst_iteration ports to infer
simple wire connections with an input register

Regarding resources and execution time, this IP uses 1 BRAMs, 5 DSP units, 3.444 FFs, and
2.458 LUTs which correspond to 1%, 2%, 3% and 5% respectively. With respect to the latency,
it needs 32 clock cycles to generate valid results, thus 320ns.

5.2 software/hardware co-design description 75

Figure 5.11: Capacitor overvoltage alarm IP

5.2.2.7 Capacitor Overvoltage alarm

This block coded in VHDL and shown in Figure 5.11 is a simple comparator between the
CIC Filter output and a predefined value. There are 12 registers, one for each SM, which are
modified using the AXI4-Lite protocol. The value has to be entered in integer because it is
much faster to compare an integer value than a floating-point one. Accordingly, this voltage
has to be converted to integer using equation 5.2.

This block has three control signals: en, rst, and soft_rst.

• en: Active high, this signal allows the comparison to be performed each rising edge of
the clock signal.

• rst: Also active high, this signal resets the comparison registers to its maximum value,
G.

• soft_rst: This signal sets the alarms to zero, so if any of the input values has surpassed
the comparison value, it resets the output to compare it again.

Vcapint =
Vcap f loat + b

a
G (5.2)

5.2.2.8 XADC

The Zynq ADC has been configured using the XADC wizard to read two voltages and two
currents. It has a double channel, 1MSPS ADC which is capable of performing simultaneous
samplings on two channels. Accordingly, channels 1 and 2 of ADC A, and channels 9 and 10 of
ADC B were enabled and configured to perform measurements simultaneously of the input
and output voltages (channel 1 and channel 9 respectively), and upper and lower branch
currents (channel 2 and 10 respectively). The results of the measured signals are retrieved
through an AXI4-Lite interface and stored in the DDR memory, serving for the control of the
converter and as data logging.

76 application of an erts in an experimental prototype

Figure 5.12: XADC IP

Several functioning modes were tested, like performing measurements using an external
pin to be completely synchronized with the capacitor voltage measurements, but the conver-
sion time was oddly non-constant. Moreover, it only performed one measurement on two
channels at a time and hence, it was decided to be activated using the AXI4-Lite interface.
Measurements were not exactly synchronized with the capacitor voltages but the limitations
of this ADC forced this situation. The maximum delay measured experimentally was not
bigger than 1µs in the worst case.

The configuration in the XADC wizard is as follows:

• DCLK frequency: 100MHz

• ADC conversion rate: 1MSPS

• Interface options: AXI4-Lite

• Timing mode: Continuous mode

• Startup channel selection: Channel sequencer

• Sequencer mode: One pass

• Channel averaging: none

• ADC calibration: ADC Offset Calibration and ADC offset and Gain calibration checked

• Supply sensor calibration: Sensor Offset Calibration and Sensor Offset and Gain Calibra-
tion checked

• External multiplexer setup: disabled

• Alarms: all disabled

• Channels enabled: 1, 2, 9 and 10

5.2.3 The C code

In order to make these blocks work on real-time, it was necessary to know, develop, inter-
connect and configure appropriately each of the modules that form the system. Moreover, it
was mandatory to make them perform their tasks in the right moment and in a predefined
amount of time. Hence, to develop good hardware is as important as to code good software
to manage it correctly.

5.2 software/hardware co-design description 77

State 1 : Charge caps with autotrafo
● Read & store XADC (iupper, ilower, Vin, and Vout)
● Execute CIC capacitor voltages converter
● Execute HIL/ERTS

State 2 : Reduce duty cycle gradually to 48%
● Read & store XADC (iupper, ilower, Vin, and Vout)
● Execute CIC capacitor voltages converter
● Execute HIL/ERTS
● Reduce PWM duty cycle

State 0 : Initialization
● DDR space reservation for data logging
● SDcard initialization
● GPIO initialization
● HIL and ERTS initialization
● XADC initialization
● CIC filter and CIC converter initialization
● PWM initialization
● OverVoltage initialization
● Interrupts initialization

Pushbutton?
no

yes

Sync State : wait the 100us interrupt
● Disable the 100us interrupt
● Enable the 5us interrupt

t > 2s ?
no

yes

Every 5us

Final State : Stop PWM and save to SDcard
● Save HIL/ERTS results
● Save XADC measured data
● Save CIC capacitor voltages
● Save control signals
● Disable the CIC interrupt and exit

State 3 : Control enters the loop
● Read & store XADC (iupper, ilower, Vin, and Vout)
● Execute CIC capacitor voltages converter
● Execute HIL/ERTS

Interrupt
count = 20 ? no

yes

State 4 : Execute control function
● Call control function and store Vref
● Adapt and send Vref to the PWM block

Simulation
Time = 8s ?

no

yes

PWM = 48% ?
no

yes

Every 5us

Every 100us

Every 5us

Figure 5.13: State Machine diagram including software initialization, MMC capacitor charging, MMC
normal operation and data retrieval

78 application of an erts in an experimental prototype

5.2.3.1 Structure

A diagram of the code structure is shown in Figure 5.13. There can be seen the 7 stages of the
Finite State Machine (FSM) which are explained following:

1. State 0: The initialization stage. The software reserves enough DDR space to register all
the signals that want to be registered, executes the initialization of all the IPs and then
waits the push-button to be pressed to start.
This version of MicroZed board has 1GB of memory. If the simulation is set to 8 seconds
and the eRTS execution time to 5µs, this means that for every variable that has to be
stored in the DDR it must be reserved a vector of 1.6 million seats of 32-bits, which
corresponds that each signal will need 6.1MB. Therefore, if measured signals Vin, is,
id, Vout and Vcaps [6] need to be stored, plus the HIL and eRTS estimated signals îs, îd,
V̂out, V̂HIL

caps [6] and V̂ERTS
caps [6], this makes a total of nearly 153MB, plus the control signals

which are sampled at a lower rate (20 times slower) adds a bit less than 2MB. So there
is enough room for running quite long simulations without utilizing external storage.

2. Sync State: This is a temporary state that has to be included in order to synchronize the
control function with the PWM.
There are two main interrupts configured in the ARM: one is the PWM interrupt con-
nected to a 100µs counter, and the other one is main interrupt which is executed every
5µs. In order to synchronize the execution of the control with the PWM, both being
called at 100µs, once the push-button has been pressed, the PWM interrupt is activated
by software. Hence, when the next 100µs pulse comes the PWM counter starts, then it
enters the PWM interrupt routine, disables it, enables the 5µs CIC interrupt and exits.
Straightaway, it enters into the CIC interrupt routine (State 1) and the simulation begins.
What is accomplished with this is to have the execution of the control, which is not
executed until State 3, to be synchronized with the PWM counter, which is necessary
for the system for several reasons. One is to avoid possible instabilities of the control
commands due to a big delay between its calculation and when are they actually ap-
plied, and the second is to have results coherent with the PSCAD simulation in order to
compare them, which executes the steps following a similar procedure.

3. State 1: The simulation starts. When the system stays in this state, the PWM signals are
kept to 100%, i.e. all the capacitors are switched in so when the voltage is increased
using the autotransformer, the total input voltage is divided among the six SMs. In this
state and all the following ones except the final state, the software executes always and
every 5µs these two tasks: Read and store in the DDR the ADC measurements (is, id,
Vin and Vout), execute the HIL and/or the eRTS using the ADC read value Vin, and exit.
Once a significant amount of input voltage has been reached (311V) and the capacitors
are charged to more or less 50V, the software moves to the next state. This exact moment
occurs at 2s as shown in Figure 5.14.

4. State 2: Once the capacitors had been charged to Vin/N, being N the number of cells
in one leg, the duty cycle is decreased in order to raise their voltages. The maximum
input voltage is 311V, that is the reason why if the capacitors need to be charged to
100V, the duty cycle has to be set to 48%. This ramp has been programmed to last 1.5
seconds in order to not have an excessive amount of current passing through switches
and inductances. This stage is observed in Figure 5.14 from 2s to 3.5s. Once the duty
cycle has reached the specified value, it moves to the next state.

5.2 software/hardware co-design description 79

0 1 2 3 4 5 6 7 8

0

50

100

150

200

250

300

350

400
Input and output voltages

Time (s)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

120
Capacitor voltages

Time (s)

V
ol

ta
ge

 (
V

)

Vin
Vout

HB1
HB2
HB3
HB4
HB5
HB6

State 0 →|← State 1 →|← State 2 →|← State 3 & 4 →|

 ↑
Sync State

State 0 →|← State 1 →|← State 2 →|← State 3 & 4 →|

 ↑
Sync State

 ↑
Final State

 ↑
Final State

Figure 5.14: Evolution of the input, output and capacitor voltages through the execution states

5. State 3: As stated before, it executes all tasks of State 1 and increments a counter so when
it reaches 20 (which corresponds to 100µs) it passes to the next state.

6. State 4: The control enters the loop. In this state, the control function gets executed,
then it stores the control commands in the DDR, adjusts the voltage references to the
corresponding duty cycle, and sends the values to the PWM block through AXI4-Lite.
When it finishes, it verifies that the simulation has not reached 8 seconds, and if not it
moves back to State 3. Otherwise, it switches to the Final State.

7. Final State: In this state only is left to disable the CIC interrupt and dump all the simu-
lation data stored in the DDR to the SDcard for its later analysis.

Figure 5.14 shows how the input, output and capacitor voltages evolve along all the ex-
plained states.

5.2.3.2 Configuration

The three different groups of blocks have very diverse ways of being configured. The configu-
ration of the VHDL blocks is done by writing on some registers. Like those parameters might
change depending on the test to be performed, it was not possible of fixing them directly on
fabric. So the best solution was to wrap these blocks using Vivado IP Packager which creates an
IP block from the VHDL code letting to set these registers using AXI4-Lite connections. In this
way, the new IP is easily configured by software using an AXI Interconnect. All the wrapping

80 application of an erts in an experimental prototype

is done automatically by Vivado which implements the AXI4-Lite protocol and creates a C
driver to write to and read from those VHDL registers.

For example, the PWM driver defines the registers present in the VHDL code using names
easy to understand, then creates the basic functions to read to and write from those registers:

#define PWM_RACK12_mWriteReg(BaseAddress, RegOffset, Data) \ Xil_Out32((BaseAddress) + (

RegOffset), (u32)(Data))

#define PWM_RACK12_mReadReg(BaseAddress, RegOffset) \ Xil_In32((BaseAddress) + (

RegOffset)) �
Moreover, Vivado allows to create user specific functions to be included in the driver. For
example, the next function takes the switching frequency and the clock and calculates the
period of the PWM triangular waveforms:

u32 PWM_rack12_SetFrequency(u32 PWM_rack12_address, u32 PWM_rack12_reg, u32 Freq, u32

PWM_rack12_clk){

u32 N_Period = 0;

N_Period = PWM_rack12_clk/(2*Freq);

PWM_RACK12_mWriteReg(PWM_rack12_address, PWM_rack12_reg, N_Period);

return N_Period;

} �
Regarding the HLS generated IPs, the configuration is much more complicated. Using Vivado
HLS basically means coding a C function which inputs and outputs are the arguments passed
to it. Then, every of these arguments have to be assigned to a type of interface. In this design
three different ports have been used: ap_none, s_axilite, and m_axi.

• ap_none: By applying this directive to a function argument, simple wires are inferred.
These are the fastest interfaces and the most appropriate to interconnect VHDL IPs.

• s_axilite: Implements an AXI4-Lite interface to access the function arguments. Mainly
used to configure and operate the IP. Vivado HLS creates all the logic necessary to
implement the protocol and the driver functions to initialize and manage the IP block.

• m_axi: Implements an AXI4-Master interface performing all the data transactions au-
tonomously. This port is used to write the data results directly to the OCM and DDR
memory without any intervention of the CPU.

Taking as an example the CIC conversion to float block which has the three types of interface,
the address Vivado has given to this IP in the block design can be found in the xparameters.h
file and then it can be assigned to an easy-to-remember definition:

#define CIC_CONV_DEVICE_ID XPAR_CIC_CONVERSION_TO_FLOAT_6HB_0_DEVICE_ID �
Following, the next type definition needs to be created in order to handle the IP block:

XCic_conversion_to_float_6hb CICconv; �
Next, the block has to be initialized by using this function created automatically by Vivado
HLS:

int XCic_conversion_to_float_6hb_Initialize(XCic_conversion_to_float_6hb *InstancePtr, u

16 DeviceId); �
where the first argument and second arguments are the ones just created: &CICconv and
CIC_CONV_DEVICE_ID respectively.

5.3 experimental results 81

Table 5.3: MMC HIL Execution time per state

Operation Time in µs

State 1 (HIL) 0,9

State 2 (PWM) 2,9

State 3 (HIL) 0,9

State 4 (control) 5,3

Now the IP is fully configured and ready to be used. Its operation is done through AXI4-Lite
–thanks to have applied to the return variable an s_axilite interface directive, automatically
inferring the following driver functions:

void XCic_conversion_to_float_6hb_Start(XCic_conversion_to_float_6hb *InstancePtr);

u32 XCic_conversion_to_float_6hb_IsDone(XCic_conversion_to_float_6hb *InstancePtr);

u32 XCic_conversion_to_float_6hb_IsIdle(XCic_conversion_to_float_6hb *InstancePtr);

u32 XCic_conversion_to_float_6hb_IsReady(XCic_conversion_to_float_6hb *InstancePtr);

void XCic_conversion_to_float_6hb_EnableAutoRestart(XCic_conversion_to_float_6hb *
InstancePtr);

void XCic_conversion_to_float_6hb_DisableAutoRestart(XCic_conversion_to_float_6hb *
InstancePtr); �

And finally, each input parameter that has been decided to use an AXI4-Lite interface can be
set using the next two functions (this is the case for input parameter b0):

void XCic_conversion_to_float_6hb_Set_b0(XCic_conversion_to_float_6hb *InstancePtr, u32

Data);

u32 XCic_conversion_to_float_6hb_Get_a_b0(XCic_conversion_to_float_6hb *InstancePtr); �
The last interface type this IP uses is the AXI-Master. As explained, it was decided to use it
in order to alleviate the CPU from computing the integer to floating-point conversion of the
CIC Filter results. Basically, what is needed to use this hardware accelerator is once all the
ramp parameters and the DDR address have been configured, it has to be called the function
XCic_conversion_to_float_6hb_Start(&CICconv). 32 clock cycles after (320ns actually), the
results will appear on the OCM without doing anything more. Then, the ARM just needs to
read and use them when needed.

5.2.3.3 Real-time implementation

First of all, the execution periods of the control, the HIL and eRTS blocks had to be defined. As
the 5kHz PWM is configured for double update [88], the control system period is set to 100µs
(10kHz). A sampling time of 5µs for the MMC HIL was selected as a trade-off between the
simulation accuracy and ease of implementation. Table 5.3 shows the time needed to perform
all the tasks of every state.

However, the timing analysis was performed using debug mode, so these results might
improve when choosing in the compiler the release mode.

5.3 experimental results

This section presents the experimental results. The different Sub-sections are the following,
they represent all the verification steps done during the design process:

82 application of an erts in an experimental prototype

1. PSCAD MMC model: first, a detailed model was developed and used as reference for the
validation of the C model that will be used as eRTS in the SoC device

2. HLS MMC model implementation: the C model validated in PSCAD is moved to Vivado
HLS. A C simulation is run in the same software tool in order to verify its proper
functioning. A controller to manage branch energies, branch currents and to balance
the capacitor voltages is coded and tested as well

3. Control verification using the MMC IP as HIL: the MMC model IP is generated and ex-
ported to Vivado. A block design is created and the controller is tested in real-time
using the MMC model as a HIL platform

4. Control verification with experimental prototype: the test rig is put in operation controlled
with the recently validated regulator

5. eRTS for cell voltage estimation and fault-tolerant control: a capacitor voltage eRTS is devel-
oped including a current offset estimator to compensate voltage drifts. Finally, it is tested
in a scenario where the measurements of the capacitor voltages cannot be retrieved due
to a induced fault

5.3.1 PSCAD MMC model

An MMC detailed model was developed in PSCAD and used as a reference model for the HLS
MMC implementation. From an RTS developer’s point of view one of the main important
features of PSCAD is that it allows to program entities using FORTRAN and C. Therefore,
this tool is very convenient in order to compare an accurate model using electrical elements
with a coded implementation.

5.3.1.1 PSCAD detailed model

Figure 5.15 shows the PSCAD detailed model used as reference. It is composed of generic
transistors and configured without the snubber circuit1, a 1012

off resistor, a zero forward
voltage drop, and an on resistor equal to the one the test rig MOSFET’s have, 33mΩ. The
anti-parallel diodes are set to the same configuration parameters. Finally, the capacitors are
set to 940µF and the branch inductances to 5mH, same as the ones installed in the test rig.

5.3.1.2 PSCAD C model

The function that emulates the PSCAD detailed model is quite simple. It takes as inputs the
total dc voltage Vin and the PWM signals, and from these it determines the currents through
the upper and lower arms iu,l , the capacitor voltages Vcapsn and the output voltage at the
middle of the leg Vout.

The capacitor voltages are updated at each iteration using equation 5.3, where Ts is the
time-step, and Sn is a logic function which depends on the corresponding PWM signal.

Vu,l
capsn

(k) = Vu,l
capsn

(k− 1) + Sn (k− 1)
Ts

C
iu,l(k− 1) (5.3)

Then, using these results, the equivalent arm voltages are calculated using equation 5.4,
where Nu,l is the number of SMs per arm.

1 A snubber is a device used to suppress a phenomenon such as voltage transients in electrical systems, pressure
transients in fluid systems or excess force or rapid movement in mechanical systems.

5.3 experimental results 83

Nomenclatura:

Px --> componente
a,b,c --> fase
T,B --> rama superior o infe rior
t,b --> IGBT superior o inferior
dentro del modulo

Eplus

Eminus

0.0

1.0

T

Isu
p

_
a

Iin
f_

a

9
4

0
 [

u
F

]
9

4
0

 [
u

F
]

9
4

0
 [

u
F

]
9

4
0

 [
u

F
]

9
4

0
 [

u
F

]

Isu
p

_
b

Iin
f_

b

9
4

0
 [

u
F

]
9

4
0

 [
u

F
]

9
4

0
 [

u
F

]
9

4
0

 [
u

F
]

9
4

0
 [

u
F

]

Isu
p

_
c

Iin
f_

c

9
4

0
 [

u
F

]
9

4
0

 [
u

F
]

9
4

0
 [

u
F

]
9

4
0

 [
u

F
]

9
4

0
 [

u
F

]

2
I

2
I

D

D
R

=
0

R
=

0

R
=

0
R

=
0

R
=

0

R
=

0
R

=
0

R
=

0

R
=

0
R

=
0

R
=

0
R

=
0

R
=

0
R

=
0

R
=

0

D

D
2

I

2
I

2
I

D

D
2

I

D
2

I

2
I

D

D
2

I

2
I

D

D
2

I

2
I

D

D
2

I

2
I

D

D
2

I

2
I

D

D
2

I

2
I

D

2
I

D

D
2

I

2
I

D

D
2

I

2
I

D

D
2

I

2
I

D

D
2

I

2
I

D

D
2

I

2
I

D

D
2

I

I1Ta

9
4

0
 [

u
F

]

9
4

0
 [

u
F

]

9
4

0
 [

u
F

]

R
=

0

R
=

0

R
=

0

2
I

D

D
2

I

2
I

D

D
2

I

2
I

D

D
2

I

E2Ta

E3Ta

E1Ta

E2Ba

E3Ba

E1Ba

E2Tb

E3Tb

E1Tb

E2Bb

E3Bb

E1Bb

E2Tc

E3Tc

E1Tc

E2Bc

E3Bc

E1Bc

NA NB NC

Iout_a

0
.0

0
5

 [H
]

0
.0

0
5

 [H
]

E
o

u
t_

a

0
.0

0
5

 [H
]

0
.0

0
5

 [H
]

E
o

u
t_

b

Iout_b

0
.0

0
5

 [H
]

0
.0

0
5

 [H
]

E
o

u
t_

c

Iout_c

E1Ta

E2Ta

E3Ta

E4Ta

Eout_a

Iout_a

E1Ba

E2Ba

E3Ba

E4Ba

EBa

ETa

ref_a_pu

triang

ref_a

Isup_a

Iinf_a

Ia

Ia

ref_a

EBa

ETa

Dis_sup_a

Dis_inf_a

Dis_sup_a

1 to 2

3 to 4

5 to 6

P1aTt P1aTb

P2aTt P2aTb

P3aTt P3aTb

P4aTt P4aTb
7 to 8

Dis_inf_a

1 to 2

3 to 4

5 to 6

P1aBt P1aBb

P2aBt P2aBb

P3aBt P3aBb

P4aBt P4aBb
7 to 8

ref_a_pu

CONTROL FASE A

CONTROL FASE B

E1Tb

E2Tb

E3Tb

E4Tb

E1Bb

E2Bb

E3Bb

E4Bb

EBb

ETb

ref_b_pu

triang

ref_b

Isup_b

Iinf_b

Ib

Ib

ref_b

EBb

ETb

Dis_sup_b

Dis_inf_b

Dis_sup_b

1 to 2

3 to 4

5 to 6

P1bTt P1bTb

P2bTt P2bTb

P3bTt P3bTb

P4bTt P4bTb
7 to 8

Dis_inf_b

1 to 2

3 to 4

5 to 6

P1bBt P1bBb

P2bBt P2bBb

P3bBt P3bBb

P4bBt P4bBb
7 to 8

CONTROL FASE C

Eout_b

Iout_b

ref_b_pu

E1Tc

E2Tc

E3Tc

E4Tc

E1Bc

E2Bc

E3Bc

E4Bc

EBc

ETc

ref_c_pu

triang

ref_c

Isup_c

Iinf_c

Ic

Ic

ref_c

EBc

ETc

Dis_sup_c

Dis_inf_c

Dis_sup_c

1 to 2

3 to 4

5 to 6

P1cTt P1cTb

P2cTt P2cTb

P3cTt P3cTb

P4cTt P4cTb
7 to 8

Dis_inf_c

1 to 2

3 to 4

5 to 6

P1cBt P1cBb

P2cBt P2cBb

P3cBt P3cBb

P4cBt P4cBb
7 to 8

Eout_c

Iout_c

ref_c_pu

Isup_a

Iinf_a

D +

F

+

Iinf_a

Isup_a
*

0.5

MMC_5_levels_real : Graphs

 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 ...
 ...
 ...

-2.00

2.00

y

Eout_a Ia_real Iout_a ref_a

-2.00

2.00

y

EBa_real ETa_real

-2.00

2.00

y

conectar ref_a Dis_sup_a

-2.00

2.00

y

Dis_infb_a Dis_supb_a Dis_inf_a Dis_sup_a

Dis_supb_a

1 to 2

3 to 4

5 to 6

7 to 8

Dis_supb_a

Dis_infb_a

1 to 2

3 to 4

5 to 6

7 to 8

Dis_infb_a

Dis_infb_b

1 to 2

3 to 4

5 to 6

7 to 8

Dis_supb_b

1 to 2

3 to 4

5 to 6

7 to 8

Dis_supb_b

Dis_infb_b

Dis_supb_c

1 to 2

3 to 4

5 to 6

7 to 8

Dis_infb_c

1 to 2

3 to 4

5 to 6

7 to 8

Dis_supb_c

Dis_infb_c

corto

corto

corto

ref

Etop

Ebot

corriente

disp_top

disp_bot

Con

disp_topb

disp_botb

corto

ref

Etop

Ebot

corriente

disp_top

disp_bot

Con

disp_topb

disp_botb

corto

ref

Etop

Ebot

corriente

disp_top

disp_bot

Con

disp_topb

disp_botb

corto

P2aTb

P2aTt

P1aTb

P1aTt

P3aTb

P3aTt

P2bTb

P2bTt

P1bTb

P1bTt

P3bTb

P3bTt

P2cTb

P2cTt

P1cTb

P1cTt

P3cTb

P3cTt

P3aBb

P3aBt

P2aBb

P2aBt

P1aBb

P1aBt

P3bBb

P3bBt

P2bBb

P2bBt

P1bBb

P1bBt

P3cBb

P3cBt

P2cBb

P2cBt

P1cBb

P1cBt

GI1
GI2

D1

D2

Ic1

E4Ta

Dis_sup_a

1

3

5

7

Dis_supb_a

1

3

5
7

Dis_inf_a

1

3
5

7

Dis_infb_a

1
3

5

7

IT

1.Step

corto

MMC_5_levels_real : Graphs

 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 ...
 ...
 ...

-2.00

2.00

y

Mod1

-2.00

2.00

y

Mod1

-2.00

2.00

y

Ia_real

-2.00

2.00

y

dis_sup_a dis_supb_a dis_inf_a dis_infb_a

-1.00

1.00

y

-1.00

1.00

y

*
-1

Isup_b

Iinf_b

D +

F

+

Iinf_b

Isup_b
*

0.5

*
-1

Isup_c

Iinf_c

D +

F

+

Iinf_c

Isup_c
*

0.5

*
-1

1.Mountain

MMC_5_levels_real : Graphs

 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 ...
 ...
 ...

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

y

corto

1.Mountain

O

Angle

GENERACIÓN SEÑALES REFERENCIA

La señal de referencia se
escala entre [-1,1],

1.dq0_to_abc

N

D

N/D

N

D

N/D

N

D

N/D

3.0 Vdc_2

Vdc_2

Vdc_2

Vdc_2

triang

D

Q

ref_a_pu

ref_b_pu

ref_c_pu

0.0

Figure 1: PSCAD detailed model of the MMC

1

Figure 5.15: PSCAD detailed model of the MMC

84 application of an erts in an experimental prototype

Vu,l
arm (k) =

Nu,l

∑
n=1

Sn (k)Vu,l
capsn

(k) (5.4)

The method utilised to emulate the electrical circuit of the MMC is based on a state-space
model discretized using the c2d MATLAB command in the ZOH context. Thus, all systems
subjected to a simulation in state-space representation [75] are written as:

ẋ (t) = Ax (t) + Bu (t)

y (t) = Cx (t) + Du (t)

Hence, if the the total dc voltage Vin and the arm voltages Vu,l
arm are taken as inputs, arrang-

ing the system equations following the form presented above leads to 5.5 and 5.6.[
iu (k)

il (k)

]
= A

[
iu (k− 1)

il (k− 1)

]
+ B

 Vin (k)

Vu
arm (k)

V l
arm (k)

 (5.5)

 iu (k)

il (k)

Vout (k)

 = C

[
iu (k)

il (k)

]
(5.6)

where A, B, and C are:

A =

[
−Req+Rload

Larm

Rload
Larm

Rload
Larm

−Req+Rload
Larm

]

B =

[
1/Larm −1/Larm 0

0 0 −1/Larm

]

C =

 1 0

0 1

Rload −Rload

and Larm the arm inductance, Rload the charge connected to the middle point, and Req the

equivalent value considering the on resistance of the MOSFETs and anti-parallel diodes plus
the parasitic resistance of the arm inductors.

In order to alleviate computational burden, like both MOSFETs and anti-parallel diodes
have similar on resistances, the Req present in the A matrix has been set to the constant value:

Req = Nu,l Ron + RL

where Nu,l is the number of HB cells per branch, Ron an average value of the on resistance
of the power electronics, and RL the parasitic resistance of the arm inductors. By doing this,
the A matrix remains constant and therefore there is no need to calculate it every time an HB
changes its state.

Now, applying the c2d MATLAB command for a 5µs time step, the parameters used for
the model are issued and utilised in the C model function. These parameters can be seen in
Appendix B.

5.3 experimental results 85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1
Current comparison

Time (s)

C
ur

re
nt

 (
kA

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1
Absolute Error (in kA): (Detailed Model − C Model)

P
ha

se
 A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

P
ha

se
 B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

P
ha

se
 C

Time (s)

Detailed M. − Phase A
Detailed M. − Phase B
Detailed M. − Phase C
C Model − Phase A
C Model − Phase B
C Model − Phase C

Figure 5.16: MMC model validation: Output currents

5.3.1.3 PSCAD detailed model versus C model

The simulation was run at 5µs time-step for 1s changing the active output power at 0.6s. The
reference of the capacitor voltages were set to 1.5kV instead of the 100V that will be used for
the experimental test. However, this will not infer in the proper validation of the model.

Figures 5.16, 5.17, 5.18 and 5.19 display a 1s simulation of the output currents, output volt-
ages, upper and lower branch capacitor voltages of both models respectively. At the bottom
of each graph is presented the error between the detailed PSCAD model and the C model of
each magnitude demonstrating that the error never exceeds 10%, regardless of the required
power.

Figure 5.16 shows how the output current of the three-phase converter increases at 0.6s
to provide the required output power. The error plots show that the error does not increase
which imply that the C model follows the PSCAD detailed model dynamics correctly. The
output voltages of Figure 5.17 do not show any disturbance throughout the whole simulation
and as in the current comparison, the errors are kept stable.

Regarding the capacitor voltages shown in Figures 5.18 and 5.19, an increase in the ripple is
clearly seen after augmenting the converter’s output power. Here, however, the errors increase
slightly after 0.6s, but conversely to the previous signals, they are much smaller and never
exceeding the 3%.

Figures 5.20 and 5.21 show an enlarged view of the previous graphs right in the moment
when the output power increases. It can be seen that the C and PSCAD detailed models
evolve following the same dynamics and that the error of both signals do not increase and
are always swinging around zero.

86 application of an erts in an experimental prototype

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4
Voltage comparison

Time (s)

V
ol

ta
ge

 (
kV

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2
Absolute Error (in kV): (Detailed Model − C Model)

P
ha

se
 A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

P
ha

se
 B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

P
ha

se
 C

Time (s)

Detailed M. − Phase A
Detailed M. − Phase B
Detailed M. − Phase C
C Model − Phase A
C Model − Phase B
C Model − Phase C

Figure 5.17: MMC model validation: Phase output voltages

Figures 5.22 and 5.23 show the capacitor voltages ripple enlarged. It can be seen that the
ripple of the detailed model is followed closely by the C model.

The errors in some of the signals that were close to 10% could be explained because of the
solver PSCAD uses for the detailed model computations. PSCAD does not use a strict fixed
step-time. Once a switching state is detected, the solver comes back to the previous iteration
and starts calculating at a smaller rate until it finds the switching moment. This increases the
accuracy of the detailed model significantly and thus, the differences found in the developed
C model might be caused in great manner by this issue. Nonetheless, it can be said that the
dynamics and results of both models are very close, hence confirming the C model as valid.

5.3.2 HLS MMC model implementation

The MMC C model developed in PSCAD was ported to Vivado HLS in order to implement a
hardware IP that will run in the FPGA fabric of the Zynq.

For a preliminary verification of the proper operation of the IP, a C simulation was run in
Vivado HLS using the same control signals generated by PSCAD. The Vin and PWM signals
fed to the PSCAD C model were stored in a data file. Then, in Vivado HLS, they were read
from that same file and fed into the C model function. The results were stored in another file
for a latter verification with the results of the C model implemented in PSCAD. Running a
simulation of 1s and then comparing the model outputs, the average error between the two
implementations was below 10e−7.

5.3 experimental results 87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7
Upper arm capacitor voltages comparison

Time (s)

V
ol

ta
ge

 (
kV

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1
Absolute Error (in kV): (Detailed Model − C Model)

H
B

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

H
B

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

H
B

3

Time (s)

Detailed M. − HB1
Detailed M. − HB2
Detailed M. − HB3
C Model − HB1
C Model − HB2
C Model − HB3

Figure 5.18: MMC model validation: Upper capacitor voltages

5.3.2.1 MMC control

The controller used for this application is based on the Modular Multi-level DC-DC Converter for
HVDC grids presented in [89]. Regarding the control function, it takes as inputs the currents
and capacitor voltages and outputs the reference voltages to be applied to each HB cell. Hence,
if there are 3 SMs in the upper arm, and 3 SMs in the lower arm, the function will require 6

input voltages, 2 input currents (one per arm), and will output 6 reference voltages (one per
cell).

It is intended for the controller to be executed every 100µs, using a double-update method
being able to change the duty cycle in the highest and lowest value of the triangular waveform
[88].

Focusing on a single phase, this regulator can be divided into three sections: (i) branch
energy control, (ii) branch current control, and (iii) capacitor balancing. Figure 5.24 shows the
first loop where the energy of each arm is compensated by the currents iu,l

e .
The lower arm is controlled to create a dc voltage plus an ac voltage (VDC and VAC respec-

tively) [89]. Vin is the input dc voltage, Vu
capsn

and V l
capsn

are the upper and lower capacitor
voltages, re f u and re f l the reference values calculated using equation 5.7, where Vu,l

capsre f are
the voltages at which the capacitors want to be kept.

re f u,l = Nu,l
(

Vu,l
capsre f

)2
(5.7)

The control diagram utilised to control the arm currents iu,l
c is shown in Figure 5.25, where

f is the frequency of the desired output voltage (100Hz), t is the time in seconds, Nu,l are

88 application of an erts in an experimental prototype

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75
Lower arm capacitor voltages comparison

Time (s)

V
ol

ta
ge

 (
kV

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1
Absolute Error (in kV): (Detailed Model − C Model)

H
B

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

H
B

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

H
B

6

Time (s)

Detailed M. − HB1
Detailed M. − HB2
Detailed M. − HB3
C Model − HB1
C Model − HB2
C Model − HB3

Figure 5.19: MMC model validation: Lower capacitor voltages

the number of SMs in the upper and lower arms, and iu,l are the measured upper and lower
currents.

Figure 5.26 shows the upper and lower capacitor balancing controllers, which are replicated
depending on the number of HB cells n. Vu,l

capsn are each measured capacitor voltage and Vu,l
re fn

the voltage to be generated by each SM. This last value will be fed into the PWM generator to
modulate the SM according to the required output voltage.

5.3.3 Control verification using the MMC IP as HIL

The MMC hardware IP was generated and loaded into the Vivado repository. A block design
was created adding and connecting the IP with the PS and all other required peripherals. A
simplified diagram of the block design is shown in Figure 5.27. It can be seen that the input dc

voltage Vin is retrieved from the SDcard, where there is a data file with the PSCAD simulation
values. This data is loaded and then fed into the HIL block as if it would come from an ADC.
The PWM signals are derived from the PWM generator IP, which has been coded in VHDL,
and basically translates the reference voltages calculated by the controller to pulse-width
modulated signals. Then, the HIL outputs are calculated and registered automatically into
the OCM and DDR memory spaces. At the end of the simulation, the data logged in the DDR
is transferred into the SDcard for analysis purposes.

Once the hardware IP is configured and included in the Vivado block design, the next step
is to open the SDK, add the libraries, create the necessary variables to manage the IP and
initialize it:

// Libraries

5.3 experimental results 89

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−1

−0.5

0

0.5

1
Current comparison

Time (s)

C
ur

re
nt

 (
kA

)

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−0.1

0

0.1
Absolute Error (in kA): (Detailed Model − C Model)

P
ha

se
 A

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−0.1

0

0.1

P
ha

se
 B

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−0.1

0

0.1

P
ha

se
 C

Time (s)

Detailed M. − Phase A
Detailed M. − Phase B
Detailed M. − Phase C
C Model − Phase A
C Model − Phase B
C Model − Phase C

Figure 5.20: MMC model validation: Phase output currents - Detail

#include "xparameters.h"

#include "xgpio.h"

#include "xmmc_hil2.h"

// Variables and parameters

#define MMC_HIL_DEVICE_ID XPAR_MMC_HIL2_1_DEVICE_ID

#define MMC_HIL_OCM_ADDRESS 0x00000018

float *MMC_HIL_outputs = new float[sim_length*9];

unsigned int MMC_HIL_outputs_DDR_addr = *(unsigned int*)&MMC_HIL_outputs;

XMmc_hil2 MMC_HIL;

// Initialization

XMmc_hil2_Initialize(&MMC_HIL, MMC_HIL_DEVICE_ID);

XMmc_hil2_Set_OCM(&MMC_HIL, MMC_HIL_OCM_ADDRESS);

XMmc_hil2_Set_DDR(&MMC_HIL, MMC_HIL_outputs_DDR_addr); �
At this point, the IP is ready for its utilisation. It is only left to set the input dc voltage using
a generic AXI4-GPIO port and start the IP computations. Nothing else is required. As soon
as the IP finish calculations, they will be automatically saved into the OCM for its use by
the processor, and to the DDR memory for data logging purposes. Therefore, the only two
commands needed to manage this IP are the following:

XGpio_DiscreteWrite(&Gpio_ERTS_Vin, VIN_CHANNEL, *(unsigned int*)&XADC_Vin[count_CIC_int

]);

XMmc_hil2_Start(&MMC_HIL); �

90 application of an erts in an experimental prototype

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−4

−3

−2

−1

0

1

2

3

4
Voltage comparison

Time (s)

V
ol

ta
ge

 (
kV

)

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−2

0

2
Absolute Error (in kV): (Detailed Model − C Model)

P
ha

se
 A

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−1

0

1

P
ha

se
 B

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−2

0

2

P
ha

se
 C

Time (s)

Detailed M. − Phase A
Detailed M. − Phase B
Detailed M. − Phase C
C Model − Phase A
C Model − Phase B
C Model − Phase C

Figure 5.21: MMC model validation: Phase output voltages - Detail

An interrupt was configured to halt every 5µs and start the IP calculations, ensuring a real-
time execution. Figures 5.28 and 5.29 show a power up test, where the next stages can be
seen:

1. from 0s to 1.5s the input voltage is linearly raised up to 311V (Figure 5.28 up), keeping
the duty cycle of the PMW signals at 100%, thus the capacitors start charging (Figure
5.29)

2. from 1.5s to 3s the duty cycle of all the cells is reduced gradually from 100% to 48%
increasing the voltage of the capacitors til 100V. Notice the increase of the arm currents
in Figure 5.28

3. from 3s to 4.5s the duty cycle is kept to 48% letting the capacitor voltages diverge as
seen in Figures 5.29 and 5.30.

4. at 4.5s and until 5.5s the controller is activated without the integral part. Hence, the
voltages are kept balanced but not exactly at 100V as seen in Figure 5.30. Figure 5.28

shows how the output voltage changes from 155V dc to 125V ac plus 155V dc at 100Hz

5. at 5.5s and until 6.5s the integral part of the regulators is activated driving all the capac-
itor voltages to 100V

6. at 6.5s a 44Ω load is introduced (i.e. the HIL IP switches to normal operation mode). Figure
5.28 down shows how the currents increase significantly. Observe as well in figures 5.29

and 5.30 how the capacitor ripple increase

5.3 experimental results 91

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7
Upper arm capacitor voltages comparison

Time (s)

V
ol

ta
ge

 (
kV

)

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−0.1

0

0.1
Absolute Error (in kV): (Detailed Model − C Model)

H
B

1

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−0.1

0

0.1

H
B

2

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−0.1

0

0.1

H
B

3

Time (s)

Detailed M. − HB1
Detailed M. − HB2
Detailed M. − HB3
C Model − HB1
C Model − HB2
C Model − HB3

Figure 5.22: MMC model validation: Upper capacitor voltages - Detail

7. at 7.5s the load is removed, the capacitor ripple decrease and the controller sets their
voltages back to 100V

Figure 5.31 shows at 4.5s the exact moment when the control starts operating, showing the
typical 7 levels waveform produced by the MMC configuration.

Figure 5.32 presents the change at 6.5s from no-load to a 44Ω load. The smoothing of the
output voltage when the load is connected is caused by the arm inductances Larm. The voltage
produced by the SMs is a PWM signal, but when the load current is increased, all the noise
caused by the PWM infers an important voltage drop in the inductances. This latter, added to
the voltage created by the HBs results in a sinusoidal-like waveform. Hence, these inductors,
apart from filtering the output current, also filter the output voltage. In the same figure can
be observed as well how the upper branch is providing much more current than the lower
arm. Figure 5.33 shows the opposite case, where at 7.5s the load resistor is removed, thus
disappearing the voltage filtering and appearing again the 7-levels common in this kind of
converters.

According to all the presented results, it can be said that the control performs appropriately
and is ready for its test on the real test rig.

5.3.4 Control verification with experimental prototype

Figures 5.34 and 5.35 display a 5.5s charging test on the real system. Next, the following stages
are explained:

92 application of an erts in an experimental prototype

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75
Lower arm capacitor voltages comparison

Time (s)

V
ol

ta
ge

 (
kV

)

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−0.05

0

0.05
Absolute Error (in kV): (Detailed Model − C Model)

H
B

4

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−0.05

0

0.05

H
B

5

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
−0.05

0

0.05

H
B

6

Time (s)

Detailed M. − HB1
Detailed M. − HB2
Detailed M. − HB3
C Model − HB1
C Model − HB2
C Model − HB3

Figure 5.23: MMC model validation: Lower capacitor voltages - Detail

+

- 1

N l

+

V DC

+

+
PR

+

iu

sin(2π f t−π
2

)I circ

-

+

iu

PID+

-

il

-

+
PID

-

+

∑
k=1

N u

(vcapsk
u)2+∑

k=1

N l

(vcapsk
l)2

ref l

+

-
PID

-

+

∑
k=1

N u

(vcapsk
u)2

ref u

x

sin(2π f t)

-

+ 1

N u

-

V DC

sin(2π f t)v AC

V i n

+

+
x

1

vcapsn
u

sin(2π f t−π
2

)

PI
-

+

v capsn
u

∑
k=1

Nu

vcapsk
u

Nu

+

+
x

1

vcapsn
lPI

-

+

v capsn
l

∑
k=1

N l

vcapsk
l

N l
vref n
l

vref n
u

sin(2π f t−π
2

)

ie
u

ie
l

ie
u

ie
l

ic
u

ic
u

ic
l

ic
l

1
V DC

V DC

V i n
I DCo(V i n−V DC)

2
V AC

V DC

V i n
I DCo(V i n−V DC)

sin(2π f t)v AC

Figure 5.24: Energy controllers

5.3 experimental results 93

+

- 1

N l

+

V DC

+

+
PR

+

iu

sin(2π f t−π
2

)I circ

-

+

iu

PID+

-

il

-

+
PID

-

+

∑
k=1

N u

(vcapsk
u)2+∑

k=1

N l

(vcapsk
l)2

ref l

+

-
PID

-

+

∑
k=1

N u

(vcapsk
u)2

ref u

x

sin(2π f t)

-

+ 1

N u

-

V DC

sin(2π f t)v AC

V i n

+

+
x

1

vcapsn
u

sin(2π f t−π
2

)

PI
-

+

v capsn
u

∑
k=1

Nu

vcapsk
u

Nu

+

+
x

1

vcapsn
lPI

-

+

v capsn
l

∑
k=1

N l

vcapsk
l

N l
vref n
l

vref n
u

sin(2π f t−π
2

)

ie
u

ie
l

ie
u

ie
l

ic
u

ic
u

ic
l

ic
l

1
V DC

V DC

V i n
I DCo(V i n−V DC)

2
V AC

V DC

V i n
I DCo(V i n−V DC)

sin(2π f t)v AC

Figure 5.25: Current controllers

+

- 1

N l

+

V DC

+

+
PR

+

iu

sin(2π f t−π
2

)I circ

-

+

iu

PID+

-

il

-

+
PID

-

+

∑
k=1

N u

(vcapsk
u)2+∑

k=1

N l

(vcapsk
l)2

ref l

+

-
PID

-

+

∑
k=1

N u

(vcapsk
u)2

ref u

x

sin(2π f t)

-

+ 1

N u

-

V DC

sin(2π f t)v AC

V i n

+

+
x

1

vcapsn
u

sin(2π f t−π
2

)

PI
-

+

v capsn
u

∑
k=1

Nu

vcapsk
u

Nu

+

+
x

1

vcapsn
lPI

-

+

v capsn
l

∑
k=1

N l

vcapsk
l

N l
vref n
l

vref n
u

sin(2π f t−π
2

)

ie
u

ie
l

ie
u

ie
l

ic
u

ic
u

ic
l

ic
l

1
V DC

V DC

V i n
I DCo(V i n−V DC)

2
V AC

V DC

V i n
I DCo(V i n−V DC)

sin(2π f t)v AC

Figure 5.26: Capacitor balancing controllers

94 application of an erts in an experimental prototype

Controller
(C-code)

Controller
(C-code)

V ref

 PWM
 Generator

 (VHDL)

 PWM
 Generator

 (VHDL)

DutyCycle
6

PWM
6

MMC
HIL

MMC
HIL

6
PWM

DDR
(data logger)

DDR
(data logger)

V in

V̂ caps

V̂ out

îarms

6

6

2

2

V caps

iarms

ARM FPGA

îarmsV̂ caps V̂ out

DATA PATHS
Working as Hardware-in-the-Loop

SDcard
(PSCAD data)

SDcard
(PSCAD data)

V in

9
OCMOCM

îarmsV̂ caps

îarmsV̂ caps

Figure 5.27: MMC IP working as HIL

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350
Input and output voltages

Time (s)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8
−6

−4

−2

0

2

4

6

8

10
Upper and lower arm currents

Time (s)

C
ur

re
nt

 (
A

)

Vin
Vout

Upper
Lower

Figure 5.28: Input voltage and HIL estimated output voltage and currents - Complete simulation

5.3 experimental results 95

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120
Upper arm capacitor voltages

Time (s)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120
Lower arm capacitor voltages

Time (s)

V
ol

ta
ge

 (
V

)

HB1
HB2
HB3

HB4
HB5
HB6

Figure 5.29: HIL estimated capacitor voltages - Complete simulation

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
85

90

95

100

105

110

115
Upper arm capacitor voltages

Time (s)

V
ol

ta
ge

 (
V

)

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
96

98

100

102

104

106
Lower arm capacitor voltages

Time (s)

V
ol

ta
ge

 (
V

)

HB1
HB2
HB3

HB4
HB5
HB6

Figure 5.30: HIL estimated capacitor voltages - Capacitor oscillations

96 application of an erts in an experimental prototype

4.49 4.5 4.51 4.52 4.53 4.54 4.55
0

50

100

150

200

250

300

350
Input and output voltages

Time (s)

V
ol

ta
ge

 (
V

)

4.49 4.5 4.51 4.52 4.53 4.54 4.55
−1

−0.5

0

0.5

1
Upper and lower arm currents

Time (s)

C
ur

re
nt

 (
A

)

Vin
Vout

Upper
Lower

Figure 5.31: Input voltage and HIL output voltage and currents. At 4.5s the control starts operating

6.45 6.46 6.47 6.48 6.49 6.5 6.51 6.52 6.53 6.54 6.55
0

50

100

150

200

250

300

350
Input and output voltages

Time (s)

V
ol

ta
ge

 (
V

)

6.45 6.46 6.47 6.48 6.49 6.5 6.51 6.52 6.53 6.54 6.55
−6

−4

−2

0

2

4

6

8

10
Upper and lower arm currents

Time (s)

C
ur

re
nt

 (
A

)

Vin
Vout

Upper
Lower

Figure 5.32: Input voltage and HIL estimated output voltage and currents. Load switched in at 6.5s

5.3 experimental results 97

7.45 7.46 7.47 7.48 7.49 7.5 7.51 7.52 7.53 7.54 7.55
0

50

100

150

200

250

300

350
Input and output voltages

Time (s)

V
ol

ta
ge

 (
V

)

7.45 7.46 7.47 7.48 7.49 7.5 7.51 7.52 7.53 7.54 7.55
−6

−4

−2

0

2

4

6

8

10
Upper and lower arm currents

Time (s)

C
ur

re
nt

 (
A

)

Vin
Vout

Upper
Lower

Figure 5.33: Input voltage and HIL estimated output voltage and currents. Load switched out at 7.5s

1. from 0s to 2s the input voltage is increased manually using an autotransformer. Figure
5.34 shows how the voltage reaches 311V at 1.6s approximately and in Figure 5.35 can
be observed how the charge of the capacitors follow the same ramp. The duty cycle of
the PWM signals is kept at 100% for the whole period

2. from 2s to 3.5s the duty cycle is reduced gradually down to 48%. The capacitors reach
roughly 100V at the end as displayed in Figure 5.35

3. at 3.5s the control starts to operate setting the output voltage to 125V ac around 155V
dc and at 100Hz as specified by the controller (see Figure 5.36), and keeping the ca-
pacitor voltages at 100V (see Figure 5.35). Figure 5.37 shows how all the capacitors are
oscillating at this same frequency

At this point, the controller has been validated, first with the offline simulation, then in
real-time using the MMC IP as HIL, and finally in the experimental test bench. However, due
to a lack of time, the load test was not possible to be implemented.

5.3.5 eRTS for cell voltage estimation and fault-tolerant control

One of the most interesting applications of eRTS is when used in the context of fault-tolerant
control. The eRTS will operate alongside the real system so when a measurement cannot be
read or is faulty, the control switches to use the signals provided by the eRTS block.

In this Subsection, this scenario has been tested assuming a simultaneous fault in all cell
capacitor voltage sensors, as a worst case scenario. Right after the fault has been detected, the
controller switches from reading the input signals from the CIC filter OCM memory space to

98 application of an erts in an experimental prototype

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−50

0

50

100

150

200

250

300

350

400
Input and output voltages

Time (s)

V
ol

ta
ge

 (
V

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−4

−3

−2

−1

0

1

2

3
Upper and lower arm currents

Time (s)

C
ur

re
nt

 (
A

)

Vin
Vout

Upper
Lower

Figure 5.34: Test bench input and output voltages and output currents (from 0s to 5.5s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−20

0

20

40

60

80

100

120
Upper arm capacitor voltages

Time (s)

V
ol

ta
ge

 (
V

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−20

0

20

40

60

80

100

120
Lower arm capacitor voltages

Time (s)

V
ol

ta
ge

 (
V

)

HB1
HB2
HB3

HB4
HB5
HB6

Figure 5.35: Test bench capacitor voltages (from 0s to 5.5s)

5.3 experimental results 99

3.48 3.5 3.52 3.54 3.56 3.58 3.6
0

50

100

150

200

250

300

350
Input and output voltages

Time (s)

V
ol

ta
ge

 (
V

)

3.48 3.5 3.52 3.54 3.56 3.58 3.6
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Upper and lower arm currents

Time (s)

C
ur

re
nt

 (
A

)

Vin
Vout

Upper
Lower

Figure 5.36: Test bench input and output voltages and output currents(from 3.48s to 3.6s)

3.48 3.5 3.52 3.54 3.56 3.58 3.6
97

98

99

100

101

102

103

104
Upper arm capacitor voltages

Time (s)

V
ol

ta
ge

 (
V

)

3.48 3.5 3.52 3.54 3.56 3.58 3.6
95

96

97

98

99

100

101

102
Lower arm capacitor voltages

Time (s)

V
ol

ta
ge

 (
V

)

HB1
HB2
HB3

HB4
HB5
HB6

Figure 5.37: Test bench capacitor voltages (from 3.48s to 3.6s)

100 application of an erts in an experimental prototype

reading them from the eRTS OCM memory space. Figure 5.38 shows a diagram of how the
different blocks and system data paths are structured.

5.3.5.1 Current offset observer

The purpose of the observer shown in Figure 5.39 is to estimate the capacitor current offset
and then use it to compensate automatically the drift in the capacitor voltage estimation. ic is
the current through the capacitor which is calculated using ic = Sniu,l , where Sn is a logical
function derived from the PWM signals. Vc and V̂ ′c are the measured and estimated capacitor
voltages respectively. Then, the estimated offset is fed through a low-pass filter (LPF) –in
order to smooth the noise present in the measured signals, and finally is used to estimate the
capacitor voltage.

5.3.5.2 Capacitor voltage estimation

Equation 5.8 is used to implement the capacitor voltage estimation shown in Figure 5.39.
It receives the current offset estimated by the observer and then subtracts it to the current
flowing through the cell in order to compensate the voltage drift caused by measurement
errors of the current sensors.

V̂c (k) = V̂c (k− 1) + Sn
Ts

C

(
iu,l (k− 1)− iu,l

o f f setLPF
(k− 1)

)
(5.8)

5.3.5.3 eRTS for cell voltage estimation

The two diagrams presented in Figure 5.39 are replicated 6 times –one per SM– and coded in
a single IP using Vivado HLS. Hence, the only two commands needed to manage the IP are
the following:

XGpio_DiscreteWrite(&Gpio_currents, UPPER_CURRENT_CHANNEL, *(unsigned int*)&XADC_

currents[count_CIC_int*2]);

XGpio_DiscreteWrite(&Gpio_currents, LOWER_CURRENT_CHANNEL, *(unsigned int*)&XADC_

currents[count_CIC_int*2+1]);

XMmc_erts_vcaps3_Start(&MMC_ERTS_Vcaps3); �
In case of failure in the voltage measurement Vc, it is possible to switch the IP to fault mode,
which causes the IP to freeze the current offset observer (upper diagram of Figure 5.39) from
integrating the current and the voltage errorx, keeping io f f set steady. Hence, the ZOH main-
tains its last value –which is an averaged value thanks to the PI– and continues estimating the
capacitor voltages V̂c based on that averaged io f f set value and the new current measurements
iC.

Figures 5.40 and 5.41 show the measured and eRTS estimated cell voltages for the top
and bottom cells, respectively. The measured voltage is in blue, whereas the eRTS estimated
voltage is shown in red.

The eRTS estimated voltage follows very closely the 100Hz ripple caused by the MMC
circulating currents. Note that the absolute ripple is about 2V around the 100V of each cell
(2%). The estimation error is much smaller than this figure, being consistently below 0.5V.

This result is remarkable as this experiment considers nominal values of cell capacitance,
does not take into account PWM interlock delays and, moreover, the eRTS samples the PWM
signals at 5µs intervals.

5.3 experimental results 101

C
ontroller

(C
-code)

C
ontroller

(C
-code)

V
ref

 PW
M

 G
enerator
 (V

H
D

L)

 PW
M

 G
enerator
 (V

H
D

L)

D
utyC

ycle
6

P
W
M

6

M
M

C
ER

TS
M

M
C

ER
TS

6
P
W
M

2
2

D
D

R

(data logger)

D
D

R

(data logger)

V̂
caps

X
A

D
C

(X
ilinx IP)

X
A

D
C

(X
ilinx IP)

V
in
analog

V
outanalog

V
in
digital

V
outdigital

iarm
s
digital

iarm
s
analog

C
IC

Filter

(V
H

D
L)

C
IC

Filter

(V
H

D
L)

V
caps(ΣΔ

)

6

6
V
caps(uint32)

uint32
to

Float

uint32
to

Float
V
caps

6

6
6

62

2

6

V
caps

iarm
s

A
R

M
FP

G
A

V
caps

V̂
caps

iarm
s

V
out

V
in

M
M

C

TEST

BEN
C

H

M
M

C

TEST

BEN
C

H

S
IG

N
A

L
 A

N
D

 D
A

T
A

 P
A

T
H

S

 Protections
 Board

 Protections
 Board

C
apacitor

O
ver V

oltage
(V

H
D

L)

C
apacitor

O
ver V

oltage
(V

H
D

L)

12

E
N

iarm
s

V
out

V
in

V
caps

6

P
W
M

V
caps(ΣΔ

)

O
ptic Fibers
A

dapter
O

C
M

O
C

M
V
caps

V̂
caps

66

iarm
s

6 2

6

6

iarm
s

2

V
caps

V̂
caps

iarm
s

2

6

V
caps(uint32)

Figure 5.38: eRTS for fault-tolerant control diagram

102 application of an erts in an experimental prototype

PI

1
C

1
s-

-

+

+iC

ioffset

V̂ C

V C

PI

1
C

1
s-

-

+

+iC

ioffset

V̂ C

V C

PI

1
C

1
s-

-

+

+iC

ioffset

V̂ C

V C

PI

1
C

1
s-

-

+

+iC

ioffset

V̂ C
'

V C

f c

+

LPF

1
C

1
s

V̂ C

ERTS

Current offset observer

-

PI

-

-

+

+iC

V C

f c

+

LPF

1
C

1
s

V̂ C

ERTS

Current offset observer

-

ZOH ZOH

Figure 5.39: Current offset observer and Capacitor voltage eRTS diagram

5.3 experimental results 103

4.8 4.81 4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89 4.9
97

98

99

100

101

102

103
HB1 capacitor voltage comparison

V
ol

ta
ge

 (
V

)

4.8 4.81 4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89 4.9
97

98

99

100

101

102

103
HB2 capacitor voltage comparison

V
ol

ta
ge

 (
V

)

4.8 4.81 4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89 4.9
97

98

99

100

101

102

103
HB3 capacitor voltage comparison

Time (s)

V
ol

ta
ge

 (
V

)

Measured
Estimated

Measured
Estimated

Measured
Estimated

Figure 5.40: eRTS upper cell voltage estimation during normal operation

4.8 4.81 4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89 4.9
97

98

99

100

101

102

103
HB4 capacitor voltage comparison

V
ol

ta
ge

 (
V

)

4.8 4.81 4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89 4.9
97

98

99

100

101

102

103
HB5 capacitor voltage comparison

V
ol

ta
ge

 (
V

)

4.8 4.81 4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89 4.9
97

98

99

100

101

102

103
HB6 capacitor voltage comparison

Time (s)

V
ol

ta
ge

 (
V

)

Measured
Estimated

Measured
Estimated

Measured
Estimated

Figure 5.41: eRTS lower cell voltage estimation during normal operation

104 application of an erts in an experimental prototype

4.5 5 5.5 6 6.5

96

98

100

102

HB1 capacitor voltage comparison

V
ol

ta
ge

 (
V

)

4.5 5 5.5 6 6.5

96

98

100

102

HB2 capacitor voltage comparison

V
ol

ta
ge

 (
V

)

4.5 5 5.5 6 6.5

96

98

100

102

HB3 capacitor voltage comparison

Time (s)

V
ol

ta
ge

 (
V

)
Measured
Estimated

Measured
Estimated

Measured
Estimated

← Normal operation | Fault operation →

← Normal operation | Fault operation →

← Normal operation | Fault operation →

Figure 5.42: eRTS upper cell voltage estimation during change from normal operation mode to fault
mode at 5.5s

5.3.5.4 Fault-tolerant control using eRTS voltage measurements

This section shows the capability of the eRTS estimation to provide adequate feedback signals
for the controller when there is a fault in one or more of the cell voltage signals.

Figures 5.42 and 5.43 show the capacitor voltages of all the SMs before and after the failure
of all the cell voltage sensors. This is an extreme case to show the performance of the eRTS
estimate in such an unlikely situation.

The fault in all voltage feedback sensors is emulated by just switching the control feedback
signals from those actually measured by the CIC to those provided by the eRTS at 5.5s. In
an actual system, a fault detection algorithm would be used. However, as a proof of concept,
here the feedback signals are just switched by a software command at 5.5s.

Looking at the error evolution in Figures 5.44 and 5.45, it is worth noting that the system
operates reliably after the fault, however, there is a noticeable drift in the actual voltage. This
is caused by the non-considered effects listed before (nominal parameters, converter non-
linearities and PWM resolution). However, it is clearly seen that the controller drives the
eRTS voltage estimate to their 100V reference.

Figures 5.46 and 5.47 show a detailed view of the estimated cell capacitor voltages exactly
when the fault occurs. As in the previous graphs, the measured value is plotted in blue
whereas the estimation is in red. It is worth noting that there is no abrupt change and the
dynamics are followed as if it would not have occurred any fault.

5.3 experimental results 105

4.5 5 5.5 6 6.5

96

98

100

102

HB4 capacitor voltage comparison
V

ol
ta

ge
 (

V
)

4.5 5 5.5 6 6.5

96

98

100

102

HB5 capacitor voltage comparison

V
ol

ta
ge

 (
V

)

4.5 5 5.5 6 6.5

96

98

100

102

HB6 capacitor voltage comparison

Time (s)

V
ol

ta
ge

 (
V

)
Measured
Estimated

Measured
Estimated

Measured
Estimated

← Normal operation | Fault operation →

← Normal operation | Fault operation →

← Normal operation | Fault operation →

Figure 5.43: eRTS lower cell voltage estimation during change from normal operation mode to fault
mode at 5.5s

4.5 5 5.5 6 6.5
−5

−4

−3

−2

−1

0

1

2
HB1 capacitor voltage error (Measured − Estimated)

V
ol

ta
ge

 (
V

)

4.5 5 5.5 6 6.5
−5

−4

−3

−2

−1

0

1

2
HB2 capacitor voltage error (Measured − Estimated)

V
ol

ta
ge

 (
V

)

4.5 5 5.5 6 6.5
−5

−4

−3

−2

−1

0

1

2
HB3 capacitor voltage error (Measured − Estimated)

V
ol

ta
ge

 (
V

)

Time (s)

← Normal operation | Fault operation →

← Normal operation | Fault operation →

← Normal operation | Fault operation →

Figure 5.44: Upper capacitor voltage error

106 application of an erts in an experimental prototype

4.5 5 5.5 6 6.5
−5

−4

−3

−2

−1

0

1

2
HB4 capacitor voltage error (Measured − Estimated)

V
ol

ta
ge

 (
V

)

4.5 5 5.5 6 6.5
−5

−4

−3

−2

−1

0

1

2
HB5 capacitor voltage error (Measured − Estimated)

V
ol

ta
ge

 (
V

)

4.5 5 5.5 6 6.5
−5

−4

−3

−2

−1

0

1

2
HB6 capacitor voltage error (Measured − Estimated)

V
ol

ta
ge

 (
V

)

Time (s)

← Normal operation | Fault operation →

← Normal operation | Fault operation →

← Normal operation | Fault operation →

Figure 5.45: Lower capacitor voltage error

5.45 5.46 5.47 5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55
97

98

99

100

101

102
HB1 capacitor voltage comparison

V
ol

ta
ge

 (
V

)

5.45 5.46 5.47 5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55
97

98

99

100

101

102
HB2 capacitor voltage comparison

V
ol

ta
ge

 (
V

)

5.45 5.46 5.47 5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55
97

98

99

100

101

102
HB3 capacitor voltage comparison

Time (s)

V
ol

ta
ge

 (
V

)

Measured
Estimated

Measured
Estimated

Measured
Estimated

Figure 5.46: eRTS upper cell voltage estimation during change from normal operation mode to fault
mode at 5.5s - Detail

5.3 experimental results 107

5.45 5.46 5.47 5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55
97

98

99

100

101

102
HB4 capacitor voltage comparison

V
ol

ta
ge

 (
V

)

5.45 5.46 5.47 5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55
97

98

99

100

101

102
HB5 capacitor voltage comparison

V
ol

ta
ge

 (
V

)

5.45 5.46 5.47 5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55
97

98

99

100

101

102
HB6 capacitor voltage comparison

Time (s)

V
ol

ta
ge

 (
V

)

Measured
Estimated

Measured
Estimated

Measured
Estimated

Figure 5.47: eRTS lower cell voltage estimation during change from normal operation mode to fault
mode at 5.5s - Detail

5.3.5.5 Output voltage reconstruction from estimated capacitor voltages

The eRTS estimated voltages can be used for output voltage reconstruction. Similarly as it has
been done in the MMC HIL IP, the output voltage can be determined by using the estimated
capacitor voltages, the measured currents and input voltage. Figures 5.48 and 5.49 show a
comparison between the captured data using a Yokogawa DL850 ScopeCorder sampling the
signals at 1µs, and the estimated output voltage derived from the Capacitor voltage eRTS and
computed using MATLAB as a proof of concept.

In the zoomed Figure 5.48 small differences are observed when the pulses are too short.
This might be caused because of two reasons: (i) the eRTS had no sufficient resolution to
capture them (remember that the reconstruction of the signal has been performed using the
data logged signals from the eRTS); and/or (ii) the dead-band –or interlock– implemented in
hardware inside the CPLD present on each HB, that prevents both switches to be turned on
at the same time, which causes rejecting pulses which are smaller than 2µs. Nevertheless, the
reconstruction of the signal is considerably good, which can have interesting applications if
the output voltage measurement fails.

The shape of the signal is perfectly followed as seen in 5.49 even when the eRTS is switched
in at 5.5s with only a slight voltage difference when reaching the highest voltage magnitude.

108 application of an erts in an experimental prototype

5 5.0001 5.0002 5.0003 5.0004 5.0005 5.0006 5.0007 5.0008 5.0009 5.001
40

60

80

100

120

140

160

180

Time (s)

V
ol

ta
ge

 (
V

)
Output voltage

Oscilloscope
ERTS

Figure 5.48: Vout reconstruction

5.49 5.492 5.494 5.496 5.498 5.5 5.502 5.504 5.506 5.508 5.51
−50

0

50

100

150

200

250

300

350

Time (s)

V
ol

ta
ge

 (
V

)

Output voltage

Oscilloscope
ERTS

Figure 5.49: Vout reconstruction switching the Capacitor voltage eRTS in at 5.5s

5.4 chapter conclusions 109

5.4 chapter conclusions

In this Chapter the experimental validation of the use of SoC devices for implementing eRTS
has been shown. Firstly, the hardware/software co-design utilised to put in operation the
low-power converter was detailed. Finally, all the steps that were followed to develop, test,
and validate the different converter models were explained and results presented.

Given the many possibilities a SoC provides to implement such complex control systems, a
partition methodology was suggested depending on the tasks to be performed by each sub-
system. Three classifications were outlined: (i) the basic blocks executing simple tasks and
requiring the fastest execution time possible (e.g. PWM generator, CIC filter, Capacitor over-
voltage alarm, etc.) were implemented in hardware using VHDL; (ii) the blocks with average
complexity, with only a few number of parameters and requiring as well fast execution time
with possibility of parallelization (e.g. MMC HIL, Capacitor voltage eRTS, CIC conversion to float,
etc.) were developed using HLS tools and implemented in hardware as well; and finally (iii)
the parts of the system which perform complicated tasks and will definitely change during
the development cycle (e.g. controllers, communications, data logging on external devices,
etc.) were implemented in software and executed in the PS.

Apart from the whole ecosystem built to put them in operation, two model IPs were de-
veloped using HLS tools. The first one was a complete MMC model which estimates output
voltage, branch currents, and capacitor voltages based on the PWM signals and the input
dc voltage. This IP was used as HIL in order to validate the converter’s controller in real-
time before its deployment on the real test rig. The regulator was validated and tested in the
experimental prototype satisfactorily.

The second IP was a capacitor voltage eRTS including a current offset estimator. This time,
the entity was used in a real application of fault-tolerant control corroborating its validity
when the measured capacitor voltages are not received in the control platform, thus using the
estimated ones instead.

To finalize, a proof of concept of the output voltage reconstruction using these estimated
voltages was outlined, demonstrating another possible utilisation of eRTSs.

Regarding execution time of the IPs under study, they were capable of providing the cal-
culation results and write them in memory below the microsecond. However, in order to be
in the safe path, simplify and ensure the start-up of the whole system, a conservative 5µs
execution time was considered. Nonetheless, very satisfactory results were obtained.

Even though the device used in this experimental setup is considered as low/mid-range,
the FPGA fabric resources utilised were all below 50% but the LUT, which area usage raised
up to 68% considering both HIL and eRTS IPs being implemented in the same single design.
This can give an idea of how suitable these systems are to implement complicated control
systems as the one presented in this dissertation.

Part IV

G E N E R A L C O N C L U S I O N S A N D P E R S P E C T I V E S

6
G E N E R A L C O N C L U S I O N S

The objective of this dissertation was to evaluate and analyze how suitable are SoC devices to
implement eRTSs of electrical systems.

After a general introduction outlined in Chapter 1, in Chapter 2 an overview of the State
of the Art of eRTSs was given, pointing to the most important challenges related to their
development and implementation, and picturing where this Thesis work is framed. Several
SoC platforms were briefly introduced plus the development tools that come with them, and
the reasons to choose the Zynq-7000 SoC and Vivado HLS to be used in this dissertation were
stated.

Chapters 3 and 4 were devoted to the evaluation of two case scenarios related with offshore
wind farm generation: one focusing on electromechanical systems and the other on power elec-
tronic systems. The first example was a DFIG and the study comprehended two discretization
methods: Euler’s Forward method and the bilineal or Tustin method. Results showed that the
results of the Euler version were accurate enough considering the low/medium dynamics
of these kinds of systems. Next, an implementation study was carried out to see if it was
more convenient to run the model in the PS or the PL. Moreover, a data transfer study was
also realized to find if it was interesting to have this IP running as a hardware accelerator.
Furthermore, different data types were evaluated as well: 64/32-bit floating-point and 32-bit
fixed-point data formats. Results showed that the best results were found when running the
model in the ARM using 64-bit floating-point variables which only needed 372ns to perform
all the model computations. The second example was an implementation of an MMC. In this
case however, only a PL evaluation was envisaged due to the harsh dynamics of power elec-
tronic systems. A broad study was carried out considering the same three data formats used
in the previous case, and changing the number of SM per phase from 6 to 700. They were an-
alyzed in terms of resources usage, execution time and precision of the results compared to a
PSCAD simulation. Results showed that even though the fixed-point version was much faster,
the maximum amount resources (DSPs) were used up at 200 HB per phase, without using any
directive or pragma. Conversely, both floating-point versions were capable of managing 700

SMs per phase without even reaching 30% of resources also without using any directive. The
absolute errors compared to a 64-bit PSCAD version were below 0.4% for both floating-point
versions, whereas the fixed-point version got a bit over 3%.

In Chapter 5 was outlined all the hardware/software ecosystem necessary to set up the
MMC low-power test bench. Given the many possibilities a SoC provides in terms of imple-
mentation, a partition methodology was suggested depending on the tasks to be performed
by each subsystem. Three classifications were outlined: (i) The basic blocks executing simple
tasks and requiring the fastest execution time possible were implemented in hardware using
VHDL; (ii) the blocks with average complexity, with only a few number of parameters and
requiring as well fast execution time with possibility of parallelization were developed us-
ing HLS tools and implemented in hardware as well; and finally (iii) the parts of the system

113

114 general conclusions

which perform complicated tasks and will definitely change during the development cycle
were implemented in software and executed in the PS. Regarding execution time of the IPs
under study, they were capable of providing the calculation results and write them in mem-
ory below the microsecond. However, in order to be in the safe path, simplify and ensure the
start-up of the whole system, a conservative 5µs execution time was considered. Nonetheless,
very satisfactory results were obtained. Then, two eRTSs were introduced: one utilised as HIL
for validating the converter controller; and the other to be used in an application of fault-
tolerant control. The MMC HIL was successfully implemented and used to verify the proper
functioning of the controller, ratifying its validity in a later test using the experimental proto-
type. Finally, a Capacitor voltage eRTS used to estimate and compensate the capacitor voltage
drift was implemented and tested with the real system as well. There, a failure in retrieving
the voltage measurements was induced changing the eRTS IP to fault mode and modifying
the control inputs to retrieve the capacitor voltages from the ones estimated by the IP. The IP
performed significantly well having a maximum error of 4% in the worst case after 1 second
of operation.

7
P E R S P E C T I V E S

In this final Chapter, author wants to outline some ideas of how this work could be continued
and/or improved.

7.1 minimise the erts execution time

Author is confident that the whole system could run at 1µs –or even less– by slowing down
the FPGA clock in order to allow execute operations with less latency –or even zero latency
as outlined in Section 3.6, increasing the AXI interface clock to perform data transfer faster
–the maximum clock frequency is 250MHz, automating tasks on hardware to free the PS from
doing them, and by using the second processor to divide the computational burden of the
controller by two.

7.2 improve erts model

In Subsection 5.3.5 a Capacitor voltage eRTS was developed and put in operation. The 470µF/400V
aluminum electrolytic capacitors by EPCOS have a capacitance tolerance of 20%. The capacitor
voltage estimation could be significantly improved if the capacitance of each pair of capacitors
(remember that there are two per SM connected in parallel) is identified and the values used
in the eRTS model.

Moreover, the model could include the converter non-linearities (dead-time) and increase
the PWM granularity.

7.3 increase the number of sm to be controlled

At this moment, the test bench is only managing 6 SMs in total, even though it is prepared
and physically configured to command 12 by doing very few modifications, or 24 with a
little more of work. This way, it could be tested one single leg with 12 HB per arm, or it
could also be implemented all the three phases by using 4 SM per phase, hence 2 per arm.
Regarding FPGA resources and considering the conservative 5µs chosen, the system could be
able to perform all the computations necessary to double the number of cells without major
problems.

However, if the system wants to be increased in order to manage 24 HBs, more work would
need to be done, modifying not only the IPs, but also the whole hardware/software co-design
and probably the data logger would have to be improved by either reduce the amount of data
registered, or by lowering the frequency at which it is registered. Furthermore, managing 24

SMs would lead to have available a more-close-to-reality three-phase converter, handling 8

SMs per phase –hence 4 per arm, being capable of producing a 9-level output voltage per
phase.

115

116 perspectives

7.4 implement new converter topologies

The double-T DC-DC MMC topology for high-voltage dc applications presented in [89] could
be tested in our facilities using the same development procedure followed in this Thesis work
and explained in Chapter 5. Firstly, by the development of a HIL IP in order to verify that
developed controller performs well in real-time, and secondly by assembling and testing this
characteristic converter topology in our low-power test rig.

The only new thing that would eventually take more time to be developed is the manage-
ment of the output branch of the converter, which is formed by Full-Bridge (FB) SMs instead
of the Half-Bridge SMs that form the input series and the derivation branches. This would
require not only the development and implementation of the FB model, but also to decide
how to manage the PWM outputs considering that these SMs have 4 possible states instead
of the 2 of the HB.

7.5 test new control strategies

The controller used in this Thesis work was based on the converter introduced in the previous
Subsection [89], which goal was to generate an ac voltage plus a dc voltage at the middle
point of connection. Other more demanding control strategies like the heuristic model pre-
dictive modulation explained in [90] could be tested in our platform. Also, the improvement
of the capacitor balancing algorithm by using the one-dimensional cell inversion presented
[91] could reduce significantly the capacitor voltage ripple. Moreover, an optimization of the
switching losses and the capacitor voltage ripple using model predictive control outlined in
[92] could be as well implemented to evaluate even further the computational capabilities of
the controller platform.

7.6 erts current estimator for fault-tolerant control

This eRTS was as well one of the objectives of this Dissertation. However, due to a lack of
time it was not possible to be included in the experimental results.

This could be used in a similar way as the Capacitor voltage eRTS presented in 5.3.5, where
a faulty current sensor would be replaced by the eRTS current estimator in order to continue
operating the converter.

Moreover, it could also include a fast fault-detection and isolation algorithms to run in
FPGA for both voltage and current eRTSs.

Part V

A P P E N D I X

A
E X P E R I M E N TA L T E S T B E N C H

a.1 introduction

There were developed HB modules which included the power switches, the capacitors, and
all the electronics necessary to manage them using optical fibers, employing two to drive the
switches and one to transmit the capacitor voltage back to the control card. Moreover, several
additional cards were built to handle these signals, perform current and voltage measure-
ments, and include hardware-controlled protection to avoid the system to be damaged in the
event of software and/or hardware failures. Figures A.1 and A.2 show the diagram of the
complete system and the interconnections between all the blocks that form the experimental
setup.

MOSFETS have been utilised instead of IGBTs as the forward voltage drop of IGBTs in
low-power applications is proportionally too high. At low voltages, MOSFETS exhibit a for-
ward voltage drop proportionally comparable to that of high power IGBT based MML power
converters.

The values of the passive elements present in the test rig are the following: Both Larm are
5mH inductances produced by Jesiva Transformers1, an Spanish company that produces induc-
tances and converters on demand; C, the SM capacitors, are all two 470µF/400V capacitors
by EPCOS AG connected in parallel, hence 940µF/400V; C2 is a 5µF/1.3kV ceramic capacitor
by EPCOS AG as well used for noise filtering in the dc bus; an LC1 filter was added and
tuned at the 100Hz of the circulating current using a 5mH inductor by Jesiva Transformers
and a 470µF/400V capacitor by EPCOS AG; finally, the load is a simple electric heater with a
measured resistance of 44Ω. This choice was made because it was found that the linearity of
the power resistors was not as good as this one.

With respect to the control board, it was decided to use Avnet’s MicroZed I/O Carrier Card
[93], featuring a Zynq-7020 produced by Xilinx Inc. It has twelve PMOD connectors where it
can easily be connected expansion modules like the fiber optics interface and the overcurrent
and overvoltage protection card that are described later in this Chapter.

Concerning the time constraints, even though it would be feasible to get the ERTS working
at 1µs, it was decided to be more conservative and set the ERTS execution time to 5µs using a
single clock of 100MHz to drive all the FPGA IPs. The PWM frequency was set to 5kHz, hence
200µs, but using a double-update method being able to recalculate and change the duty cycle
in the highest and lowest value of the triangular waveform [88]. Therefore, the control will be
executed at double that frequency: 100µs.

Figure A.3 shows a picture of the experimental prototype built at the AI2 facilities.
Following, the complete system used for validating the ERTS is explained in detail.

1 Official website jesiva.com

119

120 experimental test bench

MicroZed

Control Board

(Zynq)

HB1 HB2 HB3 HB4

HB5 HB6 HB7 HB8

HB9 HB10 HB11 HB12

F
ib

er O
p

tics
A

d
a

p
ter C

ard

24x PWM
12x HB Voltages

3x Currents

3x Voltages

I/V Measurements
Card

High VoltageLow Voltage
V1

I1

V2

V3

I2

I3

E R

I/V Protections
Board

EN
Optic Fibers

Enable

CUR2e

CUR1e

CUR3e

VOLT1e

VOLT2e

VOLT3e

SETAe

OVerror

CURout1
VOLTout1
CURout2
VOLTout2
CURout3
VOLTout3

S
E

TA
e

F
P

G
A

e

C
U

R
1

e

V
O

LT
1e

C
U

R
2e

V
O

LT
2

e

V
O

LT
3e

C
U

R
3

e

C
U

R
2

e

E
R

R
O

R

Error LEDs

Emergency
Stop & Reset

P
M

O
D

JD2
JD1

JD3
JD4
JD7
JD8
JD9

JA
JB

JC

P
M

O
D

P
M

O
D

P
M

O
D

X
A

D
C CH2

CH1

CH3
CH9
CH10
CH11

JD10

Larm

Rack+

-

 ~
~

Larm

C1

C2

L

Rload

iarm

V SM

C

T1

T2

SMn

SM2

SM1

SMn

SM2

SM1

iarma

iarma

upper

lower

V ac

V i n
iload

V out

AT

to control
board

to Rack

Figure A.1: Test bench main diagram - Control system

MicroZed

Control Board

(Zynq)

HB1 HB2 HB3 HB4

HB5 HB6 HB7 HB8

HB9 HB10 HB11 HB12

F
ib

er O
p

tics
A

d
a

p
ter C

ard

24x PWM
12x HB Voltages

3x Currents

3x Voltages

I/V Measurements
Card

High VoltageLow Voltage
V1

I1

V2

V3

I2

I3

E R

I/V Protections
Board

EN
Optic Fibers

Enable

CUR2e

CUR1e

CUR3e

VOLT1e

VOLT2e

VOLT3e

SETAe

OVerror

CURout1
VOLTout1
CURout2
VOLTout2
CURout3
VOLTout3

S
E

TA
e

F
P

G
A

e

C
U

R
1

e

V
O

LT
1e

C
U

R
2e

V
O

LT
2

e

V
O

LT
3e

C
U

R
3

e

C
U

R
2

e

E
R

R
O

R

Error LEDs

Emergency
Stop & Reset

P
M

O
D

JD2
JD1

JD3
JD4
JD7
JD8
JD9

JA
JB

JC

P
M

O
D

P
M

O
D

P
M

O
D

X
A

D
C CH2

CH1

CH3
CH9
CH10
CH11

JD10

Larm

Rack+

-

 ~
~

Larm

C1

C2

L

Rload

iarm

V SM

C

T1

T2

SMn

SM2

SM1

SMn

SM2

SM1

iarma

iarma

upper

lower

V ac

V i n
iload

V out

AT

to control
board

to Rack

Figure A.2: Test bench main diagram - Power converter

A.2 test bench description 121

Figure A.3: Picture of the experimental prototype

a.2 test bench description

a.2.1 The Half-Bridge sub-module

The MMC developed in the AI2 laboratory is composed of twelve HBs mounted in a 3D
printed structure forming a rack. In one side of this block (see Figure A.4) there are all the
power connections accessible in order to ease the interconnections between sub-modules to
create different converter topologies. In the opposite side (see Figure A.5) there are the optical
fiber transceivers used to control each HB plus the 12V connector for powering the onboard
electronics, which employ a single 12V power supply to feed all of them.

The sub-module shown in Figure A.6 mounts two MOSFET TK62N60W produced by Toshiba,
which includes in the same package an anti-parallel diode [94]. It has all the electronics nec-
essary to drive the switches using fiber optics signals in order to isolate the converter from
the main control, which is also developed in-house.

It has two 470µF capacitors connected in parallel rated at 400V, thus forming a 940µF
total capacitor. The voltage measurement is performed using the ACPL-7970 optically isolated
Sigma-Delta (Σ∆) modulator produced by Broadcom [95]. It is a 1-bit, second-order amplifier
that converts an analog input signal into a high-speed data stream through integration of
galvanic isolation based on optical coupling technology. It is fed by a 10MHz clock. It has
been included also a hardware dead-band protection –or interlock– that avoids both switches
to be connected simultaneously.

Figure A.7 displays a diagram of the complete rack and its fiber optics interface.

a.2.2 Control System

The control system is formed by four individual boards, all interconnected from one another:

• Control board

122 experimental test bench

Figure A.4: Rack picture - Front

Figure A.5: Rack picture - Back

A.2 test bench description 123

Figure A.6: Half-Bridge sub-module picture

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

RT 1

RT 2

EVcapC

T1

T 2

V high

V mid

V low

±V cc

HV LV

12 x Emitters
(Vcaps)

24 x Receivers
(MOSFET gates)

Figure A.7: Half-Bridge rack diagram

124 experimental test bench

Figure A.8: Control board picture

• Fiber optics interface

• Protection board

• Sensor box

Following, a detailed description of all these subsystems.

a.2.2.1 Control board

In order to control the MMC, it was decided to use Avnet’s2 MicroZed I/O Carrier Card [93],
featuring a Zynq-7020 produced by Xilinx Inc. As shown in Figure A.8, it has twelve PMOD
connectors where it can easily be connected expansion modules like the fiber optics interface
and the overcurrent and overvoltage protection card.

a.2.2.2 Fiber optics interface

As shown in Figure A.9, the fiber optics interface card uses three of the carrier card PMODs
to access 24 I/O of the Zynq: 12 are used as outputs to drive the HBs, and the remaining 12

as inputs to read the capacitor voltages of every sub-module. The 12 outputs are inverted and
connected to 24 optical fiber emitters to drive each of the 24 MOSFETs. Therefore, each SM
receives two complementary PWM signals. This was done in order to add some redundancy,
so in case one of the optical fiber links fails, it would still be possible to partially control the
HB.

Regarding the capacitor voltage measurement, the 12 optical fiber receivers read the frequency-
modulated signal generated by the Σ∆ ADC. Then, a configurable Cascaded Integrator-Comb

2 Official website avnet.com

A.2 test bench description 125

Figure A.9: Fiber optics interface

(CIC) filter [86] implemented in the fabric decodes this signal providing an accurate voltage
using very little hardware. More information about the filter can be found in 5.2.2.5.

This PCB includes as well an enable pin (EN) connected to the protection board which
disables the switch signals in case an overvoltage or overcurrent is detected.

a.2.2.3 Protection board

This card pictured in Figure A.10 is placed in between of the converter and the Zynq being
able of cutting the MOSFET’s signals if an error is detected. Its main purpose is to supervise
voltages and currents and block the optical fiber signals if any has surpassed the predefined
maximum value. All the signals are monitored using only hardware devices, i.e. several oper-
ational amplifiers (OPAMP) and a Complex Programmable Logic Device (CPLD). This means it is
not software dependent and hence, code and bug errors are avoided and the response time
of the alarms are treated as fast as possible.

In total, this PCB monitors three currents and three voltages, plus the capacitor voltages
which are pre-checked inside the Zynq’s PL. It counts as well with an emergency button plus
a reset in order to re-activate the system. Additionally, the board has nine status LEDs that
help the user to know what signals are causing the system’s halt. In Figure A.11 is displayed
a diagram of the board showing all its inputs and outputs.

Entering more in detail, the OPAMPs are configured as differential amplifiers to reduce the
range of the input signals in a first stage, and as comparators to verify maximum values that
could damage the converter in a second stage. The purpose of the CPLD is to manage the
logic signals coming from the OPAMPs, light up the corresponding error LED, cut the fiber
optics signals, and warn the Zynq that an error has occurred.

The three currents and three voltages that are monitored on-board are converted from the
±10V coming from the sensor box to a 0-to-1 volts range. Then, each of these six signals is
driven into two comparators each, which check they do not surpass a minimum and max-
imum limit value configured using two multi-turn potentiometers. Hence, if any of these

126 experimental test bench

Figure A.10: Protection board

V1

I1

V2

V3

I2

I3

E R

I/V Protection
Board

EN
Fiber Optics

Enable

CUR2e

CUR1e

CUR3e

VOLT1e

VOLT2e

VOLT3e

SETAe

OVerror

CURout1
VOLTout1
CURout2
VOLTout2
CURout3
VOLTout3

S
E

TA
e

F
P

G
A

e

C
U

R
1

e

V
O

LT
1

e

C
U

R
2

e

V
O

LT
2e

V
O

LT
3

e

C
U

R
3e

C
U

R
2

e

E
R

R
O

R

Error LEDs

Figure A.11: Protection board diagram

A.2 test bench description 127

Figure A.12: Current and voltage sensor

values is reached, the output of the comparators change their logic value and the CPLD acts
accordingly cutting the fiber optics signals.

Moreover, these six 0-to-1 volts signals are also connected to the Zynq’s ADC through
PMODs JE and JF, so it can perform simultaneous reads on channels 1 and 9, channels 2

and 10, and channels 3 and 11.

a.2.2.4 Sensor box

This sensor box, which includes three sub-modules like the one shown in Figure A.12, con-
verts measurements of three currents and three voltages to ±10V signals. It uses the LTA
50-P/SP1 Hall effect transducer to measure dc and ac currents, and the LV25-P voltage trans-
ducer for voltage measurements, both produced by LEM International SA. All the electronics
are installed inside a metallic box in order to avoid electromagnetic interferences and placed
next to the MMC. Inputs and outputs are galvanically isolated. The maximum currents and
voltages that can be measured are ±31A and ±500V respectively.

B
M M C S TAT E S PA C E M O D E L PA R A M E T E R S

These are the parameters used in the MMC HIL state space model described in Subsection
5.3.1.2.

Matrices used for the charging mode: no-load present (1MΩ load actually) used for charging
the SM capacitors:

A =

[
0.49995 0.49995

0.49995 0.49995

]

B =

[
4.5477e−4 −4.5477e−4 −4.5427e−4

4.5427e−4 −4.5427e−4 −4.5477e−4

]

C =

 1 0

0 1

1e6 −1e6

Matrices used for the normal operation mode (44Ω resistive load):

A =

[
9.6146e−1 3.8438e−2

3.8438e−2 9.6146e−1

]

B =

[
8.9134e−4 −8.9134e−4 −1.7705e−5

1.7705e−5 −1.7705e−5 −8.9134e−4

]

C =

 1 0

0 1

44 −44

129

B I B L I O G R A P H Y

[1] Quora, What is an ip intellectual property core in VLSI (apr 2018). doi:https://www.

quora.com/What-is-an-IP-intellectual-property-core-in-VLSI.

[2] H. Saad, S. Dennetiere, J. Mahseredjian, P. Delarue, X. Guillaud, J. Peralta, S. Nguefeu,
Modular multilevel converter models for electromagnetic transients, IEEE Transactions
on Power Delivery 29 (3) (2014) 1481 – 1489. doi:10.1109/TPWRD.2013.2285633.

[3] R. Pena, J. Clare, G. M. Asher, Doubly-fed induction generator using back-to-back pwm
converters and its application to variable-speed wind-energy generation, in: IEE Proceed-
ings - Electric Power Applications, IEEE, 1996, pp. 1350–2352.

[4] R. Pena, J. Clare, G. Asher, A doubly fed induction generator using back-to-back pwm
converters supplying an isolated load from a variable speed wind turbine, in: IEEE Pro-
ceedings - Electric Power Applications, Vol. 143, IEEE, 1996, pp. 380–387.

[5] M. E. Achkar, R. Mbayed, G. Salloum, N. Patin, S. L. Ballois, E. Monmasson, Modeling
and control of a stand alone cascaded doubly fed induction generator supplying an
isolated load, in: IEEE (Ed.), Power Electronics and Applications (EPE’15 ECCE-Europe),
17th European Conference on, 2015.

[6] D. Tormo, L. Idkhajine, E. Monmasson, R. Blasco-Gimenez, Evaluation of SoC-based
embedded real-time simulators for electromechanical systems, in: IEEE (Ed.), The 42nd
Annual Conference of IEEE Industrial Electronics Society, 2016.

[7] D. Tormo, L. Idkhajine, E. Monmasson, R. Blasco-Gimenez, Embedded real-time sim-
ulator implementations of electromechanical systems using system-on-chip devices, in:
ELECTRIMACS, 2017.

[8] M. Dagbagi, A. Hemdani, L. Idkhajine, M. Naouar, E. Monmasson, I. Slama-Belkhodja,
ADC-based embedded real-time simulator of a power converter implemented in a low-
cost FPGA: Application to a fault-tolerant control of a grid-connected voltage-source
rectifier, IEEE Transactions on Industrial Electronics 63 (2) (2016) 1179–1190.

[9] C. Liu, X. Guo, F. Gao, E. Breaz, P. Damien, F. Gechter, FPGA based real-time sim-
ulation of high frequency soft-switching circuit using time-domain analysis, in: In-
dustrial Electronics Society , IECON - 42nd Annual Conference of the IEEE, 2016.
doi:10.1109/IECON.2016.7793227.

[10] F. Montano, T. Ould-Bachir, J.-P. David, An evaluation of a high-level synthesis approach
to the FPGA-based sub-microsecond real-time simulation of power converters, IEEE
Transactions on Industrial Electronicsdoi:10.1109/TIE.2017.2716880.

[11] A. Lesnicar, R. Marquardt, An innovative modular multilevel converter topology suitable
for a wide power range, in: Power Tech Conference Proceedings, IEEE Bologna, 2003.
doi:10.1109/PTC.2003.1304403.

[12] H. Akagi, Classification, terminology, and application of the modular multilevel cascade
converter, IEEE Transactions on Power Electronics 26 (11) (2011) 3119–3130.

131

http://dx.doi.org/https://www.quora.com/What-is-an-IP-intellectual-property-core-in-VLSI
http://dx.doi.org/https://www.quora.com/What-is-an-IP-intellectual-property-core-in-VLSI
http://dx.doi.org/10.1109/TPWRD.2013.2285633
http://dx.doi.org/10.1109/IECON.2016.7793227
http://dx.doi.org/10.1109/TIE.2017.2716880
http://dx.doi.org/10.1109/PTC.2003.1304403

132 bibliography

[13] K. Sharifabadi, L. Harnefors, H.-P. Nee, S. Norrga, R. Teodorescu, Design, Control and
Application of Modular Multilevel Converters for HVDC Transmission Systems, Wiley,
2016.

[14] D. Tormo, R. Vidal-Albalate, L. Idkhajine, E. Monmasson, R. Blasco-Gimenez, Study of
system-on-chip devices to implement embedded real-time simulators of modular multi-
level converters using high-level synthesis tools, in: IEEE International Conference on
Industrial Technology, 2018. doi:https://www.youpak.com/watch?v=8jL0vy2YaDg.

[15] J. Sawma, F. Khatounian, E. Monmasson, R. Ghosn, L. Idkhajine, Evaluation of the new
generation of system-on-chip platforms for controlling electrical systems, Industrial Tech-
nology (ICIT), 2015 IEEE International Conference on (2015) 1570–1575.

[16] B. Lu, X. Wu, H. Figueroa, A. Monti, A low-cost real-time hardware-in-the-loop testing
approach of power electronics controls, IEEE Transactions on Industrial Electronics 54 (2)
(2007) 919–931.

[17] W. Li, G. Joos, J. Belanger, Real-time simulation of a wind turbine generator coupled
with a battery supercapacitor energy storage system, IEEE Transactions on Industrial
Electronics 57 (4) (2010) 1137–1145.

[18] A. Hasanzadeh, C. Edrington, N. Stroupe, T. Bevis, Real-time emulation of a high-speed
microturbine permanent-magnet synchronous generator using multiplatform hardware-
in-the-loop realization, IEEE Transactions on Industrial Electronics 61 (6) (2013) 3109–
3118.

[19] A. Schmitt, J. Richter, U. Jurkewitz, M. Braun, FPGA-based real-time simulation of non-
linear permanent magnet synchronous machines for power hardware-in-the-loop emula-
tion systems, in: Industrial Electronics Society, IECON -40th Annual Conference of the
IEEE, IEEE, 2014, pp. 3763–3769.

[20] V. D. Colli, R. D. Stefano, F. Marignetti, A system-on-chip sensorless control for a
permanent-magnet synchronous motor, IEEE Transactions on Industrial Electronics
57 (11) (2010) 3822–3829. doi:10.1109/TIE.2009.2039459.

[21] I. Bahri, A. Maalouf, L. Idkhajine, E. Monmasson, FPGA-based implementation of sen-
sorless AC drive controllers for embedded electrical systems, in: Sensorless Control for
Electrical Drives (SLED), 2011 Symposium on. doi:10.1109/SLED.2011.6051539.

[22] I. Bahri, L. Idkhajine, E. Monmasson, M. E. A. Benkhelifa, Hardware/software code-
sign guidelines for system on chip FPGA-based sensorless AC drive applications, Indus-
trial Informatics, IEEE Transactions on 9 (4) (2013) 2165–2176. doi:10.1109/TII.2013.

2245908.

[23] E. Monmasson, I. Bahri, L. Idkhajine, A. Maalouf, W. M. Naouar, Recent advancements
in FPGA-based controllers for AC drives applications, in: Optimization of Electrical and
Electronic Equipment (OPTIM), 2012 13th International Conference on, 2012. doi:10.

1109/OPTIM.2012.6231993.

[24] Wikipedia, Programmable logic device (apr 2018).
URL https://en.wikipedia.org/wiki/Programmable_logic_device

[25] M. Dagbagi, FPGA-based embedded real time simulation of electrical systems, Ph.D.
thesis, SATIE Laboratory, Université de Cergy-Pontoise, France (oct 2015).

http://dx.doi.org/https://www.youpak.com/watch?v=8jL0vy2YaDg
http://dx.doi.org/10.1109/TIE.2009.2039459
http://dx.doi.org/10.1109/SLED.2011.6051539
http://dx.doi.org/10.1109/TII.2013.2245908
http://dx.doi.org/10.1109/TII.2013.2245908
http://dx.doi.org/10.1109/OPTIM.2012.6231993
http://dx.doi.org/10.1109/OPTIM.2012.6231993
https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Programmable_logic_device

bibliography 133

[26] J. W. Liu, Real-Time Systems, Upper Saddle River, NJ: Prentice-Hall, 2000.

[27] Wikipedia, Real-time computing (apr 2018).
URL https://en.wikipedia.org/wiki/Real-time_computing

[28] M. Ricco, M. Gheorghe, L. Mathe, R. Teodorescu, System-on-chip implementation of
embedded real-time simulator for modular multilevel converters, in: Energy Conversion
Congress and Exposition (ECCE), IEEE, 2017. doi:10.1109/ECCE.2017.8095968.

[29] J. R. Marti, J. Lin, Suppression of numerical oscillations in the emtp, IEEE Transactions
on Power Systems 4 (2) (1989) 739–747. doi:10.1109/59.193849.

[30] H. Dommel, Digital computer solution of electromagnetic transients in single-and mul-
tiphase networks, IEEE Transactions on Power Apparatus and Systems PAS-88 (1969)
388–399.

[31] J. Sanchez-Gasca, R. D’Aquila, W. Price, J. Paserba, Variable time step, implicit integra-
tion for extended term power system dynamic simulation, in: Proceedings of the Power
Industry Computer Application Conference, Salt Lake City, UT, USA, 1995, pp. 183–189.

[32] L. Snider, J. Belanger, G. Nanjundaiah, Today’s power system simulation challenge: High-
performance, scalable, upgradable, affordable COTS-based real-time digital simulators,
in: PEDES conference, 2010.

[33] J. Belanger, P. Venne, J. Paquin, The what, where and why of real-time simulation, IEEE
PES General Meeting (2010) 25–29.

[34] V. Dinavahi, Real-time digital simulation of switching power circuits, Ph.D. thesis, Uni-
versity of Toronto (2000).

[35] M. Matar, D. Iravani, FPGA implementation of the power electronic converter model for
real-time simulation of electromagnetic transients, IEEE Transactions on Power Delivery
25 (2) (2010) 852–860. doi:10.1109/TPWRD.2009.2033603.

[36] G. Li, M. Gevers, Roundoff noise minimisation using delta operator realisations, IEEE
Transaction On Signal Processing 42 (2). doi:10.1109/78.193204.

[37] G. Engeln-Müllges, F. Uhlig, Numerical Algorithms with C, Springer, 1996.

[38] J. Liu, V. Dinavahi, A real-time nonlinear hysteretic power transformer transient model
on FPGA, IEEE Transactions on Industrial Electronics 61 (7) (2014) 3587–3597. doi:10.

1109/TIE.2013.2279377.

[39] A. Myaing, V. Dinavahi, FPGA-based real-time emulation of power electronic systems
with detailed representation of device characteristics, IEEE Transactions on Industrial
Electronics 58 (1) (2011) 358–368. doi:10.1109/TIE.2010.2044738.

[40] M. Dagbagi, L. Idkhajine, E. Monmasson, I. Slama-Belkhodja, FPGA implementation
of power electronic converter real-time model, in: Power Electronics, Electrical Drives,
Automation and Motion (SPEEDAM), International Symposium on, Sorrento, Italy, 2012.
doi:10.1109/SPEEDAM.2012.6264543.

[41] T. Ould-Bachir, H. Saad, S. Dennetiere, J. Mahseredjian, CPU-FPGA-based real-time sim-
ulation of a two-terminal MMC-HVDC system, IEEE Transactions on Power Delivery
32 (2) (2017) 647 – 655. doi:10.1109/TPWRD.2015.2508381.

https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Real-time_computing
http://dx.doi.org/10.1109/ECCE.2017.8095968
http://dx.doi.org/10.1109/59.193849
http://dx.doi.org/10.1109/TPWRD.2009.2033603
http://dx.doi.org/10.1109/78.193204
http://dx.doi.org/10.1109/TIE.2013.2279377
http://dx.doi.org/10.1109/TIE.2013.2279377
http://dx.doi.org/10.1109/TIE.2010.2044738
http://dx.doi.org/10.1109/SPEEDAM.2012.6264543
http://dx.doi.org/10.1109/TPWRD.2015.2508381

134 bibliography

[42] Y. Chen, V. Dinavahi, Multi-FPGA digital hardware design for detailed large-scale real-
time electromagnetic transient simulation of power systems, IET Generation, Transmis-
sion & Distribution 7 (5) (2013) 451–463. doi:10.1049/iet-gtd.2012.0374.

[43] H. Saad, T. Ould-Bachir, J. Mahseredjian, C. Dufour, S. Dennetiere, S. Nguefeu, Real-time
simulation of MMCs using CPU and FPGA, IEEE Transactions on Power Electronics
30 (1) (2015) 259 – 267. doi:10.1109/TPEL.2013.2282600.

[44] Microsemi Corp., DS0112: SmartFusion Customizable System-on-Chip (cSoC) (mar
2015).

[45] ARM Holdings, ARM Cortex-M3 Technical Reference Manual (2010).

[46] Microsemi Corp., DS0097: ProASIC3 Flash Family FPGAs (mar 2016).

[47] Microsemi Corp., DS0128: IGLOO2 and SmartFusion2 Datasheet (nov 2017).

[48] Intel Inc., Intel User-customizable SoC FPGAs (2018).

[49] ARM Holdings, ARM Cortex-A53 MPCore Processor Technical Reference Manual (feb
2014).

[50] ARM Holdings, ARM Cortex-A9 MPCore Technical Reference Manual (jan 2016).

[51] Xilinx, Inc., Cortex-A9 NEON Media Processing Engine - Rev: r4p1 (2012).

[52] ARM Holdings, Cortex-A9 Floating-Point Unit (2012).

[53] ARM Holdings, ARM Cortex-A5 Floating-Point Unit (apr 2015).

[54] Xilinx Inc., DS190: Zynq-7000 All Programmable SoC Overview (January 2018).

[55] J. Sawma, F. Khatounian, R. Ghosn, L. Idkhajine, E. Monmasson, Quasi-continuous real-
time simulation of an RLE load with a current MPC regulation, Technological Advances
in Electrical, Electronics and Computer Engineering (TAEECE), 2015 Third International
Conference on (2015) 289–294.

[56] A. H. plc, AMBA AXI and ACE Protocol Specification (2013).
URL http://infocenter.arm.com

[57] Xilinx Inc., UG585: Zynq-7000 Technical Reference Manual (2016).

[58] Wikipedia, Logic synthesis (apr 2018).
URL https://en.wikipedia.org/wiki/Logic_synthesis

[59] Wikipedia, Place and route (apr 2018).
URL https://en.wikipedia.org/wiki/Place_and_route

[60] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown,
F. Ferrandi, J. Anderson, K. Bertels, A survey and evalutaion of FPGA high-level syn-
thesis tools, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 35 (10) (2015) 1591 – 1604. doi:10.1109/TCAD.2015.2513673.

[61] Wikipedia, Register-transfer level (apr 2018).
URL https://en.wikipedia.org/wiki/Register-transfer_level

http://dx.doi.org/10.1049/iet-gtd.2012.0374
http://dx.doi.org/10.1109/TPEL.2013.2282600
http://infocenter.arm.com
http://infocenter.arm.com
https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Place_and_route
https://en.wikipedia.org/wiki/Place_and_route
http://dx.doi.org/10.1109/TCAD.2015.2513673
https://en.wikipedia.org/wiki/Register-transfer_level
https://en.wikipedia.org/wiki/Register-transfer_level

bibliography 135

[62] E. Monmasson, M. N. Cirstea, FPGA design methodology for industrial control systems
- a review, IEEE Transactions on Industrial Electronics 54 (4) (2007) 1824–1842.

[63] D. J. Pagliari, M. R. Casu, L. P. Cartoni, Acceleration of microwave imaging algorithms
for breast cancer detection via high-level synthesis, in: Computer Design (ICCD), 33rd
IEEE International Conference on, 2015. doi:10.1109/ICCD.2015.7357152.

[64] C. Zhang, P. L. Li, G. Guangyu, Y. Guan, B. Xiao, J. Cong, Optimizing FPGA-based accel-
erator design for deep convolutional neural network, in: 3rd ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2015.
URL http://cadlab.cs.ucla.edu/~cong/slides/fpga2015_chen.pdf

[65] A. Cortes, I. Velez, A. Irizar, High level synthesis using Vivado HLS for Zynq SoC: Image
processing case studies, in: Design of Circuits and Integrated Systems (DCIS), Conference
on, 2016. doi:10.1109/DCIS.2016.7845376.

[66] H. Jacinto, L. Daoud, N. Rafla, High level synthesis using vivado hls for optimizations of
sha-3, in: IEEE 60th International Midwest Symposium on Circuits and Systems (MWS-
CAS), 2017.

[67] H. Boeui, K. Han-Yee, K. Minsu, X. Lei, S. Weidong, S. Taeweon, FASTEN: An FPGA-
based secure system for big data processing, IEEE Design & Test PP (99). doi:10.1109/

MDAT.2017.2741464.

[68] B. Anirudh, V. Vivek, R. Abhishek, D. Sumam, Accelerating real-time computer vision
applications using HW/SW co-design, in: Computer, Communications and Electronics
(Comptelix), International Conference on, 2017. doi:10.1109/COMPTELIX.2017.8004013.

[69] B. C. Schafer, K. Wakabayashi, Machine learning predictive modelling high-level synthe-
sis design space exploration, IET Computers & Digital Techniquesdoi:10.1049/iet-cdt.
2011.0115.

[70] Xilinx Inc., UG1270: Vivado HLS Optimization Methodology Guide (dec 2017).

[71] R. Park, Two-reaction theory of synchronous machines generalized method of analysis,
Transactions of the American Institute of Electrical Engineers 48 (3) (1929) 716–727.

[72] O. I. Elgerd, Electric Energy Systems Theory: An Introduction, Tata McGraw-Hill, 1971.

[73] Xilinx Inc., UG902: High-Level Synthesis with Vivado HLS (2017).

[74] S. Muller, M. Deicke, R. D. Doncker, Doubly fed induction generator systems for wind
turbines, IEEE Industry Applications Magazine 8 (3) (2002) 26–33.

[75] W. L. Brogan, Modern Control Theory, 1st Edition, Quantum Publishers, 1974.

[76] E. W. Weisstein, Laplace transform, Mathworld.
URL http://mathworld.wolfram.com/LaplaceTransform.html

[77] J. Wu, NEON/VFPU hardware acceleration (2012).

[78] B. Andersen, L. Xu, P. Horton, P. Cartwright, Topologies for VSC transmission, Power
Engineering Journal 16 (3) (2002) 142 – 150. doi:10.1049/pe:20020307.

http://dx.doi.org/10.1109/ICCD.2015.7357152
http://cadlab.cs.ucla.edu/~cong/slides/fpga2015_chen.pdf
http://cadlab.cs.ucla.edu/~cong/slides/fpga2015_chen.pdf
http://cadlab.cs.ucla.edu/~cong/slides/fpga2015_chen.pdf
http://dx.doi.org/10.1109/DCIS.2016.7845376
http://dx.doi.org/10.1109/MDAT.2017.2741464
http://dx.doi.org/10.1109/MDAT.2017.2741464
http://dx.doi.org/10.1109/COMPTELIX.2017.8004013
http://dx.doi.org/10.1049/iet-cdt.2011.0115
http://dx.doi.org/10.1049/iet-cdt.2011.0115
http://mathworld.wolfram.com/LaplaceTransform.html
http://mathworld.wolfram.com/LaplaceTransform.html
http://dx.doi.org/10.1049/pe:20020307

136 bibliography

[79] U. Gnanarathna, S. Chaudhary, A. Gole, R. Teodorescu, Modular multi-level converter
based HVDC system for grid connection of offshore wind power plant, in: AC and DC
Power Transmission, 2010. ACDC. 9th IET International Conference on, 2010. doi:10.

1049/cp.2010.0984.

[80] U. Gnanarathna, A. Gole, R. Jayasinghe, Efficient modeling of modular multilevel HVDC
converters (mmc) on electromagnetic transient simulation programs, IEEE Transactions
on Power Delivery 26 (1) (2011) 316 – 324. doi:10.1109/TPWRD.2010.2060737.

[81] J. Peralta, H. Saad, S. Dennetiere, J. Mahseredjian, S. Nguefeu, Detailed and averaged
models for a 401-level MMC-HVDC system, IEEE Transactions on Power Delivery 27 (3)
(2012) 1501 – 1508. doi:10.1109/PESMG.2013.6672356.

[82] L. Angquist, A. Antonopoulos, D. Siemaszko, K. Ilves, M. Vasiladiotis, H. Nee, Open-
loop control of modular multilevel converters using estimation of stored energy, IEEE
Transactions on Industry Applications 47 (6) (2011) 2516–2524.

[83] L. Harnefors, A. Antonopoulos, S. Norrga, L. Angquist, H. Nee, Dynamic analysis of
modular multilevel converters, IEEE Transactions in Industrial Electronics 60 (7) (2013)
2526–2537. doi:http://dx.doi.org/10.1109/TIE.2012.2194974.

[84] S. Norrga, L. Angquist, K. Ilves, L. Harnefors, H.-P. Nee, Frequency-domain modeling of
modular multilevel converters, in: IECON - 38th Annual Conference on IEEE Industrial
Electronics Society, 2012. doi:10.1109/IECON.2012.6389570.

[85] R. Vidal-Albalate, E. Belenguer, H. Beltran, R. Blasco-Gimenez, Efficient model for mod-
ular multi-level converter simulation, Mathematics and Computers in Simulation (MAT-
COM) 130 (2016) 167 – 180. doi:https://doi.org/10.1016/j.matcom.2015.10.001.

[86] E. Hogenauer, An economical class of digital filters for decimation and interpolation
29 (2) (1981) 155 – 162. doi:10.1109/TASSP.1981.1163535.
URL http://ieeexplore.ieee.org/document/1163535/

[87] M. Sadri, C. Weis, N. Wehn, L. Benini, Energy and performance exploration of accelerator
coherency port using xilinx Zynq, in: FPGAWorld’13 Copenhagen and Stockholm, 2013.
URL http://www.googoolia.com/downloads/papers/sadri_fpgaworld_ver2.pdf

[88] N. Hoffmann, F. W. Fuchs, J. Dannehl, Models and effects of different updating and
sampling concepts to the control of grid-connected pwm converters — a study based
on discrete time domain analysis, in: Power Electronics and Applications (EPE 2011),
Proceedings of the 2011-14th European Conference on, 2011.

[89] R. Vidal-Albalate, J. Barahona, D. Soto-Sanchez, E. Belenguer, R. Peña, R. Blasco-
Gimenez, A modular multi-level DC-DC converter for HVDC grids, in: Industrial Elec-
tronics Society , IECON - 42nd Annual Conference of the IEEE, 2016. doi:10.1109/

IECON.2016.7793043.

[90] C. Townsend, D. Tormo, R. Baraciarte, Y. Yu, H. Z. de la Parra, G. Demetriades, V. Age-
lidis, Heuristic model predictive modulation for high-power cascaded multi-level con-
verters, IEEE Transactions on Industrial Electronics.

[91] C. D. Townsend, D. Tormo, H. Z. D. L. Parra, One dimensional cell inversion: A mod-
ulation strategy for hybrid cascaded converters, in: Energy Conversion Congress and
Exposition (ECCE), IEEE, 2014.

http://dx.doi.org/10.1049/cp.2010.0984
http://dx.doi.org/10.1049/cp.2010.0984
http://dx.doi.org/10.1109/TPWRD.2010.2060737
http://dx.doi.org/10.1109/PESMG.2013.6672356
http://dx.doi.org/http://dx.doi.org/10.1109/TIE.2012.2194974
http://dx.doi.org/10.1109/IECON.2012.6389570
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2015.10.001
http://ieeexplore.ieee.org/document/1163535/
http://dx.doi.org/10.1109/TASSP.1981.1163535
http://ieeexplore.ieee.org/document/1163535/
http://www.googoolia.com/downloads/papers/sadri_fpgaworld_ver2.pdf
http://www.googoolia.com/downloads/papers/sadri_fpgaworld_ver2.pdf
http://www.googoolia.com/downloads/papers/sadri_fpgaworld_ver2.pdf
http://dx.doi.org/10.1109/IECON.2016.7793043
http://dx.doi.org/10.1109/IECON.2016.7793043

bibliography 137

[92] C. Townsend, T. Summers, J. Vodden, A. Watson, R. Betz, J. Clare, Optimization of switch-
ing losses and capacitor voltage ripple using model predictive control of a cascaded
h-bridge multilevel statcom, IEEE Transactions on Power Electronics 28 (7) (2013) 3077–
3087.

[93] Avnet Inc., MicroZed I/O Carrier Card (Aug 2014).
URL https://www.avnet.com/opasdata/d120001/medias/docus/58/

AES-MBCC-IO-G-IOCC_HW_UG_1p3.pdf

[94] Toshiba Corporation, TK62N60W Power MOSFET (2012).
URL https://toshiba.semicon-storage.com/ap-en/product/mosfet/detail.

TK62N60W.html

[95] Broadcom Corporation, ACPL-7970 Optically Isolated Sigma-Delta Modulator (2012).
URL https://www.broadcom.com/products/optocouplers/industrial-plastic/

isolation-amplifiers-modulators/sigma-delta-modulators/acpl-79

https://www.avnet.com/opasdata/d120001/medias/docus/58/AES-MBCC-IO-G-IOCC_HW_UG_1p3.pdf
https://www.avnet.com/opasdata/d120001/medias/docus/58/AES-MBCC-IO-G-IOCC_HW_UG_1p3.pdf
https://www.avnet.com/opasdata/d120001/medias/docus/58/AES-MBCC-IO-G-IOCC_HW_UG_1p3.pdf
https://toshiba.semicon-storage.com/ap-en/product/mosfet/detail.TK62N60W.html
https://toshiba.semicon-storage.com/ap-en/product/mosfet/detail.TK62N60W.html
https://toshiba.semicon-storage.com/ap-en/product/mosfet/detail.TK62N60W.html
https://www.broadcom.com/products/optocouplers/industrial-plastic/isolation-amplifiers-modulators/sigma-delta-modulators/acpl-79
https://www.broadcom.com/products/optocouplers/industrial-plastic/isolation-amplifiers-modulators/sigma-delta-modulators/acpl-79
https://www.broadcom.com/products/optocouplers/industrial-plastic/isolation-amplifiers-modulators/sigma-delta-modulators/acpl-79

colophon

This document was typeset using classicthesis style developed by André Miede. The style
was inspired by Robert Bringhurst’s seminal book on typography “The Elements of Typographic
Style”. It is available for LATEX and LYX at

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send the author a real postcard; the collection of
postcards received so far is featured at

http://postcards.miede.de/

Final Version as of September 12, 2018 (classicthesis version 1.1).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

D E C L A R AT I O N

This Doctoral Thesis was financed by public French funds and carried out at the Systèmes et
Applications des Technologies de l’Information et de l’Énergie (SATIE) laboratory of the Département
de Génie Electrique et Informatique Industrielle (GEII) of the Université Paris Seine, Cergy-Pontoise,
France.

Cette Thèse Doctorale à été financée par l’État Français et tenue dans le laboratoire SATIE
(Systèmes et Applications des Technologies de l’Information et de l’Énergie) du Département de Génie
Electrique et Informatique Industrielle (GEII) de l’Université Paris Seine, Cergy-Pontoise, France.

Aquesta Tesi Doctoral ha estat finançada per l’Estat Francés i portada a terme en el lab-
oratori SATIE (Systèmes et Applications des Technologies de l’Information et de l’Énergie) del Dé-
partement de Génie Electrique et Informatique Industrielle (GEII) de l’Université Paris Seine, Cergy-
Pontoise, France.

Paris, France, 11th July 2018

Daniel Tormo Borredà

141

	Title
	Dedication
	Abstract
	Résumé
	Resum
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms

	 General Introduction and State of the Art
	1 General Introduction
	1.1 Thesis objectives and author contributions
	1.2 Thesis outline

	2 State of the Art
	2.1 Introduction
	2.2 What is an Embedded Real-Time Simulator?
	2.3 eRTS development (I) : System modeling
	2.4 eRTS development (II) : Digital realization
	2.4.1 Numerical solver
	2.4.2 Time-step selection
	2.4.3 Data representation

	2.5 eRTS development (III) : Digital implementation
	2.6 System-on-Chip devices
	2.6.1 General overview
	2.6.2 ARM Cortex-A9 hardware accelerators
	2.6.3 PS-PL interfacing

	2.7 Design tools and methodology
	2.8 Chapter conclusions

	 Case Applications
	3 eRTS for electromechanical systems: The DFIG case
	3.1 Introduction
	3.2 The methodology
	3.3 Case application description: The DFIG
	3.3.1 DFIG dynamic equations in the dq reference frame
	3.3.2 The controller

	3.4 Discretization methods comparison
	3.4.1 Euler method
	3.4.2 Tustin method
	3.4.3 C-code implementation
	3.4.4 Full-software implementation of both discretizations
	3.4.5 Full-hardware implementation of both discretizations
	3.4.6 Discretization results and conclusion

	3.5 Full-software Euler implementation
	3.5.1 64-bit floating-point full-software implementation
	3.5.2 32-bit floating-point full-software implementation
	3.5.3 Full-software implementation conclusions

	3.6 Full-hardware Euler implementation
	3.6.1 32-bit floating-point full-hardware implementation
	3.6.2 32-bit fixed-point full-hardware implementation
	3.6.3 Full-hardware implementation conclusions

	3.7 Hardware-Software co-design
	3.7.1 Hardware accelerator using OCM
	3.7.2 Hardware accelerator using BRAM
	3.7.3 Hardware-software co-design conclusions

	3.8 Chapter conclusions

	4 eRTS for power electronic systems: The MMC case
	4.1 Introduction
	4.2 The methodology
	4.3 Case application description: The MMC
	4.4 MMC numerical models
	4.4.1 MMC model classification
	4.4.2 The simplified model

	4.5 Discretization
	4.6 Hardware implementation
	4.6.1 Description of the IP

	4.7 Results
	4.7.1 Resources usage
	4.7.2 Execution time
	4.7.3 Precision

	4.8 Chapter conclusions

	 Experimental Validation
	5 Application of an eRTS in an experimental prototype
	5.1 Introduction and objectives
	5.2 Software/hardware co-design description
	5.2.1 Zynq block design
	5.2.2 IP descriptions and configurations
	5.2.3 The C code

	5.3 Experimental results
	5.3.1 PSCAD MMC model
	5.3.2 HLS MMC model implementation
	5.3.3 Control verification using the MMC IP as HIL
	5.3.4 Control verification with experimental prototype
	5.3.5 eRTS for cell voltage estimation and fault-tolerant control

	5.4 Chapter conclusions

	 General Conclusions and Perspectives
	6 General conclusions
	7 Perspectives
	7.1 Minimise the eRTS execution time
	7.2 Improve eRTS model
	7.3 Increase the number of SM to be controlled
	7.4 Implement new converter topologies
	7.5 Test new control strategies
	7.6 eRTS current estimator for fault-tolerant control

	 Appendix
	A Experimental test bench
	A.1 Introduction
	A.2 Test bench description
	A.2.1 The Half-Bridge sub-module
	A.2.2 Control System

	B MMC state space model parameters
	Bibliography
	Colophon
	Declaration

